1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 #include <sys/types.h> 31 #include <sys/stream.h> 32 #include <sys/dlpi.h> 33 #include <sys/stropts.h> 34 #include <sys/sysmacros.h> 35 #include <sys/strsubr.h> 36 #include <sys/strlog.h> 37 #include <sys/strsun.h> 38 #include <sys/zone.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/xti_inet.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/cmn_err.h> 45 #include <sys/debug.h> 46 #include <sys/kobj.h> 47 #include <sys/modctl.h> 48 #include <sys/atomic.h> 49 #include <sys/policy.h> 50 #include <sys/priv.h> 51 52 #include <sys/systm.h> 53 #include <sys/param.h> 54 #include <sys/kmem.h> 55 #include <sys/sdt.h> 56 #include <sys/socket.h> 57 #include <sys/vtrace.h> 58 #include <sys/isa_defs.h> 59 #include <net/if.h> 60 #include <net/if_arp.h> 61 #include <net/route.h> 62 #include <sys/sockio.h> 63 #include <netinet/in.h> 64 #include <net/if_dl.h> 65 66 #include <inet/common.h> 67 #include <inet/mi.h> 68 #include <inet/mib2.h> 69 #include <inet/nd.h> 70 #include <inet/arp.h> 71 #include <inet/snmpcom.h> 72 #include <inet/optcom.h> 73 #include <inet/kstatcom.h> 74 75 #include <netinet/igmp_var.h> 76 #include <netinet/ip6.h> 77 #include <netinet/icmp6.h> 78 #include <netinet/sctp.h> 79 80 #include <inet/ip.h> 81 #include <inet/ip_impl.h> 82 #include <inet/ip6.h> 83 #include <inet/ip6_asp.h> 84 #include <inet/tcp.h> 85 #include <inet/tcp_impl.h> 86 #include <inet/ip_multi.h> 87 #include <inet/ip_if.h> 88 #include <inet/ip_ire.h> 89 #include <inet/ip_ftable.h> 90 #include <inet/ip_rts.h> 91 #include <inet/ip_ndp.h> 92 #include <inet/ip_listutils.h> 93 #include <netinet/igmp.h> 94 #include <netinet/ip_mroute.h> 95 #include <inet/ipp_common.h> 96 97 #include <net/pfkeyv2.h> 98 #include <inet/ipsec_info.h> 99 #include <inet/sadb.h> 100 #include <inet/ipsec_impl.h> 101 #include <sys/iphada.h> 102 #include <inet/tun.h> 103 #include <inet/ipdrop.h> 104 #include <inet/ip_netinfo.h> 105 106 #include <sys/ethernet.h> 107 #include <net/if_types.h> 108 #include <sys/cpuvar.h> 109 110 #include <ipp/ipp.h> 111 #include <ipp/ipp_impl.h> 112 #include <ipp/ipgpc/ipgpc.h> 113 114 #include <sys/multidata.h> 115 #include <sys/pattr.h> 116 117 #include <inet/ipclassifier.h> 118 #include <inet/sctp_ip.h> 119 #include <inet/sctp/sctp_impl.h> 120 #include <inet/udp_impl.h> 121 #include <inet/rawip_impl.h> 122 #include <inet/rts_impl.h> 123 #include <sys/sunddi.h> 124 125 #include <sys/tsol/label.h> 126 #include <sys/tsol/tnet.h> 127 128 #include <rpc/pmap_prot.h> 129 130 /* 131 * Values for squeue switch: 132 * IP_SQUEUE_ENTER_NODRAIN: squeue_enter_nodrain 133 * IP_SQUEUE_ENTER: squeue_enter 134 * IP_SQUEUE_FILL: squeue_fill 135 */ 136 int ip_squeue_enter = 2; /* Setable in /etc/system */ 137 138 squeue_func_t ip_input_proc; 139 #define SET_BPREV_FLAG(x) ((mblk_t *)(uintptr_t)(x)) 140 141 /* 142 * Setable in /etc/system 143 */ 144 int ip_poll_normal_ms = 100; 145 int ip_poll_normal_ticks = 0; 146 int ip_modclose_ackwait_ms = 3000; 147 148 /* 149 * It would be nice to have these present only in DEBUG systems, but the 150 * current design of the global symbol checking logic requires them to be 151 * unconditionally present. 152 */ 153 uint_t ip_thread_data; /* TSD key for debug support */ 154 krwlock_t ip_thread_rwlock; 155 list_t ip_thread_list; 156 157 /* 158 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 159 */ 160 161 struct listptr_s { 162 mblk_t *lp_head; /* pointer to the head of the list */ 163 mblk_t *lp_tail; /* pointer to the tail of the list */ 164 }; 165 166 typedef struct listptr_s listptr_t; 167 168 /* 169 * This is used by ip_snmp_get_mib2_ip_route_media and 170 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 171 */ 172 typedef struct iproutedata_s { 173 uint_t ird_idx; 174 listptr_t ird_route; /* ipRouteEntryTable */ 175 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 176 listptr_t ird_attrs; /* ipRouteAttributeTable */ 177 } iproutedata_t; 178 179 /* 180 * Cluster specific hooks. These should be NULL when booted as a non-cluster 181 */ 182 183 /* 184 * Hook functions to enable cluster networking 185 * On non-clustered systems these vectors must always be NULL. 186 * 187 * Hook function to Check ip specified ip address is a shared ip address 188 * in the cluster 189 * 190 */ 191 int (*cl_inet_isclusterwide)(uint8_t protocol, 192 sa_family_t addr_family, uint8_t *laddrp) = NULL; 193 194 /* 195 * Hook function to generate cluster wide ip fragment identifier 196 */ 197 uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 198 uint8_t *laddrp, uint8_t *faddrp) = NULL; 199 200 /* 201 * Synchronization notes: 202 * 203 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 204 * MT level protection given by STREAMS. IP uses a combination of its own 205 * internal serialization mechanism and standard Solaris locking techniques. 206 * The internal serialization is per phyint (no IPMP) or per IPMP group. 207 * This is used to serialize plumbing operations, IPMP operations, certain 208 * multicast operations, most set ioctls, igmp/mld timers etc. 209 * 210 * Plumbing is a long sequence of operations involving message 211 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 212 * involved in plumbing operations. A natural model is to serialize these 213 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 214 * parallel without any interference. But various set ioctls on hme0 are best 215 * serialized. However if the system uses IPMP, the operations are easier if 216 * they are serialized on a per IPMP group basis since IPMP operations 217 * happen across ill's of a group. Thus the lowest common denominator is to 218 * serialize most set ioctls, multicast join/leave operations, IPMP operations 219 * igmp/mld timer operations, and processing of DLPI control messages received 220 * from drivers on a per IPMP group basis. If the system does not employ 221 * IPMP the serialization is on a per phyint basis. This serialization is 222 * provided by the ipsq_t and primitives operating on this. Details can 223 * be found in ip_if.c above the core primitives operating on ipsq_t. 224 * 225 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 226 * Simiarly lookup of an ire by a thread also returns a refheld ire. 227 * In addition ipif's and ill's referenced by the ire are also indirectly 228 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 229 * the ipif's address or netmask change as long as an ipif is refheld 230 * directly or indirectly. For example an SIOCLIFADDR ioctl that changes the 231 * address of an ipif has to go through the ipsq_t. This ensures that only 232 * 1 such exclusive operation proceeds at any time on the ipif. It then 233 * deletes all ires associated with this ipif, and waits for all refcnts 234 * associated with this ipif to come down to zero. The address is changed 235 * only after the ipif has been quiesced. Then the ipif is brought up again. 236 * More details are described above the comment in ip_sioctl_flags. 237 * 238 * Packet processing is based mostly on IREs and are fully multi-threaded 239 * using standard Solaris MT techniques. 240 * 241 * There are explicit locks in IP to handle: 242 * - The ip_g_head list maintained by mi_open_link() and friends. 243 * 244 * - The reassembly data structures (one lock per hash bucket) 245 * 246 * - conn_lock is meant to protect conn_t fields. The fields actually 247 * protected by conn_lock are documented in the conn_t definition. 248 * 249 * - ire_lock to protect some of the fields of the ire, IRE tables 250 * (one lock per hash bucket). Refer to ip_ire.c for details. 251 * 252 * - ndp_g_lock and nce_lock for protecting NCEs. 253 * 254 * - ill_lock protects fields of the ill and ipif. Details in ip.h 255 * 256 * - ill_g_lock: This is a global reader/writer lock. Protects the following 257 * * The AVL tree based global multi list of all ills. 258 * * The linked list of all ipifs of an ill 259 * * The <ill-ipsq> mapping 260 * * The ipsq->ipsq_phyint_list threaded by phyint_ipsq_next 261 * * The illgroup list threaded by ill_group_next. 262 * * <ill-phyint> association 263 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 264 * into an ill, changing the <ill-ipsq> mapping of an ill, insertion/deletion 265 * of an ill into the illgrp list, changing the <ill-phyint> assoc of an ill 266 * will all have to hold the ill_g_lock as writer for the actual duration 267 * of the insertion/deletion/change. More details about the <ill-ipsq> mapping 268 * may be found in the IPMP section. 269 * 270 * - ill_lock: This is a per ill mutex. 271 * It protects some members of the ill and is documented below. 272 * It also protects the <ill-ipsq> mapping 273 * It also protects the illgroup list threaded by ill_group_next. 274 * It also protects the <ill-phyint> assoc. 275 * It also protects the list of ipifs hanging off the ill. 276 * 277 * - ipsq_lock: This is a per ipsq_t mutex lock. 278 * This protects all the other members of the ipsq struct except 279 * ipsq_refs and ipsq_phyint_list which are protected by ill_g_lock 280 * 281 * - illgrp_lock: This is a per ill_group mutex lock. 282 * The only thing it protects is the illgrp_ill_schednext member of ill_group 283 * which dictates which is the next ill in an ill_group that is to be chosen 284 * for sending outgoing packets, through creation of an IRE_CACHE that 285 * references this ill. 286 * 287 * - phyint_lock: This is a per phyint mutex lock. Protects just the 288 * phyint_flags 289 * 290 * - ip_g_nd_lock: This is a global reader/writer lock. 291 * Any call to nd_load to load a new parameter to the ND table must hold the 292 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 293 * as reader. 294 * 295 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 296 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 297 * uniqueness check also done atomically. 298 * 299 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 300 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 301 * as a writer when adding or deleting elements from these lists, and 302 * as a reader when walking these lists to send a SADB update to the 303 * IPsec capable ills. 304 * 305 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 306 * group list linked by ill_usesrc_grp_next. It also protects the 307 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 308 * group is being added or deleted. This lock is taken as a reader when 309 * walking the list/group(eg: to get the number of members in a usesrc group). 310 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 311 * field is changing state i.e from NULL to non-NULL or vice-versa. For 312 * example, it is not necessary to take this lock in the initial portion 313 * of ip_sioctl_slifusesrc or at all in ip_sioctl_groupname and 314 * ip_sioctl_flags since the these operations are executed exclusively and 315 * that ensures that the "usesrc group state" cannot change. The "usesrc 316 * group state" change can happen only in the latter part of 317 * ip_sioctl_slifusesrc and in ill_delete. 318 * 319 * Changing <ill-phyint>, <ill-ipsq>, <ill-illgroup> assocications. 320 * 321 * To change the <ill-phyint> association, the ill_g_lock must be held 322 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 323 * must be held. 324 * 325 * To change the <ill-ipsq> association the ill_g_lock must be held as writer 326 * and the ill_lock of the ill in question must be held. 327 * 328 * To change the <ill-illgroup> association the ill_g_lock must be held as 329 * writer and the ill_lock of the ill in question must be held. 330 * 331 * To add or delete an ipif from the list of ipifs hanging off the ill, 332 * ill_g_lock (writer) and ill_lock must be held and the thread must be 333 * a writer on the associated ipsq,. 334 * 335 * To add or delete an ill to the system, the ill_g_lock must be held as 336 * writer and the thread must be a writer on the associated ipsq. 337 * 338 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 339 * must be a writer on the associated ipsq. 340 * 341 * Lock hierarchy 342 * 343 * Some lock hierarchy scenarios are listed below. 344 * 345 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 346 * ill_g_lock -> illgrp_lock -> ill_lock 347 * ill_g_lock -> ill_lock(s) -> phyint_lock 348 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 349 * ill_g_lock -> ip_addr_avail_lock 350 * conn_lock -> irb_lock -> ill_lock -> ire_lock 351 * ill_g_lock -> ip_g_nd_lock 352 * 353 * When more than 1 ill lock is needed to be held, all ill lock addresses 354 * are sorted on address and locked starting from highest addressed lock 355 * downward. 356 * 357 * IPsec scenarios 358 * 359 * ipsa_lock -> ill_g_lock -> ill_lock 360 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 361 * ipsec_capab_ills_lock -> ipsa_lock 362 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 363 * 364 * Trusted Solaris scenarios 365 * 366 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 367 * igsa_lock -> gcdb_lock 368 * gcgrp_rwlock -> ire_lock 369 * gcgrp_rwlock -> gcdb_lock 370 * 371 * 372 * Routing/forwarding table locking notes: 373 * 374 * Lock acquisition order: Radix tree lock, irb_lock. 375 * Requirements: 376 * i. Walker must not hold any locks during the walker callback. 377 * ii Walker must not see a truncated tree during the walk because of any node 378 * deletion. 379 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 380 * in many places in the code to walk the irb list. Thus even if all the 381 * ires in a bucket have been deleted, we still can't free the radix node 382 * until the ires have actually been inactive'd (freed). 383 * 384 * Tree traversal - Need to hold the global tree lock in read mode. 385 * Before dropping the global tree lock, need to either increment the ire_refcnt 386 * to ensure that the radix node can't be deleted. 387 * 388 * Tree add - Need to hold the global tree lock in write mode to add a 389 * radix node. To prevent the node from being deleted, increment the 390 * irb_refcnt, after the node is added to the tree. The ire itself is 391 * added later while holding the irb_lock, but not the tree lock. 392 * 393 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 394 * All associated ires must be inactive (i.e. freed), and irb_refcnt 395 * must be zero. 396 * 397 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 398 * global tree lock (read mode) for traversal. 399 * 400 * IPsec notes : 401 * 402 * IP interacts with the IPsec code (AH/ESP) by tagging a M_CTL message 403 * in front of the actual packet. For outbound datagrams, the M_CTL 404 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 405 * information used by the IPsec code for applying the right level of 406 * protection. The information initialized by IP in the ipsec_out_t 407 * is determined by the per-socket policy or global policy in the system. 408 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 409 * ipsec_info.h) which starts out with nothing in it. It gets filled 410 * with the right information if it goes through the AH/ESP code, which 411 * happens if the incoming packet is secure. The information initialized 412 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 413 * the policy requirements needed by per-socket policy or global policy 414 * is met or not. 415 * 416 * If there is both per-socket policy (set using setsockopt) and there 417 * is also global policy match for the 5 tuples of the socket, 418 * ipsec_override_policy() makes the decision of which one to use. 419 * 420 * For fully connected sockets i.e dst, src [addr, port] is known, 421 * conn_policy_cached is set indicating that policy has been cached. 422 * conn_in_enforce_policy may or may not be set depending on whether 423 * there is a global policy match or per-socket policy match. 424 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 425 * Once the right policy is set on the conn_t, policy cannot change for 426 * this socket. This makes life simpler for TCP (UDP ?) where 427 * re-transmissions go out with the same policy. For symmetry, policy 428 * is cached for fully connected UDP sockets also. Thus if policy is cached, 429 * it also implies that policy is latched i.e policy cannot change 430 * on these sockets. As we have the right policy on the conn, we don't 431 * have to lookup global policy for every outbound and inbound datagram 432 * and thus serving as an optimization. Note that a global policy change 433 * does not affect fully connected sockets if they have policy. If fully 434 * connected sockets did not have any policy associated with it, global 435 * policy change may affect them. 436 * 437 * IP Flow control notes: 438 * 439 * Non-TCP streams are flow controlled by IP. On the send side, if the packet 440 * cannot be sent down to the driver by IP, because of a canput failure, IP 441 * does a putq on the conn_wq. This will cause ip_wsrv to run on the conn_wq. 442 * ip_wsrv in turn, inserts the conn in a list of conn's that need to be drained 443 * when the flowcontrol condition subsides. Ultimately STREAMS backenables the 444 * ip_wsrv on the IP module, which in turn does a qenable of the conn_wq of the 445 * first conn in the list of conn's to be drained. ip_wsrv on this conn drains 446 * the queued messages, and removes the conn from the drain list, if all 447 * messages were drained. It also qenables the next conn in the drain list to 448 * continue the drain process. 449 * 450 * In reality the drain list is not a single list, but a configurable number 451 * of lists. The ip_wsrv on the IP module, qenables the first conn in each 452 * list. If the ip_wsrv of the next qenabled conn does not run, because the 453 * stream closes, ip_close takes responsibility to qenable the next conn in 454 * the drain list. The directly called ip_wput path always does a putq, if 455 * it cannot putnext. Thus synchronization problems are handled between 456 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 457 * functions that manipulate this drain list. Furthermore conn_drain_insert 458 * is called only from ip_wsrv, and there can be only 1 instance of ip_wsrv 459 * running on a queue at any time. conn_drain_tail can be simultaneously called 460 * from both ip_wsrv and ip_close. 461 * 462 * IPQOS notes: 463 * 464 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 465 * and IPQoS modules. IPPF includes hooks in IP at different control points 466 * (callout positions) which direct packets to IPQoS modules for policy 467 * processing. Policies, if present, are global. 468 * 469 * The callout positions are located in the following paths: 470 * o local_in (packets destined for this host) 471 * o local_out (packets orginating from this host ) 472 * o fwd_in (packets forwarded by this m/c - inbound) 473 * o fwd_out (packets forwarded by this m/c - outbound) 474 * Hooks at these callout points can be enabled/disabled using the ndd variable 475 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 476 * By default all the callout positions are enabled. 477 * 478 * Outbound (local_out) 479 * Hooks are placed in ip_wput_ire and ipsec_out_process. 480 * 481 * Inbound (local_in) 482 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 483 * TCP and UDP fanout routines. 484 * 485 * Forwarding (in and out) 486 * Hooks are placed in ip_rput_forward. 487 * 488 * IP Policy Framework processing (IPPF processing) 489 * Policy processing for a packet is initiated by ip_process, which ascertains 490 * that the classifier (ipgpc) is loaded and configured, failing which the 491 * packet resumes normal processing in IP. If the clasifier is present, the 492 * packet is acted upon by one or more IPQoS modules (action instances), per 493 * filters configured in ipgpc and resumes normal IP processing thereafter. 494 * An action instance can drop a packet in course of its processing. 495 * 496 * A boolean variable, ip_policy, is used in all the fanout routines that can 497 * invoke ip_process for a packet. This variable indicates if the packet should 498 * to be sent for policy processing. The variable is set to B_TRUE by default, 499 * i.e. when the routines are invoked in the normal ip procesing path for a 500 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 501 * ip_policy is set to B_FALSE for all the routines called in these two 502 * functions because, in the former case, we don't process loopback traffic 503 * currently while in the latter, the packets have already been processed in 504 * icmp_inbound. 505 * 506 * Zones notes: 507 * 508 * The partitioning rules for networking are as follows: 509 * 1) Packets coming from a zone must have a source address belonging to that 510 * zone. 511 * 2) Packets coming from a zone can only be sent on a physical interface on 512 * which the zone has an IP address. 513 * 3) Between two zones on the same machine, packet delivery is only allowed if 514 * there's a matching route for the destination and zone in the forwarding 515 * table. 516 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 517 * different zones can bind to the same port with the wildcard address 518 * (INADDR_ANY). 519 * 520 * The granularity of interface partitioning is at the logical interface level. 521 * Therefore, every zone has its own IP addresses, and incoming packets can be 522 * attributed to a zone unambiguously. A logical interface is placed into a zone 523 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 524 * structure. Rule (1) is implemented by modifying the source address selection 525 * algorithm so that the list of eligible addresses is filtered based on the 526 * sending process zone. 527 * 528 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 529 * across all zones, depending on their type. Here is the break-up: 530 * 531 * IRE type Shared/exclusive 532 * -------- ---------------- 533 * IRE_BROADCAST Exclusive 534 * IRE_DEFAULT (default routes) Shared (*) 535 * IRE_LOCAL Exclusive (x) 536 * IRE_LOOPBACK Exclusive 537 * IRE_PREFIX (net routes) Shared (*) 538 * IRE_CACHE Exclusive 539 * IRE_IF_NORESOLVER (interface routes) Exclusive 540 * IRE_IF_RESOLVER (interface routes) Exclusive 541 * IRE_HOST (host routes) Shared (*) 542 * 543 * (*) A zone can only use a default or off-subnet route if the gateway is 544 * directly reachable from the zone, that is, if the gateway's address matches 545 * one of the zone's logical interfaces. 546 * 547 * (x) IRE_LOCAL are handled a bit differently, since for all other entries 548 * in ire_ctable and IRE_INTERFACE, ire_src_addr is what can be used as source 549 * when sending packets using the IRE. For IRE_LOCAL ire_src_addr is the IP 550 * address of the zone itself (the destination). Since IRE_LOCAL is used 551 * for communication between zones, ip_wput_ire has special logic to set 552 * the right source address when sending using an IRE_LOCAL. 553 * 554 * Furthermore, when ip_restrict_interzone_loopback is set (the default), 555 * ire_cache_lookup restricts loopback using an IRE_LOCAL 556 * between zone to the case when L2 would have conceptually looped the packet 557 * back, i.e. the loopback which is required since neither Ethernet drivers 558 * nor Ethernet hardware loops them back. This is the case when the normal 559 * routes (ignoring IREs with different zoneids) would send out the packet on 560 * the same ill (or ill group) as the ill with which is IRE_LOCAL is 561 * associated. 562 * 563 * Multiple zones can share a common broadcast address; typically all zones 564 * share the 255.255.255.255 address. Incoming as well as locally originated 565 * broadcast packets must be dispatched to all the zones on the broadcast 566 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 567 * since some zones may not be on the 10.16.72/24 network. To handle this, each 568 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 569 * sent to every zone that has an IRE_BROADCAST entry for the destination 570 * address on the input ill, see conn_wantpacket(). 571 * 572 * Applications in different zones can join the same multicast group address. 573 * For IPv4, group memberships are per-logical interface, so they're already 574 * inherently part of a zone. For IPv6, group memberships are per-physical 575 * interface, so we distinguish IPv6 group memberships based on group address, 576 * interface and zoneid. In both cases, received multicast packets are sent to 577 * every zone for which a group membership entry exists. On IPv6 we need to 578 * check that the target zone still has an address on the receiving physical 579 * interface; it could have been removed since the application issued the 580 * IPV6_JOIN_GROUP. 581 */ 582 583 /* 584 * Squeue Fanout flags: 585 * 0: No fanout. 586 * 1: Fanout across all squeues 587 */ 588 boolean_t ip_squeue_fanout = 0; 589 590 /* 591 * Maximum dups allowed per packet. 592 */ 593 uint_t ip_max_frag_dups = 10; 594 595 #define IS_SIMPLE_IPH(ipha) \ 596 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 597 598 /* RFC1122 Conformance */ 599 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 600 601 #define ILL_MAX_NAMELEN LIFNAMSIZ 602 603 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 604 605 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag, 606 cred_t *credp, boolean_t isv6); 607 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t); 608 609 static void icmp_frag_needed(queue_t *, mblk_t *, int, zoneid_t, 610 ip_stack_t *); 611 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 612 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 613 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 614 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 615 mblk_t *, int, ip_stack_t *); 616 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 617 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 618 ill_t *, zoneid_t); 619 static void icmp_options_update(ipha_t *); 620 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t, zoneid_t, 621 ip_stack_t *); 622 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t, 623 zoneid_t zoneid, ip_stack_t *); 624 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_stack_t *); 625 static void icmp_redirect(ill_t *, mblk_t *); 626 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t, 627 ip_stack_t *); 628 629 static void ip_arp_news(queue_t *, mblk_t *); 630 static boolean_t ip_bind_insert_ire(mblk_t *, ire_t *, iulp_t *, 631 ip_stack_t *); 632 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 633 char *ip_dot_addr(ipaddr_t, char *); 634 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 635 int ip_close(queue_t *, int); 636 static char *ip_dot_saddr(uchar_t *, char *); 637 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 638 boolean_t, boolean_t, ill_t *, zoneid_t); 639 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 640 boolean_t, boolean_t, zoneid_t); 641 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 642 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 643 static void ip_lrput(queue_t *, mblk_t *); 644 ipaddr_t ip_net_mask(ipaddr_t); 645 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, conn_t *, zoneid_t, 646 ip_stack_t *); 647 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 648 conn_t *, uint32_t, zoneid_t, ip_opt_info_t *); 649 char *ip_nv_lookup(nv_t *, int); 650 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 651 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 652 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 653 static boolean_t ip_param_register(IDP *ndp, ipparam_t *, size_t, 654 ipndp_t *, size_t); 655 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 656 void ip_rput(queue_t *, mblk_t *); 657 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 658 void *dummy_arg); 659 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 660 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *, 661 ip_stack_t *); 662 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 663 ire_t *, ip_stack_t *); 664 static boolean_t ip_rput_multimblk_ipoptions(queue_t *, ill_t *, 665 mblk_t *, ipha_t **, ipaddr_t *, ip_stack_t *); 666 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *, 667 ip_stack_t *); 668 static boolean_t ip_rput_fragment(queue_t *, mblk_t **, ipha_t *, uint32_t *, 669 uint16_t *); 670 int ip_snmp_get(queue_t *, mblk_t *, int); 671 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 672 mib2_ipIfStatsEntry_t *, ip_stack_t *); 673 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 674 ip_stack_t *); 675 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *); 676 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 677 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 678 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 679 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 680 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 681 ip_stack_t *ipst); 682 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 683 ip_stack_t *ipst); 684 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 685 ip_stack_t *ipst); 686 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 687 ip_stack_t *ipst); 688 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 689 ip_stack_t *ipst); 690 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 691 ip_stack_t *ipst); 692 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 693 ip_stack_t *ipst); 694 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 695 ip_stack_t *ipst); 696 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, 697 ip_stack_t *ipst); 698 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, 699 ip_stack_t *ipst); 700 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 701 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 702 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 703 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 704 static boolean_t ip_source_routed(ipha_t *, ip_stack_t *); 705 static boolean_t ip_source_route_included(ipha_t *); 706 static void ip_trash_ire_reclaim_stack(ip_stack_t *); 707 708 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t, 709 zoneid_t, ip_stack_t *); 710 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int, ip_stack_t *); 711 static void ip_wput_local_options(ipha_t *, ip_stack_t *); 712 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 713 zoneid_t, ip_stack_t *); 714 715 static void conn_drain_init(ip_stack_t *); 716 static void conn_drain_fini(ip_stack_t *); 717 static void conn_drain_tail(conn_t *connp, boolean_t closing); 718 719 static void conn_walk_drain(ip_stack_t *); 720 static void conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *, 721 zoneid_t); 722 723 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 724 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 725 static void ip_stack_fini(netstackid_t stackid, void *arg); 726 727 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 728 zoneid_t); 729 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 730 void *dummy_arg); 731 732 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 733 734 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 735 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 736 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 737 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 738 739 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 740 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 741 caddr_t, cred_t *); 742 extern int ip_squeue_bind_set(queue_t *q, mblk_t *mp, char *value, 743 caddr_t cp, cred_t *cr); 744 extern int ip_squeue_profile_set(queue_t *, mblk_t *, char *, caddr_t, 745 cred_t *); 746 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 747 caddr_t cp, cred_t *cr); 748 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 749 cred_t *); 750 static int ipmp_hook_emulation_set(queue_t *, mblk_t *, char *, caddr_t, 751 cred_t *); 752 static squeue_func_t ip_squeue_switch(int); 753 754 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 755 static void ip_kstat_fini(netstackid_t, kstat_t *); 756 static int ip_kstat_update(kstat_t *kp, int rw); 757 static void *icmp_kstat_init(netstackid_t); 758 static void icmp_kstat_fini(netstackid_t, kstat_t *); 759 static int icmp_kstat_update(kstat_t *kp, int rw); 760 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 761 static void ip_kstat2_fini(netstackid_t, kstat_t *); 762 763 static int ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *); 764 765 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 766 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 767 768 static void ip_rput_process_forward(queue_t *, mblk_t *, ire_t *, 769 ipha_t *, ill_t *, boolean_t); 770 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 771 772 /* How long, in seconds, we allow frags to hang around. */ 773 #define IP_FRAG_TIMEOUT 60 774 775 /* 776 * Threshold which determines whether MDT should be used when 777 * generating IP fragments; payload size must be greater than 778 * this threshold for MDT to take place. 779 */ 780 #define IP_WPUT_FRAG_MDT_MIN 32768 781 782 /* Setable in /etc/system only */ 783 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 784 785 static long ip_rput_pullups; 786 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 787 788 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */ 789 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */ 790 791 int ip_debug; 792 793 #ifdef DEBUG 794 uint32_t ipsechw_debug = 0; 795 #endif 796 797 /* 798 * Multirouting/CGTP stuff 799 */ 800 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 801 802 /* 803 * XXX following really should only be in a header. Would need more 804 * header and .c clean up first. 805 */ 806 extern optdb_obj_t ip_opt_obj; 807 808 ulong_t ip_squeue_enter_unbound = 0; 809 810 /* 811 * Named Dispatch Parameter Table. 812 * All of these are alterable, within the min/max values given, at run time. 813 */ 814 static ipparam_t lcl_param_arr[] = { 815 /* min max value name */ 816 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 817 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 818 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 819 { 0, 1, 0, "ip_respond_to_timestamp"}, 820 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 821 { 0, 1, 1, "ip_send_redirects"}, 822 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 823 { 0, 10, 0, "ip_mrtdebug"}, 824 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 825 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 826 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 827 { 1, 255, 255, "ip_def_ttl" }, 828 { 0, 1, 0, "ip_forward_src_routed"}, 829 { 0, 256, 32, "ip_wroff_extra" }, 830 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 831 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 832 { 0, 1, 1, "ip_path_mtu_discovery" }, 833 { 0, 240, 30, "ip_ignore_delete_time" }, 834 { 0, 1, 0, "ip_ignore_redirect" }, 835 { 0, 1, 1, "ip_output_queue" }, 836 { 1, 254, 1, "ip_broadcast_ttl" }, 837 { 0, 99999, 100, "ip_icmp_err_interval" }, 838 { 1, 99999, 10, "ip_icmp_err_burst" }, 839 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 840 { 0, 1, 0, "ip_strict_dst_multihoming" }, 841 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 842 { 0, 1, 0, "ipsec_override_persocket_policy" }, 843 { 0, 1, 1, "icmp_accept_clear_messages" }, 844 { 0, 1, 1, "igmp_accept_clear_messages" }, 845 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 846 "ip_ndp_delay_first_probe_time"}, 847 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 848 "ip_ndp_max_unicast_solicit"}, 849 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 850 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 851 { 0, 1, 0, "ip6_forward_src_routed"}, 852 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 853 { 0, 1, 1, "ip6_send_redirects"}, 854 { 0, 1, 0, "ip6_ignore_redirect" }, 855 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 856 857 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 858 859 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 860 861 { 0, 1, 1, "pim_accept_clear_messages" }, 862 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 863 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 864 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 865 { 0, 15, 0, "ip_policy_mask" }, 866 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 867 { 0, 255, 1, "ip_multirt_ttl" }, 868 { 0, 1, 1, "ip_multidata_outbound" }, 869 { 0, 3600000, 300000, "ip_ndp_defense_interval" }, 870 { 0, 999999, 60*60*24, "ip_max_temp_idle" }, 871 { 0, 1000, 1, "ip_max_temp_defend" }, 872 { 0, 1000, 3, "ip_max_defend" }, 873 { 0, 999999, 30, "ip_defend_interval" }, 874 { 0, 3600000, 300000, "ip_dup_recovery" }, 875 { 0, 1, 1, "ip_restrict_interzone_loopback" }, 876 { 0, 1, 1, "ip_lso_outbound" }, 877 { IGMP_V1_ROUTER, IGMP_V3_ROUTER, IGMP_V3_ROUTER, "igmp_max_version" }, 878 { MLD_V1_ROUTER, MLD_V2_ROUTER, MLD_V2_ROUTER, "mld_max_version" }, 879 #ifdef DEBUG 880 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 881 #else 882 { 0, 0, 0, "" }, 883 #endif 884 }; 885 886 /* 887 * Extended NDP table 888 * The addresses for the first two are filled in to be ips_ip_g_forward 889 * and ips_ipv6_forward at init time. 890 */ 891 static ipndp_t lcl_ndp_arr[] = { 892 /* getf setf data name */ 893 #define IPNDP_IP_FORWARDING_OFFSET 0 894 { ip_param_generic_get, ip_forward_set, NULL, 895 "ip_forwarding" }, 896 #define IPNDP_IP6_FORWARDING_OFFSET 1 897 { ip_param_generic_get, ip_forward_set, NULL, 898 "ip6_forwarding" }, 899 { ip_ill_report, NULL, NULL, 900 "ip_ill_status" }, 901 { ip_ipif_report, NULL, NULL, 902 "ip_ipif_status" }, 903 { ip_ire_report, NULL, NULL, 904 "ipv4_ire_status" }, 905 { ip_ire_report_v6, NULL, NULL, 906 "ipv6_ire_status" }, 907 { ip_conn_report, NULL, NULL, 908 "ip_conn_status" }, 909 { nd_get_long, nd_set_long, (caddr_t)&ip_rput_pullups, 910 "ip_rput_pullups" }, 911 { ndp_report, NULL, NULL, 912 "ip_ndp_cache_report" }, 913 { ip_srcid_report, NULL, NULL, 914 "ip_srcid_status" }, 915 { ip_param_generic_get, ip_squeue_profile_set, 916 (caddr_t)&ip_squeue_profile, "ip_squeue_profile" }, 917 { ip_param_generic_get, ip_squeue_bind_set, 918 (caddr_t)&ip_squeue_bind, "ip_squeue_bind" }, 919 { ip_param_generic_get, ip_input_proc_set, 920 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 921 { ip_param_generic_get, ip_int_set, 922 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 923 #define IPNDP_CGTP_FILTER_OFFSET 14 924 { ip_cgtp_filter_get, ip_cgtp_filter_set, NULL, 925 "ip_cgtp_filter" }, 926 { ip_param_generic_get, ip_int_set, 927 (caddr_t)&ip_soft_rings_cnt, "ip_soft_rings_cnt" }, 928 #define IPNDP_IPMP_HOOK_OFFSET 16 929 { ip_param_generic_get, ipmp_hook_emulation_set, NULL, 930 "ipmp_hook_emulation" }, 931 { ip_param_generic_get, ip_int_set, (caddr_t)&ip_debug, 932 "ip_debug" }, 933 }; 934 935 /* 936 * Table of IP ioctls encoding the various properties of the ioctl and 937 * indexed based on the last byte of the ioctl command. Occasionally there 938 * is a clash, and there is more than 1 ioctl with the same last byte. 939 * In such a case 1 ioctl is encoded in the ndx table and the remaining 940 * ioctls are encoded in the misc table. An entry in the ndx table is 941 * retrieved by indexing on the last byte of the ioctl command and comparing 942 * the ioctl command with the value in the ndx table. In the event of a 943 * mismatch the misc table is then searched sequentially for the desired 944 * ioctl command. 945 * 946 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 947 */ 948 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 949 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 950 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 951 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 952 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 953 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 954 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 955 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 956 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 957 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 958 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 959 960 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 961 MISC_CMD, ip_siocaddrt, NULL }, 962 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 963 MISC_CMD, ip_siocdelrt, NULL }, 964 965 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 966 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 967 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 968 IF_CMD, ip_sioctl_get_addr, NULL }, 969 970 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 971 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 972 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 973 IPI_GET_CMD | IPI_REPL, 974 IF_CMD, ip_sioctl_get_dstaddr, NULL }, 975 976 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 977 IPI_PRIV | IPI_WR | IPI_REPL, 978 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 979 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 980 IPI_MODOK | IPI_GET_CMD | IPI_REPL, 981 IF_CMD, ip_sioctl_get_flags, NULL }, 982 983 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 984 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 985 986 /* copyin size cannot be coded for SIOCGIFCONF */ 987 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD, 988 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 989 990 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 991 IF_CMD, ip_sioctl_mtu, NULL }, 992 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 993 IF_CMD, ip_sioctl_get_mtu, NULL }, 994 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 995 IPI_GET_CMD | IPI_REPL, 996 IF_CMD, ip_sioctl_get_brdaddr, NULL }, 997 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 998 IF_CMD, ip_sioctl_brdaddr, NULL }, 999 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 1000 IPI_GET_CMD | IPI_REPL, 1001 IF_CMD, ip_sioctl_get_netmask, NULL }, 1002 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1003 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1004 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1005 IPI_GET_CMD | IPI_REPL, 1006 IF_CMD, ip_sioctl_get_metric, NULL }, 1007 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1008 IF_CMD, ip_sioctl_metric, NULL }, 1009 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1010 1011 /* See 166-168 below for extended SIOC*XARP ioctls */ 1012 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV, 1013 ARP_CMD, ip_sioctl_arp, NULL }, 1014 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD | IPI_REPL, 1015 ARP_CMD, ip_sioctl_arp, NULL }, 1016 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV, 1017 ARP_CMD, ip_sioctl_arp, NULL }, 1018 1019 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1020 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1021 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1022 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1023 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1024 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1025 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1026 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1027 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1028 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1029 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1030 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1031 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1032 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1033 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1034 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1035 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1036 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1037 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1038 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1039 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1040 1041 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1042 MISC_CMD, if_unitsel, if_unitsel_restart }, 1043 1044 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1045 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1046 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1047 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1048 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1049 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1050 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1051 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1052 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1053 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1054 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1055 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1056 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1057 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1058 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1059 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1060 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1061 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1062 1063 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1064 IPI_PRIV | IPI_WR | IPI_MODOK, 1065 IF_CMD, ip_sioctl_sifname, NULL }, 1066 1067 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1068 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1069 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1070 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1071 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1072 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1073 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1074 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1075 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1076 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1077 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1078 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1079 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1080 1081 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD | IPI_REPL, 1082 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1083 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1084 IF_CMD, ip_sioctl_get_muxid, NULL }, 1085 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1086 IPI_PRIV | IPI_WR | IPI_REPL, 1087 IF_CMD, ip_sioctl_muxid, NULL }, 1088 1089 /* Both if and lif variants share same func */ 1090 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1091 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1092 /* Both if and lif variants share same func */ 1093 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1094 IPI_PRIV | IPI_WR | IPI_REPL, 1095 IF_CMD, ip_sioctl_slifindex, NULL }, 1096 1097 /* copyin size cannot be coded for SIOCGIFCONF */ 1098 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD, 1099 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1100 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1101 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1102 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1103 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1104 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1105 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1106 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1107 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1108 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1109 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1110 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1111 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1112 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1113 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1114 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1115 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1116 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1117 1118 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1119 IPI_PRIV | IPI_WR | IPI_REPL, 1120 LIF_CMD, ip_sioctl_removeif, 1121 ip_sioctl_removeif_restart }, 1122 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1123 IPI_GET_CMD | IPI_PRIV | IPI_WR | IPI_REPL, 1124 LIF_CMD, ip_sioctl_addif, NULL }, 1125 #define SIOCLIFADDR_NDX 112 1126 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1127 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1128 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1129 IPI_GET_CMD | IPI_REPL, 1130 LIF_CMD, ip_sioctl_get_addr, NULL }, 1131 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1132 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1133 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1134 IPI_GET_CMD | IPI_REPL, 1135 LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1136 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1137 IPI_PRIV | IPI_WR | IPI_REPL, 1138 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1139 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1140 IPI_GET_CMD | IPI_MODOK | IPI_REPL, 1141 LIF_CMD, ip_sioctl_get_flags, NULL }, 1142 1143 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1144 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1145 1146 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1147 ip_sioctl_get_lifconf, NULL }, 1148 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1149 LIF_CMD, ip_sioctl_mtu, NULL }, 1150 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD | IPI_REPL, 1151 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1152 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1153 IPI_GET_CMD | IPI_REPL, 1154 LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1155 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1156 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1157 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1158 IPI_GET_CMD | IPI_REPL, 1159 LIF_CMD, ip_sioctl_get_netmask, NULL }, 1160 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1161 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1162 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1163 IPI_GET_CMD | IPI_REPL, 1164 LIF_CMD, ip_sioctl_get_metric, NULL }, 1165 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1166 LIF_CMD, ip_sioctl_metric, NULL }, 1167 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1168 IPI_PRIV | IPI_WR | IPI_MODOK | IPI_REPL, 1169 LIF_CMD, ip_sioctl_slifname, 1170 ip_sioctl_slifname_restart }, 1171 1172 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD | IPI_REPL, 1173 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1174 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1175 IPI_GET_CMD | IPI_REPL, 1176 LIF_CMD, ip_sioctl_get_muxid, NULL }, 1177 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1178 IPI_PRIV | IPI_WR | IPI_REPL, 1179 LIF_CMD, ip_sioctl_muxid, NULL }, 1180 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1181 IPI_GET_CMD | IPI_REPL, 1182 LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1183 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1184 IPI_PRIV | IPI_WR | IPI_REPL, 1185 LIF_CMD, ip_sioctl_slifindex, 0 }, 1186 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1187 LIF_CMD, ip_sioctl_token, NULL }, 1188 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1189 IPI_GET_CMD | IPI_REPL, 1190 LIF_CMD, ip_sioctl_get_token, NULL }, 1191 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1192 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1193 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1194 IPI_GET_CMD | IPI_REPL, 1195 LIF_CMD, ip_sioctl_get_subnet, NULL }, 1196 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1197 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1198 1199 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1200 IPI_GET_CMD | IPI_REPL, 1201 LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1202 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1203 LIF_CMD, ip_siocdelndp_v6, NULL }, 1204 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1205 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1206 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1207 LIF_CMD, ip_siocsetndp_v6, NULL }, 1208 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1209 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1210 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1211 MISC_CMD, ip_sioctl_tonlink, NULL }, 1212 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1213 MISC_CMD, ip_sioctl_tmysite, NULL }, 1214 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), IPI_REPL, 1215 TUN_CMD, ip_sioctl_tunparam, NULL }, 1216 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1217 IPI_PRIV | IPI_WR, 1218 TUN_CMD, ip_sioctl_tunparam, NULL }, 1219 1220 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1221 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1222 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1223 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1224 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1225 1226 /* 153 */ { SIOCLIFFAILOVER, sizeof (struct lifreq), 1227 IPI_PRIV | IPI_WR | IPI_REPL, 1228 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1229 /* 154 */ { SIOCLIFFAILBACK, sizeof (struct lifreq), 1230 IPI_PRIV | IPI_WR | IPI_REPL, 1231 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1232 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1233 IPI_PRIV | IPI_WR, 1234 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1235 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1236 IPI_GET_CMD | IPI_REPL, 1237 LIF_CMD, ip_sioctl_get_groupname, NULL }, 1238 /* 157 */ { SIOCGLIFOINDEX, sizeof (struct lifreq), 1239 IPI_GET_CMD | IPI_REPL, 1240 LIF_CMD, ip_sioctl_get_oindex, NULL }, 1241 1242 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1243 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1244 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1245 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1246 1247 /* 161 */ { SIOCSLIFOINDEX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1248 LIF_CMD, ip_sioctl_slifoindex, NULL }, 1249 1250 /* These are handled in ip_sioctl_copyin_setup itself */ 1251 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1252 MISC_CMD, NULL, NULL }, 1253 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1254 MISC_CMD, NULL, NULL }, 1255 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1256 1257 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1258 ip_sioctl_get_lifconf, NULL }, 1259 1260 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV, 1261 XARP_CMD, ip_sioctl_arp, NULL }, 1262 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD | IPI_REPL, 1263 XARP_CMD, ip_sioctl_arp, NULL }, 1264 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV, 1265 XARP_CMD, ip_sioctl_arp, NULL }, 1266 1267 /* SIOCPOPSOCKFS is not handled by IP */ 1268 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1269 1270 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1271 IPI_GET_CMD | IPI_REPL, 1272 LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1273 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1274 IPI_PRIV | IPI_WR | IPI_REPL, 1275 LIF_CMD, ip_sioctl_slifzone, 1276 ip_sioctl_slifzone_restart }, 1277 /* 172-174 are SCTP ioctls and not handled by IP */ 1278 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1279 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1280 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1281 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1282 IPI_GET_CMD, LIF_CMD, 1283 ip_sioctl_get_lifusesrc, 0 }, 1284 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1285 IPI_PRIV | IPI_WR, 1286 LIF_CMD, ip_sioctl_slifusesrc, 1287 NULL }, 1288 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1289 ip_sioctl_get_lifsrcof, NULL }, 1290 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1291 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1292 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1293 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1294 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1295 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1296 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1297 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1298 /* 182 */ { SIOCSIPMPFAILBACK, sizeof (int), IPI_PRIV, MISC_CMD, 1299 ip_sioctl_set_ipmpfailback, NULL }, 1300 /* SIOCSENABLESDP is handled by SDP */ 1301 /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL }, 1302 }; 1303 1304 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1305 1306 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1307 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1308 IPI_GET_CMD | IPI_REPL, TUN_CMD, ip_sioctl_tunparam, NULL }, 1309 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1310 TUN_CMD, ip_sioctl_tunparam, NULL }, 1311 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1312 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1313 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1314 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1315 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1316 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1317 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1318 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_REPL | IPI_GET_CMD, 1319 MISC_CMD, mrt_ioctl}, 1320 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_REPL | IPI_GET_CMD, 1321 MISC_CMD, mrt_ioctl}, 1322 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_REPL | IPI_GET_CMD, 1323 MISC_CMD, mrt_ioctl} 1324 }; 1325 1326 int ip_misc_ioctl_count = 1327 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1328 1329 int conn_drain_nthreads; /* Number of drainers reqd. */ 1330 /* Settable in /etc/system */ 1331 /* Defined in ip_ire.c */ 1332 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1333 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1334 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1335 1336 static nv_t ire_nv_arr[] = { 1337 { IRE_BROADCAST, "BROADCAST" }, 1338 { IRE_LOCAL, "LOCAL" }, 1339 { IRE_LOOPBACK, "LOOPBACK" }, 1340 { IRE_CACHE, "CACHE" }, 1341 { IRE_DEFAULT, "DEFAULT" }, 1342 { IRE_PREFIX, "PREFIX" }, 1343 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1344 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1345 { IRE_HOST, "HOST" }, 1346 { 0 } 1347 }; 1348 1349 nv_t *ire_nv_tbl = ire_nv_arr; 1350 1351 /* Defined in ip_netinfo.c */ 1352 extern ddi_taskq_t *eventq_queue_nic; 1353 1354 /* Simple ICMP IP Header Template */ 1355 static ipha_t icmp_ipha = { 1356 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1357 }; 1358 1359 struct module_info ip_mod_info = { 1360 IP_MOD_ID, IP_MOD_NAME, 1, INFPSZ, 65536, 1024 1361 }; 1362 1363 /* 1364 * Duplicate static symbols within a module confuses mdb; so we avoid the 1365 * problem by making the symbols here distinct from those in udp.c. 1366 */ 1367 1368 /* 1369 * Entry points for IP as a device and as a module. 1370 * FIXME: down the road we might want a separate module and driver qinit. 1371 * We have separate open functions for the /dev/ip and /dev/ip6 devices. 1372 */ 1373 static struct qinit iprinitv4 = { 1374 (pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL, 1375 &ip_mod_info 1376 }; 1377 1378 struct qinit iprinitv6 = { 1379 (pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL, 1380 &ip_mod_info 1381 }; 1382 1383 static struct qinit ipwinitv4 = { 1384 (pfi_t)ip_wput, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1385 &ip_mod_info 1386 }; 1387 1388 struct qinit ipwinitv6 = { 1389 (pfi_t)ip_wput_v6, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1390 &ip_mod_info 1391 }; 1392 1393 static struct qinit iplrinit = { 1394 (pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL, 1395 &ip_mod_info 1396 }; 1397 1398 static struct qinit iplwinit = { 1399 (pfi_t)ip_lwput, NULL, NULL, NULL, NULL, 1400 &ip_mod_info 1401 }; 1402 1403 /* For AF_INET aka /dev/ip */ 1404 struct streamtab ipinfov4 = { 1405 &iprinitv4, &ipwinitv4, &iplrinit, &iplwinit 1406 }; 1407 1408 /* For AF_INET6 aka /dev/ip6 */ 1409 struct streamtab ipinfov6 = { 1410 &iprinitv6, &ipwinitv6, &iplrinit, &iplwinit 1411 }; 1412 1413 #ifdef DEBUG 1414 static boolean_t skip_sctp_cksum = B_FALSE; 1415 #endif 1416 1417 /* 1418 * Prepend the zoneid using an ipsec_out_t for later use by functions like 1419 * ip_rput_v6(), ip_output(), etc. If the message 1420 * block already has a M_CTL at the front of it, then simply set the zoneid 1421 * appropriately. 1422 */ 1423 mblk_t * 1424 ip_prepend_zoneid(mblk_t *mp, zoneid_t zoneid, ip_stack_t *ipst) 1425 { 1426 mblk_t *first_mp; 1427 ipsec_out_t *io; 1428 1429 ASSERT(zoneid != ALL_ZONES); 1430 if (mp->b_datap->db_type == M_CTL) { 1431 io = (ipsec_out_t *)mp->b_rptr; 1432 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1433 io->ipsec_out_zoneid = zoneid; 1434 return (mp); 1435 } 1436 1437 first_mp = ipsec_alloc_ipsec_out(ipst->ips_netstack); 1438 if (first_mp == NULL) 1439 return (NULL); 1440 io = (ipsec_out_t *)first_mp->b_rptr; 1441 /* This is not a secure packet */ 1442 io->ipsec_out_secure = B_FALSE; 1443 io->ipsec_out_zoneid = zoneid; 1444 first_mp->b_cont = mp; 1445 return (first_mp); 1446 } 1447 1448 /* 1449 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1450 */ 1451 mblk_t * 1452 ip_copymsg(mblk_t *mp) 1453 { 1454 mblk_t *nmp; 1455 ipsec_info_t *in; 1456 1457 if (mp->b_datap->db_type != M_CTL) 1458 return (copymsg(mp)); 1459 1460 in = (ipsec_info_t *)mp->b_rptr; 1461 1462 /* 1463 * Note that M_CTL is also used for delivering ICMP error messages 1464 * upstream to transport layers. 1465 */ 1466 if (in->ipsec_info_type != IPSEC_OUT && 1467 in->ipsec_info_type != IPSEC_IN) 1468 return (copymsg(mp)); 1469 1470 nmp = copymsg(mp->b_cont); 1471 1472 if (in->ipsec_info_type == IPSEC_OUT) { 1473 return (ipsec_out_tag(mp, nmp, 1474 ((ipsec_out_t *)in)->ipsec_out_ns)); 1475 } else { 1476 return (ipsec_in_tag(mp, nmp, 1477 ((ipsec_in_t *)in)->ipsec_in_ns)); 1478 } 1479 } 1480 1481 /* Generate an ICMP fragmentation needed message. */ 1482 static void 1483 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu, zoneid_t zoneid, 1484 ip_stack_t *ipst) 1485 { 1486 icmph_t icmph; 1487 mblk_t *first_mp; 1488 boolean_t mctl_present; 1489 1490 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1491 1492 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 1493 if (mctl_present) 1494 freeb(first_mp); 1495 return; 1496 } 1497 1498 bzero(&icmph, sizeof (icmph_t)); 1499 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1500 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1501 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1502 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1503 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1504 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 1505 ipst); 1506 } 1507 1508 /* 1509 * icmp_inbound deals with ICMP messages in the following ways. 1510 * 1511 * 1) It needs to send a reply back and possibly delivering it 1512 * to the "interested" upper clients. 1513 * 2) It needs to send it to the upper clients only. 1514 * 3) It needs to change some values in IP only. 1515 * 4) It needs to change some values in IP and upper layers e.g TCP. 1516 * 1517 * We need to accomodate icmp messages coming in clear until we get 1518 * everything secure from the wire. If icmp_accept_clear_messages 1519 * is zero we check with the global policy and act accordingly. If 1520 * it is non-zero, we accept the message without any checks. But 1521 * *this does not mean* that this will be delivered to the upper 1522 * clients. By accepting we might send replies back, change our MTU 1523 * value etc. but delivery to the ULP/clients depends on their policy 1524 * dispositions. 1525 * 1526 * We handle the above 4 cases in the context of IPsec in the 1527 * following way : 1528 * 1529 * 1) Send the reply back in the same way as the request came in. 1530 * If it came in encrypted, it goes out encrypted. If it came in 1531 * clear, it goes out in clear. Thus, this will prevent chosen 1532 * plain text attack. 1533 * 2) The client may or may not expect things to come in secure. 1534 * If it comes in secure, the policy constraints are checked 1535 * before delivering it to the upper layers. If it comes in 1536 * clear, ipsec_inbound_accept_clear will decide whether to 1537 * accept this in clear or not. In both the cases, if the returned 1538 * message (IP header + 8 bytes) that caused the icmp message has 1539 * AH/ESP headers, it is sent up to AH/ESP for validation before 1540 * sending up. If there are only 8 bytes of returned message, then 1541 * upper client will not be notified. 1542 * 3) Check with global policy to see whether it matches the constaints. 1543 * But this will be done only if icmp_accept_messages_in_clear is 1544 * zero. 1545 * 4) If we need to change both in IP and ULP, then the decision taken 1546 * while affecting the values in IP and while delivering up to TCP 1547 * should be the same. 1548 * 1549 * There are two cases. 1550 * 1551 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1552 * failed), we will not deliver it to the ULP, even though they 1553 * are *willing* to accept in *clear*. This is fine as our global 1554 * disposition to icmp messages asks us reject the datagram. 1555 * 1556 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1557 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1558 * to deliver it to ULP (policy failed), it can lead to 1559 * consistency problems. The cases known at this time are 1560 * ICMP_DESTINATION_UNREACHABLE messages with following code 1561 * values : 1562 * 1563 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1564 * and Upper layer rejects. Then the communication will 1565 * come to a stop. This is solved by making similar decisions 1566 * at both levels. Currently, when we are unable to deliver 1567 * to the Upper Layer (due to policy failures) while IP has 1568 * adjusted ire_max_frag, the next outbound datagram would 1569 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1570 * will be with the right level of protection. Thus the right 1571 * value will be communicated even if we are not able to 1572 * communicate when we get from the wire initially. But this 1573 * assumes there would be at least one outbound datagram after 1574 * IP has adjusted its ire_max_frag value. To make things 1575 * simpler, we accept in clear after the validation of 1576 * AH/ESP headers. 1577 * 1578 * - Other ICMP ERRORS : We may not be able to deliver it to the 1579 * upper layer depending on the level of protection the upper 1580 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1581 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1582 * should be accepted in clear when the Upper layer expects secure. 1583 * Thus the communication may get aborted by some bad ICMP 1584 * packets. 1585 * 1586 * IPQoS Notes: 1587 * The only instance when a packet is sent for processing is when there 1588 * isn't an ICMP client and if we are interested in it. 1589 * If there is a client, IPPF processing will take place in the 1590 * ip_fanout_proto routine. 1591 * 1592 * Zones notes: 1593 * The packet is only processed in the context of the specified zone: typically 1594 * only this zone will reply to an echo request, and only interested clients in 1595 * this zone will receive a copy of the packet. This means that the caller must 1596 * call icmp_inbound() for each relevant zone. 1597 */ 1598 static void 1599 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1600 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1601 ill_t *recv_ill, zoneid_t zoneid) 1602 { 1603 icmph_t *icmph; 1604 ipha_t *ipha; 1605 int iph_hdr_length; 1606 int hdr_length; 1607 boolean_t interested; 1608 uint32_t ts; 1609 uchar_t *wptr; 1610 ipif_t *ipif; 1611 mblk_t *first_mp; 1612 ipsec_in_t *ii; 1613 ire_t *src_ire; 1614 boolean_t onlink; 1615 timestruc_t now; 1616 uint32_t ill_index; 1617 ip_stack_t *ipst; 1618 1619 ASSERT(ill != NULL); 1620 ipst = ill->ill_ipst; 1621 1622 first_mp = mp; 1623 if (mctl_present) { 1624 mp = first_mp->b_cont; 1625 ASSERT(mp != NULL); 1626 } 1627 1628 ipha = (ipha_t *)mp->b_rptr; 1629 if (ipst->ips_icmp_accept_clear_messages == 0) { 1630 first_mp = ipsec_check_global_policy(first_mp, NULL, 1631 ipha, NULL, mctl_present, ipst->ips_netstack); 1632 if (first_mp == NULL) 1633 return; 1634 } 1635 1636 /* 1637 * On a labeled system, we have to check whether the zone itself is 1638 * permitted to receive raw traffic. 1639 */ 1640 if (is_system_labeled()) { 1641 if (zoneid == ALL_ZONES) 1642 zoneid = tsol_packet_to_zoneid(mp); 1643 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1644 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1645 zoneid)); 1646 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1647 freemsg(first_mp); 1648 return; 1649 } 1650 } 1651 1652 /* 1653 * We have accepted the ICMP message. It means that we will 1654 * respond to the packet if needed. It may not be delivered 1655 * to the upper client depending on the policy constraints 1656 * and the disposition in ipsec_inbound_accept_clear. 1657 */ 1658 1659 ASSERT(ill != NULL); 1660 1661 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1662 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1663 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1664 /* Last chance to get real. */ 1665 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1666 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1667 freemsg(first_mp); 1668 return; 1669 } 1670 /* Refresh iph following the pullup. */ 1671 ipha = (ipha_t *)mp->b_rptr; 1672 } 1673 /* ICMP header checksum, including checksum field, should be zero. */ 1674 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1675 IP_CSUM(mp, iph_hdr_length, 0)) { 1676 BUMP_MIB(&ipst->ips_icmp_mib, icmpInCksumErrs); 1677 freemsg(first_mp); 1678 return; 1679 } 1680 /* The IP header will always be a multiple of four bytes */ 1681 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1682 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1683 icmph->icmph_code)); 1684 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1685 /* We will set "interested" to "true" if we want a copy */ 1686 interested = B_FALSE; 1687 switch (icmph->icmph_type) { 1688 case ICMP_ECHO_REPLY: 1689 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1690 break; 1691 case ICMP_DEST_UNREACHABLE: 1692 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1693 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1694 interested = B_TRUE; /* Pass up to transport */ 1695 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1696 break; 1697 case ICMP_SOURCE_QUENCH: 1698 interested = B_TRUE; /* Pass up to transport */ 1699 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1700 break; 1701 case ICMP_REDIRECT: 1702 if (!ipst->ips_ip_ignore_redirect) 1703 interested = B_TRUE; 1704 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1705 break; 1706 case ICMP_ECHO_REQUEST: 1707 /* 1708 * Whether to respond to echo requests that come in as IP 1709 * broadcasts or as IP multicast is subject to debate 1710 * (what isn't?). We aim to please, you pick it. 1711 * Default is do it. 1712 */ 1713 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1714 /* unicast: always respond */ 1715 interested = B_TRUE; 1716 } else if (CLASSD(ipha->ipha_dst)) { 1717 /* multicast: respond based on tunable */ 1718 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1719 } else if (broadcast) { 1720 /* broadcast: respond based on tunable */ 1721 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1722 } 1723 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1724 break; 1725 case ICMP_ROUTER_ADVERTISEMENT: 1726 case ICMP_ROUTER_SOLICITATION: 1727 break; 1728 case ICMP_TIME_EXCEEDED: 1729 interested = B_TRUE; /* Pass up to transport */ 1730 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1731 break; 1732 case ICMP_PARAM_PROBLEM: 1733 interested = B_TRUE; /* Pass up to transport */ 1734 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1735 break; 1736 case ICMP_TIME_STAMP_REQUEST: 1737 /* Response to Time Stamp Requests is local policy. */ 1738 if (ipst->ips_ip_g_resp_to_timestamp && 1739 /* So is whether to respond if it was an IP broadcast. */ 1740 (!broadcast || ipst->ips_ip_g_resp_to_timestamp_bcast)) { 1741 int tstamp_len = 3 * sizeof (uint32_t); 1742 1743 if (wptr + tstamp_len > mp->b_wptr) { 1744 if (!pullupmsg(mp, wptr + tstamp_len - 1745 mp->b_rptr)) { 1746 BUMP_MIB(ill->ill_ip_mib, 1747 ipIfStatsInDiscards); 1748 freemsg(first_mp); 1749 return; 1750 } 1751 /* Refresh ipha following the pullup. */ 1752 ipha = (ipha_t *)mp->b_rptr; 1753 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1754 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1755 } 1756 interested = B_TRUE; 1757 } 1758 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1759 break; 1760 case ICMP_TIME_STAMP_REPLY: 1761 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1762 break; 1763 case ICMP_INFO_REQUEST: 1764 /* Per RFC 1122 3.2.2.7, ignore this. */ 1765 case ICMP_INFO_REPLY: 1766 break; 1767 case ICMP_ADDRESS_MASK_REQUEST: 1768 if ((ipst->ips_ip_respond_to_address_mask_broadcast || 1769 !broadcast) && 1770 /* TODO m_pullup of complete header? */ 1771 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) { 1772 interested = B_TRUE; 1773 } 1774 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1775 break; 1776 case ICMP_ADDRESS_MASK_REPLY: 1777 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1778 break; 1779 default: 1780 interested = B_TRUE; /* Pass up to transport */ 1781 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1782 break; 1783 } 1784 /* See if there is an ICMP client. */ 1785 if (ipst->ips_ipcl_proto_fanout[IPPROTO_ICMP].connf_head != NULL) { 1786 /* If there is an ICMP client and we want one too, copy it. */ 1787 mblk_t *first_mp1; 1788 1789 if (!interested) { 1790 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1791 ip_policy, recv_ill, zoneid); 1792 return; 1793 } 1794 first_mp1 = ip_copymsg(first_mp); 1795 if (first_mp1 != NULL) { 1796 ip_fanout_proto(q, first_mp1, ill, ipha, 1797 0, mctl_present, ip_policy, recv_ill, zoneid); 1798 } 1799 } else if (!interested) { 1800 freemsg(first_mp); 1801 return; 1802 } else { 1803 /* 1804 * Initiate policy processing for this packet if ip_policy 1805 * is true. 1806 */ 1807 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 1808 ill_index = ill->ill_phyint->phyint_ifindex; 1809 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1810 if (mp == NULL) { 1811 if (mctl_present) { 1812 freeb(first_mp); 1813 } 1814 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1815 return; 1816 } 1817 } 1818 } 1819 /* We want to do something with it. */ 1820 /* Check db_ref to make sure we can modify the packet. */ 1821 if (mp->b_datap->db_ref > 1) { 1822 mblk_t *first_mp1; 1823 1824 first_mp1 = ip_copymsg(first_mp); 1825 freemsg(first_mp); 1826 if (!first_mp1) { 1827 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1828 return; 1829 } 1830 first_mp = first_mp1; 1831 if (mctl_present) { 1832 mp = first_mp->b_cont; 1833 ASSERT(mp != NULL); 1834 } else { 1835 mp = first_mp; 1836 } 1837 ipha = (ipha_t *)mp->b_rptr; 1838 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1839 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1840 } 1841 switch (icmph->icmph_type) { 1842 case ICMP_ADDRESS_MASK_REQUEST: 1843 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1844 if (ipif == NULL) { 1845 freemsg(first_mp); 1846 return; 1847 } 1848 /* 1849 * outging interface must be IPv4 1850 */ 1851 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1852 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1853 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1854 ipif_refrele(ipif); 1855 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1856 break; 1857 case ICMP_ECHO_REQUEST: 1858 icmph->icmph_type = ICMP_ECHO_REPLY; 1859 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1860 break; 1861 case ICMP_TIME_STAMP_REQUEST: { 1862 uint32_t *tsp; 1863 1864 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1865 tsp = (uint32_t *)wptr; 1866 tsp++; /* Skip past 'originate time' */ 1867 /* Compute # of milliseconds since midnight */ 1868 gethrestime(&now); 1869 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1870 now.tv_nsec / (NANOSEC / MILLISEC); 1871 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1872 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1873 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1874 break; 1875 } 1876 default: 1877 ipha = (ipha_t *)&icmph[1]; 1878 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1879 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1880 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1881 freemsg(first_mp); 1882 return; 1883 } 1884 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1885 ipha = (ipha_t *)&icmph[1]; 1886 } 1887 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1888 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1889 freemsg(first_mp); 1890 return; 1891 } 1892 hdr_length = IPH_HDR_LENGTH(ipha); 1893 if (hdr_length < sizeof (ipha_t)) { 1894 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1895 freemsg(first_mp); 1896 return; 1897 } 1898 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1899 if (!pullupmsg(mp, 1900 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1901 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1902 freemsg(first_mp); 1903 return; 1904 } 1905 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1906 ipha = (ipha_t *)&icmph[1]; 1907 } 1908 switch (icmph->icmph_type) { 1909 case ICMP_REDIRECT: 1910 /* 1911 * As there is no upper client to deliver, we don't 1912 * need the first_mp any more. 1913 */ 1914 if (mctl_present) { 1915 freeb(first_mp); 1916 } 1917 icmp_redirect(ill, mp); 1918 return; 1919 case ICMP_DEST_UNREACHABLE: 1920 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1921 if (!icmp_inbound_too_big(icmph, ipha, ill, 1922 zoneid, mp, iph_hdr_length, ipst)) { 1923 freemsg(first_mp); 1924 return; 1925 } 1926 /* 1927 * icmp_inbound_too_big() may alter mp. 1928 * Resynch ipha and icmph accordingly. 1929 */ 1930 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1931 ipha = (ipha_t *)&icmph[1]; 1932 } 1933 /* FALLTHRU */ 1934 default : 1935 /* 1936 * IPQoS notes: Since we have already done IPQoS 1937 * processing we don't want to do it again in 1938 * the fanout routines called by 1939 * icmp_inbound_error_fanout, hence the last 1940 * argument, ip_policy, is B_FALSE. 1941 */ 1942 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 1943 ipha, iph_hdr_length, hdr_length, mctl_present, 1944 B_FALSE, recv_ill, zoneid); 1945 } 1946 return; 1947 } 1948 /* Send out an ICMP packet */ 1949 icmph->icmph_checksum = 0; 1950 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 1951 if (broadcast || CLASSD(ipha->ipha_dst)) { 1952 ipif_t *ipif_chosen; 1953 /* 1954 * Make it look like it was directed to us, so we don't look 1955 * like a fool with a broadcast or multicast source address. 1956 */ 1957 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1958 /* 1959 * Make sure that we haven't grabbed an interface that's DOWN. 1960 */ 1961 if (ipif != NULL) { 1962 ipif_chosen = ipif_select_source(ipif->ipif_ill, 1963 ipha->ipha_src, zoneid); 1964 if (ipif_chosen != NULL) { 1965 ipif_refrele(ipif); 1966 ipif = ipif_chosen; 1967 } 1968 } 1969 if (ipif == NULL) { 1970 ip0dbg(("icmp_inbound: " 1971 "No source for broadcast/multicast:\n" 1972 "\tsrc 0x%x dst 0x%x ill %p " 1973 "ipif_lcl_addr 0x%x\n", 1974 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 1975 (void *)ill, 1976 ill->ill_ipif->ipif_lcl_addr)); 1977 freemsg(first_mp); 1978 return; 1979 } 1980 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1981 ipha->ipha_dst = ipif->ipif_src_addr; 1982 ipif_refrele(ipif); 1983 } 1984 /* Reset time to live. */ 1985 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 1986 { 1987 /* Swap source and destination addresses */ 1988 ipaddr_t tmp; 1989 1990 tmp = ipha->ipha_src; 1991 ipha->ipha_src = ipha->ipha_dst; 1992 ipha->ipha_dst = tmp; 1993 } 1994 ipha->ipha_ident = 0; 1995 if (!IS_SIMPLE_IPH(ipha)) 1996 icmp_options_update(ipha); 1997 1998 /* 1999 * ICMP echo replies should go out on the same interface 2000 * the request came on as probes used by in.mpathd for detecting 2001 * NIC failures are ECHO packets. We turn-off load spreading 2002 * by setting ipsec_in_attach_if to B_TRUE, which is copied 2003 * to ipsec_out_attach_if by ipsec_in_to_out called later in this 2004 * function. This is in turn handled by ip_wput and ip_newroute 2005 * to make sure that the packet goes out on the interface it came 2006 * in on. If we don't turnoff load spreading, the packets might get 2007 * dropped if there are no non-FAILED/INACTIVE interfaces for it 2008 * to go out and in.mpathd would wrongly detect a failure or 2009 * mis-detect a NIC failure for link failure. As load spreading 2010 * can happen only if ill_group is not NULL, we do only for 2011 * that case and this does not affect the normal case. 2012 * 2013 * We turn off load spreading only on echo packets that came from 2014 * on-link hosts. If the interface route has been deleted, this will 2015 * not be enforced as we can't do much. For off-link hosts, as the 2016 * default routes in IPv4 does not typically have an ire_ipif 2017 * pointer, we can't force MATCH_IRE_ILL in ip_wput/ip_newroute. 2018 * Moreover, expecting a default route through this interface may 2019 * not be correct. We use ipha_dst because of the swap above. 2020 */ 2021 onlink = B_FALSE; 2022 if (icmph->icmph_type == ICMP_ECHO_REPLY && ill->ill_group != NULL) { 2023 /* 2024 * First, we need to make sure that it is not one of our 2025 * local addresses. If we set onlink when it is one of 2026 * our local addresses, we will end up creating IRE_CACHES 2027 * for one of our local addresses. Then, we will never 2028 * accept packets for them afterwards. 2029 */ 2030 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_LOCAL, 2031 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2032 if (src_ire == NULL) { 2033 ipif = ipif_get_next_ipif(NULL, ill); 2034 if (ipif == NULL) { 2035 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2036 freemsg(mp); 2037 return; 2038 } 2039 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 2040 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 2041 NULL, MATCH_IRE_ILL | MATCH_IRE_TYPE, ipst); 2042 ipif_refrele(ipif); 2043 if (src_ire != NULL) { 2044 onlink = B_TRUE; 2045 ire_refrele(src_ire); 2046 } 2047 } else { 2048 ire_refrele(src_ire); 2049 } 2050 } 2051 if (!mctl_present) { 2052 /* 2053 * This packet should go out the same way as it 2054 * came in i.e in clear. To make sure that global 2055 * policy will not be applied to this in ip_wput_ire, 2056 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2057 */ 2058 ASSERT(first_mp == mp); 2059 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2060 if (first_mp == NULL) { 2061 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2062 freemsg(mp); 2063 return; 2064 } 2065 ii = (ipsec_in_t *)first_mp->b_rptr; 2066 2067 /* This is not a secure packet */ 2068 ii->ipsec_in_secure = B_FALSE; 2069 if (onlink) { 2070 ii->ipsec_in_attach_if = B_TRUE; 2071 ii->ipsec_in_ill_index = 2072 ill->ill_phyint->phyint_ifindex; 2073 ii->ipsec_in_rill_index = 2074 recv_ill->ill_phyint->phyint_ifindex; 2075 } 2076 first_mp->b_cont = mp; 2077 } else if (onlink) { 2078 ii = (ipsec_in_t *)first_mp->b_rptr; 2079 ii->ipsec_in_attach_if = B_TRUE; 2080 ii->ipsec_in_ill_index = ill->ill_phyint->phyint_ifindex; 2081 ii->ipsec_in_rill_index = recv_ill->ill_phyint->phyint_ifindex; 2082 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2083 } else { 2084 ii = (ipsec_in_t *)first_mp->b_rptr; 2085 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2086 } 2087 ii->ipsec_in_zoneid = zoneid; 2088 ASSERT(zoneid != ALL_ZONES); 2089 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2090 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2091 return; 2092 } 2093 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2094 put(WR(q), first_mp); 2095 } 2096 2097 static ipaddr_t 2098 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2099 { 2100 conn_t *connp; 2101 connf_t *connfp; 2102 ipaddr_t nexthop_addr = INADDR_ANY; 2103 int hdr_length = IPH_HDR_LENGTH(ipha); 2104 uint16_t *up; 2105 uint32_t ports; 2106 ip_stack_t *ipst = ill->ill_ipst; 2107 2108 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2109 switch (ipha->ipha_protocol) { 2110 case IPPROTO_TCP: 2111 { 2112 tcph_t *tcph; 2113 2114 /* do a reverse lookup */ 2115 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2116 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2117 TCPS_LISTEN, ipst); 2118 break; 2119 } 2120 case IPPROTO_UDP: 2121 { 2122 uint32_t dstport, srcport; 2123 2124 ((uint16_t *)&ports)[0] = up[1]; 2125 ((uint16_t *)&ports)[1] = up[0]; 2126 2127 /* Extract ports in net byte order */ 2128 dstport = htons(ntohl(ports) & 0xFFFF); 2129 srcport = htons(ntohl(ports) >> 16); 2130 2131 connfp = &ipst->ips_ipcl_udp_fanout[ 2132 IPCL_UDP_HASH(dstport, ipst)]; 2133 mutex_enter(&connfp->connf_lock); 2134 connp = connfp->connf_head; 2135 2136 /* do a reverse lookup */ 2137 while ((connp != NULL) && 2138 (!IPCL_UDP_MATCH(connp, dstport, 2139 ipha->ipha_src, srcport, ipha->ipha_dst) || 2140 !IPCL_ZONE_MATCH(connp, zoneid))) { 2141 connp = connp->conn_next; 2142 } 2143 if (connp != NULL) 2144 CONN_INC_REF(connp); 2145 mutex_exit(&connfp->connf_lock); 2146 break; 2147 } 2148 case IPPROTO_SCTP: 2149 { 2150 in6_addr_t map_src, map_dst; 2151 2152 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2153 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2154 ((uint16_t *)&ports)[0] = up[1]; 2155 ((uint16_t *)&ports)[1] = up[0]; 2156 2157 connp = sctp_find_conn(&map_src, &map_dst, ports, 2158 zoneid, ipst->ips_netstack->netstack_sctp); 2159 if (connp == NULL) { 2160 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2161 zoneid, ports, ipha, ipst); 2162 } else { 2163 CONN_INC_REF(connp); 2164 SCTP_REFRELE(CONN2SCTP(connp)); 2165 } 2166 break; 2167 } 2168 default: 2169 { 2170 ipha_t ripha; 2171 2172 ripha.ipha_src = ipha->ipha_dst; 2173 ripha.ipha_dst = ipha->ipha_src; 2174 ripha.ipha_protocol = ipha->ipha_protocol; 2175 2176 connfp = &ipst->ips_ipcl_proto_fanout[ 2177 ipha->ipha_protocol]; 2178 mutex_enter(&connfp->connf_lock); 2179 connp = connfp->connf_head; 2180 for (connp = connfp->connf_head; connp != NULL; 2181 connp = connp->conn_next) { 2182 if (IPCL_PROTO_MATCH(connp, 2183 ipha->ipha_protocol, &ripha, ill, 2184 0, zoneid)) { 2185 CONN_INC_REF(connp); 2186 break; 2187 } 2188 } 2189 mutex_exit(&connfp->connf_lock); 2190 } 2191 } 2192 if (connp != NULL) { 2193 if (connp->conn_nexthop_set) 2194 nexthop_addr = connp->conn_nexthop_v4; 2195 CONN_DEC_REF(connp); 2196 } 2197 return (nexthop_addr); 2198 } 2199 2200 /* Table from RFC 1191 */ 2201 static int icmp_frag_size_table[] = 2202 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2203 2204 /* 2205 * Process received ICMP Packet too big. 2206 * After updating any IRE it does the fanout to any matching transport streams. 2207 * Assumes the message has been pulled up till the IP header that caused 2208 * the error. 2209 * 2210 * Returns B_FALSE on failure and B_TRUE on success. 2211 */ 2212 static boolean_t 2213 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2214 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length, 2215 ip_stack_t *ipst) 2216 { 2217 ire_t *ire, *first_ire; 2218 int mtu; 2219 int hdr_length; 2220 ipaddr_t nexthop_addr; 2221 2222 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2223 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2224 ASSERT(ill != NULL); 2225 2226 hdr_length = IPH_HDR_LENGTH(ipha); 2227 2228 /* Drop if the original packet contained a source route */ 2229 if (ip_source_route_included(ipha)) { 2230 return (B_FALSE); 2231 } 2232 /* 2233 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport 2234 * header. 2235 */ 2236 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2237 mp->b_wptr) { 2238 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2239 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2240 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2241 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2242 return (B_FALSE); 2243 } 2244 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2245 ipha = (ipha_t *)&icmph[1]; 2246 } 2247 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2248 if (nexthop_addr != INADDR_ANY) { 2249 /* nexthop set */ 2250 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2251 nexthop_addr, 0, NULL, ALL_ZONES, MBLK_GETLABEL(mp), 2252 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, ipst); 2253 } else { 2254 /* nexthop not set */ 2255 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2256 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2257 } 2258 2259 if (!first_ire) { 2260 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2261 ntohl(ipha->ipha_dst))); 2262 return (B_FALSE); 2263 } 2264 /* Check for MTU discovery advice as described in RFC 1191 */ 2265 mtu = ntohs(icmph->icmph_du_mtu); 2266 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2267 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2268 ire = ire->ire_next) { 2269 /* 2270 * Look for the connection to which this ICMP message is 2271 * directed. If it has the IP_NEXTHOP option set, then the 2272 * search is limited to IREs with the MATCH_IRE_PRIVATE 2273 * option. Else the search is limited to regular IREs. 2274 */ 2275 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2276 (nexthop_addr != ire->ire_gateway_addr)) || 2277 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2278 (nexthop_addr != INADDR_ANY))) 2279 continue; 2280 2281 mutex_enter(&ire->ire_lock); 2282 if (icmph->icmph_du_zero == 0 && mtu > 68) { 2283 /* Reduce the IRE max frag value as advised. */ 2284 ip1dbg(("Received mtu from router: %d (was %d)\n", 2285 mtu, ire->ire_max_frag)); 2286 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2287 } else { 2288 uint32_t length; 2289 int i; 2290 2291 /* 2292 * Use the table from RFC 1191 to figure out 2293 * the next "plateau" based on the length in 2294 * the original IP packet. 2295 */ 2296 length = ntohs(ipha->ipha_length); 2297 if (ire->ire_max_frag <= length && 2298 ire->ire_max_frag >= length - hdr_length) { 2299 /* 2300 * Handle broken BSD 4.2 systems that 2301 * return the wrong iph_length in ICMP 2302 * errors. 2303 */ 2304 ip1dbg(("Wrong mtu: sent %d, ire %d\n", 2305 length, ire->ire_max_frag)); 2306 length -= hdr_length; 2307 } 2308 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2309 if (length > icmp_frag_size_table[i]) 2310 break; 2311 } 2312 if (i == A_CNT(icmp_frag_size_table)) { 2313 /* Smaller than 68! */ 2314 ip1dbg(("Too big for packet size %d\n", 2315 length)); 2316 ire->ire_max_frag = MIN(ire->ire_max_frag, 576); 2317 ire->ire_frag_flag = 0; 2318 } else { 2319 mtu = icmp_frag_size_table[i]; 2320 ip1dbg(("Calculated mtu %d, packet size %d, " 2321 "before %d", mtu, length, 2322 ire->ire_max_frag)); 2323 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2324 ip1dbg((", after %d\n", ire->ire_max_frag)); 2325 } 2326 /* Record the new max frag size for the ULP. */ 2327 icmph->icmph_du_zero = 0; 2328 icmph->icmph_du_mtu = 2329 htons((uint16_t)ire->ire_max_frag); 2330 } 2331 mutex_exit(&ire->ire_lock); 2332 } 2333 rw_exit(&first_ire->ire_bucket->irb_lock); 2334 ire_refrele(first_ire); 2335 return (B_TRUE); 2336 } 2337 2338 /* 2339 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2340 * calls this function. 2341 */ 2342 static mblk_t * 2343 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2344 { 2345 ipha_t *ipha; 2346 icmph_t *icmph; 2347 ipha_t *in_ipha; 2348 int length; 2349 2350 ASSERT(mp->b_datap->db_type == M_DATA); 2351 2352 /* 2353 * For Self-encapsulated packets, we added an extra IP header 2354 * without the options. Inner IP header is the one from which 2355 * the outer IP header was formed. Thus, we need to remove the 2356 * outer IP header. To do this, we pullup the whole message 2357 * and overlay whatever follows the outer IP header over the 2358 * outer IP header. 2359 */ 2360 2361 if (!pullupmsg(mp, -1)) 2362 return (NULL); 2363 2364 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2365 ipha = (ipha_t *)&icmph[1]; 2366 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2367 2368 /* 2369 * The length that we want to overlay is following the inner 2370 * IP header. Subtracting the IP header + icmp header + outer 2371 * IP header's length should give us the length that we want to 2372 * overlay. 2373 */ 2374 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2375 hdr_length; 2376 /* 2377 * Overlay whatever follows the inner header over the 2378 * outer header. 2379 */ 2380 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2381 2382 /* Set the wptr to account for the outer header */ 2383 mp->b_wptr -= hdr_length; 2384 return (mp); 2385 } 2386 2387 /* 2388 * Try to pass the ICMP message upstream in case the ULP cares. 2389 * 2390 * If the packet that caused the ICMP error is secure, we send 2391 * it to AH/ESP to make sure that the attached packet has a 2392 * valid association. ipha in the code below points to the 2393 * IP header of the packet that caused the error. 2394 * 2395 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2396 * in the context of IPsec. Normally we tell the upper layer 2397 * whenever we send the ire (including ip_bind), the IPsec header 2398 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2399 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2400 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2401 * same thing. As TCP has the IPsec options size that needs to be 2402 * adjusted, we just pass the MTU unchanged. 2403 * 2404 * IFN could have been generated locally or by some router. 2405 * 2406 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2407 * This happens because IP adjusted its value of MTU on an 2408 * earlier IFN message and could not tell the upper layer, 2409 * the new adjusted value of MTU e.g. Packet was encrypted 2410 * or there was not enough information to fanout to upper 2411 * layers. Thus on the next outbound datagram, ip_wput_ire 2412 * generates the IFN, where IPsec processing has *not* been 2413 * done. 2414 * 2415 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2416 * could have generated this. This happens because ire_max_frag 2417 * value in IP was set to a new value, while the IPsec processing 2418 * was being done and after we made the fragmentation check in 2419 * ip_wput_ire. Thus on return from IPsec processing, 2420 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2421 * and generates the IFN. As IPsec processing is over, we fanout 2422 * to AH/ESP to remove the header. 2423 * 2424 * In both these cases, ipsec_in_loopback will be set indicating 2425 * that IFN was generated locally. 2426 * 2427 * ROUTER : IFN could be secure or non-secure. 2428 * 2429 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2430 * packet in error has AH/ESP headers to validate the AH/ESP 2431 * headers. AH/ESP will verify whether there is a valid SA or 2432 * not and send it back. We will fanout again if we have more 2433 * data in the packet. 2434 * 2435 * If the packet in error does not have AH/ESP, we handle it 2436 * like any other case. 2437 * 2438 * * NON_SECURE : If the packet in error has AH/ESP headers, 2439 * we attach a dummy ipsec_in and send it up to AH/ESP 2440 * for validation. AH/ESP will verify whether there is a 2441 * valid SA or not and send it back. We will fanout again if 2442 * we have more data in the packet. 2443 * 2444 * If the packet in error does not have AH/ESP, we handle it 2445 * like any other case. 2446 */ 2447 static void 2448 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2449 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2450 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2451 zoneid_t zoneid) 2452 { 2453 uint16_t *up; /* Pointer to ports in ULP header */ 2454 uint32_t ports; /* reversed ports for fanout */ 2455 ipha_t ripha; /* With reversed addresses */ 2456 mblk_t *first_mp; 2457 ipsec_in_t *ii; 2458 tcph_t *tcph; 2459 conn_t *connp; 2460 ip_stack_t *ipst; 2461 2462 ASSERT(ill != NULL); 2463 2464 ASSERT(recv_ill != NULL); 2465 ipst = recv_ill->ill_ipst; 2466 2467 first_mp = mp; 2468 if (mctl_present) { 2469 mp = first_mp->b_cont; 2470 ASSERT(mp != NULL); 2471 2472 ii = (ipsec_in_t *)first_mp->b_rptr; 2473 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2474 } else { 2475 ii = NULL; 2476 } 2477 2478 switch (ipha->ipha_protocol) { 2479 case IPPROTO_UDP: 2480 /* 2481 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2482 * transport header. 2483 */ 2484 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2485 mp->b_wptr) { 2486 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2487 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2488 goto discard_pkt; 2489 } 2490 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2491 ipha = (ipha_t *)&icmph[1]; 2492 } 2493 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2494 2495 /* 2496 * Attempt to find a client stream based on port. 2497 * Note that we do a reverse lookup since the header is 2498 * in the form we sent it out. 2499 * The ripha header is only used for the IP_UDP_MATCH and we 2500 * only set the src and dst addresses and protocol. 2501 */ 2502 ripha.ipha_src = ipha->ipha_dst; 2503 ripha.ipha_dst = ipha->ipha_src; 2504 ripha.ipha_protocol = ipha->ipha_protocol; 2505 ((uint16_t *)&ports)[0] = up[1]; 2506 ((uint16_t *)&ports)[1] = up[0]; 2507 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2508 ntohl(ipha->ipha_src), ntohs(up[0]), 2509 ntohl(ipha->ipha_dst), ntohs(up[1]), 2510 icmph->icmph_type, icmph->icmph_code)); 2511 2512 /* Have to change db_type after any pullupmsg */ 2513 DB_TYPE(mp) = M_CTL; 2514 2515 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2516 mctl_present, ip_policy, recv_ill, zoneid); 2517 return; 2518 2519 case IPPROTO_TCP: 2520 /* 2521 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2522 * transport header. 2523 */ 2524 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2525 mp->b_wptr) { 2526 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2527 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2528 goto discard_pkt; 2529 } 2530 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2531 ipha = (ipha_t *)&icmph[1]; 2532 } 2533 /* 2534 * Find a TCP client stream for this packet. 2535 * Note that we do a reverse lookup since the header is 2536 * in the form we sent it out. 2537 */ 2538 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2539 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN, 2540 ipst); 2541 if (connp == NULL) 2542 goto discard_pkt; 2543 2544 /* Have to change db_type after any pullupmsg */ 2545 DB_TYPE(mp) = M_CTL; 2546 squeue_fill(connp->conn_sqp, first_mp, tcp_input, 2547 connp, SQTAG_TCP_INPUT_ICMP_ERR); 2548 return; 2549 2550 case IPPROTO_SCTP: 2551 /* 2552 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2553 * transport header. 2554 */ 2555 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2556 mp->b_wptr) { 2557 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2558 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2559 goto discard_pkt; 2560 } 2561 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2562 ipha = (ipha_t *)&icmph[1]; 2563 } 2564 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2565 /* 2566 * Find a SCTP client stream for this packet. 2567 * Note that we do a reverse lookup since the header is 2568 * in the form we sent it out. 2569 * The ripha header is only used for the matching and we 2570 * only set the src and dst addresses, protocol, and version. 2571 */ 2572 ripha.ipha_src = ipha->ipha_dst; 2573 ripha.ipha_dst = ipha->ipha_src; 2574 ripha.ipha_protocol = ipha->ipha_protocol; 2575 ripha.ipha_version_and_hdr_length = 2576 ipha->ipha_version_and_hdr_length; 2577 ((uint16_t *)&ports)[0] = up[1]; 2578 ((uint16_t *)&ports)[1] = up[0]; 2579 2580 /* Have to change db_type after any pullupmsg */ 2581 DB_TYPE(mp) = M_CTL; 2582 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2583 mctl_present, ip_policy, zoneid); 2584 return; 2585 2586 case IPPROTO_ESP: 2587 case IPPROTO_AH: { 2588 int ipsec_rc; 2589 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2590 2591 /* 2592 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2593 * We will re-use the IPSEC_IN if it is already present as 2594 * AH/ESP will not affect any fields in the IPSEC_IN for 2595 * ICMP errors. If there is no IPSEC_IN, allocate a new 2596 * one and attach it in the front. 2597 */ 2598 if (ii != NULL) { 2599 /* 2600 * ip_fanout_proto_again converts the ICMP errors 2601 * that come back from AH/ESP to M_DATA so that 2602 * if it is non-AH/ESP and we do a pullupmsg in 2603 * this function, it would work. Convert it back 2604 * to M_CTL before we send up as this is a ICMP 2605 * error. This could have been generated locally or 2606 * by some router. Validate the inner IPsec 2607 * headers. 2608 * 2609 * NOTE : ill_index is used by ip_fanout_proto_again 2610 * to locate the ill. 2611 */ 2612 ASSERT(ill != NULL); 2613 ii->ipsec_in_ill_index = 2614 ill->ill_phyint->phyint_ifindex; 2615 ii->ipsec_in_rill_index = 2616 recv_ill->ill_phyint->phyint_ifindex; 2617 DB_TYPE(first_mp->b_cont) = M_CTL; 2618 } else { 2619 /* 2620 * IPSEC_IN is not present. We attach a ipsec_in 2621 * message and send up to IPsec for validating 2622 * and removing the IPsec headers. Clear 2623 * ipsec_in_secure so that when we return 2624 * from IPsec, we don't mistakenly think that this 2625 * is a secure packet came from the network. 2626 * 2627 * NOTE : ill_index is used by ip_fanout_proto_again 2628 * to locate the ill. 2629 */ 2630 ASSERT(first_mp == mp); 2631 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2632 if (first_mp == NULL) { 2633 freemsg(mp); 2634 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2635 return; 2636 } 2637 ii = (ipsec_in_t *)first_mp->b_rptr; 2638 2639 /* This is not a secure packet */ 2640 ii->ipsec_in_secure = B_FALSE; 2641 first_mp->b_cont = mp; 2642 DB_TYPE(mp) = M_CTL; 2643 ASSERT(ill != NULL); 2644 ii->ipsec_in_ill_index = 2645 ill->ill_phyint->phyint_ifindex; 2646 ii->ipsec_in_rill_index = 2647 recv_ill->ill_phyint->phyint_ifindex; 2648 } 2649 ip2dbg(("icmp_inbound_error: ipsec\n")); 2650 2651 if (!ipsec_loaded(ipss)) { 2652 ip_proto_not_sup(q, first_mp, 0, zoneid, ipst); 2653 return; 2654 } 2655 2656 if (ipha->ipha_protocol == IPPROTO_ESP) 2657 ipsec_rc = ipsecesp_icmp_error(first_mp); 2658 else 2659 ipsec_rc = ipsecah_icmp_error(first_mp); 2660 if (ipsec_rc == IPSEC_STATUS_FAILED) 2661 return; 2662 2663 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2664 return; 2665 } 2666 default: 2667 /* 2668 * The ripha header is only used for the lookup and we 2669 * only set the src and dst addresses and protocol. 2670 */ 2671 ripha.ipha_src = ipha->ipha_dst; 2672 ripha.ipha_dst = ipha->ipha_src; 2673 ripha.ipha_protocol = ipha->ipha_protocol; 2674 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2675 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2676 ntohl(ipha->ipha_dst), 2677 icmph->icmph_type, icmph->icmph_code)); 2678 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2679 ipha_t *in_ipha; 2680 2681 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2682 mp->b_wptr) { 2683 if (!pullupmsg(mp, (uchar_t *)ipha + 2684 hdr_length + sizeof (ipha_t) - 2685 mp->b_rptr)) { 2686 goto discard_pkt; 2687 } 2688 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2689 ipha = (ipha_t *)&icmph[1]; 2690 } 2691 /* 2692 * Caller has verified that length has to be 2693 * at least the size of IP header. 2694 */ 2695 ASSERT(hdr_length >= sizeof (ipha_t)); 2696 /* 2697 * Check the sanity of the inner IP header like 2698 * we did for the outer header. 2699 */ 2700 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2701 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2702 goto discard_pkt; 2703 } 2704 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2705 goto discard_pkt; 2706 } 2707 /* Check for Self-encapsulated tunnels */ 2708 if (in_ipha->ipha_src == ipha->ipha_src && 2709 in_ipha->ipha_dst == ipha->ipha_dst) { 2710 2711 mp = icmp_inbound_self_encap_error(mp, 2712 iph_hdr_length, hdr_length); 2713 if (mp == NULL) 2714 goto discard_pkt; 2715 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2716 ipha = (ipha_t *)&icmph[1]; 2717 hdr_length = IPH_HDR_LENGTH(ipha); 2718 /* 2719 * The packet in error is self-encapsualted. 2720 * And we are finding it further encapsulated 2721 * which we could not have possibly generated. 2722 */ 2723 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2724 goto discard_pkt; 2725 } 2726 icmp_inbound_error_fanout(q, ill, first_mp, 2727 icmph, ipha, iph_hdr_length, hdr_length, 2728 mctl_present, ip_policy, recv_ill, zoneid); 2729 return; 2730 } 2731 } 2732 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2733 ipha->ipha_protocol == IPPROTO_IPV6) && 2734 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2735 ii != NULL && 2736 ii->ipsec_in_loopback && 2737 ii->ipsec_in_secure) { 2738 /* 2739 * For IP tunnels that get a looped-back 2740 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2741 * reported new MTU to take into account the IPsec 2742 * headers protecting this configured tunnel. 2743 * 2744 * This allows the tunnel module (tun.c) to blindly 2745 * accept the MTU reported in an ICMP "too big" 2746 * message. 2747 * 2748 * Non-looped back ICMP messages will just be 2749 * handled by the security protocols (if needed), 2750 * and the first subsequent packet will hit this 2751 * path. 2752 */ 2753 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2754 ipsec_in_extra_length(first_mp)); 2755 } 2756 /* Have to change db_type after any pullupmsg */ 2757 DB_TYPE(mp) = M_CTL; 2758 2759 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2760 ip_policy, recv_ill, zoneid); 2761 return; 2762 } 2763 /* NOTREACHED */ 2764 discard_pkt: 2765 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2766 drop_pkt:; 2767 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2768 freemsg(first_mp); 2769 } 2770 2771 /* 2772 * Common IP options parser. 2773 * 2774 * Setup routine: fill in *optp with options-parsing state, then 2775 * tail-call ipoptp_next to return the first option. 2776 */ 2777 uint8_t 2778 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2779 { 2780 uint32_t totallen; /* total length of all options */ 2781 2782 totallen = ipha->ipha_version_and_hdr_length - 2783 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2784 totallen <<= 2; 2785 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2786 optp->ipoptp_end = optp->ipoptp_next + totallen; 2787 optp->ipoptp_flags = 0; 2788 return (ipoptp_next(optp)); 2789 } 2790 2791 /* 2792 * Common IP options parser: extract next option. 2793 */ 2794 uint8_t 2795 ipoptp_next(ipoptp_t *optp) 2796 { 2797 uint8_t *end = optp->ipoptp_end; 2798 uint8_t *cur = optp->ipoptp_next; 2799 uint8_t opt, len, pointer; 2800 2801 /* 2802 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2803 * has been corrupted. 2804 */ 2805 ASSERT(cur <= end); 2806 2807 if (cur == end) 2808 return (IPOPT_EOL); 2809 2810 opt = cur[IPOPT_OPTVAL]; 2811 2812 /* 2813 * Skip any NOP options. 2814 */ 2815 while (opt == IPOPT_NOP) { 2816 cur++; 2817 if (cur == end) 2818 return (IPOPT_EOL); 2819 opt = cur[IPOPT_OPTVAL]; 2820 } 2821 2822 if (opt == IPOPT_EOL) 2823 return (IPOPT_EOL); 2824 2825 /* 2826 * Option requiring a length. 2827 */ 2828 if ((cur + 1) >= end) { 2829 optp->ipoptp_flags |= IPOPTP_ERROR; 2830 return (IPOPT_EOL); 2831 } 2832 len = cur[IPOPT_OLEN]; 2833 if (len < 2) { 2834 optp->ipoptp_flags |= IPOPTP_ERROR; 2835 return (IPOPT_EOL); 2836 } 2837 optp->ipoptp_cur = cur; 2838 optp->ipoptp_len = len; 2839 optp->ipoptp_next = cur + len; 2840 if (cur + len > end) { 2841 optp->ipoptp_flags |= IPOPTP_ERROR; 2842 return (IPOPT_EOL); 2843 } 2844 2845 /* 2846 * For the options which require a pointer field, make sure 2847 * its there, and make sure it points to either something 2848 * inside this option, or the end of the option. 2849 */ 2850 switch (opt) { 2851 case IPOPT_RR: 2852 case IPOPT_TS: 2853 case IPOPT_LSRR: 2854 case IPOPT_SSRR: 2855 if (len <= IPOPT_OFFSET) { 2856 optp->ipoptp_flags |= IPOPTP_ERROR; 2857 return (opt); 2858 } 2859 pointer = cur[IPOPT_OFFSET]; 2860 if (pointer - 1 > len) { 2861 optp->ipoptp_flags |= IPOPTP_ERROR; 2862 return (opt); 2863 } 2864 break; 2865 } 2866 2867 /* 2868 * Sanity check the pointer field based on the type of the 2869 * option. 2870 */ 2871 switch (opt) { 2872 case IPOPT_RR: 2873 case IPOPT_SSRR: 2874 case IPOPT_LSRR: 2875 if (pointer < IPOPT_MINOFF_SR) 2876 optp->ipoptp_flags |= IPOPTP_ERROR; 2877 break; 2878 case IPOPT_TS: 2879 if (pointer < IPOPT_MINOFF_IT) 2880 optp->ipoptp_flags |= IPOPTP_ERROR; 2881 /* 2882 * Note that the Internet Timestamp option also 2883 * contains two four bit fields (the Overflow field, 2884 * and the Flag field), which follow the pointer 2885 * field. We don't need to check that these fields 2886 * fall within the length of the option because this 2887 * was implicitely done above. We've checked that the 2888 * pointer value is at least IPOPT_MINOFF_IT, and that 2889 * it falls within the option. Since IPOPT_MINOFF_IT > 2890 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2891 */ 2892 ASSERT(len > IPOPT_POS_OV_FLG); 2893 break; 2894 } 2895 2896 return (opt); 2897 } 2898 2899 /* 2900 * Use the outgoing IP header to create an IP_OPTIONS option the way 2901 * it was passed down from the application. 2902 */ 2903 int 2904 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2905 { 2906 ipoptp_t opts; 2907 const uchar_t *opt; 2908 uint8_t optval; 2909 uint8_t optlen; 2910 uint32_t len = 0; 2911 uchar_t *buf1 = buf; 2912 2913 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2914 len += IP_ADDR_LEN; 2915 bzero(buf1, IP_ADDR_LEN); 2916 2917 /* 2918 * OK to cast away const here, as we don't store through the returned 2919 * opts.ipoptp_cur pointer. 2920 */ 2921 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 2922 optval != IPOPT_EOL; 2923 optval = ipoptp_next(&opts)) { 2924 int off; 2925 2926 opt = opts.ipoptp_cur; 2927 optlen = opts.ipoptp_len; 2928 switch (optval) { 2929 case IPOPT_SSRR: 2930 case IPOPT_LSRR: 2931 2932 /* 2933 * Insert ipha_dst as the first entry in the source 2934 * route and move down the entries on step. 2935 * The last entry gets placed at buf1. 2936 */ 2937 buf[IPOPT_OPTVAL] = optval; 2938 buf[IPOPT_OLEN] = optlen; 2939 buf[IPOPT_OFFSET] = optlen; 2940 2941 off = optlen - IP_ADDR_LEN; 2942 if (off < 0) { 2943 /* No entries in source route */ 2944 break; 2945 } 2946 /* Last entry in source route */ 2947 bcopy(opt + off, buf1, IP_ADDR_LEN); 2948 off -= IP_ADDR_LEN; 2949 2950 while (off > 0) { 2951 bcopy(opt + off, 2952 buf + off + IP_ADDR_LEN, 2953 IP_ADDR_LEN); 2954 off -= IP_ADDR_LEN; 2955 } 2956 /* ipha_dst into first slot */ 2957 bcopy(&ipha->ipha_dst, 2958 buf + off + IP_ADDR_LEN, 2959 IP_ADDR_LEN); 2960 buf += optlen; 2961 len += optlen; 2962 break; 2963 2964 case IPOPT_COMSEC: 2965 case IPOPT_SECURITY: 2966 /* if passing up a label is not ok, then remove */ 2967 if (is_system_labeled()) 2968 break; 2969 /* FALLTHROUGH */ 2970 default: 2971 bcopy(opt, buf, optlen); 2972 buf += optlen; 2973 len += optlen; 2974 break; 2975 } 2976 } 2977 done: 2978 /* Pad the resulting options */ 2979 while (len & 0x3) { 2980 *buf++ = IPOPT_EOL; 2981 len++; 2982 } 2983 return (len); 2984 } 2985 2986 /* 2987 * Update any record route or timestamp options to include this host. 2988 * Reverse any source route option. 2989 * This routine assumes that the options are well formed i.e. that they 2990 * have already been checked. 2991 */ 2992 static void 2993 icmp_options_update(ipha_t *ipha) 2994 { 2995 ipoptp_t opts; 2996 uchar_t *opt; 2997 uint8_t optval; 2998 ipaddr_t src; /* Our local address */ 2999 ipaddr_t dst; 3000 3001 ip2dbg(("icmp_options_update\n")); 3002 src = ipha->ipha_src; 3003 dst = ipha->ipha_dst; 3004 3005 for (optval = ipoptp_first(&opts, ipha); 3006 optval != IPOPT_EOL; 3007 optval = ipoptp_next(&opts)) { 3008 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 3009 opt = opts.ipoptp_cur; 3010 ip2dbg(("icmp_options_update: opt %d, len %d\n", 3011 optval, opts.ipoptp_len)); 3012 switch (optval) { 3013 int off1, off2; 3014 case IPOPT_SSRR: 3015 case IPOPT_LSRR: 3016 /* 3017 * Reverse the source route. The first entry 3018 * should be the next to last one in the current 3019 * source route (the last entry is our address). 3020 * The last entry should be the final destination. 3021 */ 3022 off1 = IPOPT_MINOFF_SR - 1; 3023 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 3024 if (off2 < 0) { 3025 /* No entries in source route */ 3026 ip1dbg(( 3027 "icmp_options_update: bad src route\n")); 3028 break; 3029 } 3030 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 3031 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 3032 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 3033 off2 -= IP_ADDR_LEN; 3034 3035 while (off1 < off2) { 3036 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 3037 bcopy((char *)opt + off2, (char *)opt + off1, 3038 IP_ADDR_LEN); 3039 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 3040 off1 += IP_ADDR_LEN; 3041 off2 -= IP_ADDR_LEN; 3042 } 3043 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 3044 break; 3045 } 3046 } 3047 } 3048 3049 /* 3050 * Process received ICMP Redirect messages. 3051 */ 3052 static void 3053 icmp_redirect(ill_t *ill, mblk_t *mp) 3054 { 3055 ipha_t *ipha; 3056 int iph_hdr_length; 3057 icmph_t *icmph; 3058 ipha_t *ipha_err; 3059 ire_t *ire; 3060 ire_t *prev_ire; 3061 ire_t *save_ire; 3062 ipaddr_t src, dst, gateway; 3063 iulp_t ulp_info = { 0 }; 3064 int error; 3065 ip_stack_t *ipst; 3066 3067 ASSERT(ill != NULL); 3068 ipst = ill->ill_ipst; 3069 3070 ipha = (ipha_t *)mp->b_rptr; 3071 iph_hdr_length = IPH_HDR_LENGTH(ipha); 3072 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 3073 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 3074 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3075 freemsg(mp); 3076 return; 3077 } 3078 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 3079 ipha_err = (ipha_t *)&icmph[1]; 3080 src = ipha->ipha_src; 3081 dst = ipha_err->ipha_dst; 3082 gateway = icmph->icmph_rd_gateway; 3083 /* Make sure the new gateway is reachable somehow. */ 3084 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 3085 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3086 /* 3087 * Make sure we had a route for the dest in question and that 3088 * that route was pointing to the old gateway (the source of the 3089 * redirect packet.) 3090 */ 3091 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 3092 NULL, MATCH_IRE_GW, ipst); 3093 /* 3094 * Check that 3095 * the redirect was not from ourselves 3096 * the new gateway and the old gateway are directly reachable 3097 */ 3098 if (!prev_ire || 3099 !ire || 3100 ire->ire_type == IRE_LOCAL) { 3101 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3102 freemsg(mp); 3103 if (ire != NULL) 3104 ire_refrele(ire); 3105 if (prev_ire != NULL) 3106 ire_refrele(prev_ire); 3107 return; 3108 } 3109 3110 /* 3111 * Should we use the old ULP info to create the new gateway? From 3112 * a user's perspective, we should inherit the info so that it 3113 * is a "smooth" transition. If we do not do that, then new 3114 * connections going thru the new gateway will have no route metrics, 3115 * which is counter-intuitive to user. From a network point of 3116 * view, this may or may not make sense even though the new gateway 3117 * is still directly connected to us so the route metrics should not 3118 * change much. 3119 * 3120 * But if the old ire_uinfo is not initialized, we do another 3121 * recursive lookup on the dest using the new gateway. There may 3122 * be a route to that. If so, use it to initialize the redirect 3123 * route. 3124 */ 3125 if (prev_ire->ire_uinfo.iulp_set) { 3126 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3127 } else { 3128 ire_t *tmp_ire; 3129 ire_t *sire; 3130 3131 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3132 ALL_ZONES, 0, NULL, 3133 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT), 3134 ipst); 3135 if (sire != NULL) { 3136 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3137 /* 3138 * If sire != NULL, ire_ftable_lookup() should not 3139 * return a NULL value. 3140 */ 3141 ASSERT(tmp_ire != NULL); 3142 ire_refrele(tmp_ire); 3143 ire_refrele(sire); 3144 } else if (tmp_ire != NULL) { 3145 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3146 sizeof (iulp_t)); 3147 ire_refrele(tmp_ire); 3148 } 3149 } 3150 if (prev_ire->ire_type == IRE_CACHE) 3151 ire_delete(prev_ire); 3152 ire_refrele(prev_ire); 3153 /* 3154 * TODO: more precise handling for cases 0, 2, 3, the latter two 3155 * require TOS routing 3156 */ 3157 switch (icmph->icmph_code) { 3158 case 0: 3159 case 1: 3160 /* TODO: TOS specificity for cases 2 and 3 */ 3161 case 2: 3162 case 3: 3163 break; 3164 default: 3165 freemsg(mp); 3166 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3167 ire_refrele(ire); 3168 return; 3169 } 3170 /* 3171 * Create a Route Association. This will allow us to remember that 3172 * someone we believe told us to use the particular gateway. 3173 */ 3174 save_ire = ire; 3175 ire = ire_create( 3176 (uchar_t *)&dst, /* dest addr */ 3177 (uchar_t *)&ip_g_all_ones, /* mask */ 3178 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3179 (uchar_t *)&gateway, /* gateway addr */ 3180 &save_ire->ire_max_frag, /* max frag */ 3181 NULL, /* no src nce */ 3182 NULL, /* no rfq */ 3183 NULL, /* no stq */ 3184 IRE_HOST, 3185 NULL, /* ipif */ 3186 0, /* cmask */ 3187 0, /* phandle */ 3188 0, /* ihandle */ 3189 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3190 &ulp_info, 3191 NULL, /* tsol_gc_t */ 3192 NULL, /* gcgrp */ 3193 ipst); 3194 3195 if (ire == NULL) { 3196 freemsg(mp); 3197 ire_refrele(save_ire); 3198 return; 3199 } 3200 error = ire_add(&ire, NULL, NULL, NULL, B_FALSE); 3201 ire_refrele(save_ire); 3202 atomic_inc_32(&ipst->ips_ip_redirect_cnt); 3203 3204 if (error == 0) { 3205 ire_refrele(ire); /* Held in ire_add_v4 */ 3206 /* tell routing sockets that we received a redirect */ 3207 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3208 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3209 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 3210 } 3211 3212 /* 3213 * Delete any existing IRE_HOST type redirect ires for this destination. 3214 * This together with the added IRE has the effect of 3215 * modifying an existing redirect. 3216 */ 3217 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST, NULL, NULL, 3218 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), ipst); 3219 if (prev_ire != NULL) { 3220 if (prev_ire ->ire_flags & RTF_DYNAMIC) 3221 ire_delete(prev_ire); 3222 ire_refrele(prev_ire); 3223 } 3224 3225 freemsg(mp); 3226 } 3227 3228 /* 3229 * Generate an ICMP parameter problem message. 3230 */ 3231 static void 3232 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr, zoneid_t zoneid, 3233 ip_stack_t *ipst) 3234 { 3235 icmph_t icmph; 3236 boolean_t mctl_present; 3237 mblk_t *first_mp; 3238 3239 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3240 3241 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3242 if (mctl_present) 3243 freeb(first_mp); 3244 return; 3245 } 3246 3247 bzero(&icmph, sizeof (icmph_t)); 3248 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3249 icmph.icmph_pp_ptr = ptr; 3250 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 3251 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3252 ipst); 3253 } 3254 3255 /* 3256 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3257 * the ICMP header pointed to by "stuff". (May be called as writer.) 3258 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3259 * an icmp error packet can be sent. 3260 * Assigns an appropriate source address to the packet. If ipha_dst is 3261 * one of our addresses use it for source. Otherwise pick a source based 3262 * on a route lookup back to ipha_src. 3263 * Note that ipha_src must be set here since the 3264 * packet is likely to arrive on an ill queue in ip_wput() which will 3265 * not set a source address. 