1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 #include <sys/types.h> 31 #include <sys/stream.h> 32 #include <sys/dlpi.h> 33 #include <sys/stropts.h> 34 #include <sys/sysmacros.h> 35 #include <sys/strsubr.h> 36 #include <sys/strlog.h> 37 #include <sys/strsun.h> 38 #include <sys/zone.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/xti_inet.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/cmn_err.h> 45 #include <sys/debug.h> 46 #include <sys/kobj.h> 47 #include <sys/modctl.h> 48 #include <sys/atomic.h> 49 #include <sys/policy.h> 50 #include <sys/priv.h> 51 52 #include <sys/systm.h> 53 #include <sys/param.h> 54 #include <sys/kmem.h> 55 #include <sys/sdt.h> 56 #include <sys/socket.h> 57 #include <sys/vtrace.h> 58 #include <sys/isa_defs.h> 59 #include <net/if.h> 60 #include <net/if_arp.h> 61 #include <net/route.h> 62 #include <sys/sockio.h> 63 #include <netinet/in.h> 64 #include <net/if_dl.h> 65 66 #include <inet/common.h> 67 #include <inet/mi.h> 68 #include <inet/mib2.h> 69 #include <inet/nd.h> 70 #include <inet/arp.h> 71 #include <inet/snmpcom.h> 72 #include <inet/optcom.h> 73 #include <inet/kstatcom.h> 74 75 #include <netinet/igmp_var.h> 76 #include <netinet/ip6.h> 77 #include <netinet/icmp6.h> 78 #include <netinet/sctp.h> 79 80 #include <inet/ip.h> 81 #include <inet/ip_impl.h> 82 #include <inet/ip6.h> 83 #include <inet/ip6_asp.h> 84 #include <inet/tcp.h> 85 #include <inet/tcp_impl.h> 86 #include <inet/ip_multi.h> 87 #include <inet/ip_if.h> 88 #include <inet/ip_ire.h> 89 #include <inet/ip_ftable.h> 90 #include <inet/ip_rts.h> 91 #include <inet/ip_ndp.h> 92 #include <inet/ip_listutils.h> 93 #include <netinet/igmp.h> 94 #include <netinet/ip_mroute.h> 95 #include <inet/ipp_common.h> 96 97 #include <net/pfkeyv2.h> 98 #include <inet/ipsec_info.h> 99 #include <inet/sadb.h> 100 #include <inet/ipsec_impl.h> 101 #include <sys/iphada.h> 102 #include <inet/tun.h> 103 #include <inet/ipdrop.h> 104 #include <inet/ip_netinfo.h> 105 106 #include <sys/ethernet.h> 107 #include <net/if_types.h> 108 #include <sys/cpuvar.h> 109 110 #include <ipp/ipp.h> 111 #include <ipp/ipp_impl.h> 112 #include <ipp/ipgpc/ipgpc.h> 113 114 #include <sys/multidata.h> 115 #include <sys/pattr.h> 116 117 #include <inet/ipclassifier.h> 118 #include <inet/sctp_ip.h> 119 #include <inet/sctp/sctp_impl.h> 120 #include <inet/udp_impl.h> 121 #include <inet/rawip_impl.h> 122 #include <inet/rts_impl.h> 123 #include <sys/sunddi.h> 124 125 #include <sys/tsol/label.h> 126 #include <sys/tsol/tnet.h> 127 128 #include <rpc/pmap_prot.h> 129 130 /* 131 * Values for squeue switch: 132 * IP_SQUEUE_ENTER_NODRAIN: squeue_enter_nodrain 133 * IP_SQUEUE_ENTER: squeue_enter 134 * IP_SQUEUE_FILL: squeue_fill 135 */ 136 int ip_squeue_enter = 2; /* Setable in /etc/system */ 137 138 squeue_func_t ip_input_proc; 139 #define SET_BPREV_FLAG(x) ((mblk_t *)(uintptr_t)(x)) 140 141 /* 142 * Setable in /etc/system 143 */ 144 int ip_poll_normal_ms = 100; 145 int ip_poll_normal_ticks = 0; 146 int ip_modclose_ackwait_ms = 3000; 147 148 /* 149 * It would be nice to have these present only in DEBUG systems, but the 150 * current design of the global symbol checking logic requires them to be 151 * unconditionally present. 152 */ 153 uint_t ip_thread_data; /* TSD key for debug support */ 154 krwlock_t ip_thread_rwlock; 155 list_t ip_thread_list; 156 157 /* 158 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 159 */ 160 161 struct listptr_s { 162 mblk_t *lp_head; /* pointer to the head of the list */ 163 mblk_t *lp_tail; /* pointer to the tail of the list */ 164 }; 165 166 typedef struct listptr_s listptr_t; 167 168 /* 169 * This is used by ip_snmp_get_mib2_ip_route_media and 170 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 171 */ 172 typedef struct iproutedata_s { 173 uint_t ird_idx; 174 listptr_t ird_route; /* ipRouteEntryTable */ 175 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 176 listptr_t ird_attrs; /* ipRouteAttributeTable */ 177 } iproutedata_t; 178 179 /* 180 * Cluster specific hooks. These should be NULL when booted as a non-cluster 181 */ 182 183 /* 184 * Hook functions to enable cluster networking 185 * On non-clustered systems these vectors must always be NULL. 186 * 187 * Hook function to Check ip specified ip address is a shared ip address 188 * in the cluster 189 * 190 */ 191 int (*cl_inet_isclusterwide)(uint8_t protocol, 192 sa_family_t addr_family, uint8_t *laddrp) = NULL; 193 194 /* 195 * Hook function to generate cluster wide ip fragment identifier 196 */ 197 uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 198 uint8_t *laddrp, uint8_t *faddrp) = NULL; 199 200 /* 201 * Synchronization notes: 202 * 203 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 204 * MT level protection given by STREAMS. IP uses a combination of its own 205 * internal serialization mechanism and standard Solaris locking techniques. 206 * The internal serialization is per phyint (no IPMP) or per IPMP group. 207 * This is used to serialize plumbing operations, IPMP operations, certain 208 * multicast operations, most set ioctls, igmp/mld timers etc. 209 * 210 * Plumbing is a long sequence of operations involving message 211 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 212 * involved in plumbing operations. A natural model is to serialize these 213 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 214 * parallel without any interference. But various set ioctls on hme0 are best 215 * serialized. However if the system uses IPMP, the operations are easier if 216 * they are serialized on a per IPMP group basis since IPMP operations 217 * happen across ill's of a group. Thus the lowest common denominator is to 218 * serialize most set ioctls, multicast join/leave operations, IPMP operations 219 * igmp/mld timer operations, and processing of DLPI control messages received 220 * from drivers on a per IPMP group basis. If the system does not employ 221 * IPMP the serialization is on a per phyint basis. This serialization is 222 * provided by the ipsq_t and primitives operating on this. Details can 223 * be found in ip_if.c above the core primitives operating on ipsq_t. 224 * 225 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 226 * Simiarly lookup of an ire by a thread also returns a refheld ire. 227 * In addition ipif's and ill's referenced by the ire are also indirectly 228 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 229 * the ipif's address or netmask change as long as an ipif is refheld 230 * directly or indirectly. For example an SIOCLIFADDR ioctl that changes the 231 * address of an ipif has to go through the ipsq_t. This ensures that only 232 * 1 such exclusive operation proceeds at any time on the ipif. It then 233 * deletes all ires associated with this ipif, and waits for all refcnts 234 * associated with this ipif to come down to zero. The address is changed 235 * only after the ipif has been quiesced. Then the ipif is brought up again. 236 * More details are described above the comment in ip_sioctl_flags. 237 * 238 * Packet processing is based mostly on IREs and are fully multi-threaded 239 * using standard Solaris MT techniques. 240 * 241 * There are explicit locks in IP to handle: 242 * - The ip_g_head list maintained by mi_open_link() and friends. 243 * 244 * - The reassembly data structures (one lock per hash bucket) 245 * 246 * - conn_lock is meant to protect conn_t fields. The fields actually 247 * protected by conn_lock are documented in the conn_t definition. 248 * 249 * - ire_lock to protect some of the fields of the ire, IRE tables 250 * (one lock per hash bucket). Refer to ip_ire.c for details. 251 * 252 * - ndp_g_lock and nce_lock for protecting NCEs. 253 * 254 * - ill_lock protects fields of the ill and ipif. Details in ip.h 255 * 256 * - ill_g_lock: This is a global reader/writer lock. Protects the following 257 * * The AVL tree based global multi list of all ills. 258 * * The linked list of all ipifs of an ill 259 * * The <ill-ipsq> mapping 260 * * The ipsq->ipsq_phyint_list threaded by phyint_ipsq_next 261 * * The illgroup list threaded by ill_group_next. 262 * * <ill-phyint> association 263 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 264 * into an ill, changing the <ill-ipsq> mapping of an ill, insertion/deletion 265 * of an ill into the illgrp list, changing the <ill-phyint> assoc of an ill 266 * will all have to hold the ill_g_lock as writer for the actual duration 267 * of the insertion/deletion/change. More details about the <ill-ipsq> mapping 268 * may be found in the IPMP section. 269 * 270 * - ill_lock: This is a per ill mutex. 271 * It protects some members of the ill and is documented below. 272 * It also protects the <ill-ipsq> mapping 273 * It also protects the illgroup list threaded by ill_group_next. 274 * It also protects the <ill-phyint> assoc. 275 * It also protects the list of ipifs hanging off the ill. 276 * 277 * - ipsq_lock: This is a per ipsq_t mutex lock. 278 * This protects all the other members of the ipsq struct except 279 * ipsq_refs and ipsq_phyint_list which are protected by ill_g_lock 280 * 281 * - illgrp_lock: This is a per ill_group mutex lock. 282 * The only thing it protects is the illgrp_ill_schednext member of ill_group 283 * which dictates which is the next ill in an ill_group that is to be chosen 284 * for sending outgoing packets, through creation of an IRE_CACHE that 285 * references this ill. 286 * 287 * - phyint_lock: This is a per phyint mutex lock. Protects just the 288 * phyint_flags 289 * 290 * - ip_g_nd_lock: This is a global reader/writer lock. 291 * Any call to nd_load to load a new parameter to the ND table must hold the 292 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 293 * as reader. 294 * 295 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 296 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 297 * uniqueness check also done atomically. 298 * 299 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 300 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 301 * as a writer when adding or deleting elements from these lists, and 302 * as a reader when walking these lists to send a SADB update to the 303 * IPsec capable ills. 304 * 305 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 306 * group list linked by ill_usesrc_grp_next. It also protects the 307 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 308 * group is being added or deleted. This lock is taken as a reader when 309 * walking the list/group(eg: to get the number of members in a usesrc group). 310 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 311 * field is changing state i.e from NULL to non-NULL or vice-versa. For 312 * example, it is not necessary to take this lock in the initial portion 313 * of ip_sioctl_slifusesrc or at all in ip_sioctl_groupname and 314 * ip_sioctl_flags since the these operations are executed exclusively and 315 * that ensures that the "usesrc group state" cannot change. The "usesrc 316 * group state" change can happen only in the latter part of 317 * ip_sioctl_slifusesrc and in ill_delete. 318 * 319 * Changing <ill-phyint>, <ill-ipsq>, <ill-illgroup> assocications. 320 * 321 * To change the <ill-phyint> association, the ill_g_lock must be held 322 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 323 * must be held. 324 * 325 * To change the <ill-ipsq> association the ill_g_lock must be held as writer 326 * and the ill_lock of the ill in question must be held. 327 * 328 * To change the <ill-illgroup> association the ill_g_lock must be held as 329 * writer and the ill_lock of the ill in question must be held. 330 * 331 * To add or delete an ipif from the list of ipifs hanging off the ill, 332 * ill_g_lock (writer) and ill_lock must be held and the thread must be 333 * a writer on the associated ipsq,. 334 * 335 * To add or delete an ill to the system, the ill_g_lock must be held as 336 * writer and the thread must be a writer on the associated ipsq. 337 * 338 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 339 * must be a writer on the associated ipsq. 340 * 341 * Lock hierarchy 342 * 343 * Some lock hierarchy scenarios are listed below. 344 * 345 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 346 * ill_g_lock -> illgrp_lock -> ill_lock 347 * ill_g_lock -> ill_lock(s) -> phyint_lock 348 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 349 * ill_g_lock -> ip_addr_avail_lock 350 * conn_lock -> irb_lock -> ill_lock -> ire_lock 351 * ill_g_lock -> ip_g_nd_lock 352 * 353 * When more than 1 ill lock is needed to be held, all ill lock addresses 354 * are sorted on address and locked starting from highest addressed lock 355 * downward. 356 * 357 * IPsec scenarios 358 * 359 * ipsa_lock -> ill_g_lock -> ill_lock 360 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 361 * ipsec_capab_ills_lock -> ipsa_lock 362 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 363 * 364 * Trusted Solaris scenarios 365 * 366 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 367 * igsa_lock -> gcdb_lock 368 * gcgrp_rwlock -> ire_lock 369 * gcgrp_rwlock -> gcdb_lock 370 * 371 * 372 * Routing/forwarding table locking notes: 373 * 374 * Lock acquisition order: Radix tree lock, irb_lock. 375 * Requirements: 376 * i. Walker must not hold any locks during the walker callback. 377 * ii Walker must not see a truncated tree during the walk because of any node 378 * deletion. 379 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 380 * in many places in the code to walk the irb list. Thus even if all the 381 * ires in a bucket have been deleted, we still can't free the radix node 382 * until the ires have actually been inactive'd (freed). 383 * 384 * Tree traversal - Need to hold the global tree lock in read mode. 385 * Before dropping the global tree lock, need to either increment the ire_refcnt 386 * to ensure that the radix node can't be deleted. 387 * 388 * Tree add - Need to hold the global tree lock in write mode to add a 389 * radix node. To prevent the node from being deleted, increment the 390 * irb_refcnt, after the node is added to the tree. The ire itself is 391 * added later while holding the irb_lock, but not the tree lock. 392 * 393 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 394 * All associated ires must be inactive (i.e. freed), and irb_refcnt 395 * must be zero. 396 * 397 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 398 * global tree lock (read mode) for traversal. 399 * 400 * IPsec notes : 401 * 402 * IP interacts with the IPsec code (AH/ESP) by tagging a M_CTL message 403 * in front of the actual packet. For outbound datagrams, the M_CTL 404 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 405 * information used by the IPsec code for applying the right level of 406 * protection. The information initialized by IP in the ipsec_out_t 407 * is determined by the per-socket policy or global policy in the system. 408 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 409 * ipsec_info.h) which starts out with nothing in it. It gets filled 410 * with the right information if it goes through the AH/ESP code, which 411 * happens if the incoming packet is secure. The information initialized 412 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 413 * the policy requirements needed by per-socket policy or global policy 414 * is met or not. 415 * 416 * If there is both per-socket policy (set using setsockopt) and there 417 * is also global policy match for the 5 tuples of the socket, 418 * ipsec_override_policy() makes the decision of which one to use. 419 * 420 * For fully connected sockets i.e dst, src [addr, port] is known, 421 * conn_policy_cached is set indicating that policy has been cached. 422 * conn_in_enforce_policy may or may not be set depending on whether 423 * there is a global policy match or per-socket policy match. 424 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 425 * Once the right policy is set on the conn_t, policy cannot change for 426 * this socket. This makes life simpler for TCP (UDP ?) where 427 * re-transmissions go out with the same policy. For symmetry, policy 428 * is cached for fully connected UDP sockets also. Thus if policy is cached, 429 * it also implies that policy is latched i.e policy cannot change 430 * on these sockets. As we have the right policy on the conn, we don't 431 * have to lookup global policy for every outbound and inbound datagram 432 * and thus serving as an optimization. Note that a global policy change 433 * does not affect fully connected sockets if they have policy. If fully 434 * connected sockets did not have any policy associated with it, global 435 * policy change may affect them. 436 * 437 * IP Flow control notes: 438 * 439 * Non-TCP streams are flow controlled by IP. On the send side, if the packet 440 * cannot be sent down to the driver by IP, because of a canput failure, IP 441 * does a putq on the conn_wq. This will cause ip_wsrv to run on the conn_wq. 442 * ip_wsrv in turn, inserts the conn in a list of conn's that need to be drained 443 * when the flowcontrol condition subsides. Ultimately STREAMS backenables the 444 * ip_wsrv on the IP module, which in turn does a qenable of the conn_wq of the 445 * first conn in the list of conn's to be drained. ip_wsrv on this conn drains 446 * the queued messages, and removes the conn from the drain list, if all 447 * messages were drained. It also qenables the next conn in the drain list to 448 * continue the drain process. 449 * 450 * In reality the drain list is not a single list, but a configurable number 451 * of lists. The ip_wsrv on the IP module, qenables the first conn in each 452 * list. If the ip_wsrv of the next qenabled conn does not run, because the 453 * stream closes, ip_close takes responsibility to qenable the next conn in 454 * the drain list. The directly called ip_wput path always does a putq, if 455 * it cannot putnext. Thus synchronization problems are handled between 456 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 457 * functions that manipulate this drain list. Furthermore conn_drain_insert 458 * is called only from ip_wsrv, and there can be only 1 instance of ip_wsrv 459 * running on a queue at any time. conn_drain_tail can be simultaneously called 460 * from both ip_wsrv and ip_close. 461 * 462 * IPQOS notes: 463 * 464 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 465 * and IPQoS modules. IPPF includes hooks in IP at different control points 466 * (callout positions) which direct packets to IPQoS modules for policy 467 * processing. Policies, if present, are global. 468 * 469 * The callout positions are located in the following paths: 470 * o local_in (packets destined for this host) 471 * o local_out (packets orginating from this host ) 472 * o fwd_in (packets forwarded by this m/c - inbound) 473 * o fwd_out (packets forwarded by this m/c - outbound) 474 * Hooks at these callout points can be enabled/disabled using the ndd variable 475 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 476 * By default all the callout positions are enabled. 477 * 478 * Outbound (local_out) 479 * Hooks are placed in ip_wput_ire and ipsec_out_process. 480 * 481 * Inbound (local_in) 482 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 483 * TCP and UDP fanout routines. 484 * 485 * Forwarding (in and out) 486 * Hooks are placed in ip_rput_forward. 487 * 488 * IP Policy Framework processing (IPPF processing) 489 * Policy processing for a packet is initiated by ip_process, which ascertains 490 * that the classifier (ipgpc) is loaded and configured, failing which the 491 * packet resumes normal processing in IP. If the clasifier is present, the 492 * packet is acted upon by one or more IPQoS modules (action instances), per 493 * filters configured in ipgpc and resumes normal IP processing thereafter. 494 * An action instance can drop a packet in course of its processing. 495 * 496 * A boolean variable, ip_policy, is used in all the fanout routines that can 497 * invoke ip_process for a packet. This variable indicates if the packet should 498 * to be sent for policy processing. The variable is set to B_TRUE by default, 499 * i.e. when the routines are invoked in the normal ip procesing path for a 500 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 501 * ip_policy is set to B_FALSE for all the routines called in these two 502 * functions because, in the former case, we don't process loopback traffic 503 * currently while in the latter, the packets have already been processed in 504 * icmp_inbound. 505 * 506 * Zones notes: 507 * 508 * The partitioning rules for networking are as follows: 509 * 1) Packets coming from a zone must have a source address belonging to that 510 * zone. 511 * 2) Packets coming from a zone can only be sent on a physical interface on 512 * which the zone has an IP address. 513 * 3) Between two zones on the same machine, packet delivery is only allowed if 514 * there's a matching route for the destination and zone in the forwarding 515 * table. 516 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 517 * different zones can bind to the same port with the wildcard address 518 * (INADDR_ANY). 519 * 520 * The granularity of interface partitioning is at the logical interface level. 521 * Therefore, every zone has its own IP addresses, and incoming packets can be 522 * attributed to a zone unambiguously. A logical interface is placed into a zone 523 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 524 * structure. Rule (1) is implemented by modifying the source address selection 525 * algorithm so that the list of eligible addresses is filtered based on the 526 * sending process zone. 527 * 528 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 529 * across all zones, depending on their type. Here is the break-up: 530 * 531 * IRE type Shared/exclusive 532 * -------- ---------------- 533 * IRE_BROADCAST Exclusive 534 * IRE_DEFAULT (default routes) Shared (*) 535 * IRE_LOCAL Exclusive (x) 536 * IRE_LOOPBACK Exclusive 537 * IRE_PREFIX (net routes) Shared (*) 538 * IRE_CACHE Exclusive 539 * IRE_IF_NORESOLVER (interface routes) Exclusive 540 * IRE_IF_RESOLVER (interface routes) Exclusive 541 * IRE_HOST (host routes) Shared (*) 542 * 543 * (*) A zone can only use a default or off-subnet route if the gateway is 544 * directly reachable from the zone, that is, if the gateway's address matches 545 * one of the zone's logical interfaces. 546 * 547 * (x) IRE_LOCAL are handled a bit differently, since for all other entries 548 * in ire_ctable and IRE_INTERFACE, ire_src_addr is what can be used as source 549 * when sending packets using the IRE. For IRE_LOCAL ire_src_addr is the IP 550 * address of the zone itself (the destination). Since IRE_LOCAL is used 551 * for communication between zones, ip_wput_ire has special logic to set 552 * the right source address when sending using an IRE_LOCAL. 553 * 554 * Furthermore, when ip_restrict_interzone_loopback is set (the default), 555 * ire_cache_lookup restricts loopback using an IRE_LOCAL 556 * between zone to the case when L2 would have conceptually looped the packet 557 * back, i.e. the loopback which is required since neither Ethernet drivers 558 * nor Ethernet hardware loops them back. This is the case when the normal 559 * routes (ignoring IREs with different zoneids) would send out the packet on 560 * the same ill (or ill group) as the ill with which is IRE_LOCAL is 561 * associated. 562 * 563 * Multiple zones can share a common broadcast address; typically all zones 564 * share the 255.255.255.255 address. Incoming as well as locally originated 565 * broadcast packets must be dispatched to all the zones on the broadcast 566 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 567 * since some zones may not be on the 10.16.72/24 network. To handle this, each 568 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 569 * sent to every zone that has an IRE_BROADCAST entry for the destination 570 * address on the input ill, see conn_wantpacket(). 571 * 572 * Applications in different zones can join the same multicast group address. 573 * For IPv4, group memberships are per-logical interface, so they're already 574 * inherently part of a zone. For IPv6, group memberships are per-physical 575 * interface, so we distinguish IPv6 group memberships based on group address, 576 * interface and zoneid. In both cases, received multicast packets are sent to 577 * every zone for which a group membership entry exists. On IPv6 we need to 578 * check that the target zone still has an address on the receiving physical 579 * interface; it could have been removed since the application issued the 580 * IPV6_JOIN_GROUP. 581 */ 582 583 /* 584 * Squeue Fanout flags: 585 * 0: No fanout. 586 * 1: Fanout across all squeues 587 */ 588 boolean_t ip_squeue_fanout = 0; 589 590 /* 591 * Maximum dups allowed per packet. 592 */ 593 uint_t ip_max_frag_dups = 10; 594 595 #define IS_SIMPLE_IPH(ipha) \ 596 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 597 598 /* RFC1122 Conformance */ 599 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 600 601 #define ILL_MAX_NAMELEN LIFNAMSIZ 602 603 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 604 605 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag, 606 cred_t *credp, boolean_t isv6); 607 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t); 608 609 static void icmp_frag_needed(queue_t *, mblk_t *, int, zoneid_t, 610 ip_stack_t *); 611 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 612 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 613 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 614 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 615 mblk_t *, int, ip_stack_t *); 616 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 617 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 618 ill_t *, zoneid_t); 619 static void icmp_options_update(ipha_t *); 620 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t, zoneid_t, 621 ip_stack_t *); 622 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t, 623 zoneid_t zoneid, ip_stack_t *); 624 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_stack_t *); 625 static void icmp_redirect(ill_t *, mblk_t *); 626 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t, 627 ip_stack_t *); 628 629 static void ip_arp_news(queue_t *, mblk_t *); 630 static boolean_t ip_bind_insert_ire(mblk_t *, ire_t *, iulp_t *, 631 ip_stack_t *); 632 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 633 char *ip_dot_addr(ipaddr_t, char *); 634 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 635 int ip_close(queue_t *, int); 636 static char *ip_dot_saddr(uchar_t *, char *); 637 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 638 boolean_t, boolean_t, ill_t *, zoneid_t); 639 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 640 boolean_t, boolean_t, zoneid_t); 641 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 642 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 643 static void ip_lrput(queue_t *, mblk_t *); 644 ipaddr_t ip_net_mask(ipaddr_t); 645 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, conn_t *, zoneid_t, 646 ip_stack_t *); 647 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 648 conn_t *, uint32_t, zoneid_t, ip_opt_info_t *); 649 char *ip_nv_lookup(nv_t *, int); 650 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 651 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 652 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 653 static boolean_t ip_param_register(IDP *ndp, ipparam_t *, size_t, 654 ipndp_t *, size_t); 655 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 656 void ip_rput(queue_t *, mblk_t *); 657 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 658 void *dummy_arg); 659 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 660 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *, 661 ip_stack_t *); 662 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 663 ire_t *, ip_stack_t *); 664 static boolean_t ip_rput_multimblk_ipoptions(queue_t *, ill_t *, 665 mblk_t *, ipha_t **, ipaddr_t *, ip_stack_t *); 666 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *, 667 ip_stack_t *); 668 static boolean_t ip_rput_fragment(queue_t *, mblk_t **, ipha_t *, uint32_t *, 669 uint16_t *); 670 int ip_snmp_get(queue_t *, mblk_t *, int); 671 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 672 mib2_ipIfStatsEntry_t *, ip_stack_t *); 673 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 674 ip_stack_t *); 675 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *); 676 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 677 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 678 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 679 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 680 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 681 ip_stack_t *ipst); 682 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 683 ip_stack_t *ipst); 684 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 685 ip_stack_t *ipst); 686 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 687 ip_stack_t *ipst); 688 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 689 ip_stack_t *ipst); 690 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 691 ip_stack_t *ipst); 692 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 693 ip_stack_t *ipst); 694 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 695 ip_stack_t *ipst); 696 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, 697 ip_stack_t *ipst); 698 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, 699 ip_stack_t *ipst); 700 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 701 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 702 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 703 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 704 static boolean_t ip_source_routed(ipha_t *, ip_stack_t *); 705 static boolean_t ip_source_route_included(ipha_t *); 706 static void ip_trash_ire_reclaim_stack(ip_stack_t *); 707 708 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t, 709 zoneid_t, ip_stack_t *); 710 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int, ip_stack_t *); 711 static void ip_wput_local_options(ipha_t *, ip_stack_t *); 712 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 713 zoneid_t, ip_stack_t *); 714 715 static void conn_drain_init(ip_stack_t *); 716 static void conn_drain_fini(ip_stack_t *); 717 static void conn_drain_tail(conn_t *connp, boolean_t closing); 718 719 static void conn_walk_drain(ip_stack_t *); 720 static void conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *, 721 zoneid_t); 722 723 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 724 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 725 static void ip_stack_fini(netstackid_t stackid, void *arg); 726 727 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 728 zoneid_t); 729 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 730 void *dummy_arg); 731 732 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 733 734 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 735 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 736 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 737 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 738 739 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 740 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 741 caddr_t, cred_t *); 742 extern int ip_squeue_bind_set(queue_t *q, mblk_t *mp, char *value, 743 caddr_t cp, cred_t *cr); 744 extern int ip_squeue_profile_set(queue_t *, mblk_t *, char *, caddr_t, 745 cred_t *); 746 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 747 caddr_t cp, cred_t *cr); 748 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 749 cred_t *); 750 static int ipmp_hook_emulation_set(queue_t *, mblk_t *, char *, caddr_t, 751 cred_t *); 752 static squeue_func_t ip_squeue_switch(int); 753 754 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 755 static void ip_kstat_fini(netstackid_t, kstat_t *); 756 static int ip_kstat_update(kstat_t *kp, int rw); 757 static void *icmp_kstat_init(netstackid_t); 758 static void icmp_kstat_fini(netstackid_t, kstat_t *); 759 static int icmp_kstat_update(kstat_t *kp, int rw); 760 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 761 static void ip_kstat2_fini(netstackid_t, kstat_t *); 762 763 static int ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *); 764 765 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 766 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 767 768 static void ip_rput_process_forward(queue_t *, mblk_t *, ire_t *, 769 ipha_t *, ill_t *, boolean_t); 770 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 771 772 /* How long, in seconds, we allow frags to hang around. */ 773 #define IP_FRAG_TIMEOUT 60 774 775 /* 776 * Threshold which determines whether MDT should be used when 777 * generating IP fragments; payload size must be greater than 778 * this threshold for MDT to take place. 779 */ 780 #define IP_WPUT_FRAG_MDT_MIN 32768 781 782 /* Setable in /etc/system only */ 783 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 784 785 static long ip_rput_pullups; 786 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 787 788 vmem_t *ip_minor_arena; 789 790 int ip_debug; 791 792 #ifdef DEBUG 793 uint32_t ipsechw_debug = 0; 794 #endif 795 796 /* 797 * Multirouting/CGTP stuff 798 */ 799 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 800 801 /* 802 * XXX following really should only be in a header. Would need more 803 * header and .c clean up first. 804 */ 805 extern optdb_obj_t ip_opt_obj; 806 807 ulong_t ip_squeue_enter_unbound = 0; 808 809 /* 810 * Named Dispatch Parameter Table. 811 * All of these are alterable, within the min/max values given, at run time. 812 */ 813 static ipparam_t lcl_param_arr[] = { 814 /* min max value name */ 815 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 816 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 817 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 818 { 0, 1, 0, "ip_respond_to_timestamp"}, 819 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 820 { 0, 1, 1, "ip_send_redirects"}, 821 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 822 { 0, 10, 0, "ip_mrtdebug"}, 823 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 824 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 825 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 826 { 1, 255, 255, "ip_def_ttl" }, 827 { 0, 1, 0, "ip_forward_src_routed"}, 828 { 0, 256, 32, "ip_wroff_extra" }, 829 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 830 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 831 { 0, 1, 1, "ip_path_mtu_discovery" }, 832 { 0, 240, 30, "ip_ignore_delete_time" }, 833 { 0, 1, 0, "ip_ignore_redirect" }, 834 { 0, 1, 1, "ip_output_queue" }, 835 { 1, 254, 1, "ip_broadcast_ttl" }, 836 { 0, 99999, 100, "ip_icmp_err_interval" }, 837 { 1, 99999, 10, "ip_icmp_err_burst" }, 838 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 839 { 0, 1, 0, "ip_strict_dst_multihoming" }, 840 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 841 { 0, 1, 0, "ipsec_override_persocket_policy" }, 842 { 0, 1, 1, "icmp_accept_clear_messages" }, 843 { 0, 1, 1, "igmp_accept_clear_messages" }, 844 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 845 "ip_ndp_delay_first_probe_time"}, 846 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 847 "ip_ndp_max_unicast_solicit"}, 848 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 849 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 850 { 0, 1, 0, "ip6_forward_src_routed"}, 851 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 852 { 0, 1, 1, "ip6_send_redirects"}, 853 { 0, 1, 0, "ip6_ignore_redirect" }, 854 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 855 856 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 857 858 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 859 860 { 0, 1, 1, "pim_accept_clear_messages" }, 861 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 862 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 863 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 864 { 0, 15, 0, "ip_policy_mask" }, 865 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 866 { 0, 255, 1, "ip_multirt_ttl" }, 867 { 0, 1, 1, "ip_multidata_outbound" }, 868 { 0, 3600000, 300000, "ip_ndp_defense_interval" }, 869 { 0, 999999, 60*60*24, "ip_max_temp_idle" }, 870 { 0, 1000, 1, "ip_max_temp_defend" }, 871 { 0, 1000, 3, "ip_max_defend" }, 872 { 0, 999999, 30, "ip_defend_interval" }, 873 { 0, 3600000, 300000, "ip_dup_recovery" }, 874 { 0, 1, 1, "ip_restrict_interzone_loopback" }, 875 { 0, 1, 1, "ip_lso_outbound" }, 876 { IGMP_V1_ROUTER, IGMP_V3_ROUTER, IGMP_V3_ROUTER, "igmp_max_version" }, 877 { MLD_V1_ROUTER, MLD_V2_ROUTER, MLD_V2_ROUTER, "mld_max_version" }, 878 #ifdef DEBUG 879 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 880 #else 881 { 0, 0, 0, "" }, 882 #endif 883 }; 884 885 /* 886 * Extended NDP table 887 * The addresses for the first two are filled in to be ips_ip_g_forward 888 * and ips_ipv6_forward at init time. 889 */ 890 static ipndp_t lcl_ndp_arr[] = { 891 /* getf setf data name */ 892 #define IPNDP_IP_FORWARDING_OFFSET 0 893 { ip_param_generic_get, ip_forward_set, NULL, 894 "ip_forwarding" }, 895 #define IPNDP_IP6_FORWARDING_OFFSET 1 896 { ip_param_generic_get, ip_forward_set, NULL, 897 "ip6_forwarding" }, 898 { ip_ill_report, NULL, NULL, 899 "ip_ill_status" }, 900 { ip_ipif_report, NULL, NULL, 901 "ip_ipif_status" }, 902 { ip_ire_report, NULL, NULL, 903 "ipv4_ire_status" }, 904 { ip_ire_report_v6, NULL, NULL, 905 "ipv6_ire_status" }, 906 { ip_conn_report, NULL, NULL, 907 "ip_conn_status" }, 908 { nd_get_long, nd_set_long, (caddr_t)&ip_rput_pullups, 909 "ip_rput_pullups" }, 910 { ndp_report, NULL, NULL, 911 "ip_ndp_cache_report" }, 912 { ip_srcid_report, NULL, NULL, 913 "ip_srcid_status" }, 914 { ip_param_generic_get, ip_squeue_profile_set, 915 (caddr_t)&ip_squeue_profile, "ip_squeue_profile" }, 916 { ip_param_generic_get, ip_squeue_bind_set, 917 (caddr_t)&ip_squeue_bind, "ip_squeue_bind" }, 918 { ip_param_generic_get, ip_input_proc_set, 919 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 920 { ip_param_generic_get, ip_int_set, 921 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 922 #define IPNDP_CGTP_FILTER_OFFSET 14 923 { ip_cgtp_filter_get, ip_cgtp_filter_set, NULL, 924 "ip_cgtp_filter" }, 925 { ip_param_generic_get, ip_int_set, 926 (caddr_t)&ip_soft_rings_cnt, "ip_soft_rings_cnt" }, 927 #define IPNDP_IPMP_HOOK_OFFSET 16 928 { ip_param_generic_get, ipmp_hook_emulation_set, NULL, 929 "ipmp_hook_emulation" }, 930 { ip_param_generic_get, ip_int_set, (caddr_t)&ip_debug, 931 "ip_debug" }, 932 }; 933 934 /* 935 * Table of IP ioctls encoding the various properties of the ioctl and 936 * indexed based on the last byte of the ioctl command. Occasionally there 937 * is a clash, and there is more than 1 ioctl with the same last byte. 938 * In such a case 1 ioctl is encoded in the ndx table and the remaining 939 * ioctls are encoded in the misc table. An entry in the ndx table is 940 * retrieved by indexing on the last byte of the ioctl command and comparing 941 * the ioctl command with the value in the ndx table. In the event of a 942 * mismatch the misc table is then searched sequentially for the desired 943 * ioctl command. 944 * 945 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 946 */ 947 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 948 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 949 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 950 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 951 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 952 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 953 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 954 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 955 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 956 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 957 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 958 959 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 960 MISC_CMD, ip_siocaddrt, NULL }, 961 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 962 MISC_CMD, ip_siocdelrt, NULL }, 963 964 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 965 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 966 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 967 IF_CMD, ip_sioctl_get_addr, NULL }, 968 969 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 970 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 971 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 972 IPI_GET_CMD | IPI_REPL, 973 IF_CMD, ip_sioctl_get_dstaddr, NULL }, 974 975 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 976 IPI_PRIV | IPI_WR | IPI_REPL, 977 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 978 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 979 IPI_MODOK | IPI_GET_CMD | IPI_REPL, 980 IF_CMD, ip_sioctl_get_flags, NULL }, 981 982 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 983 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 984 985 /* copyin size cannot be coded for SIOCGIFCONF */ 986 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD, 987 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 988 989 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 990 IF_CMD, ip_sioctl_mtu, NULL }, 991 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 992 IF_CMD, ip_sioctl_get_mtu, NULL }, 993 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 994 IPI_GET_CMD | IPI_REPL, 995 IF_CMD, ip_sioctl_get_brdaddr, NULL }, 996 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 997 IF_CMD, ip_sioctl_brdaddr, NULL }, 998 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 999 IPI_GET_CMD | IPI_REPL, 1000 IF_CMD, ip_sioctl_get_netmask, NULL }, 1001 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1002 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1003 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1004 IPI_GET_CMD | IPI_REPL, 1005 IF_CMD, ip_sioctl_get_metric, NULL }, 1006 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1007 IF_CMD, ip_sioctl_metric, NULL }, 1008 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1009 1010 /* See 166-168 below for extended SIOC*XARP ioctls */ 1011 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV, 1012 ARP_CMD, ip_sioctl_arp, NULL }, 1013 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD | IPI_REPL, 1014 ARP_CMD, ip_sioctl_arp, NULL }, 1015 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV, 1016 ARP_CMD, ip_sioctl_arp, NULL }, 1017 1018 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1019 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1020 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1021 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1022 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1023 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1024 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1025 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1026 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1027 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1028 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1029 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1030 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1031 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1032 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1033 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1034 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1035 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1036 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1037 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1038 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1039 1040 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1041 MISC_CMD, if_unitsel, if_unitsel_restart }, 1042 1043 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1044 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1045 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1046 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1047 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1048 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1049 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1050 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1051 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1052 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1053 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1054 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1055 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1056 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1057 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1058 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1059 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1060 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1061 1062 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1063 IPI_PRIV | IPI_WR | IPI_MODOK, 1064 IF_CMD, ip_sioctl_sifname, NULL }, 1065 1066 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1067 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1068 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1069 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1070 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1071 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1072 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1073 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1074 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1075 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1076 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1077 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1078 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1079 1080 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD | IPI_REPL, 1081 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1082 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1083 IF_CMD, ip_sioctl_get_muxid, NULL }, 1084 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1085 IPI_PRIV | IPI_WR | IPI_REPL, 1086 IF_CMD, ip_sioctl_muxid, NULL }, 1087 1088 /* Both if and lif variants share same func */ 1089 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1090 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1091 /* Both if and lif variants share same func */ 1092 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1093 IPI_PRIV | IPI_WR | IPI_REPL, 1094 IF_CMD, ip_sioctl_slifindex, NULL }, 1095 1096 /* copyin size cannot be coded for SIOCGIFCONF */ 1097 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD, 1098 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1099 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1100 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1101 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1102 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1103 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1104 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1105 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1106 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1107 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1108 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1109 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1110 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1111 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1112 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1113 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1114 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1115 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1116 1117 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1118 IPI_PRIV | IPI_WR | IPI_REPL, 1119 LIF_CMD, ip_sioctl_removeif, 1120 ip_sioctl_removeif_restart }, 1121 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1122 IPI_GET_CMD | IPI_PRIV | IPI_WR | IPI_REPL, 1123 LIF_CMD, ip_sioctl_addif, NULL }, 1124 #define SIOCLIFADDR_NDX 112 1125 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1126 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1127 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1128 IPI_GET_CMD | IPI_REPL, 1129 LIF_CMD, ip_sioctl_get_addr, NULL }, 1130 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1131 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1132 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1133 IPI_GET_CMD | IPI_REPL, 1134 LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1135 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1136 IPI_PRIV | IPI_WR | IPI_REPL, 1137 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1138 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1139 IPI_GET_CMD | IPI_MODOK | IPI_REPL, 1140 LIF_CMD, ip_sioctl_get_flags, NULL }, 1141 1142 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1143 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1144 1145 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1146 ip_sioctl_get_lifconf, NULL }, 1147 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1148 LIF_CMD, ip_sioctl_mtu, NULL }, 1149 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD | IPI_REPL, 1150 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1151 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1152 IPI_GET_CMD | IPI_REPL, 1153 LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1154 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1155 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1156 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1157 IPI_GET_CMD | IPI_REPL, 1158 LIF_CMD, ip_sioctl_get_netmask, NULL }, 1159 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1160 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1161 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1162 IPI_GET_CMD | IPI_REPL, 1163 LIF_CMD, ip_sioctl_get_metric, NULL }, 1164 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1165 LIF_CMD, ip_sioctl_metric, NULL }, 1166 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1167 IPI_PRIV | IPI_WR | IPI_MODOK | IPI_REPL, 1168 LIF_CMD, ip_sioctl_slifname, 1169 ip_sioctl_slifname_restart }, 1170 1171 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD | IPI_REPL, 1172 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1173 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1174 IPI_GET_CMD | IPI_REPL, 1175 LIF_CMD, ip_sioctl_get_muxid, NULL }, 1176 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1177 IPI_PRIV | IPI_WR | IPI_REPL, 1178 LIF_CMD, ip_sioctl_muxid, NULL }, 1179 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1180 IPI_GET_CMD | IPI_REPL, 1181 LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1182 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1183 IPI_PRIV | IPI_WR | IPI_REPL, 1184 LIF_CMD, ip_sioctl_slifindex, 0 }, 1185 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1186 LIF_CMD, ip_sioctl_token, NULL }, 1187 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1188 IPI_GET_CMD | IPI_REPL, 1189 LIF_CMD, ip_sioctl_get_token, NULL }, 1190 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1191 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1192 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1193 IPI_GET_CMD | IPI_REPL, 1194 LIF_CMD, ip_sioctl_get_subnet, NULL }, 1195 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1196 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1197 1198 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1199 IPI_GET_CMD | IPI_REPL, 1200 LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1201 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1202 LIF_CMD, ip_siocdelndp_v6, NULL }, 1203 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1204 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1205 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1206 LIF_CMD, ip_siocsetndp_v6, NULL }, 1207 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1208 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1209 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1210 MISC_CMD, ip_sioctl_tonlink, NULL }, 1211 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1212 MISC_CMD, ip_sioctl_tmysite, NULL }, 1213 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), IPI_REPL, 1214 TUN_CMD, ip_sioctl_tunparam, NULL }, 1215 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1216 IPI_PRIV | IPI_WR, 1217 TUN_CMD, ip_sioctl_tunparam, NULL }, 1218 1219 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1220 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1221 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1222 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1223 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1224 1225 /* 153 */ { SIOCLIFFAILOVER, sizeof (struct lifreq), 1226 IPI_PRIV | IPI_WR | IPI_REPL, 1227 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1228 /* 154 */ { SIOCLIFFAILBACK, sizeof (struct lifreq), 1229 IPI_PRIV | IPI_WR | IPI_REPL, 1230 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1231 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1232 IPI_PRIV | IPI_WR, 1233 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1234 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1235 IPI_GET_CMD | IPI_REPL, 1236 LIF_CMD, ip_sioctl_get_groupname, NULL }, 1237 /* 157 */ { SIOCGLIFOINDEX, sizeof (struct lifreq), 1238 IPI_GET_CMD | IPI_REPL, 1239 LIF_CMD, ip_sioctl_get_oindex, NULL }, 1240 1241 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1242 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1243 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1244 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1245 1246 /* 161 */ { SIOCSLIFOINDEX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1247 LIF_CMD, ip_sioctl_slifoindex, NULL }, 1248 1249 /* These are handled in ip_sioctl_copyin_setup itself */ 1250 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1251 MISC_CMD, NULL, NULL }, 1252 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1253 MISC_CMD, NULL, NULL }, 1254 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1255 1256 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1257 ip_sioctl_get_lifconf, NULL }, 1258 1259 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV, 1260 XARP_CMD, ip_sioctl_arp, NULL }, 1261 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD | IPI_REPL, 1262 XARP_CMD, ip_sioctl_arp, NULL }, 1263 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV, 1264 XARP_CMD, ip_sioctl_arp, NULL }, 1265 1266 /* SIOCPOPSOCKFS is not handled by IP */ 1267 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1268 1269 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1270 IPI_GET_CMD | IPI_REPL, 1271 LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1272 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1273 IPI_PRIV | IPI_WR | IPI_REPL, 1274 LIF_CMD, ip_sioctl_slifzone, 1275 ip_sioctl_slifzone_restart }, 1276 /* 172-174 are SCTP ioctls and not handled by IP */ 1277 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1278 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1279 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1280 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1281 IPI_GET_CMD, LIF_CMD, 1282 ip_sioctl_get_lifusesrc, 0 }, 1283 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1284 IPI_PRIV | IPI_WR, 1285 LIF_CMD, ip_sioctl_slifusesrc, 1286 NULL }, 1287 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1288 ip_sioctl_get_lifsrcof, NULL }, 1289 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1290 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1291 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1292 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1293 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1294 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1295 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1296 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1297 /* 182 */ { SIOCSIPMPFAILBACK, sizeof (int), IPI_PRIV, MISC_CMD, 1298 ip_sioctl_set_ipmpfailback, NULL }, 1299 /* SIOCSENABLESDP is handled by SDP */ 1300 /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL }, 1301 }; 1302 1303 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1304 1305 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1306 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1307 IPI_GET_CMD | IPI_REPL, TUN_CMD, ip_sioctl_tunparam, NULL }, 1308 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1309 TUN_CMD, ip_sioctl_tunparam, NULL }, 1310 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1311 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1312 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1313 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1314 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1315 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1316 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1317 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_REPL | IPI_GET_CMD, 1318 MISC_CMD, mrt_ioctl}, 1319 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_REPL | IPI_GET_CMD, 1320 MISC_CMD, mrt_ioctl}, 1321 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_REPL | IPI_GET_CMD, 1322 MISC_CMD, mrt_ioctl} 1323 }; 1324 1325 int ip_misc_ioctl_count = 1326 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1327 1328 int conn_drain_nthreads; /* Number of drainers reqd. */ 1329 /* Settable in /etc/system */ 1330 /* Defined in ip_ire.c */ 1331 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1332 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1333 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1334 1335 static nv_t ire_nv_arr[] = { 1336 { IRE_BROADCAST, "BROADCAST" }, 1337 { IRE_LOCAL, "LOCAL" }, 1338 { IRE_LOOPBACK, "LOOPBACK" }, 1339 { IRE_CACHE, "CACHE" }, 1340 { IRE_DEFAULT, "DEFAULT" }, 1341 { IRE_PREFIX, "PREFIX" }, 1342 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1343 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1344 { IRE_HOST, "HOST" }, 1345 { 0 } 1346 }; 1347 1348 nv_t *ire_nv_tbl = ire_nv_arr; 1349 1350 /* Defined in ip_netinfo.c */ 1351 extern ddi_taskq_t *eventq_queue_nic; 1352 1353 /* Simple ICMP IP Header Template */ 1354 static ipha_t icmp_ipha = { 1355 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1356 }; 1357 1358 struct module_info ip_mod_info = { 1359 IP_MOD_ID, IP_MOD_NAME, 1, INFPSZ, 65536, 1024 1360 }; 1361 1362 /* 1363 * Duplicate static symbols within a module confuses mdb; so we avoid the 1364 * problem by making the symbols here distinct from those in udp.c. 1365 */ 1366 1367 /* 1368 * Entry points for IP as a device and as a module. 1369 * FIXME: down the road we might want a separate module and driver qinit. 1370 * We have separate open functions for the /dev/ip and /dev/ip6 devices. 1371 */ 1372 static struct qinit iprinitv4 = { 1373 (pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL, 1374 &ip_mod_info 1375 }; 1376 1377 struct qinit iprinitv6 = { 1378 (pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL, 1379 &ip_mod_info 1380 }; 1381 1382 static struct qinit ipwinitv4 = { 1383 (pfi_t)ip_wput, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1384 &ip_mod_info 1385 }; 1386 1387 struct qinit ipwinitv6 = { 1388 (pfi_t)ip_wput_v6, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1389 &ip_mod_info 1390 }; 1391 1392 static struct qinit iplrinit = { 1393 (pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL, 1394 &ip_mod_info 1395 }; 1396 1397 static struct qinit iplwinit = { 1398 (pfi_t)ip_lwput, NULL, NULL, NULL, NULL, 1399 &ip_mod_info 1400 }; 1401 1402 /* For AF_INET aka /dev/ip */ 1403 struct streamtab ipinfov4 = { 1404 &iprinitv4, &ipwinitv4, &iplrinit, &iplwinit 1405 }; 1406 1407 /* For AF_INET6 aka /dev/ip6 */ 1408 struct streamtab ipinfov6 = { 1409 &iprinitv6, &ipwinitv6, &iplrinit, &iplwinit 1410 }; 1411 1412 #ifdef DEBUG 1413 static boolean_t skip_sctp_cksum = B_FALSE; 1414 #endif 1415 1416 /* 1417 * Prepend the zoneid using an ipsec_out_t for later use by functions like 1418 * ip_rput_v6(), ip_output(), etc. If the message 1419 * block already has a M_CTL at the front of it, then simply set the zoneid 1420 * appropriately. 1421 */ 1422 mblk_t * 1423 ip_prepend_zoneid(mblk_t *mp, zoneid_t zoneid, ip_stack_t *ipst) 1424 { 1425 mblk_t *first_mp; 1426 ipsec_out_t *io; 1427 1428 ASSERT(zoneid != ALL_ZONES); 1429 if (mp->b_datap->db_type == M_CTL) { 1430 io = (ipsec_out_t *)mp->b_rptr; 1431 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1432 io->ipsec_out_zoneid = zoneid; 1433 return (mp); 1434 } 1435 1436 first_mp = ipsec_alloc_ipsec_out(ipst->ips_netstack); 1437 if (first_mp == NULL) 1438 return (NULL); 1439 io = (ipsec_out_t *)first_mp->b_rptr; 1440 /* This is not a secure packet */ 1441 io->ipsec_out_secure = B_FALSE; 1442 io->ipsec_out_zoneid = zoneid; 1443 first_mp->b_cont = mp; 1444 return (first_mp); 1445 } 1446 1447 /* 1448 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1449 */ 1450 mblk_t * 1451 ip_copymsg(mblk_t *mp) 1452 { 1453 mblk_t *nmp; 1454 ipsec_info_t *in; 1455 1456 if (mp->b_datap->db_type != M_CTL) 1457 return (copymsg(mp)); 1458 1459 in = (ipsec_info_t *)mp->b_rptr; 1460 1461 /* 1462 * Note that M_CTL is also used for delivering ICMP error messages 1463 * upstream to transport layers. 1464 */ 1465 if (in->ipsec_info_type != IPSEC_OUT && 1466 in->ipsec_info_type != IPSEC_IN) 1467 return (copymsg(mp)); 1468 1469 nmp = copymsg(mp->b_cont); 1470 1471 if (in->ipsec_info_type == IPSEC_OUT) { 1472 return (ipsec_out_tag(mp, nmp, 1473 ((ipsec_out_t *)in)->ipsec_out_ns)); 1474 } else { 1475 return (ipsec_in_tag(mp, nmp, 1476 ((ipsec_in_t *)in)->ipsec_in_ns)); 1477 } 1478 } 1479 1480 /* Generate an ICMP fragmentation needed message. */ 1481 static void 1482 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu, zoneid_t zoneid, 1483 ip_stack_t *ipst) 1484 { 1485 icmph_t icmph; 1486 mblk_t *first_mp; 1487 boolean_t mctl_present; 1488 1489 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1490 1491 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 1492 if (mctl_present) 1493 freeb(first_mp); 1494 return; 1495 } 1496 1497 bzero(&icmph, sizeof (icmph_t)); 1498 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1499 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1500 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1501 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1502 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1503 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 1504 ipst); 1505 } 1506 1507 /* 1508 * icmp_inbound deals with ICMP messages in the following ways. 1509 * 1510 * 1) It needs to send a reply back and possibly delivering it 1511 * to the "interested" upper clients. 1512 * 2) It needs to send it to the upper clients only. 1513 * 3) It needs to change some values in IP only. 1514 * 4) It needs to change some values in IP and upper layers e.g TCP. 1515 * 1516 * We need to accomodate icmp messages coming in clear until we get 1517 * everything secure from the wire. If icmp_accept_clear_messages 1518 * is zero we check with the global policy and act accordingly. If 1519 * it is non-zero, we accept the message without any checks. But 1520 * *this does not mean* that this will be delivered to the upper 1521 * clients. By accepting we might send replies back, change our MTU 1522 * value etc. but delivery to the ULP/clients depends on their policy 1523 * dispositions. 1524 * 1525 * We handle the above 4 cases in the context of IPsec in the 1526 * following way : 1527 * 1528 * 1) Send the reply back in the same way as the request came in. 1529 * If it came in encrypted, it goes out encrypted. If it came in 1530 * clear, it goes out in clear. Thus, this will prevent chosen 1531 * plain text attack. 1532 * 2) The client may or may not expect things to come in secure. 1533 * If it comes in secure, the policy constraints are checked 1534 * before delivering it to the upper layers. If it comes in 1535 * clear, ipsec_inbound_accept_clear will decide whether to 1536 * accept this in clear or not. In both the cases, if the returned 1537 * message (IP header + 8 bytes) that caused the icmp message has 1538 * AH/ESP headers, it is sent up to AH/ESP for validation before 1539 * sending up. If there are only 8 bytes of returned message, then 1540 * upper client will not be notified. 1541 * 3) Check with global policy to see whether it matches the constaints. 1542 * But this will be done only if icmp_accept_messages_in_clear is 1543 * zero. 1544 * 4) If we need to change both in IP and ULP, then the decision taken 1545 * while affecting the values in IP and while delivering up to TCP 1546 * should be the same. 1547 * 1548 * There are two cases. 1549 * 1550 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1551 * failed), we will not deliver it to the ULP, even though they 1552 * are *willing* to accept in *clear*. This is fine as our global 1553 * disposition to icmp messages asks us reject the datagram. 1554 * 1555 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1556 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1557 * to deliver it to ULP (policy failed), it can lead to 1558 * consistency problems. The cases known at this time are 1559 * ICMP_DESTINATION_UNREACHABLE messages with following code 1560 * values : 1561 * 1562 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1563 * and Upper layer rejects. Then the communication will 1564 * come to a stop. This is solved by making similar decisions 1565 * at both levels. Currently, when we are unable to deliver 1566 * to the Upper Layer (due to policy failures) while IP has 1567 * adjusted ire_max_frag, the next outbound datagram would 1568 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1569 * will be with the right level of protection. Thus the right 1570 * value will be communicated even if we are not able to 1571 * communicate when we get from the wire initially. But this 1572 * assumes there would be at least one outbound datagram after 1573 * IP has adjusted its ire_max_frag value. To make things 1574 * simpler, we accept in clear after the validation of 1575 * AH/ESP headers. 