1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 #include <sys/types.h> 31 #include <sys/stream.h> 32 #include <sys/dlpi.h> 33 #include <sys/stropts.h> 34 #include <sys/sysmacros.h> 35 #include <sys/strsubr.h> 36 #include <sys/strlog.h> 37 #include <sys/strsun.h> 38 #include <sys/zone.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/xti_inet.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/cmn_err.h> 45 #include <sys/debug.h> 46 #include <sys/kobj.h> 47 #include <sys/modctl.h> 48 #include <sys/atomic.h> 49 #include <sys/policy.h> 50 #include <sys/priv.h> 51 52 #include <sys/systm.h> 53 #include <sys/param.h> 54 #include <sys/kmem.h> 55 #include <sys/sdt.h> 56 #include <sys/socket.h> 57 #include <sys/vtrace.h> 58 #include <sys/isa_defs.h> 59 #include <net/if.h> 60 #include <net/if_arp.h> 61 #include <net/route.h> 62 #include <sys/sockio.h> 63 #include <netinet/in.h> 64 #include <net/if_dl.h> 65 66 #include <inet/common.h> 67 #include <inet/mi.h> 68 #include <inet/mib2.h> 69 #include <inet/nd.h> 70 #include <inet/arp.h> 71 #include <inet/snmpcom.h> 72 #include <inet/kstatcom.h> 73 74 #include <netinet/igmp_var.h> 75 #include <netinet/ip6.h> 76 #include <netinet/icmp6.h> 77 #include <netinet/sctp.h> 78 79 #include <inet/ip.h> 80 #include <inet/ip_impl.h> 81 #include <inet/ip6.h> 82 #include <inet/ip6_asp.h> 83 #include <inet/tcp.h> 84 #include <inet/tcp_impl.h> 85 #include <inet/ip_multi.h> 86 #include <inet/ip_if.h> 87 #include <inet/ip_ire.h> 88 #include <inet/ip_ftable.h> 89 #include <inet/ip_rts.h> 90 #include <inet/optcom.h> 91 #include <inet/ip_ndp.h> 92 #include <inet/ip_listutils.h> 93 #include <netinet/igmp.h> 94 #include <netinet/ip_mroute.h> 95 #include <inet/ipp_common.h> 96 97 #include <net/pfkeyv2.h> 98 #include <inet/ipsec_info.h> 99 #include <inet/sadb.h> 100 #include <inet/ipsec_impl.h> 101 #include <sys/iphada.h> 102 #include <inet/tun.h> 103 #include <inet/ipdrop.h> 104 #include <inet/ip_netinfo.h> 105 106 #include <sys/ethernet.h> 107 #include <net/if_types.h> 108 #include <sys/cpuvar.h> 109 110 #include <ipp/ipp.h> 111 #include <ipp/ipp_impl.h> 112 #include <ipp/ipgpc/ipgpc.h> 113 114 #include <sys/multidata.h> 115 #include <sys/pattr.h> 116 117 #include <inet/ipclassifier.h> 118 #include <inet/sctp_ip.h> 119 #include <inet/sctp/sctp_impl.h> 120 #include <inet/udp_impl.h> 121 #include <sys/sunddi.h> 122 123 #include <sys/tsol/label.h> 124 #include <sys/tsol/tnet.h> 125 126 #include <rpc/pmap_prot.h> 127 128 /* 129 * Values for squeue switch: 130 * IP_SQUEUE_ENTER_NODRAIN: squeue_enter_nodrain 131 * IP_SQUEUE_ENTER: squeue_enter 132 * IP_SQUEUE_FILL: squeue_fill 133 */ 134 int ip_squeue_enter = 2; /* Setable in /etc/system */ 135 136 squeue_func_t ip_input_proc; 137 #define SET_BPREV_FLAG(x) ((mblk_t *)(uintptr_t)(x)) 138 139 #define TCP6 "tcp6" 140 #define TCP "tcp" 141 #define SCTP "sctp" 142 #define SCTP6 "sctp6" 143 144 major_t TCP6_MAJ; 145 major_t TCP_MAJ; 146 major_t SCTP_MAJ; 147 major_t SCTP6_MAJ; 148 149 /* 150 * Setable in /etc/system 151 */ 152 int ip_poll_normal_ms = 100; 153 int ip_poll_normal_ticks = 0; 154 int ip_modclose_ackwait_ms = 3000; 155 156 /* 157 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 158 */ 159 160 struct listptr_s { 161 mblk_t *lp_head; /* pointer to the head of the list */ 162 mblk_t *lp_tail; /* pointer to the tail of the list */ 163 }; 164 165 typedef struct listptr_s listptr_t; 166 167 /* 168 * This is used by ip_snmp_get_mib2_ip_route_media and 169 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 170 */ 171 typedef struct iproutedata_s { 172 uint_t ird_idx; 173 listptr_t ird_route; /* ipRouteEntryTable */ 174 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 175 listptr_t ird_attrs; /* ipRouteAttributeTable */ 176 } iproutedata_t; 177 178 /* 179 * Cluster specific hooks. These should be NULL when booted as a non-cluster 180 */ 181 182 /* 183 * Hook functions to enable cluster networking 184 * On non-clustered systems these vectors must always be NULL. 185 * 186 * Hook function to Check ip specified ip address is a shared ip address 187 * in the cluster 188 * 189 */ 190 int (*cl_inet_isclusterwide)(uint8_t protocol, 191 sa_family_t addr_family, uint8_t *laddrp) = NULL; 192 193 /* 194 * Hook function to generate cluster wide ip fragment identifier 195 */ 196 uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 197 uint8_t *laddrp, uint8_t *faddrp) = NULL; 198 199 /* 200 * Synchronization notes: 201 * 202 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 203 * MT level protection given by STREAMS. IP uses a combination of its own 204 * internal serialization mechanism and standard Solaris locking techniques. 205 * The internal serialization is per phyint (no IPMP) or per IPMP group. 206 * This is used to serialize plumbing operations, IPMP operations, certain 207 * multicast operations, most set ioctls, igmp/mld timers etc. 208 * 209 * Plumbing is a long sequence of operations involving message 210 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 211 * involved in plumbing operations. A natural model is to serialize these 212 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 213 * parallel without any interference. But various set ioctls on hme0 are best 214 * serialized. However if the system uses IPMP, the operations are easier if 215 * they are serialized on a per IPMP group basis since IPMP operations 216 * happen across ill's of a group. Thus the lowest common denominator is to 217 * serialize most set ioctls, multicast join/leave operations, IPMP operations 218 * igmp/mld timer operations, and processing of DLPI control messages received 219 * from drivers on a per IPMP group basis. If the system does not employ 220 * IPMP the serialization is on a per phyint basis. This serialization is 221 * provided by the ipsq_t and primitives operating on this. Details can 222 * be found in ip_if.c above the core primitives operating on ipsq_t. 223 * 224 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 225 * Simiarly lookup of an ire by a thread also returns a refheld ire. 226 * In addition ipif's and ill's referenced by the ire are also indirectly 227 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 228 * the ipif's address or netmask change as long as an ipif is refheld 229 * directly or indirectly. For example an SIOCLIFADDR ioctl that changes the 230 * address of an ipif has to go through the ipsq_t. This ensures that only 231 * 1 such exclusive operation proceeds at any time on the ipif. It then 232 * deletes all ires associated with this ipif, and waits for all refcnts 233 * associated with this ipif to come down to zero. The address is changed 234 * only after the ipif has been quiesced. Then the ipif is brought up again. 235 * More details are described above the comment in ip_sioctl_flags. 236 * 237 * Packet processing is based mostly on IREs and are fully multi-threaded 238 * using standard Solaris MT techniques. 239 * 240 * There are explicit locks in IP to handle: 241 * - The ip_g_head list maintained by mi_open_link() and friends. 242 * 243 * - The reassembly data structures (one lock per hash bucket) 244 * 245 * - conn_lock is meant to protect conn_t fields. The fields actually 246 * protected by conn_lock are documented in the conn_t definition. 247 * 248 * - ire_lock to protect some of the fields of the ire, IRE tables 249 * (one lock per hash bucket). Refer to ip_ire.c for details. 250 * 251 * - ndp_g_lock and nce_lock for protecting NCEs. 252 * 253 * - ill_lock protects fields of the ill and ipif. Details in ip.h 254 * 255 * - ill_g_lock: This is a global reader/writer lock. Protects the following 256 * * The AVL tree based global multi list of all ills. 257 * * The linked list of all ipifs of an ill 258 * * The <ill-ipsq> mapping 259 * * The ipsq->ipsq_phyint_list threaded by phyint_ipsq_next 260 * * The illgroup list threaded by ill_group_next. 261 * * <ill-phyint> association 262 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 263 * into an ill, changing the <ill-ipsq> mapping of an ill, insertion/deletion 264 * of an ill into the illgrp list, changing the <ill-phyint> assoc of an ill 265 * will all have to hold the ill_g_lock as writer for the actual duration 266 * of the insertion/deletion/change. More details about the <ill-ipsq> mapping 267 * may be found in the IPMP section. 268 * 269 * - ill_lock: This is a per ill mutex. 270 * It protects some members of the ill and is documented below. 271 * It also protects the <ill-ipsq> mapping 272 * It also protects the illgroup list threaded by ill_group_next. 273 * It also protects the <ill-phyint> assoc. 274 * It also protects the list of ipifs hanging off the ill. 275 * 276 * - ipsq_lock: This is a per ipsq_t mutex lock. 277 * This protects all the other members of the ipsq struct except 278 * ipsq_refs and ipsq_phyint_list which are protected by ill_g_lock 279 * 280 * - illgrp_lock: This is a per ill_group mutex lock. 281 * The only thing it protects is the illgrp_ill_schednext member of ill_group 282 * which dictates which is the next ill in an ill_group that is to be chosen 283 * for sending outgoing packets, through creation of an IRE_CACHE that 284 * references this ill. 285 * 286 * - phyint_lock: This is a per phyint mutex lock. Protects just the 287 * phyint_flags 288 * 289 * - ip_g_nd_lock: This is a global reader/writer lock. 290 * Any call to nd_load to load a new parameter to the ND table must hold the 291 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 292 * as reader. 293 * 294 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 295 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 296 * uniqueness check also done atomically. 297 * 298 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 299 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 300 * as a writer when adding or deleting elements from these lists, and 301 * as a reader when walking these lists to send a SADB update to the 302 * IPsec capable ills. 303 * 304 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 305 * group list linked by ill_usesrc_grp_next. It also protects the 306 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 307 * group is being added or deleted. This lock is taken as a reader when 308 * walking the list/group(eg: to get the number of members in a usesrc group). 309 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 310 * field is changing state i.e from NULL to non-NULL or vice-versa. For 311 * example, it is not necessary to take this lock in the initial portion 312 * of ip_sioctl_slifusesrc or at all in ip_sioctl_groupname and 313 * ip_sioctl_flags since the these operations are executed exclusively and 314 * that ensures that the "usesrc group state" cannot change. The "usesrc 315 * group state" change can happen only in the latter part of 316 * ip_sioctl_slifusesrc and in ill_delete. 317 * 318 * Changing <ill-phyint>, <ill-ipsq>, <ill-illgroup> assocications. 319 * 320 * To change the <ill-phyint> association, the ill_g_lock must be held 321 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 322 * must be held. 323 * 324 * To change the <ill-ipsq> association the ill_g_lock must be held as writer 325 * and the ill_lock of the ill in question must be held. 326 * 327 * To change the <ill-illgroup> association the ill_g_lock must be held as 328 * writer and the ill_lock of the ill in question must be held. 329 * 330 * To add or delete an ipif from the list of ipifs hanging off the ill, 331 * ill_g_lock (writer) and ill_lock must be held and the thread must be 332 * a writer on the associated ipsq,. 333 * 334 * To add or delete an ill to the system, the ill_g_lock must be held as 335 * writer and the thread must be a writer on the associated ipsq. 336 * 337 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 338 * must be a writer on the associated ipsq. 339 * 340 * Lock hierarchy 341 * 342 * Some lock hierarchy scenarios are listed below. 343 * 344 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 345 * ill_g_lock -> illgrp_lock -> ill_lock 346 * ill_g_lock -> ill_lock(s) -> phyint_lock 347 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 348 * ill_g_lock -> ip_addr_avail_lock 349 * conn_lock -> irb_lock -> ill_lock -> ire_lock 350 * ill_g_lock -> ip_g_nd_lock 351 * 352 * When more than 1 ill lock is needed to be held, all ill lock addresses 353 * are sorted on address and locked starting from highest addressed lock 354 * downward. 355 * 356 * Mobile-IP scenarios 357 * 358 * irb_lock -> ill_lock -> ire_mrtun_lock 359 * irb_lock -> ill_lock -> ire_srcif_table_lock 360 * 361 * IPsec scenarios 362 * 363 * ipsa_lock -> ill_g_lock -> ill_lock 364 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 365 * ipsec_capab_ills_lock -> ipsa_lock 366 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 367 * 368 * Trusted Solaris scenarios 369 * 370 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 371 * igsa_lock -> gcdb_lock 372 * gcgrp_rwlock -> ire_lock 373 * gcgrp_rwlock -> gcdb_lock 374 * 375 * 376 * Routing/forwarding table locking notes: 377 * 378 * Lock acquisition order: Radix tree lock, irb_lock. 379 * Requirements: 380 * i. Walker must not hold any locks during the walker callback. 381 * ii Walker must not see a truncated tree during the walk because of any node 382 * deletion. 383 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 384 * in many places in the code to walk the irb list. Thus even if all the 385 * ires in a bucket have been deleted, we still can't free the radix node 386 * until the ires have actually been inactive'd (freed). 387 * 388 * Tree traversal - Need to hold the global tree lock in read mode. 389 * Before dropping the global tree lock, need to either increment the ire_refcnt 390 * to ensure that the radix node can't be deleted. 391 * 392 * Tree add - Need to hold the global tree lock in write mode to add a 393 * radix node. To prevent the node from being deleted, increment the 394 * irb_refcnt, after the node is added to the tree. The ire itself is 395 * added later while holding the irb_lock, but not the tree lock. 396 * 397 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 398 * All associated ires must be inactive (i.e. freed), and irb_refcnt 399 * must be zero. 400 * 401 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 402 * global tree lock (read mode) for traversal. 403 * 404 * IPSEC notes : 405 * 406 * IP interacts with the IPSEC code (AH/ESP) by tagging a M_CTL message 407 * in front of the actual packet. For outbound datagrams, the M_CTL 408 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 409 * information used by the IPSEC code for applying the right level of 410 * protection. The information initialized by IP in the ipsec_out_t 411 * is determined by the per-socket policy or global policy in the system. 412 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 413 * ipsec_info.h) which starts out with nothing in it. It gets filled 414 * with the right information if it goes through the AH/ESP code, which 415 * happens if the incoming packet is secure. The information initialized 416 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 417 * the policy requirements needed by per-socket policy or global policy 418 * is met or not. 419 * 420 * If there is both per-socket policy (set using setsockopt) and there 421 * is also global policy match for the 5 tuples of the socket, 422 * ipsec_override_policy() makes the decision of which one to use. 423 * 424 * For fully connected sockets i.e dst, src [addr, port] is known, 425 * conn_policy_cached is set indicating that policy has been cached. 426 * conn_in_enforce_policy may or may not be set depending on whether 427 * there is a global policy match or per-socket policy match. 428 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 429 * Once the right policy is set on the conn_t, policy cannot change for 430 * this socket. This makes life simpler for TCP (UDP ?) where 431 * re-transmissions go out with the same policy. For symmetry, policy 432 * is cached for fully connected UDP sockets also. Thus if policy is cached, 433 * it also implies that policy is latched i.e policy cannot change 434 * on these sockets. As we have the right policy on the conn, we don't 435 * have to lookup global policy for every outbound and inbound datagram 436 * and thus serving as an optimization. Note that a global policy change 437 * does not affect fully connected sockets if they have policy. If fully 438 * connected sockets did not have any policy associated with it, global 439 * policy change may affect them. 440 * 441 * IP Flow control notes: 442 * 443 * Non-TCP streams are flow controlled by IP. On the send side, if the packet 444 * cannot be sent down to the driver by IP, because of a canput failure, IP 445 * does a putq on the conn_wq. This will cause ip_wsrv to run on the conn_wq. 446 * ip_wsrv in turn, inserts the conn in a list of conn's that need to be drained 447 * when the flowcontrol condition subsides. Ultimately STREAMS backenables the 448 * ip_wsrv on the IP module, which in turn does a qenable of the conn_wq of the 449 * first conn in the list of conn's to be drained. ip_wsrv on this conn drains 450 * the queued messages, and removes the conn from the drain list, if all 451 * messages were drained. It also qenables the next conn in the drain list to 452 * continue the drain process. 453 * 454 * In reality the drain list is not a single list, but a configurable number 455 * of lists. The ip_wsrv on the IP module, qenables the first conn in each 456 * list. If the ip_wsrv of the next qenabled conn does not run, because the 457 * stream closes, ip_close takes responsibility to qenable the next conn in 458 * the drain list. The directly called ip_wput path always does a putq, if 459 * it cannot putnext. Thus synchronization problems are handled between 460 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 461 * functions that manipulate this drain list. Furthermore conn_drain_insert 462 * is called only from ip_wsrv, and there can be only 1 instance of ip_wsrv 463 * running on a queue at any time. conn_drain_tail can be simultaneously called 464 * from both ip_wsrv and ip_close. 465 * 466 * IPQOS notes: 467 * 468 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 469 * and IPQoS modules. IPPF includes hooks in IP at different control points 470 * (callout positions) which direct packets to IPQoS modules for policy 471 * processing. Policies, if present, are global. 472 * 473 * The callout positions are located in the following paths: 474 * o local_in (packets destined for this host) 475 * o local_out (packets orginating from this host ) 476 * o fwd_in (packets forwarded by this m/c - inbound) 477 * o fwd_out (packets forwarded by this m/c - outbound) 478 * Hooks at these callout points can be enabled/disabled using the ndd variable 479 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 480 * By default all the callout positions are enabled. 481 * 482 * Outbound (local_out) 483 * Hooks are placed in ip_wput_ire and ipsec_out_process. 484 * 485 * Inbound (local_in) 486 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 487 * TCP and UDP fanout routines. 488 * 489 * Forwarding (in and out) 490 * Hooks are placed in ip_rput_forward and ip_mrtun_forward. 491 * 492 * IP Policy Framework processing (IPPF processing) 493 * Policy processing for a packet is initiated by ip_process, which ascertains 494 * that the classifier (ipgpc) is loaded and configured, failing which the 495 * packet resumes normal processing in IP. If the clasifier is present, the 496 * packet is acted upon by one or more IPQoS modules (action instances), per 497 * filters configured in ipgpc and resumes normal IP processing thereafter. 498 * An action instance can drop a packet in course of its processing. 499 * 500 * A boolean variable, ip_policy, is used in all the fanout routines that can 501 * invoke ip_process for a packet. This variable indicates if the packet should 502 * to be sent for policy processing. The variable is set to B_TRUE by default, 503 * i.e. when the routines are invoked in the normal ip procesing path for a 504 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 505 * ip_policy is set to B_FALSE for all the routines called in these two 506 * functions because, in the former case, we don't process loopback traffic 507 * currently while in the latter, the packets have already been processed in 508 * icmp_inbound. 509 * 510 * Zones notes: 511 * 512 * The partitioning rules for networking are as follows: 513 * 1) Packets coming from a zone must have a source address belonging to that 514 * zone. 515 * 2) Packets coming from a zone can only be sent on a physical interface on 516 * which the zone has an IP address. 517 * 3) Between two zones on the same machine, packet delivery is only allowed if 518 * there's a matching route for the destination and zone in the forwarding 519 * table. 520 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 521 * different zones can bind to the same port with the wildcard address 522 * (INADDR_ANY). 523 * 524 * The granularity of interface partitioning is at the logical interface level. 525 * Therefore, every zone has its own IP addresses, and incoming packets can be 526 * attributed to a zone unambiguously. A logical interface is placed into a zone 527 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 528 * structure. Rule (1) is implemented by modifying the source address selection 529 * algorithm so that the list of eligible addresses is filtered based on the 530 * sending process zone. 531 * 532 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 533 * across all zones, depending on their type. Here is the break-up: 534 * 535 * IRE type Shared/exclusive 536 * -------- ---------------- 537 * IRE_BROADCAST Exclusive 538 * IRE_DEFAULT (default routes) Shared (*) 539 * IRE_LOCAL Exclusive (x) 540 * IRE_LOOPBACK Exclusive 541 * IRE_PREFIX (net routes) Shared (*) 542 * IRE_CACHE Exclusive 543 * IRE_IF_NORESOLVER (interface routes) Exclusive 544 * IRE_IF_RESOLVER (interface routes) Exclusive 545 * IRE_HOST (host routes) Shared (*) 546 * 547 * (*) A zone can only use a default or off-subnet route if the gateway is 548 * directly reachable from the zone, that is, if the gateway's address matches 549 * one of the zone's logical interfaces. 550 * 551 * (x) IRE_LOCAL are handled a bit differently, since for all other entries 552 * in ire_ctable and IRE_INTERFACE, ire_src_addr is what can be used as source 553 * when sending packets using the IRE. For IRE_LOCAL ire_src_addr is the IP 554 * address of the zone itself (the destination). Since IRE_LOCAL is used 555 * for communication between zones, ip_wput_ire has special logic to set 556 * the right source address when sending using an IRE_LOCAL. 557 * 558 * Furthermore, when ip_restrict_interzone_loopback is set (the default), 559 * ire_cache_lookup restricts loopback using an IRE_LOCAL 560 * between zone to the case when L2 would have conceptually looped the packet 561 * back, i.e. the loopback which is required since neither Ethernet drivers 562 * nor Ethernet hardware loops them back. This is the case when the normal 563 * routes (ignoring IREs with different zoneids) would send out the packet on 564 * the same ill (or ill group) as the ill with which is IRE_LOCAL is 565 * associated. 566 * 567 * Multiple zones can share a common broadcast address; typically all zones 568 * share the 255.255.255.255 address. Incoming as well as locally originated 569 * broadcast packets must be dispatched to all the zones on the broadcast 570 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 571 * since some zones may not be on the 10.16.72/24 network. To handle this, each 572 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 573 * sent to every zone that has an IRE_BROADCAST entry for the destination 574 * address on the input ill, see conn_wantpacket(). 575 * 576 * Applications in different zones can join the same multicast group address. 577 * For IPv4, group memberships are per-logical interface, so they're already 578 * inherently part of a zone. For IPv6, group memberships are per-physical 579 * interface, so we distinguish IPv6 group memberships based on group address, 580 * interface and zoneid. In both cases, received multicast packets are sent to 581 * every zone for which a group membership entry exists. On IPv6 we need to 582 * check that the target zone still has an address on the receiving physical 583 * interface; it could have been removed since the application issued the 584 * IPV6_JOIN_GROUP. 585 */ 586 587 /* 588 * Squeue Fanout flags: 589 * 0: No fanout. 590 * 1: Fanout across all squeues 591 */ 592 boolean_t ip_squeue_fanout = 0; 593 594 /* 595 * Maximum dups allowed per packet. 596 */ 597 uint_t ip_max_frag_dups = 10; 598 599 #define IS_SIMPLE_IPH(ipha) \ 600 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 601 602 /* RFC1122 Conformance */ 603 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 604 605 #define ILL_MAX_NAMELEN LIFNAMSIZ 606 607 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 608 609 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t); 610 static void ip_ipsec_out_prepend(mblk_t *, mblk_t *, ill_t *); 611 612 static void icmp_frag_needed(queue_t *, mblk_t *, int, zoneid_t, 613 ip_stack_t *); 614 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 615 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 616 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 617 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 618 mblk_t *, int, ip_stack_t *); 619 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 620 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 621 ill_t *, zoneid_t); 622 static void icmp_options_update(ipha_t *); 623 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t, zoneid_t, 624 ip_stack_t *); 625 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t, 626 zoneid_t zoneid, ip_stack_t *); 627 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_stack_t *); 628 static void icmp_redirect(ill_t *, mblk_t *); 629 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t, 630 ip_stack_t *); 631 632 static void ip_arp_news(queue_t *, mblk_t *); 633 static boolean_t ip_bind_insert_ire(mblk_t *, ire_t *, iulp_t *, 634 ip_stack_t *); 635 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 636 char *ip_dot_addr(ipaddr_t, char *); 637 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 638 int ip_close(queue_t *, int); 639 static char *ip_dot_saddr(uchar_t *, char *); 640 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 641 boolean_t, boolean_t, ill_t *, zoneid_t); 642 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 643 boolean_t, boolean_t, zoneid_t); 644 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 645 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 646 static void ip_lrput(queue_t *, mblk_t *); 647 static void ip_mrtun_forward(ire_t *, ill_t *, mblk_t *); 648 ipaddr_t ip_net_mask(ipaddr_t); 649 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, ill_t *, conn_t *, 650 zoneid_t, ip_stack_t *); 651 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 652 conn_t *, uint32_t, zoneid_t, ip_opt_info_t *); 653 char *ip_nv_lookup(nv_t *, int); 654 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 655 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 656 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 657 static boolean_t ip_param_register(IDP *ndp, ipparam_t *, size_t, 658 ipndp_t *, size_t); 659 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 660 void ip_rput(queue_t *, mblk_t *); 661 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 662 void *dummy_arg); 663 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 664 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *, 665 ip_stack_t *); 666 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 667 ire_t *, ip_stack_t *); 668 static boolean_t ip_rput_multimblk_ipoptions(queue_t *, ill_t *, 669 mblk_t *, ipha_t **, ipaddr_t *, ip_stack_t *); 670 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *, 671 ip_stack_t *); 672 static boolean_t ip_rput_fragment(queue_t *, mblk_t **, ipha_t *, uint32_t *, 673 uint16_t *); 674 int ip_snmp_get(queue_t *, mblk_t *); 675 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 676 mib2_ipIfStatsEntry_t *, ip_stack_t *); 677 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 678 ip_stack_t *); 679 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *); 680 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 681 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 682 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 683 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 684 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 685 ip_stack_t *ipst); 686 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 687 ip_stack_t *ipst); 688 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 689 ip_stack_t *ipst); 690 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 691 ip_stack_t *ipst); 692 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 693 ip_stack_t *ipst); 694 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 695 ip_stack_t *ipst); 696 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 697 ip_stack_t *ipst); 698 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 699 ip_stack_t *ipst); 700 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, 701 ip_stack_t *ipst); 702 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, 703 ip_stack_t *ipst); 704 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 705 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 706 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 707 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 708 static boolean_t ip_source_routed(ipha_t *, ip_stack_t *); 709 static boolean_t ip_source_route_included(ipha_t *); 710 static void ip_trash_ire_reclaim_stack(ip_stack_t *); 711 712 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t, 713 zoneid_t, ip_stack_t *); 714 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int, ip_stack_t *); 715 static void ip_wput_local_options(ipha_t *, ip_stack_t *); 716 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 717 zoneid_t, ip_stack_t *); 718 719 static void conn_drain_init(ip_stack_t *); 720 static void conn_drain_fini(ip_stack_t *); 721 static void conn_drain_tail(conn_t *connp, boolean_t closing); 722 723 static void conn_walk_drain(ip_stack_t *); 724 static void conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *, 725 zoneid_t); 726 727 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 728 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 729 static void ip_stack_fini(netstackid_t stackid, void *arg); 730 731 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 732 zoneid_t); 733 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 734 void *dummy_arg); 735 736 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 737 738 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 739 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 740 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 741 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 742 743 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 744 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 745 caddr_t, cred_t *); 746 extern int ip_squeue_bind_set(queue_t *q, mblk_t *mp, char *value, 747 caddr_t cp, cred_t *cr); 748 extern int ip_squeue_profile_set(queue_t *, mblk_t *, char *, caddr_t, 749 cred_t *); 750 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 751 caddr_t cp, cred_t *cr); 752 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 753 cred_t *); 754 static int ipmp_hook_emulation_set(queue_t *, mblk_t *, char *, caddr_t, 755 cred_t *); 756 static squeue_func_t ip_squeue_switch(int); 757 758 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 759 static void ip_kstat_fini(netstackid_t, kstat_t *); 760 static int ip_kstat_update(kstat_t *kp, int rw); 761 static void *icmp_kstat_init(netstackid_t); 762 static void icmp_kstat_fini(netstackid_t, kstat_t *); 763 static int icmp_kstat_update(kstat_t *kp, int rw); 764 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 765 static void ip_kstat2_fini(netstackid_t, kstat_t *); 766 767 static int ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *); 768 769 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 770 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 771 772 static void ip_rput_process_forward(queue_t *, mblk_t *, ire_t *, 773 ipha_t *, ill_t *, boolean_t); 774 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 775 776 /* How long, in seconds, we allow frags to hang around. */ 777 #define IP_FRAG_TIMEOUT 60 778 779 /* 780 * Threshold which determines whether MDT should be used when 781 * generating IP fragments; payload size must be greater than 782 * this threshold for MDT to take place. 783 */ 784 #define IP_WPUT_FRAG_MDT_MIN 32768 785 786 /* Setable in /etc/system only */ 787 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 788 789 static long ip_rput_pullups; 790 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 791 792 vmem_t *ip_minor_arena; 793 794 int ip_debug; 795 796 #ifdef DEBUG 797 uint32_t ipsechw_debug = 0; 798 #endif 799 800 /* 801 * Multirouting/CGTP stuff 802 */ 803 cgtp_filter_ops_t *ip_cgtp_filter_ops; /* CGTP hooks */ 804 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 805 boolean_t ip_cgtp_filter; /* Enable/disable CGTP hooks */ 806 807 /* 808 * XXX following really should only be in a header. Would need more 809 * header and .c clean up first. 810 */ 811 extern optdb_obj_t ip_opt_obj; 812 813 ulong_t ip_squeue_enter_unbound = 0; 814 815 /* 816 * Named Dispatch Parameter Table. 817 * All of these are alterable, within the min/max values given, at run time. 818 */ 819 static ipparam_t lcl_param_arr[] = { 820 /* min max value name */ 821 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 822 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 823 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 824 { 0, 1, 0, "ip_respond_to_timestamp"}, 825 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 826 { 0, 1, 1, "ip_send_redirects"}, 827 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 828 { 0, 10, 0, "ip_debug"}, 829 { 0, 10, 0, "ip_mrtdebug"}, 830 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 831 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 832 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 833 { 1, 255, 255, "ip_def_ttl" }, 834 { 0, 1, 0, "ip_forward_src_routed"}, 835 { 0, 256, 32, "ip_wroff_extra" }, 836 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 837 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 838 { 0, 1, 1, "ip_path_mtu_discovery" }, 839 { 0, 240, 30, "ip_ignore_delete_time" }, 840 { 0, 1, 0, "ip_ignore_redirect" }, 841 { 0, 1, 1, "ip_output_queue" }, 842 { 1, 254, 1, "ip_broadcast_ttl" }, 843 { 0, 99999, 100, "ip_icmp_err_interval" }, 844 { 1, 99999, 10, "ip_icmp_err_burst" }, 845 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 846 { 0, 1, 0, "ip_strict_dst_multihoming" }, 847 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 848 { 0, 1, 0, "ipsec_override_persocket_policy" }, 849 { 0, 1, 1, "icmp_accept_clear_messages" }, 850 { 0, 1, 1, "igmp_accept_clear_messages" }, 851 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 852 "ip_ndp_delay_first_probe_time"}, 853 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 854 "ip_ndp_max_unicast_solicit"}, 855 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 856 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 857 { 0, 1, 0, "ip6_forward_src_routed"}, 858 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 859 { 0, 1, 1, "ip6_send_redirects"}, 860 { 0, 1, 0, "ip6_ignore_redirect" }, 861 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 862 863 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 864 865 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 866 867 { 0, 1, 1, "pim_accept_clear_messages" }, 868 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 869 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 870 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 871 { 0, 15, 0, "ip_policy_mask" }, 872 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 873 { 0, 255, 1, "ip_multirt_ttl" }, 874 { 0, 1, 1, "ip_multidata_outbound" }, 875 { 0, 3600000, 300000, "ip_ndp_defense_interval" }, 876 { 0, 999999, 60*60*24, "ip_max_temp_idle" }, 877 { 0, 1000, 1, "ip_max_temp_defend" }, 878 { 0, 1000, 3, "ip_max_defend" }, 879 { 0, 999999, 30, "ip_defend_interval" }, 880 { 0, 3600000, 300000, "ip_dup_recovery" }, 881 { 0, 1, 1, "ip_restrict_interzone_loopback" }, 882 { 0, 1, 1, "ip_lso_outbound" }, 883 #ifdef DEBUG 884 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 885 #else 886 { 0, 0, 0, "" }, 887 #endif 888 }; 889 890 /* 891 * Extended NDP table 892 * The addresses for the first two are filled in to be ips_ip_g_forward 893 * and ips_ipv6_forward at init time. 894 */ 895 static ipndp_t lcl_ndp_arr[] = { 896 /* getf setf data name */ 897 #define IPNDP_IP_FORWARDING_OFFSET 0 898 { ip_param_generic_get, ip_forward_set, NULL, 899 "ip_forwarding" }, 900 #define IPNDP_IP6_FORWARDING_OFFSET 1 901 { ip_param_generic_get, ip_forward_set, NULL, 902 "ip6_forwarding" }, 903 { ip_ill_report, NULL, NULL, 904 "ip_ill_status" }, 905 { ip_ipif_report, NULL, NULL, 906 "ip_ipif_status" }, 907 { ip_ire_report, NULL, NULL, 908 "ipv4_ire_status" }, 909 { ip_ire_report_mrtun, NULL, NULL, 910 "ipv4_mrtun_ire_status" }, 911 { ip_ire_report_srcif, NULL, NULL, 912 "ipv4_srcif_ire_status" }, 913 { ip_ire_report_v6, NULL, NULL, 914 "ipv6_ire_status" }, 915 { ip_conn_report, NULL, NULL, 916 "ip_conn_status" }, 917 { nd_get_long, nd_set_long, (caddr_t)&ip_rput_pullups, 918 "ip_rput_pullups" }, 919 { ndp_report, NULL, NULL, 920 "ip_ndp_cache_report" }, 921 { ip_srcid_report, NULL, NULL, 922 "ip_srcid_status" }, 923 { ip_param_generic_get, ip_squeue_profile_set, 924 (caddr_t)&ip_squeue_profile, "ip_squeue_profile" }, 925 { ip_param_generic_get, ip_squeue_bind_set, 926 (caddr_t)&ip_squeue_bind, "ip_squeue_bind" }, 927 { ip_param_generic_get, ip_input_proc_set, 928 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 929 { ip_param_generic_get, ip_int_set, 930 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 931 #define IPNDP_CGTP_FILTER_OFFSET 16 932 { ip_cgtp_filter_get, ip_cgtp_filter_set, NULL, 933 "ip_cgtp_filter" }, 934 { ip_param_generic_get, ip_int_set, 935 (caddr_t)&ip_soft_rings_cnt, "ip_soft_rings_cnt" }, 936 #define IPNDP_IPMP_HOOK_OFFSET 18 937 { ip_param_generic_get, ipmp_hook_emulation_set, NULL, 938 "ipmp_hook_emulation" }, 939 }; 940 941 /* 942 * Table of IP ioctls encoding the various properties of the ioctl and 943 * indexed based on the last byte of the ioctl command. Occasionally there 944 * is a clash, and there is more than 1 ioctl with the same last byte. 945 * In such a case 1 ioctl is encoded in the ndx table and the remaining 946 * ioctls are encoded in the misc table. An entry in the ndx table is 947 * retrieved by indexing on the last byte of the ioctl command and comparing 948 * the ioctl command with the value in the ndx table. In the event of a 949 * mismatch the misc table is then searched sequentially for the desired 950 * ioctl command. 951 * 952 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 953 */ 954 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 955 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 956 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 957 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 958 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 959 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 960 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 961 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 962 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 963 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 964 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 965 966 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 967 MISC_CMD, ip_siocaddrt, NULL }, 968 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 969 MISC_CMD, ip_siocdelrt, NULL }, 970 971 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 972 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 973 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 974 IF_CMD, ip_sioctl_get_addr, NULL }, 975 976 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 977 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 978 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 979 IPI_GET_CMD | IPI_REPL, 980 IF_CMD, ip_sioctl_get_dstaddr, NULL }, 981 982 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 983 IPI_PRIV | IPI_WR | IPI_REPL, 984 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 985 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 986 IPI_MODOK | IPI_GET_CMD | IPI_REPL, 987 IF_CMD, ip_sioctl_get_flags, NULL }, 988 989 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 990 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 991 992 /* copyin size cannot be coded for SIOCGIFCONF */ 993 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 994 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 995 996 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 997 IF_CMD, ip_sioctl_mtu, NULL }, 998 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 999 IF_CMD, ip_sioctl_get_mtu, NULL }, 1000 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 1001 IPI_GET_CMD | IPI_REPL, 1002 IF_CMD, ip_sioctl_get_brdaddr, NULL }, 1003 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1004 IF_CMD, ip_sioctl_brdaddr, NULL }, 1005 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 1006 IPI_GET_CMD | IPI_REPL, 1007 IF_CMD, ip_sioctl_get_netmask, NULL }, 1008 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1009 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1010 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1011 IPI_GET_CMD | IPI_REPL, 1012 IF_CMD, ip_sioctl_get_metric, NULL }, 1013 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1014 IF_CMD, ip_sioctl_metric, NULL }, 1015 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1016 1017 /* See 166-168 below for extended SIOC*XARP ioctls */ 1018 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV, 1019 MISC_CMD, ip_sioctl_arp, NULL }, 1020 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD | IPI_REPL, 1021 MISC_CMD, ip_sioctl_arp, NULL }, 1022 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV, 1023 MISC_CMD, ip_sioctl_arp, NULL }, 1024 1025 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1026 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1027 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1028 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1029 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1030 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1031 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1032 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1033 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1034 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1035 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1036 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1037 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1038 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1039 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1040 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1041 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1042 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1043 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1044 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1045 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1046 1047 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1048 MISC_CMD, if_unitsel, if_unitsel_restart }, 1049 1050 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1051 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1052 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1053 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1054 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1055 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1056 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1057 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1058 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1059 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1060 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1061 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1062 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1063 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1064 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1065 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1066 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1067 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1068 1069 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1070 IPI_PRIV | IPI_WR | IPI_MODOK, 1071 IF_CMD, ip_sioctl_sifname, NULL }, 1072 1073 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1074 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1075 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1076 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1077 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1078 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1079 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1080 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1081 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1082 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1083 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1084 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1085 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1086 1087 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD | IPI_REPL, 1088 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1089 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1090 IF_CMD, ip_sioctl_get_muxid, NULL }, 1091 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1092 IPI_PRIV | IPI_WR | IPI_REPL, 1093 IF_CMD, ip_sioctl_muxid, NULL }, 1094 1095 /* Both if and lif variants share same func */ 1096 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1097 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1098 /* Both if and lif variants share same func */ 1099 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1100 IPI_PRIV | IPI_WR | IPI_REPL, 1101 IF_CMD, ip_sioctl_slifindex, NULL }, 1102 1103 /* copyin size cannot be coded for SIOCGIFCONF */ 1104 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 1105 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1106 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1107 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1108 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1109 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1110 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1111 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1112 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1113 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1114 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1115 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1116 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1117 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1118 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1119 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1120 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1121 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1122 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1123 1124 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1125 IPI_PRIV | IPI_WR | IPI_REPL, 1126 LIF_CMD, ip_sioctl_removeif, 1127 ip_sioctl_removeif_restart }, 1128 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1129 IPI_GET_CMD | IPI_PRIV | IPI_WR | IPI_REPL, 1130 LIF_CMD, ip_sioctl_addif, NULL }, 1131 #define SIOCLIFADDR_NDX 112 1132 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1133 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1134 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1135 IPI_GET_CMD | IPI_REPL, 1136 LIF_CMD, ip_sioctl_get_addr, NULL }, 1137 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1138 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1139 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1140 IPI_GET_CMD | IPI_REPL, 1141 LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1142 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1143 IPI_PRIV | IPI_WR | IPI_REPL, 1144 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1145 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1146 IPI_GET_CMD | IPI_MODOK | IPI_REPL, 1147 LIF_CMD, ip_sioctl_get_flags, NULL }, 1148 1149 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1150 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1151 1152 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1153 ip_sioctl_get_lifconf, NULL }, 1154 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1155 LIF_CMD, ip_sioctl_mtu, NULL }, 1156 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD | IPI_REPL, 1157 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1158 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1159 IPI_GET_CMD | IPI_REPL, 1160 LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1161 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1162 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1163 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1164 IPI_GET_CMD | IPI_REPL, 1165 LIF_CMD, ip_sioctl_get_netmask, NULL }, 1166 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1167 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1168 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1169 IPI_GET_CMD | IPI_REPL, 1170 LIF_CMD, ip_sioctl_get_metric, NULL }, 1171 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1172 LIF_CMD, ip_sioctl_metric, NULL }, 1173 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1174 IPI_PRIV | IPI_WR | IPI_MODOK | IPI_REPL, 1175 LIF_CMD, ip_sioctl_slifname, 1176 ip_sioctl_slifname_restart }, 1177 1178 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD | IPI_REPL, 1179 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1180 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1181 IPI_GET_CMD | IPI_REPL, 1182 LIF_CMD, ip_sioctl_get_muxid, NULL }, 1183 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1184 IPI_PRIV | IPI_WR | IPI_REPL, 1185 LIF_CMD, ip_sioctl_muxid, NULL }, 1186 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1187 IPI_GET_CMD | IPI_REPL, 1188 LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1189 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1190 IPI_PRIV | IPI_WR | IPI_REPL, 1191 LIF_CMD, ip_sioctl_slifindex, 0 }, 1192 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1193 LIF_CMD, ip_sioctl_token, NULL }, 1194 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1195 IPI_GET_CMD | IPI_REPL, 1196 LIF_CMD, ip_sioctl_get_token, NULL }, 1197 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1198 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1199 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1200 IPI_GET_CMD | IPI_REPL, 1201 LIF_CMD, ip_sioctl_get_subnet, NULL }, 1202 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1203 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1204 1205 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1206 IPI_GET_CMD | IPI_REPL, 1207 LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1208 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1209 LIF_CMD, ip_siocdelndp_v6, NULL }, 1210 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1211 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1212 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1213 LIF_CMD, ip_siocsetndp_v6, NULL }, 1214 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1215 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1216 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1217 MISC_CMD, ip_sioctl_tonlink, NULL }, 1218 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1219 MISC_CMD, ip_sioctl_tmysite, NULL }, 1220 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), IPI_REPL, 1221 TUN_CMD, ip_sioctl_tunparam, NULL }, 1222 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1223 IPI_PRIV | IPI_WR, 1224 TUN_CMD, ip_sioctl_tunparam, NULL }, 1225 1226 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1227 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1228 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1229 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1230 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1231 1232 /* 153 */ { SIOCLIFFAILOVER, sizeof (struct lifreq), 1233 IPI_PRIV | IPI_WR | IPI_REPL, 1234 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1235 /* 154 */ { SIOCLIFFAILBACK, sizeof (struct lifreq), 1236 IPI_PRIV | IPI_WR | IPI_REPL, 1237 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1238 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1239 IPI_PRIV | IPI_WR, 1240 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1241 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1242 IPI_GET_CMD | IPI_REPL, 1243 LIF_CMD, ip_sioctl_get_groupname, NULL }, 1244 /* 157 */ { SIOCGLIFOINDEX, sizeof (struct lifreq), 1245 IPI_GET_CMD | IPI_REPL, 1246 LIF_CMD, ip_sioctl_get_oindex, NULL }, 1247 1248 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1249 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1250 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1251 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1252 1253 /* 161 */ { SIOCSLIFOINDEX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1254 LIF_CMD, ip_sioctl_slifoindex, NULL }, 1255 1256 /* These are handled in ip_sioctl_copyin_setup itself */ 1257 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1258 MISC_CMD, NULL, NULL }, 1259 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1260 MISC_CMD, NULL, NULL }, 1261 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1262 1263 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1264 ip_sioctl_get_lifconf, NULL }, 1265 1266 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV, 1267 MISC_CMD, ip_sioctl_xarp, NULL }, 1268 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD | IPI_REPL, 1269 MISC_CMD, ip_sioctl_xarp, NULL }, 1270 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV, 1271 MISC_CMD, ip_sioctl_xarp, NULL }, 1272 1273 /* SIOCPOPSOCKFS is not handled by IP */ 1274 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1275 1276 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1277 IPI_GET_CMD | IPI_REPL, 1278 LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1279 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1280 IPI_PRIV | IPI_WR | IPI_REPL, 1281 LIF_CMD, ip_sioctl_slifzone, 1282 ip_sioctl_slifzone_restart }, 1283 /* 172-174 are SCTP ioctls and not handled by IP */ 1284 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1285 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1286 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1287 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1288 IPI_GET_CMD, LIF_CMD, 1289 ip_sioctl_get_lifusesrc, 0 }, 1290 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1291 IPI_PRIV | IPI_WR, 1292 LIF_CMD, ip_sioctl_slifusesrc, 1293 NULL }, 1294 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1295 ip_sioctl_get_lifsrcof, NULL }, 1296 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1297 MISC_CMD, ip_sioctl_msfilter, NULL }, 1298 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1299 MISC_CMD, ip_sioctl_msfilter, NULL }, 1300 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1301 MISC_CMD, ip_sioctl_msfilter, NULL }, 1302 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1303 MISC_CMD, ip_sioctl_msfilter, NULL }, 1304 /* 182 */ { SIOCSIPMPFAILBACK, sizeof (int), IPI_PRIV, MISC_CMD, 1305 ip_sioctl_set_ipmpfailback, NULL } 1306 }; 1307 1308 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1309 1310 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1311 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1312 IPI_GET_CMD | IPI_REPL, TUN_CMD, ip_sioctl_tunparam, NULL }, 1313 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1314 TUN_CMD, ip_sioctl_tunparam, NULL }, 1315 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1316 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1317 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1318 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1319 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1320 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1321 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1322 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_REPL | IPI_GET_CMD, 1323 MISC_CMD, mrt_ioctl}, 1324 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_REPL | IPI_GET_CMD, 1325 MISC_CMD, mrt_ioctl}, 1326 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_REPL | IPI_GET_CMD, 1327 MISC_CMD, mrt_ioctl} 1328 }; 1329 1330 int ip_misc_ioctl_count = 1331 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1332 1333 int conn_drain_nthreads; /* Number of drainers reqd. */ 1334 /* Settable in /etc/system */ 1335 /* Defined in ip_ire.c */ 1336 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1337 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1338 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1339 1340 static nv_t ire_nv_arr[] = { 1341 { IRE_BROADCAST, "BROADCAST" }, 1342 { IRE_LOCAL, "LOCAL" }, 1343 { IRE_LOOPBACK, "LOOPBACK" }, 1344 { IRE_CACHE, "CACHE" }, 1345 { IRE_DEFAULT, "DEFAULT" }, 1346 { IRE_PREFIX, "PREFIX" }, 1347 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1348 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1349 { IRE_HOST, "HOST" }, 1350 { 0 } 1351 }; 1352 1353 nv_t *ire_nv_tbl = ire_nv_arr; 1354 1355 /* Defined in ip_netinfo.c */ 1356 extern ddi_taskq_t *eventq_queue_nic; 1357 1358 /* Simple ICMP IP Header Template */ 1359 static ipha_t icmp_ipha = { 1360 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1361 }; 1362 1363 struct module_info ip_mod_info = { 1364 IP_MOD_ID, IP_MOD_NAME, 1, INFPSZ, 65536, 1024 1365 }; 1366 1367 /* 1368 * Duplicate static symbols within a module confuses mdb; so we avoid the 1369 * problem by making the symbols here distinct from those in udp.c. 1370 */ 1371 1372 static struct qinit iprinit = { 1373 (pfi_t)ip_rput, NULL, ip_open, ip_close, NULL, 1374 &ip_mod_info 1375 }; 1376 1377 static struct qinit ipwinit = { 1378 (pfi_t)ip_wput, (pfi_t)ip_wsrv, ip_open, ip_close, NULL, 1379 &ip_mod_info 1380 }; 1381 1382 static struct qinit iplrinit = { 1383 (pfi_t)ip_lrput, NULL, ip_open, ip_close, NULL, 1384 &ip_mod_info 1385 }; 1386 1387 static struct qinit iplwinit = { 1388 (pfi_t)ip_lwput, NULL, ip_open, ip_close, NULL, 1389 &ip_mod_info 1390 }; 1391 1392 struct streamtab ipinfo = { 1393 &iprinit, &ipwinit, &iplrinit, &iplwinit 1394 }; 1395 1396 #ifdef DEBUG 1397 static boolean_t skip_sctp_cksum = B_FALSE; 1398 #endif 1399 1400 /* 1401 * Prepend the zoneid using an ipsec_out_t for later use by functions like 1402 * ip_rput_v6(), ip_output(), etc. If the message 1403 * block already has a M_CTL at the front of it, then simply set the zoneid 1404 * appropriately. 1405 */ 1406 mblk_t * 1407 ip_prepend_zoneid(mblk_t *mp, zoneid_t zoneid, ip_stack_t *ipst) 1408 { 1409 mblk_t *first_mp; 1410 ipsec_out_t *io; 1411 1412 ASSERT(zoneid != ALL_ZONES); 1413 if (mp->b_datap->db_type == M_CTL) { 1414 io = (ipsec_out_t *)mp->b_rptr; 1415 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1416 io->ipsec_out_zoneid = zoneid; 1417 return (mp); 1418 } 1419 1420 first_mp = ipsec_alloc_ipsec_out(ipst->ips_netstack); 1421 if (first_mp == NULL) 1422 return (NULL); 1423 io = (ipsec_out_t *)first_mp->b_rptr; 1424 /* This is not a secure packet */ 1425 io->ipsec_out_secure = B_FALSE; 1426 io->ipsec_out_zoneid = zoneid; 1427 first_mp->b_cont = mp; 1428 return (first_mp); 1429 } 1430 1431 /* 1432 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1433 */ 1434 mblk_t * 1435 ip_copymsg(mblk_t *mp) 1436 { 1437 mblk_t *nmp; 1438 ipsec_info_t *in; 1439 1440 if (mp->b_datap->db_type != M_CTL) 1441 return (copymsg(mp)); 1442 1443 in = (ipsec_info_t *)mp->b_rptr; 1444 1445 /* 1446 * Note that M_CTL is also used for delivering ICMP error messages 1447 * upstream to transport layers. 1448 */ 1449 if (in->ipsec_info_type != IPSEC_OUT && 1450 in->ipsec_info_type != IPSEC_IN) 1451 return (copymsg(mp)); 1452 1453 nmp = copymsg(mp->b_cont); 1454 1455 if (in->ipsec_info_type == IPSEC_OUT) { 1456 return (ipsec_out_tag(mp, nmp, 1457 ((ipsec_out_t *)in)->ipsec_out_ns)); 1458 } else { 1459 return (ipsec_in_tag(mp, nmp, 1460 ((ipsec_in_t *)in)->ipsec_in_ns)); 1461 } 1462 } 1463 1464 /* Generate an ICMP fragmentation needed message. */ 1465 static void 1466 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu, zoneid_t zoneid, 1467 ip_stack_t *ipst) 1468 { 1469 icmph_t icmph; 1470 mblk_t *first_mp; 1471 boolean_t mctl_present; 1472 1473 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1474 1475 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 1476 if (mctl_present) 1477 freeb(first_mp); 1478 return; 1479 } 1480 1481 bzero(&icmph, sizeof (icmph_t)); 1482 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1483 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1484 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1485 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1486 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1487 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 1488 ipst); 1489 } 1490 1491 /* 1492 * icmp_inbound deals with ICMP messages in the following ways. 1493 * 1494 * 1) It needs to send a reply back and possibly delivering it 1495 * to the "interested" upper clients. 1496 * 2) It needs to send it to the upper clients only. 1497 * 3) It needs to change some values in IP only. 1498 * 4) It needs to change some values in IP and upper layers e.g TCP. 1499 * 1500 * We need to accomodate icmp messages coming in clear until we get 1501 * everything secure from the wire. If icmp_accept_clear_messages 1502 * is zero we check with the global policy and act accordingly. If 1503 * it is non-zero, we accept the message without any checks. But 1504 * *this does not mean* that this will be delivered to the upper 1505 * clients. By accepting we might send replies back, change our MTU 1506 * value etc. but delivery to the ULP/clients depends on their policy 1507 * dispositions. 1508 * 1509 * We handle the above 4 cases in the context of IPSEC in the 1510 * following way : 1511 * 1512 * 1) Send the reply back in the same way as the request came in. 1513 * If it came in encrypted, it goes out encrypted. If it came in 1514 * clear, it goes out in clear. Thus, this will prevent chosen 1515 * plain text attack. 1516 * 2) The client may or may not expect things to come in secure. 1517 * If it comes in secure, the policy constraints are checked 1518 * before delivering it to the upper layers. If it comes in 1519 * clear, ipsec_inbound_accept_clear will decide whether to 1520 * accept this in clear or not. In both the cases, if the returned 1521 * message (IP header + 8 bytes) that caused the icmp message has 1522 * AH/ESP headers, it is sent up to AH/ESP for validation before 1523 * sending up. If there are only 8 bytes of returned message, then 1524 * upper client will not be notified. 1525 * 3) Check with global policy to see whether it matches the constaints. 1526 * But this will be done only if icmp_accept_messages_in_clear is 1527 * zero. 1528 * 4) If we need to change both in IP and ULP, then the decision taken 1529 * while affecting the values in IP and while delivering up to TCP 1530 * should be the same. 1531 * 1532 * There are two cases. 1533 * 1534 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1535 * failed), we will not deliver it to the ULP, even though they 1536 * are *willing* to accept in *clear*. This is fine as our global 1537 * disposition to icmp messages asks us reject the datagram. 1538 * 1539 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1540 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1541 * to deliver it to ULP (policy failed), it can lead to 1542 * consistency problems. The cases known at this time are 1543 * ICMP_DESTINATION_UNREACHABLE messages with following code 1544 * values : 1545 * 1546 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1547 * and Upper layer rejects. Then the communication will 1548 * come to a stop. This is solved by making similar decisions 1549 * at both levels. Currently, when we are unable to deliver 1550 * to the Upper Layer (due to policy failures) while IP has 1551 * adjusted ire_max_frag, the next outbound datagram would 1552 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1553 * will be with the right level of protection. Thus the right 1554 * value will be communicated even if we are not able to 1555 * communicate when we get from the wire initially. But this 1556 * assumes there would be at least one outbound datagram after 1557 * IP has adjusted its ire_max_frag value. To make things 1558 * simpler, we accept in clear after the validation of 1559 * AH/ESP headers. 1560 * 1561 * - Other ICMP ERRORS : We may not be able to deliver it to the 1562 * upper layer depending on the level of protection the upper 1563 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1564 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1565 * should be accepted in clear when the Upper layer expects secure. 1566 * Thus the communication may get aborted by some bad ICMP 1567 * packets. 1568 * 1569 * IPQoS Notes: 1570 * The only instance when a packet is sent for processing is when there 1571 * isn't an ICMP client and if we are interested in it. 1572 * If there is a client, IPPF processing will take place in the 1573 * ip_fanout_proto routine. 1574 * 1575 * Zones notes: 1576 * The packet is only processed in the context of the specified zone: typically 1577 * only this zone will reply to an echo request, and only interested clients in 1578 * this zone will receive a copy of the packet. This means that the caller must 1579 * call icmp_inbound() for each relevant zone. 1580 */ 1581 static void 1582 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1583 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1584 ill_t *recv_ill, zoneid_t zoneid) 1585 { 1586 icmph_t *icmph; 1587 ipha_t *ipha; 1588 int iph_hdr_length; 1589 int hdr_length; 1590 boolean_t interested; 1591 uint32_t ts; 1592 uchar_t *wptr; 1593 ipif_t *ipif; 1594 mblk_t *first_mp; 1595 ipsec_in_t *ii; 1596 ire_t *src_ire; 1597 boolean_t onlink; 1598 timestruc_t now; 1599 uint32_t ill_index; 1600 ip_stack_t *ipst; 1601 1602 ASSERT(ill != NULL); 1603 ipst = ill->ill_ipst; 1604 1605 first_mp = mp; 1606 if (mctl_present) { 1607 mp = first_mp->b_cont; 1608 ASSERT(mp != NULL); 1609 } 1610 1611 ipha = (ipha_t *)mp->b_rptr; 1612 if (ipst->ips_icmp_accept_clear_messages == 0) { 1613 first_mp = ipsec_check_global_policy(first_mp, NULL, 1614 ipha, NULL, mctl_present, ipst->ips_netstack); 1615 if (first_mp == NULL) 1616 return; 1617 } 1618 1619 /* 1620 * On a labeled system, we have to check whether the zone itself is 1621 * permitted to receive raw traffic. 1622 */ 1623 if (is_system_labeled()) { 1624 if (zoneid == ALL_ZONES) 1625 zoneid = tsol_packet_to_zoneid(mp); 1626 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1627 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1628 zoneid)); 1629 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1630 freemsg(first_mp); 1631 return; 1632 } 1633 } 1634 1635 /* 1636 * We have accepted the ICMP message. It means that we will 1637 * respond to the packet if needed. It may not be delivered 1638 * to the upper client depending on the policy constraints 1639 * and the disposition in ipsec_inbound_accept_clear. 1640 */ 1641 1642 ASSERT(ill != NULL); 1643 1644 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1645 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1646 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1647 /* Last chance to get real. */ 1648 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1649 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1650 freemsg(first_mp); 1651 return; 1652 } 1653 /* Refresh iph following the pullup. */ 1654 ipha = (ipha_t *)mp->b_rptr; 1655 } 1656 /* ICMP header checksum, including checksum field, should be zero. */ 1657 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1658 IP_CSUM(mp, iph_hdr_length, 0)) { 1659 BUMP_MIB(&ipst->ips_icmp_mib, icmpInCksumErrs); 1660 freemsg(first_mp); 1661 return; 1662 } 1663 /* The IP header will always be a multiple of four bytes */ 1664 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1665 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1666 icmph->icmph_code)); 1667 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1668 /* We will set "interested" to "true" if we want a copy */ 1669 interested = B_FALSE; 1670 switch (icmph->icmph_type) { 1671 case ICMP_ECHO_REPLY: 1672 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1673 break; 1674 case ICMP_DEST_UNREACHABLE: 1675 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1676 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1677 interested = B_TRUE; /* Pass up to transport */ 1678 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1679 break; 1680 case ICMP_SOURCE_QUENCH: 1681 interested = B_TRUE; /* Pass up to transport */ 1682 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1683 break; 1684 case ICMP_REDIRECT: 1685 if (!ipst->ips_ip_ignore_redirect) 1686 interested = B_TRUE; 1687 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1688 break; 1689 case ICMP_ECHO_REQUEST: 1690 /* 1691 * Whether to respond to echo requests that come in as IP 1692 * broadcasts or as IP multicast is subject to debate 1693 * (what isn't?). We aim to please, you pick it. 1694 * Default is do it. 1695 */ 1696 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1697 /* unicast: always respond */ 1698 interested = B_TRUE; 1699 } else if (CLASSD(ipha->ipha_dst)) { 1700 /* multicast: respond based on tunable */ 1701 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1702 } else if (broadcast) { 1703 /* broadcast: respond based on tunable */ 1704 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1705 } 1706 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1707 break; 1708 case ICMP_ROUTER_ADVERTISEMENT: 1709 case ICMP_ROUTER_SOLICITATION: 1710 break; 1711 case ICMP_TIME_EXCEEDED: 1712 interested = B_TRUE; /* Pass up to transport */ 1713 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1714 break; 1715 case ICMP_PARAM_PROBLEM: 1716 interested = B_TRUE; /* Pass up to transport */ 1717 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1718 break; 1719 case ICMP_TIME_STAMP_REQUEST: 1720 /* Response to Time Stamp Requests is local policy. */ 1721 if (ipst->ips_ip_g_resp_to_timestamp && 1722 /* So is whether to respond if it was an IP broadcast. */ 1723 (!broadcast || ipst->ips_ip_g_resp_to_timestamp_bcast)) { 1724 int tstamp_len = 3 * sizeof (uint32_t); 1725 1726 if (wptr + tstamp_len > mp->b_wptr) { 1727 if (!pullupmsg(mp, wptr + tstamp_len - 1728 mp->b_rptr)) { 1729 BUMP_MIB(ill->ill_ip_mib, 1730 ipIfStatsInDiscards); 1731 freemsg(first_mp); 1732 return; 1733 } 1734 /* Refresh ipha following the pullup. */ 1735 ipha = (ipha_t *)mp->b_rptr; 1736 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1737 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1738 } 1739 interested = B_TRUE; 1740 } 1741 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1742 break; 1743 case ICMP_TIME_STAMP_REPLY: 1744 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1745 break; 1746 case ICMP_INFO_REQUEST: 1747 /* Per RFC 1122 3.2.2.7, ignore this. */ 1748 case ICMP_INFO_REPLY: 1749 break; 1750 case ICMP_ADDRESS_MASK_REQUEST: 1751 if ((ipst->ips_ip_respond_to_address_mask_broadcast || 1752 !broadcast) && 1753 /* TODO m_pullup of complete header? */ 1754 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) 1755 interested = B_TRUE; 1756 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1757 break; 1758 case ICMP_ADDRESS_MASK_REPLY: 1759 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1760 break; 1761 default: 1762 interested = B_TRUE; /* Pass up to transport */ 1763 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1764 break; 1765 } 1766 /* See if there is an ICMP client. */ 1767 if (ipst->ips_ipcl_proto_fanout[IPPROTO_ICMP].connf_head != NULL) { 1768 /* If there is an ICMP client and we want one too, copy it. */ 1769 mblk_t *first_mp1; 1770 1771 if (!interested) { 1772 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1773 ip_policy, recv_ill, zoneid); 1774 return; 1775 } 1776 first_mp1 = ip_copymsg(first_mp); 1777 if (first_mp1 != NULL) { 1778 ip_fanout_proto(q, first_mp1, ill, ipha, 1779 0, mctl_present, ip_policy, recv_ill, zoneid); 1780 } 1781 } else if (!interested) { 1782 freemsg(first_mp); 1783 return; 1784 } else { 1785 /* 1786 * Initiate policy processing for this packet if ip_policy 1787 * is true. 1788 */ 1789 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 1790 ill_index = ill->ill_phyint->phyint_ifindex; 1791 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1792 if (mp == NULL) { 1793 if (mctl_present) { 1794 freeb(first_mp); 1795 } 1796 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1797 return; 1798 } 1799 } 1800 } 1801 /* We want to do something with it. */ 1802 /* Check db_ref to make sure we can modify the packet. */ 1803 if (mp->b_datap->db_ref > 1) { 1804 mblk_t *first_mp1; 1805 1806 first_mp1 = ip_copymsg(first_mp); 1807 freemsg(first_mp); 1808 if (!first_mp1) { 1809 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1810 return; 1811 } 1812 first_mp = first_mp1; 1813 if (mctl_present) { 1814 mp = first_mp->b_cont; 1815 ASSERT(mp != NULL); 1816 } else { 1817 mp = first_mp; 1818 } 1819 ipha = (ipha_t *)mp->b_rptr; 1820 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1821 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1822 } 1823 switch (icmph->icmph_type) { 1824 case ICMP_ADDRESS_MASK_REQUEST: 1825 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1826 if (ipif == NULL) { 1827 freemsg(first_mp); 1828 return; 1829 } 1830 /* 1831 * outging interface must be IPv4 1832 */ 1833 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1834 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1835 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1836 ipif_refrele(ipif); 1837 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1838 break; 1839 case ICMP_ECHO_REQUEST: 1840 icmph->icmph_type = ICMP_ECHO_REPLY; 1841 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1842 break; 1843 case ICMP_TIME_STAMP_REQUEST: { 1844 uint32_t *tsp; 1845 1846 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1847 tsp = (uint32_t *)wptr; 1848 tsp++; /* Skip past 'originate time' */ 1849 /* Compute # of milliseconds since midnight */ 1850 gethrestime(&now); 1851 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1852 now.tv_nsec / (NANOSEC / MILLISEC); 1853 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1854 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1855 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1856 break; 1857 } 1858 default: 1859 ipha = (ipha_t *)&icmph[1]; 1860 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1861 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1862 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1863 freemsg(first_mp); 1864 return; 1865 } 1866 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1867 ipha = (ipha_t *)&icmph[1]; 1868 } 1869 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1870 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1871 freemsg(first_mp); 1872 return; 1873 } 1874 hdr_length = IPH_HDR_LENGTH(ipha); 1875 if (hdr_length < sizeof (ipha_t)) { 1876 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1877 freemsg(first_mp); 1878 return; 1879 } 1880 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1881 if (!pullupmsg(mp, 1882 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1883 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1884 freemsg(first_mp); 1885 return; 1886 } 1887 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1888 ipha = (ipha_t *)&icmph[1]; 1889 } 1890 switch (icmph->icmph_type) { 1891 case ICMP_REDIRECT: 1892 /* 1893 * As there is no upper client to deliver, we don't 1894 * need the first_mp any more. 1895 */ 1896 if (mctl_present) { 1897 freeb(first_mp); 1898 } 1899 icmp_redirect(ill, mp); 1900 return; 1901 case ICMP_DEST_UNREACHABLE: 1902 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1903 if (!icmp_inbound_too_big(icmph, ipha, ill, 1904 zoneid, mp, iph_hdr_length, ipst)) { 1905 freemsg(first_mp); 1906 return; 1907 } 1908 /* 1909 * icmp_inbound_too_big() may alter mp. 1910 * Resynch ipha and icmph accordingly. 1911 */ 1912 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1913 ipha = (ipha_t *)&icmph[1]; 1914 } 1915 /* FALLTHRU */ 1916 default : 1917 /* 1918 * IPQoS notes: Since we have already done IPQoS 1919 * processing we don't want to do it again in 1920 * the fanout routines called by 1921 * icmp_inbound_error_fanout, hence the last 1922 * argument, ip_policy, is B_FALSE. 1923 */ 1924 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 1925 ipha, iph_hdr_length, hdr_length, mctl_present, 1926 B_FALSE, recv_ill, zoneid); 1927 } 1928 return; 1929 } 1930 /* Send out an ICMP packet */ 1931 icmph->icmph_checksum = 0; 1932 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 1933 if (broadcast || CLASSD(ipha->ipha_dst)) { 1934 ipif_t *ipif_chosen; 1935 /* 1936 * Make it look like it was directed to us, so we don't look 1937 * like a fool with a broadcast or multicast source address. 1938 */ 1939 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1940 /* 1941 * Make sure that we haven't grabbed an interface that's DOWN. 1942 */ 1943 if (ipif != NULL) { 1944 ipif_chosen = ipif_select_source(ipif->ipif_ill, 1945 ipha->ipha_src, zoneid); 1946 if (ipif_chosen != NULL) { 1947 ipif_refrele(ipif); 1948 ipif = ipif_chosen; 1949 } 1950 } 1951 if (ipif == NULL) { 1952 ip0dbg(("icmp_inbound: " 1953 "No source for broadcast/multicast:\n" 1954 "\tsrc 0x%x dst 0x%x ill %p " 1955 "ipif_lcl_addr 0x%x\n", 1956 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 1957 (void *)ill, 1958 ill->ill_ipif->ipif_lcl_addr)); 1959 freemsg(first_mp); 1960 return; 1961 } 1962 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1963 ipha->ipha_dst = ipif->ipif_src_addr; 1964 ipif_refrele(ipif); 1965 } 1966 /* Reset time to live. */ 1967 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 1968 { 1969 /* Swap source and destination addresses */ 1970 ipaddr_t tmp; 1971 1972 tmp = ipha->ipha_src; 1973 ipha->ipha_src = ipha->ipha_dst; 1974 ipha->ipha_dst = tmp; 1975 } 1976 ipha->ipha_ident = 0; 1977 if (!IS_SIMPLE_IPH(ipha)) 1978 icmp_options_update(ipha); 1979 1980 /* 1981 * ICMP echo replies should go out on the same interface 1982 * the request came on as probes used by in.mpathd for detecting 1983 * NIC failures are ECHO packets. We turn-off load spreading 1984 * by setting ipsec_in_attach_if to B_TRUE, which is copied 1985 * to ipsec_out_attach_if by ipsec_in_to_out called later in this 1986 * function. This is in turn handled by ip_wput and ip_newroute 1987 * to make sure that the packet goes out on the interface it came 1988 * in on. If we don't turnoff load spreading, the packets might get 1989 * dropped if there are no non-FAILED/INACTIVE interfaces for it 1990 * to go out and in.mpathd would wrongly detect a failure or 1991 * mis-detect a NIC failure for link failure. As load spreading 1992 * can happen only if ill_group is not NULL, we do only for 1993 * that case and this does not affect the normal case. 1994 * 1995 * We turn off load spreading only on echo packets that came from 1996 * on-link hosts. If the interface route has been deleted, this will 1997 * not be enforced as we can't do much. For off-link hosts, as the 1998 * default routes in IPv4 does not typically have an ire_ipif 1999 * pointer, we can't force MATCH_IRE_ILL in ip_wput/ip_newroute. 2000 * Moreover, expecting a default route through this interface may 2001 * not be correct. We use ipha_dst because of the swap above. 2002 */ 2003 onlink = B_FALSE; 2004 if (icmph->icmph_type == ICMP_ECHO_REPLY && ill->ill_group != NULL) { 2005 /* 2006 * First, we need to make sure that it is not one of our 2007 * local addresses. If we set onlink when it is one of 2008 * our local addresses, we will end up creating IRE_CACHES 2009 * for one of our local addresses. Then, we will never 2010 * accept packets for them afterwards. 2011 */ 2012 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_LOCAL, 2013 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2014 if (src_ire == NULL) { 2015 ipif = ipif_get_next_ipif(NULL, ill); 2016 if (ipif == NULL) { 2017 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2018 freemsg(mp); 2019 return; 2020 } 2021 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 2022 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 2023 NULL, MATCH_IRE_ILL | MATCH_IRE_TYPE, ipst); 2024 ipif_refrele(ipif); 2025 if (src_ire != NULL) { 2026 onlink = B_TRUE; 2027 ire_refrele(src_ire); 2028 } 2029 } else { 2030 ire_refrele(src_ire); 2031 } 2032 } 2033 if (!mctl_present) { 2034 /* 2035 * This packet should go out the same way as it 2036 * came in i.e in clear. To make sure that global 2037 * policy will not be applied to this in ip_wput_ire, 2038 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2039 */ 2040 ASSERT(first_mp == mp); 2041 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2042 if (first_mp == NULL) { 2043 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2044 freemsg(mp); 2045 return; 2046 } 2047 ii = (ipsec_in_t *)first_mp->b_rptr; 2048 2049 /* This is not a secure packet */ 2050 ii->ipsec_in_secure = B_FALSE; 2051 if (onlink) { 2052 ii->ipsec_in_attach_if = B_TRUE; 2053 ii->ipsec_in_ill_index = 2054 ill->ill_phyint->phyint_ifindex; 2055 ii->ipsec_in_rill_index = 2056 recv_ill->ill_phyint->phyint_ifindex; 2057 } 2058 first_mp->b_cont = mp; 2059 } else if (onlink) { 2060 ii = (ipsec_in_t *)first_mp->b_rptr; 2061 ii->ipsec_in_attach_if = B_TRUE; 2062 ii->ipsec_in_ill_index = ill->ill_phyint->phyint_ifindex; 2063 ii->ipsec_in_rill_index = recv_ill->ill_phyint->phyint_ifindex; 2064 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2065 } else { 2066 ii = (ipsec_in_t *)first_mp->b_rptr; 2067 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2068 } 2069 ii->ipsec_in_zoneid = zoneid; 2070 ASSERT(zoneid != ALL_ZONES); 2071 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2072 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2073 return; 2074 } 2075 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2076 put(WR(q), first_mp); 2077 } 2078 2079 static ipaddr_t 2080 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2081 { 2082 conn_t *connp; 2083 connf_t *connfp; 2084 ipaddr_t nexthop_addr = INADDR_ANY; 2085 int hdr_length = IPH_HDR_LENGTH(ipha); 2086 uint16_t *up; 2087 uint32_t ports; 2088 ip_stack_t *ipst = ill->ill_ipst; 2089 2090 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2091 switch (ipha->ipha_protocol) { 2092 case IPPROTO_TCP: 2093 { 2094 tcph_t *tcph; 2095 2096 /* do a reverse lookup */ 2097 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2098 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2099 TCPS_LISTEN, ipst); 2100 break; 2101 } 2102 case IPPROTO_UDP: 2103 { 2104 uint32_t dstport, srcport; 2105 2106 ((uint16_t *)&ports)[0] = up[1]; 2107 ((uint16_t *)&ports)[1] = up[0]; 2108 2109 /* Extract ports in net byte order */ 2110 dstport = htons(ntohl(ports) & 0xFFFF); 2111 srcport = htons(ntohl(ports) >> 16); 2112 2113 connfp = &ipst->ips_ipcl_udp_fanout[ 2114 IPCL_UDP_HASH(dstport, ipst)]; 2115 mutex_enter(&connfp->connf_lock); 2116 connp = connfp->connf_head; 2117 2118 /* do a reverse lookup */ 2119 while ((connp != NULL) && 2120 (!IPCL_UDP_MATCH(connp, dstport, 2121 ipha->ipha_src, srcport, ipha->ipha_dst) || 2122 !IPCL_ZONE_MATCH(connp, zoneid))) { 2123 connp = connp->conn_next; 2124 } 2125 if (connp != NULL) 2126 CONN_INC_REF(connp); 2127 mutex_exit(&connfp->connf_lock); 2128 break; 2129 } 2130 case IPPROTO_SCTP: 2131 { 2132 in6_addr_t map_src, map_dst; 2133 2134 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2135 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2136 ((uint16_t *)&ports)[0] = up[1]; 2137 ((uint16_t *)&ports)[1] = up[0]; 2138 2139 connp = sctp_find_conn(&map_src, &map_dst, ports, 2140 zoneid, ipst->ips_netstack->netstack_sctp); 2141 if (connp == NULL) { 2142 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2143 zoneid, ports, ipha, ipst); 2144 } else { 2145 CONN_INC_REF(connp); 2146 SCTP_REFRELE(CONN2SCTP(connp)); 2147 } 2148 break; 2149 } 2150 default: 2151 { 2152 ipha_t ripha; 2153 2154 ripha.ipha_src = ipha->ipha_dst; 2155 ripha.ipha_dst = ipha->ipha_src; 2156 ripha.ipha_protocol = ipha->ipha_protocol; 2157 2158 connfp = &ipst->ips_ipcl_proto_fanout[ 2159 ipha->ipha_protocol]; 2160 mutex_enter(&connfp->connf_lock); 2161 connp = connfp->connf_head; 2162 for (connp = connfp->connf_head; connp != NULL; 2163 connp = connp->conn_next) { 2164 if (IPCL_PROTO_MATCH(connp, 2165 ipha->ipha_protocol, &ripha, ill, 2166 0, zoneid)) { 2167 CONN_INC_REF(connp); 2168 break; 2169 } 2170 } 2171 mutex_exit(&connfp->connf_lock); 2172 } 2173 } 2174 if (connp != NULL) { 2175 if (connp->conn_nexthop_set) 2176 nexthop_addr = connp->conn_nexthop_v4; 2177 CONN_DEC_REF(connp); 2178 } 2179 return (nexthop_addr); 2180 } 2181 2182 /* Table from RFC 1191 */ 2183 static int icmp_frag_size_table[] = 2184 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2185 2186 /* 2187 * Process received ICMP Packet too big. 2188 * After updating any IRE it does the fanout to any matching transport streams. 2189 * Assumes the message has been pulled up till the IP header that caused 2190 * the error. 2191 * 2192 * Returns B_FALSE on failure and B_TRUE on success. 2193 */ 2194 static boolean_t 2195 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2196 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length, 2197 ip_stack_t *ipst) 2198 { 2199 ire_t *ire, *first_ire; 2200 int mtu; 2201 int hdr_length; 2202 ipaddr_t nexthop_addr; 2203 2204 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2205 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2206 ASSERT(ill != NULL); 2207 2208 hdr_length = IPH_HDR_LENGTH(ipha); 2209 2210 /* Drop if the original packet contained a source route */ 2211 if (ip_source_route_included(ipha)) { 2212 return (B_FALSE); 2213 } 2214 /* 2215 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport 2216 * header. 2217 */ 2218 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2219 mp->b_wptr) { 2220 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2221 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2222 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2223 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2224 return (B_FALSE); 2225 } 2226 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2227 ipha = (ipha_t *)&icmph[1]; 2228 } 2229 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2230 if (nexthop_addr != INADDR_ANY) { 2231 /* nexthop set */ 2232 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2233 nexthop_addr, 0, NULL, ALL_ZONES, MBLK_GETLABEL(mp), 2234 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, ipst); 2235 } else { 2236 /* nexthop not set */ 2237 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2238 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2239 } 2240 2241 if (!first_ire) { 2242 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2243 ntohl(ipha->ipha_dst))); 2244 return (B_FALSE); 2245 } 2246 /* Check for MTU discovery advice as described in RFC 1191 */ 2247 mtu = ntohs(icmph->icmph_du_mtu); 2248 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2249 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2250 ire = ire->ire_next) { 2251 /* 2252 * Look for the connection to which this ICMP message is 2253 * directed. If it has the IP_NEXTHOP option set, then the 2254 * search is limited to IREs with the MATCH_IRE_PRIVATE 2255 * option. Else the search is limited to regular IREs. 2256 */ 2257 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2258 (nexthop_addr != ire->ire_gateway_addr)) || 2259 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2260 (nexthop_addr != INADDR_ANY))) 2261 continue; 2262 2263 mutex_enter(&ire->ire_lock); 2264 if (icmph->icmph_du_zero == 0 && mtu > 68) { 2265 /* Reduce the IRE max frag value as advised. */ 2266 ip1dbg(("Received mtu from router: %d (was %d)\n", 2267 mtu, ire->ire_max_frag)); 2268 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2269 } else { 2270 uint32_t length; 2271 int i; 2272 2273 /* 2274 * Use the table from RFC 1191 to figure out 2275 * the next "plateau" based on the length in 2276 * the original IP packet. 2277 */ 2278 length = ntohs(ipha->ipha_length); 2279 if (ire->ire_max_frag <= length && 2280 ire->ire_max_frag >= length - hdr_length) { 2281 /* 2282 * Handle broken BSD 4.2 systems that 2283 * return the wrong iph_length in ICMP 2284 * errors. 2285 */ 2286 ip1dbg(("Wrong mtu: sent %d, ire %d\n", 2287 length, ire->ire_max_frag)); 2288 length -= hdr_length; 2289 } 2290 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2291 if (length > icmp_frag_size_table[i]) 2292 break; 2293 } 2294 if (i == A_CNT(icmp_frag_size_table)) { 2295 /* Smaller than 68! */ 2296 ip1dbg(("Too big for packet size %d\n", 2297 length)); 2298 ire->ire_max_frag = MIN(ire->ire_max_frag, 576); 2299 ire->ire_frag_flag = 0; 2300 } else { 2301 mtu = icmp_frag_size_table[i]; 2302 ip1dbg(("Calculated mtu %d, packet size %d, " 2303 "before %d", mtu, length, 2304 ire->ire_max_frag)); 2305 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2306 ip1dbg((", after %d\n", ire->ire_max_frag)); 2307 } 2308 /* Record the new max frag size for the ULP. */ 2309 icmph->icmph_du_zero = 0; 2310 icmph->icmph_du_mtu = 2311 htons((uint16_t)ire->ire_max_frag); 2312 } 2313 mutex_exit(&ire->ire_lock); 2314 } 2315 rw_exit(&first_ire->ire_bucket->irb_lock); 2316 ire_refrele(first_ire); 2317 return (B_TRUE); 2318 } 2319 2320 /* 2321 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2322 * calls this function. 2323 */ 2324 static mblk_t * 2325 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2326 { 2327 ipha_t *ipha; 2328 icmph_t *icmph; 2329 ipha_t *in_ipha; 2330 int length; 2331 2332 ASSERT(mp->b_datap->db_type == M_DATA); 2333 2334 /* 2335 * For Self-encapsulated packets, we added an extra IP header 2336 * without the options. Inner IP header is the one from which 2337 * the outer IP header was formed. Thus, we need to remove the 2338 * outer IP header. To do this, we pullup the whole message 2339 * and overlay whatever follows the outer IP header over the 2340 * outer IP header. 2341 */ 2342 2343 if (!pullupmsg(mp, -1)) 2344 return (NULL); 2345 2346 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2347 ipha = (ipha_t *)&icmph[1]; 2348 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2349 2350 /* 2351 * The length that we want to overlay is following the inner 2352 * IP header. Subtracting the IP header + icmp header + outer 2353 * IP header's length should give us the length that we want to 2354 * overlay. 2355 */ 2356 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2357 hdr_length; 2358 /* 2359 * Overlay whatever follows the inner header over the 2360 * outer header. 2361 */ 2362 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2363 2364 /* Set the wptr to account for the outer header */ 2365 mp->b_wptr -= hdr_length; 2366 return (mp); 2367 } 2368 2369 /* 2370 * Try to pass the ICMP message upstream in case the ULP cares. 2371 * 2372 * If the packet that caused the ICMP error is secure, we send 2373 * it to AH/ESP to make sure that the attached packet has a 2374 * valid association. ipha in the code below points to the 2375 * IP header of the packet that caused the error. 2376 * 2377 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2378 * in the context of IPSEC. Normally we tell the upper layer 2379 * whenever we send the ire (including ip_bind), the IPSEC header 2380 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2381 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2382 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2383 * same thing. As TCP has the IPSEC options size that needs to be 2384 * adjusted, we just pass the MTU unchanged. 2385 * 2386 * IFN could have been generated locally or by some router. 2387 * 2388 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2389 * This happens because IP adjusted its value of MTU on an 2390 * earlier IFN message and could not tell the upper layer, 2391 * the new adjusted value of MTU e.g. Packet was encrypted 2392 * or there was not enough information to fanout to upper 2393 * layers. Thus on the next outbound datagram, ip_wput_ire 2394 * generates the IFN, where IPSEC processing has *not* been 2395 * done. 2396 * 2397 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2398 * could have generated this. This happens because ire_max_frag 2399 * value in IP was set to a new value, while the IPSEC processing 2400 * was being done and after we made the fragmentation check in 2401 * ip_wput_ire. Thus on return from IPSEC processing, 2402 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2403 * and generates the IFN. As IPSEC processing is over, we fanout 2404 * to AH/ESP to remove the header. 2405 * 2406 * In both these cases, ipsec_in_loopback will be set indicating 2407 * that IFN was generated locally. 2408 * 2409 * ROUTER : IFN could be secure or non-secure. 2410 * 2411 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2412 * packet in error has AH/ESP headers to validate the AH/ESP 2413 * headers. AH/ESP will verify whether there is a valid SA or 2414 * not and send it back. We will fanout again if we have more 2415 * data in the packet. 2416 * 2417 * If the packet in error does not have AH/ESP, we handle it 2418 * like any other case. 2419 * 2420 * * NON_SECURE : If the packet in error has AH/ESP headers, 2421 * we attach a dummy ipsec_in and send it up to AH/ESP 2422 * for validation. AH/ESP will verify whether there is a 2423 * valid SA or not and send it back. We will fanout again if 2424 * we have more data in the packet. 2425 * 2426 * If the packet in error does not have AH/ESP, we handle it 2427 * like any other case. 2428 */ 2429 static void 2430 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2431 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2432 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2433 zoneid_t zoneid) 2434 { 2435 uint16_t *up; /* Pointer to ports in ULP header */ 2436 uint32_t ports; /* reversed ports for fanout */ 2437 ipha_t ripha; /* With reversed addresses */ 2438 mblk_t *first_mp; 2439 ipsec_in_t *ii; 2440 tcph_t *tcph; 2441 conn_t *connp; 2442 ip_stack_t *ipst; 2443 2444 ASSERT(ill != NULL); 2445 2446 ASSERT(recv_ill != NULL); 2447 ipst = recv_ill->ill_ipst; 2448 2449 first_mp = mp; 2450 if (mctl_present) { 2451 mp = first_mp->b_cont; 2452 ASSERT(mp != NULL); 2453 2454 ii = (ipsec_in_t *)first_mp->b_rptr; 2455 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2456 } else { 2457 ii = NULL; 2458 } 2459 2460 switch (ipha->ipha_protocol) { 2461 case IPPROTO_UDP: 2462 /* 2463 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2464 * transport header. 2465 */ 2466 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2467 mp->b_wptr) { 2468 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2469 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2470 goto discard_pkt; 2471 } 2472 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2473 ipha = (ipha_t *)&icmph[1]; 2474 } 2475 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2476 2477 /* 2478 * Attempt to find a client stream based on port. 2479 * Note that we do a reverse lookup since the header is 2480 * in the form we sent it out. 2481 * The ripha header is only used for the IP_UDP_MATCH and we 2482 * only set the src and dst addresses and protocol. 2483 */ 2484 ripha.ipha_src = ipha->ipha_dst; 2485 ripha.ipha_dst = ipha->ipha_src; 2486 ripha.ipha_protocol = ipha->ipha_protocol; 2487 ((uint16_t *)&ports)[0] = up[1]; 2488 ((uint16_t *)&ports)[1] = up[0]; 2489 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2490 ntohl(ipha->ipha_src), ntohs(up[0]), 2491 ntohl(ipha->ipha_dst), ntohs(up[1]), 2492 icmph->icmph_type, icmph->icmph_code)); 2493 2494 /* Have to change db_type after any pullupmsg */ 2495 DB_TYPE(mp) = M_CTL; 2496 2497 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2498 mctl_present, ip_policy, recv_ill, zoneid); 2499 return; 2500 2501 case IPPROTO_TCP: 2502 /* 2503 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2504 * transport header. 2505 */ 2506 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2507 mp->b_wptr) { 2508 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2509 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2510 goto discard_pkt; 2511 } 2512 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2513 ipha = (ipha_t *)&icmph[1]; 2514 } 2515 /* 2516 * Find a TCP client stream for this packet. 2517 * Note that we do a reverse lookup since the header is 2518 * in the form we sent it out. 2519 */ 2520 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2521 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN, 2522 ipst); 2523 if (connp == NULL) 2524 goto discard_pkt; 2525 2526 /* Have to change db_type after any pullupmsg */ 2527 DB_TYPE(mp) = M_CTL; 2528 squeue_fill(connp->conn_sqp, first_mp, tcp_input, 2529 connp, SQTAG_TCP_INPUT_ICMP_ERR); 2530 return; 2531 2532 case IPPROTO_SCTP: 2533 /* 2534 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2535 * transport header. 2536 */ 2537 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2538 mp->b_wptr) { 2539 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2540 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2541 goto discard_pkt; 2542 } 2543 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2544 ipha = (ipha_t *)&icmph[1]; 2545 } 2546 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2547 /* 2548 * Find a SCTP client stream for this packet. 2549 * Note that we do a reverse lookup since the header is 2550 * in the form we sent it out. 2551 * The ripha header is only used for the matching and we 2552 * only set the src and dst addresses, protocol, and version. 2553 */ 2554 ripha.ipha_src = ipha->ipha_dst; 2555 ripha.ipha_dst = ipha->ipha_src; 2556 ripha.ipha_protocol = ipha->ipha_protocol; 2557 ripha.ipha_version_and_hdr_length = 2558 ipha->ipha_version_and_hdr_length; 2559 ((uint16_t *)&ports)[0] = up[1]; 2560 ((uint16_t *)&ports)[1] = up[0]; 2561 2562 /* Have to change db_type after any pullupmsg */ 2563 DB_TYPE(mp) = M_CTL; 2564 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2565 mctl_present, ip_policy, zoneid); 2566 return; 2567 2568 case IPPROTO_ESP: 2569 case IPPROTO_AH: { 2570 int ipsec_rc; 2571 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2572 2573 /* 2574 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2575 * We will re-use the IPSEC_IN if it is already present as 2576 * AH/ESP will not affect any fields in the IPSEC_IN for 2577 * ICMP errors. If there is no IPSEC_IN, allocate a new 2578 * one and attach it in the front. 2579 */ 2580 if (ii != NULL) { 2581 /* 2582 * ip_fanout_proto_again converts the ICMP errors 2583 * that come back from AH/ESP to M_DATA so that 2584 * if it is non-AH/ESP and we do a pullupmsg in 2585 * this function, it would work. Convert it back 2586 * to M_CTL before we send up as this is a ICMP 2587 * error. This could have been generated locally or 2588 * by some router. Validate the inner IPSEC 2589 * headers. 2590 * 2591 * NOTE : ill_index is used by ip_fanout_proto_again 2592 * to locate the ill. 2593 */ 2594 ASSERT(ill != NULL); 2595 ii->ipsec_in_ill_index = 2596 ill->ill_phyint->phyint_ifindex; 2597 ii->ipsec_in_rill_index = 2598 recv_ill->ill_phyint->phyint_ifindex; 2599 DB_TYPE(first_mp->b_cont) = M_CTL; 2600 } else { 2601 /* 2602 * IPSEC_IN is not present. We attach a ipsec_in 2603 * message and send up to IPSEC for validating 2604 * and removing the IPSEC headers. Clear 2605 * ipsec_in_secure so that when we return 2606 * from IPSEC, we don't mistakenly think that this 2607 * is a secure packet came from the network. 2608 * 2609 * NOTE : ill_index is used by ip_fanout_proto_again 2610 * to locate the ill. 2611 */ 2612 ASSERT(first_mp == mp); 2613 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2614 if (first_mp == NULL) { 2615 freemsg(mp); 2616 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2617 return; 2618 } 2619 ii = (ipsec_in_t *)first_mp->b_rptr; 2620 2621 /* This is not a secure packet */ 2622 ii->ipsec_in_secure = B_FALSE; 2623 first_mp->b_cont = mp; 2624 DB_TYPE(mp) = M_CTL; 2625 ASSERT(ill != NULL); 2626 ii->ipsec_in_ill_index = 2627 ill->ill_phyint->phyint_ifindex; 2628 ii->ipsec_in_rill_index = 2629 recv_ill->ill_phyint->phyint_ifindex; 2630 } 2631 ip2dbg(("icmp_inbound_error: ipsec\n")); 2632 2633 if (!ipsec_loaded(ipss)) { 2634 ip_proto_not_sup(q, first_mp, 0, zoneid, ipst); 2635 return; 2636 } 2637 2638 if (ipha->ipha_protocol == IPPROTO_ESP) 2639 ipsec_rc = ipsecesp_icmp_error(first_mp); 2640 else 2641 ipsec_rc = ipsecah_icmp_error(first_mp); 2642 if (ipsec_rc == IPSEC_STATUS_FAILED) 2643 return; 2644 2645 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2646 return; 2647 } 2648 default: 2649 /* 2650 * The ripha header is only used for the lookup and we 2651 * only set the src and dst addresses and protocol. 2652 */ 2653 ripha.ipha_src = ipha->ipha_dst; 2654 ripha.ipha_dst = ipha->ipha_src; 2655 ripha.ipha_protocol = ipha->ipha_protocol; 2656 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2657 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2658 ntohl(ipha->ipha_dst), 2659 icmph->icmph_type, icmph->icmph_code)); 2660 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2661 ipha_t *in_ipha; 2662 2663 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2664 mp->b_wptr) { 2665 if (!pullupmsg(mp, (uchar_t *)ipha + 2666 hdr_length + sizeof (ipha_t) - 2667 mp->b_rptr)) { 2668 goto discard_pkt; 2669 } 2670 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2671 ipha = (ipha_t *)&icmph[1]; 2672 } 2673 /* 2674 * Caller has verified that length has to be 2675 * at least the size of IP header. 2676 */ 2677 ASSERT(hdr_length >= sizeof (ipha_t)); 2678 /* 2679 * Check the sanity of the inner IP header like 2680 * we did for the outer header. 2681 */ 2682 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2683 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2684 goto discard_pkt; 2685 } 2686 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2687 goto discard_pkt; 2688 } 2689 /* Check for Self-encapsulated tunnels */ 2690 if (in_ipha->ipha_src == ipha->ipha_src && 2691 in_ipha->ipha_dst == ipha->ipha_dst) { 2692 2693 mp = icmp_inbound_self_encap_error(mp, 2694 iph_hdr_length, hdr_length); 2695 if (mp == NULL) 2696 goto discard_pkt; 2697 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2698 ipha = (ipha_t *)&icmph[1]; 2699 hdr_length = IPH_HDR_LENGTH(ipha); 2700 /* 2701 * The packet in error is self-encapsualted. 2702 * And we are finding it further encapsulated 2703 * which we could not have possibly generated. 2704 */ 2705 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2706 goto discard_pkt; 2707 } 2708 icmp_inbound_error_fanout(q, ill, first_mp, 2709 icmph, ipha, iph_hdr_length, hdr_length, 2710 mctl_present, ip_policy, recv_ill, zoneid); 2711 return; 2712 } 2713 } 2714 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2715 ipha->ipha_protocol == IPPROTO_IPV6) && 2716 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2717 ii != NULL && 2718 ii->ipsec_in_loopback && 2719 ii->ipsec_in_secure) { 2720 /* 2721 * For IP tunnels that get a looped-back 2722 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2723 * reported new MTU to take into account the IPsec 2724 * headers protecting this configured tunnel. 2725 * 2726 * This allows the tunnel module (tun.c) to blindly 2727 * accept the MTU reported in an ICMP "too big" 2728 * message. 2729 * 2730 * Non-looped back ICMP messages will just be 2731 * handled by the security protocols (if needed), 2732 * and the first subsequent packet will hit this 2733 * path. 2734 */ 2735 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2736 ipsec_in_extra_length(first_mp)); 2737 } 2738 /* Have to change db_type after any pullupmsg */ 2739 DB_TYPE(mp) = M_CTL; 2740 2741 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2742 ip_policy, recv_ill, zoneid); 2743 return; 2744 } 2745 /* NOTREACHED */ 2746 discard_pkt: 2747 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2748 drop_pkt:; 2749 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2750 freemsg(first_mp); 2751 } 2752 2753 /* 2754 * Common IP options parser. 2755 * 2756 * Setup routine: fill in *optp with options-parsing state, then 2757 * tail-call ipoptp_next to return the first option. 2758 */ 2759 uint8_t 2760 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2761 { 2762 uint32_t totallen; /* total length of all options */ 2763 2764 totallen = ipha->ipha_version_and_hdr_length - 2765 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2766 totallen <<= 2; 2767 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2768 optp->ipoptp_end = optp->ipoptp_next + totallen; 2769 optp->ipoptp_flags = 0; 2770 return (ipoptp_next(optp)); 2771 } 2772 2773 /* 2774 * Common IP options parser: extract next option. 2775 */ 2776 uint8_t 2777 ipoptp_next(ipoptp_t *optp) 2778 { 2779 uint8_t *end = optp->ipoptp_end; 2780 uint8_t *cur = optp->ipoptp_next; 2781 uint8_t opt, len, pointer; 2782 2783 /* 2784 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2785 * has been corrupted. 2786 */ 2787 ASSERT(cur <= end); 2788 2789 if (cur == end) 2790 return (IPOPT_EOL); 2791 2792 opt = cur[IPOPT_OPTVAL]; 2793 2794 /* 2795 * Skip any NOP options. 2796 */ 2797 while (opt == IPOPT_NOP) { 2798 cur++; 2799 if (cur == end) 2800 return (IPOPT_EOL); 2801 opt = cur[IPOPT_OPTVAL]; 2802 } 2803 2804 if (opt == IPOPT_EOL) 2805 return (IPOPT_EOL); 2806 2807 /* 2808 * Option requiring a length. 2809 */ 2810 if ((cur + 1) >= end) { 2811 optp->ipoptp_flags |= IPOPTP_ERROR; 2812 return (IPOPT_EOL); 2813 } 2814 len = cur[IPOPT_OLEN]; 2815 if (len < 2) { 2816 optp->ipoptp_flags |= IPOPTP_ERROR; 2817 return (IPOPT_EOL); 2818 } 2819 optp->ipoptp_cur = cur; 2820 optp->ipoptp_len = len; 2821 optp->ipoptp_next = cur + len; 2822 if (cur + len > end) { 2823 optp->ipoptp_flags |= IPOPTP_ERROR; 2824 return (IPOPT_EOL); 2825 } 2826 2827 /* 2828 * For the options which require a pointer field, make sure 2829 * its there, and make sure it points to either something 2830 * inside this option, or the end of the option. 2831 */ 2832 switch (opt) { 2833 case IPOPT_RR: 2834 case IPOPT_TS: 2835 case IPOPT_LSRR: 2836 case IPOPT_SSRR: 2837 if (len <= IPOPT_OFFSET) { 2838 optp->ipoptp_flags |= IPOPTP_ERROR; 2839 return (opt); 2840 } 2841 pointer = cur[IPOPT_OFFSET]; 2842 if (pointer - 1 > len) { 2843 optp->ipoptp_flags |= IPOPTP_ERROR; 2844 return (opt); 2845 } 2846 break; 2847 } 2848 2849 /* 2850 * Sanity check the pointer field based on the type of the 2851 * option. 2852 */ 2853 switch (opt) { 2854 case IPOPT_RR: 2855 case IPOPT_SSRR: 2856 case IPOPT_LSRR: 2857 if (pointer < IPOPT_MINOFF_SR) 2858 optp->ipoptp_flags |= IPOPTP_ERROR; 2859 break; 2860 case IPOPT_TS: 2861 if (pointer < IPOPT_MINOFF_IT) 2862 optp->ipoptp_flags |= IPOPTP_ERROR; 2863 /* 2864 * Note that the Internet Timestamp option also 2865 * contains two four bit fields (the Overflow field, 2866 * and the Flag field), which follow the pointer 2867 * field. We don't need to check that these fields 2868 * fall within the length of the option because this 2869 * was implicitely done above. We've checked that the 2870 * pointer value is at least IPOPT_MINOFF_IT, and that 2871 * it falls within the option. Since IPOPT_MINOFF_IT > 2872 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2873 */ 2874 ASSERT(len > IPOPT_POS_OV_FLG); 2875 break; 2876 } 2877 2878 return (opt); 2879 } 2880 2881 /* 2882 * Use the outgoing IP header to create an IP_OPTIONS option the way 2883 * it was passed down from the application. 2884 */ 2885 int 2886 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2887 { 2888 ipoptp_t opts; 2889 const uchar_t *opt; 2890 uint8_t optval; 2891 uint8_t optlen; 2892 uint32_t len = 0; 2893 uchar_t *buf1 = buf; 2894 2895 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2896 len += IP_ADDR_LEN; 2897 bzero(buf1, IP_ADDR_LEN); 2898 2899 /* 2900 * OK to cast away const here, as we don't store through the returned 2901 * opts.ipoptp_cur pointer. 2902 */ 2903 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 2904 optval != IPOPT_EOL; 2905 optval = ipoptp_next(&opts)) { 2906 int off; 2907 2908 opt = opts.ipoptp_cur; 2909 optlen = opts.ipoptp_len; 2910 switch (optval) { 2911 case IPOPT_SSRR: 2912 case IPOPT_LSRR: 2913 2914 /* 2915 * Insert ipha_dst as the first entry in the source 2916 * route and move down the entries on step. 2917 * The last entry gets placed at buf1. 2918 */ 2919 buf[IPOPT_OPTVAL] = optval; 2920 buf[IPOPT_OLEN] = optlen; 2921 buf[IPOPT_OFFSET] = optlen; 2922 2923 off = optlen - IP_ADDR_LEN; 2924 if (off < 0) { 2925 /* No entries in source route */ 2926 break; 2927 } 2928 /* Last entry in source route */ 2929 bcopy(opt + off, buf1, IP_ADDR_LEN); 2930 off -= IP_ADDR_LEN; 2931 2932 while (off > 0) { 2933 bcopy(opt + off, 2934 buf + off + IP_ADDR_LEN, 2935 IP_ADDR_LEN); 2936 off -= IP_ADDR_LEN; 2937 } 2938 /* ipha_dst into first slot */ 2939 bcopy(&ipha->ipha_dst, 2940 buf + off + IP_ADDR_LEN, 2941 IP_ADDR_LEN); 2942 buf += optlen; 2943 len += optlen; 2944 break; 2945 2946 case IPOPT_COMSEC: 2947 case IPOPT_SECURITY: 2948 /* if passing up a label is not ok, then remove */ 2949 if (is_system_labeled()) 2950 break; 2951 /* FALLTHROUGH */ 2952 default: 2953 bcopy(opt, buf, optlen); 2954 buf += optlen; 2955 len += optlen; 2956 break; 2957 } 2958 } 2959 done: 2960 /* Pad the resulting options */ 2961 while (len & 0x3) { 2962 *buf++ = IPOPT_EOL; 2963 len++; 2964 } 2965 return (len); 2966 } 2967 2968 /* 2969 * Update any record route or timestamp options to include this host. 2970 * Reverse any source route option. 2971 * This routine assumes that the options are well formed i.e. that they 2972 * have already been checked. 2973 */ 2974 static void 2975 icmp_options_update(ipha_t *ipha) 2976 { 2977 ipoptp_t opts; 2978 uchar_t *opt; 2979 uint8_t optval; 2980 ipaddr_t src; /* Our local address */ 2981 ipaddr_t dst; 2982 2983 ip2dbg(("icmp_options_update\n")); 2984 src = ipha->ipha_src; 2985 dst = ipha->ipha_dst; 2986 2987 for (optval = ipoptp_first(&opts, ipha); 2988 optval != IPOPT_EOL; 2989 optval = ipoptp_next(&opts)) { 2990 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 2991 opt = opts.ipoptp_cur; 2992 ip2dbg(("icmp_options_update: opt %d, len %d\n", 2993 optval, opts.ipoptp_len)); 2994 switch (optval) { 2995 int off1, off2; 2996 case IPOPT_SSRR: 2997 case IPOPT_LSRR: 2998 /* 2999 * Reverse the source route. The first entry 3000 * should be the next to last one in the current 3001 * source route (the last entry is our address). 3002 * The last entry should be the final destination. 3003 */ 3004 off1 = IPOPT_MINOFF_SR - 1; 3005 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 3006 if (off2 < 0) { 3007 /* No entries in source route */ 3008 ip1dbg(( 3009 "icmp_options_update: bad src route\n")); 3010 break; 3011 } 3012 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 3013 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 3014 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 3015 off2 -= IP_ADDR_LEN; 3016 3017 while (off1 < off2) { 3018 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 3019 bcopy((char *)opt + off2, (char *)opt + off1, 3020 IP_ADDR_LEN); 3021 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 3022 off1 += IP_ADDR_LEN; 3023 off2 -= IP_ADDR_LEN; 3024 } 3025 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 3026 break; 3027 } 3028 } 3029 } 3030 3031 /* 3032 * Process received ICMP Redirect messages. 3033 */ 3034 static void 3035 icmp_redirect(ill_t *ill, mblk_t *mp) 3036 { 3037 ipha_t *ipha; 3038 int iph_hdr_length; 3039 icmph_t *icmph; 3040 ipha_t *ipha_err; 3041 ire_t *ire; 3042 ire_t *prev_ire; 3043 ire_t *save_ire; 3044 ipaddr_t src, dst, gateway; 3045 iulp_t ulp_info = { 0 }; 3046 int error; 3047 ip_stack_t *ipst; 3048 3049 ASSERT(ill != NULL); 3050 ipst = ill->ill_ipst; 3051 3052 ipha = (ipha_t *)mp->b_rptr; 3053 iph_hdr_length = IPH_HDR_LENGTH(ipha); 3054 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 3055 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 3056 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3057 freemsg(mp); 3058 return; 3059 } 3060 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 3061 ipha_err = (ipha_t *)&icmph[1]; 3062 src = ipha->ipha_src; 3063 dst = ipha_err->ipha_dst; 3064 gateway = icmph->icmph_rd_gateway; 3065 /* Make sure the new gateway is reachable somehow. */ 3066 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 3067 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3068 /* 3069 * Make sure we had a route for the dest in question and that 3070 * that route was pointing to the old gateway (the source of the 3071 * redirect packet.) 3072 */ 3073 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 3074 NULL, MATCH_IRE_GW, ipst); 3075 /* 3076 * Check that 3077 * the redirect was not from ourselves 3078 * the new gateway and the old gateway are directly reachable 3079 */ 3080 if (!prev_ire || 3081 !ire || 3082 ire->ire_type == IRE_LOCAL) { 3083 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3084 freemsg(mp); 3085 if (ire != NULL) 3086 ire_refrele(ire); 3087 if (prev_ire != NULL) 3088 ire_refrele(prev_ire); 3089 return; 3090 } 3091 3092 /* 3093 * Should we use the old ULP info to create the new gateway? From 3094 * a user's perspective, we should inherit the info so that it 3095 * is a "smooth" transition. If we do not do that, then new 3096 * connections going thru the new gateway will have no route metrics, 3097 * which is counter-intuitive to user. From a network point of 3098 * view, this may or may not make sense even though the new gateway 3099 * is still directly connected to us so the route metrics should not 3100 * change much. 3101 * 3102 * But if the old ire_uinfo is not initialized, we do another 3103 * recursive lookup on the dest using the new gateway. There may 3104 * be a route to that. If so, use it to initialize the redirect 3105 * route. 3106 */ 3107 if (prev_ire->ire_uinfo.iulp_set) { 3108 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3109 } else { 3110 ire_t *tmp_ire; 3111 ire_t *sire; 3112 3113 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3114 ALL_ZONES, 0, NULL, 3115 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT), 3116 ipst); 3117 if (sire != NULL) { 3118 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3119 /* 3120 * If sire != NULL, ire_ftable_lookup() should not 3121 * return a NULL value. 3122 */ 3123 ASSERT(tmp_ire != NULL); 3124 ire_refrele(tmp_ire); 3125 ire_refrele(sire); 3126 } else if (tmp_ire != NULL) { 3127 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3128 sizeof (iulp_t)); 3129 ire_refrele(tmp_ire); 3130 } 3131 } 3132 if (prev_ire->ire_type == IRE_CACHE) 3133 ire_delete(prev_ire); 3134 ire_refrele(prev_ire); 3135 /* 3136 * TODO: more precise handling for cases 0, 2, 3, the latter two 3137 * require TOS routing 3138 */ 3139 switch (icmph->icmph_code) { 3140 case 0: 3141 case 1: 3142 /* TODO: TOS specificity for cases 2 and 3 */ 3143 case 2: 3144 case 3: 3145 break; 3146 default: 3147 freemsg(mp); 3148 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3149 ire_refrele(ire); 3150 return; 3151 } 3152 /* 3153 * Create a Route Association. This will allow us to remember that 3154 * someone we believe told us to use the particular gateway. 3155 */ 3156 save_ire = ire; 3157 ire = ire_create( 3158 (uchar_t *)&dst, /* dest addr */ 3159 (uchar_t *)&ip_g_all_ones, /* mask */ 3160 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3161 (uchar_t *)&gateway, /* gateway addr */ 3162 NULL, /* no in_srcaddr */ 3163 &save_ire->ire_max_frag, /* max frag */ 3164 NULL, /* Fast Path header */ 3165 NULL, /* no rfq */ 3166 NULL, /* no stq */ 3167 IRE_HOST, 3168 NULL, 3169 NULL, 3170 NULL, 3171 0, 3172 0, 3173 0, 3174 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3175 &ulp_info, 3176 NULL, 3177 NULL, 3178 ipst); 3179 3180 if (ire == NULL) { 3181 freemsg(mp); 3182 ire_refrele(save_ire); 3183 return; 3184 } 3185 error = ire_add(&ire, NULL, NULL, NULL, B_FALSE); 3186 ire_refrele(save_ire); 3187 atomic_inc_32(&ipst->ips_ip_redirect_cnt); 3188 3189 if (error == 0) { 3190 ire_refrele(ire); /* Held in ire_add_v4 */ 3191 /* tell routing sockets that we received a redirect */ 3192 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3193 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3194 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 3195 } 3196 3197 /* 3198 * Delete any existing IRE_HOST type redirect ires for this destination. 3199 * This together with the added IRE has the effect of 3200 * modifying an existing redirect. 3201 */ 3202 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST, NULL, NULL, 3203 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), ipst); 3204 if (prev_ire != NULL) { 3205 if (prev_ire ->ire_flags & RTF_DYNAMIC) 3206 ire_delete(prev_ire); 3207 ire_refrele(prev_ire); 3208 } 3209 3210 freemsg(mp); 3211 } 3212 3213 /* 3214 * Generate an ICMP parameter problem message. 3215 */ 3216 static void 3217 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr, zoneid_t zoneid, 3218 ip_stack_t *ipst) 3219 { 3220 icmph_t icmph; 3221 boolean_t mctl_present; 3222 mblk_t *first_mp; 3223 3224 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3225 3226 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3227 if (mctl_present) 3228 freeb(first_mp); 3229 return; 3230 } 3231 3232 bzero(&icmph, sizeof (icmph_t)); 3233 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3234 icmph.icmph_pp_ptr = ptr; 3235 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 3236 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3237 ipst); 3238 } 3239 3240 /* 3241 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3242 * the ICMP header pointed to by "stuff". (May be called as writer.) 3243 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3244 * an icmp error packet can be sent. 3245 * Assigns an appropriate source address to the packet. If ipha_dst is 3246 * one of our addresses use it for source. Otherwise pick a source based 3247 * on a route lookup back to ipha_src. 3248 * Note that ipha_src must be set here since the 3249 * packet is likely to arrive on an ill queue in ip_wput() which will 3250 * not set a source address. 3251 */ 3252 static void 3253 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3254 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 3255 { 3256 ipaddr_t dst; 3257 icmph_t *icmph; 3258 ipha_t *ipha; 3259 uint_t len_needed; 3260 size_t msg_len; 3261 mblk_t *mp1; 3262 ipaddr_t src; 3263 ire_t *ire; 3264 mblk_t *ipsec_mp; 3265 ipsec_out_t *io = NULL; 3266 boolean_t xmit_if_on = B_FALSE; 3267 3268 if (mctl_present) { 3269 /* 3270 * If it is : 3271 * 3272 * 1) a IPSEC_OUT, then this is caused by outbound 3273 * datagram originating on this host. IPSEC processing 3274 * may or may not have been done. Refer to comments above 3275 * icmp_inbound_error_fanout for details. 3276 * 3277 * 2) a IPSEC_IN if we are generating a icmp_message 3278 * for an incoming datagram destined for us i.e called 3279 * from ip_fanout_send_icmp. 3280 */ 3281 ipsec_info_t *in; 3282 ipsec_mp = mp; 3283 mp = ipsec_mp->b_cont; 3284 3285 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3286 ipha = (ipha_t *)mp->b_rptr; 3287 3288 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3289 in->ipsec_info_type == IPSEC_IN); 3290 3291 if (in->ipsec_info_type == IPSEC_IN) { 3292 /* 3293 * Convert the IPSEC_IN to IPSEC_OUT. 3294 */ 3295 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3296 BUMP_MIB(&ipst->ips_ip_mib, 3297 ipIfStatsOutDiscards); 3298 return; 3299 } 3300 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3301 } else { 3302 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3303 io = (ipsec_out_t *)in; 3304 if (io->ipsec_out_xmit_if) 3305 xmit_if_on = B_TRUE; 3306 /* 3307 * Clear out ipsec_out_proc_begin, so we do a fresh 3308 * ire lookup. 3309 */ 3310 io->ipsec_out_proc_begin = B_FALSE; 3311 } 3312 ASSERT(zoneid == io->ipsec_out_zoneid); 3313 ASSERT(zoneid != ALL_ZONES); 3314 } else { 3315 /* 3316 * This is in clear. The icmp message we are building 3317 * here should go out in clear. 