3266 */ 3267 static void 3268 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3269 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 3270 { 3271 ipaddr_t dst; 3272 icmph_t *icmph; 3273 ipha_t *ipha; 3274 uint_t len_needed; 3275 size_t msg_len; 3276 mblk_t *mp1; 3277 ipaddr_t src; 3278 ire_t *ire; 3279 mblk_t *ipsec_mp; 3280 ipsec_out_t *io = NULL; 3281 3282 if (mctl_present) { 3283 /* 3284 * If it is : 3285 * 3286 * 1) a IPSEC_OUT, then this is caused by outbound 3287 * datagram originating on this host. IPsec processing 3288 * may or may not have been done. Refer to comments above 3289 * icmp_inbound_error_fanout for details. 3290 * 3291 * 2) a IPSEC_IN if we are generating a icmp_message 3292 * for an incoming datagram destined for us i.e called 3293 * from ip_fanout_send_icmp. 3294 */ 3295 ipsec_info_t *in; 3296 ipsec_mp = mp; 3297 mp = ipsec_mp->b_cont; 3298 3299 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3300 ipha = (ipha_t *)mp->b_rptr; 3301 3302 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3303 in->ipsec_info_type == IPSEC_IN); 3304 3305 if (in->ipsec_info_type == IPSEC_IN) { 3306 /* 3307 * Convert the IPSEC_IN to IPSEC_OUT. 3308 */ 3309 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3310 BUMP_MIB(&ipst->ips_ip_mib, 3311 ipIfStatsOutDiscards); 3312 return; 3313 } 3314 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3315 } else { 3316 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3317 io = (ipsec_out_t *)in; 3318 /* 3319 * Clear out ipsec_out_proc_begin, so we do a fresh 3320 * ire lookup. 3321 */ 3322 io->ipsec_out_proc_begin = B_FALSE; 3323 } 3324 ASSERT(zoneid == io->ipsec_out_zoneid); 3325 ASSERT(zoneid != ALL_ZONES); 3326 } else { 3327 /* 3328 * This is in clear. The icmp message we are building 3329 * here should go out in clear. 3330 * 3331 * Pardon the convolution of it all, but it's easier to 3332 * allocate a "use cleartext" IPSEC_IN message and convert 3333 * it than it is to allocate a new one. 3334 */ 3335 ipsec_in_t *ii; 3336 ASSERT(DB_TYPE(mp) == M_DATA); 3337 ipsec_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 3338 if (ipsec_mp == NULL) { 3339 freemsg(mp); 3340 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3341 return; 3342 } 3343 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3344 3345 /* This is not a secure packet */ 3346 ii->ipsec_in_secure = B_FALSE; 3347 /* 3348 * For trusted extensions using a shared IP address we can 3349 * send using any zoneid. 3350 */ 3351 if (zoneid == ALL_ZONES) 3352 ii->ipsec_in_zoneid = GLOBAL_ZONEID; 3353 else 3354 ii->ipsec_in_zoneid = zoneid; 3355 ipsec_mp->b_cont = mp; 3356 ipha = (ipha_t *)mp->b_rptr; 3357 /* 3358 * Convert the IPSEC_IN to IPSEC_OUT. 3359 */ 3360 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3361 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3362 return; 3363 } 3364 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3365 } 3366 3367 /* Remember our eventual destination */ 3368 dst = ipha->ipha_src; 3369 3370 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3371 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE, ipst); 3372 if (ire != NULL && 3373 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3374 src = ipha->ipha_dst; 3375 } else { 3376 if (ire != NULL) 3377 ire_refrele(ire); 3378 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3379 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY), 3380 ipst); 3381 if (ire == NULL) { 3382 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3383 freemsg(ipsec_mp); 3384 return; 3385 } 3386 src = ire->ire_src_addr; 3387 } 3388 3389 if (ire != NULL) 3390 ire_refrele(ire); 3391 3392 /* 3393 * Check if we can send back more then 8 bytes in addition to 3394 * the IP header. We try to send 64 bytes of data and the internal 3395 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 3396 */ 3397 len_needed = IPH_HDR_LENGTH(ipha); 3398 if (ipha->ipha_protocol == IPPROTO_ENCAP || 3399 ipha->ipha_protocol == IPPROTO_IPV6) { 3400 3401 if (!pullupmsg(mp, -1)) { 3402 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3403 freemsg(ipsec_mp); 3404 return; 3405 } 3406 ipha = (ipha_t *)mp->b_rptr; 3407 3408 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 3409 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 3410 len_needed)); 3411 } else { 3412 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 3413 3414 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 3415 len_needed += ip_hdr_length_v6(mp, ip6h); 3416 } 3417 } 3418 len_needed += ipst->ips_ip_icmp_return; 3419 msg_len = msgdsize(mp); 3420 if (msg_len > len_needed) { 3421 (void) adjmsg(mp, len_needed - msg_len); 3422 msg_len = len_needed; 3423 } 3424 mp1 = allocb_tmpl(sizeof (icmp_ipha) + len, mp); 3425 if (mp1 == NULL) { 3426 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 3427 freemsg(ipsec_mp); 3428 return; 3429 } 3430 mp1->b_cont = mp; 3431 mp = mp1; 3432 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3433 ipsec_mp->b_rptr == (uint8_t *)io && 3434 io->ipsec_out_type == IPSEC_OUT); 3435 ipsec_mp->b_cont = mp; 3436 3437 /* 3438 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3439 * node generates be accepted in peace by all on-host destinations. 3440 * If we do NOT assume that all on-host destinations trust 3441 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3442 * (Look for ipsec_out_icmp_loopback). 3443 */ 3444 io->ipsec_out_icmp_loopback = B_TRUE; 3445 3446 ipha = (ipha_t *)mp->b_rptr; 3447 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3448 *ipha = icmp_ipha; 3449 ipha->ipha_src = src; 3450 ipha->ipha_dst = dst; 3451 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 3452 msg_len += sizeof (icmp_ipha) + len; 3453 if (msg_len > IP_MAXPACKET) { 3454 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3455 msg_len = IP_MAXPACKET; 3456 } 3457 ipha->ipha_length = htons((uint16_t)msg_len); 3458 icmph = (icmph_t *)&ipha[1]; 3459 bcopy(stuff, icmph, len); 3460 icmph->icmph_checksum = 0; 3461 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3462 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 3463 put(q, ipsec_mp); 3464 } 3465 3466 /* 3467 * Determine if an ICMP error packet can be sent given the rate limit. 3468 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3469 * in milliseconds) and a burst size. Burst size number of packets can 3470 * be sent arbitrarely closely spaced. 3471 * The state is tracked using two variables to implement an approximate 3472 * token bucket filter: 3473 * icmp_pkt_err_last - lbolt value when the last burst started 3474 * icmp_pkt_err_sent - number of packets sent in current burst 3475 */ 3476 boolean_t 3477 icmp_err_rate_limit(ip_stack_t *ipst) 3478 { 3479 clock_t now = TICK_TO_MSEC(lbolt); 3480 uint_t refilled; /* Number of packets refilled in tbf since last */ 3481 /* Guard against changes by loading into local variable */ 3482 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 3483 3484 if (err_interval == 0) 3485 return (B_FALSE); 3486 3487 if (ipst->ips_icmp_pkt_err_last > now) { 3488 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3489 ipst->ips_icmp_pkt_err_last = 0; 3490 ipst->ips_icmp_pkt_err_sent = 0; 3491 } 3492 /* 3493 * If we are in a burst update the token bucket filter. 3494 * Update the "last" time to be close to "now" but make sure 3495 * we don't loose precision. 3496 */ 3497 if (ipst->ips_icmp_pkt_err_sent != 0) { 3498 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 3499 if (refilled > ipst->ips_icmp_pkt_err_sent) { 3500 ipst->ips_icmp_pkt_err_sent = 0; 3501 } else { 3502 ipst->ips_icmp_pkt_err_sent -= refilled; 3503 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 3504 } 3505 } 3506 if (ipst->ips_icmp_pkt_err_sent == 0) { 3507 /* Start of new burst */ 3508 ipst->ips_icmp_pkt_err_last = now; 3509 } 3510 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 3511 ipst->ips_icmp_pkt_err_sent++; 3512 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3513 ipst->ips_icmp_pkt_err_sent)); 3514 return (B_FALSE); 3515 } 3516 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3517 return (B_TRUE); 3518 } 3519 3520 /* 3521 * Check if it is ok to send an IPv4 ICMP error packet in 3522 * response to the IPv4 packet in mp. 3523 * Free the message and return null if no 3524 * ICMP error packet should be sent. 3525 */ 3526 static mblk_t * 3527 icmp_pkt_err_ok(mblk_t *mp, ip_stack_t *ipst) 3528 { 3529 icmph_t *icmph; 3530 ipha_t *ipha; 3531 uint_t len_needed; 3532 ire_t *src_ire; 3533 ire_t *dst_ire; 3534 3535 if (!mp) 3536 return (NULL); 3537 ipha = (ipha_t *)mp->b_rptr; 3538 if (ip_csum_hdr(ipha)) { 3539 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 3540 freemsg(mp); 3541 return (NULL); 3542 } 3543 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3544 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3545 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3546 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3547 if (src_ire != NULL || dst_ire != NULL || 3548 CLASSD(ipha->ipha_dst) || 3549 CLASSD(ipha->ipha_src) || 3550 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3551 /* Note: only errors to the fragment with offset 0 */ 3552 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3553 freemsg(mp); 3554 if (src_ire != NULL) 3555 ire_refrele(src_ire); 3556 if (dst_ire != NULL) 3557 ire_refrele(dst_ire); 3558 return (NULL); 3559 } 3560 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3561 /* 3562 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3563 * errors in response to any ICMP errors. 3564 */ 3565 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3566 if (mp->b_wptr - mp->b_rptr < len_needed) { 3567 if (!pullupmsg(mp, len_needed)) { 3568 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3569 freemsg(mp); 3570 return (NULL); 3571 } 3572 ipha = (ipha_t *)mp->b_rptr; 3573 } 3574 icmph = (icmph_t *) 3575 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3576 switch (icmph->icmph_type) { 3577 case ICMP_DEST_UNREACHABLE: 3578 case ICMP_SOURCE_QUENCH: 3579 case ICMP_TIME_EXCEEDED: 3580 case ICMP_PARAM_PROBLEM: 3581 case ICMP_REDIRECT: 3582 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3583 freemsg(mp); 3584 return (NULL); 3585 default: 3586 break; 3587 } 3588 } 3589 /* 3590 * If this is a labeled system, then check to see if we're allowed to 3591 * send a response to this particular sender. If not, then just drop. 3592 */ 3593 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3594 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3595 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3596 freemsg(mp); 3597 return (NULL); 3598 } 3599 if (icmp_err_rate_limit(ipst)) { 3600 /* 3601 * Only send ICMP error packets every so often. 3602 * This should be done on a per port/source basis, 3603 * but for now this will suffice. 3604 */ 3605 freemsg(mp); 3606 return (NULL); 3607 } 3608 return (mp); 3609 } 3610 3611 /* 3612 * Generate an ICMP redirect message. 3613 */ 3614 static void 3615 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway, ip_stack_t *ipst) 3616 { 3617 icmph_t icmph; 3618 3619 /* 3620 * We are called from ip_rput where we could 3621 * not have attached an IPSEC_IN. 3622 */ 3623 ASSERT(mp->b_datap->db_type == M_DATA); 3624 3625 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3626 return; 3627 } 3628 3629 bzero(&icmph, sizeof (icmph_t)); 3630 icmph.icmph_type = ICMP_REDIRECT; 3631 icmph.icmph_code = 1; 3632 icmph.icmph_rd_gateway = gateway; 3633 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3634 /* Redirects sent by router, and router is global zone */ 3635 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE, GLOBAL_ZONEID, ipst); 3636 } 3637 3638 /* 3639 * Generate an ICMP time exceeded message. 3640 */ 3641 void 3642 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3643 ip_stack_t *ipst) 3644 { 3645 icmph_t icmph; 3646 boolean_t mctl_present; 3647 mblk_t *first_mp; 3648 3649 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3650 3651 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3652 if (mctl_present) 3653 freeb(first_mp); 3654 return; 3655 } 3656 3657 bzero(&icmph, sizeof (icmph_t)); 3658 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3659 icmph.icmph_code = code; 3660 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3661 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3662 ipst); 3663 } 3664 3665 /* 3666 * Generate an ICMP unreachable message. 3667 */ 3668 void 3669 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3670 ip_stack_t *ipst) 3671 { 3672 icmph_t icmph; 3673 mblk_t *first_mp; 3674 boolean_t mctl_present; 3675 3676 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3677 3678 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3679 if (mctl_present) 3680 freeb(first_mp); 3681 return; 3682 } 3683 3684 bzero(&icmph, sizeof (icmph_t)); 3685 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3686 icmph.icmph_code = code; 3687 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3688 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3689 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present, 3690 zoneid, ipst); 3691 } 3692 3693 /* 3694 * Attempt to start recovery of an IPv4 interface that's been shut down as a 3695 * duplicate. As long as someone else holds the address, the interface will 3696 * stay down. When that conflict goes away, the interface is brought back up. 3697 * This is done so that accidental shutdowns of addresses aren't made 3698 * permanent. Your server will recover from a failure. 3699 * 3700 * For DHCP, recovery is not done in the kernel. Instead, it's handled by a 3701 * user space process (dhcpagent). 3702 * 3703 * Recovery completes if ARP reports that the address is now ours (via 3704 * AR_CN_READY). In that case, we go to ip_arp_excl to finish the operation. 3705 * 3706 * This function is entered on a timer expiry; the ID is in ipif_recovery_id. 3707 */ 3708 static void 3709 ipif_dup_recovery(void *arg) 3710 { 3711 ipif_t *ipif = arg; 3712 ill_t *ill = ipif->ipif_ill; 3713 mblk_t *arp_add_mp; 3714 mblk_t *arp_del_mp; 3715 area_t *area; 3716 ip_stack_t *ipst = ill->ill_ipst; 3717 3718 ipif->ipif_recovery_id = 0; 3719 3720 /* 3721 * No lock needed for moving or condemned check, as this is just an 3722 * optimization. 3723 */ 3724 if (ill->ill_arp_closing || !(ipif->ipif_flags & IPIF_DUPLICATE) || 3725 (ipif->ipif_flags & IPIF_POINTOPOINT) || 3726 (ipif->ipif_state_flags & (IPIF_MOVING | IPIF_CONDEMNED))) { 3727 /* No reason to try to bring this address back. */ 3728 return; 3729 } 3730 3731 if ((arp_add_mp = ipif_area_alloc(ipif)) == NULL) 3732 goto alloc_fail; 3733 3734 if (ipif->ipif_arp_del_mp == NULL) { 3735 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 3736 goto alloc_fail; 3737 ipif->ipif_arp_del_mp = arp_del_mp; 3738 } 3739 3740 /* Setting the 'unverified' flag restarts DAD */ 3741 area = (area_t *)arp_add_mp->b_rptr; 3742 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 3743 ACE_F_UNVERIFIED; 3744 putnext(ill->ill_rq, arp_add_mp); 3745 return; 3746 3747 alloc_fail: 3748 /* 3749 * On allocation failure, just restart the timer. Note that the ipif 3750 * is down here, so no other thread could be trying to start a recovery 3751 * timer. The ill_lock protects the condemned flag and the recovery 3752 * timer ID. 3753 */ 3754 freemsg(arp_add_mp); 3755 mutex_enter(&ill->ill_lock); 3756 if (ipst->ips_ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0 && 3757 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 3758 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, ipif, 3759 MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3760 } 3761 mutex_exit(&ill->ill_lock); 3762 } 3763 3764 /* 3765 * This is for exclusive changes due to ARP. Either tear down an interface due 3766 * to AR_CN_FAILED and AR_CN_BOGON, or bring one up for successful recovery. 3767 */ 3768 /* ARGSUSED */ 3769 static void 3770 ip_arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3771 { 3772 ill_t *ill = rq->q_ptr; 3773 arh_t *arh; 3774 ipaddr_t src; 3775 ipif_t *ipif; 3776 char ibuf[LIFNAMSIZ + 10]; /* 10 digits for logical i/f number */ 3777 char hbuf[MAC_STR_LEN]; 3778 char sbuf[INET_ADDRSTRLEN]; 3779 const char *failtype; 3780 boolean_t bring_up; 3781 ip_stack_t *ipst = ill->ill_ipst; 3782 3783 switch (((arcn_t *)mp->b_rptr)->arcn_code) { 3784 case AR_CN_READY: 3785 failtype = NULL; 3786 bring_up = B_TRUE; 3787 break; 3788 case AR_CN_FAILED: 3789 failtype = "in use"; 3790 bring_up = B_FALSE; 3791 break; 3792 default: 3793 failtype = "claimed"; 3794 bring_up = B_FALSE; 3795 break; 3796 } 3797 3798 arh = (arh_t *)mp->b_cont->b_rptr; 3799 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3800 3801 /* Handle failures due to probes */ 3802 if (src == 0) { 3803 bcopy((char *)&arh[1] + 2 * arh->arh_hlen + IP_ADDR_LEN, &src, 3804 IP_ADDR_LEN); 3805 } 3806 3807 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, hbuf, 3808 sizeof (hbuf)); 3809 (void) ip_dot_addr(src, sbuf); 3810 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3811 3812 if ((ipif->ipif_flags & IPIF_POINTOPOINT) || 3813 ipif->ipif_lcl_addr != src) { 3814 continue; 3815 } 3816 3817 /* 3818 * If we failed on a recovery probe, then restart the timer to 3819 * try again later. 3820 */ 3821 if (!bring_up && (ipif->ipif_flags & IPIF_DUPLICATE) && 3822 !(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3823 ill->ill_net_type == IRE_IF_RESOLVER && 3824 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3825 ipst->ips_ip_dup_recovery > 0 && 3826 ipif->ipif_recovery_id == 0) { 3827 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3828 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3829 continue; 3830 } 3831 3832 /* 3833 * If what we're trying to do has already been done, then do 3834 * nothing. 3835 */ 3836 if (bring_up == ((ipif->ipif_flags & IPIF_UP) != 0)) 3837 continue; 3838 3839 ipif_get_name(ipif, ibuf, sizeof (ibuf)); 3840 3841 if (failtype == NULL) { 3842 cmn_err(CE_NOTE, "recovered address %s on %s", sbuf, 3843 ibuf); 3844 } else { 3845 cmn_err(CE_WARN, "%s has duplicate address %s (%s " 3846 "by %s); disabled", ibuf, sbuf, failtype, hbuf); 3847 } 3848 3849 if (bring_up) { 3850 ASSERT(ill->ill_dl_up); 3851 /* 3852 * Free up the ARP delete message so we can allocate 3853 * a fresh one through the normal path. 3854 */ 3855 freemsg(ipif->ipif_arp_del_mp); 3856 ipif->ipif_arp_del_mp = NULL; 3857 if (ipif_resolver_up(ipif, Res_act_initial) != 3858 EINPROGRESS) { 3859 ipif->ipif_addr_ready = 1; 3860 (void) ipif_up_done(ipif); 3861 } 3862 continue; 3863 } 3864 3865 mutex_enter(&ill->ill_lock); 3866 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 3867 ipif->ipif_flags |= IPIF_DUPLICATE; 3868 ill->ill_ipif_dup_count++; 3869 mutex_exit(&ill->ill_lock); 3870 /* 3871 * Already exclusive on the ill; no need to handle deferred 3872 * processing here. 3873 */ 3874 (void) ipif_down(ipif, NULL, NULL); 3875 ipif_down_tail(ipif); 3876 mutex_enter(&ill->ill_lock); 3877 if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3878 ill->ill_net_type == IRE_IF_RESOLVER && 3879 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3880 ipst->ips_ip_dup_recovery > 0) { 3881 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3882 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3883 } 3884 mutex_exit(&ill->ill_lock); 3885 } 3886 freemsg(mp); 3887 } 3888 3889 /* ARGSUSED */ 3890 static void 3891 ip_arp_defend(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3892 { 3893 ill_t *ill = rq->q_ptr; 3894 arh_t *arh; 3895 ipaddr_t src; 3896 ipif_t *ipif; 3897 3898 arh = (arh_t *)mp->b_cont->b_rptr; 3899 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3900 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3901 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_lcl_addr == src) 3902 (void) ipif_resolver_up(ipif, Res_act_defend); 3903 } 3904 freemsg(mp); 3905 } 3906 3907 /* 3908 * News from ARP. ARP sends notification of interesting events down 3909 * to its clients using M_CTL messages with the interesting ARP packet 3910 * attached via b_cont. 3911 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3912 * queue as opposed to ARP sending the message to all the clients, i.e. all 3913 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3914 * table if a cache IRE is found to delete all the entries for the address in 3915 * the packet. 3916 */ 3917 static void 3918 ip_arp_news(queue_t *q, mblk_t *mp) 3919 { 3920 arcn_t *arcn; 3921 arh_t *arh; 3922 ire_t *ire = NULL; 3923 char hbuf[MAC_STR_LEN]; 3924 char sbuf[INET_ADDRSTRLEN]; 3925 ipaddr_t src; 3926 in6_addr_t v6src; 3927 boolean_t isv6 = B_FALSE; 3928 ipif_t *ipif; 3929 ill_t *ill; 3930 ip_stack_t *ipst; 3931 3932 if (CONN_Q(q)) { 3933 conn_t *connp = Q_TO_CONN(q); 3934 3935 ipst = connp->conn_netstack->netstack_ip; 3936 } else { 3937 ill_t *ill = (ill_t *)q->q_ptr; 3938 3939 ipst = ill->ill_ipst; 3940 } 3941 3942 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 3943 if (q->q_next) { 3944 putnext(q, mp); 3945 } else 3946 freemsg(mp); 3947 return; 3948 } 3949 arh = (arh_t *)mp->b_cont->b_rptr; 3950 /* Is it one we are interested in? */ 3951 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 3952 isv6 = B_TRUE; 3953 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 3954 IPV6_ADDR_LEN); 3955 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 3956 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 3957 IP_ADDR_LEN); 3958 } else { 3959 freemsg(mp); 3960 return; 3961 } 3962 3963 ill = q->q_ptr; 3964 3965 arcn = (arcn_t *)mp->b_rptr; 3966 switch (arcn->arcn_code) { 3967 case AR_CN_BOGON: 3968 /* 3969 * Someone is sending ARP packets with a source protocol 3970 * address that we have published and for which we believe our 3971 * entry is authoritative and (when ill_arp_extend is set) 3972 * verified to be unique on the network. 3973 * 3974 * The ARP module internally handles the cases where the sender 3975 * is just probing (for DAD) and where the hardware address of 3976 * a non-authoritative entry has changed. Thus, these are the 3977 * real conflicts, and we have to do resolution. 3978 * 3979 * We back away quickly from the address if it's from DHCP or 3980 * otherwise temporary and hasn't been used recently (or at 3981 * all). We'd like to include "deprecated" addresses here as 3982 * well (as there's no real reason to defend something we're 3983 * discarding), but IPMP "reuses" this flag to mean something 3984 * other than the standard meaning. 3985 * 3986 * If the ARP module above is not extended (meaning that it 3987 * doesn't know how to defend the address), then we just log 3988 * the problem as we always did and continue on. It's not 3989 * right, but there's little else we can do, and those old ATM 3990 * users are going away anyway. 3991 */ 3992 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, 3993 hbuf, sizeof (hbuf)); 3994 (void) ip_dot_addr(src, sbuf); 3995 if (isv6) { 3996 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL, 3997 ipst); 3998 } else { 3999 ire = ire_cache_lookup(src, ALL_ZONES, NULL, ipst); 4000 } 4001 if (ire != NULL && IRE_IS_LOCAL(ire)) { 4002 uint32_t now; 4003 uint32_t maxage; 4004 clock_t lused; 4005 uint_t maxdefense; 4006 uint_t defs; 4007 4008 /* 4009 * First, figure out if this address hasn't been used 4010 * in a while. If it hasn't, then it's a better 4011 * candidate for abandoning. 4012 */ 4013 ipif = ire->ire_ipif; 4014 ASSERT(ipif != NULL); 4015 now = gethrestime_sec(); 4016 maxage = now - ire->ire_create_time; 4017 if (maxage > ipst->ips_ip_max_temp_idle) 4018 maxage = ipst->ips_ip_max_temp_idle; 4019 lused = drv_hztousec(ddi_get_lbolt() - 4020 ire->ire_last_used_time) / MICROSEC + 1; 4021 if (lused >= maxage && (ipif->ipif_flags & 4022 (IPIF_DHCPRUNNING | IPIF_TEMPORARY))) 4023 maxdefense = ipst->ips_ip_max_temp_defend; 4024 else 4025 maxdefense = ipst->ips_ip_max_defend; 4026 4027 /* 4028 * Now figure out how many times we've defended 4029 * ourselves. Ignore defenses that happened long in 4030 * the past. 4031 */ 4032 mutex_enter(&ire->ire_lock); 4033 if ((defs = ire->ire_defense_count) > 0 && 4034 now - ire->ire_defense_time > 4035 ipst->ips_ip_defend_interval) { 4036 ire->ire_defense_count = defs = 0; 4037 } 4038 ire->ire_defense_count++; 4039 ire->ire_defense_time = now; 4040 mutex_exit(&ire->ire_lock); 4041 ill_refhold(ill); 4042 ire_refrele(ire); 4043 4044 /* 4045 * If we've defended ourselves too many times already, 4046 * then give up and tear down the interface(s) using 4047 * this address. Otherwise, defend by sending out a 4048 * gratuitous ARP. 4049 */ 4050 if (defs >= maxdefense && ill->ill_arp_extend) { 4051 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4052 B_FALSE); 4053 } else { 4054 cmn_err(CE_WARN, 4055 "node %s is using our IP address %s on %s", 4056 hbuf, sbuf, ill->ill_name); 4057 /* 4058 * If this is an old (ATM) ARP module, then 4059 * don't try to defend the address. Remain 4060 * compatible with the old behavior. Defend 4061 * only with new ARP. 4062 */ 4063 if (ill->ill_arp_extend) { 4064 qwriter_ip(ill, q, mp, ip_arp_defend, 4065 NEW_OP, B_FALSE); 4066 } else { 4067 ill_refrele(ill); 4068 } 4069 } 4070 return; 4071 } 4072 cmn_err(CE_WARN, 4073 "proxy ARP problem? Node '%s' is using %s on %s", 4074 hbuf, sbuf, ill->ill_name); 4075 if (ire != NULL) 4076 ire_refrele(ire); 4077 break; 4078 case AR_CN_ANNOUNCE: 4079 if (isv6) { 4080 /* 4081 * For XRESOLV interfaces. 4082 * Delete the IRE cache entry and NCE for this 4083 * v6 address 4084 */ 4085 ip_ire_clookup_and_delete_v6(&v6src, ipst); 4086 /* 4087 * If v6src is a non-zero, it's a router address 4088 * as below. Do the same sort of thing to clean 4089 * out off-net IRE_CACHE entries that go through 4090 * the router. 4091 */ 4092 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 4093 ire_walk_v6(ire_delete_cache_gw_v6, 4094 (char *)&v6src, ALL_ZONES, ipst); 4095 } 4096 } else { 4097 nce_hw_map_t hwm; 4098 4099 /* 4100 * ARP gives us a copy of any packet where it thinks 4101 * the address has changed, so that we can update our 4102 * caches. We're responsible for caching known answers 4103 * in the current design. We check whether the 4104 * hardware address really has changed in all of our 4105 * entries that have cached this mapping, and if so, we 4106 * blow them away. This way we will immediately pick 4107 * up the rare case of a host changing hardware 4108 * address. 4109 */ 4110 if (src == 0) 4111 break; 4112 hwm.hwm_addr = src; 4113 hwm.hwm_hwlen = arh->arh_hlen; 4114 hwm.hwm_hwaddr = (uchar_t *)(arh + 1); 4115 NDP_HW_CHANGE_INCR(ipst->ips_ndp4); 4116 ndp_walk_common(ipst->ips_ndp4, NULL, 4117 (pfi_t)nce_delete_hw_changed, &hwm, ALL_ZONES); 4118 NDP_HW_CHANGE_DECR(ipst->ips_ndp4); 4119 } 4120 break; 4121 case AR_CN_READY: 4122 /* No external v6 resolver has a contract to use this */ 4123 if (isv6) 4124 break; 4125 /* If the link is down, we'll retry this later */ 4126 if (!(ill->ill_phyint->phyint_flags & PHYI_RUNNING)) 4127 break; 4128 ipif = ipif_lookup_addr(src, ill, ALL_ZONES, NULL, NULL, 4129 NULL, NULL, ipst); 4130 if (ipif != NULL) { 4131 /* 4132 * If this is a duplicate recovery, then we now need to 4133 * go exclusive to bring this thing back up. 4134 */ 4135 if ((ipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)) == 4136 IPIF_DUPLICATE) { 4137 ipif_refrele(ipif); 4138 ill_refhold(ill); 4139 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4140 B_FALSE); 4141 return; 4142 } 4143 /* 4144 * If this is the first notice that this address is 4145 * ready, then let the user know now. 4146 */ 4147 if ((ipif->ipif_flags & IPIF_UP) && 4148 !ipif->ipif_addr_ready) { 4149 ipif_mask_reply(ipif); 4150 ip_rts_ifmsg(ipif); 4151 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 4152 sctp_update_ipif(ipif, SCTP_IPIF_UP); 4153 } 4154 ipif->ipif_addr_ready = 1; 4155 ipif_refrele(ipif); 4156 } 4157 ire = ire_cache_lookup(src, ALL_ZONES, MBLK_GETLABEL(mp), ipst); 4158 if (ire != NULL) { 4159 ire->ire_defense_count = 0; 4160 ire_refrele(ire); 4161 } 4162 break; 4163 case AR_CN_FAILED: 4164 /* No external v6 resolver has a contract to use this */ 4165 if (isv6) 4166 break; 4167 ill_refhold(ill); 4168 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, B_FALSE); 4169 return; 4170 } 4171 freemsg(mp); 4172 } 4173 4174 /* 4175 * Create a mblk suitable for carrying the interface index and/or source link 4176 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 4177 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 4178 * application. 4179 */ 4180 mblk_t * 4181 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags, zoneid_t zoneid, 4182 ip_stack_t *ipst) 4183 { 4184 mblk_t *mp; 4185 ip_pktinfo_t *pinfo; 4186 ipha_t *ipha; 4187 struct ether_header *pether; 4188 4189 mp = allocb(sizeof (ip_pktinfo_t), BPRI_MED); 4190 if (mp == NULL) { 4191 ip1dbg(("ip_add_info: allocation failure.\n")); 4192 return (data_mp); 4193 } 4194 4195 ipha = (ipha_t *)data_mp->b_rptr; 4196 pinfo = (ip_pktinfo_t *)mp->b_rptr; 4197 bzero(pinfo, sizeof (ip_pktinfo_t)); 4198 pinfo->ip_pkt_flags = (uchar_t)flags; 4199 pinfo->ip_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 4200 4201 if (flags & (IPF_RECVIF | IPF_RECVADDR)) 4202 pinfo->ip_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 4203 if (flags & IPF_RECVADDR) { 4204 ipif_t *ipif; 4205 ire_t *ire; 4206 4207 /* 4208 * Only valid for V4 4209 */ 4210 ASSERT((ipha->ipha_version_and_hdr_length & 0xf0) == 4211 (IPV4_VERSION << 4)); 4212 4213 ipif = ipif_get_next_ipif(NULL, ill); 4214 if (ipif != NULL) { 4215 /* 4216 * Since a decision has already been made to deliver the 4217 * packet, there is no need to test for SECATTR and 4218 * ZONEONLY. 4219 * When a multicast packet is transmitted 4220 * a cache entry is created for the multicast address. 4221 * When delivering a copy of the packet or when new 4222 * packets are received we do not want to match on the 4223 * cached entry so explicitly match on 4224 * IRE_LOCAL and IRE_LOOPBACK 4225 */ 4226 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4227 IRE_LOCAL | IRE_LOOPBACK, 4228 ipif, zoneid, NULL, 4229 MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP, ipst); 4230 if (ire == NULL) { 4231 /* 4232 * packet must have come on a different 4233 * interface. 4234 * Since a decision has already been made to 4235 * deliver the packet, there is no need to test 4236 * for SECATTR and ZONEONLY. 4237 * Only match on local and broadcast ire's. 4238 * See detailed comment above. 4239 */ 4240 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4241 IRE_LOCAL | IRE_LOOPBACK, ipif, zoneid, 4242 NULL, MATCH_IRE_TYPE, ipst); 4243 } 4244 4245 if (ire == NULL) { 4246 /* 4247 * This is either a multicast packet or 4248 * the address has been removed since 4249 * the packet was received. 4250 * Return INADDR_ANY so that normal source 4251 * selection occurs for the response. 4252 */ 4253 4254 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4255 } else { 4256 pinfo->ip_pkt_match_addr.s_addr = 4257 ire->ire_src_addr; 4258 ire_refrele(ire); 4259 } 4260 ipif_refrele(ipif); 4261 } else { 4262 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4263 } 4264 } 4265 4266 pether = (struct ether_header *)((char *)ipha 4267 - sizeof (struct ether_header)); 4268 /* 4269 * Make sure the interface is an ethernet type, since this option 4270 * is currently supported only on this type of interface. Also make 4271 * sure we are pointing correctly above db_base. 4272 */ 4273 4274 if ((flags & IPF_RECVSLLA) && 4275 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 4276 (ill->ill_type == IFT_ETHER) && 4277 (ill->ill_net_type == IRE_IF_RESOLVER)) { 4278 4279 pinfo->ip_pkt_slla.sdl_type = IFT_ETHER; 4280 bcopy((uchar_t *)pether->ether_shost.ether_addr_octet, 4281 (uchar_t *)pinfo->ip_pkt_slla.sdl_data, ETHERADDRL); 4282 } else { 4283 /* 4284 * Clear the bit. Indicate to upper layer that IP is not 4285 * sending this ancillary info. 4286 */ 4287 pinfo->ip_pkt_flags = pinfo->ip_pkt_flags & ~IPF_RECVSLLA; 4288 } 4289 4290 mp->b_datap->db_type = M_CTL; 4291 mp->b_wptr += sizeof (ip_pktinfo_t); 4292 mp->b_cont = data_mp; 4293 4294 return (mp); 4295 } 4296 4297 /* 4298 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 4299 * part of the bind request. 4300 */ 4301 4302 boolean_t 4303 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 4304 { 4305 ipsec_in_t *ii; 4306 4307 ASSERT(policy_mp != NULL); 4308 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 4309 4310 ii = (ipsec_in_t *)policy_mp->b_rptr; 4311 ASSERT(ii->ipsec_in_type == IPSEC_IN); 4312 4313 connp->conn_policy = ii->ipsec_in_policy; 4314 ii->ipsec_in_policy = NULL; 4315 4316 if (ii->ipsec_in_action != NULL) { 4317 if (connp->conn_latch == NULL) { 4318 connp->conn_latch = iplatch_create(); 4319 if (connp->conn_latch == NULL) 4320 return (B_FALSE); 4321 } 4322 ipsec_latch_inbound(connp->conn_latch, ii); 4323 } 4324 return (B_TRUE); 4325 } 4326 4327 /* 4328 * Upper level protocols (ULP) pass through bind requests to IP for inspection 4329 * and to arrange for power-fanout assist. The ULP is identified by 4330 * adding a single byte at the end of the original bind message. 4331 * A ULP other than UDP or TCP that wishes to be recognized passes 4332 * down a bind with a zero length address. 4333 * 4334 * The binding works as follows: 4335 * - A zero byte address means just bind to the protocol. 4336 * - A four byte address is treated as a request to validate 4337 * that the address is a valid local address, appropriate for 4338 * an application to bind to. This does not affect any fanout 4339 * information in IP. 4340 * - A sizeof sin_t byte address is used to bind to only the local address 4341 * and port. 4342 * - A sizeof ipa_conn_t byte address contains complete fanout information 4343 * consisting of local and remote addresses and ports. In 4344 * this case, the addresses are both validated as appropriate 4345 * for this operation, and, if so, the information is retained 4346 * for use in the inbound fanout. 4347 * 4348 * The ULP (except in the zero-length bind) can append an 4349 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4350 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4351 * a copy of the source or destination IRE (source for local bind; 4352 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4353 * policy information contained should be copied on to the conn. 4354 * 4355 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4356 */ 4357 mblk_t * 4358 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4359 { 4360 ssize_t len; 4361 struct T_bind_req *tbr; 4362 sin_t *sin; 4363 ipa_conn_t *ac; 4364 uchar_t *ucp; 4365 mblk_t *mp1; 4366 boolean_t ire_requested; 4367 boolean_t ipsec_policy_set = B_FALSE; 4368 int error = 0; 4369 int protocol; 4370 ipa_conn_x_t *acx; 4371 4372 ASSERT(!connp->conn_af_isv6); 4373 connp->conn_pkt_isv6 = B_FALSE; 4374 4375 len = MBLKL(mp); 4376 if (len < (sizeof (*tbr) + 1)) { 4377 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4378 "ip_bind: bogus msg, len %ld", len); 4379 /* XXX: Need to return something better */ 4380 goto bad_addr; 4381 } 4382 /* Back up and extract the protocol identifier. */ 4383 mp->b_wptr--; 4384 protocol = *mp->b_wptr & 0xFF; 4385 tbr = (struct T_bind_req *)mp->b_rptr; 4386 /* Reset the message type in preparation for shipping it back. */ 4387 DB_TYPE(mp) = M_PCPROTO; 4388 4389 connp->conn_ulp = (uint8_t)protocol; 4390 4391 /* 4392 * Check for a zero length address. This is from a protocol that 4393 * wants to register to receive all packets of its type. 4394 */ 4395 if (tbr->ADDR_length == 0) { 4396 /* 4397 * These protocols are now intercepted in ip_bind_v6(). 4398 * Reject protocol-level binds here for now. 4399 * 4400 * For SCTP raw socket, ICMP sends down a bind with sin_t 4401 * so that the protocol type cannot be SCTP. 4402 */ 4403 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4404 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4405 goto bad_addr; 4406 } 4407 4408 /* 4409 * 4410 * The udp module never sends down a zero-length address, 4411 * and allowing this on a labeled system will break MLP 4412 * functionality. 4413 */ 4414 if (is_system_labeled() && protocol == IPPROTO_UDP) 4415 goto bad_addr; 4416 4417 if (connp->conn_mac_exempt) 4418 goto bad_addr; 4419 4420 /* No hash here really. The table is big enough. */ 4421 connp->conn_srcv6 = ipv6_all_zeros; 4422 4423 ipcl_proto_insert(connp, protocol); 4424 4425 tbr->PRIM_type = T_BIND_ACK; 4426 return (mp); 4427 } 4428 4429 /* Extract the address pointer from the message. */ 4430 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4431 tbr->ADDR_length); 4432 if (ucp == NULL) { 4433 ip1dbg(("ip_bind: no address\n")); 4434 goto bad_addr; 4435 } 4436 if (!OK_32PTR(ucp)) { 4437 ip1dbg(("ip_bind: unaligned address\n")); 4438 goto bad_addr; 4439 } 4440 /* 4441 * Check for trailing mps. 4442 */ 4443 4444 mp1 = mp->b_cont; 4445 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 4446 ipsec_policy_set = (mp1 != NULL && DB_TYPE(mp1) == IPSEC_POLICY_SET); 4447 4448 switch (tbr->ADDR_length) { 4449 default: 4450 ip1dbg(("ip_bind: bad address length %d\n", 4451 (int)tbr->ADDR_length)); 4452 goto bad_addr; 4453 4454 case IP_ADDR_LEN: 4455 /* Verification of local address only */ 4456 error = ip_bind_laddr(connp, mp, *(ipaddr_t *)ucp, 0, 4457 ire_requested, ipsec_policy_set, B_FALSE); 4458 break; 4459 4460 case sizeof (sin_t): 4461 sin = (sin_t *)ucp; 4462 error = ip_bind_laddr(connp, mp, sin->sin_addr.s_addr, 4463 sin->sin_port, ire_requested, ipsec_policy_set, B_TRUE); 4464 break; 4465 4466 case sizeof (ipa_conn_t): 4467 ac = (ipa_conn_t *)ucp; 4468 /* For raw socket, the local port is not set. */ 4469 if (ac->ac_lport == 0) 4470 ac->ac_lport = connp->conn_lport; 4471 /* Always verify destination reachability. */ 4472 error = ip_bind_connected(connp, mp, &ac->ac_laddr, 4473 ac->ac_lport, ac->ac_faddr, ac->ac_fport, ire_requested, 4474 ipsec_policy_set, B_TRUE, B_TRUE); 4475 break; 4476 4477 case sizeof (ipa_conn_x_t): 4478 acx = (ipa_conn_x_t *)ucp; 4479 /* 4480 * Whether or not to verify destination reachability depends 4481 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4482 */ 4483 error = ip_bind_connected(connp, mp, &acx->acx_conn.ac_laddr, 4484 acx->acx_conn.ac_lport, acx->acx_conn.ac_faddr, 4485 acx->acx_conn.ac_fport, ire_requested, ipsec_policy_set, 4486 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0); 4487 break; 4488 } 4489 if (error == EINPROGRESS) 4490 return (NULL); 4491 else if (error != 0) 4492 goto bad_addr; 4493 /* 4494 * Pass the IPsec headers size in ire_ipsec_overhead. 4495 * We can't do this in ip_bind_insert_ire because the policy 4496 * may not have been inherited at that point in time and hence 4497 * conn_out_enforce_policy may not be set. 4498 */ 4499 mp1 = mp->b_cont; 4500 if (ire_requested && connp->conn_out_enforce_policy && 4501 mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE) { 4502 ire_t *ire = (ire_t *)mp1->b_rptr; 4503 ASSERT(MBLKL(mp1) >= sizeof (ire_t)); 4504 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 4505 } 4506 4507 /* Send it home. */ 4508 mp->b_datap->db_type = M_PCPROTO; 4509 tbr->PRIM_type = T_BIND_ACK; 4510 return (mp); 4511 4512 bad_addr: 4513 /* 4514 * If error = -1 then we generate a TBADADDR - otherwise error is 4515 * a unix errno. 4516 */ 4517 if (error > 0) 4518 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4519 else 4520 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4521 return (mp); 4522 } 4523 4524 /* 4525 * Here address is verified to be a valid local address. 4526 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4527 * address is also considered a valid local address. 4528 * In the case of a broadcast/multicast address, however, the 4529 * upper protocol is expected to reset the src address 4530 * to 0 if it sees a IRE_BROADCAST type returned so that 4531 * no packets are emitted with broadcast/multicast address as 4532 * source address (that violates hosts requirements RFC1122) 4533 * The addresses valid for bind are: 4534 * (1) - INADDR_ANY (0) 4535 * (2) - IP address of an UP interface 4536 * (3) - IP address of a DOWN interface 4537 * (4) - valid local IP broadcast addresses. In this case 4538 * the conn will only receive packets destined to 4539 * the specified broadcast address. 4540 * (5) - a multicast address. In this case 4541 * the conn will only receive packets destined to 4542 * the specified multicast address. Note: the 4543 * application still has to issue an 4544 * IP_ADD_MEMBERSHIP socket option. 4545 * 4546 * On error, return -1 for TBADADDR otherwise pass the 4547 * errno with TSYSERR reply. 4548 * 4549 * In all the above cases, the bound address must be valid in the current zone. 4550 * When the address is loopback, multicast or broadcast, there might be many 4551 * matching IREs so bind has to look up based on the zone. 4552 * 4553 * Note: lport is in network byte order. 4554 */ 4555 int 4556 ip_bind_laddr(conn_t *connp, mblk_t *mp, ipaddr_t src_addr, uint16_t lport, 4557 boolean_t ire_requested, boolean_t ipsec_policy_set, 4558 boolean_t fanout_insert) 4559 { 4560 int error = 0; 4561 ire_t *src_ire; 4562 mblk_t *policy_mp; 4563 ipif_t *ipif; 4564 zoneid_t zoneid; 4565 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4566 4567 if (ipsec_policy_set) { 4568 policy_mp = mp->b_cont; 4569 } 4570 4571 /* 4572 * If it was previously connected, conn_fully_bound would have 4573 * been set. 4574 */ 4575 connp->conn_fully_bound = B_FALSE; 4576 4577 src_ire = NULL; 4578 ipif = NULL; 4579 4580 zoneid = IPCL_ZONEID(connp); 4581 4582 if (src_addr) { 4583 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4584 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 4585 /* 4586 * If an address other than 0.0.0.0 is requested, 4587 * we verify that it is a valid address for bind 4588 * Note: Following code is in if-else-if form for 4589 * readability compared to a condition check. 4590 */ 4591 /* LINTED - statement has no consequent */ 4592 if (IRE_IS_LOCAL(src_ire)) { 4593 /* 4594 * (2) Bind to address of local UP interface 4595 */ 4596 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4597 /* 4598 * (4) Bind to broadcast address 4599 * Note: permitted only from transports that 4600 * request IRE 4601 */ 4602 if (!ire_requested) 4603 error = EADDRNOTAVAIL; 4604 } else { 4605 /* 4606 * (3) Bind to address of local DOWN interface 4607 * (ipif_lookup_addr() looks up all interfaces 4608 * but we do not get here for UP interfaces 4609 * - case (2) above) 4610 * We put the protocol byte back into the mblk 4611 * since we may come back via ip_wput_nondata() 4612 * later with this mblk if ipif_lookup_addr chooses 4613 * to defer processing. 4614 */ 4615 *mp->b_wptr++ = (char)connp->conn_ulp; 4616 if ((ipif = ipif_lookup_addr(src_addr, NULL, zoneid, 4617 CONNP_TO_WQ(connp), mp, ip_wput_nondata, 4618 &error, ipst)) != NULL) { 4619 ipif_refrele(ipif); 4620 } else if (error == EINPROGRESS) { 4621 if (src_ire != NULL) 4622 ire_refrele(src_ire); 4623 return (EINPROGRESS); 4624 } else if (CLASSD(src_addr)) { 4625 error = 0; 4626 if (src_ire != NULL) 4627 ire_refrele(src_ire); 4628 /* 4629 * (5) bind to multicast address. 4630 * Fake out the IRE returned to upper 4631 * layer to be a broadcast IRE. 4632 */ 4633 src_ire = ire_ctable_lookup( 4634 INADDR_BROADCAST, INADDR_ANY, 4635 IRE_BROADCAST, NULL, zoneid, NULL, 4636 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY), 4637 ipst); 4638 if (src_ire == NULL || !ire_requested) 4639 error = EADDRNOTAVAIL; 4640 } else { 4641 /* 4642 * Not a valid address for bind 4643 */ 4644 error = EADDRNOTAVAIL; 4645 } 4646 /* 4647 * Just to keep it consistent with the processing in 4648 * ip_bind_v4() 4649 */ 4650 mp->b_wptr--; 4651 } 4652 if (error) { 4653 /* Red Alert! Attempting to be a bogon! */ 4654 ip1dbg(("ip_bind: bad src address 0x%x\n", 4655 ntohl(src_addr))); 4656 goto bad_addr; 4657 } 4658 } 4659 4660 /* 4661 * Allow setting new policies. For example, disconnects come 4662 * down as ipa_t bind. As we would have set conn_policy_cached 4663 * to B_TRUE before, we should set it to B_FALSE, so that policy 4664 * can change after the disconnect. 4665 */ 4666 connp->conn_policy_cached = B_FALSE; 4667 4668 /* 4669 * If not fanout_insert this was just an address verification 4670 */ 4671 if (fanout_insert) { 4672 /* 4673 * The addresses have been verified. Time to insert in 4674 * the correct fanout list. 4675 */ 4676 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4677 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4678 connp->conn_lport = lport; 4679 connp->conn_fport = 0; 4680 /* 4681 * Do we need to add a check to reject Multicast packets 4682 */ 4683 error = ipcl_bind_insert(connp, *mp->b_wptr, src_addr, lport); 4684 } 4685 4686 if (error == 0) { 4687 if (ire_requested) { 4688 if (!ip_bind_insert_ire(mp, src_ire, NULL, ipst)) { 4689 error = -1; 4690 /* Falls through to bad_addr */ 4691 } 4692 } else if (ipsec_policy_set) { 4693 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4694 error = -1; 4695 /* Falls through to bad_addr */ 4696 } 4697 } 4698 } 4699 bad_addr: 4700 if (error != 0) { 4701 if (connp->conn_anon_port) { 4702 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4703 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4704 B_FALSE); 4705 } 4706 connp->conn_mlp_type = mlptSingle; 4707 } 4708 if (src_ire != NULL) 4709 IRE_REFRELE(src_ire); 4710 if (ipsec_policy_set) { 4711 ASSERT(policy_mp == mp->b_cont); 4712 ASSERT(policy_mp != NULL); 4713 freeb(policy_mp); 4714 /* 4715 * As of now assume that nothing else accompanies 4716 * IPSEC_POLICY_SET. 4717 */ 4718 mp->b_cont = NULL; 4719 } 4720 return (error); 4721 } 4722 4723 /* 4724 * Verify that both the source and destination addresses 4725 * are valid. If verify_dst is false, then the destination address may be 4726 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4727 * destination reachability, while tunnels do not. 4728 * Note that we allow connect to broadcast and multicast 4729 * addresses when ire_requested is set. Thus the ULP 4730 * has to check for IRE_BROADCAST and multicast. 4731 * 4732 * Returns zero if ok. 4733 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4734 * (for use with TSYSERR reply). 4735 * 4736 * Note: lport and fport are in network byte order. 4737 */ 4738 int 4739 ip_bind_connected(conn_t *connp, mblk_t *mp, ipaddr_t *src_addrp, 4740 uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4741 boolean_t ire_requested, boolean_t ipsec_policy_set, 4742 boolean_t fanout_insert, boolean_t verify_dst) 4743 { 4744 ire_t *src_ire; 4745 ire_t *dst_ire; 4746 int error = 0; 4747 int protocol; 4748 mblk_t *policy_mp; 4749 ire_t *sire = NULL; 4750 ire_t *md_dst_ire = NULL; 4751 ire_t *lso_dst_ire = NULL; 4752 ill_t *ill = NULL; 4753 zoneid_t zoneid; 4754 ipaddr_t src_addr = *src_addrp; 4755 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4756 4757 src_ire = dst_ire = NULL; 4758 protocol = *mp->b_wptr & 0xFF; 4759 4760 /* 4761 * If we never got a disconnect before, clear it now. 4762 */ 4763 connp->conn_fully_bound = B_FALSE; 4764 4765 if (ipsec_policy_set) { 4766 policy_mp = mp->b_cont; 4767 } 4768 4769 zoneid = IPCL_ZONEID(connp); 4770 4771 if (CLASSD(dst_addr)) { 4772 /* Pick up an IRE_BROADCAST */ 4773 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4774 NULL, zoneid, MBLK_GETLABEL(mp), 4775 (MATCH_IRE_RECURSIVE | 4776 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4777 MATCH_IRE_SECATTR), ipst); 4778 } else { 4779 /* 4780 * If conn_dontroute is set or if conn_nexthop_set is set, 4781 * and onlink ipif is not found set ENETUNREACH error. 4782 */ 4783 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4784 ipif_t *ipif; 4785 4786 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4787 dst_addr : connp->conn_nexthop_v4, zoneid, ipst); 4788 if (ipif == NULL) { 4789 error = ENETUNREACH; 4790 goto bad_addr; 4791 } 4792 ipif_refrele(ipif); 4793 } 4794 4795 if (connp->conn_nexthop_set) { 4796 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4797 0, 0, NULL, NULL, zoneid, MBLK_GETLABEL(mp), 4798 MATCH_IRE_SECATTR, ipst); 4799 } else { 4800 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4801 &sire, zoneid, MBLK_GETLABEL(mp), 4802 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4803 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4804 MATCH_IRE_SECATTR), ipst); 4805 } 4806 } 4807 /* 4808 * dst_ire can't be a broadcast when not ire_requested. 4809 * We also prevent ire's with src address INADDR_ANY to 4810 * be used, which are created temporarily for 4811 * sending out packets from endpoints that have 4812 * conn_unspec_src set. If verify_dst is true, the destination must be 4813 * reachable. If verify_dst is false, the destination needn't be 4814 * reachable. 4815 * 4816 * If we match on a reject or black hole, then we've got a 4817 * local failure. May as well fail out the connect() attempt, 4818 * since it's never going to succeed. 4819 */ 4820 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4821 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4822 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4823 /* 4824 * If we're verifying destination reachability, we always want 4825 * to complain here. 4826 * 4827 * If we're not verifying destination reachability but the 4828 * destination has a route, we still want to fail on the 4829 * temporary address and broadcast address tests. 4830 */ 4831 if (verify_dst || (dst_ire != NULL)) { 4832 if (ip_debug > 2) { 4833 pr_addr_dbg("ip_bind_connected: bad connected " 4834 "dst %s\n", AF_INET, &dst_addr); 4835 } 4836 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4837 error = ENETUNREACH; 4838 else 4839 error = EHOSTUNREACH; 4840 goto bad_addr; 4841 } 4842 } 4843 4844 /* 4845 * We now know that routing will allow us to reach the destination. 4846 * Check whether Trusted Solaris policy allows communication with this 4847 * host, and pretend that the destination is unreachable if not. 4848 * 4849 * This is never a problem for TCP, since that transport is known to 4850 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4851 * handling. If the remote is unreachable, it will be detected at that 4852 * point, so there's no reason to check it here. 4853 * 4854 * Note that for sendto (and other datagram-oriented friends), this 4855 * check is done as part of the data path label computation instead. 4856 * The check here is just to make non-TCP connect() report the right 4857 * error. 4858 */ 4859 if (dst_ire != NULL && is_system_labeled() && 4860 !IPCL_IS_TCP(connp) && 4861 tsol_compute_label(DB_CREDDEF(mp, connp->conn_cred), dst_addr, NULL, 4862 connp->conn_mac_exempt, ipst) != 0) { 4863 error = EHOSTUNREACH; 4864 if (ip_debug > 2) { 4865 pr_addr_dbg("ip_bind_connected: no label for dst %s\n", 4866 AF_INET, &dst_addr); 4867 } 4868 goto bad_addr; 4869 } 4870 4871 /* 4872 * If the app does a connect(), it means that it will most likely 4873 * send more than 1 packet to the destination. It makes sense 4874 * to clear the temporary flag. 4875 */ 4876 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4877 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4878 irb_t *irb = dst_ire->ire_bucket; 4879 4880 rw_enter(&irb->irb_lock, RW_WRITER); 4881 /* 4882 * We need to recheck for IRE_MARK_TEMPORARY after acquiring 4883 * the lock to guarantee irb_tmp_ire_cnt. 4884 */ 4885 if (dst_ire->ire_marks & IRE_MARK_TEMPORARY) { 4886 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4887 irb->irb_tmp_ire_cnt--; 4888 } 4889 rw_exit(&irb->irb_lock); 4890 } 4891 4892 /* 4893 * See if we should notify ULP about LSO/MDT; we do this whether or not 4894 * ire_requested is TRUE, in order to handle active connects; LSO/MDT 4895 * eligibility tests for passive connects are handled separately 4896 * through tcp_adapt_ire(). We do this before the source address 4897 * selection, because dst_ire may change after a call to 4898 * ipif_select_source(). This is a best-effort check, as the 4899 * packet for this connection may not actually go through 4900 * dst_ire->ire_stq, and the exact IRE can only be known after 4901 * calling ip_newroute(). This is why we further check on the 4902 * IRE during LSO/Multidata packet transmission in 4903 * tcp_lsosend()/tcp_multisend(). 4904 */ 4905 if (!ipsec_policy_set && dst_ire != NULL && 4906 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4907 (ill = ire_to_ill(dst_ire), ill != NULL)) { 4908 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 4909 lso_dst_ire = dst_ire; 4910 IRE_REFHOLD(lso_dst_ire); 4911 } else if (ipst->ips_ip_multidata_outbound && 4912 ILL_MDT_CAPABLE(ill)) { 4913 md_dst_ire = dst_ire; 4914 IRE_REFHOLD(md_dst_ire); 4915 } 4916 } 4917 4918 if (dst_ire != NULL && 4919 dst_ire->ire_type == IRE_LOCAL && 4920 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4921 /* 4922 * If the IRE belongs to a different zone, look for a matching 4923 * route in the forwarding table and use the source address from 4924 * that route. 4925 */ 4926 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4927 zoneid, 0, NULL, 4928 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4929 MATCH_IRE_RJ_BHOLE, ipst); 4930 if (src_ire == NULL) { 4931 error = EHOSTUNREACH; 4932 goto bad_addr; 4933 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4934 if (!(src_ire->ire_type & IRE_HOST)) 4935 error = ENETUNREACH; 4936 else 4937 error = EHOSTUNREACH; 4938 goto bad_addr; 4939 } 4940 if (src_addr == INADDR_ANY) 4941 src_addr = src_ire->ire_src_addr; 4942 ire_refrele(src_ire); 4943 src_ire = NULL; 4944 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4945 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4946 src_addr = sire->ire_src_addr; 4947 ire_refrele(dst_ire); 4948 dst_ire = sire; 4949 sire = NULL; 4950 } else { 4951 /* 4952 * Pick a source address so that a proper inbound 4953 * load spreading would happen. 4954 */ 4955 ill_t *dst_ill = dst_ire->ire_ipif->ipif_ill; 4956 ipif_t *src_ipif = NULL; 4957 ire_t *ipif_ire; 4958 4959 /* 4960 * Supply a local source address such that inbound 4961 * load spreading happens. 4962 * 4963 * Determine the best source address on this ill for 4964 * the destination. 4965 * 4966 * 1) For broadcast, we should return a broadcast ire 4967 * found above so that upper layers know that the 4968 * destination address is a broadcast address. 4969 * 4970 * 2) If this is part of a group, select a better 4971 * source address so that better inbound load 4972 * balancing happens. Do the same if the ipif 4973 * is DEPRECATED. 4974 * 4975 * 3) If the outgoing interface is part of a usesrc 4976 * group, then try selecting a source address from 4977 * the usesrc ILL. 4978 */ 4979 if ((dst_ire->ire_zoneid != zoneid && 4980 dst_ire->ire_zoneid != ALL_ZONES) || 4981 (!(dst_ire->ire_type & IRE_BROADCAST) && 4982 ((dst_ill->ill_group != NULL) || 4983 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 4984 (dst_ill->ill_usesrc_ifindex != 0)))) { 4985 /* 4986 * If the destination is reachable via a 4987 * given gateway, the selected source address 4988 * should be in the same subnet as the gateway. 4989 * Otherwise, the destination is not reachable. 4990 * 4991 * If there are no interfaces on the same subnet 4992 * as the destination, ipif_select_source gives 4993 * first non-deprecated interface which might be 4994 * on a different subnet than the gateway. 4995 * This is not desirable. Hence pass the dst_ire 4996 * source address to ipif_select_source. 4997 * It is sure that the destination is reachable 4998 * with the dst_ire source address subnet. 4999 * So passing dst_ire source address to 5000 * ipif_select_source will make sure that the 5001 * selected source will be on the same subnet 5002 * as dst_ire source address. 5003 */ 5004 ipaddr_t saddr = 5005 dst_ire->ire_ipif->ipif_src_addr; 5006 src_ipif = ipif_select_source(dst_ill, 5007 saddr, zoneid); 5008 if (src_ipif != NULL) { 5009 if (IS_VNI(src_ipif->ipif_ill)) { 5010 /* 5011 * For VNI there is no 5012 * interface route 5013 */ 5014 src_addr = 5015 src_ipif->ipif_src_addr; 5016 } else { 5017 ipif_ire = 5018 ipif_to_ire(src_ipif); 5019 if (ipif_ire != NULL) { 5020 IRE_REFRELE(dst_ire); 5021 dst_ire = ipif_ire; 5022 } 5023 src_addr = 5024 dst_ire->ire_src_addr; 5025 } 5026 ipif_refrele(src_ipif); 5027 } else { 5028 src_addr = dst_ire->ire_src_addr; 5029 } 5030 } else { 5031 src_addr = dst_ire->ire_src_addr; 5032 } 5033 } 5034 } 5035 5036 /* 5037 * We do ire_route_lookup() here (and not 5038 * interface lookup as we assert that 5039 * src_addr should only come from an 5040 * UP interface for hard binding. 5041 */ 5042 ASSERT(src_ire == NULL); 5043 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 5044 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 5045 /* src_ire must be a local|loopback */ 5046 if (!IRE_IS_LOCAL(src_ire)) { 5047 if (ip_debug > 2) { 5048 pr_addr_dbg("ip_bind_connected: bad connected " 5049 "src %s\n", AF_INET, &src_addr); 5050 } 5051 error = EADDRNOTAVAIL; 5052 goto bad_addr; 5053 } 5054 5055 /* 5056 * If the source address is a loopback address, the 5057 * destination had best be local or multicast. 5058 * The transports that can't handle multicast will reject 5059 * those addresses. 5060 */ 5061 if (src_ire->ire_type == IRE_LOOPBACK && 5062 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 5063 ip1dbg(("ip_bind_connected: bad connected loopback\n")); 5064 error = -1; 5065 goto bad_addr; 5066 } 5067 5068 /* 5069 * Allow setting new policies. For example, disconnects come 5070 * down as ipa_t bind. As we would have set conn_policy_cached 5071 * to B_TRUE before, we should set it to B_FALSE, so that policy 5072 * can change after the disconnect. 5073 */ 5074 connp->conn_policy_cached = B_FALSE; 5075 5076 /* 5077 * Set the conn addresses/ports immediately, so the IPsec policy calls 5078 * can handle their passed-in conn's. 5079 */ 5080 5081 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 5082 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 5083 connp->conn_lport = lport; 5084 connp->conn_fport = fport; 5085 *src_addrp = src_addr; 5086 5087 ASSERT(!(ipsec_policy_set && ire_requested)); 5088 if (ire_requested) { 5089 iulp_t *ulp_info = NULL; 5090 5091 /* 5092 * Note that sire will not be NULL if this is an off-link 5093 * connection and there is not cache for that dest yet. 5094 * 5095 * XXX Because of an existing bug, if there are multiple 5096 * default routes, the IRE returned now may not be the actual 5097 * default route used (default routes are chosen in a 5098 * round robin fashion). So if the metrics for different 5099 * default routes are different, we may return the wrong 5100 * metrics. This will not be a problem if the existing 5101 * bug is fixed. 5102 */ 5103 if (sire != NULL) { 5104 ulp_info = &(sire->ire_uinfo); 5105 } 5106 if (!ip_bind_insert_ire(mp, dst_ire, ulp_info, ipst)) { 5107 error = -1; 5108 goto bad_addr; 5109 } 5110 } else if (ipsec_policy_set) { 5111 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 5112 error = -1; 5113 goto bad_addr; 5114 } 5115 } 5116 5117 /* 5118 * Cache IPsec policy in this conn. If we have per-socket policy, 5119 * we'll cache that. If we don't, we'll inherit global policy. 5120 * 5121 * We can't insert until the conn reflects the policy. Note that 5122 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 5123 * connections where we don't have a policy. This is to prevent 5124 * global policy lookups in the inbound path. 5125 * 5126 * If we insert before we set conn_policy_cached, 5127 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 5128 * because global policy cound be non-empty. We normally call 5129 * ipsec_check_policy() for conn_policy_cached connections only if 5130 * ipc_in_enforce_policy is set. But in this case, 5131 * conn_policy_cached can get set anytime since we made the 5132 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 5133 * called, which will make the above assumption false. Thus, we 5134 * need to insert after we set conn_policy_cached. 5135 */ 5136 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 5137 goto bad_addr; 5138 5139 if (fanout_insert) { 5140 /* 5141 * The addresses have been verified. Time to insert in 5142 * the correct fanout list. 5143 */ 5144 error = ipcl_conn_insert(connp, protocol, src_addr, 5145 dst_addr, connp->conn_ports); 5146 } 5147 5148 if (error == 0) { 5149 connp->conn_fully_bound = B_TRUE; 5150 /* 5151 * Our initial checks for LSO/MDT have passed; the IRE is not 5152 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 5153 * be supporting LSO/MDT. Pass the IRE, IPC and ILL into 5154 * ip_xxinfo_return(), which performs further checks 5155 * against them and upon success, returns the LSO/MDT info 5156 * mblk which we will attach to the bind acknowledgment. 5157 */ 5158 if (lso_dst_ire != NULL) { 5159 mblk_t *lsoinfo_mp; 5160 5161 ASSERT(ill->ill_lso_capab != NULL); 5162 if ((lsoinfo_mp = ip_lsoinfo_return(lso_dst_ire, connp, 5163 ill->ill_name, ill->ill_lso_capab)) != NULL) 5164 linkb(mp, lsoinfo_mp); 5165 } else if (md_dst_ire != NULL) { 5166 mblk_t *mdinfo_mp; 5167 5168 ASSERT(ill->ill_mdt_capab != NULL); 5169 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 5170 ill->ill_name, ill->ill_mdt_capab)) != NULL) 5171 linkb(mp, mdinfo_mp); 5172 } 5173 } 5174 bad_addr: 5175 if (ipsec_policy_set) { 5176 ASSERT(policy_mp == mp->b_cont); 5177 ASSERT(policy_mp != NULL); 5178 freeb(policy_mp); 5179 /* 5180 * As of now assume that nothing else accompanies 5181 * IPSEC_POLICY_SET. 5182 */ 5183 mp->b_cont = NULL; 5184 } 5185 if (src_ire != NULL) 5186 IRE_REFRELE(src_ire); 5187 if (dst_ire != NULL) 5188 IRE_REFRELE(dst_ire); 5189 if (sire != NULL) 5190 IRE_REFRELE(sire); 5191 if (md_dst_ire != NULL) 5192 IRE_REFRELE(md_dst_ire); 5193 if (lso_dst_ire != NULL) 5194 IRE_REFRELE(lso_dst_ire); 5195 return (error); 5196 } 5197 5198 /* 5199 * Insert the ire in b_cont. Returns false if it fails (due to lack of space). 5200 * Prefers dst_ire over src_ire. 5201 */ 5202 static boolean_t 5203 ip_bind_insert_ire(mblk_t *mp, ire_t *ire, iulp_t *ulp_info, ip_stack_t *ipst) 5204 { 5205 mblk_t *mp1; 5206 ire_t *ret_ire = NULL; 5207 5208 mp1 = mp->b_cont; 5209 ASSERT(mp1 != NULL); 5210 5211 if (ire != NULL) { 5212 /* 5213 * mp1 initialized above to IRE_DB_REQ_TYPE 5214 * appended mblk. Its <upper protocol>'s 5215 * job to make sure there is room. 5216 */ 5217 if ((mp1->b_datap->db_lim - mp1->b_rptr) < sizeof (ire_t)) 5218 return (0); 5219 5220 mp1->b_datap->db_type = IRE_DB_TYPE; 5221 mp1->b_wptr = mp1->b_rptr + sizeof (ire_t); 5222 bcopy(ire, mp1->b_rptr, sizeof (ire_t)); 5223 ret_ire = (ire_t *)mp1->b_rptr; 5224 /* 5225 * Pass the latest setting of the ip_path_mtu_discovery and 5226 * copy the ulp info if any. 5227 */ 5228 ret_ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? 5229 IPH_DF : 0; 5230 if (ulp_info != NULL) { 5231 bcopy(ulp_info, &(ret_ire->ire_uinfo), 5232 sizeof (iulp_t)); 5233 } 5234 ret_ire->ire_mp = mp1; 5235 } else { 5236 /* 5237 * No IRE was found. Remove IRE mblk. 5238 */ 5239 mp->b_cont = mp1->b_cont; 5240 freeb(mp1); 5241 } 5242 5243 return (1); 5244 } 5245 5246 /* 5247 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 5248 * the final piece where we don't. Return a pointer to the first mblk in the 5249 * result, and update the pointer to the next mblk to chew on. If anything 5250 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 5251 * NULL pointer. 5252 */ 5253 mblk_t * 5254 ip_carve_mp(mblk_t **mpp, ssize_t len) 5255 { 5256 mblk_t *mp0; 5257 mblk_t *mp1; 5258 mblk_t *mp2; 5259 5260 if (!len || !mpp || !(mp0 = *mpp)) 5261 return (NULL); 5262 /* If we aren't going to consume the first mblk, we need a dup. */ 5263 if (mp0->b_wptr - mp0->b_rptr > len) { 5264 mp1 = dupb(mp0); 5265 if (mp1) { 5266 /* Partition the data between the two mblks. */ 5267 mp1->b_wptr = mp1->b_rptr + len; 5268 mp0->b_rptr = mp1->b_wptr; 5269 /* 5270 * after adjustments if mblk not consumed is now 5271 * unaligned, try to align it. If this fails free 5272 * all messages and let upper layer recover. 5273 */ 5274 if (!OK_32PTR(mp0->b_rptr)) { 5275 if (!pullupmsg(mp0, -1)) { 5276 freemsg(mp0); 5277 freemsg(mp1); 5278 *mpp = NULL; 5279 return (NULL); 5280 } 5281 } 5282 } 5283 return (mp1); 5284 } 5285 /* Eat through as many mblks as we need to get len bytes. */ 5286 len -= mp0->b_wptr - mp0->b_rptr; 5287 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 5288 if (mp2->b_wptr - mp2->b_rptr > len) { 5289 /* 5290 * We won't consume the entire last mblk. Like 5291 * above, dup and partition it. 5292 */ 5293 mp1->b_cont = dupb(mp2); 5294 mp1 = mp1->b_cont; 5295 if (!mp1) { 5296 /* 5297 * Trouble. Rather than go to a lot of 5298 * trouble to clean up, we free the messages. 5299 * This won't be any worse than losing it on 5300 * the wire. 5301 */ 5302 freemsg(mp0); 5303 freemsg(mp2); 5304 *mpp = NULL; 5305 return (NULL); 5306 } 5307 mp1->b_wptr = mp1->b_rptr + len; 5308 mp2->b_rptr = mp1->b_wptr; 5309 /* 5310 * after adjustments if mblk not consumed is now 5311 * unaligned, try to align it. If this fails free 5312 * all messages and let upper layer recover. 5313 */ 5314 if (!OK_32PTR(mp2->b_rptr)) { 5315 if (!pullupmsg(mp2, -1)) { 5316 freemsg(mp0); 5317 freemsg(mp2); 5318 *mpp = NULL; 5319 return (NULL); 5320 } 5321 } 5322 *mpp = mp2; 5323 return (mp0); 5324 } 5325 /* Decrement len by the amount we just got. */ 5326 len -= mp2->b_wptr - mp2->b_rptr; 5327 } 5328 /* 5329 * len should be reduced to zero now. If not our caller has 5330 * screwed up. 5331 */ 5332 if (len) { 5333 /* Shouldn't happen! */ 5334 freemsg(mp0); 5335 *mpp = NULL; 5336 return (NULL); 5337 } 5338 /* 5339 * We consumed up to exactly the end of an mblk. Detach the part 5340 * we are returning from the rest of the chain. 5341 */ 5342 mp1->b_cont = NULL; 5343 *mpp = mp2; 5344 return (mp0); 5345 } 5346 5347 /* The ill stream is being unplumbed. Called from ip_close */ 5348 int 5349 ip_modclose(ill_t *ill) 5350 { 5351 boolean_t success; 5352 ipsq_t *ipsq; 5353 ipif_t *ipif; 5354 queue_t *q = ill->ill_rq; 5355 ip_stack_t *ipst = ill->ill_ipst; 5356 clock_t timeout; 5357 5358 /* 5359 * Wait for the ACKs of all deferred control messages to be processed. 5360 * In particular, we wait for a potential capability reset initiated 5361 * in ip_sioctl_plink() to complete before proceeding. 5362 * 5363 * Note: we wait for at most ip_modclose_ackwait_ms (by default 3000 ms) 5364 * in case the driver never replies. 5365 */ 5366 timeout = lbolt + MSEC_TO_TICK(ip_modclose_ackwait_ms); 5367 mutex_enter(&ill->ill_lock); 5368 while (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 5369 if (cv_timedwait(&ill->ill_cv, &ill->ill_lock, timeout) < 0) { 5370 /* Timeout */ 5371 break; 5372 } 5373 } 5374 mutex_exit(&ill->ill_lock); 5375 5376 /* 5377 * Forcibly enter the ipsq after some delay. This is to take 5378 * care of the case when some ioctl does not complete because 5379 * we sent a control message to the driver and it did not 5380 * send us a reply. We want to be able to at least unplumb 5381 * and replumb rather than force the user to reboot the system. 5382 */ 5383 success = ipsq_enter(ill, B_FALSE); 5384 5385 /* 5386 * Open/close/push/pop is guaranteed to be single threaded 5387 * per stream by STREAMS. FS guarantees that all references 5388 * from top are gone before close is called. So there can't 5389 * be another close thread that has set CONDEMNED on this ill. 5390 * and cause ipsq_enter to return failure. 5391 */ 5392 ASSERT(success); 5393 ipsq = ill->ill_phyint->phyint_ipsq; 5394 5395 /* 5396 * Mark it condemned. No new reference will be made to this ill. 5397 * Lookup functions will return an error. Threads that try to 5398 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5399 * that the refcnt will drop down to zero. 5400 */ 5401 mutex_enter(&ill->ill_lock); 5402 ill->ill_state_flags |= ILL_CONDEMNED; 5403 for (ipif = ill->ill_ipif; ipif != NULL; 5404 ipif = ipif->ipif_next) { 5405 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5406 } 5407 /* 5408 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5409 * returns error if ILL_CONDEMNED is set 5410 */ 5411 cv_broadcast(&ill->ill_cv); 5412 mutex_exit(&ill->ill_lock); 5413 5414 /* 5415 * Send all the deferred DLPI messages downstream which came in 5416 * during the small window right before ipsq_enter(). We do this 5417 * without waiting for the ACKs because all the ACKs for M_PROTO 5418 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 5419 */ 5420 ill_dlpi_send_deferred(ill); 5421 5422 /* 5423 * Shut down fragmentation reassembly. 5424 * ill_frag_timer won't start a timer again. 5425 * Now cancel any existing timer 5426 */ 5427 (void) untimeout(ill->ill_frag_timer_id); 5428 (void) ill_frag_timeout(ill, 0); 5429 5430 /* 5431 * If MOVE was in progress, clear the 5432 * move_in_progress fields also. 5433 */ 5434 if (ill->ill_move_in_progress) { 5435 ILL_CLEAR_MOVE(ill); 5436 } 5437 5438 /* 5439 * Call ill_delete to bring down the ipifs, ilms and ill on 5440 * this ill. Then wait for the refcnts to drop to zero. 5441 * ill_is_quiescent checks whether the ill is really quiescent. 5442 * Then make sure that threads that are waiting to enter the 5443 * ipsq have seen the error returned by ipsq_enter and have 5444 * gone away. Then we call ill_delete_tail which does the 5445 * DL_UNBIND_REQ with the driver and then qprocsoff. 5446 */ 5447 ill_delete(ill); 5448 mutex_enter(&ill->ill_lock); 5449 while (!ill_is_quiescent(ill)) 5450 cv_wait(&ill->ill_cv, &ill->ill_lock); 5451 while (ill->ill_waiters) 5452 cv_wait(&ill->ill_cv, &ill->ill_lock); 5453 5454 mutex_exit(&ill->ill_lock); 5455 5456 /* 5457 * ill_delete_tail drops reference on ill_ipst, but we need to keep 5458 * it held until the end of the function since the cleanup 5459 * below needs to be able to use the ip_stack_t. 5460 */ 5461 netstack_hold(ipst->ips_netstack); 5462 5463 /* qprocsoff is called in ill_delete_tail */ 5464 ill_delete_tail(ill); 5465 ASSERT(ill->ill_ipst == NULL); 5466 5467 /* 5468 * Walk through all upper (conn) streams and qenable 5469 * those that have queued data. 5470 * close synchronization needs this to 5471 * be done to ensure that all upper layers blocked 5472 * due to flow control to the closing device 5473 * get unblocked. 5474 */ 5475 ip1dbg(("ip_wsrv: walking\n")); 5476 conn_walk_drain(ipst); 5477 5478 mutex_enter(&ipst->ips_ip_mi_lock); 5479 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 5480 mutex_exit(&ipst->ips_ip_mi_lock); 5481 5482 /* 5483 * credp could be null if the open didn't succeed and ip_modopen 5484 * itself calls ip_close. 5485 */ 5486 if (ill->ill_credp != NULL) 5487 crfree(ill->ill_credp); 5488 5489 mutex_enter(&ill->ill_lock); 5490 ill_nic_info_dispatch(ill); 5491 mutex_exit(&ill->ill_lock); 5492 5493 /* 5494 * Now we are done with the module close pieces that 5495 * need the netstack_t. 5496 */ 5497 netstack_rele(ipst->ips_netstack); 5498 5499 mi_close_free((IDP)ill); 5500 q->q_ptr = WR(q)->q_ptr = NULL; 5501 5502 ipsq_exit(ipsq, B_TRUE, B_TRUE); 5503 5504 return (0); 5505 } 5506 5507 /* 5508 * This is called as part of close() for IP, UDP, ICMP, and RTS 5509 * in order to quiesce the conn. 5510 */ 5511 void 5512 ip_quiesce_conn(conn_t *connp) 5513 { 5514 boolean_t drain_cleanup_reqd = B_FALSE; 5515 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5516 boolean_t ilg_cleanup_reqd = B_FALSE; 5517 ip_stack_t *ipst; 5518 5519 ASSERT(!IPCL_IS_TCP(connp)); 5520 ipst = connp->conn_netstack->netstack_ip; 5521 5522 /* 5523 * Mark the conn as closing, and this conn must not be 5524 * inserted in future into any list. Eg. conn_drain_insert(), 5525 * won't insert this conn into the conn_drain_list. 5526 * Similarly ill_pending_mp_add() will not add any mp to 5527 * the pending mp list, after this conn has started closing. 5528 * 5529 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5530 * cannot get set henceforth. 5531 */ 5532 mutex_enter(&connp->conn_lock); 5533 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5534 connp->conn_state_flags |= CONN_CLOSING; 5535 if (connp->conn_idl != NULL) 5536 drain_cleanup_reqd = B_TRUE; 5537 if (connp->conn_oper_pending_ill != NULL) 5538 conn_ioctl_cleanup_reqd = B_TRUE; 5539 if (connp->conn_dhcpinit_ill != NULL) { 5540 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0); 5541 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit); 5542 connp->conn_dhcpinit_ill = NULL; 5543 } 5544 if (connp->conn_ilg_inuse != 0) 5545 ilg_cleanup_reqd = B_TRUE; 5546 mutex_exit(&connp->conn_lock); 5547 5548 if (conn_ioctl_cleanup_reqd) 5549 conn_ioctl_cleanup(connp); 5550 5551 if (is_system_labeled() && connp->conn_anon_port) { 5552 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5553 connp->conn_mlp_type, connp->conn_ulp, 5554 ntohs(connp->conn_lport), B_FALSE); 5555 connp->conn_anon_port = 0; 5556 } 5557 connp->conn_mlp_type = mlptSingle; 5558 5559 /* 5560 * Remove this conn from any fanout list it is on. 5561 * and then wait for any threads currently operating 5562 * on this endpoint to finish 5563 */ 5564 ipcl_hash_remove(connp); 5565 5566 /* 5567 * Remove this conn from the drain list, and do 5568 * any other cleanup that may be required. 5569 * (Only non-tcp streams may have a non-null conn_idl. 5570 * TCP streams are never flow controlled, and 5571 * conn_idl will be null) 5572 */ 5573 if (drain_cleanup_reqd) 5574 conn_drain_tail(connp, B_TRUE); 5575 5576 if (connp == ipst->ips_ip_g_mrouter) 5577 (void) ip_mrouter_done(NULL, ipst); 5578 5579 if (ilg_cleanup_reqd) 5580 ilg_delete_all(connp); 5581 5582 conn_delete_ire(connp, NULL); 5583 5584 /* 5585 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5586 * callers from write side can't be there now because close 5587 * is in progress. The only other caller is ipcl_walk 5588 * which checks for the condemned flag. 5589 */ 5590 mutex_enter(&connp->conn_lock); 5591 connp->conn_state_flags |= CONN_CONDEMNED; 5592 while (connp->conn_ref != 1) 5593 cv_wait(&connp->conn_cv, &connp->conn_lock); 5594 connp->conn_state_flags |= CONN_QUIESCED; 5595 mutex_exit(&connp->conn_lock); 5596 } 5597 5598 /* ARGSUSED */ 5599 int 5600 ip_close(queue_t *q, int flags) 5601 { 5602 conn_t *connp; 5603 5604 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5605 5606 /* 5607 * Call the appropriate delete routine depending on whether this is 5608 * a module or device. 5609 */ 5610 if (WR(q)->q_next != NULL) { 5611 /* This is a module close */ 5612 return (ip_modclose((ill_t *)q->q_ptr)); 5613 } 5614 5615 connp = q->q_ptr; 5616 ip_quiesce_conn(connp); 5617 5618 qprocsoff(q); 5619 5620 /* 5621 * Now we are truly single threaded on this stream, and can 5622 * delete the things hanging off the connp, and finally the connp. 5623 * We removed this connp from the fanout list, it cannot be 5624 * accessed thru the fanouts, and we already waited for the 5625 * conn_ref to drop to 0. We are already in close, so 5626 * there cannot be any other thread from the top. qprocsoff 5627 * has completed, and service has completed or won't run in 5628 * future. 5629 */ 5630 ASSERT(connp->conn_ref == 1); 5631 5632 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 5633 5634 connp->conn_ref--; 5635 ipcl_conn_destroy(connp); 5636 5637 q->q_ptr = WR(q)->q_ptr = NULL; 5638 return (0); 5639 } 5640 5641 /* 5642 * Wapper around putnext() so that ip_rts_request can merely use 5643 * conn_recv. 5644 */ 5645 /*ARGSUSED2*/ 5646 static void 5647 ip_conn_input(void *arg1, mblk_t *mp, void *arg2) 5648 { 5649 conn_t *connp = (conn_t *)arg1; 5650 5651 putnext(connp->conn_rq, mp); 5652 } 5653 5654 /* Return the IP checksum for the IP header at "iph". */ 5655 uint16_t 5656 ip_csum_hdr(ipha_t *ipha) 5657 { 5658 uint16_t *uph; 5659 uint32_t sum; 5660 int opt_len; 5661 5662 opt_len = (ipha->ipha_version_and_hdr_length & 0xF) - 5663 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 5664 uph = (uint16_t *)ipha; 5665 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 5666 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 5667 if (opt_len > 0) { 5668 do { 5669 sum += uph[10]; 5670 sum += uph[11]; 5671 uph += 2; 5672 } while (--opt_len); 5673 } 5674 sum = (sum & 0xFFFF) + (sum >> 16); 5675 sum = ~(sum + (sum >> 16)) & 0xFFFF; 5676 if (sum == 0xffff) 5677 sum = 0; 5678 return ((uint16_t)sum); 5679 } 5680 5681 /* 5682 * Called when the module is about to be unloaded 5683 */ 5684 void 5685 ip_ddi_destroy(void) 5686 { 5687 tnet_fini(); 5688 5689 icmp_ddi_destroy(); 5690 rts_ddi_destroy(); 5691 udp_ddi_destroy(); 5692 sctp_ddi_g_destroy(); 5693 tcp_ddi_g_destroy(); 5694 ipsec_policy_g_destroy(); 5695 ipcl_g_destroy(); 5696 ip_net_g_destroy(); 5697 ip_ire_g_fini(); 5698 inet_minor_destroy(ip_minor_arena_sa); 5699 #if defined(_LP64) 5700 inet_minor_destroy(ip_minor_arena_la); 5701 #endif 5702 5703 #ifdef DEBUG 5704 list_destroy(&ip_thread_list); 5705 rw_destroy(&ip_thread_rwlock); 5706 tsd_destroy(&ip_thread_data); 5707 #endif 5708 5709 netstack_unregister(NS_IP); 5710 } 5711 5712 /* 5713 * First step in cleanup. 5714 */ 5715 /* ARGSUSED */ 5716 static void 5717 ip_stack_shutdown(netstackid_t stackid, void *arg) 5718 { 5719 ip_stack_t *ipst = (ip_stack_t *)arg; 5720 5721 #ifdef NS_DEBUG 5722 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 5723 #endif 5724 5725 /* Get rid of loopback interfaces and their IREs */ 5726 ip_loopback_cleanup(ipst); 5727 } 5728 5729 /* 5730 * Free the IP stack instance. 5731 */ 5732 static void 5733 ip_stack_fini(netstackid_t stackid, void *arg) 5734 { 5735 ip_stack_t *ipst = (ip_stack_t *)arg; 5736 int ret; 5737 5738 #ifdef NS_DEBUG 5739 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 5740 #endif 5741 ipv4_hook_destroy(ipst); 5742 ipv6_hook_destroy(ipst); 5743 ip_net_destroy(ipst); 5744 5745 rw_destroy(&ipst->ips_srcid_lock); 5746 5747 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 5748 ipst->ips_ip_mibkp = NULL; 5749 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 5750 ipst->ips_icmp_mibkp = NULL; 5751 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 5752 ipst->ips_ip_kstat = NULL; 5753 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 5754 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 5755 ipst->ips_ip6_kstat = NULL; 5756 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 5757 5758 nd_free(&ipst->ips_ip_g_nd); 5759 kmem_free(ipst->ips_param_arr, sizeof (lcl_param_arr)); 5760 ipst->ips_param_arr = NULL; 5761 kmem_free(ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5762 ipst->ips_ndp_arr = NULL; 5763 5764 ip_mrouter_stack_destroy(ipst); 5765 5766 mutex_destroy(&ipst->ips_ip_mi_lock); 5767 rw_destroy(&ipst->ips_ipsec_capab_ills_lock); 5768 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 5769 rw_destroy(&ipst->ips_ip_g_nd_lock); 5770 5771 ret = untimeout(ipst->ips_igmp_timeout_id); 5772 if (ret == -1) { 5773 ASSERT(ipst->ips_igmp_timeout_id == 0); 5774 } else { 5775 ASSERT(ipst->ips_igmp_timeout_id != 0); 5776 ipst->ips_igmp_timeout_id = 0; 5777 } 5778 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 5779 if (ret == -1) { 5780 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 5781 } else { 5782 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 5783 ipst->ips_igmp_slowtimeout_id = 0; 5784 } 5785 ret = untimeout(ipst->ips_mld_timeout_id); 5786 if (ret == -1) { 5787 ASSERT(ipst->ips_mld_timeout_id == 0); 5788 } else { 5789 ASSERT(ipst->ips_mld_timeout_id != 0); 5790 ipst->ips_mld_timeout_id = 0; 5791 } 5792 ret = untimeout(ipst->ips_mld_slowtimeout_id); 5793 if (ret == -1) { 5794 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 5795 } else { 5796 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 5797 ipst->ips_mld_slowtimeout_id = 0; 5798 } 5799 ret = untimeout(ipst->ips_ip_ire_expire_id); 5800 if (ret == -1) { 5801 ASSERT(ipst->ips_ip_ire_expire_id == 0); 5802 } else { 5803 ASSERT(ipst->ips_ip_ire_expire_id != 0); 5804 ipst->ips_ip_ire_expire_id = 0; 5805 } 5806 5807 mutex_destroy(&ipst->ips_igmp_timer_lock); 5808 mutex_destroy(&ipst->ips_mld_timer_lock); 5809 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 5810 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 5811 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 5812 rw_destroy(&ipst->ips_ill_g_lock); 5813 5814 ip_ire_fini(ipst); 5815 ip6_asp_free(ipst); 5816 conn_drain_fini(ipst); 5817 ipcl_destroy(ipst); 5818 5819 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 5820 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 5821 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 5822 ipst->ips_ndp4 = NULL; 5823 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 5824 ipst->ips_ndp6 = NULL; 5825 5826 if (ipst->ips_loopback_ksp != NULL) { 5827 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 5828 ipst->ips_loopback_ksp = NULL; 5829 } 5830 5831 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 5832 ipst->ips_phyint_g_list = NULL; 5833 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 5834 ipst->ips_ill_g_heads = NULL; 5835 5836 kmem_free(ipst, sizeof (*ipst)); 5837 } 5838 5839 /* 5840 * This function is called from the TSD destructor, and is used to debug 5841 * reference count issues in IP. See block comment in <inet/ip_if.h> for 5842 * details. 5843 */ 5844 static void 5845 ip_thread_exit(void *phash) 5846 { 5847 th_hash_t *thh = phash; 5848 5849 rw_enter(&ip_thread_rwlock, RW_WRITER); 5850 list_remove(&ip_thread_list, thh); 5851 rw_exit(&ip_thread_rwlock); 5852 mod_hash_destroy_hash(thh->thh_hash); 5853 kmem_free(thh, sizeof (*thh)); 5854 } 5855 5856 /* 5857 * Called when the IP kernel module is loaded into the kernel 5858 */ 5859 void 5860 ip_ddi_init(void) 5861 { 5862 ip_input_proc = ip_squeue_switch(ip_squeue_enter); 5863 5864 /* 5865 * For IP and TCP the minor numbers should start from 2 since we have 4 5866 * initial devices: ip, ip6, tcp, tcp6. 5867 */ 5868 /* 5869 * If this is a 64-bit kernel, then create two separate arenas - 5870 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the 5871 * other for socket apps in the range 2^^18 through 2^^32-1. 5872 */ 5873 ip_minor_arena_la = NULL; 5874 ip_minor_arena_sa = NULL; 5875 #if defined(_LP64) 5876 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 5877 INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) { 5878 cmn_err(CE_PANIC, 5879 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 5880 } 5881 if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la", 5882 MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) { 5883 cmn_err(CE_PANIC, 5884 "ip_ddi_init: ip_minor_arena_la creation failed\n"); 5885 } 5886 #else 5887 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 5888 INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) { 5889 cmn_err(CE_PANIC, 5890 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 5891 } 5892 #endif 5893 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5894 5895 ipcl_g_init(); 5896 ip_ire_g_init(); 5897 ip_net_g_init(); 5898 5899 #ifdef DEBUG 5900 tsd_create(&ip_thread_data, ip_thread_exit); 5901 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL); 5902 list_create(&ip_thread_list, sizeof (th_hash_t), 5903 offsetof(th_hash_t, thh_link)); 5904 #endif 5905 5906 /* 5907 * We want to be informed each time a stack is created or 5908 * destroyed in the kernel, so we can maintain the 5909 * set of udp_stack_t's. 5910 */ 5911 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 5912 ip_stack_fini); 5913 5914 ipsec_policy_g_init(); 5915 tcp_ddi_g_init(); 5916 sctp_ddi_g_init(); 5917 5918 tnet_init(); 5919 5920 udp_ddi_init(); 5921 rts_ddi_init(); 5922 icmp_ddi_init(); 5923 } 5924 5925 /* 5926 * Initialize the IP stack instance. 5927 */ 5928 static void * 5929 ip_stack_init(netstackid_t stackid, netstack_t *ns) 5930 { 5931 ip_stack_t *ipst; 5932 ipparam_t *pa; 5933 ipndp_t *na; 5934 5935 #ifdef NS_DEBUG 5936 printf("ip_stack_init(stack %d)\n", stackid); 5937 #endif 5938 5939 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 5940 ipst->ips_netstack = ns; 5941 5942 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 5943 KM_SLEEP); 5944 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 5945 KM_SLEEP); 5946 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5947 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5948 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5949 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5950 5951 rw_init(&ipst->ips_ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 5952 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5953 ipst->ips_igmp_deferred_next = INFINITY; 5954 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5955 ipst->ips_mld_deferred_next = INFINITY; 5956 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5957 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5958 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 5959 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 5960 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 5961 rw_init(&ipst->ips_ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 5962 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 5963 5964 ipcl_init(ipst); 5965 ip_ire_init(ipst); 5966 ip6_asp_init(ipst); 5967 ipif_init(ipst); 5968 conn_drain_init(ipst); 5969 ip_mrouter_stack_init(ipst); 5970 5971 ipst->ips_ip_g_frag_timeout = IP_FRAG_TIMEOUT; 5972 ipst->ips_ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 5973 5974 ipst->ips_ip_multirt_log_interval = 1000; 5975 5976 ipst->ips_ip_g_forward = IP_FORWARD_DEFAULT; 5977 ipst->ips_ipv6_forward = IP_FORWARD_DEFAULT; 5978 ipst->ips_ill_index = 1; 5979 5980 ipst->ips_saved_ip_g_forward = -1; 5981 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 5982 5983 pa = (ipparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP); 5984 ipst->ips_param_arr = pa; 5985 bcopy(lcl_param_arr, ipst->ips_param_arr, sizeof (lcl_param_arr)); 5986 5987 na = (ipndp_t *)kmem_alloc(sizeof (lcl_ndp_arr), KM_SLEEP); 5988 ipst->ips_ndp_arr = na; 5989 bcopy(lcl_ndp_arr, ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5990 ipst->ips_ndp_arr[IPNDP_IP_FORWARDING_OFFSET].ip_ndp_data = 5991 (caddr_t)&ipst->ips_ip_g_forward; 5992 ipst->ips_ndp_arr[IPNDP_IP6_FORWARDING_OFFSET].ip_ndp_data = 5993 (caddr_t)&ipst->ips_ipv6_forward; 5994 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_name, 5995 "ip_cgtp_filter") == 0); 5996 ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_data = 5997 (caddr_t)&ipst->ips_ip_cgtp_filter; 5998 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_name, 5999 "ipmp_hook_emulation") == 0); 6000 ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_data = 6001 (caddr_t)&ipst->ips_ipmp_hook_emulation; 6002 6003 (void) ip_param_register(&ipst->ips_ip_g_nd, 6004 ipst->ips_param_arr, A_CNT(lcl_param_arr), 6005 ipst->ips_ndp_arr, A_CNT(lcl_ndp_arr)); 6006 6007 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 6008 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 6009 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 6010 ipst->ips_ip6_kstat = 6011 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 6012 6013 ipst->ips_ipmp_enable_failback = B_TRUE; 6014 6015 ipst->ips_ip_src_id = 1; 6016 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 6017 6018 ip_net_init(ipst, ns); 6019 ipv4_hook_init(ipst); 6020 ipv6_hook_init(ipst); 6021 6022 return (ipst); 6023 } 6024 6025 /* 6026 * Allocate and initialize a DLPI template of the specified length. (May be 6027 * called as writer.) 6028 */ 6029 mblk_t * 6030 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 6031 { 6032 mblk_t *mp; 6033 6034 mp = allocb(len, BPRI_MED); 6035 if (!mp) 6036 return (NULL); 6037 6038 /* 6039 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 6040 * of which we don't seem to use) are sent with M_PCPROTO, and 6041 * that other DLPI are M_PROTO. 6042 */ 6043 if (prim == DL_INFO_REQ) { 6044 mp->b_datap->db_type = M_PCPROTO; 6045 } else { 6046 mp->b_datap->db_type = M_PROTO; 6047 } 6048 6049 mp->b_wptr = mp->b_rptr + len; 6050 bzero(mp->b_rptr, len); 6051 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 6052 return (mp); 6053 } 6054 6055 const char * 6056 dlpi_prim_str(int prim) 6057 { 6058 switch (prim) { 6059 case DL_INFO_REQ: return ("DL_INFO_REQ"); 6060 case DL_INFO_ACK: return ("DL_INFO_ACK"); 6061 case DL_ATTACH_REQ: return ("DL_ATTACH_REQ"); 6062 case DL_DETACH_REQ: return ("DL_DETACH_REQ"); 6063 case DL_BIND_REQ: return ("DL_BIND_REQ"); 6064 case DL_BIND_ACK: return ("DL_BIND_ACK"); 6065 case DL_UNBIND_REQ: return ("DL_UNBIND_REQ"); 6066 case DL_OK_ACK: return ("DL_OK_ACK"); 6067 case DL_ERROR_ACK: return ("DL_ERROR_ACK"); 6068 case DL_ENABMULTI_REQ: return ("DL_ENABMULTI_REQ"); 6069 case DL_DISABMULTI_REQ: return ("DL_DISABMULTI_REQ"); 6070 case DL_PROMISCON_REQ: return ("DL_PROMISCON_REQ"); 6071 case DL_PROMISCOFF_REQ: return ("DL_PROMISCOFF_REQ"); 6072 case DL_UNITDATA_REQ: return ("DL_UNITDATA_REQ"); 6073 case DL_UNITDATA_IND: return ("DL_UNITDATA_IND"); 6074 case DL_UDERROR_IND: return ("DL_UDERROR_IND"); 6075 case DL_PHYS_ADDR_REQ: return ("DL_PHYS_ADDR_REQ"); 6076 case DL_PHYS_ADDR_ACK: return ("DL_PHYS_ADDR_ACK"); 6077 case DL_SET_PHYS_ADDR_REQ: return ("DL_SET_PHYS_ADDR_REQ"); 6078 case DL_NOTIFY_REQ: return ("DL_NOTIFY_REQ"); 6079 case DL_NOTIFY_ACK: return ("DL_NOTIFY_ACK"); 6080 case DL_NOTIFY_IND: return ("DL_NOTIFY_IND"); 6081 case DL_CAPABILITY_REQ: return ("DL_CAPABILITY_REQ"); 6082 case DL_CAPABILITY_ACK: return ("DL_CAPABILITY_ACK"); 6083 case DL_CONTROL_REQ: return ("DL_CONTROL_REQ"); 6084 case DL_CONTROL_ACK: return ("DL_CONTROL_ACK"); 6085 default: return ("<unknown primitive>"); 6086 } 6087 } 6088 6089 const char * 6090 dlpi_err_str(int err) 6091 { 6092 switch (err) { 6093 case DL_ACCESS: return ("DL_ACCESS"); 6094 case DL_BADADDR: return ("DL_BADADDR"); 6095 case DL_BADCORR: return ("DL_BADCORR"); 6096 case DL_BADDATA: return ("DL_BADDATA"); 6097 case DL_BADPPA: return ("DL_BADPPA"); 6098 case DL_BADPRIM: return ("DL_BADPRIM"); 6099 case DL_BADQOSPARAM: return ("DL_BADQOSPARAM"); 6100 case DL_BADQOSTYPE: return ("DL_BADQOSTYPE"); 6101 case DL_BADSAP: return ("DL_BADSAP"); 6102 case DL_BADTOKEN: return ("DL_BADTOKEN"); 6103 case DL_BOUND: return ("DL_BOUND"); 6104 case DL_INITFAILED: return ("DL_INITFAILED"); 6105 case DL_NOADDR: return ("DL_NOADDR"); 6106 case DL_NOTINIT: return ("DL_NOTINIT"); 6107 case DL_OUTSTATE: return ("DL_OUTSTATE"); 6108 case DL_SYSERR: return ("DL_SYSERR"); 6109 case DL_UNSUPPORTED: return ("DL_UNSUPPORTED"); 6110 case DL_UNDELIVERABLE: return ("DL_UNDELIVERABLE"); 6111 case DL_NOTSUPPORTED : return ("DL_NOTSUPPORTED "); 6112 case DL_TOOMANY: return ("DL_TOOMANY"); 6113 case DL_NOTENAB: return ("DL_NOTENAB"); 6114 case DL_BUSY: return ("DL_BUSY"); 6115 case DL_NOAUTO: return ("DL_NOAUTO"); 6116 case DL_NOXIDAUTO: return ("DL_NOXIDAUTO"); 6117 case DL_NOTESTAUTO: return ("DL_NOTESTAUTO"); 6118 case DL_XIDAUTO: return ("DL_XIDAUTO"); 6119 case DL_TESTAUTO: return ("DL_TESTAUTO"); 6120 case DL_PENDING: return ("DL_PENDING"); 6121 default: return ("<unknown error>"); 6122 } 6123 } 6124 6125 /* 6126 * Debug formatting routine. Returns a character string representation of the 6127 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 6128 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 6129 * 6130 * Once the ndd table-printing interfaces are removed, this can be changed to 6131 * standard dotted-decimal form. 6132 */ 6133 char * 6134 ip_dot_addr(ipaddr_t addr, char *buf) 6135 { 6136 uint8_t *ap = (uint8_t *)&addr; 6137 6138 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 6139 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 6140 return (buf); 6141 } 6142 6143 /* 6144 * Write the given MAC address as a printable string in the usual colon- 6145 * separated format. 6146 */ 6147 const char * 6148 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 6149 { 6150 char *bp; 6151 6152 if (alen == 0 || buflen < 4) 6153 return ("?"); 6154 bp = buf; 6155 for (;;) { 6156 /* 6157 * If there are more MAC address bytes available, but we won't 6158 * have any room to print them, then add "..." to the string 6159 * instead. See below for the 'magic number' explanation. 6160 */ 6161 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 6162 (void) strcpy(bp, "..."); 6163 break; 6164 } 6165 (void) sprintf(bp, "%02x", *addr++); 6166 bp += 2; 6167 if (--alen == 0) 6168 break; 6169 *bp++ = ':'; 6170 buflen -= 3; 6171 /* 6172 * At this point, based on the first 'if' statement above, 6173 * either alen == 1 and buflen >= 3, or alen > 1 and 6174 * buflen >= 4. The first case leaves room for the final "xx" 6175 * number and trailing NUL byte. The second leaves room for at 6176 * least "...". Thus the apparently 'magic' numbers chosen for 6177 * that statement. 6178 */ 6179 } 6180 return (buf); 6181 } 6182 6183 /* 6184 * Send an ICMP error after patching up the packet appropriately. Returns 6185 * non-zero if the appropriate MIB should be bumped; zero otherwise. 6186 */ 6187 static boolean_t 6188 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 6189 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, 6190 zoneid_t zoneid, ip_stack_t *ipst) 6191 { 6192 ipha_t *ipha; 6193 mblk_t *first_mp; 6194 boolean_t secure; 6195 unsigned char db_type; 6196 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6197 6198 first_mp = mp; 6199 if (mctl_present) { 6200 mp = mp->b_cont; 6201 secure = ipsec_in_is_secure(first_mp); 6202 ASSERT(mp != NULL); 6203 } else { 6204 /* 6205 * If this is an ICMP error being reported - which goes 6206 * up as M_CTLs, we need to convert them to M_DATA till 6207 * we finish checking with global policy because 6208 * ipsec_check_global_policy() assumes M_DATA as clear 6209 * and M_CTL as secure. 6210 */ 6211 db_type = DB_TYPE(mp); 6212 DB_TYPE(mp) = M_DATA; 6213 secure = B_FALSE; 6214 } 6215 /* 6216 * We are generating an icmp error for some inbound packet. 6217 * Called from all ip_fanout_(udp, tcp, proto) functions. 6218 * Before we generate an error, check with global policy 6219 * to see whether this is allowed to enter the system. As 6220 * there is no "conn", we are checking with global policy. 6221 */ 6222 ipha = (ipha_t *)mp->b_rptr; 6223 if (secure || ipss->ipsec_inbound_v4_policy_present) { 6224 first_mp = ipsec_check_global_policy(first_mp, NULL, 6225 ipha, NULL, mctl_present, ipst->ips_netstack); 6226 if (first_mp == NULL) 6227 return (B_FALSE); 6228 } 6229 6230 if (!mctl_present) 6231 DB_TYPE(mp) = db_type; 6232 6233 if (flags & IP_FF_SEND_ICMP) { 6234 if (flags & IP_FF_HDR_COMPLETE) { 6235 if (ip_hdr_complete(ipha, zoneid, ipst)) { 6236 freemsg(first_mp); 6237 return (B_TRUE); 6238 } 6239 } 6240 if (flags & IP_FF_CKSUM) { 6241 /* 6242 * Have to correct checksum since 6243 * the packet might have been 6244 * fragmented and the reassembly code in ip_rput 6245 * does not restore the IP checksum. 6246 */ 6247 ipha->ipha_hdr_checksum = 0; 6248 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6249 } 6250 switch (icmp_type) { 6251 case ICMP_DEST_UNREACHABLE: 6252 icmp_unreachable(WR(q), first_mp, icmp_code, zoneid, 6253 ipst); 6254 break; 6255 default: 6256 freemsg(first_mp); 6257 break; 6258 } 6259 } else { 6260 freemsg(first_mp); 6261 return (B_FALSE); 6262 } 6263 6264 return (B_TRUE); 6265 } 6266 6267 /* 6268 * Used to send an ICMP error message when a packet is received for 6269 * a protocol that is not supported. The mblk passed as argument 6270 * is consumed by this function. 6271 */ 6272 void 6273 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid, 6274 ip_stack_t *ipst) 6275 { 6276 mblk_t *mp; 6277 ipha_t *ipha; 6278 ill_t *ill; 6279 ipsec_in_t *ii; 6280 6281 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6282 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6283 6284 mp = ipsec_mp->b_cont; 6285 ipsec_mp->b_cont = NULL; 6286 ipha = (ipha_t *)mp->b_rptr; 6287 /* Get ill from index in ipsec_in_t. */ 6288 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 6289 (IPH_HDR_VERSION(ipha) == IPV6_VERSION), NULL, NULL, NULL, NULL, 6290 ipst); 6291 if (ill != NULL) { 6292 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 6293 if (ip_fanout_send_icmp(q, mp, flags, 6294 ICMP_DEST_UNREACHABLE, 6295 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid, ipst)) { 6296 BUMP_MIB(ill->ill_ip_mib, 6297 ipIfStatsInUnknownProtos); 6298 } 6299 } else { 6300 if (ip_fanout_send_icmp_v6(q, mp, flags, 6301 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 6302 0, B_FALSE, zoneid, ipst)) { 6303 BUMP_MIB(ill->ill_ip_mib, 6304 ipIfStatsInUnknownProtos); 6305 } 6306 } 6307 ill_refrele(ill); 6308 } else { /* re-link for the freemsg() below. */ 6309 ipsec_mp->b_cont = mp; 6310 } 6311 6312 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 6313 freemsg(ipsec_mp); 6314 } 6315 6316 /* 6317 * See if the inbound datagram has had IPsec processing applied to it. 6318 */ 6319 boolean_t 6320 ipsec_in_is_secure(mblk_t *ipsec_mp) 6321 { 6322 ipsec_in_t *ii; 6323 6324 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6325 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6326 6327 if (ii->ipsec_in_loopback) { 6328 return (ii->ipsec_in_secure); 6329 } else { 6330 return (ii->ipsec_in_ah_sa != NULL || 6331 ii->ipsec_in_esp_sa != NULL || 6332 ii->ipsec_in_decaps); 6333 } 6334 } 6335 6336 /* 6337 * Handle protocols with which IP is less intimate. There 6338 * can be more than one stream bound to a particular 6339 * protocol. When this is the case, normally each one gets a copy 6340 * of any incoming packets. 6341 * 6342 * IPsec NOTE : 6343 * 6344 * Don't allow a secure packet going up a non-secure connection. 6345 * We don't allow this because 6346 * 6347 * 1) Reply might go out in clear which will be dropped at 6348 * the sending side. 6349 * 2) If the reply goes out in clear it will give the 6350 * adversary enough information for getting the key in 6351 * most of the cases. 6352 * 6353 * Moreover getting a secure packet when we expect clear 6354 * implies that SA's were added without checking for 6355 * policy on both ends. This should not happen once ISAKMP 6356 * is used to negotiate SAs as SAs will be added only after 6357 * verifying the policy. 6358 * 6359 * NOTE : If the packet was tunneled and not multicast we only send 6360 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 6361 * back to delivering packets to AF_INET6 raw sockets. 6362 * 6363 * IPQoS Notes: 6364 * Once we have determined the client, invoke IPPF processing. 6365 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6366 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6367 * ip_policy will be false. 6368 * 6369 * Zones notes: 6370 * Currently only applications in the global zone can create raw sockets for 6371 * protocols other than ICMP. So unlike the broadcast / multicast case of 6372 * ip_fanout_udp(), we only send a copy of the packet to streams in the 6373 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 6374 */ 6375 static void 6376 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 6377 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 6378 zoneid_t zoneid) 6379 { 6380 queue_t *rq; 6381 mblk_t *mp1, *first_mp1; 6382 uint_t protocol = ipha->ipha_protocol; 6383 ipaddr_t dst; 6384 boolean_t one_only; 6385 mblk_t *first_mp = mp; 6386 boolean_t secure; 6387 uint32_t ill_index; 6388 conn_t *connp, *first_connp, *next_connp; 6389 connf_t *connfp; 6390 boolean_t shared_addr; 6391 mib2_ipIfStatsEntry_t *mibptr; 6392 ip_stack_t *ipst = recv_ill->ill_ipst; 6393 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6394 6395 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 6396 if (mctl_present) { 6397 mp = first_mp->b_cont; 6398 secure = ipsec_in_is_secure(first_mp); 6399 ASSERT(mp != NULL); 6400 } else { 6401 secure = B_FALSE; 6402 } 6403 dst = ipha->ipha_dst; 6404 /* 6405 * If the packet was tunneled and not multicast we only send to it 6406 * the first match. 6407 */ 6408 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 6409 !CLASSD(dst)); 6410 6411 shared_addr = (zoneid == ALL_ZONES); 6412 if (shared_addr) { 6413 /* 6414 * We don't allow multilevel ports for raw IP, so no need to 6415 * check for that here. 6416 */ 6417 zoneid = tsol_packet_to_zoneid(mp); 6418 } 6419 6420 connfp = &ipst->ips_ipcl_proto_fanout[protocol]; 6421 mutex_enter(&connfp->connf_lock); 6422 connp = connfp->connf_head; 6423 for (connp = connfp->connf_head; connp != NULL; 6424 connp = connp->conn_next) { 6425 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 6426 zoneid) && 6427 (!is_system_labeled() || 6428 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6429 connp))) { 6430 break; 6431 } 6432 } 6433 6434 if (connp == NULL || connp->conn_upq == NULL) { 6435 /* 6436 * No one bound to these addresses. Is 6437 * there a client that wants all 6438 * unclaimed datagrams? 6439 */ 6440 mutex_exit(&connfp->connf_lock); 6441 /* 6442 * Check for IPPROTO_ENCAP... 6443 */ 6444 if (protocol == IPPROTO_ENCAP && ipst->ips_ip_g_mrouter) { 6445 /* 6446 * If an IPsec mblk is here on a multicast 6447 * tunnel (using ip_mroute stuff), check policy here, 6448 * THEN ship off to ip_mroute_decap(). 6449 * 6450 * BTW, If I match a configured IP-in-IP 6451 * tunnel, this path will not be reached, and 6452 * ip_mroute_decap will never be called. 6453 */ 6454 first_mp = ipsec_check_global_policy(first_mp, connp, 6455 ipha, NULL, mctl_present, ipst->ips_netstack); 6456 if (first_mp != NULL) { 6457 if (mctl_present) 6458 freeb(first_mp); 6459 ip_mroute_decap(q, mp, ill); 6460 } /* Else we already freed everything! */ 6461 } else { 6462 /* 6463 * Otherwise send an ICMP protocol unreachable. 6464 */ 6465 if (ip_fanout_send_icmp(q, first_mp, flags, 6466 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 6467 mctl_present, zoneid, ipst)) { 6468 BUMP_MIB(mibptr, ipIfStatsInUnknownProtos); 6469 } 6470 } 6471 return; 6472 } 6473 CONN_INC_REF(connp); 6474 first_connp = connp; 6475 6476 /* 6477 * Only send message to one tunnel driver by immediately 6478 * terminating the loop. 6479 */ 6480 connp = one_only ? NULL : connp->conn_next; 6481 6482 for (;;) { 6483 while (connp != NULL) { 6484 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 6485 flags, zoneid) && 6486 (!is_system_labeled() || 6487 tsol_receive_local(mp, &dst, IPV4_VERSION, 6488 shared_addr, connp))) 6489 break; 6490 connp = connp->conn_next; 6491 } 6492 6493 /* 6494 * Copy the packet. 6495 */ 6496 if (connp == NULL || connp->conn_upq == NULL || 6497 (((first_mp1 = dupmsg(first_mp)) == NULL) && 6498 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 6499 /* 6500 * No more interested clients or memory 6501 * allocation failed 6502 */ 6503 connp = first_connp; 6504 break; 6505 } 6506 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 6507 CONN_INC_REF(connp); 6508 mutex_exit(&connfp->connf_lock); 6509 rq = connp->conn_rq; 6510 if (!canputnext(rq)) { 6511 if (flags & IP_FF_RAWIP) { 6512 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6513 } else { 6514 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6515 } 6516 6517 freemsg(first_mp1); 6518 } else { 6519 /* 6520 * Don't enforce here if we're an actual tunnel - 6521 * let "tun" do it instead. 6522 */ 6523 if (!IPCL_IS_IPTUN(connp) && 6524 (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 6525 secure)) { 6526 first_mp1 = ipsec_check_inbound_policy 6527 (first_mp1, connp, ipha, NULL, 6528 mctl_present); 6529 } 6530 if (first_mp1 != NULL) { 6531 int in_flags = 0; 6532 /* 6533 * ip_fanout_proto also gets called from 6534 * icmp_inbound_error_fanout, in which case 6535 * the msg type is M_CTL. Don't add info 6536 * in this case for the time being. In future 6537 * when there is a need for knowing the 6538 * inbound iface index for ICMP error msgs, 6539 * then this can be changed. 6540 */ 6541 if (connp->conn_recvif) 6542 in_flags = IPF_RECVIF; 6543 /* 6544 * The ULP may support IP_RECVPKTINFO for both 6545 * IP v4 and v6 so pass the appropriate argument 6546 * based on conn IP version. 6547 */ 6548 if (connp->conn_ip_recvpktinfo) { 6549 if (connp->conn_af_isv6) { 6550 /* 6551 * V6 only needs index 6552 */ 6553 in_flags |= IPF_RECVIF; 6554 } else { 6555 /* 6556 * V4 needs index + 6557 * matching address. 6558 */ 6559 in_flags |= IPF_RECVADDR; 6560 } 6561 } 6562 if ((in_flags != 0) && 6563 (mp->b_datap->db_type != M_CTL)) { 6564 /* 6565 * the actual data will be 6566 * contained in b_cont upon 6567 * successful return of the 6568 * following call else 6569 * original mblk is returned 6570 */ 6571 ASSERT(recv_ill != NULL); 6572 mp1 = ip_add_info(mp1, recv_ill, 6573 in_flags, IPCL_ZONEID(connp), ipst); 6574 } 6575 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6576 if (mctl_present) 6577 freeb(first_mp1); 6578 (connp->conn_recv)(connp, mp1, NULL); 6579 } 6580 } 6581 mutex_enter(&connfp->connf_lock); 6582 /* Follow the next pointer before releasing the conn. */ 6583 next_connp = connp->conn_next; 6584 CONN_DEC_REF(connp); 6585 connp = next_connp; 6586 } 6587 6588 /* Last one. Send it upstream. */ 6589 mutex_exit(&connfp->connf_lock); 6590 6591 /* 6592 * If this packet is coming from icmp_inbound_error_fanout ip_policy 6593 * will be set to false. 6594 */ 6595 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6596 ill_index = ill->ill_phyint->phyint_ifindex; 6597 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6598 if (mp == NULL) { 6599 CONN_DEC_REF(connp); 6600 if (mctl_present) { 6601 freeb(first_mp); 6602 } 6603 return; 6604 } 6605 } 6606 6607 rq = connp->conn_rq; 6608 if (!canputnext(rq)) { 6609 if (flags & IP_FF_RAWIP) { 6610 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6611 } else { 6612 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6613 } 6614 6615 freemsg(first_mp); 6616 } else { 6617 if (IPCL_IS_IPTUN(connp)) { 6618 /* 6619 * Tunneled packet. We enforce policy in the tunnel 6620 * module itself. 6621 * 6622 * Send the WHOLE packet up (incl. IPSEC_IN) without 6623 * a policy check. 6624 * FIXME to use conn_recv for tun later. 6625 */ 6626 putnext(rq, first_mp); 6627 CONN_DEC_REF(connp); 6628 return; 6629 } 6630 6631 if ((CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure)) { 6632 first_mp = ipsec_check_inbound_policy(first_mp, connp, 6633 ipha, NULL, mctl_present); 6634 } 6635 6636 if (first_mp != NULL) { 6637 int in_flags = 0; 6638 6639 /* 6640 * ip_fanout_proto also gets called 6641 * from icmp_inbound_error_fanout, in 6642 * which case the msg type is M_CTL. 6643 * Don't add info in this case for time 6644 * being. In future when there is a 6645 * need for knowing the inbound iface 6646 * index for ICMP error msgs, then this 6647 * can be changed 6648 */ 6649 if (connp->conn_recvif) 6650 in_flags = IPF_RECVIF; 6651 if (connp->conn_ip_recvpktinfo) { 6652 if (connp->conn_af_isv6) { 6653 /* 6654 * V6 only needs index 6655 */ 6656 in_flags |= IPF_RECVIF; 6657 } else { 6658 /* 6659 * V4 needs index + 6660 * matching address. 6661 */ 6662 in_flags |= IPF_RECVADDR; 6663 } 6664 } 6665 if ((in_flags != 0) && 6666 (mp->b_datap->db_type != M_CTL)) { 6667 6668 /* 6669 * the actual data will be contained in 6670 * b_cont upon successful return 6671 * of the following call else original 6672 * mblk is returned 6673 */ 6674 ASSERT(recv_ill != NULL); 6675 mp = ip_add_info(mp, recv_ill, 6676 in_flags, IPCL_ZONEID(connp), ipst); 6677 } 6678 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6679 (connp->conn_recv)(connp, mp, NULL); 6680 if (mctl_present) 6681 freeb(first_mp); 6682 } 6683 } 6684 CONN_DEC_REF(connp); 6685 } 6686 6687 /* 6688 * Fanout for TCP packets 6689 * The caller puts <fport, lport> in the ports parameter. 6690 * 6691 * IPQoS Notes 6692 * Before sending it to the client, invoke IPPF processing. 6693 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6694 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6695 * ip_policy is false. 6696 */ 6697 static void 6698 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6699 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6700 { 6701 mblk_t *first_mp; 6702 boolean_t secure; 6703 uint32_t ill_index; 6704 int ip_hdr_len; 6705 tcph_t *tcph; 6706 boolean_t syn_present = B_FALSE; 6707 conn_t *connp; 6708 ip_stack_t *ipst = recv_ill->ill_ipst; 6709 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6710 6711 ASSERT(recv_ill != NULL); 6712 6713 first_mp = mp; 6714 if (mctl_present) { 6715 ASSERT(first_mp->b_datap->db_type == M_CTL); 6716 mp = first_mp->b_cont; 6717 secure = ipsec_in_is_secure(first_mp); 6718 ASSERT(mp != NULL); 6719 } else { 6720 secure = B_FALSE; 6721 } 6722 6723 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6724 6725 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 6726 zoneid, ipst)) == NULL) { 6727 /* 6728 * No connected connection or listener. Send a 6729 * TH_RST via tcp_xmit_listeners_reset. 6730 */ 6731 6732 /* Initiate IPPf processing, if needed. */ 6733 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 6734 uint32_t ill_index; 6735 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6736 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6737 if (first_mp == NULL) 6738 return; 6739 } 6740 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6741 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6742 zoneid)); 6743 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6744 ipst->ips_netstack->netstack_tcp, NULL); 6745 return; 6746 } 6747 6748 /* 6749 * Allocate the SYN for the TCP connection here itself 6750 */ 6751 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6752 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6753 if (IPCL_IS_TCP(connp)) { 6754 squeue_t *sqp; 6755 6756 /* 6757 * For fused tcp loopback, assign the eager's 6758 * squeue to be that of the active connect's. 6759 * Note that we don't check for IP_FF_LOOPBACK 6760 * here since this routine gets called only 6761 * for loopback (unlike the IPv6 counterpart). 6762 */ 6763 ASSERT(Q_TO_CONN(q) != NULL); 6764 if (do_tcp_fusion && 6765 !CONN_INBOUND_POLICY_PRESENT(connp, ipss) && 6766 !secure && 6767 !IPP_ENABLED(IPP_LOCAL_IN, ipst) && !ip_policy && 6768 IPCL_IS_TCP(Q_TO_CONN(q))) { 6769 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6770 sqp = Q_TO_CONN(q)->conn_sqp; 6771 } else { 6772 sqp = IP_SQUEUE_GET(lbolt); 6773 } 6774 6775 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6776 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6777 syn_present = B_TRUE; 6778 } 6779 } 6780 6781 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6782 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6783 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6784 if ((flags & TH_RST) || (flags & TH_URG)) { 6785 CONN_DEC_REF(connp); 6786 freemsg(first_mp); 6787 return; 6788 } 6789 if (flags & TH_ACK) { 6790 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6791 ipst->ips_netstack->netstack_tcp, connp); 6792 CONN_DEC_REF(connp); 6793 return; 6794 } 6795 6796 CONN_DEC_REF(connp); 6797 freemsg(first_mp); 6798 return; 6799 } 6800 6801 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6802 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6803 NULL, mctl_present); 6804 if (first_mp == NULL) { 6805 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6806 CONN_DEC_REF(connp); 6807 return; 6808 } 6809 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6810 ASSERT(syn_present); 6811 if (mctl_present) { 6812 ASSERT(first_mp != mp); 6813 first_mp->b_datap->db_struioflag |= 6814 STRUIO_POLICY; 6815 } else { 6816 ASSERT(first_mp == mp); 6817 mp->b_datap->db_struioflag &= 6818 ~STRUIO_EAGER; 6819 mp->b_datap->db_struioflag |= 6820 STRUIO_POLICY; 6821 } 6822 } else { 6823 /* 6824 * Discard first_mp early since we're dealing with a 6825 * fully-connected conn_t and tcp doesn't do policy in 6826 * this case. 6827 */ 6828 if (mctl_present) { 6829 freeb(first_mp); 6830 mctl_present = B_FALSE; 6831 } 6832 first_mp = mp; 6833 } 6834 } 6835 6836 /* 6837 * Initiate policy processing here if needed. If we get here from 6838 * icmp_inbound_error_fanout, ip_policy is false. 6839 */ 6840 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6841 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6842 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6843 if (mp == NULL) { 6844 CONN_DEC_REF(connp); 6845 if (mctl_present) 6846 freeb(first_mp); 6847 return; 6848 } else if (mctl_present) { 6849 ASSERT(first_mp != mp); 6850 first_mp->b_cont = mp; 6851 } else { 6852 first_mp = mp; 6853 } 6854 } 6855 6856 6857 6858 /* Handle socket options. */ 6859 if (!syn_present && 6860 connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 6861 /* Add header */ 6862 ASSERT(recv_ill != NULL); 6863 /* 6864 * Since tcp does not support IP_RECVPKTINFO for V4, only pass 6865 * IPF_RECVIF. 6866 */ 6867 mp = ip_add_info(mp, recv_ill, IPF_RECVIF, IPCL_ZONEID(connp), 6868 ipst); 6869 if (mp == NULL) { 6870 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6871 CONN_DEC_REF(connp); 6872 if (mctl_present) 6873 freeb(first_mp); 6874 return; 6875 } else if (mctl_present) { 6876 /* 6877 * ip_add_info might return a new mp. 6878 */ 6879 ASSERT(first_mp != mp); 6880 first_mp->b_cont = mp; 6881 } else { 6882 first_mp = mp; 6883 } 6884 } 6885 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6886 if (IPCL_IS_TCP(connp)) { 6887 /* do not drain, certain use cases can blow the stack */ 6888 squeue_enter_nodrain(connp->conn_sqp, first_mp, 6889 connp->conn_recv, connp, SQTAG_IP_FANOUT_TCP); 6890 } else { 6891 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 6892 (connp->conn_recv)(connp, first_mp, NULL); 6893 CONN_DEC_REF(connp); 6894 } 6895 } 6896 6897 /* 6898 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or 6899 * pass it along to ESP if the SPI is non-zero. Returns TRUE if the mblk 6900 * is not consumed. 6901 * 6902 * One of four things can happen, all of which affect the passed-in mblk: 6903 * 6904 * 1.) ICMP messages that go through here just get returned TRUE. 6905 * 6906 * 2.) The packet is stock UDP and gets its zero-SPI stripped. Return TRUE. 6907 * 6908 * 3.) The packet is ESP-in-UDP, gets transformed into an equivalent 6909 * ESP packet, and is passed along to ESP for consumption. Return FALSE. 6910 * 6911 * 4.) The packet is an ESP-in-UDP Keepalive. Drop it and return FALSE. 6912 */ 6913 static boolean_t 6914 zero_spi_check(queue_t *q, mblk_t *mp, ire_t *ire, ill_t *recv_ill, 6915 ipsec_stack_t *ipss) 6916 { 6917 int shift, plen, iph_len; 6918 ipha_t *ipha; 6919 udpha_t *udpha; 6920 uint32_t *spi; 6921 uint8_t *orptr; 6922 boolean_t udp_pkt, free_ire; 6923 6924 if (DB_TYPE(mp) == M_CTL) { 6925 /* 6926 * ICMP message with UDP inside. Don't bother stripping, just 6927 * send it up. 6928 * 6929 * NOTE: Any app with UDP_NAT_T_ENDPOINT set is probably going 6930 * to ignore errors set by ICMP anyway ('cause they might be 6931 * forged), but that's the app's decision, not ours. 6932 */ 6933 6934 /* Bunch of reality checks for DEBUG kernels... */ 6935 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION); 6936 ASSERT(((ipha_t *)mp->b_rptr)->ipha_protocol == IPPROTO_ICMP); 6937 6938 return (B_TRUE); 6939 } 6940 6941 ipha = (ipha_t *)mp->b_rptr; 6942 iph_len = IPH_HDR_LENGTH(ipha); 6943 plen = ntohs(ipha->ipha_length); 6944 6945 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) { 6946 /* 6947 * Most likely a keepalive for the benefit of an intervening 6948 * NAT. These aren't for us, per se, so drop it. 6949 * 6950 * RFC 3947/8 doesn't say for sure what to do for 2-3 6951 * byte packets (keepalives are 1-byte), but we'll drop them 6952 * also. 6953 */ 6954 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 6955 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper); 6956 return (B_FALSE); 6957 } 6958 6959 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) { 6960 /* might as well pull it all up - it might be ESP. */ 6961 if (!pullupmsg(mp, -1)) { 6962 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 6963 DROPPER(ipss, ipds_esp_nomem), 6964 &ipss->ipsec_dropper); 6965 return (B_FALSE); 6966 } 6967 6968 ipha = (ipha_t *)mp->b_rptr; 6969 } 6970 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t)); 6971 if (*spi == 0) { 6972 /* UDP packet - remove 0-spi. */ 6973 shift = sizeof (uint32_t); 6974 } else { 6975 /* ESP-in-UDP packet - reduce to ESP. */ 6976 ipha->ipha_protocol = IPPROTO_ESP; 6977 shift = sizeof (udpha_t); 6978 } 6979 6980 /* Fix IP header */ 6981 ipha->ipha_length = htons(plen - shift); 6982 ipha->ipha_hdr_checksum = 0; 6983 6984 orptr = mp->b_rptr; 6985 mp->b_rptr += shift; 6986 6987 if (*spi == 0) { 6988 ASSERT((uint8_t *)ipha == orptr); 6989 udpha = (udpha_t *)(orptr + iph_len); 6990 udpha->uha_length = htons(plen - shift - iph_len); 6991 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */ 6992 udp_pkt = B_TRUE; 6993 } else { 6994 udp_pkt = B_FALSE; 6995 } 6996 ovbcopy(orptr, orptr + shift, iph_len); 6997 if (!udp_pkt) /* Punt up for ESP processing. */ { 6998 ipha = (ipha_t *)(orptr + shift); 6999 7000 free_ire = (ire == NULL); 7001 if (free_ire) { 7002 /* Re-acquire ire. */ 7003 ire = ire_cache_lookup(ipha->ipha_dst, ALL_ZONES, NULL, 7004 ipss->ipsec_netstack->netstack_ip); 7005 if (ire == NULL || !(ire->ire_type & IRE_LOCAL)) { 7006 if (ire != NULL) 7007 ire_refrele(ire); 7008 /* 7009 * Do a regular freemsg(), as this is an IP 7010 * error (no local route) not an IPsec one. 7011 */ 7012 freemsg(mp); 7013 } 7014 } 7015 7016 ip_proto_input(q, mp, ipha, ire, recv_ill, B_TRUE); 7017 if (free_ire) 7018 ire_refrele(ire); 7019 } 7020 7021 return (udp_pkt); 7022 } 7023 7024 /* 7025 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 7026 * We are responsible for disposing of mp, such as by freemsg() or putnext() 7027 * Caller is responsible for dropping references to the conn, and freeing 7028 * first_mp. 7029 * 7030 * IPQoS Notes 7031 * Before sending it to the client, invoke IPPF processing. Policy processing 7032 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 7033 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 7034 * ip_wput_local, ip_policy is false. 7035 */ 7036 static void 7037 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 7038 boolean_t secure, ill_t *ill, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 7039 boolean_t ip_policy) 7040 { 7041 boolean_t mctl_present = (first_mp != NULL); 7042 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 7043 uint32_t ill_index; 7044 ip_stack_t *ipst = recv_ill->ill_ipst; 7045 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 7046 7047 ASSERT(ill != NULL); 7048 7049 if (mctl_present) 7050 first_mp->b_cont = mp; 7051 else 7052 first_mp = mp; 7053 7054 if (CONN_UDP_FLOWCTLD(connp)) { 7055 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 7056 freemsg(first_mp); 7057 return; 7058 } 7059 7060 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 7061 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 7062 NULL, mctl_present); 7063 if (first_mp == NULL) { 7064 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7065 return; /* Freed by ipsec_check_inbound_policy(). */ 7066 } 7067 } 7068 if (mctl_present) 7069 freeb(first_mp); 7070 7071 /* Let's hope the compilers utter "branch, predict-not-taken..." ;) */ 7072 if (connp->conn_udp->udp_nat_t_endpoint) { 7073 if (mctl_present) { 7074 /* mctl_present *shouldn't* happen. */ 7075 ip_drop_packet(mp, B_TRUE, NULL, NULL, 7076 DROPPER(ipss, ipds_esp_nat_t_ipsec), 7077 &ipss->ipsec_dropper); 7078 return; 7079 } 7080 7081 if (!zero_spi_check(ill->ill_rq, mp, NULL, recv_ill, ipss)) 7082 return; 7083 } 7084 7085 /* Handle options. */ 7086 if (connp->conn_recvif) 7087 in_flags = IPF_RECVIF; 7088 /* 7089 * UDP supports IP_RECVPKTINFO option for both v4 and v6 so the flag 7090 * passed to ip_add_info is based on IP version of connp. 7091 */ 7092 if (connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 7093 if (connp->conn_af_isv6) { 7094 /* 7095 * V6 only needs index 7096 */ 7097 in_flags |= IPF_RECVIF; 7098 } else { 7099 /* 7100 * V4 needs index + matching address. 7101 */ 7102 in_flags |= IPF_RECVADDR; 7103 } 7104 } 7105 7106 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 7107 in_flags |= IPF_RECVSLLA; 7108 7109 /* 7110 * Initiate IPPF processing here, if needed. Note first_mp won't be 7111 * freed if the packet is dropped. The caller will do so. 7112 */ 7113 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 7114 ill_index = recv_ill->ill_phyint->phyint_ifindex; 7115 ip_process(IPP_LOCAL_IN, &mp, ill_index); 7116 if (mp == NULL) { 7117 return; 7118 } 7119 } 7120 if ((in_flags != 0) && 7121 (mp->b_datap->db_type != M_CTL)) { 7122 /* 7123 * The actual data will be contained in b_cont 7124 * upon successful return of the following call 7125 * else original mblk is returned 7126 */ 7127 ASSERT(recv_ill != NULL); 7128 mp = ip_add_info(mp, recv_ill, in_flags, IPCL_ZONEID(connp), 7129 ipst); 7130 } 7131 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 7132 /* Send it upstream */ 7133 (connp->conn_recv)(connp, mp, NULL); 7134 } 7135 7136 /* 7137 * Fanout for UDP packets. 