1576 * 1577 * - Other ICMP ERRORS : We may not be able to deliver it to the 1578 * upper layer depending on the level of protection the upper 1579 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1580 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1581 * should be accepted in clear when the Upper layer expects secure. 1582 * Thus the communication may get aborted by some bad ICMP 1583 * packets. 1584 * 1585 * IPQoS Notes: 1586 * The only instance when a packet is sent for processing is when there 1587 * isn't an ICMP client and if we are interested in it. 1588 * If there is a client, IPPF processing will take place in the 1589 * ip_fanout_proto routine. 1590 * 1591 * Zones notes: 1592 * The packet is only processed in the context of the specified zone: typically 1593 * only this zone will reply to an echo request, and only interested clients in 1594 * this zone will receive a copy of the packet. This means that the caller must 1595 * call icmp_inbound() for each relevant zone. 1596 */ 1597 static void 1598 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1599 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1600 ill_t *recv_ill, zoneid_t zoneid) 1601 { 1602 icmph_t *icmph; 1603 ipha_t *ipha; 1604 int iph_hdr_length; 1605 int hdr_length; 1606 boolean_t interested; 1607 uint32_t ts; 1608 uchar_t *wptr; 1609 ipif_t *ipif; 1610 mblk_t *first_mp; 1611 ipsec_in_t *ii; 1612 ire_t *src_ire; 1613 boolean_t onlink; 1614 timestruc_t now; 1615 uint32_t ill_index; 1616 ip_stack_t *ipst; 1617 1618 ASSERT(ill != NULL); 1619 ipst = ill->ill_ipst; 1620 1621 first_mp = mp; 1622 if (mctl_present) { 1623 mp = first_mp->b_cont; 1624 ASSERT(mp != NULL); 1625 } 1626 1627 ipha = (ipha_t *)mp->b_rptr; 1628 if (ipst->ips_icmp_accept_clear_messages == 0) { 1629 first_mp = ipsec_check_global_policy(first_mp, NULL, 1630 ipha, NULL, mctl_present, ipst->ips_netstack); 1631 if (first_mp == NULL) 1632 return; 1633 } 1634 1635 /* 1636 * On a labeled system, we have to check whether the zone itself is 1637 * permitted to receive raw traffic. 1638 */ 1639 if (is_system_labeled()) { 1640 if (zoneid == ALL_ZONES) 1641 zoneid = tsol_packet_to_zoneid(mp); 1642 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1643 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1644 zoneid)); 1645 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1646 freemsg(first_mp); 1647 return; 1648 } 1649 } 1650 1651 /* 1652 * We have accepted the ICMP message. It means that we will 1653 * respond to the packet if needed. It may not be delivered 1654 * to the upper client depending on the policy constraints 1655 * and the disposition in ipsec_inbound_accept_clear. 1656 */ 1657 1658 ASSERT(ill != NULL); 1659 1660 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1661 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1662 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1663 /* Last chance to get real. */ 1664 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1665 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1666 freemsg(first_mp); 1667 return; 1668 } 1669 /* Refresh iph following the pullup. */ 1670 ipha = (ipha_t *)mp->b_rptr; 1671 } 1672 /* ICMP header checksum, including checksum field, should be zero. */ 1673 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1674 IP_CSUM(mp, iph_hdr_length, 0)) { 1675 BUMP_MIB(&ipst->ips_icmp_mib, icmpInCksumErrs); 1676 freemsg(first_mp); 1677 return; 1678 } 1679 /* The IP header will always be a multiple of four bytes */ 1680 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1681 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1682 icmph->icmph_code)); 1683 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1684 /* We will set "interested" to "true" if we want a copy */ 1685 interested = B_FALSE; 1686 switch (icmph->icmph_type) { 1687 case ICMP_ECHO_REPLY: 1688 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1689 break; 1690 case ICMP_DEST_UNREACHABLE: 1691 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1692 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1693 interested = B_TRUE; /* Pass up to transport */ 1694 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1695 break; 1696 case ICMP_SOURCE_QUENCH: 1697 interested = B_TRUE; /* Pass up to transport */ 1698 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1699 break; 1700 case ICMP_REDIRECT: 1701 if (!ipst->ips_ip_ignore_redirect) 1702 interested = B_TRUE; 1703 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1704 break; 1705 case ICMP_ECHO_REQUEST: 1706 /* 1707 * Whether to respond to echo requests that come in as IP 1708 * broadcasts or as IP multicast is subject to debate 1709 * (what isn't?). We aim to please, you pick it. 1710 * Default is do it. 1711 */ 1712 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1713 /* unicast: always respond */ 1714 interested = B_TRUE; 1715 } else if (CLASSD(ipha->ipha_dst)) { 1716 /* multicast: respond based on tunable */ 1717 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1718 } else if (broadcast) { 1719 /* broadcast: respond based on tunable */ 1720 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1721 } 1722 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1723 break; 1724 case ICMP_ROUTER_ADVERTISEMENT: 1725 case ICMP_ROUTER_SOLICITATION: 1726 break; 1727 case ICMP_TIME_EXCEEDED: 1728 interested = B_TRUE; /* Pass up to transport */ 1729 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1730 break; 1731 case ICMP_PARAM_PROBLEM: 1732 interested = B_TRUE; /* Pass up to transport */ 1733 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1734 break; 1735 case ICMP_TIME_STAMP_REQUEST: 1736 /* Response to Time Stamp Requests is local policy. */ 1737 if (ipst->ips_ip_g_resp_to_timestamp && 1738 /* So is whether to respond if it was an IP broadcast. */ 1739 (!broadcast || ipst->ips_ip_g_resp_to_timestamp_bcast)) { 1740 int tstamp_len = 3 * sizeof (uint32_t); 1741 1742 if (wptr + tstamp_len > mp->b_wptr) { 1743 if (!pullupmsg(mp, wptr + tstamp_len - 1744 mp->b_rptr)) { 1745 BUMP_MIB(ill->ill_ip_mib, 1746 ipIfStatsInDiscards); 1747 freemsg(first_mp); 1748 return; 1749 } 1750 /* Refresh ipha following the pullup. */ 1751 ipha = (ipha_t *)mp->b_rptr; 1752 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1753 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1754 } 1755 interested = B_TRUE; 1756 } 1757 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1758 break; 1759 case ICMP_TIME_STAMP_REPLY: 1760 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1761 break; 1762 case ICMP_INFO_REQUEST: 1763 /* Per RFC 1122 3.2.2.7, ignore this. */ 1764 case ICMP_INFO_REPLY: 1765 break; 1766 case ICMP_ADDRESS_MASK_REQUEST: 1767 if ((ipst->ips_ip_respond_to_address_mask_broadcast || 1768 !broadcast) && 1769 /* TODO m_pullup of complete header? */ 1770 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) { 1771 interested = B_TRUE; 1772 } 1773 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1774 break; 1775 case ICMP_ADDRESS_MASK_REPLY: 1776 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1777 break; 1778 default: 1779 interested = B_TRUE; /* Pass up to transport */ 1780 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1781 break; 1782 } 1783 /* See if there is an ICMP client. */ 1784 if (ipst->ips_ipcl_proto_fanout[IPPROTO_ICMP].connf_head != NULL) { 1785 /* If there is an ICMP client and we want one too, copy it. */ 1786 mblk_t *first_mp1; 1787 1788 if (!interested) { 1789 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1790 ip_policy, recv_ill, zoneid); 1791 return; 1792 } 1793 first_mp1 = ip_copymsg(first_mp); 1794 if (first_mp1 != NULL) { 1795 ip_fanout_proto(q, first_mp1, ill, ipha, 1796 0, mctl_present, ip_policy, recv_ill, zoneid); 1797 } 1798 } else if (!interested) { 1799 freemsg(first_mp); 1800 return; 1801 } else { 1802 /* 1803 * Initiate policy processing for this packet if ip_policy 1804 * is true. 1805 */ 1806 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 1807 ill_index = ill->ill_phyint->phyint_ifindex; 1808 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1809 if (mp == NULL) { 1810 if (mctl_present) { 1811 freeb(first_mp); 1812 } 1813 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1814 return; 1815 } 1816 } 1817 } 1818 /* We want to do something with it. */ 1819 /* Check db_ref to make sure we can modify the packet. */ 1820 if (mp->b_datap->db_ref > 1) { 1821 mblk_t *first_mp1; 1822 1823 first_mp1 = ip_copymsg(first_mp); 1824 freemsg(first_mp); 1825 if (!first_mp1) { 1826 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1827 return; 1828 } 1829 first_mp = first_mp1; 1830 if (mctl_present) { 1831 mp = first_mp->b_cont; 1832 ASSERT(mp != NULL); 1833 } else { 1834 mp = first_mp; 1835 } 1836 ipha = (ipha_t *)mp->b_rptr; 1837 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1838 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1839 } 1840 switch (icmph->icmph_type) { 1841 case ICMP_ADDRESS_MASK_REQUEST: 1842 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1843 if (ipif == NULL) { 1844 freemsg(first_mp); 1845 return; 1846 } 1847 /* 1848 * outging interface must be IPv4 1849 */ 1850 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1851 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1852 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1853 ipif_refrele(ipif); 1854 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1855 break; 1856 case ICMP_ECHO_REQUEST: 1857 icmph->icmph_type = ICMP_ECHO_REPLY; 1858 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1859 break; 1860 case ICMP_TIME_STAMP_REQUEST: { 1861 uint32_t *tsp; 1862 1863 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1864 tsp = (uint32_t *)wptr; 1865 tsp++; /* Skip past 'originate time' */ 1866 /* Compute # of milliseconds since midnight */ 1867 gethrestime(&now); 1868 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1869 now.tv_nsec / (NANOSEC / MILLISEC); 1870 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1871 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1872 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1873 break; 1874 } 1875 default: 1876 ipha = (ipha_t *)&icmph[1]; 1877 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1878 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1879 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1880 freemsg(first_mp); 1881 return; 1882 } 1883 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1884 ipha = (ipha_t *)&icmph[1]; 1885 } 1886 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1887 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1888 freemsg(first_mp); 1889 return; 1890 } 1891 hdr_length = IPH_HDR_LENGTH(ipha); 1892 if (hdr_length < sizeof (ipha_t)) { 1893 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1894 freemsg(first_mp); 1895 return; 1896 } 1897 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1898 if (!pullupmsg(mp, 1899 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1900 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1901 freemsg(first_mp); 1902 return; 1903 } 1904 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1905 ipha = (ipha_t *)&icmph[1]; 1906 } 1907 switch (icmph->icmph_type) { 1908 case ICMP_REDIRECT: 1909 /* 1910 * As there is no upper client to deliver, we don't 1911 * need the first_mp any more. 1912 */ 1913 if (mctl_present) { 1914 freeb(first_mp); 1915 } 1916 icmp_redirect(ill, mp); 1917 return; 1918 case ICMP_DEST_UNREACHABLE: 1919 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1920 if (!icmp_inbound_too_big(icmph, ipha, ill, 1921 zoneid, mp, iph_hdr_length, ipst)) { 1922 freemsg(first_mp); 1923 return; 1924 } 1925 /* 1926 * icmp_inbound_too_big() may alter mp. 1927 * Resynch ipha and icmph accordingly. 1928 */ 1929 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1930 ipha = (ipha_t *)&icmph[1]; 1931 } 1932 /* FALLTHRU */ 1933 default : 1934 /* 1935 * IPQoS notes: Since we have already done IPQoS 1936 * processing we don't want to do it again in 1937 * the fanout routines called by 1938 * icmp_inbound_error_fanout, hence the last 1939 * argument, ip_policy, is B_FALSE. 1940 */ 1941 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 1942 ipha, iph_hdr_length, hdr_length, mctl_present, 1943 B_FALSE, recv_ill, zoneid); 1944 } 1945 return; 1946 } 1947 /* Send out an ICMP packet */ 1948 icmph->icmph_checksum = 0; 1949 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 1950 if (broadcast || CLASSD(ipha->ipha_dst)) { 1951 ipif_t *ipif_chosen; 1952 /* 1953 * Make it look like it was directed to us, so we don't look 1954 * like a fool with a broadcast or multicast source address. 1955 */ 1956 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1957 /* 1958 * Make sure that we haven't grabbed an interface that's DOWN. 1959 */ 1960 if (ipif != NULL) { 1961 ipif_chosen = ipif_select_source(ipif->ipif_ill, 1962 ipha->ipha_src, zoneid); 1963 if (ipif_chosen != NULL) { 1964 ipif_refrele(ipif); 1965 ipif = ipif_chosen; 1966 } 1967 } 1968 if (ipif == NULL) { 1969 ip0dbg(("icmp_inbound: " 1970 "No source for broadcast/multicast:\n" 1971 "\tsrc 0x%x dst 0x%x ill %p " 1972 "ipif_lcl_addr 0x%x\n", 1973 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 1974 (void *)ill, 1975 ill->ill_ipif->ipif_lcl_addr)); 1976 freemsg(first_mp); 1977 return; 1978 } 1979 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1980 ipha->ipha_dst = ipif->ipif_src_addr; 1981 ipif_refrele(ipif); 1982 } 1983 /* Reset time to live. */ 1984 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 1985 { 1986 /* Swap source and destination addresses */ 1987 ipaddr_t tmp; 1988 1989 tmp = ipha->ipha_src; 1990 ipha->ipha_src = ipha->ipha_dst; 1991 ipha->ipha_dst = tmp; 1992 } 1993 ipha->ipha_ident = 0; 1994 if (!IS_SIMPLE_IPH(ipha)) 1995 icmp_options_update(ipha); 1996 1997 /* 1998 * ICMP echo replies should go out on the same interface 1999 * the request came on as probes used by in.mpathd for detecting 2000 * NIC failures are ECHO packets. We turn-off load spreading 2001 * by setting ipsec_in_attach_if to B_TRUE, which is copied 2002 * to ipsec_out_attach_if by ipsec_in_to_out called later in this 2003 * function. This is in turn handled by ip_wput and ip_newroute 2004 * to make sure that the packet goes out on the interface it came 2005 * in on. If we don't turnoff load spreading, the packets might get 2006 * dropped if there are no non-FAILED/INACTIVE interfaces for it 2007 * to go out and in.mpathd would wrongly detect a failure or 2008 * mis-detect a NIC failure for link failure. As load spreading 2009 * can happen only if ill_group is not NULL, we do only for 2010 * that case and this does not affect the normal case. 2011 * 2012 * We turn off load spreading only on echo packets that came from 2013 * on-link hosts. If the interface route has been deleted, this will 2014 * not be enforced as we can't do much. For off-link hosts, as the 2015 * default routes in IPv4 does not typically have an ire_ipif 2016 * pointer, we can't force MATCH_IRE_ILL in ip_wput/ip_newroute. 2017 * Moreover, expecting a default route through this interface may 2018 * not be correct. We use ipha_dst because of the swap above. 2019 */ 2020 onlink = B_FALSE; 2021 if (icmph->icmph_type == ICMP_ECHO_REPLY && ill->ill_group != NULL) { 2022 /* 2023 * First, we need to make sure that it is not one of our 2024 * local addresses. If we set onlink when it is one of 2025 * our local addresses, we will end up creating IRE_CACHES 2026 * for one of our local addresses. Then, we will never 2027 * accept packets for them afterwards. 2028 */ 2029 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_LOCAL, 2030 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2031 if (src_ire == NULL) { 2032 ipif = ipif_get_next_ipif(NULL, ill); 2033 if (ipif == NULL) { 2034 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2035 freemsg(mp); 2036 return; 2037 } 2038 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 2039 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 2040 NULL, MATCH_IRE_ILL | MATCH_IRE_TYPE, ipst); 2041 ipif_refrele(ipif); 2042 if (src_ire != NULL) { 2043 onlink = B_TRUE; 2044 ire_refrele(src_ire); 2045 } 2046 } else { 2047 ire_refrele(src_ire); 2048 } 2049 } 2050 if (!mctl_present) { 2051 /* 2052 * This packet should go out the same way as it 2053 * came in i.e in clear. To make sure that global 2054 * policy will not be applied to this in ip_wput_ire, 2055 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2056 */ 2057 ASSERT(first_mp == mp); 2058 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2059 if (first_mp == NULL) { 2060 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2061 freemsg(mp); 2062 return; 2063 } 2064 ii = (ipsec_in_t *)first_mp->b_rptr; 2065 2066 /* This is not a secure packet */ 2067 ii->ipsec_in_secure = B_FALSE; 2068 if (onlink) { 2069 ii->ipsec_in_attach_if = B_TRUE; 2070 ii->ipsec_in_ill_index = 2071 ill->ill_phyint->phyint_ifindex; 2072 ii->ipsec_in_rill_index = 2073 recv_ill->ill_phyint->phyint_ifindex; 2074 } 2075 first_mp->b_cont = mp; 2076 } else if (onlink) { 2077 ii = (ipsec_in_t *)first_mp->b_rptr; 2078 ii->ipsec_in_attach_if = B_TRUE; 2079 ii->ipsec_in_ill_index = ill->ill_phyint->phyint_ifindex; 2080 ii->ipsec_in_rill_index = recv_ill->ill_phyint->phyint_ifindex; 2081 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2082 } else { 2083 ii = (ipsec_in_t *)first_mp->b_rptr; 2084 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2085 } 2086 ii->ipsec_in_zoneid = zoneid; 2087 ASSERT(zoneid != ALL_ZONES); 2088 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2089 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2090 return; 2091 } 2092 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2093 put(WR(q), first_mp); 2094 } 2095 2096 static ipaddr_t 2097 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2098 { 2099 conn_t *connp; 2100 connf_t *connfp; 2101 ipaddr_t nexthop_addr = INADDR_ANY; 2102 int hdr_length = IPH_HDR_LENGTH(ipha); 2103 uint16_t *up; 2104 uint32_t ports; 2105 ip_stack_t *ipst = ill->ill_ipst; 2106 2107 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2108 switch (ipha->ipha_protocol) { 2109 case IPPROTO_TCP: 2110 { 2111 tcph_t *tcph; 2112 2113 /* do a reverse lookup */ 2114 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2115 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2116 TCPS_LISTEN, ipst); 2117 break; 2118 } 2119 case IPPROTO_UDP: 2120 { 2121 uint32_t dstport, srcport; 2122 2123 ((uint16_t *)&ports)[0] = up[1]; 2124 ((uint16_t *)&ports)[1] = up[0]; 2125 2126 /* Extract ports in net byte order */ 2127 dstport = htons(ntohl(ports) & 0xFFFF); 2128 srcport = htons(ntohl(ports) >> 16); 2129 2130 connfp = &ipst->ips_ipcl_udp_fanout[ 2131 IPCL_UDP_HASH(dstport, ipst)]; 2132 mutex_enter(&connfp->connf_lock); 2133 connp = connfp->connf_head; 2134 2135 /* do a reverse lookup */ 2136 while ((connp != NULL) && 2137 (!IPCL_UDP_MATCH(connp, dstport, 2138 ipha->ipha_src, srcport, ipha->ipha_dst) || 2139 !IPCL_ZONE_MATCH(connp, zoneid))) { 2140 connp = connp->conn_next; 2141 } 2142 if (connp != NULL) 2143 CONN_INC_REF(connp); 2144 mutex_exit(&connfp->connf_lock); 2145 break; 2146 } 2147 case IPPROTO_SCTP: 2148 { 2149 in6_addr_t map_src, map_dst; 2150 2151 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2152 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2153 ((uint16_t *)&ports)[0] = up[1]; 2154 ((uint16_t *)&ports)[1] = up[0]; 2155 2156 connp = sctp_find_conn(&map_src, &map_dst, ports, 2157 zoneid, ipst->ips_netstack->netstack_sctp); 2158 if (connp == NULL) { 2159 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2160 zoneid, ports, ipha, ipst); 2161 } else { 2162 CONN_INC_REF(connp); 2163 SCTP_REFRELE(CONN2SCTP(connp)); 2164 } 2165 break; 2166 } 2167 default: 2168 { 2169 ipha_t ripha; 2170 2171 ripha.ipha_src = ipha->ipha_dst; 2172 ripha.ipha_dst = ipha->ipha_src; 2173 ripha.ipha_protocol = ipha->ipha_protocol; 2174 2175 connfp = &ipst->ips_ipcl_proto_fanout[ 2176 ipha->ipha_protocol]; 2177 mutex_enter(&connfp->connf_lock); 2178 connp = connfp->connf_head; 2179 for (connp = connfp->connf_head; connp != NULL; 2180 connp = connp->conn_next) { 2181 if (IPCL_PROTO_MATCH(connp, 2182 ipha->ipha_protocol, &ripha, ill, 2183 0, zoneid)) { 2184 CONN_INC_REF(connp); 2185 break; 2186 } 2187 } 2188 mutex_exit(&connfp->connf_lock); 2189 } 2190 } 2191 if (connp != NULL) { 2192 if (connp->conn_nexthop_set) 2193 nexthop_addr = connp->conn_nexthop_v4; 2194 CONN_DEC_REF(connp); 2195 } 2196 return (nexthop_addr); 2197 } 2198 2199 /* Table from RFC 1191 */ 2200 static int icmp_frag_size_table[] = 2201 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2202 2203 /* 2204 * Process received ICMP Packet too big. 2205 * After updating any IRE it does the fanout to any matching transport streams. 2206 * Assumes the message has been pulled up till the IP header that caused 2207 * the error. 2208 * 2209 * Returns B_FALSE on failure and B_TRUE on success. 2210 */ 2211 static boolean_t 2212 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2213 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length, 2214 ip_stack_t *ipst) 2215 { 2216 ire_t *ire, *first_ire; 2217 int mtu; 2218 int hdr_length; 2219 ipaddr_t nexthop_addr; 2220 2221 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2222 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2223 ASSERT(ill != NULL); 2224 2225 hdr_length = IPH_HDR_LENGTH(ipha); 2226 2227 /* Drop if the original packet contained a source route */ 2228 if (ip_source_route_included(ipha)) { 2229 return (B_FALSE); 2230 } 2231 /* 2232 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport 2233 * header. 2234 */ 2235 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2236 mp->b_wptr) { 2237 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2238 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2239 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2240 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2241 return (B_FALSE); 2242 } 2243 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2244 ipha = (ipha_t *)&icmph[1]; 2245 } 2246 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2247 if (nexthop_addr != INADDR_ANY) { 2248 /* nexthop set */ 2249 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2250 nexthop_addr, 0, NULL, ALL_ZONES, MBLK_GETLABEL(mp), 2251 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, ipst); 2252 } else { 2253 /* nexthop not set */ 2254 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2255 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2256 } 2257 2258 if (!first_ire) { 2259 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2260 ntohl(ipha->ipha_dst))); 2261 return (B_FALSE); 2262 } 2263 /* Check for MTU discovery advice as described in RFC 1191 */ 2264 mtu = ntohs(icmph->icmph_du_mtu); 2265 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2266 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2267 ire = ire->ire_next) { 2268 /* 2269 * Look for the connection to which this ICMP message is 2270 * directed. If it has the IP_NEXTHOP option set, then the 2271 * search is limited to IREs with the MATCH_IRE_PRIVATE 2272 * option. Else the search is limited to regular IREs. 2273 */ 2274 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2275 (nexthop_addr != ire->ire_gateway_addr)) || 2276 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2277 (nexthop_addr != INADDR_ANY))) 2278 continue; 2279 2280 mutex_enter(&ire->ire_lock); 2281 if (icmph->icmph_du_zero == 0 && mtu > 68) { 2282 /* Reduce the IRE max frag value as advised. */ 2283 ip1dbg(("Received mtu from router: %d (was %d)\n", 2284 mtu, ire->ire_max_frag)); 2285 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2286 } else { 2287 uint32_t length; 2288 int i; 2289 2290 /* 2291 * Use the table from RFC 1191 to figure out 2292 * the next "plateau" based on the length in 2293 * the original IP packet. 2294 */ 2295 length = ntohs(ipha->ipha_length); 2296 if (ire->ire_max_frag <= length && 2297 ire->ire_max_frag >= length - hdr_length) { 2298 /* 2299 * Handle broken BSD 4.2 systems that 2300 * return the wrong iph_length in ICMP 2301 * errors. 2302 */ 2303 ip1dbg(("Wrong mtu: sent %d, ire %d\n", 2304 length, ire->ire_max_frag)); 2305 length -= hdr_length; 2306 } 2307 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2308 if (length > icmp_frag_size_table[i]) 2309 break; 2310 } 2311 if (i == A_CNT(icmp_frag_size_table)) { 2312 /* Smaller than 68! */ 2313 ip1dbg(("Too big for packet size %d\n", 2314 length)); 2315 ire->ire_max_frag = MIN(ire->ire_max_frag, 576); 2316 ire->ire_frag_flag = 0; 2317 } else { 2318 mtu = icmp_frag_size_table[i]; 2319 ip1dbg(("Calculated mtu %d, packet size %d, " 2320 "before %d", mtu, length, 2321 ire->ire_max_frag)); 2322 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2323 ip1dbg((", after %d\n", ire->ire_max_frag)); 2324 } 2325 /* Record the new max frag size for the ULP. */ 2326 icmph->icmph_du_zero = 0; 2327 icmph->icmph_du_mtu = 2328 htons((uint16_t)ire->ire_max_frag); 2329 } 2330 mutex_exit(&ire->ire_lock); 2331 } 2332 rw_exit(&first_ire->ire_bucket->irb_lock); 2333 ire_refrele(first_ire); 2334 return (B_TRUE); 2335 } 2336 2337 /* 2338 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2339 * calls this function. 2340 */ 2341 static mblk_t * 2342 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2343 { 2344 ipha_t *ipha; 2345 icmph_t *icmph; 2346 ipha_t *in_ipha; 2347 int length; 2348 2349 ASSERT(mp->b_datap->db_type == M_DATA); 2350 2351 /* 2352 * For Self-encapsulated packets, we added an extra IP header 2353 * without the options. Inner IP header is the one from which 2354 * the outer IP header was formed. Thus, we need to remove the 2355 * outer IP header. To do this, we pullup the whole message 2356 * and overlay whatever follows the outer IP header over the 2357 * outer IP header. 2358 */ 2359 2360 if (!pullupmsg(mp, -1)) 2361 return (NULL); 2362 2363 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2364 ipha = (ipha_t *)&icmph[1]; 2365 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2366 2367 /* 2368 * The length that we want to overlay is following the inner 2369 * IP header. Subtracting the IP header + icmp header + outer 2370 * IP header's length should give us the length that we want to 2371 * overlay. 2372 */ 2373 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2374 hdr_length; 2375 /* 2376 * Overlay whatever follows the inner header over the 2377 * outer header. 2378 */ 2379 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2380 2381 /* Set the wptr to account for the outer header */ 2382 mp->b_wptr -= hdr_length; 2383 return (mp); 2384 } 2385 2386 /* 2387 * Try to pass the ICMP message upstream in case the ULP cares. 2388 * 2389 * If the packet that caused the ICMP error is secure, we send 2390 * it to AH/ESP to make sure that the attached packet has a 2391 * valid association. ipha in the code below points to the 2392 * IP header of the packet that caused the error. 2393 * 2394 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2395 * in the context of IPsec. Normally we tell the upper layer 2396 * whenever we send the ire (including ip_bind), the IPsec header 2397 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2398 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2399 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2400 * same thing. As TCP has the IPsec options size that needs to be 2401 * adjusted, we just pass the MTU unchanged. 2402 * 2403 * IFN could have been generated locally or by some router. 2404 * 2405 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2406 * This happens because IP adjusted its value of MTU on an 2407 * earlier IFN message and could not tell the upper layer, 2408 * the new adjusted value of MTU e.g. Packet was encrypted 2409 * or there was not enough information to fanout to upper 2410 * layers. Thus on the next outbound datagram, ip_wput_ire 2411 * generates the IFN, where IPsec processing has *not* been 2412 * done. 2413 * 2414 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2415 * could have generated this. This happens because ire_max_frag 2416 * value in IP was set to a new value, while the IPsec processing 2417 * was being done and after we made the fragmentation check in 2418 * ip_wput_ire. Thus on return from IPsec processing, 2419 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2420 * and generates the IFN. As IPsec processing is over, we fanout 2421 * to AH/ESP to remove the header. 2422 * 2423 * In both these cases, ipsec_in_loopback will be set indicating 2424 * that IFN was generated locally. 2425 * 2426 * ROUTER : IFN could be secure or non-secure. 2427 * 2428 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2429 * packet in error has AH/ESP headers to validate the AH/ESP 2430 * headers. AH/ESP will verify whether there is a valid SA or 2431 * not and send it back. We will fanout again if we have more 2432 * data in the packet. 2433 * 2434 * If the packet in error does not have AH/ESP, we handle it 2435 * like any other case. 2436 * 2437 * * NON_SECURE : If the packet in error has AH/ESP headers, 2438 * we attach a dummy ipsec_in and send it up to AH/ESP 2439 * for validation. AH/ESP will verify whether there is a 2440 * valid SA or not and send it back. We will fanout again if 2441 * we have more data in the packet. 2442 * 2443 * If the packet in error does not have AH/ESP, we handle it 2444 * like any other case. 2445 */ 2446 static void 2447 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2448 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2449 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2450 zoneid_t zoneid) 2451 { 2452 uint16_t *up; /* Pointer to ports in ULP header */ 2453 uint32_t ports; /* reversed ports for fanout */ 2454 ipha_t ripha; /* With reversed addresses */ 2455 mblk_t *first_mp; 2456 ipsec_in_t *ii; 2457 tcph_t *tcph; 2458 conn_t *connp; 2459 ip_stack_t *ipst; 2460 2461 ASSERT(ill != NULL); 2462 2463 ASSERT(recv_ill != NULL); 2464 ipst = recv_ill->ill_ipst; 2465 2466 first_mp = mp; 2467 if (mctl_present) { 2468 mp = first_mp->b_cont; 2469 ASSERT(mp != NULL); 2470 2471 ii = (ipsec_in_t *)first_mp->b_rptr; 2472 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2473 } else { 2474 ii = NULL; 2475 } 2476 2477 switch (ipha->ipha_protocol) { 2478 case IPPROTO_UDP: 2479 /* 2480 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2481 * transport header. 2482 */ 2483 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2484 mp->b_wptr) { 2485 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2486 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2487 goto discard_pkt; 2488 } 2489 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2490 ipha = (ipha_t *)&icmph[1]; 2491 } 2492 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2493 2494 /* 2495 * Attempt to find a client stream based on port. 2496 * Note that we do a reverse lookup since the header is 2497 * in the form we sent it out. 2498 * The ripha header is only used for the IP_UDP_MATCH and we 2499 * only set the src and dst addresses and protocol. 2500 */ 2501 ripha.ipha_src = ipha->ipha_dst; 2502 ripha.ipha_dst = ipha->ipha_src; 2503 ripha.ipha_protocol = ipha->ipha_protocol; 2504 ((uint16_t *)&ports)[0] = up[1]; 2505 ((uint16_t *)&ports)[1] = up[0]; 2506 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2507 ntohl(ipha->ipha_src), ntohs(up[0]), 2508 ntohl(ipha->ipha_dst), ntohs(up[1]), 2509 icmph->icmph_type, icmph->icmph_code)); 2510 2511 /* Have to change db_type after any pullupmsg */ 2512 DB_TYPE(mp) = M_CTL; 2513 2514 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2515 mctl_present, ip_policy, recv_ill, zoneid); 2516 return; 2517 2518 case IPPROTO_TCP: 2519 /* 2520 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2521 * transport header. 2522 */ 2523 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2524 mp->b_wptr) { 2525 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2526 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2527 goto discard_pkt; 2528 } 2529 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2530 ipha = (ipha_t *)&icmph[1]; 2531 } 2532 /* 2533 * Find a TCP client stream for this packet. 2534 * Note that we do a reverse lookup since the header is 2535 * in the form we sent it out. 2536 */ 2537 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2538 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN, 2539 ipst); 2540 if (connp == NULL) 2541 goto discard_pkt; 2542 2543 /* Have to change db_type after any pullupmsg */ 2544 DB_TYPE(mp) = M_CTL; 2545 squeue_fill(connp->conn_sqp, first_mp, tcp_input, 2546 connp, SQTAG_TCP_INPUT_ICMP_ERR); 2547 return; 2548 2549 case IPPROTO_SCTP: 2550 /* 2551 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2552 * transport header. 2553 */ 2554 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2555 mp->b_wptr) { 2556 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2557 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2558 goto discard_pkt; 2559 } 2560 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2561 ipha = (ipha_t *)&icmph[1]; 2562 } 2563 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2564 /* 2565 * Find a SCTP client stream for this packet. 2566 * Note that we do a reverse lookup since the header is 2567 * in the form we sent it out. 2568 * The ripha header is only used for the matching and we 2569 * only set the src and dst addresses, protocol, and version. 2570 */ 2571 ripha.ipha_src = ipha->ipha_dst; 2572 ripha.ipha_dst = ipha->ipha_src; 2573 ripha.ipha_protocol = ipha->ipha_protocol; 2574 ripha.ipha_version_and_hdr_length = 2575 ipha->ipha_version_and_hdr_length; 2576 ((uint16_t *)&ports)[0] = up[1]; 2577 ((uint16_t *)&ports)[1] = up[0]; 2578 2579 /* Have to change db_type after any pullupmsg */ 2580 DB_TYPE(mp) = M_CTL; 2581 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2582 mctl_present, ip_policy, zoneid); 2583 return; 2584 2585 case IPPROTO_ESP: 2586 case IPPROTO_AH: { 2587 int ipsec_rc; 2588 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2589 2590 /* 2591 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2592 * We will re-use the IPSEC_IN if it is already present as 2593 * AH/ESP will not affect any fields in the IPSEC_IN for 2594 * ICMP errors. If there is no IPSEC_IN, allocate a new 2595 * one and attach it in the front. 2596 */ 2597 if (ii != NULL) { 2598 /* 2599 * ip_fanout_proto_again converts the ICMP errors 2600 * that come back from AH/ESP to M_DATA so that 2601 * if it is non-AH/ESP and we do a pullupmsg in 2602 * this function, it would work. Convert it back 2603 * to M_CTL before we send up as this is a ICMP 2604 * error. This could have been generated locally or 2605 * by some router. Validate the inner IPsec 2606 * headers. 2607 * 2608 * NOTE : ill_index is used by ip_fanout_proto_again 2609 * to locate the ill. 2610 */ 2611 ASSERT(ill != NULL); 2612 ii->ipsec_in_ill_index = 2613 ill->ill_phyint->phyint_ifindex; 2614 ii->ipsec_in_rill_index = 2615 recv_ill->ill_phyint->phyint_ifindex; 2616 DB_TYPE(first_mp->b_cont) = M_CTL; 2617 } else { 2618 /* 2619 * IPSEC_IN is not present. We attach a ipsec_in 2620 * message and send up to IPsec for validating 2621 * and removing the IPsec headers. Clear 2622 * ipsec_in_secure so that when we return 2623 * from IPsec, we don't mistakenly think that this 2624 * is a secure packet came from the network. 2625 * 2626 * NOTE : ill_index is used by ip_fanout_proto_again 2627 * to locate the ill. 2628 */ 2629 ASSERT(first_mp == mp); 2630 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2631 if (first_mp == NULL) { 2632 freemsg(mp); 2633 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2634 return; 2635 } 2636 ii = (ipsec_in_t *)first_mp->b_rptr; 2637 2638 /* This is not a secure packet */ 2639 ii->ipsec_in_secure = B_FALSE; 2640 first_mp->b_cont = mp; 2641 DB_TYPE(mp) = M_CTL; 2642 ASSERT(ill != NULL); 2643 ii->ipsec_in_ill_index = 2644 ill->ill_phyint->phyint_ifindex; 2645 ii->ipsec_in_rill_index = 2646 recv_ill->ill_phyint->phyint_ifindex; 2647 } 2648 ip2dbg(("icmp_inbound_error: ipsec\n")); 2649 2650 if (!ipsec_loaded(ipss)) { 2651 ip_proto_not_sup(q, first_mp, 0, zoneid, ipst); 2652 return; 2653 } 2654 2655 if (ipha->ipha_protocol == IPPROTO_ESP) 2656 ipsec_rc = ipsecesp_icmp_error(first_mp); 2657 else 2658 ipsec_rc = ipsecah_icmp_error(first_mp); 2659 if (ipsec_rc == IPSEC_STATUS_FAILED) 2660 return; 2661 2662 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2663 return; 2664 } 2665 default: 2666 /* 2667 * The ripha header is only used for the lookup and we 2668 * only set the src and dst addresses and protocol. 2669 */ 2670 ripha.ipha_src = ipha->ipha_dst; 2671 ripha.ipha_dst = ipha->ipha_src; 2672 ripha.ipha_protocol = ipha->ipha_protocol; 2673 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2674 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2675 ntohl(ipha->ipha_dst), 2676 icmph->icmph_type, icmph->icmph_code)); 2677 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2678 ipha_t *in_ipha; 2679 2680 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2681 mp->b_wptr) { 2682 if (!pullupmsg(mp, (uchar_t *)ipha + 2683 hdr_length + sizeof (ipha_t) - 2684 mp->b_rptr)) { 2685 goto discard_pkt; 2686 } 2687 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2688 ipha = (ipha_t *)&icmph[1]; 2689 } 2690 /* 2691 * Caller has verified that length has to be 2692 * at least the size of IP header. 2693 */ 2694 ASSERT(hdr_length >= sizeof (ipha_t)); 2695 /* 2696 * Check the sanity of the inner IP header like 2697 * we did for the outer header. 2698 */ 2699 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2700 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2701 goto discard_pkt; 2702 } 2703 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2704 goto discard_pkt; 2705 } 2706 /* Check for Self-encapsulated tunnels */ 2707 if (in_ipha->ipha_src == ipha->ipha_src && 2708 in_ipha->ipha_dst == ipha->ipha_dst) { 2709 2710 mp = icmp_inbound_self_encap_error(mp, 2711 iph_hdr_length, hdr_length); 2712 if (mp == NULL) 2713 goto discard_pkt; 2714 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2715 ipha = (ipha_t *)&icmph[1]; 2716 hdr_length = IPH_HDR_LENGTH(ipha); 2717 /* 2718 * The packet in error is self-encapsualted. 2719 * And we are finding it further encapsulated 2720 * which we could not have possibly generated. 2721 */ 2722 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2723 goto discard_pkt; 2724 } 2725 icmp_inbound_error_fanout(q, ill, first_mp, 2726 icmph, ipha, iph_hdr_length, hdr_length, 2727 mctl_present, ip_policy, recv_ill, zoneid); 2728 return; 2729 } 2730 } 2731 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2732 ipha->ipha_protocol == IPPROTO_IPV6) && 2733 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2734 ii != NULL && 2735 ii->ipsec_in_loopback && 2736 ii->ipsec_in_secure) { 2737 /* 2738 * For IP tunnels that get a looped-back 2739 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2740 * reported new MTU to take into account the IPsec 2741 * headers protecting this configured tunnel. 2742 * 2743 * This allows the tunnel module (tun.c) to blindly 2744 * accept the MTU reported in an ICMP "too big" 2745 * message. 2746 * 2747 * Non-looped back ICMP messages will just be 2748 * handled by the security protocols (if needed), 2749 * and the first subsequent packet will hit this 2750 * path. 2751 */ 2752 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2753 ipsec_in_extra_length(first_mp)); 2754 } 2755 /* Have to change db_type after any pullupmsg */ 2756 DB_TYPE(mp) = M_CTL; 2757 2758 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2759 ip_policy, recv_ill, zoneid); 2760 return; 2761 } 2762 /* NOTREACHED */ 2763 discard_pkt: 2764 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2765 drop_pkt:; 2766 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2767 freemsg(first_mp); 2768 } 2769 2770 /* 2771 * Common IP options parser. 2772 * 2773 * Setup routine: fill in *optp with options-parsing state, then 2774 * tail-call ipoptp_next to return the first option. 2775 */ 2776 uint8_t 2777 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2778 { 2779 uint32_t totallen; /* total length of all options */ 2780 2781 totallen = ipha->ipha_version_and_hdr_length - 2782 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2783 totallen <<= 2; 2784 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2785 optp->ipoptp_end = optp->ipoptp_next + totallen; 2786 optp->ipoptp_flags = 0; 2787 return (ipoptp_next(optp)); 2788 } 2789 2790 /* 2791 * Common IP options parser: extract next option. 2792 */ 2793 uint8_t 2794 ipoptp_next(ipoptp_t *optp) 2795 { 2796 uint8_t *end = optp->ipoptp_end; 2797 uint8_t *cur = optp->ipoptp_next; 2798 uint8_t opt, len, pointer; 2799 2800 /* 2801 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2802 * has been corrupted. 2803 */ 2804 ASSERT(cur <= end); 2805 2806 if (cur == end) 2807 return (IPOPT_EOL); 2808 2809 opt = cur[IPOPT_OPTVAL]; 2810 2811 /* 2812 * Skip any NOP options. 2813 */ 2814 while (opt == IPOPT_NOP) { 2815 cur++; 2816 if (cur == end) 2817 return (IPOPT_EOL); 2818 opt = cur[IPOPT_OPTVAL]; 2819 } 2820 2821 if (opt == IPOPT_EOL) 2822 return (IPOPT_EOL); 2823 2824 /* 2825 * Option requiring a length. 2826 */ 2827 if ((cur + 1) >= end) { 2828 optp->ipoptp_flags |= IPOPTP_ERROR; 2829 return (IPOPT_EOL); 2830 } 2831 len = cur[IPOPT_OLEN]; 2832 if (len < 2) { 2833 optp->ipoptp_flags |= IPOPTP_ERROR; 2834 return (IPOPT_EOL); 2835 } 2836 optp->ipoptp_cur = cur; 2837 optp->ipoptp_len = len; 2838 optp->ipoptp_next = cur + len; 2839 if (cur + len > end) { 2840 optp->ipoptp_flags |= IPOPTP_ERROR; 2841 return (IPOPT_EOL); 2842 } 2843 2844 /* 2845 * For the options which require a pointer field, make sure 2846 * its there, and make sure it points to either something 2847 * inside this option, or the end of the option. 2848 */ 2849 switch (opt) { 2850 case IPOPT_RR: 2851 case IPOPT_TS: 2852 case IPOPT_LSRR: 2853 case IPOPT_SSRR: 2854 if (len <= IPOPT_OFFSET) { 2855 optp->ipoptp_flags |= IPOPTP_ERROR; 2856 return (opt); 2857 } 2858 pointer = cur[IPOPT_OFFSET]; 2859 if (pointer - 1 > len) { 2860 optp->ipoptp_flags |= IPOPTP_ERROR; 2861 return (opt); 2862 } 2863 break; 2864 } 2865 2866 /* 2867 * Sanity check the pointer field based on the type of the 2868 * option. 2869 */ 2870 switch (opt) { 2871 case IPOPT_RR: 2872 case IPOPT_SSRR: 2873 case IPOPT_LSRR: 2874 if (pointer < IPOPT_MINOFF_SR) 2875 optp->ipoptp_flags |= IPOPTP_ERROR; 2876 break; 2877 case IPOPT_TS: 2878 if (pointer < IPOPT_MINOFF_IT) 2879 optp->ipoptp_flags |= IPOPTP_ERROR; 2880 /* 2881 * Note that the Internet Timestamp option also 2882 * contains two four bit fields (the Overflow field, 2883 * and the Flag field), which follow the pointer 2884 * field. We don't need to check that these fields 2885 * fall within the length of the option because this 2886 * was implicitely done above. We've checked that the 2887 * pointer value is at least IPOPT_MINOFF_IT, and that 2888 * it falls within the option. Since IPOPT_MINOFF_IT > 2889 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2890 */ 2891 ASSERT(len > IPOPT_POS_OV_FLG); 2892 break; 2893 } 2894 2895 return (opt); 2896 } 2897 2898 /* 2899 * Use the outgoing IP header to create an IP_OPTIONS option the way 2900 * it was passed down from the application. 2901 */ 2902 int 2903 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2904 { 2905 ipoptp_t opts; 2906 const uchar_t *opt; 2907 uint8_t optval; 2908 uint8_t optlen; 2909 uint32_t len = 0; 2910 uchar_t *buf1 = buf; 2911 2912 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2913 len += IP_ADDR_LEN; 2914 bzero(buf1, IP_ADDR_LEN); 2915 2916 /* 2917 * OK to cast away const here, as we don't store through the returned 2918 * opts.ipoptp_cur pointer. 2919 */ 2920 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 2921 optval != IPOPT_EOL; 2922 optval = ipoptp_next(&opts)) { 2923 int off; 2924 2925 opt = opts.ipoptp_cur; 2926 optlen = opts.ipoptp_len; 2927 switch (optval) { 2928 case IPOPT_SSRR: 2929 case IPOPT_LSRR: 2930 2931 /* 2932 * Insert ipha_dst as the first entry in the source 2933 * route and move down the entries on step. 2934 * The last entry gets placed at buf1. 2935 */ 2936 buf[IPOPT_OPTVAL] = optval; 2937 buf[IPOPT_OLEN] = optlen; 2938 buf[IPOPT_OFFSET] = optlen; 2939 2940 off = optlen - IP_ADDR_LEN; 2941 if (off < 0) { 2942 /* No entries in source route */ 2943 break; 2944 } 2945 /* Last entry in source route */ 2946 bcopy(opt + off, buf1, IP_ADDR_LEN); 2947 off -= IP_ADDR_LEN; 2948 2949 while (off > 0) { 2950 bcopy(opt + off, 2951 buf + off + IP_ADDR_LEN, 2952 IP_ADDR_LEN); 2953 off -= IP_ADDR_LEN; 2954 } 2955 /* ipha_dst into first slot */ 2956 bcopy(&ipha->ipha_dst, 2957 buf + off + IP_ADDR_LEN, 2958 IP_ADDR_LEN); 2959 buf += optlen; 2960 len += optlen; 2961 break; 2962 2963 case IPOPT_COMSEC: 2964 case IPOPT_SECURITY: 2965 /* if passing up a label is not ok, then remove */ 2966 if (is_system_labeled()) 2967 break; 2968 /* FALLTHROUGH */ 2969 default: 2970 bcopy(opt, buf, optlen); 2971 buf += optlen; 2972 len += optlen; 2973 break; 2974 } 2975 } 2976 done: 2977 /* Pad the resulting options */ 2978 while (len & 0x3) { 2979 *buf++ = IPOPT_EOL; 2980 len++; 2981 } 2982 return (len); 2983 } 2984 2985 /* 2986 * Update any record route or timestamp options to include this host. 2987 * Reverse any source route option. 2988 * This routine assumes that the options are well formed i.e. that they 2989 * have already been checked. 2990 */ 2991 static void 2992 icmp_options_update(ipha_t *ipha) 2993 { 2994 ipoptp_t opts; 2995 uchar_t *opt; 2996 uint8_t optval; 2997 ipaddr_t src; /* Our local address */ 2998 ipaddr_t dst; 2999 3000 ip2dbg(("icmp_options_update\n")); 3001 src = ipha->ipha_src; 3002 dst = ipha->ipha_dst; 3003 3004 for (optval = ipoptp_first(&opts, ipha); 3005 optval != IPOPT_EOL; 3006 optval = ipoptp_next(&opts)) { 3007 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 3008 opt = opts.ipoptp_cur; 3009 ip2dbg(("icmp_options_update: opt %d, len %d\n", 3010 optval, opts.ipoptp_len)); 3011 switch (optval) { 3012 int off1, off2; 3013 case IPOPT_SSRR: 3014 case IPOPT_LSRR: 3015 /* 3016 * Reverse the source route. The first entry 3017 * should be the next to last one in the current 3018 * source route (the last entry is our address). 3019 * The last entry should be the final destination. 3020 */ 3021 off1 = IPOPT_MINOFF_SR - 1; 3022 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 3023 if (off2 < 0) { 3024 /* No entries in source route */ 3025 ip1dbg(( 3026 "icmp_options_update: bad src route\n")); 3027 break; 3028 } 3029 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 3030 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 3031 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 3032 off2 -= IP_ADDR_LEN; 3033 3034 while (off1 < off2) { 3035 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 3036 bcopy((char *)opt + off2, (char *)opt + off1, 3037 IP_ADDR_LEN); 3038 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 3039 off1 += IP_ADDR_LEN; 3040 off2 -= IP_ADDR_LEN; 3041 } 3042 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 3043 break; 3044 } 3045 } 3046 } 3047 3048 /* 3049 * Process received ICMP Redirect messages. 3050 */ 3051 static void 3052 icmp_redirect(ill_t *ill, mblk_t *mp) 3053 { 3054 ipha_t *ipha; 3055 int iph_hdr_length; 3056 icmph_t *icmph; 3057 ipha_t *ipha_err; 3058 ire_t *ire; 3059 ire_t *prev_ire; 3060 ire_t *save_ire; 3061 ipaddr_t src, dst, gateway; 3062 iulp_t ulp_info = { 0 }; 3063 int error; 3064 ip_stack_t *ipst; 3065 3066 ASSERT(ill != NULL); 3067 ipst = ill->ill_ipst; 3068 3069 ipha = (ipha_t *)mp->b_rptr; 3070 iph_hdr_length = IPH_HDR_LENGTH(ipha); 3071 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 3072 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 3073 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3074 freemsg(mp); 3075 return; 3076 } 3077 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 3078 ipha_err = (ipha_t *)&icmph[1]; 3079 src = ipha->ipha_src; 3080 dst = ipha_err->ipha_dst; 3081 gateway = icmph->icmph_rd_gateway; 3082 /* Make sure the new gateway is reachable somehow. */ 3083 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 3084 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3085 /* 3086 * Make sure we had a route for the dest in question and that 3087 * that route was pointing to the old gateway (the source of the 3088 * redirect packet.) 3089 */ 3090 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 3091 NULL, MATCH_IRE_GW, ipst); 3092 /* 3093 * Check that 3094 * the redirect was not from ourselves 3095 * the new gateway and the old gateway are directly reachable 3096 */ 3097 if (!prev_ire || 3098 !ire || 3099 ire->ire_type == IRE_LOCAL) { 3100 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3101 freemsg(mp); 3102 if (ire != NULL) 3103 ire_refrele(ire); 3104 if (prev_ire != NULL) 3105 ire_refrele(prev_ire); 3106 return; 3107 } 3108 3109 /* 3110 * Should we use the old ULP info to create the new gateway? From 3111 * a user's perspective, we should inherit the info so that it 3112 * is a "smooth" transition. If we do not do that, then new 3113 * connections going thru the new gateway will have no route metrics, 3114 * which is counter-intuitive to user. From a network point of 3115 * view, this may or may not make sense even though the new gateway 3116 * is still directly connected to us so the route metrics should not 3117 * change much. 3118 * 3119 * But if the old ire_uinfo is not initialized, we do another 3120 * recursive lookup on the dest using the new gateway. There may 3121 * be a route to that. If so, use it to initialize the redirect 3122 * route. 3123 */ 3124 if (prev_ire->ire_uinfo.iulp_set) { 3125 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3126 } else { 3127 ire_t *tmp_ire; 3128 ire_t *sire; 3129 3130 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3131 ALL_ZONES, 0, NULL, 3132 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT), 3133 ipst); 3134 if (sire != NULL) { 3135 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3136 /* 3137 * If sire != NULL, ire_ftable_lookup() should not 3138 * return a NULL value. 3139 */ 3140 ASSERT(tmp_ire != NULL); 3141 ire_refrele(tmp_ire); 3142 ire_refrele(sire); 3143 } else if (tmp_ire != NULL) { 3144 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3145 sizeof (iulp_t)); 3146 ire_refrele(tmp_ire); 3147 } 3148 } 3149 if (prev_ire->ire_type == IRE_CACHE) 3150 ire_delete(prev_ire); 3151 ire_refrele(prev_ire); 3152 /* 3153 * TODO: more precise handling for cases 0, 2, 3, the latter two 3154 * require TOS routing 3155 */ 3156 switch (icmph->icmph_code) { 3157 case 0: 3158 case 1: 3159 /* TODO: TOS specificity for cases 2 and 3 */ 3160 case 2: 3161 case 3: 3162 break; 3163 default: 3164 freemsg(mp); 3165 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3166 ire_refrele(ire); 3167 return; 3168 } 3169 /* 3170 * Create a Route Association. This will allow us to remember that 3171 * someone we believe told us to use the particular gateway. 3172 */ 3173 save_ire = ire; 3174 ire = ire_create( 3175 (uchar_t *)&dst, /* dest addr */ 3176 (uchar_t *)&ip_g_all_ones, /* mask */ 3177 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3178 (uchar_t *)&gateway, /* gateway addr */ 3179 &save_ire->ire_max_frag, /* max frag */ 3180 NULL, /* no src nce */ 3181 NULL, /* no rfq */ 3182 NULL, /* no stq */ 3183 IRE_HOST, 3184 NULL, /* ipif */ 3185 0, /* cmask */ 3186 0, /* phandle */ 3187 0, /* ihandle */ 3188 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3189 &ulp_info, 3190 NULL, /* tsol_gc_t */ 3191 NULL, /* gcgrp */ 3192 ipst); 3193 3194 if (ire == NULL) { 3195 freemsg(mp); 3196 ire_refrele(save_ire); 3197 return; 3198 } 3199 error = ire_add(&ire, NULL, NULL, NULL, B_FALSE); 3200 ire_refrele(save_ire); 3201 atomic_inc_32(&ipst->ips_ip_redirect_cnt); 3202 3203 if (error == 0) { 3204 ire_refrele(ire); /* Held in ire_add_v4 */ 3205 /* tell routing sockets that we received a redirect */ 3206 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3207 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3208 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 3209 } 3210 3211 /* 3212 * Delete any existing IRE_HOST type redirect ires for this destination. 3213 * This together with the added IRE has the effect of 3214 * modifying an existing redirect. 3215 */ 3216 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST, NULL, NULL, 3217 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), ipst); 3218 if (prev_ire != NULL) { 3219 if (prev_ire ->ire_flags & RTF_DYNAMIC) 3220 ire_delete(prev_ire); 3221 ire_refrele(prev_ire); 3222 } 3223 3224 freemsg(mp); 3225 } 3226 3227 /* 3228 * Generate an ICMP parameter problem message. 3229 */ 3230 static void 3231 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr, zoneid_t zoneid, 3232 ip_stack_t *ipst) 3233 { 3234 icmph_t icmph; 3235 boolean_t mctl_present; 3236 mblk_t *first_mp; 3237 3238 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3239 3240 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3241 if (mctl_present) 3242 freeb(first_mp); 3243 return; 3244 } 3245 3246 bzero(&icmph, sizeof (icmph_t)); 3247 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3248 icmph.icmph_pp_ptr = ptr; 3249 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 3250 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3251 ipst); 3252 } 3253 3254 /* 3255 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3256 * the ICMP header pointed to by "stuff". (May be called as writer.) 3257 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3258 * an icmp error packet can be sent. 3259 * Assigns an appropriate source address to the packet. If ipha_dst is 3260 * one of our addresses use it for source. Otherwise pick a source based 3261 * on a route lookup back to ipha_src. 3262 * Note that ipha_src must be set here since the 3263 * packet is likely to arrive on an ill queue in ip_wput() which will 3264 * not set a source address. 3265 */ 3266 static void 3267 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3268 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 3269 { 3270 ipaddr_t dst; 3271 icmph_t *icmph; 3272 ipha_t *ipha; 3273 uint_t len_needed; 3274 size_t msg_len; 3275 mblk_t *mp1; 3276 ipaddr_t src; 3277 ire_t *ire; 3278 mblk_t *ipsec_mp; 3279 ipsec_out_t *io = NULL; 3280 3281 if (mctl_present) { 3282 /* 3283 * If it is : 3284 * 3285 * 1) a IPSEC_OUT, then this is caused by outbound 3286 * datagram originating on this host. IPsec processing 3287 * may or may not have been done. Refer to comments above 3288 * icmp_inbound_error_fanout for details. 3289 * 3290 * 2) a IPSEC_IN if we are generating a icmp_message 3291 * for an incoming datagram destined for us i.e called 3292 * from ip_fanout_send_icmp. 3293 */ 3294 ipsec_info_t *in; 3295 ipsec_mp = mp; 3296 mp = ipsec_mp->b_cont; 3297 3298 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3299 ipha = (ipha_t *)mp->b_rptr; 3300 3301 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3302 in->ipsec_info_type == IPSEC_IN); 3303 3304 if (in->ipsec_info_type == IPSEC_IN) { 3305 /* 3306 * Convert the IPSEC_IN to IPSEC_OUT. 3307 */ 3308 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3309 BUMP_MIB(&ipst->ips_ip_mib, 3310 ipIfStatsOutDiscards); 3311 return; 3312 } 3313 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3314 } else { 3315 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3316 io = (ipsec_out_t *)in; 3317 /* 3318 * Clear out ipsec_out_proc_begin, so we do a fresh 3319 * ire lookup. 3320 */ 3321 io->ipsec_out_proc_begin = B_FALSE; 3322 } 3323 ASSERT(zoneid == io->ipsec_out_zoneid); 3324 ASSERT(zoneid != ALL_ZONES); 3325 } else { 3326 /* 3327 * This is in clear. The icmp message we are building 3328 * here should go out in clear. 3329 * 3330 * Pardon the convolution of it all, but it's easier to 3331 * allocate a "use cleartext" IPSEC_IN message and convert 3332 * it than it is to allocate a new one. 3333 */ 3334 ipsec_in_t *ii; 3335 ASSERT(DB_TYPE(mp) == M_DATA); 3336 ipsec_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 3337 if (ipsec_mp == NULL) { 3338 freemsg(mp); 3339 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3340 return; 3341 } 3342 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3343 3344 /* This is not a secure packet */ 3345 ii->ipsec_in_secure = B_FALSE; 3346 /* 3347 * For trusted extensions using a shared IP address we can 3348 * send using any zoneid. 3349 */ 3350 if (zoneid == ALL_ZONES) 3351 ii->ipsec_in_zoneid = GLOBAL_ZONEID; 3352 else 3353 ii->ipsec_in_zoneid = zoneid; 3354 ipsec_mp->b_cont = mp; 3355 ipha = (ipha_t *)mp->b_rptr; 3356 /* 3357 * Convert the IPSEC_IN to IPSEC_OUT. 3358 */ 3359 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3360 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3361 return; 3362 } 3363 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3364 } 3365 3366 /* Remember our eventual destination */ 3367 dst = ipha->ipha_src; 3368 3369 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3370 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE, ipst); 3371 if (ire != NULL && 3372 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3373 src = ipha->ipha_dst; 3374 } else { 3375 if (ire != NULL) 3376 ire_refrele(ire); 3377 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3378 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY), 3379 ipst); 3380 if (ire == NULL) { 3381 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3382 freemsg(ipsec_mp); 3383 return; 3384 } 3385 src = ire->ire_src_addr; 3386 } 3387 3388 if (ire != NULL) 3389 ire_refrele(ire); 3390 3391 /* 3392 * Check if we can send back more then 8 bytes in addition to 3393 * the IP header. We try to send 64 bytes of data and the internal 3394 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 3395 */ 3396 len_needed = IPH_HDR_LENGTH(ipha); 3397 if (ipha->ipha_protocol == IPPROTO_ENCAP || 3398 ipha->ipha_protocol == IPPROTO_IPV6) { 3399 3400 if (!pullupmsg(mp, -1)) { 3401 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3402 freemsg(ipsec_mp); 3403 return; 3404 } 3405 ipha = (ipha_t *)mp->b_rptr; 3406 3407 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 3408 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 3409 len_needed)); 3410 } else { 3411 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 3412 3413 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 3414 len_needed += ip_hdr_length_v6(mp, ip6h); 3415 } 3416 } 3417 len_needed += ipst->ips_ip_icmp_return; 3418 msg_len = msgdsize(mp); 3419 if (msg_len > len_needed) { 3420 (void) adjmsg(mp, len_needed - msg_len); 3421 msg_len = len_needed; 3422 } 3423 mp1 = allocb_tmpl(sizeof (icmp_ipha) + len, mp); 3424 if (mp1 == NULL) { 3425 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 3426 freemsg(ipsec_mp); 3427 return; 3428 } 3429 mp1->b_cont = mp; 3430 mp = mp1; 3431 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3432 ipsec_mp->b_rptr == (uint8_t *)io && 3433 io->ipsec_out_type == IPSEC_OUT); 3434 ipsec_mp->b_cont = mp; 3435 3436 /* 3437 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3438 * node generates be accepted in peace by all on-host destinations. 3439 * If we do NOT assume that all on-host destinations trust 3440 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3441 * (Look for ipsec_out_icmp_loopback). 3442 */ 3443 io->ipsec_out_icmp_loopback = B_TRUE; 3444 3445 ipha = (ipha_t *)mp->b_rptr; 3446 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3447 *ipha = icmp_ipha; 3448 ipha->ipha_src = src; 3449 ipha->ipha_dst = dst; 3450 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 3451 msg_len += sizeof (icmp_ipha) + len; 3452 if (msg_len > IP_MAXPACKET) { 3453 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3454 msg_len = IP_MAXPACKET; 3455 } 3456 ipha->ipha_length = htons((uint16_t)msg_len); 3457 icmph = (icmph_t *)&ipha[1]; 3458 bcopy(stuff, icmph, len); 3459 icmph->icmph_checksum = 0; 3460 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3461 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 3462 put(q, ipsec_mp); 3463 } 3464 3465 /* 3466 * Determine if an ICMP error packet can be sent given the rate limit. 3467 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3468 * in milliseconds) and a burst size. Burst size number of packets can 3469 * be sent arbitrarely closely spaced. 3470 * The state is tracked using two variables to implement an approximate 3471 * token bucket filter: 3472 * icmp_pkt_err_last - lbolt value when the last burst started 3473 * icmp_pkt_err_sent - number of packets sent in current burst 3474 */ 3475 boolean_t 3476 icmp_err_rate_limit(ip_stack_t *ipst) 3477 { 3478 clock_t now = TICK_TO_MSEC(lbolt); 3479 uint_t refilled; /* Number of packets refilled in tbf since last */ 3480 /* Guard against changes by loading into local variable */ 3481 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 3482 3483 if (err_interval == 0) 3484 return (B_FALSE); 3485 3486 if (ipst->ips_icmp_pkt_err_last > now) { 3487 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3488 ipst->ips_icmp_pkt_err_last = 0; 3489 ipst->ips_icmp_pkt_err_sent = 0; 3490 } 3491 /* 3492 * If we are in a burst update the token bucket filter. 3493 * Update the "last" time to be close to "now" but make sure 3494 * we don't loose precision. 3495 */ 3496 if (ipst->ips_icmp_pkt_err_sent != 0) { 3497 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 3498 if (refilled > ipst->ips_icmp_pkt_err_sent) { 3499 ipst->ips_icmp_pkt_err_sent = 0; 3500 } else { 3501 ipst->ips_icmp_pkt_err_sent -= refilled; 3502 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 3503 } 3504 } 3505 if (ipst->ips_icmp_pkt_err_sent == 0) { 3506 /* Start of new burst */ 3507 ipst->ips_icmp_pkt_err_last = now; 3508 } 3509 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 3510 ipst->ips_icmp_pkt_err_sent++; 3511 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3512 ipst->ips_icmp_pkt_err_sent)); 3513 return (B_FALSE); 3514 } 3515 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3516 return (B_TRUE); 3517 } 3518 3519 /* 3520 * Check if it is ok to send an IPv4 ICMP error packet in 3521 * response to the IPv4 packet in mp. 3522 * Free the message and return null if no 3523 * ICMP error packet should be sent. 3524 */ 3525 static mblk_t * 3526 icmp_pkt_err_ok(mblk_t *mp, ip_stack_t *ipst) 3527 { 3528 icmph_t *icmph; 3529 ipha_t *ipha; 3530 uint_t len_needed; 3531 ire_t *src_ire; 3532 ire_t *dst_ire; 3533 3534 if (!mp) 3535 return (NULL); 3536 ipha = (ipha_t *)mp->b_rptr; 3537 if (ip_csum_hdr(ipha)) { 3538 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 3539 freemsg(mp); 3540 return (NULL); 3541 } 3542 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3543 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3544 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3545 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3546 if (src_ire != NULL || dst_ire != NULL || 3547 CLASSD(ipha->ipha_dst) || 3548 CLASSD(ipha->ipha_src) || 3549 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3550 /* Note: only errors to the fragment with offset 0 */ 3551 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3552 freemsg(mp); 3553 if (src_ire != NULL) 3554 ire_refrele(src_ire); 3555 if (dst_ire != NULL) 3556 ire_refrele(dst_ire); 3557 return (NULL); 3558 } 3559 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3560 /* 3561 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3562 * errors in response to any ICMP errors. 3563 */ 3564 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3565 if (mp->b_wptr - mp->b_rptr < len_needed) { 3566 if (!pullupmsg(mp, len_needed)) { 3567 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3568 freemsg(mp); 3569 return (NULL); 3570 } 3571 ipha = (ipha_t *)mp->b_rptr; 3572 } 3573 icmph = (icmph_t *) 3574 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3575 switch (icmph->icmph_type) { 3576 case ICMP_DEST_UNREACHABLE: 3577 case ICMP_SOURCE_QUENCH: 3578 case ICMP_TIME_EXCEEDED: 3579 case ICMP_PARAM_PROBLEM: 3580 case ICMP_REDIRECT: 3581 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3582 freemsg(mp); 3583 return (NULL); 3584 default: 3585 break; 3586 } 3587 } 3588 /* 3589 * If this is a labeled system, then check to see if we're allowed to 3590 * send a response to this particular sender. If not, then just drop. 3591 */ 3592 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3593 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3594 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3595 freemsg(mp); 3596 return (NULL); 3597 } 3598 if (icmp_err_rate_limit(ipst)) { 3599 /* 3600 * Only send ICMP error packets every so often. 3601 * This should be done on a per port/source basis, 3602 * but for now this will suffice. 3603 */ 3604 freemsg(mp); 3605 return (NULL); 3606 } 3607 return (mp); 3608 } 3609 3610 /* 3611 * Generate an ICMP redirect message. 3612 */ 3613 static void 3614 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway, ip_stack_t *ipst) 3615 { 3616 icmph_t icmph; 3617 3618 /* 3619 * We are called from ip_rput where we could 3620 * not have attached an IPSEC_IN. 3621 */ 3622 ASSERT(mp->b_datap->db_type == M_DATA); 3623 3624 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3625 return; 3626 } 3627 3628 bzero(&icmph, sizeof (icmph_t)); 3629 icmph.icmph_type = ICMP_REDIRECT; 3630 icmph.icmph_code = 1; 3631 icmph.icmph_rd_gateway = gateway; 3632 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3633 /* Redirects sent by router, and router is global zone */ 3634 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE, GLOBAL_ZONEID, ipst); 3635 } 3636 3637 /* 3638 * Generate an ICMP time exceeded message. 