3318 * 3319 * Pardon the convolution of it all, but it's easier to 3320 * allocate a "use cleartext" IPSEC_IN message and convert 3321 * it than it is to allocate a new one. 3322 */ 3323 ipsec_in_t *ii; 3324 ASSERT(DB_TYPE(mp) == M_DATA); 3325 ipsec_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 3326 if (ipsec_mp == NULL) { 3327 freemsg(mp); 3328 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3329 return; 3330 } 3331 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3332 3333 /* This is not a secure packet */ 3334 ii->ipsec_in_secure = B_FALSE; 3335 /* 3336 * For trusted extensions using a shared IP address we can 3337 * send using any zoneid. 3338 */ 3339 if (zoneid == ALL_ZONES) 3340 ii->ipsec_in_zoneid = GLOBAL_ZONEID; 3341 else 3342 ii->ipsec_in_zoneid = zoneid; 3343 ipsec_mp->b_cont = mp; 3344 ipha = (ipha_t *)mp->b_rptr; 3345 /* 3346 * Convert the IPSEC_IN to IPSEC_OUT. 3347 */ 3348 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3349 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3350 return; 3351 } 3352 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3353 } 3354 3355 /* Remember our eventual destination */ 3356 dst = ipha->ipha_src; 3357 3358 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3359 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE, ipst); 3360 if (ire != NULL && 3361 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3362 src = ipha->ipha_dst; 3363 } else if (!xmit_if_on) { 3364 if (ire != NULL) 3365 ire_refrele(ire); 3366 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3367 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY), 3368 ipst); 3369 if (ire == NULL) { 3370 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3371 freemsg(ipsec_mp); 3372 return; 3373 } 3374 src = ire->ire_src_addr; 3375 } else { 3376 ipif_t *ipif = NULL; 3377 ill_t *ill; 3378 /* 3379 * This must be an ICMP error coming from 3380 * ip_mrtun_forward(). The src addr should 3381 * be equal to the IP-addr of the outgoing 3382 * interface. 3383 */ 3384 if (io == NULL) { 3385 /* This is not a IPSEC_OUT type control msg */ 3386 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3387 freemsg(ipsec_mp); 3388 return; 3389 } 3390 ill = ill_lookup_on_ifindex(io->ipsec_out_ill_index, B_FALSE, 3391 NULL, NULL, NULL, NULL, ipst); 3392 if (ill != NULL) { 3393 ipif = ipif_get_next_ipif(NULL, ill); 3394 ill_refrele(ill); 3395 } 3396 if (ipif == NULL) { 3397 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3398 freemsg(ipsec_mp); 3399 return; 3400 } 3401 src = ipif->ipif_src_addr; 3402 ipif_refrele(ipif); 3403 } 3404 3405 if (ire != NULL) 3406 ire_refrele(ire); 3407 3408 /* 3409 * Check if we can send back more then 8 bytes in addition 3410 * to the IP header. We will include as much as 64 bytes. 3411 */ 3412 len_needed = IPH_HDR_LENGTH(ipha); 3413 if (ipha->ipha_protocol == IPPROTO_ENCAP && 3414 (uchar_t *)ipha + len_needed + 1 <= mp->b_wptr) { 3415 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + len_needed)); 3416 } 3417 len_needed += ipst->ips_ip_icmp_return; 3418 msg_len = msgdsize(mp); 3419 if (msg_len > len_needed) { 3420 (void) adjmsg(mp, len_needed - msg_len); 3421 msg_len = len_needed; 3422 } 3423 mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_HI); 3424 if (mp1 == NULL) { 3425 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 3426 freemsg(ipsec_mp); 3427 return; 3428 } 3429 /* 3430 * On an unlabeled system, dblks don't necessarily have creds. 3431 */ 3432 ASSERT(!is_system_labeled() || DB_CRED(mp) != NULL); 3433 if (DB_CRED(mp) != NULL) 3434 mblk_setcred(mp1, DB_CRED(mp)); 3435 mp1->b_cont = mp; 3436 mp = mp1; 3437 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3438 ipsec_mp->b_rptr == (uint8_t *)io && 3439 io->ipsec_out_type == IPSEC_OUT); 3440 ipsec_mp->b_cont = mp; 3441 3442 /* 3443 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3444 * node generates be accepted in peace by all on-host destinations. 3445 * If we do NOT assume that all on-host destinations trust 3446 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3447 * (Look for ipsec_out_icmp_loopback). 3448 */ 3449 io->ipsec_out_icmp_loopback = B_TRUE; 3450 3451 ipha = (ipha_t *)mp->b_rptr; 3452 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3453 *ipha = icmp_ipha; 3454 ipha->ipha_src = src; 3455 ipha->ipha_dst = dst; 3456 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 3457 msg_len += sizeof (icmp_ipha) + len; 3458 if (msg_len > IP_MAXPACKET) { 3459 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3460 msg_len = IP_MAXPACKET; 3461 } 3462 ipha->ipha_length = htons((uint16_t)msg_len); 3463 icmph = (icmph_t *)&ipha[1]; 3464 bcopy(stuff, icmph, len); 3465 icmph->icmph_checksum = 0; 3466 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3467 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 3468 put(q, ipsec_mp); 3469 } 3470 3471 /* 3472 * Determine if an ICMP error packet can be sent given the rate limit. 3473 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3474 * in milliseconds) and a burst size. Burst size number of packets can 3475 * be sent arbitrarely closely spaced. 3476 * The state is tracked using two variables to implement an approximate 3477 * token bucket filter: 3478 * icmp_pkt_err_last - lbolt value when the last burst started 3479 * icmp_pkt_err_sent - number of packets sent in current burst 3480 */ 3481 boolean_t 3482 icmp_err_rate_limit(ip_stack_t *ipst) 3483 { 3484 clock_t now = TICK_TO_MSEC(lbolt); 3485 uint_t refilled; /* Number of packets refilled in tbf since last */ 3486 /* Guard against changes by loading into local variable */ 3487 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 3488 3489 if (err_interval == 0) 3490 return (B_FALSE); 3491 3492 if (ipst->ips_icmp_pkt_err_last > now) { 3493 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3494 ipst->ips_icmp_pkt_err_last = 0; 3495 ipst->ips_icmp_pkt_err_sent = 0; 3496 } 3497 /* 3498 * If we are in a burst update the token bucket filter. 3499 * Update the "last" time to be close to "now" but make sure 3500 * we don't loose precision. 3501 */ 3502 if (ipst->ips_icmp_pkt_err_sent != 0) { 3503 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 3504 if (refilled > ipst->ips_icmp_pkt_err_sent) { 3505 ipst->ips_icmp_pkt_err_sent = 0; 3506 } else { 3507 ipst->ips_icmp_pkt_err_sent -= refilled; 3508 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 3509 } 3510 } 3511 if (ipst->ips_icmp_pkt_err_sent == 0) { 3512 /* Start of new burst */ 3513 ipst->ips_icmp_pkt_err_last = now; 3514 } 3515 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 3516 ipst->ips_icmp_pkt_err_sent++; 3517 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3518 ipst->ips_icmp_pkt_err_sent)); 3519 return (B_FALSE); 3520 } 3521 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3522 return (B_TRUE); 3523 } 3524 3525 /* 3526 * Check if it is ok to send an IPv4 ICMP error packet in 3527 * response to the IPv4 packet in mp. 3528 * Free the message and return null if no 3529 * ICMP error packet should be sent. 3530 */ 3531 static mblk_t * 3532 icmp_pkt_err_ok(mblk_t *mp, ip_stack_t *ipst) 3533 { 3534 icmph_t *icmph; 3535 ipha_t *ipha; 3536 uint_t len_needed; 3537 ire_t *src_ire; 3538 ire_t *dst_ire; 3539 3540 if (!mp) 3541 return (NULL); 3542 ipha = (ipha_t *)mp->b_rptr; 3543 if (ip_csum_hdr(ipha)) { 3544 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 3545 freemsg(mp); 3546 return (NULL); 3547 } 3548 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3549 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3550 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3551 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3552 if (src_ire != NULL || dst_ire != NULL || 3553 CLASSD(ipha->ipha_dst) || 3554 CLASSD(ipha->ipha_src) || 3555 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3556 /* Note: only errors to the fragment with offset 0 */ 3557 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3558 freemsg(mp); 3559 if (src_ire != NULL) 3560 ire_refrele(src_ire); 3561 if (dst_ire != NULL) 3562 ire_refrele(dst_ire); 3563 return (NULL); 3564 } 3565 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3566 /* 3567 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3568 * errors in response to any ICMP errors. 3569 */ 3570 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3571 if (mp->b_wptr - mp->b_rptr < len_needed) { 3572 if (!pullupmsg(mp, len_needed)) { 3573 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3574 freemsg(mp); 3575 return (NULL); 3576 } 3577 ipha = (ipha_t *)mp->b_rptr; 3578 } 3579 icmph = (icmph_t *) 3580 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3581 switch (icmph->icmph_type) { 3582 case ICMP_DEST_UNREACHABLE: 3583 case ICMP_SOURCE_QUENCH: 3584 case ICMP_TIME_EXCEEDED: 3585 case ICMP_PARAM_PROBLEM: 3586 case ICMP_REDIRECT: 3587 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3588 freemsg(mp); 3589 return (NULL); 3590 default: 3591 break; 3592 } 3593 } 3594 /* 3595 * If this is a labeled system, then check to see if we're allowed to 3596 * send a response to this particular sender. If not, then just drop. 3597 */ 3598 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3599 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3600 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3601 freemsg(mp); 3602 return (NULL); 3603 } 3604 if (icmp_err_rate_limit(ipst)) { 3605 /* 3606 * Only send ICMP error packets every so often. 3607 * This should be done on a per port/source basis, 3608 * but for now this will suffice. 3609 */ 3610 freemsg(mp); 3611 return (NULL); 3612 } 3613 return (mp); 3614 } 3615 3616 /* 3617 * Generate an ICMP redirect message. 3618 */ 3619 static void 3620 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway, ip_stack_t *ipst) 3621 { 3622 icmph_t icmph; 3623 3624 /* 3625 * We are called from ip_rput where we could 3626 * not have attached an IPSEC_IN. 3627 */ 3628 ASSERT(mp->b_datap->db_type == M_DATA); 3629 3630 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3631 return; 3632 } 3633 3634 bzero(&icmph, sizeof (icmph_t)); 3635 icmph.icmph_type = ICMP_REDIRECT; 3636 icmph.icmph_code = 1; 3637 icmph.icmph_rd_gateway = gateway; 3638 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3639 /* Redirects sent by router, and router is global zone */ 3640 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE, GLOBAL_ZONEID, ipst); 3641 } 3642 3643 /* 3644 * Generate an ICMP time exceeded message. 3645 */ 3646 void 3647 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3648 ip_stack_t *ipst) 3649 { 3650 icmph_t icmph; 3651 boolean_t mctl_present; 3652 mblk_t *first_mp; 3653 3654 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3655 3656 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3657 if (mctl_present) 3658 freeb(first_mp); 3659 return; 3660 } 3661 3662 bzero(&icmph, sizeof (icmph_t)); 3663 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3664 icmph.icmph_code = code; 3665 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3666 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3667 ipst); 3668 } 3669 3670 /* 3671 * Generate an ICMP unreachable message. 3672 */ 3673 void 3674 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3675 ip_stack_t *ipst) 3676 { 3677 icmph_t icmph; 3678 mblk_t *first_mp; 3679 boolean_t mctl_present; 3680 3681 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3682 3683 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3684 if (mctl_present) 3685 freeb(first_mp); 3686 return; 3687 } 3688 3689 bzero(&icmph, sizeof (icmph_t)); 3690 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3691 icmph.icmph_code = code; 3692 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3693 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3694 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present, 3695 zoneid, ipst); 3696 } 3697 3698 /* 3699 * Attempt to start recovery of an IPv4 interface that's been shut down as a 3700 * duplicate. As long as someone else holds the address, the interface will 3701 * stay down. When that conflict goes away, the interface is brought back up. 3702 * This is done so that accidental shutdowns of addresses aren't made 3703 * permanent. Your server will recover from a failure. 3704 * 3705 * For DHCP, recovery is not done in the kernel. Instead, it's handled by a 3706 * user space process (dhcpagent). 3707 * 3708 * Recovery completes if ARP reports that the address is now ours (via 3709 * AR_CN_READY). In that case, we go to ip_arp_excl to finish the operation. 3710 * 3711 * This function is entered on a timer expiry; the ID is in ipif_recovery_id. 3712 */ 3713 static void 3714 ipif_dup_recovery(void *arg) 3715 { 3716 ipif_t *ipif = arg; 3717 ill_t *ill = ipif->ipif_ill; 3718 mblk_t *arp_add_mp; 3719 mblk_t *arp_del_mp; 3720 area_t *area; 3721 ip_stack_t *ipst = ill->ill_ipst; 3722 3723 ipif->ipif_recovery_id = 0; 3724 3725 /* 3726 * No lock needed for moving or condemned check, as this is just an 3727 * optimization. 3728 */ 3729 if (ill->ill_arp_closing || !(ipif->ipif_flags & IPIF_DUPLICATE) || 3730 (ipif->ipif_flags & IPIF_POINTOPOINT) || 3731 (ipif->ipif_state_flags & (IPIF_MOVING | IPIF_CONDEMNED))) { 3732 /* No reason to try to bring this address back. */ 3733 return; 3734 } 3735 3736 if ((arp_add_mp = ipif_area_alloc(ipif)) == NULL) 3737 goto alloc_fail; 3738 3739 if (ipif->ipif_arp_del_mp == NULL) { 3740 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 3741 goto alloc_fail; 3742 ipif->ipif_arp_del_mp = arp_del_mp; 3743 } 3744 3745 /* Setting the 'unverified' flag restarts DAD */ 3746 area = (area_t *)arp_add_mp->b_rptr; 3747 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 3748 ACE_F_UNVERIFIED; 3749 putnext(ill->ill_rq, arp_add_mp); 3750 return; 3751 3752 alloc_fail: 3753 /* 3754 * On allocation failure, just restart the timer. Note that the ipif 3755 * is down here, so no other thread could be trying to start a recovery 3756 * timer. The ill_lock protects the condemned flag and the recovery 3757 * timer ID. 3758 */ 3759 freemsg(arp_add_mp); 3760 mutex_enter(&ill->ill_lock); 3761 if (ipst->ips_ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0 && 3762 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 3763 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, ipif, 3764 MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3765 } 3766 mutex_exit(&ill->ill_lock); 3767 } 3768 3769 /* 3770 * This is for exclusive changes due to ARP. Either tear down an interface due 3771 * to AR_CN_FAILED and AR_CN_BOGON, or bring one up for successful recovery. 3772 */ 3773 /* ARGSUSED */ 3774 static void 3775 ip_arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3776 { 3777 ill_t *ill = rq->q_ptr; 3778 arh_t *arh; 3779 ipaddr_t src; 3780 ipif_t *ipif; 3781 char ibuf[LIFNAMSIZ + 10]; /* 10 digits for logical i/f number */ 3782 char hbuf[MAC_STR_LEN]; 3783 char sbuf[INET_ADDRSTRLEN]; 3784 const char *failtype; 3785 boolean_t bring_up; 3786 ip_stack_t *ipst = ill->ill_ipst; 3787 3788 switch (((arcn_t *)mp->b_rptr)->arcn_code) { 3789 case AR_CN_READY: 3790 failtype = NULL; 3791 bring_up = B_TRUE; 3792 break; 3793 case AR_CN_FAILED: 3794 failtype = "in use"; 3795 bring_up = B_FALSE; 3796 break; 3797 default: 3798 failtype = "claimed"; 3799 bring_up = B_FALSE; 3800 break; 3801 } 3802 3803 arh = (arh_t *)mp->b_cont->b_rptr; 3804 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3805 3806 /* Handle failures due to probes */ 3807 if (src == 0) { 3808 bcopy((char *)&arh[1] + 2 * arh->arh_hlen + IP_ADDR_LEN, &src, 3809 IP_ADDR_LEN); 3810 } 3811 3812 (void) strlcpy(ibuf, ill->ill_name, sizeof (ibuf)); 3813 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, hbuf, 3814 sizeof (hbuf)); 3815 (void) ip_dot_addr(src, sbuf); 3816 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3817 3818 if ((ipif->ipif_flags & IPIF_POINTOPOINT) || 3819 ipif->ipif_lcl_addr != src) { 3820 continue; 3821 } 3822 3823 /* 3824 * If we failed on a recovery probe, then restart the timer to 3825 * try again later. 3826 */ 3827 if (!bring_up && (ipif->ipif_flags & IPIF_DUPLICATE) && 3828 !(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3829 ill->ill_net_type == IRE_IF_RESOLVER && 3830 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3831 ipst->ips_ip_dup_recovery > 0 && 3832 ipif->ipif_recovery_id == 0) { 3833 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3834 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3835 continue; 3836 } 3837 3838 /* 3839 * If what we're trying to do has already been done, then do 3840 * nothing. 3841 */ 3842 if (bring_up == ((ipif->ipif_flags & IPIF_UP) != 0)) 3843 continue; 3844 3845 if (ipif->ipif_id != 0) { 3846 (void) snprintf(ibuf + ill->ill_name_length - 1, 3847 sizeof (ibuf) - ill->ill_name_length + 1, ":%d", 3848 ipif->ipif_id); 3849 } 3850 if (failtype == NULL) { 3851 cmn_err(CE_NOTE, "recovered address %s on %s", sbuf, 3852 ibuf); 3853 } else { 3854 cmn_err(CE_WARN, "%s has duplicate address %s (%s " 3855 "by %s); disabled", ibuf, sbuf, failtype, hbuf); 3856 } 3857 3858 if (bring_up) { 3859 ASSERT(ill->ill_dl_up); 3860 /* 3861 * Free up the ARP delete message so we can allocate 3862 * a fresh one through the normal path. 3863 */ 3864 freemsg(ipif->ipif_arp_del_mp); 3865 ipif->ipif_arp_del_mp = NULL; 3866 if (ipif_resolver_up(ipif, Res_act_initial) != 3867 EINPROGRESS) { 3868 ipif->ipif_addr_ready = 1; 3869 (void) ipif_up_done(ipif); 3870 } 3871 continue; 3872 } 3873 3874 mutex_enter(&ill->ill_lock); 3875 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 3876 ipif->ipif_flags |= IPIF_DUPLICATE; 3877 ill->ill_ipif_dup_count++; 3878 mutex_exit(&ill->ill_lock); 3879 /* 3880 * Already exclusive on the ill; no need to handle deferred 3881 * processing here. 3882 */ 3883 (void) ipif_down(ipif, NULL, NULL); 3884 ipif_down_tail(ipif); 3885 mutex_enter(&ill->ill_lock); 3886 if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3887 ill->ill_net_type == IRE_IF_RESOLVER && 3888 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3889 ipst->ips_ip_dup_recovery > 0) { 3890 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3891 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3892 } 3893 mutex_exit(&ill->ill_lock); 3894 } 3895 freemsg(mp); 3896 } 3897 3898 /* ARGSUSED */ 3899 static void 3900 ip_arp_defend(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3901 { 3902 ill_t *ill = rq->q_ptr; 3903 arh_t *arh; 3904 ipaddr_t src; 3905 ipif_t *ipif; 3906 3907 arh = (arh_t *)mp->b_cont->b_rptr; 3908 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3909 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3910 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_lcl_addr == src) 3911 (void) ipif_resolver_up(ipif, Res_act_defend); 3912 } 3913 freemsg(mp); 3914 } 3915 3916 /* 3917 * News from ARP. ARP sends notification of interesting events down 3918 * to its clients using M_CTL messages with the interesting ARP packet 3919 * attached via b_cont. 3920 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3921 * queue as opposed to ARP sending the message to all the clients, i.e. all 3922 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3923 * table if a cache IRE is found to delete all the entries for the address in 3924 * the packet. 3925 */ 3926 static void 3927 ip_arp_news(queue_t *q, mblk_t *mp) 3928 { 3929 arcn_t *arcn; 3930 arh_t *arh; 3931 ire_t *ire = NULL; 3932 char hbuf[MAC_STR_LEN]; 3933 char sbuf[INET_ADDRSTRLEN]; 3934 ipaddr_t src; 3935 in6_addr_t v6src; 3936 boolean_t isv6 = B_FALSE; 3937 ipif_t *ipif; 3938 ill_t *ill; 3939 ip_stack_t *ipst; 3940 3941 if (CONN_Q(q)) { 3942 conn_t *connp = Q_TO_CONN(q); 3943 3944 ipst = connp->conn_netstack->netstack_ip; 3945 } else { 3946 ill_t *ill = (ill_t *)q->q_ptr; 3947 3948 ipst = ill->ill_ipst; 3949 } 3950 3951 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 3952 if (q->q_next) { 3953 putnext(q, mp); 3954 } else 3955 freemsg(mp); 3956 return; 3957 } 3958 arh = (arh_t *)mp->b_cont->b_rptr; 3959 /* Is it one we are interested in? */ 3960 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 3961 isv6 = B_TRUE; 3962 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 3963 IPV6_ADDR_LEN); 3964 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 3965 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 3966 IP_ADDR_LEN); 3967 } else { 3968 freemsg(mp); 3969 return; 3970 } 3971 3972 ill = q->q_ptr; 3973 3974 arcn = (arcn_t *)mp->b_rptr; 3975 switch (arcn->arcn_code) { 3976 case AR_CN_BOGON: 3977 /* 3978 * Someone is sending ARP packets with a source protocol 3979 * address that we have published and for which we believe our 3980 * entry is authoritative and (when ill_arp_extend is set) 3981 * verified to be unique on the network. 3982 * 3983 * The ARP module internally handles the cases where the sender 3984 * is just probing (for DAD) and where the hardware address of 3985 * a non-authoritative entry has changed. Thus, these are the 3986 * real conflicts, and we have to do resolution. 3987 * 3988 * We back away quickly from the address if it's from DHCP or 3989 * otherwise temporary and hasn't been used recently (or at 3990 * all). We'd like to include "deprecated" addresses here as 3991 * well (as there's no real reason to defend something we're 3992 * discarding), but IPMP "reuses" this flag to mean something 3993 * other than the standard meaning. 3994 * 3995 * If the ARP module above is not extended (meaning that it 3996 * doesn't know how to defend the address), then we just log 3997 * the problem as we always did and continue on. It's not 3998 * right, but there's little else we can do, and those old ATM 3999 * users are going away anyway. 4000 */ 4001 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, 4002 hbuf, sizeof (hbuf)); 4003 (void) ip_dot_addr(src, sbuf); 4004 if (isv6) { 4005 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL, 4006 ipst); 4007 } else { 4008 ire = ire_cache_lookup(src, ALL_ZONES, NULL, ipst); 4009 } 4010 if (ire != NULL && IRE_IS_LOCAL(ire)) { 4011 uint32_t now; 4012 uint32_t maxage; 4013 clock_t lused; 4014 uint_t maxdefense; 4015 uint_t defs; 4016 4017 /* 4018 * First, figure out if this address hasn't been used 4019 * in a while. If it hasn't, then it's a better 4020 * candidate for abandoning. 4021 */ 4022 ipif = ire->ire_ipif; 4023 ASSERT(ipif != NULL); 4024 now = gethrestime_sec(); 4025 maxage = now - ire->ire_create_time; 4026 if (maxage > ipst->ips_ip_max_temp_idle) 4027 maxage = ipst->ips_ip_max_temp_idle; 4028 lused = drv_hztousec(ddi_get_lbolt() - 4029 ire->ire_last_used_time) / MICROSEC + 1; 4030 if (lused >= maxage && (ipif->ipif_flags & 4031 (IPIF_DHCPRUNNING | IPIF_TEMPORARY))) 4032 maxdefense = ipst->ips_ip_max_temp_defend; 4033 else 4034 maxdefense = ipst->ips_ip_max_defend; 4035 4036 /* 4037 * Now figure out how many times we've defended 4038 * ourselves. Ignore defenses that happened long in 4039 * the past. 4040 */ 4041 mutex_enter(&ire->ire_lock); 4042 if ((defs = ire->ire_defense_count) > 0 && 4043 now - ire->ire_defense_time > 4044 ipst->ips_ip_defend_interval) { 4045 ire->ire_defense_count = defs = 0; 4046 } 4047 ire->ire_defense_count++; 4048 ire->ire_defense_time = now; 4049 mutex_exit(&ire->ire_lock); 4050 ill_refhold(ill); 4051 ire_refrele(ire); 4052 4053 /* 4054 * If we've defended ourselves too many times already, 4055 * then give up and tear down the interface(s) using 4056 * this address. Otherwise, defend by sending out a 4057 * gratuitous ARP. 4058 */ 4059 if (defs >= maxdefense && ill->ill_arp_extend) { 4060 (void) qwriter_ip(NULL, ill, q, mp, 4061 ip_arp_excl, CUR_OP, B_FALSE); 4062 } else { 4063 cmn_err(CE_WARN, 4064 "node %s is using our IP address %s on %s", 4065 hbuf, sbuf, ill->ill_name); 4066 /* 4067 * If this is an old (ATM) ARP module, then 4068 * don't try to defend the address. Remain 4069 * compatible with the old behavior. Defend 4070 * only with new ARP. 4071 */ 4072 if (ill->ill_arp_extend) { 4073 (void) qwriter_ip(NULL, ill, q, mp, 4074 ip_arp_defend, CUR_OP, B_FALSE); 4075 } else { 4076 ill_refrele(ill); 4077 } 4078 } 4079 return; 4080 } 4081 cmn_err(CE_WARN, 4082 "proxy ARP problem? Node '%s' is using %s on %s", 4083 hbuf, sbuf, ill->ill_name); 4084 if (ire != NULL) 4085 ire_refrele(ire); 4086 break; 4087 case AR_CN_ANNOUNCE: 4088 if (isv6) { 4089 /* 4090 * For XRESOLV interfaces. 4091 * Delete the IRE cache entry and NCE for this 4092 * v6 address 4093 */ 4094 ip_ire_clookup_and_delete_v6(&v6src, ipst); 4095 /* 4096 * If v6src is a non-zero, it's a router address 4097 * as below. Do the same sort of thing to clean 4098 * out off-net IRE_CACHE entries that go through 4099 * the router. 4100 */ 4101 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 4102 ire_walk_v6(ire_delete_cache_gw_v6, 4103 (char *)&v6src, ALL_ZONES, ipst); 4104 } 4105 } else { 4106 nce_hw_map_t hwm; 4107 4108 /* 4109 * ARP gives us a copy of any packet where it thinks 4110 * the address has changed, so that we can update our 4111 * caches. We're responsible for caching known answers 4112 * in the current design. We check whether the 4113 * hardware address really has changed in all of our 4114 * entries that have cached this mapping, and if so, we 4115 * blow them away. This way we will immediately pick 4116 * up the rare case of a host changing hardware 4117 * address. 4118 */ 4119 if (src == 0) 4120 break; 4121 hwm.hwm_addr = src; 4122 hwm.hwm_hwlen = arh->arh_hlen; 4123 hwm.hwm_hwaddr = (uchar_t *)(arh + 1); 4124 ndp_walk_common(ipst->ips_ndp4, NULL, 4125 (pfi_t)nce_delete_hw_changed, &hwm, ALL_ZONES); 4126 } 4127 break; 4128 case AR_CN_READY: 4129 /* No external v6 resolver has a contract to use this */ 4130 if (isv6) 4131 break; 4132 /* If the link is down, we'll retry this later */ 4133 if (!(ill->ill_phyint->phyint_flags & PHYI_RUNNING)) 4134 break; 4135 ipif = ipif_lookup_addr(src, ill, ALL_ZONES, NULL, NULL, 4136 NULL, NULL, ipst); 4137 if (ipif != NULL) { 4138 /* 4139 * If this is a duplicate recovery, then we now need to 4140 * go exclusive to bring this thing back up. 4141 */ 4142 if ((ipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)) == 4143 IPIF_DUPLICATE) { 4144 ipif_refrele(ipif); 4145 ill_refhold(ill); 4146 (void) qwriter_ip(NULL, ill, q, mp, 4147 ip_arp_excl, CUR_OP, B_FALSE); 4148 return; 4149 } 4150 /* 4151 * If this is the first notice that this address is 4152 * ready, then let the user know now. 4153 */ 4154 if ((ipif->ipif_flags & IPIF_UP) && 4155 !ipif->ipif_addr_ready) { 4156 ipif_mask_reply(ipif); 4157 ip_rts_ifmsg(ipif); 4158 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 4159 sctp_update_ipif(ipif, SCTP_IPIF_UP); 4160 } 4161 ipif->ipif_addr_ready = 1; 4162 ipif_refrele(ipif); 4163 } 4164 ire = ire_cache_lookup(src, ALL_ZONES, MBLK_GETLABEL(mp), ipst); 4165 if (ire != NULL) { 4166 ire->ire_defense_count = 0; 4167 ire_refrele(ire); 4168 } 4169 break; 4170 case AR_CN_FAILED: 4171 /* No external v6 resolver has a contract to use this */ 4172 if (isv6) 4173 break; 4174 ill_refhold(ill); 4175 (void) qwriter_ip(NULL, ill, q, mp, ip_arp_excl, CUR_OP, 4176 B_FALSE); 4177 return; 4178 } 4179 freemsg(mp); 4180 } 4181 4182 /* 4183 * Create a mblk suitable for carrying the interface index and/or source link 4184 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 4185 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 4186 * application. 4187 */ 4188 mblk_t * 4189 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags, zoneid_t zoneid, 4190 ip_stack_t *ipst) 4191 { 4192 mblk_t *mp; 4193 ip_pktinfo_t *pinfo; 4194 ipha_t *ipha; 4195 struct ether_header *pether; 4196 4197 mp = allocb(sizeof (ip_pktinfo_t), BPRI_MED); 4198 if (mp == NULL) { 4199 ip1dbg(("ip_add_info: allocation failure.\n")); 4200 return (data_mp); 4201 } 4202 4203 ipha = (ipha_t *)data_mp->b_rptr; 4204 pinfo = (ip_pktinfo_t *)mp->b_rptr; 4205 bzero(pinfo, sizeof (ip_pktinfo_t)); 4206 pinfo->ip_pkt_flags = (uchar_t)flags; 4207 pinfo->ip_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 4208 4209 if (flags & (IPF_RECVIF | IPF_RECVADDR)) 4210 pinfo->ip_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 4211 if (flags & IPF_RECVADDR) { 4212 ipif_t *ipif; 4213 ire_t *ire; 4214 4215 /* 4216 * Only valid for V4 4217 */ 4218 ASSERT((ipha->ipha_version_and_hdr_length & 0xf0) == 4219 (IPV4_VERSION << 4)); 4220 4221 ipif = ipif_get_next_ipif(NULL, ill); 4222 if (ipif != NULL) { 4223 /* 4224 * Since a decision has already been made to deliver the 4225 * packet, there is no need to test for SECATTR and 4226 * ZONEONLY. 4227 */ 4228 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 0, ipif, 4229 zoneid, NULL, MATCH_IRE_ILL_GROUP, ipst); 4230 if (ire == NULL) { 4231 /* 4232 * packet must have come on a different 4233 * interface. 4234 * Since a decision has already been made to 4235 * deliver the packet, there is no need to test 4236 * for SECATTR and ZONEONLY. 4237 */ 4238 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 0, 4239 ipif, zoneid, NULL, NULL, ipst); 4240 } 4241 4242 if (ire == NULL) { 4243 /* 4244 * This is either a multicast packet or 4245 * the address has been removed since 4246 * the packet was received. 4247 * Return INADDR_ANY so that normal source 4248 * selection occurs for the response. 4249 */ 4250 4251 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4252 } else { 4253 ASSERT(ire->ire_type != IRE_CACHE); 4254 pinfo->ip_pkt_match_addr.s_addr = 4255 ire->ire_src_addr; 4256 ire_refrele(ire); 4257 } 4258 ipif_refrele(ipif); 4259 } else { 4260 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4261 } 4262 } 4263 4264 pether = (struct ether_header *)((char *)ipha 4265 - sizeof (struct ether_header)); 4266 /* 4267 * Make sure the interface is an ethernet type, since this option 4268 * is currently supported only on this type of interface. Also make 4269 * sure we are pointing correctly above db_base. 4270 */ 4271 4272 if ((flags & IPF_RECVSLLA) && 4273 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 4274 (ill->ill_type == IFT_ETHER) && 4275 (ill->ill_net_type == IRE_IF_RESOLVER)) { 4276 4277 pinfo->ip_pkt_slla.sdl_type = IFT_ETHER; 4278 bcopy((uchar_t *)pether->ether_shost.ether_addr_octet, 4279 (uchar_t *)pinfo->ip_pkt_slla.sdl_data, ETHERADDRL); 4280 } else { 4281 /* 4282 * Clear the bit. Indicate to upper layer that IP is not 4283 * sending this ancillary info. 4284 */ 4285 pinfo->ip_pkt_flags = pinfo->ip_pkt_flags & ~IPF_RECVSLLA; 4286 } 4287 4288 mp->b_datap->db_type = M_CTL; 4289 mp->b_wptr += sizeof (ip_pktinfo_t); 4290 mp->b_cont = data_mp; 4291 4292 return (mp); 4293 } 4294 4295 /* 4296 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 4297 * part of the bind request. 4298 */ 4299 4300 boolean_t 4301 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 4302 { 4303 ipsec_in_t *ii; 4304 4305 ASSERT(policy_mp != NULL); 4306 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 4307 4308 ii = (ipsec_in_t *)policy_mp->b_rptr; 4309 ASSERT(ii->ipsec_in_type == IPSEC_IN); 4310 4311 connp->conn_policy = ii->ipsec_in_policy; 4312 ii->ipsec_in_policy = NULL; 4313 4314 if (ii->ipsec_in_action != NULL) { 4315 if (connp->conn_latch == NULL) { 4316 connp->conn_latch = iplatch_create(); 4317 if (connp->conn_latch == NULL) 4318 return (B_FALSE); 4319 } 4320 ipsec_latch_inbound(connp->conn_latch, ii); 4321 } 4322 return (B_TRUE); 4323 } 4324 4325 /* 4326 * Upper level protocols (ULP) pass through bind requests to IP for inspection 4327 * and to arrange for power-fanout assist. The ULP is identified by 4328 * adding a single byte at the end of the original bind message. 4329 * A ULP other than UDP or TCP that wishes to be recognized passes 4330 * down a bind with a zero length address. 4331 * 4332 * The binding works as follows: 4333 * - A zero byte address means just bind to the protocol. 4334 * - A four byte address is treated as a request to validate 4335 * that the address is a valid local address, appropriate for 4336 * an application to bind to. This does not affect any fanout 4337 * information in IP. 4338 * - A sizeof sin_t byte address is used to bind to only the local address 4339 * and port. 4340 * - A sizeof ipa_conn_t byte address contains complete fanout information 4341 * consisting of local and remote addresses and ports. In 4342 * this case, the addresses are both validated as appropriate 4343 * for this operation, and, if so, the information is retained 4344 * for use in the inbound fanout. 4345 * 4346 * The ULP (except in the zero-length bind) can append an 4347 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4348 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4349 * a copy of the source or destination IRE (source for local bind; 4350 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4351 * policy information contained should be copied on to the conn. 4352 * 4353 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4354 */ 4355 mblk_t * 4356 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4357 { 4358 ssize_t len; 4359 struct T_bind_req *tbr; 4360 sin_t *sin; 4361 ipa_conn_t *ac; 4362 uchar_t *ucp; 4363 mblk_t *mp1; 4364 boolean_t ire_requested; 4365 boolean_t ipsec_policy_set = B_FALSE; 4366 int error = 0; 4367 int protocol; 4368 ipa_conn_x_t *acx; 4369 4370 ASSERT(!connp->conn_af_isv6); 4371 connp->conn_pkt_isv6 = B_FALSE; 4372 4373 len = MBLKL(mp); 4374 if (len < (sizeof (*tbr) + 1)) { 4375 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4376 "ip_bind: bogus msg, len %ld", len); 4377 /* XXX: Need to return something better */ 4378 goto bad_addr; 4379 } 4380 /* Back up and extract the protocol identifier. */ 4381 mp->b_wptr--; 4382 protocol = *mp->b_wptr & 0xFF; 4383 tbr = (struct T_bind_req *)mp->b_rptr; 4384 /* Reset the message type in preparation for shipping it back. */ 4385 DB_TYPE(mp) = M_PCPROTO; 4386 4387 connp->conn_ulp = (uint8_t)protocol; 4388 4389 /* 4390 * Check for a zero length address. This is from a protocol that 4391 * wants to register to receive all packets of its type. 4392 */ 4393 if (tbr->ADDR_length == 0) { 4394 /* 4395 * These protocols are now intercepted in ip_bind_v6(). 4396 * Reject protocol-level binds here for now. 4397 * 4398 * For SCTP raw socket, ICMP sends down a bind with sin_t 4399 * so that the protocol type cannot be SCTP. 4400 */ 4401 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4402 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4403 goto bad_addr; 4404 } 4405 4406 /* 4407 * 4408 * The udp module never sends down a zero-length address, 4409 * and allowing this on a labeled system will break MLP 4410 * functionality. 4411 */ 4412 if (is_system_labeled() && protocol == IPPROTO_UDP) 4413 goto bad_addr; 4414 4415 if (connp->conn_mac_exempt) 4416 goto bad_addr; 4417 4418 /* No hash here really. The table is big enough. */ 4419 connp->conn_srcv6 = ipv6_all_zeros; 4420 4421 ipcl_proto_insert(connp, protocol); 4422 4423 tbr->PRIM_type = T_BIND_ACK; 4424 return (mp); 4425 } 4426 4427 /* Extract the address pointer from the message. */ 4428 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4429 tbr->ADDR_length); 4430 if (ucp == NULL) { 4431 ip1dbg(("ip_bind: no address\n")); 4432 goto bad_addr; 4433 } 4434 if (!OK_32PTR(ucp)) { 4435 ip1dbg(("ip_bind: unaligned address\n")); 4436 goto bad_addr; 4437 } 4438 /* 4439 * Check for trailing mps. 4440 */ 4441 4442 mp1 = mp->b_cont; 4443 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 4444 ipsec_policy_set = (mp1 != NULL && DB_TYPE(mp1) == IPSEC_POLICY_SET); 4445 4446 switch (tbr->ADDR_length) { 4447 default: 4448 ip1dbg(("ip_bind: bad address length %d\n", 4449 (int)tbr->ADDR_length)); 4450 goto bad_addr; 4451 4452 case IP_ADDR_LEN: 4453 /* Verification of local address only */ 4454 error = ip_bind_laddr(connp, mp, *(ipaddr_t *)ucp, 0, 4455 ire_requested, ipsec_policy_set, B_FALSE); 4456 break; 4457 4458 case sizeof (sin_t): 4459 sin = (sin_t *)ucp; 4460 error = ip_bind_laddr(connp, mp, sin->sin_addr.s_addr, 4461 sin->sin_port, ire_requested, ipsec_policy_set, B_TRUE); 4462 break; 4463 4464 case sizeof (ipa_conn_t): 4465 ac = (ipa_conn_t *)ucp; 4466 /* For raw socket, the local port is not set. */ 4467 if (ac->ac_lport == 0) 4468 ac->ac_lport = connp->conn_lport; 4469 /* Always verify destination reachability. */ 4470 error = ip_bind_connected(connp, mp, &ac->ac_laddr, 4471 ac->ac_lport, ac->ac_faddr, ac->ac_fport, ire_requested, 4472 ipsec_policy_set, B_TRUE, B_TRUE); 4473 break; 4474 4475 case sizeof (ipa_conn_x_t): 4476 acx = (ipa_conn_x_t *)ucp; 4477 /* 4478 * Whether or not to verify destination reachability depends 4479 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4480 */ 4481 error = ip_bind_connected(connp, mp, &acx->acx_conn.ac_laddr, 4482 acx->acx_conn.ac_lport, acx->acx_conn.ac_faddr, 4483 acx->acx_conn.ac_fport, ire_requested, ipsec_policy_set, 4484 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0); 4485 break; 4486 } 4487 if (error == EINPROGRESS) 4488 return (NULL); 4489 else if (error != 0) 4490 goto bad_addr; 4491 /* 4492 * Pass the IPSEC headers size in ire_ipsec_overhead. 4493 * We can't do this in ip_bind_insert_ire because the policy 4494 * may not have been inherited at that point in time and hence 4495 * conn_out_enforce_policy may not be set. 4496 */ 4497 mp1 = mp->b_cont; 4498 if (ire_requested && connp->conn_out_enforce_policy && 4499 mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE) { 4500 ire_t *ire = (ire_t *)mp1->b_rptr; 4501 ASSERT(MBLKL(mp1) >= sizeof (ire_t)); 4502 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 4503 } 4504 4505 /* Send it home. */ 4506 mp->b_datap->db_type = M_PCPROTO; 4507 tbr->PRIM_type = T_BIND_ACK; 4508 return (mp); 4509 4510 bad_addr: 4511 /* 4512 * If error = -1 then we generate a TBADADDR - otherwise error is 4513 * a unix errno. 4514 */ 4515 if (error > 0) 4516 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4517 else 4518 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4519 return (mp); 4520 } 4521 4522 /* 4523 * Here address is verified to be a valid local address. 4524 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4525 * address is also considered a valid local address. 4526 * In the case of a broadcast/multicast address, however, the 4527 * upper protocol is expected to reset the src address 4528 * to 0 if it sees a IRE_BROADCAST type returned so that 4529 * no packets are emitted with broadcast/multicast address as 4530 * source address (that violates hosts requirements RFC1122) 4531 * The addresses valid for bind are: 4532 * (1) - INADDR_ANY (0) 4533 * (2) - IP address of an UP interface 4534 * (3) - IP address of a DOWN interface 4535 * (4) - valid local IP broadcast addresses. In this case 4536 * the conn will only receive packets destined to 4537 * the specified broadcast address. 4538 * (5) - a multicast address. In this case 4539 * the conn will only receive packets destined to 4540 * the specified multicast address. Note: the 4541 * application still has to issue an 4542 * IP_ADD_MEMBERSHIP socket option. 4543 * 4544 * On error, return -1 for TBADADDR otherwise pass the 4545 * errno with TSYSERR reply. 4546 * 4547 * In all the above cases, the bound address must be valid in the current zone. 4548 * When the address is loopback, multicast or broadcast, there might be many 4549 * matching IREs so bind has to look up based on the zone. 4550 * 4551 * Note: lport is in network byte order. 4552 */ 4553 int 4554 ip_bind_laddr(conn_t *connp, mblk_t *mp, ipaddr_t src_addr, uint16_t lport, 4555 boolean_t ire_requested, boolean_t ipsec_policy_set, 4556 boolean_t fanout_insert) 4557 { 4558 int error = 0; 4559 ire_t *src_ire; 4560 mblk_t *policy_mp; 4561 ipif_t *ipif; 4562 zoneid_t zoneid; 4563 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4564 4565 if (ipsec_policy_set) { 4566 policy_mp = mp->b_cont; 4567 } 4568 4569 /* 4570 * If it was previously connected, conn_fully_bound would have 4571 * been set. 4572 */ 4573 connp->conn_fully_bound = B_FALSE; 4574 4575 src_ire = NULL; 4576 ipif = NULL; 4577 4578 zoneid = IPCL_ZONEID(connp); 4579 4580 if (src_addr) { 4581 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4582 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 4583 /* 4584 * If an address other than 0.0.0.0 is requested, 4585 * we verify that it is a valid address for bind 4586 * Note: Following code is in if-else-if form for 4587 * readability compared to a condition check. 4588 */ 4589 /* LINTED - statement has no consequent */ 4590 if (IRE_IS_LOCAL(src_ire)) { 4591 /* 4592 * (2) Bind to address of local UP interface 4593 */ 4594 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4595 /* 4596 * (4) Bind to broadcast address 4597 * Note: permitted only from transports that 4598 * request IRE 4599 */ 4600 if (!ire_requested) 4601 error = EADDRNOTAVAIL; 4602 } else { 4603 /* 4604 * (3) Bind to address of local DOWN interface 4605 * (ipif_lookup_addr() looks up all interfaces 4606 * but we do not get here for UP interfaces 4607 * - case (2) above) 4608 * We put the protocol byte back into the mblk 4609 * since we may come back via ip_wput_nondata() 4610 * later with this mblk if ipif_lookup_addr chooses 4611 * to defer processing. 4612 */ 4613 *mp->b_wptr++ = (char)connp->conn_ulp; 4614 if ((ipif = ipif_lookup_addr(src_addr, NULL, zoneid, 4615 CONNP_TO_WQ(connp), mp, ip_wput_nondata, 4616 &error, ipst)) != NULL) { 4617 ipif_refrele(ipif); 4618 } else if (error == EINPROGRESS) { 4619 if (src_ire != NULL) 4620 ire_refrele(src_ire); 4621 return (EINPROGRESS); 4622 } else if (CLASSD(src_addr)) { 4623 error = 0; 4624 if (src_ire != NULL) 4625 ire_refrele(src_ire); 4626 /* 4627 * (5) bind to multicast address. 4628 * Fake out the IRE returned to upper 4629 * layer to be a broadcast IRE. 4630 */ 4631 src_ire = ire_ctable_lookup( 4632 INADDR_BROADCAST, INADDR_ANY, 4633 IRE_BROADCAST, NULL, zoneid, NULL, 4634 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY), 4635 ipst); 4636 if (src_ire == NULL || !ire_requested) 4637 error = EADDRNOTAVAIL; 4638 } else { 4639 /* 4640 * Not a valid address for bind 4641 */ 4642 error = EADDRNOTAVAIL; 4643 } 4644 /* 4645 * Just to keep it consistent with the processing in 4646 * ip_bind_v4() 4647 */ 4648 mp->b_wptr--; 4649 } 4650 if (error) { 4651 /* Red Alert! Attempting to be a bogon! */ 4652 ip1dbg(("ip_bind: bad src address 0x%x\n", 4653 ntohl(src_addr))); 4654 goto bad_addr; 4655 } 4656 } 4657 4658 /* 4659 * Allow setting new policies. For example, disconnects come 4660 * down as ipa_t bind. As we would have set conn_policy_cached 4661 * to B_TRUE before, we should set it to B_FALSE, so that policy 4662 * can change after the disconnect. 4663 */ 4664 connp->conn_policy_cached = B_FALSE; 4665 4666 /* 4667 * If not fanout_insert this was just an address verification 4668 */ 4669 if (fanout_insert) { 4670 /* 4671 * The addresses have been verified. Time to insert in 4672 * the correct fanout list. 4673 */ 4674 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4675 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4676 connp->conn_lport = lport; 4677 connp->conn_fport = 0; 4678 /* 4679 * Do we need to add a check to reject Multicast packets 4680 * 4681 * We need to make sure that the conn_recv is set to a non-null 4682 * value before we insert the conn into the classifier table. 4683 * This is to avoid a race with an incoming packet which does an 4684 * ipcl_classify(). 4685 */ 4686 if (*mp->b_wptr == IPPROTO_TCP) 4687 connp->conn_recv = tcp_conn_request; 4688 error = ipcl_bind_insert(connp, *mp->b_wptr, src_addr, lport); 4689 } 4690 4691 if (error == 0) { 4692 if (ire_requested) { 4693 if (!ip_bind_insert_ire(mp, src_ire, NULL, ipst)) { 4694 error = -1; 4695 /* Falls through to bad_addr */ 4696 } 4697 } else if (ipsec_policy_set) { 4698 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4699 error = -1; 4700 /* Falls through to bad_addr */ 4701 } 4702 } 4703 } else if (connp->conn_ulp == IPPROTO_TCP) { 4704 connp->conn_recv = tcp_input; 4705 } 4706 bad_addr: 4707 if (error != 0) { 4708 if (connp->conn_anon_port) { 4709 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4710 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4711 B_FALSE); 4712 } 4713 connp->conn_mlp_type = mlptSingle; 4714 } 4715 if (src_ire != NULL) 4716 IRE_REFRELE(src_ire); 4717 if (ipsec_policy_set) { 4718 ASSERT(policy_mp == mp->b_cont); 4719 ASSERT(policy_mp != NULL); 4720 freeb(policy_mp); 4721 /* 4722 * As of now assume that nothing else accompanies 4723 * IPSEC_POLICY_SET. 4724 */ 4725 mp->b_cont = NULL; 4726 } 4727 return (error); 4728 } 4729 4730 /* 4731 * Verify that both the source and destination addresses 4732 * are valid. If verify_dst is false, then the destination address may be 4733 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4734 * destination reachability, while tunnels do not. 4735 * Note that we allow connect to broadcast and multicast 4736 * addresses when ire_requested is set. Thus the ULP 4737 * has to check for IRE_BROADCAST and multicast. 4738 * 4739 * Returns zero if ok. 4740 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4741 * (for use with TSYSERR reply). 4742 * 4743 * Note: lport and fport are in network byte order. 4744 */ 4745 int 4746 ip_bind_connected(conn_t *connp, mblk_t *mp, ipaddr_t *src_addrp, 4747 uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4748 boolean_t ire_requested, boolean_t ipsec_policy_set, 4749 boolean_t fanout_insert, boolean_t verify_dst) 4750 { 4751 ire_t *src_ire; 4752 ire_t *dst_ire; 4753 int error = 0; 4754 int protocol; 4755 mblk_t *policy_mp; 4756 ire_t *sire = NULL; 4757 ire_t *md_dst_ire = NULL; 4758 ire_t *lso_dst_ire = NULL; 4759 ill_t *ill = NULL; 4760 zoneid_t zoneid; 4761 ipaddr_t src_addr = *src_addrp; 4762 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4763 4764 src_ire = dst_ire = NULL; 4765 protocol = *mp->b_wptr & 0xFF; 4766 4767 /* 4768 * If we never got a disconnect before, clear it now. 4769 */ 4770 connp->conn_fully_bound = B_FALSE; 4771 4772 if (ipsec_policy_set) { 4773 policy_mp = mp->b_cont; 4774 } 4775 4776 zoneid = IPCL_ZONEID(connp); 4777 4778 if (CLASSD(dst_addr)) { 4779 /* Pick up an IRE_BROADCAST */ 4780 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4781 NULL, zoneid, MBLK_GETLABEL(mp), 4782 (MATCH_IRE_RECURSIVE | 4783 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4784 MATCH_IRE_SECATTR), ipst); 4785 } else { 4786 /* 4787 * If conn_dontroute is set or if conn_nexthop_set is set, 4788 * and onlink ipif is not found set ENETUNREACH error. 4789 */ 4790 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4791 ipif_t *ipif; 4792 4793 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4794 dst_addr : connp->conn_nexthop_v4, zoneid, ipst); 4795 if (ipif == NULL) { 4796 error = ENETUNREACH; 4797 goto bad_addr; 4798 } 4799 ipif_refrele(ipif); 4800 } 4801 4802 if (connp->conn_nexthop_set) { 4803 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4804 0, 0, NULL, NULL, zoneid, MBLK_GETLABEL(mp), 4805 MATCH_IRE_SECATTR, ipst); 4806 } else { 4807 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4808 &sire, zoneid, MBLK_GETLABEL(mp), 4809 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4810 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4811 MATCH_IRE_SECATTR), ipst); 4812 } 4813 } 4814 /* 4815 * dst_ire can't be a broadcast when not ire_requested. 4816 * We also prevent ire's with src address INADDR_ANY to 4817 * be used, which are created temporarily for 4818 * sending out packets from endpoints that have 4819 * conn_unspec_src set. If verify_dst is true, the destination must be 4820 * reachable. If verify_dst is false, the destination needn't be 4821 * reachable. 4822 * 4823 * If we match on a reject or black hole, then we've got a 4824 * local failure. May as well fail out the connect() attempt, 4825 * since it's never going to succeed. 4826 */ 4827 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4828 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4829 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4830 /* 4831 * If we're verifying destination reachability, we always want 4832 * to complain here. 4833 * 4834 * If we're not verifying destination reachability but the 4835 * destination has a route, we still want to fail on the 4836 * temporary address and broadcast address tests. 4837 */ 4838 if (verify_dst || (dst_ire != NULL)) { 4839 if (ip_debug > 2) { 4840 pr_addr_dbg("ip_bind_connected: bad connected " 4841 "dst %s\n", AF_INET, &dst_addr); 4842 } 4843 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4844 error = ENETUNREACH; 4845 else 4846 error = EHOSTUNREACH; 4847 goto bad_addr; 4848 } 4849 } 4850 4851 /* 4852 * We now know that routing will allow us to reach the destination. 4853 * Check whether Trusted Solaris policy allows communication with this 4854 * host, and pretend that the destination is unreachable if not. 4855 * 4856 * This is never a problem for TCP, since that transport is known to 4857 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4858 * handling. If the remote is unreachable, it will be detected at that 4859 * point, so there's no reason to check it here. 4860 * 4861 * Note that for sendto (and other datagram-oriented friends), this 4862 * check is done as part of the data path label computation instead. 4863 * The check here is just to make non-TCP connect() report the right 4864 * error. 4865 */ 4866 if (dst_ire != NULL && is_system_labeled() && 4867 !IPCL_IS_TCP(connp) && 4868 tsol_compute_label(DB_CREDDEF(mp, connp->conn_cred), dst_addr, NULL, 4869 connp->conn_mac_exempt, ipst) != 0) { 4870 error = EHOSTUNREACH; 4871 if (ip_debug > 2) { 4872 pr_addr_dbg("ip_bind_connected: no label for dst %s\n", 4873 AF_INET, &dst_addr); 4874 } 4875 goto bad_addr; 4876 } 4877 4878 /* 4879 * If the app does a connect(), it means that it will most likely 4880 * send more than 1 packet to the destination. It makes sense 4881 * to clear the temporary flag. 4882 */ 4883 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4884 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4885 irb_t *irb = dst_ire->ire_bucket; 4886 4887 rw_enter(&irb->irb_lock, RW_WRITER); 4888 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4889 irb->irb_tmp_ire_cnt--; 4890 rw_exit(&irb->irb_lock); 4891 } 4892 4893 /* 4894 * See if we should notify ULP about LSO/MDT; we do this whether or not 4895 * ire_requested is TRUE, in order to handle active connects; LSO/MDT 4896 * eligibility tests for passive connects are handled separately 4897 * through tcp_adapt_ire(). We do this before the source address 4898 * selection, because dst_ire may change after a call to 4899 * ipif_select_source(). This is a best-effort check, as the 4900 * packet for this connection may not actually go through 4901 * dst_ire->ire_stq, and the exact IRE can only be known after 4902 * calling ip_newroute(). This is why we further check on the 4903 * IRE during LSO/Multidata packet transmission in 4904 * tcp_lsosend()/tcp_multisend(). 4905 */ 4906 if (!ipsec_policy_set && dst_ire != NULL && 4907 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4908 (ill = ire_to_ill(dst_ire), ill != NULL)) { 4909 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 4910 lso_dst_ire = dst_ire; 4911 IRE_REFHOLD(lso_dst_ire); 4912 } else if (ipst->ips_ip_multidata_outbound && 4913 ILL_MDT_CAPABLE(ill)) { 4914 md_dst_ire = dst_ire; 4915 IRE_REFHOLD(md_dst_ire); 4916 } 4917 } 4918 4919 if (dst_ire != NULL && 4920 dst_ire->ire_type == IRE_LOCAL && 4921 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4922 /* 4923 * If the IRE belongs to a different zone, look for a matching 4924 * route in the forwarding table and use the source address from 4925 * that route. 4926 */ 4927 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4928 zoneid, 0, NULL, 4929 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4930 MATCH_IRE_RJ_BHOLE, ipst); 4931 if (src_ire == NULL) { 4932 error = EHOSTUNREACH; 4933 goto bad_addr; 4934 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4935 if (!(src_ire->ire_type & IRE_HOST)) 4936 error = ENETUNREACH; 4937 else 4938 error = EHOSTUNREACH; 4939 goto bad_addr; 4940 } 4941 if (src_addr == INADDR_ANY) 4942 src_addr = src_ire->ire_src_addr; 4943 ire_refrele(src_ire); 4944 src_ire = NULL; 4945 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4946 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4947 src_addr = sire->ire_src_addr; 4948 ire_refrele(dst_ire); 4949 dst_ire = sire; 4950 sire = NULL; 4951 } else { 4952 /* 4953 * Pick a source address so that a proper inbound 4954 * load spreading would happen. 4955 */ 4956 ill_t *dst_ill = dst_ire->ire_ipif->ipif_ill; 4957 ipif_t *src_ipif = NULL; 4958 ire_t *ipif_ire; 4959 4960 /* 4961 * Supply a local source address such that inbound 4962 * load spreading happens. 4963 * 4964 * Determine the best source address on this ill for 4965 * the destination. 4966 * 4967 * 1) For broadcast, we should return a broadcast ire 4968 * found above so that upper layers know that the 4969 * destination address is a broadcast address. 4970 * 4971 * 2) If this is part of a group, select a better 4972 * source address so that better inbound load 4973 * balancing happens. Do the same if the ipif 4974 * is DEPRECATED. 4975 * 4976 * 3) If the outgoing interface is part of a usesrc 4977 * group, then try selecting a source address from 4978 * the usesrc ILL. 4979 */ 4980 if ((dst_ire->ire_zoneid != zoneid && 4981 dst_ire->ire_zoneid != ALL_ZONES) || 4982 (!(dst_ire->ire_type & IRE_BROADCAST) && 4983 ((dst_ill->ill_group != NULL) || 4984 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 4985 (dst_ill->ill_usesrc_ifindex != 0)))) { 4986 /* 4987 * If the destination is reachable via a 4988 * given gateway, the selected source address 4989 * should be in the same subnet as the gateway. 4990 * Otherwise, the destination is not reachable. 4991 * 4992 * If there are no interfaces on the same subnet 4993 * as the destination, ipif_select_source gives 4994 * first non-deprecated interface which might be 4995 * on a different subnet than the gateway. 4996 * This is not desirable. Hence pass the dst_ire 4997 * source address to ipif_select_source. 4998 * It is sure that the destination is reachable 4999 * with the dst_ire source address subnet. 5000 * So passing dst_ire source address to 5001 * ipif_select_source will make sure that the 5002 * selected source will be on the same subnet 5003 * as dst_ire source address. 5004 */ 5005 ipaddr_t saddr = 5006 dst_ire->ire_ipif->ipif_src_addr; 5007 src_ipif = ipif_select_source(dst_ill, 5008 saddr, zoneid); 5009 if (src_ipif != NULL) { 5010 if (IS_VNI(src_ipif->ipif_ill)) { 5011 /* 5012 * For VNI there is no 5013 * interface route 5014 */ 5015 src_addr = 5016 src_ipif->ipif_src_addr; 5017 } else { 5018 ipif_ire = 5019 ipif_to_ire(src_ipif); 5020 if (ipif_ire != NULL) { 5021 IRE_REFRELE(dst_ire); 5022 dst_ire = ipif_ire; 5023 } 5024 src_addr = 5025 dst_ire->ire_src_addr; 5026 } 5027 ipif_refrele(src_ipif); 5028 } else { 5029 src_addr = dst_ire->ire_src_addr; 5030 } 5031 } else { 5032 src_addr = dst_ire->ire_src_addr; 5033 } 5034 } 5035 } 5036 5037 /* 5038 * We do ire_route_lookup() here (and not 5039 * interface lookup as we assert that 5040 * src_addr should only come from an 5041 * UP interface for hard binding. 5042 */ 5043 ASSERT(src_ire == NULL); 5044 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 5045 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 5046 /* src_ire must be a local|loopback */ 5047 if (!IRE_IS_LOCAL(src_ire)) { 5048 if (ip_debug > 2) { 5049 pr_addr_dbg("ip_bind_connected: bad connected " 5050 "src %s\n", AF_INET, &src_addr); 5051 } 5052 error = EADDRNOTAVAIL; 5053 goto bad_addr; 5054 } 5055 5056 /* 5057 * If the source address is a loopback address, the 5058 * destination had best be local or multicast. 5059 * The transports that can't handle multicast will reject 5060 * those addresses. 5061 */ 5062 if (src_ire->ire_type == IRE_LOOPBACK && 5063 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 5064 ip1dbg(("ip_bind_connected: bad connected loopback\n")); 5065 error = -1; 5066 goto bad_addr; 5067 } 5068 5069 /* 5070 * Allow setting new policies. For example, disconnects come 5071 * down as ipa_t bind. As we would have set conn_policy_cached 5072 * to B_TRUE before, we should set it to B_FALSE, so that policy 5073 * can change after the disconnect. 5074 */ 5075 connp->conn_policy_cached = B_FALSE; 5076 5077 /* 5078 * Set the conn addresses/ports immediately, so the IPsec policy calls 5079 * can handle their passed-in conn's. 5080 */ 5081 5082 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 5083 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 5084 connp->conn_lport = lport; 5085 connp->conn_fport = fport; 5086 *src_addrp = src_addr; 5087 5088 ASSERT(!(ipsec_policy_set && ire_requested)); 5089 if (ire_requested) { 5090 iulp_t *ulp_info = NULL; 5091 5092 /* 5093 * Note that sire will not be NULL if this is an off-link 5094 * connection and there is not cache for that dest yet. 5095 * 5096 * XXX Because of an existing bug, if there are multiple 5097 * default routes, the IRE returned now may not be the actual 5098 * default route used (default routes are chosen in a 5099 * round robin fashion). So if the metrics for different 5100 * default routes are different, we may return the wrong 5101 * metrics. This will not be a problem if the existing 5102 * bug is fixed. 5103 */ 5104 if (sire != NULL) { 5105 ulp_info = &(sire->ire_uinfo); 5106 } 5107 if (!ip_bind_insert_ire(mp, dst_ire, ulp_info, ipst)) { 5108 error = -1; 5109 goto bad_addr; 5110 } 5111 } else if (ipsec_policy_set) { 5112 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 5113 error = -1; 5114 goto bad_addr; 5115 } 5116 } 5117 5118 /* 5119 * Cache IPsec policy in this conn. If we have per-socket policy, 5120 * we'll cache that. If we don't, we'll inherit global policy. 5121 * 5122 * We can't insert until the conn reflects the policy. Note that 5123 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 5124 * connections where we don't have a policy. This is to prevent 5125 * global policy lookups in the inbound path. 5126 * 5127 * If we insert before we set conn_policy_cached, 5128 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 5129 * because global policy cound be non-empty. We normally call 5130 * ipsec_check_policy() for conn_policy_cached connections only if 5131 * ipc_in_enforce_policy is set. But in this case, 5132 * conn_policy_cached can get set anytime since we made the 5133 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 5134 * called, which will make the above assumption false. Thus, we 5135 * need to insert after we set conn_policy_cached. 5136 */ 5137 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 5138 goto bad_addr; 5139 5140 if (fanout_insert) { 5141 /* 5142 * The addresses have been verified. Time to insert in 5143 * the correct fanout list. 5144 * We need to make sure that the conn_recv is set to a non-null 5145 * value before we insert into the classifier table to avoid a 5146 * race with an incoming packet which does an ipcl_classify(). 5147 */ 5148 if (protocol == IPPROTO_TCP) 5149 connp->conn_recv = tcp_input; 5150 error = ipcl_conn_insert(connp, protocol, src_addr, 5151 dst_addr, connp->conn_ports); 5152 } 5153 5154 if (error == 0) { 5155 connp->conn_fully_bound = B_TRUE; 5156 /* 5157 * Our initial checks for LSO/MDT have passed; the IRE is not 5158 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 5159 * be supporting LSO/MDT. Pass the IRE, IPC and ILL into 5160 * ip_xxinfo_return(), which performs further checks 5161 * against them and upon success, returns the LSO/MDT info 5162 * mblk which we will attach to the bind acknowledgment. 5163 */ 5164 if (lso_dst_ire != NULL) { 5165 mblk_t *lsoinfo_mp; 5166 5167 ASSERT(ill->ill_lso_capab != NULL); 5168 if ((lsoinfo_mp = ip_lsoinfo_return(lso_dst_ire, connp, 5169 ill->ill_name, ill->ill_lso_capab)) != NULL) 5170 linkb(mp, lsoinfo_mp); 5171 } else if (md_dst_ire != NULL) { 5172 mblk_t *mdinfo_mp; 5173 5174 ASSERT(ill->ill_mdt_capab != NULL); 5175 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 5176 ill->ill_name, ill->ill_mdt_capab)) != NULL) 5177 linkb(mp, mdinfo_mp); 5178 } 5179 } 5180 bad_addr: 5181 if (ipsec_policy_set) { 5182 ASSERT(policy_mp == mp->b_cont); 5183 ASSERT(policy_mp != NULL); 5184 freeb(policy_mp); 5185 /* 5186 * As of now assume that nothing else accompanies 5187 * IPSEC_POLICY_SET. 5188 */ 5189 mp->b_cont = NULL; 5190 } 5191 if (src_ire != NULL) 5192 IRE_REFRELE(src_ire); 5193 if (dst_ire != NULL) 5194 IRE_REFRELE(dst_ire); 5195 if (sire != NULL) 5196 IRE_REFRELE(sire); 5197 if (md_dst_ire != NULL) 5198 IRE_REFRELE(md_dst_ire); 5199 if (lso_dst_ire != NULL) 5200 IRE_REFRELE(lso_dst_ire); 5201 return (error); 5202 } 5203 5204 /* 5205 * Insert the ire in b_cont. Returns false if it fails (due to lack of space). 5206 * Prefers dst_ire over src_ire. 5207 */ 5208 static boolean_t 5209 ip_bind_insert_ire(mblk_t *mp, ire_t *ire, iulp_t *ulp_info, ip_stack_t *ipst) 5210 { 5211 mblk_t *mp1; 5212 ire_t *ret_ire = NULL; 5213 5214 mp1 = mp->b_cont; 5215 ASSERT(mp1 != NULL); 5216 5217 if (ire != NULL) { 5218 /* 5219 * mp1 initialized above to IRE_DB_REQ_TYPE 5220 * appended mblk. Its <upper protocol>'s 5221 * job to make sure there is room. 5222 */ 5223 if ((mp1->b_datap->db_lim - mp1->b_rptr) < sizeof (ire_t)) 5224 return (0); 5225 5226 mp1->b_datap->db_type = IRE_DB_TYPE; 5227 mp1->b_wptr = mp1->b_rptr + sizeof (ire_t); 5228 bcopy(ire, mp1->b_rptr, sizeof (ire_t)); 5229 ret_ire = (ire_t *)mp1->b_rptr; 5230 /* 5231 * Pass the latest setting of the ip_path_mtu_discovery and 5232 * copy the ulp info if any. 5233 */ 5234 ret_ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? 5235 IPH_DF : 0; 5236 if (ulp_info != NULL) { 5237 bcopy(ulp_info, &(ret_ire->ire_uinfo), 5238 sizeof (iulp_t)); 5239 } 5240 ret_ire->ire_mp = mp1; 5241 } else { 5242 /* 5243 * No IRE was found. Remove IRE mblk. 5244 */ 5245 mp->b_cont = mp1->b_cont; 5246 freeb(mp1); 5247 } 5248 5249 return (1); 5250 } 5251 5252 /* 5253 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 5254 * the final piece where we don't. Return a pointer to the first mblk in the 5255 * result, and update the pointer to the next mblk to chew on. If anything 5256 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 5257 * NULL pointer. 5258 */ 5259 mblk_t * 5260 ip_carve_mp(mblk_t **mpp, ssize_t len) 5261 { 5262 mblk_t *mp0; 5263 mblk_t *mp1; 5264 mblk_t *mp2; 5265 5266 if (!len || !mpp || !(mp0 = *mpp)) 5267 return (NULL); 5268 /* If we aren't going to consume the first mblk, we need a dup. */ 5269 if (mp0->b_wptr - mp0->b_rptr > len) { 5270 mp1 = dupb(mp0); 5271 if (mp1) { 5272 /* Partition the data between the two mblks. */ 5273 mp1->b_wptr = mp1->b_rptr + len; 5274 mp0->b_rptr = mp1->b_wptr; 5275 /* 5276 * after adjustments if mblk not consumed is now 5277 * unaligned, try to align it. If this fails free 5278 * all messages and let upper layer recover. 5279 */ 5280 if (!OK_32PTR(mp0->b_rptr)) { 5281 if (!pullupmsg(mp0, -1)) { 5282 freemsg(mp0); 5283 freemsg(mp1); 5284 *mpp = NULL; 5285 return (NULL); 5286 } 5287 } 5288 } 5289 return (mp1); 5290 } 5291 /* Eat through as many mblks as we need to get len bytes. */ 5292 len -= mp0->b_wptr - mp0->b_rptr; 5293 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 5294 if (mp2->b_wptr - mp2->b_rptr > len) { 5295 /* 5296 * We won't consume the entire last mblk. Like 5297 * above, dup and partition it. 5298 */ 5299 mp1->b_cont = dupb(mp2); 5300 mp1 = mp1->b_cont; 5301 if (!mp1) { 5302 /* 5303 * Trouble. Rather than go to a lot of 5304 * trouble to clean up, we free the messages. 5305 * This won't be any worse than losing it on 5306 * the wire. 5307 */ 5308 freemsg(mp0); 5309 freemsg(mp2); 5310 *mpp = NULL; 5311 return (NULL); 5312 } 5313 mp1->b_wptr = mp1->b_rptr + len; 5314 mp2->b_rptr = mp1->b_wptr; 5315 /* 5316 * after adjustments if mblk not consumed is now 5317 * unaligned, try to align it. If this fails free 5318 * all messages and let upper layer recover. 5319 */ 5320 if (!OK_32PTR(mp2->b_rptr)) { 5321 if (!pullupmsg(mp2, -1)) { 5322 freemsg(mp0); 5323 freemsg(mp2); 5324 *mpp = NULL; 5325 return (NULL); 5326 } 5327 } 5328 *mpp = mp2; 5329 return (mp0); 5330 } 5331 /* Decrement len by the amount we just got. */ 5332 len -= mp2->b_wptr - mp2->b_rptr; 5333 } 5334 /* 5335 * len should be reduced to zero now. If not our caller has 5336 * screwed up. 5337 */ 5338 if (len) { 5339 /* Shouldn't happen! */ 5340 freemsg(mp0); 5341 *mpp = NULL; 5342 return (NULL); 5343 } 5344 /* 5345 * We consumed up to exactly the end of an mblk. Detach the part 5346 * we are returning from the rest of the chain. 5347 */ 5348 mp1->b_cont = NULL; 5349 *mpp = mp2; 5350 return (mp0); 5351 } 5352 5353 /* The ill stream is being unplumbed. Called from ip_close */ 5354 int 5355 ip_modclose(ill_t *ill) 5356 { 5357 5358 boolean_t success; 5359 ipsq_t *ipsq; 5360 ipif_t *ipif; 5361 queue_t *q = ill->ill_rq; 5362 ip_stack_t *ipst = ill->ill_ipst; 5363 clock_t timeout; 5364 5365 /* 5366 * Wait for the ACKs of all deferred control messages to be processed. 5367 * In particular, we wait for a potential capability reset initiated 5368 * in ip_sioctl_plink() to complete before proceeding. 5369 * 5370 * Note: we wait for at most ip_modclose_ackwait_ms (by default 3000 ms) 5371 * in case the driver never replies. 5372 */ 5373 timeout = lbolt + MSEC_TO_TICK(ip_modclose_ackwait_ms); 5374 mutex_enter(&ill->ill_lock); 5375 while (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 5376 if (cv_timedwait(&ill->ill_cv, &ill->ill_lock, timeout) < 0) { 5377 /* Timeout */ 5378 break; 5379 } 5380 } 5381 mutex_exit(&ill->ill_lock); 5382 5383 /* 5384 * Forcibly enter the ipsq after some delay. This is to take 5385 * care of the case when some ioctl does not complete because 5386 * we sent a control message to the driver and it did not 5387 * send us a reply. We want to be able to at least unplumb 5388 * and replumb rather than force the user to reboot the system. 5389 */ 5390 success = ipsq_enter(ill, B_FALSE); 5391 5392 /* 5393 * Open/close/push/pop is guaranteed to be single threaded 5394 * per stream by STREAMS. FS guarantees that all references 5395 * from top are gone before close is called. So there can't 5396 * be another close thread that has set CONDEMNED on this ill. 5397 * and cause ipsq_enter to return failure. 5398 */ 5399 ASSERT(success); 5400 ipsq = ill->ill_phyint->phyint_ipsq; 5401 5402 /* 5403 * Mark it condemned. No new reference will be made to this ill. 5404 * Lookup functions will return an error. Threads that try to 5405 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5406 * that the refcnt will drop down to zero. 5407 */ 5408 mutex_enter(&ill->ill_lock); 5409 ill->ill_state_flags |= ILL_CONDEMNED; 5410 for (ipif = ill->ill_ipif; ipif != NULL; 5411 ipif = ipif->ipif_next) { 5412 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5413 } 5414 /* 5415 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5416 * returns error if ILL_CONDEMNED is set 5417 */ 5418 cv_broadcast(&ill->ill_cv); 5419 mutex_exit(&ill->ill_lock); 5420 5421 /* 5422 * Send all the deferred control messages downstream which came in 5423 * during the small window right before ipsq_enter(). We do this 5424 * without waiting for the ACKs because all the ACKs for M_PROTO 5425 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 5426 */ 5427 ill_send_all_deferred_mp(ill); 5428 5429 /* 5430 * Shut down fragmentation reassembly. 5431 * ill_frag_timer won't start a timer again. 5432 * Now cancel any existing timer 5433 */ 5434 (void) untimeout(ill->ill_frag_timer_id); 5435 (void) ill_frag_timeout(ill, 0); 5436 5437 /* 5438 * If MOVE was in progress, clear the 5439 * move_in_progress fields also. 5440 */ 5441 if (ill->ill_move_in_progress) { 5442 ILL_CLEAR_MOVE(ill); 5443 } 5444 5445 /* 5446 * Call ill_delete to bring down the ipifs, ilms and ill on 5447 * this ill. Then wait for the refcnts to drop to zero. 5448 * ill_is_quiescent checks whether the ill is really quiescent. 5449 * Then make sure that threads that are waiting to enter the 5450 * ipsq have seen the error returned by ipsq_enter and have 5451 * gone away. Then we call ill_delete_tail which does the 5452 * DL_UNBIND and DL_DETACH with the driver and then qprocsoff. 5453 */ 5454 ill_delete(ill); 5455 mutex_enter(&ill->ill_lock); 5456 while (!ill_is_quiescent(ill)) 5457 cv_wait(&ill->ill_cv, &ill->ill_lock); 5458 while (ill->ill_waiters) 5459 cv_wait(&ill->ill_cv, &ill->ill_lock); 5460 5461 mutex_exit(&ill->ill_lock); 5462 5463 /* 5464 * ill_delete_tail drops reference on ill_ipst, but we need to keep 5465 * it held until the end of the function since the cleanup 5466 * below needs to be able to use the ip_stack_t. 5467 */ 5468 netstack_hold(ipst->ips_netstack); 5469 5470 /* qprocsoff is called in ill_delete_tail */ 5471 ill_delete_tail(ill); 5472 ASSERT(ill->ill_ipst == NULL); 5473 5474 /* 5475 * Walk through all upper (conn) streams and qenable 5476 * those that have queued data. 5477 * close synchronization needs this to 5478 * be done to ensure that all upper layers blocked 5479 * due to flow control to the closing device 5480 * get unblocked. 5481 */ 5482 ip1dbg(("ip_wsrv: walking\n")); 5483 conn_walk_drain(ipst); 5484 5485 mutex_enter(&ipst->ips_ip_mi_lock); 5486 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 5487 mutex_exit(&ipst->ips_ip_mi_lock); 5488 5489 /* 5490 * credp could be null if the open didn't succeed and ip_modopen 5491 * itself calls ip_close. 5492 */ 5493 if (ill->ill_credp != NULL) 5494 crfree(ill->ill_credp); 5495 5496 mutex_enter(&ill->ill_lock); 5497 ill_nic_info_dispatch(ill); 5498 mutex_exit(&ill->ill_lock); 5499 5500 /* 5501 * Now we are done with the module close pieces that 5502 * need the netstack_t. 5503 */ 5504 netstack_rele(ipst->ips_netstack); 5505 5506 mi_close_free((IDP)ill); 5507 q->q_ptr = WR(q)->q_ptr = NULL; 5508 5509 ipsq_exit(ipsq, B_TRUE, B_TRUE); 5510 5511 return (0); 5512 } 5513 5514 /* 5515 * This is called as part of close() for both IP and UDP 5516 * in order to quiesce the conn. 5517 */ 5518 void 5519 ip_quiesce_conn(conn_t *connp) 5520 { 5521 boolean_t drain_cleanup_reqd = B_FALSE; 5522 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5523 boolean_t ilg_cleanup_reqd = B_FALSE; 5524 ip_stack_t *ipst; 5525 5526 ASSERT(!IPCL_IS_TCP(connp)); 5527 ipst = connp->conn_netstack->netstack_ip; 5528 5529 /* 5530 * Mark the conn as closing, and this conn must not be 5531 * inserted in future into any list. Eg. conn_drain_insert(), 5532 * won't insert this conn into the conn_drain_list. 5533 * Similarly ill_pending_mp_add() will not add any mp to 5534 * the pending mp list, after this conn has started closing. 5535 * 5536 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5537 * cannot get set henceforth. 5538 */ 5539 mutex_enter(&connp->conn_lock); 5540 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5541 connp->conn_state_flags |= CONN_CLOSING; 5542 if (connp->conn_idl != NULL) 5543 drain_cleanup_reqd = B_TRUE; 5544 if (connp->conn_oper_pending_ill != NULL) 5545 conn_ioctl_cleanup_reqd = B_TRUE; 5546 if (connp->conn_ilg_inuse != 0) 5547 ilg_cleanup_reqd = B_TRUE; 5548 mutex_exit(&connp->conn_lock); 5549 5550 if (IPCL_IS_UDP(connp)) 5551 udp_quiesce_conn(connp); 5552 5553 if (conn_ioctl_cleanup_reqd) 5554 conn_ioctl_cleanup(connp); 5555 5556 if (is_system_labeled() && connp->conn_anon_port) { 5557 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5558 connp->conn_mlp_type, connp->conn_ulp, 5559 ntohs(connp->conn_lport), B_FALSE); 5560 connp->conn_anon_port = 0; 5561 } 5562 connp->conn_mlp_type = mlptSingle; 5563 5564 /* 5565 * Remove this conn from any fanout list it is on. 5566 * and then wait for any threads currently operating 5567 * on this endpoint to finish 5568 */ 5569 ipcl_hash_remove(connp); 5570 5571 /* 5572 * Remove this conn from the drain list, and do 5573 * any other cleanup that may be required. 5574 * (Only non-tcp streams may have a non-null conn_idl. 5575 * TCP streams are never flow controlled, and 5576 * conn_idl will be null) 5577 */ 5578 if (drain_cleanup_reqd) 5579 conn_drain_tail(connp, B_TRUE); 5580 5581 if (connp->conn_rq == ipst->ips_ip_g_mrouter || 5582 connp->conn_wq == ipst->ips_ip_g_mrouter) 5583 (void) ip_mrouter_done(NULL, ipst); 5584 5585 if (ilg_cleanup_reqd) 5586 ilg_delete_all(connp); 5587 5588 conn_delete_ire(connp, NULL); 5589 5590 /* 5591 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5592 * callers from write side can't be there now because close 5593 * is in progress. The only other caller is ipcl_walk 5594 * which checks for the condemned flag. 5595 */ 5596 mutex_enter(&connp->conn_lock); 5597 connp->conn_state_flags |= CONN_CONDEMNED; 5598 while (connp->conn_ref != 1) 5599 cv_wait(&connp->conn_cv, &connp->conn_lock); 5600 connp->conn_state_flags |= CONN_QUIESCED; 5601 mutex_exit(&connp->conn_lock); 5602 } 5603 5604 /* ARGSUSED */ 5605 int 5606 ip_close(queue_t *q, int flags) 5607 { 5608 conn_t *connp; 5609 5610 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5611 5612 /* 5613 * Call the appropriate delete routine depending on whether this is 5614 * a module or device. 5615 */ 5616 if (WR(q)->q_next != NULL) { 5617 /* This is a module close */ 5618 return (ip_modclose((ill_t *)q->q_ptr)); 5619 } 5620 5621 connp = q->q_ptr; 5622 ip_quiesce_conn(connp); 5623 5624 qprocsoff(q); 5625 5626 /* 5627 * Now we are truly single threaded on this stream, and can 5628 * delete the things hanging off the connp, and finally the connp. 5629 * We removed this connp from the fanout list, it cannot be 5630 * accessed thru the fanouts, and we already waited for the 5631 * conn_ref to drop to 0. We are already in close, so 5632 * there cannot be any other thread from the top. qprocsoff 5633 * has completed, and service has completed or won't run in 5634 * future. 5635 */ 5636 ASSERT(connp->conn_ref == 1); 5637 5638 /* 5639 * A conn which was previously marked as IPCL_UDP cannot 5640 * retain the flag because it would have been cleared by 5641 * udp_close(). 5642 */ 5643 ASSERT(!IPCL_IS_UDP(connp)); 5644 5645 if (connp->conn_latch != NULL) { 5646 IPLATCH_REFRELE(connp->conn_latch, connp->conn_netstack); 5647 connp->conn_latch = NULL; 5648 } 5649 if (connp->conn_policy != NULL) { 5650 IPPH_REFRELE(connp->conn_policy, connp->conn_netstack); 5651 connp->conn_policy = NULL; 5652 } 5653 if (connp->conn_ipsec_opt_mp != NULL) { 5654 freemsg(connp->conn_ipsec_opt_mp); 5655 connp->conn_ipsec_opt_mp = NULL; 5656 } 5657 5658 inet_minor_free(ip_minor_arena, connp->conn_dev); 5659 5660 connp->conn_ref--; 5661 ipcl_conn_destroy(connp); 5662 5663 q->q_ptr = WR(q)->q_ptr = NULL; 5664 return (0); 5665 } 5666 5667 int 5668 ip_snmpmod_close(queue_t *q) 5669 { 5670 conn_t *connp = Q_TO_CONN(q); 5671 ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD)); 5672 5673 qprocsoff(q); 5674 5675 if (connp->conn_flags & IPCL_UDPMOD) 5676 udp_close_free(connp); 5677 5678 if (connp->conn_cred != NULL) { 5679 crfree(connp->conn_cred); 5680 connp->conn_cred = NULL; 5681 } 5682 CONN_DEC_REF(connp); 5683 q->q_ptr = WR(q)->q_ptr = NULL; 5684 return (0); 5685 } 5686 5687 /* 5688 * Write side put procedure for TCP module or UDP module instance. TCP/UDP 5689 * as a module is only used for MIB browsers that push TCP/UDP over IP or ARP. 5690 * The only supported primitives are T_SVR4_OPTMGMT_REQ and T_OPTMGMT_REQ. 5691 * M_FLUSH messages and ioctls are only passed downstream; we don't flush our 5692 * queues as we never enqueue messages there and we don't handle any ioctls. 5693 * Everything else is freed. 5694 */ 5695 void 5696 ip_snmpmod_wput(queue_t *q, mblk_t *mp) 5697 { 5698 conn_t *connp = q->q_ptr; 5699 pfi_t setfn; 5700 pfi_t getfn; 5701 5702 ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD)); 5703 5704 switch (DB_TYPE(mp)) { 5705 case M_PROTO: 5706 case M_PCPROTO: 5707 if ((MBLKL(mp) >= sizeof (t_scalar_t)) && 5708 ((((union T_primitives *)mp->b_rptr)->type == 5709 T_SVR4_OPTMGMT_REQ) || 5710 (((union T_primitives *)mp->b_rptr)->type == 5711 T_OPTMGMT_REQ))) { 5712 /* 5713 * This is the only TPI primitive supported. Its 5714 * handling does not require tcp_t, but it does require 5715 * conn_t to check permissions. 5716 */ 5717 cred_t *cr = DB_CREDDEF(mp, connp->conn_cred); 5718 5719 if (connp->conn_flags & IPCL_TCPMOD) { 5720 setfn = tcp_snmp_set; 5721 getfn = tcp_snmp_get; 5722 } else { 5723 setfn = udp_snmp_set; 5724 getfn = udp_snmp_get; 5725 } 5726 if (!snmpcom_req(q, mp, setfn, getfn, cr)) { 5727 freemsg(mp); 5728 return; 5729 } 5730 } else if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, ENOTSUP)) 5731 != NULL) 5732 qreply(q, mp); 5733 break; 5734 case M_FLUSH: 5735 case M_IOCTL: 5736 putnext(q, mp); 5737 break; 5738 default: 5739 freemsg(mp); 5740 break; 5741 } 5742 } 5743 5744 /* Return the IP checksum for the IP header at "iph". */ 5745 uint16_t 5746 ip_csum_hdr(ipha_t *ipha) 5747 { 5748 uint16_t *uph; 5749 uint32_t sum; 5750 int opt_len; 5751 5752 opt_len = (ipha->ipha_version_and_hdr_length & 0xF) - 5753 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 5754 uph = (uint16_t *)ipha; 5755 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 5756 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 5757 if (opt_len > 0) { 5758 do { 5759 sum += uph[10]; 5760 sum += uph[11]; 5761 uph += 2; 5762 } while (--opt_len); 5763 } 5764 sum = (sum & 0xFFFF) + (sum >> 16); 5765 sum = ~(sum + (sum >> 16)) & 0xFFFF; 5766 if (sum == 0xffff) 5767 sum = 0; 5768 return ((uint16_t)sum); 5769 } 5770 5771 /* 5772 * Called when the module is about to be unloaded 5773 */ 5774 void 5775 ip_ddi_destroy(void) 5776 { 5777 tnet_fini(); 5778 5779 sctp_ddi_g_destroy(); 5780 tcp_ddi_g_destroy(); 5781 ipsec_policy_g_destroy(); 5782 ipcl_g_destroy(); 5783 ip_net_g_destroy(); 5784 ip_ire_g_fini(); 5785 inet_minor_destroy(ip_minor_arena); 5786 5787 netstack_unregister(NS_IP); 5788 } 5789 5790 /* 5791 * First step in cleanup. 5792 */ 5793 /* ARGSUSED */ 5794 static void 5795 ip_stack_shutdown(netstackid_t stackid, void *arg) 5796 { 5797 ip_stack_t *ipst = (ip_stack_t *)arg; 5798 5799 #ifdef NS_DEBUG 5800 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 5801 #endif 5802 5803 /* Get rid of loopback interfaces and their IREs */ 5804 ip_loopback_cleanup(ipst); 5805 } 5806 5807 /* 5808 * Free the IP stack instance. 5809 */ 5810 static void 5811 ip_stack_fini(netstackid_t stackid, void *arg) 5812 { 5813 ip_stack_t *ipst = (ip_stack_t *)arg; 5814 int ret; 5815 5816 #ifdef NS_DEBUG 5817 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 5818 #endif 5819 ipv4_hook_destroy(ipst); 5820 ipv6_hook_destroy(ipst); 5821 ip_net_destroy(ipst); 5822 5823 rw_destroy(&ipst->ips_srcid_lock); 5824 5825 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 5826 ipst->ips_ip_mibkp = NULL; 5827 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 5828 ipst->ips_icmp_mibkp = NULL; 5829 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 5830 ipst->ips_ip_kstat = NULL; 5831 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 5832 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 5833 ipst->ips_ip6_kstat = NULL; 5834 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 5835 5836 nd_free(&ipst->ips_ip_g_nd); 5837 kmem_free(ipst->ips_param_arr, sizeof (lcl_param_arr)); 5838 ipst->ips_param_arr = NULL; 5839 kmem_free(ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5840 ipst->ips_ndp_arr = NULL; 5841 5842 ip_mrouter_stack_destroy(ipst); 5843 5844 mutex_destroy(&ipst->ips_ip_mi_lock); 5845 rw_destroy(&ipst->ips_ipsec_capab_ills_lock); 5846 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 5847 rw_destroy(&ipst->ips_ip_g_nd_lock); 5848 5849 ret = untimeout(ipst->ips_igmp_timeout_id); 5850 if (ret == -1) { 5851 ASSERT(ipst->ips_igmp_timeout_id == 0); 5852 } else { 5853 ASSERT(ipst->ips_igmp_timeout_id != 0); 5854 ipst->ips_igmp_timeout_id = 0; 5855 } 5856 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 5857 if (ret == -1) { 5858 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 5859 } else { 5860 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 5861 ipst->ips_igmp_slowtimeout_id = 0; 5862 } 5863 ret = untimeout(ipst->ips_mld_timeout_id); 5864 if (ret == -1) { 5865 ASSERT(ipst->ips_mld_timeout_id == 0); 5866 } else { 5867 ASSERT(ipst->ips_mld_timeout_id != 0); 5868 ipst->ips_mld_timeout_id = 0; 5869 } 5870 ret = untimeout(ipst->ips_mld_slowtimeout_id); 5871 if (ret == -1) { 5872 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 5873 } else { 5874 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 5875 ipst->ips_mld_slowtimeout_id = 0; 5876 } 5877 ret = untimeout(ipst->ips_ip_ire_expire_id); 5878 if (ret == -1) { 5879 ASSERT(ipst->ips_ip_ire_expire_id == 0); 5880 } else { 5881 ASSERT(ipst->ips_ip_ire_expire_id != 0); 5882 ipst->ips_ip_ire_expire_id = 0; 5883 } 5884 5885 mutex_destroy(&ipst->ips_igmp_timer_lock); 5886 mutex_destroy(&ipst->ips_mld_timer_lock); 5887 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 5888 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 5889 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 5890 rw_destroy(&ipst->ips_ill_g_lock); 5891 5892 ip_ire_fini(ipst); 5893 ip6_asp_free(ipst); 5894 conn_drain_fini(ipst); 5895 ipcl_destroy(ipst); 5896 5897 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 5898 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 5899 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 5900 ipst->ips_ndp4 = NULL; 5901 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 5902 ipst->ips_ndp6 = NULL; 5903 5904 if (ipst->ips_loopback_ksp != NULL) { 5905 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 5906 ipst->ips_loopback_ksp = NULL; 5907 } 5908 5909 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 5910 ipst->ips_phyint_g_list = NULL; 5911 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 5912 ipst->ips_ill_g_heads = NULL; 5913 5914 kmem_free(ipst, sizeof (*ipst)); 5915 } 5916 5917 /* 5918 * Called when the IP kernel module is loaded into the kernel 5919 */ 5920 void 5921 ip_ddi_init(void) 5922 { 5923 TCP6_MAJ = ddi_name_to_major(TCP6); 5924 TCP_MAJ = ddi_name_to_major(TCP); 5925 SCTP_MAJ = ddi_name_to_major(SCTP); 5926 SCTP6_MAJ = ddi_name_to_major(SCTP6); 5927 5928 ip_input_proc = ip_squeue_switch(ip_squeue_enter); 5929 5930 /* 5931 * For IP and TCP the minor numbers should start from 2 since we have 4 5932 * initial devices: ip, ip6, tcp, tcp6. 5933 */ 5934 if ((ip_minor_arena = inet_minor_create("ip_minor_arena", 5935 INET_MIN_DEV + 2, KM_SLEEP)) == NULL) { 5936 cmn_err(CE_PANIC, 5937 "ip_ddi_init: ip_minor_arena creation failed\n"); 5938 } 5939 5940 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5941 5942 ipcl_g_init(); 5943 ip_ire_g_init(); 5944 ip_net_g_init(); 5945 5946 #ifdef ILL_DEBUG 5947 /* Default cleanup function */ 5948 ip_cleanup_func = ip_thread_exit; 5949 #endif 5950 5951 /* 5952 * We want to be informed each time a stack is created or 5953 * destroyed in the kernel, so we can maintain the 5954 * set of udp_stack_t's. 5955 */ 5956 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 5957 ip_stack_fini); 5958 5959 ipsec_policy_g_init(); 5960 tcp_ddi_g_init(); 5961 sctp_ddi_g_init(); 5962 5963 tnet_init(); 5964 } 5965 5966 /* 5967 * Initialize the IP stack instance. 5968 */ 5969 static void * 5970 ip_stack_init(netstackid_t stackid, netstack_t *ns) 5971 { 5972 ip_stack_t *ipst; 5973 ipparam_t *pa; 5974 ipndp_t *na; 5975 5976 #ifdef NS_DEBUG 5977 printf("ip_stack_init(stack %d)\n", stackid); 5978 #endif 5979 5980 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 5981 ipst->ips_netstack = ns; 5982 5983 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 5984 KM_SLEEP); 5985 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 5986 KM_SLEEP); 5987 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5988 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5989 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5990 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5991 5992 rw_init(&ipst->ips_ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 5993 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5994 ipst->ips_igmp_deferred_next = INFINITY; 5995 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5996 ipst->ips_mld_deferred_next = INFINITY; 5997 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5998 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5999 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 6000 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 6001 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 6002 rw_init(&ipst->ips_ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 6003 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 6004 6005 ipcl_init(ipst); 6006 ip_ire_init(ipst); 6007 ip6_asp_init(ipst); 6008 ipif_init(ipst); 6009 conn_drain_init(ipst); 6010 ip_mrouter_stack_init(ipst); 6011 6012 ipst->ips_ip_g_frag_timeout = IP_FRAG_TIMEOUT; 6013 ipst->ips_ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 6014 6015 ipst->ips_ip_multirt_log_interval = 1000; 6016 6017 ipst->ips_ip_g_forward = IP_FORWARD_DEFAULT; 6018 ipst->ips_ipv6_forward = IP_FORWARD_DEFAULT; 6019 ipst->ips_ill_index = 1; 6020 6021 ipst->ips_saved_ip_g_forward = -1; 6022 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 6023 6024 pa = (ipparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP); 6025 ipst->ips_param_arr = pa; 6026 bcopy(lcl_param_arr, ipst->ips_param_arr, sizeof (lcl_param_arr)); 6027 6028 na = (ipndp_t *)kmem_alloc(sizeof (lcl_ndp_arr), KM_SLEEP); 6029 ipst->ips_ndp_arr = na; 6030 bcopy(lcl_ndp_arr, ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 6031 ipst->ips_ndp_arr[IPNDP_IP_FORWARDING_OFFSET].ip_ndp_data = 6032 (caddr_t)&ipst->ips_ip_g_forward; 6033 ipst->ips_ndp_arr[IPNDP_IP6_FORWARDING_OFFSET].ip_ndp_data = 6034 (caddr_t)&ipst->ips_ipv6_forward; 6035 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_name, 6036 "ip_cgtp_filter") == 0); 6037 ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_data = 6038 (caddr_t)&ip_cgtp_filter; 6039 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_name, 6040 "ipmp_hook_emulation") == 0); 6041 ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_data = 6042 (caddr_t)&ipst->ips_ipmp_hook_emulation; 6043 6044 (void) ip_param_register(&ipst->ips_ip_g_nd, 6045 ipst->ips_param_arr, A_CNT(lcl_param_arr), 6046 ipst->ips_ndp_arr, A_CNT(lcl_ndp_arr)); 6047 6048 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 6049 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 6050 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 6051 ipst->ips_ip6_kstat = 6052 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 6053 6054 ipst->ips_ipmp_enable_failback = B_TRUE; 6055 6056 ipst->ips_ip_src_id = 1; 6057 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 6058 6059 ip_net_init(ipst, ns); 6060 ipv4_hook_init(ipst); 6061 ipv6_hook_init(ipst); 6062 6063 return (ipst); 6064 } 6065 6066 /* 6067 * Allocate and initialize a DLPI template of the specified length. (May be 6068 * called as writer.) 6069 */ 6070 mblk_t * 6071 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 6072 { 6073 mblk_t *mp; 6074 6075 mp = allocb(len, BPRI_MED); 6076 if (!mp) 6077 return (NULL); 6078 6079 /* 6080 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 6081 * of which we don't seem to use) are sent with M_PCPROTO, and 6082 * that other DLPI are M_PROTO. 6083 */ 6084 if (prim == DL_INFO_REQ) { 6085 mp->b_datap->db_type = M_PCPROTO; 6086 } else { 6087 mp->b_datap->db_type = M_PROTO; 6088 } 6089 6090 mp->b_wptr = mp->b_rptr + len; 6091 bzero(mp->b_rptr, len); 6092 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 6093 return (mp); 6094 } 6095 6096 const char * 6097 dlpi_prim_str(int prim) 6098 { 6099 switch (prim) { 6100 case DL_INFO_REQ: return ("DL_INFO_REQ"); 6101 case DL_INFO_ACK: return ("DL_INFO_ACK"); 6102 case DL_ATTACH_REQ: return ("DL_ATTACH_REQ"); 6103 case DL_DETACH_REQ: return ("DL_DETACH_REQ"); 6104 case DL_BIND_REQ: return ("DL_BIND_REQ"); 6105 case DL_BIND_ACK: return ("DL_BIND_ACK"); 6106 case DL_UNBIND_REQ: return ("DL_UNBIND_REQ"); 6107 case DL_OK_ACK: return ("DL_OK_ACK"); 6108 case DL_ERROR_ACK: return ("DL_ERROR_ACK"); 6109 case DL_ENABMULTI_REQ: return ("DL_ENABMULTI_REQ"); 6110 case DL_DISABMULTI_REQ: return ("DL_DISABMULTI_REQ"); 6111 case DL_PROMISCON_REQ: return ("DL_PROMISCON_REQ"); 6112 case DL_PROMISCOFF_REQ: return ("DL_PROMISCOFF_REQ"); 6113 case DL_UNITDATA_REQ: return ("DL_UNITDATA_REQ"); 6114 case DL_UNITDATA_IND: return ("DL_UNITDATA_IND"); 6115 case DL_UDERROR_IND: return ("DL_UDERROR_IND"); 6116 case DL_PHYS_ADDR_REQ: return ("DL_PHYS_ADDR_REQ"); 6117 case DL_PHYS_ADDR_ACK: return ("DL_PHYS_ADDR_ACK"); 6118 case DL_SET_PHYS_ADDR_REQ: return ("DL_SET_PHYS_ADDR_REQ"); 6119 case DL_NOTIFY_REQ: return ("DL_NOTIFY_REQ"); 6120 case DL_NOTIFY_ACK: return ("DL_NOTIFY_ACK"); 6121 case DL_NOTIFY_IND: return ("DL_NOTIFY_IND"); 6122 case DL_CAPABILITY_REQ: return ("DL_CAPABILITY_REQ"); 6123 case DL_CAPABILITY_ACK: return ("DL_CAPABILITY_ACK"); 6124 case DL_CONTROL_REQ: return ("DL_CONTROL_REQ"); 6125 case DL_CONTROL_ACK: return ("DL_CONTROL_ACK"); 6126 default: return ("<unknown primitive>"); 6127 } 6128 } 6129 6130 const char * 6131 dlpi_err_str(int err) 6132 { 6133 switch (err) { 6134 case DL_ACCESS: return ("DL_ACCESS"); 6135 case DL_BADADDR: return ("DL_BADADDR"); 6136 case DL_BADCORR: return ("DL_BADCORR"); 6137 case DL_BADDATA: return ("DL_BADDATA"); 6138 case DL_BADPPA: return ("DL_BADPPA"); 6139 case DL_BADPRIM: return ("DL_BADPRIM"); 6140 case DL_BADQOSPARAM: return ("DL_BADQOSPARAM"); 6141 case DL_BADQOSTYPE: return ("DL_BADQOSTYPE"); 6142 case DL_BADSAP: return ("DL_BADSAP"); 6143 case DL_BADTOKEN: return ("DL_BADTOKEN"); 6144 case DL_BOUND: return ("DL_BOUND"); 6145 case DL_INITFAILED: return ("DL_INITFAILED"); 6146 case DL_NOADDR: return ("DL_NOADDR"); 6147 case DL_NOTINIT: return ("DL_NOTINIT"); 6148 case DL_OUTSTATE: return ("DL_OUTSTATE"); 6149 case DL_SYSERR: return ("DL_SYSERR"); 6150 case DL_UNSUPPORTED: return ("DL_UNSUPPORTED"); 6151 case DL_UNDELIVERABLE: return ("DL_UNDELIVERABLE"); 6152 case DL_NOTSUPPORTED : return ("DL_NOTSUPPORTED "); 6153 case DL_TOOMANY: return ("DL_TOOMANY"); 6154 case DL_NOTENAB: return ("DL_NOTENAB"); 6155 case DL_BUSY: return ("DL_BUSY"); 6156 case DL_NOAUTO: return ("DL_NOAUTO"); 6157 case DL_NOXIDAUTO: return ("DL_NOXIDAUTO"); 6158 case DL_NOTESTAUTO: return ("DL_NOTESTAUTO"); 6159 case DL_XIDAUTO: return ("DL_XIDAUTO"); 6160 case DL_TESTAUTO: return ("DL_TESTAUTO"); 6161 case DL_PENDING: return ("DL_PENDING"); 6162 default: return ("<unknown error>"); 6163 } 6164 } 6165 6166 /* 6167 * Debug formatting routine. Returns a character string representation of the 6168 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 6169 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 6170 * 6171 * Once the ndd table-printing interfaces are removed, this can be changed to 6172 * standard dotted-decimal form. 6173 */ 6174 char * 6175 ip_dot_addr(ipaddr_t addr, char *buf) 6176 { 6177 uint8_t *ap = (uint8_t *)&addr; 6178 6179 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 6180 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 6181 return (buf); 6182 } 6183 6184 /* 6185 * Write the given MAC address as a printable string in the usual colon- 6186 * separated format. 6187 */ 6188 const char * 6189 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 6190 { 6191 char *bp; 6192 6193 if (alen == 0 || buflen < 4) 6194 return ("?"); 6195 bp = buf; 6196 for (;;) { 6197 /* 6198 * If there are more MAC address bytes available, but we won't 6199 * have any room to print them, then add "..." to the string 6200 * instead. See below for the 'magic number' explanation. 6201 */ 6202 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 6203 (void) strcpy(bp, "..."); 6204 break; 6205 } 6206 (void) sprintf(bp, "%02x", *addr++); 6207 bp += 2; 6208 if (--alen == 0) 6209 break; 6210 *bp++ = ':'; 6211 buflen -= 3; 6212 /* 6213 * At this point, based on the first 'if' statement above, 6214 * either alen == 1 and buflen >= 3, or alen > 1 and 6215 * buflen >= 4. The first case leaves room for the final "xx" 6216 * number and trailing NUL byte. The second leaves room for at 6217 * least "...". Thus the apparently 'magic' numbers chosen for 6218 * that statement. 6219 */ 6220 } 6221 return (buf); 6222 } 6223 6224 /* 6225 * Send an ICMP error after patching up the packet appropriately. Returns 6226 * non-zero if the appropriate MIB should be bumped; zero otherwise. 6227 */ 6228 static boolean_t 6229 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 6230 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, 6231 zoneid_t zoneid, ip_stack_t *ipst) 6232 { 6233 ipha_t *ipha; 6234 mblk_t *first_mp; 6235 boolean_t secure; 6236 unsigned char db_type; 6237 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6238 6239 first_mp = mp; 6240 if (mctl_present) { 6241 mp = mp->b_cont; 6242 secure = ipsec_in_is_secure(first_mp); 6243 ASSERT(mp != NULL); 6244 } else { 6245 /* 6246 * If this is an ICMP error being reported - which goes 6247 * up as M_CTLs, we need to convert them to M_DATA till 6248 * we finish checking with global policy because 6249 * ipsec_check_global_policy() assumes M_DATA as clear 6250 * and M_CTL as secure. 6251 */ 6252 db_type = DB_TYPE(mp); 6253 DB_TYPE(mp) = M_DATA; 6254 secure = B_FALSE; 6255 } 6256 /* 6257 * We are generating an icmp error for some inbound packet. 6258 * Called from all ip_fanout_(udp, tcp, proto) functions. 6259 * Before we generate an error, check with global policy 6260 * to see whether this is allowed to enter the system. As 6261 * there is no "conn", we are checking with global policy. 6262 */ 6263 ipha = (ipha_t *)mp->b_rptr; 6264 if (secure || ipss->ipsec_inbound_v4_policy_present) { 6265 first_mp = ipsec_check_global_policy(first_mp, NULL, 6266 ipha, NULL, mctl_present, ipst->ips_netstack); 6267 if (first_mp == NULL) 6268 return (B_FALSE); 6269 } 6270 6271 if (!mctl_present) 6272 DB_TYPE(mp) = db_type; 6273 6274 if (flags & IP_FF_SEND_ICMP) { 6275 if (flags & IP_FF_HDR_COMPLETE) { 6276 if (ip_hdr_complete(ipha, zoneid, ipst)) { 6277 freemsg(first_mp); 6278 return (B_TRUE); 6279 } 6280 } 6281 if (flags & IP_FF_CKSUM) { 6282 /* 6283 * Have to correct checksum since 6284 * the packet might have been 6285 * fragmented and the reassembly code in ip_rput 6286 * does not restore the IP checksum. 6287 */ 6288 ipha->ipha_hdr_checksum = 0; 6289 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6290 } 6291 switch (icmp_type) { 6292 case ICMP_DEST_UNREACHABLE: 6293 icmp_unreachable(WR(q), first_mp, icmp_code, zoneid, 6294 ipst); 6295 break; 6296 default: 6297 freemsg(first_mp); 6298 break; 6299 } 6300 } else { 6301 freemsg(first_mp); 6302 return (B_FALSE); 6303 } 6304 6305 return (B_TRUE); 6306 } 6307 6308 /* 6309 * Used to send an ICMP error message when a packet is received for 6310 * a protocol that is not supported. The mblk passed as argument 6311 * is consumed by this function. 6312 */ 6313 void 6314 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid, 6315 ip_stack_t *ipst) 6316 { 6317 mblk_t *mp; 6318 ipha_t *ipha; 6319 ill_t *ill; 6320 ipsec_in_t *ii; 6321 6322 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6323 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6324 6325 mp = ipsec_mp->b_cont; 6326 ipsec_mp->b_cont = NULL; 6327 ipha = (ipha_t *)mp->b_rptr; 6328 /* Get ill from index in ipsec_in_t. */ 6329 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 6330 (IPH_HDR_VERSION(ipha) == IPV6_VERSION), NULL, NULL, NULL, NULL, 6331 ipst); 6332 if (ill != NULL) { 6333 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 6334 if (ip_fanout_send_icmp(q, mp, flags, 6335 ICMP_DEST_UNREACHABLE, 6336 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid, ipst)) { 6337 BUMP_MIB(ill->ill_ip_mib, 6338 ipIfStatsInUnknownProtos); 6339 } 6340 } else { 6341 if (ip_fanout_send_icmp_v6(q, mp, flags, 6342 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 6343 0, B_FALSE, zoneid, ipst)) { 6344 BUMP_MIB(ill->ill_ip_mib, 6345 ipIfStatsInUnknownProtos); 6346 } 6347 } 6348 ill_refrele(ill); 6349 } else { /* re-link for the freemsg() below. */ 6350 ipsec_mp->b_cont = mp; 6351 } 6352 6353 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 6354 freemsg(ipsec_mp); 6355 } 6356 6357 /* 6358 * See if the inbound datagram has had IPsec processing applied to it. 6359 */ 6360 boolean_t 6361 ipsec_in_is_secure(mblk_t *ipsec_mp) 6362 { 6363 ipsec_in_t *ii; 6364 6365 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6366 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6367 6368 if (ii->ipsec_in_loopback) { 6369 return (ii->ipsec_in_secure); 6370 } else { 6371 return (ii->ipsec_in_ah_sa != NULL || 6372 ii->ipsec_in_esp_sa != NULL || 6373 ii->ipsec_in_decaps); 6374 } 6375 } 6376 6377 /* 6378 * Handle protocols with which IP is less intimate. There 6379 * can be more than one stream bound to a particular 6380 * protocol. When this is the case, normally each one gets a copy 6381 * of any incoming packets. 6382 * 6383 * IPSEC NOTE : 6384 * 6385 * Don't allow a secure packet going up a non-secure connection. 6386 * We don't allow this because 6387 * 6388 * 1) Reply might go out in clear which will be dropped at 6389 * the sending side. 6390 * 2) If the reply goes out in clear it will give the 6391 * adversary enough information for getting the key in 6392 * most of the cases. 6393 * 6394 * Moreover getting a secure packet when we expect clear 6395 * implies that SA's were added without checking for 6396 * policy on both ends. This should not happen once ISAKMP 6397 * is used to negotiate SAs as SAs will be added only after 6398 * verifying the policy. 6399 * 6400 * NOTE : If the packet was tunneled and not multicast we only send 6401 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 6402 * back to delivering packets to AF_INET6 raw sockets. 6403 * 6404 * IPQoS Notes: 6405 * Once we have determined the client, invoke IPPF processing. 6406 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6407 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6408 * ip_policy will be false. 6409 * 6410 * Zones notes: 6411 * Currently only applications in the global zone can create raw sockets for 6412 * protocols other than ICMP. So unlike the broadcast / multicast case of 6413 * ip_fanout_udp(), we only send a copy of the packet to streams in the 6414 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 6415 */ 6416 static void 6417 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 6418 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 6419 zoneid_t zoneid) 6420 { 6421 queue_t *rq; 6422 mblk_t *mp1, *first_mp1; 6423 uint_t protocol = ipha->ipha_protocol; 6424 ipaddr_t dst; 6425 boolean_t one_only; 6426 mblk_t *first_mp = mp; 6427 boolean_t secure; 6428 uint32_t ill_index; 6429 conn_t *connp, *first_connp, *next_connp; 6430 connf_t *connfp; 6431 boolean_t shared_addr; 6432 mib2_ipIfStatsEntry_t *mibptr; 6433 ip_stack_t *ipst = recv_ill->ill_ipst; 6434 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6435 6436 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 6437 if (mctl_present) { 6438 mp = first_mp->b_cont; 6439 secure = ipsec_in_is_secure(first_mp); 6440 ASSERT(mp != NULL); 6441 } else { 6442 secure = B_FALSE; 6443 } 6444 dst = ipha->ipha_dst; 6445 /* 6446 * If the packet was tunneled and not multicast we only send to it 6447 * the first match. 6448 */ 6449 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 6450 !CLASSD(dst)); 6451 6452 shared_addr = (zoneid == ALL_ZONES); 6453 if (shared_addr) { 6454 /* 6455 * We don't allow multilevel ports for raw IP, so no need to 6456 * check for that here. 6457 */ 6458 zoneid = tsol_packet_to_zoneid(mp); 6459 } 6460 6461 connfp = &ipst->ips_ipcl_proto_fanout[protocol]; 6462 mutex_enter(&connfp->connf_lock); 6463 connp = connfp->connf_head; 6464 for (connp = connfp->connf_head; connp != NULL; 6465 connp = connp->conn_next) { 6466 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 6467 zoneid) && 6468 (!is_system_labeled() || 6469 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6470 connp))) 6471 break; 6472 } 6473 6474 if (connp == NULL || connp->conn_upq == NULL) { 6475 /* 6476 * No one bound to these addresses. Is 6477 * there a client that wants all 6478 * unclaimed datagrams? 6479 */ 6480 mutex_exit(&connfp->connf_lock); 6481 /* 6482 * Check for IPPROTO_ENCAP... 6483 */ 6484 if (protocol == IPPROTO_ENCAP && ipst->ips_ip_g_mrouter) { 6485 /* 6486 * If an IPsec mblk is here on a multicast 6487 * tunnel (using ip_mroute stuff), check policy here, 6488 * THEN ship off to ip_mroute_decap(). 6489 * 6490 * BTW, If I match a configured IP-in-IP 6491 * tunnel, this path will not be reached, and 6492 * ip_mroute_decap will never be called. 6493 */ 6494 first_mp = ipsec_check_global_policy(first_mp, connp, 6495 ipha, NULL, mctl_present, ipst->ips_netstack); 6496 if (first_mp != NULL) { 6497 if (mctl_present) 6498 freeb(first_mp); 6499 ip_mroute_decap(q, mp, ill); 6500 } /* Else we already freed everything! */ 6501 } else { 6502 /* 6503 * Otherwise send an ICMP protocol unreachable. 6504 */ 6505 if (ip_fanout_send_icmp(q, first_mp, flags, 6506 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 6507 mctl_present, zoneid, ipst)) { 6508 BUMP_MIB(mibptr, ipIfStatsInUnknownProtos); 6509 } 6510 } 6511 return; 6512 } 6513 CONN_INC_REF(connp); 6514 first_connp = connp; 6515 6516 /* 6517 * Only send message to one tunnel driver by immediately 6518 * terminating the loop. 6519 */ 6520 connp = one_only ? NULL : connp->conn_next; 6521 6522 for (;;) { 6523 while (connp != NULL) { 6524 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 6525 flags, zoneid) && 6526 (!is_system_labeled() || 6527 tsol_receive_local(mp, &dst, IPV4_VERSION, 6528 shared_addr, connp))) 6529 break; 6530 connp = connp->conn_next; 6531 } 6532 6533 /* 6534 * Copy the packet. 6535 */ 6536 if (connp == NULL || connp->conn_upq == NULL || 6537 (((first_mp1 = dupmsg(first_mp)) == NULL) && 6538 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 6539 /* 6540 * No more interested clients or memory 6541 * allocation failed 6542 */ 6543 connp = first_connp; 6544 break; 6545 } 6546 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 6547 CONN_INC_REF(connp); 6548 mutex_exit(&connfp->connf_lock); 6549 rq = connp->conn_rq; 6550 if (!canputnext(rq)) { 6551 if (flags & IP_FF_RAWIP) { 6552 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6553 } else { 6554 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6555 } 6556 6557 freemsg(first_mp1); 6558 } else { 6559 /* 6560 * Don't enforce here if we're an actual tunnel - 6561 * let "tun" do it instead. 6562 */ 6563 if (!IPCL_IS_IPTUN(connp) && 6564 (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 6565 secure)) { 6566 first_mp1 = ipsec_check_inbound_policy 6567 (first_mp1, connp, ipha, NULL, 6568 mctl_present); 6569 } 6570 if (first_mp1 != NULL) { 6571 int in_flags = 0; 6572 /* 6573 * ip_fanout_proto also gets called from 6574 * icmp_inbound_error_fanout, in which case 6575 * the msg type is M_CTL. Don't add info 6576 * in this case for the time being. In future 6577 * when there is a need for knowing the 6578 * inbound iface index for ICMP error msgs, 6579 * then this can be changed. 6580 */ 6581 if (connp->conn_recvif) 6582 in_flags = IPF_RECVIF; 6583 /* 6584 * The ULP may support IP_RECVPKTINFO for both 6585 * IP v4 and v6 so pass the appropriate argument 6586 * based on conn IP version. 6587 */ 6588 if (connp->conn_ip_recvpktinfo) { 6589 if (connp->conn_af_isv6) { 6590 /* 6591 * V6 only needs index 6592 */ 6593 in_flags |= IPF_RECVIF; 6594 } else { 6595 /* 6596 * V4 needs index + 6597 * matching address. 6598 */ 6599 in_flags |= IPF_RECVADDR; 6600 } 6601 } 6602 if ((in_flags != 0) && 6603 (mp->b_datap->db_type != M_CTL)) { 6604 /* 6605 * the actual data will be 6606 * contained in b_cont upon 6607 * successful return of the 6608 * following call else 6609 * original mblk is returned 6610 */ 6611 ASSERT(recv_ill != NULL); 6612 mp1 = ip_add_info(mp1, recv_ill, 6613 in_flags, IPCL_ZONEID(connp), ipst); 6614 } 6615 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6616 if (mctl_present) 6617 freeb(first_mp1); 6618 putnext(rq, mp1); 6619 } 6620 } 6621 mutex_enter(&connfp->connf_lock); 6622 /* Follow the next pointer before releasing the conn. */ 6623 next_connp = connp->conn_next; 6624 CONN_DEC_REF(connp); 6625 connp = next_connp; 6626 } 6627 6628 /* Last one. Send it upstream. */ 6629 mutex_exit(&connfp->connf_lock); 6630 6631 /* 6632 * If this packet is coming from icmp_inbound_error_fanout ip_policy 6633 * will be set to false. 6634 */ 6635 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6636 ill_index = ill->ill_phyint->phyint_ifindex; 6637 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6638 if (mp == NULL) { 6639 CONN_DEC_REF(connp); 6640 if (mctl_present) { 6641 freeb(first_mp); 6642 } 6643 return; 6644 } 6645 } 6646 6647 rq = connp->conn_rq; 6648 if (!canputnext(rq)) { 6649 if (flags & IP_FF_RAWIP) { 6650 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6651 } else { 6652 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6653 } 6654 6655 freemsg(first_mp); 6656 } else { 6657 if (IPCL_IS_IPTUN(connp)) { 6658 /* 6659 * Tunneled packet. We enforce policy in the tunnel 6660 * module itself. 6661 * 6662 * Send the WHOLE packet up (incl. IPSEC_IN) without 6663 * a policy check. 6664 */ 6665 putnext(rq, first_mp); 6666 CONN_DEC_REF(connp); 6667 return; 6668 } 6669 6670 if ((CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure)) { 6671 first_mp = ipsec_check_inbound_policy(first_mp, connp, 6672 ipha, NULL, mctl_present); 6673 } 6674 6675 if (first_mp != NULL) { 6676 int in_flags = 0; 6677 6678 /* 6679 * ip_fanout_proto also gets called 6680 * from icmp_inbound_error_fanout, in 6681 * which case the msg type is M_CTL. 6682 * Don't add info in this case for time 6683 * being. In future when there is a 6684 * need for knowing the inbound iface 6685 * index for ICMP error msgs, then this 6686 * can be changed 6687 */ 6688 if (connp->conn_recvif) 6689 in_flags = IPF_RECVIF; 6690 if (connp->conn_ip_recvpktinfo) { 6691 if (connp->conn_af_isv6) { 6692 /* 6693 * V6 only needs index 6694 */ 6695 in_flags |= IPF_RECVIF; 6696 } else { 6697 /* 6698 * V4 needs index + 6699 * matching address. 6700 */ 6701 in_flags |= IPF_RECVADDR; 6702 } 6703 } 6704 if ((in_flags != 0) && 6705 (mp->b_datap->db_type != M_CTL)) { 6706 6707 /* 6708 * the actual data will be contained in 6709 * b_cont upon successful return 6710 * of the following call else original 6711 * mblk is returned 6712 */ 6713 ASSERT(recv_ill != NULL); 6714 mp = ip_add_info(mp, recv_ill, 6715 in_flags, IPCL_ZONEID(connp), ipst); 6716 } 6717 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6718 putnext(rq, mp); 6719 if (mctl_present) 6720 freeb(first_mp); 6721 } 6722 } 6723 CONN_DEC_REF(connp); 6724 } 6725 6726 /* 6727 * Fanout for TCP packets 6728 * The caller puts <fport, lport> in the ports parameter. 6729 * 6730 * IPQoS Notes 6731 * Before sending it to the client, invoke IPPF processing. 6732 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6733 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6734 * ip_policy is false. 6735 */ 6736 static void 6737 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6738 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6739 { 6740 mblk_t *first_mp; 6741 boolean_t secure; 6742 uint32_t ill_index; 6743 int ip_hdr_len; 6744 tcph_t *tcph; 6745 boolean_t syn_present = B_FALSE; 6746 conn_t *connp; 6747 ip_stack_t *ipst = recv_ill->ill_ipst; 6748 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6749 6750 ASSERT(recv_ill != NULL); 6751 6752 first_mp = mp; 6753 if (mctl_present) { 6754 ASSERT(first_mp->b_datap->db_type == M_CTL); 6755 mp = first_mp->b_cont; 6756 secure = ipsec_in_is_secure(first_mp); 6757 ASSERT(mp != NULL); 6758 } else { 6759 secure = B_FALSE; 6760 } 6761 6762 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6763 6764 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 6765 zoneid, ipst)) == NULL) { 6766 /* 6767 * No connected connection or listener. Send a 6768 * TH_RST via tcp_xmit_listeners_reset. 6769 */ 6770 6771 /* Initiate IPPf processing, if needed. */ 6772 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 6773 uint32_t ill_index; 6774 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6775 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6776 if (first_mp == NULL) 6777 return; 6778 } 6779 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6780 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6781 zoneid)); 6782 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6783 ipst->ips_netstack->netstack_tcp); 6784 return; 6785 } 6786 6787 /* 6788 * Allocate the SYN for the TCP connection here itself 6789 */ 6790 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6791 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6792 if (IPCL_IS_TCP(connp)) { 6793 squeue_t *sqp; 6794 6795 /* 6796 * For fused tcp loopback, assign the eager's 6797 * squeue to be that of the active connect's. 6798 * Note that we don't check for IP_FF_LOOPBACK 6799 * here since this routine gets called only 6800 * for loopback (unlike the IPv6 counterpart). 6801 */ 6802 ASSERT(Q_TO_CONN(q) != NULL); 6803 if (do_tcp_fusion && 6804 !CONN_INBOUND_POLICY_PRESENT(connp, ipss) && 6805 !secure && 6806 !IPP_ENABLED(IPP_LOCAL_IN, ipst) && !ip_policy && 6807 IPCL_IS_TCP(Q_TO_CONN(q))) { 6808 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6809 sqp = Q_TO_CONN(q)->conn_sqp; 6810 } else { 6811 sqp = IP_SQUEUE_GET(lbolt); 6812 } 6813 6814 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6815 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6816 syn_present = B_TRUE; 6817 } 6818 } 6819 6820 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6821 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6822 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6823 if ((flags & TH_RST) || (flags & TH_URG)) { 6824 CONN_DEC_REF(connp); 6825 freemsg(first_mp); 6826 return; 6827 } 6828 if (flags & TH_ACK) { 6829 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6830 ipst->ips_netstack->netstack_tcp); 6831 CONN_DEC_REF(connp); 6832 return; 6833 } 6834 6835 CONN_DEC_REF(connp); 6836 freemsg(first_mp); 6837 return; 6838 } 6839 6840 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6841 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6842 NULL, mctl_present); 6843 if (first_mp == NULL) { 6844 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6845 CONN_DEC_REF(connp); 6846 return; 6847 } 6848 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6849 ASSERT(syn_present); 6850 if (mctl_present) { 6851 ASSERT(first_mp != mp); 6852 first_mp->b_datap->db_struioflag |= 6853 STRUIO_POLICY; 6854 } else { 6855 ASSERT(first_mp == mp); 6856 mp->b_datap->db_struioflag &= 6857 ~STRUIO_EAGER; 6858 mp->b_datap->db_struioflag |= 6859 STRUIO_POLICY; 6860 } 6861 } else { 6862 /* 6863 * Discard first_mp early since we're dealing with a 6864 * fully-connected conn_t and tcp doesn't do policy in 6865 * this case. 6866 */ 6867 if (mctl_present) { 6868 freeb(first_mp); 6869 mctl_present = B_FALSE; 6870 } 6871 first_mp = mp; 6872 } 6873 } 6874 6875 /* 6876 * Initiate policy processing here if needed. If we get here from 6877 * icmp_inbound_error_fanout, ip_policy is false. 6878 */ 6879 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6880 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6881 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6882 if (mp == NULL) { 6883 CONN_DEC_REF(connp); 6884 if (mctl_present) 6885 freeb(first_mp); 6886 return; 6887 } else if (mctl_present) { 6888 ASSERT(first_mp != mp); 6889 first_mp->b_cont = mp; 6890 } else { 6891 first_mp = mp; 6892 } 6893 } 6894 6895 6896 6897 /* Handle socket options. */ 6898 if (!syn_present && 6899 connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 6900 /* Add header */ 6901 ASSERT(recv_ill != NULL); 6902 /* 6903 * Since tcp does not support IP_RECVPKTINFO for V4, only pass 6904 * IPF_RECVIF. 6905 */ 6906 mp = ip_add_info(mp, recv_ill, IPF_RECVIF, IPCL_ZONEID(connp), 6907 ipst); 6908 if (mp == NULL) { 6909 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6910 CONN_DEC_REF(connp); 6911 if (mctl_present) 6912 freeb(first_mp); 6913 return; 6914 } else if (mctl_present) { 6915 /* 6916 * ip_add_info might return a new mp. 6917 */ 6918 ASSERT(first_mp != mp); 6919 first_mp->b_cont = mp; 6920 } else { 6921 first_mp = mp; 6922 } 6923 } 6924 6925 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6926 if (IPCL_IS_TCP(connp)) { 6927 (*ip_input_proc)(connp->conn_sqp, first_mp, 6928 connp->conn_recv, connp, SQTAG_IP_FANOUT_TCP); 6929 } else { 6930 putnext(connp->conn_rq, first_mp); 6931 CONN_DEC_REF(connp); 6932 } 6933 } 6934 6935 /* 6936 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 6937 * We are responsible for disposing of mp, such as by freemsg() or putnext() 6938 * Caller is responsible for dropping references to the conn, and freeing 6939 * first_mp. 6940 * 6941 * IPQoS Notes 6942 * Before sending it to the client, invoke IPPF processing. Policy processing 6943 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 6944 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 6945 * ip_wput_local, ip_policy is false. 6946 */ 6947 static void 6948 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 6949 boolean_t secure, ill_t *ill, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 6950 boolean_t ip_policy) 6951 { 6952 boolean_t mctl_present = (first_mp != NULL); 6953 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 6954 uint32_t ill_index; 6955 ip_stack_t *ipst = recv_ill->ill_ipst; 6956 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6957 6958 ASSERT(ill != NULL); 6959 6960 if (mctl_present) 6961 first_mp->b_cont = mp; 6962 else 6963 first_mp = mp; 6964 6965 if (CONN_UDP_FLOWCTLD(connp)) { 6966 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 6967 freemsg(first_mp); 6968 return; 6969 } 6970 6971 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6972 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6973 NULL, mctl_present); 6974 if (first_mp == NULL) { 6975 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 6976 return; /* Freed by ipsec_check_inbound_policy(). */ 6977 } 6978 } 6979 if (mctl_present) 6980 freeb(first_mp); 6981 6982 /* Handle options. */ 6983 if (connp->conn_recvif) 6984 in_flags = IPF_RECVIF; 6985 /* 6986 * UDP supports IP_RECVPKTINFO option for both v4 and v6 so the flag 6987 * passed to ip_add_info is based on IP version of connp. 6988 */ 6989 if (connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 6990 if (connp->conn_af_isv6) { 6991 /* 6992 * V6 only needs index 6993 */ 6994 in_flags |= IPF_RECVIF; 6995 } else { 6996 /* 6997 * V4 needs index + matching address. 6998 */ 6999 in_flags |= IPF_RECVADDR; 7000 } 7001 } 7002 7003 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 7004 in_flags |= IPF_RECVSLLA; 7005 7006 /* 7007 * Initiate IPPF processing here, if needed. Note first_mp won't be 7008 * freed if the packet is dropped. The caller will do so. 7009 */ 7010 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 7011 ill_index = recv_ill->ill_phyint->phyint_ifindex; 7012 ip_process(IPP_LOCAL_IN, &mp, ill_index); 7013 if (mp == NULL) { 7014 return; 7015 } 7016 } 7017 if ((in_flags != 0) && 7018 (mp->b_datap->db_type != M_CTL)) { 7019 /* 7020 * The actual data will be contained in b_cont 7021 * upon successful return of the following call 7022 * else original mblk is returned 7023 */ 7024 ASSERT(recv_ill != NULL); 7025 mp = ip_add_info(mp, recv_ill, in_flags, IPCL_ZONEID(connp), 7026 ipst); 7027 } 7028 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 7029 /* Send it upstream */ 7030 CONN_UDP_RECV(connp, mp); 7031 } 7032 7033 /* 7034 * Fanout for UDP packets. 7035 * The caller puts <fport, lport> in the ports parameter. 7036 * 7037 * If SO_REUSEADDR is set all multicast and broadcast packets 7038 * will be delivered to all streams bound to the same port. 7039 * 7040 * Zones notes: 7041 * Multicast and broadcast packets will be distributed to streams in all zones. 7042 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 7043 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 7044 * packets. To maintain this behavior with multiple zones, the conns are grouped 7045 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 7046 * each zone. If unset, all the following conns in the same zone are skipped. 7047 */ 7048 static void 7049 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 7050 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 7051 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 7052 { 7053 uint32_t dstport, srcport; 7054 ipaddr_t dst; 7055 mblk_t *first_mp; 7056 boolean_t secure; 7057 in6_addr_t v6src; 7058 conn_t *connp; 7059 connf_t *connfp; 7060 conn_t *first_connp; 7061 conn_t *next_connp; 7062 mblk_t *mp1, *first_mp1; 7063 ipaddr_t src; 7064 zoneid_t last_zoneid; 7065 boolean_t reuseaddr; 7066 boolean_t shared_addr; 7067 ip_stack_t *ipst; 7068 7069 ASSERT(recv_ill != NULL); 7070 ipst = recv_ill->ill_ipst; 7071 7072 first_mp = mp; 7073 if (mctl_present) { 7074 mp = first_mp->b_cont; 7075 first_mp->b_cont = NULL; 7076 secure = ipsec_in_is_secure(first_mp); 7077 ASSERT(mp != NULL); 7078 } else { 7079 first_mp = NULL; 7080 secure = B_FALSE; 7081 } 7082 7083 /* Extract ports in net byte order */ 7084 dstport = htons(ntohl(ports) & 0xFFFF); 7085 srcport = htons(ntohl(ports) >> 16); 7086 dst = ipha->ipha_dst; 7087 src = ipha->ipha_src; 7088 7089 shared_addr = (zoneid == ALL_ZONES); 7090 if (shared_addr) { 7091 /* 7092 * No need to handle exclusive-stack zones since ALL_ZONES 7093 * only applies to the shared stack. 7094 */ 7095 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 7096 if (zoneid == ALL_ZONES) 7097 zoneid = tsol_packet_to_zoneid(mp); 7098 } 7099 7100 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7101 mutex_enter(&connfp->connf_lock); 7102 connp = connfp->connf_head; 7103 if (!broadcast && !CLASSD(dst)) { 7104 /* 7105 * Not broadcast or multicast. Send to the one (first) 7106 * client we find. No need to check conn_wantpacket() 7107 * since IP_BOUND_IF/conn_incoming_ill does not apply to 7108 * IPv4 unicast packets. 7109 */ 7110 while ((connp != NULL) && 7111 (!IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) || 7112 !IPCL_ZONE_MATCH(connp, zoneid))) { 7113 connp = connp->conn_next; 7114 } 7115 7116 if (connp == NULL || connp->conn_upq == NULL) 7117 goto notfound; 7118 7119 if (is_system_labeled() && 7120 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7121 connp)) 7122 goto notfound; 7123 7124 CONN_INC_REF(connp); 7125 mutex_exit(&connfp->connf_lock); 7126 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7127 flags, recv_ill, ip_policy); 7128 IP_STAT(ipst, ip_udp_fannorm); 7129 CONN_DEC_REF(connp); 7130 return; 7131 } 7132 7133 /* 7134 * Broadcast and multicast case 7135 * 7136 * Need to check conn_wantpacket(). 7137 * If SO_REUSEADDR has been set on the first we send the 7138 * packet to all clients that have joined the group and 7139 * match the port. 7140 */ 7141 7142 while (connp != NULL) { 7143 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 7144 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7145 (!is_system_labeled() || 7146 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7147 connp))) 7148 break; 7149 connp = connp->conn_next; 7150 } 7151 7152 if (connp == NULL || connp->conn_upq == NULL) 7153 goto notfound; 7154 7155 first_connp = connp; 7156 /* 7157 * When SO_REUSEADDR is not set, send the packet only to the first 7158 * matching connection in its zone by keeping track of the zoneid. 7159 */ 7160 reuseaddr = first_connp->conn_reuseaddr; 7161 last_zoneid = first_connp->conn_zoneid; 7162 7163 CONN_INC_REF(connp); 7164 connp = connp->conn_next; 7165 for (;;) { 7166 while (connp != NULL) { 7167 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 7168 (reuseaddr || connp->conn_zoneid != last_zoneid) && 7169 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7170 (!is_system_labeled() || 7171 tsol_receive_local(mp, &dst, IPV4_VERSION, 7172 shared_addr, connp))) 7173 break; 7174 connp = connp->conn_next; 7175 } 7176 /* 7177 * Just copy the data part alone. The mctl part is 7178 * needed just for verifying policy and it is never 7179 * sent up. 7180 */ 7181 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7182 ((mp1 = copymsg(mp)) == NULL))) { 7183 /* 7184 * No more interested clients or memory 7185 * allocation failed 7186 */ 7187 connp = first_connp; 7188 break; 7189 } 7190 if (connp->conn_zoneid != last_zoneid) { 7191 /* 7192 * Update the zoneid so that the packet isn't sent to 7193 * any more conns in the same zone unless SO_REUSEADDR 7194 * is set. 7195 */ 7196 reuseaddr = connp->conn_reuseaddr; 7197 last_zoneid = connp->conn_zoneid; 7198 } 7199 if (first_mp != NULL) { 7200 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7201 ipsec_info_type == IPSEC_IN); 7202 first_mp1 = ipsec_in_tag(first_mp, NULL, 7203 ipst->ips_netstack); 7204 if (first_mp1 == NULL) { 7205 freemsg(mp1); 7206 connp = first_connp; 7207 break; 7208 } 7209 } else { 7210 first_mp1 = NULL; 7211 } 7212 CONN_INC_REF(connp); 7213 mutex_exit(&connfp->connf_lock); 7214 /* 7215 * IPQoS notes: We don't send the packet for policy 7216 * processing here, will do it for the last one (below). 