7138 * The caller puts <fport, lport> in the ports parameter. 7139 * 7140 * If SO_REUSEADDR is set all multicast and broadcast packets 7141 * will be delivered to all streams bound to the same port. 7142 * 7143 * Zones notes: 7144 * Multicast and broadcast packets will be distributed to streams in all zones. 7145 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 7146 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 7147 * packets. To maintain this behavior with multiple zones, the conns are grouped 7148 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 7149 * each zone. If unset, all the following conns in the same zone are skipped. 7150 */ 7151 static void 7152 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 7153 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 7154 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 7155 { 7156 uint32_t dstport, srcport; 7157 ipaddr_t dst; 7158 mblk_t *first_mp; 7159 boolean_t secure; 7160 in6_addr_t v6src; 7161 conn_t *connp; 7162 connf_t *connfp; 7163 conn_t *first_connp; 7164 conn_t *next_connp; 7165 mblk_t *mp1, *first_mp1; 7166 ipaddr_t src; 7167 zoneid_t last_zoneid; 7168 boolean_t reuseaddr; 7169 boolean_t shared_addr; 7170 ip_stack_t *ipst; 7171 7172 ASSERT(recv_ill != NULL); 7173 ipst = recv_ill->ill_ipst; 7174 7175 first_mp = mp; 7176 if (mctl_present) { 7177 mp = first_mp->b_cont; 7178 first_mp->b_cont = NULL; 7179 secure = ipsec_in_is_secure(first_mp); 7180 ASSERT(mp != NULL); 7181 } else { 7182 first_mp = NULL; 7183 secure = B_FALSE; 7184 } 7185 7186 /* Extract ports in net byte order */ 7187 dstport = htons(ntohl(ports) & 0xFFFF); 7188 srcport = htons(ntohl(ports) >> 16); 7189 dst = ipha->ipha_dst; 7190 src = ipha->ipha_src; 7191 7192 shared_addr = (zoneid == ALL_ZONES); 7193 if (shared_addr) { 7194 /* 7195 * No need to handle exclusive-stack zones since ALL_ZONES 7196 * only applies to the shared stack. 7197 */ 7198 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 7199 if (zoneid == ALL_ZONES) 7200 zoneid = tsol_packet_to_zoneid(mp); 7201 } 7202 7203 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7204 mutex_enter(&connfp->connf_lock); 7205 connp = connfp->connf_head; 7206 if (!broadcast && !CLASSD(dst)) { 7207 /* 7208 * Not broadcast or multicast. Send to the one (first) 7209 * client we find. No need to check conn_wantpacket() 7210 * since IP_BOUND_IF/conn_incoming_ill does not apply to 7211 * IPv4 unicast packets. 7212 */ 7213 while ((connp != NULL) && 7214 (!IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) || 7215 !IPCL_ZONE_MATCH(connp, zoneid))) { 7216 connp = connp->conn_next; 7217 } 7218 7219 if (connp == NULL || connp->conn_upq == NULL) 7220 goto notfound; 7221 7222 if (is_system_labeled() && 7223 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7224 connp)) 7225 goto notfound; 7226 7227 CONN_INC_REF(connp); 7228 mutex_exit(&connfp->connf_lock); 7229 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7230 flags, recv_ill, ip_policy); 7231 IP_STAT(ipst, ip_udp_fannorm); 7232 CONN_DEC_REF(connp); 7233 return; 7234 } 7235 7236 /* 7237 * Broadcast and multicast case 7238 * 7239 * Need to check conn_wantpacket(). 7240 * If SO_REUSEADDR has been set on the first we send the 7241 * packet to all clients that have joined the group and 7242 * match the port. 7243 */ 7244 7245 while (connp != NULL) { 7246 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 7247 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7248 (!is_system_labeled() || 7249 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7250 connp))) 7251 break; 7252 connp = connp->conn_next; 7253 } 7254 7255 if (connp == NULL || connp->conn_upq == NULL) 7256 goto notfound; 7257 7258 first_connp = connp; 7259 /* 7260 * When SO_REUSEADDR is not set, send the packet only to the first 7261 * matching connection in its zone by keeping track of the zoneid. 7262 */ 7263 reuseaddr = first_connp->conn_reuseaddr; 7264 last_zoneid = first_connp->conn_zoneid; 7265 7266 CONN_INC_REF(connp); 7267 connp = connp->conn_next; 7268 for (;;) { 7269 while (connp != NULL) { 7270 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 7271 (reuseaddr || connp->conn_zoneid != last_zoneid) && 7272 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7273 (!is_system_labeled() || 7274 tsol_receive_local(mp, &dst, IPV4_VERSION, 7275 shared_addr, connp))) 7276 break; 7277 connp = connp->conn_next; 7278 } 7279 /* 7280 * Just copy the data part alone. The mctl part is 7281 * needed just for verifying policy and it is never 7282 * sent up. 7283 */ 7284 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7285 ((mp1 = copymsg(mp)) == NULL))) { 7286 /* 7287 * No more interested clients or memory 7288 * allocation failed 7289 */ 7290 connp = first_connp; 7291 break; 7292 } 7293 if (connp->conn_zoneid != last_zoneid) { 7294 /* 7295 * Update the zoneid so that the packet isn't sent to 7296 * any more conns in the same zone unless SO_REUSEADDR 7297 * is set. 7298 */ 7299 reuseaddr = connp->conn_reuseaddr; 7300 last_zoneid = connp->conn_zoneid; 7301 } 7302 if (first_mp != NULL) { 7303 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7304 ipsec_info_type == IPSEC_IN); 7305 first_mp1 = ipsec_in_tag(first_mp, NULL, 7306 ipst->ips_netstack); 7307 if (first_mp1 == NULL) { 7308 freemsg(mp1); 7309 connp = first_connp; 7310 break; 7311 } 7312 } else { 7313 first_mp1 = NULL; 7314 } 7315 CONN_INC_REF(connp); 7316 mutex_exit(&connfp->connf_lock); 7317 /* 7318 * IPQoS notes: We don't send the packet for policy 7319 * processing here, will do it for the last one (below). 7320 * i.e. we do it per-packet now, but if we do policy 7321 * processing per-conn, then we would need to do it 7322 * here too. 7323 */ 7324 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7325 ipha, flags, recv_ill, B_FALSE); 7326 mutex_enter(&connfp->connf_lock); 7327 /* Follow the next pointer before releasing the conn. */ 7328 next_connp = connp->conn_next; 7329 IP_STAT(ipst, ip_udp_fanmb); 7330 CONN_DEC_REF(connp); 7331 connp = next_connp; 7332 } 7333 7334 /* Last one. Send it upstream. */ 7335 mutex_exit(&connfp->connf_lock); 7336 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7337 recv_ill, ip_policy); 7338 IP_STAT(ipst, ip_udp_fanmb); 7339 CONN_DEC_REF(connp); 7340 return; 7341 7342 notfound: 7343 7344 mutex_exit(&connfp->connf_lock); 7345 IP_STAT(ipst, ip_udp_fanothers); 7346 /* 7347 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 7348 * have already been matched above, since they live in the IPv4 7349 * fanout tables. This implies we only need to 7350 * check for IPv6 in6addr_any endpoints here. 7351 * Thus we compare using ipv6_all_zeros instead of the destination 7352 * address, except for the multicast group membership lookup which 7353 * uses the IPv4 destination. 7354 */ 7355 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 7356 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7357 mutex_enter(&connfp->connf_lock); 7358 connp = connfp->connf_head; 7359 if (!broadcast && !CLASSD(dst)) { 7360 while (connp != NULL) { 7361 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7362 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 7363 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7364 !connp->conn_ipv6_v6only) 7365 break; 7366 connp = connp->conn_next; 7367 } 7368 7369 if (connp != NULL && is_system_labeled() && 7370 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7371 connp)) 7372 connp = NULL; 7373 7374 if (connp == NULL || connp->conn_upq == NULL) { 7375 /* 7376 * No one bound to this port. Is 7377 * there a client that wants all 7378 * unclaimed datagrams? 7379 */ 7380 mutex_exit(&connfp->connf_lock); 7381 7382 if (mctl_present) 7383 first_mp->b_cont = mp; 7384 else 7385 first_mp = mp; 7386 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP]. 7387 connf_head != NULL) { 7388 ip_fanout_proto(q, first_mp, ill, ipha, 7389 flags | IP_FF_RAWIP, mctl_present, 7390 ip_policy, recv_ill, zoneid); 7391 } else { 7392 if (ip_fanout_send_icmp(q, first_mp, flags, 7393 ICMP_DEST_UNREACHABLE, 7394 ICMP_PORT_UNREACHABLE, 7395 mctl_present, zoneid, ipst)) { 7396 BUMP_MIB(ill->ill_ip_mib, 7397 udpIfStatsNoPorts); 7398 } 7399 } 7400 return; 7401 } 7402 7403 CONN_INC_REF(connp); 7404 mutex_exit(&connfp->connf_lock); 7405 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7406 flags, recv_ill, ip_policy); 7407 CONN_DEC_REF(connp); 7408 return; 7409 } 7410 /* 7411 * IPv4 multicast packet being delivered to an AF_INET6 7412 * in6addr_any endpoint. 7413 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 7414 * and not conn_wantpacket_v6() since any multicast membership is 7415 * for an IPv4-mapped multicast address. 7416 * The packet is sent to all clients in all zones that have joined the 7417 * group and match the port. 7418 */ 7419 while (connp != NULL) { 7420 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7421 srcport, v6src) && 7422 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7423 (!is_system_labeled() || 7424 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7425 connp))) 7426 break; 7427 connp = connp->conn_next; 7428 } 7429 7430 if (connp == NULL || connp->conn_upq == NULL) { 7431 /* 7432 * No one bound to this port. Is 7433 * there a client that wants all 7434 * unclaimed datagrams? 7435 */ 7436 mutex_exit(&connfp->connf_lock); 7437 7438 if (mctl_present) 7439 first_mp->b_cont = mp; 7440 else 7441 first_mp = mp; 7442 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP].connf_head != 7443 NULL) { 7444 ip_fanout_proto(q, first_mp, ill, ipha, 7445 flags | IP_FF_RAWIP, mctl_present, ip_policy, 7446 recv_ill, zoneid); 7447 } else { 7448 /* 7449 * We used to attempt to send an icmp error here, but 7450 * since this is known to be a multicast packet 7451 * and we don't send icmp errors in response to 7452 * multicast, just drop the packet and give up sooner. 7453 */ 7454 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 7455 freemsg(first_mp); 7456 } 7457 return; 7458 } 7459 7460 first_connp = connp; 7461 7462 CONN_INC_REF(connp); 7463 connp = connp->conn_next; 7464 for (;;) { 7465 while (connp != NULL) { 7466 if (IPCL_UDP_MATCH_V6(connp, dstport, 7467 ipv6_all_zeros, srcport, v6src) && 7468 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7469 (!is_system_labeled() || 7470 tsol_receive_local(mp, &dst, IPV4_VERSION, 7471 shared_addr, connp))) 7472 break; 7473 connp = connp->conn_next; 7474 } 7475 /* 7476 * Just copy the data part alone. The mctl part is 7477 * needed just for verifying policy and it is never 7478 * sent up. 7479 */ 7480 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7481 ((mp1 = copymsg(mp)) == NULL))) { 7482 /* 7483 * No more intested clients or memory 7484 * allocation failed 7485 */ 7486 connp = first_connp; 7487 break; 7488 } 7489 if (first_mp != NULL) { 7490 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7491 ipsec_info_type == IPSEC_IN); 7492 first_mp1 = ipsec_in_tag(first_mp, NULL, 7493 ipst->ips_netstack); 7494 if (first_mp1 == NULL) { 7495 freemsg(mp1); 7496 connp = first_connp; 7497 break; 7498 } 7499 } else { 7500 first_mp1 = NULL; 7501 } 7502 CONN_INC_REF(connp); 7503 mutex_exit(&connfp->connf_lock); 7504 /* 7505 * IPQoS notes: We don't send the packet for policy 7506 * processing here, will do it for the last one (below). 7507 * i.e. we do it per-packet now, but if we do policy 7508 * processing per-conn, then we would need to do it 7509 * here too. 7510 */ 7511 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7512 ipha, flags, recv_ill, B_FALSE); 7513 mutex_enter(&connfp->connf_lock); 7514 /* Follow the next pointer before releasing the conn. */ 7515 next_connp = connp->conn_next; 7516 CONN_DEC_REF(connp); 7517 connp = next_connp; 7518 } 7519 7520 /* Last one. Send it upstream. */ 7521 mutex_exit(&connfp->connf_lock); 7522 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7523 recv_ill, ip_policy); 7524 CONN_DEC_REF(connp); 7525 } 7526 7527 /* 7528 * Complete the ip_wput header so that it 7529 * is possible to generate ICMP 7530 * errors. 7531 */ 7532 int 7533 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid, ip_stack_t *ipst) 7534 { 7535 ire_t *ire; 7536 7537 if (ipha->ipha_src == INADDR_ANY) { 7538 ire = ire_lookup_local(zoneid, ipst); 7539 if (ire == NULL) { 7540 ip1dbg(("ip_hdr_complete: no source IRE\n")); 7541 return (1); 7542 } 7543 ipha->ipha_src = ire->ire_addr; 7544 ire_refrele(ire); 7545 } 7546 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 7547 ipha->ipha_hdr_checksum = 0; 7548 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 7549 return (0); 7550 } 7551 7552 /* 7553 * Nobody should be sending 7554 * packets up this stream 7555 */ 7556 static void 7557 ip_lrput(queue_t *q, mblk_t *mp) 7558 { 7559 mblk_t *mp1; 7560 7561 switch (mp->b_datap->db_type) { 7562 case M_FLUSH: 7563 /* Turn around */ 7564 if (*mp->b_rptr & FLUSHW) { 7565 *mp->b_rptr &= ~FLUSHR; 7566 qreply(q, mp); 7567 return; 7568 } 7569 break; 7570 } 7571 /* Could receive messages that passed through ar_rput */ 7572 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 7573 mp1->b_prev = mp1->b_next = NULL; 7574 freemsg(mp); 7575 } 7576 7577 /* Nobody should be sending packets down this stream */ 7578 /* ARGSUSED */ 7579 void 7580 ip_lwput(queue_t *q, mblk_t *mp) 7581 { 7582 freemsg(mp); 7583 } 7584 7585 /* 7586 * Move the first hop in any source route to ipha_dst and remove that part of 7587 * the source route. Called by other protocols. Errors in option formatting 7588 * are ignored - will be handled by ip_wput_options Return the final 7589 * destination (either ipha_dst or the last entry in a source route.) 7590 */ 7591 ipaddr_t 7592 ip_massage_options(ipha_t *ipha, netstack_t *ns) 7593 { 7594 ipoptp_t opts; 7595 uchar_t *opt; 7596 uint8_t optval; 7597 uint8_t optlen; 7598 ipaddr_t dst; 7599 int i; 7600 ire_t *ire; 7601 ip_stack_t *ipst = ns->netstack_ip; 7602 7603 ip2dbg(("ip_massage_options\n")); 7604 dst = ipha->ipha_dst; 7605 for (optval = ipoptp_first(&opts, ipha); 7606 optval != IPOPT_EOL; 7607 optval = ipoptp_next(&opts)) { 7608 opt = opts.ipoptp_cur; 7609 switch (optval) { 7610 uint8_t off; 7611 case IPOPT_SSRR: 7612 case IPOPT_LSRR: 7613 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 7614 ip1dbg(("ip_massage_options: bad src route\n")); 7615 break; 7616 } 7617 optlen = opts.ipoptp_len; 7618 off = opt[IPOPT_OFFSET]; 7619 off--; 7620 redo_srr: 7621 if (optlen < IP_ADDR_LEN || 7622 off > optlen - IP_ADDR_LEN) { 7623 /* End of source route */ 7624 ip1dbg(("ip_massage_options: end of SR\n")); 7625 break; 7626 } 7627 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 7628 ip1dbg(("ip_massage_options: next hop 0x%x\n", 7629 ntohl(dst))); 7630 /* 7631 * Check if our address is present more than 7632 * once as consecutive hops in source route. 7633 * XXX verify per-interface ip_forwarding 7634 * for source route? 7635 */ 7636 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 7637 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7638 if (ire != NULL) { 7639 ire_refrele(ire); 7640 off += IP_ADDR_LEN; 7641 goto redo_srr; 7642 } 7643 if (dst == htonl(INADDR_LOOPBACK)) { 7644 ip1dbg(("ip_massage_options: loopback addr in " 7645 "source route!\n")); 7646 break; 7647 } 7648 /* 7649 * Update ipha_dst to be the first hop and remove the 7650 * first hop from the source route (by overwriting 7651 * part of the option with NOP options). 7652 */ 7653 ipha->ipha_dst = dst; 7654 /* Put the last entry in dst */ 7655 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 7656 3; 7657 bcopy(&opt[off], &dst, IP_ADDR_LEN); 7658 7659 ip1dbg(("ip_massage_options: last hop 0x%x\n", 7660 ntohl(dst))); 7661 /* Move down and overwrite */ 7662 opt[IP_ADDR_LEN] = opt[0]; 7663 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 7664 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 7665 for (i = 0; i < IP_ADDR_LEN; i++) 7666 opt[i] = IPOPT_NOP; 7667 break; 7668 } 7669 } 7670 return (dst); 7671 } 7672 7673 /* 7674 * Return the network mask 7675 * associated with the specified address. 7676 */ 7677 ipaddr_t 7678 ip_net_mask(ipaddr_t addr) 7679 { 7680 uchar_t *up = (uchar_t *)&addr; 7681 ipaddr_t mask = 0; 7682 uchar_t *maskp = (uchar_t *)&mask; 7683 7684 #if defined(__i386) || defined(__amd64) 7685 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7686 #endif 7687 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7688 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7689 #endif 7690 if (CLASSD(addr)) { 7691 maskp[0] = 0xF0; 7692 return (mask); 7693 } 7694 7695 /* We assume Class E default netmask to be 32 */ 7696 if (CLASSE(addr)) 7697 return (0xffffffffU); 7698 7699 if (addr == 0) 7700 return (0); 7701 maskp[0] = 0xFF; 7702 if ((up[0] & 0x80) == 0) 7703 return (mask); 7704 7705 maskp[1] = 0xFF; 7706 if ((up[0] & 0xC0) == 0x80) 7707 return (mask); 7708 7709 maskp[2] = 0xFF; 7710 if ((up[0] & 0xE0) == 0xC0) 7711 return (mask); 7712 7713 /* Otherwise return no mask */ 7714 return ((ipaddr_t)0); 7715 } 7716 7717 /* 7718 * Select an ill for the packet by considering load spreading across 7719 * a different ill in the group if dst_ill is part of some group. 7720 */ 7721 ill_t * 7722 ip_newroute_get_dst_ill(ill_t *dst_ill) 7723 { 7724 ill_t *ill; 7725 7726 /* 7727 * We schedule irrespective of whether the source address is 7728 * INADDR_ANY or not. illgrp_scheduler returns a held ill. 7729 */ 7730 ill = illgrp_scheduler(dst_ill); 7731 if (ill == NULL) 7732 return (NULL); 7733 7734 /* 7735 * For groups with names ip_sioctl_groupname ensures that all 7736 * ills are of same type. For groups without names, ifgrp_insert 7737 * ensures this. 7738 */ 7739 ASSERT(dst_ill->ill_type == ill->ill_type); 7740 7741 return (ill); 7742 } 7743 7744 /* 7745 * Helper function for the IPIF_NOFAILOVER/ATTACH_IF interface attachment case. 7746 */ 7747 ill_t * 7748 ip_grab_attach_ill(ill_t *ill, mblk_t *first_mp, int ifindex, boolean_t isv6, 7749 ip_stack_t *ipst) 7750 { 7751 ill_t *ret_ill; 7752 7753 ASSERT(ifindex != 0); 7754 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 7755 ipst); 7756 if (ret_ill == NULL || 7757 (ret_ill->ill_phyint->phyint_flags & PHYI_OFFLINE)) { 7758 if (isv6) { 7759 if (ill != NULL) { 7760 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7761 } else { 7762 BUMP_MIB(&ipst->ips_ip6_mib, 7763 ipIfStatsOutDiscards); 7764 } 7765 ip1dbg(("ip_grab_attach_ill (IPv6): " 7766 "bad ifindex %d.\n", ifindex)); 7767 } else { 7768 if (ill != NULL) { 7769 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7770 } else { 7771 BUMP_MIB(&ipst->ips_ip_mib, 7772 ipIfStatsOutDiscards); 7773 } 7774 ip1dbg(("ip_grab_attach_ill (IPv4): " 7775 "bad ifindex %d.\n", ifindex)); 7776 } 7777 if (ret_ill != NULL) 7778 ill_refrele(ret_ill); 7779 freemsg(first_mp); 7780 return (NULL); 7781 } 7782 7783 return (ret_ill); 7784 } 7785 7786 /* 7787 * IPv4 - 7788 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7789 * out a packet to a destination address for which we do not have specific 7790 * (or sufficient) routing information. 7791 * 7792 * NOTE : These are the scopes of some of the variables that point at IRE, 7793 * which needs to be followed while making any future modifications 7794 * to avoid memory leaks. 7795 * 7796 * - ire and sire are the entries looked up initially by 7797 * ire_ftable_lookup. 7798 * - ipif_ire is used to hold the interface ire associated with 7799 * the new cache ire. But it's scope is limited, so we always REFRELE 7800 * it before branching out to error paths. 7801 * - save_ire is initialized before ire_create, so that ire returned 7802 * by ire_create will not over-write the ire. We REFRELE save_ire 7803 * before breaking out of the switch. 7804 * 7805 * Thus on failures, we have to REFRELE only ire and sire, if they 7806 * are not NULL. 7807 */ 7808 void 7809 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, conn_t *connp, 7810 zoneid_t zoneid, ip_stack_t *ipst) 7811 { 7812 areq_t *areq; 7813 ipaddr_t gw = 0; 7814 ire_t *ire = NULL; 7815 mblk_t *res_mp; 7816 ipaddr_t *addrp; 7817 ipaddr_t nexthop_addr; 7818 ipif_t *src_ipif = NULL; 7819 ill_t *dst_ill = NULL; 7820 ipha_t *ipha; 7821 ire_t *sire = NULL; 7822 mblk_t *first_mp; 7823 ire_t *save_ire; 7824 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER address */ 7825 ushort_t ire_marks = 0; 7826 boolean_t mctl_present; 7827 ipsec_out_t *io; 7828 mblk_t *saved_mp; 7829 ire_t *first_sire = NULL; 7830 mblk_t *copy_mp = NULL; 7831 mblk_t *xmit_mp = NULL; 7832 ipaddr_t save_dst; 7833 uint32_t multirt_flags = 7834 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7835 boolean_t multirt_is_resolvable; 7836 boolean_t multirt_resolve_next; 7837 boolean_t unspec_src; 7838 boolean_t do_attach_ill = B_FALSE; 7839 boolean_t ip_nexthop = B_FALSE; 7840 tsol_ire_gw_secattr_t *attrp = NULL; 7841 tsol_gcgrp_t *gcgrp = NULL; 7842 tsol_gcgrp_addr_t ga; 7843 7844 if (ip_debug > 2) { 7845 /* ip1dbg */ 7846 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7847 } 7848 7849 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7850 if (mctl_present) { 7851 io = (ipsec_out_t *)first_mp->b_rptr; 7852 ASSERT(io->ipsec_out_type == IPSEC_OUT); 7853 ASSERT(zoneid == io->ipsec_out_zoneid); 7854 ASSERT(zoneid != ALL_ZONES); 7855 } 7856 7857 ipha = (ipha_t *)mp->b_rptr; 7858 7859 /* All multicast lookups come through ip_newroute_ipif() */ 7860 if (CLASSD(dst)) { 7861 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7862 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7863 freemsg(first_mp); 7864 return; 7865 } 7866 7867 if (mctl_present && io->ipsec_out_attach_if) { 7868 /* ip_grab_attach_ill returns a held ill */ 7869 attach_ill = ip_grab_attach_ill(NULL, first_mp, 7870 io->ipsec_out_ill_index, B_FALSE, ipst); 7871 7872 /* Failure case frees things for us. */ 7873 if (attach_ill == NULL) 7874 return; 7875 7876 /* 7877 * Check if we need an ire that will not be 7878 * looked up by anybody else i.e. HIDDEN. 7879 */ 7880 if (ill_is_probeonly(attach_ill)) 7881 ire_marks = IRE_MARK_HIDDEN; 7882 } 7883 if (mctl_present && io->ipsec_out_ip_nexthop) { 7884 ip_nexthop = B_TRUE; 7885 nexthop_addr = io->ipsec_out_nexthop_addr; 7886 } 7887 /* 7888 * If this IRE is created for forwarding or it is not for 7889 * traffic for congestion controlled protocols, mark it as temporary. 7890 */ 7891 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 7892 ire_marks |= IRE_MARK_TEMPORARY; 7893 7894 /* 7895 * Get what we can from ire_ftable_lookup which will follow an IRE 7896 * chain until it gets the most specific information available. 7897 * For example, we know that there is no IRE_CACHE for this dest, 7898 * but there may be an IRE_OFFSUBNET which specifies a gateway. 7899 * ire_ftable_lookup will look up the gateway, etc. 7900 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 7901 * to the destination, of equal netmask length in the forward table, 7902 * will be recursively explored. If no information is available 7903 * for the final gateway of that route, we force the returned ire 7904 * to be equal to sire using MATCH_IRE_PARENT. 7905 * At least, in this case we have a starting point (in the buckets) 7906 * to look for other routes to the destination in the forward table. 7907 * This is actually used only for multirouting, where a list 7908 * of routes has to be processed in sequence. 7909 * 7910 * In the process of coming up with the most specific information, 7911 * ire_ftable_lookup may end up with an incomplete IRE_CACHE entry 7912 * for the gateway (i.e., one for which the ire_nce->nce_state is 7913 * not yet ND_REACHABLE, and is in the middle of arp resolution). 7914 * Two caveats when handling incomplete ire's in ip_newroute: 7915 * - we should be careful when accessing its ire_nce (specifically 7916 * the nce_res_mp) ast it might change underneath our feet, and, 7917 * - not all legacy code path callers are prepared to handle 7918 * incomplete ire's, so we should not create/add incomplete 7919 * ire_cache entries here. (See discussion about temporary solution 7920 * further below). 7921 * 7922 * In order to minimize packet dropping, and to preserve existing 7923 * behavior, we treat this case as if there were no IRE_CACHE for the 7924 * gateway, and instead use the IF_RESOLVER ire to send out 7925 * another request to ARP (this is achieved by passing the 7926 * MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the 7927 * arp response comes back in ip_wput_nondata, we will create 7928 * a per-dst ire_cache that has an ND_COMPLETE ire. 7929 * 7930 * Note that this is a temporary solution; the correct solution is 7931 * to create an incomplete per-dst ire_cache entry, and send the 7932 * packet out when the gw's nce is resolved. In order to achieve this, 7933 * all packet processing must have been completed prior to calling 7934 * ire_add_then_send. Some legacy code paths (e.g. cgtp) would need 7935 * to be modified to accomodate this solution. 7936 */ 7937 if (ip_nexthop) { 7938 /* 7939 * The first time we come here, we look for an IRE_INTERFACE 7940 * entry for the specified nexthop, set the dst to be the 7941 * nexthop address and create an IRE_CACHE entry for the 7942 * nexthop. The next time around, we are able to find an 7943 * IRE_CACHE entry for the nexthop, set the gateway to be the 7944 * nexthop address and create an IRE_CACHE entry for the 7945 * destination address via the specified nexthop. 7946 */ 7947 ire = ire_cache_lookup(nexthop_addr, zoneid, 7948 MBLK_GETLABEL(mp), ipst); 7949 if (ire != NULL) { 7950 gw = nexthop_addr; 7951 ire_marks |= IRE_MARK_PRIVATE_ADDR; 7952 } else { 7953 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 7954 IRE_INTERFACE, NULL, NULL, zoneid, 0, 7955 MBLK_GETLABEL(mp), 7956 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 7957 ipst); 7958 if (ire != NULL) { 7959 dst = nexthop_addr; 7960 } 7961 } 7962 } else if (attach_ill == NULL) { 7963 ire = ire_ftable_lookup(dst, 0, 0, 0, 7964 NULL, &sire, zoneid, 0, MBLK_GETLABEL(mp), 7965 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 7966 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 7967 MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE, 7968 ipst); 7969 } else { 7970 /* 7971 * attach_ill is set only for communicating with 7972 * on-link hosts. So, don't look for DEFAULT. 7973 */ 7974 ipif_t *attach_ipif; 7975 7976 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 7977 if (attach_ipif == NULL) { 7978 ill_refrele(attach_ill); 7979 goto icmp_err_ret; 7980 } 7981 ire = ire_ftable_lookup(dst, 0, 0, 0, attach_ipif, 7982 &sire, zoneid, 0, MBLK_GETLABEL(mp), 7983 MATCH_IRE_RJ_BHOLE | MATCH_IRE_ILL | 7984 MATCH_IRE_SECATTR, ipst); 7985 ipif_refrele(attach_ipif); 7986 } 7987 ip3dbg(("ip_newroute: ire_ftable_lookup() " 7988 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 7989 7990 /* 7991 * This loop is run only once in most cases. 7992 * We loop to resolve further routes only when the destination 7993 * can be reached through multiple RTF_MULTIRT-flagged ires. 7994 */ 7995 do { 7996 /* Clear the previous iteration's values */ 7997 if (src_ipif != NULL) { 7998 ipif_refrele(src_ipif); 7999 src_ipif = NULL; 8000 } 8001 if (dst_ill != NULL) { 8002 ill_refrele(dst_ill); 8003 dst_ill = NULL; 8004 } 8005 8006 multirt_resolve_next = B_FALSE; 8007 /* 8008 * We check if packets have to be multirouted. 8009 * In this case, given the current <ire, sire> couple, 8010 * we look for the next suitable <ire, sire>. 8011 * This check is done in ire_multirt_lookup(), 8012 * which applies various criteria to find the next route 8013 * to resolve. ire_multirt_lookup() leaves <ire, sire> 8014 * unchanged if it detects it has not been tried yet. 8015 */ 8016 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8017 ip3dbg(("ip_newroute: starting next_resolution " 8018 "with first_mp %p, tag %d\n", 8019 (void *)first_mp, 8020 MULTIRT_DEBUG_TAGGED(first_mp))); 8021 8022 ASSERT(sire != NULL); 8023 multirt_is_resolvable = 8024 ire_multirt_lookup(&ire, &sire, multirt_flags, 8025 MBLK_GETLABEL(mp), ipst); 8026 8027 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 8028 "ire %p, sire %p\n", 8029 multirt_is_resolvable, 8030 (void *)ire, (void *)sire)); 8031 8032 if (!multirt_is_resolvable) { 8033 /* 8034 * No more multirt route to resolve; give up 8035 * (all routes resolved or no more 8036 * resolvable routes). 8037 */ 8038 if (ire != NULL) { 8039 ire_refrele(ire); 8040 ire = NULL; 8041 } 8042 } else { 8043 ASSERT(sire != NULL); 8044 ASSERT(ire != NULL); 8045 /* 8046 * We simply use first_sire as a flag that 8047 * indicates if a resolvable multirt route 8048 * has already been found. 8049 * If it is not the case, we may have to send 8050 * an ICMP error to report that the 8051 * destination is unreachable. 8052 * We do not IRE_REFHOLD first_sire. 8053 */ 8054 if (first_sire == NULL) { 8055 first_sire = sire; 8056 } 8057 } 8058 } 8059 if (ire == NULL) { 8060 if (ip_debug > 3) { 8061 /* ip2dbg */ 8062 pr_addr_dbg("ip_newroute: " 8063 "can't resolve %s\n", AF_INET, &dst); 8064 } 8065 ip3dbg(("ip_newroute: " 8066 "ire %p, sire %p, first_sire %p\n", 8067 (void *)ire, (void *)sire, (void *)first_sire)); 8068 8069 if (sire != NULL) { 8070 ire_refrele(sire); 8071 sire = NULL; 8072 } 8073 8074 if (first_sire != NULL) { 8075 /* 8076 * At least one multirt route has been found 8077 * in the same call to ip_newroute(); 8078 * there is no need to report an ICMP error. 8079 * first_sire was not IRE_REFHOLDed. 8080 */ 8081 MULTIRT_DEBUG_UNTAG(first_mp); 8082 freemsg(first_mp); 8083 return; 8084 } 8085 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 8086 RTA_DST, ipst); 8087 if (attach_ill != NULL) 8088 ill_refrele(attach_ill); 8089 goto icmp_err_ret; 8090 } 8091 8092 /* 8093 * Verify that the returned IRE does not have either 8094 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 8095 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 8096 */ 8097 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 8098 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 8099 if (attach_ill != NULL) 8100 ill_refrele(attach_ill); 8101 goto icmp_err_ret; 8102 } 8103 /* 8104 * Increment the ire_ob_pkt_count field for ire if it is an 8105 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 8106 * increment the same for the parent IRE, sire, if it is some 8107 * sort of prefix IRE (which includes DEFAULT, PREFIX, and HOST) 8108 */ 8109 if ((ire->ire_type & IRE_INTERFACE) != 0) { 8110 UPDATE_OB_PKT_COUNT(ire); 8111 ire->ire_last_used_time = lbolt; 8112 } 8113 8114 if (sire != NULL) { 8115 gw = sire->ire_gateway_addr; 8116 ASSERT((sire->ire_type & (IRE_CACHETABLE | 8117 IRE_INTERFACE)) == 0); 8118 UPDATE_OB_PKT_COUNT(sire); 8119 sire->ire_last_used_time = lbolt; 8120 } 8121 /* 8122 * We have a route to reach the destination. 8123 * 8124 * 1) If the interface is part of ill group, try to get a new 8125 * ill taking load spreading into account. 8126 * 8127 * 2) After selecting the ill, get a source address that 8128 * might create good inbound load spreading. 8129 * ipif_select_source does this for us. 8130 * 8131 * If the application specified the ill (ifindex), we still 8132 * load spread. Only if the packets needs to go out 8133 * specifically on a given ill e.g. binding to 8134 * IPIF_NOFAILOVER address, then we don't try to use a 8135 * different ill for load spreading. 8136 */ 8137 if (attach_ill == NULL) { 8138 /* 8139 * Don't perform outbound load spreading in the 8140 * case of an RTF_MULTIRT route, as we actually 8141 * typically want to replicate outgoing packets 8142 * through particular interfaces. 8143 */ 8144 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8145 dst_ill = ire->ire_ipif->ipif_ill; 8146 /* for uniformity */ 8147 ill_refhold(dst_ill); 8148 } else { 8149 /* 8150 * If we are here trying to create an IRE_CACHE 8151 * for an offlink destination and have the 8152 * IRE_CACHE for the next hop and the latter is 8153 * using virtual IP source address selection i.e 8154 * it's ire->ire_ipif is pointing to a virtual 8155 * network interface (vni) then 8156 * ip_newroute_get_dst_ll() will return the vni 8157 * interface as the dst_ill. Since the vni is 8158 * virtual i.e not associated with any physical 8159 * interface, it cannot be the dst_ill, hence 8160 * in such a case call ip_newroute_get_dst_ll() 8161 * with the stq_ill instead of the ire_ipif ILL. 8162 * The function returns a refheld ill. 8163 */ 8164 if ((ire->ire_type == IRE_CACHE) && 8165 IS_VNI(ire->ire_ipif->ipif_ill)) 8166 dst_ill = ip_newroute_get_dst_ill( 8167 ire->ire_stq->q_ptr); 8168 else 8169 dst_ill = ip_newroute_get_dst_ill( 8170 ire->ire_ipif->ipif_ill); 8171 } 8172 if (dst_ill == NULL) { 8173 if (ip_debug > 2) { 8174 pr_addr_dbg("ip_newroute: " 8175 "no dst ill for dst" 8176 " %s\n", AF_INET, &dst); 8177 } 8178 goto icmp_err_ret; 8179 } 8180 } else { 8181 dst_ill = ire->ire_ipif->ipif_ill; 8182 /* for uniformity */ 8183 ill_refhold(dst_ill); 8184 /* 8185 * We should have found a route matching ill as we 8186 * called ire_ftable_lookup with MATCH_IRE_ILL. 8187 * Rather than asserting, when there is a mismatch, 8188 * we just drop the packet. 8189 */ 8190 if (dst_ill != attach_ill) { 8191 ip0dbg(("ip_newroute: Packet dropped as " 8192 "IPIF_NOFAILOVER ill is %s, " 8193 "ire->ire_ipif->ipif_ill is %s\n", 8194 attach_ill->ill_name, 8195 dst_ill->ill_name)); 8196 ill_refrele(attach_ill); 8197 goto icmp_err_ret; 8198 } 8199 } 8200 /* attach_ill can't go in loop. IPMP and CGTP are disjoint */ 8201 if (attach_ill != NULL) { 8202 ill_refrele(attach_ill); 8203 attach_ill = NULL; 8204 do_attach_ill = B_TRUE; 8205 } 8206 ASSERT(dst_ill != NULL); 8207 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 8208 8209 /* 8210 * Pick the best source address from dst_ill. 8211 * 8212 * 1) If it is part of a multipathing group, we would 8213 * like to spread the inbound packets across different 8214 * interfaces. ipif_select_source picks a random source 8215 * across the different ills in the group. 8216 * 8217 * 2) If it is not part of a multipathing group, we try 8218 * to pick the source address from the destination 8219 * route. Clustering assumes that when we have multiple 8220 * prefixes hosted on an interface, the prefix of the 8221 * source address matches the prefix of the destination 8222 * route. We do this only if the address is not 8223 * DEPRECATED. 8224 * 8225 * 3) If the conn is in a different zone than the ire, we 8226 * need to pick a source address from the right zone. 8227 * 8228 * NOTE : If we hit case (1) above, the prefix of the source 8229 * address picked may not match the prefix of the 8230 * destination routes prefix as ipif_select_source 8231 * does not look at "dst" while picking a source 8232 * address. 8233 * If we want the same behavior as (2), we will need 8234 * to change the behavior of ipif_select_source. 8235 */ 8236 ASSERT(src_ipif == NULL); 8237 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 8238 /* 8239 * The RTF_SETSRC flag is set in the parent ire (sire). 8240 * Check that the ipif matching the requested source 8241 * address still exists. 8242 */ 8243 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 8244 zoneid, NULL, NULL, NULL, NULL, ipst); 8245 } 8246 8247 unspec_src = (connp != NULL && connp->conn_unspec_src); 8248 8249 if (src_ipif == NULL && 8250 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 8251 ire_marks |= IRE_MARK_USESRC_CHECK; 8252 if ((dst_ill->ill_group != NULL) || 8253 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 8254 (connp != NULL && ire->ire_zoneid != zoneid && 8255 ire->ire_zoneid != ALL_ZONES) || 8256 (dst_ill->ill_usesrc_ifindex != 0)) { 8257 /* 8258 * If the destination is reachable via a 8259 * given gateway, the selected source address 8260 * should be in the same subnet as the gateway. 8261 * Otherwise, the destination is not reachable. 8262 * 8263 * If there are no interfaces on the same subnet 8264 * as the destination, ipif_select_source gives 8265 * first non-deprecated interface which might be 8266 * on a different subnet than the gateway. 8267 * This is not desirable. Hence pass the dst_ire 8268 * source address to ipif_select_source. 8269 * It is sure that the destination is reachable 8270 * with the dst_ire source address subnet. 8271 * So passing dst_ire source address to 8272 * ipif_select_source will make sure that the 8273 * selected source will be on the same subnet 8274 * as dst_ire source address. 8275 */ 8276 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 8277 src_ipif = ipif_select_source(dst_ill, saddr, 8278 zoneid); 8279 if (src_ipif == NULL) { 8280 if (ip_debug > 2) { 8281 pr_addr_dbg("ip_newroute: " 8282 "no src for dst %s ", 8283 AF_INET, &dst); 8284 printf("through interface %s\n", 8285 dst_ill->ill_name); 8286 } 8287 goto icmp_err_ret; 8288 } 8289 } else { 8290 src_ipif = ire->ire_ipif; 8291 ASSERT(src_ipif != NULL); 8292 /* hold src_ipif for uniformity */ 8293 ipif_refhold(src_ipif); 8294 } 8295 } 8296 8297 /* 8298 * Assign a source address while we have the conn. 8299 * We can't have ip_wput_ire pick a source address when the 8300 * packet returns from arp since we need to look at 8301 * conn_unspec_src and conn_zoneid, and we lose the conn when 8302 * going through arp. 8303 * 8304 * NOTE : ip_newroute_v6 does not have this piece of code as 8305 * it uses ip6i to store this information. 8306 */ 8307 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 8308 ipha->ipha_src = src_ipif->ipif_src_addr; 8309 8310 if (ip_debug > 3) { 8311 /* ip2dbg */ 8312 pr_addr_dbg("ip_newroute: first hop %s\n", 8313 AF_INET, &gw); 8314 } 8315 ip2dbg(("\tire type %s (%d)\n", 8316 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 8317 8318 /* 8319 * The TTL of multirouted packets is bounded by the 8320 * ip_multirt_ttl ndd variable. 8321 */ 8322 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8323 /* Force TTL of multirouted packets */ 8324 if ((ipst->ips_ip_multirt_ttl > 0) && 8325 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 8326 ip2dbg(("ip_newroute: forcing multirt TTL " 8327 "to %d (was %d), dst 0x%08x\n", 8328 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 8329 ntohl(sire->ire_addr))); 8330 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 8331 } 8332 } 8333 /* 8334 * At this point in ip_newroute(), ire is either the 8335 * IRE_CACHE of the next-hop gateway for an off-subnet 8336 * destination or an IRE_INTERFACE type that should be used 8337 * to resolve an on-subnet destination or an on-subnet 8338 * next-hop gateway. 8339 * 8340 * In the IRE_CACHE case, we have the following : 8341 * 8342 * 1) src_ipif - used for getting a source address. 8343 * 8344 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8345 * means packets using this IRE_CACHE will go out on 8346 * dst_ill. 8347 * 8348 * 3) The IRE sire will point to the prefix that is the 8349 * longest matching route for the destination. These 8350 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST. 8351 * 8352 * The newly created IRE_CACHE entry for the off-subnet 8353 * destination is tied to both the prefix route and the 8354 * interface route used to resolve the next-hop gateway 8355 * via the ire_phandle and ire_ihandle fields, 8356 * respectively. 8357 * 8358 * In the IRE_INTERFACE case, we have the following : 8359 * 8360 * 1) src_ipif - used for getting a source address. 8361 * 8362 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8363 * means packets using the IRE_CACHE that we will build 8364 * here will go out on dst_ill. 8365 * 8366 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 8367 * to be created will only be tied to the IRE_INTERFACE 8368 * that was derived from the ire_ihandle field. 8369 * 8370 * If sire is non-NULL, it means the destination is 8371 * off-link and we will first create the IRE_CACHE for the 8372 * gateway. Next time through ip_newroute, we will create 8373 * the IRE_CACHE for the final destination as described 8374 * above. 8375 * 8376 * In both cases, after the current resolution has been 8377 * completed (or possibly initialised, in the IRE_INTERFACE 8378 * case), the loop may be re-entered to attempt the resolution 8379 * of another RTF_MULTIRT route. 8380 * 8381 * When an IRE_CACHE entry for the off-subnet destination is 8382 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 8383 * for further processing in emission loops. 8384 */ 8385 save_ire = ire; 8386 switch (ire->ire_type) { 8387 case IRE_CACHE: { 8388 ire_t *ipif_ire; 8389 8390 ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE); 8391 if (gw == 0) 8392 gw = ire->ire_gateway_addr; 8393 /* 8394 * We need 3 ire's to create a new cache ire for an 8395 * off-link destination from the cache ire of the 8396 * gateway. 8397 * 8398 * 1. The prefix ire 'sire' (Note that this does 8399 * not apply to the conn_nexthop_set case) 8400 * 2. The cache ire of the gateway 'ire' 8401 * 3. The interface ire 'ipif_ire' 8402 * 8403 * We have (1) and (2). We lookup (3) below. 8404 * 8405 * If there is no interface route to the gateway, 8406 * it is a race condition, where we found the cache 8407 * but the interface route has been deleted. 8408 */ 8409 if (ip_nexthop) { 8410 ipif_ire = ire_ihandle_lookup_onlink(ire); 8411 } else { 8412 ipif_ire = 8413 ire_ihandle_lookup_offlink(ire, sire); 8414 } 8415 if (ipif_ire == NULL) { 8416 ip1dbg(("ip_newroute: " 8417 "ire_ihandle_lookup_offlink failed\n")); 8418 goto icmp_err_ret; 8419 } 8420 8421 /* 8422 * Check cached gateway IRE for any security 8423 * attributes; if found, associate the gateway 8424 * credentials group to the destination IRE. 8425 */ 8426 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 8427 mutex_enter(&attrp->igsa_lock); 8428 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 8429 GCGRP_REFHOLD(gcgrp); 8430 mutex_exit(&attrp->igsa_lock); 8431 } 8432 8433 /* 8434 * XXX For the source of the resolver mp, 8435 * we are using the same DL_UNITDATA_REQ 8436 * (from save_ire->ire_nce->nce_res_mp) 8437 * though the save_ire is not pointing at the same ill. 8438 * This is incorrect. We need to send it up to the 8439 * resolver to get the right res_mp. For ethernets 8440 * this may be okay (ill_type == DL_ETHER). 8441 */ 8442 8443 ire = ire_create( 8444 (uchar_t *)&dst, /* dest address */ 8445 (uchar_t *)&ip_g_all_ones, /* mask */ 8446 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8447 (uchar_t *)&gw, /* gateway address */ 8448 &save_ire->ire_max_frag, 8449 save_ire->ire_nce, /* src nce */ 8450 dst_ill->ill_rq, /* recv-from queue */ 8451 dst_ill->ill_wq, /* send-to queue */ 8452 IRE_CACHE, /* IRE type */ 8453 src_ipif, 8454 (sire != NULL) ? 8455 sire->ire_mask : 0, /* Parent mask */ 8456 (sire != NULL) ? 8457 sire->ire_phandle : 0, /* Parent handle */ 8458 ipif_ire->ire_ihandle, /* Interface handle */ 8459 (sire != NULL) ? (sire->ire_flags & 8460 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 8461 (sire != NULL) ? 8462 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 8463 NULL, 8464 gcgrp, 8465 ipst); 8466 8467 if (ire == NULL) { 8468 if (gcgrp != NULL) { 8469 GCGRP_REFRELE(gcgrp); 8470 gcgrp = NULL; 8471 } 8472 ire_refrele(ipif_ire); 8473 ire_refrele(save_ire); 8474 break; 8475 } 8476 8477 /* reference now held by IRE */ 8478 gcgrp = NULL; 8479 8480 ire->ire_marks |= ire_marks; 8481 8482 /* 8483 * Prevent sire and ipif_ire from getting deleted. 8484 * The newly created ire is tied to both of them via 8485 * the phandle and ihandle respectively. 8486 */ 8487 if (sire != NULL) { 8488 IRB_REFHOLD(sire->ire_bucket); 8489 /* Has it been removed already ? */ 8490 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 8491 IRB_REFRELE(sire->ire_bucket); 8492 ire_refrele(ipif_ire); 8493 ire_refrele(save_ire); 8494 break; 8495 } 8496 } 8497 8498 IRB_REFHOLD(ipif_ire->ire_bucket); 8499 /* Has it been removed already ? */ 8500 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 8501 IRB_REFRELE(ipif_ire->ire_bucket); 8502 if (sire != NULL) 8503 IRB_REFRELE(sire->ire_bucket); 8504 ire_refrele(ipif_ire); 8505 ire_refrele(save_ire); 8506 break; 8507 } 8508 8509 xmit_mp = first_mp; 8510 /* 8511 * In the case of multirouting, a copy 8512 * of the packet is done before its sending. 8513 * The copy is used to attempt another 8514 * route resolution, in a next loop. 8515 */ 8516 if (ire->ire_flags & RTF_MULTIRT) { 8517 copy_mp = copymsg(first_mp); 8518 if (copy_mp != NULL) { 8519 xmit_mp = copy_mp; 8520 MULTIRT_DEBUG_TAG(first_mp); 8521 } 8522 } 8523 ire_add_then_send(q, ire, xmit_mp); 8524 ire_refrele(save_ire); 8525 8526 /* Assert that sire is not deleted yet. */ 8527 if (sire != NULL) { 8528 ASSERT(sire->ire_ptpn != NULL); 8529 IRB_REFRELE(sire->ire_bucket); 8530 } 8531 8532 /* Assert that ipif_ire is not deleted yet. */ 8533 ASSERT(ipif_ire->ire_ptpn != NULL); 8534 IRB_REFRELE(ipif_ire->ire_bucket); 8535 ire_refrele(ipif_ire); 8536 8537 /* 8538 * If copy_mp is not NULL, multirouting was 8539 * requested. We loop to initiate a next 8540 * route resolution attempt, starting from sire. 8541 */ 8542 if (copy_mp != NULL) { 8543 /* 8544 * Search for the next unresolved 8545 * multirt route. 8546 */ 8547 copy_mp = NULL; 8548 ipif_ire = NULL; 8549 ire = NULL; 8550 multirt_resolve_next = B_TRUE; 8551 continue; 8552 } 8553 if (sire != NULL) 8554 ire_refrele(sire); 8555 ipif_refrele(src_ipif); 8556 ill_refrele(dst_ill); 8557 return; 8558 } 8559 case IRE_IF_NORESOLVER: { 8560 8561 if (dst_ill->ill_phys_addr_length != IP_ADDR_LEN && 8562 dst_ill->ill_resolver_mp == NULL) { 8563 ip1dbg(("ip_newroute: dst_ill %p " 8564 "for IRE_IF_NORESOLVER ire %p has " 8565 "no ill_resolver_mp\n", 8566 (void *)dst_ill, (void *)ire)); 8567 break; 8568 } 8569 8570 /* 8571 * TSol note: We are creating the ire cache for the 8572 * destination 'dst'. If 'dst' is offlink, going 8573 * through the first hop 'gw', the security attributes 8574 * of 'dst' must be set to point to the gateway 8575 * credentials of gateway 'gw'. If 'dst' is onlink, it 8576 * is possible that 'dst' is a potential gateway that is 8577 * referenced by some route that has some security 8578 * attributes. Thus in the former case, we need to do a 8579 * gcgrp_lookup of 'gw' while in the latter case we 8580 * need to do gcgrp_lookup of 'dst' itself. 8581 */ 8582 ga.ga_af = AF_INET; 8583 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 8584 &ga.ga_addr); 8585 gcgrp = gcgrp_lookup(&ga, B_FALSE); 8586 8587 ire = ire_create( 8588 (uchar_t *)&dst, /* dest address */ 8589 (uchar_t *)&ip_g_all_ones, /* mask */ 8590 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8591 (uchar_t *)&gw, /* gateway address */ 8592 &save_ire->ire_max_frag, 8593 NULL, /* no src nce */ 8594 dst_ill->ill_rq, /* recv-from queue */ 8595 dst_ill->ill_wq, /* send-to queue */ 8596 IRE_CACHE, 8597 src_ipif, 8598 save_ire->ire_mask, /* Parent mask */ 8599 (sire != NULL) ? /* Parent handle */ 8600 sire->ire_phandle : 0, 8601 save_ire->ire_ihandle, /* Interface handle */ 8602 (sire != NULL) ? sire->ire_flags & 8603 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 8604 &(save_ire->ire_uinfo), 8605 NULL, 8606 gcgrp, 8607 ipst); 8608 8609 if (ire == NULL) { 8610 if (gcgrp != NULL) { 8611 GCGRP_REFRELE(gcgrp); 8612 gcgrp = NULL; 8613 } 8614 ire_refrele(save_ire); 8615 break; 8616 } 8617 8618 /* reference now held by IRE */ 8619 gcgrp = NULL; 8620 8621 ire->ire_marks |= ire_marks; 8622 8623 /* Prevent save_ire from getting deleted */ 8624 IRB_REFHOLD(save_ire->ire_bucket); 8625 /* Has it been removed already ? */ 8626 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8627 IRB_REFRELE(save_ire->ire_bucket); 8628 ire_refrele(save_ire); 8629 break; 8630 } 8631 8632 /* 8633 * In the case of multirouting, a copy 8634 * of the packet is made before it is sent. 8635 * The copy is used in the next 8636 * loop to attempt another resolution. 8637 */ 8638 xmit_mp = first_mp; 8639 if ((sire != NULL) && 8640 (sire->ire_flags & RTF_MULTIRT)) { 8641 copy_mp = copymsg(first_mp); 8642 if (copy_mp != NULL) { 8643 xmit_mp = copy_mp; 8644 MULTIRT_DEBUG_TAG(first_mp); 8645 } 8646 } 8647 ire_add_then_send(q, ire, xmit_mp); 8648 8649 /* Assert that it is not deleted yet. */ 8650 ASSERT(save_ire->ire_ptpn != NULL); 8651 IRB_REFRELE(save_ire->ire_bucket); 8652 ire_refrele(save_ire); 8653 8654 if (copy_mp != NULL) { 8655 /* 8656 * If we found a (no)resolver, we ignore any 8657 * trailing top priority IRE_CACHE in further 8658 * loops. This ensures that we do not omit any 8659 * (no)resolver. 8660 * This IRE_CACHE, if any, will be processed 8661 * by another thread entering ip_newroute(). 8662 * IRE_CACHE entries, if any, will be processed 8663 * by another thread entering ip_newroute(), 8664 * (upon resolver response, for instance). 8665 * This aims to force parallel multirt 8666 * resolutions as soon as a packet must be sent. 8667 * In the best case, after the tx of only one 8668 * packet, all reachable routes are resolved. 8669 * Otherwise, the resolution of all RTF_MULTIRT 8670 * routes would require several emissions. 8671 */ 8672 multirt_flags &= ~MULTIRT_CACHEGW; 8673 8674 /* 8675 * Search for the next unresolved multirt 8676 * route. 8677 */ 8678 copy_mp = NULL; 8679 save_ire = NULL; 8680 ire = NULL; 8681 multirt_resolve_next = B_TRUE; 8682 continue; 8683 } 8684 8685 /* 8686 * Don't need sire anymore 8687 */ 8688 if (sire != NULL) 8689 ire_refrele(sire); 8690 8691 ipif_refrele(src_ipif); 8692 ill_refrele(dst_ill); 8693 return; 8694 } 8695 case IRE_IF_RESOLVER: 8696 /* 8697 * We can't build an IRE_CACHE yet, but at least we 8698 * found a resolver that can help. 8699 */ 8700 res_mp = dst_ill->ill_resolver_mp; 8701 if (!OK_RESOLVER_MP(res_mp)) 8702 break; 8703 8704 /* 8705 * To be at this point in the code with a non-zero gw 8706 * means that dst is reachable through a gateway that 8707 * we have never resolved. By changing dst to the gw 8708 * addr we resolve the gateway first. 8709 * When ire_add_then_send() tries to put the IP dg 8710 * to dst, it will reenter ip_newroute() at which 8711 * time we will find the IRE_CACHE for the gw and 8712 * create another IRE_CACHE in case IRE_CACHE above. 8713 */ 8714 if (gw != INADDR_ANY) { 8715 /* 8716 * The source ipif that was determined above was 8717 * relative to the destination address, not the 8718 * gateway's. If src_ipif was not taken out of 8719 * the IRE_IF_RESOLVER entry, we'll need to call 8720 * ipif_select_source() again. 8721 */ 8722 if (src_ipif != ire->ire_ipif) { 8723 ipif_refrele(src_ipif); 8724 src_ipif = ipif_select_source(dst_ill, 8725 gw, zoneid); 8726 if (src_ipif == NULL) { 8727 if (ip_debug > 2) { 8728 pr_addr_dbg( 8729 "ip_newroute: no " 8730 "src for gw %s ", 8731 AF_INET, &gw); 8732 printf("through " 8733 "interface %s\n", 8734 dst_ill->ill_name); 8735 } 8736 goto icmp_err_ret; 8737 } 8738 } 8739 save_dst = dst; 8740 dst = gw; 8741 gw = INADDR_ANY; 8742 } 8743 8744 /* 8745 * We obtain a partial IRE_CACHE which we will pass 8746 * along with the resolver query. When the response 8747 * comes back it will be there ready for us to add. 8748 * The ire_max_frag is atomically set under the 8749 * irebucket lock in ire_add_v[46]. 8750 */ 8751 8752 ire = ire_create_mp( 8753 (uchar_t *)&dst, /* dest address */ 8754 (uchar_t *)&ip_g_all_ones, /* mask */ 8755 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8756 (uchar_t *)&gw, /* gateway address */ 8757 NULL, /* ire_max_frag */ 8758 NULL, /* no src nce */ 8759 dst_ill->ill_rq, /* recv-from queue */ 8760 dst_ill->ill_wq, /* send-to queue */ 8761 IRE_CACHE, 8762 src_ipif, /* Interface ipif */ 8763 save_ire->ire_mask, /* Parent mask */ 8764 0, 8765 save_ire->ire_ihandle, /* Interface handle */ 8766 0, /* flags if any */ 8767 &(save_ire->ire_uinfo), 8768 NULL, 8769 NULL, 8770 ipst); 8771 8772 if (ire == NULL) { 8773 ire_refrele(save_ire); 8774 break; 8775 } 8776 8777 if ((sire != NULL) && 8778 (sire->ire_flags & RTF_MULTIRT)) { 8779 copy_mp = copymsg(first_mp); 8780 if (copy_mp != NULL) 8781 MULTIRT_DEBUG_TAG(copy_mp); 8782 } 8783 8784 ire->ire_marks |= ire_marks; 8785 8786 /* 8787 * Construct message chain for the resolver 8788 * of the form: 8789 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8790 * Packet could contain a IPSEC_OUT mp. 8791 * 8792 * NOTE : ire will be added later when the response 8793 * comes back from ARP. If the response does not 8794 * come back, ARP frees the packet. For this reason, 8795 * we can't REFHOLD the bucket of save_ire to prevent 8796 * deletions. We may not be able to REFRELE the bucket 8797 * if the response never comes back. Thus, before 8798 * adding the ire, ire_add_v4 will make sure that the 8799 * interface route does not get deleted. This is the 8800 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8801 * where we can always prevent deletions because of 8802 * the synchronous nature of adding IRES i.e 8803 * ire_add_then_send is called after creating the IRE. 8804 */ 8805 ASSERT(ire->ire_mp != NULL); 8806 ire->ire_mp->b_cont = first_mp; 8807 /* Have saved_mp handy, for cleanup if canput fails */ 8808 saved_mp = mp; 8809 mp = copyb(res_mp); 8810 if (mp == NULL) { 8811 /* Prepare for cleanup */ 8812 mp = saved_mp; /* pkt */ 8813 ire_delete(ire); /* ire_mp */ 8814 ire = NULL; 8815 ire_refrele(save_ire); 8816 if (copy_mp != NULL) { 8817 MULTIRT_DEBUG_UNTAG(copy_mp); 8818 freemsg(copy_mp); 8819 copy_mp = NULL; 8820 } 8821 break; 8822 } 8823 linkb(mp, ire->ire_mp); 8824 8825 /* 8826 * Fill in the source and dest addrs for the resolver. 8827 * NOTE: this depends on memory layouts imposed by 8828 * ill_init(). 8829 */ 8830 areq = (areq_t *)mp->b_rptr; 8831 addrp = (ipaddr_t *)((char *)areq + 8832 areq->areq_sender_addr_offset); 8833 if (do_attach_ill) { 8834 /* 8835 * This is bind to no failover case. 8836 * arp packet also must go out on attach_ill. 8837 */ 8838 ASSERT(ipha->ipha_src != NULL); 8839 *addrp = ipha->ipha_src; 8840 } else { 8841 *addrp = save_ire->ire_src_addr; 8842 } 8843 8844 ire_refrele(save_ire); 8845 addrp = (ipaddr_t *)((char *)areq + 8846 areq->areq_target_addr_offset); 8847 *addrp = dst; 8848 /* Up to the resolver. */ 8849 if (canputnext(dst_ill->ill_rq) && 8850 !(dst_ill->ill_arp_closing)) { 8851 putnext(dst_ill->ill_rq, mp); 8852 ire = NULL; 8853 if (copy_mp != NULL) { 8854 /* 8855 * If we found a resolver, we ignore 8856 * any trailing top priority IRE_CACHE 8857 * in the further loops. This ensures 8858 * that we do not omit any resolver. 8859 * IRE_CACHE entries, if any, will be 8860 * processed next time we enter 8861 * ip_newroute(). 8862 */ 8863 multirt_flags &= ~MULTIRT_CACHEGW; 8864 /* 8865 * Search for the next unresolved 8866 * multirt route. 8867 */ 8868 first_mp = copy_mp; 8869 copy_mp = NULL; 8870 /* Prepare the next resolution loop. */ 8871 mp = first_mp; 8872 EXTRACT_PKT_MP(mp, first_mp, 8873 mctl_present); 8874 if (mctl_present) 8875 io = (ipsec_out_t *) 8876 first_mp->b_rptr; 8877 ipha = (ipha_t *)mp->b_rptr; 8878 8879 ASSERT(sire != NULL); 8880 8881 dst = save_dst; 8882 multirt_resolve_next = B_TRUE; 8883 continue; 8884 } 8885 8886 if (sire != NULL) 8887 ire_refrele(sire); 8888 8889 /* 8890 * The response will come back in ip_wput 8891 * with db_type IRE_DB_TYPE. 8892 */ 8893 ipif_refrele(src_ipif); 8894 ill_refrele(dst_ill); 8895 return; 8896 } else { 8897 /* Prepare for cleanup */ 8898 DTRACE_PROBE1(ip__newroute__drop, mblk_t *, 8899 mp); 8900 mp->b_cont = NULL; 8901 freeb(mp); /* areq */ 8902 /* 8903 * this is an ire that is not added to the 8904 * cache. ire_freemblk will handle the release 8905 * of any resources associated with the ire. 8906 */ 8907 ire_delete(ire); /* ire_mp */ 8908 mp = saved_mp; /* pkt */ 8909 ire = NULL; 8910 if (copy_mp != NULL) { 8911 MULTIRT_DEBUG_UNTAG(copy_mp); 8912 freemsg(copy_mp); 8913 copy_mp = NULL; 8914 } 8915 break; 8916 } 8917 default: 8918 break; 8919 } 8920 } while (multirt_resolve_next); 8921 8922 ip1dbg(("ip_newroute: dropped\n")); 8923 /* Did this packet originate externally? */ 8924 if (mp->b_prev) { 8925 mp->b_next = NULL; 8926 mp->b_prev = NULL; 8927 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 8928 } else { 8929 if (dst_ill != NULL) { 8930 BUMP_MIB(dst_ill->ill_ip_mib, ipIfStatsOutDiscards); 8931 } else { 8932 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 8933 } 8934 } 8935 ASSERT(copy_mp == NULL); 8936 MULTIRT_DEBUG_UNTAG(first_mp); 8937 freemsg(first_mp); 8938 if (ire != NULL) 8939 ire_refrele(ire); 8940 if (sire != NULL) 8941 ire_refrele(sire); 8942 if (src_ipif != NULL) 8943 ipif_refrele(src_ipif); 8944 if (dst_ill != NULL) 8945 ill_refrele(dst_ill); 8946 return; 8947 8948 icmp_err_ret: 8949 ip1dbg(("ip_newroute: no route\n")); 8950 if (src_ipif != NULL) 8951 ipif_refrele(src_ipif); 8952 if (dst_ill != NULL) 8953 ill_refrele(dst_ill); 8954 if (sire != NULL) 8955 ire_refrele(sire); 8956 /* Did this packet originate externally? */ 8957 if (mp->b_prev) { 8958 mp->b_next = NULL; 8959 mp->b_prev = NULL; 8960 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInNoRoutes); 8961 q = WR(q); 8962 } else { 8963 /* 8964 * There is no outgoing ill, so just increment the 8965 * system MIB. 8966 */ 8967 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 8968 /* 8969 * Since ip_wput() isn't close to finished, we fill 8970 * in enough of the header for credible error reporting. 8971 */ 8972 if (ip_hdr_complete(ipha, zoneid, ipst)) { 8973 /* Failed */ 8974 MULTIRT_DEBUG_UNTAG(first_mp); 8975 freemsg(first_mp); 8976 if (ire != NULL) 8977 ire_refrele(ire); 8978 return; 8979 } 8980 } 8981 8982 /* 8983 * At this point we will have ire only if RTF_BLACKHOLE 8984 * or RTF_REJECT flags are set on the IRE. It will not 8985 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 8986 */ 8987 if (ire != NULL) { 8988 if (ire->ire_flags & RTF_BLACKHOLE) { 8989 ire_refrele(ire); 8990 MULTIRT_DEBUG_UNTAG(first_mp); 8991 freemsg(first_mp); 8992 return; 8993 } 8994 ire_refrele(ire); 8995 } 8996 if (ip_source_routed(ipha, ipst)) { 8997 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED, 8998 zoneid, ipst); 8999 return; 9000 } 9001 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9002 } 9003 9004 ip_opt_info_t zero_info; 9005 9006 /* 9007 * IPv4 - 9008 * ip_newroute_ipif is called by ip_wput_multicast and 9009 * ip_rput_forward_multicast whenever we need to send 9010 * out a packet to a destination address for which we do not have specific 9011 * routing information. It is used when the packet will be sent out 9012 * on a specific interface. It is also called by ip_wput() when IP_BOUND_IF 9013 * socket option is set or icmp error message wants to go out on a particular 9014 * interface for a unicast packet. 9015 * 9016 * In most cases, the destination address is resolved thanks to the ipif 9017 * intrinsic resolver. However, there are some cases where the call to 9018 * ip_newroute_ipif must take into account the potential presence of 9019 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 9020 * that uses the interface. This is specified through flags, 9021 * which can be a combination of: 9022 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 9023 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 9024 * and flags. Additionally, the packet source address has to be set to 9025 * the specified address. The caller is thus expected to set this flag 9026 * if the packet has no specific source address yet. 9027 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 9028 * flag, the resulting ire will inherit the flag. All unresolved routes 9029 * to the destination must be explored in the same call to 9030 * ip_newroute_ipif(). 9031 */ 9032 static void 9033 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 9034 conn_t *connp, uint32_t flags, zoneid_t zoneid, ip_opt_info_t *infop) 9035 { 9036 areq_t *areq; 9037 ire_t *ire = NULL; 9038 mblk_t *res_mp; 9039 ipaddr_t *addrp; 9040 mblk_t *first_mp; 9041 ire_t *save_ire = NULL; 9042 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER */ 9043 ipif_t *src_ipif = NULL; 9044 ushort_t ire_marks = 0; 9045 ill_t *dst_ill = NULL; 9046 boolean_t mctl_present; 9047 ipsec_out_t *io; 9048 ipha_t *ipha; 9049 int ihandle = 0; 9050 mblk_t *saved_mp; 9051 ire_t *fire = NULL; 9052 mblk_t *copy_mp = NULL; 9053 boolean_t multirt_resolve_next; 9054 boolean_t unspec_src; 9055 ipaddr_t ipha_dst; 9056 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 9057 9058 /* 9059 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 9060 * here for uniformity 9061 */ 9062 ipif_refhold(ipif); 9063 9064 /* 9065 * This loop is run only once in most cases. 9066 * We loop to resolve further routes only when the destination 9067 * can be reached through multiple RTF_MULTIRT-flagged ires. 9068 */ 9069 do { 9070 if (dst_ill != NULL) { 9071 ill_refrele(dst_ill); 9072 dst_ill = NULL; 9073 } 9074 if (src_ipif != NULL) { 9075 ipif_refrele(src_ipif); 9076 src_ipif = NULL; 9077 } 9078 multirt_resolve_next = B_FALSE; 9079 9080 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 9081 ipif->ipif_ill->ill_name)); 9082 9083 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 9084 if (mctl_present) 9085 io = (ipsec_out_t *)first_mp->b_rptr; 9086 9087 ipha = (ipha_t *)mp->b_rptr; 9088 9089 /* 9090 * Save the packet destination address, we may need it after 9091 * the packet has been consumed. 9092 */ 9093 ipha_dst = ipha->ipha_dst; 9094 9095 /* 9096 * If the interface is a pt-pt interface we look for an 9097 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 9098 * local_address and the pt-pt destination address. Otherwise 9099 * we just match the local address. 9100 * NOTE: dst could be different than ipha->ipha_dst in case 9101 * of sending igmp multicast packets over a point-to-point 9102 * connection. 9103 * Thus we must be careful enough to check ipha_dst to be a 9104 * multicast address, otherwise it will take xmit_if path for 9105 * multicast packets resulting into kernel stack overflow by 9106 * repeated calls to ip_newroute_ipif from ire_send(). 9107 */ 9108 if (CLASSD(ipha_dst) && 9109 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 9110 goto err_ret; 9111 } 9112 9113 /* 9114 * We check if an IRE_OFFSUBNET for the addr that goes through 9115 * ipif exists. We need it to determine if the RTF_SETSRC and/or 9116 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 9117 * propagate its flags to the new ire. 9118 */ 9119 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 9120 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 9121 ip2dbg(("ip_newroute_ipif: " 9122 "ipif_lookup_multi_ire(" 9123 "ipif %p, dst %08x) = fire %p\n", 9124 (void *)ipif, ntohl(dst), (void *)fire)); 9125 } 9126 9127 if (mctl_present && io->ipsec_out_attach_if) { 9128 attach_ill = ip_grab_attach_ill(NULL, first_mp, 9129 io->ipsec_out_ill_index, B_FALSE, ipst); 9130 9131 /* Failure case frees things for us. */ 9132 if (attach_ill == NULL) { 9133 ipif_refrele(ipif); 9134 if (fire != NULL) 9135 ire_refrele(fire); 9136 return; 9137 } 9138 9139 /* 9140 * Check if we need an ire that will not be 9141 * looked up by anybody else i.e. HIDDEN. 9142 */ 9143 if (ill_is_probeonly(attach_ill)) { 9144 ire_marks = IRE_MARK_HIDDEN; 9145 } 9146 /* 9147 * ip_wput passes the right ipif for IPIF_NOFAILOVER 9148 * case. 9149 */ 9150 dst_ill = ipif->ipif_ill; 9151 /* attach_ill has been refheld by ip_grab_attach_ill */ 9152 ASSERT(dst_ill == attach_ill); 9153 } else { 9154 /* 9155 * If the interface belongs to an interface group, 9156 * make sure the next possible interface in the group 9157 * is used. This encourages load spreading among 9158 * peers in an interface group. 9159 * Note: load spreading is disabled for RTF_MULTIRT 9160 * routes. 9161 */ 9162 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9163 (fire->ire_flags & RTF_MULTIRT)) { 9164 /* 9165 * Don't perform outbound load spreading 9166 * in the case of an RTF_MULTIRT issued route, 9167 * we actually typically want to replicate 9168 * outgoing packets through particular 9169 * interfaces. 9170 */ 9171 dst_ill = ipif->ipif_ill; 9172 ill_refhold(dst_ill); 9173 } else { 9174 dst_ill = ip_newroute_get_dst_ill( 9175 ipif->ipif_ill); 9176 } 9177 if (dst_ill == NULL) { 9178 if (ip_debug > 2) { 9179 pr_addr_dbg("ip_newroute_ipif: " 9180 "no dst ill for dst %s\n", 9181 AF_INET, &dst); 9182 } 9183 goto err_ret; 9184 } 9185 } 9186 9187 /* 9188 * Pick a source address preferring non-deprecated ones. 9189 * Unlike ip_newroute, we don't do any source address 9190 * selection here since for multicast it really does not help 9191 * in inbound load spreading as in the unicast case. 9192 */ 9193 if ((flags & RTF_SETSRC) && (fire != NULL) && 9194 (fire->ire_flags & RTF_SETSRC)) { 9195 /* 9196 * As requested by flags, an IRE_OFFSUBNET was looked up 9197 * on that interface. This ire has RTF_SETSRC flag, so 9198 * the source address of the packet must be changed. 9199 * Check that the ipif matching the requested source 9200 * address still exists. 9201 */ 9202 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 9203 zoneid, NULL, NULL, NULL, NULL, ipst); 9204 } 9205 9206 unspec_src = (connp != NULL && connp->conn_unspec_src); 9207 9208 if (((!ipif->ipif_isv6 && ipif->ipif_lcl_addr == INADDR_ANY) || 9209 (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_UP)) != IPIF_UP || 9210 (connp != NULL && ipif->ipif_zoneid != zoneid && 9211 ipif->ipif_zoneid != ALL_ZONES)) && 9212 (src_ipif == NULL) && 9213 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 9214 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 9215 if (src_ipif == NULL) { 9216 if (ip_debug > 2) { 9217 /* ip1dbg */ 9218 pr_addr_dbg("ip_newroute_ipif: " 9219 "no src for dst %s", 9220 AF_INET, &dst); 9221 } 9222 ip1dbg((" through interface %s\n", 9223 dst_ill->ill_name)); 9224 goto err_ret; 9225 } 9226 ipif_refrele(ipif); 9227 ipif = src_ipif; 9228 ipif_refhold(ipif); 9229 } 9230 if (src_ipif == NULL) { 9231 src_ipif = ipif; 9232 ipif_refhold(src_ipif); 9233 } 9234 9235 /* 9236 * Assign a source address while we have the conn. 9237 * We can't have ip_wput_ire pick a source address when the 9238 * packet returns from arp since conn_unspec_src might be set 9239 * and we lose the conn when going through arp. 9240 */ 9241 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 9242 ipha->ipha_src = src_ipif->ipif_src_addr; 9243 9244 /* 9245 * In the case of IP_BOUND_IF and IP_PKTINFO, it is possible 9246 * that the outgoing interface does not have an interface ire. 9247 */ 9248 if (CLASSD(ipha_dst) && (connp == NULL || 9249 connp->conn_outgoing_ill == NULL) && 9250 infop->ip_opt_ill_index == 0) { 9251 /* ipif_to_ire returns an held ire */ 9252 ire = ipif_to_ire(ipif); 9253 if (ire == NULL) 9254 goto err_ret; 9255 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 9256 goto err_ret; 9257 /* 9258 * ihandle is needed when the ire is added to 9259 * cache table. 9260 */ 9261 save_ire = ire; 9262 ihandle = save_ire->ire_ihandle; 9263 9264 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 9265 "flags %04x\n", 9266 (void *)ire, (void *)ipif, flags)); 9267 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9268 (fire->ire_flags & RTF_MULTIRT)) { 9269 /* 9270 * As requested by flags, an IRE_OFFSUBNET was 9271 * looked up on that interface. This ire has 9272 * RTF_MULTIRT flag, so the resolution loop will 9273 * be re-entered to resolve additional routes on 9274 * other interfaces. For that purpose, a copy of 9275 * the packet is performed at this point. 9276 */ 9277 fire->ire_last_used_time = lbolt; 9278 copy_mp = copymsg(first_mp); 9279 if (copy_mp) { 9280 MULTIRT_DEBUG_TAG(copy_mp); 9281 } 9282 } 9283 if ((flags & RTF_SETSRC) && (fire != NULL) && 9284 (fire->ire_flags & RTF_SETSRC)) { 9285 /* 9286 * As requested by flags, an IRE_OFFSUBET was 9287 * looked up on that interface. This ire has 9288 * RTF_SETSRC flag, so the source address of the 9289 * packet must be changed. 9290 */ 9291 ipha->ipha_src = fire->ire_src_addr; 9292 } 9293 } else { 9294 ASSERT((connp == NULL) || 9295 (connp->conn_outgoing_ill != NULL) || 9296 (connp->conn_dontroute) || 9297 infop->ip_opt_ill_index != 0); 9298 /* 9299 * The only ways we can come here are: 9300 * 1) IP_BOUND_IF socket option is set 9301 * 2) SO_DONTROUTE socket option is set 9302 * 3) IP_PKTINFO option is passed in as ancillary data. 9303 * In all cases, the new ire will not be added 9304 * into cache table. 9305 */ 9306 ire_marks |= IRE_MARK_NOADD; 9307 } 9308 9309 switch (ipif->ipif_net_type) { 9310 case IRE_IF_NORESOLVER: { 9311 /* We have what we need to build an IRE_CACHE. */ 9312 9313 if ((dst_ill->ill_phys_addr_length != IP_ADDR_LEN) && 9314 (dst_ill->ill_resolver_mp == NULL)) { 9315 ip1dbg(("ip_newroute_ipif: dst_ill %p " 9316 "for IRE_IF_NORESOLVER ire %p has " 9317 "no ill_resolver_mp\n", 9318 (void *)dst_ill, (void *)ire)); 9319 break; 9320 } 9321 9322 /* 9323 * The new ire inherits the IRE_OFFSUBNET flags 9324 * and source address, if this was requested. 9325 */ 9326 ire = ire_create( 9327 (uchar_t *)&dst, /* dest address */ 9328 (uchar_t *)&ip_g_all_ones, /* mask */ 9329 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9330 NULL, /* gateway address */ 9331 &ipif->ipif_mtu, 9332 NULL, /* no src nce */ 9333 dst_ill->ill_rq, /* recv-from queue */ 9334 dst_ill->ill_wq, /* send-to queue */ 9335 IRE_CACHE, 9336 src_ipif, 9337 (save_ire != NULL ? save_ire->ire_mask : 0), 9338 (fire != NULL) ? /* Parent handle */ 9339 fire->ire_phandle : 0, 9340 ihandle, /* Interface handle */ 9341 (fire != NULL) ? 9342 (fire->ire_flags & 9343 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9344 (save_ire == NULL ? &ire_uinfo_null : 9345 &save_ire->ire_uinfo), 9346 NULL, 9347 NULL, 9348 ipst); 9349 9350 if (ire == NULL) { 9351 if (save_ire != NULL) 9352 ire_refrele(save_ire); 9353 break; 9354 } 9355 9356 ire->ire_marks |= ire_marks; 9357 9358 /* 9359 * If IRE_MARK_NOADD is set then we need to convert 9360 * the max_fragp to a useable value now. This is 9361 * normally done in ire_add_v[46]. We also need to 9362 * associate the ire with an nce (normally would be 9363 * done in ip_wput_nondata()). 9364 * 9365 * Note that IRE_MARK_NOADD packets created here 9366 * do not have a non-null ire_mp pointer. The null 9367 * value of ire_bucket indicates that they were 9368 * never added. 9369 */ 9370 if (ire->ire_marks & IRE_MARK_NOADD) { 9371 uint_t max_frag; 9372 9373 max_frag = *ire->ire_max_fragp; 9374 ire->ire_max_fragp = NULL; 9375 ire->ire_max_frag = max_frag; 9376 9377 if ((ire->ire_nce = ndp_lookup_v4( 9378 ire_to_ill(ire), 9379 (ire->ire_gateway_addr != INADDR_ANY ? 9380 &ire->ire_gateway_addr : &ire->ire_addr), 9381 B_FALSE)) == NULL) { 9382 if (save_ire != NULL) 9383 ire_refrele(save_ire); 9384 break; 9385 } 9386 ASSERT(ire->ire_nce->nce_state == 9387 ND_REACHABLE); 9388 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 9389 } 9390 9391 /* Prevent save_ire from getting deleted */ 9392 if (save_ire != NULL) { 9393 IRB_REFHOLD(save_ire->ire_bucket); 9394 /* Has it been removed already ? */ 9395 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 9396 IRB_REFRELE(save_ire->ire_bucket); 9397 ire_refrele(save_ire); 9398 break; 9399 } 9400 } 9401 9402 ire_add_then_send(q, ire, first_mp); 9403 9404 /* Assert that save_ire is not deleted yet. */ 9405 if (save_ire != NULL) { 9406 ASSERT(save_ire->ire_ptpn != NULL); 9407 IRB_REFRELE(save_ire->ire_bucket); 9408 ire_refrele(save_ire); 9409 save_ire = NULL; 9410 } 9411 if (fire != NULL) { 9412 ire_refrele(fire); 9413 fire = NULL; 9414 } 9415 9416 /* 9417 * the resolution loop is re-entered if this 9418 * was requested through flags and if we 9419 * actually are in a multirouting case. 9420 */ 9421 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9422 boolean_t need_resolve = 9423 ire_multirt_need_resolve(ipha_dst, 9424 MBLK_GETLABEL(copy_mp), ipst); 9425 if (!need_resolve) { 9426 MULTIRT_DEBUG_UNTAG(copy_mp); 9427 freemsg(copy_mp); 9428 copy_mp = NULL; 9429 } else { 9430 /* 9431 * ipif_lookup_group() calls 9432 * ire_lookup_multi() that uses 9433 * ire_ftable_lookup() to find 9434 * an IRE_INTERFACE for the group. 9435 * In the multirt case, 9436 * ire_lookup_multi() then invokes 9437 * ire_multirt_lookup() to find 9438 * the next resolvable ire. 9439 * As a result, we obtain an new 9440 * interface, derived from the 9441 * next ire. 9442 */ 9443 ipif_refrele(ipif); 9444 ipif = ipif_lookup_group(ipha_dst, 9445 zoneid, ipst); 9446 ip2dbg(("ip_newroute_ipif: " 9447 "multirt dst %08x, ipif %p\n", 9448 htonl(dst), (void *)ipif)); 9449 if (ipif != NULL) { 9450 mp = copy_mp; 9451 copy_mp = NULL; 9452 multirt_resolve_next = B_TRUE; 9453 continue; 9454 } else { 9455 freemsg(copy_mp); 9456 } 9457 } 9458 } 9459 if (ipif != NULL) 9460 ipif_refrele(ipif); 9461 ill_refrele(dst_ill); 9462 ipif_refrele(src_ipif); 9463 return; 9464 } 9465 case IRE_IF_RESOLVER: 9466 /* 9467 * We can't build an IRE_CACHE yet, but at least 9468 * we found a resolver that can help. 9469 */ 9470 res_mp = dst_ill->ill_resolver_mp; 9471 if (!OK_RESOLVER_MP(res_mp)) 9472 break; 9473 9474 /* 9475 * We obtain a partial IRE_CACHE which we will pass 9476 * along with the resolver query. When the response 9477 * comes back it will be there ready for us to add. 9478 * The new ire inherits the IRE_OFFSUBNET flags 9479 * and source address, if this was requested. 9480 * The ire_max_frag is atomically set under the 9481 * irebucket lock in ire_add_v[46]. Only in the 9482 * case of IRE_MARK_NOADD, we set it here itself. 9483 */ 9484 ire = ire_create_mp( 9485 (uchar_t *)&dst, /* dest address */ 9486 (uchar_t *)&ip_g_all_ones, /* mask */ 9487 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9488 NULL, /* gateway address */ 9489 (ire_marks & IRE_MARK_NOADD) ? 9490 ipif->ipif_mtu : 0, /* max_frag */ 9491 NULL, /* no src nce */ 9492 dst_ill->ill_rq, /* recv-from queue */ 9493 dst_ill->ill_wq, /* send-to queue */ 9494 IRE_CACHE, 9495 src_ipif, 9496 (save_ire != NULL ? save_ire->ire_mask : 0), 9497 (fire != NULL) ? /* Parent handle */ 9498 fire->ire_phandle : 0, 9499 ihandle, /* Interface handle */ 9500 (fire != NULL) ? /* flags if any */ 9501 (fire->ire_flags & 9502 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9503 (save_ire == NULL ? &ire_uinfo_null : 9504 &save_ire->ire_uinfo), 9505 NULL, 9506 NULL, 9507 ipst); 9508 9509 if (save_ire != NULL) { 9510 ire_refrele(save_ire); 9511 save_ire = NULL; 9512 } 9513 if (ire == NULL) 9514 break; 9515 9516 ire->ire_marks |= ire_marks; 9517 /* 9518 * Construct message chain for the resolver of the 9519 * form: 9520 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 9521 * 9522 * NOTE : ire will be added later when the response 9523 * comes back from ARP. If the response does not 9524 * come back, ARP frees the packet. For this reason, 9525 * we can't REFHOLD the bucket of save_ire to prevent 9526 * deletions. We may not be able to REFRELE the 9527 * bucket if the response never comes back. 9528 * Thus, before adding the ire, ire_add_v4 will make 9529 * sure that the interface route does not get deleted. 9530 * This is the only case unlike ip_newroute_v6, 9531 * ip_newroute_ipif_v6 where we can always prevent 9532 * deletions because ire_add_then_send is called after 9533 * creating the IRE. 9534 * If IRE_MARK_NOADD is set, then ire_add_then_send 9535 * does not add this IRE into the IRE CACHE. 9536 */ 9537 ASSERT(ire->ire_mp != NULL); 9538 ire->ire_mp->b_cont = first_mp; 9539 /* Have saved_mp handy, for cleanup if canput fails */ 9540 saved_mp = mp; 9541 mp = copyb(res_mp); 9542 if (mp == NULL) { 9543 /* Prepare for cleanup */ 9544 mp = saved_mp; /* pkt */ 9545 ire_delete(ire); /* ire_mp */ 9546 ire = NULL; 9547 if (copy_mp != NULL) { 9548 MULTIRT_DEBUG_UNTAG(copy_mp); 9549 freemsg(copy_mp); 9550 copy_mp = NULL; 9551 } 9552 break; 9553 } 9554 linkb(mp, ire->ire_mp); 9555 9556 /* 9557 * Fill in the source and dest addrs for the resolver. 9558 * NOTE: this depends on memory layouts imposed by 9559 * ill_init(). 9560 */ 9561 areq = (areq_t *)mp->b_rptr; 9562 addrp = (ipaddr_t *)((char *)areq + 9563 areq->areq_sender_addr_offset); 9564 *addrp = ire->ire_src_addr; 9565 addrp = (ipaddr_t *)((char *)areq + 9566 areq->areq_target_addr_offset); 9567 *addrp = dst; 9568 /* Up to the resolver. */ 9569 if (canputnext(dst_ill->ill_rq) && 9570 !(dst_ill->ill_arp_closing)) { 9571 putnext(dst_ill->ill_rq, mp); 9572 /* 9573 * The response will come back in ip_wput 9574 * with db_type IRE_DB_TYPE. 9575 */ 9576 } else { 9577 mp->b_cont = NULL; 9578 freeb(mp); /* areq */ 9579 ire_delete(ire); /* ire_mp */ 9580 saved_mp->b_next = NULL; 9581 saved_mp->b_prev = NULL; 9582 freemsg(first_mp); /* pkt */ 9583 ip2dbg(("ip_newroute_ipif: dropped\n")); 9584 } 9585 9586 if (fire != NULL) { 9587 ire_refrele(fire); 9588 fire = NULL; 9589 } 9590 9591 9592 /* 9593 * The resolution loop is re-entered if this was 9594 * requested through flags and we actually are 9595 * in a multirouting case. 9596 */ 9597 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9598 boolean_t need_resolve = 9599 ire_multirt_need_resolve(ipha_dst, 9600 MBLK_GETLABEL(copy_mp), ipst); 9601 if (!need_resolve) { 9602 MULTIRT_DEBUG_UNTAG(copy_mp); 9603 freemsg(copy_mp); 9604 copy_mp = NULL; 9605 } else { 9606 /* 9607 * ipif_lookup_group() calls 9608 * ire_lookup_multi() that uses 9609 * ire_ftable_lookup() to find 9610 * an IRE_INTERFACE for the group. 9611 * In the multirt case, 9612 * ire_lookup_multi() then invokes 9613 * ire_multirt_lookup() to find 9614 * the next resolvable ire. 9615 * As a result, we obtain an new 9616 * interface, derived from the 9617 * next ire. 9618 */ 9619 ipif_refrele(ipif); 9620 ipif = ipif_lookup_group(ipha_dst, 9621 zoneid, ipst); 9622 if (ipif != NULL) { 9623 mp = copy_mp; 9624 copy_mp = NULL; 9625 multirt_resolve_next = B_TRUE; 9626 continue; 9627 } else { 9628 freemsg(copy_mp); 9629 } 9630 } 9631 } 9632 if (ipif != NULL) 9633 ipif_refrele(ipif); 9634 ill_refrele(dst_ill); 9635 ipif_refrele(src_ipif); 9636 return; 9637 default: 9638 break; 9639 } 9640 } while (multirt_resolve_next); 9641 9642 err_ret: 9643 ip2dbg(("ip_newroute_ipif: dropped\n")); 9644 if (fire != NULL) 9645 ire_refrele(fire); 9646 ipif_refrele(ipif); 9647 /* Did this packet originate externally? */ 9648 if (dst_ill != NULL) 9649 ill_refrele(dst_ill); 9650 if (src_ipif != NULL) 9651 ipif_refrele(src_ipif); 9652 if (mp->b_prev || mp->b_next) { 9653 mp->b_next = NULL; 9654 mp->b_prev = NULL; 9655 } else { 9656 /* 9657 * Since ip_wput() isn't close to finished, we fill 9658 * in enough of the header for credible error reporting. 9659 */ 9660 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 9661 /* Failed */ 9662 freemsg(first_mp); 9663 if (ire != NULL) 9664 ire_refrele(ire); 9665 return; 9666 } 9667 } 9668 /* 9669 * At this point we will have ire only if RTF_BLACKHOLE 9670 * or RTF_REJECT flags are set on the IRE. It will not 9671 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9672 */ 9673 if (ire != NULL) { 9674 if (ire->ire_flags & RTF_BLACKHOLE) { 9675 ire_refrele(ire); 9676 freemsg(first_mp); 9677 return; 9678 } 9679 ire_refrele(ire); 9680 } 9681 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9682 } 9683 9684 /* Name/Value Table Lookup Routine */ 9685 char * 9686 ip_nv_lookup(nv_t *nv, int value) 9687 { 9688 if (!nv) 9689 return (NULL); 9690 for (; nv->nv_name; nv++) { 9691 if (nv->nv_value == value) 9692 return (nv->nv_name); 9693 } 9694 return ("unknown"); 9695 } 9696 9697 /* 9698 * This is a module open, i.e. this is a control stream for access 9699 * to a DLPI device. We allocate an ill_t as the instance data in 9700 * this case. 9701 */ 9702 int 9703 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9704 { 9705 ill_t *ill; 9706 int err; 9707 zoneid_t zoneid; 9708 netstack_t *ns; 9709 ip_stack_t *ipst; 9710 9711 /* 9712 * Prevent unprivileged processes from pushing IP so that 9713 * they can't send raw IP. 9714 */ 9715 if (secpolicy_net_rawaccess(credp) != 0) 9716 return (EPERM); 9717 9718 ns = netstack_find_by_cred(credp); 9719 ASSERT(ns != NULL); 9720 ipst = ns->netstack_ip; 9721 ASSERT(ipst != NULL); 9722 9723 /* 9724 * For exclusive stacks we set the zoneid to zero 9725 * to make IP operate as if in the global zone. 9726 */ 9727 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9728 zoneid = GLOBAL_ZONEID; 9729 else 9730 zoneid = crgetzoneid(credp); 9731 9732 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9733 q->q_ptr = WR(q)->q_ptr = ill; 9734 ill->ill_ipst = ipst; 9735 ill->ill_zoneid = zoneid; 9736 9737 /* 9738 * ill_init initializes the ill fields and then sends down 9739 * down a DL_INFO_REQ after calling qprocson. 9740 */ 9741 err = ill_init(q, ill); 9742 if (err != 0) { 9743 mi_free(ill); 9744 netstack_rele(ipst->ips_netstack); 9745 q->q_ptr = NULL; 9746 WR(q)->q_ptr = NULL; 9747 return (err); 9748 } 9749 9750 /* ill_init initializes the ipsq marking this thread as writer */ 9751 ipsq_exit(ill->ill_phyint->phyint_ipsq, B_TRUE, B_TRUE); 9752 /* Wait for the DL_INFO_ACK */ 9753 mutex_enter(&ill->ill_lock); 9754 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9755 /* 9756 * Return value of 0 indicates a pending signal. 9757 */ 9758 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9759 if (err == 0) { 9760 mutex_exit(&ill->ill_lock); 9761 (void) ip_close(q, 0); 9762 return (EINTR); 9763 } 9764 } 9765 mutex_exit(&ill->ill_lock); 9766 9767 /* 9768 * ip_rput_other could have set an error in ill_error on 9769 * receipt of M_ERROR. 9770 */ 9771 9772 err = ill->ill_error; 9773 if (err != 0) { 9774 (void) ip_close(q, 0); 9775 return (err); 9776 } 9777 9778 ill->ill_credp = credp; 9779 crhold(credp); 9780 9781 mutex_enter(&ipst->ips_ip_mi_lock); 9782 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)ill, devp, flag, sflag, 9783 credp); 9784 mutex_exit(&ipst->ips_ip_mi_lock); 9785 if (err) { 9786 (void) ip_close(q, 0); 9787 return (err); 9788 } 9789 return (0); 9790 } 9791 9792 /* For /dev/ip aka AF_INET open */ 9793 int 9794 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9795 { 9796 return (ip_open(q, devp, flag, sflag, credp, B_FALSE)); 9797 } 9798 9799 /* For /dev/ip6 aka AF_INET6 open */ 9800 int 9801 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9802 { 9803 return (ip_open(q, devp, flag, sflag, credp, B_TRUE)); 9804 } 9805 9806 /* IP open routine. */ 9807 int 9808 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 9809 boolean_t isv6) 9810 { 9811 conn_t *connp; 9812 major_t maj; 9813 zoneid_t zoneid; 9814 netstack_t *ns; 9815 ip_stack_t *ipst; 9816 9817 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 9818 9819 /* Allow reopen. */ 9820 if (q->q_ptr != NULL) 9821 return (0); 9822 9823 if (sflag & MODOPEN) { 9824 /* This is a module open */ 9825 return (ip_modopen(q, devp, flag, sflag, credp)); 9826 } 9827 9828 ns = netstack_find_by_cred(credp); 9829 ASSERT(ns != NULL); 9830 ipst = ns->netstack_ip; 9831 ASSERT(ipst != NULL); 9832 9833 /* 9834 * For exclusive stacks we set the zoneid to zero 9835 * to make IP operate as if in the global zone. 9836 */ 9837 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9838 zoneid = GLOBAL_ZONEID; 9839 else 9840 zoneid = crgetzoneid(credp); 9841 9842 /* 9843 * We are opening as a device. This is an IP client stream, and we 9844 * allocate an conn_t as the instance data. 9845 */ 9846 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 9847 9848 /* 9849 * ipcl_conn_create did a netstack_hold. Undo the hold that was 9850 * done by netstack_find_by_cred() 9851 */ 9852 netstack_rele(ipst->ips_netstack); 9853 9854 connp->conn_zoneid = zoneid; 9855 9856 connp->conn_upq = q; 9857 q->q_ptr = WR(q)->q_ptr = connp; 9858 9859 if (flag & SO_SOCKSTR) 9860 connp->conn_flags |= IPCL_SOCKET; 9861 9862 /* Minor tells us which /dev entry was opened */ 9863 if (isv6) { 9864 connp->conn_flags |= IPCL_ISV6; 9865 connp->conn_af_isv6 = B_TRUE; 9866 ip_setpktversion(connp, isv6, B_FALSE, ipst); 9867 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9868 } else { 9869 connp->conn_af_isv6 = B_FALSE; 9870 connp->conn_pkt_isv6 = B_FALSE; 9871 } 9872 9873 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 9874 ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 9875 connp->conn_minor_arena = ip_minor_arena_la; 9876 } else { 9877 /* 9878 * Either minor numbers in the large arena were exhausted 9879 * or a non socket application is doing the open. 9880 * Try to allocate from the small arena. 9881 */ 9882 if ((connp->conn_dev = 9883 inet_minor_alloc(ip_minor_arena_sa)) == 0) { 9884 /* CONN_DEC_REF takes care of netstack_rele() */ 9885 q->q_ptr = WR(q)->q_ptr = NULL; 9886 CONN_DEC_REF(connp); 9887 return (EBUSY); 9888 } 9889 connp->conn_minor_arena = ip_minor_arena_sa; 9890 } 9891 9892 maj = getemajor(*devp); 9893 *devp = makedevice(maj, (minor_t)connp->conn_dev); 9894 9895 /* 9896 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 9897 */ 9898 connp->conn_cred = credp; 9899 9900 /* 9901 * Handle IP_RTS_REQUEST and other ioctls which use conn_recv 9902 */ 9903 connp->conn_recv = ip_conn_input; 9904 9905 crhold(connp->conn_cred); 9906 9907 /* 9908 * If the caller has the process-wide flag set, then default to MAC 9909 * exempt mode. This allows read-down to unlabeled hosts. 9910 */ 9911 if (getpflags(NET_MAC_AWARE, credp) != 0) 9912 connp->conn_mac_exempt = B_TRUE; 9913 9914 connp->conn_rq = q; 9915 connp->conn_wq = WR(q); 9916 9917 /* Non-zero default values */ 9918 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9919 9920 /* 9921 * Make the conn globally visible to walkers 9922 */ 9923 ASSERT(connp->conn_ref == 1); 9924 mutex_enter(&connp->conn_lock); 9925 connp->conn_state_flags &= ~CONN_INCIPIENT; 9926 mutex_exit(&connp->conn_lock); 9927 9928 qprocson(q); 9929 9930 return (0); 9931 } 9932 9933 /* 9934 * Change the output format (IPv4 vs. IPv6) for a conn_t. 9935 * Note that there is no race since either ip_output function works - it 9936 * is just an optimization to enter the best ip_output routine directly. 9937 */ 9938 void 9939 ip_setpktversion(conn_t *connp, boolean_t isv6, boolean_t bump_mib, 9940 ip_stack_t *ipst) 9941 { 9942 if (isv6) { 9943 if (bump_mib) { 9944 BUMP_MIB(&ipst->ips_ip6_mib, 9945 ipIfStatsOutSwitchIPVersion); 9946 } 9947 connp->conn_send = ip_output_v6; 9948 connp->conn_pkt_isv6 = B_TRUE; 9949 } else { 9950 if (bump_mib) { 9951 BUMP_MIB(&ipst->ips_ip_mib, 9952 ipIfStatsOutSwitchIPVersion); 9953 } 9954 connp->conn_send = ip_output; 9955 connp->conn_pkt_isv6 = B_FALSE; 9956 } 9957 9958 } 9959 9960 /* 9961 * See if IPsec needs loading because of the options in mp. 9962 */ 9963 static boolean_t 9964 ipsec_opt_present(mblk_t *mp) 9965 { 9966 uint8_t *optcp, *next_optcp, *opt_endcp; 9967 struct opthdr *opt; 9968 struct T_opthdr *topt; 9969 int opthdr_len; 9970 t_uscalar_t optname, optlevel; 9971 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 9972 ipsec_req_t *ipsr; 9973 9974 /* 9975 * Walk through the mess, and find IP_SEC_OPT. If it's there, 9976 * return TRUE. 9977 */ 9978 9979 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 9980 opt_endcp = optcp + tor->OPT_length; 9981 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9982 opthdr_len = sizeof (struct T_opthdr); 9983 } else { /* O_OPTMGMT_REQ */ 9984 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 9985 opthdr_len = sizeof (struct opthdr); 9986 } 9987 for (; optcp < opt_endcp; optcp = next_optcp) { 9988 if (optcp + opthdr_len > opt_endcp) 9989 return (B_FALSE); /* Not enough option header. */ 9990 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9991 topt = (struct T_opthdr *)optcp; 9992 optlevel = topt->level; 9993 optname = topt->name; 9994 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 9995 } else { 9996 opt = (struct opthdr *)optcp; 9997 optlevel = opt->level; 9998 optname = opt->name; 9999 next_optcp = optcp + opthdr_len + 10000 _TPI_ALIGN_OPT(opt->len); 10001 } 10002 if ((next_optcp < optcp) || /* wraparound pointer space */ 10003 ((next_optcp >= opt_endcp) && /* last option bad len */ 10004 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 10005 return (B_FALSE); /* bad option buffer */ 10006 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 10007 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 10008 /* 10009 * Check to see if it's an all-bypass or all-zeroes 10010 * IPsec request. Don't bother loading IPsec if 10011 * the socket doesn't want to use it. (A good example 10012 * is a bypass request.) 10013 * 10014 * Basically, if any of the non-NEVER bits are set, 10015 * load IPsec. 10016 */ 10017 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 10018 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 10019 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 10020 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 10021 != 0) 10022 return (B_TRUE); 10023 } 10024 } 10025 return (B_FALSE); 10026 } 10027 10028 /* 10029 * If conn is is waiting for ipsec to finish loading, kick it. 10030 */ 10031 /* ARGSUSED */ 10032 static void 10033 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 10034 { 10035 t_scalar_t optreq_prim; 10036 mblk_t *mp; 10037 cred_t *cr; 10038 int err = 0; 10039 10040 /* 10041 * This function is called, after ipsec loading is complete. 10042 * Since IP checks exclusively and atomically (i.e it prevents 10043 * ipsec load from completing until ip_optcom_req completes) 10044 * whether ipsec load is complete, there cannot be a race with IP 10045 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 10046 */ 10047 mutex_enter(&connp->conn_lock); 10048 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 10049 ASSERT(connp->conn_ipsec_opt_mp != NULL); 10050 mp = connp->conn_ipsec_opt_mp; 10051 connp->conn_ipsec_opt_mp = NULL; 10052 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 10053 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(CONNP_TO_WQ(connp))); 10054 mutex_exit(&connp->conn_lock); 10055 10056 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 10057 10058 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 10059 if (optreq_prim == T_OPTMGMT_REQ) { 10060 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10061 &ip_opt_obj, B_FALSE); 10062 } else { 10063 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 10064 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10065 &ip_opt_obj, B_FALSE); 10066 } 10067 if (err != EINPROGRESS) 10068 CONN_OPER_PENDING_DONE(connp); 10069 return; 10070 } 10071 mutex_exit(&connp->conn_lock); 10072 } 10073 10074 /* 10075 * Called from the ipsec_loader thread, outside any perimeter, to tell 10076 * ip qenable any of the queues waiting for the ipsec loader to 10077 * complete. 10078 */ 10079 void 10080 ip_ipsec_load_complete(ipsec_stack_t *ipss) 10081 { 10082 netstack_t *ns = ipss->ipsec_netstack; 10083 10084 ipcl_walk(conn_restart_ipsec_waiter, NULL, ns->netstack_ip); 10085 } 10086 10087 /* 10088 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 10089 * determines the grp on which it has to become exclusive, queues the mp 10090 * and sq draining restarts the optmgmt 10091 */ 10092 static boolean_t 10093 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 10094 { 10095 conn_t *connp = Q_TO_CONN(q); 10096 ipsec_stack_t *ipss = connp->conn_netstack->netstack_ipsec; 10097 10098 /* 10099 * Take IPsec requests and treat them special. 10100 */ 10101 if (ipsec_opt_present(mp)) { 10102 /* First check if IPsec is loaded. */ 10103 mutex_enter(&ipss->ipsec_loader_lock); 10104 if (ipss->ipsec_loader_state != IPSEC_LOADER_WAIT) { 10105 mutex_exit(&ipss->ipsec_loader_lock); 10106 return (B_FALSE); 10107 } 10108 mutex_enter(&connp->conn_lock); 10109 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 10110 10111 ASSERT(connp->conn_ipsec_opt_mp == NULL); 10112 connp->conn_ipsec_opt_mp = mp; 10113 mutex_exit(&connp->conn_lock); 10114 mutex_exit(&ipss->ipsec_loader_lock); 10115 10116 ipsec_loader_loadnow(ipss); 10117 return (B_TRUE); 10118 } 10119 return (B_FALSE); 10120 } 10121 10122 /* 10123 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 10124 * all of them are copied to the conn_t. If the req is "zero", the policy is 10125 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 10126 * fields. 10127 * We keep only the latest setting of the policy and thus policy setting 10128 * is not incremental/cumulative. 10129 * 10130 * Requests to set policies with multiple alternative actions will 10131 * go through a different API. 10132 */ 10133 int 10134 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 10135 { 10136 uint_t ah_req = 0; 10137 uint_t esp_req = 0; 10138 uint_t se_req = 0; 10139 ipsec_selkey_t sel; 10140 ipsec_act_t *actp = NULL; 10141 uint_t nact; 10142 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 10143 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 10144 ipsec_policy_root_t *pr; 10145 ipsec_policy_head_t *ph; 10146 int fam; 10147 boolean_t is_pol_reset; 10148 int error = 0; 10149 netstack_t *ns = connp->conn_netstack; 10150 ip_stack_t *ipst = ns->netstack_ip; 10151 ipsec_stack_t *ipss = ns->netstack_ipsec; 10152 10153 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 10154 10155 /* 10156 * The IP_SEC_OPT option does not allow variable length parameters, 10157 * hence a request cannot be NULL. 10158 */ 10159 if (req == NULL) 10160 return (EINVAL); 10161 10162 ah_req = req->ipsr_ah_req; 10163 esp_req = req->ipsr_esp_req; 10164 se_req = req->ipsr_self_encap_req; 10165 10166 /* 10167 * Are we dealing with a request to reset the policy (i.e. 10168 * zero requests). 10169 */ 10170 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 10171 (esp_req & REQ_MASK) == 0 && 10172 (se_req & REQ_MASK) == 0); 10173 10174 if (!is_pol_reset) { 10175 /* 10176 * If we couldn't load IPsec, fail with "protocol 10177 * not supported". 10178 * IPsec may not have been loaded for a request with zero 10179 * policies, so we don't fail in this case. 10180 */ 10181 mutex_enter(&ipss->ipsec_loader_lock); 10182 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 10183 mutex_exit(&ipss->ipsec_loader_lock); 10184 return (EPROTONOSUPPORT); 10185 } 10186 mutex_exit(&ipss->ipsec_loader_lock); 10187 10188 /* 10189 * Test for valid requests. Invalid algorithms 10190 * need to be tested by IPsec code because new 10191 * algorithms can be added dynamically. 10192 */ 10193 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10194 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10195 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 10196 return (EINVAL); 10197 } 10198 10199 /* 10200 * Only privileged users can issue these 10201 * requests. 10202 */ 10203 if (((ah_req & IPSEC_PREF_NEVER) || 10204 (esp_req & IPSEC_PREF_NEVER) || 10205 (se_req & IPSEC_PREF_NEVER)) && 10206 secpolicy_ip_config(cr, B_FALSE) != 0) { 10207 return (EPERM); 10208 } 10209 10210 /* 10211 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 10212 * are mutually exclusive. 10213 */ 10214 if (((ah_req & REQ_MASK) == REQ_MASK) || 10215 ((esp_req & REQ_MASK) == REQ_MASK) || 10216 ((se_req & REQ_MASK) == REQ_MASK)) { 10217 /* Both of them are set */ 10218 return (EINVAL); 10219 } 10220 } 10221 10222 mutex_enter(&connp->conn_lock); 10223 10224 /* 10225 * If we have already cached policies in ip_bind_connected*(), don't 10226 * let them change now. We cache policies for connections 10227 * whose src,dst [addr, port] is known. 10228 */ 10229 if (connp->conn_policy_cached) { 10230 mutex_exit(&connp->conn_lock); 10231 return (EINVAL); 10232 } 10233 10234 /* 10235 * We have a zero policies, reset the connection policy if already 10236 * set. This will cause the connection to inherit the 10237 * global policy, if any. 10238 */ 10239 if (is_pol_reset) { 10240 if (connp->conn_policy != NULL) { 10241 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 10242 connp->conn_policy = NULL; 10243 } 10244 connp->conn_flags &= ~IPCL_CHECK_POLICY; 10245 connp->conn_in_enforce_policy = B_FALSE; 10246 connp->conn_out_enforce_policy = B_FALSE; 10247 mutex_exit(&connp->conn_lock); 10248 return (0); 10249 } 10250 10251 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 10252 ipst->ips_netstack); 10253 if (ph == NULL) 10254 goto enomem; 10255 10256 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 10257 if (actp == NULL) 10258 goto enomem; 10259 10260 /* 10261 * Always allocate IPv4 policy entries, since they can also 10262 * apply to ipv6 sockets being used in ipv4-compat mode. 10263 */ 10264 bzero(&sel, sizeof (sel)); 10265 sel.ipsl_valid = IPSL_IPV4; 10266 10267 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10268 ipst->ips_netstack); 10269 if (pin4 == NULL) 10270 goto enomem; 10271 10272 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10273 ipst->ips_netstack); 10274 if (pout4 == NULL) 10275 goto enomem; 10276 10277 if (connp->conn_af_isv6) { 10278 /* 10279 * We're looking at a v6 socket, also allocate the 10280 * v6-specific entries... 10281 */ 10282 sel.ipsl_valid = IPSL_IPV6; 10283 pin6 = ipsec_policy_create(&sel, actp, nact, 10284 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10285 if (pin6 == NULL) 10286 goto enomem; 10287 10288 pout6 = ipsec_policy_create(&sel, actp, nact, 10289 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10290 if (pout6 == NULL) 10291 goto enomem; 10292 10293 /* 10294 * .. and file them away in the right place. 10295 */ 10296 fam = IPSEC_AF_V6; 10297 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10298 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 10299 ipsec_insert_always(&ph->iph_rulebyid, pin6); 10300 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10301 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 10302 ipsec_insert_always(&ph->iph_rulebyid, pout6); 10303 } 10304 10305 ipsec_actvec_free(actp, nact); 10306 10307 /* 10308 * File the v4 policies. 10309 */ 10310 fam = IPSEC_AF_V4; 10311 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10312 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 10313 ipsec_insert_always(&ph->iph_rulebyid, pin4); 10314 10315 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10316 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 10317 ipsec_insert_always(&ph->iph_rulebyid, pout4); 10318 10319 /* 10320 * If the requests need security, set enforce_policy. 10321 * If the requests are IPSEC_PREF_NEVER, one should 10322 * still set conn_out_enforce_policy so that an ipsec_out 10323 * gets attached in ip_wput. This is needed so that 10324 * for connections that we don't cache policy in ip_bind, 10325 * if global policy matches in ip_wput_attach_policy, we 10326 * don't wrongly inherit global policy. Similarly, we need 10327 * to set conn_in_enforce_policy also so that we don't verify 10328 * policy wrongly. 10329 */ 10330 if ((ah_req & REQ_MASK) != 0 || 10331 (esp_req & REQ_MASK) != 0 || 10332 (se_req & REQ_MASK) != 0) { 10333 connp->conn_in_enforce_policy = B_TRUE; 10334 connp->conn_out_enforce_policy = B_TRUE; 10335 connp->conn_flags |= IPCL_CHECK_POLICY; 10336 } 10337 10338 mutex_exit(&connp->conn_lock); 10339 return (error); 10340 #undef REQ_MASK 10341 10342 /* 10343 * Common memory-allocation-failure exit path. 10344 */ 10345 enomem: 10346 mutex_exit(&connp->conn_lock); 10347 if (actp != NULL) 10348 ipsec_actvec_free(actp, nact); 10349 if (pin4 != NULL) 10350 IPPOL_REFRELE(pin4, ipst->ips_netstack); 10351 if (pout4 != NULL) 10352 IPPOL_REFRELE(pout4, ipst->ips_netstack); 10353 if (pin6 != NULL) 10354 IPPOL_REFRELE(pin6, ipst->ips_netstack); 10355 if (pout6 != NULL) 10356 IPPOL_REFRELE(pout6, ipst->ips_netstack); 10357 return (ENOMEM); 10358 } 10359 10360 /* 10361 * Only for options that pass in an IP addr. Currently only V4 options 10362 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 10363 * So this function assumes level is IPPROTO_IP 10364 */ 10365 int 10366 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 10367 mblk_t *first_mp) 10368 { 10369 ipif_t *ipif = NULL; 10370 int error; 10371 ill_t *ill; 10372 int zoneid; 10373 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10374 10375 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 10376 10377 if (addr != INADDR_ANY || checkonly) { 10378 ASSERT(connp != NULL); 10379 zoneid = IPCL_ZONEID(connp); 10380 if (option == IP_NEXTHOP) { 10381 ipif = ipif_lookup_onlink_addr(addr, 10382 connp->conn_zoneid, ipst); 10383 } else { 10384 ipif = ipif_lookup_addr(addr, NULL, zoneid, 10385 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 10386 &error, ipst); 10387 } 10388 if (ipif == NULL) { 10389 if (error == EINPROGRESS) 10390 return (error); 10391 else if ((option == IP_MULTICAST_IF) || 10392 (option == IP_NEXTHOP)) 10393 return (EHOSTUNREACH); 10394 else 10395 return (EINVAL); 10396 } else if (checkonly) { 10397 if (option == IP_MULTICAST_IF) { 10398 ill = ipif->ipif_ill; 10399 /* not supported by the virtual network iface */ 10400 if (IS_VNI(ill)) { 10401 ipif_refrele(ipif); 10402 return (EINVAL); 10403 } 10404 } 10405 ipif_refrele(ipif); 10406 return (0); 10407 } 10408 ill = ipif->ipif_ill; 10409 mutex_enter(&connp->conn_lock); 10410 mutex_enter(&ill->ill_lock); 10411 if ((ill->ill_state_flags & ILL_CONDEMNED) || 10412 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 10413 mutex_exit(&ill->ill_lock); 10414 mutex_exit(&connp->conn_lock); 10415 ipif_refrele(ipif); 10416 return (option == IP_MULTICAST_IF ? 10417 EHOSTUNREACH : EINVAL); 10418 } 10419 } else { 10420 mutex_enter(&connp->conn_lock); 10421 } 10422 10423 /* None of the options below are supported on the VNI */ 10424 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 10425 mutex_exit(&ill->ill_lock); 10426 mutex_exit(&connp->conn_lock); 10427 ipif_refrele(ipif); 10428 return (EINVAL); 10429 } 10430 10431 switch (option) { 10432 case IP_DONTFAILOVER_IF: 10433 /* 10434 * This option is used by in.mpathd to ensure 10435 * that IPMP probe packets only go out on the 10436 * test interfaces. in.mpathd sets this option 10437 * on the non-failover interfaces. 10438 * For backward compatibility, this option 10439 * implicitly sets IP_MULTICAST_IF, as used 10440 * be done in bind(), so that ip_wput gets 10441 * this ipif to send mcast packets. 10442 */ 10443 if (ipif != NULL) { 10444 ASSERT(addr != INADDR_ANY); 10445 connp->conn_nofailover_ill = ipif->ipif_ill; 10446 connp->conn_multicast_ipif = ipif; 10447 } else { 10448 ASSERT(addr == INADDR_ANY); 10449 connp->conn_nofailover_ill = NULL; 10450 connp->conn_multicast_ipif = NULL; 10451 } 10452 break; 10453 10454 case IP_MULTICAST_IF: 10455 connp->conn_multicast_ipif = ipif; 10456 break; 10457 case IP_NEXTHOP: 10458 connp->conn_nexthop_v4 = addr; 10459 connp->conn_nexthop_set = B_TRUE; 10460 break; 10461 } 10462 10463 if (ipif != NULL) { 10464 mutex_exit(&ill->ill_lock); 10465 mutex_exit(&connp->conn_lock); 10466 ipif_refrele(ipif); 10467 return (0); 10468 } 10469 mutex_exit(&connp->conn_lock); 10470 /* We succeded in cleared the option */ 10471 return (0); 10472 } 10473 10474 /* 10475 * For options that pass in an ifindex specifying the ill. V6 options always 10476 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 10477 */ 10478 int 10479 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 10480 int level, int option, mblk_t *first_mp) 10481 { 10482 ill_t *ill = NULL; 10483 int error = 0; 10484 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10485 10486 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 10487 if (ifindex != 0) { 10488 ASSERT(connp != NULL); 10489 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 10490 first_mp, ip_restart_optmgmt, &error, ipst); 10491 if (ill != NULL) { 10492 if (checkonly) { 10493 /* not supported by the virtual network iface */ 10494 if (IS_VNI(ill)) { 10495 ill_refrele(ill); 10496 return (EINVAL); 10497 } 10498 ill_refrele(ill); 10499 return (0); 10500 } 10501 if (!ipif_lookup_zoneid_group(ill, connp->conn_zoneid, 10502 0, NULL)) { 10503 ill_refrele(ill); 10504 ill = NULL; 10505 mutex_enter(&connp->conn_lock); 10506 goto setit; 10507 } 10508 mutex_enter(&connp->conn_lock); 10509 mutex_enter(&ill->ill_lock); 10510 if (ill->ill_state_flags & ILL_CONDEMNED) { 10511 mutex_exit(&ill->ill_lock); 10512 mutex_exit(&connp->conn_lock); 10513 ill_refrele(ill); 10514 ill = NULL; 10515 mutex_enter(&connp->conn_lock); 10516 } 10517 goto setit; 10518 } else if (error == EINPROGRESS) { 10519 return (error); 10520 } else { 10521 error = 0; 10522 } 10523 } 10524 mutex_enter(&connp->conn_lock); 10525 setit: 10526 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 10527 10528 /* 10529 * The options below assume that the ILL (if any) transmits and/or 10530 * receives traffic. Neither of which is true for the virtual network 10531 * interface, so fail setting these on a VNI. 10532 */ 10533 if (IS_VNI(ill)) { 10534 ASSERT(ill != NULL); 10535 mutex_exit(&ill->ill_lock); 10536 mutex_exit(&connp->conn_lock); 10537 ill_refrele(ill); 10538 return (EINVAL); 10539 } 10540 10541 if (level == IPPROTO_IP) { 10542 switch (option) { 10543 case IP_BOUND_IF: 10544 connp->conn_incoming_ill = ill; 10545 connp->conn_outgoing_ill = ill; 10546 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10547 0 : ifindex; 10548 break; 10549 10550 case IP_MULTICAST_IF: 10551 /* 10552 * This option is an internal special. The socket 10553 * level IP_MULTICAST_IF specifies an 'ipaddr' and 10554 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 10555 * specifies an ifindex and we try first on V6 ill's. 10556 * If we don't find one, we they try using on v4 ill's 10557 * intenally and we come here. 10558 */ 10559 if (!checkonly && ill != NULL) { 10560 ipif_t *ipif; 10561 ipif = ill->ill_ipif; 10562 10563 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 10564 mutex_exit(&ill->ill_lock); 10565 mutex_exit(&connp->conn_lock); 10566 ill_refrele(ill); 10567 ill = NULL; 10568 mutex_enter(&connp->conn_lock); 10569 } else { 10570 connp->conn_multicast_ipif = ipif; 10571 } 10572 } 10573 break; 10574 10575 case IP_DHCPINIT_IF: 10576 if (connp->conn_dhcpinit_ill != NULL) { 10577 /* 10578 * We've locked the conn so conn_cleanup_ill() 10579 * cannot clear conn_dhcpinit_ill -- so it's 10580 * safe to access the ill. 10581 */ 10582 ill_t *oill = connp->conn_dhcpinit_ill; 10583 10584 ASSERT(oill->ill_dhcpinit != 0); 10585 atomic_dec_32(&oill->ill_dhcpinit); 10586 connp->conn_dhcpinit_ill = NULL; 10587 } 10588 10589 if (ill != NULL) { 10590 connp->conn_dhcpinit_ill = ill; 10591 atomic_inc_32(&ill->ill_dhcpinit); 10592 } 10593 break; 10594 } 10595 } else { 10596 switch (option) { 10597 case IPV6_BOUND_IF: 10598 connp->conn_incoming_ill = ill; 10599 connp->conn_outgoing_ill = ill; 10600 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10601 0 : ifindex; 10602 break; 10603 10604 case IPV6_BOUND_PIF: 10605 /* 10606 * Limit all transmit to this ill. 10607 * Unlike IPV6_BOUND_IF, using this option 10608 * prevents load spreading and failover from 10609 * happening when the interface is part of the 10610 * group. That's why we don't need to remember 10611 * the ifindex in orig_bound_ifindex as in 10612 * IPV6_BOUND_IF. 10613 */ 10614 connp->conn_outgoing_pill = ill; 10615 break; 10616 10617 case IPV6_DONTFAILOVER_IF: 10618 /* 10619 * This option is used by in.mpathd to ensure 10620 * that IPMP probe packets only go out on the 10621 * test interfaces. in.mpathd sets this option 10622 * on the non-failover interfaces. 10623 */ 10624 connp->conn_nofailover_ill = ill; 10625 /* 10626 * For backward compatibility, this option 10627 * implicitly sets ip_multicast_ill as used in 10628 * IPV6_MULTICAST_IF so that ip_wput gets 10629 * this ill to send mcast packets. 10630 */ 10631 connp->conn_multicast_ill = ill; 10632 connp->conn_orig_multicast_ifindex = (ill == NULL) ? 10633 0 : ifindex; 10634 break; 10635 10636 case IPV6_MULTICAST_IF: 10637 /* 10638 * Set conn_multicast_ill to be the IPv6 ill. 10639 * Set conn_multicast_ipif to be an IPv4 ipif 10640 * for ifindex to make IPv4 mapped addresses 10641 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 10642 * Even if no IPv6 ill exists for the ifindex 10643 * we need to check for an IPv4 ifindex in order 10644 * for this to work with mapped addresses. In that 10645 * case only set conn_multicast_ipif. 10646 */ 10647 if (!checkonly) { 10648 if (ifindex == 0) { 10649 connp->conn_multicast_ill = NULL; 10650 connp->conn_orig_multicast_ifindex = 0; 10651 connp->conn_multicast_ipif = NULL; 10652 } else if (ill != NULL) { 10653 connp->conn_multicast_ill = ill; 10654 connp->conn_orig_multicast_ifindex = 10655 ifindex; 10656 } 10657 } 10658 break; 10659 } 10660 } 10661 10662 if (ill != NULL) { 10663 mutex_exit(&ill->ill_lock); 10664 mutex_exit(&connp->conn_lock); 10665 ill_refrele(ill); 10666 return (0); 10667 } 10668 mutex_exit(&connp->conn_lock); 10669 /* 10670 * We succeeded in clearing the option (ifindex == 0) or failed to 10671 * locate the ill and could not set the option (ifindex != 0) 10672 */ 10673 return (ifindex == 0 ? 0 : EINVAL); 10674 } 10675 10676 /* This routine sets socket options. */ 10677 /* ARGSUSED */ 10678 int 10679 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10680 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10681 void *dummy, cred_t *cr, mblk_t *first_mp) 10682 { 10683 int *i1 = (int *)invalp; 10684 conn_t *connp = Q_TO_CONN(q); 10685 int error = 0; 10686 boolean_t checkonly; 10687 ire_t *ire; 10688 boolean_t found; 10689 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10690 10691 switch (optset_context) { 10692 10693 case SETFN_OPTCOM_CHECKONLY: 10694 checkonly = B_TRUE; 10695 /* 10696 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10697 * inlen != 0 implies value supplied and 10698 * we have to "pretend" to set it. 10699 * inlen == 0 implies that there is no 10700 * value part in T_CHECK request and just validation 10701 * done elsewhere should be enough, we just return here. 10702 */ 10703 if (inlen == 0) { 10704 *outlenp = 0; 10705 return (0); 10706 } 10707 break; 10708 case SETFN_OPTCOM_NEGOTIATE: 10709 case SETFN_UD_NEGOTIATE: 10710 case SETFN_CONN_NEGOTIATE: 10711 checkonly = B_FALSE; 10712 break; 10713 default: 10714 /* 10715 * We should never get here 10716 */ 10717 *outlenp = 0; 10718 return (EINVAL); 10719 } 10720 10721 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10722 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10723 10724 /* 10725 * For fixed length options, no sanity check 10726 * of passed in length is done. It is assumed *_optcom_req() 10727 * routines do the right thing. 10728 */ 10729 10730 switch (level) { 10731 case SOL_SOCKET: 10732 /* 10733 * conn_lock protects the bitfields, and is used to 10734 * set the fields atomically. 10735 */ 10736 switch (name) { 10737 case SO_BROADCAST: 10738 if (!checkonly) { 10739 /* TODO: use value someplace? */ 10740 mutex_enter(&connp->conn_lock); 10741 connp->conn_broadcast = *i1 ? 1 : 0; 10742 mutex_exit(&connp->conn_lock); 10743 } 10744 break; /* goto sizeof (int) option return */ 10745 case SO_USELOOPBACK: 10746 if (!checkonly) { 10747 /* TODO: use value someplace? */ 10748 mutex_enter(&connp->conn_lock); 10749 connp->conn_loopback = *i1 ? 1 : 0; 10750 mutex_exit(&connp->conn_lock); 10751 } 10752 break; /* goto sizeof (int) option return */ 10753 case SO_DONTROUTE: 10754 if (!checkonly) { 10755 mutex_enter(&connp->conn_lock); 10756 connp->conn_dontroute = *i1 ? 1 : 0; 10757 mutex_exit(&connp->conn_lock); 10758 } 10759 break; /* goto sizeof (int) option return */ 10760 case SO_REUSEADDR: 10761 if (!checkonly) { 10762 mutex_enter(&connp->conn_lock); 10763 connp->conn_reuseaddr = *i1 ? 1 : 0; 10764 mutex_exit(&connp->conn_lock); 10765 } 10766 break; /* goto sizeof (int) option return */ 10767 case SO_PROTOTYPE: 10768 if (!checkonly) { 10769 mutex_enter(&connp->conn_lock); 10770 connp->conn_proto = *i1; 10771 mutex_exit(&connp->conn_lock); 10772 } 10773 break; /* goto sizeof (int) option return */ 10774 case SO_ALLZONES: 10775 if (!checkonly) { 10776 mutex_enter(&connp->conn_lock); 10777 if (IPCL_IS_BOUND(connp)) { 10778 mutex_exit(&connp->conn_lock); 10779 return (EINVAL); 10780 } 10781 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10782 mutex_exit(&connp->conn_lock); 10783 } 10784 break; /* goto sizeof (int) option return */ 10785 case SO_ANON_MLP: 10786 if (!checkonly) { 10787 mutex_enter(&connp->conn_lock); 10788 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10789 mutex_exit(&connp->conn_lock); 10790 } 10791 break; /* goto sizeof (int) option return */ 10792 case SO_MAC_EXEMPT: 10793 if (secpolicy_net_mac_aware(cr) != 0 || 10794 IPCL_IS_BOUND(connp)) 10795 return (EACCES); 10796 if (!checkonly) { 10797 mutex_enter(&connp->conn_lock); 10798 connp->conn_mac_exempt = *i1 != 0 ? 1 : 0; 10799 mutex_exit(&connp->conn_lock); 10800 } 10801 break; /* goto sizeof (int) option return */ 10802 default: 10803 /* 10804 * "soft" error (negative) 10805 * option not handled at this level 10806 * Note: Do not modify *outlenp 10807 */ 10808 return (-EINVAL); 10809 } 10810 break; 10811 case IPPROTO_IP: 10812 switch (name) { 10813 case IP_NEXTHOP: 10814 if (secpolicy_ip_config(cr, B_FALSE) != 0) 10815 return (EPERM); 10816 /* FALLTHRU */ 10817 case IP_MULTICAST_IF: 10818 case IP_DONTFAILOVER_IF: { 10819 ipaddr_t addr = *i1; 10820 10821 error = ip_opt_set_ipif(connp, addr, checkonly, name, 10822 first_mp); 10823 if (error != 0) 10824 return (error); 10825 break; /* goto sizeof (int) option return */ 10826 } 10827 10828 case IP_MULTICAST_TTL: 10829 /* Recorded in transport above IP */ 10830 *outvalp = *invalp; 10831 *outlenp = sizeof (uchar_t); 10832 return (0); 10833 case IP_MULTICAST_LOOP: 10834 if (!checkonly) { 10835 mutex_enter(&connp->conn_lock); 10836 connp->conn_multicast_loop = *invalp ? 1 : 0; 10837 mutex_exit(&connp->conn_lock); 10838 } 10839 *outvalp = *invalp; 10840 *outlenp = sizeof (uchar_t); 10841 return (0); 10842 case IP_ADD_MEMBERSHIP: 10843 case MCAST_JOIN_GROUP: 10844 case IP_DROP_MEMBERSHIP: 10845 case MCAST_LEAVE_GROUP: { 10846 struct ip_mreq *mreqp; 10847 struct group_req *greqp; 10848 ire_t *ire; 10849 boolean_t done = B_FALSE; 10850 ipaddr_t group, ifaddr; 10851 struct sockaddr_in *sin; 10852 uint32_t *ifindexp; 10853 boolean_t mcast_opt = B_TRUE; 10854 mcast_record_t fmode; 10855 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10856 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10857 10858 switch (name) { 10859 case IP_ADD_MEMBERSHIP: 10860 mcast_opt = B_FALSE; 10861 /* FALLTHRU */ 10862 case MCAST_JOIN_GROUP: 10863 fmode = MODE_IS_EXCLUDE; 10864 optfn = ip_opt_add_group; 10865 break; 10866 10867 case IP_DROP_MEMBERSHIP: 10868 mcast_opt = B_FALSE; 10869 /* FALLTHRU */ 10870 case MCAST_LEAVE_GROUP: 10871 fmode = MODE_IS_INCLUDE; 10872 optfn = ip_opt_delete_group; 10873 break; 10874 } 10875 10876 if (mcast_opt) { 10877 greqp = (struct group_req *)i1; 10878 sin = (struct sockaddr_in *)&greqp->gr_group; 10879 if (sin->sin_family != AF_INET) { 10880 *outlenp = 0; 10881 return (ENOPROTOOPT); 10882 } 10883 group = (ipaddr_t)sin->sin_addr.s_addr; 10884 ifaddr = INADDR_ANY; 10885 ifindexp = &greqp->gr_interface; 10886 } else { 10887 mreqp = (struct ip_mreq *)i1; 10888 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 10889 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 10890 ifindexp = NULL; 10891 } 10892 10893 /* 10894 * In the multirouting case, we need to replicate 10895 * the request on all interfaces that will take part 10896 * in replication. We do so because multirouting is 10897 * reflective, thus we will probably receive multi- 10898 * casts on those interfaces. 10899 * The ip_multirt_apply_membership() succeeds if the 10900 * operation succeeds on at least one interface. 10901 */ 10902 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 10903 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10904 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10905 if (ire != NULL) { 10906 if (ire->ire_flags & RTF_MULTIRT) { 10907 error = ip_multirt_apply_membership( 10908 optfn, ire, connp, checkonly, group, 10909 fmode, INADDR_ANY, first_mp); 10910 done = B_TRUE; 10911 } 10912 ire_refrele(ire); 10913 } 10914 if (!done) { 10915 error = optfn(connp, checkonly, group, ifaddr, 10916 ifindexp, fmode, INADDR_ANY, first_mp); 10917 } 10918 if (error) { 10919 /* 10920 * EINPROGRESS is a soft error, needs retry 10921 * so don't make *outlenp zero. 10922 */ 10923 if (error != EINPROGRESS) 10924 *outlenp = 0; 10925 return (error); 10926 } 10927 /* OK return - copy input buffer into output buffer */ 10928 if (invalp != outvalp) { 10929 /* don't trust bcopy for identical src/dst */ 10930 bcopy(invalp, outvalp, inlen); 10931 } 10932 *outlenp = inlen; 10933 return (0); 10934 } 10935 case IP_BLOCK_SOURCE: 10936 case IP_UNBLOCK_SOURCE: 10937 case IP_ADD_SOURCE_MEMBERSHIP: 10938 case IP_DROP_SOURCE_MEMBERSHIP: 10939 case MCAST_BLOCK_SOURCE: 10940 case MCAST_UNBLOCK_SOURCE: 10941 case MCAST_JOIN_SOURCE_GROUP: 10942 case MCAST_LEAVE_SOURCE_GROUP: { 10943 struct ip_mreq_source *imreqp; 10944 struct group_source_req *gsreqp; 10945 in_addr_t grp, src, ifaddr = INADDR_ANY; 10946 uint32_t ifindex = 0; 10947 mcast_record_t fmode; 10948 struct sockaddr_in *sin; 10949 ire_t *ire; 10950 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 10951 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10952 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10953 10954 switch (name) { 10955 case IP_BLOCK_SOURCE: 10956 mcast_opt = B_FALSE; 10957 /* FALLTHRU */ 10958 case MCAST_BLOCK_SOURCE: 10959 fmode = MODE_IS_EXCLUDE; 10960 optfn = ip_opt_add_group; 10961 break; 10962 10963 case IP_UNBLOCK_SOURCE: 10964 mcast_opt = B_FALSE; 10965 /* FALLTHRU */ 10966 case MCAST_UNBLOCK_SOURCE: 10967 fmode = MODE_IS_EXCLUDE; 10968 optfn = ip_opt_delete_group; 10969 break; 10970 10971 case IP_ADD_SOURCE_MEMBERSHIP: 10972 mcast_opt = B_FALSE; 10973 /* FALLTHRU */ 10974 case MCAST_JOIN_SOURCE_GROUP: 10975 fmode = MODE_IS_INCLUDE; 10976 optfn = ip_opt_add_group; 10977 break; 10978 10979 case IP_DROP_SOURCE_MEMBERSHIP: 10980 mcast_opt = B_FALSE; 10981 /* FALLTHRU */ 10982 case MCAST_LEAVE_SOURCE_GROUP: 10983 fmode = MODE_IS_INCLUDE; 10984 optfn = ip_opt_delete_group; 10985 break; 10986 } 10987 10988 if (mcast_opt) { 10989 gsreqp = (struct group_source_req *)i1; 10990 if (gsreqp->gsr_group.ss_family != AF_INET) { 10991 *outlenp = 0; 10992 return (ENOPROTOOPT); 10993 } 10994 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 10995 grp = (ipaddr_t)sin->sin_addr.s_addr; 10996 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 10997 src = (ipaddr_t)sin->sin_addr.s_addr; 10998 ifindex = gsreqp->gsr_interface; 10999 } else { 11000 imreqp = (struct ip_mreq_source *)i1; 11001 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 11002 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 11003 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 11004 } 11005 11006 /* 11007 * In the multirouting case, we need to replicate 11008 * the request as noted in the mcast cases above. 11009 */ 11010 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 11011 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11012 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11013 if (ire != NULL) { 11014 if (ire->ire_flags & RTF_MULTIRT) { 11015 error = ip_multirt_apply_membership( 11016 optfn, ire, connp, checkonly, grp, 11017 fmode, src, first_mp); 11018 done = B_TRUE; 11019 } 11020 ire_refrele(ire); 11021 } 11022 if (!done) { 11023 error = optfn(connp, checkonly, grp, ifaddr, 11024 &ifindex, fmode, src, first_mp); 11025 } 11026 if (error != 0) { 11027 /* 11028 * EINPROGRESS is a soft error, needs retry 11029 * so don't make *outlenp zero. 11030 */ 11031 if (error != EINPROGRESS) 11032 *outlenp = 0; 11033 return (error); 11034 } 11035 /* OK return - copy input buffer into output buffer */ 11036 if (invalp != outvalp) { 11037 bcopy(invalp, outvalp, inlen); 11038 } 11039 *outlenp = inlen; 11040 return (0); 11041 } 11042 case IP_SEC_OPT: 11043 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11044 if (error != 0) { 11045 *outlenp = 0; 11046 return (error); 11047 } 11048 break; 11049 case IP_HDRINCL: 11050 case IP_OPTIONS: 11051 case T_IP_OPTIONS: 11052 case IP_TOS: 11053 case T_IP_TOS: 11054 case IP_TTL: 11055 case IP_RECVDSTADDR: 11056 case IP_RECVOPTS: 11057 /* OK return - copy input buffer into output buffer */ 11058 if (invalp != outvalp) { 11059 /* don't trust bcopy for identical src/dst */ 11060 bcopy(invalp, outvalp, inlen); 11061 } 11062 *outlenp = inlen; 11063 return (0); 11064 case IP_RECVIF: 11065 /* Retrieve the inbound interface index */ 11066 if (!checkonly) { 11067 mutex_enter(&connp->conn_lock); 11068 connp->conn_recvif = *i1 ? 1 : 0; 11069 mutex_exit(&connp->conn_lock); 11070 } 11071 break; /* goto sizeof (int) option return */ 11072 case IP_RECVPKTINFO: 11073 if (!checkonly) { 11074 mutex_enter(&connp->conn_lock); 11075 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11076 mutex_exit(&connp->conn_lock); 11077 } 11078 break; /* goto sizeof (int) option return */ 11079 case IP_RECVSLLA: 11080 /* Retrieve the source link layer address */ 11081 if (!checkonly) { 11082 mutex_enter(&connp->conn_lock); 11083 connp->conn_recvslla = *i1 ? 