3639 */ 3640 void 3641 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3642 ip_stack_t *ipst) 3643 { 3644 icmph_t icmph; 3645 boolean_t mctl_present; 3646 mblk_t *first_mp; 3647 3648 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3649 3650 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3651 if (mctl_present) 3652 freeb(first_mp); 3653 return; 3654 } 3655 3656 bzero(&icmph, sizeof (icmph_t)); 3657 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3658 icmph.icmph_code = code; 3659 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3660 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3661 ipst); 3662 } 3663 3664 /* 3665 * Generate an ICMP unreachable message. 3666 */ 3667 void 3668 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3669 ip_stack_t *ipst) 3670 { 3671 icmph_t icmph; 3672 mblk_t *first_mp; 3673 boolean_t mctl_present; 3674 3675 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3676 3677 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3678 if (mctl_present) 3679 freeb(first_mp); 3680 return; 3681 } 3682 3683 bzero(&icmph, sizeof (icmph_t)); 3684 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3685 icmph.icmph_code = code; 3686 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3687 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3688 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present, 3689 zoneid, ipst); 3690 } 3691 3692 /* 3693 * Attempt to start recovery of an IPv4 interface that's been shut down as a 3694 * duplicate. As long as someone else holds the address, the interface will 3695 * stay down. When that conflict goes away, the interface is brought back up. 3696 * This is done so that accidental shutdowns of addresses aren't made 3697 * permanent. Your server will recover from a failure. 3698 * 3699 * For DHCP, recovery is not done in the kernel. Instead, it's handled by a 3700 * user space process (dhcpagent). 3701 * 3702 * Recovery completes if ARP reports that the address is now ours (via 3703 * AR_CN_READY). In that case, we go to ip_arp_excl to finish the operation. 3704 * 3705 * This function is entered on a timer expiry; the ID is in ipif_recovery_id. 3706 */ 3707 static void 3708 ipif_dup_recovery(void *arg) 3709 { 3710 ipif_t *ipif = arg; 3711 ill_t *ill = ipif->ipif_ill; 3712 mblk_t *arp_add_mp; 3713 mblk_t *arp_del_mp; 3714 area_t *area; 3715 ip_stack_t *ipst = ill->ill_ipst; 3716 3717 ipif->ipif_recovery_id = 0; 3718 3719 /* 3720 * No lock needed for moving or condemned check, as this is just an 3721 * optimization. 3722 */ 3723 if (ill->ill_arp_closing || !(ipif->ipif_flags & IPIF_DUPLICATE) || 3724 (ipif->ipif_flags & IPIF_POINTOPOINT) || 3725 (ipif->ipif_state_flags & (IPIF_MOVING | IPIF_CONDEMNED))) { 3726 /* No reason to try to bring this address back. */ 3727 return; 3728 } 3729 3730 if ((arp_add_mp = ipif_area_alloc(ipif)) == NULL) 3731 goto alloc_fail; 3732 3733 if (ipif->ipif_arp_del_mp == NULL) { 3734 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 3735 goto alloc_fail; 3736 ipif->ipif_arp_del_mp = arp_del_mp; 3737 } 3738 3739 /* Setting the 'unverified' flag restarts DAD */ 3740 area = (area_t *)arp_add_mp->b_rptr; 3741 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 3742 ACE_F_UNVERIFIED; 3743 putnext(ill->ill_rq, arp_add_mp); 3744 return; 3745 3746 alloc_fail: 3747 /* 3748 * On allocation failure, just restart the timer. Note that the ipif 3749 * is down here, so no other thread could be trying to start a recovery 3750 * timer. The ill_lock protects the condemned flag and the recovery 3751 * timer ID. 3752 */ 3753 freemsg(arp_add_mp); 3754 mutex_enter(&ill->ill_lock); 3755 if (ipst->ips_ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0 && 3756 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 3757 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, ipif, 3758 MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3759 } 3760 mutex_exit(&ill->ill_lock); 3761 } 3762 3763 /* 3764 * This is for exclusive changes due to ARP. Either tear down an interface due 3765 * to AR_CN_FAILED and AR_CN_BOGON, or bring one up for successful recovery. 3766 */ 3767 /* ARGSUSED */ 3768 static void 3769 ip_arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3770 { 3771 ill_t *ill = rq->q_ptr; 3772 arh_t *arh; 3773 ipaddr_t src; 3774 ipif_t *ipif; 3775 char ibuf[LIFNAMSIZ + 10]; /* 10 digits for logical i/f number */ 3776 char hbuf[MAC_STR_LEN]; 3777 char sbuf[INET_ADDRSTRLEN]; 3778 const char *failtype; 3779 boolean_t bring_up; 3780 ip_stack_t *ipst = ill->ill_ipst; 3781 3782 switch (((arcn_t *)mp->b_rptr)->arcn_code) { 3783 case AR_CN_READY: 3784 failtype = NULL; 3785 bring_up = B_TRUE; 3786 break; 3787 case AR_CN_FAILED: 3788 failtype = "in use"; 3789 bring_up = B_FALSE; 3790 break; 3791 default: 3792 failtype = "claimed"; 3793 bring_up = B_FALSE; 3794 break; 3795 } 3796 3797 arh = (arh_t *)mp->b_cont->b_rptr; 3798 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3799 3800 /* Handle failures due to probes */ 3801 if (src == 0) { 3802 bcopy((char *)&arh[1] + 2 * arh->arh_hlen + IP_ADDR_LEN, &src, 3803 IP_ADDR_LEN); 3804 } 3805 3806 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, hbuf, 3807 sizeof (hbuf)); 3808 (void) ip_dot_addr(src, sbuf); 3809 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3810 3811 if ((ipif->ipif_flags & IPIF_POINTOPOINT) || 3812 ipif->ipif_lcl_addr != src) { 3813 continue; 3814 } 3815 3816 /* 3817 * If we failed on a recovery probe, then restart the timer to 3818 * try again later. 3819 */ 3820 if (!bring_up && (ipif->ipif_flags & IPIF_DUPLICATE) && 3821 !(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3822 ill->ill_net_type == IRE_IF_RESOLVER && 3823 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3824 ipst->ips_ip_dup_recovery > 0 && 3825 ipif->ipif_recovery_id == 0) { 3826 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3827 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3828 continue; 3829 } 3830 3831 /* 3832 * If what we're trying to do has already been done, then do 3833 * nothing. 3834 */ 3835 if (bring_up == ((ipif->ipif_flags & IPIF_UP) != 0)) 3836 continue; 3837 3838 ipif_get_name(ipif, ibuf, sizeof (ibuf)); 3839 3840 if (failtype == NULL) { 3841 cmn_err(CE_NOTE, "recovered address %s on %s", sbuf, 3842 ibuf); 3843 } else { 3844 cmn_err(CE_WARN, "%s has duplicate address %s (%s " 3845 "by %s); disabled", ibuf, sbuf, failtype, hbuf); 3846 } 3847 3848 if (bring_up) { 3849 ASSERT(ill->ill_dl_up); 3850 /* 3851 * Free up the ARP delete message so we can allocate 3852 * a fresh one through the normal path. 3853 */ 3854 freemsg(ipif->ipif_arp_del_mp); 3855 ipif->ipif_arp_del_mp = NULL; 3856 if (ipif_resolver_up(ipif, Res_act_initial) != 3857 EINPROGRESS) { 3858 ipif->ipif_addr_ready = 1; 3859 (void) ipif_up_done(ipif); 3860 } 3861 continue; 3862 } 3863 3864 mutex_enter(&ill->ill_lock); 3865 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 3866 ipif->ipif_flags |= IPIF_DUPLICATE; 3867 ill->ill_ipif_dup_count++; 3868 mutex_exit(&ill->ill_lock); 3869 /* 3870 * Already exclusive on the ill; no need to handle deferred 3871 * processing here. 3872 */ 3873 (void) ipif_down(ipif, NULL, NULL); 3874 ipif_down_tail(ipif); 3875 mutex_enter(&ill->ill_lock); 3876 if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3877 ill->ill_net_type == IRE_IF_RESOLVER && 3878 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3879 ipst->ips_ip_dup_recovery > 0) { 3880 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3881 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3882 } 3883 mutex_exit(&ill->ill_lock); 3884 } 3885 freemsg(mp); 3886 } 3887 3888 /* ARGSUSED */ 3889 static void 3890 ip_arp_defend(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3891 { 3892 ill_t *ill = rq->q_ptr; 3893 arh_t *arh; 3894 ipaddr_t src; 3895 ipif_t *ipif; 3896 3897 arh = (arh_t *)mp->b_cont->b_rptr; 3898 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3899 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3900 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_lcl_addr == src) 3901 (void) ipif_resolver_up(ipif, Res_act_defend); 3902 } 3903 freemsg(mp); 3904 } 3905 3906 /* 3907 * News from ARP. ARP sends notification of interesting events down 3908 * to its clients using M_CTL messages with the interesting ARP packet 3909 * attached via b_cont. 3910 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3911 * queue as opposed to ARP sending the message to all the clients, i.e. all 3912 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3913 * table if a cache IRE is found to delete all the entries for the address in 3914 * the packet. 3915 */ 3916 static void 3917 ip_arp_news(queue_t *q, mblk_t *mp) 3918 { 3919 arcn_t *arcn; 3920 arh_t *arh; 3921 ire_t *ire = NULL; 3922 char hbuf[MAC_STR_LEN]; 3923 char sbuf[INET_ADDRSTRLEN]; 3924 ipaddr_t src; 3925 in6_addr_t v6src; 3926 boolean_t isv6 = B_FALSE; 3927 ipif_t *ipif; 3928 ill_t *ill; 3929 ip_stack_t *ipst; 3930 3931 if (CONN_Q(q)) { 3932 conn_t *connp = Q_TO_CONN(q); 3933 3934 ipst = connp->conn_netstack->netstack_ip; 3935 } else { 3936 ill_t *ill = (ill_t *)q->q_ptr; 3937 3938 ipst = ill->ill_ipst; 3939 } 3940 3941 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 3942 if (q->q_next) { 3943 putnext(q, mp); 3944 } else 3945 freemsg(mp); 3946 return; 3947 } 3948 arh = (arh_t *)mp->b_cont->b_rptr; 3949 /* Is it one we are interested in? */ 3950 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 3951 isv6 = B_TRUE; 3952 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 3953 IPV6_ADDR_LEN); 3954 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 3955 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 3956 IP_ADDR_LEN); 3957 } else { 3958 freemsg(mp); 3959 return; 3960 } 3961 3962 ill = q->q_ptr; 3963 3964 arcn = (arcn_t *)mp->b_rptr; 3965 switch (arcn->arcn_code) { 3966 case AR_CN_BOGON: 3967 /* 3968 * Someone is sending ARP packets with a source protocol 3969 * address that we have published and for which we believe our 3970 * entry is authoritative and (when ill_arp_extend is set) 3971 * verified to be unique on the network. 3972 * 3973 * The ARP module internally handles the cases where the sender 3974 * is just probing (for DAD) and where the hardware address of 3975 * a non-authoritative entry has changed. Thus, these are the 3976 * real conflicts, and we have to do resolution. 3977 * 3978 * We back away quickly from the address if it's from DHCP or 3979 * otherwise temporary and hasn't been used recently (or at 3980 * all). We'd like to include "deprecated" addresses here as 3981 * well (as there's no real reason to defend something we're 3982 * discarding), but IPMP "reuses" this flag to mean something 3983 * other than the standard meaning. 3984 * 3985 * If the ARP module above is not extended (meaning that it 3986 * doesn't know how to defend the address), then we just log 3987 * the problem as we always did and continue on. It's not 3988 * right, but there's little else we can do, and those old ATM 3989 * users are going away anyway. 3990 */ 3991 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, 3992 hbuf, sizeof (hbuf)); 3993 (void) ip_dot_addr(src, sbuf); 3994 if (isv6) { 3995 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL, 3996 ipst); 3997 } else { 3998 ire = ire_cache_lookup(src, ALL_ZONES, NULL, ipst); 3999 } 4000 if (ire != NULL && IRE_IS_LOCAL(ire)) { 4001 uint32_t now; 4002 uint32_t maxage; 4003 clock_t lused; 4004 uint_t maxdefense; 4005 uint_t defs; 4006 4007 /* 4008 * First, figure out if this address hasn't been used 4009 * in a while. If it hasn't, then it's a better 4010 * candidate for abandoning. 4011 */ 4012 ipif = ire->ire_ipif; 4013 ASSERT(ipif != NULL); 4014 now = gethrestime_sec(); 4015 maxage = now - ire->ire_create_time; 4016 if (maxage > ipst->ips_ip_max_temp_idle) 4017 maxage = ipst->ips_ip_max_temp_idle; 4018 lused = drv_hztousec(ddi_get_lbolt() - 4019 ire->ire_last_used_time) / MICROSEC + 1; 4020 if (lused >= maxage && (ipif->ipif_flags & 4021 (IPIF_DHCPRUNNING | IPIF_TEMPORARY))) 4022 maxdefense = ipst->ips_ip_max_temp_defend; 4023 else 4024 maxdefense = ipst->ips_ip_max_defend; 4025 4026 /* 4027 * Now figure out how many times we've defended 4028 * ourselves. Ignore defenses that happened long in 4029 * the past. 4030 */ 4031 mutex_enter(&ire->ire_lock); 4032 if ((defs = ire->ire_defense_count) > 0 && 4033 now - ire->ire_defense_time > 4034 ipst->ips_ip_defend_interval) { 4035 ire->ire_defense_count = defs = 0; 4036 } 4037 ire->ire_defense_count++; 4038 ire->ire_defense_time = now; 4039 mutex_exit(&ire->ire_lock); 4040 ill_refhold(ill); 4041 ire_refrele(ire); 4042 4043 /* 4044 * If we've defended ourselves too many times already, 4045 * then give up and tear down the interface(s) using 4046 * this address. Otherwise, defend by sending out a 4047 * gratuitous ARP. 4048 */ 4049 if (defs >= maxdefense && ill->ill_arp_extend) { 4050 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4051 B_FALSE); 4052 } else { 4053 cmn_err(CE_WARN, 4054 "node %s is using our IP address %s on %s", 4055 hbuf, sbuf, ill->ill_name); 4056 /* 4057 * If this is an old (ATM) ARP module, then 4058 * don't try to defend the address. Remain 4059 * compatible with the old behavior. Defend 4060 * only with new ARP. 4061 */ 4062 if (ill->ill_arp_extend) { 4063 qwriter_ip(ill, q, mp, ip_arp_defend, 4064 NEW_OP, B_FALSE); 4065 } else { 4066 ill_refrele(ill); 4067 } 4068 } 4069 return; 4070 } 4071 cmn_err(CE_WARN, 4072 "proxy ARP problem? Node '%s' is using %s on %s", 4073 hbuf, sbuf, ill->ill_name); 4074 if (ire != NULL) 4075 ire_refrele(ire); 4076 break; 4077 case AR_CN_ANNOUNCE: 4078 if (isv6) { 4079 /* 4080 * For XRESOLV interfaces. 4081 * Delete the IRE cache entry and NCE for this 4082 * v6 address 4083 */ 4084 ip_ire_clookup_and_delete_v6(&v6src, ipst); 4085 /* 4086 * If v6src is a non-zero, it's a router address 4087 * as below. Do the same sort of thing to clean 4088 * out off-net IRE_CACHE entries that go through 4089 * the router. 4090 */ 4091 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 4092 ire_walk_v6(ire_delete_cache_gw_v6, 4093 (char *)&v6src, ALL_ZONES, ipst); 4094 } 4095 } else { 4096 nce_hw_map_t hwm; 4097 4098 /* 4099 * ARP gives us a copy of any packet where it thinks 4100 * the address has changed, so that we can update our 4101 * caches. We're responsible for caching known answers 4102 * in the current design. We check whether the 4103 * hardware address really has changed in all of our 4104 * entries that have cached this mapping, and if so, we 4105 * blow them away. This way we will immediately pick 4106 * up the rare case of a host changing hardware 4107 * address. 4108 */ 4109 if (src == 0) 4110 break; 4111 hwm.hwm_addr = src; 4112 hwm.hwm_hwlen = arh->arh_hlen; 4113 hwm.hwm_hwaddr = (uchar_t *)(arh + 1); 4114 NDP_HW_CHANGE_INCR(ipst->ips_ndp4); 4115 ndp_walk_common(ipst->ips_ndp4, NULL, 4116 (pfi_t)nce_delete_hw_changed, &hwm, ALL_ZONES); 4117 NDP_HW_CHANGE_DECR(ipst->ips_ndp4); 4118 } 4119 break; 4120 case AR_CN_READY: 4121 /* No external v6 resolver has a contract to use this */ 4122 if (isv6) 4123 break; 4124 /* If the link is down, we'll retry this later */ 4125 if (!(ill->ill_phyint->phyint_flags & PHYI_RUNNING)) 4126 break; 4127 ipif = ipif_lookup_addr(src, ill, ALL_ZONES, NULL, NULL, 4128 NULL, NULL, ipst); 4129 if (ipif != NULL) { 4130 /* 4131 * If this is a duplicate recovery, then we now need to 4132 * go exclusive to bring this thing back up. 4133 */ 4134 if ((ipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)) == 4135 IPIF_DUPLICATE) { 4136 ipif_refrele(ipif); 4137 ill_refhold(ill); 4138 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4139 B_FALSE); 4140 return; 4141 } 4142 /* 4143 * If this is the first notice that this address is 4144 * ready, then let the user know now. 4145 */ 4146 if ((ipif->ipif_flags & IPIF_UP) && 4147 !ipif->ipif_addr_ready) { 4148 ipif_mask_reply(ipif); 4149 ip_rts_ifmsg(ipif); 4150 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 4151 sctp_update_ipif(ipif, SCTP_IPIF_UP); 4152 } 4153 ipif->ipif_addr_ready = 1; 4154 ipif_refrele(ipif); 4155 } 4156 ire = ire_cache_lookup(src, ALL_ZONES, MBLK_GETLABEL(mp), ipst); 4157 if (ire != NULL) { 4158 ire->ire_defense_count = 0; 4159 ire_refrele(ire); 4160 } 4161 break; 4162 case AR_CN_FAILED: 4163 /* No external v6 resolver has a contract to use this */ 4164 if (isv6) 4165 break; 4166 ill_refhold(ill); 4167 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, B_FALSE); 4168 return; 4169 } 4170 freemsg(mp); 4171 } 4172 4173 /* 4174 * Create a mblk suitable for carrying the interface index and/or source link 4175 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 4176 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 4177 * application. 4178 */ 4179 mblk_t * 4180 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags, zoneid_t zoneid, 4181 ip_stack_t *ipst) 4182 { 4183 mblk_t *mp; 4184 ip_pktinfo_t *pinfo; 4185 ipha_t *ipha; 4186 struct ether_header *pether; 4187 4188 mp = allocb(sizeof (ip_pktinfo_t), BPRI_MED); 4189 if (mp == NULL) { 4190 ip1dbg(("ip_add_info: allocation failure.\n")); 4191 return (data_mp); 4192 } 4193 4194 ipha = (ipha_t *)data_mp->b_rptr; 4195 pinfo = (ip_pktinfo_t *)mp->b_rptr; 4196 bzero(pinfo, sizeof (ip_pktinfo_t)); 4197 pinfo->ip_pkt_flags = (uchar_t)flags; 4198 pinfo->ip_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 4199 4200 if (flags & (IPF_RECVIF | IPF_RECVADDR)) 4201 pinfo->ip_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 4202 if (flags & IPF_RECVADDR) { 4203 ipif_t *ipif; 4204 ire_t *ire; 4205 4206 /* 4207 * Only valid for V4 4208 */ 4209 ASSERT((ipha->ipha_version_and_hdr_length & 0xf0) == 4210 (IPV4_VERSION << 4)); 4211 4212 ipif = ipif_get_next_ipif(NULL, ill); 4213 if (ipif != NULL) { 4214 /* 4215 * Since a decision has already been made to deliver the 4216 * packet, there is no need to test for SECATTR and 4217 * ZONEONLY. 4218 * When a multicast packet is transmitted 4219 * a cache entry is created for the multicast address. 4220 * When delivering a copy of the packet or when new 4221 * packets are received we do not want to match on the 4222 * cached entry so explicitly match on 4223 * IRE_LOCAL and IRE_LOOPBACK 4224 */ 4225 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4226 IRE_LOCAL | IRE_LOOPBACK, 4227 ipif, zoneid, NULL, 4228 MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP, ipst); 4229 if (ire == NULL) { 4230 /* 4231 * packet must have come on a different 4232 * interface. 4233 * Since a decision has already been made to 4234 * deliver the packet, there is no need to test 4235 * for SECATTR and ZONEONLY. 4236 * Only match on local and broadcast ire's. 4237 * See detailed comment above. 4238 */ 4239 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4240 IRE_LOCAL | IRE_LOOPBACK, ipif, zoneid, 4241 NULL, MATCH_IRE_TYPE, ipst); 4242 } 4243 4244 if (ire == NULL) { 4245 /* 4246 * This is either a multicast packet or 4247 * the address has been removed since 4248 * the packet was received. 4249 * Return INADDR_ANY so that normal source 4250 * selection occurs for the response. 4251 */ 4252 4253 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4254 } else { 4255 pinfo->ip_pkt_match_addr.s_addr = 4256 ire->ire_src_addr; 4257 ire_refrele(ire); 4258 } 4259 ipif_refrele(ipif); 4260 } else { 4261 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4262 } 4263 } 4264 4265 pether = (struct ether_header *)((char *)ipha 4266 - sizeof (struct ether_header)); 4267 /* 4268 * Make sure the interface is an ethernet type, since this option 4269 * is currently supported only on this type of interface. Also make 4270 * sure we are pointing correctly above db_base. 4271 */ 4272 4273 if ((flags & IPF_RECVSLLA) && 4274 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 4275 (ill->ill_type == IFT_ETHER) && 4276 (ill->ill_net_type == IRE_IF_RESOLVER)) { 4277 4278 pinfo->ip_pkt_slla.sdl_type = IFT_ETHER; 4279 bcopy((uchar_t *)pether->ether_shost.ether_addr_octet, 4280 (uchar_t *)pinfo->ip_pkt_slla.sdl_data, ETHERADDRL); 4281 } else { 4282 /* 4283 * Clear the bit. Indicate to upper layer that IP is not 4284 * sending this ancillary info. 4285 */ 4286 pinfo->ip_pkt_flags = pinfo->ip_pkt_flags & ~IPF_RECVSLLA; 4287 } 4288 4289 mp->b_datap->db_type = M_CTL; 4290 mp->b_wptr += sizeof (ip_pktinfo_t); 4291 mp->b_cont = data_mp; 4292 4293 return (mp); 4294 } 4295 4296 /* 4297 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 4298 * part of the bind request. 4299 */ 4300 4301 boolean_t 4302 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 4303 { 4304 ipsec_in_t *ii; 4305 4306 ASSERT(policy_mp != NULL); 4307 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 4308 4309 ii = (ipsec_in_t *)policy_mp->b_rptr; 4310 ASSERT(ii->ipsec_in_type == IPSEC_IN); 4311 4312 connp->conn_policy = ii->ipsec_in_policy; 4313 ii->ipsec_in_policy = NULL; 4314 4315 if (ii->ipsec_in_action != NULL) { 4316 if (connp->conn_latch == NULL) { 4317 connp->conn_latch = iplatch_create(); 4318 if (connp->conn_latch == NULL) 4319 return (B_FALSE); 4320 } 4321 ipsec_latch_inbound(connp->conn_latch, ii); 4322 } 4323 return (B_TRUE); 4324 } 4325 4326 /* 4327 * Upper level protocols (ULP) pass through bind requests to IP for inspection 4328 * and to arrange for power-fanout assist. The ULP is identified by 4329 * adding a single byte at the end of the original bind message. 4330 * A ULP other than UDP or TCP that wishes to be recognized passes 4331 * down a bind with a zero length address. 4332 * 4333 * The binding works as follows: 4334 * - A zero byte address means just bind to the protocol. 4335 * - A four byte address is treated as a request to validate 4336 * that the address is a valid local address, appropriate for 4337 * an application to bind to. This does not affect any fanout 4338 * information in IP. 4339 * - A sizeof sin_t byte address is used to bind to only the local address 4340 * and port. 4341 * - A sizeof ipa_conn_t byte address contains complete fanout information 4342 * consisting of local and remote addresses and ports. In 4343 * this case, the addresses are both validated as appropriate 4344 * for this operation, and, if so, the information is retained 4345 * for use in the inbound fanout. 4346 * 4347 * The ULP (except in the zero-length bind) can append an 4348 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4349 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4350 * a copy of the source or destination IRE (source for local bind; 4351 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4352 * policy information contained should be copied on to the conn. 4353 * 4354 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4355 */ 4356 mblk_t * 4357 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4358 { 4359 ssize_t len; 4360 struct T_bind_req *tbr; 4361 sin_t *sin; 4362 ipa_conn_t *ac; 4363 uchar_t *ucp; 4364 mblk_t *mp1; 4365 boolean_t ire_requested; 4366 boolean_t ipsec_policy_set = B_FALSE; 4367 int error = 0; 4368 int protocol; 4369 ipa_conn_x_t *acx; 4370 4371 ASSERT(!connp->conn_af_isv6); 4372 connp->conn_pkt_isv6 = B_FALSE; 4373 4374 len = MBLKL(mp); 4375 if (len < (sizeof (*tbr) + 1)) { 4376 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4377 "ip_bind: bogus msg, len %ld", len); 4378 /* XXX: Need to return something better */ 4379 goto bad_addr; 4380 } 4381 /* Back up and extract the protocol identifier. */ 4382 mp->b_wptr--; 4383 protocol = *mp->b_wptr & 0xFF; 4384 tbr = (struct T_bind_req *)mp->b_rptr; 4385 /* Reset the message type in preparation for shipping it back. */ 4386 DB_TYPE(mp) = M_PCPROTO; 4387 4388 connp->conn_ulp = (uint8_t)protocol; 4389 4390 /* 4391 * Check for a zero length address. This is from a protocol that 4392 * wants to register to receive all packets of its type. 4393 */ 4394 if (tbr->ADDR_length == 0) { 4395 /* 4396 * These protocols are now intercepted in ip_bind_v6(). 4397 * Reject protocol-level binds here for now. 4398 * 4399 * For SCTP raw socket, ICMP sends down a bind with sin_t 4400 * so that the protocol type cannot be SCTP. 4401 */ 4402 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4403 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4404 goto bad_addr; 4405 } 4406 4407 /* 4408 * 4409 * The udp module never sends down a zero-length address, 4410 * and allowing this on a labeled system will break MLP 4411 * functionality. 4412 */ 4413 if (is_system_labeled() && protocol == IPPROTO_UDP) 4414 goto bad_addr; 4415 4416 if (connp->conn_mac_exempt) 4417 goto bad_addr; 4418 4419 /* No hash here really. The table is big enough. */ 4420 connp->conn_srcv6 = ipv6_all_zeros; 4421 4422 ipcl_proto_insert(connp, protocol); 4423 4424 tbr->PRIM_type = T_BIND_ACK; 4425 return (mp); 4426 } 4427 4428 /* Extract the address pointer from the message. */ 4429 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4430 tbr->ADDR_length); 4431 if (ucp == NULL) { 4432 ip1dbg(("ip_bind: no address\n")); 4433 goto bad_addr; 4434 } 4435 if (!OK_32PTR(ucp)) { 4436 ip1dbg(("ip_bind: unaligned address\n")); 4437 goto bad_addr; 4438 } 4439 /* 4440 * Check for trailing mps. 4441 */ 4442 4443 mp1 = mp->b_cont; 4444 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 4445 ipsec_policy_set = (mp1 != NULL && DB_TYPE(mp1) == IPSEC_POLICY_SET); 4446 4447 switch (tbr->ADDR_length) { 4448 default: 4449 ip1dbg(("ip_bind: bad address length %d\n", 4450 (int)tbr->ADDR_length)); 4451 goto bad_addr; 4452 4453 case IP_ADDR_LEN: 4454 /* Verification of local address only */ 4455 error = ip_bind_laddr(connp, mp, *(ipaddr_t *)ucp, 0, 4456 ire_requested, ipsec_policy_set, B_FALSE); 4457 break; 4458 4459 case sizeof (sin_t): 4460 sin = (sin_t *)ucp; 4461 error = ip_bind_laddr(connp, mp, sin->sin_addr.s_addr, 4462 sin->sin_port, ire_requested, ipsec_policy_set, B_TRUE); 4463 break; 4464 4465 case sizeof (ipa_conn_t): 4466 ac = (ipa_conn_t *)ucp; 4467 /* For raw socket, the local port is not set. */ 4468 if (ac->ac_lport == 0) 4469 ac->ac_lport = connp->conn_lport; 4470 /* Always verify destination reachability. */ 4471 error = ip_bind_connected(connp, mp, &ac->ac_laddr, 4472 ac->ac_lport, ac->ac_faddr, ac->ac_fport, ire_requested, 4473 ipsec_policy_set, B_TRUE, B_TRUE); 4474 break; 4475 4476 case sizeof (ipa_conn_x_t): 4477 acx = (ipa_conn_x_t *)ucp; 4478 /* 4479 * Whether or not to verify destination reachability depends 4480 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4481 */ 4482 error = ip_bind_connected(connp, mp, &acx->acx_conn.ac_laddr, 4483 acx->acx_conn.ac_lport, acx->acx_conn.ac_faddr, 4484 acx->acx_conn.ac_fport, ire_requested, ipsec_policy_set, 4485 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0); 4486 break; 4487 } 4488 if (error == EINPROGRESS) 4489 return (NULL); 4490 else if (error != 0) 4491 goto bad_addr; 4492 /* 4493 * Pass the IPsec headers size in ire_ipsec_overhead. 4494 * We can't do this in ip_bind_insert_ire because the policy 4495 * may not have been inherited at that point in time and hence 4496 * conn_out_enforce_policy may not be set. 4497 */ 4498 mp1 = mp->b_cont; 4499 if (ire_requested && connp->conn_out_enforce_policy && 4500 mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE) { 4501 ire_t *ire = (ire_t *)mp1->b_rptr; 4502 ASSERT(MBLKL(mp1) >= sizeof (ire_t)); 4503 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 4504 } 4505 4506 /* Send it home. */ 4507 mp->b_datap->db_type = M_PCPROTO; 4508 tbr->PRIM_type = T_BIND_ACK; 4509 return (mp); 4510 4511 bad_addr: 4512 /* 4513 * If error = -1 then we generate a TBADADDR - otherwise error is 4514 * a unix errno. 4515 */ 4516 if (error > 0) 4517 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4518 else 4519 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4520 return (mp); 4521 } 4522 4523 /* 4524 * Here address is verified to be a valid local address. 4525 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4526 * address is also considered a valid local address. 4527 * In the case of a broadcast/multicast address, however, the 4528 * upper protocol is expected to reset the src address 4529 * to 0 if it sees a IRE_BROADCAST type returned so that 4530 * no packets are emitted with broadcast/multicast address as 4531 * source address (that violates hosts requirements RFC1122) 4532 * The addresses valid for bind are: 4533 * (1) - INADDR_ANY (0) 4534 * (2) - IP address of an UP interface 4535 * (3) - IP address of a DOWN interface 4536 * (4) - valid local IP broadcast addresses. In this case 4537 * the conn will only receive packets destined to 4538 * the specified broadcast address. 4539 * (5) - a multicast address. In this case 4540 * the conn will only receive packets destined to 4541 * the specified multicast address. Note: the 4542 * application still has to issue an 4543 * IP_ADD_MEMBERSHIP socket option. 4544 * 4545 * On error, return -1 for TBADADDR otherwise pass the 4546 * errno with TSYSERR reply. 4547 * 4548 * In all the above cases, the bound address must be valid in the current zone. 4549 * When the address is loopback, multicast or broadcast, there might be many 4550 * matching IREs so bind has to look up based on the zone. 4551 * 4552 * Note: lport is in network byte order. 4553 */ 4554 int 4555 ip_bind_laddr(conn_t *connp, mblk_t *mp, ipaddr_t src_addr, uint16_t lport, 4556 boolean_t ire_requested, boolean_t ipsec_policy_set, 4557 boolean_t fanout_insert) 4558 { 4559 int error = 0; 4560 ire_t *src_ire; 4561 mblk_t *policy_mp; 4562 ipif_t *ipif; 4563 zoneid_t zoneid; 4564 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4565 4566 if (ipsec_policy_set) { 4567 policy_mp = mp->b_cont; 4568 } 4569 4570 /* 4571 * If it was previously connected, conn_fully_bound would have 4572 * been set. 4573 */ 4574 connp->conn_fully_bound = B_FALSE; 4575 4576 src_ire = NULL; 4577 ipif = NULL; 4578 4579 zoneid = IPCL_ZONEID(connp); 4580 4581 if (src_addr) { 4582 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4583 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 4584 /* 4585 * If an address other than 0.0.0.0 is requested, 4586 * we verify that it is a valid address for bind 4587 * Note: Following code is in if-else-if form for 4588 * readability compared to a condition check. 4589 */ 4590 /* LINTED - statement has no consequent */ 4591 if (IRE_IS_LOCAL(src_ire)) { 4592 /* 4593 * (2) Bind to address of local UP interface 4594 */ 4595 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4596 /* 4597 * (4) Bind to broadcast address 4598 * Note: permitted only from transports that 4599 * request IRE 4600 */ 4601 if (!ire_requested) 4602 error = EADDRNOTAVAIL; 4603 } else { 4604 /* 4605 * (3) Bind to address of local DOWN interface 4606 * (ipif_lookup_addr() looks up all interfaces 4607 * but we do not get here for UP interfaces 4608 * - case (2) above) 4609 * We put the protocol byte back into the mblk 4610 * since we may come back via ip_wput_nondata() 4611 * later with this mblk if ipif_lookup_addr chooses 4612 * to defer processing. 4613 */ 4614 *mp->b_wptr++ = (char)connp->conn_ulp; 4615 if ((ipif = ipif_lookup_addr(src_addr, NULL, zoneid, 4616 CONNP_TO_WQ(connp), mp, ip_wput_nondata, 4617 &error, ipst)) != NULL) { 4618 ipif_refrele(ipif); 4619 } else if (error == EINPROGRESS) { 4620 if (src_ire != NULL) 4621 ire_refrele(src_ire); 4622 return (EINPROGRESS); 4623 } else if (CLASSD(src_addr)) { 4624 error = 0; 4625 if (src_ire != NULL) 4626 ire_refrele(src_ire); 4627 /* 4628 * (5) bind to multicast address. 4629 * Fake out the IRE returned to upper 4630 * layer to be a broadcast IRE. 4631 */ 4632 src_ire = ire_ctable_lookup( 4633 INADDR_BROADCAST, INADDR_ANY, 4634 IRE_BROADCAST, NULL, zoneid, NULL, 4635 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY), 4636 ipst); 4637 if (src_ire == NULL || !ire_requested) 4638 error = EADDRNOTAVAIL; 4639 } else { 4640 /* 4641 * Not a valid address for bind 4642 */ 4643 error = EADDRNOTAVAIL; 4644 } 4645 /* 4646 * Just to keep it consistent with the processing in 4647 * ip_bind_v4() 4648 */ 4649 mp->b_wptr--; 4650 } 4651 if (error) { 4652 /* Red Alert! Attempting to be a bogon! */ 4653 ip1dbg(("ip_bind: bad src address 0x%x\n", 4654 ntohl(src_addr))); 4655 goto bad_addr; 4656 } 4657 } 4658 4659 /* 4660 * Allow setting new policies. For example, disconnects come 4661 * down as ipa_t bind. As we would have set conn_policy_cached 4662 * to B_TRUE before, we should set it to B_FALSE, so that policy 4663 * can change after the disconnect. 4664 */ 4665 connp->conn_policy_cached = B_FALSE; 4666 4667 /* 4668 * If not fanout_insert this was just an address verification 4669 */ 4670 if (fanout_insert) { 4671 /* 4672 * The addresses have been verified. Time to insert in 4673 * the correct fanout list. 4674 */ 4675 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4676 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4677 connp->conn_lport = lport; 4678 connp->conn_fport = 0; 4679 /* 4680 * Do we need to add a check to reject Multicast packets 4681 */ 4682 error = ipcl_bind_insert(connp, *mp->b_wptr, src_addr, lport); 4683 } 4684 4685 if (error == 0) { 4686 if (ire_requested) { 4687 if (!ip_bind_insert_ire(mp, src_ire, NULL, ipst)) { 4688 error = -1; 4689 /* Falls through to bad_addr */ 4690 } 4691 } else if (ipsec_policy_set) { 4692 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4693 error = -1; 4694 /* Falls through to bad_addr */ 4695 } 4696 } 4697 } 4698 bad_addr: 4699 if (error != 0) { 4700 if (connp->conn_anon_port) { 4701 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4702 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4703 B_FALSE); 4704 } 4705 connp->conn_mlp_type = mlptSingle; 4706 } 4707 if (src_ire != NULL) 4708 IRE_REFRELE(src_ire); 4709 if (ipsec_policy_set) { 4710 ASSERT(policy_mp == mp->b_cont); 4711 ASSERT(policy_mp != NULL); 4712 freeb(policy_mp); 4713 /* 4714 * As of now assume that nothing else accompanies 4715 * IPSEC_POLICY_SET. 4716 */ 4717 mp->b_cont = NULL; 4718 } 4719 return (error); 4720 } 4721 4722 /* 4723 * Verify that both the source and destination addresses 4724 * are valid. If verify_dst is false, then the destination address may be 4725 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4726 * destination reachability, while tunnels do not. 4727 * Note that we allow connect to broadcast and multicast 4728 * addresses when ire_requested is set. Thus the ULP 4729 * has to check for IRE_BROADCAST and multicast. 4730 * 4731 * Returns zero if ok. 4732 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4733 * (for use with TSYSERR reply). 4734 * 4735 * Note: lport and fport are in network byte order. 4736 */ 4737 int 4738 ip_bind_connected(conn_t *connp, mblk_t *mp, ipaddr_t *src_addrp, 4739 uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4740 boolean_t ire_requested, boolean_t ipsec_policy_set, 4741 boolean_t fanout_insert, boolean_t verify_dst) 4742 { 4743 ire_t *src_ire; 4744 ire_t *dst_ire; 4745 int error = 0; 4746 int protocol; 4747 mblk_t *policy_mp; 4748 ire_t *sire = NULL; 4749 ire_t *md_dst_ire = NULL; 4750 ire_t *lso_dst_ire = NULL; 4751 ill_t *ill = NULL; 4752 zoneid_t zoneid; 4753 ipaddr_t src_addr = *src_addrp; 4754 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4755 4756 src_ire = dst_ire = NULL; 4757 protocol = *mp->b_wptr & 0xFF; 4758 4759 /* 4760 * If we never got a disconnect before, clear it now. 4761 */ 4762 connp->conn_fully_bound = B_FALSE; 4763 4764 if (ipsec_policy_set) { 4765 policy_mp = mp->b_cont; 4766 } 4767 4768 zoneid = IPCL_ZONEID(connp); 4769 4770 if (CLASSD(dst_addr)) { 4771 /* Pick up an IRE_BROADCAST */ 4772 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4773 NULL, zoneid, MBLK_GETLABEL(mp), 4774 (MATCH_IRE_RECURSIVE | 4775 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4776 MATCH_IRE_SECATTR), ipst); 4777 } else { 4778 /* 4779 * If conn_dontroute is set or if conn_nexthop_set is set, 4780 * and onlink ipif is not found set ENETUNREACH error. 4781 */ 4782 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4783 ipif_t *ipif; 4784 4785 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4786 dst_addr : connp->conn_nexthop_v4, zoneid, ipst); 4787 if (ipif == NULL) { 4788 error = ENETUNREACH; 4789 goto bad_addr; 4790 } 4791 ipif_refrele(ipif); 4792 } 4793 4794 if (connp->conn_nexthop_set) { 4795 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4796 0, 0, NULL, NULL, zoneid, MBLK_GETLABEL(mp), 4797 MATCH_IRE_SECATTR, ipst); 4798 } else { 4799 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4800 &sire, zoneid, MBLK_GETLABEL(mp), 4801 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4802 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4803 MATCH_IRE_SECATTR), ipst); 4804 } 4805 } 4806 /* 4807 * dst_ire can't be a broadcast when not ire_requested. 4808 * We also prevent ire's with src address INADDR_ANY to 4809 * be used, which are created temporarily for 4810 * sending out packets from endpoints that have 4811 * conn_unspec_src set. If verify_dst is true, the destination must be 4812 * reachable. If verify_dst is false, the destination needn't be 4813 * reachable. 4814 * 4815 * If we match on a reject or black hole, then we've got a 4816 * local failure. May as well fail out the connect() attempt, 4817 * since it's never going to succeed. 4818 */ 4819 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4820 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4821 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4822 /* 4823 * If we're verifying destination reachability, we always want 4824 * to complain here. 4825 * 4826 * If we're not verifying destination reachability but the 4827 * destination has a route, we still want to fail on the 4828 * temporary address and broadcast address tests. 4829 */ 4830 if (verify_dst || (dst_ire != NULL)) { 4831 if (ip_debug > 2) { 4832 pr_addr_dbg("ip_bind_connected: bad connected " 4833 "dst %s\n", AF_INET, &dst_addr); 4834 } 4835 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4836 error = ENETUNREACH; 4837 else 4838 error = EHOSTUNREACH; 4839 goto bad_addr; 4840 } 4841 } 4842 4843 /* 4844 * We now know that routing will allow us to reach the destination. 4845 * Check whether Trusted Solaris policy allows communication with this 4846 * host, and pretend that the destination is unreachable if not. 4847 * 4848 * This is never a problem for TCP, since that transport is known to 4849 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4850 * handling. If the remote is unreachable, it will be detected at that 4851 * point, so there's no reason to check it here. 4852 * 4853 * Note that for sendto (and other datagram-oriented friends), this 4854 * check is done as part of the data path label computation instead. 4855 * The check here is just to make non-TCP connect() report the right 4856 * error. 4857 */ 4858 if (dst_ire != NULL && is_system_labeled() && 4859 !IPCL_IS_TCP(connp) && 4860 tsol_compute_label(DB_CREDDEF(mp, connp->conn_cred), dst_addr, NULL, 4861 connp->conn_mac_exempt, ipst) != 0) { 4862 error = EHOSTUNREACH; 4863 if (ip_debug > 2) { 4864 pr_addr_dbg("ip_bind_connected: no label for dst %s\n", 4865 AF_INET, &dst_addr); 4866 } 4867 goto bad_addr; 4868 } 4869 4870 /* 4871 * If the app does a connect(), it means that it will most likely 4872 * send more than 1 packet to the destination. It makes sense 4873 * to clear the temporary flag. 4874 */ 4875 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4876 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4877 irb_t *irb = dst_ire->ire_bucket; 4878 4879 rw_enter(&irb->irb_lock, RW_WRITER); 4880 /* 4881 * We need to recheck for IRE_MARK_TEMPORARY after acquiring 4882 * the lock to guarantee irb_tmp_ire_cnt. 4883 */ 4884 if (dst_ire->ire_marks & IRE_MARK_TEMPORARY) { 4885 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4886 irb->irb_tmp_ire_cnt--; 4887 } 4888 rw_exit(&irb->irb_lock); 4889 } 4890 4891 /* 4892 * See if we should notify ULP about LSO/MDT; we do this whether or not 4893 * ire_requested is TRUE, in order to handle active connects; LSO/MDT 4894 * eligibility tests for passive connects are handled separately 4895 * through tcp_adapt_ire(). We do this before the source address 4896 * selection, because dst_ire may change after a call to 4897 * ipif_select_source(). This is a best-effort check, as the 4898 * packet for this connection may not actually go through 4899 * dst_ire->ire_stq, and the exact IRE can only be known after 4900 * calling ip_newroute(). This is why we further check on the 4901 * IRE during LSO/Multidata packet transmission in 4902 * tcp_lsosend()/tcp_multisend(). 4903 */ 4904 if (!ipsec_policy_set && dst_ire != NULL && 4905 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4906 (ill = ire_to_ill(dst_ire), ill != NULL)) { 4907 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 4908 lso_dst_ire = dst_ire; 4909 IRE_REFHOLD(lso_dst_ire); 4910 } else if (ipst->ips_ip_multidata_outbound && 4911 ILL_MDT_CAPABLE(ill)) { 4912 md_dst_ire = dst_ire; 4913 IRE_REFHOLD(md_dst_ire); 4914 } 4915 } 4916 4917 if (dst_ire != NULL && 4918 dst_ire->ire_type == IRE_LOCAL && 4919 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4920 /* 4921 * If the IRE belongs to a different zone, look for a matching 4922 * route in the forwarding table and use the source address from 4923 * that route. 4924 */ 4925 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4926 zoneid, 0, NULL, 4927 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4928 MATCH_IRE_RJ_BHOLE, ipst); 4929 if (src_ire == NULL) { 4930 error = EHOSTUNREACH; 4931 goto bad_addr; 4932 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4933 if (!(src_ire->ire_type & IRE_HOST)) 4934 error = ENETUNREACH; 4935 else 4936 error = EHOSTUNREACH; 4937 goto bad_addr; 4938 } 4939 if (src_addr == INADDR_ANY) 4940 src_addr = src_ire->ire_src_addr; 4941 ire_refrele(src_ire); 4942 src_ire = NULL; 4943 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4944 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4945 src_addr = sire->ire_src_addr; 4946 ire_refrele(dst_ire); 4947 dst_ire = sire; 4948 sire = NULL; 4949 } else { 4950 /* 4951 * Pick a source address so that a proper inbound 4952 * load spreading would happen. 4953 */ 4954 ill_t *dst_ill = dst_ire->ire_ipif->ipif_ill; 4955 ipif_t *src_ipif = NULL; 4956 ire_t *ipif_ire; 4957 4958 /* 4959 * Supply a local source address such that inbound 4960 * load spreading happens. 4961 * 4962 * Determine the best source address on this ill for 4963 * the destination. 4964 * 4965 * 1) For broadcast, we should return a broadcast ire 4966 * found above so that upper layers know that the 4967 * destination address is a broadcast address. 4968 * 4969 * 2) If this is part of a group, select a better 4970 * source address so that better inbound load 4971 * balancing happens. Do the same if the ipif 4972 * is DEPRECATED. 4973 * 4974 * 3) If the outgoing interface is part of a usesrc 4975 * group, then try selecting a source address from 4976 * the usesrc ILL. 4977 */ 4978 if ((dst_ire->ire_zoneid != zoneid && 4979 dst_ire->ire_zoneid != ALL_ZONES) || 4980 (!(dst_ire->ire_type & IRE_BROADCAST) && 4981 ((dst_ill->ill_group != NULL) || 4982 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 4983 (dst_ill->ill_usesrc_ifindex != 0)))) { 4984 /* 4985 * If the destination is reachable via a 4986 * given gateway, the selected source address 4987 * should be in the same subnet as the gateway. 4988 * Otherwise, the destination is not reachable. 4989 * 4990 * If there are no interfaces on the same subnet 4991 * as the destination, ipif_select_source gives 4992 * first non-deprecated interface which might be 4993 * on a different subnet than the gateway. 4994 * This is not desirable. Hence pass the dst_ire 4995 * source address to ipif_select_source. 4996 * It is sure that the destination is reachable 4997 * with the dst_ire source address subnet. 4998 * So passing dst_ire source address to 4999 * ipif_select_source will make sure that the 5000 * selected source will be on the same subnet 5001 * as dst_ire source address. 5002 */ 5003 ipaddr_t saddr = 5004 dst_ire->ire_ipif->ipif_src_addr; 5005 src_ipif = ipif_select_source(dst_ill, 5006 saddr, zoneid); 5007 if (src_ipif != NULL) { 5008 if (IS_VNI(src_ipif->ipif_ill)) { 5009 /* 5010 * For VNI there is no 5011 * interface route 5012 */ 5013 src_addr = 5014 src_ipif->ipif_src_addr; 5015 } else { 5016 ipif_ire = 5017 ipif_to_ire(src_ipif); 5018 if (ipif_ire != NULL) { 5019 IRE_REFRELE(dst_ire); 5020 dst_ire = ipif_ire; 5021 } 5022 src_addr = 5023 dst_ire->ire_src_addr; 5024 } 5025 ipif_refrele(src_ipif); 5026 } else { 5027 src_addr = dst_ire->ire_src_addr; 5028 } 5029 } else { 5030 src_addr = dst_ire->ire_src_addr; 5031 } 5032 } 5033 } 5034 5035 /* 5036 * We do ire_route_lookup() here (and not 5037 * interface lookup as we assert that 5038 * src_addr should only come from an 5039 * UP interface for hard binding. 5040 */ 5041 ASSERT(src_ire == NULL); 5042 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 5043 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 5044 /* src_ire must be a local|loopback */ 5045 if (!IRE_IS_LOCAL(src_ire)) { 5046 if (ip_debug > 2) { 5047 pr_addr_dbg("ip_bind_connected: bad connected " 5048 "src %s\n", AF_INET, &src_addr); 5049 } 5050 error = EADDRNOTAVAIL; 5051 goto bad_addr; 5052 } 5053 5054 /* 5055 * If the source address is a loopback address, the 5056 * destination had best be local or multicast. 5057 * The transports that can't handle multicast will reject 5058 * those addresses. 5059 */ 5060 if (src_ire->ire_type == IRE_LOOPBACK && 5061 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 5062 ip1dbg(("ip_bind_connected: bad connected loopback\n")); 5063 error = -1; 5064 goto bad_addr; 5065 } 5066 5067 /* 5068 * Allow setting new policies. For example, disconnects come 5069 * down as ipa_t bind. As we would have set conn_policy_cached 5070 * to B_TRUE before, we should set it to B_FALSE, so that policy 5071 * can change after the disconnect. 5072 */ 5073 connp->conn_policy_cached = B_FALSE; 5074 5075 /* 5076 * Set the conn addresses/ports immediately, so the IPsec policy calls 5077 * can handle their passed-in conn's. 5078 */ 5079 5080 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 5081 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 5082 connp->conn_lport = lport; 5083 connp->conn_fport = fport; 5084 *src_addrp = src_addr; 5085 5086 ASSERT(!(ipsec_policy_set && ire_requested)); 5087 if (ire_requested) { 5088 iulp_t *ulp_info = NULL; 5089 5090 /* 5091 * Note that sire will not be NULL if this is an off-link 5092 * connection and there is not cache for that dest yet. 5093 * 5094 * XXX Because of an existing bug, if there are multiple 5095 * default routes, the IRE returned now may not be the actual 5096 * default route used (default routes are chosen in a 5097 * round robin fashion). So if the metrics for different 5098 * default routes are different, we may return the wrong 5099 * metrics. This will not be a problem if the existing 5100 * bug is fixed. 5101 */ 5102 if (sire != NULL) { 5103 ulp_info = &(sire->ire_uinfo); 5104 } 5105 if (!ip_bind_insert_ire(mp, dst_ire, ulp_info, ipst)) { 5106 error = -1; 5107 goto bad_addr; 5108 } 5109 } else if (ipsec_policy_set) { 5110 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 5111 error = -1; 5112 goto bad_addr; 5113 } 5114 } 5115 5116 /* 5117 * Cache IPsec policy in this conn. If we have per-socket policy, 5118 * we'll cache that. If we don't, we'll inherit global policy. 5119 * 5120 * We can't insert until the conn reflects the policy. Note that 5121 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 5122 * connections where we don't have a policy. This is to prevent 5123 * global policy lookups in the inbound path. 5124 * 5125 * If we insert before we set conn_policy_cached, 5126 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 5127 * because global policy cound be non-empty. We normally call 5128 * ipsec_check_policy() for conn_policy_cached connections only if 5129 * ipc_in_enforce_policy is set. But in this case, 5130 * conn_policy_cached can get set anytime since we made the 5131 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 5132 * called, which will make the above assumption false. Thus, we 5133 * need to insert after we set conn_policy_cached. 5134 */ 5135 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 5136 goto bad_addr; 5137 5138 if (fanout_insert) { 5139 /* 5140 * The addresses have been verified. Time to insert in 5141 * the correct fanout list. 5142 */ 5143 error = ipcl_conn_insert(connp, protocol, src_addr, 5144 dst_addr, connp->conn_ports); 5145 } 5146 5147 if (error == 0) { 5148 connp->conn_fully_bound = B_TRUE; 5149 /* 5150 * Our initial checks for LSO/MDT have passed; the IRE is not 5151 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 5152 * be supporting LSO/MDT. Pass the IRE, IPC and ILL into 5153 * ip_xxinfo_return(), which performs further checks 5154 * against them and upon success, returns the LSO/MDT info 5155 * mblk which we will attach to the bind acknowledgment. 5156 */ 5157 if (lso_dst_ire != NULL) { 5158 mblk_t *lsoinfo_mp; 5159 5160 ASSERT(ill->ill_lso_capab != NULL); 5161 if ((lsoinfo_mp = ip_lsoinfo_return(lso_dst_ire, connp, 5162 ill->ill_name, ill->ill_lso_capab)) != NULL) 5163 linkb(mp, lsoinfo_mp); 5164 } else if (md_dst_ire != NULL) { 5165 mblk_t *mdinfo_mp; 5166 5167 ASSERT(ill->ill_mdt_capab != NULL); 5168 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 5169 ill->ill_name, ill->ill_mdt_capab)) != NULL) 5170 linkb(mp, mdinfo_mp); 5171 } 5172 } 5173 bad_addr: 5174 if (ipsec_policy_set) { 5175 ASSERT(policy_mp == mp->b_cont); 5176 ASSERT(policy_mp != NULL); 5177 freeb(policy_mp); 5178 /* 5179 * As of now assume that nothing else accompanies 5180 * IPSEC_POLICY_SET. 5181 */ 5182 mp->b_cont = NULL; 5183 } 5184 if (src_ire != NULL) 5185 IRE_REFRELE(src_ire); 5186 if (dst_ire != NULL) 5187 IRE_REFRELE(dst_ire); 5188 if (sire != NULL) 5189 IRE_REFRELE(sire); 5190 if (md_dst_ire != NULL) 5191 IRE_REFRELE(md_dst_ire); 5192 if (lso_dst_ire != NULL) 5193 IRE_REFRELE(lso_dst_ire); 5194 return (error); 5195 } 5196 5197 /* 5198 * Insert the ire in b_cont. Returns false if it fails (due to lack of space). 5199 * Prefers dst_ire over src_ire. 5200 */ 5201 static boolean_t 5202 ip_bind_insert_ire(mblk_t *mp, ire_t *ire, iulp_t *ulp_info, ip_stack_t *ipst) 5203 { 5204 mblk_t *mp1; 5205 ire_t *ret_ire = NULL; 5206 5207 mp1 = mp->b_cont; 5208 ASSERT(mp1 != NULL); 5209 5210 if (ire != NULL) { 5211 /* 5212 * mp1 initialized above to IRE_DB_REQ_TYPE 5213 * appended mblk. Its <upper protocol>'s 5214 * job to make sure there is room. 5215 */ 5216 if ((mp1->b_datap->db_lim - mp1->b_rptr) < sizeof (ire_t)) 5217 return (0); 5218 5219 mp1->b_datap->db_type = IRE_DB_TYPE; 5220 mp1->b_wptr = mp1->b_rptr + sizeof (ire_t); 5221 bcopy(ire, mp1->b_rptr, sizeof (ire_t)); 5222 ret_ire = (ire_t *)mp1->b_rptr; 5223 /* 5224 * Pass the latest setting of the ip_path_mtu_discovery and 5225 * copy the ulp info if any. 5226 */ 5227 ret_ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? 5228 IPH_DF : 0; 5229 if (ulp_info != NULL) { 5230 bcopy(ulp_info, &(ret_ire->ire_uinfo), 5231 sizeof (iulp_t)); 5232 } 5233 ret_ire->ire_mp = mp1; 5234 } else { 5235 /* 5236 * No IRE was found. Remove IRE mblk. 5237 */ 5238 mp->b_cont = mp1->b_cont; 5239 freeb(mp1); 5240 } 5241 5242 return (1); 5243 } 5244 5245 /* 5246 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 5247 * the final piece where we don't. Return a pointer to the first mblk in the 5248 * result, and update the pointer to the next mblk to chew on. If anything 5249 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 5250 * NULL pointer. 5251 */ 5252 mblk_t * 5253 ip_carve_mp(mblk_t **mpp, ssize_t len) 5254 { 5255 mblk_t *mp0; 5256 mblk_t *mp1; 5257 mblk_t *mp2; 5258 5259 if (!len || !mpp || !(mp0 = *mpp)) 5260 return (NULL); 5261 /* If we aren't going to consume the first mblk, we need a dup. */ 5262 if (mp0->b_wptr - mp0->b_rptr > len) { 5263 mp1 = dupb(mp0); 5264 if (mp1) { 5265 /* Partition the data between the two mblks. */ 5266 mp1->b_wptr = mp1->b_rptr + len; 5267 mp0->b_rptr = mp1->b_wptr; 5268 /* 5269 * after adjustments if mblk not consumed is now 5270 * unaligned, try to align it. If this fails free 5271 * all messages and let upper layer recover. 5272 */ 5273 if (!OK_32PTR(mp0->b_rptr)) { 5274 if (!pullupmsg(mp0, -1)) { 5275 freemsg(mp0); 5276 freemsg(mp1); 5277 *mpp = NULL; 5278 return (NULL); 5279 } 5280 } 5281 } 5282 return (mp1); 5283 } 5284 /* Eat through as many mblks as we need to get len bytes. */ 5285 len -= mp0->b_wptr - mp0->b_rptr; 5286 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 5287 if (mp2->b_wptr - mp2->b_rptr > len) { 5288 /* 5289 * We won't consume the entire last mblk. Like 5290 * above, dup and partition it. 5291 */ 5292 mp1->b_cont = dupb(mp2); 5293 mp1 = mp1->b_cont; 5294 if (!mp1) { 5295 /* 5296 * Trouble. Rather than go to a lot of 5297 * trouble to clean up, we free the messages. 5298 * This won't be any worse than losing it on 5299 * the wire. 5300 */ 5301 freemsg(mp0); 5302 freemsg(mp2); 5303 *mpp = NULL; 5304 return (NULL); 5305 } 5306 mp1->b_wptr = mp1->b_rptr + len; 5307 mp2->b_rptr = mp1->b_wptr; 5308 /* 5309 * after adjustments if mblk not consumed is now 5310 * unaligned, try to align it. If this fails free 5311 * all messages and let upper layer recover. 5312 */ 5313 if (!OK_32PTR(mp2->b_rptr)) { 5314 if (!pullupmsg(mp2, -1)) { 5315 freemsg(mp0); 5316 freemsg(mp2); 5317 *mpp = NULL; 5318 return (NULL); 5319 } 5320 } 5321 *mpp = mp2; 5322 return (mp0); 5323 } 5324 /* Decrement len by the amount we just got. */ 5325 len -= mp2->b_wptr - mp2->b_rptr; 5326 } 5327 /* 5328 * len should be reduced to zero now. If not our caller has 5329 * screwed up. 5330 */ 5331 if (len) { 5332 /* Shouldn't happen! */ 5333 freemsg(mp0); 5334 *mpp = NULL; 5335 return (NULL); 5336 } 5337 /* 5338 * We consumed up to exactly the end of an mblk. Detach the part 5339 * we are returning from the rest of the chain. 5340 */ 5341 mp1->b_cont = NULL; 5342 *mpp = mp2; 5343 return (mp0); 5344 } 5345 5346 /* The ill stream is being unplumbed. Called from ip_close */ 5347 int 5348 ip_modclose(ill_t *ill) 5349 { 5350 boolean_t success; 5351 ipsq_t *ipsq; 5352 ipif_t *ipif; 5353 queue_t *q = ill->ill_rq; 5354 ip_stack_t *ipst = ill->ill_ipst; 5355 clock_t timeout; 5356 5357 /* 5358 * Wait for the ACKs of all deferred control messages to be processed. 5359 * In particular, we wait for a potential capability reset initiated 5360 * in ip_sioctl_plink() to complete before proceeding. 5361 * 5362 * Note: we wait for at most ip_modclose_ackwait_ms (by default 3000 ms) 5363 * in case the driver never replies. 5364 */ 5365 timeout = lbolt + MSEC_TO_TICK(ip_modclose_ackwait_ms); 5366 mutex_enter(&ill->ill_lock); 5367 while (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 5368 if (cv_timedwait(&ill->ill_cv, &ill->ill_lock, timeout) < 0) { 5369 /* Timeout */ 5370 break; 5371 } 5372 } 5373 mutex_exit(&ill->ill_lock); 5374 5375 /* 5376 * Forcibly enter the ipsq after some delay. This is to take 5377 * care of the case when some ioctl does not complete because 5378 * we sent a control message to the driver and it did not 5379 * send us a reply. We want to be able to at least unplumb 5380 * and replumb rather than force the user to reboot the system. 5381 */ 5382 success = ipsq_enter(ill, B_FALSE); 5383 5384 /* 5385 * Open/close/push/pop is guaranteed to be single threaded 5386 * per stream by STREAMS. FS guarantees that all references 5387 * from top are gone before close is called. So there can't 5388 * be another close thread that has set CONDEMNED on this ill. 5389 * and cause ipsq_enter to return failure. 5390 */ 5391 ASSERT(success); 5392 ipsq = ill->ill_phyint->phyint_ipsq; 5393 5394 /* 5395 * Mark it condemned. No new reference will be made to this ill. 5396 * Lookup functions will return an error. Threads that try to 5397 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5398 * that the refcnt will drop down to zero. 5399 */ 5400 mutex_enter(&ill->ill_lock); 5401 ill->ill_state_flags |= ILL_CONDEMNED; 5402 for (ipif = ill->ill_ipif; ipif != NULL; 5403 ipif = ipif->ipif_next) { 5404 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5405 } 5406 /* 5407 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5408 * returns error if ILL_CONDEMNED is set 5409 */ 5410 cv_broadcast(&ill->ill_cv); 5411 mutex_exit(&ill->ill_lock); 5412 5413 /* 5414 * Send all the deferred DLPI messages downstream which came in 5415 * during the small window right before ipsq_enter(). We do this 5416 * without waiting for the ACKs because all the ACKs for M_PROTO 5417 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 5418 */ 5419 ill_dlpi_send_deferred(ill); 5420 5421 /* 5422 * Shut down fragmentation reassembly. 5423 * ill_frag_timer won't start a timer again. 5424 * Now cancel any existing timer 5425 */ 5426 (void) untimeout(ill->ill_frag_timer_id); 5427 (void) ill_frag_timeout(ill, 0); 5428 5429 /* 5430 * If MOVE was in progress, clear the 5431 * move_in_progress fields also. 5432 */ 5433 if (ill->ill_move_in_progress) { 5434 ILL_CLEAR_MOVE(ill); 5435 } 5436 5437 /* 5438 * Call ill_delete to bring down the ipifs, ilms and ill on 5439 * this ill. Then wait for the refcnts to drop to zero. 5440 * ill_is_quiescent checks whether the ill is really quiescent. 5441 * Then make sure that threads that are waiting to enter the 5442 * ipsq have seen the error returned by ipsq_enter and have 5443 * gone away. Then we call ill_delete_tail which does the 5444 * DL_UNBIND_REQ with the driver and then qprocsoff. 5445 */ 5446 ill_delete(ill); 5447 mutex_enter(&ill->ill_lock); 5448 while (!ill_is_quiescent(ill)) 5449 cv_wait(&ill->ill_cv, &ill->ill_lock); 5450 while (ill->ill_waiters) 5451 cv_wait(&ill->ill_cv, &ill->ill_lock); 5452 5453 mutex_exit(&ill->ill_lock); 5454 5455 /* 5456 * ill_delete_tail drops reference on ill_ipst, but we need to keep 5457 * it held until the end of the function since the cleanup 5458 * below needs to be able to use the ip_stack_t. 5459 */ 5460 netstack_hold(ipst->ips_netstack); 5461 5462 /* qprocsoff is called in ill_delete_tail */ 5463 ill_delete_tail(ill); 5464 ASSERT(ill->ill_ipst == NULL); 5465 5466 /* 5467 * Walk through all upper (conn) streams and qenable 5468 * those that have queued data. 5469 * close synchronization needs this to 5470 * be done to ensure that all upper layers blocked 5471 * due to flow control to the closing device 5472 * get unblocked. 5473 */ 5474 ip1dbg(("ip_wsrv: walking\n")); 5475 conn_walk_drain(ipst); 5476 5477 mutex_enter(&ipst->ips_ip_mi_lock); 5478 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 5479 mutex_exit(&ipst->ips_ip_mi_lock); 5480 5481 /* 5482 * credp could be null if the open didn't succeed and ip_modopen 5483 * itself calls ip_close. 5484 */ 5485 if (ill->ill_credp != NULL) 5486 crfree(ill->ill_credp); 5487 5488 mutex_enter(&ill->ill_lock); 5489 ill_nic_info_dispatch(ill); 5490 mutex_exit(&ill->ill_lock); 5491 5492 /* 5493 * Now we are done with the module close pieces that 5494 * need the netstack_t. 5495 */ 5496 netstack_rele(ipst->ips_netstack); 5497 5498 mi_close_free((IDP)ill); 5499 q->q_ptr = WR(q)->q_ptr = NULL; 5500 5501 ipsq_exit(ipsq, B_TRUE, B_TRUE); 5502 5503 return (0); 5504 } 5505 5506 /* 5507 * This is called as part of close() for IP, UDP, ICMP, and RTS 5508 * in order to quiesce the conn. 5509 */ 5510 void 5511 ip_quiesce_conn(conn_t *connp) 5512 { 5513 boolean_t drain_cleanup_reqd = B_FALSE; 5514 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5515 boolean_t ilg_cleanup_reqd = B_FALSE; 5516 ip_stack_t *ipst; 5517 5518 ASSERT(!IPCL_IS_TCP(connp)); 5519 ipst = connp->conn_netstack->netstack_ip; 5520 5521 /* 5522 * Mark the conn as closing, and this conn must not be 5523 * inserted in future into any list. Eg. conn_drain_insert(), 5524 * won't insert this conn into the conn_drain_list. 5525 * Similarly ill_pending_mp_add() will not add any mp to 5526 * the pending mp list, after this conn has started closing. 5527 * 5528 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5529 * cannot get set henceforth. 5530 */ 5531 mutex_enter(&connp->conn_lock); 5532 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5533 connp->conn_state_flags |= CONN_CLOSING; 5534 if (connp->conn_idl != NULL) 5535 drain_cleanup_reqd = B_TRUE; 5536 if (connp->conn_oper_pending_ill != NULL) 5537 conn_ioctl_cleanup_reqd = B_TRUE; 5538 if (connp->conn_dhcpinit_ill != NULL) { 5539 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0); 5540 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit); 5541 connp->conn_dhcpinit_ill = NULL; 5542 } 5543 if (connp->conn_ilg_inuse != 0) 5544 ilg_cleanup_reqd = B_TRUE; 5545 mutex_exit(&connp->conn_lock); 5546 5547 if (conn_ioctl_cleanup_reqd) 5548 conn_ioctl_cleanup(connp); 5549 5550 if (is_system_labeled() && connp->conn_anon_port) { 5551 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5552 connp->conn_mlp_type, connp->conn_ulp, 5553 ntohs(connp->conn_lport), B_FALSE); 5554 connp->conn_anon_port = 0; 5555 } 5556 connp->conn_mlp_type = mlptSingle; 5557 5558 /* 5559 * Remove this conn from any fanout list it is on. 5560 * and then wait for any threads currently operating 5561 * on this endpoint to finish 5562 */ 5563 ipcl_hash_remove(connp); 5564 5565 /* 5566 * Remove this conn from the drain list, and do 5567 * any other cleanup that may be required. 5568 * (Only non-tcp streams may have a non-null conn_idl. 5569 * TCP streams are never flow controlled, and 5570 * conn_idl will be null) 5571 */ 5572 if (drain_cleanup_reqd) 5573 conn_drain_tail(connp, B_TRUE); 5574 5575 if (connp == ipst->ips_ip_g_mrouter) 5576 (void) ip_mrouter_done(NULL, ipst); 5577 5578 if (ilg_cleanup_reqd) 5579 ilg_delete_all(connp); 5580 5581 conn_delete_ire(connp, NULL); 5582 5583 /* 5584 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5585 * callers from write side can't be there now because close 5586 * is in progress. The only other caller is ipcl_walk 5587 * which checks for the condemned flag. 5588 */ 5589 mutex_enter(&connp->conn_lock); 5590 connp->conn_state_flags |= CONN_CONDEMNED; 5591 while (connp->conn_ref != 1) 5592 cv_wait(&connp->conn_cv, &connp->conn_lock); 5593 connp->conn_state_flags |= CONN_QUIESCED; 5594 mutex_exit(&connp->conn_lock); 5595 } 5596 5597 /* ARGSUSED */ 5598 int 5599 ip_close(queue_t *q, int flags) 5600 { 5601 conn_t *connp; 5602 5603 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5604 5605 /* 5606 * Call the appropriate delete routine depending on whether this is 5607 * a module or device. 5608 */ 5609 if (WR(q)->q_next != NULL) { 5610 /* This is a module close */ 5611 return (ip_modclose((ill_t *)q->q_ptr)); 5612 } 5613 5614 connp = q->q_ptr; 5615 ip_quiesce_conn(connp); 5616 5617 qprocsoff(q); 5618 5619 /* 5620 * Now we are truly single threaded on this stream, and can 5621 * delete the things hanging off the connp, and finally the connp. 5622 * We removed this connp from the fanout list, it cannot be 5623 * accessed thru the fanouts, and we already waited for the 5624 * conn_ref to drop to 0. We are already in close, so 5625 * there cannot be any other thread from the top. qprocsoff 5626 * has completed, and service has completed or won't run in 5627 * future. 5628 */ 5629 ASSERT(connp->conn_ref == 1); 5630 5631 inet_minor_free(ip_minor_arena, connp->conn_dev); 5632 5633 connp->conn_ref--; 5634 ipcl_conn_destroy(connp); 5635 5636 q->q_ptr = WR(q)->q_ptr = NULL; 5637 return (0); 5638 } 5639 5640 /* 5641 * Wapper around putnext() so that ip_rts_request can merely use 5642 * conn_recv. 5643 */ 5644 /*ARGSUSED2*/ 5645 static void 5646 ip_conn_input(void *arg1, mblk_t *mp, void *arg2) 5647 { 5648 conn_t *connp = (conn_t *)arg1; 5649 5650 putnext(connp->conn_rq, mp); 5651 } 5652 5653 /* Return the IP checksum for the IP header at "iph". */ 5654 uint16_t 5655 ip_csum_hdr(ipha_t *ipha) 5656 { 5657 uint16_t *uph; 5658 uint32_t sum; 5659 int opt_len; 5660 5661 opt_len = (ipha->ipha_version_and_hdr_length & 0xF) - 5662 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 5663 uph = (uint16_t *)ipha; 5664 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 5665 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 5666 if (opt_len > 0) { 5667 do { 5668 sum += uph[10]; 5669 sum += uph[11]; 5670 uph += 2; 5671 } while (--opt_len); 5672 } 5673 sum = (sum & 0xFFFF) + (sum >> 16); 5674 sum = ~(sum + (sum >> 16)) & 0xFFFF; 5675 if (sum == 0xffff) 5676 sum = 0; 5677 return ((uint16_t)sum); 5678 } 5679 5680 /* 5681 * Called when the module is about to be unloaded 5682 */ 5683 void 5684 ip_ddi_destroy(void) 5685 { 5686 tnet_fini(); 5687 5688 icmp_ddi_destroy(); 5689 rts_ddi_destroy(); 5690 udp_ddi_destroy(); 5691 sctp_ddi_g_destroy(); 5692 tcp_ddi_g_destroy(); 5693 ipsec_policy_g_destroy(); 5694 ipcl_g_destroy(); 5695 ip_net_g_destroy(); 5696 ip_ire_g_fini(); 5697 inet_minor_destroy(ip_minor_arena); 5698 5699 #ifdef DEBUG 5700 list_destroy(&ip_thread_list); 5701 rw_destroy(&ip_thread_rwlock); 5702 tsd_destroy(&ip_thread_data); 5703 #endif 5704 5705 netstack_unregister(NS_IP); 5706 } 5707 5708 /* 5709 * First step in cleanup. 5710 */ 5711 /* ARGSUSED */ 5712 static void 5713 ip_stack_shutdown(netstackid_t stackid, void *arg) 5714 { 5715 ip_stack_t *ipst = (ip_stack_t *)arg; 5716 5717 #ifdef NS_DEBUG 5718 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 5719 #endif 5720 5721 /* Get rid of loopback interfaces and their IREs */ 5722 ip_loopback_cleanup(ipst); 5723 } 5724 5725 /* 5726 * Free the IP stack instance. 