7217 * i.e. we do it per-packet now, but if we do policy 7218 * processing per-conn, then we would need to do it 7219 * here too. 7220 */ 7221 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7222 ipha, flags, recv_ill, B_FALSE); 7223 mutex_enter(&connfp->connf_lock); 7224 /* Follow the next pointer before releasing the conn. */ 7225 next_connp = connp->conn_next; 7226 IP_STAT(ipst, ip_udp_fanmb); 7227 CONN_DEC_REF(connp); 7228 connp = next_connp; 7229 } 7230 7231 /* Last one. Send it upstream. */ 7232 mutex_exit(&connfp->connf_lock); 7233 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7234 recv_ill, ip_policy); 7235 IP_STAT(ipst, ip_udp_fanmb); 7236 CONN_DEC_REF(connp); 7237 return; 7238 7239 notfound: 7240 7241 mutex_exit(&connfp->connf_lock); 7242 IP_STAT(ipst, ip_udp_fanothers); 7243 /* 7244 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 7245 * have already been matched above, since they live in the IPv4 7246 * fanout tables. This implies we only need to 7247 * check for IPv6 in6addr_any endpoints here. 7248 * Thus we compare using ipv6_all_zeros instead of the destination 7249 * address, except for the multicast group membership lookup which 7250 * uses the IPv4 destination. 7251 */ 7252 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 7253 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7254 mutex_enter(&connfp->connf_lock); 7255 connp = connfp->connf_head; 7256 if (!broadcast && !CLASSD(dst)) { 7257 while (connp != NULL) { 7258 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7259 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 7260 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7261 !connp->conn_ipv6_v6only) 7262 break; 7263 connp = connp->conn_next; 7264 } 7265 7266 if (connp != NULL && is_system_labeled() && 7267 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7268 connp)) 7269 connp = NULL; 7270 7271 if (connp == NULL || connp->conn_upq == NULL) { 7272 /* 7273 * No one bound to this port. Is 7274 * there a client that wants all 7275 * unclaimed datagrams? 7276 */ 7277 mutex_exit(&connfp->connf_lock); 7278 7279 if (mctl_present) 7280 first_mp->b_cont = mp; 7281 else 7282 first_mp = mp; 7283 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP]. 7284 connf_head != NULL) { 7285 ip_fanout_proto(q, first_mp, ill, ipha, 7286 flags | IP_FF_RAWIP, mctl_present, 7287 ip_policy, recv_ill, zoneid); 7288 } else { 7289 if (ip_fanout_send_icmp(q, first_mp, flags, 7290 ICMP_DEST_UNREACHABLE, 7291 ICMP_PORT_UNREACHABLE, 7292 mctl_present, zoneid, ipst)) { 7293 BUMP_MIB(ill->ill_ip_mib, 7294 udpIfStatsNoPorts); 7295 } 7296 } 7297 return; 7298 } 7299 7300 CONN_INC_REF(connp); 7301 mutex_exit(&connfp->connf_lock); 7302 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7303 flags, recv_ill, ip_policy); 7304 CONN_DEC_REF(connp); 7305 return; 7306 } 7307 /* 7308 * IPv4 multicast packet being delivered to an AF_INET6 7309 * in6addr_any endpoint. 7310 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 7311 * and not conn_wantpacket_v6() since any multicast membership is 7312 * for an IPv4-mapped multicast address. 7313 * The packet is sent to all clients in all zones that have joined the 7314 * group and match the port. 7315 */ 7316 while (connp != NULL) { 7317 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7318 srcport, v6src) && 7319 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7320 (!is_system_labeled() || 7321 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7322 connp))) 7323 break; 7324 connp = connp->conn_next; 7325 } 7326 7327 if (connp == NULL || connp->conn_upq == NULL) { 7328 /* 7329 * No one bound to this port. Is 7330 * there a client that wants all 7331 * unclaimed datagrams? 7332 */ 7333 mutex_exit(&connfp->connf_lock); 7334 7335 if (mctl_present) 7336 first_mp->b_cont = mp; 7337 else 7338 first_mp = mp; 7339 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP].connf_head != 7340 NULL) { 7341 ip_fanout_proto(q, first_mp, ill, ipha, 7342 flags | IP_FF_RAWIP, mctl_present, ip_policy, 7343 recv_ill, zoneid); 7344 } else { 7345 /* 7346 * We used to attempt to send an icmp error here, but 7347 * since this is known to be a multicast packet 7348 * and we don't send icmp errors in response to 7349 * multicast, just drop the packet and give up sooner. 7350 */ 7351 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 7352 freemsg(first_mp); 7353 } 7354 return; 7355 } 7356 7357 first_connp = connp; 7358 7359 CONN_INC_REF(connp); 7360 connp = connp->conn_next; 7361 for (;;) { 7362 while (connp != NULL) { 7363 if (IPCL_UDP_MATCH_V6(connp, dstport, 7364 ipv6_all_zeros, srcport, v6src) && 7365 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7366 (!is_system_labeled() || 7367 tsol_receive_local(mp, &dst, IPV4_VERSION, 7368 shared_addr, connp))) 7369 break; 7370 connp = connp->conn_next; 7371 } 7372 /* 7373 * Just copy the data part alone. The mctl part is 7374 * needed just for verifying policy and it is never 7375 * sent up. 7376 */ 7377 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7378 ((mp1 = copymsg(mp)) == NULL))) { 7379 /* 7380 * No more intested clients or memory 7381 * allocation failed 7382 */ 7383 connp = first_connp; 7384 break; 7385 } 7386 if (first_mp != NULL) { 7387 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7388 ipsec_info_type == IPSEC_IN); 7389 first_mp1 = ipsec_in_tag(first_mp, NULL, 7390 ipst->ips_netstack); 7391 if (first_mp1 == NULL) { 7392 freemsg(mp1); 7393 connp = first_connp; 7394 break; 7395 } 7396 } else { 7397 first_mp1 = NULL; 7398 } 7399 CONN_INC_REF(connp); 7400 mutex_exit(&connfp->connf_lock); 7401 /* 7402 * IPQoS notes: We don't send the packet for policy 7403 * processing here, will do it for the last one (below). 7404 * i.e. we do it per-packet now, but if we do policy 7405 * processing per-conn, then we would need to do it 7406 * here too. 7407 */ 7408 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7409 ipha, flags, recv_ill, B_FALSE); 7410 mutex_enter(&connfp->connf_lock); 7411 /* Follow the next pointer before releasing the conn. */ 7412 next_connp = connp->conn_next; 7413 CONN_DEC_REF(connp); 7414 connp = next_connp; 7415 } 7416 7417 /* Last one. Send it upstream. */ 7418 mutex_exit(&connfp->connf_lock); 7419 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7420 recv_ill, ip_policy); 7421 CONN_DEC_REF(connp); 7422 } 7423 7424 /* 7425 * Complete the ip_wput header so that it 7426 * is possible to generate ICMP 7427 * errors. 7428 */ 7429 int 7430 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid, ip_stack_t *ipst) 7431 { 7432 ire_t *ire; 7433 7434 if (ipha->ipha_src == INADDR_ANY) { 7435 ire = ire_lookup_local(zoneid, ipst); 7436 if (ire == NULL) { 7437 ip1dbg(("ip_hdr_complete: no source IRE\n")); 7438 return (1); 7439 } 7440 ipha->ipha_src = ire->ire_addr; 7441 ire_refrele(ire); 7442 } 7443 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 7444 ipha->ipha_hdr_checksum = 0; 7445 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 7446 return (0); 7447 } 7448 7449 /* 7450 * Nobody should be sending 7451 * packets up this stream 7452 */ 7453 static void 7454 ip_lrput(queue_t *q, mblk_t *mp) 7455 { 7456 mblk_t *mp1; 7457 7458 switch (mp->b_datap->db_type) { 7459 case M_FLUSH: 7460 /* Turn around */ 7461 if (*mp->b_rptr & FLUSHW) { 7462 *mp->b_rptr &= ~FLUSHR; 7463 qreply(q, mp); 7464 return; 7465 } 7466 break; 7467 } 7468 /* Could receive messages that passed through ar_rput */ 7469 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 7470 mp1->b_prev = mp1->b_next = NULL; 7471 freemsg(mp); 7472 } 7473 7474 /* Nobody should be sending packets down this stream */ 7475 /* ARGSUSED */ 7476 void 7477 ip_lwput(queue_t *q, mblk_t *mp) 7478 { 7479 freemsg(mp); 7480 } 7481 7482 /* 7483 * Move the first hop in any source route to ipha_dst and remove that part of 7484 * the source route. Called by other protocols. Errors in option formatting 7485 * are ignored - will be handled by ip_wput_options Return the final 7486 * destination (either ipha_dst or the last entry in a source route.) 7487 */ 7488 ipaddr_t 7489 ip_massage_options(ipha_t *ipha, netstack_t *ns) 7490 { 7491 ipoptp_t opts; 7492 uchar_t *opt; 7493 uint8_t optval; 7494 uint8_t optlen; 7495 ipaddr_t dst; 7496 int i; 7497 ire_t *ire; 7498 ip_stack_t *ipst = ns->netstack_ip; 7499 7500 ip2dbg(("ip_massage_options\n")); 7501 dst = ipha->ipha_dst; 7502 for (optval = ipoptp_first(&opts, ipha); 7503 optval != IPOPT_EOL; 7504 optval = ipoptp_next(&opts)) { 7505 opt = opts.ipoptp_cur; 7506 switch (optval) { 7507 uint8_t off; 7508 case IPOPT_SSRR: 7509 case IPOPT_LSRR: 7510 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 7511 ip1dbg(("ip_massage_options: bad src route\n")); 7512 break; 7513 } 7514 optlen = opts.ipoptp_len; 7515 off = opt[IPOPT_OFFSET]; 7516 off--; 7517 redo_srr: 7518 if (optlen < IP_ADDR_LEN || 7519 off > optlen - IP_ADDR_LEN) { 7520 /* End of source route */ 7521 ip1dbg(("ip_massage_options: end of SR\n")); 7522 break; 7523 } 7524 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 7525 ip1dbg(("ip_massage_options: next hop 0x%x\n", 7526 ntohl(dst))); 7527 /* 7528 * Check if our address is present more than 7529 * once as consecutive hops in source route. 7530 * XXX verify per-interface ip_forwarding 7531 * for source route? 7532 */ 7533 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 7534 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7535 if (ire != NULL) { 7536 ire_refrele(ire); 7537 off += IP_ADDR_LEN; 7538 goto redo_srr; 7539 } 7540 if (dst == htonl(INADDR_LOOPBACK)) { 7541 ip1dbg(("ip_massage_options: loopback addr in " 7542 "source route!\n")); 7543 break; 7544 } 7545 /* 7546 * Update ipha_dst to be the first hop and remove the 7547 * first hop from the source route (by overwriting 7548 * part of the option with NOP options). 7549 */ 7550 ipha->ipha_dst = dst; 7551 /* Put the last entry in dst */ 7552 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 7553 3; 7554 bcopy(&opt[off], &dst, IP_ADDR_LEN); 7555 7556 ip1dbg(("ip_massage_options: last hop 0x%x\n", 7557 ntohl(dst))); 7558 /* Move down and overwrite */ 7559 opt[IP_ADDR_LEN] = opt[0]; 7560 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 7561 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 7562 for (i = 0; i < IP_ADDR_LEN; i++) 7563 opt[i] = IPOPT_NOP; 7564 break; 7565 } 7566 } 7567 return (dst); 7568 } 7569 7570 /* 7571 * This function's job is to forward data to the reverse tunnel (FA->HA) 7572 * after doing a few checks. It is assumed that the incoming interface 7573 * of the packet is always different than the outgoing interface and the 7574 * ire_type of the found ire has to be a non-resolver type. 7575 * 7576 * IPQoS notes 7577 * IP policy is invoked twice for a forwarded packet, once on the read side 7578 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 7579 * enabled. 7580 */ 7581 static void 7582 ip_mrtun_forward(ire_t *ire, ill_t *in_ill, mblk_t *mp) 7583 { 7584 ipha_t *ipha; 7585 queue_t *q; 7586 uint32_t pkt_len; 7587 #define rptr ((uchar_t *)ipha) 7588 uint32_t sum; 7589 uint32_t max_frag; 7590 mblk_t *first_mp; 7591 uint32_t ill_index; 7592 ipxmit_state_t pktxmit_state; 7593 ill_t *out_ill; 7594 ip_stack_t *ipst = in_ill->ill_ipst; 7595 7596 ASSERT(ire != NULL); 7597 ASSERT(ire->ire_ipif->ipif_net_type == IRE_IF_NORESOLVER); 7598 ASSERT(ire->ire_stq != NULL); 7599 7600 /* Initiate read side IPPF processing */ 7601 if (IPP_ENABLED(IPP_FWD_IN, ipst)) { 7602 ill_index = in_ill->ill_phyint->phyint_ifindex; 7603 ip_process(IPP_FWD_IN, &mp, ill_index); 7604 if (mp == NULL) { 7605 ip2dbg(("ip_mrtun_forward: inbound pkt " 7606 "dropped during IPPF processing\n")); 7607 return; 7608 } 7609 } 7610 7611 if (((in_ill->ill_flags & ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 7612 ILLF_ROUTER) == 0) || 7613 (in_ill == (ill_t *)ire->ire_stq->q_ptr)) { 7614 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsForwProhibits); 7615 ip0dbg(("ip_mrtun_forward: Can't forward :" 7616 "forwarding is not turned on\n")); 7617 goto drop_pkt; 7618 } 7619 7620 /* 7621 * Don't forward if the interface is down 7622 */ 7623 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 7624 goto discard_pkt; 7625 } 7626 7627 ipha = (ipha_t *)mp->b_rptr; 7628 pkt_len = ntohs(ipha->ipha_length); 7629 /* Adjust the checksum to reflect the ttl decrement. */ 7630 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 7631 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 7632 if (ipha->ipha_ttl-- <= 1) { 7633 if (ip_csum_hdr(ipha)) { 7634 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsInCksumErrs); 7635 goto drop_pkt; 7636 } 7637 q = ire->ire_stq; 7638 if ((first_mp = allocb(sizeof (ipsec_info_t), 7639 BPRI_HI)) == NULL) { 7640 goto discard_pkt; 7641 } 7642 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsForwProhibits); 7643 ip_ipsec_out_prepend(first_mp, mp, in_ill); 7644 /* Sent by forwarding path, and router is global zone */ 7645 icmp_time_exceeded(q, first_mp, ICMP_TTL_EXCEEDED, 7646 GLOBAL_ZONEID, ipst); 7647 return; 7648 } 7649 7650 /* Get the ill_index of the ILL */ 7651 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 7652 7653 /* 7654 * This location is chosen for the placement of the forwarding hook 7655 * because at this point we know that we have a path out for the 7656 * packet but haven't yet applied any logic (such as fragmenting) 7657 * that happen as part of transmitting the packet out. 7658 */ 7659 out_ill = ire->ire_ipif->ipif_ill; 7660 7661 DTRACE_PROBE4(ip4__forwarding__start, 7662 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 7663 7664 FW_HOOKS(ipst->ips_ip4_forwarding_event, 7665 ipst->ips_ipv4firewall_forwarding, 7666 in_ill, out_ill, ipha, mp, mp, ipst); 7667 7668 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 7669 7670 if (mp == NULL) 7671 return; 7672 pkt_len = ntohs(ipha->ipha_length); 7673 7674 /* 7675 * ip_mrtun_forward is only used by foreign agent to reverse 7676 * tunnel the incoming packet. So it does not do any option 7677 * processing for source routing. 7678 */ 7679 max_frag = ire->ire_max_frag; 7680 if (pkt_len > max_frag) { 7681 /* 7682 * It needs fragging on its way out. We haven't 7683 * verified the header checksum yet. Since we 7684 * are going to put a surely good checksum in the 7685 * outgoing header, we have to make sure that it 7686 * was good coming in. 7687 */ 7688 if (ip_csum_hdr(ipha)) { 7689 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsInCksumErrs); 7690 goto drop_pkt; 7691 } 7692 7693 /* Initiate write side IPPF processing */ 7694 if (IPP_ENABLED(IPP_FWD_OUT, ipst)) { 7695 ip_process(IPP_FWD_OUT, &mp, ill_index); 7696 if (mp == NULL) { 7697 ip2dbg(("ip_mrtun_forward: outbound pkt "\ 7698 "dropped/deferred during ip policy "\ 7699 "processing\n")); 7700 return; 7701 } 7702 } 7703 if ((first_mp = allocb(sizeof (ipsec_info_t), 7704 BPRI_HI)) == NULL) { 7705 goto discard_pkt; 7706 } 7707 ip_ipsec_out_prepend(first_mp, mp, in_ill); 7708 mp = first_mp; 7709 7710 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID, ipst); 7711 return; 7712 } 7713 7714 ip2dbg(("ip_mrtun_forward: ire type (%d)\n", ire->ire_type)); 7715 7716 ASSERT(ire->ire_ipif != NULL); 7717 7718 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 7719 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 7720 FW_HOOKS(ipst->ips_ip4_physical_out_event, 7721 ipst->ips_ipv4firewall_physical_out, 7722 NULL, out_ill, ipha, mp, mp, ipst); 7723 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 7724 if (mp == NULL) 7725 return; 7726 7727 /* Now send the packet to the tunnel interface */ 7728 mp->b_prev = SET_BPREV_FLAG(IPP_FWD_OUT); 7729 q = ire->ire_stq; 7730 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_FALSE); 7731 if ((pktxmit_state == SEND_FAILED) || 7732 (pktxmit_state == LLHDR_RESLV_FAILED)) { 7733 ip2dbg(("ip_mrtun_forward: failed to send packet to ill %p\n", 7734 q->q_ptr)); 7735 } 7736 7737 return; 7738 discard_pkt: 7739 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsInDiscards); 7740 drop_pkt:; 7741 ip2dbg(("ip_mrtun_forward: dropping pkt\n")); 7742 freemsg(mp); 7743 #undef rptr 7744 } 7745 7746 /* 7747 * Fills the ipsec_out_t data structure with appropriate fields and 7748 * prepends it to mp which contains the IP hdr + data that was meant 7749 * to be forwarded. Please note that ipsec_out_info data structure 7750 * is used here to communicate the outgoing ill path at ip_wput() 7751 * for the ICMP error packet. This has nothing to do with ipsec IP 7752 * security. ipsec_out_t is really used to pass the info to the module 7753 * IP where this information cannot be extracted from conn. 7754 * This functions is called by ip_mrtun_forward(). 7755 */ 7756 void 7757 ip_ipsec_out_prepend(mblk_t *first_mp, mblk_t *mp, ill_t *xmit_ill) 7758 { 7759 ipsec_out_t *io; 7760 7761 ASSERT(xmit_ill != NULL); 7762 first_mp->b_datap->db_type = M_CTL; 7763 first_mp->b_wptr += sizeof (ipsec_info_t); 7764 /* 7765 * This is to pass info to ip_wput in absence of conn. 7766 * ipsec_out_secure will be B_FALSE because of this. 7767 * Thus ipsec_out_secure being B_FALSE indicates that 7768 * this is not IPSEC security related information. 7769 */ 7770 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 7771 io = (ipsec_out_t *)first_mp->b_rptr; 7772 io->ipsec_out_type = IPSEC_OUT; 7773 io->ipsec_out_len = sizeof (ipsec_out_t); 7774 first_mp->b_cont = mp; 7775 io->ipsec_out_ill_index = 7776 xmit_ill->ill_phyint->phyint_ifindex; 7777 io->ipsec_out_xmit_if = B_TRUE; 7778 io->ipsec_out_ns = xmit_ill->ill_ipst->ips_netstack; 7779 } 7780 7781 /* 7782 * Return the network mask 7783 * associated with the specified address. 7784 */ 7785 ipaddr_t 7786 ip_net_mask(ipaddr_t addr) 7787 { 7788 uchar_t *up = (uchar_t *)&addr; 7789 ipaddr_t mask = 0; 7790 uchar_t *maskp = (uchar_t *)&mask; 7791 7792 #if defined(__i386) || defined(__amd64) 7793 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7794 #endif 7795 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7796 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7797 #endif 7798 if (CLASSD(addr)) { 7799 maskp[0] = 0xF0; 7800 return (mask); 7801 } 7802 if (addr == 0) 7803 return (0); 7804 maskp[0] = 0xFF; 7805 if ((up[0] & 0x80) == 0) 7806 return (mask); 7807 7808 maskp[1] = 0xFF; 7809 if ((up[0] & 0xC0) == 0x80) 7810 return (mask); 7811 7812 maskp[2] = 0xFF; 7813 if ((up[0] & 0xE0) == 0xC0) 7814 return (mask); 7815 7816 /* Must be experimental or multicast, indicate as much */ 7817 return ((ipaddr_t)0); 7818 } 7819 7820 /* 7821 * Select an ill for the packet by considering load spreading across 7822 * a different ill in the group if dst_ill is part of some group. 7823 */ 7824 ill_t * 7825 ip_newroute_get_dst_ill(ill_t *dst_ill) 7826 { 7827 ill_t *ill; 7828 7829 /* 7830 * We schedule irrespective of whether the source address is 7831 * INADDR_ANY or not. illgrp_scheduler returns a held ill. 7832 */ 7833 ill = illgrp_scheduler(dst_ill); 7834 if (ill == NULL) 7835 return (NULL); 7836 7837 /* 7838 * For groups with names ip_sioctl_groupname ensures that all 7839 * ills are of same type. For groups without names, ifgrp_insert 7840 * ensures this. 7841 */ 7842 ASSERT(dst_ill->ill_type == ill->ill_type); 7843 7844 return (ill); 7845 } 7846 7847 /* 7848 * Helper function for the IPIF_NOFAILOVER/ATTACH_IF interface attachment case. 7849 */ 7850 ill_t * 7851 ip_grab_attach_ill(ill_t *ill, mblk_t *first_mp, int ifindex, boolean_t isv6, 7852 ip_stack_t *ipst) 7853 { 7854 ill_t *ret_ill; 7855 7856 ASSERT(ifindex != 0); 7857 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 7858 ipst); 7859 if (ret_ill == NULL || 7860 (ret_ill->ill_phyint->phyint_flags & PHYI_OFFLINE)) { 7861 if (isv6) { 7862 if (ill != NULL) { 7863 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7864 } else { 7865 BUMP_MIB(&ipst->ips_ip6_mib, 7866 ipIfStatsOutDiscards); 7867 } 7868 ip1dbg(("ip_grab_attach_ill (IPv6): " 7869 "bad ifindex %d.\n", ifindex)); 7870 } else { 7871 if (ill != NULL) { 7872 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7873 } else { 7874 BUMP_MIB(&ipst->ips_ip_mib, 7875 ipIfStatsOutDiscards); 7876 } 7877 ip1dbg(("ip_grab_attach_ill (IPv4): " 7878 "bad ifindex %d.\n", ifindex)); 7879 } 7880 if (ret_ill != NULL) 7881 ill_refrele(ret_ill); 7882 freemsg(first_mp); 7883 return (NULL); 7884 } 7885 7886 return (ret_ill); 7887 } 7888 7889 /* 7890 * IPv4 - 7891 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7892 * out a packet to a destination address for which we do not have specific 7893 * (or sufficient) routing information. 7894 * 7895 * NOTE : These are the scopes of some of the variables that point at IRE, 7896 * which needs to be followed while making any future modifications 7897 * to avoid memory leaks. 7898 * 7899 * - ire and sire are the entries looked up initially by 7900 * ire_ftable_lookup. 7901 * - ipif_ire is used to hold the interface ire associated with 7902 * the new cache ire. But it's scope is limited, so we always REFRELE 7903 * it before branching out to error paths. 7904 * - save_ire is initialized before ire_create, so that ire returned 7905 * by ire_create will not over-write the ire. We REFRELE save_ire 7906 * before breaking out of the switch. 7907 * 7908 * Thus on failures, we have to REFRELE only ire and sire, if they 7909 * are not NULL. 7910 */ 7911 void 7912 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, ill_t *in_ill, conn_t *connp, 7913 zoneid_t zoneid, ip_stack_t *ipst) 7914 { 7915 areq_t *areq; 7916 ipaddr_t gw = 0; 7917 ire_t *ire = NULL; 7918 mblk_t *res_mp; 7919 ipaddr_t *addrp; 7920 ipaddr_t nexthop_addr; 7921 ipif_t *src_ipif = NULL; 7922 ill_t *dst_ill = NULL; 7923 ipha_t *ipha; 7924 ire_t *sire = NULL; 7925 mblk_t *first_mp; 7926 ire_t *save_ire; 7927 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER address */ 7928 ushort_t ire_marks = 0; 7929 boolean_t mctl_present; 7930 ipsec_out_t *io; 7931 mblk_t *saved_mp; 7932 ire_t *first_sire = NULL; 7933 mblk_t *copy_mp = NULL; 7934 mblk_t *xmit_mp = NULL; 7935 ipaddr_t save_dst; 7936 uint32_t multirt_flags = 7937 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7938 boolean_t multirt_is_resolvable; 7939 boolean_t multirt_resolve_next; 7940 boolean_t do_attach_ill = B_FALSE; 7941 boolean_t ip_nexthop = B_FALSE; 7942 tsol_ire_gw_secattr_t *attrp = NULL; 7943 tsol_gcgrp_t *gcgrp = NULL; 7944 tsol_gcgrp_addr_t ga; 7945 7946 if (ip_debug > 2) { 7947 /* ip1dbg */ 7948 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7949 } 7950 7951 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7952 if (mctl_present) { 7953 io = (ipsec_out_t *)first_mp->b_rptr; 7954 ASSERT(io->ipsec_out_type == IPSEC_OUT); 7955 ASSERT(zoneid == io->ipsec_out_zoneid); 7956 ASSERT(zoneid != ALL_ZONES); 7957 } 7958 7959 ipha = (ipha_t *)mp->b_rptr; 7960 7961 /* All multicast lookups come through ip_newroute_ipif() */ 7962 if (CLASSD(dst)) { 7963 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7964 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7965 freemsg(first_mp); 7966 return; 7967 } 7968 7969 if (mctl_present && io->ipsec_out_attach_if) { 7970 /* ip_grab_attach_ill returns a held ill */ 7971 attach_ill = ip_grab_attach_ill(NULL, first_mp, 7972 io->ipsec_out_ill_index, B_FALSE, ipst); 7973 7974 /* Failure case frees things for us. */ 7975 if (attach_ill == NULL) 7976 return; 7977 7978 /* 7979 * Check if we need an ire that will not be 7980 * looked up by anybody else i.e. HIDDEN. 7981 */ 7982 if (ill_is_probeonly(attach_ill)) 7983 ire_marks = IRE_MARK_HIDDEN; 7984 } 7985 if (mctl_present && io->ipsec_out_ip_nexthop) { 7986 ip_nexthop = B_TRUE; 7987 nexthop_addr = io->ipsec_out_nexthop_addr; 7988 } 7989 /* 7990 * If this IRE is created for forwarding or it is not for 7991 * traffic for congestion controlled protocols, mark it as temporary. 7992 */ 7993 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 7994 ire_marks |= IRE_MARK_TEMPORARY; 7995 7996 /* 7997 * Get what we can from ire_ftable_lookup which will follow an IRE 7998 * chain until it gets the most specific information available. 7999 * For example, we know that there is no IRE_CACHE for this dest, 8000 * but there may be an IRE_OFFSUBNET which specifies a gateway. 8001 * ire_ftable_lookup will look up the gateway, etc. 8002 * Check if in_ill != NULL. If it is true, the packet must be 8003 * from an incoming interface where RTA_SRCIFP is set. 8004 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 8005 * to the destination, of equal netmask length in the forward table, 8006 * will be recursively explored. If no information is available 8007 * for the final gateway of that route, we force the returned ire 8008 * to be equal to sire using MATCH_IRE_PARENT. 8009 * At least, in this case we have a starting point (in the buckets) 8010 * to look for other routes to the destination in the forward table. 8011 * This is actually used only for multirouting, where a list 8012 * of routes has to be processed in sequence. 8013 * 8014 * In the process of coming up with the most specific information, 8015 * ire_ftable_lookup may end up with an incomplete IRE_CACHE entry 8016 * for the gateway (i.e., one for which the ire_nce->nce_state is 8017 * not yet ND_REACHABLE, and is in the middle of arp resolution). 8018 * Two caveats when handling incomplete ire's in ip_newroute: 8019 * - we should be careful when accessing its ire_nce (specifically 8020 * the nce_res_mp) ast it might change underneath our feet, and, 8021 * - not all legacy code path callers are prepared to handle 8022 * incomplete ire's, so we should not create/add incomplete 8023 * ire_cache entries here. (See discussion about temporary solution 8024 * further below). 8025 * 8026 * In order to minimize packet dropping, and to preserve existing 8027 * behavior, we treat this case as if there were no IRE_CACHE for the 8028 * gateway, and instead use the IF_RESOLVER ire to send out 8029 * another request to ARP (this is achieved by passing the 8030 * MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the 8031 * arp response comes back in ip_wput_nondata, we will create 8032 * a per-dst ire_cache that has an ND_COMPLETE ire. 8033 * 8034 * Note that this is a temporary solution; the correct solution is 8035 * to create an incomplete per-dst ire_cache entry, and send the 8036 * packet out when the gw's nce is resolved. In order to achieve this, 8037 * all packet processing must have been completed prior to calling 8038 * ire_add_then_send. Some legacy code paths (e.g. cgtp) would need 8039 * to be modified to accomodate this solution. 8040 */ 8041 if (in_ill != NULL) { 8042 ire = ire_srcif_table_lookup(dst, IRE_IF_RESOLVER, NULL, 8043 in_ill, MATCH_IRE_TYPE); 8044 } else if (ip_nexthop) { 8045 /* 8046 * The first time we come here, we look for an IRE_INTERFACE 8047 * entry for the specified nexthop, set the dst to be the 8048 * nexthop address and create an IRE_CACHE entry for the 8049 * nexthop. The next time around, we are able to find an 8050 * IRE_CACHE entry for the nexthop, set the gateway to be the 8051 * nexthop address and create an IRE_CACHE entry for the 8052 * destination address via the specified nexthop. 8053 */ 8054 ire = ire_cache_lookup(nexthop_addr, zoneid, 8055 MBLK_GETLABEL(mp), ipst); 8056 if (ire != NULL) { 8057 gw = nexthop_addr; 8058 ire_marks |= IRE_MARK_PRIVATE_ADDR; 8059 } else { 8060 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 8061 IRE_INTERFACE, NULL, NULL, zoneid, 0, 8062 MBLK_GETLABEL(mp), 8063 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 8064 ipst); 8065 if (ire != NULL) { 8066 dst = nexthop_addr; 8067 } 8068 } 8069 } else if (attach_ill == NULL) { 8070 ire = ire_ftable_lookup(dst, 0, 0, 0, 8071 NULL, &sire, zoneid, 0, MBLK_GETLABEL(mp), 8072 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 8073 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 8074 MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE, 8075 ipst); 8076 } else { 8077 /* 8078 * attach_ill is set only for communicating with 8079 * on-link hosts. So, don't look for DEFAULT. 8080 */ 8081 ipif_t *attach_ipif; 8082 8083 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 8084 if (attach_ipif == NULL) { 8085 ill_refrele(attach_ill); 8086 goto icmp_err_ret; 8087 } 8088 ire = ire_ftable_lookup(dst, 0, 0, 0, attach_ipif, 8089 &sire, zoneid, 0, MBLK_GETLABEL(mp), 8090 MATCH_IRE_RJ_BHOLE | MATCH_IRE_ILL | 8091 MATCH_IRE_SECATTR, ipst); 8092 ipif_refrele(attach_ipif); 8093 } 8094 ip3dbg(("ip_newroute: ire_ftable_lookup() " 8095 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 8096 8097 /* 8098 * This loop is run only once in most cases. 8099 * We loop to resolve further routes only when the destination 8100 * can be reached through multiple RTF_MULTIRT-flagged ires. 8101 */ 8102 do { 8103 /* Clear the previous iteration's values */ 8104 if (src_ipif != NULL) { 8105 ipif_refrele(src_ipif); 8106 src_ipif = NULL; 8107 } 8108 if (dst_ill != NULL) { 8109 ill_refrele(dst_ill); 8110 dst_ill = NULL; 8111 } 8112 8113 multirt_resolve_next = B_FALSE; 8114 /* 8115 * We check if packets have to be multirouted. 8116 * In this case, given the current <ire, sire> couple, 8117 * we look for the next suitable <ire, sire>. 8118 * This check is done in ire_multirt_lookup(), 8119 * which applies various criteria to find the next route 8120 * to resolve. ire_multirt_lookup() leaves <ire, sire> 8121 * unchanged if it detects it has not been tried yet. 8122 */ 8123 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8124 ip3dbg(("ip_newroute: starting next_resolution " 8125 "with first_mp %p, tag %d\n", 8126 (void *)first_mp, 8127 MULTIRT_DEBUG_TAGGED(first_mp))); 8128 8129 ASSERT(sire != NULL); 8130 multirt_is_resolvable = 8131 ire_multirt_lookup(&ire, &sire, multirt_flags, 8132 MBLK_GETLABEL(mp), ipst); 8133 8134 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 8135 "ire %p, sire %p\n", 8136 multirt_is_resolvable, 8137 (void *)ire, (void *)sire)); 8138 8139 if (!multirt_is_resolvable) { 8140 /* 8141 * No more multirt route to resolve; give up 8142 * (all routes resolved or no more 8143 * resolvable routes). 8144 */ 8145 if (ire != NULL) { 8146 ire_refrele(ire); 8147 ire = NULL; 8148 } 8149 } else { 8150 ASSERT(sire != NULL); 8151 ASSERT(ire != NULL); 8152 /* 8153 * We simply use first_sire as a flag that 8154 * indicates if a resolvable multirt route 8155 * has already been found. 8156 * If it is not the case, we may have to send 8157 * an ICMP error to report that the 8158 * destination is unreachable. 8159 * We do not IRE_REFHOLD first_sire. 8160 */ 8161 if (first_sire == NULL) { 8162 first_sire = sire; 8163 } 8164 } 8165 } 8166 if (ire == NULL) { 8167 if (ip_debug > 3) { 8168 /* ip2dbg */ 8169 pr_addr_dbg("ip_newroute: " 8170 "can't resolve %s\n", AF_INET, &dst); 8171 } 8172 ip3dbg(("ip_newroute: " 8173 "ire %p, sire %p, first_sire %p\n", 8174 (void *)ire, (void *)sire, (void *)first_sire)); 8175 8176 if (sire != NULL) { 8177 ire_refrele(sire); 8178 sire = NULL; 8179 } 8180 8181 if (first_sire != NULL) { 8182 /* 8183 * At least one multirt route has been found 8184 * in the same call to ip_newroute(); 8185 * there is no need to report an ICMP error. 8186 * first_sire was not IRE_REFHOLDed. 8187 */ 8188 MULTIRT_DEBUG_UNTAG(first_mp); 8189 freemsg(first_mp); 8190 return; 8191 } 8192 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 8193 RTA_DST, ipst); 8194 if (attach_ill != NULL) 8195 ill_refrele(attach_ill); 8196 goto icmp_err_ret; 8197 } 8198 8199 /* 8200 * When RTA_SRCIFP is used to add a route, then an interface 8201 * route is added in the source interface's routing table. 8202 * If the outgoing interface of this route is of type 8203 * IRE_IF_RESOLVER, then upon creation of the ire, 8204 * ire_nce->nce_res_mp is set to NULL. 8205 * Later, when this route is first used for forwarding 8206 * a packet, ip_newroute() is called 8207 * to resolve the hardware address of the outgoing ipif. 8208 * We do not come here for IRE_IF_NORESOLVER entries in the 8209 * source interface based table. We only come here if the 8210 * outgoing interface is a resolver interface and we don't 8211 * have the ire_nce->nce_res_mp information yet. 8212 * If in_ill is not null that means it is called from 8213 * ip_rput. 8214 */ 8215 8216 ASSERT(ire->ire_in_ill == NULL || 8217 (ire->ire_type == IRE_IF_RESOLVER && 8218 ire->ire_nce != NULL && ire->ire_nce->nce_res_mp == NULL)); 8219 8220 /* 8221 * Verify that the returned IRE does not have either 8222 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 8223 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 8224 */ 8225 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 8226 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 8227 if (attach_ill != NULL) 8228 ill_refrele(attach_ill); 8229 goto icmp_err_ret; 8230 } 8231 /* 8232 * Increment the ire_ob_pkt_count field for ire if it is an 8233 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 8234 * increment the same for the parent IRE, sire, if it is some 8235 * sort of prefix IRE (which includes DEFAULT, PREFIX, HOST 8236 * and HOST_REDIRECT). 8237 */ 8238 if ((ire->ire_type & IRE_INTERFACE) != 0) { 8239 UPDATE_OB_PKT_COUNT(ire); 8240 ire->ire_last_used_time = lbolt; 8241 } 8242 8243 if (sire != NULL) { 8244 gw = sire->ire_gateway_addr; 8245 ASSERT((sire->ire_type & (IRE_CACHETABLE | 8246 IRE_INTERFACE)) == 0); 8247 UPDATE_OB_PKT_COUNT(sire); 8248 sire->ire_last_used_time = lbolt; 8249 } 8250 /* 8251 * We have a route to reach the destination. 8252 * 8253 * 1) If the interface is part of ill group, try to get a new 8254 * ill taking load spreading into account. 8255 * 8256 * 2) After selecting the ill, get a source address that 8257 * might create good inbound load spreading. 8258 * ipif_select_source does this for us. 8259 * 8260 * If the application specified the ill (ifindex), we still 8261 * load spread. Only if the packets needs to go out 8262 * specifically on a given ill e.g. binding to 8263 * IPIF_NOFAILOVER address, then we don't try to use a 8264 * different ill for load spreading. 8265 */ 8266 if (attach_ill == NULL) { 8267 /* 8268 * Don't perform outbound load spreading in the 8269 * case of an RTF_MULTIRT route, as we actually 8270 * typically want to replicate outgoing packets 8271 * through particular interfaces. 8272 */ 8273 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8274 dst_ill = ire->ire_ipif->ipif_ill; 8275 /* for uniformity */ 8276 ill_refhold(dst_ill); 8277 } else { 8278 /* 8279 * If we are here trying to create an IRE_CACHE 8280 * for an offlink destination and have the 8281 * IRE_CACHE for the next hop and the latter is 8282 * using virtual IP source address selection i.e 8283 * it's ire->ire_ipif is pointing to a virtual 8284 * network interface (vni) then 8285 * ip_newroute_get_dst_ll() will return the vni 8286 * interface as the dst_ill. Since the vni is 8287 * virtual i.e not associated with any physical 8288 * interface, it cannot be the dst_ill, hence 8289 * in such a case call ip_newroute_get_dst_ll() 8290 * with the stq_ill instead of the ire_ipif ILL. 8291 * The function returns a refheld ill. 8292 */ 8293 if ((ire->ire_type == IRE_CACHE) && 8294 IS_VNI(ire->ire_ipif->ipif_ill)) 8295 dst_ill = ip_newroute_get_dst_ill( 8296 ire->ire_stq->q_ptr); 8297 else 8298 dst_ill = ip_newroute_get_dst_ill( 8299 ire->ire_ipif->ipif_ill); 8300 } 8301 if (dst_ill == NULL) { 8302 if (ip_debug > 2) { 8303 pr_addr_dbg("ip_newroute: " 8304 "no dst ill for dst" 8305 " %s\n", AF_INET, &dst); 8306 } 8307 goto icmp_err_ret; 8308 } 8309 } else { 8310 dst_ill = ire->ire_ipif->ipif_ill; 8311 /* for uniformity */ 8312 ill_refhold(dst_ill); 8313 /* 8314 * We should have found a route matching ill as we 8315 * called ire_ftable_lookup with MATCH_IRE_ILL. 8316 * Rather than asserting, when there is a mismatch, 8317 * we just drop the packet. 8318 */ 8319 if (dst_ill != attach_ill) { 8320 ip0dbg(("ip_newroute: Packet dropped as " 8321 "IPIF_NOFAILOVER ill is %s, " 8322 "ire->ire_ipif->ipif_ill is %s\n", 8323 attach_ill->ill_name, 8324 dst_ill->ill_name)); 8325 ill_refrele(attach_ill); 8326 goto icmp_err_ret; 8327 } 8328 } 8329 /* attach_ill can't go in loop. IPMP and CGTP are disjoint */ 8330 if (attach_ill != NULL) { 8331 ill_refrele(attach_ill); 8332 attach_ill = NULL; 8333 do_attach_ill = B_TRUE; 8334 } 8335 ASSERT(dst_ill != NULL); 8336 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 8337 8338 /* 8339 * Pick the best source address from dst_ill. 8340 * 8341 * 1) If it is part of a multipathing group, we would 8342 * like to spread the inbound packets across different 8343 * interfaces. ipif_select_source picks a random source 8344 * across the different ills in the group. 8345 * 8346 * 2) If it is not part of a multipathing group, we try 8347 * to pick the source address from the destination 8348 * route. Clustering assumes that when we have multiple 8349 * prefixes hosted on an interface, the prefix of the 8350 * source address matches the prefix of the destination 8351 * route. We do this only if the address is not 8352 * DEPRECATED. 8353 * 8354 * 3) If the conn is in a different zone than the ire, we 8355 * need to pick a source address from the right zone. 8356 * 8357 * NOTE : If we hit case (1) above, the prefix of the source 8358 * address picked may not match the prefix of the 8359 * destination routes prefix as ipif_select_source 8360 * does not look at "dst" while picking a source 8361 * address. 8362 * If we want the same behavior as (2), we will need 8363 * to change the behavior of ipif_select_source. 8364 */ 8365 ASSERT(src_ipif == NULL); 8366 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 8367 /* 8368 * The RTF_SETSRC flag is set in the parent ire (sire). 8369 * Check that the ipif matching the requested source 8370 * address still exists. 8371 */ 8372 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 8373 zoneid, NULL, NULL, NULL, NULL, ipst); 8374 } 8375 if (src_ipif == NULL) { 8376 ire_marks |= IRE_MARK_USESRC_CHECK; 8377 if ((dst_ill->ill_group != NULL) || 8378 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 8379 (connp != NULL && ire->ire_zoneid != zoneid && 8380 ire->ire_zoneid != ALL_ZONES) || 8381 (dst_ill->ill_usesrc_ifindex != 0)) { 8382 /* 8383 * If the destination is reachable via a 8384 * given gateway, the selected source address 8385 * should be in the same subnet as the gateway. 8386 * Otherwise, the destination is not reachable. 8387 * 8388 * If there are no interfaces on the same subnet 8389 * as the destination, ipif_select_source gives 8390 * first non-deprecated interface which might be 8391 * on a different subnet than the gateway. 8392 * This is not desirable. Hence pass the dst_ire 8393 * source address to ipif_select_source. 8394 * It is sure that the destination is reachable 8395 * with the dst_ire source address subnet. 8396 * So passing dst_ire source address to 8397 * ipif_select_source will make sure that the 8398 * selected source will be on the same subnet 8399 * as dst_ire source address. 8400 */ 8401 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 8402 src_ipif = ipif_select_source(dst_ill, saddr, 8403 zoneid); 8404 if (src_ipif == NULL) { 8405 if (ip_debug > 2) { 8406 pr_addr_dbg("ip_newroute: " 8407 "no src for dst %s ", 8408 AF_INET, &dst); 8409 printf("through interface %s\n", 8410 dst_ill->ill_name); 8411 } 8412 goto icmp_err_ret; 8413 } 8414 } else { 8415 src_ipif = ire->ire_ipif; 8416 ASSERT(src_ipif != NULL); 8417 /* hold src_ipif for uniformity */ 8418 ipif_refhold(src_ipif); 8419 } 8420 } 8421 8422 /* 8423 * Assign a source address while we have the conn. 8424 * We can't have ip_wput_ire pick a source address when the 8425 * packet returns from arp since we need to look at 8426 * conn_unspec_src and conn_zoneid, and we lose the conn when 8427 * going through arp. 8428 * 8429 * NOTE : ip_newroute_v6 does not have this piece of code as 8430 * it uses ip6i to store this information. 8431 */ 8432 if (ipha->ipha_src == INADDR_ANY && 8433 (connp == NULL || !connp->conn_unspec_src)) { 8434 ipha->ipha_src = src_ipif->ipif_src_addr; 8435 } 8436 if (ip_debug > 3) { 8437 /* ip2dbg */ 8438 pr_addr_dbg("ip_newroute: first hop %s\n", 8439 AF_INET, &gw); 8440 } 8441 ip2dbg(("\tire type %s (%d)\n", 8442 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 8443 8444 /* 8445 * The TTL of multirouted packets is bounded by the 8446 * ip_multirt_ttl ndd variable. 8447 */ 8448 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8449 /* Force TTL of multirouted packets */ 8450 if ((ipst->ips_ip_multirt_ttl > 0) && 8451 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 8452 ip2dbg(("ip_newroute: forcing multirt TTL " 8453 "to %d (was %d), dst 0x%08x\n", 8454 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 8455 ntohl(sire->ire_addr))); 8456 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 8457 } 8458 } 8459 /* 8460 * At this point in ip_newroute(), ire is either the 8461 * IRE_CACHE of the next-hop gateway for an off-subnet 8462 * destination or an IRE_INTERFACE type that should be used 8463 * to resolve an on-subnet destination or an on-subnet 8464 * next-hop gateway. 8465 * 8466 * In the IRE_CACHE case, we have the following : 8467 * 8468 * 1) src_ipif - used for getting a source address. 8469 * 8470 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8471 * means packets using this IRE_CACHE will go out on 8472 * dst_ill. 8473 * 8474 * 3) The IRE sire will point to the prefix that is the 8475 * longest matching route for the destination. These 8476 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST. 8477 * 8478 * The newly created IRE_CACHE entry for the off-subnet 8479 * destination is tied to both the prefix route and the 8480 * interface route used to resolve the next-hop gateway 8481 * via the ire_phandle and ire_ihandle fields, 8482 * respectively. 8483 * 8484 * In the IRE_INTERFACE case, we have the following : 8485 * 8486 * 1) src_ipif - used for getting a source address. 8487 * 8488 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8489 * means packets using the IRE_CACHE that we will build 8490 * here will go out on dst_ill. 8491 * 8492 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 8493 * to be created will only be tied to the IRE_INTERFACE 8494 * that was derived from the ire_ihandle field. 8495 * 8496 * If sire is non-NULL, it means the destination is 8497 * off-link and we will first create the IRE_CACHE for the 8498 * gateway. Next time through ip_newroute, we will create 8499 * the IRE_CACHE for the final destination as described 8500 * above. 8501 * 8502 * In both cases, after the current resolution has been 8503 * completed (or possibly initialised, in the IRE_INTERFACE 8504 * case), the loop may be re-entered to attempt the resolution 8505 * of another RTF_MULTIRT route. 8506 * 8507 * When an IRE_CACHE entry for the off-subnet destination is 8508 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 8509 * for further processing in emission loops. 8510 */ 8511 save_ire = ire; 8512 switch (ire->ire_type) { 8513 case IRE_CACHE: { 8514 ire_t *ipif_ire; 8515 mblk_t *ire_fp_mp; 8516 8517 ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE); 8518 if (gw == 0) 8519 gw = ire->ire_gateway_addr; 8520 /* 8521 * We need 3 ire's to create a new cache ire for an 8522 * off-link destination from the cache ire of the 8523 * gateway. 8524 * 8525 * 1. The prefix ire 'sire' (Note that this does 8526 * not apply to the conn_nexthop_set case) 8527 * 2. The cache ire of the gateway 'ire' 8528 * 3. The interface ire 'ipif_ire' 8529 * 8530 * We have (1) and (2). We lookup (3) below. 8531 * 8532 * If there is no interface route to the gateway, 8533 * it is a race condition, where we found the cache 8534 * but the interface route has been deleted. 8535 */ 8536 if (ip_nexthop) { 8537 ipif_ire = ire_ihandle_lookup_onlink(ire); 8538 } else { 8539 ipif_ire = 8540 ire_ihandle_lookup_offlink(ire, sire); 8541 } 8542 if (ipif_ire == NULL) { 8543 ip1dbg(("ip_newroute: " 8544 "ire_ihandle_lookup_offlink failed\n")); 8545 goto icmp_err_ret; 8546 } 8547 /* 8548 * XXX We are using the same res_mp 8549 * (DL_UNITDATA_REQ) though the save_ire is not 8550 * pointing at the same ill. 8551 * This is incorrect. We need to send it up to the 8552 * resolver to get the right res_mp. For ethernets 8553 * this may be okay (ill_type == DL_ETHER). 8554 */ 8555 res_mp = save_ire->ire_nce->nce_res_mp; 8556 ire_fp_mp = NULL; 8557 8558 /* 8559 * Check cached gateway IRE for any security 8560 * attributes; if found, associate the gateway 8561 * credentials group to the destination IRE. 8562 */ 8563 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 8564 mutex_enter(&attrp->igsa_lock); 8565 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 8566 GCGRP_REFHOLD(gcgrp); 8567 mutex_exit(&attrp->igsa_lock); 8568 } 8569 8570 ire = ire_create( 8571 (uchar_t *)&dst, /* dest address */ 8572 (uchar_t *)&ip_g_all_ones, /* mask */ 8573 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8574 (uchar_t *)&gw, /* gateway address */ 8575 NULL, 8576 &save_ire->ire_max_frag, 8577 ire_fp_mp, /* Fast Path header */ 8578 dst_ill->ill_rq, /* recv-from queue */ 8579 dst_ill->ill_wq, /* send-to queue */ 8580 IRE_CACHE, /* IRE type */ 8581 res_mp, 8582 src_ipif, 8583 in_ill, /* incoming ill */ 8584 (sire != NULL) ? 8585 sire->ire_mask : 0, /* Parent mask */ 8586 (sire != NULL) ? 8587 sire->ire_phandle : 0, /* Parent handle */ 8588 ipif_ire->ire_ihandle, /* Interface handle */ 8589 (sire != NULL) ? (sire->ire_flags & 8590 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 8591 (sire != NULL) ? 8592 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 8593 NULL, 8594 gcgrp, 8595 ipst); 8596 8597 if (ire == NULL) { 8598 if (gcgrp != NULL) { 8599 GCGRP_REFRELE(gcgrp); 8600 gcgrp = NULL; 8601 } 8602 ire_refrele(ipif_ire); 8603 ire_refrele(save_ire); 8604 break; 8605 } 8606 8607 /* reference now held by IRE */ 8608 gcgrp = NULL; 8609 8610 ire->ire_marks |= ire_marks; 8611 8612 /* 8613 * Prevent sire and ipif_ire from getting deleted. 8614 * The newly created ire is tied to both of them via 8615 * the phandle and ihandle respectively. 8616 */ 8617 if (sire != NULL) { 8618 IRB_REFHOLD(sire->ire_bucket); 8619 /* Has it been removed already ? */ 8620 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 8621 IRB_REFRELE(sire->ire_bucket); 8622 ire_refrele(ipif_ire); 8623 ire_refrele(save_ire); 8624 break; 8625 } 8626 } 8627 8628 IRB_REFHOLD(ipif_ire->ire_bucket); 8629 /* Has it been removed already ? */ 8630 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 8631 IRB_REFRELE(ipif_ire->ire_bucket); 8632 if (sire != NULL) 8633 IRB_REFRELE(sire->ire_bucket); 8634 ire_refrele(ipif_ire); 8635 ire_refrele(save_ire); 8636 break; 8637 } 8638 8639 xmit_mp = first_mp; 8640 /* 8641 * In the case of multirouting, a copy 8642 * of the packet is done before its sending. 8643 * The copy is used to attempt another 8644 * route resolution, in a next loop. 8645 */ 8646 if (ire->ire_flags & RTF_MULTIRT) { 8647 copy_mp = copymsg(first_mp); 8648 if (copy_mp != NULL) { 8649 xmit_mp = copy_mp; 8650 MULTIRT_DEBUG_TAG(first_mp); 8651 } 8652 } 8653 ire_add_then_send(q, ire, xmit_mp); 8654 ire_refrele(save_ire); 8655 8656 /* Assert that sire is not deleted yet. */ 8657 if (sire != NULL) { 8658 ASSERT(sire->ire_ptpn != NULL); 8659 IRB_REFRELE(sire->ire_bucket); 8660 } 8661 8662 /* Assert that ipif_ire is not deleted yet. */ 8663 ASSERT(ipif_ire->ire_ptpn != NULL); 8664 IRB_REFRELE(ipif_ire->ire_bucket); 8665 ire_refrele(ipif_ire); 8666 8667 /* 8668 * If copy_mp is not NULL, multirouting was 8669 * requested. We loop to initiate a next 8670 * route resolution attempt, starting from sire. 8671 */ 8672 if (copy_mp != NULL) { 8673 /* 8674 * Search for the next unresolved 8675 * multirt route. 8676 */ 8677 copy_mp = NULL; 8678 ipif_ire = NULL; 8679 ire = NULL; 8680 multirt_resolve_next = B_TRUE; 8681 continue; 8682 } 8683 if (sire != NULL) 8684 ire_refrele(sire); 8685 ipif_refrele(src_ipif); 8686 ill_refrele(dst_ill); 8687 return; 8688 } 8689 case IRE_IF_NORESOLVER: { 8690 /* 8691 * We have what we need to build an IRE_CACHE. 8692 * 8693 * Create a new res_mp with the IP gateway address 8694 * in destination address in the DLPI hdr if the 8695 * physical length is exactly 4 bytes. 8696 */ 8697 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) { 8698 uchar_t *addr; 8699 8700 if (gw) 8701 addr = (uchar_t *)&gw; 8702 else 8703 addr = (uchar_t *)&dst; 8704 8705 res_mp = ill_dlur_gen(addr, 8706 dst_ill->ill_phys_addr_length, 8707 dst_ill->ill_sap, 8708 dst_ill->ill_sap_length); 8709 8710 if (res_mp == NULL) { 8711 ip1dbg(("ip_newroute: res_mp NULL\n")); 8712 break; 8713 } 8714 } else if (dst_ill->ill_resolver_mp == NULL) { 8715 ip1dbg(("ip_newroute: dst_ill %p " 8716 "for IF_NORESOLV ire %p has " 8717 "no ill_resolver_mp\n", 8718 (void *)dst_ill, (void *)ire)); 8719 break; 8720 } else { 8721 res_mp = NULL; 8722 } 8723 8724 /* 8725 * TSol note: We are creating the ire cache for the 8726 * destination 'dst'. If 'dst' is offlink, going 8727 * through the first hop 'gw', the security attributes 8728 * of 'dst' must be set to point to the gateway 8729 * credentials of gateway 'gw'. If 'dst' is onlink, it 8730 * is possible that 'dst' is a potential gateway that is 8731 * referenced by some route that has some security 8732 * attributes. Thus in the former case, we need to do a 8733 * gcgrp_lookup of 'gw' while in the latter case we 8734 * need to do gcgrp_lookup of 'dst' itself. 8735 */ 8736 ga.ga_af = AF_INET; 8737 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 8738 &ga.ga_addr); 8739 gcgrp = gcgrp_lookup(&ga, B_FALSE); 8740 8741 ire = ire_create( 8742 (uchar_t *)&dst, /* dest address */ 8743 (uchar_t *)&ip_g_all_ones, /* mask */ 8744 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8745 (uchar_t *)&gw, /* gateway address */ 8746 NULL, 8747 &save_ire->ire_max_frag, 8748 NULL, /* Fast Path header */ 8749 dst_ill->ill_rq, /* recv-from queue */ 8750 dst_ill->ill_wq, /* send-to queue */ 8751 IRE_CACHE, 8752 res_mp, 8753 src_ipif, 8754 in_ill, /* Incoming ill */ 8755 save_ire->ire_mask, /* Parent mask */ 8756 (sire != NULL) ? /* Parent handle */ 8757 sire->ire_phandle : 0, 8758 save_ire->ire_ihandle, /* Interface handle */ 8759 (sire != NULL) ? sire->ire_flags & 8760 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 8761 &(save_ire->ire_uinfo), 8762 NULL, 8763 gcgrp, 8764 ipst); 8765 8766 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) 8767 freeb(res_mp); 8768 8769 if (ire == NULL) { 8770 if (gcgrp != NULL) { 8771 GCGRP_REFRELE(gcgrp); 8772 gcgrp = NULL; 8773 } 8774 ire_refrele(save_ire); 8775 break; 8776 } 8777 8778 /* reference now held by IRE */ 8779 gcgrp = NULL; 8780 8781 ire->ire_marks |= ire_marks; 8782 8783 /* Prevent save_ire from getting deleted */ 8784 IRB_REFHOLD(save_ire->ire_bucket); 8785 /* Has it been removed already ? */ 8786 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8787 IRB_REFRELE(save_ire->ire_bucket); 8788 ire_refrele(save_ire); 8789 break; 8790 } 8791 8792 /* 8793 * In the case of multirouting, a copy 8794 * of the packet is made before it is sent. 8795 * The copy is used in the next 8796 * loop to attempt another resolution. 8797 */ 8798 xmit_mp = first_mp; 8799 if ((sire != NULL) && 8800 (sire->ire_flags & RTF_MULTIRT)) { 8801 copy_mp = copymsg(first_mp); 8802 if (copy_mp != NULL) { 8803 xmit_mp = copy_mp; 8804 MULTIRT_DEBUG_TAG(first_mp); 8805 } 8806 } 8807 ire_add_then_send(q, ire, xmit_mp); 8808 8809 /* Assert that it is not deleted yet. */ 8810 ASSERT(save_ire->ire_ptpn != NULL); 8811 IRB_REFRELE(save_ire->ire_bucket); 8812 ire_refrele(save_ire); 8813 8814 if (copy_mp != NULL) { 8815 /* 8816 * If we found a (no)resolver, we ignore any 8817 * trailing top priority IRE_CACHE in further 8818 * loops. This ensures that we do not omit any 8819 * (no)resolver. 8820 * This IRE_CACHE, if any, will be processed 8821 * by another thread entering ip_newroute(). 8822 * IRE_CACHE entries, if any, will be processed 8823 * by another thread entering ip_newroute(), 8824 * (upon resolver response, for instance). 8825 * This aims to force parallel multirt 8826 * resolutions as soon as a packet must be sent. 8827 * In the best case, after the tx of only one 8828 * packet, all reachable routes are resolved. 8829 * Otherwise, the resolution of all RTF_MULTIRT 8830 * routes would require several emissions. 8831 */ 8832 multirt_flags &= ~MULTIRT_CACHEGW; 8833 8834 /* 8835 * Search for the next unresolved multirt 8836 * route. 8837 */ 8838 copy_mp = NULL; 8839 save_ire = NULL; 8840 ire = NULL; 8841 multirt_resolve_next = B_TRUE; 8842 continue; 8843 } 8844 8845 /* 8846 * Don't need sire anymore 8847 */ 8848 if (sire != NULL) 8849 ire_refrele(sire); 8850 8851 ipif_refrele(src_ipif); 8852 ill_refrele(dst_ill); 8853 return; 8854 } 8855 case IRE_IF_RESOLVER: 8856 /* 8857 * We can't build an IRE_CACHE yet, but at least we 8858 * found a resolver that can help. 8859 */ 8860 res_mp = dst_ill->ill_resolver_mp; 8861 if (!OK_RESOLVER_MP(res_mp)) 8862 break; 8863 8864 /* 8865 * To be at this point in the code with a non-zero gw 8866 * means that dst is reachable through a gateway that 8867 * we have never resolved. By changing dst to the gw 8868 * addr we resolve the gateway first. 8869 * When ire_add_then_send() tries to put the IP dg 8870 * to dst, it will reenter ip_newroute() at which 8871 * time we will find the IRE_CACHE for the gw and 8872 * create another IRE_CACHE in case IRE_CACHE above. 8873 */ 8874 if (gw != INADDR_ANY) { 8875 /* 8876 * The source ipif that was determined above was 8877 * relative to the destination address, not the 8878 * gateway's. If src_ipif was not taken out of 8879 * the IRE_IF_RESOLVER entry, we'll need to call 8880 * ipif_select_source() again. 8881 */ 8882 if (src_ipif != ire->ire_ipif) { 8883 ipif_refrele(src_ipif); 8884 src_ipif = ipif_select_source(dst_ill, 8885 gw, zoneid); 8886 if (src_ipif == NULL) { 8887 if (ip_debug > 2) { 8888 pr_addr_dbg( 8889 "ip_newroute: no " 8890 "src for gw %s ", 8891 AF_INET, &gw); 8892 printf("through " 8893 "interface %s\n", 8894 dst_ill->ill_name); 8895 } 8896 goto icmp_err_ret; 8897 } 8898 } 8899 save_dst = dst; 8900 dst = gw; 8901 gw = INADDR_ANY; 8902 } 8903 8904 /* 8905 * We obtain a partial IRE_CACHE which we will pass 8906 * along with the resolver query. When the response 8907 * comes back it will be there ready for us to add. 8908 * The ire_max_frag is atomically set under the 8909 * irebucket lock in ire_add_v[46]. 8910 */ 8911 8912 ire = ire_create_mp( 8913 (uchar_t *)&dst, /* dest address */ 8914 (uchar_t *)&ip_g_all_ones, /* mask */ 8915 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8916 (uchar_t *)&gw, /* gateway address */ 8917 NULL, /* no in_src_addr */ 8918 NULL, /* ire_max_frag */ 8919 NULL, /* Fast Path header */ 8920 dst_ill->ill_rq, /* recv-from queue */ 8921 dst_ill->ill_wq, /* send-to queue */ 8922 IRE_CACHE, 8923 NULL, 8924 src_ipif, /* Interface ipif */ 8925 in_ill, /* Incoming ILL */ 8926 save_ire->ire_mask, /* Parent mask */ 8927 0, 8928 save_ire->ire_ihandle, /* Interface handle */ 8929 0, /* flags if any */ 8930 &(save_ire->ire_uinfo), 8931 NULL, 8932 NULL, 8933 ipst); 8934 8935 if (ire == NULL) { 8936 ire_refrele(save_ire); 8937 break; 8938 } 8939 8940 if ((sire != NULL) && 8941 (sire->ire_flags & RTF_MULTIRT)) { 8942 copy_mp = copymsg(first_mp); 8943 if (copy_mp != NULL) 8944 MULTIRT_DEBUG_TAG(copy_mp); 8945 } 8946 8947 ire->ire_marks |= ire_marks; 8948 8949 /* 8950 * Construct message chain for the resolver 8951 * of the form: 8952 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8953 * Packet could contain a IPSEC_OUT mp. 8954 * 8955 * NOTE : ire will be added later when the response 8956 * comes back from ARP. If the response does not 8957 * come back, ARP frees the packet. For this reason, 8958 * we can't REFHOLD the bucket of save_ire to prevent 8959 * deletions. We may not be able to REFRELE the bucket 8960 * if the response never comes back. Thus, before 8961 * adding the ire, ire_add_v4 will make sure that the 8962 * interface route does not get deleted. This is the 8963 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8964 * where we can always prevent deletions because of 8965 * the synchronous nature of adding IRES i.e 8966 * ire_add_then_send is called after creating the IRE. 8967 */ 8968 ASSERT(ire->ire_mp != NULL); 8969 ire->ire_mp->b_cont = first_mp; 8970 /* Have saved_mp handy, for cleanup if canput fails */ 8971 saved_mp = mp; 8972 mp = copyb(res_mp); 8973 if (mp == NULL) { 8974 /* Prepare for cleanup */ 8975 mp = saved_mp; /* pkt */ 8976 ire_delete(ire); /* ire_mp */ 8977 ire = NULL; 8978 ire_refrele(save_ire); 8979 if (copy_mp != NULL) { 8980 MULTIRT_DEBUG_UNTAG(copy_mp); 8981 freemsg(copy_mp); 8982 copy_mp = NULL; 8983 } 8984 break; 8985 } 8986 linkb(mp, ire->ire_mp); 8987 8988 /* 8989 * Fill in the source and dest addrs for the resolver. 8990 * NOTE: this depends on memory layouts imposed by 8991 * ill_init(). 8992 */ 8993 areq = (areq_t *)mp->b_rptr; 8994 addrp = (ipaddr_t *)((char *)areq + 8995 areq->areq_sender_addr_offset); 8996 if (do_attach_ill) { 8997 /* 8998 * This is bind to no failover case. 8999 * arp packet also must go out on attach_ill. 9000 */ 9001 ASSERT(ipha->ipha_src != NULL); 9002 *addrp = ipha->ipha_src; 9003 } else { 9004 *addrp = save_ire->ire_src_addr; 9005 } 9006 9007 ire_refrele(save_ire); 9008 addrp = (ipaddr_t *)((char *)areq + 9009 areq->areq_target_addr_offset); 9010 *addrp = dst; 9011 /* Up to the resolver. */ 9012 if (canputnext(dst_ill->ill_rq) && 9013 !(dst_ill->ill_arp_closing)) { 9014 putnext(dst_ill->ill_rq, mp); 9015 ire = NULL; 9016 if (copy_mp != NULL) { 9017 /* 9018 * If we found a resolver, we ignore 9019 * any trailing top priority IRE_CACHE 9020 * in the further loops. This ensures 9021 * that we do not omit any resolver. 9022 * IRE_CACHE entries, if any, will be 9023 * processed next time we enter 9024 * ip_newroute(). 9025 */ 9026 multirt_flags &= ~MULTIRT_CACHEGW; 9027 /* 9028 * Search for the next unresolved 9029 * multirt route. 9030 */ 9031 first_mp = copy_mp; 9032 copy_mp = NULL; 9033 /* Prepare the next resolution loop. */ 9034 mp = first_mp; 9035 EXTRACT_PKT_MP(mp, first_mp, 9036 mctl_present); 9037 if (mctl_present) 9038 io = (ipsec_out_t *) 9039 first_mp->b_rptr; 9040 ipha = (ipha_t *)mp->b_rptr; 9041 9042 ASSERT(sire != NULL); 9043 9044 dst = save_dst; 9045 multirt_resolve_next = B_TRUE; 9046 continue; 9047 } 9048 9049 if (sire != NULL) 9050 ire_refrele(sire); 9051 9052 /* 9053 * The response will come back in ip_wput 9054 * with db_type IRE_DB_TYPE. 9055 */ 9056 ipif_refrele(src_ipif); 9057 ill_refrele(dst_ill); 9058 return; 9059 } else { 9060 /* Prepare for cleanup */ 9061 DTRACE_PROBE1(ip__newroute__drop, mblk_t *, 9062 mp); 9063 mp->b_cont = NULL; 9064 freeb(mp); /* areq */ 9065 /* 9066 * this is an ire that is not added to the 9067 * cache. ire_freemblk will handle the release 9068 * of any resources associated with the ire. 9069 */ 9070 ire_delete(ire); /* ire_mp */ 9071 mp = saved_mp; /* pkt */ 9072 ire = NULL; 9073 if (copy_mp != NULL) { 9074 MULTIRT_DEBUG_UNTAG(copy_mp); 9075 freemsg(copy_mp); 9076 copy_mp = NULL; 9077 } 9078 break; 9079 } 9080 default: 9081 break; 9082 } 9083 } while (multirt_resolve_next); 9084 9085 ip1dbg(("ip_newroute: dropped\n")); 9086 /* Did this packet originate externally? */ 9087 if (mp->b_prev) { 9088 mp->b_next = NULL; 9089 mp->b_prev = NULL; 9090 if (in_ill != NULL) { 9091 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsInDiscards); 9092 } else { 9093 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 9094 } 9095 } else { 9096 if (dst_ill != NULL) { 9097 BUMP_MIB(dst_ill->ill_ip_mib, ipIfStatsOutDiscards); 9098 } else { 9099 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 9100 } 9101 } 9102 ASSERT(copy_mp == NULL); 9103 MULTIRT_DEBUG_UNTAG(first_mp); 9104 freemsg(first_mp); 9105 if (ire != NULL) 9106 ire_refrele(ire); 9107 if (sire != NULL) 9108 ire_refrele(sire); 9109 if (src_ipif != NULL) 9110 ipif_refrele(src_ipif); 9111 if (dst_ill != NULL) 9112 ill_refrele(dst_ill); 9113 return; 9114 9115 icmp_err_ret: 9116 ip1dbg(("ip_newroute: no route\n")); 9117 if (src_ipif != NULL) 9118 ipif_refrele(src_ipif); 9119 if (dst_ill != NULL) 9120 ill_refrele(dst_ill); 9121 if (sire != NULL) 9122 ire_refrele(sire); 9123 /* Did this packet originate externally? */ 9124 if (mp->b_prev) { 9125 mp->b_next = NULL; 9126 mp->b_prev = NULL; 9127 if (in_ill != NULL) { 9128 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsInNoRoutes); 9129 } else { 9130 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInNoRoutes); 9131 } 9132 q = WR(q); 9133 } else { 9134 /* 9135 * There is no outgoing ill, so just increment the 9136 * system MIB. 9137 */ 9138 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 9139 /* 9140 * Since ip_wput() isn't close to finished, we fill 9141 * in enough of the header for credible error reporting. 9142 */ 9143 if (ip_hdr_complete(ipha, zoneid, ipst)) { 9144 /* Failed */ 9145 MULTIRT_DEBUG_UNTAG(first_mp); 9146 freemsg(first_mp); 9147 if (ire != NULL) 9148 ire_refrele(ire); 9149 return; 9150 } 9151 } 9152 9153 /* 9154 * At this point we will have ire only if RTF_BLACKHOLE 9155 * or RTF_REJECT flags are set on the IRE. It will not 9156 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9157 */ 9158 if (ire != NULL) { 9159 if (ire->ire_flags & RTF_BLACKHOLE) { 9160 ire_refrele(ire); 9161 MULTIRT_DEBUG_UNTAG(first_mp); 9162 freemsg(first_mp); 9163 return; 9164 } 9165 ire_refrele(ire); 9166 } 9167 if (ip_source_routed(ipha, ipst)) { 9168 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED, 9169 zoneid, ipst); 9170 return; 9171 } 9172 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9173 } 9174 9175 ip_opt_info_t zero_info; 9176 9177 /* 9178 * IPv4 - 9179 * ip_newroute_ipif is called by ip_wput_multicast and 9180 * ip_rput_forward_multicast whenever we need to send 9181 * out a packet to a destination address for which we do not have specific 9182 * routing information. It is used when the packet will be sent out 9183 * on a specific interface. It is also called by ip_wput() when IP_XMIT_IF 9184 * socket option is set or icmp error message wants to go out on a particular 9185 * interface for a unicast packet. 9186 * 9187 * In most cases, the destination address is resolved thanks to the ipif 9188 * intrinsic resolver. However, there are some cases where the call to 9189 * ip_newroute_ipif must take into account the potential presence of 9190 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 9191 * that uses the interface. This is specified through flags, 9192 * which can be a combination of: 9193 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 9194 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 9195 * and flags. Additionally, the packet source address has to be set to 9196 * the specified address. The caller is thus expected to set this flag 9197 * if the packet has no specific source address yet. 9198 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 9199 * flag, the resulting ire will inherit the flag. All unresolved routes 9200 * to the destination must be explored in the same call to 9201 * ip_newroute_ipif(). 9202 */ 9203 static void 9204 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 9205 conn_t *connp, uint32_t flags, zoneid_t zoneid, ip_opt_info_t *infop) 9206 { 9207 areq_t *areq; 9208 ire_t *ire = NULL; 9209 mblk_t *res_mp; 9210 ipaddr_t *addrp; 9211 mblk_t *first_mp; 9212 ire_t *save_ire = NULL; 9213 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER */ 9214 ipif_t *src_ipif = NULL; 9215 ushort_t ire_marks = 0; 9216 ill_t *dst_ill = NULL; 9217 boolean_t mctl_present; 9218 ipsec_out_t *io; 9219 ipha_t *ipha; 9220 int ihandle = 0; 9221 mblk_t *saved_mp; 9222 ire_t *fire = NULL; 9223 mblk_t *copy_mp = NULL; 9224 boolean_t multirt_resolve_next; 9225 ipaddr_t ipha_dst; 9226 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 9227 9228 /* 9229 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 9230 * here for uniformity 9231 */ 9232 ipif_refhold(ipif); 9233 9234 /* 9235 * This loop is run only once in most cases. 9236 * We loop to resolve further routes only when the destination 9237 * can be reached through multiple RTF_MULTIRT-flagged ires. 9238 */ 9239 do { 9240 if (dst_ill != NULL) { 9241 ill_refrele(dst_ill); 9242 dst_ill = NULL; 9243 } 9244 if (src_ipif != NULL) { 9245 ipif_refrele(src_ipif); 9246 src_ipif = NULL; 9247 } 9248 multirt_resolve_next = B_FALSE; 9249 9250 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 9251 ipif->ipif_ill->ill_name)); 9252 9253 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 9254 if (mctl_present) 9255 io = (ipsec_out_t *)first_mp->b_rptr; 9256 9257 ipha = (ipha_t *)mp->b_rptr; 9258 9259 /* 9260 * Save the packet destination address, we may need it after 9261 * the packet has been consumed. 9262 */ 9263 ipha_dst = ipha->ipha_dst; 9264 9265 /* 9266 * If the interface is a pt-pt interface we look for an 9267 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 9268 * local_address and the pt-pt destination address. Otherwise 9269 * we just match the local address. 9270 * NOTE: dst could be different than ipha->ipha_dst in case 9271 * of sending igmp multicast packets over a point-to-point 9272 * connection. 9273 * Thus we must be careful enough to check ipha_dst to be a 9274 * multicast address, otherwise it will take xmit_if path for 9275 * multicast packets resulting into kernel stack overflow by 9276 * repeated calls to ip_newroute_ipif from ire_send(). 9277 */ 9278 if (CLASSD(ipha_dst) && 9279 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 9280 goto err_ret; 9281 } 9282 9283 /* 9284 * We check if an IRE_OFFSUBNET for the addr that goes through 9285 * ipif exists. We need it to determine if the RTF_SETSRC and/or 9286 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 9287 * propagate its flags to the new ire. 9288 */ 9289 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 9290 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 9291 ip2dbg(("ip_newroute_ipif: " 9292 "ipif_lookup_multi_ire(" 9293 "ipif %p, dst %08x) = fire %p\n", 9294 (void *)ipif, ntohl(dst), (void *)fire)); 9295 } 9296 9297 if (mctl_present && io->ipsec_out_attach_if) { 9298 attach_ill = ip_grab_attach_ill(NULL, first_mp, 9299 io->ipsec_out_ill_index, B_FALSE, ipst); 9300 9301 /* Failure case frees things for us. */ 9302 if (attach_ill == NULL) { 9303 ipif_refrele(ipif); 9304 if (fire != NULL) 9305 ire_refrele(fire); 9306 return; 9307 } 9308 9309 /* 9310 * Check if we need an ire that will not be 9311 * looked up by anybody else i.e. HIDDEN. 9312 */ 9313 if (ill_is_probeonly(attach_ill)) { 9314 ire_marks = IRE_MARK_HIDDEN; 9315 } 9316 /* 9317 * ip_wput passes the right ipif for IPIF_NOFAILOVER 9318 * case. 9319 */ 9320 dst_ill = ipif->ipif_ill; 9321 /* attach_ill has been refheld by ip_grab_attach_ill */ 9322 ASSERT(dst_ill == attach_ill); 9323 } else { 9324 /* 9325 * If this is set by IP_XMIT_IF, then make sure that 9326 * ipif is pointing to the same ill as the IP_XMIT_IF 9327 * specified ill. 9328 */ 9329 ASSERT((connp == NULL) || 9330 (connp->conn_xmit_if_ill == NULL) || 9331 (connp->conn_xmit_if_ill == ipif->ipif_ill)); 9332 /* 9333 * If the interface belongs to an interface group, 9334 * make sure the next possible interface in the group 9335 * is used. This encourages load spreading among 9336 * peers in an interface group. 9337 * Note: load spreading is disabled for RTF_MULTIRT 9338 * routes. 9339 */ 9340 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9341 (fire->ire_flags & RTF_MULTIRT)) { 9342 /* 9343 * Don't perform outbound load spreading 9344 * in the case of an RTF_MULTIRT issued route, 9345 * we actually typically want to replicate 9346 * outgoing packets through particular 9347 * interfaces. 9348 */ 9349 dst_ill = ipif->ipif_ill; 9350 ill_refhold(dst_ill); 9351 } else { 9352 dst_ill = ip_newroute_get_dst_ill( 9353 ipif->ipif_ill); 9354 } 9355 if (dst_ill == NULL) { 9356 if (ip_debug > 2) { 9357 pr_addr_dbg("ip_newroute_ipif: " 9358 "no dst ill for dst %s\n", 9359 AF_INET, &dst); 9360 } 9361 goto err_ret; 9362 } 9363 } 9364 9365 /* 9366 * Pick a source address preferring non-deprecated ones. 9367 * Unlike ip_newroute, we don't do any source address 9368 * selection here since for multicast it really does not help 9369 * in inbound load spreading as in the unicast case. 9370 */ 9371 if ((flags & RTF_SETSRC) && (fire != NULL) && 9372 (fire->ire_flags & RTF_SETSRC)) { 9373 /* 9374 * As requested by flags, an IRE_OFFSUBNET was looked up 9375 * on that interface. This ire has RTF_SETSRC flag, so 9376 * the source address of the packet must be changed. 9377 * Check that the ipif matching the requested source 9378 * address still exists. 9379 */ 9380 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 9381 zoneid, NULL, NULL, NULL, NULL, ipst); 9382 } 9383 if (((ipif->ipif_flags & IPIF_DEPRECATED) || 9384 (connp != NULL && ipif->ipif_zoneid != zoneid && 9385 ipif->ipif_zoneid != ALL_ZONES)) && 9386 (src_ipif == NULL)) { 9387 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 9388 if (src_ipif == NULL) { 9389 if (ip_debug > 2) { 9390 /* ip1dbg */ 9391 pr_addr_dbg("ip_newroute_ipif: " 9392 "no src for dst %s", 9393 AF_INET, &dst); 9394 } 9395 ip1dbg((" through interface %s\n", 9396 dst_ill->ill_name)); 9397 goto err_ret; 9398 } 9399 ipif_refrele(ipif); 9400 ipif = src_ipif; 9401 ipif_refhold(ipif); 9402 } 9403 if (src_ipif == NULL) { 9404 src_ipif = ipif; 9405 ipif_refhold(src_ipif); 9406 } 9407 9408 /* 9409 * Assign a source address while we have the conn. 9410 * We can't have ip_wput_ire pick a source address when the 9411 * packet returns from arp since conn_unspec_src might be set 9412 * and we loose the conn when going through arp. 9413 */ 9414 if (ipha->ipha_src == INADDR_ANY && 9415 (connp == NULL || !connp->conn_unspec_src)) { 9416 ipha->ipha_src = src_ipif->ipif_src_addr; 9417 } 9418 9419 /* 9420 * In case of IP_XMIT_IF, it is possible that the outgoing 9421 * interface does not have an interface ire. 9422 * Example: Thousands of mobileip PPP interfaces to mobile 9423 * nodes. We don't want to create interface ires because 9424 * packets from other mobile nodes must not take the route 9425 * via interface ires to the visiting mobile node without 9426 * going through the home agent, in absence of mobileip 9427 * route optimization. 9428 */ 9429 if (CLASSD(ipha_dst) && (connp == NULL || 9430 connp->conn_xmit_if_ill == NULL) && 9431 infop->ip_opt_ill_index == 0) { 9432 /* ipif_to_ire returns an held ire */ 9433 ire = ipif_to_ire(ipif); 9434 if (ire == NULL) 9435 goto err_ret; 9436 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 9437 goto err_ret; 9438 /* 9439 * ihandle is needed when the ire is added to 9440 * cache table. 9441 */ 9442 save_ire = ire; 9443 ihandle = save_ire->ire_ihandle; 9444 9445 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 9446 "flags %04x\n", 9447 (void *)ire, (void *)ipif, flags)); 9448 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9449 (fire->ire_flags & RTF_MULTIRT)) { 9450 /* 9451 * As requested by flags, an IRE_OFFSUBNET was 9452 * looked up on that interface. This ire has 9453 * RTF_MULTIRT flag, so the resolution loop will 9454 * be re-entered to resolve additional routes on 9455 * other interfaces. For that purpose, a copy of 9456 * the packet is performed at this point. 9457 */ 9458 fire->ire_last_used_time = lbolt; 9459 copy_mp = copymsg(first_mp); 9460 if (copy_mp) { 9461 MULTIRT_DEBUG_TAG(copy_mp); 9462 } 9463 } 9464 if ((flags & RTF_SETSRC) && (fire != NULL) && 9465 (fire->ire_flags & RTF_SETSRC)) { 9466 /* 9467 * As requested by flags, an IRE_OFFSUBET was 9468 * looked up on that interface. This ire has 9469 * RTF_SETSRC flag, so the source address of the 9470 * packet must be changed. 9471 */ 9472 ipha->ipha_src = fire->ire_src_addr; 9473 } 9474 } else { 9475 ASSERT((connp == NULL) || 9476 (connp->conn_xmit_if_ill != NULL) || 9477 (connp->conn_dontroute) || 9478 infop->ip_opt_ill_index != 0); 9479 /* 9480 * The only ways we can come here are: 9481 * 1) IP_XMIT_IF socket option is set 9482 * 2) ICMP error message generated from 9483 * ip_mrtun_forward() routine and it needs 9484 * to go through the specified ill. 9485 * 3) SO_DONTROUTE socket option is set 9486 * 4) IP_PKTINFO option is passed in as ancillary data. 9487 * In all cases, the new ire will not be added 9488 * into cache table. 9489 */ 9490 ire_marks |= IRE_MARK_NOADD; 9491 } 9492 9493 switch (ipif->ipif_net_type) { 9494 case IRE_IF_NORESOLVER: { 9495 /* We have what we need to build an IRE_CACHE. */ 9496 mblk_t *res_mp; 9497 9498 /* 9499 * Create a new res_mp with the 9500 * IP gateway address as destination address in the 9501 * DLPI hdr if the physical length is exactly 4 bytes. 9502 */ 9503 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) { 9504 res_mp = ill_dlur_gen((uchar_t *)&dst, 9505 dst_ill->ill_phys_addr_length, 9506 dst_ill->ill_sap, 9507 dst_ill->ill_sap_length); 9508 } else if (dst_ill->ill_resolver_mp == NULL) { 9509 ip1dbg(("ip_newroute: dst_ill %p " 9510 "for IF_NORESOLV ire %p has " 9511 "no ill_resolver_mp\n", 9512 (void *)dst_ill, (void *)ire)); 9513 break; 9514 } else { 9515 /* use the value set in ip_ll_subnet_defaults */ 9516 res_mp = ill_dlur_gen(NULL, 9517 dst_ill->ill_phys_addr_length, 9518 dst_ill->ill_sap, 9519 dst_ill->ill_sap_length); 9520 } 9521 9522 if (res_mp == NULL) 9523 break; 9524 /* 9525 * The new ire inherits the IRE_OFFSUBNET flags 9526 * and source address, if this was requested. 9527 */ 9528 ire = ire_create( 9529 (uchar_t *)&dst, /* dest address */ 9530 (uchar_t *)&ip_g_all_ones, /* mask */ 9531 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9532 NULL, /* gateway address */ 9533 NULL, 9534 &ipif->ipif_mtu, 9535 NULL, /* Fast Path header */ 9536 dst_ill->ill_rq, /* recv-from queue */ 9537 dst_ill->ill_wq, /* send-to queue */ 9538 IRE_CACHE, 9539 res_mp, 9540 src_ipif, 9541 NULL, 9542 (save_ire != NULL ? save_ire->ire_mask : 0), 9543 (fire != NULL) ? /* Parent handle */ 9544 fire->ire_phandle : 0, 9545 ihandle, /* Interface handle */ 9546 (fire != NULL) ? 9547 (fire->ire_flags & 9548 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9549 (save_ire == NULL ? &ire_uinfo_null : 9550 &save_ire->ire_uinfo), 9551 NULL, 9552 NULL, 9553 ipst); 9554 9555 freeb(res_mp); 9556 9557 if (ire == NULL) { 9558 if (save_ire != NULL) 9559 ire_refrele(save_ire); 9560 break; 9561 } 9562 9563 ire->ire_marks |= ire_marks; 9564 9565 /* 9566 * If IRE_MARK_NOADD is set then we need to convert 9567 * the max_fragp to a useable value now. This is 9568 * normally done in ire_add_v[46]. We also need to 9569 * associate the ire with an nce (normally would be 9570 * done in ip_wput_nondata()). 9571 * 9572 * Note that IRE_MARK_NOADD packets created here 9573 * do not have a non-null ire_mp pointer. The null 9574 * value of ire_bucket indicates that they were 9575 * never added. 9576 */ 9577 if (ire->ire_marks & IRE_MARK_NOADD) { 9578 uint_t max_frag; 9579 9580 max_frag = *ire->ire_max_fragp; 9581 ire->ire_max_fragp = NULL; 9582 ire->ire_max_frag = max_frag; 9583 9584 if ((ire->ire_nce = ndp_lookup_v4( 9585 ire_to_ill(ire), 9586 (ire->ire_gateway_addr != INADDR_ANY ? 9587 &ire->ire_gateway_addr : &ire->ire_addr), 9588 B_FALSE)) == NULL) { 9589 if (save_ire != NULL) 9590 ire_refrele(save_ire); 9591 break; 9592 } 9593 ASSERT(ire->ire_nce->nce_state == 9594 ND_REACHABLE); 9595 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 9596 } 9597 9598 /* Prevent save_ire from getting deleted */ 9599 if (save_ire != NULL) { 9600 IRB_REFHOLD(save_ire->ire_bucket); 9601 /* Has it been removed already ? */ 9602 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 9603 IRB_REFRELE(save_ire->ire_bucket); 9604 ire_refrele(save_ire); 9605 break; 9606 } 9607 } 9608 9609 ire_add_then_send(q, ire, first_mp); 9610 9611 /* Assert that save_ire is not deleted yet. */ 9612 if (save_ire != NULL) { 9613 ASSERT(save_ire->ire_ptpn != NULL); 9614 IRB_REFRELE(save_ire->ire_bucket); 9615 ire_refrele(save_ire); 9616 save_ire = NULL; 9617 } 9618 if (fire != NULL) { 9619 ire_refrele(fire); 9620 fire = NULL; 9621 } 9622 9623 /* 9624 * the resolution loop is re-entered if this 9625 * was requested through flags and if we 9626 * actually are in a multirouting case. 9627 */ 9628 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9629 boolean_t need_resolve = 9630 ire_multirt_need_resolve(ipha_dst, 9631 MBLK_GETLABEL(copy_mp), ipst); 9632 if (!need_resolve) { 9633 MULTIRT_DEBUG_UNTAG(copy_mp); 9634 freemsg(copy_mp); 9635 copy_mp = NULL; 9636 } else { 9637 /* 9638 * ipif_lookup_group() calls 9639 * ire_lookup_multi() that uses 9640 * ire_ftable_lookup() to find 9641 * an IRE_INTERFACE for the group. 9642 * In the multirt case, 9643 * ire_lookup_multi() then invokes 9644 * ire_multirt_lookup() to find 9645 * the next resolvable ire. 9646 * As a result, we obtain an new 9647 * interface, derived from the 9648 * next ire. 9649 */ 9650 ipif_refrele(ipif); 9651 ipif = ipif_lookup_group(ipha_dst, 9652 zoneid, ipst); 9653 ip2dbg(("ip_newroute_ipif: " 9654 "multirt dst %08x, ipif %p\n", 9655 htonl(dst), (void *)ipif)); 9656 if (ipif != NULL) { 9657 mp = copy_mp; 9658 copy_mp = NULL; 9659 multirt_resolve_next = B_TRUE; 9660 continue; 9661 } else { 9662 freemsg(copy_mp); 9663 } 9664 } 9665 } 9666 if (ipif != NULL) 9667 ipif_refrele(ipif); 9668 ill_refrele(dst_ill); 9669 ipif_refrele(src_ipif); 9670 return; 9671 } 9672 case IRE_IF_RESOLVER: 9673 /* 9674 * We can't build an IRE_CACHE yet, but at least 9675 * we found a resolver that can help. 9676 */ 9677 res_mp = dst_ill->ill_resolver_mp; 9678 if (!OK_RESOLVER_MP(res_mp)) 9679 break; 9680 9681 /* 9682 * We obtain a partial IRE_CACHE which we will pass 9683 * along with the resolver query. When the response 9684 * comes back it will be there ready for us to add. 9685 * The new ire inherits the IRE_OFFSUBNET flags 9686 * and source address, if this was requested. 9687 * The ire_max_frag is atomically set under the 9688 * irebucket lock in ire_add_v[46]. Only in the 9689 * case of IRE_MARK_NOADD, we set it here itself. 9690 */ 9691 ire = ire_create_mp( 9692 (uchar_t *)&dst, /* dest address */ 9693 (uchar_t *)&ip_g_all_ones, /* mask */ 9694 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9695 NULL, /* gateway address */ 9696 NULL, /* no in_src_addr */ 9697 (ire_marks & IRE_MARK_NOADD) ? 9698 ipif->ipif_mtu : 0, /* max_frag */ 9699 NULL, /* Fast path header */ 9700 dst_ill->ill_rq, /* recv-from queue */ 9701 dst_ill->ill_wq, /* send-to queue */ 9702 IRE_CACHE, 9703 NULL, /* let ire_nce_init figure res_mp out */ 9704 src_ipif, 9705 NULL, 9706 (save_ire != NULL ? save_ire->ire_mask : 0), 9707 (fire != NULL) ? /* Parent handle */ 9708 fire->ire_phandle : 0, 9709 ihandle, /* Interface handle */ 9710 (fire != NULL) ? /* flags if any */ 9711 (fire->ire_flags & 9712 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9713 (save_ire == NULL ? &ire_uinfo_null : 9714 &save_ire->ire_uinfo), 9715 NULL, 9716 NULL, 9717 ipst); 9718 9719 if (save_ire != NULL) { 9720 ire_refrele(save_ire); 9721 save_ire = NULL; 9722 } 9723 if (ire == NULL) 9724 break; 9725 9726 ire->ire_marks |= ire_marks; 9727 /* 9728 * Construct message chain for the resolver of the 9729 * form: 9730 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 9731 * 9732 * NOTE : ire will be added later when the response 9733 * comes back from ARP. If the response does not 9734 * come back, ARP frees the packet. For this reason, 9735 * we can't REFHOLD the bucket of save_ire to prevent 9736 * deletions. We may not be able to REFRELE the 9737 * bucket if the response never comes back. 9738 * Thus, before adding the ire, ire_add_v4 will make 9739 * sure that the interface route does not get deleted. 9740 * This is the only case unlike ip_newroute_v6, 9741 * ip_newroute_ipif_v6 where we can always prevent 9742 * deletions because ire_add_then_send is called after 9743 * creating the IRE. 9744 * If IRE_MARK_NOADD is set, then ire_add_then_send 9745 * does not add this IRE into the IRE CACHE. 9746 */ 9747 ASSERT(ire->ire_mp != NULL); 9748 ire->ire_mp->b_cont = first_mp; 9749 /* Have saved_mp handy, for cleanup if canput fails */ 9750 saved_mp = mp; 9751 mp = copyb(res_mp); 9752 if (mp == NULL) { 9753 /* Prepare for cleanup */ 9754 mp = saved_mp; /* pkt */ 9755 ire_delete(ire); /* ire_mp */ 9756 ire = NULL; 9757 if (copy_mp != NULL) { 9758 MULTIRT_DEBUG_UNTAG(copy_mp); 9759 freemsg(copy_mp); 9760 copy_mp = NULL; 9761 } 9762 break; 9763 } 9764 linkb(mp, ire->ire_mp); 9765 9766 /* 9767 * Fill in the source and dest addrs for the resolver. 9768 * NOTE: this depends on memory layouts imposed by 9769 * ill_init(). 9770 */ 9771 areq = (areq_t *)mp->b_rptr; 9772 addrp = (ipaddr_t *)((char *)areq + 9773 areq->areq_sender_addr_offset); 9774 *addrp = ire->ire_src_addr; 9775 addrp = (ipaddr_t *)((char *)areq + 9776 areq->areq_target_addr_offset); 9777 *addrp = dst; 9778 /* Up to the resolver. */ 9779 if (canputnext(dst_ill->ill_rq) && 9780 !(dst_ill->ill_arp_closing)) { 9781 putnext(dst_ill->ill_rq, mp); 9782 /* 9783 * The response will come back in ip_wput 9784 * with db_type IRE_DB_TYPE. 9785 */ 9786 } else { 9787 mp->b_cont = NULL; 9788 freeb(mp); /* areq */ 9789 ire_delete(ire); /* ire_mp */ 9790 saved_mp->b_next = NULL; 9791 saved_mp->b_prev = NULL; 9792 freemsg(first_mp); /* pkt */ 9793 ip2dbg(("ip_newroute_ipif: dropped\n")); 9794 } 9795 9796 if (fire != NULL) { 9797 ire_refrele(fire); 9798 fire = NULL; 9799 } 9800 9801 9802 /* 9803 * The resolution loop is re-entered if this was 9804 * requested through flags and we actually are 9805 * in a multirouting case. 9806 */ 9807 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9808 boolean_t need_resolve = 9809 ire_multirt_need_resolve(ipha_dst, 9810 MBLK_GETLABEL(copy_mp), ipst); 9811 if (!need_resolve) { 9812 MULTIRT_DEBUG_UNTAG(copy_mp); 9813 freemsg(copy_mp); 9814 copy_mp = NULL; 9815 } else { 9816 /* 9817 * ipif_lookup_group() calls 9818 * ire_lookup_multi() that uses 9819 * ire_ftable_lookup() to find 9820 * an IRE_INTERFACE for the group. 9821 * In the multirt case, 9822 * ire_lookup_multi() then invokes 9823 * ire_multirt_lookup() to find 9824 * the next resolvable ire. 9825 * As a result, we obtain an new 9826 * interface, derived from the 9827 * next ire. 9828 */ 9829 ipif_refrele(ipif); 9830 ipif = ipif_lookup_group(ipha_dst, 9831 zoneid, ipst); 9832 if (ipif != NULL) { 9833 mp = copy_mp; 9834 copy_mp = NULL; 9835 multirt_resolve_next = B_TRUE; 9836 continue; 9837 } else { 9838 freemsg(copy_mp); 9839 } 9840 } 9841 } 9842 if (ipif != NULL) 9843 ipif_refrele(ipif); 9844 ill_refrele(dst_ill); 9845 ipif_refrele(src_ipif); 9846 return; 9847 default: 9848 break; 9849 } 9850 } while (multirt_resolve_next); 9851 9852 err_ret: 9853 ip2dbg(("ip_newroute_ipif: dropped\n")); 9854 if (fire != NULL) 9855 ire_refrele(fire); 9856 ipif_refrele(ipif); 9857 /* Did this packet originate externally? */ 9858 if (dst_ill != NULL) 9859 ill_refrele(dst_ill); 9860 if (src_ipif != NULL) 9861 ipif_refrele(src_ipif); 9862 if (mp->b_prev || mp->b_next) { 9863 mp->b_next = NULL; 9864 mp->b_prev = NULL; 9865 } else { 9866 /* 9867 * Since ip_wput() isn't close to finished, we fill 9868 * in enough of the header for credible error reporting. 9869 */ 9870 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 9871 /* Failed */ 9872 freemsg(first_mp); 9873 if (ire != NULL) 9874 ire_refrele(ire); 9875 return; 9876 } 9877 } 9878 /* 9879 * At this point we will have ire only if RTF_BLACKHOLE 9880 * or RTF_REJECT flags are set on the IRE. It will not 9881 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9882 */ 9883 if (ire != NULL) { 9884 if (ire->ire_flags & RTF_BLACKHOLE) { 9885 ire_refrele(ire); 9886 freemsg(first_mp); 9887 return; 9888 } 9889 ire_refrele(ire); 9890 } 9891 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9892 } 9893 9894 /* Name/Value Table Lookup Routine */ 9895 char * 9896 ip_nv_lookup(nv_t *nv, int value) 9897 { 9898 if (!nv) 9899 return (NULL); 9900 for (; nv->nv_name; nv++) { 9901 if (nv->nv_value == value) 9902 return (nv->nv_name); 9903 } 9904 return ("unknown"); 9905 } 9906 9907 /* 9908 * This is a module open, i.e. this is a control stream for access 9909 * to a DLPI device. We allocate an ill_t as the instance data in 9910 * this case. 9911 */ 9912 int 9913 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9914 { 9915 ill_t *ill; 9916 int err; 9917 zoneid_t zoneid; 9918 netstack_t *ns; 9919 ip_stack_t *ipst; 9920 9921 /* 9922 * Prevent unprivileged processes from pushing IP so that 9923 * they can't send raw IP. 9924 */ 9925 if (secpolicy_net_rawaccess(credp) != 0) 9926 return (EPERM); 9927 9928 ns = netstack_find_by_cred(credp); 9929 ASSERT(ns != NULL); 9930 ipst = ns->netstack_ip; 9931 ASSERT(ipst != NULL); 9932 9933 /* 9934 * For exclusive stacks we set the zoneid to zero 9935 * to make IP operate as if in the global zone. 9936 */ 9937 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9938 zoneid = GLOBAL_ZONEID; 9939 else 9940 zoneid = crgetzoneid(credp); 9941 9942 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9943 q->q_ptr = WR(q)->q_ptr = ill; 9944 ill->ill_ipst = ipst; 9945 ill->ill_zoneid = zoneid; 9946 9947 /* 9948 * ill_init initializes the ill fields and then sends down 9949 * down a DL_INFO_REQ after calling qprocson. 9950 */ 9951 err = ill_init(q, ill); 9952 if (err != 0) { 9953 mi_free(ill); 9954 netstack_rele(ipst->ips_netstack); 9955 q->q_ptr = NULL; 9956 WR(q)->q_ptr = NULL; 9957 return (err); 9958 } 9959 9960 /* ill_init initializes the ipsq marking this thread as writer */ 9961 ipsq_exit(ill->ill_phyint->phyint_ipsq, B_TRUE, B_TRUE); 9962 /* Wait for the DL_INFO_ACK */ 9963 mutex_enter(&ill->ill_lock); 9964 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9965 /* 9966 * Return value of 0 indicates a pending signal. 9967 */ 9968 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9969 if (err == 0) { 9970 mutex_exit(&ill->ill_lock); 9971 (void) ip_close(q, 0); 9972 return (EINTR); 9973 } 9974 } 9975 mutex_exit(&ill->ill_lock); 9976 9977 /* 9978 * ip_rput_other could have set an error in ill_error on 9979 * receipt of M_ERROR. 9980 */ 9981 9982 err = ill->ill_error; 9983 if (err != 0) { 9984 (void) ip_close(q, 0); 9985 return (err); 9986 } 9987 9988 ill->ill_credp = credp; 9989 crhold(credp); 9990 9991 mutex_enter(&ipst->ips_ip_mi_lock); 9992 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)ill, devp, flag, sflag, 9993 credp); 9994 mutex_exit(&ipst->ips_ip_mi_lock); 9995 if (err) { 9996 (void) ip_close(q, 0); 9997 return (err); 9998 } 9999 return (0); 10000 } 10001 10002 /* IP open routine. */ 10003 int 10004 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 10005 { 10006 conn_t *connp; 10007 major_t maj; 10008 zoneid_t zoneid; 10009 netstack_t *ns; 10010 ip_stack_t *ipst; 10011 10012 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 10013 10014 /* Allow reopen. */ 10015 if (q->q_ptr != NULL) 10016 return (0); 10017 10018 if (sflag & MODOPEN) { 10019 /* This is a module open */ 10020 return (ip_modopen(q, devp, flag, sflag, credp)); 10021 } 10022 10023 ns = netstack_find_by_cred(credp); 10024 ASSERT(ns != NULL); 10025 ipst = ns->netstack_ip; 10026 ASSERT(ipst != NULL); 10027 10028 /* 10029 * For exclusive stacks we set the zoneid to zero 10030 * to make IP operate as if in the global zone. 10031 */ 10032 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 10033 zoneid = GLOBAL_ZONEID; 10034 else 10035 zoneid = crgetzoneid(credp); 10036 10037 /* 10038 * We are opening as a device. This is an IP client stream, and we 10039 * allocate an conn_t as the instance data. 10040 */ 10041 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 10042 10043 /* 10044 * ipcl_conn_create did a netstack_hold. Undo the hold that was 10045 * done by netstack_find_by_cred() 10046 */ 10047 netstack_rele(ipst->ips_netstack); 10048 10049 connp->conn_zoneid = zoneid; 10050 10051 connp->conn_upq = q; 10052 q->q_ptr = WR(q)->q_ptr = connp; 10053 10054 if (flag & SO_SOCKSTR) 10055 connp->conn_flags |= IPCL_SOCKET; 10056 10057 /* Minor tells us which /dev entry was opened */ 10058 if (geteminor(*devp) == IPV6_MINOR) { 10059 connp->conn_flags |= IPCL_ISV6; 10060 connp->conn_af_isv6 = B_TRUE; 10061 ip_setqinfo(q, geteminor(*devp), B_FALSE, ipst); 10062 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 10063 } else { 10064 connp->conn_af_isv6 = B_FALSE; 10065 connp->conn_pkt_isv6 = B_FALSE; 10066 } 10067 10068 if ((connp->conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) { 10069 /* CONN_DEC_REF takes care of netstack_rele() */ 10070 q->q_ptr = WR(q)->q_ptr = NULL; 10071 CONN_DEC_REF(connp); 10072 return (EBUSY); 10073 } 10074 10075 maj = getemajor(*devp); 10076 *devp = makedevice(maj, (minor_t)connp->conn_dev); 10077 10078 /* 10079 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 10080 */ 10081 connp->conn_cred = credp; 10082 crhold(connp->conn_cred); 10083 10084 /* 10085 * If the caller has the process-wide flag set, then default to MAC 10086 * exempt mode. This allows read-down to unlabeled hosts. 10087 */ 10088 if (getpflags(NET_MAC_AWARE, credp) != 0) 10089 connp->conn_mac_exempt = B_TRUE; 10090 10091 /* 10092 * This should only happen for ndd, netstat, raw socket or other SCTP 10093 * administrative ops. In these cases, we just need a normal conn_t 10094 * with ulp set to IPPROTO_SCTP. All other ops are trapped and 10095 * an error will be returned. 10096 */ 10097 if (maj != SCTP_MAJ && maj != SCTP6_MAJ) { 10098 connp->conn_rq = q; 10099 connp->conn_wq = WR(q); 10100 } else { 10101 connp->conn_ulp = IPPROTO_SCTP; 10102 connp->conn_rq = connp->conn_wq = NULL; 10103 } 10104 /* Non-zero default values */ 10105 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 10106 10107 /* 10108 * Make the conn globally visible to walkers 10109 */ 10110 mutex_enter(&connp->conn_lock); 10111 connp->conn_state_flags &= ~CONN_INCIPIENT; 10112 mutex_exit(&connp->conn_lock); 10113 ASSERT(connp->conn_ref == 1); 10114 10115 qprocson(q); 10116 10117 return (0); 10118 } 10119 10120 /* 10121 * Change q_qinfo based on the value of isv6. 10122 * This can not called on an ill queue. 10123 * Note that there is no race since either q_qinfo works for conn queues - it 10124 * is just an optimization to enter the best wput routine directly. 10125 */ 10126 void 10127 ip_setqinfo(queue_t *q, minor_t minor, boolean_t bump_mib, ip_stack_t *ipst) 10128 { 10129 ASSERT(q->q_flag & QREADR); 10130 ASSERT(WR(q)->q_next == NULL); 10131 ASSERT(q->q_ptr != NULL); 10132 10133 if (minor == IPV6_MINOR) { 10134 if (bump_mib) { 10135 BUMP_MIB(&ipst->ips_ip6_mib, 10136 ipIfStatsOutSwitchIPVersion); 10137 } 10138 q->q_qinfo = &rinit_ipv6; 10139 WR(q)->q_qinfo = &winit_ipv6; 10140 (Q_TO_CONN(q))->conn_pkt_isv6 = B_TRUE; 10141 } else { 10142 if (bump_mib) { 10143 BUMP_MIB(&ipst->ips_ip_mib, 10144 ipIfStatsOutSwitchIPVersion); 10145 } 10146 q->q_qinfo = &iprinit; 10147 WR(q)->q_qinfo = &ipwinit; 10148 (Q_TO_CONN(q))->conn_pkt_isv6 = B_FALSE; 10149 } 10150 10151 } 10152 10153 /* 10154 * See if IPsec needs loading because of the options in mp. 10155 */ 10156 static boolean_t 10157 ipsec_opt_present(mblk_t *mp) 10158 { 10159 uint8_t *optcp, *next_optcp, *opt_endcp; 10160 struct opthdr *opt; 10161 struct T_opthdr *topt; 10162 int opthdr_len; 10163 t_uscalar_t optname, optlevel; 10164 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 10165 ipsec_req_t *ipsr; 10166 10167 /* 10168 * Walk through the mess, and find IP_SEC_OPT. If it's there, 10169 * return TRUE. 10170 */ 10171 10172 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 10173 opt_endcp = optcp + tor->OPT_length; 10174 if (tor->PRIM_type == T_OPTMGMT_REQ) { 10175 opthdr_len = sizeof (struct T_opthdr); 10176 } else { /* O_OPTMGMT_REQ */ 10177 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 10178 opthdr_len = sizeof (struct opthdr); 10179 } 10180 for (; optcp < opt_endcp; optcp = next_optcp) { 10181 if (optcp + opthdr_len > opt_endcp) 10182 return (B_FALSE); /* Not enough option header. */ 10183 if (tor->PRIM_type == T_OPTMGMT_REQ) { 10184 topt = (struct T_opthdr *)optcp; 10185 optlevel = topt->level; 10186 optname = topt->name; 10187 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 10188 } else { 10189 opt = (struct opthdr *)optcp; 10190 optlevel = opt->level; 10191 optname = opt->name; 10192 next_optcp = optcp + opthdr_len + 10193 _TPI_ALIGN_OPT(opt->len); 10194 } 10195 if ((next_optcp < optcp) || /* wraparound pointer space */ 10196 ((next_optcp >= opt_endcp) && /* last option bad len */ 10197 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 10198 return (B_FALSE); /* bad option buffer */ 10199 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 10200 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 10201 /* 10202 * Check to see if it's an all-bypass or all-zeroes 10203 * IPsec request. Don't bother loading IPsec if 10204 * the socket doesn't want to use it. (A good example 10205 * is a bypass request.) 10206 * 10207 * Basically, if any of the non-NEVER bits are set, 10208 * load IPsec. 10209 */ 10210 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 10211 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 10212 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 10213 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 10214 != 0) 10215 return (B_TRUE); 10216 } 10217 } 10218 return (B_FALSE); 10219 } 10220 10221 /* 10222 * If conn is is waiting for ipsec to finish loading, kick it. 10223 */ 10224 /* ARGSUSED */ 10225 static void 10226 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 10227 { 10228 t_scalar_t optreq_prim; 10229 mblk_t *mp; 10230 cred_t *cr; 10231 int err = 0; 10232 10233 /* 10234 * This function is called, after ipsec loading is complete. 10235 * Since IP checks exclusively and atomically (i.e it prevents 10236 * ipsec load from completing until ip_optcom_req completes) 10237 * whether ipsec load is complete, there cannot be a race with IP 10238 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 10239 */ 10240 mutex_enter(&connp->conn_lock); 10241 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 10242 ASSERT(connp->conn_ipsec_opt_mp != NULL); 10243 mp = connp->conn_ipsec_opt_mp; 10244 connp->conn_ipsec_opt_mp = NULL; 10245 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 10246 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(CONNP_TO_WQ(connp))); 10247 mutex_exit(&connp->conn_lock); 10248 10249 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 10250 10251 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 10252 if (optreq_prim == T_OPTMGMT_REQ) { 10253 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10254 &ip_opt_obj); 10255 } else { 10256 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 10257 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10258 &ip_opt_obj); 10259 } 10260 if (err != EINPROGRESS) 10261 CONN_OPER_PENDING_DONE(connp); 10262 return; 10263 } 10264 mutex_exit(&connp->conn_lock); 10265 } 10266 10267 /* 10268 * Called from the ipsec_loader thread, outside any perimeter, to tell 10269 * ip qenable any of the queues waiting for the ipsec loader to 10270 * complete. 10271 */ 10272 void 10273 ip_ipsec_load_complete(ipsec_stack_t *ipss) 10274 { 10275 netstack_t *ns = ipss->ipsec_netstack; 10276 10277 ipcl_walk(conn_restart_ipsec_waiter, NULL, ns->netstack_ip); 10278 } 10279 10280 /* 10281 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 10282 * determines the grp on which it has to become exclusive, queues the mp 10283 * and sq draining restarts the optmgmt 10284 */ 10285 static boolean_t 10286 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 10287 { 10288 conn_t *connp = Q_TO_CONN(q); 10289 ipsec_stack_t *ipss = connp->conn_netstack->netstack_ipsec; 10290 10291 /* 10292 * Take IPsec requests and treat them special. 10293 */ 10294 if (ipsec_opt_present(mp)) { 10295 /* First check if IPsec is loaded. */ 10296 mutex_enter(&ipss->ipsec_loader_lock); 10297 if (ipss->ipsec_loader_state != IPSEC_LOADER_WAIT) { 10298 mutex_exit(&ipss->ipsec_loader_lock); 10299 return (B_FALSE); 10300 } 10301 mutex_enter(&connp->conn_lock); 10302 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 10303 10304 ASSERT(connp->conn_ipsec_opt_mp == NULL); 10305 connp->conn_ipsec_opt_mp = mp; 10306 mutex_exit(&connp->conn_lock); 10307 mutex_exit(&ipss->ipsec_loader_lock); 10308 10309 ipsec_loader_loadnow(ipss); 10310 return (B_TRUE); 10311 } 10312 return (B_FALSE); 10313 } 10314 10315 /* 10316 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 10317 * all of them are copied to the conn_t. If the req is "zero", the policy is 10318 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 10319 * fields. 10320 * We keep only the latest setting of the policy and thus policy setting 10321 * is not incremental/cumulative. 10322 * 10323 * Requests to set policies with multiple alternative actions will 10324 * go through a different API. 10325 */ 10326 int 10327 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 10328 { 10329 uint_t ah_req = 0; 10330 uint_t esp_req = 0; 10331 uint_t se_req = 0; 10332 ipsec_selkey_t sel; 10333 ipsec_act_t *actp = NULL; 10334 uint_t nact; 10335 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 10336 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 10337 ipsec_policy_root_t *pr; 10338 ipsec_policy_head_t *ph; 10339 int fam; 10340 boolean_t is_pol_reset; 10341 int error = 0; 10342 netstack_t *ns = connp->conn_netstack; 10343 ip_stack_t *ipst = ns->netstack_ip; 10344 ipsec_stack_t *ipss = ns->netstack_ipsec; 10345 10346 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 10347 10348 /* 10349 * The IP_SEC_OPT option does not allow variable length parameters, 10350 * hence a request cannot be NULL. 10351 */ 10352 if (req == NULL) 10353 return (EINVAL); 10354 10355 ah_req = req->ipsr_ah_req; 10356 esp_req = req->ipsr_esp_req; 10357 se_req = req->ipsr_self_encap_req; 10358 10359 /* 10360 * Are we dealing with a request to reset the policy (i.e. 10361 * zero requests). 10362 */ 10363 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 10364 (esp_req & REQ_MASK) == 0 && 10365 (se_req & REQ_MASK) == 0); 10366 10367 if (!is_pol_reset) { 10368 /* 10369 * If we couldn't load IPsec, fail with "protocol 10370 * not supported". 10371 * IPsec may not have been loaded for a request with zero 10372 * policies, so we don't fail in this case. 10373 */ 10374 mutex_enter(&ipss->ipsec_loader_lock); 10375 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 10376 mutex_exit(&ipss->ipsec_loader_lock); 10377 return (EPROTONOSUPPORT); 10378 } 10379 mutex_exit(&ipss->ipsec_loader_lock); 10380 10381 /* 10382 * Test for valid requests. Invalid algorithms 10383 * need to be tested by IPSEC code because new 10384 * algorithms can be added dynamically. 10385 */ 10386 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10387 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10388 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 10389 return (EINVAL); 10390 } 10391 10392 /* 10393 * Only privileged users can issue these 10394 * requests. 10395 */ 10396 if (((ah_req & IPSEC_PREF_NEVER) || 10397 (esp_req & IPSEC_PREF_NEVER) || 10398 (se_req & IPSEC_PREF_NEVER)) && 10399 secpolicy_ip_config(cr, B_FALSE) != 0) { 10400 return (EPERM); 10401 } 10402 10403 /* 10404 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 10405 * are mutually exclusive. 10406 */ 10407 if (((ah_req & REQ_MASK) == REQ_MASK) || 10408 ((esp_req & REQ_MASK) == REQ_MASK) || 10409 ((se_req & REQ_MASK) == REQ_MASK)) { 10410 /* Both of them are set */ 10411 return (EINVAL); 10412 } 10413 } 10414 10415 mutex_enter(&connp->conn_lock); 10416 10417 /* 10418 * If we have already cached policies in ip_bind_connected*(), don't 10419 * let them change now. We cache policies for connections 10420 * whose src,dst [addr, port] is known. 10421 */ 10422 if (connp->conn_policy_cached) { 10423 mutex_exit(&connp->conn_lock); 10424 return (EINVAL); 10425 } 10426 10427 /* 10428 * We have a zero policies, reset the connection policy if already 10429 * set. This will cause the connection to inherit the 10430 * global policy, if any. 10431 */ 10432 if (is_pol_reset) { 10433 if (connp->conn_policy != NULL) { 10434 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 10435 connp->conn_policy = NULL; 10436 } 10437 connp->conn_flags &= ~IPCL_CHECK_POLICY; 10438 connp->conn_in_enforce_policy = B_FALSE; 10439 connp->conn_out_enforce_policy = B_FALSE; 10440 mutex_exit(&connp->conn_lock); 10441 return (0); 10442 } 10443 10444 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 10445 ipst->ips_netstack); 10446 if (ph == NULL) 10447 goto enomem; 10448 10449 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 10450 if (actp == NULL) 10451 goto enomem; 10452 10453 /* 10454 * Always allocate IPv4 policy entries, since they can also 10455 * apply to ipv6 sockets being used in ipv4-compat mode. 10456 */ 10457 bzero(&sel, sizeof (sel)); 10458 sel.ipsl_valid = IPSL_IPV4; 10459 10460 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10461 ipst->ips_netstack); 10462 if (pin4 == NULL) 10463 goto enomem; 10464 10465 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10466 ipst->ips_netstack); 10467 if (pout4 == NULL) 10468 goto enomem; 10469 10470 if (connp->conn_pkt_isv6) { 10471 /* 10472 * We're looking at a v6 socket, also allocate the 10473 * v6-specific entries... 10474 */ 10475 sel.ipsl_valid = IPSL_IPV6; 10476 pin6 = ipsec_policy_create(&sel, actp, nact, 10477 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10478 if (pin6 == NULL) 10479 goto enomem; 10480 10481 pout6 = ipsec_policy_create(&sel, actp, nact, 10482 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10483 if (pout6 == NULL) 10484 goto enomem; 10485 10486 /* 10487 * .. and file them away in the right place. 10488 */ 10489 fam = IPSEC_AF_V6; 10490 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10491 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 10492 ipsec_insert_always(&ph->iph_rulebyid, pin6); 10493 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10494 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 10495 ipsec_insert_always(&ph->iph_rulebyid, pout6); 10496 } 10497 10498 ipsec_actvec_free(actp, nact); 10499 10500 /* 10501 * File the v4 policies. 10502 */ 10503 fam = IPSEC_AF_V4; 10504 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10505 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 10506 ipsec_insert_always(&ph->iph_rulebyid, pin4); 10507 10508 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10509 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 10510 ipsec_insert_always(&ph->iph_rulebyid, pout4); 10511 10512 /* 10513 * If the requests need security, set enforce_policy. 10514 * If the requests are IPSEC_PREF_NEVER, one should 10515 * still set conn_out_enforce_policy so that an ipsec_out 10516 * gets attached in ip_wput. This is needed so that 10517 * for connections that we don't cache policy in ip_bind, 10518 * if global policy matches in ip_wput_attach_policy, we 10519 * don't wrongly inherit global policy. Similarly, we need 10520 * to set conn_in_enforce_policy also so that we don't verify 10521 * policy wrongly. 10522 */ 10523 if ((ah_req & REQ_MASK) != 0 || 10524 (esp_req & REQ_MASK) != 0 || 10525 (se_req & REQ_MASK) != 0) { 10526 connp->conn_in_enforce_policy = B_TRUE; 10527 connp->conn_out_enforce_policy = B_TRUE; 10528 connp->conn_flags |= IPCL_CHECK_POLICY; 10529 } 10530 10531 mutex_exit(&connp->conn_lock); 10532 return (error); 10533 #undef REQ_MASK 10534 10535 /* 10536 * Common memory-allocation-failure exit path. 10537 */ 10538 enomem: 10539 mutex_exit(&connp->conn_lock); 10540 if (actp != NULL) 10541 ipsec_actvec_free(actp, nact); 10542 if (pin4 != NULL) 10543 IPPOL_REFRELE(pin4, ipst->ips_netstack); 10544 if (pout4 != NULL) 10545 IPPOL_REFRELE(pout4, ipst->ips_netstack); 10546 if (pin6 != NULL) 10547 IPPOL_REFRELE(pin6, ipst->ips_netstack); 10548 if (pout6 != NULL) 10549 IPPOL_REFRELE(pout6, ipst->ips_netstack); 10550 return (ENOMEM); 10551 } 10552 10553 /* 10554 * Only for options that pass in an IP addr. Currently only V4 options 10555 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 10556 * So this function assumes level is IPPROTO_IP 10557 */ 10558 int 10559 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 10560 mblk_t *first_mp) 10561 { 10562 ipif_t *ipif = NULL; 10563 int error; 10564 ill_t *ill; 10565 int zoneid; 10566 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10567 10568 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 10569 10570 if (addr != INADDR_ANY || checkonly) { 10571 ASSERT(connp != NULL); 10572 zoneid = IPCL_ZONEID(connp); 10573 if (option == IP_NEXTHOP) { 10574 ipif = ipif_lookup_onlink_addr(addr, 10575 connp->conn_zoneid, ipst); 10576 } else { 10577 ipif = ipif_lookup_addr(addr, NULL, zoneid, 10578 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 10579 &error, ipst); 10580 } 10581 if (ipif == NULL) { 10582 if (error == EINPROGRESS) 10583 return (error); 10584 else if ((option == IP_MULTICAST_IF) || 10585 (option == IP_NEXTHOP)) 10586 return (EHOSTUNREACH); 10587 else 10588 return (EINVAL); 10589 } else if (checkonly) { 10590 if (option == IP_MULTICAST_IF) { 10591 ill = ipif->ipif_ill; 10592 /* not supported by the virtual network iface */ 10593 if (IS_VNI(ill)) { 10594 ipif_refrele(ipif); 10595 return (EINVAL); 10596 } 10597 } 10598 ipif_refrele(ipif); 10599 return (0); 10600 } 10601 ill = ipif->ipif_ill; 10602 mutex_enter(&connp->conn_lock); 10603 mutex_enter(&ill->ill_lock); 10604 if ((ill->ill_state_flags & ILL_CONDEMNED) || 10605 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 10606 mutex_exit(&ill->ill_lock); 10607 mutex_exit(&connp->conn_lock); 10608 ipif_refrele(ipif); 10609 return (option == IP_MULTICAST_IF ? 10610 EHOSTUNREACH : EINVAL); 10611 } 10612 } else { 10613 mutex_enter(&connp->conn_lock); 10614 } 10615 10616 /* None of the options below are supported on the VNI */ 10617 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 10618 mutex_exit(&ill->ill_lock); 10619 mutex_exit(&connp->conn_lock); 10620 ipif_refrele(ipif); 10621 return (EINVAL); 10622 } 10623 10624 switch (option) { 10625 case IP_DONTFAILOVER_IF: 10626 /* 10627 * This option is used by in.mpathd to ensure 10628 * that IPMP probe packets only go out on the 10629 * test interfaces. in.mpathd sets this option 10630 * on the non-failover interfaces. 10631 * For backward compatibility, this option 10632 * implicitly sets IP_MULTICAST_IF, as used 10633 * be done in bind(), so that ip_wput gets 10634 * this ipif to send mcast packets. 10635 */ 10636 if (ipif != NULL) { 10637 ASSERT(addr != INADDR_ANY); 10638 connp->conn_nofailover_ill = ipif->ipif_ill; 10639 connp->conn_multicast_ipif = ipif; 10640 } else { 10641 ASSERT(addr == INADDR_ANY); 10642 connp->conn_nofailover_ill = NULL; 10643 connp->conn_multicast_ipif = NULL; 10644 } 10645 break; 10646 10647 case IP_MULTICAST_IF: 10648 connp->conn_multicast_ipif = ipif; 10649 break; 10650 case IP_NEXTHOP: 10651 connp->conn_nexthop_v4 = addr; 10652 connp->conn_nexthop_set = B_TRUE; 10653 break; 10654 } 10655 10656 if (ipif != NULL) { 10657 mutex_exit(&ill->ill_lock); 10658 mutex_exit(&connp->conn_lock); 10659 ipif_refrele(ipif); 10660 return (0); 10661 } 10662 mutex_exit(&connp->conn_lock); 10663 /* We succeded in cleared the option */ 10664 return (0); 10665 } 10666 10667 /* 10668 * For options that pass in an ifindex specifying the ill. V6 options always 10669 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 10670 */ 10671 int 10672 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 10673 int level, int option, mblk_t *first_mp) 10674 { 10675 ill_t *ill = NULL; 10676 int error = 0; 10677 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10678 10679 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 10680 if (ifindex != 0) { 10681 ASSERT(connp != NULL); 10682 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 10683 first_mp, ip_restart_optmgmt, &error, ipst); 10684 if (ill != NULL) { 10685 if (checkonly) { 10686 /* not supported by the virtual network iface */ 10687 if (IS_VNI(ill)) { 10688 ill_refrele(ill); 10689 return (EINVAL); 10690 } 10691 ill_refrele(ill); 10692 return (0); 10693 } 10694 if (!ipif_lookup_zoneid_group(ill, connp->conn_zoneid, 10695 0, NULL)) { 10696 ill_refrele(ill); 10697 ill = NULL; 10698 mutex_enter(&connp->conn_lock); 10699 goto setit; 10700 } 10701 mutex_enter(&connp->conn_lock); 10702 mutex_enter(&ill->ill_lock); 10703 if (ill->ill_state_flags & ILL_CONDEMNED) { 10704 mutex_exit(&ill->ill_lock); 10705 mutex_exit(&connp->conn_lock); 10706 ill_refrele(ill); 10707 ill = NULL; 10708 mutex_enter(&connp->conn_lock); 10709 } 10710 goto setit; 10711 } else if (error == EINPROGRESS) { 10712 return (error); 10713 } else { 10714 error = 0; 10715 } 10716 } 10717 mutex_enter(&connp->conn_lock); 10718 setit: 10719 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 10720 10721 /* 10722 * The options below assume that the ILL (if any) transmits and/or 10723 * receives traffic. Neither of which is true for the virtual network 10724 * interface, so fail setting these on a VNI. 10725 */ 10726 if (IS_VNI(ill)) { 10727 ASSERT(ill != NULL); 10728 mutex_exit(&ill->ill_lock); 10729 mutex_exit(&connp->conn_lock); 10730 ill_refrele(ill); 10731 return (EINVAL); 10732 } 10733 10734 if (level == IPPROTO_IP) { 10735 switch (option) { 10736 case IP_BOUND_IF: 10737 connp->conn_incoming_ill = ill; 10738 connp->conn_outgoing_ill = ill; 10739 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10740 0 : ifindex; 10741 break; 10742 10743 case IP_XMIT_IF: 10744 /* 10745 * Similar to IP_BOUND_IF, but this only 10746 * determines the outgoing interface for 10747 * unicast packets. Also no IRE_CACHE entry 10748 * is added for the destination of the 10749 * outgoing packets. This feature is needed 10750 * for mobile IP. 10751 */ 10752 connp->conn_xmit_if_ill = ill; 10753 connp->conn_orig_xmit_ifindex = (ill == NULL) ? 10754 0 : ifindex; 10755 break; 10756 10757 case IP_MULTICAST_IF: 10758 /* 10759 * This option is an internal special. The socket 10760 * level IP_MULTICAST_IF specifies an 'ipaddr' and 10761 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 10762 * specifies an ifindex and we try first on V6 ill's. 10763 * If we don't find one, we they try using on v4 ill's 10764 * intenally and we come here. 10765 */ 10766 if (!checkonly && ill != NULL) { 10767 ipif_t *ipif; 10768 ipif = ill->ill_ipif; 10769 10770 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 10771 mutex_exit(&ill->ill_lock); 10772 mutex_exit(&connp->conn_lock); 10773 ill_refrele(ill); 10774 ill = NULL; 10775 mutex_enter(&connp->conn_lock); 10776 } else { 10777 connp->conn_multicast_ipif = ipif; 10778 } 10779 } 10780 break; 10781 } 10782 } else { 10783 switch (option) { 10784 case IPV6_BOUND_IF: 10785 connp->conn_incoming_ill = ill; 10786 connp->conn_outgoing_ill = ill; 10787 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10788 0 : ifindex; 10789 break; 10790 10791 case IPV6_BOUND_PIF: 10792 /* 10793 * Limit all transmit to this ill. 10794 * Unlike IPV6_BOUND_IF, using this option 10795 * prevents load spreading and failover from 10796 * happening when the interface is part of the 10797 * group. That's why we don't need to remember 10798 * the ifindex in orig_bound_ifindex as in 10799 * IPV6_BOUND_IF. 10800 */ 10801 connp->conn_outgoing_pill = ill; 10802 break; 10803 10804 case IPV6_DONTFAILOVER_IF: 10805 /* 10806 * This option is used by in.mpathd to ensure 10807 * that IPMP probe packets only go out on the 10808 * test interfaces. in.mpathd sets this option 10809 * on the non-failover interfaces. 10810 */ 10811 connp->conn_nofailover_ill = ill; 10812 /* 10813 * For backward compatibility, this option 10814 * implicitly sets ip_multicast_ill as used in 10815 * IP_MULTICAST_IF so that ip_wput gets 10816 * this ipif to send mcast packets. 10817 */ 10818 connp->conn_multicast_ill = ill; 10819 connp->conn_orig_multicast_ifindex = (ill == NULL) ? 10820 0 : ifindex; 10821 break; 10822 10823 case IPV6_MULTICAST_IF: 10824 /* 10825 * Set conn_multicast_ill to be the IPv6 ill. 10826 * Set conn_multicast_ipif to be an IPv4 ipif 10827 * for ifindex to make IPv4 mapped addresses 10828 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 10829 * Even if no IPv6 ill exists for the ifindex 10830 * we need to check for an IPv4 ifindex in order 10831 * for this to work with mapped addresses. In that 10832 * case only set conn_multicast_ipif. 10833 */ 10834 if (!checkonly) { 10835 if (ifindex == 0) { 10836 connp->conn_multicast_ill = NULL; 10837 connp->conn_orig_multicast_ifindex = 0; 10838 connp->conn_multicast_ipif = NULL; 10839 } else if (ill != NULL) { 10840 connp->conn_multicast_ill = ill; 10841 connp->conn_orig_multicast_ifindex = 10842 ifindex; 10843 } 10844 } 10845 break; 10846 } 10847 } 10848 10849 if (ill != NULL) { 10850 mutex_exit(&ill->ill_lock); 10851 mutex_exit(&connp->conn_lock); 10852 ill_refrele(ill); 10853 return (0); 10854 } 10855 mutex_exit(&connp->conn_lock); 10856 /* 10857 * We succeeded in clearing the option (ifindex == 0) or failed to 10858 * locate the ill and could not set the option (ifindex != 0) 10859 */ 10860 return (ifindex == 0 ? 0 : EINVAL); 10861 } 10862 10863 /* This routine sets socket options. */ 10864 /* ARGSUSED */ 10865 int 10866 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10867 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10868 void *dummy, cred_t *cr, mblk_t *first_mp) 10869 { 10870 int *i1 = (int *)invalp; 10871 conn_t *connp = Q_TO_CONN(q); 10872 int error = 0; 10873 boolean_t checkonly; 10874 ire_t *ire; 10875 boolean_t found; 10876 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10877 10878 switch (optset_context) { 10879 10880 case SETFN_OPTCOM_CHECKONLY: 10881 checkonly = B_TRUE; 10882 /* 10883 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10884 * inlen != 0 implies value supplied and 10885 * we have to "pretend" to set it. 10886 * inlen == 0 implies that there is no 10887 * value part in T_CHECK request and just validation 10888 * done elsewhere should be enough, we just return here. 10889 */ 10890 if (inlen == 0) { 10891 *outlenp = 0; 10892 return (0); 10893 } 10894 break; 10895 case SETFN_OPTCOM_NEGOTIATE: 10896 case SETFN_UD_NEGOTIATE: 10897 case SETFN_CONN_NEGOTIATE: 10898 checkonly = B_FALSE; 10899 break; 10900 default: 10901 /* 10902 * We should never get here 10903 */ 10904 *outlenp = 0; 10905 return (EINVAL); 10906 } 10907 10908 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10909 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10910 10911 /* 10912 * For fixed length options, no sanity check 10913 * of passed in length is done. It is assumed *_optcom_req() 10914 * routines do the right thing. 10915 */ 10916 10917 switch (level) { 10918 case SOL_SOCKET: 10919 /* 10920 * conn_lock protects the bitfields, and is used to 10921 * set the fields atomically. 10922 */ 10923 switch (name) { 10924 case SO_BROADCAST: 10925 if (!checkonly) { 10926 /* TODO: use value someplace? */ 10927 mutex_enter(&connp->conn_lock); 10928 connp->conn_broadcast = *i1 ? 1 : 0; 10929 mutex_exit(&connp->conn_lock); 10930 } 10931 break; /* goto sizeof (int) option return */ 10932 case SO_USELOOPBACK: 10933 if (!checkonly) { 10934 /* TODO: use value someplace? */ 10935 mutex_enter(&connp->conn_lock); 10936 connp->conn_loopback = *i1 ? 1 : 0; 10937 mutex_exit(&connp->conn_lock); 10938 } 10939 break; /* goto sizeof (int) option return */ 10940 case SO_DONTROUTE: 10941 if (!checkonly) { 10942 mutex_enter(&connp->conn_lock); 10943 connp->conn_dontroute = *i1 ? 1 : 0; 10944 mutex_exit(&connp->conn_lock); 10945 } 10946 break; /* goto sizeof (int) option return */ 10947 case SO_REUSEADDR: 10948 if (!checkonly) { 10949 mutex_enter(&connp->conn_lock); 10950 connp->conn_reuseaddr = *i1 ? 1 : 0; 10951 mutex_exit(&connp->conn_lock); 10952 } 10953 break; /* goto sizeof (int) option return */ 10954 case SO_PROTOTYPE: 10955 if (!checkonly) { 10956 mutex_enter(&connp->conn_lock); 10957 connp->conn_proto = *i1; 10958 mutex_exit(&connp->conn_lock); 10959 } 10960 break; /* goto sizeof (int) option return */ 10961 case SO_ALLZONES: 10962 if (!checkonly) { 10963 mutex_enter(&connp->conn_lock); 10964 if (IPCL_IS_BOUND(connp)) { 10965 mutex_exit(&connp->conn_lock); 10966 return (EINVAL); 10967 } 10968 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10969 mutex_exit(&connp->conn_lock); 10970 } 10971 break; /* goto sizeof (int) option return */ 10972 case SO_ANON_MLP: 10973 if (!checkonly) { 10974 mutex_enter(&connp->conn_lock); 10975 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10976 mutex_exit(&connp->conn_lock); 10977 } 10978 break; /* goto sizeof (int) option return */ 10979 case SO_MAC_EXEMPT: 10980 if (secpolicy_net_mac_aware(cr) != 0 || 10981 IPCL_IS_BOUND(connp)) 10982 return (EACCES); 10983 if (!checkonly) { 10984 mutex_enter(&connp->conn_lock); 10985 connp->conn_mac_exempt = *i1 != 0 ? 1 : 0; 10986 mutex_exit(&connp->conn_lock); 10987 } 10988 break; /* goto sizeof (int) option return */ 10989 default: 10990 /* 10991 * "soft" error (negative) 10992 * option not handled at this level 10993 * Note: Do not modify *outlenp 10994 */ 10995 return (-EINVAL); 10996 } 10997 break; 10998 case IPPROTO_IP: 10999 switch (name) { 11000 case IP_NEXTHOP: 11001 if (secpolicy_ip_config(cr, B_FALSE) != 0) 11002 return (EPERM); 11003 /* FALLTHRU */ 11004 case IP_MULTICAST_IF: 11005 case IP_DONTFAILOVER_IF: { 11006 ipaddr_t addr = *i1; 11007 11008 error = ip_opt_set_ipif(connp, addr, checkonly, name, 11009 first_mp); 11010 if (error != 0) 11011 return (error); 11012 break; /* goto sizeof (int) option return */ 11013 } 11014 11015 case IP_MULTICAST_TTL: 11016 /* Recorded in transport above IP */ 11017 *outvalp = *invalp; 11018 *outlenp = sizeof (uchar_t); 11019 return (0); 11020 case IP_MULTICAST_LOOP: 11021 if (!checkonly) { 11022 mutex_enter(&connp->conn_lock); 11023 connp->conn_multicast_loop = *invalp ? 1 : 0; 11024 mutex_exit(&connp->conn_lock); 11025 } 11026 *outvalp = *invalp; 11027 *outlenp = sizeof (uchar_t); 11028 return (0); 11029 case IP_ADD_MEMBERSHIP: 11030 case MCAST_JOIN_GROUP: 11031 case IP_DROP_MEMBERSHIP: 11032 case MCAST_LEAVE_GROUP: { 11033 struct ip_mreq *mreqp; 11034 struct group_req *greqp; 11035 ire_t *ire; 11036 boolean_t done = B_FALSE; 11037 ipaddr_t group, ifaddr; 11038 struct sockaddr_in *sin; 11039 uint32_t *ifindexp; 11040 boolean_t mcast_opt = B_TRUE; 11041 mcast_record_t fmode; 11042 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 11043 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 11044 11045 switch (name) { 11046 case IP_ADD_MEMBERSHIP: 11047 mcast_opt = B_FALSE; 11048 /* FALLTHRU */ 11049 case MCAST_JOIN_GROUP: 11050 fmode = MODE_IS_EXCLUDE; 11051 optfn = ip_opt_add_group; 11052 break; 11053 11054 case IP_DROP_MEMBERSHIP: 11055 mcast_opt = B_FALSE; 11056 /* FALLTHRU */ 11057 case MCAST_LEAVE_GROUP: 11058 fmode = MODE_IS_INCLUDE; 11059 optfn = ip_opt_delete_group; 11060 break; 11061 } 11062 11063 if (mcast_opt) { 11064 greqp = (struct group_req *)i1; 11065 sin = (struct sockaddr_in *)&greqp->gr_group; 11066 if (sin->sin_family != AF_INET) { 11067 *outlenp = 0; 11068 return (ENOPROTOOPT); 11069 } 11070 group = (ipaddr_t)sin->sin_addr.s_addr; 11071 ifaddr = INADDR_ANY; 11072 ifindexp = &greqp->gr_interface; 11073 } else { 11074 mreqp = (struct ip_mreq *)i1; 11075 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 11076 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 11077 ifindexp = NULL; 11078 } 11079 11080 /* 11081 * In the multirouting case, we need to replicate 11082 * the request on all interfaces that will take part 11083 * in replication. We do so because multirouting is 11084 * reflective, thus we will probably receive multi- 11085 * casts on those interfaces. 11086 * The ip_multirt_apply_membership() succeeds if the 11087 * operation succeeds on at least one interface. 11088 */ 11089 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 11090 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11091 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11092 if (ire != NULL) { 11093 if (ire->ire_flags & RTF_MULTIRT) { 11094 error = ip_multirt_apply_membership( 11095 optfn, ire, connp, checkonly, group, 11096 fmode, INADDR_ANY, first_mp); 11097 done = B_TRUE; 11098 } 11099 ire_refrele(ire); 11100 } 11101 if (!done) { 11102 error = optfn(connp, checkonly, group, ifaddr, 11103 ifindexp, fmode, INADDR_ANY, first_mp); 11104 } 11105 if (error) { 11106 /* 11107 * EINPROGRESS is a soft error, needs retry 11108 * so don't make *outlenp zero. 11109 */ 11110 if (error != EINPROGRESS) 11111 *outlenp = 0; 11112 return (error); 11113 } 11114 /* OK return - copy input buffer into output buffer */ 11115 if (invalp != outvalp) { 11116 /* don't trust bcopy for identical src/dst */ 11117 bcopy(invalp, outvalp, inlen); 11118 } 11119 *outlenp = inlen; 11120 return (0); 11121 } 11122 case IP_BLOCK_SOURCE: 11123 case IP_UNBLOCK_SOURCE: 11124 case IP_ADD_SOURCE_MEMBERSHIP: 11125 case IP_DROP_SOURCE_MEMBERSHIP: 11126 case MCAST_BLOCK_SOURCE: 11127 case MCAST_UNBLOCK_SOURCE: 11128 case MCAST_JOIN_SOURCE_GROUP: 11129 case MCAST_LEAVE_SOURCE_GROUP: { 11130 struct ip_mreq_source *imreqp; 11131 struct group_source_req *gsreqp; 11132 in_addr_t grp, src, ifaddr = INADDR_ANY; 11133 uint32_t ifindex = 0; 11134 mcast_record_t fmode; 11135 struct sockaddr_in *sin; 11136 ire_t *ire; 11137 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 11138 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 11139 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 11140 11141 switch (name) { 11142 case IP_BLOCK_SOURCE: 11143 mcast_opt = B_FALSE; 11144 /* FALLTHRU */ 11145 case MCAST_BLOCK_SOURCE: 11146 fmode = MODE_IS_EXCLUDE; 11147 optfn = ip_opt_add_group; 11148 break; 11149 11150 case IP_UNBLOCK_SOURCE: 11151 mcast_opt = B_FALSE; 11152 /* FALLTHRU */ 11153 case MCAST_UNBLOCK_SOURCE: 11154 fmode = MODE_IS_EXCLUDE; 11155 optfn = ip_opt_delete_group; 11156 break; 11157 11158 case IP_ADD_SOURCE_MEMBERSHIP: 11159 mcast_opt = B_FALSE; 11160 /* FALLTHRU */ 11161 case MCAST_JOIN_SOURCE_GROUP: 11162 fmode = MODE_IS_INCLUDE; 11163 optfn = ip_opt_add_group; 11164 break; 11165 11166 case IP_DROP_SOURCE_MEMBERSHIP: 11167 mcast_opt = B_FALSE; 11168 /* FALLTHRU */ 11169 case MCAST_LEAVE_SOURCE_GROUP: 11170 fmode = MODE_IS_INCLUDE; 11171 optfn = ip_opt_delete_group; 11172 break; 11173 } 11174 11175 if (mcast_opt) { 11176 gsreqp = (struct group_source_req *)i1; 11177 if (gsreqp->gsr_group.ss_family != AF_INET) { 11178 *outlenp = 0; 11179 return (ENOPROTOOPT); 11180 } 11181 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 11182 grp = (ipaddr_t)sin->sin_addr.s_addr; 11183 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 11184 src = (ipaddr_t)sin->sin_addr.s_addr; 11185 ifindex = gsreqp->gsr_interface; 11186 } else { 11187 imreqp = (struct ip_mreq_source *)i1; 11188 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 11189 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 11190 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 11191 } 11192 11193 /* 11194 * In the multirouting case, we need to replicate 11195 * the request as noted in the mcast cases above. 