1 : 0; 11084 mutex_exit(&connp->conn_lock); 11085 } 11086 break; /* goto sizeof (int) option return */ 11087 case MRT_INIT: 11088 case MRT_DONE: 11089 case MRT_ADD_VIF: 11090 case MRT_DEL_VIF: 11091 case MRT_ADD_MFC: 11092 case MRT_DEL_MFC: 11093 case MRT_ASSERT: 11094 if ((error = secpolicy_ip_config(cr, B_FALSE)) != 0) { 11095 *outlenp = 0; 11096 return (error); 11097 } 11098 error = ip_mrouter_set((int)name, q, checkonly, 11099 (uchar_t *)invalp, inlen, first_mp); 11100 if (error) { 11101 *outlenp = 0; 11102 return (error); 11103 } 11104 /* OK return - copy input buffer into output buffer */ 11105 if (invalp != outvalp) { 11106 /* don't trust bcopy for identical src/dst */ 11107 bcopy(invalp, outvalp, inlen); 11108 } 11109 *outlenp = inlen; 11110 return (0); 11111 case IP_BOUND_IF: 11112 case IP_DHCPINIT_IF: 11113 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11114 level, name, first_mp); 11115 if (error != 0) 11116 return (error); 11117 break; /* goto sizeof (int) option return */ 11118 11119 case IP_UNSPEC_SRC: 11120 /* Allow sending with a zero source address */ 11121 if (!checkonly) { 11122 mutex_enter(&connp->conn_lock); 11123 connp->conn_unspec_src = *i1 ? 1 : 0; 11124 mutex_exit(&connp->conn_lock); 11125 } 11126 break; /* goto sizeof (int) option return */ 11127 default: 11128 /* 11129 * "soft" error (negative) 11130 * option not handled at this level 11131 * Note: Do not modify *outlenp 11132 */ 11133 return (-EINVAL); 11134 } 11135 break; 11136 case IPPROTO_IPV6: 11137 switch (name) { 11138 case IPV6_BOUND_IF: 11139 case IPV6_BOUND_PIF: 11140 case IPV6_DONTFAILOVER_IF: 11141 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11142 level, name, first_mp); 11143 if (error != 0) 11144 return (error); 11145 break; /* goto sizeof (int) option return */ 11146 11147 case IPV6_MULTICAST_IF: 11148 /* 11149 * The only possible errors are EINPROGRESS and 11150 * EINVAL. EINPROGRESS will be restarted and is not 11151 * a hard error. We call this option on both V4 and V6 11152 * If both return EINVAL, then this call returns 11153 * EINVAL. If at least one of them succeeds we 11154 * return success. 11155 */ 11156 found = B_FALSE; 11157 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11158 level, name, first_mp); 11159 if (error == EINPROGRESS) 11160 return (error); 11161 if (error == 0) 11162 found = B_TRUE; 11163 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11164 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 11165 if (error == 0) 11166 found = B_TRUE; 11167 if (!found) 11168 return (error); 11169 break; /* goto sizeof (int) option return */ 11170 11171 case IPV6_MULTICAST_HOPS: 11172 /* Recorded in transport above IP */ 11173 break; /* goto sizeof (int) option return */ 11174 case IPV6_MULTICAST_LOOP: 11175 if (!checkonly) { 11176 mutex_enter(&connp->conn_lock); 11177 connp->conn_multicast_loop = *i1; 11178 mutex_exit(&connp->conn_lock); 11179 } 11180 break; /* goto sizeof (int) option return */ 11181 case IPV6_JOIN_GROUP: 11182 case MCAST_JOIN_GROUP: 11183 case IPV6_LEAVE_GROUP: 11184 case MCAST_LEAVE_GROUP: { 11185 struct ipv6_mreq *ip_mreqp; 11186 struct group_req *greqp; 11187 ire_t *ire; 11188 boolean_t done = B_FALSE; 11189 in6_addr_t groupv6; 11190 uint32_t ifindex; 11191 boolean_t mcast_opt = B_TRUE; 11192 mcast_record_t fmode; 11193 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11194 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11195 11196 switch (name) { 11197 case IPV6_JOIN_GROUP: 11198 mcast_opt = B_FALSE; 11199 /* FALLTHRU */ 11200 case MCAST_JOIN_GROUP: 11201 fmode = MODE_IS_EXCLUDE; 11202 optfn = ip_opt_add_group_v6; 11203 break; 11204 11205 case IPV6_LEAVE_GROUP: 11206 mcast_opt = B_FALSE; 11207 /* FALLTHRU */ 11208 case MCAST_LEAVE_GROUP: 11209 fmode = MODE_IS_INCLUDE; 11210 optfn = ip_opt_delete_group_v6; 11211 break; 11212 } 11213 11214 if (mcast_opt) { 11215 struct sockaddr_in *sin; 11216 struct sockaddr_in6 *sin6; 11217 greqp = (struct group_req *)i1; 11218 if (greqp->gr_group.ss_family == AF_INET) { 11219 sin = (struct sockaddr_in *) 11220 &(greqp->gr_group); 11221 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 11222 &groupv6); 11223 } else { 11224 sin6 = (struct sockaddr_in6 *) 11225 &(greqp->gr_group); 11226 groupv6 = sin6->sin6_addr; 11227 } 11228 ifindex = greqp->gr_interface; 11229 } else { 11230 ip_mreqp = (struct ipv6_mreq *)i1; 11231 groupv6 = ip_mreqp->ipv6mr_multiaddr; 11232 ifindex = ip_mreqp->ipv6mr_interface; 11233 } 11234 /* 11235 * In the multirouting case, we need to replicate 11236 * the request on all interfaces that will take part 11237 * in replication. We do so because multirouting is 11238 * reflective, thus we will probably receive multi- 11239 * casts on those interfaces. 11240 * The ip_multirt_apply_membership_v6() succeeds if 11241 * the operation succeeds on at least one interface. 11242 */ 11243 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 11244 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11245 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11246 if (ire != NULL) { 11247 if (ire->ire_flags & RTF_MULTIRT) { 11248 error = ip_multirt_apply_membership_v6( 11249 optfn, ire, connp, checkonly, 11250 &groupv6, fmode, &ipv6_all_zeros, 11251 first_mp); 11252 done = B_TRUE; 11253 } 11254 ire_refrele(ire); 11255 } 11256 if (!done) { 11257 error = optfn(connp, checkonly, &groupv6, 11258 ifindex, fmode, &ipv6_all_zeros, first_mp); 11259 } 11260 if (error) { 11261 /* 11262 * EINPROGRESS is a soft error, needs retry 11263 * so don't make *outlenp zero. 11264 */ 11265 if (error != EINPROGRESS) 11266 *outlenp = 0; 11267 return (error); 11268 } 11269 /* OK return - copy input buffer into output buffer */ 11270 if (invalp != outvalp) { 11271 /* don't trust bcopy for identical src/dst */ 11272 bcopy(invalp, outvalp, inlen); 11273 } 11274 *outlenp = inlen; 11275 return (0); 11276 } 11277 case MCAST_BLOCK_SOURCE: 11278 case MCAST_UNBLOCK_SOURCE: 11279 case MCAST_JOIN_SOURCE_GROUP: 11280 case MCAST_LEAVE_SOURCE_GROUP: { 11281 struct group_source_req *gsreqp; 11282 in6_addr_t v6grp, v6src; 11283 uint32_t ifindex; 11284 mcast_record_t fmode; 11285 ire_t *ire; 11286 boolean_t done = B_FALSE; 11287 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11288 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11289 11290 switch (name) { 11291 case MCAST_BLOCK_SOURCE: 11292 fmode = MODE_IS_EXCLUDE; 11293 optfn = ip_opt_add_group_v6; 11294 break; 11295 case MCAST_UNBLOCK_SOURCE: 11296 fmode = MODE_IS_EXCLUDE; 11297 optfn = ip_opt_delete_group_v6; 11298 break; 11299 case MCAST_JOIN_SOURCE_GROUP: 11300 fmode = MODE_IS_INCLUDE; 11301 optfn = ip_opt_add_group_v6; 11302 break; 11303 case MCAST_LEAVE_SOURCE_GROUP: 11304 fmode = MODE_IS_INCLUDE; 11305 optfn = ip_opt_delete_group_v6; 11306 break; 11307 } 11308 11309 gsreqp = (struct group_source_req *)i1; 11310 ifindex = gsreqp->gsr_interface; 11311 if (gsreqp->gsr_group.ss_family == AF_INET) { 11312 struct sockaddr_in *s; 11313 s = (struct sockaddr_in *)&gsreqp->gsr_group; 11314 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 11315 s = (struct sockaddr_in *)&gsreqp->gsr_source; 11316 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 11317 } else { 11318 struct sockaddr_in6 *s6; 11319 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 11320 v6grp = s6->sin6_addr; 11321 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 11322 v6src = s6->sin6_addr; 11323 } 11324 11325 /* 11326 * In the multirouting case, we need to replicate 11327 * the request as noted in the mcast cases above. 11328 */ 11329 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 11330 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11331 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11332 if (ire != NULL) { 11333 if (ire->ire_flags & RTF_MULTIRT) { 11334 error = ip_multirt_apply_membership_v6( 11335 optfn, ire, connp, checkonly, 11336 &v6grp, fmode, &v6src, first_mp); 11337 done = B_TRUE; 11338 } 11339 ire_refrele(ire); 11340 } 11341 if (!done) { 11342 error = optfn(connp, checkonly, &v6grp, 11343 ifindex, fmode, &v6src, first_mp); 11344 } 11345 if (error != 0) { 11346 /* 11347 * EINPROGRESS is a soft error, needs retry 11348 * so don't make *outlenp zero. 11349 */ 11350 if (error != EINPROGRESS) 11351 *outlenp = 0; 11352 return (error); 11353 } 11354 /* OK return - copy input buffer into output buffer */ 11355 if (invalp != outvalp) { 11356 bcopy(invalp, outvalp, inlen); 11357 } 11358 *outlenp = inlen; 11359 return (0); 11360 } 11361 case IPV6_UNICAST_HOPS: 11362 /* Recorded in transport above IP */ 11363 break; /* goto sizeof (int) option return */ 11364 case IPV6_UNSPEC_SRC: 11365 /* Allow sending with a zero source address */ 11366 if (!checkonly) { 11367 mutex_enter(&connp->conn_lock); 11368 connp->conn_unspec_src = *i1 ? 1 : 0; 11369 mutex_exit(&connp->conn_lock); 11370 } 11371 break; /* goto sizeof (int) option return */ 11372 case IPV6_RECVPKTINFO: 11373 if (!checkonly) { 11374 mutex_enter(&connp->conn_lock); 11375 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11376 mutex_exit(&connp->conn_lock); 11377 } 11378 break; /* goto sizeof (int) option return */ 11379 case IPV6_RECVTCLASS: 11380 if (!checkonly) { 11381 if (*i1 < 0 || *i1 > 1) { 11382 return (EINVAL); 11383 } 11384 mutex_enter(&connp->conn_lock); 11385 connp->conn_ipv6_recvtclass = *i1; 11386 mutex_exit(&connp->conn_lock); 11387 } 11388 break; 11389 case IPV6_RECVPATHMTU: 11390 if (!checkonly) { 11391 if (*i1 < 0 || *i1 > 1) { 11392 return (EINVAL); 11393 } 11394 mutex_enter(&connp->conn_lock); 11395 connp->conn_ipv6_recvpathmtu = *i1; 11396 mutex_exit(&connp->conn_lock); 11397 } 11398 break; 11399 case IPV6_RECVHOPLIMIT: 11400 if (!checkonly) { 11401 mutex_enter(&connp->conn_lock); 11402 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 11403 mutex_exit(&connp->conn_lock); 11404 } 11405 break; /* goto sizeof (int) option return */ 11406 case IPV6_RECVHOPOPTS: 11407 if (!checkonly) { 11408 mutex_enter(&connp->conn_lock); 11409 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 11410 mutex_exit(&connp->conn_lock); 11411 } 11412 break; /* goto sizeof (int) option return */ 11413 case IPV6_RECVDSTOPTS: 11414 if (!checkonly) { 11415 mutex_enter(&connp->conn_lock); 11416 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 11417 mutex_exit(&connp->conn_lock); 11418 } 11419 break; /* goto sizeof (int) option return */ 11420 case IPV6_RECVRTHDR: 11421 if (!checkonly) { 11422 mutex_enter(&connp->conn_lock); 11423 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 11424 mutex_exit(&connp->conn_lock); 11425 } 11426 break; /* goto sizeof (int) option return */ 11427 case IPV6_RECVRTHDRDSTOPTS: 11428 if (!checkonly) { 11429 mutex_enter(&connp->conn_lock); 11430 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 11431 mutex_exit(&connp->conn_lock); 11432 } 11433 break; /* goto sizeof (int) option return */ 11434 case IPV6_PKTINFO: 11435 if (inlen == 0) 11436 return (-EINVAL); /* clearing option */ 11437 error = ip6_set_pktinfo(cr, connp, 11438 (struct in6_pktinfo *)invalp, first_mp); 11439 if (error != 0) 11440 *outlenp = 0; 11441 else 11442 *outlenp = inlen; 11443 return (error); 11444 case IPV6_NEXTHOP: { 11445 struct sockaddr_in6 *sin6; 11446 11447 /* Verify that the nexthop is reachable */ 11448 if (inlen == 0) 11449 return (-EINVAL); /* clearing option */ 11450 11451 sin6 = (struct sockaddr_in6 *)invalp; 11452 ire = ire_route_lookup_v6(&sin6->sin6_addr, 11453 0, 0, 0, NULL, NULL, connp->conn_zoneid, 11454 NULL, MATCH_IRE_DEFAULT, ipst); 11455 11456 if (ire == NULL) { 11457 *outlenp = 0; 11458 return (EHOSTUNREACH); 11459 } 11460 ire_refrele(ire); 11461 return (-EINVAL); 11462 } 11463 case IPV6_SEC_OPT: 11464 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11465 if (error != 0) { 11466 *outlenp = 0; 11467 return (error); 11468 } 11469 break; 11470 case IPV6_SRC_PREFERENCES: { 11471 /* 11472 * This is implemented strictly in the ip module 11473 * (here and in tcp_opt_*() to accomodate tcp 11474 * sockets). Modules above ip pass this option 11475 * down here since ip is the only one that needs to 11476 * be aware of source address preferences. 11477 * 11478 * This socket option only affects connected 11479 * sockets that haven't already bound to a specific 11480 * IPv6 address. In other words, sockets that 11481 * don't call bind() with an address other than the 11482 * unspecified address and that call connect(). 11483 * ip_bind_connected_v6() passes these preferences 11484 * to the ipif_select_source_v6() function. 11485 */ 11486 if (inlen != sizeof (uint32_t)) 11487 return (EINVAL); 11488 error = ip6_set_src_preferences(connp, 11489 *(uint32_t *)invalp); 11490 if (error != 0) { 11491 *outlenp = 0; 11492 return (error); 11493 } else { 11494 *outlenp = sizeof (uint32_t); 11495 } 11496 break; 11497 } 11498 case IPV6_V6ONLY: 11499 if (*i1 < 0 || *i1 > 1) { 11500 return (EINVAL); 11501 } 11502 mutex_enter(&connp->conn_lock); 11503 connp->conn_ipv6_v6only = *i1; 11504 mutex_exit(&connp->conn_lock); 11505 break; 11506 default: 11507 return (-EINVAL); 11508 } 11509 break; 11510 default: 11511 /* 11512 * "soft" error (negative) 11513 * option not handled at this level 11514 * Note: Do not modify *outlenp 11515 */ 11516 return (-EINVAL); 11517 } 11518 /* 11519 * Common case of return from an option that is sizeof (int) 11520 */ 11521 *(int *)outvalp = *i1; 11522 *outlenp = sizeof (int); 11523 return (0); 11524 } 11525 11526 /* 11527 * This routine gets default values of certain options whose default 11528 * values are maintained by protocol specific code 11529 */ 11530 /* ARGSUSED */ 11531 int 11532 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 11533 { 11534 int *i1 = (int *)ptr; 11535 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11536 11537 switch (level) { 11538 case IPPROTO_IP: 11539 switch (name) { 11540 case IP_MULTICAST_TTL: 11541 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 11542 return (sizeof (uchar_t)); 11543 case IP_MULTICAST_LOOP: 11544 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 11545 return (sizeof (uchar_t)); 11546 default: 11547 return (-1); 11548 } 11549 case IPPROTO_IPV6: 11550 switch (name) { 11551 case IPV6_UNICAST_HOPS: 11552 *i1 = ipst->ips_ipv6_def_hops; 11553 return (sizeof (int)); 11554 case IPV6_MULTICAST_HOPS: 11555 *i1 = IP_DEFAULT_MULTICAST_TTL; 11556 return (sizeof (int)); 11557 case IPV6_MULTICAST_LOOP: 11558 *i1 = IP_DEFAULT_MULTICAST_LOOP; 11559 return (sizeof (int)); 11560 case IPV6_V6ONLY: 11561 *i1 = 1; 11562 return (sizeof (int)); 11563 default: 11564 return (-1); 11565 } 11566 default: 11567 return (-1); 11568 } 11569 /* NOTREACHED */ 11570 } 11571 11572 /* 11573 * Given a destination address and a pointer to where to put the information 11574 * this routine fills in the mtuinfo. 11575 */ 11576 int 11577 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 11578 struct ip6_mtuinfo *mtuinfo, netstack_t *ns) 11579 { 11580 ire_t *ire; 11581 ip_stack_t *ipst = ns->netstack_ip; 11582 11583 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 11584 return (-1); 11585 11586 bzero(mtuinfo, sizeof (*mtuinfo)); 11587 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 11588 mtuinfo->ip6m_addr.sin6_port = port; 11589 mtuinfo->ip6m_addr.sin6_addr = *in6; 11590 11591 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL, ipst); 11592 if (ire != NULL) { 11593 mtuinfo->ip6m_mtu = ire->ire_max_frag; 11594 ire_refrele(ire); 11595 } else { 11596 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 11597 } 11598 return (sizeof (struct ip6_mtuinfo)); 11599 } 11600 11601 /* 11602 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 11603 * checking of GET_QUEUE_CRED(q) and that ip_g_mrouter is set should be done and 11604 * isn't. This doesn't matter as the error checking is done properly for the 11605 * other MRT options coming in through ip_opt_set. 11606 */ 11607 int 11608 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 11609 { 11610 conn_t *connp = Q_TO_CONN(q); 11611 ipsec_req_t *req = (ipsec_req_t *)ptr; 11612 11613 switch (level) { 11614 case IPPROTO_IP: 11615 switch (name) { 11616 case MRT_VERSION: 11617 case MRT_ASSERT: 11618 (void) ip_mrouter_get(name, q, ptr); 11619 return (sizeof (int)); 11620 case IP_SEC_OPT: 11621 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 11622 case IP_NEXTHOP: 11623 if (connp->conn_nexthop_set) { 11624 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 11625 return (sizeof (ipaddr_t)); 11626 } else 11627 return (0); 11628 case IP_RECVPKTINFO: 11629 *(int *)ptr = connp->conn_ip_recvpktinfo ? 1: 0; 11630 return (sizeof (int)); 11631 default: 11632 break; 11633 } 11634 break; 11635 case IPPROTO_IPV6: 11636 switch (name) { 11637 case IPV6_SEC_OPT: 11638 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 11639 case IPV6_SRC_PREFERENCES: { 11640 return (ip6_get_src_preferences(connp, 11641 (uint32_t *)ptr)); 11642 } 11643 case IPV6_V6ONLY: 11644 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 11645 return (sizeof (int)); 11646 case IPV6_PATHMTU: 11647 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 11648 (struct ip6_mtuinfo *)ptr, connp->conn_netstack)); 11649 default: 11650 break; 11651 } 11652 break; 11653 default: 11654 break; 11655 } 11656 return (-1); 11657 } 11658 11659 /* Named Dispatch routine to get a current value out of our parameter table. */ 11660 /* ARGSUSED */ 11661 static int 11662 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11663 { 11664 ipparam_t *ippa = (ipparam_t *)cp; 11665 11666 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 11667 return (0); 11668 } 11669 11670 /* ARGSUSED */ 11671 static int 11672 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11673 { 11674 11675 (void) mi_mpprintf(mp, "%d", *(int *)cp); 11676 return (0); 11677 } 11678 11679 /* 11680 * Set ip{,6}_forwarding values. This means walking through all of the 11681 * ill's and toggling their forwarding values. 11682 */ 11683 /* ARGSUSED */ 11684 static int 11685 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11686 { 11687 long new_value; 11688 int *forwarding_value = (int *)cp; 11689 ill_t *ill; 11690 boolean_t isv6; 11691 ill_walk_context_t ctx; 11692 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11693 11694 isv6 = (forwarding_value == &ipst->ips_ipv6_forward); 11695 11696 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11697 new_value < 0 || new_value > 1) { 11698 return (EINVAL); 11699 } 11700 11701 *forwarding_value = new_value; 11702 11703 /* 11704 * Regardless of the current value of ip_forwarding, set all per-ill 11705 * values of ip_forwarding to the value being set. 11706 * 11707 * Bring all the ill's up to date with the new global value. 11708 */ 11709 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11710 11711 if (isv6) 11712 ill = ILL_START_WALK_V6(&ctx, ipst); 11713 else 11714 ill = ILL_START_WALK_V4(&ctx, ipst); 11715 11716 for (; ill != NULL; ill = ill_next(&ctx, ill)) 11717 (void) ill_forward_set(ill, new_value != 0); 11718 11719 rw_exit(&ipst->ips_ill_g_lock); 11720 return (0); 11721 } 11722 11723 /* 11724 * Walk through the param array specified registering each element with the 11725 * Named Dispatch handler. This is called only during init. So it is ok 11726 * not to acquire any locks 11727 */ 11728 static boolean_t 11729 ip_param_register(IDP *ndp, ipparam_t *ippa, size_t ippa_cnt, 11730 ipndp_t *ipnd, size_t ipnd_cnt) 11731 { 11732 for (; ippa_cnt-- > 0; ippa++) { 11733 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 11734 if (!nd_load(ndp, ippa->ip_param_name, 11735 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11736 nd_free(ndp); 11737 return (B_FALSE); 11738 } 11739 } 11740 } 11741 11742 for (; ipnd_cnt-- > 0; ipnd++) { 11743 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11744 if (!nd_load(ndp, ipnd->ip_ndp_name, 11745 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11746 ipnd->ip_ndp_data)) { 11747 nd_free(ndp); 11748 return (B_FALSE); 11749 } 11750 } 11751 } 11752 11753 return (B_TRUE); 11754 } 11755 11756 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11757 /* ARGSUSED */ 11758 static int 11759 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11760 { 11761 long new_value; 11762 ipparam_t *ippa = (ipparam_t *)cp; 11763 11764 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11765 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11766 return (EINVAL); 11767 } 11768 ippa->ip_param_value = new_value; 11769 return (0); 11770 } 11771 11772 /* 11773 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11774 * When an ipf is passed here for the first time, if 11775 * we already have in-order fragments on the queue, we convert from the fast- 11776 * path reassembly scheme to the hard-case scheme. From then on, additional 11777 * fragments are reassembled here. We keep track of the start and end offsets 11778 * of each piece, and the number of holes in the chain. When the hole count 11779 * goes to zero, we are done! 11780 * 11781 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11782 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11783 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11784 * after the call to ip_reassemble(). 11785 */ 11786 int 11787 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11788 size_t msg_len) 11789 { 11790 uint_t end; 11791 mblk_t *next_mp; 11792 mblk_t *mp1; 11793 uint_t offset; 11794 boolean_t incr_dups = B_TRUE; 11795 boolean_t offset_zero_seen = B_FALSE; 11796 boolean_t pkt_boundary_checked = B_FALSE; 11797 11798 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11799 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11800 11801 /* Add in byte count */ 11802 ipf->ipf_count += msg_len; 11803 if (ipf->ipf_end) { 11804 /* 11805 * We were part way through in-order reassembly, but now there 11806 * is a hole. We walk through messages already queued, and 11807 * mark them for hard case reassembly. We know that up till 11808 * now they were in order starting from offset zero. 11809 */ 11810 offset = 0; 11811 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11812 IP_REASS_SET_START(mp1, offset); 11813 if (offset == 0) { 11814 ASSERT(ipf->ipf_nf_hdr_len != 0); 11815 offset = -ipf->ipf_nf_hdr_len; 11816 } 11817 offset += mp1->b_wptr - mp1->b_rptr; 11818 IP_REASS_SET_END(mp1, offset); 11819 } 11820 /* One hole at the end. */ 11821 ipf->ipf_hole_cnt = 1; 11822 /* Brand it as a hard case, forever. */ 11823 ipf->ipf_end = 0; 11824 } 11825 /* Walk through all the new pieces. */ 11826 do { 11827 end = start + (mp->b_wptr - mp->b_rptr); 11828 /* 11829 * If start is 0, decrease 'end' only for the first mblk of 11830 * the fragment. Otherwise 'end' can get wrong value in the 11831 * second pass of the loop if first mblk is exactly the 11832 * size of ipf_nf_hdr_len. 11833 */ 11834 if (start == 0 && !offset_zero_seen) { 11835 /* First segment */ 11836 ASSERT(ipf->ipf_nf_hdr_len != 0); 11837 end -= ipf->ipf_nf_hdr_len; 11838 offset_zero_seen = B_TRUE; 11839 } 11840 next_mp = mp->b_cont; 11841 /* 11842 * We are checking to see if there is any interesing data 11843 * to process. If there isn't and the mblk isn't the 11844 * one which carries the unfragmentable header then we 11845 * drop it. It's possible to have just the unfragmentable 11846 * header come through without any data. That needs to be 11847 * saved. 11848 * 11849 * If the assert at the top of this function holds then the 11850 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 11851 * is infrequently traveled enough that the test is left in 11852 * to protect against future code changes which break that 11853 * invariant. 11854 */ 11855 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 11856 /* Empty. Blast it. */ 11857 IP_REASS_SET_START(mp, 0); 11858 IP_REASS_SET_END(mp, 0); 11859 /* 11860 * If the ipf points to the mblk we are about to free, 11861 * update ipf to point to the next mblk (or NULL 11862 * if none). 11863 */ 11864 if (ipf->ipf_mp->b_cont == mp) 11865 ipf->ipf_mp->b_cont = next_mp; 11866 freeb(mp); 11867 continue; 11868 } 11869 mp->b_cont = NULL; 11870 IP_REASS_SET_START(mp, start); 11871 IP_REASS_SET_END(mp, end); 11872 if (!ipf->ipf_tail_mp) { 11873 ipf->ipf_tail_mp = mp; 11874 ipf->ipf_mp->b_cont = mp; 11875 if (start == 0 || !more) { 11876 ipf->ipf_hole_cnt = 1; 11877 /* 11878 * if the first fragment comes in more than one 11879 * mblk, this loop will be executed for each 11880 * mblk. Need to adjust hole count so exiting 11881 * this routine will leave hole count at 1. 11882 */ 11883 if (next_mp) 11884 ipf->ipf_hole_cnt++; 11885 } else 11886 ipf->ipf_hole_cnt = 2; 11887 continue; 11888 } else if (ipf->ipf_last_frag_seen && !more && 11889 !pkt_boundary_checked) { 11890 /* 11891 * We check datagram boundary only if this fragment 11892 * claims to be the last fragment and we have seen a 11893 * last fragment in the past too. We do this only 11894 * once for a given fragment. 11895 * 11896 * start cannot be 0 here as fragments with start=0 11897 * and MF=0 gets handled as a complete packet. These 11898 * fragments should not reach here. 11899 */ 11900 11901 if (start + msgdsize(mp) != 11902 IP_REASS_END(ipf->ipf_tail_mp)) { 11903 /* 11904 * We have two fragments both of which claim 11905 * to be the last fragment but gives conflicting 11906 * information about the whole datagram size. 11907 * Something fishy is going on. Drop the 11908 * fragment and free up the reassembly list. 11909 */ 11910 return (IP_REASS_FAILED); 11911 } 11912 11913 /* 11914 * We shouldn't come to this code block again for this 11915 * particular fragment. 11916 */ 11917 pkt_boundary_checked = B_TRUE; 11918 } 11919 11920 /* New stuff at or beyond tail? */ 11921 offset = IP_REASS_END(ipf->ipf_tail_mp); 11922 if (start >= offset) { 11923 if (ipf->ipf_last_frag_seen) { 11924 /* current fragment is beyond last fragment */ 11925 return (IP_REASS_FAILED); 11926 } 11927 /* Link it on end. */ 11928 ipf->ipf_tail_mp->b_cont = mp; 11929 ipf->ipf_tail_mp = mp; 11930 if (more) { 11931 if (start != offset) 11932 ipf->ipf_hole_cnt++; 11933 } else if (start == offset && next_mp == NULL) 11934 ipf->ipf_hole_cnt--; 11935 continue; 11936 } 11937 mp1 = ipf->ipf_mp->b_cont; 11938 offset = IP_REASS_START(mp1); 11939 /* New stuff at the front? */ 11940 if (start < offset) { 11941 if (start == 0) { 11942 if (end >= offset) { 11943 /* Nailed the hole at the begining. */ 11944 ipf->ipf_hole_cnt--; 11945 } 11946 } else if (end < offset) { 11947 /* 11948 * A hole, stuff, and a hole where there used 11949 * to be just a hole. 11950 */ 11951 ipf->ipf_hole_cnt++; 11952 } 11953 mp->b_cont = mp1; 11954 /* Check for overlap. */ 11955 while (end > offset) { 11956 if (end < IP_REASS_END(mp1)) { 11957 mp->b_wptr -= end - offset; 11958 IP_REASS_SET_END(mp, offset); 11959 BUMP_MIB(ill->ill_ip_mib, 11960 ipIfStatsReasmPartDups); 11961 break; 11962 } 11963 /* Did we cover another hole? */ 11964 if ((mp1->b_cont && 11965 IP_REASS_END(mp1) != 11966 IP_REASS_START(mp1->b_cont) && 11967 end >= IP_REASS_START(mp1->b_cont)) || 11968 (!ipf->ipf_last_frag_seen && !more)) { 11969 ipf->ipf_hole_cnt--; 11970 } 11971 /* Clip out mp1. */ 11972 if ((mp->b_cont = mp1->b_cont) == NULL) { 11973 /* 11974 * After clipping out mp1, this guy 11975 * is now hanging off the end. 11976 */ 11977 ipf->ipf_tail_mp = mp; 11978 } 11979 IP_REASS_SET_START(mp1, 0); 11980 IP_REASS_SET_END(mp1, 0); 11981 /* Subtract byte count */ 11982 ipf->ipf_count -= mp1->b_datap->db_lim - 11983 mp1->b_datap->db_base; 11984 freeb(mp1); 11985 BUMP_MIB(ill->ill_ip_mib, 11986 ipIfStatsReasmPartDups); 11987 mp1 = mp->b_cont; 11988 if (!mp1) 11989 break; 11990 offset = IP_REASS_START(mp1); 11991 } 11992 ipf->ipf_mp->b_cont = mp; 11993 continue; 11994 } 11995 /* 11996 * The new piece starts somewhere between the start of the head 11997 * and before the end of the tail. 11998 */ 11999 for (; mp1; mp1 = mp1->b_cont) { 12000 offset = IP_REASS_END(mp1); 12001 if (start < offset) { 12002 if (end <= offset) { 12003 /* Nothing new. */ 12004 IP_REASS_SET_START(mp, 0); 12005 IP_REASS_SET_END(mp, 0); 12006 /* Subtract byte count */ 12007 ipf->ipf_count -= mp->b_datap->db_lim - 12008 mp->b_datap->db_base; 12009 if (incr_dups) { 12010 ipf->ipf_num_dups++; 12011 incr_dups = B_FALSE; 12012 } 12013 freeb(mp); 12014 BUMP_MIB(ill->ill_ip_mib, 12015 ipIfStatsReasmDuplicates); 12016 break; 12017 } 12018 /* 12019 * Trim redundant stuff off beginning of new 12020 * piece. 12021 */ 12022 IP_REASS_SET_START(mp, offset); 12023 mp->b_rptr += offset - start; 12024 BUMP_MIB(ill->ill_ip_mib, 12025 ipIfStatsReasmPartDups); 12026 start = offset; 12027 if (!mp1->b_cont) { 12028 /* 12029 * After trimming, this guy is now 12030 * hanging off the end. 12031 */ 12032 mp1->b_cont = mp; 12033 ipf->ipf_tail_mp = mp; 12034 if (!more) { 12035 ipf->ipf_hole_cnt--; 12036 } 12037 break; 12038 } 12039 } 12040 if (start >= IP_REASS_START(mp1->b_cont)) 12041 continue; 12042 /* Fill a hole */ 12043 if (start > offset) 12044 ipf->ipf_hole_cnt++; 12045 mp->b_cont = mp1->b_cont; 12046 mp1->b_cont = mp; 12047 mp1 = mp->b_cont; 12048 offset = IP_REASS_START(mp1); 12049 if (end >= offset) { 12050 ipf->ipf_hole_cnt--; 12051 /* Check for overlap. */ 12052 while (end > offset) { 12053 if (end < IP_REASS_END(mp1)) { 12054 mp->b_wptr -= end - offset; 12055 IP_REASS_SET_END(mp, offset); 12056 /* 12057 * TODO we might bump 12058 * this up twice if there is 12059 * overlap at both ends. 12060 */ 12061 BUMP_MIB(ill->ill_ip_mib, 12062 ipIfStatsReasmPartDups); 12063 break; 12064 } 12065 /* Did we cover another hole? */ 12066 if ((mp1->b_cont && 12067 IP_REASS_END(mp1) 12068 != IP_REASS_START(mp1->b_cont) && 12069 end >= 12070 IP_REASS_START(mp1->b_cont)) || 12071 (!ipf->ipf_last_frag_seen && 12072 !more)) { 12073 ipf->ipf_hole_cnt--; 12074 } 12075 /* Clip out mp1. */ 12076 if ((mp->b_cont = mp1->b_cont) == 12077 NULL) { 12078 /* 12079 * After clipping out mp1, 12080 * this guy is now hanging 12081 * off the end. 12082 */ 12083 ipf->ipf_tail_mp = mp; 12084 } 12085 IP_REASS_SET_START(mp1, 0); 12086 IP_REASS_SET_END(mp1, 0); 12087 /* Subtract byte count */ 12088 ipf->ipf_count -= 12089 mp1->b_datap->db_lim - 12090 mp1->b_datap->db_base; 12091 freeb(mp1); 12092 BUMP_MIB(ill->ill_ip_mib, 12093 ipIfStatsReasmPartDups); 12094 mp1 = mp->b_cont; 12095 if (!mp1) 12096 break; 12097 offset = IP_REASS_START(mp1); 12098 } 12099 } 12100 break; 12101 } 12102 } while (start = end, mp = next_mp); 12103 12104 /* Fragment just processed could be the last one. Remember this fact */ 12105 if (!more) 12106 ipf->ipf_last_frag_seen = B_TRUE; 12107 12108 /* Still got holes? */ 12109 if (ipf->ipf_hole_cnt) 12110 return (IP_REASS_PARTIAL); 12111 /* Clean up overloaded fields to avoid upstream disasters. */ 12112 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 12113 IP_REASS_SET_START(mp1, 0); 12114 IP_REASS_SET_END(mp1, 0); 12115 } 12116 return (IP_REASS_COMPLETE); 12117 } 12118 12119 /* 12120 * ipsec processing for the fast path, used for input UDP Packets 12121 * Returns true if ready for passup to UDP. 12122 * Return false if packet is not passable to UDP (e.g. it failed IPsec policy, 12123 * was an ESP-in-UDP packet, etc.). 12124 */ 12125 static boolean_t 12126 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 12127 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present, ire_t *ire) 12128 { 12129 uint32_t ill_index; 12130 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 12131 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 12132 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12133 udp_t *udp = connp->conn_udp; 12134 12135 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12136 /* The ill_index of the incoming ILL */ 12137 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 12138 12139 /* pass packet up to the transport */ 12140 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 12141 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 12142 NULL, mctl_present); 12143 if (*first_mpp == NULL) { 12144 return (B_FALSE); 12145 } 12146 } 12147 12148 /* Initiate IPPF processing for fastpath UDP */ 12149 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 12150 ip_process(IPP_LOCAL_IN, mpp, ill_index); 12151 if (*mpp == NULL) { 12152 ip2dbg(("ip_input_ipsec_process: UDP pkt " 12153 "deferred/dropped during IPPF processing\n")); 12154 return (B_FALSE); 12155 } 12156 } 12157 /* 12158 * Remove 0-spi if it's 0, or move everything behind 12159 * the UDP header over it and forward to ESP via 12160 * ip_proto_input(). 12161 */ 12162 if (udp->udp_nat_t_endpoint) { 12163 if (mctl_present) { 12164 /* mctl_present *shouldn't* happen. */ 12165 ip_drop_packet(*first_mpp, B_TRUE, NULL, 12166 NULL, DROPPER(ipss, ipds_esp_nat_t_ipsec), 12167 &ipss->ipsec_dropper); 12168 *first_mpp = NULL; 12169 return (B_FALSE); 12170 } 12171 12172 /* "ill" is "recv_ill" in actuality. */ 12173 if (!zero_spi_check(q, *mpp, ire, ill, ipss)) 12174 return (B_FALSE); 12175 12176 /* Else continue like a normal UDP packet. */ 12177 } 12178 12179 /* 12180 * We make the checks as below since we are in the fast path 12181 * and want to minimize the number of checks if the IP_RECVIF and/or 12182 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 12183 */ 12184 if (connp->conn_recvif || connp->conn_recvslla || 12185 connp->conn_ip_recvpktinfo) { 12186 if (connp->conn_recvif) { 12187 in_flags = IPF_RECVIF; 12188 } 12189 /* 12190 * UDP supports IP_RECVPKTINFO option for both v4 and v6 12191 * so the flag passed to ip_add_info is based on IP version 12192 * of connp. 12193 */ 12194 if (connp->conn_ip_recvpktinfo) { 12195 if (connp->conn_af_isv6) { 12196 /* 12197 * V6 only needs index 12198 */ 12199 in_flags |= IPF_RECVIF; 12200 } else { 12201 /* 12202 * V4 needs index + matching address. 12203 */ 12204 in_flags |= IPF_RECVADDR; 12205 } 12206 } 12207 if (connp->conn_recvslla) { 12208 in_flags |= IPF_RECVSLLA; 12209 } 12210 /* 12211 * since in_flags are being set ill will be 12212 * referenced in ip_add_info, so it better not 12213 * be NULL. 12214 */ 12215 /* 12216 * the actual data will be contained in b_cont 12217 * upon successful return of the following call. 12218 * If the call fails then the original mblk is 12219 * returned. 12220 */ 12221 *mpp = ip_add_info(*mpp, ill, in_flags, IPCL_ZONEID(connp), 12222 ipst); 12223 } 12224 12225 return (B_TRUE); 12226 } 12227 12228 /* 12229 * Fragmentation reassembly. Each ILL has a hash table for 12230 * queuing packets undergoing reassembly for all IPIFs 12231 * associated with the ILL. The hash is based on the packet 12232 * IP ident field. The ILL frag hash table was allocated 12233 * as a timer block at the time the ILL was created. Whenever 12234 * there is anything on the reassembly queue, the timer will 12235 * be running. Returns B_TRUE if successful else B_FALSE; 12236 * frees mp on failure. 12237 */ 12238 static boolean_t 12239 ip_rput_fragment(queue_t *q, mblk_t **mpp, ipha_t *ipha, 12240 uint32_t *cksum_val, uint16_t *cksum_flags) 12241 { 12242 uint32_t frag_offset_flags; 12243 ill_t *ill = (ill_t *)q->q_ptr; 12244 mblk_t *mp = *mpp; 12245 mblk_t *t_mp; 12246 ipaddr_t dst; 12247 uint8_t proto = ipha->ipha_protocol; 12248 uint32_t sum_val; 12249 uint16_t sum_flags; 12250 ipf_t *ipf; 12251 ipf_t **ipfp; 12252 ipfb_t *ipfb; 12253 uint16_t ident; 12254 uint32_t offset; 12255 ipaddr_t src; 12256 uint_t hdr_length; 12257 uint32_t end; 12258 mblk_t *mp1; 12259 mblk_t *tail_mp; 12260 size_t count; 12261 size_t msg_len; 12262 uint8_t ecn_info = 0; 12263 uint32_t packet_size; 12264 boolean_t pruned = B_FALSE; 12265 ip_stack_t *ipst = ill->ill_ipst; 12266 12267 if (cksum_val != NULL) 12268 *cksum_val = 0; 12269 if (cksum_flags != NULL) 12270 *cksum_flags = 0; 12271 12272 /* 12273 * Drop the fragmented as early as possible, if 12274 * we don't have resource(s) to re-assemble. 12275 */ 12276 if (ipst->ips_ip_reass_queue_bytes == 0) { 12277 freemsg(mp); 12278 return (B_FALSE); 12279 } 12280 12281 /* Check for fragmentation offset; return if there's none */ 12282 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 12283 (IPH_MF | IPH_OFFSET)) == 0) 12284 return (B_TRUE); 12285 12286 /* 12287 * We utilize hardware computed checksum info only for UDP since 12288 * IP fragmentation is a normal occurence for the protocol. In 12289 * addition, checksum offload support for IP fragments carrying 12290 * UDP payload is commonly implemented across network adapters. 12291 */ 12292 ASSERT(ill != NULL); 12293 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(ill) && 12294 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 12295 mblk_t *mp1 = mp->b_cont; 12296 int32_t len; 12297 12298 /* Record checksum information from the packet */ 12299 sum_val = (uint32_t)DB_CKSUM16(mp); 12300 sum_flags = DB_CKSUMFLAGS(mp); 12301 12302 /* IP payload offset from beginning of mblk */ 12303 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 12304 12305 if ((sum_flags & HCK_PARTIALCKSUM) && 12306 (mp1 == NULL || mp1->b_cont == NULL) && 12307 offset >= DB_CKSUMSTART(mp) && 12308 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 12309 uint32_t adj; 12310 /* 12311 * Partial checksum has been calculated by hardware 12312 * and attached to the packet; in addition, any 12313 * prepended extraneous data is even byte aligned. 12314 * If any such data exists, we adjust the checksum; 12315 * this would also handle any postpended data. 12316 */ 12317 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 12318 mp, mp1, len, adj); 12319 12320 /* One's complement subtract extraneous checksum */ 12321 if (adj >= sum_val) 12322 sum_val = ~(adj - sum_val) & 0xFFFF; 12323 else 12324 sum_val -= adj; 12325 } 12326 } else { 12327 sum_val = 0; 12328 sum_flags = 0; 12329 } 12330 12331 /* Clear hardware checksumming flag */ 12332 DB_CKSUMFLAGS(mp) = 0; 12333 12334 ident = ipha->ipha_ident; 12335 offset = (frag_offset_flags << 3) & 0xFFFF; 12336 src = ipha->ipha_src; 12337 dst = ipha->ipha_dst; 12338 hdr_length = IPH_HDR_LENGTH(ipha); 12339 end = ntohs(ipha->ipha_length) - hdr_length; 12340 12341 /* If end == 0 then we have a packet with no data, so just free it */ 12342 if (end == 0) { 12343 freemsg(mp); 12344 return (B_FALSE); 12345 } 12346 12347 /* Record the ECN field info. */ 12348 ecn_info = (ipha->ipha_type_of_service & 0x3); 12349 if (offset != 0) { 12350 /* 12351 * If this isn't the first piece, strip the header, and 12352 * add the offset to the end value. 12353 */ 12354 mp->b_rptr += hdr_length; 12355 end += offset; 12356 } 12357 12358 msg_len = MBLKSIZE(mp); 12359 tail_mp = mp; 12360 while (tail_mp->b_cont != NULL) { 12361 tail_mp = tail_mp->b_cont; 12362 msg_len += MBLKSIZE(tail_mp); 12363 } 12364 12365 /* If the reassembly list for this ILL will get too big, prune it */ 12366 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 12367 ipst->ips_ip_reass_queue_bytes) { 12368 ill_frag_prune(ill, 12369 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 12370 (ipst->ips_ip_reass_queue_bytes - msg_len)); 12371 pruned = B_TRUE; 12372 } 12373 12374 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 12375 mutex_enter(&ipfb->ipfb_lock); 12376 12377 ipfp = &ipfb->ipfb_ipf; 12378 /* Try to find an existing fragment queue for this packet. */ 12379 for (;;) { 12380 ipf = ipfp[0]; 12381 if (ipf != NULL) { 12382 /* 12383 * It has to match on ident and src/dst address. 12384 */ 12385 if (ipf->ipf_ident == ident && 12386 ipf->ipf_src == src && 12387 ipf->ipf_dst == dst && 12388 ipf->ipf_protocol == proto) { 12389 /* 12390 * If we have received too many 12391 * duplicate fragments for this packet 12392 * free it. 12393 */ 12394 if (ipf->ipf_num_dups > ip_max_frag_dups) { 12395 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12396 freemsg(mp); 12397 mutex_exit(&ipfb->ipfb_lock); 12398 return (B_FALSE); 12399 } 12400 /* Found it. */ 12401 break; 12402 } 12403 ipfp = &ipf->ipf_hash_next; 12404 continue; 12405 } 12406 12407 /* 12408 * If we pruned the list, do we want to store this new 12409 * fragment?. We apply an optimization here based on the 12410 * fact that most fragments will be received in order. 12411 * So if the offset of this incoming fragment is zero, 12412 * it is the first fragment of a new packet. We will 12413 * keep it. Otherwise drop the fragment, as we have 12414 * probably pruned the packet already (since the 12415 * packet cannot be found). 12416 */ 12417 if (pruned && offset != 0) { 12418 mutex_exit(&ipfb->ipfb_lock); 12419 freemsg(mp); 12420 return (B_FALSE); 12421 } 12422 12423 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 12424 /* 12425 * Too many fragmented packets in this hash 12426 * bucket. Free the oldest. 12427 */ 12428 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 12429 } 12430 12431 /* New guy. Allocate a frag message. */ 12432 mp1 = allocb(sizeof (*ipf), BPRI_MED); 12433 if (mp1 == NULL) { 12434 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12435 freemsg(mp); 12436 reass_done: 12437 mutex_exit(&ipfb->ipfb_lock); 12438 return (B_FALSE); 12439 } 12440 12441 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 12442 mp1->b_cont = mp; 12443 12444 /* Initialize the fragment header. */ 12445 ipf = (ipf_t *)mp1->b_rptr; 12446 ipf->ipf_mp = mp1; 12447 ipf->ipf_ptphn = ipfp; 12448 ipfp[0] = ipf; 12449 ipf->ipf_hash_next = NULL; 12450 ipf->ipf_ident = ident; 12451 ipf->ipf_protocol = proto; 12452 ipf->ipf_src = src; 12453 ipf->ipf_dst = dst; 12454 ipf->ipf_nf_hdr_len = 0; 12455 /* Record reassembly start time. */ 12456 ipf->ipf_timestamp = gethrestime_sec(); 12457 /* Record ipf generation and account for frag header */ 12458 ipf->ipf_gen = ill->ill_ipf_gen++; 12459 ipf->ipf_count = MBLKSIZE(mp1); 12460 ipf->ipf_last_frag_seen = B_FALSE; 12461 ipf->ipf_ecn = ecn_info; 12462 ipf->ipf_num_dups = 0; 12463 ipfb->ipfb_frag_pkts++; 12464 ipf->ipf_checksum = 0; 12465 ipf->ipf_checksum_flags = 0; 12466 12467 /* Store checksum value in fragment header */ 12468 if (sum_flags != 0) { 12469 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12470 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12471 ipf->ipf_checksum = sum_val; 12472 ipf->ipf_checksum_flags = sum_flags; 12473 } 12474 12475 /* 12476 * We handle reassembly two ways. In the easy case, 12477 * where all the fragments show up in order, we do 12478 * minimal bookkeeping, and just clip new pieces on 12479 * the end. If we ever see a hole, then we go off 12480 * to ip_reassemble which has to mark the pieces and 12481 * keep track of the number of holes, etc. Obviously, 12482 * the point of having both mechanisms is so we can 12483 * handle the easy case as efficiently as possible. 12484 */ 12485 if (offset == 0) { 12486 /* Easy case, in-order reassembly so far. */ 12487 ipf->ipf_count += msg_len; 12488 ipf->ipf_tail_mp = tail_mp; 12489 /* 12490 * Keep track of next expected offset in 12491 * ipf_end. 12492 */ 12493 ipf->ipf_end = end; 12494 ipf->ipf_nf_hdr_len = hdr_length; 12495 } else { 12496 /* Hard case, hole at the beginning. */ 12497 ipf->ipf_tail_mp = NULL; 12498 /* 12499 * ipf_end == 0 means that we have given up 12500 * on easy reassembly. 12501 */ 12502 ipf->ipf_end = 0; 12503 12504 /* Forget checksum offload from now on */ 12505 ipf->ipf_checksum_flags = 0; 12506 12507 /* 12508 * ipf_hole_cnt is set by ip_reassemble. 12509 * ipf_count is updated by ip_reassemble. 12510 * No need to check for return value here 12511 * as we don't expect reassembly to complete 12512 * or fail for the first fragment itself. 12513 */ 12514 (void) ip_reassemble(mp, ipf, 12515 (frag_offset_flags & IPH_OFFSET) << 3, 12516 (frag_offset_flags & IPH_MF), ill, msg_len); 12517 } 12518 /* Update per ipfb and ill byte counts */ 12519 ipfb->ipfb_count += ipf->ipf_count; 12520 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12521 ill->ill_frag_count += ipf->ipf_count; 12522 /* If the frag timer wasn't already going, start it. */ 12523 mutex_enter(&ill->ill_lock); 12524 ill_frag_timer_start(ill); 12525 mutex_exit(&ill->ill_lock); 12526 goto reass_done; 12527 } 12528 12529 /* 12530 * If the packet's flag has changed (it could be coming up 12531 * from an interface different than the previous, therefore 12532 * possibly different checksum capability), then forget about 12533 * any stored checksum states. Otherwise add the value to 12534 * the existing one stored in the fragment header. 12535 */ 12536 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 12537 sum_val += ipf->ipf_checksum; 12538 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12539 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12540 ipf->ipf_checksum = sum_val; 12541 } else if (ipf->ipf_checksum_flags != 0) { 12542 /* Forget checksum offload from now on */ 12543 ipf->ipf_checksum_flags = 0; 12544 } 12545 12546 /* 12547 * We have a new piece of a datagram which is already being 12548 * reassembled. Update the ECN info if all IP fragments 12549 * are ECN capable. If there is one which is not, clear 12550 * all the info. If there is at least one which has CE 12551 * code point, IP needs to report that up to transport. 12552 */ 12553 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 12554 if (ecn_info == IPH_ECN_CE) 12555 ipf->ipf_ecn = IPH_ECN_CE; 12556 } else { 12557 ipf->ipf_ecn = IPH_ECN_NECT; 12558 } 12559 if (offset && ipf->ipf_end == offset) { 12560 /* The new fragment fits at the end */ 12561 ipf->ipf_tail_mp->b_cont = mp; 12562 /* Update the byte count */ 12563 ipf->ipf_count += msg_len; 12564 /* Update per ipfb and ill byte counts */ 12565 ipfb->ipfb_count += msg_len; 12566 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12567 ill->ill_frag_count += msg_len; 12568 if (frag_offset_flags & IPH_MF) { 12569 /* More to come. */ 12570 ipf->ipf_end = end; 12571 ipf->ipf_tail_mp = tail_mp; 12572 goto reass_done; 12573 } 12574 } else { 12575 /* Go do the hard cases. */ 12576 int ret; 12577 12578 if (offset == 0) 12579 ipf->ipf_nf_hdr_len = hdr_length; 12580 12581 /* Save current byte count */ 12582 count = ipf->ipf_count; 12583 ret = ip_reassemble(mp, ipf, 12584 (frag_offset_flags & IPH_OFFSET) << 3, 12585 (frag_offset_flags & IPH_MF), ill, msg_len); 12586 /* Count of bytes added and subtracted (freeb()ed) */ 12587 count = ipf->ipf_count - count; 12588 if (count) { 12589 /* Update per ipfb and ill byte counts */ 12590 ipfb->ipfb_count += count; 12591 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12592 ill->ill_frag_count += count; 12593 } 12594 if (ret == IP_REASS_PARTIAL) { 12595 goto reass_done; 12596 } else if (ret == IP_REASS_FAILED) { 12597 /* Reassembly failed. Free up all resources */ 12598 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12599 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 12600 IP_REASS_SET_START(t_mp, 0); 12601 IP_REASS_SET_END(t_mp, 0); 12602 } 12603 freemsg(mp); 12604 goto reass_done; 12605 } 12606 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 12607 } 12608 /* 12609 * We have completed reassembly. Unhook the frag header from 12610 * the reassembly list. 12611 * 12612 * Before we free the frag header, record the ECN info 12613 * to report back to the transport. 12614 */ 12615 ecn_info = ipf->ipf_ecn; 12616 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 12617 ipfp = ipf->ipf_ptphn; 12618 12619 /* We need to supply these to caller */ 12620 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 12621 sum_val = ipf->ipf_checksum; 12622 else 12623 sum_val = 0; 12624 12625 mp1 = ipf->ipf_mp; 12626 count = ipf->ipf_count; 12627 ipf = ipf->ipf_hash_next; 12628 if (ipf != NULL) 12629 ipf->ipf_ptphn = ipfp; 12630 ipfp[0] = ipf; 12631 ill->ill_frag_count -= count; 12632 ASSERT(ipfb->ipfb_count >= count); 12633 ipfb->ipfb_count -= count; 12634 ipfb->ipfb_frag_pkts--; 12635 mutex_exit(&ipfb->ipfb_lock); 12636 /* Ditch the frag header. */ 12637 mp = mp1->b_cont; 12638 12639 freeb(mp1); 12640 12641 /* Restore original IP length in header. */ 12642 packet_size = (uint32_t)msgdsize(mp); 12643 if (packet_size > IP_MAXPACKET) { 12644 freemsg(mp); 12645 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 12646 return (B_FALSE); 12647 } 12648 12649 if (DB_REF(mp) > 1) { 12650 mblk_t *mp2 = copymsg(mp); 12651 12652 freemsg(mp); 12653 if (mp2 == NULL) { 12654 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12655 return (B_FALSE); 12656 } 12657 mp = mp2; 12658 } 12659 ipha = (ipha_t *)mp->b_rptr; 12660 12661 ipha->ipha_length = htons((uint16_t)packet_size); 12662 /* We're now complete, zip the frag state */ 12663 ipha->ipha_fragment_offset_and_flags = 0; 12664 /* Record the ECN info. */ 12665 ipha->ipha_type_of_service &= 0xFC; 12666 ipha->ipha_type_of_service |= ecn_info; 12667 *mpp = mp; 12668 12669 /* Reassembly is successful; return checksum information if needed */ 12670 if (cksum_val != NULL) 12671 *cksum_val = sum_val; 12672 if (cksum_flags != NULL) 12673 *cksum_flags = sum_flags; 12674 12675 return (B_TRUE); 12676 } 12677 12678 /* 12679 * Perform ip header check sum update local options. 12680 * return B_TRUE if all is well, else return B_FALSE and release 12681 * the mp. caller is responsible for decrementing ire ref cnt. 12682 */ 12683 static boolean_t 12684 ip_options_cksum(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12685 ip_stack_t *ipst) 12686 { 12687 mblk_t *first_mp; 12688 boolean_t mctl_present; 12689 uint16_t sum; 12690 12691 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12692 /* 12693 * Don't do the checksum if it has gone through AH/ESP 12694 * processing. 12695 */ 12696 if (!mctl_present) { 12697 sum = ip_csum_hdr(ipha); 12698 if (sum != 0) { 12699 if (ill != NULL) { 12700 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12701 } else { 12702 BUMP_MIB(&ipst->ips_ip_mib, 12703 ipIfStatsInCksumErrs); 12704 } 12705 freemsg(first_mp); 12706 return (B_FALSE); 12707 } 12708 } 12709 12710 if (!ip_rput_local_options(q, mp, ipha, ire, ipst)) { 12711 if (mctl_present) 12712 freeb(first_mp); 12713 return (B_FALSE); 12714 } 12715 12716 return (B_TRUE); 12717 } 12718 12719 /* 12720 * All udp packet are delivered to the local host via this routine. 12721 */ 12722 void 12723 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12724 ill_t *recv_ill) 12725 { 12726 uint32_t sum; 12727 uint32_t u1; 12728 boolean_t mctl_present; 12729 conn_t *connp; 12730 mblk_t *first_mp; 12731 uint16_t *up; 12732 ill_t *ill = (ill_t *)q->q_ptr; 12733 uint16_t reass_hck_flags = 0; 12734 ip_stack_t *ipst; 12735 12736 ASSERT(recv_ill != NULL); 12737 ipst = recv_ill->ill_ipst; 12738 12739 #define rptr ((uchar_t *)ipha) 12740 12741 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12742 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 12743 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12744 ASSERT(ill != NULL); 12745 12746 /* 12747 * FAST PATH for udp packets 12748 */ 12749 12750 /* u1 is # words of IP options */ 12751 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 12752 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12753 12754 /* IP options present */ 12755 if (u1 != 0) 12756 goto ipoptions; 12757 12758 /* Check the IP header checksum. */ 12759 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12760 /* Clear the IP header h/w cksum flag */ 12761 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12762 } else if (!mctl_present) { 12763 /* 12764 * Don't verify header checksum if this packet is coming 12765 * back from AH/ESP as we already did it. 12766 */ 12767 #define uph ((uint16_t *)ipha) 12768 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12769 uph[6] + uph[7] + uph[8] + uph[9]; 12770 #undef uph 12771 /* finish doing IP checksum */ 12772 sum = (sum & 0xFFFF) + (sum >> 16); 12773 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12774 if (sum != 0 && sum != 0xFFFF) { 12775 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12776 freemsg(first_mp); 12777 return; 12778 } 12779 } 12780 12781 /* 12782 * Count for SNMP of inbound packets for ire. 12783 * if mctl is present this might be a secure packet and 12784 * has already been counted for in ip_proto_input(). 12785 */ 12786 if (!mctl_present) { 12787 UPDATE_IB_PKT_COUNT(ire); 12788 ire->ire_last_used_time = lbolt; 12789 } 12790 12791 /* packet part of fragmented IP packet? */ 12792 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12793 if (u1 & (IPH_MF | IPH_OFFSET)) { 12794 goto fragmented; 12795 } 12796 12797 /* u1 = IP header length (20 bytes) */ 12798 u1 = IP_SIMPLE_HDR_LENGTH; 12799 12800 /* packet does not contain complete IP & UDP headers */ 12801 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12802 goto udppullup; 12803 12804 /* up points to UDP header */ 12805 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12806 #define iphs ((uint16_t *)ipha) 12807 12808 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12809 if (up[3] != 0) { 12810 mblk_t *mp1 = mp->b_cont; 12811 boolean_t cksum_err; 12812 uint16_t hck_flags = 0; 12813 12814 /* Pseudo-header checksum */ 12815 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12816 iphs[9] + up[2]; 12817 12818 /* 12819 * Revert to software checksum calculation if the interface 12820 * isn't capable of checksum offload or if IPsec is present. 12821 */ 12822 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12823 hck_flags = DB_CKSUMFLAGS(mp); 12824 12825 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12826 IP_STAT(ipst, ip_in_sw_cksum); 12827 12828 IP_CKSUM_RECV(hck_flags, u1, 12829 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12830 (int32_t)((uchar_t *)up - rptr), 12831 mp, mp1, cksum_err); 12832 12833 if (cksum_err) { 12834 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12835 if (hck_flags & HCK_FULLCKSUM) 12836 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12837 else if (hck_flags & HCK_PARTIALCKSUM) 12838 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12839 else 12840 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12841 12842 freemsg(first_mp); 12843 return; 12844 } 12845 } 12846 12847 /* Non-fragmented broadcast or multicast packet? */ 12848 if (ire->ire_type == IRE_BROADCAST) 12849 goto udpslowpath; 12850 12851 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 12852 ire->ire_zoneid, ipst)) != NULL) { 12853 ASSERT(connp->conn_upq != NULL); 12854 IP_STAT(ipst, ip_udp_fast_path); 12855 12856 if (CONN_UDP_FLOWCTLD(connp)) { 12857 freemsg(mp); 12858 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 12859 } else { 12860 if (!mctl_present) { 12861 BUMP_MIB(ill->ill_ip_mib, 12862 ipIfStatsHCInDelivers); 12863 } 12864 /* 12865 * mp and first_mp can change. 12866 */ 12867 if (ip_udp_check(q, connp, recv_ill, 12868 ipha, &mp, &first_mp, mctl_present, ire)) { 12869 /* Send it upstream */ 12870 (connp->conn_recv)(connp, mp, NULL); 12871 } 12872 } 12873 /* 12874 * freeb() cannot deal with null mblk being passed 12875 * in and first_mp can be set to null in the call 12876 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 12877 */ 12878 if (mctl_present && first_mp != NULL) { 12879 freeb(first_mp); 12880 } 12881 CONN_DEC_REF(connp); 12882 return; 12883 } 12884 12885 /* 12886 * if we got here we know the packet is not fragmented and 12887 * has no options. The classifier could not find a conn_t and 12888 * most likely its an icmp packet so send it through slow path. 12889 */ 12890 12891 goto udpslowpath; 12892 12893 ipoptions: 12894 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 12895 goto slow_done; 12896 } 12897 12898 UPDATE_IB_PKT_COUNT(ire); 12899 ire->ire_last_used_time = lbolt; 12900 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12901 if (u1 & (IPH_MF | IPH_OFFSET)) { 12902 fragmented: 12903 /* 12904 * "sum" and "reass_hck_flags" are non-zero if the 12905 * reassembled packet has a valid hardware computed 12906 * checksum information associated with it. 12907 */ 12908 if (!ip_rput_fragment(q, &mp, ipha, &sum, &reass_hck_flags)) 12909 goto slow_done; 12910 /* 12911 * Make sure that first_mp points back to mp as 12912 * the mp we came in with could have changed in 12913 * ip_rput_fragment(). 12914 */ 12915 ASSERT(!mctl_present); 12916 ipha = (ipha_t *)mp->b_rptr; 12917 first_mp = mp; 12918 } 12919 12920 /* Now we have a complete datagram, destined for this machine. */ 12921 u1 = IPH_HDR_LENGTH(ipha); 12922 /* Pull up the UDP header, if necessary. */ 12923 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 12924 udppullup: 12925 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 12926 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12927 freemsg(first_mp); 12928 goto slow_done; 12929 } 12930 ipha = (ipha_t *)mp->b_rptr; 12931 } 12932 12933 /* 12934 * Validate the checksum for the reassembled packet; for the 12935 * pullup case we calculate the payload checksum in software. 12936 */ 12937 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 12938 if (up[3] != 0) { 12939 boolean_t cksum_err; 12940 12941 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12942 IP_STAT(ipst, ip_in_sw_cksum); 12943 12944 IP_CKSUM_RECV_REASS(reass_hck_flags, 12945 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 12946 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12947 iphs[9] + up[2], sum, cksum_err); 12948 12949 if (cksum_err) { 12950 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12951 12952 if (reass_hck_flags & HCK_FULLCKSUM) 12953 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12954 else if (reass_hck_flags & HCK_PARTIALCKSUM) 12955 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12956 else 12957 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12958 12959 freemsg(first_mp); 12960 goto slow_done; 12961 } 12962 } 12963 udpslowpath: 12964 12965 /* Clear hardware checksum flag to be safe */ 12966 DB_CKSUMFLAGS(mp) = 0; 12967 12968 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 12969 (ire->ire_type == IRE_BROADCAST), 12970 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IPINFO, 12971 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 12972 12973 slow_done: 12974 IP_STAT(ipst, ip_udp_slow_path); 12975 return; 12976 12977 #undef iphs 12978 #undef rptr 12979 } 12980 12981 /* ARGSUSED */ 12982 static mblk_t * 12983 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 12984 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 12985 ill_rx_ring_t *ill_ring) 12986 { 12987 conn_t *connp; 12988 uint32_t sum; 12989 uint32_t u1; 12990 uint16_t *up; 12991 int offset; 12992 ssize_t len; 12993 mblk_t *mp1; 12994 boolean_t syn_present = B_FALSE; 12995 tcph_t *tcph; 12996 uint_t ip_hdr_len; 12997 ill_t *ill = (ill_t *)q->q_ptr; 12998 zoneid_t zoneid = ire->ire_zoneid; 12999 boolean_t cksum_err; 13000 uint16_t hck_flags = 0; 13001 ip_stack_t *ipst = recv_ill->ill_ipst; 13002 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 13003 13004 #define rptr ((uchar_t *)ipha) 13005 13006 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 13007 ASSERT(ill != NULL); 13008 13009 /* 13010 * FAST PATH for tcp packets 13011 */ 13012 13013 /* u1 is # words of IP options */ 13014 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13015 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13016 13017 /* IP options present */ 13018 if (u1) { 13019 goto ipoptions; 13020 } else if (!mctl_present) { 13021 /* Check the IP header checksum. */ 13022 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 13023 /* Clear the IP header h/w cksum flag */ 13024 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 13025 } else if (!mctl_present) { 13026 /* 13027 * Don't verify header checksum if this packet 13028 * is coming back from AH/ESP as we already did it. 13029 */ 13030 #define uph ((uint16_t *)ipha) 13031 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13032 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13033 #undef uph 13034 /* finish doing IP checksum */ 13035 sum = (sum & 0xFFFF) + (sum >> 16); 13036 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13037 if (sum != 0 && sum != 0xFFFF) { 13038 BUMP_MIB(ill->ill_ip_mib, 13039 ipIfStatsInCksumErrs); 13040 goto error; 13041 } 13042 } 13043 } 13044 13045 if (!mctl_present) { 13046 UPDATE_IB_PKT_COUNT(ire); 13047 ire->ire_last_used_time = lbolt; 13048 } 13049 13050 /* packet part of fragmented IP packet? */ 13051 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13052 if (u1 & (IPH_MF | IPH_OFFSET)) { 13053 goto fragmented; 13054 } 13055 13056 /* u1 = IP header length (20 bytes) */ 13057 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 13058 13059 /* does packet contain IP+TCP headers? */ 13060 len = mp->b_wptr - rptr; 13061 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 13062 IP_STAT(ipst, ip_tcppullup); 13063 goto tcppullup; 13064 } 13065 13066 /* TCP options present? */ 13067 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 13068 13069 /* 13070 * If options need to be pulled up, then goto tcpoptions. 13071 * otherwise we are still in the fast path 13072 */ 13073 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 13074 IP_STAT(ipst, ip_tcpoptions); 13075 goto tcpoptions; 13076 } 13077 13078 /* multiple mblks of tcp data? */ 13079 if ((mp1 = mp->b_cont) != NULL) { 13080 /* more then two? */ 13081 if (mp1->b_cont != NULL) { 13082 IP_STAT(ipst, ip_multipkttcp); 13083 goto multipkttcp; 13084 } 13085 len += mp1->b_wptr - mp1->b_rptr; 13086 } 13087 13088 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 13089 13090 /* part of pseudo checksum */ 13091 13092 /* TCP datagram length */ 13093 u1 = len - IP_SIMPLE_HDR_LENGTH; 13094 13095 #define iphs ((uint16_t *)ipha) 13096 13097 #ifdef _BIG_ENDIAN 13098 u1 += IPPROTO_TCP; 13099 #else 13100 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13101 #endif 13102 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13103 13104 /* 13105 * Revert to software checksum calculation if the interface 13106 * isn't capable of checksum offload or if IPsec is present. 13107 */ 13108 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 13109 hck_flags = DB_CKSUMFLAGS(mp); 13110 13111 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 13112 IP_STAT(ipst, ip_in_sw_cksum); 13113 13114 IP_CKSUM_RECV(hck_flags, u1, 13115 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 13116 (int32_t)((uchar_t *)up - rptr), 13117 mp, mp1, cksum_err); 13118 13119 if (cksum_err) { 13120 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13121 13122 if (hck_flags & HCK_FULLCKSUM) 13123 IP_STAT(ipst, ip_tcp_in_full_hw_cksum_err); 13124 else if (hck_flags & HCK_PARTIALCKSUM) 13125 IP_STAT(ipst, ip_tcp_in_part_hw_cksum_err); 13126 else 13127 IP_STAT(ipst, ip_tcp_in_sw_cksum_err); 13128 13129 goto error; 13130 } 13131 13132 try_again: 13133 13134 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 13135 zoneid, ipst)) == NULL) { 13136 /* Send the TH_RST */ 13137 goto no_conn; 13138 } 13139 13140 /* 13141 * TCP FAST PATH for AF_INET socket. 13142 * 13143 * TCP fast path to avoid extra work. An AF_INET socket type 13144 * does not have facility to receive extra information via 13145 * ip_process or ip_add_info. Also, when the connection was 13146 * established, we made a check if this connection is impacted 13147 * by any global IPsec policy or per connection policy (a 13148 * policy that comes in effect later will not apply to this 13149 * connection). Since all this can be determined at the 13150 * connection establishment time, a quick check of flags 13151 * can avoid extra work. 13152 */ 13153 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 13154 !IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13155 ASSERT(first_mp == mp); 13156 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13157 SET_SQUEUE(mp, tcp_rput_data, connp); 13158 return (mp); 13159 } 13160 13161 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 13162 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 13163 if (IPCL_IS_TCP(connp)) { 13164 mp->b_datap->db_struioflag |= STRUIO_EAGER; 13165 DB_CKSUMSTART(mp) = 13166 (intptr_t)ip_squeue_get(ill_ring); 13167 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 13168 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13169 BUMP_MIB(ill->ill_ip_mib, 13170 ipIfStatsHCInDelivers); 13171 SET_SQUEUE(mp, connp->conn_recv, connp); 13172 return (mp); 13173 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 13174 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13175 BUMP_MIB(ill->ill_ip_mib, 13176 ipIfStatsHCInDelivers); 13177 ip_squeue_enter_unbound++; 13178 SET_SQUEUE(mp, tcp_conn_request_unbound, 13179 connp); 13180 return (mp); 13181 } 13182 syn_present = B_TRUE; 13183 } 13184 13185 } 13186 13187 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 13188 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 13189 13190 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13191 /* No need to send this packet to TCP */ 13192 if ((flags & TH_RST) || (flags & TH_URG)) { 13193 CONN_DEC_REF(connp); 13194 freemsg(first_mp); 13195 return (NULL); 13196 } 13197 if (flags & TH_ACK) { 13198 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 13199 ipst->ips_netstack->netstack_tcp, connp); 13200 CONN_DEC_REF(connp); 13201 return (NULL); 13202 } 13203 13204 CONN_DEC_REF(connp); 13205 freemsg(first_mp); 13206 return (NULL); 13207 } 13208 13209 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 13210 first_mp = ipsec_check_inbound_policy(first_mp, connp, 13211 ipha, NULL, mctl_present); 13212 if (first_mp == NULL) { 13213 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13214 CONN_DEC_REF(connp); 13215 return (NULL); 13216 } 13217 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 13218 ASSERT(syn_present); 13219 if (mctl_present) { 13220 ASSERT(first_mp != mp); 13221 first_mp->b_datap->db_struioflag |= 13222 STRUIO_POLICY; 13223 } else { 13224 ASSERT(first_mp == mp); 13225 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 13226 mp->b_datap->db_struioflag |= STRUIO_POLICY; 13227 } 13228 } else { 13229 /* 13230 * Discard first_mp early since we're dealing with a 13231 * fully-connected conn_t and tcp doesn't do policy in 13232 * this case. 13233 */ 13234 if (mctl_present) { 13235 freeb(first_mp); 13236 mctl_present = B_FALSE; 13237 } 13238 first_mp = mp; 13239 } 13240 } 13241 13242 /* Initiate IPPF processing for fastpath */ 13243 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13244 uint32_t ill_index; 13245 13246 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13247 ip_process(IPP_LOCAL_IN, &mp, ill_index); 13248 if (mp == NULL) { 13249 ip2dbg(("ip_input_ipsec_process: TCP pkt " 13250 "deferred/dropped during IPPF processing\n")); 13251 CONN_DEC_REF(connp); 13252 if (mctl_present) 13253 freeb(first_mp); 13254 return (NULL); 13255 } else if (mctl_present) { 13256 /* 13257 * ip_process might return a new mp. 13258 */ 13259 ASSERT(first_mp != mp); 13260 first_mp->b_cont = mp; 13261 } else { 13262 first_mp = mp; 13263 } 13264 13265 } 13266 13267 if (!syn_present && connp->conn_ip_recvpktinfo) { 13268 /* 13269 * TCP does not support IP_RECVPKTINFO for v4 so lets 13270 * make sure IPF_RECVIF is passed to ip_add_info. 13271 */ 13272 mp = ip_add_info(mp, recv_ill, flags|IPF_RECVIF, 13273 IPCL_ZONEID(connp), ipst); 13274 if (mp == NULL) { 13275 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13276 CONN_DEC_REF(connp); 13277 if (mctl_present) 13278 freeb(first_mp); 13279 return (NULL); 13280 } else if (mctl_present) { 13281 /* 13282 * ip_add_info might return a new mp. 13283 */ 13284 ASSERT(first_mp != mp); 13285 first_mp->b_cont = mp; 13286 } else { 13287 first_mp = mp; 13288 } 13289 } 13290 13291 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13292 if (IPCL_IS_TCP(connp)) { 13293 SET_SQUEUE(first_mp, connp->conn_recv, connp); 13294 return (first_mp); 13295 } else { 13296 /* SOCK_RAW, IPPROTO_TCP case */ 13297 (connp->conn_recv)(connp, first_mp, NULL); 13298 CONN_DEC_REF(connp); 13299 return (NULL); 13300 } 13301 13302 no_conn: 13303 /* Initiate IPPf processing, if needed. */ 13304 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13305 uint32_t ill_index; 13306 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13307 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 13308 if (first_mp == NULL) { 13309 return (NULL); 13310 } 13311 } 13312 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13313 13314 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr), zoneid, 13315 ipst->ips_netstack->netstack_tcp, NULL); 13316 return (NULL); 13317 ipoptions: 13318 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) { 13319 goto slow_done; 13320 } 13321 13322 UPDATE_IB_PKT_COUNT(ire); 13323 ire->ire_last_used_time = lbolt; 13324 13325 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13326 if (u1 & (IPH_MF | IPH_OFFSET)) { 13327 fragmented: 13328 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 13329 if (mctl_present) 13330 freeb(first_mp); 13331 goto slow_done; 13332 } 13333 /* 13334 * Make sure that first_mp points back to mp as 13335 * the mp we came in with could have changed in 13336 * ip_rput_fragment(). 13337 */ 13338 ASSERT(!mctl_present); 13339 ipha = (ipha_t *)mp->b_rptr; 13340 first_mp = mp; 13341 } 13342 13343 /* Now we have a complete datagram, destined for this machine. */ 13344 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 13345 13346 len = mp->b_wptr - mp->b_rptr; 13347 /* Pull up a minimal TCP header, if necessary. */ 13348 if (len < (u1 + 20)) { 13349 tcppullup: 13350 if (!pullupmsg(mp, u1 + 20)) { 13351 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13352 goto error; 13353 } 13354 ipha = (ipha_t *)mp->b_rptr; 13355 len = mp->b_wptr - mp->b_rptr; 13356 } 13357 13358 /* 13359 * Extract the offset field from the TCP header. As usual, we 13360 * try to help the compiler more than the reader. 13361 */ 13362 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 13363 if (offset != 5) { 13364 tcpoptions: 13365 if (offset < 5) { 13366 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13367 goto error; 13368 } 13369 /* 13370 * There must be TCP options. 13371 * Make sure we can grab them. 13372 */ 13373 offset <<= 2; 13374 offset += u1; 13375 if (len < offset) { 13376 if (!pullupmsg(mp, offset)) { 13377 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13378 goto error; 13379 } 13380 ipha = (ipha_t *)mp->b_rptr; 13381 len = mp->b_wptr - rptr; 13382 } 13383 } 13384 13385 /* Get the total packet length in len, including headers. */ 13386 if (mp->b_cont) { 13387 multipkttcp: 13388 len = msgdsize(mp); 13389 } 13390 13391 /* 13392 * Check the TCP checksum by pulling together the pseudo- 13393 * header checksum, and passing it to ip_csum to be added in 13394 * with the TCP datagram. 13395 * 13396 * Since we are not using the hwcksum if available we must 13397 * clear the flag. We may come here via tcppullup or tcpoptions. 13398 * If either of these fails along the way the mblk is freed. 13399 * If this logic ever changes and mblk is reused to say send 13400 * ICMP's back, then this flag may need to be cleared in 13401 * other places as well. 13402 */ 13403 DB_CKSUMFLAGS(mp) = 0; 13404 13405 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 13406 13407 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 13408 #ifdef _BIG_ENDIAN 13409 u1 += IPPROTO_TCP; 13410 #else 13411 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13412 #endif 13413 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13414 /* 13415 * Not M_DATA mblk or its a dup, so do the checksum now. 13416 */ 13417 IP_STAT(ipst, ip_in_sw_cksum); 13418 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 13419 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13420 goto error; 13421 } 13422 13423 IP_STAT(ipst, ip_tcp_slow_path); 13424 goto try_again; 13425 #undef iphs 13426 #undef rptr 13427 13428 error: 13429 freemsg(first_mp); 13430 slow_done: 13431 return (NULL); 13432 } 13433 13434 /* ARGSUSED */ 13435 static void 13436 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13437 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 13438 { 13439 conn_t *connp; 13440 uint32_t sum; 13441 uint32_t u1; 13442 ssize_t len; 13443 sctp_hdr_t *sctph; 13444 zoneid_t zoneid = ire->ire_zoneid; 13445 uint32_t pktsum; 13446 uint32_t calcsum; 13447 uint32_t ports; 13448 in6_addr_t map_src, map_dst; 13449 ill_t *ill = (ill_t *)q->q_ptr; 13450 ip_stack_t *ipst; 13451 sctp_stack_t *sctps; 13452 boolean_t sctp_csum_err = B_FALSE; 13453 13454 ASSERT(recv_ill != NULL); 13455 ipst = recv_ill->ill_ipst; 13456 sctps = ipst->ips_netstack->netstack_sctp; 13457 13458 #define rptr ((uchar_t *)ipha) 13459 13460 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 13461 ASSERT(ill != NULL); 13462 13463 /* u1 is # words of IP options */ 13464 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13465 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13466 13467 /* IP options present */ 13468 if (u1 > 0) { 13469 goto ipoptions; 13470 } else { 13471 /* Check the IP header checksum. */ 13472 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, ill) && 13473 !mctl_present) { 13474 #define uph ((uint16_t *)ipha) 13475 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13476 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13477 #undef uph 13478 /* finish doing IP checksum */ 13479 sum = (sum & 0xFFFF) + (sum >> 16); 13480 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13481 /* 13482 * Don't verify header checksum if this packet 13483 * is coming back from AH/ESP as we already did it. 13484 */ 13485 if (sum != 0 && sum != 0xFFFF) { 13486 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 13487 goto error; 13488 } 13489 } 13490 /* 13491 * Since there is no SCTP h/w cksum support yet, just 13492 * clear the flag. 13493 */ 13494 DB_CKSUMFLAGS(mp) = 0; 13495 } 13496 13497 /* 13498 * Don't verify header checksum if this packet is coming 13499 * back from AH/ESP as we already did it. 13500 */ 13501 if (!mctl_present) { 13502 UPDATE_IB_PKT_COUNT(ire); 13503 ire->ire_last_used_time = lbolt; 13504 } 13505 13506 /* packet part of fragmented IP packet? */ 13507 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13508 if (u1 & (IPH_MF | IPH_OFFSET)) 13509 goto fragmented; 13510 13511 /* u1 = IP header length (20 bytes) */ 13512 u1 = IP_SIMPLE_HDR_LENGTH; 13513 13514 find_sctp_client: 13515 /* Pullup if we don't have the sctp common header. */ 13516 len = MBLKL(mp); 13517 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 13518 if (mp->b_cont == NULL || 13519 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 13520 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13521 goto error; 13522 } 13523 ipha = (ipha_t *)mp->b_rptr; 13524 len = MBLKL(mp); 13525 } 13526 13527 sctph = (sctp_hdr_t *)(rptr + u1); 13528 #ifdef DEBUG 13529 if (!skip_sctp_cksum) { 13530 #endif 13531 pktsum = sctph->sh_chksum; 13532 sctph->sh_chksum = 0; 13533 calcsum = sctp_cksum(mp, u1); 13534 sctph->sh_chksum = pktsum; 13535 if (calcsum != pktsum) 13536 sctp_csum_err = B_TRUE; 13537 #ifdef DEBUG /* skip_sctp_cksum */ 13538 } 13539 #endif 13540 /* get the ports */ 13541 ports = *(uint32_t *)&sctph->sh_sport; 13542 13543 IRE_REFRELE(ire); 13544 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 13545 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 13546 if (sctp_csum_err) { 13547 /* 13548 * No potential sctp checksum errors go to the Sun 13549 * sctp stack however they might be Adler-32 summed 13550 * packets a userland stack bound to a raw IP socket 13551 * could reasonably use. Note though that Adler-32 is 13552 * a long deprecated algorithm and customer sctp 13553 * networks should eventually migrate to CRC-32 at 13554 * which time this facility should be removed. 13555 */ 13556 flags |= IP_FF_SCTP_CSUM_ERR; 13557 goto no_conn; 13558 } 13559 if ((connp = sctp_fanout(&map_src, &map_dst, ports, zoneid, mp, 13560 sctps)) == NULL) { 13561 /* Check for raw socket or OOTB handling */ 13562 goto no_conn; 13563 } 13564 13565 /* Found a client; up it goes */ 13566 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13567 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 13568 return; 13569 13570 no_conn: 13571 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 13572 ports, mctl_present, flags, B_TRUE, zoneid); 13573 return; 13574 13575 ipoptions: 13576 DB_CKSUMFLAGS(mp) = 0; 13577 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) 13578 goto slow_done; 13579 13580 UPDATE_IB_PKT_COUNT(ire); 13581 ire->ire_last_used_time = lbolt; 13582 13583 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13584 if (u1 & (IPH_MF | IPH_OFFSET)) { 13585 fragmented: 13586 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) 13587 goto slow_done; 13588 /* 13589 * Make sure that first_mp points back to mp as 13590 * the mp we came in with could have changed in 13591 * ip_rput_fragment(). 13592 */ 13593 ASSERT(!mctl_present); 13594 ipha = (ipha_t *)mp->b_rptr; 13595 first_mp = mp; 13596 } 13597 13598 /* Now we have a complete datagram, destined for this machine. */ 13599 u1 = IPH_HDR_LENGTH(ipha); 13600 goto find_sctp_client; 13601 #undef iphs 13602 #undef rptr 13603 13604 error: 13605 freemsg(first_mp); 13606 slow_done: 13607 IRE_REFRELE(ire); 13608 } 13609 13610 #define VER_BITS 0xF0 13611 #define VERSION_6 0x60 13612 13613 static boolean_t 13614 ip_rput_multimblk_ipoptions(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t **iphapp, 13615 ipaddr_t *dstp, ip_stack_t *ipst) 13616 { 13617 uint_t opt_len; 13618 ipha_t *ipha; 13619 ssize_t len; 13620 uint_t pkt_len; 13621 13622 ASSERT(ill != NULL); 13623 IP_STAT(ipst, ip_ipoptions); 13624 ipha = *iphapp; 13625 13626 #define rptr ((uchar_t *)ipha) 13627 /* Assume no IPv6 packets arrive over the IPv4 queue */ 13628 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 13629 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 13630 freemsg(mp); 13631 return (B_FALSE); 13632 } 13633 13634 /* multiple mblk or too short */ 13635 pkt_len = ntohs(ipha->ipha_length); 13636 13637 /* Get the number of words of IP options in the IP header. */ 13638 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 13639 if (opt_len) { 13640 /* IP Options present! Validate and process. */ 13641 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 13642 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13643 goto done; 13644 } 13645 /* 13646 * Recompute complete header length and make sure we 13647 * have access to all of it. 13648 */ 13649 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 13650 if (len > (mp->b_wptr - rptr)) { 13651 if (len > pkt_len) { 13652 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13653 goto done; 13654 } 13655 if (!pullupmsg(mp, len)) { 13656 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13657 goto done; 13658 } 13659 ipha = (ipha_t *)mp->b_rptr; 13660 } 13661 /* 13662 * Go off to ip_rput_options which returns the next hop 13663 * destination address, which may have been affected 13664 * by source routing. 13665 */ 13666 IP_STAT(ipst, ip_opt); 13667 if (ip_rput_options(q, mp, ipha, dstp, ipst) == -1) { 13668 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13669 return (B_FALSE); 13670 } 13671 } 13672 *iphapp = ipha; 13673 return (B_TRUE); 13674 done: 13675 /* clear b_prev - used by ip_mroute_decap */ 13676 mp->b_prev = NULL; 13677 freemsg(mp); 13678 return (B_FALSE); 13679 #undef rptr 13680 } 13681 13682 /* 13683 * Deal with the fact that there is no ire for the destination. 13684 */ 13685 static ire_t * 13686 ip_rput_noire(queue_t *q, mblk_t *mp, int ll_multicast, ipaddr_t dst) 13687 { 13688 ipha_t *ipha; 13689 ill_t *ill; 13690 ire_t *ire; 13691 boolean_t check_multirt = B_FALSE; 13692 ip_stack_t *ipst; 13693 13694 ipha = (ipha_t *)mp->b_rptr; 13695 ill = (ill_t *)q->q_ptr; 13696 13697 ASSERT(ill != NULL); 13698 ipst = ill->ill_ipst; 13699 13700 /* 13701 * No IRE for this destination, so it can't be for us. 13702 * Unless we are forwarding, drop the packet. 13703 * We have to let source routed packets through 13704 * since we don't yet know if they are 'ping -l' 13705 * packets i.e. if they will go out over the 13706 * same interface as they came in on. 13707 */ 13708 if (ll_multicast) { 13709 freemsg(mp); 13710 return (NULL); 13711 } 13712 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha, ipst)) { 13713 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13714 freemsg(mp); 13715 return (NULL); 13716 } 13717 13718 /* 13719 * Mark this packet as having originated externally. 13720 * 13721 * For non-forwarding code path, ire_send later double 13722 * checks this interface to see if it is still exists 13723 * post-ARP resolution. 13724 * 13725 * Also, IPQOS uses this to differentiate between 13726 * IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP 13727 * QOS packet processing in ip_wput_attach_llhdr(). 13728 * The QoS module can mark the b_band for a fastpath message 13729 * or the dl_priority field in a unitdata_req header for 13730 * CoS marking. This info can only be found in 13731 * ip_wput_attach_llhdr(). 13732 */ 13733 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 13734 /* 13735 * Clear the indication that this may have a hardware checksum 13736 * as we are not using it 13737 */ 13738 DB_CKSUMFLAGS(mp) = 0; 13739 13740 ire = ire_forward(dst, &check_multirt, NULL, NULL, 13741 MBLK_GETLABEL(mp), ipst); 13742 13743 if (ire == NULL && check_multirt) { 13744 /* Let ip_newroute handle CGTP */ 13745 ip_newroute(q, mp, dst, NULL, GLOBAL_ZONEID, ipst); 13746 return (NULL); 13747 } 13748 13749 if (ire != NULL) 13750 return (ire); 13751 13752 mp->b_prev = mp->b_next = 0; 13753 /* send icmp unreachable */ 13754 q = WR(q); 13755 /* Sent by forwarding path, and router is global zone */ 13756 if (ip_source_routed(ipha, ipst)) { 13757 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, 13758 GLOBAL_ZONEID, ipst); 13759 } else { 13760 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 13761 ipst); 13762 } 13763 13764 return (NULL); 13765 13766 } 13767 13768 /* 13769 * check ip header length and align it. 13770 */ 13771 static boolean_t 13772 ip_check_and_align_header(queue_t *q, mblk_t *mp, ip_stack_t *ipst) 13773 { 13774 ssize_t len; 13775 ill_t *ill; 13776 ipha_t *ipha; 13777 13778 len = MBLKL(mp); 13779 13780 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13781 ill = (ill_t *)q->q_ptr; 13782 13783 if (!OK_32PTR(mp->b_rptr)) 13784 IP_STAT(ipst, ip_notaligned1); 13785 else 13786 IP_STAT(ipst, ip_notaligned2); 13787 /* Guard against bogus device drivers */ 13788 if (len < 0) { 13789 /* clear b_prev - used by ip_mroute_decap */ 13790 mp->b_prev = NULL; 13791 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13792 freemsg(mp); 13793 return (B_FALSE); 13794 } 13795 13796 if (ip_rput_pullups++ == 0) { 13797 ipha = (ipha_t *)mp->b_rptr; 13798 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 13799 "ip_check_and_align_header: %s forced us to " 13800 " pullup pkt, hdr len %ld, hdr addr %p", 13801 ill->ill_name, len, ipha); 13802 } 13803 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 13804 /* clear b_prev - used by ip_mroute_decap */ 13805 mp->b_prev = NULL; 13806 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13807 freemsg(mp); 13808 return (B_FALSE); 13809 } 13810 } 13811 return (B_TRUE); 13812 } 13813 13814 ire_t * 13815 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 13816 { 13817 ire_t *new_ire; 13818 ill_t *ire_ill; 13819 uint_t ifindex; 13820 ip_stack_t *ipst = ill->ill_ipst; 13821 boolean_t strict_check = B_FALSE; 13822 13823 /* 13824 * This packet came in on an interface other than the one associated 13825 * with the first ire we found for the destination address. We do 13826 * another ire lookup here, using the ingress ill, to see if the 13827 * interface is in an interface group. 13828 * As long as the ills belong to the same group, we don't consider 13829 * them to be arriving on the wrong interface. Thus, if the switch 13830 * is doing inbound load spreading, we won't drop packets when the 13831 * ip*_strict_dst_multihoming switch is on. Note, the same holds true 13832 * for 'usesrc groups' where the destination address may belong to 13833 * another interface to allow multipathing to happen. 13834 * We also need to check for IPIF_UNNUMBERED point2point interfaces 13835 * where the local address may not be unique. In this case we were 13836 * at the mercy of the initial ire cache lookup and the IRE_LOCAL it 13837 * actually returned. The new lookup, which is more specific, should 13838 * only find the IRE_LOCAL associated with the ingress ill if one 13839 * exists. 13840 */ 13841 13842 if (ire->ire_ipversion == IPV4_VERSION) { 13843 if (ipst->ips_ip_strict_dst_multihoming) 13844 strict_check = B_TRUE; 13845 new_ire = ire_ctable_lookup(*((ipaddr_t *)addr), 0, IRE_LOCAL, 13846 ill->ill_ipif, ALL_ZONES, NULL, 13847 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 13848 } else { 13849 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 13850 if (ipst->ips_ipv6_strict_dst_multihoming) 13851 strict_check = B_TRUE; 13852 new_ire = ire_ctable_lookup_v6((in6_addr_t *)addr, NULL, 13853 IRE_LOCAL, ill->ill_ipif, ALL_ZONES, NULL, 13854 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 13855 } 13856 /* 13857 * If the same ire that was returned in ip_input() is found then this 13858 * is an indication that interface groups are in use. The packet 13859 * arrived on a different ill in the group than the one associated with 13860 * the destination address. If a different ire was found then the same 13861 * IP address must be hosted on multiple ills. This is possible with 13862 * unnumbered point2point interfaces. We switch to use this new ire in 13863 * order to have accurate interface statistics. 13864 */ 13865 if (new_ire != NULL) { 13866 if ((new_ire != ire) && (new_ire->ire_rfq != NULL)) { 13867 ire_refrele(ire); 13868 ire = new_ire; 13869 } else { 13870 ire_refrele(new_ire); 13871 } 13872 return (ire); 13873 } else if ((ire->ire_rfq == NULL) && 13874 (ire->ire_ipversion == IPV4_VERSION)) { 13875 /* 13876 * The best match could have been the original ire which 13877 * was created against an IRE_LOCAL on lo0. In the IPv4 case 13878 * the strict multihoming checks are irrelevant as we consider 13879 * local addresses hosted on lo0 to be interface agnostic. We 13880 * only expect a null ire_rfq on IREs which are associated with 13881 * lo0 hence we can return now. 13882 */ 13883 return (ire); 13884 } 13885 13886 /* 13887 * Chase pointers once and store locally. 13888 */ 13889 ire_ill = (ire->ire_rfq == NULL) ? NULL : 13890 (ill_t *)(ire->ire_rfq->q_ptr); 13891 ifindex = ill->ill_usesrc_ifindex; 13892 13893 /* 13894 * Check if it's a legal address on the 'usesrc' interface. 13895 */ 13896 if ((ifindex != 0) && (ire_ill != NULL) && 13897 (ifindex == ire_ill->ill_phyint->phyint_ifindex)) { 13898 return (ire); 13899 } 13900 13901 /* 13902 * If the ip*_strict_dst_multihoming switch is on then we can 13903 * only accept this packet if the interface is marked as routing. 13904 */ 13905 if (!(strict_check)) 13906 return (ire); 13907 13908 if ((ill->ill_flags & ire->ire_ipif->ipif_ill->ill_flags & 13909 ILLF_ROUTER) != 0) { 13910 return (ire); 13911 } 13912 13913 ire_refrele(ire); 13914 return (NULL); 13915 } 13916 13917 ire_t * 13918 ip_fast_forward(ire_t *ire, ipaddr_t dst, ill_t *ill, mblk_t *mp) 13919 { 13920 ipha_t *ipha; 13921 ire_t *src_ire; 13922 ill_t *stq_ill; 13923 uint_t hlen; 13924 uint_t pkt_len; 13925 uint32_t sum; 13926 queue_t *dev_q; 13927 ip_stack_t *ipst = ill->ill_ipst; 13928 mblk_t *fpmp; 13929 13930 ipha = (ipha_t *)mp->b_rptr; 13931 13932 /* 13933 * Martian Address Filtering [RFC 1812, Section 5.3.7] 13934 * The loopback address check for both src and dst has already 13935 * been checked in ip_input 13936 */ 13937 13938 if (dst == INADDR_ANY || CLASSD(ipha->ipha_src)) { 13939 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13940 goto drop; 13941 } 13942 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13943 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 13944 13945 if (src_ire != NULL) { 13946 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13947 ire_refrele(src_ire); 13948 goto drop; 13949 } 13950 13951 13952 /* No ire cache of nexthop. So first create one */ 13953 if (ire == NULL) { 13954 boolean_t check_multirt; 13955 13956 ire = ire_forward(dst, &check_multirt, NULL, NULL, NULL, ipst); 13957 /* 13958 * We only come to ip_fast_forward if ip_cgtp_filter is 13959 * is not set. So upon return from ire_forward 13960 * check_multirt should remain as false. 13961 */ 13962 if (ire == NULL) { 13963 /* An attempt was made to forward the packet */ 13964 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13965 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13966 mp->b_prev = mp->b_next = 0; 13967 /* send icmp unreachable */ 13968 /* Sent by forwarding path, and router is global zone */ 13969 if (ip_source_routed(ipha, ipst)) { 13970 icmp_unreachable(ill->ill_wq, mp, 13971 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, 13972 ipst); 13973 } else { 13974 icmp_unreachable(ill->ill_wq, mp, 13975 ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 13976 ipst); 13977 } 13978 return (ire); 13979 } 13980 } 13981 13982 /* 13983 * Forwarding fastpath exception case: 13984 * If either of the follwoing case is true, we take 13985 * the slowpath 13986 * o forwarding is not enabled 13987 * o incoming and outgoing interface are the same, or the same 13988 * IPMP group 13989 * o corresponding ire is in incomplete state 13990 * o packet needs fragmentation 13991 * o ARP cache is not resolved 13992 * 13993 * The codeflow from here on is thus: 13994 * ip_rput_process_forward->ip_rput_forward->ip_xmit_v4 13995 */ 13996 pkt_len = ntohs(ipha->ipha_length); 13997 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 13998 if (!(stq_ill->ill_flags & ILLF_ROUTER) || 13999 !(ill->ill_flags & ILLF_ROUTER) || 14000 (ill == stq_ill) || 14001 (ill->ill_group != NULL && ill->ill_group == stq_ill->ill_group) || 14002 (ire->ire_nce == NULL) || 14003 (pkt_len > ire->ire_max_frag) || 14004 ((fpmp = ire->ire_nce->nce_fp_mp) == NULL) || 14005 ((hlen = MBLKL(fpmp)) > MBLKHEAD(mp)) || 14006 ipha->ipha_ttl <= 1) { 14007 ip_rput_process_forward(ill->ill_rq, mp, ire, 14008 ipha, ill, B_FALSE); 14009 return (ire); 14010 } 14011 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14012 14013 DTRACE_PROBE4(ip4__forwarding__start, 14014 ill_t *, ill, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 14015 14016 FW_HOOKS(ipst->ips_ip4_forwarding_event, 14017 ipst->ips_ipv4firewall_forwarding, 14018 ill, stq_ill, ipha, mp, mp, ipst); 14019 14020 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 14021 14022 if (mp == NULL) 14023 goto drop; 14024 14025 mp->b_datap->db_struioun.cksum.flags = 0; 14026 /* Adjust the checksum to reflect the ttl decrement. */ 14027 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 14028 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 14029 ipha->ipha_ttl--; 14030 14031 /* 14032 * Write the link layer header. We can do this safely here, 14033 * because we have already tested to make sure that the IP 14034 * policy is not set, and that we have a fast path destination 14035 * header. 14036 */ 14037 mp->b_rptr -= hlen; 14038 bcopy(fpmp->b_rptr, mp->b_rptr, hlen); 14039 14040 UPDATE_IB_PKT_COUNT(ire); 14041 ire->ire_last_used_time = lbolt; 14042 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 14043 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14044 UPDATE_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutOctets, pkt_len); 14045 14046 dev_q = ire->ire_stq->q_next; 14047 if ((dev_q->q_next != NULL || dev_q->q_first != NULL) && 14048 !canputnext(ire->ire_stq)) { 14049 goto indiscard; 14050 } 14051 if (ILL_DLS_CAPABLE(stq_ill)) { 14052 /* 14053 * Send the packet directly to DLD, where it 14054 * may be queued depending on the availability 14055 * of transmit resources at the media layer. 14056 */ 14057 IP_DLS_ILL_TX(stq_ill, ipha, mp, ipst); 14058 } else { 14059 DTRACE_PROBE4(ip4__physical__out__start, 14060 ill_t *, NULL, ill_t *, stq_ill, 14061 ipha_t *, ipha, mblk_t *, mp); 14062 FW_HOOKS(ipst->ips_ip4_physical_out_event, 14063 ipst->ips_ipv4firewall_physical_out, 14064 NULL, stq_ill, ipha, mp, mp, ipst); 14065 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 14066 if (mp == NULL) 14067 goto drop; 14068 putnext(ire->ire_stq, mp); 14069 } 14070 return (ire); 14071 14072 indiscard: 14073 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14074 drop: 14075 if (mp != NULL) 14076 freemsg(mp); 14077 return (ire); 14078 14079 } 14080 14081 /* 14082 * This function is called in the forwarding slowpath, when 14083 * either the ire lacks the link-layer address, or the packet needs 14084 * further processing(eg. fragmentation), before transmission. 14085 */ 14086 14087 static void 14088 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14089 ill_t *ill, boolean_t ll_multicast) 14090 { 14091 ill_group_t *ill_group; 14092 ill_group_t *ire_group; 14093 queue_t *dev_q; 14094 ire_t *src_ire; 14095 ip_stack_t *ipst = ill->ill_ipst; 14096 14097 ASSERT(ire->ire_stq != NULL); 14098 14099 mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */ 14100 mp->b_next = NULL; /* ip_rput_noire sets dst here */ 14101 14102 if (ll_multicast != 0) { 14103 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14104 goto drop_pkt; 14105 } 14106 14107 /* 14108 * check if ipha_src is a broadcast address. Note that this 14109 * check is redundant when we get here from ip_fast_forward() 14110 * which has already done this check. However, since we can 14111 * also get here from ip_rput_process_broadcast() or, for 14112 * for the slow path through ip_fast_forward(), we perform 14113 * the check again for code-reusability 14114 */ 14115 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 14116 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 14117 if (src_ire != NULL || ipha->ipha_dst == INADDR_ANY) { 14118 if (src_ire != NULL) 14119 ire_refrele(src_ire); 14120 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14121 ip2dbg(("ip_rput_process_forward: Received packet with" 14122 " bad src/dst address on %s\n", ill->ill_name)); 14123 goto drop_pkt; 14124 } 14125 14126 ill_group = ill->ill_group; 14127 ire_group = ((ill_t *)(ire->ire_rfq)->q_ptr)->ill_group; 14128 /* 14129 * Check if we want to forward this one at this time. 14130 * We allow source routed packets on a host provided that 14131 * they go out the same interface or same interface group 14132 * as they came in on. 14133 * 14134 * XXX To be quicker, we may wish to not chase pointers to 14135 * get the ILLF_ROUTER flag and instead store the 14136 * forwarding policy in the ire. An unfortunate 14137 * side-effect of that would be requiring an ire flush 14138 * whenever the ILLF_ROUTER flag changes. 14139 */ 14140 if (((ill->ill_flags & 14141 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 14142 ILLF_ROUTER) == 0) && 14143 !(ip_source_routed(ipha, ipst) && (ire->ire_rfq == q || 14144 (ill_group != NULL && ill_group == ire_group)))) { 14145 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14146 if (ip_source_routed(ipha, ipst)) { 14147 q = WR(q); 14148 /* 14149 * Clear the indication that this may have 14150 * hardware checksum as we are not using it. 14151 */ 14152 DB_CKSUMFLAGS(mp) = 0; 14153 /* Sent by forwarding path, and router is global zone */ 14154 icmp_unreachable(q, mp, 14155 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, ipst); 14156 return; 14157 } 14158 goto drop_pkt; 14159 } 14160 14161 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14162 14163 /* Packet is being forwarded. Turning off hwcksum flag. */ 14164 DB_CKSUMFLAGS(mp) = 0; 14165 if (ipst->ips_ip_g_send_redirects) { 14166 /* 14167 * Check whether the incoming interface and outgoing 14168 * interface is part of the same group. If so, 14169 * send redirects. 14170 * 14171 * Check the source address to see if it originated 14172 * on the same logical subnet it is going back out on. 14173 * If so, we should be able to send it a redirect. 14174 * Avoid sending a redirect if the destination 14175 * is directly connected (i.e., ipha_dst is the same 14176 * as ire_gateway_addr or the ire_addr of the 14177 * nexthop IRE_CACHE ), or if the packet was source 14178 * routed out this interface. 14179 */ 14180 ipaddr_t src, nhop; 14181 mblk_t *mp1; 14182 ire_t *nhop_ire = NULL; 14183 14184 /* 14185 * Check whether ire_rfq and q are from the same ill 14186 * or if they are not same, they at least belong 14187 * to the same group. If so, send redirects. 14188 */ 14189 if ((ire->ire_rfq == q || 14190 (ill_group != NULL && ill_group == ire_group)) && 14191 !ip_source_routed(ipha, ipst)) { 14192 14193 nhop = (ire->ire_gateway_addr != 0 ? 14194 ire->ire_gateway_addr : ire->ire_addr); 14195 14196 if (ipha->ipha_dst == nhop) { 14197 /* 14198 * We avoid sending a redirect if the 14199 * destination is directly connected 14200 * because it is possible that multiple 14201 * IP subnets may have been configured on 14202 * the link, and the source may not 14203 * be on the same subnet as ip destination, 14204 * even though they are on the same 14205 * physical link. 14206 */ 14207 goto sendit; 14208 } 14209 14210 src = ipha->ipha_src; 14211 14212 /* 14213 * We look up the interface ire for the nexthop, 14214 * to see if ipha_src is in the same subnet 14215 * as the nexthop. 14216 * 14217 * Note that, if, in the future, IRE_CACHE entries 14218 * are obsoleted, this lookup will not be needed, 14219 * as the ire passed to this function will be the 14220 * same as the nhop_ire computed below. 14221 */ 14222 nhop_ire = ire_ftable_lookup(nhop, 0, 0, 14223 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 14224 0, NULL, MATCH_IRE_TYPE, ipst); 14225 14226 if (nhop_ire != NULL) { 14227 if ((src & nhop_ire->ire_mask) == 14228 (nhop & nhop_ire->ire_mask)) { 14229 /* 14230 * The source is directly connected. 14231 * Just copy the ip header (which is 14232 * in the first mblk) 14233 */ 14234 mp1 = copyb(mp); 14235 if (mp1 != NULL) { 14236 icmp_send_redirect(WR(q), mp1, 14237 nhop, ipst); 14238 } 14239 } 14240 ire_refrele(nhop_ire); 14241 } 14242 } 14243 } 14244 sendit: 14245 dev_q = ire->ire_stq->q_next; 14246 if ((dev_q->q_next || dev_q->q_first) && !canput(dev_q)) { 14247 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14248 freemsg(mp); 14249 return; 14250 } 14251 14252 ip_rput_forward(ire, ipha, mp, ill); 14253 return; 14254 14255 drop_pkt: 14256 ip2dbg(("ip_rput_process_forward: drop pkt\n")); 14257 freemsg(mp); 14258 } 14259 14260 ire_t * 14261 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14262 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 14263 { 14264 queue_t *q; 14265 uint16_t hcksumflags; 14266 ip_stack_t *ipst = ill->ill_ipst; 14267 14268 q = *qp; 14269 14270 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInBcastPkts); 14271 14272 /* 14273 * Clear the indication that this may have hardware 14274 * checksum as we are not using it for forwarding. 14275 */ 14276 hcksumflags = DB_CKSUMFLAGS(mp); 14277 DB_CKSUMFLAGS(mp) = 0; 14278 14279 /* 14280 * Directed broadcast forwarding: if the packet came in over a 14281 * different interface then it is routed out over we can forward it. 14282 */ 14283 if (ipha->ipha_protocol == IPPROTO_TCP) { 14284 ire_refrele(ire); 14285 freemsg(mp); 14286 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14287 return (NULL); 14288 } 14289 /* 14290 * For multicast we have set dst to be INADDR_BROADCAST 14291 * for delivering to all STREAMS. IRE_MARK_NORECV is really 14292 * only for broadcast packets. 14293 */ 14294 if (!CLASSD(ipha->ipha_dst)) { 14295 ire_t *new_ire; 14296 ipif_t *ipif; 14297 /* 14298 * For ill groups, as the switch duplicates broadcasts 14299 * across all the ports, we need to filter out and 14300 * send up only one copy. There is one copy for every 14301 * broadcast address on each ill. Thus, we look for a 14302 * specific IRE on this ill and look at IRE_MARK_NORECV 14303 * later to see whether this ill is eligible to receive 14304 * them or not. ill_nominate_bcast_rcv() nominates only 14305 * one set of IREs for receiving. 14306 */ 14307 14308 ipif = ipif_get_next_ipif(NULL, ill); 14309 if (ipif == NULL) { 14310 ire_refrele(ire); 14311 freemsg(mp); 14312 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14313 return (NULL); 14314 } 14315 new_ire = ire_ctable_lookup(dst, 0, 0, 14316 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL, ipst); 14317 ipif_refrele(ipif); 14318 14319 if (new_ire != NULL) { 14320 if (new_ire->ire_marks & IRE_MARK_NORECV) { 14321 ire_refrele(ire); 14322 ire_refrele(new_ire); 14323 freemsg(mp); 14324 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14325 return (NULL); 14326 } 14327 /* 14328 * In the special case of multirouted broadcast 14329 * packets, we unconditionally need to "gateway" 14330 * them to the appropriate interface here. 14331 * In the normal case, this cannot happen, because 14332 * there is no broadcast IRE tagged with the 14333 * RTF_MULTIRT flag. 14334 */ 14335 if (new_ire->ire_flags & RTF_MULTIRT) { 14336 ire_refrele(new_ire); 14337 if (ire->ire_rfq != NULL) { 14338 q = ire->ire_rfq; 14339 *qp = q; 14340 } 14341 } else { 14342 ire_refrele(ire); 14343 ire = new_ire; 14344 } 14345 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 14346 if (!ipst->ips_ip_g_forward_directed_bcast) { 14347 /* 14348 * Free the message if 14349 * ip_g_forward_directed_bcast is turned 14350 * off for non-local broadcast. 14351 */ 14352 ire_refrele(ire); 14353 freemsg(mp); 14354 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14355 return (NULL); 14356 } 14357 } else { 14358 /* 14359 * This CGTP packet successfully passed the 14360 * CGTP filter, but the related CGTP 14361 * broadcast IRE has not been found, 14362 * meaning that the redundant ipif is 14363 * probably down. However, if we discarded 14364 * this packet, its duplicate would be 14365 * filtered out by the CGTP filter so none 14366 * of them would get through. So we keep 14367 * going with this one. 14368 */ 14369 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 14370 if (ire->ire_rfq != NULL) { 14371 q = ire->ire_rfq; 14372 *qp = q; 14373 } 14374 } 14375 } 14376 if (ipst->ips_ip_g_forward_directed_bcast && ll_multicast == 0) { 14377 /* 14378 * Verify that there are not more then one 14379 * IRE_BROADCAST with this broadcast address which 14380 * has ire_stq set. 14381 * TODO: simplify, loop over all IRE's 14382 */ 14383 ire_t *ire1; 14384 int num_stq = 0; 14385 mblk_t *mp1; 14386 14387 /* Find the first one with ire_stq set */ 14388 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 14389 for (ire1 = ire; ire1 && 14390 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 14391 ire1 = ire1->ire_next) 14392 ; 14393 if (ire1) { 14394 ire_refrele(ire); 14395 ire = ire1; 14396 IRE_REFHOLD(ire); 14397 } 14398 14399 /* Check if there are additional ones with stq set */ 14400 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 14401 if (ire->ire_addr != ire1->ire_addr) 14402 break; 14403 if (ire1->ire_stq) { 14404 num_stq++; 14405 break; 14406 } 14407 } 14408 rw_exit(&ire->ire_bucket->irb_lock); 14409 if (num_stq == 1 && ire->ire_stq != NULL) { 14410 ip1dbg(("ip_rput_process_broadcast: directed " 14411 "broadcast to 0x%x\n", 14412 ntohl(ire->ire_addr))); 14413 mp1 = copymsg(mp); 14414 if (mp1) { 14415 switch (ipha->ipha_protocol) { 14416 case IPPROTO_UDP: 14417 ip_udp_input(q, mp1, ipha, ire, ill); 14418 break; 14419 default: 14420 ip_proto_input(q, mp1, ipha, ire, ill, 14421 B_FALSE); 14422 break; 14423 } 14424 } 14425 /* 14426 * Adjust ttl to 2 (1+1 - the forward engine 14427 * will decrement it by one. 14428 */ 14429 if (ip_csum_hdr(ipha)) { 14430 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 14431 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 14432 freemsg(mp); 14433 ire_refrele(ire); 14434 return (NULL); 14435 } 14436 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl + 1; 14437 ipha->ipha_hdr_checksum = 0; 14438 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14439 ip_rput_process_forward(q, mp, ire, ipha, 14440 ill, ll_multicast); 14441 ire_refrele(ire); 14442 return (NULL); 14443 } 14444 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 14445 ntohl(ire->ire_addr))); 14446 } 14447 14448 14449 /* Restore any hardware checksum flags */ 14450 DB_CKSUMFLAGS(mp) = hcksumflags; 14451 return (ire); 14452 } 14453 14454 /* ARGSUSED */ 14455 static boolean_t 14456 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 14457 int *ll_multicast, ipaddr_t *dstp) 14458 { 14459 ip_stack_t *ipst = ill->ill_ipst; 14460 14461 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastPkts); 14462 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastOctets, 14463 ntohs(ipha->ipha_length)); 14464 14465 /* 14466 * Forward packets only if we have joined the allmulti 14467 * group on this interface. 14468 */ 14469 if (ipst->ips_ip_g_mrouter && ill->ill_join_allmulti) { 14470 int retval; 14471 14472 /* 14473 * Clear the indication that this may have hardware 14474 * checksum as we are not using it. 14475 */ 14476 DB_CKSUMFLAGS(mp) = 0; 14477 retval = ip_mforward(ill, ipha, mp); 14478 /* ip_mforward updates mib variables if needed */ 14479 /* clear b_prev - used by ip_mroute_decap */ 14480 mp->b_prev = NULL; 14481 14482 switch (retval) { 14483 case 0: 14484 /* 14485 * pkt is okay and arrived on phyint. 14486 * 14487 * If we are running as a multicast router 14488 * we need to see all IGMP and/or PIM packets. 14489 */ 14490 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 14491 (ipha->ipha_protocol == IPPROTO_PIM)) { 14492 goto done; 14493 } 14494 break; 14495 case -1: 14496 /* pkt is mal-formed, toss it */ 14497 goto drop_pkt; 14498 case 1: 14499 /* pkt is okay and arrived on a tunnel */ 14500 /* 14501 * If we are running a multicast router 14502 * we need to see all igmp packets. 14503 */ 14504 if (ipha->ipha_protocol == IPPROTO_IGMP) { 14505 *dstp = INADDR_BROADCAST; 14506 *ll_multicast = 1; 14507 return (B_FALSE); 14508 } 14509 14510 goto drop_pkt; 14511 } 14512 } 14513 14514 ILM_WALKER_HOLD(ill); 14515 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 14516 /* 14517 * This might just be caused by the fact that 14518 * multiple IP Multicast addresses map to the same 14519 * link layer multicast - no need to increment counter! 14520 */ 14521 ILM_WALKER_RELE(ill); 14522 freemsg(mp); 14523 return (B_TRUE); 14524 } 14525 ILM_WALKER_RELE(ill); 14526 done: 14527 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 14528 /* 14529 * This assumes the we deliver to all streams for multicast 14530 * and broadcast packets. 14531 */ 14532 *dstp = INADDR_BROADCAST; 14533 *ll_multicast = 1; 14534 return (B_FALSE); 14535 drop_pkt: 14536 ip2dbg(("ip_rput: drop pkt\n")); 14537 freemsg(mp); 14538 return (B_TRUE); 14539 } 14540 14541 static boolean_t 14542 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 14543 int *ll_multicast, mblk_t **mpp) 14544 { 14545 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 14546 boolean_t must_copy = B_FALSE; 14547 struct iocblk *iocp; 14548 ipha_t *ipha; 14549 ip_stack_t *ipst = ill->ill_ipst; 14550 14551 #define rptr ((uchar_t *)ipha) 14552 14553 first_mp = *first_mpp; 14554 mp = *mpp; 14555 14556 ASSERT(first_mp == mp); 14557 14558 /* 14559 * if db_ref > 1 then copymsg and free original. Packet may be 14560 * changed and do not want other entity who has a reference to this 14561 * message to trip over the changes. This is a blind change because 14562 * trying to catch all places that might change packet is too 14563 * difficult (since it may be a module above this one) 14564 * 14565 * This corresponds to the non-fast path case. We walk down the full 14566 * chain in this case, and check the db_ref count of all the dblks, 14567 * and do a copymsg if required. It is possible that the db_ref counts 14568 * of the data blocks in the mblk chain can be different. 14569 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 14570 * count of 1, followed by a M_DATA block with a ref count of 2, if 14571 * 'snoop' is running. 14572 */ 14573 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 14574 if (mp1->b_datap->db_ref > 1) { 14575 must_copy = B_TRUE; 14576 break; 14577 } 14578 } 14579 14580 if (must_copy) { 14581 mp1 = copymsg(mp); 14582 if (mp1 == NULL) { 14583 for (mp1 = mp; mp1 != NULL; 14584 mp1 = mp1->b_cont) { 14585 mp1->b_next = NULL; 14586 mp1->b_prev = NULL; 14587 } 14588 freemsg(mp); 14589 if (ill != NULL) { 14590 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14591 } else { 14592 BUMP_MIB(&ipst->ips_ip_mib, 14593 ipIfStatsInDiscards); 14594 } 14595 return (B_TRUE); 14596 } 14597 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 14598 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 14599 /* Copy b_prev - used by ip_mroute_decap */ 14600 to_mp->b_prev = from_mp->b_prev; 14601 from_mp->b_prev = NULL; 14602 } 14603 *first_mpp = first_mp = mp1; 14604 freemsg(mp); 14605 mp = mp1; 14606 *mpp = mp1; 14607 } 14608 14609 ipha = (ipha_t *)mp->b_rptr; 14610 14611 /* 14612 * previous code has a case for M_DATA. 14613 * We want to check how that happens. 14614 */ 14615 ASSERT(first_mp->b_datap->db_type != M_DATA); 14616 switch (first_mp->b_datap->db_type) { 14617 case M_PROTO: 14618 case M_PCPROTO: 14619 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 14620 DL_UNITDATA_IND) { 14621 /* Go handle anything other than data elsewhere. */ 14622 ip_rput_dlpi(q, mp); 14623 return (B_TRUE); 14624 } 14625 *ll_multicast = ((dl_unitdata_ind_t *)rptr)->dl_group_address; 14626 /* Ditch the DLPI header. */ 14627 mp1 = mp->b_cont; 14628 ASSERT(first_mp == mp); 14629 *first_mpp = mp1; 14630 freeb(mp); 14631 *mpp = mp1; 14632 return (B_FALSE); 14633 case M_IOCACK: 14634 ip1dbg(("got iocack ")); 14635 iocp = (struct iocblk *)mp->b_rptr; 14636 switch (iocp->ioc_cmd) { 14637 case DL_IOC_HDR_INFO: 14638 ill = (ill_t *)q->q_ptr; 14639 ill_fastpath_ack(ill, mp); 14640 return (B_TRUE); 14641 case SIOCSTUNPARAM: 14642 case OSIOCSTUNPARAM: 14643 /* Go through qwriter_ip */ 14644 break; 14645 case SIOCGTUNPARAM: 14646 case OSIOCGTUNPARAM: 14647 ip_rput_other(NULL, q, mp, NULL); 14648 return (B_TRUE); 14649 default: 14650 putnext(q, mp); 14651 return (B_TRUE); 14652 } 14653 /* FALLTHRU */ 14654 case M_ERROR: 14655 case M_HANGUP: 14656 /* 14657 * Since this is on the ill stream we unconditionally 14658 * bump up the refcount 14659 */ 14660 ill_refhold(ill); 14661 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14662 return (B_TRUE); 14663 case M_CTL: 14664 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 14665 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 14666 IPHADA_M_CTL)) { 14667 /* 14668 * It's an IPsec accelerated packet. 14669 * Make sure that the ill from which we received the 14670 * packet has enabled IPsec hardware acceleration. 14671 */ 14672 if (!(ill->ill_capabilities & 14673 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 14674 /* IPsec kstats: bean counter */ 14675 freemsg(mp); 14676 return (B_TRUE); 14677 } 14678 14679 /* 14680 * Make mp point to the mblk following the M_CTL, 14681 * then process according to type of mp. 14682 * After this processing, first_mp will point to 14683 * the data-attributes and mp to the pkt following 14684 * the M_CTL. 14685 */ 14686 mp = first_mp->b_cont; 14687 if (mp == NULL) { 14688 freemsg(first_mp); 14689 return (B_TRUE); 14690 } 14691 /* 14692 * A Hardware Accelerated packet can only be M_DATA 14693 * ESP or AH packet. 14694 */ 14695 if (mp->b_datap->db_type != M_DATA) { 14696 /* non-M_DATA IPsec accelerated packet */ 14697 IPSECHW_DEBUG(IPSECHW_PKT, 14698 ("non-M_DATA IPsec accelerated pkt\n")); 14699 freemsg(first_mp); 14700 return (B_TRUE); 14701 } 14702 ipha = (ipha_t *)mp->b_rptr; 14703 if (ipha->ipha_protocol != IPPROTO_AH && 14704 ipha->ipha_protocol != IPPROTO_ESP) { 14705 IPSECHW_DEBUG(IPSECHW_PKT, 14706 ("non-M_DATA IPsec accelerated pkt\n")); 14707 freemsg(first_mp); 14708 return (B_TRUE); 14709 } 14710 *mpp = mp; 14711 return (B_FALSE); 14712 } 14713 putnext(q, mp); 14714 return (B_TRUE); 14715 case M_IOCNAK: 14716 ip1dbg(("got iocnak ")); 14717 iocp = (struct iocblk *)mp->b_rptr; 14718 switch (iocp->ioc_cmd) { 14719 case SIOCSTUNPARAM: 14720 case OSIOCSTUNPARAM: 14721 /* 14722 * Since this is on the ill stream we unconditionally 14723 * bump up the refcount 14724 */ 14725 ill_refhold(ill); 14726 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14727 return (B_TRUE); 14728 case DL_IOC_HDR_INFO: 14729 case SIOCGTUNPARAM: 14730 case OSIOCGTUNPARAM: 14731 ip_rput_other(NULL, q, mp, NULL); 14732 return (B_TRUE); 14733 default: 14734 break; 14735 } 14736 /* FALLTHRU */ 14737 default: 14738 putnext(q, mp); 14739 return (B_TRUE); 14740 } 14741 } 14742 14743 /* Read side put procedure. Packets coming from the wire arrive here. */ 14744 void 14745 ip_rput(queue_t *q, mblk_t *mp) 14746 { 14747 ill_t *ill; 14748 union DL_primitives *dl; 14749 14750 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 14751 14752 ill = (ill_t *)q->q_ptr; 14753 14754 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 14755 /* 14756 * If things are opening or closing, only accept high-priority 14757 * DLPI messages. (On open ill->ill_ipif has not yet been 14758 * created; on close, things hanging off the ill may have been 14759 * freed already.) 14760 */ 14761 dl = (union DL_primitives *)mp->b_rptr; 14762 if (DB_TYPE(mp) != M_PCPROTO || 14763 dl->dl_primitive == DL_UNITDATA_IND) { 14764 /* 14765 * SIOC[GS]TUNPARAM ioctls can come here. 14766 */ 14767 inet_freemsg(mp); 14768 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14769 "ip_rput_end: q %p (%S)", q, "uninit"); 14770 return; 14771 } 14772 } 14773 14774 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14775 "ip_rput_end: q %p (%S)", q, "end"); 14776 14777 ip_input(ill, NULL, mp, NULL); 14778 } 14779 14780 static mblk_t * 14781 ip_fix_dbref(ill_t *ill, mblk_t *mp) 14782 { 14783 mblk_t *mp1; 14784 boolean_t adjusted = B_FALSE; 14785 ip_stack_t *ipst = ill->ill_ipst; 14786 14787 IP_STAT(ipst, ip_db_ref); 14788 /* 14789 * The IP_RECVSLLA option depends on having the 14790 * link layer header. First check that: 14791 * a> the underlying device is of type ether, 14792 * since this option is currently supported only 14793 * over ethernet. 14794 * b> there is enough room to copy over the link 14795 * layer header. 14796 * 14797 * Once the checks are done, adjust rptr so that 14798 * the link layer header will be copied via 14799 * copymsg. Note that, IFT_ETHER may be returned 14800 * by some non-ethernet drivers but in this case 14801 * the second check will fail. 14802 */ 14803 if (ill->ill_type == IFT_ETHER && 14804 (mp->b_rptr - mp->b_datap->db_base) >= 14805 sizeof (struct ether_header)) { 14806 mp->b_rptr -= sizeof (struct ether_header); 14807 adjusted = B_TRUE; 14808 } 14809 mp1 = copymsg(mp); 14810 14811 if (mp1 == NULL) { 14812 mp->b_next = NULL; 14813 /* clear b_prev - used by ip_mroute_decap */ 14814 mp->b_prev = NULL; 14815 freemsg(mp); 14816 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14817 return (NULL); 14818 } 14819 14820 if (adjusted) { 14821 /* 14822 * Copy is done. Restore the pointer in 14823 * the _new_ mblk 14824 */ 14825 mp1->b_rptr += sizeof (struct ether_header); 14826 } 14827 14828 /* Copy b_prev - used by ip_mroute_decap */ 14829 mp1->b_prev = mp->b_prev; 14830 mp->b_prev = NULL; 14831 14832 /* preserve the hardware checksum flags and data, if present */ 14833 if (DB_CKSUMFLAGS(mp) != 0) { 14834 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 14835 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 14836 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 14837 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 14838 DB_CKSUM16(mp1) = DB_CKSUM16(mp); 14839 } 14840 14841 freemsg(mp); 14842 return (mp1); 14843 } 14844 14845 /* 14846 * Direct read side procedure capable of dealing with chains. GLDv3 based 14847 * drivers call this function directly with mblk chains while STREAMS 14848 * read side procedure ip_rput() calls this for single packet with ip_ring 14849 * set to NULL to process one packet at a time. 14850 * 14851 * The ill will always be valid if this function is called directly from 14852 * the driver. 14853 * 14854 * If ip_input() is called from GLDv3: 14855 * 14856 * - This must be a non-VLAN IP stream. 14857 * - 'mp' is either an untagged or a special priority-tagged packet. 14858 * - Any VLAN tag that was in the MAC header has been stripped. 14859 * 14860 * If the IP header in packet is not 32-bit aligned, every message in the 14861 * chain will be aligned before further operations. This is required on SPARC 14862 * platform. 14863 */ 14864 /* ARGSUSED */ 14865 void 14866 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, 14867 struct mac_header_info_s *mhip) 14868 { 14869 ipaddr_t dst = NULL; 14870 ipaddr_t prev_dst; 14871 ire_t *ire = NULL; 14872 ipha_t *ipha; 14873 uint_t pkt_len; 14874 ssize_t len; 14875 uint_t opt_len; 14876 int ll_multicast; 14877 int cgtp_flt_pkt; 14878 queue_t *q = ill->ill_rq; 14879 squeue_t *curr_sqp = NULL; 14880 mblk_t *head = NULL; 14881 mblk_t *tail = NULL; 14882 mblk_t *first_mp; 14883 mblk_t *mp; 14884 mblk_t *dmp; 14885 int cnt = 0; 14886 ip_stack_t *ipst = ill->ill_ipst; 14887 14888 ASSERT(mp_chain != NULL); 14889 ASSERT(ill != NULL); 14890 14891 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 14892 14893 #define rptr ((uchar_t *)ipha) 14894 14895 while (mp_chain != NULL) { 14896 first_mp = mp = mp_chain; 14897 mp_chain = mp_chain->b_next; 14898 mp->b_next = NULL; 14899 ll_multicast = 0; 14900 14901 /* 14902 * We do ire caching from one iteration to 14903 * another. In the event the packet chain contains 14904 * all packets from the same dst, this caching saves 14905 * an ire_cache_lookup for each of the succeeding 14906 * packets in a packet chain. 14907 */ 14908 prev_dst = dst; 14909 14910 /* 14911 * if db_ref > 1 then copymsg and free original. Packet 14912 * may be changed and we do not want the other entity 14913 * who has a reference to this message to trip over the 14914 * changes. This is a blind change because trying to 14915 * catch all places that might change the packet is too 14916 * difficult. 14917 * 14918 * This corresponds to the fast path case, where we have 14919 * a chain of M_DATA mblks. We check the db_ref count 14920 * of only the 1st data block in the mblk chain. There 14921 * doesn't seem to be a reason why a device driver would 14922 * send up data with varying db_ref counts in the mblk 14923 * chain. In any case the Fast path is a private 14924 * interface, and our drivers don't do such a thing. 14925 * Given the above assumption, there is no need to walk 14926 * down the entire mblk chain (which could have a 14927 * potential performance problem) 14928 */ 14929 14930 if (DB_REF(mp) > 1) { 14931 if ((mp = ip_fix_dbref(ill, mp)) == NULL) 14932 continue; 14933 } 14934 14935 /* 14936 * Check and align the IP header. 14937 */ 14938 first_mp = mp; 14939 if (DB_TYPE(mp) == M_DATA) { 14940 dmp = mp; 14941 } else if (DB_TYPE(mp) == M_PROTO && 14942 *(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) { 14943 dmp = mp->b_cont; 14944 } else { 14945 dmp = NULL; 14946 } 14947 if (dmp != NULL) { 14948 /* 14949 * IP header ptr not aligned? 14950 * OR IP header not complete in first mblk 14951 */ 14952 if (!OK_32PTR(dmp->b_rptr) || 14953 MBLKL(dmp) < IP_SIMPLE_HDR_LENGTH) { 14954 if (!ip_check_and_align_header(q, dmp, ipst)) 14955 continue; 14956 } 14957 } 14958 14959 /* 14960 * ip_input fast path 14961 */ 14962 14963 /* mblk type is not M_DATA */ 14964 if (DB_TYPE(mp) != M_DATA) { 14965 if (ip_rput_process_notdata(q, &first_mp, ill, 14966 &ll_multicast, &mp)) 14967 continue; 14968 14969 /* 14970 * The only way we can get here is if we had a 14971 * packet that was either a DL_UNITDATA_IND or 14972 * an M_CTL for an IPsec accelerated packet. 14973 * 14974 * In either case, the first_mp will point to 14975 * the leading M_PROTO or M_CTL. 14976 */ 14977 ASSERT(first_mp != NULL); 14978 } 14979 14980 /* Make sure its an M_DATA and that its aligned */ 14981 ASSERT(DB_TYPE(mp) == M_DATA); 14982 ASSERT(DB_REF(mp) == 1 && OK_32PTR(mp->b_rptr)); 14983 14984 ipha = (ipha_t *)mp->b_rptr; 14985 len = mp->b_wptr - rptr; 14986 pkt_len = ntohs(ipha->ipha_length); 14987 14988 /* 14989 * We must count all incoming packets, even if they end 14990 * up being dropped later on. 14991 */ 14992 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 14993 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 14994 14995 /* multiple mblk or too short */ 14996 len -= pkt_len; 14997 if (len != 0) { 14998 /* 14999 * Make sure we have data length consistent 15000 * with the IP header. 