5727 */ 5728 static void 5729 ip_stack_fini(netstackid_t stackid, void *arg) 5730 { 5731 ip_stack_t *ipst = (ip_stack_t *)arg; 5732 int ret; 5733 5734 #ifdef NS_DEBUG 5735 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 5736 #endif 5737 ipv4_hook_destroy(ipst); 5738 ipv6_hook_destroy(ipst); 5739 ip_net_destroy(ipst); 5740 5741 rw_destroy(&ipst->ips_srcid_lock); 5742 5743 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 5744 ipst->ips_ip_mibkp = NULL; 5745 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 5746 ipst->ips_icmp_mibkp = NULL; 5747 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 5748 ipst->ips_ip_kstat = NULL; 5749 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 5750 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 5751 ipst->ips_ip6_kstat = NULL; 5752 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 5753 5754 nd_free(&ipst->ips_ip_g_nd); 5755 kmem_free(ipst->ips_param_arr, sizeof (lcl_param_arr)); 5756 ipst->ips_param_arr = NULL; 5757 kmem_free(ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5758 ipst->ips_ndp_arr = NULL; 5759 5760 ip_mrouter_stack_destroy(ipst); 5761 5762 mutex_destroy(&ipst->ips_ip_mi_lock); 5763 rw_destroy(&ipst->ips_ipsec_capab_ills_lock); 5764 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 5765 rw_destroy(&ipst->ips_ip_g_nd_lock); 5766 5767 ret = untimeout(ipst->ips_igmp_timeout_id); 5768 if (ret == -1) { 5769 ASSERT(ipst->ips_igmp_timeout_id == 0); 5770 } else { 5771 ASSERT(ipst->ips_igmp_timeout_id != 0); 5772 ipst->ips_igmp_timeout_id = 0; 5773 } 5774 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 5775 if (ret == -1) { 5776 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 5777 } else { 5778 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 5779 ipst->ips_igmp_slowtimeout_id = 0; 5780 } 5781 ret = untimeout(ipst->ips_mld_timeout_id); 5782 if (ret == -1) { 5783 ASSERT(ipst->ips_mld_timeout_id == 0); 5784 } else { 5785 ASSERT(ipst->ips_mld_timeout_id != 0); 5786 ipst->ips_mld_timeout_id = 0; 5787 } 5788 ret = untimeout(ipst->ips_mld_slowtimeout_id); 5789 if (ret == -1) { 5790 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 5791 } else { 5792 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 5793 ipst->ips_mld_slowtimeout_id = 0; 5794 } 5795 ret = untimeout(ipst->ips_ip_ire_expire_id); 5796 if (ret == -1) { 5797 ASSERT(ipst->ips_ip_ire_expire_id == 0); 5798 } else { 5799 ASSERT(ipst->ips_ip_ire_expire_id != 0); 5800 ipst->ips_ip_ire_expire_id = 0; 5801 } 5802 5803 mutex_destroy(&ipst->ips_igmp_timer_lock); 5804 mutex_destroy(&ipst->ips_mld_timer_lock); 5805 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 5806 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 5807 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 5808 rw_destroy(&ipst->ips_ill_g_lock); 5809 5810 ip_ire_fini(ipst); 5811 ip6_asp_free(ipst); 5812 conn_drain_fini(ipst); 5813 ipcl_destroy(ipst); 5814 5815 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 5816 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 5817 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 5818 ipst->ips_ndp4 = NULL; 5819 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 5820 ipst->ips_ndp6 = NULL; 5821 5822 if (ipst->ips_loopback_ksp != NULL) { 5823 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 5824 ipst->ips_loopback_ksp = NULL; 5825 } 5826 5827 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 5828 ipst->ips_phyint_g_list = NULL; 5829 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 5830 ipst->ips_ill_g_heads = NULL; 5831 5832 kmem_free(ipst, sizeof (*ipst)); 5833 } 5834 5835 /* 5836 * This function is called from the TSD destructor, and is used to debug 5837 * reference count issues in IP. See block comment in <inet/ip_if.h> for 5838 * details. 5839 */ 5840 static void 5841 ip_thread_exit(void *phash) 5842 { 5843 th_hash_t *thh = phash; 5844 5845 rw_enter(&ip_thread_rwlock, RW_WRITER); 5846 list_remove(&ip_thread_list, thh); 5847 rw_exit(&ip_thread_rwlock); 5848 mod_hash_destroy_hash(thh->thh_hash); 5849 kmem_free(thh, sizeof (*thh)); 5850 } 5851 5852 /* 5853 * Called when the IP kernel module is loaded into the kernel 5854 */ 5855 void 5856 ip_ddi_init(void) 5857 { 5858 ip_input_proc = ip_squeue_switch(ip_squeue_enter); 5859 5860 /* 5861 * For IP and TCP the minor numbers should start from 2 since we have 4 5862 * initial devices: ip, ip6, tcp, tcp6. 5863 */ 5864 if ((ip_minor_arena = inet_minor_create("ip_minor_arena", 5865 INET_MIN_DEV + 2, KM_SLEEP)) == NULL) { 5866 cmn_err(CE_PANIC, 5867 "ip_ddi_init: ip_minor_arena creation failed\n"); 5868 } 5869 5870 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5871 5872 ipcl_g_init(); 5873 ip_ire_g_init(); 5874 ip_net_g_init(); 5875 5876 #ifdef DEBUG 5877 tsd_create(&ip_thread_data, ip_thread_exit); 5878 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL); 5879 list_create(&ip_thread_list, sizeof (th_hash_t), 5880 offsetof(th_hash_t, thh_link)); 5881 #endif 5882 5883 /* 5884 * We want to be informed each time a stack is created or 5885 * destroyed in the kernel, so we can maintain the 5886 * set of udp_stack_t's. 5887 */ 5888 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 5889 ip_stack_fini); 5890 5891 ipsec_policy_g_init(); 5892 tcp_ddi_g_init(); 5893 sctp_ddi_g_init(); 5894 5895 tnet_init(); 5896 5897 udp_ddi_init(); 5898 rts_ddi_init(); 5899 icmp_ddi_init(); 5900 } 5901 5902 /* 5903 * Initialize the IP stack instance. 5904 */ 5905 static void * 5906 ip_stack_init(netstackid_t stackid, netstack_t *ns) 5907 { 5908 ip_stack_t *ipst; 5909 ipparam_t *pa; 5910 ipndp_t *na; 5911 5912 #ifdef NS_DEBUG 5913 printf("ip_stack_init(stack %d)\n", stackid); 5914 #endif 5915 5916 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 5917 ipst->ips_netstack = ns; 5918 5919 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 5920 KM_SLEEP); 5921 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 5922 KM_SLEEP); 5923 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5924 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5925 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5926 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5927 5928 rw_init(&ipst->ips_ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 5929 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5930 ipst->ips_igmp_deferred_next = INFINITY; 5931 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5932 ipst->ips_mld_deferred_next = INFINITY; 5933 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5934 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5935 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 5936 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 5937 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 5938 rw_init(&ipst->ips_ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 5939 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 5940 5941 ipcl_init(ipst); 5942 ip_ire_init(ipst); 5943 ip6_asp_init(ipst); 5944 ipif_init(ipst); 5945 conn_drain_init(ipst); 5946 ip_mrouter_stack_init(ipst); 5947 5948 ipst->ips_ip_g_frag_timeout = IP_FRAG_TIMEOUT; 5949 ipst->ips_ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 5950 5951 ipst->ips_ip_multirt_log_interval = 1000; 5952 5953 ipst->ips_ip_g_forward = IP_FORWARD_DEFAULT; 5954 ipst->ips_ipv6_forward = IP_FORWARD_DEFAULT; 5955 ipst->ips_ill_index = 1; 5956 5957 ipst->ips_saved_ip_g_forward = -1; 5958 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 5959 5960 pa = (ipparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP); 5961 ipst->ips_param_arr = pa; 5962 bcopy(lcl_param_arr, ipst->ips_param_arr, sizeof (lcl_param_arr)); 5963 5964 na = (ipndp_t *)kmem_alloc(sizeof (lcl_ndp_arr), KM_SLEEP); 5965 ipst->ips_ndp_arr = na; 5966 bcopy(lcl_ndp_arr, ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5967 ipst->ips_ndp_arr[IPNDP_IP_FORWARDING_OFFSET].ip_ndp_data = 5968 (caddr_t)&ipst->ips_ip_g_forward; 5969 ipst->ips_ndp_arr[IPNDP_IP6_FORWARDING_OFFSET].ip_ndp_data = 5970 (caddr_t)&ipst->ips_ipv6_forward; 5971 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_name, 5972 "ip_cgtp_filter") == 0); 5973 ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_data = 5974 (caddr_t)&ipst->ips_ip_cgtp_filter; 5975 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_name, 5976 "ipmp_hook_emulation") == 0); 5977 ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_data = 5978 (caddr_t)&ipst->ips_ipmp_hook_emulation; 5979 5980 (void) ip_param_register(&ipst->ips_ip_g_nd, 5981 ipst->ips_param_arr, A_CNT(lcl_param_arr), 5982 ipst->ips_ndp_arr, A_CNT(lcl_ndp_arr)); 5983 5984 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 5985 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 5986 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 5987 ipst->ips_ip6_kstat = 5988 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 5989 5990 ipst->ips_ipmp_enable_failback = B_TRUE; 5991 5992 ipst->ips_ip_src_id = 1; 5993 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 5994 5995 ip_net_init(ipst, ns); 5996 ipv4_hook_init(ipst); 5997 ipv6_hook_init(ipst); 5998 5999 return (ipst); 6000 } 6001 6002 /* 6003 * Allocate and initialize a DLPI template of the specified length. (May be 6004 * called as writer.) 6005 */ 6006 mblk_t * 6007 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 6008 { 6009 mblk_t *mp; 6010 6011 mp = allocb(len, BPRI_MED); 6012 if (!mp) 6013 return (NULL); 6014 6015 /* 6016 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 6017 * of which we don't seem to use) are sent with M_PCPROTO, and 6018 * that other DLPI are M_PROTO. 6019 */ 6020 if (prim == DL_INFO_REQ) { 6021 mp->b_datap->db_type = M_PCPROTO; 6022 } else { 6023 mp->b_datap->db_type = M_PROTO; 6024 } 6025 6026 mp->b_wptr = mp->b_rptr + len; 6027 bzero(mp->b_rptr, len); 6028 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 6029 return (mp); 6030 } 6031 6032 const char * 6033 dlpi_prim_str(int prim) 6034 { 6035 switch (prim) { 6036 case DL_INFO_REQ: return ("DL_INFO_REQ"); 6037 case DL_INFO_ACK: return ("DL_INFO_ACK"); 6038 case DL_ATTACH_REQ: return ("DL_ATTACH_REQ"); 6039 case DL_DETACH_REQ: return ("DL_DETACH_REQ"); 6040 case DL_BIND_REQ: return ("DL_BIND_REQ"); 6041 case DL_BIND_ACK: return ("DL_BIND_ACK"); 6042 case DL_UNBIND_REQ: return ("DL_UNBIND_REQ"); 6043 case DL_OK_ACK: return ("DL_OK_ACK"); 6044 case DL_ERROR_ACK: return ("DL_ERROR_ACK"); 6045 case DL_ENABMULTI_REQ: return ("DL_ENABMULTI_REQ"); 6046 case DL_DISABMULTI_REQ: return ("DL_DISABMULTI_REQ"); 6047 case DL_PROMISCON_REQ: return ("DL_PROMISCON_REQ"); 6048 case DL_PROMISCOFF_REQ: return ("DL_PROMISCOFF_REQ"); 6049 case DL_UNITDATA_REQ: return ("DL_UNITDATA_REQ"); 6050 case DL_UNITDATA_IND: return ("DL_UNITDATA_IND"); 6051 case DL_UDERROR_IND: return ("DL_UDERROR_IND"); 6052 case DL_PHYS_ADDR_REQ: return ("DL_PHYS_ADDR_REQ"); 6053 case DL_PHYS_ADDR_ACK: return ("DL_PHYS_ADDR_ACK"); 6054 case DL_SET_PHYS_ADDR_REQ: return ("DL_SET_PHYS_ADDR_REQ"); 6055 case DL_NOTIFY_REQ: return ("DL_NOTIFY_REQ"); 6056 case DL_NOTIFY_ACK: return ("DL_NOTIFY_ACK"); 6057 case DL_NOTIFY_IND: return ("DL_NOTIFY_IND"); 6058 case DL_CAPABILITY_REQ: return ("DL_CAPABILITY_REQ"); 6059 case DL_CAPABILITY_ACK: return ("DL_CAPABILITY_ACK"); 6060 case DL_CONTROL_REQ: return ("DL_CONTROL_REQ"); 6061 case DL_CONTROL_ACK: return ("DL_CONTROL_ACK"); 6062 default: return ("<unknown primitive>"); 6063 } 6064 } 6065 6066 const char * 6067 dlpi_err_str(int err) 6068 { 6069 switch (err) { 6070 case DL_ACCESS: return ("DL_ACCESS"); 6071 case DL_BADADDR: return ("DL_BADADDR"); 6072 case DL_BADCORR: return ("DL_BADCORR"); 6073 case DL_BADDATA: return ("DL_BADDATA"); 6074 case DL_BADPPA: return ("DL_BADPPA"); 6075 case DL_BADPRIM: return ("DL_BADPRIM"); 6076 case DL_BADQOSPARAM: return ("DL_BADQOSPARAM"); 6077 case DL_BADQOSTYPE: return ("DL_BADQOSTYPE"); 6078 case DL_BADSAP: return ("DL_BADSAP"); 6079 case DL_BADTOKEN: return ("DL_BADTOKEN"); 6080 case DL_BOUND: return ("DL_BOUND"); 6081 case DL_INITFAILED: return ("DL_INITFAILED"); 6082 case DL_NOADDR: return ("DL_NOADDR"); 6083 case DL_NOTINIT: return ("DL_NOTINIT"); 6084 case DL_OUTSTATE: return ("DL_OUTSTATE"); 6085 case DL_SYSERR: return ("DL_SYSERR"); 6086 case DL_UNSUPPORTED: return ("DL_UNSUPPORTED"); 6087 case DL_UNDELIVERABLE: return ("DL_UNDELIVERABLE"); 6088 case DL_NOTSUPPORTED : return ("DL_NOTSUPPORTED "); 6089 case DL_TOOMANY: return ("DL_TOOMANY"); 6090 case DL_NOTENAB: return ("DL_NOTENAB"); 6091 case DL_BUSY: return ("DL_BUSY"); 6092 case DL_NOAUTO: return ("DL_NOAUTO"); 6093 case DL_NOXIDAUTO: return ("DL_NOXIDAUTO"); 6094 case DL_NOTESTAUTO: return ("DL_NOTESTAUTO"); 6095 case DL_XIDAUTO: return ("DL_XIDAUTO"); 6096 case DL_TESTAUTO: return ("DL_TESTAUTO"); 6097 case DL_PENDING: return ("DL_PENDING"); 6098 default: return ("<unknown error>"); 6099 } 6100 } 6101 6102 /* 6103 * Debug formatting routine. Returns a character string representation of the 6104 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 6105 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 6106 * 6107 * Once the ndd table-printing interfaces are removed, this can be changed to 6108 * standard dotted-decimal form. 6109 */ 6110 char * 6111 ip_dot_addr(ipaddr_t addr, char *buf) 6112 { 6113 uint8_t *ap = (uint8_t *)&addr; 6114 6115 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 6116 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 6117 return (buf); 6118 } 6119 6120 /* 6121 * Write the given MAC address as a printable string in the usual colon- 6122 * separated format. 6123 */ 6124 const char * 6125 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 6126 { 6127 char *bp; 6128 6129 if (alen == 0 || buflen < 4) 6130 return ("?"); 6131 bp = buf; 6132 for (;;) { 6133 /* 6134 * If there are more MAC address bytes available, but we won't 6135 * have any room to print them, then add "..." to the string 6136 * instead. See below for the 'magic number' explanation. 6137 */ 6138 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 6139 (void) strcpy(bp, "..."); 6140 break; 6141 } 6142 (void) sprintf(bp, "%02x", *addr++); 6143 bp += 2; 6144 if (--alen == 0) 6145 break; 6146 *bp++ = ':'; 6147 buflen -= 3; 6148 /* 6149 * At this point, based on the first 'if' statement above, 6150 * either alen == 1 and buflen >= 3, or alen > 1 and 6151 * buflen >= 4. The first case leaves room for the final "xx" 6152 * number and trailing NUL byte. The second leaves room for at 6153 * least "...". Thus the apparently 'magic' numbers chosen for 6154 * that statement. 6155 */ 6156 } 6157 return (buf); 6158 } 6159 6160 /* 6161 * Send an ICMP error after patching up the packet appropriately. Returns 6162 * non-zero if the appropriate MIB should be bumped; zero otherwise. 6163 */ 6164 static boolean_t 6165 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 6166 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, 6167 zoneid_t zoneid, ip_stack_t *ipst) 6168 { 6169 ipha_t *ipha; 6170 mblk_t *first_mp; 6171 boolean_t secure; 6172 unsigned char db_type; 6173 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6174 6175 first_mp = mp; 6176 if (mctl_present) { 6177 mp = mp->b_cont; 6178 secure = ipsec_in_is_secure(first_mp); 6179 ASSERT(mp != NULL); 6180 } else { 6181 /* 6182 * If this is an ICMP error being reported - which goes 6183 * up as M_CTLs, we need to convert them to M_DATA till 6184 * we finish checking with global policy because 6185 * ipsec_check_global_policy() assumes M_DATA as clear 6186 * and M_CTL as secure. 6187 */ 6188 db_type = DB_TYPE(mp); 6189 DB_TYPE(mp) = M_DATA; 6190 secure = B_FALSE; 6191 } 6192 /* 6193 * We are generating an icmp error for some inbound packet. 6194 * Called from all ip_fanout_(udp, tcp, proto) functions. 6195 * Before we generate an error, check with global policy 6196 * to see whether this is allowed to enter the system. As 6197 * there is no "conn", we are checking with global policy. 6198 */ 6199 ipha = (ipha_t *)mp->b_rptr; 6200 if (secure || ipss->ipsec_inbound_v4_policy_present) { 6201 first_mp = ipsec_check_global_policy(first_mp, NULL, 6202 ipha, NULL, mctl_present, ipst->ips_netstack); 6203 if (first_mp == NULL) 6204 return (B_FALSE); 6205 } 6206 6207 if (!mctl_present) 6208 DB_TYPE(mp) = db_type; 6209 6210 if (flags & IP_FF_SEND_ICMP) { 6211 if (flags & IP_FF_HDR_COMPLETE) { 6212 if (ip_hdr_complete(ipha, zoneid, ipst)) { 6213 freemsg(first_mp); 6214 return (B_TRUE); 6215 } 6216 } 6217 if (flags & IP_FF_CKSUM) { 6218 /* 6219 * Have to correct checksum since 6220 * the packet might have been 6221 * fragmented and the reassembly code in ip_rput 6222 * does not restore the IP checksum. 6223 */ 6224 ipha->ipha_hdr_checksum = 0; 6225 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6226 } 6227 switch (icmp_type) { 6228 case ICMP_DEST_UNREACHABLE: 6229 icmp_unreachable(WR(q), first_mp, icmp_code, zoneid, 6230 ipst); 6231 break; 6232 default: 6233 freemsg(first_mp); 6234 break; 6235 } 6236 } else { 6237 freemsg(first_mp); 6238 return (B_FALSE); 6239 } 6240 6241 return (B_TRUE); 6242 } 6243 6244 /* 6245 * Used to send an ICMP error message when a packet is received for 6246 * a protocol that is not supported. The mblk passed as argument 6247 * is consumed by this function. 6248 */ 6249 void 6250 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid, 6251 ip_stack_t *ipst) 6252 { 6253 mblk_t *mp; 6254 ipha_t *ipha; 6255 ill_t *ill; 6256 ipsec_in_t *ii; 6257 6258 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6259 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6260 6261 mp = ipsec_mp->b_cont; 6262 ipsec_mp->b_cont = NULL; 6263 ipha = (ipha_t *)mp->b_rptr; 6264 /* Get ill from index in ipsec_in_t. */ 6265 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 6266 (IPH_HDR_VERSION(ipha) == IPV6_VERSION), NULL, NULL, NULL, NULL, 6267 ipst); 6268 if (ill != NULL) { 6269 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 6270 if (ip_fanout_send_icmp(q, mp, flags, 6271 ICMP_DEST_UNREACHABLE, 6272 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid, ipst)) { 6273 BUMP_MIB(ill->ill_ip_mib, 6274 ipIfStatsInUnknownProtos); 6275 } 6276 } else { 6277 if (ip_fanout_send_icmp_v6(q, mp, flags, 6278 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 6279 0, B_FALSE, zoneid, ipst)) { 6280 BUMP_MIB(ill->ill_ip_mib, 6281 ipIfStatsInUnknownProtos); 6282 } 6283 } 6284 ill_refrele(ill); 6285 } else { /* re-link for the freemsg() below. */ 6286 ipsec_mp->b_cont = mp; 6287 } 6288 6289 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 6290 freemsg(ipsec_mp); 6291 } 6292 6293 /* 6294 * See if the inbound datagram has had IPsec processing applied to it. 6295 */ 6296 boolean_t 6297 ipsec_in_is_secure(mblk_t *ipsec_mp) 6298 { 6299 ipsec_in_t *ii; 6300 6301 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6302 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6303 6304 if (ii->ipsec_in_loopback) { 6305 return (ii->ipsec_in_secure); 6306 } else { 6307 return (ii->ipsec_in_ah_sa != NULL || 6308 ii->ipsec_in_esp_sa != NULL || 6309 ii->ipsec_in_decaps); 6310 } 6311 } 6312 6313 /* 6314 * Handle protocols with which IP is less intimate. There 6315 * can be more than one stream bound to a particular 6316 * protocol. When this is the case, normally each one gets a copy 6317 * of any incoming packets. 6318 * 6319 * IPsec NOTE : 6320 * 6321 * Don't allow a secure packet going up a non-secure connection. 6322 * We don't allow this because 6323 * 6324 * 1) Reply might go out in clear which will be dropped at 6325 * the sending side. 6326 * 2) If the reply goes out in clear it will give the 6327 * adversary enough information for getting the key in 6328 * most of the cases. 6329 * 6330 * Moreover getting a secure packet when we expect clear 6331 * implies that SA's were added without checking for 6332 * policy on both ends. This should not happen once ISAKMP 6333 * is used to negotiate SAs as SAs will be added only after 6334 * verifying the policy. 6335 * 6336 * NOTE : If the packet was tunneled and not multicast we only send 6337 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 6338 * back to delivering packets to AF_INET6 raw sockets. 6339 * 6340 * IPQoS Notes: 6341 * Once we have determined the client, invoke IPPF processing. 6342 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6343 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6344 * ip_policy will be false. 6345 * 6346 * Zones notes: 6347 * Currently only applications in the global zone can create raw sockets for 6348 * protocols other than ICMP. So unlike the broadcast / multicast case of 6349 * ip_fanout_udp(), we only send a copy of the packet to streams in the 6350 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 6351 */ 6352 static void 6353 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 6354 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 6355 zoneid_t zoneid) 6356 { 6357 queue_t *rq; 6358 mblk_t *mp1, *first_mp1; 6359 uint_t protocol = ipha->ipha_protocol; 6360 ipaddr_t dst; 6361 boolean_t one_only; 6362 mblk_t *first_mp = mp; 6363 boolean_t secure; 6364 uint32_t ill_index; 6365 conn_t *connp, *first_connp, *next_connp; 6366 connf_t *connfp; 6367 boolean_t shared_addr; 6368 mib2_ipIfStatsEntry_t *mibptr; 6369 ip_stack_t *ipst = recv_ill->ill_ipst; 6370 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6371 6372 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 6373 if (mctl_present) { 6374 mp = first_mp->b_cont; 6375 secure = ipsec_in_is_secure(first_mp); 6376 ASSERT(mp != NULL); 6377 } else { 6378 secure = B_FALSE; 6379 } 6380 dst = ipha->ipha_dst; 6381 /* 6382 * If the packet was tunneled and not multicast we only send to it 6383 * the first match. 6384 */ 6385 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 6386 !CLASSD(dst)); 6387 6388 shared_addr = (zoneid == ALL_ZONES); 6389 if (shared_addr) { 6390 /* 6391 * We don't allow multilevel ports for raw IP, so no need to 6392 * check for that here. 6393 */ 6394 zoneid = tsol_packet_to_zoneid(mp); 6395 } 6396 6397 connfp = &ipst->ips_ipcl_proto_fanout[protocol]; 6398 mutex_enter(&connfp->connf_lock); 6399 connp = connfp->connf_head; 6400 for (connp = connfp->connf_head; connp != NULL; 6401 connp = connp->conn_next) { 6402 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 6403 zoneid) && 6404 (!is_system_labeled() || 6405 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6406 connp))) { 6407 break; 6408 } 6409 } 6410 6411 if (connp == NULL || connp->conn_upq == NULL) { 6412 /* 6413 * No one bound to these addresses. Is 6414 * there a client that wants all 6415 * unclaimed datagrams? 6416 */ 6417 mutex_exit(&connfp->connf_lock); 6418 /* 6419 * Check for IPPROTO_ENCAP... 6420 */ 6421 if (protocol == IPPROTO_ENCAP && ipst->ips_ip_g_mrouter) { 6422 /* 6423 * If an IPsec mblk is here on a multicast 6424 * tunnel (using ip_mroute stuff), check policy here, 6425 * THEN ship off to ip_mroute_decap(). 6426 * 6427 * BTW, If I match a configured IP-in-IP 6428 * tunnel, this path will not be reached, and 6429 * ip_mroute_decap will never be called. 6430 */ 6431 first_mp = ipsec_check_global_policy(first_mp, connp, 6432 ipha, NULL, mctl_present, ipst->ips_netstack); 6433 if (first_mp != NULL) { 6434 if (mctl_present) 6435 freeb(first_mp); 6436 ip_mroute_decap(q, mp, ill); 6437 } /* Else we already freed everything! */ 6438 } else { 6439 /* 6440 * Otherwise send an ICMP protocol unreachable. 6441 */ 6442 if (ip_fanout_send_icmp(q, first_mp, flags, 6443 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 6444 mctl_present, zoneid, ipst)) { 6445 BUMP_MIB(mibptr, ipIfStatsInUnknownProtos); 6446 } 6447 } 6448 return; 6449 } 6450 CONN_INC_REF(connp); 6451 first_connp = connp; 6452 6453 /* 6454 * Only send message to one tunnel driver by immediately 6455 * terminating the loop. 6456 */ 6457 connp = one_only ? NULL : connp->conn_next; 6458 6459 for (;;) { 6460 while (connp != NULL) { 6461 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 6462 flags, zoneid) && 6463 (!is_system_labeled() || 6464 tsol_receive_local(mp, &dst, IPV4_VERSION, 6465 shared_addr, connp))) 6466 break; 6467 connp = connp->conn_next; 6468 } 6469 6470 /* 6471 * Copy the packet. 6472 */ 6473 if (connp == NULL || connp->conn_upq == NULL || 6474 (((first_mp1 = dupmsg(first_mp)) == NULL) && 6475 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 6476 /* 6477 * No more interested clients or memory 6478 * allocation failed 6479 */ 6480 connp = first_connp; 6481 break; 6482 } 6483 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 6484 CONN_INC_REF(connp); 6485 mutex_exit(&connfp->connf_lock); 6486 rq = connp->conn_rq; 6487 if (!canputnext(rq)) { 6488 if (flags & IP_FF_RAWIP) { 6489 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6490 } else { 6491 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6492 } 6493 6494 freemsg(first_mp1); 6495 } else { 6496 /* 6497 * Don't enforce here if we're an actual tunnel - 6498 * let "tun" do it instead. 6499 */ 6500 if (!IPCL_IS_IPTUN(connp) && 6501 (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 6502 secure)) { 6503 first_mp1 = ipsec_check_inbound_policy 6504 (first_mp1, connp, ipha, NULL, 6505 mctl_present); 6506 } 6507 if (first_mp1 != NULL) { 6508 int in_flags = 0; 6509 /* 6510 * ip_fanout_proto also gets called from 6511 * icmp_inbound_error_fanout, in which case 6512 * the msg type is M_CTL. Don't add info 6513 * in this case for the time being. In future 6514 * when there is a need for knowing the 6515 * inbound iface index for ICMP error msgs, 6516 * then this can be changed. 6517 */ 6518 if (connp->conn_recvif) 6519 in_flags = IPF_RECVIF; 6520 /* 6521 * The ULP may support IP_RECVPKTINFO for both 6522 * IP v4 and v6 so pass the appropriate argument 6523 * based on conn IP version. 6524 */ 6525 if (connp->conn_ip_recvpktinfo) { 6526 if (connp->conn_af_isv6) { 6527 /* 6528 * V6 only needs index 6529 */ 6530 in_flags |= IPF_RECVIF; 6531 } else { 6532 /* 6533 * V4 needs index + 6534 * matching address. 6535 */ 6536 in_flags |= IPF_RECVADDR; 6537 } 6538 } 6539 if ((in_flags != 0) && 6540 (mp->b_datap->db_type != M_CTL)) { 6541 /* 6542 * the actual data will be 6543 * contained in b_cont upon 6544 * successful return of the 6545 * following call else 6546 * original mblk is returned 6547 */ 6548 ASSERT(recv_ill != NULL); 6549 mp1 = ip_add_info(mp1, recv_ill, 6550 in_flags, IPCL_ZONEID(connp), ipst); 6551 } 6552 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6553 if (mctl_present) 6554 freeb(first_mp1); 6555 (connp->conn_recv)(connp, mp1, NULL); 6556 } 6557 } 6558 mutex_enter(&connfp->connf_lock); 6559 /* Follow the next pointer before releasing the conn. */ 6560 next_connp = connp->conn_next; 6561 CONN_DEC_REF(connp); 6562 connp = next_connp; 6563 } 6564 6565 /* Last one. Send it upstream. */ 6566 mutex_exit(&connfp->connf_lock); 6567 6568 /* 6569 * If this packet is coming from icmp_inbound_error_fanout ip_policy 6570 * will be set to false. 6571 */ 6572 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6573 ill_index = ill->ill_phyint->phyint_ifindex; 6574 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6575 if (mp == NULL) { 6576 CONN_DEC_REF(connp); 6577 if (mctl_present) { 6578 freeb(first_mp); 6579 } 6580 return; 6581 } 6582 } 6583 6584 rq = connp->conn_rq; 6585 if (!canputnext(rq)) { 6586 if (flags & IP_FF_RAWIP) { 6587 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6588 } else { 6589 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6590 } 6591 6592 freemsg(first_mp); 6593 } else { 6594 if (IPCL_IS_IPTUN(connp)) { 6595 /* 6596 * Tunneled packet. We enforce policy in the tunnel 6597 * module itself. 6598 * 6599 * Send the WHOLE packet up (incl. IPSEC_IN) without 6600 * a policy check. 6601 * FIXME to use conn_recv for tun later. 6602 */ 6603 putnext(rq, first_mp); 6604 CONN_DEC_REF(connp); 6605 return; 6606 } 6607 6608 if ((CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure)) { 6609 first_mp = ipsec_check_inbound_policy(first_mp, connp, 6610 ipha, NULL, mctl_present); 6611 } 6612 6613 if (first_mp != NULL) { 6614 int in_flags = 0; 6615 6616 /* 6617 * ip_fanout_proto also gets called 6618 * from icmp_inbound_error_fanout, in 6619 * which case the msg type is M_CTL. 6620 * Don't add info in this case for time 6621 * being. In future when there is a 6622 * need for knowing the inbound iface 6623 * index for ICMP error msgs, then this 6624 * can be changed 6625 */ 6626 if (connp->conn_recvif) 6627 in_flags = IPF_RECVIF; 6628 if (connp->conn_ip_recvpktinfo) { 6629 if (connp->conn_af_isv6) { 6630 /* 6631 * V6 only needs index 6632 */ 6633 in_flags |= IPF_RECVIF; 6634 } else { 6635 /* 6636 * V4 needs index + 6637 * matching address. 6638 */ 6639 in_flags |= IPF_RECVADDR; 6640 } 6641 } 6642 if ((in_flags != 0) && 6643 (mp->b_datap->db_type != M_CTL)) { 6644 6645 /* 6646 * the actual data will be contained in 6647 * b_cont upon successful return 6648 * of the following call else original 6649 * mblk is returned 6650 */ 6651 ASSERT(recv_ill != NULL); 6652 mp = ip_add_info(mp, recv_ill, 6653 in_flags, IPCL_ZONEID(connp), ipst); 6654 } 6655 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6656 (connp->conn_recv)(connp, mp, NULL); 6657 if (mctl_present) 6658 freeb(first_mp); 6659 } 6660 } 6661 CONN_DEC_REF(connp); 6662 } 6663 6664 /* 6665 * Fanout for TCP packets 6666 * The caller puts <fport, lport> in the ports parameter. 6667 * 6668 * IPQoS Notes 6669 * Before sending it to the client, invoke IPPF processing. 6670 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6671 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6672 * ip_policy is false. 6673 */ 6674 static void 6675 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6676 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6677 { 6678 mblk_t *first_mp; 6679 boolean_t secure; 6680 uint32_t ill_index; 6681 int ip_hdr_len; 6682 tcph_t *tcph; 6683 boolean_t syn_present = B_FALSE; 6684 conn_t *connp; 6685 ip_stack_t *ipst = recv_ill->ill_ipst; 6686 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6687 6688 ASSERT(recv_ill != NULL); 6689 6690 first_mp = mp; 6691 if (mctl_present) { 6692 ASSERT(first_mp->b_datap->db_type == M_CTL); 6693 mp = first_mp->b_cont; 6694 secure = ipsec_in_is_secure(first_mp); 6695 ASSERT(mp != NULL); 6696 } else { 6697 secure = B_FALSE; 6698 } 6699 6700 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6701 6702 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 6703 zoneid, ipst)) == NULL) { 6704 /* 6705 * No connected connection or listener. Send a 6706 * TH_RST via tcp_xmit_listeners_reset. 6707 */ 6708 6709 /* Initiate IPPf processing, if needed. */ 6710 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 6711 uint32_t ill_index; 6712 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6713 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6714 if (first_mp == NULL) 6715 return; 6716 } 6717 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6718 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6719 zoneid)); 6720 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6721 ipst->ips_netstack->netstack_tcp, NULL); 6722 return; 6723 } 6724 6725 /* 6726 * Allocate the SYN for the TCP connection here itself 6727 */ 6728 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6729 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6730 if (IPCL_IS_TCP(connp)) { 6731 squeue_t *sqp; 6732 6733 /* 6734 * For fused tcp loopback, assign the eager's 6735 * squeue to be that of the active connect's. 6736 * Note that we don't check for IP_FF_LOOPBACK 6737 * here since this routine gets called only 6738 * for loopback (unlike the IPv6 counterpart). 6739 */ 6740 ASSERT(Q_TO_CONN(q) != NULL); 6741 if (do_tcp_fusion && 6742 !CONN_INBOUND_POLICY_PRESENT(connp, ipss) && 6743 !secure && 6744 !IPP_ENABLED(IPP_LOCAL_IN, ipst) && !ip_policy && 6745 IPCL_IS_TCP(Q_TO_CONN(q))) { 6746 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6747 sqp = Q_TO_CONN(q)->conn_sqp; 6748 } else { 6749 sqp = IP_SQUEUE_GET(lbolt); 6750 } 6751 6752 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6753 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6754 syn_present = B_TRUE; 6755 } 6756 } 6757 6758 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6759 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6760 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6761 if ((flags & TH_RST) || (flags & TH_URG)) { 6762 CONN_DEC_REF(connp); 6763 freemsg(first_mp); 6764 return; 6765 } 6766 if (flags & TH_ACK) { 6767 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6768 ipst->ips_netstack->netstack_tcp, connp); 6769 CONN_DEC_REF(connp); 6770 return; 6771 } 6772 6773 CONN_DEC_REF(connp); 6774 freemsg(first_mp); 6775 return; 6776 } 6777 6778 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6779 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6780 NULL, mctl_present); 6781 if (first_mp == NULL) { 6782 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6783 CONN_DEC_REF(connp); 6784 return; 6785 } 6786 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6787 ASSERT(syn_present); 6788 if (mctl_present) { 6789 ASSERT(first_mp != mp); 6790 first_mp->b_datap->db_struioflag |= 6791 STRUIO_POLICY; 6792 } else { 6793 ASSERT(first_mp == mp); 6794 mp->b_datap->db_struioflag &= 6795 ~STRUIO_EAGER; 6796 mp->b_datap->db_struioflag |= 6797 STRUIO_POLICY; 6798 } 6799 } else { 6800 /* 6801 * Discard first_mp early since we're dealing with a 6802 * fully-connected conn_t and tcp doesn't do policy in 6803 * this case. 6804 */ 6805 if (mctl_present) { 6806 freeb(first_mp); 6807 mctl_present = B_FALSE; 6808 } 6809 first_mp = mp; 6810 } 6811 } 6812 6813 /* 6814 * Initiate policy processing here if needed. If we get here from 6815 * icmp_inbound_error_fanout, ip_policy is false. 6816 */ 6817 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6818 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6819 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6820 if (mp == NULL) { 6821 CONN_DEC_REF(connp); 6822 if (mctl_present) 6823 freeb(first_mp); 6824 return; 6825 } else if (mctl_present) { 6826 ASSERT(first_mp != mp); 6827 first_mp->b_cont = mp; 6828 } else { 6829 first_mp = mp; 6830 } 6831 } 6832 6833 6834 6835 /* Handle socket options. */ 6836 if (!syn_present && 6837 connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 6838 /* Add header */ 6839 ASSERT(recv_ill != NULL); 6840 /* 6841 * Since tcp does not support IP_RECVPKTINFO for V4, only pass 6842 * IPF_RECVIF. 6843 */ 6844 mp = ip_add_info(mp, recv_ill, IPF_RECVIF, IPCL_ZONEID(connp), 6845 ipst); 6846 if (mp == NULL) { 6847 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6848 CONN_DEC_REF(connp); 6849 if (mctl_present) 6850 freeb(first_mp); 6851 return; 6852 } else if (mctl_present) { 6853 /* 6854 * ip_add_info might return a new mp. 6855 */ 6856 ASSERT(first_mp != mp); 6857 first_mp->b_cont = mp; 6858 } else { 6859 first_mp = mp; 6860 } 6861 } 6862 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6863 if (IPCL_IS_TCP(connp)) { 6864 /* do not drain, certain use cases can blow the stack */ 6865 squeue_enter_nodrain(connp->conn_sqp, first_mp, 6866 connp->conn_recv, connp, SQTAG_IP_FANOUT_TCP); 6867 } else { 6868 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 6869 (connp->conn_recv)(connp, first_mp, NULL); 6870 CONN_DEC_REF(connp); 6871 } 6872 } 6873 6874 /* 6875 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or 6876 * pass it along to ESP if the SPI is non-zero. Returns TRUE if the mblk 6877 * is not consumed. 6878 * 6879 * One of four things can happen, all of which affect the passed-in mblk: 6880 * 6881 * 1.) ICMP messages that go through here just get returned TRUE. 6882 * 6883 * 2.) The packet is stock UDP and gets its zero-SPI stripped. Return TRUE. 6884 * 6885 * 3.) The packet is ESP-in-UDP, gets transformed into an equivalent 6886 * ESP packet, and is passed along to ESP for consumption. Return FALSE. 6887 * 6888 * 4.) The packet is an ESP-in-UDP Keepalive. Drop it and return FALSE. 6889 */ 6890 static boolean_t 6891 zero_spi_check(queue_t *q, mblk_t *mp, ire_t *ire, ill_t *recv_ill, 6892 ipsec_stack_t *ipss) 6893 { 6894 int shift, plen, iph_len; 6895 ipha_t *ipha; 6896 udpha_t *udpha; 6897 uint32_t *spi; 6898 uint8_t *orptr; 6899 boolean_t udp_pkt, free_ire; 6900 6901 if (DB_TYPE(mp) == M_CTL) { 6902 /* 6903 * ICMP message with UDP inside. Don't bother stripping, just 6904 * send it up. 6905 * 6906 * NOTE: Any app with UDP_NAT_T_ENDPOINT set is probably going 6907 * to ignore errors set by ICMP anyway ('cause they might be 6908 * forged), but that's the app's decision, not ours. 6909 */ 6910 6911 /* Bunch of reality checks for DEBUG kernels... */ 6912 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION); 6913 ASSERT(((ipha_t *)mp->b_rptr)->ipha_protocol == IPPROTO_ICMP); 6914 6915 return (B_TRUE); 6916 } 6917 6918 ipha = (ipha_t *)mp->b_rptr; 6919 iph_len = IPH_HDR_LENGTH(ipha); 6920 plen = ntohs(ipha->ipha_length); 6921 6922 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) { 6923 /* 6924 * Most likely a keepalive for the benefit of an intervening 6925 * NAT. These aren't for us, per se, so drop it. 6926 * 6927 * RFC 3947/8 doesn't say for sure what to do for 2-3 6928 * byte packets (keepalives are 1-byte), but we'll drop them 6929 * also. 6930 */ 6931 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 6932 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper); 6933 return (B_FALSE); 6934 } 6935 6936 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) { 6937 /* might as well pull it all up - it might be ESP. */ 6938 if (!pullupmsg(mp, -1)) { 6939 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 6940 DROPPER(ipss, ipds_esp_nomem), 6941 &ipss->ipsec_dropper); 6942 return (B_FALSE); 6943 } 6944 6945 ipha = (ipha_t *)mp->b_rptr; 6946 } 6947 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t)); 6948 if (*spi == 0) { 6949 /* UDP packet - remove 0-spi. */ 6950 shift = sizeof (uint32_t); 6951 } else { 6952 /* ESP-in-UDP packet - reduce to ESP. */ 6953 ipha->ipha_protocol = IPPROTO_ESP; 6954 shift = sizeof (udpha_t); 6955 } 6956 6957 /* Fix IP header */ 6958 ipha->ipha_length = htons(plen - shift); 6959 ipha->ipha_hdr_checksum = 0; 6960 6961 orptr = mp->b_rptr; 6962 mp->b_rptr += shift; 6963 6964 if (*spi == 0) { 6965 ASSERT((uint8_t *)ipha == orptr); 6966 udpha = (udpha_t *)(orptr + iph_len); 6967 udpha->uha_length = htons(plen - shift - iph_len); 6968 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */ 6969 udp_pkt = B_TRUE; 6970 } else { 6971 udp_pkt = B_FALSE; 6972 } 6973 ovbcopy(orptr, orptr + shift, iph_len); 6974 if (!udp_pkt) /* Punt up for ESP processing. */ { 6975 ipha = (ipha_t *)(orptr + shift); 6976 6977 free_ire = (ire == NULL); 6978 if (free_ire) { 6979 /* Re-acquire ire. */ 6980 ire = ire_cache_lookup(ipha->ipha_dst, ALL_ZONES, NULL, 6981 ipss->ipsec_netstack->netstack_ip); 6982 if (ire == NULL || !(ire->ire_type & IRE_LOCAL)) { 6983 if (ire != NULL) 6984 ire_refrele(ire); 6985 /* 6986 * Do a regular freemsg(), as this is an IP 6987 * error (no local route) not an IPsec one. 6988 */ 6989 freemsg(mp); 6990 } 6991 } 6992 6993 ip_proto_input(q, mp, ipha, ire, recv_ill, B_TRUE); 6994 if (free_ire) 6995 ire_refrele(ire); 6996 } 6997 6998 return (udp_pkt); 6999 } 7000 7001 /* 7002 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 7003 * We are responsible for disposing of mp, such as by freemsg() or putnext() 7004 * Caller is responsible for dropping references to the conn, and freeing 7005 * first_mp. 7006 * 7007 * IPQoS Notes 7008 * Before sending it to the client, invoke IPPF processing. Policy processing 7009 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 7010 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 7011 * ip_wput_local, ip_policy is false. 7012 */ 7013 static void 7014 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 7015 boolean_t secure, ill_t *ill, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 7016 boolean_t ip_policy) 7017 { 7018 boolean_t mctl_present = (first_mp != NULL); 7019 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 7020 uint32_t ill_index; 7021 ip_stack_t *ipst = recv_ill->ill_ipst; 7022 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 7023 7024 ASSERT(ill != NULL); 7025 7026 if (mctl_present) 7027 first_mp->b_cont = mp; 7028 else 7029 first_mp = mp; 7030 7031 if (CONN_UDP_FLOWCTLD(connp)) { 7032 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 7033 freemsg(first_mp); 7034 return; 7035 } 7036 7037 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 7038 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 7039 NULL, mctl_present); 7040 if (first_mp == NULL) { 7041 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7042 return; /* Freed by ipsec_check_inbound_policy(). */ 7043 } 7044 } 7045 if (mctl_present) 7046 freeb(first_mp); 7047 7048 /* Let's hope the compilers utter "branch, predict-not-taken..." ;) */ 7049 if (connp->conn_udp->udp_nat_t_endpoint) { 7050 if (mctl_present) { 7051 /* mctl_present *shouldn't* happen. */ 7052 ip_drop_packet(mp, B_TRUE, NULL, NULL, 7053 DROPPER(ipss, ipds_esp_nat_t_ipsec), 7054 &ipss->ipsec_dropper); 7055 return; 7056 } 7057 7058 if (!zero_spi_check(ill->ill_rq, mp, NULL, recv_ill, ipss)) 7059 return; 7060 } 7061 7062 /* Handle options. */ 7063 if (connp->conn_recvif) 7064 in_flags = IPF_RECVIF; 7065 /* 7066 * UDP supports IP_RECVPKTINFO option for both v4 and v6 so the flag 7067 * passed to ip_add_info is based on IP version of connp. 7068 */ 7069 if (connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 7070 if (connp->conn_af_isv6) { 7071 /* 7072 * V6 only needs index 7073 */ 7074 in_flags |= IPF_RECVIF; 7075 } else { 7076 /* 7077 * V4 needs index + matching address. 7078 */ 7079 in_flags |= IPF_RECVADDR; 7080 } 7081 } 7082 7083 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 7084 in_flags |= IPF_RECVSLLA; 7085 7086 /* 7087 * Initiate IPPF processing here, if needed. Note first_mp won't be 7088 * freed if the packet is dropped. The caller will do so. 7089 */ 7090 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 7091 ill_index = recv_ill->ill_phyint->phyint_ifindex; 7092 ip_process(IPP_LOCAL_IN, &mp, ill_index); 7093 if (mp == NULL) { 7094 return; 7095 } 7096 } 7097 if ((in_flags != 0) && 7098 (mp->b_datap->db_type != M_CTL)) { 7099 /* 7100 * The actual data will be contained in b_cont 7101 * upon successful return of the following call 7102 * else original mblk is returned 7103 */ 7104 ASSERT(recv_ill != NULL); 7105 mp = ip_add_info(mp, recv_ill, in_flags, IPCL_ZONEID(connp), 7106 ipst); 7107 } 7108 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 7109 /* Send it upstream */ 7110 (connp->conn_recv)(connp, mp, NULL); 7111 } 7112 7113 /* 7114 * Fanout for UDP packets. 7115 * The caller puts <fport, lport> in the ports parameter. 7116 * 7117 * If SO_REUSEADDR is set all multicast and broadcast packets 7118 * will be delivered to all streams bound to the same port. 7119 * 7120 * Zones notes: 7121 * Multicast and broadcast packets will be distributed to streams in all zones. 7122 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 7123 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 7124 * packets. To maintain this behavior with multiple zones, the conns are grouped 7125 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 7126 * each zone. If unset, all the following conns in the same zone are skipped. 7127 */ 7128 static void 7129 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 7130 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 7131 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 7132 { 7133 uint32_t dstport, srcport; 7134 ipaddr_t dst; 7135 mblk_t *first_mp; 7136 boolean_t secure; 7137 in6_addr_t v6src; 7138 conn_t *connp; 7139 connf_t *connfp; 7140 conn_t *first_connp; 7141 conn_t *next_connp; 7142 mblk_t *mp1, *first_mp1; 7143 ipaddr_t src; 7144 zoneid_t last_zoneid; 7145 boolean_t reuseaddr; 7146 boolean_t shared_addr; 7147 ip_stack_t *ipst; 7148 7149 ASSERT(recv_ill != NULL); 7150 ipst = recv_ill->ill_ipst; 7151 7152 first_mp = mp; 7153 if (mctl_present) { 7154 mp = first_mp->b_cont; 7155 first_mp->b_cont = NULL; 7156 secure = ipsec_in_is_secure(first_mp); 7157 ASSERT(mp != NULL); 7158 } else { 7159 first_mp = NULL; 7160 secure = B_FALSE; 7161 } 7162 7163 /* Extract ports in net byte order */ 7164 dstport = htons(ntohl(ports) & 0xFFFF); 7165 srcport = htons(ntohl(ports) >> 16); 7166 dst = ipha->ipha_dst; 7167 src = ipha->ipha_src; 7168 7169 shared_addr = (zoneid == ALL_ZONES); 7170 if (shared_addr) { 7171 /* 7172 * No need to handle exclusive-stack zones since ALL_ZONES 7173 * only applies to the shared stack. 7174 */ 7175 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 7176 if (zoneid == ALL_ZONES) 7177 zoneid = tsol_packet_to_zoneid(mp); 7178 } 7179 7180 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7181 mutex_enter(&connfp->connf_lock); 7182 connp = connfp->connf_head; 7183 if (!broadcast && !CLASSD(dst)) { 7184 /* 7185 * Not broadcast or multicast. Send to the one (first) 7186 * client we find. No need to check conn_wantpacket() 7187 * since IP_BOUND_IF/conn_incoming_ill does not apply to 7188 * IPv4 unicast packets. 7189 */ 7190 while ((connp != NULL) && 7191 (!IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) || 7192 !IPCL_ZONE_MATCH(connp, zoneid))) { 7193 connp = connp->conn_next; 7194 } 7195 7196 if (connp == NULL || connp->conn_upq == NULL) 7197 goto notfound; 7198 7199 if (is_system_labeled() && 7200 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7201 connp)) 7202 goto notfound; 7203 7204 CONN_INC_REF(connp); 7205 mutex_exit(&connfp->connf_lock); 7206 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7207 flags, recv_ill, ip_policy); 7208 IP_STAT(ipst, ip_udp_fannorm); 7209 CONN_DEC_REF(connp); 7210 return; 7211 } 7212 7213 /* 7214 * Broadcast and multicast case 7215 * 7216 * Need to check conn_wantpacket(). 7217 * If SO_REUSEADDR has been set on the first we send the 7218 * packet to all clients that have joined the group and 7219 * match the port. 7220 */ 7221 7222 while (connp != NULL) { 7223 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 7224 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7225 (!is_system_labeled() || 7226 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7227 connp))) 7228 break; 7229 connp = connp->conn_next; 7230 } 7231 7232 if (connp == NULL || connp->conn_upq == NULL) 7233 goto notfound; 7234 7235 first_connp = connp; 7236 /* 7237 * When SO_REUSEADDR is not set, send the packet only to the first 7238 * matching connection in its zone by keeping track of the zoneid. 7239 */ 7240 reuseaddr = first_connp->conn_reuseaddr; 7241 last_zoneid = first_connp->conn_zoneid; 7242 7243 CONN_INC_REF(connp); 7244 connp = connp->conn_next; 7245 for (;;) { 7246 while (connp != NULL) { 7247 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 7248 (reuseaddr || connp->conn_zoneid != last_zoneid) && 7249 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7250 (!is_system_labeled() || 7251 tsol_receive_local(mp, &dst, IPV4_VERSION, 7252 shared_addr, connp))) 7253 break; 7254 connp = connp->conn_next; 7255 } 7256 /* 7257 * Just copy the data part alone. The mctl part is 7258 * needed just for verifying policy and it is never 7259 * sent up. 7260 */ 7261 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7262 ((mp1 = copymsg(mp)) == NULL))) { 7263 /* 7264 * No more interested clients or memory 7265 * allocation failed 7266 */ 7267 connp = first_connp; 7268 break; 7269 } 7270 if (connp->conn_zoneid != last_zoneid) { 7271 /* 7272 * Update the zoneid so that the packet isn't sent to 7273 * any more conns in the same zone unless SO_REUSEADDR 7274 * is set. 7275 */ 7276 reuseaddr = connp->conn_reuseaddr; 7277 last_zoneid = connp->conn_zoneid; 7278 } 7279 if (first_mp != NULL) { 7280 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7281 ipsec_info_type == IPSEC_IN); 7282 first_mp1 = ipsec_in_tag(first_mp, NULL, 7283 ipst->ips_netstack); 7284 if (first_mp1 == NULL) { 7285 freemsg(mp1); 7286 connp = first_connp; 7287 break; 7288 } 7289 } else { 7290 first_mp1 = NULL; 7291 } 7292 CONN_INC_REF(connp); 7293 mutex_exit(&connfp->connf_lock); 7294 /* 7295 * IPQoS notes: We don't send the packet for policy 7296 * processing here, will do it for the last one (below). 7297 * i.e. we do it per-packet now, but if we do policy 7298 * processing per-conn, then we would need to do it 7299 * here too. 7300 */ 7301 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7302 ipha, flags, recv_ill, B_FALSE); 7303 mutex_enter(&connfp->connf_lock); 7304 /* Follow the next pointer before releasing the conn. */ 7305 next_connp = connp->conn_next; 7306 IP_STAT(ipst, ip_udp_fanmb); 7307 CONN_DEC_REF(connp); 7308 connp = next_connp; 7309 } 7310 7311 /* Last one. Send it upstream. */ 7312 mutex_exit(&connfp->connf_lock); 7313 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7314 recv_ill, ip_policy); 7315 IP_STAT(ipst, ip_udp_fanmb); 7316 CONN_DEC_REF(connp); 7317 return; 7318 7319 notfound: 7320 7321 mutex_exit(&connfp->connf_lock); 7322 IP_STAT(ipst, ip_udp_fanothers); 7323 /* 7324 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 7325 * have already been matched above, since they live in the IPv4 7326 * fanout tables. This implies we only need to 7327 * check for IPv6 in6addr_any endpoints here. 7328 * Thus we compare using ipv6_all_zeros instead of the destination 7329 * address, except for the multicast group membership lookup which 7330 * uses the IPv4 destination. 7331 */ 7332 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 7333 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7334 mutex_enter(&connfp->connf_lock); 7335 connp = connfp->connf_head; 7336 if (!broadcast && !CLASSD(dst)) { 7337 while (connp != NULL) { 7338 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7339 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 7340 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7341 !connp->conn_ipv6_v6only) 7342 break; 7343 connp = connp->conn_next; 7344 } 7345 7346 if (connp != NULL && is_system_labeled() && 7347 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7348 connp)) 7349 connp = NULL; 7350 7351 if (connp == NULL || connp->conn_upq == NULL) { 7352 /* 7353 * No one bound to this port. Is 7354 * there a client that wants all 7355 * unclaimed datagrams? 7356 */ 7357 mutex_exit(&connfp->connf_lock); 7358 7359 if (mctl_present) 7360 first_mp->b_cont = mp; 7361 else 7362 first_mp = mp; 7363 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP]. 7364 connf_head != NULL) { 7365 ip_fanout_proto(q, first_mp, ill, ipha, 7366 flags | IP_FF_RAWIP, mctl_present, 7367 ip_policy, recv_ill, zoneid); 7368 } else { 7369 if (ip_fanout_send_icmp(q, first_mp, flags, 7370 ICMP_DEST_UNREACHABLE, 7371 ICMP_PORT_UNREACHABLE, 7372 mctl_present, zoneid, ipst)) { 7373 BUMP_MIB(ill->ill_ip_mib, 7374 udpIfStatsNoPorts); 7375 } 7376 } 7377 return; 7378 } 7379 7380 CONN_INC_REF(connp); 7381 mutex_exit(&connfp->connf_lock); 7382 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7383 flags, recv_ill, ip_policy); 7384 CONN_DEC_REF(connp); 7385 return; 7386 } 7387 /* 7388 * IPv4 multicast packet being delivered to an AF_INET6 7389 * in6addr_any endpoint. 7390 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 7391 * and not conn_wantpacket_v6() since any multicast membership is 7392 * for an IPv4-mapped multicast address. 7393 * The packet is sent to all clients in all zones that have joined the 7394 * group and match the port. 7395 */ 7396 while (connp != NULL) { 7397 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7398 srcport, v6src) && 7399 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7400 (!is_system_labeled() || 7401 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7402 connp))) 7403 break; 7404 connp = connp->conn_next; 7405 } 7406 7407 if (connp == NULL || connp->conn_upq == NULL) { 7408 /* 7409 * No one bound to this port. Is 7410 * there a client that wants all 7411 * unclaimed datagrams? 7412 */ 7413 mutex_exit(&connfp->connf_lock); 7414 7415 if (mctl_present) 7416 first_mp->b_cont = mp; 7417 else 7418 first_mp = mp; 7419 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP].connf_head != 7420 NULL) { 7421 ip_fanout_proto(q, first_mp, ill, ipha, 7422 flags | IP_FF_RAWIP, mctl_present, ip_policy, 7423 recv_ill, zoneid); 7424 } else { 7425 /* 7426 * We used to attempt to send an icmp error here, but 7427 * since this is known to be a multicast packet 7428 * and we don't send icmp errors in response to 7429 * multicast, just drop the packet and give up sooner. 7430 */ 7431 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 7432 freemsg(first_mp); 7433 } 7434 return; 7435 } 7436 7437 first_connp = connp; 7438 7439 CONN_INC_REF(connp); 7440 connp = connp->conn_next; 7441 for (;;) { 7442 while (connp != NULL) { 7443 if (IPCL_UDP_MATCH_V6(connp, dstport, 7444 ipv6_all_zeros, srcport, v6src) && 7445 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7446 (!is_system_labeled() || 7447 tsol_receive_local(mp, &dst, IPV4_VERSION, 7448 shared_addr, connp))) 7449 break; 7450 connp = connp->conn_next; 7451 } 7452 /* 7453 * Just copy the data part alone. The mctl part is 7454 * needed just for verifying policy and it is never 7455 * sent up. 7456 */ 7457 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7458 ((mp1 = copymsg(mp)) == NULL))) { 7459 /* 7460 * No more intested clients or memory 7461 * allocation failed 7462 */ 7463 connp = first_connp; 7464 break; 7465 } 7466 if (first_mp != NULL) { 7467 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7468 ipsec_info_type == IPSEC_IN); 7469 first_mp1 = ipsec_in_tag(first_mp, NULL, 7470 ipst->ips_netstack); 7471 if (first_mp1 == NULL) { 7472 freemsg(mp1); 7473 connp = first_connp; 7474 break; 7475 } 7476 } else { 7477 first_mp1 = NULL; 7478 } 7479 CONN_INC_REF(connp); 7480 mutex_exit(&connfp->connf_lock); 7481 /* 7482 * IPQoS notes: We don't send the packet for policy 7483 * processing here, will do it for the last one (below). 7484 * i.e. we do it per-packet now, but if we do policy 7485 * processing per-conn, then we would need to do it 7486 * here too. 7487 */ 7488 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7489 ipha, flags, recv_ill, B_FALSE); 7490 mutex_enter(&connfp->connf_lock); 7491 /* Follow the next pointer before releasing the conn. */ 7492 next_connp = connp->conn_next; 7493 CONN_DEC_REF(connp); 7494 connp = next_connp; 7495 } 7496 7497 /* Last one. Send it upstream. */ 7498 mutex_exit(&connfp->connf_lock); 7499 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7500 recv_ill, ip_policy); 7501 CONN_DEC_REF(connp); 7502 } 7503 7504 /* 7505 * Complete the ip_wput header so that it 7506 * is possible to generate ICMP 7507 * errors. 7508 */ 7509 int 7510 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid, ip_stack_t *ipst) 7511 { 7512 ire_t *ire; 7513 7514 if (ipha->ipha_src == INADDR_ANY) { 7515 ire = ire_lookup_local(zoneid, ipst); 7516 if (ire == NULL) { 7517 ip1dbg(("ip_hdr_complete: no source IRE\n")); 7518 return (1); 7519 } 7520 ipha->ipha_src = ire->ire_addr; 7521 ire_refrele(ire); 7522 } 7523 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 7524 ipha->ipha_hdr_checksum = 0; 7525 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 7526 return (0); 7527 } 7528 7529 /* 7530 * Nobody should be sending 7531 * packets up this stream 7532 */ 7533 static void 7534 ip_lrput(queue_t *q, mblk_t *mp) 7535 { 7536 mblk_t *mp1; 7537 7538 switch (mp->b_datap->db_type) { 7539 case M_FLUSH: 7540 /* Turn around */ 7541 if (*mp->b_rptr & FLUSHW) { 7542 *mp->b_rptr &= ~FLUSHR; 7543 qreply(q, mp); 7544 return; 7545 } 7546 break; 7547 } 7548 /* Could receive messages that passed through ar_rput */ 7549 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 7550 mp1->b_prev = mp1->b_next = NULL; 7551 freemsg(mp); 7552 } 7553 7554 /* Nobody should be sending packets down this stream */ 7555 /* ARGSUSED */ 7556 void 7557 ip_lwput(queue_t *q, mblk_t *mp) 7558 { 7559 freemsg(mp); 7560 } 7561 7562 /* 7563 * Move the first hop in any source route to ipha_dst and remove that part of 7564 * the source route. Called by other protocols. Errors in option formatting 7565 * are ignored - will be handled by ip_wput_options Return the final 7566 * destination (either ipha_dst or the last entry in a source route.) 7567 */ 7568 ipaddr_t 7569 ip_massage_options(ipha_t *ipha, netstack_t *ns) 7570 { 7571 ipoptp_t opts; 7572 uchar_t *opt; 7573 uint8_t optval; 7574 uint8_t optlen; 7575 ipaddr_t dst; 7576 int i; 7577 ire_t *ire; 7578 ip_stack_t *ipst = ns->netstack_ip; 7579 7580 ip2dbg(("ip_massage_options\n")); 7581 dst = ipha->ipha_dst; 7582 for (optval = ipoptp_first(&opts, ipha); 7583 optval != IPOPT_EOL; 7584 optval = ipoptp_next(&opts)) { 7585 opt = opts.ipoptp_cur; 7586 switch (optval) { 7587 uint8_t off; 7588 case IPOPT_SSRR: 7589 case IPOPT_LSRR: 7590 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 7591 ip1dbg(("ip_massage_options: bad src route\n")); 7592 break; 7593 } 7594 optlen = opts.ipoptp_len; 7595 off = opt[IPOPT_OFFSET]; 7596 off--; 7597 redo_srr: 7598 if (optlen < IP_ADDR_LEN || 7599 off > optlen - IP_ADDR_LEN) { 7600 /* End of source route */ 7601 ip1dbg(("ip_massage_options: end of SR\n")); 7602 break; 7603 } 7604 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 7605 ip1dbg(("ip_massage_options: next hop 0x%x\n", 7606 ntohl(dst))); 7607 /* 7608 * Check if our address is present more than 7609 * once as consecutive hops in source route. 7610 * XXX verify per-interface ip_forwarding 7611 * for source route? 7612 */ 7613 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 7614 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7615 if (ire != NULL) { 7616 ire_refrele(ire); 7617 off += IP_ADDR_LEN; 7618 goto redo_srr; 7619 } 7620 if (dst == htonl(INADDR_LOOPBACK)) { 7621 ip1dbg(("ip_massage_options: loopback addr in " 7622 "source route!\n")); 7623 break; 7624 } 7625 /* 7626 * Update ipha_dst to be the first hop and remove the 7627 * first hop from the source route (by overwriting 7628 * part of the option with NOP options). 7629 */ 7630 ipha->ipha_dst = dst; 7631 /* Put the last entry in dst */ 7632 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 7633 3; 7634 bcopy(&opt[off], &dst, IP_ADDR_LEN); 7635 7636 ip1dbg(("ip_massage_options: last hop 0x%x\n", 7637 ntohl(dst))); 7638 /* Move down and overwrite */ 7639 opt[IP_ADDR_LEN] = opt[0]; 7640 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 7641 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 7642 for (i = 0; i < IP_ADDR_LEN; i++) 7643 opt[i] = IPOPT_NOP; 7644 break; 7645 } 7646 } 7647 return (dst); 7648 } 7649 7650 /* 7651 * Return the network mask 7652 * associated with the specified address. 7653 */ 7654 ipaddr_t 7655 ip_net_mask(ipaddr_t addr) 7656 { 7657 uchar_t *up = (uchar_t *)&addr; 7658 ipaddr_t mask = 0; 7659 uchar_t *maskp = (uchar_t *)&mask; 7660 7661 #if defined(__i386) || defined(__amd64) 7662 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7663 #endif 7664 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7665 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7666 #endif 7667 if (CLASSD(addr)) { 7668 maskp[0] = 0xF0; 7669 return (mask); 7670 } 7671 if (addr == 0) 7672 return (0); 7673 maskp[0] = 0xFF; 7674 if ((up[0] & 0x80) == 0) 7675 return (mask); 7676 7677 maskp[1] = 0xFF; 7678 if ((up[0] & 0xC0) == 0x80) 7679 return (mask); 7680 7681 maskp[2] = 0xFF; 7682 if ((up[0] & 0xE0) == 0xC0) 7683 return (mask); 7684 7685 /* Must be experimental or multicast, indicate as much */ 7686 return ((ipaddr_t)0); 7687 } 7688 7689 /* 7690 * Select an ill for the packet by considering load spreading across 7691 * a different ill in the group if dst_ill is part of some group. 7692 */ 7693 ill_t * 7694 ip_newroute_get_dst_ill(ill_t *dst_ill) 7695 { 7696 ill_t *ill; 7697 7698 /* 7699 * We schedule irrespective of whether the source address is 7700 * INADDR_ANY or not. illgrp_scheduler returns a held ill. 7701 */ 7702 ill = illgrp_scheduler(dst_ill); 7703 if (ill == NULL) 7704 return (NULL); 7705 7706 /* 7707 * For groups with names ip_sioctl_groupname ensures that all 7708 * ills are of same type. For groups without names, ifgrp_insert 7709 * ensures this. 7710 */ 7711 ASSERT(dst_ill->ill_type == ill->ill_type); 7712 7713 return (ill); 7714 } 7715 7716 /* 7717 * Helper function for the IPIF_NOFAILOVER/ATTACH_IF interface attachment case. 7718 */ 7719 ill_t * 7720 ip_grab_attach_ill(ill_t *ill, mblk_t *first_mp, int ifindex, boolean_t isv6, 7721 ip_stack_t *ipst) 7722 { 7723 ill_t *ret_ill; 7724 7725 ASSERT(ifindex != 0); 7726 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 7727 ipst); 7728 if (ret_ill == NULL || 7729 (ret_ill->ill_phyint->phyint_flags & PHYI_OFFLINE)) { 7730 if (isv6) { 7731 if (ill != NULL) { 7732 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7733 } else { 7734 BUMP_MIB(&ipst->ips_ip6_mib, 7735 ipIfStatsOutDiscards); 7736 } 7737 ip1dbg(("ip_grab_attach_ill (IPv6): " 7738 "bad ifindex %d.\n", ifindex)); 7739 } else { 7740 if (ill != NULL) { 7741 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7742 } else { 7743 BUMP_MIB(&ipst->ips_ip_mib, 7744 ipIfStatsOutDiscards); 7745 } 7746 ip1dbg(("ip_grab_attach_ill (IPv4): " 7747 "bad ifindex %d.\n", ifindex)); 7748 } 7749 if (ret_ill != NULL) 7750 ill_refrele(ret_ill); 7751 freemsg(first_mp); 7752 return (NULL); 7753 } 7754 7755 return (ret_ill); 7756 } 7757 7758 /* 7759 * IPv4 - 7760 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7761 * out a packet to a destination address for which we do not have specific 7762 * (or sufficient) routing information. 7763 * 7764 * NOTE : These are the scopes of some of the variables that point at IRE, 7765 * which needs to be followed while making any future modifications 7766 * to avoid memory leaks. 7767 * 7768 * - ire and sire are the entries looked up initially by 7769 * ire_ftable_lookup. 7770 * - ipif_ire is used to hold the interface ire associated with 7771 * the new cache ire. But it's scope is limited, so we always REFRELE 7772 * it before branching out to error paths. 7773 * - save_ire is initialized before ire_create, so that ire returned 7774 * by ire_create will not over-write the ire. We REFRELE save_ire 7775 * before breaking out of the switch. 7776 * 7777 * Thus on failures, we have to REFRELE only ire and sire, if they 7778 * are not NULL. 7779 */ 7780 void 7781 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, conn_t *connp, 7782 zoneid_t zoneid, ip_stack_t *ipst) 7783 { 7784 areq_t *areq; 7785 ipaddr_t gw = 0; 7786 ire_t *ire = NULL; 7787 mblk_t *res_mp; 7788 ipaddr_t *addrp; 7789 ipaddr_t nexthop_addr; 7790 ipif_t *src_ipif = NULL; 7791 ill_t *dst_ill = NULL; 7792 ipha_t *ipha; 7793 ire_t *sire = NULL; 7794 mblk_t *first_mp; 7795 ire_t *save_ire; 7796 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER address */ 7797 ushort_t ire_marks = 0; 7798 boolean_t mctl_present; 7799 ipsec_out_t *io; 7800 mblk_t *saved_mp; 7801 ire_t *first_sire = NULL; 7802 mblk_t *copy_mp = NULL; 7803 mblk_t *xmit_mp = NULL; 7804 ipaddr_t save_dst; 7805 uint32_t multirt_flags = 7806 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7807 boolean_t multirt_is_resolvable; 7808 boolean_t multirt_resolve_next; 7809 boolean_t unspec_src; 7810 boolean_t do_attach_ill = B_FALSE; 7811 boolean_t ip_nexthop = B_FALSE; 7812 tsol_ire_gw_secattr_t *attrp = NULL; 7813 tsol_gcgrp_t *gcgrp = NULL; 7814 tsol_gcgrp_addr_t ga; 7815 7816 if (ip_debug > 2) { 7817 /* ip1dbg */ 7818 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7819 } 7820 7821 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7822 if (mctl_present) { 7823 io = (ipsec_out_t *)first_mp->b_rptr; 7824 ASSERT(io->ipsec_out_type == IPSEC_OUT); 7825 ASSERT(zoneid == io->ipsec_out_zoneid); 7826 ASSERT(zoneid != ALL_ZONES); 7827 } 7828 7829 ipha = (ipha_t *)mp->b_rptr; 7830 7831 /* All multicast lookups come through ip_newroute_ipif() */ 7832 if (CLASSD(dst)) { 7833 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7834 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7835 freemsg(first_mp); 7836 return; 7837 } 7838 7839 if (mctl_present && io->ipsec_out_attach_if) { 7840 /* ip_grab_attach_ill returns a held ill */ 7841 attach_ill = ip_grab_attach_ill(NULL, first_mp, 7842 io->ipsec_out_ill_index, B_FALSE, ipst); 7843 7844 /* Failure case frees things for us. */ 7845 if (attach_ill == NULL) 7846 return; 7847 7848 /* 7849 * Check if we need an ire that will not be 7850 * looked up by anybody else i.e. HIDDEN. 7851 */ 7852 if (ill_is_probeonly(attach_ill)) 7853 ire_marks = IRE_MARK_HIDDEN; 7854 } 7855 if (mctl_present && io->ipsec_out_ip_nexthop) { 7856 ip_nexthop = B_TRUE; 7857 nexthop_addr = io->ipsec_out_nexthop_addr; 7858 } 7859 /* 7860 * If this IRE is created for forwarding or it is not for 7861 * traffic for congestion controlled protocols, mark it as temporary. 7862 */ 7863 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 7864 ire_marks |= IRE_MARK_TEMPORARY; 7865 7866 /* 7867 * Get what we can from ire_ftable_lookup which will follow an IRE 7868 * chain until it gets the most specific information available. 7869 * For example, we know that there is no IRE_CACHE for this dest, 7870 * but there may be an IRE_OFFSUBNET which specifies a gateway. 7871 * ire_ftable_lookup will look up the gateway, etc. 7872 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 7873 * to the destination, of equal netmask length in the forward table, 7874 * will be recursively explored. If no information is available 7875 * for the final gateway of that route, we force the returned ire 7876 * to be equal to sire using MATCH_IRE_PARENT. 7877 * At least, in this case we have a starting point (in the buckets) 7878 * to look for other routes to the destination in the forward table. 7879 * This is actually used only for multirouting, where a list 7880 * of routes has to be processed in sequence. 