11196 */ 11197 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 11198 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11199 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11200 if (ire != NULL) { 11201 if (ire->ire_flags & RTF_MULTIRT) { 11202 error = ip_multirt_apply_membership( 11203 optfn, ire, connp, checkonly, grp, 11204 fmode, src, first_mp); 11205 done = B_TRUE; 11206 } 11207 ire_refrele(ire); 11208 } 11209 if (!done) { 11210 error = optfn(connp, checkonly, grp, ifaddr, 11211 &ifindex, fmode, src, first_mp); 11212 } 11213 if (error != 0) { 11214 /* 11215 * EINPROGRESS is a soft error, needs retry 11216 * so don't make *outlenp zero. 11217 */ 11218 if (error != EINPROGRESS) 11219 *outlenp = 0; 11220 return (error); 11221 } 11222 /* OK return - copy input buffer into output buffer */ 11223 if (invalp != outvalp) { 11224 bcopy(invalp, outvalp, inlen); 11225 } 11226 *outlenp = inlen; 11227 return (0); 11228 } 11229 case IP_SEC_OPT: 11230 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11231 if (error != 0) { 11232 *outlenp = 0; 11233 return (error); 11234 } 11235 break; 11236 case IP_HDRINCL: 11237 case IP_OPTIONS: 11238 case T_IP_OPTIONS: 11239 case IP_TOS: 11240 case T_IP_TOS: 11241 case IP_TTL: 11242 case IP_RECVDSTADDR: 11243 case IP_RECVOPTS: 11244 /* OK return - copy input buffer into output buffer */ 11245 if (invalp != outvalp) { 11246 /* don't trust bcopy for identical src/dst */ 11247 bcopy(invalp, outvalp, inlen); 11248 } 11249 *outlenp = inlen; 11250 return (0); 11251 case IP_RECVIF: 11252 /* Retrieve the inbound interface index */ 11253 if (!checkonly) { 11254 mutex_enter(&connp->conn_lock); 11255 connp->conn_recvif = *i1 ? 1 : 0; 11256 mutex_exit(&connp->conn_lock); 11257 } 11258 break; /* goto sizeof (int) option return */ 11259 case IP_RECVPKTINFO: 11260 if (!checkonly) { 11261 mutex_enter(&connp->conn_lock); 11262 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11263 mutex_exit(&connp->conn_lock); 11264 } 11265 break; /* goto sizeof (int) option return */ 11266 case IP_RECVSLLA: 11267 /* Retrieve the source link layer address */ 11268 if (!checkonly) { 11269 mutex_enter(&connp->conn_lock); 11270 connp->conn_recvslla = *i1 ? 1 : 0; 11271 mutex_exit(&connp->conn_lock); 11272 } 11273 break; /* goto sizeof (int) option return */ 11274 case MRT_INIT: 11275 case MRT_DONE: 11276 case MRT_ADD_VIF: 11277 case MRT_DEL_VIF: 11278 case MRT_ADD_MFC: 11279 case MRT_DEL_MFC: 11280 case MRT_ASSERT: 11281 if ((error = secpolicy_ip_config(cr, B_FALSE)) != 0) { 11282 *outlenp = 0; 11283 return (error); 11284 } 11285 error = ip_mrouter_set((int)name, q, checkonly, 11286 (uchar_t *)invalp, inlen, first_mp); 11287 if (error) { 11288 *outlenp = 0; 11289 return (error); 11290 } 11291 /* OK return - copy input buffer into output buffer */ 11292 if (invalp != outvalp) { 11293 /* don't trust bcopy for identical src/dst */ 11294 bcopy(invalp, outvalp, inlen); 11295 } 11296 *outlenp = inlen; 11297 return (0); 11298 case IP_BOUND_IF: 11299 case IP_XMIT_IF: 11300 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11301 level, name, first_mp); 11302 if (error != 0) 11303 return (error); 11304 break; /* goto sizeof (int) option return */ 11305 11306 case IP_UNSPEC_SRC: 11307 /* Allow sending with a zero source address */ 11308 if (!checkonly) { 11309 mutex_enter(&connp->conn_lock); 11310 connp->conn_unspec_src = *i1 ? 1 : 0; 11311 mutex_exit(&connp->conn_lock); 11312 } 11313 break; /* goto sizeof (int) option return */ 11314 default: 11315 /* 11316 * "soft" error (negative) 11317 * option not handled at this level 11318 * Note: Do not modify *outlenp 11319 */ 11320 return (-EINVAL); 11321 } 11322 break; 11323 case IPPROTO_IPV6: 11324 switch (name) { 11325 case IPV6_BOUND_IF: 11326 case IPV6_BOUND_PIF: 11327 case IPV6_DONTFAILOVER_IF: 11328 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11329 level, name, first_mp); 11330 if (error != 0) 11331 return (error); 11332 break; /* goto sizeof (int) option return */ 11333 11334 case IPV6_MULTICAST_IF: 11335 /* 11336 * The only possible errors are EINPROGRESS and 11337 * EINVAL. EINPROGRESS will be restarted and is not 11338 * a hard error. We call this option on both V4 and V6 11339 * If both return EINVAL, then this call returns 11340 * EINVAL. If at least one of them succeeds we 11341 * return success. 11342 */ 11343 found = B_FALSE; 11344 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11345 level, name, first_mp); 11346 if (error == EINPROGRESS) 11347 return (error); 11348 if (error == 0) 11349 found = B_TRUE; 11350 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11351 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 11352 if (error == 0) 11353 found = B_TRUE; 11354 if (!found) 11355 return (error); 11356 break; /* goto sizeof (int) option return */ 11357 11358 case IPV6_MULTICAST_HOPS: 11359 /* Recorded in transport above IP */ 11360 break; /* goto sizeof (int) option return */ 11361 case IPV6_MULTICAST_LOOP: 11362 if (!checkonly) { 11363 mutex_enter(&connp->conn_lock); 11364 connp->conn_multicast_loop = *i1; 11365 mutex_exit(&connp->conn_lock); 11366 } 11367 break; /* goto sizeof (int) option return */ 11368 case IPV6_JOIN_GROUP: 11369 case MCAST_JOIN_GROUP: 11370 case IPV6_LEAVE_GROUP: 11371 case MCAST_LEAVE_GROUP: { 11372 struct ipv6_mreq *ip_mreqp; 11373 struct group_req *greqp; 11374 ire_t *ire; 11375 boolean_t done = B_FALSE; 11376 in6_addr_t groupv6; 11377 uint32_t ifindex; 11378 boolean_t mcast_opt = B_TRUE; 11379 mcast_record_t fmode; 11380 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11381 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11382 11383 switch (name) { 11384 case IPV6_JOIN_GROUP: 11385 mcast_opt = B_FALSE; 11386 /* FALLTHRU */ 11387 case MCAST_JOIN_GROUP: 11388 fmode = MODE_IS_EXCLUDE; 11389 optfn = ip_opt_add_group_v6; 11390 break; 11391 11392 case IPV6_LEAVE_GROUP: 11393 mcast_opt = B_FALSE; 11394 /* FALLTHRU */ 11395 case MCAST_LEAVE_GROUP: 11396 fmode = MODE_IS_INCLUDE; 11397 optfn = ip_opt_delete_group_v6; 11398 break; 11399 } 11400 11401 if (mcast_opt) { 11402 struct sockaddr_in *sin; 11403 struct sockaddr_in6 *sin6; 11404 greqp = (struct group_req *)i1; 11405 if (greqp->gr_group.ss_family == AF_INET) { 11406 sin = (struct sockaddr_in *) 11407 &(greqp->gr_group); 11408 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 11409 &groupv6); 11410 } else { 11411 sin6 = (struct sockaddr_in6 *) 11412 &(greqp->gr_group); 11413 groupv6 = sin6->sin6_addr; 11414 } 11415 ifindex = greqp->gr_interface; 11416 } else { 11417 ip_mreqp = (struct ipv6_mreq *)i1; 11418 groupv6 = ip_mreqp->ipv6mr_multiaddr; 11419 ifindex = ip_mreqp->ipv6mr_interface; 11420 } 11421 /* 11422 * In the multirouting case, we need to replicate 11423 * the request on all interfaces that will take part 11424 * in replication. We do so because multirouting is 11425 * reflective, thus we will probably receive multi- 11426 * casts on those interfaces. 11427 * The ip_multirt_apply_membership_v6() succeeds if 11428 * the operation succeeds on at least one interface. 11429 */ 11430 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 11431 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11432 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11433 if (ire != NULL) { 11434 if (ire->ire_flags & RTF_MULTIRT) { 11435 error = ip_multirt_apply_membership_v6( 11436 optfn, ire, connp, checkonly, 11437 &groupv6, fmode, &ipv6_all_zeros, 11438 first_mp); 11439 done = B_TRUE; 11440 } 11441 ire_refrele(ire); 11442 } 11443 if (!done) { 11444 error = optfn(connp, checkonly, &groupv6, 11445 ifindex, fmode, &ipv6_all_zeros, first_mp); 11446 } 11447 if (error) { 11448 /* 11449 * EINPROGRESS is a soft error, needs retry 11450 * so don't make *outlenp zero. 11451 */ 11452 if (error != EINPROGRESS) 11453 *outlenp = 0; 11454 return (error); 11455 } 11456 /* OK return - copy input buffer into output buffer */ 11457 if (invalp != outvalp) { 11458 /* don't trust bcopy for identical src/dst */ 11459 bcopy(invalp, outvalp, inlen); 11460 } 11461 *outlenp = inlen; 11462 return (0); 11463 } 11464 case MCAST_BLOCK_SOURCE: 11465 case MCAST_UNBLOCK_SOURCE: 11466 case MCAST_JOIN_SOURCE_GROUP: 11467 case MCAST_LEAVE_SOURCE_GROUP: { 11468 struct group_source_req *gsreqp; 11469 in6_addr_t v6grp, v6src; 11470 uint32_t ifindex; 11471 mcast_record_t fmode; 11472 ire_t *ire; 11473 boolean_t done = B_FALSE; 11474 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11475 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11476 11477 switch (name) { 11478 case MCAST_BLOCK_SOURCE: 11479 fmode = MODE_IS_EXCLUDE; 11480 optfn = ip_opt_add_group_v6; 11481 break; 11482 case MCAST_UNBLOCK_SOURCE: 11483 fmode = MODE_IS_EXCLUDE; 11484 optfn = ip_opt_delete_group_v6; 11485 break; 11486 case MCAST_JOIN_SOURCE_GROUP: 11487 fmode = MODE_IS_INCLUDE; 11488 optfn = ip_opt_add_group_v6; 11489 break; 11490 case MCAST_LEAVE_SOURCE_GROUP: 11491 fmode = MODE_IS_INCLUDE; 11492 optfn = ip_opt_delete_group_v6; 11493 break; 11494 } 11495 11496 gsreqp = (struct group_source_req *)i1; 11497 ifindex = gsreqp->gsr_interface; 11498 if (gsreqp->gsr_group.ss_family == AF_INET) { 11499 struct sockaddr_in *s; 11500 s = (struct sockaddr_in *)&gsreqp->gsr_group; 11501 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 11502 s = (struct sockaddr_in *)&gsreqp->gsr_source; 11503 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 11504 } else { 11505 struct sockaddr_in6 *s6; 11506 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 11507 v6grp = s6->sin6_addr; 11508 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 11509 v6src = s6->sin6_addr; 11510 } 11511 11512 /* 11513 * In the multirouting case, we need to replicate 11514 * the request as noted in the mcast cases above. 11515 */ 11516 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 11517 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11518 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11519 if (ire != NULL) { 11520 if (ire->ire_flags & RTF_MULTIRT) { 11521 error = ip_multirt_apply_membership_v6( 11522 optfn, ire, connp, checkonly, 11523 &v6grp, fmode, &v6src, first_mp); 11524 done = B_TRUE; 11525 } 11526 ire_refrele(ire); 11527 } 11528 if (!done) { 11529 error = optfn(connp, checkonly, &v6grp, 11530 ifindex, fmode, &v6src, first_mp); 11531 } 11532 if (error != 0) { 11533 /* 11534 * EINPROGRESS is a soft error, needs retry 11535 * so don't make *outlenp zero. 11536 */ 11537 if (error != EINPROGRESS) 11538 *outlenp = 0; 11539 return (error); 11540 } 11541 /* OK return - copy input buffer into output buffer */ 11542 if (invalp != outvalp) { 11543 bcopy(invalp, outvalp, inlen); 11544 } 11545 *outlenp = inlen; 11546 return (0); 11547 } 11548 case IPV6_UNICAST_HOPS: 11549 /* Recorded in transport above IP */ 11550 break; /* goto sizeof (int) option return */ 11551 case IPV6_UNSPEC_SRC: 11552 /* Allow sending with a zero source address */ 11553 if (!checkonly) { 11554 mutex_enter(&connp->conn_lock); 11555 connp->conn_unspec_src = *i1 ? 1 : 0; 11556 mutex_exit(&connp->conn_lock); 11557 } 11558 break; /* goto sizeof (int) option return */ 11559 case IPV6_RECVPKTINFO: 11560 if (!checkonly) { 11561 mutex_enter(&connp->conn_lock); 11562 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11563 mutex_exit(&connp->conn_lock); 11564 } 11565 break; /* goto sizeof (int) option return */ 11566 case IPV6_RECVTCLASS: 11567 if (!checkonly) { 11568 if (*i1 < 0 || *i1 > 1) { 11569 return (EINVAL); 11570 } 11571 mutex_enter(&connp->conn_lock); 11572 connp->conn_ipv6_recvtclass = *i1; 11573 mutex_exit(&connp->conn_lock); 11574 } 11575 break; 11576 case IPV6_RECVPATHMTU: 11577 if (!checkonly) { 11578 if (*i1 < 0 || *i1 > 1) { 11579 return (EINVAL); 11580 } 11581 mutex_enter(&connp->conn_lock); 11582 connp->conn_ipv6_recvpathmtu = *i1; 11583 mutex_exit(&connp->conn_lock); 11584 } 11585 break; 11586 case IPV6_RECVHOPLIMIT: 11587 if (!checkonly) { 11588 mutex_enter(&connp->conn_lock); 11589 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 11590 mutex_exit(&connp->conn_lock); 11591 } 11592 break; /* goto sizeof (int) option return */ 11593 case IPV6_RECVHOPOPTS: 11594 if (!checkonly) { 11595 mutex_enter(&connp->conn_lock); 11596 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 11597 mutex_exit(&connp->conn_lock); 11598 } 11599 break; /* goto sizeof (int) option return */ 11600 case IPV6_RECVDSTOPTS: 11601 if (!checkonly) { 11602 mutex_enter(&connp->conn_lock); 11603 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 11604 mutex_exit(&connp->conn_lock); 11605 } 11606 break; /* goto sizeof (int) option return */ 11607 case IPV6_RECVRTHDR: 11608 if (!checkonly) { 11609 mutex_enter(&connp->conn_lock); 11610 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 11611 mutex_exit(&connp->conn_lock); 11612 } 11613 break; /* goto sizeof (int) option return */ 11614 case IPV6_RECVRTHDRDSTOPTS: 11615 if (!checkonly) { 11616 mutex_enter(&connp->conn_lock); 11617 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 11618 mutex_exit(&connp->conn_lock); 11619 } 11620 break; /* goto sizeof (int) option return */ 11621 case IPV6_PKTINFO: 11622 if (inlen == 0) 11623 return (-EINVAL); /* clearing option */ 11624 error = ip6_set_pktinfo(cr, connp, 11625 (struct in6_pktinfo *)invalp, first_mp); 11626 if (error != 0) 11627 *outlenp = 0; 11628 else 11629 *outlenp = inlen; 11630 return (error); 11631 case IPV6_NEXTHOP: { 11632 struct sockaddr_in6 *sin6; 11633 11634 /* Verify that the nexthop is reachable */ 11635 if (inlen == 0) 11636 return (-EINVAL); /* clearing option */ 11637 11638 sin6 = (struct sockaddr_in6 *)invalp; 11639 ire = ire_route_lookup_v6(&sin6->sin6_addr, 11640 0, 0, 0, NULL, NULL, connp->conn_zoneid, 11641 NULL, MATCH_IRE_DEFAULT, ipst); 11642 11643 if (ire == NULL) { 11644 *outlenp = 0; 11645 return (EHOSTUNREACH); 11646 } 11647 ire_refrele(ire); 11648 return (-EINVAL); 11649 } 11650 case IPV6_SEC_OPT: 11651 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11652 if (error != 0) { 11653 *outlenp = 0; 11654 return (error); 11655 } 11656 break; 11657 case IPV6_SRC_PREFERENCES: { 11658 /* 11659 * This is implemented strictly in the ip module 11660 * (here and in tcp_opt_*() to accomodate tcp 11661 * sockets). Modules above ip pass this option 11662 * down here since ip is the only one that needs to 11663 * be aware of source address preferences. 11664 * 11665 * This socket option only affects connected 11666 * sockets that haven't already bound to a specific 11667 * IPv6 address. In other words, sockets that 11668 * don't call bind() with an address other than the 11669 * unspecified address and that call connect(). 11670 * ip_bind_connected_v6() passes these preferences 11671 * to the ipif_select_source_v6() function. 11672 */ 11673 if (inlen != sizeof (uint32_t)) 11674 return (EINVAL); 11675 error = ip6_set_src_preferences(connp, 11676 *(uint32_t *)invalp); 11677 if (error != 0) { 11678 *outlenp = 0; 11679 return (error); 11680 } else { 11681 *outlenp = sizeof (uint32_t); 11682 } 11683 break; 11684 } 11685 case IPV6_V6ONLY: 11686 if (*i1 < 0 || *i1 > 1) { 11687 return (EINVAL); 11688 } 11689 mutex_enter(&connp->conn_lock); 11690 connp->conn_ipv6_v6only = *i1; 11691 mutex_exit(&connp->conn_lock); 11692 break; 11693 default: 11694 return (-EINVAL); 11695 } 11696 break; 11697 default: 11698 /* 11699 * "soft" error (negative) 11700 * option not handled at this level 11701 * Note: Do not modify *outlenp 11702 */ 11703 return (-EINVAL); 11704 } 11705 /* 11706 * Common case of return from an option that is sizeof (int) 11707 */ 11708 *(int *)outvalp = *i1; 11709 *outlenp = sizeof (int); 11710 return (0); 11711 } 11712 11713 /* 11714 * This routine gets default values of certain options whose default 11715 * values are maintained by protocol specific code 11716 */ 11717 /* ARGSUSED */ 11718 int 11719 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 11720 { 11721 int *i1 = (int *)ptr; 11722 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11723 11724 switch (level) { 11725 case IPPROTO_IP: 11726 switch (name) { 11727 case IP_MULTICAST_TTL: 11728 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 11729 return (sizeof (uchar_t)); 11730 case IP_MULTICAST_LOOP: 11731 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 11732 return (sizeof (uchar_t)); 11733 default: 11734 return (-1); 11735 } 11736 case IPPROTO_IPV6: 11737 switch (name) { 11738 case IPV6_UNICAST_HOPS: 11739 *i1 = ipst->ips_ipv6_def_hops; 11740 return (sizeof (int)); 11741 case IPV6_MULTICAST_HOPS: 11742 *i1 = IP_DEFAULT_MULTICAST_TTL; 11743 return (sizeof (int)); 11744 case IPV6_MULTICAST_LOOP: 11745 *i1 = IP_DEFAULT_MULTICAST_LOOP; 11746 return (sizeof (int)); 11747 case IPV6_V6ONLY: 11748 *i1 = 1; 11749 return (sizeof (int)); 11750 default: 11751 return (-1); 11752 } 11753 default: 11754 return (-1); 11755 } 11756 /* NOTREACHED */ 11757 } 11758 11759 /* 11760 * Given a destination address and a pointer to where to put the information 11761 * this routine fills in the mtuinfo. 11762 */ 11763 int 11764 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 11765 struct ip6_mtuinfo *mtuinfo, netstack_t *ns) 11766 { 11767 ire_t *ire; 11768 ip_stack_t *ipst = ns->netstack_ip; 11769 11770 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 11771 return (-1); 11772 11773 bzero(mtuinfo, sizeof (*mtuinfo)); 11774 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 11775 mtuinfo->ip6m_addr.sin6_port = port; 11776 mtuinfo->ip6m_addr.sin6_addr = *in6; 11777 11778 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL, ipst); 11779 if (ire != NULL) { 11780 mtuinfo->ip6m_mtu = ire->ire_max_frag; 11781 ire_refrele(ire); 11782 } else { 11783 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 11784 } 11785 return (sizeof (struct ip6_mtuinfo)); 11786 } 11787 11788 /* 11789 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 11790 * checking of GET_QUEUE_CRED(q) and that ip_g_mrouter is set should be done and 11791 * isn't. This doesn't matter as the error checking is done properly for the 11792 * other MRT options coming in through ip_opt_set. 11793 */ 11794 int 11795 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 11796 { 11797 conn_t *connp = Q_TO_CONN(q); 11798 ipsec_req_t *req = (ipsec_req_t *)ptr; 11799 11800 switch (level) { 11801 case IPPROTO_IP: 11802 switch (name) { 11803 case MRT_VERSION: 11804 case MRT_ASSERT: 11805 (void) ip_mrouter_get(name, q, ptr); 11806 return (sizeof (int)); 11807 case IP_SEC_OPT: 11808 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 11809 case IP_NEXTHOP: 11810 if (connp->conn_nexthop_set) { 11811 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 11812 return (sizeof (ipaddr_t)); 11813 } else 11814 return (0); 11815 case IP_RECVPKTINFO: 11816 *(int *)ptr = connp->conn_ip_recvpktinfo ? 1: 0; 11817 return (sizeof (int)); 11818 default: 11819 break; 11820 } 11821 break; 11822 case IPPROTO_IPV6: 11823 switch (name) { 11824 case IPV6_SEC_OPT: 11825 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 11826 case IPV6_SRC_PREFERENCES: { 11827 return (ip6_get_src_preferences(connp, 11828 (uint32_t *)ptr)); 11829 } 11830 case IPV6_V6ONLY: 11831 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 11832 return (sizeof (int)); 11833 case IPV6_PATHMTU: 11834 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 11835 (struct ip6_mtuinfo *)ptr, 11836 connp->conn_netstack)); 11837 default: 11838 break; 11839 } 11840 break; 11841 default: 11842 break; 11843 } 11844 return (-1); 11845 } 11846 11847 /* Named Dispatch routine to get a current value out of our parameter table. */ 11848 /* ARGSUSED */ 11849 static int 11850 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11851 { 11852 ipparam_t *ippa = (ipparam_t *)cp; 11853 11854 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 11855 return (0); 11856 } 11857 11858 /* ARGSUSED */ 11859 static int 11860 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11861 { 11862 11863 (void) mi_mpprintf(mp, "%d", *(int *)cp); 11864 return (0); 11865 } 11866 11867 /* 11868 * Set ip{,6}_forwarding values. This means walking through all of the 11869 * ill's and toggling their forwarding values. 11870 */ 11871 /* ARGSUSED */ 11872 static int 11873 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11874 { 11875 long new_value; 11876 int *forwarding_value = (int *)cp; 11877 ill_t *walker; 11878 boolean_t isv6; 11879 ill_walk_context_t ctx; 11880 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11881 11882 isv6 = (forwarding_value == &ipst->ips_ipv6_forward); 11883 11884 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11885 new_value < 0 || new_value > 1) { 11886 return (EINVAL); 11887 } 11888 11889 *forwarding_value = new_value; 11890 11891 /* 11892 * Regardless of the current value of ip_forwarding, set all per-ill 11893 * values of ip_forwarding to the value being set. 11894 * 11895 * Bring all the ill's up to date with the new global value. 11896 */ 11897 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11898 11899 if (isv6) 11900 walker = ILL_START_WALK_V6(&ctx, ipst); 11901 else 11902 walker = ILL_START_WALK_V4(&ctx, ipst); 11903 for (; walker != NULL; walker = ill_next(&ctx, walker)) { 11904 (void) ill_forward_set(q, mp, (new_value != 0), 11905 (caddr_t)walker); 11906 } 11907 rw_exit(&ipst->ips_ill_g_lock); 11908 11909 return (0); 11910 } 11911 11912 /* 11913 * Walk through the param array specified registering each element with the 11914 * Named Dispatch handler. This is called only during init. So it is ok 11915 * not to acquire any locks 11916 */ 11917 static boolean_t 11918 ip_param_register(IDP *ndp, ipparam_t *ippa, size_t ippa_cnt, 11919 ipndp_t *ipnd, size_t ipnd_cnt) 11920 { 11921 for (; ippa_cnt-- > 0; ippa++) { 11922 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 11923 if (!nd_load(ndp, ippa->ip_param_name, 11924 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11925 nd_free(ndp); 11926 return (B_FALSE); 11927 } 11928 } 11929 } 11930 11931 for (; ipnd_cnt-- > 0; ipnd++) { 11932 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11933 if (!nd_load(ndp, ipnd->ip_ndp_name, 11934 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11935 ipnd->ip_ndp_data)) { 11936 nd_free(ndp); 11937 return (B_FALSE); 11938 } 11939 } 11940 } 11941 11942 return (B_TRUE); 11943 } 11944 11945 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11946 /* ARGSUSED */ 11947 static int 11948 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11949 { 11950 long new_value; 11951 ipparam_t *ippa = (ipparam_t *)cp; 11952 11953 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11954 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11955 return (EINVAL); 11956 } 11957 ippa->ip_param_value = new_value; 11958 return (0); 11959 } 11960 11961 /* 11962 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11963 * When an ipf is passed here for the first time, if 11964 * we already have in-order fragments on the queue, we convert from the fast- 11965 * path reassembly scheme to the hard-case scheme. From then on, additional 11966 * fragments are reassembled here. We keep track of the start and end offsets 11967 * of each piece, and the number of holes in the chain. When the hole count 11968 * goes to zero, we are done! 11969 * 11970 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11971 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11972 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11973 * after the call to ip_reassemble(). 11974 */ 11975 int 11976 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11977 size_t msg_len) 11978 { 11979 uint_t end; 11980 mblk_t *next_mp; 11981 mblk_t *mp1; 11982 uint_t offset; 11983 boolean_t incr_dups = B_TRUE; 11984 boolean_t offset_zero_seen = B_FALSE; 11985 boolean_t pkt_boundary_checked = B_FALSE; 11986 11987 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11988 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11989 11990 /* Add in byte count */ 11991 ipf->ipf_count += msg_len; 11992 if (ipf->ipf_end) { 11993 /* 11994 * We were part way through in-order reassembly, but now there 11995 * is a hole. We walk through messages already queued, and 11996 * mark them for hard case reassembly. We know that up till 11997 * now they were in order starting from offset zero. 11998 */ 11999 offset = 0; 12000 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 12001 IP_REASS_SET_START(mp1, offset); 12002 if (offset == 0) { 12003 ASSERT(ipf->ipf_nf_hdr_len != 0); 12004 offset = -ipf->ipf_nf_hdr_len; 12005 } 12006 offset += mp1->b_wptr - mp1->b_rptr; 12007 IP_REASS_SET_END(mp1, offset); 12008 } 12009 /* One hole at the end. */ 12010 ipf->ipf_hole_cnt = 1; 12011 /* Brand it as a hard case, forever. */ 12012 ipf->ipf_end = 0; 12013 } 12014 /* Walk through all the new pieces. */ 12015 do { 12016 end = start + (mp->b_wptr - mp->b_rptr); 12017 /* 12018 * If start is 0, decrease 'end' only for the first mblk of 12019 * the fragment. Otherwise 'end' can get wrong value in the 12020 * second pass of the loop if first mblk is exactly the 12021 * size of ipf_nf_hdr_len. 12022 */ 12023 if (start == 0 && !offset_zero_seen) { 12024 /* First segment */ 12025 ASSERT(ipf->ipf_nf_hdr_len != 0); 12026 end -= ipf->ipf_nf_hdr_len; 12027 offset_zero_seen = B_TRUE; 12028 } 12029 next_mp = mp->b_cont; 12030 /* 12031 * We are checking to see if there is any interesing data 12032 * to process. If there isn't and the mblk isn't the 12033 * one which carries the unfragmentable header then we 12034 * drop it. It's possible to have just the unfragmentable 12035 * header come through without any data. That needs to be 12036 * saved. 12037 * 12038 * If the assert at the top of this function holds then the 12039 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 12040 * is infrequently traveled enough that the test is left in 12041 * to protect against future code changes which break that 12042 * invariant. 12043 */ 12044 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 12045 /* Empty. Blast it. */ 12046 IP_REASS_SET_START(mp, 0); 12047 IP_REASS_SET_END(mp, 0); 12048 /* 12049 * If the ipf points to the mblk we are about to free, 12050 * update ipf to point to the next mblk (or NULL 12051 * if none). 12052 */ 12053 if (ipf->ipf_mp->b_cont == mp) 12054 ipf->ipf_mp->b_cont = next_mp; 12055 freeb(mp); 12056 continue; 12057 } 12058 mp->b_cont = NULL; 12059 IP_REASS_SET_START(mp, start); 12060 IP_REASS_SET_END(mp, end); 12061 if (!ipf->ipf_tail_mp) { 12062 ipf->ipf_tail_mp = mp; 12063 ipf->ipf_mp->b_cont = mp; 12064 if (start == 0 || !more) { 12065 ipf->ipf_hole_cnt = 1; 12066 /* 12067 * if the first fragment comes in more than one 12068 * mblk, this loop will be executed for each 12069 * mblk. Need to adjust hole count so exiting 12070 * this routine will leave hole count at 1. 12071 */ 12072 if (next_mp) 12073 ipf->ipf_hole_cnt++; 12074 } else 12075 ipf->ipf_hole_cnt = 2; 12076 continue; 12077 } else if (ipf->ipf_last_frag_seen && !more && 12078 !pkt_boundary_checked) { 12079 /* 12080 * We check datagram boundary only if this fragment 12081 * claims to be the last fragment and we have seen a 12082 * last fragment in the past too. We do this only 12083 * once for a given fragment. 12084 * 12085 * start cannot be 0 here as fragments with start=0 12086 * and MF=0 gets handled as a complete packet. These 12087 * fragments should not reach here. 12088 */ 12089 12090 if (start + msgdsize(mp) != 12091 IP_REASS_END(ipf->ipf_tail_mp)) { 12092 /* 12093 * We have two fragments both of which claim 12094 * to be the last fragment but gives conflicting 12095 * information about the whole datagram size. 12096 * Something fishy is going on. Drop the 12097 * fragment and free up the reassembly list. 12098 */ 12099 return (IP_REASS_FAILED); 12100 } 12101 12102 /* 12103 * We shouldn't come to this code block again for this 12104 * particular fragment. 12105 */ 12106 pkt_boundary_checked = B_TRUE; 12107 } 12108 12109 /* New stuff at or beyond tail? */ 12110 offset = IP_REASS_END(ipf->ipf_tail_mp); 12111 if (start >= offset) { 12112 if (ipf->ipf_last_frag_seen) { 12113 /* current fragment is beyond last fragment */ 12114 return (IP_REASS_FAILED); 12115 } 12116 /* Link it on end. */ 12117 ipf->ipf_tail_mp->b_cont = mp; 12118 ipf->ipf_tail_mp = mp; 12119 if (more) { 12120 if (start != offset) 12121 ipf->ipf_hole_cnt++; 12122 } else if (start == offset && next_mp == NULL) 12123 ipf->ipf_hole_cnt--; 12124 continue; 12125 } 12126 mp1 = ipf->ipf_mp->b_cont; 12127 offset = IP_REASS_START(mp1); 12128 /* New stuff at the front? */ 12129 if (start < offset) { 12130 if (start == 0) { 12131 if (end >= offset) { 12132 /* Nailed the hole at the begining. */ 12133 ipf->ipf_hole_cnt--; 12134 } 12135 } else if (end < offset) { 12136 /* 12137 * A hole, stuff, and a hole where there used 12138 * to be just a hole. 12139 */ 12140 ipf->ipf_hole_cnt++; 12141 } 12142 mp->b_cont = mp1; 12143 /* Check for overlap. */ 12144 while (end > offset) { 12145 if (end < IP_REASS_END(mp1)) { 12146 mp->b_wptr -= end - offset; 12147 IP_REASS_SET_END(mp, offset); 12148 BUMP_MIB(ill->ill_ip_mib, 12149 ipIfStatsReasmPartDups); 12150 break; 12151 } 12152 /* Did we cover another hole? */ 12153 if ((mp1->b_cont && 12154 IP_REASS_END(mp1) != 12155 IP_REASS_START(mp1->b_cont) && 12156 end >= IP_REASS_START(mp1->b_cont)) || 12157 (!ipf->ipf_last_frag_seen && !more)) { 12158 ipf->ipf_hole_cnt--; 12159 } 12160 /* Clip out mp1. */ 12161 if ((mp->b_cont = mp1->b_cont) == NULL) { 12162 /* 12163 * After clipping out mp1, this guy 12164 * is now hanging off the end. 12165 */ 12166 ipf->ipf_tail_mp = mp; 12167 } 12168 IP_REASS_SET_START(mp1, 0); 12169 IP_REASS_SET_END(mp1, 0); 12170 /* Subtract byte count */ 12171 ipf->ipf_count -= mp1->b_datap->db_lim - 12172 mp1->b_datap->db_base; 12173 freeb(mp1); 12174 BUMP_MIB(ill->ill_ip_mib, 12175 ipIfStatsReasmPartDups); 12176 mp1 = mp->b_cont; 12177 if (!mp1) 12178 break; 12179 offset = IP_REASS_START(mp1); 12180 } 12181 ipf->ipf_mp->b_cont = mp; 12182 continue; 12183 } 12184 /* 12185 * The new piece starts somewhere between the start of the head 12186 * and before the end of the tail. 12187 */ 12188 for (; mp1; mp1 = mp1->b_cont) { 12189 offset = IP_REASS_END(mp1); 12190 if (start < offset) { 12191 if (end <= offset) { 12192 /* Nothing new. */ 12193 IP_REASS_SET_START(mp, 0); 12194 IP_REASS_SET_END(mp, 0); 12195 /* Subtract byte count */ 12196 ipf->ipf_count -= mp->b_datap->db_lim - 12197 mp->b_datap->db_base; 12198 if (incr_dups) { 12199 ipf->ipf_num_dups++; 12200 incr_dups = B_FALSE; 12201 } 12202 freeb(mp); 12203 BUMP_MIB(ill->ill_ip_mib, 12204 ipIfStatsReasmDuplicates); 12205 break; 12206 } 12207 /* 12208 * Trim redundant stuff off beginning of new 12209 * piece. 12210 */ 12211 IP_REASS_SET_START(mp, offset); 12212 mp->b_rptr += offset - start; 12213 BUMP_MIB(ill->ill_ip_mib, 12214 ipIfStatsReasmPartDups); 12215 start = offset; 12216 if (!mp1->b_cont) { 12217 /* 12218 * After trimming, this guy is now 12219 * hanging off the end. 12220 */ 12221 mp1->b_cont = mp; 12222 ipf->ipf_tail_mp = mp; 12223 if (!more) { 12224 ipf->ipf_hole_cnt--; 12225 } 12226 break; 12227 } 12228 } 12229 if (start >= IP_REASS_START(mp1->b_cont)) 12230 continue; 12231 /* Fill a hole */ 12232 if (start > offset) 12233 ipf->ipf_hole_cnt++; 12234 mp->b_cont = mp1->b_cont; 12235 mp1->b_cont = mp; 12236 mp1 = mp->b_cont; 12237 offset = IP_REASS_START(mp1); 12238 if (end >= offset) { 12239 ipf->ipf_hole_cnt--; 12240 /* Check for overlap. */ 12241 while (end > offset) { 12242 if (end < IP_REASS_END(mp1)) { 12243 mp->b_wptr -= end - offset; 12244 IP_REASS_SET_END(mp, offset); 12245 /* 12246 * TODO we might bump 12247 * this up twice if there is 12248 * overlap at both ends. 12249 */ 12250 BUMP_MIB(ill->ill_ip_mib, 12251 ipIfStatsReasmPartDups); 12252 break; 12253 } 12254 /* Did we cover another hole? */ 12255 if ((mp1->b_cont && 12256 IP_REASS_END(mp1) 12257 != IP_REASS_START(mp1->b_cont) && 12258 end >= 12259 IP_REASS_START(mp1->b_cont)) || 12260 (!ipf->ipf_last_frag_seen && 12261 !more)) { 12262 ipf->ipf_hole_cnt--; 12263 } 12264 /* Clip out mp1. */ 12265 if ((mp->b_cont = mp1->b_cont) == 12266 NULL) { 12267 /* 12268 * After clipping out mp1, 12269 * this guy is now hanging 12270 * off the end. 12271 */ 12272 ipf->ipf_tail_mp = mp; 12273 } 12274 IP_REASS_SET_START(mp1, 0); 12275 IP_REASS_SET_END(mp1, 0); 12276 /* Subtract byte count */ 12277 ipf->ipf_count -= 12278 mp1->b_datap->db_lim - 12279 mp1->b_datap->db_base; 12280 freeb(mp1); 12281 BUMP_MIB(ill->ill_ip_mib, 12282 ipIfStatsReasmPartDups); 12283 mp1 = mp->b_cont; 12284 if (!mp1) 12285 break; 12286 offset = IP_REASS_START(mp1); 12287 } 12288 } 12289 break; 12290 } 12291 } while (start = end, mp = next_mp); 12292 12293 /* Fragment just processed could be the last one. Remember this fact */ 12294 if (!more) 12295 ipf->ipf_last_frag_seen = B_TRUE; 12296 12297 /* Still got holes? */ 12298 if (ipf->ipf_hole_cnt) 12299 return (IP_REASS_PARTIAL); 12300 /* Clean up overloaded fields to avoid upstream disasters. */ 12301 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 12302 IP_REASS_SET_START(mp1, 0); 12303 IP_REASS_SET_END(mp1, 0); 12304 } 12305 return (IP_REASS_COMPLETE); 12306 } 12307 12308 /* 12309 * ipsec processing for the fast path, used for input UDP Packets 12310 */ 12311 static boolean_t 12312 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 12313 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present) 12314 { 12315 uint32_t ill_index; 12316 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 12317 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 12318 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12319 12320 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12321 /* The ill_index of the incoming ILL */ 12322 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 12323 12324 /* pass packet up to the transport */ 12325 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 12326 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 12327 NULL, mctl_present); 12328 if (*first_mpp == NULL) { 12329 return (B_FALSE); 12330 } 12331 } 12332 12333 /* Initiate IPPF processing for fastpath UDP */ 12334 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 12335 ip_process(IPP_LOCAL_IN, mpp, ill_index); 12336 if (*mpp == NULL) { 12337 ip2dbg(("ip_input_ipsec_process: UDP pkt " 12338 "deferred/dropped during IPPF processing\n")); 12339 return (B_FALSE); 12340 } 12341 } 12342 /* 12343 * We make the checks as below since we are in the fast path 12344 * and want to minimize the number of checks if the IP_RECVIF and/or 12345 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 12346 */ 12347 if (connp->conn_recvif || connp->conn_recvslla || 12348 connp->conn_ip_recvpktinfo) { 12349 if (connp->conn_recvif) { 12350 in_flags = IPF_RECVIF; 12351 } 12352 /* 12353 * UDP supports IP_RECVPKTINFO option for both v4 and v6 12354 * so the flag passed to ip_add_info is based on IP version 12355 * of connp. 12356 */ 12357 if (connp->conn_ip_recvpktinfo) { 12358 if (connp->conn_af_isv6) { 12359 /* 12360 * V6 only needs index 12361 */ 12362 in_flags |= IPF_RECVIF; 12363 } else { 12364 /* 12365 * V4 needs index + matching address. 12366 */ 12367 in_flags |= IPF_RECVADDR; 12368 } 12369 } 12370 if (connp->conn_recvslla) { 12371 in_flags |= IPF_RECVSLLA; 12372 } 12373 /* 12374 * since in_flags are being set ill will be 12375 * referenced in ip_add_info, so it better not 12376 * be NULL. 12377 */ 12378 /* 12379 * the actual data will be contained in b_cont 12380 * upon successful return of the following call. 12381 * If the call fails then the original mblk is 12382 * returned. 12383 */ 12384 *mpp = ip_add_info(*mpp, ill, in_flags, IPCL_ZONEID(connp), 12385 ipst); 12386 } 12387 12388 return (B_TRUE); 12389 } 12390 12391 /* 12392 * Fragmentation reassembly. Each ILL has a hash table for 12393 * queuing packets undergoing reassembly for all IPIFs 12394 * associated with the ILL. The hash is based on the packet 12395 * IP ident field. The ILL frag hash table was allocated 12396 * as a timer block at the time the ILL was created. Whenever 12397 * there is anything on the reassembly queue, the timer will 12398 * be running. Returns B_TRUE if successful else B_FALSE; 12399 * frees mp on failure. 12400 */ 12401 static boolean_t 12402 ip_rput_fragment(queue_t *q, mblk_t **mpp, ipha_t *ipha, 12403 uint32_t *cksum_val, uint16_t *cksum_flags) 12404 { 12405 uint32_t frag_offset_flags; 12406 ill_t *ill = (ill_t *)q->q_ptr; 12407 mblk_t *mp = *mpp; 12408 mblk_t *t_mp; 12409 ipaddr_t dst; 12410 uint8_t proto = ipha->ipha_protocol; 12411 uint32_t sum_val; 12412 uint16_t sum_flags; 12413 ipf_t *ipf; 12414 ipf_t **ipfp; 12415 ipfb_t *ipfb; 12416 uint16_t ident; 12417 uint32_t offset; 12418 ipaddr_t src; 12419 uint_t hdr_length; 12420 uint32_t end; 12421 mblk_t *mp1; 12422 mblk_t *tail_mp; 12423 size_t count; 12424 size_t msg_len; 12425 uint8_t ecn_info = 0; 12426 uint32_t packet_size; 12427 boolean_t pruned = B_FALSE; 12428 ip_stack_t *ipst = ill->ill_ipst; 12429 12430 if (cksum_val != NULL) 12431 *cksum_val = 0; 12432 if (cksum_flags != NULL) 12433 *cksum_flags = 0; 12434 12435 /* 12436 * Drop the fragmented as early as possible, if 12437 * we don't have resource(s) to re-assemble. 12438 */ 12439 if (ipst->ips_ip_reass_queue_bytes == 0) { 12440 freemsg(mp); 12441 return (B_FALSE); 12442 } 12443 12444 /* Check for fragmentation offset; return if there's none */ 12445 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 12446 (IPH_MF | IPH_OFFSET)) == 0) 12447 return (B_TRUE); 12448 12449 /* 12450 * We utilize hardware computed checksum info only for UDP since 12451 * IP fragmentation is a normal occurence for the protocol. In 12452 * addition, checksum offload support for IP fragments carrying 12453 * UDP payload is commonly implemented across network adapters. 12454 */ 12455 ASSERT(ill != NULL); 12456 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(ill) && 12457 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 12458 mblk_t *mp1 = mp->b_cont; 12459 int32_t len; 12460 12461 /* Record checksum information from the packet */ 12462 sum_val = (uint32_t)DB_CKSUM16(mp); 12463 sum_flags = DB_CKSUMFLAGS(mp); 12464 12465 /* IP payload offset from beginning of mblk */ 12466 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 12467 12468 if ((sum_flags & HCK_PARTIALCKSUM) && 12469 (mp1 == NULL || mp1->b_cont == NULL) && 12470 offset >= DB_CKSUMSTART(mp) && 12471 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 12472 uint32_t adj; 12473 /* 12474 * Partial checksum has been calculated by hardware 12475 * and attached to the packet; in addition, any 12476 * prepended extraneous data is even byte aligned. 12477 * If any such data exists, we adjust the checksum; 12478 * this would also handle any postpended data. 12479 */ 12480 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 12481 mp, mp1, len, adj); 12482 12483 /* One's complement subtract extraneous checksum */ 12484 if (adj >= sum_val) 12485 sum_val = ~(adj - sum_val) & 0xFFFF; 12486 else 12487 sum_val -= adj; 12488 } 12489 } else { 12490 sum_val = 0; 12491 sum_flags = 0; 12492 } 12493 12494 /* Clear hardware checksumming flag */ 12495 DB_CKSUMFLAGS(mp) = 0; 12496 12497 ident = ipha->ipha_ident; 12498 offset = (frag_offset_flags << 3) & 0xFFFF; 12499 src = ipha->ipha_src; 12500 dst = ipha->ipha_dst; 12501 hdr_length = IPH_HDR_LENGTH(ipha); 12502 end = ntohs(ipha->ipha_length) - hdr_length; 12503 12504 /* If end == 0 then we have a packet with no data, so just free it */ 12505 if (end == 0) { 12506 freemsg(mp); 12507 return (B_FALSE); 12508 } 12509 12510 /* Record the ECN field info. */ 12511 ecn_info = (ipha->ipha_type_of_service & 0x3); 12512 if (offset != 0) { 12513 /* 12514 * If this isn't the first piece, strip the header, and 12515 * add the offset to the end value. 12516 */ 12517 mp->b_rptr += hdr_length; 12518 end += offset; 12519 } 12520 12521 msg_len = MBLKSIZE(mp); 12522 tail_mp = mp; 12523 while (tail_mp->b_cont != NULL) { 12524 tail_mp = tail_mp->b_cont; 12525 msg_len += MBLKSIZE(tail_mp); 12526 } 12527 12528 /* If the reassembly list for this ILL will get too big, prune it */ 12529 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 12530 ipst->ips_ip_reass_queue_bytes) { 12531 ill_frag_prune(ill, 12532 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 12533 (ipst->ips_ip_reass_queue_bytes - msg_len)); 12534 pruned = B_TRUE; 12535 } 12536 12537 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 12538 mutex_enter(&ipfb->ipfb_lock); 12539 12540 ipfp = &ipfb->ipfb_ipf; 12541 /* Try to find an existing fragment queue for this packet. */ 12542 for (;;) { 12543 ipf = ipfp[0]; 12544 if (ipf != NULL) { 12545 /* 12546 * It has to match on ident and src/dst address. 12547 */ 12548 if (ipf->ipf_ident == ident && 12549 ipf->ipf_src == src && 12550 ipf->ipf_dst == dst && 12551 ipf->ipf_protocol == proto) { 12552 /* 12553 * If we have received too many 12554 * duplicate fragments for this packet 12555 * free it. 12556 */ 12557 if (ipf->ipf_num_dups > ip_max_frag_dups) { 12558 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12559 freemsg(mp); 12560 mutex_exit(&ipfb->ipfb_lock); 12561 return (B_FALSE); 12562 } 12563 /* Found it. */ 12564 break; 12565 } 12566 ipfp = &ipf->ipf_hash_next; 12567 continue; 12568 } 12569 12570 /* 12571 * If we pruned the list, do we want to store this new 12572 * fragment?. We apply an optimization here based on the 12573 * fact that most fragments will be received in order. 12574 * So if the offset of this incoming fragment is zero, 12575 * it is the first fragment of a new packet. We will 12576 * keep it. Otherwise drop the fragment, as we have 12577 * probably pruned the packet already (since the 12578 * packet cannot be found). 12579 */ 12580 if (pruned && offset != 0) { 12581 mutex_exit(&ipfb->ipfb_lock); 12582 freemsg(mp); 12583 return (B_FALSE); 12584 } 12585 12586 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 12587 /* 12588 * Too many fragmented packets in this hash 12589 * bucket. Free the oldest. 12590 */ 12591 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 12592 } 12593 12594 /* New guy. Allocate a frag message. */ 12595 mp1 = allocb(sizeof (*ipf), BPRI_MED); 12596 if (mp1 == NULL) { 12597 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12598 freemsg(mp); 12599 reass_done: 12600 mutex_exit(&ipfb->ipfb_lock); 12601 return (B_FALSE); 12602 } 12603 12604 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 12605 mp1->b_cont = mp; 12606 12607 /* Initialize the fragment header. */ 12608 ipf = (ipf_t *)mp1->b_rptr; 12609 ipf->ipf_mp = mp1; 12610 ipf->ipf_ptphn = ipfp; 12611 ipfp[0] = ipf; 12612 ipf->ipf_hash_next = NULL; 12613 ipf->ipf_ident = ident; 12614 ipf->ipf_protocol = proto; 12615 ipf->ipf_src = src; 12616 ipf->ipf_dst = dst; 12617 ipf->ipf_nf_hdr_len = 0; 12618 /* Record reassembly start time. */ 12619 ipf->ipf_timestamp = gethrestime_sec(); 12620 /* Record ipf generation and account for frag header */ 12621 ipf->ipf_gen = ill->ill_ipf_gen++; 12622 ipf->ipf_count = MBLKSIZE(mp1); 12623 ipf->ipf_last_frag_seen = B_FALSE; 12624 ipf->ipf_ecn = ecn_info; 12625 ipf->ipf_num_dups = 0; 12626 ipfb->ipfb_frag_pkts++; 12627 ipf->ipf_checksum = 0; 12628 ipf->ipf_checksum_flags = 0; 12629 12630 /* Store checksum value in fragment header */ 12631 if (sum_flags != 0) { 12632 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12633 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12634 ipf->ipf_checksum = sum_val; 12635 ipf->ipf_checksum_flags = sum_flags; 12636 } 12637 12638 /* 12639 * We handle reassembly two ways. In the easy case, 12640 * where all the fragments show up in order, we do 12641 * minimal bookkeeping, and just clip new pieces on 12642 * the end. If we ever see a hole, then we go off 12643 * to ip_reassemble which has to mark the pieces and 12644 * keep track of the number of holes, etc. Obviously, 12645 * the point of having both mechanisms is so we can 12646 * handle the easy case as efficiently as possible. 12647 */ 12648 if (offset == 0) { 12649 /* Easy case, in-order reassembly so far. */ 12650 ipf->ipf_count += msg_len; 12651 ipf->ipf_tail_mp = tail_mp; 12652 /* 12653 * Keep track of next expected offset in 12654 * ipf_end. 12655 */ 12656 ipf->ipf_end = end; 12657 ipf->ipf_nf_hdr_len = hdr_length; 12658 } else { 12659 /* Hard case, hole at the beginning. */ 12660 ipf->ipf_tail_mp = NULL; 12661 /* 12662 * ipf_end == 0 means that we have given up 12663 * on easy reassembly. 12664 */ 12665 ipf->ipf_end = 0; 12666 12667 /* Forget checksum offload from now on */ 12668 ipf->ipf_checksum_flags = 0; 12669 12670 /* 12671 * ipf_hole_cnt is set by ip_reassemble. 12672 * ipf_count is updated by ip_reassemble. 12673 * No need to check for return value here 12674 * as we don't expect reassembly to complete 12675 * or fail for the first fragment itself. 12676 */ 12677 (void) ip_reassemble(mp, ipf, 12678 (frag_offset_flags & IPH_OFFSET) << 3, 12679 (frag_offset_flags & IPH_MF), ill, msg_len); 12680 } 12681 /* Update per ipfb and ill byte counts */ 12682 ipfb->ipfb_count += ipf->ipf_count; 12683 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12684 ill->ill_frag_count += ipf->ipf_count; 12685 /* If the frag timer wasn't already going, start it. */ 12686 mutex_enter(&ill->ill_lock); 12687 ill_frag_timer_start(ill); 12688 mutex_exit(&ill->ill_lock); 12689 goto reass_done; 12690 } 12691 12692 /* 12693 * If the packet's flag has changed (it could be coming up 12694 * from an interface different than the previous, therefore 12695 * possibly different checksum capability), then forget about 12696 * any stored checksum states. Otherwise add the value to 12697 * the existing one stored in the fragment header. 12698 */ 12699 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 12700 sum_val += ipf->ipf_checksum; 12701 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12702 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12703 ipf->ipf_checksum = sum_val; 12704 } else if (ipf->ipf_checksum_flags != 0) { 12705 /* Forget checksum offload from now on */ 12706 ipf->ipf_checksum_flags = 0; 12707 } 12708 12709 /* 12710 * We have a new piece of a datagram which is already being 12711 * reassembled. Update the ECN info if all IP fragments 12712 * are ECN capable. If there is one which is not, clear 12713 * all the info. If there is at least one which has CE 12714 * code point, IP needs to report that up to transport. 12715 */ 12716 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 12717 if (ecn_info == IPH_ECN_CE) 12718 ipf->ipf_ecn = IPH_ECN_CE; 12719 } else { 12720 ipf->ipf_ecn = IPH_ECN_NECT; 12721 } 12722 if (offset && ipf->ipf_end == offset) { 12723 /* The new fragment fits at the end */ 12724 ipf->ipf_tail_mp->b_cont = mp; 12725 /* Update the byte count */ 12726 ipf->ipf_count += msg_len; 12727 /* Update per ipfb and ill byte counts */ 12728 ipfb->ipfb_count += msg_len; 12729 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12730 ill->ill_frag_count += msg_len; 12731 if (frag_offset_flags & IPH_MF) { 12732 /* More to come. */ 12733 ipf->ipf_end = end; 12734 ipf->ipf_tail_mp = tail_mp; 12735 goto reass_done; 12736 } 12737 } else { 12738 /* Go do the hard cases. */ 12739 int ret; 12740 12741 if (offset == 0) 12742 ipf->ipf_nf_hdr_len = hdr_length; 12743 12744 /* Save current byte count */ 12745 count = ipf->ipf_count; 12746 ret = ip_reassemble(mp, ipf, 12747 (frag_offset_flags & IPH_OFFSET) << 3, 12748 (frag_offset_flags & IPH_MF), ill, msg_len); 12749 /* Count of bytes added and subtracted (freeb()ed) */ 12750 count = ipf->ipf_count - count; 12751 if (count) { 12752 /* Update per ipfb and ill byte counts */ 12753 ipfb->ipfb_count += count; 12754 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12755 ill->ill_frag_count += count; 12756 } 12757 if (ret == IP_REASS_PARTIAL) { 12758 goto reass_done; 12759 } else if (ret == IP_REASS_FAILED) { 12760 /* Reassembly failed. Free up all resources */ 12761 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12762 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 12763 IP_REASS_SET_START(t_mp, 0); 12764 IP_REASS_SET_END(t_mp, 0); 12765 } 12766 freemsg(mp); 12767 goto reass_done; 12768 } 12769 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 12770 } 12771 /* 12772 * We have completed reassembly. Unhook the frag header from 12773 * the reassembly list. 12774 * 12775 * Before we free the frag header, record the ECN info 12776 * to report back to the transport. 12777 */ 12778 ecn_info = ipf->ipf_ecn; 12779 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 12780 ipfp = ipf->ipf_ptphn; 12781 12782 /* We need to supply these to caller */ 12783 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 12784 sum_val = ipf->ipf_checksum; 12785 else 12786 sum_val = 0; 12787 12788 mp1 = ipf->ipf_mp; 12789 count = ipf->ipf_count; 12790 ipf = ipf->ipf_hash_next; 12791 if (ipf != NULL) 12792 ipf->ipf_ptphn = ipfp; 12793 ipfp[0] = ipf; 12794 ill->ill_frag_count -= count; 12795 ASSERT(ipfb->ipfb_count >= count); 12796 ipfb->ipfb_count -= count; 12797 ipfb->ipfb_frag_pkts--; 12798 mutex_exit(&ipfb->ipfb_lock); 12799 /* Ditch the frag header. */ 12800 mp = mp1->b_cont; 12801 12802 freeb(mp1); 12803 12804 /* Restore original IP length in header. */ 12805 packet_size = (uint32_t)msgdsize(mp); 12806 if (packet_size > IP_MAXPACKET) { 12807 freemsg(mp); 12808 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 12809 return (B_FALSE); 12810 } 12811 12812 if (DB_REF(mp) > 1) { 12813 mblk_t *mp2 = copymsg(mp); 12814 12815 freemsg(mp); 12816 if (mp2 == NULL) { 12817 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12818 return (B_FALSE); 12819 } 12820 mp = mp2; 12821 } 12822 ipha = (ipha_t *)mp->b_rptr; 12823 12824 ipha->ipha_length = htons((uint16_t)packet_size); 12825 /* We're now complete, zip the frag state */ 12826 ipha->ipha_fragment_offset_and_flags = 0; 12827 /* Record the ECN info. */ 12828 ipha->ipha_type_of_service &= 0xFC; 12829 ipha->ipha_type_of_service |= ecn_info; 12830 *mpp = mp; 12831 12832 /* Reassembly is successful; return checksum information if needed */ 12833 if (cksum_val != NULL) 12834 *cksum_val = sum_val; 12835 if (cksum_flags != NULL) 12836 *cksum_flags = sum_flags; 12837 12838 return (B_TRUE); 12839 } 12840 12841 /* 12842 * Perform ip header check sum update local options. 12843 * return B_TRUE if all is well, else return B_FALSE and release 12844 * the mp. caller is responsible for decrementing ire ref cnt. 12845 */ 12846 static boolean_t 12847 ip_options_cksum(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12848 ip_stack_t *ipst) 12849 { 12850 mblk_t *first_mp; 12851 boolean_t mctl_present; 12852 uint16_t sum; 12853 12854 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12855 /* 12856 * Don't do the checksum if it has gone through AH/ESP 12857 * processing. 12858 */ 12859 if (!mctl_present) { 12860 sum = ip_csum_hdr(ipha); 12861 if (sum != 0) { 12862 if (ill != NULL) { 12863 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12864 } else { 12865 BUMP_MIB(&ipst->ips_ip_mib, 12866 ipIfStatsInCksumErrs); 12867 } 12868 freemsg(first_mp); 12869 return (B_FALSE); 12870 } 12871 } 12872 12873 if (!ip_rput_local_options(q, mp, ipha, ire, ipst)) { 12874 if (mctl_present) 12875 freeb(first_mp); 12876 return (B_FALSE); 12877 } 12878 12879 return (B_TRUE); 12880 } 12881 12882 /* 12883 * All udp packet are delivered to the local host via this routine. 12884 */ 12885 void 12886 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12887 ill_t *recv_ill) 12888 { 12889 uint32_t sum; 12890 uint32_t u1; 12891 boolean_t mctl_present; 12892 conn_t *connp; 12893 mblk_t *first_mp; 12894 uint16_t *up; 12895 ill_t *ill = (ill_t *)q->q_ptr; 12896 uint16_t reass_hck_flags = 0; 12897 ip_stack_t *ipst; 12898 12899 ASSERT(recv_ill != NULL); 12900 ipst = recv_ill->ill_ipst; 12901 12902 #define rptr ((uchar_t *)ipha) 12903 12904 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12905 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 12906 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12907 ASSERT(ill != NULL); 12908 12909 /* 12910 * FAST PATH for udp packets 12911 */ 12912 12913 /* u1 is # words of IP options */ 12914 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 12915 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12916 12917 /* IP options present */ 12918 if (u1 != 0) 12919 goto ipoptions; 12920 12921 /* Check the IP header checksum. */ 12922 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12923 /* Clear the IP header h/w cksum flag */ 12924 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12925 } else { 12926 #define uph ((uint16_t *)ipha) 12927 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12928 uph[6] + uph[7] + uph[8] + uph[9]; 12929 #undef uph 12930 /* finish doing IP checksum */ 12931 sum = (sum & 0xFFFF) + (sum >> 16); 12932 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12933 /* 12934 * Don't verify header checksum if this packet is coming 12935 * back from AH/ESP as we already did it. 12936 */ 12937 if (!mctl_present && sum != 0 && sum != 0xFFFF) { 12938 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12939 freemsg(first_mp); 12940 return; 12941 } 12942 } 12943 12944 /* 12945 * Count for SNMP of inbound packets for ire. 12946 * if mctl is present this might be a secure packet and 12947 * has already been counted for in ip_proto_input(). 12948 */ 12949 if (!mctl_present) { 12950 UPDATE_IB_PKT_COUNT(ire); 12951 ire->ire_last_used_time = lbolt; 12952 } 12953 12954 /* packet part of fragmented IP packet? */ 12955 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12956 if (u1 & (IPH_MF | IPH_OFFSET)) { 12957 goto fragmented; 12958 } 12959 12960 /* u1 = IP header length (20 bytes) */ 12961 u1 = IP_SIMPLE_HDR_LENGTH; 12962 12963 /* packet does not contain complete IP & UDP headers */ 12964 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12965 goto udppullup; 12966 12967 /* up points to UDP header */ 12968 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12969 #define iphs ((uint16_t *)ipha) 12970 12971 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12972 if (up[3] != 0) { 12973 mblk_t *mp1 = mp->b_cont; 12974 boolean_t cksum_err; 12975 uint16_t hck_flags = 0; 12976 12977 /* Pseudo-header checksum */ 12978 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12979 iphs[9] + up[2]; 12980 12981 /* 12982 * Revert to software checksum calculation if the interface 12983 * isn't capable of checksum offload or if IPsec is present. 12984 */ 12985 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12986 hck_flags = DB_CKSUMFLAGS(mp); 12987 12988 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12989 IP_STAT(ipst, ip_in_sw_cksum); 12990 12991 IP_CKSUM_RECV(hck_flags, u1, 12992 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12993 (int32_t)((uchar_t *)up - rptr), 12994 mp, mp1, cksum_err); 12995 12996 if (cksum_err) { 12997 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12998 if (hck_flags & HCK_FULLCKSUM) 12999 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 13000 else if (hck_flags & HCK_PARTIALCKSUM) 13001 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 13002 else 13003 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 13004 13005 freemsg(first_mp); 13006 return; 13007 } 13008 } 13009 13010 /* Non-fragmented broadcast or multicast packet? */ 13011 if (ire->ire_type == IRE_BROADCAST) 13012 goto udpslowpath; 13013 13014 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 13015 ire->ire_zoneid, ipst)) != NULL) { 13016 ASSERT(connp->conn_upq != NULL); 13017 IP_STAT(ipst, ip_udp_fast_path); 13018 13019 if (CONN_UDP_FLOWCTLD(connp)) { 13020 freemsg(mp); 13021 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 13022 } else { 13023 if (!mctl_present) { 13024 BUMP_MIB(ill->ill_ip_mib, 13025 ipIfStatsHCInDelivers); 13026 } 13027 /* 13028 * mp and first_mp can change. 13029 */ 13030 if (ip_udp_check(q, connp, recv_ill, 13031 ipha, &mp, &first_mp, mctl_present)) { 13032 /* Send it upstream */ 13033 CONN_UDP_RECV(connp, mp); 13034 } 13035 } 13036 /* 13037 * freeb() cannot deal with null mblk being passed 13038 * in and first_mp can be set to null in the call 13039 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 13040 */ 13041 if (mctl_present && first_mp != NULL) { 13042 freeb(first_mp); 13043 } 13044 CONN_DEC_REF(connp); 13045 return; 13046 } 13047 13048 /* 13049 * if we got here we know the packet is not fragmented and 13050 * has no options. The classifier could not find a conn_t and 13051 * most likely its an icmp packet so send it through slow path. 13052 */ 13053 13054 goto udpslowpath; 13055 13056 ipoptions: 13057 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 13058 goto slow_done; 13059 } 13060 13061 UPDATE_IB_PKT_COUNT(ire); 13062 ire->ire_last_used_time = lbolt; 13063 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13064 if (u1 & (IPH_MF | IPH_OFFSET)) { 13065 fragmented: 13066 /* 13067 * "sum" and "reass_hck_flags" are non-zero if the 13068 * reassembled packet has a valid hardware computed 13069 * checksum information associated with it. 13070 */ 13071 if (!ip_rput_fragment(q, &mp, ipha, &sum, &reass_hck_flags)) 13072 goto slow_done; 13073 /* 13074 * Make sure that first_mp points back to mp as 13075 * the mp we came in with could have changed in 13076 * ip_rput_fragment(). 13077 */ 13078 ASSERT(!mctl_present); 13079 ipha = (ipha_t *)mp->b_rptr; 13080 first_mp = mp; 13081 } 13082 13083 /* Now we have a complete datagram, destined for this machine. */ 13084 u1 = IPH_HDR_LENGTH(ipha); 13085 /* Pull up the UDP header, if necessary. */ 13086 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 13087 udppullup: 13088 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 13089 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13090 freemsg(first_mp); 13091 goto slow_done; 13092 } 13093 ipha = (ipha_t *)mp->b_rptr; 13094 } 13095 13096 /* 13097 * Validate the checksum for the reassembled packet; for the 13098 * pullup case we calculate the payload checksum in software. 13099 */ 13100 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 13101 if (up[3] != 0) { 13102 boolean_t cksum_err; 13103 13104 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 13105 IP_STAT(ipst, ip_in_sw_cksum); 13106 13107 IP_CKSUM_RECV_REASS(reass_hck_flags, 13108 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 13109 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 13110 iphs[9] + up[2], sum, cksum_err); 13111 13112 if (cksum_err) { 13113 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 13114 13115 if (reass_hck_flags & HCK_FULLCKSUM) 13116 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 13117 else if (reass_hck_flags & HCK_PARTIALCKSUM) 13118 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 13119 else 13120 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 13121 13122 freemsg(first_mp); 13123 goto slow_done; 13124 } 13125 } 13126 udpslowpath: 13127 13128 /* Clear hardware checksum flag to be safe */ 13129 DB_CKSUMFLAGS(mp) = 0; 13130 13131 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 13132 (ire->ire_type == IRE_BROADCAST), 13133 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IPINFO, 13134 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 13135 13136 slow_done: 13137 IP_STAT(ipst, ip_udp_slow_path); 13138 return; 13139 13140 #undef iphs 13141 #undef rptr 13142 } 13143 13144 /* ARGSUSED */ 13145 static mblk_t * 13146 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13147 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 13148 ill_rx_ring_t *ill_ring) 13149 { 13150 conn_t *connp; 13151 uint32_t sum; 13152 uint32_t u1; 13153 uint16_t *up; 13154 int offset; 13155 ssize_t len; 13156 mblk_t *mp1; 13157 boolean_t syn_present = B_FALSE; 13158 tcph_t *tcph; 13159 uint_t ip_hdr_len; 13160 ill_t *ill = (ill_t *)q->q_ptr; 13161 zoneid_t zoneid = ire->ire_zoneid; 13162 boolean_t cksum_err; 13163 uint16_t hck_flags = 0; 13164 ip_stack_t *ipst = recv_ill->ill_ipst; 13165 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 13166 13167 #define rptr ((uchar_t *)ipha) 13168 13169 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 13170 ASSERT(ill != NULL); 13171 13172 /* 13173 * FAST PATH for tcp packets 13174 */ 13175 13176 /* u1 is # words of IP options */ 13177 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13178 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13179 13180 /* IP options present */ 13181 if (u1) { 13182 goto ipoptions; 13183 } else { 13184 /* Check the IP header checksum. */ 13185 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 13186 /* Clear the IP header h/w cksum flag */ 13187 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 13188 } else { 13189 #define uph ((uint16_t *)ipha) 13190 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13191 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13192 #undef uph 13193 /* finish doing IP checksum */ 13194 sum = (sum & 0xFFFF) + (sum >> 16); 13195 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13196 /* 13197 * Don't verify header checksum if this packet 13198 * is coming back from AH/ESP as we already did it. 13199 */ 13200 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 13201 BUMP_MIB(ill->ill_ip_mib, 13202 ipIfStatsInCksumErrs); 13203 goto error; 13204 } 13205 } 13206 } 13207 13208 if (!mctl_present) { 13209 UPDATE_IB_PKT_COUNT(ire); 13210 ire->ire_last_used_time = lbolt; 13211 } 13212 13213 /* packet part of fragmented IP packet? */ 13214 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13215 if (u1 & (IPH_MF | IPH_OFFSET)) { 13216 goto fragmented; 13217 } 13218 13219 /* u1 = IP header length (20 bytes) */ 13220 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 13221 13222 /* does packet contain IP+TCP headers? */ 13223 len = mp->b_wptr - rptr; 13224 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 13225 IP_STAT(ipst, ip_tcppullup); 13226 goto tcppullup; 13227 } 13228 13229 /* TCP options present? */ 13230 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 13231 13232 /* 13233 * If options need to be pulled up, then goto tcpoptions. 13234 * otherwise we are still in the fast path 13235 */ 13236 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 13237 IP_STAT(ipst, ip_tcpoptions); 13238 goto tcpoptions; 13239 } 13240 13241 /* multiple mblks of tcp data? */ 13242 if ((mp1 = mp->b_cont) != NULL) { 13243 /* more then two? */ 13244 if (mp1->b_cont != NULL) { 13245 IP_STAT(ipst, ip_multipkttcp); 13246 goto multipkttcp; 13247 } 13248 len += mp1->b_wptr - mp1->b_rptr; 13249 } 13250 13251 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 13252 13253 /* part of pseudo checksum */ 13254 13255 /* TCP datagram length */ 13256 u1 = len - IP_SIMPLE_HDR_LENGTH; 13257 13258 #define iphs ((uint16_t *)ipha) 13259 13260 #ifdef _BIG_ENDIAN 13261 u1 += IPPROTO_TCP; 13262 #else 13263 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13264 #endif 13265 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13266 13267 /* 13268 * Revert to software checksum calculation if the interface 13269 * isn't capable of checksum offload or if IPsec is present. 13270 */ 13271 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 13272 hck_flags = DB_CKSUMFLAGS(mp); 13273 13274 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 13275 IP_STAT(ipst, ip_in_sw_cksum); 13276 13277 IP_CKSUM_RECV(hck_flags, u1, 13278 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 13279 (int32_t)((uchar_t *)up - rptr), 13280 mp, mp1, cksum_err); 13281 13282 if (cksum_err) { 13283 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13284 13285 if (hck_flags & HCK_FULLCKSUM) 13286 IP_STAT(ipst, ip_tcp_in_full_hw_cksum_err); 13287 else if (hck_flags & HCK_PARTIALCKSUM) 13288 IP_STAT(ipst, ip_tcp_in_part_hw_cksum_err); 13289 else 13290 IP_STAT(ipst, ip_tcp_in_sw_cksum_err); 13291 13292 goto error; 13293 } 13294 13295 try_again: 13296 13297 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 13298 zoneid, ipst)) == NULL) { 13299 /* Send the TH_RST */ 13300 goto no_conn; 13301 } 13302 13303 /* 13304 * TCP FAST PATH for AF_INET socket. 13305 * 13306 * TCP fast path to avoid extra work. An AF_INET socket type 13307 * does not have facility to receive extra information via 13308 * ip_process or ip_add_info. Also, when the connection was 13309 * established, we made a check if this connection is impacted 13310 * by any global IPSec policy or per connection policy (a 13311 * policy that comes in effect later will not apply to this 13312 * connection). Since all this can be determined at the 13313 * connection establishment time, a quick check of flags 13314 * can avoid extra work. 13315 */ 13316 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 13317 !IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13318 ASSERT(first_mp == mp); 13319 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13320 SET_SQUEUE(mp, tcp_rput_data, connp); 13321 return (mp); 13322 } 13323 13324 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 13325 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 13326 if (IPCL_IS_TCP(connp)) { 13327 mp->b_datap->db_struioflag |= STRUIO_EAGER; 13328 DB_CKSUMSTART(mp) = 13329 (intptr_t)ip_squeue_get(ill_ring); 13330 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 13331 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13332 BUMP_MIB(ill->ill_ip_mib, 13333 ipIfStatsHCInDelivers); 13334 SET_SQUEUE(mp, connp->conn_recv, connp); 13335 return (mp); 13336 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 13337 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13338 BUMP_MIB(ill->ill_ip_mib, 13339 ipIfStatsHCInDelivers); 13340 ip_squeue_enter_unbound++; 13341 SET_SQUEUE(mp, tcp_conn_request_unbound, 13342 connp); 13343 return (mp); 13344 } 13345 syn_present = B_TRUE; 13346 } 13347 13348 } 13349 13350 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 13351 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 13352 13353 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13354 /* No need to send this packet to TCP */ 13355 if ((flags & TH_RST) || (flags & TH_URG)) { 13356 CONN_DEC_REF(connp); 13357 freemsg(first_mp); 13358 return (NULL); 13359 } 13360 if (flags & TH_ACK) { 13361 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 13362 ipst->ips_netstack->netstack_tcp); 13363 CONN_DEC_REF(connp); 13364 return (NULL); 13365 } 13366 13367 CONN_DEC_REF(connp); 13368 freemsg(first_mp); 13369 return (NULL); 13370 } 13371 13372 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 13373 first_mp = ipsec_check_inbound_policy(first_mp, connp, 13374 ipha, NULL, mctl_present); 13375 if (first_mp == NULL) { 13376 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13377 CONN_DEC_REF(connp); 13378 return (NULL); 13379 } 13380 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 13381 ASSERT(syn_present); 13382 if (mctl_present) { 13383 ASSERT(first_mp != mp); 13384 first_mp->b_datap->db_struioflag |= 13385 STRUIO_POLICY; 13386 } else { 13387 ASSERT(first_mp == mp); 13388 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 13389 mp->b_datap->db_struioflag |= STRUIO_POLICY; 13390 } 13391 } else { 13392 /* 13393 * Discard first_mp early since we're dealing with a 13394 * fully-connected conn_t and tcp doesn't do policy in 13395 * this case. 13396 */ 13397 if (mctl_present) { 13398 freeb(first_mp); 13399 mctl_present = B_FALSE; 13400 } 13401 first_mp = mp; 13402 } 13403 } 13404 13405 /* Initiate IPPF processing for fastpath */ 13406 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13407 uint32_t ill_index; 13408 13409 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13410 ip_process(IPP_LOCAL_IN, &mp, ill_index); 13411 if (mp == NULL) { 13412 ip2dbg(("ip_input_ipsec_process: TCP pkt " 13413 "deferred/dropped during IPPF processing\n")); 13414 CONN_DEC_REF(connp); 13415 if (mctl_present) 13416 freeb(first_mp); 13417 return (NULL); 13418 } else if (mctl_present) { 13419 /* 13420 * ip_process might return a new mp. 13421 */ 13422 ASSERT(first_mp != mp); 13423 first_mp->b_cont = mp; 13424 } else { 13425 first_mp = mp; 13426 } 13427 13428 } 13429 13430 if (!syn_present && connp->conn_ip_recvpktinfo) { 13431 /* 13432 * TCP does not support IP_RECVPKTINFO for v4 so lets 13433 * make sure IPF_RECVIF is passed to ip_add_info. 13434 */ 13435 mp = ip_add_info(mp, recv_ill, flags|IPF_RECVIF, 13436 IPCL_ZONEID(connp), ipst); 13437 if (mp == NULL) { 13438 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13439 CONN_DEC_REF(connp); 13440 if (mctl_present) 13441 freeb(first_mp); 13442 return (NULL); 13443 } else if (mctl_present) { 13444 /* 13445 * ip_add_info might return a new mp. 13446 */ 13447 ASSERT(first_mp != mp); 13448 first_mp->b_cont = mp; 13449 } else { 13450 first_mp = mp; 13451 } 13452 } 13453 13454 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13455 if (IPCL_IS_TCP(connp)) { 13456 SET_SQUEUE(first_mp, connp->conn_recv, connp); 13457 return (first_mp); 13458 } else { 13459 putnext(connp->conn_rq, first_mp); 13460 CONN_DEC_REF(connp); 13461 return (NULL); 13462 } 13463 13464 no_conn: 13465 /* Initiate IPPf processing, if needed. */ 13466 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13467 uint32_t ill_index; 13468 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13469 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 13470 if (first_mp == NULL) { 13471 return (NULL); 13472 } 13473 } 13474 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13475 13476 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr), zoneid, 13477 ipst->ips_netstack->netstack_tcp); 13478 return (NULL); 13479 ipoptions: 13480 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) { 13481 goto slow_done; 13482 } 13483 13484 UPDATE_IB_PKT_COUNT(ire); 13485 ire->ire_last_used_time = lbolt; 13486 13487 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13488 if (u1 & (IPH_MF | IPH_OFFSET)) { 13489 fragmented: 13490 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 13491 if (mctl_present) 13492 freeb(first_mp); 13493 goto slow_done; 13494 } 13495 /* 13496 * Make sure that first_mp points back to mp as 13497 * the mp we came in with could have changed in 13498 * ip_rput_fragment(). 13499 */ 13500 ASSERT(!mctl_present); 13501 ipha = (ipha_t *)mp->b_rptr; 13502 first_mp = mp; 13503 } 13504 13505 /* Now we have a complete datagram, destined for this machine. */ 13506 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 13507 13508 len = mp->b_wptr - mp->b_rptr; 13509 /* Pull up a minimal TCP header, if necessary. */ 13510 if (len < (u1 + 20)) { 13511 tcppullup: 13512 if (!pullupmsg(mp, u1 + 20)) { 13513 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13514 goto error; 13515 } 13516 ipha = (ipha_t *)mp->b_rptr; 13517 len = mp->b_wptr - mp->b_rptr; 13518 } 13519 13520 /* 13521 * Extract the offset field from the TCP header. As usual, we 13522 * try to help the compiler more than the reader. 13523 */ 13524 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 13525 if (offset != 5) { 13526 tcpoptions: 13527 if (offset < 5) { 13528 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13529 goto error; 13530 } 13531 /* 13532 * There must be TCP options. 13533 * Make sure we can grab them. 13534 */ 13535 offset <<= 2; 13536 offset += u1; 13537 if (len < offset) { 13538 if (!pullupmsg(mp, offset)) { 13539 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13540 goto error; 13541 } 13542 ipha = (ipha_t *)mp->b_rptr; 13543 len = mp->b_wptr - rptr; 13544 } 13545 } 13546 13547 /* Get the total packet length in len, including headers. */ 13548 if (mp->b_cont) { 13549 multipkttcp: 13550 len = msgdsize(mp); 13551 } 13552 13553 /* 13554 * Check the TCP checksum by pulling together the pseudo- 13555 * header checksum, and passing it to ip_csum to be added in 13556 * with the TCP datagram. 13557 * 13558 * Since we are not using the hwcksum if available we must 13559 * clear the flag. We may come here via tcppullup or tcpoptions. 13560 * If either of these fails along the way the mblk is freed. 13561 * If this logic ever changes and mblk is reused to say send 13562 * ICMP's back, then this flag may need to be cleared in 13563 * other places as well. 13564 */ 13565 DB_CKSUMFLAGS(mp) = 0; 13566 13567 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 13568 13569 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 13570 #ifdef _BIG_ENDIAN 13571 u1 += IPPROTO_TCP; 13572 #else 13573 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13574 #endif 13575 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13576 /* 13577 * Not M_DATA mblk or its a dup, so do the checksum now. 13578 */ 13579 IP_STAT(ipst, ip_in_sw_cksum); 13580 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 13581 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13582 goto error; 13583 } 13584 13585 IP_STAT(ipst, ip_tcp_slow_path); 13586 goto try_again; 13587 #undef iphs 13588 #undef rptr 13589 13590 error: 13591 freemsg(first_mp); 13592 slow_done: 13593 return (NULL); 13594 } 13595 13596 /* ARGSUSED */ 13597 static void 13598 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13599 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 13600 { 13601 conn_t *connp; 13602 uint32_t sum; 13603 uint32_t u1; 13604 ssize_t len; 13605 sctp_hdr_t *sctph; 13606 zoneid_t zoneid = ire->ire_zoneid; 13607 uint32_t pktsum; 13608 uint32_t calcsum; 13609 uint32_t ports; 13610 in6_addr_t map_src, map_dst; 13611 ill_t *ill = (ill_t *)q->q_ptr; 13612 ip_stack_t *ipst; 13613 sctp_stack_t *sctps; 13614 13615 ASSERT(recv_ill != NULL); 13616 ipst = recv_ill->ill_ipst; 13617 sctps = ipst->ips_netstack->netstack_sctp; 13618 13619 #define rptr ((uchar_t *)ipha) 13620 13621 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 13622 ASSERT(ill != NULL); 13623 13624 /* u1 is # words of IP options */ 13625 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13626 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13627 13628 /* IP options present */ 13629 if (u1 > 0) { 13630 goto ipoptions; 13631 } else { 13632 /* Check the IP header checksum. */ 13633 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 13634 #define uph ((uint16_t *)ipha) 13635 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13636 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13637 #undef uph 13638 /* finish doing IP checksum */ 13639 sum = (sum & 0xFFFF) + (sum >> 16); 13640 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13641 /* 13642 * Don't verify header checksum if this packet 13643 * is coming back from AH/ESP as we already did it. 13644 */ 13645 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 13646 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 13647 goto error; 13648 } 13649 } 13650 /* 13651 * Since there is no SCTP h/w cksum support yet, just 13652 * clear the flag. 13653 */ 13654 DB_CKSUMFLAGS(mp) = 0; 13655 } 13656 13657 /* 13658 * Don't verify header checksum if this packet is coming 13659 * back from AH/ESP as we already did it. 13660 */ 13661 if (!mctl_present) { 13662 UPDATE_IB_PKT_COUNT(ire); 13663 ire->ire_last_used_time = lbolt; 13664 } 13665 13666 /* packet part of fragmented IP packet? */ 13667 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13668 if (u1 & (IPH_MF | IPH_OFFSET)) 13669 goto fragmented; 13670 13671 /* u1 = IP header length (20 bytes) */ 13672 u1 = IP_SIMPLE_HDR_LENGTH; 13673 13674 find_sctp_client: 13675 /* Pullup if we don't have the sctp common header. */ 13676 len = MBLKL(mp); 13677 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 13678 if (mp->b_cont == NULL || 13679 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 13680 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13681 goto error; 13682 } 13683 ipha = (ipha_t *)mp->b_rptr; 13684 len = MBLKL(mp); 13685 } 13686 13687 sctph = (sctp_hdr_t *)(rptr + u1); 13688 #ifdef DEBUG 13689 if (!skip_sctp_cksum) { 13690 #endif 13691 pktsum = sctph->sh_chksum; 13692 sctph->sh_chksum = 0; 13693 calcsum = sctp_cksum(mp, u1); 13694 if (calcsum != pktsum) { 13695 BUMP_MIB(&sctps->sctps_mib, sctpChecksumError); 13696 goto error; 13697 } 13698 sctph->sh_chksum = pktsum; 13699 #ifdef DEBUG /* skip_sctp_cksum */ 13700 } 13701 #endif 13702 /* get the ports */ 13703 ports = *(uint32_t *)&sctph->sh_sport; 13704 13705 IRE_REFRELE(ire); 13706 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 13707 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 13708 if ((connp = sctp_fanout(&map_src, &map_dst, ports, zoneid, mp, 13709 sctps)) == NULL) { 13710 /* Check for raw socket or OOTB handling */ 13711 goto no_conn; 13712 } 13713 13714 /* Found a client; up it goes */ 13715 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13716 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 13717 return; 13718 13719 no_conn: 13720 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 13721 ports, mctl_present, flags, B_TRUE, zoneid); 13722 return; 13723 13724 ipoptions: 13725 DB_CKSUMFLAGS(mp) = 0; 13726 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) 13727 goto slow_done; 13728 13729 UPDATE_IB_PKT_COUNT(ire); 13730 ire->ire_last_used_time = lbolt; 13731 13732 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13733 if (u1 & (IPH_MF | IPH_OFFSET)) { 13734 fragmented: 13735 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) 13736 goto slow_done; 13737 /* 13738 * Make sure that first_mp points back to mp as 13739 * the mp we came in with could have changed in 13740 * ip_rput_fragment(). 13741 */ 13742 ASSERT(!mctl_present); 13743 ipha = (ipha_t *)mp->b_rptr; 13744 first_mp = mp; 13745 } 13746 13747 /* Now we have a complete datagram, destined for this machine. */ 13748 u1 = IPH_HDR_LENGTH(ipha); 13749 goto find_sctp_client; 13750 #undef iphs 13751 #undef rptr 13752 13753 error: 13754 freemsg(first_mp); 13755 slow_done: 13756 IRE_REFRELE(ire); 13757 } 13758 13759 #define VER_BITS 0xF0 13760 #define VERSION_6 0x60 13761 13762 static boolean_t 13763 ip_rput_multimblk_ipoptions(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t **iphapp, 13764 ipaddr_t *dstp, ip_stack_t *ipst) 13765 { 13766 uint_t opt_len; 13767 ipha_t *ipha; 13768 ssize_t len; 13769 uint_t pkt_len; 13770 13771 ASSERT(ill != NULL); 13772 IP_STAT(ipst, ip_ipoptions); 13773 ipha = *iphapp; 13774 13775 #define rptr ((uchar_t *)ipha) 13776 /* Assume no IPv6 packets arrive over the IPv4 queue */ 13777 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 13778 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 13779 freemsg(mp); 13780 return (B_FALSE); 13781 } 13782 13783 /* multiple mblk or too short */ 13784 pkt_len = ntohs(ipha->ipha_length); 13785 13786 /* Get the number of words of IP options in the IP header. */ 13787 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 13788 if (opt_len) { 13789 /* IP Options present! Validate and process. */ 13790 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 13791 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13792 goto done; 13793 } 13794 /* 13795 * Recompute complete header length and make sure we 13796 * have access to all of it. 13797 */ 13798 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 13799 if (len > (mp->b_wptr - rptr)) { 13800 if (len > pkt_len) { 13801 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13802 goto done; 13803 } 13804 if (!pullupmsg(mp, len)) { 13805 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13806 goto done; 13807 } 13808 ipha = (ipha_t *)mp->b_rptr; 13809 } 13810 /* 13811 * Go off to ip_rput_options which returns the next hop 13812 * destination address, which may have been affected 13813 * by source routing. 13814 */ 13815 IP_STAT(ipst, ip_opt); 13816 if (ip_rput_options(q, mp, ipha, dstp, ipst) == -1) { 13817 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13818 return (B_FALSE); 13819 } 13820 } 13821 *iphapp = ipha; 13822 return (B_TRUE); 13823 done: 13824 /* clear b_prev - used by ip_mroute_decap */ 13825 mp->b_prev = NULL; 13826 freemsg(mp); 13827 return (B_FALSE); 13828 #undef rptr 13829 } 13830 13831 /* 13832 * Deal with the fact that there is no ire for the destination. 13833 * The incoming ill (in_ill) is passed in to ip_newroute only 13834 * in the case of packets coming from mobile ip forward tunnel. 13835 * It must be null otherwise. 13836 */ 13837 static ire_t * 13838 ip_rput_noire(queue_t *q, ill_t *in_ill, mblk_t *mp, int ll_multicast, 13839 ipaddr_t dst) 13840 { 13841 ipha_t *ipha; 13842 ill_t *ill; 13843 ire_t *ire; 13844 boolean_t check_multirt = B_FALSE; 13845 ip_stack_t *ipst; 13846 13847 ipha = (ipha_t *)mp->b_rptr; 13848 ill = (ill_t *)q->q_ptr; 13849 13850 ASSERT(ill != NULL); 13851 ipst = ill->ill_ipst; 13852 13853 /* 13854 * No IRE for this destination, so it can't be for us. 13855 * Unless we are forwarding, drop the packet. 13856 * We have to let source routed packets through 13857 * since we don't yet know if they are 'ping -l' 13858 * packets i.e. if they will go out over the 13859 * same interface as they came in on. 13860 */ 13861 if (ll_multicast) { 13862 freemsg(mp); 13863 return (NULL); 13864 } 13865 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha, ipst)) { 13866 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13867 freemsg(mp); 13868 return (NULL); 13869 } 13870 13871 /* 13872 * Mark this packet as having originated externally. 13873 * 13874 * For non-forwarding code path, ire_send later double 13875 * checks this interface to see if it is still exists 13876 * post-ARP resolution. 13877 * 13878 * Also, IPQOS uses this to differentiate between 13879 * IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP 13880 * QOS packet processing in ip_wput_attach_llhdr(). 13881 * The QoS module can mark the b_band for a fastpath message 13882 * or the dl_priority field in a unitdata_req header for 13883 * CoS marking. This info can only be found in 13884 * ip_wput_attach_llhdr(). 13885 */ 13886 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 13887 /* 13888 * Clear the indication that this may have a hardware checksum 13889 * as we are not using it 13890 */ 13891 DB_CKSUMFLAGS(mp) = 0; 13892 13893 if (in_ill != NULL) { 13894 /* 13895 * Now hand the packet to ip_newroute. 13896 */ 13897 ip_newroute(q, mp, dst, in_ill, NULL, GLOBAL_ZONEID, ipst); 13898 return (NULL); 13899 } 13900 ire = ire_forward(dst, &check_multirt, NULL, NULL, 13901 MBLK_GETLABEL(mp), ipst); 13902 13903 if (ire == NULL && check_multirt) { 13904 /* Let ip_newroute handle CGTP */ 13905 ip_newroute(q, mp, dst, in_ill, NULL, GLOBAL_ZONEID, ipst); 13906 return (NULL); 13907 } 13908 13909 if (ire != NULL) 13910 return (ire); 13911 13912 mp->b_prev = mp->b_next = 0; 13913 /* send icmp unreachable */ 13914 q = WR(q); 13915 /* Sent by forwarding path, and router is global zone */ 13916 if (ip_source_routed(ipha, ipst)) { 13917 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, 13918 GLOBAL_ZONEID, ipst); 13919 } else { 13920 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 13921 ipst); 13922 } 13923 13924 return (NULL); 13925 13926 } 13927 13928 /* 13929 * check ip header length and align it. 13930 */ 13931 static boolean_t 13932 ip_check_and_align_header(queue_t *q, mblk_t *mp, ip_stack_t *ipst) 13933 { 13934 ssize_t len; 13935 ill_t *ill; 13936 ipha_t *ipha; 13937 13938 len = MBLKL(mp); 13939 13940 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13941 ill = (ill_t *)q->q_ptr; 13942 13943 if (!OK_32PTR(mp->b_rptr)) 13944 IP_STAT(ipst, ip_notaligned1); 13945 else 13946 IP_STAT(ipst, ip_notaligned2); 13947 /* Guard against bogus device drivers */ 13948 if (len < 0) { 13949 /* clear b_prev - used by ip_mroute_decap */ 13950 mp->b_prev = NULL; 13951 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13952 freemsg(mp); 13953 return (B_FALSE); 13954 } 13955 13956 if (ip_rput_pullups++ == 0) { 13957 ipha = (ipha_t *)mp->b_rptr; 13958 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 13959 "ip_check_and_align_header: %s forced us to " 13960 " pullup pkt, hdr len %ld, hdr addr %p", 13961 ill->ill_name, len, ipha); 13962 } 13963 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 13964 /* clear b_prev - used by ip_mroute_decap */ 13965 mp->b_prev = NULL; 13966 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13967 freemsg(mp); 13968 return (B_FALSE); 13969 } 13970 } 13971 return (B_TRUE); 13972 } 13973 13974 ire_t * 13975 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 13976 { 13977 ire_t *new_ire; 13978 ill_t *ire_ill; 13979 uint_t ifindex; 13980 ip_stack_t *ipst = ill->ill_ipst; 13981 boolean_t strict_check = B_FALSE; 13982 13983 /* 13984 * This packet came in on an interface other than the one associated 13985 * with the first ire we found for the destination address. We do 13986 * another ire lookup here, using the ingress ill, to see if the 13987 * interface is in an interface group. 13988 * As long as the ills belong to the same group, we don't consider 13989 * them to be arriving on the wrong interface. Thus, if the switch 13990 * is doing inbound load spreading, we won't drop packets when the 13991 * ip*_strict_dst_multihoming switch is on. Note, the same holds true 13992 * for 'usesrc groups' where the destination address may belong to 13993 * another interface to allow multipathing to happen. 13994 * We also need to check for IPIF_UNNUMBERED point2point interfaces 13995 * where the local address may not be unique. In this case we were 13996 * at the mercy of the initial ire cache lookup and the IRE_LOCAL it 13997 * actually returned. The new lookup, which is more specific, should 13998 * only find the IRE_LOCAL associated with the ingress ill if one 13999 * exists. 14000 */ 14001 14002 if (ire->ire_ipversion == IPV4_VERSION) { 14003 if (ipst->ips_ip_strict_dst_multihoming) 14004 strict_check = B_TRUE; 14005 new_ire = ire_ctable_lookup(*((ipaddr_t *)addr), 0, IRE_LOCAL, 14006 ill->ill_ipif, ALL_ZONES, NULL, 14007 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 14008 } else { 14009 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 14010 if (ipst->ips_ipv6_strict_dst_multihoming) 14011 strict_check = B_TRUE; 14012 new_ire = ire_ctable_lookup_v6((in6_addr_t *)addr, NULL, 14013 IRE_LOCAL, ill->ill_ipif, ALL_ZONES, NULL, 14014 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 14015 } 14016 /* 14017 * If the same ire that was returned in ip_input() is found then this 14018 * is an indication that interface groups are in use. The packet 14019 * arrived on a different ill in the group than the one associated with 14020 * the destination address. If a different ire was found then the same 14021 * IP address must be hosted on multiple ills. This is possible with 14022 * unnumbered point2point interfaces. We switch to use this new ire in 14023 * order to have accurate interface statistics. 14024 */ 14025 if (new_ire != NULL) { 14026 if ((new_ire != ire) && (new_ire->ire_rfq != NULL)) { 14027 ire_refrele(ire); 14028 ire = new_ire; 14029 } else { 14030 ire_refrele(new_ire); 14031 } 14032 return (ire); 14033 } else if ((ire->ire_rfq == NULL) && 14034 (ire->ire_ipversion == IPV4_VERSION)) { 14035 /* 14036 * The best match could have been the original ire which 14037 * was created against an IRE_LOCAL on lo0. In the IPv4 case 14038 * the strict multihoming checks are irrelevant as we consider 14039 * local addresses hosted on lo0 to be interface agnostic. We 14040 * only expect a null ire_rfq on IREs which are associated with 14041 * lo0 hence we can return now. 14042 */ 14043 return (ire); 14044 } 14045 14046 /* 14047 * Chase pointers once and store locally. 14048 */ 14049 ire_ill = (ire->ire_rfq == NULL) ? NULL : 14050 (ill_t *)(ire->ire_rfq->q_ptr); 14051 ifindex = ill->ill_usesrc_ifindex; 14052 14053 /* 14054 * Check if it's a legal address on the 'usesrc' interface. 14055 */ 14056 if ((ifindex != 0) && (ire_ill != NULL) && 14057 (ifindex == ire_ill->ill_phyint->phyint_ifindex)) { 14058 return (ire); 14059 } 14060 14061 /* 14062 * If the ip*_strict_dst_multihoming switch is on then we can 14063 * only accept this packet if the interface is marked as routing. 14064 */ 14065 if (!(strict_check)) 14066 return (ire); 14067 14068 if ((ill->ill_flags & ire->ire_ipif->ipif_ill->ill_flags & 14069 ILLF_ROUTER) != 0) { 14070 return (ire); 14071 } 14072 14073 ire_refrele(ire); 14074 return (NULL); 14075 } 14076 14077 ire_t * 14078 ip_fast_forward(ire_t *ire, ipaddr_t dst, ill_t *ill, mblk_t *mp) 14079 { 14080 ipha_t *ipha; 14081 ipaddr_t ip_dst, ip_src; 14082 ire_t *src_ire = NULL; 14083 ill_t *stq_ill; 14084 uint_t hlen; 14085 uint_t pkt_len; 14086 uint32_t sum; 14087 queue_t *dev_q; 14088 boolean_t check_multirt = B_FALSE; 14089 ip_stack_t *ipst = ill->ill_ipst; 14090 14091 ipha = (ipha_t *)mp->b_rptr; 14092 14093 /* 14094 * Martian Address Filtering [RFC 1812, Section 5.3.7] 14095 * The loopback address check for both src and dst has already 14096 * been checked in ip_input 14097 */ 14098 ip_dst = ntohl(dst); 14099 ip_src = ntohl(ipha->ipha_src); 14100 14101 if (ip_dst == INADDR_ANY || IN_BADCLASS(ip_dst) || 14102 IN_CLASSD(ip_src)) { 14103 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14104 goto drop; 14105 } 14106 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 14107 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 14108 14109 if (src_ire != NULL) { 14110 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14111 goto drop; 14112 } 14113 14114 14115 /* No ire cache of nexthop. So first create one */ 14116 if (ire == NULL) { 14117 ire = ire_forward(dst, &check_multirt, NULL, NULL, NULL, ipst); 14118 /* 14119 * We only come to ip_fast_forward if ip_cgtp_filter is 14120 * is not set. So upon return from ire_forward 14121 * check_multirt should remain as false. 14122 */ 14123 ASSERT(!check_multirt); 14124 if (ire == NULL) { 14125 /* An attempt was made to forward the packet */ 14126 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14127 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14128 mp->b_prev = mp->b_next = 0; 14129 /* send icmp unreachable */ 14130 /* Sent by forwarding path, and router is global zone */ 14131 if (ip_source_routed(ipha, ipst)) { 14132 icmp_unreachable(ill->ill_wq, mp, 14133 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, 14134 ipst); 14135 } else { 14136 icmp_unreachable(ill->ill_wq, mp, 14137 ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 14138 ipst); 14139 } 14140 return (ire); 14141 } 14142 } 14143 14144 /* 14145 * Forwarding fastpath exception case: 14146 * If either of the follwoing case is true, we take 14147 * the slowpath 14148 * o forwarding is not enabled 14149 * o incoming and outgoing interface are the same, or the same 14150 * IPMP group 14151 * o corresponding ire is in incomplete state 14152 * o packet needs fragmentation 14153 * 14154 * The codeflow from here on is thus: 14155 * ip_rput_process_forward->ip_rput_forward->ip_xmit_v4 14156 */ 14157 pkt_len = ntohs(ipha->ipha_length); 14158 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 14159 if (!(stq_ill->ill_flags & ILLF_ROUTER) || 14160 !(ill->ill_flags & ILLF_ROUTER) || 14161 (ill == stq_ill) || 14162 (ill->ill_group != NULL && ill->ill_group == stq_ill->ill_group) || 14163 (ire->ire_nce == NULL) || 14164 (ire->ire_nce->nce_state != ND_REACHABLE) || 14165 (pkt_len > ire->ire_max_frag) || 14166 ipha->ipha_ttl <= 1) { 14167 ip_rput_process_forward(ill->ill_rq, mp, ire, 14168 ipha, ill, B_FALSE); 14169 return (ire); 14170 } 14171 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14172 14173 DTRACE_PROBE4(ip4__forwarding__start, 14174 ill_t *, ill, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 14175 14176 FW_HOOKS(ipst->ips_ip4_forwarding_event, 14177 ipst->ips_ipv4firewall_forwarding, 14178 ill, stq_ill, ipha, mp, mp, ipst); 14179 14180 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 14181 14182 if (mp == NULL) 14183 goto drop; 14184 14185 mp->b_datap->db_struioun.cksum.flags = 0; 14186 /* Adjust the checksum to reflect the ttl decrement. */ 14187 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 14188 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 14189 ipha->ipha_ttl--; 14190 14191 dev_q = ire->ire_stq->q_next; 14192 if ((dev_q->q_next != NULL || 14193 dev_q->q_first != NULL) && !canput(dev_q)) { 14194 goto indiscard; 14195 } 14196 14197 hlen = ire->ire_nce->nce_fp_mp != NULL ? 14198 MBLKL(ire->ire_nce->nce_fp_mp) : 0; 14199 14200 if (hlen != 0 || ire->ire_nce->nce_res_mp != NULL) { 14201 mblk_t *mpip = mp; 14202 14203 mp = ip_wput_attach_llhdr(mpip, ire, 0, 0); 14204 if (mp != NULL) { 14205 DTRACE_PROBE4(ip4__physical__out__start, 14206 ill_t *, NULL, ill_t *, stq_ill, 14207 ipha_t *, ipha, mblk_t *, mp); 14208 FW_HOOKS(ipst->ips_ip4_physical_out_event, 14209 ipst->ips_ipv4firewall_physical_out, 14210 NULL, stq_ill, ipha, mp, mpip, ipst); 14211 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, 14212 mp); 14213 if (mp == NULL) 14214 goto drop; 14215 14216 UPDATE_IB_PKT_COUNT(ire); 14217 ire->ire_last_used_time = lbolt; 14218 BUMP_MIB(stq_ill->ill_ip_mib, 14219 ipIfStatsHCOutForwDatagrams); 14220 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14221 UPDATE_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutOctets, 14222 pkt_len); 14223 putnext(ire->ire_stq, mp); 14224 return (ire); 14225 } 14226 } 14227 14228 indiscard: 14229 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14230 drop: 14231 if (mp != NULL) 14232 freemsg(mp); 14233 if (src_ire != NULL) 14234 ire_refrele(src_ire); 14235 return (ire); 14236 14237 } 14238 14239 /* 14240 * This function is called in the forwarding slowpath, when 14241 * either the ire lacks the link-layer address, or the packet needs 14242 * further processing(eg. fragmentation), before transmission. 14243 */ 14244 14245 static void 14246 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14247 ill_t *ill, boolean_t ll_multicast) 14248 { 14249 ill_group_t *ill_group; 14250 ill_group_t *ire_group; 14251 queue_t *dev_q; 14252 ire_t *src_ire; 14253 ip_stack_t *ipst = ill->ill_ipst; 14254 14255 ASSERT(ire->ire_stq != NULL); 14256 14257 mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */ 14258 mp->b_next = NULL; /* ip_rput_noire sets dst here */ 14259 14260 if (ll_multicast != 0) { 14261 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14262 goto drop_pkt; 14263 } 14264 14265 /* 14266 * check if ipha_src is a broadcast address. Note that this 14267 * check is redundant when we get here from ip_fast_forward() 14268 * which has already done this check. However, since we can 14269 * also get here from ip_rput_process_broadcast() or, for 14270 * for the slow path through ip_fast_forward(), we perform 14271 * the check again for code-reusability 14272 */ 14273 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 14274 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 14275 if (src_ire != NULL || ntohl(ipha->ipha_dst) == INADDR_ANY || 14276 IN_BADCLASS(ntohl(ipha->ipha_dst))) { 14277 if (src_ire != NULL) 14278 ire_refrele(src_ire); 14279 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14280 ip2dbg(("ip_rput_process_forward: Received packet with" 14281 " bad src/dst address on %s\n", ill->ill_name)); 14282 goto drop_pkt; 14283 } 14284 14285 ill_group = ill->ill_group; 14286 ire_group = ((ill_t *)(ire->ire_rfq)->q_ptr)->ill_group; 14287 /* 14288 * Check if we want to forward this one at this time. 14289 * We allow source routed packets on a host provided that 14290 * they go out the same interface or same interface group 14291 * as they came in on. 14292 * 14293 * XXX To be quicker, we may wish to not chase pointers to 14294 * get the ILLF_ROUTER flag and instead store the 14295 * forwarding policy in the ire. An unfortunate 14296 * side-effect of that would be requiring an ire flush 14297 * whenever the ILLF_ROUTER flag changes. 14298 */ 14299 if (((ill->ill_flags & 14300 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 14301 ILLF_ROUTER) == 0) && 14302 !(ip_source_routed(ipha, ipst) && (ire->ire_rfq == q || 14303 (ill_group != NULL && ill_group == ire_group)))) { 14304 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14305 if (ip_source_routed(ipha, ipst)) { 14306 q = WR(q); 14307 /* 14308 * Clear the indication that this may have 14309 * hardware checksum as we are not using it. 14310 */ 14311 DB_CKSUMFLAGS(mp) = 0; 14312 /* Sent by forwarding path, and router is global zone */ 14313 icmp_unreachable(q, mp, 14314 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, ipst); 14315 return; 14316 } 14317 goto drop_pkt; 14318 } 14319 14320 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14321 14322 /* Packet is being forwarded. Turning off hwcksum flag. */ 14323 DB_CKSUMFLAGS(mp) = 0; 14324 if (ipst->ips_ip_g_send_redirects) { 14325 /* 14326 * Check whether the incoming interface and outgoing 14327 * interface is part of the same group. If so, 14328 * send redirects. 14329 * 14330 * Check the source address to see if it originated 14331 * on the same logical subnet it is going back out on. 14332 * If so, we should be able to send it a redirect. 14333 * Avoid sending a redirect if the destination 14334 * is directly connected (i.e., ipha_dst is the same 14335 * as ire_gateway_addr or the ire_addr of the 14336 * nexthop IRE_CACHE ), or if the packet was source 14337 * routed out this interface. 14338 */ 14339 ipaddr_t src, nhop; 14340 mblk_t *mp1; 14341 ire_t *nhop_ire = NULL; 14342 14343 /* 14344 * Check whether ire_rfq and q are from the same ill 14345 * or if they are not same, they at least belong 14346 * to the same group. If so, send redirects. 14347 */ 14348 if ((ire->ire_rfq == q || 14349 (ill_group != NULL && ill_group == ire_group)) && 14350 !ip_source_routed(ipha, ipst)) { 14351 14352 nhop = (ire->ire_gateway_addr != 0 ? 14353 ire->ire_gateway_addr : ire->ire_addr); 14354 14355 if (ipha->ipha_dst == nhop) { 14356 /* 14357 * We avoid sending a redirect if the 14358 * destination is directly connected 14359 * because it is possible that multiple 14360 * IP subnets may have been configured on 14361 * the link, and the source may not 14362 * be on the same subnet as ip destination, 14363 * even though they are on the same 14364 * physical link. 14365 */ 14366 goto sendit; 14367 } 14368 14369 src = ipha->ipha_src; 14370 14371 /* 14372 * We look up the interface ire for the nexthop, 14373 * to see if ipha_src is in the same subnet 14374 * as the nexthop. 14375 * 14376 * Note that, if, in the future, IRE_CACHE entries 14377 * are obsoleted, this lookup will not be needed, 14378 * as the ire passed to this function will be the 14379 * same as the nhop_ire computed below. 14380 */ 14381 nhop_ire = ire_ftable_lookup(nhop, 0, 0, 14382 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 14383 0, NULL, MATCH_IRE_TYPE, ipst); 14384 14385 if (nhop_ire != NULL) { 14386 if ((src & nhop_ire->ire_mask) == 14387 (nhop & nhop_ire->ire_mask)) { 14388 /* 14389 * The source is directly connected. 14390 * Just copy the ip header (which is 14391 * in the first mblk) 14392 */ 14393 mp1 = copyb(mp); 14394 if (mp1 != NULL) { 14395 icmp_send_redirect(WR(q), mp1, 14396 nhop, ipst); 14397 } 14398 } 14399 ire_refrele(nhop_ire); 14400 } 14401 } 14402 } 14403 sendit: 14404 dev_q = ire->ire_stq->q_next; 14405 if ((dev_q->q_next || dev_q->q_first) && !canput(dev_q)) { 14406 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14407 freemsg(mp); 14408 return; 14409 } 14410 14411 ip_rput_forward(ire, ipha, mp, ill); 14412 return; 14413 14414 drop_pkt: 14415 ip2dbg(("ip_rput_process_forward: drop pkt\n")); 14416 freemsg(mp); 14417 } 14418 14419 ire_t * 14420 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14421 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 14422 { 14423 queue_t *q; 14424 uint16_t hcksumflags; 14425 ip_stack_t *ipst = ill->ill_ipst; 14426 14427 q = *qp; 14428 14429 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInBcastPkts); 14430 14431 /* 14432 * Clear the indication that this may have hardware 14433 * checksum as we are not using it for forwarding. 14434 */ 14435 hcksumflags = DB_CKSUMFLAGS(mp); 14436 DB_CKSUMFLAGS(mp) = 0; 14437 14438 /* 14439 * Directed broadcast forwarding: if the packet came in over a 14440 * different interface then it is routed out over we can forward it. 14441 */ 14442 if (ipha->ipha_protocol == IPPROTO_TCP) { 14443 ire_refrele(ire); 14444 freemsg(mp); 14445 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14446 return (NULL); 14447 } 14448 /* 14449 * For multicast we have set dst to be INADDR_BROADCAST 14450 * for delivering to all STREAMS. IRE_MARK_NORECV is really 14451 * only for broadcast packets. 14452 */ 14453 if (!CLASSD(ipha->ipha_dst)) { 14454 ire_t *new_ire; 14455 ipif_t *ipif; 14456 /* 14457 * For ill groups, as the switch duplicates broadcasts 14458 * across all the ports, we need to filter out and 14459 * send up only one copy. There is one copy for every 14460 * broadcast address on each ill. Thus, we look for a 14461 * specific IRE on this ill and look at IRE_MARK_NORECV 14462 * later to see whether this ill is eligible to receive 14463 * them or not. ill_nominate_bcast_rcv() nominates only 14464 * one set of IREs for receiving. 14465 */ 14466 14467 ipif = ipif_get_next_ipif(NULL, ill); 14468 if (ipif == NULL) { 14469 ire_refrele(ire); 14470 freemsg(mp); 14471 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14472 return (NULL); 14473 } 14474 new_ire = ire_ctable_lookup(dst, 0, 0, 14475 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL, ipst); 14476 ipif_refrele(ipif); 14477 14478 if (new_ire != NULL) { 14479 if (new_ire->ire_marks & IRE_MARK_NORECV) { 14480 ire_refrele(ire); 14481 ire_refrele(new_ire); 14482 freemsg(mp); 14483 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14484 return (NULL); 14485 } 14486 /* 14487 * In the special case of multirouted broadcast 14488 * packets, we unconditionally need to "gateway" 14489 * them to the appropriate interface here. 14490 * In the normal case, this cannot happen, because 14491 * there is no broadcast IRE tagged with the 14492 * RTF_MULTIRT flag. 14493 */ 14494 if (new_ire->ire_flags & RTF_MULTIRT) { 14495 ire_refrele(new_ire); 14496 if (ire->ire_rfq != NULL) { 14497 q = ire->ire_rfq; 14498 *qp = q; 14499 } 14500 } else { 14501 ire_refrele(ire); 14502 ire = new_ire; 14503 } 14504 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 14505 if (!ipst->ips_ip_g_forward_directed_bcast) { 14506 /* 14507 * Free the message if 14508 * ip_g_forward_directed_bcast is turned 14509 * off for non-local broadcast. 14510 */ 14511 ire_refrele(ire); 14512 freemsg(mp); 14513 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14514 return (NULL); 14515 } 14516 } else { 14517 /* 14518 * This CGTP packet successfully passed the 14519 * CGTP filter, but the related CGTP 14520 * broadcast IRE has not been found, 14521 * meaning that the redundant ipif is 14522 * probably down. However, if we discarded 14523 * this packet, its duplicate would be 14524 * filtered out by the CGTP filter so none 14525 * of them would get through. So we keep 14526 * going with this one. 14527 */ 14528 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 14529 if (ire->ire_rfq != NULL) { 14530 q = ire->ire_rfq; 14531 *qp = q; 14532 } 14533 } 14534 } 14535 if (ipst->ips_ip_g_forward_directed_bcast && ll_multicast == 0) { 14536 /* 14537 * Verify that there are not more then one 14538 * IRE_BROADCAST with this broadcast address which 14539 * has ire_stq set. 14540 * TODO: simplify, loop over all IRE's 14541 */ 14542 ire_t *ire1; 14543 int num_stq = 0; 14544 mblk_t *mp1; 14545 14546 /* Find the first one with ire_stq set */ 14547 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 14548 for (ire1 = ire; ire1 && 14549 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 14550 ire1 = ire1->ire_next) 14551 ; 14552 if (ire1) { 14553 ire_refrele(ire); 14554 ire = ire1; 14555 IRE_REFHOLD(ire); 14556 } 14557 14558 /* Check if there are additional ones with stq set */ 14559 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 14560 if (ire->ire_addr != ire1->ire_addr) 14561 break; 14562 if (ire1->ire_stq) { 14563 num_stq++; 14564 break; 14565 } 14566 } 14567 rw_exit(&ire->ire_bucket->irb_lock); 14568 if (num_stq == 1 && ire->ire_stq != NULL) { 14569 ip1dbg(("ip_rput_process_broadcast: directed " 14570 "broadcast to 0x%x\n", 14571 ntohl(ire->ire_addr))); 14572 mp1 = copymsg(mp); 14573 if (mp1) { 14574 switch (ipha->ipha_protocol) { 14575 case IPPROTO_UDP: 14576 ip_udp_input(q, mp1, ipha, ire, ill); 14577 break; 14578 default: 14579 ip_proto_input(q, mp1, ipha, ire, ill); 14580 break; 14581 } 14582 } 14583 /* 14584 * Adjust ttl to 2 (1+1 - the forward engine 14585 * will decrement it by one. 14586 */ 14587 if (ip_csum_hdr(ipha)) { 14588 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 14589 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 14590 freemsg(mp); 14591 ire_refrele(ire); 14592 return (NULL); 14593 } 14594 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl + 1; 14595 ipha->ipha_hdr_checksum = 0; 14596 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14597 ip_rput_process_forward(q, mp, ire, ipha, 14598 ill, ll_multicast); 14599 ire_refrele(ire); 14600 return (NULL); 14601 } 14602 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 14603 ntohl(ire->ire_addr))); 14604 } 14605 14606 14607 /* Restore any hardware checksum flags */ 14608 DB_CKSUMFLAGS(mp) = hcksumflags; 14609 return (ire); 14610 } 14611 14612 /* ARGSUSED */ 14613 static boolean_t 14614 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 14615 int *ll_multicast, ipaddr_t *dstp) 14616 { 14617 ip_stack_t *ipst = ill->ill_ipst; 14618 14619 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastPkts); 14620 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastOctets, 14621 ntohs(ipha->ipha_length)); 14622 14623 /* 14624 * Forward packets only if we have joined the allmulti 14625 * group on this interface. 14626 */ 14627 if (ipst->ips_ip_g_mrouter && ill->ill_join_allmulti) { 14628 int retval; 14629 14630 /* 14631 * Clear the indication that this may have hardware 14632 * checksum as we are not using it. 14633 */ 14634 DB_CKSUMFLAGS(mp) = 0; 14635 retval = ip_mforward(ill, ipha, mp); 14636 /* ip_mforward updates mib variables if needed */ 14637 /* clear b_prev - used by ip_mroute_decap */ 14638 mp->b_prev = NULL; 14639 14640 switch (retval) { 14641 case 0: 14642 /* 14643 * pkt is okay and arrived on phyint. 14644 * 14645 * If we are running as a multicast router 14646 * we need to see all IGMP and/or PIM packets. 14647 */ 14648 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 14649 (ipha->ipha_protocol == IPPROTO_PIM)) { 14650 goto done; 14651 } 14652 break; 14653 case -1: 14654 /* pkt is mal-formed, toss it */ 14655 goto drop_pkt; 14656 case 1: 14657 /* pkt is okay and arrived on a tunnel */ 14658 /* 14659 * If we are running a multicast router 14660 * we need to see all igmp packets. 14661 */ 14662 if (ipha->ipha_protocol == IPPROTO_IGMP) { 14663 *dstp = INADDR_BROADCAST; 14664 *ll_multicast = 1; 14665 return (B_FALSE); 14666 } 14667 14668 goto drop_pkt; 14669 } 14670 } 14671 14672 ILM_WALKER_HOLD(ill); 14673 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 14674 /* 14675 * This might just be caused by the fact that 14676 * multiple IP Multicast addresses map to the same 14677 * link layer multicast - no need to increment counter! 14678 */ 14679 ILM_WALKER_RELE(ill); 14680 freemsg(mp); 14681 return (B_TRUE); 14682 } 14683 ILM_WALKER_RELE(ill); 14684 done: 14685 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 14686 /* 14687 * This assumes the we deliver to all streams for multicast 14688 * and broadcast packets. 14689 */ 14690 *dstp = INADDR_BROADCAST; 14691 *ll_multicast = 1; 14692 return (B_FALSE); 14693 drop_pkt: 14694 ip2dbg(("ip_rput: drop pkt\n")); 14695 freemsg(mp); 14696 return (B_TRUE); 14697 } 14698 14699 static boolean_t 14700 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 14701 int *ll_multicast, mblk_t **mpp) 14702 { 14703 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 14704 boolean_t must_copy = B_FALSE; 14705 struct iocblk *iocp; 14706 ipha_t *ipha; 14707 ip_stack_t *ipst = ill->ill_ipst; 14708 14709 #define rptr ((uchar_t *)ipha) 14710 14711 first_mp = *first_mpp; 14712 mp = *mpp; 14713 14714 ASSERT(first_mp == mp); 14715 14716 /* 14717 * if db_ref > 1 then copymsg and free original. Packet may be 14718 * changed and do not want other entity who has a reference to this 14719 * message to trip over the changes. This is a blind change because 14720 * trying to catch all places that might change packet is too 14721 * difficult (since it may be a module above this one) 14722 * 14723 * This corresponds to the non-fast path case. We walk down the full 14724 * chain in this case, and check the db_ref count of all the dblks, 14725 * and do a copymsg if required. It is possible that the db_ref counts 14726 * of the data blocks in the mblk chain can be different. 14727 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 14728 * count of 1, followed by a M_DATA block with a ref count of 2, if 14729 * 'snoop' is running. 14730 */ 14731 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 14732 if (mp1->b_datap->db_ref > 1) { 14733 must_copy = B_TRUE; 14734 break; 14735 } 14736 } 14737 14738 if (must_copy) { 14739 mp1 = copymsg(mp); 14740 if (mp1 == NULL) { 14741 for (mp1 = mp; mp1 != NULL; 14742 mp1 = mp1->b_cont) { 14743 mp1->b_next = NULL; 14744 mp1->b_prev = NULL; 14745 } 14746 freemsg(mp); 14747 if (ill != NULL) { 14748 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14749 } else { 14750 BUMP_MIB(&ipst->ips_ip_mib, 14751 ipIfStatsInDiscards); 14752 } 14753 return (B_TRUE); 14754 } 14755 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 14756 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 14757 /* Copy b_prev - used by ip_mroute_decap */ 14758 to_mp->b_prev = from_mp->b_prev; 14759 from_mp->b_prev = NULL; 14760 } 14761 *first_mpp = first_mp = mp1; 14762 freemsg(mp); 14763 mp = mp1; 14764 *mpp = mp1; 14765 } 14766 14767 ipha = (ipha_t *)mp->b_rptr; 14768 14769 /* 14770 * previous code has a case for M_DATA. 14771 * We want to check how that happens. 14772 */ 14773 ASSERT(first_mp->b_datap->db_type != M_DATA); 14774 switch (first_mp->b_datap->db_type) { 14775 case M_PROTO: 14776 case M_PCPROTO: 14777 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 14778 DL_UNITDATA_IND) { 14779 /* Go handle anything other than data elsewhere. */ 14780 ip_rput_dlpi(q, mp); 14781 return (B_TRUE); 14782 } 14783 *ll_multicast = ((dl_unitdata_ind_t *)rptr)->dl_group_address; 14784 /* Ditch the DLPI header. */ 14785 mp1 = mp->b_cont; 14786 ASSERT(first_mp == mp); 14787 *first_mpp = mp1; 14788 freeb(mp); 14789 *mpp = mp1; 14790 return (B_FALSE); 14791 case M_IOCACK: 14792 ip1dbg(("got iocack ")); 14793 iocp = (struct iocblk *)mp->b_rptr; 14794 switch (iocp->ioc_cmd) { 14795 case DL_IOC_HDR_INFO: 14796 ill = (ill_t *)q->q_ptr; 14797 ill_fastpath_ack(ill, mp); 14798 return (B_TRUE); 14799 case SIOCSTUNPARAM: 14800 case OSIOCSTUNPARAM: 14801 /* Go through qwriter_ip */ 14802 break; 14803 case SIOCGTUNPARAM: 14804 case OSIOCGTUNPARAM: 14805 ip_rput_other(NULL, q, mp, NULL); 14806 return (B_TRUE); 14807 default: 14808 putnext(q, mp); 14809 return (B_TRUE); 14810 } 14811 /* FALLTHRU */ 14812 case M_ERROR: 14813 case M_HANGUP: 14814 /* 14815 * Since this is on the ill stream we unconditionally 14816 * bump up the refcount 14817 */ 14818 ill_refhold(ill); 14819 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_other, CUR_OP, 14820 B_FALSE); 14821 return (B_TRUE); 14822 case M_CTL: 14823 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 14824 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 14825 IPHADA_M_CTL)) { 14826 /* 14827 * It's an IPsec accelerated packet. 14828 * Make sure that the ill from which we received the 14829 * packet has enabled IPsec hardware acceleration. 14830 */ 14831 if (!(ill->ill_capabilities & 14832 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 14833 /* IPsec kstats: bean counter */ 14834 freemsg(mp); 14835 return (B_TRUE); 14836 } 14837 14838 /* 14839 * Make mp point to the mblk following the M_CTL, 14840 * then process according to type of mp. 14841 * After this processing, first_mp will point to 14842 * the data-attributes and mp to the pkt following 14843 * the M_CTL. 14844 */ 14845 mp = first_mp->b_cont; 14846 if (mp == NULL) { 14847 freemsg(first_mp); 14848 return (B_TRUE); 14849 } 14850 /* 14851 * A Hardware Accelerated packet can only be M_DATA 14852 * ESP or AH packet. 14853 */ 14854 if (mp->b_datap->db_type != M_DATA) { 14855 /* non-M_DATA IPsec accelerated packet */ 14856 IPSECHW_DEBUG(IPSECHW_PKT, 14857 ("non-M_DATA IPsec accelerated pkt\n")); 14858 freemsg(first_mp); 14859 return (B_TRUE); 14860 } 14861 ipha = (ipha_t *)mp->b_rptr; 14862 if (ipha->ipha_protocol != IPPROTO_AH && 14863 ipha->ipha_protocol != IPPROTO_ESP) { 14864 IPSECHW_DEBUG(IPSECHW_PKT, 14865 ("non-M_DATA IPsec accelerated pkt\n")); 14866 freemsg(first_mp); 14867 return (B_TRUE); 14868 } 14869 *mpp = mp; 14870 return (B_FALSE); 14871 } 14872 putnext(q, mp); 14873 return (B_TRUE); 14874 case M_FLUSH: 14875 if (*mp->b_rptr & FLUSHW) { 14876 *mp->b_rptr &= ~FLUSHR; 14877 qreply(q, mp); 14878 return (B_TRUE); 14879 } 14880 freemsg(mp); 14881 return (B_TRUE); 14882 case M_IOCNAK: 14883 ip1dbg(("got iocnak ")); 14884 iocp = (struct iocblk *)mp->b_rptr; 14885 switch (iocp->ioc_cmd) { 14886 case DL_IOC_HDR_INFO: 14887 case SIOCSTUNPARAM: 14888 case OSIOCSTUNPARAM: 14889 /* 14890 * Since this is on the ill stream we unconditionally 14891 * bump up the refcount 14892 */ 14893 ill_refhold(ill); 14894 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_other, 14895 CUR_OP, B_FALSE); 14896 return (B_TRUE); 14897 case SIOCGTUNPARAM: 14898 case OSIOCGTUNPARAM: 14899 ip_rput_other(NULL, q, mp, NULL); 14900 return (B_TRUE); 14901 default: 14902 break; 14903 } 14904 /* FALLTHRU */ 14905 default: 14906 putnext(q, mp); 14907 return (B_TRUE); 14908 } 14909 } 14910 14911 /* Read side put procedure. Packets coming from the wire arrive here. */ 14912 void 14913 ip_rput(queue_t *q, mblk_t *mp) 14914 { 14915 ill_t *ill; 14916 ip_stack_t *ipst; 14917 14918 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 14919 14920 ill = (ill_t *)q->q_ptr; 14921 ipst = ill->ill_ipst; 14922 14923 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 14924 union DL_primitives *dl; 14925 14926 /* 14927 * Things are opening or closing. Only accept DLPI control 14928 * messages. In the open case, the ill->ill_ipif has not yet 14929 * been created. In the close case, things hanging off the 14930 * ill could have been freed already. In either case it 14931 * may not be safe to proceed further. 14932 */ 14933 14934 dl = (union DL_primitives *)mp->b_rptr; 14935 if ((mp->b_datap->db_type != M_PCPROTO) || 14936 (dl->dl_primitive == DL_UNITDATA_IND)) { 14937 /* 14938 * Also SIOC[GS]TUN* ioctls can come here. 14939 */ 14940 inet_freemsg(mp); 14941 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14942 "ip_input_end: q %p (%S)", q, "uninit"); 14943 return; 14944 } 14945 } 14946 14947 /* 14948 * if db_ref > 1 then copymsg and free original. Packet may be 14949 * changed and we do not want the other entity who has a reference to 14950 * this message to trip over the changes. This is a blind change because 14951 * trying to catch all places that might change the packet is too 14952 * difficult. 14953 * 14954 * This corresponds to the fast path case, where we have a chain of 14955 * M_DATA mblks. We check the db_ref count of only the 1st data block 14956 * in the mblk chain. There doesn't seem to be a reason why a device 14957 * driver would send up data with varying db_ref counts in the mblk 14958 * chain. In any case the Fast path is a private interface, and our 14959 * drivers don't do such a thing. Given the above assumption, there is 14960 * no need to walk down the entire mblk chain (which could have a 14961 * potential performance problem) 14962 */ 14963 if (mp->b_datap->db_ref > 1) { 14964 mblk_t *mp1; 14965 boolean_t adjusted = B_FALSE; 14966 IP_STAT(ipst, ip_db_ref); 14967 14968 /* 14969 * The IP_RECVSLLA option depends on having the link layer 14970 * header. First check that: 14971 * a> the underlying device is of type ether, since this 14972 * option is currently supported only over ethernet. 14973 * b> there is enough room to copy over the link layer header. 14974 * 14975 * Once the checks are done, adjust rptr so that the link layer 14976 * header will be copied via copymsg. Note that, IFT_ETHER may 14977 * be returned by some non-ethernet drivers but in this case the 14978 * second check will fail. 14979 */ 14980 if (ill->ill_type == IFT_ETHER && 14981 (mp->b_rptr - mp->b_datap->db_base) >= 14982 sizeof (struct ether_header)) { 14983 mp->b_rptr -= sizeof (struct ether_header); 14984 adjusted = B_TRUE; 14985 } 14986 mp1 = copymsg(mp); 14987 if (mp1 == NULL) { 14988 mp->b_next = NULL; 14989 /* clear b_prev - used by ip_mroute_decap */ 14990 mp->b_prev = NULL; 14991 freemsg(mp); 14992 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14993 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14994 "ip_rput_end: q %p (%S)", q, "copymsg"); 14995 return; 14996 } 14997 if (adjusted) { 14998 /* 14999 * Copy is done. Restore the pointer in the _new_ mblk 15000 */ 15001 mp1->b_rptr += sizeof (struct ether_header); 15002 } 15003 /* Copy b_prev - used by ip_mroute_decap */ 15004 mp1->b_prev = mp->b_prev; 15005 mp->b_prev = NULL; 15006 freemsg(mp); 15007 mp = mp1; 15008 } 15009 15010 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15011 "ip_rput_end: q %p (%S)", q, "end"); 15012 15013 ip_input(ill, NULL, mp, NULL); 15014 } 15015 15016 /* 15017 * Direct read side procedure capable of dealing with chains. GLDv3 based 15018 * drivers call this function directly with mblk chains while STREAMS 15019 * read side procedure ip_rput() calls this for single packet with ip_ring 15020 * set to NULL to process one packet at a time. 15021 * 15022 * The ill will always be valid if this function is called directly from 15023 * the driver. 15024 * 15025 * If ip_input() is called from GLDv3: 15026 * 15027 * - This must be a non-VLAN IP stream. 15028 * - 'mp' is either an untagged or a special priority-tagged packet. 15029 * - Any VLAN tag that was in the MAC header has been stripped. 15030 * 15031 * If the IP header in packet is not 32-bit aligned, every message in the 15032 * chain will be aligned before further operations. This is required on SPARC 15033 * platform. 15034 */ 15035 /* ARGSUSED */ 15036 void 15037 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, 15038 struct mac_header_info_s *mhip) 15039 { 15040 ipaddr_t dst = NULL; 15041 ipaddr_t prev_dst; 15042 ire_t *ire = NULL; 15043 ipha_t *ipha; 15044 uint_t pkt_len; 15045 ssize_t len; 15046 uint_t opt_len; 15047 int ll_multicast; 15048 int cgtp_flt_pkt; 15049 queue_t *q = ill->ill_rq; 15050 squeue_t *curr_sqp = NULL; 15051 mblk_t *head = NULL; 15052 mblk_t *tail = NULL; 15053 mblk_t *first_mp; 15054 mblk_t *mp; 15055 mblk_t *dmp; 15056 int cnt = 0; 15057 ip_stack_t *ipst = ill->ill_ipst; 15058 15059 ASSERT(mp_chain != NULL); 15060 ASSERT(ill != NULL); 15061 15062 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 15063 15064 #define rptr ((uchar_t *)ipha) 15065 15066 while (mp_chain != NULL) { 15067 first_mp = mp = mp_chain; 15068 mp_chain = mp_chain->b_next; 15069 mp->b_next = NULL; 15070 ll_multicast = 0; 15071 15072 /* 15073 * We do ire caching from one iteration to 15074 * another. In the event the packet chain contains 15075 * all packets from the same dst, this caching saves 15076 * an ire_cache_lookup for each of the succeeding 15077 * packets in a packet chain. 15078 */ 15079 prev_dst = dst; 15080 15081 /* 15082 * Check and align the IP header. 15083 */ 15084 if (DB_TYPE(mp) == M_DATA) { 15085 dmp = mp; 15086 } else if (DB_TYPE(mp) == M_PROTO && 15087 *(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) { 15088 dmp = mp->b_cont; 15089 } else { 15090 dmp = NULL; 15091 } 15092 if (dmp != NULL) { 15093 /* 15094 * IP header ptr not aligned? 