15001 */ 15002 if (mp->b_cont == NULL) { 15003 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15004 BUMP_MIB(ill->ill_ip_mib, 15005 ipIfStatsInHdrErrors); 15006 ip2dbg(("ip_input: drop pkt\n")); 15007 freemsg(mp); 15008 continue; 15009 } 15010 mp->b_wptr = rptr + pkt_len; 15011 } else if ((len += msgdsize(mp->b_cont)) != 0) { 15012 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15013 BUMP_MIB(ill->ill_ip_mib, 15014 ipIfStatsInHdrErrors); 15015 ip2dbg(("ip_input: drop pkt\n")); 15016 freemsg(mp); 15017 continue; 15018 } 15019 (void) adjmsg(mp, -len); 15020 IP_STAT(ipst, ip_multimblk3); 15021 } 15022 } 15023 15024 /* Obtain the dst of the current packet */ 15025 dst = ipha->ipha_dst; 15026 15027 /* 15028 * The following test for loopback is faster than 15029 * IP_LOOPBACK_ADDR(), because it avoids any bitwise 15030 * operations. 15031 * Note that these addresses are always in network byte order 15032 */ 15033 if (((*(uchar_t *)&ipha->ipha_dst) == 127) || 15034 ((*(uchar_t *)&ipha->ipha_src) == 127)) { 15035 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInAddrErrors); 15036 freemsg(mp); 15037 continue; 15038 } 15039 15040 /* 15041 * The event for packets being received from a 'physical' 15042 * interface is placed after validation of the source and/or 15043 * destination address as being local so that packets can be 15044 * redirected to loopback addresses using ipnat. 15045 */ 15046 DTRACE_PROBE4(ip4__physical__in__start, 15047 ill_t *, ill, ill_t *, NULL, 15048 ipha_t *, ipha, mblk_t *, first_mp); 15049 15050 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15051 ipst->ips_ipv4firewall_physical_in, 15052 ill, NULL, ipha, first_mp, mp, ipst); 15053 15054 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, first_mp); 15055 15056 if (first_mp == NULL) { 15057 continue; 15058 } 15059 dst = ipha->ipha_dst; 15060 15061 /* 15062 * Attach any necessary label information to 15063 * this packet 15064 */ 15065 if (is_system_labeled() && 15066 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 15067 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 15068 freemsg(mp); 15069 continue; 15070 } 15071 15072 /* 15073 * Reuse the cached ire only if the ipha_dst of the previous 15074 * packet is the same as the current packet AND it is not 15075 * INADDR_ANY. 15076 */ 15077 if (!(dst == prev_dst && dst != INADDR_ANY) && 15078 (ire != NULL)) { 15079 ire_refrele(ire); 15080 ire = NULL; 15081 } 15082 opt_len = ipha->ipha_version_and_hdr_length - 15083 IP_SIMPLE_HDR_VERSION; 15084 15085 /* 15086 * Check to see if we can take the fastpath. 15087 * That is possible if the following conditions are met 15088 * o Tsol disabled 15089 * o CGTP disabled 15090 * o ipp_action_count is 0 15091 * o no options in the packet 15092 * o not a RSVP packet 15093 * o not a multicast packet 15094 * o ill not in IP_DHCPINIT_IF mode 15095 */ 15096 if (!is_system_labeled() && 15097 !ipst->ips_ip_cgtp_filter && ipp_action_count == 0 && 15098 opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP && 15099 !ll_multicast && !CLASSD(dst) && ill->ill_dhcpinit == 0) { 15100 if (ire == NULL) 15101 ire = ire_cache_lookup(dst, ALL_ZONES, NULL, 15102 ipst); 15103 15104 /* incoming packet is for forwarding */ 15105 if (ire == NULL || (ire->ire_type & IRE_CACHE)) { 15106 ire = ip_fast_forward(ire, dst, ill, mp); 15107 continue; 15108 } 15109 /* incoming packet is for local consumption */ 15110 if (ire->ire_type & IRE_LOCAL) 15111 goto local; 15112 } 15113 15114 /* 15115 * Disable ire caching for anything more complex 15116 * than the simple fast path case we checked for above. 15117 */ 15118 if (ire != NULL) { 15119 ire_refrele(ire); 15120 ire = NULL; 15121 } 15122 15123 /* 15124 * Brutal hack for DHCPv4 unicast: RFC2131 allows a DHCP 15125 * server to unicast DHCP packets to a DHCP client using the 15126 * IP address it is offering to the client. This can be 15127 * disabled through the "broadcast bit", but not all DHCP 15128 * servers honor that bit. Therefore, to interoperate with as 15129 * many DHCP servers as possible, the DHCP client allows the 15130 * server to unicast, but we treat those packets as broadcast 15131 * here. Note that we don't rewrite the packet itself since 15132 * (a) that would mess up the checksums and (b) the DHCP 15133 * client conn is bound to INADDR_ANY so ip_fanout_udp() will 15134 * hand it the packet regardless. 15135 */ 15136 if (ill->ill_dhcpinit != 0 && 15137 IS_SIMPLE_IPH(ipha) && ipha->ipha_protocol == IPPROTO_UDP && 15138 pullupmsg(mp, sizeof (ipha_t) + sizeof (udpha_t)) == 1) { 15139 udpha_t *udpha; 15140 15141 /* 15142 * Reload ipha since pullupmsg() can change b_rptr. 15143 */ 15144 ipha = (ipha_t *)mp->b_rptr; 15145 udpha = (udpha_t *)&ipha[1]; 15146 15147 if (ntohs(udpha->uha_dst_port) == IPPORT_BOOTPC) { 15148 DTRACE_PROBE2(ip4__dhcpinit__pkt, ill_t *, ill, 15149 mblk_t *, mp); 15150 dst = INADDR_BROADCAST; 15151 } 15152 } 15153 15154 /* Full-blown slow path */ 15155 if (opt_len != 0) { 15156 if (len != 0) 15157 IP_STAT(ipst, ip_multimblk4); 15158 else 15159 IP_STAT(ipst, ip_ipoptions); 15160 if (!ip_rput_multimblk_ipoptions(q, ill, mp, &ipha, 15161 &dst, ipst)) 15162 continue; 15163 } 15164 15165 /* 15166 * Invoke the CGTP (multirouting) filtering module to process 15167 * the incoming packet. Packets identified as duplicates 15168 * must be discarded. Filtering is active only if the 15169 * the ip_cgtp_filter ndd variable is non-zero. 15170 */ 15171 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 15172 if (ipst->ips_ip_cgtp_filter && 15173 ipst->ips_ip_cgtp_filter_ops != NULL) { 15174 netstackid_t stackid; 15175 15176 stackid = ipst->ips_netstack->netstack_stackid; 15177 cgtp_flt_pkt = 15178 ipst->ips_ip_cgtp_filter_ops->cfo_filter(stackid, 15179 ill->ill_phyint->phyint_ifindex, mp); 15180 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 15181 freemsg(first_mp); 15182 continue; 15183 } 15184 } 15185 15186 /* 15187 * If rsvpd is running, let RSVP daemon handle its processing 15188 * and forwarding of RSVP multicast/unicast packets. 15189 * If rsvpd is not running but mrouted is running, RSVP 15190 * multicast packets are forwarded as multicast traffic 15191 * and RSVP unicast packets are forwarded by unicast router. 15192 * If neither rsvpd nor mrouted is running, RSVP multicast 15193 * packets are not forwarded, but the unicast packets are 15194 * forwarded like unicast traffic. 15195 */ 15196 if (ipha->ipha_protocol == IPPROTO_RSVP && 15197 ipst->ips_ipcl_proto_fanout[IPPROTO_RSVP].connf_head != 15198 NULL) { 15199 /* RSVP packet and rsvpd running. Treat as ours */ 15200 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 15201 /* 15202 * This assumes that we deliver to all streams for 15203 * multicast and broadcast packets. 15204 * We have to force ll_multicast to 1 to handle the 15205 * M_DATA messages passed in from ip_mroute_decap. 15206 */ 15207 dst = INADDR_BROADCAST; 15208 ll_multicast = 1; 15209 } else if (CLASSD(dst)) { 15210 /* packet is multicast */ 15211 mp->b_next = NULL; 15212 if (ip_rput_process_multicast(q, mp, ill, ipha, 15213 &ll_multicast, &dst)) 15214 continue; 15215 } 15216 15217 if (ire == NULL) { 15218 ire = ire_cache_lookup(dst, ALL_ZONES, 15219 MBLK_GETLABEL(mp), ipst); 15220 } 15221 15222 if (ire == NULL) { 15223 /* 15224 * No IRE for this destination, so it can't be for us. 15225 * Unless we are forwarding, drop the packet. 15226 * We have to let source routed packets through 15227 * since we don't yet know if they are 'ping -l' 15228 * packets i.e. if they will go out over the 15229 * same interface as they came in on. 15230 */ 15231 ire = ip_rput_noire(q, mp, ll_multicast, dst); 15232 if (ire == NULL) 15233 continue; 15234 } 15235 15236 /* 15237 * Broadcast IRE may indicate either broadcast or 15238 * multicast packet 15239 */ 15240 if (ire->ire_type == IRE_BROADCAST) { 15241 /* 15242 * Skip broadcast checks if packet is UDP multicast; 15243 * we'd rather not enter ip_rput_process_broadcast() 15244 * unless the packet is broadcast for real, since 15245 * that routine is a no-op for multicast. 15246 */ 15247 if (ipha->ipha_protocol != IPPROTO_UDP || 15248 !CLASSD(ipha->ipha_dst)) { 15249 ire = ip_rput_process_broadcast(&q, mp, 15250 ire, ipha, ill, dst, cgtp_flt_pkt, 15251 ll_multicast); 15252 if (ire == NULL) 15253 continue; 15254 } 15255 } else if (ire->ire_stq != NULL) { 15256 /* fowarding? */ 15257 ip_rput_process_forward(q, mp, ire, ipha, ill, 15258 ll_multicast); 15259 /* ip_rput_process_forward consumed the packet */ 15260 continue; 15261 } 15262 15263 local: 15264 /* 15265 * If the queue in the ire is different to the ingress queue 15266 * then we need to check to see if we can accept the packet. 15267 * Note that for multicast packets and broadcast packets sent 15268 * to a broadcast address which is shared between multiple 15269 * interfaces we should not do this since we just got a random 15270 * broadcast ire. 15271 */ 15272 if ((ire->ire_rfq != q) && (ire->ire_type != IRE_BROADCAST)) { 15273 if ((ire = ip_check_multihome(&ipha->ipha_dst, ire, 15274 ill)) == NULL) { 15275 /* Drop packet */ 15276 BUMP_MIB(ill->ill_ip_mib, 15277 ipIfStatsForwProhibits); 15278 freemsg(mp); 15279 continue; 15280 } 15281 if (ire->ire_rfq != NULL) 15282 q = ire->ire_rfq; 15283 } 15284 15285 switch (ipha->ipha_protocol) { 15286 case IPPROTO_TCP: 15287 ASSERT(first_mp == mp); 15288 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 15289 mp, 0, q, ip_ring)) != NULL) { 15290 if (curr_sqp == NULL) { 15291 curr_sqp = GET_SQUEUE(mp); 15292 ASSERT(cnt == 0); 15293 cnt++; 15294 head = tail = mp; 15295 } else if (curr_sqp == GET_SQUEUE(mp)) { 15296 ASSERT(tail != NULL); 15297 cnt++; 15298 tail->b_next = mp; 15299 tail = mp; 15300 } else { 15301 /* 15302 * A different squeue. Send the 15303 * chain for the previous squeue on 15304 * its way. This shouldn't happen 15305 * often unless interrupt binding 15306 * changes. 15307 */ 15308 IP_STAT(ipst, ip_input_multi_squeue); 15309 squeue_enter_chain(curr_sqp, head, 15310 tail, cnt, SQTAG_IP_INPUT); 15311 curr_sqp = GET_SQUEUE(mp); 15312 head = mp; 15313 tail = mp; 15314 cnt = 1; 15315 } 15316 } 15317 continue; 15318 case IPPROTO_UDP: 15319 ASSERT(first_mp == mp); 15320 ip_udp_input(q, mp, ipha, ire, ill); 15321 continue; 15322 case IPPROTO_SCTP: 15323 ASSERT(first_mp == mp); 15324 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 15325 q, dst); 15326 /* ire has been released by ip_sctp_input */ 15327 ire = NULL; 15328 continue; 15329 default: 15330 ip_proto_input(q, first_mp, ipha, ire, ill, B_FALSE); 15331 continue; 15332 } 15333 } 15334 15335 if (ire != NULL) 15336 ire_refrele(ire); 15337 15338 if (head != NULL) 15339 squeue_enter_chain(curr_sqp, head, tail, cnt, SQTAG_IP_INPUT); 15340 15341 /* 15342 * This code is there just to make netperf/ttcp look good. 15343 * 15344 * Its possible that after being in polling mode (and having cleared 15345 * the backlog), squeues have turned the interrupt frequency higher 15346 * to improve latency at the expense of more CPU utilization (less 15347 * packets per interrupts or more number of interrupts). Workloads 15348 * like ttcp/netperf do manage to tickle polling once in a while 15349 * but for the remaining time, stay in higher interrupt mode since 15350 * their packet arrival rate is pretty uniform and this shows up 15351 * as higher CPU utilization. Since people care about CPU utilization 15352 * while running netperf/ttcp, turn the interrupt frequency back to 15353 * normal/default if polling has not been used in ip_poll_normal_ticks. 15354 */ 15355 if (ip_ring != NULL && (ip_ring->rr_poll_state & ILL_POLLING)) { 15356 if (lbolt >= (ip_ring->rr_poll_time + ip_poll_normal_ticks)) { 15357 ip_ring->rr_poll_state &= ~ILL_POLLING; 15358 ip_ring->rr_blank(ip_ring->rr_handle, 15359 ip_ring->rr_normal_blank_time, 15360 ip_ring->rr_normal_pkt_cnt); 15361 } 15362 } 15363 15364 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15365 "ip_input_end: q %p (%S)", q, "end"); 15366 #undef rptr 15367 } 15368 15369 static void 15370 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 15371 t_uscalar_t err) 15372 { 15373 if (dl_err == DL_SYSERR) { 15374 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15375 "%s: %s failed: DL_SYSERR (errno %u)\n", 15376 ill->ill_name, dlpi_prim_str(prim), err); 15377 return; 15378 } 15379 15380 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15381 "%s: %s failed: %s\n", ill->ill_name, dlpi_prim_str(prim), 15382 dlpi_err_str(dl_err)); 15383 } 15384 15385 /* 15386 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 15387 * than DL_UNITDATA_IND messages. If we need to process this message 15388 * exclusively, we call qwriter_ip, in which case we also need to call 15389 * ill_refhold before that, since qwriter_ip does an ill_refrele. 15390 */ 15391 void 15392 ip_rput_dlpi(queue_t *q, mblk_t *mp) 15393 { 15394 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15395 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15396 ill_t *ill = (ill_t *)q->q_ptr; 15397 boolean_t pending; 15398 15399 ip1dbg(("ip_rput_dlpi")); 15400 if (dloa->dl_primitive == DL_ERROR_ACK) { 15401 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK %s (0x%x): " 15402 "%s (0x%x), unix %u\n", ill->ill_name, 15403 dlpi_prim_str(dlea->dl_error_primitive), 15404 dlea->dl_error_primitive, 15405 dlpi_err_str(dlea->dl_errno), 15406 dlea->dl_errno, 15407 dlea->dl_unix_errno)); 15408 } 15409 15410 /* 15411 * If we received an ACK but didn't send a request for it, then it 15412 * can't be part of any pending operation; discard up-front. 15413 */ 15414 switch (dloa->dl_primitive) { 15415 case DL_NOTIFY_IND: 15416 pending = B_TRUE; 15417 break; 15418 case DL_ERROR_ACK: 15419 pending = ill_dlpi_pending(ill, dlea->dl_error_primitive); 15420 break; 15421 case DL_OK_ACK: 15422 pending = ill_dlpi_pending(ill, dloa->dl_correct_primitive); 15423 break; 15424 case DL_INFO_ACK: 15425 pending = ill_dlpi_pending(ill, DL_INFO_REQ); 15426 break; 15427 case DL_BIND_ACK: 15428 pending = ill_dlpi_pending(ill, DL_BIND_REQ); 15429 break; 15430 case DL_PHYS_ADDR_ACK: 15431 pending = ill_dlpi_pending(ill, DL_PHYS_ADDR_REQ); 15432 break; 15433 case DL_NOTIFY_ACK: 15434 pending = ill_dlpi_pending(ill, DL_NOTIFY_REQ); 15435 break; 15436 case DL_CONTROL_ACK: 15437 pending = ill_dlpi_pending(ill, DL_CONTROL_REQ); 15438 break; 15439 case DL_CAPABILITY_ACK: 15440 pending = ill_dlpi_pending(ill, DL_CAPABILITY_REQ); 15441 break; 15442 default: 15443 /* Not a DLPI message we support or were expecting */ 15444 freemsg(mp); 15445 return; 15446 } 15447 15448 if (!pending) { 15449 freemsg(mp); 15450 return; 15451 } 15452 15453 switch (dloa->dl_primitive) { 15454 case DL_ERROR_ACK: 15455 if (dlea->dl_error_primitive == DL_UNBIND_REQ) { 15456 mutex_enter(&ill->ill_lock); 15457 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15458 cv_signal(&ill->ill_cv); 15459 mutex_exit(&ill->ill_lock); 15460 } 15461 break; 15462 15463 case DL_OK_ACK: 15464 ip1dbg(("ip_rput: DL_OK_ACK for %s\n", 15465 dlpi_prim_str((int)dloa->dl_correct_primitive))); 15466 switch (dloa->dl_correct_primitive) { 15467 case DL_UNBIND_REQ: 15468 mutex_enter(&ill->ill_lock); 15469 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15470 cv_signal(&ill->ill_cv); 15471 mutex_exit(&ill->ill_lock); 15472 break; 15473 15474 case DL_ENABMULTI_REQ: 15475 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15476 ill->ill_dlpi_multicast_state = IDS_OK; 15477 break; 15478 } 15479 break; 15480 default: 15481 break; 15482 } 15483 15484 /* 15485 * We know the message is one we're waiting for (or DL_NOTIFY_IND), 15486 * and we need to become writer to continue to process it. If it's not 15487 * a DL_NOTIFY_IND, we assume we're in the middle of an exclusive 15488 * operation and pass CUR_OP. If this isn't true, we'll end up doing 15489 * some work as part of the current exclusive operation that actually 15490 * is not part of it -- which is wrong, but better than the 15491 * alternative of deadlock (if NEW_OP is always used). Someday, we 15492 * should track which DLPI requests have ACKs that we wait on 15493 * synchronously so we can know whether to use CUR_OP or NEW_OP. 15494 * 15495 * As required by qwriter_ip(), we refhold the ill; it will refrele. 15496 * Since this is on the ill stream we unconditionally bump up the 15497 * refcount without doing ILL_CAN_LOOKUP(). 15498 */ 15499 ill_refhold(ill); 15500 if (dloa->dl_primitive == DL_NOTIFY_IND) 15501 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 15502 else 15503 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 15504 } 15505 15506 /* 15507 * Handling of DLPI messages that require exclusive access to the ipsq. 15508 * 15509 * Need to do ill_pending_mp_release on ioctl completion, which could 15510 * happen here. (along with mi_copy_done) 15511 */ 15512 /* ARGSUSED */ 15513 static void 15514 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15515 { 15516 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15517 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15518 int err = 0; 15519 ill_t *ill; 15520 ipif_t *ipif = NULL; 15521 mblk_t *mp1 = NULL; 15522 conn_t *connp = NULL; 15523 t_uscalar_t paddrreq; 15524 mblk_t *mp_hw; 15525 boolean_t success; 15526 boolean_t ioctl_aborted = B_FALSE; 15527 boolean_t log = B_TRUE; 15528 hook_nic_event_t *info; 15529 ip_stack_t *ipst; 15530 15531 ip1dbg(("ip_rput_dlpi_writer ..")); 15532 ill = (ill_t *)q->q_ptr; 15533 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 15534 15535 ASSERT(IAM_WRITER_ILL(ill)); 15536 15537 ipst = ill->ill_ipst; 15538 15539 /* 15540 * ipsq_pending_mp and ipsq_pending_ipif track each other. i.e. 15541 * both are null or non-null. However we can assert that only 15542 * after grabbing the ipsq_lock. So we don't make any assertion 15543 * here and in other places in the code. 15544 */ 15545 ipif = ipsq->ipsq_pending_ipif; 15546 /* 15547 * The current ioctl could have been aborted by the user and a new 15548 * ioctl to bring up another ill could have started. We could still 15549 * get a response from the driver later. 15550 */ 15551 if (ipif != NULL && ipif->ipif_ill != ill) 15552 ioctl_aborted = B_TRUE; 15553 15554 switch (dloa->dl_primitive) { 15555 case DL_ERROR_ACK: 15556 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 15557 dlpi_prim_str(dlea->dl_error_primitive))); 15558 15559 switch (dlea->dl_error_primitive) { 15560 case DL_PROMISCON_REQ: 15561 case DL_PROMISCOFF_REQ: 15562 case DL_DISABMULTI_REQ: 15563 case DL_UNBIND_REQ: 15564 case DL_ATTACH_REQ: 15565 case DL_INFO_REQ: 15566 ill_dlpi_done(ill, dlea->dl_error_primitive); 15567 break; 15568 case DL_NOTIFY_REQ: 15569 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15570 log = B_FALSE; 15571 break; 15572 case DL_PHYS_ADDR_REQ: 15573 /* 15574 * For IPv6 only, there are two additional 15575 * phys_addr_req's sent to the driver to get the 15576 * IPv6 token and lla. This allows IP to acquire 15577 * the hardware address format for a given interface 15578 * without having built in knowledge of the hardware 15579 * address. ill_phys_addr_pend keeps track of the last 15580 * DL_PAR sent so we know which response we are 15581 * dealing with. ill_dlpi_done will update 15582 * ill_phys_addr_pend when it sends the next req. 15583 * We don't complete the IOCTL until all three DL_PARs 15584 * have been attempted, so set *_len to 0 and break. 15585 */ 15586 paddrreq = ill->ill_phys_addr_pend; 15587 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15588 if (paddrreq == DL_IPV6_TOKEN) { 15589 ill->ill_token_length = 0; 15590 log = B_FALSE; 15591 break; 15592 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 15593 ill->ill_nd_lla_len = 0; 15594 log = B_FALSE; 15595 break; 15596 } 15597 /* 15598 * Something went wrong with the DL_PHYS_ADDR_REQ. 15599 * We presumably have an IOCTL hanging out waiting 15600 * for completion. Find it and complete the IOCTL 15601 * with the error noted. 15602 * However, ill_dl_phys was called on an ill queue 15603 * (from SIOCSLIFNAME), thus conn_pending_ill is not 15604 * set. But the ioctl is known to be pending on ill_wq. 15605 */ 15606 if (!ill->ill_ifname_pending) 15607 break; 15608 ill->ill_ifname_pending = 0; 15609 if (!ioctl_aborted) 15610 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15611 if (mp1 != NULL) { 15612 /* 15613 * This operation (SIOCSLIFNAME) must have 15614 * happened on the ill. Assert there is no conn 15615 */ 15616 ASSERT(connp == NULL); 15617 q = ill->ill_wq; 15618 } 15619 break; 15620 case DL_BIND_REQ: 15621 ill_dlpi_done(ill, DL_BIND_REQ); 15622 if (ill->ill_ifname_pending) 15623 break; 15624 /* 15625 * Something went wrong with the bind. We presumably 15626 * have an IOCTL hanging out waiting for completion. 15627 * Find it, take down the interface that was coming 15628 * up, and complete the IOCTL with the error noted. 15629 */ 15630 if (!ioctl_aborted) 15631 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15632 if (mp1 != NULL) { 15633 /* 15634 * This operation (SIOCSLIFFLAGS) must have 15635 * happened from a conn. 15636 */ 15637 ASSERT(connp != NULL); 15638 q = CONNP_TO_WQ(connp); 15639 if (ill->ill_move_in_progress) { 15640 ILL_CLEAR_MOVE(ill); 15641 } 15642 (void) ipif_down(ipif, NULL, NULL); 15643 /* error is set below the switch */ 15644 } 15645 break; 15646 case DL_ENABMULTI_REQ: 15647 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 15648 15649 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15650 ill->ill_dlpi_multicast_state = IDS_FAILED; 15651 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 15652 ipif_t *ipif; 15653 15654 printf("ip: joining multicasts failed (%d)" 15655 " on %s - will use link layer " 15656 "broadcasts for multicast\n", 15657 dlea->dl_errno, ill->ill_name); 15658 15659 /* 15660 * Set up the multicast mapping alone. 15661 * writer, so ok to access ill->ill_ipif 15662 * without any lock. 15663 */ 15664 ipif = ill->ill_ipif; 15665 mutex_enter(&ill->ill_phyint->phyint_lock); 15666 ill->ill_phyint->phyint_flags |= 15667 PHYI_MULTI_BCAST; 15668 mutex_exit(&ill->ill_phyint->phyint_lock); 15669 15670 if (!ill->ill_isv6) { 15671 (void) ipif_arp_setup_multicast(ipif, 15672 NULL); 15673 } else { 15674 (void) ipif_ndp_setup_multicast(ipif, 15675 NULL); 15676 } 15677 } 15678 freemsg(mp); /* Don't want to pass this up */ 15679 return; 15680 15681 case DL_CAPABILITY_REQ: 15682 case DL_CONTROL_REQ: 15683 ill_dlpi_done(ill, dlea->dl_error_primitive); 15684 ill->ill_dlpi_capab_state = IDS_FAILED; 15685 freemsg(mp); 15686 return; 15687 } 15688 /* 15689 * Note the error for IOCTL completion (mp1 is set when 15690 * ready to complete ioctl). If ill_ifname_pending_err is 15691 * set, an error occured during plumbing (ill_ifname_pending), 15692 * so we want to report that error. 15693 * 15694 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 15695 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 15696 * expected to get errack'd if the driver doesn't support 15697 * these flags (e.g. ethernet). log will be set to B_FALSE 15698 * if these error conditions are encountered. 15699 */ 15700 if (mp1 != NULL) { 15701 if (ill->ill_ifname_pending_err != 0) { 15702 err = ill->ill_ifname_pending_err; 15703 ill->ill_ifname_pending_err = 0; 15704 } else { 15705 err = dlea->dl_unix_errno ? 15706 dlea->dl_unix_errno : ENXIO; 15707 } 15708 /* 15709 * If we're plumbing an interface and an error hasn't already 15710 * been saved, set ill_ifname_pending_err to the error passed 15711 * up. Ignore the error if log is B_FALSE (see comment above). 15712 */ 15713 } else if (log && ill->ill_ifname_pending && 15714 ill->ill_ifname_pending_err == 0) { 15715 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 15716 dlea->dl_unix_errno : ENXIO; 15717 } 15718 15719 if (log) 15720 ip_dlpi_error(ill, dlea->dl_error_primitive, 15721 dlea->dl_errno, dlea->dl_unix_errno); 15722 break; 15723 case DL_CAPABILITY_ACK: 15724 /* Call a routine to handle this one. */ 15725 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 15726 ill_capability_ack(ill, mp); 15727 15728 /* 15729 * If the ack is due to renegotiation, we will need to send 15730 * a new CAPABILITY_REQ to start the renegotiation. 15731 */ 15732 if (ill->ill_capab_reneg) { 15733 ill->ill_capab_reneg = B_FALSE; 15734 ill_capability_probe(ill); 15735 } 15736 break; 15737 case DL_CONTROL_ACK: 15738 /* We treat all of these as "fire and forget" */ 15739 ill_dlpi_done(ill, DL_CONTROL_REQ); 15740 break; 15741 case DL_INFO_ACK: 15742 /* Call a routine to handle this one. */ 15743 ill_dlpi_done(ill, DL_INFO_REQ); 15744 ip_ll_subnet_defaults(ill, mp); 15745 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 15746 return; 15747 case DL_BIND_ACK: 15748 /* 15749 * We should have an IOCTL waiting on this unless 15750 * sent by ill_dl_phys, in which case just return 15751 */ 15752 ill_dlpi_done(ill, DL_BIND_REQ); 15753 if (ill->ill_ifname_pending) 15754 break; 15755 15756 if (!ioctl_aborted) 15757 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15758 if (mp1 == NULL) 15759 break; 15760 /* 15761 * Because mp1 was added by ill_dl_up(), and it always 15762 * passes a valid connp, connp must be valid here. 15763 */ 15764 ASSERT(connp != NULL); 15765 q = CONNP_TO_WQ(connp); 15766 15767 /* 15768 * We are exclusive. So nothing can change even after 15769 * we get the pending mp. If need be we can put it back 15770 * and restart, as in calling ipif_arp_up() below. 15771 */ 15772 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 15773 15774 mutex_enter(&ill->ill_lock); 15775 15776 ill->ill_dl_up = 1; 15777 15778 if ((info = ill->ill_nic_event_info) != NULL) { 15779 ip2dbg(("ip_rput_dlpi_writer: unexpected nic event %d " 15780 "attached for %s\n", info->hne_event, 15781 ill->ill_name)); 15782 if (info->hne_data != NULL) 15783 kmem_free(info->hne_data, info->hne_datalen); 15784 kmem_free(info, sizeof (hook_nic_event_t)); 15785 } 15786 15787 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 15788 if (info != NULL) { 15789 info->hne_nic = ill->ill_phyint->phyint_hook_ifindex; 15790 info->hne_lif = 0; 15791 info->hne_event = NE_UP; 15792 info->hne_data = NULL; 15793 info->hne_datalen = 0; 15794 info->hne_family = ill->ill_isv6 ? 15795 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 15796 } else 15797 ip2dbg(("ip_rput_dlpi_writer: could not attach UP nic " 15798 "event information for %s (ENOMEM)\n", 15799 ill->ill_name)); 15800 15801 ill->ill_nic_event_info = info; 15802 15803 mutex_exit(&ill->ill_lock); 15804 15805 /* 15806 * Now bring up the resolver; when that is complete, we'll 15807 * create IREs. Note that we intentionally mirror what 15808 * ipif_up() would have done, because we got here by way of 15809 * ill_dl_up(), which stopped ipif_up()'s processing. 15810 */ 15811 if (ill->ill_isv6) { 15812 /* 15813 * v6 interfaces. 15814 * Unlike ARP which has to do another bind 15815 * and attach, once we get here we are 15816 * done with NDP. Except in the case of 15817 * ILLF_XRESOLV, in which case we send an 15818 * AR_INTERFACE_UP to the external resolver. 15819 * If all goes well, the ioctl will complete 15820 * in ip_rput(). If there's an error, we 15821 * complete it here. 15822 */ 15823 if ((err = ipif_ndp_up(ipif)) == 0) { 15824 if (ill->ill_flags & ILLF_XRESOLV) { 15825 mutex_enter(&connp->conn_lock); 15826 mutex_enter(&ill->ill_lock); 15827 success = ipsq_pending_mp_add( 15828 connp, ipif, q, mp1, 0); 15829 mutex_exit(&ill->ill_lock); 15830 mutex_exit(&connp->conn_lock); 15831 if (success) { 15832 err = ipif_resolver_up(ipif, 15833 Res_act_initial); 15834 if (err == EINPROGRESS) { 15835 freemsg(mp); 15836 return; 15837 } 15838 ASSERT(err != 0); 15839 mp1 = ipsq_pending_mp_get(ipsq, 15840 &connp); 15841 ASSERT(mp1 != NULL); 15842 } else { 15843 /* conn has started closing */ 15844 err = EINTR; 15845 } 15846 } else { /* Non XRESOLV interface */ 15847 (void) ipif_resolver_up(ipif, 15848 Res_act_initial); 15849 err = ipif_up_done_v6(ipif); 15850 } 15851 } 15852 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 15853 /* 15854 * ARP and other v4 external resolvers. 15855 * Leave the pending mblk intact so that 15856 * the ioctl completes in ip_rput(). 15857 */ 15858 mutex_enter(&connp->conn_lock); 15859 mutex_enter(&ill->ill_lock); 15860 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 15861 mutex_exit(&ill->ill_lock); 15862 mutex_exit(&connp->conn_lock); 15863 if (success) { 15864 err = ipif_resolver_up(ipif, Res_act_initial); 15865 if (err == EINPROGRESS) { 15866 freemsg(mp); 15867 return; 15868 } 15869 ASSERT(err != 0); 15870 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15871 } else { 15872 /* The conn has started closing */ 15873 err = EINTR; 15874 } 15875 } else { 15876 /* 15877 * This one is complete. Reply to pending ioctl. 15878 */ 15879 (void) ipif_resolver_up(ipif, Res_act_initial); 15880 err = ipif_up_done(ipif); 15881 } 15882 15883 if ((err == 0) && (ill->ill_up_ipifs)) { 15884 err = ill_up_ipifs(ill, q, mp1); 15885 if (err == EINPROGRESS) { 15886 freemsg(mp); 15887 return; 15888 } 15889 } 15890 15891 if (ill->ill_up_ipifs) { 15892 ill_group_cleanup(ill); 15893 } 15894 15895 break; 15896 case DL_NOTIFY_IND: { 15897 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 15898 ire_t *ire; 15899 boolean_t need_ire_walk_v4 = B_FALSE; 15900 boolean_t need_ire_walk_v6 = B_FALSE; 15901 15902 switch (notify->dl_notification) { 15903 case DL_NOTE_PHYS_ADDR: 15904 err = ill_set_phys_addr(ill, mp); 15905 break; 15906 15907 case DL_NOTE_FASTPATH_FLUSH: 15908 ill_fastpath_flush(ill); 15909 break; 15910 15911 case DL_NOTE_SDU_SIZE: 15912 /* 15913 * Change the MTU size of the interface, of all 15914 * attached ipif's, and of all relevant ire's. The 15915 * new value's a uint32_t at notify->dl_data. 15916 * Mtu change Vs. new ire creation - protocol below. 15917 * 15918 * a Mark the ipif as IPIF_CHANGING. 15919 * b Set the new mtu in the ipif. 15920 * c Change the ire_max_frag on all affected ires 15921 * d Unmark the IPIF_CHANGING 15922 * 15923 * To see how the protocol works, assume an interface 15924 * route is also being added simultaneously by 15925 * ip_rt_add and let 'ipif' be the ipif referenced by 15926 * the ire. If the ire is created before step a, 15927 * it will be cleaned up by step c. If the ire is 15928 * created after step d, it will see the new value of 15929 * ipif_mtu. Any attempt to create the ire between 15930 * steps a to d will fail because of the IPIF_CHANGING 15931 * flag. Note that ire_create() is passed a pointer to 15932 * the ipif_mtu, and not the value. During ire_add 15933 * under the bucket lock, the ire_max_frag of the 15934 * new ire being created is set from the ipif/ire from 15935 * which it is being derived. 15936 */ 15937 mutex_enter(&ill->ill_lock); 15938 ill->ill_max_frag = (uint_t)notify->dl_data; 15939 15940 /* 15941 * If an SIOCSLIFLNKINFO has changed the ill_max_mtu 15942 * leave it alone 15943 */ 15944 if (ill->ill_mtu_userspecified) { 15945 mutex_exit(&ill->ill_lock); 15946 break; 15947 } 15948 ill->ill_max_mtu = ill->ill_max_frag; 15949 if (ill->ill_isv6) { 15950 if (ill->ill_max_mtu < IPV6_MIN_MTU) 15951 ill->ill_max_mtu = IPV6_MIN_MTU; 15952 } else { 15953 if (ill->ill_max_mtu < IP_MIN_MTU) 15954 ill->ill_max_mtu = IP_MIN_MTU; 15955 } 15956 for (ipif = ill->ill_ipif; ipif != NULL; 15957 ipif = ipif->ipif_next) { 15958 /* 15959 * Don't override the mtu if the user 15960 * has explicitly set it. 15961 */ 15962 if (ipif->ipif_flags & IPIF_FIXEDMTU) 15963 continue; 15964 ipif->ipif_mtu = (uint_t)notify->dl_data; 15965 if (ipif->ipif_isv6) 15966 ire = ipif_to_ire_v6(ipif); 15967 else 15968 ire = ipif_to_ire(ipif); 15969 if (ire != NULL) { 15970 ire->ire_max_frag = ipif->ipif_mtu; 15971 ire_refrele(ire); 15972 } 15973 if (ipif->ipif_flags & IPIF_UP) { 15974 if (ill->ill_isv6) 15975 need_ire_walk_v6 = B_TRUE; 15976 else 15977 need_ire_walk_v4 = B_TRUE; 15978 } 15979 } 15980 mutex_exit(&ill->ill_lock); 15981 if (need_ire_walk_v4) 15982 ire_walk_v4(ill_mtu_change, (char *)ill, 15983 ALL_ZONES, ipst); 15984 if (need_ire_walk_v6) 15985 ire_walk_v6(ill_mtu_change, (char *)ill, 15986 ALL_ZONES, ipst); 15987 break; 15988 case DL_NOTE_LINK_UP: 15989 case DL_NOTE_LINK_DOWN: { 15990 /* 15991 * We are writer. ill / phyint / ipsq assocs stable. 15992 * The RUNNING flag reflects the state of the link. 15993 */ 15994 phyint_t *phyint = ill->ill_phyint; 15995 uint64_t new_phyint_flags; 15996 boolean_t changed = B_FALSE; 15997 boolean_t went_up; 15998 15999 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 16000 mutex_enter(&phyint->phyint_lock); 16001 new_phyint_flags = went_up ? 16002 phyint->phyint_flags | PHYI_RUNNING : 16003 phyint->phyint_flags & ~PHYI_RUNNING; 16004 if (new_phyint_flags != phyint->phyint_flags) { 16005 phyint->phyint_flags = new_phyint_flags; 16006 changed = B_TRUE; 16007 } 16008 mutex_exit(&phyint->phyint_lock); 16009 /* 16010 * ill_restart_dad handles the DAD restart and routing 16011 * socket notification logic. 16012 */ 16013 if (changed) { 16014 ill_restart_dad(phyint->phyint_illv4, went_up); 16015 ill_restart_dad(phyint->phyint_illv6, went_up); 16016 } 16017 break; 16018 } 16019 case DL_NOTE_PROMISC_ON_PHYS: 16020 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16021 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 16022 mutex_enter(&ill->ill_lock); 16023 ill->ill_promisc_on_phys = B_TRUE; 16024 mutex_exit(&ill->ill_lock); 16025 break; 16026 case DL_NOTE_PROMISC_OFF_PHYS: 16027 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16028 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 16029 mutex_enter(&ill->ill_lock); 16030 ill->ill_promisc_on_phys = B_FALSE; 16031 mutex_exit(&ill->ill_lock); 16032 break; 16033 case DL_NOTE_CAPAB_RENEG: 16034 /* 16035 * Something changed on the driver side. 16036 * It wants us to renegotiate the capabilities 16037 * on this ill. One possible cause is the aggregation 16038 * interface under us where a port got added or 16039 * went away. 16040 * 16041 * If the capability negotiation is already done 16042 * or is in progress, reset the capabilities and 16043 * mark the ill's ill_capab_reneg to be B_TRUE, 16044 * so that when the ack comes back, we can start 16045 * the renegotiation process. 16046 * 16047 * Note that if ill_capab_reneg is already B_TRUE 16048 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case), 16049 * the capability resetting request has been sent 16050 * and the renegotiation has not been started yet; 16051 * nothing needs to be done in this case. 16052 */ 16053 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN) { 16054 ill_capability_reset(ill); 16055 ill->ill_capab_reneg = B_TRUE; 16056 } 16057 break; 16058 default: 16059 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 16060 "type 0x%x for DL_NOTIFY_IND\n", 16061 notify->dl_notification)); 16062 break; 16063 } 16064 16065 /* 16066 * As this is an asynchronous operation, we 16067 * should not call ill_dlpi_done 16068 */ 16069 break; 16070 } 16071 case DL_NOTIFY_ACK: { 16072 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 16073 16074 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 16075 ill->ill_note_link = 1; 16076 ill_dlpi_done(ill, DL_NOTIFY_REQ); 16077 break; 16078 } 16079 case DL_PHYS_ADDR_ACK: { 16080 /* 16081 * As part of plumbing the interface via SIOCSLIFNAME, 16082 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 16083 * whose answers we receive here. As each answer is received, 16084 * we call ill_dlpi_done() to dispatch the next request as 16085 * we're processing the current one. Once all answers have 16086 * been received, we use ipsq_pending_mp_get() to dequeue the 16087 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 16088 * is invoked from an ill queue, conn_oper_pending_ill is not 16089 * available, but we know the ioctl is pending on ill_wq.) 16090 */ 16091 uint_t paddrlen, paddroff; 16092 16093 paddrreq = ill->ill_phys_addr_pend; 16094 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 16095 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 16096 16097 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 16098 if (paddrreq == DL_IPV6_TOKEN) { 16099 /* 16100 * bcopy to low-order bits of ill_token 16101 * 16102 * XXX Temporary hack - currently, all known tokens 16103 * are 64 bits, so I'll cheat for the moment. 16104 */ 16105 bcopy(mp->b_rptr + paddroff, 16106 &ill->ill_token.s6_addr32[2], paddrlen); 16107 ill->ill_token_length = paddrlen; 16108 break; 16109 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 16110 ASSERT(ill->ill_nd_lla_mp == NULL); 16111 ill_set_ndmp(ill, mp, paddroff, paddrlen); 16112 mp = NULL; 16113 break; 16114 } 16115 16116 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 16117 ASSERT(ill->ill_phys_addr_mp == NULL); 16118 if (!ill->ill_ifname_pending) 16119 break; 16120 ill->ill_ifname_pending = 0; 16121 if (!ioctl_aborted) 16122 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16123 if (mp1 != NULL) { 16124 ASSERT(connp == NULL); 16125 q = ill->ill_wq; 16126 } 16127 /* 16128 * If any error acks received during the plumbing sequence, 16129 * ill_ifname_pending_err will be set. Break out and send up 16130 * the error to the pending ioctl. 16131 */ 16132 if (ill->ill_ifname_pending_err != 0) { 16133 err = ill->ill_ifname_pending_err; 16134 ill->ill_ifname_pending_err = 0; 16135 break; 16136 } 16137 16138 ill->ill_phys_addr_mp = mp; 16139 ill->ill_phys_addr = mp->b_rptr + paddroff; 16140 mp = NULL; 16141 16142 /* 16143 * If paddrlen is zero, the DLPI provider doesn't support 16144 * physical addresses. The other two tests were historical 16145 * workarounds for bugs in our former PPP implementation, but 16146 * now other things have grown dependencies on them -- e.g., 16147 * the tun module specifies a dl_addr_length of zero in its 16148 * DL_BIND_ACK, but then specifies an incorrect value in its 16149 * DL_PHYS_ADDR_ACK. These bogus checks need to be removed, 16150 * but only after careful testing ensures that all dependent 16151 * broken DLPI providers have been fixed. 16152 */ 16153 if (paddrlen == 0 || ill->ill_phys_addr_length == 0 || 16154 ill->ill_phys_addr_length == IP_ADDR_LEN) { 16155 ill->ill_phys_addr = NULL; 16156 } else if (paddrlen != ill->ill_phys_addr_length) { 16157 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 16158 paddrlen, ill->ill_phys_addr_length)); 16159 err = EINVAL; 16160 break; 16161 } 16162 16163 if (ill->ill_nd_lla_mp == NULL) { 16164 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 16165 err = ENOMEM; 16166 break; 16167 } 16168 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 16169 } 16170 16171 /* 16172 * Set the interface token. If the zeroth interface address 16173 * is unspecified, then set it to the link local address. 16174 */ 16175 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 16176 (void) ill_setdefaulttoken(ill); 16177 16178 ASSERT(ill->ill_ipif->ipif_id == 0); 16179 if (ipif != NULL && 16180 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 16181 (void) ipif_setlinklocal(ipif); 16182 } 16183 break; 16184 } 16185 case DL_OK_ACK: 16186 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 16187 dlpi_prim_str((int)dloa->dl_correct_primitive), 16188 dloa->dl_correct_primitive)); 16189 switch (dloa->dl_correct_primitive) { 16190 case DL_PROMISCON_REQ: 16191 case DL_PROMISCOFF_REQ: 16192 case DL_ENABMULTI_REQ: 16193 case DL_DISABMULTI_REQ: 16194 case DL_UNBIND_REQ: 16195 case DL_ATTACH_REQ: 16196 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16197 break; 16198 } 16199 break; 16200 default: 16201 break; 16202 } 16203 16204 freemsg(mp); 16205 if (mp1 != NULL) { 16206 /* 16207 * The operation must complete without EINPROGRESS 16208 * since ipsq_pending_mp_get() has removed the mblk 16209 * from ipsq_pending_mp. Otherwise, the operation 16210 * will be stuck forever in the ipsq. 16211 */ 16212 ASSERT(err != EINPROGRESS); 16213 16214 switch (ipsq->ipsq_current_ioctl) { 16215 case 0: 16216 ipsq_current_finish(ipsq); 16217 break; 16218 16219 case SIOCLIFADDIF: 16220 case SIOCSLIFNAME: 16221 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16222 break; 16223 16224 default: 16225 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16226 break; 16227 } 16228 } 16229 } 16230 16231 /* 16232 * ip_rput_other is called by ip_rput to handle messages modifying the global 16233 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 16234 */ 16235 /* ARGSUSED */ 16236 void 16237 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 16238 { 16239 ill_t *ill; 16240 struct iocblk *iocp; 16241 mblk_t *mp1; 16242 conn_t *connp = NULL; 16243 16244 ip1dbg(("ip_rput_other ")); 16245 ill = (ill_t *)q->q_ptr; 16246 /* 16247 * This routine is not a writer in the case of SIOCGTUNPARAM 16248 * in which case ipsq is NULL. 16249 */ 16250 if (ipsq != NULL) { 16251 ASSERT(IAM_WRITER_IPSQ(ipsq)); 16252 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 16253 } 16254 16255 switch (mp->b_datap->db_type) { 16256 case M_ERROR: 16257 case M_HANGUP: 16258 /* 16259 * The device has a problem. We force the ILL down. It can 16260 * be brought up again manually using SIOCSIFFLAGS (via 16261 * ifconfig or equivalent). 16262 */ 16263 ASSERT(ipsq != NULL); 16264 if (mp->b_rptr < mp->b_wptr) 16265 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 16266 if (ill->ill_error == 0) 16267 ill->ill_error = ENXIO; 16268 if (!ill_down_start(q, mp)) 16269 return; 16270 ipif_all_down_tail(ipsq, q, mp, NULL); 16271 break; 16272 case M_IOCACK: 16273 iocp = (struct iocblk *)mp->b_rptr; 16274 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 16275 switch (iocp->ioc_cmd) { 16276 case SIOCSTUNPARAM: 16277 case OSIOCSTUNPARAM: 16278 ASSERT(ipsq != NULL); 16279 /* 16280 * Finish socket ioctl passed through to tun. 16281 * We should have an IOCTL waiting on this. 16282 */ 16283 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16284 if (ill->ill_isv6) { 16285 struct iftun_req *ta; 16286 16287 /* 16288 * if a source or destination is 16289 * being set, try and set the link 16290 * local address for the tunnel 16291 */ 16292 ta = (struct iftun_req *)mp->b_cont-> 16293 b_cont->b_rptr; 16294 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 16295 ipif_set_tun_llink(ill, ta); 16296 } 16297 16298 } 16299 if (mp1 != NULL) { 16300 /* 16301 * Now copy back the b_next/b_prev used by 16302 * mi code for the mi_copy* functions. 16303 * See ip_sioctl_tunparam() for the reason. 16304 * Also protect against missing b_cont. 16305 */ 16306 if (mp->b_cont != NULL) { 16307 mp->b_cont->b_next = 16308 mp1->b_cont->b_next; 16309 mp->b_cont->b_prev = 16310 mp1->b_cont->b_prev; 16311 } 16312 inet_freemsg(mp1); 16313 ASSERT(connp != NULL); 16314 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16315 iocp->ioc_error, NO_COPYOUT, ipsq); 16316 } else { 16317 ASSERT(connp == NULL); 16318 putnext(q, mp); 16319 } 16320 break; 16321 case SIOCGTUNPARAM: 16322 case OSIOCGTUNPARAM: 16323 /* 16324 * This is really M_IOCDATA from the tunnel driver. 16325 * convert back and complete the ioctl. 16326 * We should have an IOCTL waiting on this. 16327 */ 16328 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 16329 if (mp1) { 16330 /* 16331 * Now copy back the b_next/b_prev used by 16332 * mi code for the mi_copy* functions. 16333 * See ip_sioctl_tunparam() for the reason. 16334 * Also protect against missing b_cont. 16335 */ 16336 if (mp->b_cont != NULL) { 16337 mp->b_cont->b_next = 16338 mp1->b_cont->b_next; 16339 mp->b_cont->b_prev = 16340 mp1->b_cont->b_prev; 16341 } 16342 inet_freemsg(mp1); 16343 if (iocp->ioc_error == 0) 16344 mp->b_datap->db_type = M_IOCDATA; 16345 ASSERT(connp != NULL); 16346 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16347 iocp->ioc_error, COPYOUT, NULL); 16348 } else { 16349 ASSERT(connp == NULL); 16350 putnext(q, mp); 16351 } 16352 break; 16353 default: 16354 break; 16355 } 16356 break; 16357 case M_IOCNAK: 16358 iocp = (struct iocblk *)mp->b_rptr; 16359 16360 switch (iocp->ioc_cmd) { 16361 int mode; 16362 16363 case DL_IOC_HDR_INFO: 16364 /* 16365 * If this was the first attempt turn of the 16366 * fastpath probing. 16367 */ 16368 mutex_enter(&ill->ill_lock); 16369 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 16370 ill->ill_dlpi_fastpath_state = IDS_FAILED; 16371 mutex_exit(&ill->ill_lock); 16372 ill_fastpath_nack(ill); 16373 ip1dbg(("ip_rput: DLPI fastpath off on " 16374 "interface %s\n", 16375 ill->ill_name)); 16376 } else { 16377 mutex_exit(&ill->ill_lock); 16378 } 16379 freemsg(mp); 16380 break; 16381 case SIOCSTUNPARAM: 16382 case OSIOCSTUNPARAM: 16383 ASSERT(ipsq != NULL); 16384 /* 16385 * Finish socket ioctl passed through to tun 16386 * We should have an IOCTL waiting on this. 16387 */ 16388 /* FALLTHRU */ 16389 case SIOCGTUNPARAM: 16390 case OSIOCGTUNPARAM: 16391 /* 16392 * This is really M_IOCDATA from the tunnel driver. 16393 * convert back and complete the ioctl. 16394 * We should have an IOCTL waiting on this. 16395 */ 16396 if (iocp->ioc_cmd == SIOCGTUNPARAM || 16397 iocp->ioc_cmd == OSIOCGTUNPARAM) { 16398 mp1 = ill_pending_mp_get(ill, &connp, 16399 iocp->ioc_id); 16400 mode = COPYOUT; 16401 ipsq = NULL; 16402 } else { 16403 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16404 mode = NO_COPYOUT; 16405 } 16406 if (mp1 != NULL) { 16407 /* 16408 * Now copy back the b_next/b_prev used by 16409 * mi code for the mi_copy* functions. 16410 * See ip_sioctl_tunparam() for the reason. 16411 * Also protect against missing b_cont. 16412 */ 16413 if (mp->b_cont != NULL) { 16414 mp->b_cont->b_next = 16415 mp1->b_cont->b_next; 16416 mp->b_cont->b_prev = 16417 mp1->b_cont->b_prev; 16418 } 16419 inet_freemsg(mp1); 16420 if (iocp->ioc_error == 0) 16421 iocp->ioc_error = EINVAL; 16422 ASSERT(connp != NULL); 16423 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16424 iocp->ioc_error, mode, ipsq); 16425 } else { 16426 ASSERT(connp == NULL); 16427 putnext(q, mp); 16428 } 16429 break; 16430 default: 16431 break; 16432 } 16433 default: 16434 break; 16435 } 16436 } 16437 16438 /* 16439 * NOTE : This function does not ire_refrele the ire argument passed in. 16440 * 16441 * IPQoS notes 16442 * IP policy is invoked twice for a forwarded packet, once on the read side 16443 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 16444 * enabled. An additional parameter, in_ill, has been added for this purpose. 16445 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 16446 * because ip_mroute drops this information. 16447 * 16448 */ 16449 void 16450 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 16451 { 16452 uint32_t old_pkt_len; 16453 uint32_t pkt_len; 16454 queue_t *q; 16455 uint32_t sum; 16456 #define rptr ((uchar_t *)ipha) 16457 uint32_t max_frag; 16458 uint32_t ill_index; 16459 ill_t *out_ill; 16460 mib2_ipIfStatsEntry_t *mibptr; 16461 ip_stack_t *ipst = ((ill_t *)(ire->ire_stq->q_ptr))->ill_ipst; 16462 16463 /* Get the ill_index of the incoming ILL */ 16464 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 16465 mibptr = (in_ill != NULL) ? in_ill->ill_ip_mib : &ipst->ips_ip_mib; 16466 16467 /* Initiate Read side IPPF processing */ 16468 if (IPP_ENABLED(IPP_FWD_IN, ipst)) { 16469 ip_process(IPP_FWD_IN, &mp, ill_index); 16470 if (mp == NULL) { 16471 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 16472 "during IPPF processing\n")); 16473 return; 16474 } 16475 } 16476 16477 /* Adjust the checksum to reflect the ttl decrement. */ 16478 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 16479 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 16480 16481 if (ipha->ipha_ttl-- <= 1) { 16482 if (ip_csum_hdr(ipha)) { 16483 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16484 goto drop_pkt; 16485 } 16486 /* 16487 * Note: ire_stq this will be NULL for multicast 16488 * datagrams using the long path through arp (the IRE 16489 * is not an IRE_CACHE). This should not cause 16490 * problems since we don't generate ICMP errors for 16491 * multicast packets. 16492 */ 16493 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16494 q = ire->ire_stq; 16495 if (q != NULL) { 16496 /* Sent by forwarding path, and router is global zone */ 16497 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED, 16498 GLOBAL_ZONEID, ipst); 16499 } else 16500 freemsg(mp); 16501 return; 16502 } 16503 16504 /* 16505 * Don't forward if the interface is down 16506 */ 16507 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 16508 BUMP_MIB(mibptr, ipIfStatsInDiscards); 16509 ip2dbg(("ip_rput_forward:interface is down\n")); 16510 goto drop_pkt; 16511 } 16512 16513 /* Get the ill_index of the outgoing ILL */ 16514 out_ill = ire_to_ill(ire); 16515 ill_index = out_ill->ill_phyint->phyint_ifindex; 16516 16517 DTRACE_PROBE4(ip4__forwarding__start, 16518 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16519 16520 FW_HOOKS(ipst->ips_ip4_forwarding_event, 16521 ipst->ips_ipv4firewall_forwarding, 16522 in_ill, out_ill, ipha, mp, mp, ipst); 16523 16524 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 16525 16526 if (mp == NULL) 16527 return; 16528 old_pkt_len = pkt_len = ntohs(ipha->ipha_length); 16529 16530 if (is_system_labeled()) { 16531 mblk_t *mp1; 16532 16533 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 16534 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16535 goto drop_pkt; 16536 } 16537 /* Size may have changed */ 16538 mp = mp1; 16539 ipha = (ipha_t *)mp->b_rptr; 16540 pkt_len = ntohs(ipha->ipha_length); 16541 } 16542 16543 /* Check if there are options to update */ 16544 if (!IS_SIMPLE_IPH(ipha)) { 16545 if (ip_csum_hdr(ipha)) { 16546 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16547 goto drop_pkt; 16548 } 16549 if (ip_rput_forward_options(mp, ipha, ire, ipst)) { 16550 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16551 return; 16552 } 16553 16554 ipha->ipha_hdr_checksum = 0; 16555 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 16556 } 16557 max_frag = ire->ire_max_frag; 16558 if (pkt_len > max_frag) { 16559 /* 16560 * It needs fragging on its way out. We haven't 16561 * verified the header checksum yet. Since we 16562 * are going to put a surely good checksum in the 16563 * outgoing header, we have to make sure that it 16564 * was good coming in. 16565 */ 16566 if (ip_csum_hdr(ipha)) { 16567 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16568 goto drop_pkt; 16569 } 16570 /* Initiate Write side IPPF processing */ 16571 if (IPP_ENABLED(IPP_FWD_OUT, ipst)) { 16572 ip_process(IPP_FWD_OUT, &mp, ill_index); 16573 if (mp == NULL) { 16574 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 16575 " during IPPF processing\n")); 16576 return; 16577 } 16578 } 16579 /* 16580 * Handle labeled packet resizing. 16581 * 16582 * If we have added a label, inform ip_wput_frag() of its 16583 * effect on the MTU for ICMP messages. 16584 */ 16585 if (pkt_len > old_pkt_len) { 16586 uint32_t secopt_size; 16587 16588 secopt_size = pkt_len - old_pkt_len; 16589 if (secopt_size < max_frag) 16590 max_frag -= secopt_size; 16591 } 16592 16593 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID, ipst); 16594 ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n")); 16595 return; 16596 } 16597 16598 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 16599 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16600 FW_HOOKS(ipst->ips_ip4_physical_out_event, 16601 ipst->ips_ipv4firewall_physical_out, 16602 NULL, out_ill, ipha, mp, mp, ipst); 16603 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 16604 if (mp == NULL) 16605 return; 16606 16607 mp->b_prev = (mblk_t *)IPP_FWD_OUT; 16608 ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n")); 16609 (void) ip_xmit_v4(mp, ire, NULL, B_FALSE); 16610 /* ip_xmit_v4 always consumes the packet */ 16611 return; 16612 16613 drop_pkt:; 16614 ip1dbg(("ip_rput_forward: drop pkt\n")); 16615 freemsg(mp); 16616 #undef rptr 16617 } 16618 16619 void 16620 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 16621 { 16622 ire_t *ire; 16623 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16624 16625 ASSERT(!ipif->ipif_isv6); 16626 /* 16627 * Find an IRE which matches the destination and the outgoing 16628 * queue in the cache table. All we need is an IRE_CACHE which 16629 * is pointing at ipif->ipif_ill. If it is part of some ill group, 16630 * then it is enough to have some IRE_CACHE in the group. 16631 */ 16632 if (ipif->ipif_flags & IPIF_POINTOPOINT) 16633 dst = ipif->ipif_pp_dst_addr; 16634 16635 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, MBLK_GETLABEL(mp), 16636 MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR, ipst); 16637 if (ire == NULL) { 16638 /* 16639 * Mark this packet to make it be delivered to 16640 * ip_rput_forward after the new ire has been 16641 * created. 16642 */ 16643 mp->b_prev = NULL; 16644 mp->b_next = mp; 16645 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 16646 NULL, 0, GLOBAL_ZONEID, &zero_info); 16647 } else { 16648 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 16649 IRE_REFRELE(ire); 16650 } 16651 } 16652 16653 /* Update any source route, record route or timestamp options */ 16654 static int 16655 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire, ip_stack_t *ipst) 16656 { 16657 ipoptp_t opts; 16658 uchar_t *opt; 16659 uint8_t optval; 16660 uint8_t optlen; 16661 ipaddr_t dst; 16662 uint32_t ts; 16663 ire_t *dst_ire = NULL; 16664 ire_t *tmp_ire = NULL; 16665 timestruc_t now; 16666 16667 ip2dbg(("ip_rput_forward_options\n")); 16668 dst = ipha->ipha_dst; 16669 for (optval = ipoptp_first(&opts, ipha); 16670 optval != IPOPT_EOL; 16671 optval = ipoptp_next(&opts)) { 16672 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 16673 opt = opts.ipoptp_cur; 16674 optlen = opts.ipoptp_len; 16675 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 16676 optval, opts.ipoptp_len)); 16677 switch (optval) { 16678 uint32_t off; 16679 case IPOPT_SSRR: 16680 case IPOPT_LSRR: 16681 /* Check if adminstratively disabled */ 16682 if (!ipst->ips_ip_forward_src_routed) { 16683 if (ire->ire_stq != NULL) { 16684 /* 16685 * Sent by forwarding path, and router 16686 * is global zone 16687 */ 16688 icmp_unreachable(ire->ire_stq, mp, 16689 ICMP_SOURCE_ROUTE_FAILED, 16690 GLOBAL_ZONEID, ipst); 16691 } else { 16692 ip0dbg(("ip_rput_forward_options: " 16693 "unable to send unreach\n")); 16694 freemsg(mp); 16695 } 16696 return (-1); 16697 } 16698 16699 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16700 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16701 if (dst_ire == NULL) { 16702 /* 16703 * Must be partial since ip_rput_options 16704 * checked for strict. 16705 */ 16706 break; 16707 } 16708 off = opt[IPOPT_OFFSET]; 16709 off--; 16710 redo_srr: 16711 if (optlen < IP_ADDR_LEN || 16712 off > optlen - IP_ADDR_LEN) { 16713 /* End of source route */ 16714 ip1dbg(( 16715 "ip_rput_forward_options: end of SR\n")); 16716 ire_refrele(dst_ire); 16717 break; 16718 } 16719 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16720 bcopy(&ire->ire_src_addr, (char *)opt + off, 16721 IP_ADDR_LEN); 16722 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 16723 ntohl(dst))); 16724 16725 /* 16726 * Check if our address is present more than 16727 * once as consecutive hops in source route. 16728 */ 16729 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16730 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16731 if (tmp_ire != NULL) { 16732 ire_refrele(tmp_ire); 16733 off += IP_ADDR_LEN; 16734 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16735 goto redo_srr; 16736 } 16737 ipha->ipha_dst = dst; 16738 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16739 ire_refrele(dst_ire); 16740 break; 16741 case IPOPT_RR: 16742 off = opt[IPOPT_OFFSET]; 16743 off--; 16744 if (optlen < IP_ADDR_LEN || 16745 off > optlen - IP_ADDR_LEN) { 16746 /* No more room - ignore */ 16747 ip1dbg(( 16748 "ip_rput_forward_options: end of RR\n")); 16749 break; 16750 } 16751 bcopy(&ire->ire_src_addr, (char *)opt + off, 16752 IP_ADDR_LEN); 16753 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16754 break; 16755 case IPOPT_TS: 16756 /* Insert timestamp if there is room */ 16757 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16758 case IPOPT_TS_TSONLY: 16759 off = IPOPT_TS_TIMELEN; 16760 break; 16761 case IPOPT_TS_PRESPEC: 16762 case IPOPT_TS_PRESPEC_RFC791: 16763 /* Verify that the address matched */ 16764 off = opt[IPOPT_OFFSET] - 1; 16765 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16766 dst_ire = ire_ctable_lookup(dst, 0, 16767 IRE_LOCAL, NULL, ALL_ZONES, NULL, 16768 MATCH_IRE_TYPE, ipst); 16769 if (dst_ire == NULL) { 16770 /* Not for us */ 16771 break; 16772 } 16773 ire_refrele(dst_ire); 16774 /* FALLTHRU */ 16775 case IPOPT_TS_TSANDADDR: 16776 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16777 break; 16778 default: 16779 /* 16780 * ip_*put_options should have already 16781 * dropped this packet. 16782 */ 16783 cmn_err(CE_PANIC, "ip_rput_forward_options: " 16784 "unknown IT - bug in ip_rput_options?\n"); 16785 return (0); /* Keep "lint" happy */ 16786 } 16787 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 16788 /* Increase overflow counter */ 16789 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 16790 opt[IPOPT_POS_OV_FLG] = 16791 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 16792 (off << 4)); 16793 break; 16794 } 16795 off = opt[IPOPT_OFFSET] - 1; 16796 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16797 case IPOPT_TS_PRESPEC: 16798 case IPOPT_TS_PRESPEC_RFC791: 16799 case IPOPT_TS_TSANDADDR: 16800 bcopy(&ire->ire_src_addr, 16801 (char *)opt + off, IP_ADDR_LEN); 16802 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16803 /* FALLTHRU */ 16804 case IPOPT_TS_TSONLY: 16805 off = opt[IPOPT_OFFSET] - 1; 16806 /* Compute # of milliseconds since midnight */ 16807 gethrestime(&now); 16808 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 16809 now.tv_nsec / (NANOSEC / MILLISEC); 16810 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 16811 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 16812 break; 16813 } 16814 break; 16815 } 16816 } 16817 return (0); 16818 } 16819 16820 /* 16821 * This is called after processing at least one of AH/ESP headers. 16822 * 16823 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 16824 * the actual, physical interface on which the packet was received, 16825 * but, when ip_strict_dst_multihoming is set to 1, could be the 16826 * interface which had the ipha_dst configured when the packet went 16827 * through ip_rput. The ill_index corresponding to the recv_ill 16828 * is saved in ipsec_in_rill_index 16829 * 16830 * NOTE2: The "ire" argument is only used in IPv4 cases. This function 16831 * cannot assume "ire" points to valid data for any IPv6 cases. 16832 */ 16833 void 16834 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 16835 { 16836 mblk_t *mp; 16837 ipaddr_t dst; 16838 in6_addr_t *v6dstp; 16839 ipha_t *ipha; 16840 ip6_t *ip6h; 16841 ipsec_in_t *ii; 16842 boolean_t ill_need_rele = B_FALSE; 16843 boolean_t rill_need_rele = B_FALSE; 16844 boolean_t ire_need_rele = B_FALSE; 16845 netstack_t *ns; 16846 ip_stack_t *ipst; 16847 16848 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 16849 ASSERT(ii->ipsec_in_ill_index != 0); 16850 ns = ii->ipsec_in_ns; 16851 ASSERT(ii->ipsec_in_ns != NULL); 16852 ipst = ns->netstack_ip; 16853 16854 mp = ipsec_mp->b_cont; 16855 ASSERT(mp != NULL); 16856 16857 16858 if (ill == NULL) { 16859 ASSERT(recv_ill == NULL); 16860 /* 16861 * We need to get the original queue on which ip_rput_local 16862 * or ip_rput_data_v6 was called. 16863 */ 16864 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 16865 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL, ipst); 16866 ill_need_rele = B_TRUE; 16867 16868 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 16869 recv_ill = ill_lookup_on_ifindex( 16870 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 16871 NULL, NULL, NULL, NULL, ipst); 16872 rill_need_rele = B_TRUE; 16873 } else { 16874 recv_ill = ill; 16875 } 16876 16877 if ((ill == NULL) || (recv_ill == NULL)) { 16878 ip0dbg(("ip_fanout_proto_again: interface " 16879 "disappeared\n")); 16880 if (ill != NULL) 16881 ill_refrele(ill); 16882 if (recv_ill != NULL) 16883 ill_refrele(recv_ill); 16884 freemsg(ipsec_mp); 16885 return; 16886 } 16887 } 16888 16889 ASSERT(ill != NULL && recv_ill != NULL); 16890 16891 if (mp->b_datap->db_type == M_CTL) { 16892 /* 16893 * AH/ESP is returning the ICMP message after 16894 * removing their headers. Fanout again till 16895 * it gets to the right protocol. 16896 */ 16897 if (ii->ipsec_in_v4) { 16898 icmph_t *icmph; 16899 int iph_hdr_length; 16900 int hdr_length; 16901 16902 ipha = (ipha_t *)mp->b_rptr; 16903 iph_hdr_length = IPH_HDR_LENGTH(ipha); 16904 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 16905 ipha = (ipha_t *)&icmph[1]; 16906 hdr_length = IPH_HDR_LENGTH(ipha); 16907 /* 16908 * icmp_inbound_error_fanout may need to do pullupmsg. 16909 * Reset the type to M_DATA. 16910 */ 16911 mp->b_datap->db_type = M_DATA; 16912 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 16913 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 16914 B_FALSE, ill, ii->ipsec_in_zoneid); 16915 } else { 16916 icmp6_t *icmp6; 16917 int hdr_length; 16918 16919 ip6h = (ip6_t *)mp->b_rptr; 16920 /* Don't call hdr_length_v6() unless you have to. */ 16921 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 16922 hdr_length = ip_hdr_length_v6(mp, ip6h); 16923 else 16924 hdr_length = IPV6_HDR_LEN; 16925 16926 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 16927 /* 16928 * icmp_inbound_error_fanout_v6 may need to do 16929 * pullupmsg. Reset the type to M_DATA. 16930 */ 16931 mp->b_datap->db_type = M_DATA; 16932 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 16933 ip6h, icmp6, ill, B_TRUE, ii->ipsec_in_zoneid); 16934 } 16935 if (ill_need_rele) 16936 ill_refrele(ill); 16937 if (rill_need_rele) 16938 ill_refrele(recv_ill); 16939 return; 16940 } 16941 16942 if (ii->ipsec_in_v4) { 16943 ipha = (ipha_t *)mp->b_rptr; 16944 dst = ipha->ipha_dst; 16945 if (CLASSD(dst)) { 16946 /* 16947 * Multicast has to be delivered to all streams. 16948 */ 16949 dst = INADDR_BROADCAST; 16950 } 16951 16952 if (ire == NULL) { 16953 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 16954 MBLK_GETLABEL(mp), ipst); 16955 if (ire == NULL) { 16956 if (ill_need_rele) 16957 ill_refrele(ill); 16958 if (rill_need_rele) 16959 ill_refrele(recv_ill); 16960 ip1dbg(("ip_fanout_proto_again: " 16961 "IRE not found")); 16962 freemsg(ipsec_mp); 16963 return; 16964 } 16965 ire_need_rele = B_TRUE; 16966 } 16967 16968 switch (ipha->ipha_protocol) { 16969 case IPPROTO_UDP: 16970 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 16971 recv_ill); 16972 if (ire_need_rele) 16973 ire_refrele(ire); 16974 break; 16975 case IPPROTO_TCP: 16976 if (!ire_need_rele) 16977 IRE_REFHOLD(ire); 16978 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 16979 ire, ipsec_mp, 0, ill->ill_rq, NULL); 16980 IRE_REFRELE(ire); 16981 if (mp != NULL) 16982 squeue_enter_chain(GET_SQUEUE(mp), mp, 16983 mp, 1, SQTAG_IP_PROTO_AGAIN); 16984 break; 16985 case IPPROTO_SCTP: 16986 if (!ire_need_rele) 16987 IRE_REFHOLD(ire); 16988 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 16989 ipsec_mp, 0, ill->ill_rq, dst); 16990 break; 16991 default: 16992 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 16993 recv_ill, B_FALSE); 16994 if (ire_need_rele) 16995 ire_refrele(ire); 16996 break; 16997 } 16998 } else { 16999 uint32_t rput_flags = 0; 17000 17001 ip6h = (ip6_t *)mp->b_rptr; 17002 v6dstp = &ip6h->ip6_dst; 17003 /* 17004 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 17005 * address. 17006 * 17007 * Currently, we don't store that state in the IPSEC_IN 17008 * message, and we may need to. 17009 */ 17010 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 17011 IP6_IN_LLMCAST : 0); 17012 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 17013 NULL, NULL); 17014 } 17015 if (ill_need_rele) 17016 ill_refrele(ill); 17017 if (rill_need_rele) 17018 ill_refrele(recv_ill); 17019 } 17020 17021 /* 17022 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 17023 * returns 'true' if there are still fragments left on the queue, in 17024 * which case we restart the timer. 17025 */ 17026 void 17027 ill_frag_timer(void *arg) 17028 { 17029 ill_t *ill = (ill_t *)arg; 17030 boolean_t frag_pending; 17031 ip_stack_t *ipst = ill->ill_ipst; 17032 17033 mutex_enter(&ill->ill_lock); 17034 ASSERT(!ill->ill_fragtimer_executing); 17035 if (ill->ill_state_flags & ILL_CONDEMNED) { 17036 ill->ill_frag_timer_id = 0; 17037 mutex_exit(&ill->ill_lock); 17038 return; 17039 } 17040 ill->ill_fragtimer_executing = 1; 17041 mutex_exit(&ill->ill_lock); 17042 17043 frag_pending = ill_frag_timeout(ill, ipst->ips_ip_g_frag_timeout); 17044 17045 /* 17046 * Restart the timer, if we have fragments pending or if someone 17047 * wanted us to be scheduled again. 17048 */ 17049 mutex_enter(&ill->ill_lock); 17050 ill->ill_fragtimer_executing = 0; 17051 ill->ill_frag_timer_id = 0; 17052 if (frag_pending || ill->ill_fragtimer_needrestart) 17053 ill_frag_timer_start(ill); 17054 mutex_exit(&ill->ill_lock); 17055 } 17056 17057 void 17058 ill_frag_timer_start(ill_t *ill) 17059 { 17060 ip_stack_t *ipst = ill->ill_ipst; 17061 17062 ASSERT(MUTEX_HELD(&ill->ill_lock)); 17063 17064 /* If the ill is closing or opening don't proceed */ 17065 if (ill->ill_state_flags & ILL_CONDEMNED) 17066 return; 17067 17068 if (ill->ill_fragtimer_executing) { 17069 /* 17070 * ill_frag_timer is currently executing. Just record the 17071 * the fact that we want the timer to be restarted. 17072 * ill_frag_timer will post a timeout before it returns, 17073 * ensuring it will be called again. 17074 */ 17075 ill->ill_fragtimer_needrestart = 1; 17076 return; 17077 } 17078 17079 if (ill->ill_frag_timer_id == 0) { 17080 /* 17081 * The timer is neither running nor is the timeout handler 17082 * executing. Post a timeout so that ill_frag_timer will be 17083 * called 17084 */ 17085 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 17086 MSEC_TO_TICK(ipst->ips_ip_g_frag_timo_ms >> 1)); 17087 ill->ill_fragtimer_needrestart = 0; 17088 } 17089 } 17090 17091 /* 17092 * This routine is needed for loopback when forwarding multicasts. 17093 * 17094 * IPQoS Notes: 17095 * IPPF processing is done in fanout routines. 17096 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 17097 * processing for IPsec packets is done when it comes back in clear. 17098 * NOTE : The callers of this function need to do the ire_refrele for the 17099 * ire that is being passed in. 17100 */ 17101 void 17102 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17103 ill_t *recv_ill, boolean_t esp_in_udp_packet) 17104 { 17105 ill_t *ill = (ill_t *)q->q_ptr; 17106 uint32_t sum; 17107 uint32_t u1; 17108 uint32_t u2; 17109 int hdr_length; 17110 boolean_t mctl_present; 17111 mblk_t *first_mp = mp; 17112 mblk_t *hada_mp = NULL; 17113 ipha_t *inner_ipha; 17114 ip_stack_t *ipst; 17115 17116 ASSERT(recv_ill != NULL); 17117 ipst = recv_ill->ill_ipst; 17118 17119 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 17120 "ip_rput_locl_start: q %p", q); 17121 17122 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17123 ASSERT(ill != NULL); 17124 17125 17126 #define rptr ((uchar_t *)ipha) 17127 #define iphs ((uint16_t *)ipha) 17128 17129 /* 17130 * no UDP or TCP packet should come here anymore. 17131 */ 17132 ASSERT(ipha->ipha_protocol != IPPROTO_TCP && 17133 ipha->ipha_protocol != IPPROTO_UDP); 17134 17135 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 17136 if (mctl_present && 17137 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 17138 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 17139 17140 /* 17141 * It's an IPsec accelerated packet. 17142 * Keep a pointer to the data attributes around until 17143 * we allocate the ipsec_info_t. 17144 */ 17145 IPSECHW_DEBUG(IPSECHW_PKT, 17146 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 17147 hada_mp = first_mp; 17148 hada_mp->b_cont = NULL; 17149 /* 17150 * Since it is accelerated, it comes directly from 17151 * the ill and the data attributes is followed by 17152 * the packet data. 17153 */ 17154 ASSERT(mp->b_datap->db_type != M_CTL); 17155 first_mp = mp; 17156 mctl_present = B_FALSE; 17157 } 17158 17159 /* 17160 * IF M_CTL is not present, then ipsec_in_is_secure 17161 * should return B_TRUE. There is a case where loopback 17162 * packets has an M_CTL in the front with all the 17163 * IPsec options set to IPSEC_PREF_NEVER - which means 17164 * ipsec_in_is_secure will return B_FALSE. As loopback 17165 * packets never comes here, it is safe to ASSERT the 17166 * following. 17167 */ 17168 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 17169 17170 /* 17171 * Also, we should never have an mctl_present if this is an 17172 * ESP-in-UDP packet. 17173 */ 17174 ASSERT(!mctl_present || !esp_in_udp_packet); 17175 17176 17177 /* u1 is # words of IP options */ 17178 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 17179 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 17180 17181 if (u1 || (!esp_in_udp_packet && !mctl_present)) { 17182 if (u1) { 17183 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 17184 if (hada_mp != NULL) 17185 freemsg(hada_mp); 17186 return; 17187 } 17188 } else { 17189 /* Check the IP header checksum. */ 17190 #define uph ((uint16_t *)ipha) 17191 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 17192 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 17193 #undef uph 17194 /* finish doing IP checksum */ 17195 sum = (sum & 0xFFFF) + (sum >> 16); 17196 sum = ~(sum + (sum >> 16)) & 0xFFFF; 17197 if (sum && sum != 0xFFFF) { 17198 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 17199 goto drop_pkt; 17200 } 17201 } 17202 } 17203 17204 /* 17205 * Count for SNMP of inbound packets for ire. As ip_proto_input 17206 * might be called more than once for secure packets, count only 17207 * the first time. 17208 */ 17209 if (!mctl_present) { 17210 UPDATE_IB_PKT_COUNT(ire); 17211 ire->ire_last_used_time = lbolt; 17212 } 17213 17214 /* Check for fragmentation offset. */ 17215 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 17216 u1 = u2 & (IPH_MF | IPH_OFFSET); 17217 if (u1) { 17218 /* 17219 * We re-assemble fragments before we do the AH/ESP 17220 * processing. Thus, M_CTL should not be present 17221 * while we are re-assembling. 17222 */ 17223 ASSERT(!mctl_present); 17224 ASSERT(first_mp == mp); 17225 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 17226 return; 17227 } 17228 /* 17229 * Make sure that first_mp points back to mp as 17230 * the mp we came in with could have changed in 17231 * ip_rput_fragment(). 17232 */ 17233 ipha = (ipha_t *)mp->b_rptr; 17234 first_mp = mp; 17235 } 17236 17237 /* 17238 * Clear hardware checksumming flag as it is currently only 17239 * used by TCP and UDP. 17240 */ 17241 DB_CKSUMFLAGS(mp) = 0; 17242 17243 /* Now we have a complete datagram, destined for this machine. */ 17244 u1 = IPH_HDR_LENGTH(ipha); 17245 switch (ipha->ipha_protocol) { 17246 case IPPROTO_ICMP: { 17247 ire_t *ire_zone; 17248 ilm_t *ilm; 17249 mblk_t *mp1; 17250 zoneid_t last_zoneid; 17251 17252 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(recv_ill)) { 17253 ASSERT(ire->ire_type == IRE_BROADCAST); 17254 /* 17255 * In the multicast case, applications may have joined 17256 * the group from different zones, so we need to deliver 17257 * the packet to each of them. Loop through the 17258 * multicast memberships structures (ilm) on the receive 17259 * ill and send a copy of the packet up each matching 17260 * one. However, we don't do this for multicasts sent on 17261 * the loopback interface (PHYI_LOOPBACK flag set) as 17262 * they must stay in the sender's zone. 17263 * 17264 * ilm_add_v6() ensures that ilms in the same zone are 17265 * contiguous in the ill_ilm list. We use this property 17266 * to avoid sending duplicates needed when two 17267 * applications in the same zone join the same group on 17268 * different logical interfaces: we ignore the ilm if 17269 * its zoneid is the same as the last matching one. 17270 * In addition, the sending of the packet for 17271 * ire_zoneid is delayed until all of the other ilms 17272 * have been exhausted. 17273 */ 17274 last_zoneid = -1; 17275 ILM_WALKER_HOLD(recv_ill); 17276 for (ilm = recv_ill->ill_ilm; ilm != NULL; 17277 ilm = ilm->ilm_next) { 17278 if ((ilm->ilm_flags & ILM_DELETED) || 17279 ipha->ipha_dst != ilm->ilm_addr || 17280 ilm->ilm_zoneid == last_zoneid || 17281 ilm->ilm_zoneid == ire->ire_zoneid || 17282 ilm->ilm_zoneid == ALL_ZONES || 17283 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 17284 continue; 17285 mp1 = ip_copymsg(first_mp); 17286 if (mp1 == NULL) 17287 continue; 17288 icmp_inbound(q, mp1, B_TRUE, ill, 17289 0, sum, mctl_present, B_TRUE, 17290 recv_ill, ilm->ilm_zoneid); 17291 last_zoneid = ilm->ilm_zoneid; 17292 } 17293 ILM_WALKER_RELE(recv_ill); 17294 } else if (ire->ire_type == IRE_BROADCAST) { 17295 /* 17296 * In the broadcast case, there may be many zones 17297 * which need a copy of the packet delivered to them. 17298 * There is one IRE_BROADCAST per broadcast address 17299 * and per zone; we walk those using a helper function. 17300 * In addition, the sending of the packet for ire is 17301 * delayed until all of the other ires have been 17302 * processed. 17303 */ 17304 IRB_REFHOLD(ire->ire_bucket); 17305 ire_zone = NULL; 17306 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 17307 ire)) != NULL) { 17308 mp1 = ip_copymsg(first_mp); 17309 if (mp1 == NULL) 17310 continue; 17311 17312 UPDATE_IB_PKT_COUNT(ire_zone); 17313 ire_zone->ire_last_used_time = lbolt; 17314 icmp_inbound(q, mp1, B_TRUE, ill, 17315 0, sum, mctl_present, B_TRUE, 17316 recv_ill, ire_zone->ire_zoneid); 17317 } 17318 IRB_REFRELE(ire->ire_bucket); 17319 } 17320 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 17321 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 17322 ire->ire_zoneid); 17323 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17324 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 17325 return; 17326 } 17327 case IPPROTO_IGMP: 17328 /* 17329 * If we are not willing to accept IGMP packets in clear, 17330 * then check with global policy. 17331 */ 17332 if (ipst->ips_igmp_accept_clear_messages == 0) { 17333 first_mp = ipsec_check_global_policy(first_mp, NULL, 17334 ipha, NULL, mctl_present, ipst->ips_netstack); 17335 if (first_mp == NULL) 17336 return; 17337 } 17338 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17339 freemsg(first_mp); 17340 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 17341 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17342 return; 17343 } 17344 if ((mp = igmp_input(q, mp, ill)) == NULL) { 17345 /* Bad packet - discarded by igmp_input */ 17346 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17347 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 17348 if (mctl_present) 17349 freeb(first_mp); 17350 return; 17351 } 17352 /* 17353 * igmp_input() may have returned the pulled up message. 17354 * So first_mp and ipha need to be reinitialized. 17355 */ 17356 ipha = (ipha_t *)mp->b_rptr; 17357 if (mctl_present) 17358 first_mp->b_cont = mp; 17359 else 17360 first_mp = mp; 17361 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17362 connf_head != NULL) { 17363 /* No user-level listener for IGMP packets */ 17364 goto drop_pkt; 17365 } 17366 /* deliver to local raw users */ 17367 break; 17368 case IPPROTO_PIM: 17369 /* 17370 * If we are not willing to accept PIM packets in clear, 17371 * then check with global policy. 17372 */ 17373 if (ipst->ips_pim_accept_clear_messages == 0) { 17374 first_mp = ipsec_check_global_policy(first_mp, NULL, 17375 ipha, NULL, mctl_present, ipst->ips_netstack); 17376 if (first_mp == NULL) 17377 return; 17378 } 17379 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17380 freemsg(first_mp); 17381 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 17382 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17383 return; 17384 } 17385 if (pim_input(q, mp, ill) != 0) { 17386 /* Bad packet - discarded by pim_input */ 17387 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17388 "ip_rput_locl_end: q %p (%S)", q, "pim"); 17389 if (mctl_present) 17390 freeb(first_mp); 17391 return; 17392 } 17393 17394 /* 17395 * pim_input() may have pulled up the message so ipha needs to 17396 * be reinitialized. 17397 */ 17398 ipha = (ipha_t *)mp->b_rptr; 17399 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17400 connf_head != NULL) { 17401 /* No user-level listener for PIM packets */ 17402 goto drop_pkt; 17403 } 17404 /* deliver to local raw users */ 17405 break; 17406 case IPPROTO_ENCAP: 17407 /* 17408 * Handle self-encapsulated packets (IP-in-IP where 17409 * the inner addresses == the outer addresses). 17410 */ 17411 hdr_length = IPH_HDR_LENGTH(ipha); 17412 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 17413 mp->b_wptr) { 17414 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 17415 sizeof (ipha_t) - mp->b_rptr)) { 17416 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17417 freemsg(first_mp); 17418 return; 17419 } 17420 ipha = (ipha_t *)mp->b_rptr; 17421 } 17422 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 17423 /* 17424 * Check the sanity of the inner IP header. 17425 */ 17426 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 17427 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17428 freemsg(first_mp); 17429 return; 17430 } 17431 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 17432 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17433 freemsg(first_mp); 17434 return; 17435 } 17436 if (inner_ipha->ipha_src == ipha->ipha_src && 17437 inner_ipha->ipha_dst == ipha->ipha_dst) { 17438 ipsec_in_t *ii; 17439 17440 /* 17441 * Self-encapsulated tunnel packet. Remove 17442 * the outer IP header and fanout again. 17443 * We also need to make sure that the inner 17444 * header is pulled up until options. 17445 */ 17446 mp->b_rptr = (uchar_t *)inner_ipha; 17447 ipha = inner_ipha; 17448 hdr_length = IPH_HDR_LENGTH(ipha); 17449 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 17450 if (!pullupmsg(mp, (uchar_t *)ipha + 17451 + hdr_length - mp->b_rptr)) { 17452 freemsg(first_mp); 17453 return; 17454 } 17455 ipha = (ipha_t *)mp->b_rptr; 17456 } 17457 if (!mctl_present) { 17458 ASSERT(first_mp == mp); 17459 /* 17460 * This means that somebody is sending 17461 * Self-encapsualted packets without AH/ESP. 17462 * If AH/ESP was present, we would have already 17463 * allocated the first_mp. 17464 */ 17465 first_mp = ipsec_in_alloc(B_TRUE, 17466 ipst->ips_netstack); 17467 if (first_mp == NULL) { 17468 ip1dbg(("ip_proto_input: IPSEC_IN " 17469 "allocation failure.\n")); 17470 BUMP_MIB(ill->ill_ip_mib, 17471 ipIfStatsInDiscards); 17472 freemsg(mp); 17473 return; 17474 } 17475 first_mp->b_cont = mp; 17476 } 17477 /* 17478 * We generally store the ill_index if we need to 17479 * do IPsec processing as we lose the ill queue when 17480 * we come back. But in this case, we never should 17481 * have to store the ill_index here as it should have 17482 * been stored previously when we processed the 17483 * AH/ESP header in this routine or for non-ipsec 17484 * cases, we still have the queue. But for some bad 17485 * packets from the wire, we can get to IPsec after 17486 * this and we better store the index for that case. 17487 */ 17488 ill = (ill_t *)q->q_ptr; 17489 ii = (ipsec_in_t *)first_mp->b_rptr; 17490 ii->ipsec_in_ill_index = 17491 ill->ill_phyint->phyint_ifindex; 17492 ii->ipsec_in_rill_index = 17493 recv_ill->ill_phyint->phyint_ifindex; 17494 if (ii->ipsec_in_decaps) { 17495 /* 17496 * This packet is self-encapsulated multiple 17497 * times. We don't want to recurse infinitely. 17498 * To keep it simple, drop the packet. 17499 */ 17500 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17501 freemsg(first_mp); 17502 return; 17503 } 17504 ii->ipsec_in_decaps = B_TRUE; 17505 ip_fanout_proto_again(first_mp, recv_ill, recv_ill, 17506 ire); 17507 return; 17508 } 17509 break; 17510 case IPPROTO_AH: 17511 case IPPROTO_ESP: { 17512 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 17513 17514 /* 17515 * Fast path for AH/ESP. If this is the first time 17516 * we are sending a datagram to AH/ESP, allocate 17517 * a IPSEC_IN message and prepend it. Otherwise, 17518 * just fanout. 17519 */ 17520 17521 int ipsec_rc; 17522 ipsec_in_t *ii; 17523 netstack_t *ns = ipst->ips_netstack; 17524 17525 IP_STAT(ipst, ipsec_proto_ahesp); 17526 if (!mctl_present) { 17527 ASSERT(first_mp == mp); 17528 first_mp = ipsec_in_alloc(B_TRUE, ns); 17529 if (first_mp == NULL) { 17530 ip1dbg(("ip_proto_input: IPSEC_IN " 17531 "allocation failure.\n")); 17532 freemsg(hada_mp); /* okay ifnull */ 17533 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17534 freemsg(mp); 17535 return; 17536 } 17537 /* 17538 * Store the ill_index so that when we come back 17539 * from IPsec we ride on the same queue. 17540 */ 17541 ill = (ill_t *)q->q_ptr; 17542 ii = (ipsec_in_t *)first_mp->b_rptr; 17543 ii->ipsec_in_ill_index = 17544 ill->ill_phyint->phyint_ifindex; 17545 ii->ipsec_in_rill_index = 17546 recv_ill->ill_phyint->phyint_ifindex; 17547 first_mp->b_cont = mp; 17548 /* 17549 * Cache hardware acceleration info. 17550 */ 17551 if (hada_mp != NULL) { 17552 IPSECHW_DEBUG(IPSECHW_PKT, 17553 ("ip_rput_local: caching data attr.\n")); 17554 ii->ipsec_in_accelerated = B_TRUE; 17555 ii->ipsec_in_da = hada_mp; 17556 hada_mp = NULL; 17557 } 17558 } else { 17559 ii = (ipsec_in_t *)first_mp->b_rptr; 17560 } 17561 17562 if (!ipsec_loaded(ipss)) { 17563 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 17564 ire->ire_zoneid, ipst); 17565 return; 17566 } 17567 17568 ns = ipst->ips_netstack; 17569 /* select inbound SA and have IPsec process the pkt */ 17570 if (ipha->ipha_protocol == IPPROTO_ESP) { 17571 esph_t *esph = ipsec_inbound_esp_sa(first_mp, ns); 17572 boolean_t esp_in_udp_sa; 17573 if (esph == NULL) 17574 return; 17575 ASSERT(ii->ipsec_in_esp_sa != NULL); 17576 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 17577 esp_in_udp_sa = ((ii->ipsec_in_esp_sa->ipsa_flags & 17578 IPSA_F_NATT) != 0); 17579 /* 17580 * The following is a fancy, but quick, way of saying: 17581 * ESP-in-UDP SA and Raw ESP packet --> drop 17582 * OR 17583 * ESP SA and ESP-in-UDP packet --> drop 17584 */ 17585 if (esp_in_udp_sa != esp_in_udp_packet) { 17586 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17587 ip_drop_packet(first_mp, B_TRUE, ill, NULL, 17588 DROPPER(ns->netstack_ipsec, ipds_esp_no_sa), 17589 &ns->netstack_ipsec->ipsec_dropper); 17590 return; 17591 } 17592 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 17593 first_mp, esph); 17594 } else { 17595 ah_t *ah = ipsec_inbound_ah_sa(first_mp, ns); 17596 if (ah == NULL) 17597 return; 17598 ASSERT(ii->ipsec_in_ah_sa != NULL); 17599 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 17600 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 17601 first_mp, ah); 17602 } 17603 17604 switch (ipsec_rc) { 17605 case IPSEC_STATUS_SUCCESS: 17606 break; 17607 case IPSEC_STATUS_FAILED: 17608 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17609 /* FALLTHRU */ 17610 case IPSEC_STATUS_PENDING: 17611 return; 17612 } 17613 /* we're done with IPsec processing, send it up */ 17614 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 17615 return; 17616 } 17617 default: 17618 break; 17619 } 17620 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 17621 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 17622 ire->ire_zoneid)); 17623 goto drop_pkt; 17624 } 17625 /* 17626 * Handle protocols with which IP is less intimate. There 17627 * can be more than one stream bound to a particular 17628 * protocol. When this is the case, each one gets a copy 17629 * of any incoming packets. 17630 */ 17631 ip_fanout_proto(q, first_mp, ill, ipha, 17632 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 17633 B_TRUE, recv_ill, ire->ire_zoneid); 17634 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17635 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 17636 return; 17637 17638 drop_pkt: 17639 freemsg(first_mp); 17640 if (hada_mp != NULL) 17641 freeb(hada_mp); 17642 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17643 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 17644 #undef rptr 17645 #undef iphs 17646 17647 } 17648 17649 /* 17650 * Update any source route, record route or timestamp options. 17651 * Check that we are at end of strict source route. 17652 * The options have already been checked for sanity in ip_rput_options(). 17653 */ 17654 static boolean_t 17655 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17656 ip_stack_t *ipst) 17657 { 17658 ipoptp_t opts; 17659 uchar_t *opt; 17660 uint8_t optval; 17661 uint8_t optlen; 17662 ipaddr_t dst; 17663 uint32_t ts; 17664 ire_t *dst_ire; 17665 timestruc_t now; 17666 zoneid_t zoneid; 17667 ill_t *ill; 17668 17669 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17670 17671 ip2dbg(("ip_rput_local_options\n")); 17672 17673 for (optval = ipoptp_first(&opts, ipha); 17674 optval != IPOPT_EOL; 17675 optval = ipoptp_next(&opts)) { 17676 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17677 opt = opts.ipoptp_cur; 17678 optlen = opts.ipoptp_len; 17679 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 17680 optval, optlen)); 17681 switch (optval) { 17682 uint32_t off; 17683 case IPOPT_SSRR: 17684 case IPOPT_LSRR: 17685 off = opt[IPOPT_OFFSET]; 17686 off--; 17687 if (optlen < IP_ADDR_LEN || 17688 off > optlen - IP_ADDR_LEN) { 17689 /* End of source route */ 17690 ip1dbg(("ip_rput_local_options: end of SR\n")); 17691 break; 17692 } 17693 /* 17694 * This will only happen if two consecutive entries 17695 * in the source route contains our address or if 17696 * it is a packet with a loose source route which 17697 * reaches us before consuming the whole source route 17698 */ 17699 ip1dbg(("ip_rput_local_options: not end of SR\n")); 17700 if (optval == IPOPT_SSRR) { 17701 goto bad_src_route; 17702 } 17703 /* 17704 * Hack: instead of dropping the packet truncate the 17705 * source route to what has been used by filling the 17706 * rest with IPOPT_NOP. 17707 */ 17708 opt[IPOPT_OLEN] = (uint8_t)off; 17709 while (off < optlen) { 17710 opt[off++] = IPOPT_NOP; 17711 } 17712 break; 17713 case IPOPT_RR: 17714 off = opt[IPOPT_OFFSET]; 17715 off--; 17716 if (optlen < IP_ADDR_LEN || 17717 off > optlen - IP_ADDR_LEN) { 17718 /* No more room - ignore */ 17719 ip1dbg(( 17720 "ip_rput_local_options: end of RR\n")); 17721 break; 17722 } 17723 bcopy(&ire->ire_src_addr, (char *)opt + off, 17724 IP_ADDR_LEN); 17725 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17726 break; 17727 case IPOPT_TS: 17728 /* Insert timestamp if there is romm */ 17729 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17730 case IPOPT_TS_TSONLY: 17731 off = IPOPT_TS_TIMELEN; 17732 break; 17733 case IPOPT_TS_PRESPEC: 17734 case IPOPT_TS_PRESPEC_RFC791: 17735 /* Verify that the address matched */ 17736 off = opt[IPOPT_OFFSET] - 1; 17737 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17738 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17739 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 17740 ipst); 17741 if (dst_ire == NULL) { 17742 /* Not for us */ 17743 break; 17744 } 17745 ire_refrele(dst_ire); 17746 /* FALLTHRU */ 17747 case IPOPT_TS_TSANDADDR: 17748 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17749 break; 17750 default: 17751 /* 17752 * ip_*put_options should have already 17753 * dropped this packet. 17754 */ 17755 cmn_err(CE_PANIC, "ip_rput_local_options: " 17756 "unknown IT - bug in ip_rput_options?\n"); 17757 return (B_TRUE); /* Keep "lint" happy */ 17758 } 17759 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 17760 /* Increase overflow counter */ 17761 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 17762 opt[IPOPT_POS_OV_FLG] = 17763 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 17764 (off << 4)); 17765 break; 17766 } 17767 off = opt[IPOPT_OFFSET] - 1; 17768 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17769 case IPOPT_TS_PRESPEC: 17770 case IPOPT_TS_PRESPEC_RFC791: 17771 case IPOPT_TS_TSANDADDR: 17772 bcopy(&ire->ire_src_addr, (char *)opt + off, 17773 IP_ADDR_LEN); 17774 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17775 /* FALLTHRU */ 17776 case IPOPT_TS_TSONLY: 17777 off = opt[IPOPT_OFFSET] - 1; 17778 /* Compute # of milliseconds since midnight */ 17779 gethrestime(&now); 17780 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 17781 now.tv_nsec / (NANOSEC / MILLISEC); 17782 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 17783 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 17784 break; 17785 } 17786 break; 17787 } 17788 } 17789 return (B_TRUE); 17790 17791 bad_src_route: 17792 q = WR(q); 17793 if (q->q_next != NULL) 17794 ill = q->q_ptr; 17795 else 17796 ill = NULL; 17797 17798 /* make sure we clear any indication of a hardware checksum */ 17799 DB_CKSUMFLAGS(mp) = 0; 17800 zoneid = ipif_lookup_addr_zoneid(ipha->ipha_dst, ill, ipst); 17801 if (zoneid == ALL_ZONES) 17802 freemsg(mp); 17803 else 17804 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 17805 return (B_FALSE); 17806 17807 } 17808 17809 /* 17810 * Process IP options in an inbound packet. If an option affects the 17811 * effective destination address, return the next hop address via dstp. 17812 * Returns -1 if something fails in which case an ICMP error has been sent 17813 * and mp freed. 17814 */ 17815 static int 17816 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp, 17817 ip_stack_t *ipst) 17818 { 17819 ipoptp_t opts; 17820 uchar_t *opt; 17821 uint8_t optval; 17822 uint8_t optlen; 17823 ipaddr_t dst; 17824 intptr_t code = 0; 17825 ire_t *ire = NULL; 17826 zoneid_t zoneid; 17827 ill_t *ill; 17828 17829 ip2dbg(("ip_rput_options\n")); 17830 dst = ipha->ipha_dst; 17831 for (optval = ipoptp_first(&opts, ipha); 17832 optval != IPOPT_EOL; 17833 optval = ipoptp_next(&opts)) { 17834 opt = opts.ipoptp_cur; 17835 optlen = opts.ipoptp_len; 17836 ip2dbg(("ip_rput_options: opt %d, len %d\n", 17837 optval, optlen)); 17838 /* 17839 * Note: we need to verify the checksum before we 17840 * modify anything thus this routine only extracts the next 17841 * hop dst from any source route. 17842 */ 17843 switch (optval) { 17844 uint32_t off; 17845 case IPOPT_SSRR: 17846 case IPOPT_LSRR: 17847 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17848 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17849 if (ire == NULL) { 17850 if (optval == IPOPT_SSRR) { 17851 ip1dbg(("ip_rput_options: not next" 17852 " strict source route 0x%x\n", 17853 ntohl(dst))); 17854 code = (char *)&ipha->ipha_dst - 17855 (char *)ipha; 17856 goto param_prob; /* RouterReq's */ 17857 } 17858 ip2dbg(("ip_rput_options: " 17859 "not next source route 0x%x\n", 17860 ntohl(dst))); 17861 break; 17862 } 17863 ire_refrele(ire); 17864 17865 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17866 ip1dbg(( 17867 "ip_rput_options: bad option offset\n")); 17868 code = (char *)&opt[IPOPT_OLEN] - 17869 (char *)ipha; 17870 goto param_prob; 17871 } 17872 off = opt[IPOPT_OFFSET]; 17873 off--; 17874 redo_srr: 17875 if (optlen < IP_ADDR_LEN || 17876 off > optlen - IP_ADDR_LEN) { 17877 /* End of source route */ 17878 ip1dbg(("ip_rput_options: end of SR\n")); 17879 break; 17880 } 17881 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17882 ip1dbg(("ip_rput_options: next hop 0x%x\n", 17883 ntohl(dst))); 17884 17885 /* 17886 * Check if our address is present more than 17887 * once as consecutive hops in source route. 17888 * XXX verify per-interface ip_forwarding 17889 * for source route? 17890 */ 17891 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17892 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17893 17894 if (ire != NULL) { 17895 ire_refrele(ire); 17896 off += IP_ADDR_LEN; 17897 goto redo_srr; 17898 } 17899 17900 if (dst == htonl(INADDR_LOOPBACK)) { 17901 ip1dbg(("ip_rput_options: loopback addr in " 17902 "source route!\n")); 17903 goto bad_src_route; 17904 } 17905 /* 17906 * For strict: verify that dst is directly 17907 * reachable. 17908 */ 17909 if (optval == IPOPT_SSRR) { 17910 ire = ire_ftable_lookup(dst, 0, 0, 17911 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 17912 MBLK_GETLABEL(mp), 17913 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 17914 if (ire == NULL) { 17915 ip1dbg(("ip_rput_options: SSRR not " 17916 "directly reachable: 0x%x\n", 17917 ntohl(dst))); 17918 goto bad_src_route; 17919 } 17920 ire_refrele(ire); 17921 } 17922 /* 17923 * Defer update of the offset and the record route 17924 * until the packet is forwarded. 17925 */ 17926 break; 17927 case IPOPT_RR: 17928 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17929 ip1dbg(( 17930 "ip_rput_options: bad option offset\n")); 17931 code = (char *)&opt[IPOPT_OLEN] - 17932 (char *)ipha; 17933 goto param_prob; 17934 } 17935 break; 17936 case IPOPT_TS: 17937 /* 17938 * Verify that length >= 5 and that there is either 17939 * room for another timestamp or that the overflow 17940 * counter is not maxed out. 17941 */ 17942 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 17943 if (optlen < IPOPT_MINLEN_IT) { 17944 goto param_prob; 17945 } 17946 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17947 ip1dbg(( 17948 "ip_rput_options: bad option offset\n")); 17949 code = (char *)&opt[IPOPT_OFFSET] - 17950 (char *)ipha; 17951 goto param_prob; 17952 } 17953 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17954 case IPOPT_TS_TSONLY: 17955 off = IPOPT_TS_TIMELEN; 17956 break; 17957 case IPOPT_TS_TSANDADDR: 17958 case IPOPT_TS_PRESPEC: 17959 case IPOPT_TS_PRESPEC_RFC791: 17960 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17961 break; 17962 default: 17963 code = (char *)&opt[IPOPT_POS_OV_FLG] - 17964 (char *)ipha; 17965 goto param_prob; 17966 } 17967 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 17968 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 17969 /* 17970 * No room and the overflow counter is 15 17971 * already. 17972 */ 17973 goto param_prob; 17974 } 17975 break; 17976 } 17977 } 17978 17979 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 17980 *dstp = dst; 17981 return (0); 17982 } 17983 17984 ip1dbg(("ip_rput_options: error processing IP options.")); 17985 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 17986 17987 param_prob: 17988 q = WR(q); 17989 if (q->q_next != NULL) 17990 ill = q->q_ptr; 17991 else 17992 ill = NULL; 17993 17994 /* make sure we clear any indication of a hardware checksum */ 17995 DB_CKSUMFLAGS(mp) = 0; 17996 /* Don't know whether this is for non-global or global/forwarding */ 17997 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 17998 if (zoneid == ALL_ZONES) 17999 freemsg(mp); 18000 else 18001 icmp_param_problem(q, mp, (uint8_t)code, zoneid, ipst); 18002 return (-1); 18003 18004 bad_src_route: 18005 q = WR(q); 18006 if (q->q_next != NULL) 18007 ill = q->q_ptr; 18008 else 18009 ill = NULL; 18010 18011 /* make sure we clear any indication of a hardware checksum */ 18012 DB_CKSUMFLAGS(mp) = 0; 18013 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18014 if (zoneid == ALL_ZONES) 18015 freemsg(mp); 18016 else 18017 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 18018 return (-1); 18019 } 18020 18021 /* 18022 * IP & ICMP info in >=14 msg's ... 18023 * - ip fixed part (mib2_ip_t) 18024 * - icmp fixed part (mib2_icmp_t) 18025 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 18026 * - ipRouteEntryTable (ip 21) all IPv4 IREs 18027 * - ipNetToMediaEntryTable (ip 22) [filled in by the arp module] 18028 * - ipRouteAttributeTable (ip 102) labeled routes 18029 * - ip multicast membership (ip_member_t) 18030 * - ip multicast source filtering (ip_grpsrc_t) 18031 * - igmp fixed part (struct igmpstat) 18032 * - multicast routing stats (struct mrtstat) 18033 * - multicast routing vifs (array of struct vifctl) 18034 * - multicast routing routes (array of struct mfcctl) 18035 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 18036 * One per ill plus one generic 18037 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 18038 * One per ill plus one generic 18039 * - ipv6RouteEntry all IPv6 IREs 18040 * - ipv6RouteAttributeTable (ip6 102) labeled routes 18041 * - ipv6NetToMediaEntry all Neighbor Cache entries 18042 * - ipv6AddrEntry all IPv6 ipifs 18043 * - ipv6 multicast membership (ipv6_member_t) 18044 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 18045 * 18046 * MIB2_IP_MEDIA is filled in by the arp module with ARP cache entries. 18047 * 18048 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 18049 * already filled in by the caller. 18050 * Return value of 0 indicates that no messages were sent and caller 18051 * should free mpctl. 18052 */ 18053 int 18054 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level) 18055 { 18056 ip_stack_t *ipst; 18057 sctp_stack_t *sctps; 18058 18059 if (q->q_next != NULL) { 18060 ipst = ILLQ_TO_IPST(q); 18061 } else { 18062 ipst = CONNQ_TO_IPST(q); 18063 } 18064 ASSERT(ipst != NULL); 18065 sctps = ipst->ips_netstack->netstack_sctp; 18066 18067 if (mpctl == NULL || mpctl->b_cont == NULL) { 18068 return (0); 18069 } 18070 18071 /* 18072 * For the purposes of the (broken) packet shell use 18073 * of the level we make sure MIB2_TCP/MIB2_UDP can be used 18074 * to make TCP and UDP appear first in the list of mib items. 18075 * TBD: We could expand this and use it in netstat so that 18076 * the kernel doesn't have to produce large tables (connections, 18077 * routes, etc) when netstat only wants the statistics or a particular 18078 * table. 18079 */ 18080 if (!(level == MIB2_TCP || level == MIB2_UDP)) { 18081 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) { 18082 return (1); 18083 } 18084 } 18085 18086 if (level != MIB2_TCP) { 18087 if ((mpctl = udp_snmp_get(q, mpctl)) == NULL) { 18088 return (1); 18089 } 18090 } 18091 18092 if (level != MIB2_UDP) { 18093 if ((mpctl = tcp_snmp_get(q, mpctl)) == NULL) { 18094 return (1); 18095 } 18096 } 18097 18098 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 18099 ipst)) == NULL) { 18100 return (1); 18101 } 18102 18103 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst)) == NULL) { 18104 return (1); 18105 } 18106 18107 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 18108 return (1); 18109 } 18110 18111 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 18112 return (1); 18113 } 18114 18115 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 18116 return (1); 18117 } 18118 18119 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 18120 return (1); 18121 } 18122 18123 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst)) == NULL) { 18124 return (1); 18125 } 18126 18127 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst)) == NULL) { 18128 return (1); 18129 } 18130 18131 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 18132 return (1); 18133 } 18134 18135 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 18136 return (1); 18137 } 18138 18139 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 18140 return (1); 18141 } 18142 18143 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 18144 return (1); 18145 } 18146 18147 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 18148 return (1); 18149 } 18150 18151 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 18152 return (1); 18153 } 18154 18155 if ((mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, ipst)) == NULL) { 18156 return (1); 18157 } 18158 18159 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, ipst); 18160 if (mpctl == NULL) { 18161 return (1); 18162 } 18163 18164 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 18165 return (1); 18166 } 18167 freemsg(mpctl); 18168 return (1); 18169 } 18170 18171 18172 /* Get global (legacy) IPv4 statistics */ 18173 static mblk_t * 18174 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 18175 ip_stack_t *ipst) 18176 { 18177 mib2_ip_t old_ip_mib; 18178 struct opthdr *optp; 18179 mblk_t *mp2ctl; 18180 18181 /* 18182 * make a copy of the original message 18183 */ 18184 mp2ctl = copymsg(mpctl); 18185 18186 /* fixed length IP structure... */ 18187 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18188 optp->level = MIB2_IP; 18189 optp->name = 0; 18190 SET_MIB(old_ip_mib.ipForwarding, 18191 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 18192 SET_MIB(old_ip_mib.ipDefaultTTL, 18193 (uint32_t)ipst->ips_ip_def_ttl); 18194 SET_MIB(old_ip_mib.ipReasmTimeout, 18195 ipst->ips_ip_g_frag_timeout); 18196 SET_MIB(old_ip_mib.ipAddrEntrySize, 18197 sizeof (mib2_ipAddrEntry_t)); 18198 SET_MIB(old_ip_mib.ipRouteEntrySize, 18199 sizeof (mib2_ipRouteEntry_t)); 18200 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 18201 sizeof (mib2_ipNetToMediaEntry_t)); 18202 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 18203 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 18204 SET_MIB(old_ip_mib.ipRouteAttributeSize, 18205 sizeof (mib2_ipAttributeEntry_t)); 18206 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 18207 18208 /* 18209 * Grab the statistics from the new IP MIB 18210 */ 18211 SET_MIB(old_ip_mib.ipInReceives, 18212 (uint32_t)ipmib->ipIfStatsHCInReceives); 18213 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 18214 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 18215 SET_MIB(old_ip_mib.ipForwDatagrams, 18216 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 18217 SET_MIB(old_ip_mib.ipInUnknownProtos, 18218 ipmib->ipIfStatsInUnknownProtos); 18219 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 18220 SET_MIB(old_ip_mib.ipInDelivers, 18221 (uint32_t)ipmib->ipIfStatsHCInDelivers); 18222 SET_MIB(old_ip_mib.ipOutRequests, 18223 (uint32_t)ipmib->ipIfStatsHCOutRequests); 18224 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 18225 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 18226 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 18227 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 18228 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 18229 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 18230 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 18231 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 18232 18233 /* ipRoutingDiscards is not being used */ 18234 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 18235 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 18236 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 18237 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 18238 SET_MIB(old_ip_mib.ipReasmDuplicates, 18239 ipmib->ipIfStatsReasmDuplicates); 18240 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 18241 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 18242 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 18243 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 18244 SET_MIB(old_ip_mib.rawipInOverflows, 18245 ipmib->rawipIfStatsInOverflows); 18246 18247 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 18248 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 18249 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 18250 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 18251 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 18252 ipmib->ipIfStatsOutSwitchIPVersion); 18253 18254 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 18255 (int)sizeof (old_ip_mib))) { 18256 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 18257 (uint_t)sizeof (old_ip_mib))); 18258 } 18259 18260 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18261 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 18262 (int)optp->level, (int)optp->name, (int)optp->len)); 18263 qreply(q, mpctl); 18264 return (mp2ctl); 18265 } 18266 18267 /* Per interface IPv4 statistics */ 18268 static mblk_t * 18269 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18270 { 18271 struct opthdr *optp; 18272 mblk_t *mp2ctl; 18273 ill_t *ill; 18274 ill_walk_context_t ctx; 18275 mblk_t *mp_tail = NULL; 18276 mib2_ipIfStatsEntry_t global_ip_mib; 18277 18278 /* 18279 * Make a copy of the original message 18280 */ 18281 mp2ctl = copymsg(mpctl); 18282 18283 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18284 optp->level = MIB2_IP; 18285 optp->name = MIB2_IP_TRAFFIC_STATS; 18286 /* Include "unknown interface" ip_mib */ 18287 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 18288 ipst->ips_ip_mib.ipIfStatsIfIndex = 18289 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 18290 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 18291 (ipst->ips_ip_g_forward ? 1 : 2)); 18292 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 18293 (uint32_t)ipst->ips_ip_def_ttl); 18294 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 18295 sizeof (mib2_ipIfStatsEntry_t)); 18296 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 18297 sizeof (mib2_ipAddrEntry_t)); 18298 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 18299 sizeof (mib2_ipRouteEntry_t)); 18300 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 18301 sizeof (mib2_ipNetToMediaEntry_t)); 18302 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 18303 sizeof (ip_member_t)); 18304 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 18305 sizeof (ip_grpsrc_t)); 18306 18307 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18308 (char *)&ipst->ips_ip_mib, (int)sizeof (ipst->ips_ip_mib))) { 18309 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18310 "failed to allocate %u bytes\n", 18311 (uint_t)sizeof (ipst->ips_ip_mib))); 18312 } 18313 18314 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 18315 18316 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18317 ill = ILL_START_WALK_V4(&ctx, ipst); 18318 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18319 ill->ill_ip_mib->ipIfStatsIfIndex = 18320 ill->ill_phyint->phyint_ifindex; 18321 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 18322 (ipst->ips_ip_g_forward ? 1 : 2)); 18323 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 18324 (uint32_t)ipst->ips_ip_def_ttl); 18325 18326 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 18327 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18328 (char *)ill->ill_ip_mib, 18329 (int)sizeof (*ill->ill_ip_mib))) { 18330 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18331 "failed to allocate %u bytes\n", 18332 (uint_t)sizeof (*ill->ill_ip_mib))); 18333 } 18334 } 18335 rw_exit(&ipst->ips_ill_g_lock); 18336 18337 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18338 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18339 "level %d, name %d, len %d\n", 18340 (int)optp->level, (int)optp->name, (int)optp->len)); 18341 qreply(q, mpctl); 18342 18343 if (mp2ctl == NULL) 18344 return (NULL); 18345 18346 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst)); 18347 } 18348 18349 /* Global IPv4 ICMP statistics */ 18350 static mblk_t * 18351 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18352 { 18353 struct opthdr *optp; 18354 mblk_t *mp2ctl; 18355 18356 /* 18357 * Make a copy of the original message 18358 */ 18359 mp2ctl = copymsg(mpctl); 18360 18361 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18362 optp->level = MIB2_ICMP; 18363 optp->name = 0; 18364 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 18365 (int)sizeof (ipst->ips_icmp_mib))) { 18366 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 18367 (uint_t)sizeof (ipst->ips_icmp_mib))); 18368 } 18369 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18370 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 18371 (int)optp->level, (int)optp->name, (int)optp->len)); 18372 qreply(q, mpctl); 18373 return (mp2ctl); 18374 } 18375 18376 /* Global IPv4 IGMP statistics */ 18377 static mblk_t * 18378 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18379 { 18380 struct opthdr *optp; 18381 mblk_t *mp2ctl; 18382 18383 /* 18384 * make a copy of the original message 18385 */ 18386 mp2ctl = copymsg(mpctl); 18387 18388 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18389 optp->level = EXPER_IGMP; 18390 optp->name = 0; 18391 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 18392 (int)sizeof (ipst->ips_igmpstat))) { 18393 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 18394 (uint_t)sizeof (ipst->ips_igmpstat))); 18395 } 18396 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18397 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 18398 (int)optp->level, (int)optp->name, (int)optp->len)); 18399 qreply(q, mpctl); 18400 return (mp2ctl); 18401 } 18402 18403 /* Global IPv4 Multicast Routing statistics */ 18404 static mblk_t * 18405 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18406 { 18407 struct opthdr *optp; 18408 mblk_t *mp2ctl; 18409 18410 /* 18411 * make a copy of the original message 18412 */ 18413 mp2ctl = copymsg(mpctl); 18414 18415 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18416 optp->level = EXPER_DVMRP; 18417 optp->name = 0; 18418 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 18419 ip0dbg(("ip_mroute_stats: failed\n")); 18420 } 18421 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18422 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 18423 (int)optp->level, (int)optp->name, (int)optp->len)); 18424 qreply(q, mpctl); 18425 return (mp2ctl); 18426 } 18427 18428 /* IPv4 address information */ 18429 static mblk_t * 18430 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18431 { 18432 struct opthdr *optp; 18433 mblk_t *mp2ctl; 18434 mblk_t *mp_tail = NULL; 18435 ill_t *ill; 18436 ipif_t *ipif; 18437 uint_t bitval; 18438 mib2_ipAddrEntry_t mae; 18439 zoneid_t zoneid; 18440 ill_walk_context_t ctx; 18441 18442 /* 18443 * make a copy of the original message 18444 */ 18445 mp2ctl = copymsg(mpctl); 18446 18447 /* ipAddrEntryTable */ 18448 18449 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18450 optp->level = MIB2_IP; 18451 optp->name = MIB2_IP_ADDR; 18452 zoneid = Q_TO_CONN(q)->conn_zoneid; 18453 18454 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18455 ill = ILL_START_WALK_V4(&ctx, ipst); 18456 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18457 for (ipif = ill->ill_ipif; ipif != NULL; 18458 ipif = ipif->ipif_next) { 18459 if (ipif->ipif_zoneid != zoneid && 18460 ipif->ipif_zoneid != ALL_ZONES) 18461 continue; 18462 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18463 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18464 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18465 18466 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes, 18467 OCTET_LENGTH); 18468 mae.ipAdEntIfIndex.o_length = 18469 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 18470 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 18471 mae.ipAdEntNetMask = ipif->ipif_net_mask; 18472 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 18473 mae.ipAdEntInfo.ae_subnet_len = 18474 ip_mask_to_plen(ipif->ipif_net_mask); 18475 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 18476 for (bitval = 1; 18477 bitval && 18478 !