7881 * 7882 * In the process of coming up with the most specific information, 7883 * ire_ftable_lookup may end up with an incomplete IRE_CACHE entry 7884 * for the gateway (i.e., one for which the ire_nce->nce_state is 7885 * not yet ND_REACHABLE, and is in the middle of arp resolution). 7886 * Two caveats when handling incomplete ire's in ip_newroute: 7887 * - we should be careful when accessing its ire_nce (specifically 7888 * the nce_res_mp) ast it might change underneath our feet, and, 7889 * - not all legacy code path callers are prepared to handle 7890 * incomplete ire's, so we should not create/add incomplete 7891 * ire_cache entries here. (See discussion about temporary solution 7892 * further below). 7893 * 7894 * In order to minimize packet dropping, and to preserve existing 7895 * behavior, we treat this case as if there were no IRE_CACHE for the 7896 * gateway, and instead use the IF_RESOLVER ire to send out 7897 * another request to ARP (this is achieved by passing the 7898 * MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the 7899 * arp response comes back in ip_wput_nondata, we will create 7900 * a per-dst ire_cache that has an ND_COMPLETE ire. 7901 * 7902 * Note that this is a temporary solution; the correct solution is 7903 * to create an incomplete per-dst ire_cache entry, and send the 7904 * packet out when the gw's nce is resolved. In order to achieve this, 7905 * all packet processing must have been completed prior to calling 7906 * ire_add_then_send. Some legacy code paths (e.g. cgtp) would need 7907 * to be modified to accomodate this solution. 7908 */ 7909 if (ip_nexthop) { 7910 /* 7911 * The first time we come here, we look for an IRE_INTERFACE 7912 * entry for the specified nexthop, set the dst to be the 7913 * nexthop address and create an IRE_CACHE entry for the 7914 * nexthop. The next time around, we are able to find an 7915 * IRE_CACHE entry for the nexthop, set the gateway to be the 7916 * nexthop address and create an IRE_CACHE entry for the 7917 * destination address via the specified nexthop. 7918 */ 7919 ire = ire_cache_lookup(nexthop_addr, zoneid, 7920 MBLK_GETLABEL(mp), ipst); 7921 if (ire != NULL) { 7922 gw = nexthop_addr; 7923 ire_marks |= IRE_MARK_PRIVATE_ADDR; 7924 } else { 7925 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 7926 IRE_INTERFACE, NULL, NULL, zoneid, 0, 7927 MBLK_GETLABEL(mp), 7928 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 7929 ipst); 7930 if (ire != NULL) { 7931 dst = nexthop_addr; 7932 } 7933 } 7934 } else if (attach_ill == NULL) { 7935 ire = ire_ftable_lookup(dst, 0, 0, 0, 7936 NULL, &sire, zoneid, 0, MBLK_GETLABEL(mp), 7937 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 7938 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 7939 MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE, 7940 ipst); 7941 } else { 7942 /* 7943 * attach_ill is set only for communicating with 7944 * on-link hosts. So, don't look for DEFAULT. 7945 */ 7946 ipif_t *attach_ipif; 7947 7948 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 7949 if (attach_ipif == NULL) { 7950 ill_refrele(attach_ill); 7951 goto icmp_err_ret; 7952 } 7953 ire = ire_ftable_lookup(dst, 0, 0, 0, attach_ipif, 7954 &sire, zoneid, 0, MBLK_GETLABEL(mp), 7955 MATCH_IRE_RJ_BHOLE | MATCH_IRE_ILL | 7956 MATCH_IRE_SECATTR, ipst); 7957 ipif_refrele(attach_ipif); 7958 } 7959 ip3dbg(("ip_newroute: ire_ftable_lookup() " 7960 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 7961 7962 /* 7963 * This loop is run only once in most cases. 7964 * We loop to resolve further routes only when the destination 7965 * can be reached through multiple RTF_MULTIRT-flagged ires. 7966 */ 7967 do { 7968 /* Clear the previous iteration's values */ 7969 if (src_ipif != NULL) { 7970 ipif_refrele(src_ipif); 7971 src_ipif = NULL; 7972 } 7973 if (dst_ill != NULL) { 7974 ill_refrele(dst_ill); 7975 dst_ill = NULL; 7976 } 7977 7978 multirt_resolve_next = B_FALSE; 7979 /* 7980 * We check if packets have to be multirouted. 7981 * In this case, given the current <ire, sire> couple, 7982 * we look for the next suitable <ire, sire>. 7983 * This check is done in ire_multirt_lookup(), 7984 * which applies various criteria to find the next route 7985 * to resolve. ire_multirt_lookup() leaves <ire, sire> 7986 * unchanged if it detects it has not been tried yet. 7987 */ 7988 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7989 ip3dbg(("ip_newroute: starting next_resolution " 7990 "with first_mp %p, tag %d\n", 7991 (void *)first_mp, 7992 MULTIRT_DEBUG_TAGGED(first_mp))); 7993 7994 ASSERT(sire != NULL); 7995 multirt_is_resolvable = 7996 ire_multirt_lookup(&ire, &sire, multirt_flags, 7997 MBLK_GETLABEL(mp), ipst); 7998 7999 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 8000 "ire %p, sire %p\n", 8001 multirt_is_resolvable, 8002 (void *)ire, (void *)sire)); 8003 8004 if (!multirt_is_resolvable) { 8005 /* 8006 * No more multirt route to resolve; give up 8007 * (all routes resolved or no more 8008 * resolvable routes). 8009 */ 8010 if (ire != NULL) { 8011 ire_refrele(ire); 8012 ire = NULL; 8013 } 8014 } else { 8015 ASSERT(sire != NULL); 8016 ASSERT(ire != NULL); 8017 /* 8018 * We simply use first_sire as a flag that 8019 * indicates if a resolvable multirt route 8020 * has already been found. 8021 * If it is not the case, we may have to send 8022 * an ICMP error to report that the 8023 * destination is unreachable. 8024 * We do not IRE_REFHOLD first_sire. 8025 */ 8026 if (first_sire == NULL) { 8027 first_sire = sire; 8028 } 8029 } 8030 } 8031 if (ire == NULL) { 8032 if (ip_debug > 3) { 8033 /* ip2dbg */ 8034 pr_addr_dbg("ip_newroute: " 8035 "can't resolve %s\n", AF_INET, &dst); 8036 } 8037 ip3dbg(("ip_newroute: " 8038 "ire %p, sire %p, first_sire %p\n", 8039 (void *)ire, (void *)sire, (void *)first_sire)); 8040 8041 if (sire != NULL) { 8042 ire_refrele(sire); 8043 sire = NULL; 8044 } 8045 8046 if (first_sire != NULL) { 8047 /* 8048 * At least one multirt route has been found 8049 * in the same call to ip_newroute(); 8050 * there is no need to report an ICMP error. 8051 * first_sire was not IRE_REFHOLDed. 8052 */ 8053 MULTIRT_DEBUG_UNTAG(first_mp); 8054 freemsg(first_mp); 8055 return; 8056 } 8057 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 8058 RTA_DST, ipst); 8059 if (attach_ill != NULL) 8060 ill_refrele(attach_ill); 8061 goto icmp_err_ret; 8062 } 8063 8064 /* 8065 * Verify that the returned IRE does not have either 8066 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 8067 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 8068 */ 8069 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 8070 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 8071 if (attach_ill != NULL) 8072 ill_refrele(attach_ill); 8073 goto icmp_err_ret; 8074 } 8075 /* 8076 * Increment the ire_ob_pkt_count field for ire if it is an 8077 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 8078 * increment the same for the parent IRE, sire, if it is some 8079 * sort of prefix IRE (which includes DEFAULT, PREFIX, and HOST) 8080 */ 8081 if ((ire->ire_type & IRE_INTERFACE) != 0) { 8082 UPDATE_OB_PKT_COUNT(ire); 8083 ire->ire_last_used_time = lbolt; 8084 } 8085 8086 if (sire != NULL) { 8087 gw = sire->ire_gateway_addr; 8088 ASSERT((sire->ire_type & (IRE_CACHETABLE | 8089 IRE_INTERFACE)) == 0); 8090 UPDATE_OB_PKT_COUNT(sire); 8091 sire->ire_last_used_time = lbolt; 8092 } 8093 /* 8094 * We have a route to reach the destination. 8095 * 8096 * 1) If the interface is part of ill group, try to get a new 8097 * ill taking load spreading into account. 8098 * 8099 * 2) After selecting the ill, get a source address that 8100 * might create good inbound load spreading. 8101 * ipif_select_source does this for us. 8102 * 8103 * If the application specified the ill (ifindex), we still 8104 * load spread. Only if the packets needs to go out 8105 * specifically on a given ill e.g. binding to 8106 * IPIF_NOFAILOVER address, then we don't try to use a 8107 * different ill for load spreading. 8108 */ 8109 if (attach_ill == NULL) { 8110 /* 8111 * Don't perform outbound load spreading in the 8112 * case of an RTF_MULTIRT route, as we actually 8113 * typically want to replicate outgoing packets 8114 * through particular interfaces. 8115 */ 8116 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8117 dst_ill = ire->ire_ipif->ipif_ill; 8118 /* for uniformity */ 8119 ill_refhold(dst_ill); 8120 } else { 8121 /* 8122 * If we are here trying to create an IRE_CACHE 8123 * for an offlink destination and have the 8124 * IRE_CACHE for the next hop and the latter is 8125 * using virtual IP source address selection i.e 8126 * it's ire->ire_ipif is pointing to a virtual 8127 * network interface (vni) then 8128 * ip_newroute_get_dst_ll() will return the vni 8129 * interface as the dst_ill. Since the vni is 8130 * virtual i.e not associated with any physical 8131 * interface, it cannot be the dst_ill, hence 8132 * in such a case call ip_newroute_get_dst_ll() 8133 * with the stq_ill instead of the ire_ipif ILL. 8134 * The function returns a refheld ill. 8135 */ 8136 if ((ire->ire_type == IRE_CACHE) && 8137 IS_VNI(ire->ire_ipif->ipif_ill)) 8138 dst_ill = ip_newroute_get_dst_ill( 8139 ire->ire_stq->q_ptr); 8140 else 8141 dst_ill = ip_newroute_get_dst_ill( 8142 ire->ire_ipif->ipif_ill); 8143 } 8144 if (dst_ill == NULL) { 8145 if (ip_debug > 2) { 8146 pr_addr_dbg("ip_newroute: " 8147 "no dst ill for dst" 8148 " %s\n", AF_INET, &dst); 8149 } 8150 goto icmp_err_ret; 8151 } 8152 } else { 8153 dst_ill = ire->ire_ipif->ipif_ill; 8154 /* for uniformity */ 8155 ill_refhold(dst_ill); 8156 /* 8157 * We should have found a route matching ill as we 8158 * called ire_ftable_lookup with MATCH_IRE_ILL. 8159 * Rather than asserting, when there is a mismatch, 8160 * we just drop the packet. 8161 */ 8162 if (dst_ill != attach_ill) { 8163 ip0dbg(("ip_newroute: Packet dropped as " 8164 "IPIF_NOFAILOVER ill is %s, " 8165 "ire->ire_ipif->ipif_ill is %s\n", 8166 attach_ill->ill_name, 8167 dst_ill->ill_name)); 8168 ill_refrele(attach_ill); 8169 goto icmp_err_ret; 8170 } 8171 } 8172 /* attach_ill can't go in loop. IPMP and CGTP are disjoint */ 8173 if (attach_ill != NULL) { 8174 ill_refrele(attach_ill); 8175 attach_ill = NULL; 8176 do_attach_ill = B_TRUE; 8177 } 8178 ASSERT(dst_ill != NULL); 8179 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 8180 8181 /* 8182 * Pick the best source address from dst_ill. 8183 * 8184 * 1) If it is part of a multipathing group, we would 8185 * like to spread the inbound packets across different 8186 * interfaces. ipif_select_source picks a random source 8187 * across the different ills in the group. 8188 * 8189 * 2) If it is not part of a multipathing group, we try 8190 * to pick the source address from the destination 8191 * route. Clustering assumes that when we have multiple 8192 * prefixes hosted on an interface, the prefix of the 8193 * source address matches the prefix of the destination 8194 * route. We do this only if the address is not 8195 * DEPRECATED. 8196 * 8197 * 3) If the conn is in a different zone than the ire, we 8198 * need to pick a source address from the right zone. 8199 * 8200 * NOTE : If we hit case (1) above, the prefix of the source 8201 * address picked may not match the prefix of the 8202 * destination routes prefix as ipif_select_source 8203 * does not look at "dst" while picking a source 8204 * address. 8205 * If we want the same behavior as (2), we will need 8206 * to change the behavior of ipif_select_source. 8207 */ 8208 ASSERT(src_ipif == NULL); 8209 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 8210 /* 8211 * The RTF_SETSRC flag is set in the parent ire (sire). 8212 * Check that the ipif matching the requested source 8213 * address still exists. 8214 */ 8215 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 8216 zoneid, NULL, NULL, NULL, NULL, ipst); 8217 } 8218 8219 unspec_src = (connp != NULL && connp->conn_unspec_src); 8220 8221 if (src_ipif == NULL && 8222 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 8223 ire_marks |= IRE_MARK_USESRC_CHECK; 8224 if ((dst_ill->ill_group != NULL) || 8225 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 8226 (connp != NULL && ire->ire_zoneid != zoneid && 8227 ire->ire_zoneid != ALL_ZONES) || 8228 (dst_ill->ill_usesrc_ifindex != 0)) { 8229 /* 8230 * If the destination is reachable via a 8231 * given gateway, the selected source address 8232 * should be in the same subnet as the gateway. 8233 * Otherwise, the destination is not reachable. 8234 * 8235 * If there are no interfaces on the same subnet 8236 * as the destination, ipif_select_source gives 8237 * first non-deprecated interface which might be 8238 * on a different subnet than the gateway. 8239 * This is not desirable. Hence pass the dst_ire 8240 * source address to ipif_select_source. 8241 * It is sure that the destination is reachable 8242 * with the dst_ire source address subnet. 8243 * So passing dst_ire source address to 8244 * ipif_select_source will make sure that the 8245 * selected source will be on the same subnet 8246 * as dst_ire source address. 8247 */ 8248 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 8249 src_ipif = ipif_select_source(dst_ill, saddr, 8250 zoneid); 8251 if (src_ipif == NULL) { 8252 if (ip_debug > 2) { 8253 pr_addr_dbg("ip_newroute: " 8254 "no src for dst %s ", 8255 AF_INET, &dst); 8256 printf("through interface %s\n", 8257 dst_ill->ill_name); 8258 } 8259 goto icmp_err_ret; 8260 } 8261 } else { 8262 src_ipif = ire->ire_ipif; 8263 ASSERT(src_ipif != NULL); 8264 /* hold src_ipif for uniformity */ 8265 ipif_refhold(src_ipif); 8266 } 8267 } 8268 8269 /* 8270 * Assign a source address while we have the conn. 8271 * We can't have ip_wput_ire pick a source address when the 8272 * packet returns from arp since we need to look at 8273 * conn_unspec_src and conn_zoneid, and we lose the conn when 8274 * going through arp. 8275 * 8276 * NOTE : ip_newroute_v6 does not have this piece of code as 8277 * it uses ip6i to store this information. 8278 */ 8279 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 8280 ipha->ipha_src = src_ipif->ipif_src_addr; 8281 8282 if (ip_debug > 3) { 8283 /* ip2dbg */ 8284 pr_addr_dbg("ip_newroute: first hop %s\n", 8285 AF_INET, &gw); 8286 } 8287 ip2dbg(("\tire type %s (%d)\n", 8288 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 8289 8290 /* 8291 * The TTL of multirouted packets is bounded by the 8292 * ip_multirt_ttl ndd variable. 8293 */ 8294 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8295 /* Force TTL of multirouted packets */ 8296 if ((ipst->ips_ip_multirt_ttl > 0) && 8297 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 8298 ip2dbg(("ip_newroute: forcing multirt TTL " 8299 "to %d (was %d), dst 0x%08x\n", 8300 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 8301 ntohl(sire->ire_addr))); 8302 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 8303 } 8304 } 8305 /* 8306 * At this point in ip_newroute(), ire is either the 8307 * IRE_CACHE of the next-hop gateway for an off-subnet 8308 * destination or an IRE_INTERFACE type that should be used 8309 * to resolve an on-subnet destination or an on-subnet 8310 * next-hop gateway. 8311 * 8312 * In the IRE_CACHE case, we have the following : 8313 * 8314 * 1) src_ipif - used for getting a source address. 8315 * 8316 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8317 * means packets using this IRE_CACHE will go out on 8318 * dst_ill. 8319 * 8320 * 3) The IRE sire will point to the prefix that is the 8321 * longest matching route for the destination. These 8322 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST. 8323 * 8324 * The newly created IRE_CACHE entry for the off-subnet 8325 * destination is tied to both the prefix route and the 8326 * interface route used to resolve the next-hop gateway 8327 * via the ire_phandle and ire_ihandle fields, 8328 * respectively. 8329 * 8330 * In the IRE_INTERFACE case, we have the following : 8331 * 8332 * 1) src_ipif - used for getting a source address. 8333 * 8334 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8335 * means packets using the IRE_CACHE that we will build 8336 * here will go out on dst_ill. 8337 * 8338 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 8339 * to be created will only be tied to the IRE_INTERFACE 8340 * that was derived from the ire_ihandle field. 8341 * 8342 * If sire is non-NULL, it means the destination is 8343 * off-link and we will first create the IRE_CACHE for the 8344 * gateway. Next time through ip_newroute, we will create 8345 * the IRE_CACHE for the final destination as described 8346 * above. 8347 * 8348 * In both cases, after the current resolution has been 8349 * completed (or possibly initialised, in the IRE_INTERFACE 8350 * case), the loop may be re-entered to attempt the resolution 8351 * of another RTF_MULTIRT route. 8352 * 8353 * When an IRE_CACHE entry for the off-subnet destination is 8354 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 8355 * for further processing in emission loops. 8356 */ 8357 save_ire = ire; 8358 switch (ire->ire_type) { 8359 case IRE_CACHE: { 8360 ire_t *ipif_ire; 8361 8362 ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE); 8363 if (gw == 0) 8364 gw = ire->ire_gateway_addr; 8365 /* 8366 * We need 3 ire's to create a new cache ire for an 8367 * off-link destination from the cache ire of the 8368 * gateway. 8369 * 8370 * 1. The prefix ire 'sire' (Note that this does 8371 * not apply to the conn_nexthop_set case) 8372 * 2. The cache ire of the gateway 'ire' 8373 * 3. The interface ire 'ipif_ire' 8374 * 8375 * We have (1) and (2). We lookup (3) below. 8376 * 8377 * If there is no interface route to the gateway, 8378 * it is a race condition, where we found the cache 8379 * but the interface route has been deleted. 8380 */ 8381 if (ip_nexthop) { 8382 ipif_ire = ire_ihandle_lookup_onlink(ire); 8383 } else { 8384 ipif_ire = 8385 ire_ihandle_lookup_offlink(ire, sire); 8386 } 8387 if (ipif_ire == NULL) { 8388 ip1dbg(("ip_newroute: " 8389 "ire_ihandle_lookup_offlink failed\n")); 8390 goto icmp_err_ret; 8391 } 8392 8393 /* 8394 * Check cached gateway IRE for any security 8395 * attributes; if found, associate the gateway 8396 * credentials group to the destination IRE. 8397 */ 8398 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 8399 mutex_enter(&attrp->igsa_lock); 8400 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 8401 GCGRP_REFHOLD(gcgrp); 8402 mutex_exit(&attrp->igsa_lock); 8403 } 8404 8405 /* 8406 * XXX For the source of the resolver mp, 8407 * we are using the same DL_UNITDATA_REQ 8408 * (from save_ire->ire_nce->nce_res_mp) 8409 * though the save_ire is not pointing at the same ill. 8410 * This is incorrect. We need to send it up to the 8411 * resolver to get the right res_mp. For ethernets 8412 * this may be okay (ill_type == DL_ETHER). 8413 */ 8414 8415 ire = ire_create( 8416 (uchar_t *)&dst, /* dest address */ 8417 (uchar_t *)&ip_g_all_ones, /* mask */ 8418 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8419 (uchar_t *)&gw, /* gateway address */ 8420 &save_ire->ire_max_frag, 8421 save_ire->ire_nce, /* src nce */ 8422 dst_ill->ill_rq, /* recv-from queue */ 8423 dst_ill->ill_wq, /* send-to queue */ 8424 IRE_CACHE, /* IRE type */ 8425 src_ipif, 8426 (sire != NULL) ? 8427 sire->ire_mask : 0, /* Parent mask */ 8428 (sire != NULL) ? 8429 sire->ire_phandle : 0, /* Parent handle */ 8430 ipif_ire->ire_ihandle, /* Interface handle */ 8431 (sire != NULL) ? (sire->ire_flags & 8432 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 8433 (sire != NULL) ? 8434 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 8435 NULL, 8436 gcgrp, 8437 ipst); 8438 8439 if (ire == NULL) { 8440 if (gcgrp != NULL) { 8441 GCGRP_REFRELE(gcgrp); 8442 gcgrp = NULL; 8443 } 8444 ire_refrele(ipif_ire); 8445 ire_refrele(save_ire); 8446 break; 8447 } 8448 8449 /* reference now held by IRE */ 8450 gcgrp = NULL; 8451 8452 ire->ire_marks |= ire_marks; 8453 8454 /* 8455 * Prevent sire and ipif_ire from getting deleted. 8456 * The newly created ire is tied to both of them via 8457 * the phandle and ihandle respectively. 8458 */ 8459 if (sire != NULL) { 8460 IRB_REFHOLD(sire->ire_bucket); 8461 /* Has it been removed already ? */ 8462 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 8463 IRB_REFRELE(sire->ire_bucket); 8464 ire_refrele(ipif_ire); 8465 ire_refrele(save_ire); 8466 break; 8467 } 8468 } 8469 8470 IRB_REFHOLD(ipif_ire->ire_bucket); 8471 /* Has it been removed already ? */ 8472 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 8473 IRB_REFRELE(ipif_ire->ire_bucket); 8474 if (sire != NULL) 8475 IRB_REFRELE(sire->ire_bucket); 8476 ire_refrele(ipif_ire); 8477 ire_refrele(save_ire); 8478 break; 8479 } 8480 8481 xmit_mp = first_mp; 8482 /* 8483 * In the case of multirouting, a copy 8484 * of the packet is done before its sending. 8485 * The copy is used to attempt another 8486 * route resolution, in a next loop. 8487 */ 8488 if (ire->ire_flags & RTF_MULTIRT) { 8489 copy_mp = copymsg(first_mp); 8490 if (copy_mp != NULL) { 8491 xmit_mp = copy_mp; 8492 MULTIRT_DEBUG_TAG(first_mp); 8493 } 8494 } 8495 ire_add_then_send(q, ire, xmit_mp); 8496 ire_refrele(save_ire); 8497 8498 /* Assert that sire is not deleted yet. */ 8499 if (sire != NULL) { 8500 ASSERT(sire->ire_ptpn != NULL); 8501 IRB_REFRELE(sire->ire_bucket); 8502 } 8503 8504 /* Assert that ipif_ire is not deleted yet. */ 8505 ASSERT(ipif_ire->ire_ptpn != NULL); 8506 IRB_REFRELE(ipif_ire->ire_bucket); 8507 ire_refrele(ipif_ire); 8508 8509 /* 8510 * If copy_mp is not NULL, multirouting was 8511 * requested. We loop to initiate a next 8512 * route resolution attempt, starting from sire. 8513 */ 8514 if (copy_mp != NULL) { 8515 /* 8516 * Search for the next unresolved 8517 * multirt route. 8518 */ 8519 copy_mp = NULL; 8520 ipif_ire = NULL; 8521 ire = NULL; 8522 multirt_resolve_next = B_TRUE; 8523 continue; 8524 } 8525 if (sire != NULL) 8526 ire_refrele(sire); 8527 ipif_refrele(src_ipif); 8528 ill_refrele(dst_ill); 8529 return; 8530 } 8531 case IRE_IF_NORESOLVER: { 8532 8533 if (dst_ill->ill_phys_addr_length != IP_ADDR_LEN && 8534 dst_ill->ill_resolver_mp == NULL) { 8535 ip1dbg(("ip_newroute: dst_ill %p " 8536 "for IRE_IF_NORESOLVER ire %p has " 8537 "no ill_resolver_mp\n", 8538 (void *)dst_ill, (void *)ire)); 8539 break; 8540 } 8541 8542 /* 8543 * TSol note: We are creating the ire cache for the 8544 * destination 'dst'. If 'dst' is offlink, going 8545 * through the first hop 'gw', the security attributes 8546 * of 'dst' must be set to point to the gateway 8547 * credentials of gateway 'gw'. If 'dst' is onlink, it 8548 * is possible that 'dst' is a potential gateway that is 8549 * referenced by some route that has some security 8550 * attributes. Thus in the former case, we need to do a 8551 * gcgrp_lookup of 'gw' while in the latter case we 8552 * need to do gcgrp_lookup of 'dst' itself. 8553 */ 8554 ga.ga_af = AF_INET; 8555 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 8556 &ga.ga_addr); 8557 gcgrp = gcgrp_lookup(&ga, B_FALSE); 8558 8559 ire = ire_create( 8560 (uchar_t *)&dst, /* dest address */ 8561 (uchar_t *)&ip_g_all_ones, /* mask */ 8562 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8563 (uchar_t *)&gw, /* gateway address */ 8564 &save_ire->ire_max_frag, 8565 NULL, /* no src nce */ 8566 dst_ill->ill_rq, /* recv-from queue */ 8567 dst_ill->ill_wq, /* send-to queue */ 8568 IRE_CACHE, 8569 src_ipif, 8570 save_ire->ire_mask, /* Parent mask */ 8571 (sire != NULL) ? /* Parent handle */ 8572 sire->ire_phandle : 0, 8573 save_ire->ire_ihandle, /* Interface handle */ 8574 (sire != NULL) ? sire->ire_flags & 8575 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 8576 &(save_ire->ire_uinfo), 8577 NULL, 8578 gcgrp, 8579 ipst); 8580 8581 if (ire == NULL) { 8582 if (gcgrp != NULL) { 8583 GCGRP_REFRELE(gcgrp); 8584 gcgrp = NULL; 8585 } 8586 ire_refrele(save_ire); 8587 break; 8588 } 8589 8590 /* reference now held by IRE */ 8591 gcgrp = NULL; 8592 8593 ire->ire_marks |= ire_marks; 8594 8595 /* Prevent save_ire from getting deleted */ 8596 IRB_REFHOLD(save_ire->ire_bucket); 8597 /* Has it been removed already ? */ 8598 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8599 IRB_REFRELE(save_ire->ire_bucket); 8600 ire_refrele(save_ire); 8601 break; 8602 } 8603 8604 /* 8605 * In the case of multirouting, a copy 8606 * of the packet is made before it is sent. 8607 * The copy is used in the next 8608 * loop to attempt another resolution. 8609 */ 8610 xmit_mp = first_mp; 8611 if ((sire != NULL) && 8612 (sire->ire_flags & RTF_MULTIRT)) { 8613 copy_mp = copymsg(first_mp); 8614 if (copy_mp != NULL) { 8615 xmit_mp = copy_mp; 8616 MULTIRT_DEBUG_TAG(first_mp); 8617 } 8618 } 8619 ire_add_then_send(q, ire, xmit_mp); 8620 8621 /* Assert that it is not deleted yet. */ 8622 ASSERT(save_ire->ire_ptpn != NULL); 8623 IRB_REFRELE(save_ire->ire_bucket); 8624 ire_refrele(save_ire); 8625 8626 if (copy_mp != NULL) { 8627 /* 8628 * If we found a (no)resolver, we ignore any 8629 * trailing top priority IRE_CACHE in further 8630 * loops. This ensures that we do not omit any 8631 * (no)resolver. 8632 * This IRE_CACHE, if any, will be processed 8633 * by another thread entering ip_newroute(). 8634 * IRE_CACHE entries, if any, will be processed 8635 * by another thread entering ip_newroute(), 8636 * (upon resolver response, for instance). 8637 * This aims to force parallel multirt 8638 * resolutions as soon as a packet must be sent. 8639 * In the best case, after the tx of only one 8640 * packet, all reachable routes are resolved. 8641 * Otherwise, the resolution of all RTF_MULTIRT 8642 * routes would require several emissions. 8643 */ 8644 multirt_flags &= ~MULTIRT_CACHEGW; 8645 8646 /* 8647 * Search for the next unresolved multirt 8648 * route. 8649 */ 8650 copy_mp = NULL; 8651 save_ire = NULL; 8652 ire = NULL; 8653 multirt_resolve_next = B_TRUE; 8654 continue; 8655 } 8656 8657 /* 8658 * Don't need sire anymore 8659 */ 8660 if (sire != NULL) 8661 ire_refrele(sire); 8662 8663 ipif_refrele(src_ipif); 8664 ill_refrele(dst_ill); 8665 return; 8666 } 8667 case IRE_IF_RESOLVER: 8668 /* 8669 * We can't build an IRE_CACHE yet, but at least we 8670 * found a resolver that can help. 8671 */ 8672 res_mp = dst_ill->ill_resolver_mp; 8673 if (!OK_RESOLVER_MP(res_mp)) 8674 break; 8675 8676 /* 8677 * To be at this point in the code with a non-zero gw 8678 * means that dst is reachable through a gateway that 8679 * we have never resolved. By changing dst to the gw 8680 * addr we resolve the gateway first. 8681 * When ire_add_then_send() tries to put the IP dg 8682 * to dst, it will reenter ip_newroute() at which 8683 * time we will find the IRE_CACHE for the gw and 8684 * create another IRE_CACHE in case IRE_CACHE above. 8685 */ 8686 if (gw != INADDR_ANY) { 8687 /* 8688 * The source ipif that was determined above was 8689 * relative to the destination address, not the 8690 * gateway's. If src_ipif was not taken out of 8691 * the IRE_IF_RESOLVER entry, we'll need to call 8692 * ipif_select_source() again. 8693 */ 8694 if (src_ipif != ire->ire_ipif) { 8695 ipif_refrele(src_ipif); 8696 src_ipif = ipif_select_source(dst_ill, 8697 gw, zoneid); 8698 if (src_ipif == NULL) { 8699 if (ip_debug > 2) { 8700 pr_addr_dbg( 8701 "ip_newroute: no " 8702 "src for gw %s ", 8703 AF_INET, &gw); 8704 printf("through " 8705 "interface %s\n", 8706 dst_ill->ill_name); 8707 } 8708 goto icmp_err_ret; 8709 } 8710 } 8711 save_dst = dst; 8712 dst = gw; 8713 gw = INADDR_ANY; 8714 } 8715 8716 /* 8717 * We obtain a partial IRE_CACHE which we will pass 8718 * along with the resolver query. When the response 8719 * comes back it will be there ready for us to add. 8720 * The ire_max_frag is atomically set under the 8721 * irebucket lock in ire_add_v[46]. 8722 */ 8723 8724 ire = ire_create_mp( 8725 (uchar_t *)&dst, /* dest address */ 8726 (uchar_t *)&ip_g_all_ones, /* mask */ 8727 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8728 (uchar_t *)&gw, /* gateway address */ 8729 NULL, /* ire_max_frag */ 8730 NULL, /* no src nce */ 8731 dst_ill->ill_rq, /* recv-from queue */ 8732 dst_ill->ill_wq, /* send-to queue */ 8733 IRE_CACHE, 8734 src_ipif, /* Interface ipif */ 8735 save_ire->ire_mask, /* Parent mask */ 8736 0, 8737 save_ire->ire_ihandle, /* Interface handle */ 8738 0, /* flags if any */ 8739 &(save_ire->ire_uinfo), 8740 NULL, 8741 NULL, 8742 ipst); 8743 8744 if (ire == NULL) { 8745 ire_refrele(save_ire); 8746 break; 8747 } 8748 8749 if ((sire != NULL) && 8750 (sire->ire_flags & RTF_MULTIRT)) { 8751 copy_mp = copymsg(first_mp); 8752 if (copy_mp != NULL) 8753 MULTIRT_DEBUG_TAG(copy_mp); 8754 } 8755 8756 ire->ire_marks |= ire_marks; 8757 8758 /* 8759 * Construct message chain for the resolver 8760 * of the form: 8761 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8762 * Packet could contain a IPSEC_OUT mp. 8763 * 8764 * NOTE : ire will be added later when the response 8765 * comes back from ARP. If the response does not 8766 * come back, ARP frees the packet. For this reason, 8767 * we can't REFHOLD the bucket of save_ire to prevent 8768 * deletions. We may not be able to REFRELE the bucket 8769 * if the response never comes back. Thus, before 8770 * adding the ire, ire_add_v4 will make sure that the 8771 * interface route does not get deleted. This is the 8772 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8773 * where we can always prevent deletions because of 8774 * the synchronous nature of adding IRES i.e 8775 * ire_add_then_send is called after creating the IRE. 8776 */ 8777 ASSERT(ire->ire_mp != NULL); 8778 ire->ire_mp->b_cont = first_mp; 8779 /* Have saved_mp handy, for cleanup if canput fails */ 8780 saved_mp = mp; 8781 mp = copyb(res_mp); 8782 if (mp == NULL) { 8783 /* Prepare for cleanup */ 8784 mp = saved_mp; /* pkt */ 8785 ire_delete(ire); /* ire_mp */ 8786 ire = NULL; 8787 ire_refrele(save_ire); 8788 if (copy_mp != NULL) { 8789 MULTIRT_DEBUG_UNTAG(copy_mp); 8790 freemsg(copy_mp); 8791 copy_mp = NULL; 8792 } 8793 break; 8794 } 8795 linkb(mp, ire->ire_mp); 8796 8797 /* 8798 * Fill in the source and dest addrs for the resolver. 8799 * NOTE: this depends on memory layouts imposed by 8800 * ill_init(). 8801 */ 8802 areq = (areq_t *)mp->b_rptr; 8803 addrp = (ipaddr_t *)((char *)areq + 8804 areq->areq_sender_addr_offset); 8805 if (do_attach_ill) { 8806 /* 8807 * This is bind to no failover case. 8808 * arp packet also must go out on attach_ill. 8809 */ 8810 ASSERT(ipha->ipha_src != NULL); 8811 *addrp = ipha->ipha_src; 8812 } else { 8813 *addrp = save_ire->ire_src_addr; 8814 } 8815 8816 ire_refrele(save_ire); 8817 addrp = (ipaddr_t *)((char *)areq + 8818 areq->areq_target_addr_offset); 8819 *addrp = dst; 8820 /* Up to the resolver. */ 8821 if (canputnext(dst_ill->ill_rq) && 8822 !(dst_ill->ill_arp_closing)) { 8823 putnext(dst_ill->ill_rq, mp); 8824 ire = NULL; 8825 if (copy_mp != NULL) { 8826 /* 8827 * If we found a resolver, we ignore 8828 * any trailing top priority IRE_CACHE 8829 * in the further loops. This ensures 8830 * that we do not omit any resolver. 8831 * IRE_CACHE entries, if any, will be 8832 * processed next time we enter 8833 * ip_newroute(). 8834 */ 8835 multirt_flags &= ~MULTIRT_CACHEGW; 8836 /* 8837 * Search for the next unresolved 8838 * multirt route. 8839 */ 8840 first_mp = copy_mp; 8841 copy_mp = NULL; 8842 /* Prepare the next resolution loop. */ 8843 mp = first_mp; 8844 EXTRACT_PKT_MP(mp, first_mp, 8845 mctl_present); 8846 if (mctl_present) 8847 io = (ipsec_out_t *) 8848 first_mp->b_rptr; 8849 ipha = (ipha_t *)mp->b_rptr; 8850 8851 ASSERT(sire != NULL); 8852 8853 dst = save_dst; 8854 multirt_resolve_next = B_TRUE; 8855 continue; 8856 } 8857 8858 if (sire != NULL) 8859 ire_refrele(sire); 8860 8861 /* 8862 * The response will come back in ip_wput 8863 * with db_type IRE_DB_TYPE. 8864 */ 8865 ipif_refrele(src_ipif); 8866 ill_refrele(dst_ill); 8867 return; 8868 } else { 8869 /* Prepare for cleanup */ 8870 DTRACE_PROBE1(ip__newroute__drop, mblk_t *, 8871 mp); 8872 mp->b_cont = NULL; 8873 freeb(mp); /* areq */ 8874 /* 8875 * this is an ire that is not added to the 8876 * cache. ire_freemblk will handle the release 8877 * of any resources associated with the ire. 8878 */ 8879 ire_delete(ire); /* ire_mp */ 8880 mp = saved_mp; /* pkt */ 8881 ire = NULL; 8882 if (copy_mp != NULL) { 8883 MULTIRT_DEBUG_UNTAG(copy_mp); 8884 freemsg(copy_mp); 8885 copy_mp = NULL; 8886 } 8887 break; 8888 } 8889 default: 8890 break; 8891 } 8892 } while (multirt_resolve_next); 8893 8894 ip1dbg(("ip_newroute: dropped\n")); 8895 /* Did this packet originate externally? */ 8896 if (mp->b_prev) { 8897 mp->b_next = NULL; 8898 mp->b_prev = NULL; 8899 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 8900 } else { 8901 if (dst_ill != NULL) { 8902 BUMP_MIB(dst_ill->ill_ip_mib, ipIfStatsOutDiscards); 8903 } else { 8904 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 8905 } 8906 } 8907 ASSERT(copy_mp == NULL); 8908 MULTIRT_DEBUG_UNTAG(first_mp); 8909 freemsg(first_mp); 8910 if (ire != NULL) 8911 ire_refrele(ire); 8912 if (sire != NULL) 8913 ire_refrele(sire); 8914 if (src_ipif != NULL) 8915 ipif_refrele(src_ipif); 8916 if (dst_ill != NULL) 8917 ill_refrele(dst_ill); 8918 return; 8919 8920 icmp_err_ret: 8921 ip1dbg(("ip_newroute: no route\n")); 8922 if (src_ipif != NULL) 8923 ipif_refrele(src_ipif); 8924 if (dst_ill != NULL) 8925 ill_refrele(dst_ill); 8926 if (sire != NULL) 8927 ire_refrele(sire); 8928 /* Did this packet originate externally? */ 8929 if (mp->b_prev) { 8930 mp->b_next = NULL; 8931 mp->b_prev = NULL; 8932 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInNoRoutes); 8933 q = WR(q); 8934 } else { 8935 /* 8936 * There is no outgoing ill, so just increment the 8937 * system MIB. 8938 */ 8939 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 8940 /* 8941 * Since ip_wput() isn't close to finished, we fill 8942 * in enough of the header for credible error reporting. 8943 */ 8944 if (ip_hdr_complete(ipha, zoneid, ipst)) { 8945 /* Failed */ 8946 MULTIRT_DEBUG_UNTAG(first_mp); 8947 freemsg(first_mp); 8948 if (ire != NULL) 8949 ire_refrele(ire); 8950 return; 8951 } 8952 } 8953 8954 /* 8955 * At this point we will have ire only if RTF_BLACKHOLE 8956 * or RTF_REJECT flags are set on the IRE. It will not 8957 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 8958 */ 8959 if (ire != NULL) { 8960 if (ire->ire_flags & RTF_BLACKHOLE) { 8961 ire_refrele(ire); 8962 MULTIRT_DEBUG_UNTAG(first_mp); 8963 freemsg(first_mp); 8964 return; 8965 } 8966 ire_refrele(ire); 8967 } 8968 if (ip_source_routed(ipha, ipst)) { 8969 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED, 8970 zoneid, ipst); 8971 return; 8972 } 8973 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 8974 } 8975 8976 ip_opt_info_t zero_info; 8977 8978 /* 8979 * IPv4 - 8980 * ip_newroute_ipif is called by ip_wput_multicast and 8981 * ip_rput_forward_multicast whenever we need to send 8982 * out a packet to a destination address for which we do not have specific 8983 * routing information. It is used when the packet will be sent out 8984 * on a specific interface. It is also called by ip_wput() when IP_BOUND_IF 8985 * socket option is set or icmp error message wants to go out on a particular 8986 * interface for a unicast packet. 8987 * 8988 * In most cases, the destination address is resolved thanks to the ipif 8989 * intrinsic resolver. However, there are some cases where the call to 8990 * ip_newroute_ipif must take into account the potential presence of 8991 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 8992 * that uses the interface. This is specified through flags, 8993 * which can be a combination of: 8994 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 8995 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 8996 * and flags. Additionally, the packet source address has to be set to 8997 * the specified address. The caller is thus expected to set this flag 8998 * if the packet has no specific source address yet. 8999 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 9000 * flag, the resulting ire will inherit the flag. All unresolved routes 9001 * to the destination must be explored in the same call to 9002 * ip_newroute_ipif(). 9003 */ 9004 static void 9005 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 9006 conn_t *connp, uint32_t flags, zoneid_t zoneid, ip_opt_info_t *infop) 9007 { 9008 areq_t *areq; 9009 ire_t *ire = NULL; 9010 mblk_t *res_mp; 9011 ipaddr_t *addrp; 9012 mblk_t *first_mp; 9013 ire_t *save_ire = NULL; 9014 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER */ 9015 ipif_t *src_ipif = NULL; 9016 ushort_t ire_marks = 0; 9017 ill_t *dst_ill = NULL; 9018 boolean_t mctl_present; 9019 ipsec_out_t *io; 9020 ipha_t *ipha; 9021 int ihandle = 0; 9022 mblk_t *saved_mp; 9023 ire_t *fire = NULL; 9024 mblk_t *copy_mp = NULL; 9025 boolean_t multirt_resolve_next; 9026 boolean_t unspec_src; 9027 ipaddr_t ipha_dst; 9028 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 9029 9030 /* 9031 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 9032 * here for uniformity 9033 */ 9034 ipif_refhold(ipif); 9035 9036 /* 9037 * This loop is run only once in most cases. 9038 * We loop to resolve further routes only when the destination 9039 * can be reached through multiple RTF_MULTIRT-flagged ires. 9040 */ 9041 do { 9042 if (dst_ill != NULL) { 9043 ill_refrele(dst_ill); 9044 dst_ill = NULL; 9045 } 9046 if (src_ipif != NULL) { 9047 ipif_refrele(src_ipif); 9048 src_ipif = NULL; 9049 } 9050 multirt_resolve_next = B_FALSE; 9051 9052 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 9053 ipif->ipif_ill->ill_name)); 9054 9055 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 9056 if (mctl_present) 9057 io = (ipsec_out_t *)first_mp->b_rptr; 9058 9059 ipha = (ipha_t *)mp->b_rptr; 9060 9061 /* 9062 * Save the packet destination address, we may need it after 9063 * the packet has been consumed. 9064 */ 9065 ipha_dst = ipha->ipha_dst; 9066 9067 /* 9068 * If the interface is a pt-pt interface we look for an 9069 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 9070 * local_address and the pt-pt destination address. Otherwise 9071 * we just match the local address. 9072 * NOTE: dst could be different than ipha->ipha_dst in case 9073 * of sending igmp multicast packets over a point-to-point 9074 * connection. 9075 * Thus we must be careful enough to check ipha_dst to be a 9076 * multicast address, otherwise it will take xmit_if path for 9077 * multicast packets resulting into kernel stack overflow by 9078 * repeated calls to ip_newroute_ipif from ire_send(). 9079 */ 9080 if (CLASSD(ipha_dst) && 9081 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 9082 goto err_ret; 9083 } 9084 9085 /* 9086 * We check if an IRE_OFFSUBNET for the addr that goes through 9087 * ipif exists. We need it to determine if the RTF_SETSRC and/or 9088 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 9089 * propagate its flags to the new ire. 9090 */ 9091 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 9092 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 9093 ip2dbg(("ip_newroute_ipif: " 9094 "ipif_lookup_multi_ire(" 9095 "ipif %p, dst %08x) = fire %p\n", 9096 (void *)ipif, ntohl(dst), (void *)fire)); 9097 } 9098 9099 if (mctl_present && io->ipsec_out_attach_if) { 9100 attach_ill = ip_grab_attach_ill(NULL, first_mp, 9101 io->ipsec_out_ill_index, B_FALSE, ipst); 9102 9103 /* Failure case frees things for us. */ 9104 if (attach_ill == NULL) { 9105 ipif_refrele(ipif); 9106 if (fire != NULL) 9107 ire_refrele(fire); 9108 return; 9109 } 9110 9111 /* 9112 * Check if we need an ire that will not be 9113 * looked up by anybody else i.e. HIDDEN. 9114 */ 9115 if (ill_is_probeonly(attach_ill)) { 9116 ire_marks = IRE_MARK_HIDDEN; 9117 } 9118 /* 9119 * ip_wput passes the right ipif for IPIF_NOFAILOVER 9120 * case. 9121 */ 9122 dst_ill = ipif->ipif_ill; 9123 /* attach_ill has been refheld by ip_grab_attach_ill */ 9124 ASSERT(dst_ill == attach_ill); 9125 } else { 9126 /* 9127 * If the interface belongs to an interface group, 9128 * make sure the next possible interface in the group 9129 * is used. This encourages load spreading among 9130 * peers in an interface group. 9131 * Note: load spreading is disabled for RTF_MULTIRT 9132 * routes. 9133 */ 9134 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9135 (fire->ire_flags & RTF_MULTIRT)) { 9136 /* 9137 * Don't perform outbound load spreading 9138 * in the case of an RTF_MULTIRT issued route, 9139 * we actually typically want to replicate 9140 * outgoing packets through particular 9141 * interfaces. 9142 */ 9143 dst_ill = ipif->ipif_ill; 9144 ill_refhold(dst_ill); 9145 } else { 9146 dst_ill = ip_newroute_get_dst_ill( 9147 ipif->ipif_ill); 9148 } 9149 if (dst_ill == NULL) { 9150 if (ip_debug > 2) { 9151 pr_addr_dbg("ip_newroute_ipif: " 9152 "no dst ill for dst %s\n", 9153 AF_INET, &dst); 9154 } 9155 goto err_ret; 9156 } 9157 } 9158 9159 /* 9160 * Pick a source address preferring non-deprecated ones. 9161 * Unlike ip_newroute, we don't do any source address 9162 * selection here since for multicast it really does not help 9163 * in inbound load spreading as in the unicast case. 9164 */ 9165 if ((flags & RTF_SETSRC) && (fire != NULL) && 9166 (fire->ire_flags & RTF_SETSRC)) { 9167 /* 9168 * As requested by flags, an IRE_OFFSUBNET was looked up 9169 * on that interface. This ire has RTF_SETSRC flag, so 9170 * the source address of the packet must be changed. 9171 * Check that the ipif matching the requested source 9172 * address still exists. 9173 */ 9174 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 9175 zoneid, NULL, NULL, NULL, NULL, ipst); 9176 } 9177 9178 unspec_src = (connp != NULL && connp->conn_unspec_src); 9179 9180 if (((!ipif->ipif_isv6 && ipif->ipif_lcl_addr == INADDR_ANY) || 9181 (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_UP)) != IPIF_UP || 9182 (connp != NULL && ipif->ipif_zoneid != zoneid && 9183 ipif->ipif_zoneid != ALL_ZONES)) && 9184 (src_ipif == NULL) && 9185 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 9186 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 9187 if (src_ipif == NULL) { 9188 if (ip_debug > 2) { 9189 /* ip1dbg */ 9190 pr_addr_dbg("ip_newroute_ipif: " 9191 "no src for dst %s", 9192 AF_INET, &dst); 9193 } 9194 ip1dbg((" through interface %s\n", 9195 dst_ill->ill_name)); 9196 goto err_ret; 9197 } 9198 ipif_refrele(ipif); 9199 ipif = src_ipif; 9200 ipif_refhold(ipif); 9201 } 9202 if (src_ipif == NULL) { 9203 src_ipif = ipif; 9204 ipif_refhold(src_ipif); 9205 } 9206 9207 /* 9208 * Assign a source address while we have the conn. 9209 * We can't have ip_wput_ire pick a source address when the 9210 * packet returns from arp since conn_unspec_src might be set 9211 * and we lose the conn when going through arp. 9212 */ 9213 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 9214 ipha->ipha_src = src_ipif->ipif_src_addr; 9215 9216 /* 9217 * In the case of IP_BOUND_IF and IP_PKTINFO, it is possible 9218 * that the outgoing interface does not have an interface ire. 9219 */ 9220 if (CLASSD(ipha_dst) && (connp == NULL || 9221 connp->conn_outgoing_ill == NULL) && 9222 infop->ip_opt_ill_index == 0) { 9223 /* ipif_to_ire returns an held ire */ 9224 ire = ipif_to_ire(ipif); 9225 if (ire == NULL) 9226 goto err_ret; 9227 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 9228 goto err_ret; 9229 /* 9230 * ihandle is needed when the ire is added to 9231 * cache table. 9232 */ 9233 save_ire = ire; 9234 ihandle = save_ire->ire_ihandle; 9235 9236 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 9237 "flags %04x\n", 9238 (void *)ire, (void *)ipif, flags)); 9239 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9240 (fire->ire_flags & RTF_MULTIRT)) { 9241 /* 9242 * As requested by flags, an IRE_OFFSUBNET was 9243 * looked up on that interface. This ire has 9244 * RTF_MULTIRT flag, so the resolution loop will 9245 * be re-entered to resolve additional routes on 9246 * other interfaces. For that purpose, a copy of 9247 * the packet is performed at this point. 9248 */ 9249 fire->ire_last_used_time = lbolt; 9250 copy_mp = copymsg(first_mp); 9251 if (copy_mp) { 9252 MULTIRT_DEBUG_TAG(copy_mp); 9253 } 9254 } 9255 if ((flags & RTF_SETSRC) && (fire != NULL) && 9256 (fire->ire_flags & RTF_SETSRC)) { 9257 /* 9258 * As requested by flags, an IRE_OFFSUBET was 9259 * looked up on that interface. This ire has 9260 * RTF_SETSRC flag, so the source address of the 9261 * packet must be changed. 9262 */ 9263 ipha->ipha_src = fire->ire_src_addr; 9264 } 9265 } else { 9266 ASSERT((connp == NULL) || 9267 (connp->conn_outgoing_ill != NULL) || 9268 (connp->conn_dontroute) || 9269 infop->ip_opt_ill_index != 0); 9270 /* 9271 * The only ways we can come here are: 9272 * 1) IP_BOUND_IF socket option is set 9273 * 2) SO_DONTROUTE socket option is set 9274 * 3) IP_PKTINFO option is passed in as ancillary data. 9275 * In all cases, the new ire will not be added 9276 * into cache table. 9277 */ 9278 ire_marks |= IRE_MARK_NOADD; 9279 } 9280 9281 switch (ipif->ipif_net_type) { 9282 case IRE_IF_NORESOLVER: { 9283 /* We have what we need to build an IRE_CACHE. */ 9284 9285 if ((dst_ill->ill_phys_addr_length != IP_ADDR_LEN) && 9286 (dst_ill->ill_resolver_mp == NULL)) { 9287 ip1dbg(("ip_newroute_ipif: dst_ill %p " 9288 "for IRE_IF_NORESOLVER ire %p has " 9289 "no ill_resolver_mp\n", 9290 (void *)dst_ill, (void *)ire)); 9291 break; 9292 } 9293 9294 /* 9295 * The new ire inherits the IRE_OFFSUBNET flags 9296 * and source address, if this was requested. 9297 */ 9298 ire = ire_create( 9299 (uchar_t *)&dst, /* dest address */ 9300 (uchar_t *)&ip_g_all_ones, /* mask */ 9301 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9302 NULL, /* gateway address */ 9303 &ipif->ipif_mtu, 9304 NULL, /* no src nce */ 9305 dst_ill->ill_rq, /* recv-from queue */ 9306 dst_ill->ill_wq, /* send-to queue */ 9307 IRE_CACHE, 9308 src_ipif, 9309 (save_ire != NULL ? save_ire->ire_mask : 0), 9310 (fire != NULL) ? /* Parent handle */ 9311 fire->ire_phandle : 0, 9312 ihandle, /* Interface handle */ 9313 (fire != NULL) ? 9314 (fire->ire_flags & 9315 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9316 (save_ire == NULL ? &ire_uinfo_null : 9317 &save_ire->ire_uinfo), 9318 NULL, 9319 NULL, 9320 ipst); 9321 9322 if (ire == NULL) { 9323 if (save_ire != NULL) 9324 ire_refrele(save_ire); 9325 break; 9326 } 9327 9328 ire->ire_marks |= ire_marks; 9329 9330 /* 9331 * If IRE_MARK_NOADD is set then we need to convert 9332 * the max_fragp to a useable value now. This is 9333 * normally done in ire_add_v[46]. We also need to 9334 * associate the ire with an nce (normally would be 9335 * done in ip_wput_nondata()). 9336 * 9337 * Note that IRE_MARK_NOADD packets created here 9338 * do not have a non-null ire_mp pointer. The null 9339 * value of ire_bucket indicates that they were 9340 * never added. 9341 */ 9342 if (ire->ire_marks & IRE_MARK_NOADD) { 9343 uint_t max_frag; 9344 9345 max_frag = *ire->ire_max_fragp; 9346 ire->ire_max_fragp = NULL; 9347 ire->ire_max_frag = max_frag; 9348 9349 if ((ire->ire_nce = ndp_lookup_v4( 9350 ire_to_ill(ire), 9351 (ire->ire_gateway_addr != INADDR_ANY ? 9352 &ire->ire_gateway_addr : &ire->ire_addr), 9353 B_FALSE)) == NULL) { 9354 if (save_ire != NULL) 9355 ire_refrele(save_ire); 9356 break; 9357 } 9358 ASSERT(ire->ire_nce->nce_state == 9359 ND_REACHABLE); 9360 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 9361 } 9362 9363 /* Prevent save_ire from getting deleted */ 9364 if (save_ire != NULL) { 9365 IRB_REFHOLD(save_ire->ire_bucket); 9366 /* Has it been removed already ? */ 9367 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 9368 IRB_REFRELE(save_ire->ire_bucket); 9369 ire_refrele(save_ire); 9370 break; 9371 } 9372 } 9373 9374 ire_add_then_send(q, ire, first_mp); 9375 9376 /* Assert that save_ire is not deleted yet. */ 9377 if (save_ire != NULL) { 9378 ASSERT(save_ire->ire_ptpn != NULL); 9379 IRB_REFRELE(save_ire->ire_bucket); 9380 ire_refrele(save_ire); 9381 save_ire = NULL; 9382 } 9383 if (fire != NULL) { 9384 ire_refrele(fire); 9385 fire = NULL; 9386 } 9387 9388 /* 9389 * the resolution loop is re-entered if this 9390 * was requested through flags and if we 9391 * actually are in a multirouting case. 9392 */ 9393 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9394 boolean_t need_resolve = 9395 ire_multirt_need_resolve(ipha_dst, 9396 MBLK_GETLABEL(copy_mp), ipst); 9397 if (!need_resolve) { 9398 MULTIRT_DEBUG_UNTAG(copy_mp); 9399 freemsg(copy_mp); 9400 copy_mp = NULL; 9401 } else { 9402 /* 9403 * ipif_lookup_group() calls 9404 * ire_lookup_multi() that uses 9405 * ire_ftable_lookup() to find 9406 * an IRE_INTERFACE for the group. 9407 * In the multirt case, 9408 * ire_lookup_multi() then invokes 9409 * ire_multirt_lookup() to find 9410 * the next resolvable ire. 9411 * As a result, we obtain an new 9412 * interface, derived from the 9413 * next ire. 9414 */ 9415 ipif_refrele(ipif); 9416 ipif = ipif_lookup_group(ipha_dst, 9417 zoneid, ipst); 9418 ip2dbg(("ip_newroute_ipif: " 9419 "multirt dst %08x, ipif %p\n", 9420 htonl(dst), (void *)ipif)); 9421 if (ipif != NULL) { 9422 mp = copy_mp; 9423 copy_mp = NULL; 9424 multirt_resolve_next = B_TRUE; 9425 continue; 9426 } else { 9427 freemsg(copy_mp); 9428 } 9429 } 9430 } 9431 if (ipif != NULL) 9432 ipif_refrele(ipif); 9433 ill_refrele(dst_ill); 9434 ipif_refrele(src_ipif); 9435 return; 9436 } 9437 case IRE_IF_RESOLVER: 9438 /* 9439 * We can't build an IRE_CACHE yet, but at least 9440 * we found a resolver that can help. 9441 */ 9442 res_mp = dst_ill->ill_resolver_mp; 9443 if (!OK_RESOLVER_MP(res_mp)) 9444 break; 9445 9446 /* 9447 * We obtain a partial IRE_CACHE which we will pass 9448 * along with the resolver query. When the response 9449 * comes back it will be there ready for us to add. 9450 * The new ire inherits the IRE_OFFSUBNET flags 9451 * and source address, if this was requested. 9452 * The ire_max_frag is atomically set under the 9453 * irebucket lock in ire_add_v[46]. Only in the 9454 * case of IRE_MARK_NOADD, we set it here itself. 9455 */ 9456 ire = ire_create_mp( 9457 (uchar_t *)&dst, /* dest address */ 9458 (uchar_t *)&ip_g_all_ones, /* mask */ 9459 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9460 NULL, /* gateway address */ 9461 (ire_marks & IRE_MARK_NOADD) ? 9462 ipif->ipif_mtu : 0, /* max_frag */ 9463 NULL, /* no src nce */ 9464 dst_ill->ill_rq, /* recv-from queue */ 9465 dst_ill->ill_wq, /* send-to queue */ 9466 IRE_CACHE, 9467 src_ipif, 9468 (save_ire != NULL ? save_ire->ire_mask : 0), 9469 (fire != NULL) ? /* Parent handle */ 9470 fire->ire_phandle : 0, 9471 ihandle, /* Interface handle */ 9472 (fire != NULL) ? /* flags if any */ 9473 (fire->ire_flags & 9474 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9475 (save_ire == NULL ? &ire_uinfo_null : 9476 &save_ire->ire_uinfo), 9477 NULL, 9478 NULL, 9479 ipst); 9480 9481 if (save_ire != NULL) { 9482 ire_refrele(save_ire); 9483 save_ire = NULL; 9484 } 9485 if (ire == NULL) 9486 break; 9487 9488 ire->ire_marks |= ire_marks; 9489 /* 9490 * Construct message chain for the resolver of the 9491 * form: 9492 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 9493 * 9494 * NOTE : ire will be added later when the response 9495 * comes back from ARP. If the response does not 9496 * come back, ARP frees the packet. For this reason, 9497 * we can't REFHOLD the bucket of save_ire to prevent 9498 * deletions. We may not be able to REFRELE the 9499 * bucket if the response never comes back. 9500 * Thus, before adding the ire, ire_add_v4 will make 9501 * sure that the interface route does not get deleted. 9502 * This is the only case unlike ip_newroute_v6, 9503 * ip_newroute_ipif_v6 where we can always prevent 9504 * deletions because ire_add_then_send is called after 9505 * creating the IRE. 9506 * If IRE_MARK_NOADD is set, then ire_add_then_send 9507 * does not add this IRE into the IRE CACHE. 9508 */ 9509 ASSERT(ire->ire_mp != NULL); 9510 ire->ire_mp->b_cont = first_mp; 9511 /* Have saved_mp handy, for cleanup if canput fails */ 9512 saved_mp = mp; 9513 mp = copyb(res_mp); 9514 if (mp == NULL) { 9515 /* Prepare for cleanup */ 9516 mp = saved_mp; /* pkt */ 9517 ire_delete(ire); /* ire_mp */ 9518 ire = NULL; 9519 if (copy_mp != NULL) { 9520 MULTIRT_DEBUG_UNTAG(copy_mp); 9521 freemsg(copy_mp); 9522 copy_mp = NULL; 9523 } 9524 break; 9525 } 9526 linkb(mp, ire->ire_mp); 9527 9528 /* 9529 * Fill in the source and dest addrs for the resolver. 9530 * NOTE: this depends on memory layouts imposed by 9531 * ill_init(). 9532 */ 9533 areq = (areq_t *)mp->b_rptr; 9534 addrp = (ipaddr_t *)((char *)areq + 9535 areq->areq_sender_addr_offset); 9536 *addrp = ire->ire_src_addr; 9537 addrp = (ipaddr_t *)((char *)areq + 9538 areq->areq_target_addr_offset); 9539 *addrp = dst; 9540 /* Up to the resolver. */ 9541 if (canputnext(dst_ill->ill_rq) && 9542 !(dst_ill->ill_arp_closing)) { 9543 putnext(dst_ill->ill_rq, mp); 9544 /* 9545 * The response will come back in ip_wput 9546 * with db_type IRE_DB_TYPE. 9547 */ 9548 } else { 9549 mp->b_cont = NULL; 9550 freeb(mp); /* areq */ 9551 ire_delete(ire); /* ire_mp */ 9552 saved_mp->b_next = NULL; 9553 saved_mp->b_prev = NULL; 9554 freemsg(first_mp); /* pkt */ 9555 ip2dbg(("ip_newroute_ipif: dropped\n")); 9556 } 9557 9558 if (fire != NULL) { 9559 ire_refrele(fire); 9560 fire = NULL; 9561 } 9562 9563 9564 /* 9565 * The resolution loop is re-entered if this was 9566 * requested through flags and we actually are 9567 * in a multirouting case. 9568 */ 9569 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9570 boolean_t need_resolve = 9571 ire_multirt_need_resolve(ipha_dst, 9572 MBLK_GETLABEL(copy_mp), ipst); 9573 if (!need_resolve) { 9574 MULTIRT_DEBUG_UNTAG(copy_mp); 9575 freemsg(copy_mp); 9576 copy_mp = NULL; 9577 } else { 9578 /* 9579 * ipif_lookup_group() calls 9580 * ire_lookup_multi() that uses 9581 * ire_ftable_lookup() to find 9582 * an IRE_INTERFACE for the group. 9583 * In the multirt case, 9584 * ire_lookup_multi() then invokes 9585 * ire_multirt_lookup() to find 9586 * the next resolvable ire. 9587 * As a result, we obtain an new 9588 * interface, derived from the 9589 * next ire. 9590 */ 9591 ipif_refrele(ipif); 9592 ipif = ipif_lookup_group(ipha_dst, 9593 zoneid, ipst); 9594 if (ipif != NULL) { 9595 mp = copy_mp; 9596 copy_mp = NULL; 9597 multirt_resolve_next = B_TRUE; 9598 continue; 9599 } else { 9600 freemsg(copy_mp); 9601 } 9602 } 9603 } 9604 if (ipif != NULL) 9605 ipif_refrele(ipif); 9606 ill_refrele(dst_ill); 9607 ipif_refrele(src_ipif); 9608 return; 9609 default: 9610 break; 9611 } 9612 } while (multirt_resolve_next); 9613 9614 err_ret: 9615 ip2dbg(("ip_newroute_ipif: dropped\n")); 9616 if (fire != NULL) 9617 ire_refrele(fire); 9618 ipif_refrele(ipif); 9619 /* Did this packet originate externally? */ 9620 if (dst_ill != NULL) 9621 ill_refrele(dst_ill); 9622 if (src_ipif != NULL) 9623 ipif_refrele(src_ipif); 9624 if (mp->b_prev || mp->b_next) { 9625 mp->b_next = NULL; 9626 mp->b_prev = NULL; 9627 } else { 9628 /* 9629 * Since ip_wput() isn't close to finished, we fill 9630 * in enough of the header for credible error reporting. 9631 */ 9632 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 9633 /* Failed */ 9634 freemsg(first_mp); 9635 if (ire != NULL) 9636 ire_refrele(ire); 9637 return; 9638 } 9639 } 9640 /* 9641 * At this point we will have ire only if RTF_BLACKHOLE 9642 * or RTF_REJECT flags are set on the IRE. It will not 9643 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9644 */ 9645 if (ire != NULL) { 9646 if (ire->ire_flags & RTF_BLACKHOLE) { 9647 ire_refrele(ire); 9648 freemsg(first_mp); 9649 return; 9650 } 9651 ire_refrele(ire); 9652 } 9653 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9654 } 9655 9656 /* Name/Value Table Lookup Routine */ 9657 char * 9658 ip_nv_lookup(nv_t *nv, int value) 9659 { 9660 if (!nv) 9661 return (NULL); 9662 for (; nv->nv_name; nv++) { 9663 if (nv->nv_value == value) 9664 return (nv->nv_name); 9665 } 9666 return ("unknown"); 9667 } 9668 9669 /* 9670 * This is a module open, i.e. this is a control stream for access 9671 * to a DLPI device. We allocate an ill_t as the instance data in 9672 * this case. 9673 */ 9674 int 9675 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9676 { 9677 ill_t *ill; 9678 int err; 9679 zoneid_t zoneid; 9680 netstack_t *ns; 9681 ip_stack_t *ipst; 9682 9683 /* 9684 * Prevent unprivileged processes from pushing IP so that 9685 * they can't send raw IP. 9686 */ 9687 if (secpolicy_net_rawaccess(credp) != 0) 9688 return (EPERM); 9689 9690 ns = netstack_find_by_cred(credp); 9691 ASSERT(ns != NULL); 9692 ipst = ns->netstack_ip; 9693 ASSERT(ipst != NULL); 9694 9695 /* 9696 * For exclusive stacks we set the zoneid to zero 9697 * to make IP operate as if in the global zone. 9698 */ 9699 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9700 zoneid = GLOBAL_ZONEID; 9701 else 9702 zoneid = crgetzoneid(credp); 9703 9704 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9705 q->q_ptr = WR(q)->q_ptr = ill; 9706 ill->ill_ipst = ipst; 9707 ill->ill_zoneid = zoneid; 9708 9709 /* 9710 * ill_init initializes the ill fields and then sends down 9711 * down a DL_INFO_REQ after calling qprocson. 9712 */ 9713 err = ill_init(q, ill); 9714 if (err != 0) { 9715 mi_free(ill); 9716 netstack_rele(ipst->ips_netstack); 9717 q->q_ptr = NULL; 9718 WR(q)->q_ptr = NULL; 9719 return (err); 9720 } 9721 9722 /* ill_init initializes the ipsq marking this thread as writer */ 9723 ipsq_exit(ill->ill_phyint->phyint_ipsq, B_TRUE, B_TRUE); 9724 /* Wait for the DL_INFO_ACK */ 9725 mutex_enter(&ill->ill_lock); 9726 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9727 /* 9728 * Return value of 0 indicates a pending signal. 9729 */ 9730 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9731 if (err == 0) { 9732 mutex_exit(&ill->ill_lock); 9733 (void) ip_close(q, 0); 9734 return (EINTR); 9735 } 9736 } 9737 mutex_exit(&ill->ill_lock); 9738 9739 /* 9740 * ip_rput_other could have set an error in ill_error on 9741 * receipt of M_ERROR. 9742 */ 9743 9744 err = ill->ill_error; 9745 if (err != 0) { 9746 (void) ip_close(q, 0); 9747 return (err); 9748 } 9749 9750 ill->ill_credp = credp; 9751 crhold(credp); 9752 9753 mutex_enter(&ipst->ips_ip_mi_lock); 9754 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)ill, devp, flag, sflag, 9755 credp); 9756 mutex_exit(&ipst->ips_ip_mi_lock); 9757 if (err) { 9758 (void) ip_close(q, 0); 9759 return (err); 9760 } 9761 return (0); 9762 } 9763 9764 /* For /dev/ip aka AF_INET open */ 9765 int 9766 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9767 { 9768 return (ip_open(q, devp, flag, sflag, credp, B_FALSE)); 9769 } 9770 9771 /* For /dev/ip6 aka AF_INET6 open */ 9772 int 9773 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9774 { 9775 return (ip_open(q, devp, flag, sflag, credp, B_TRUE)); 9776 } 9777 9778 /* IP open routine. */ 9779 int 9780 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 9781 boolean_t isv6) 9782 { 9783 conn_t *connp; 9784 major_t maj; 9785 zoneid_t zoneid; 9786 netstack_t *ns; 9787 ip_stack_t *ipst; 9788 9789 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 9790 9791 /* Allow reopen. */ 9792 if (q->q_ptr != NULL) 9793 return (0); 9794 9795 if (sflag & MODOPEN) { 9796 /* This is a module open */ 9797 return (ip_modopen(q, devp, flag, sflag, credp)); 9798 } 9799 9800 ns = netstack_find_by_cred(credp); 9801 ASSERT(ns != NULL); 9802 ipst = ns->netstack_ip; 9803 ASSERT(ipst != NULL); 9804 9805 /* 9806 * For exclusive stacks we set the zoneid to zero 9807 * to make IP operate as if in the global zone. 9808 */ 9809 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9810 zoneid = GLOBAL_ZONEID; 9811 else 9812 zoneid = crgetzoneid(credp); 9813 9814 /* 9815 * We are opening as a device. This is an IP client stream, and we 9816 * allocate an conn_t as the instance data. 9817 */ 9818 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 9819 9820 /* 9821 * ipcl_conn_create did a netstack_hold. Undo the hold that was 9822 * done by netstack_find_by_cred() 9823 */ 9824 netstack_rele(ipst->ips_netstack); 9825 9826 connp->conn_zoneid = zoneid; 9827 9828 connp->conn_upq = q; 9829 q->q_ptr = WR(q)->q_ptr = connp; 9830 9831 if (flag & SO_SOCKSTR) 9832 connp->conn_flags |= IPCL_SOCKET; 9833 9834 /* Minor tells us which /dev entry was opened */ 9835 if (isv6) { 9836 connp->conn_flags |= IPCL_ISV6; 9837 connp->conn_af_isv6 = B_TRUE; 9838 ip_setpktversion(connp, isv6, B_FALSE, ipst); 9839 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9840 } else { 9841 connp->conn_af_isv6 = B_FALSE; 9842 connp->conn_pkt_isv6 = B_FALSE; 9843 } 9844 9845 if ((connp->conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) { 9846 /* CONN_DEC_REF takes care of netstack_rele() */ 9847 q->q_ptr = WR(q)->q_ptr = NULL; 9848 CONN_DEC_REF(connp); 9849 return (EBUSY); 9850 } 9851 9852 maj = getemajor(*devp); 9853 *devp = makedevice(maj, (minor_t)connp->conn_dev); 9854 9855 /* 9856 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 9857 */ 9858 connp->conn_cred = credp; 9859 9860 /* 9861 * Handle IP_RTS_REQUEST and other ioctls which use conn_recv 9862 */ 9863 connp->conn_recv = ip_conn_input; 9864 9865 crhold(connp->conn_cred); 9866 9867 /* 9868 * If the caller has the process-wide flag set, then default to MAC 9869 * exempt mode. This allows read-down to unlabeled hosts. 9870 */ 9871 if (getpflags(NET_MAC_AWARE, credp) != 0) 9872 connp->conn_mac_exempt = B_TRUE; 9873 9874 connp->conn_rq = q; 9875 connp->conn_wq = WR(q); 9876 9877 /* Non-zero default values */ 9878 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9879 9880 /* 9881 * Make the conn globally visible to walkers 9882 */ 9883 ASSERT(connp->conn_ref == 1); 9884 mutex_enter(&connp->conn_lock); 9885 connp->conn_state_flags &= ~CONN_INCIPIENT; 9886 mutex_exit(&connp->conn_lock); 9887 9888 qprocson(q); 9889 9890 return (0); 9891 } 9892 9893 /* 9894 * Change the output format (IPv4 vs. IPv6) for a conn_t. 9895 * Note that there is no race since either ip_output function works - it 9896 * is just an optimization to enter the best ip_output routine directly. 9897 */ 9898 void 9899 ip_setpktversion(conn_t *connp, boolean_t isv6, boolean_t bump_mib, 9900 ip_stack_t *ipst) 9901 { 9902 if (isv6) { 9903 if (bump_mib) { 9904 BUMP_MIB(&ipst->ips_ip6_mib, 9905 ipIfStatsOutSwitchIPVersion); 9906 } 9907 connp->conn_send = ip_output_v6; 9908 connp->conn_pkt_isv6 = B_TRUE; 9909 } else { 9910 if (bump_mib) { 9911 BUMP_MIB(&ipst->ips_ip_mib, 9912 ipIfStatsOutSwitchIPVersion); 9913 } 9914 connp->conn_send = ip_output; 9915 connp->conn_pkt_isv6 = B_FALSE; 9916 } 9917 9918 } 9919 9920 /* 9921 * See if IPsec needs loading because of the options in mp. 9922 */ 9923 static boolean_t 9924 ipsec_opt_present(mblk_t *mp) 9925 { 9926 uint8_t *optcp, *next_optcp, *opt_endcp; 9927 struct opthdr *opt; 9928 struct T_opthdr *topt; 9929 int opthdr_len; 9930 t_uscalar_t optname, optlevel; 9931 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 9932 ipsec_req_t *ipsr; 9933 9934 /* 9935 * Walk through the mess, and find IP_SEC_OPT. If it's there, 9936 * return TRUE. 9937 */ 9938 9939 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 9940 opt_endcp = optcp + tor->OPT_length; 9941 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9942 opthdr_len = sizeof (struct T_opthdr); 9943 } else { /* O_OPTMGMT_REQ */ 9944 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 9945 opthdr_len = sizeof (struct opthdr); 9946 } 9947 for (; optcp < opt_endcp; optcp = next_optcp) { 9948 if (optcp + opthdr_len > opt_endcp) 9949 return (B_FALSE); /* Not enough option header. */ 9950 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9951 topt = (struct T_opthdr *)optcp; 9952 optlevel = topt->level; 9953 optname = topt->name; 9954 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 9955 } else { 9956 opt = (struct opthdr *)optcp; 9957 optlevel = opt->level; 9958 optname = opt->name; 9959 next_optcp = optcp + opthdr_len + 9960 _TPI_ALIGN_OPT(opt->len); 9961 } 9962 if ((next_optcp < optcp) || /* wraparound pointer space */ 9963 ((next_optcp >= opt_endcp) && /* last option bad len */ 9964 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 9965 return (B_FALSE); /* bad option buffer */ 9966 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 9967 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 9968 /* 9969 * Check to see if it's an all-bypass or all-zeroes 9970 * IPsec request. Don't bother loading IPsec if 9971 * the socket doesn't want to use it. (A good example 9972 * is a bypass request.) 9973 * 9974 * Basically, if any of the non-NEVER bits are set, 9975 * load IPsec. 9976 */ 9977 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 9978 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 9979 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 9980 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 9981 != 0) 9982 return (B_TRUE); 9983 } 9984 } 9985 return (B_FALSE); 9986 } 9987 9988 /* 9989 * If conn is is waiting for ipsec to finish loading, kick it. 9990 */ 9991 /* ARGSUSED */ 9992 static void 9993 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 9994 { 9995 t_scalar_t optreq_prim; 9996 mblk_t *mp; 9997 cred_t *cr; 9998 int err = 0; 9999 10000 /* 10001 * This function is called, after ipsec loading is complete. 