15095 * OR IP header not complete in first mblk 15096 */ 15097 if (!OK_32PTR(dmp->b_rptr) || 15098 MBLKL(dmp) < IP_SIMPLE_HDR_LENGTH) { 15099 if (!ip_check_and_align_header(q, dmp, ipst)) 15100 continue; 15101 } 15102 } 15103 15104 /* 15105 * ip_input fast path 15106 */ 15107 15108 /* mblk type is not M_DATA */ 15109 if (DB_TYPE(mp) != M_DATA) { 15110 if (ip_rput_process_notdata(q, &first_mp, ill, 15111 &ll_multicast, &mp)) 15112 continue; 15113 } 15114 15115 /* Make sure its an M_DATA and that its aligned */ 15116 ASSERT(DB_TYPE(mp) == M_DATA); 15117 ASSERT(DB_REF(mp) == 1 && OK_32PTR(mp->b_rptr)); 15118 15119 ipha = (ipha_t *)mp->b_rptr; 15120 len = mp->b_wptr - rptr; 15121 pkt_len = ntohs(ipha->ipha_length); 15122 15123 /* 15124 * We must count all incoming packets, even if they end 15125 * up being dropped later on. 15126 */ 15127 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15128 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 15129 15130 /* multiple mblk or too short */ 15131 len -= pkt_len; 15132 if (len != 0) { 15133 /* 15134 * Make sure we have data length consistent 15135 * with the IP header. 15136 */ 15137 if (mp->b_cont == NULL) { 15138 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15139 BUMP_MIB(ill->ill_ip_mib, 15140 ipIfStatsInHdrErrors); 15141 ip2dbg(("ip_input: drop pkt\n")); 15142 freemsg(mp); 15143 continue; 15144 } 15145 mp->b_wptr = rptr + pkt_len; 15146 } else if ((len += msgdsize(mp->b_cont)) != 0) { 15147 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15148 BUMP_MIB(ill->ill_ip_mib, 15149 ipIfStatsInHdrErrors); 15150 ip2dbg(("ip_input: drop pkt\n")); 15151 freemsg(mp); 15152 continue; 15153 } 15154 (void) adjmsg(mp, -len); 15155 IP_STAT(ipst, ip_multimblk3); 15156 } 15157 } 15158 15159 /* Obtain the dst of the current packet */ 15160 dst = ipha->ipha_dst; 15161 15162 if (IP_LOOPBACK_ADDR(dst) || 15163 IP_LOOPBACK_ADDR(ipha->ipha_src)) { 15164 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInAddrErrors); 15165 cmn_err(CE_CONT, "dst %X src %X\n", 15166 dst, ipha->ipha_src); 15167 freemsg(mp); 15168 continue; 15169 } 15170 15171 /* 15172 * The event for packets being received from a 'physical' 15173 * interface is placed after validation of the source and/or 15174 * destination address as being local so that packets can be 15175 * redirected to loopback addresses using ipnat. 15176 */ 15177 DTRACE_PROBE4(ip4__physical__in__start, 15178 ill_t *, ill, ill_t *, NULL, 15179 ipha_t *, ipha, mblk_t *, first_mp); 15180 15181 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15182 ipst->ips_ipv4firewall_physical_in, 15183 ill, NULL, ipha, first_mp, mp, ipst); 15184 15185 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, first_mp); 15186 15187 if (first_mp == NULL) { 15188 continue; 15189 } 15190 dst = ipha->ipha_dst; 15191 15192 /* 15193 * Attach any necessary label information to 15194 * this packet 15195 */ 15196 if (is_system_labeled() && 15197 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 15198 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 15199 freemsg(mp); 15200 continue; 15201 } 15202 15203 /* 15204 * Reuse the cached ire only if the ipha_dst of the previous 15205 * packet is the same as the current packet AND it is not 15206 * INADDR_ANY. 15207 */ 15208 if (!(dst == prev_dst && dst != INADDR_ANY) && 15209 (ire != NULL)) { 15210 ire_refrele(ire); 15211 ire = NULL; 15212 } 15213 opt_len = ipha->ipha_version_and_hdr_length - 15214 IP_SIMPLE_HDR_VERSION; 15215 15216 /* 15217 * Check to see if we can take the fastpath. 15218 * That is possible if the following conditions are met 15219 * o Tsol disabled 15220 * o CGTP disabled 15221 * o ipp_action_count is 0 15222 * o Mobile IP not running 15223 * o no options in the packet 15224 * o not a RSVP packet 15225 * o not a multicast packet 15226 */ 15227 if (!is_system_labeled() && 15228 !ip_cgtp_filter && ipp_action_count == 0 && 15229 ill->ill_mrtun_refcnt == 0 && ill->ill_srcif_refcnt == 0 && 15230 opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP && 15231 !ll_multicast && !CLASSD(dst)) { 15232 if (ire == NULL) 15233 ire = ire_cache_lookup(dst, ALL_ZONES, NULL, 15234 ipst); 15235 15236 /* incoming packet is for forwarding */ 15237 if (ire == NULL || (ire->ire_type & IRE_CACHE)) { 15238 ire = ip_fast_forward(ire, dst, ill, mp); 15239 continue; 15240 } 15241 /* incoming packet is for local consumption */ 15242 if (ire->ire_type & IRE_LOCAL) 15243 goto local; 15244 } 15245 15246 /* 15247 * Disable ire caching for anything more complex 15248 * than the simple fast path case we checked for above. 15249 */ 15250 if (ire != NULL) { 15251 ire_refrele(ire); 15252 ire = NULL; 15253 } 15254 15255 /* Full-blown slow path */ 15256 if (opt_len != 0) { 15257 if (len != 0) 15258 IP_STAT(ipst, ip_multimblk4); 15259 else 15260 IP_STAT(ipst, ip_ipoptions); 15261 if (!ip_rput_multimblk_ipoptions(q, ill, mp, &ipha, 15262 &dst, ipst)) 15263 continue; 15264 } 15265 15266 /* 15267 * Invoke the CGTP (multirouting) filtering module to process 15268 * the incoming packet. Packets identified as duplicates 15269 * must be discarded. Filtering is active only if the 15270 * the ip_cgtp_filter ndd variable is non-zero. 15271 * 15272 * Only applies to the shared stack since the filter_ops 15273 * do not carry an ip_stack_t or zoneid. 15274 */ 15275 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 15276 if (ip_cgtp_filter && (ip_cgtp_filter_ops != NULL) && 15277 ipst->ips_netstack->netstack_stackid == GLOBAL_NETSTACKID) { 15278 cgtp_flt_pkt = 15279 ip_cgtp_filter_ops->cfo_filter(q, mp); 15280 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 15281 freemsg(first_mp); 15282 continue; 15283 } 15284 } 15285 15286 /* 15287 * If rsvpd is running, let RSVP daemon handle its processing 15288 * and forwarding of RSVP multicast/unicast packets. 15289 * If rsvpd is not running but mrouted is running, RSVP 15290 * multicast packets are forwarded as multicast traffic 15291 * and RSVP unicast packets are forwarded by unicast router. 15292 * If neither rsvpd nor mrouted is running, RSVP multicast 15293 * packets are not forwarded, but the unicast packets are 15294 * forwarded like unicast traffic. 15295 */ 15296 if (ipha->ipha_protocol == IPPROTO_RSVP && 15297 ipst->ips_ipcl_proto_fanout[IPPROTO_RSVP].connf_head != 15298 NULL) { 15299 /* RSVP packet and rsvpd running. Treat as ours */ 15300 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 15301 /* 15302 * This assumes that we deliver to all streams for 15303 * multicast and broadcast packets. 15304 * We have to force ll_multicast to 1 to handle the 15305 * M_DATA messages passed in from ip_mroute_decap. 15306 */ 15307 dst = INADDR_BROADCAST; 15308 ll_multicast = 1; 15309 } else if (CLASSD(dst)) { 15310 /* packet is multicast */ 15311 mp->b_next = NULL; 15312 if (ip_rput_process_multicast(q, mp, ill, ipha, 15313 &ll_multicast, &dst)) 15314 continue; 15315 } 15316 15317 15318 /* 15319 * Check if the packet is coming from the Mobile IP 15320 * forward tunnel interface 15321 */ 15322 if (ill->ill_srcif_refcnt > 0) { 15323 ire = ire_srcif_table_lookup(dst, IRE_INTERFACE, 15324 NULL, ill, MATCH_IRE_TYPE); 15325 if (ire != NULL && ire->ire_nce->nce_res_mp == NULL && 15326 ire->ire_ipif->ipif_net_type == IRE_IF_RESOLVER) { 15327 15328 /* We need to resolve the link layer info */ 15329 ire_refrele(ire); 15330 ire = NULL; 15331 (void) ip_rput_noire(q, (ill_t *)q->q_ptr, mp, 15332 ll_multicast, dst); 15333 continue; 15334 } 15335 } 15336 15337 if (ire == NULL) { 15338 ire = ire_cache_lookup(dst, ALL_ZONES, 15339 MBLK_GETLABEL(mp), ipst); 15340 } 15341 15342 /* 15343 * If mipagent is running and reverse tunnel is created as per 15344 * mobile node request, then any packet coming through the 15345 * incoming interface from the mobile-node, should be reverse 15346 * tunneled to it's home agent except those that are destined 15347 * to foreign agent only. 15348 * This needs source address based ire lookup. The routing 15349 * entries for source address based lookup are only created by 15350 * mipagent program only when a reverse tunnel is created. 15351 * Reference : RFC2002, RFC2344 15352 */ 15353 if (ill->ill_mrtun_refcnt > 0) { 15354 ipaddr_t srcaddr; 15355 ire_t *tmp_ire; 15356 15357 tmp_ire = ire; /* Save, we might need it later */ 15358 if (ire == NULL || (ire->ire_type != IRE_LOCAL && 15359 ire->ire_type != IRE_BROADCAST)) { 15360 srcaddr = ipha->ipha_src; 15361 ire = ire_mrtun_lookup(srcaddr, ill); 15362 if (ire != NULL) { 15363 /* 15364 * Should not be getting iphada packet 15365 * here. we should only get those for 15366 * IRE_LOCAL traffic, excluded above. 15367 * Fail-safe (drop packet) in the event 15368 * hardware is misbehaving. 15369 */ 15370 if (first_mp != mp) { 15371 /* IPsec KSTATS: beancount me */ 15372 freemsg(first_mp); 15373 } else { 15374 /* 15375 * This packet must be forwarded 15376 * to Reverse Tunnel 15377 */ 15378 ip_mrtun_forward(ire, ill, mp); 15379 } 15380 ire_refrele(ire); 15381 ire = NULL; 15382 if (tmp_ire != NULL) { 15383 ire_refrele(tmp_ire); 15384 tmp_ire = NULL; 15385 } 15386 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15387 "ip_input_end: q %p (%S)", 15388 q, "uninit"); 15389 continue; 15390 } 15391 } 15392 /* 15393 * If this packet is from a non-mobilenode or a 15394 * mobile-node which does not request reverse 15395 * tunnel service 15396 */ 15397 ire = tmp_ire; 15398 } 15399 15400 15401 /* 15402 * If we reach here that means the incoming packet satisfies 15403 * one of the following conditions: 15404 * - packet is from a mobile node which does not request 15405 * reverse tunnel 15406 * - packet is from a non-mobile node, which is the most 15407 * common case 15408 * - packet is from a reverse tunnel enabled mobile node 15409 * and destined to foreign agent only 15410 */ 15411 15412 if (ire == NULL) { 15413 /* 15414 * No IRE for this destination, so it can't be for us. 15415 * Unless we are forwarding, drop the packet. 15416 * We have to let source routed packets through 15417 * since we don't yet know if they are 'ping -l' 15418 * packets i.e. if they will go out over the 15419 * same interface as they came in on. 15420 */ 15421 ire = ip_rput_noire(q, NULL, mp, ll_multicast, dst); 15422 if (ire == NULL) 15423 continue; 15424 } 15425 15426 /* 15427 * Broadcast IRE may indicate either broadcast or 15428 * multicast packet 15429 */ 15430 if (ire->ire_type == IRE_BROADCAST) { 15431 /* 15432 * Skip broadcast checks if packet is UDP multicast; 15433 * we'd rather not enter ip_rput_process_broadcast() 15434 * unless the packet is broadcast for real, since 15435 * that routine is a no-op for multicast. 15436 */ 15437 if (ipha->ipha_protocol != IPPROTO_UDP || 15438 !CLASSD(ipha->ipha_dst)) { 15439 ire = ip_rput_process_broadcast(&q, mp, 15440 ire, ipha, ill, dst, cgtp_flt_pkt, 15441 ll_multicast); 15442 if (ire == NULL) 15443 continue; 15444 } 15445 } else if (ire->ire_stq != NULL) { 15446 /* fowarding? */ 15447 ip_rput_process_forward(q, mp, ire, ipha, ill, 15448 ll_multicast); 15449 /* ip_rput_process_forward consumed the packet */ 15450 continue; 15451 } 15452 15453 local: 15454 /* 15455 * If the queue in the ire is different to the ingress queue 15456 * then we need to check to see if we can accept the packet. 15457 * Note that for multicast packets and broadcast packets sent 15458 * to a broadcast address which is shared between multiple 15459 * interfaces we should not do this since we just got a random 15460 * broadcast ire. 15461 */ 15462 if ((ire->ire_rfq != q) && (ire->ire_type != IRE_BROADCAST)) { 15463 if ((ire = ip_check_multihome(&ipha->ipha_dst, ire, 15464 ill)) == NULL) { 15465 /* Drop packet */ 15466 BUMP_MIB(ill->ill_ip_mib, 15467 ipIfStatsForwProhibits); 15468 freemsg(mp); 15469 continue; 15470 } 15471 if (ire->ire_rfq != NULL) 15472 q = ire->ire_rfq; 15473 } 15474 15475 switch (ipha->ipha_protocol) { 15476 case IPPROTO_TCP: 15477 ASSERT(first_mp == mp); 15478 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 15479 mp, 0, q, ip_ring)) != NULL) { 15480 if (curr_sqp == NULL) { 15481 curr_sqp = GET_SQUEUE(mp); 15482 ASSERT(cnt == 0); 15483 cnt++; 15484 head = tail = mp; 15485 } else if (curr_sqp == GET_SQUEUE(mp)) { 15486 ASSERT(tail != NULL); 15487 cnt++; 15488 tail->b_next = mp; 15489 tail = mp; 15490 } else { 15491 /* 15492 * A different squeue. Send the 15493 * chain for the previous squeue on 15494 * its way. This shouldn't happen 15495 * often unless interrupt binding 15496 * changes. 15497 */ 15498 IP_STAT(ipst, ip_input_multi_squeue); 15499 squeue_enter_chain(curr_sqp, head, 15500 tail, cnt, SQTAG_IP_INPUT); 15501 curr_sqp = GET_SQUEUE(mp); 15502 head = mp; 15503 tail = mp; 15504 cnt = 1; 15505 } 15506 } 15507 continue; 15508 case IPPROTO_UDP: 15509 ASSERT(first_mp == mp); 15510 ip_udp_input(q, mp, ipha, ire, ill); 15511 continue; 15512 case IPPROTO_SCTP: 15513 ASSERT(first_mp == mp); 15514 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 15515 q, dst); 15516 /* ire has been released by ip_sctp_input */ 15517 ire = NULL; 15518 continue; 15519 default: 15520 ip_proto_input(q, first_mp, ipha, ire, ill); 15521 continue; 15522 } 15523 } 15524 15525 if (ire != NULL) 15526 ire_refrele(ire); 15527 15528 if (head != NULL) 15529 squeue_enter_chain(curr_sqp, head, tail, cnt, SQTAG_IP_INPUT); 15530 15531 /* 15532 * This code is there just to make netperf/ttcp look good. 15533 * 15534 * Its possible that after being in polling mode (and having cleared 15535 * the backlog), squeues have turned the interrupt frequency higher 15536 * to improve latency at the expense of more CPU utilization (less 15537 * packets per interrupts or more number of interrupts). Workloads 15538 * like ttcp/netperf do manage to tickle polling once in a while 15539 * but for the remaining time, stay in higher interrupt mode since 15540 * their packet arrival rate is pretty uniform and this shows up 15541 * as higher CPU utilization. Since people care about CPU utilization 15542 * while running netperf/ttcp, turn the interrupt frequency back to 15543 * normal/default if polling has not been used in ip_poll_normal_ticks. 15544 */ 15545 if (ip_ring != NULL && (ip_ring->rr_poll_state & ILL_POLLING)) { 15546 if (lbolt >= (ip_ring->rr_poll_time + ip_poll_normal_ticks)) { 15547 ip_ring->rr_poll_state &= ~ILL_POLLING; 15548 ip_ring->rr_blank(ip_ring->rr_handle, 15549 ip_ring->rr_normal_blank_time, 15550 ip_ring->rr_normal_pkt_cnt); 15551 } 15552 } 15553 15554 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15555 "ip_input_end: q %p (%S)", q, "end"); 15556 #undef rptr 15557 } 15558 15559 static void 15560 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 15561 t_uscalar_t err) 15562 { 15563 if (dl_err == DL_SYSERR) { 15564 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15565 "%s: %s failed: DL_SYSERR (errno %u)\n", 15566 ill->ill_name, dlpi_prim_str(prim), err); 15567 return; 15568 } 15569 15570 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15571 "%s: %s failed: %s\n", ill->ill_name, dlpi_prim_str(prim), 15572 dlpi_err_str(dl_err)); 15573 } 15574 15575 /* 15576 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 15577 * than DL_UNITDATA_IND messages. If we need to process this message 15578 * exclusively, we call qwriter_ip, in which case we also need to call 15579 * ill_refhold before that, since qwriter_ip does an ill_refrele. 15580 */ 15581 void 15582 ip_rput_dlpi(queue_t *q, mblk_t *mp) 15583 { 15584 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15585 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15586 ill_t *ill; 15587 15588 ip1dbg(("ip_rput_dlpi")); 15589 ill = (ill_t *)q->q_ptr; 15590 switch (dloa->dl_primitive) { 15591 case DL_ERROR_ACK: 15592 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK %s (0x%x): " 15593 "%s (0x%x), unix %u\n", ill->ill_name, 15594 dlpi_prim_str(dlea->dl_error_primitive), 15595 dlea->dl_error_primitive, 15596 dlpi_err_str(dlea->dl_errno), 15597 dlea->dl_errno, 15598 dlea->dl_unix_errno)); 15599 switch (dlea->dl_error_primitive) { 15600 case DL_UNBIND_REQ: 15601 mutex_enter(&ill->ill_lock); 15602 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15603 cv_signal(&ill->ill_cv); 15604 mutex_exit(&ill->ill_lock); 15605 /* FALLTHRU */ 15606 case DL_NOTIFY_REQ: 15607 case DL_ATTACH_REQ: 15608 case DL_DETACH_REQ: 15609 case DL_INFO_REQ: 15610 case DL_BIND_REQ: 15611 case DL_ENABMULTI_REQ: 15612 case DL_PHYS_ADDR_REQ: 15613 case DL_CAPABILITY_REQ: 15614 case DL_CONTROL_REQ: 15615 /* 15616 * Refhold the ill to match qwriter_ip which does a 15617 * refrele. Since this is on the ill stream we 15618 * unconditionally bump up the refcount without 15619 * checking for ILL_CAN_LOOKUP 15620 */ 15621 ill_refhold(ill); 15622 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 15623 CUR_OP, B_FALSE); 15624 return; 15625 case DL_DISABMULTI_REQ: 15626 freemsg(mp); /* Don't want to pass this up */ 15627 return; 15628 default: 15629 break; 15630 } 15631 ip_dlpi_error(ill, dlea->dl_error_primitive, 15632 dlea->dl_errno, dlea->dl_unix_errno); 15633 freemsg(mp); 15634 return; 15635 case DL_INFO_ACK: 15636 case DL_BIND_ACK: 15637 case DL_PHYS_ADDR_ACK: 15638 case DL_NOTIFY_ACK: 15639 case DL_CAPABILITY_ACK: 15640 case DL_CONTROL_ACK: 15641 /* 15642 * Refhold the ill to match qwriter_ip which does a refrele 15643 * Since this is on the ill stream we unconditionally 15644 * bump up the refcount without doing ILL_CAN_LOOKUP. 15645 */ 15646 ill_refhold(ill); 15647 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 15648 CUR_OP, B_FALSE); 15649 return; 15650 case DL_NOTIFY_IND: 15651 ill_refhold(ill); 15652 /* 15653 * The DL_NOTIFY_IND is an asynchronous message that has no 15654 * relation to the current ioctl in progress (if any). Hence we 15655 * pass in NEW_OP in this case. 15656 */ 15657 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 15658 NEW_OP, B_FALSE); 15659 return; 15660 case DL_OK_ACK: 15661 ip1dbg(("ip_rput: DL_OK_ACK for %s\n", 15662 dlpi_prim_str((int)dloa->dl_correct_primitive))); 15663 switch (dloa->dl_correct_primitive) { 15664 case DL_UNBIND_REQ: 15665 mutex_enter(&ill->ill_lock); 15666 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15667 cv_signal(&ill->ill_cv); 15668 mutex_exit(&ill->ill_lock); 15669 /* FALLTHRU */ 15670 case DL_ATTACH_REQ: 15671 case DL_DETACH_REQ: 15672 /* 15673 * Refhold the ill to match qwriter_ip which does a 15674 * refrele. Since this is on the ill stream we 15675 * unconditionally bump up the refcount 15676 */ 15677 ill_refhold(ill); 15678 qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 15679 CUR_OP, B_FALSE); 15680 return; 15681 case DL_ENABMULTI_REQ: 15682 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15683 ill->ill_dlpi_multicast_state = IDS_OK; 15684 break; 15685 15686 } 15687 break; 15688 default: 15689 break; 15690 } 15691 freemsg(mp); 15692 } 15693 15694 /* 15695 * Handling of DLPI messages that require exclusive access to the ipsq. 15696 * 15697 * Need to do ill_pending_mp_release on ioctl completion, which could 15698 * happen here. (along with mi_copy_done) 15699 */ 15700 /* ARGSUSED */ 15701 static void 15702 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15703 { 15704 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15705 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15706 int err = 0; 15707 ill_t *ill; 15708 ipif_t *ipif = NULL; 15709 mblk_t *mp1 = NULL; 15710 conn_t *connp = NULL; 15711 t_uscalar_t paddrreq; 15712 mblk_t *mp_hw; 15713 boolean_t success; 15714 boolean_t ioctl_aborted = B_FALSE; 15715 boolean_t log = B_TRUE; 15716 hook_nic_event_t *info; 15717 ip_stack_t *ipst; 15718 15719 ip1dbg(("ip_rput_dlpi_writer ..")); 15720 ill = (ill_t *)q->q_ptr; 15721 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 15722 15723 ASSERT(IAM_WRITER_ILL(ill)); 15724 15725 ipst = ill->ill_ipst; 15726 15727 /* 15728 * ipsq_pending_mp and ipsq_pending_ipif track each other. i.e. 15729 * both are null or non-null. However we can assert that only 15730 * after grabbing the ipsq_lock. So we don't make any assertion 15731 * here and in other places in the code. 15732 */ 15733 ipif = ipsq->ipsq_pending_ipif; 15734 /* 15735 * The current ioctl could have been aborted by the user and a new 15736 * ioctl to bring up another ill could have started. We could still 15737 * get a response from the driver later. 15738 */ 15739 if (ipif != NULL && ipif->ipif_ill != ill) 15740 ioctl_aborted = B_TRUE; 15741 15742 switch (dloa->dl_primitive) { 15743 case DL_ERROR_ACK: 15744 switch (dlea->dl_error_primitive) { 15745 case DL_UNBIND_REQ: 15746 case DL_ATTACH_REQ: 15747 case DL_DETACH_REQ: 15748 case DL_INFO_REQ: 15749 ill_dlpi_done(ill, dlea->dl_error_primitive); 15750 break; 15751 case DL_NOTIFY_REQ: 15752 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15753 log = B_FALSE; 15754 break; 15755 case DL_PHYS_ADDR_REQ: 15756 /* 15757 * For IPv6 only, there are two additional 15758 * phys_addr_req's sent to the driver to get the 15759 * IPv6 token and lla. This allows IP to acquire 15760 * the hardware address format for a given interface 15761 * without having built in knowledge of the hardware 15762 * address. ill_phys_addr_pend keeps track of the last 15763 * DL_PAR sent so we know which response we are 15764 * dealing with. ill_dlpi_done will update 15765 * ill_phys_addr_pend when it sends the next req. 15766 * We don't complete the IOCTL until all three DL_PARs 15767 * have been attempted, so set *_len to 0 and break. 15768 */ 15769 paddrreq = ill->ill_phys_addr_pend; 15770 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15771 if (paddrreq == DL_IPV6_TOKEN) { 15772 ill->ill_token_length = 0; 15773 log = B_FALSE; 15774 break; 15775 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 15776 ill->ill_nd_lla_len = 0; 15777 log = B_FALSE; 15778 break; 15779 } 15780 /* 15781 * Something went wrong with the DL_PHYS_ADDR_REQ. 15782 * We presumably have an IOCTL hanging out waiting 15783 * for completion. Find it and complete the IOCTL 15784 * with the error noted. 15785 * However, ill_dl_phys was called on an ill queue 15786 * (from SIOCSLIFNAME), thus conn_pending_ill is not 15787 * set. But the ioctl is known to be pending on ill_wq. 15788 */ 15789 if (!ill->ill_ifname_pending) 15790 break; 15791 ill->ill_ifname_pending = 0; 15792 if (!ioctl_aborted) 15793 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15794 if (mp1 != NULL) { 15795 /* 15796 * This operation (SIOCSLIFNAME) must have 15797 * happened on the ill. Assert there is no conn 15798 */ 15799 ASSERT(connp == NULL); 15800 q = ill->ill_wq; 15801 } 15802 break; 15803 case DL_BIND_REQ: 15804 ill_dlpi_done(ill, DL_BIND_REQ); 15805 if (ill->ill_ifname_pending) 15806 break; 15807 /* 15808 * Something went wrong with the bind. We presumably 15809 * have an IOCTL hanging out waiting for completion. 15810 * Find it, take down the interface that was coming 15811 * up, and complete the IOCTL with the error noted. 15812 */ 15813 if (!ioctl_aborted) 15814 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15815 if (mp1 != NULL) { 15816 /* 15817 * This operation (SIOCSLIFFLAGS) must have 15818 * happened from a conn. 15819 */ 15820 ASSERT(connp != NULL); 15821 q = CONNP_TO_WQ(connp); 15822 if (ill->ill_move_in_progress) { 15823 ILL_CLEAR_MOVE(ill); 15824 } 15825 (void) ipif_down(ipif, NULL, NULL); 15826 /* error is set below the switch */ 15827 } 15828 break; 15829 case DL_ENABMULTI_REQ: 15830 ip1dbg(("DL_ERROR_ACK to enabmulti\n")); 15831 15832 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15833 ill->ill_dlpi_multicast_state = IDS_FAILED; 15834 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 15835 ipif_t *ipif; 15836 15837 log = B_FALSE; 15838 printf("ip: joining multicasts failed (%d)" 15839 " on %s - will use link layer " 15840 "broadcasts for multicast\n", 15841 dlea->dl_errno, ill->ill_name); 15842 15843 /* 15844 * Set up the multicast mapping alone. 15845 * writer, so ok to access ill->ill_ipif 15846 * without any lock. 15847 */ 15848 ipif = ill->ill_ipif; 15849 mutex_enter(&ill->ill_phyint->phyint_lock); 15850 ill->ill_phyint->phyint_flags |= 15851 PHYI_MULTI_BCAST; 15852 mutex_exit(&ill->ill_phyint->phyint_lock); 15853 15854 if (!ill->ill_isv6) { 15855 (void) ipif_arp_setup_multicast(ipif, 15856 NULL); 15857 } else { 15858 (void) ipif_ndp_setup_multicast(ipif, 15859 NULL); 15860 } 15861 } 15862 freemsg(mp); /* Don't want to pass this up */ 15863 return; 15864 case DL_CAPABILITY_REQ: 15865 case DL_CONTROL_REQ: 15866 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 15867 "DL_CAPABILITY/CONTROL REQ\n")); 15868 ill_dlpi_done(ill, dlea->dl_error_primitive); 15869 ill->ill_dlpi_capab_state = IDS_FAILED; 15870 freemsg(mp); 15871 return; 15872 } 15873 /* 15874 * Note the error for IOCTL completion (mp1 is set when 15875 * ready to complete ioctl). If ill_ifname_pending_err is 15876 * set, an error occured during plumbing (ill_ifname_pending), 15877 * so we want to report that error. 15878 * 15879 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 15880 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 15881 * expected to get errack'd if the driver doesn't support 15882 * these flags (e.g. ethernet). log will be set to B_FALSE 15883 * if these error conditions are encountered. 15884 */ 15885 if (mp1 != NULL) { 15886 if (ill->ill_ifname_pending_err != 0) { 15887 err = ill->ill_ifname_pending_err; 15888 ill->ill_ifname_pending_err = 0; 15889 } else { 15890 err = dlea->dl_unix_errno ? 15891 dlea->dl_unix_errno : ENXIO; 15892 } 15893 /* 15894 * If we're plumbing an interface and an error hasn't already 15895 * been saved, set ill_ifname_pending_err to the error passed 15896 * up. Ignore the error if log is B_FALSE (see comment above). 15897 */ 15898 } else if (log && ill->ill_ifname_pending && 15899 ill->ill_ifname_pending_err == 0) { 15900 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 15901 dlea->dl_unix_errno : ENXIO; 15902 } 15903 15904 if (log) 15905 ip_dlpi_error(ill, dlea->dl_error_primitive, 15906 dlea->dl_errno, dlea->dl_unix_errno); 15907 break; 15908 case DL_CAPABILITY_ACK: { 15909 boolean_t reneg_flag = B_FALSE; 15910 /* Call a routine to handle this one. */ 15911 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 15912 /* 15913 * Check if the ACK is due to renegotiation case since we 15914 * will need to send a new CAPABILITY_REQ later. 15915 */ 15916 if (ill->ill_dlpi_capab_state == IDS_RENEG) { 15917 /* This is the ack for a renogiation case */ 15918 reneg_flag = B_TRUE; 15919 ill->ill_dlpi_capab_state = IDS_UNKNOWN; 15920 } 15921 ill_capability_ack(ill, mp); 15922 if (reneg_flag) 15923 ill_capability_probe(ill); 15924 break; 15925 } 15926 case DL_CONTROL_ACK: 15927 /* We treat all of these as "fire and forget" */ 15928 ill_dlpi_done(ill, DL_CONTROL_REQ); 15929 break; 15930 case DL_INFO_ACK: 15931 /* Call a routine to handle this one. */ 15932 ill_dlpi_done(ill, DL_INFO_REQ); 15933 ip_ll_subnet_defaults(ill, mp); 15934 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 15935 return; 15936 case DL_BIND_ACK: 15937 /* 15938 * We should have an IOCTL waiting on this unless 15939 * sent by ill_dl_phys, in which case just return 15940 */ 15941 ill_dlpi_done(ill, DL_BIND_REQ); 15942 if (ill->ill_ifname_pending) 15943 break; 15944 15945 if (!ioctl_aborted) 15946 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15947 if (mp1 == NULL) 15948 break; 15949 /* 15950 * Because mp1 was added by ill_dl_up(), and it always 15951 * passes a valid connp, connp must be valid here. 15952 */ 15953 ASSERT(connp != NULL); 15954 q = CONNP_TO_WQ(connp); 15955 15956 /* 15957 * We are exclusive. So nothing can change even after 15958 * we get the pending mp. If need be we can put it back 15959 * and restart, as in calling ipif_arp_up() below. 15960 */ 15961 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 15962 15963 mutex_enter(&ill->ill_lock); 15964 15965 ill->ill_dl_up = 1; 15966 15967 if ((info = ill->ill_nic_event_info) != NULL) { 15968 ip2dbg(("ip_rput_dlpi_writer: unexpected nic event %d " 15969 "attached for %s\n", info->hne_event, 15970 ill->ill_name)); 15971 if (info->hne_data != NULL) 15972 kmem_free(info->hne_data, info->hne_datalen); 15973 kmem_free(info, sizeof (hook_nic_event_t)); 15974 } 15975 15976 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 15977 if (info != NULL) { 15978 info->hne_nic = ill->ill_phyint->phyint_hook_ifindex; 15979 info->hne_lif = 0; 15980 info->hne_event = NE_UP; 15981 info->hne_data = NULL; 15982 info->hne_datalen = 0; 15983 info->hne_family = ill->ill_isv6 ? 15984 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 15985 } else 15986 ip2dbg(("ip_rput_dlpi_writer: could not attach UP nic " 15987 "event information for %s (ENOMEM)\n", 15988 ill->ill_name)); 15989 15990 ill->ill_nic_event_info = info; 15991 15992 mutex_exit(&ill->ill_lock); 15993 15994 /* 15995 * Now bring up the resolver; when that is complete, we'll 15996 * create IREs. Note that we intentionally mirror what 15997 * ipif_up() would have done, because we got here by way of 15998 * ill_dl_up(), which stopped ipif_up()'s processing. 15999 */ 16000 if (ill->ill_isv6) { 16001 /* 16002 * v6 interfaces. 16003 * Unlike ARP which has to do another bind 16004 * and attach, once we get here we are 16005 * done with NDP. Except in the case of 16006 * ILLF_XRESOLV, in which case we send an 16007 * AR_INTERFACE_UP to the external resolver. 16008 * If all goes well, the ioctl will complete 16009 * in ip_rput(). If there's an error, we 16010 * complete it here. 16011 */ 16012 err = ipif_ndp_up(ipif, &ipif->ipif_v6lcl_addr); 16013 if (err == 0) { 16014 if (ill->ill_flags & ILLF_XRESOLV) { 16015 mutex_enter(&connp->conn_lock); 16016 mutex_enter(&ill->ill_lock); 16017 success = ipsq_pending_mp_add( 16018 connp, ipif, q, mp1, 0); 16019 mutex_exit(&ill->ill_lock); 16020 mutex_exit(&connp->conn_lock); 16021 if (success) { 16022 err = ipif_resolver_up(ipif, 16023 Res_act_initial); 16024 if (err == EINPROGRESS) { 16025 freemsg(mp); 16026 return; 16027 } 16028 ASSERT(err != 0); 16029 mp1 = ipsq_pending_mp_get(ipsq, 16030 &connp); 16031 ASSERT(mp1 != NULL); 16032 } else { 16033 /* conn has started closing */ 16034 err = EINTR; 16035 } 16036 } else { /* Non XRESOLV interface */ 16037 (void) ipif_resolver_up(ipif, 16038 Res_act_initial); 16039 err = ipif_up_done_v6(ipif); 16040 } 16041 } 16042 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 16043 /* 16044 * ARP and other v4 external resolvers. 16045 * Leave the pending mblk intact so that 16046 * the ioctl completes in ip_rput(). 16047 */ 16048 mutex_enter(&connp->conn_lock); 16049 mutex_enter(&ill->ill_lock); 16050 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 16051 mutex_exit(&ill->ill_lock); 16052 mutex_exit(&connp->conn_lock); 16053 if (success) { 16054 err = ipif_resolver_up(ipif, Res_act_initial); 16055 if (err == EINPROGRESS) { 16056 freemsg(mp); 16057 return; 16058 } 16059 ASSERT(err != 0); 16060 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16061 } else { 16062 /* The conn has started closing */ 16063 err = EINTR; 16064 } 16065 } else { 16066 /* 16067 * This one is complete. Reply to pending ioctl. 16068 */ 16069 (void) ipif_resolver_up(ipif, Res_act_initial); 16070 err = ipif_up_done(ipif); 16071 } 16072 16073 if ((err == 0) && (ill->ill_up_ipifs)) { 16074 err = ill_up_ipifs(ill, q, mp1); 16075 if (err == EINPROGRESS) { 16076 freemsg(mp); 16077 return; 16078 } 16079 } 16080 16081 if (ill->ill_up_ipifs) { 16082 ill_group_cleanup(ill); 16083 } 16084 16085 break; 16086 case DL_NOTIFY_IND: { 16087 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 16088 ire_t *ire; 16089 boolean_t need_ire_walk_v4 = B_FALSE; 16090 boolean_t need_ire_walk_v6 = B_FALSE; 16091 16092 switch (notify->dl_notification) { 16093 case DL_NOTE_PHYS_ADDR: 16094 err = ill_set_phys_addr(ill, mp); 16095 break; 16096 16097 case DL_NOTE_FASTPATH_FLUSH: 16098 ill_fastpath_flush(ill); 16099 break; 16100 16101 case DL_NOTE_SDU_SIZE: 16102 /* 16103 * Change the MTU size of the interface, of all 16104 * attached ipif's, and of all relevant ire's. The 16105 * new value's a uint32_t at notify->dl_data. 16106 * Mtu change Vs. new ire creation - protocol below. 16107 * 16108 * a Mark the ipif as IPIF_CHANGING. 16109 * b Set the new mtu in the ipif. 16110 * c Change the ire_max_frag on all affected ires 16111 * d Unmark the IPIF_CHANGING 16112 * 16113 * To see how the protocol works, assume an interface 16114 * route is also being added simultaneously by 16115 * ip_rt_add and let 'ipif' be the ipif referenced by 16116 * the ire. If the ire is created before step a, 16117 * it will be cleaned up by step c. If the ire is 16118 * created after step d, it will see the new value of 16119 * ipif_mtu. Any attempt to create the ire between 16120 * steps a to d will fail because of the IPIF_CHANGING 16121 * flag. Note that ire_create() is passed a pointer to 16122 * the ipif_mtu, and not the value. During ire_add 16123 * under the bucket lock, the ire_max_frag of the 16124 * new ire being created is set from the ipif/ire from 16125 * which it is being derived. 16126 */ 16127 mutex_enter(&ill->ill_lock); 16128 ill->ill_max_frag = (uint_t)notify->dl_data; 16129 16130 /* 16131 * If an SIOCSLIFLNKINFO has changed the ill_max_mtu 16132 * leave it alone 16133 */ 16134 if (ill->ill_mtu_userspecified) { 16135 mutex_exit(&ill->ill_lock); 16136 break; 16137 } 16138 ill->ill_max_mtu = ill->ill_max_frag; 16139 if (ill->ill_isv6) { 16140 if (ill->ill_max_mtu < IPV6_MIN_MTU) 16141 ill->ill_max_mtu = IPV6_MIN_MTU; 16142 } else { 16143 if (ill->ill_max_mtu < IP_MIN_MTU) 16144 ill->ill_max_mtu = IP_MIN_MTU; 16145 } 16146 for (ipif = ill->ill_ipif; ipif != NULL; 16147 ipif = ipif->ipif_next) { 16148 /* 16149 * Don't override the mtu if the user 16150 * has explicitly set it. 16151 */ 16152 if (ipif->ipif_flags & IPIF_FIXEDMTU) 16153 continue; 16154 ipif->ipif_mtu = (uint_t)notify->dl_data; 16155 if (ipif->ipif_isv6) 16156 ire = ipif_to_ire_v6(ipif); 16157 else 16158 ire = ipif_to_ire(ipif); 16159 if (ire != NULL) { 16160 ire->ire_max_frag = ipif->ipif_mtu; 16161 ire_refrele(ire); 16162 } 16163 if (ipif->ipif_flags & IPIF_UP) { 16164 if (ill->ill_isv6) 16165 need_ire_walk_v6 = B_TRUE; 16166 else 16167 need_ire_walk_v4 = B_TRUE; 16168 } 16169 } 16170 mutex_exit(&ill->ill_lock); 16171 if (need_ire_walk_v4) 16172 ire_walk_v4(ill_mtu_change, (char *)ill, 16173 ALL_ZONES, ipst); 16174 if (need_ire_walk_v6) 16175 ire_walk_v6(ill_mtu_change, (char *)ill, 16176 ALL_ZONES, ipst); 16177 break; 16178 case DL_NOTE_LINK_UP: 16179 case DL_NOTE_LINK_DOWN: { 16180 /* 16181 * We are writer. ill / phyint / ipsq assocs stable. 16182 * The RUNNING flag reflects the state of the link. 16183 */ 16184 phyint_t *phyint = ill->ill_phyint; 16185 uint64_t new_phyint_flags; 16186 boolean_t changed = B_FALSE; 16187 boolean_t went_up; 16188 16189 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 16190 mutex_enter(&phyint->phyint_lock); 16191 new_phyint_flags = went_up ? 16192 phyint->phyint_flags | PHYI_RUNNING : 16193 phyint->phyint_flags & ~PHYI_RUNNING; 16194 if (new_phyint_flags != phyint->phyint_flags) { 16195 phyint->phyint_flags = new_phyint_flags; 16196 changed = B_TRUE; 16197 } 16198 mutex_exit(&phyint->phyint_lock); 16199 /* 16200 * ill_restart_dad handles the DAD restart and routing 16201 * socket notification logic. 16202 */ 16203 if (changed) { 16204 ill_restart_dad(phyint->phyint_illv4, went_up); 16205 ill_restart_dad(phyint->phyint_illv6, went_up); 16206 } 16207 break; 16208 } 16209 case DL_NOTE_PROMISC_ON_PHYS: 16210 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16211 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 16212 mutex_enter(&ill->ill_lock); 16213 ill->ill_promisc_on_phys = B_TRUE; 16214 mutex_exit(&ill->ill_lock); 16215 break; 16216 case DL_NOTE_PROMISC_OFF_PHYS: 16217 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16218 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 16219 mutex_enter(&ill->ill_lock); 16220 ill->ill_promisc_on_phys = B_FALSE; 16221 mutex_exit(&ill->ill_lock); 16222 break; 16223 case DL_NOTE_CAPAB_RENEG: 16224 /* 16225 * Something changed on the driver side. 16226 * It wants us to renegotiate the capabilities 16227 * on this ill. The most likely cause is the 16228 * aggregation interface under us where a 16229 * port got added or went away. 16230 * 16231 * We reset the capabilities and set the 16232 * state to IDS_RENG so that when the ack 16233 * comes back, we can start the 16234 * renegotiation process. 16235 */ 16236 ill_capability_reset(ill); 16237 ill->ill_dlpi_capab_state = IDS_RENEG; 16238 break; 16239 default: 16240 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 16241 "type 0x%x for DL_NOTIFY_IND\n", 16242 notify->dl_notification)); 16243 break; 16244 } 16245 16246 /* 16247 * As this is an asynchronous operation, we 16248 * should not call ill_dlpi_done 16249 */ 16250 break; 16251 } 16252 case DL_NOTIFY_ACK: { 16253 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 16254 16255 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 16256 ill->ill_note_link = 1; 16257 ill_dlpi_done(ill, DL_NOTIFY_REQ); 16258 break; 16259 } 16260 case DL_PHYS_ADDR_ACK: { 16261 /* 16262 * As part of plumbing the interface via SIOCSLIFNAME, 16263 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 16264 * whose answers we receive here. As each answer is received, 16265 * we call ill_dlpi_done() to dispatch the next request as 16266 * we're processing the current one. Once all answers have 16267 * been received, we use ipsq_pending_mp_get() to dequeue the 16268 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 16269 * is invoked from an ill queue, conn_oper_pending_ill is not 16270 * available, but we know the ioctl is pending on ill_wq.) 16271 */ 16272 uint_t paddrlen, paddroff; 16273 16274 paddrreq = ill->ill_phys_addr_pend; 16275 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 16276 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 16277 16278 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 16279 if (paddrreq == DL_IPV6_TOKEN) { 16280 /* 16281 * bcopy to low-order bits of ill_token 16282 * 16283 * XXX Temporary hack - currently, all known tokens 16284 * are 64 bits, so I'll cheat for the moment. 16285 */ 16286 bcopy(mp->b_rptr + paddroff, 16287 &ill->ill_token.s6_addr32[2], paddrlen); 16288 ill->ill_token_length = paddrlen; 16289 break; 16290 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 16291 ASSERT(ill->ill_nd_lla_mp == NULL); 16292 ill_set_ndmp(ill, mp, paddroff, paddrlen); 16293 mp = NULL; 16294 break; 16295 } 16296 16297 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 16298 ASSERT(ill->ill_phys_addr_mp == NULL); 16299 if (!ill->ill_ifname_pending) 16300 break; 16301 ill->ill_ifname_pending = 0; 16302 if (!ioctl_aborted) 16303 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16304 if (mp1 != NULL) { 16305 ASSERT(connp == NULL); 16306 q = ill->ill_wq; 16307 } 16308 /* 16309 * If any error acks received during the plumbing sequence, 16310 * ill_ifname_pending_err will be set. Break out and send up 16311 * the error to the pending ioctl. 16312 */ 16313 if (ill->ill_ifname_pending_err != 0) { 16314 err = ill->ill_ifname_pending_err; 16315 ill->ill_ifname_pending_err = 0; 16316 break; 16317 } 16318 16319 ill->ill_phys_addr_mp = mp; 16320 ill->ill_phys_addr = mp->b_rptr + paddroff; 16321 mp = NULL; 16322 16323 /* 16324 * If paddrlen is zero, the DLPI provider doesn't support 16325 * physical addresses. The other two tests were historical 16326 * workarounds for bugs in our former PPP implementation, but 16327 * now other things have grown dependencies on them -- e.g., 16328 * the tun module specifies a dl_addr_length of zero in its 16329 * DL_BIND_ACK, but then specifies an incorrect value in its 16330 * DL_PHYS_ADDR_ACK. These bogus checks need to be removed, 16331 * but only after careful testing ensures that all dependent 16332 * broken DLPI providers have been fixed. 16333 */ 16334 if (paddrlen == 0 || ill->ill_phys_addr_length == 0 || 16335 ill->ill_phys_addr_length == IP_ADDR_LEN) { 16336 ill->ill_phys_addr = NULL; 16337 } else if (paddrlen != ill->ill_phys_addr_length) { 16338 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 16339 paddrlen, ill->ill_phys_addr_length)); 16340 err = EINVAL; 16341 break; 16342 } 16343 16344 if (ill->ill_nd_lla_mp == NULL) { 16345 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 16346 err = ENOMEM; 16347 break; 16348 } 16349 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 16350 } 16351 16352 /* 16353 * Set the interface token. If the zeroth interface address 16354 * is unspecified, then set it to the link local address. 16355 */ 16356 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 16357 (void) ill_setdefaulttoken(ill); 16358 16359 ASSERT(ill->ill_ipif->ipif_id == 0); 16360 if (ipif != NULL && 16361 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 16362 (void) ipif_setlinklocal(ipif); 16363 } 16364 break; 16365 } 16366 case DL_OK_ACK: 16367 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 16368 dlpi_prim_str((int)dloa->dl_correct_primitive), 16369 dloa->dl_correct_primitive)); 16370 switch (dloa->dl_correct_primitive) { 16371 case DL_UNBIND_REQ: 16372 case DL_ATTACH_REQ: 16373 case DL_DETACH_REQ: 16374 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16375 break; 16376 } 16377 break; 16378 default: 16379 break; 16380 } 16381 16382 freemsg(mp); 16383 if (mp1 != NULL) { 16384 /* 16385 * The operation must complete without EINPROGRESS 16386 * since ipsq_pending_mp_get() has removed the mblk 16387 * from ipsq_pending_mp. Otherwise, the operation 16388 * will be stuck forever in the ipsq. 16389 */ 16390 ASSERT(err != EINPROGRESS); 16391 16392 switch (ipsq->ipsq_current_ioctl) { 16393 case 0: 16394 ipsq_current_finish(ipsq); 16395 break; 16396 16397 case SIOCLIFADDIF: 16398 case SIOCSLIFNAME: 16399 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16400 break; 16401 16402 default: 16403 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16404 break; 16405 } 16406 } 16407 } 16408 16409 /* 16410 * ip_rput_other is called by ip_rput to handle messages modifying the global 16411 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 16412 */ 16413 /* ARGSUSED */ 16414 void 16415 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 16416 { 16417 ill_t *ill; 16418 struct iocblk *iocp; 16419 mblk_t *mp1; 16420 conn_t *connp = NULL; 16421 16422 ip1dbg(("ip_rput_other ")); 16423 ill = (ill_t *)q->q_ptr; 16424 /* 16425 * This routine is not a writer in the case of SIOCGTUNPARAM 16426 * in which case ipsq is NULL. 16427 */ 16428 if (ipsq != NULL) { 16429 ASSERT(IAM_WRITER_IPSQ(ipsq)); 16430 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 16431 } 16432 16433 switch (mp->b_datap->db_type) { 16434 case M_ERROR: 16435 case M_HANGUP: 16436 /* 16437 * The device has a problem. We force the ILL down. It can 16438 * be brought up again manually using SIOCSIFFLAGS (via 16439 * ifconfig or equivalent). 16440 */ 16441 ASSERT(ipsq != NULL); 16442 if (mp->b_rptr < mp->b_wptr) 16443 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 16444 if (ill->ill_error == 0) 16445 ill->ill_error = ENXIO; 16446 if (!ill_down_start(q, mp)) 16447 return; 16448 ipif_all_down_tail(ipsq, q, mp, NULL); 16449 break; 16450 case M_IOCACK: 16451 iocp = (struct iocblk *)mp->b_rptr; 16452 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 16453 switch (iocp->ioc_cmd) { 16454 case SIOCSTUNPARAM: 16455 case OSIOCSTUNPARAM: 16456 ASSERT(ipsq != NULL); 16457 /* 16458 * Finish socket ioctl passed through to tun. 16459 * We should have an IOCTL waiting on this. 16460 */ 16461 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16462 if (ill->ill_isv6) { 16463 struct iftun_req *ta; 16464 16465 /* 16466 * if a source or destination is 16467 * being set, try and set the link 16468 * local address for the tunnel 16469 */ 16470 ta = (struct iftun_req *)mp->b_cont-> 16471 b_cont->b_rptr; 16472 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 16473 ipif_set_tun_llink(ill, ta); 16474 } 16475 16476 } 16477 if (mp1 != NULL) { 16478 /* 16479 * Now copy back the b_next/b_prev used by 16480 * mi code for the mi_copy* functions. 16481 * See ip_sioctl_tunparam() for the reason. 16482 * Also protect against missing b_cont. 16483 */ 16484 if (mp->b_cont != NULL) { 16485 mp->b_cont->b_next = 16486 mp1->b_cont->b_next; 16487 mp->b_cont->b_prev = 16488 mp1->b_cont->b_prev; 16489 } 16490 inet_freemsg(mp1); 16491 ASSERT(connp != NULL); 16492 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16493 iocp->ioc_error, NO_COPYOUT, ipsq); 16494 } else { 16495 ASSERT(connp == NULL); 16496 putnext(q, mp); 16497 } 16498 break; 16499 case SIOCGTUNPARAM: 16500 case OSIOCGTUNPARAM: 16501 /* 16502 * This is really M_IOCDATA from the tunnel driver. 16503 * convert back and complete the ioctl. 16504 * We should have an IOCTL waiting on this. 16505 */ 16506 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 16507 if (mp1) { 16508 /* 16509 * Now copy back the b_next/b_prev used by 16510 * mi code for the mi_copy* functions. 16511 * See ip_sioctl_tunparam() for the reason. 16512 * Also protect against missing b_cont. 16513 */ 16514 if (mp->b_cont != NULL) { 16515 mp->b_cont->b_next = 16516 mp1->b_cont->b_next; 16517 mp->b_cont->b_prev = 16518 mp1->b_cont->b_prev; 16519 } 16520 inet_freemsg(mp1); 16521 if (iocp->ioc_error == 0) 16522 mp->b_datap->db_type = M_IOCDATA; 16523 ASSERT(connp != NULL); 16524 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16525 iocp->ioc_error, COPYOUT, NULL); 16526 } else { 16527 ASSERT(connp == NULL); 16528 putnext(q, mp); 16529 } 16530 break; 16531 default: 16532 break; 16533 } 16534 break; 16535 case M_IOCNAK: 16536 iocp = (struct iocblk *)mp->b_rptr; 16537 16538 switch (iocp->ioc_cmd) { 16539 int mode; 16540 16541 case DL_IOC_HDR_INFO: 16542 /* 16543 * If this was the first attempt turn of the 16544 * fastpath probing. 16545 */ 16546 mutex_enter(&ill->ill_lock); 16547 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 16548 ill->ill_dlpi_fastpath_state = IDS_FAILED; 16549 mutex_exit(&ill->ill_lock); 16550 ill_fastpath_nack(ill); 16551 ip1dbg(("ip_rput: DLPI fastpath off on " 16552 "interface %s\n", 16553 ill->ill_name)); 16554 } else { 16555 mutex_exit(&ill->ill_lock); 16556 } 16557 freemsg(mp); 16558 break; 16559 case SIOCSTUNPARAM: 16560 case OSIOCSTUNPARAM: 16561 ASSERT(ipsq != NULL); 16562 /* 16563 * Finish socket ioctl passed through to tun 16564 * We should have an IOCTL waiting on this. 16565 */ 16566 /* FALLTHRU */ 16567 case SIOCGTUNPARAM: 16568 case OSIOCGTUNPARAM: 16569 /* 16570 * This is really M_IOCDATA from the tunnel driver. 16571 * convert back and complete the ioctl. 16572 * We should have an IOCTL waiting on this. 16573 */ 16574 if (iocp->ioc_cmd == SIOCGTUNPARAM || 16575 iocp->ioc_cmd == OSIOCGTUNPARAM) { 16576 mp1 = ill_pending_mp_get(ill, &connp, 16577 iocp->ioc_id); 16578 mode = COPYOUT; 16579 ipsq = NULL; 16580 } else { 16581 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16582 mode = NO_COPYOUT; 16583 } 16584 if (mp1 != NULL) { 16585 /* 16586 * Now copy back the b_next/b_prev used by 16587 * mi code for the mi_copy* functions. 16588 * See ip_sioctl_tunparam() for the reason. 16589 * Also protect against missing b_cont. 16590 */ 16591 if (mp->b_cont != NULL) { 16592 mp->b_cont->b_next = 16593 mp1->b_cont->b_next; 16594 mp->b_cont->b_prev = 16595 mp1->b_cont->b_prev; 16596 } 16597 inet_freemsg(mp1); 16598 if (iocp->ioc_error == 0) 16599 iocp->ioc_error = EINVAL; 16600 ASSERT(connp != NULL); 16601 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16602 iocp->ioc_error, mode, ipsq); 16603 } else { 16604 ASSERT(connp == NULL); 16605 putnext(q, mp); 16606 } 16607 break; 16608 default: 16609 break; 16610 } 16611 default: 16612 break; 16613 } 16614 } 16615 16616 /* 16617 * NOTE : This function does not ire_refrele the ire argument passed in. 16618 * 16619 * IPQoS notes 16620 * IP policy is invoked twice for a forwarded packet, once on the read side 16621 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 16622 * enabled. An additional parameter, in_ill, has been added for this purpose. 16623 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 16624 * because ip_mroute drops this information. 16625 * 16626 */ 16627 void 16628 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 16629 { 16630 uint32_t pkt_len; 16631 queue_t *q; 16632 uint32_t sum; 16633 #define rptr ((uchar_t *)ipha) 16634 uint32_t max_frag; 16635 uint32_t ill_index; 16636 ill_t *out_ill; 16637 mib2_ipIfStatsEntry_t *mibptr; 16638 ip_stack_t *ipst = in_ill->ill_ipst; 16639 16640 /* Get the ill_index of the incoming ILL */ 16641 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 16642 mibptr = (in_ill != NULL) ? in_ill->ill_ip_mib : &ipst->ips_ip_mib; 16643 16644 /* Initiate Read side IPPF processing */ 16645 if (IPP_ENABLED(IPP_FWD_IN, ipst)) { 16646 ip_process(IPP_FWD_IN, &mp, ill_index); 16647 if (mp == NULL) { 16648 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 16649 "during IPPF processing\n")); 16650 return; 16651 } 16652 } 16653 16654 pkt_len = ntohs(ipha->ipha_length); 16655 16656 /* Adjust the checksum to reflect the ttl decrement. */ 16657 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 16658 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 16659 16660 if (ipha->ipha_ttl-- <= 1) { 16661 if (ip_csum_hdr(ipha)) { 16662 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16663 goto drop_pkt; 16664 } 16665 /* 16666 * Note: ire_stq this will be NULL for multicast 16667 * datagrams using the long path through arp (the IRE 16668 * is not an IRE_CACHE). This should not cause 16669 * problems since we don't generate ICMP errors for 16670 * multicast packets. 16671 */ 16672 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16673 q = ire->ire_stq; 16674 if (q != NULL) { 16675 /* Sent by forwarding path, and router is global zone */ 16676 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED, 16677 GLOBAL_ZONEID, ipst); 16678 } else 16679 freemsg(mp); 16680 return; 16681 } 16682 16683 /* 16684 * Don't forward if the interface is down 16685 */ 16686 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 16687 BUMP_MIB(mibptr, ipIfStatsInDiscards); 16688 ip2dbg(("ip_rput_forward:interface is down\n")); 16689 goto drop_pkt; 16690 } 16691 16692 /* Get the ill_index of the outgoing ILL */ 16693 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 16694 16695 out_ill = ire->ire_ipif->ipif_ill; 16696 16697 DTRACE_PROBE4(ip4__forwarding__start, 16698 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16699 16700 FW_HOOKS(ipst->ips_ip4_forwarding_event, 16701 ipst->ips_ipv4firewall_forwarding, 16702 in_ill, out_ill, ipha, mp, mp, ipst); 16703 16704 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 16705 16706 if (mp == NULL) 16707 return; 16708 pkt_len = ntohs(ipha->ipha_length); 16709 16710 if (is_system_labeled()) { 16711 mblk_t *mp1; 16712 16713 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 16714 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16715 goto drop_pkt; 16716 } 16717 /* Size may have changed */ 16718 mp = mp1; 16719 ipha = (ipha_t *)mp->b_rptr; 16720 pkt_len = ntohs(ipha->ipha_length); 16721 } 16722 16723 /* Check if there are options to update */ 16724 if (!IS_SIMPLE_IPH(ipha)) { 16725 if (ip_csum_hdr(ipha)) { 16726 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16727 goto drop_pkt; 16728 } 16729 if (ip_rput_forward_options(mp, ipha, ire, ipst)) { 16730 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16731 return; 16732 } 16733 16734 ipha->ipha_hdr_checksum = 0; 16735 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 16736 } 16737 max_frag = ire->ire_max_frag; 16738 if (pkt_len > max_frag) { 16739 /* 16740 * It needs fragging on its way out. We haven't 16741 * verified the header checksum yet. Since we 16742 * are going to put a surely good checksum in the 16743 * outgoing header, we have to make sure that it 16744 * was good coming in. 16745 */ 16746 if (ip_csum_hdr(ipha)) { 16747 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16748 goto drop_pkt; 16749 } 16750 /* Initiate Write side IPPF processing */ 16751 if (IPP_ENABLED(IPP_FWD_OUT, ipst)) { 16752 ip_process(IPP_FWD_OUT, &mp, ill_index); 16753 if (mp == NULL) { 16754 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 16755 " during IPPF processing\n")); 16756 return; 16757 } 16758 } 16759 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID, ipst); 16760 ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n")); 16761 return; 16762 } 16763 16764 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 16765 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16766 FW_HOOKS(ipst->ips_ip4_physical_out_event, 16767 ipst->ips_ipv4firewall_physical_out, 16768 NULL, out_ill, ipha, mp, mp, ipst); 16769 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 16770 if (mp == NULL) 16771 return; 16772 16773 mp->b_prev = (mblk_t *)IPP_FWD_OUT; 16774 ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n")); 16775 (void) ip_xmit_v4(mp, ire, NULL, B_FALSE); 16776 /* ip_xmit_v4 always consumes the packet */ 16777 return; 16778 16779 drop_pkt:; 16780 ip1dbg(("ip_rput_forward: drop pkt\n")); 16781 freemsg(mp); 16782 #undef rptr 16783 } 16784 16785 void 16786 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 16787 { 16788 ire_t *ire; 16789 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16790 16791 ASSERT(!ipif->ipif_isv6); 16792 /* 16793 * Find an IRE which matches the destination and the outgoing 16794 * queue in the cache table. All we need is an IRE_CACHE which 16795 * is pointing at ipif->ipif_ill. If it is part of some ill group, 16796 * then it is enough to have some IRE_CACHE in the group. 16797 */ 16798 if (ipif->ipif_flags & IPIF_POINTOPOINT) 16799 dst = ipif->ipif_pp_dst_addr; 16800 16801 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, MBLK_GETLABEL(mp), 16802 MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR, ipst); 16803 if (ire == NULL) { 16804 /* 16805 * Mark this packet to make it be delivered to 16806 * ip_rput_forward after the new ire has been 16807 * created. 16808 */ 16809 mp->b_prev = NULL; 16810 mp->b_next = mp; 16811 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 16812 NULL, 0, GLOBAL_ZONEID, &zero_info); 16813 } else { 16814 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 16815 IRE_REFRELE(ire); 16816 } 16817 } 16818 16819 /* Update any source route, record route or timestamp options */ 16820 static int 16821 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire, ip_stack_t *ipst) 16822 { 16823 ipoptp_t opts; 16824 uchar_t *opt; 16825 uint8_t optval; 16826 uint8_t optlen; 16827 ipaddr_t dst; 16828 uint32_t ts; 16829 ire_t *dst_ire = NULL; 16830 ire_t *tmp_ire = NULL; 16831 timestruc_t now; 16832 16833 ip2dbg(("ip_rput_forward_options\n")); 16834 dst = ipha->ipha_dst; 16835 for (optval = ipoptp_first(&opts, ipha); 16836 optval != IPOPT_EOL; 16837 optval = ipoptp_next(&opts)) { 16838 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 16839 opt = opts.ipoptp_cur; 16840 optlen = opts.ipoptp_len; 16841 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 16842 optval, opts.ipoptp_len)); 16843 switch (optval) { 16844 uint32_t off; 16845 case IPOPT_SSRR: 16846 case IPOPT_LSRR: 16847 /* Check if adminstratively disabled */ 16848 if (!ipst->ips_ip_forward_src_routed) { 16849 if (ire->ire_stq != NULL) { 16850 /* 16851 * Sent by forwarding path, and router 16852 * is global zone 16853 */ 16854 icmp_unreachable(ire->ire_stq, mp, 16855 ICMP_SOURCE_ROUTE_FAILED, 16856 GLOBAL_ZONEID, ipst); 16857 } else { 16858 ip0dbg(("ip_rput_forward_options: " 16859 "unable to send unreach\n")); 16860 freemsg(mp); 16861 } 16862 return (-1); 16863 } 16864 16865 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16866 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16867 if (dst_ire == NULL) { 16868 /* 16869 * Must be partial since ip_rput_options 16870 * checked for strict. 16871 */ 16872 break; 16873 } 16874 off = opt[IPOPT_OFFSET]; 16875 off--; 16876 redo_srr: 16877 if (optlen < IP_ADDR_LEN || 16878 off > optlen - IP_ADDR_LEN) { 16879 /* End of source route */ 16880 ip1dbg(( 16881 "ip_rput_forward_options: end of SR\n")); 16882 ire_refrele(dst_ire); 16883 break; 16884 } 16885 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16886 bcopy(&ire->ire_src_addr, (char *)opt + off, 16887 IP_ADDR_LEN); 16888 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 16889 ntohl(dst))); 16890 16891 /* 16892 * Check if our address is present more than 16893 * once as consecutive hops in source route. 16894 */ 16895 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16896 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16897 if (tmp_ire != NULL) { 16898 ire_refrele(tmp_ire); 16899 off += IP_ADDR_LEN; 16900 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16901 goto redo_srr; 16902 } 16903 ipha->ipha_dst = dst; 16904 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16905 ire_refrele(dst_ire); 16906 break; 16907 case IPOPT_RR: 16908 off = opt[IPOPT_OFFSET]; 16909 off--; 16910 if (optlen < IP_ADDR_LEN || 16911 off > optlen - IP_ADDR_LEN) { 16912 /* No more room - ignore */ 16913 ip1dbg(( 16914 "ip_rput_forward_options: end of RR\n")); 16915 break; 16916 } 16917 bcopy(&ire->ire_src_addr, (char *)opt + off, 16918 IP_ADDR_LEN); 16919 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16920 break; 16921 case IPOPT_TS: 16922 /* Insert timestamp if there is room */ 16923 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16924 case IPOPT_TS_TSONLY: 16925 off = IPOPT_TS_TIMELEN; 16926 break; 16927 case IPOPT_TS_PRESPEC: 16928 case IPOPT_TS_PRESPEC_RFC791: 16929 /* Verify that the address matched */ 16930 off = opt[IPOPT_OFFSET] - 1; 16931 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16932 dst_ire = ire_ctable_lookup(dst, 0, 16933 IRE_LOCAL, NULL, ALL_ZONES, NULL, 16934 MATCH_IRE_TYPE, ipst); 16935 if (dst_ire == NULL) { 16936 /* Not for us */ 16937 break; 16938 } 16939 ire_refrele(dst_ire); 16940 /* FALLTHRU */ 16941 case IPOPT_TS_TSANDADDR: 16942 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16943 break; 16944 default: 16945 /* 16946 * ip_*put_options should have already 16947 * dropped this packet. 16948 */ 16949 cmn_err(CE_PANIC, "ip_rput_forward_options: " 16950 "unknown IT - bug in ip_rput_options?\n"); 16951 return (0); /* Keep "lint" happy */ 16952 } 16953 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 16954 /* Increase overflow counter */ 16955 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 16956 opt[IPOPT_POS_OV_FLG] = 16957 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 16958 (off << 4)); 16959 break; 16960 } 16961 off = opt[IPOPT_OFFSET] - 1; 16962 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16963 case IPOPT_TS_PRESPEC: 16964 case IPOPT_TS_PRESPEC_RFC791: 16965 case IPOPT_TS_TSANDADDR: 16966 bcopy(&ire->ire_src_addr, 16967 (char *)opt + off, IP_ADDR_LEN); 16968 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16969 /* FALLTHRU */ 16970 case IPOPT_TS_TSONLY: 16971 off = opt[IPOPT_OFFSET] - 1; 16972 /* Compute # of milliseconds since midnight */ 16973 gethrestime(&now); 16974 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 16975 now.tv_nsec / (NANOSEC / MILLISEC); 16976 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 16977 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 16978 break; 16979 } 16980 break; 16981 } 16982 } 16983 return (0); 16984 } 16985 16986 /* 16987 * This is called after processing at least one of AH/ESP headers. 16988 * 16989 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 16990 * the actual, physical interface on which the packet was received, 16991 * but, when ip_strict_dst_multihoming is set to 1, could be the 16992 * interface which had the ipha_dst configured when the packet went 16993 * through ip_rput. The ill_index corresponding to the recv_ill 16994 * is saved in ipsec_in_rill_index 16995 * 16996 * NOTE2: The "ire" argument is only used in IPv4 cases. This function 16997 * cannot assume "ire" points to valid data for any IPv6 cases. 16998 */ 16999 void 17000 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 17001 { 17002 mblk_t *mp; 17003 ipaddr_t dst; 17004 in6_addr_t *v6dstp; 17005 ipha_t *ipha; 17006 ip6_t *ip6h; 17007 ipsec_in_t *ii; 17008 boolean_t ill_need_rele = B_FALSE; 17009 boolean_t rill_need_rele = B_FALSE; 17010 boolean_t ire_need_rele = B_FALSE; 17011 netstack_t *ns; 17012 ip_stack_t *ipst; 17013 17014 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 17015 ASSERT(ii->ipsec_in_ill_index != 0); 17016 ns = ii->ipsec_in_ns; 17017 ASSERT(ii->ipsec_in_ns != NULL); 17018 ipst = ns->netstack_ip; 17019 17020 mp = ipsec_mp->b_cont; 17021 ASSERT(mp != NULL); 17022 17023 17024 if (ill == NULL) { 17025 ASSERT(recv_ill == NULL); 17026 /* 17027 * We need to get the original queue on which ip_rput_local 17028 * or ip_rput_data_v6 was called. 17029 */ 17030 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 17031 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL, ipst); 17032 ill_need_rele = B_TRUE; 17033 17034 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 17035 recv_ill = ill_lookup_on_ifindex( 17036 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 17037 NULL, NULL, NULL, NULL, ipst); 17038 rill_need_rele = B_TRUE; 17039 } else { 17040 recv_ill = ill; 17041 } 17042 17043 if ((ill == NULL) || (recv_ill == NULL)) { 17044 ip0dbg(("ip_fanout_proto_again: interface " 17045 "disappeared\n")); 17046 if (ill != NULL) 17047 ill_refrele(ill); 17048 if (recv_ill != NULL) 17049 ill_refrele(recv_ill); 17050 freemsg(ipsec_mp); 17051 return; 17052 } 17053 } 17054 17055 ASSERT(ill != NULL && recv_ill != NULL); 17056 17057 if (mp->b_datap->db_type == M_CTL) { 17058 /* 17059 * AH/ESP is returning the ICMP message after 17060 * removing their headers. Fanout again till 17061 * it gets to the right protocol. 17062 */ 17063 if (ii->ipsec_in_v4) { 17064 icmph_t *icmph; 17065 int iph_hdr_length; 17066 int hdr_length; 17067 17068 ipha = (ipha_t *)mp->b_rptr; 17069 iph_hdr_length = IPH_HDR_LENGTH(ipha); 17070 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 17071 ipha = (ipha_t *)&icmph[1]; 17072 hdr_length = IPH_HDR_LENGTH(ipha); 17073 /* 17074 * icmp_inbound_error_fanout may need to do pullupmsg. 17075 * Reset the type to M_DATA. 17076 */ 17077 mp->b_datap->db_type = M_DATA; 17078 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 17079 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 17080 B_FALSE, ill, ii->ipsec_in_zoneid); 17081 } else { 17082 icmp6_t *icmp6; 17083 int hdr_length; 17084 17085 ip6h = (ip6_t *)mp->b_rptr; 17086 /* Don't call hdr_length_v6() unless you have to. */ 17087 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 17088 hdr_length = ip_hdr_length_v6(mp, ip6h); 17089 else 17090 hdr_length = IPV6_HDR_LEN; 17091 17092 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 17093 /* 17094 * icmp_inbound_error_fanout_v6 may need to do 17095 * pullupmsg. Reset the type to M_DATA. 17096 */ 17097 mp->b_datap->db_type = M_DATA; 17098 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 17099 ip6h, icmp6, ill, B_TRUE, ii->ipsec_in_zoneid); 17100 } 17101 if (ill_need_rele) 17102 ill_refrele(ill); 17103 if (rill_need_rele) 17104 ill_refrele(recv_ill); 17105 return; 17106 } 17107 17108 if (ii->ipsec_in_v4) { 17109 ipha = (ipha_t *)mp->b_rptr; 17110 dst = ipha->ipha_dst; 17111 if (CLASSD(dst)) { 17112 /* 17113 * Multicast has to be delivered to all streams. 17114 */ 17115 dst = INADDR_BROADCAST; 17116 } 17117 17118 if (ire == NULL) { 17119 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 17120 MBLK_GETLABEL(mp), ipst); 17121 if (ire == NULL) { 17122 if (ill_need_rele) 17123 ill_refrele(ill); 17124 if (rill_need_rele) 17125 ill_refrele(recv_ill); 17126 ip1dbg(("ip_fanout_proto_again: " 17127 "IRE not found")); 17128 freemsg(ipsec_mp); 17129 return; 17130 } 17131 ire_need_rele = B_TRUE; 17132 } 17133 17134 switch (ipha->ipha_protocol) { 17135 case IPPROTO_UDP: 17136 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 17137 recv_ill); 17138 if (ire_need_rele) 17139 ire_refrele(ire); 17140 break; 17141 case IPPROTO_TCP: 17142 if (!ire_need_rele) 17143 IRE_REFHOLD(ire); 17144 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 17145 ire, ipsec_mp, 0, ill->ill_rq, NULL); 17146 IRE_REFRELE(ire); 17147 if (mp != NULL) 17148 squeue_enter_chain(GET_SQUEUE(mp), mp, 17149 mp, 1, SQTAG_IP_PROTO_AGAIN); 17150 break; 17151 case IPPROTO_SCTP: 17152 if (!ire_need_rele) 17153 IRE_REFHOLD(ire); 17154 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 17155 ipsec_mp, 0, ill->ill_rq, dst); 17156 break; 17157 default: 17158 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 17159 recv_ill); 17160 if (ire_need_rele) 17161 ire_refrele(ire); 17162 break; 17163 } 17164 } else { 17165 uint32_t rput_flags = 0; 17166 17167 ip6h = (ip6_t *)mp->b_rptr; 17168 v6dstp = &ip6h->ip6_dst; 17169 /* 17170 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 17171 * address. 17172 * 17173 * Currently, we don't store that state in the IPSEC_IN 17174 * message, and we may need to. 17175 */ 17176 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 17177 IP6_IN_LLMCAST : 0); 17178 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 17179 NULL, NULL); 17180 } 17181 if (ill_need_rele) 17182 ill_refrele(ill); 17183 if (rill_need_rele) 17184 ill_refrele(recv_ill); 17185 } 17186 17187 /* 17188 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 17189 * returns 'true' if there are still fragments left on the queue, in 17190 * which case we restart the timer. 17191 */ 17192 void 17193 ill_frag_timer(void *arg) 17194 { 17195 ill_t *ill = (ill_t *)arg; 17196 boolean_t frag_pending; 17197 ip_stack_t *ipst = ill->ill_ipst; 17198 17199 mutex_enter(&ill->ill_lock); 17200 ASSERT(!ill->ill_fragtimer_executing); 17201 if (ill->ill_state_flags & ILL_CONDEMNED) { 17202 ill->ill_frag_timer_id = 0; 17203 mutex_exit(&ill->ill_lock); 17204 return; 17205 } 17206 ill->ill_fragtimer_executing = 1; 17207 mutex_exit(&ill->ill_lock); 17208 17209 frag_pending = ill_frag_timeout(ill, ipst->ips_ip_g_frag_timeout); 17210 17211 /* 17212 * Restart the timer, if we have fragments pending or if someone 17213 * wanted us to be scheduled again. 17214 */ 17215 mutex_enter(&ill->ill_lock); 17216 ill->ill_fragtimer_executing = 0; 17217 ill->ill_frag_timer_id = 0; 17218 if (frag_pending || ill->ill_fragtimer_needrestart) 17219 ill_frag_timer_start(ill); 17220 mutex_exit(&ill->ill_lock); 17221 } 17222 17223 void 17224 ill_frag_timer_start(ill_t *ill) 17225 { 17226 ip_stack_t *ipst = ill->ill_ipst; 17227 17228 ASSERT(MUTEX_HELD(&ill->ill_lock)); 17229 17230 /* If the ill is closing or opening don't proceed */ 17231 if (ill->ill_state_flags & ILL_CONDEMNED) 17232 return; 17233 17234 if (ill->ill_fragtimer_executing) { 17235 /* 17236 * ill_frag_timer is currently executing. Just record the 17237 * the fact that we want the timer to be restarted. 17238 * ill_frag_timer will post a timeout before it returns, 17239 * ensuring it will be called again. 17240 */ 17241 ill->ill_fragtimer_needrestart = 1; 17242 return; 17243 } 17244 17245 if (ill->ill_frag_timer_id == 0) { 17246 /* 17247 * The timer is neither running nor is the timeout handler 17248 * executing. Post a timeout so that ill_frag_timer will be 17249 * called 17250 */ 17251 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 17252 MSEC_TO_TICK(ipst->ips_ip_g_frag_timo_ms >> 1)); 17253 ill->ill_fragtimer_needrestart = 0; 17254 } 17255 } 17256 17257 /* 17258 * This routine is needed for loopback when forwarding multicasts. 17259 * 17260 * IPQoS Notes: 17261 * IPPF processing is done in fanout routines. 17262 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 17263 * processing for IPSec packets is done when it comes back in clear. 17264 * NOTE : The callers of this function need to do the ire_refrele for the 17265 * ire that is being passed in. 17266 */ 17267 void 17268 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17269 ill_t *recv_ill) 17270 { 17271 ill_t *ill = (ill_t *)q->q_ptr; 17272 uint32_t sum; 17273 uint32_t u1; 17274 uint32_t u2; 17275 int hdr_length; 17276 boolean_t mctl_present; 17277 mblk_t *first_mp = mp; 17278 mblk_t *hada_mp = NULL; 17279 ipha_t *inner_ipha; 17280 ip_stack_t *ipst; 17281 17282 ASSERT(recv_ill != NULL); 17283 ipst = recv_ill->ill_ipst; 17284 17285 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 17286 "ip_rput_locl_start: q %p", q); 17287 17288 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17289 ASSERT(ill != NULL); 17290 17291 17292 #define rptr ((uchar_t *)ipha) 17293 #define iphs ((uint16_t *)ipha) 17294 17295 /* 17296 * no UDP or TCP packet should come here anymore. 17297 */ 17298 ASSERT((ipha->ipha_protocol != IPPROTO_TCP) && 17299 (ipha->ipha_protocol != IPPROTO_UDP)); 17300 17301 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 17302 if (mctl_present && 17303 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 17304 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 17305 17306 /* 17307 * It's an IPsec accelerated packet. 17308 * Keep a pointer to the data attributes around until 17309 * we allocate the ipsec_info_t. 17310 */ 17311 IPSECHW_DEBUG(IPSECHW_PKT, 17312 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 17313 hada_mp = first_mp; 17314 hada_mp->b_cont = NULL; 17315 /* 17316 * Since it is accelerated, it comes directly from 17317 * the ill and the data attributes is followed by 17318 * the packet data. 17319 */ 17320 ASSERT(mp->b_datap->db_type != M_CTL); 17321 first_mp = mp; 17322 mctl_present = B_FALSE; 17323 } 17324 17325 /* 17326 * IF M_CTL is not present, then ipsec_in_is_secure 17327 * should return B_TRUE. There is a case where loopback 17328 * packets has an M_CTL in the front with all the 17329 * IPSEC options set to IPSEC_PREF_NEVER - which means 17330 * ipsec_in_is_secure will return B_FALSE. As loopback 17331 * packets never comes here, it is safe to ASSERT the 17332 * following. 17333 */ 17334 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 17335 17336 17337 /* u1 is # words of IP options */ 17338 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 17339 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 17340 17341 if (u1) { 17342 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 17343 if (hada_mp != NULL) 17344 freemsg(hada_mp); 17345 return; 17346 } 17347 } else { 17348 /* Check the IP header checksum. */ 17349 #define uph ((uint16_t *)ipha) 17350 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 17351 uph[6] + uph[7] + uph[8] + uph[9]; 17352 #undef uph 17353 /* finish doing IP checksum */ 17354 sum = (sum & 0xFFFF) + (sum >> 16); 17355 sum = ~(sum + (sum >> 16)) & 0xFFFF; 17356 /* 17357 * Don't verify header checksum if this packet is coming 17358 * back from AH/ESP as we already did it. 17359 */ 17360 if (!mctl_present && (sum && sum != 0xFFFF)) { 17361 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 17362 goto drop_pkt; 17363 } 17364 } 17365 17366 /* 17367 * Count for SNMP of inbound packets for ire. As ip_proto_input 17368 * might be called more than once for secure packets, count only 17369 * the first time. 17370 */ 17371 if (!mctl_present) { 17372 UPDATE_IB_PKT_COUNT(ire); 17373 ire->ire_last_used_time = lbolt; 17374 } 17375 17376 /* Check for fragmentation offset. */ 17377 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 17378 u1 = u2 & (IPH_MF | IPH_OFFSET); 17379 if (u1) { 17380 /* 17381 * We re-assemble fragments before we do the AH/ESP 17382 * processing. Thus, M_CTL should not be present 17383 * while we are re-assembling. 17384 */ 17385 ASSERT(!mctl_present); 17386 ASSERT(first_mp == mp); 17387 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 17388 return; 17389 } 17390 /* 17391 * Make sure that first_mp points back to mp as 17392 * the mp we came in with could have changed in 17393 * ip_rput_fragment(). 17394 */ 17395 ipha = (ipha_t *)mp->b_rptr; 17396 first_mp = mp; 17397 } 17398 17399 /* 17400 * Clear hardware checksumming flag as it is currently only 17401 * used by TCP and UDP. 17402 */ 17403 DB_CKSUMFLAGS(mp) = 0; 17404 17405 /* Now we have a complete datagram, destined for this machine. */ 17406 u1 = IPH_HDR_LENGTH(ipha); 17407 switch (ipha->ipha_protocol) { 17408 case IPPROTO_ICMP: { 17409 ire_t *ire_zone; 17410 ilm_t *ilm; 17411 mblk_t *mp1; 17412 zoneid_t last_zoneid; 17413 17414 if (CLASSD(ipha->ipha_dst) && 17415 !(recv_ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) { 17416 ASSERT(ire->ire_type == IRE_BROADCAST); 17417 /* 17418 * In the multicast case, applications may have joined 17419 * the group from different zones, so we need to deliver 17420 * the packet to each of them. Loop through the 17421 * multicast memberships structures (ilm) on the receive 17422 * ill and send a copy of the packet up each matching 17423 * one. However, we don't do this for multicasts sent on 17424 * the loopback interface (PHYI_LOOPBACK flag set) as 17425 * they must stay in the sender's zone. 17426 * 17427 * ilm_add_v6() ensures that ilms in the same zone are 17428 * contiguous in the ill_ilm list. We use this property 17429 * to avoid sending duplicates needed when two 17430 * applications in the same zone join the same group on 17431 * different logical interfaces: we ignore the ilm if 17432 * its zoneid is the same as the last matching one. 17433 * In addition, the sending of the packet for 17434 * ire_zoneid is delayed until all of the other ilms 17435 * have been exhausted. 17436 */ 17437 last_zoneid = -1; 17438 ILM_WALKER_HOLD(recv_ill); 17439 for (ilm = recv_ill->ill_ilm; ilm != NULL; 17440 ilm = ilm->ilm_next) { 17441 if ((ilm->ilm_flags & ILM_DELETED) || 17442 ipha->ipha_dst != ilm->ilm_addr || 17443 ilm->ilm_zoneid == last_zoneid || 17444 ilm->ilm_zoneid == ire->ire_zoneid || 17445 ilm->ilm_zoneid == ALL_ZONES || 17446 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 17447 continue; 17448 mp1 = ip_copymsg(first_mp); 17449 if (mp1 == NULL) 17450 continue; 17451 icmp_inbound(q, mp1, B_TRUE, ill, 17452 0, sum, mctl_present, B_TRUE, 17453 recv_ill, ilm->ilm_zoneid); 17454 last_zoneid = ilm->ilm_zoneid; 17455 } 17456 ILM_WALKER_RELE(recv_ill); 17457 } else if (ire->ire_type == IRE_BROADCAST) { 17458 /* 17459 * In the broadcast case, there may be many zones 17460 * which need a copy of the packet delivered to them. 17461 * There is one IRE_BROADCAST per broadcast address 17462 * and per zone; we walk those using a helper function. 17463 * In addition, the sending of the packet for ire is 17464 * delayed until all of the other ires have been 17465 * processed. 17466 */ 17467 IRB_REFHOLD(ire->ire_bucket); 17468 ire_zone = NULL; 17469 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 17470 ire)) != NULL) { 17471 mp1 = ip_copymsg(first_mp); 17472 if (mp1 == NULL) 17473 continue; 17474 17475 UPDATE_IB_PKT_COUNT(ire_zone); 17476 ire_zone->ire_last_used_time = lbolt; 17477 icmp_inbound(q, mp1, B_TRUE, ill, 17478 0, sum, mctl_present, B_TRUE, 17479 recv_ill, ire_zone->ire_zoneid); 17480 } 17481 IRB_REFRELE(ire->ire_bucket); 17482 } 17483 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 17484 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 17485 ire->ire_zoneid); 17486 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17487 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 17488 return; 17489 } 17490 case IPPROTO_IGMP: 17491 /* 17492 * If we are not willing to accept IGMP packets in clear, 17493 * then check with global policy. 17494 */ 17495 if (ipst->ips_igmp_accept_clear_messages == 0) { 17496 first_mp = ipsec_check_global_policy(first_mp, NULL, 17497 ipha, NULL, mctl_present, ipst->ips_netstack); 17498 if (first_mp == NULL) 17499 return; 17500 } 17501 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17502 freemsg(first_mp); 17503 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 17504 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17505 return; 17506 } 17507 if ((mp = igmp_input(q, mp, ill)) == NULL) { 17508 /* Bad packet - discarded by igmp_input */ 17509 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17510 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 17511 if (mctl_present) 17512 freeb(first_mp); 17513 return; 17514 } 17515 /* 17516 * igmp_input() may have returned the pulled up message. 17517 * So first_mp and ipha need to be reinitialized. 17518 */ 17519 ipha = (ipha_t *)mp->b_rptr; 17520 if (mctl_present) 17521 first_mp->b_cont = mp; 17522 else 17523 first_mp = mp; 17524 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17525 connf_head != NULL) { 17526 /* No user-level listener for IGMP packets */ 17527 goto drop_pkt; 17528 } 17529 /* deliver to local raw users */ 17530 break; 17531 case IPPROTO_PIM: 17532 /* 17533 * If we are not willing to accept PIM packets in clear, 17534 * then check with global policy. 17535 */ 17536 if (ipst->ips_pim_accept_clear_messages == 0) { 17537 first_mp = ipsec_check_global_policy(first_mp, NULL, 17538 ipha, NULL, mctl_present, ipst->ips_netstack); 17539 if (first_mp == NULL) 17540 return; 17541 } 17542 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17543 freemsg(first_mp); 17544 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 17545 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17546 return; 17547 } 17548 if (pim_input(q, mp, ill) != 0) { 17549 /* Bad packet - discarded by pim_input */ 17550 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17551 "ip_rput_locl_end: q %p (%S)", q, "pim"); 17552 if (mctl_present) 17553 freeb(first_mp); 17554 return; 17555 } 17556 17557 /* 17558 * pim_input() may have pulled up the message so ipha needs to 17559 * be reinitialized. 17560 */ 17561 ipha = (ipha_t *)mp->b_rptr; 17562 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17563 connf_head != NULL) { 17564 /* No user-level listener for PIM packets */ 17565 goto drop_pkt; 17566 } 17567 /* deliver to local raw users */ 17568 break; 17569 case IPPROTO_ENCAP: 17570 /* 17571 * Handle self-encapsulated packets (IP-in-IP where 17572 * the inner addresses == the outer addresses). 17573 */ 17574 hdr_length = IPH_HDR_LENGTH(ipha); 17575 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 17576 mp->b_wptr) { 17577 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 17578 sizeof (ipha_t) - mp->b_rptr)) { 17579 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17580 freemsg(first_mp); 17581 return; 17582 } 17583 ipha = (ipha_t *)mp->b_rptr; 17584 } 17585 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 17586 /* 17587 * Check the sanity of the inner IP header. 17588 */ 17589 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 17590 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17591 freemsg(first_mp); 17592 return; 17593 } 17594 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 17595 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17596 freemsg(first_mp); 17597 return; 17598 } 17599 if (inner_ipha->ipha_src == ipha->ipha_src && 17600 inner_ipha->ipha_dst == ipha->ipha_dst) { 17601 ipsec_in_t *ii; 17602 17603 /* 17604 * Self-encapsulated tunnel packet. Remove 17605 * the outer IP header and fanout again. 17606 * We also need to make sure that the inner 17607 * header is pulled up until options. 17608 */ 17609 mp->b_rptr = (uchar_t *)inner_ipha; 17610 ipha = inner_ipha; 17611 hdr_length = IPH_HDR_LENGTH(ipha); 17612 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 17613 if (!pullupmsg(mp, (uchar_t *)ipha + 17614 + hdr_length - mp->b_rptr)) { 17615 freemsg(first_mp); 17616 return; 17617 } 17618 ipha = (ipha_t *)mp->b_rptr; 17619 } 17620 if (!mctl_present) { 17621 ASSERT(first_mp == mp); 17622 /* 17623 * This means that somebody is sending 17624 * Self-encapsualted packets without AH/ESP. 17625 * If AH/ESP was present, we would have already 17626 * allocated the first_mp. 17627 */ 17628 first_mp = ipsec_in_alloc(B_TRUE, 17629 ipst->ips_netstack); 17630 if (first_mp == NULL) { 17631 ip1dbg(("ip_proto_input: IPSEC_IN " 17632 "allocation failure.\n")); 17633 BUMP_MIB(ill->ill_ip_mib, 17634 ipIfStatsInDiscards); 17635 freemsg(mp); 17636 return; 17637 } 17638 first_mp->b_cont = mp; 17639 } 17640 /* 17641 * We generally store the ill_index if we need to 17642 * do IPSEC processing as we lose the ill queue when 17643 * we come back. But in this case, we never should 17644 * have to store the ill_index here as it should have 17645 * been stored previously when we processed the 17646 * AH/ESP header in this routine or for non-ipsec 17647 * cases, we still have the queue. But for some bad 17648 * packets from the wire, we can get to IPSEC after 17649 * this and we better store the index for that case. 17650 */ 17651 ill = (ill_t *)q->q_ptr; 17652 ii = (ipsec_in_t *)first_mp->b_rptr; 17653 ii->ipsec_in_ill_index = 17654 ill->ill_phyint->phyint_ifindex; 17655 ii->ipsec_in_rill_index = 17656 recv_ill->ill_phyint->phyint_ifindex; 17657 if (ii->ipsec_in_decaps) { 17658 /* 17659 * This packet is self-encapsulated multiple 17660 * times. We don't want to recurse infinitely. 17661 * To keep it simple, drop the packet. 17662 */ 17663 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17664 freemsg(first_mp); 17665 return; 17666 } 17667 ii->ipsec_in_decaps = B_TRUE; 17668 ip_fanout_proto_again(first_mp, recv_ill, recv_ill, 17669 ire); 17670 return; 17671 } 17672 break; 17673 case IPPROTO_AH: 17674 case IPPROTO_ESP: { 17675 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 17676 17677 /* 17678 * Fast path for AH/ESP. If this is the first time 17679 * we are sending a datagram to AH/ESP, allocate 17680 * a IPSEC_IN message and prepend it. Otherwise, 17681 * just fanout. 17682 */ 17683 17684 int ipsec_rc; 17685 ipsec_in_t *ii; 17686 netstack_t *ns = ipst->ips_netstack; 17687 17688 IP_STAT(ipst, ipsec_proto_ahesp); 17689 if (!mctl_present) { 17690 ASSERT(first_mp == mp); 17691 first_mp = ipsec_in_alloc(B_TRUE, ns); 17692 if (first_mp == NULL) { 17693 ip1dbg(("ip_proto_input: IPSEC_IN " 17694 "allocation failure.\n")); 17695 freemsg(hada_mp); /* okay ifnull */ 17696 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17697 freemsg(mp); 17698 return; 17699 } 17700 /* 17701 * Store the ill_index so that when we come back 17702 * from IPSEC we ride on the same queue. 17703 */ 17704 ill = (ill_t *)q->q_ptr; 17705 ii = (ipsec_in_t *)first_mp->b_rptr; 17706 ii->ipsec_in_ill_index = 17707 ill->ill_phyint->phyint_ifindex; 17708 ii->ipsec_in_rill_index = 17709 recv_ill->ill_phyint->phyint_ifindex; 17710 first_mp->b_cont = mp; 17711 /* 17712 * Cache hardware acceleration info. 17713 */ 17714 if (hada_mp != NULL) { 17715 IPSECHW_DEBUG(IPSECHW_PKT, 17716 ("ip_rput_local: caching data attr.\n")); 17717 ii->ipsec_in_accelerated = B_TRUE; 17718 ii->ipsec_in_da = hada_mp; 17719 hada_mp = NULL; 17720 } 17721 } else { 17722 ii = (ipsec_in_t *)first_mp->b_rptr; 17723 } 17724 17725 if (!ipsec_loaded(ipss)) { 17726 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 17727 ire->ire_zoneid, ipst); 17728 return; 17729 } 17730 17731 ns = ipst->ips_netstack; 17732 /* select inbound SA and have IPsec process the pkt */ 17733 if (ipha->ipha_protocol == IPPROTO_ESP) { 17734 esph_t *esph = ipsec_inbound_esp_sa(first_mp, ns); 17735 if (esph == NULL) 17736 return; 17737 ASSERT(ii->ipsec_in_esp_sa != NULL); 17738 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 17739 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 17740 first_mp, esph); 17741 } else { 17742 ah_t *ah = ipsec_inbound_ah_sa(first_mp, ns); 17743 if (ah == NULL) 17744 return; 17745 ASSERT(ii->ipsec_in_ah_sa != NULL); 17746 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 17747 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 17748 first_mp, ah); 17749 } 17750 17751 switch (ipsec_rc) { 17752 case IPSEC_STATUS_SUCCESS: 17753 break; 17754 case IPSEC_STATUS_FAILED: 17755 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17756 /* FALLTHRU */ 17757 case IPSEC_STATUS_PENDING: 17758 return; 17759 } 17760 /* we're done with IPsec processing, send it up */ 17761 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 17762 return; 17763 } 17764 default: 17765 break; 17766 } 17767 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 17768 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 17769 ire->ire_zoneid)); 17770 goto drop_pkt; 17771 } 17772 /* 17773 * Handle protocols with which IP is less intimate. There 17774 * can be more than one stream bound to a particular 17775 * protocol. When this is the case, each one gets a copy 17776 * of any incoming packets. 17777 */ 17778 ip_fanout_proto(q, first_mp, ill, ipha, 17779 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 17780 B_TRUE, recv_ill, ire->ire_zoneid); 17781 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17782 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 17783 return; 17784 17785 drop_pkt: 17786 freemsg(first_mp); 17787 if (hada_mp != NULL) 17788 freeb(hada_mp); 17789 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17790 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 17791 #undef rptr 17792 #undef iphs 17793 17794 } 17795 17796 /* 17797 * Update any source route, record route or timestamp options. 17798 * Check that we are at end of strict source route. 17799 * The options have already been checked for sanity in ip_rput_options(). 17800 */ 17801 static boolean_t 17802 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17803 ip_stack_t *ipst) 17804 { 17805 ipoptp_t opts; 17806 uchar_t *opt; 17807 uint8_t optval; 17808 uint8_t optlen; 17809 ipaddr_t dst; 17810 uint32_t ts; 17811 ire_t *dst_ire; 17812 timestruc_t now; 17813 zoneid_t zoneid; 17814 ill_t *ill; 17815 17816 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17817 17818 ip2dbg(("ip_rput_local_options\n")); 17819 17820 for (optval = ipoptp_first(&opts, ipha); 17821 optval != IPOPT_EOL; 17822 optval = ipoptp_next(&opts)) { 17823 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17824 opt = opts.ipoptp_cur; 17825 optlen = opts.ipoptp_len; 17826 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 17827 optval, optlen)); 17828 switch (optval) { 17829 uint32_t off; 17830 case IPOPT_SSRR: 17831 case IPOPT_LSRR: 17832 off = opt[IPOPT_OFFSET]; 17833 off--; 17834 if (optlen < IP_ADDR_LEN || 17835 off > optlen - IP_ADDR_LEN) { 17836 /* End of source route */ 17837 ip1dbg(("ip_rput_local_options: end of SR\n")); 17838 break; 17839 } 17840 /* 17841 * This will only happen if two consecutive entries 17842 * in the source route contains our address or if 17843 * it is a packet with a loose source route which 17844 * reaches us before consuming the whole source route 17845 */ 17846 ip1dbg(("ip_rput_local_options: not end of SR\n")); 17847 if (optval == IPOPT_SSRR) { 17848 goto bad_src_route; 17849 } 17850 /* 17851 * Hack: instead of dropping the packet truncate the 17852 * source route to what has been used by filling the 17853 * rest with IPOPT_NOP. 17854 */ 17855 opt[IPOPT_OLEN] = (uint8_t)off; 17856 while (off < optlen) { 17857 opt[off++] = IPOPT_NOP; 17858 } 17859 break; 17860 case IPOPT_RR: 17861 off = opt[IPOPT_OFFSET]; 17862 off--; 17863 if (optlen < IP_ADDR_LEN || 17864 off > optlen - IP_ADDR_LEN) { 17865 /* No more room - ignore */ 17866 ip1dbg(( 17867 "ip_rput_local_options: end of RR\n")); 17868 break; 17869 } 17870 bcopy(&ire->ire_src_addr, (char *)opt + off, 17871 IP_ADDR_LEN); 17872 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17873 break; 17874 case IPOPT_TS: 17875 /* Insert timestamp if there is romm */ 17876 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17877 case IPOPT_TS_TSONLY: 17878 off = IPOPT_TS_TIMELEN; 17879 break; 17880 case IPOPT_TS_PRESPEC: 17881 case IPOPT_TS_PRESPEC_RFC791: 17882 /* Verify that the address matched */ 17883 off = opt[IPOPT_OFFSET] - 1; 17884 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17885 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17886 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 17887 ipst); 17888 if (dst_ire == NULL) { 17889 /* Not for us */ 17890 break; 17891 } 17892 ire_refrele(dst_ire); 17893 /* FALLTHRU */ 17894 case IPOPT_TS_TSANDADDR: 17895 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17896 break; 17897 default: 17898 /* 17899 * ip_*put_options should have already 17900 * dropped this packet. 17901 */ 17902 cmn_err(CE_PANIC, "ip_rput_local_options: " 17903 "unknown IT - bug in ip_rput_options?\n"); 17904 return (B_TRUE); /* Keep "lint" happy */ 17905 } 17906 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 17907 /* Increase overflow counter */ 17908 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 17909 opt[IPOPT_POS_OV_FLG] = 17910 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 17911 (off << 4)); 17912 break; 17913 } 17914 off = opt[IPOPT_OFFSET] - 1; 17915 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17916 case IPOPT_TS_PRESPEC: 17917 case IPOPT_TS_PRESPEC_RFC791: 17918 case IPOPT_TS_TSANDADDR: 17919 bcopy(&ire->ire_src_addr, (char *)opt + off, 17920 IP_ADDR_LEN); 17921 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17922 /* FALLTHRU */ 17923 case IPOPT_TS_TSONLY: 17924 off = opt[IPOPT_OFFSET] - 1; 17925 /* Compute # of milliseconds since midnight */ 17926 gethrestime(&now); 17927 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 17928 now.tv_nsec / (NANOSEC / MILLISEC); 17929 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 17930 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 17931 break; 17932 } 17933 break; 17934 } 17935 } 17936 return (B_TRUE); 17937 17938 bad_src_route: 17939 q = WR(q); 17940 if (q->q_next != NULL) 17941 ill = q->q_ptr; 17942 else 17943 ill = NULL; 17944 17945 /* make sure we clear any indication of a hardware checksum */ 17946 DB_CKSUMFLAGS(mp) = 0; 17947 zoneid = ipif_lookup_addr_zoneid(ipha->ipha_dst, ill, ipst); 17948 if (zoneid == ALL_ZONES) 17949 freemsg(mp); 17950 else 17951 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 17952 return (B_FALSE); 17953 17954 } 17955 17956 /* 17957 * Process IP options in an inbound packet. If an option affects the 17958 * effective destination address, return the next hop address via dstp. 17959 * Returns -1 if something fails in which case an ICMP error has been sent 17960 * and mp freed. 17961 */ 17962 static int 17963 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp, 17964 ip_stack_t *ipst) 17965 { 17966 ipoptp_t opts; 17967 uchar_t *opt; 17968 uint8_t optval; 17969 uint8_t optlen; 17970 ipaddr_t dst; 17971 intptr_t code = 0; 17972 ire_t *ire = NULL; 17973 zoneid_t zoneid; 17974 ill_t *ill; 17975 17976 ip2dbg(("ip_rput_options\n")); 17977 dst = ipha->ipha_dst; 17978 for (optval = ipoptp_first(&opts, ipha); 17979 optval != IPOPT_EOL; 17980 optval = ipoptp_next(&opts)) { 17981 opt = opts.ipoptp_cur; 17982 optlen = opts.ipoptp_len; 17983 ip2dbg(("ip_rput_options: opt %d, len %d\n", 17984 optval, optlen)); 17985 /* 17986 * Note: we need to verify the checksum before we 17987 * modify anything thus this routine only extracts the next 17988 * hop dst from any source route. 17989 */ 17990 switch (optval) { 17991 uint32_t off; 17992 case IPOPT_SSRR: 17993 case IPOPT_LSRR: 17994 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17995 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17996 if (ire == NULL) { 17997 if (optval == IPOPT_SSRR) { 17998 ip1dbg(("ip_rput_options: not next" 17999 " strict source route 0x%x\n", 18000 ntohl(dst))); 18001 code = (char *)&ipha->ipha_dst - 18002 (char *)ipha; 18003 goto param_prob; /* RouterReq's */ 18004 } 18005 ip2dbg(("ip_rput_options: " 18006 "not next source route 0x%x\n", 18007 ntohl(dst))); 18008 break; 18009 } 18010 ire_refrele(ire); 18011 18012 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18013 ip1dbg(( 18014 "ip_rput_options: bad option offset\n")); 18015 code = (char *)&opt[IPOPT_OLEN] - 18016 (char *)ipha; 18017 goto param_prob; 18018 } 18019 off = opt[IPOPT_OFFSET]; 18020 off--; 18021 redo_srr: 18022 if (optlen < IP_ADDR_LEN || 18023 off > optlen - IP_ADDR_LEN) { 18024 /* End of source route */ 18025 ip1dbg(("ip_rput_options: end of SR\n")); 18026 break; 18027 } 18028 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 18029 ip1dbg(("ip_rput_options: next hop 0x%x\n", 18030 ntohl(dst))); 18031 18032 /* 18033 * Check if our address is present more than 18034 * once as consecutive hops in source route. 18035 * XXX verify per-interface ip_forwarding 18036 * for source route? 18037 */ 18038 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 18039 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 18040 18041 if (ire != NULL) { 18042 ire_refrele(ire); 18043 off += IP_ADDR_LEN; 18044 goto redo_srr; 18045 } 18046 18047 if (dst == htonl(INADDR_LOOPBACK)) { 18048 ip1dbg(("ip_rput_options: loopback addr in " 18049 "source route!\n")); 18050 goto bad_src_route; 18051 } 18052 /* 18053 * For strict: verify that dst is directly 18054 * reachable. 18055 */ 18056 if (optval == IPOPT_SSRR) { 18057 ire = ire_ftable_lookup(dst, 0, 0, 18058 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 18059 MBLK_GETLABEL(mp), 18060 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 18061 if (ire == NULL) { 18062 ip1dbg(("ip_rput_options: SSRR not " 18063 "directly reachable: 0x%x\n", 18064 ntohl(dst))); 18065 goto bad_src_route; 18066 } 18067 ire_refrele(ire); 18068 } 18069 /* 18070 * Defer update of the offset and the record route 18071 * until the packet is forwarded. 18072 */ 18073 break; 18074 case IPOPT_RR: 18075 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18076 ip1dbg(( 18077 "ip_rput_options: bad option offset\n")); 18078 code = (char *)&opt[IPOPT_OLEN] - 18079 (char *)ipha; 18080 goto param_prob; 18081 } 18082 break; 18083 case IPOPT_TS: 18084 /* 18085 * Verify that length >= 5 and that there is either 18086 * room for another timestamp or that the overflow 18087 * counter is not maxed out. 18088 */ 18089 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 18090 if (optlen < IPOPT_MINLEN_IT) { 18091 goto param_prob; 18092 } 18093 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18094 ip1dbg(( 18095 "ip_rput_options: bad option offset\n")); 18096 code = (char *)&opt[IPOPT_OFFSET] - 18097 (char *)ipha; 18098 goto param_prob; 18099 } 18100 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 18101 case IPOPT_TS_TSONLY: 18102 off = IPOPT_TS_TIMELEN; 18103 break; 18104 case IPOPT_TS_TSANDADDR: 18105 case IPOPT_TS_PRESPEC: 18106 case IPOPT_TS_PRESPEC_RFC791: 18107 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 18108 break; 18109 default: 18110 code = (char *)&opt[IPOPT_POS_OV_FLG] - 18111 (char *)ipha; 18112 goto param_prob; 18113 } 18114 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 18115 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 18116 /* 18117 * No room and the overflow counter is 15 18118 * already. 18119 */ 18120 goto param_prob; 18121 } 18122 break; 18123 } 18124 } 18125 18126 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 18127 *dstp = dst; 18128 return (0); 18129 } 18130 18131 ip1dbg(("ip_rput_options: error processing IP options.")); 18132 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 18133 18134 param_prob: 18135 q = WR(q); 18136 if (q->q_next != NULL) 18137 ill = q->q_ptr; 18138 else 18139 ill = NULL; 18140 18141 /* make sure we clear any indication of a hardware checksum */ 18142 DB_CKSUMFLAGS(mp) = 0; 18143 /* Don't know whether this is for non-global or global/forwarding */ 18144 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18145 if (zoneid == ALL_ZONES) 18146 freemsg(mp); 18147 else 18148 icmp_param_problem(q, mp, (uint8_t)code, zoneid, ipst); 18149 return (-1); 18150 18151 bad_src_route: 18152 q = WR(q); 18153 if (q->q_next != NULL) 18154 ill = q->q_ptr; 18155 else 18156 ill = NULL; 18157 18158 /* make sure we clear any indication of a hardware checksum */ 18159 DB_CKSUMFLAGS(mp) = 0; 18160 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18161 if (zoneid == ALL_ZONES) 18162 freemsg(mp); 18163 else 18164 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 18165 return (-1); 18166 } 18167 18168 /* 18169 * IP & ICMP info in >=14 msg's ... 18170 * - ip fixed part (mib2_ip_t) 18171 * - icmp fixed part (mib2_icmp_t) 18172 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 18173 * - ipRouteEntryTable (ip 21) all IPv4 IREs 18174 * - ipNetToMediaEntryTable (ip 22) [filled in by the arp module] 18175 * - ipRouteAttributeTable (ip 102) labeled routes 18176 * - ip multicast membership (ip_member_t) 18177 * - ip multicast source filtering (ip_grpsrc_t) 18178 * - igmp fixed part (struct igmpstat) 18179 * - multicast routing stats (struct mrtstat) 18180 * - multicast routing vifs (array of struct vifctl) 18181 * - multicast routing routes (array of struct mfcctl) 18182 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 18183 * One per ill plus one generic 18184 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 18185 * One per ill plus one generic 18186 * - ipv6RouteEntry all IPv6 IREs 18187 * - ipv6RouteAttributeTable (ip6 102) labeled routes 18188 * - ipv6NetToMediaEntry all Neighbor Cache entries 18189 * - ipv6AddrEntry all IPv6 ipifs 18190 * - ipv6 multicast membership (ipv6_member_t) 18191 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 18192 * 18193 * MIB2_IP_MEDIA is filled in by the arp module with ARP cache entries. 18194 * 18195 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 18196 * already filled in by the caller. 18197 * Return value of 0 indicates that no messages were sent and caller 18198 * should free mpctl. 18199 */ 18200 int 18201 ip_snmp_get(queue_t *q, mblk_t *mpctl) 18202 { 18203 ip_stack_t *ipst; 18204 sctp_stack_t *sctps; 18205 18206 18207 if (q->q_next != NULL) { 18208 ipst = ILLQ_TO_IPST(q); 18209 } else { 18210 ipst = CONNQ_TO_IPST(q); 18211 } 18212 ASSERT(ipst != NULL); 18213 sctps = ipst->ips_netstack->netstack_sctp; 18214 18215 if (mpctl == NULL || mpctl->b_cont == NULL) { 18216 return (0); 18217 } 18218 18219 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 18220 ipst)) == NULL) { 18221 return (1); 18222 } 18223 18224 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst)) == NULL) { 18225 return (1); 18226 } 18227 18228 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 18229 return (1); 18230 } 18231 18232 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 18233 return (1); 18234 } 18235 18236 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 18237 return (1); 18238 } 18239 18240 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 18241 return (1); 18242 } 18243 18244 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst)) == NULL) { 18245 return (1); 18246 } 18247 18248 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst)) == NULL) { 18249 return (1); 18250 } 18251 18252 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 18253 return (1); 18254 } 18255 18256 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 18257 return (1); 18258 } 18259 18260 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 18261 return (1); 18262 } 18263 18264 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 18265 return (1); 18266 } 18267 18268 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 18269 return (1); 18270 } 18271 18272 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 18273 return (1); 18274 } 18275 18276 if ((mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, ipst)) == NULL) { 18277 return (1); 18278 } 18279 18280 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, ipst); 18281 if (mpctl == NULL) { 18282 return (1); 18283 } 18284 18285 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 18286 return (1); 18287 } 18288 freemsg(mpctl); 18289 return (1); 18290 } 18291 18292 18293 /* Get global (legacy) IPv4 statistics */ 18294 static mblk_t * 18295 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 18296 ip_stack_t *ipst) 18297 { 18298 mib2_ip_t old_ip_mib; 18299 struct opthdr *optp; 18300 mblk_t *mp2ctl; 18301 18302 /* 18303 * make a copy of the original message 18304 */ 18305 mp2ctl = copymsg(mpctl); 18306 18307 /* fixed length IP structure... */ 18308 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18309 optp->level = MIB2_IP; 18310 optp->name = 0; 18311 SET_MIB(old_ip_mib.ipForwarding, 18312 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 18313 SET_MIB(old_ip_mib.ipDefaultTTL, 18314 (uint32_t)ipst->ips_ip_def_ttl); 18315 SET_MIB(old_ip_mib.ipReasmTimeout, 18316 ipst->ips_ip_g_frag_timeout); 18317 SET_MIB(old_ip_mib.ipAddrEntrySize, 18318 sizeof (mib2_ipAddrEntry_t)); 18319 SET_MIB(old_ip_mib.ipRouteEntrySize, 18320 sizeof (mib2_ipRouteEntry_t)); 18321 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 18322 sizeof (mib2_ipNetToMediaEntry_t)); 18323 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 18324 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 18325 SET_MIB(old_ip_mib.ipRouteAttributeSize, 18326 sizeof (mib2_ipAttributeEntry_t)); 18327 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 18328 18329 /* 18330 * Grab the statistics from the new IP MIB 18331 */ 18332 SET_MIB(old_ip_mib.ipInReceives, 18333 (uint32_t)ipmib->ipIfStatsHCInReceives); 18334 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 18335 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 18336 SET_MIB(old_ip_mib.ipForwDatagrams, 18337 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 18338 SET_MIB(old_ip_mib.ipInUnknownProtos, 18339 ipmib->ipIfStatsInUnknownProtos); 18340 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 18341 SET_MIB(old_ip_mib.ipInDelivers, 18342 (uint32_t)ipmib->ipIfStatsHCInDelivers); 18343 SET_MIB(old_ip_mib.ipOutRequests, 18344 (uint32_t)ipmib->ipIfStatsHCOutRequests); 18345 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 18346 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 18347 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 18348 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 18349 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 18350 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 18351 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 18352 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 18353 18354 /* ipRoutingDiscards is not being used */ 18355 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 18356 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 18357 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 18358 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 18359 SET_MIB(old_ip_mib.ipReasmDuplicates, 18360 ipmib->ipIfStatsReasmDuplicates); 18361 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 18362 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 18363 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 18364 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 18365 SET_MIB(old_ip_mib.rawipInOverflows, 18366 ipmib->rawipIfStatsInOverflows); 18367 18368 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 18369 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 18370 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 18371 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 18372 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 18373 ipmib->ipIfStatsOutSwitchIPVersion); 18374 18375 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 18376 (int)sizeof (old_ip_mib))) { 18377 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 18378 (uint_t)sizeof (old_ip_mib))); 18379 } 18380 18381 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18382 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 18383 (int)optp->level, (int)optp->name, (int)optp->len)); 18384 qreply(q, mpctl); 18385 return (mp2ctl); 18386 } 18387 18388 /* Per interface IPv4 statistics */ 18389 static mblk_t * 18390 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18391 { 18392 struct opthdr *optp; 18393 mblk_t *mp2ctl; 18394 ill_t *ill; 18395 ill_walk_context_t ctx; 18396 mblk_t *mp_tail = NULL; 18397 mib2_ipIfStatsEntry_t global_ip_mib; 18398 18399 /* 18400 * Make a copy of the original message 18401 */ 18402 mp2ctl = copymsg(mpctl); 18403 18404 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18405 optp->level = MIB2_IP; 18406 optp->name = MIB2_IP_TRAFFIC_STATS; 18407 /* Include "unknown interface" ip_mib */ 18408 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 18409 ipst->ips_ip_mib.ipIfStatsIfIndex = 18410 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 18411 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 18412 (ipst->ips_ip_g_forward ? 1 : 2)); 18413 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 18414 (uint32_t)ipst->ips_ip_def_ttl); 18415 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 18416 sizeof (mib2_ipIfStatsEntry_t)); 18417 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 18418 sizeof (mib2_ipAddrEntry_t)); 18419 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 18420 sizeof (mib2_ipRouteEntry_t)); 18421 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 18422 sizeof (mib2_ipNetToMediaEntry_t)); 18423 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 18424 sizeof (ip_member_t)); 18425 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 18426 sizeof (ip_grpsrc_t)); 18427 18428 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18429 (char *)&ipst->ips_ip_mib, (int)sizeof (ipst->ips_ip_mib))) { 18430 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18431 "failed to allocate %u bytes\n", 18432 (uint_t)sizeof (ipst->ips_ip_mib))); 18433 } 18434 18435 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 18436 18437 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18438 ill = ILL_START_WALK_V4(&ctx, ipst); 18439 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18440 ill->ill_ip_mib->ipIfStatsIfIndex = 18441 ill->ill_phyint->phyint_ifindex; 18442 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 18443 (ipst->ips_ip_g_forward ? 1 : 2)); 18444 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 18445 (uint32_t)ipst->ips_ip_def_ttl); 18446 18447 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 18448 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18449 (char *)ill->ill_ip_mib, 18450 (int)sizeof (*ill->ill_ip_mib))) { 18451 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18452 "failed to allocate %u bytes\n", 18453 (uint_t)sizeof (*ill->ill_ip_mib))); 18454 } 18455 } 18456 rw_exit(&ipst->ips_ill_g_lock); 18457 18458 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18459 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18460 "level %d, name %d, len %d\n", 18461 (int)optp->level, (int)optp->name, (int)optp->len)); 18462 qreply(q, mpctl); 18463 18464 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst)); 18465 } 18466 18467 /* Global IPv4 ICMP statistics */ 18468 static mblk_t * 18469 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18470 { 18471 struct opthdr *optp; 18472 mblk_t *mp2ctl; 18473 18474 /* 18475 * Make a copy of the original message 18476 */ 18477 mp2ctl = copymsg(mpctl); 18478 18479 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18480 optp->level = MIB2_ICMP; 18481 optp->name = 0; 18482 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 18483 (int)sizeof (ipst->ips_icmp_mib))) { 18484 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 18485 (uint_t)sizeof (ipst->ips_icmp_mib))); 18486 } 18487 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18488 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 18489 (int)optp->level, (int)optp->name, (int)optp->len)); 18490 qreply(q, mpctl); 18491 return (mp2ctl); 18492 } 18493 18494 /* Global IPv4 IGMP statistics */ 18495 static mblk_t * 18496 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18497 { 18498 struct opthdr *optp; 18499 mblk_t *mp2ctl; 18500 18501 /* 18502 * make a copy of the original message 18503 */ 18504 mp2ctl = copymsg(mpctl); 18505 18506 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18507 optp->level = EXPER_IGMP; 18508 optp->name = 0; 18509 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 18510 (int)sizeof (ipst->ips_igmpstat))) { 18511 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 18512 (uint_t)sizeof (ipst->ips_igmpstat))); 18513 } 18514 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18515 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 18516 (int)optp->level, (int)optp->name, (int)optp->len)); 18517 qreply(q, mpctl); 18518 return (mp2ctl); 18519 } 18520 18521 /* Global IPv4 Multicast Routing statistics */ 18522 static mblk_t * 18523 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18524 { 18525 struct opthdr *optp; 18526 mblk_t *mp2ctl; 18527 18528 /* 18529 * make a copy of the original message 18530 */ 18531 mp2ctl = copymsg(mpctl); 18532 18533 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18534 optp->level = EXPER_DVMRP; 18535 optp->name = 0; 18536 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 18537 ip0dbg(("ip_mroute_stats: failed\n")); 18538 } 18539 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18540 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 18541 (int)optp->level, (int)optp->name, (int)optp->len)); 18542 qreply(q, mpctl); 18543 return (mp2ctl); 18544 } 18545 18546 /* IPv4 address information */ 18547 static mblk_t * 18548 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18549 { 18550 struct opthdr *optp; 18551 mblk_t *mp2ctl; 18552 mblk_t *mp_tail = NULL; 18553 ill_t *ill; 18554 ipif_t *ipif; 18555 uint_t bitval; 18556 mib2_ipAddrEntry_t mae; 18557 zoneid_t zoneid; 18558 ill_walk_context_t ctx; 18559 18560 /* 18561 * make a copy of the original message 18562 */ 18563 mp2ctl = copymsg(mpctl); 18564 18565 /* ipAddrEntryTable */ 18566 18567 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18568 optp->level = MIB2_IP; 18569 optp->name = MIB2_IP_ADDR; 18570 zoneid = Q_TO_CONN(q)->conn_zoneid; 18571 18572 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18573 ill = ILL_START_WALK_V4(&ctx, ipst); 18574 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18575 for (ipif = ill->ill_ipif; ipif != NULL; 18576 ipif = ipif->ipif_next) { 18577 if (ipif->ipif_zoneid != zoneid && 18578 ipif->ipif_zoneid != ALL_ZONES) 18579 continue; 18580 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18581 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18582 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18583 18584 (void) ipif_get_name(ipif, 18585 mae.ipAdEntIfIndex.o_bytes, 18586 OCTET_LENGTH); 18587 mae.ipAdEntIfIndex.o_length = 18588 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 18589 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 18590 mae.ipAdEntNetMask = ipif->ipif_net_mask; 18591 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 18592 mae.ipAdEntInfo.ae_subnet_len = 18593 ip_mask_to_plen(ipif->ipif_net_mask); 18594 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 18595 for (bitval = 1; 18596 bitval && 18597 !(bitval & ipif->ipif_brd_addr); 18598 bitval <<= 1) 18599 noop; 18600 mae.ipAdEntBcastAddr = bitval; 18601 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 18602 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 18603 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 18604 mae.ipAdEntInfo.ae_broadcast_addr = 18605 ipif->ipif_brd_addr; 18606 mae.ipAdEntInfo.ae_pp_dst_addr = 18607 ipif->ipif_pp_dst_addr; 18608 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 18609 ill->ill_flags | ill->ill_phyint->phyint_flags; 18610 mae.ipAdEntRetransmitTime = AR_EQ_DEFAULT_XMIT_INTERVAL; 18611 18612 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18613 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 18614 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 18615 "allocate %u bytes\n", 18616 (uint_t)sizeof (mib2_ipAddrEntry_t))); 18617 } 18618 } 18619 } 18620 rw_exit(&ipst->ips_ill_g_lock); 18621 18622 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18623 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 18624 (int)optp->level, (int)optp->name, (int)optp->len)); 18625 qreply(q, mpctl); 18626 return (mp2ctl); 18627 } 18628 18629 /* IPv6 address information */ 18630 static mblk_t * 18631 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18632 { 18633 struct opthdr *optp; 18634 mblk_t *mp2ctl; 18635 mblk_t *mp_tail = NULL; 18636 ill_t *ill; 18637 ipif_t *ipif; 18638 mib2_ipv6AddrEntry_t mae6; 18639 zoneid_t zoneid; 18640 ill_walk_context_t ctx; 18641 18642 /* 18643 * make a copy of the original message 18644 */ 18645 mp2ctl = copymsg(mpctl); 18646 18647 /* ipv6AddrEntryTable */ 18648 18649 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18650 optp->level = MIB2_IP6; 18651 optp->name = MIB2_IP6_ADDR; 18652 zoneid = Q_TO_CONN(q)->conn_zoneid; 18653 18654 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18655 ill = ILL_START_WALK_V6(&ctx, ipst); 18656 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18657 for (ipif = ill->ill_ipif; ipif != NULL; 18658 ipif = ipif->ipif_next) { 18659 if (ipif->ipif_zoneid != zoneid && 18660 ipif->ipif_zoneid != ALL_ZONES) 18661 continue; 18662 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18663 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18664 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18665 18666 (void) ipif_get_name(ipif, 18667 mae6.ipv6AddrIfIndex.o_bytes, 18668 OCTET_LENGTH); 18669 mae6.ipv6AddrIfIndex.o_length = 18670 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 18671 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 18672 mae6.ipv6AddrPfxLength = 18673 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 18674 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 18675 mae6.ipv6AddrInfo.ae_subnet_len = 18676 mae6.ipv6AddrPfxLength; 18677 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 18678 18679 /* Type: stateless(1), stateful(2), unknown(3) */ 18680 if (ipif->ipif_flags & IPIF_ADDRCONF) 18681 mae6.ipv6AddrType = 1; 18682 else 18683 mae6.ipv6AddrType = 2; 18684 /* Anycast: true(1), false(2) */ 18685 if (ipif->ipif_flags & IPIF_ANYCAST) 18686 mae6.ipv6AddrAnycastFlag = 1; 18687 else 18688 mae6.ipv6AddrAnycastFlag = 2; 18689 18690 /* 18691 * Address status: preferred(1), deprecated(2), 18692 * invalid(3), inaccessible(4), unknown(5) 18693 */ 18694 if (ipif->ipif_flags & IPIF_NOLOCAL) 18695 mae6.ipv6AddrStatus = 3; 18696 else if (ipif->ipif_flags & IPIF_DEPRECATED) 18697 mae6.ipv6AddrStatus = 2; 18698 else 18699 mae6.ipv6AddrStatus = 1; 18700 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 18701 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 18702 mae6.ipv6AddrInfo.ae_pp_dst_addr = 18703 ipif->ipif_v6pp_dst_addr; 18704 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 18705 ill->ill_flags | ill->ill_phyint->phyint_flags; 18706 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 18707 mae6.ipv6AddrIdentifier = ill->ill_token; 18708 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 18709 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 18710 mae6.ipv6AddrRetransmitTime = 18711 ill->ill_reachable_retrans_time; 18712 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18713 (char *)&mae6, 18714 (int)sizeof (mib2_ipv6AddrEntry_t))) { 18715 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 18716 "allocate %u bytes\n", 18717 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 18718 } 18719 } 18720 } 18721 rw_exit(&ipst->ips_ill_g_lock); 18722 18723 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18724 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 18725 (int)optp->level, (int)optp->name, (int)optp->len)); 18726 qreply(q, mpctl); 18727 return (mp2ctl); 18728 } 18729 18730 /* IPv4 multicast group membership. */ 18731 static mblk_t * 18732 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18733 { 18734 struct opthdr *optp; 18735 mblk_t *mp2ctl; 18736 ill_t *ill; 18737 ipif_t *ipif; 18738 ilm_t *ilm; 18739 ip_member_t ipm; 18740 mblk_t *mp_tail = NULL; 18741 ill_walk_context_t ctx; 18742 zoneid_t zoneid; 18743 18744 /* 18745 * make a copy of the original message 18746 */ 18747 mp2ctl = copymsg(mpctl); 18748 zoneid = Q_TO_CONN(q)->conn_zoneid; 18749 18750 /* ipGroupMember table */ 18751 optp = (struct opthdr *)&mpctl->b_rptr[ 18752 sizeof (struct T_optmgmt_ack)]; 18753 optp->level = MIB2_IP; 18754 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 18755 18756 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18757 ill = ILL_START_WALK_V4(&ctx, ipst); 18758 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18759 ILM_WALKER_HOLD(ill); 18760 for (ipif = ill->ill_ipif; ipif != NULL; 18761 ipif = ipif->ipif_next) { 18762 if (ipif->ipif_zoneid != zoneid && 18763 ipif->ipif_zoneid != ALL_ZONES) 18764 continue; /* not this zone */ 18765 (void) ipif_get_name(ipif, 18766 ipm.ipGroupMemberIfIndex.o_bytes, 18767 OCTET_LENGTH); 18768 ipm.ipGroupMemberIfIndex.o_length = 18769 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 18770 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18771 ASSERT(ilm->ilm_ipif != NULL); 18772 ASSERT(ilm->ilm_ill == NULL); 18773 if (ilm->ilm_ipif != ipif) 18774 continue; 18775 ipm.ipGroupMemberAddress = ilm->ilm_addr; 18776 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 18777 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 18778 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18779 (char *)&ipm, (int)sizeof (ipm))) { 18780 ip1dbg(("ip_snmp_get_mib2_ip_group: " 18781 "failed to allocate %u bytes\n", 18782 (uint_t)sizeof (ipm))); 18783 } 18784 } 18785 } 18786 ILM_WALKER_RELE(ill); 18787 } 18788 rw_exit(&ipst->ips_ill_g_lock); 18789 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18790 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18791 (int)optp->level, (int)optp->name, (int)optp->len)); 18792 qreply(q, mpctl); 18793 return (mp2ctl); 18794 } 18795 18796 /* IPv6 multicast group membership. */ 18797 static mblk_t * 18798 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18799 { 18800 struct opthdr *optp; 18801 mblk_t *mp2ctl; 18802 ill_t *ill; 18803 ilm_t *ilm; 18804 ipv6_member_t ipm6; 18805 mblk_t *mp_tail = NULL; 18806 ill_walk_context_t ctx; 18807 zoneid_t zoneid; 18808 18809 /* 18810 * make a copy of the original message 18811 */ 18812 mp2ctl = copymsg(mpctl); 18813 zoneid = Q_TO_CONN(q)->conn_zoneid; 18814 18815 /* ip6GroupMember table */ 18816 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18817 optp->level = MIB2_IP6; 18818 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 18819 18820 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18821 ill = ILL_START_WALK_V6(&ctx, ipst); 18822 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18823 ILM_WALKER_HOLD(ill); 18824 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 18825 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18826 ASSERT(ilm->ilm_ipif == NULL); 18827 ASSERT(ilm->ilm_ill != NULL); 18828 if (ilm->ilm_zoneid != zoneid) 18829 continue; /* not this zone */ 18830 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 18831 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 18832 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 18833 if (!snmp_append_data2(mpctl->b_cont, 18834 &mp_tail, 18835 (char *)&ipm6, (int)sizeof (ipm6))) { 18836 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 18837 "failed to allocate %u bytes\n", 18838 (uint_t)sizeof (ipm6))); 18839 } 18840 } 18841 ILM_WALKER_RELE(ill); 18842 } 18843 rw_exit(&ipst->ips_ill_g_lock); 18844 18845 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18846 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18847 (int)optp->level, (int)optp->name, (int)optp->len)); 18848 qreply(q, mpctl); 18849 return (mp2ctl); 18850 } 18851 18852 /* IP multicast filtered sources */ 18853 static mblk_t * 18854 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18855 { 18856 struct opthdr *optp; 18857 mblk_t *mp2ctl; 18858 ill_t *ill; 18859 ipif_t *ipif; 18860 ilm_t *ilm; 18861 ip_grpsrc_t ips; 18862 mblk_t *mp_tail = NULL; 18863 ill_walk_context_t ctx; 18864 zoneid_t zoneid; 18865 int i; 18866 slist_t *sl; 18867 18868 /* 18869 * make a copy of the original message 18870 */ 18871 mp2ctl = copymsg(mpctl); 18872 zoneid = Q_TO_CONN(q)->conn_zoneid; 18873 18874 /* ipGroupSource table */ 18875 optp = (struct opthdr *)&mpctl->b_rptr[ 18876 sizeof (struct T_optmgmt_ack)]; 18877 optp->level = MIB2_IP; 18878 optp->name = EXPER_IP_GROUP_SOURCES; 18879 18880 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18881 ill = ILL_START_WALK_V4(&ctx, ipst); 18882 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18883 ILM_WALKER_HOLD(ill); 18884 for (ipif = ill->ill_ipif; ipif != NULL; 18885 ipif = ipif->ipif_next) { 18886 if (ipif->ipif_zoneid != zoneid) 18887 continue; /* not this zone */ 18888 (void) ipif_get_name(ipif, 18889 ips.ipGroupSourceIfIndex.o_bytes, 18890 OCTET_LENGTH); 18891 ips.ipGroupSourceIfIndex.o_length = 18892 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 18893 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18894 ASSERT(ilm->ilm_ipif != NULL); 18895 ASSERT(ilm->ilm_ill == NULL); 18896 sl = ilm->ilm_filter; 18897 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 18898 continue; 18899 ips.ipGroupSourceGroup = ilm->ilm_addr; 18900 for (i = 0; i < sl->sl_numsrc; i++) { 18901 if (!IN6_IS_ADDR_V4MAPPED( 18902 &sl->sl_addr[i])) 18903 continue; 18904 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 18905 ips.ipGroupSourceAddress); 18906 if (snmp_append_data2(mpctl->b_cont, 18907 &mp_tail, (char *)&ips, 18908 (int)sizeof (ips)) == 0) { 18909 ip1dbg(("ip_snmp_get_mib2_" 18910 "ip_group_src: failed to " 18911 "allocate %u bytes\n", 18912 (uint_t)sizeof (ips))); 18913 } 18914 } 18915 } 18916 } 18917 ILM_WALKER_RELE(ill); 18918 } 18919 rw_exit(&ipst->ips_ill_g_lock); 18920 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18921 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18922 (int)optp->level, (int)optp->name, (int)optp->len)); 18923 qreply(q, mpctl); 18924 return (mp2ctl); 18925 } 18926 18927 /* IPv6 multicast filtered sources. */ 18928 static mblk_t * 18929 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18930 { 18931 struct opthdr *optp; 18932 mblk_t *mp2ctl; 18933 ill_t *ill; 18934 ilm_t *ilm; 18935 ipv6_grpsrc_t ips6; 18936 mblk_t *mp_tail = NULL; 18937 ill_walk_context_t ctx; 18938 zoneid_t zoneid; 18939 int i; 18940 slist_t *sl; 18941 18942 /* 18943 * make a copy of the original message 18944 */ 18945 mp2ctl = copymsg(mpctl); 18946 zoneid = Q_TO_CONN(q)->conn_zoneid; 18947 18948 /* ip6GroupMember table */ 18949 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18950 optp->level = MIB2_IP6; 18951 optp->name = EXPER_IP6_GROUP_SOURCES; 18952 18953 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18954 ill = ILL_START_WALK_V6(&ctx, ipst); 18955 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18956 ILM_WALKER_HOLD(ill); 18957 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 18958 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18959 ASSERT(ilm->ilm_ipif == NULL); 18960 ASSERT(ilm->ilm_ill != NULL); 18961 sl = ilm->ilm_filter; 18962 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 18963 continue; 18964 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 18965 for (i = 0; i < sl->sl_numsrc; i++) { 18966 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 18967 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18968 (char *)&ips6, (int)sizeof (ips6))) { 18969 ip1dbg(("ip_snmp_get_mib2_ip6_" 18970 "group_src: failed to allocate " 18971 "%u bytes\n", 18972 (uint_t)sizeof (ips6))); 18973 } 18974 } 18975 } 18976 ILM_WALKER_RELE(ill); 18977 } 18978 rw_exit(&ipst->ips_ill_g_lock); 18979 18980 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18981 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18982 (int)optp->level, (int)optp->name, (int)optp->len)); 18983 qreply(q, mpctl); 18984 return (mp2ctl); 18985 } 18986 18987 /* Multicast routing virtual interface table. */ 18988 static mblk_t * 18989 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18990 { 18991 struct opthdr *optp; 18992 mblk_t *mp2ctl; 18993 18994 /* 18995 * make a copy of the original message 18996 */ 18997 mp2ctl = copymsg(mpctl); 18998 18999 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19000 optp->level = EXPER_DVMRP; 19001 optp->name = EXPER_DVMRP_VIF; 19002 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 19003 ip0dbg(("ip_mroute_vif: failed\n")); 19004 } 19005 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19006 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 19007 (int)optp->level, (int)optp->name, (int)optp->len)); 19008 qreply(q, mpctl); 19009 return (mp2ctl); 19010 } 19011 19012 /* Multicast routing table. */ 19013 static mblk_t * 19014 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19015 { 19016 struct opthdr *optp; 19017 mblk_t *mp2ctl; 19018 19019 /* 19020 * make a copy of the original message 19021 */ 19022 mp2ctl = copymsg(mpctl); 19023 19024 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19025 optp->level = EXPER_DVMRP; 19026 optp->name = EXPER_DVMRP_MRT; 19027 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 19028 ip0dbg(("ip_mroute_mrt: failed\n")); 19029 } 19030 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19031 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 19032 (int)optp->level, (int)optp->name, (int)optp->len)); 19033 qreply(q, mpctl); 19034 return (mp2ctl); 19035 } 19036 19037 /* 19038 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 19039 * in one IRE walk. 19040 */ 19041 static mblk_t * 19042 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19043 { 19044 struct opthdr *optp; 19045 mblk_t *mp2ctl; /* Returned */ 19046 mblk_t *mp3ctl; /* nettomedia */ 19047 mblk_t *mp4ctl; /* routeattrs */ 19048 iproutedata_t ird; 19049 zoneid_t zoneid; 19050 19051 /* 19052 * make copies of the original message 19053 * - mp2ctl is returned unchanged to the caller for his use 19054 * - mpctl is sent upstream as ipRouteEntryTable 19055 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 19056 * - mp4ctl is sent upstream as ipRouteAttributeTable 19057 */ 19058 mp2ctl = copymsg(mpctl); 19059 mp3ctl = copymsg(mpctl); 19060 mp4ctl = copymsg(mpctl); 19061 if (mp3ctl == NULL || mp4ctl == NULL) { 19062 freemsg(mp4ctl); 19063 freemsg(mp3ctl); 19064 freemsg(mp2ctl); 19065 freemsg(mpctl); 19066 return (NULL); 19067 } 19068 19069 bzero(&ird, sizeof (ird)); 19070 19071 ird.ird_route.lp_head = mpctl->b_cont; 19072 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19073 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19074 19075 zoneid = Q_TO_CONN(q)->conn_zoneid; 19076 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 19077 if (zoneid == GLOBAL_ZONEID) { 19078 /* 19079 * Those IREs are used by Mobile-IP; since mipagent(1M) 19080 * requires the sys_net_config or sys_ip_config privilege, 19081 * it can only run in the global zone or an exclusive-IP zone, 19082 * and both those have a conn_zoneid == GLOBAL_ZONEID. 