(bitval & ipif->ipif_brd_addr); 18479 bitval <<= 1) 18480 noop; 18481 mae.ipAdEntBcastAddr = bitval; 18482 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 18483 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 18484 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 18485 mae.ipAdEntInfo.ae_broadcast_addr = 18486 ipif->ipif_brd_addr; 18487 mae.ipAdEntInfo.ae_pp_dst_addr = 18488 ipif->ipif_pp_dst_addr; 18489 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 18490 ill->ill_flags | ill->ill_phyint->phyint_flags; 18491 mae.ipAdEntRetransmitTime = AR_EQ_DEFAULT_XMIT_INTERVAL; 18492 18493 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18494 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 18495 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 18496 "allocate %u bytes\n", 18497 (uint_t)sizeof (mib2_ipAddrEntry_t))); 18498 } 18499 } 18500 } 18501 rw_exit(&ipst->ips_ill_g_lock); 18502 18503 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18504 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 18505 (int)optp->level, (int)optp->name, (int)optp->len)); 18506 qreply(q, mpctl); 18507 return (mp2ctl); 18508 } 18509 18510 /* IPv6 address information */ 18511 static mblk_t * 18512 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18513 { 18514 struct opthdr *optp; 18515 mblk_t *mp2ctl; 18516 mblk_t *mp_tail = NULL; 18517 ill_t *ill; 18518 ipif_t *ipif; 18519 mib2_ipv6AddrEntry_t mae6; 18520 zoneid_t zoneid; 18521 ill_walk_context_t ctx; 18522 18523 /* 18524 * make a copy of the original message 18525 */ 18526 mp2ctl = copymsg(mpctl); 18527 18528 /* ipv6AddrEntryTable */ 18529 18530 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18531 optp->level = MIB2_IP6; 18532 optp->name = MIB2_IP6_ADDR; 18533 zoneid = Q_TO_CONN(q)->conn_zoneid; 18534 18535 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18536 ill = ILL_START_WALK_V6(&ctx, ipst); 18537 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18538 for (ipif = ill->ill_ipif; ipif != NULL; 18539 ipif = ipif->ipif_next) { 18540 if (ipif->ipif_zoneid != zoneid && 18541 ipif->ipif_zoneid != ALL_ZONES) 18542 continue; 18543 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18544 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18545 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18546 18547 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes, 18548 OCTET_LENGTH); 18549 mae6.ipv6AddrIfIndex.o_length = 18550 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 18551 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 18552 mae6.ipv6AddrPfxLength = 18553 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 18554 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 18555 mae6.ipv6AddrInfo.ae_subnet_len = 18556 mae6.ipv6AddrPfxLength; 18557 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 18558 18559 /* Type: stateless(1), stateful(2), unknown(3) */ 18560 if (ipif->ipif_flags & IPIF_ADDRCONF) 18561 mae6.ipv6AddrType = 1; 18562 else 18563 mae6.ipv6AddrType = 2; 18564 /* Anycast: true(1), false(2) */ 18565 if (ipif->ipif_flags & IPIF_ANYCAST) 18566 mae6.ipv6AddrAnycastFlag = 1; 18567 else 18568 mae6.ipv6AddrAnycastFlag = 2; 18569 18570 /* 18571 * Address status: preferred(1), deprecated(2), 18572 * invalid(3), inaccessible(4), unknown(5) 18573 */ 18574 if (ipif->ipif_flags & IPIF_NOLOCAL) 18575 mae6.ipv6AddrStatus = 3; 18576 else if (ipif->ipif_flags & IPIF_DEPRECATED) 18577 mae6.ipv6AddrStatus = 2; 18578 else 18579 mae6.ipv6AddrStatus = 1; 18580 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 18581 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 18582 mae6.ipv6AddrInfo.ae_pp_dst_addr = 18583 ipif->ipif_v6pp_dst_addr; 18584 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 18585 ill->ill_flags | ill->ill_phyint->phyint_flags; 18586 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 18587 mae6.ipv6AddrIdentifier = ill->ill_token; 18588 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 18589 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 18590 mae6.ipv6AddrRetransmitTime = 18591 ill->ill_reachable_retrans_time; 18592 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18593 (char *)&mae6, 18594 (int)sizeof (mib2_ipv6AddrEntry_t))) { 18595 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 18596 "allocate %u bytes\n", 18597 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 18598 } 18599 } 18600 } 18601 rw_exit(&ipst->ips_ill_g_lock); 18602 18603 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18604 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 18605 (int)optp->level, (int)optp->name, (int)optp->len)); 18606 qreply(q, mpctl); 18607 return (mp2ctl); 18608 } 18609 18610 /* IPv4 multicast group membership. */ 18611 static mblk_t * 18612 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18613 { 18614 struct opthdr *optp; 18615 mblk_t *mp2ctl; 18616 ill_t *ill; 18617 ipif_t *ipif; 18618 ilm_t *ilm; 18619 ip_member_t ipm; 18620 mblk_t *mp_tail = NULL; 18621 ill_walk_context_t ctx; 18622 zoneid_t zoneid; 18623 18624 /* 18625 * make a copy of the original message 18626 */ 18627 mp2ctl = copymsg(mpctl); 18628 zoneid = Q_TO_CONN(q)->conn_zoneid; 18629 18630 /* ipGroupMember table */ 18631 optp = (struct opthdr *)&mpctl->b_rptr[ 18632 sizeof (struct T_optmgmt_ack)]; 18633 optp->level = MIB2_IP; 18634 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 18635 18636 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18637 ill = ILL_START_WALK_V4(&ctx, ipst); 18638 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18639 ILM_WALKER_HOLD(ill); 18640 for (ipif = ill->ill_ipif; ipif != NULL; 18641 ipif = ipif->ipif_next) { 18642 if (ipif->ipif_zoneid != zoneid && 18643 ipif->ipif_zoneid != ALL_ZONES) 18644 continue; /* not this zone */ 18645 ipif_get_name(ipif, ipm.ipGroupMemberIfIndex.o_bytes, 18646 OCTET_LENGTH); 18647 ipm.ipGroupMemberIfIndex.o_length = 18648 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 18649 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18650 ASSERT(ilm->ilm_ipif != NULL); 18651 ASSERT(ilm->ilm_ill == NULL); 18652 if (ilm->ilm_ipif != ipif) 18653 continue; 18654 ipm.ipGroupMemberAddress = ilm->ilm_addr; 18655 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 18656 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 18657 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18658 (char *)&ipm, (int)sizeof (ipm))) { 18659 ip1dbg(("ip_snmp_get_mib2_ip_group: " 18660 "failed to allocate %u bytes\n", 18661 (uint_t)sizeof (ipm))); 18662 } 18663 } 18664 } 18665 ILM_WALKER_RELE(ill); 18666 } 18667 rw_exit(&ipst->ips_ill_g_lock); 18668 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18669 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18670 (int)optp->level, (int)optp->name, (int)optp->len)); 18671 qreply(q, mpctl); 18672 return (mp2ctl); 18673 } 18674 18675 /* IPv6 multicast group membership. */ 18676 static mblk_t * 18677 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18678 { 18679 struct opthdr *optp; 18680 mblk_t *mp2ctl; 18681 ill_t *ill; 18682 ilm_t *ilm; 18683 ipv6_member_t ipm6; 18684 mblk_t *mp_tail = NULL; 18685 ill_walk_context_t ctx; 18686 zoneid_t zoneid; 18687 18688 /* 18689 * make a copy of the original message 18690 */ 18691 mp2ctl = copymsg(mpctl); 18692 zoneid = Q_TO_CONN(q)->conn_zoneid; 18693 18694 /* ip6GroupMember table */ 18695 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18696 optp->level = MIB2_IP6; 18697 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 18698 18699 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18700 ill = ILL_START_WALK_V6(&ctx, ipst); 18701 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18702 ILM_WALKER_HOLD(ill); 18703 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 18704 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18705 ASSERT(ilm->ilm_ipif == NULL); 18706 ASSERT(ilm->ilm_ill != NULL); 18707 if (ilm->ilm_zoneid != zoneid) 18708 continue; /* not this zone */ 18709 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 18710 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 18711 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 18712 if (!snmp_append_data2(mpctl->b_cont, 18713 &mp_tail, 18714 (char *)&ipm6, (int)sizeof (ipm6))) { 18715 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 18716 "failed to allocate %u bytes\n", 18717 (uint_t)sizeof (ipm6))); 18718 } 18719 } 18720 ILM_WALKER_RELE(ill); 18721 } 18722 rw_exit(&ipst->ips_ill_g_lock); 18723 18724 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18725 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18726 (int)optp->level, (int)optp->name, (int)optp->len)); 18727 qreply(q, mpctl); 18728 return (mp2ctl); 18729 } 18730 18731 /* IP multicast filtered sources */ 18732 static mblk_t * 18733 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18734 { 18735 struct opthdr *optp; 18736 mblk_t *mp2ctl; 18737 ill_t *ill; 18738 ipif_t *ipif; 18739 ilm_t *ilm; 18740 ip_grpsrc_t ips; 18741 mblk_t *mp_tail = NULL; 18742 ill_walk_context_t ctx; 18743 zoneid_t zoneid; 18744 int i; 18745 slist_t *sl; 18746 18747 /* 18748 * make a copy of the original message 18749 */ 18750 mp2ctl = copymsg(mpctl); 18751 zoneid = Q_TO_CONN(q)->conn_zoneid; 18752 18753 /* ipGroupSource table */ 18754 optp = (struct opthdr *)&mpctl->b_rptr[ 18755 sizeof (struct T_optmgmt_ack)]; 18756 optp->level = MIB2_IP; 18757 optp->name = EXPER_IP_GROUP_SOURCES; 18758 18759 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18760 ill = ILL_START_WALK_V4(&ctx, ipst); 18761 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18762 ILM_WALKER_HOLD(ill); 18763 for (ipif = ill->ill_ipif; ipif != NULL; 18764 ipif = ipif->ipif_next) { 18765 if (ipif->ipif_zoneid != zoneid) 18766 continue; /* not this zone */ 18767 ipif_get_name(ipif, ips.ipGroupSourceIfIndex.o_bytes, 18768 OCTET_LENGTH); 18769 ips.ipGroupSourceIfIndex.o_length = 18770 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 18771 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18772 ASSERT(ilm->ilm_ipif != NULL); 18773 ASSERT(ilm->ilm_ill == NULL); 18774 sl = ilm->ilm_filter; 18775 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 18776 continue; 18777 ips.ipGroupSourceGroup = ilm->ilm_addr; 18778 for (i = 0; i < sl->sl_numsrc; i++) { 18779 if (!IN6_IS_ADDR_V4MAPPED( 18780 &sl->sl_addr[i])) 18781 continue; 18782 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 18783 ips.ipGroupSourceAddress); 18784 if (snmp_append_data2(mpctl->b_cont, 18785 &mp_tail, (char *)&ips, 18786 (int)sizeof (ips)) == 0) { 18787 ip1dbg(("ip_snmp_get_mib2_" 18788 "ip_group_src: failed to " 18789 "allocate %u bytes\n", 18790 (uint_t)sizeof (ips))); 18791 } 18792 } 18793 } 18794 } 18795 ILM_WALKER_RELE(ill); 18796 } 18797 rw_exit(&ipst->ips_ill_g_lock); 18798 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18799 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18800 (int)optp->level, (int)optp->name, (int)optp->len)); 18801 qreply(q, mpctl); 18802 return (mp2ctl); 18803 } 18804 18805 /* IPv6 multicast filtered sources. */ 18806 static mblk_t * 18807 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18808 { 18809 struct opthdr *optp; 18810 mblk_t *mp2ctl; 18811 ill_t *ill; 18812 ilm_t *ilm; 18813 ipv6_grpsrc_t ips6; 18814 mblk_t *mp_tail = NULL; 18815 ill_walk_context_t ctx; 18816 zoneid_t zoneid; 18817 int i; 18818 slist_t *sl; 18819 18820 /* 18821 * make a copy of the original message 18822 */ 18823 mp2ctl = copymsg(mpctl); 18824 zoneid = Q_TO_CONN(q)->conn_zoneid; 18825 18826 /* ip6GroupMember table */ 18827 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18828 optp->level = MIB2_IP6; 18829 optp->name = EXPER_IP6_GROUP_SOURCES; 18830 18831 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18832 ill = ILL_START_WALK_V6(&ctx, ipst); 18833 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18834 ILM_WALKER_HOLD(ill); 18835 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 18836 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18837 ASSERT(ilm->ilm_ipif == NULL); 18838 ASSERT(ilm->ilm_ill != NULL); 18839 sl = ilm->ilm_filter; 18840 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 18841 continue; 18842 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 18843 for (i = 0; i < sl->sl_numsrc; i++) { 18844 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 18845 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18846 (char *)&ips6, (int)sizeof (ips6))) { 18847 ip1dbg(("ip_snmp_get_mib2_ip6_" 18848 "group_src: failed to allocate " 18849 "%u bytes\n", 18850 (uint_t)sizeof (ips6))); 18851 } 18852 } 18853 } 18854 ILM_WALKER_RELE(ill); 18855 } 18856 rw_exit(&ipst->ips_ill_g_lock); 18857 18858 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18859 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18860 (int)optp->level, (int)optp->name, (int)optp->len)); 18861 qreply(q, mpctl); 18862 return (mp2ctl); 18863 } 18864 18865 /* Multicast routing virtual interface table. */ 18866 static mblk_t * 18867 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18868 { 18869 struct opthdr *optp; 18870 mblk_t *mp2ctl; 18871 18872 /* 18873 * make a copy of the original message 18874 */ 18875 mp2ctl = copymsg(mpctl); 18876 18877 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18878 optp->level = EXPER_DVMRP; 18879 optp->name = EXPER_DVMRP_VIF; 18880 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 18881 ip0dbg(("ip_mroute_vif: failed\n")); 18882 } 18883 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18884 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 18885 (int)optp->level, (int)optp->name, (int)optp->len)); 18886 qreply(q, mpctl); 18887 return (mp2ctl); 18888 } 18889 18890 /* Multicast routing table. */ 18891 static mblk_t * 18892 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18893 { 18894 struct opthdr *optp; 18895 mblk_t *mp2ctl; 18896 18897 /* 18898 * make a copy of the original message 18899 */ 18900 mp2ctl = copymsg(mpctl); 18901 18902 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18903 optp->level = EXPER_DVMRP; 18904 optp->name = EXPER_DVMRP_MRT; 18905 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 18906 ip0dbg(("ip_mroute_mrt: failed\n")); 18907 } 18908 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18909 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 18910 (int)optp->level, (int)optp->name, (int)optp->len)); 18911 qreply(q, mpctl); 18912 return (mp2ctl); 18913 } 18914 18915 /* 18916 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 18917 * in one IRE walk. 18918 */ 18919 static mblk_t * 18920 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18921 { 18922 struct opthdr *optp; 18923 mblk_t *mp2ctl; /* Returned */ 18924 mblk_t *mp3ctl; /* nettomedia */ 18925 mblk_t *mp4ctl; /* routeattrs */ 18926 iproutedata_t ird; 18927 zoneid_t zoneid; 18928 18929 /* 18930 * make copies of the original message 18931 * - mp2ctl is returned unchanged to the caller for his use 18932 * - mpctl is sent upstream as ipRouteEntryTable 18933 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 18934 * - mp4ctl is sent upstream as ipRouteAttributeTable 18935 */ 18936 mp2ctl = copymsg(mpctl); 18937 mp3ctl = copymsg(mpctl); 18938 mp4ctl = copymsg(mpctl); 18939 if (mp3ctl == NULL || mp4ctl == NULL) { 18940 freemsg(mp4ctl); 18941 freemsg(mp3ctl); 18942 freemsg(mp2ctl); 18943 freemsg(mpctl); 18944 return (NULL); 18945 } 18946 18947 bzero(&ird, sizeof (ird)); 18948 18949 ird.ird_route.lp_head = mpctl->b_cont; 18950 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 18951 ird.ird_attrs.lp_head = mp4ctl->b_cont; 18952 18953 zoneid = Q_TO_CONN(q)->conn_zoneid; 18954 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 18955 18956 /* ipRouteEntryTable in mpctl */ 18957 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18958 optp->level = MIB2_IP; 18959 optp->name = MIB2_IP_ROUTE; 18960 optp->len = msgdsize(ird.ird_route.lp_head); 18961 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18962 (int)optp->level, (int)optp->name, (int)optp->len)); 18963 qreply(q, mpctl); 18964 18965 /* ipNetToMediaEntryTable in mp3ctl */ 18966 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18967 optp->level = MIB2_IP; 18968 optp->name = MIB2_IP_MEDIA; 18969 optp->len = msgdsize(ird.ird_netmedia.lp_head); 18970 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18971 (int)optp->level, (int)optp->name, (int)optp->len)); 18972 qreply(q, mp3ctl); 18973 18974 /* ipRouteAttributeTable in mp4ctl */ 18975 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18976 optp->level = MIB2_IP; 18977 optp->name = EXPER_IP_RTATTR; 18978 optp->len = msgdsize(ird.ird_attrs.lp_head); 18979 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18980 (int)optp->level, (int)optp->name, (int)optp->len)); 18981 if (optp->len == 0) 18982 freemsg(mp4ctl); 18983 else 18984 qreply(q, mp4ctl); 18985 18986 return (mp2ctl); 18987 } 18988 18989 /* 18990 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 18991 * ipv6NetToMediaEntryTable in an NDP walk. 18992 */ 18993 static mblk_t * 18994 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18995 { 18996 struct opthdr *optp; 18997 mblk_t *mp2ctl; /* Returned */ 18998 mblk_t *mp3ctl; /* nettomedia */ 18999 mblk_t *mp4ctl; /* routeattrs */ 19000 iproutedata_t ird; 19001 zoneid_t zoneid; 19002 19003 /* 19004 * make copies of the original message 19005 * - mp2ctl is returned unchanged to the caller for his use 19006 * - mpctl is sent upstream as ipv6RouteEntryTable 19007 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 19008 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 19009 */ 19010 mp2ctl = copymsg(mpctl); 19011 mp3ctl = copymsg(mpctl); 19012 mp4ctl = copymsg(mpctl); 19013 if (mp3ctl == NULL || mp4ctl == NULL) { 19014 freemsg(mp4ctl); 19015 freemsg(mp3ctl); 19016 freemsg(mp2ctl); 19017 freemsg(mpctl); 19018 return (NULL); 19019 } 19020 19021 bzero(&ird, sizeof (ird)); 19022 19023 ird.ird_route.lp_head = mpctl->b_cont; 19024 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19025 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19026 19027 zoneid = Q_TO_CONN(q)->conn_zoneid; 19028 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 19029 19030 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19031 optp->level = MIB2_IP6; 19032 optp->name = MIB2_IP6_ROUTE; 19033 optp->len = msgdsize(ird.ird_route.lp_head); 19034 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19035 (int)optp->level, (int)optp->name, (int)optp->len)); 19036 qreply(q, mpctl); 19037 19038 /* ipv6NetToMediaEntryTable in mp3ctl */ 19039 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 19040 19041 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19042 optp->level = MIB2_IP6; 19043 optp->name = MIB2_IP6_MEDIA; 19044 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19045 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19046 (int)optp->level, (int)optp->name, (int)optp->len)); 19047 qreply(q, mp3ctl); 19048 19049 /* ipv6RouteAttributeTable in mp4ctl */ 19050 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19051 optp->level = MIB2_IP6; 19052 optp->name = EXPER_IP_RTATTR; 19053 optp->len = msgdsize(ird.ird_attrs.lp_head); 19054 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19055 (int)optp->level, (int)optp->name, (int)optp->len)); 19056 if (optp->len == 0) 19057 freemsg(mp4ctl); 19058 else 19059 qreply(q, mp4ctl); 19060 19061 return (mp2ctl); 19062 } 19063 19064 /* 19065 * IPv6 mib: One per ill 19066 */ 19067 static mblk_t * 19068 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19069 { 19070 struct opthdr *optp; 19071 mblk_t *mp2ctl; 19072 ill_t *ill; 19073 ill_walk_context_t ctx; 19074 mblk_t *mp_tail = NULL; 19075 19076 /* 19077 * Make a copy of the original message 19078 */ 19079 mp2ctl = copymsg(mpctl); 19080 19081 /* fixed length IPv6 structure ... */ 19082 19083 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19084 optp->level = MIB2_IP6; 19085 optp->name = 0; 19086 /* Include "unknown interface" ip6_mib */ 19087 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 19088 ipst->ips_ip6_mib.ipIfStatsIfIndex = 19089 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 19090 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 19091 ipst->ips_ipv6_forward ? 1 : 2); 19092 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 19093 ipst->ips_ipv6_def_hops); 19094 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 19095 sizeof (mib2_ipIfStatsEntry_t)); 19096 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 19097 sizeof (mib2_ipv6AddrEntry_t)); 19098 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 19099 sizeof (mib2_ipv6RouteEntry_t)); 19100 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 19101 sizeof (mib2_ipv6NetToMediaEntry_t)); 19102 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 19103 sizeof (ipv6_member_t)); 19104 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 19105 sizeof (ipv6_grpsrc_t)); 19106 19107 /* 19108 * Synchronize 64- and 32-bit counters 19109 */ 19110 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 19111 ipIfStatsHCInReceives); 19112 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 19113 ipIfStatsHCInDelivers); 19114 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 19115 ipIfStatsHCOutRequests); 19116 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 19117 ipIfStatsHCOutForwDatagrams); 19118 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 19119 ipIfStatsHCOutMcastPkts); 19120 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 19121 ipIfStatsHCInMcastPkts); 19122 19123 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19124 (char *)&ipst->ips_ip6_mib, (int)sizeof (ipst->ips_ip6_mib))) { 19125 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 19126 (uint_t)sizeof (ipst->ips_ip6_mib))); 19127 } 19128 19129 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19130 ill = ILL_START_WALK_V6(&ctx, ipst); 19131 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19132 ill->ill_ip_mib->ipIfStatsIfIndex = 19133 ill->ill_phyint->phyint_ifindex; 19134 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 19135 ipst->ips_ipv6_forward ? 1 : 2); 19136 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 19137 ill->ill_max_hops); 19138 19139 /* 19140 * Synchronize 64- and 32-bit counters 19141 */ 19142 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 19143 ipIfStatsHCInReceives); 19144 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 19145 ipIfStatsHCInDelivers); 19146 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 19147 ipIfStatsHCOutRequests); 19148 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 19149 ipIfStatsHCOutForwDatagrams); 19150 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 19151 ipIfStatsHCOutMcastPkts); 19152 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 19153 ipIfStatsHCInMcastPkts); 19154 19155 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19156 (char *)ill->ill_ip_mib, 19157 (int)sizeof (*ill->ill_ip_mib))) { 19158 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 19159 "%u bytes\n", (uint_t)sizeof (*ill->ill_ip_mib))); 19160 } 19161 } 19162 rw_exit(&ipst->ips_ill_g_lock); 19163 19164 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19165 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 19166 (int)optp->level, (int)optp->name, (int)optp->len)); 19167 qreply(q, mpctl); 19168 return (mp2ctl); 19169 } 19170 19171 /* 19172 * ICMPv6 mib: One per ill 19173 */ 19174 static mblk_t * 19175 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19176 { 19177 struct opthdr *optp; 19178 mblk_t *mp2ctl; 19179 ill_t *ill; 19180 ill_walk_context_t ctx; 19181 mblk_t *mp_tail = NULL; 19182 /* 19183 * Make a copy of the original message 19184 */ 19185 mp2ctl = copymsg(mpctl); 19186 19187 /* fixed length ICMPv6 structure ... */ 19188 19189 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19190 optp->level = MIB2_ICMP6; 19191 optp->name = 0; 19192 /* Include "unknown interface" icmp6_mib */ 19193 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 19194 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 19195 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 19196 sizeof (mib2_ipv6IfIcmpEntry_t); 19197 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19198 (char *)&ipst->ips_icmp6_mib, 19199 (int)sizeof (ipst->ips_icmp6_mib))) { 19200 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 19201 (uint_t)sizeof (ipst->ips_icmp6_mib))); 19202 } 19203 19204 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19205 ill = ILL_START_WALK_V6(&ctx, ipst); 19206 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19207 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 19208 ill->ill_phyint->phyint_ifindex; 19209 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19210 (char *)ill->ill_icmp6_mib, 19211 (int)sizeof (*ill->ill_icmp6_mib))) { 19212 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 19213 "%u bytes\n", 19214 (uint_t)sizeof (*ill->ill_icmp6_mib))); 19215 } 19216 } 19217 rw_exit(&ipst->ips_ill_g_lock); 19218 19219 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19220 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 19221 (int)optp->level, (int)optp->name, (int)optp->len)); 19222 qreply(q, mpctl); 19223 return (mp2ctl); 19224 } 19225 19226 /* 19227 * ire_walk routine to create both ipRouteEntryTable and 19228 * ipRouteAttributeTable in one IRE walk 19229 */ 19230 static void 19231 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 19232 { 19233 ill_t *ill; 19234 ipif_t *ipif; 19235 mib2_ipRouteEntry_t *re; 19236 mib2_ipAttributeEntry_t *iae, *iaeptr; 19237 ipaddr_t gw_addr; 19238 tsol_ire_gw_secattr_t *attrp; 19239 tsol_gc_t *gc = NULL; 19240 tsol_gcgrp_t *gcgrp = NULL; 19241 uint_t sacnt = 0; 19242 int i; 19243 19244 ASSERT(ire->ire_ipversion == IPV4_VERSION); 19245 19246 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19247 return; 19248 19249 if ((attrp = ire->ire_gw_secattr) != NULL) { 19250 mutex_enter(&attrp->igsa_lock); 19251 if ((gc = attrp->igsa_gc) != NULL) { 19252 gcgrp = gc->gc_grp; 19253 ASSERT(gcgrp != NULL); 19254 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19255 sacnt = 1; 19256 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19257 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19258 gc = gcgrp->gcgrp_head; 19259 sacnt = gcgrp->gcgrp_count; 19260 } 19261 mutex_exit(&attrp->igsa_lock); 19262 19263 /* do nothing if there's no gc to report */ 19264 if (gc == NULL) { 19265 ASSERT(sacnt == 0); 19266 if (gcgrp != NULL) { 19267 /* we might as well drop the lock now */ 19268 rw_exit(&gcgrp->gcgrp_rwlock); 19269 gcgrp = NULL; 19270 } 19271 attrp = NULL; 19272 } 19273 19274 ASSERT(gc == NULL || (gcgrp != NULL && 19275 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19276 } 19277 ASSERT(sacnt == 0 || gc != NULL); 19278 19279 if (sacnt != 0 && 19280 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19281 kmem_free(re, sizeof (*re)); 19282 rw_exit(&gcgrp->gcgrp_rwlock); 19283 return; 19284 } 19285 19286 /* 19287 * Return all IRE types for route table... let caller pick and choose 19288 */ 19289 re->ipRouteDest = ire->ire_addr; 19290 ipif = ire->ire_ipif; 19291 re->ipRouteIfIndex.o_length = 0; 19292 if (ire->ire_type == IRE_CACHE) { 19293 ill = (ill_t *)ire->ire_stq->q_ptr; 19294 re->ipRouteIfIndex.o_length = 19295 ill->ill_name_length == 0 ? 0 : 19296 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19297 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 19298 re->ipRouteIfIndex.o_length); 19299 } else if (ipif != NULL) { 19300 ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH); 19301 re->ipRouteIfIndex.o_length = 19302 mi_strlen(re->ipRouteIfIndex.o_bytes); 19303 } 19304 re->ipRouteMetric1 = -1; 19305 re->ipRouteMetric2 = -1; 19306 re->ipRouteMetric3 = -1; 19307 re->ipRouteMetric4 = -1; 19308 19309 gw_addr = ire->ire_gateway_addr; 19310 19311 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 19312 re->ipRouteNextHop = ire->ire_src_addr; 19313 else 19314 re->ipRouteNextHop = gw_addr; 19315 /* indirect(4), direct(3), or invalid(2) */ 19316 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19317 re->ipRouteType = 2; 19318 else 19319 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 19320 re->ipRouteProto = -1; 19321 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 19322 re->ipRouteMask = ire->ire_mask; 19323 re->ipRouteMetric5 = -1; 19324 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 19325 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 19326 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19327 re->ipRouteInfo.re_ref = ire->ire_refcnt; 19328 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 19329 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19330 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19331 re->ipRouteInfo.re_flags = ire->ire_flags; 19332 19333 if (ire->ire_flags & RTF_DYNAMIC) { 19334 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19335 } else { 19336 re->ipRouteInfo.re_ire_type = ire->ire_type; 19337 } 19338 19339 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19340 (char *)re, (int)sizeof (*re))) { 19341 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19342 (uint_t)sizeof (*re))); 19343 } 19344 19345 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19346 iaeptr->iae_routeidx = ird->ird_idx; 19347 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19348 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19349 } 19350 19351 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19352 (char *)iae, sacnt * sizeof (*iae))) { 19353 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19354 (unsigned)(sacnt * sizeof (*iae)))); 19355 } 19356 19357 /* bump route index for next pass */ 19358 ird->ird_idx++; 19359 19360 kmem_free(re, sizeof (*re)); 19361 if (sacnt != 0) 19362 kmem_free(iae, sacnt * sizeof (*iae)); 19363 19364 if (gcgrp != NULL) 19365 rw_exit(&gcgrp->gcgrp_rwlock); 19366 } 19367 19368 /* 19369 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 19370 */ 19371 static void 19372 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 19373 { 19374 ill_t *ill; 19375 ipif_t *ipif; 19376 mib2_ipv6RouteEntry_t *re; 19377 mib2_ipAttributeEntry_t *iae, *iaeptr; 19378 in6_addr_t gw_addr_v6; 19379 tsol_ire_gw_secattr_t *attrp; 19380 tsol_gc_t *gc = NULL; 19381 tsol_gcgrp_t *gcgrp = NULL; 19382 uint_t sacnt = 0; 19383 int i; 19384 19385 ASSERT(ire->ire_ipversion == IPV6_VERSION); 19386 19387 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19388 return; 19389 19390 if ((attrp = ire->ire_gw_secattr) != NULL) { 19391 mutex_enter(&attrp->igsa_lock); 19392 if ((gc = attrp->igsa_gc) != NULL) { 19393 gcgrp = gc->gc_grp; 19394 ASSERT(gcgrp != NULL); 19395 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19396 sacnt = 1; 19397 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19398 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19399 gc = gcgrp->gcgrp_head; 19400 sacnt = gcgrp->gcgrp_count; 19401 } 19402 mutex_exit(&attrp->igsa_lock); 19403 19404 /* do nothing if there's no gc to report */ 19405 if (gc == NULL) { 19406 ASSERT(sacnt == 0); 19407 if (gcgrp != NULL) { 19408 /* we might as well drop the lock now */ 19409 rw_exit(&gcgrp->gcgrp_rwlock); 19410 gcgrp = NULL; 19411 } 19412 attrp = NULL; 19413 } 19414 19415 ASSERT(gc == NULL || (gcgrp != NULL && 19416 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19417 } 19418 ASSERT(sacnt == 0 || gc != NULL); 19419 19420 if (sacnt != 0 && 19421 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19422 kmem_free(re, sizeof (*re)); 19423 rw_exit(&gcgrp->gcgrp_rwlock); 19424 return; 19425 } 19426 19427 /* 19428 * Return all IRE types for route table... let caller pick and choose 19429 */ 19430 re->ipv6RouteDest = ire->ire_addr_v6; 19431 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 19432 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 19433 re->ipv6RouteIfIndex.o_length = 0; 19434 ipif = ire->ire_ipif; 19435 if (ire->ire_type == IRE_CACHE) { 19436 ill = (ill_t *)ire->ire_stq->q_ptr; 19437 re->ipv6RouteIfIndex.o_length = 19438 ill->ill_name_length == 0 ? 0 : 19439 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19440 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 19441 re->ipv6RouteIfIndex.o_length); 19442 } else if (ipif != NULL) { 19443 ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH); 19444 re->ipv6RouteIfIndex.o_length = 19445 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 19446 } 19447 19448 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19449 19450 mutex_enter(&ire->ire_lock); 19451 gw_addr_v6 = ire->ire_gateway_addr_v6; 19452 mutex_exit(&ire->ire_lock); 19453 19454 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 19455 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 19456 else 19457 re->ipv6RouteNextHop = gw_addr_v6; 19458 19459 /* remote(4), local(3), or discard(2) */ 19460 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19461 re->ipv6RouteType = 2; 19462 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 19463 re->ipv6RouteType = 3; 19464 else 19465 re->ipv6RouteType = 4; 19466 19467 re->ipv6RouteProtocol = -1; 19468 re->ipv6RoutePolicy = 0; 19469 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 19470 re->ipv6RouteNextHopRDI = 0; 19471 re->ipv6RouteWeight = 0; 19472 re->ipv6RouteMetric = 0; 19473 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 19474 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 19475 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19476 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 19477 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19478 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19479 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 19480 re->ipv6RouteInfo.re_flags = ire->ire_flags; 19481 19482 if (ire->ire_flags & RTF_DYNAMIC) { 19483 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19484 } else { 19485 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 19486 } 19487 19488 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19489 (char *)re, (int)sizeof (*re))) { 19490 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19491 (uint_t)sizeof (*re))); 19492 } 19493 19494 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19495 iaeptr->iae_routeidx = ird->ird_idx; 19496 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19497 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19498 } 19499 19500 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19501 (char *)iae, sacnt * sizeof (*iae))) { 19502 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19503 (unsigned)(sacnt * sizeof (*iae)))); 19504 } 19505 19506 /* bump route index for next pass */ 19507 ird->ird_idx++; 19508 19509 kmem_free(re, sizeof (*re)); 19510 if (sacnt != 0) 19511 kmem_free(iae, sacnt * sizeof (*iae)); 19512 19513 if (gcgrp != NULL) 19514 rw_exit(&gcgrp->gcgrp_rwlock); 19515 } 19516 19517 /* 19518 * ndp_walk routine to create ipv6NetToMediaEntryTable 19519 */ 19520 static int 19521 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 19522 { 19523 ill_t *ill; 19524 mib2_ipv6NetToMediaEntry_t ntme; 19525 dl_unitdata_req_t *dl; 19526 19527 ill = nce->nce_ill; 19528 if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */ 19529 return (0); 19530 19531 /* 19532 * Neighbor cache entry attached to IRE with on-link 19533 * destination. 19534 */ 19535 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 19536 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 19537 if ((ill->ill_flags & ILLF_XRESOLV) && 19538 (nce->nce_res_mp != NULL)) { 19539 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 19540 ntme.ipv6NetToMediaPhysAddress.o_length = 19541 dl->dl_dest_addr_length; 19542 } else { 19543 ntme.ipv6NetToMediaPhysAddress.o_length = 19544 ill->ill_phys_addr_length; 19545 } 19546 if (nce->nce_res_mp != NULL) { 19547 bcopy((char *)nce->nce_res_mp->b_rptr + 19548 NCE_LL_ADDR_OFFSET(ill), 19549 ntme.ipv6NetToMediaPhysAddress.o_bytes, 19550 ntme.ipv6NetToMediaPhysAddress.o_length); 19551 } else { 19552 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 19553 ill->ill_phys_addr_length); 19554 } 19555 /* 19556 * Note: Returns ND_* states. Should be: 19557 * reachable(1), stale(2), delay(3), probe(4), 19558 * invalid(5), unknown(6) 19559 */ 19560 ntme.ipv6NetToMediaState = nce->nce_state; 19561 ntme.ipv6NetToMediaLastUpdated = 0; 19562 19563 /* other(1), dynamic(2), static(3), local(4) */ 19564 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 19565 ntme.ipv6NetToMediaType = 4; 19566 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 19567 ntme.ipv6NetToMediaType = 1; 19568 } else { 19569 ntme.ipv6NetToMediaType = 2; 19570 } 19571 19572 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 19573 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 19574 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 19575 (uint_t)sizeof (ntme))); 19576 } 19577 return (0); 19578 } 19579 19580 /* 19581 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 19582 */ 19583 /* ARGSUSED */ 19584 int 19585 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 19586 { 19587 switch (level) { 19588 case MIB2_IP: 19589 case MIB2_ICMP: 19590 switch (name) { 19591 default: 19592 break; 19593 } 19594 return (1); 19595 default: 19596 return (1); 19597 } 19598 } 19599 19600 /* 19601 * When there exists both a 64- and 32-bit counter of a particular type 19602 * (i.e., InReceives), only the 64-bit counters are added. 19603 */ 19604 void 19605 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 19606 { 19607 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 19608 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 19609 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 19610 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 19611 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 19612 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 19613 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 19614 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 19615 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 19616 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 19617 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 19618 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 19619 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 19620 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 19621 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 19622 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 19623 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 19624 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 19625 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 19626 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 19627 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 19628 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 19629 o2->ipIfStatsInWrongIPVersion); 19630 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 19631 o2->ipIfStatsInWrongIPVersion); 19632 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 19633 o2->ipIfStatsOutSwitchIPVersion); 19634 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 19635 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 19636 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 19637 o2->ipIfStatsHCInForwDatagrams); 19638 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 19639 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 19640 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 19641 o2->ipIfStatsHCOutForwDatagrams); 19642 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 19643 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 19644 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 19645 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 19646 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 19647 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 19648 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 19649 o2->ipIfStatsHCOutMcastOctets); 19650 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 19651 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 19652 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 19653 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 19654 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 19655 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 19656 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 19657 } 19658 19659 void 19660 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 19661 { 19662 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 19663 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 19664 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 19665 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 19666 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 19667 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 19668 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 19669 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 19670 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 19671 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 19672 o2->ipv6IfIcmpInRouterSolicits); 19673 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 19674 o2->ipv6IfIcmpInRouterAdvertisements); 19675 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 19676 o2->ipv6IfIcmpInNeighborSolicits); 19677 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 19678 o2->ipv6IfIcmpInNeighborAdvertisements); 19679 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 19680 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 19681 o2->ipv6IfIcmpInGroupMembQueries); 19682 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 19683 o2->ipv6IfIcmpInGroupMembResponses); 19684 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 19685 o2->ipv6IfIcmpInGroupMembReductions); 19686 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 19687 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 19688 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 19689 o2->ipv6IfIcmpOutDestUnreachs); 19690 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 19691 o2->ipv6IfIcmpOutAdminProhibs); 19692 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 19693 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 19694 o2->ipv6IfIcmpOutParmProblems); 19695 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 19696 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 19697 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 19698 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 19699 o2->ipv6IfIcmpOutRouterSolicits); 19700 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 19701 o2->ipv6IfIcmpOutRouterAdvertisements); 19702 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 19703 o2->ipv6IfIcmpOutNeighborSolicits); 19704 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 19705 o2->ipv6IfIcmpOutNeighborAdvertisements); 19706 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 19707 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 19708 o2->ipv6IfIcmpOutGroupMembQueries); 19709 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 19710 o2->ipv6IfIcmpOutGroupMembResponses); 19711 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 19712 o2->ipv6IfIcmpOutGroupMembReductions); 19713 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 19714 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 19715 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 19716 o2->ipv6IfIcmpInBadNeighborAdvertisements); 19717 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 19718 o2->ipv6IfIcmpInBadNeighborSolicitations); 19719 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 19720 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 19721 o2->ipv6IfIcmpInGroupMembTotal); 19722 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 19723 o2->ipv6IfIcmpInGroupMembBadQueries); 19724 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 19725 o2->ipv6IfIcmpInGroupMembBadReports); 19726 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 19727 o2->ipv6IfIcmpInGroupMembOurReports); 19728 } 19729 19730 /* 19731 * Called before the options are updated to check if this packet will 19732 * be source routed from here. 19733 * This routine assumes that the options are well formed i.e. that they 19734 * have already been checked. 19735 */ 19736 static boolean_t 19737 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 19738 { 19739 ipoptp_t opts; 19740 uchar_t *opt; 19741 uint8_t optval; 19742 uint8_t optlen; 19743 ipaddr_t dst; 19744 ire_t *ire; 19745 19746 if (IS_SIMPLE_IPH(ipha)) { 19747 ip2dbg(("not source routed\n")); 19748 return (B_FALSE); 19749 } 19750 dst = ipha->ipha_dst; 19751 for (optval = ipoptp_first(&opts, ipha); 19752 optval != IPOPT_EOL; 19753 optval = ipoptp_next(&opts)) { 19754 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 19755 opt = opts.ipoptp_cur; 19756 optlen = opts.ipoptp_len; 19757 ip2dbg(("ip_source_routed: opt %d, len %d\n", 19758 optval, optlen)); 19759 switch (optval) { 19760 uint32_t off; 19761 case IPOPT_SSRR: 19762 case IPOPT_LSRR: 19763 /* 19764 * If dst is one of our addresses and there are some 19765 * entries left in the source route return (true). 19766 */ 19767 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 19768 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 19769 if (ire == NULL) { 19770 ip2dbg(("ip_source_routed: not next" 19771 " source route 0x%x\n", 19772 ntohl(dst))); 19773 return (B_FALSE); 19774 } 19775 ire_refrele(ire); 19776 off = opt[IPOPT_OFFSET]; 19777 off--; 19778 if (optlen < IP_ADDR_LEN || 19779 off > optlen - IP_ADDR_LEN) { 19780 /* End of source route */ 19781 ip1dbg(("ip_source_routed: end of SR\n")); 19782 return (B_FALSE); 19783 } 19784 return (B_TRUE); 19785 } 19786 } 19787 ip2dbg(("not source routed\n")); 19788 return (B_FALSE); 19789 } 19790 19791 /* 19792 * Check if the packet contains any source route. 19793 */ 19794 static boolean_t 19795 ip_source_route_included(ipha_t *ipha) 19796 { 19797 ipoptp_t opts; 19798 uint8_t optval; 19799 19800 if (IS_SIMPLE_IPH(ipha)) 19801 return (B_FALSE); 19802 for (optval = ipoptp_first(&opts, ipha); 19803 optval != IPOPT_EOL; 19804 optval = ipoptp_next(&opts)) { 19805 switch (optval) { 19806 case IPOPT_SSRR: 19807 case IPOPT_LSRR: 19808 return (B_TRUE); 19809 } 19810 } 19811 return (B_FALSE); 19812 } 19813 19814 /* 19815 * Called when the IRE expiration timer fires. 19816 */ 19817 void 19818 ip_trash_timer_expire(void *args) 19819 { 19820 int flush_flag = 0; 19821 ire_expire_arg_t iea; 19822 ip_stack_t *ipst = (ip_stack_t *)args; 19823 19824 iea.iea_ipst = ipst; /* No netstack_hold */ 19825 19826 /* 19827 * ip_ire_expire_id is protected by ip_trash_timer_lock. 19828 * This lock makes sure that a new invocation of this function 19829 * that occurs due to an almost immediate timer firing will not 19830 * progress beyond this point until the current invocation is done 19831 */ 19832 mutex_enter(&ipst->ips_ip_trash_timer_lock); 19833 ipst->ips_ip_ire_expire_id = 0; 19834 mutex_exit(&ipst->ips_ip_trash_timer_lock); 19835 19836 /* Periodic timer */ 19837 if (ipst->ips_ip_ire_arp_time_elapsed >= 19838 ipst->ips_ip_ire_arp_interval) { 19839 /* 19840 * Remove all IRE_CACHE entries since they might 19841 * contain arp information. 19842 */ 19843 flush_flag |= FLUSH_ARP_TIME; 19844 ipst->ips_ip_ire_arp_time_elapsed = 0; 19845 IP_STAT(ipst, ip_ire_arp_timer_expired); 19846 } 19847 if (ipst->ips_ip_ire_rd_time_elapsed >= 19848 ipst->ips_ip_ire_redir_interval) { 19849 /* Remove all redirects */ 19850 flush_flag |= FLUSH_REDIRECT_TIME; 19851 ipst->ips_ip_ire_rd_time_elapsed = 0; 19852 IP_STAT(ipst, ip_ire_redirect_timer_expired); 19853 } 19854 if (ipst->ips_ip_ire_pmtu_time_elapsed >= 19855 ipst->ips_ip_ire_pathmtu_interval) { 19856 /* Increase path mtu */ 19857 flush_flag |= FLUSH_MTU_TIME; 19858 ipst->ips_ip_ire_pmtu_time_elapsed = 0; 19859 IP_STAT(ipst, ip_ire_pmtu_timer_expired); 19860 } 19861 19862 /* 19863 * Optimize for the case when there are no redirects in the 19864 * ftable, that is, no need to walk the ftable in that case. 19865 */ 19866 if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) { 19867 iea.iea_flush_flag = flush_flag; 19868 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire, 19869 (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 0, NULL, 19870 ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table, 19871 NULL, ALL_ZONES, ipst); 19872 } 19873 if ((flush_flag & FLUSH_REDIRECT_TIME) && 19874 ipst->ips_ip_redirect_cnt > 0) { 19875 iea.iea_flush_flag = flush_flag; 19876 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE, 19877 ire_expire, (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 19878 0, NULL, 0, NULL, NULL, ALL_ZONES, ipst); 19879 } 19880 if (flush_flag & FLUSH_MTU_TIME) { 19881 /* 19882 * Walk all IPv6 IRE's and update them 19883 * Note that ARP and redirect timers are not 19884 * needed since NUD handles stale entries. 19885 */ 19886 flush_flag = FLUSH_MTU_TIME; 19887 iea.iea_flush_flag = flush_flag; 19888 ire_walk_v6(ire_expire, (char *)(uintptr_t)&iea, 19889 ALL_ZONES, ipst); 19890 } 19891 19892 ipst->ips_ip_ire_arp_time_elapsed += ipst->ips_ip_timer_interval; 19893 ipst->ips_ip_ire_rd_time_elapsed += ipst->ips_ip_timer_interval; 19894 ipst->ips_ip_ire_pmtu_time_elapsed += ipst->ips_ip_timer_interval; 19895 19896 /* 19897 * Hold the lock to serialize timeout calls and prevent 19898 * stale values in ip_ire_expire_id. Otherwise it is possible 19899 * for the timer to fire and a new invocation of this function 19900 * to start before the return value of timeout has been stored 19901 * in ip_ire_expire_id by the current invocation. 19902 */ 19903 mutex_enter(&ipst->ips_ip_trash_timer_lock); 19904 ipst->ips_ip_ire_expire_id = timeout(ip_trash_timer_expire, 19905 (void *)ipst, MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 19906 mutex_exit(&ipst->ips_ip_trash_timer_lock); 19907 } 19908 19909 /* 19910 * Called by the memory allocator subsystem directly, when the system 19911 * is running low on memory. 19912 */ 19913 /* ARGSUSED */ 19914 void 19915 ip_trash_ire_reclaim(void *args) 19916 { 19917 netstack_handle_t nh; 19918 netstack_t *ns; 19919 19920 netstack_next_init(&nh); 19921 while ((ns = netstack_next(&nh)) != NULL) { 19922 ip_trash_ire_reclaim_stack(ns->netstack_ip); 19923 netstack_rele(ns); 19924 } 19925 netstack_next_fini(&nh); 19926 } 19927 19928 static void 19929 ip_trash_ire_reclaim_stack(ip_stack_t *ipst) 19930 { 19931 ire_cache_count_t icc; 19932 ire_cache_reclaim_t icr; 19933 ncc_cache_count_t ncc; 19934 nce_cache_reclaim_t ncr; 19935 uint_t delete_cnt; 19936 /* 19937 * Memory reclaim call back. 19938 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 19939 * Then, with a target of freeing 1/Nth of IRE_CACHE 19940 * entries, determine what fraction to free for 19941 * each category of IRE_CACHE entries giving absolute priority 19942 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 19943 * entry will be freed unless all offlink entries are freed). 19944 */ 19945 icc.icc_total = 0; 19946 icc.icc_unused = 0; 19947 icc.icc_offlink = 0; 19948 icc.icc_pmtu = 0; 19949 icc.icc_onlink = 0; 19950 ire_walk(ire_cache_count, (char *)&icc, ipst); 19951 19952 /* 19953 * Free NCEs for IPv6 like the onlink ires. 19954 */ 19955 ncc.ncc_total = 0; 19956 ncc.ncc_host = 0; 19957 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc, ipst); 19958 19959 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 19960 icc.icc_pmtu + icc.icc_onlink); 19961 delete_cnt = icc.icc_total/ipst->ips_ip_ire_reclaim_fraction; 19962 IP_STAT(ipst, ip_trash_ire_reclaim_calls); 19963 if (delete_cnt == 0) 19964 return; 19965 IP_STAT(ipst, ip_trash_ire_reclaim_success); 19966 /* Always delete all unused offlink entries */ 19967 icr.icr_ipst = ipst; 19968 icr.icr_unused = 1; 19969 if (delete_cnt <= icc.icc_unused) { 19970 /* 19971 * Only need to free unused entries. In other words, 19972 * there are enough unused entries to free to meet our 19973 * target number of freed ire cache entries. 19974 */ 19975 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 19976 ncr.ncr_host = 0; 19977 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 19978 /* 19979 * Only need to free unused entries, plus a fraction of offlink 19980 * entries. It follows from the first if statement that 19981 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 19982 */ 19983 delete_cnt -= icc.icc_unused; 19984 /* Round up # deleted by truncating fraction */ 19985 icr.icr_offlink = icc.icc_offlink / delete_cnt; 19986 icr.icr_pmtu = icr.icr_onlink = 0; 19987 ncr.ncr_host = 0; 19988 } else if (delete_cnt <= 19989 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 19990 /* 19991 * Free all unused and offlink entries, plus a fraction of 19992 * pmtu entries. It follows from the previous if statement 19993 * that icc_pmtu is non-zero, and that 19994 * delete_cnt != icc_unused + icc_offlink. 19995 */ 19996 icr.icr_offlink = 1; 19997 delete_cnt -= icc.icc_unused + icc.icc_offlink; 19998 /* Round up # deleted by truncating fraction */ 19999 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 20000 icr.icr_onlink = 0; 20001 ncr.ncr_host = 0; 20002 } else { 20003 /* 20004 * Free all unused, offlink, and pmtu entries, plus a fraction 20005 * of onlink entries. If we're here, then we know that 20006 * icc_onlink is non-zero, and that 20007 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 20008 */ 20009 icr.icr_offlink = icr.icr_pmtu = 1; 20010 delete_cnt -= icc.icc_unused + icc.icc_offlink + 20011 icc.icc_pmtu; 20012 /* Round up # deleted by truncating fraction */ 20013 icr.icr_onlink = icc.icc_onlink / delete_cnt; 20014 /* Using the same delete fraction as for onlink IREs */ 20015 ncr.ncr_host = ncc.ncc_host / delete_cnt; 20016 } 20017 #ifdef DEBUG 20018 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 20019 "fractions %d/%d/%d/%d\n", 20020 icc.icc_total/ipst->ips_ip_ire_reclaim_fraction, icc.icc_total, 20021 icc.icc_unused, icc.icc_offlink, 20022 icc.icc_pmtu, icc.icc_onlink, 20023 icr.icr_unused, icr.icr_offlink, 20024 icr.icr_pmtu, icr.icr_onlink)); 20025 #endif 20026 ire_walk(ire_cache_reclaim, (char *)&icr, ipst); 20027 if (ncr.ncr_host != 0) 20028 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 20029 (uchar_t *)&ncr, ipst); 20030 #ifdef DEBUG 20031 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 20032 icc.icc_pmtu = 0; icc.icc_onlink = 0; 20033 ire_walk(ire_cache_count, (char *)&icc, ipst); 20034 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 20035 icc.icc_total, icc.icc_unused, icc.icc_offlink, 20036 icc.icc_pmtu, icc.icc_onlink)); 20037 #endif 20038 } 20039 20040 /* 20041 * ip_unbind is called when a copy of an unbind request is received from the 20042 * upper level protocol. We remove this conn from any fanout hash list it is 20043 * on, and zero out the bind information. No reply is expected up above. 20044 */ 20045 mblk_t * 20046 ip_unbind(queue_t *q, mblk_t *mp) 20047 { 20048 conn_t *connp = Q_TO_CONN(q); 20049 20050 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 20051 20052 if (is_system_labeled() && connp->conn_anon_port) { 20053 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 20054 connp->conn_mlp_type, connp->conn_ulp, 20055 ntohs(connp->conn_lport), B_FALSE); 20056 connp->conn_anon_port = 0; 20057 } 20058 connp->conn_mlp_type = mlptSingle; 20059 20060 ipcl_hash_remove(connp); 20061 20062 ASSERT(mp->b_cont == NULL); 20063 /* 20064 * Convert mp into a T_OK_ACK 20065 */ 20066 mp = mi_tpi_ok_ack_alloc(mp); 20067 20068 /* 20069 * should not happen in practice... T_OK_ACK is smaller than the 20070 * original message. 20071 */ 20072 if (mp == NULL) 20073 return (NULL); 20074 20075 return (mp); 20076 } 20077 20078 /* 20079 * Write side put procedure. Outbound data, IOCTLs, responses from 20080 * resolvers, etc, come down through here. 20081 * 20082 * arg2 is always a queue_t *. 20083 * When that queue is an ill_t (i.e. q_next != NULL), then arg must be 20084 * the zoneid. 20085 * When that queue is not an ill_t, then arg must be a conn_t pointer. 20086 */ 20087 void 20088 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 20089 { 20090 ip_output_options(arg, mp, arg2, caller, &zero_info); 20091 } 20092 20093 void 20094 ip_output_options(void *arg, mblk_t *mp, void *arg2, int caller, 20095 ip_opt_info_t *infop) 20096 { 20097 conn_t *connp = NULL; 20098 queue_t *q = (queue_t *)arg2; 20099 ipha_t *ipha; 20100 #define rptr ((uchar_t *)ipha) 20101 ire_t *ire = NULL; 20102 ire_t *sctp_ire = NULL; 20103 uint32_t v_hlen_tos_len; 20104 ipaddr_t dst; 20105 mblk_t *first_mp = NULL; 20106 boolean_t mctl_present; 20107 ipsec_out_t *io; 20108 int match_flags; 20109 ill_t *attach_ill = NULL; 20110 /* Bind to IPIF_NOFAILOVER ill etc. */ 20111 ill_t *xmit_ill = NULL; /* IP_PKTINFO etc. */ 20112 ipif_t *dst_ipif; 20113 boolean_t multirt_need_resolve = B_FALSE; 20114 mblk_t *copy_mp = NULL; 20115 int err; 20116 zoneid_t zoneid; 20117 int adjust; 20118 uint16_t iplen; 20119 boolean_t need_decref = B_FALSE; 20120 boolean_t ignore_dontroute = B_FALSE; 20121 boolean_t ignore_nexthop = B_FALSE; 20122 boolean_t ip_nexthop = B_FALSE; 20123 ipaddr_t nexthop_addr; 20124 ip_stack_t *ipst; 20125 20126 #ifdef _BIG_ENDIAN 20127 #define V_HLEN (v_hlen_tos_len >> 24) 20128 #else 20129 #define V_HLEN (v_hlen_tos_len & 0xFF) 20130 #endif 20131 20132 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 20133 "ip_wput_start: q %p", q); 20134 20135 /* 20136 * ip_wput fast path 20137 */ 20138 20139 /* is packet from ARP ? */ 20140 if (q->q_next != NULL) { 20141 zoneid = (zoneid_t)(uintptr_t)arg; 20142 goto qnext; 20143 } 20144 20145 connp = (conn_t *)arg; 20146 ASSERT(connp != NULL); 20147 zoneid = connp->conn_zoneid; 20148 ipst = connp->conn_netstack->netstack_ip; 20149 20150 /* is queue flow controlled? */ 20151 if ((q->q_first != NULL || connp->conn_draining) && 20152 (caller == IP_WPUT)) { 20153 ASSERT(!need_decref); 20154 (void) putq(q, mp); 20155 return; 20156 } 20157 20158 /* Multidata transmit? */ 20159 if (DB_TYPE(mp) == M_MULTIDATA) { 20160 /* 20161 * We should never get here, since all Multidata messages 20162 * originating from tcp should have been directed over to 20163 * tcp_multisend() in the first place. 20164 */ 20165 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20166 freemsg(mp); 20167 return; 20168 } else if (DB_TYPE(mp) != M_DATA) 20169 goto notdata; 20170 20171 if (mp->b_flag & MSGHASREF) { 20172 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20173 mp->b_flag &= ~MSGHASREF; 20174 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 20175 need_decref = B_TRUE; 20176 } 20177 ipha = (ipha_t *)mp->b_rptr; 20178 20179 /* is IP header non-aligned or mblk smaller than basic IP header */ 20180 #ifndef SAFETY_BEFORE_SPEED 20181 if (!OK_32PTR(rptr) || 20182 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 20183 goto hdrtoosmall; 20184 #endif 20185 20186 ASSERT(OK_32PTR(ipha)); 20187 20188 /* 20189 * This function assumes that mp points to an IPv4 packet. If it's the 20190 * wrong version, we'll catch it again in ip_output_v6. 20191 * 20192 * Note that this is *only* locally-generated output here, and never 20193 * forwarded data, and that we need to deal only with transports that 20194 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 20195 * label.) 20196 */ 20197 if (is_system_labeled() && 20198 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 20199 !connp->conn_ulp_labeled) { 20200 err = tsol_check_label(BEST_CRED(mp, connp), &mp, &adjust, 20201 connp->conn_mac_exempt, ipst); 20202 ipha = (ipha_t *)mp->b_rptr; 20203 if (err != 0) { 20204 first_mp = mp; 20205 if (err == EINVAL) 20206 goto icmp_parameter_problem; 20207 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 20208 goto discard_pkt; 20209 } 20210 iplen = ntohs(ipha->ipha_length) + adjust; 20211 ipha->ipha_length = htons(iplen); 20212 } 20213 20214 ASSERT(infop != NULL); 20215 20216 if (infop->ip_opt_flags & IP_VERIFY_SRC) { 20217 /* 20218 * IP_PKTINFO ancillary option is present. 20219 * IPCL_ZONEID is used to honor IP_ALLZONES option which 20220 * allows using address of any zone as the source address. 20221 */ 20222 ire = ire_ctable_lookup(ipha->ipha_src, 0, 20223 (IRE_LOCAL|IRE_LOOPBACK), NULL, IPCL_ZONEID(connp), 20224 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 20225 if (ire == NULL) 20226 goto drop_pkt; 20227 ire_refrele(ire); 20228 ire = NULL; 20229 } 20230 20231 /* 20232 * IP_DONTFAILOVER_IF and IP_BOUND_IF have precedence over ill index 20233 * passed in IP_PKTINFO. 20234 */ 20235 if (infop->ip_opt_ill_index != 0 && 20236 connp->conn_outgoing_ill == NULL && 20237 connp->conn_nofailover_ill == NULL) { 20238 20239 xmit_ill = ill_lookup_on_ifindex( 20240 infop->ip_opt_ill_index, B_FALSE, NULL, NULL, NULL, NULL, 20241 ipst); 20242 20243 if (xmit_ill == NULL || IS_VNI(xmit_ill)) 20244 goto drop_pkt; 20245 /* 20246 * check that there is an ipif belonging 20247 * to our zone. IPCL_ZONEID is not used because 20248 * IP_ALLZONES option is valid only when the ill is 20249 * accessible from all zones i.e has a valid ipif in 20250 * all zones. 20251 */ 20252 if (!ipif_lookup_zoneid_group(xmit_ill, zoneid, 0, NULL)) { 20253 goto drop_pkt; 20254 } 20255 } 20256 20257 /* 20258 * If there is a policy, try to attach an ipsec_out in 20259 * the front. At the end, first_mp either points to a 20260 * M_DATA message or IPSEC_OUT message linked to a 20261 * M_DATA message. We have to do it now as we might 20262 * lose the "conn" if we go through ip_newroute. 20263 */ 20264 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 20265 if (((mp = ipsec_attach_ipsec_out(&mp, connp, NULL, 20266 ipha->ipha_protocol, ipst->ips_netstack)) == NULL)) { 20267 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20268 if (need_decref) 20269 CONN_DEC_REF(connp); 20270 return; 20271 } else { 20272 ASSERT(mp->b_datap->db_type == M_CTL); 20273 first_mp = mp; 20274 mp = mp->b_cont; 20275 mctl_present = B_TRUE; 20276 } 20277 } else { 20278 first_mp = mp; 20279 mctl_present = B_FALSE; 20280 } 20281 20282 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20283 20284 /* is wrong version or IP options present */ 20285 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 20286 goto version_hdrlen_check; 20287 dst = ipha->ipha_dst; 20288 20289 if (connp->conn_nofailover_ill != NULL) { 20290 attach_ill = conn_get_held_ill(connp, 20291 &connp->conn_nofailover_ill, &err); 20292 if (err == ILL_LOOKUP_FAILED) { 20293 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20294 if (need_decref) 20295 CONN_DEC_REF(connp); 20296 freemsg(first_mp); 20297 return; 20298 } 20299 } 20300 20301 /* If IP_BOUND_IF has been set, use that ill. */ 20302 if (connp->conn_outgoing_ill != NULL) { 20303 xmit_ill = conn_get_held_ill(connp, 20304 &connp->conn_outgoing_ill, &err); 20305 if (err == ILL_LOOKUP_FAILED) 20306 goto drop_pkt; 20307 20308 goto send_from_ill; 20309 } 20310 20311 /* is packet multicast? */ 20312 if (CLASSD(dst)) 20313 goto multicast; 20314 20315 /* 20316 * If xmit_ill is set above due to index passed in ip_pkt_info. It 20317 * takes precedence over conn_dontroute and conn_nexthop_set 20318 */ 20319 if (xmit_ill != NULL) 20320 goto send_from_ill; 20321 20322 if (connp->conn_dontroute || connp->conn_nexthop_set) { 20323 /* 20324 * If the destination is a broadcast, local, or loopback 20325 * address, SO_DONTROUTE and IP_NEXTHOP go through the 20326 * standard path. 20327 */ 20328 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20329 if ((ire == NULL) || (ire->ire_type & 20330 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK)) == 0) { 20331 if (ire != NULL) { 20332 ire_refrele(ire); 20333 /* No more access to ire */ 20334 ire = NULL; 20335 } 20336 /* 20337 * bypass routing checks and go directly to interface. 20338 */ 20339 if (connp->conn_dontroute) 20340 goto dontroute; 20341 20342 ASSERT(connp->conn_nexthop_set); 20343 ip_nexthop = B_TRUE; 20344 nexthop_addr = connp->conn_nexthop_v4; 20345 goto send_from_ill; 20346 } 20347 20348 /* Must be a broadcast, a loopback or a local ire */ 20349 ire_refrele(ire); 20350 /* No more access to ire */ 20351 ire = NULL; 20352 } 20353 20354 if (attach_ill != NULL) 20355 goto send_from_ill; 20356 20357 /* 20358 * We cache IRE_CACHEs to avoid lookups. We don't do 20359 * this for the tcp global queue and listen end point 20360 * as it does not really have a real destination to 20361 * talk to. This is also true for SCTP. 20362 */ 20363 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 20364 !connp->conn_fully_bound) { 20365 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20366 if (ire == NULL) 20367 goto noirefound; 20368 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20369 "ip_wput_end: q %p (%S)", q, "end"); 20370 20371 /* 20372 * Check if the ire has the RTF_MULTIRT flag, inherited 20373 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20374 */ 20375 if (ire->ire_flags & RTF_MULTIRT) { 20376 20377 /* 20378 * Force the TTL of multirouted packets if required. 20379 * The TTL of such packets is bounded by the 20380 * ip_multirt_ttl ndd variable. 20381 */ 20382 if ((ipst->ips_ip_multirt_ttl > 0) && 20383 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20384 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20385 "(was %d), dst 0x%08x\n", 20386 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20387 ntohl(ire->ire_addr))); 20388 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20389 } 20390 /* 20391 * We look at this point if there are pending 20392 * unresolved routes. ire_multirt_resolvable() 20393 * checks in O(n) that all IRE_OFFSUBNET ire 20394 * entries for the packet's destination and 20395 * flagged RTF_MULTIRT are currently resolved. 20396 * If some remain unresolved, we make a copy 20397 * of the current message. It will be used 20398 * to initiate additional route resolutions. 20399 */ 20400 multirt_need_resolve = 20401 ire_multirt_need_resolve(ire->ire_addr, 20402 MBLK_GETLABEL(first_mp), ipst); 20403 ip2dbg(("ip_wput[TCP]: ire %p, " 20404 "multirt_need_resolve %d, first_mp %p\n", 20405 (void *)ire, multirt_need_resolve, 20406 (void *)first_mp)); 20407 if (multirt_need_resolve) { 20408 copy_mp = copymsg(first_mp); 20409 if (copy_mp != NULL) { 20410 MULTIRT_DEBUG_TAG(copy_mp); 20411 } 20412 } 20413 } 20414 20415 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20416 20417 /* 20418 * Try to resolve another multiroute if 20419 * ire_multirt_need_resolve() deemed it necessary. 20420 */ 20421 if (copy_mp != NULL) 20422 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20423 if (need_decref) 20424 CONN_DEC_REF(connp); 20425 return; 20426 } 20427 20428 /* 20429 * Access to conn_ire_cache. (protected by conn_lock) 20430 * 20431 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 20432 * the ire bucket lock here to check for CONDEMNED as it is okay to 20433 * send a packet or two with the IRE_CACHE that is going away. 20434 * Access to the ire requires an ire refhold on the ire prior to 20435 * its use since an interface unplumb thread may delete the cached 20436 * ire and release the refhold at any time. 20437 * 20438 * Caching an ire in the conn_ire_cache 20439 * 20440 * o Caching an ire pointer in the conn requires a strict check for 20441 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 20442 * ires before cleaning up the conns. So the caching of an ire pointer 20443 * in the conn is done after making sure under the bucket lock that the 20444 * ire has not yet been marked CONDEMNED. Otherwise we will end up 20445 * caching an ire after the unplumb thread has cleaned up the conn. 20446 * If the conn does not send a packet subsequently the unplumb thread 20447 * will be hanging waiting for the ire count to drop to zero. 20448 * 20449 * o We also need to atomically test for a null conn_ire_cache and 20450 * set the conn_ire_cache under the the protection of the conn_lock 20451 * to avoid races among concurrent threads trying to simultaneously 20452 * cache an ire in the conn_ire_cache. 20453 */ 20454 mutex_enter(&connp->conn_lock); 20455 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 20456 20457 if (ire != NULL && ire->ire_addr == dst && 20458 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20459 20460 IRE_REFHOLD(ire); 20461 mutex_exit(&connp->conn_lock); 20462 20463 } else { 20464 boolean_t cached = B_FALSE; 20465 connp->conn_ire_cache = NULL; 20466 mutex_exit(&connp->conn_lock); 20467 /* Release the old ire */ 20468 if (ire != NULL && sctp_ire == NULL) 20469 IRE_REFRELE_NOTR(ire); 20470 20471 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20472 if (ire == NULL) 20473 goto noirefound; 20474 IRE_REFHOLD_NOTR(ire); 20475 20476 mutex_enter(&connp->conn_lock); 20477 if (CONN_CACHE_IRE(connp) && connp->conn_ire_cache == NULL) { 20478 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 20479 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20480 if (connp->conn_ulp == IPPROTO_TCP) 20481 TCP_CHECK_IREINFO(connp->conn_tcp, ire); 20482 connp->conn_ire_cache = ire; 20483 cached = B_TRUE; 20484 } 20485 rw_exit(&ire->ire_bucket->irb_lock); 20486 } 20487 mutex_exit(&connp->conn_lock); 20488 20489 /* 20490 * We can continue to use the ire but since it was 20491 * not cached, we should drop the extra reference. 20492 */ 20493 if (!cached) 20494 IRE_REFRELE_NOTR(ire); 20495 } 20496 20497 20498 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20499 "ip_wput_end: q %p (%S)", q, "end"); 20500 20501 /* 20502 * Check if the ire has the RTF_MULTIRT flag, inherited 20503 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20504 */ 20505 if (ire->ire_flags & RTF_MULTIRT) { 20506 20507 /* 20508 * Force the TTL of multirouted packets if required. 20509 * The TTL of such packets is bounded by the 20510 * ip_multirt_ttl ndd variable. 20511 */ 20512 if ((ipst->ips_ip_multirt_ttl > 0) && 20513 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20514 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20515 "(was %d), dst 0x%08x\n", 20516 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20517 ntohl(ire->ire_addr))); 20518 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20519 } 20520 20521 /* 20522 * At this point, we check to see if there are any pending 20523 * unresolved routes. ire_multirt_resolvable() 20524 * checks in O(n) that all IRE_OFFSUBNET ire 20525 * entries for the packet's destination and 20526 * flagged RTF_MULTIRT are currently resolved. 20527 * If some remain unresolved, we make a copy 20528 * of the current message. It will be used 20529 * to initiate additional route resolutions. 20530 */ 20531 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 20532 MBLK_GETLABEL(first_mp), ipst); 20533 ip2dbg(("ip_wput[not TCP]: ire %p, " 20534 "multirt_need_resolve %d, first_mp %p\n", 20535 (void *)ire, multirt_need_resolve, (void *)first_mp)); 20536 if (multirt_need_resolve) { 20537 copy_mp = copymsg(first_mp); 20538 if (copy_mp != NULL) { 20539 MULTIRT_DEBUG_TAG(copy_mp); 20540 } 20541 } 20542 } 20543 20544 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20545 20546 /* 20547 * Try to resolve another multiroute if 20548 * ire_multirt_resolvable() deemed it necessary 20549 */ 20550 if (copy_mp != NULL) 20551 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20552 if (need_decref) 20553 CONN_DEC_REF(connp); 20554 return; 20555 20556 qnext: 20557 /* 20558 * Upper Level Protocols pass down complete IP datagrams 20559 * as M_DATA messages. Everything else is a sideshow. 20560 * 20561 * 1) We could be re-entering ip_wput because of ip_neworute 20562 * in which case we could have a IPSEC_OUT message. We 20563 * need to pass through ip_wput like other datagrams and 20564 * hence cannot branch to ip_wput_nondata. 20565 * 20566 * 2) ARP, AH, ESP, and other clients who are on the module 20567 * instance of IP stream, give us something to deal with. 20568 * We will handle AH and ESP here and rest in ip_wput_nondata. 20569 * 20570 * 3) ICMP replies also could come here. 20571 */ 20572 ipst = ILLQ_TO_IPST(q); 20573 20574 if (DB_TYPE(mp) != M_DATA) { 20575 notdata: 20576 if (DB_TYPE(mp) == M_CTL) { 20577 /* 20578 * M_CTL messages are used by ARP, AH and ESP to 20579 * communicate with IP. We deal with IPSEC_IN and 20580 * IPSEC_OUT here. ip_wput_nondata handles other 20581 * cases. 20582 */ 20583 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 20584 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 20585 first_mp = mp->b_cont; 20586 first_mp->b_flag &= ~MSGHASREF; 20587 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20588 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 20589 CONN_DEC_REF(connp); 20590 connp = NULL; 20591 } 20592 if (ii->ipsec_info_type == IPSEC_IN) { 20593 /* 20594 * Either this message goes back to 20595 * IPsec for further processing or to 20596 * ULP after policy checks. 20597 */ 20598 ip_fanout_proto_again(mp, NULL, NULL, NULL); 20599 return; 20600 } else if (ii->ipsec_info_type == IPSEC_OUT) { 20601 io = (ipsec_out_t *)ii; 20602 if (io->ipsec_out_proc_begin) { 20603 /* 20604 * IPsec processing has already started. 20605 * Complete it. 20606 * IPQoS notes: We don't care what is 20607 * in ipsec_out_ill_index since this 20608 * won't be processed for IPQoS policies 20609 * in ipsec_out_process. 20610 */ 20611 ipsec_out_process(q, mp, NULL, 20612 io->ipsec_out_ill_index); 20613 return; 20614 } else { 20615 connp = (q->q_next != NULL) ? 20616 NULL : Q_TO_CONN(q); 20617 first_mp = mp; 20618 mp = mp->b_cont; 20619 mctl_present = B_TRUE; 20620 } 20621 zoneid = io->ipsec_out_zoneid; 20622 ASSERT(zoneid != ALL_ZONES); 20623 } else if (ii->ipsec_info_type == IPSEC_CTL) { 20624 /* 20625 * It's an IPsec control message requesting 20626 * an SADB update to be sent to the IPsec 20627 * hardware acceleration capable ills. 20628 */ 20629 ipsec_ctl_t *ipsec_ctl = 20630 (ipsec_ctl_t *)mp->b_rptr; 20631 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 20632 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 20633 mblk_t *cmp = mp->b_cont; 20634 20635 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 20636 ASSERT(cmp != NULL); 20637 20638 freeb(mp); 20639 ill_ipsec_capab_send_all(satype, cmp, sa, 20640 ipst->ips_netstack); 20641 return; 20642 } else { 20643 /* 20644 * This must be ARP or special TSOL signaling. 20645 */ 20646 ip_wput_nondata(NULL, q, mp, NULL); 20647 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20648 "ip_wput_end: q %p (%S)", q, "nondata"); 20649 return; 20650 } 20651 } else { 20652 /* 20653 * This must be non-(ARP/AH/ESP) messages. 20654 */ 20655 ASSERT(!need_decref); 20656 ip_wput_nondata(NULL, q, mp, NULL); 20657 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20658 "ip_wput_end: q %p (%S)", q, "nondata"); 20659 return; 20660 } 20661 } else { 20662 first_mp = mp; 20663 mctl_present = B_FALSE; 20664 } 20665 20666 ASSERT(first_mp != NULL); 20667 /* 20668 * ICMP echo replies attach an ipsec_out and set ipsec_out_attach_if 20669 * to make sure that this packet goes out on the same interface it 20670 * came in. We handle that here. 20671 */ 20672 if (mctl_present) { 20673 uint_t ifindex; 20674 20675 io = (ipsec_out_t *)first_mp->b_rptr; 20676 if (io->ipsec_out_attach_if || io->ipsec_out_ip_nexthop) { 20677 /* 20678 * We may have lost the conn context if we are 20679 * coming here from ip_newroute(). Copy the 20680 * nexthop information. 20681 */ 20682 if (io->ipsec_out_ip_nexthop) { 20683 ip_nexthop = B_TRUE; 20684 nexthop_addr = io->ipsec_out_nexthop_addr; 20685 20686 ipha = (ipha_t *)mp->b_rptr; 20687 dst = ipha->ipha_dst; 20688 goto send_from_ill; 20689 } else { 20690 ASSERT(io->ipsec_out_ill_index != 0); 20691 ifindex = io->ipsec_out_ill_index; 20692 attach_ill = ill_lookup_on_ifindex(ifindex, 20693 B_FALSE, NULL, NULL, NULL, NULL, ipst); 20694 if (attach_ill == NULL) { 20695 ASSERT(xmit_ill == NULL); 20696 ip1dbg(("ip_output: bad ifindex for " 20697 "(BIND TO IPIF_NOFAILOVER) %d\n", 20698 ifindex)); 20699 freemsg(first_mp); 20700 BUMP_MIB(&ipst->ips_ip_mib, 20701 ipIfStatsOutDiscards); 20702 ASSERT(!need_decref); 20703 return; 20704 } 20705 } 20706 } 20707 } 20708 20709 ASSERT(xmit_ill == NULL); 20710 20711 /* We have a complete IP datagram heading outbound. */ 20712 ipha = (ipha_t *)mp->b_rptr; 20713 20714 #ifndef SPEED_BEFORE_SAFETY 20715 /* 20716 * Make sure we have a full-word aligned message and that at least 20717 * a simple IP header is accessible in the first message. If not, 20718 * try a pullup. 20719 */ 20720 if (!OK_32PTR(rptr) || 20721 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) { 20722 hdrtoosmall: 20723 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 20724 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20725 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 20726 if (first_mp == NULL) 20727 first_mp = mp; 20728 goto discard_pkt; 20729 } 20730 20731 /* This function assumes that mp points to an IPv4 packet. */ 20732 if (is_system_labeled() && q->q_next == NULL && 20733 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 20734 !connp->conn_ulp_labeled) { 20735 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 20736 &adjust, connp->conn_mac_exempt, ipst); 20737 ipha = (ipha_t *)mp->b_rptr; 20738 if (first_mp != NULL) 20739 first_mp->b_cont = mp; 20740 if (err != 0) { 20741 if (first_mp == NULL) 20742 first_mp = mp; 20743 if (err == EINVAL) 20744 goto icmp_parameter_problem; 20745 ip2dbg(("ip_wput: label check failed (%d)\n", 20746 err)); 20747 goto discard_pkt; 20748 } 20749 iplen = ntohs(ipha->ipha_length) + adjust; 20750 ipha->ipha_length = htons(iplen); 20751 } 20752 20753 ipha = (ipha_t *)mp->b_rptr; 20754 if (first_mp == NULL) { 20755 ASSERT(attach_ill == NULL && xmit_ill == NULL); 20756 /* 20757 * If we got here because of "goto hdrtoosmall" 20758 * We need to attach a IPSEC_OUT. 20759 */ 20760 if (connp->conn_out_enforce_policy) { 20761 if (((mp = ipsec_attach_ipsec_out(&mp, connp, 20762 NULL, ipha->ipha_protocol, 20763 ipst->ips_netstack)) == NULL)) { 20764 BUMP_MIB(&ipst->ips_ip_mib, 20765 ipIfStatsOutDiscards); 20766 if (need_decref) 20767 CONN_DEC_REF(connp); 20768 return; 20769 } else { 20770 ASSERT(mp->b_datap->db_type == M_CTL); 20771 first_mp = mp; 20772 mp = mp->b_cont; 20773 mctl_present = B_TRUE; 20774 } 20775 } else { 20776 first_mp = mp; 20777 mctl_present = B_FALSE; 20778 } 20779 } 20780 } 20781 #endif 20782 20783 /* Most of the code below is written for speed, not readability */ 20784 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20785 20786 /* 20787 * If ip_newroute() fails, we're going to need a full 20788 * header for the icmp wraparound. 20789 */ 20790 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 20791 uint_t v_hlen; 20792 version_hdrlen_check: 20793 ASSERT(first_mp != NULL); 20794 v_hlen = V_HLEN; 20795 /* 20796 * siphon off IPv6 packets coming down from transport 20797 * layer modules here. 20798 * Note: high-order bit carries NUD reachability confirmation 20799 */ 20800 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 20801 /* 20802 * FIXME: assume that callers of ip_output* call 20803 * the right version? 20804 */ 20805 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutWrongIPVersion); 20806 ASSERT(xmit_ill == NULL); 20807 if (attach_ill != NULL) 20808 ill_refrele(attach_ill); 20809 if (need_decref) 20810 mp->b_flag |= MSGHASREF; 20811 (void) ip_output_v6(arg, first_mp, arg2, caller); 20812 return; 20813 } 20814 20815 if ((v_hlen >> 4) != IP_VERSION) { 20816 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20817 "ip_wput_end: q %p (%S)", q, "badvers"); 20818 goto discard_pkt; 20819 } 20820 /* 20821 * Is the header length at least 20 bytes? 20822 * 20823 * Are there enough bytes accessible in the header? If 20824 * not, try a pullup. 20825 */ 20826 v_hlen &= 0xF; 20827 v_hlen <<= 2; 20828 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 20829 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20830 "ip_wput_end: q %p (%S)", q, "badlen"); 20831 goto discard_pkt; 20832 } 20833 if (v_hlen > (mp->b_wptr - rptr)) { 20834 if (!pullupmsg(mp, v_hlen)) { 20835 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20836 "ip_wput_end: q %p (%S)", q, "badpullup2"); 20837 goto discard_pkt; 20838 } 20839 ipha = (ipha_t *)mp->b_rptr; 20840 } 20841 /* 20842 * Move first entry from any source route into ipha_dst and 20843 * verify the options 20844 */ 20845 if (ip_wput_options(q, first_mp, ipha, mctl_present, 20846 zoneid, ipst)) { 20847 ASSERT(xmit_ill == NULL); 20848 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20849 if (attach_ill != NULL) 20850 ill_refrele(attach_ill); 20851 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20852 "ip_wput_end: q %p (%S)", q, "badopts"); 20853 if (need_decref) 20854 CONN_DEC_REF(connp); 20855 return; 20856 } 20857 } 20858 dst = ipha->ipha_dst; 20859 20860 /* 20861 * Try to get an IRE_CACHE for the destination address. If we can't, 20862 * we have to run the packet through ip_newroute which will take 20863 * the appropriate action to arrange for an IRE_CACHE, such as querying 20864 * a resolver, or assigning a default gateway, etc. 20865 */ 20866 if (CLASSD(dst)) { 20867 ipif_t *ipif; 20868 uint32_t setsrc = 0; 20869 20870 multicast: 20871 ASSERT(first_mp != NULL); 20872 ip2dbg(("ip_wput: CLASSD\n")); 20873 if (connp == NULL) { 20874 /* 20875 * Use the first good ipif on the ill. 20876 * XXX Should this ever happen? (Appears 20877 * to show up with just ppp and no ethernet due 20878 * to in.rdisc.) 20879 * However, ire_send should be able to 20880 * call ip_wput_ire directly. 20881 * 20882 * XXX Also, this can happen for ICMP and other packets 20883 * with multicast source addresses. Perhaps we should 20884 * fix things so that we drop the packet in question, 20885 * but for now, just run with it. 20886 */ 20887 ill_t *ill = (ill_t *)q->q_ptr; 20888 20889 /* 20890 * Don't honor attach_if for this case. If ill 20891 * is part of the group, ipif could belong to 20892 * any ill and we cannot maintain attach_ill 20893 * and ipif_ill same anymore and the assert 20894 * below would fail. 20895 */ 20896 if (mctl_present && io->ipsec_out_attach_if) { 20897 io->ipsec_out_ill_index = 0; 20898 io->ipsec_out_attach_if = B_FALSE; 20899 ASSERT(attach_ill != NULL); 20900 ill_refrele(attach_ill); 20901 attach_ill = NULL; 20902 } 20903 20904 ASSERT(attach_ill == NULL); 20905 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 20906 if (ipif == NULL) { 20907 if (need_decref) 20908 CONN_DEC_REF(connp); 20909 freemsg(first_mp); 20910 return; 20911 } 20912 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 20913 ntohl(dst), ill->ill_name)); 20914 } else { 20915 /* 20916 * The order of precedence is IP_BOUND_IF, IP_PKTINFO 20917 * and IP_MULTICAST_IF. The block comment above this 20918 * function explains the locking mechanism used here. 20919 */ 20920 if (xmit_ill == NULL) { 20921 xmit_ill = conn_get_held_ill(connp, 20922 &connp->conn_outgoing_ill, &err); 20923 if (err == ILL_LOOKUP_FAILED) { 20924 ip1dbg(("ip_wput: No ill for " 20925 "IP_BOUND_IF\n")); 20926 BUMP_MIB(&ipst->ips_ip_mib, 20927 ipIfStatsOutNoRoutes); 20928 goto drop_pkt; 20929 } 20930 } 20931 20932 if (xmit_ill == NULL) { 20933 ipif = conn_get_held_ipif(connp, 20934 &connp->conn_multicast_ipif, &err); 20935 if (err == IPIF_LOOKUP_FAILED) { 20936 ip1dbg(("ip_wput: No ipif for " 20937 "multicast\n")); 20938 BUMP_MIB(&ipst->ips_ip_mib, 20939 ipIfStatsOutNoRoutes); 20940 goto drop_pkt; 20941 } 20942 } 20943 if (xmit_ill != NULL) { 20944 ipif = ipif_get_next_ipif(NULL, xmit_ill); 20945 if (ipif == NULL) { 20946 ip1dbg(("ip_wput: No ipif for " 20947 "xmit_ill\n")); 20948 BUMP_MIB(&ipst->ips_ip_mib, 20949 ipIfStatsOutNoRoutes); 20950 goto drop_pkt; 20951 } 20952 } else if (ipif == NULL || ipif->ipif_isv6) { 20953 /* 20954 * We must do this ipif determination here 20955 * else we could pass through ip_newroute 20956 * and come back here without the conn context. 20957 * 20958 * Note: we do late binding i.e. we bind to 20959 * the interface when the first packet is sent. 20960 * For performance reasons we do not rebind on 20961 * each packet but keep the binding until the 20962 * next IP_MULTICAST_IF option. 20963 * 20964 * conn_multicast_{ipif,ill} are shared between 20965 * IPv4 and IPv6 and AF_INET6 sockets can 20966 * send both IPv4 and IPv6 packets. Hence 20967 * we have to check that "isv6" matches above. 20968 */ 20969 if (ipif != NULL) 20970 ipif_refrele(ipif); 20971 ipif = ipif_lookup_group(dst, zoneid, ipst); 20972 if (ipif == NULL) { 20973 ip1dbg(("ip_wput: No ipif for " 20974 "multicast\n")); 20975 BUMP_MIB(&ipst->ips_ip_mib, 20976 ipIfStatsOutNoRoutes); 20977 goto drop_pkt; 20978 } 20979 err = conn_set_held_ipif(connp, 20980 &connp->conn_multicast_ipif, ipif); 20981 if (err == IPIF_LOOKUP_FAILED) { 20982 ipif_refrele(ipif); 20983 ip1dbg(("ip_wput: No ipif for " 20984 "multicast\n")); 20985 BUMP_MIB(&ipst->ips_ip_mib, 20986 ipIfStatsOutNoRoutes); 20987 goto drop_pkt; 20988 } 20989 } 20990 } 20991 ASSERT(!ipif->ipif_isv6); 20992 /* 20993 * As we may lose the conn by the time we reach ip_wput_ire, 20994 * we copy conn_multicast_loop and conn_dontroute on to an 20995 * ipsec_out. In case if this datagram goes out secure, 20996 * we need the ill_index also. Copy that also into the 20997 * ipsec_out. 20998 */ 20999 if (mctl_present) { 21000 io = (ipsec_out_t *)first_mp->b_rptr; 21001 ASSERT(first_mp->b_datap->db_type == M_CTL); 21002 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21003 } else { 21004 ASSERT(mp == first_mp); 21005 if ((first_mp = allocb(sizeof (ipsec_info_t), 21006 BPRI_HI)) == NULL) { 21007 ipif_refrele(ipif); 21008 first_mp = mp; 21009 goto discard_pkt; 21010 } 21011 first_mp->b_datap->db_type = M_CTL; 21012 first_mp->b_wptr += sizeof (ipsec_info_t); 21013 /* ipsec_out_secure is B_FALSE now */ 21014 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 21015 io = (ipsec_out_t *)first_mp->b_rptr; 21016 io->ipsec_out_type = IPSEC_OUT; 21017 io->ipsec_out_len = sizeof (ipsec_out_t); 21018 io->ipsec_out_use_global_policy = B_TRUE; 21019 io->ipsec_out_ns = ipst->ips_netstack; 21020 first_mp->b_cont = mp; 21021 mctl_present = B_TRUE; 21022 } 21023 if (attach_ill != NULL) { 21024 ASSERT(attach_ill == ipif->ipif_ill); 21025 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21026 21027 /* 21028 * Check if we need an ire that will not be 21029 * looked up by anybody else i.e. HIDDEN. 21030 */ 21031 if (ill_is_probeonly(attach_ill)) { 21032 match_flags |= MATCH_IRE_MARK_HIDDEN; 21033 } 21034 io->ipsec_out_ill_index = 21035 attach_ill->ill_phyint->phyint_ifindex; 21036 io->ipsec_out_attach_if = B_TRUE; 21037 } else { 21038 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 21039 io->ipsec_out_ill_index = 21040 ipif->ipif_ill->ill_phyint->phyint_ifindex; 21041 } 21042 if (connp != NULL) { 21043 io->ipsec_out_multicast_loop = 21044 connp->conn_multicast_loop; 21045 io->ipsec_out_dontroute = connp->conn_dontroute; 21046 io->ipsec_out_zoneid = connp->conn_zoneid; 21047 } 21048 /* 21049 * If the application uses IP_MULTICAST_IF with 21050 * different logical addresses of the same ILL, we 21051 * need to make sure that the soruce address of 21052 * the packet matches the logical IP address used 21053 * in the option. We do it by initializing ipha_src 21054 * here. This should keep IPsec also happy as 21055 * when we return from IPsec processing, we don't 21056 * have to worry about getting the right address on 21057 * the packet. Thus it is sufficient to look for 21058 * IRE_CACHE using MATCH_IRE_ILL rathen than 21059 * MATCH_IRE_IPIF. 21060 * 21061 * NOTE : We need to do it for non-secure case also as 21062 * this might go out secure if there is a global policy 21063 * match in ip_wput_ire. For bind to IPIF_NOFAILOVER 21064 * address, the source should be initialized already and 21065 * hence we won't be initializing here. 21066 * 21067 * As we do not have the ire yet, it is possible that 21068 * we set the source address here and then later discover 21069 * that the ire implies the source address to be assigned 21070 * through the RTF_SETSRC flag. 21071 * In that case, the setsrc variable will remind us 21072 * that overwritting the source address by the one 21073 * of the RTF_SETSRC-flagged ire is allowed. 21074 */ 21075 if (ipha->ipha_src == INADDR_ANY && 21076 (connp == NULL || !connp->conn_unspec_src)) { 21077 ipha->ipha_src = ipif->ipif_src_addr; 21078 setsrc = RTF_SETSRC; 21079 } 21080 /* 21081 * Find an IRE which matches the destination and the outgoing 21082 * queue (i.e. the outgoing interface.) 21083 * For loopback use a unicast IP address for 21084 * the ire lookup. 21085 */ 21086 if (IS_LOOPBACK(ipif->ipif_ill)) 21087 dst = ipif->ipif_lcl_addr; 21088 21089 /* 21090 * If xmit_ill is set, we branch out to ip_newroute_ipif. 21091 * We don't need to lookup ire in ctable as the packet 21092 * needs to be sent to the destination through the specified 21093 * ill irrespective of ires in the cache table. 21094 */ 21095 ire = NULL; 21096 if (xmit_ill == NULL) { 21097 ire = ire_ctable_lookup(dst, 0, 0, ipif, 21098 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21099 } 21100 21101 /* 21102 * refrele attach_ill as its not needed anymore. 21103 */ 21104 if (attach_ill != NULL) { 21105 ill_refrele(attach_ill); 21106 attach_ill = NULL; 21107 } 21108 21109 if (ire == NULL) { 21110 /* 21111 * Multicast loopback and multicast forwarding is 21112 * done in ip_wput_ire. 21113 * 21114 * Mark this packet to make it be delivered to 21115 * ip_wput_ire after the new ire has been 21116 * created. 21117 * 21118 * The call to ip_newroute_ipif takes into account 21119 * the setsrc reminder. In any case, we take care 21120 * of the RTF_MULTIRT flag. 21121 */ 21122 mp->b_prev = mp->b_next = NULL; 21123 if (xmit_ill == NULL || 21124 xmit_ill->ill_ipif_up_count > 0) { 21125 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 21126 setsrc | RTF_MULTIRT, zoneid, infop); 21127 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21128 "ip_wput_end: q %p (%S)", q, "noire"); 21129 } else { 21130 freemsg(first_mp); 21131 } 21132 ipif_refrele(ipif); 21133 if (xmit_ill != NULL) 21134 ill_refrele(xmit_ill); 21135 if (need_decref) 21136 CONN_DEC_REF(connp); 21137 return; 21138 } 21139 21140 ipif_refrele(ipif); 21141 ipif = NULL; 21142 ASSERT(xmit_ill == NULL); 21143 21144 /* 21145 * Honor the RTF_SETSRC flag for multicast packets, 21146 * if allowed by the setsrc reminder. 21147 */ 21148 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 21149 ipha->ipha_src = ire->ire_src_addr; 21150 } 21151 21152 /* 21153 * Unconditionally force the TTL to 1 for 21154 * multirouted multicast packets: 21155 * multirouted multicast should not cross 21156 * multicast routers. 21157 */ 21158 if (ire->ire_flags & RTF_MULTIRT) { 21159 if (ipha->ipha_ttl > 1) { 21160 ip2dbg(("ip_wput: forcing multicast " 21161 "multirt TTL to 1 (was %d), dst 0x%08x\n", 21162 ipha->ipha_ttl, ntohl(ire->ire_addr))); 21163 ipha->ipha_ttl = 1; 21164 } 21165 } 21166 } else { 21167 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 21168 if ((ire != NULL) && (ire->ire_type & 21169 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 21170 ignore_dontroute = B_TRUE; 21171 ignore_nexthop = B_TRUE; 21172 } 21173 if (ire != NULL) { 21174 ire_refrele(ire); 21175 ire = NULL; 21176 } 21177 /* 21178 * Guard against coming in from arp in which case conn is NULL. 21179 * Also guard against non M_DATA with dontroute set but 21180 * destined to local, loopback or broadcast addresses. 21181 */ 21182 if (connp != NULL && connp->conn_dontroute && 21183 !ignore_dontroute) { 21184 dontroute: 21185 /* 21186 * Set TTL to 1 if SO_DONTROUTE is set to prevent 21187 * routing protocols from seeing false direct 21188 * connectivity. 21189 */ 21190 ipha->ipha_ttl = 1; 21191 21192 /* If suitable ipif not found, drop packet */ 21193 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid, ipst); 21194 if (dst_ipif == NULL) { 21195 noroute: 21196 ip1dbg(("ip_wput: no route for dst using" 21197 " SO_DONTROUTE\n")); 21198 BUMP_MIB(&ipst->ips_ip_mib, 21199 ipIfStatsOutNoRoutes); 21200 mp->b_prev = mp->b_next = NULL; 21201 if (first_mp == NULL) 21202 first_mp = mp; 21203 goto drop_pkt; 21204 } else { 21205 /* 21206 * If suitable ipif has been found, set 21207 * xmit_ill to the corresponding 21208 * ipif_ill because we'll be using the 21209 * send_from_ill logic below. 21210 */ 21211 ASSERT(xmit_ill == NULL); 21212 xmit_ill = dst_ipif->ipif_ill; 21213 mutex_enter(&xmit_ill->ill_lock); 21214 if (!ILL_CAN_LOOKUP(xmit_ill)) { 21215 mutex_exit(&xmit_ill->ill_lock); 21216 xmit_ill = NULL; 21217 ipif_refrele(dst_ipif); 21218 goto noroute; 21219 } 21220 ill_refhold_locked(xmit_ill); 21221 mutex_exit(&xmit_ill->ill_lock); 21222 ipif_refrele(dst_ipif); 21223 } 21224 } 21225 /* 21226 * If we are bound to IPIF_NOFAILOVER address, look for 21227 * an IRE_CACHE matching the ill. 21228 */ 21229 send_from_ill: 21230 if (attach_ill != NULL) { 21231 ipif_t *attach_ipif; 21232 21233 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21234 21235 /* 21236 * Check if we need an ire that will not be 21237 * looked up by anybody else i.e. HIDDEN. 21238 */ 21239 if (ill_is_probeonly(attach_ill)) { 21240 match_flags |= MATCH_IRE_MARK_HIDDEN; 21241 } 21242 21243 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 21244 if (attach_ipif == NULL) { 21245 ip1dbg(("ip_wput: No ipif for attach_ill\n")); 21246 goto discard_pkt; 21247 } 21248 ire = ire_ctable_lookup(dst, 0, 0, attach_ipif, 21249 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21250 ipif_refrele(attach_ipif); 21251 } else if (xmit_ill != NULL) { 21252 ipif_t *ipif; 21253 21254 /* 21255 * Mark this packet as originated locally 21256 */ 21257 mp->b_prev = mp->b_next = NULL; 21258 21259 /* 21260 * Could be SO_DONTROUTE case also. 21261 * Verify that at least one ipif is up on the ill. 21262 */ 21263 if (xmit_ill->ill_ipif_up_count == 0) { 21264 ip1dbg(("ip_output: xmit_ill %s is down\n", 21265 xmit_ill->ill_name)); 21266 goto drop_pkt; 21267 } 21268 21269 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21270 if (ipif == NULL) { 21271 ip1dbg(("ip_output: xmit_ill %s NULL ipif\n", 21272 xmit_ill->ill_name)); 21273 goto drop_pkt; 21274 } 21275 21276 /* 21277 * Look for a ire that is part of the group, 21278 * if found use it else call ip_newroute_ipif. 21279 * IPCL_ZONEID is not used for matching because 21280 * IP_ALLZONES option is valid only when the 21281 * ill is accessible from all zones i.e has a 21282 * valid ipif in all zones. 21283 */ 21284 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 21285 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 21286 MBLK_GETLABEL(mp), match_flags, ipst); 21287 /* 21288 * If an ire exists use it or else create 21289 * an ire but don't add it to the cache. 21290 * Adding an ire may cause issues with 21291 * asymmetric routing. 21292 * In case of multiroute always act as if 21293 * ire does not exist. 21294 */ 21295 if (ire == NULL || ire->ire_flags & RTF_MULTIRT) { 21296 if (ire != NULL) 21297 ire_refrele(ire); 21298 ip_newroute_ipif(q, first_mp, ipif, 21299 dst, connp, 0, zoneid, infop); 21300 ipif_refrele(ipif); 21301 ip1dbg(("ip_output: xmit_ill via %s\n", 21302 xmit_ill->ill_name)); 21303 ill_refrele(xmit_ill); 21304 if (need_decref) 21305 CONN_DEC_REF(connp); 21306 return; 21307 } 21308 ipif_refrele(ipif); 21309 } else if (ip_nexthop || (connp != NULL && 21310 (connp->conn_nexthop_set)) && !ignore_nexthop) { 21311 if (!ip_nexthop) { 21312 ip_nexthop = B_TRUE; 21313 nexthop_addr = connp->conn_nexthop_v4; 21314 } 21315 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 21316 MATCH_IRE_GW; 21317 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 21318 NULL, zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21319 } else { 21320 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), 21321 ipst); 21322 } 21323 if (!ire) { 21324 /* 21325 * Make sure we don't load spread if this 21326 * is IPIF_NOFAILOVER case. 21327 */ 21328 if ((attach_ill != NULL) || 21329 (ip_nexthop && !ignore_nexthop)) { 21330 if (mctl_present) { 21331 io = (ipsec_out_t *)first_mp->b_rptr; 21332 ASSERT(first_mp->b_datap->db_type == 21333 M_CTL); 21334 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21335 } else { 21336 ASSERT(mp == first_mp); 21337 first_mp = allocb( 21338 sizeof (ipsec_info_t), BPRI_HI); 21339 if (first_mp == NULL) { 21340 first_mp = mp; 21341 goto discard_pkt; 21342 } 21343 first_mp->b_datap->db_type = M_CTL; 21344 first_mp->b_wptr += 21345 sizeof (ipsec_info_t); 21346 /* ipsec_out_secure is B_FALSE now */ 21347 bzero(first_mp->b_rptr, 21348 sizeof (ipsec_info_t)); 21349 io = (ipsec_out_t *)first_mp->b_rptr; 21350 io->ipsec_out_type = IPSEC_OUT; 21351 io->ipsec_out_len = 21352 sizeof (ipsec_out_t); 21353 io->ipsec_out_use_global_policy = 21354 B_TRUE; 21355 io->ipsec_out_ns = ipst->ips_netstack; 21356 first_mp->b_cont = mp; 21357 mctl_present = B_TRUE; 21358 } 21359 if (attach_ill != NULL) { 21360 io->ipsec_out_ill_index = attach_ill-> 21361 ill_phyint->phyint_ifindex; 21362 io->ipsec_out_attach_if = B_TRUE; 21363 } else { 21364 io->ipsec_out_ip_nexthop = ip_nexthop; 21365 io->ipsec_out_nexthop_addr = 21366 nexthop_addr; 21367 } 21368 } 21369 noirefound: 21370 /* 21371 * Mark this packet as having originated on 21372 * this machine. This will be noted in 21373 * ire_add_then_send, which needs to know 21374 * whether to run it back through ip_wput or 21375 * ip_rput following successful resolution. 21376 */ 21377 mp->b_prev = NULL; 21378 mp->b_next = NULL; 21379 ip_newroute(q, first_mp, dst, connp, zoneid, ipst); 21380 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21381 "ip_wput_end: q %p (%S)", q, "newroute"); 21382 if (attach_ill != NULL) 21383 ill_refrele(attach_ill); 21384 if (xmit_ill != NULL) 21385 ill_refrele(xmit_ill); 21386 if (need_decref) 21387 CONN_DEC_REF(connp); 21388 return; 21389 } 21390 } 21391 21392 /* We now know where we are going with it. */ 21393 21394 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21395 "ip_wput_end: q %p (%S)", q, "end"); 21396 21397 /* 21398 * Check if the ire has the RTF_MULTIRT flag, inherited 21399 * from an IRE_OFFSUBNET ire entry in ip_newroute. 21400 */ 21401 if (ire->ire_flags & RTF_MULTIRT) { 21402 /* 21403 * Force the TTL of multirouted packets if required. 21404 * The TTL of such packets is bounded by the 21405 * ip_multirt_ttl ndd variable. 21406 */ 21407 if ((ipst->ips_ip_multirt_ttl > 0) && 21408 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 21409 ip2dbg(("ip_wput: forcing multirt TTL to %d " 21410 "(was %d), dst 0x%08x\n", 21411 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 21412 ntohl(ire->ire_addr))); 21413 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 21414 } 21415 /* 21416 * At this point, we check to see if there are any pending 21417 * unresolved routes. ire_multirt_resolvable() 21418 * checks in O(n) that all IRE_OFFSUBNET ire 21419 * entries for the packet's destination and 21420 * flagged RTF_MULTIRT are currently resolved. 21421 * If some remain unresolved, we make a copy 21422 * of the current message. It will be used 21423 * to initiate additional route resolutions. 21424 */ 21425 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 21426 MBLK_GETLABEL(first_mp), ipst); 21427 ip2dbg(("ip_wput[noirefound]: ire %p, " 21428 "multirt_need_resolve %d, first_mp %p\n", 21429 (void *)ire, multirt_need_resolve, (void *)first_mp)); 21430 if (multirt_need_resolve) { 21431 copy_mp = copymsg(first_mp); 21432 if (copy_mp != NULL) { 21433 MULTIRT_DEBUG_TAG(copy_mp); 21434 } 21435 } 21436 } 21437 21438 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 21439 /* 21440 * Try to resolve another multiroute if 21441 * ire_multirt_resolvable() deemed it necessary. 21442 * At this point, we need to distinguish 21443 * multicasts from other packets. For multicasts, 21444 * we call ip_newroute_ipif() and request that both 21445 * multirouting and setsrc flags are checked. 21446 */ 21447 if (copy_mp != NULL) { 21448 if (CLASSD(dst)) { 21449 ipif_t *ipif = ipif_lookup_group(dst, zoneid, ipst); 21450 if (ipif) { 21451 ASSERT(infop->ip_opt_ill_index == 0); 21452 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 21453 RTF_SETSRC | RTF_MULTIRT, zoneid, infop); 21454 ipif_refrele(ipif); 21455 } else { 21456 MULTIRT_DEBUG_UNTAG(copy_mp); 21457 freemsg(copy_mp); 21458 copy_mp = NULL; 21459 } 21460 } else { 21461 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 21462 } 21463 } 21464 if (attach_ill != NULL) 21465 ill_refrele(attach_ill); 21466 if (xmit_ill != NULL) 21467 ill_refrele(xmit_ill); 21468 if (need_decref) 21469 CONN_DEC_REF(connp); 21470 return; 21471 21472 icmp_parameter_problem: 21473 /* could not have originated externally */ 21474 ASSERT(mp->b_prev == NULL); 21475 if (ip_hdr_complete(ipha, zoneid, ipst) == 0) { 21476 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 21477 /* it's the IP header length that's in trouble */ 21478 icmp_param_problem(q, first_mp, 0, zoneid, ipst); 21479 first_mp = NULL; 21480 } 21481 21482 discard_pkt: 21483 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21484 drop_pkt: 21485 ip1dbg(("ip_wput: dropped packet\n")); 21486 if (ire != NULL) 21487 ire_refrele(ire); 21488 if (need_decref) 21489 CONN_DEC_REF(connp); 21490 freemsg(first_mp); 21491 if (attach_ill != NULL) 21492 ill_refrele(attach_ill); 21493 if (xmit_ill != NULL) 21494 ill_refrele(xmit_ill); 21495 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21496 "ip_wput_end: q %p (%S)", q, "droppkt"); 21497 } 21498 21499 /* 21500 * If this is a conn_t queue, then we pass in the conn. This includes the 21501 * zoneid. 21502 * Otherwise, this is a message coming back from ARP or for an ill_t queue, 21503 * in which case we use the global zoneid since those are all part of 21504 * the global zone. 21505 */ 21506 void 21507 ip_wput(queue_t *q, mblk_t *mp) 21508 { 21509 if (CONN_Q(q)) 21510 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 21511 else 21512 ip_output(GLOBAL_ZONEID, mp, q, IP_WPUT); 21513 } 21514 21515 /* 21516 * 21517 * The following rules must be observed when accessing any ipif or ill 21518 * that has been cached in the conn. Typically conn_nofailover_ill, 21519 * conn_outgoing_ill, conn_multicast_ipif and conn_multicast_ill. 21520 * 21521 * Access: The ipif or ill pointed to from the conn can be accessed under 21522 * the protection of the conn_lock or after it has been refheld under the 21523 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 21524 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 21525 * The reason for this is that a concurrent unplumb could actually be 21526 * cleaning up these cached pointers by walking the conns and might have 21527 * finished cleaning up the conn in question. The macros check that an 21528 * unplumb has not yet started on the ipif or ill. 21529 * 21530 * Caching: An ipif or ill pointer may be cached in the conn only after 21531 * making sure that an unplumb has not started. So the caching is done 21532 * while holding both the conn_lock and the ill_lock and after using the 21533 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 21534 * flag before starting the cleanup of conns. 21535 * 21536 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 21537 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 21538 * or a reference to the ipif or a reference to an ire that references the 21539 * ipif. An ipif does not change its ill except for failover/failback. Since 21540 * failover/failback happens only after bringing down the ipif and making sure 21541 * the ipif refcnt has gone to zero and holding the ill_g_lock and ill_lock 21542 * the above holds. 21543 */ 21544 ipif_t * 21545 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 21546 { 21547 ipif_t *ipif; 21548 ill_t *ill; 21549 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 21550 21551 *err = 0; 21552 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21553 mutex_enter(&connp->conn_lock); 21554 ipif = *ipifp; 21555 if (ipif != NULL) { 21556 ill = ipif->ipif_ill; 21557 mutex_enter(&ill->ill_lock); 21558 if (IPIF_CAN_LOOKUP(ipif)) { 21559 ipif_refhold_locked(ipif); 21560 mutex_exit(&ill->ill_lock); 21561 mutex_exit(&connp->conn_lock); 21562 rw_exit(&ipst->ips_ill_g_lock); 21563 return (ipif); 21564 } else { 21565 *err = IPIF_LOOKUP_FAILED; 21566 } 21567 mutex_exit(&ill->ill_lock); 21568 } 21569 mutex_exit(&connp->conn_lock); 21570 rw_exit(&ipst->ips_ill_g_lock); 21571 return (NULL); 21572 } 21573 21574 ill_t * 21575 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 21576 { 21577 ill_t *ill; 21578 21579 *err = 0; 21580 mutex_enter(&connp->conn_lock); 21581 ill = *illp; 21582 if (ill != NULL) { 21583 mutex_enter(&ill->ill_lock); 21584 if (ILL_CAN_LOOKUP(ill)) { 21585 ill_refhold_locked(ill); 21586 mutex_exit(&ill->ill_lock); 21587 mutex_exit(&connp->conn_lock); 21588 return (ill); 21589 } else { 21590 *err = ILL_LOOKUP_FAILED; 21591 } 21592 mutex_exit(&ill->ill_lock); 21593 } 21594 mutex_exit(&connp->conn_lock); 21595 return (NULL); 21596 } 21597 21598 static int 21599 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 21600 { 21601 ill_t *ill; 21602 21603 ill = ipif->ipif_ill; 21604 mutex_enter(&connp->conn_lock); 21605 mutex_enter(&ill->ill_lock); 21606 if (IPIF_CAN_LOOKUP(ipif)) { 21607 *ipifp = ipif; 21608 mutex_exit(&ill->ill_lock); 21609 mutex_exit(&connp->conn_lock); 21610 return (0); 21611 } 21612 mutex_exit(&ill->ill_lock); 21613 mutex_exit(&connp->conn_lock); 21614 return (IPIF_LOOKUP_FAILED); 21615 } 21616 21617 /* 21618 * This is called if the outbound datagram needs fragmentation. 21619 * 21620 * NOTE : This function does not ire_refrele the ire argument passed in. 21621 */ 21622 static void 21623 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire, zoneid_t zoneid, 21624 ip_stack_t *ipst) 21625 { 21626 ipha_t *ipha; 21627 mblk_t *mp; 21628 uint32_t v_hlen_tos_len; 21629 uint32_t max_frag; 21630 uint32_t frag_flag; 21631 boolean_t dont_use; 21632 21633 if (ipsec_mp->b_datap->db_type == M_CTL) { 21634 mp = ipsec_mp->b_cont; 21635 } else { 21636 mp = ipsec_mp; 21637 } 21638 21639 ipha = (ipha_t *)mp->b_rptr; 21640 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21641 21642 #ifdef _BIG_ENDIAN 21643 #define V_HLEN (v_hlen_tos_len >> 24) 21644 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21645 #else 21646 #define V_HLEN (v_hlen_tos_len & 0xFF) 21647 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21648 #endif 21649 21650 #ifndef SPEED_BEFORE_SAFETY 21651 /* 21652 * Check that ipha_length is consistent with 21653 * the mblk length 21654 */ 21655 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 21656 ip0dbg(("Packet length mismatch: %d, %ld\n", 21657 LENGTH, msgdsize(mp))); 21658 freemsg(ipsec_mp); 21659 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21660 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 21661 "packet length mismatch"); 21662 return; 21663 } 21664 #endif 21665 /* 21666 * Don't use frag_flag if pre-built packet or source 21667 * routed or if multicast (since multicast packets do not solicit 21668 * ICMP "packet too big" messages). Get the values of 21669 * max_frag and frag_flag atomically by acquiring the 21670 * ire_lock. 21671 */ 21672 mutex_enter(&ire->ire_lock); 21673 max_frag = ire->ire_max_frag; 21674 frag_flag = ire->ire_frag_flag; 21675 mutex_exit(&ire->ire_lock); 21676 21677 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 21678 (V_HLEN != IP_SIMPLE_HDR_VERSION && 21679 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 21680 21681 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 21682 (dont_use ? 0 : frag_flag), zoneid, ipst); 21683 } 21684 21685 /* 21686 * Used for deciding the MSS size for the upper layer. Thus 21687 * we need to check the outbound policy values in the conn. 21688 */ 21689 int 21690 conn_ipsec_length(conn_t *connp) 21691 { 21692 ipsec_latch_t *ipl; 21693 21694 ipl = connp->conn_latch; 21695 if (ipl == NULL) 21696 return (0); 21697 21698 if (ipl->ipl_out_policy == NULL) 21699 return (0); 21700 21701 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 21702 } 21703 21704 /* 21705 * Returns an estimate of the IPsec headers size. This is used if 21706 * we don't want to call into IPsec to get the exact size. 21707 */ 21708 int 21709 ipsec_out_extra_length(mblk_t *ipsec_mp) 21710 { 21711 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 21712 ipsec_action_t *a; 21713 21714 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21715 if (!io->ipsec_out_secure) 21716 return (0); 21717 21718 a = io->ipsec_out_act; 21719 21720 if (a == NULL) { 21721 ASSERT(io->ipsec_out_policy != NULL); 21722 a = io->ipsec_out_policy->ipsp_act; 21723 } 21724 ASSERT(a != NULL); 21725 21726 return (a->ipa_ovhd); 21727 } 21728 21729 /* 21730 * Returns an estimate of the IPsec headers size. This is used if 21731 * we don't want to call into IPsec to get the exact size. 21732 */ 21733 int 21734 ipsec_in_extra_length(mblk_t *ipsec_mp) 21735 { 21736 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21737 ipsec_action_t *a; 21738 21739 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21740 21741 a = ii->ipsec_in_action; 21742 return (a == NULL ? 0 : a->ipa_ovhd); 21743 } 21744 21745 /* 21746 * If there are any source route options, return the true final 21747 * destination. Otherwise, return the destination. 21748 */ 21749 ipaddr_t 21750 ip_get_dst(ipha_t *ipha) 21751 { 21752 ipoptp_t opts; 21753 uchar_t *opt; 21754 uint8_t optval; 21755 uint8_t optlen; 21756 ipaddr_t dst; 21757 uint32_t off; 21758 21759 dst = ipha->ipha_dst; 21760 21761 if (IS_SIMPLE_IPH(ipha)) 21762 return (dst); 21763 21764 for (optval = ipoptp_first(&opts, ipha); 21765 optval != IPOPT_EOL; 21766 optval = ipoptp_next(&opts)) { 21767 opt = opts.ipoptp_cur; 21768 optlen = opts.ipoptp_len; 21769 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 21770 switch (optval) { 21771 case IPOPT_SSRR: 21772 case IPOPT_LSRR: 21773 off = opt[IPOPT_OFFSET]; 21774 /* 21775 * If one of the conditions is true, it means 21776 * end of options and dst already has the right 21777 * value. 21778 */ 21779 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 21780 off = optlen - IP_ADDR_LEN; 21781 bcopy(&opt[off], &dst, IP_ADDR_LEN); 21782 } 21783 return (dst); 21784 default: 21785 break; 21786 } 21787 } 21788 21789 return (dst); 21790 } 21791 21792 mblk_t * 21793 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 21794 conn_t *connp, boolean_t unspec_src, zoneid_t zoneid) 21795 { 21796 ipsec_out_t *io; 21797 mblk_t *first_mp; 21798 boolean_t policy_present; 21799 ip_stack_t *ipst; 21800 ipsec_stack_t *ipss; 21801 21802 ASSERT(ire != NULL); 21803 ipst = ire->ire_ipst; 21804 ipss = ipst->ips_netstack->netstack_ipsec; 21805 21806 first_mp = mp; 21807 if (mp->b_datap->db_type == M_CTL) { 21808 io = (ipsec_out_t *)first_mp->b_rptr; 21809 /* 21810 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 21811 * 21812 * 1) There is per-socket policy (including cached global 21813 * policy) or a policy on the IP-in-IP tunnel. 21814 * 2) There is no per-socket policy, but it is 21815 * a multicast packet that needs to go out 21816 * on a specific interface. This is the case 21817 * where (ip_wput and ip_wput_multicast) attaches 21818 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 21819 * 21820 * In case (2) we check with global policy to 21821 * see if there is a match and set the ill_index 21822 * appropriately so that we can lookup the ire 21823 * properly in ip_wput_ipsec_out. 21824 */ 21825 21826 /* 21827 * ipsec_out_use_global_policy is set to B_FALSE 21828 * in ipsec_in_to_out(). Refer to that function for 21829 * details. 21830 */ 21831 if ((io->ipsec_out_latch == NULL) && 21832 (io->ipsec_out_use_global_policy)) { 21833 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 21834 ire, connp, unspec_src, zoneid)); 21835 } 21836 if (!io->ipsec_out_secure) { 21837 /* 21838 * If this is not a secure packet, drop 21839 * the IPSEC_OUT mp and treat it as a clear 21840 * packet. This happens when we are sending 21841 * a ICMP reply back to a clear packet. See 21842 * ipsec_in_to_out() for details. 21843 */ 21844 mp = first_mp->b_cont; 21845 freeb(first_mp); 21846 } 21847 return (mp); 21848 } 21849 /* 21850 * See whether we need to attach a global policy here. We 21851 * don't depend on the conn (as it could be null) for deciding 21852 * what policy this datagram should go through because it 21853 * should have happened in ip_wput if there was some 21854 * policy. This normally happens for connections which are not 21855 * fully bound preventing us from caching policies in 21856 * ip_bind. Packets coming from the TCP listener/global queue 21857 * - which are non-hard_bound - could also be affected by 21858 * applying policy here. 21859 * 21860 * If this packet is coming from tcp global queue or listener, 21861 * we will be applying policy here. This may not be *right* 21862 * if these packets are coming from the detached connection as 21863 * it could have gone in clear before. This happens only if a 21864 * TCP connection started when there is no policy and somebody 21865 * added policy before it became detached. Thus packets of the 21866 * detached connection could go out secure and the other end 21867 * would drop it because it will be expecting in clear. The 21868 * converse is not true i.e if somebody starts a TCP 21869 * connection and deletes the policy, all the packets will 21870 * still go out with the policy that existed before deleting 21871 * because ip_unbind sends up policy information which is used 21872 * by TCP on subsequent ip_wputs. The right solution is to fix 21873 * TCP to attach a dummy IPSEC_OUT and set 21874 * ipsec_out_use_global_policy to B_FALSE. As this might 21875 * affect performance for normal cases, we are not doing it. 21876 * Thus, set policy before starting any TCP connections. 21877 * 21878 * NOTE - We might apply policy even for a hard bound connection 21879 * - for which we cached policy in ip_bind - if somebody added 21880 * global policy after we inherited the policy in ip_bind. 21881 * This means that the packets that were going out in clear 21882 * previously would start going secure and hence get dropped 21883 * on the other side. To fix this, TCP attaches a dummy 21884 * ipsec_out and make sure that we don't apply global policy. 21885 */ 21886 if (ipha != NULL) 21887 policy_present = ipss->ipsec_outbound_v4_policy_present; 21888 else 21889 policy_present = ipss->ipsec_outbound_v6_policy_present; 21890 if (!policy_present) 21891 return (mp); 21892 21893 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src, 21894 zoneid)); 21895 } 21896 21897 ire_t * 21898 conn_set_outgoing_ill(conn_t *connp, ire_t *ire, ill_t **conn_outgoing_ill) 21899 { 21900 ipaddr_t addr; 21901 ire_t *save_ire; 21902 irb_t *irb; 21903 ill_group_t *illgrp; 21904 int err; 21905 21906 save_ire = ire; 21907 addr = ire->ire_addr; 21908 21909 ASSERT(ire->ire_type == IRE_BROADCAST); 21910 21911 illgrp = connp->conn_outgoing_ill->ill_group; 21912 if (illgrp == NULL) { 21913 *conn_outgoing_ill = conn_get_held_ill(connp, 21914 &connp->conn_outgoing_ill, &err); 21915 if (err == ILL_LOOKUP_FAILED) { 21916 ire_refrele(save_ire); 21917 return (NULL); 21918 } 21919 return (save_ire); 21920 } 21921 /* 21922 * If IP_BOUND_IF has been done, conn_outgoing_ill will be set. 21923 * If it is part of the group, we need to send on the ire 21924 * that has been cleared of IRE_MARK_NORECV and that belongs 21925 * to this group. This is okay as IP_BOUND_IF really means 21926 * any ill in the group. We depend on the fact that the 21927 * first ire in the group is always cleared of IRE_MARK_NORECV 21928 * if such an ire exists. This is possible only if you have 21929 * at least one ill in the group that has not failed. 21930 * 21931 * First get to the ire that matches the address and group. 21932 * 21933 * We don't look for an ire with a matching zoneid because a given zone 21934 * won't always have broadcast ires on all ills in the group. 21935 */ 21936 irb = ire->ire_bucket; 21937 rw_enter(&irb->irb_lock, RW_READER); 21938 if (ire->ire_marks & IRE_MARK_NORECV) { 21939 /* 21940 * If the current zone only has an ire broadcast for this 21941 * address marked NORECV, the ire we want is ahead in the 21942 * bucket, so we look it up deliberately ignoring the zoneid. 21943 */ 21944 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 21945 if (ire->ire_addr != addr) 21946 continue; 21947 /* skip over deleted ires */ 21948 if (ire->ire_marks & IRE_MARK_CONDEMNED) 21949 continue; 21950 } 21951 } 21952 while (ire != NULL) { 21953 /* 21954 * If a new interface is coming up, we could end up 21955 * seeing the loopback ire and the non-loopback ire 21956 * may not have been added yet. So check for ire_stq 21957 */ 21958 if (ire->ire_stq != NULL && (ire->ire_addr != addr || 21959 ire->ire_ipif->ipif_ill->ill_group == illgrp)) { 21960 break; 21961 } 21962 ire = ire->ire_next; 21963 } 21964 if (ire != NULL && ire->ire_addr == addr && 21965 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 21966 IRE_REFHOLD(ire); 21967 rw_exit(&irb->irb_lock); 21968 ire_refrele(save_ire); 21969 *conn_outgoing_ill = ire_to_ill(ire); 21970 /* 21971 * Refhold the ill to make the conn_outgoing_ill 21972 * independent of the ire. ip_wput_ire goes in a loop 21973 * and may refrele the ire. Since we have an ire at this 21974 * point we don't need to use ILL_CAN_LOOKUP on the ill. 21975 */ 21976 ill_refhold(*conn_outgoing_ill); 21977 return (ire); 21978 } 21979 rw_exit(&irb->irb_lock); 21980 ip1dbg(("conn_set_outgoing_ill: No matching ire\n")); 21981 /* 21982 * If we can't find a suitable ire, return the original ire. 21983 */ 21984 return (save_ire); 21985 } 21986 21987 /* 21988 * This function does the ire_refrele of the ire passed in as the 21989 * argument. As this function looks up more ires i.e broadcast ires, 21990 * it needs to REFRELE them. Currently, for simplicity we don't 21991 * differentiate the one passed in and looked up here. We always 21992 * REFRELE. 21993 * IPQoS Notes: 21994 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 21995 * IPsec packets are done in ipsec_out_process. 21996 * 21997 */ 21998 void 21999 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller, 22000 zoneid_t zoneid) 22001 { 22002 ipha_t *ipha; 22003 #define rptr ((uchar_t *)ipha) 22004 queue_t *stq; 22005 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 22006 uint32_t v_hlen_tos_len; 22007 uint32_t ttl_protocol; 22008 ipaddr_t src; 22009 ipaddr_t dst; 22010 uint32_t cksum; 22011 ipaddr_t orig_src; 22012 ire_t *ire1; 22013 mblk_t *next_mp; 22014 uint_t hlen; 22015 uint16_t *up; 22016 uint32_t max_frag = ire->ire_max_frag; 22017 ill_t *ill = ire_to_ill(ire); 22018 int clusterwide; 22019 uint16_t ip_hdr_included; /* IP header included by ULP? */ 22020 int ipsec_len; 22021 mblk_t *first_mp; 22022 ipsec_out_t *io; 22023 boolean_t conn_dontroute; /* conn value for multicast */ 22024 boolean_t conn_multicast_loop; /* conn value for multicast */ 22025 boolean_t multicast_forward; /* Should we forward ? */ 22026 boolean_t unspec_src; 22027 ill_t *conn_outgoing_ill = NULL; 22028 ill_t *ire_ill; 22029 ill_t *ire1_ill; 22030 ill_t *out_ill; 22031 uint32_t ill_index = 0; 22032 boolean_t multirt_send = B_FALSE; 22033 int err; 22034 ipxmit_state_t pktxmit_state; 22035 ip_stack_t *ipst = ire->ire_ipst; 22036 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 22037 22038 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 22039 "ip_wput_ire_start: q %p", q); 22040 22041 multicast_forward = B_FALSE; 22042 unspec_src = (connp != NULL && connp->conn_unspec_src); 22043 22044 if (ire->ire_flags & RTF_MULTIRT) { 22045 /* 22046 * Multirouting case. The bucket where ire is stored 22047 * probably holds other RTF_MULTIRT flagged ire 22048 * to the destination. In this call to ip_wput_ire, 22049 * we attempt to send the packet through all 22050 * those ires. Thus, we first ensure that ire is the 22051 * first RTF_MULTIRT ire in the bucket, 22052 * before walking the ire list. 22053 */ 22054 ire_t *first_ire; 22055 irb_t *irb = ire->ire_bucket; 22056 ASSERT(irb != NULL); 22057 22058 /* Make sure we do not omit any multiroute ire. */ 22059 IRB_REFHOLD(irb); 22060 for (first_ire = irb->irb_ire; 22061 first_ire != NULL; 22062 first_ire = first_ire->ire_next) { 22063 if ((first_ire->ire_flags & RTF_MULTIRT) && 22064 (first_ire->ire_addr == ire->ire_addr) && 22065 !(first_ire->ire_marks & 22066 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 22067 break; 22068 } 22069 } 22070 22071 if ((first_ire != NULL) && (first_ire != ire)) { 22072 IRE_REFHOLD(first_ire); 22073 ire_refrele(ire); 22074 ire = first_ire; 22075 ill = ire_to_ill(ire); 22076 } 22077 IRB_REFRELE(irb); 22078 } 22079 22080 /* 22081 * conn_outgoing_ill variable is used only in the broadcast loop. 22082 * for performance we don't grab the mutexs in the fastpath 22083 */ 22084 if ((connp != NULL) && 22085 (ire->ire_type == IRE_BROADCAST) && 22086 ((connp->conn_nofailover_ill != NULL) || 22087 (connp->conn_outgoing_ill != NULL))) { 22088 /* 22089 * Bind to IPIF_NOFAILOVER address overrides IP_BOUND_IF 22090 * option. So, see if this endpoint is bound to a 22091 * IPIF_NOFAILOVER address. If so, honor it. This implies 22092 * that if the interface is failed, we will still send 22093 * the packet on the same ill which is what we want. 22094 */ 22095 conn_outgoing_ill = conn_get_held_ill(connp, 22096 &connp->conn_nofailover_ill, &err); 22097 if (err == ILL_LOOKUP_FAILED) { 22098 ire_refrele(ire); 22099 freemsg(mp); 22100 return; 22101 } 22102 if (conn_outgoing_ill == NULL) { 22103 /* 22104 * Choose a good ill in the group to send the 22105 * packets on. 22106 */ 22107 ire = conn_set_outgoing_ill(connp, ire, 22108 &conn_outgoing_ill); 22109 if (ire == NULL) { 22110 freemsg(mp); 22111 return; 22112 } 22113 } 22114 } 22115 22116 if (mp->b_datap->db_type != M_CTL) { 22117 ipha = (ipha_t *)mp->b_rptr; 22118 } else { 22119 io = (ipsec_out_t *)mp->b_rptr; 22120 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22121 ASSERT(zoneid == io->ipsec_out_zoneid); 22122 ASSERT(zoneid != ALL_ZONES); 22123 ipha = (ipha_t *)mp->b_cont->b_rptr; 22124 dst = ipha->ipha_dst; 22125 /* 22126 * For the multicast case, ipsec_out carries conn_dontroute and 22127 * conn_multicast_loop as conn may not be available here. We 22128 * need this for multicast loopback and forwarding which is done 22129 * later in the code. 22130 */ 22131 if (CLASSD(dst)) { 22132 conn_dontroute = io->ipsec_out_dontroute; 22133 conn_multicast_loop = io->ipsec_out_multicast_loop; 22134 /* 22135 * If conn_dontroute is not set or conn_multicast_loop 22136 * is set, we need to do forwarding/loopback. For 22137 * datagrams from ip_wput_multicast, conn_dontroute is 22138 * set to B_TRUE and conn_multicast_loop is set to 22139 * B_FALSE so that we neither do forwarding nor 22140 * loopback. 22141 */ 22142 if (!conn_dontroute || conn_multicast_loop) 22143 multicast_forward = B_TRUE; 22144 } 22145 } 22146 22147 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 22148 ire->ire_zoneid != ALL_ZONES) { 22149 /* 22150 * When a zone sends a packet to another zone, we try to deliver 22151 * the packet under the same conditions as if the destination 22152 * was a real node on the network. To do so, we look for a 22153 * matching route in the forwarding table. 22154 * RTF_REJECT and RTF_BLACKHOLE are handled just like 22155 * ip_newroute() does. 22156 * Note that IRE_LOCAL are special, since they are used 22157 * when the zoneid doesn't match in some cases. This means that 22158 * we need to handle ipha_src differently since ire_src_addr 22159 * belongs to the receiving zone instead of the sending zone. 22160 * When ip_restrict_interzone_loopback is set, then 22161 * ire_cache_lookup() ensures that IRE_LOCAL are only used 22162 * for loopback between zones when the logical "Ethernet" would 22163 * have looped them back. 22164 */ 22165 ire_t *src_ire; 22166 22167 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 22168 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 22169 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE), ipst); 22170 if (src_ire != NULL && 22171 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) && 22172 (!ipst->ips_ip_restrict_interzone_loopback || 22173 ire_local_same_ill_group(ire, src_ire))) { 22174 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 22175 ipha->ipha_src = src_ire->ire_src_addr; 22176 ire_refrele(src_ire); 22177 } else { 22178 ire_refrele(ire); 22179 if (conn_outgoing_ill != NULL) 22180 ill_refrele(conn_outgoing_ill); 22181 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 22182 if (src_ire != NULL) { 22183 if (src_ire->ire_flags & RTF_BLACKHOLE) { 22184 ire_refrele(src_ire); 22185 freemsg(mp); 22186 return; 22187 } 22188 ire_refrele(src_ire); 22189 } 22190 if (ip_hdr_complete(ipha, zoneid, ipst)) { 22191 /* Failed */ 22192 freemsg(mp); 22193 return; 22194 } 22195 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, zoneid, 22196 ipst); 22197 return; 22198 } 22199 } 22200 22201 if (mp->b_datap->db_type == M_CTL || 22202 ipss->ipsec_outbound_v4_policy_present) { 22203 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 22204 unspec_src, zoneid); 22205 if (mp == NULL) { 22206 ire_refrele(ire); 22207 if (conn_outgoing_ill != NULL) 22208 ill_refrele(conn_outgoing_ill); 22209 return; 22210 } 22211 } 22212 22213 first_mp = mp; 22214 ipsec_len = 0; 22215 22216 if (first_mp->b_datap->db_type == M_CTL) { 22217 io = (ipsec_out_t *)first_mp->b_rptr; 22218 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22219 mp = first_mp->b_cont; 22220 ipsec_len = ipsec_out_extra_length(first_mp); 22221 ASSERT(ipsec_len >= 0); 22222 /* We already picked up the zoneid from the M_CTL above */ 22223 ASSERT(zoneid == io->ipsec_out_zoneid); 22224 ASSERT(zoneid != ALL_ZONES); 22225 22226 /* 22227 * Drop M_CTL here if IPsec processing is not needed. 22228 * (Non-IPsec use of M_CTL extracted any information it 22229 * needed above). 22230 */ 22231 if (ipsec_len == 0) { 22232 freeb(first_mp); 22233 first_mp = mp; 22234 } 22235 } 22236 22237 /* 22238 * Fast path for ip_wput_ire 22239 */ 22240 22241 ipha = (ipha_t *)mp->b_rptr; 22242 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 22243 dst = ipha->ipha_dst; 22244 22245 /* 22246 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 22247 * if the socket is a SOCK_RAW type. The transport checksum should 22248 * be provided in the pre-built packet, so we don't need to compute it. 22249 * Also, other application set flags, like DF, should not be altered. 22250 * Other transport MUST pass down zero. 22251 */ 22252 ip_hdr_included = ipha->ipha_ident; 22253 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 22254 22255 if (CLASSD(dst)) { 22256 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 22257 ntohl(dst), 22258 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 22259 ntohl(ire->ire_addr))); 22260 } 22261 22262 /* Macros to extract header fields from data already in registers */ 22263 #ifdef _BIG_ENDIAN 22264 #define V_HLEN (v_hlen_tos_len >> 24) 22265 #define LENGTH (v_hlen_tos_len & 0xFFFF) 22266 #define PROTO (ttl_protocol & 0xFF) 22267 #else 22268 #define V_HLEN (v_hlen_tos_len & 0xFF) 22269 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 22270 #define PROTO (ttl_protocol >> 8) 22271 #endif 22272 22273 22274 orig_src = src = ipha->ipha_src; 22275 /* (The loop back to "another" is explained down below.) */ 22276 another:; 22277 /* 22278 * Assign an ident value for this packet. We assign idents on 22279 * a per destination basis out of the IRE. There could be 22280 * other threads targeting the same destination, so we have to 22281 * arrange for a atomic increment. Note that we use a 32-bit 22282 * atomic add because it has better performance than its 22283 * 16-bit sibling. 22284 * 22285 * If running in cluster mode and if the source address 22286 * belongs to a replicated service then vector through 22287 * cl_inet_ipident vector to allocate ip identifier 22288 * NOTE: This is a contract private interface with the 22289 * clustering group. 22290 */ 22291 clusterwide = 0; 22292 if (cl_inet_ipident) { 22293 ASSERT(cl_inet_isclusterwide); 22294 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 22295 AF_INET, (uint8_t *)(uintptr_t)src)) { 22296 ipha->ipha_ident = (*cl_inet_ipident)(IPPROTO_IP, 22297 AF_INET, (uint8_t *)(uintptr_t)src, 22298 (uint8_t *)(uintptr_t)dst); 22299 clusterwide = 1; 22300 } 22301 } 22302 if (!clusterwide) { 22303 ipha->ipha_ident = 22304 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 22305 } 22306 22307 #ifndef _BIG_ENDIAN 22308 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 22309 #endif 22310 22311 /* 22312 * Set source address unless sent on an ill or conn_unspec_src is set. 22313 * This is needed to obey conn_unspec_src when packets go through 22314 * ip_newroute + arp. 22315 * Assumes ip_newroute{,_multi} sets the source address as well. 22316 */ 22317 if (src == INADDR_ANY && !unspec_src) { 22318 /* 22319 * Assign the appropriate source address from the IRE if none 22320 * was specified. 22321 */ 22322 ASSERT(ire->ire_ipversion == IPV4_VERSION); 22323 22324 /* 22325 * With IP multipathing, broadcast packets are sent on the ire 22326 * that has been cleared of IRE_MARK_NORECV and that belongs to 22327 * the group. However, this ire might not be in the same zone so 22328 * we can't always use its source address. We look for a 22329 * broadcast ire in the same group and in the right zone. 22330 */ 22331 if (ire->ire_type == IRE_BROADCAST && 22332 ire->ire_zoneid != zoneid) { 22333 ire_t *src_ire = ire_ctable_lookup(dst, 0, 22334 IRE_BROADCAST, ire->ire_ipif, zoneid, NULL, 22335 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 22336 if (src_ire != NULL) { 22337 src = src_ire->ire_src_addr; 22338 ire_refrele(src_ire); 22339 } else { 22340 ire_refrele(ire); 22341 if (conn_outgoing_ill != NULL) 22342 ill_refrele(conn_outgoing_ill); 22343 freemsg(first_mp); 22344 if (ill != NULL) { 22345 BUMP_MIB(ill->ill_ip_mib, 22346 ipIfStatsOutDiscards); 22347 } else { 22348 BUMP_MIB(&ipst->ips_ip_mib, 22349 ipIfStatsOutDiscards); 22350 } 22351 return; 22352 } 22353 } else { 22354 src = ire->ire_src_addr; 22355 } 22356 22357 if (connp == NULL) { 22358 ip1dbg(("ip_wput_ire: no connp and no src " 22359 "address for dst 0x%x, using src 0x%x\n", 22360 ntohl(dst), 22361 ntohl(src))); 22362 } 22363 ipha->ipha_src = src; 22364 } 22365 stq = ire->ire_stq; 22366 22367 /* 22368 * We only allow ire chains for broadcasts since there will 22369 * be multiple IRE_CACHE entries for the same multicast 22370 * address (one per ipif). 