10002 * Since IP checks exclusively and atomically (i.e it prevents 10003 * ipsec load from completing until ip_optcom_req completes) 10004 * whether ipsec load is complete, there cannot be a race with IP 10005 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 10006 */ 10007 mutex_enter(&connp->conn_lock); 10008 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 10009 ASSERT(connp->conn_ipsec_opt_mp != NULL); 10010 mp = connp->conn_ipsec_opt_mp; 10011 connp->conn_ipsec_opt_mp = NULL; 10012 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 10013 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(CONNP_TO_WQ(connp))); 10014 mutex_exit(&connp->conn_lock); 10015 10016 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 10017 10018 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 10019 if (optreq_prim == T_OPTMGMT_REQ) { 10020 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10021 &ip_opt_obj, B_FALSE); 10022 } else { 10023 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 10024 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10025 &ip_opt_obj, B_FALSE); 10026 } 10027 if (err != EINPROGRESS) 10028 CONN_OPER_PENDING_DONE(connp); 10029 return; 10030 } 10031 mutex_exit(&connp->conn_lock); 10032 } 10033 10034 /* 10035 * Called from the ipsec_loader thread, outside any perimeter, to tell 10036 * ip qenable any of the queues waiting for the ipsec loader to 10037 * complete. 10038 */ 10039 void 10040 ip_ipsec_load_complete(ipsec_stack_t *ipss) 10041 { 10042 netstack_t *ns = ipss->ipsec_netstack; 10043 10044 ipcl_walk(conn_restart_ipsec_waiter, NULL, ns->netstack_ip); 10045 } 10046 10047 /* 10048 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 10049 * determines the grp on which it has to become exclusive, queues the mp 10050 * and sq draining restarts the optmgmt 10051 */ 10052 static boolean_t 10053 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 10054 { 10055 conn_t *connp = Q_TO_CONN(q); 10056 ipsec_stack_t *ipss = connp->conn_netstack->netstack_ipsec; 10057 10058 /* 10059 * Take IPsec requests and treat them special. 10060 */ 10061 if (ipsec_opt_present(mp)) { 10062 /* First check if IPsec is loaded. */ 10063 mutex_enter(&ipss->ipsec_loader_lock); 10064 if (ipss->ipsec_loader_state != IPSEC_LOADER_WAIT) { 10065 mutex_exit(&ipss->ipsec_loader_lock); 10066 return (B_FALSE); 10067 } 10068 mutex_enter(&connp->conn_lock); 10069 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 10070 10071 ASSERT(connp->conn_ipsec_opt_mp == NULL); 10072 connp->conn_ipsec_opt_mp = mp; 10073 mutex_exit(&connp->conn_lock); 10074 mutex_exit(&ipss->ipsec_loader_lock); 10075 10076 ipsec_loader_loadnow(ipss); 10077 return (B_TRUE); 10078 } 10079 return (B_FALSE); 10080 } 10081 10082 /* 10083 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 10084 * all of them are copied to the conn_t. If the req is "zero", the policy is 10085 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 10086 * fields. 10087 * We keep only the latest setting of the policy and thus policy setting 10088 * is not incremental/cumulative. 10089 * 10090 * Requests to set policies with multiple alternative actions will 10091 * go through a different API. 10092 */ 10093 int 10094 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 10095 { 10096 uint_t ah_req = 0; 10097 uint_t esp_req = 0; 10098 uint_t se_req = 0; 10099 ipsec_selkey_t sel; 10100 ipsec_act_t *actp = NULL; 10101 uint_t nact; 10102 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 10103 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 10104 ipsec_policy_root_t *pr; 10105 ipsec_policy_head_t *ph; 10106 int fam; 10107 boolean_t is_pol_reset; 10108 int error = 0; 10109 netstack_t *ns = connp->conn_netstack; 10110 ip_stack_t *ipst = ns->netstack_ip; 10111 ipsec_stack_t *ipss = ns->netstack_ipsec; 10112 10113 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 10114 10115 /* 10116 * The IP_SEC_OPT option does not allow variable length parameters, 10117 * hence a request cannot be NULL. 10118 */ 10119 if (req == NULL) 10120 return (EINVAL); 10121 10122 ah_req = req->ipsr_ah_req; 10123 esp_req = req->ipsr_esp_req; 10124 se_req = req->ipsr_self_encap_req; 10125 10126 /* 10127 * Are we dealing with a request to reset the policy (i.e. 10128 * zero requests). 10129 */ 10130 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 10131 (esp_req & REQ_MASK) == 0 && 10132 (se_req & REQ_MASK) == 0); 10133 10134 if (!is_pol_reset) { 10135 /* 10136 * If we couldn't load IPsec, fail with "protocol 10137 * not supported". 10138 * IPsec may not have been loaded for a request with zero 10139 * policies, so we don't fail in this case. 10140 */ 10141 mutex_enter(&ipss->ipsec_loader_lock); 10142 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 10143 mutex_exit(&ipss->ipsec_loader_lock); 10144 return (EPROTONOSUPPORT); 10145 } 10146 mutex_exit(&ipss->ipsec_loader_lock); 10147 10148 /* 10149 * Test for valid requests. Invalid algorithms 10150 * need to be tested by IPsec code because new 10151 * algorithms can be added dynamically. 10152 */ 10153 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10154 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10155 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 10156 return (EINVAL); 10157 } 10158 10159 /* 10160 * Only privileged users can issue these 10161 * requests. 10162 */ 10163 if (((ah_req & IPSEC_PREF_NEVER) || 10164 (esp_req & IPSEC_PREF_NEVER) || 10165 (se_req & IPSEC_PREF_NEVER)) && 10166 secpolicy_ip_config(cr, B_FALSE) != 0) { 10167 return (EPERM); 10168 } 10169 10170 /* 10171 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 10172 * are mutually exclusive. 10173 */ 10174 if (((ah_req & REQ_MASK) == REQ_MASK) || 10175 ((esp_req & REQ_MASK) == REQ_MASK) || 10176 ((se_req & REQ_MASK) == REQ_MASK)) { 10177 /* Both of them are set */ 10178 return (EINVAL); 10179 } 10180 } 10181 10182 mutex_enter(&connp->conn_lock); 10183 10184 /* 10185 * If we have already cached policies in ip_bind_connected*(), don't 10186 * let them change now. We cache policies for connections 10187 * whose src,dst [addr, port] is known. 10188 */ 10189 if (connp->conn_policy_cached) { 10190 mutex_exit(&connp->conn_lock); 10191 return (EINVAL); 10192 } 10193 10194 /* 10195 * We have a zero policies, reset the connection policy if already 10196 * set. This will cause the connection to inherit the 10197 * global policy, if any. 10198 */ 10199 if (is_pol_reset) { 10200 if (connp->conn_policy != NULL) { 10201 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 10202 connp->conn_policy = NULL; 10203 } 10204 connp->conn_flags &= ~IPCL_CHECK_POLICY; 10205 connp->conn_in_enforce_policy = B_FALSE; 10206 connp->conn_out_enforce_policy = B_FALSE; 10207 mutex_exit(&connp->conn_lock); 10208 return (0); 10209 } 10210 10211 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 10212 ipst->ips_netstack); 10213 if (ph == NULL) 10214 goto enomem; 10215 10216 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 10217 if (actp == NULL) 10218 goto enomem; 10219 10220 /* 10221 * Always allocate IPv4 policy entries, since they can also 10222 * apply to ipv6 sockets being used in ipv4-compat mode. 10223 */ 10224 bzero(&sel, sizeof (sel)); 10225 sel.ipsl_valid = IPSL_IPV4; 10226 10227 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10228 ipst->ips_netstack); 10229 if (pin4 == NULL) 10230 goto enomem; 10231 10232 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10233 ipst->ips_netstack); 10234 if (pout4 == NULL) 10235 goto enomem; 10236 10237 if (connp->conn_af_isv6) { 10238 /* 10239 * We're looking at a v6 socket, also allocate the 10240 * v6-specific entries... 10241 */ 10242 sel.ipsl_valid = IPSL_IPV6; 10243 pin6 = ipsec_policy_create(&sel, actp, nact, 10244 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10245 if (pin6 == NULL) 10246 goto enomem; 10247 10248 pout6 = ipsec_policy_create(&sel, actp, nact, 10249 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10250 if (pout6 == NULL) 10251 goto enomem; 10252 10253 /* 10254 * .. and file them away in the right place. 10255 */ 10256 fam = IPSEC_AF_V6; 10257 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10258 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 10259 ipsec_insert_always(&ph->iph_rulebyid, pin6); 10260 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10261 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 10262 ipsec_insert_always(&ph->iph_rulebyid, pout6); 10263 } 10264 10265 ipsec_actvec_free(actp, nact); 10266 10267 /* 10268 * File the v4 policies. 10269 */ 10270 fam = IPSEC_AF_V4; 10271 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10272 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 10273 ipsec_insert_always(&ph->iph_rulebyid, pin4); 10274 10275 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10276 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 10277 ipsec_insert_always(&ph->iph_rulebyid, pout4); 10278 10279 /* 10280 * If the requests need security, set enforce_policy. 10281 * If the requests are IPSEC_PREF_NEVER, one should 10282 * still set conn_out_enforce_policy so that an ipsec_out 10283 * gets attached in ip_wput. This is needed so that 10284 * for connections that we don't cache policy in ip_bind, 10285 * if global policy matches in ip_wput_attach_policy, we 10286 * don't wrongly inherit global policy. Similarly, we need 10287 * to set conn_in_enforce_policy also so that we don't verify 10288 * policy wrongly. 10289 */ 10290 if ((ah_req & REQ_MASK) != 0 || 10291 (esp_req & REQ_MASK) != 0 || 10292 (se_req & REQ_MASK) != 0) { 10293 connp->conn_in_enforce_policy = B_TRUE; 10294 connp->conn_out_enforce_policy = B_TRUE; 10295 connp->conn_flags |= IPCL_CHECK_POLICY; 10296 } 10297 10298 mutex_exit(&connp->conn_lock); 10299 return (error); 10300 #undef REQ_MASK 10301 10302 /* 10303 * Common memory-allocation-failure exit path. 10304 */ 10305 enomem: 10306 mutex_exit(&connp->conn_lock); 10307 if (actp != NULL) 10308 ipsec_actvec_free(actp, nact); 10309 if (pin4 != NULL) 10310 IPPOL_REFRELE(pin4, ipst->ips_netstack); 10311 if (pout4 != NULL) 10312 IPPOL_REFRELE(pout4, ipst->ips_netstack); 10313 if (pin6 != NULL) 10314 IPPOL_REFRELE(pin6, ipst->ips_netstack); 10315 if (pout6 != NULL) 10316 IPPOL_REFRELE(pout6, ipst->ips_netstack); 10317 return (ENOMEM); 10318 } 10319 10320 /* 10321 * Only for options that pass in an IP addr. Currently only V4 options 10322 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 10323 * So this function assumes level is IPPROTO_IP 10324 */ 10325 int 10326 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 10327 mblk_t *first_mp) 10328 { 10329 ipif_t *ipif = NULL; 10330 int error; 10331 ill_t *ill; 10332 int zoneid; 10333 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10334 10335 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 10336 10337 if (addr != INADDR_ANY || checkonly) { 10338 ASSERT(connp != NULL); 10339 zoneid = IPCL_ZONEID(connp); 10340 if (option == IP_NEXTHOP) { 10341 ipif = ipif_lookup_onlink_addr(addr, 10342 connp->conn_zoneid, ipst); 10343 } else { 10344 ipif = ipif_lookup_addr(addr, NULL, zoneid, 10345 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 10346 &error, ipst); 10347 } 10348 if (ipif == NULL) { 10349 if (error == EINPROGRESS) 10350 return (error); 10351 else if ((option == IP_MULTICAST_IF) || 10352 (option == IP_NEXTHOP)) 10353 return (EHOSTUNREACH); 10354 else 10355 return (EINVAL); 10356 } else if (checkonly) { 10357 if (option == IP_MULTICAST_IF) { 10358 ill = ipif->ipif_ill; 10359 /* not supported by the virtual network iface */ 10360 if (IS_VNI(ill)) { 10361 ipif_refrele(ipif); 10362 return (EINVAL); 10363 } 10364 } 10365 ipif_refrele(ipif); 10366 return (0); 10367 } 10368 ill = ipif->ipif_ill; 10369 mutex_enter(&connp->conn_lock); 10370 mutex_enter(&ill->ill_lock); 10371 if ((ill->ill_state_flags & ILL_CONDEMNED) || 10372 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 10373 mutex_exit(&ill->ill_lock); 10374 mutex_exit(&connp->conn_lock); 10375 ipif_refrele(ipif); 10376 return (option == IP_MULTICAST_IF ? 10377 EHOSTUNREACH : EINVAL); 10378 } 10379 } else { 10380 mutex_enter(&connp->conn_lock); 10381 } 10382 10383 /* None of the options below are supported on the VNI */ 10384 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 10385 mutex_exit(&ill->ill_lock); 10386 mutex_exit(&connp->conn_lock); 10387 ipif_refrele(ipif); 10388 return (EINVAL); 10389 } 10390 10391 switch (option) { 10392 case IP_DONTFAILOVER_IF: 10393 /* 10394 * This option is used by in.mpathd to ensure 10395 * that IPMP probe packets only go out on the 10396 * test interfaces. in.mpathd sets this option 10397 * on the non-failover interfaces. 10398 * For backward compatibility, this option 10399 * implicitly sets IP_MULTICAST_IF, as used 10400 * be done in bind(), so that ip_wput gets 10401 * this ipif to send mcast packets. 10402 */ 10403 if (ipif != NULL) { 10404 ASSERT(addr != INADDR_ANY); 10405 connp->conn_nofailover_ill = ipif->ipif_ill; 10406 connp->conn_multicast_ipif = ipif; 10407 } else { 10408 ASSERT(addr == INADDR_ANY); 10409 connp->conn_nofailover_ill = NULL; 10410 connp->conn_multicast_ipif = NULL; 10411 } 10412 break; 10413 10414 case IP_MULTICAST_IF: 10415 connp->conn_multicast_ipif = ipif; 10416 break; 10417 case IP_NEXTHOP: 10418 connp->conn_nexthop_v4 = addr; 10419 connp->conn_nexthop_set = B_TRUE; 10420 break; 10421 } 10422 10423 if (ipif != NULL) { 10424 mutex_exit(&ill->ill_lock); 10425 mutex_exit(&connp->conn_lock); 10426 ipif_refrele(ipif); 10427 return (0); 10428 } 10429 mutex_exit(&connp->conn_lock); 10430 /* We succeded in cleared the option */ 10431 return (0); 10432 } 10433 10434 /* 10435 * For options that pass in an ifindex specifying the ill. V6 options always 10436 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 10437 */ 10438 int 10439 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 10440 int level, int option, mblk_t *first_mp) 10441 { 10442 ill_t *ill = NULL; 10443 int error = 0; 10444 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10445 10446 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 10447 if (ifindex != 0) { 10448 ASSERT(connp != NULL); 10449 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 10450 first_mp, ip_restart_optmgmt, &error, ipst); 10451 if (ill != NULL) { 10452 if (checkonly) { 10453 /* not supported by the virtual network iface */ 10454 if (IS_VNI(ill)) { 10455 ill_refrele(ill); 10456 return (EINVAL); 10457 } 10458 ill_refrele(ill); 10459 return (0); 10460 } 10461 if (!ipif_lookup_zoneid_group(ill, connp->conn_zoneid, 10462 0, NULL)) { 10463 ill_refrele(ill); 10464 ill = NULL; 10465 mutex_enter(&connp->conn_lock); 10466 goto setit; 10467 } 10468 mutex_enter(&connp->conn_lock); 10469 mutex_enter(&ill->ill_lock); 10470 if (ill->ill_state_flags & ILL_CONDEMNED) { 10471 mutex_exit(&ill->ill_lock); 10472 mutex_exit(&connp->conn_lock); 10473 ill_refrele(ill); 10474 ill = NULL; 10475 mutex_enter(&connp->conn_lock); 10476 } 10477 goto setit; 10478 } else if (error == EINPROGRESS) { 10479 return (error); 10480 } else { 10481 error = 0; 10482 } 10483 } 10484 mutex_enter(&connp->conn_lock); 10485 setit: 10486 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 10487 10488 /* 10489 * The options below assume that the ILL (if any) transmits and/or 10490 * receives traffic. Neither of which is true for the virtual network 10491 * interface, so fail setting these on a VNI. 10492 */ 10493 if (IS_VNI(ill)) { 10494 ASSERT(ill != NULL); 10495 mutex_exit(&ill->ill_lock); 10496 mutex_exit(&connp->conn_lock); 10497 ill_refrele(ill); 10498 return (EINVAL); 10499 } 10500 10501 if (level == IPPROTO_IP) { 10502 switch (option) { 10503 case IP_BOUND_IF: 10504 connp->conn_incoming_ill = ill; 10505 connp->conn_outgoing_ill = ill; 10506 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10507 0 : ifindex; 10508 break; 10509 10510 case IP_MULTICAST_IF: 10511 /* 10512 * This option is an internal special. The socket 10513 * level IP_MULTICAST_IF specifies an 'ipaddr' and 10514 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 10515 * specifies an ifindex and we try first on V6 ill's. 10516 * If we don't find one, we they try using on v4 ill's 10517 * intenally and we come here. 10518 */ 10519 if (!checkonly && ill != NULL) { 10520 ipif_t *ipif; 10521 ipif = ill->ill_ipif; 10522 10523 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 10524 mutex_exit(&ill->ill_lock); 10525 mutex_exit(&connp->conn_lock); 10526 ill_refrele(ill); 10527 ill = NULL; 10528 mutex_enter(&connp->conn_lock); 10529 } else { 10530 connp->conn_multicast_ipif = ipif; 10531 } 10532 } 10533 break; 10534 10535 case IP_DHCPINIT_IF: 10536 if (connp->conn_dhcpinit_ill != NULL) { 10537 /* 10538 * We've locked the conn so conn_cleanup_ill() 10539 * cannot clear conn_dhcpinit_ill -- so it's 10540 * safe to access the ill. 10541 */ 10542 ill_t *oill = connp->conn_dhcpinit_ill; 10543 10544 ASSERT(oill->ill_dhcpinit != 0); 10545 atomic_dec_32(&oill->ill_dhcpinit); 10546 connp->conn_dhcpinit_ill = NULL; 10547 } 10548 10549 if (ill != NULL) { 10550 connp->conn_dhcpinit_ill = ill; 10551 atomic_inc_32(&ill->ill_dhcpinit); 10552 } 10553 break; 10554 } 10555 } else { 10556 switch (option) { 10557 case IPV6_BOUND_IF: 10558 connp->conn_incoming_ill = ill; 10559 connp->conn_outgoing_ill = ill; 10560 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10561 0 : ifindex; 10562 break; 10563 10564 case IPV6_BOUND_PIF: 10565 /* 10566 * Limit all transmit to this ill. 10567 * Unlike IPV6_BOUND_IF, using this option 10568 * prevents load spreading and failover from 10569 * happening when the interface is part of the 10570 * group. That's why we don't need to remember 10571 * the ifindex in orig_bound_ifindex as in 10572 * IPV6_BOUND_IF. 10573 */ 10574 connp->conn_outgoing_pill = ill; 10575 break; 10576 10577 case IPV6_DONTFAILOVER_IF: 10578 /* 10579 * This option is used by in.mpathd to ensure 10580 * that IPMP probe packets only go out on the 10581 * test interfaces. in.mpathd sets this option 10582 * on the non-failover interfaces. 10583 */ 10584 connp->conn_nofailover_ill = ill; 10585 /* 10586 * For backward compatibility, this option 10587 * implicitly sets ip_multicast_ill as used in 10588 * IPV6_MULTICAST_IF so that ip_wput gets 10589 * this ill to send mcast packets. 10590 */ 10591 connp->conn_multicast_ill = ill; 10592 connp->conn_orig_multicast_ifindex = (ill == NULL) ? 10593 0 : ifindex; 10594 break; 10595 10596 case IPV6_MULTICAST_IF: 10597 /* 10598 * Set conn_multicast_ill to be the IPv6 ill. 10599 * Set conn_multicast_ipif to be an IPv4 ipif 10600 * for ifindex to make IPv4 mapped addresses 10601 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 10602 * Even if no IPv6 ill exists for the ifindex 10603 * we need to check for an IPv4 ifindex in order 10604 * for this to work with mapped addresses. In that 10605 * case only set conn_multicast_ipif. 10606 */ 10607 if (!checkonly) { 10608 if (ifindex == 0) { 10609 connp->conn_multicast_ill = NULL; 10610 connp->conn_orig_multicast_ifindex = 0; 10611 connp->conn_multicast_ipif = NULL; 10612 } else if (ill != NULL) { 10613 connp->conn_multicast_ill = ill; 10614 connp->conn_orig_multicast_ifindex = 10615 ifindex; 10616 } 10617 } 10618 break; 10619 } 10620 } 10621 10622 if (ill != NULL) { 10623 mutex_exit(&ill->ill_lock); 10624 mutex_exit(&connp->conn_lock); 10625 ill_refrele(ill); 10626 return (0); 10627 } 10628 mutex_exit(&connp->conn_lock); 10629 /* 10630 * We succeeded in clearing the option (ifindex == 0) or failed to 10631 * locate the ill and could not set the option (ifindex != 0) 10632 */ 10633 return (ifindex == 0 ? 0 : EINVAL); 10634 } 10635 10636 /* This routine sets socket options. */ 10637 /* ARGSUSED */ 10638 int 10639 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10640 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10641 void *dummy, cred_t *cr, mblk_t *first_mp) 10642 { 10643 int *i1 = (int *)invalp; 10644 conn_t *connp = Q_TO_CONN(q); 10645 int error = 0; 10646 boolean_t checkonly; 10647 ire_t *ire; 10648 boolean_t found; 10649 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10650 10651 switch (optset_context) { 10652 10653 case SETFN_OPTCOM_CHECKONLY: 10654 checkonly = B_TRUE; 10655 /* 10656 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10657 * inlen != 0 implies value supplied and 10658 * we have to "pretend" to set it. 10659 * inlen == 0 implies that there is no 10660 * value part in T_CHECK request and just validation 10661 * done elsewhere should be enough, we just return here. 10662 */ 10663 if (inlen == 0) { 10664 *outlenp = 0; 10665 return (0); 10666 } 10667 break; 10668 case SETFN_OPTCOM_NEGOTIATE: 10669 case SETFN_UD_NEGOTIATE: 10670 case SETFN_CONN_NEGOTIATE: 10671 checkonly = B_FALSE; 10672 break; 10673 default: 10674 /* 10675 * We should never get here 10676 */ 10677 *outlenp = 0; 10678 return (EINVAL); 10679 } 10680 10681 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10682 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10683 10684 /* 10685 * For fixed length options, no sanity check 10686 * of passed in length is done. It is assumed *_optcom_req() 10687 * routines do the right thing. 10688 */ 10689 10690 switch (level) { 10691 case SOL_SOCKET: 10692 /* 10693 * conn_lock protects the bitfields, and is used to 10694 * set the fields atomically. 10695 */ 10696 switch (name) { 10697 case SO_BROADCAST: 10698 if (!checkonly) { 10699 /* TODO: use value someplace? */ 10700 mutex_enter(&connp->conn_lock); 10701 connp->conn_broadcast = *i1 ? 1 : 0; 10702 mutex_exit(&connp->conn_lock); 10703 } 10704 break; /* goto sizeof (int) option return */ 10705 case SO_USELOOPBACK: 10706 if (!checkonly) { 10707 /* TODO: use value someplace? */ 10708 mutex_enter(&connp->conn_lock); 10709 connp->conn_loopback = *i1 ? 1 : 0; 10710 mutex_exit(&connp->conn_lock); 10711 } 10712 break; /* goto sizeof (int) option return */ 10713 case SO_DONTROUTE: 10714 if (!checkonly) { 10715 mutex_enter(&connp->conn_lock); 10716 connp->conn_dontroute = *i1 ? 1 : 0; 10717 mutex_exit(&connp->conn_lock); 10718 } 10719 break; /* goto sizeof (int) option return */ 10720 case SO_REUSEADDR: 10721 if (!checkonly) { 10722 mutex_enter(&connp->conn_lock); 10723 connp->conn_reuseaddr = *i1 ? 1 : 0; 10724 mutex_exit(&connp->conn_lock); 10725 } 10726 break; /* goto sizeof (int) option return */ 10727 case SO_PROTOTYPE: 10728 if (!checkonly) { 10729 mutex_enter(&connp->conn_lock); 10730 connp->conn_proto = *i1; 10731 mutex_exit(&connp->conn_lock); 10732 } 10733 break; /* goto sizeof (int) option return */ 10734 case SO_ALLZONES: 10735 if (!checkonly) { 10736 mutex_enter(&connp->conn_lock); 10737 if (IPCL_IS_BOUND(connp)) { 10738 mutex_exit(&connp->conn_lock); 10739 return (EINVAL); 10740 } 10741 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10742 mutex_exit(&connp->conn_lock); 10743 } 10744 break; /* goto sizeof (int) option return */ 10745 case SO_ANON_MLP: 10746 if (!checkonly) { 10747 mutex_enter(&connp->conn_lock); 10748 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10749 mutex_exit(&connp->conn_lock); 10750 } 10751 break; /* goto sizeof (int) option return */ 10752 case SO_MAC_EXEMPT: 10753 if (secpolicy_net_mac_aware(cr) != 0 || 10754 IPCL_IS_BOUND(connp)) 10755 return (EACCES); 10756 if (!checkonly) { 10757 mutex_enter(&connp->conn_lock); 10758 connp->conn_mac_exempt = *i1 != 0 ? 1 : 0; 10759 mutex_exit(&connp->conn_lock); 10760 } 10761 break; /* goto sizeof (int) option return */ 10762 default: 10763 /* 10764 * "soft" error (negative) 10765 * option not handled at this level 10766 * Note: Do not modify *outlenp 10767 */ 10768 return (-EINVAL); 10769 } 10770 break; 10771 case IPPROTO_IP: 10772 switch (name) { 10773 case IP_NEXTHOP: 10774 if (secpolicy_ip_config(cr, B_FALSE) != 0) 10775 return (EPERM); 10776 /* FALLTHRU */ 10777 case IP_MULTICAST_IF: 10778 case IP_DONTFAILOVER_IF: { 10779 ipaddr_t addr = *i1; 10780 10781 error = ip_opt_set_ipif(connp, addr, checkonly, name, 10782 first_mp); 10783 if (error != 0) 10784 return (error); 10785 break; /* goto sizeof (int) option return */ 10786 } 10787 10788 case IP_MULTICAST_TTL: 10789 /* Recorded in transport above IP */ 10790 *outvalp = *invalp; 10791 *outlenp = sizeof (uchar_t); 10792 return (0); 10793 case IP_MULTICAST_LOOP: 10794 if (!checkonly) { 10795 mutex_enter(&connp->conn_lock); 10796 connp->conn_multicast_loop = *invalp ? 1 : 0; 10797 mutex_exit(&connp->conn_lock); 10798 } 10799 *outvalp = *invalp; 10800 *outlenp = sizeof (uchar_t); 10801 return (0); 10802 case IP_ADD_MEMBERSHIP: 10803 case MCAST_JOIN_GROUP: 10804 case IP_DROP_MEMBERSHIP: 10805 case MCAST_LEAVE_GROUP: { 10806 struct ip_mreq *mreqp; 10807 struct group_req *greqp; 10808 ire_t *ire; 10809 boolean_t done = B_FALSE; 10810 ipaddr_t group, ifaddr; 10811 struct sockaddr_in *sin; 10812 uint32_t *ifindexp; 10813 boolean_t mcast_opt = B_TRUE; 10814 mcast_record_t fmode; 10815 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10816 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10817 10818 switch (name) { 10819 case IP_ADD_MEMBERSHIP: 10820 mcast_opt = B_FALSE; 10821 /* FALLTHRU */ 10822 case MCAST_JOIN_GROUP: 10823 fmode = MODE_IS_EXCLUDE; 10824 optfn = ip_opt_add_group; 10825 break; 10826 10827 case IP_DROP_MEMBERSHIP: 10828 mcast_opt = B_FALSE; 10829 /* FALLTHRU */ 10830 case MCAST_LEAVE_GROUP: 10831 fmode = MODE_IS_INCLUDE; 10832 optfn = ip_opt_delete_group; 10833 break; 10834 } 10835 10836 if (mcast_opt) { 10837 greqp = (struct group_req *)i1; 10838 sin = (struct sockaddr_in *)&greqp->gr_group; 10839 if (sin->sin_family != AF_INET) { 10840 *outlenp = 0; 10841 return (ENOPROTOOPT); 10842 } 10843 group = (ipaddr_t)sin->sin_addr.s_addr; 10844 ifaddr = INADDR_ANY; 10845 ifindexp = &greqp->gr_interface; 10846 } else { 10847 mreqp = (struct ip_mreq *)i1; 10848 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 10849 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 10850 ifindexp = NULL; 10851 } 10852 10853 /* 10854 * In the multirouting case, we need to replicate 10855 * the request on all interfaces that will take part 10856 * in replication. We do so because multirouting is 10857 * reflective, thus we will probably receive multi- 10858 * casts on those interfaces. 10859 * The ip_multirt_apply_membership() succeeds if the 10860 * operation succeeds on at least one interface. 10861 */ 10862 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 10863 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10864 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10865 if (ire != NULL) { 10866 if (ire->ire_flags & RTF_MULTIRT) { 10867 error = ip_multirt_apply_membership( 10868 optfn, ire, connp, checkonly, group, 10869 fmode, INADDR_ANY, first_mp); 10870 done = B_TRUE; 10871 } 10872 ire_refrele(ire); 10873 } 10874 if (!done) { 10875 error = optfn(connp, checkonly, group, ifaddr, 10876 ifindexp, fmode, INADDR_ANY, first_mp); 10877 } 10878 if (error) { 10879 /* 10880 * EINPROGRESS is a soft error, needs retry 10881 * so don't make *outlenp zero. 10882 */ 10883 if (error != EINPROGRESS) 10884 *outlenp = 0; 10885 return (error); 10886 } 10887 /* OK return - copy input buffer into output buffer */ 10888 if (invalp != outvalp) { 10889 /* don't trust bcopy for identical src/dst */ 10890 bcopy(invalp, outvalp, inlen); 10891 } 10892 *outlenp = inlen; 10893 return (0); 10894 } 10895 case IP_BLOCK_SOURCE: 10896 case IP_UNBLOCK_SOURCE: 10897 case IP_ADD_SOURCE_MEMBERSHIP: 10898 case IP_DROP_SOURCE_MEMBERSHIP: 10899 case MCAST_BLOCK_SOURCE: 10900 case MCAST_UNBLOCK_SOURCE: 10901 case MCAST_JOIN_SOURCE_GROUP: 10902 case MCAST_LEAVE_SOURCE_GROUP: { 10903 struct ip_mreq_source *imreqp; 10904 struct group_source_req *gsreqp; 10905 in_addr_t grp, src, ifaddr = INADDR_ANY; 10906 uint32_t ifindex = 0; 10907 mcast_record_t fmode; 10908 struct sockaddr_in *sin; 10909 ire_t *ire; 10910 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 10911 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10912 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10913 10914 switch (name) { 10915 case IP_BLOCK_SOURCE: 10916 mcast_opt = B_FALSE; 10917 /* FALLTHRU */ 10918 case MCAST_BLOCK_SOURCE: 10919 fmode = MODE_IS_EXCLUDE; 10920 optfn = ip_opt_add_group; 10921 break; 10922 10923 case IP_UNBLOCK_SOURCE: 10924 mcast_opt = B_FALSE; 10925 /* FALLTHRU */ 10926 case MCAST_UNBLOCK_SOURCE: 10927 fmode = MODE_IS_EXCLUDE; 10928 optfn = ip_opt_delete_group; 10929 break; 10930 10931 case IP_ADD_SOURCE_MEMBERSHIP: 10932 mcast_opt = B_FALSE; 10933 /* FALLTHRU */ 10934 case MCAST_JOIN_SOURCE_GROUP: 10935 fmode = MODE_IS_INCLUDE; 10936 optfn = ip_opt_add_group; 10937 break; 10938 10939 case IP_DROP_SOURCE_MEMBERSHIP: 10940 mcast_opt = B_FALSE; 10941 /* FALLTHRU */ 10942 case MCAST_LEAVE_SOURCE_GROUP: 10943 fmode = MODE_IS_INCLUDE; 10944 optfn = ip_opt_delete_group; 10945 break; 10946 } 10947 10948 if (mcast_opt) { 10949 gsreqp = (struct group_source_req *)i1; 10950 if (gsreqp->gsr_group.ss_family != AF_INET) { 10951 *outlenp = 0; 10952 return (ENOPROTOOPT); 10953 } 10954 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 10955 grp = (ipaddr_t)sin->sin_addr.s_addr; 10956 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 10957 src = (ipaddr_t)sin->sin_addr.s_addr; 10958 ifindex = gsreqp->gsr_interface; 10959 } else { 10960 imreqp = (struct ip_mreq_source *)i1; 10961 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 10962 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 10963 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 10964 } 10965 10966 /* 10967 * In the multirouting case, we need to replicate 10968 * the request as noted in the mcast cases above. 10969 */ 10970 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 10971 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10972 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10973 if (ire != NULL) { 10974 if (ire->ire_flags & RTF_MULTIRT) { 10975 error = ip_multirt_apply_membership( 10976 optfn, ire, connp, checkonly, grp, 10977 fmode, src, first_mp); 10978 done = B_TRUE; 10979 } 10980 ire_refrele(ire); 10981 } 10982 if (!done) { 10983 error = optfn(connp, checkonly, grp, ifaddr, 10984 &ifindex, fmode, src, first_mp); 10985 } 10986 if (error != 0) { 10987 /* 10988 * EINPROGRESS is a soft error, needs retry 10989 * so don't make *outlenp zero. 10990 */ 10991 if (error != EINPROGRESS) 10992 *outlenp = 0; 10993 return (error); 10994 } 10995 /* OK return - copy input buffer into output buffer */ 10996 if (invalp != outvalp) { 10997 bcopy(invalp, outvalp, inlen); 10998 } 10999 *outlenp = inlen; 11000 return (0); 11001 } 11002 case IP_SEC_OPT: 11003 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11004 if (error != 0) { 11005 *outlenp = 0; 11006 return (error); 11007 } 11008 break; 11009 case IP_HDRINCL: 11010 case IP_OPTIONS: 11011 case T_IP_OPTIONS: 11012 case IP_TOS: 11013 case T_IP_TOS: 11014 case IP_TTL: 11015 case IP_RECVDSTADDR: 11016 case IP_RECVOPTS: 11017 /* OK return - copy input buffer into output buffer */ 11018 if (invalp != outvalp) { 11019 /* don't trust bcopy for identical src/dst */ 11020 bcopy(invalp, outvalp, inlen); 11021 } 11022 *outlenp = inlen; 11023 return (0); 11024 case IP_RECVIF: 11025 /* Retrieve the inbound interface index */ 11026 if (!checkonly) { 11027 mutex_enter(&connp->conn_lock); 11028 connp->conn_recvif = *i1 ? 1 : 0; 11029 mutex_exit(&connp->conn_lock); 11030 } 11031 break; /* goto sizeof (int) option return */ 11032 case IP_RECVPKTINFO: 11033 if (!checkonly) { 11034 mutex_enter(&connp->conn_lock); 11035 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11036 mutex_exit(&connp->conn_lock); 11037 } 11038 break; /* goto sizeof (int) option return */ 11039 case IP_RECVSLLA: 11040 /* Retrieve the source link layer address */ 11041 if (!checkonly) { 11042 mutex_enter(&connp->conn_lock); 11043 connp->conn_recvslla = *i1 ? 1 : 0; 11044 mutex_exit(&connp->conn_lock); 11045 } 11046 break; /* goto sizeof (int) option return */ 11047 case MRT_INIT: 11048 case MRT_DONE: 11049 case MRT_ADD_VIF: 11050 case MRT_DEL_VIF: 11051 case MRT_ADD_MFC: 11052 case MRT_DEL_MFC: 11053 case MRT_ASSERT: 11054 if ((error = secpolicy_ip_config(cr, B_FALSE)) != 0) { 11055 *outlenp = 0; 11056 return (error); 11057 } 11058 error = ip_mrouter_set((int)name, q, checkonly, 11059 (uchar_t *)invalp, inlen, first_mp); 11060 if (error) { 11061 *outlenp = 0; 11062 return (error); 11063 } 11064 /* OK return - copy input buffer into output buffer */ 11065 if (invalp != outvalp) { 11066 /* don't trust bcopy for identical src/dst */ 11067 bcopy(invalp, outvalp, inlen); 11068 } 11069 *outlenp = inlen; 11070 return (0); 11071 case IP_BOUND_IF: 11072 case IP_DHCPINIT_IF: 11073 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11074 level, name, first_mp); 11075 if (error != 0) 11076 return (error); 11077 break; /* goto sizeof (int) option return */ 11078 11079 case IP_UNSPEC_SRC: 11080 /* Allow sending with a zero source address */ 11081 if (!checkonly) { 11082 mutex_enter(&connp->conn_lock); 11083 connp->conn_unspec_src = *i1 ? 1 : 0; 11084 mutex_exit(&connp->conn_lock); 11085 } 11086 break; /* goto sizeof (int) option return */ 11087 default: 11088 /* 11089 * "soft" error (negative) 11090 * option not handled at this level 11091 * Note: Do not modify *outlenp 11092 */ 11093 return (-EINVAL); 11094 } 11095 break; 11096 case IPPROTO_IPV6: 11097 switch (name) { 11098 case IPV6_BOUND_IF: 11099 case IPV6_BOUND_PIF: 11100 case IPV6_DONTFAILOVER_IF: 11101 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11102 level, name, first_mp); 11103 if (error != 0) 11104 return (error); 11105 break; /* goto sizeof (int) option return */ 11106 11107 case IPV6_MULTICAST_IF: 11108 /* 11109 * The only possible errors are EINPROGRESS and 11110 * EINVAL. EINPROGRESS will be restarted and is not 11111 * a hard error. We call this option on both V4 and V6 11112 * If both return EINVAL, then this call returns 11113 * EINVAL. If at least one of them succeeds we 11114 * return success. 11115 */ 11116 found = B_FALSE; 11117 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11118 level, name, first_mp); 11119 if (error == EINPROGRESS) 11120 return (error); 11121 if (error == 0) 11122 found = B_TRUE; 11123 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11124 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 11125 if (error == 0) 11126 found = B_TRUE; 11127 if (!found) 11128 return (error); 11129 break; /* goto sizeof (int) option return */ 11130 11131 case IPV6_MULTICAST_HOPS: 11132 /* Recorded in transport above IP */ 11133 break; /* goto sizeof (int) option return */ 11134 case IPV6_MULTICAST_LOOP: 11135 if (!checkonly) { 11136 mutex_enter(&connp->conn_lock); 11137 connp->conn_multicast_loop = *i1; 11138 mutex_exit(&connp->conn_lock); 11139 } 11140 break; /* goto sizeof (int) option return */ 11141 case IPV6_JOIN_GROUP: 11142 case MCAST_JOIN_GROUP: 11143 case IPV6_LEAVE_GROUP: 11144 case MCAST_LEAVE_GROUP: { 11145 struct ipv6_mreq *ip_mreqp; 11146 struct group_req *greqp; 11147 ire_t *ire; 11148 boolean_t done = B_FALSE; 11149 in6_addr_t groupv6; 11150 uint32_t ifindex; 11151 boolean_t mcast_opt = B_TRUE; 11152 mcast_record_t fmode; 11153 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11154 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11155 11156 switch (name) { 11157 case IPV6_JOIN_GROUP: 11158 mcast_opt = B_FALSE; 11159 /* FALLTHRU */ 11160 case MCAST_JOIN_GROUP: 11161 fmode = MODE_IS_EXCLUDE; 11162 optfn = ip_opt_add_group_v6; 11163 break; 11164 11165 case IPV6_LEAVE_GROUP: 11166 mcast_opt = B_FALSE; 11167 /* FALLTHRU */ 11168 case MCAST_LEAVE_GROUP: 11169 fmode = MODE_IS_INCLUDE; 11170 optfn = ip_opt_delete_group_v6; 11171 break; 11172 } 11173 11174 if (mcast_opt) { 11175 struct sockaddr_in *sin; 11176 struct sockaddr_in6 *sin6; 11177 greqp = (struct group_req *)i1; 11178 if (greqp->gr_group.ss_family == AF_INET) { 11179 sin = (struct sockaddr_in *) 11180 &(greqp->gr_group); 11181 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 11182 &groupv6); 11183 } else { 11184 sin6 = (struct sockaddr_in6 *) 11185 &(greqp->gr_group); 11186 groupv6 = sin6->sin6_addr; 11187 } 11188 ifindex = greqp->gr_interface; 11189 } else { 11190 ip_mreqp = (struct ipv6_mreq *)i1; 11191 groupv6 = ip_mreqp->ipv6mr_multiaddr; 11192 ifindex = ip_mreqp->ipv6mr_interface; 11193 } 11194 /* 11195 * In the multirouting case, we need to replicate 11196 * the request on all interfaces that will take part 11197 * in replication. We do so because multirouting is 11198 * reflective, thus we will probably receive multi- 11199 * casts on those interfaces. 11200 * The ip_multirt_apply_membership_v6() succeeds if 11201 * the operation succeeds on at least one interface. 11202 */ 11203 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 11204 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11205 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11206 if (ire != NULL) { 11207 if (ire->ire_flags & RTF_MULTIRT) { 11208 error = ip_multirt_apply_membership_v6( 11209 optfn, ire, connp, checkonly, 11210 &groupv6, fmode, &ipv6_all_zeros, 11211 first_mp); 11212 done = B_TRUE; 11213 } 11214 ire_refrele(ire); 11215 } 11216 if (!done) { 11217 error = optfn(connp, checkonly, &groupv6, 11218 ifindex, fmode, &ipv6_all_zeros, first_mp); 11219 } 11220 if (error) { 11221 /* 11222 * EINPROGRESS is a soft error, needs retry 11223 * so don't make *outlenp zero. 11224 */ 11225 if (error != EINPROGRESS) 11226 *outlenp = 0; 11227 return (error); 11228 } 11229 /* OK return - copy input buffer into output buffer */ 11230 if (invalp != outvalp) { 11231 /* don't trust bcopy for identical src/dst */ 11232 bcopy(invalp, outvalp, inlen); 11233 } 11234 *outlenp = inlen; 11235 return (0); 11236 } 11237 case MCAST_BLOCK_SOURCE: 11238 case MCAST_UNBLOCK_SOURCE: 11239 case MCAST_JOIN_SOURCE_GROUP: 11240 case MCAST_LEAVE_SOURCE_GROUP: { 11241 struct group_source_req *gsreqp; 11242 in6_addr_t v6grp, v6src; 11243 uint32_t ifindex; 11244 mcast_record_t fmode; 11245 ire_t *ire; 11246 boolean_t done = B_FALSE; 11247 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11248 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11249 11250 switch (name) { 11251 case MCAST_BLOCK_SOURCE: 11252 fmode = MODE_IS_EXCLUDE; 11253 optfn = ip_opt_add_group_v6; 11254 break; 11255 case MCAST_UNBLOCK_SOURCE: 11256 fmode = MODE_IS_EXCLUDE; 11257 optfn = ip_opt_delete_group_v6; 11258 break; 11259 case MCAST_JOIN_SOURCE_GROUP: 11260 fmode = MODE_IS_INCLUDE; 11261 optfn = ip_opt_add_group_v6; 11262 break; 11263 case MCAST_LEAVE_SOURCE_GROUP: 11264 fmode = MODE_IS_INCLUDE; 11265 optfn = ip_opt_delete_group_v6; 11266 break; 11267 } 11268 11269 gsreqp = (struct group_source_req *)i1; 11270 ifindex = gsreqp->gsr_interface; 11271 if (gsreqp->gsr_group.ss_family == AF_INET) { 11272 struct sockaddr_in *s; 11273 s = (struct sockaddr_in *)&gsreqp->gsr_group; 11274 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 11275 s = (struct sockaddr_in *)&gsreqp->gsr_source; 11276 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 11277 } else { 11278 struct sockaddr_in6 *s6; 11279 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 11280 v6grp = s6->sin6_addr; 11281 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 11282 v6src = s6->sin6_addr; 11283 } 11284 11285 /* 11286 * In the multirouting case, we need to replicate 11287 * the request as noted in the mcast cases above. 11288 */ 11289 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 11290 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11291 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11292 if (ire != NULL) { 11293 if (ire->ire_flags & RTF_MULTIRT) { 11294 error = ip_multirt_apply_membership_v6( 11295 optfn, ire, connp, checkonly, 11296 &v6grp, fmode, &v6src, first_mp); 11297 done = B_TRUE; 11298 } 11299 ire_refrele(ire); 11300 } 11301 if (!done) { 11302 error = optfn(connp, checkonly, &v6grp, 11303 ifindex, fmode, &v6src, first_mp); 11304 } 11305 if (error != 0) { 11306 /* 11307 * EINPROGRESS is a soft error, needs retry 11308 * so don't make *outlenp zero. 11309 */ 11310 if (error != EINPROGRESS) 11311 *outlenp = 0; 11312 return (error); 11313 } 11314 /* OK return - copy input buffer into output buffer */ 11315 if (invalp != outvalp) { 11316 bcopy(invalp, outvalp, inlen); 11317 } 11318 *outlenp = inlen; 11319 return (0); 11320 } 11321 case IPV6_UNICAST_HOPS: 11322 /* Recorded in transport above IP */ 11323 break; /* goto sizeof (int) option return */ 11324 case IPV6_UNSPEC_SRC: 11325 /* Allow sending with a zero source address */ 11326 if (!checkonly) { 11327 mutex_enter(&connp->conn_lock); 11328 connp->conn_unspec_src = *i1 ? 1 : 0; 11329 mutex_exit(&connp->conn_lock); 11330 } 11331 break; /* goto sizeof (int) option return */ 11332 case IPV6_RECVPKTINFO: 11333 if (!checkonly) { 11334 mutex_enter(&connp->conn_lock); 11335 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11336 mutex_exit(&connp->conn_lock); 11337 } 11338 break; /* goto sizeof (int) option return */ 11339 case IPV6_RECVTCLASS: 11340 if (!checkonly) { 11341 if (*i1 < 0 || *i1 > 1) { 11342 return (EINVAL); 11343 } 11344 mutex_enter(&connp->conn_lock); 11345 connp->conn_ipv6_recvtclass = *i1; 11346 mutex_exit(&connp->conn_lock); 11347 } 11348 break; 11349 case IPV6_RECVPATHMTU: 11350 if (!checkonly) { 11351 if (*i1 < 0 || *i1 > 1) { 11352 return (EINVAL); 11353 } 11354 mutex_enter(&connp->conn_lock); 11355 connp->conn_ipv6_recvpathmtu = *i1; 11356 mutex_exit(&connp->conn_lock); 11357 } 11358 break; 11359 case IPV6_RECVHOPLIMIT: 11360 if (!checkonly) { 11361 mutex_enter(&connp->conn_lock); 11362 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 11363 mutex_exit(&connp->conn_lock); 11364 } 11365 break; /* goto sizeof (int) option return */ 11366 case IPV6_RECVHOPOPTS: 11367 if (!checkonly) { 11368 mutex_enter(&connp->conn_lock); 11369 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 11370 mutex_exit(&connp->conn_lock); 11371 } 11372 break; /* goto sizeof (int) option return */ 11373 case IPV6_RECVDSTOPTS: 11374 if (!checkonly) { 11375 mutex_enter(&connp->conn_lock); 11376 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 11377 mutex_exit(&connp->conn_lock); 11378 } 11379 break; /* goto sizeof (int) option return */ 11380 case IPV6_RECVRTHDR: 11381 if (!checkonly) { 11382 mutex_enter(&connp->conn_lock); 11383 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 11384 mutex_exit(&connp->conn_lock); 11385 } 11386 break; /* goto sizeof (int) option return */ 11387 case IPV6_RECVRTHDRDSTOPTS: 11388 if (!checkonly) { 11389 mutex_enter(&connp->conn_lock); 11390 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 11391 mutex_exit(&connp->conn_lock); 11392 } 11393 break; /* goto sizeof (int) option return */ 11394 case IPV6_PKTINFO: 11395 if (inlen == 0) 11396 return (-EINVAL); /* clearing option */ 11397 error = ip6_set_pktinfo(cr, connp, 11398 (struct in6_pktinfo *)invalp, first_mp); 11399 if (error != 0) 11400 *outlenp = 0; 11401 else 11402 *outlenp = inlen; 11403 return (error); 11404 case IPV6_NEXTHOP: { 11405 struct sockaddr_in6 *sin6; 11406 11407 /* Verify that the nexthop is reachable */ 11408 if (inlen == 0) 11409 return (-EINVAL); /* clearing option */ 11410 11411 sin6 = (struct sockaddr_in6 *)invalp; 11412 ire = ire_route_lookup_v6(&sin6->sin6_addr, 11413 0, 0, 0, NULL, NULL, connp->conn_zoneid, 11414 NULL, MATCH_IRE_DEFAULT, ipst); 11415 11416 if (ire == NULL) { 11417 *outlenp = 0; 11418 return (EHOSTUNREACH); 11419 } 11420 ire_refrele(ire); 11421 return (-EINVAL); 11422 } 11423 case IPV6_SEC_OPT: 11424 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11425 if (error != 0) { 11426 *outlenp = 0; 11427 return (error); 11428 } 11429 break; 11430 case IPV6_SRC_PREFERENCES: { 11431 /* 11432 * This is implemented strictly in the ip module 11433 * (here and in tcp_opt_*() to accomodate tcp 11434 * sockets). Modules above ip pass this option 11435 * down here since ip is the only one that needs to 11436 * be aware of source address preferences. 11437 * 11438 * This socket option only affects connected 11439 * sockets that haven't already bound to a specific 11440 * IPv6 address. In other words, sockets that 11441 * don't call bind() with an address other than the 11442 * unspecified address and that call connect(). 11443 * ip_bind_connected_v6() passes these preferences 11444 * to the ipif_select_source_v6() function. 11445 */ 11446 if (inlen != sizeof (uint32_t)) 11447 return (EINVAL); 11448 error = ip6_set_src_preferences(connp, 11449 *(uint32_t *)invalp); 11450 if (error != 0) { 11451 *outlenp = 0; 11452 return (error); 11453 } else { 11454 *outlenp = sizeof (uint32_t); 11455 } 11456 break; 11457 } 11458 case IPV6_V6ONLY: 11459 if (*i1 < 0 || *i1 > 1) { 11460 return (EINVAL); 11461 } 11462 mutex_enter(&connp->conn_lock); 11463 connp->conn_ipv6_v6only = *i1; 11464 mutex_exit(&connp->conn_lock); 11465 break; 11466 default: 11467 return (-EINVAL); 11468 } 11469 break; 11470 default: 11471 /* 11472 * "soft" error (negative) 11473 * option not handled at this level 11474 * Note: Do not modify *outlenp 11475 */ 11476 return (-EINVAL); 11477 } 11478 /* 11479 * Common case of return from an option that is sizeof (int) 11480 */ 11481 *(int *)outvalp = *i1; 11482 *outlenp = sizeof (int); 11483 return (0); 11484 } 11485 11486 /* 11487 * This routine gets default values of certain options whose default 11488 * values are maintained by protocol specific code 11489 */ 11490 /* ARGSUSED */ 11491 int 11492 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 11493 { 11494 int *i1 = (int *)ptr; 11495 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11496 11497 switch (level) { 11498 case IPPROTO_IP: 11499 switch (name) { 11500 case IP_MULTICAST_TTL: 11501 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 11502 return (sizeof (uchar_t)); 11503 case IP_MULTICAST_LOOP: 11504 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 11505 return (sizeof (uchar_t)); 11506 default: 11507 return (-1); 11508 } 11509 case IPPROTO_IPV6: 11510 switch (name) { 11511 case IPV6_UNICAST_HOPS: 11512 *i1 = ipst->ips_ipv6_def_hops; 11513 return (sizeof (int)); 11514 case IPV6_MULTICAST_HOPS: 11515 *i1 = IP_DEFAULT_MULTICAST_TTL; 11516 return (sizeof (int)); 11517 case IPV6_MULTICAST_LOOP: 11518 *i1 = IP_DEFAULT_MULTICAST_LOOP; 11519 return (sizeof (int)); 11520 case IPV6_V6ONLY: 11521 *i1 = 1; 11522 return (sizeof (int)); 11523 default: 11524 return (-1); 11525 } 11526 default: 11527 return (-1); 11528 } 11529 /* NOTREACHED */ 11530 } 11531 11532 /* 11533 * Given a destination address and a pointer to where to put the information 11534 * this routine fills in the mtuinfo. 11535 */ 11536 int 11537 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 11538 struct ip6_mtuinfo *mtuinfo, netstack_t *ns) 11539 { 11540 ire_t *ire; 11541 ip_stack_t *ipst = ns->netstack_ip; 11542 11543 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 11544 return (-1); 11545 11546 bzero(mtuinfo, sizeof (*mtuinfo)); 11547 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 11548 mtuinfo->ip6m_addr.sin6_port = port; 11549 mtuinfo->ip6m_addr.sin6_addr = *in6; 11550 11551 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL, ipst); 11552 if (ire != NULL) { 11553 mtuinfo->ip6m_mtu = ire->ire_max_frag; 11554 ire_refrele(ire); 11555 } else { 11556 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 11557 } 11558 return (sizeof (struct ip6_mtuinfo)); 11559 } 11560 11561 /* 11562 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 11563 * checking of GET_QUEUE_CRED(q) and that ip_g_mrouter is set should be done and 11564 * isn't. This doesn't matter as the error checking is done properly for the 11565 * other MRT options coming in through ip_opt_set. 11566 */ 11567 int 11568 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 11569 { 11570 conn_t *connp = Q_TO_CONN(q); 11571 ipsec_req_t *req = (ipsec_req_t *)ptr; 11572 11573 switch (level) { 11574 case IPPROTO_IP: 11575 switch (name) { 11576 case MRT_VERSION: 11577 case MRT_ASSERT: 11578 (void) ip_mrouter_get(name, q, ptr); 11579 return (sizeof (int)); 11580 case IP_SEC_OPT: 11581 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 11582 case IP_NEXTHOP: 11583 if (connp->conn_nexthop_set) { 11584 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 11585 return (sizeof (ipaddr_t)); 11586 } else 11587 return (0); 11588 case IP_RECVPKTINFO: 11589 *(int *)ptr = connp->conn_ip_recvpktinfo ? 1: 0; 11590 return (sizeof (int)); 11591 default: 11592 break; 11593 } 11594 break; 11595 case IPPROTO_IPV6: 11596 switch (name) { 11597 case IPV6_SEC_OPT: 11598 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 11599 case IPV6_SRC_PREFERENCES: { 11600 return (ip6_get_src_preferences(connp, 11601 (uint32_t *)ptr)); 11602 } 11603 case IPV6_V6ONLY: 11604 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 11605 return (sizeof (int)); 11606 case IPV6_PATHMTU: 11607 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 11608 (struct ip6_mtuinfo *)ptr, connp->conn_netstack)); 11609 default: 11610 break; 11611 } 11612 break; 11613 default: 11614 break; 11615 } 11616 return (-1); 11617 } 11618 11619 /* Named Dispatch routine to get a current value out of our parameter table. */ 11620 /* ARGSUSED */ 11621 static int 11622 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11623 { 11624 ipparam_t *ippa = (ipparam_t *)cp; 11625 11626 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 11627 return (0); 11628 } 11629 11630 /* ARGSUSED */ 11631 static int 11632 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11633 { 11634 11635 (void) mi_mpprintf(mp, "%d", *(int *)cp); 11636 return (0); 11637 } 11638 11639 /* 11640 * Set ip{,6}_forwarding values. This means walking through all of the 11641 * ill's and toggling their forwarding values. 11642 */ 11643 /* ARGSUSED */ 11644 static int 11645 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11646 { 11647 long new_value; 11648 int *forwarding_value = (int *)cp; 11649 ill_t *ill; 11650 boolean_t isv6; 11651 ill_walk_context_t ctx; 11652 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11653 11654 isv6 = (forwarding_value == &ipst->ips_ipv6_forward); 11655 11656 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11657 new_value < 0 || new_value > 1) { 11658 return (EINVAL); 11659 } 11660 11661 *forwarding_value = new_value; 11662 11663 /* 11664 * Regardless of the current value of ip_forwarding, set all per-ill 11665 * values of ip_forwarding to the value being set. 11666 * 11667 * Bring all the ill's up to date with the new global value. 11668 */ 11669 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11670 11671 if (isv6) 11672 ill = ILL_START_WALK_V6(&ctx, ipst); 11673 else 11674 ill = ILL_START_WALK_V4(&ctx, ipst); 11675 11676 for (; ill != NULL; ill = ill_next(&ctx, ill)) 11677 (void) ill_forward_set(ill, new_value != 0); 11678 11679 rw_exit(&ipst->ips_ill_g_lock); 11680 return (0); 11681 } 11682 11683 /* 11684 * Walk through the param array specified registering each element with the 11685 * Named Dispatch handler. This is called only during init. So it is ok 11686 * not to acquire any locks 11687 */ 11688 static boolean_t 11689 ip_param_register(IDP *ndp, ipparam_t *ippa, size_t ippa_cnt, 11690 ipndp_t *ipnd, size_t ipnd_cnt) 11691 { 11692 for (; ippa_cnt-- > 0; ippa++) { 11693 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 11694 if (!nd_load(ndp, ippa->ip_param_name, 11695 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11696 nd_free(ndp); 11697 return (B_FALSE); 11698 } 11699 } 11700 } 11701 11702 for (; ipnd_cnt-- > 0; ipnd++) { 11703 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11704 if (!nd_load(ndp, ipnd->ip_ndp_name, 11705 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11706 ipnd->ip_ndp_data)) { 11707 nd_free(ndp); 11708 return (B_FALSE); 11709 } 11710 } 11711 } 11712 11713 return (B_TRUE); 11714 } 11715 11716 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11717 /* ARGSUSED */ 11718 static int 11719 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11720 { 11721 long new_value; 11722 ipparam_t *ippa = (ipparam_t *)cp; 11723 11724 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11725 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11726 return (EINVAL); 11727 } 11728 ippa->ip_param_value = new_value; 11729 return (0); 11730 } 11731 11732 /* 11733 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11734 * When an ipf is passed here for the first time, if 11735 * we already have in-order fragments on the queue, we convert from the fast- 11736 * path reassembly scheme to the hard-case scheme. From then on, additional 11737 * fragments are reassembled here. We keep track of the start and end offsets 11738 * of each piece, and the number of holes in the chain. When the hole count 11739 * goes to zero, we are done! 11740 * 11741 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11742 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11743 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11744 * after the call to ip_reassemble(). 11745 */ 11746 int 11747 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11748 size_t msg_len) 11749 { 11750 uint_t end; 11751 mblk_t *next_mp; 11752 mblk_t *mp1; 11753 uint_t offset; 11754 boolean_t incr_dups = B_TRUE; 11755 boolean_t offset_zero_seen = B_FALSE; 11756 boolean_t pkt_boundary_checked = B_FALSE; 11757 11758 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11759 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11760 11761 /* Add in byte count */ 11762 ipf->ipf_count += msg_len; 11763 if (ipf->ipf_end) { 11764 /* 11765 * We were part way through in-order reassembly, but now there 11766 * is a hole. We walk through messages already queued, and 11767 * mark them for hard case reassembly. We know that up till 11768 * now they were in order starting from offset zero. 11769 */ 11770 offset = 0; 11771 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11772 IP_REASS_SET_START(mp1, offset); 11773 if (offset == 0) { 11774 ASSERT(ipf->ipf_nf_hdr_len != 0); 11775 offset = -ipf->ipf_nf_hdr_len; 11776 } 11777 offset += mp1->b_wptr - mp1->b_rptr; 11778 IP_REASS_SET_END(mp1, offset); 11779 } 11780 /* One hole at the end. */ 11781 ipf->ipf_hole_cnt = 1; 11782 /* Brand it as a hard case, forever. */ 11783 ipf->ipf_end = 0; 11784 } 11785 /* Walk through all the new pieces. */ 11786 do { 11787 end = start + (mp->b_wptr - mp->b_rptr); 11788 /* 11789 * If start is 0, decrease 'end' only for the first mblk of 11790 * the fragment. Otherwise 'end' can get wrong value in the 11791 * second pass of the loop if first mblk is exactly the 11792 * size of ipf_nf_hdr_len. 11793 */ 11794 if (start == 0 && !offset_zero_seen) { 11795 /* First segment */ 11796 ASSERT(ipf->ipf_nf_hdr_len != 0); 11797 end -= ipf->ipf_nf_hdr_len; 11798 offset_zero_seen = B_TRUE; 11799 } 11800 next_mp = mp->b_cont; 11801 /* 11802 * We are checking to see if there is any interesing data 11803 * to process. If there isn't and the mblk isn't the 11804 * one which carries the unfragmentable header then we 11805 * drop it. It's possible to have just the unfragmentable 11806 * header come through without any data. That needs to be 11807 * saved. 11808 * 11809 * If the assert at the top of this function holds then the 11810 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 11811 * is infrequently traveled enough that the test is left in 11812 * to protect against future code changes which break that 11813 * invariant. 11814 */ 11815 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 11816 /* Empty. Blast it. */ 11817 IP_REASS_SET_START(mp, 0); 11818 IP_REASS_SET_END(mp, 0); 11819 /* 11820 * If the ipf points to the mblk we are about to free, 11821 * update ipf to point to the next mblk (or NULL 11822 * if none). 11823 */ 11824 if (ipf->ipf_mp->b_cont == mp) 11825 ipf->ipf_mp->b_cont = next_mp; 11826 freeb(mp); 11827 continue; 11828 } 11829 mp->b_cont = NULL; 11830 IP_REASS_SET_START(mp, start); 11831 IP_REASS_SET_END(mp, end); 11832 if (!ipf->ipf_tail_mp) { 11833 ipf->ipf_tail_mp = mp; 11834 ipf->ipf_mp->b_cont = mp; 11835 if (start == 0 || !more) { 11836 ipf->ipf_hole_cnt = 1; 11837 /* 11838 * if the first fragment comes in more than one 11839 * mblk, this loop will be executed for each 11840 * mblk. Need to adjust hole count so exiting 11841 * this routine will leave hole count at 1. 11842 */ 11843 if (next_mp) 11844 ipf->ipf_hole_cnt++; 11845 } else 11846 ipf->ipf_hole_cnt = 2; 11847 continue; 11848 } else if (ipf->ipf_last_frag_seen && !more && 11849 !pkt_boundary_checked) { 11850 /* 11851 * We check datagram boundary only if this fragment 11852 * claims to be the last fragment and we have seen a 11853 * last fragment in the past too. We do this only 11854 * once for a given fragment. 11855 * 11856 * start cannot be 0 here as fragments with start=0 11857 * and MF=0 gets handled as a complete packet. These 11858 * fragments should not reach here. 11859 */ 11860 11861 if (start + msgdsize(mp) != 11862 IP_REASS_END(ipf->ipf_tail_mp)) { 11863 /* 11864 * We have two fragments both of which claim 11865 * to be the last fragment but gives conflicting 11866 * information about the whole datagram size. 11867 * Something fishy is going on. Drop the 11868 * fragment and free up the reassembly list. 11869 */ 11870 return (IP_REASS_FAILED); 11871 } 11872 11873 /* 11874 * We shouldn't come to this code block again for this 11875 * particular fragment. 11876 */ 11877 pkt_boundary_checked = B_TRUE; 11878 } 11879 11880 /* New stuff at or beyond tail? */ 11881 offset = IP_REASS_END(ipf->ipf_tail_mp); 11882 if (start >= offset) { 11883 if (ipf->ipf_last_frag_seen) { 11884 /* current fragment is beyond last fragment */ 11885 return (IP_REASS_FAILED); 11886 } 11887 /* Link it on end. */ 11888 ipf->ipf_tail_mp->b_cont = mp; 11889 ipf->ipf_tail_mp = mp; 11890 if (more) { 11891 if (start != offset) 11892 ipf->ipf_hole_cnt++; 11893 } else if (start == offset && next_mp == NULL) 11894 ipf->ipf_hole_cnt--; 11895 continue; 11896 } 11897 mp1 = ipf->ipf_mp->b_cont; 11898 offset = IP_REASS_START(mp1); 11899 /* New stuff at the front? */ 11900 if (start < offset) { 11901 if (start == 0) { 11902 if (end >= offset) { 11903 /* Nailed the hole at the begining. */ 11904 ipf->ipf_hole_cnt--; 11905 } 11906 } else if (end < offset) { 11907 /* 11908 * A hole, stuff, and a hole where there used 11909 * to be just a hole. 11910 */ 11911 ipf->ipf_hole_cnt++; 11912 } 11913 mp->b_cont = mp1; 11914 /* Check for overlap. */ 11915 while (end > offset) { 11916 if (end < IP_REASS_END(mp1)) { 11917 mp->b_wptr -= end - offset; 11918 IP_REASS_SET_END(mp, offset); 11919 BUMP_MIB(ill->ill_ip_mib, 11920 ipIfStatsReasmPartDups); 11921 break; 11922 } 11923 /* Did we cover another hole? */ 11924 if ((mp1->b_cont && 11925 IP_REASS_END(mp1) != 11926 IP_REASS_START(mp1->b_cont) && 11927 end >= IP_REASS_START(mp1->b_cont)) || 11928 (!ipf->ipf_last_frag_seen && !more)) { 11929 ipf->ipf_hole_cnt--; 11930 } 11931 /* Clip out mp1. */ 11932 if ((mp->b_cont = mp1->b_cont) == NULL) { 11933 /* 11934 * After clipping out mp1, this guy 11935 * is now hanging off the end. 11936 */ 11937 ipf->ipf_tail_mp = mp; 11938 } 11939 IP_REASS_SET_START(mp1, 0); 11940 IP_REASS_SET_END(mp1, 0); 11941 /* Subtract byte count */ 11942 ipf->ipf_count -= mp1->b_datap->db_lim - 11943 mp1->b_datap->db_base; 11944 freeb(mp1); 11945 BUMP_MIB(ill->ill_ip_mib, 11946 ipIfStatsReasmPartDups); 11947 mp1 = mp->b_cont; 11948 if (!mp1) 11949 break; 11950 offset = IP_REASS_START(mp1); 11951 } 11952 ipf->ipf_mp->b_cont = mp; 11953 continue; 11954 } 11955 /* 11956 * The new piece starts somewhere between the start of the head 11957 * and before the end of the tail. 11958 */ 11959 for (; mp1; mp1 = mp1->b_cont) { 11960 offset = IP_REASS_END(mp1); 11961 if (start < offset) { 11962 if (end <= offset) { 11963 /* Nothing new. */ 11964 IP_REASS_SET_START(mp, 0); 11965 IP_REASS_SET_END(mp, 0); 11966 /* Subtract byte count */ 11967 ipf->ipf_count -= mp->b_datap->db_lim - 11968 mp->b_datap->db_base; 11969 if (incr_dups) { 11970 ipf->ipf_num_dups++; 11971 incr_dups = B_FALSE; 11972 } 11973 freeb(mp); 11974 BUMP_MIB(ill->ill_ip_mib, 11975 ipIfStatsReasmDuplicates); 11976 break; 11977 } 11978 /* 11979 * Trim redundant stuff off beginning of new 11980 * piece. 11981 */ 11982 IP_REASS_SET_START(mp, offset); 11983 mp->b_rptr += offset - start; 11984 BUMP_MIB(ill->ill_ip_mib, 11985 ipIfStatsReasmPartDups); 11986 start = offset; 11987 if (!mp1->b_cont) { 11988 /* 11989 * After trimming, this guy is now 11990 * hanging off the end. 11991 */ 11992 mp1->b_cont = mp; 11993 ipf->ipf_tail_mp = mp; 11994 if (!more) { 11995 ipf->ipf_hole_cnt--; 11996 } 11997 break; 11998 } 11999 } 12000 if (start >= IP_REASS_START(mp1->b_cont)) 12001 continue; 12002 /* Fill a hole */ 12003 if (start > offset) 12004 ipf->ipf_hole_cnt++; 12005 mp->b_cont = mp1->b_cont; 12006 mp1->b_cont = mp; 12007 mp1 = mp->b_cont; 12008 offset = IP_REASS_START(mp1); 12009 if (end >= offset) { 12010 ipf->ipf_hole_cnt--; 12011 /* Check for overlap. */ 12012 while (end > offset) { 12013 if (end < IP_REASS_END(mp1)) { 12014 mp->b_wptr -= end - offset; 12015 IP_REASS_SET_END(mp, offset); 12016 /* 12017 * TODO we might bump 12018 * this up twice if there is 12019 * overlap at both ends. 12020 */ 12021 BUMP_MIB(ill->ill_ip_mib, 12022 ipIfStatsReasmPartDups); 12023 break; 12024 } 12025 /* Did we cover another hole? */ 12026 if ((mp1->b_cont && 12027 IP_REASS_END(mp1) 12028 != IP_REASS_START(mp1->b_cont) && 12029 end >= 12030 IP_REASS_START(mp1->b_cont)) || 12031 (!ipf->ipf_last_frag_seen && 12032 !more)) { 12033 ipf->ipf_hole_cnt--; 12034 } 12035 /* Clip out mp1. */ 12036 if ((mp->b_cont = mp1->b_cont) == 12037 NULL) { 12038 /* 12039 * After clipping out mp1, 12040 * this guy is now hanging 12041 * off the end. 12042 */ 12043 ipf->ipf_tail_mp = mp; 12044 } 12045 IP_REASS_SET_START(mp1, 0); 12046 IP_REASS_SET_END(mp1, 0); 12047 /* Subtract byte count */ 12048 ipf->ipf_count -= 12049 mp1->b_datap->db_lim - 12050 mp1->b_datap->db_base; 12051 freeb(mp1); 12052 BUMP_MIB(ill->ill_ip_mib, 12053 ipIfStatsReasmPartDups); 12054 mp1 = mp->b_cont; 12055 if (!mp1) 12056 break; 12057 offset = IP_REASS_START(mp1); 12058 } 12059 } 12060 break; 12061 } 12062 } while (start = end, mp = next_mp); 12063 12064 /* Fragment just processed could be the last one. Remember this fact */ 12065 if (!more) 12066 ipf->ipf_last_frag_seen = B_TRUE; 12067 12068 /* Still got holes? */ 12069 if (ipf->ipf_hole_cnt) 12070 return (IP_REASS_PARTIAL); 12071 /* Clean up overloaded fields to avoid upstream disasters. */ 12072 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 12073 IP_REASS_SET_START(mp1, 0); 12074 IP_REASS_SET_END(mp1, 0); 12075 } 12076 return (IP_REASS_COMPLETE); 12077 } 12078 12079 /* 12080 * ipsec processing for the fast path, used for input UDP Packets 12081 * Returns true if ready for passup to UDP. 12082 * Return false if packet is not passable to UDP (e.g. it failed IPsec policy, 12083 * was an ESP-in-UDP packet, etc.). 12084 */ 12085 static boolean_t 12086 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 12087 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present, ire_t *ire) 12088 { 12089 uint32_t ill_index; 12090 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 12091 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 12092 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12093 udp_t *udp = connp->conn_udp; 12094 12095 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12096 /* The ill_index of the incoming ILL */ 12097 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 12098 12099 /* pass packet up to the transport */ 12100 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 12101 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 12102 NULL, mctl_present); 12103 if (*first_mpp == NULL) { 12104 return (B_FALSE); 12105 } 12106 } 12107 12108 /* Initiate IPPF processing for fastpath UDP */ 12109 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 12110 ip_process(IPP_LOCAL_IN, mpp, ill_index); 12111 if (*mpp == NULL) { 12112 ip2dbg(("ip_input_ipsec_process: UDP pkt " 12113 "deferred/dropped during IPPF processing\n")); 12114 return (B_FALSE); 12115 } 12116 } 12117 /* 12118 * Remove 0-spi if it's 0, or move everything behind 12119 * the UDP header over it and forward to ESP via 12120 * ip_proto_input(). 12121 */ 12122 if (udp->udp_nat_t_endpoint) { 12123 if (mctl_present) { 12124 /* mctl_present *shouldn't* happen. */ 12125 ip_drop_packet(*first_mpp, B_TRUE, NULL, 12126 NULL, DROPPER(ipss, ipds_esp_nat_t_ipsec), 12127 &ipss->ipsec_dropper); 12128 *first_mpp = NULL; 12129 return (B_FALSE); 12130 } 12131 12132 /* "ill" is "recv_ill" in actuality. */ 12133 if (!zero_spi_check(q, *mpp, ire, ill, ipss)) 12134 return (B_FALSE); 12135 12136 /* Else continue like a normal UDP packet. */ 12137 } 12138 12139 /* 12140 * We make the checks as below since we are in the fast path 12141 * and want to minimize the number of checks if the IP_RECVIF and/or 12142 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 12143 */ 12144 if (connp->conn_recvif || connp->conn_recvslla || 12145 connp->conn_ip_recvpktinfo) { 12146 if (connp->conn_recvif) { 12147 in_flags = IPF_RECVIF; 12148 } 12149 /* 12150 * UDP supports IP_RECVPKTINFO option for both v4 and v6 12151 * so the flag passed to ip_add_info is based on IP version 12152 * of connp. 12153 */ 12154 if (connp->conn_ip_recvpktinfo) { 12155 if (connp->conn_af_isv6) { 12156 /* 12157 * V6 only needs index 12158 */ 12159 in_flags |= IPF_RECVIF; 12160 } else { 12161 /* 12162 * V4 needs index + matching address. 12163 */ 12164 in_flags |= IPF_RECVADDR; 12165 } 12166 } 12167 if (connp->conn_recvslla) { 12168 in_flags |= IPF_RECVSLLA; 12169 } 12170 /* 12171 * since in_flags are being set ill will be 12172 * referenced in ip_add_info, so it better not 12173 * be NULL. 12174 */ 12175 /* 12176 * the actual data will be contained in b_cont 12177 * upon successful return of the following call. 12178 * If the call fails then the original mblk is 12179 * returned. 12180 */ 12181 *mpp = ip_add_info(*mpp, ill, in_flags, IPCL_ZONEID(connp), 12182 ipst); 12183 } 12184 12185 return (B_TRUE); 12186 } 12187 12188 /* 12189 * Fragmentation reassembly. Each ILL has a hash table for 12190 * queuing packets undergoing reassembly for all IPIFs 12191 * associated with the ILL. The hash is based on the packet 12192 * IP ident field. The ILL frag hash table was allocated 12193 * as a timer block at the time the ILL was created. Whenever 12194 * there is anything on the reassembly queue, the timer will 12195 * be running. Returns B_TRUE if successful else B_FALSE; 12196 * frees mp on failure. 