19083 */ 19084 ire_walk_srcif_table_v4(ip_snmp_get2_v4, &ird, ipst); 19085 ire_walk_ill_mrtun(0, 0, ip_snmp_get2_v4, &ird, NULL, ipst); 19086 } 19087 19088 /* ipRouteEntryTable in mpctl */ 19089 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19090 optp->level = MIB2_IP; 19091 optp->name = MIB2_IP_ROUTE; 19092 optp->len = msgdsize(ird.ird_route.lp_head); 19093 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19094 (int)optp->level, (int)optp->name, (int)optp->len)); 19095 qreply(q, mpctl); 19096 19097 /* ipNetToMediaEntryTable in mp3ctl */ 19098 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19099 optp->level = MIB2_IP; 19100 optp->name = MIB2_IP_MEDIA; 19101 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19102 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19103 (int)optp->level, (int)optp->name, (int)optp->len)); 19104 qreply(q, mp3ctl); 19105 19106 /* ipRouteAttributeTable in mp4ctl */ 19107 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19108 optp->level = MIB2_IP; 19109 optp->name = EXPER_IP_RTATTR; 19110 optp->len = msgdsize(ird.ird_attrs.lp_head); 19111 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19112 (int)optp->level, (int)optp->name, (int)optp->len)); 19113 if (optp->len == 0) 19114 freemsg(mp4ctl); 19115 else 19116 qreply(q, mp4ctl); 19117 19118 return (mp2ctl); 19119 } 19120 19121 /* 19122 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 19123 * ipv6NetToMediaEntryTable in an NDP walk. 19124 */ 19125 static mblk_t * 19126 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19127 { 19128 struct opthdr *optp; 19129 mblk_t *mp2ctl; /* Returned */ 19130 mblk_t *mp3ctl; /* nettomedia */ 19131 mblk_t *mp4ctl; /* routeattrs */ 19132 iproutedata_t ird; 19133 zoneid_t zoneid; 19134 19135 /* 19136 * make copies of the original message 19137 * - mp2ctl is returned unchanged to the caller for his use 19138 * - mpctl is sent upstream as ipv6RouteEntryTable 19139 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 19140 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 19141 */ 19142 mp2ctl = copymsg(mpctl); 19143 mp3ctl = copymsg(mpctl); 19144 mp4ctl = copymsg(mpctl); 19145 if (mp3ctl == NULL || mp4ctl == NULL) { 19146 freemsg(mp4ctl); 19147 freemsg(mp3ctl); 19148 freemsg(mp2ctl); 19149 freemsg(mpctl); 19150 return (NULL); 19151 } 19152 19153 bzero(&ird, sizeof (ird)); 19154 19155 ird.ird_route.lp_head = mpctl->b_cont; 19156 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19157 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19158 19159 zoneid = Q_TO_CONN(q)->conn_zoneid; 19160 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 19161 19162 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19163 optp->level = MIB2_IP6; 19164 optp->name = MIB2_IP6_ROUTE; 19165 optp->len = msgdsize(ird.ird_route.lp_head); 19166 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19167 (int)optp->level, (int)optp->name, (int)optp->len)); 19168 qreply(q, mpctl); 19169 19170 /* ipv6NetToMediaEntryTable in mp3ctl */ 19171 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 19172 19173 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19174 optp->level = MIB2_IP6; 19175 optp->name = MIB2_IP6_MEDIA; 19176 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19177 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19178 (int)optp->level, (int)optp->name, (int)optp->len)); 19179 qreply(q, mp3ctl); 19180 19181 /* ipv6RouteAttributeTable in mp4ctl */ 19182 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19183 optp->level = MIB2_IP6; 19184 optp->name = EXPER_IP_RTATTR; 19185 optp->len = msgdsize(ird.ird_attrs.lp_head); 19186 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19187 (int)optp->level, (int)optp->name, (int)optp->len)); 19188 if (optp->len == 0) 19189 freemsg(mp4ctl); 19190 else 19191 qreply(q, mp4ctl); 19192 19193 return (mp2ctl); 19194 } 19195 19196 /* 19197 * IPv6 mib: One per ill 19198 */ 19199 static mblk_t * 19200 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19201 { 19202 struct opthdr *optp; 19203 mblk_t *mp2ctl; 19204 ill_t *ill; 19205 ill_walk_context_t ctx; 19206 mblk_t *mp_tail = NULL; 19207 19208 /* 19209 * Make a copy of the original message 19210 */ 19211 mp2ctl = copymsg(mpctl); 19212 19213 /* fixed length IPv6 structure ... */ 19214 19215 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19216 optp->level = MIB2_IP6; 19217 optp->name = 0; 19218 /* Include "unknown interface" ip6_mib */ 19219 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 19220 ipst->ips_ip6_mib.ipIfStatsIfIndex = 19221 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 19222 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 19223 ipst->ips_ipv6_forward ? 1 : 2); 19224 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 19225 ipst->ips_ipv6_def_hops); 19226 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 19227 sizeof (mib2_ipIfStatsEntry_t)); 19228 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 19229 sizeof (mib2_ipv6AddrEntry_t)); 19230 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 19231 sizeof (mib2_ipv6RouteEntry_t)); 19232 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 19233 sizeof (mib2_ipv6NetToMediaEntry_t)); 19234 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 19235 sizeof (ipv6_member_t)); 19236 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 19237 sizeof (ipv6_grpsrc_t)); 19238 19239 /* 19240 * Synchronize 64- and 32-bit counters 19241 */ 19242 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 19243 ipIfStatsHCInReceives); 19244 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 19245 ipIfStatsHCInDelivers); 19246 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 19247 ipIfStatsHCOutRequests); 19248 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 19249 ipIfStatsHCOutForwDatagrams); 19250 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 19251 ipIfStatsHCOutMcastPkts); 19252 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 19253 ipIfStatsHCInMcastPkts); 19254 19255 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19256 (char *)&ipst->ips_ip6_mib, (int)sizeof (ipst->ips_ip6_mib))) { 19257 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 19258 (uint_t)sizeof (ipst->ips_ip6_mib))); 19259 } 19260 19261 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19262 ill = ILL_START_WALK_V6(&ctx, ipst); 19263 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19264 ill->ill_ip_mib->ipIfStatsIfIndex = 19265 ill->ill_phyint->phyint_ifindex; 19266 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 19267 ipst->ips_ipv6_forward ? 1 : 2); 19268 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 19269 ill->ill_max_hops); 19270 19271 /* 19272 * Synchronize 64- and 32-bit counters 19273 */ 19274 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 19275 ipIfStatsHCInReceives); 19276 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 19277 ipIfStatsHCInDelivers); 19278 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 19279 ipIfStatsHCOutRequests); 19280 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 19281 ipIfStatsHCOutForwDatagrams); 19282 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 19283 ipIfStatsHCOutMcastPkts); 19284 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 19285 ipIfStatsHCInMcastPkts); 19286 19287 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19288 (char *)ill->ill_ip_mib, 19289 (int)sizeof (*ill->ill_ip_mib))) { 19290 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 19291 "%u bytes\n", 19292 (uint_t)sizeof (*ill->ill_ip_mib))); 19293 } 19294 } 19295 rw_exit(&ipst->ips_ill_g_lock); 19296 19297 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19298 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 19299 (int)optp->level, (int)optp->name, (int)optp->len)); 19300 qreply(q, mpctl); 19301 return (mp2ctl); 19302 } 19303 19304 /* 19305 * ICMPv6 mib: One per ill 19306 */ 19307 static mblk_t * 19308 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19309 { 19310 struct opthdr *optp; 19311 mblk_t *mp2ctl; 19312 ill_t *ill; 19313 ill_walk_context_t ctx; 19314 mblk_t *mp_tail = NULL; 19315 /* 19316 * Make a copy of the original message 19317 */ 19318 mp2ctl = copymsg(mpctl); 19319 19320 /* fixed length ICMPv6 structure ... */ 19321 19322 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19323 optp->level = MIB2_ICMP6; 19324 optp->name = 0; 19325 /* Include "unknown interface" icmp6_mib */ 19326 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 19327 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 19328 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 19329 sizeof (mib2_ipv6IfIcmpEntry_t); 19330 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19331 (char *)&ipst->ips_icmp6_mib, 19332 (int)sizeof (ipst->ips_icmp6_mib))) { 19333 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 19334 (uint_t)sizeof (ipst->ips_icmp6_mib))); 19335 } 19336 19337 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19338 ill = ILL_START_WALK_V6(&ctx, ipst); 19339 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19340 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 19341 ill->ill_phyint->phyint_ifindex; 19342 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19343 (char *)ill->ill_icmp6_mib, 19344 (int)sizeof (*ill->ill_icmp6_mib))) { 19345 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 19346 "%u bytes\n", 19347 (uint_t)sizeof (*ill->ill_icmp6_mib))); 19348 } 19349 } 19350 rw_exit(&ipst->ips_ill_g_lock); 19351 19352 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19353 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 19354 (int)optp->level, (int)optp->name, (int)optp->len)); 19355 qreply(q, mpctl); 19356 return (mp2ctl); 19357 } 19358 19359 /* 19360 * ire_walk routine to create both ipRouteEntryTable and 19361 * ipRouteAttributeTable in one IRE walk 19362 */ 19363 static void 19364 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 19365 { 19366 ill_t *ill; 19367 ipif_t *ipif; 19368 mib2_ipRouteEntry_t *re; 19369 mib2_ipAttributeEntry_t *iae, *iaeptr; 19370 ipaddr_t gw_addr; 19371 tsol_ire_gw_secattr_t *attrp; 19372 tsol_gc_t *gc = NULL; 19373 tsol_gcgrp_t *gcgrp = NULL; 19374 uint_t sacnt = 0; 19375 int i; 19376 19377 ASSERT(ire->ire_ipversion == IPV4_VERSION); 19378 19379 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19380 return; 19381 19382 if ((attrp = ire->ire_gw_secattr) != NULL) { 19383 mutex_enter(&attrp->igsa_lock); 19384 if ((gc = attrp->igsa_gc) != NULL) { 19385 gcgrp = gc->gc_grp; 19386 ASSERT(gcgrp != NULL); 19387 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19388 sacnt = 1; 19389 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19390 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19391 gc = gcgrp->gcgrp_head; 19392 sacnt = gcgrp->gcgrp_count; 19393 } 19394 mutex_exit(&attrp->igsa_lock); 19395 19396 /* do nothing if there's no gc to report */ 19397 if (gc == NULL) { 19398 ASSERT(sacnt == 0); 19399 if (gcgrp != NULL) { 19400 /* we might as well drop the lock now */ 19401 rw_exit(&gcgrp->gcgrp_rwlock); 19402 gcgrp = NULL; 19403 } 19404 attrp = NULL; 19405 } 19406 19407 ASSERT(gc == NULL || (gcgrp != NULL && 19408 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19409 } 19410 ASSERT(sacnt == 0 || gc != NULL); 19411 19412 if (sacnt != 0 && 19413 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19414 kmem_free(re, sizeof (*re)); 19415 rw_exit(&gcgrp->gcgrp_rwlock); 19416 return; 19417 } 19418 19419 /* 19420 * Return all IRE types for route table... let caller pick and choose 19421 */ 19422 re->ipRouteDest = ire->ire_addr; 19423 ipif = ire->ire_ipif; 19424 re->ipRouteIfIndex.o_length = 0; 19425 if (ire->ire_type == IRE_CACHE) { 19426 ill = (ill_t *)ire->ire_stq->q_ptr; 19427 re->ipRouteIfIndex.o_length = 19428 ill->ill_name_length == 0 ? 0 : 19429 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19430 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 19431 re->ipRouteIfIndex.o_length); 19432 } else if (ipif != NULL) { 19433 (void) ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, 19434 OCTET_LENGTH); 19435 re->ipRouteIfIndex.o_length = 19436 mi_strlen(re->ipRouteIfIndex.o_bytes); 19437 } 19438 re->ipRouteMetric1 = -1; 19439 re->ipRouteMetric2 = -1; 19440 re->ipRouteMetric3 = -1; 19441 re->ipRouteMetric4 = -1; 19442 19443 gw_addr = ire->ire_gateway_addr; 19444 19445 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 19446 re->ipRouteNextHop = ire->ire_src_addr; 19447 else 19448 re->ipRouteNextHop = gw_addr; 19449 /* indirect(4), direct(3), or invalid(2) */ 19450 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19451 re->ipRouteType = 2; 19452 else 19453 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 19454 re->ipRouteProto = -1; 19455 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 19456 re->ipRouteMask = ire->ire_mask; 19457 re->ipRouteMetric5 = -1; 19458 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 19459 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 19460 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19461 re->ipRouteInfo.re_ref = ire->ire_refcnt; 19462 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 19463 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19464 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19465 re->ipRouteInfo.re_flags = ire->ire_flags; 19466 re->ipRouteInfo.re_in_ill.o_length = 0; 19467 19468 if (ire->ire_flags & RTF_DYNAMIC) { 19469 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19470 } else { 19471 re->ipRouteInfo.re_ire_type = ire->ire_type; 19472 } 19473 19474 if (ire->ire_in_ill != NULL) { 19475 re->ipRouteInfo.re_in_ill.o_length = 19476 ire->ire_in_ill->ill_name_length == 0 ? 0 : 19477 MIN(OCTET_LENGTH, ire->ire_in_ill->ill_name_length - 1); 19478 bcopy(ire->ire_in_ill->ill_name, 19479 re->ipRouteInfo.re_in_ill.o_bytes, 19480 re->ipRouteInfo.re_in_ill.o_length); 19481 } 19482 re->ipRouteInfo.re_in_src_addr = ire->ire_in_src_addr; 19483 19484 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19485 (char *)re, (int)sizeof (*re))) { 19486 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19487 (uint_t)sizeof (*re))); 19488 } 19489 19490 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19491 iaeptr->iae_routeidx = ird->ird_idx; 19492 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19493 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19494 } 19495 19496 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19497 (char *)iae, sacnt * sizeof (*iae))) { 19498 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19499 (unsigned)(sacnt * sizeof (*iae)))); 19500 } 19501 19502 /* bump route index for next pass */ 19503 ird->ird_idx++; 19504 19505 kmem_free(re, sizeof (*re)); 19506 if (sacnt != 0) 19507 kmem_free(iae, sacnt * sizeof (*iae)); 19508 19509 if (gcgrp != NULL) 19510 rw_exit(&gcgrp->gcgrp_rwlock); 19511 } 19512 19513 /* 19514 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 19515 */ 19516 static void 19517 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 19518 { 19519 ill_t *ill; 19520 ipif_t *ipif; 19521 mib2_ipv6RouteEntry_t *re; 19522 mib2_ipAttributeEntry_t *iae, *iaeptr; 19523 in6_addr_t gw_addr_v6; 19524 tsol_ire_gw_secattr_t *attrp; 19525 tsol_gc_t *gc = NULL; 19526 tsol_gcgrp_t *gcgrp = NULL; 19527 uint_t sacnt = 0; 19528 int i; 19529 19530 ASSERT(ire->ire_ipversion == IPV6_VERSION); 19531 19532 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19533 return; 19534 19535 if ((attrp = ire->ire_gw_secattr) != NULL) { 19536 mutex_enter(&attrp->igsa_lock); 19537 if ((gc = attrp->igsa_gc) != NULL) { 19538 gcgrp = gc->gc_grp; 19539 ASSERT(gcgrp != NULL); 19540 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19541 sacnt = 1; 19542 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19543 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19544 gc = gcgrp->gcgrp_head; 19545 sacnt = gcgrp->gcgrp_count; 19546 } 19547 mutex_exit(&attrp->igsa_lock); 19548 19549 /* do nothing if there's no gc to report */ 19550 if (gc == NULL) { 19551 ASSERT(sacnt == 0); 19552 if (gcgrp != NULL) { 19553 /* we might as well drop the lock now */ 19554 rw_exit(&gcgrp->gcgrp_rwlock); 19555 gcgrp = NULL; 19556 } 19557 attrp = NULL; 19558 } 19559 19560 ASSERT(gc == NULL || (gcgrp != NULL && 19561 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19562 } 19563 ASSERT(sacnt == 0 || gc != NULL); 19564 19565 if (sacnt != 0 && 19566 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19567 kmem_free(re, sizeof (*re)); 19568 rw_exit(&gcgrp->gcgrp_rwlock); 19569 return; 19570 } 19571 19572 /* 19573 * Return all IRE types for route table... let caller pick and choose 19574 */ 19575 re->ipv6RouteDest = ire->ire_addr_v6; 19576 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 19577 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 19578 re->ipv6RouteIfIndex.o_length = 0; 19579 ipif = ire->ire_ipif; 19580 if (ire->ire_type == IRE_CACHE) { 19581 ill = (ill_t *)ire->ire_stq->q_ptr; 19582 re->ipv6RouteIfIndex.o_length = 19583 ill->ill_name_length == 0 ? 0 : 19584 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19585 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 19586 re->ipv6RouteIfIndex.o_length); 19587 } else if (ipif != NULL) { 19588 (void) ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, 19589 OCTET_LENGTH); 19590 re->ipv6RouteIfIndex.o_length = 19591 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 19592 } 19593 19594 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19595 19596 mutex_enter(&ire->ire_lock); 19597 gw_addr_v6 = ire->ire_gateway_addr_v6; 19598 mutex_exit(&ire->ire_lock); 19599 19600 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 19601 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 19602 else 19603 re->ipv6RouteNextHop = gw_addr_v6; 19604 19605 /* remote(4), local(3), or discard(2) */ 19606 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19607 re->ipv6RouteType = 2; 19608 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 19609 re->ipv6RouteType = 3; 19610 else 19611 re->ipv6RouteType = 4; 19612 19613 re->ipv6RouteProtocol = -1; 19614 re->ipv6RoutePolicy = 0; 19615 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 19616 re->ipv6RouteNextHopRDI = 0; 19617 re->ipv6RouteWeight = 0; 19618 re->ipv6RouteMetric = 0; 19619 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 19620 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 19621 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19622 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 19623 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19624 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19625 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 19626 re->ipv6RouteInfo.re_flags = ire->ire_flags; 19627 19628 if (ire->ire_flags & RTF_DYNAMIC) { 19629 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19630 } else { 19631 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 19632 } 19633 19634 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19635 (char *)re, (int)sizeof (*re))) { 19636 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19637 (uint_t)sizeof (*re))); 19638 } 19639 19640 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19641 iaeptr->iae_routeidx = ird->ird_idx; 19642 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19643 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19644 } 19645 19646 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19647 (char *)iae, sacnt * sizeof (*iae))) { 19648 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19649 (unsigned)(sacnt * sizeof (*iae)))); 19650 } 19651 19652 /* bump route index for next pass */ 19653 ird->ird_idx++; 19654 19655 kmem_free(re, sizeof (*re)); 19656 if (sacnt != 0) 19657 kmem_free(iae, sacnt * sizeof (*iae)); 19658 19659 if (gcgrp != NULL) 19660 rw_exit(&gcgrp->gcgrp_rwlock); 19661 } 19662 19663 /* 19664 * ndp_walk routine to create ipv6NetToMediaEntryTable 19665 */ 19666 static int 19667 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 19668 { 19669 ill_t *ill; 19670 mib2_ipv6NetToMediaEntry_t ntme; 19671 dl_unitdata_req_t *dl; 19672 19673 ill = nce->nce_ill; 19674 if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */ 19675 return (0); 19676 19677 /* 19678 * Neighbor cache entry attached to IRE with on-link 19679 * destination. 19680 */ 19681 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 19682 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 19683 if ((ill->ill_flags & ILLF_XRESOLV) && 19684 (nce->nce_res_mp != NULL)) { 19685 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 19686 ntme.ipv6NetToMediaPhysAddress.o_length = 19687 dl->dl_dest_addr_length; 19688 } else { 19689 ntme.ipv6NetToMediaPhysAddress.o_length = 19690 ill->ill_phys_addr_length; 19691 } 19692 if (nce->nce_res_mp != NULL) { 19693 bcopy((char *)nce->nce_res_mp->b_rptr + 19694 NCE_LL_ADDR_OFFSET(ill), 19695 ntme.ipv6NetToMediaPhysAddress.o_bytes, 19696 ntme.ipv6NetToMediaPhysAddress.o_length); 19697 } else { 19698 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 19699 ill->ill_phys_addr_length); 19700 } 19701 /* 19702 * Note: Returns ND_* states. Should be: 19703 * reachable(1), stale(2), delay(3), probe(4), 19704 * invalid(5), unknown(6) 19705 */ 19706 ntme.ipv6NetToMediaState = nce->nce_state; 19707 ntme.ipv6NetToMediaLastUpdated = 0; 19708 19709 /* other(1), dynamic(2), static(3), local(4) */ 19710 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 19711 ntme.ipv6NetToMediaType = 4; 19712 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 19713 ntme.ipv6NetToMediaType = 1; 19714 } else { 19715 ntme.ipv6NetToMediaType = 2; 19716 } 19717 19718 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 19719 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 19720 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 19721 (uint_t)sizeof (ntme))); 19722 } 19723 return (0); 19724 } 19725 19726 /* 19727 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 19728 */ 19729 /* ARGSUSED */ 19730 int 19731 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 19732 { 19733 switch (level) { 19734 case MIB2_IP: 19735 case MIB2_ICMP: 19736 switch (name) { 19737 default: 19738 break; 19739 } 19740 return (1); 19741 default: 19742 return (1); 19743 } 19744 } 19745 19746 /* 19747 * When there exists both a 64- and 32-bit counter of a particular type 19748 * (i.e., InReceives), only the 64-bit counters are added. 19749 */ 19750 void 19751 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 19752 { 19753 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 19754 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 19755 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 19756 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 19757 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 19758 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 19759 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 19760 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 19761 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 19762 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 19763 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 19764 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 19765 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 19766 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 19767 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 19768 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 19769 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 19770 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 19771 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 19772 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 19773 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 19774 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 19775 o2->ipIfStatsInWrongIPVersion); 19776 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 19777 o2->ipIfStatsInWrongIPVersion); 19778 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 19779 o2->ipIfStatsOutSwitchIPVersion); 19780 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 19781 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 19782 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 19783 o2->ipIfStatsHCInForwDatagrams); 19784 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 19785 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 19786 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 19787 o2->ipIfStatsHCOutForwDatagrams); 19788 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 19789 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 19790 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 19791 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 19792 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 19793 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 19794 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 19795 o2->ipIfStatsHCOutMcastOctets); 19796 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 19797 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 19798 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 19799 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 19800 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 19801 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 19802 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 19803 } 19804 19805 void 19806 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 19807 { 19808 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 19809 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 19810 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 19811 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 19812 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 19813 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 19814 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 19815 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 19816 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 19817 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 19818 o2->ipv6IfIcmpInRouterSolicits); 19819 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 19820 o2->ipv6IfIcmpInRouterAdvertisements); 19821 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 19822 o2->ipv6IfIcmpInNeighborSolicits); 19823 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 19824 o2->ipv6IfIcmpInNeighborAdvertisements); 19825 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 19826 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 19827 o2->ipv6IfIcmpInGroupMembQueries); 19828 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 19829 o2->ipv6IfIcmpInGroupMembResponses); 19830 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 19831 o2->ipv6IfIcmpInGroupMembReductions); 19832 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 19833 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 19834 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 19835 o2->ipv6IfIcmpOutDestUnreachs); 19836 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 19837 o2->ipv6IfIcmpOutAdminProhibs); 19838 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 19839 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 19840 o2->ipv6IfIcmpOutParmProblems); 19841 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 19842 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 19843 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 19844 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 19845 o2->ipv6IfIcmpOutRouterSolicits); 19846 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 19847 o2->ipv6IfIcmpOutRouterAdvertisements); 19848 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 19849 o2->ipv6IfIcmpOutNeighborSolicits); 19850 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 19851 o2->ipv6IfIcmpOutNeighborAdvertisements); 19852 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 19853 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 19854 o2->ipv6IfIcmpOutGroupMembQueries); 19855 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 19856 o2->ipv6IfIcmpOutGroupMembResponses); 19857 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 19858 o2->ipv6IfIcmpOutGroupMembReductions); 19859 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 19860 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 19861 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 19862 o2->ipv6IfIcmpInBadNeighborAdvertisements); 19863 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 19864 o2->ipv6IfIcmpInBadNeighborSolicitations); 19865 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 19866 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 19867 o2->ipv6IfIcmpInGroupMembTotal); 19868 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 19869 o2->ipv6IfIcmpInGroupMembBadQueries); 19870 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 19871 o2->ipv6IfIcmpInGroupMembBadReports); 19872 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 19873 o2->ipv6IfIcmpInGroupMembOurReports); 19874 } 19875 19876 /* 19877 * Called before the options are updated to check if this packet will 19878 * be source routed from here. 19879 * This routine assumes that the options are well formed i.e. that they 19880 * have already been checked. 19881 */ 19882 static boolean_t 19883 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 19884 { 19885 ipoptp_t opts; 19886 uchar_t *opt; 19887 uint8_t optval; 19888 uint8_t optlen; 19889 ipaddr_t dst; 19890 ire_t *ire; 19891 19892 if (IS_SIMPLE_IPH(ipha)) { 19893 ip2dbg(("not source routed\n")); 19894 return (B_FALSE); 19895 } 19896 dst = ipha->ipha_dst; 19897 for (optval = ipoptp_first(&opts, ipha); 19898 optval != IPOPT_EOL; 19899 optval = ipoptp_next(&opts)) { 19900 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 19901 opt = opts.ipoptp_cur; 19902 optlen = opts.ipoptp_len; 19903 ip2dbg(("ip_source_routed: opt %d, len %d\n", 19904 optval, optlen)); 19905 switch (optval) { 19906 uint32_t off; 19907 case IPOPT_SSRR: 19908 case IPOPT_LSRR: 19909 /* 19910 * If dst is one of our addresses and there are some 19911 * entries left in the source route return (true). 19912 */ 19913 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 19914 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 19915 if (ire == NULL) { 19916 ip2dbg(("ip_source_routed: not next" 19917 " source route 0x%x\n", 19918 ntohl(dst))); 19919 return (B_FALSE); 19920 } 19921 ire_refrele(ire); 19922 off = opt[IPOPT_OFFSET]; 19923 off--; 19924 if (optlen < IP_ADDR_LEN || 19925 off > optlen - IP_ADDR_LEN) { 19926 /* End of source route */ 19927 ip1dbg(("ip_source_routed: end of SR\n")); 19928 return (B_FALSE); 19929 } 19930 return (B_TRUE); 19931 } 19932 } 19933 ip2dbg(("not source routed\n")); 19934 return (B_FALSE); 19935 } 19936 19937 /* 19938 * Check if the packet contains any source route. 19939 */ 19940 static boolean_t 19941 ip_source_route_included(ipha_t *ipha) 19942 { 19943 ipoptp_t opts; 19944 uint8_t optval; 19945 19946 if (IS_SIMPLE_IPH(ipha)) 19947 return (B_FALSE); 19948 for (optval = ipoptp_first(&opts, ipha); 19949 optval != IPOPT_EOL; 19950 optval = ipoptp_next(&opts)) { 19951 switch (optval) { 19952 case IPOPT_SSRR: 19953 case IPOPT_LSRR: 19954 return (B_TRUE); 19955 } 19956 } 19957 return (B_FALSE); 19958 } 19959 19960 /* 19961 * Called when the IRE expiration timer fires. 19962 */ 19963 void 19964 ip_trash_timer_expire(void *args) 19965 { 19966 int flush_flag = 0; 19967 ire_expire_arg_t iea; 19968 ip_stack_t *ipst = (ip_stack_t *)args; 19969 19970 iea.iea_ipst = ipst; /* No netstack_hold */ 19971 19972 /* 19973 * ip_ire_expire_id is protected by ip_trash_timer_lock. 19974 * This lock makes sure that a new invocation of this function 19975 * that occurs due to an almost immediate timer firing will not 19976 * progress beyond this point until the current invocation is done 19977 */ 19978 mutex_enter(&ipst->ips_ip_trash_timer_lock); 19979 ipst->ips_ip_ire_expire_id = 0; 19980 mutex_exit(&ipst->ips_ip_trash_timer_lock); 19981 19982 /* Periodic timer */ 19983 if (ipst->ips_ip_ire_arp_time_elapsed >= 19984 ipst->ips_ip_ire_arp_interval) { 19985 /* 19986 * Remove all IRE_CACHE entries since they might 19987 * contain arp information. 19988 */ 19989 flush_flag |= FLUSH_ARP_TIME; 19990 ipst->ips_ip_ire_arp_time_elapsed = 0; 19991 IP_STAT(ipst, ip_ire_arp_timer_expired); 19992 } 19993 if (ipst->ips_ip_ire_rd_time_elapsed >= 19994 ipst->ips_ip_ire_redir_interval) { 19995 /* Remove all redirects */ 19996 flush_flag |= FLUSH_REDIRECT_TIME; 19997 ipst->ips_ip_ire_rd_time_elapsed = 0; 19998 IP_STAT(ipst, ip_ire_redirect_timer_expired); 19999 } 20000 if (ipst->ips_ip_ire_pmtu_time_elapsed >= 20001 ipst->ips_ip_ire_pathmtu_interval) { 20002 /* Increase path mtu */ 20003 flush_flag |= FLUSH_MTU_TIME; 20004 ipst->ips_ip_ire_pmtu_time_elapsed = 0; 20005 IP_STAT(ipst, ip_ire_pmtu_timer_expired); 20006 } 20007 20008 /* 20009 * Optimize for the case when there are no redirects in the 20010 * ftable, that is, no need to walk the ftable in that case. 20011 */ 20012 if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) { 20013 iea.iea_flush_flag = flush_flag; 20014 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire, 20015 (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 0, NULL, 20016 ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table, 20017 NULL, ALL_ZONES, ipst); 20018 } 20019 if ((flush_flag & FLUSH_REDIRECT_TIME) && 20020 ipst->ips_ip_redirect_cnt > 0) { 20021 iea.iea_flush_flag = flush_flag; 20022 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE, 20023 ire_expire, (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 20024 0, NULL, 0, NULL, NULL, ALL_ZONES, ipst); 20025 } 20026 if (flush_flag & FLUSH_MTU_TIME) { 20027 /* 20028 * Walk all IPv6 IRE's and update them 20029 * Note that ARP and redirect timers are not 20030 * needed since NUD handles stale entries. 20031 */ 20032 flush_flag = FLUSH_MTU_TIME; 20033 iea.iea_flush_flag = flush_flag; 20034 ire_walk_v6(ire_expire, (char *)(uintptr_t)&iea, 20035 ALL_ZONES, ipst); 20036 } 20037 20038 ipst->ips_ip_ire_arp_time_elapsed += ipst->ips_ip_timer_interval; 20039 ipst->ips_ip_ire_rd_time_elapsed += ipst->ips_ip_timer_interval; 20040 ipst->ips_ip_ire_pmtu_time_elapsed += ipst->ips_ip_timer_interval; 20041 20042 /* 20043 * Hold the lock to serialize timeout calls and prevent 20044 * stale values in ip_ire_expire_id. Otherwise it is possible 20045 * for the timer to fire and a new invocation of this function 20046 * to start before the return value of timeout has been stored 20047 * in ip_ire_expire_id by the current invocation. 20048 */ 20049 mutex_enter(&ipst->ips_ip_trash_timer_lock); 20050 ipst->ips_ip_ire_expire_id = timeout(ip_trash_timer_expire, 20051 (void *)ipst, MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 20052 mutex_exit(&ipst->ips_ip_trash_timer_lock); 20053 } 20054 20055 /* 20056 * Called by the memory allocator subsystem directly, when the system 20057 * is running low on memory. 20058 */ 20059 /* ARGSUSED */ 20060 void 20061 ip_trash_ire_reclaim(void *args) 20062 { 20063 netstack_handle_t nh; 20064 netstack_t *ns; 20065 20066 netstack_next_init(&nh); 20067 while ((ns = netstack_next(&nh)) != NULL) { 20068 ip_trash_ire_reclaim_stack(ns->netstack_ip); 20069 netstack_rele(ns); 20070 } 20071 netstack_next_fini(&nh); 20072 } 20073 20074 static void 20075 ip_trash_ire_reclaim_stack(ip_stack_t *ipst) 20076 { 20077 ire_cache_count_t icc; 20078 ire_cache_reclaim_t icr; 20079 ncc_cache_count_t ncc; 20080 nce_cache_reclaim_t ncr; 20081 uint_t delete_cnt; 20082 /* 20083 * Memory reclaim call back. 20084 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 20085 * Then, with a target of freeing 1/Nth of IRE_CACHE 20086 * entries, determine what fraction to free for 20087 * each category of IRE_CACHE entries giving absolute priority 20088 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 20089 * entry will be freed unless all offlink entries are freed). 20090 */ 20091 icc.icc_total = 0; 20092 icc.icc_unused = 0; 20093 icc.icc_offlink = 0; 20094 icc.icc_pmtu = 0; 20095 icc.icc_onlink = 0; 20096 ire_walk(ire_cache_count, (char *)&icc, ipst); 20097 20098 /* 20099 * Free NCEs for IPv6 like the onlink ires. 20100 */ 20101 ncc.ncc_total = 0; 20102 ncc.ncc_host = 0; 20103 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc, ipst); 20104 20105 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 20106 icc.icc_pmtu + icc.icc_onlink); 20107 delete_cnt = icc.icc_total/ipst->ips_ip_ire_reclaim_fraction; 20108 IP_STAT(ipst, ip_trash_ire_reclaim_calls); 20109 if (delete_cnt == 0) 20110 return; 20111 IP_STAT(ipst, ip_trash_ire_reclaim_success); 20112 /* Always delete all unused offlink entries */ 20113 icr.icr_ipst = ipst; 20114 icr.icr_unused = 1; 20115 if (delete_cnt <= icc.icc_unused) { 20116 /* 20117 * Only need to free unused entries. In other words, 20118 * there are enough unused entries to free to meet our 20119 * target number of freed ire cache entries. 20120 */ 20121 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 20122 ncr.ncr_host = 0; 20123 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 20124 /* 20125 * Only need to free unused entries, plus a fraction of offlink 20126 * entries. It follows from the first if statement that 20127 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 20128 */ 20129 delete_cnt -= icc.icc_unused; 20130 /* Round up # deleted by truncating fraction */ 20131 icr.icr_offlink = icc.icc_offlink / delete_cnt; 20132 icr.icr_pmtu = icr.icr_onlink = 0; 20133 ncr.ncr_host = 0; 20134 } else if (delete_cnt <= 20135 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 20136 /* 20137 * Free all unused and offlink entries, plus a fraction of 20138 * pmtu entries. It follows from the previous if statement 20139 * that icc_pmtu is non-zero, and that 20140 * delete_cnt != icc_unused + icc_offlink. 20141 */ 20142 icr.icr_offlink = 1; 20143 delete_cnt -= icc.icc_unused + icc.icc_offlink; 20144 /* Round up # deleted by truncating fraction */ 20145 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 20146 icr.icr_onlink = 0; 20147 ncr.ncr_host = 0; 20148 } else { 20149 /* 20150 * Free all unused, offlink, and pmtu entries, plus a fraction 20151 * of onlink entries. If we're here, then we know that 20152 * icc_onlink is non-zero, and that 20153 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 20154 */ 20155 icr.icr_offlink = icr.icr_pmtu = 1; 20156 delete_cnt -= icc.icc_unused + icc.icc_offlink + 20157 icc.icc_pmtu; 20158 /* Round up # deleted by truncating fraction */ 20159 icr.icr_onlink = icc.icc_onlink / delete_cnt; 20160 /* Using the same delete fraction as for onlink IREs */ 20161 ncr.ncr_host = ncc.ncc_host / delete_cnt; 20162 } 20163 #ifdef DEBUG 20164 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 20165 "fractions %d/%d/%d/%d\n", 20166 icc.icc_total/ipst->ips_ip_ire_reclaim_fraction, icc.icc_total, 20167 icc.icc_unused, icc.icc_offlink, 20168 icc.icc_pmtu, icc.icc_onlink, 20169 icr.icr_unused, icr.icr_offlink, 20170 icr.icr_pmtu, icr.icr_onlink)); 20171 #endif 20172 ire_walk(ire_cache_reclaim, (char *)&icr, ipst); 20173 if (ncr.ncr_host != 0) 20174 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 20175 (uchar_t *)&ncr, ipst); 20176 #ifdef DEBUG 20177 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 20178 icc.icc_pmtu = 0; icc.icc_onlink = 0; 20179 ire_walk(ire_cache_count, (char *)&icc, ipst); 20180 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 20181 icc.icc_total, icc.icc_unused, icc.icc_offlink, 20182 icc.icc_pmtu, icc.icc_onlink)); 20183 #endif 20184 } 20185 20186 /* 20187 * ip_unbind is called when a copy of an unbind request is received from the 20188 * upper level protocol. We remove this conn from any fanout hash list it is 20189 * on, and zero out the bind information. No reply is expected up above. 20190 */ 20191 mblk_t * 20192 ip_unbind(queue_t *q, mblk_t *mp) 20193 { 20194 conn_t *connp = Q_TO_CONN(q); 20195 20196 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 20197 20198 if (is_system_labeled() && connp->conn_anon_port) { 20199 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 20200 connp->conn_mlp_type, connp->conn_ulp, 20201 ntohs(connp->conn_lport), B_FALSE); 20202 connp->conn_anon_port = 0; 20203 } 20204 connp->conn_mlp_type = mlptSingle; 20205 20206 ipcl_hash_remove(connp); 20207 20208 ASSERT(mp->b_cont == NULL); 20209 /* 20210 * Convert mp into a T_OK_ACK 20211 */ 20212 mp = mi_tpi_ok_ack_alloc(mp); 20213 20214 /* 20215 * should not happen in practice... T_OK_ACK is smaller than the 20216 * original message. 20217 */ 20218 if (mp == NULL) 20219 return (NULL); 20220 20221 /* 20222 * Don't bzero the ports if its TCP since TCP still needs the 20223 * lport to remove it from its own bind hash. TCP will do the 20224 * cleanup. 20225 */ 20226 if (!IPCL_IS_TCP(connp)) 20227 bzero(&connp->u_port, sizeof (connp->u_port)); 20228 20229 return (mp); 20230 } 20231 20232 /* 20233 * Write side put procedure. Outbound data, IOCTLs, responses from 20234 * resolvers, etc, come down through here. 20235 * 20236 * arg2 is always a queue_t *. 20237 * When that queue is an ill_t (i.e. q_next != NULL), then arg must be 20238 * the zoneid. 20239 * When that queue is not an ill_t, then arg must be a conn_t pointer. 20240 */ 20241 void 20242 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 20243 { 20244 ip_output_options(arg, mp, arg2, caller, &zero_info); 20245 } 20246 20247 void 20248 ip_output_options(void *arg, mblk_t *mp, void *arg2, int caller, 20249 ip_opt_info_t *infop) 20250 { 20251 conn_t *connp = NULL; 20252 queue_t *q = (queue_t *)arg2; 20253 ipha_t *ipha; 20254 #define rptr ((uchar_t *)ipha) 20255 ire_t *ire = NULL; 20256 ire_t *sctp_ire = NULL; 20257 uint32_t v_hlen_tos_len; 20258 ipaddr_t dst; 20259 mblk_t *first_mp = NULL; 20260 boolean_t mctl_present; 20261 ipsec_out_t *io; 20262 int match_flags; 20263 ill_t *attach_ill = NULL; 20264 /* Bind to IPIF_NOFAILOVER ill etc. */ 20265 ill_t *xmit_ill = NULL; /* IP_XMIT_IF etc. */ 20266 ipif_t *dst_ipif; 20267 boolean_t multirt_need_resolve = B_FALSE; 20268 mblk_t *copy_mp = NULL; 20269 int err; 20270 zoneid_t zoneid; 20271 int adjust; 20272 uint16_t iplen; 20273 boolean_t need_decref = B_FALSE; 20274 boolean_t ignore_dontroute = B_FALSE; 20275 boolean_t ignore_nexthop = B_FALSE; 20276 boolean_t ip_nexthop = B_FALSE; 20277 ipaddr_t nexthop_addr; 20278 ip_stack_t *ipst; 20279 20280 #ifdef _BIG_ENDIAN 20281 #define V_HLEN (v_hlen_tos_len >> 24) 20282 #else 20283 #define V_HLEN (v_hlen_tos_len & 0xFF) 20284 #endif 20285 20286 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 20287 "ip_wput_start: q %p", q); 20288 20289 /* 20290 * ip_wput fast path 20291 */ 20292 20293 /* is packet from ARP ? */ 20294 if (q->q_next != NULL) { 20295 zoneid = (zoneid_t)(uintptr_t)arg; 20296 goto qnext; 20297 } 20298 20299 connp = (conn_t *)arg; 20300 ASSERT(connp != NULL); 20301 zoneid = connp->conn_zoneid; 20302 ipst = connp->conn_netstack->netstack_ip; 20303 20304 /* is queue flow controlled? */ 20305 if ((q->q_first != NULL || connp->conn_draining) && 20306 (caller == IP_WPUT)) { 20307 ASSERT(!need_decref); 20308 (void) putq(q, mp); 20309 return; 20310 } 20311 20312 /* Multidata transmit? */ 20313 if (DB_TYPE(mp) == M_MULTIDATA) { 20314 /* 20315 * We should never get here, since all Multidata messages 20316 * originating from tcp should have been directed over to 20317 * tcp_multisend() in the first place. 20318 */ 20319 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20320 freemsg(mp); 20321 return; 20322 } else if (DB_TYPE(mp) != M_DATA) 20323 goto notdata; 20324 20325 if (mp->b_flag & MSGHASREF) { 20326 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20327 mp->b_flag &= ~MSGHASREF; 20328 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 20329 need_decref = B_TRUE; 20330 } 20331 ipha = (ipha_t *)mp->b_rptr; 20332 20333 /* is IP header non-aligned or mblk smaller than basic IP header */ 20334 #ifndef SAFETY_BEFORE_SPEED 20335 if (!OK_32PTR(rptr) || 20336 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 20337 goto hdrtoosmall; 20338 #endif 20339 20340 ASSERT(OK_32PTR(ipha)); 20341 20342 /* 20343 * This function assumes that mp points to an IPv4 packet. If it's the 20344 * wrong version, we'll catch it again in ip_output_v6. 20345 * 20346 * Note that this is *only* locally-generated output here, and never 20347 * forwarded data, and that we need to deal only with transports that 20348 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 20349 * label.) 20350 */ 20351 if (is_system_labeled() && 20352 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 20353 !connp->conn_ulp_labeled) { 20354 err = tsol_check_label(BEST_CRED(mp, connp), &mp, &adjust, 20355 connp->conn_mac_exempt, ipst); 20356 ipha = (ipha_t *)mp->b_rptr; 20357 if (err != 0) { 20358 first_mp = mp; 20359 if (err == EINVAL) 20360 goto icmp_parameter_problem; 20361 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 20362 goto discard_pkt; 20363 } 20364 iplen = ntohs(ipha->ipha_length) + adjust; 20365 ipha->ipha_length = htons(iplen); 20366 } 20367 20368 ASSERT(infop != NULL); 20369 20370 if (infop->ip_opt_flags & IP_VERIFY_SRC) { 20371 /* 20372 * IP_PKTINFO ancillary option is present. 20373 * IPCL_ZONEID is used to honor IP_ALLZONES option which 20374 * allows using address of any zone as the source address. 20375 */ 20376 ire = ire_ctable_lookup(ipha->ipha_src, 0, 20377 (IRE_LOCAL|IRE_LOOPBACK), NULL, IPCL_ZONEID(connp), 20378 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 20379 if (ire == NULL) 20380 goto drop_pkt; 20381 ire_refrele(ire); 20382 ire = NULL; 20383 } 20384 20385 /* 20386 * IP_DONTFAILOVER_IF and IP_XMIT_IF have precedence over 20387 * ill index passed in IP_PKTINFO. 20388 */ 20389 if (infop->ip_opt_ill_index != 0 && 20390 connp->conn_xmit_if_ill == NULL && 20391 connp->conn_nofailover_ill == NULL) { 20392 20393 xmit_ill = ill_lookup_on_ifindex( 20394 infop->ip_opt_ill_index, B_FALSE, NULL, NULL, NULL, NULL, 20395 ipst); 20396 20397 if (xmit_ill == NULL || IS_VNI(xmit_ill)) 20398 goto drop_pkt; 20399 /* 20400 * check that there is an ipif belonging 20401 * to our zone. IPCL_ZONEID is not used because 20402 * IP_ALLZONES option is valid only when the ill is 20403 * accessible from all zones i.e has a valid ipif in 20404 * all zones. 20405 */ 20406 if (!ipif_lookup_zoneid_group(xmit_ill, zoneid, 0, NULL)) { 20407 goto drop_pkt; 20408 } 20409 } 20410 20411 /* 20412 * If there is a policy, try to attach an ipsec_out in 20413 * the front. At the end, first_mp either points to a 20414 * M_DATA message or IPSEC_OUT message linked to a 20415 * M_DATA message. We have to do it now as we might 20416 * lose the "conn" if we go through ip_newroute. 20417 */ 20418 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 20419 if (((mp = ipsec_attach_ipsec_out(&mp, connp, NULL, 20420 ipha->ipha_protocol, ipst->ips_netstack)) == NULL)) { 20421 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20422 if (need_decref) 20423 CONN_DEC_REF(connp); 20424 return; 20425 } else { 20426 ASSERT(mp->b_datap->db_type == M_CTL); 20427 first_mp = mp; 20428 mp = mp->b_cont; 20429 mctl_present = B_TRUE; 20430 } 20431 } else { 20432 first_mp = mp; 20433 mctl_present = B_FALSE; 20434 } 20435 20436 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20437 20438 /* is wrong version or IP options present */ 20439 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 20440 goto version_hdrlen_check; 20441 dst = ipha->ipha_dst; 20442 20443 if (connp->conn_nofailover_ill != NULL) { 20444 attach_ill = conn_get_held_ill(connp, 20445 &connp->conn_nofailover_ill, &err); 20446 if (err == ILL_LOOKUP_FAILED) { 20447 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20448 if (need_decref) 20449 CONN_DEC_REF(connp); 20450 freemsg(first_mp); 20451 return; 20452 } 20453 } 20454 20455 20456 /* is packet multicast? */ 20457 if (CLASSD(dst)) 20458 goto multicast; 20459 20460 /* 20461 * If xmit_ill is set above due to index passed in ip_pkt_info. It 20462 * takes precedence over conn_dontroute and conn_nexthop_set 20463 */ 20464 if (xmit_ill != NULL) { 20465 goto send_from_ill; 20466 } 20467 20468 if ((connp->conn_dontroute) || (connp->conn_xmit_if_ill != NULL) || 20469 (connp->conn_nexthop_set)) { 20470 /* 20471 * If the destination is a broadcast or a loopback 20472 * address, SO_DONTROUTE, IP_XMIT_IF and IP_NEXTHOP go 20473 * through the standard path. But in the case of local 20474 * destination only SO_DONTROUTE and IP_NEXTHOP go through 20475 * the standard path not IP_XMIT_IF. 20476 */ 20477 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20478 if ((ire == NULL) || ((ire->ire_type != IRE_BROADCAST) && 20479 (ire->ire_type != IRE_LOOPBACK))) { 20480 if ((connp->conn_dontroute || 20481 connp->conn_nexthop_set) && (ire != NULL) && 20482 (ire->ire_type == IRE_LOCAL)) 20483 goto standard_path; 20484 20485 if (ire != NULL) { 20486 ire_refrele(ire); 20487 /* No more access to ire */ 20488 ire = NULL; 20489 } 20490 /* 20491 * bypass routing checks and go directly to 20492 * interface. 20493 */ 20494 if (connp->conn_dontroute) { 20495 goto dontroute; 20496 } else if (connp->conn_nexthop_set) { 20497 ip_nexthop = B_TRUE; 20498 nexthop_addr = connp->conn_nexthop_v4; 20499 goto send_from_ill; 20500 } 20501 20502 /* 20503 * If IP_XMIT_IF socket option is set, 20504 * then we allow unicast and multicast 20505 * packets to go through the ill. It is 20506 * quite possible that the destination 20507 * is not in the ire cache table and we 20508 * do not want to go to ip_newroute() 20509 * instead we call ip_newroute_ipif. 20510 */ 20511 xmit_ill = conn_get_held_ill(connp, 20512 &connp->conn_xmit_if_ill, &err); 20513 if (err == ILL_LOOKUP_FAILED) { 20514 BUMP_MIB(&ipst->ips_ip_mib, 20515 ipIfStatsOutDiscards); 20516 if (attach_ill != NULL) 20517 ill_refrele(attach_ill); 20518 if (need_decref) 20519 CONN_DEC_REF(connp); 20520 freemsg(first_mp); 20521 return; 20522 } 20523 goto send_from_ill; 20524 } 20525 standard_path: 20526 /* Must be a broadcast, a loopback or a local ire */ 20527 if (ire != NULL) { 20528 ire_refrele(ire); 20529 /* No more access to ire */ 20530 ire = NULL; 20531 } 20532 } 20533 20534 if (attach_ill != NULL) 20535 goto send_from_ill; 20536 20537 /* 20538 * We cache IRE_CACHEs to avoid lookups. We don't do 20539 * this for the tcp global queue and listen end point 20540 * as it does not really have a real destination to 20541 * talk to. This is also true for SCTP. 20542 */ 20543 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 20544 !connp->conn_fully_bound) { 20545 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20546 if (ire == NULL) 20547 goto noirefound; 20548 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20549 "ip_wput_end: q %p (%S)", q, "end"); 20550 20551 /* 20552 * Check if the ire has the RTF_MULTIRT flag, inherited 20553 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20554 */ 20555 if (ire->ire_flags & RTF_MULTIRT) { 20556 20557 /* 20558 * Force the TTL of multirouted packets if required. 20559 * The TTL of such packets is bounded by the 20560 * ip_multirt_ttl ndd variable. 20561 */ 20562 if ((ipst->ips_ip_multirt_ttl > 0) && 20563 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20564 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20565 "(was %d), dst 0x%08x\n", 20566 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20567 ntohl(ire->ire_addr))); 20568 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20569 } 20570 /* 20571 * We look at this point if there are pending 20572 * unresolved routes. ire_multirt_resolvable() 20573 * checks in O(n) that all IRE_OFFSUBNET ire 20574 * entries for the packet's destination and 20575 * flagged RTF_MULTIRT are currently resolved. 20576 * If some remain unresolved, we make a copy 20577 * of the current message. It will be used 20578 * to initiate additional route resolutions. 20579 */ 20580 multirt_need_resolve = 20581 ire_multirt_need_resolve(ire->ire_addr, 20582 MBLK_GETLABEL(first_mp), ipst); 20583 ip2dbg(("ip_wput[TCP]: ire %p, " 20584 "multirt_need_resolve %d, first_mp %p\n", 20585 (void *)ire, multirt_need_resolve, 20586 (void *)first_mp)); 20587 if (multirt_need_resolve) { 20588 copy_mp = copymsg(first_mp); 20589 if (copy_mp != NULL) { 20590 MULTIRT_DEBUG_TAG(copy_mp); 20591 } 20592 } 20593 } 20594 20595 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20596 20597 /* 20598 * Try to resolve another multiroute if 20599 * ire_multirt_need_resolve() deemed it necessary. 20600 */ 20601 if (copy_mp != NULL) { 20602 ip_newroute(q, copy_mp, dst, NULL, connp, zoneid, ipst); 20603 } 20604 if (need_decref) 20605 CONN_DEC_REF(connp); 20606 return; 20607 } 20608 20609 /* 20610 * Access to conn_ire_cache. (protected by conn_lock) 20611 * 20612 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 20613 * the ire bucket lock here to check for CONDEMNED as it is okay to 20614 * send a packet or two with the IRE_CACHE that is going away. 20615 * Access to the ire requires an ire refhold on the ire prior to 20616 * its use since an interface unplumb thread may delete the cached 20617 * ire and release the refhold at any time. 20618 * 20619 * Caching an ire in the conn_ire_cache 20620 * 20621 * o Caching an ire pointer in the conn requires a strict check for 20622 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 20623 * ires before cleaning up the conns. So the caching of an ire pointer 20624 * in the conn is done after making sure under the bucket lock that the 20625 * ire has not yet been marked CONDEMNED. Otherwise we will end up 20626 * caching an ire after the unplumb thread has cleaned up the conn. 20627 * If the conn does not send a packet subsequently the unplumb thread 20628 * will be hanging waiting for the ire count to drop to zero. 20629 * 20630 * o We also need to atomically test for a null conn_ire_cache and 20631 * set the conn_ire_cache under the the protection of the conn_lock 20632 * to avoid races among concurrent threads trying to simultaneously 20633 * cache an ire in the conn_ire_cache. 20634 */ 20635 mutex_enter(&connp->conn_lock); 20636 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 20637 20638 if (ire != NULL && ire->ire_addr == dst && 20639 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20640 20641 IRE_REFHOLD(ire); 20642 mutex_exit(&connp->conn_lock); 20643 20644 } else { 20645 boolean_t cached = B_FALSE; 20646 connp->conn_ire_cache = NULL; 20647 mutex_exit(&connp->conn_lock); 20648 /* Release the old ire */ 20649 if (ire != NULL && sctp_ire == NULL) 20650 IRE_REFRELE_NOTR(ire); 20651 20652 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20653 if (ire == NULL) 20654 goto noirefound; 20655 IRE_REFHOLD_NOTR(ire); 20656 20657 mutex_enter(&connp->conn_lock); 20658 if (CONN_CACHE_IRE(connp) && connp->conn_ire_cache == NULL) { 20659 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 20660 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20661 connp->conn_ire_cache = ire; 20662 cached = B_TRUE; 20663 } 20664 rw_exit(&ire->ire_bucket->irb_lock); 20665 } 20666 mutex_exit(&connp->conn_lock); 20667 20668 /* 20669 * We can continue to use the ire but since it was 20670 * not cached, we should drop the extra reference. 20671 */ 20672 if (!cached) 20673 IRE_REFRELE_NOTR(ire); 20674 } 20675 20676 20677 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20678 "ip_wput_end: q %p (%S)", q, "end"); 20679 20680 /* 20681 * Check if the ire has the RTF_MULTIRT flag, inherited 20682 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20683 */ 20684 if (ire->ire_flags & RTF_MULTIRT) { 20685 20686 /* 20687 * Force the TTL of multirouted packets if required. 20688 * The TTL of such packets is bounded by the 20689 * ip_multirt_ttl ndd variable. 20690 */ 20691 if ((ipst->ips_ip_multirt_ttl > 0) && 20692 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20693 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20694 "(was %d), dst 0x%08x\n", 20695 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20696 ntohl(ire->ire_addr))); 20697 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20698 } 20699 20700 /* 20701 * At this point, we check to see if there are any pending 20702 * unresolved routes. ire_multirt_resolvable() 20703 * checks in O(n) that all IRE_OFFSUBNET ire 20704 * entries for the packet's destination and 20705 * flagged RTF_MULTIRT are currently resolved. 20706 * If some remain unresolved, we make a copy 20707 * of the current message. It will be used 20708 * to initiate additional route resolutions. 20709 */ 20710 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 20711 MBLK_GETLABEL(first_mp), ipst); 20712 ip2dbg(("ip_wput[not TCP]: ire %p, " 20713 "multirt_need_resolve %d, first_mp %p\n", 20714 (void *)ire, multirt_need_resolve, (void *)first_mp)); 20715 if (multirt_need_resolve) { 20716 copy_mp = copymsg(first_mp); 20717 if (copy_mp != NULL) { 20718 MULTIRT_DEBUG_TAG(copy_mp); 20719 } 20720 } 20721 } 20722 20723 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20724 20725 /* 20726 * Try to resolve another multiroute if 20727 * ire_multirt_resolvable() deemed it necessary 20728 */ 20729 if (copy_mp != NULL) { 20730 ip_newroute(q, copy_mp, dst, NULL, connp, zoneid, ipst); 20731 } 20732 if (need_decref) 20733 CONN_DEC_REF(connp); 20734 return; 20735 20736 qnext: 20737 /* 20738 * Upper Level Protocols pass down complete IP datagrams 20739 * as M_DATA messages. Everything else is a sideshow. 20740 * 20741 * 1) We could be re-entering ip_wput because of ip_neworute 20742 * in which case we could have a IPSEC_OUT message. We 20743 * need to pass through ip_wput like other datagrams and 20744 * hence cannot branch to ip_wput_nondata. 20745 * 20746 * 2) ARP, AH, ESP, and other clients who are on the module 20747 * instance of IP stream, give us something to deal with. 20748 * We will handle AH and ESP here and rest in ip_wput_nondata. 20749 * 20750 * 3) ICMP replies also could come here. 20751 */ 20752 ipst = ILLQ_TO_IPST(q); 20753 20754 if (DB_TYPE(mp) != M_DATA) { 20755 notdata: 20756 if (DB_TYPE(mp) == M_CTL) { 20757 /* 20758 * M_CTL messages are used by ARP, AH and ESP to 20759 * communicate with IP. We deal with IPSEC_IN and 20760 * IPSEC_OUT here. ip_wput_nondata handles other 20761 * cases. 20762 */ 20763 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 20764 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 20765 first_mp = mp->b_cont; 20766 first_mp->b_flag &= ~MSGHASREF; 20767 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20768 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 20769 CONN_DEC_REF(connp); 20770 connp = NULL; 20771 } 20772 if (ii->ipsec_info_type == IPSEC_IN) { 20773 /* 20774 * Either this message goes back to 20775 * IPSEC for further processing or to 20776 * ULP after policy checks. 20777 */ 20778 ip_fanout_proto_again(mp, NULL, NULL, NULL); 20779 return; 20780 } else if (ii->ipsec_info_type == IPSEC_OUT) { 20781 io = (ipsec_out_t *)ii; 20782 if (io->ipsec_out_proc_begin) { 20783 /* 20784 * IPSEC processing has already started. 20785 * Complete it. 20786 * IPQoS notes: We don't care what is 20787 * in ipsec_out_ill_index since this 20788 * won't be processed for IPQoS policies 20789 * in ipsec_out_process. 20790 */ 20791 ipsec_out_process(q, mp, NULL, 20792 io->ipsec_out_ill_index); 20793 return; 20794 } else { 20795 connp = (q->q_next != NULL) ? 20796 NULL : Q_TO_CONN(q); 20797 first_mp = mp; 20798 mp = mp->b_cont; 20799 mctl_present = B_TRUE; 20800 } 20801 zoneid = io->ipsec_out_zoneid; 20802 ASSERT(zoneid != ALL_ZONES); 20803 } else if (ii->ipsec_info_type == IPSEC_CTL) { 20804 /* 20805 * It's an IPsec control message requesting 20806 * an SADB update to be sent to the IPsec 20807 * hardware acceleration capable ills. 20808 */ 20809 ipsec_ctl_t *ipsec_ctl = 20810 (ipsec_ctl_t *)mp->b_rptr; 20811 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 20812 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 20813 mblk_t *cmp = mp->b_cont; 20814 20815 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 20816 ASSERT(cmp != NULL); 20817 20818 freeb(mp); 20819 ill_ipsec_capab_send_all(satype, cmp, sa, 20820 ipst->ips_netstack); 20821 return; 20822 } else { 20823 /* 20824 * This must be ARP or special TSOL signaling. 20825 */ 20826 ip_wput_nondata(NULL, q, mp, NULL); 20827 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20828 "ip_wput_end: q %p (%S)", q, "nondata"); 20829 return; 20830 } 20831 } else { 20832 /* 20833 * This must be non-(ARP/AH/ESP) messages. 20834 */ 20835 ASSERT(!need_decref); 20836 ip_wput_nondata(NULL, q, mp, NULL); 20837 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20838 "ip_wput_end: q %p (%S)", q, "nondata"); 20839 return; 20840 } 20841 } else { 20842 first_mp = mp; 20843 mctl_present = B_FALSE; 20844 } 20845 20846 ASSERT(first_mp != NULL); 20847 /* 20848 * ICMP echo replies attach an ipsec_out and set ipsec_out_attach_if 20849 * to make sure that this packet goes out on the same interface it 20850 * came in. We handle that here. 20851 */ 20852 if (mctl_present) { 20853 uint_t ifindex; 20854 20855 io = (ipsec_out_t *)first_mp->b_rptr; 20856 if (io->ipsec_out_attach_if || 20857 io->ipsec_out_xmit_if || 20858 io->ipsec_out_ip_nexthop) { 20859 ill_t *ill; 20860 20861 /* 20862 * We may have lost the conn context if we are 20863 * coming here from ip_newroute(). Copy the 20864 * nexthop information. 20865 */ 20866 if (io->ipsec_out_ip_nexthop) { 20867 ip_nexthop = B_TRUE; 20868 nexthop_addr = io->ipsec_out_nexthop_addr; 20869 20870 ipha = (ipha_t *)mp->b_rptr; 20871 dst = ipha->ipha_dst; 20872 goto send_from_ill; 20873 } else { 20874 ASSERT(io->ipsec_out_ill_index != 0); 20875 ifindex = io->ipsec_out_ill_index; 20876 ill = ill_lookup_on_ifindex(ifindex, B_FALSE, 20877 NULL, NULL, NULL, NULL, ipst); 20878 /* 20879 * ipsec_out_xmit_if bit is used to tell 20880 * ip_wput to use the ill to send outgoing data 20881 * as we have no conn when data comes from ICMP 20882 * error msg routines. Currently this feature is 20883 * only used by ip_mrtun_forward routine. 20884 */ 20885 if (io->ipsec_out_xmit_if) { 20886 xmit_ill = ill; 20887 if (xmit_ill == NULL) { 20888 ip1dbg(("ip_output:bad ifindex " 20889 "for xmit_ill %d\n", 20890 ifindex)); 20891 freemsg(first_mp); 20892 BUMP_MIB(&ipst->ips_ip_mib, 20893 ipIfStatsOutDiscards); 20894 ASSERT(!need_decref); 20895 return; 20896 } 20897 /* Free up the ipsec_out_t mblk */ 20898 ASSERT(first_mp->b_cont == mp); 20899 first_mp->b_cont = NULL; 20900 freeb(first_mp); 20901 /* Just send the IP header+ICMP+data */ 20902 first_mp = mp; 20903 ipha = (ipha_t *)mp->b_rptr; 20904 dst = ipha->ipha_dst; 20905 goto send_from_ill; 20906 } else { 20907 attach_ill = ill; 20908 } 20909 20910 if (attach_ill == NULL) { 20911 ASSERT(xmit_ill == NULL); 20912 ip1dbg(("ip_output: bad ifindex for " 20913 "(BIND TO IPIF_NOFAILOVER) %d\n", 20914 ifindex)); 20915 freemsg(first_mp); 20916 BUMP_MIB(&ipst->ips_ip_mib, 20917 ipIfStatsOutDiscards); 20918 ASSERT(!need_decref); 20919 return; 20920 } 20921 } 20922 } 20923 } 20924 20925 ASSERT(xmit_ill == NULL); 20926 20927 /* We have a complete IP datagram heading outbound. */ 20928 ipha = (ipha_t *)mp->b_rptr; 20929 20930 #ifndef SPEED_BEFORE_SAFETY 20931 /* 20932 * Make sure we have a full-word aligned message and that at least 20933 * a simple IP header is accessible in the first message. If not, 20934 * try a pullup. 20935 */ 20936 if (!OK_32PTR(rptr) || 20937 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) { 20938 hdrtoosmall: 20939 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 20940 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20941 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 20942 if (first_mp == NULL) 20943 first_mp = mp; 20944 goto discard_pkt; 20945 } 20946 20947 /* This function assumes that mp points to an IPv4 packet. */ 20948 if (is_system_labeled() && q->q_next == NULL && 20949 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 20950 !connp->conn_ulp_labeled) { 20951 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 20952 &adjust, connp->conn_mac_exempt, ipst); 20953 ipha = (ipha_t *)mp->b_rptr; 20954 if (first_mp != NULL) 20955 first_mp->b_cont = mp; 20956 if (err != 0) { 20957 if (first_mp == NULL) 20958 first_mp = mp; 20959 if (err == EINVAL) 20960 goto icmp_parameter_problem; 20961 ip2dbg(("ip_wput: label check failed (%d)\n", 20962 err)); 20963 goto discard_pkt; 20964 } 20965 iplen = ntohs(ipha->ipha_length) + adjust; 20966 ipha->ipha_length = htons(iplen); 20967 } 20968 20969 ipha = (ipha_t *)mp->b_rptr; 20970 if (first_mp == NULL) { 20971 ASSERT(attach_ill == NULL && xmit_ill == NULL); 20972 /* 20973 * If we got here because of "goto hdrtoosmall" 20974 * We need to attach a IPSEC_OUT. 20975 */ 20976 if (connp->conn_out_enforce_policy) { 20977 if (((mp = ipsec_attach_ipsec_out(&mp, connp, 20978 NULL, ipha->ipha_protocol, 20979 ipst->ips_netstack)) == NULL)) { 20980 BUMP_MIB(&ipst->ips_ip_mib, 20981 ipIfStatsOutDiscards); 20982 if (need_decref) 20983 CONN_DEC_REF(connp); 20984 return; 20985 } else { 20986 ASSERT(mp->b_datap->db_type == M_CTL); 20987 first_mp = mp; 20988 mp = mp->b_cont; 20989 mctl_present = B_TRUE; 20990 } 20991 } else { 20992 first_mp = mp; 20993 mctl_present = B_FALSE; 20994 } 20995 } 20996 } 20997 #endif 20998 20999 /* Most of the code below is written for speed, not readability */ 21000 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21001 21002 /* 21003 * If ip_newroute() fails, we're going to need a full 21004 * header for the icmp wraparound. 21005 */ 21006 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 21007 uint_t v_hlen; 21008 version_hdrlen_check: 21009 ASSERT(first_mp != NULL); 21010 v_hlen = V_HLEN; 21011 /* 21012 * siphon off IPv6 packets coming down from transport 21013 * layer modules here. 21014 * Note: high-order bit carries NUD reachability confirmation 21015 */ 21016 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 21017 /* 21018 * XXX implement a IPv4 and IPv6 packet counter per 21019 * conn and switch when ratio exceeds e.g. 10:1 21020 */ 21021 #ifdef notyet 21022 if (q->q_next == NULL) /* Avoid ill queue */ 21023 ip_setqinfo(RD(q), B_TRUE, B_TRUE, ipst); 21024 #endif 21025 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutWrongIPVersion); 21026 ASSERT(xmit_ill == NULL); 21027 if (attach_ill != NULL) 21028 ill_refrele(attach_ill); 21029 if (need_decref) 21030 mp->b_flag |= MSGHASREF; 21031 (void) ip_output_v6(arg, first_mp, arg2, caller); 21032 return; 21033 } 21034 21035 if ((v_hlen >> 4) != IP_VERSION) { 21036 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21037 "ip_wput_end: q %p (%S)", q, "badvers"); 21038 goto discard_pkt; 21039 } 21040 /* 21041 * Is the header length at least 20 bytes? 21042 * 21043 * Are there enough bytes accessible in the header? If 21044 * not, try a pullup. 21045 */ 21046 v_hlen &= 0xF; 21047 v_hlen <<= 2; 21048 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 21049 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21050 "ip_wput_end: q %p (%S)", q, "badlen"); 21051 goto discard_pkt; 21052 } 21053 if (v_hlen > (mp->b_wptr - rptr)) { 21054 if (!pullupmsg(mp, v_hlen)) { 21055 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21056 "ip_wput_end: q %p (%S)", q, "badpullup2"); 21057 goto discard_pkt; 21058 } 21059 ipha = (ipha_t *)mp->b_rptr; 21060 } 21061 /* 21062 * Move first entry from any source route into ipha_dst and 21063 * verify the options 21064 */ 21065 if (ip_wput_options(q, first_mp, ipha, mctl_present, 21066 zoneid, ipst)) { 21067 ASSERT(xmit_ill == NULL); 21068 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21069 if (attach_ill != NULL) 21070 ill_refrele(attach_ill); 21071 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21072 "ip_wput_end: q %p (%S)", q, "badopts"); 21073 if (need_decref) 21074 CONN_DEC_REF(connp); 21075 return; 21076 } 21077 } 21078 dst = ipha->ipha_dst; 21079 21080 /* 21081 * Try to get an IRE_CACHE for the destination address. If we can't, 21082 * we have to run the packet through ip_newroute which will take 21083 * the appropriate action to arrange for an IRE_CACHE, such as querying 21084 * a resolver, or assigning a default gateway, etc. 21085 */ 21086 if (CLASSD(dst)) { 21087 ipif_t *ipif; 21088 uint32_t setsrc = 0; 21089 21090 multicast: 21091 ASSERT(first_mp != NULL); 21092 ip2dbg(("ip_wput: CLASSD\n")); 21093 if (connp == NULL) { 21094 /* 21095 * Use the first good ipif on the ill. 21096 * XXX Should this ever happen? (Appears 21097 * to show up with just ppp and no ethernet due 21098 * to in.rdisc.) 21099 * However, ire_send should be able to 21100 * call ip_wput_ire directly. 21101 * 21102 * XXX Also, this can happen for ICMP and other packets 21103 * with multicast source addresses. Perhaps we should 21104 * fix things so that we drop the packet in question, 21105 * but for now, just run with it. 21106 */ 21107 ill_t *ill = (ill_t *)q->q_ptr; 21108 21109 /* 21110 * Don't honor attach_if for this case. If ill 21111 * is part of the group, ipif could belong to 21112 * any ill and we cannot maintain attach_ill 21113 * and ipif_ill same anymore and the assert 21114 * below would fail. 21115 */ 21116 if (mctl_present && io->ipsec_out_attach_if) { 21117 io->ipsec_out_ill_index = 0; 21118 io->ipsec_out_attach_if = B_FALSE; 21119 ASSERT(attach_ill != NULL); 21120 ill_refrele(attach_ill); 21121 attach_ill = NULL; 21122 } 21123 21124 ASSERT(attach_ill == NULL); 21125 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 21126 if (ipif == NULL) { 21127 if (need_decref) 21128 CONN_DEC_REF(connp); 21129 freemsg(first_mp); 21130 return; 21131 } 21132 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 21133 ntohl(dst), ill->ill_name)); 21134 } else { 21135 /* 21136 * The order of precedence is IP_XMIT_IF, IP_PKTINFO 21137 * and IP_MULTICAST_IF. 21138 * Block comment above this function explains the 21139 * locking mechanism used here 21140 */ 21141 if (xmit_ill == NULL) { 21142 xmit_ill = conn_get_held_ill(connp, 21143 &connp->conn_xmit_if_ill, &err); 21144 if (err == ILL_LOOKUP_FAILED) { 21145 ip1dbg(("ip_wput: No ill for " 21146 "IP_XMIT_IF\n")); 21147 BUMP_MIB(&ipst->ips_ip_mib, 21148 ipIfStatsOutNoRoutes); 21149 goto drop_pkt; 21150 } 21151 } 21152 21153 if (xmit_ill == NULL) { 21154 ipif = conn_get_held_ipif(connp, 21155 &connp->conn_multicast_ipif, &err); 21156 if (err == IPIF_LOOKUP_FAILED) { 21157 ip1dbg(("ip_wput: No ipif for " 21158 "multicast\n")); 21159 BUMP_MIB(&ipst->ips_ip_mib, 21160 ipIfStatsOutNoRoutes); 21161 goto drop_pkt; 21162 } 21163 } 21164 if (xmit_ill != NULL) { 21165 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21166 if (ipif == NULL) { 21167 ip1dbg(("ip_wput: No ipif for " 21168 "IP_XMIT_IF\n")); 21169 BUMP_MIB(&ipst->ips_ip_mib, 21170 ipIfStatsOutNoRoutes); 21171 goto drop_pkt; 21172 } 21173 } else if (ipif == NULL || ipif->ipif_isv6) { 21174 /* 21175 * We must do this ipif determination here 21176 * else we could pass through ip_newroute 21177 * and come back here without the conn context. 21178 * 21179 * Note: we do late binding i.e. we bind to 21180 * the interface when the first packet is sent. 21181 * For performance reasons we do not rebind on 21182 * each packet but keep the binding until the 21183 * next IP_MULTICAST_IF option. 21184 * 21185 * conn_multicast_{ipif,ill} are shared between 21186 * IPv4 and IPv6 and AF_INET6 sockets can 21187 * send both IPv4 and IPv6 packets. Hence 21188 * we have to check that "isv6" matches above. 21189 */ 21190 if (ipif != NULL) 21191 ipif_refrele(ipif); 21192 ipif = ipif_lookup_group(dst, zoneid, ipst); 21193 if (ipif == NULL) { 21194 ip1dbg(("ip_wput: No ipif for " 21195 "multicast\n")); 21196 BUMP_MIB(&ipst->ips_ip_mib, 21197 ipIfStatsOutNoRoutes); 21198 goto drop_pkt; 21199 } 21200 err = conn_set_held_ipif(connp, 21201 &connp->conn_multicast_ipif, ipif); 21202 if (err == IPIF_LOOKUP_FAILED) { 21203 ipif_refrele(ipif); 21204 ip1dbg(("ip_wput: No ipif for " 21205 "multicast\n")); 21206 BUMP_MIB(&ipst->ips_ip_mib, 21207 ipIfStatsOutNoRoutes); 21208 goto drop_pkt; 21209 } 21210 } 21211 } 21212 ASSERT(!ipif->ipif_isv6); 21213 /* 21214 * As we may lose the conn by the time we reach ip_wput_ire, 21215 * we copy conn_multicast_loop and conn_dontroute on to an 21216 * ipsec_out. In case if this datagram goes out secure, 21217 * we need the ill_index also. Copy that also into the 21218 * ipsec_out. 21219 */ 21220 if (mctl_present) { 21221 io = (ipsec_out_t *)first_mp->b_rptr; 21222 ASSERT(first_mp->b_datap->db_type == M_CTL); 21223 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21224 } else { 21225 ASSERT(mp == first_mp); 21226 if ((first_mp = allocb(sizeof (ipsec_info_t), 21227 BPRI_HI)) == NULL) { 21228 ipif_refrele(ipif); 21229 first_mp = mp; 21230 goto discard_pkt; 21231 } 21232 first_mp->b_datap->db_type = M_CTL; 21233 first_mp->b_wptr += sizeof (ipsec_info_t); 21234 /* ipsec_out_secure is B_FALSE now */ 21235 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 21236 io = (ipsec_out_t *)first_mp->b_rptr; 21237 io->ipsec_out_type = IPSEC_OUT; 21238 io->ipsec_out_len = sizeof (ipsec_out_t); 21239 io->ipsec_out_use_global_policy = B_TRUE; 21240 io->ipsec_out_ns = ipst->ips_netstack; 21241 first_mp->b_cont = mp; 21242 mctl_present = B_TRUE; 21243 } 21244 if (attach_ill != NULL) { 21245 ASSERT(attach_ill == ipif->ipif_ill); 21246 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21247 21248 /* 21249 * Check if we need an ire that will not be 21250 * looked up by anybody else i.e. HIDDEN. 21251 */ 21252 if (ill_is_probeonly(attach_ill)) { 21253 match_flags |= MATCH_IRE_MARK_HIDDEN; 21254 } 21255 io->ipsec_out_ill_index = 21256 attach_ill->ill_phyint->phyint_ifindex; 21257 io->ipsec_out_attach_if = B_TRUE; 21258 } else { 21259 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 21260 io->ipsec_out_ill_index = 21261 ipif->ipif_ill->ill_phyint->phyint_ifindex; 21262 } 21263 if (connp != NULL) { 21264 io->ipsec_out_multicast_loop = 21265 connp->conn_multicast_loop; 21266 io->ipsec_out_dontroute = connp->conn_dontroute; 21267 io->ipsec_out_zoneid = connp->conn_zoneid; 21268 } 21269 /* 21270 * If the application uses IP_MULTICAST_IF with 21271 * different logical addresses of the same ILL, we 21272 * need to make sure that the soruce address of 21273 * the packet matches the logical IP address used 21274 * in the option. We do it by initializing ipha_src 21275 * here. This should keep IPSEC also happy as 21276 * when we return from IPSEC processing, we don't 21277 * have to worry about getting the right address on 21278 * the packet. Thus it is sufficient to look for 21279 * IRE_CACHE using MATCH_IRE_ILL rathen than 21280 * MATCH_IRE_IPIF. 21281 * 21282 * NOTE : We need to do it for non-secure case also as 21283 * this might go out secure if there is a global policy 21284 * match in ip_wput_ire. For bind to IPIF_NOFAILOVER 21285 * address, the source should be initialized already and 21286 * hence we won't be initializing here. 21287 * 21288 * As we do not have the ire yet, it is possible that 21289 * we set the source address here and then later discover 21290 * that the ire implies the source address to be assigned 21291 * through the RTF_SETSRC flag. 21292 * In that case, the setsrc variable will remind us 21293 * that overwritting the source address by the one 21294 * of the RTF_SETSRC-flagged ire is allowed. 21295 */ 21296 if (ipha->ipha_src == INADDR_ANY && 21297 (connp == NULL || !connp->conn_unspec_src)) { 21298 ipha->ipha_src = ipif->ipif_src_addr; 21299 setsrc = RTF_SETSRC; 21300 } 21301 /* 21302 * Find an IRE which matches the destination and the outgoing 21303 * queue (i.e. the outgoing interface.) 21304 * For loopback use a unicast IP address for 21305 * the ire lookup. 21306 */ 21307 if (ipif->ipif_ill->ill_phyint->phyint_flags & 21308 PHYI_LOOPBACK) { 21309 dst = ipif->ipif_lcl_addr; 21310 } 21311 /* 21312 * If IP_XMIT_IF is set, we branch out to ip_newroute_ipif. 21313 * We don't need to lookup ire in ctable as the packet 21314 * needs to be sent to the destination through the specified 21315 * ill irrespective of ires in the cache table. 21316 */ 21317 ire = NULL; 21318 if (xmit_ill == NULL) { 21319 ire = ire_ctable_lookup(dst, 0, 0, ipif, 21320 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21321 } 21322 21323 /* 21324 * refrele attach_ill as its not needed anymore. 21325 */ 21326 if (attach_ill != NULL) { 21327 ill_refrele(attach_ill); 21328 attach_ill = NULL; 21329 } 21330 21331 if (ire == NULL) { 21332 /* 21333 * Multicast loopback and multicast forwarding is 21334 * done in ip_wput_ire. 21335 * 21336 * Mark this packet to make it be delivered to 21337 * ip_wput_ire after the new ire has been 21338 * created. 21339 * 21340 * The call to ip_newroute_ipif takes into account 21341 * the setsrc reminder. In any case, we take care 21342 * of the RTF_MULTIRT flag. 21343 */ 21344 mp->b_prev = mp->b_next = NULL; 21345 if (xmit_ill == NULL || 21346 xmit_ill->ill_ipif_up_count > 0) { 21347 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 21348 setsrc | RTF_MULTIRT, zoneid, infop); 21349 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21350 "ip_wput_end: q %p (%S)", q, "noire"); 21351 } else { 21352 freemsg(first_mp); 21353 } 21354 ipif_refrele(ipif); 21355 if (xmit_ill != NULL) 21356 ill_refrele(xmit_ill); 21357 if (need_decref) 21358 CONN_DEC_REF(connp); 21359 return; 21360 } 21361 21362 ipif_refrele(ipif); 21363 ipif = NULL; 21364 ASSERT(xmit_ill == NULL); 21365 21366 /* 21367 * Honor the RTF_SETSRC flag for multicast packets, 21368 * if allowed by the setsrc reminder. 21369 */ 21370 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 21371 ipha->ipha_src = ire->ire_src_addr; 21372 } 21373 21374 /* 21375 * Unconditionally force the TTL to 1 for 21376 * multirouted multicast packets: 21377 * multirouted multicast should not cross 21378 * multicast routers. 21379 */ 21380 if (ire->ire_flags & RTF_MULTIRT) { 21381 if (ipha->ipha_ttl > 1) { 21382 ip2dbg(("ip_wput: forcing multicast " 21383 "multirt TTL to 1 (was %d), dst 0x%08x\n", 21384 ipha->ipha_ttl, ntohl(ire->ire_addr))); 21385 ipha->ipha_ttl = 1; 21386 } 21387 } 21388 } else { 21389 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 21390 if ((ire != NULL) && (ire->ire_type & 21391 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 21392 ignore_dontroute = B_TRUE; 21393 ignore_nexthop = B_TRUE; 21394 } 21395 if (ire != NULL) { 21396 ire_refrele(ire); 21397 ire = NULL; 21398 } 21399 /* 21400 * Guard against coming in from arp in which case conn is NULL. 21401 * Also guard against non M_DATA with dontroute set but 21402 * destined to local, loopback or broadcast addresses. 21403 */ 21404 if (connp != NULL && connp->conn_dontroute && 21405 !ignore_dontroute) { 21406 dontroute: 21407 /* 21408 * Set TTL to 1 if SO_DONTROUTE is set to prevent 21409 * routing protocols from seeing false direct 21410 * connectivity. 21411 */ 21412 ipha->ipha_ttl = 1; 21413 /* 21414 * If IP_XMIT_IF is also set (conn_xmit_if_ill != NULL) 21415 * along with SO_DONTROUTE, higher precedence is 21416 * given to IP_XMIT_IF and the IP_XMIT_IF ipif is used. 21417 */ 21418 if (connp->conn_xmit_if_ill == NULL) { 21419 /* If suitable ipif not found, drop packet */ 21420 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid, 21421 ipst); 21422 if (dst_ipif == NULL) { 21423 ip1dbg(("ip_wput: no route for " 21424 "dst using SO_DONTROUTE\n")); 21425 BUMP_MIB(&ipst->ips_ip_mib, 21426 ipIfStatsOutNoRoutes); 21427 mp->b_prev = mp->b_next = NULL; 21428 if (first_mp == NULL) 21429 first_mp = mp; 21430 goto drop_pkt; 21431 } else { 21432 /* 21433 * If suitable ipif has been found, set 21434 * xmit_ill to the corresponding 21435 * ipif_ill because we'll be following 21436 * the IP_XMIT_IF logic. 21437 */ 21438 ASSERT(xmit_ill == NULL); 21439 xmit_ill = dst_ipif->ipif_ill; 21440 mutex_enter(&xmit_ill->ill_lock); 21441 if (!ILL_CAN_LOOKUP(xmit_ill)) { 21442 mutex_exit(&xmit_ill->ill_lock); 21443 xmit_ill = NULL; 21444 ipif_refrele(dst_ipif); 21445 ip1dbg(("ip_wput: no route for" 21446 " dst using" 21447 " SO_DONTROUTE\n")); 21448 BUMP_MIB(&ipst->ips_ip_mib, 21449 ipIfStatsOutNoRoutes); 21450 mp->b_prev = mp->b_next = NULL; 21451 if (first_mp == NULL) 21452 first_mp = mp; 21453 goto drop_pkt; 21454 } 21455 ill_refhold_locked(xmit_ill); 21456 mutex_exit(&xmit_ill->ill_lock); 21457 ipif_refrele(dst_ipif); 21458 } 21459 } 21460 21461 } 21462 /* 21463 * If we are bound to IPIF_NOFAILOVER address, look for 21464 * an IRE_CACHE matching the ill. 21465 */ 21466 send_from_ill: 21467 if (attach_ill != NULL) { 21468 ipif_t *attach_ipif; 21469 21470 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21471 21472 /* 21473 * Check if we need an ire that will not be 21474 * looked up by anybody else i.e. HIDDEN. 21475 */ 21476 if (ill_is_probeonly(attach_ill)) { 21477 match_flags |= MATCH_IRE_MARK_HIDDEN; 21478 } 21479 21480 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 21481 if (attach_ipif == NULL) { 21482 ip1dbg(("ip_wput: No ipif for attach_ill\n")); 21483 goto discard_pkt; 21484 } 21485 ire = ire_ctable_lookup(dst, 0, 0, attach_ipif, 21486 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21487 ipif_refrele(attach_ipif); 21488 } else if (xmit_ill != NULL || (connp != NULL && 21489 connp->conn_xmit_if_ill != NULL)) { 21490 /* 21491 * Mark this packet as originated locally 21492 */ 21493 mp->b_prev = mp->b_next = NULL; 21494 /* 21495 * xmit_ill could be NULL if SO_DONTROUTE 21496 * is also set. 21497 */ 21498 if (xmit_ill == NULL) { 21499 xmit_ill = conn_get_held_ill(connp, 21500 &connp->conn_xmit_if_ill, &err); 21501 if (err == ILL_LOOKUP_FAILED) { 21502 BUMP_MIB(&ipst->ips_ip_mib, 21503 ipIfStatsOutDiscards); 21504 if (need_decref) 21505 CONN_DEC_REF(connp); 21506 freemsg(first_mp); 21507 return; 21508 } 21509 if (xmit_ill == NULL) { 21510 if (connp->conn_dontroute) 21511 goto dontroute; 21512 goto send_from_ill; 21513 } 21514 } 21515 /* 21516 * Could be SO_DONTROUTE case also. 21517 * check at least one interface is UP as 21518 * specified by this ILL 21519 */ 21520 if (xmit_ill->ill_ipif_up_count > 0) { 21521 ipif_t *ipif; 21522 21523 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21524 if (ipif == NULL) { 21525 ip1dbg(("ip_output: " 21526 "xmit_ill NULL ipif\n")); 21527 goto drop_pkt; 21528 } 21529 /* 21530 * Look for a ire that is part of the group, 21531 * if found use it else call ip_newroute_ipif. 21532 * IPCL_ZONEID is not used for matching because 21533 * IP_ALLZONES option is valid only when the 21534 * ill is accessible from all zones i.e has a 21535 * valid ipif in all zones. 21536 */ 21537 match_flags = MATCH_IRE_ILL_GROUP | 21538 MATCH_IRE_SECATTR; 21539 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 21540 MBLK_GETLABEL(mp), match_flags, ipst); 21541 /* 21542 * If an ire exists use it or else create 21543 * an ire but don't add it to the cache. 21544 * Adding an ire may cause issues with 21545 * asymmetric routing. 21546 * In case of multiroute always act as if 21547 * ire does not exist. 21548 */ 21549 if (ire == NULL || 21550 ire->ire_flags & RTF_MULTIRT) { 21551 if (ire != NULL) 21552 ire_refrele(ire); 21553 ip_newroute_ipif(q, first_mp, ipif, 21554 dst, connp, 0, zoneid, infop); 21555 ipif_refrele(ipif); 21556 ip1dbg(("ip_wput: ip_unicast_if\n")); 21557 ill_refrele(xmit_ill); 21558 if (need_decref) 21559 CONN_DEC_REF(connp); 21560 return; 21561 } 21562 ipif_refrele(ipif); 21563 } else { 21564 goto drop_pkt; 21565 } 21566 } else if (ip_nexthop || (connp != NULL && 21567 (connp->conn_nexthop_set)) && !ignore_nexthop) { 21568 if (!ip_nexthop) { 21569 ip_nexthop = B_TRUE; 21570 nexthop_addr = connp->conn_nexthop_v4; 21571 } 21572 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 21573 MATCH_IRE_GW; 21574 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 21575 NULL, zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21576 } else { 21577 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), 21578 ipst); 21579 } 21580 if (!ire) { 21581 /* 21582 * Make sure we don't load spread if this 21583 * is IPIF_NOFAILOVER case. 21584 */ 21585 if ((attach_ill != NULL) || 21586 (ip_nexthop && !ignore_nexthop)) { 21587 if (mctl_present) { 21588 io = (ipsec_out_t *)first_mp->b_rptr; 21589 ASSERT(first_mp->b_datap->db_type == 21590 M_CTL); 21591 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21592 } else { 21593 ASSERT(mp == first_mp); 21594 first_mp = allocb( 21595 sizeof (ipsec_info_t), BPRI_HI); 21596 if (first_mp == NULL) { 21597 first_mp = mp; 21598 goto discard_pkt; 21599 } 21600 first_mp->b_datap->db_type = M_CTL; 21601 first_mp->b_wptr += 21602 sizeof (ipsec_info_t); 21603 /* ipsec_out_secure is B_FALSE now */ 21604 bzero(first_mp->b_rptr, 21605 sizeof (ipsec_info_t)); 21606 io = (ipsec_out_t *)first_mp->b_rptr; 21607 io->ipsec_out_type = IPSEC_OUT; 21608 io->ipsec_out_len = 21609 sizeof (ipsec_out_t); 21610 io->ipsec_out_use_global_policy = 21611 B_TRUE; 21612 io->ipsec_out_ns = ipst->ips_netstack; 21613 first_mp->b_cont = mp; 21614 mctl_present = B_TRUE; 21615 } 21616 if (attach_ill != NULL) { 21617 io->ipsec_out_ill_index = attach_ill-> 21618 ill_phyint->phyint_ifindex; 21619 io->ipsec_out_attach_if = B_TRUE; 21620 } else { 21621 io->ipsec_out_ip_nexthop = ip_nexthop; 21622 io->ipsec_out_nexthop_addr = 21623 nexthop_addr; 21624 } 21625 } 21626 noirefound: 21627 /* 21628 * Mark this packet as having originated on 21629 * this machine. This will be noted in 21630 * ire_add_then_send, which needs to know 21631 * whether to run it back through ip_wput or 21632 * ip_rput following successful resolution. 21633 */ 21634 mp->b_prev = NULL; 21635 mp->b_next = NULL; 21636 ip_newroute(q, first_mp, dst, NULL, connp, zoneid, 21637 ipst); 21638 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21639 "ip_wput_end: q %p (%S)", q, "newroute"); 21640 if (attach_ill != NULL) 21641 ill_refrele(attach_ill); 21642 if (xmit_ill != NULL) 21643 ill_refrele(xmit_ill); 21644 if (need_decref) 21645 CONN_DEC_REF(connp); 21646 return; 21647 } 21648 } 21649 21650 /* We now know where we are going with it. */ 21651 21652 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21653 "ip_wput_end: q %p (%S)", q, "end"); 21654 21655 /* 21656 * Check if the ire has the RTF_MULTIRT flag, inherited 21657 * from an IRE_OFFSUBNET ire entry in ip_newroute. 21658 */ 21659 if (ire->ire_flags & RTF_MULTIRT) { 21660 /* 21661 * Force the TTL of multirouted packets if required. 21662 * The TTL of such packets is bounded by the 21663 * ip_multirt_ttl ndd variable. 21664 */ 21665 if ((ipst->ips_ip_multirt_ttl > 0) && 21666 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 21667 ip2dbg(("ip_wput: forcing multirt TTL to %d " 21668 "(was %d), dst 0x%08x\n", 21669 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 21670 ntohl(ire->ire_addr))); 21671 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 21672 } 21673 /* 21674 * At this point, we check to see if there are any pending 21675 * unresolved routes. ire_multirt_resolvable() 21676 * checks in O(n) that all IRE_OFFSUBNET ire 21677 * entries for the packet's destination and 21678 * flagged RTF_MULTIRT are currently resolved. 21679 * If some remain unresolved, we make a copy 21680 * of the current message. It will be used 21681 * to initiate additional route resolutions. 21682 */ 21683 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 21684 MBLK_GETLABEL(first_mp), ipst); 21685 ip2dbg(("ip_wput[noirefound]: ire %p, " 21686 "multirt_need_resolve %d, first_mp %p\n", 21687 (void *)ire, multirt_need_resolve, (void *)first_mp)); 21688 if (multirt_need_resolve) { 21689 copy_mp = copymsg(first_mp); 21690 if (copy_mp != NULL) { 21691 MULTIRT_DEBUG_TAG(copy_mp); 21692 } 21693 } 21694 } 21695 21696 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 21697 /* 21698 * Try to resolve another multiroute if 21699 * ire_multirt_resolvable() deemed it necessary. 21700 * At this point, we need to distinguish 21701 * multicasts from other packets. For multicasts, 21702 * we call ip_newroute_ipif() and request that both 21703 * multirouting and setsrc flags are checked. 21704 */ 21705 if (copy_mp != NULL) { 21706 if (CLASSD(dst)) { 21707 ipif_t *ipif = ipif_lookup_group(dst, zoneid, ipst); 21708 if (ipif) { 21709 ASSERT(infop->ip_opt_ill_index == 0); 21710 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 21711 RTF_SETSRC | RTF_MULTIRT, zoneid, infop); 21712 ipif_refrele(ipif); 21713 } else { 21714 MULTIRT_DEBUG_UNTAG(copy_mp); 21715 freemsg(copy_mp); 21716 copy_mp = NULL; 21717 } 21718 } else { 21719 ip_newroute(q, copy_mp, dst, NULL, connp, zoneid, ipst); 21720 } 21721 } 21722 if (attach_ill != NULL) 21723 ill_refrele(attach_ill); 21724 if (xmit_ill != NULL) 21725 ill_refrele(xmit_ill); 21726 if (need_decref) 21727 CONN_DEC_REF(connp); 21728 return; 21729 21730 icmp_parameter_problem: 21731 /* could not have originated externally */ 21732 ASSERT(mp->b_prev == NULL); 21733 if (ip_hdr_complete(ipha, zoneid, ipst) == 0) { 21734 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 21735 /* it's the IP header length that's in trouble */ 21736 icmp_param_problem(q, first_mp, 0, zoneid, ipst); 21737 first_mp = NULL; 21738 } 21739 21740 discard_pkt: 21741 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21742 drop_pkt: 21743 ip1dbg(("ip_wput: dropped packet\n")); 21744 if (ire != NULL) 21745 ire_refrele(ire); 21746 if (need_decref) 21747 CONN_DEC_REF(connp); 21748 freemsg(first_mp); 21749 if (attach_ill != NULL) 21750 ill_refrele(attach_ill); 21751 if (xmit_ill != NULL) 21752 ill_refrele(xmit_ill); 21753 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21754 "ip_wput_end: q %p (%S)", q, "droppkt"); 21755 } 21756 21757 /* 21758 * If this is a conn_t queue, then we pass in the conn. This includes the 21759 * zoneid. 21760 * Otherwise, this is a message coming back from ARP or for an ill_t queue, 21761 * in which case we use the global zoneid since those are all part of 21762 * the global zone. 21763 */ 21764 void 21765 ip_wput(queue_t *q, mblk_t *mp) 21766 { 21767 if (CONN_Q(q)) 21768 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 21769 else 21770 ip_output(GLOBAL_ZONEID, mp, q, IP_WPUT); 21771 } 21772 21773 /* 21774 * 21775 * The following rules must be observed when accessing any ipif or ill 21776 * that has been cached in the conn. Typically conn_nofailover_ill, 21777 * conn_xmit_if_ill, conn_multicast_ipif and conn_multicast_ill. 21778 * 21779 * Access: The ipif or ill pointed to from the conn can be accessed under 21780 * the protection of the conn_lock or after it has been refheld under the 21781 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 21782 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 21783 * The reason for this is that a concurrent unplumb could actually be 21784 * cleaning up these cached pointers by walking the conns and might have 21785 * finished cleaning up the conn in question. The macros check that an 21786 * unplumb has not yet started on the ipif or ill. 21787 * 21788 * Caching: An ipif or ill pointer may be cached in the conn only after 21789 * making sure that an unplumb has not started. So the caching is done 21790 * while holding both the conn_lock and the ill_lock and after using the 21791 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 21792 * flag before starting the cleanup of conns. 21793 * 21794 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 21795 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 21796 * or a reference to the ipif or a reference to an ire that references the 21797 * ipif. An ipif does not change its ill except for failover/failback. Since 21798 * failover/failback happens only after bringing down the ipif and making sure 21799 * the ipif refcnt has gone to zero and holding the ill_g_lock and ill_lock 21800 * the above holds. 21801 */ 21802 ipif_t * 21803 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 21804 { 21805 ipif_t *ipif; 21806 ill_t *ill; 21807 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 21808 21809 *err = 0; 21810 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21811 mutex_enter(&connp->conn_lock); 21812 ipif = *ipifp; 21813 if (ipif != NULL) { 21814 ill = ipif->ipif_ill; 21815 mutex_enter(&ill->ill_lock); 21816 if (IPIF_CAN_LOOKUP(ipif)) { 21817 ipif_refhold_locked(ipif); 21818 mutex_exit(&ill->ill_lock); 21819 mutex_exit(&connp->conn_lock); 21820 rw_exit(&ipst->ips_ill_g_lock); 21821 return (ipif); 21822 } else { 21823 *err = IPIF_LOOKUP_FAILED; 21824 } 21825 mutex_exit(&ill->ill_lock); 21826 } 21827 mutex_exit(&connp->conn_lock); 21828 rw_exit(&ipst->ips_ill_g_lock); 21829 return (NULL); 21830 } 21831 21832 ill_t * 21833 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 21834 { 21835 ill_t *ill; 21836 21837 *err = 0; 21838 mutex_enter(&connp->conn_lock); 21839 ill = *illp; 21840 if (ill != NULL) { 21841 mutex_enter(&ill->ill_lock); 21842 if (ILL_CAN_LOOKUP(ill)) { 21843 ill_refhold_locked(ill); 21844 mutex_exit(&ill->ill_lock); 21845 mutex_exit(&connp->conn_lock); 21846 return (ill); 21847 } else { 21848 *err = ILL_LOOKUP_FAILED; 21849 } 21850 mutex_exit(&ill->ill_lock); 21851 } 21852 mutex_exit(&connp->conn_lock); 21853 return (NULL); 21854 } 21855 21856 static int 21857 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 21858 { 21859 ill_t *ill; 21860 21861 ill = ipif->ipif_ill; 21862 mutex_enter(&connp->conn_lock); 21863 mutex_enter(&ill->ill_lock); 21864 if (IPIF_CAN_LOOKUP(ipif)) { 21865 *ipifp = ipif; 21866 mutex_exit(&ill->ill_lock); 21867 mutex_exit(&connp->conn_lock); 21868 return (0); 21869 } 21870 mutex_exit(&ill->ill_lock); 21871 mutex_exit(&connp->conn_lock); 21872 return (IPIF_LOOKUP_FAILED); 21873 } 21874 21875 /* 21876 * This is called if the outbound datagram needs fragmentation. 21877 * 21878 * NOTE : This function does not ire_refrele the ire argument passed in. 21879 */ 21880 static void 21881 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire, zoneid_t zoneid, 21882 ip_stack_t *ipst) 21883 { 21884 ipha_t *ipha; 21885 mblk_t *mp; 21886 uint32_t v_hlen_tos_len; 21887 uint32_t max_frag; 21888 uint32_t frag_flag; 21889 boolean_t dont_use; 21890 21891 if (ipsec_mp->b_datap->db_type == M_CTL) { 21892 mp = ipsec_mp->b_cont; 21893 } else { 21894 mp = ipsec_mp; 21895 } 21896 21897 ipha = (ipha_t *)mp->b_rptr; 21898 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21899 21900 #ifdef _BIG_ENDIAN 21901 #define V_HLEN (v_hlen_tos_len >> 24) 21902 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21903 #else 21904 #define V_HLEN (v_hlen_tos_len & 0xFF) 21905 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21906 #endif 21907 21908 #ifndef SPEED_BEFORE_SAFETY 21909 /* 21910 * Check that ipha_length is consistent with 21911 * the mblk length 21912 */ 21913 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 21914 ip0dbg(("Packet length mismatch: %d, %ld\n", 21915 LENGTH, msgdsize(mp))); 21916 freemsg(ipsec_mp); 21917 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21918 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 21919 "packet length mismatch"); 21920 return; 21921 } 21922 #endif 21923 /* 21924 * Don't use frag_flag if pre-built packet or source 21925 * routed or if multicast (since multicast packets do not solicit 21926 * ICMP "packet too big" messages). Get the values of 21927 * max_frag and frag_flag atomically by acquiring the 21928 * ire_lock. 21929 */ 21930 mutex_enter(&ire->ire_lock); 21931 max_frag = ire->ire_max_frag; 21932 frag_flag = ire->ire_frag_flag; 21933 mutex_exit(&ire->ire_lock); 21934 21935 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 21936 (V_HLEN != IP_SIMPLE_HDR_VERSION && 21937 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 21938 21939 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 21940 (dont_use ? 0 : frag_flag), zoneid, ipst); 21941 } 21942 21943 /* 21944 * Used for deciding the MSS size for the upper layer. Thus 21945 * we need to check the outbound policy values in the conn. 21946 */ 21947 int 21948 conn_ipsec_length(conn_t *connp) 21949 { 21950 ipsec_latch_t *ipl; 21951 21952 ipl = connp->conn_latch; 21953 if (ipl == NULL) 21954 return (0); 21955 21956 if (ipl->ipl_out_policy == NULL) 21957 return (0); 21958 21959 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 21960 } 21961 21962 /* 21963 * Returns an estimate of the IPSEC headers size. This is used if 21964 * we don't want to call into IPSEC to get the exact size. 21965 */ 21966 int 21967 ipsec_out_extra_length(mblk_t *ipsec_mp) 21968 { 21969 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 21970 ipsec_action_t *a; 21971 21972 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21973 if (!io->ipsec_out_secure) 21974 return (0); 21975 21976 a = io->ipsec_out_act; 21977 21978 if (a == NULL) { 21979 ASSERT(io->ipsec_out_policy != NULL); 21980 a = io->ipsec_out_policy->ipsp_act; 21981 } 21982 ASSERT(a != NULL); 21983 21984 return (a->ipa_ovhd); 21985 } 21986 21987 /* 21988 * Returns an estimate of the IPSEC headers size. This is used if 21989 * we don't want to call into IPSEC to get the exact size. 21990 */ 21991 int 21992 ipsec_in_extra_length(mblk_t *ipsec_mp) 21993 { 21994 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21995 ipsec_action_t *a; 21996 21997 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21998 21999 a = ii->ipsec_in_action; 22000 return (a == NULL ? 0 : a->ipa_ovhd); 22001 } 22002 22003 /* 22004 * If there are any source route options, return the true final 22005 * destination. Otherwise, return the destination. 22006 */ 22007 ipaddr_t 22008 ip_get_dst(ipha_t *ipha) 22009 { 22010 ipoptp_t opts; 22011 uchar_t *opt; 22012 uint8_t optval; 22013 uint8_t optlen; 22014 ipaddr_t dst; 22015 uint32_t off; 22016 22017 dst = ipha->ipha_dst; 22018 22019 if (IS_SIMPLE_IPH(ipha)) 22020 return (dst); 22021 22022 for (optval = ipoptp_first(&opts, ipha); 22023 optval != IPOPT_EOL; 22024 optval = ipoptp_next(&opts)) { 22025 opt = opts.ipoptp_cur; 22026 optlen = opts.ipoptp_len; 22027 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 22028 switch (optval) { 22029 case IPOPT_SSRR: 22030 case IPOPT_LSRR: 22031 off = opt[IPOPT_OFFSET]; 22032 /* 22033 * If one of the conditions is true, it means 22034 * end of options and dst already has the right 22035 * value. 22036 */ 22037 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 22038 off = optlen - IP_ADDR_LEN; 22039 bcopy(&opt[off], &dst, IP_ADDR_LEN); 22040 } 22041 return (dst); 22042 default: 22043 break; 22044 } 22045 } 22046 22047 return (dst); 22048 } 22049 22050 mblk_t * 22051 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 22052 conn_t *connp, boolean_t unspec_src, zoneid_t zoneid) 22053 { 22054 ipsec_out_t *io; 22055 mblk_t *first_mp; 22056 boolean_t policy_present; 22057 ip_stack_t *ipst; 22058 ipsec_stack_t *ipss; 22059 22060 ASSERT(ire != NULL); 22061 ipst = ire->ire_ipst; 22062 ipss = ipst->ips_netstack->netstack_ipsec; 22063 22064 first_mp = mp; 22065 if (mp->b_datap->db_type == M_CTL) { 22066 io = (ipsec_out_t *)first_mp->b_rptr; 22067 /* 22068 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 22069 * 22070 * 1) There is per-socket policy (including cached global 22071 * policy) or a policy on the IP-in-IP tunnel. 22072 * 2) There is no per-socket policy, but it is 22073 * a multicast packet that needs to go out 22074 * on a specific interface. This is the case 22075 * where (ip_wput and ip_wput_multicast) attaches 22076 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 22077 * 22078 * In case (2) we check with global policy to 22079 * see if there is a match and set the ill_index 22080 * appropriately so that we can lookup the ire 22081 * properly in ip_wput_ipsec_out. 22082 */ 22083 22084 /* 22085 * ipsec_out_use_global_policy is set to B_FALSE 22086 * in ipsec_in_to_out(). Refer to that function for 22087 * details. 22088 */ 22089 if ((io->ipsec_out_latch == NULL) && 22090 (io->ipsec_out_use_global_policy)) { 22091 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 22092 ire, connp, unspec_src, zoneid)); 22093 } 22094 if (!io->ipsec_out_secure) { 22095 /* 22096 * If this is not a secure packet, drop 22097 * the IPSEC_OUT mp and treat it as a clear 22098 * packet. This happens when we are sending 22099 * a ICMP reply back to a clear packet. See 22100 * ipsec_in_to_out() for details. 22101 */ 22102 mp = first_mp->b_cont; 22103 freeb(first_mp); 22104 } 22105 return (mp); 22106 } 22107 /* 22108 * See whether we need to attach a global policy here. We 22109 * don't depend on the conn (as it could be null) for deciding 22110 * what policy this datagram should go through because it 22111 * should have happened in ip_wput if there was some 22112 * policy. This normally happens for connections which are not 22113 * fully bound preventing us from caching policies in 22114 * ip_bind. Packets coming from the TCP listener/global queue 22115 * - which are non-hard_bound - could also be affected by 22116 * applying policy here. 22117 * 22118 * If this packet is coming from tcp global queue or listener, 22119 * we will be applying policy here. This may not be *right* 22120 * if these packets are coming from the detached connection as 22121 * it could have gone in clear before. This happens only if a 22122 * TCP connection started when there is no policy and somebody 22123 * added policy before it became detached. Thus packets of the 22124 * detached connection could go out secure and the other end 22125 * would drop it because it will be expecting in clear. The 22126 * converse is not true i.e if somebody starts a TCP 22127 * connection and deletes the policy, all the packets will 22128 * still go out with the policy that existed before deleting 22129 * because ip_unbind sends up policy information which is used 22130 * by TCP on subsequent ip_wputs. The right solution is to fix 22131 * TCP to attach a dummy IPSEC_OUT and set 22132 * ipsec_out_use_global_policy to B_FALSE. As this might 22133 * affect performance for normal cases, we are not doing it. 22134 * Thus, set policy before starting any TCP connections. 22135 * 22136 * NOTE - We might apply policy even for a hard bound connection 22137 * - for which we cached policy in ip_bind - if somebody added 22138 * global policy after we inherited the policy in ip_bind. 22139 * This means that the packets that were going out in clear 22140 * previously would start going secure and hence get dropped 22141 * on the other side. To fix this, TCP attaches a dummy 22142 * ipsec_out and make sure that we don't apply global policy. 22143 */ 22144 if (ipha != NULL) 22145 policy_present = ipss->ipsec_outbound_v4_policy_present; 22146 else 22147 policy_present = ipss->ipsec_outbound_v6_policy_present; 22148 if (!policy_present) 22149 return (mp); 22150 22151 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src, 22152 zoneid)); 22153 } 22154 22155 ire_t * 22156 conn_set_outgoing_ill(conn_t *connp, ire_t *ire, ill_t **conn_outgoing_ill) 22157 { 22158 ipaddr_t addr; 22159 ire_t *save_ire; 22160 irb_t *irb; 22161 ill_group_t *illgrp; 22162 int err; 22163 22164 save_ire = ire; 22165 addr = ire->ire_addr; 22166 22167 ASSERT(ire->ire_type == IRE_BROADCAST); 22168 22169 illgrp = connp->conn_outgoing_ill->ill_group; 22170 if (illgrp == NULL) { 22171 *conn_outgoing_ill = conn_get_held_ill(connp, 22172 &connp->conn_outgoing_ill, &err); 22173 if (err == ILL_LOOKUP_FAILED) { 22174 ire_refrele(save_ire); 22175 return (NULL); 22176 } 22177 return (save_ire); 22178 } 22179 /* 22180 * If IP_BOUND_IF has been done, conn_outgoing_ill will be set. 22181 * If it is part of the group, we need to send on the ire 22182 * that has been cleared of IRE_MARK_NORECV and that belongs 22183 * to this group. This is okay as IP_BOUND_IF really means 22184 * any ill in the group. We depend on the fact that the 22185 * first ire in the group is always cleared of IRE_MARK_NORECV 22186 * if such an ire exists. This is possible only if you have 22187 * at least one ill in the group that has not failed. 22188 * 22189 * First get to the ire that matches the address and group. 22190 * 22191 * We don't look for an ire with a matching zoneid because a given zone 22192 * won't always have broadcast ires on all ills in the group. 22193 */ 22194 irb = ire->ire_bucket; 22195 rw_enter(&irb->irb_lock, RW_READER); 22196 if (ire->ire_marks & IRE_MARK_NORECV) { 22197 /* 22198 * If the current zone only has an ire broadcast for this 22199 * address marked NORECV, the ire we want is ahead in the 22200 * bucket, so we look it up deliberately ignoring the zoneid. 22201 */ 22202 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 22203 if (ire->ire_addr != addr) 22204 continue; 22205 /* skip over deleted ires */ 22206 if (ire->ire_marks & IRE_MARK_CONDEMNED) 22207 continue; 22208 } 22209 } 22210 while (ire != NULL) { 22211 /* 22212 * If a new interface is coming up, we could end up 22213 * seeing the loopback ire and the non-loopback ire 22214 * may not have been added yet. So check for ire_stq 22215 */ 22216 if (ire->ire_stq != NULL && (ire->ire_addr != addr || 22217 ire->ire_ipif->ipif_ill->ill_group == illgrp)) { 22218 break; 22219 } 22220 ire = ire->ire_next; 22221 } 22222 if (ire != NULL && ire->ire_addr == addr && 22223 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 22224 IRE_REFHOLD(ire); 22225 rw_exit(&irb->irb_lock); 22226 ire_refrele(save_ire); 22227 *conn_outgoing_ill = ire_to_ill(ire); 22228 /* 22229 * Refhold the ill to make the conn_outgoing_ill 22230 * independent of the ire. ip_wput_ire goes in a loop 22231 * and may refrele the ire. Since we have an ire at this 22232 * point we don't need to use ILL_CAN_LOOKUP on the ill. 22233 */ 22234 ill_refhold(*conn_outgoing_ill); 22235 return (ire); 22236 } 22237 rw_exit(&irb->irb_lock); 22238 ip1dbg(("conn_set_outgoing_ill: No matching ire\n")); 22239 /* 22240 * If we can't find a suitable ire, return the original ire. 22241 */ 22242 return (save_ire); 22243 } 22244 22245 /* 22246 * This function does the ire_refrele of the ire passed in as the 22247 * argument. As this function looks up more ires i.e broadcast ires, 22248 * it needs to REFRELE them. Currently, for simplicity we don't 22249 * differentiate the one passed in and looked up here. We always 22250 * REFRELE. 22251 * IPQoS Notes: 22252 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 22253 * IPSec packets are done in ipsec_out_process. 22254 * 22255 */ 22256 void 22257 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller, 22258 zoneid_t zoneid) 22259 { 22260 ipha_t *ipha; 22261 #define rptr ((uchar_t *)ipha) 22262 queue_t *stq; 22263 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 22264 uint32_t v_hlen_tos_len; 22265 uint32_t ttl_protocol; 22266 ipaddr_t src; 22267 ipaddr_t dst; 22268 uint32_t cksum; 22269 ipaddr_t orig_src; 22270 ire_t *ire1; 22271 mblk_t *next_mp; 22272 uint_t hlen; 22273 uint16_t *up; 22274 uint32_t max_frag = ire->ire_max_frag; 22275 ill_t *ill = ire_to_ill(ire); 22276 int clusterwide; 22277 uint16_t ip_hdr_included; /* IP header included by ULP? */ 22278 int ipsec_len; 22279 mblk_t *first_mp; 22280 ipsec_out_t *io; 22281 boolean_t conn_dontroute; /* conn value for multicast */ 22282 boolean_t conn_multicast_loop; /* conn value for multicast */ 22283 boolean_t multicast_forward; /* Should we forward ? */ 22284 boolean_t unspec_src; 22285 ill_t *conn_outgoing_ill = NULL; 22286 ill_t *ire_ill; 22287 ill_t *ire1_ill; 22288 ill_t *out_ill; 22289 uint32_t ill_index = 0; 22290 boolean_t multirt_send = B_FALSE; 22291 int err; 22292 ipxmit_state_t pktxmit_state; 22293 ip_stack_t *ipst = ire->ire_ipst; 22294 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 22295 22296 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 22297 "ip_wput_ire_start: q %p", q); 22298 22299 multicast_forward = B_FALSE; 22300 unspec_src = (connp != NULL && connp->conn_unspec_src); 22301 22302 if (ire->ire_flags & RTF_MULTIRT) { 22303 /* 22304 * Multirouting case. The bucket where ire is stored 22305 * probably holds other RTF_MULTIRT flagged ire 22306 * to the destination. In this call to ip_wput_ire, 22307 * we attempt to send the packet through all 22308 * those ires. Thus, we first ensure that ire is the 22309 * first RTF_MULTIRT ire in the bucket, 22310 * before walking the ire list. 22311 */ 22312 ire_t *first_ire; 22313 irb_t *irb = ire->ire_bucket; 22314 ASSERT(irb != NULL); 22315 22316 /* Make sure we do not omit any multiroute ire. */ 22317 IRB_REFHOLD(irb); 22318 for (first_ire = irb->irb_ire; 22319 first_ire != NULL; 22320 first_ire = first_ire->ire_next) { 22321 if ((first_ire->ire_flags & RTF_MULTIRT) && 22322 (first_ire->ire_addr == ire->ire_addr) && 22323 !(first_ire->ire_marks & 22324 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 22325 break; 22326 } 22327 22328 if ((first_ire != NULL) && (first_ire != ire)) { 22329 IRE_REFHOLD(first_ire); 22330 ire_refrele(ire); 22331 ire = first_ire; 22332 ill = ire_to_ill(ire); 22333 } 22334 IRB_REFRELE(irb); 22335 } 22336 22337 /* 22338 * conn_outgoing_ill is used only in the broadcast loop. 22339 * for performance we don't grab the mutexs in the fastpath 22340 */ 22341 if ((connp != NULL) && 22342 (connp->conn_xmit_if_ill == NULL) && 22343 (ire->ire_type == IRE_BROADCAST) && 22344 ((connp->conn_nofailover_ill != NULL) || 22345 (connp->conn_outgoing_ill != NULL))) { 22346 /* 22347 * Bind to IPIF_NOFAILOVER address overrides IP_BOUND_IF 22348 * option. So, see if this endpoint is bound to a 22349 * IPIF_NOFAILOVER address. If so, honor it. This implies 22350 * that if the interface is failed, we will still send 22351 * the packet on the same ill which is what we want. 22352 */ 22353 conn_outgoing_ill = conn_get_held_ill(connp, 22354 &connp->conn_nofailover_ill, &err); 22355 if (err == ILL_LOOKUP_FAILED) { 22356 ire_refrele(ire); 22357 freemsg(mp); 22358 return; 22359 } 22360 if (conn_outgoing_ill == NULL) { 22361 /* 22362 * Choose a good ill in the group to send the 22363 * packets on. 22364 */ 22365 ire = conn_set_outgoing_ill(connp, ire, 22366 &conn_outgoing_ill); 22367 if (ire == NULL) { 22368 freemsg(mp); 22369 return; 22370 } 22371 } 22372 } 22373 22374 if (mp->b_datap->db_type != M_CTL) { 22375 ipha = (ipha_t *)mp->b_rptr; 22376 } else { 22377 io = (ipsec_out_t *)mp->b_rptr; 22378 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22379 ASSERT(zoneid == io->ipsec_out_zoneid); 22380 ASSERT(zoneid != ALL_ZONES); 22381 ipha = (ipha_t *)mp->b_cont->b_rptr; 22382 dst = ipha->ipha_dst; 22383 /* 22384 * For the multicast case, ipsec_out carries conn_dontroute and 22385 * conn_multicast_loop as conn may not be available here. We 22386 * need this for multicast loopback and forwarding which is done 22387 * later in the code. 22388 */ 22389 if (CLASSD(dst)) { 22390 conn_dontroute = io->ipsec_out_dontroute; 22391 conn_multicast_loop = io->ipsec_out_multicast_loop; 22392 /* 22393 * If conn_dontroute is not set or conn_multicast_loop 22394 * is set, we need to do forwarding/loopback. For 22395 * datagrams from ip_wput_multicast, conn_dontroute is 22396 * set to B_TRUE and conn_multicast_loop is set to 22397 * B_FALSE so that we neither do forwarding nor 22398 * loopback. 22399 */ 22400 if (!conn_dontroute || conn_multicast_loop) 22401 multicast_forward = B_TRUE; 22402 } 22403 } 22404 22405 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 22406 ire->ire_zoneid != ALL_ZONES) { 22407 /* 22408 * When a zone sends a packet to another zone, we try to deliver 22409 * the packet under the same conditions as if the destination 22410 * was a real node on the network. To do so, we look for a 22411 * matching route in the forwarding table. 22412 * RTF_REJECT and RTF_BLACKHOLE are handled just like 22413 * ip_newroute() does. 22414 * Note that IRE_LOCAL are special, since they are used 22415 * when the zoneid doesn't match in some cases. This means that 22416 * we need to handle ipha_src differently since ire_src_addr 22417 * belongs to the receiving zone instead of the sending zone. 22418 * When ip_restrict_interzone_loopback is set, then 22419 * ire_cache_lookup() ensures that IRE_LOCAL are only used 22420 * for loopback between zones when the logical "Ethernet" would 22421 * have looped them back. 22422 */ 22423 ire_t *src_ire; 22424 22425 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 22426 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 22427 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE), ipst); 22428 if (src_ire != NULL && 22429 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) && 22430 (!ipst->ips_ip_restrict_interzone_loopback || 22431 ire_local_same_ill_group(ire, src_ire))) { 22432 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 22433 ipha->ipha_src = src_ire->ire_src_addr; 22434 ire_refrele(src_ire); 22435 } else { 22436 ire_refrele(ire); 22437 if (conn_outgoing_ill != NULL) 22438 ill_refrele(conn_outgoing_ill); 22439 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 22440 if (src_ire != NULL) { 22441 if (src_ire->ire_flags & RTF_BLACKHOLE) { 22442 ire_refrele(src_ire); 22443 freemsg(mp); 22444 return; 22445 } 22446 ire_refrele(src_ire); 22447 } 22448 if (ip_hdr_complete(ipha, zoneid, ipst)) { 22449 /* Failed */ 22450 freemsg(mp); 22451 return; 22452 } 22453 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, zoneid, 22454 ipst); 22455 return; 22456 } 22457 } 22458 22459 if (mp->b_datap->db_type == M_CTL || 22460 ipss->ipsec_outbound_v4_policy_present) { 22461 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 22462 unspec_src, zoneid); 22463 if (mp == NULL) { 22464 ire_refrele(ire); 22465 if (conn_outgoing_ill != NULL) 22466 ill_refrele(conn_outgoing_ill); 22467 return; 22468 } 22469 } 22470 22471 first_mp = mp; 22472 ipsec_len = 0; 22473 22474 if (first_mp->b_datap->db_type == M_CTL) { 22475 io = (ipsec_out_t *)first_mp->b_rptr; 22476 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22477 mp = first_mp->b_cont; 22478 ipsec_len = ipsec_out_extra_length(first_mp); 22479 ASSERT(ipsec_len >= 0); 22480 /* We already picked up the zoneid from the M_CTL above */ 22481 ASSERT(zoneid == io->ipsec_out_zoneid); 22482 ASSERT(zoneid != ALL_ZONES); 22483 22484 /* 22485 * Drop M_CTL here if IPsec processing is not needed. 22486 * (Non-IPsec use of M_CTL extracted any information it 22487 * needed above). 22488 */ 22489 if (ipsec_len == 0) { 22490 freeb(first_mp); 22491 first_mp = mp; 22492 } 22493 } 22494 22495 /* 22496 * Fast path for ip_wput_ire 22497 */ 22498 22499 ipha = (ipha_t *)mp->b_rptr; 22500 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 22501 dst = ipha->ipha_dst; 22502 22503 /* 22504 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 22505 * if the socket is a SOCK_RAW type. The transport checksum should 22506 * be provided in the pre-built packet, so we don't need to compute it. 22507 * Also, other application set flags, like DF, should not be altered. 22508 * Other transport MUST pass down zero. 22509 */ 22510 ip_hdr_included = ipha->ipha_ident; 22511 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 22512 22513 if (CLASSD(dst)) { 22514 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 22515 ntohl(dst), 22516 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 22517 ntohl(ire->ire_addr))); 22518 } 22519 22520 /* Macros to extract header fields from data already in registers */ 22521 #ifdef _BIG_ENDIAN 22522 #define V_HLEN (v_hlen_tos_len >> 24) 22523 #define LENGTH (v_hlen_tos_len & 0xFFFF) 22524 #define PROTO (ttl_protocol & 0xFF) 22525 #else 22526 #define V_HLEN (v_hlen_tos_len & 0xFF) 22527 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 22528 #define PROTO (ttl_protocol >> 8) 22529 #endif 22530 22531 22532 orig_src = src = ipha->ipha_src; 22533 /* (The loop back to "another" is explained down below.) */ 22534 another:; 22535 /* 22536 * Assign an ident value for this packet. We assign idents on 22537 * a per destination basis out of the IRE. There could be 22538 * other threads targeting the same destination, so we have to 22539 * arrange for a atomic increment. Note that we use a 32-bit 22540 * atomic add because it has better performance than its 22541 * 16-bit sibling. 22542 * 22543 * If running in cluster mode and if the source address 22544 * belongs to a replicated service then vector through 22545 * cl_inet_ipident vector to allocate ip identifier 22546 * NOTE: This is a contract private interface with the 22547 * clustering group. 22548 */ 22549 clusterwide = 0; 22550 if (cl_inet_ipident) { 22551 ASSERT(cl_inet_isclusterwide); 22552 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 22553 AF_INET, (uint8_t *)(uintptr_t)src)) { 22554 ipha->ipha_ident = (*cl_inet_ipident)(IPPROTO_IP, 22555 AF_INET, (uint8_t *)(uintptr_t)src, 22556 (uint8_t *)(uintptr_t)dst); 22557 clusterwide = 1; 22558 } 22559 } 22560 if (!clusterwide) { 22561 ipha->ipha_ident = 22562 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 22563 } 22564 22565 #ifndef _BIG_ENDIAN 22566 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 22567 #endif 22568 22569 /* 22570 * Set source address unless sent on an ill or conn_unspec_src is set. 22571 * This is needed to obey conn_unspec_src when packets go through 22572 * ip_newroute + arp. 22573 * Assumes ip_newroute{,_multi} sets the source address as well. 22574 */ 22575 if (src == INADDR_ANY && !unspec_src) { 22576 /* 22577 * Assign the appropriate source address from the IRE if none 22578 * was specified. 