22371 */ 22372 next_mp = NULL; 22373 22374 /* broadcast packet */ 22375 if (ire->ire_type == IRE_BROADCAST) 22376 goto broadcast; 22377 22378 /* loopback ? */ 22379 if (stq == NULL) 22380 goto nullstq; 22381 22382 /* The ill_index for outbound ILL */ 22383 ill_index = Q_TO_INDEX(stq); 22384 22385 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 22386 ttl_protocol = ((uint16_t *)ipha)[4]; 22387 22388 /* pseudo checksum (do it in parts for IP header checksum) */ 22389 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 22390 22391 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 22392 queue_t *dev_q = stq->q_next; 22393 22394 /* flow controlled */ 22395 if ((dev_q->q_next || dev_q->q_first) && 22396 !canput(dev_q)) 22397 goto blocked; 22398 if ((PROTO == IPPROTO_UDP) && 22399 (ip_hdr_included != IP_HDR_INCLUDED)) { 22400 hlen = (V_HLEN & 0xF) << 2; 22401 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22402 if (*up != 0) { 22403 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 22404 hlen, LENGTH, max_frag, ipsec_len, cksum); 22405 /* Software checksum? */ 22406 if (DB_CKSUMFLAGS(mp) == 0) { 22407 IP_STAT(ipst, ip_out_sw_cksum); 22408 IP_STAT_UPDATE(ipst, 22409 ip_udp_out_sw_cksum_bytes, 22410 LENGTH - hlen); 22411 } 22412 } 22413 } 22414 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 22415 hlen = (V_HLEN & 0xF) << 2; 22416 if (PROTO == IPPROTO_TCP) { 22417 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22418 /* 22419 * The packet header is processed once and for all, even 22420 * in the multirouting case. We disable hardware 22421 * checksum if the packet is multirouted, as it will be 22422 * replicated via several interfaces, and not all of 22423 * them may have this capability. 22424 */ 22425 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 22426 LENGTH, max_frag, ipsec_len, cksum); 22427 /* Software checksum? */ 22428 if (DB_CKSUMFLAGS(mp) == 0) { 22429 IP_STAT(ipst, ip_out_sw_cksum); 22430 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22431 LENGTH - hlen); 22432 } 22433 } else { 22434 sctp_hdr_t *sctph; 22435 22436 ASSERT(PROTO == IPPROTO_SCTP); 22437 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22438 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22439 /* 22440 * Zero out the checksum field to ensure proper 22441 * checksum calculation. 22442 */ 22443 sctph->sh_chksum = 0; 22444 #ifdef DEBUG 22445 if (!skip_sctp_cksum) 22446 #endif 22447 sctph->sh_chksum = sctp_cksum(mp, hlen); 22448 } 22449 } 22450 22451 /* 22452 * If this is a multicast packet and originated from ip_wput 22453 * we need to do loopback and forwarding checks. If it comes 22454 * from ip_wput_multicast, we SHOULD not do this. 22455 */ 22456 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 22457 22458 /* checksum */ 22459 cksum += ttl_protocol; 22460 22461 /* fragment the packet */ 22462 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 22463 goto fragmentit; 22464 /* 22465 * Don't use frag_flag if packet is pre-built or source 22466 * routed or if multicast (since multicast packets do 22467 * not solicit ICMP "packet too big" messages). 22468 */ 22469 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22470 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22471 !ip_source_route_included(ipha)) && 22472 !CLASSD(ipha->ipha_dst)) 22473 ipha->ipha_fragment_offset_and_flags |= 22474 htons(ire->ire_frag_flag); 22475 22476 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22477 /* calculate IP header checksum */ 22478 cksum += ipha->ipha_ident; 22479 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 22480 cksum += ipha->ipha_fragment_offset_and_flags; 22481 22482 /* IP options present */ 22483 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22484 if (hlen) 22485 goto checksumoptions; 22486 22487 /* calculate hdr checksum */ 22488 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22489 cksum = ~(cksum + (cksum >> 16)); 22490 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22491 } 22492 if (ipsec_len != 0) { 22493 /* 22494 * We will do the rest of the processing after 22495 * we come back from IPsec in ip_wput_ipsec_out(). 22496 */ 22497 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 22498 22499 io = (ipsec_out_t *)first_mp->b_rptr; 22500 io->ipsec_out_ill_index = ((ill_t *)stq->q_ptr)-> 22501 ill_phyint->phyint_ifindex; 22502 22503 ipsec_out_process(q, first_mp, ire, ill_index); 22504 ire_refrele(ire); 22505 if (conn_outgoing_ill != NULL) 22506 ill_refrele(conn_outgoing_ill); 22507 return; 22508 } 22509 22510 /* 22511 * In most cases, the emission loop below is entered only 22512 * once. Only in the case where the ire holds the 22513 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 22514 * flagged ires in the bucket, and send the packet 22515 * through all crossed RTF_MULTIRT routes. 22516 */ 22517 if (ire->ire_flags & RTF_MULTIRT) { 22518 multirt_send = B_TRUE; 22519 } 22520 do { 22521 if (multirt_send) { 22522 irb_t *irb; 22523 /* 22524 * We are in a multiple send case, need to get 22525 * the next ire and make a duplicate of the packet. 22526 * ire1 holds here the next ire to process in the 22527 * bucket. If multirouting is expected, 22528 * any non-RTF_MULTIRT ire that has the 22529 * right destination address is ignored. 22530 */ 22531 irb = ire->ire_bucket; 22532 ASSERT(irb != NULL); 22533 22534 IRB_REFHOLD(irb); 22535 for (ire1 = ire->ire_next; 22536 ire1 != NULL; 22537 ire1 = ire1->ire_next) { 22538 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 22539 continue; 22540 if (ire1->ire_addr != ire->ire_addr) 22541 continue; 22542 if (ire1->ire_marks & 22543 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 22544 continue; 22545 22546 /* Got one */ 22547 IRE_REFHOLD(ire1); 22548 break; 22549 } 22550 IRB_REFRELE(irb); 22551 22552 if (ire1 != NULL) { 22553 next_mp = copyb(mp); 22554 if ((next_mp == NULL) || 22555 ((mp->b_cont != NULL) && 22556 ((next_mp->b_cont = 22557 dupmsg(mp->b_cont)) == NULL))) { 22558 freemsg(next_mp); 22559 next_mp = NULL; 22560 ire_refrele(ire1); 22561 ire1 = NULL; 22562 } 22563 } 22564 22565 /* Last multiroute ire; don't loop anymore. */ 22566 if (ire1 == NULL) { 22567 multirt_send = B_FALSE; 22568 } 22569 } 22570 22571 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 22572 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha, 22573 mblk_t *, mp); 22574 FW_HOOKS(ipst->ips_ip4_physical_out_event, 22575 ipst->ips_ipv4firewall_physical_out, 22576 NULL, ire->ire_ipif->ipif_ill, ipha, mp, mp, ipst); 22577 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 22578 if (mp == NULL) 22579 goto release_ire_and_ill; 22580 22581 mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT); 22582 DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire); 22583 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE); 22584 if ((pktxmit_state == SEND_FAILED) || 22585 (pktxmit_state == LLHDR_RESLV_FAILED)) { 22586 ip2dbg(("ip_wput_ire: ip_xmit_v4 failed" 22587 "- packet dropped\n")); 22588 release_ire_and_ill: 22589 ire_refrele(ire); 22590 if (next_mp != NULL) { 22591 freemsg(next_mp); 22592 ire_refrele(ire1); 22593 } 22594 if (conn_outgoing_ill != NULL) 22595 ill_refrele(conn_outgoing_ill); 22596 return; 22597 } 22598 22599 if (CLASSD(dst)) { 22600 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastPkts); 22601 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastOctets, 22602 LENGTH); 22603 } 22604 22605 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22606 "ip_wput_ire_end: q %p (%S)", 22607 q, "last copy out"); 22608 IRE_REFRELE(ire); 22609 22610 if (multirt_send) { 22611 ASSERT(ire1); 22612 /* 22613 * Proceed with the next RTF_MULTIRT ire, 22614 * Also set up the send-to queue accordingly. 22615 */ 22616 ire = ire1; 22617 ire1 = NULL; 22618 stq = ire->ire_stq; 22619 mp = next_mp; 22620 next_mp = NULL; 22621 ipha = (ipha_t *)mp->b_rptr; 22622 ill_index = Q_TO_INDEX(stq); 22623 ill = (ill_t *)stq->q_ptr; 22624 } 22625 } while (multirt_send); 22626 if (conn_outgoing_ill != NULL) 22627 ill_refrele(conn_outgoing_ill); 22628 return; 22629 22630 /* 22631 * ire->ire_type == IRE_BROADCAST (minimize diffs) 22632 */ 22633 broadcast: 22634 { 22635 /* 22636 * To avoid broadcast storms, we usually set the TTL to 1 for 22637 * broadcasts. However, if SO_DONTROUTE isn't set, this value 22638 * can be overridden stack-wide through the ip_broadcast_ttl 22639 * ndd tunable, or on a per-connection basis through the 22640 * IP_BROADCAST_TTL socket option. 22641 * 22642 * In the event that we are replying to incoming ICMP packets, 22643 * connp could be NULL. 22644 */ 22645 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 22646 if (connp != NULL) { 22647 if (connp->conn_dontroute) 22648 ipha->ipha_ttl = 1; 22649 else if (connp->conn_broadcast_ttl != 0) 22650 ipha->ipha_ttl = connp->conn_broadcast_ttl; 22651 } 22652 22653 /* 22654 * Note that we are not doing a IRB_REFHOLD here. 22655 * Actually we don't care if the list changes i.e 22656 * if somebody deletes an IRE from the list while 22657 * we drop the lock, the next time we come around 22658 * ire_next will be NULL and hence we won't send 22659 * out multiple copies which is fine. 22660 */ 22661 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 22662 ire1 = ire->ire_next; 22663 if (conn_outgoing_ill != NULL) { 22664 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 22665 ASSERT(ire1 == ire->ire_next); 22666 if (ire1 != NULL && ire1->ire_addr == dst) { 22667 ire_refrele(ire); 22668 ire = ire1; 22669 IRE_REFHOLD(ire); 22670 ire1 = ire->ire_next; 22671 continue; 22672 } 22673 rw_exit(&ire->ire_bucket->irb_lock); 22674 /* Did not find a matching ill */ 22675 ip1dbg(("ip_wput_ire: broadcast with no " 22676 "matching IP_BOUND_IF ill %s dst %x\n", 22677 conn_outgoing_ill->ill_name, dst)); 22678 freemsg(first_mp); 22679 if (ire != NULL) 22680 ire_refrele(ire); 22681 ill_refrele(conn_outgoing_ill); 22682 return; 22683 } 22684 } else if (ire1 != NULL && ire1->ire_addr == dst) { 22685 /* 22686 * If the next IRE has the same address and is not one 22687 * of the two copies that we need to send, try to see 22688 * whether this copy should be sent at all. This 22689 * assumes that we insert loopbacks first and then 22690 * non-loopbacks. This is acheived by inserting the 22691 * loopback always before non-loopback. 22692 * This is used to send a single copy of a broadcast 22693 * packet out all physical interfaces that have an 22694 * matching IRE_BROADCAST while also looping 22695 * back one copy (to ip_wput_local) for each 22696 * matching physical interface. However, we avoid 22697 * sending packets out different logical that match by 22698 * having ipif_up/ipif_down supress duplicate 22699 * IRE_BROADCASTS. 22700 * 22701 * This feature is currently used to get broadcasts 22702 * sent to multiple interfaces, when the broadcast 22703 * address being used applies to multiple interfaces. 22704 * For example, a whole net broadcast will be 22705 * replicated on every connected subnet of 22706 * the target net. 22707 * 22708 * Each zone has its own set of IRE_BROADCASTs, so that 22709 * we're able to distribute inbound packets to multiple 22710 * zones who share a broadcast address. We avoid looping 22711 * back outbound packets in different zones but on the 22712 * same ill, as the application would see duplicates. 22713 * 22714 * If the interfaces are part of the same group, 22715 * we would want to send only one copy out for 22716 * whole group. 22717 * 22718 * This logic assumes that ire_add_v4() groups the 22719 * IRE_BROADCAST entries so that those with the same 22720 * ire_addr and ill_group are kept together. 22721 */ 22722 ire_ill = ire->ire_ipif->ipif_ill; 22723 if (ire->ire_stq == NULL && ire1->ire_stq != NULL) { 22724 if (ire_ill->ill_group != NULL && 22725 (ire->ire_marks & IRE_MARK_NORECV)) { 22726 /* 22727 * If the current zone only has an ire 22728 * broadcast for this address marked 22729 * NORECV, the ire we want is ahead in 22730 * the bucket, so we look it up 22731 * deliberately ignoring the zoneid. 22732 */ 22733 for (ire1 = ire->ire_bucket->irb_ire; 22734 ire1 != NULL; 22735 ire1 = ire1->ire_next) { 22736 ire1_ill = 22737 ire1->ire_ipif->ipif_ill; 22738 if (ire1->ire_addr != dst) 22739 continue; 22740 /* skip over the current ire */ 22741 if (ire1 == ire) 22742 continue; 22743 /* skip over deleted ires */ 22744 if (ire1->ire_marks & 22745 IRE_MARK_CONDEMNED) 22746 continue; 22747 /* 22748 * non-loopback ire in our 22749 * group: use it for the next 22750 * pass in the loop 22751 */ 22752 if (ire1->ire_stq != NULL && 22753 ire1_ill->ill_group == 22754 ire_ill->ill_group) 22755 break; 22756 } 22757 } 22758 } else { 22759 while (ire1 != NULL && ire1->ire_addr == dst) { 22760 ire1_ill = ire1->ire_ipif->ipif_ill; 22761 /* 22762 * We can have two broadcast ires on the 22763 * same ill in different zones; here 22764 * we'll send a copy of the packet on 22765 * each ill and the fanout code will 22766 * call conn_wantpacket() to check that 22767 * the zone has the broadcast address 22768 * configured on the ill. If the two 22769 * ires are in the same group we only 22770 * send one copy up. 22771 */ 22772 if (ire1_ill != ire_ill && 22773 (ire1_ill->ill_group == NULL || 22774 ire_ill->ill_group == NULL || 22775 ire1_ill->ill_group != 22776 ire_ill->ill_group)) { 22777 break; 22778 } 22779 ire1 = ire1->ire_next; 22780 } 22781 } 22782 } 22783 ASSERT(multirt_send == B_FALSE); 22784 if (ire1 != NULL && ire1->ire_addr == dst) { 22785 if ((ire->ire_flags & RTF_MULTIRT) && 22786 (ire1->ire_flags & RTF_MULTIRT)) { 22787 /* 22788 * We are in the multirouting case. 22789 * The message must be sent at least 22790 * on both ires. These ires have been 22791 * inserted AFTER the standard ones 22792 * in ip_rt_add(). There are thus no 22793 * other ire entries for the destination 22794 * address in the rest of the bucket 22795 * that do not have the RTF_MULTIRT 22796 * flag. We don't process a copy 22797 * of the message here. This will be 22798 * done in the final sending loop. 22799 */ 22800 multirt_send = B_TRUE; 22801 } else { 22802 next_mp = ip_copymsg(first_mp); 22803 if (next_mp != NULL) 22804 IRE_REFHOLD(ire1); 22805 } 22806 } 22807 rw_exit(&ire->ire_bucket->irb_lock); 22808 } 22809 22810 if (stq) { 22811 /* 22812 * A non-NULL send-to queue means this packet is going 22813 * out of this machine. 22814 */ 22815 out_ill = (ill_t *)stq->q_ptr; 22816 22817 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutRequests); 22818 ttl_protocol = ((uint16_t *)ipha)[4]; 22819 /* 22820 * We accumulate the pseudo header checksum in cksum. 22821 * This is pretty hairy code, so watch close. One 22822 * thing to keep in mind is that UDP and TCP have 22823 * stored their respective datagram lengths in their 22824 * checksum fields. This lines things up real nice. 22825 */ 22826 cksum = (dst >> 16) + (dst & 0xFFFF) + 22827 (src >> 16) + (src & 0xFFFF); 22828 /* 22829 * We assume the udp checksum field contains the 22830 * length, so to compute the pseudo header checksum, 22831 * all we need is the protocol number and src/dst. 22832 */ 22833 /* Provide the checksums for UDP and TCP. */ 22834 if ((PROTO == IPPROTO_TCP) && 22835 (ip_hdr_included != IP_HDR_INCLUDED)) { 22836 /* hlen gets the number of uchar_ts in the IP header */ 22837 hlen = (V_HLEN & 0xF) << 2; 22838 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22839 IP_STAT(ipst, ip_out_sw_cksum); 22840 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22841 LENGTH - hlen); 22842 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 22843 } else if (PROTO == IPPROTO_SCTP && 22844 (ip_hdr_included != IP_HDR_INCLUDED)) { 22845 sctp_hdr_t *sctph; 22846 22847 hlen = (V_HLEN & 0xF) << 2; 22848 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22849 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22850 sctph->sh_chksum = 0; 22851 #ifdef DEBUG 22852 if (!skip_sctp_cksum) 22853 #endif 22854 sctph->sh_chksum = sctp_cksum(mp, hlen); 22855 } else { 22856 queue_t *dev_q = stq->q_next; 22857 22858 if ((dev_q->q_next || dev_q->q_first) && 22859 !canput(dev_q)) { 22860 blocked: 22861 ipha->ipha_ident = ip_hdr_included; 22862 /* 22863 * If we don't have a conn to apply 22864 * backpressure, free the message. 22865 * In the ire_send path, we don't know 22866 * the position to requeue the packet. Rather 22867 * than reorder packets, we just drop this 22868 * packet. 22869 */ 22870 if (ipst->ips_ip_output_queue && 22871 connp != NULL && 22872 caller != IRE_SEND) { 22873 if (caller == IP_WSRV) { 22874 connp->conn_did_putbq = 1; 22875 (void) putbq(connp->conn_wq, 22876 first_mp); 22877 conn_drain_insert(connp); 22878 /* 22879 * This is the service thread, 22880 * and the queue is already 22881 * noenabled. The check for 22882 * canput and the putbq is not 22883 * atomic. So we need to check 22884 * again. 22885 */ 22886 if (canput(stq->q_next)) 22887 connp->conn_did_putbq 22888 = 0; 22889 IP_STAT(ipst, ip_conn_flputbq); 22890 } else { 22891 /* 22892 * We are not the service proc. 22893 * ip_wsrv will be scheduled or 22894 * is already running. 22895 */ 22896 (void) putq(connp->conn_wq, 22897 first_mp); 22898 } 22899 } else { 22900 out_ill = (ill_t *)stq->q_ptr; 22901 BUMP_MIB(out_ill->ill_ip_mib, 22902 ipIfStatsOutDiscards); 22903 freemsg(first_mp); 22904 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22905 "ip_wput_ire_end: q %p (%S)", 22906 q, "discard"); 22907 } 22908 ire_refrele(ire); 22909 if (next_mp) { 22910 ire_refrele(ire1); 22911 freemsg(next_mp); 22912 } 22913 if (conn_outgoing_ill != NULL) 22914 ill_refrele(conn_outgoing_ill); 22915 return; 22916 } 22917 if ((PROTO == IPPROTO_UDP) && 22918 (ip_hdr_included != IP_HDR_INCLUDED)) { 22919 /* 22920 * hlen gets the number of uchar_ts in the 22921 * IP header 22922 */ 22923 hlen = (V_HLEN & 0xF) << 2; 22924 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22925 max_frag = ire->ire_max_frag; 22926 if (*up != 0) { 22927 IP_CKSUM_XMIT(out_ill, ire, mp, ipha, 22928 up, PROTO, hlen, LENGTH, max_frag, 22929 ipsec_len, cksum); 22930 /* Software checksum? */ 22931 if (DB_CKSUMFLAGS(mp) == 0) { 22932 IP_STAT(ipst, ip_out_sw_cksum); 22933 IP_STAT_UPDATE(ipst, 22934 ip_udp_out_sw_cksum_bytes, 22935 LENGTH - hlen); 22936 } 22937 } 22938 } 22939 } 22940 /* 22941 * Need to do this even when fragmenting. The local 22942 * loopback can be done without computing checksums 22943 * but forwarding out other interface must be done 22944 * after the IP checksum (and ULP checksums) have been 22945 * computed. 22946 * 22947 * NOTE : multicast_forward is set only if this packet 22948 * originated from ip_wput. For packets originating from 22949 * ip_wput_multicast, it is not set. 22950 */ 22951 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 22952 multi_loopback: 22953 ip2dbg(("ip_wput: multicast, loop %d\n", 22954 conn_multicast_loop)); 22955 22956 /* Forget header checksum offload */ 22957 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 22958 22959 /* 22960 * Local loopback of multicasts? Check the 22961 * ill. 22962 * 22963 * Note that the loopback function will not come 22964 * in through ip_rput - it will only do the 22965 * client fanout thus we need to do an mforward 22966 * as well. The is different from the BSD 22967 * logic. 22968 */ 22969 if (ill != NULL) { 22970 ilm_t *ilm; 22971 22972 ILM_WALKER_HOLD(ill); 22973 ilm = ilm_lookup_ill(ill, ipha->ipha_dst, 22974 ALL_ZONES); 22975 ILM_WALKER_RELE(ill); 22976 if (ilm != NULL) { 22977 /* 22978 * Pass along the virtual output q. 22979 * ip_wput_local() will distribute the 22980 * packet to all the matching zones, 22981 * except the sending zone when 22982 * IP_MULTICAST_LOOP is false. 22983 */ 22984 ip_multicast_loopback(q, ill, first_mp, 22985 conn_multicast_loop ? 0 : 22986 IP_FF_NO_MCAST_LOOP, zoneid); 22987 } 22988 } 22989 if (ipha->ipha_ttl == 0) { 22990 /* 22991 * 0 => only to this host i.e. we are 22992 * done. We are also done if this was the 22993 * loopback interface since it is sufficient 22994 * to loopback one copy of a multicast packet. 22995 */ 22996 freemsg(first_mp); 22997 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22998 "ip_wput_ire_end: q %p (%S)", 22999 q, "loopback"); 23000 ire_refrele(ire); 23001 if (conn_outgoing_ill != NULL) 23002 ill_refrele(conn_outgoing_ill); 23003 return; 23004 } 23005 /* 23006 * ILLF_MULTICAST is checked in ip_newroute 23007 * i.e. we don't need to check it here since 23008 * all IRE_CACHEs come from ip_newroute. 23009 * For multicast traffic, SO_DONTROUTE is interpreted 23010 * to mean only send the packet out the interface 23011 * (optionally specified with IP_MULTICAST_IF) 23012 * and do not forward it out additional interfaces. 23013 * RSVP and the rsvp daemon is an example of a 23014 * protocol and user level process that 23015 * handles it's own routing. Hence, it uses the 23016 * SO_DONTROUTE option to accomplish this. 23017 */ 23018 23019 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 23020 ill != NULL) { 23021 /* Unconditionally redo the checksum */ 23022 ipha->ipha_hdr_checksum = 0; 23023 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23024 23025 /* 23026 * If this needs to go out secure, we need 23027 * to wait till we finish the IPsec 23028 * processing. 23029 */ 23030 if (ipsec_len == 0 && 23031 ip_mforward(ill, ipha, mp)) { 23032 freemsg(first_mp); 23033 ip1dbg(("ip_wput: mforward failed\n")); 23034 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23035 "ip_wput_ire_end: q %p (%S)", 23036 q, "mforward failed"); 23037 ire_refrele(ire); 23038 if (conn_outgoing_ill != NULL) 23039 ill_refrele(conn_outgoing_ill); 23040 return; 23041 } 23042 } 23043 } 23044 max_frag = ire->ire_max_frag; 23045 cksum += ttl_protocol; 23046 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 23047 /* No fragmentation required for this one. */ 23048 /* 23049 * Don't use frag_flag if packet is pre-built or source 23050 * routed or if multicast (since multicast packets do 23051 * not solicit ICMP "packet too big" messages). 23052 */ 23053 if ((ip_hdr_included != IP_HDR_INCLUDED) && 23054 (V_HLEN == IP_SIMPLE_HDR_VERSION || 23055 !ip_source_route_included(ipha)) && 23056 !CLASSD(ipha->ipha_dst)) 23057 ipha->ipha_fragment_offset_and_flags |= 23058 htons(ire->ire_frag_flag); 23059 23060 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 23061 /* Complete the IP header checksum. */ 23062 cksum += ipha->ipha_ident; 23063 cksum += (v_hlen_tos_len >> 16)+ 23064 (v_hlen_tos_len & 0xFFFF); 23065 cksum += ipha->ipha_fragment_offset_and_flags; 23066 hlen = (V_HLEN & 0xF) - 23067 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 23068 if (hlen) { 23069 checksumoptions: 23070 /* 23071 * Account for the IP Options in the IP 23072 * header checksum. 23073 */ 23074 up = (uint16_t *)(rptr+ 23075 IP_SIMPLE_HDR_LENGTH); 23076 do { 23077 cksum += up[0]; 23078 cksum += up[1]; 23079 up += 2; 23080 } while (--hlen); 23081 } 23082 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 23083 cksum = ~(cksum + (cksum >> 16)); 23084 ipha->ipha_hdr_checksum = (uint16_t)cksum; 23085 } 23086 if (ipsec_len != 0) { 23087 ipsec_out_process(q, first_mp, ire, ill_index); 23088 if (!next_mp) { 23089 ire_refrele(ire); 23090 if (conn_outgoing_ill != NULL) 23091 ill_refrele(conn_outgoing_ill); 23092 return; 23093 } 23094 goto next; 23095 } 23096 23097 /* 23098 * multirt_send has already been handled 23099 * for broadcast, but not yet for multicast 23100 * or IP options. 23101 */ 23102 if (next_mp == NULL) { 23103 if (ire->ire_flags & RTF_MULTIRT) { 23104 multirt_send = B_TRUE; 23105 } 23106 } 23107 23108 /* 23109 * In most cases, the emission loop below is 23110 * entered only once. Only in the case where 23111 * the ire holds the RTF_MULTIRT flag, do we loop 23112 * to process all RTF_MULTIRT ires in the bucket, 23113 * and send the packet through all crossed 23114 * RTF_MULTIRT routes. 23115 */ 23116 do { 23117 if (multirt_send) { 23118 irb_t *irb; 23119 23120 irb = ire->ire_bucket; 23121 ASSERT(irb != NULL); 23122 /* 23123 * We are in a multiple send case, 23124 * need to get the next IRE and make 23125 * a duplicate of the packet. 23126 */ 23127 IRB_REFHOLD(irb); 23128 for (ire1 = ire->ire_next; 23129 ire1 != NULL; 23130 ire1 = ire1->ire_next) { 23131 if (!(ire1->ire_flags & 23132 RTF_MULTIRT)) { 23133 continue; 23134 } 23135 if (ire1->ire_addr != 23136 ire->ire_addr) { 23137 continue; 23138 } 23139 if (ire1->ire_marks & 23140 (IRE_MARK_CONDEMNED| 23141 IRE_MARK_HIDDEN)) { 23142 continue; 23143 } 23144 23145 /* Got one */ 23146 IRE_REFHOLD(ire1); 23147 break; 23148 } 23149 IRB_REFRELE(irb); 23150 23151 if (ire1 != NULL) { 23152 next_mp = copyb(mp); 23153 if ((next_mp == NULL) || 23154 ((mp->b_cont != NULL) && 23155 ((next_mp->b_cont = 23156 dupmsg(mp->b_cont)) 23157 == NULL))) { 23158 freemsg(next_mp); 23159 next_mp = NULL; 23160 ire_refrele(ire1); 23161 ire1 = NULL; 23162 } 23163 } 23164 23165 /* 23166 * Last multiroute ire; don't loop 23167 * anymore. The emission is over 23168 * and next_mp is NULL. 23169 */ 23170 if (ire1 == NULL) { 23171 multirt_send = B_FALSE; 23172 } 23173 } 23174 23175 out_ill = ire_to_ill(ire); 23176 DTRACE_PROBE4(ip4__physical__out__start, 23177 ill_t *, NULL, 23178 ill_t *, out_ill, 23179 ipha_t *, ipha, mblk_t *, mp); 23180 FW_HOOKS(ipst->ips_ip4_physical_out_event, 23181 ipst->ips_ipv4firewall_physical_out, 23182 NULL, out_ill, ipha, mp, mp, ipst); 23183 DTRACE_PROBE1(ip4__physical__out__end, 23184 mblk_t *, mp); 23185 if (mp == NULL) 23186 goto release_ire_and_ill_2; 23187 23188 ASSERT(ipsec_len == 0); 23189 mp->b_prev = 23190 SET_BPREV_FLAG(IPP_LOCAL_OUT); 23191 DTRACE_PROBE2(ip__xmit__2, 23192 mblk_t *, mp, ire_t *, ire); 23193 pktxmit_state = ip_xmit_v4(mp, ire, 23194 NULL, B_TRUE); 23195 if ((pktxmit_state == SEND_FAILED) || 23196 (pktxmit_state == LLHDR_RESLV_FAILED)) { 23197 release_ire_and_ill_2: 23198 if (next_mp) { 23199 freemsg(next_mp); 23200 ire_refrele(ire1); 23201 } 23202 ire_refrele(ire); 23203 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23204 "ip_wput_ire_end: q %p (%S)", 23205 q, "discard MDATA"); 23206 if (conn_outgoing_ill != NULL) 23207 ill_refrele(conn_outgoing_ill); 23208 return; 23209 } 23210 23211 if (CLASSD(dst)) { 23212 BUMP_MIB(out_ill->ill_ip_mib, 23213 ipIfStatsHCOutMcastPkts); 23214 UPDATE_MIB(out_ill->ill_ip_mib, 23215 ipIfStatsHCOutMcastOctets, 23216 LENGTH); 23217 } else if (ire->ire_type == IRE_BROADCAST) { 23218 BUMP_MIB(out_ill->ill_ip_mib, 23219 ipIfStatsHCOutBcastPkts); 23220 } 23221 23222 if (multirt_send) { 23223 /* 23224 * We are in a multiple send case, 23225 * need to re-enter the sending loop 23226 * using the next ire. 23227 */ 23228 ire_refrele(ire); 23229 ire = ire1; 23230 stq = ire->ire_stq; 23231 mp = next_mp; 23232 next_mp = NULL; 23233 ipha = (ipha_t *)mp->b_rptr; 23234 ill_index = Q_TO_INDEX(stq); 23235 } 23236 } while (multirt_send); 23237 23238 if (!next_mp) { 23239 /* 23240 * Last copy going out (the ultra-common 23241 * case). Note that we intentionally replicate 23242 * the putnext rather than calling it before 23243 * the next_mp check in hopes of a little 23244 * tail-call action out of the compiler. 23245 */ 23246 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23247 "ip_wput_ire_end: q %p (%S)", 23248 q, "last copy out(1)"); 23249 ire_refrele(ire); 23250 if (conn_outgoing_ill != NULL) 23251 ill_refrele(conn_outgoing_ill); 23252 return; 23253 } 23254 /* More copies going out below. */ 23255 } else { 23256 int offset; 23257 fragmentit: 23258 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 23259 /* 23260 * If this would generate a icmp_frag_needed message, 23261 * we need to handle it before we do the IPsec 23262 * processing. Otherwise, we need to strip the IPsec 23263 * headers before we send up the message to the ULPs 23264 * which becomes messy and difficult. 23265 */ 23266 if (ipsec_len != 0) { 23267 if ((max_frag < (unsigned int)(LENGTH + 23268 ipsec_len)) && (offset & IPH_DF)) { 23269 out_ill = (ill_t *)stq->q_ptr; 23270 BUMP_MIB(out_ill->ill_ip_mib, 23271 ipIfStatsOutFragFails); 23272 BUMP_MIB(out_ill->ill_ip_mib, 23273 ipIfStatsOutFragReqds); 23274 ipha->ipha_hdr_checksum = 0; 23275 ipha->ipha_hdr_checksum = 23276 (uint16_t)ip_csum_hdr(ipha); 23277 icmp_frag_needed(ire->ire_stq, first_mp, 23278 max_frag, zoneid, ipst); 23279 if (!next_mp) { 23280 ire_refrele(ire); 23281 if (conn_outgoing_ill != NULL) { 23282 ill_refrele( 23283 conn_outgoing_ill); 23284 } 23285 return; 23286 } 23287 } else { 23288 /* 23289 * This won't cause a icmp_frag_needed 23290 * message. to be generated. Send it on 23291 * the wire. Note that this could still 23292 * cause fragmentation and all we 23293 * do is the generation of the message 23294 * to the ULP if needed before IPsec. 23295 */ 23296 if (!next_mp) { 23297 ipsec_out_process(q, first_mp, 23298 ire, ill_index); 23299 TRACE_2(TR_FAC_IP, 23300 TR_IP_WPUT_IRE_END, 23301 "ip_wput_ire_end: q %p " 23302 "(%S)", q, 23303 "last ipsec_out_process"); 23304 ire_refrele(ire); 23305 if (conn_outgoing_ill != NULL) { 23306 ill_refrele( 23307 conn_outgoing_ill); 23308 } 23309 return; 23310 } 23311 ipsec_out_process(q, first_mp, 23312 ire, ill_index); 23313 } 23314 } else { 23315 /* 23316 * Initiate IPPF processing. For 23317 * fragmentable packets we finish 23318 * all QOS packet processing before 23319 * calling: 23320 * ip_wput_ire_fragmentit->ip_wput_frag 23321 */ 23322 23323 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23324 ip_process(IPP_LOCAL_OUT, &mp, 23325 ill_index); 23326 if (mp == NULL) { 23327 out_ill = (ill_t *)stq->q_ptr; 23328 BUMP_MIB(out_ill->ill_ip_mib, 23329 ipIfStatsOutDiscards); 23330 if (next_mp != NULL) { 23331 freemsg(next_mp); 23332 ire_refrele(ire1); 23333 } 23334 ire_refrele(ire); 23335 TRACE_2(TR_FAC_IP, 23336 TR_IP_WPUT_IRE_END, 23337 "ip_wput_ire: q %p (%S)", 23338 q, "discard MDATA"); 23339 if (conn_outgoing_ill != NULL) { 23340 ill_refrele( 23341 conn_outgoing_ill); 23342 } 23343 return; 23344 } 23345 } 23346 if (!next_mp) { 23347 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23348 "ip_wput_ire_end: q %p (%S)", 23349 q, "last fragmentation"); 23350 ip_wput_ire_fragmentit(mp, ire, 23351 zoneid, ipst); 23352 ire_refrele(ire); 23353 if (conn_outgoing_ill != NULL) 23354 ill_refrele(conn_outgoing_ill); 23355 return; 23356 } 23357 ip_wput_ire_fragmentit(mp, ire, zoneid, ipst); 23358 } 23359 } 23360 } else { 23361 nullstq: 23362 /* A NULL stq means the destination address is local. */ 23363 UPDATE_OB_PKT_COUNT(ire); 23364 ire->ire_last_used_time = lbolt; 23365 ASSERT(ire->ire_ipif != NULL); 23366 if (!next_mp) { 23367 /* 23368 * Is there an "in" and "out" for traffic local 23369 * to a host (loopback)? The code in Solaris doesn't 23370 * explicitly draw a line in its code for in vs out, 23371 * so we've had to draw a line in the sand: ip_wput_ire 23372 * is considered to be the "output" side and 23373 * ip_wput_local to be the "input" side. 23374 */ 23375 out_ill = ire_to_ill(ire); 23376 23377 DTRACE_PROBE4(ip4__loopback__out__start, 23378 ill_t *, NULL, ill_t *, out_ill, 23379 ipha_t *, ipha, mblk_t *, first_mp); 23380 23381 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23382 ipst->ips_ipv4firewall_loopback_out, 23383 NULL, out_ill, ipha, first_mp, mp, ipst); 23384 23385 DTRACE_PROBE1(ip4__loopback__out_end, 23386 mblk_t *, first_mp); 23387 23388 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23389 "ip_wput_ire_end: q %p (%S)", 23390 q, "local address"); 23391 23392 if (first_mp != NULL) 23393 ip_wput_local(q, out_ill, ipha, 23394 first_mp, ire, 0, ire->ire_zoneid); 23395 ire_refrele(ire); 23396 if (conn_outgoing_ill != NULL) 23397 ill_refrele(conn_outgoing_ill); 23398 return; 23399 } 23400 23401 out_ill = ire_to_ill(ire); 23402 23403 DTRACE_PROBE4(ip4__loopback__out__start, 23404 ill_t *, NULL, ill_t *, out_ill, 23405 ipha_t *, ipha, mblk_t *, first_mp); 23406 23407 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23408 ipst->ips_ipv4firewall_loopback_out, 23409 NULL, out_ill, ipha, first_mp, mp, ipst); 23410 23411 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, first_mp); 23412 23413 if (first_mp != NULL) 23414 ip_wput_local(q, out_ill, ipha, 23415 first_mp, ire, 0, ire->ire_zoneid); 23416 } 23417 next: 23418 /* 23419 * More copies going out to additional interfaces. 23420 * ire1 has already been held. We don't need the 23421 * "ire" anymore. 23422 */ 23423 ire_refrele(ire); 23424 ire = ire1; 23425 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 23426 mp = next_mp; 23427 ASSERT(ire->ire_ipversion == IPV4_VERSION); 23428 ill = ire_to_ill(ire); 23429 first_mp = mp; 23430 if (ipsec_len != 0) { 23431 ASSERT(first_mp->b_datap->db_type == M_CTL); 23432 mp = mp->b_cont; 23433 } 23434 dst = ire->ire_addr; 23435 ipha = (ipha_t *)mp->b_rptr; 23436 /* 23437 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 23438 * Restore ipha_ident "no checksum" flag. 23439 */ 23440 src = orig_src; 23441 ipha->ipha_ident = ip_hdr_included; 23442 goto another; 23443 23444 #undef rptr 23445 #undef Q_TO_INDEX 23446 } 23447 23448 /* 23449 * Routine to allocate a message that is used to notify the ULP about MDT. 23450 * The caller may provide a pointer to the link-layer MDT capabilities, 23451 * or NULL if MDT is to be disabled on the stream. 23452 */ 23453 mblk_t * 23454 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 23455 { 23456 mblk_t *mp; 23457 ip_mdt_info_t *mdti; 23458 ill_mdt_capab_t *idst; 23459 23460 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 23461 DB_TYPE(mp) = M_CTL; 23462 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 23463 mdti = (ip_mdt_info_t *)mp->b_rptr; 23464 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 23465 idst = &(mdti->mdt_capab); 23466 23467 /* 23468 * If the caller provides us with the capability, copy 23469 * it over into our notification message; otherwise 23470 * we zero out the capability portion. 23471 */ 23472 if (isrc != NULL) 23473 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23474 else 23475 bzero((caddr_t)idst, sizeof (*idst)); 23476 } 23477 return (mp); 23478 } 23479 23480 /* 23481 * Routine which determines whether MDT can be enabled on the destination 23482 * IRE and IPC combination, and if so, allocates and returns the MDT 23483 * notification mblk that may be used by ULP. We also check if we need to 23484 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 23485 * MDT usage in the past have been lifted. This gets called during IP 23486 * and ULP binding. 23487 */ 23488 mblk_t * 23489 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23490 ill_mdt_capab_t *mdt_cap) 23491 { 23492 mblk_t *mp; 23493 boolean_t rc = B_FALSE; 23494 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23495 23496 ASSERT(dst_ire != NULL); 23497 ASSERT(connp != NULL); 23498 ASSERT(mdt_cap != NULL); 23499 23500 /* 23501 * Currently, we only support simple TCP/{IPv4,IPv6} with 23502 * Multidata, which is handled in tcp_multisend(). This 23503 * is the reason why we do all these checks here, to ensure 23504 * that we don't enable Multidata for the cases which we 23505 * can't handle at the moment. 23506 */ 23507 do { 23508 /* Only do TCP at the moment */ 23509 if (connp->conn_ulp != IPPROTO_TCP) 23510 break; 23511 23512 /* 23513 * IPsec outbound policy present? Note that we get here 23514 * after calling ipsec_conn_cache_policy() where the global 23515 * policy checking is performed. conn_latch will be 23516 * non-NULL as long as there's a policy defined, 23517 * i.e. conn_out_enforce_policy may be NULL in such case 23518 * when the connection is non-secure, and hence we check 23519 * further if the latch refers to an outbound policy. 23520 */ 23521 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 23522 break; 23523 23524 /* CGTP (multiroute) is enabled? */ 23525 if (dst_ire->ire_flags & RTF_MULTIRT) 23526 break; 23527 23528 /* Outbound IPQoS enabled? */ 23529 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23530 /* 23531 * In this case, we disable MDT for this and all 23532 * future connections going over the interface. 23533 */ 23534 mdt_cap->ill_mdt_on = 0; 23535 break; 23536 } 23537 23538 /* socket option(s) present? */ 23539 if (!CONN_IS_LSO_MD_FASTPATH(connp)) 23540 break; 23541 23542 rc = B_TRUE; 23543 /* CONSTCOND */ 23544 } while (0); 23545 23546 /* Remember the result */ 23547 connp->conn_mdt_ok = rc; 23548 23549 if (!rc) 23550 return (NULL); 23551 else if (!mdt_cap->ill_mdt_on) { 23552 /* 23553 * If MDT has been previously turned off in the past, and we 23554 * currently can do MDT (due to IPQoS policy removal, etc.) 23555 * then enable it for this interface. 23556 */ 23557 mdt_cap->ill_mdt_on = 1; 23558 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 23559 "interface %s\n", ill_name)); 23560 } 23561 23562 /* Allocate the MDT info mblk */ 23563 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 23564 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 23565 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23566 return (NULL); 23567 } 23568 return (mp); 23569 } 23570 23571 /* 23572 * Routine to allocate a message that is used to notify the ULP about LSO. 23573 * The caller may provide a pointer to the link-layer LSO capabilities, 23574 * or NULL if LSO is to be disabled on the stream. 23575 */ 23576 mblk_t * 23577 ip_lsoinfo_alloc(ill_lso_capab_t *isrc) 23578 { 23579 mblk_t *mp; 23580 ip_lso_info_t *lsoi; 23581 ill_lso_capab_t *idst; 23582 23583 if ((mp = allocb(sizeof (*lsoi), BPRI_HI)) != NULL) { 23584 DB_TYPE(mp) = M_CTL; 23585 mp->b_wptr = mp->b_rptr + sizeof (*lsoi); 23586 lsoi = (ip_lso_info_t *)mp->b_rptr; 23587 lsoi->lso_info_id = LSO_IOC_INFO_UPDATE; 23588 idst = &(lsoi->lso_capab); 23589 23590 /* 23591 * If the caller provides us with the capability, copy 23592 * it over into our notification message; otherwise 23593 * we zero out the capability portion. 23594 */ 23595 if (isrc != NULL) 23596 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23597 else 23598 bzero((caddr_t)idst, sizeof (*idst)); 23599 } 23600 return (mp); 23601 } 23602 23603 /* 23604 * Routine which determines whether LSO can be enabled on the destination 23605 * IRE and IPC combination, and if so, allocates and returns the LSO 23606 * notification mblk that may be used by ULP. We also check if we need to 23607 * turn LSO back to 'on' when certain restrictions prohibiting us to allow 23608 * LSO usage in the past have been lifted. This gets called during IP 23609 * and ULP binding. 23610 */ 23611 mblk_t * 23612 ip_lsoinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23613 ill_lso_capab_t *lso_cap) 23614 { 23615 mblk_t *mp; 23616 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23617 23618 ASSERT(dst_ire != NULL); 23619 ASSERT(connp != NULL); 23620 ASSERT(lso_cap != NULL); 23621 23622 connp->conn_lso_ok = B_TRUE; 23623 23624 if ((connp->conn_ulp != IPPROTO_TCP) || 23625 CONN_IPSEC_OUT_ENCAPSULATED(connp) || 23626 (dst_ire->ire_flags & RTF_MULTIRT) || 23627 !CONN_IS_LSO_MD_FASTPATH(connp) || 23628 (IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 23629 connp->conn_lso_ok = B_FALSE; 23630 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23631 /* 23632 * Disable LSO for this and all future connections going 23633 * over the interface. 23634 */ 23635 lso_cap->ill_lso_on = 0; 23636 } 23637 } 23638 23639 if (!connp->conn_lso_ok) 23640 return (NULL); 23641 else if (!lso_cap->ill_lso_on) { 23642 /* 23643 * If LSO has been previously turned off in the past, and we 23644 * currently can do LSO (due to IPQoS policy removal, etc.) 23645 * then enable it for this interface. 23646 */ 23647 lso_cap->ill_lso_on = 1; 23648 ip1dbg(("ip_mdinfo_return: reenabling LSO for interface %s\n", 23649 ill_name)); 23650 } 23651 23652 /* Allocate the LSO info mblk */ 23653 if ((mp = ip_lsoinfo_alloc(lso_cap)) == NULL) 23654 ip0dbg(("ip_lsoinfo_return: can't enable LSO for " 23655 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23656 23657 return (mp); 23658 } 23659 23660 /* 23661 * Create destination address attribute, and fill it with the physical 23662 * destination address and SAP taken from the template DL_UNITDATA_REQ 23663 * message block. 23664 */ 23665 boolean_t 23666 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 23667 { 23668 dl_unitdata_req_t *dlurp; 23669 pattr_t *pa; 23670 pattrinfo_t pa_info; 23671 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 23672 uint_t das_len, das_off; 23673 23674 ASSERT(dlmp != NULL); 23675 23676 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 23677 das_len = dlurp->dl_dest_addr_length; 23678 das_off = dlurp->dl_dest_addr_offset; 23679 23680 pa_info.type = PATTR_DSTADDRSAP; 23681 pa_info.len = sizeof (**das) + das_len - 1; 23682 23683 /* create and associate the attribute */ 23684 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23685 if (pa != NULL) { 23686 ASSERT(*das != NULL); 23687 (*das)->addr_is_group = 0; 23688 (*das)->addr_len = (uint8_t)das_len; 23689 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 23690 } 23691 23692 return (pa != NULL); 23693 } 23694 23695 /* 23696 * Create hardware checksum attribute and fill it with the values passed. 23697 */ 23698 boolean_t 23699 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 23700 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 23701 { 23702 pattr_t *pa; 23703 pattrinfo_t pa_info; 23704 23705 ASSERT(mmd != NULL); 23706 23707 pa_info.type = PATTR_HCKSUM; 23708 pa_info.len = sizeof (pattr_hcksum_t); 23709 23710 /* create and associate the attribute */ 23711 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23712 if (pa != NULL) { 23713 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 23714 23715 hck->hcksum_start_offset = start_offset; 23716 hck->hcksum_stuff_offset = stuff_offset; 23717 hck->hcksum_end_offset = end_offset; 23718 hck->hcksum_flags = flags; 23719 } 23720 return (pa != NULL); 23721 } 23722 23723 /* 23724 * Create zerocopy attribute and fill it with the specified flags 23725 */ 23726 boolean_t 23727 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 23728 { 23729 pattr_t *pa; 23730 pattrinfo_t pa_info; 23731 23732 ASSERT(mmd != NULL); 23733 pa_info.type = PATTR_ZCOPY; 23734 pa_info.len = sizeof (pattr_zcopy_t); 23735 23736 /* create and associate the attribute */ 23737 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23738 if (pa != NULL) { 23739 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 23740 23741 zcopy->zcopy_flags = flags; 23742 } 23743 return (pa != NULL); 23744 } 23745 23746 /* 23747 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 23748 * block chain. We could rewrite to handle arbitrary message block chains but 23749 * that would make the code complicated and slow. Right now there three 23750 * restrictions: 23751 * 23752 * 1. The first message block must contain the complete IP header and 23753 * at least 1 byte of payload data. 23754 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 23755 * so that we can use a single Multidata message. 23756 * 3. No frag must be distributed over two or more message blocks so 23757 * that we don't need more than two packet descriptors per frag. 23758 * 23759 * The above restrictions allow us to support userland applications (which 23760 * will send down a single message block) and NFS over UDP (which will 23761 * send down a chain of at most three message blocks). 23762 * 23763 * We also don't use MDT for payloads with less than or equal to 23764 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 23765 */ 23766 boolean_t 23767 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 23768 { 23769 int blocks; 23770 ssize_t total, missing, size; 23771 23772 ASSERT(mp != NULL); 23773 ASSERT(hdr_len > 0); 23774 23775 size = MBLKL(mp) - hdr_len; 23776 if (size <= 0) 23777 return (B_FALSE); 23778 23779 /* The first mblk contains the header and some payload. */ 23780 blocks = 1; 23781 total = size; 23782 size %= len; 23783 missing = (size == 0) ? 0 : (len - size); 23784 mp = mp->b_cont; 23785 23786 while (mp != NULL) { 23787 /* 23788 * Give up if we encounter a zero length message block. 23789 * In practice, this should rarely happen and therefore 23790 * not worth the trouble of freeing and re-linking the 23791 * mblk from the chain to handle such case. 23792 */ 23793 if ((size = MBLKL(mp)) == 0) 23794 return (B_FALSE); 23795 23796 /* Too many payload buffers for a single Multidata message? */ 23797 if (++blocks > MULTIDATA_MAX_PBUFS) 23798 return (B_FALSE); 23799 23800 total += size; 23801 /* Is a frag distributed over two or more message blocks? */ 23802 if (missing > size) 23803 return (B_FALSE); 23804 size -= missing; 23805 23806 size %= len; 23807 missing = (size == 0) ? 0 : (len - size); 23808 23809 mp = mp->b_cont; 23810 } 23811 23812 return (total > ip_wput_frag_mdt_min); 23813 } 23814 23815 /* 23816 * Outbound IPv4 fragmentation routine using MDT. 23817 */ 23818 static void 23819 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 23820 uint32_t frag_flag, int offset) 23821 { 23822 ipha_t *ipha_orig; 23823 int i1, ip_data_end; 23824 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 23825 mblk_t *hdr_mp, *md_mp = NULL; 23826 unsigned char *hdr_ptr, *pld_ptr; 23827 multidata_t *mmd; 23828 ip_pdescinfo_t pdi; 23829 ill_t *ill; 23830 ip_stack_t *ipst = ire->ire_ipst; 23831 23832 ASSERT(DB_TYPE(mp) == M_DATA); 23833 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 23834 23835 ill = ire_to_ill(ire); 23836 ASSERT(ill != NULL); 23837 23838 ipha_orig = (ipha_t *)mp->b_rptr; 23839 mp->b_rptr += sizeof (ipha_t); 23840 23841 /* Calculate how many packets we will send out */ 23842 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 23843 pkts = (i1 + len - 1) / len; 23844 ASSERT(pkts > 1); 23845 23846 /* Allocate a message block which will hold all the IP Headers. */ 23847 wroff = ipst->ips_ip_wroff_extra; 23848 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 23849 23850 i1 = pkts * hdr_chunk_len; 23851 /* 23852 * Create the header buffer, Multidata and destination address 23853 * and SAP attribute that should be associated with it. 23854 */ 23855 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 23856 ((hdr_mp->b_wptr += i1), 23857 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 23858 !ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) { 23859 freemsg(mp); 23860 if (md_mp == NULL) { 23861 freemsg(hdr_mp); 23862 } else { 23863 free_mmd: IP_STAT(ipst, ip_frag_mdt_discarded); 23864 freemsg(md_mp); 23865 } 23866 IP_STAT(ipst, ip_frag_mdt_allocfail); 23867 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 23868 return; 23869 } 23870 IP_STAT(ipst, ip_frag_mdt_allocd); 23871 23872 /* 23873 * Add a payload buffer to the Multidata; this operation must not 23874 * fail, or otherwise our logic in this routine is broken. There 23875 * is no memory allocation done by the routine, so any returned 23876 * failure simply tells us that we've done something wrong. 23877 * 23878 * A failure tells us that either we're adding the same payload 23879 * buffer more than once, or we're trying to add more buffers than 23880 * allowed. None of the above cases should happen, and we panic 23881 * because either there's horrible heap corruption, and/or 23882 * programming mistake. 23883 */ 23884 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23885 goto pbuf_panic; 23886 23887 hdr_ptr = hdr_mp->b_rptr; 23888 pld_ptr = mp->b_rptr; 23889 23890 /* Establish the ending byte offset, based on the starting offset. */ 23891 offset <<= 3; 23892 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 23893 IP_SIMPLE_HDR_LENGTH; 23894 23895 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 23896 23897 while (pld_ptr < mp->b_wptr) { 23898 ipha_t *ipha; 23899 uint16_t offset_and_flags; 23900 uint16_t ip_len; 23901 int error; 23902 23903 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 23904 ipha = (ipha_t *)(hdr_ptr + wroff); 23905 ASSERT(OK_32PTR(ipha)); 23906 *ipha = *ipha_orig; 23907 23908 if (ip_data_end - offset > len) { 23909 offset_and_flags = IPH_MF; 23910 } else { 23911 /* 23912 * Last frag. Set len to the length of this last piece. 23913 */ 23914 len = ip_data_end - offset; 23915 /* A frag of a frag might have IPH_MF non-zero */ 23916 offset_and_flags = 23917 ntohs(ipha->ipha_fragment_offset_and_flags) & 23918 IPH_MF; 23919 } 23920 offset_and_flags |= (uint16_t)(offset >> 3); 23921 offset_and_flags |= (uint16_t)frag_flag; 23922 /* Store the offset and flags in the IP header. */ 23923 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 23924 23925 /* Store the length in the IP header. */ 23926 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 23927 ipha->ipha_length = htons(ip_len); 23928 23929 /* 23930 * Set the IP header checksum. Note that mp is just 23931 * the header, so this is easy to pass to ip_csum. 23932 */ 23933 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23934 23935 /* 23936 * Record offset and size of header and data of the next packet 23937 * in the multidata message. 23938 */ 23939 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 23940 PDESC_PLD_INIT(&pdi); 23941 i1 = MIN(mp->b_wptr - pld_ptr, len); 23942 ASSERT(i1 > 0); 23943 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 23944 if (i1 == len) { 23945 pld_ptr += len; 23946 } else { 23947 i1 = len - i1; 23948 mp = mp->b_cont; 23949 ASSERT(mp != NULL); 23950 ASSERT(MBLKL(mp) >= i1); 23951 /* 23952 * Attach the next payload message block to the 23953 * multidata message. 23954 */ 23955 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23956 goto pbuf_panic; 23957 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 23958 pld_ptr = mp->b_rptr + i1; 23959 } 23960 23961 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 23962 KM_NOSLEEP)) == NULL) { 23963 /* 23964 * Any failure other than ENOMEM indicates that we 23965 * have passed in invalid pdesc info or parameters 23966 * to mmd_addpdesc, which must not happen. 23967 * 23968 * EINVAL is a result of failure on boundary checks 23969 * against the pdesc info contents. It should not 23970 * happen, and we panic because either there's 23971 * horrible heap corruption, and/or programming 23972 * mistake. 23973 */ 23974 if (error != ENOMEM) { 23975 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 23976 "pdesc logic error detected for " 23977 "mmd %p pinfo %p (%d)\n", 23978 (void *)mmd, (void *)&pdi, error); 23979 /* NOTREACHED */ 23980 } 23981 IP_STAT(ipst, ip_frag_mdt_addpdescfail); 23982 /* Free unattached payload message blocks as well */ 23983 md_mp->b_cont = mp->b_cont; 23984 goto free_mmd; 23985 } 23986 23987 /* Advance fragment offset. */ 23988 offset += len; 23989 23990 /* Advance to location for next header in the buffer. */ 23991 hdr_ptr += hdr_chunk_len; 23992 23993 /* Did we reach the next payload message block? */ 23994 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 23995 mp = mp->b_cont; 23996 /* 23997 * Attach the next message block with payload 23998 * data to the multidata message. 23999 */ 24000 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24001 goto pbuf_panic; 24002 pld_ptr = mp->b_rptr; 24003 } 24004 } 24005 24006 ASSERT(hdr_mp->b_wptr == hdr_ptr); 24007 ASSERT(mp->b_wptr == pld_ptr); 24008 24009 /* Update IP statistics */ 24010 IP_STAT_UPDATE(ipst, ip_frag_mdt_pkt_out, pkts); 24011 24012 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates, pkts); 24013 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 24014 24015 len = ntohs(ipha_orig->ipha_length) + (pkts - 1) * IP_SIMPLE_HDR_LENGTH; 24016 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, pkts); 24017 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, len); 24018 24019 if (pkt_type == OB_PKT) { 24020 ire->ire_ob_pkt_count += pkts; 24021 if (ire->ire_ipif != NULL) 24022 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 24023 } else { 24024 /* The type is IB_PKT in the forwarding path. */ 24025 ire->ire_ib_pkt_count += pkts; 24026 ASSERT(!IRE_IS_LOCAL(ire)); 24027 if (ire->ire_type & IRE_BROADCAST) { 24028 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 24029 } else { 24030 UPDATE_MIB(ill->ill_ip_mib, 24031 ipIfStatsHCOutForwDatagrams, pkts); 24032 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 24033 } 24034 } 24035 ire->ire_last_used_time = lbolt; 24036 /* Send it down */ 24037 putnext(ire->ire_stq, md_mp); 24038 return; 24039 24040 pbuf_panic: 24041 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 24042 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 24043 pbuf_idx); 24044 /* NOTREACHED */ 24045 } 24046 24047 /* 24048 * Outbound IP fragmentation routine. 24049 * 24050 * NOTE : This routine does not ire_refrele the ire that is passed in 24051 * as the argument. 24052 */ 24053 static void 24054 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 24055 uint32_t frag_flag, zoneid_t zoneid, ip_stack_t *ipst) 24056 { 24057 int i1; 24058 mblk_t *ll_hdr_mp; 24059 int ll_hdr_len; 24060 int hdr_len; 24061 mblk_t *hdr_mp; 24062 ipha_t *ipha; 24063 int ip_data_end; 24064 int len; 24065 mblk_t *mp = mp_orig, *mp1; 24066 int offset; 24067 queue_t *q; 24068 uint32_t v_hlen_tos_len; 24069 mblk_t *first_mp; 24070 boolean_t mctl_present; 24071 ill_t *ill; 24072 ill_t *out_ill; 24073 mblk_t *xmit_mp; 24074 mblk_t *carve_mp; 24075 ire_t *ire1 = NULL; 24076 ire_t *save_ire = NULL; 24077 mblk_t *next_mp = NULL; 24078 boolean_t last_frag = B_FALSE; 24079 boolean_t multirt_send = B_FALSE; 24080 ire_t *first_ire = NULL; 24081 irb_t *irb = NULL; 24082 mib2_ipIfStatsEntry_t *mibptr = NULL; 24083 24084 ill = ire_to_ill(ire); 24085 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 24086 24087 BUMP_MIB(mibptr, ipIfStatsOutFragReqds); 24088 24089 if (max_frag == 0) { 24090 ip1dbg(("ip_wput_frag: ire frag size is 0" 24091 " - dropping packet\n")); 24092 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24093 freemsg(mp); 24094 return; 24095 } 24096 24097 /* 24098 * IPsec does not allow hw accelerated packets to be fragmented 24099 * This check is made in ip_wput_ipsec_out prior to coming here 24100 * via ip_wput_ire_fragmentit. 24101 * 24102 * If at this point we have an ire whose ARP request has not 24103 * been sent out, we call ip_xmit_v4->ire_arpresolve to trigger 24104 * sending of ARP query and change ire's state to ND_INCOMPLETE. 24105 * This packet and all fragmentable packets for this ire will 24106 * continue to get dropped while ire_nce->nce_state remains in 24107 * ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to 24108 * ND_REACHABLE, all subsquent large packets for this ire will 24109 * get fragemented and sent out by this function. 24110 */ 24111 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 24112 /* If nce_state is ND_INITIAL, trigger ARP query */ 24113 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 24114 ip1dbg(("ip_wput_frag: mac address for ire is unresolved" 24115 " - dropping packet\n")); 24116 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24117 freemsg(mp); 24118 return; 24119 } 24120 24121 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 24122 "ip_wput_frag_start:"); 24123 24124 if (mp->b_datap->db_type == M_CTL) { 24125 first_mp = mp; 24126 mp_orig = mp = mp->b_cont; 24127 mctl_present = B_TRUE; 24128 } else { 24129 first_mp = mp; 24130 mctl_present = B_FALSE; 24131 } 24132 24133 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 24134 ipha = (ipha_t *)mp->b_rptr; 24135 24136 /* 24137 * If the Don't Fragment flag is on, generate an ICMP destination 24138 * unreachable, fragmentation needed. 24139 */ 24140 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 24141 if (offset & IPH_DF) { 24142 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24143 if (is_system_labeled()) { 24144 max_frag = tsol_pmtu_adjust(mp, ire->ire_max_frag, 24145 ire->ire_max_frag - max_frag, AF_INET); 24146 } 24147 /* 24148 * Need to compute hdr checksum if called from ip_wput_ire. 24149 * Note that ip_rput_forward verifies the checksum before 24150 * calling this routine so in that case this is a noop. 24151 */ 24152 ipha->ipha_hdr_checksum = 0; 24153 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24154 icmp_frag_needed(ire->ire_stq, first_mp, max_frag, zoneid, 24155 ipst); 24156 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24157 "ip_wput_frag_end:(%S)", 24158 "don't fragment"); 24159 return; 24160 } 24161 /* 24162 * Labeled systems adjust max_frag if they add a label 24163 * to send the correct path mtu. We need the real mtu since we 24164 * are fragmenting the packet after label adjustment. 24165 */ 24166 if (is_system_labeled()) 24167 max_frag = ire->ire_max_frag; 24168 if (mctl_present) 24169 freeb(first_mp); 24170 /* 24171 * Establish the starting offset. May not be zero if we are fragging 24172 * a fragment that is being forwarded. 24173 */ 24174 offset = offset & IPH_OFFSET; 24175 24176 /* TODO why is this test needed? */ 24177 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 24178 if (((max_frag - LENGTH) & ~7) < 8) { 24179 /* TODO: notify ulp somehow */ 24180 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24181 freemsg(mp); 24182 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24183 "ip_wput_frag_end:(%S)", 24184 "len < 8"); 24185 return; 24186 } 24187 24188 hdr_len = (V_HLEN & 0xF) << 2; 24189 24190 ipha->ipha_hdr_checksum = 0; 24191 24192 /* 24193 * Establish the number of bytes maximum per frag, after putting 24194 * in the header. 24195 */ 24196 len = (max_frag - hdr_len) & ~7; 24197 24198 /* Check if we can use MDT to send out the frags. */ 24199 ASSERT(!IRE_IS_LOCAL(ire)); 24200 if (hdr_len == IP_SIMPLE_HDR_LENGTH && 24201 ipst->ips_ip_multidata_outbound && 24202 !(ire->ire_flags & RTF_MULTIRT) && 24203 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 24204 ill != NULL && ILL_MDT_CAPABLE(ill) && 24205 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 24206 ASSERT(ill->ill_mdt_capab != NULL); 24207 if (!ill->ill_mdt_capab->ill_mdt_on) { 24208 /* 24209 * If MDT has been previously turned off in the past, 24210 * and we currently can do MDT (due to IPQoS policy 24211 * removal, etc.) then enable it for this interface. 24212 */ 24213 ill->ill_mdt_capab->ill_mdt_on = 1; 24214 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 24215 ill->ill_name)); 24216 } 24217 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 24218 offset); 24219 return; 24220 } 24221 24222 /* Get a copy of the header for the trailing frags */ 24223 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst); 24224 if (!hdr_mp) { 24225 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24226 freemsg(mp); 24227 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24228 "ip_wput_frag_end:(%S)", 24229 "couldn't copy hdr"); 24230 return; 24231 } 24232 if (DB_CRED(mp) != NULL) 24233 mblk_setcred(hdr_mp, DB_CRED(mp)); 24234 24235 /* Store the starting offset, with the MoreFrags flag. */ 24236 i1 = offset | IPH_MF | frag_flag; 24237 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 24238 24239 /* Establish the ending byte offset, based on the starting offset. */ 24240 offset <<= 3; 24241 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 24242 24243 /* Store the length of the first fragment in the IP header. */ 24244 i1 = len + hdr_len; 24245 ASSERT(i1 <= IP_MAXPACKET); 24246 ipha->ipha_length = htons((uint16_t)i1); 24247 24248 /* 24249 * Compute the IP header checksum for the first frag. We have to 24250 * watch out that we stop at the end of the header. 24251 */ 24252 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24253 24254 /* 24255 * Now carve off the first frag. Note that this will include the 24256 * original IP header. 24257 */ 24258 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 24259 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24260 freeb(hdr_mp); 24261 freemsg(mp_orig); 24262 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24263 "ip_wput_frag_end:(%S)", 24264 "couldn't carve first"); 24265 return; 24266 } 24267 24268 /* 24269 * Multirouting case. Each fragment is replicated 24270 * via all non-condemned RTF_MULTIRT routes 24271 * currently resolved. 24272 * We ensure that first_ire is the first RTF_MULTIRT 24273 * ire in the bucket. 24274 */ 24275 if (ire->ire_flags & RTF_MULTIRT) { 24276 irb = ire->ire_bucket; 24277 ASSERT(irb != NULL); 24278 24279 multirt_send = B_TRUE; 24280 24281 /* Make sure we do not omit any multiroute ire. */ 24282 IRB_REFHOLD(irb); 24283 for (first_ire = irb->irb_ire; 24284 first_ire != NULL; 24285 first_ire = first_ire->ire_next) { 24286 if ((first_ire->ire_flags & RTF_MULTIRT) && 24287 (first_ire->ire_addr == ire->ire_addr) && 24288 !(first_ire->ire_marks & 24289 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 24290 break; 24291 } 24292 } 24293 24294 if (first_ire != NULL) { 24295 if (first_ire != ire) { 24296 IRE_REFHOLD(first_ire); 24297 /* 24298 * Do not release the ire passed in 24299 * as the argument. 24300 */ 24301 ire = first_ire; 24302 } else { 24303 first_ire = NULL; 24304 } 24305 } 24306 IRB_REFRELE(irb); 24307 24308 /* 24309 * Save the first ire; we will need to restore it 24310 * for the trailing frags. 24311 * We REFHOLD save_ire, as each iterated ire will be 24312 * REFRELEd. 24313 */ 24314 save_ire = ire; 24315 IRE_REFHOLD(save_ire); 24316 } 24317 24318 /* 24319 * First fragment emission loop. 24320 * In most cases, the emission loop below is entered only 24321 * once. Only in the case where the ire holds the RTF_MULTIRT 24322 * flag, do we loop to process all RTF_MULTIRT ires in the 24323 * bucket, and send the fragment through all crossed 24324 * RTF_MULTIRT routes. 24325 */ 24326 do { 24327 if (ire->ire_flags & RTF_MULTIRT) { 24328 /* 24329 * We are in a multiple send case, need to get 24330 * the next ire and make a copy of the packet. 24331 * ire1 holds here the next ire to process in the 24332 * bucket. If multirouting is expected, 24333 * any non-RTF_MULTIRT ire that has the 24334 * right destination address is ignored. 24335 * 24336 * We have to take into account the MTU of 24337 * each walked ire. max_frag is set by the 24338 * the caller and generally refers to 24339 * the primary ire entry. Here we ensure that 24340 * no route with a lower MTU will be used, as 24341 * fragments are carved once for all ires, 24342 * then replicated. 24343 */ 24344 ASSERT(irb != NULL); 24345 IRB_REFHOLD(irb); 24346 for (ire1 = ire->ire_next; 24347 ire1 != NULL; 24348 ire1 = ire1->ire_next) { 24349 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 24350 continue; 24351 if (ire1->ire_addr != ire->ire_addr) 24352 continue; 24353 if (ire1->ire_marks & 24354 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 24355 continue; 24356 /* 24357 * Ensure we do not exceed the MTU 24358 * of the next route. 24359 */ 24360 if (ire1->ire_max_frag < max_frag) { 24361 ip_multirt_bad_mtu(ire1, max_frag); 24362 continue; 24363 } 24364 24365 /* Got one. */ 24366 IRE_REFHOLD(ire1); 24367 break; 24368 } 24369 IRB_REFRELE(irb); 24370 24371 if (ire1 != NULL) { 24372 next_mp = copyb(mp); 24373 if ((next_mp == NULL) || 24374 ((mp->b_cont != NULL) && 24375 ((next_mp->b_cont = 24376 dupmsg(mp->b_cont)) == NULL))) { 24377 freemsg(next_mp); 24378 next_mp = NULL; 24379 ire_refrele(ire1); 24380 ire1 = NULL; 24381 } 24382 } 24383 24384 /* Last multiroute ire; don't loop anymore. */ 24385 if (ire1 == NULL) { 24386 multirt_send = B_FALSE; 24387 } 24388 } 24389 24390 ll_hdr_len = 0; 24391 LOCK_IRE_FP_MP(ire); 24392 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24393 if (ll_hdr_mp != NULL) { 24394 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24395 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 24396 } else { 24397 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24398 } 24399 24400 /* If there is a transmit header, get a copy for this frag. */ 24401 /* 24402 * TODO: should check db_ref before calling ip_carve_mp since 24403 * it might give us a dup. 24404 */ 24405 if (!ll_hdr_mp) { 24406 /* No xmit header. */ 24407 xmit_mp = mp; 24408 24409 /* We have a link-layer header that can fit in our mblk. */ 24410 } else if (mp->b_datap->db_ref == 1 && 24411 ll_hdr_len != 0 && 24412 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24413 /* M_DATA fastpath */ 24414 mp->b_rptr -= ll_hdr_len; 24415 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 24416 xmit_mp = mp; 24417 24418 /* Corner case if copyb has failed */ 24419 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 24420 UNLOCK_IRE_FP_MP(ire); 24421 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24422 freeb(hdr_mp); 24423 freemsg(mp); 24424 freemsg(mp_orig); 24425 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24426 "ip_wput_frag_end:(%S)", 24427 "discard"); 24428 24429 if (multirt_send) { 24430 ASSERT(ire1); 24431 ASSERT(next_mp); 24432 24433 freemsg(next_mp); 24434 ire_refrele(ire1); 24435 } 24436 if (save_ire != NULL) 24437 IRE_REFRELE(save_ire); 24438 24439 if (first_ire != NULL) 24440 ire_refrele(first_ire); 24441 return; 24442 24443 /* 24444 * Case of res_mp OR the fastpath mp can't fit 24445 * in the mblk 24446 */ 24447 } else { 24448 xmit_mp->b_cont = mp; 24449 if (DB_CRED(mp) != NULL) 24450 mblk_setcred(xmit_mp, DB_CRED(mp)); 24451 /* 24452 * Get priority marking, if any. 24453 * We propagate the CoS marking from the 24454 * original packet that went to QoS processing 24455 * in ip_wput_ire to the newly carved mp. 24456 */ 24457 if (DB_TYPE(xmit_mp) == M_DATA) 24458 xmit_mp->b_band = mp->b_band; 24459 } 24460 UNLOCK_IRE_FP_MP(ire); 24461 24462 q = ire->ire_stq; 24463 out_ill = (ill_t *)q->q_ptr; 24464 24465 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24466 24467 DTRACE_PROBE4(ip4__physical__out__start, 24468 ill_t *, NULL, ill_t *, out_ill, 24469 ipha_t *, ipha, mblk_t *, xmit_mp); 24470 24471 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24472 ipst->ips_ipv4firewall_physical_out, 24473 NULL, out_ill, ipha, xmit_mp, mp, ipst); 24474 24475 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, xmit_mp); 24476 24477 if (xmit_mp != NULL) { 24478 putnext(q, xmit_mp); 24479 24480 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 24481 UPDATE_MIB(out_ill->ill_ip_mib, 24482 ipIfStatsHCOutOctets, i1); 24483 24484 if (pkt_type != OB_PKT) { 24485 /* 24486 * Update the packet count and MIB stats 24487 * of trailing RTF_MULTIRT ires. 24488 */ 24489 UPDATE_OB_PKT_COUNT(ire); 24490 BUMP_MIB(out_ill->ill_ip_mib, 24491 ipIfStatsOutFragReqds); 24492 } 24493 } 24494 24495 if (multirt_send) { 24496 /* 24497 * We are in a multiple send case; look for 24498 * the next ire and re-enter the loop. 24499 */ 24500 ASSERT(ire1); 24501 ASSERT(next_mp); 24502 /* REFRELE the current ire before looping */ 24503 ire_refrele(ire); 24504 ire = ire1; 24505 ire1 = NULL; 24506 mp = next_mp; 24507 next_mp = NULL; 24508 } 24509 } while (multirt_send); 24510 24511 ASSERT(ire1 == NULL); 24512 24513 /* Restore the original ire; we need it for the trailing frags */ 24514 if (save_ire != NULL) { 24515 /* REFRELE the last iterated ire */ 24516 ire_refrele(ire); 24517 /* save_ire has been REFHOLDed */ 24518 ire = save_ire; 24519 save_ire = NULL; 24520 q = ire->ire_stq; 24521 } 24522 24523 if (pkt_type == OB_PKT) { 24524 UPDATE_OB_PKT_COUNT(ire); 24525 } else { 24526 out_ill = (ill_t *)q->q_ptr; 24527 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 24528 UPDATE_IB_PKT_COUNT(ire); 24529 } 24530 24531 /* Advance the offset to the second frag starting point. */ 24532 offset += len; 24533 /* 24534 * Update hdr_len from the copied header - there might be less options 24535 * in the later fragments. 24536 */ 24537 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 24538 /* Loop until done. */ 24539 for (;;) { 24540 uint16_t offset_and_flags; 24541 uint16_t ip_len; 24542 24543 if (ip_data_end - offset > len) { 24544 /* 24545 * Carve off the appropriate amount from the original 24546 * datagram. 24547 */ 24548 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24549 mp = NULL; 24550 break; 24551 } 24552 /* 24553 * More frags after this one. Get another copy 24554 * of the header. 24555 */ 24556 if (carve_mp->b_datap->db_ref == 1 && 24557 hdr_mp->b_wptr - hdr_mp->b_rptr < 24558 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24559 /* Inline IP header */ 24560 carve_mp->b_rptr -= hdr_mp->b_wptr - 24561 hdr_mp->b_rptr; 24562 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24563 hdr_mp->b_wptr - hdr_mp->b_rptr); 24564 mp = carve_mp; 24565 } else { 24566 if (!(mp = copyb(hdr_mp))) { 24567 freemsg(carve_mp); 24568 break; 24569 } 24570 /* Get priority marking, if any. */ 24571 mp->b_band = carve_mp->b_band; 24572 mp->b_cont = carve_mp; 24573 } 24574 ipha = (ipha_t *)mp->b_rptr; 24575 offset_and_flags = IPH_MF; 24576 } else { 24577 /* 24578 * Last frag. Consume the header. Set len to 24579 * the length of this last piece. 24580 */ 24581 len = ip_data_end - offset; 24582 24583 /* 24584 * Carve off the appropriate amount from the original 24585 * datagram. 24586 */ 24587 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24588 mp = NULL; 24589 break; 24590 } 24591 if (carve_mp->b_datap->db_ref == 1 && 24592 hdr_mp->b_wptr - hdr_mp->b_rptr < 24593 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24594 /* Inline IP header */ 24595 carve_mp->b_rptr -= hdr_mp->b_wptr - 24596 hdr_mp->b_rptr; 24597 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24598 hdr_mp->b_wptr - hdr_mp->b_rptr); 24599 mp = carve_mp; 24600 freeb(hdr_mp); 24601 hdr_mp = mp; 24602 } else { 24603 mp = hdr_mp; 24604 /* Get priority marking, if any. */ 24605 mp->b_band = carve_mp->b_band; 24606 mp->b_cont = carve_mp; 24607 } 24608 ipha = (ipha_t *)mp->b_rptr; 24609 /* A frag of a frag might have IPH_MF non-zero */ 24610 offset_and_flags = 24611 ntohs(ipha->ipha_fragment_offset_and_flags) & 24612 IPH_MF; 24613 } 24614 offset_and_flags |= (uint16_t)(offset >> 3); 24615 offset_and_flags |= (uint16_t)frag_flag; 24616 /* Store the offset and flags in the IP header. */ 24617 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24618 24619 /* Store the length in the IP header. */ 24620 ip_len = (uint16_t)(len + hdr_len); 24621 ipha->ipha_length = htons(ip_len); 24622 24623 /* 24624 * Set the IP header checksum. Note that mp is just 24625 * the header, so this is easy to pass to ip_csum. 24626 */ 24627 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24628 24629 /* Attach a transmit header, if any, and ship it. */ 24630 if (pkt_type == OB_PKT) { 24631 UPDATE_OB_PKT_COUNT(ire); 24632 } else { 24633 out_ill = (ill_t *)q->q_ptr; 24634 BUMP_MIB(out_ill->ill_ip_mib, 24635 ipIfStatsHCOutForwDatagrams); 24636 UPDATE_IB_PKT_COUNT(ire); 24637 } 24638 24639 if (ire->ire_flags & RTF_MULTIRT) { 24640 irb = ire->ire_bucket; 24641 ASSERT(irb != NULL); 24642 24643 multirt_send = B_TRUE; 24644 24645 /* 24646 * Save the original ire; we will need to restore it 24647 * for the tailing frags. 24648 */ 24649 save_ire = ire; 24650 IRE_REFHOLD(save_ire); 24651 } 24652 /* 24653 * Emission loop for this fragment, similar 24654 * to what is done for the first fragment. 24655 */ 24656 do { 24657 if (multirt_send) { 24658 /* 24659 * We are in a multiple send case, need to get 24660 * the next ire and make a copy of the packet. 24661 */ 24662 ASSERT(irb != NULL); 24663 IRB_REFHOLD(irb); 24664 for (ire1 = ire->ire_next; 24665 ire1 != NULL; 24666 ire1 = ire1->ire_next) { 24667 if (!(ire1->ire_flags & RTF_MULTIRT)) 24668 continue; 24669 if (ire1->ire_addr != ire->ire_addr) 24670 continue; 24671 if (ire1->ire_marks & 24672 (IRE_MARK_CONDEMNED| 24673 IRE_MARK_HIDDEN)) { 24674 continue; 24675 } 24676 /* 24677 * Ensure we do not exceed the MTU 24678 * of the next route. 24679 */ 24680 if (ire1->ire_max_frag < max_frag) { 24681 ip_multirt_bad_mtu(ire1, 24682 max_frag); 24683 continue; 24684 } 24685 24686 /* Got one. */ 24687 IRE_REFHOLD(ire1); 24688 break; 24689 } 24690 IRB_REFRELE(irb); 24691 24692 if (ire1 != NULL) { 24693 next_mp = copyb(mp); 24694 if ((next_mp == NULL) || 24695 ((mp->b_cont != NULL) && 24696 ((next_mp->b_cont = 24697 dupmsg(mp->b_cont)) == NULL))) { 24698 freemsg(next_mp); 24699 next_mp = NULL; 24700 ire_refrele(ire1); 24701 ire1 = NULL; 24702 } 24703 } 24704 24705 /* Last multiroute ire; don't loop anymore. */ 24706 if (ire1 == NULL) { 24707 multirt_send = B_FALSE; 24708 } 24709 } 24710 24711 /* Update transmit header */ 24712 ll_hdr_len = 0; 24713 LOCK_IRE_FP_MP(ire); 24714 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24715 if (ll_hdr_mp != NULL) { 24716 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24717 ll_hdr_len = MBLKL(ll_hdr_mp); 24718 } else { 24719 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24720 } 24721 24722 if (!ll_hdr_mp) { 24723 xmit_mp = mp; 24724 24725 /* 24726 * We have link-layer header that can fit in 24727 * our mblk. 24728 */ 24729 } else if (mp->b_datap->db_ref == 1 && 24730 ll_hdr_len != 0 && 24731 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24732 /* M_DATA fastpath */ 24733 mp->b_rptr -= ll_hdr_len; 24734 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 24735 ll_hdr_len); 24736 xmit_mp = mp; 24737 24738 /* 24739 * Case of res_mp OR the fastpath mp can't fit 24740 * in the mblk 24741 */ 24742 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 24743 xmit_mp->b_cont = mp; 24744 if (DB_CRED(mp) != NULL) 24745 mblk_setcred(xmit_mp, DB_CRED(mp)); 24746 /* Get priority marking, if any. */ 24747 if (DB_TYPE(xmit_mp) == M_DATA) 24748 xmit_mp->b_band = mp->b_band; 24749 24750 /* Corner case if copyb failed */ 24751 } else { 24752 /* 24753 * Exit both the replication and 24754 * fragmentation loops. 24755 */ 24756 UNLOCK_IRE_FP_MP(ire); 24757 goto drop_pkt; 24758 } 24759 UNLOCK_IRE_FP_MP(ire); 24760 24761 mp1 = mp; 24762 out_ill = (ill_t *)q->q_ptr; 24763 24764 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24765 24766 DTRACE_PROBE4(ip4__physical__out__start, 24767 ill_t *, NULL, ill_t *, out_ill, 24768 ipha_t *, ipha, mblk_t *, xmit_mp); 24769 24770 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24771 ipst->ips_ipv4firewall_physical_out, 24772 NULL, out_ill, ipha, xmit_mp, mp, ipst); 24773 24774 DTRACE_PROBE1(ip4__physical__out__end, 24775 mblk_t *, xmit_mp); 24776 24777 if (mp != mp1 && hdr_mp == mp1) 24778 hdr_mp = mp; 24779 if (mp != mp1 && mp_orig == mp1) 24780 mp_orig = mp; 24781 24782 if (xmit_mp != NULL) { 24783 putnext(q, xmit_mp); 24784 24785 BUMP_MIB(out_ill->ill_ip_mib, 24786 ipIfStatsHCOutTransmits); 24787 UPDATE_MIB(out_ill->ill_ip_mib, 24788 ipIfStatsHCOutOctets, ip_len); 24789 24790 if (pkt_type != OB_PKT) { 24791 /* 24792 * Update the packet count of trailing 24793 * RTF_MULTIRT ires. 24794 */ 24795 UPDATE_OB_PKT_COUNT(ire); 24796 } 24797 } 24798 24799 /* All done if we just consumed the hdr_mp. */ 24800 if (mp == hdr_mp) { 24801 last_frag = B_TRUE; 24802 BUMP_MIB(out_ill->ill_ip_mib, 24803 ipIfStatsOutFragOKs); 24804 } 24805 24806 if (multirt_send) { 24807 /* 24808 * We are in a multiple send case; look for 24809 * the next ire and re-enter the loop. 24810 */ 24811 ASSERT(ire1); 24812 ASSERT(next_mp); 24813 /* REFRELE the current ire before looping */ 24814 ire_refrele(ire); 24815 ire = ire1; 24816 ire1 = NULL; 24817 q = ire->ire_stq; 24818 mp = next_mp; 24819 next_mp = NULL; 24820 } 24821 } while (multirt_send); 24822 /* 24823 * Restore the original ire; we need it for the 24824 * trailing frags 24825 */ 24826 if (save_ire != NULL) { 24827 ASSERT(ire1 == NULL); 24828 /* REFRELE the last iterated ire */ 24829 ire_refrele(ire); 24830 /* save_ire has been REFHOLDed */ 24831 ire = save_ire; 24832 q = ire->ire_stq; 24833 save_ire = NULL; 24834 } 24835 24836 if (last_frag) { 24837 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24838 "ip_wput_frag_end:(%S)", 24839 "consumed hdr_mp"); 24840 24841 if (first_ire != NULL) 24842 ire_refrele(first_ire); 24843 return; 24844 } 24845 /* Otherwise, advance and loop. */ 24846 offset += len; 24847 } 24848 24849 drop_pkt: 24850 /* Clean up following allocation failure. */ 24851 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24852 freemsg(mp); 24853 if (mp != hdr_mp) 24854 freeb(hdr_mp); 24855 if (mp != mp_orig) 24856 freemsg(mp_orig); 24857 24858 if (save_ire != NULL) 24859 IRE_REFRELE(save_ire); 24860 if (first_ire != NULL) 24861 ire_refrele(first_ire); 24862 24863 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24864 "ip_wput_frag_end:(%S)", 24865 "end--alloc failure"); 24866 } 24867 24868 /* 24869 * Copy the header plus those options which have the copy bit set 24870 */ 24871 static mblk_t * 24872 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst) 24873 { 24874 mblk_t *mp; 24875 uchar_t *up; 24876 24877 /* 24878 * Quick check if we need to look for options without the copy bit 24879 * set 24880 */ 24881 mp = allocb(ipst->ips_ip_wroff_extra + hdr_len, BPRI_HI); 24882 if (!mp) 24883 return (mp); 24884 mp->b_rptr += ipst->ips_ip_wroff_extra; 24885 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 24886 bcopy(rptr, mp->b_rptr, hdr_len); 24887 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 24888 return (mp); 24889 } 24890 up = mp->b_rptr; 24891 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 24892 up += IP_SIMPLE_HDR_LENGTH; 24893 rptr += IP_SIMPLE_HDR_LENGTH; 24894 hdr_len -= IP_SIMPLE_HDR_LENGTH; 24895 while (hdr_len > 0) { 24896 uint32_t optval; 24897 uint32_t optlen; 24898 24899 optval = *rptr; 24900 if (optval == IPOPT_EOL) 24901 break; 24902 if (optval == IPOPT_NOP) 24903 optlen = 1; 24904 else 24905 optlen = rptr[1]; 24906 if (optval & IPOPT_COPY) { 24907 bcopy(rptr, up, optlen); 24908 up += optlen; 24909 } 24910 rptr += optlen; 24911 hdr_len -= optlen; 24912 } 24913 /* 24914 * Make sure that we drop an even number of words by filling 24915 * with EOL to the next word boundary. 24916 */ 24917 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 24918 hdr_len & 0x3; hdr_len++) 24919 *up++ = IPOPT_EOL; 24920 mp->b_wptr = up; 24921 /* Update header length */ 24922 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 24923 return (mp); 24924 } 24925 24926 /* 24927 * Delivery to local recipients including fanout to multiple recipients. 24928 * Does not do checksumming of UDP/TCP. 24929 * Note: q should be the read side queue for either the ill or conn. 24930 * Note: rq should be the read side q for the lower (ill) stream. 24931 * We don't send packets to IPPF processing, thus the last argument 24932 * to all the fanout calls are B_FALSE. 24933 */ 24934 void 24935 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 24936 int fanout_flags, zoneid_t zoneid) 24937 { 24938 uint32_t protocol; 24939 mblk_t *first_mp; 24940 boolean_t mctl_present; 24941 int ire_type; 24942 #define rptr ((uchar_t *)ipha) 24943 ip_stack_t *ipst = ill->ill_ipst; 24944 24945 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 24946 "ip_wput_local_start: q %p", q); 24947 24948 if (ire != NULL) { 24949 ire_type = ire->ire_type; 24950 } else { 24951 /* 24952 * Only ip_multicast_loopback() calls us with a NULL ire. If the 24953 * packet is not multicast, we can't tell the ire type. 24954 */ 24955 ASSERT(CLASSD(ipha->ipha_dst)); 24956 ire_type = IRE_BROADCAST; 24957 } 24958 24959 first_mp = mp; 24960 if (first_mp->b_datap->db_type == M_CTL) { 24961 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 24962 if (!io->ipsec_out_secure) { 24963 /* 24964 * This ipsec_out_t was allocated in ip_wput 24965 * for multicast packets to store the ill_index. 24966 * As this is being delivered locally, we don't 24967 * need this anymore. 24968 */ 24969 mp = first_mp->b_cont; 24970 freeb(first_mp); 24971 first_mp = mp; 24972 mctl_present = B_FALSE; 24973 } else { 24974 /* 24975 * Convert IPSEC_OUT to IPSEC_IN, preserving all 24976 * security properties for the looped-back packet. 24977 */ 24978 mctl_present = B_TRUE; 24979 mp = first_mp->b_cont; 24980 ASSERT(mp != NULL); 24981 ipsec_out_to_in(first_mp); 24982 } 24983 } else { 24984 mctl_present = B_FALSE; 24985 } 24986 24987 DTRACE_PROBE4(ip4__loopback__in__start, 24988 ill_t *, ill, ill_t *, NULL, 24989 ipha_t *, ipha, mblk_t *, first_mp); 24990 24991 FW_HOOKS(ipst->ips_ip4_loopback_in_event, 24992 ipst->ips_ipv4firewall_loopback_in, 24993 ill, NULL, ipha, first_mp, mp, ipst); 24994 24995 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, first_mp); 24996 24997 if (first_mp == NULL) 24998 return; 24999 25000 ipst->ips_loopback_packets++; 25001 25002 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 25003 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 25004 if (!IS_SIMPLE_IPH(ipha)) { 25005 ip_wput_local_options(ipha, ipst); 25006 } 25007 25008 protocol = ipha->ipha_protocol; 25009 switch (protocol) { 25010 case IPPROTO_ICMP: { 25011 ire_t *ire_zone; 25012 ilm_t *ilm; 25013 mblk_t *mp1; 25014 zoneid_t last_zoneid; 25015 25016 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(ill)) { 25017 ASSERT(ire_type == IRE_BROADCAST); 25018 /* 25019 * In the multicast case, applications may have joined 25020 * the group from different zones, so we need to deliver 25021 * the packet to each of them. Loop through the 25022 * multicast memberships structures (ilm) on the receive 25023 * ill and send a copy of the packet up each matching 25024 * one. However, we don't do this for multicasts sent on 25025 * the loopback interface (PHYI_LOOPBACK flag set) as 25026 * they must stay in the sender's zone. 25027 * 25028 * ilm_add_v6() ensures that ilms in the same zone are 25029 * contiguous in the ill_ilm list. We use this property 25030 * to avoid sending duplicates needed when two 25031 * applications in the same zone join the same group on 25032 * different logical interfaces: we ignore the ilm if 25033 * it's zoneid is the same as the last matching one. 25034 * In addition, the sending of the packet for 25035 * ire_zoneid is delayed until all of the other ilms 25036 * have been exhausted. 25037 */ 25038 last_zoneid = -1; 25039 ILM_WALKER_HOLD(ill); 25040 for (ilm = ill->ill_ilm; ilm != NULL; 25041 ilm = ilm->ilm_next) { 25042 if ((ilm->ilm_flags & ILM_DELETED) || 25043 ipha->ipha_dst != ilm->ilm_addr || 25044 ilm->ilm_zoneid == last_zoneid || 25045 ilm->ilm_zoneid == zoneid || 25046 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 25047 continue; 25048 mp1 = ip_copymsg(first_mp); 25049 if (mp1 == NULL) 25050 continue; 25051 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25052 mctl_present, B_FALSE, ill, 25053 ilm->ilm_zoneid); 25054 last_zoneid = ilm->ilm_zoneid; 25055 } 25056 ILM_WALKER_RELE(ill); 25057 /* 25058 * Loopback case: the sending endpoint has 25059 * IP_MULTICAST_LOOP disabled, therefore we don't 25060 * dispatch the multicast packet to the sending zone. 25061 */ 25062 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 25063 freemsg(first_mp); 25064 return; 25065 } 25066 } else if (ire_type == IRE_BROADCAST) { 25067 /* 25068 * In the broadcast case, there may be many zones 25069 * which need a copy of the packet delivered to them. 25070 * There is one IRE_BROADCAST per broadcast address 25071 * and per zone; we walk those using a helper function. 25072 * In addition, the sending of the packet for zoneid is 25073 * delayed until all of the other ires have been 25074 * processed. 25075 */ 25076 IRB_REFHOLD(ire->ire_bucket); 25077 ire_zone = NULL; 25078 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 25079 ire)) != NULL) { 25080 mp1 = ip_copymsg(first_mp); 25081 if (mp1 == NULL) 25082 continue; 25083 25084 UPDATE_IB_PKT_COUNT(ire_zone); 25085 ire_zone->ire_last_used_time = lbolt; 25086 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25087 mctl_present, B_FALSE, ill, 25088 ire_zone->ire_zoneid); 25089 } 25090 IRB_REFRELE(ire->ire_bucket); 25091 } 25092 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 25093 0, mctl_present, B_FALSE, ill, zoneid); 25094 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25095 "ip_wput_local_end: q %p (%S)", 25096 q, "icmp"); 25097 return; 25098 } 25099 case IPPROTO_IGMP: 25100 if ((mp = igmp_input(q, mp, ill)) == NULL) { 25101 /* Bad packet - discarded by igmp_input */ 25102 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25103 "ip_wput_local_end: q %p (%S)", 25104 q, "igmp_input--bad packet"); 25105 if (mctl_present) 25106 freeb(first_mp); 25107 return; 25108 } 25109 /* 25110 * igmp_input() may have returned the pulled up message. 25111 * So first_mp and ipha need to be reinitialized. 25112 */ 25113 ipha = (ipha_t *)mp->b_rptr; 25114 if (mctl_present) 25115 first_mp->b_cont = mp; 25116 else 25117 first_mp = mp; 25118 /* deliver to local raw users */ 25119 break; 25120 case IPPROTO_ENCAP: 25121 /* 25122 * This case is covered by either ip_fanout_proto, or by 25123 * the above security processing for self-tunneled packets. 25124 */ 25125 break; 25126 case IPPROTO_UDP: { 25127 uint16_t *up; 25128 uint32_t ports; 25129 25130 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 25131 UDP_PORTS_OFFSET); 25132 /* Force a 'valid' checksum. */ 25133 up[3] = 0; 25134 25135 ports = *(uint32_t *)up; 25136 ip_fanout_udp(q, first_mp, ill, ipha, ports, 25137 (ire_type == IRE_BROADCAST), 25138 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25139 IP_FF_SEND_SLLA | IP_FF_IPINFO, mctl_present, B_FALSE, 25140 ill, zoneid); 25141 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25142 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 25143 return; 25144 } 25145 case IPPROTO_TCP: { 25146 25147 /* 25148 * For TCP, discard broadcast packets. 25149 */ 25150 if ((ushort_t)ire_type == IRE_BROADCAST) { 25151 freemsg(first_mp); 25152 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 25153 ip2dbg(("ip_wput_local: discard broadcast\n")); 25154 return; 25155 } 25156 25157 if (mp->b_datap->db_type == M_DATA) { 25158 /* 25159 * M_DATA mblk, so init mblk (chain) for no struio(). 25160 */ 25161 mblk_t *mp1 = mp; 25162 25163 do { 25164 mp1->b_datap->db_struioflag = 0; 25165 } while ((mp1 = mp1->b_cont) != NULL); 25166 } 25167 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 25168 <= mp->b_wptr); 25169 ip_fanout_tcp(q, first_mp, ill, ipha, 25170 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25171 IP_FF_SYN_ADDIRE | IP_FF_IPINFO, 25172 mctl_present, B_FALSE, zoneid); 25173 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25174 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 25175 return; 25176 } 25177 case IPPROTO_SCTP: 25178 { 25179 uint32_t ports; 25180 25181 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 25182 ip_fanout_sctp(first_mp, ill, ipha, ports, 25183 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25184 IP_FF_IPINFO, mctl_present, B_FALSE, zoneid); 25185 return; 25186 } 25187 25188 default: 25189 break; 25190 } 25191 /* 25192 * Find a client for some other protocol. We give 25193 * copies to multiple clients, if more than one is 25194 * bound. 25195 */ 25196 ip_fanout_proto(q, first_mp, ill, ipha, 25197 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 25198 mctl_present, B_FALSE, ill, zoneid); 25199 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25200 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 25201 #undef rptr 25202 } 25203 25204 /* 25205 * Update any source route, record route, or timestamp options. 25206 * Check that we are at end of strict source route. 25207 * The options have been sanity checked by ip_wput_options(). 25208 */ 25209 static void 25210 ip_wput_local_options(ipha_t *ipha, ip_stack_t *ipst) 25211 { 25212 ipoptp_t opts; 25213 uchar_t *opt; 25214 uint8_t optval; 25215 uint8_t optlen; 25216 ipaddr_t dst; 25217 uint32_t ts; 25218 ire_t *ire; 25219 timestruc_t now; 25220 25221 ip2dbg(("ip_wput_local_options\n")); 25222 for (optval = ipoptp_first(&opts, ipha); 25223 optval != IPOPT_EOL; 25224 optval = ipoptp_next(&opts)) { 25225 opt = opts.ipoptp_cur; 25226 optlen = opts.ipoptp_len; 25227 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 25228 switch (optval) { 25229 uint32_t off; 25230 case IPOPT_SSRR: 25231 case IPOPT_LSRR: 25232 off = opt[IPOPT_OFFSET]; 25233 off--; 25234 if (optlen < IP_ADDR_LEN || 25235 off > optlen - IP_ADDR_LEN) { 25236 /* End of source route */ 25237 break; 25238 } 25239 /* 25240 * This will only happen if two consecutive entries 25241 * in the source route contains our address or if 25242 * it is a packet with a loose source route which 25243 * reaches us before consuming the whole source route 25244 */ 25245 ip1dbg(("ip_wput_local_options: not end of SR\n")); 25246 if (optval == IPOPT_SSRR) { 25247 return; 25248 } 25249 /* 25250 * Hack: instead of dropping the packet truncate the 25251 * source route to what has been used by filling the 25252 * rest with IPOPT_NOP. 25253 */ 25254 opt[IPOPT_OLEN] = (uint8_t)off; 25255 while (off < optlen) { 25256 opt[off++] = IPOPT_NOP; 25257 } 25258 break; 25259 case IPOPT_RR: 25260 off = opt[IPOPT_OFFSET]; 25261 off--; 25262 if (optlen < IP_ADDR_LEN || 25263 off > optlen - IP_ADDR_LEN) { 25264 /* No more room - ignore */ 25265 ip1dbg(( 25266 "ip_wput_forward_options: end of RR\n")); 25267 break; 25268 } 25269 dst = htonl(INADDR_LOOPBACK); 25270 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25271 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25272 break; 25273 case IPOPT_TS: 25274 /* Insert timestamp if there is romm */ 25275 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25276 case IPOPT_TS_TSONLY: 25277 off = IPOPT_TS_TIMELEN; 25278 break; 25279 case IPOPT_TS_PRESPEC: 25280 case IPOPT_TS_PRESPEC_RFC791: 25281 /* Verify that the address matched */ 25282 off = opt[IPOPT_OFFSET] - 1; 25283 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 25284 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 25285 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 25286 ipst); 25287 if (ire == NULL) { 25288 /* Not for us */ 25289 break; 25290 } 25291 ire_refrele(ire); 25292 /* FALLTHRU */ 25293 case IPOPT_TS_TSANDADDR: 25294 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 25295 break; 25296 default: 25297 /* 25298 * ip_*put_options should have already 25299 * dropped this packet. 25300 */ 25301 cmn_err(CE_PANIC, "ip_wput_local_options: " 25302 "unknown IT - bug in ip_wput_options?\n"); 25303 return; /* Keep "lint" happy */ 25304 } 25305 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 25306 /* Increase overflow counter */ 25307 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 25308 opt[IPOPT_POS_OV_FLG] = (uint8_t) 25309 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 25310 (off << 4); 25311 break; 25312 } 25313 off = opt[IPOPT_OFFSET] - 1; 25314 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25315 case IPOPT_TS_PRESPEC: 25316 case IPOPT_TS_PRESPEC_RFC791: 25317 case IPOPT_TS_TSANDADDR: 25318 dst = htonl(INADDR_LOOPBACK); 25319 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25320 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25321 /* FALLTHRU */ 25322 case IPOPT_TS_TSONLY: 25323 off = opt[IPOPT_OFFSET] - 1; 25324 /* Compute # of milliseconds since midnight */ 25325 gethrestime(&now); 25326 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 25327 now.tv_nsec / (NANOSEC / MILLISEC); 25328 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 25329 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 25330 break; 25331 } 25332 break; 25333 } 25334 } 25335 } 25336 25337 /* 25338 * Send out a multicast packet on interface ipif. 25339 * The sender does not have an conn. 25340 * Caller verifies that this isn't a PHYI_LOOPBACK. 25341 */ 25342 void 25343 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif, zoneid_t zoneid) 25344 { 25345 ipha_t *ipha; 25346 ire_t *ire; 25347 ipaddr_t dst; 25348 mblk_t *first_mp; 25349 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 25350 25351 /* igmp_sendpkt always allocates a ipsec_out_t */ 25352 ASSERT(mp->b_datap->db_type == M_CTL); 25353 ASSERT(!ipif->ipif_isv6); 25354 ASSERT(!IS_LOOPBACK(ipif->ipif_ill)); 25355 25356 first_mp = mp; 25357 mp = first_mp->b_cont; 25358 ASSERT(mp->b_datap->db_type == M_DATA); 25359 ipha = (ipha_t *)mp->b_rptr; 25360 25361 /* 25362 * Find an IRE which matches the destination and the outgoing 25363 * queue (i.e. the outgoing interface.) 25364 */ 25365 if (ipif->ipif_flags & IPIF_POINTOPOINT) 25366 dst = ipif->ipif_pp_dst_addr; 25367 else 25368 dst = ipha->ipha_dst; 25369 /* 25370 * The source address has already been initialized by the 25371 * caller and hence matching on ILL (MATCH_IRE_ILL) would 25372 * be sufficient rather than MATCH_IRE_IPIF. 25373 * 25374 * This function is used for sending IGMP packets. We need 25375 * to make sure that we send the packet out of the interface 25376 * (ipif->ipif_ill) where we joined the group. This is to 25377 * prevent from switches doing IGMP snooping to send us multicast 25378 * packets for a given group on the interface we have joined. 25379 * If we can't find an ire, igmp_sendpkt has already initialized 25380 * ipsec_out_attach_if so that this will not be load spread in 25381 * ip_newroute_ipif. 25382 */ 25383 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, NULL, 25384 MATCH_IRE_ILL, ipst); 25385 if (!ire) { 25386 /* 25387 * Mark this packet to make it be delivered to 25388 * ip_wput_ire after the new ire has been 25389 * created. 25390 */ 25391 mp->b_prev = NULL; 25392 mp->b_next = NULL; 25393 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC, 25394 zoneid, &zero_info); 25395 return; 25396 } 25397 25398 /* 25399 * Honor the RTF_SETSRC flag; this is the only case 25400 * where we force this addr whatever the current src addr is, 25401 * because this address is set by igmp_sendpkt(), and 25402 * cannot be specified by any user. 25403 */ 25404 if (ire->ire_flags & RTF_SETSRC) { 25405 ipha->ipha_src = ire->ire_src_addr; 25406 } 25407 25408 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE, zoneid); 25409 } 25410 25411 /* 25412 * NOTE : This function does not ire_refrele the ire argument passed in. 25413 * 25414 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 25415 * failure. The nce_fp_mp can vanish any time in the case of 25416 * IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 25417 * the ire_lock to access the nce_fp_mp in this case. 25418 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 25419 * prepending a fastpath message IPQoS processing must precede it, we also set 25420 * the b_band of the fastpath message to that of the mblk returned by IPQoS 25421 * (IPQoS might have set the b_band for CoS marking). 25422 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 25423 * must follow it so that IPQoS can mark the dl_priority field for CoS 25424 * marking, if needed. 25425 */ 25426 static mblk_t * 25427 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, uint32_t ill_index) 25428 { 25429 uint_t hlen; 25430 ipha_t *ipha; 25431 mblk_t *mp1; 25432 boolean_t qos_done = B_FALSE; 25433 uchar_t *ll_hdr; 25434 ip_stack_t *ipst = ire->ire_ipst; 25435 25436 #define rptr ((uchar_t *)ipha) 25437 25438 ipha = (ipha_t *)mp->b_rptr; 25439 hlen = 0; 25440 LOCK_IRE_FP_MP(ire); 25441 if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) { 25442 ASSERT(DB_TYPE(mp1) == M_DATA); 25443 /* Initiate IPPF processing */ 25444 if ((proc != 0) && IPP_ENABLED(proc, ipst)) { 25445 UNLOCK_IRE_FP_MP(ire); 25446 ip_process(proc, &mp, ill_index); 25447 if (mp == NULL) 25448 return (NULL); 25449 25450 ipha = (ipha_t *)mp->b_rptr; 25451 LOCK_IRE_FP_MP(ire); 25452 if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) { 25453 qos_done = B_TRUE; 25454 goto no_fp_mp; 25455 } 25456 ASSERT(DB_TYPE(mp1) == M_DATA); 25457 } 25458 hlen = MBLKL(mp1); 25459 /* 25460 * Check if we have enough room to prepend fastpath 25461 * header 25462 */ 25463 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 25464 ll_hdr = rptr - hlen; 25465 bcopy(mp1->b_rptr, ll_hdr, hlen); 25466 /* 25467 * Set the b_rptr to the start of the link layer 25468 * header 25469 */ 25470 mp->b_rptr = ll_hdr; 25471 mp1 = mp; 25472 } else { 25473 mp1 = copyb(mp1); 25474 if (mp1 == NULL) 25475 goto unlock_err; 25476 mp1->b_band = mp->b_band; 25477 mp1->b_cont = mp; 25478 /* 25479 * certain system generated traffic may not 25480 * have cred/label in ip header block. This 25481 * is true even for a labeled system. But for 25482 * labeled traffic, inherit the label in the 25483 * new header. 25484 */ 25485 if (DB_CRED(mp) != NULL) 25486 mblk_setcred(mp1, DB_CRED(mp)); 25487 /* 25488 * XXX disable ICK_VALID and compute checksum 25489 * here; can happen if nce_fp_mp changes and 25490 * it can't be copied now due to insufficient 25491 * space. (unlikely, fp mp can change, but it 25492 * does not increase in length) 25493 */ 25494 } 25495 UNLOCK_IRE_FP_MP(ire); 25496 } else { 25497 no_fp_mp: 25498 mp1 = copyb(ire->ire_nce->nce_res_mp); 25499 if (mp1 == NULL) { 25500 unlock_err: 25501 UNLOCK_IRE_FP_MP(ire); 25502 freemsg(mp); 25503 return (NULL); 25504 } 25505 UNLOCK_IRE_FP_MP(ire); 25506 mp1->b_cont = mp; 25507 /* 25508 * certain system generated traffic may not 25509 * have cred/label in ip header block. This 25510 * is true even for a labeled system. But for 25511 * labeled traffic, inherit the label in the 25512 * new header. 25513 */ 25514 if (DB_CRED(mp) != NULL) 25515 mblk_setcred(mp1, DB_CRED(mp)); 25516 if (!qos_done && (proc != 0) && IPP_ENABLED(proc, ipst)) { 25517 ip_process(proc, &mp1, ill_index); 25518 if (mp1 == NULL) 25519 return (NULL); 25520 } 25521 } 25522 return (mp1); 25523 #undef rptr 25524 } 25525 25526 /* 25527 * Finish the outbound IPsec processing for an IPv6 packet. This function 25528 * is called from ipsec_out_process() if the IPsec packet was processed 25529 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25530 * asynchronously. 25531 */ 25532 void 25533 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 25534 ire_t *ire_arg) 25535 { 25536 in6_addr_t *v6dstp; 25537 ire_t *ire; 25538 mblk_t *mp; 25539 ip6_t *ip6h1; 25540 uint_t ill_index; 25541 ipsec_out_t *io; 25542 boolean_t attach_if, hwaccel; 25543 uint32_t flags = IP6_NO_IPPOLICY; 25544 int match_flags; 25545 zoneid_t zoneid; 25546 boolean_t ill_need_rele = B_FALSE; 25547 boolean_t ire_need_rele = B_FALSE; 25548 ip_stack_t *ipst; 25549 25550 mp = ipsec_mp->b_cont; 25551 ip6h1 = (ip6_t *)mp->b_rptr; 25552 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25553 ASSERT(io->ipsec_out_ns != NULL); 25554 ipst = io->ipsec_out_ns->netstack_ip; 25555 ill_index = io->ipsec_out_ill_index; 25556 if (io->ipsec_out_reachable) { 25557 flags |= IPV6_REACHABILITY_CONFIRMATION; 25558 } 25559 attach_if = io->ipsec_out_attach_if; 25560 hwaccel = io->ipsec_out_accelerated; 25561 zoneid = io->ipsec_out_zoneid; 25562 ASSERT(zoneid != ALL_ZONES); 25563 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 25564 /* Multicast addresses should have non-zero ill_index. */ 25565 v6dstp = &ip6h->ip6_dst; 25566 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 25567 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 25568 ASSERT(!attach_if || ill_index != 0); 25569 if (ill_index != 0) { 25570 if (ill == NULL) { 25571 ill = ip_grab_attach_ill(NULL, ipsec_mp, ill_index, 25572 B_TRUE, ipst); 25573 25574 /* Failure case frees things for us. */ 25575 if (ill == NULL) 25576 return; 25577 25578 ill_need_rele = B_TRUE; 25579 } 25580 /* 25581 * If this packet needs to go out on a particular interface 25582 * honor it. 25583 */ 25584 if (attach_if) { 25585 match_flags = MATCH_IRE_ILL; 25586 25587 /* 25588 * Check if we need an ire that will not be 25589 * looked up by anybody else i.e. HIDDEN. 25590 */ 25591 if (ill_is_probeonly(ill)) { 25592 match_flags |= MATCH_IRE_MARK_HIDDEN; 25593 } 25594 } 25595 } 25596 ASSERT(mp != NULL); 25597 25598 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 25599 boolean_t unspec_src; 25600 ipif_t *ipif; 25601 25602 /* 25603 * Use the ill_index to get the right ill. 25604 */ 25605 unspec_src = io->ipsec_out_unspec_src; 25606 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25607 if (ipif == NULL) { 25608 if (ill_need_rele) 25609 ill_refrele(ill); 25610 freemsg(ipsec_mp); 25611 return; 25612 } 25613 25614 if (ire_arg != NULL) { 25615 ire = ire_arg; 25616 } else { 25617 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25618 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25619 ire_need_rele = B_TRUE; 25620 } 25621 if (ire != NULL) { 25622 ipif_refrele(ipif); 25623 /* 25624 * XXX Do the multicast forwarding now, as the IPsec 25625 * processing has been done. 25626 */ 25627 goto send; 25628 } 25629 25630 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 25631 mp->b_prev = NULL; 25632 mp->b_next = NULL; 25633 25634 /* 25635 * If the IPsec packet was processed asynchronously, 25636 * drop it now. 25637 */ 25638 if (q == NULL) { 25639 if (ill_need_rele) 25640 ill_refrele(ill); 25641 freemsg(ipsec_mp); 25642 return; 25643 } 25644 25645 ip_newroute_ipif_v6(q, ipsec_mp, ipif, *v6dstp, 25646 unspec_src, zoneid); 25647 ipif_refrele(ipif); 25648 } else { 25649 if (attach_if) { 25650 ipif_t *ipif; 25651 25652 ipif = ipif_get_next_ipif(NULL, ill); 25653 if (ipif == NULL) { 25654 if (ill_need_rele) 25655 ill_refrele(ill); 25656 freemsg(ipsec_mp); 25657 return; 25658 } 25659 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25660 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25661 ire_need_rele = B_TRUE; 25662 ipif_refrele(ipif); 25663 } else { 25664 if (ire_arg != NULL) { 25665 ire = ire_arg; 25666 } else { 25667 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL, 25668 ipst); 25669 ire_need_rele = B_TRUE; 25670 } 25671 } 25672 if (ire != NULL) 25673 goto send; 25674 /* 25675 * ire disappeared underneath. 25676 * 25677 * What we need to do here is the ip_newroute 25678 * logic to get the ire without doing the IPsec 25679 * processing. Follow the same old path. But this 25680 * time, ip_wput or ire_add_then_send will call us 25681 * directly as all the IPsec operations are done. 25682 */ 25683 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 25684 mp->b_prev = NULL; 25685 mp->b_next = NULL; 25686 25687 /* 25688 * If the IPsec packet was processed asynchronously, 25689 * drop it now. 25690 */ 25691 if (q == NULL) { 25692 if (ill_need_rele) 25693 ill_refrele(ill); 25694 freemsg(ipsec_mp); 25695 return; 25696 } 25697 25698 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 25699 zoneid, ipst); 25700 } 25701 if (ill != NULL && ill_need_rele) 25702 ill_refrele(ill); 25703 return; 25704 send: 25705 if (ill != NULL && ill_need_rele) 25706 ill_refrele(ill); 25707 25708 /* Local delivery */ 25709 if (ire->ire_stq == NULL) { 25710 ill_t *out_ill; 25711 ASSERT(q != NULL); 25712 25713 /* PFHooks: LOOPBACK_OUT */ 25714 out_ill = ire_to_ill(ire); 25715 25716 DTRACE_PROBE4(ip6__loopback__out__start, 25717 ill_t *, NULL, ill_t *, out_ill, 25718 ip6_t *, ip6h1, mblk_t *, ipsec_mp); 25719 25720 FW_HOOKS6(ipst->ips_ip6_loopback_out_event, 25721 ipst->ips_ipv6firewall_loopback_out, 25722 NULL, out_ill, ip6h1, ipsec_mp, mp, ipst); 25723 25724 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, ipsec_mp); 25725 25726 if (ipsec_mp != NULL) 25727 ip_wput_local_v6(RD(q), out_ill, 25728 ip6h, ipsec_mp, ire, 0); 25729 if (ire_need_rele) 25730 ire_refrele(ire); 25731 return; 25732 } 25733 /* 25734 * Everything is done. Send it out on the wire. 25735 * We force the insertion of a fragment header using the 25736 * IPH_FRAG_HDR flag in two cases: 25737 * - after reception of an ICMPv6 "packet too big" message 25738 * with a MTU < 1280 (cf. RFC 2460 section 5) 25739 * - for multirouted IPv6 packets, so that the receiver can 25740 * discard duplicates according to their fragment identifier 25741 */ 25742 /* XXX fix flow control problems. */ 25743 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 25744 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 25745 if (hwaccel) { 25746 /* 25747 * hardware acceleration does not handle these 25748 * "slow path" cases. 25749 */ 25750 /* IPsec KSTATS: should bump bean counter here. */ 25751 if (ire_need_rele) 25752 ire_refrele(ire); 25753 freemsg(ipsec_mp); 25754 return; 25755 } 25756 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 25757 (mp->b_cont ? msgdsize(mp) : 25758 mp->b_wptr - (uchar_t *)ip6h)) { 25759 /* IPsec KSTATS: should bump bean counter here. */ 25760 ip0dbg(("Packet length mismatch: %d, %ld\n", 25761 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 25762 msgdsize(mp))); 25763 if (ire_need_rele) 25764 ire_refrele(ire); 25765 freemsg(ipsec_mp); 25766 return; 25767 } 25768 ASSERT(mp->b_prev == NULL); 25769 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 25770 ntohs(ip6h->ip6_plen) + 25771 IPV6_HDR_LEN, ire->ire_max_frag)); 25772 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 25773 ire->ire_max_frag); 25774 } else { 25775 UPDATE_OB_PKT_COUNT(ire); 25776 ire->ire_last_used_time = lbolt; 25777 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 25778 } 25779 if (ire_need_rele) 25780 ire_refrele(ire); 25781 freeb(ipsec_mp); 25782 } 25783 25784 void 25785 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 25786 { 25787 mblk_t *hada_mp; /* attributes M_CTL mblk */ 25788 da_ipsec_t *hada; /* data attributes */ 25789 ill_t *ill = (ill_t *)q->q_ptr; 25790 25791 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 25792 25793 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 25794 /* IPsec KSTATS: Bump lose counter here! */ 25795 freemsg(mp); 25796 return; 25797 } 25798 25799 /* 25800 * It's an IPsec packet that must be 25801 * accelerated by the Provider, and the 25802 * outbound ill is IPsec acceleration capable. 25803 * Prepends the mblk with an IPHADA_M_CTL, and ship it 25804 * to the ill. 25805 * IPsec KSTATS: should bump packet counter here. 25806 */ 25807 25808 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 25809 if (hada_mp == NULL) { 25810 /* IPsec KSTATS: should bump packet counter here. */ 25811 freemsg(mp); 25812 return; 25813 } 25814 25815 hada_mp->b_datap->db_type = M_CTL; 25816 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 25817 hada_mp->b_cont = mp; 25818 25819 hada = (da_ipsec_t *)hada_mp->b_rptr; 25820 bzero(hada, sizeof (da_ipsec_t)); 25821 hada->da_type = IPHADA_M_CTL; 25822 25823 putnext(q, hada_mp); 25824 } 25825 25826 /* 25827 * Finish the outbound IPsec processing. This function is called from 25828 * ipsec_out_process() if the IPsec packet was processed 25829 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25830 * asynchronously. 25831 */ 25832 void 25833 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 25834 ire_t *ire_arg) 25835 { 25836 uint32_t v_hlen_tos_len; 25837 ipaddr_t dst; 25838 ipif_t *ipif = NULL; 25839 ire_t *ire; 25840 ire_t *ire1 = NULL; 25841 mblk_t *next_mp = NULL; 25842 uint32_t max_frag; 25843 boolean_t multirt_send = B_FALSE; 25844 mblk_t *mp; 25845 ipha_t *ipha1; 25846 uint_t ill_index; 25847 ipsec_out_t *io; 25848 boolean_t attach_if; 25849 int match_flags; 25850 irb_t *irb = NULL; 25851 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 25852 zoneid_t zoneid; 25853 ipxmit_state_t pktxmit_state; 25854 ip_stack_t *ipst; 25855 25856 #ifdef _BIG_ENDIAN 25857 #define LENGTH (v_hlen_tos_len & 0xFFFF) 25858 #else 25859 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 25860 #endif 25861 25862 mp = ipsec_mp->b_cont; 25863 ipha1 = (ipha_t *)mp->b_rptr; 25864 ASSERT(mp != NULL); 25865 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 25866 dst = ipha->ipha_dst; 25867 25868 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25869 ill_index = io->ipsec_out_ill_index; 25870 attach_if = io->ipsec_out_attach_if; 25871 zoneid = io->ipsec_out_zoneid; 25872 ASSERT(zoneid != ALL_ZONES); 25873 ipst = io->ipsec_out_ns->netstack_ip; 25874 ASSERT(io->ipsec_out_ns != NULL); 25875 25876 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 25877 if (ill_index != 0) { 25878 if (ill == NULL) { 25879 ill = ip_grab_attach_ill(NULL, ipsec_mp, 25880 ill_index, B_FALSE, ipst); 25881 25882 /* Failure case frees things for us. */ 25883 if (ill == NULL) 25884 return; 25885 25886 ill_need_rele = B_TRUE; 25887 } 25888 /* 25889 * If this packet needs to go out on a particular interface 25890 * honor it. 25891 */ 25892 if (attach_if) { 25893 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 25894 25895 /* 25896 * Check if we need an ire that will not be 25897 * looked up by anybody else i.e. HIDDEN. 25898 */ 25899 if (ill_is_probeonly(ill)) { 25900 match_flags |= MATCH_IRE_MARK_HIDDEN; 25901 } 25902 } 25903 } 25904 25905 if (CLASSD(dst)) { 25906 boolean_t conn_dontroute; 25907 /* 25908 * Use the ill_index to get the right ipif. 25909 */ 25910 conn_dontroute = io->ipsec_out_dontroute; 25911 if (ill_index == 0) 25912 ipif = ipif_lookup_group(dst, zoneid, ipst); 25913 else 25914 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25915 if (ipif == NULL) { 25916 ip1dbg(("ip_wput_ipsec_out: No ipif for" 25917 " multicast\n")); 25918 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 25919 freemsg(ipsec_mp); 25920 goto done; 25921 } 25922 /* 25923 * ipha_src has already been intialized with the 25924 * value of the ipif in ip_wput. All we need now is 25925 * an ire to send this downstream. 25926 */ 25927 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 25928 MBLK_GETLABEL(mp), match_flags, ipst); 25929 if (ire != NULL) { 25930 ill_t *ill1; 25931 /* 25932 * Do the multicast forwarding now, as the IPsec 25933 * processing has been done. 25934 */ 25935 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 25936 (ill1 = ire_to_ill(ire))) { 25937 if (ip_mforward(ill1, ipha, mp)) { 25938 freemsg(ipsec_mp); 25939 ip1dbg(("ip_wput_ipsec_out: mforward " 25940 "failed\n")); 25941 ire_refrele(ire); 25942 goto done; 25943 } 25944 } 25945 goto send; 25946 } 25947 25948 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 25949 mp->b_prev = NULL; 25950 mp->b_next = NULL; 25951 25952 /* 25953 * If the IPsec packet was processed asynchronously, 25954 * drop it now. 25955 */ 25956 if (q == NULL) { 25957 freemsg(ipsec_mp); 25958 goto done; 25959 } 25960 25961 /* 25962 * We may be using a wrong ipif to create the ire. 25963 * But it is okay as the source address is assigned 25964 * for the packet already. Next outbound packet would 25965 * create the IRE with the right IPIF in ip_wput. 25966 * 25967 * Also handle RTF_MULTIRT routes. 25968 */ 25969 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT, 25970 zoneid, &zero_info); 25971 } else { 25972 if (attach_if) { 25973 ire = ire_ctable_lookup(dst, 0, 0, ill->ill_ipif, 25974 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25975 } else { 25976 if (ire_arg != NULL) { 25977 ire = ire_arg; 25978 ire_need_rele = B_FALSE; 25979 } else { 25980 ire = ire_cache_lookup(dst, zoneid, 25981 MBLK_GETLABEL(mp), ipst); 25982 } 25983 } 25984 if (ire != NULL) { 25985 goto send; 25986 } 25987 25988 /* 25989 * ire disappeared underneath. 25990 * 25991 * What we need to do here is the ip_newroute 25992 * logic to get the ire without doing the IPsec 25993 * processing. Follow the same old path. But this 25994 * time, ip_wput or ire_add_then_put will call us 25995 * directly as all the IPsec operations are done. 25996 */ 25997 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 25998 mp->b_prev = NULL; 25999 mp->b_next = NULL; 26000 26001 /* 26002 * If the IPsec packet was processed asynchronously, 26003 * drop it now. 26004 */ 26005 if (q == NULL) { 26006 freemsg(ipsec_mp); 26007 goto done; 26008 } 26009 26010 /* 26011 * Since we're going through ip_newroute() again, we 26012 * need to make sure we don't: 26013 * 26014 * 1.) Trigger the ASSERT() with the ipha_ident 26015 * overloading. 26016 * 2.) Redo transport-layer checksumming, since we've 26017 * already done all that to get this far. 26018 * 26019 * The easiest way not do either of the above is to set 26020 * the ipha_ident field to IP_HDR_INCLUDED. 26021 */ 26022 ipha->ipha_ident = IP_HDR_INCLUDED; 26023 ip_newroute(q, ipsec_mp, dst, (CONN_Q(q) ? Q_TO_CONN(q) : NULL), 26024 zoneid, ipst); 26025 } 26026 goto done; 26027 send: 26028 if (ire->ire_stq == NULL) { 26029 ill_t *out_ill; 26030 /* 26031 * Loopbacks go through ip_wput_local except for one case. 26032 * We come here if we generate a icmp_frag_needed message 26033 * after IPsec processing is over. When this function calls 26034 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 26035 * icmp_frag_needed. The message generated comes back here 26036 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 26037 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 26038 * source address as it is usually set in ip_wput_ire. As 26039 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 26040 * and we end up here. We can't enter ip_wput_ire once the 26041 * IPsec processing is over and hence we need to do it here. 26042 */ 26043 ASSERT(q != NULL); 26044 UPDATE_OB_PKT_COUNT(ire); 26045 ire->ire_last_used_time = lbolt; 26046 if (ipha->ipha_src == 0) 26047 ipha->ipha_src = ire->ire_src_addr; 26048 26049 /* PFHooks: LOOPBACK_OUT */ 26050 out_ill = ire_to_ill(ire); 26051 26052 DTRACE_PROBE4(ip4__loopback__out__start, 26053 ill_t *, NULL, ill_t *, out_ill, 26054 ipha_t *, ipha1, mblk_t *, ipsec_mp); 26055 26056 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 26057 ipst->ips_ipv4firewall_loopback_out, 26058 NULL, out_ill, ipha1, ipsec_mp, mp, ipst); 26059 26060 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, ipsec_mp); 26061 26062 if (ipsec_mp != NULL) 26063 ip_wput_local(RD(q), out_ill, 26064 ipha, ipsec_mp, ire, 0, zoneid); 26065 if (ire_need_rele) 26066 ire_refrele(ire); 26067 goto done; 26068 } 26069 26070 if (ire->ire_max_frag < (unsigned int)LENGTH) { 26071 /* 26072 * We are through with IPsec processing. 26073 * Fragment this and send it on the wire. 26074 */ 26075 if (io->ipsec_out_accelerated) { 26076 /* 26077 * The packet has been accelerated but must 26078 * be fragmented. This should not happen 26079 * since AH and ESP must not accelerate 26080 * packets that need fragmentation, however 26081 * the configuration could have changed 26082 * since the AH or ESP processing. 26083 * Drop packet. 26084 * IPsec KSTATS: bump bean counter here. 26085 */ 26086 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 26087 "fragmented accelerated packet!\n")); 26088 freemsg(ipsec_mp); 26089 } else { 26090 ip_wput_ire_fragmentit(ipsec_mp, ire, zoneid, ipst); 26091 } 26092 if (ire_need_rele) 26093 ire_refrele(ire); 26094 goto done; 26095 } 26096 26097 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 26098 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 26099 (void *)ire->ire_ipif, (void *)ipif)); 26100 26101 /* 26102 * Multiroute the secured packet, unless IPsec really 26103 * requires the packet to go out only through a particular 26104 * interface. 26105 */ 26106 if ((ire->ire_flags & RTF_MULTIRT) && !attach_if) { 26107 ire_t *first_ire; 26108 irb = ire->ire_bucket; 26109 ASSERT(irb != NULL); 26110 /* 26111 * This ire has been looked up as the one that 26112 * goes through the given ipif; 26113 * make sure we do not omit any other multiroute ire 26114 * that may be present in the bucket before this one. 26115 */ 26116 IRB_REFHOLD(irb); 26117 for (first_ire = irb->irb_ire; 26118 first_ire != NULL; 26119 first_ire = first_ire->ire_next) { 26120 if ((first_ire->ire_flags & RTF_MULTIRT) && 26121 (first_ire->ire_addr == ire->ire_addr) && 26122 !(first_ire->ire_marks & 26123 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 26124 break; 26125 } 26126 } 26127 26128 if ((first_ire != NULL) && (first_ire != ire)) { 26129 /* 26130 * Don't change the ire if the packet must 26131 * be fragmented if sent via this new one. 26132 */ 26133 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 26134 IRE_REFHOLD(first_ire); 26135 if (ire_need_rele) 26136 ire_refrele(ire); 26137 else 26138 ire_need_rele = B_TRUE; 26139 ire = first_ire; 26140 } 26141 } 26142 IRB_REFRELE(irb); 26143 26144 multirt_send = B_TRUE; 26145 max_frag = ire->ire_max_frag; 26146 } else { 26147 if ((ire->ire_flags & RTF_MULTIRT) && attach_if) { 26148 ip1dbg(("ip_wput_ipsec_out: ignoring multirouting " 26149 "flag, attach_if %d\n", attach_if)); 26150 } 26151 } 26152 26153 /* 26154 * In most cases, the emission loop below is entered only once. 26155 * Only in the case where the ire holds the RTF_MULTIRT 26156 * flag, we loop to process all RTF_MULTIRT ires in the 26157 * bucket, and send the packet through all crossed 26158 * RTF_MULTIRT routes. 26159 */ 26160 do { 26161 if (multirt_send) { 26162 /* 26163 * ire1 holds here the next ire to process in the 26164 * bucket. If multirouting is expected, 26165 * any non-RTF_MULTIRT ire that has the 26166 * right destination address is ignored. 26167 */ 26168 ASSERT(irb != NULL); 26169 IRB_REFHOLD(irb); 26170 for (ire1 = ire->ire_next; 26171 ire1 != NULL; 26172 ire1 = ire1->ire_next) { 26173 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 26174 continue; 26175 if (ire1->ire_addr != ire->ire_addr) 26176 continue; 26177 if (ire1->ire_marks & 26178 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 26179 continue; 26180 /* No loopback here */ 26181 if (ire1->ire_stq == NULL) 26182 continue; 26183 /* 26184 * Ensure we do not exceed the MTU 26185 * of the next route. 26186 */ 26187 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 26188 ip_multirt_bad_mtu(ire1, max_frag); 26189 continue; 26190 } 26191 26192 IRE_REFHOLD(ire1); 26193 break; 26194 } 26195 IRB_REFRELE(irb); 26196 if (ire1 != NULL) { 26197 /* 26198 * We are in a multiple send case, need to 26199 * make a copy of the packet. 26200 */ 26201 next_mp = copymsg(ipsec_mp); 26202 if (next_mp == NULL) { 26203 ire_refrele(ire1); 26204 ire1 = NULL; 26205 } 26206 } 26207 } 26208 /* 26209 * Everything is done. Send it out on the wire 26210 * 26211 * ip_xmit_v4 will call ip_wput_attach_llhdr and then 26212 * either send it on the wire or, in the case of 26213 * HW acceleration, call ipsec_hw_putnext. 26214 */ 26215 if (ire->ire_nce && 26216 ire->ire_nce->nce_state != ND_REACHABLE) { 26217 DTRACE_PROBE2(ip__wput__ipsec__bail, 26218 (ire_t *), ire, (mblk_t *), ipsec_mp); 26219 /* 26220 * If ire's link-layer is unresolved (this 26221 * would only happen if the incomplete ire 26222 * was added to cachetable via forwarding path) 26223 * don't bother going to ip_xmit_v4. Just drop the 26224 * packet. 26225 * There is a slight risk here, in that, if we 26226 * have the forwarding path create an incomplete 26227 * IRE, then until the IRE is completed, any 26228 * transmitted IPsec packets will be dropped 26229 * instead of being queued waiting for resolution. 26230 * 26231 * But the likelihood of a forwarding packet and a wput 26232 * packet sending to the same dst at the same time 26233 * and there not yet be an ARP entry for it is small. 26234 * Furthermore, if this actually happens, it might 26235 * be likely that wput would generate multiple 26236 * packets (and forwarding would also have a train 26237 * of packets) for that destination. If this is 26238 * the case, some of them would have been dropped 26239 * anyway, since ARP only queues a few packets while 26240 * waiting for resolution 26241 * 26242 * NOTE: We should really call ip_xmit_v4, 26243 * and let it queue the packet and send the 26244 * ARP query and have ARP come back thus: 26245 * <ARP> ip_wput->ip_output->ip-wput_nondata-> 26246 * ip_xmit_v4->ip_wput_attach_llhdr + ipsec 26247 * hw accel work. But it's too complex to get 26248 * the IPsec hw acceleration approach to fit 26249 * well with ip_xmit_v4 doing ARP without 26250 * doing IPsec simplification. For now, we just 26251 * poke ip_xmit_v4 to trigger the arp resolve, so 26252 * that we can continue with the send on the next 26253 * attempt. 