12197 */ 12198 static boolean_t 12199 ip_rput_fragment(queue_t *q, mblk_t **mpp, ipha_t *ipha, 12200 uint32_t *cksum_val, uint16_t *cksum_flags) 12201 { 12202 uint32_t frag_offset_flags; 12203 ill_t *ill = (ill_t *)q->q_ptr; 12204 mblk_t *mp = *mpp; 12205 mblk_t *t_mp; 12206 ipaddr_t dst; 12207 uint8_t proto = ipha->ipha_protocol; 12208 uint32_t sum_val; 12209 uint16_t sum_flags; 12210 ipf_t *ipf; 12211 ipf_t **ipfp; 12212 ipfb_t *ipfb; 12213 uint16_t ident; 12214 uint32_t offset; 12215 ipaddr_t src; 12216 uint_t hdr_length; 12217 uint32_t end; 12218 mblk_t *mp1; 12219 mblk_t *tail_mp; 12220 size_t count; 12221 size_t msg_len; 12222 uint8_t ecn_info = 0; 12223 uint32_t packet_size; 12224 boolean_t pruned = B_FALSE; 12225 ip_stack_t *ipst = ill->ill_ipst; 12226 12227 if (cksum_val != NULL) 12228 *cksum_val = 0; 12229 if (cksum_flags != NULL) 12230 *cksum_flags = 0; 12231 12232 /* 12233 * Drop the fragmented as early as possible, if 12234 * we don't have resource(s) to re-assemble. 12235 */ 12236 if (ipst->ips_ip_reass_queue_bytes == 0) { 12237 freemsg(mp); 12238 return (B_FALSE); 12239 } 12240 12241 /* Check for fragmentation offset; return if there's none */ 12242 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 12243 (IPH_MF | IPH_OFFSET)) == 0) 12244 return (B_TRUE); 12245 12246 /* 12247 * We utilize hardware computed checksum info only for UDP since 12248 * IP fragmentation is a normal occurence for the protocol. In 12249 * addition, checksum offload support for IP fragments carrying 12250 * UDP payload is commonly implemented across network adapters. 12251 */ 12252 ASSERT(ill != NULL); 12253 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(ill) && 12254 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 12255 mblk_t *mp1 = mp->b_cont; 12256 int32_t len; 12257 12258 /* Record checksum information from the packet */ 12259 sum_val = (uint32_t)DB_CKSUM16(mp); 12260 sum_flags = DB_CKSUMFLAGS(mp); 12261 12262 /* IP payload offset from beginning of mblk */ 12263 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 12264 12265 if ((sum_flags & HCK_PARTIALCKSUM) && 12266 (mp1 == NULL || mp1->b_cont == NULL) && 12267 offset >= DB_CKSUMSTART(mp) && 12268 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 12269 uint32_t adj; 12270 /* 12271 * Partial checksum has been calculated by hardware 12272 * and attached to the packet; in addition, any 12273 * prepended extraneous data is even byte aligned. 12274 * If any such data exists, we adjust the checksum; 12275 * this would also handle any postpended data. 12276 */ 12277 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 12278 mp, mp1, len, adj); 12279 12280 /* One's complement subtract extraneous checksum */ 12281 if (adj >= sum_val) 12282 sum_val = ~(adj - sum_val) & 0xFFFF; 12283 else 12284 sum_val -= adj; 12285 } 12286 } else { 12287 sum_val = 0; 12288 sum_flags = 0; 12289 } 12290 12291 /* Clear hardware checksumming flag */ 12292 DB_CKSUMFLAGS(mp) = 0; 12293 12294 ident = ipha->ipha_ident; 12295 offset = (frag_offset_flags << 3) & 0xFFFF; 12296 src = ipha->ipha_src; 12297 dst = ipha->ipha_dst; 12298 hdr_length = IPH_HDR_LENGTH(ipha); 12299 end = ntohs(ipha->ipha_length) - hdr_length; 12300 12301 /* If end == 0 then we have a packet with no data, so just free it */ 12302 if (end == 0) { 12303 freemsg(mp); 12304 return (B_FALSE); 12305 } 12306 12307 /* Record the ECN field info. */ 12308 ecn_info = (ipha->ipha_type_of_service & 0x3); 12309 if (offset != 0) { 12310 /* 12311 * If this isn't the first piece, strip the header, and 12312 * add the offset to the end value. 12313 */ 12314 mp->b_rptr += hdr_length; 12315 end += offset; 12316 } 12317 12318 msg_len = MBLKSIZE(mp); 12319 tail_mp = mp; 12320 while (tail_mp->b_cont != NULL) { 12321 tail_mp = tail_mp->b_cont; 12322 msg_len += MBLKSIZE(tail_mp); 12323 } 12324 12325 /* If the reassembly list for this ILL will get too big, prune it */ 12326 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 12327 ipst->ips_ip_reass_queue_bytes) { 12328 ill_frag_prune(ill, 12329 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 12330 (ipst->ips_ip_reass_queue_bytes - msg_len)); 12331 pruned = B_TRUE; 12332 } 12333 12334 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 12335 mutex_enter(&ipfb->ipfb_lock); 12336 12337 ipfp = &ipfb->ipfb_ipf; 12338 /* Try to find an existing fragment queue for this packet. */ 12339 for (;;) { 12340 ipf = ipfp[0]; 12341 if (ipf != NULL) { 12342 /* 12343 * It has to match on ident and src/dst address. 12344 */ 12345 if (ipf->ipf_ident == ident && 12346 ipf->ipf_src == src && 12347 ipf->ipf_dst == dst && 12348 ipf->ipf_protocol == proto) { 12349 /* 12350 * If we have received too many 12351 * duplicate fragments for this packet 12352 * free it. 12353 */ 12354 if (ipf->ipf_num_dups > ip_max_frag_dups) { 12355 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12356 freemsg(mp); 12357 mutex_exit(&ipfb->ipfb_lock); 12358 return (B_FALSE); 12359 } 12360 /* Found it. */ 12361 break; 12362 } 12363 ipfp = &ipf->ipf_hash_next; 12364 continue; 12365 } 12366 12367 /* 12368 * If we pruned the list, do we want to store this new 12369 * fragment?. We apply an optimization here based on the 12370 * fact that most fragments will be received in order. 12371 * So if the offset of this incoming fragment is zero, 12372 * it is the first fragment of a new packet. We will 12373 * keep it. Otherwise drop the fragment, as we have 12374 * probably pruned the packet already (since the 12375 * packet cannot be found). 12376 */ 12377 if (pruned && offset != 0) { 12378 mutex_exit(&ipfb->ipfb_lock); 12379 freemsg(mp); 12380 return (B_FALSE); 12381 } 12382 12383 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 12384 /* 12385 * Too many fragmented packets in this hash 12386 * bucket. Free the oldest. 12387 */ 12388 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 12389 } 12390 12391 /* New guy. Allocate a frag message. */ 12392 mp1 = allocb(sizeof (*ipf), BPRI_MED); 12393 if (mp1 == NULL) { 12394 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12395 freemsg(mp); 12396 reass_done: 12397 mutex_exit(&ipfb->ipfb_lock); 12398 return (B_FALSE); 12399 } 12400 12401 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 12402 mp1->b_cont = mp; 12403 12404 /* Initialize the fragment header. */ 12405 ipf = (ipf_t *)mp1->b_rptr; 12406 ipf->ipf_mp = mp1; 12407 ipf->ipf_ptphn = ipfp; 12408 ipfp[0] = ipf; 12409 ipf->ipf_hash_next = NULL; 12410 ipf->ipf_ident = ident; 12411 ipf->ipf_protocol = proto; 12412 ipf->ipf_src = src; 12413 ipf->ipf_dst = dst; 12414 ipf->ipf_nf_hdr_len = 0; 12415 /* Record reassembly start time. */ 12416 ipf->ipf_timestamp = gethrestime_sec(); 12417 /* Record ipf generation and account for frag header */ 12418 ipf->ipf_gen = ill->ill_ipf_gen++; 12419 ipf->ipf_count = MBLKSIZE(mp1); 12420 ipf->ipf_last_frag_seen = B_FALSE; 12421 ipf->ipf_ecn = ecn_info; 12422 ipf->ipf_num_dups = 0; 12423 ipfb->ipfb_frag_pkts++; 12424 ipf->ipf_checksum = 0; 12425 ipf->ipf_checksum_flags = 0; 12426 12427 /* Store checksum value in fragment header */ 12428 if (sum_flags != 0) { 12429 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12430 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12431 ipf->ipf_checksum = sum_val; 12432 ipf->ipf_checksum_flags = sum_flags; 12433 } 12434 12435 /* 12436 * We handle reassembly two ways. In the easy case, 12437 * where all the fragments show up in order, we do 12438 * minimal bookkeeping, and just clip new pieces on 12439 * the end. If we ever see a hole, then we go off 12440 * to ip_reassemble which has to mark the pieces and 12441 * keep track of the number of holes, etc. Obviously, 12442 * the point of having both mechanisms is so we can 12443 * handle the easy case as efficiently as possible. 12444 */ 12445 if (offset == 0) { 12446 /* Easy case, in-order reassembly so far. */ 12447 ipf->ipf_count += msg_len; 12448 ipf->ipf_tail_mp = tail_mp; 12449 /* 12450 * Keep track of next expected offset in 12451 * ipf_end. 12452 */ 12453 ipf->ipf_end = end; 12454 ipf->ipf_nf_hdr_len = hdr_length; 12455 } else { 12456 /* Hard case, hole at the beginning. */ 12457 ipf->ipf_tail_mp = NULL; 12458 /* 12459 * ipf_end == 0 means that we have given up 12460 * on easy reassembly. 12461 */ 12462 ipf->ipf_end = 0; 12463 12464 /* Forget checksum offload from now on */ 12465 ipf->ipf_checksum_flags = 0; 12466 12467 /* 12468 * ipf_hole_cnt is set by ip_reassemble. 12469 * ipf_count is updated by ip_reassemble. 12470 * No need to check for return value here 12471 * as we don't expect reassembly to complete 12472 * or fail for the first fragment itself. 12473 */ 12474 (void) ip_reassemble(mp, ipf, 12475 (frag_offset_flags & IPH_OFFSET) << 3, 12476 (frag_offset_flags & IPH_MF), ill, msg_len); 12477 } 12478 /* Update per ipfb and ill byte counts */ 12479 ipfb->ipfb_count += ipf->ipf_count; 12480 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12481 ill->ill_frag_count += ipf->ipf_count; 12482 /* If the frag timer wasn't already going, start it. */ 12483 mutex_enter(&ill->ill_lock); 12484 ill_frag_timer_start(ill); 12485 mutex_exit(&ill->ill_lock); 12486 goto reass_done; 12487 } 12488 12489 /* 12490 * If the packet's flag has changed (it could be coming up 12491 * from an interface different than the previous, therefore 12492 * possibly different checksum capability), then forget about 12493 * any stored checksum states. Otherwise add the value to 12494 * the existing one stored in the fragment header. 12495 */ 12496 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 12497 sum_val += ipf->ipf_checksum; 12498 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12499 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12500 ipf->ipf_checksum = sum_val; 12501 } else if (ipf->ipf_checksum_flags != 0) { 12502 /* Forget checksum offload from now on */ 12503 ipf->ipf_checksum_flags = 0; 12504 } 12505 12506 /* 12507 * We have a new piece of a datagram which is already being 12508 * reassembled. Update the ECN info if all IP fragments 12509 * are ECN capable. If there is one which is not, clear 12510 * all the info. If there is at least one which has CE 12511 * code point, IP needs to report that up to transport. 12512 */ 12513 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 12514 if (ecn_info == IPH_ECN_CE) 12515 ipf->ipf_ecn = IPH_ECN_CE; 12516 } else { 12517 ipf->ipf_ecn = IPH_ECN_NECT; 12518 } 12519 if (offset && ipf->ipf_end == offset) { 12520 /* The new fragment fits at the end */ 12521 ipf->ipf_tail_mp->b_cont = mp; 12522 /* Update the byte count */ 12523 ipf->ipf_count += msg_len; 12524 /* Update per ipfb and ill byte counts */ 12525 ipfb->ipfb_count += msg_len; 12526 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12527 ill->ill_frag_count += msg_len; 12528 if (frag_offset_flags & IPH_MF) { 12529 /* More to come. */ 12530 ipf->ipf_end = end; 12531 ipf->ipf_tail_mp = tail_mp; 12532 goto reass_done; 12533 } 12534 } else { 12535 /* Go do the hard cases. */ 12536 int ret; 12537 12538 if (offset == 0) 12539 ipf->ipf_nf_hdr_len = hdr_length; 12540 12541 /* Save current byte count */ 12542 count = ipf->ipf_count; 12543 ret = ip_reassemble(mp, ipf, 12544 (frag_offset_flags & IPH_OFFSET) << 3, 12545 (frag_offset_flags & IPH_MF), ill, msg_len); 12546 /* Count of bytes added and subtracted (freeb()ed) */ 12547 count = ipf->ipf_count - count; 12548 if (count) { 12549 /* Update per ipfb and ill byte counts */ 12550 ipfb->ipfb_count += count; 12551 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12552 ill->ill_frag_count += count; 12553 } 12554 if (ret == IP_REASS_PARTIAL) { 12555 goto reass_done; 12556 } else if (ret == IP_REASS_FAILED) { 12557 /* Reassembly failed. Free up all resources */ 12558 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12559 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 12560 IP_REASS_SET_START(t_mp, 0); 12561 IP_REASS_SET_END(t_mp, 0); 12562 } 12563 freemsg(mp); 12564 goto reass_done; 12565 } 12566 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 12567 } 12568 /* 12569 * We have completed reassembly. Unhook the frag header from 12570 * the reassembly list. 12571 * 12572 * Before we free the frag header, record the ECN info 12573 * to report back to the transport. 12574 */ 12575 ecn_info = ipf->ipf_ecn; 12576 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 12577 ipfp = ipf->ipf_ptphn; 12578 12579 /* We need to supply these to caller */ 12580 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 12581 sum_val = ipf->ipf_checksum; 12582 else 12583 sum_val = 0; 12584 12585 mp1 = ipf->ipf_mp; 12586 count = ipf->ipf_count; 12587 ipf = ipf->ipf_hash_next; 12588 if (ipf != NULL) 12589 ipf->ipf_ptphn = ipfp; 12590 ipfp[0] = ipf; 12591 ill->ill_frag_count -= count; 12592 ASSERT(ipfb->ipfb_count >= count); 12593 ipfb->ipfb_count -= count; 12594 ipfb->ipfb_frag_pkts--; 12595 mutex_exit(&ipfb->ipfb_lock); 12596 /* Ditch the frag header. */ 12597 mp = mp1->b_cont; 12598 12599 freeb(mp1); 12600 12601 /* Restore original IP length in header. */ 12602 packet_size = (uint32_t)msgdsize(mp); 12603 if (packet_size > IP_MAXPACKET) { 12604 freemsg(mp); 12605 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 12606 return (B_FALSE); 12607 } 12608 12609 if (DB_REF(mp) > 1) { 12610 mblk_t *mp2 = copymsg(mp); 12611 12612 freemsg(mp); 12613 if (mp2 == NULL) { 12614 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12615 return (B_FALSE); 12616 } 12617 mp = mp2; 12618 } 12619 ipha = (ipha_t *)mp->b_rptr; 12620 12621 ipha->ipha_length = htons((uint16_t)packet_size); 12622 /* We're now complete, zip the frag state */ 12623 ipha->ipha_fragment_offset_and_flags = 0; 12624 /* Record the ECN info. */ 12625 ipha->ipha_type_of_service &= 0xFC; 12626 ipha->ipha_type_of_service |= ecn_info; 12627 *mpp = mp; 12628 12629 /* Reassembly is successful; return checksum information if needed */ 12630 if (cksum_val != NULL) 12631 *cksum_val = sum_val; 12632 if (cksum_flags != NULL) 12633 *cksum_flags = sum_flags; 12634 12635 return (B_TRUE); 12636 } 12637 12638 /* 12639 * Perform ip header check sum update local options. 12640 * return B_TRUE if all is well, else return B_FALSE and release 12641 * the mp. caller is responsible for decrementing ire ref cnt. 12642 */ 12643 static boolean_t 12644 ip_options_cksum(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12645 ip_stack_t *ipst) 12646 { 12647 mblk_t *first_mp; 12648 boolean_t mctl_present; 12649 uint16_t sum; 12650 12651 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12652 /* 12653 * Don't do the checksum if it has gone through AH/ESP 12654 * processing. 12655 */ 12656 if (!mctl_present) { 12657 sum = ip_csum_hdr(ipha); 12658 if (sum != 0) { 12659 if (ill != NULL) { 12660 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12661 } else { 12662 BUMP_MIB(&ipst->ips_ip_mib, 12663 ipIfStatsInCksumErrs); 12664 } 12665 freemsg(first_mp); 12666 return (B_FALSE); 12667 } 12668 } 12669 12670 if (!ip_rput_local_options(q, mp, ipha, ire, ipst)) { 12671 if (mctl_present) 12672 freeb(first_mp); 12673 return (B_FALSE); 12674 } 12675 12676 return (B_TRUE); 12677 } 12678 12679 /* 12680 * All udp packet are delivered to the local host via this routine. 12681 */ 12682 void 12683 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12684 ill_t *recv_ill) 12685 { 12686 uint32_t sum; 12687 uint32_t u1; 12688 boolean_t mctl_present; 12689 conn_t *connp; 12690 mblk_t *first_mp; 12691 uint16_t *up; 12692 ill_t *ill = (ill_t *)q->q_ptr; 12693 uint16_t reass_hck_flags = 0; 12694 ip_stack_t *ipst; 12695 12696 ASSERT(recv_ill != NULL); 12697 ipst = recv_ill->ill_ipst; 12698 12699 #define rptr ((uchar_t *)ipha) 12700 12701 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12702 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 12703 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12704 ASSERT(ill != NULL); 12705 12706 /* 12707 * FAST PATH for udp packets 12708 */ 12709 12710 /* u1 is # words of IP options */ 12711 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 12712 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12713 12714 /* IP options present */ 12715 if (u1 != 0) 12716 goto ipoptions; 12717 12718 /* Check the IP header checksum. */ 12719 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12720 /* Clear the IP header h/w cksum flag */ 12721 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12722 } else if (!mctl_present) { 12723 /* 12724 * Don't verify header checksum if this packet is coming 12725 * back from AH/ESP as we already did it. 12726 */ 12727 #define uph ((uint16_t *)ipha) 12728 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12729 uph[6] + uph[7] + uph[8] + uph[9]; 12730 #undef uph 12731 /* finish doing IP checksum */ 12732 sum = (sum & 0xFFFF) + (sum >> 16); 12733 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12734 if (sum != 0 && sum != 0xFFFF) { 12735 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12736 freemsg(first_mp); 12737 return; 12738 } 12739 } 12740 12741 /* 12742 * Count for SNMP of inbound packets for ire. 12743 * if mctl is present this might be a secure packet and 12744 * has already been counted for in ip_proto_input(). 12745 */ 12746 if (!mctl_present) { 12747 UPDATE_IB_PKT_COUNT(ire); 12748 ire->ire_last_used_time = lbolt; 12749 } 12750 12751 /* packet part of fragmented IP packet? */ 12752 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12753 if (u1 & (IPH_MF | IPH_OFFSET)) { 12754 goto fragmented; 12755 } 12756 12757 /* u1 = IP header length (20 bytes) */ 12758 u1 = IP_SIMPLE_HDR_LENGTH; 12759 12760 /* packet does not contain complete IP & UDP headers */ 12761 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12762 goto udppullup; 12763 12764 /* up points to UDP header */ 12765 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12766 #define iphs ((uint16_t *)ipha) 12767 12768 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12769 if (up[3] != 0) { 12770 mblk_t *mp1 = mp->b_cont; 12771 boolean_t cksum_err; 12772 uint16_t hck_flags = 0; 12773 12774 /* Pseudo-header checksum */ 12775 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12776 iphs[9] + up[2]; 12777 12778 /* 12779 * Revert to software checksum calculation if the interface 12780 * isn't capable of checksum offload or if IPsec is present. 12781 */ 12782 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12783 hck_flags = DB_CKSUMFLAGS(mp); 12784 12785 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12786 IP_STAT(ipst, ip_in_sw_cksum); 12787 12788 IP_CKSUM_RECV(hck_flags, u1, 12789 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12790 (int32_t)((uchar_t *)up - rptr), 12791 mp, mp1, cksum_err); 12792 12793 if (cksum_err) { 12794 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12795 if (hck_flags & HCK_FULLCKSUM) 12796 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12797 else if (hck_flags & HCK_PARTIALCKSUM) 12798 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12799 else 12800 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12801 12802 freemsg(first_mp); 12803 return; 12804 } 12805 } 12806 12807 /* Non-fragmented broadcast or multicast packet? */ 12808 if (ire->ire_type == IRE_BROADCAST) 12809 goto udpslowpath; 12810 12811 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 12812 ire->ire_zoneid, ipst)) != NULL) { 12813 ASSERT(connp->conn_upq != NULL); 12814 IP_STAT(ipst, ip_udp_fast_path); 12815 12816 if (CONN_UDP_FLOWCTLD(connp)) { 12817 freemsg(mp); 12818 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 12819 } else { 12820 if (!mctl_present) { 12821 BUMP_MIB(ill->ill_ip_mib, 12822 ipIfStatsHCInDelivers); 12823 } 12824 /* 12825 * mp and first_mp can change. 12826 */ 12827 if (ip_udp_check(q, connp, recv_ill, 12828 ipha, &mp, &first_mp, mctl_present, ire)) { 12829 /* Send it upstream */ 12830 (connp->conn_recv)(connp, mp, NULL); 12831 } 12832 } 12833 /* 12834 * freeb() cannot deal with null mblk being passed 12835 * in and first_mp can be set to null in the call 12836 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 12837 */ 12838 if (mctl_present && first_mp != NULL) { 12839 freeb(first_mp); 12840 } 12841 CONN_DEC_REF(connp); 12842 return; 12843 } 12844 12845 /* 12846 * if we got here we know the packet is not fragmented and 12847 * has no options. The classifier could not find a conn_t and 12848 * most likely its an icmp packet so send it through slow path. 12849 */ 12850 12851 goto udpslowpath; 12852 12853 ipoptions: 12854 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 12855 goto slow_done; 12856 } 12857 12858 UPDATE_IB_PKT_COUNT(ire); 12859 ire->ire_last_used_time = lbolt; 12860 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12861 if (u1 & (IPH_MF | IPH_OFFSET)) { 12862 fragmented: 12863 /* 12864 * "sum" and "reass_hck_flags" are non-zero if the 12865 * reassembled packet has a valid hardware computed 12866 * checksum information associated with it. 12867 */ 12868 if (!ip_rput_fragment(q, &mp, ipha, &sum, &reass_hck_flags)) 12869 goto slow_done; 12870 /* 12871 * Make sure that first_mp points back to mp as 12872 * the mp we came in with could have changed in 12873 * ip_rput_fragment(). 12874 */ 12875 ASSERT(!mctl_present); 12876 ipha = (ipha_t *)mp->b_rptr; 12877 first_mp = mp; 12878 } 12879 12880 /* Now we have a complete datagram, destined for this machine. */ 12881 u1 = IPH_HDR_LENGTH(ipha); 12882 /* Pull up the UDP header, if necessary. */ 12883 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 12884 udppullup: 12885 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 12886 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12887 freemsg(first_mp); 12888 goto slow_done; 12889 } 12890 ipha = (ipha_t *)mp->b_rptr; 12891 } 12892 12893 /* 12894 * Validate the checksum for the reassembled packet; for the 12895 * pullup case we calculate the payload checksum in software. 12896 */ 12897 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 12898 if (up[3] != 0) { 12899 boolean_t cksum_err; 12900 12901 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12902 IP_STAT(ipst, ip_in_sw_cksum); 12903 12904 IP_CKSUM_RECV_REASS(reass_hck_flags, 12905 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 12906 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12907 iphs[9] + up[2], sum, cksum_err); 12908 12909 if (cksum_err) { 12910 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12911 12912 if (reass_hck_flags & HCK_FULLCKSUM) 12913 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12914 else if (reass_hck_flags & HCK_PARTIALCKSUM) 12915 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12916 else 12917 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12918 12919 freemsg(first_mp); 12920 goto slow_done; 12921 } 12922 } 12923 udpslowpath: 12924 12925 /* Clear hardware checksum flag to be safe */ 12926 DB_CKSUMFLAGS(mp) = 0; 12927 12928 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 12929 (ire->ire_type == IRE_BROADCAST), 12930 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IPINFO, 12931 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 12932 12933 slow_done: 12934 IP_STAT(ipst, ip_udp_slow_path); 12935 return; 12936 12937 #undef iphs 12938 #undef rptr 12939 } 12940 12941 /* ARGSUSED */ 12942 static mblk_t * 12943 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 12944 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 12945 ill_rx_ring_t *ill_ring) 12946 { 12947 conn_t *connp; 12948 uint32_t sum; 12949 uint32_t u1; 12950 uint16_t *up; 12951 int offset; 12952 ssize_t len; 12953 mblk_t *mp1; 12954 boolean_t syn_present = B_FALSE; 12955 tcph_t *tcph; 12956 uint_t ip_hdr_len; 12957 ill_t *ill = (ill_t *)q->q_ptr; 12958 zoneid_t zoneid = ire->ire_zoneid; 12959 boolean_t cksum_err; 12960 uint16_t hck_flags = 0; 12961 ip_stack_t *ipst = recv_ill->ill_ipst; 12962 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12963 12964 #define rptr ((uchar_t *)ipha) 12965 12966 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 12967 ASSERT(ill != NULL); 12968 12969 /* 12970 * FAST PATH for tcp packets 12971 */ 12972 12973 /* u1 is # words of IP options */ 12974 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 12975 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12976 12977 /* IP options present */ 12978 if (u1) { 12979 goto ipoptions; 12980 } else if (!mctl_present) { 12981 /* Check the IP header checksum. */ 12982 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12983 /* Clear the IP header h/w cksum flag */ 12984 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12985 } else if (!mctl_present) { 12986 /* 12987 * Don't verify header checksum if this packet 12988 * is coming back from AH/ESP as we already did it. 12989 */ 12990 #define uph ((uint16_t *)ipha) 12991 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 12992 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 12993 #undef uph 12994 /* finish doing IP checksum */ 12995 sum = (sum & 0xFFFF) + (sum >> 16); 12996 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12997 if (sum != 0 && sum != 0xFFFF) { 12998 BUMP_MIB(ill->ill_ip_mib, 12999 ipIfStatsInCksumErrs); 13000 goto error; 13001 } 13002 } 13003 } 13004 13005 if (!mctl_present) { 13006 UPDATE_IB_PKT_COUNT(ire); 13007 ire->ire_last_used_time = lbolt; 13008 } 13009 13010 /* packet part of fragmented IP packet? */ 13011 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13012 if (u1 & (IPH_MF | IPH_OFFSET)) { 13013 goto fragmented; 13014 } 13015 13016 /* u1 = IP header length (20 bytes) */ 13017 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 13018 13019 /* does packet contain IP+TCP headers? */ 13020 len = mp->b_wptr - rptr; 13021 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 13022 IP_STAT(ipst, ip_tcppullup); 13023 goto tcppullup; 13024 } 13025 13026 /* TCP options present? */ 13027 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 13028 13029 /* 13030 * If options need to be pulled up, then goto tcpoptions. 13031 * otherwise we are still in the fast path 13032 */ 13033 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 13034 IP_STAT(ipst, ip_tcpoptions); 13035 goto tcpoptions; 13036 } 13037 13038 /* multiple mblks of tcp data? */ 13039 if ((mp1 = mp->b_cont) != NULL) { 13040 /* more then two? */ 13041 if (mp1->b_cont != NULL) { 13042 IP_STAT(ipst, ip_multipkttcp); 13043 goto multipkttcp; 13044 } 13045 len += mp1->b_wptr - mp1->b_rptr; 13046 } 13047 13048 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 13049 13050 /* part of pseudo checksum */ 13051 13052 /* TCP datagram length */ 13053 u1 = len - IP_SIMPLE_HDR_LENGTH; 13054 13055 #define iphs ((uint16_t *)ipha) 13056 13057 #ifdef _BIG_ENDIAN 13058 u1 += IPPROTO_TCP; 13059 #else 13060 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13061 #endif 13062 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13063 13064 /* 13065 * Revert to software checksum calculation if the interface 13066 * isn't capable of checksum offload or if IPsec is present. 13067 */ 13068 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 13069 hck_flags = DB_CKSUMFLAGS(mp); 13070 13071 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 13072 IP_STAT(ipst, ip_in_sw_cksum); 13073 13074 IP_CKSUM_RECV(hck_flags, u1, 13075 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 13076 (int32_t)((uchar_t *)up - rptr), 13077 mp, mp1, cksum_err); 13078 13079 if (cksum_err) { 13080 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13081 13082 if (hck_flags & HCK_FULLCKSUM) 13083 IP_STAT(ipst, ip_tcp_in_full_hw_cksum_err); 13084 else if (hck_flags & HCK_PARTIALCKSUM) 13085 IP_STAT(ipst, ip_tcp_in_part_hw_cksum_err); 13086 else 13087 IP_STAT(ipst, ip_tcp_in_sw_cksum_err); 13088 13089 goto error; 13090 } 13091 13092 try_again: 13093 13094 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 13095 zoneid, ipst)) == NULL) { 13096 /* Send the TH_RST */ 13097 goto no_conn; 13098 } 13099 13100 /* 13101 * TCP FAST PATH for AF_INET socket. 13102 * 13103 * TCP fast path to avoid extra work. An AF_INET socket type 13104 * does not have facility to receive extra information via 13105 * ip_process or ip_add_info. Also, when the connection was 13106 * established, we made a check if this connection is impacted 13107 * by any global IPsec policy or per connection policy (a 13108 * policy that comes in effect later will not apply to this 13109 * connection). Since all this can be determined at the 13110 * connection establishment time, a quick check of flags 13111 * can avoid extra work. 13112 */ 13113 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 13114 !IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13115 ASSERT(first_mp == mp); 13116 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13117 SET_SQUEUE(mp, tcp_rput_data, connp); 13118 return (mp); 13119 } 13120 13121 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 13122 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 13123 if (IPCL_IS_TCP(connp)) { 13124 mp->b_datap->db_struioflag |= STRUIO_EAGER; 13125 DB_CKSUMSTART(mp) = 13126 (intptr_t)ip_squeue_get(ill_ring); 13127 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 13128 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13129 BUMP_MIB(ill->ill_ip_mib, 13130 ipIfStatsHCInDelivers); 13131 SET_SQUEUE(mp, connp->conn_recv, connp); 13132 return (mp); 13133 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 13134 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13135 BUMP_MIB(ill->ill_ip_mib, 13136 ipIfStatsHCInDelivers); 13137 ip_squeue_enter_unbound++; 13138 SET_SQUEUE(mp, tcp_conn_request_unbound, 13139 connp); 13140 return (mp); 13141 } 13142 syn_present = B_TRUE; 13143 } 13144 13145 } 13146 13147 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 13148 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 13149 13150 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13151 /* No need to send this packet to TCP */ 13152 if ((flags & TH_RST) || (flags & TH_URG)) { 13153 CONN_DEC_REF(connp); 13154 freemsg(first_mp); 13155 return (NULL); 13156 } 13157 if (flags & TH_ACK) { 13158 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 13159 ipst->ips_netstack->netstack_tcp, connp); 13160 CONN_DEC_REF(connp); 13161 return (NULL); 13162 } 13163 13164 CONN_DEC_REF(connp); 13165 freemsg(first_mp); 13166 return (NULL); 13167 } 13168 13169 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 13170 first_mp = ipsec_check_inbound_policy(first_mp, connp, 13171 ipha, NULL, mctl_present); 13172 if (first_mp == NULL) { 13173 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13174 CONN_DEC_REF(connp); 13175 return (NULL); 13176 } 13177 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 13178 ASSERT(syn_present); 13179 if (mctl_present) { 13180 ASSERT(first_mp != mp); 13181 first_mp->b_datap->db_struioflag |= 13182 STRUIO_POLICY; 13183 } else { 13184 ASSERT(first_mp == mp); 13185 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 13186 mp->b_datap->db_struioflag |= STRUIO_POLICY; 13187 } 13188 } else { 13189 /* 13190 * Discard first_mp early since we're dealing with a 13191 * fully-connected conn_t and tcp doesn't do policy in 13192 * this case. 13193 */ 13194 if (mctl_present) { 13195 freeb(first_mp); 13196 mctl_present = B_FALSE; 13197 } 13198 first_mp = mp; 13199 } 13200 } 13201 13202 /* Initiate IPPF processing for fastpath */ 13203 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13204 uint32_t ill_index; 13205 13206 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13207 ip_process(IPP_LOCAL_IN, &mp, ill_index); 13208 if (mp == NULL) { 13209 ip2dbg(("ip_input_ipsec_process: TCP pkt " 13210 "deferred/dropped during IPPF processing\n")); 13211 CONN_DEC_REF(connp); 13212 if (mctl_present) 13213 freeb(first_mp); 13214 return (NULL); 13215 } else if (mctl_present) { 13216 /* 13217 * ip_process might return a new mp. 13218 */ 13219 ASSERT(first_mp != mp); 13220 first_mp->b_cont = mp; 13221 } else { 13222 first_mp = mp; 13223 } 13224 13225 } 13226 13227 if (!syn_present && connp->conn_ip_recvpktinfo) { 13228 /* 13229 * TCP does not support IP_RECVPKTINFO for v4 so lets 13230 * make sure IPF_RECVIF is passed to ip_add_info. 13231 */ 13232 mp = ip_add_info(mp, recv_ill, flags|IPF_RECVIF, 13233 IPCL_ZONEID(connp), ipst); 13234 if (mp == NULL) { 13235 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13236 CONN_DEC_REF(connp); 13237 if (mctl_present) 13238 freeb(first_mp); 13239 return (NULL); 13240 } else if (mctl_present) { 13241 /* 13242 * ip_add_info might return a new mp. 13243 */ 13244 ASSERT(first_mp != mp); 13245 first_mp->b_cont = mp; 13246 } else { 13247 first_mp = mp; 13248 } 13249 } 13250 13251 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13252 if (IPCL_IS_TCP(connp)) { 13253 SET_SQUEUE(first_mp, connp->conn_recv, connp); 13254 return (first_mp); 13255 } else { 13256 /* SOCK_RAW, IPPROTO_TCP case */ 13257 (connp->conn_recv)(connp, first_mp, NULL); 13258 CONN_DEC_REF(connp); 13259 return (NULL); 13260 } 13261 13262 no_conn: 13263 /* Initiate IPPf processing, if needed. */ 13264 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13265 uint32_t ill_index; 13266 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13267 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 13268 if (first_mp == NULL) { 13269 return (NULL); 13270 } 13271 } 13272 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13273 13274 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr), zoneid, 13275 ipst->ips_netstack->netstack_tcp, NULL); 13276 return (NULL); 13277 ipoptions: 13278 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) { 13279 goto slow_done; 13280 } 13281 13282 UPDATE_IB_PKT_COUNT(ire); 13283 ire->ire_last_used_time = lbolt; 13284 13285 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13286 if (u1 & (IPH_MF | IPH_OFFSET)) { 13287 fragmented: 13288 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 13289 if (mctl_present) 13290 freeb(first_mp); 13291 goto slow_done; 13292 } 13293 /* 13294 * Make sure that first_mp points back to mp as 13295 * the mp we came in with could have changed in 13296 * ip_rput_fragment(). 13297 */ 13298 ASSERT(!mctl_present); 13299 ipha = (ipha_t *)mp->b_rptr; 13300 first_mp = mp; 13301 } 13302 13303 /* Now we have a complete datagram, destined for this machine. */ 13304 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 13305 13306 len = mp->b_wptr - mp->b_rptr; 13307 /* Pull up a minimal TCP header, if necessary. */ 13308 if (len < (u1 + 20)) { 13309 tcppullup: 13310 if (!pullupmsg(mp, u1 + 20)) { 13311 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13312 goto error; 13313 } 13314 ipha = (ipha_t *)mp->b_rptr; 13315 len = mp->b_wptr - mp->b_rptr; 13316 } 13317 13318 /* 13319 * Extract the offset field from the TCP header. As usual, we 13320 * try to help the compiler more than the reader. 13321 */ 13322 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 13323 if (offset != 5) { 13324 tcpoptions: 13325 if (offset < 5) { 13326 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13327 goto error; 13328 } 13329 /* 13330 * There must be TCP options. 13331 * Make sure we can grab them. 13332 */ 13333 offset <<= 2; 13334 offset += u1; 13335 if (len < offset) { 13336 if (!pullupmsg(mp, offset)) { 13337 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13338 goto error; 13339 } 13340 ipha = (ipha_t *)mp->b_rptr; 13341 len = mp->b_wptr - rptr; 13342 } 13343 } 13344 13345 /* Get the total packet length in len, including headers. */ 13346 if (mp->b_cont) { 13347 multipkttcp: 13348 len = msgdsize(mp); 13349 } 13350 13351 /* 13352 * Check the TCP checksum by pulling together the pseudo- 13353 * header checksum, and passing it to ip_csum to be added in 13354 * with the TCP datagram. 13355 * 13356 * Since we are not using the hwcksum if available we must 13357 * clear the flag. We may come here via tcppullup or tcpoptions. 13358 * If either of these fails along the way the mblk is freed. 13359 * If this logic ever changes and mblk is reused to say send 13360 * ICMP's back, then this flag may need to be cleared in 13361 * other places as well. 13362 */ 13363 DB_CKSUMFLAGS(mp) = 0; 13364 13365 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 13366 13367 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 13368 #ifdef _BIG_ENDIAN 13369 u1 += IPPROTO_TCP; 13370 #else 13371 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13372 #endif 13373 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13374 /* 13375 * Not M_DATA mblk or its a dup, so do the checksum now. 13376 */ 13377 IP_STAT(ipst, ip_in_sw_cksum); 13378 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 13379 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13380 goto error; 13381 } 13382 13383 IP_STAT(ipst, ip_tcp_slow_path); 13384 goto try_again; 13385 #undef iphs 13386 #undef rptr 13387 13388 error: 13389 freemsg(first_mp); 13390 slow_done: 13391 return (NULL); 13392 } 13393 13394 /* ARGSUSED */ 13395 static void 13396 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13397 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 13398 { 13399 conn_t *connp; 13400 uint32_t sum; 13401 uint32_t u1; 13402 ssize_t len; 13403 sctp_hdr_t *sctph; 13404 zoneid_t zoneid = ire->ire_zoneid; 13405 uint32_t pktsum; 13406 uint32_t calcsum; 13407 uint32_t ports; 13408 in6_addr_t map_src, map_dst; 13409 ill_t *ill = (ill_t *)q->q_ptr; 13410 ip_stack_t *ipst; 13411 sctp_stack_t *sctps; 13412 13413 ASSERT(recv_ill != NULL); 13414 ipst = recv_ill->ill_ipst; 13415 sctps = ipst->ips_netstack->netstack_sctp; 13416 13417 #define rptr ((uchar_t *)ipha) 13418 13419 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 13420 ASSERT(ill != NULL); 13421 13422 /* u1 is # words of IP options */ 13423 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13424 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13425 13426 /* IP options present */ 13427 if (u1 > 0) { 13428 goto ipoptions; 13429 } else { 13430 /* Check the IP header checksum. */ 13431 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, ill) && 13432 !mctl_present) { 13433 #define uph ((uint16_t *)ipha) 13434 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13435 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13436 #undef uph 13437 /* finish doing IP checksum */ 13438 sum = (sum & 0xFFFF) + (sum >> 16); 13439 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13440 /* 13441 * Don't verify header checksum if this packet 13442 * is coming back from AH/ESP as we already did it. 13443 */ 13444 if (sum != 0 && sum != 0xFFFF) { 13445 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 13446 goto error; 13447 } 13448 } 13449 /* 13450 * Since there is no SCTP h/w cksum support yet, just 13451 * clear the flag. 13452 */ 13453 DB_CKSUMFLAGS(mp) = 0; 13454 } 13455 13456 /* 13457 * Don't verify header checksum if this packet is coming 13458 * back from AH/ESP as we already did it. 13459 */ 13460 if (!mctl_present) { 13461 UPDATE_IB_PKT_COUNT(ire); 13462 ire->ire_last_used_time = lbolt; 13463 } 13464 13465 /* packet part of fragmented IP packet? */ 13466 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13467 if (u1 & (IPH_MF | IPH_OFFSET)) 13468 goto fragmented; 13469 13470 /* u1 = IP header length (20 bytes) */ 13471 u1 = IP_SIMPLE_HDR_LENGTH; 13472 13473 find_sctp_client: 13474 /* Pullup if we don't have the sctp common header. */ 13475 len = MBLKL(mp); 13476 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 13477 if (mp->b_cont == NULL || 13478 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 13479 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13480 goto error; 13481 } 13482 ipha = (ipha_t *)mp->b_rptr; 13483 len = MBLKL(mp); 13484 } 13485 13486 sctph = (sctp_hdr_t *)(rptr + u1); 13487 #ifdef DEBUG 13488 if (!skip_sctp_cksum) { 13489 #endif 13490 pktsum = sctph->sh_chksum; 13491 sctph->sh_chksum = 0; 13492 calcsum = sctp_cksum(mp, u1); 13493 if (calcsum != pktsum) { 13494 BUMP_MIB(&sctps->sctps_mib, sctpChecksumError); 13495 goto error; 13496 } 13497 sctph->sh_chksum = pktsum; 13498 #ifdef DEBUG /* skip_sctp_cksum */ 13499 } 13500 #endif 13501 /* get the ports */ 13502 ports = *(uint32_t *)&sctph->sh_sport; 13503 13504 IRE_REFRELE(ire); 13505 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 13506 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 13507 if ((connp = sctp_fanout(&map_src, &map_dst, ports, zoneid, mp, 13508 sctps)) == NULL) { 13509 /* Check for raw socket or OOTB handling */ 13510 goto no_conn; 13511 } 13512 13513 /* Found a client; up it goes */ 13514 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13515 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 13516 return; 13517 13518 no_conn: 13519 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 13520 ports, mctl_present, flags, B_TRUE, zoneid); 13521 return; 13522 13523 ipoptions: 13524 DB_CKSUMFLAGS(mp) = 0; 13525 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) 13526 goto slow_done; 13527 13528 UPDATE_IB_PKT_COUNT(ire); 13529 ire->ire_last_used_time = lbolt; 13530 13531 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13532 if (u1 & (IPH_MF | IPH_OFFSET)) { 13533 fragmented: 13534 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) 13535 goto slow_done; 13536 /* 13537 * Make sure that first_mp points back to mp as 13538 * the mp we came in with could have changed in 13539 * ip_rput_fragment(). 13540 */ 13541 ASSERT(!mctl_present); 13542 ipha = (ipha_t *)mp->b_rptr; 13543 first_mp = mp; 13544 } 13545 13546 /* Now we have a complete datagram, destined for this machine. */ 13547 u1 = IPH_HDR_LENGTH(ipha); 13548 goto find_sctp_client; 13549 #undef iphs 13550 #undef rptr 13551 13552 error: 13553 freemsg(first_mp); 13554 slow_done: 13555 IRE_REFRELE(ire); 13556 } 13557 13558 #define VER_BITS 0xF0 13559 #define VERSION_6 0x60 13560 13561 static boolean_t 13562 ip_rput_multimblk_ipoptions(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t **iphapp, 13563 ipaddr_t *dstp, ip_stack_t *ipst) 13564 { 13565 uint_t opt_len; 13566 ipha_t *ipha; 13567 ssize_t len; 13568 uint_t pkt_len; 13569 13570 ASSERT(ill != NULL); 13571 IP_STAT(ipst, ip_ipoptions); 13572 ipha = *iphapp; 13573 13574 #define rptr ((uchar_t *)ipha) 13575 /* Assume no IPv6 packets arrive over the IPv4 queue */ 13576 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 13577 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 13578 freemsg(mp); 13579 return (B_FALSE); 13580 } 13581 13582 /* multiple mblk or too short */ 13583 pkt_len = ntohs(ipha->ipha_length); 13584 13585 /* Get the number of words of IP options in the IP header. */ 13586 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 13587 if (opt_len) { 13588 /* IP Options present! Validate and process. */ 13589 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 13590 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13591 goto done; 13592 } 13593 /* 13594 * Recompute complete header length and make sure we 13595 * have access to all of it. 13596 */ 13597 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 13598 if (len > (mp->b_wptr - rptr)) { 13599 if (len > pkt_len) { 13600 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13601 goto done; 13602 } 13603 if (!pullupmsg(mp, len)) { 13604 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13605 goto done; 13606 } 13607 ipha = (ipha_t *)mp->b_rptr; 13608 } 13609 /* 13610 * Go off to ip_rput_options which returns the next hop 13611 * destination address, which may have been affected 13612 * by source routing. 13613 */ 13614 IP_STAT(ipst, ip_opt); 13615 if (ip_rput_options(q, mp, ipha, dstp, ipst) == -1) { 13616 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13617 return (B_FALSE); 13618 } 13619 } 13620 *iphapp = ipha; 13621 return (B_TRUE); 13622 done: 13623 /* clear b_prev - used by ip_mroute_decap */ 13624 mp->b_prev = NULL; 13625 freemsg(mp); 13626 return (B_FALSE); 13627 #undef rptr 13628 } 13629 13630 /* 13631 * Deal with the fact that there is no ire for the destination. 13632 */ 13633 static ire_t * 13634 ip_rput_noire(queue_t *q, mblk_t *mp, int ll_multicast, ipaddr_t dst) 13635 { 13636 ipha_t *ipha; 13637 ill_t *ill; 13638 ire_t *ire; 13639 boolean_t check_multirt = B_FALSE; 13640 ip_stack_t *ipst; 13641 13642 ipha = (ipha_t *)mp->b_rptr; 13643 ill = (ill_t *)q->q_ptr; 13644 13645 ASSERT(ill != NULL); 13646 ipst = ill->ill_ipst; 13647 13648 /* 13649 * No IRE for this destination, so it can't be for us. 13650 * Unless we are forwarding, drop the packet. 13651 * We have to let source routed packets through 13652 * since we don't yet know if they are 'ping -l' 13653 * packets i.e. if they will go out over the 13654 * same interface as they came in on. 13655 */ 13656 if (ll_multicast) { 13657 freemsg(mp); 13658 return (NULL); 13659 } 13660 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha, ipst)) { 13661 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13662 freemsg(mp); 13663 return (NULL); 13664 } 13665 13666 /* 13667 * Mark this packet as having originated externally. 13668 * 13669 * For non-forwarding code path, ire_send later double 13670 * checks this interface to see if it is still exists 13671 * post-ARP resolution. 13672 * 13673 * Also, IPQOS uses this to differentiate between 13674 * IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP 13675 * QOS packet processing in ip_wput_attach_llhdr(). 13676 * The QoS module can mark the b_band for a fastpath message 13677 * or the dl_priority field in a unitdata_req header for 13678 * CoS marking. This info can only be found in 13679 * ip_wput_attach_llhdr(). 13680 */ 13681 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 13682 /* 13683 * Clear the indication that this may have a hardware checksum 13684 * as we are not using it 13685 */ 13686 DB_CKSUMFLAGS(mp) = 0; 13687 13688 ire = ire_forward(dst, &check_multirt, NULL, NULL, 13689 MBLK_GETLABEL(mp), ipst); 13690 13691 if (ire == NULL && check_multirt) { 13692 /* Let ip_newroute handle CGTP */ 13693 ip_newroute(q, mp, dst, NULL, GLOBAL_ZONEID, ipst); 13694 return (NULL); 13695 } 13696 13697 if (ire != NULL) 13698 return (ire); 13699 13700 mp->b_prev = mp->b_next = 0; 13701 /* send icmp unreachable */ 13702 q = WR(q); 13703 /* Sent by forwarding path, and router is global zone */ 13704 if (ip_source_routed(ipha, ipst)) { 13705 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, 13706 GLOBAL_ZONEID, ipst); 13707 } else { 13708 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 13709 ipst); 13710 } 13711 13712 return (NULL); 13713 13714 } 13715 13716 /* 13717 * check ip header length and align it. 13718 */ 13719 static boolean_t 13720 ip_check_and_align_header(queue_t *q, mblk_t *mp, ip_stack_t *ipst) 13721 { 13722 ssize_t len; 13723 ill_t *ill; 13724 ipha_t *ipha; 13725 13726 len = MBLKL(mp); 13727 13728 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13729 ill = (ill_t *)q->q_ptr; 13730 13731 if (!OK_32PTR(mp->b_rptr)) 13732 IP_STAT(ipst, ip_notaligned1); 13733 else 13734 IP_STAT(ipst, ip_notaligned2); 13735 /* Guard against bogus device drivers */ 13736 if (len < 0) { 13737 /* clear b_prev - used by ip_mroute_decap */ 13738 mp->b_prev = NULL; 13739 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13740 freemsg(mp); 13741 return (B_FALSE); 13742 } 13743 13744 if (ip_rput_pullups++ == 0) { 13745 ipha = (ipha_t *)mp->b_rptr; 13746 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 13747 "ip_check_and_align_header: %s forced us to " 13748 " pullup pkt, hdr len %ld, hdr addr %p", 13749 ill->ill_name, len, ipha); 13750 } 13751 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 13752 /* clear b_prev - used by ip_mroute_decap */ 13753 mp->b_prev = NULL; 13754 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13755 freemsg(mp); 13756 return (B_FALSE); 13757 } 13758 } 13759 return (B_TRUE); 13760 } 13761 13762 ire_t * 13763 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 13764 { 13765 ire_t *new_ire; 13766 ill_t *ire_ill; 13767 uint_t ifindex; 13768 ip_stack_t *ipst = ill->ill_ipst; 13769 boolean_t strict_check = B_FALSE; 13770 13771 /* 13772 * This packet came in on an interface other than the one associated 13773 * with the first ire we found for the destination address. We do 13774 * another ire lookup here, using the ingress ill, to see if the 13775 * interface is in an interface group. 13776 * As long as the ills belong to the same group, we don't consider 13777 * them to be arriving on the wrong interface. Thus, if the switch 13778 * is doing inbound load spreading, we won't drop packets when the 13779 * ip*_strict_dst_multihoming switch is on. Note, the same holds true 13780 * for 'usesrc groups' where the destination address may belong to 13781 * another interface to allow multipathing to happen. 13782 * We also need to check for IPIF_UNNUMBERED point2point interfaces 13783 * where the local address may not be unique. In this case we were 13784 * at the mercy of the initial ire cache lookup and the IRE_LOCAL it 13785 * actually returned. The new lookup, which is more specific, should 13786 * only find the IRE_LOCAL associated with the ingress ill if one 13787 * exists. 13788 */ 13789 13790 if (ire->ire_ipversion == IPV4_VERSION) { 13791 if (ipst->ips_ip_strict_dst_multihoming) 13792 strict_check = B_TRUE; 13793 new_ire = ire_ctable_lookup(*((ipaddr_t *)addr), 0, IRE_LOCAL, 13794 ill->ill_ipif, ALL_ZONES, NULL, 13795 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 13796 } else { 13797 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 13798 if (ipst->ips_ipv6_strict_dst_multihoming) 13799 strict_check = B_TRUE; 13800 new_ire = ire_ctable_lookup_v6((in6_addr_t *)addr, NULL, 13801 IRE_LOCAL, ill->ill_ipif, ALL_ZONES, NULL, 13802 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 13803 } 13804 /* 13805 * If the same ire that was returned in ip_input() is found then this 13806 * is an indication that interface groups are in use. The packet 13807 * arrived on a different ill in the group than the one associated with 13808 * the destination address. If a different ire was found then the same 13809 * IP address must be hosted on multiple ills. This is possible with 13810 * unnumbered point2point interfaces. We switch to use this new ire in 13811 * order to have accurate interface statistics. 13812 */ 13813 if (new_ire != NULL) { 13814 if ((new_ire != ire) && (new_ire->ire_rfq != NULL)) { 13815 ire_refrele(ire); 13816 ire = new_ire; 13817 } else { 13818 ire_refrele(new_ire); 13819 } 13820 return (ire); 13821 } else if ((ire->ire_rfq == NULL) && 13822 (ire->ire_ipversion == IPV4_VERSION)) { 13823 /* 13824 * The best match could have been the original ire which 13825 * was created against an IRE_LOCAL on lo0. In the IPv4 case 13826 * the strict multihoming checks are irrelevant as we consider 13827 * local addresses hosted on lo0 to be interface agnostic. We 13828 * only expect a null ire_rfq on IREs which are associated with 13829 * lo0 hence we can return now. 13830 */ 13831 return (ire); 13832 } 13833 13834 /* 13835 * Chase pointers once and store locally. 13836 */ 13837 ire_ill = (ire->ire_rfq == NULL) ? NULL : 13838 (ill_t *)(ire->ire_rfq->q_ptr); 13839 ifindex = ill->ill_usesrc_ifindex; 13840 13841 /* 13842 * Check if it's a legal address on the 'usesrc' interface. 13843 */ 13844 if ((ifindex != 0) && (ire_ill != NULL) && 13845 (ifindex == ire_ill->ill_phyint->phyint_ifindex)) { 13846 return (ire); 13847 } 13848 13849 /* 13850 * If the ip*_strict_dst_multihoming switch is on then we can 13851 * only accept this packet if the interface is marked as routing. 13852 */ 13853 if (!(strict_check)) 13854 return (ire); 13855 13856 if ((ill->ill_flags & ire->ire_ipif->ipif_ill->ill_flags & 13857 ILLF_ROUTER) != 0) { 13858 return (ire); 13859 } 13860 13861 ire_refrele(ire); 13862 return (NULL); 13863 } 13864 13865 ire_t * 13866 ip_fast_forward(ire_t *ire, ipaddr_t dst, ill_t *ill, mblk_t *mp) 13867 { 13868 ipha_t *ipha; 13869 ipaddr_t ip_dst, ip_src; 13870 ire_t *src_ire = NULL; 13871 ill_t *stq_ill; 13872 uint_t hlen; 13873 uint_t pkt_len; 13874 uint32_t sum; 13875 queue_t *dev_q; 13876 boolean_t check_multirt = B_FALSE; 13877 ip_stack_t *ipst = ill->ill_ipst; 13878 13879 ipha = (ipha_t *)mp->b_rptr; 13880 13881 /* 13882 * Martian Address Filtering [RFC 1812, Section 5.3.7] 13883 * The loopback address check for both src and dst has already 13884 * been checked in ip_input 13885 */ 13886 ip_dst = ntohl(dst); 13887 ip_src = ntohl(ipha->ipha_src); 13888 13889 if (ip_dst == INADDR_ANY || IN_BADCLASS(ip_dst) || 13890 IN_CLASSD(ip_src)) { 13891 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13892 goto drop; 13893 } 13894 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13895 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 13896 13897 if (src_ire != NULL) { 13898 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13899 goto drop; 13900 } 13901 13902 13903 /* No ire cache of nexthop. So first create one */ 13904 if (ire == NULL) { 13905 ire = ire_forward(dst, &check_multirt, NULL, NULL, NULL, ipst); 13906 /* 13907 * We only come to ip_fast_forward if ip_cgtp_filter is 13908 * is not set. So upon return from ire_forward 13909 * check_multirt should remain as false. 13910 */ 13911 ASSERT(!check_multirt); 13912 if (ire == NULL) { 13913 /* An attempt was made to forward the packet */ 13914 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13915 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13916 mp->b_prev = mp->b_next = 0; 13917 /* send icmp unreachable */ 13918 /* Sent by forwarding path, and router is global zone */ 13919 if (ip_source_routed(ipha, ipst)) { 13920 icmp_unreachable(ill->ill_wq, mp, 13921 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, 13922 ipst); 13923 } else { 13924 icmp_unreachable(ill->ill_wq, mp, 13925 ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 13926 ipst); 13927 } 13928 return (ire); 13929 } 13930 } 13931 13932 /* 13933 * Forwarding fastpath exception case: 13934 * If either of the follwoing case is true, we take 13935 * the slowpath 13936 * o forwarding is not enabled 13937 * o incoming and outgoing interface are the same, or the same 13938 * IPMP group 13939 * o corresponding ire is in incomplete state 13940 * o packet needs fragmentation 13941 * 13942 * The codeflow from here on is thus: 13943 * ip_rput_process_forward->ip_rput_forward->ip_xmit_v4 13944 */ 13945 pkt_len = ntohs(ipha->ipha_length); 13946 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 13947 if (!(stq_ill->ill_flags & ILLF_ROUTER) || 13948 !(ill->ill_flags & ILLF_ROUTER) || 13949 (ill == stq_ill) || 13950 (ill->ill_group != NULL && ill->ill_group == stq_ill->ill_group) || 13951 (ire->ire_nce == NULL) || 13952 (ire->ire_nce->nce_state != ND_REACHABLE) || 13953 (pkt_len > ire->ire_max_frag) || 13954 ipha->ipha_ttl <= 1) { 13955 ip_rput_process_forward(ill->ill_rq, mp, ire, 13956 ipha, ill, B_FALSE); 13957 return (ire); 13958 } 13959 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13960 13961 DTRACE_PROBE4(ip4__forwarding__start, 13962 ill_t *, ill, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 13963 13964 FW_HOOKS(ipst->ips_ip4_forwarding_event, 13965 ipst->ips_ipv4firewall_forwarding, 13966 ill, stq_ill, ipha, mp, mp, ipst); 13967 13968 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 13969 13970 if (mp == NULL) 13971 goto drop; 13972 13973 mp->b_datap->db_struioun.cksum.flags = 0; 13974 /* Adjust the checksum to reflect the ttl decrement. */ 13975 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 13976 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 13977 ipha->ipha_ttl--; 13978 13979 dev_q = ire->ire_stq->q_next; 13980 if ((dev_q->q_next != NULL || 13981 dev_q->q_first != NULL) && !canput(dev_q)) { 13982 goto indiscard; 13983 } 13984 13985 hlen = ire->ire_nce->nce_fp_mp != NULL ? 13986 MBLKL(ire->ire_nce->nce_fp_mp) : 0; 13987 13988 if (hlen != 0 || ire->ire_nce->nce_res_mp != NULL) { 13989 mblk_t *mpip = mp; 13990 13991 mp = ip_wput_attach_llhdr(mpip, ire, 0, 0); 13992 if (mp != NULL) { 13993 DTRACE_PROBE4(ip4__physical__out__start, 13994 ill_t *, NULL, ill_t *, stq_ill, 13995 ipha_t *, ipha, mblk_t *, mp); 13996 FW_HOOKS(ipst->ips_ip4_physical_out_event, 13997 ipst->ips_ipv4firewall_physical_out, 13998 NULL, stq_ill, ipha, mp, mpip, ipst); 13999 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, 14000 mp); 14001 if (mp == NULL) 14002 goto drop; 14003 14004 UPDATE_IB_PKT_COUNT(ire); 14005 ire->ire_last_used_time = lbolt; 14006 BUMP_MIB(stq_ill->ill_ip_mib, 14007 ipIfStatsHCOutForwDatagrams); 14008 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14009 UPDATE_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutOctets, 14010 pkt_len); 14011 putnext(ire->ire_stq, mp); 14012 return (ire); 14013 } 14014 } 14015 14016 indiscard: 14017 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14018 drop: 14019 if (mp != NULL) 14020 freemsg(mp); 14021 if (src_ire != NULL) 14022 ire_refrele(src_ire); 14023 return (ire); 14024 14025 } 14026 14027 /* 14028 * This function is called in the forwarding slowpath, when 14029 * either the ire lacks the link-layer address, or the packet needs 14030 * further processing(eg. fragmentation), before transmission. 14031 */ 14032 14033 static void 14034 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14035 ill_t *ill, boolean_t ll_multicast) 14036 { 14037 ill_group_t *ill_group; 14038 ill_group_t *ire_group; 14039 queue_t *dev_q; 14040 ire_t *src_ire; 14041 ip_stack_t *ipst = ill->ill_ipst; 14042 14043 ASSERT(ire->ire_stq != NULL); 14044 14045 mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */ 14046 mp->b_next = NULL; /* ip_rput_noire sets dst here */ 14047 14048 if (ll_multicast != 0) { 14049 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14050 goto drop_pkt; 14051 } 14052 14053 /* 14054 * check if ipha_src is a broadcast address. Note that this 14055 * check is redundant when we get here from ip_fast_forward() 14056 * which has already done this check. However, since we can 14057 * also get here from ip_rput_process_broadcast() or, for 14058 * for the slow path through ip_fast_forward(), we perform 14059 * the check again for code-reusability 14060 */ 14061 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 14062 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 14063 if (src_ire != NULL || ntohl(ipha->ipha_dst) == INADDR_ANY || 14064 IN_BADCLASS(ntohl(ipha->ipha_dst))) { 14065 if (src_ire != NULL) 14066 ire_refrele(src_ire); 14067 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14068 ip2dbg(("ip_rput_process_forward: Received packet with" 14069 " bad src/dst address on %s\n", ill->ill_name)); 14070 goto drop_pkt; 14071 } 14072 14073 ill_group = ill->ill_group; 14074 ire_group = ((ill_t *)(ire->ire_rfq)->q_ptr)->ill_group; 14075 /* 14076 * Check if we want to forward this one at this time. 14077 * We allow source routed packets on a host provided that 14078 * they go out the same interface or same interface group 14079 * as they came in on. 14080 * 14081 * XXX To be quicker, we may wish to not chase pointers to 14082 * get the ILLF_ROUTER flag and instead store the 14083 * forwarding policy in the ire. An unfortunate 14084 * side-effect of that would be requiring an ire flush 14085 * whenever the ILLF_ROUTER flag changes. 14086 */ 14087 if (((ill->ill_flags & 14088 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 14089 ILLF_ROUTER) == 0) && 14090 !(ip_source_routed(ipha, ipst) && (ire->ire_rfq == q || 14091 (ill_group != NULL && ill_group == ire_group)))) { 14092 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14093 if (ip_source_routed(ipha, ipst)) { 14094 q = WR(q); 14095 /* 14096 * Clear the indication that this may have 14097 * hardware checksum as we are not using it. 14098 */ 14099 DB_CKSUMFLAGS(mp) = 0; 14100 /* Sent by forwarding path, and router is global zone */ 14101 icmp_unreachable(q, mp, 14102 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, ipst); 14103 return; 14104 } 14105 goto drop_pkt; 14106 } 14107 14108 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14109 14110 /* Packet is being forwarded. Turning off hwcksum flag. */ 14111 DB_CKSUMFLAGS(mp) = 0; 14112 if (ipst->ips_ip_g_send_redirects) { 14113 /* 14114 * Check whether the incoming interface and outgoing 14115 * interface is part of the same group. If so, 14116 * send redirects. 14117 * 14118 * Check the source address to see if it originated 14119 * on the same logical subnet it is going back out on. 14120 * If so, we should be able to send it a redirect. 14121 * Avoid sending a redirect if the destination 14122 * is directly connected (i.e., ipha_dst is the same 14123 * as ire_gateway_addr or the ire_addr of the 14124 * nexthop IRE_CACHE ), or if the packet was source 14125 * routed out this interface. 14126 */ 14127 ipaddr_t src, nhop; 14128 mblk_t *mp1; 14129 ire_t *nhop_ire = NULL; 14130 14131 /* 14132 * Check whether ire_rfq and q are from the same ill 14133 * or if they are not same, they at least belong 14134 * to the same group. If so, send redirects. 14135 */ 14136 if ((ire->ire_rfq == q || 14137 (ill_group != NULL && ill_group == ire_group)) && 14138 !ip_source_routed(ipha, ipst)) { 14139 14140 nhop = (ire->ire_gateway_addr != 0 ? 14141 ire->ire_gateway_addr : ire->ire_addr); 14142 14143 if (ipha->ipha_dst == nhop) { 14144 /* 14145 * We avoid sending a redirect if the 14146 * destination is directly connected 14147 * because it is possible that multiple 14148 * IP subnets may have been configured on 14149 * the link, and the source may not 14150 * be on the same subnet as ip destination, 14151 * even though they are on the same 14152 * physical link. 14153 */ 14154 goto sendit; 14155 } 14156 14157 src = ipha->ipha_src; 14158 14159 /* 14160 * We look up the interface ire for the nexthop, 14161 * to see if ipha_src is in the same subnet 14162 * as the nexthop. 14163 * 14164 * Note that, if, in the future, IRE_CACHE entries 14165 * are obsoleted, this lookup will not be needed, 14166 * as the ire passed to this function will be the 14167 * same as the nhop_ire computed below. 14168 */ 14169 nhop_ire = ire_ftable_lookup(nhop, 0, 0, 14170 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 14171 0, NULL, MATCH_IRE_TYPE, ipst); 14172 14173 if (nhop_ire != NULL) { 14174 if ((src & nhop_ire->ire_mask) == 14175 (nhop & nhop_ire->ire_mask)) { 14176 /* 14177 * The source is directly connected. 14178 * Just copy the ip header (which is 14179 * in the first mblk) 14180 */ 14181 mp1 = copyb(mp); 14182 if (mp1 != NULL) { 14183 icmp_send_redirect(WR(q), mp1, 14184 nhop, ipst); 14185 } 14186 } 14187 ire_refrele(nhop_ire); 14188 } 14189 } 14190 } 14191 sendit: 14192 dev_q = ire->ire_stq->q_next; 14193 if ((dev_q->q_next || dev_q->q_first) && !canput(dev_q)) { 14194 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14195 freemsg(mp); 14196 return; 14197 } 14198 14199 ip_rput_forward(ire, ipha, mp, ill); 14200 return; 14201 14202 drop_pkt: 14203 ip2dbg(("ip_rput_process_forward: drop pkt\n")); 14204 freemsg(mp); 14205 } 14206 14207 ire_t * 14208 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14209 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 14210 { 14211 queue_t *q; 14212 uint16_t hcksumflags; 14213 ip_stack_t *ipst = ill->ill_ipst; 14214 14215 q = *qp; 14216 14217 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInBcastPkts); 14218 14219 /* 14220 * Clear the indication that this may have hardware 14221 * checksum as we are not using it for forwarding. 14222 */ 14223 hcksumflags = DB_CKSUMFLAGS(mp); 14224 DB_CKSUMFLAGS(mp) = 0; 14225 14226 /* 14227 * Directed broadcast forwarding: if the packet came in over a 14228 * different interface then it is routed out over we can forward it. 14229 */ 14230 if (ipha->ipha_protocol == IPPROTO_TCP) { 14231 ire_refrele(ire); 14232 freemsg(mp); 14233 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14234 return (NULL); 14235 } 14236 /* 14237 * For multicast we have set dst to be INADDR_BROADCAST 14238 * for delivering to all STREAMS. IRE_MARK_NORECV is really 14239 * only for broadcast packets. 14240 */ 14241 if (!CLASSD(ipha->ipha_dst)) { 14242 ire_t *new_ire; 14243 ipif_t *ipif; 14244 /* 14245 * For ill groups, as the switch duplicates broadcasts 14246 * across all the ports, we need to filter out and 14247 * send up only one copy. There is one copy for every 14248 * broadcast address on each ill. Thus, we look for a 14249 * specific IRE on this ill and look at IRE_MARK_NORECV 14250 * later to see whether this ill is eligible to receive 14251 * them or not. ill_nominate_bcast_rcv() nominates only 14252 * one set of IREs for receiving. 14253 */ 14254 14255 ipif = ipif_get_next_ipif(NULL, ill); 14256 if (ipif == NULL) { 14257 ire_refrele(ire); 14258 freemsg(mp); 14259 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14260 return (NULL); 14261 } 14262 new_ire = ire_ctable_lookup(dst, 0, 0, 14263 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL, ipst); 14264 ipif_refrele(ipif); 14265 14266 if (new_ire != NULL) { 14267 if (new_ire->ire_marks & IRE_MARK_NORECV) { 14268 ire_refrele(ire); 14269 ire_refrele(new_ire); 14270 freemsg(mp); 14271 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14272 return (NULL); 14273 } 14274 /* 14275 * In the special case of multirouted broadcast 14276 * packets, we unconditionally need to "gateway" 14277 * them to the appropriate interface here. 14278 * In the normal case, this cannot happen, because 14279 * there is no broadcast IRE tagged with the 14280 * RTF_MULTIRT flag. 14281 */ 14282 if (new_ire->ire_flags & RTF_MULTIRT) { 14283 ire_refrele(new_ire); 14284 if (ire->ire_rfq != NULL) { 14285 q = ire->ire_rfq; 14286 *qp = q; 14287 } 14288 } else { 14289 ire_refrele(ire); 14290 ire = new_ire; 14291 } 14292 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 14293 if (!ipst->ips_ip_g_forward_directed_bcast) { 14294 /* 14295 * Free the message if 14296 * ip_g_forward_directed_bcast is turned 14297 * off for non-local broadcast. 