22579 */ 22580 ASSERT(ire->ire_ipversion == IPV4_VERSION); 22581 22582 /* 22583 * With IP multipathing, broadcast packets are sent on the ire 22584 * that has been cleared of IRE_MARK_NORECV and that belongs to 22585 * the group. However, this ire might not be in the same zone so 22586 * we can't always use its source address. We look for a 22587 * broadcast ire in the same group and in the right zone. 22588 */ 22589 if (ire->ire_type == IRE_BROADCAST && 22590 ire->ire_zoneid != zoneid) { 22591 ire_t *src_ire = ire_ctable_lookup(dst, 0, 22592 IRE_BROADCAST, ire->ire_ipif, zoneid, NULL, 22593 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 22594 if (src_ire != NULL) { 22595 src = src_ire->ire_src_addr; 22596 ire_refrele(src_ire); 22597 } else { 22598 ire_refrele(ire); 22599 if (conn_outgoing_ill != NULL) 22600 ill_refrele(conn_outgoing_ill); 22601 freemsg(first_mp); 22602 if (ill != NULL) { 22603 BUMP_MIB(ill->ill_ip_mib, 22604 ipIfStatsOutDiscards); 22605 } else { 22606 BUMP_MIB(&ipst->ips_ip_mib, 22607 ipIfStatsOutDiscards); 22608 } 22609 return; 22610 } 22611 } else { 22612 src = ire->ire_src_addr; 22613 } 22614 22615 if (connp == NULL) { 22616 ip1dbg(("ip_wput_ire: no connp and no src " 22617 "address for dst 0x%x, using src 0x%x\n", 22618 ntohl(dst), 22619 ntohl(src))); 22620 } 22621 ipha->ipha_src = src; 22622 } 22623 stq = ire->ire_stq; 22624 22625 /* 22626 * We only allow ire chains for broadcasts since there will 22627 * be multiple IRE_CACHE entries for the same multicast 22628 * address (one per ipif). 22629 */ 22630 next_mp = NULL; 22631 22632 /* broadcast packet */ 22633 if (ire->ire_type == IRE_BROADCAST) 22634 goto broadcast; 22635 22636 /* loopback ? */ 22637 if (stq == NULL) 22638 goto nullstq; 22639 22640 /* The ill_index for outbound ILL */ 22641 ill_index = Q_TO_INDEX(stq); 22642 22643 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 22644 ttl_protocol = ((uint16_t *)ipha)[4]; 22645 22646 /* pseudo checksum (do it in parts for IP header checksum) */ 22647 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 22648 22649 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 22650 queue_t *dev_q = stq->q_next; 22651 22652 /* flow controlled */ 22653 if ((dev_q->q_next || dev_q->q_first) && 22654 !canput(dev_q)) 22655 goto blocked; 22656 if ((PROTO == IPPROTO_UDP) && 22657 (ip_hdr_included != IP_HDR_INCLUDED)) { 22658 hlen = (V_HLEN & 0xF) << 2; 22659 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22660 if (*up != 0) { 22661 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 22662 hlen, LENGTH, max_frag, ipsec_len, cksum); 22663 /* Software checksum? */ 22664 if (DB_CKSUMFLAGS(mp) == 0) { 22665 IP_STAT(ipst, ip_out_sw_cksum); 22666 IP_STAT_UPDATE(ipst, 22667 ip_udp_out_sw_cksum_bytes, 22668 LENGTH - hlen); 22669 } 22670 } 22671 } 22672 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 22673 hlen = (V_HLEN & 0xF) << 2; 22674 if (PROTO == IPPROTO_TCP) { 22675 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22676 /* 22677 * The packet header is processed once and for all, even 22678 * in the multirouting case. We disable hardware 22679 * checksum if the packet is multirouted, as it will be 22680 * replicated via several interfaces, and not all of 22681 * them may have this capability. 22682 */ 22683 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 22684 LENGTH, max_frag, ipsec_len, cksum); 22685 /* Software checksum? */ 22686 if (DB_CKSUMFLAGS(mp) == 0) { 22687 IP_STAT(ipst, ip_out_sw_cksum); 22688 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22689 LENGTH - hlen); 22690 } 22691 } else { 22692 sctp_hdr_t *sctph; 22693 22694 ASSERT(PROTO == IPPROTO_SCTP); 22695 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22696 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22697 /* 22698 * Zero out the checksum field to ensure proper 22699 * checksum calculation. 22700 */ 22701 sctph->sh_chksum = 0; 22702 #ifdef DEBUG 22703 if (!skip_sctp_cksum) 22704 #endif 22705 sctph->sh_chksum = sctp_cksum(mp, hlen); 22706 } 22707 } 22708 22709 /* 22710 * If this is a multicast packet and originated from ip_wput 22711 * we need to do loopback and forwarding checks. If it comes 22712 * from ip_wput_multicast, we SHOULD not do this. 22713 */ 22714 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 22715 22716 /* checksum */ 22717 cksum += ttl_protocol; 22718 22719 /* fragment the packet */ 22720 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 22721 goto fragmentit; 22722 /* 22723 * Don't use frag_flag if packet is pre-built or source 22724 * routed or if multicast (since multicast packets do 22725 * not solicit ICMP "packet too big" messages). 22726 */ 22727 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22728 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22729 !ip_source_route_included(ipha)) && 22730 !CLASSD(ipha->ipha_dst)) 22731 ipha->ipha_fragment_offset_and_flags |= 22732 htons(ire->ire_frag_flag); 22733 22734 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22735 /* calculate IP header checksum */ 22736 cksum += ipha->ipha_ident; 22737 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 22738 cksum += ipha->ipha_fragment_offset_and_flags; 22739 22740 /* IP options present */ 22741 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22742 if (hlen) 22743 goto checksumoptions; 22744 22745 /* calculate hdr checksum */ 22746 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22747 cksum = ~(cksum + (cksum >> 16)); 22748 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22749 } 22750 if (ipsec_len != 0) { 22751 /* 22752 * We will do the rest of the processing after 22753 * we come back from IPSEC in ip_wput_ipsec_out(). 22754 */ 22755 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 22756 22757 io = (ipsec_out_t *)first_mp->b_rptr; 22758 io->ipsec_out_ill_index = ((ill_t *)stq->q_ptr)-> 22759 ill_phyint->phyint_ifindex; 22760 22761 ipsec_out_process(q, first_mp, ire, ill_index); 22762 ire_refrele(ire); 22763 if (conn_outgoing_ill != NULL) 22764 ill_refrele(conn_outgoing_ill); 22765 return; 22766 } 22767 22768 /* 22769 * In most cases, the emission loop below is entered only 22770 * once. Only in the case where the ire holds the 22771 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 22772 * flagged ires in the bucket, and send the packet 22773 * through all crossed RTF_MULTIRT routes. 22774 */ 22775 if (ire->ire_flags & RTF_MULTIRT) { 22776 multirt_send = B_TRUE; 22777 } 22778 do { 22779 if (multirt_send) { 22780 irb_t *irb; 22781 /* 22782 * We are in a multiple send case, need to get 22783 * the next ire and make a duplicate of the packet. 22784 * ire1 holds here the next ire to process in the 22785 * bucket. If multirouting is expected, 22786 * any non-RTF_MULTIRT ire that has the 22787 * right destination address is ignored. 22788 */ 22789 irb = ire->ire_bucket; 22790 ASSERT(irb != NULL); 22791 22792 IRB_REFHOLD(irb); 22793 for (ire1 = ire->ire_next; 22794 ire1 != NULL; 22795 ire1 = ire1->ire_next) { 22796 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 22797 continue; 22798 if (ire1->ire_addr != ire->ire_addr) 22799 continue; 22800 if (ire1->ire_marks & 22801 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 22802 continue; 22803 22804 /* Got one */ 22805 IRE_REFHOLD(ire1); 22806 break; 22807 } 22808 IRB_REFRELE(irb); 22809 22810 if (ire1 != NULL) { 22811 next_mp = copyb(mp); 22812 if ((next_mp == NULL) || 22813 ((mp->b_cont != NULL) && 22814 ((next_mp->b_cont = 22815 dupmsg(mp->b_cont)) == NULL))) { 22816 freemsg(next_mp); 22817 next_mp = NULL; 22818 ire_refrele(ire1); 22819 ire1 = NULL; 22820 } 22821 } 22822 22823 /* Last multiroute ire; don't loop anymore. */ 22824 if (ire1 == NULL) { 22825 multirt_send = B_FALSE; 22826 } 22827 } 22828 22829 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 22830 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha, 22831 mblk_t *, mp); 22832 FW_HOOKS(ipst->ips_ip4_physical_out_event, 22833 ipst->ips_ipv4firewall_physical_out, 22834 NULL, ire->ire_ipif->ipif_ill, ipha, mp, mp, ipst); 22835 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 22836 if (mp == NULL) 22837 goto release_ire_and_ill; 22838 22839 mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT); 22840 DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire); 22841 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE); 22842 if ((pktxmit_state == SEND_FAILED) || 22843 (pktxmit_state == LLHDR_RESLV_FAILED)) { 22844 ip2dbg(("ip_wput_ire: ip_xmit_v4 failed" 22845 "- packet dropped\n")); 22846 release_ire_and_ill: 22847 ire_refrele(ire); 22848 if (next_mp != NULL) { 22849 freemsg(next_mp); 22850 ire_refrele(ire1); 22851 } 22852 if (conn_outgoing_ill != NULL) 22853 ill_refrele(conn_outgoing_ill); 22854 return; 22855 } 22856 22857 if (CLASSD(dst)) { 22858 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastPkts); 22859 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastOctets, 22860 LENGTH); 22861 } 22862 22863 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22864 "ip_wput_ire_end: q %p (%S)", 22865 q, "last copy out"); 22866 IRE_REFRELE(ire); 22867 22868 if (multirt_send) { 22869 ASSERT(ire1); 22870 /* 22871 * Proceed with the next RTF_MULTIRT ire, 22872 * Also set up the send-to queue accordingly. 22873 */ 22874 ire = ire1; 22875 ire1 = NULL; 22876 stq = ire->ire_stq; 22877 mp = next_mp; 22878 next_mp = NULL; 22879 ipha = (ipha_t *)mp->b_rptr; 22880 ill_index = Q_TO_INDEX(stq); 22881 ill = (ill_t *)stq->q_ptr; 22882 } 22883 } while (multirt_send); 22884 if (conn_outgoing_ill != NULL) 22885 ill_refrele(conn_outgoing_ill); 22886 return; 22887 22888 /* 22889 * ire->ire_type == IRE_BROADCAST (minimize diffs) 22890 */ 22891 broadcast: 22892 { 22893 /* 22894 * Avoid broadcast storms by setting the ttl to 1 22895 * for broadcasts. This parameter can be set 22896 * via ndd, so make sure that for the SO_DONTROUTE 22897 * case that ipha_ttl is always set to 1. 22898 * In the event that we are replying to incoming 22899 * ICMP packets, conn could be NULL. 22900 */ 22901 if ((connp != NULL) && connp->conn_dontroute) 22902 ipha->ipha_ttl = 1; 22903 else 22904 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 22905 22906 /* 22907 * Note that we are not doing a IRB_REFHOLD here. 22908 * Actually we don't care if the list changes i.e 22909 * if somebody deletes an IRE from the list while 22910 * we drop the lock, the next time we come around 22911 * ire_next will be NULL and hence we won't send 22912 * out multiple copies which is fine. 22913 */ 22914 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 22915 ire1 = ire->ire_next; 22916 if (conn_outgoing_ill != NULL) { 22917 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 22918 ASSERT(ire1 == ire->ire_next); 22919 if (ire1 != NULL && ire1->ire_addr == dst) { 22920 ire_refrele(ire); 22921 ire = ire1; 22922 IRE_REFHOLD(ire); 22923 ire1 = ire->ire_next; 22924 continue; 22925 } 22926 rw_exit(&ire->ire_bucket->irb_lock); 22927 /* Did not find a matching ill */ 22928 ip1dbg(("ip_wput_ire: broadcast with no " 22929 "matching IP_BOUND_IF ill %s\n", 22930 conn_outgoing_ill->ill_name)); 22931 freemsg(first_mp); 22932 if (ire != NULL) 22933 ire_refrele(ire); 22934 ill_refrele(conn_outgoing_ill); 22935 return; 22936 } 22937 } else if (ire1 != NULL && ire1->ire_addr == dst) { 22938 /* 22939 * If the next IRE has the same address and is not one 22940 * of the two copies that we need to send, try to see 22941 * whether this copy should be sent at all. This 22942 * assumes that we insert loopbacks first and then 22943 * non-loopbacks. This is acheived by inserting the 22944 * loopback always before non-loopback. 22945 * This is used to send a single copy of a broadcast 22946 * packet out all physical interfaces that have an 22947 * matching IRE_BROADCAST while also looping 22948 * back one copy (to ip_wput_local) for each 22949 * matching physical interface. However, we avoid 22950 * sending packets out different logical that match by 22951 * having ipif_up/ipif_down supress duplicate 22952 * IRE_BROADCASTS. 22953 * 22954 * This feature is currently used to get broadcasts 22955 * sent to multiple interfaces, when the broadcast 22956 * address being used applies to multiple interfaces. 22957 * For example, a whole net broadcast will be 22958 * replicated on every connected subnet of 22959 * the target net. 22960 * 22961 * Each zone has its own set of IRE_BROADCASTs, so that 22962 * we're able to distribute inbound packets to multiple 22963 * zones who share a broadcast address. We avoid looping 22964 * back outbound packets in different zones but on the 22965 * same ill, as the application would see duplicates. 22966 * 22967 * If the interfaces are part of the same group, 22968 * we would want to send only one copy out for 22969 * whole group. 22970 * 22971 * This logic assumes that ire_add_v4() groups the 22972 * IRE_BROADCAST entries so that those with the same 22973 * ire_addr and ill_group are kept together. 22974 */ 22975 ire_ill = ire->ire_ipif->ipif_ill; 22976 if (ire->ire_stq == NULL && ire1->ire_stq != NULL) { 22977 if (ire_ill->ill_group != NULL && 22978 (ire->ire_marks & IRE_MARK_NORECV)) { 22979 /* 22980 * If the current zone only has an ire 22981 * broadcast for this address marked 22982 * NORECV, the ire we want is ahead in 22983 * the bucket, so we look it up 22984 * deliberately ignoring the zoneid. 22985 */ 22986 for (ire1 = ire->ire_bucket->irb_ire; 22987 ire1 != NULL; 22988 ire1 = ire1->ire_next) { 22989 ire1_ill = 22990 ire1->ire_ipif->ipif_ill; 22991 if (ire1->ire_addr != dst) 22992 continue; 22993 /* skip over the current ire */ 22994 if (ire1 == ire) 22995 continue; 22996 /* skip over deleted ires */ 22997 if (ire1->ire_marks & 22998 IRE_MARK_CONDEMNED) 22999 continue; 23000 /* 23001 * non-loopback ire in our 23002 * group: use it for the next 23003 * pass in the loop 23004 */ 23005 if (ire1->ire_stq != NULL && 23006 ire1_ill->ill_group == 23007 ire_ill->ill_group) 23008 break; 23009 } 23010 } 23011 } else { 23012 while (ire1 != NULL && ire1->ire_addr == dst) { 23013 ire1_ill = ire1->ire_ipif->ipif_ill; 23014 /* 23015 * We can have two broadcast ires on the 23016 * same ill in different zones; here 23017 * we'll send a copy of the packet on 23018 * each ill and the fanout code will 23019 * call conn_wantpacket() to check that 23020 * the zone has the broadcast address 23021 * configured on the ill. If the two 23022 * ires are in the same group we only 23023 * send one copy up. 23024 */ 23025 if (ire1_ill != ire_ill && 23026 (ire1_ill->ill_group == NULL || 23027 ire_ill->ill_group == NULL || 23028 ire1_ill->ill_group != 23029 ire_ill->ill_group)) { 23030 break; 23031 } 23032 ire1 = ire1->ire_next; 23033 } 23034 } 23035 } 23036 ASSERT(multirt_send == B_FALSE); 23037 if (ire1 != NULL && ire1->ire_addr == dst) { 23038 if ((ire->ire_flags & RTF_MULTIRT) && 23039 (ire1->ire_flags & RTF_MULTIRT)) { 23040 /* 23041 * We are in the multirouting case. 23042 * The message must be sent at least 23043 * on both ires. These ires have been 23044 * inserted AFTER the standard ones 23045 * in ip_rt_add(). There are thus no 23046 * other ire entries for the destination 23047 * address in the rest of the bucket 23048 * that do not have the RTF_MULTIRT 23049 * flag. We don't process a copy 23050 * of the message here. This will be 23051 * done in the final sending loop. 23052 */ 23053 multirt_send = B_TRUE; 23054 } else { 23055 next_mp = ip_copymsg(first_mp); 23056 if (next_mp != NULL) 23057 IRE_REFHOLD(ire1); 23058 } 23059 } 23060 rw_exit(&ire->ire_bucket->irb_lock); 23061 } 23062 23063 if (stq) { 23064 /* 23065 * A non-NULL send-to queue means this packet is going 23066 * out of this machine. 23067 */ 23068 out_ill = (ill_t *)stq->q_ptr; 23069 23070 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutRequests); 23071 ttl_protocol = ((uint16_t *)ipha)[4]; 23072 /* 23073 * We accumulate the pseudo header checksum in cksum. 23074 * This is pretty hairy code, so watch close. One 23075 * thing to keep in mind is that UDP and TCP have 23076 * stored their respective datagram lengths in their 23077 * checksum fields. This lines things up real nice. 23078 */ 23079 cksum = (dst >> 16) + (dst & 0xFFFF) + 23080 (src >> 16) + (src & 0xFFFF); 23081 /* 23082 * We assume the udp checksum field contains the 23083 * length, so to compute the pseudo header checksum, 23084 * all we need is the protocol number and src/dst. 23085 */ 23086 /* Provide the checksums for UDP and TCP. */ 23087 if ((PROTO == IPPROTO_TCP) && 23088 (ip_hdr_included != IP_HDR_INCLUDED)) { 23089 /* hlen gets the number of uchar_ts in the IP header */ 23090 hlen = (V_HLEN & 0xF) << 2; 23091 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 23092 IP_STAT(ipst, ip_out_sw_cksum); 23093 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 23094 LENGTH - hlen); 23095 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 23096 } else if (PROTO == IPPROTO_SCTP && 23097 (ip_hdr_included != IP_HDR_INCLUDED)) { 23098 sctp_hdr_t *sctph; 23099 23100 hlen = (V_HLEN & 0xF) << 2; 23101 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 23102 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 23103 sctph->sh_chksum = 0; 23104 #ifdef DEBUG 23105 if (!skip_sctp_cksum) 23106 #endif 23107 sctph->sh_chksum = sctp_cksum(mp, hlen); 23108 } else { 23109 queue_t *dev_q = stq->q_next; 23110 23111 if ((dev_q->q_next || dev_q->q_first) && 23112 !canput(dev_q)) { 23113 blocked: 23114 ipha->ipha_ident = ip_hdr_included; 23115 /* 23116 * If we don't have a conn to apply 23117 * backpressure, free the message. 23118 * In the ire_send path, we don't know 23119 * the position to requeue the packet. Rather 23120 * than reorder packets, we just drop this 23121 * packet. 23122 */ 23123 if (ipst->ips_ip_output_queue && 23124 connp != NULL && 23125 caller != IRE_SEND) { 23126 if (caller == IP_WSRV) { 23127 connp->conn_did_putbq = 1; 23128 (void) putbq(connp->conn_wq, 23129 first_mp); 23130 conn_drain_insert(connp); 23131 /* 23132 * This is the service thread, 23133 * and the queue is already 23134 * noenabled. The check for 23135 * canput and the putbq is not 23136 * atomic. So we need to check 23137 * again. 23138 */ 23139 if (canput(stq->q_next)) 23140 connp->conn_did_putbq 23141 = 0; 23142 IP_STAT(ipst, ip_conn_flputbq); 23143 } else { 23144 /* 23145 * We are not the service proc. 23146 * ip_wsrv will be scheduled or 23147 * is already running. 23148 */ 23149 (void) putq(connp->conn_wq, 23150 first_mp); 23151 } 23152 } else { 23153 out_ill = (ill_t *)stq->q_ptr; 23154 BUMP_MIB(out_ill->ill_ip_mib, 23155 ipIfStatsOutDiscards); 23156 freemsg(first_mp); 23157 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23158 "ip_wput_ire_end: q %p (%S)", 23159 q, "discard"); 23160 } 23161 ire_refrele(ire); 23162 if (next_mp) { 23163 ire_refrele(ire1); 23164 freemsg(next_mp); 23165 } 23166 if (conn_outgoing_ill != NULL) 23167 ill_refrele(conn_outgoing_ill); 23168 return; 23169 } 23170 if ((PROTO == IPPROTO_UDP) && 23171 (ip_hdr_included != IP_HDR_INCLUDED)) { 23172 /* 23173 * hlen gets the number of uchar_ts in the 23174 * IP header 23175 */ 23176 hlen = (V_HLEN & 0xF) << 2; 23177 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 23178 max_frag = ire->ire_max_frag; 23179 if (*up != 0) { 23180 IP_CKSUM_XMIT(ire_ill, ire, mp, ipha, 23181 up, PROTO, hlen, LENGTH, max_frag, 23182 ipsec_len, cksum); 23183 /* Software checksum? */ 23184 if (DB_CKSUMFLAGS(mp) == 0) { 23185 IP_STAT(ipst, ip_out_sw_cksum); 23186 IP_STAT_UPDATE(ipst, 23187 ip_udp_out_sw_cksum_bytes, 23188 LENGTH - hlen); 23189 } 23190 } 23191 } 23192 } 23193 /* 23194 * Need to do this even when fragmenting. The local 23195 * loopback can be done without computing checksums 23196 * but forwarding out other interface must be done 23197 * after the IP checksum (and ULP checksums) have been 23198 * computed. 23199 * 23200 * NOTE : multicast_forward is set only if this packet 23201 * originated from ip_wput. For packets originating from 23202 * ip_wput_multicast, it is not set. 23203 */ 23204 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 23205 multi_loopback: 23206 ip2dbg(("ip_wput: multicast, loop %d\n", 23207 conn_multicast_loop)); 23208 23209 /* Forget header checksum offload */ 23210 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 23211 23212 /* 23213 * Local loopback of multicasts? Check the 23214 * ill. 23215 * 23216 * Note that the loopback function will not come 23217 * in through ip_rput - it will only do the 23218 * client fanout thus we need to do an mforward 23219 * as well. The is different from the BSD 23220 * logic. 23221 */ 23222 if (ill != NULL) { 23223 ilm_t *ilm; 23224 23225 ILM_WALKER_HOLD(ill); 23226 ilm = ilm_lookup_ill(ill, ipha->ipha_dst, 23227 ALL_ZONES); 23228 ILM_WALKER_RELE(ill); 23229 if (ilm != NULL) { 23230 /* 23231 * Pass along the virtual output q. 23232 * ip_wput_local() will distribute the 23233 * packet to all the matching zones, 23234 * except the sending zone when 23235 * IP_MULTICAST_LOOP is false. 23236 */ 23237 ip_multicast_loopback(q, ill, first_mp, 23238 conn_multicast_loop ? 0 : 23239 IP_FF_NO_MCAST_LOOP, zoneid); 23240 } 23241 } 23242 if (ipha->ipha_ttl == 0) { 23243 /* 23244 * 0 => only to this host i.e. we are 23245 * done. We are also done if this was the 23246 * loopback interface since it is sufficient 23247 * to loopback one copy of a multicast packet. 23248 */ 23249 freemsg(first_mp); 23250 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23251 "ip_wput_ire_end: q %p (%S)", 23252 q, "loopback"); 23253 ire_refrele(ire); 23254 if (conn_outgoing_ill != NULL) 23255 ill_refrele(conn_outgoing_ill); 23256 return; 23257 } 23258 /* 23259 * ILLF_MULTICAST is checked in ip_newroute 23260 * i.e. we don't need to check it here since 23261 * all IRE_CACHEs come from ip_newroute. 23262 * For multicast traffic, SO_DONTROUTE is interpreted 23263 * to mean only send the packet out the interface 23264 * (optionally specified with IP_MULTICAST_IF) 23265 * and do not forward it out additional interfaces. 23266 * RSVP and the rsvp daemon is an example of a 23267 * protocol and user level process that 23268 * handles it's own routing. Hence, it uses the 23269 * SO_DONTROUTE option to accomplish this. 23270 */ 23271 23272 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 23273 ill != NULL) { 23274 /* Unconditionally redo the checksum */ 23275 ipha->ipha_hdr_checksum = 0; 23276 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23277 23278 /* 23279 * If this needs to go out secure, we need 23280 * to wait till we finish the IPSEC 23281 * processing. 23282 */ 23283 if (ipsec_len == 0 && 23284 ip_mforward(ill, ipha, mp)) { 23285 freemsg(first_mp); 23286 ip1dbg(("ip_wput: mforward failed\n")); 23287 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23288 "ip_wput_ire_end: q %p (%S)", 23289 q, "mforward failed"); 23290 ire_refrele(ire); 23291 if (conn_outgoing_ill != NULL) 23292 ill_refrele(conn_outgoing_ill); 23293 return; 23294 } 23295 } 23296 } 23297 max_frag = ire->ire_max_frag; 23298 cksum += ttl_protocol; 23299 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 23300 /* No fragmentation required for this one. */ 23301 /* 23302 * Don't use frag_flag if packet is pre-built or source 23303 * routed or if multicast (since multicast packets do 23304 * not solicit ICMP "packet too big" messages). 23305 */ 23306 if ((ip_hdr_included != IP_HDR_INCLUDED) && 23307 (V_HLEN == IP_SIMPLE_HDR_VERSION || 23308 !ip_source_route_included(ipha)) && 23309 !CLASSD(ipha->ipha_dst)) 23310 ipha->ipha_fragment_offset_and_flags |= 23311 htons(ire->ire_frag_flag); 23312 23313 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 23314 /* Complete the IP header checksum. */ 23315 cksum += ipha->ipha_ident; 23316 cksum += (v_hlen_tos_len >> 16)+ 23317 (v_hlen_tos_len & 0xFFFF); 23318 cksum += ipha->ipha_fragment_offset_and_flags; 23319 hlen = (V_HLEN & 0xF) - 23320 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 23321 if (hlen) { 23322 checksumoptions: 23323 /* 23324 * Account for the IP Options in the IP 23325 * header checksum. 23326 */ 23327 up = (uint16_t *)(rptr+ 23328 IP_SIMPLE_HDR_LENGTH); 23329 do { 23330 cksum += up[0]; 23331 cksum += up[1]; 23332 up += 2; 23333 } while (--hlen); 23334 } 23335 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 23336 cksum = ~(cksum + (cksum >> 16)); 23337 ipha->ipha_hdr_checksum = (uint16_t)cksum; 23338 } 23339 if (ipsec_len != 0) { 23340 ipsec_out_process(q, first_mp, ire, ill_index); 23341 if (!next_mp) { 23342 ire_refrele(ire); 23343 if (conn_outgoing_ill != NULL) 23344 ill_refrele(conn_outgoing_ill); 23345 return; 23346 } 23347 goto next; 23348 } 23349 23350 /* 23351 * multirt_send has already been handled 23352 * for broadcast, but not yet for multicast 23353 * or IP options. 23354 */ 23355 if (next_mp == NULL) { 23356 if (ire->ire_flags & RTF_MULTIRT) { 23357 multirt_send = B_TRUE; 23358 } 23359 } 23360 23361 /* 23362 * In most cases, the emission loop below is 23363 * entered only once. Only in the case where 23364 * the ire holds the RTF_MULTIRT flag, do we loop 23365 * to process all RTF_MULTIRT ires in the bucket, 23366 * and send the packet through all crossed 23367 * RTF_MULTIRT routes. 23368 */ 23369 do { 23370 if (multirt_send) { 23371 irb_t *irb; 23372 23373 irb = ire->ire_bucket; 23374 ASSERT(irb != NULL); 23375 /* 23376 * We are in a multiple send case, 23377 * need to get the next IRE and make 23378 * a duplicate of the packet. 23379 */ 23380 IRB_REFHOLD(irb); 23381 for (ire1 = ire->ire_next; 23382 ire1 != NULL; 23383 ire1 = ire1->ire_next) { 23384 if (!(ire1->ire_flags & 23385 RTF_MULTIRT)) 23386 continue; 23387 if (ire1->ire_addr != 23388 ire->ire_addr) 23389 continue; 23390 if (ire1->ire_marks & 23391 (IRE_MARK_CONDEMNED| 23392 IRE_MARK_HIDDEN)) 23393 continue; 23394 23395 /* Got one */ 23396 IRE_REFHOLD(ire1); 23397 break; 23398 } 23399 IRB_REFRELE(irb); 23400 23401 if (ire1 != NULL) { 23402 next_mp = copyb(mp); 23403 if ((next_mp == NULL) || 23404 ((mp->b_cont != NULL) && 23405 ((next_mp->b_cont = 23406 dupmsg(mp->b_cont)) 23407 == NULL))) { 23408 freemsg(next_mp); 23409 next_mp = NULL; 23410 ire_refrele(ire1); 23411 ire1 = NULL; 23412 } 23413 } 23414 23415 /* 23416 * Last multiroute ire; don't loop 23417 * anymore. The emission is over 23418 * and next_mp is NULL. 23419 */ 23420 if (ire1 == NULL) { 23421 multirt_send = B_FALSE; 23422 } 23423 } 23424 23425 out_ill = ire->ire_ipif->ipif_ill; 23426 DTRACE_PROBE4(ip4__physical__out__start, 23427 ill_t *, NULL, 23428 ill_t *, out_ill, 23429 ipha_t *, ipha, mblk_t *, mp); 23430 FW_HOOKS(ipst->ips_ip4_physical_out_event, 23431 ipst->ips_ipv4firewall_physical_out, 23432 NULL, out_ill, ipha, mp, mp, ipst); 23433 DTRACE_PROBE1(ip4__physical__out__end, 23434 mblk_t *, mp); 23435 if (mp == NULL) 23436 goto release_ire_and_ill_2; 23437 23438 ASSERT(ipsec_len == 0); 23439 mp->b_prev = 23440 SET_BPREV_FLAG(IPP_LOCAL_OUT); 23441 DTRACE_PROBE2(ip__xmit__2, 23442 mblk_t *, mp, ire_t *, ire); 23443 pktxmit_state = ip_xmit_v4(mp, ire, 23444 NULL, B_TRUE); 23445 if ((pktxmit_state == SEND_FAILED) || 23446 (pktxmit_state == LLHDR_RESLV_FAILED)) { 23447 release_ire_and_ill_2: 23448 if (next_mp) { 23449 freemsg(next_mp); 23450 ire_refrele(ire1); 23451 } 23452 ire_refrele(ire); 23453 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23454 "ip_wput_ire_end: q %p (%S)", 23455 q, "discard MDATA"); 23456 if (conn_outgoing_ill != NULL) 23457 ill_refrele(conn_outgoing_ill); 23458 return; 23459 } 23460 23461 if (CLASSD(dst)) { 23462 BUMP_MIB(out_ill->ill_ip_mib, 23463 ipIfStatsHCOutMcastPkts); 23464 UPDATE_MIB(out_ill->ill_ip_mib, 23465 ipIfStatsHCOutMcastOctets, 23466 LENGTH); 23467 } else if (ire->ire_type == IRE_BROADCAST) { 23468 BUMP_MIB(out_ill->ill_ip_mib, 23469 ipIfStatsHCOutBcastPkts); 23470 } 23471 23472 if (multirt_send) { 23473 /* 23474 * We are in a multiple send case, 23475 * need to re-enter the sending loop 23476 * using the next ire. 23477 */ 23478 ire_refrele(ire); 23479 ire = ire1; 23480 stq = ire->ire_stq; 23481 mp = next_mp; 23482 next_mp = NULL; 23483 ipha = (ipha_t *)mp->b_rptr; 23484 ill_index = Q_TO_INDEX(stq); 23485 } 23486 } while (multirt_send); 23487 23488 if (!next_mp) { 23489 /* 23490 * Last copy going out (the ultra-common 23491 * case). Note that we intentionally replicate 23492 * the putnext rather than calling it before 23493 * the next_mp check in hopes of a little 23494 * tail-call action out of the compiler. 23495 */ 23496 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23497 "ip_wput_ire_end: q %p (%S)", 23498 q, "last copy out(1)"); 23499 ire_refrele(ire); 23500 if (conn_outgoing_ill != NULL) 23501 ill_refrele(conn_outgoing_ill); 23502 return; 23503 } 23504 /* More copies going out below. */ 23505 } else { 23506 int offset; 23507 fragmentit: 23508 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 23509 /* 23510 * If this would generate a icmp_frag_needed message, 23511 * we need to handle it before we do the IPSEC 23512 * processing. Otherwise, we need to strip the IPSEC 23513 * headers before we send up the message to the ULPs 23514 * which becomes messy and difficult. 23515 */ 23516 if (ipsec_len != 0) { 23517 if ((max_frag < (unsigned int)(LENGTH + 23518 ipsec_len)) && (offset & IPH_DF)) { 23519 out_ill = (ill_t *)stq->q_ptr; 23520 BUMP_MIB(out_ill->ill_ip_mib, 23521 ipIfStatsOutFragFails); 23522 BUMP_MIB(out_ill->ill_ip_mib, 23523 ipIfStatsOutFragReqds); 23524 ipha->ipha_hdr_checksum = 0; 23525 ipha->ipha_hdr_checksum = 23526 (uint16_t)ip_csum_hdr(ipha); 23527 icmp_frag_needed(ire->ire_stq, first_mp, 23528 max_frag, zoneid, ipst); 23529 if (!next_mp) { 23530 ire_refrele(ire); 23531 if (conn_outgoing_ill != NULL) { 23532 ill_refrele( 23533 conn_outgoing_ill); 23534 } 23535 return; 23536 } 23537 } else { 23538 /* 23539 * This won't cause a icmp_frag_needed 23540 * message. to be generated. Send it on 23541 * the wire. Note that this could still 23542 * cause fragmentation and all we 23543 * do is the generation of the message 23544 * to the ULP if needed before IPSEC. 23545 */ 23546 if (!next_mp) { 23547 ipsec_out_process(q, first_mp, 23548 ire, ill_index); 23549 TRACE_2(TR_FAC_IP, 23550 TR_IP_WPUT_IRE_END, 23551 "ip_wput_ire_end: q %p " 23552 "(%S)", q, 23553 "last ipsec_out_process"); 23554 ire_refrele(ire); 23555 if (conn_outgoing_ill != NULL) { 23556 ill_refrele( 23557 conn_outgoing_ill); 23558 } 23559 return; 23560 } 23561 ipsec_out_process(q, first_mp, 23562 ire, ill_index); 23563 } 23564 } else { 23565 /* 23566 * Initiate IPPF processing. For 23567 * fragmentable packets we finish 23568 * all QOS packet processing before 23569 * calling: 23570 * ip_wput_ire_fragmentit->ip_wput_frag 23571 */ 23572 23573 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23574 ip_process(IPP_LOCAL_OUT, &mp, 23575 ill_index); 23576 if (mp == NULL) { 23577 out_ill = (ill_t *)stq->q_ptr; 23578 BUMP_MIB(out_ill->ill_ip_mib, 23579 ipIfStatsOutDiscards); 23580 if (next_mp != NULL) { 23581 freemsg(next_mp); 23582 ire_refrele(ire1); 23583 } 23584 ire_refrele(ire); 23585 TRACE_2(TR_FAC_IP, 23586 TR_IP_WPUT_IRE_END, 23587 "ip_wput_ire: q %p (%S)", 23588 q, "discard MDATA"); 23589 if (conn_outgoing_ill != NULL) { 23590 ill_refrele( 23591 conn_outgoing_ill); 23592 } 23593 return; 23594 } 23595 } 23596 if (!next_mp) { 23597 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23598 "ip_wput_ire_end: q %p (%S)", 23599 q, "last fragmentation"); 23600 ip_wput_ire_fragmentit(mp, ire, 23601 zoneid, ipst); 23602 ire_refrele(ire); 23603 if (conn_outgoing_ill != NULL) 23604 ill_refrele(conn_outgoing_ill); 23605 return; 23606 } 23607 ip_wput_ire_fragmentit(mp, ire, zoneid, ipst); 23608 } 23609 } 23610 } else { 23611 nullstq: 23612 /* A NULL stq means the destination address is local. */ 23613 UPDATE_OB_PKT_COUNT(ire); 23614 ire->ire_last_used_time = lbolt; 23615 ASSERT(ire->ire_ipif != NULL); 23616 if (!next_mp) { 23617 /* 23618 * Is there an "in" and "out" for traffic local 23619 * to a host (loopback)? The code in Solaris doesn't 23620 * explicitly draw a line in its code for in vs out, 23621 * so we've had to draw a line in the sand: ip_wput_ire 23622 * is considered to be the "output" side and 23623 * ip_wput_local to be the "input" side. 23624 */ 23625 out_ill = ire->ire_ipif->ipif_ill; 23626 23627 DTRACE_PROBE4(ip4__loopback__out__start, 23628 ill_t *, NULL, ill_t *, out_ill, 23629 ipha_t *, ipha, mblk_t *, first_mp); 23630 23631 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23632 ipst->ips_ipv4firewall_loopback_out, 23633 NULL, out_ill, ipha, first_mp, mp, ipst); 23634 23635 DTRACE_PROBE1(ip4__loopback__out_end, 23636 mblk_t *, first_mp); 23637 23638 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23639 "ip_wput_ire_end: q %p (%S)", 23640 q, "local address"); 23641 23642 if (first_mp != NULL) 23643 ip_wput_local(q, out_ill, ipha, 23644 first_mp, ire, 0, ire->ire_zoneid); 23645 ire_refrele(ire); 23646 if (conn_outgoing_ill != NULL) 23647 ill_refrele(conn_outgoing_ill); 23648 return; 23649 } 23650 23651 out_ill = ire->ire_ipif->ipif_ill; 23652 23653 DTRACE_PROBE4(ip4__loopback__out__start, 23654 ill_t *, NULL, ill_t *, out_ill, 23655 ipha_t *, ipha, mblk_t *, first_mp); 23656 23657 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23658 ipst->ips_ipv4firewall_loopback_out, 23659 NULL, out_ill, ipha, first_mp, mp, ipst); 23660 23661 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, first_mp); 23662 23663 if (first_mp != NULL) 23664 ip_wput_local(q, out_ill, ipha, 23665 first_mp, ire, 0, ire->ire_zoneid); 23666 } 23667 next: 23668 /* 23669 * More copies going out to additional interfaces. 23670 * ire1 has already been held. We don't need the 23671 * "ire" anymore. 23672 */ 23673 ire_refrele(ire); 23674 ire = ire1; 23675 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 23676 mp = next_mp; 23677 ASSERT(ire->ire_ipversion == IPV4_VERSION); 23678 ill = ire_to_ill(ire); 23679 first_mp = mp; 23680 if (ipsec_len != 0) { 23681 ASSERT(first_mp->b_datap->db_type == M_CTL); 23682 mp = mp->b_cont; 23683 } 23684 dst = ire->ire_addr; 23685 ipha = (ipha_t *)mp->b_rptr; 23686 /* 23687 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 23688 * Restore ipha_ident "no checksum" flag. 23689 */ 23690 src = orig_src; 23691 ipha->ipha_ident = ip_hdr_included; 23692 goto another; 23693 23694 #undef rptr 23695 #undef Q_TO_INDEX 23696 } 23697 23698 /* 23699 * Routine to allocate a message that is used to notify the ULP about MDT. 23700 * The caller may provide a pointer to the link-layer MDT capabilities, 23701 * or NULL if MDT is to be disabled on the stream. 23702 */ 23703 mblk_t * 23704 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 23705 { 23706 mblk_t *mp; 23707 ip_mdt_info_t *mdti; 23708 ill_mdt_capab_t *idst; 23709 23710 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 23711 DB_TYPE(mp) = M_CTL; 23712 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 23713 mdti = (ip_mdt_info_t *)mp->b_rptr; 23714 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 23715 idst = &(mdti->mdt_capab); 23716 23717 /* 23718 * If the caller provides us with the capability, copy 23719 * it over into our notification message; otherwise 23720 * we zero out the capability portion. 23721 */ 23722 if (isrc != NULL) 23723 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23724 else 23725 bzero((caddr_t)idst, sizeof (*idst)); 23726 } 23727 return (mp); 23728 } 23729 23730 /* 23731 * Routine which determines whether MDT can be enabled on the destination 23732 * IRE and IPC combination, and if so, allocates and returns the MDT 23733 * notification mblk that may be used by ULP. We also check if we need to 23734 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 23735 * MDT usage in the past have been lifted. This gets called during IP 23736 * and ULP binding. 23737 */ 23738 mblk_t * 23739 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23740 ill_mdt_capab_t *mdt_cap) 23741 { 23742 mblk_t *mp; 23743 boolean_t rc = B_FALSE; 23744 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23745 23746 ASSERT(dst_ire != NULL); 23747 ASSERT(connp != NULL); 23748 ASSERT(mdt_cap != NULL); 23749 23750 /* 23751 * Currently, we only support simple TCP/{IPv4,IPv6} with 23752 * Multidata, which is handled in tcp_multisend(). This 23753 * is the reason why we do all these checks here, to ensure 23754 * that we don't enable Multidata for the cases which we 23755 * can't handle at the moment. 23756 */ 23757 do { 23758 /* Only do TCP at the moment */ 23759 if (connp->conn_ulp != IPPROTO_TCP) 23760 break; 23761 23762 /* 23763 * IPSEC outbound policy present? Note that we get here 23764 * after calling ipsec_conn_cache_policy() where the global 23765 * policy checking is performed. conn_latch will be 23766 * non-NULL as long as there's a policy defined, 23767 * i.e. conn_out_enforce_policy may be NULL in such case 23768 * when the connection is non-secure, and hence we check 23769 * further if the latch refers to an outbound policy. 23770 */ 23771 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 23772 break; 23773 23774 /* CGTP (multiroute) is enabled? */ 23775 if (dst_ire->ire_flags & RTF_MULTIRT) 23776 break; 23777 23778 /* Outbound IPQoS enabled? */ 23779 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23780 /* 23781 * In this case, we disable MDT for this and all 23782 * future connections going over the interface. 23783 */ 23784 mdt_cap->ill_mdt_on = 0; 23785 break; 23786 } 23787 23788 /* socket option(s) present? */ 23789 if (!CONN_IS_LSO_MD_FASTPATH(connp)) 23790 break; 23791 23792 rc = B_TRUE; 23793 /* CONSTCOND */ 23794 } while (0); 23795 23796 /* Remember the result */ 23797 connp->conn_mdt_ok = rc; 23798 23799 if (!rc) 23800 return (NULL); 23801 else if (!mdt_cap->ill_mdt_on) { 23802 /* 23803 * If MDT has been previously turned off in the past, and we 23804 * currently can do MDT (due to IPQoS policy removal, etc.) 23805 * then enable it for this interface. 23806 */ 23807 mdt_cap->ill_mdt_on = 1; 23808 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 23809 "interface %s\n", ill_name)); 23810 } 23811 23812 /* Allocate the MDT info mblk */ 23813 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 23814 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 23815 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23816 return (NULL); 23817 } 23818 return (mp); 23819 } 23820 23821 /* 23822 * Routine to allocate a message that is used to notify the ULP about LSO. 23823 * The caller may provide a pointer to the link-layer LSO capabilities, 23824 * or NULL if LSO is to be disabled on the stream. 23825 */ 23826 mblk_t * 23827 ip_lsoinfo_alloc(ill_lso_capab_t *isrc) 23828 { 23829 mblk_t *mp; 23830 ip_lso_info_t *lsoi; 23831 ill_lso_capab_t *idst; 23832 23833 if ((mp = allocb(sizeof (*lsoi), BPRI_HI)) != NULL) { 23834 DB_TYPE(mp) = M_CTL; 23835 mp->b_wptr = mp->b_rptr + sizeof (*lsoi); 23836 lsoi = (ip_lso_info_t *)mp->b_rptr; 23837 lsoi->lso_info_id = LSO_IOC_INFO_UPDATE; 23838 idst = &(lsoi->lso_capab); 23839 23840 /* 23841 * If the caller provides us with the capability, copy 23842 * it over into our notification message; otherwise 23843 * we zero out the capability portion. 23844 */ 23845 if (isrc != NULL) 23846 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23847 else 23848 bzero((caddr_t)idst, sizeof (*idst)); 23849 } 23850 return (mp); 23851 } 23852 23853 /* 23854 * Routine which determines whether LSO can be enabled on the destination 23855 * IRE and IPC combination, and if so, allocates and returns the LSO 23856 * notification mblk that may be used by ULP. We also check if we need to 23857 * turn LSO back to 'on' when certain restrictions prohibiting us to allow 23858 * LSO usage in the past have been lifted. This gets called during IP 23859 * and ULP binding. 23860 */ 23861 mblk_t * 23862 ip_lsoinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23863 ill_lso_capab_t *lso_cap) 23864 { 23865 mblk_t *mp; 23866 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23867 23868 ASSERT(dst_ire != NULL); 23869 ASSERT(connp != NULL); 23870 ASSERT(lso_cap != NULL); 23871 23872 connp->conn_lso_ok = B_TRUE; 23873 23874 if ((connp->conn_ulp != IPPROTO_TCP) || 23875 CONN_IPSEC_OUT_ENCAPSULATED(connp) || 23876 (dst_ire->ire_flags & RTF_MULTIRT) || 23877 !CONN_IS_LSO_MD_FASTPATH(connp) || 23878 (IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 23879 connp->conn_lso_ok = B_FALSE; 23880 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23881 /* 23882 * Disable LSO for this and all future connections going 23883 * over the interface. 23884 */ 23885 lso_cap->ill_lso_on = 0; 23886 } 23887 } 23888 23889 if (!connp->conn_lso_ok) 23890 return (NULL); 23891 else if (!lso_cap->ill_lso_on) { 23892 /* 23893 * If LSO has been previously turned off in the past, and we 23894 * currently can do LSO (due to IPQoS policy removal, etc.) 23895 * then enable it for this interface. 23896 */ 23897 lso_cap->ill_lso_on = 1; 23898 ip1dbg(("ip_mdinfo_return: reenabling LSO for interface %s\n", 23899 ill_name)); 23900 } 23901 23902 /* Allocate the LSO info mblk */ 23903 if ((mp = ip_lsoinfo_alloc(lso_cap)) == NULL) 23904 ip0dbg(("ip_lsoinfo_return: can't enable LSO for " 23905 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23906 23907 return (mp); 23908 } 23909 23910 /* 23911 * Create destination address attribute, and fill it with the physical 23912 * destination address and SAP taken from the template DL_UNITDATA_REQ 23913 * message block. 23914 */ 23915 boolean_t 23916 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 23917 { 23918 dl_unitdata_req_t *dlurp; 23919 pattr_t *pa; 23920 pattrinfo_t pa_info; 23921 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 23922 uint_t das_len, das_off; 23923 23924 ASSERT(dlmp != NULL); 23925 23926 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 23927 das_len = dlurp->dl_dest_addr_length; 23928 das_off = dlurp->dl_dest_addr_offset; 23929 23930 pa_info.type = PATTR_DSTADDRSAP; 23931 pa_info.len = sizeof (**das) + das_len - 1; 23932 23933 /* create and associate the attribute */ 23934 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23935 if (pa != NULL) { 23936 ASSERT(*das != NULL); 23937 (*das)->addr_is_group = 0; 23938 (*das)->addr_len = (uint8_t)das_len; 23939 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 23940 } 23941 23942 return (pa != NULL); 23943 } 23944 23945 /* 23946 * Create hardware checksum attribute and fill it with the values passed. 23947 */ 23948 boolean_t 23949 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 23950 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 23951 { 23952 pattr_t *pa; 23953 pattrinfo_t pa_info; 23954 23955 ASSERT(mmd != NULL); 23956 23957 pa_info.type = PATTR_HCKSUM; 23958 pa_info.len = sizeof (pattr_hcksum_t); 23959 23960 /* create and associate the attribute */ 23961 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23962 if (pa != NULL) { 23963 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 23964 23965 hck->hcksum_start_offset = start_offset; 23966 hck->hcksum_stuff_offset = stuff_offset; 23967 hck->hcksum_end_offset = end_offset; 23968 hck->hcksum_flags = flags; 23969 } 23970 return (pa != NULL); 23971 } 23972 23973 /* 23974 * Create zerocopy attribute and fill it with the specified flags 23975 */ 23976 boolean_t 23977 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 23978 { 23979 pattr_t *pa; 23980 pattrinfo_t pa_info; 23981 23982 ASSERT(mmd != NULL); 23983 pa_info.type = PATTR_ZCOPY; 23984 pa_info.len = sizeof (pattr_zcopy_t); 23985 23986 /* create and associate the attribute */ 23987 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23988 if (pa != NULL) { 23989 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 23990 23991 zcopy->zcopy_flags = flags; 23992 } 23993 return (pa != NULL); 23994 } 23995 23996 /* 23997 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 23998 * block chain. We could rewrite to handle arbitrary message block chains but 23999 * that would make the code complicated and slow. Right now there three 24000 * restrictions: 24001 * 24002 * 1. The first message block must contain the complete IP header and 24003 * at least 1 byte of payload data. 24004 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 24005 * so that we can use a single Multidata message. 24006 * 3. No frag must be distributed over two or more message blocks so 24007 * that we don't need more than two packet descriptors per frag. 24008 * 24009 * The above restrictions allow us to support userland applications (which 24010 * will send down a single message block) and NFS over UDP (which will 24011 * send down a chain of at most three message blocks). 24012 * 24013 * We also don't use MDT for payloads with less than or equal to 24014 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 24015 */ 24016 boolean_t 24017 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 24018 { 24019 int blocks; 24020 ssize_t total, missing, size; 24021 24022 ASSERT(mp != NULL); 24023 ASSERT(hdr_len > 0); 24024 24025 size = MBLKL(mp) - hdr_len; 24026 if (size <= 0) 24027 return (B_FALSE); 24028 24029 /* The first mblk contains the header and some payload. */ 24030 blocks = 1; 24031 total = size; 24032 size %= len; 24033 missing = (size == 0) ? 0 : (len - size); 24034 mp = mp->b_cont; 24035 24036 while (mp != NULL) { 24037 /* 24038 * Give up if we encounter a zero length message block. 24039 * In practice, this should rarely happen and therefore 24040 * not worth the trouble of freeing and re-linking the 24041 * mblk from the chain to handle such case. 24042 */ 24043 if ((size = MBLKL(mp)) == 0) 24044 return (B_FALSE); 24045 24046 /* Too many payload buffers for a single Multidata message? */ 24047 if (++blocks > MULTIDATA_MAX_PBUFS) 24048 return (B_FALSE); 24049 24050 total += size; 24051 /* Is a frag distributed over two or more message blocks? */ 24052 if (missing > size) 24053 return (B_FALSE); 24054 size -= missing; 24055 24056 size %= len; 24057 missing = (size == 0) ? 0 : (len - size); 24058 24059 mp = mp->b_cont; 24060 } 24061 24062 return (total > ip_wput_frag_mdt_min); 24063 } 24064 24065 /* 24066 * Outbound IPv4 fragmentation routine using MDT. 24067 */ 24068 static void 24069 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 24070 uint32_t frag_flag, int offset) 24071 { 24072 ipha_t *ipha_orig; 24073 int i1, ip_data_end; 24074 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 24075 mblk_t *hdr_mp, *md_mp = NULL; 24076 unsigned char *hdr_ptr, *pld_ptr; 24077 multidata_t *mmd; 24078 ip_pdescinfo_t pdi; 24079 ill_t *ill; 24080 ip_stack_t *ipst = ire->ire_ipst; 24081 24082 ASSERT(DB_TYPE(mp) == M_DATA); 24083 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 24084 24085 ill = ire_to_ill(ire); 24086 ASSERT(ill != NULL); 24087 24088 ipha_orig = (ipha_t *)mp->b_rptr; 24089 mp->b_rptr += sizeof (ipha_t); 24090 24091 /* Calculate how many packets we will send out */ 24092 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 24093 pkts = (i1 + len - 1) / len; 24094 ASSERT(pkts > 1); 24095 24096 /* Allocate a message block which will hold all the IP Headers. */ 24097 wroff = ipst->ips_ip_wroff_extra; 24098 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 24099 24100 i1 = pkts * hdr_chunk_len; 24101 /* 24102 * Create the header buffer, Multidata and destination address 24103 * and SAP attribute that should be associated with it. 24104 */ 24105 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 24106 ((hdr_mp->b_wptr += i1), 24107 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 24108 !ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) { 24109 freemsg(mp); 24110 if (md_mp == NULL) { 24111 freemsg(hdr_mp); 24112 } else { 24113 free_mmd: IP_STAT(ipst, ip_frag_mdt_discarded); 24114 freemsg(md_mp); 24115 } 24116 IP_STAT(ipst, ip_frag_mdt_allocfail); 24117 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 24118 return; 24119 } 24120 IP_STAT(ipst, ip_frag_mdt_allocd); 24121 24122 /* 24123 * Add a payload buffer to the Multidata; this operation must not 24124 * fail, or otherwise our logic in this routine is broken. There 24125 * is no memory allocation done by the routine, so any returned 24126 * failure simply tells us that we've done something wrong. 24127 * 24128 * A failure tells us that either we're adding the same payload 24129 * buffer more than once, or we're trying to add more buffers than 24130 * allowed. None of the above cases should happen, and we panic 24131 * because either there's horrible heap corruption, and/or 24132 * programming mistake. 24133 */ 24134 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24135 goto pbuf_panic; 24136 24137 hdr_ptr = hdr_mp->b_rptr; 24138 pld_ptr = mp->b_rptr; 24139 24140 /* Establish the ending byte offset, based on the starting offset. */ 24141 offset <<= 3; 24142 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 24143 IP_SIMPLE_HDR_LENGTH; 24144 24145 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 24146 24147 while (pld_ptr < mp->b_wptr) { 24148 ipha_t *ipha; 24149 uint16_t offset_and_flags; 24150 uint16_t ip_len; 24151 int error; 24152 24153 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 24154 ipha = (ipha_t *)(hdr_ptr + wroff); 24155 ASSERT(OK_32PTR(ipha)); 24156 *ipha = *ipha_orig; 24157 24158 if (ip_data_end - offset > len) { 24159 offset_and_flags = IPH_MF; 24160 } else { 24161 /* 24162 * Last frag. Set len to the length of this last piece. 24163 */ 24164 len = ip_data_end - offset; 24165 /* A frag of a frag might have IPH_MF non-zero */ 24166 offset_and_flags = 24167 ntohs(ipha->ipha_fragment_offset_and_flags) & 24168 IPH_MF; 24169 } 24170 offset_and_flags |= (uint16_t)(offset >> 3); 24171 offset_and_flags |= (uint16_t)frag_flag; 24172 /* Store the offset and flags in the IP header. */ 24173 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24174 24175 /* Store the length in the IP header. */ 24176 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 24177 ipha->ipha_length = htons(ip_len); 24178 24179 /* 24180 * Set the IP header checksum. Note that mp is just 24181 * the header, so this is easy to pass to ip_csum. 24182 */ 24183 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24184 24185 /* 24186 * Record offset and size of header and data of the next packet 24187 * in the multidata message. 24188 */ 24189 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 24190 PDESC_PLD_INIT(&pdi); 24191 i1 = MIN(mp->b_wptr - pld_ptr, len); 24192 ASSERT(i1 > 0); 24193 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 24194 if (i1 == len) { 24195 pld_ptr += len; 24196 } else { 24197 i1 = len - i1; 24198 mp = mp->b_cont; 24199 ASSERT(mp != NULL); 24200 ASSERT(MBLKL(mp) >= i1); 24201 /* 24202 * Attach the next payload message block to the 24203 * multidata message. 24204 */ 24205 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24206 goto pbuf_panic; 24207 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 24208 pld_ptr = mp->b_rptr + i1; 24209 } 24210 24211 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 24212 KM_NOSLEEP)) == NULL) { 24213 /* 24214 * Any failure other than ENOMEM indicates that we 24215 * have passed in invalid pdesc info or parameters 24216 * to mmd_addpdesc, which must not happen. 24217 * 24218 * EINVAL is a result of failure on boundary checks 24219 * against the pdesc info contents. It should not 24220 * happen, and we panic because either there's 24221 * horrible heap corruption, and/or programming 24222 * mistake. 24223 */ 24224 if (error != ENOMEM) { 24225 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 24226 "pdesc logic error detected for " 24227 "mmd %p pinfo %p (%d)\n", 24228 (void *)mmd, (void *)&pdi, error); 24229 /* NOTREACHED */ 24230 } 24231 IP_STAT(ipst, ip_frag_mdt_addpdescfail); 24232 /* Free unattached payload message blocks as well */ 24233 md_mp->b_cont = mp->b_cont; 24234 goto free_mmd; 24235 } 24236 24237 /* Advance fragment offset. */ 24238 offset += len; 24239 24240 /* Advance to location for next header in the buffer. */ 24241 hdr_ptr += hdr_chunk_len; 24242 24243 /* Did we reach the next payload message block? */ 24244 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 24245 mp = mp->b_cont; 24246 /* 24247 * Attach the next message block with payload 24248 * data to the multidata message. 24249 */ 24250 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24251 goto pbuf_panic; 24252 pld_ptr = mp->b_rptr; 24253 } 24254 } 24255 24256 ASSERT(hdr_mp->b_wptr == hdr_ptr); 24257 ASSERT(mp->b_wptr == pld_ptr); 24258 24259 /* Update IP statistics */ 24260 IP_STAT_UPDATE(ipst, ip_frag_mdt_pkt_out, pkts); 24261 24262 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates, pkts); 24263 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 24264 24265 len = ntohs(ipha_orig->ipha_length) + (pkts - 1) * IP_SIMPLE_HDR_LENGTH; 24266 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, pkts); 24267 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, len); 24268 24269 if (pkt_type == OB_PKT) { 24270 ire->ire_ob_pkt_count += pkts; 24271 if (ire->ire_ipif != NULL) 24272 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 24273 } else { 24274 /* 24275 * The type is IB_PKT in the forwarding path and in 24276 * the mobile IP case when the packet is being reverse- 24277 * tunneled to the home agent. 24278 */ 24279 ire->ire_ib_pkt_count += pkts; 24280 ASSERT(!IRE_IS_LOCAL(ire)); 24281 if (ire->ire_type & IRE_BROADCAST) { 24282 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 24283 } else { 24284 UPDATE_MIB(ill->ill_ip_mib, 24285 ipIfStatsHCOutForwDatagrams, pkts); 24286 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 24287 } 24288 } 24289 ire->ire_last_used_time = lbolt; 24290 /* Send it down */ 24291 putnext(ire->ire_stq, md_mp); 24292 return; 24293 24294 pbuf_panic: 24295 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 24296 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 24297 pbuf_idx); 24298 /* NOTREACHED */ 24299 } 24300 24301 /* 24302 * Outbound IP fragmentation routine. 24303 * 24304 * NOTE : This routine does not ire_refrele the ire that is passed in 24305 * as the argument. 24306 */ 24307 static void 24308 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 24309 uint32_t frag_flag, zoneid_t zoneid, ip_stack_t *ipst) 24310 { 24311 int i1; 24312 mblk_t *ll_hdr_mp; 24313 int ll_hdr_len; 24314 int hdr_len; 24315 mblk_t *hdr_mp; 24316 ipha_t *ipha; 24317 int ip_data_end; 24318 int len; 24319 mblk_t *mp = mp_orig, *mp1; 24320 int offset; 24321 queue_t *q; 24322 uint32_t v_hlen_tos_len; 24323 mblk_t *first_mp; 24324 boolean_t mctl_present; 24325 ill_t *ill; 24326 ill_t *out_ill; 24327 mblk_t *xmit_mp; 24328 mblk_t *carve_mp; 24329 ire_t *ire1 = NULL; 24330 ire_t *save_ire = NULL; 24331 mblk_t *next_mp = NULL; 24332 boolean_t last_frag = B_FALSE; 24333 boolean_t multirt_send = B_FALSE; 24334 ire_t *first_ire = NULL; 24335 irb_t *irb = NULL; 24336 mib2_ipIfStatsEntry_t *mibptr = NULL; 24337 24338 ill = ire_to_ill(ire); 24339 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 24340 24341 BUMP_MIB(mibptr, ipIfStatsOutFragReqds); 24342 24343 /* 24344 * IPSEC does not allow hw accelerated packets to be fragmented 24345 * This check is made in ip_wput_ipsec_out prior to coming here 24346 * via ip_wput_ire_fragmentit. 24347 * 24348 * If at this point we have an ire whose ARP request has not 24349 * been sent out, we call ip_xmit_v4->ire_arpresolve to trigger 24350 * sending of ARP query and change ire's state to ND_INCOMPLETE. 24351 * This packet and all fragmentable packets for this ire will 24352 * continue to get dropped while ire_nce->nce_state remains in 24353 * ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to 24354 * ND_REACHABLE, all subsquent large packets for this ire will 24355 * get fragemented and sent out by this function. 24356 */ 24357 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 24358 /* If nce_state is ND_INITIAL, trigger ARP query */ 24359 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 24360 ip1dbg(("ip_wput_frag: mac address for ire is unresolved" 24361 " - dropping packet\n")); 24362 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24363 freemsg(mp); 24364 return; 24365 } 24366 24367 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 24368 "ip_wput_frag_start:"); 24369 24370 if (mp->b_datap->db_type == M_CTL) { 24371 first_mp = mp; 24372 mp_orig = mp = mp->b_cont; 24373 mctl_present = B_TRUE; 24374 } else { 24375 first_mp = mp; 24376 mctl_present = B_FALSE; 24377 } 24378 24379 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 24380 ipha = (ipha_t *)mp->b_rptr; 24381 24382 /* 24383 * If the Don't Fragment flag is on, generate an ICMP destination 24384 * unreachable, fragmentation needed. 24385 */ 24386 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 24387 if (offset & IPH_DF) { 24388 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24389 /* 24390 * Need to compute hdr checksum if called from ip_wput_ire. 24391 * Note that ip_rput_forward verifies the checksum before 24392 * calling this routine so in that case this is a noop. 24393 */ 24394 ipha->ipha_hdr_checksum = 0; 24395 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24396 icmp_frag_needed(ire->ire_stq, first_mp, max_frag, zoneid, 24397 ipst); 24398 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24399 "ip_wput_frag_end:(%S)", 24400 "don't fragment"); 24401 return; 24402 } 24403 if (mctl_present) 24404 freeb(first_mp); 24405 /* 24406 * Establish the starting offset. May not be zero if we are fragging 24407 * a fragment that is being forwarded. 24408 */ 24409 offset = offset & IPH_OFFSET; 24410 24411 /* TODO why is this test needed? */ 24412 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 24413 if (((max_frag - LENGTH) & ~7) < 8) { 24414 /* TODO: notify ulp somehow */ 24415 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24416 freemsg(mp); 24417 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24418 "ip_wput_frag_end:(%S)", 24419 "len < 8"); 24420 return; 24421 } 24422 24423 hdr_len = (V_HLEN & 0xF) << 2; 24424 24425 ipha->ipha_hdr_checksum = 0; 24426 24427 /* 24428 * Establish the number of bytes maximum per frag, after putting 24429 * in the header. 24430 */ 24431 len = (max_frag - hdr_len) & ~7; 24432 24433 /* Check if we can use MDT to send out the frags. */ 24434 ASSERT(!IRE_IS_LOCAL(ire)); 24435 if (hdr_len == IP_SIMPLE_HDR_LENGTH && 24436 ipst->ips_ip_multidata_outbound && 24437 !(ire->ire_flags & RTF_MULTIRT) && 24438 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 24439 ill != NULL && ILL_MDT_CAPABLE(ill) && 24440 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 24441 ASSERT(ill->ill_mdt_capab != NULL); 24442 if (!ill->ill_mdt_capab->ill_mdt_on) { 24443 /* 24444 * If MDT has been previously turned off in the past, 24445 * and we currently can do MDT (due to IPQoS policy 24446 * removal, etc.) then enable it for this interface. 24447 */ 24448 ill->ill_mdt_capab->ill_mdt_on = 1; 24449 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 24450 ill->ill_name)); 24451 } 24452 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 24453 offset); 24454 return; 24455 } 24456 24457 /* Get a copy of the header for the trailing frags */ 24458 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst); 24459 if (!hdr_mp) { 24460 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24461 freemsg(mp); 24462 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24463 "ip_wput_frag_end:(%S)", 24464 "couldn't copy hdr"); 24465 return; 24466 } 24467 if (DB_CRED(mp) != NULL) 24468 mblk_setcred(hdr_mp, DB_CRED(mp)); 24469 24470 /* Store the starting offset, with the MoreFrags flag. */ 24471 i1 = offset | IPH_MF | frag_flag; 24472 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 24473 24474 /* Establish the ending byte offset, based on the starting offset. */ 24475 offset <<= 3; 24476 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 24477 24478 /* Store the length of the first fragment in the IP header. */ 24479 i1 = len + hdr_len; 24480 ASSERT(i1 <= IP_MAXPACKET); 24481 ipha->ipha_length = htons((uint16_t)i1); 24482 24483 /* 24484 * Compute the IP header checksum for the first frag. We have to 24485 * watch out that we stop at the end of the header. 24486 */ 24487 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24488 24489 /* 24490 * Now carve off the first frag. Note that this will include the 24491 * original IP header. 24492 */ 24493 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 24494 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24495 freeb(hdr_mp); 24496 freemsg(mp_orig); 24497 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24498 "ip_wput_frag_end:(%S)", 24499 "couldn't carve first"); 24500 return; 24501 } 24502 24503 /* 24504 * Multirouting case. Each fragment is replicated 24505 * via all non-condemned RTF_MULTIRT routes 24506 * currently resolved. 24507 * We ensure that first_ire is the first RTF_MULTIRT 24508 * ire in the bucket. 24509 */ 24510 if (ire->ire_flags & RTF_MULTIRT) { 24511 irb = ire->ire_bucket; 24512 ASSERT(irb != NULL); 24513 24514 multirt_send = B_TRUE; 24515 24516 /* Make sure we do not omit any multiroute ire. */ 24517 IRB_REFHOLD(irb); 24518 for (first_ire = irb->irb_ire; 24519 first_ire != NULL; 24520 first_ire = first_ire->ire_next) { 24521 if ((first_ire->ire_flags & RTF_MULTIRT) && 24522 (first_ire->ire_addr == ire->ire_addr) && 24523 !(first_ire->ire_marks & 24524 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 24525 break; 24526 } 24527 24528 if (first_ire != NULL) { 24529 if (first_ire != ire) { 24530 IRE_REFHOLD(first_ire); 24531 /* 24532 * Do not release the ire passed in 24533 * as the argument. 24534 */ 24535 ire = first_ire; 24536 } else { 24537 first_ire = NULL; 24538 } 24539 } 24540 IRB_REFRELE(irb); 24541 24542 /* 24543 * Save the first ire; we will need to restore it 24544 * for the trailing frags. 24545 * We REFHOLD save_ire, as each iterated ire will be 24546 * REFRELEd. 24547 */ 24548 save_ire = ire; 24549 IRE_REFHOLD(save_ire); 24550 } 24551 24552 /* 24553 * First fragment emission loop. 24554 * In most cases, the emission loop below is entered only 24555 * once. Only in the case where the ire holds the RTF_MULTIRT 24556 * flag, do we loop to process all RTF_MULTIRT ires in the 24557 * bucket, and send the fragment through all crossed 24558 * RTF_MULTIRT routes. 24559 */ 24560 do { 24561 if (ire->ire_flags & RTF_MULTIRT) { 24562 /* 24563 * We are in a multiple send case, need to get 24564 * the next ire and make a copy of the packet. 24565 * ire1 holds here the next ire to process in the 24566 * bucket. If multirouting is expected, 24567 * any non-RTF_MULTIRT ire that has the 24568 * right destination address is ignored. 24569 * 24570 * We have to take into account the MTU of 24571 * each walked ire. max_frag is set by the 24572 * the caller and generally refers to 24573 * the primary ire entry. Here we ensure that 24574 * no route with a lower MTU will be used, as 24575 * fragments are carved once for all ires, 24576 * then replicated. 24577 */ 24578 ASSERT(irb != NULL); 24579 IRB_REFHOLD(irb); 24580 for (ire1 = ire->ire_next; 24581 ire1 != NULL; 24582 ire1 = ire1->ire_next) { 24583 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 24584 continue; 24585 if (ire1->ire_addr != ire->ire_addr) 24586 continue; 24587 if (ire1->ire_marks & 24588 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 24589 continue; 24590 /* 24591 * Ensure we do not exceed the MTU 24592 * of the next route. 24593 */ 24594 if (ire1->ire_max_frag < max_frag) { 24595 ip_multirt_bad_mtu(ire1, max_frag); 24596 continue; 24597 } 24598 24599 /* Got one. */ 24600 IRE_REFHOLD(ire1); 24601 break; 24602 } 24603 IRB_REFRELE(irb); 24604 24605 if (ire1 != NULL) { 24606 next_mp = copyb(mp); 24607 if ((next_mp == NULL) || 24608 ((mp->b_cont != NULL) && 24609 ((next_mp->b_cont = 24610 dupmsg(mp->b_cont)) == NULL))) { 24611 freemsg(next_mp); 24612 next_mp = NULL; 24613 ire_refrele(ire1); 24614 ire1 = NULL; 24615 } 24616 } 24617 24618 /* Last multiroute ire; don't loop anymore. */ 24619 if (ire1 == NULL) { 24620 multirt_send = B_FALSE; 24621 } 24622 } 24623 24624 ll_hdr_len = 0; 24625 LOCK_IRE_FP_MP(ire); 24626 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24627 if (ll_hdr_mp != NULL) { 24628 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24629 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 24630 } else { 24631 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24632 } 24633 24634 /* If there is a transmit header, get a copy for this frag. */ 24635 /* 24636 * TODO: should check db_ref before calling ip_carve_mp since 24637 * it might give us a dup. 24638 */ 24639 if (!ll_hdr_mp) { 24640 /* No xmit header. */ 24641 xmit_mp = mp; 24642 24643 /* We have a link-layer header that can fit in our mblk. */ 24644 } else if (mp->b_datap->db_ref == 1 && 24645 ll_hdr_len != 0 && 24646 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24647 /* M_DATA fastpath */ 24648 mp->b_rptr -= ll_hdr_len; 24649 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 24650 xmit_mp = mp; 24651 24652 /* Corner case if copyb has failed */ 24653 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 24654 UNLOCK_IRE_FP_MP(ire); 24655 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24656 freeb(hdr_mp); 24657 freemsg(mp); 24658 freemsg(mp_orig); 24659 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24660 "ip_wput_frag_end:(%S)", 24661 "discard"); 24662 24663 if (multirt_send) { 24664 ASSERT(ire1); 24665 ASSERT(next_mp); 24666 24667 freemsg(next_mp); 24668 ire_refrele(ire1); 24669 } 24670 if (save_ire != NULL) 24671 IRE_REFRELE(save_ire); 24672 24673 if (first_ire != NULL) 24674 ire_refrele(first_ire); 24675 return; 24676 24677 /* 24678 * Case of res_mp OR the fastpath mp can't fit 24679 * in the mblk 24680 */ 24681 } else { 24682 xmit_mp->b_cont = mp; 24683 if (DB_CRED(mp) != NULL) 24684 mblk_setcred(xmit_mp, DB_CRED(mp)); 24685 /* 24686 * Get priority marking, if any. 24687 * We propagate the CoS marking from the 24688 * original packet that went to QoS processing 24689 * in ip_wput_ire to the newly carved mp. 24690 */ 24691 if (DB_TYPE(xmit_mp) == M_DATA) 24692 xmit_mp->b_band = mp->b_band; 24693 } 24694 UNLOCK_IRE_FP_MP(ire); 24695 24696 q = ire->ire_stq; 24697 out_ill = (ill_t *)q->q_ptr; 24698 24699 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24700 24701 DTRACE_PROBE4(ip4__physical__out__start, 24702 ill_t *, NULL, ill_t *, out_ill, 24703 ipha_t *, ipha, mblk_t *, xmit_mp); 24704 24705 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24706 ipst->ips_ipv4firewall_physical_out, 24707 NULL, out_ill, ipha, xmit_mp, mp, ipst); 24708 24709 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, xmit_mp); 24710 24711 if (xmit_mp != NULL) { 24712 putnext(q, xmit_mp); 24713 24714 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 24715 UPDATE_MIB(out_ill->ill_ip_mib, 24716 ipIfStatsHCOutOctets, i1); 24717 24718 if (pkt_type != OB_PKT) { 24719 /* 24720 * Update the packet count and MIB stats 24721 * of trailing RTF_MULTIRT ires. 24722 */ 24723 UPDATE_OB_PKT_COUNT(ire); 24724 BUMP_MIB(out_ill->ill_ip_mib, 24725 ipIfStatsOutFragReqds); 24726 } 24727 } 24728 24729 if (multirt_send) { 24730 /* 24731 * We are in a multiple send case; look for 24732 * the next ire and re-enter the loop. 24733 */ 24734 ASSERT(ire1); 24735 ASSERT(next_mp); 24736 /* REFRELE the current ire before looping */ 24737 ire_refrele(ire); 24738 ire = ire1; 24739 ire1 = NULL; 24740 mp = next_mp; 24741 next_mp = NULL; 24742 } 24743 } while (multirt_send); 24744 24745 ASSERT(ire1 == NULL); 24746 24747 /* Restore the original ire; we need it for the trailing frags */ 24748 if (save_ire != NULL) { 24749 /* REFRELE the last iterated ire */ 24750 ire_refrele(ire); 24751 /* save_ire has been REFHOLDed */ 24752 ire = save_ire; 24753 save_ire = NULL; 24754 q = ire->ire_stq; 24755 } 24756 24757 if (pkt_type == OB_PKT) { 24758 UPDATE_OB_PKT_COUNT(ire); 24759 } else { 24760 out_ill = (ill_t *)q->q_ptr; 24761 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 24762 UPDATE_IB_PKT_COUNT(ire); 24763 } 24764 24765 /* Advance the offset to the second frag starting point. */ 24766 offset += len; 24767 /* 24768 * Update hdr_len from the copied header - there might be less options 24769 * in the later fragments. 24770 */ 24771 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 24772 /* Loop until done. */ 24773 for (;;) { 24774 uint16_t offset_and_flags; 24775 uint16_t ip_len; 24776 24777 if (ip_data_end - offset > len) { 24778 /* 24779 * Carve off the appropriate amount from the original 24780 * datagram. 24781 */ 24782 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24783 mp = NULL; 24784 break; 24785 } 24786 /* 24787 * More frags after this one. Get another copy 24788 * of the header. 24789 */ 24790 if (carve_mp->b_datap->db_ref == 1 && 24791 hdr_mp->b_wptr - hdr_mp->b_rptr < 24792 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24793 /* Inline IP header */ 24794 carve_mp->b_rptr -= hdr_mp->b_wptr - 24795 hdr_mp->b_rptr; 24796 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24797 hdr_mp->b_wptr - hdr_mp->b_rptr); 24798 mp = carve_mp; 24799 } else { 24800 if (!(mp = copyb(hdr_mp))) { 24801 freemsg(carve_mp); 24802 break; 24803 } 24804 /* Get priority marking, if any. */ 24805 mp->b_band = carve_mp->b_band; 24806 mp->b_cont = carve_mp; 24807 } 24808 ipha = (ipha_t *)mp->b_rptr; 24809 offset_and_flags = IPH_MF; 24810 } else { 24811 /* 24812 * Last frag. Consume the header. Set len to 24813 * the length of this last piece. 24814 */ 24815 len = ip_data_end - offset; 24816 24817 /* 24818 * Carve off the appropriate amount from the original 24819 * datagram. 24820 */ 24821 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24822 mp = NULL; 24823 break; 24824 } 24825 if (carve_mp->b_datap->db_ref == 1 && 24826 hdr_mp->b_wptr - hdr_mp->b_rptr < 24827 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24828 /* Inline IP header */ 24829 carve_mp->b_rptr -= hdr_mp->b_wptr - 24830 hdr_mp->b_rptr; 24831 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24832 hdr_mp->b_wptr - hdr_mp->b_rptr); 24833 mp = carve_mp; 24834 freeb(hdr_mp); 24835 hdr_mp = mp; 24836 } else { 24837 mp = hdr_mp; 24838 /* Get priority marking, if any. */ 24839 mp->b_band = carve_mp->b_band; 24840 mp->b_cont = carve_mp; 24841 } 24842 ipha = (ipha_t *)mp->b_rptr; 24843 /* A frag of a frag might have IPH_MF non-zero */ 24844 offset_and_flags = 24845 ntohs(ipha->ipha_fragment_offset_and_flags) & 24846 IPH_MF; 24847 } 24848 offset_and_flags |= (uint16_t)(offset >> 3); 24849 offset_and_flags |= (uint16_t)frag_flag; 24850 /* Store the offset and flags in the IP header. */ 24851 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24852 24853 /* Store the length in the IP header. */ 24854 ip_len = (uint16_t)(len + hdr_len); 24855 ipha->ipha_length = htons(ip_len); 24856 24857 /* 24858 * Set the IP header checksum. Note that mp is just 24859 * the header, so this is easy to pass to ip_csum. 24860 */ 24861 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24862 24863 /* Attach a transmit header, if any, and ship it. */ 24864 if (pkt_type == OB_PKT) { 24865 UPDATE_OB_PKT_COUNT(ire); 24866 } else { 24867 out_ill = (ill_t *)q->q_ptr; 24868 BUMP_MIB(out_ill->ill_ip_mib, 24869 ipIfStatsHCOutForwDatagrams); 24870 UPDATE_IB_PKT_COUNT(ire); 24871 } 24872 24873 if (ire->ire_flags & RTF_MULTIRT) { 24874 irb = ire->ire_bucket; 24875 ASSERT(irb != NULL); 24876 24877 multirt_send = B_TRUE; 24878 24879 /* 24880 * Save the original ire; we will need to restore it 24881 * for the tailing frags. 24882 */ 24883 save_ire = ire; 24884 IRE_REFHOLD(save_ire); 24885 } 24886 /* 24887 * Emission loop for this fragment, similar 24888 * to what is done for the first fragment. 24889 */ 24890 do { 24891 if (multirt_send) { 24892 /* 24893 * We are in a multiple send case, need to get 24894 * the next ire and make a copy of the packet. 24895 */ 24896 ASSERT(irb != NULL); 24897 IRB_REFHOLD(irb); 24898 for (ire1 = ire->ire_next; 24899 ire1 != NULL; 24900 ire1 = ire1->ire_next) { 24901 if (!(ire1->ire_flags & RTF_MULTIRT)) 24902 continue; 24903 if (ire1->ire_addr != ire->ire_addr) 24904 continue; 24905 if (ire1->ire_marks & 24906 (IRE_MARK_CONDEMNED| 24907 IRE_MARK_HIDDEN)) 24908 continue; 24909 /* 24910 * Ensure we do not exceed the MTU 24911 * of the next route. 24912 */ 24913 if (ire1->ire_max_frag < max_frag) { 24914 ip_multirt_bad_mtu(ire1, 24915 max_frag); 24916 continue; 24917 } 24918 24919 /* Got one. */ 24920 IRE_REFHOLD(ire1); 24921 break; 24922 } 24923 IRB_REFRELE(irb); 24924 24925 if (ire1 != NULL) { 24926 next_mp = copyb(mp); 24927 if ((next_mp == NULL) || 24928 ((mp->b_cont != NULL) && 24929 ((next_mp->b_cont = 24930 dupmsg(mp->b_cont)) == NULL))) { 24931 freemsg(next_mp); 24932 next_mp = NULL; 24933 ire_refrele(ire1); 24934 ire1 = NULL; 24935 } 24936 } 24937 24938 /* Last multiroute ire; don't loop anymore. */ 24939 if (ire1 == NULL) { 24940 multirt_send = B_FALSE; 24941 } 24942 } 24943 24944 /* Update transmit header */ 24945 ll_hdr_len = 0; 24946 LOCK_IRE_FP_MP(ire); 24947 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24948 if (ll_hdr_mp != NULL) { 24949 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24950 ll_hdr_len = MBLKL(ll_hdr_mp); 24951 } else { 24952 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24953 } 24954 24955 if (!ll_hdr_mp) { 24956 xmit_mp = mp; 24957 24958 /* 24959 * We have link-layer header that can fit in 24960 * our mblk. 24961 */ 24962 } else if (mp->b_datap->db_ref == 1 && 24963 ll_hdr_len != 0 && 24964 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24965 /* M_DATA fastpath */ 24966 mp->b_rptr -= ll_hdr_len; 24967 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 24968 ll_hdr_len); 24969 xmit_mp = mp; 24970 24971 /* 24972 * Case of res_mp OR the fastpath mp can't fit 24973 * in the mblk 24974 */ 24975 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 24976 xmit_mp->b_cont = mp; 24977 if (DB_CRED(mp) != NULL) 24978 mblk_setcred(xmit_mp, DB_CRED(mp)); 24979 /* Get priority marking, if any. */ 24980 if (DB_TYPE(xmit_mp) == M_DATA) 24981 xmit_mp->b_band = mp->b_band; 24982 24983 /* Corner case if copyb failed */ 24984 } else { 24985 /* 24986 * Exit both the replication and 24987 * fragmentation loops. 24988 */ 24989 UNLOCK_IRE_FP_MP(ire); 24990 goto drop_pkt; 24991 } 24992 UNLOCK_IRE_FP_MP(ire); 24993 24994 mp1 = mp; 24995 out_ill = (ill_t *)q->q_ptr; 24996 24997 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24998 24999 DTRACE_PROBE4(ip4__physical__out__start, 25000 ill_t *, NULL, ill_t *, out_ill, 25001 ipha_t *, ipha, mblk_t *, xmit_mp); 25002 25003 FW_HOOKS(ipst->ips_ip4_physical_out_event, 25004 ipst->ips_ipv4firewall_physical_out, 25005 NULL, out_ill, ipha, xmit_mp, mp, ipst); 25006 25007 DTRACE_PROBE1(ip4__physical__out__end, 25008 mblk_t *, xmit_mp); 25009 25010 if (mp != mp1 && hdr_mp == mp1) 25011 hdr_mp = mp; 25012 if (mp != mp1 && mp_orig == mp1) 25013 mp_orig = mp; 25014 25015 if (xmit_mp != NULL) { 25016 putnext(q, xmit_mp); 25017 25018 BUMP_MIB(out_ill->ill_ip_mib, 25019 ipIfStatsHCOutTransmits); 25020 UPDATE_MIB(out_ill->ill_ip_mib, 25021 ipIfStatsHCOutOctets, ip_len); 25022 25023 if (pkt_type != OB_PKT) { 25024 /* 25025 * Update the packet count of trailing 25026 * RTF_MULTIRT ires. 25027 */ 25028 UPDATE_OB_PKT_COUNT(ire); 25029 } 25030 } 25031 25032 /* All done if we just consumed the hdr_mp. */ 25033 if (mp == hdr_mp) { 25034 last_frag = B_TRUE; 25035 BUMP_MIB(out_ill->ill_ip_mib, 25036 ipIfStatsOutFragOKs); 25037 } 25038 25039 if (multirt_send) { 25040 /* 25041 * We are in a multiple send case; look for 25042 * the next ire and re-enter the loop. 25043 */ 25044 ASSERT(ire1); 25045 ASSERT(next_mp); 25046 /* REFRELE the current ire before looping */ 25047 ire_refrele(ire); 25048 ire = ire1; 25049 ire1 = NULL; 25050 q = ire->ire_stq; 25051 mp = next_mp; 25052 next_mp = NULL; 25053 } 25054 } while (multirt_send); 25055 /* 25056 * Restore the original ire; we need it for the 25057 * trailing frags 25058 */ 25059 if (save_ire != NULL) { 25060 ASSERT(ire1 == NULL); 25061 /* REFRELE the last iterated ire */ 25062 ire_refrele(ire); 25063 /* save_ire has been REFHOLDed */ 25064 ire = save_ire; 25065 q = ire->ire_stq; 25066 save_ire = NULL; 25067 } 25068 25069 if (last_frag) { 25070 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 25071 "ip_wput_frag_end:(%S)", 25072 "consumed hdr_mp"); 25073 25074 if (first_ire != NULL) 25075 ire_refrele(first_ire); 25076 return; 25077 } 25078 /* Otherwise, advance and loop. */ 25079 offset += len; 25080 } 25081 25082 drop_pkt: 25083 /* Clean up following allocation failure. */ 25084 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 25085 freemsg(mp); 25086 if (mp != hdr_mp) 25087 freeb(hdr_mp); 25088 if (mp != mp_orig) 25089 freemsg(mp_orig); 25090 25091 if (save_ire != NULL) 25092 IRE_REFRELE(save_ire); 25093 if (first_ire != NULL) 25094 ire_refrele(first_ire); 25095 25096 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 25097 "ip_wput_frag_end:(%S)", 25098 "end--alloc failure"); 25099 } 25100 25101 /* 25102 * Copy the header plus those options which have the copy bit set 25103 */ 25104 static mblk_t * 25105 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst) 25106 { 25107 mblk_t *mp; 25108 uchar_t *up; 25109 25110 /* 25111 * Quick check if we need to look for options without the copy bit 25112 * set 25113 */ 25114 mp = allocb(ipst->ips_ip_wroff_extra + hdr_len, BPRI_HI); 25115 if (!mp) 25116 return (mp); 25117 mp->b_rptr += ipst->ips_ip_wroff_extra; 25118 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 25119 bcopy(rptr, mp->b_rptr, hdr_len); 25120 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 25121 return (mp); 25122 } 25123 up = mp->b_rptr; 25124 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 25125 up += IP_SIMPLE_HDR_LENGTH; 25126 rptr += IP_SIMPLE_HDR_LENGTH; 25127 hdr_len -= IP_SIMPLE_HDR_LENGTH; 25128 while (hdr_len > 0) { 25129 uint32_t optval; 25130 uint32_t optlen; 25131 25132 optval = *rptr; 25133 if (optval == IPOPT_EOL) 25134 break; 25135 if (optval == IPOPT_NOP) 25136 optlen = 1; 25137 else 25138 optlen = rptr[1]; 25139 if (optval & IPOPT_COPY) { 25140 bcopy(rptr, up, optlen); 25141 up += optlen; 25142 } 25143 rptr += optlen; 25144 hdr_len -= optlen; 25145 } 25146 /* 25147 * Make sure that we drop an even number of words by filling 25148 * with EOL to the next word boundary. 25149 */ 25150 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 25151 hdr_len & 0x3; hdr_len++) 25152 *up++ = IPOPT_EOL; 25153 mp->b_wptr = up; 25154 /* Update header length */ 25155 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 25156 return (mp); 25157 } 25158 25159 /* 25160 * Delivery to local recipients including fanout to multiple recipients. 25161 * Does not do checksumming of UDP/TCP. 25162 * Note: q should be the read side queue for either the ill or conn. 25163 * Note: rq should be the read side q for the lower (ill) stream. 25164 * We don't send packets to IPPF processing, thus the last argument 25165 * to all the fanout calls are B_FALSE. 25166 */ 25167 void 25168 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 25169 int fanout_flags, zoneid_t zoneid) 25170 { 25171 uint32_t protocol; 25172 mblk_t *first_mp; 25173 boolean_t mctl_present; 25174 int ire_type; 25175 #define rptr ((uchar_t *)ipha) 25176 ip_stack_t *ipst = ill->ill_ipst; 25177 25178 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 25179 "ip_wput_local_start: q %p", q); 25180 25181 if (ire != NULL) { 25182 ire_type = ire->ire_type; 25183 } else { 25184 /* 25185 * Only ip_multicast_loopback() calls us with a NULL ire. If the 25186 * packet is not multicast, we can't tell the ire type. 25187 */ 25188 ASSERT(CLASSD(ipha->ipha_dst)); 25189 ire_type = IRE_BROADCAST; 25190 } 25191 25192 first_mp = mp; 25193 if (first_mp->b_datap->db_type == M_CTL) { 25194 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 25195 if (!io->ipsec_out_secure) { 25196 /* 25197 * This ipsec_out_t was allocated in ip_wput 25198 * for multicast packets to store the ill_index. 25199 * As this is being delivered locally, we don't 25200 * need this anymore. 25201 */ 25202 mp = first_mp->b_cont; 25203 freeb(first_mp); 25204 first_mp = mp; 25205 mctl_present = B_FALSE; 25206 } else { 25207 /* 25208 * Convert IPSEC_OUT to IPSEC_IN, preserving all 25209 * security properties for the looped-back packet. 25210 */ 25211 mctl_present = B_TRUE; 25212 mp = first_mp->b_cont; 25213 ASSERT(mp != NULL); 25214 ipsec_out_to_in(first_mp); 25215 } 25216 } else { 25217 mctl_present = B_FALSE; 25218 } 25219 25220 DTRACE_PROBE4(ip4__loopback__in__start, 25221 ill_t *, ill, ill_t *, NULL, 25222 ipha_t *, ipha, mblk_t *, first_mp); 25223 25224 FW_HOOKS(ipst->ips_ip4_loopback_in_event, 25225 ipst->ips_ipv4firewall_loopback_in, 25226 ill, NULL, ipha, first_mp, mp, ipst); 25227 25228 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, first_mp); 25229 25230 if (first_mp == NULL) 25231 return; 25232 25233 ipst->ips_loopback_packets++; 25234 25235 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 25236 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 25237 if (!IS_SIMPLE_IPH(ipha)) { 25238 ip_wput_local_options(ipha, ipst); 25239 } 25240 25241 protocol = ipha->ipha_protocol; 25242 switch (protocol) { 25243 case IPPROTO_ICMP: { 25244 ire_t *ire_zone; 25245 ilm_t *ilm; 25246 mblk_t *mp1; 25247 zoneid_t last_zoneid; 25248 25249 if (CLASSD(ipha->ipha_dst) && 25250 !(ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) { 25251 ASSERT(ire_type == IRE_BROADCAST); 25252 /* 25253 * In the multicast case, applications may have joined 25254 * the group from different zones, so we need to deliver 25255 * the packet to each of them. Loop through the 25256 * multicast memberships structures (ilm) on the receive 25257 * ill and send a copy of the packet up each matching 25258 * one. However, we don't do this for multicasts sent on 25259 * the loopback interface (PHYI_LOOPBACK flag set) as 25260 * they must stay in the sender's zone. 25261 * 25262 * ilm_add_v6() ensures that ilms in the same zone are 25263 * contiguous in the ill_ilm list. We use this property 25264 * to avoid sending duplicates needed when two 25265 * applications in the same zone join the same group on 25266 * different logical interfaces: we ignore the ilm if 25267 * it's zoneid is the same as the last matching one. 25268 * In addition, the sending of the packet for 25269 * ire_zoneid is delayed until all of the other ilms 25270 * have been exhausted. 25271 */ 25272 last_zoneid = -1; 25273 ILM_WALKER_HOLD(ill); 25274 for (ilm = ill->ill_ilm; ilm != NULL; 25275 ilm = ilm->ilm_next) { 25276 if ((ilm->ilm_flags & ILM_DELETED) || 25277 ipha->ipha_dst != ilm->ilm_addr || 25278 ilm->ilm_zoneid == last_zoneid || 25279 ilm->ilm_zoneid == zoneid || 25280 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 25281 continue; 25282 mp1 = ip_copymsg(first_mp); 25283 if (mp1 == NULL) 25284 continue; 25285 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25286 mctl_present, B_FALSE, ill, 25287 ilm->ilm_zoneid); 25288 last_zoneid = ilm->ilm_zoneid; 25289 } 25290 ILM_WALKER_RELE(ill); 25291 /* 25292 * Loopback case: the sending endpoint has 25293 * IP_MULTICAST_LOOP disabled, therefore we don't 25294 * dispatch the multicast packet to the sending zone. 25295 */ 25296 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 25297 freemsg(first_mp); 25298 return; 25299 } 25300 } else if (ire_type == IRE_BROADCAST) { 25301 /* 25302 * In the broadcast case, there may be many zones 25303 * which need a copy of the packet delivered to them. 25304 * There is one IRE_BROADCAST per broadcast address 25305 * and per zone; we walk those using a helper function. 25306 * In addition, the sending of the packet for zoneid is 25307 * delayed until all of the other ires have been 25308 * processed. 25309 */ 25310 IRB_REFHOLD(ire->ire_bucket); 25311 ire_zone = NULL; 25312 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 25313 ire)) != NULL) { 25314 mp1 = ip_copymsg(first_mp); 25315 if (mp1 == NULL) 25316 continue; 25317 25318 UPDATE_IB_PKT_COUNT(ire_zone); 25319 ire_zone->ire_last_used_time = lbolt; 25320 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25321 mctl_present, B_FALSE, ill, 25322 ire_zone->ire_zoneid); 25323 } 25324 IRB_REFRELE(ire->ire_bucket); 25325 } 25326 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 25327 0, mctl_present, B_FALSE, ill, zoneid); 25328 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25329 "ip_wput_local_end: q %p (%S)", 25330 q, "icmp"); 25331 return; 25332 } 25333 case IPPROTO_IGMP: 25334 if ((mp = igmp_input(q, mp, ill)) == NULL) { 25335 /* Bad packet - discarded by igmp_input */ 25336 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25337 "ip_wput_local_end: q %p (%S)", 25338 q, "igmp_input--bad packet"); 25339 if (mctl_present) 25340 freeb(first_mp); 25341 return; 25342 } 25343 /* 25344 * igmp_input() may have returned the pulled up message. 25345 * So first_mp and ipha need to be reinitialized. 25346 */ 25347 ipha = (ipha_t *)mp->b_rptr; 25348 if (mctl_present) 25349 first_mp->b_cont = mp; 25350 else 25351 first_mp = mp; 25352 /* deliver to local raw users */ 25353 break; 25354 case IPPROTO_ENCAP: 25355 /* 25356 * This case is covered by either ip_fanout_proto, or by 25357 * the above security processing for self-tunneled packets. 25358 */ 25359 break; 25360 case IPPROTO_UDP: { 25361 uint16_t *up; 25362 uint32_t ports; 25363 25364 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 25365 UDP_PORTS_OFFSET); 25366 /* Force a 'valid' checksum. */ 25367 up[3] = 0; 25368 25369 ports = *(uint32_t *)up; 25370 ip_fanout_udp(q, first_mp, ill, ipha, ports, 25371 (ire_type == IRE_BROADCAST), 25372 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25373 IP_FF_SEND_SLLA | IP_FF_IPINFO, mctl_present, B_FALSE, 25374 ill, zoneid); 25375 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25376 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 25377 return; 25378 } 25379 case IPPROTO_TCP: { 25380 25381 /* 25382 * For TCP, discard broadcast packets. 25383 */ 25384 if ((ushort_t)ire_type == IRE_BROADCAST) { 25385 freemsg(first_mp); 25386 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 25387 ip2dbg(("ip_wput_local: discard broadcast\n")); 25388 return; 25389 } 25390 25391 if (mp->b_datap->db_type == M_DATA) { 25392 /* 25393 * M_DATA mblk, so init mblk (chain) for no struio(). 25394 */ 25395 mblk_t *mp1 = mp; 25396 25397 do 25398 mp1->b_datap->db_struioflag = 0; 25399 while ((mp1 = mp1->b_cont) != NULL); 25400 } 25401 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 25402 <= mp->b_wptr); 25403 ip_fanout_tcp(q, first_mp, ill, ipha, 25404 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25405 IP_FF_SYN_ADDIRE | IP_FF_IPINFO, 25406 mctl_present, B_FALSE, zoneid); 25407 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25408 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 25409 return; 25410 } 25411 case IPPROTO_SCTP: 25412 { 25413 uint32_t ports; 25414 25415 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 25416 ip_fanout_sctp(first_mp, ill, ipha, ports, 25417 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25418 IP_FF_IPINFO, mctl_present, B_FALSE, zoneid); 25419 return; 25420 } 25421 25422 default: 25423 break; 25424 } 25425 /* 25426 * Find a client for some other protocol. We give 25427 * copies to multiple clients, if more than one is 25428 * bound. 25429 */ 25430 ip_fanout_proto(q, first_mp, ill, ipha, 25431 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 25432 mctl_present, B_FALSE, ill, zoneid); 25433 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25434 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 25435 #undef rptr 25436 } 25437 25438 /* 25439 * Update any source route, record route, or timestamp options. 25440 * Check that we are at end of strict source route. 25441 * The options have been sanity checked by ip_wput_options(). 25442 */ 25443 static void 25444 ip_wput_local_options(ipha_t *ipha, ip_stack_t *ipst) 25445 { 25446 ipoptp_t opts; 25447 uchar_t *opt; 25448 uint8_t optval; 25449 uint8_t optlen; 25450 ipaddr_t dst; 25451 uint32_t ts; 25452 ire_t *ire; 25453 timestruc_t now; 25454 25455 ip2dbg(("ip_wput_local_options\n")); 25456 for (optval = ipoptp_first(&opts, ipha); 25457 optval != IPOPT_EOL; 25458 optval = ipoptp_next(&opts)) { 25459 opt = opts.ipoptp_cur; 25460 optlen = opts.ipoptp_len; 25461 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 25462 switch (optval) { 25463 uint32_t off; 25464 case IPOPT_SSRR: 25465 case IPOPT_LSRR: 25466 off = opt[IPOPT_OFFSET]; 25467 off--; 25468 if (optlen < IP_ADDR_LEN || 25469 off > optlen - IP_ADDR_LEN) { 25470 /* End of source route */ 25471 break; 25472 } 25473 /* 25474 * This will only happen if two consecutive entries 25475 * in the source route contains our address or if 25476 * it is a packet with a loose source route which 25477 * reaches us before consuming the whole source route 25478 */ 25479 ip1dbg(("ip_wput_local_options: not end of SR\n")); 25480 if (optval == IPOPT_SSRR) { 25481 return; 25482 } 25483 /* 25484 * Hack: instead of dropping the packet truncate the 25485 * source route to what has been used by filling the 25486 * rest with IPOPT_NOP. 25487 */ 25488 opt[IPOPT_OLEN] = (uint8_t)off; 25489 while (off < optlen) { 25490 opt[off++] = IPOPT_NOP; 25491 } 25492 break; 25493 case IPOPT_RR: 25494 off = opt[IPOPT_OFFSET]; 25495 off--; 25496 if (optlen < IP_ADDR_LEN || 25497 off > optlen - IP_ADDR_LEN) { 25498 /* No more room - ignore */ 25499 ip1dbg(( 25500 "ip_wput_forward_options: end of RR\n")); 25501 break; 25502 } 25503 dst = htonl(INADDR_LOOPBACK); 25504 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25505 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25506 break; 25507 case IPOPT_TS: 25508 /* Insert timestamp if there is romm */ 25509 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25510 case IPOPT_TS_TSONLY: 25511 off = IPOPT_TS_TIMELEN; 25512 break; 25513 case IPOPT_TS_PRESPEC: 25514 case IPOPT_TS_PRESPEC_RFC791: 25515 /* Verify that the address matched */ 25516 off = opt[IPOPT_OFFSET] - 1; 25517 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 25518 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 25519 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 25520 ipst); 25521 if (ire == NULL) { 25522 /* Not for us */ 25523 break; 25524 } 25525 ire_refrele(ire); 25526 /* FALLTHRU */ 25527 case IPOPT_TS_TSANDADDR: 25528 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 25529 break; 25530 default: 25531 /* 25532 * ip_*put_options should have already 25533 * dropped this packet. 25534 */ 25535 cmn_err(CE_PANIC, "ip_wput_local_options: " 25536 "unknown IT - bug in ip_wput_options?\n"); 25537 return; /* Keep "lint" happy */ 25538 } 25539 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 25540 /* Increase overflow counter */ 25541 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 25542 opt[IPOPT_POS_OV_FLG] = (uint8_t) 25543 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 25544 (off << 4); 25545 break; 25546 } 25547 off = opt[IPOPT_OFFSET] - 1; 25548 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25549 case IPOPT_TS_PRESPEC: 25550 case IPOPT_TS_PRESPEC_RFC791: 25551 case IPOPT_TS_TSANDADDR: 25552 dst = htonl(INADDR_LOOPBACK); 25553 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25554 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25555 /* FALLTHRU */ 25556 case IPOPT_TS_TSONLY: 25557 off = opt[IPOPT_OFFSET] - 1; 25558 /* Compute # of milliseconds since midnight */ 25559 gethrestime(&now); 25560 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 25561 now.tv_nsec / (NANOSEC / MILLISEC); 25562 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 25563 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 25564 break; 25565 } 25566 break; 25567 } 25568 } 25569 } 25570 25571 /* 25572 * Send out a multicast packet on interface ipif. 25573 * The sender does not have an conn. 25574 * Caller verifies that this isn't a PHYI_LOOPBACK. 25575 */ 25576 void 25577 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif, zoneid_t zoneid) 25578 { 25579 ipha_t *ipha; 25580 ire_t *ire; 25581 ipaddr_t dst; 25582 mblk_t *first_mp; 25583 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 25584 25585 /* igmp_sendpkt always allocates a ipsec_out_t */ 25586 ASSERT(mp->b_datap->db_type == M_CTL); 25587 ASSERT(!ipif->ipif_isv6); 25588 ASSERT(!(ipif->ipif_ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)); 25589 25590 first_mp = mp; 25591 mp = first_mp->b_cont; 25592 ASSERT(mp->b_datap->db_type == M_DATA); 25593 ipha = (ipha_t *)mp->b_rptr; 25594 25595 /* 25596 * Find an IRE which matches the destination and the outgoing 25597 * queue (i.e. the outgoing interface.) 25598 */ 25599 if (ipif->ipif_flags & IPIF_POINTOPOINT) 25600 dst = ipif->ipif_pp_dst_addr; 25601 else 25602 dst = ipha->ipha_dst; 25603 /* 25604 * The source address has already been initialized by the 25605 * caller and hence matching on ILL (MATCH_IRE_ILL) would 25606 * be sufficient rather than MATCH_IRE_IPIF. 25607 * 25608 * This function is used for sending IGMP packets. We need 25609 * to make sure that we send the packet out of the interface 25610 * (ipif->ipif_ill) where we joined the group. This is to 25611 * prevent from switches doing IGMP snooping to send us multicast 25612 * packets for a given group on the interface we have joined. 25613 * If we can't find an ire, igmp_sendpkt has already initialized 25614 * ipsec_out_attach_if so that this will not be load spread in 25615 * ip_newroute_ipif. 25616 */ 25617 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, NULL, 25618 MATCH_IRE_ILL, ipst); 25619 if (!ire) { 25620 /* 25621 * Mark this packet to make it be delivered to 25622 * ip_wput_ire after the new ire has been 25623 * created. 25624 */ 25625 mp->b_prev = NULL; 25626 mp->b_next = NULL; 25627 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC, 25628 zoneid, &zero_info); 25629 return; 25630 } 25631 25632 /* 25633 * Honor the RTF_SETSRC flag; this is the only case 25634 * where we force this addr whatever the current src addr is, 25635 * because this address is set by igmp_sendpkt(), and 25636 * cannot be specified by any user. 25637 */ 25638 if (ire->ire_flags & RTF_SETSRC) { 25639 ipha->ipha_src = ire->ire_src_addr; 25640 } 25641 25642 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE, zoneid); 25643 } 25644 25645 /* 25646 * NOTE : This function does not ire_refrele the ire argument passed in. 25647 * 25648 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 25649 * failure. The nce_fp_mp can vanish any time in the case of IRE_MIPRTUN 25650 * and IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 25651 * the ire_lock to access the nce_fp_mp in this case. 25652 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 25653 * prepending a fastpath message IPQoS processing must precede it, we also set 25654 * the b_band of the fastpath message to that of the mblk returned by IPQoS 25655 * (IPQoS might have set the b_band for CoS marking). 25656 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 25657 * must follow it so that IPQoS can mark the dl_priority field for CoS 25658 * marking, if needed. 25659 */ 25660 static mblk_t * 25661 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, uint32_t ill_index) 25662 { 25663 uint_t hlen; 25664 ipha_t *ipha; 25665 mblk_t *mp1; 25666 boolean_t qos_done = B_FALSE; 25667 uchar_t *ll_hdr; 25668 ip_stack_t *ipst = ire->ire_ipst; 25669 25670 #define rptr ((uchar_t *)ipha) 25671 25672 ipha = (ipha_t *)mp->b_rptr; 25673 hlen = 0; 25674 LOCK_IRE_FP_MP(ire); 25675 if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) { 25676 ASSERT(DB_TYPE(mp1) == M_DATA); 25677 /* Initiate IPPF processing */ 25678 if ((proc != 0) && IPP_ENABLED(proc, ipst)) { 25679 UNLOCK_IRE_FP_MP(ire); 25680 ip_process(proc, &mp, ill_index); 25681 if (mp == NULL) 25682 return (NULL); 25683 25684 ipha = (ipha_t *)mp->b_rptr; 25685 LOCK_IRE_FP_MP(ire); 25686 if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) { 25687 qos_done = B_TRUE; 25688 goto no_fp_mp; 25689 } 25690 ASSERT(DB_TYPE(mp1) == M_DATA); 25691 } 25692 hlen = MBLKL(mp1); 25693 /* 25694 * Check if we have enough room to prepend fastpath 25695 * header 25696 */ 25697 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 25698 ll_hdr = rptr - hlen; 25699 bcopy(mp1->b_rptr, ll_hdr, hlen); 25700 /* 25701 * Set the b_rptr to the start of the link layer 25702 * header 25703 */ 25704 mp->b_rptr = ll_hdr; 25705 mp1 = mp; 25706 } else { 25707 mp1 = copyb(mp1); 25708 if (mp1 == NULL) 25709 goto unlock_err; 25710 mp1->b_band = mp->b_band; 25711 mp1->b_cont = mp; 25712 /* 25713 * certain system generated traffic may not 25714 * have cred/label in ip header block. This 25715 * is true even for a labeled system. But for 25716 * labeled traffic, inherit the label in the 25717 * new header. 25718 */ 25719 if (DB_CRED(mp) != NULL) 25720 mblk_setcred(mp1, DB_CRED(mp)); 25721 /* 25722 * XXX disable ICK_VALID and compute checksum 25723 * here; can happen if nce_fp_mp changes and 25724 * it can't be copied now due to insufficient 25725 * space. (unlikely, fp mp can change, but it 25726 * does not increase in length) 25727 */ 25728 } 25729 UNLOCK_IRE_FP_MP(ire); 25730 } else { 25731 no_fp_mp: 25732 mp1 = copyb(ire->ire_nce->nce_res_mp); 25733 if (mp1 == NULL) { 25734 unlock_err: 25735 UNLOCK_IRE_FP_MP(ire); 25736 freemsg(mp); 25737 return (NULL); 25738 } 25739 UNLOCK_IRE_FP_MP(ire); 25740 mp1->b_cont = mp; 25741 /* 25742 * certain system generated traffic may not 25743 * have cred/label in ip header block. This 25744 * is true even for a labeled system. But for 25745 * labeled traffic, inherit the label in the 25746 * new header. 25747 */ 25748 if (DB_CRED(mp) != NULL) 25749 mblk_setcred(mp1, DB_CRED(mp)); 25750 if (!qos_done && (proc != 0) && IPP_ENABLED(proc, ipst)) { 25751 ip_process(proc, &mp1, ill_index); 25752 if (mp1 == NULL) 25753 return (NULL); 25754 } 25755 } 25756 return (mp1); 25757 #undef rptr 25758 } 25759 25760 /* 25761 * Finish the outbound IPsec processing for an IPv6 packet. This function 25762 * is called from ipsec_out_process() if the IPsec packet was processed 25763 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25764 * asynchronously. 25765 */ 25766 void 25767 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 25768 ire_t *ire_arg) 25769 { 25770 in6_addr_t *v6dstp; 25771 ire_t *ire; 25772 mblk_t *mp; 25773 ip6_t *ip6h1; 25774 uint_t ill_index; 25775 ipsec_out_t *io; 25776 boolean_t attach_if, hwaccel; 25777 uint32_t flags = IP6_NO_IPPOLICY; 25778 int match_flags; 25779 zoneid_t zoneid; 25780 boolean_t ill_need_rele = B_FALSE; 25781 boolean_t ire_need_rele = B_FALSE; 25782 ip_stack_t *ipst; 25783 25784 mp = ipsec_mp->b_cont; 25785 ip6h1 = (ip6_t *)mp->b_rptr; 25786 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25787 ASSERT(io->ipsec_out_ns != NULL); 25788 ipst = io->ipsec_out_ns->netstack_ip; 25789 ill_index = io->ipsec_out_ill_index; 25790 if (io->ipsec_out_reachable) { 25791 flags |= IPV6_REACHABILITY_CONFIRMATION; 25792 } 25793 attach_if = io->ipsec_out_attach_if; 25794 hwaccel = io->ipsec_out_accelerated; 25795 zoneid = io->ipsec_out_zoneid; 25796 ASSERT(zoneid != ALL_ZONES); 25797 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 25798 /* Multicast addresses should have non-zero ill_index. */ 25799 v6dstp = &ip6h->ip6_dst; 25800 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 25801 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 25802 ASSERT(!attach_if || ill_index != 0); 25803 if (ill_index != 0) { 25804 if (ill == NULL) { 25805 ill = ip_grab_attach_ill(NULL, ipsec_mp, ill_index, 25806 B_TRUE, ipst); 25807 25808 /* Failure case frees things for us. */ 25809 if (ill == NULL) 25810 return; 25811 25812 ill_need_rele = B_TRUE; 25813 } 25814 /* 25815 * If this packet needs to go out on a particular interface 25816 * honor it. 25817 */ 25818 if (attach_if) { 25819 match_flags = MATCH_IRE_ILL; 25820 25821 /* 25822 * Check if we need an ire that will not be 25823 * looked up by anybody else i.e. HIDDEN. 25824 */ 25825 if (ill_is_probeonly(ill)) { 25826 match_flags |= MATCH_IRE_MARK_HIDDEN; 25827 } 25828 } 25829 } 25830 ASSERT(mp != NULL); 25831 25832 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 25833 boolean_t unspec_src; 25834 ipif_t *ipif; 25835 25836 /* 25837 * Use the ill_index to get the right ill. 25838 */ 25839 unspec_src = io->ipsec_out_unspec_src; 25840 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25841 if (ipif == NULL) { 25842 if (ill_need_rele) 25843 ill_refrele(ill); 25844 freemsg(ipsec_mp); 25845 return; 25846 } 25847 25848 if (ire_arg != NULL) { 25849 ire = ire_arg; 25850 } else { 25851 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25852 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25853 ire_need_rele = B_TRUE; 25854 } 25855 if (ire != NULL) { 25856 ipif_refrele(ipif); 25857 /* 25858 * XXX Do the multicast forwarding now, as the IPSEC 25859 * processing has been done. 25860 */ 25861 goto send; 25862 } 25863 25864 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 25865 mp->b_prev = NULL; 25866 mp->b_next = NULL; 25867 25868 /* 25869 * If the IPsec packet was processed asynchronously, 25870 * drop it now. 25871 */ 25872 if (q == NULL) { 25873 if (ill_need_rele) 25874 ill_refrele(ill); 25875 freemsg(ipsec_mp); 25876 return; 25877 } 25878 25879 ip_newroute_ipif_v6(q, ipsec_mp, ipif, *v6dstp, 25880 unspec_src, zoneid); 25881 ipif_refrele(ipif); 25882 } else { 25883 if (attach_if) { 25884 ipif_t *ipif; 25885 25886 ipif = ipif_get_next_ipif(NULL, ill); 25887 if (ipif == NULL) { 25888 if (ill_need_rele) 25889 ill_refrele(ill); 25890 freemsg(ipsec_mp); 25891 return; 25892 } 25893 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25894 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25895 ire_need_rele = B_TRUE; 25896 ipif_refrele(ipif); 25897 } else { 25898 if (ire_arg != NULL) { 25899 ire = ire_arg; 25900 } else { 25901 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL, 25902 ipst); 25903 ire_need_rele = B_TRUE; 25904 } 25905 } 25906 if (ire != NULL) 25907 goto send; 25908 /* 25909 * ire disappeared underneath. 25910 * 25911 * What we need to do here is the ip_newroute 25912 * logic to get the ire without doing the IPSEC 25913 * processing. Follow the same old path. But this 25914 * time, ip_wput or ire_add_then_send will call us 25915 * directly as all the IPSEC operations are done. 25916 */ 25917 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 25918 mp->b_prev = NULL; 25919 mp->b_next = NULL; 25920 25921 /* 25922 * If the IPsec packet was processed asynchronously, 25923 * drop it now. 25924 */ 25925 if (q == NULL) { 25926 if (ill_need_rele) 25927 ill_refrele(ill); 25928 freemsg(ipsec_mp); 25929 return; 25930 } 25931 25932 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 25933 zoneid, ipst); 25934 } 25935 if (ill != NULL && ill_need_rele) 25936 ill_refrele(ill); 25937 return; 25938 send: 25939 if (ill != NULL && ill_need_rele) 25940 ill_refrele(ill); 25941 25942 /* Local delivery */ 25943 if (ire->ire_stq == NULL) { 25944 ill_t *out_ill; 25945 ASSERT(q != NULL); 25946 25947 /* PFHooks: LOOPBACK_OUT */ 25948 out_ill = ire->ire_ipif->ipif_ill; 25949 25950 DTRACE_PROBE4(ip6__loopback__out__start, 25951 ill_t *, NULL, ill_t *, out_ill, 25952 ip6_t *, ip6h1, mblk_t *, ipsec_mp); 25953 25954 FW_HOOKS6(ipst->ips_ip6_loopback_out_event, 25955 ipst->ips_ipv6firewall_loopback_out, 25956 NULL, out_ill, ip6h1, ipsec_mp, mp, ipst); 25957 25958 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, ipsec_mp); 25959 25960 if (ipsec_mp != NULL) 25961 ip_wput_local_v6(RD(q), out_ill, 25962 ip6h, ipsec_mp, ire, 0); 25963 if (ire_need_rele) 25964 ire_refrele(ire); 25965 return; 25966 } 25967 /* 25968 * Everything is done. Send it out on the wire. 25969 * We force the insertion of a fragment header using the 25970 * IPH_FRAG_HDR flag in two cases: 25971 * - after reception of an ICMPv6 "packet too big" message 25972 * with a MTU < 1280 (cf. RFC 2460 section 5) 25973 * - for multirouted IPv6 packets, so that the receiver can 25974 * discard duplicates according to their fragment identifier 25975 */ 25976 /* XXX fix flow control problems. */ 25977 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 25978 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 25979 if (hwaccel) { 25980 /* 25981 * hardware acceleration does not handle these 25982 * "slow path" cases. 25983 */ 25984 /* IPsec KSTATS: should bump bean counter here. */ 25985 if (ire_need_rele) 25986 ire_refrele(ire); 25987 freemsg(ipsec_mp); 25988 return; 25989 } 25990 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 25991 (mp->b_cont ? msgdsize(mp) : 25992 mp->b_wptr - (uchar_t *)ip6h)) { 25993 /* IPsec KSTATS: should bump bean counter here. */ 25994 ip0dbg(("Packet length mismatch: %d, %ld\n", 25995 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 25996 msgdsize(mp))); 25997 if (ire_need_rele) 25998 ire_refrele(ire); 25999 freemsg(ipsec_mp); 26000 return; 26001 } 26002 ASSERT(mp->b_prev == NULL); 26003 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 26004 ntohs(ip6h->ip6_plen) + 26005 IPV6_HDR_LEN, ire->ire_max_frag)); 26006 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 26007 ire->ire_max_frag); 26008 } else { 26009 UPDATE_OB_PKT_COUNT(ire); 26010 ire->ire_last_used_time = lbolt; 26011 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 26012 } 26013 if (ire_need_rele) 26014 ire_refrele(ire); 26015 freeb(ipsec_mp); 26016 } 26017 26018 void 26019 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 26020 { 26021 mblk_t *hada_mp; /* attributes M_CTL mblk */ 26022 da_ipsec_t *hada; /* data attributes */ 26023 ill_t *ill = (ill_t *)q->q_ptr; 26024 26025 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 26026 26027 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 26028 /* IPsec KSTATS: Bump lose counter here! */ 26029 freemsg(mp); 26030 return; 26031 } 26032 26033 /* 26034 * It's an IPsec packet that must be 26035 * accelerated by the Provider, and the 26036 * outbound ill is IPsec acceleration capable. 26037 * Prepends the mblk with an IPHADA_M_CTL, and ship it 26038 * to the ill. 26039 * IPsec KSTATS: should bump packet counter here. 26040 */ 26041 26042 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 26043 if (hada_mp == NULL) { 26044 /* IPsec KSTATS: should bump packet counter here. */ 26045 freemsg(mp); 26046 return; 26047 } 26048 26049 hada_mp->b_datap->db_type = M_CTL; 26050 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 26051 hada_mp->b_cont = mp; 26052 26053 hada = (da_ipsec_t *)hada_mp->b_rptr; 26054 bzero(hada, sizeof (da_ipsec_t)); 26055 hada->da_type = IPHADA_M_CTL; 26056 26057 putnext(q, hada_mp); 26058 } 26059 26060 /* 26061 * Finish the outbound IPsec processing. This function is called from 26062 * ipsec_out_process() if the IPsec packet was processed 26063 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 26064 * asynchronously. 26065 */ 26066 void 26067 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 26068 ire_t *ire_arg) 26069 { 26070 uint32_t v_hlen_tos_len; 26071 ipaddr_t dst; 26072 ipif_t *ipif = NULL; 26073 ire_t *ire; 26074 ire_t *ire1 = NULL; 26075 mblk_t *next_mp = NULL; 26076 uint32_t max_frag; 26077 boolean_t multirt_send = B_FALSE; 26078 mblk_t *mp; 26079 mblk_t *mp1; 26080 ipha_t *ipha1; 26081 uint_t ill_index; 26082 ipsec_out_t *io; 26083 boolean_t attach_if; 26084 int match_flags, offset; 26085 irb_t *irb = NULL; 26086 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 26087 zoneid_t zoneid; 26088 uint32_t cksum; 26089 uint16_t *up; 26090 ipxmit_state_t pktxmit_state; 26091 ip_stack_t *ipst; 26092 26093 #ifdef _BIG_ENDIAN 26094 #define LENGTH (v_hlen_tos_len & 0xFFFF) 26095 #else 26096 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 26097 #endif 26098 26099 mp = ipsec_mp->b_cont; 26100 ipha1 = (ipha_t *)mp->b_rptr; 26101 ASSERT(mp != NULL); 26102 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 26103 dst = ipha->ipha_dst; 26104 26105 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26106 ill_index = io->ipsec_out_ill_index; 26107 attach_if = io->ipsec_out_attach_if; 26108 zoneid = io->ipsec_out_zoneid; 26109 ASSERT(zoneid != ALL_ZONES); 26110 ipst = io->ipsec_out_ns->netstack_ip; 26111 ASSERT(io->ipsec_out_ns != NULL); 26112 26113 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 26114 if (ill_index != 0) { 26115 if (ill == NULL) { 26116 ill = ip_grab_attach_ill(NULL, ipsec_mp, 26117 ill_index, B_FALSE, ipst); 26118 26119 /* Failure case frees things for us. */ 26120 if (ill == NULL) 26121 return; 26122 26123 ill_need_rele = B_TRUE; 26124 } 26125 /* 26126 * If this packet needs to go out on a particular interface 26127 * honor it. 26128 */ 26129 if (attach_if) { 26130 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 26131 26132 /* 26133 * Check if we need an ire that will not be 26134 * looked up by anybody else i.e. HIDDEN. 26135 */ 26136 if (ill_is_probeonly(ill)) { 26137 match_flags |= MATCH_IRE_MARK_HIDDEN; 26138 } 26139 } 26140 } 26141 26142 if (CLASSD(dst)) { 26143 boolean_t conn_dontroute; 26144 /* 26145 * Use the ill_index to get the right ipif. 26146 */ 26147 conn_dontroute = io->ipsec_out_dontroute; 26148 if (ill_index == 0) 26149 ipif = ipif_lookup_group(dst, zoneid, ipst); 26150 else 26151 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 26152 if (ipif == NULL) { 26153 ip1dbg(("ip_wput_ipsec_out: No ipif for" 26154 " multicast\n")); 26155 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 26156 freemsg(ipsec_mp); 26157 goto done; 26158 } 26159 /* 26160 * ipha_src has already been intialized with the 26161 * value of the ipif in ip_wput. All we need now is 26162 * an ire to send this downstream. 26163 */ 26164 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 26165 MBLK_GETLABEL(mp), match_flags, ipst); 26166 if (ire != NULL) { 26167 ill_t *ill1; 26168 /* 26169 * Do the multicast forwarding now, as the IPSEC 26170 * processing has been done. 26171 */ 26172 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 26173 (ill1 = ire_to_ill(ire))) { 26174 if (ip_mforward(ill1, ipha, mp)) { 26175 freemsg(ipsec_mp); 26176 ip1dbg(("ip_wput_ipsec_out: mforward " 26177 "failed\n")); 26178 ire_refrele(ire); 26179 goto done; 26180 } 26181 } 26182 goto send; 26183 } 26184 26185 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 26186 mp->b_prev = NULL; 26187 mp->b_next = NULL; 26188 26189 /* 26190 * If the IPsec packet was processed asynchronously, 26191 * drop it now. 26192 */ 26193 if (q == NULL) { 26194 freemsg(ipsec_mp); 26195 goto done; 26196 } 26197 26198 /* 26199 * We may be using a wrong ipif to create the ire. 26200 * But it is okay as the source address is assigned 26201 * for the packet already. Next outbound packet would 26202 * create the IRE with the right IPIF in ip_wput. 26203 * 26204 * Also handle RTF_MULTIRT routes. 26205 */ 26206 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT, 26207 zoneid, &zero_info); 26208 } else { 26209 if (attach_if) { 26210 ire = ire_ctable_lookup(dst, 0, 0, ill->ill_ipif, 26211 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 26212 } else { 26213 if (ire_arg != NULL) { 26214 ire = ire_arg; 26215 ire_need_rele = B_FALSE; 26216 } else { 26217 ire = ire_cache_lookup(dst, zoneid, 26218 MBLK_GETLABEL(mp), ipst); 26219 } 26220 } 26221 if (ire != NULL) { 26222 goto send; 26223 } 26224 26225 /* 26226 * ire disappeared underneath. 26227 * 26228 * What we need to do here is the ip_newroute 26229 * logic to get the ire without doing the IPSEC 26230 * processing. Follow the same old path. But this 26231 * time, ip_wput or ire_add_then_put will call us 26232 * directly as all the IPSEC operations are done. 26233 */ 26234 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 26235 mp->b_prev = NULL; 26236 mp->b_next = NULL; 26237 26238 /* 26239 * If the IPsec packet was processed asynchronously, 26240 * drop it now. 26241 */ 26242 if (q == NULL) { 26243 freemsg(ipsec_mp); 26244 goto done; 26245 } 26246 26247 /* 26248 * Since we're going through ip_newroute() again, we 26249 * need to make sure we don't: 26250 * 26251 * 1.) Trigger the ASSERT() with the ipha_ident 26252 * overloading. 26253 * 2.) Redo transport-layer checksumming, since we've 26254 * already done all that to get this far. 26255 * 26256 * The easiest way not do either of the above is to set 26257 * the ipha_ident field to IP_HDR_INCLUDED. 26258 */ 26259 ipha->ipha_ident = IP_HDR_INCLUDED; 26260 ip_newroute(q, ipsec_mp, dst, NULL, 26261 (CONN_Q(q) ? Q_TO_CONN(q) : NULL), zoneid, ipst); 26262 } 26263 goto done; 26264 send: 26265 if (ipha->ipha_protocol == IPPROTO_UDP && 26266 udp_compute_checksum(ipst->ips_netstack)) { 26267 /* 26268 * ESP NAT-Traversal packet. 26269 * 26270 * Just do software checksum for now. 26271 */ 26272 26273 offset = IP_SIMPLE_HDR_LENGTH + UDP_CHECKSUM_OFFSET; 26274 IP_STAT(ipst, ip_out_sw_cksum); 26275 IP_STAT_UPDATE(ipst, ip_udp_out_sw_cksum_bytes, 26276 ntohs(htons(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH)); 26277 #define iphs ((uint16_t *)ipha) 26278 cksum = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 26279 iphs[9] + ntohs(htons(ipha->ipha_length) - 26280 IP_SIMPLE_HDR_LENGTH); 26281 #undef iphs 26282 cksum = IP_CSUM(mp, IP_SIMPLE_HDR_LENGTH, cksum); 26283 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) 26284 if (mp1->b_wptr - mp1->b_rptr >= 26285 offset + sizeof (uint16_t)) { 26286 up = (uint16_t *)(mp1->b_rptr + offset); 26287 *up = cksum; 26288 break; /* out of for loop */ 26289 } else { 26290 offset -= (mp->b_wptr - mp->b_rptr); 26291 } 26292 } /* Otherwise, just keep the all-zero checksum. */ 26293 26294 if (ire->ire_stq == NULL) { 26295 ill_t *out_ill; 26296 /* 26297 * Loopbacks go through ip_wput_local except for one case. 26298 * We come here if we generate a icmp_frag_needed message 26299 * after IPSEC processing is over. When this function calls 26300 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 26301 * icmp_frag_needed. The message generated comes back here 26302 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 26303 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 26304 * source address as it is usually set in ip_wput_ire. As 26305 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 26306 * and we end up here. We can't enter ip_wput_ire once the 26307 * IPSEC processing is over and hence we need to do it here. 26308 */ 26309 ASSERT(q != NULL); 26310 UPDATE_OB_PKT_COUNT(ire); 26311 ire->ire_last_used_time = lbolt; 26312 if (ipha->ipha_src == 0) 26313 ipha->ipha_src = ire->ire_src_addr; 26314 26315 /* PFHooks: LOOPBACK_OUT */ 26316 out_ill = ire->ire_ipif->ipif_ill; 26317 26318 DTRACE_PROBE4(ip4__loopback__out__start, 26319 ill_t *, NULL, ill_t *, out_ill, 26320 ipha_t *, ipha1, mblk_t *, ipsec_mp); 26321 26322 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 26323 ipst->ips_ipv4firewall_loopback_out, 26324 NULL, out_ill, ipha1, ipsec_mp, mp, ipst); 26325 26326 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, ipsec_mp); 26327 26328 if (ipsec_mp != NULL) 26329 ip_wput_local(RD(q), out_ill, 26330 ipha, ipsec_mp, ire, 0, zoneid); 26331 if (ire_need_rele) 26332 ire_refrele(ire); 26333 goto done; 26334 } 26335 26336 if (ire->ire_max_frag < (unsigned int)LENGTH) { 26337 /* 26338 * We are through with IPSEC processing. 26339 * Fragment this and send it on the wire. 26340 */ 26341 if (io->ipsec_out_accelerated) { 26342 /* 26343 * The packet has been accelerated but must 26344 * be fragmented. This should not happen 26345 * since AH and ESP must not accelerate 26346 * packets that need fragmentation, however 26347 * the configuration could have changed 26348 * since the AH or ESP processing. 26349 * Drop packet. 26350 * IPsec KSTATS: bump bean counter here. 26351 */ 26352 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 26353 "fragmented accelerated packet!\n")); 26354 freemsg(ipsec_mp); 26355 } else { 26356 ip_wput_ire_fragmentit(ipsec_mp, ire, zoneid, ipst); 26357 } 26358 if (ire_need_rele) 26359 ire_refrele(ire); 26360 goto done; 26361 } 26362 26363 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 26364 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 26365 (void *)ire->ire_ipif, (void *)ipif)); 26366 26367 /* 26368 * Multiroute the secured packet, unless IPsec really 26369 * requires the packet to go out only through a particular 26370 * interface. 26371 */ 26372 if ((ire->ire_flags & RTF_MULTIRT) && !attach_if) { 26373 ire_t *first_ire; 26374 irb = ire->ire_bucket; 26375 ASSERT(irb != NULL); 26376 /* 26377 * This ire has been looked up as the one that 26378 * goes through the given ipif; 26379 * make sure we do not omit any other multiroute ire 26380 * that may be present in the bucket before this one. 26381 */ 26382 IRB_REFHOLD(irb); 26383 for (first_ire = irb->irb_ire; 26384 first_ire != NULL; 26385 first_ire = first_ire->ire_next) { 26386 if ((first_ire->ire_flags & RTF_MULTIRT) && 26387 (first_ire->ire_addr == ire->ire_addr) && 26388 !(first_ire->ire_marks & 26389 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 26390 break; 26391 } 26392 26393 if ((first_ire != NULL) && (first_ire != ire)) { 26394 /* 26395 * Don't change the ire if the packet must 26396 * be fragmented if sent via this new one. 26397 */ 26398 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 26399 IRE_REFHOLD(first_ire); 26400 if (ire_need_rele) 26401 ire_refrele(ire); 26402 else 26403 ire_need_rele = B_TRUE; 26404 ire = first_ire; 26405 } 26406 } 26407 IRB_REFRELE(irb); 26408 26409 multirt_send = B_TRUE; 26410 max_frag = ire->ire_max_frag; 26411 } else { 26412 if ((ire->ire_flags & RTF_MULTIRT) && attach_if) { 26413 ip1dbg(("ip_wput_ipsec_out: ignoring multirouting " 26414 "flag, attach_if %d\n", attach_if)); 26415 } 26416 } 26417 26418 /* 26419 * In most cases, the emission loop below is entered only once. 26420 * Only in the case where the ire holds the RTF_MULTIRT 26421 * flag, we loop to process all RTF_MULTIRT ires in the 26422 * bucket, and send the packet through all crossed 26423 * RTF_MULTIRT routes. 26424 */ 26425 do { 26426 if (multirt_send) { 26427 /* 26428 * ire1 holds here the next ire to process in the 26429 * bucket. If multirouting is expected, 26430 * any non-RTF_MULTIRT ire that has the 26431 * right destination address is ignored. 26432 */ 26433 ASSERT(irb != NULL); 26434 IRB_REFHOLD(irb); 26435 for (ire1 = ire->ire_next; 26436 ire1 != NULL; 26437 ire1 = ire1->ire_next) { 26438 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 26439 continue; 26440 if (ire1->ire_addr != ire->ire_addr) 26441 continue; 26442 if (ire1->ire_marks & 26443 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 26444 continue; 26445 /* No loopback here */ 26446 if (ire1->ire_stq == NULL) 26447 continue; 26448 /* 26449 * Ensure we do not exceed the MTU 26450 * of the next route. 26451 */ 26452 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 26453 ip_multirt_bad_mtu(ire1, max_frag); 26454 continue; 26455 } 26456 26457 IRE_REFHOLD(ire1); 26458 break; 26459 } 26460 IRB_REFRELE(irb); 26461 if (ire1 != NULL) { 26462 /* 26463 * We are in a multiple send case, need to 26464 * make a copy of the packet. 26465 */ 26466 next_mp = copymsg(ipsec_mp); 26467 if (next_mp == NULL) { 26468 ire_refrele(ire1); 26469 ire1 = NULL; 26470 } 26471 } 26472 } 26473 /* 26474 * Everything is done. Send it out on the wire 26475 * 26476 * ip_xmit_v4 will call ip_wput_attach_llhdr and then 26477 * either send it on the wire or, in the case of 26478 * HW acceleration, call ipsec_hw_putnext. 26479 */ 26480 if (ire->ire_nce && 26481 ire->ire_nce->nce_state != ND_REACHABLE) { 26482 DTRACE_PROBE2(ip__wput__ipsec__bail, 26483 (ire_t *), ire, (mblk_t *), ipsec_mp); 26484 /* 26485 * If ire's link-layer is unresolved (this 26486 * would only happen if the incomplete ire 26487 * was added to cachetable via forwarding path) 26488 * don't bother going to ip_xmit_v4. Just drop the 26489 * packet. 26490 * There is a slight risk here, in that, if we 26491 * have the forwarding path create an incomplete 26492 * IRE, then until the IRE is completed, any 26493 * transmitted IPSEC packets will be dropped 26494 * instead of being queued waiting for resolution. 26495 * 26496 * But the likelihood of a forwarding packet and a wput 26497 * packet sending to the same dst at the same time 26498 * and there not yet be an ARP entry for it is small. 26499 * Furthermore, if this actually happens, it might 26500 * be likely that wput would generate multiple 26501 * packets (and forwarding would also have a train 26502 * of packets) for that destination. If this is 26503 * the case, some of them would have been dropped 26504 * anyway, since ARP only queues a few packets while 26505 * waiting for resolution 26506 * 26507 * NOTE: We should really call ip_xmit_v4, 26508 * and let it queue the packet and send the 26509 * ARP query and have ARP come back thus: 26510 * <ARP> ip_wput->ip_output->ip-wput_nondata-> 26511 * ip_xmit_v4->ip_wput_attach_llhdr + ipsec 26512 * hw accel work. But it's too complex to get 26513 * the IPsec hw acceleration approach to fit 26514 * well with ip_xmit_v4 doing ARP without 26515 * doing IPSEC simplification. For now, we just 26516 * poke ip_xmit_v4 to trigger the arp resolve, so 26517 * that we can continue with the send on the next 26518 * attempt. 