26254 * 26255 * XXX THis should be revisited, when 26256 * the IPsec/IP interaction is cleaned up 26257 */ 26258 ip1dbg(("ip_wput_ipsec_out: ire is incomplete" 26259 " - dropping packet\n")); 26260 freemsg(ipsec_mp); 26261 /* 26262 * Call ip_xmit_v4() to trigger ARP query 26263 * in case the nce_state is ND_INITIAL 26264 */ 26265 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 26266 goto drop_pkt; 26267 } 26268 26269 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 26270 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha1, 26271 mblk_t *, ipsec_mp); 26272 FW_HOOKS(ipst->ips_ip4_physical_out_event, 26273 ipst->ips_ipv4firewall_physical_out, 26274 NULL, ire->ire_ipif->ipif_ill, ipha1, ipsec_mp, mp, ipst); 26275 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, ipsec_mp); 26276 if (ipsec_mp == NULL) 26277 goto drop_pkt; 26278 26279 ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n")); 26280 pktxmit_state = ip_xmit_v4(mp, ire, 26281 (io->ipsec_out_accelerated ? io : NULL), B_FALSE); 26282 26283 if ((pktxmit_state == SEND_FAILED) || 26284 (pktxmit_state == LLHDR_RESLV_FAILED)) { 26285 26286 freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */ 26287 drop_pkt: 26288 BUMP_MIB(((ill_t *)ire->ire_stq->q_ptr)->ill_ip_mib, 26289 ipIfStatsOutDiscards); 26290 if (ire_need_rele) 26291 ire_refrele(ire); 26292 if (ire1 != NULL) { 26293 ire_refrele(ire1); 26294 freemsg(next_mp); 26295 } 26296 goto done; 26297 } 26298 26299 freeb(ipsec_mp); 26300 if (ire_need_rele) 26301 ire_refrele(ire); 26302 26303 if (ire1 != NULL) { 26304 ire = ire1; 26305 ire_need_rele = B_TRUE; 26306 ASSERT(next_mp); 26307 ipsec_mp = next_mp; 26308 mp = ipsec_mp->b_cont; 26309 ire1 = NULL; 26310 next_mp = NULL; 26311 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26312 } else { 26313 multirt_send = B_FALSE; 26314 } 26315 } while (multirt_send); 26316 done: 26317 if (ill != NULL && ill_need_rele) 26318 ill_refrele(ill); 26319 if (ipif != NULL) 26320 ipif_refrele(ipif); 26321 } 26322 26323 /* 26324 * Get the ill corresponding to the specified ire, and compare its 26325 * capabilities with the protocol and algorithms specified by the 26326 * the SA obtained from ipsec_out. If they match, annotate the 26327 * ipsec_out structure to indicate that the packet needs acceleration. 26328 * 26329 * 26330 * A packet is eligible for outbound hardware acceleration if the 26331 * following conditions are satisfied: 26332 * 26333 * 1. the packet will not be fragmented 26334 * 2. the provider supports the algorithm 26335 * 3. there is no pending control message being exchanged 26336 * 4. snoop is not attached 26337 * 5. the destination address is not a broadcast or multicast address. 26338 * 26339 * Rationale: 26340 * - Hardware drivers do not support fragmentation with 26341 * the current interface. 26342 * - snoop, multicast, and broadcast may result in exposure of 26343 * a cleartext datagram. 26344 * We check all five of these conditions here. 26345 * 26346 * XXX would like to nuke "ire_t *" parameter here; problem is that 26347 * IRE is only way to figure out if a v4 address is a broadcast and 26348 * thus ineligible for acceleration... 26349 */ 26350 static void 26351 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 26352 { 26353 ipsec_out_t *io; 26354 mblk_t *data_mp; 26355 uint_t plen, overhead; 26356 ip_stack_t *ipst; 26357 26358 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 26359 return; 26360 26361 if (ill == NULL) 26362 return; 26363 ipst = ill->ill_ipst; 26364 /* 26365 * Destination address is a broadcast or multicast. Punt. 26366 */ 26367 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 26368 IRE_LOCAL))) 26369 return; 26370 26371 data_mp = ipsec_mp->b_cont; 26372 26373 if (ill->ill_isv6) { 26374 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 26375 26376 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 26377 return; 26378 26379 plen = ip6h->ip6_plen; 26380 } else { 26381 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 26382 26383 if (CLASSD(ipha->ipha_dst)) 26384 return; 26385 26386 plen = ipha->ipha_length; 26387 } 26388 /* 26389 * Is there a pending DLPI control message being exchanged 26390 * between IP/IPsec and the DLS Provider? If there is, it 26391 * could be a SADB update, and the state of the DLS Provider 26392 * SADB might not be in sync with the SADB maintained by 26393 * IPsec. To avoid dropping packets or using the wrong keying 26394 * material, we do not accelerate this packet. 26395 */ 26396 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 26397 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26398 "ill_dlpi_pending! don't accelerate packet\n")); 26399 return; 26400 } 26401 26402 /* 26403 * Is the Provider in promiscous mode? If it does, we don't 26404 * accelerate the packet since it will bounce back up to the 26405 * listeners in the clear. 26406 */ 26407 if (ill->ill_promisc_on_phys) { 26408 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26409 "ill in promiscous mode, don't accelerate packet\n")); 26410 return; 26411 } 26412 26413 /* 26414 * Will the packet require fragmentation? 26415 */ 26416 26417 /* 26418 * IPsec ESP note: this is a pessimistic estimate, but the same 26419 * as is used elsewhere. 26420 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 26421 * + 2-byte trailer 26422 */ 26423 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 26424 IPSEC_BASE_ESP_HDR_SIZE(sa); 26425 26426 if ((plen + overhead) > ill->ill_max_mtu) 26427 return; 26428 26429 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26430 26431 /* 26432 * Can the ill accelerate this IPsec protocol and algorithm 26433 * specified by the SA? 26434 */ 26435 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 26436 ill->ill_isv6, sa, ipst->ips_netstack)) { 26437 return; 26438 } 26439 26440 /* 26441 * Tell AH or ESP that the outbound ill is capable of 26442 * accelerating this packet. 26443 */ 26444 io->ipsec_out_is_capab_ill = B_TRUE; 26445 } 26446 26447 /* 26448 * Select which AH & ESP SA's to use (if any) for the outbound packet. 26449 * 26450 * If this function returns B_TRUE, the requested SA's have been filled 26451 * into the ipsec_out_*_sa pointers. 26452 * 26453 * If the function returns B_FALSE, the packet has been "consumed", most 26454 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 26455 * 26456 * The SA references created by the protocol-specific "select" 26457 * function will be released when the ipsec_mp is freed, thanks to the 26458 * ipsec_out_free destructor -- see spd.c. 26459 */ 26460 static boolean_t 26461 ipsec_out_select_sa(mblk_t *ipsec_mp) 26462 { 26463 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 26464 ipsec_out_t *io; 26465 ipsec_policy_t *pp; 26466 ipsec_action_t *ap; 26467 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26468 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26469 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26470 26471 if (!io->ipsec_out_secure) { 26472 /* 26473 * We came here by mistake. 26474 * Don't bother with ipsec processing 26475 * We should "discourage" this path in the future. 26476 */ 26477 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26478 return (B_FALSE); 26479 } 26480 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26481 ASSERT((io->ipsec_out_policy != NULL) || 26482 (io->ipsec_out_act != NULL)); 26483 26484 ASSERT(io->ipsec_out_failed == B_FALSE); 26485 26486 /* 26487 * IPsec processing has started. 26488 */ 26489 io->ipsec_out_proc_begin = B_TRUE; 26490 ap = io->ipsec_out_act; 26491 if (ap == NULL) { 26492 pp = io->ipsec_out_policy; 26493 ASSERT(pp != NULL); 26494 ap = pp->ipsp_act; 26495 ASSERT(ap != NULL); 26496 } 26497 26498 /* 26499 * We have an action. now, let's select SA's. 26500 * (In the future, we can cache this in the conn_t..) 26501 */ 26502 if (ap->ipa_want_esp) { 26503 if (io->ipsec_out_esp_sa == NULL) { 26504 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 26505 IPPROTO_ESP); 26506 } 26507 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 26508 } 26509 26510 if (ap->ipa_want_ah) { 26511 if (io->ipsec_out_ah_sa == NULL) { 26512 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 26513 IPPROTO_AH); 26514 } 26515 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 26516 /* 26517 * The ESP and AH processing order needs to be preserved 26518 * when both protocols are required (ESP should be applied 26519 * before AH for an outbound packet). Force an ESP ACQUIRE 26520 * when both ESP and AH are required, and an AH ACQUIRE 26521 * is needed. 26522 */ 26523 if (ap->ipa_want_esp && need_ah_acquire) 26524 need_esp_acquire = B_TRUE; 26525 } 26526 26527 /* 26528 * Send an ACQUIRE (extended, regular, or both) if we need one. 26529 * Release SAs that got referenced, but will not be used until we 26530 * acquire _all_ of the SAs we need. 26531 */ 26532 if (need_ah_acquire || need_esp_acquire) { 26533 if (io->ipsec_out_ah_sa != NULL) { 26534 IPSA_REFRELE(io->ipsec_out_ah_sa); 26535 io->ipsec_out_ah_sa = NULL; 26536 } 26537 if (io->ipsec_out_esp_sa != NULL) { 26538 IPSA_REFRELE(io->ipsec_out_esp_sa); 26539 io->ipsec_out_esp_sa = NULL; 26540 } 26541 26542 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 26543 return (B_FALSE); 26544 } 26545 26546 return (B_TRUE); 26547 } 26548 26549 /* 26550 * Process an IPSEC_OUT message and see what you can 26551 * do with it. 26552 * IPQoS Notes: 26553 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 26554 * IPsec. 26555 * XXX would like to nuke ire_t. 26556 * XXX ill_index better be "real" 26557 */ 26558 void 26559 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 26560 { 26561 ipsec_out_t *io; 26562 ipsec_policy_t *pp; 26563 ipsec_action_t *ap; 26564 ipha_t *ipha; 26565 ip6_t *ip6h; 26566 mblk_t *mp; 26567 ill_t *ill; 26568 zoneid_t zoneid; 26569 ipsec_status_t ipsec_rc; 26570 boolean_t ill_need_rele = B_FALSE; 26571 ip_stack_t *ipst; 26572 ipsec_stack_t *ipss; 26573 26574 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26575 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26576 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26577 ipst = io->ipsec_out_ns->netstack_ip; 26578 mp = ipsec_mp->b_cont; 26579 26580 /* 26581 * Initiate IPPF processing. We do it here to account for packets 26582 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 26583 * We can check for ipsec_out_proc_begin even for such packets, as 26584 * they will always be false (asserted below). 26585 */ 26586 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst) && !io->ipsec_out_proc_begin) { 26587 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 26588 io->ipsec_out_ill_index : ill_index); 26589 if (mp == NULL) { 26590 ip2dbg(("ipsec_out_process: packet dropped "\ 26591 "during IPPF processing\n")); 26592 freeb(ipsec_mp); 26593 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26594 return; 26595 } 26596 } 26597 26598 if (!io->ipsec_out_secure) { 26599 /* 26600 * We came here by mistake. 26601 * Don't bother with ipsec processing 26602 * Should "discourage" this path in the future. 26603 */ 26604 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26605 goto done; 26606 } 26607 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26608 ASSERT((io->ipsec_out_policy != NULL) || 26609 (io->ipsec_out_act != NULL)); 26610 ASSERT(io->ipsec_out_failed == B_FALSE); 26611 26612 ipss = ipst->ips_netstack->netstack_ipsec; 26613 if (!ipsec_loaded(ipss)) { 26614 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 26615 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26616 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26617 } else { 26618 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 26619 } 26620 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 26621 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 26622 &ipss->ipsec_dropper); 26623 return; 26624 } 26625 26626 /* 26627 * IPsec processing has started. 26628 */ 26629 io->ipsec_out_proc_begin = B_TRUE; 26630 ap = io->ipsec_out_act; 26631 if (ap == NULL) { 26632 pp = io->ipsec_out_policy; 26633 ASSERT(pp != NULL); 26634 ap = pp->ipsp_act; 26635 ASSERT(ap != NULL); 26636 } 26637 26638 /* 26639 * Save the outbound ill index. When the packet comes back 26640 * from IPsec, we make sure the ill hasn't changed or disappeared 26641 * before sending it the accelerated packet. 26642 */ 26643 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 26644 int ifindex; 26645 ill = ire_to_ill(ire); 26646 ifindex = ill->ill_phyint->phyint_ifindex; 26647 io->ipsec_out_capab_ill_index = ifindex; 26648 } 26649 26650 /* 26651 * The order of processing is first insert a IP header if needed. 26652 * Then insert the ESP header and then the AH header. 26653 */ 26654 if ((io->ipsec_out_se_done == B_FALSE) && 26655 (ap->ipa_want_se)) { 26656 /* 26657 * First get the outer IP header before sending 26658 * it to ESP. 26659 */ 26660 ipha_t *oipha, *iipha; 26661 mblk_t *outer_mp, *inner_mp; 26662 26663 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 26664 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 26665 "ipsec_out_process: " 26666 "Self-Encapsulation failed: Out of memory\n"); 26667 freemsg(ipsec_mp); 26668 if (ill != NULL) { 26669 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26670 } else { 26671 BUMP_MIB(&ipst->ips_ip_mib, 26672 ipIfStatsOutDiscards); 26673 } 26674 return; 26675 } 26676 inner_mp = ipsec_mp->b_cont; 26677 ASSERT(inner_mp->b_datap->db_type == M_DATA); 26678 oipha = (ipha_t *)outer_mp->b_rptr; 26679 iipha = (ipha_t *)inner_mp->b_rptr; 26680 *oipha = *iipha; 26681 outer_mp->b_wptr += sizeof (ipha_t); 26682 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 26683 sizeof (ipha_t)); 26684 oipha->ipha_protocol = IPPROTO_ENCAP; 26685 oipha->ipha_version_and_hdr_length = 26686 IP_SIMPLE_HDR_VERSION; 26687 oipha->ipha_hdr_checksum = 0; 26688 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 26689 outer_mp->b_cont = inner_mp; 26690 ipsec_mp->b_cont = outer_mp; 26691 26692 io->ipsec_out_se_done = B_TRUE; 26693 io->ipsec_out_tunnel = B_TRUE; 26694 } 26695 26696 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 26697 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 26698 !ipsec_out_select_sa(ipsec_mp)) 26699 return; 26700 26701 /* 26702 * By now, we know what SA's to use. Toss over to ESP & AH 26703 * to do the heavy lifting. 26704 */ 26705 zoneid = io->ipsec_out_zoneid; 26706 ASSERT(zoneid != ALL_ZONES); 26707 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 26708 ASSERT(io->ipsec_out_esp_sa != NULL); 26709 io->ipsec_out_esp_done = B_TRUE; 26710 /* 26711 * Note that since hw accel can only apply one transform, 26712 * not two, we skip hw accel for ESP if we also have AH 26713 * This is an design limitation of the interface 26714 * which should be revisited. 26715 */ 26716 ASSERT(ire != NULL); 26717 if (io->ipsec_out_ah_sa == NULL) { 26718 ill = (ill_t *)ire->ire_stq->q_ptr; 26719 ipsec_out_is_accelerated(ipsec_mp, 26720 io->ipsec_out_esp_sa, ill, ire); 26721 } 26722 26723 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 26724 switch (ipsec_rc) { 26725 case IPSEC_STATUS_SUCCESS: 26726 break; 26727 case IPSEC_STATUS_FAILED: 26728 if (ill != NULL) { 26729 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26730 } else { 26731 BUMP_MIB(&ipst->ips_ip_mib, 26732 ipIfStatsOutDiscards); 26733 } 26734 /* FALLTHRU */ 26735 case IPSEC_STATUS_PENDING: 26736 return; 26737 } 26738 } 26739 26740 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 26741 ASSERT(io->ipsec_out_ah_sa != NULL); 26742 io->ipsec_out_ah_done = B_TRUE; 26743 if (ire == NULL) { 26744 int idx = io->ipsec_out_capab_ill_index; 26745 ill = ill_lookup_on_ifindex(idx, B_FALSE, 26746 NULL, NULL, NULL, NULL, ipst); 26747 ill_need_rele = B_TRUE; 26748 } else { 26749 ill = (ill_t *)ire->ire_stq->q_ptr; 26750 } 26751 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 26752 ire); 26753 26754 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 26755 switch (ipsec_rc) { 26756 case IPSEC_STATUS_SUCCESS: 26757 break; 26758 case IPSEC_STATUS_FAILED: 26759 if (ill != NULL) { 26760 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26761 } else { 26762 BUMP_MIB(&ipst->ips_ip_mib, 26763 ipIfStatsOutDiscards); 26764 } 26765 /* FALLTHRU */ 26766 case IPSEC_STATUS_PENDING: 26767 if (ill != NULL && ill_need_rele) 26768 ill_refrele(ill); 26769 return; 26770 } 26771 } 26772 /* 26773 * We are done with IPsec processing. Send it over 26774 * the wire. 26775 */ 26776 done: 26777 mp = ipsec_mp->b_cont; 26778 ipha = (ipha_t *)mp->b_rptr; 26779 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26780 ip_wput_ipsec_out(q, ipsec_mp, ipha, ill, ire); 26781 } else { 26782 ip6h = (ip6_t *)ipha; 26783 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ill, ire); 26784 } 26785 if (ill != NULL && ill_need_rele) 26786 ill_refrele(ill); 26787 } 26788 26789 /* ARGSUSED */ 26790 void 26791 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 26792 { 26793 opt_restart_t *or; 26794 int err; 26795 conn_t *connp; 26796 26797 ASSERT(CONN_Q(q)); 26798 connp = Q_TO_CONN(q); 26799 26800 ASSERT(first_mp->b_datap->db_type == M_CTL); 26801 or = (opt_restart_t *)first_mp->b_rptr; 26802 /* 26803 * We don't need to pass any credentials here since this is just 26804 * a restart. The credentials are passed in when svr4_optcom_req 26805 * is called the first time (from ip_wput_nondata). 26806 */ 26807 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 26808 err = svr4_optcom_req(q, first_mp, NULL, 26809 &ip_opt_obj, B_FALSE); 26810 } else { 26811 ASSERT(or->or_type == T_OPTMGMT_REQ); 26812 err = tpi_optcom_req(q, first_mp, NULL, 26813 &ip_opt_obj, B_FALSE); 26814 } 26815 if (err != EINPROGRESS) { 26816 /* operation is done */ 26817 CONN_OPER_PENDING_DONE(connp); 26818 } 26819 } 26820 26821 /* 26822 * ioctls that go through a down/up sequence may need to wait for the down 26823 * to complete. This involves waiting for the ire and ipif refcnts to go down 26824 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 26825 */ 26826 /* ARGSUSED */ 26827 void 26828 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 26829 { 26830 struct iocblk *iocp; 26831 mblk_t *mp1; 26832 ip_ioctl_cmd_t *ipip; 26833 int err; 26834 sin_t *sin; 26835 struct lifreq *lifr; 26836 struct ifreq *ifr; 26837 26838 iocp = (struct iocblk *)mp->b_rptr; 26839 ASSERT(ipsq != NULL); 26840 /* Existence of mp1 verified in ip_wput_nondata */ 26841 mp1 = mp->b_cont->b_cont; 26842 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26843 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 26844 /* 26845 * Special case where ipsq_current_ipif is not set: 26846 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 26847 * ill could also have become part of a ipmp group in the 26848 * process, we are here as were not able to complete the 26849 * operation in ipif_set_values because we could not become 26850 * exclusive on the new ipsq, In such a case ipsq_current_ipif 26851 * will not be set so we need to set it. 26852 */ 26853 ill_t *ill = q->q_ptr; 26854 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 26855 } 26856 ASSERT(ipsq->ipsq_current_ipif != NULL); 26857 26858 if (ipip->ipi_cmd_type == IF_CMD) { 26859 /* This a old style SIOC[GS]IF* command */ 26860 ifr = (struct ifreq *)mp1->b_rptr; 26861 sin = (sin_t *)&ifr->ifr_addr; 26862 } else if (ipip->ipi_cmd_type == LIF_CMD) { 26863 /* This a new style SIOC[GS]LIF* command */ 26864 lifr = (struct lifreq *)mp1->b_rptr; 26865 sin = (sin_t *)&lifr->lifr_addr; 26866 } else { 26867 sin = NULL; 26868 } 26869 26870 err = (*ipip->ipi_func_restart)(ipsq->ipsq_current_ipif, sin, q, mp, 26871 ipip, mp1->b_rptr); 26872 26873 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 26874 } 26875 26876 /* 26877 * ioctl processing 26878 * 26879 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up 26880 * the ioctl command in the ioctl tables, determines the copyin data size 26881 * from the ipi_copyin_size field, and does an mi_copyin() of that size. 26882 * 26883 * ioctl processing then continues when the M_IOCDATA makes its way down to 26884 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its 26885 * associated 'conn' is refheld till the end of the ioctl and the general 26886 * ioctl processing function ip_process_ioctl() is called to extract the 26887 * arguments and process the ioctl. To simplify extraction, ioctl commands 26888 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a 26889 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq()) 26890 * is used to extract the ioctl's arguments. 26891 * 26892 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 26893 * so goes thru the serialization primitive ipsq_try_enter. Then the 26894 * appropriate function to handle the ioctl is called based on the entry in 26895 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 26896 * which also refreleases the 'conn' that was refheld at the start of the 26897 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 26898 * 26899 * Many exclusive ioctls go thru an internal down up sequence as part of 26900 * the operation. For example an attempt to change the IP address of an 26901 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 26902 * does all the cleanup such as deleting all ires that use this address. 26903 * Then we need to wait till all references to the interface go away. 26904 */ 26905 void 26906 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 26907 { 26908 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 26909 ip_ioctl_cmd_t *ipip = arg; 26910 ip_extract_func_t *extract_funcp; 26911 cmd_info_t ci; 26912 int err; 26913 boolean_t entered_ipsq = B_FALSE; 26914 26915 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 26916 26917 if (ipip == NULL) 26918 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26919 26920 /* 26921 * SIOCLIFADDIF needs to go thru a special path since the 26922 * ill may not exist yet. This happens in the case of lo0 26923 * which is created using this ioctl. 26924 */ 26925 if (ipip->ipi_cmd == SIOCLIFADDIF) { 26926 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 26927 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26928 return; 26929 } 26930 26931 ci.ci_ipif = NULL; 26932 if (ipip->ipi_cmd_type == MISC_CMD) { 26933 /* 26934 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF. 26935 */ 26936 if (ipip->ipi_cmd == IF_UNITSEL) { 26937 /* ioctl comes down the ill */ 26938 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 26939 ipif_refhold(ci.ci_ipif); 26940 } 26941 err = 0; 26942 ci.ci_sin = NULL; 26943 ci.ci_sin6 = NULL; 26944 ci.ci_lifr = NULL; 26945 } else { 26946 switch (ipip->ipi_cmd_type) { 26947 case IF_CMD: 26948 case LIF_CMD: 26949 extract_funcp = ip_extract_lifreq; 26950 break; 26951 26952 case ARP_CMD: 26953 case XARP_CMD: 26954 extract_funcp = ip_extract_arpreq; 26955 break; 26956 26957 case TUN_CMD: 26958 extract_funcp = ip_extract_tunreq; 26959 break; 26960 26961 case MSFILT_CMD: 26962 extract_funcp = ip_extract_msfilter; 26963 break; 26964 26965 default: 26966 ASSERT(0); 26967 } 26968 26969 err = (*extract_funcp)(q, mp, ipip, &ci, ip_process_ioctl); 26970 if (err != 0) { 26971 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26972 return; 26973 } 26974 26975 /* 26976 * All of the extraction functions return a refheld ipif. 26977 */ 26978 ASSERT(ci.ci_ipif != NULL); 26979 } 26980 26981 /* 26982 * If ipsq is non-null, we are already being called exclusively 26983 */ 26984 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 26985 if (!(ipip->ipi_flags & IPI_WR)) { 26986 /* 26987 * A return value of EINPROGRESS means the ioctl is 26988 * either queued and waiting for some reason or has 26989 * already completed. 26990 */ 26991 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 26992 ci.ci_lifr); 26993 if (ci.ci_ipif != NULL) 26994 ipif_refrele(ci.ci_ipif); 26995 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26996 return; 26997 } 26998 26999 ASSERT(ci.ci_ipif != NULL); 27000 27001 if (ipsq == NULL) { 27002 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, 27003 ip_process_ioctl, NEW_OP, B_TRUE); 27004 entered_ipsq = B_TRUE; 27005 } 27006 /* 27007 * Release the ipif so that ipif_down and friends that wait for 27008 * references to go away are not misled about the current ipif_refcnt 27009 * values. We are writer so we can access the ipif even after releasing 27010 * the ipif. 27011 */ 27012 ipif_refrele(ci.ci_ipif); 27013 if (ipsq == NULL) 27014 return; 27015 27016 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 27017 27018 /* 27019 * For most set ioctls that come here, this serves as a single point 27020 * where we set the IPIF_CHANGING flag. This ensures that there won't 27021 * be any new references to the ipif. This helps functions that go 27022 * through this path and end up trying to wait for the refcnts 27023 * associated with the ipif to go down to zero. Some exceptions are 27024 * Failover, Failback, and Groupname commands that operate on more than 27025 * just the ci.ci_ipif. These commands internally determine the 27026 * set of ipif's they operate on and set and clear the IPIF_CHANGING 27027 * flags on that set. Another exception is the Removeif command that 27028 * sets the IPIF_CONDEMNED flag internally after identifying the right 27029 * ipif to operate on. 27030 */ 27031 mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock); 27032 if (ipip->ipi_cmd != SIOCLIFREMOVEIF && 27033 ipip->ipi_cmd != SIOCLIFFAILOVER && 27034 ipip->ipi_cmd != SIOCLIFFAILBACK && 27035 ipip->ipi_cmd != SIOCSLIFGROUPNAME) 27036 (ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING; 27037 mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock); 27038 27039 /* 27040 * A return value of EINPROGRESS means the ioctl is 27041 * either queued and waiting for some reason or has 27042 * already completed. 27043 */ 27044 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 27045 27046 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 27047 27048 if (entered_ipsq) 27049 ipsq_exit(ipsq, B_TRUE, B_TRUE); 27050 } 27051 27052 /* 27053 * Complete the ioctl. Typically ioctls use the mi package and need to 27054 * do mi_copyout/mi_copy_done. 27055 */ 27056 void 27057 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 27058 { 27059 conn_t *connp = NULL; 27060 27061 if (err == EINPROGRESS) 27062 return; 27063 27064 if (CONN_Q(q)) { 27065 connp = Q_TO_CONN(q); 27066 ASSERT(connp->conn_ref >= 2); 27067 } 27068 27069 switch (mode) { 27070 case COPYOUT: 27071 if (err == 0) 27072 mi_copyout(q, mp); 27073 else 27074 mi_copy_done(q, mp, err); 27075 break; 27076 27077 case NO_COPYOUT: 27078 mi_copy_done(q, mp, err); 27079 break; 27080 27081 default: 27082 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 27083 break; 27084 } 27085 27086 /* 27087 * The refhold placed at the start of the ioctl is released here. 27088 */ 27089 if (connp != NULL) 27090 CONN_OPER_PENDING_DONE(connp); 27091 27092 if (ipsq != NULL) 27093 ipsq_current_finish(ipsq); 27094 } 27095 27096 /* 27097 * This is called from ip_wput_nondata to resume a deferred TCP bind. 27098 */ 27099 /* ARGSUSED */ 27100 void 27101 ip_resume_tcp_bind(void *arg, mblk_t *mp, void *arg2) 27102 { 27103 conn_t *connp = arg; 27104 tcp_t *tcp; 27105 27106 ASSERT(connp != NULL && IPCL_IS_TCP(connp) && connp->conn_tcp != NULL); 27107 tcp = connp->conn_tcp; 27108 27109 if (connp->conn_tcp->tcp_state == TCPS_CLOSED) 27110 freemsg(mp); 27111 else 27112 tcp_rput_other(tcp, mp); 27113 CONN_OPER_PENDING_DONE(connp); 27114 } 27115 27116 /* Called from ip_wput for all non data messages */ 27117 /* ARGSUSED */ 27118 void 27119 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 27120 { 27121 mblk_t *mp1; 27122 ire_t *ire, *fake_ire; 27123 ill_t *ill; 27124 struct iocblk *iocp; 27125 ip_ioctl_cmd_t *ipip; 27126 cred_t *cr; 27127 conn_t *connp; 27128 int err; 27129 nce_t *nce; 27130 ipif_t *ipif; 27131 ip_stack_t *ipst; 27132 char *proto_str; 27133 27134 if (CONN_Q(q)) { 27135 connp = Q_TO_CONN(q); 27136 ipst = connp->conn_netstack->netstack_ip; 27137 } else { 27138 connp = NULL; 27139 ipst = ILLQ_TO_IPST(q); 27140 } 27141 27142 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(q)); 27143 27144 switch (DB_TYPE(mp)) { 27145 case M_IOCTL: 27146 /* 27147 * IOCTL processing begins in ip_sioctl_copyin_setup which 27148 * will arrange to copy in associated control structures. 27149 */ 27150 ip_sioctl_copyin_setup(q, mp); 27151 return; 27152 case M_IOCDATA: 27153 /* 27154 * Ensure that this is associated with one of our trans- 27155 * parent ioctls. If it's not ours, discard it if we're 27156 * running as a driver, or pass it on if we're a module. 27157 */ 27158 iocp = (struct iocblk *)mp->b_rptr; 27159 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27160 if (ipip == NULL) { 27161 if (q->q_next == NULL) { 27162 goto nak; 27163 } else { 27164 putnext(q, mp); 27165 } 27166 return; 27167 } 27168 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 27169 /* 27170 * the ioctl is one we recognise, but is not 27171 * consumed by IP as a module, pass M_IOCDATA 27172 * for processing downstream, but only for 27173 * common Streams ioctls. 27174 */ 27175 if (ipip->ipi_flags & IPI_PASS_DOWN) { 27176 putnext(q, mp); 27177 return; 27178 } else { 27179 goto nak; 27180 } 27181 } 27182 27183 /* IOCTL continuation following copyin or copyout. */ 27184 if (mi_copy_state(q, mp, NULL) == -1) { 27185 /* 27186 * The copy operation failed. mi_copy_state already 27187 * cleaned up, so we're out of here. 27188 */ 27189 return; 27190 } 27191 /* 27192 * If we just completed a copy in, we become writer and 27193 * continue processing in ip_sioctl_copyin_done. If it 27194 * was a copy out, we call mi_copyout again. If there is 27195 * nothing more to copy out, it will complete the IOCTL. 27196 */ 27197 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 27198 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 27199 mi_copy_done(q, mp, EPROTO); 27200 return; 27201 } 27202 /* 27203 * Check for cases that need more copying. A return 27204 * value of 0 means a second copyin has been started, 27205 * so we return; a return value of 1 means no more 27206 * copying is needed, so we continue. 27207 */ 27208 if (ipip->ipi_cmd_type == MSFILT_CMD && 27209 MI_COPY_COUNT(mp) == 1) { 27210 if (ip_copyin_msfilter(q, mp) == 0) 27211 return; 27212 } 27213 /* 27214 * Refhold the conn, till the ioctl completes. This is 27215 * needed in case the ioctl ends up in the pending mp 27216 * list. Every mp in the ill_pending_mp list and 27217 * the ipsq_pending_mp must have a refhold on the conn 27218 * to resume processing. The refhold is released when 27219 * the ioctl completes. (normally or abnormally) 27220 * In all cases ip_ioctl_finish is called to finish 27221 * the ioctl. 27222 */ 27223 if (connp != NULL) { 27224 /* This is not a reentry */ 27225 ASSERT(ipsq == NULL); 27226 CONN_INC_REF(connp); 27227 } else { 27228 if (!(ipip->ipi_flags & IPI_MODOK)) { 27229 mi_copy_done(q, mp, EINVAL); 27230 return; 27231 } 27232 } 27233 27234 ip_process_ioctl(ipsq, q, mp, ipip); 27235 27236 } else { 27237 mi_copyout(q, mp); 27238 } 27239 return; 27240 nak: 27241 iocp->ioc_error = EINVAL; 27242 mp->b_datap->db_type = M_IOCNAK; 27243 iocp->ioc_count = 0; 27244 qreply(q, mp); 27245 return; 27246 27247 case M_IOCNAK: 27248 /* 27249 * The only way we could get here is if a resolver didn't like 27250 * an IOCTL we sent it. This shouldn't happen. 27251 */ 27252 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 27253 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 27254 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 27255 freemsg(mp); 27256 return; 27257 case M_IOCACK: 27258 /* /dev/ip shouldn't see this */ 27259 if (CONN_Q(q)) 27260 goto nak; 27261 27262 /* Finish socket ioctls passed through to ARP. */ 27263 ip_sioctl_iocack(q, mp); 27264 return; 27265 case M_FLUSH: 27266 if (*mp->b_rptr & FLUSHW) 27267 flushq(q, FLUSHALL); 27268 if (q->q_next) { 27269 putnext(q, mp); 27270 return; 27271 } 27272 if (*mp->b_rptr & FLUSHR) { 27273 *mp->b_rptr &= ~FLUSHW; 27274 qreply(q, mp); 27275 return; 27276 } 27277 freemsg(mp); 27278 return; 27279 case IRE_DB_REQ_TYPE: 27280 if (connp == NULL) { 27281 proto_str = "IRE_DB_REQ_TYPE"; 27282 goto protonak; 27283 } 27284 /* An Upper Level Protocol wants a copy of an IRE. */ 27285 ip_ire_req(q, mp); 27286 return; 27287 case M_CTL: 27288 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 27289 break; 27290 27291 if (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == 27292 TUN_HELLO) { 27293 ASSERT(connp != NULL); 27294 connp->conn_flags |= IPCL_IPTUN; 27295 freeb(mp); 27296 return; 27297 } 27298 27299 /* M_CTL messages are used by ARP to tell us things. */ 27300 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 27301 break; 27302 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 27303 case AR_ENTRY_SQUERY: 27304 ip_wput_ctl(q, mp); 27305 return; 27306 case AR_CLIENT_NOTIFY: 27307 ip_arp_news(q, mp); 27308 return; 27309 case AR_DLPIOP_DONE: 27310 ASSERT(q->q_next != NULL); 27311 ill = (ill_t *)q->q_ptr; 27312 /* qwriter_ip releases the refhold */ 27313 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 27314 ill_refhold(ill); 27315 qwriter_ip(ill, q, mp, ip_arp_done, CUR_OP, B_FALSE); 27316 return; 27317 case AR_ARP_CLOSING: 27318 /* 27319 * ARP (above us) is closing. If no ARP bringup is 27320 * currently pending, ack the message so that ARP 27321 * can complete its close. Also mark ill_arp_closing 27322 * so that new ARP bringups will fail. If any 27323 * ARP bringup is currently in progress, we will 27324 * ack this when the current ARP bringup completes. 27325 */ 27326 ASSERT(q->q_next != NULL); 27327 ill = (ill_t *)q->q_ptr; 27328 mutex_enter(&ill->ill_lock); 27329 ill->ill_arp_closing = 1; 27330 if (!ill->ill_arp_bringup_pending) { 27331 mutex_exit(&ill->ill_lock); 27332 qreply(q, mp); 27333 } else { 27334 mutex_exit(&ill->ill_lock); 27335 freemsg(mp); 27336 } 27337 return; 27338 case AR_ARP_EXTEND: 27339 /* 27340 * The ARP module above us is capable of duplicate 27341 * address detection. Old ATM drivers will not send 27342 * this message. 27343 */ 27344 ASSERT(q->q_next != NULL); 27345 ill = (ill_t *)q->q_ptr; 27346 ill->ill_arp_extend = B_TRUE; 27347 freemsg(mp); 27348 return; 27349 default: 27350 break; 27351 } 27352 break; 27353 case M_PROTO: 27354 case M_PCPROTO: 27355 /* 27356 * The only PROTO messages we expect are ULP binds and 27357 * copies of option negotiation acknowledgements. 27358 */ 27359 switch (((union T_primitives *)mp->b_rptr)->type) { 27360 case O_T_BIND_REQ: 27361 case T_BIND_REQ: { 27362 /* Request can get queued in bind */ 27363 if (connp == NULL) { 27364 proto_str = "O_T_BIND_REQ/T_BIND_REQ"; 27365 goto protonak; 27366 } 27367 /* 27368 * The transports except SCTP call ip_bind_{v4,v6}() 27369 * directly instead of a a putnext. SCTP doesn't 27370 * generate any T_BIND_REQ since it has its own 27371 * fanout data structures. However, ESP and AH 27372 * come in for regular binds; all other cases are 27373 * bind retries. 27374 */ 27375 ASSERT(!IPCL_IS_SCTP(connp)); 27376 27377 /* Don't increment refcnt if this is a re-entry */ 27378 if (ipsq == NULL) 27379 CONN_INC_REF(connp); 27380 27381 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 27382 connp, NULL) : ip_bind_v4(q, mp, connp); 27383 if (mp == NULL) 27384 return; 27385 if (IPCL_IS_TCP(connp)) { 27386 /* 27387 * In the case of TCP endpoint we 27388 * come here only for bind retries 27389 */ 27390 ASSERT(ipsq != NULL); 27391 CONN_INC_REF(connp); 27392 squeue_fill(connp->conn_sqp, mp, 27393 ip_resume_tcp_bind, connp, 27394 SQTAG_BIND_RETRY); 27395 } else if (IPCL_IS_UDP(connp)) { 27396 /* 27397 * In the case of UDP endpoint we 27398 * come here only for bind retries 27399 */ 27400 ASSERT(ipsq != NULL); 27401 udp_resume_bind(connp, mp); 27402 } else if (IPCL_IS_RAWIP(connp)) { 27403 /* 27404 * In the case of RAWIP endpoint we 27405 * come here only for bind retries 27406 */ 27407 ASSERT(ipsq != NULL); 27408 rawip_resume_bind(connp, mp); 27409 } else { 27410 /* The case of AH and ESP */ 27411 qreply(q, mp); 27412 CONN_OPER_PENDING_DONE(connp); 27413 } 27414 return; 27415 } 27416 case T_SVR4_OPTMGMT_REQ: 27417 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 27418 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 27419 27420 if (connp == NULL) { 27421 proto_str = "T_SVR4_OPTMGMT_REQ"; 27422 goto protonak; 27423 } 27424 27425 if (!snmpcom_req(q, mp, ip_snmp_set, 27426 ip_snmp_get, cr)) { 27427 /* 27428 * Call svr4_optcom_req so that it can 27429 * generate the ack. We don't come here 27430 * if this operation is being restarted. 27431 * ip_restart_optmgmt will drop the conn ref. 27432 * In the case of ipsec option after the ipsec 27433 * load is complete conn_restart_ipsec_waiter 27434 * drops the conn ref. 27435 */ 27436 ASSERT(ipsq == NULL); 27437 CONN_INC_REF(connp); 27438 if (ip_check_for_ipsec_opt(q, mp)) 27439 return; 27440 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj, 27441 B_FALSE); 27442 if (err != EINPROGRESS) { 27443 /* Operation is done */ 27444 CONN_OPER_PENDING_DONE(connp); 27445 } 27446 } 27447 return; 27448 case T_OPTMGMT_REQ: 27449 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 27450 /* 27451 * Note: No snmpcom_req support through new 27452 * T_OPTMGMT_REQ. 27453 * Call tpi_optcom_req so that it can 27454 * generate the ack. 27455 */ 27456 if (connp == NULL) { 27457 proto_str = "T_OPTMGMT_REQ"; 27458 goto protonak; 27459 } 27460 27461 ASSERT(ipsq == NULL); 27462 /* 27463 * We don't come here for restart. ip_restart_optmgmt 27464 * will drop the conn ref. In the case of ipsec option 27465 * after the ipsec load is complete 27466 * conn_restart_ipsec_waiter drops the conn ref. 27467 */ 27468 CONN_INC_REF(connp); 27469 if (ip_check_for_ipsec_opt(q, mp)) 27470 return; 27471 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj, B_FALSE); 27472 if (err != EINPROGRESS) { 27473 /* Operation is done */ 27474 CONN_OPER_PENDING_DONE(connp); 27475 } 27476 return; 27477 case T_UNBIND_REQ: 27478 if (connp == NULL) { 27479 proto_str = "T_UNBIND_REQ"; 27480 goto protonak; 27481 } 27482 mp = ip_unbind(q, mp); 27483 qreply(q, mp); 27484 return; 27485 default: 27486 /* 27487 * Have to drop any DLPI messages coming down from 27488 * arp (such as an info_req which would cause ip 27489 * to receive an extra info_ack if it was passed 27490 * through. 27491 */ 27492 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 27493 (int)*(uint_t *)mp->b_rptr)); 27494 freemsg(mp); 27495 return; 27496 } 27497 /* NOTREACHED */ 27498 case IRE_DB_TYPE: { 27499 nce_t *nce; 27500 ill_t *ill; 27501 in6_addr_t gw_addr_v6; 27502 27503 27504 /* 27505 * This is a response back from a resolver. It 27506 * consists of a message chain containing: 27507 * IRE_MBLK-->LL_HDR_MBLK->pkt 27508 * The IRE_MBLK is the one we allocated in ip_newroute. 27509 * The LL_HDR_MBLK is the DLPI header to use to get 27510 * the attached packet, and subsequent ones for the 27511 * same destination, transmitted. 27512 */ 27513 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 27514 break; 27515 /* 27516 * First, check to make sure the resolution succeeded. 27517 * If it failed, the second mblk will be empty. 27518 * If it is, free the chain, dropping the packet. 27519 * (We must ire_delete the ire; that frees the ire mblk) 27520 * We're doing this now to support PVCs for ATM; it's 27521 * a partial xresolv implementation. When we fully implement 27522 * xresolv interfaces, instead of freeing everything here 27523 * we'll initiate neighbor discovery. 27524 * 27525 * For v4 (ARP and other external resolvers) the resolver 27526 * frees the message, so no check is needed. This check 27527 * is required, though, for a full xresolve implementation. 27528 * Including this code here now both shows how external 27529 * resolvers can NACK a resolution request using an 27530 * existing design that has no specific provisions for NACKs, 27531 * and also takes into account that the current non-ARP 27532 * external resolver has been coded to use this method of 27533 * NACKing for all IPv6 (xresolv) cases, 27534 * whether our xresolv implementation is complete or not. 27535 * 27536 */ 27537 ire = (ire_t *)mp->b_rptr; 27538 ill = ire_to_ill(ire); 27539 mp1 = mp->b_cont; /* dl_unitdata_req */ 27540 if (mp1->b_rptr == mp1->b_wptr) { 27541 if (ire->ire_ipversion == IPV6_VERSION) { 27542 /* 27543 * XRESOLV interface. 27544 */ 27545 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27546 mutex_enter(&ire->ire_lock); 27547 gw_addr_v6 = ire->ire_gateway_addr_v6; 27548 mutex_exit(&ire->ire_lock); 27549 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27550 nce = ndp_lookup_v6(ill, 27551 &ire->ire_addr_v6, B_FALSE); 27552 } else { 27553 nce = ndp_lookup_v6(ill, &gw_addr_v6, 27554 B_FALSE); 27555 } 27556 if (nce != NULL) { 27557 nce_resolv_failed(nce); 27558 ndp_delete(nce); 27559 NCE_REFRELE(nce); 27560 } 27561 } 27562 mp->b_cont = NULL; 27563 freemsg(mp1); /* frees the pkt as well */ 27564 ASSERT(ire->ire_nce == NULL); 27565 ire_delete((ire_t *)mp->b_rptr); 27566 return; 27567 } 27568 27569 /* 27570 * Split them into IRE_MBLK and pkt and feed it into 27571 * ire_add_then_send. Then in ire_add_then_send 27572 * the IRE will be added, and then the packet will be 27573 * run back through ip_wput. This time it will make 27574 * it to the wire. 27575 */ 27576 mp->b_cont = NULL; 27577 mp = mp1->b_cont; /* now, mp points to pkt */ 27578 mp1->b_cont = NULL; 27579 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 27580 if (ire->ire_ipversion == IPV6_VERSION) { 27581 /* 27582 * XRESOLV interface. Find the nce and put a copy 27583 * of the dl_unitdata_req in nce_res_mp 27584 */ 27585 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27586 mutex_enter(&ire->ire_lock); 27587 gw_addr_v6 = ire->ire_gateway_addr_v6; 27588 mutex_exit(&ire->ire_lock); 27589 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27590 nce = ndp_lookup_v6(ill, &ire->ire_addr_v6, 27591 B_FALSE); 27592 } else { 27593 nce = ndp_lookup_v6(ill, &gw_addr_v6, B_FALSE); 27594 } 27595 if (nce != NULL) { 27596 /* 27597 * We have to protect nce_res_mp here 27598 * from being accessed by other threads 27599 * while we change the mblk pointer. 27600 * Other functions will also lock the nce when 27601 * accessing nce_res_mp. 27602 * 27603 * The reason we change the mblk pointer 27604 * here rather than copying the resolved address 27605 * into the template is that, unlike with 27606 * ethernet, we have no guarantee that the 27607 * resolved address length will be 27608 * smaller than or equal to the lla length 27609 * with which the template was allocated, 27610 * (for ethernet, they're equal) 27611 * so we have to use the actual resolved 27612 * address mblk - which holds the real 27613 * dl_unitdata_req with the resolved address. 27614 * 27615 * Doing this is the same behavior as was 27616 * previously used in the v4 ARP case. 27617 */ 27618 mutex_enter(&nce->nce_lock); 27619 if (nce->nce_res_mp != NULL) 27620 freemsg(nce->nce_res_mp); 27621 nce->nce_res_mp = mp1; 27622 mutex_exit(&nce->nce_lock); 27623 /* 27624 * We do a fastpath probe here because 27625 * we have resolved the address without 27626 * using Neighbor Discovery. 27627 * In the non-XRESOLV v6 case, the fastpath 27628 * probe is done right after neighbor 27629 * discovery completes. 27630 */ 27631 if (nce->nce_res_mp != NULL) { 27632 int res; 27633 nce_fastpath_list_add(nce); 27634 res = ill_fastpath_probe(ill, 27635 nce->nce_res_mp); 27636 if (res != 0 && res != EAGAIN) 27637 nce_fastpath_list_delete(nce); 27638 } 27639 27640 ire_add_then_send(q, ire, mp); 27641 /* 27642 * Now we have to clean out any packets 27643 * that may have been queued on the nce 27644 * while it was waiting for address resolution 27645 * to complete. 27646 */ 27647 mutex_enter(&nce->nce_lock); 27648 mp1 = nce->nce_qd_mp; 27649 nce->nce_qd_mp = NULL; 27650 mutex_exit(&nce->nce_lock); 27651 while (mp1 != NULL) { 27652 mblk_t *nxt_mp; 27653 queue_t *fwdq = NULL; 27654 ill_t *inbound_ill; 27655 uint_t ifindex; 27656 27657 nxt_mp = mp1->b_next; 27658 mp1->b_next = NULL; 27659 /* 27660 * Retrieve ifindex stored in 27661 * ip_rput_data_v6() 27662 */ 27663 ifindex = 27664 (uint_t)(uintptr_t)mp1->b_prev; 27665 inbound_ill = 27666 ill_lookup_on_ifindex(ifindex, 27667 B_TRUE, NULL, NULL, NULL, 27668 NULL, ipst); 27669 mp1->b_prev = NULL; 27670 if (inbound_ill != NULL) 27671 fwdq = inbound_ill->ill_rq; 27672 27673 if (fwdq != NULL) { 27674 put(fwdq, mp1); 27675 ill_refrele(inbound_ill); 27676 } else 27677 put(WR(ill->ill_rq), mp1); 27678 mp1 = nxt_mp; 27679 } 27680 NCE_REFRELE(nce); 27681 } else { /* nce is NULL; clean up */ 27682 ire_delete(ire); 27683 freemsg(mp); 27684 freemsg(mp1); 27685 return; 27686 } 27687 } else { 27688 nce_t *arpce; 27689 /* 27690 * Link layer resolution succeeded. Recompute the 27691 * ire_nce. 27692 */ 27693 ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST)); 27694 if ((arpce = ndp_lookup_v4(ill, 27695 (ire->ire_gateway_addr != INADDR_ANY ? 27696 &ire->ire_gateway_addr : &ire->ire_addr), 27697 B_FALSE)) == NULL) { 27698 freeb(ire->ire_mp); 27699 freeb(mp1); 27700 freemsg(mp); 27701 return; 27702 } 27703 mutex_enter(&arpce->nce_lock); 27704 arpce->nce_last = TICK_TO_MSEC(lbolt64); 27705 if (arpce->nce_state == ND_REACHABLE) { 27706 /* 27707 * Someone resolved this before us; 27708 * cleanup the res_mp. Since ire has 27709 * not been added yet, the call to ire_add_v4 27710 * from ire_add_then_send (when a dup is 27711 * detected) will clean up the ire. 27712 */ 27713 freeb(mp1); 27714 } else { 27715 ASSERT(arpce->nce_res_mp == NULL); 27716 arpce->nce_res_mp = mp1; 27717 arpce->nce_state = ND_REACHABLE; 27718 } 27719 mutex_exit(&arpce->nce_lock); 27720 if (ire->ire_marks & IRE_MARK_NOADD) { 27721 /* 27722 * this ire will not be added to the ire 27723 * cache table, so we can set the ire_nce 27724 * here, as there are no atomicity constraints. 27725 */ 27726 ire->ire_nce = arpce; 27727 /* 27728 * We are associating this nce with the ire 27729 * so change the nce ref taken in 27730 * ndp_lookup_v4() from 27731 * NCE_REFHOLD to NCE_REFHOLD_NOTR 27732 */ 27733 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 27734 } else { 27735 NCE_REFRELE(arpce); 27736 } 27737 ire_add_then_send(q, ire, mp); 27738 } 27739 return; /* All is well, the packet has been sent. */ 27740 } 27741 case IRE_ARPRESOLVE_TYPE: { 27742 27743 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */ 27744 break; 27745 mp1 = mp->b_cont; /* dl_unitdata_req */ 27746 mp->b_cont = NULL; 27747 /* 27748 * First, check to make sure the resolution succeeded. 27749 * If it failed, the second mblk will be empty. 27750 */ 27751 if (mp1->b_rptr == mp1->b_wptr) { 27752 /* cleanup the incomplete ire, free queued packets */ 27753 freemsg(mp); /* fake ire */ 27754 freeb(mp1); /* dl_unitdata response */ 27755 return; 27756 } 27757 27758 /* 27759 * update any incomplete nce_t found. we lookup the ctable 27760 * and find the nce from the ire->ire_nce because we need 27761 * to pass the ire to ip_xmit_v4 later, and can find both 27762 * ire and nce in one lookup from the ctable. 27763 */ 27764 fake_ire = (ire_t *)mp->b_rptr; 27765 /* 27766 * By the time we come back here from ARP 27767 * the logical outgoing interface of the incomplete ire 27768 * we added in ire_forward could have disappeared, 27769 * causing the incomplete ire to also have 27770 * dissapeared. So we need to retreive the 27771 * proper ipif for the ire before looking 27772 * in ctable; do the ctablelookup based on ire_ipif_seqid 27773 */ 27774 ill = q->q_ptr; 27775 27776 /* Get the outgoing ipif */ 27777 mutex_enter(&ill->ill_lock); 27778 if (ill->ill_state_flags & ILL_CONDEMNED) { 27779 mutex_exit(&ill->ill_lock); 27780 freemsg(mp); /* fake ire */ 27781 freeb(mp1); /* dl_unitdata response */ 27782 return; 27783 } 27784 ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid); 27785 27786 if (ipif == NULL) { 27787 mutex_exit(&ill->ill_lock); 27788 ip1dbg(("logical intrf to incomplete ire vanished\n")); 27789 freemsg(mp); 27790 freeb(mp1); 27791 return; 27792 } 27793 ipif_refhold_locked(ipif); 27794 mutex_exit(&ill->ill_lock); 27795 ire = ire_ctable_lookup(fake_ire->ire_addr, 27796 fake_ire->ire_gateway_addr, IRE_CACHE, 27797 ipif, fake_ire->ire_zoneid, NULL, 27798 (MATCH_IRE_GW|MATCH_IRE_IPIF|MATCH_IRE_ZONEONLY), ipst); 27799 ipif_refrele(ipif); 27800 if (ire == NULL) { 27801 /* 27802 * no ire was found; check if there is an nce 27803 * for this lookup; if it has no ire's pointing at it 27804 * cleanup. 27805 */ 27806 if ((nce = ndp_lookup_v4(ill, 27807 (fake_ire->ire_gateway_addr != INADDR_ANY ? 27808 &fake_ire->ire_gateway_addr : &fake_ire->ire_addr), 27809 B_FALSE)) != NULL) { 27810 /* 27811 * cleanup: 27812 * We check for refcnt 2 (one for the nce 27813 * hash list + 1 for the ref taken by 27814 * ndp_lookup_v4) to check that there are 27815 * no ire's pointing at the nce. 27816 */ 27817 if (nce->nce_refcnt == 2) 27818 ndp_delete(nce); 27819 NCE_REFRELE(nce); 27820 } 27821 freeb(mp1); /* dl_unitdata response */ 27822 freemsg(mp); /* fake ire */ 27823 return; 27824 } 27825 nce = ire->ire_nce; 27826 DTRACE_PROBE2(ire__arpresolve__type, 27827 ire_t *, ire, nce_t *, nce); 27828 ASSERT(nce->nce_state != ND_INITIAL); 27829 mutex_enter(&nce->nce_lock); 27830 nce->nce_last = TICK_TO_MSEC(lbolt64); 27831 if (nce->nce_state == ND_REACHABLE) { 27832 /* 27833 * Someone resolved this before us; 27834 * our response is not needed any more. 27835 */ 27836 mutex_exit(&nce->nce_lock); 27837 freeb(mp1); /* dl_unitdata response */ 27838 } else { 27839 ASSERT(nce->nce_res_mp == NULL); 27840 nce->nce_res_mp = mp1; 27841 nce->nce_state = ND_REACHABLE; 27842 mutex_exit(&nce->nce_lock); 27843 nce_fastpath(nce); 27844 } 27845 /* 27846 * The cached nce_t has been updated to be reachable; 27847 * Clear the IRE_MARK_UNCACHED flag and free the fake_ire. 27848 */ 27849 fake_ire->ire_marks &= ~IRE_MARK_UNCACHED; 27850 freemsg(mp); 27851 /* 27852 * send out queued packets. 27853 */ 27854 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 27855 27856 IRE_REFRELE(ire); 27857 return; 27858 } 27859 default: 27860 break; 27861 } 27862 if (q->q_next) { 27863 putnext(q, mp); 27864 } else 27865 freemsg(mp); 27866 return; 27867 27868 protonak: 27869 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 27870 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 27871 qreply(q, mp); 27872 } 27873 27874 /* 27875 * Process IP options in an outbound packet. Modify the destination if there 27876 * is a source route option. 27877 * Returns non-zero if something fails in which case an ICMP error has been 27878 * sent and mp freed. 27879 */ 27880 static int 27881 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 27882 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 27883 { 27884 ipoptp_t opts; 27885 uchar_t *opt; 27886 uint8_t optval; 27887 uint8_t optlen; 27888 ipaddr_t dst; 27889 intptr_t code = 0; 27890 mblk_t *mp; 27891 ire_t *ire = NULL; 27892 27893 ip2dbg(("ip_wput_options\n")); 27894 mp = ipsec_mp; 27895 if (mctl_present) { 27896 mp = ipsec_mp->b_cont; 27897 } 27898 27899 dst = ipha->ipha_dst; 27900 for (optval = ipoptp_first(&opts, ipha); 27901 optval != IPOPT_EOL; 27902 optval = ipoptp_next(&opts)) { 27903 opt = opts.ipoptp_cur; 27904 optlen = opts.ipoptp_len; 27905 ip2dbg(("ip_wput_options: opt %d, len %d\n", 27906 optval, optlen)); 27907 switch (optval) { 27908 uint32_t off; 27909 case IPOPT_SSRR: 27910 case IPOPT_LSRR: 27911 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27912 ip1dbg(( 27913 "ip_wput_options: bad option offset\n")); 27914 code = (char *)&opt[IPOPT_OLEN] - 27915 (char *)ipha; 27916 goto param_prob; 27917 } 27918 off = opt[IPOPT_OFFSET]; 27919 ip1dbg(("ip_wput_options: next hop 0x%x\n", 27920 ntohl(dst))); 27921 /* 27922 * For strict: verify that dst is directly 27923 * reachable. 27924 */ 27925 if (optval == IPOPT_SSRR) { 27926 ire = ire_ftable_lookup(dst, 0, 0, 27927 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 27928 MBLK_GETLABEL(mp), 27929 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 27930 if (ire == NULL) { 27931 ip1dbg(("ip_wput_options: SSRR not" 27932 " directly reachable: 0x%x\n", 27933 ntohl(dst))); 27934 goto bad_src_route; 27935 } 27936 ire_refrele(ire); 27937 } 27938 break; 27939 case IPOPT_RR: 27940 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27941 ip1dbg(( 27942 "ip_wput_options: bad option offset\n")); 27943 code = (char *)&opt[IPOPT_OLEN] - 27944 (char *)ipha; 27945 goto param_prob; 27946 } 27947 break; 27948 case IPOPT_TS: 27949 /* 27950 * Verify that length >=5 and that there is either 27951 * room for another timestamp or that the overflow 27952 * counter is not maxed out. 27953 */ 27954 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 27955 if (optlen < IPOPT_MINLEN_IT) { 27956 goto param_prob; 27957 } 27958 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27959 ip1dbg(( 27960 "ip_wput_options: bad option offset\n")); 27961 code = (char *)&opt[IPOPT_OFFSET] - 27962 (char *)ipha; 27963 goto param_prob; 27964 } 27965 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 27966 case IPOPT_TS_TSONLY: 27967 off = IPOPT_TS_TIMELEN; 27968 break; 27969 case IPOPT_TS_TSANDADDR: 27970 case IPOPT_TS_PRESPEC: 27971 case IPOPT_TS_PRESPEC_RFC791: 27972 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 27973 break; 27974 default: 27975 code = (char *)&opt[IPOPT_POS_OV_FLG] - 27976 (char *)ipha; 27977 goto param_prob; 27978 } 27979 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 27980 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 27981 /* 27982 * No room and the overflow counter is 15 27983 * already. 27984 */ 27985 goto param_prob; 27986 } 27987 break; 27988 } 27989 } 27990 27991 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 27992 return (0); 27993 27994 ip1dbg(("ip_wput_options: error processing IP options.")); 27995 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 27996 27997 param_prob: 27998 /* 27999 * Since ip_wput() isn't close to finished, we fill 28000 * in enough of the header for credible error reporting. 28001 */ 28002 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28003 /* Failed */ 28004 freemsg(ipsec_mp); 28005 return (-1); 28006 } 28007 icmp_param_problem(q, ipsec_mp, (uint8_t)code, zoneid, ipst); 28008 return (-1); 28009 28010 bad_src_route: 28011 /* 28012 * Since ip_wput() isn't close to finished, we fill 28013 * in enough of the header for credible error reporting. 28014 */ 28015 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28016 /* Failed */ 28017 freemsg(ipsec_mp); 28018 return (-1); 28019 } 28020 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 28021 return (-1); 28022 } 28023 28024 /* 28025 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 28026 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 28027 * thru /etc/system. 28028 */ 28029 #define CONN_MAXDRAINCNT 64 28030 28031 static void 28032 conn_drain_init(ip_stack_t *ipst) 28033 { 28034 int i; 28035 28036 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 28037 28038 if ((ipst->ips_conn_drain_list_cnt == 0) || 28039 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 28040 /* 28041 * Default value of the number of drainers is the 28042 * number of cpus, subject to maximum of 8 drainers. 28043 */ 28044 if (boot_max_ncpus != -1) 28045 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 28046 else 28047 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 28048 } 28049 28050 ipst->ips_conn_drain_list = kmem_zalloc(ipst->ips_conn_drain_list_cnt * 28051 sizeof (idl_t), KM_SLEEP); 28052 28053 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28054 mutex_init(&ipst->ips_conn_drain_list[i].idl_lock, NULL, 28055 MUTEX_DEFAULT, NULL); 28056 } 28057 } 28058 28059 static void 28060 conn_drain_fini(ip_stack_t *ipst) 28061 { 28062 int i; 28063 28064 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) 28065 mutex_destroy(&ipst->ips_conn_drain_list[i].idl_lock); 28066 kmem_free(ipst->ips_conn_drain_list, 28067 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 28068 ipst->ips_conn_drain_list = NULL; 28069 } 28070 28071 /* 28072 * Note: For an overview of how flowcontrol is handled in IP please see the 28073 * IP Flowcontrol notes at the top of this file. 28074 * 28075 * Flow control has blocked us from proceeding. Insert the given conn in one 28076 * of the conn drain lists. These conn wq's will be qenabled later on when 28077 * STREAMS flow control does a backenable. conn_walk_drain will enable 28078 * the first conn in each of these drain lists. Each of these qenabled conns 28079 * in turn enables the next in the list, after it runs, or when it closes, 28080 * thus sustaining the drain process. 28081 * 28082 * The only possible calling sequence is ip_wsrv (on conn) -> ip_wput -> 28083 * conn_drain_insert. Thus there can be only 1 instance of conn_drain_insert 28084 * running at any time, on a given conn, since there can be only 1 service proc 28085 * running on a queue at any time. 28086 */ 28087 void 28088 conn_drain_insert(conn_t *connp) 28089 { 28090 idl_t *idl; 28091 uint_t index; 28092 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28093 28094 mutex_enter(&connp->conn_lock); 28095 if (connp->conn_state_flags & CONN_CLOSING) { 28096 /* 28097 * The conn is closing as a result of which CONN_CLOSING 28098 * is set. Return. 28099 */ 28100 mutex_exit(&connp->conn_lock); 28101 return; 28102 } else if (connp->conn_idl == NULL) { 28103 /* 28104 * Assign the next drain list round robin. We dont' use 28105 * a lock, and thus it may not be strictly round robin. 28106 * Atomicity of load/stores is enough to make sure that 28107 * conn_drain_list_index is always within bounds. 28108 */ 28109 index = ipst->ips_conn_drain_list_index; 28110 ASSERT(index < ipst->ips_conn_drain_list_cnt); 28111 connp->conn_idl = &ipst->ips_conn_drain_list[index]; 28112 index++; 28113 if (index == ipst->ips_conn_drain_list_cnt) 28114 index = 0; 28115 ipst->ips_conn_drain_list_index = index; 28116 } 28117 mutex_exit(&connp->conn_lock); 28118 28119 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28120 if ((connp->conn_drain_prev != NULL) || 28121 (connp->conn_state_flags & CONN_CLOSING)) { 28122 /* 28123 * The conn is already in the drain list, OR 28124 * the conn is closing. We need to check again for 28125 * the closing case again since close can happen 28126 * after we drop the conn_lock, and before we 28127 * acquire the CONN_DRAIN_LIST_LOCK. 28128 */ 28129 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28130 return; 28131 } else { 28132 idl = connp->conn_idl; 28133 } 28134 28135 /* 28136 * The conn is not in the drain list. Insert it at the 28137 * tail of the drain list. The drain list is circular 28138 * and doubly linked. idl_conn points to the 1st element 28139 * in the list. 28140 */ 28141 if (idl->idl_conn == NULL) { 28142 idl->idl_conn = connp; 28143 connp->conn_drain_next = connp; 28144 connp->conn_drain_prev = connp; 28145 } else { 28146 conn_t *head = idl->idl_conn; 28147 28148 connp->conn_drain_next = head; 28149 connp->conn_drain_prev = head->conn_drain_prev; 28150 head->conn_drain_prev->conn_drain_next = connp; 28151 head->conn_drain_prev = connp; 28152 } 28153 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28154 } 28155 28156 /* 28157 * This conn is closing, and we are called from ip_close. OR 28158 * This conn has been serviced by ip_wsrv, and we need to do the tail 28159 * processing. 28160 * If this conn is part of the drain list, we may need to sustain the drain 28161 * process by qenabling the next conn in the drain list. We may also need to 28162 * remove this conn from the list, if it is done. 28163 */ 28164 static void 28165 conn_drain_tail(conn_t *connp, boolean_t closing) 28166 { 28167 idl_t *idl; 28168 28169 /* 28170 * connp->conn_idl is stable at this point, and no lock is needed 28171 * to check it. If we are called from ip_close, close has already 28172 * set CONN_CLOSING, thus freezing the value of conn_idl, and 28173 * called us only because conn_idl is non-null. If we are called thru 28174 * service, conn_idl could be null, but it cannot change because 28175 * service is single-threaded per queue, and there cannot be another 28176 * instance of service trying to call conn_drain_insert on this conn 28177 * now. 28178 */ 28179 ASSERT(!closing || (connp->conn_idl != NULL)); 28180 28181 /* 28182 * If connp->conn_idl is null, the conn has not been inserted into any 28183 * drain list even once since creation of the conn. Just return. 28184 */ 28185 if (connp->conn_idl == NULL) 28186 return; 28187 28188 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28189 28190 if (connp->conn_drain_prev == NULL) { 28191 /* This conn is currently not in the drain list. */ 28192 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28193 return; 28194 } 28195 idl = connp->conn_idl; 28196 if (idl->idl_conn_draining == connp) { 28197 /* 28198 * This conn is the current drainer. If this is the last conn 28199 * in the drain list, we need to do more checks, in the 'if' 28200 * below. Otherwwise we need to just qenable the next conn, 28201 * to sustain the draining, and is handled in the 'else' 28202 * below. 28203 */ 28204 if (connp->conn_drain_next == idl->idl_conn) { 28205 /* 28206 * This conn is the last in this list. This round 28207 * of draining is complete. If idl_repeat is set, 28208 * it means another flow enabling has happened from 28209 * the driver/streams and we need to another round 28210 * of draining. 28211 * If there are more than 2 conns in the drain list, 28212 * do a left rotate by 1, so that all conns except the 28213 * conn at the head move towards the head by 1, and the 28214 * the conn at the head goes to the tail. This attempts 28215 * a more even share for all queues that are being 28216 * drained. 28217 */ 28218 if ((connp->conn_drain_next != connp) && 28219 (idl->idl_conn->conn_drain_next != connp)) { 28220 idl->idl_conn = idl->idl_conn->conn_drain_next; 28221 } 28222 if (idl->idl_repeat) { 28223 qenable(idl->idl_conn->conn_wq); 28224 idl->idl_conn_draining = idl->idl_conn; 28225 idl->idl_repeat = 0; 28226 } else { 28227 idl->idl_conn_draining = NULL; 28228 } 28229 } else { 28230 /* 28231 * If the next queue that we are now qenable'ing, 28232 * is closing, it will remove itself from this list 28233 * and qenable the subsequent queue in ip_close(). 28234 * Serialization is acheived thru idl_lock. 28235 */ 28236 qenable(connp->conn_drain_next->conn_wq); 28237 idl->idl_conn_draining = connp->conn_drain_next; 28238 } 28239 } 28240 if (!connp->conn_did_putbq || closing) { 28241 /* 28242 * Remove ourself from the drain list, if we did not do 28243 * a putbq, or if the conn is closing. 28244 * Note: It is possible that q->q_first is non-null. It means 28245 * that these messages landed after we did a enableok() in 28246 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 28247 * service them. 28248 */ 28249 if (connp->conn_drain_next == connp) { 28250 /* Singleton in the list */ 28251 ASSERT(connp->conn_drain_prev == connp); 28252 idl->idl_conn = NULL; 28253 idl->idl_conn_draining = NULL; 28254 } else { 28255 connp->conn_drain_prev->conn_drain_next = 28256 connp->conn_drain_next; 28257 connp->conn_drain_next->conn_drain_prev = 28258 connp->conn_drain_prev; 28259 if (idl->idl_conn == connp) 28260 idl->idl_conn = connp->conn_drain_next; 28261 ASSERT(idl->idl_conn_draining != connp); 28262 28263 } 28264 connp->conn_drain_next = NULL; 28265 connp->conn_drain_prev = NULL; 28266 } 28267 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28268 } 28269 28270 /* 28271 * Write service routine. Shared perimeter entry point. 28272 * ip_wsrv can be called in any of the following ways. 28273 * 1. The device queue's messages has fallen below the low water mark 28274 * and STREAMS has backenabled the ill_wq. We walk thru all the 28275 * the drain lists and backenable the first conn in each list. 28276 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 28277 * qenabled non-tcp upper layers. We start dequeing messages and call 28278 * ip_wput for each message. 28279 */ 28280 28281 void 28282 ip_wsrv(queue_t *q) 28283 { 28284 conn_t *connp; 28285 ill_t *ill; 28286 mblk_t *mp; 28287 28288 if (q->q_next) { 28289 ill = (ill_t *)q->q_ptr; 28290 if (ill->ill_state_flags == 0) { 28291 /* 28292 * The device flow control has opened up. 28293 * Walk through conn drain lists and qenable the 28294 * first conn in each list. This makes sense only 28295 * if the stream is fully plumbed and setup. 28296 * Hence the if check above. 28297 */ 28298 ip1dbg(("ip_wsrv: walking\n")); 28299 conn_walk_drain(ill->ill_ipst); 28300 } 28301 return; 28302 } 28303 28304 connp = Q_TO_CONN(q); 28305 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 28306 28307 /* 28308 * 1. Set conn_draining flag to signal that service is active. 28309 * 28310 * 2. ip_output determines whether it has been called from service, 28311 * based on the last parameter. If it is IP_WSRV it concludes it 28312 * has been called from service. 28313 * 28314 * 3. Message ordering is preserved by the following logic. 28315 * i. A directly called ip_output (i.e. not thru service) will queue 28316 * the message at the tail, if conn_draining is set (i.e. service 28317 * is running) or if q->q_first is non-null. 28318 * 28319 * ii. If ip_output is called from service, and if ip_output cannot 28320 * putnext due to flow control, it does a putbq. 28321 * 28322 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 28323 * (causing an infinite loop). 28324 */ 28325 ASSERT(!connp->conn_did_putbq); 28326 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 28327 connp->conn_draining = 1; 28328 noenable(q); 28329 while ((mp = getq(q)) != NULL) { 28330 ASSERT(CONN_Q(q)); 28331 28332 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 28333 if (connp->conn_did_putbq) { 28334 /* ip_wput did a putbq */ 28335 break; 28336 } 28337 } 28338 /* 28339 * At this point, a thread coming down from top, calling 28340 * ip_wput, may end up queueing the message. We have not yet 28341 * enabled the queue, so ip_wsrv won't be called again. 28342 * To avoid this race, check q->q_first again (in the loop) 28343 * If the other thread queued the message before we call 28344 * enableok(), we will catch it in the q->q_first check. 28345 * If the other thread queues the message after we call 28346 * enableok(), ip_wsrv will be called again by STREAMS. 28347 */ 28348 connp->conn_draining = 0; 28349 enableok(q); 28350 } 28351 28352 /* Enable the next conn for draining */ 28353 conn_drain_tail(connp, B_FALSE); 28354 28355 connp->conn_did_putbq = 0; 28356 } 28357 28358 /* 28359 * Walk the list of all conn's calling the function provided with the 28360 * specified argument for each. Note that this only walks conn's that 28361 * have been bound. 28362 * Applies to both IPv4 and IPv6. 28363 */ 28364 static void 28365 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 28366 { 28367 conn_walk_fanout_table(ipst->ips_ipcl_udp_fanout, 28368 ipst->ips_ipcl_udp_fanout_size, 28369 func, arg, zoneid); 28370 conn_walk_fanout_table(ipst->ips_ipcl_conn_fanout, 28371 ipst->ips_ipcl_conn_fanout_size, 28372 func, arg, zoneid); 28373 conn_walk_fanout_table(ipst->ips_ipcl_bind_fanout, 28374 ipst->ips_ipcl_bind_fanout_size, 28375 func, arg, zoneid); 28376 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout, 28377 IPPROTO_MAX, func, arg, zoneid); 28378 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout_v6, 28379 IPPROTO_MAX, func, arg, zoneid); 28380 } 28381 28382 /* 28383 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 28384 * of conns that need to be drained, check if drain is already in progress. 28385 * If so set the idl_repeat bit, indicating that the last conn in the list 28386 * needs to reinitiate the drain once again, for the list. If drain is not 28387 * in progress for the list, initiate the draining, by qenabling the 1st 28388 * conn in the list. The drain is self-sustaining, each qenabled conn will 28389 * in turn qenable the next conn, when it is done/blocked/closing. 28390 */ 28391 static void 28392 conn_walk_drain(ip_stack_t *ipst) 28393 { 28394 int i; 28395 idl_t *idl; 28396 28397 IP_STAT(ipst, ip_conn_walk_drain); 28398 28399 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28400 idl = &ipst->ips_conn_drain_list[i]; 28401 mutex_enter(&idl->idl_lock); 28402 if (idl->idl_conn == NULL) { 28403 mutex_exit(&idl->idl_lock); 28404 continue; 28405 } 28406 /* 28407 * If this list is not being drained currently by 28408 * an ip_wsrv thread, start the process. 28409 */ 28410 if (idl->idl_conn_draining == NULL) { 28411 ASSERT(idl->idl_repeat == 0); 28412 qenable(idl->idl_conn->conn_wq); 28413 idl->idl_conn_draining = idl->idl_conn; 28414 } else { 28415 idl->idl_repeat = 1; 28416 } 28417 mutex_exit(&idl->idl_lock); 28418 } 28419 } 28420 28421 /* 28422 * Walk an conn hash table of `count' buckets, calling func for each entry. 28423 */ 28424 static void 28425 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg, 28426 zoneid_t zoneid) 28427 { 28428 conn_t *connp; 28429 28430 while (count-- > 0) { 28431 mutex_enter(&connfp->connf_lock); 28432 for (connp = connfp->connf_head; connp != NULL; 28433 connp = connp->conn_next) { 28434 if (zoneid == GLOBAL_ZONEID || 28435 zoneid == connp->conn_zoneid) { 28436 CONN_INC_REF(connp); 28437 mutex_exit(&connfp->connf_lock); 28438 (*func)(connp, arg); 28439 mutex_enter(&connfp->connf_lock); 28440 CONN_DEC_REF(connp); 28441 } 28442 } 28443 mutex_exit(&connfp->connf_lock); 28444 connfp++; 28445 } 28446 } 28447 28448 /* conn_walk_fanout routine invoked for ip_conn_report for each conn. */ 28449 static void 28450 conn_report1(conn_t *connp, void *mp) 28451 { 28452 char buf1[INET6_ADDRSTRLEN]; 28453 char buf2[INET6_ADDRSTRLEN]; 28454 uint_t print_len, buf_len; 28455 28456 ASSERT(connp != NULL); 28457 28458 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 28459 if (buf_len <= 0) 28460 return; 28461 (void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)); 28462 (void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)); 28463 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 28464 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 28465 "%5d %s/%05d %s/%05d\n", 28466 (void *)connp, (void *)CONNP_TO_RQ(connp), 28467 (void *)CONNP_TO_WQ(connp), connp->conn_zoneid, 28468 buf1, connp->conn_lport, 28469 buf2, connp->conn_fport); 28470 if (print_len < buf_len) { 28471 ((mblk_t *)mp)->b_wptr += print_len; 28472 } else { 28473 ((mblk_t *)mp)->b_wptr += buf_len; 28474 } 28475 } 28476 28477 /* 28478 * Named Dispatch routine to produce a formatted report on all conns 28479 * that are listed in one of the fanout tables. 28480 * This report is accessed by using the ndd utility to "get" ND variable 28481 * "ip_conn_status". 28482 */ 28483 /* ARGSUSED */ 28484 static int 28485 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 28486 { 28487 conn_t *connp = Q_TO_CONN(q); 28488 28489 (void) mi_mpprintf(mp, 28490 "CONN " MI_COL_HDRPAD_STR 28491 "rfq " MI_COL_HDRPAD_STR 28492 "stq " MI_COL_HDRPAD_STR 28493 " zone local remote"); 28494 28495 /* 28496 * Because of the ndd constraint, at most we can have 64K buffer 28497 * to put in all conn info. So to be more efficient, just 28498 * allocate a 64K buffer here, assuming we need that large buffer. 28499 * This should be OK as only privileged processes can do ndd /dev/ip. 28500 */ 28501 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 28502 /* The following may work even if we cannot get a large buf. */ 28503 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 28504 return (0); 28505 } 28506 28507 conn_walk_fanout(conn_report1, mp->b_cont, connp->conn_zoneid, 28508 connp->conn_netstack->netstack_ip); 28509 return (0); 28510 } 28511 28512 /* 28513 * Determine if the ill and multicast aspects of that packets 28514 * "matches" the conn. 28515 */ 28516 boolean_t 28517 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 28518 zoneid_t zoneid) 28519 { 28520 ill_t *in_ill; 28521 boolean_t found; 28522 ipif_t *ipif; 28523 ire_t *ire; 28524 ipaddr_t dst, src; 28525 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28526 28527 dst = ipha->ipha_dst; 28528 src = ipha->ipha_src; 28529 28530 /* 28531 * conn_incoming_ill is set by IP_BOUND_IF which limits 28532 * unicast, broadcast and multicast reception to 28533 * conn_incoming_ill. conn_wantpacket itself is called 28534 * only for BROADCAST and multicast. 28535 * 28536 * 1) ip_rput supresses duplicate broadcasts if the ill 28537 * is part of a group. Hence, we should be receiving 28538 * just one copy of broadcast for the whole group. 28539 * Thus, if it is part of the group the packet could 28540 * come on any ill of the group and hence we need a 28541 * match on the group. Otherwise, match on ill should 28542 * be sufficient. 28543 * 28544 * 2) ip_rput does not suppress duplicate multicast packets. 28545 * If there are two interfaces in a ill group and we have 28546 * 2 applications (conns) joined a multicast group G on 28547 * both the interfaces, ilm_lookup_ill filter in ip_rput 28548 * will give us two packets because we join G on both the 28549 * interfaces rather than nominating just one interface 28550 * for receiving multicast like broadcast above. So, 28551 * we have to call ilg_lookup_ill to filter out duplicate 28552 * copies, if ill is part of a group. 28553 */ 28554 in_ill = connp->conn_incoming_ill; 28555 if (in_ill != NULL) { 28556 if (in_ill->ill_group == NULL) { 28557 if (in_ill != ill) 28558 return (B_FALSE); 28559 } else if (in_ill->ill_group != ill->ill_group) { 28560 return (B_FALSE); 28561 } 28562 } 28563 28564 if (!CLASSD(dst)) { 28565 if (IPCL_ZONE_MATCH(connp, zoneid)) 28566 return (B_TRUE); 28567 /* 28568 * The conn is in a different zone; we need to check that this 28569 * broadcast address is configured in the application's zone and 28570 * on one ill in the group. 28571 */ 28572 ipif = ipif_get_next_ipif(NULL, ill); 28573 if (ipif == NULL) 28574 return (B_FALSE); 28575 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 28576 connp->conn_zoneid, NULL, 28577 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 28578 ipif_refrele(ipif); 28579 if (ire != NULL) { 28580 ire_refrele(ire); 28581 return (B_TRUE); 28582 } else { 28583 return (B_FALSE); 28584 } 28585 } 28586 28587 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 28588 connp->conn_zoneid == zoneid) { 28589 /* 28590 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 28591 * disabled, therefore we don't dispatch the multicast packet to 28592 * the sending zone. 28593 */ 28594 return (B_FALSE); 28595 } 28596 28597 if (IS_LOOPBACK(ill) && connp->conn_zoneid != zoneid) { 28598 /* 28599 * Multicast packet on the loopback interface: we only match 28600 * conns who joined the group in the specified zone. 28601 */ 28602 return (B_FALSE); 28603 } 28604 28605 if (connp->conn_multi_router) { 28606 /* multicast packet and multicast router socket: send up */ 28607 return (B_TRUE); 28608 } 28609 28610 mutex_enter(&connp->conn_lock); 28611 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 28612 mutex_exit(&connp->conn_lock); 28613 return (found); 28614 } 28615 28616 /* 28617 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 28618 */ 28619 /* ARGSUSED */ 28620 static void 28621 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 28622 { 28623 ill_t *ill = (ill_t *)q->q_ptr; 28624 mblk_t *mp1, *mp2; 28625 ipif_t *ipif; 28626 int err = 0; 28627 conn_t *connp = NULL; 28628 ipsq_t *ipsq; 28629 arc_t *arc; 28630 28631 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 28632 28633 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 28634 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 28635 28636 ASSERT(IAM_WRITER_ILL(ill)); 28637 mp2 = mp->b_cont; 28638 mp->b_cont = NULL; 28639 28640 /* 28641 * We have now received the arp bringup completion message 28642 * from ARP. Mark the arp bringup as done. Also if the arp 28643 * stream has already started closing, send up the AR_ARP_CLOSING 28644 * ack now since ARP is waiting in close for this ack. 28645 */ 28646 mutex_enter(&ill->ill_lock); 28647 ill->ill_arp_bringup_pending = 0; 28648 if (ill->ill_arp_closing) { 28649 mutex_exit(&ill->ill_lock); 28650 /* Let's reuse the mp for sending the ack */ 28651 arc = (arc_t *)mp->b_rptr; 28652 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 28653 arc->arc_cmd = AR_ARP_CLOSING; 28654 qreply(q, mp); 28655 } else { 28656 mutex_exit(&ill->ill_lock); 28657 freeb(mp); 28658 } 28659 28660 ipsq = ill->ill_phyint->phyint_ipsq; 28661 ipif = ipsq->ipsq_pending_ipif; 28662 mp1 = ipsq_pending_mp_get(ipsq, &connp); 28663 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 28664 if (mp1 == NULL) { 28665 /* bringup was aborted by the user */ 28666 freemsg(mp2); 28667 return; 28668 } 28669 28670 /* 28671 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 28672 * must have an associated conn_t. Otherwise, we're bringing this 28673 * interface back up as part of handling an asynchronous event (e.g., 28674 * physical address change). 28675 */ 28676 if (ipsq->ipsq_current_ioctl != 0) { 28677 ASSERT(connp != NULL); 28678 q = CONNP_TO_WQ(connp); 28679 } else { 28680 ASSERT(connp == NULL); 28681 q = ill->ill_rq; 28682 } 28683 28684 /* 28685 * If the DL_BIND_REQ fails, it is noted 28686 * in arc_name_offset. 28687 */ 28688 err = *((int *)mp2->b_rptr); 28689 if (err == 0) { 28690 if (ipif->ipif_isv6) { 28691 if ((err = ipif_up_done_v6(ipif)) != 0) 28692 ip0dbg(("ip_arp_done: init failed\n")); 28693 } else { 28694 if ((err = ipif_up_done(ipif)) != 0) 28695 ip0dbg(("ip_arp_done: init failed\n")); 28696 } 28697 } else { 28698 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 28699 } 28700 28701 freemsg(mp2); 28702 28703 if ((err == 0) && (ill->ill_up_ipifs)) { 28704 err = ill_up_ipifs(ill, q, mp1); 28705 if (err == EINPROGRESS) 28706 return; 28707 } 28708 28709 if (ill->ill_up_ipifs) 28710 ill_group_cleanup(ill); 28711 28712 /* 28713 * The operation must complete without EINPROGRESS since 28714 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 28715 * Otherwise, the operation will be stuck forever in the ipsq. 28716 */ 28717 ASSERT(err != EINPROGRESS); 28718 if (ipsq->ipsq_current_ioctl != 0) 28719 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 28720 else 28721 ipsq_current_finish(ipsq); 28722 } 28723 28724 /* Allocate the private structure */ 28725 static int 28726 ip_priv_alloc(void **bufp) 28727 { 28728 void *buf; 28729 28730 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 28731 return (ENOMEM); 28732 28733 *bufp = buf; 28734 return (0); 28735 } 28736 28737 /* Function to delete the private structure */ 28738 void 28739 ip_priv_free(void *buf) 28740 { 28741 ASSERT(buf != NULL); 28742 kmem_free(buf, sizeof (ip_priv_t)); 28743 } 28744 28745 /* 28746 * The entry point for IPPF processing. 28747 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 28748 * routine just returns. 28749 * 28750 * When called, ip_process generates an ipp_packet_t structure 28751 * which holds the state information for this packet and invokes the 28752 * the classifier (via ipp_packet_process). The classification, depending on 28753 * configured filters, results in a list of actions for this packet. Invoking 28754 * an action may cause the packet to be dropped, in which case the resulting 28755 * mblk (*mpp) is NULL. proc indicates the callout position for 28756 * this packet and ill_index is the interface this packet on or will leave 28757 * on (inbound and outbound resp.). 28758 */ 28759 void 28760 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 28761 { 28762 mblk_t *mp; 28763 ip_priv_t *priv; 28764 ipp_action_id_t aid; 28765 int rc = 0; 28766 ipp_packet_t *pp; 28767 #define IP_CLASS "ip" 28768 28769 /* If the classifier is not loaded, return */ 28770 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 28771 return; 28772 } 28773 28774 mp = *mpp; 28775 ASSERT(mp != NULL); 28776 28777 /* Allocate the packet structure */ 28778 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 28779 if (rc != 0) { 28780 *mpp = NULL; 28781 freemsg(mp); 28782 return; 28783 } 28784 28785 /* Allocate the private structure */ 28786 rc = ip_priv_alloc((void **)&priv); 28787 if (rc != 0) { 28788 *mpp = NULL; 28789 freemsg(mp); 28790 ipp_packet_free(pp); 28791 return; 28792 } 28793 priv->proc = proc; 28794 priv->ill_index = ill_index; 28795 ipp_packet_set_private(pp, priv, ip_priv_free); 28796 ipp_packet_set_data(pp, mp); 28797 28798 /* Invoke the classifier */ 28799 rc = ipp_packet_process(&pp); 28800 if (pp != NULL) { 28801 mp = ipp_packet_get_data(pp); 28802 ipp_packet_free(pp); 28803 if (rc != 0) { 28804 freemsg(mp); 28805 *mpp = NULL; 28806 } 28807 } else { 28808 *mpp = NULL; 28809 } 28810 #undef IP_CLASS 28811 } 28812 28813 /* 28814 * Propagate a multicast group membership operation (add/drop) on 28815 * all the interfaces crossed by the related multirt routes. 28816 * The call is considered successful if the operation succeeds 28817 * on at least one interface. 28818 */ 28819 static int 28820 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 28821 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 28822 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 28823 mblk_t *first_mp) 28824 { 28825 ire_t *ire_gw; 28826 irb_t *irb; 28827 int error = 0; 28828 opt_restart_t *or; 28829 ip_stack_t *ipst = ire->ire_ipst; 28830 28831 irb = ire->ire_bucket; 28832 ASSERT(irb != NULL); 28833 28834 ASSERT(DB_TYPE(first_mp) == M_CTL); 28835 28836 or = (opt_restart_t *)first_mp->b_rptr; 28837 IRB_REFHOLD(irb); 28838 for (; ire != NULL; ire = ire->ire_next) { 28839 if ((ire->ire_flags & RTF_MULTIRT) == 0) 28840 continue; 28841 if (ire->ire_addr != group) 28842 continue; 28843 28844 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 28845 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 28846 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE, ipst); 28847 /* No resolver exists for the gateway; skip this ire. */ 28848 if (ire_gw == NULL) 28849 continue; 28850 28851 /* 28852 * This function can return EINPROGRESS. If so the operation 28853 * will be restarted from ip_restart_optmgmt which will 28854 * call ip_opt_set and option processing will restart for 28855 * this option. So we may end up calling 'fn' more than once. 28856 * This requires that 'fn' is idempotent except for the 28857 * return value. The operation is considered a success if 28858 * it succeeds at least once on any one interface. 28859 */ 28860 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 28861 NULL, fmode, src, first_mp); 28862 if (error == 0) 28863 or->or_private = CGTP_MCAST_SUCCESS; 28864 28865 if (ip_debug > 0) { 28866 ulong_t off; 28867 char *ksym; 28868 ksym = kobj_getsymname((uintptr_t)fn, &off); 28869 ip2dbg(("ip_multirt_apply_membership: " 28870 "called %s, multirt group 0x%08x via itf 0x%08x, " 28871 "error %d [success %u]\n", 28872 ksym ? ksym : "?", 28873 ntohl(group), ntohl(ire_gw->ire_src_addr), 28874 error, or->or_private)); 28875 } 28876 28877 ire_refrele(ire_gw); 28878 if (error == EINPROGRESS) { 28879 IRB_REFRELE(irb); 28880 return (error); 28881 } 28882 } 28883 IRB_REFRELE(irb); 28884 /* 28885 * Consider the call as successful if we succeeded on at least 28886 * one interface. Otherwise, return the last encountered error. 28887 */ 28888 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 28889 } 28890 28891 28892 /* 28893 * Issue a warning regarding a route crossing an interface with an 28894 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 28895 * amount of time is logged. 28896 */ 28897 static void 28898 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 28899 { 28900 hrtime_t current = gethrtime(); 28901 char buf[INET_ADDRSTRLEN]; 28902 ip_stack_t *ipst = ire->ire_ipst; 28903 28904 /* Convert interval in ms to hrtime in ns */ 28905 if (ipst->ips_multirt_bad_mtu_last_time + 28906 ((hrtime_t)ipst->ips_ip_multirt_log_interval * (hrtime_t)1000000) <= 28907 current) { 28908 cmn_err(CE_WARN, "ip: ignoring multiroute " 28909 "to %s, incorrect MTU %u (expected %u)\n", 28910 ip_dot_addr(ire->ire_addr, buf), 28911 ire->ire_max_frag, max_frag); 28912 28913 ipst->ips_multirt_bad_mtu_last_time = current; 28914 } 28915 } 28916 28917 28918 /* 28919 * Get the CGTP (multirouting) filtering status. 28920 * If 0, the CGTP hooks are transparent. 28921 */ 28922 /* ARGSUSED */ 28923 static int 28924 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 28925 { 28926 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28927 28928 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 28929 return (0); 28930 } 28931 28932 28933 /* 28934 * Set the CGTP (multirouting) filtering status. 28935 * If the status is changed from active to transparent 28936 * or from transparent to active, forward the new status 28937 * to the filtering module (if loaded). 28938 */ 28939 /* ARGSUSED */ 28940 static int 28941 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 28942 cred_t *ioc_cr) 28943 { 28944 long new_value; 28945 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28946 ip_stack_t *ipst = CONNQ_TO_IPST(q); 28947 28948 if (secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 28949 return (EPERM); 28950 28951 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 28952 new_value < 0 || new_value > 1) { 28953 return (EINVAL); 28954 } 28955 28956 if ((!*ip_cgtp_filter_value) && new_value) { 28957 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 28958 ipst->ips_ip_cgtp_filter_ops == NULL ? 28959 " (module not loaded)" : ""); 28960 } 28961 if (*ip_cgtp_filter_value && (!new_value)) { 28962 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 28963 ipst->ips_ip_cgtp_filter_ops == NULL ? 28964 " (module not loaded)" : ""); 28965 } 28966 28967 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 28968 int res; 28969 netstackid_t stackid; 28970 28971 stackid = ipst->ips_netstack->netstack_stackid; 28972 res = ipst->ips_ip_cgtp_filter_ops->cfo_change_state(stackid, 28973 new_value); 28974 if (res) 28975 return (res); 28976 } 28977 28978 *ip_cgtp_filter_value = (boolean_t)new_value; 28979 28980 return (0); 28981 } 28982 28983 28984 /* 28985 * Return the expected CGTP hooks version number. 28986 */ 28987 int 28988 ip_cgtp_filter_supported(void) 28989 { 28990 return (ip_cgtp_filter_rev); 28991 } 28992 28993 28994 /* 28995 * CGTP hooks can be registered by invoking this function. 28996 * Checks that the version number matches. 28997 */ 28998 int 28999 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops) 29000 { 29001 netstack_t *ns; 29002 ip_stack_t *ipst; 29003 29004 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 29005 return (ENOTSUP); 29006 29007 ns = netstack_find_by_stackid(stackid); 29008 if (ns == NULL) 29009 return (EINVAL); 29010 ipst = ns->netstack_ip; 29011 ASSERT(ipst != NULL); 29012 29013 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 29014 netstack_rele(ns); 29015 return (EALREADY); 29016 } 29017 29018 ipst->ips_ip_cgtp_filter_ops = ops; 29019 netstack_rele(ns); 29020 return (0); 29021 } 29022 29023 /* 29024 * CGTP hooks can be unregistered by invoking this function. 29025 * Returns ENXIO if there was no registration. 29026 * Returns EBUSY if the ndd variable has not been turned off. 29027 */ 29028 int 29029 ip_cgtp_filter_unregister(netstackid_t stackid) 29030 { 29031 netstack_t *ns; 29032 ip_stack_t *ipst; 29033 29034 ns = netstack_find_by_stackid(stackid); 29035 if (ns == NULL) 29036 return (EINVAL); 29037 ipst = ns->netstack_ip; 29038 ASSERT(ipst != NULL); 29039 29040 if (ipst->ips_ip_cgtp_filter) { 29041 netstack_rele(ns); 29042 return (EBUSY); 29043 } 29044 29045 if (ipst->ips_ip_cgtp_filter_ops == NULL) { 29046 netstack_rele(ns); 29047 return (ENXIO); 29048 } 29049 ipst->ips_ip_cgtp_filter_ops = NULL; 29050 netstack_rele(ns); 29051 return (0); 29052 } 29053 29054 /* 29055 * Check whether there is a CGTP filter registration. 29056 * Returns non-zero if there is a registration, otherwise returns zero. 29057 * Note: returns zero if bad stackid. 29058 */ 29059 int 29060 ip_cgtp_filter_is_registered(netstackid_t stackid) 29061 { 29062 netstack_t *ns; 29063 ip_stack_t *ipst; 29064 int ret; 29065 29066 ns = netstack_find_by_stackid(stackid); 29067 if (ns == NULL) 29068 return (0); 29069 ipst = ns->netstack_ip; 29070 ASSERT(ipst != NULL); 29071 29072 if (ipst->ips_ip_cgtp_filter_ops != NULL) 29073 ret = 1; 29074 else 29075 ret = 0; 29076 29077 netstack_rele(ns); 29078 return (ret); 29079 } 29080 29081 static squeue_func_t 29082 ip_squeue_switch(int val) 29083 { 29084 squeue_func_t rval = squeue_fill; 29085 29086 switch (val) { 29087 case IP_SQUEUE_ENTER_NODRAIN: 29088 rval = squeue_enter_nodrain; 29089 break; 29090 case IP_SQUEUE_ENTER: 29091 rval = squeue_enter; 29092 break; 29093 default: 29094 break; 29095 } 29096 return (rval); 29097 } 29098 29099 /* ARGSUSED */ 29100 static int 29101 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 29102 caddr_t addr, cred_t *cr) 29103 { 29104 int *v = (int *)addr; 29105 long new_value; 29106 29107 if (secpolicy_net_config(cr, B_FALSE) != 0) 29108 return (EPERM); 29109 29110 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29111 return (EINVAL); 29112 29113 ip_input_proc = ip_squeue_switch(new_value); 29114 *v = new_value; 29115 return (0); 29116 } 29117 29118 /* 29119 * Handle ndd set of variables which require PRIV_SYS_NET_CONFIG such as 29120 * ip_debug. 29121 */ 29122 /* ARGSUSED */ 29123 static int 29124 ip_int_set(queue_t *q, mblk_t *mp, char *value, 29125 caddr_t addr, cred_t *cr) 29126 { 29127 int *v = (int *)addr; 29128 long new_value; 29129 29130 if (secpolicy_net_config(cr, B_FALSE) != 0) 29131 return (EPERM); 29132 29133 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29134 return (EINVAL); 29135 29136 *v = new_value; 29137 return (0); 29138 } 29139 29140 /* 29141 * Handle changes to ipmp_hook_emulation ndd variable. 29142 * Need to update phyint_hook_ifindex. 29143 * Also generate a nic plumb event should a new ifidex be assigned to a group. 29144 */ 29145 static void 29146 ipmp_hook_emulation_changed(ip_stack_t *ipst) 29147 { 29148 phyint_t *phyi; 29149 phyint_t *phyi_tmp; 29150 char *groupname; 29151 int namelen; 29152 ill_t *ill; 29153 boolean_t new_group; 29154 29155 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29156 /* 29157 * Group indicies are stored in the phyint - a common structure 29158 * to both IPv4 and IPv6. 29159 */ 29160 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 29161 for (; phyi != NULL; 29162 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 29163 phyi, AVL_AFTER)) { 29164 /* Ignore the ones that do not have a group */ 29165 if (phyi->phyint_groupname_len == 0) 29166 continue; 29167 29168 /* 29169 * Look for other phyint in group. 29170 * Clear name/namelen so the lookup doesn't find ourselves. 29171 */ 29172 namelen = phyi->phyint_groupname_len; 29173 groupname = phyi->phyint_groupname; 29174 phyi->phyint_groupname_len = 0; 29175 phyi->phyint_groupname = NULL; 29176 29177 phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst); 29178 /* Restore */ 29179 phyi->phyint_groupname_len = namelen; 29180 phyi->phyint_groupname = groupname; 29181 29182 new_group = B_FALSE; 29183 if (ipst->ips_ipmp_hook_emulation) { 29184 /* 29185 * If the group already exists and has already 29186 * been assigned a group ifindex, we use the existing 29187 * group_ifindex, otherwise we pick a new group_ifindex 29188 * here. 29189 */ 29190 if (phyi_tmp != NULL && 29191 phyi_tmp->phyint_group_ifindex != 0) { 29192 phyi->phyint_group_ifindex = 29193 phyi_tmp->phyint_group_ifindex; 29194 } else { 29195 /* XXX We need a recovery strategy here. */ 29196 if (!ip_assign_ifindex( 29197 &phyi->phyint_group_ifindex, ipst)) 29198 cmn_err(CE_PANIC, 29199 "ip_assign_ifindex() failed"); 29200 new_group = B_TRUE; 29201 } 29202 } else { 29203 phyi->phyint_group_ifindex = 0; 29204 } 29205 if (ipst->ips_ipmp_hook_emulation) 29206 phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex; 29207 else 29208 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 29209 29210 /* 29211 * For IP Filter to find out the relationship between 29212 * names and interface indicies, we need to generate 29213 * a NE_PLUMB event when a new group can appear. 29214 * We always generate events when a new interface appears 29215 * (even when ipmp_hook_emulation is set) so there 29216 * is no need to generate NE_PLUMB events when 29217 * ipmp_hook_emulation is turned off. 29218 * And since it isn't critical for IP Filter to get 29219 * the NE_UNPLUMB events we skip those here. 29220 */ 29221 if (new_group) { 29222 /* 29223 * First phyint in group - generate group PLUMB event. 29224 * Since we are not running inside the ipsq we do 29225 * the dispatch immediately. 29226 */ 29227 if (phyi->phyint_illv4 != NULL) 29228 ill = phyi->phyint_illv4; 29229 else 29230 ill = phyi->phyint_illv6; 29231 29232 if (ill != NULL) { 29233 mutex_enter(&ill->ill_lock); 29234 ill_nic_info_plumb(ill, B_TRUE); 29235 ill_nic_info_dispatch(ill); 29236 mutex_exit(&ill->ill_lock); 29237 } 29238 } 29239 } 29240 rw_exit(&ipst->ips_ill_g_lock); 29241 } 29242 29243 /* ARGSUSED */ 29244 static int 29245 ipmp_hook_emulation_set(queue_t *q, mblk_t *mp, char *value, 29246 caddr_t addr, cred_t *cr) 29247 { 29248 int *v = (int *)addr; 29249 long new_value; 29250 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29251 29252 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29253 return (EINVAL); 29254 29255 if (*v != new_value) { 29256 *v = new_value; 29257 ipmp_hook_emulation_changed(ipst); 29258 } 29259 return (0); 29260 } 29261 29262 static void * 29263 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 29264 { 29265 kstat_t *ksp; 29266 29267 ip_stat_t template = { 29268 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 29269 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 29270 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 29271 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 29272 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 29273 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 29274 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 29275 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 29276 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 29277 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 29278 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 29279 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 29280 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 29281 { "ip_db_ref", KSTAT_DATA_UINT64 }, 29282 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 29283 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 29284 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 29285 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 29286 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 29287 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 29288 { "ip_opt", KSTAT_DATA_UINT64 }, 29289 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 29290 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 29291 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 29292 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 29293 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 29294 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 29295 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 29296 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 29297 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 29298 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 29299 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 29300 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 29301 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29302 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29303 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29304 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29305 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29306 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29307 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29308 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29309 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 29310 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 29311 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 29312 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 29313 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 29314 }; 29315 29316 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 29317 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 29318 KSTAT_FLAG_VIRTUAL, stackid); 29319 29320 if (ksp == NULL) 29321 return (NULL); 29322 29323 bcopy(&template, ip_statisticsp, sizeof (template)); 29324 ksp->ks_data = (void *)ip_statisticsp; 29325 ksp->ks_private = (void *)(uintptr_t)stackid; 29326 29327 kstat_install(ksp); 29328 return (ksp); 29329 } 29330 29331 static void 29332 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 29333 { 29334 if (ksp != NULL) { 29335 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29336 kstat_delete_netstack(ksp, stackid); 29337 } 29338 } 29339 29340 static void * 29341 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 29342 { 29343 kstat_t *ksp; 29344 29345 ip_named_kstat_t template = { 29346 { "forwarding", KSTAT_DATA_UINT32, 0 }, 29347 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 29348 { "inReceives", KSTAT_DATA_UINT64, 0 }, 29349 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 29350 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 29351 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 29352 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 29353 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 29354 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 29355 { "outRequests", KSTAT_DATA_UINT64, 0 }, 29356 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 29357 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 29358 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 29359 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 29360 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 29361 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 29362 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 29363 { "fragFails", KSTAT_DATA_UINT32, 0 }, 29364 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 29365 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 29366 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 29367 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 29368 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 29369 { "inErrs", KSTAT_DATA_UINT32, 0 }, 29370 { "noPorts", KSTAT_DATA_UINT32, 0 }, 29371 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 29372 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 29373 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 29374 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 29375 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 29376 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 29377 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 29378 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 29379 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 29380 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 29381 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 29382 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 29383 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 29384 }; 29385 29386 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 29387 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 29388 if (ksp == NULL || ksp->ks_data == NULL) 29389 return (NULL); 29390 29391 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 29392 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 29393 template.reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29394 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 29395 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 29396 29397 template.netToMediaEntrySize.value.i32 = 29398 sizeof (mib2_ipNetToMediaEntry_t); 29399 29400 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 29401 29402 bcopy(&template, ksp->ks_data, sizeof (template)); 29403 ksp->ks_update = ip_kstat_update; 29404 ksp->ks_private = (void *)(uintptr_t)stackid; 29405 29406 kstat_install(ksp); 29407 return (ksp); 29408 } 29409 29410 static void 29411 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29412 { 29413 if (ksp != NULL) { 29414 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29415 kstat_delete_netstack(ksp, stackid); 29416 } 29417 } 29418 29419 static int 29420 ip_kstat_update(kstat_t *kp, int rw) 29421 { 29422 ip_named_kstat_t *ipkp; 29423 mib2_ipIfStatsEntry_t ipmib; 29424 ill_walk_context_t ctx; 29425 ill_t *ill; 29426 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29427 netstack_t *ns; 29428 ip_stack_t *ipst; 29429 29430 if (kp == NULL || kp->ks_data == NULL) 29431 return (EIO); 29432 29433 if (rw == KSTAT_WRITE) 29434 return (EACCES); 29435 29436 ns = netstack_find_by_stackid(stackid); 29437 if (ns == NULL) 29438 return (-1); 29439 ipst = ns->netstack_ip; 29440 if (ipst == NULL) { 29441 netstack_rele(ns); 29442 return (-1); 29443 } 29444 ipkp = (ip_named_kstat_t *)kp->ks_data; 29445 29446 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 29447 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29448 ill = ILL_START_WALK_V4(&ctx, ipst); 29449 for (; ill != NULL; ill = ill_next(&ctx, ill)) 29450 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 29451 rw_exit(&ipst->ips_ill_g_lock); 29452 29453 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 29454 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 29455 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 29456 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 29457 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 29458 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 29459 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 29460 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 29461 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 29462 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 29463 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 29464 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 29465 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29466 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 29467 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 29468 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 29469 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 29470 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 29471 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 29472 29473 ipkp->routingDiscards.value.ui32 = 0; 29474 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 29475 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 29476 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 29477 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 29478 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 29479 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 29480 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 29481 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 29482 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 29483 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 29484 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 29485 29486 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 29487 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 29488 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 29489 29490 netstack_rele(ns); 29491 29492 return (0); 29493 } 29494 29495 static void * 29496 icmp_kstat_init(netstackid_t stackid) 29497 { 29498 kstat_t *ksp; 29499 29500 icmp_named_kstat_t template = { 29501 { "inMsgs", KSTAT_DATA_UINT32 }, 29502 { "inErrors", KSTAT_DATA_UINT32 }, 29503 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 29504 { "inTimeExcds", KSTAT_DATA_UINT32 }, 29505 { "inParmProbs", KSTAT_DATA_UINT32 }, 29506 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 29507 { "inRedirects", KSTAT_DATA_UINT32 }, 29508 { "inEchos", KSTAT_DATA_UINT32 }, 29509 { "inEchoReps", KSTAT_DATA_UINT32 }, 29510 { "inTimestamps", KSTAT_DATA_UINT32 }, 29511 { "inTimestampReps", KSTAT_DATA_UINT32 }, 29512 { "inAddrMasks", KSTAT_DATA_UINT32 }, 29513 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 29514 { "outMsgs", KSTAT_DATA_UINT32 }, 29515 { "outErrors", KSTAT_DATA_UINT32 }, 29516 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 29517 { "outTimeExcds", KSTAT_DATA_UINT32 }, 29518 { "outParmProbs", KSTAT_DATA_UINT32 }, 29519 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 29520 { "outRedirects", KSTAT_DATA_UINT32 }, 29521 { "outEchos", KSTAT_DATA_UINT32 }, 29522 { "outEchoReps", KSTAT_DATA_UINT32 }, 29523 { "outTimestamps", KSTAT_DATA_UINT32 }, 29524 { "outTimestampReps", KSTAT_DATA_UINT32 }, 29525 { "outAddrMasks", KSTAT_DATA_UINT32 }, 29526 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 29527 { "inChksumErrs", KSTAT_DATA_UINT32 }, 29528 { "inUnknowns", KSTAT_DATA_UINT32 }, 29529 { "inFragNeeded", KSTAT_DATA_UINT32 }, 29530 { "outFragNeeded", KSTAT_DATA_UINT32 }, 29531 { "outDrops", KSTAT_DATA_UINT32 }, 29532 { "inOverFlows", KSTAT_DATA_UINT32 }, 29533 { "inBadRedirects", KSTAT_DATA_UINT32 }, 29534 }; 29535 29536 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 29537 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 29538 if (ksp == NULL || ksp->ks_data == NULL) 29539 return (NULL); 29540 29541 bcopy(&template, ksp->ks_data, sizeof (template)); 29542 29543 ksp->ks_update = icmp_kstat_update; 29544 ksp->ks_private = (void *)(uintptr_t)stackid; 29545 29546 kstat_install(ksp); 29547 return (ksp); 29548 } 29549 29550 static void 29551 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29552 { 29553 if (ksp != NULL) { 29554 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29555 kstat_delete_netstack(ksp, stackid); 29556 } 29557 } 29558 29559 static int 29560 icmp_kstat_update(kstat_t *kp, int rw) 29561 { 29562 icmp_named_kstat_t *icmpkp; 29563 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29564 netstack_t *ns; 29565 ip_stack_t *ipst; 29566 29567 if ((kp == NULL) || (kp->ks_data == NULL)) 29568 return (EIO); 29569 29570 if (rw == KSTAT_WRITE) 29571 return (EACCES); 29572 29573 ns = netstack_find_by_stackid(stackid); 29574 if (ns == NULL) 29575 return (-1); 29576 ipst = ns->netstack_ip; 29577 if (ipst == NULL) { 29578 netstack_rele(ns); 29579 return (-1); 29580 } 29581 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 29582 29583 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 29584 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 29585 icmpkp->inDestUnreachs.value.ui32 = 29586 ipst->ips_icmp_mib.icmpInDestUnreachs; 29587 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 29588 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 29589 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 29590 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 29591 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 29592 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 29593 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 29594 icmpkp->inTimestampReps.value.ui32 = 29595 ipst->ips_icmp_mib.icmpInTimestampReps; 29596 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 29597 icmpkp->inAddrMaskReps.value.ui32 = 29598 ipst->ips_icmp_mib.icmpInAddrMaskReps; 29599 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 29600 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 29601 icmpkp->outDestUnreachs.value.ui32 = 29602 ipst->ips_icmp_mib.icmpOutDestUnreachs; 29603 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 29604 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 29605 icmpkp->outSrcQuenchs.value.ui32 = 29606 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 29607 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 29608 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 29609 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 29610 icmpkp->outTimestamps.value.ui32 = 29611 ipst->ips_icmp_mib.icmpOutTimestamps; 29612 icmpkp->outTimestampReps.value.ui32 = 29613 ipst->ips_icmp_mib.icmpOutTimestampReps; 29614 icmpkp->outAddrMasks.value.ui32 = 29615 ipst->ips_icmp_mib.icmpOutAddrMasks; 29616 icmpkp->outAddrMaskReps.value.ui32 = 29617 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 29618 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 29619 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 29620 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 29621 icmpkp->outFragNeeded.value.ui32 = 29622 ipst->ips_icmp_mib.icmpOutFragNeeded; 29623 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 29624 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 29625 icmpkp->inBadRedirects.value.ui32 = 29626 ipst->ips_icmp_mib.icmpInBadRedirects; 29627 29628 netstack_rele(ns); 29629 return (0); 29630 } 29631 29632 /* 29633 * This is the fanout function for raw socket opened for SCTP. Note 29634 * that it is called after SCTP checks that there is no socket which 29635 * wants a packet. Then before SCTP handles this out of the blue packet, 29636 * this function is called to see if there is any raw socket for SCTP. 29637 * If there is and it is bound to the correct address, the packet will 29638 * be sent to that socket. Note that only one raw socket can be bound to 29639 * a port. This is assured in ipcl_sctp_hash_insert(); 29640 */ 29641 void 29642 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 29643 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 29644 zoneid_t zoneid) 29645 { 29646 conn_t *connp; 29647 queue_t *rq; 29648 mblk_t *first_mp; 29649 boolean_t secure; 29650 ip6_t *ip6h; 29651 ip_stack_t *ipst = recv_ill->ill_ipst; 29652 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 29653 sctp_stack_t *sctps = ipst->ips_netstack->netstack_sctp; 29654 boolean_t sctp_csum_err = B_FALSE; 29655 29656 if (flags & IP_FF_SCTP_CSUM_ERR) { 29657 sctp_csum_err = B_TRUE; 29658 flags &= ~IP_FF_SCTP_CSUM_ERR; 29659 } 29660 29661 first_mp = mp; 29662 if (mctl_present) { 29663 mp = first_mp->b_cont; 29664 secure = ipsec_in_is_secure(first_mp); 29665 ASSERT(mp != NULL); 29666 } else { 29667 secure = B_FALSE; 29668 } 29669 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 29670 29671 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha, ipst); 29672 if (connp == NULL) { 29673 /* 29674 * Although raw sctp is not summed, OOB chunks must be. 29675 * Drop the packet here if the sctp checksum failed. 29676 */ 29677 if (sctp_csum_err) { 29678 BUMP_MIB(&sctps->sctps_mib, sctpChecksumError); 29679 freemsg(first_mp); 29680 return; 29681 } 29682 sctp_ootb_input(first_mp, recv_ill, zoneid, mctl_present); 29683 return; 29684 } 29685 rq = connp->conn_rq; 29686 if (!canputnext(rq)) { 29687 CONN_DEC_REF(connp); 29688 BUMP_MIB(recv_ill->ill_ip_mib, rawipIfStatsInOverflows); 29689 freemsg(first_mp); 29690 return; 29691 } 29692 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 29693 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || secure) { 29694 first_mp = ipsec_check_inbound_policy(first_mp, connp, 29695 (isv4 ? ipha : NULL), ip6h, mctl_present); 29696 if (first_mp == NULL) { 29697 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 29698 CONN_DEC_REF(connp); 29699 return; 29700 } 29701 } 29702 /* 29703 * We probably should not send M_CTL message up to 29704 * raw socket. 29705 */ 29706 if (mctl_present) 29707 freeb(first_mp); 29708 29709 /* Initiate IPPF processing here if needed. */ 29710 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) || 29711 (!isv4 && IP6_IN_IPP(flags, ipst))) { 29712 ip_process(IPP_LOCAL_IN, &mp, 29713 recv_ill->ill_phyint->phyint_ifindex); 29714 if (mp == NULL) { 29715 CONN_DEC_REF(connp); 29716 return; 29717 } 29718 } 29719 29720 if (connp->conn_recvif || connp->conn_recvslla || 29721 ((connp->conn_ip_recvpktinfo || 29722 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 29723 (flags & IP_FF_IPINFO))) { 29724 int in_flags = 0; 29725 29726 /* 29727 * Since sctp does not support IP_RECVPKTINFO for v4, only pass 29728 * IPF_RECVIF. 29729 */ 29730 if (connp->conn_recvif || connp->conn_ip_recvpktinfo) { 29731 in_flags = IPF_RECVIF; 29732 } 29733 if (connp->conn_recvslla) { 29734 in_flags |= IPF_RECVSLLA; 29735 } 29736 if (isv4) { 29737 mp = ip_add_info(mp, recv_ill, in_flags, 29738 IPCL_ZONEID(connp), ipst); 29739 } else { 29740 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 29741 if (mp == NULL) { 29742 BUMP_MIB(recv_ill->ill_ip_mib, 29743 ipIfStatsInDiscards); 29744 CONN_DEC_REF(connp); 29745 return; 29746 } 29747 } 29748 } 29749 29750 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 29751 /* 29752 * We are sending the IPSEC_IN message also up. Refer 29753 * to comments above this function. 29754 * This is the SOCK_RAW, IPPROTO_SCTP case. 29755 */ 29756 (connp->conn_recv)(connp, mp, NULL); 29757 CONN_DEC_REF(connp); 29758 } 29759 29760 #define UPDATE_IP_MIB_OB_COUNTERS(ill, len) \ 29761 { \ 29762 BUMP_MIB((ill)->ill_ip_mib, ipIfStatsHCOutTransmits); \ 29763 UPDATE_MIB((ill)->ill_ip_mib, ipIfStatsHCOutOctets, (len)); \ 29764 } 29765 /* 29766 * This function should be called only if all packet processing 29767 * including fragmentation is complete. Callers of this function 29768 * must set mp->b_prev to one of these values: 29769 * {0, IPP_FWD_OUT, IPP_LOCAL_OUT} 29770 * prior to handing over the mp as first argument to this function. 29771 * 29772 * If the ire passed by caller is incomplete, this function 29773 * queues the packet and if necessary, sends ARP request and bails. 29774 * If the ire passed is fully resolved, we simply prepend 29775 * the link-layer header to the packet, do ipsec hw acceleration 29776 * work if necessary, and send the packet out on the wire. 29777 * 29778 * NOTE: IPsec will only call this function with fully resolved 29779 * ires if hw acceleration is involved. 29780 * TODO list : 29781 * a Handle M_MULTIDATA so that 29782 * tcp_multisend->tcp_multisend_data can 29783 * call ip_xmit_v4 directly 29784 * b Handle post-ARP work for fragments so that 29785 * ip_wput_frag can call this function. 29786 */ 29787 ipxmit_state_t 29788 ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, boolean_t flow_ctl_enabled) 29789 { 29790 nce_t *arpce; 29791 queue_t *q; 29792 int ill_index; 29793 mblk_t *nxt_mp, *first_mp; 29794 boolean_t xmit_drop = B_FALSE; 29795 ip_proc_t proc; 29796 ill_t *out_ill; 29797 int pkt_len; 29798 29799 arpce = ire->ire_nce; 29800 ASSERT(arpce != NULL); 29801 29802 DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire, nce_t *, arpce); 29803 29804 mutex_enter(&arpce->nce_lock); 29805 switch (arpce->nce_state) { 29806 case ND_REACHABLE: 29807 /* If there are other queued packets, queue this packet */ 29808 if (arpce->nce_qd_mp != NULL) { 29809 if (mp != NULL) 29810 nce_queue_mp_common(arpce, mp, B_FALSE); 29811 mp = arpce->nce_qd_mp; 29812 } 29813 arpce->nce_qd_mp = NULL; 29814 mutex_exit(&arpce->nce_lock); 29815 29816 /* 29817 * Flush the queue. In the common case, where the 29818 * ARP is already resolved, it will go through the 29819 * while loop only once. 29820 */ 29821 while (mp != NULL) { 29822 29823 nxt_mp = mp->b_next; 29824 mp->b_next = NULL; 29825 ASSERT(mp->b_datap->db_type != M_CTL); 29826 pkt_len = ntohs(((ipha_t *)mp->b_rptr)->ipha_length); 29827 /* 29828 * This info is needed for IPQOS to do COS marking 29829 * in ip_wput_attach_llhdr->ip_process. 29830 */ 29831 proc = (ip_proc_t)(uintptr_t)mp->b_prev; 29832 mp->b_prev = NULL; 29833 29834 /* set up ill index for outbound qos processing */ 29835 out_ill = ire_to_ill(ire); 29836 ill_index = out_ill->ill_phyint->phyint_ifindex; 29837 first_mp = ip_wput_attach_llhdr(mp, ire, proc, 29838 ill_index); 29839 if (first_mp == NULL) { 29840 xmit_drop = B_TRUE; 29841 BUMP_MIB(out_ill->ill_ip_mib, 29842 ipIfStatsOutDiscards); 29843 goto next_mp; 29844 } 29845 /* non-ipsec hw accel case */ 29846 if (io == NULL || !io->ipsec_out_accelerated) { 29847 /* send it */ 29848 q = ire->ire_stq; 29849 if (proc == IPP_FWD_OUT) { 29850 UPDATE_IB_PKT_COUNT(ire); 29851 } else { 29852 UPDATE_OB_PKT_COUNT(ire); 29853 } 29854 ire->ire_last_used_time = lbolt; 29855 29856 if (flow_ctl_enabled || canputnext(q)) { 29857 if (proc == IPP_FWD_OUT) { 29858 29859 BUMP_MIB(out_ill->ill_ip_mib, 29860 ipIfStatsHCOutForwDatagrams); 29861 29862 } 29863 UPDATE_IP_MIB_OB_COUNTERS(out_ill, 29864 pkt_len); 29865 29866 putnext(q, first_mp); 29867 } else { 29868 BUMP_MIB(out_ill->ill_ip_mib, 29869 ipIfStatsOutDiscards); 29870 xmit_drop = B_TRUE; 29871 freemsg(first_mp); 29872 } 29873 } else { 29874 /* 29875 * Safety Pup says: make sure this 29876 * is going to the right interface! 29877 */ 29878 ill_t *ill1 = 29879 (ill_t *)ire->ire_stq->q_ptr; 29880 int ifindex = 29881 ill1->ill_phyint->phyint_ifindex; 29882 if (ifindex != 29883 io->ipsec_out_capab_ill_index) { 29884 xmit_drop = B_TRUE; 29885 freemsg(mp); 29886 } else { 29887 UPDATE_IP_MIB_OB_COUNTERS(ill1, 29888 pkt_len); 29889 ipsec_hw_putnext(ire->ire_stq, mp); 29890 } 29891 } 29892 next_mp: 29893 mp = nxt_mp; 29894 } /* while (mp != NULL) */ 29895 if (xmit_drop) 29896 return (SEND_FAILED); 29897 else 29898 return (SEND_PASSED); 29899 29900 case ND_INITIAL: 29901 case ND_INCOMPLETE: 29902 29903 /* 29904 * While we do send off packets to dests that 29905 * use fully-resolved CGTP routes, we do not 29906 * handle unresolved CGTP routes. 29907 */ 29908 ASSERT(!(ire->ire_flags & RTF_MULTIRT)); 29909 ASSERT(io == NULL || !io->ipsec_out_accelerated); 29910 29911 if (mp != NULL) { 29912 /* queue the packet */ 29913 nce_queue_mp_common(arpce, mp, B_FALSE); 29914 } 29915 29916 if (arpce->nce_state == ND_INCOMPLETE) { 29917 mutex_exit(&arpce->nce_lock); 29918 DTRACE_PROBE3(ip__xmit__incomplete, 29919 (ire_t *), ire, (mblk_t *), mp, 29920 (ipsec_out_t *), io); 29921 return (LOOKUP_IN_PROGRESS); 29922 } 29923 29924 arpce->nce_state = ND_INCOMPLETE; 29925 mutex_exit(&arpce->nce_lock); 29926 /* 29927 * Note that ire_add() (called from ire_forward()) 29928 * holds a ref on the ire until ARP is completed. 29929 */ 29930 29931 ire_arpresolve(ire, ire_to_ill(ire)); 29932 return (LOOKUP_IN_PROGRESS); 29933 default: 29934 ASSERT(0); 29935 mutex_exit(&arpce->nce_lock); 29936 return (LLHDR_RESLV_FAILED); 29937 } 29938 } 29939 29940 #undef UPDATE_IP_MIB_OB_COUNTERS 29941 29942 /* 29943 * Return B_TRUE if the buffers differ in length or content. 29944 * This is used for comparing extension header buffers. 29945 * Note that an extension header would be declared different 29946 * even if all that changed was the next header value in that header i.e. 29947 * what really changed is the next extension header. 29948 */ 29949 boolean_t 29950 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 29951 uint_t blen) 29952 { 29953 if (!b_valid) 29954 blen = 0; 29955 29956 if (alen != blen) 29957 return (B_TRUE); 29958 if (alen == 0) 29959 return (B_FALSE); /* Both zero length */ 29960 return (bcmp(abuf, bbuf, alen)); 29961 } 29962 29963 /* 29964 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 29965 * Return B_FALSE if memory allocation fails - don't change any state! 29966 */ 29967 boolean_t 29968 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 29969 const void *src, uint_t srclen) 29970 { 29971 void *dst; 29972 29973 if (!src_valid) 29974 srclen = 0; 29975 29976 ASSERT(*dstlenp == 0); 29977 if (src != NULL && srclen != 0) { 29978 dst = mi_alloc(srclen, BPRI_MED); 29979 if (dst == NULL) 29980 return (B_FALSE); 29981 } else { 29982 dst = NULL; 29983 } 29984 if (*dstp != NULL) 29985 mi_free(*dstp); 29986 *dstp = dst; 29987 *dstlenp = dst == NULL ? 0 : srclen; 29988 return (B_TRUE); 29989 } 29990 29991 /* 29992 * Replace what is in *dst, *dstlen with the source. 29993 * Assumes ip_allocbuf has already been called. 29994 */ 29995 void 29996 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 29997 const void *src, uint_t srclen) 29998 { 29999 if (!src_valid) 30000 srclen = 0; 30001 30002 ASSERT(*dstlenp == srclen); 30003 if (src != NULL && srclen != 0) 30004 bcopy(src, *dstp, srclen); 30005 } 30006 30007 /* 30008 * Free the storage pointed to by the members of an ip6_pkt_t. 30009 */ 30010 void 30011 ip6_pkt_free(ip6_pkt_t *ipp) 30012 { 30013 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 30014 30015 if (ipp->ipp_fields & IPPF_HOPOPTS) { 30016 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 30017 ipp->ipp_hopopts = NULL; 30018 ipp->ipp_hopoptslen = 0; 30019 } 30020 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 30021 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 30022 ipp->ipp_rtdstopts = NULL; 30023 ipp->ipp_rtdstoptslen = 0; 30024 } 30025 if (ipp->ipp_fields & IPPF_DSTOPTS) { 30026 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 30027 ipp->ipp_dstopts = NULL; 30028 ipp->ipp_dstoptslen = 0; 30029 } 30030 if (ipp->ipp_fields & IPPF_RTHDR) { 30031 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 30032 ipp->ipp_rthdr = NULL; 30033 ipp->ipp_rthdrlen = 0; 30034 } 30035 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 30036 IPPF_RTHDR); 30037 } 30038