26519 * 26520 * XXX THis should be revisited, when 26521 * the IPsec/IP interaction is cleaned up 26522 */ 26523 ip1dbg(("ip_wput_ipsec_out: ire is incomplete" 26524 " - dropping packet\n")); 26525 freemsg(ipsec_mp); 26526 /* 26527 * Call ip_xmit_v4() to trigger ARP query 26528 * in case the nce_state is ND_INITIAL 26529 */ 26530 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 26531 goto drop_pkt; 26532 } 26533 26534 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 26535 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha1, 26536 mblk_t *, mp); 26537 FW_HOOKS(ipst->ips_ip4_physical_out_event, 26538 ipst->ips_ipv4firewall_physical_out, 26539 NULL, ire->ire_ipif->ipif_ill, ipha1, mp, mp, ipst); 26540 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 26541 if (mp == NULL) 26542 goto drop_pkt; 26543 26544 ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n")); 26545 pktxmit_state = ip_xmit_v4(mp, ire, 26546 (io->ipsec_out_accelerated ? io : NULL), B_FALSE); 26547 26548 if ((pktxmit_state == SEND_FAILED) || 26549 (pktxmit_state == LLHDR_RESLV_FAILED)) { 26550 26551 freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */ 26552 drop_pkt: 26553 BUMP_MIB(((ill_t *)ire->ire_stq->q_ptr)->ill_ip_mib, 26554 ipIfStatsOutDiscards); 26555 if (ire_need_rele) 26556 ire_refrele(ire); 26557 if (ire1 != NULL) { 26558 ire_refrele(ire1); 26559 freemsg(next_mp); 26560 } 26561 goto done; 26562 } 26563 26564 freeb(ipsec_mp); 26565 if (ire_need_rele) 26566 ire_refrele(ire); 26567 26568 if (ire1 != NULL) { 26569 ire = ire1; 26570 ire_need_rele = B_TRUE; 26571 ASSERT(next_mp); 26572 ipsec_mp = next_mp; 26573 mp = ipsec_mp->b_cont; 26574 ire1 = NULL; 26575 next_mp = NULL; 26576 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26577 } else { 26578 multirt_send = B_FALSE; 26579 } 26580 } while (multirt_send); 26581 done: 26582 if (ill != NULL && ill_need_rele) 26583 ill_refrele(ill); 26584 if (ipif != NULL) 26585 ipif_refrele(ipif); 26586 } 26587 26588 /* 26589 * Get the ill corresponding to the specified ire, and compare its 26590 * capabilities with the protocol and algorithms specified by the 26591 * the SA obtained from ipsec_out. If they match, annotate the 26592 * ipsec_out structure to indicate that the packet needs acceleration. 26593 * 26594 * 26595 * A packet is eligible for outbound hardware acceleration if the 26596 * following conditions are satisfied: 26597 * 26598 * 1. the packet will not be fragmented 26599 * 2. the provider supports the algorithm 26600 * 3. there is no pending control message being exchanged 26601 * 4. snoop is not attached 26602 * 5. the destination address is not a broadcast or multicast address. 26603 * 26604 * Rationale: 26605 * - Hardware drivers do not support fragmentation with 26606 * the current interface. 26607 * - snoop, multicast, and broadcast may result in exposure of 26608 * a cleartext datagram. 26609 * We check all five of these conditions here. 26610 * 26611 * XXX would like to nuke "ire_t *" parameter here; problem is that 26612 * IRE is only way to figure out if a v4 address is a broadcast and 26613 * thus ineligible for acceleration... 26614 */ 26615 static void 26616 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 26617 { 26618 ipsec_out_t *io; 26619 mblk_t *data_mp; 26620 uint_t plen, overhead; 26621 ip_stack_t *ipst; 26622 26623 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 26624 return; 26625 26626 if (ill == NULL) 26627 return; 26628 ipst = ill->ill_ipst; 26629 /* 26630 * Destination address is a broadcast or multicast. Punt. 26631 */ 26632 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 26633 IRE_LOCAL))) 26634 return; 26635 26636 data_mp = ipsec_mp->b_cont; 26637 26638 if (ill->ill_isv6) { 26639 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 26640 26641 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 26642 return; 26643 26644 plen = ip6h->ip6_plen; 26645 } else { 26646 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 26647 26648 if (CLASSD(ipha->ipha_dst)) 26649 return; 26650 26651 plen = ipha->ipha_length; 26652 } 26653 /* 26654 * Is there a pending DLPI control message being exchanged 26655 * between IP/IPsec and the DLS Provider? If there is, it 26656 * could be a SADB update, and the state of the DLS Provider 26657 * SADB might not be in sync with the SADB maintained by 26658 * IPsec. To avoid dropping packets or using the wrong keying 26659 * material, we do not accelerate this packet. 26660 */ 26661 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 26662 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26663 "ill_dlpi_pending! don't accelerate packet\n")); 26664 return; 26665 } 26666 26667 /* 26668 * Is the Provider in promiscous mode? If it does, we don't 26669 * accelerate the packet since it will bounce back up to the 26670 * listeners in the clear. 26671 */ 26672 if (ill->ill_promisc_on_phys) { 26673 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26674 "ill in promiscous mode, don't accelerate packet\n")); 26675 return; 26676 } 26677 26678 /* 26679 * Will the packet require fragmentation? 26680 */ 26681 26682 /* 26683 * IPsec ESP note: this is a pessimistic estimate, but the same 26684 * as is used elsewhere. 26685 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 26686 * + 2-byte trailer 26687 */ 26688 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 26689 IPSEC_BASE_ESP_HDR_SIZE(sa); 26690 26691 if ((plen + overhead) > ill->ill_max_mtu) 26692 return; 26693 26694 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26695 26696 /* 26697 * Can the ill accelerate this IPsec protocol and algorithm 26698 * specified by the SA? 26699 */ 26700 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 26701 ill->ill_isv6, sa, ipst->ips_netstack)) { 26702 return; 26703 } 26704 26705 /* 26706 * Tell AH or ESP that the outbound ill is capable of 26707 * accelerating this packet. 26708 */ 26709 io->ipsec_out_is_capab_ill = B_TRUE; 26710 } 26711 26712 /* 26713 * Select which AH & ESP SA's to use (if any) for the outbound packet. 26714 * 26715 * If this function returns B_TRUE, the requested SA's have been filled 26716 * into the ipsec_out_*_sa pointers. 26717 * 26718 * If the function returns B_FALSE, the packet has been "consumed", most 26719 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 26720 * 26721 * The SA references created by the protocol-specific "select" 26722 * function will be released when the ipsec_mp is freed, thanks to the 26723 * ipsec_out_free destructor -- see spd.c. 26724 */ 26725 static boolean_t 26726 ipsec_out_select_sa(mblk_t *ipsec_mp) 26727 { 26728 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 26729 ipsec_out_t *io; 26730 ipsec_policy_t *pp; 26731 ipsec_action_t *ap; 26732 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26733 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26734 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26735 26736 if (!io->ipsec_out_secure) { 26737 /* 26738 * We came here by mistake. 26739 * Don't bother with ipsec processing 26740 * We should "discourage" this path in the future. 26741 */ 26742 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26743 return (B_FALSE); 26744 } 26745 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26746 ASSERT((io->ipsec_out_policy != NULL) || 26747 (io->ipsec_out_act != NULL)); 26748 26749 ASSERT(io->ipsec_out_failed == B_FALSE); 26750 26751 /* 26752 * IPSEC processing has started. 26753 */ 26754 io->ipsec_out_proc_begin = B_TRUE; 26755 ap = io->ipsec_out_act; 26756 if (ap == NULL) { 26757 pp = io->ipsec_out_policy; 26758 ASSERT(pp != NULL); 26759 ap = pp->ipsp_act; 26760 ASSERT(ap != NULL); 26761 } 26762 26763 /* 26764 * We have an action. now, let's select SA's. 26765 * (In the future, we can cache this in the conn_t..) 26766 */ 26767 if (ap->ipa_want_esp) { 26768 if (io->ipsec_out_esp_sa == NULL) { 26769 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 26770 IPPROTO_ESP); 26771 } 26772 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 26773 } 26774 26775 if (ap->ipa_want_ah) { 26776 if (io->ipsec_out_ah_sa == NULL) { 26777 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 26778 IPPROTO_AH); 26779 } 26780 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 26781 /* 26782 * The ESP and AH processing order needs to be preserved 26783 * when both protocols are required (ESP should be applied 26784 * before AH for an outbound packet). Force an ESP ACQUIRE 26785 * when both ESP and AH are required, and an AH ACQUIRE 26786 * is needed. 26787 */ 26788 if (ap->ipa_want_esp && need_ah_acquire) 26789 need_esp_acquire = B_TRUE; 26790 } 26791 26792 /* 26793 * Send an ACQUIRE (extended, regular, or both) if we need one. 26794 * Release SAs that got referenced, but will not be used until we 26795 * acquire _all_ of the SAs we need. 26796 */ 26797 if (need_ah_acquire || need_esp_acquire) { 26798 if (io->ipsec_out_ah_sa != NULL) { 26799 IPSA_REFRELE(io->ipsec_out_ah_sa); 26800 io->ipsec_out_ah_sa = NULL; 26801 } 26802 if (io->ipsec_out_esp_sa != NULL) { 26803 IPSA_REFRELE(io->ipsec_out_esp_sa); 26804 io->ipsec_out_esp_sa = NULL; 26805 } 26806 26807 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 26808 return (B_FALSE); 26809 } 26810 26811 return (B_TRUE); 26812 } 26813 26814 /* 26815 * Process an IPSEC_OUT message and see what you can 26816 * do with it. 26817 * IPQoS Notes: 26818 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 26819 * IPSec. 26820 * XXX would like to nuke ire_t. 26821 * XXX ill_index better be "real" 26822 */ 26823 void 26824 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 26825 { 26826 ipsec_out_t *io; 26827 ipsec_policy_t *pp; 26828 ipsec_action_t *ap; 26829 ipha_t *ipha; 26830 ip6_t *ip6h; 26831 mblk_t *mp; 26832 ill_t *ill; 26833 zoneid_t zoneid; 26834 ipsec_status_t ipsec_rc; 26835 boolean_t ill_need_rele = B_FALSE; 26836 ip_stack_t *ipst; 26837 ipsec_stack_t *ipss; 26838 26839 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26840 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26841 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26842 ipst = io->ipsec_out_ns->netstack_ip; 26843 mp = ipsec_mp->b_cont; 26844 26845 /* 26846 * Initiate IPPF processing. We do it here to account for packets 26847 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 26848 * We can check for ipsec_out_proc_begin even for such packets, as 26849 * they will always be false (asserted below). 26850 */ 26851 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst) && !io->ipsec_out_proc_begin) { 26852 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 26853 io->ipsec_out_ill_index : ill_index); 26854 if (mp == NULL) { 26855 ip2dbg(("ipsec_out_process: packet dropped "\ 26856 "during IPPF processing\n")); 26857 freeb(ipsec_mp); 26858 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26859 return; 26860 } 26861 } 26862 26863 if (!io->ipsec_out_secure) { 26864 /* 26865 * We came here by mistake. 26866 * Don't bother with ipsec processing 26867 * Should "discourage" this path in the future. 26868 */ 26869 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26870 goto done; 26871 } 26872 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26873 ASSERT((io->ipsec_out_policy != NULL) || 26874 (io->ipsec_out_act != NULL)); 26875 ASSERT(io->ipsec_out_failed == B_FALSE); 26876 26877 ipss = ipst->ips_netstack->netstack_ipsec; 26878 if (!ipsec_loaded(ipss)) { 26879 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 26880 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26881 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26882 } else { 26883 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 26884 } 26885 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 26886 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 26887 &ipss->ipsec_dropper); 26888 return; 26889 } 26890 26891 /* 26892 * IPSEC processing has started. 26893 */ 26894 io->ipsec_out_proc_begin = B_TRUE; 26895 ap = io->ipsec_out_act; 26896 if (ap == NULL) { 26897 pp = io->ipsec_out_policy; 26898 ASSERT(pp != NULL); 26899 ap = pp->ipsp_act; 26900 ASSERT(ap != NULL); 26901 } 26902 26903 /* 26904 * Save the outbound ill index. When the packet comes back 26905 * from IPsec, we make sure the ill hasn't changed or disappeared 26906 * before sending it the accelerated packet. 26907 */ 26908 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 26909 int ifindex; 26910 ill = ire_to_ill(ire); 26911 ifindex = ill->ill_phyint->phyint_ifindex; 26912 io->ipsec_out_capab_ill_index = ifindex; 26913 } 26914 26915 /* 26916 * The order of processing is first insert a IP header if needed. 26917 * Then insert the ESP header and then the AH header. 26918 */ 26919 if ((io->ipsec_out_se_done == B_FALSE) && 26920 (ap->ipa_want_se)) { 26921 /* 26922 * First get the outer IP header before sending 26923 * it to ESP. 26924 */ 26925 ipha_t *oipha, *iipha; 26926 mblk_t *outer_mp, *inner_mp; 26927 26928 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 26929 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 26930 "ipsec_out_process: " 26931 "Self-Encapsulation failed: Out of memory\n"); 26932 freemsg(ipsec_mp); 26933 if (ill != NULL) { 26934 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26935 } else { 26936 BUMP_MIB(&ipst->ips_ip_mib, 26937 ipIfStatsOutDiscards); 26938 } 26939 return; 26940 } 26941 inner_mp = ipsec_mp->b_cont; 26942 ASSERT(inner_mp->b_datap->db_type == M_DATA); 26943 oipha = (ipha_t *)outer_mp->b_rptr; 26944 iipha = (ipha_t *)inner_mp->b_rptr; 26945 *oipha = *iipha; 26946 outer_mp->b_wptr += sizeof (ipha_t); 26947 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 26948 sizeof (ipha_t)); 26949 oipha->ipha_protocol = IPPROTO_ENCAP; 26950 oipha->ipha_version_and_hdr_length = 26951 IP_SIMPLE_HDR_VERSION; 26952 oipha->ipha_hdr_checksum = 0; 26953 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 26954 outer_mp->b_cont = inner_mp; 26955 ipsec_mp->b_cont = outer_mp; 26956 26957 io->ipsec_out_se_done = B_TRUE; 26958 io->ipsec_out_tunnel = B_TRUE; 26959 } 26960 26961 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 26962 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 26963 !ipsec_out_select_sa(ipsec_mp)) 26964 return; 26965 26966 /* 26967 * By now, we know what SA's to use. Toss over to ESP & AH 26968 * to do the heavy lifting. 26969 */ 26970 zoneid = io->ipsec_out_zoneid; 26971 ASSERT(zoneid != ALL_ZONES); 26972 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 26973 ASSERT(io->ipsec_out_esp_sa != NULL); 26974 io->ipsec_out_esp_done = B_TRUE; 26975 /* 26976 * Note that since hw accel can only apply one transform, 26977 * not two, we skip hw accel for ESP if we also have AH 26978 * This is an design limitation of the interface 26979 * which should be revisited. 26980 */ 26981 ASSERT(ire != NULL); 26982 if (io->ipsec_out_ah_sa == NULL) { 26983 ill = (ill_t *)ire->ire_stq->q_ptr; 26984 ipsec_out_is_accelerated(ipsec_mp, 26985 io->ipsec_out_esp_sa, ill, ire); 26986 } 26987 26988 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 26989 switch (ipsec_rc) { 26990 case IPSEC_STATUS_SUCCESS: 26991 break; 26992 case IPSEC_STATUS_FAILED: 26993 if (ill != NULL) { 26994 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26995 } else { 26996 BUMP_MIB(&ipst->ips_ip_mib, 26997 ipIfStatsOutDiscards); 26998 } 26999 /* FALLTHRU */ 27000 case IPSEC_STATUS_PENDING: 27001 return; 27002 } 27003 } 27004 27005 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 27006 ASSERT(io->ipsec_out_ah_sa != NULL); 27007 io->ipsec_out_ah_done = B_TRUE; 27008 if (ire == NULL) { 27009 int idx = io->ipsec_out_capab_ill_index; 27010 ill = ill_lookup_on_ifindex(idx, B_FALSE, 27011 NULL, NULL, NULL, NULL, ipst); 27012 ill_need_rele = B_TRUE; 27013 } else { 27014 ill = (ill_t *)ire->ire_stq->q_ptr; 27015 } 27016 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 27017 ire); 27018 27019 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 27020 switch (ipsec_rc) { 27021 case IPSEC_STATUS_SUCCESS: 27022 break; 27023 case IPSEC_STATUS_FAILED: 27024 if (ill != NULL) { 27025 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 27026 } else { 27027 BUMP_MIB(&ipst->ips_ip_mib, 27028 ipIfStatsOutDiscards); 27029 } 27030 /* FALLTHRU */ 27031 case IPSEC_STATUS_PENDING: 27032 if (ill != NULL && ill_need_rele) 27033 ill_refrele(ill); 27034 return; 27035 } 27036 } 27037 /* 27038 * We are done with IPSEC processing. Send it over 27039 * the wire. 27040 */ 27041 done: 27042 mp = ipsec_mp->b_cont; 27043 ipha = (ipha_t *)mp->b_rptr; 27044 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 27045 ip_wput_ipsec_out(q, ipsec_mp, ipha, ill, ire); 27046 } else { 27047 ip6h = (ip6_t *)ipha; 27048 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ill, ire); 27049 } 27050 if (ill != NULL && ill_need_rele) 27051 ill_refrele(ill); 27052 } 27053 27054 /* ARGSUSED */ 27055 void 27056 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 27057 { 27058 opt_restart_t *or; 27059 int err; 27060 conn_t *connp; 27061 27062 ASSERT(CONN_Q(q)); 27063 connp = Q_TO_CONN(q); 27064 27065 ASSERT(first_mp->b_datap->db_type == M_CTL); 27066 or = (opt_restart_t *)first_mp->b_rptr; 27067 /* 27068 * We don't need to pass any credentials here since this is just 27069 * a restart. The credentials are passed in when svr4_optcom_req 27070 * is called the first time (from ip_wput_nondata). 27071 */ 27072 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 27073 err = svr4_optcom_req(q, first_mp, NULL, 27074 &ip_opt_obj); 27075 } else { 27076 ASSERT(or->or_type == T_OPTMGMT_REQ); 27077 err = tpi_optcom_req(q, first_mp, NULL, 27078 &ip_opt_obj); 27079 } 27080 if (err != EINPROGRESS) { 27081 /* operation is done */ 27082 CONN_OPER_PENDING_DONE(connp); 27083 } 27084 } 27085 27086 /* 27087 * ioctls that go through a down/up sequence may need to wait for the down 27088 * to complete. This involves waiting for the ire and ipif refcnts to go down 27089 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 27090 */ 27091 /* ARGSUSED */ 27092 void 27093 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 27094 { 27095 struct iocblk *iocp; 27096 mblk_t *mp1; 27097 ip_ioctl_cmd_t *ipip; 27098 int err; 27099 sin_t *sin; 27100 struct lifreq *lifr; 27101 struct ifreq *ifr; 27102 27103 iocp = (struct iocblk *)mp->b_rptr; 27104 ASSERT(ipsq != NULL); 27105 /* Existence of mp1 verified in ip_wput_nondata */ 27106 mp1 = mp->b_cont->b_cont; 27107 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27108 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 27109 /* 27110 * Special case where ipsq_current_ipif is not set: 27111 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 27112 * ill could also have become part of a ipmp group in the 27113 * process, we are here as were not able to complete the 27114 * operation in ipif_set_values because we could not become 27115 * exclusive on the new ipsq, In such a case ipsq_current_ipif 27116 * will not be set so we need to set it. 27117 */ 27118 ill_t *ill = q->q_ptr; 27119 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 27120 } 27121 ASSERT(ipsq->ipsq_current_ipif != NULL); 27122 27123 if (ipip->ipi_cmd_type == IF_CMD) { 27124 /* This a old style SIOC[GS]IF* command */ 27125 ifr = (struct ifreq *)mp1->b_rptr; 27126 sin = (sin_t *)&ifr->ifr_addr; 27127 } else if (ipip->ipi_cmd_type == LIF_CMD) { 27128 /* This a new style SIOC[GS]LIF* command */ 27129 lifr = (struct lifreq *)mp1->b_rptr; 27130 sin = (sin_t *)&lifr->lifr_addr; 27131 } else { 27132 sin = NULL; 27133 } 27134 27135 err = (*ipip->ipi_func_restart)(ipsq->ipsq_current_ipif, sin, q, mp, 27136 ipip, mp1->b_rptr); 27137 27138 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 27139 } 27140 27141 /* 27142 * ioctl processing 27143 * 27144 * ioctl processing starts with ip_sioctl_copyin_setup which looks up 27145 * the ioctl command in the ioctl tables and determines the copyin data size 27146 * from the ioctl property ipi_copyin_size, and does an mi_copyin() of that 27147 * size. 27148 * 27149 * ioctl processing then continues when the M_IOCDATA makes its way down. 27150 * Now the ioctl is looked up again in the ioctl table, and its properties are 27151 * extracted. The associated 'conn' is then refheld till the end of the ioctl 27152 * and the general ioctl processing function ip_process_ioctl is called. 27153 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 27154 * so goes thru the serialization primitive ipsq_try_enter. Then the 27155 * appropriate function to handle the ioctl is called based on the entry in 27156 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 27157 * which also refreleases the 'conn' that was refheld at the start of the 27158 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 27159 * ip_extract_lifreq_cmn extracts the interface name from the lifreq/ifreq 27160 * struct and looks up the ipif. ip_extract_tunreq handles the case of tunnel. 27161 * 27162 * Many exclusive ioctls go thru an internal down up sequence as part of 27163 * the operation. For example an attempt to change the IP address of an 27164 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 27165 * does all the cleanup such as deleting all ires that use this address. 27166 * Then we need to wait till all references to the interface go away. 27167 */ 27168 void 27169 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 27170 { 27171 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 27172 ip_ioctl_cmd_t *ipip = (ip_ioctl_cmd_t *)arg; 27173 cmd_info_t ci; 27174 int err; 27175 boolean_t entered_ipsq = B_FALSE; 27176 27177 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 27178 27179 if (ipip == NULL) 27180 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27181 27182 /* 27183 * SIOCLIFADDIF needs to go thru a special path since the 27184 * ill may not exist yet. This happens in the case of lo0 27185 * which is created using this ioctl. 27186 */ 27187 if (ipip->ipi_cmd == SIOCLIFADDIF) { 27188 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 27189 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27190 return; 27191 } 27192 27193 ci.ci_ipif = NULL; 27194 switch (ipip->ipi_cmd_type) { 27195 case IF_CMD: 27196 case LIF_CMD: 27197 /* 27198 * ioctls that pass in a [l]ifreq appear here. 27199 * ip_extract_lifreq_cmn returns a refheld ipif in 27200 * ci.ci_ipif 27201 */ 27202 err = ip_extract_lifreq_cmn(q, mp, ipip->ipi_cmd_type, 27203 ipip->ipi_flags, &ci, ip_process_ioctl); 27204 if (err != 0) { 27205 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27206 return; 27207 } 27208 ASSERT(ci.ci_ipif != NULL); 27209 break; 27210 27211 case TUN_CMD: 27212 /* 27213 * SIOC[GS]TUNPARAM appear here. ip_extract_tunreq returns 27214 * a refheld ipif in ci.ci_ipif 27215 */ 27216 err = ip_extract_tunreq(q, mp, &ci.ci_ipif, ip_process_ioctl); 27217 if (err != 0) { 27218 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27219 return; 27220 } 27221 ASSERT(ci.ci_ipif != NULL); 27222 break; 27223 27224 case MISC_CMD: 27225 /* 27226 * ioctls that neither pass in [l]ifreq or iftun_req come here 27227 * For eg. SIOCGLIFCONF will appear here. 27228 */ 27229 switch (ipip->ipi_cmd) { 27230 case IF_UNITSEL: 27231 /* ioctl comes down the ill */ 27232 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 27233 ipif_refhold(ci.ci_ipif); 27234 break; 27235 case SIOCGMSFILTER: 27236 case SIOCSMSFILTER: 27237 case SIOCGIPMSFILTER: 27238 case SIOCSIPMSFILTER: 27239 err = ip_extract_msfilter(q, mp, &ci.ci_ipif, 27240 ip_process_ioctl); 27241 if (err != 0) { 27242 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), 27243 NULL); 27244 } 27245 break; 27246 } 27247 err = 0; 27248 ci.ci_sin = NULL; 27249 ci.ci_sin6 = NULL; 27250 ci.ci_lifr = NULL; 27251 break; 27252 } 27253 27254 /* 27255 * If ipsq is non-null, we are already being called exclusively 27256 */ 27257 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 27258 if (!(ipip->ipi_flags & IPI_WR)) { 27259 /* 27260 * A return value of EINPROGRESS means the ioctl is 27261 * either queued and waiting for some reason or has 27262 * already completed. 27263 */ 27264 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 27265 ci.ci_lifr); 27266 if (ci.ci_ipif != NULL) 27267 ipif_refrele(ci.ci_ipif); 27268 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27269 return; 27270 } 27271 27272 ASSERT(ci.ci_ipif != NULL); 27273 27274 if (ipsq == NULL) { 27275 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, 27276 ip_process_ioctl, NEW_OP, B_TRUE); 27277 entered_ipsq = B_TRUE; 27278 } 27279 /* 27280 * Release the ipif so that ipif_down and friends that wait for 27281 * references to go away are not misled about the current ipif_refcnt 27282 * values. We are writer so we can access the ipif even after releasing 27283 * the ipif. 27284 */ 27285 ipif_refrele(ci.ci_ipif); 27286 if (ipsq == NULL) 27287 return; 27288 27289 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 27290 27291 /* 27292 * For most set ioctls that come here, this serves as a single point 27293 * where we set the IPIF_CHANGING flag. This ensures that there won't 27294 * be any new references to the ipif. This helps functions that go 27295 * through this path and end up trying to wait for the refcnts 27296 * associated with the ipif to go down to zero. Some exceptions are 27297 * Failover, Failback, and Groupname commands that operate on more than 27298 * just the ci.ci_ipif. These commands internally determine the 27299 * set of ipif's they operate on and set and clear the IPIF_CHANGING 27300 * flags on that set. Another exception is the Removeif command that 27301 * sets the IPIF_CONDEMNED flag internally after identifying the right 27302 * ipif to operate on. 27303 */ 27304 mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock); 27305 if (ipip->ipi_cmd != SIOCLIFREMOVEIF && 27306 ipip->ipi_cmd != SIOCLIFFAILOVER && 27307 ipip->ipi_cmd != SIOCLIFFAILBACK && 27308 ipip->ipi_cmd != SIOCSLIFGROUPNAME) 27309 (ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING; 27310 mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock); 27311 27312 /* 27313 * A return value of EINPROGRESS means the ioctl is 27314 * either queued and waiting for some reason or has 27315 * already completed. 27316 */ 27317 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 27318 27319 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 27320 27321 if (entered_ipsq) 27322 ipsq_exit(ipsq, B_TRUE, B_TRUE); 27323 } 27324 27325 /* 27326 * Complete the ioctl. Typically ioctls use the mi package and need to 27327 * do mi_copyout/mi_copy_done. 27328 */ 27329 void 27330 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 27331 { 27332 conn_t *connp = NULL; 27333 27334 if (err == EINPROGRESS) 27335 return; 27336 27337 if (CONN_Q(q)) { 27338 connp = Q_TO_CONN(q); 27339 ASSERT(connp->conn_ref >= 2); 27340 } 27341 27342 switch (mode) { 27343 case COPYOUT: 27344 if (err == 0) 27345 mi_copyout(q, mp); 27346 else 27347 mi_copy_done(q, mp, err); 27348 break; 27349 27350 case NO_COPYOUT: 27351 mi_copy_done(q, mp, err); 27352 break; 27353 27354 default: 27355 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 27356 break; 27357 } 27358 27359 /* 27360 * The refhold placed at the start of the ioctl is released here. 27361 */ 27362 if (connp != NULL) 27363 CONN_OPER_PENDING_DONE(connp); 27364 27365 if (ipsq != NULL) 27366 ipsq_current_finish(ipsq); 27367 } 27368 27369 /* 27370 * This is called from ip_wput_nondata to resume a deferred TCP bind. 27371 */ 27372 /* ARGSUSED */ 27373 void 27374 ip_resume_tcp_bind(void *arg, mblk_t *mp, void *arg2) 27375 { 27376 conn_t *connp = arg; 27377 tcp_t *tcp; 27378 27379 ASSERT(connp != NULL && IPCL_IS_TCP(connp) && connp->conn_tcp != NULL); 27380 tcp = connp->conn_tcp; 27381 27382 if (connp->conn_tcp->tcp_state == TCPS_CLOSED) 27383 freemsg(mp); 27384 else 27385 tcp_rput_other(tcp, mp); 27386 CONN_OPER_PENDING_DONE(connp); 27387 } 27388 27389 /* Called from ip_wput for all non data messages */ 27390 /* ARGSUSED */ 27391 void 27392 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 27393 { 27394 mblk_t *mp1; 27395 ire_t *ire, *fake_ire; 27396 ill_t *ill; 27397 struct iocblk *iocp; 27398 ip_ioctl_cmd_t *ipip; 27399 cred_t *cr; 27400 conn_t *connp; 27401 int cmd, err; 27402 nce_t *nce; 27403 ipif_t *ipif; 27404 ip_stack_t *ipst; 27405 char *proto_str; 27406 27407 if (CONN_Q(q)) { 27408 connp = Q_TO_CONN(q); 27409 ipst = connp->conn_netstack->netstack_ip; 27410 } else { 27411 connp = NULL; 27412 ipst = ILLQ_TO_IPST(q); 27413 } 27414 27415 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(q)); 27416 27417 /* Check if it is a queue to /dev/sctp. */ 27418 if (connp != NULL && connp->conn_ulp == IPPROTO_SCTP && 27419 connp->conn_rq == NULL) { 27420 sctp_wput(q, mp); 27421 return; 27422 } 27423 27424 switch (DB_TYPE(mp)) { 27425 case M_IOCTL: 27426 /* 27427 * IOCTL processing begins in ip_sioctl_copyin_setup which 27428 * will arrange to copy in associated control structures. 27429 */ 27430 ip_sioctl_copyin_setup(q, mp); 27431 return; 27432 case M_IOCDATA: 27433 /* 27434 * Ensure that this is associated with one of our trans- 27435 * parent ioctls. If it's not ours, discard it if we're 27436 * running as a driver, or pass it on if we're a module. 27437 */ 27438 iocp = (struct iocblk *)mp->b_rptr; 27439 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27440 if (ipip == NULL) { 27441 if (q->q_next == NULL) { 27442 goto nak; 27443 } else { 27444 putnext(q, mp); 27445 } 27446 return; 27447 } else if ((q->q_next != NULL) && 27448 !(ipip->ipi_flags & IPI_MODOK)) { 27449 /* 27450 * the ioctl is one we recognise, but is not 27451 * consumed by IP as a module, pass M_IOCDATA 27452 * for processing downstream, but only for 27453 * common Streams ioctls. 27454 */ 27455 if (ipip->ipi_flags & IPI_PASS_DOWN) { 27456 putnext(q, mp); 27457 return; 27458 } else { 27459 goto nak; 27460 } 27461 } 27462 27463 /* IOCTL continuation following copyin or copyout. */ 27464 if (mi_copy_state(q, mp, NULL) == -1) { 27465 /* 27466 * The copy operation failed. mi_copy_state already 27467 * cleaned up, so we're out of here. 27468 */ 27469 return; 27470 } 27471 /* 27472 * If we just completed a copy in, we become writer and 27473 * continue processing in ip_sioctl_copyin_done. If it 27474 * was a copy out, we call mi_copyout again. If there is 27475 * nothing more to copy out, it will complete the IOCTL. 27476 */ 27477 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 27478 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 27479 mi_copy_done(q, mp, EPROTO); 27480 return; 27481 } 27482 /* 27483 * Check for cases that need more copying. A return 27484 * value of 0 means a second copyin has been started, 27485 * so we return; a return value of 1 means no more 27486 * copying is needed, so we continue. 27487 */ 27488 cmd = iocp->ioc_cmd; 27489 if ((cmd == SIOCGMSFILTER || cmd == SIOCSMSFILTER || 27490 cmd == SIOCGIPMSFILTER || cmd == SIOCSIPMSFILTER) && 27491 MI_COPY_COUNT(mp) == 1) { 27492 if (ip_copyin_msfilter(q, mp) == 0) 27493 return; 27494 } 27495 /* 27496 * Refhold the conn, till the ioctl completes. This is 27497 * needed in case the ioctl ends up in the pending mp 27498 * list. Every mp in the ill_pending_mp list and 27499 * the ipsq_pending_mp must have a refhold on the conn 27500 * to resume processing. The refhold is released when 27501 * the ioctl completes. (normally or abnormally) 27502 * In all cases ip_ioctl_finish is called to finish 27503 * the ioctl. 27504 */ 27505 if (connp != NULL) { 27506 /* This is not a reentry */ 27507 ASSERT(ipsq == NULL); 27508 CONN_INC_REF(connp); 27509 } else { 27510 if (!(ipip->ipi_flags & IPI_MODOK)) { 27511 mi_copy_done(q, mp, EINVAL); 27512 return; 27513 } 27514 } 27515 27516 ip_process_ioctl(ipsq, q, mp, ipip); 27517 27518 } else { 27519 mi_copyout(q, mp); 27520 } 27521 return; 27522 nak: 27523 iocp->ioc_error = EINVAL; 27524 mp->b_datap->db_type = M_IOCNAK; 27525 iocp->ioc_count = 0; 27526 qreply(q, mp); 27527 return; 27528 27529 case M_IOCNAK: 27530 /* 27531 * The only way we could get here is if a resolver didn't like 27532 * an IOCTL we sent it. This shouldn't happen. 27533 */ 27534 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 27535 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 27536 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 27537 freemsg(mp); 27538 return; 27539 case M_IOCACK: 27540 /* /dev/ip shouldn't see this */ 27541 if (CONN_Q(q)) 27542 goto nak; 27543 27544 /* Finish socket ioctls passed through to ARP. */ 27545 ip_sioctl_iocack(q, mp); 27546 return; 27547 case M_FLUSH: 27548 if (*mp->b_rptr & FLUSHW) 27549 flushq(q, FLUSHALL); 27550 if (q->q_next) { 27551 /* 27552 * M_FLUSH is sent up to IP by some drivers during 27553 * unbind. ip_rput has already replied to it. We are 27554 * here for the M_FLUSH that we originated in IP 27555 * before sending the unbind request to the driver. 27556 * Just free it as we don't queue packets in IP 27557 * on the write side of the device instance. 27558 */ 27559 freemsg(mp); 27560 return; 27561 } 27562 if (*mp->b_rptr & FLUSHR) { 27563 *mp->b_rptr &= ~FLUSHW; 27564 qreply(q, mp); 27565 return; 27566 } 27567 freemsg(mp); 27568 return; 27569 case IRE_DB_REQ_TYPE: 27570 if (connp == NULL) { 27571 proto_str = "IRE_DB_REQ_TYPE"; 27572 goto protonak; 27573 } 27574 /* An Upper Level Protocol wants a copy of an IRE. */ 27575 ip_ire_req(q, mp); 27576 return; 27577 case M_CTL: 27578 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 27579 break; 27580 27581 if (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == 27582 TUN_HELLO) { 27583 ASSERT(connp != NULL); 27584 connp->conn_flags |= IPCL_IPTUN; 27585 freeb(mp); 27586 return; 27587 } 27588 27589 if (connp != NULL && *(uint32_t *)mp->b_rptr == 27590 IP_ULP_OUT_LABELED) { 27591 out_labeled_t *olp; 27592 27593 if (mp->b_wptr - mp->b_rptr != sizeof (*olp)) 27594 break; 27595 olp = (out_labeled_t *)mp->b_rptr; 27596 connp->conn_ulp_labeled = olp->out_qnext == q; 27597 freemsg(mp); 27598 return; 27599 } 27600 27601 /* M_CTL messages are used by ARP to tell us things. */ 27602 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 27603 break; 27604 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 27605 case AR_ENTRY_SQUERY: 27606 ip_wput_ctl(q, mp); 27607 return; 27608 case AR_CLIENT_NOTIFY: 27609 ip_arp_news(q, mp); 27610 return; 27611 case AR_DLPIOP_DONE: 27612 ASSERT(q->q_next != NULL); 27613 ill = (ill_t *)q->q_ptr; 27614 /* qwriter_ip releases the refhold */ 27615 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 27616 ill_refhold(ill); 27617 (void) qwriter_ip(NULL, ill, q, mp, ip_arp_done, 27618 CUR_OP, B_FALSE); 27619 return; 27620 case AR_ARP_CLOSING: 27621 /* 27622 * ARP (above us) is closing. If no ARP bringup is 27623 * currently pending, ack the message so that ARP 27624 * can complete its close. Also mark ill_arp_closing 27625 * so that new ARP bringups will fail. If any 27626 * ARP bringup is currently in progress, we will 27627 * ack this when the current ARP bringup completes. 27628 */ 27629 ASSERT(q->q_next != NULL); 27630 ill = (ill_t *)q->q_ptr; 27631 mutex_enter(&ill->ill_lock); 27632 ill->ill_arp_closing = 1; 27633 if (!ill->ill_arp_bringup_pending) { 27634 mutex_exit(&ill->ill_lock); 27635 qreply(q, mp); 27636 } else { 27637 mutex_exit(&ill->ill_lock); 27638 freemsg(mp); 27639 } 27640 return; 27641 case AR_ARP_EXTEND: 27642 /* 27643 * The ARP module above us is capable of duplicate 27644 * address detection. Old ATM drivers will not send 27645 * this message. 27646 */ 27647 ASSERT(q->q_next != NULL); 27648 ill = (ill_t *)q->q_ptr; 27649 ill->ill_arp_extend = B_TRUE; 27650 freemsg(mp); 27651 return; 27652 default: 27653 break; 27654 } 27655 break; 27656 case M_PROTO: 27657 case M_PCPROTO: 27658 /* 27659 * The only PROTO messages we expect are ULP binds and 27660 * copies of option negotiation acknowledgements. 27661 */ 27662 switch (((union T_primitives *)mp->b_rptr)->type) { 27663 case O_T_BIND_REQ: 27664 case T_BIND_REQ: { 27665 /* Request can get queued in bind */ 27666 if (connp == NULL) { 27667 proto_str = "O_T_BIND_REQ/T_BIND_REQ"; 27668 goto protonak; 27669 } 27670 /* 27671 * Both TCP and UDP call ip_bind_{v4,v6}() directly 27672 * instead of going through this path. We only get 27673 * here in the following cases: 27674 * 27675 * a. Bind retries, where ipsq is non-NULL. 27676 * b. T_BIND_REQ is issued from non TCP/UDP 27677 * transport, e.g. icmp for raw socket, 27678 * in which case ipsq will be NULL. 27679 */ 27680 ASSERT(ipsq != NULL || 27681 (!IPCL_IS_TCP(connp) && !IPCL_IS_UDP(connp))); 27682 27683 /* Don't increment refcnt if this is a re-entry */ 27684 if (ipsq == NULL) 27685 CONN_INC_REF(connp); 27686 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 27687 connp, NULL) : ip_bind_v4(q, mp, connp); 27688 if (mp == NULL) 27689 return; 27690 if (IPCL_IS_TCP(connp)) { 27691 /* 27692 * In the case of TCP endpoint we 27693 * come here only for bind retries 27694 */ 27695 ASSERT(ipsq != NULL); 27696 CONN_INC_REF(connp); 27697 squeue_fill(connp->conn_sqp, mp, 27698 ip_resume_tcp_bind, connp, 27699 SQTAG_BIND_RETRY); 27700 return; 27701 } else if (IPCL_IS_UDP(connp)) { 27702 /* 27703 * In the case of UDP endpoint we 27704 * come here only for bind retries 27705 */ 27706 ASSERT(ipsq != NULL); 27707 udp_resume_bind(connp, mp); 27708 return; 27709 } 27710 qreply(q, mp); 27711 CONN_OPER_PENDING_DONE(connp); 27712 return; 27713 } 27714 case T_SVR4_OPTMGMT_REQ: 27715 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 27716 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 27717 27718 if (connp == NULL) { 27719 proto_str = "T_SVR4_OPTMGMT_REQ"; 27720 goto protonak; 27721 } 27722 27723 if (!snmpcom_req(q, mp, ip_snmp_set, 27724 ip_snmp_get, cr)) { 27725 /* 27726 * Call svr4_optcom_req so that it can 27727 * generate the ack. We don't come here 27728 * if this operation is being restarted. 27729 * ip_restart_optmgmt will drop the conn ref. 27730 * In the case of ipsec option after the ipsec 27731 * load is complete conn_restart_ipsec_waiter 27732 * drops the conn ref. 27733 */ 27734 ASSERT(ipsq == NULL); 27735 CONN_INC_REF(connp); 27736 if (ip_check_for_ipsec_opt(q, mp)) 27737 return; 27738 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj); 27739 if (err != EINPROGRESS) { 27740 /* Operation is done */ 27741 CONN_OPER_PENDING_DONE(connp); 27742 } 27743 } 27744 return; 27745 case T_OPTMGMT_REQ: 27746 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 27747 /* 27748 * Note: No snmpcom_req support through new 27749 * T_OPTMGMT_REQ. 27750 * Call tpi_optcom_req so that it can 27751 * generate the ack. 27752 */ 27753 if (connp == NULL) { 27754 proto_str = "T_OPTMGMT_REQ"; 27755 goto protonak; 27756 } 27757 27758 ASSERT(ipsq == NULL); 27759 /* 27760 * We don't come here for restart. ip_restart_optmgmt 27761 * will drop the conn ref. In the case of ipsec option 27762 * after the ipsec load is complete 27763 * conn_restart_ipsec_waiter drops the conn ref. 27764 */ 27765 CONN_INC_REF(connp); 27766 if (ip_check_for_ipsec_opt(q, mp)) 27767 return; 27768 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj); 27769 if (err != EINPROGRESS) { 27770 /* Operation is done */ 27771 CONN_OPER_PENDING_DONE(connp); 27772 } 27773 return; 27774 case T_UNBIND_REQ: 27775 if (connp == NULL) { 27776 proto_str = "T_UNBIND_REQ"; 27777 goto protonak; 27778 } 27779 mp = ip_unbind(q, mp); 27780 qreply(q, mp); 27781 return; 27782 default: 27783 /* 27784 * Have to drop any DLPI messages coming down from 27785 * arp (such as an info_req which would cause ip 27786 * to receive an extra info_ack if it was passed 27787 * through. 27788 */ 27789 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 27790 (int)*(uint_t *)mp->b_rptr)); 27791 freemsg(mp); 27792 return; 27793 } 27794 /* NOTREACHED */ 27795 case IRE_DB_TYPE: { 27796 nce_t *nce; 27797 ill_t *ill; 27798 in6_addr_t gw_addr_v6; 27799 27800 27801 /* 27802 * This is a response back from a resolver. It 27803 * consists of a message chain containing: 27804 * IRE_MBLK-->LL_HDR_MBLK->pkt 27805 * The IRE_MBLK is the one we allocated in ip_newroute. 27806 * The LL_HDR_MBLK is the DLPI header to use to get 27807 * the attached packet, and subsequent ones for the 27808 * same destination, transmitted. 27809 */ 27810 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 27811 break; 27812 /* 27813 * First, check to make sure the resolution succeeded. 27814 * If it failed, the second mblk will be empty. 27815 * If it is, free the chain, dropping the packet. 27816 * (We must ire_delete the ire; that frees the ire mblk) 27817 * We're doing this now to support PVCs for ATM; it's 27818 * a partial xresolv implementation. When we fully implement 27819 * xresolv interfaces, instead of freeing everything here 27820 * we'll initiate neighbor discovery. 27821 * 27822 * For v4 (ARP and other external resolvers) the resolver 27823 * frees the message, so no check is needed. This check 27824 * is required, though, for a full xresolve implementation. 27825 * Including this code here now both shows how external 27826 * resolvers can NACK a resolution request using an 27827 * existing design that has no specific provisions for NACKs, 27828 * and also takes into account that the current non-ARP 27829 * external resolver has been coded to use this method of 27830 * NACKing for all IPv6 (xresolv) cases, 27831 * whether our xresolv implementation is complete or not. 27832 * 27833 */ 27834 ire = (ire_t *)mp->b_rptr; 27835 ill = ire_to_ill(ire); 27836 mp1 = mp->b_cont; /* dl_unitdata_req */ 27837 if (mp1->b_rptr == mp1->b_wptr) { 27838 if (ire->ire_ipversion == IPV6_VERSION) { 27839 /* 27840 * XRESOLV interface. 27841 */ 27842 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27843 mutex_enter(&ire->ire_lock); 27844 gw_addr_v6 = ire->ire_gateway_addr_v6; 27845 mutex_exit(&ire->ire_lock); 27846 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27847 nce = ndp_lookup_v6(ill, 27848 &ire->ire_addr_v6, B_FALSE); 27849 } else { 27850 nce = ndp_lookup_v6(ill, &gw_addr_v6, 27851 B_FALSE); 27852 } 27853 if (nce != NULL) { 27854 nce_resolv_failed(nce); 27855 ndp_delete(nce); 27856 NCE_REFRELE(nce); 27857 } 27858 } 27859 mp->b_cont = NULL; 27860 freemsg(mp1); /* frees the pkt as well */ 27861 ASSERT(ire->ire_nce == NULL); 27862 ire_delete((ire_t *)mp->b_rptr); 27863 return; 27864 } 27865 27866 /* 27867 * Split them into IRE_MBLK and pkt and feed it into 27868 * ire_add_then_send. Then in ire_add_then_send 27869 * the IRE will be added, and then the packet will be 27870 * run back through ip_wput. This time it will make 27871 * it to the wire. 27872 */ 27873 mp->b_cont = NULL; 27874 mp = mp1->b_cont; /* now, mp points to pkt */ 27875 mp1->b_cont = NULL; 27876 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 27877 if (ire->ire_ipversion == IPV6_VERSION) { 27878 /* 27879 * XRESOLV interface. Find the nce and put a copy 27880 * of the dl_unitdata_req in nce_res_mp 27881 */ 27882 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27883 mutex_enter(&ire->ire_lock); 27884 gw_addr_v6 = ire->ire_gateway_addr_v6; 27885 mutex_exit(&ire->ire_lock); 27886 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27887 nce = ndp_lookup_v6(ill, &ire->ire_addr_v6, 27888 B_FALSE); 27889 } else { 27890 nce = ndp_lookup_v6(ill, &gw_addr_v6, B_FALSE); 27891 } 27892 if (nce != NULL) { 27893 /* 27894 * We have to protect nce_res_mp here 27895 * from being accessed by other threads 27896 * while we change the mblk pointer. 27897 * Other functions will also lock the nce when 27898 * accessing nce_res_mp. 27899 * 27900 * The reason we change the mblk pointer 27901 * here rather than copying the resolved address 27902 * into the template is that, unlike with 27903 * ethernet, we have no guarantee that the 27904 * resolved address length will be 27905 * smaller than or equal to the lla length 27906 * with which the template was allocated, 27907 * (for ethernet, they're equal) 27908 * so we have to use the actual resolved 27909 * address mblk - which holds the real 27910 * dl_unitdata_req with the resolved address. 27911 * 27912 * Doing this is the same behavior as was 27913 * previously used in the v4 ARP case. 27914 */ 27915 mutex_enter(&nce->nce_lock); 27916 if (nce->nce_res_mp != NULL) 27917 freemsg(nce->nce_res_mp); 27918 nce->nce_res_mp = mp1; 27919 mutex_exit(&nce->nce_lock); 27920 /* 27921 * We do a fastpath probe here because 27922 * we have resolved the address without 27923 * using Neighbor Discovery. 27924 * In the non-XRESOLV v6 case, the fastpath 27925 * probe is done right after neighbor 27926 * discovery completes. 27927 */ 27928 if (nce->nce_res_mp != NULL) { 27929 int res; 27930 nce_fastpath_list_add(nce); 27931 res = ill_fastpath_probe(ill, 27932 nce->nce_res_mp); 27933 if (res != 0 && res != EAGAIN) 27934 nce_fastpath_list_delete(nce); 27935 } 27936 27937 ire_add_then_send(q, ire, mp); 27938 /* 27939 * Now we have to clean out any packets 27940 * that may have been queued on the nce 27941 * while it was waiting for address resolution 27942 * to complete. 27943 */ 27944 mutex_enter(&nce->nce_lock); 27945 mp1 = nce->nce_qd_mp; 27946 nce->nce_qd_mp = NULL; 27947 mutex_exit(&nce->nce_lock); 27948 while (mp1 != NULL) { 27949 mblk_t *nxt_mp; 27950 queue_t *fwdq = NULL; 27951 ill_t *inbound_ill; 27952 uint_t ifindex; 27953 27954 nxt_mp = mp1->b_next; 27955 mp1->b_next = NULL; 27956 /* 27957 * Retrieve ifindex stored in 27958 * ip_rput_data_v6() 27959 */ 27960 ifindex = 27961 (uint_t)(uintptr_t)mp1->b_prev; 27962 inbound_ill = 27963 ill_lookup_on_ifindex(ifindex, 27964 B_TRUE, NULL, NULL, NULL, 27965 NULL, ipst); 27966 mp1->b_prev = NULL; 27967 if (inbound_ill != NULL) 27968 fwdq = inbound_ill->ill_rq; 27969 27970 if (fwdq != NULL) { 27971 put(fwdq, mp1); 27972 ill_refrele(inbound_ill); 27973 } else 27974 put(WR(ill->ill_rq), mp1); 27975 mp1 = nxt_mp; 27976 } 27977 NCE_REFRELE(nce); 27978 } else { /* nce is NULL; clean up */ 27979 ire_delete(ire); 27980 freemsg(mp); 27981 freemsg(mp1); 27982 return; 27983 } 27984 } else { 27985 nce_t *arpce; 27986 /* 27987 * Link layer resolution succeeded. Recompute the 27988 * ire_nce. 27989 */ 27990 ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST)); 27991 if ((arpce = ndp_lookup_v4(ill, 27992 (ire->ire_gateway_addr != INADDR_ANY ? 27993 &ire->ire_gateway_addr : &ire->ire_addr), 27994 B_FALSE)) == NULL) { 27995 freeb(ire->ire_mp); 27996 freeb(mp1); 27997 freemsg(mp); 27998 return; 27999 } 28000 mutex_enter(&arpce->nce_lock); 28001 arpce->nce_last = TICK_TO_MSEC(lbolt64); 28002 if (arpce->nce_state == ND_REACHABLE) { 28003 /* 28004 * Someone resolved this before us; 28005 * cleanup the res_mp. Since ire has 28006 * not been added yet, the call to ire_add_v4 28007 * from ire_add_then_send (when a dup is 28008 * detected) will clean up the ire. 28009 */ 28010 freeb(mp1); 28011 } else { 28012 if (arpce->nce_res_mp != NULL) 28013 freemsg(arpce->nce_res_mp); 28014 arpce->nce_res_mp = mp1; 28015 arpce->nce_state = ND_REACHABLE; 28016 } 28017 mutex_exit(&arpce->nce_lock); 28018 if (ire->ire_marks & IRE_MARK_NOADD) { 28019 /* 28020 * this ire will not be added to the ire 28021 * cache table, so we can set the ire_nce 28022 * here, as there are no atomicity constraints. 28023 */ 28024 ire->ire_nce = arpce; 28025 /* 28026 * We are associating this nce with the ire 28027 * so change the nce ref taken in 28028 * ndp_lookup_v4() from 28029 * NCE_REFHOLD to NCE_REFHOLD_NOTR 28030 */ 28031 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 28032 } else { 28033 NCE_REFRELE(arpce); 28034 } 28035 ire_add_then_send(q, ire, mp); 28036 } 28037 return; /* All is well, the packet has been sent. */ 28038 } 28039 case IRE_ARPRESOLVE_TYPE: { 28040 28041 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */ 28042 break; 28043 mp1 = mp->b_cont; /* dl_unitdata_req */ 28044 mp->b_cont = NULL; 28045 /* 28046 * First, check to make sure the resolution succeeded. 28047 * If it failed, the second mblk will be empty. 28048 */ 28049 if (mp1->b_rptr == mp1->b_wptr) { 28050 /* cleanup the incomplete ire, free queued packets */ 28051 freemsg(mp); /* fake ire */ 28052 freeb(mp1); /* dl_unitdata response */ 28053 return; 28054 } 28055 28056 /* 28057 * update any incomplete nce_t found. we lookup the ctable 28058 * and find the nce from the ire->ire_nce because we need 28059 * to pass the ire to ip_xmit_v4 later, and can find both 28060 * ire and nce in one lookup from the ctable. 28061 */ 28062 fake_ire = (ire_t *)mp->b_rptr; 28063 /* 28064 * By the time we come back here from ARP 28065 * the logical outgoing interface of the incomplete ire 28066 * we added in ire_forward could have disappeared, 28067 * causing the incomplete ire to also have 28068 * dissapeared. So we need to retreive the 28069 * proper ipif for the ire before looking 28070 * in ctable; do the ctablelookup based on ire_ipif_seqid 28071 */ 28072 ill = q->q_ptr; 28073 28074 /* Get the outgoing ipif */ 28075 mutex_enter(&ill->ill_lock); 28076 if (ill->ill_state_flags & ILL_CONDEMNED) { 28077 mutex_exit(&ill->ill_lock); 28078 freemsg(mp); /* fake ire */ 28079 freeb(mp1); /* dl_unitdata response */ 28080 return; 28081 } 28082 ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid); 28083 28084 if (ipif == NULL) { 28085 mutex_exit(&ill->ill_lock); 28086 ip1dbg(("logical intrf to incomplete ire vanished\n")); 28087 freemsg(mp); 28088 freeb(mp1); 28089 return; 28090 } 28091 ipif_refhold_locked(ipif); 28092 mutex_exit(&ill->ill_lock); 28093 ire = ire_ctable_lookup(fake_ire->ire_addr, 28094 fake_ire->ire_gateway_addr, IRE_CACHE, 28095 ipif, fake_ire->ire_zoneid, NULL, 28096 (MATCH_IRE_GW|MATCH_IRE_IPIF|MATCH_IRE_ZONEONLY), ipst); 28097 ipif_refrele(ipif); 28098 if (ire == NULL) { 28099 /* 28100 * no ire was found; check if there is an nce 28101 * for this lookup; if it has no ire's pointing at it 28102 * cleanup. 28103 */ 28104 if ((nce = ndp_lookup_v4(ill, 28105 (fake_ire->ire_gateway_addr != INADDR_ANY ? 28106 &fake_ire->ire_gateway_addr : &fake_ire->ire_addr), 28107 B_FALSE)) != NULL) { 28108 /* 28109 * cleanup: 28110 * We check for refcnt 2 (one for the nce 28111 * hash list + 1 for the ref taken by 28112 * ndp_lookup_v4) to check that there are 28113 * no ire's pointing at the nce. 28114 */ 28115 if (nce->nce_refcnt == 2) 28116 ndp_delete(nce); 28117 NCE_REFRELE(nce); 28118 } 28119 freeb(mp1); /* dl_unitdata response */ 28120 freemsg(mp); /* fake ire */ 28121 return; 28122 } 28123 nce = ire->ire_nce; 28124 DTRACE_PROBE2(ire__arpresolve__type, 28125 ire_t *, ire, nce_t *, nce); 28126 ASSERT(nce->nce_state != ND_INITIAL); 28127 mutex_enter(&nce->nce_lock); 28128 nce->nce_last = TICK_TO_MSEC(lbolt64); 28129 if (nce->nce_state == ND_REACHABLE) { 28130 /* 28131 * Someone resolved this before us; 28132 * our response is not needed any more. 28133 */ 28134 mutex_exit(&nce->nce_lock); 28135 freeb(mp1); /* dl_unitdata response */ 28136 } else { 28137 if (nce->nce_res_mp != NULL) { 28138 freemsg(nce->nce_res_mp); 28139 /* existing dl_unitdata template */ 28140 } 28141 nce->nce_res_mp = mp1; 28142 nce->nce_state = ND_REACHABLE; 28143 mutex_exit(&nce->nce_lock); 28144 nce_fastpath(nce); 28145 } 28146 /* 28147 * The cached nce_t has been updated to be reachable; 28148 * Set the IRE_MARK_UNCACHED flag and free the fake_ire. 28149 */ 28150 fake_ire->ire_marks &= ~IRE_MARK_UNCACHED; 28151 freemsg(mp); 28152 /* 28153 * send out queued packets. 28154 */ 28155 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 28156 28157 IRE_REFRELE(ire); 28158 return; 28159 } 28160 default: 28161 break; 28162 } 28163 if (q->q_next) { 28164 putnext(q, mp); 28165 } else 28166 freemsg(mp); 28167 return; 28168 28169 protonak: 28170 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 28171 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 28172 qreply(q, mp); 28173 } 28174 28175 /* 28176 * Process IP options in an outbound packet. Modify the destination if there 28177 * is a source route option. 28178 * Returns non-zero if something fails in which case an ICMP error has been 28179 * sent and mp freed. 28180 */ 28181 static int 28182 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 28183 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 28184 { 28185 ipoptp_t opts; 28186 uchar_t *opt; 28187 uint8_t optval; 28188 uint8_t optlen; 28189 ipaddr_t dst; 28190 intptr_t code = 0; 28191 mblk_t *mp; 28192 ire_t *ire = NULL; 28193 28194 ip2dbg(("ip_wput_options\n")); 28195 mp = ipsec_mp; 28196 if (mctl_present) { 28197 mp = ipsec_mp->b_cont; 28198 } 28199 28200 dst = ipha->ipha_dst; 28201 for (optval = ipoptp_first(&opts, ipha); 28202 optval != IPOPT_EOL; 28203 optval = ipoptp_next(&opts)) { 28204 opt = opts.ipoptp_cur; 28205 optlen = opts.ipoptp_len; 28206 ip2dbg(("ip_wput_options: opt %d, len %d\n", 28207 optval, optlen)); 28208 switch (optval) { 28209 uint32_t off; 28210 case IPOPT_SSRR: 28211 case IPOPT_LSRR: 28212 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28213 ip1dbg(( 28214 "ip_wput_options: bad option offset\n")); 28215 code = (char *)&opt[IPOPT_OLEN] - 28216 (char *)ipha; 28217 goto param_prob; 28218 } 28219 off = opt[IPOPT_OFFSET]; 28220 ip1dbg(("ip_wput_options: next hop 0x%x\n", 28221 ntohl(dst))); 28222 /* 28223 * For strict: verify that dst is directly 28224 * reachable. 28225 */ 28226 if (optval == IPOPT_SSRR) { 28227 ire = ire_ftable_lookup(dst, 0, 0, 28228 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 28229 MBLK_GETLABEL(mp), 28230 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 28231 if (ire == NULL) { 28232 ip1dbg(("ip_wput_options: SSRR not" 28233 " directly reachable: 0x%x\n", 28234 ntohl(dst))); 28235 goto bad_src_route; 28236 } 28237 ire_refrele(ire); 28238 } 28239 break; 28240 case IPOPT_RR: 28241 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28242 ip1dbg(( 28243 "ip_wput_options: bad option offset\n")); 28244 code = (char *)&opt[IPOPT_OLEN] - 28245 (char *)ipha; 28246 goto param_prob; 28247 } 28248 break; 28249 case IPOPT_TS: 28250 /* 28251 * Verify that length >=5 and that there is either 28252 * room for another timestamp or that the overflow 28253 * counter is not maxed out. 28254 */ 28255 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 28256 if (optlen < IPOPT_MINLEN_IT) { 28257 goto param_prob; 28258 } 28259 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28260 ip1dbg(( 28261 "ip_wput_options: bad option offset\n")); 28262 code = (char *)&opt[IPOPT_OFFSET] - 28263 (char *)ipha; 28264 goto param_prob; 28265 } 28266 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 28267 case IPOPT_TS_TSONLY: 28268 off = IPOPT_TS_TIMELEN; 28269 break; 28270 case IPOPT_TS_TSANDADDR: 28271 case IPOPT_TS_PRESPEC: 28272 case IPOPT_TS_PRESPEC_RFC791: 28273 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 28274 break; 28275 default: 28276 code = (char *)&opt[IPOPT_POS_OV_FLG] - 28277 (char *)ipha; 28278 goto param_prob; 28279 } 28280 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 28281 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 28282 /* 28283 * No room and the overflow counter is 15 28284 * already. 28285 */ 28286 goto param_prob; 28287 } 28288 break; 28289 } 28290 } 28291 28292 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 28293 return (0); 28294 28295 ip1dbg(("ip_wput_options: error processing IP options.")); 28296 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 28297 28298 param_prob: 28299 /* 28300 * Since ip_wput() isn't close to finished, we fill 28301 * in enough of the header for credible error reporting. 28302 */ 28303 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28304 /* Failed */ 28305 freemsg(ipsec_mp); 28306 return (-1); 28307 } 28308 icmp_param_problem(q, ipsec_mp, (uint8_t)code, zoneid, ipst); 28309 return (-1); 28310 28311 bad_src_route: 28312 /* 28313 * Since ip_wput() isn't close to finished, we fill 28314 * in enough of the header for credible error reporting. 28315 */ 28316 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28317 /* Failed */ 28318 freemsg(ipsec_mp); 28319 return (-1); 28320 } 28321 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 28322 return (-1); 28323 } 28324 28325 /* 28326 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 28327 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 28328 * thru /etc/system. 28329 */ 28330 #define CONN_MAXDRAINCNT 64 28331 28332 static void 28333 conn_drain_init(ip_stack_t *ipst) 28334 { 28335 int i; 28336 28337 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 28338 28339 if ((ipst->ips_conn_drain_list_cnt == 0) || 28340 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 28341 /* 28342 * Default value of the number of drainers is the 28343 * number of cpus, subject to maximum of 8 drainers. 28344 */ 28345 if (boot_max_ncpus != -1) 28346 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 28347 else 28348 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 28349 } 28350 28351 ipst->ips_conn_drain_list = kmem_zalloc(ipst->ips_conn_drain_list_cnt * 28352 sizeof (idl_t), KM_SLEEP); 28353 28354 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28355 mutex_init(&ipst->ips_conn_drain_list[i].idl_lock, NULL, 28356 MUTEX_DEFAULT, NULL); 28357 } 28358 } 28359 28360 static void 28361 conn_drain_fini(ip_stack_t *ipst) 28362 { 28363 int i; 28364 28365 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) 28366 mutex_destroy(&ipst->ips_conn_drain_list[i].idl_lock); 28367 kmem_free(ipst->ips_conn_drain_list, 28368 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 28369 ipst->ips_conn_drain_list = NULL; 28370 } 28371 28372 /* 28373 * Note: For an overview of how flowcontrol is handled in IP please see the 28374 * IP Flowcontrol notes at the top of this file. 28375 * 28376 * Flow control has blocked us from proceeding. Insert the given conn in one 28377 * of the conn drain lists. These conn wq's will be qenabled later on when 28378 * STREAMS flow control does a backenable. conn_walk_drain will enable 28379 * the first conn in each of these drain lists. Each of these qenabled conns 28380 * in turn enables the next in the list, after it runs, or when it closes, 28381 * thus sustaining the drain process. 28382 * 28383 * The only possible calling sequence is ip_wsrv (on conn) -> ip_wput -> 28384 * conn_drain_insert. Thus there can be only 1 instance of conn_drain_insert 28385 * running at any time, on a given conn, since there can be only 1 service proc 28386 * running on a queue at any time. 28387 */ 28388 void 28389 conn_drain_insert(conn_t *connp) 28390 { 28391 idl_t *idl; 28392 uint_t index; 28393 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28394 28395 mutex_enter(&connp->conn_lock); 28396 if (connp->conn_state_flags & CONN_CLOSING) { 28397 /* 28398 * The conn is closing as a result of which CONN_CLOSING 28399 * is set. Return. 28400 */ 28401 mutex_exit(&connp->conn_lock); 28402 return; 28403 } else if (connp->conn_idl == NULL) { 28404 /* 28405 * Assign the next drain list round robin. We dont' use 28406 * a lock, and thus it may not be strictly round robin. 28407 * Atomicity of load/stores is enough to make sure that 28408 * conn_drain_list_index is always within bounds. 28409 */ 28410 index = ipst->ips_conn_drain_list_index; 28411 ASSERT(index < ipst->ips_conn_drain_list_cnt); 28412 connp->conn_idl = &ipst->ips_conn_drain_list[index]; 28413 index++; 28414 if (index == ipst->ips_conn_drain_list_cnt) 28415 index = 0; 28416 ipst->ips_conn_drain_list_index = index; 28417 } 28418 mutex_exit(&connp->conn_lock); 28419 28420 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28421 if ((connp->conn_drain_prev != NULL) || 28422 (connp->conn_state_flags & CONN_CLOSING)) { 28423 /* 28424 * The conn is already in the drain list, OR 28425 * the conn is closing. We need to check again for 28426 * the closing case again since close can happen 28427 * after we drop the conn_lock, and before we 28428 * acquire the CONN_DRAIN_LIST_LOCK. 28429 */ 28430 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28431 return; 28432 } else { 28433 idl = connp->conn_idl; 28434 } 28435 28436 /* 28437 * The conn is not in the drain list. Insert it at the 28438 * tail of the drain list. The drain list is circular 28439 * and doubly linked. idl_conn points to the 1st element 28440 * in the list. 28441 */ 28442 if (idl->idl_conn == NULL) { 28443 idl->idl_conn = connp; 28444 connp->conn_drain_next = connp; 28445 connp->conn_drain_prev = connp; 28446 } else { 28447 conn_t *head = idl->idl_conn; 28448 28449 connp->conn_drain_next = head; 28450 connp->conn_drain_prev = head->conn_drain_prev; 28451 head->conn_drain_prev->conn_drain_next = connp; 28452 head->conn_drain_prev = connp; 28453 } 28454 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28455 } 28456 28457 /* 28458 * This conn is closing, and we are called from ip_close. OR 28459 * This conn has been serviced by ip_wsrv, and we need to do the tail 28460 * processing. 28461 * If this conn is part of the drain list, we may need to sustain the drain 28462 * process by qenabling the next conn in the drain list. We may also need to 28463 * remove this conn from the list, if it is done. 28464 */ 28465 static void 28466 conn_drain_tail(conn_t *connp, boolean_t closing) 28467 { 28468 idl_t *idl; 28469 28470 /* 28471 * connp->conn_idl is stable at this point, and no lock is needed 28472 * to check it. If we are called from ip_close, close has already 28473 * set CONN_CLOSING, thus freezing the value of conn_idl, and 28474 * called us only because conn_idl is non-null. If we are called thru 28475 * service, conn_idl could be null, but it cannot change because 28476 * service is single-threaded per queue, and there cannot be another 28477 * instance of service trying to call conn_drain_insert on this conn 28478 * now. 28479 */ 28480 ASSERT(!closing || (connp->conn_idl != NULL)); 28481 28482 /* 28483 * If connp->conn_idl is null, the conn has not been inserted into any 28484 * drain list even once since creation of the conn. Just return. 28485 */ 28486 if (connp->conn_idl == NULL) 28487 return; 28488 28489 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28490 28491 if (connp->conn_drain_prev == NULL) { 28492 /* This conn is currently not in the drain list. */ 28493 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28494 return; 28495 } 28496 idl = connp->conn_idl; 28497 if (idl->idl_conn_draining == connp) { 28498 /* 28499 * This conn is the current drainer. If this is the last conn 28500 * in the drain list, we need to do more checks, in the 'if' 28501 * below. Otherwwise we need to just qenable the next conn, 28502 * to sustain the draining, and is handled in the 'else' 28503 * below. 28504 */ 28505 if (connp->conn_drain_next == idl->idl_conn) { 28506 /* 28507 * This conn is the last in this list. This round 28508 * of draining is complete. If idl_repeat is set, 28509 * it means another flow enabling has happened from 28510 * the driver/streams and we need to another round 28511 * of draining. 28512 * If there are more than 2 conns in the drain list, 28513 * do a left rotate by 1, so that all conns except the 28514 * conn at the head move towards the head by 1, and the 28515 * the conn at the head goes to the tail. This attempts 28516 * a more even share for all queues that are being 28517 * drained. 28518 */ 28519 if ((connp->conn_drain_next != connp) && 28520 (idl->idl_conn->conn_drain_next != connp)) { 28521 idl->idl_conn = idl->idl_conn->conn_drain_next; 28522 } 28523 if (idl->idl_repeat) { 28524 qenable(idl->idl_conn->conn_wq); 28525 idl->idl_conn_draining = idl->idl_conn; 28526 idl->idl_repeat = 0; 28527 } else { 28528 idl->idl_conn_draining = NULL; 28529 } 28530 } else { 28531 /* 28532 * If the next queue that we are now qenable'ing, 28533 * is closing, it will remove itself from this list 28534 * and qenable the subsequent queue in ip_close(). 28535 * Serialization is acheived thru idl_lock. 28536 */ 28537 qenable(connp->conn_drain_next->conn_wq); 28538 idl->idl_conn_draining = connp->conn_drain_next; 28539 } 28540 } 28541 if (!connp->conn_did_putbq || closing) { 28542 /* 28543 * Remove ourself from the drain list, if we did not do 28544 * a putbq, or if the conn is closing. 28545 * Note: It is possible that q->q_first is non-null. It means 28546 * that these messages landed after we did a enableok() in 28547 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 28548 * service them. 28549 */ 28550 if (connp->conn_drain_next == connp) { 28551 /* Singleton in the list */ 28552 ASSERT(connp->conn_drain_prev == connp); 28553 idl->idl_conn = NULL; 28554 idl->idl_conn_draining = NULL; 28555 } else { 28556 connp->conn_drain_prev->conn_drain_next = 28557 connp->conn_drain_next; 28558 connp->conn_drain_next->conn_drain_prev = 28559 connp->conn_drain_prev; 28560 if (idl->idl_conn == connp) 28561 idl->idl_conn = connp->conn_drain_next; 28562 ASSERT(idl->idl_conn_draining != connp); 28563 28564 } 28565 connp->conn_drain_next = NULL; 28566 connp->conn_drain_prev = NULL; 28567 } 28568 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28569 } 28570 28571 /* 28572 * Write service routine. Shared perimeter entry point. 28573 * ip_wsrv can be called in any of the following ways. 28574 * 1. The device queue's messages has fallen below the low water mark 28575 * and STREAMS has backenabled the ill_wq. We walk thru all the 28576 * the drain lists and backenable the first conn in each list. 28577 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 28578 * qenabled non-tcp upper layers. We start dequeing messages and call 28579 * ip_wput for each message. 28580 */ 28581 28582 void 28583 ip_wsrv(queue_t *q) 28584 { 28585 conn_t *connp; 28586 ill_t *ill; 28587 mblk_t *mp; 28588 28589 if (q->q_next) { 28590 ill = (ill_t *)q->q_ptr; 28591 if (ill->ill_state_flags == 0) { 28592 /* 28593 * The device flow control has opened up. 28594 * Walk through conn drain lists and qenable the 28595 * first conn in each list. This makes sense only 28596 * if the stream is fully plumbed and setup. 28597 * Hence the if check above. 28598 */ 28599 ip1dbg(("ip_wsrv: walking\n")); 28600 conn_walk_drain(ill->ill_ipst); 28601 } 28602 return; 28603 } 28604 28605 connp = Q_TO_CONN(q); 28606 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 28607 28608 /* 28609 * 1. Set conn_draining flag to signal that service is active. 28610 * 28611 * 2. ip_output determines whether it has been called from service, 28612 * based on the last parameter. If it is IP_WSRV it concludes it 28613 * has been called from service. 28614 * 28615 * 3. Message ordering is preserved by the following logic. 28616 * i. A directly called ip_output (i.e. not thru service) will queue 28617 * the message at the tail, if conn_draining is set (i.e. service 28618 * is running) or if q->q_first is non-null. 28619 * 28620 * ii. If ip_output is called from service, and if ip_output cannot 28621 * putnext due to flow control, it does a putbq. 28622 * 28623 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 28624 * (causing an infinite loop). 28625 */ 28626 ASSERT(!connp->conn_did_putbq); 28627 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 28628 connp->conn_draining = 1; 28629 noenable(q); 28630 while ((mp = getq(q)) != NULL) { 28631 ASSERT(CONN_Q(q)); 28632 28633 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 28634 if (connp->conn_did_putbq) { 28635 /* ip_wput did a putbq */ 28636 break; 28637 } 28638 } 28639 /* 28640 * At this point, a thread coming down from top, calling 28641 * ip_wput, may end up queueing the message. We have not yet 28642 * enabled the queue, so ip_wsrv won't be called again. 28643 * To avoid this race, check q->q_first again (in the loop) 28644 * If the other thread queued the message before we call 28645 * enableok(), we will catch it in the q->q_first check. 28646 * If the other thread queues the message after we call 28647 * enableok(), ip_wsrv will be called again by STREAMS. 28648 */ 28649 connp->conn_draining = 0; 28650 enableok(q); 28651 } 28652 28653 /* Enable the next conn for draining */ 28654 conn_drain_tail(connp, B_FALSE); 28655 28656 connp->conn_did_putbq = 0; 28657 } 28658 28659 /* 28660 * Walk the list of all conn's calling the function provided with the 28661 * specified argument for each. Note that this only walks conn's that 28662 * have been bound. 28663 * Applies to both IPv4 and IPv6. 28664 */ 28665 static void 28666 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 28667 { 28668 conn_walk_fanout_table(ipst->ips_ipcl_udp_fanout, 28669 ipst->ips_ipcl_udp_fanout_size, 28670 func, arg, zoneid); 28671 conn_walk_fanout_table(ipst->ips_ipcl_conn_fanout, 28672 ipst->ips_ipcl_conn_fanout_size, 28673 func, arg, zoneid); 28674 conn_walk_fanout_table(ipst->ips_ipcl_bind_fanout, 28675 ipst->ips_ipcl_bind_fanout_size, 28676 func, arg, zoneid); 28677 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout, 28678 IPPROTO_MAX, func, arg, zoneid); 28679 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout_v6, 28680 IPPROTO_MAX, func, arg, zoneid); 28681 } 28682 28683 /* 28684 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 28685 * of conns that need to be drained, check if drain is already in progress. 28686 * If so set the idl_repeat bit, indicating that the last conn in the list 28687 * needs to reinitiate the drain once again, for the list. If drain is not 28688 * in progress for the list, initiate the draining, by qenabling the 1st 28689 * conn in the list. The drain is self-sustaining, each qenabled conn will 28690 * in turn qenable the next conn, when it is done/blocked/closing. 28691 */ 28692 static void 28693 conn_walk_drain(ip_stack_t *ipst) 28694 { 28695 int i; 28696 idl_t *idl; 28697 28698 IP_STAT(ipst, ip_conn_walk_drain); 28699 28700 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28701 idl = &ipst->ips_conn_drain_list[i]; 28702 mutex_enter(&idl->idl_lock); 28703 if (idl->idl_conn == NULL) { 28704 mutex_exit(&idl->idl_lock); 28705 continue; 28706 } 28707 /* 28708 * If this list is not being drained currently by 28709 * an ip_wsrv thread, start the process. 28710 */ 28711 if (idl->idl_conn_draining == NULL) { 28712 ASSERT(idl->idl_repeat == 0); 28713 qenable(idl->idl_conn->conn_wq); 28714 idl->idl_conn_draining = idl->idl_conn; 28715 } else { 28716 idl->idl_repeat = 1; 28717 } 28718 mutex_exit(&idl->idl_lock); 28719 } 28720 } 28721 28722 /* 28723 * Walk an conn hash table of `count' buckets, calling func for each entry. 28724 */ 28725 static void 28726 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg, 28727 zoneid_t zoneid) 28728 { 28729 conn_t *connp; 28730 28731 while (count-- > 0) { 28732 mutex_enter(&connfp->connf_lock); 28733 for (connp = connfp->connf_head; connp != NULL; 28734 connp = connp->conn_next) { 28735 if (zoneid == GLOBAL_ZONEID || 28736 zoneid == connp->conn_zoneid) { 28737 CONN_INC_REF(connp); 28738 mutex_exit(&connfp->connf_lock); 28739 (*func)(connp, arg); 28740 mutex_enter(&connfp->connf_lock); 28741 CONN_DEC_REF(connp); 28742 } 28743 } 28744 mutex_exit(&connfp->connf_lock); 28745 connfp++; 28746 } 28747 } 28748 28749 /* ipcl_walk routine invoked for ip_conn_report for each conn. */ 28750 static void 28751 conn_report1(conn_t *connp, void *mp) 28752 { 28753 char buf1[INET6_ADDRSTRLEN]; 28754 char buf2[INET6_ADDRSTRLEN]; 28755 uint_t print_len, buf_len; 28756 28757 ASSERT(connp != NULL); 28758 28759 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 28760 if (buf_len <= 0) 28761 return; 28762 (void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)), 28763 (void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)), 28764 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 28765 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 28766 "%5d %s/%05d %s/%05d\n", 28767 (void *)connp, (void *)CONNP_TO_RQ(connp), 28768 (void *)CONNP_TO_WQ(connp), connp->conn_zoneid, 28769 buf1, connp->conn_lport, 28770 buf2, connp->conn_fport); 28771 if (print_len < buf_len) { 28772 ((mblk_t *)mp)->b_wptr += print_len; 28773 } else { 28774 ((mblk_t *)mp)->b_wptr += buf_len; 28775 } 28776 } 28777 28778 /* 28779 * Named Dispatch routine to produce a formatted report on all conns 28780 * that are listed in one of the fanout tables. 28781 * This report is accessed by using the ndd utility to "get" ND variable 28782 * "ip_conn_status". 28783 */ 28784 /* ARGSUSED */ 28785 static int 28786 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 28787 { 28788 conn_t *connp = Q_TO_CONN(q); 28789 28790 (void) mi_mpprintf(mp, 28791 "CONN " MI_COL_HDRPAD_STR 28792 "rfq " MI_COL_HDRPAD_STR 28793 "stq " MI_COL_HDRPAD_STR 28794 " zone local remote"); 28795 28796 /* 28797 * Because of the ndd constraint, at most we can have 64K buffer 28798 * to put in all conn info. So to be more efficient, just 28799 * allocate a 64K buffer here, assuming we need that large buffer. 28800 * This should be OK as only privileged processes can do ndd /dev/ip. 28801 */ 28802 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 28803 /* The following may work even if we cannot get a large buf. */ 28804 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 28805 return (0); 28806 } 28807 28808 conn_walk_fanout(conn_report1, mp->b_cont, connp->conn_zoneid, 28809 connp->conn_netstack->netstack_ip); 28810 return (0); 28811 } 28812 28813 /* 28814 * Determine if the ill and multicast aspects of that packets 28815 * "matches" the conn. 28816 */ 28817 boolean_t 28818 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 28819 zoneid_t zoneid) 28820 { 28821 ill_t *in_ill; 28822 boolean_t found; 28823 ipif_t *ipif; 28824 ire_t *ire; 28825 ipaddr_t dst, src; 28826 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28827 28828 dst = ipha->ipha_dst; 28829 src = ipha->ipha_src; 28830 28831 /* 28832 * conn_incoming_ill is set by IP_BOUND_IF which limits 28833 * unicast, broadcast and multicast reception to 28834 * conn_incoming_ill. conn_wantpacket itself is called 28835 * only for BROADCAST and multicast. 28836 * 28837 * 1) ip_rput supresses duplicate broadcasts if the ill 28838 * is part of a group. Hence, we should be receiving 28839 * just one copy of broadcast for the whole group. 28840 * Thus, if it is part of the group the packet could 28841 * come on any ill of the group and hence we need a 28842 * match on the group. Otherwise, match on ill should 28843 * be sufficient. 28844 * 28845 * 2) ip_rput does not suppress duplicate multicast packets. 28846 * If there are two interfaces in a ill group and we have 28847 * 2 applications (conns) joined a multicast group G on 28848 * both the interfaces, ilm_lookup_ill filter in ip_rput 28849 * will give us two packets because we join G on both the 28850 * interfaces rather than nominating just one interface 28851 * for receiving multicast like broadcast above. So, 28852 * we have to call ilg_lookup_ill to filter out duplicate 28853 * copies, if ill is part of a group. 28854 */ 28855 in_ill = connp->conn_incoming_ill; 28856 if (in_ill != NULL) { 28857 if (in_ill->ill_group == NULL) { 28858 if (in_ill != ill) 28859 return (B_FALSE); 28860 } else if (in_ill->ill_group != ill->ill_group) { 28861 return (B_FALSE); 28862 } 28863 } 28864 28865 if (!CLASSD(dst)) { 28866 if (IPCL_ZONE_MATCH(connp, zoneid)) 28867 return (B_TRUE); 28868 /* 28869 * The conn is in a different zone; we need to check that this 28870 * broadcast address is configured in the application's zone and 28871 * on one ill in the group. 28872 */ 28873 ipif = ipif_get_next_ipif(NULL, ill); 28874 if (ipif == NULL) 28875 return (B_FALSE); 28876 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 28877 connp->conn_zoneid, NULL, 28878 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 28879 ipif_refrele(ipif); 28880 if (ire != NULL) { 28881 ire_refrele(ire); 28882 return (B_TRUE); 28883 } else { 28884 return (B_FALSE); 28885 } 28886 } 28887 28888 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 28889 connp->conn_zoneid == zoneid) { 28890 /* 28891 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 28892 * disabled, therefore we don't dispatch the multicast packet to 28893 * the sending zone. 28894 */ 28895 return (B_FALSE); 28896 } 28897 28898 if ((ill->ill_phyint->phyint_flags & PHYI_LOOPBACK) && 28899 connp->conn_zoneid != zoneid) { 28900 /* 28901 * Multicast packet on the loopback interface: we only match 28902 * conns who joined the group in the specified zone. 28903 */ 28904 return (B_FALSE); 28905 } 28906 28907 if (connp->conn_multi_router) { 28908 /* multicast packet and multicast router socket: send up */ 28909 return (B_TRUE); 28910 } 28911 28912 mutex_enter(&connp->conn_lock); 28913 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 28914 mutex_exit(&connp->conn_lock); 28915 return (found); 28916 } 28917 28918 /* 28919 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 28920 */ 28921 /* ARGSUSED */ 28922 static void 28923 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 28924 { 28925 ill_t *ill = (ill_t *)q->q_ptr; 28926 mblk_t *mp1, *mp2; 28927 ipif_t *ipif; 28928 int err = 0; 28929 conn_t *connp = NULL; 28930 ipsq_t *ipsq; 28931 arc_t *arc; 28932 28933 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 28934 28935 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 28936 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 28937 28938 ASSERT(IAM_WRITER_ILL(ill)); 28939 mp2 = mp->b_cont; 28940 mp->b_cont = NULL; 28941 28942 /* 28943 * We have now received the arp bringup completion message 28944 * from ARP. Mark the arp bringup as done. Also if the arp 28945 * stream has already started closing, send up the AR_ARP_CLOSING 28946 * ack now since ARP is waiting in close for this ack. 28947 */ 28948 mutex_enter(&ill->ill_lock); 28949 ill->ill_arp_bringup_pending = 0; 28950 if (ill->ill_arp_closing) { 28951 mutex_exit(&ill->ill_lock); 28952 /* Let's reuse the mp for sending the ack */ 28953 arc = (arc_t *)mp->b_rptr; 28954 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 28955 arc->arc_cmd = AR_ARP_CLOSING; 28956 qreply(q, mp); 28957 } else { 28958 mutex_exit(&ill->ill_lock); 28959 freeb(mp); 28960 } 28961 28962 ipsq = ill->ill_phyint->phyint_ipsq; 28963 ipif = ipsq->ipsq_pending_ipif; 28964 mp1 = ipsq_pending_mp_get(ipsq, &connp); 28965 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 28966 if (mp1 == NULL) { 28967 /* bringup was aborted by the user */ 28968 freemsg(mp2); 28969 return; 28970 } 28971 28972 /* 28973 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 28974 * must have an associated conn_t. Otherwise, we're bringing this 28975 * interface back up as part of handling an asynchronous event (e.g., 28976 * physical address change). 28977 */ 28978 if (ipsq->ipsq_current_ioctl != 0) { 28979 ASSERT(connp != NULL); 28980 q = CONNP_TO_WQ(connp); 28981 } else { 28982 ASSERT(connp == NULL); 28983 q = ill->ill_rq; 28984 } 28985 28986 /* 28987 * If the DL_BIND_REQ fails, it is noted 28988 * in arc_name_offset. 28989 */ 28990 err = *((int *)mp2->b_rptr); 28991 if (err == 0) { 28992 if (ipif->ipif_isv6) { 28993 if ((err = ipif_up_done_v6(ipif)) != 0) 28994 ip0dbg(("ip_arp_done: init failed\n")); 28995 } else { 28996 if ((err = ipif_up_done(ipif)) != 0) 28997 ip0dbg(("ip_arp_done: init failed\n")); 28998 } 28999 } else { 29000 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 29001 } 29002 29003 freemsg(mp2); 29004 29005 if ((err == 0) && (ill->ill_up_ipifs)) { 29006 err = ill_up_ipifs(ill, q, mp1); 29007 if (err == EINPROGRESS) 29008 return; 29009 } 29010 29011 if (ill->ill_up_ipifs) 29012 ill_group_cleanup(ill); 29013 29014 /* 29015 * The operation must complete without EINPROGRESS since 29016 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 29017 * Otherwise, the operation will be stuck forever in the ipsq. 29018 */ 29019 ASSERT(err != EINPROGRESS); 29020 if (ipsq->ipsq_current_ioctl != 0) 29021 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 29022 else 29023 ipsq_current_finish(ipsq); 29024 } 29025 29026 /* Allocate the private structure */ 29027 static int 29028 ip_priv_alloc(void **bufp) 29029 { 29030 void *buf; 29031 29032 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 29033 return (ENOMEM); 29034 29035 *bufp = buf; 29036 return (0); 29037 } 29038 29039 /* Function to delete the private structure */ 29040 void 29041 ip_priv_free(void *buf) 29042 { 29043 ASSERT(buf != NULL); 29044 kmem_free(buf, sizeof (ip_priv_t)); 29045 } 29046 29047 /* 29048 * The entry point for IPPF processing. 29049 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 29050 * routine just returns. 29051 * 29052 * When called, ip_process generates an ipp_packet_t structure 29053 * which holds the state information for this packet and invokes the 29054 * the classifier (via ipp_packet_process). The classification, depending on 29055 * configured filters, results in a list of actions for this packet. Invoking 29056 * an action may cause the packet to be dropped, in which case the resulting 29057 * mblk (*mpp) is NULL. proc indicates the callout position for 29058 * this packet and ill_index is the interface this packet on or will leave 29059 * on (inbound and outbound resp.). 29060 */ 29061 void 29062 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 29063 { 29064 mblk_t *mp; 29065 ip_priv_t *priv; 29066 ipp_action_id_t aid; 29067 int rc = 0; 29068 ipp_packet_t *pp; 29069 #define IP_CLASS "ip" 29070 29071 /* If the classifier is not loaded, return */ 29072 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 29073 return; 29074 } 29075 29076 mp = *mpp; 29077 ASSERT(mp != NULL); 29078 29079 /* Allocate the packet structure */ 29080 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 29081 if (rc != 0) { 29082 *mpp = NULL; 29083 freemsg(mp); 29084 return; 29085 } 29086 29087 /* Allocate the private structure */ 29088 rc = ip_priv_alloc((void **)&priv); 29089 if (rc != 0) { 29090 *mpp = NULL; 29091 freemsg(mp); 29092 ipp_packet_free(pp); 29093 return; 29094 } 29095 priv->proc = proc; 29096 priv->ill_index = ill_index; 29097 ipp_packet_set_private(pp, priv, ip_priv_free); 29098 ipp_packet_set_data(pp, mp); 29099 29100 /* Invoke the classifier */ 29101 rc = ipp_packet_process(&pp); 29102 if (pp != NULL) { 29103 mp = ipp_packet_get_data(pp); 29104 ipp_packet_free(pp); 29105 if (rc != 0) { 29106 freemsg(mp); 29107 *mpp = NULL; 29108 } 29109 } else { 29110 *mpp = NULL; 29111 } 29112 #undef IP_CLASS 29113 } 29114 29115 /* 29116 * Propagate a multicast group membership operation (add/drop) on 29117 * all the interfaces crossed by the related multirt routes. 29118 * The call is considered successful if the operation succeeds 29119 * on at least one interface. 29120 */ 29121 static int 29122 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 29123 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 29124 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 29125 mblk_t *first_mp) 29126 { 29127 ire_t *ire_gw; 29128 irb_t *irb; 29129 int error = 0; 29130 opt_restart_t *or; 29131 ip_stack_t *ipst = ire->ire_ipst; 29132 29133 irb = ire->ire_bucket; 29134 ASSERT(irb != NULL); 29135 29136 ASSERT(DB_TYPE(first_mp) == M_CTL); 29137 29138 or = (opt_restart_t *)first_mp->b_rptr; 29139 IRB_REFHOLD(irb); 29140 for (; ire != NULL; ire = ire->ire_next) { 29141 if ((ire->ire_flags & RTF_MULTIRT) == 0) 29142 continue; 29143 if (ire->ire_addr != group) 29144 continue; 29145 29146 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 29147 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 29148 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE, ipst); 29149 /* No resolver exists for the gateway; skip this ire. */ 29150 if (ire_gw == NULL) 29151 continue; 29152 29153 /* 29154 * This function can return EINPROGRESS. If so the operation 29155 * will be restarted from ip_restart_optmgmt which will 29156 * call ip_opt_set and option processing will restart for 29157 * this option. So we may end up calling 'fn' more than once. 29158 * This requires that 'fn' is idempotent except for the 29159 * return value. The operation is considered a success if 29160 * it succeeds at least once on any one interface. 29161 */ 29162 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 29163 NULL, fmode, src, first_mp); 29164 if (error == 0) 29165 or->or_private = CGTP_MCAST_SUCCESS; 29166 29167 if (ip_debug > 0) { 29168 ulong_t off; 29169 char *ksym; 29170 ksym = kobj_getsymname((uintptr_t)fn, &off); 29171 ip2dbg(("ip_multirt_apply_membership: " 29172 "called %s, multirt group 0x%08x via itf 0x%08x, " 29173 "error %d [success %u]\n", 29174 ksym ? ksym : "?", 29175 ntohl(group), ntohl(ire_gw->ire_src_addr), 29176 error, or->or_private)); 29177 } 29178 29179 ire_refrele(ire_gw); 29180 if (error == EINPROGRESS) { 29181 IRB_REFRELE(irb); 29182 return (error); 29183 } 29184 } 29185 IRB_REFRELE(irb); 29186 /* 29187 * Consider the call as successful if we succeeded on at least 29188 * one interface. Otherwise, return the last encountered error. 29189 */ 29190 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 29191 } 29192 29193 29194 /* 29195 * Issue a warning regarding a route crossing an interface with an 29196 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 29197 * amount of time is logged. 29198 */ 29199 static void 29200 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 29201 { 29202 hrtime_t current = gethrtime(); 29203 char buf[INET_ADDRSTRLEN]; 29204 ip_stack_t *ipst = ire->ire_ipst; 29205 29206 /* Convert interval in ms to hrtime in ns */ 29207 if (ipst->ips_multirt_bad_mtu_last_time + 29208 ((hrtime_t)ipst->ips_ip_multirt_log_interval * (hrtime_t)1000000) <= 29209 current) { 29210 cmn_err(CE_WARN, "ip: ignoring multiroute " 29211 "to %s, incorrect MTU %u (expected %u)\n", 29212 ip_dot_addr(ire->ire_addr, buf), 29213 ire->ire_max_frag, max_frag); 29214 29215 ipst->ips_multirt_bad_mtu_last_time = current; 29216 } 29217 } 29218 29219 29220 /* 29221 * Get the CGTP (multirouting) filtering status. 29222 * If 0, the CGTP hooks are transparent. 29223 */ 29224 /* ARGSUSED */ 29225 static int 29226 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 29227 { 29228 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 29229 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29230 29231 /* 29232 * Only applies to the shared stack since the filter_ops 29233 * do not carry an ip_stack_t or zoneid. 29234 */ 29235 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 29236 return (ENOTSUP); 29237 29238 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 29239 return (0); 29240 } 29241 29242 29243 /* 29244 * Set the CGTP (multirouting) filtering status. 29245 * If the status is changed from active to transparent 29246 * or from transparent to active, forward the new status 29247 * to the filtering module (if loaded). 29248 */ 29249 /* ARGSUSED */ 29250 static int 29251 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 29252 cred_t *ioc_cr) 29253 { 29254 long new_value; 29255 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 29256 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29257 29258 if (secpolicy_net_config(ioc_cr, B_FALSE) != 0) 29259 return (EPERM); 29260 29261 /* 29262 * Only applies to the shared stack since the filter_ops 29263 * do not carry an ip_stack_t or zoneid. 29264 */ 29265 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 29266 return (ENOTSUP); 29267 29268 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 29269 new_value < 0 || new_value > 1) { 29270 return (EINVAL); 29271 } 29272 29273 /* 29274 * Do not enable CGTP filtering - thus preventing the hooks 29275 * from being invoked - if the version number of the 29276 * filtering module hooks does not match. 29277 */ 29278 if ((ip_cgtp_filter_ops != NULL) && 29279 (ip_cgtp_filter_ops->cfo_filter_rev != CGTP_FILTER_REV)) { 29280 cmn_err(CE_WARN, "IP: CGTP filtering version mismatch " 29281 "(module hooks version %d, expecting %d)\n", 29282 ip_cgtp_filter_ops->cfo_filter_rev, 29283 CGTP_FILTER_REV); 29284 return (ENOTSUP); 29285 } 29286 29287 if ((!*ip_cgtp_filter_value) && new_value) { 29288 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 29289 ip_cgtp_filter_ops == NULL ? 29290 " (module not loaded)" : ""); 29291 } 29292 if (*ip_cgtp_filter_value && (!new_value)) { 29293 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 29294 ip_cgtp_filter_ops == NULL ? 29295 " (module not loaded)" : ""); 29296 } 29297 29298 if (ip_cgtp_filter_ops != NULL) { 29299 int res; 29300 29301 res = ip_cgtp_filter_ops->cfo_change_state(new_value); 29302 if (res) 29303 return (res); 29304 } 29305 29306 *ip_cgtp_filter_value = (boolean_t)new_value; 29307 29308 return (0); 29309 } 29310 29311 29312 /* 29313 * Return the expected CGTP hooks version number. 29314 */ 29315 int 29316 ip_cgtp_filter_supported(void) 29317 { 29318 ip_stack_t *ipst; 29319 int ret; 29320 29321 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 29322 if (ipst == NULL) 29323 return (-1); 29324 ret = ip_cgtp_filter_rev; 29325 netstack_rele(ipst->ips_netstack); 29326 return (ret); 29327 } 29328 29329 29330 /* 29331 * CGTP hooks can be registered by directly touching ip_cgtp_filter_ops 29332 * or by invoking this function. In the first case, the version number 29333 * of the registered structure is checked at hooks activation time 29334 * in ip_cgtp_filter_set(). 29335 * 29336 * Only applies to the shared stack since the filter_ops 29337 * do not carry an ip_stack_t or zoneid. 29338 */ 29339 int 29340 ip_cgtp_filter_register(cgtp_filter_ops_t *ops) 29341 { 29342 ip_stack_t *ipst; 29343 29344 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 29345 return (ENOTSUP); 29346 29347 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 29348 if (ipst == NULL) 29349 return (EINVAL); 29350 29351 ip_cgtp_filter_ops = ops; 29352 netstack_rele(ipst->ips_netstack); 29353 return (0); 29354 } 29355 29356 static squeue_func_t 29357 ip_squeue_switch(int val) 29358 { 29359 squeue_func_t rval = squeue_fill; 29360 29361 switch (val) { 29362 case IP_SQUEUE_ENTER_NODRAIN: 29363 rval = squeue_enter_nodrain; 29364 break; 29365 case IP_SQUEUE_ENTER: 29366 rval = squeue_enter; 29367 break; 29368 default: 29369 break; 29370 } 29371 return (rval); 29372 } 29373 29374 /* ARGSUSED */ 29375 static int 29376 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 29377 caddr_t addr, cred_t *cr) 29378 { 29379 int *v = (int *)addr; 29380 long new_value; 29381 29382 if (secpolicy_net_config(cr, B_FALSE) != 0) 29383 return (EPERM); 29384 29385 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29386 return (EINVAL); 29387 29388 ip_input_proc = ip_squeue_switch(new_value); 29389 *v = new_value; 29390 return (0); 29391 } 29392 29393 /* ARGSUSED */ 29394 static int 29395 ip_int_set(queue_t *q, mblk_t *mp, char *value, 29396 caddr_t addr, cred_t *cr) 29397 { 29398 int *v = (int *)addr; 29399 long new_value; 29400 29401 if (secpolicy_net_config(cr, B_FALSE) != 0) 29402 return (EPERM); 29403 29404 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29405 return (EINVAL); 29406 29407 *v = new_value; 29408 return (0); 29409 } 29410 29411 /* 29412 * Handle changes to ipmp_hook_emulation ndd variable. 29413 * Need to update phyint_hook_ifindex. 29414 * Also generate a nic plumb event should a new ifidex be assigned to a group. 29415 */ 29416 static void 29417 ipmp_hook_emulation_changed(ip_stack_t *ipst) 29418 { 29419 phyint_t *phyi; 29420 phyint_t *phyi_tmp; 29421 char *groupname; 29422 int namelen; 29423 ill_t *ill; 29424 boolean_t new_group; 29425 29426 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29427 /* 29428 * Group indicies are stored in the phyint - a common structure 29429 * to both IPv4 and IPv6. 29430 */ 29431 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 29432 for (; phyi != NULL; 29433 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 29434 phyi, AVL_AFTER)) { 29435 /* Ignore the ones that do not have a group */ 29436 if (phyi->phyint_groupname_len == 0) 29437 continue; 29438 29439 /* 29440 * Look for other phyint in group. 29441 * Clear name/namelen so the lookup doesn't find ourselves. 29442 */ 29443 namelen = phyi->phyint_groupname_len; 29444 groupname = phyi->phyint_groupname; 29445 phyi->phyint_groupname_len = 0; 29446 phyi->phyint_groupname = NULL; 29447 29448 phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst); 29449 /* Restore */ 29450 phyi->phyint_groupname_len = namelen; 29451 phyi->phyint_groupname = groupname; 29452 29453 new_group = B_FALSE; 29454 if (ipst->ips_ipmp_hook_emulation) { 29455 /* 29456 * If the group already exists and has already 29457 * been assigned a group ifindex, we use the existing 29458 * group_ifindex, otherwise we pick a new group_ifindex 29459 * here. 29460 */ 29461 if (phyi_tmp != NULL && 29462 phyi_tmp->phyint_group_ifindex != 0) { 29463 phyi->phyint_group_ifindex = 29464 phyi_tmp->phyint_group_ifindex; 29465 } else { 29466 /* XXX We need a recovery strategy here. */ 29467 if (!ip_assign_ifindex( 29468 &phyi->phyint_group_ifindex, ipst)) 29469 cmn_err(CE_PANIC, 29470 "ip_assign_ifindex() failed"); 29471 new_group = B_TRUE; 29472 } 29473 } else { 29474 phyi->phyint_group_ifindex = 0; 29475 } 29476 if (ipst->ips_ipmp_hook_emulation) 29477 phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex; 29478 else 29479 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 29480 29481 /* 29482 * For IP Filter to find out the relationship between 29483 * names and interface indicies, we need to generate 29484 * a NE_PLUMB event when a new group can appear. 29485 * We always generate events when a new interface appears 29486 * (even when ipmp_hook_emulation is set) so there 29487 * is no need to generate NE_PLUMB events when 29488 * ipmp_hook_emulation is turned off. 29489 * And since it isn't critical for IP Filter to get 29490 * the NE_UNPLUMB events we skip those here. 29491 */ 29492 if (new_group) { 29493 /* 29494 * First phyint in group - generate group PLUMB event. 29495 * Since we are not running inside the ipsq we do 29496 * the dispatch immediately. 29497 */ 29498 if (phyi->phyint_illv4 != NULL) 29499 ill = phyi->phyint_illv4; 29500 else 29501 ill = phyi->phyint_illv6; 29502 29503 if (ill != NULL) { 29504 mutex_enter(&ill->ill_lock); 29505 ill_nic_info_plumb(ill, B_TRUE); 29506 ill_nic_info_dispatch(ill); 29507 mutex_exit(&ill->ill_lock); 29508 } 29509 } 29510 } 29511 rw_exit(&ipst->ips_ill_g_lock); 29512 } 29513 29514 /* ARGSUSED */ 29515 static int 29516 ipmp_hook_emulation_set(queue_t *q, mblk_t *mp, char *value, 29517 caddr_t addr, cred_t *cr) 29518 { 29519 int *v = (int *)addr; 29520 long new_value; 29521 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29522 29523 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29524 return (EINVAL); 29525 29526 if (*v != new_value) { 29527 *v = new_value; 29528 ipmp_hook_emulation_changed(ipst); 29529 } 29530 return (0); 29531 } 29532 29533 static void * 29534 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 29535 { 29536 kstat_t *ksp; 29537 29538 ip_stat_t template = { 29539 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 29540 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 29541 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 29542 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 29543 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 29544 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 29545 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 29546 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 29547 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 29548 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 29549 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 29550 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 29551 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 29552 { "ip_db_ref", KSTAT_DATA_UINT64 }, 29553 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 29554 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 29555 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 29556 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 29557 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 29558 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 29559 { "ip_opt", KSTAT_DATA_UINT64 }, 29560 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 29561 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 29562 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 29563 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 29564 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 29565 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 29566 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 29567 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 29568 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 29569 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 29570 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 29571 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 29572 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29573 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29574 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29575 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29576 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29577 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29578 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29579 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29580 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 29581 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 29582 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 29583 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 29584 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 29585 }; 29586 29587 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 29588 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 29589 KSTAT_FLAG_VIRTUAL, stackid); 29590 29591 if (ksp == NULL) 29592 return (NULL); 29593 29594 bcopy(&template, ip_statisticsp, sizeof (template)); 29595 ksp->ks_data = (void *)ip_statisticsp; 29596 ksp->ks_private = (void *)(uintptr_t)stackid; 29597 29598 kstat_install(ksp); 29599 return (ksp); 29600 } 29601 29602 static void 29603 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 29604 { 29605 if (ksp != NULL) { 29606 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29607 kstat_delete_netstack(ksp, stackid); 29608 } 29609 } 29610 29611 static void * 29612 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 29613 { 29614 kstat_t *ksp; 29615 29616 ip_named_kstat_t template = { 29617 { "forwarding", KSTAT_DATA_UINT32, 0 }, 29618 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 29619 { "inReceives", KSTAT_DATA_UINT64, 0 }, 29620 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 29621 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 29622 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 29623 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 29624 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 29625 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 29626 { "outRequests", KSTAT_DATA_UINT64, 0 }, 29627 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 29628 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 29629 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 29630 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 29631 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 29632 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 29633 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 29634 { "fragFails", KSTAT_DATA_UINT32, 0 }, 29635 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 29636 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 29637 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 29638 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 29639 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 29640 { "inErrs", KSTAT_DATA_UINT32, 0 }, 29641 { "noPorts", KSTAT_DATA_UINT32, 0 }, 29642 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 29643 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 29644 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 29645 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 29646 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 29647 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 29648 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 29649 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 29650 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 29651 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 29652 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 29653 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 29654 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 29655 }; 29656 29657 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 29658 NUM_OF_FIELDS(ip_named_kstat_t), 29659 0, stackid); 29660 if (ksp == NULL || ksp->ks_data == NULL) 29661 return (NULL); 29662 29663 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 29664 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 29665 template.reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29666 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 29667 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 29668 29669 template.netToMediaEntrySize.value.i32 = 29670 sizeof (mib2_ipNetToMediaEntry_t); 29671 29672 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 29673 29674 bcopy(&template, ksp->ks_data, sizeof (template)); 29675 ksp->ks_update = ip_kstat_update; 29676 ksp->ks_private = (void *)(uintptr_t)stackid; 29677 29678 kstat_install(ksp); 29679 return (ksp); 29680 } 29681 29682 static void 29683 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29684 { 29685 if (ksp != NULL) { 29686 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29687 kstat_delete_netstack(ksp, stackid); 29688 } 29689 } 29690 29691 static int 29692 ip_kstat_update(kstat_t *kp, int rw) 29693 { 29694 ip_named_kstat_t *ipkp; 29695 mib2_ipIfStatsEntry_t ipmib; 29696 ill_walk_context_t ctx; 29697 ill_t *ill; 29698 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29699 netstack_t *ns; 29700 ip_stack_t *ipst; 29701 29702 if (kp == NULL || kp->ks_data == NULL) 29703 return (EIO); 29704 29705 if (rw == KSTAT_WRITE) 29706 return (EACCES); 29707 29708 ns = netstack_find_by_stackid(stackid); 29709 if (ns == NULL) 29710 return (-1); 29711 ipst = ns->netstack_ip; 29712 if (ipst == NULL) { 29713 netstack_rele(ns); 29714 return (-1); 29715 } 29716 ipkp = (ip_named_kstat_t *)kp->ks_data; 29717 29718 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 29719 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29720 ill = ILL_START_WALK_V4(&ctx, ipst); 29721 for (; ill != NULL; ill = ill_next(&ctx, ill)) 29722 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 29723 rw_exit(&ipst->ips_ill_g_lock); 29724 29725 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 29726 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 29727 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 29728 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 29729 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 29730 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 29731 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 29732 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 29733 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 29734 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 29735 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 29736 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 29737 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29738 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 29739 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 29740 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 29741 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 29742 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 29743 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 29744 29745 ipkp->routingDiscards.value.ui32 = 0; 29746 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 29747 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 29748 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 29749 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 29750 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 29751 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 29752 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 29753 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 29754 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 29755 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 29756 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 29757 29758 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 29759 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 29760 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 29761 29762 netstack_rele(ns); 29763 29764 return (0); 29765 } 29766 29767 static void * 29768 icmp_kstat_init(netstackid_t stackid) 29769 { 29770 kstat_t *ksp; 29771 29772 icmp_named_kstat_t template = { 29773 { "inMsgs", KSTAT_DATA_UINT32 }, 29774 { "inErrors", KSTAT_DATA_UINT32 }, 29775 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 29776 { "inTimeExcds", KSTAT_DATA_UINT32 }, 29777 { "inParmProbs", KSTAT_DATA_UINT32 }, 29778 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 29779 { "inRedirects", KSTAT_DATA_UINT32 }, 29780 { "inEchos", KSTAT_DATA_UINT32 }, 29781 { "inEchoReps", KSTAT_DATA_UINT32 }, 29782 { "inTimestamps", KSTAT_DATA_UINT32 }, 29783 { "inTimestampReps", KSTAT_DATA_UINT32 }, 29784 { "inAddrMasks", KSTAT_DATA_UINT32 }, 29785 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 29786 { "outMsgs", KSTAT_DATA_UINT32 }, 29787 { "outErrors", KSTAT_DATA_UINT32 }, 29788 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 29789 { "outTimeExcds", KSTAT_DATA_UINT32 }, 29790 { "outParmProbs", KSTAT_DATA_UINT32 }, 29791 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 29792 { "outRedirects", KSTAT_DATA_UINT32 }, 29793 { "outEchos", KSTAT_DATA_UINT32 }, 29794 { "outEchoReps", KSTAT_DATA_UINT32 }, 29795 { "outTimestamps", KSTAT_DATA_UINT32 }, 29796 { "outTimestampReps", KSTAT_DATA_UINT32 }, 29797 { "outAddrMasks", KSTAT_DATA_UINT32 }, 29798 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 29799 { "inChksumErrs", KSTAT_DATA_UINT32 }, 29800 { "inUnknowns", KSTAT_DATA_UINT32 }, 29801 { "inFragNeeded", KSTAT_DATA_UINT32 }, 29802 { "outFragNeeded", KSTAT_DATA_UINT32 }, 29803 { "outDrops", KSTAT_DATA_UINT32 }, 29804 { "inOverFlows", KSTAT_DATA_UINT32 }, 29805 { "inBadRedirects", KSTAT_DATA_UINT32 }, 29806 }; 29807 29808 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 29809 NUM_OF_FIELDS(icmp_named_kstat_t), 29810 0, stackid); 29811 if (ksp == NULL || ksp->ks_data == NULL) 29812 return (NULL); 29813 29814 bcopy(&template, ksp->ks_data, sizeof (template)); 29815 29816 ksp->ks_update = icmp_kstat_update; 29817 ksp->ks_private = (void *)(uintptr_t)stackid; 29818 29819 kstat_install(ksp); 29820 return (ksp); 29821 } 29822 29823 static void 29824 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29825 { 29826 if (ksp != NULL) { 29827 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29828 kstat_delete_netstack(ksp, stackid); 29829 } 29830 } 29831 29832 static int 29833 icmp_kstat_update(kstat_t *kp, int rw) 29834 { 29835 icmp_named_kstat_t *icmpkp; 29836 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29837 netstack_t *ns; 29838 ip_stack_t *ipst; 29839 29840 if ((kp == NULL) || (kp->ks_data == NULL)) 29841 return (EIO); 29842 29843 if (rw == KSTAT_WRITE) 29844 return (EACCES); 29845 29846 ns = netstack_find_by_stackid(stackid); 29847 if (ns == NULL) 29848 return (-1); 29849 ipst = ns->netstack_ip; 29850 if (ipst == NULL) { 29851 netstack_rele(ns); 29852 return (-1); 29853 } 29854 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 29855 29856 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 29857 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 29858 icmpkp->inDestUnreachs.value.ui32 = 29859 ipst->ips_icmp_mib.icmpInDestUnreachs; 29860 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 29861 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 29862 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 29863 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 29864 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 29865 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 29866 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 29867 icmpkp->inTimestampReps.value.ui32 = 29868 ipst->ips_icmp_mib.icmpInTimestampReps; 29869 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 29870 icmpkp->inAddrMaskReps.value.ui32 = 29871 ipst->ips_icmp_mib.icmpInAddrMaskReps; 29872 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 29873 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 29874 icmpkp->outDestUnreachs.value.ui32 = 29875 ipst->ips_icmp_mib.icmpOutDestUnreachs; 29876 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 29877 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 29878 icmpkp->outSrcQuenchs.value.ui32 = 29879 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 29880 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 29881 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 29882 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 29883 icmpkp->outTimestamps.value.ui32 = 29884 ipst->ips_icmp_mib.icmpOutTimestamps; 29885 icmpkp->outTimestampReps.value.ui32 = 29886 ipst->ips_icmp_mib.icmpOutTimestampReps; 29887 icmpkp->outAddrMasks.value.ui32 = 29888 ipst->ips_icmp_mib.icmpOutAddrMasks; 29889 icmpkp->outAddrMaskReps.value.ui32 = 29890 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 29891 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 29892 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 29893 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 29894 icmpkp->outFragNeeded.value.ui32 = 29895 ipst->ips_icmp_mib.icmpOutFragNeeded; 29896 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 29897 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 29898 icmpkp->inBadRedirects.value.ui32 = 29899 ipst->ips_icmp_mib.icmpInBadRedirects; 29900 29901 netstack_rele(ns); 29902 return (0); 29903 } 29904 29905 /* 29906 * This is the fanout function for raw socket opened for SCTP. Note 29907 * that it is called after SCTP checks that there is no socket which 29908 * wants a packet. Then before SCTP handles this out of the blue packet, 29909 * this function is called to see if there is any raw socket for SCTP. 29910 * If there is and it is bound to the correct address, the packet will 29911 * be sent to that socket. Note that only one raw socket can be bound to 29912 * a port. This is assured in ipcl_sctp_hash_insert(); 29913 */ 29914 void 29915 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 29916 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 29917 zoneid_t zoneid) 29918 { 29919 conn_t *connp; 29920 queue_t *rq; 29921 mblk_t *first_mp; 29922 boolean_t secure; 29923 ip6_t *ip6h; 29924 ip_stack_t *ipst = recv_ill->ill_ipst; 29925 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 29926 29927 first_mp = mp; 29928 if (mctl_present) { 29929 mp = first_mp->b_cont; 29930 secure = ipsec_in_is_secure(first_mp); 29931 ASSERT(mp != NULL); 29932 } else { 29933 secure = B_FALSE; 29934 } 29935 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 29936 29937 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha, ipst); 29938 if (connp == NULL) { 29939 sctp_ootb_input(first_mp, recv_ill, zoneid, mctl_present); 29940 return; 29941 } 29942 rq = connp->conn_rq; 29943 if (!canputnext(rq)) { 29944 CONN_DEC_REF(connp); 29945 BUMP_MIB(recv_ill->ill_ip_mib, rawipIfStatsInOverflows); 29946 freemsg(first_mp); 29947 return; 29948 } 29949 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 29950 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || secure) { 29951 first_mp = ipsec_check_inbound_policy(first_mp, connp, 29952 (isv4 ? ipha : NULL), ip6h, mctl_present); 29953 if (first_mp == NULL) { 29954 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 29955 CONN_DEC_REF(connp); 29956 return; 29957 } 29958 } 29959 /* 29960 * We probably should not send M_CTL message up to 29961 * raw socket. 29962 */ 29963 if (mctl_present) 29964 freeb(first_mp); 29965 29966 /* Initiate IPPF processing here if needed. */ 29967 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) || 29968 (!isv4 && IP6_IN_IPP(flags, ipst))) { 29969 ip_process(IPP_LOCAL_IN, &mp, 29970 recv_ill->ill_phyint->phyint_ifindex); 29971 if (mp == NULL) { 29972 CONN_DEC_REF(connp); 29973 return; 29974 } 29975 } 29976 29977 if (connp->conn_recvif || connp->conn_recvslla || 29978 ((connp->conn_ip_recvpktinfo || 29979 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 29980 (flags & IP_FF_IPINFO))) { 29981 int in_flags = 0; 29982 29983 /* 29984 * Since sctp does not support IP_RECVPKTINFO for v4, only pass 29985 * IPF_RECVIF. 29986 */ 29987 if (connp->conn_recvif || connp->conn_ip_recvpktinfo) { 29988 in_flags = IPF_RECVIF; 29989 } 29990 if (connp->conn_recvslla) { 29991 in_flags |= IPF_RECVSLLA; 29992 } 29993 if (isv4) { 29994 mp = ip_add_info(mp, recv_ill, in_flags, 29995 IPCL_ZONEID(connp), ipst); 29996 } else { 29997 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 29998 if (mp == NULL) { 29999 BUMP_MIB(recv_ill->ill_ip_mib, 30000 ipIfStatsInDiscards); 30001 CONN_DEC_REF(connp); 30002 return; 30003 } 30004 } 30005 } 30006 30007 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 30008 /* 30009 * We are sending the IPSEC_IN message also up. Refer 30010 * to comments above this function. 30011 */ 30012 putnext(rq, mp); 30013 CONN_DEC_REF(connp); 30014 } 30015 30016 #define UPDATE_IP_MIB_OB_COUNTERS(ill, len) \ 30017 { \ 30018 BUMP_MIB((ill)->ill_ip_mib, ipIfStatsHCOutTransmits); \ 30019 UPDATE_MIB((ill)->ill_ip_mib, ipIfStatsHCOutOctets, (len)); \ 30020 } 30021 /* 30022 * This function should be called only if all packet processing 30023 * including fragmentation is complete. Callers of this function 30024 * must set mp->b_prev to one of these values: 30025 * {0, IPP_FWD_OUT, IPP_LOCAL_OUT} 30026 * prior to handing over the mp as first argument to this function. 30027 * 30028 * If the ire passed by caller is incomplete, this function 30029 * queues the packet and if necessary, sends ARP request and bails. 30030 * If the ire passed is fully resolved, we simply prepend 30031 * the link-layer header to the packet, do ipsec hw acceleration 30032 * work if necessary, and send the packet out on the wire. 30033 * 30034 * NOTE: IPSEC will only call this function with fully resolved 30035 * ires if hw acceleration is involved. 30036 * TODO list : 30037 * a Handle M_MULTIDATA so that 30038 * tcp_multisend->tcp_multisend_data can 30039 * call ip_xmit_v4 directly 30040 * b Handle post-ARP work for fragments so that 30041 * ip_wput_frag can call this function. 30042 */ 30043 ipxmit_state_t 30044 ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, boolean_t flow_ctl_enabled) 30045 { 30046 nce_t *arpce; 30047 queue_t *q; 30048 int ill_index; 30049 mblk_t *nxt_mp, *first_mp; 30050 boolean_t xmit_drop = B_FALSE; 30051 ip_proc_t proc; 30052 ill_t *out_ill; 30053 int pkt_len; 30054 30055 arpce = ire->ire_nce; 30056 ASSERT(arpce != NULL); 30057 30058 DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire, nce_t *, arpce); 30059 30060 mutex_enter(&arpce->nce_lock); 30061 switch (arpce->nce_state) { 30062 case ND_REACHABLE: 30063 /* If there are other queued packets, queue this packet */ 30064 if (arpce->nce_qd_mp != NULL) { 30065 if (mp != NULL) 30066 nce_queue_mp_common(arpce, mp, B_FALSE); 30067 mp = arpce->nce_qd_mp; 30068 } 30069 arpce->nce_qd_mp = NULL; 30070 mutex_exit(&arpce->nce_lock); 30071 30072 /* 30073 * Flush the queue. In the common case, where the 30074 * ARP is already resolved, it will go through the 30075 * while loop only once. 30076 */ 30077 while (mp != NULL) { 30078 30079 nxt_mp = mp->b_next; 30080 mp->b_next = NULL; 30081 ASSERT(mp->b_datap->db_type != M_CTL); 30082 pkt_len = ntohs(((ipha_t *)mp->b_rptr)->ipha_length); 30083 /* 30084 * This info is needed for IPQOS to do COS marking 30085 * in ip_wput_attach_llhdr->ip_process. 30086 */ 30087 proc = (ip_proc_t)(uintptr_t)mp->b_prev; 30088 mp->b_prev = NULL; 30089 30090 /* set up ill index for outbound qos processing */ 30091 out_ill = ire->ire_ipif->ipif_ill; 30092 ill_index = out_ill->ill_phyint->phyint_ifindex; 30093 first_mp = ip_wput_attach_llhdr(mp, ire, proc, 30094 ill_index); 30095 if (first_mp == NULL) { 30096 xmit_drop = B_TRUE; 30097 BUMP_MIB(out_ill->ill_ip_mib, 30098 ipIfStatsOutDiscards); 30099 goto next_mp; 30100 } 30101 /* non-ipsec hw accel case */ 30102 if (io == NULL || !io->ipsec_out_accelerated) { 30103 /* send it */ 30104 q = ire->ire_stq; 30105 if (proc == IPP_FWD_OUT) { 30106 UPDATE_IB_PKT_COUNT(ire); 30107 } else { 30108 UPDATE_OB_PKT_COUNT(ire); 30109 } 30110 ire->ire_last_used_time = lbolt; 30111 30112 if (flow_ctl_enabled || canputnext(q)) { 30113 if (proc == IPP_FWD_OUT) { 30114 BUMP_MIB(out_ill->ill_ip_mib, 30115 ipIfStatsHCOutForwDatagrams); 30116 } 30117 UPDATE_IP_MIB_OB_COUNTERS(out_ill, 30118 pkt_len); 30119 30120 putnext(q, first_mp); 30121 } else { 30122 BUMP_MIB(out_ill->ill_ip_mib, 30123 ipIfStatsOutDiscards); 30124 xmit_drop = B_TRUE; 30125 freemsg(first_mp); 30126 } 30127 } else { 30128 /* 30129 * Safety Pup says: make sure this 30130 * is going to the right interface! 30131 */ 30132 ill_t *ill1 = 30133 (ill_t *)ire->ire_stq->q_ptr; 30134 int ifindex = 30135 ill1->ill_phyint->phyint_ifindex; 30136 if (ifindex != 30137 io->ipsec_out_capab_ill_index) { 30138 xmit_drop = B_TRUE; 30139 freemsg(mp); 30140 } else { 30141 UPDATE_IP_MIB_OB_COUNTERS(ill1, 30142 pkt_len); 30143 ipsec_hw_putnext(ire->ire_stq, mp); 30144 } 30145 } 30146 next_mp: 30147 mp = nxt_mp; 30148 } /* while (mp != NULL) */ 30149 if (xmit_drop) 30150 return (SEND_FAILED); 30151 else 30152 return (SEND_PASSED); 30153 30154 case ND_INITIAL: 30155 case ND_INCOMPLETE: 30156 30157 /* 30158 * While we do send off packets to dests that 30159 * use fully-resolved CGTP routes, we do not 30160 * handle unresolved CGTP routes. 30161 */ 30162 ASSERT(!(ire->ire_flags & RTF_MULTIRT)); 30163 ASSERT(io == NULL || !io->ipsec_out_accelerated); 30164 30165 if (mp != NULL) { 30166 /* queue the packet */ 30167 nce_queue_mp_common(arpce, mp, B_FALSE); 30168 } 30169 30170 if (arpce->nce_state == ND_INCOMPLETE) { 30171 mutex_exit(&arpce->nce_lock); 30172 DTRACE_PROBE3(ip__xmit__incomplete, 30173 (ire_t *), ire, (mblk_t *), mp, 30174 (ipsec_out_t *), io); 30175 return (LOOKUP_IN_PROGRESS); 30176 } 30177 30178 arpce->nce_state = ND_INCOMPLETE; 30179 mutex_exit(&arpce->nce_lock); 30180 /* 30181 * Note that ire_add() (called from ire_forward()) 30182 * holds a ref on the ire until ARP is completed. 30183 */ 30184 30185 ire_arpresolve(ire, ire_to_ill(ire)); 30186 return (LOOKUP_IN_PROGRESS); 30187 default: 30188 ASSERT(0); 30189 mutex_exit(&arpce->nce_lock); 30190 return (LLHDR_RESLV_FAILED); 30191 } 30192 } 30193 30194 #undef UPDATE_IP_MIB_OB_COUNTERS 30195 30196 /* 30197 * Return B_TRUE if the buffers differ in length or content. 30198 * This is used for comparing extension header buffers. 30199 * Note that an extension header would be declared different 30200 * even if all that changed was the next header value in that header i.e. 30201 * what really changed is the next extension header. 30202 */ 30203 boolean_t 30204 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 30205 uint_t blen) 30206 { 30207 if (!b_valid) 30208 blen = 0; 30209 30210 if (alen != blen) 30211 return (B_TRUE); 30212 if (alen == 0) 30213 return (B_FALSE); /* Both zero length */ 30214 return (bcmp(abuf, bbuf, alen)); 30215 } 30216 30217 /* 30218 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 30219 * Return B_FALSE if memory allocation fails - don't change any state! 30220 */ 30221 boolean_t 30222 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 30223 const void *src, uint_t srclen) 30224 { 30225 void *dst; 30226 30227 if (!src_valid) 30228 srclen = 0; 30229 30230 ASSERT(*dstlenp == 0); 30231 if (src != NULL && srclen != 0) { 30232 dst = mi_alloc(srclen, BPRI_MED); 30233 if (dst == NULL) 30234 return (B_FALSE); 30235 } else { 30236 dst = NULL; 30237 } 30238 if (*dstp != NULL) 30239 mi_free(*dstp); 30240 *dstp = dst; 30241 *dstlenp = dst == NULL ? 0 : srclen; 30242 return (B_TRUE); 30243 } 30244 30245 /* 30246 * Replace what is in *dst, *dstlen with the source. 30247 * Assumes ip_allocbuf has already been called. 30248 */ 30249 void 30250 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 30251 const void *src, uint_t srclen) 30252 { 30253 if (!src_valid) 30254 srclen = 0; 30255 30256 ASSERT(*dstlenp == srclen); 30257 if (src != NULL && srclen != 0) 30258 bcopy(src, *dstp, srclen); 30259 } 30260 30261 /* 30262 * Free the storage pointed to by the members of an ip6_pkt_t. 30263 */ 30264 void 30265 ip6_pkt_free(ip6_pkt_t *ipp) 30266 { 30267 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 30268 30269 if (ipp->ipp_fields & IPPF_HOPOPTS) { 30270 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 30271 ipp->ipp_hopopts = NULL; 30272 ipp->ipp_hopoptslen = 0; 30273 } 30274 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 30275 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 30276 ipp->ipp_rtdstopts = NULL; 30277 ipp->ipp_rtdstoptslen = 0; 30278 } 30279 if (ipp->ipp_fields & IPPF_DSTOPTS) { 30280 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 30281 ipp->ipp_dstopts = NULL; 30282 ipp->ipp_dstoptslen = 0; 30283 } 30284 if (ipp->ipp_fields & IPPF_RTHDR) { 30285 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 30286 ipp->ipp_rthdr = NULL; 30287 ipp->ipp_rthdrlen = 0; 30288 } 30289 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 30290 IPPF_RTHDR); 30291 } 30292