14298 */ 14299 ire_refrele(ire); 14300 freemsg(mp); 14301 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14302 return (NULL); 14303 } 14304 } else { 14305 /* 14306 * This CGTP packet successfully passed the 14307 * CGTP filter, but the related CGTP 14308 * broadcast IRE has not been found, 14309 * meaning that the redundant ipif is 14310 * probably down. However, if we discarded 14311 * this packet, its duplicate would be 14312 * filtered out by the CGTP filter so none 14313 * of them would get through. So we keep 14314 * going with this one. 14315 */ 14316 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 14317 if (ire->ire_rfq != NULL) { 14318 q = ire->ire_rfq; 14319 *qp = q; 14320 } 14321 } 14322 } 14323 if (ipst->ips_ip_g_forward_directed_bcast && ll_multicast == 0) { 14324 /* 14325 * Verify that there are not more then one 14326 * IRE_BROADCAST with this broadcast address which 14327 * has ire_stq set. 14328 * TODO: simplify, loop over all IRE's 14329 */ 14330 ire_t *ire1; 14331 int num_stq = 0; 14332 mblk_t *mp1; 14333 14334 /* Find the first one with ire_stq set */ 14335 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 14336 for (ire1 = ire; ire1 && 14337 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 14338 ire1 = ire1->ire_next) 14339 ; 14340 if (ire1) { 14341 ire_refrele(ire); 14342 ire = ire1; 14343 IRE_REFHOLD(ire); 14344 } 14345 14346 /* Check if there are additional ones with stq set */ 14347 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 14348 if (ire->ire_addr != ire1->ire_addr) 14349 break; 14350 if (ire1->ire_stq) { 14351 num_stq++; 14352 break; 14353 } 14354 } 14355 rw_exit(&ire->ire_bucket->irb_lock); 14356 if (num_stq == 1 && ire->ire_stq != NULL) { 14357 ip1dbg(("ip_rput_process_broadcast: directed " 14358 "broadcast to 0x%x\n", 14359 ntohl(ire->ire_addr))); 14360 mp1 = copymsg(mp); 14361 if (mp1) { 14362 switch (ipha->ipha_protocol) { 14363 case IPPROTO_UDP: 14364 ip_udp_input(q, mp1, ipha, ire, ill); 14365 break; 14366 default: 14367 ip_proto_input(q, mp1, ipha, ire, ill, 14368 B_FALSE); 14369 break; 14370 } 14371 } 14372 /* 14373 * Adjust ttl to 2 (1+1 - the forward engine 14374 * will decrement it by one. 14375 */ 14376 if (ip_csum_hdr(ipha)) { 14377 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 14378 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 14379 freemsg(mp); 14380 ire_refrele(ire); 14381 return (NULL); 14382 } 14383 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl + 1; 14384 ipha->ipha_hdr_checksum = 0; 14385 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14386 ip_rput_process_forward(q, mp, ire, ipha, 14387 ill, ll_multicast); 14388 ire_refrele(ire); 14389 return (NULL); 14390 } 14391 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 14392 ntohl(ire->ire_addr))); 14393 } 14394 14395 14396 /* Restore any hardware checksum flags */ 14397 DB_CKSUMFLAGS(mp) = hcksumflags; 14398 return (ire); 14399 } 14400 14401 /* ARGSUSED */ 14402 static boolean_t 14403 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 14404 int *ll_multicast, ipaddr_t *dstp) 14405 { 14406 ip_stack_t *ipst = ill->ill_ipst; 14407 14408 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastPkts); 14409 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastOctets, 14410 ntohs(ipha->ipha_length)); 14411 14412 /* 14413 * Forward packets only if we have joined the allmulti 14414 * group on this interface. 14415 */ 14416 if (ipst->ips_ip_g_mrouter && ill->ill_join_allmulti) { 14417 int retval; 14418 14419 /* 14420 * Clear the indication that this may have hardware 14421 * checksum as we are not using it. 14422 */ 14423 DB_CKSUMFLAGS(mp) = 0; 14424 retval = ip_mforward(ill, ipha, mp); 14425 /* ip_mforward updates mib variables if needed */ 14426 /* clear b_prev - used by ip_mroute_decap */ 14427 mp->b_prev = NULL; 14428 14429 switch (retval) { 14430 case 0: 14431 /* 14432 * pkt is okay and arrived on phyint. 14433 * 14434 * If we are running as a multicast router 14435 * we need to see all IGMP and/or PIM packets. 14436 */ 14437 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 14438 (ipha->ipha_protocol == IPPROTO_PIM)) { 14439 goto done; 14440 } 14441 break; 14442 case -1: 14443 /* pkt is mal-formed, toss it */ 14444 goto drop_pkt; 14445 case 1: 14446 /* pkt is okay and arrived on a tunnel */ 14447 /* 14448 * If we are running a multicast router 14449 * we need to see all igmp packets. 14450 */ 14451 if (ipha->ipha_protocol == IPPROTO_IGMP) { 14452 *dstp = INADDR_BROADCAST; 14453 *ll_multicast = 1; 14454 return (B_FALSE); 14455 } 14456 14457 goto drop_pkt; 14458 } 14459 } 14460 14461 ILM_WALKER_HOLD(ill); 14462 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 14463 /* 14464 * This might just be caused by the fact that 14465 * multiple IP Multicast addresses map to the same 14466 * link layer multicast - no need to increment counter! 14467 */ 14468 ILM_WALKER_RELE(ill); 14469 freemsg(mp); 14470 return (B_TRUE); 14471 } 14472 ILM_WALKER_RELE(ill); 14473 done: 14474 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 14475 /* 14476 * This assumes the we deliver to all streams for multicast 14477 * and broadcast packets. 14478 */ 14479 *dstp = INADDR_BROADCAST; 14480 *ll_multicast = 1; 14481 return (B_FALSE); 14482 drop_pkt: 14483 ip2dbg(("ip_rput: drop pkt\n")); 14484 freemsg(mp); 14485 return (B_TRUE); 14486 } 14487 14488 static boolean_t 14489 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 14490 int *ll_multicast, mblk_t **mpp) 14491 { 14492 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 14493 boolean_t must_copy = B_FALSE; 14494 struct iocblk *iocp; 14495 ipha_t *ipha; 14496 ip_stack_t *ipst = ill->ill_ipst; 14497 14498 #define rptr ((uchar_t *)ipha) 14499 14500 first_mp = *first_mpp; 14501 mp = *mpp; 14502 14503 ASSERT(first_mp == mp); 14504 14505 /* 14506 * if db_ref > 1 then copymsg and free original. Packet may be 14507 * changed and do not want other entity who has a reference to this 14508 * message to trip over the changes. This is a blind change because 14509 * trying to catch all places that might change packet is too 14510 * difficult (since it may be a module above this one) 14511 * 14512 * This corresponds to the non-fast path case. We walk down the full 14513 * chain in this case, and check the db_ref count of all the dblks, 14514 * and do a copymsg if required. It is possible that the db_ref counts 14515 * of the data blocks in the mblk chain can be different. 14516 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 14517 * count of 1, followed by a M_DATA block with a ref count of 2, if 14518 * 'snoop' is running. 14519 */ 14520 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 14521 if (mp1->b_datap->db_ref > 1) { 14522 must_copy = B_TRUE; 14523 break; 14524 } 14525 } 14526 14527 if (must_copy) { 14528 mp1 = copymsg(mp); 14529 if (mp1 == NULL) { 14530 for (mp1 = mp; mp1 != NULL; 14531 mp1 = mp1->b_cont) { 14532 mp1->b_next = NULL; 14533 mp1->b_prev = NULL; 14534 } 14535 freemsg(mp); 14536 if (ill != NULL) { 14537 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14538 } else { 14539 BUMP_MIB(&ipst->ips_ip_mib, 14540 ipIfStatsInDiscards); 14541 } 14542 return (B_TRUE); 14543 } 14544 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 14545 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 14546 /* Copy b_prev - used by ip_mroute_decap */ 14547 to_mp->b_prev = from_mp->b_prev; 14548 from_mp->b_prev = NULL; 14549 } 14550 *first_mpp = first_mp = mp1; 14551 freemsg(mp); 14552 mp = mp1; 14553 *mpp = mp1; 14554 } 14555 14556 ipha = (ipha_t *)mp->b_rptr; 14557 14558 /* 14559 * previous code has a case for M_DATA. 14560 * We want to check how that happens. 14561 */ 14562 ASSERT(first_mp->b_datap->db_type != M_DATA); 14563 switch (first_mp->b_datap->db_type) { 14564 case M_PROTO: 14565 case M_PCPROTO: 14566 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 14567 DL_UNITDATA_IND) { 14568 /* Go handle anything other than data elsewhere. */ 14569 ip_rput_dlpi(q, mp); 14570 return (B_TRUE); 14571 } 14572 *ll_multicast = ((dl_unitdata_ind_t *)rptr)->dl_group_address; 14573 /* Ditch the DLPI header. */ 14574 mp1 = mp->b_cont; 14575 ASSERT(first_mp == mp); 14576 *first_mpp = mp1; 14577 freeb(mp); 14578 *mpp = mp1; 14579 return (B_FALSE); 14580 case M_IOCACK: 14581 ip1dbg(("got iocack ")); 14582 iocp = (struct iocblk *)mp->b_rptr; 14583 switch (iocp->ioc_cmd) { 14584 case DL_IOC_HDR_INFO: 14585 ill = (ill_t *)q->q_ptr; 14586 ill_fastpath_ack(ill, mp); 14587 return (B_TRUE); 14588 case SIOCSTUNPARAM: 14589 case OSIOCSTUNPARAM: 14590 /* Go through qwriter_ip */ 14591 break; 14592 case SIOCGTUNPARAM: 14593 case OSIOCGTUNPARAM: 14594 ip_rput_other(NULL, q, mp, NULL); 14595 return (B_TRUE); 14596 default: 14597 putnext(q, mp); 14598 return (B_TRUE); 14599 } 14600 /* FALLTHRU */ 14601 case M_ERROR: 14602 case M_HANGUP: 14603 /* 14604 * Since this is on the ill stream we unconditionally 14605 * bump up the refcount 14606 */ 14607 ill_refhold(ill); 14608 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14609 return (B_TRUE); 14610 case M_CTL: 14611 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 14612 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 14613 IPHADA_M_CTL)) { 14614 /* 14615 * It's an IPsec accelerated packet. 14616 * Make sure that the ill from which we received the 14617 * packet has enabled IPsec hardware acceleration. 14618 */ 14619 if (!(ill->ill_capabilities & 14620 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 14621 /* IPsec kstats: bean counter */ 14622 freemsg(mp); 14623 return (B_TRUE); 14624 } 14625 14626 /* 14627 * Make mp point to the mblk following the M_CTL, 14628 * then process according to type of mp. 14629 * After this processing, first_mp will point to 14630 * the data-attributes and mp to the pkt following 14631 * the M_CTL. 14632 */ 14633 mp = first_mp->b_cont; 14634 if (mp == NULL) { 14635 freemsg(first_mp); 14636 return (B_TRUE); 14637 } 14638 /* 14639 * A Hardware Accelerated packet can only be M_DATA 14640 * ESP or AH packet. 14641 */ 14642 if (mp->b_datap->db_type != M_DATA) { 14643 /* non-M_DATA IPsec accelerated packet */ 14644 IPSECHW_DEBUG(IPSECHW_PKT, 14645 ("non-M_DATA IPsec accelerated pkt\n")); 14646 freemsg(first_mp); 14647 return (B_TRUE); 14648 } 14649 ipha = (ipha_t *)mp->b_rptr; 14650 if (ipha->ipha_protocol != IPPROTO_AH && 14651 ipha->ipha_protocol != IPPROTO_ESP) { 14652 IPSECHW_DEBUG(IPSECHW_PKT, 14653 ("non-M_DATA IPsec accelerated pkt\n")); 14654 freemsg(first_mp); 14655 return (B_TRUE); 14656 } 14657 *mpp = mp; 14658 return (B_FALSE); 14659 } 14660 putnext(q, mp); 14661 return (B_TRUE); 14662 case M_IOCNAK: 14663 ip1dbg(("got iocnak ")); 14664 iocp = (struct iocblk *)mp->b_rptr; 14665 switch (iocp->ioc_cmd) { 14666 case SIOCSTUNPARAM: 14667 case OSIOCSTUNPARAM: 14668 /* 14669 * Since this is on the ill stream we unconditionally 14670 * bump up the refcount 14671 */ 14672 ill_refhold(ill); 14673 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14674 return (B_TRUE); 14675 case DL_IOC_HDR_INFO: 14676 case SIOCGTUNPARAM: 14677 case OSIOCGTUNPARAM: 14678 ip_rput_other(NULL, q, mp, NULL); 14679 return (B_TRUE); 14680 default: 14681 break; 14682 } 14683 /* FALLTHRU */ 14684 default: 14685 putnext(q, mp); 14686 return (B_TRUE); 14687 } 14688 } 14689 14690 /* Read side put procedure. Packets coming from the wire arrive here. */ 14691 void 14692 ip_rput(queue_t *q, mblk_t *mp) 14693 { 14694 ill_t *ill; 14695 union DL_primitives *dl; 14696 14697 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 14698 14699 ill = (ill_t *)q->q_ptr; 14700 14701 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 14702 /* 14703 * If things are opening or closing, only accept high-priority 14704 * DLPI messages. (On open ill->ill_ipif has not yet been 14705 * created; on close, things hanging off the ill may have been 14706 * freed already.) 14707 */ 14708 dl = (union DL_primitives *)mp->b_rptr; 14709 if (DB_TYPE(mp) != M_PCPROTO || 14710 dl->dl_primitive == DL_UNITDATA_IND) { 14711 /* 14712 * SIOC[GS]TUNPARAM ioctls can come here. 14713 */ 14714 inet_freemsg(mp); 14715 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14716 "ip_rput_end: q %p (%S)", q, "uninit"); 14717 return; 14718 } 14719 } 14720 14721 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14722 "ip_rput_end: q %p (%S)", q, "end"); 14723 14724 ip_input(ill, NULL, mp, NULL); 14725 } 14726 14727 static mblk_t * 14728 ip_fix_dbref(ill_t *ill, mblk_t *mp) 14729 { 14730 mblk_t *mp1; 14731 boolean_t adjusted = B_FALSE; 14732 ip_stack_t *ipst = ill->ill_ipst; 14733 14734 IP_STAT(ipst, ip_db_ref); 14735 /* 14736 * The IP_RECVSLLA option depends on having the 14737 * link layer header. First check that: 14738 * a> the underlying device is of type ether, 14739 * since this option is currently supported only 14740 * over ethernet. 14741 * b> there is enough room to copy over the link 14742 * layer header. 14743 * 14744 * Once the checks are done, adjust rptr so that 14745 * the link layer header will be copied via 14746 * copymsg. Note that, IFT_ETHER may be returned 14747 * by some non-ethernet drivers but in this case 14748 * the second check will fail. 14749 */ 14750 if (ill->ill_type == IFT_ETHER && 14751 (mp->b_rptr - mp->b_datap->db_base) >= 14752 sizeof (struct ether_header)) { 14753 mp->b_rptr -= sizeof (struct ether_header); 14754 adjusted = B_TRUE; 14755 } 14756 mp1 = copymsg(mp); 14757 14758 if (mp1 == NULL) { 14759 mp->b_next = NULL; 14760 /* clear b_prev - used by ip_mroute_decap */ 14761 mp->b_prev = NULL; 14762 freemsg(mp); 14763 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14764 return (NULL); 14765 } 14766 14767 if (adjusted) { 14768 /* 14769 * Copy is done. Restore the pointer in 14770 * the _new_ mblk 14771 */ 14772 mp1->b_rptr += sizeof (struct ether_header); 14773 } 14774 14775 /* Copy b_prev - used by ip_mroute_decap */ 14776 mp1->b_prev = mp->b_prev; 14777 mp->b_prev = NULL; 14778 14779 /* preserve the hardware checksum flags and data, if present */ 14780 if (DB_CKSUMFLAGS(mp) != 0) { 14781 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 14782 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 14783 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 14784 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 14785 DB_CKSUM16(mp1) = DB_CKSUM16(mp); 14786 } 14787 14788 freemsg(mp); 14789 return (mp1); 14790 } 14791 14792 /* 14793 * Direct read side procedure capable of dealing with chains. GLDv3 based 14794 * drivers call this function directly with mblk chains while STREAMS 14795 * read side procedure ip_rput() calls this for single packet with ip_ring 14796 * set to NULL to process one packet at a time. 14797 * 14798 * The ill will always be valid if this function is called directly from 14799 * the driver. 14800 * 14801 * If ip_input() is called from GLDv3: 14802 * 14803 * - This must be a non-VLAN IP stream. 14804 * - 'mp' is either an untagged or a special priority-tagged packet. 14805 * - Any VLAN tag that was in the MAC header has been stripped. 14806 * 14807 * If the IP header in packet is not 32-bit aligned, every message in the 14808 * chain will be aligned before further operations. This is required on SPARC 14809 * platform. 14810 */ 14811 /* ARGSUSED */ 14812 void 14813 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, 14814 struct mac_header_info_s *mhip) 14815 { 14816 ipaddr_t dst = NULL; 14817 ipaddr_t prev_dst; 14818 ire_t *ire = NULL; 14819 ipha_t *ipha; 14820 uint_t pkt_len; 14821 ssize_t len; 14822 uint_t opt_len; 14823 int ll_multicast; 14824 int cgtp_flt_pkt; 14825 queue_t *q = ill->ill_rq; 14826 squeue_t *curr_sqp = NULL; 14827 mblk_t *head = NULL; 14828 mblk_t *tail = NULL; 14829 mblk_t *first_mp; 14830 mblk_t *mp; 14831 mblk_t *dmp; 14832 int cnt = 0; 14833 ip_stack_t *ipst = ill->ill_ipst; 14834 14835 ASSERT(mp_chain != NULL); 14836 ASSERT(ill != NULL); 14837 14838 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 14839 14840 #define rptr ((uchar_t *)ipha) 14841 14842 while (mp_chain != NULL) { 14843 first_mp = mp = mp_chain; 14844 mp_chain = mp_chain->b_next; 14845 mp->b_next = NULL; 14846 ll_multicast = 0; 14847 14848 /* 14849 * We do ire caching from one iteration to 14850 * another. In the event the packet chain contains 14851 * all packets from the same dst, this caching saves 14852 * an ire_cache_lookup for each of the succeeding 14853 * packets in a packet chain. 14854 */ 14855 prev_dst = dst; 14856 14857 /* 14858 * if db_ref > 1 then copymsg and free original. Packet 14859 * may be changed and we do not want the other entity 14860 * who has a reference to this message to trip over the 14861 * changes. This is a blind change because trying to 14862 * catch all places that might change the packet is too 14863 * difficult. 14864 * 14865 * This corresponds to the fast path case, where we have 14866 * a chain of M_DATA mblks. We check the db_ref count 14867 * of only the 1st data block in the mblk chain. There 14868 * doesn't seem to be a reason why a device driver would 14869 * send up data with varying db_ref counts in the mblk 14870 * chain. In any case the Fast path is a private 14871 * interface, and our drivers don't do such a thing. 14872 * Given the above assumption, there is no need to walk 14873 * down the entire mblk chain (which could have a 14874 * potential performance problem) 14875 */ 14876 14877 if (DB_REF(mp) > 1) { 14878 if ((mp = ip_fix_dbref(ill, mp)) == NULL) 14879 continue; 14880 } 14881 14882 /* 14883 * Check and align the IP header. 14884 */ 14885 first_mp = mp; 14886 if (DB_TYPE(mp) == M_DATA) { 14887 dmp = mp; 14888 } else if (DB_TYPE(mp) == M_PROTO && 14889 *(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) { 14890 dmp = mp->b_cont; 14891 } else { 14892 dmp = NULL; 14893 } 14894 if (dmp != NULL) { 14895 /* 14896 * IP header ptr not aligned? 14897 * OR IP header not complete in first mblk 14898 */ 14899 if (!OK_32PTR(dmp->b_rptr) || 14900 MBLKL(dmp) < IP_SIMPLE_HDR_LENGTH) { 14901 if (!ip_check_and_align_header(q, dmp, ipst)) 14902 continue; 14903 } 14904 } 14905 14906 /* 14907 * ip_input fast path 14908 */ 14909 14910 /* mblk type is not M_DATA */ 14911 if (DB_TYPE(mp) != M_DATA) { 14912 if (ip_rput_process_notdata(q, &first_mp, ill, 14913 &ll_multicast, &mp)) 14914 continue; 14915 } 14916 14917 /* Make sure its an M_DATA and that its aligned */ 14918 ASSERT(DB_TYPE(mp) == M_DATA); 14919 ASSERT(DB_REF(mp) == 1 && OK_32PTR(mp->b_rptr)); 14920 14921 ipha = (ipha_t *)mp->b_rptr; 14922 len = mp->b_wptr - rptr; 14923 pkt_len = ntohs(ipha->ipha_length); 14924 14925 /* 14926 * We must count all incoming packets, even if they end 14927 * up being dropped later on. 14928 */ 14929 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 14930 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 14931 14932 /* multiple mblk or too short */ 14933 len -= pkt_len; 14934 if (len != 0) { 14935 /* 14936 * Make sure we have data length consistent 14937 * with the IP header. 14938 */ 14939 if (mp->b_cont == NULL) { 14940 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 14941 BUMP_MIB(ill->ill_ip_mib, 14942 ipIfStatsInHdrErrors); 14943 ip2dbg(("ip_input: drop pkt\n")); 14944 freemsg(mp); 14945 continue; 14946 } 14947 mp->b_wptr = rptr + pkt_len; 14948 } else if ((len += msgdsize(mp->b_cont)) != 0) { 14949 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 14950 BUMP_MIB(ill->ill_ip_mib, 14951 ipIfStatsInHdrErrors); 14952 ip2dbg(("ip_input: drop pkt\n")); 14953 freemsg(mp); 14954 continue; 14955 } 14956 (void) adjmsg(mp, -len); 14957 IP_STAT(ipst, ip_multimblk3); 14958 } 14959 } 14960 14961 /* Obtain the dst of the current packet */ 14962 dst = ipha->ipha_dst; 14963 14964 if (IP_LOOPBACK_ADDR(dst) || 14965 IP_LOOPBACK_ADDR(ipha->ipha_src)) { 14966 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInAddrErrors); 14967 cmn_err(CE_CONT, "dst %X src %X\n", 14968 dst, ipha->ipha_src); 14969 freemsg(mp); 14970 continue; 14971 } 14972 14973 /* 14974 * The event for packets being received from a 'physical' 14975 * interface is placed after validation of the source and/or 14976 * destination address as being local so that packets can be 14977 * redirected to loopback addresses using ipnat. 14978 */ 14979 DTRACE_PROBE4(ip4__physical__in__start, 14980 ill_t *, ill, ill_t *, NULL, 14981 ipha_t *, ipha, mblk_t *, first_mp); 14982 14983 FW_HOOKS(ipst->ips_ip4_physical_in_event, 14984 ipst->ips_ipv4firewall_physical_in, 14985 ill, NULL, ipha, first_mp, mp, ipst); 14986 14987 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, first_mp); 14988 14989 if (first_mp == NULL) { 14990 continue; 14991 } 14992 dst = ipha->ipha_dst; 14993 14994 /* 14995 * Attach any necessary label information to 14996 * this packet 14997 */ 14998 if (is_system_labeled() && 14999 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 15000 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 15001 freemsg(mp); 15002 continue; 15003 } 15004 15005 /* 15006 * Reuse the cached ire only if the ipha_dst of the previous 15007 * packet is the same as the current packet AND it is not 15008 * INADDR_ANY. 15009 */ 15010 if (!(dst == prev_dst && dst != INADDR_ANY) && 15011 (ire != NULL)) { 15012 ire_refrele(ire); 15013 ire = NULL; 15014 } 15015 opt_len = ipha->ipha_version_and_hdr_length - 15016 IP_SIMPLE_HDR_VERSION; 15017 15018 /* 15019 * Check to see if we can take the fastpath. 15020 * That is possible if the following conditions are met 15021 * o Tsol disabled 15022 * o CGTP disabled 15023 * o ipp_action_count is 0 15024 * o no options in the packet 15025 * o not a RSVP packet 15026 * o not a multicast packet 15027 * o ill not in IP_DHCPINIT_IF mode 15028 */ 15029 if (!is_system_labeled() && 15030 !ipst->ips_ip_cgtp_filter && ipp_action_count == 0 && 15031 opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP && 15032 !ll_multicast && !CLASSD(dst) && ill->ill_dhcpinit == 0) { 15033 if (ire == NULL) 15034 ire = ire_cache_lookup(dst, ALL_ZONES, NULL, 15035 ipst); 15036 15037 /* incoming packet is for forwarding */ 15038 if (ire == NULL || (ire->ire_type & IRE_CACHE)) { 15039 ire = ip_fast_forward(ire, dst, ill, mp); 15040 continue; 15041 } 15042 /* incoming packet is for local consumption */ 15043 if (ire->ire_type & IRE_LOCAL) 15044 goto local; 15045 } 15046 15047 /* 15048 * Disable ire caching for anything more complex 15049 * than the simple fast path case we checked for above. 15050 */ 15051 if (ire != NULL) { 15052 ire_refrele(ire); 15053 ire = NULL; 15054 } 15055 15056 /* 15057 * Brutal hack for DHCPv4 unicast: RFC2131 allows a DHCP 15058 * server to unicast DHCP packets to a DHCP client using the 15059 * IP address it is offering to the client. This can be 15060 * disabled through the "broadcast bit", but not all DHCP 15061 * servers honor that bit. Therefore, to interoperate with as 15062 * many DHCP servers as possible, the DHCP client allows the 15063 * server to unicast, but we treat those packets as broadcast 15064 * here. Note that we don't rewrite the packet itself since 15065 * (a) that would mess up the checksums and (b) the DHCP 15066 * client conn is bound to INADDR_ANY so ip_fanout_udp() will 15067 * hand it the packet regardless. 15068 */ 15069 if (ill->ill_dhcpinit != 0 && 15070 IS_SIMPLE_IPH(ipha) && ipha->ipha_protocol == IPPROTO_UDP && 15071 pullupmsg(mp, sizeof (ipha_t) + sizeof (udpha_t)) == 1) { 15072 udpha_t *udpha; 15073 15074 /* 15075 * Reload ipha since pullupmsg() can change b_rptr. 15076 */ 15077 ipha = (ipha_t *)mp->b_rptr; 15078 udpha = (udpha_t *)&ipha[1]; 15079 15080 if (ntohs(udpha->uha_dst_port) == IPPORT_BOOTPC) { 15081 DTRACE_PROBE2(ip4__dhcpinit__pkt, ill_t *, ill, 15082 mblk_t *, mp); 15083 dst = INADDR_BROADCAST; 15084 } 15085 } 15086 15087 /* Full-blown slow path */ 15088 if (opt_len != 0) { 15089 if (len != 0) 15090 IP_STAT(ipst, ip_multimblk4); 15091 else 15092 IP_STAT(ipst, ip_ipoptions); 15093 if (!ip_rput_multimblk_ipoptions(q, ill, mp, &ipha, 15094 &dst, ipst)) 15095 continue; 15096 } 15097 15098 /* 15099 * Invoke the CGTP (multirouting) filtering module to process 15100 * the incoming packet. Packets identified as duplicates 15101 * must be discarded. Filtering is active only if the 15102 * the ip_cgtp_filter ndd variable is non-zero. 15103 */ 15104 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 15105 if (ipst->ips_ip_cgtp_filter && 15106 ipst->ips_ip_cgtp_filter_ops != NULL) { 15107 netstackid_t stackid; 15108 15109 stackid = ipst->ips_netstack->netstack_stackid; 15110 cgtp_flt_pkt = 15111 ipst->ips_ip_cgtp_filter_ops->cfo_filter(stackid, 15112 ill->ill_phyint->phyint_ifindex, mp); 15113 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 15114 freemsg(first_mp); 15115 continue; 15116 } 15117 } 15118 15119 /* 15120 * If rsvpd is running, let RSVP daemon handle its processing 15121 * and forwarding of RSVP multicast/unicast packets. 15122 * If rsvpd is not running but mrouted is running, RSVP 15123 * multicast packets are forwarded as multicast traffic 15124 * and RSVP unicast packets are forwarded by unicast router. 15125 * If neither rsvpd nor mrouted is running, RSVP multicast 15126 * packets are not forwarded, but the unicast packets are 15127 * forwarded like unicast traffic. 15128 */ 15129 if (ipha->ipha_protocol == IPPROTO_RSVP && 15130 ipst->ips_ipcl_proto_fanout[IPPROTO_RSVP].connf_head != 15131 NULL) { 15132 /* RSVP packet and rsvpd running. Treat as ours */ 15133 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 15134 /* 15135 * This assumes that we deliver to all streams for 15136 * multicast and broadcast packets. 15137 * We have to force ll_multicast to 1 to handle the 15138 * M_DATA messages passed in from ip_mroute_decap. 15139 */ 15140 dst = INADDR_BROADCAST; 15141 ll_multicast = 1; 15142 } else if (CLASSD(dst)) { 15143 /* packet is multicast */ 15144 mp->b_next = NULL; 15145 if (ip_rput_process_multicast(q, mp, ill, ipha, 15146 &ll_multicast, &dst)) 15147 continue; 15148 } 15149 15150 if (ire == NULL) { 15151 ire = ire_cache_lookup(dst, ALL_ZONES, 15152 MBLK_GETLABEL(mp), ipst); 15153 } 15154 15155 if (ire == NULL) { 15156 /* 15157 * No IRE for this destination, so it can't be for us. 15158 * Unless we are forwarding, drop the packet. 15159 * We have to let source routed packets through 15160 * since we don't yet know if they are 'ping -l' 15161 * packets i.e. if they will go out over the 15162 * same interface as they came in on. 15163 */ 15164 ire = ip_rput_noire(q, mp, ll_multicast, dst); 15165 if (ire == NULL) 15166 continue; 15167 } 15168 15169 /* 15170 * Broadcast IRE may indicate either broadcast or 15171 * multicast packet 15172 */ 15173 if (ire->ire_type == IRE_BROADCAST) { 15174 /* 15175 * Skip broadcast checks if packet is UDP multicast; 15176 * we'd rather not enter ip_rput_process_broadcast() 15177 * unless the packet is broadcast for real, since 15178 * that routine is a no-op for multicast. 15179 */ 15180 if (ipha->ipha_protocol != IPPROTO_UDP || 15181 !CLASSD(ipha->ipha_dst)) { 15182 ire = ip_rput_process_broadcast(&q, mp, 15183 ire, ipha, ill, dst, cgtp_flt_pkt, 15184 ll_multicast); 15185 if (ire == NULL) 15186 continue; 15187 } 15188 } else if (ire->ire_stq != NULL) { 15189 /* fowarding? */ 15190 ip_rput_process_forward(q, mp, ire, ipha, ill, 15191 ll_multicast); 15192 /* ip_rput_process_forward consumed the packet */ 15193 continue; 15194 } 15195 15196 local: 15197 /* 15198 * If the queue in the ire is different to the ingress queue 15199 * then we need to check to see if we can accept the packet. 15200 * Note that for multicast packets and broadcast packets sent 15201 * to a broadcast address which is shared between multiple 15202 * interfaces we should not do this since we just got a random 15203 * broadcast ire. 15204 */ 15205 if ((ire->ire_rfq != q) && (ire->ire_type != IRE_BROADCAST)) { 15206 if ((ire = ip_check_multihome(&ipha->ipha_dst, ire, 15207 ill)) == NULL) { 15208 /* Drop packet */ 15209 BUMP_MIB(ill->ill_ip_mib, 15210 ipIfStatsForwProhibits); 15211 freemsg(mp); 15212 continue; 15213 } 15214 if (ire->ire_rfq != NULL) 15215 q = ire->ire_rfq; 15216 } 15217 15218 switch (ipha->ipha_protocol) { 15219 case IPPROTO_TCP: 15220 ASSERT(first_mp == mp); 15221 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 15222 mp, 0, q, ip_ring)) != NULL) { 15223 if (curr_sqp == NULL) { 15224 curr_sqp = GET_SQUEUE(mp); 15225 ASSERT(cnt == 0); 15226 cnt++; 15227 head = tail = mp; 15228 } else if (curr_sqp == GET_SQUEUE(mp)) { 15229 ASSERT(tail != NULL); 15230 cnt++; 15231 tail->b_next = mp; 15232 tail = mp; 15233 } else { 15234 /* 15235 * A different squeue. Send the 15236 * chain for the previous squeue on 15237 * its way. This shouldn't happen 15238 * often unless interrupt binding 15239 * changes. 15240 */ 15241 IP_STAT(ipst, ip_input_multi_squeue); 15242 squeue_enter_chain(curr_sqp, head, 15243 tail, cnt, SQTAG_IP_INPUT); 15244 curr_sqp = GET_SQUEUE(mp); 15245 head = mp; 15246 tail = mp; 15247 cnt = 1; 15248 } 15249 } 15250 continue; 15251 case IPPROTO_UDP: 15252 ASSERT(first_mp == mp); 15253 ip_udp_input(q, mp, ipha, ire, ill); 15254 continue; 15255 case IPPROTO_SCTP: 15256 ASSERT(first_mp == mp); 15257 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 15258 q, dst); 15259 /* ire has been released by ip_sctp_input */ 15260 ire = NULL; 15261 continue; 15262 default: 15263 ip_proto_input(q, first_mp, ipha, ire, ill, B_FALSE); 15264 continue; 15265 } 15266 } 15267 15268 if (ire != NULL) 15269 ire_refrele(ire); 15270 15271 if (head != NULL) 15272 squeue_enter_chain(curr_sqp, head, tail, cnt, SQTAG_IP_INPUT); 15273 15274 /* 15275 * This code is there just to make netperf/ttcp look good. 15276 * 15277 * Its possible that after being in polling mode (and having cleared 15278 * the backlog), squeues have turned the interrupt frequency higher 15279 * to improve latency at the expense of more CPU utilization (less 15280 * packets per interrupts or more number of interrupts). Workloads 15281 * like ttcp/netperf do manage to tickle polling once in a while 15282 * but for the remaining time, stay in higher interrupt mode since 15283 * their packet arrival rate is pretty uniform and this shows up 15284 * as higher CPU utilization. Since people care about CPU utilization 15285 * while running netperf/ttcp, turn the interrupt frequency back to 15286 * normal/default if polling has not been used in ip_poll_normal_ticks. 15287 */ 15288 if (ip_ring != NULL && (ip_ring->rr_poll_state & ILL_POLLING)) { 15289 if (lbolt >= (ip_ring->rr_poll_time + ip_poll_normal_ticks)) { 15290 ip_ring->rr_poll_state &= ~ILL_POLLING; 15291 ip_ring->rr_blank(ip_ring->rr_handle, 15292 ip_ring->rr_normal_blank_time, 15293 ip_ring->rr_normal_pkt_cnt); 15294 } 15295 } 15296 15297 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15298 "ip_input_end: q %p (%S)", q, "end"); 15299 #undef rptr 15300 } 15301 15302 static void 15303 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 15304 t_uscalar_t err) 15305 { 15306 if (dl_err == DL_SYSERR) { 15307 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15308 "%s: %s failed: DL_SYSERR (errno %u)\n", 15309 ill->ill_name, dlpi_prim_str(prim), err); 15310 return; 15311 } 15312 15313 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15314 "%s: %s failed: %s\n", ill->ill_name, dlpi_prim_str(prim), 15315 dlpi_err_str(dl_err)); 15316 } 15317 15318 /* 15319 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 15320 * than DL_UNITDATA_IND messages. If we need to process this message 15321 * exclusively, we call qwriter_ip, in which case we also need to call 15322 * ill_refhold before that, since qwriter_ip does an ill_refrele. 15323 */ 15324 void 15325 ip_rput_dlpi(queue_t *q, mblk_t *mp) 15326 { 15327 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15328 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15329 ill_t *ill = (ill_t *)q->q_ptr; 15330 boolean_t pending; 15331 15332 ip1dbg(("ip_rput_dlpi")); 15333 if (dloa->dl_primitive == DL_ERROR_ACK) { 15334 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK %s (0x%x): " 15335 "%s (0x%x), unix %u\n", ill->ill_name, 15336 dlpi_prim_str(dlea->dl_error_primitive), 15337 dlea->dl_error_primitive, 15338 dlpi_err_str(dlea->dl_errno), 15339 dlea->dl_errno, 15340 dlea->dl_unix_errno)); 15341 } 15342 15343 /* 15344 * If we received an ACK but didn't send a request for it, then it 15345 * can't be part of any pending operation; discard up-front. 15346 */ 15347 switch (dloa->dl_primitive) { 15348 case DL_NOTIFY_IND: 15349 pending = B_TRUE; 15350 break; 15351 case DL_ERROR_ACK: 15352 pending = ill_dlpi_pending(ill, dlea->dl_error_primitive); 15353 break; 15354 case DL_OK_ACK: 15355 pending = ill_dlpi_pending(ill, dloa->dl_correct_primitive); 15356 break; 15357 case DL_INFO_ACK: 15358 pending = ill_dlpi_pending(ill, DL_INFO_REQ); 15359 break; 15360 case DL_BIND_ACK: 15361 pending = ill_dlpi_pending(ill, DL_BIND_REQ); 15362 break; 15363 case DL_PHYS_ADDR_ACK: 15364 pending = ill_dlpi_pending(ill, DL_PHYS_ADDR_REQ); 15365 break; 15366 case DL_NOTIFY_ACK: 15367 pending = ill_dlpi_pending(ill, DL_NOTIFY_REQ); 15368 break; 15369 case DL_CONTROL_ACK: 15370 pending = ill_dlpi_pending(ill, DL_CONTROL_REQ); 15371 break; 15372 case DL_CAPABILITY_ACK: 15373 pending = ill_dlpi_pending(ill, DL_CAPABILITY_REQ); 15374 break; 15375 default: 15376 /* Not a DLPI message we support or were expecting */ 15377 freemsg(mp); 15378 return; 15379 } 15380 15381 if (!pending) { 15382 freemsg(mp); 15383 return; 15384 } 15385 15386 switch (dloa->dl_primitive) { 15387 case DL_ERROR_ACK: 15388 if (dlea->dl_error_primitive == DL_UNBIND_REQ) { 15389 mutex_enter(&ill->ill_lock); 15390 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15391 cv_signal(&ill->ill_cv); 15392 mutex_exit(&ill->ill_lock); 15393 } 15394 break; 15395 15396 case DL_OK_ACK: 15397 ip1dbg(("ip_rput: DL_OK_ACK for %s\n", 15398 dlpi_prim_str((int)dloa->dl_correct_primitive))); 15399 switch (dloa->dl_correct_primitive) { 15400 case DL_UNBIND_REQ: 15401 mutex_enter(&ill->ill_lock); 15402 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15403 cv_signal(&ill->ill_cv); 15404 mutex_exit(&ill->ill_lock); 15405 break; 15406 15407 case DL_ENABMULTI_REQ: 15408 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15409 ill->ill_dlpi_multicast_state = IDS_OK; 15410 break; 15411 } 15412 break; 15413 default: 15414 break; 15415 } 15416 15417 /* 15418 * We know the message is one we're waiting for (or DL_NOTIFY_IND), 15419 * and we need to become writer to continue to process it. If it's not 15420 * a DL_NOTIFY_IND, we assume we're in the middle of an exclusive 15421 * operation and pass CUR_OP. If this isn't true, we'll end up doing 15422 * some work as part of the current exclusive operation that actually 15423 * is not part of it -- which is wrong, but better than the 15424 * alternative of deadlock (if NEW_OP is always used). Someday, we 15425 * should track which DLPI requests have ACKs that we wait on 15426 * synchronously so we can know whether to use CUR_OP or NEW_OP. 15427 * 15428 * As required by qwriter_ip(), we refhold the ill; it will refrele. 15429 * Since this is on the ill stream we unconditionally bump up the 15430 * refcount without doing ILL_CAN_LOOKUP(). 15431 */ 15432 ill_refhold(ill); 15433 if (dloa->dl_primitive == DL_NOTIFY_IND) 15434 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 15435 else 15436 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 15437 } 15438 15439 /* 15440 * Handling of DLPI messages that require exclusive access to the ipsq. 15441 * 15442 * Need to do ill_pending_mp_release on ioctl completion, which could 15443 * happen here. (along with mi_copy_done) 15444 */ 15445 /* ARGSUSED */ 15446 static void 15447 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15448 { 15449 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15450 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15451 int err = 0; 15452 ill_t *ill; 15453 ipif_t *ipif = NULL; 15454 mblk_t *mp1 = NULL; 15455 conn_t *connp = NULL; 15456 t_uscalar_t paddrreq; 15457 mblk_t *mp_hw; 15458 boolean_t success; 15459 boolean_t ioctl_aborted = B_FALSE; 15460 boolean_t log = B_TRUE; 15461 hook_nic_event_t *info; 15462 ip_stack_t *ipst; 15463 15464 ip1dbg(("ip_rput_dlpi_writer ..")); 15465 ill = (ill_t *)q->q_ptr; 15466 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 15467 15468 ASSERT(IAM_WRITER_ILL(ill)); 15469 15470 ipst = ill->ill_ipst; 15471 15472 /* 15473 * ipsq_pending_mp and ipsq_pending_ipif track each other. i.e. 15474 * both are null or non-null. However we can assert that only 15475 * after grabbing the ipsq_lock. So we don't make any assertion 15476 * here and in other places in the code. 15477 */ 15478 ipif = ipsq->ipsq_pending_ipif; 15479 /* 15480 * The current ioctl could have been aborted by the user and a new 15481 * ioctl to bring up another ill could have started. We could still 15482 * get a response from the driver later. 15483 */ 15484 if (ipif != NULL && ipif->ipif_ill != ill) 15485 ioctl_aborted = B_TRUE; 15486 15487 switch (dloa->dl_primitive) { 15488 case DL_ERROR_ACK: 15489 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 15490 dlpi_prim_str(dlea->dl_error_primitive))); 15491 15492 switch (dlea->dl_error_primitive) { 15493 case DL_PROMISCON_REQ: 15494 case DL_PROMISCOFF_REQ: 15495 case DL_DISABMULTI_REQ: 15496 case DL_UNBIND_REQ: 15497 case DL_ATTACH_REQ: 15498 case DL_INFO_REQ: 15499 ill_dlpi_done(ill, dlea->dl_error_primitive); 15500 break; 15501 case DL_NOTIFY_REQ: 15502 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15503 log = B_FALSE; 15504 break; 15505 case DL_PHYS_ADDR_REQ: 15506 /* 15507 * For IPv6 only, there are two additional 15508 * phys_addr_req's sent to the driver to get the 15509 * IPv6 token and lla. This allows IP to acquire 15510 * the hardware address format for a given interface 15511 * without having built in knowledge of the hardware 15512 * address. ill_phys_addr_pend keeps track of the last 15513 * DL_PAR sent so we know which response we are 15514 * dealing with. ill_dlpi_done will update 15515 * ill_phys_addr_pend when it sends the next req. 15516 * We don't complete the IOCTL until all three DL_PARs 15517 * have been attempted, so set *_len to 0 and break. 15518 */ 15519 paddrreq = ill->ill_phys_addr_pend; 15520 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15521 if (paddrreq == DL_IPV6_TOKEN) { 15522 ill->ill_token_length = 0; 15523 log = B_FALSE; 15524 break; 15525 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 15526 ill->ill_nd_lla_len = 0; 15527 log = B_FALSE; 15528 break; 15529 } 15530 /* 15531 * Something went wrong with the DL_PHYS_ADDR_REQ. 15532 * We presumably have an IOCTL hanging out waiting 15533 * for completion. Find it and complete the IOCTL 15534 * with the error noted. 15535 * However, ill_dl_phys was called on an ill queue 15536 * (from SIOCSLIFNAME), thus conn_pending_ill is not 15537 * set. But the ioctl is known to be pending on ill_wq. 15538 */ 15539 if (!ill->ill_ifname_pending) 15540 break; 15541 ill->ill_ifname_pending = 0; 15542 if (!ioctl_aborted) 15543 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15544 if (mp1 != NULL) { 15545 /* 15546 * This operation (SIOCSLIFNAME) must have 15547 * happened on the ill. Assert there is no conn 15548 */ 15549 ASSERT(connp == NULL); 15550 q = ill->ill_wq; 15551 } 15552 break; 15553 case DL_BIND_REQ: 15554 ill_dlpi_done(ill, DL_BIND_REQ); 15555 if (ill->ill_ifname_pending) 15556 break; 15557 /* 15558 * Something went wrong with the bind. We presumably 15559 * have an IOCTL hanging out waiting for completion. 15560 * Find it, take down the interface that was coming 15561 * up, and complete the IOCTL with the error noted. 15562 */ 15563 if (!ioctl_aborted) 15564 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15565 if (mp1 != NULL) { 15566 /* 15567 * This operation (SIOCSLIFFLAGS) must have 15568 * happened from a conn. 15569 */ 15570 ASSERT(connp != NULL); 15571 q = CONNP_TO_WQ(connp); 15572 if (ill->ill_move_in_progress) { 15573 ILL_CLEAR_MOVE(ill); 15574 } 15575 (void) ipif_down(ipif, NULL, NULL); 15576 /* error is set below the switch */ 15577 } 15578 break; 15579 case DL_ENABMULTI_REQ: 15580 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 15581 15582 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15583 ill->ill_dlpi_multicast_state = IDS_FAILED; 15584 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 15585 ipif_t *ipif; 15586 15587 printf("ip: joining multicasts failed (%d)" 15588 " on %s - will use link layer " 15589 "broadcasts for multicast\n", 15590 dlea->dl_errno, ill->ill_name); 15591 15592 /* 15593 * Set up the multicast mapping alone. 15594 * writer, so ok to access ill->ill_ipif 15595 * without any lock. 15596 */ 15597 ipif = ill->ill_ipif; 15598 mutex_enter(&ill->ill_phyint->phyint_lock); 15599 ill->ill_phyint->phyint_flags |= 15600 PHYI_MULTI_BCAST; 15601 mutex_exit(&ill->ill_phyint->phyint_lock); 15602 15603 if (!ill->ill_isv6) { 15604 (void) ipif_arp_setup_multicast(ipif, 15605 NULL); 15606 } else { 15607 (void) ipif_ndp_setup_multicast(ipif, 15608 NULL); 15609 } 15610 } 15611 freemsg(mp); /* Don't want to pass this up */ 15612 return; 15613 15614 case DL_CAPABILITY_REQ: 15615 case DL_CONTROL_REQ: 15616 ill_dlpi_done(ill, dlea->dl_error_primitive); 15617 ill->ill_dlpi_capab_state = IDS_FAILED; 15618 freemsg(mp); 15619 return; 15620 } 15621 /* 15622 * Note the error for IOCTL completion (mp1 is set when 15623 * ready to complete ioctl). If ill_ifname_pending_err is 15624 * set, an error occured during plumbing (ill_ifname_pending), 15625 * so we want to report that error. 15626 * 15627 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 15628 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 15629 * expected to get errack'd if the driver doesn't support 15630 * these flags (e.g. ethernet). log will be set to B_FALSE 15631 * if these error conditions are encountered. 15632 */ 15633 if (mp1 != NULL) { 15634 if (ill->ill_ifname_pending_err != 0) { 15635 err = ill->ill_ifname_pending_err; 15636 ill->ill_ifname_pending_err = 0; 15637 } else { 15638 err = dlea->dl_unix_errno ? 15639 dlea->dl_unix_errno : ENXIO; 15640 } 15641 /* 15642 * If we're plumbing an interface and an error hasn't already 15643 * been saved, set ill_ifname_pending_err to the error passed 15644 * up. Ignore the error if log is B_FALSE (see comment above). 15645 */ 15646 } else if (log && ill->ill_ifname_pending && 15647 ill->ill_ifname_pending_err == 0) { 15648 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 15649 dlea->dl_unix_errno : ENXIO; 15650 } 15651 15652 if (log) 15653 ip_dlpi_error(ill, dlea->dl_error_primitive, 15654 dlea->dl_errno, dlea->dl_unix_errno); 15655 break; 15656 case DL_CAPABILITY_ACK: 15657 /* Call a routine to handle this one. */ 15658 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 15659 ill_capability_ack(ill, mp); 15660 15661 /* 15662 * If the ack is due to renegotiation, we will need to send 15663 * a new CAPABILITY_REQ to start the renegotiation. 15664 */ 15665 if (ill->ill_capab_reneg) { 15666 ill->ill_capab_reneg = B_FALSE; 15667 ill_capability_probe(ill); 15668 } 15669 break; 15670 case DL_CONTROL_ACK: 15671 /* We treat all of these as "fire and forget" */ 15672 ill_dlpi_done(ill, DL_CONTROL_REQ); 15673 break; 15674 case DL_INFO_ACK: 15675 /* Call a routine to handle this one. */ 15676 ill_dlpi_done(ill, DL_INFO_REQ); 15677 ip_ll_subnet_defaults(ill, mp); 15678 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 15679 return; 15680 case DL_BIND_ACK: 15681 /* 15682 * We should have an IOCTL waiting on this unless 15683 * sent by ill_dl_phys, in which case just return 15684 */ 15685 ill_dlpi_done(ill, DL_BIND_REQ); 15686 if (ill->ill_ifname_pending) 15687 break; 15688 15689 if (!ioctl_aborted) 15690 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15691 if (mp1 == NULL) 15692 break; 15693 /* 15694 * Because mp1 was added by ill_dl_up(), and it always 15695 * passes a valid connp, connp must be valid here. 15696 */ 15697 ASSERT(connp != NULL); 15698 q = CONNP_TO_WQ(connp); 15699 15700 /* 15701 * We are exclusive. So nothing can change even after 15702 * we get the pending mp. If need be we can put it back 15703 * and restart, as in calling ipif_arp_up() below. 15704 */ 15705 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 15706 15707 mutex_enter(&ill->ill_lock); 15708 15709 ill->ill_dl_up = 1; 15710 15711 if ((info = ill->ill_nic_event_info) != NULL) { 15712 ip2dbg(("ip_rput_dlpi_writer: unexpected nic event %d " 15713 "attached for %s\n", info->hne_event, 15714 ill->ill_name)); 15715 if (info->hne_data != NULL) 15716 kmem_free(info->hne_data, info->hne_datalen); 15717 kmem_free(info, sizeof (hook_nic_event_t)); 15718 } 15719 15720 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 15721 if (info != NULL) { 15722 info->hne_nic = ill->ill_phyint->phyint_hook_ifindex; 15723 info->hne_lif = 0; 15724 info->hne_event = NE_UP; 15725 info->hne_data = NULL; 15726 info->hne_datalen = 0; 15727 info->hne_family = ill->ill_isv6 ? 15728 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 15729 } else 15730 ip2dbg(("ip_rput_dlpi_writer: could not attach UP nic " 15731 "event information for %s (ENOMEM)\n", 15732 ill->ill_name)); 15733 15734 ill->ill_nic_event_info = info; 15735 15736 mutex_exit(&ill->ill_lock); 15737 15738 /* 15739 * Now bring up the resolver; when that is complete, we'll 15740 * create IREs. Note that we intentionally mirror what 15741 * ipif_up() would have done, because we got here by way of 15742 * ill_dl_up(), which stopped ipif_up()'s processing. 15743 */ 15744 if (ill->ill_isv6) { 15745 /* 15746 * v6 interfaces. 15747 * Unlike ARP which has to do another bind 15748 * and attach, once we get here we are 15749 * done with NDP. Except in the case of 15750 * ILLF_XRESOLV, in which case we send an 15751 * AR_INTERFACE_UP to the external resolver. 15752 * If all goes well, the ioctl will complete 15753 * in ip_rput(). If there's an error, we 15754 * complete it here. 15755 */ 15756 if ((err = ipif_ndp_up(ipif)) == 0) { 15757 if (ill->ill_flags & ILLF_XRESOLV) { 15758 mutex_enter(&connp->conn_lock); 15759 mutex_enter(&ill->ill_lock); 15760 success = ipsq_pending_mp_add( 15761 connp, ipif, q, mp1, 0); 15762 mutex_exit(&ill->ill_lock); 15763 mutex_exit(&connp->conn_lock); 15764 if (success) { 15765 err = ipif_resolver_up(ipif, 15766 Res_act_initial); 15767 if (err == EINPROGRESS) { 15768 freemsg(mp); 15769 return; 15770 } 15771 ASSERT(err != 0); 15772 mp1 = ipsq_pending_mp_get(ipsq, 15773 &connp); 15774 ASSERT(mp1 != NULL); 15775 } else { 15776 /* conn has started closing */ 15777 err = EINTR; 15778 } 15779 } else { /* Non XRESOLV interface */ 15780 (void) ipif_resolver_up(ipif, 15781 Res_act_initial); 15782 err = ipif_up_done_v6(ipif); 15783 } 15784 } 15785 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 15786 /* 15787 * ARP and other v4 external resolvers. 15788 * Leave the pending mblk intact so that 15789 * the ioctl completes in ip_rput(). 15790 */ 15791 mutex_enter(&connp->conn_lock); 15792 mutex_enter(&ill->ill_lock); 15793 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 15794 mutex_exit(&ill->ill_lock); 15795 mutex_exit(&connp->conn_lock); 15796 if (success) { 15797 err = ipif_resolver_up(ipif, Res_act_initial); 15798 if (err == EINPROGRESS) { 15799 freemsg(mp); 15800 return; 15801 } 15802 ASSERT(err != 0); 15803 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15804 } else { 15805 /* The conn has started closing */ 15806 err = EINTR; 15807 } 15808 } else { 15809 /* 15810 * This one is complete. Reply to pending ioctl. 15811 */ 15812 (void) ipif_resolver_up(ipif, Res_act_initial); 15813 err = ipif_up_done(ipif); 15814 } 15815 15816 if ((err == 0) && (ill->ill_up_ipifs)) { 15817 err = ill_up_ipifs(ill, q, mp1); 15818 if (err == EINPROGRESS) { 15819 freemsg(mp); 15820 return; 15821 } 15822 } 15823 15824 if (ill->ill_up_ipifs) { 15825 ill_group_cleanup(ill); 15826 } 15827 15828 break; 15829 case DL_NOTIFY_IND: { 15830 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 15831 ire_t *ire; 15832 boolean_t need_ire_walk_v4 = B_FALSE; 15833 boolean_t need_ire_walk_v6 = B_FALSE; 15834 15835 switch (notify->dl_notification) { 15836 case DL_NOTE_PHYS_ADDR: 15837 err = ill_set_phys_addr(ill, mp); 15838 break; 15839 15840 case DL_NOTE_FASTPATH_FLUSH: 15841 ill_fastpath_flush(ill); 15842 break; 15843 15844 case DL_NOTE_SDU_SIZE: 15845 /* 15846 * Change the MTU size of the interface, of all 15847 * attached ipif's, and of all relevant ire's. The 15848 * new value's a uint32_t at notify->dl_data. 15849 * Mtu change Vs. new ire creation - protocol below. 15850 * 15851 * a Mark the ipif as IPIF_CHANGING. 15852 * b Set the new mtu in the ipif. 15853 * c Change the ire_max_frag on all affected ires 15854 * d Unmark the IPIF_CHANGING 15855 * 15856 * To see how the protocol works, assume an interface 15857 * route is also being added simultaneously by 15858 * ip_rt_add and let 'ipif' be the ipif referenced by 15859 * the ire. If the ire is created before step a, 15860 * it will be cleaned up by step c. If the ire is 15861 * created after step d, it will see the new value of 15862 * ipif_mtu. Any attempt to create the ire between 15863 * steps a to d will fail because of the IPIF_CHANGING 15864 * flag. Note that ire_create() is passed a pointer to 15865 * the ipif_mtu, and not the value. During ire_add 15866 * under the bucket lock, the ire_max_frag of the 15867 * new ire being created is set from the ipif/ire from 15868 * which it is being derived. 15869 */ 15870 mutex_enter(&ill->ill_lock); 15871 ill->ill_max_frag = (uint_t)notify->dl_data; 15872 15873 /* 15874 * If an SIOCSLIFLNKINFO has changed the ill_max_mtu 15875 * leave it alone 15876 */ 15877 if (ill->ill_mtu_userspecified) { 15878 mutex_exit(&ill->ill_lock); 15879 break; 15880 } 15881 ill->ill_max_mtu = ill->ill_max_frag; 15882 if (ill->ill_isv6) { 15883 if (ill->ill_max_mtu < IPV6_MIN_MTU) 15884 ill->ill_max_mtu = IPV6_MIN_MTU; 15885 } else { 15886 if (ill->ill_max_mtu < IP_MIN_MTU) 15887 ill->ill_max_mtu = IP_MIN_MTU; 15888 } 15889 for (ipif = ill->ill_ipif; ipif != NULL; 15890 ipif = ipif->ipif_next) { 15891 /* 15892 * Don't override the mtu if the user 15893 * has explicitly set it. 15894 */ 15895 if (ipif->ipif_flags & IPIF_FIXEDMTU) 15896 continue; 15897 ipif->ipif_mtu = (uint_t)notify->dl_data; 15898 if (ipif->ipif_isv6) 15899 ire = ipif_to_ire_v6(ipif); 15900 else 15901 ire = ipif_to_ire(ipif); 15902 if (ire != NULL) { 15903 ire->ire_max_frag = ipif->ipif_mtu; 15904 ire_refrele(ire); 15905 } 15906 if (ipif->ipif_flags & IPIF_UP) { 15907 if (ill->ill_isv6) 15908 need_ire_walk_v6 = B_TRUE; 15909 else 15910 need_ire_walk_v4 = B_TRUE; 15911 } 15912 } 15913 mutex_exit(&ill->ill_lock); 15914 if (need_ire_walk_v4) 15915 ire_walk_v4(ill_mtu_change, (char *)ill, 15916 ALL_ZONES, ipst); 15917 if (need_ire_walk_v6) 15918 ire_walk_v6(ill_mtu_change, (char *)ill, 15919 ALL_ZONES, ipst); 15920 break; 15921 case DL_NOTE_LINK_UP: 15922 case DL_NOTE_LINK_DOWN: { 15923 /* 15924 * We are writer. ill / phyint / ipsq assocs stable. 15925 * The RUNNING flag reflects the state of the link. 15926 */ 15927 phyint_t *phyint = ill->ill_phyint; 15928 uint64_t new_phyint_flags; 15929 boolean_t changed = B_FALSE; 15930 boolean_t went_up; 15931 15932 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 15933 mutex_enter(&phyint->phyint_lock); 15934 new_phyint_flags = went_up ? 15935 phyint->phyint_flags | PHYI_RUNNING : 15936 phyint->phyint_flags & ~PHYI_RUNNING; 15937 if (new_phyint_flags != phyint->phyint_flags) { 15938 phyint->phyint_flags = new_phyint_flags; 15939 changed = B_TRUE; 15940 } 15941 mutex_exit(&phyint->phyint_lock); 15942 /* 15943 * ill_restart_dad handles the DAD restart and routing 15944 * socket notification logic. 15945 */ 15946 if (changed) { 15947 ill_restart_dad(phyint->phyint_illv4, went_up); 15948 ill_restart_dad(phyint->phyint_illv6, went_up); 15949 } 15950 break; 15951 } 15952 case DL_NOTE_PROMISC_ON_PHYS: 15953 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 15954 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 15955 mutex_enter(&ill->ill_lock); 15956 ill->ill_promisc_on_phys = B_TRUE; 15957 mutex_exit(&ill->ill_lock); 15958 break; 15959 case DL_NOTE_PROMISC_OFF_PHYS: 15960 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 15961 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 15962 mutex_enter(&ill->ill_lock); 15963 ill->ill_promisc_on_phys = B_FALSE; 15964 mutex_exit(&ill->ill_lock); 15965 break; 15966 case DL_NOTE_CAPAB_RENEG: 15967 /* 15968 * Something changed on the driver side. 15969 * It wants us to renegotiate the capabilities 15970 * on this ill. One possible cause is the aggregation 15971 * interface under us where a port got added or 15972 * went away. 15973 * 15974 * If the capability negotiation is already done 15975 * or is in progress, reset the capabilities and 15976 * mark the ill's ill_capab_reneg to be B_TRUE, 15977 * so that when the ack comes back, we can start 15978 * the renegotiation process. 15979 * 15980 * Note that if ill_capab_reneg is already B_TRUE 15981 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case), 15982 * the capability resetting request has been sent 15983 * and the renegotiation has not been started yet; 15984 * nothing needs to be done in this case. 15985 */ 15986 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN) { 15987 ill_capability_reset(ill); 15988 ill->ill_capab_reneg = B_TRUE; 15989 } 15990 break; 15991 default: 15992 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 15993 "type 0x%x for DL_NOTIFY_IND\n", 15994 notify->dl_notification)); 15995 break; 15996 } 15997 15998 /* 15999 * As this is an asynchronous operation, we 16000 * should not call ill_dlpi_done 16001 */ 16002 break; 16003 } 16004 case DL_NOTIFY_ACK: { 16005 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 16006 16007 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 16008 ill->ill_note_link = 1; 16009 ill_dlpi_done(ill, DL_NOTIFY_REQ); 16010 break; 16011 } 16012 case DL_PHYS_ADDR_ACK: { 16013 /* 16014 * As part of plumbing the interface via SIOCSLIFNAME, 16015 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 16016 * whose answers we receive here. As each answer is received, 16017 * we call ill_dlpi_done() to dispatch the next request as 16018 * we're processing the current one. Once all answers have 16019 * been received, we use ipsq_pending_mp_get() to dequeue the 16020 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 16021 * is invoked from an ill queue, conn_oper_pending_ill is not 16022 * available, but we know the ioctl is pending on ill_wq.) 16023 */ 16024 uint_t paddrlen, paddroff; 16025 16026 paddrreq = ill->ill_phys_addr_pend; 16027 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 16028 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 16029 16030 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 16031 if (paddrreq == DL_IPV6_TOKEN) { 16032 /* 16033 * bcopy to low-order bits of ill_token 16034 * 16035 * XXX Temporary hack - currently, all known tokens 16036 * are 64 bits, so I'll cheat for the moment. 16037 */ 16038 bcopy(mp->b_rptr + paddroff, 16039 &ill->ill_token.s6_addr32[2], paddrlen); 16040 ill->ill_token_length = paddrlen; 16041 break; 16042 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 16043 ASSERT(ill->ill_nd_lla_mp == NULL); 16044 ill_set_ndmp(ill, mp, paddroff, paddrlen); 16045 mp = NULL; 16046 break; 16047 } 16048 16049 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 16050 ASSERT(ill->ill_phys_addr_mp == NULL); 16051 if (!ill->ill_ifname_pending) 16052 break; 16053 ill->ill_ifname_pending = 0; 16054 if (!ioctl_aborted) 16055 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16056 if (mp1 != NULL) { 16057 ASSERT(connp == NULL); 16058 q = ill->ill_wq; 16059 } 16060 /* 16061 * If any error acks received during the plumbing sequence, 16062 * ill_ifname_pending_err will be set. Break out and send up 16063 * the error to the pending ioctl. 16064 */ 16065 if (ill->ill_ifname_pending_err != 0) { 16066 err = ill->ill_ifname_pending_err; 16067 ill->ill_ifname_pending_err = 0; 16068 break; 16069 } 16070 16071 ill->ill_phys_addr_mp = mp; 16072 ill->ill_phys_addr = mp->b_rptr + paddroff; 16073 mp = NULL; 16074 16075 /* 16076 * If paddrlen is zero, the DLPI provider doesn't support 16077 * physical addresses. The other two tests were historical 16078 * workarounds for bugs in our former PPP implementation, but 16079 * now other things have grown dependencies on them -- e.g., 16080 * the tun module specifies a dl_addr_length of zero in its 16081 * DL_BIND_ACK, but then specifies an incorrect value in its 16082 * DL_PHYS_ADDR_ACK. These bogus checks need to be removed, 16083 * but only after careful testing ensures that all dependent 16084 * broken DLPI providers have been fixed. 16085 */ 16086 if (paddrlen == 0 || ill->ill_phys_addr_length == 0 || 16087 ill->ill_phys_addr_length == IP_ADDR_LEN) { 16088 ill->ill_phys_addr = NULL; 16089 } else if (paddrlen != ill->ill_phys_addr_length) { 16090 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 16091 paddrlen, ill->ill_phys_addr_length)); 16092 err = EINVAL; 16093 break; 16094 } 16095 16096 if (ill->ill_nd_lla_mp == NULL) { 16097 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 16098 err = ENOMEM; 16099 break; 16100 } 16101 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 16102 } 16103 16104 /* 16105 * Set the interface token. If the zeroth interface address 16106 * is unspecified, then set it to the link local address. 16107 */ 16108 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 16109 (void) ill_setdefaulttoken(ill); 16110 16111 ASSERT(ill->ill_ipif->ipif_id == 0); 16112 if (ipif != NULL && 16113 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 16114 (void) ipif_setlinklocal(ipif); 16115 } 16116 break; 16117 } 16118 case DL_OK_ACK: 16119 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 16120 dlpi_prim_str((int)dloa->dl_correct_primitive), 16121 dloa->dl_correct_primitive)); 16122 switch (dloa->dl_correct_primitive) { 16123 case DL_PROMISCON_REQ: 16124 case DL_PROMISCOFF_REQ: 16125 case DL_ENABMULTI_REQ: 16126 case DL_DISABMULTI_REQ: 16127 case DL_UNBIND_REQ: 16128 case DL_ATTACH_REQ: 16129 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16130 break; 16131 } 16132 break; 16133 default: 16134 break; 16135 } 16136 16137 freemsg(mp); 16138 if (mp1 != NULL) { 16139 /* 16140 * The operation must complete without EINPROGRESS 16141 * since ipsq_pending_mp_get() has removed the mblk 16142 * from ipsq_pending_mp. Otherwise, the operation 16143 * will be stuck forever in the ipsq. 16144 */ 16145 ASSERT(err != EINPROGRESS); 16146 16147 switch (ipsq->ipsq_current_ioctl) { 16148 case 0: 16149 ipsq_current_finish(ipsq); 16150 break; 16151 16152 case SIOCLIFADDIF: 16153 case SIOCSLIFNAME: 16154 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16155 break; 16156 16157 default: 16158 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16159 break; 16160 } 16161 } 16162 } 16163 16164 /* 16165 * ip_rput_other is called by ip_rput to handle messages modifying the global 16166 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 16167 */ 16168 /* ARGSUSED */ 16169 void 16170 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 16171 { 16172 ill_t *ill; 16173 struct iocblk *iocp; 16174 mblk_t *mp1; 16175 conn_t *connp = NULL; 16176 16177 ip1dbg(("ip_rput_other ")); 16178 ill = (ill_t *)q->q_ptr; 16179 /* 16180 * This routine is not a writer in the case of SIOCGTUNPARAM 16181 * in which case ipsq is NULL. 16182 */ 16183 if (ipsq != NULL) { 16184 ASSERT(IAM_WRITER_IPSQ(ipsq)); 16185 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 16186 } 16187 16188 switch (mp->b_datap->db_type) { 16189 case M_ERROR: 16190 case M_HANGUP: 16191 /* 16192 * The device has a problem. We force the ILL down. It can 16193 * be brought up again manually using SIOCSIFFLAGS (via 16194 * ifconfig or equivalent). 16195 */ 16196 ASSERT(ipsq != NULL); 16197 if (mp->b_rptr < mp->b_wptr) 16198 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 16199 if (ill->ill_error == 0) 16200 ill->ill_error = ENXIO; 16201 if (!ill_down_start(q, mp)) 16202 return; 16203 ipif_all_down_tail(ipsq, q, mp, NULL); 16204 break; 16205 case M_IOCACK: 16206 iocp = (struct iocblk *)mp->b_rptr; 16207 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 16208 switch (iocp->ioc_cmd) { 16209 case SIOCSTUNPARAM: 16210 case OSIOCSTUNPARAM: 16211 ASSERT(ipsq != NULL); 16212 /* 16213 * Finish socket ioctl passed through to tun. 16214 * We should have an IOCTL waiting on this. 16215 */ 16216 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16217 if (ill->ill_isv6) { 16218 struct iftun_req *ta; 16219 16220 /* 16221 * if a source or destination is 16222 * being set, try and set the link 16223 * local address for the tunnel 16224 */ 16225 ta = (struct iftun_req *)mp->b_cont-> 16226 b_cont->b_rptr; 16227 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 16228 ipif_set_tun_llink(ill, ta); 16229 } 16230 16231 } 16232 if (mp1 != NULL) { 16233 /* 16234 * Now copy back the b_next/b_prev used by 16235 * mi code for the mi_copy* functions. 16236 * See ip_sioctl_tunparam() for the reason. 16237 * Also protect against missing b_cont. 16238 */ 16239 if (mp->b_cont != NULL) { 16240 mp->b_cont->b_next = 16241 mp1->b_cont->b_next; 16242 mp->b_cont->b_prev = 16243 mp1->b_cont->b_prev; 16244 } 16245 inet_freemsg(mp1); 16246 ASSERT(connp != NULL); 16247 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16248 iocp->ioc_error, NO_COPYOUT, ipsq); 16249 } else { 16250 ASSERT(connp == NULL); 16251 putnext(q, mp); 16252 } 16253 break; 16254 case SIOCGTUNPARAM: 16255 case OSIOCGTUNPARAM: 16256 /* 16257 * This is really M_IOCDATA from the tunnel driver. 16258 * convert back and complete the ioctl. 16259 * We should have an IOCTL waiting on this. 16260 */ 16261 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 16262 if (mp1) { 16263 /* 16264 * Now copy back the b_next/b_prev used by 16265 * mi code for the mi_copy* functions. 16266 * See ip_sioctl_tunparam() for the reason. 16267 * Also protect against missing b_cont. 16268 */ 16269 if (mp->b_cont != NULL) { 16270 mp->b_cont->b_next = 16271 mp1->b_cont->b_next; 16272 mp->b_cont->b_prev = 16273 mp1->b_cont->b_prev; 16274 } 16275 inet_freemsg(mp1); 16276 if (iocp->ioc_error == 0) 16277 mp->b_datap->db_type = M_IOCDATA; 16278 ASSERT(connp != NULL); 16279 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16280 iocp->ioc_error, COPYOUT, NULL); 16281 } else { 16282 ASSERT(connp == NULL); 16283 putnext(q, mp); 16284 } 16285 break; 16286 default: 16287 break; 16288 } 16289 break; 16290 case M_IOCNAK: 16291 iocp = (struct iocblk *)mp->b_rptr; 16292 16293 switch (iocp->ioc_cmd) { 16294 int mode; 16295 16296 case DL_IOC_HDR_INFO: 16297 /* 16298 * If this was the first attempt turn of the 16299 * fastpath probing. 16300 */ 16301 mutex_enter(&ill->ill_lock); 16302 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 16303 ill->ill_dlpi_fastpath_state = IDS_FAILED; 16304 mutex_exit(&ill->ill_lock); 16305 ill_fastpath_nack(ill); 16306 ip1dbg(("ip_rput: DLPI fastpath off on " 16307 "interface %s\n", 16308 ill->ill_name)); 16309 } else { 16310 mutex_exit(&ill->ill_lock); 16311 } 16312 freemsg(mp); 16313 break; 16314 case SIOCSTUNPARAM: 16315 case OSIOCSTUNPARAM: 16316 ASSERT(ipsq != NULL); 16317 /* 16318 * Finish socket ioctl passed through to tun 16319 * We should have an IOCTL waiting on this. 16320 */ 16321 /* FALLTHRU */ 16322 case SIOCGTUNPARAM: 16323 case OSIOCGTUNPARAM: 16324 /* 16325 * This is really M_IOCDATA from the tunnel driver. 16326 * convert back and complete the ioctl. 16327 * We should have an IOCTL waiting on this. 16328 */ 16329 if (iocp->ioc_cmd == SIOCGTUNPARAM || 16330 iocp->ioc_cmd == OSIOCGTUNPARAM) { 16331 mp1 = ill_pending_mp_get(ill, &connp, 16332 iocp->ioc_id); 16333 mode = COPYOUT; 16334 ipsq = NULL; 16335 } else { 16336 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16337 mode = NO_COPYOUT; 16338 } 16339 if (mp1 != NULL) { 16340 /* 16341 * Now copy back the b_next/b_prev used by 16342 * mi code for the mi_copy* functions. 16343 * See ip_sioctl_tunparam() for the reason. 16344 * Also protect against missing b_cont. 16345 */ 16346 if (mp->b_cont != NULL) { 16347 mp->b_cont->b_next = 16348 mp1->b_cont->b_next; 16349 mp->b_cont->b_prev = 16350 mp1->b_cont->b_prev; 16351 } 16352 inet_freemsg(mp1); 16353 if (iocp->ioc_error == 0) 16354 iocp->ioc_error = EINVAL; 16355 ASSERT(connp != NULL); 16356 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16357 iocp->ioc_error, mode, ipsq); 16358 } else { 16359 ASSERT(connp == NULL); 16360 putnext(q, mp); 16361 } 16362 break; 16363 default: 16364 break; 16365 } 16366 default: 16367 break; 16368 } 16369 } 16370 16371 /* 16372 * NOTE : This function does not ire_refrele the ire argument passed in. 16373 * 16374 * IPQoS notes 16375 * IP policy is invoked twice for a forwarded packet, once on the read side 16376 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 16377 * enabled. An additional parameter, in_ill, has been added for this purpose. 16378 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 16379 * because ip_mroute drops this information. 16380 * 16381 */ 16382 void 16383 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 16384 { 16385 uint32_t old_pkt_len; 16386 uint32_t pkt_len; 16387 queue_t *q; 16388 uint32_t sum; 16389 #define rptr ((uchar_t *)ipha) 16390 uint32_t max_frag; 16391 uint32_t ill_index; 16392 ill_t *out_ill; 16393 mib2_ipIfStatsEntry_t *mibptr; 16394 ip_stack_t *ipst = ((ill_t *)(ire->ire_stq->q_ptr))->ill_ipst; 16395 16396 /* Get the ill_index of the incoming ILL */ 16397 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 16398 mibptr = (in_ill != NULL) ? in_ill->ill_ip_mib : &ipst->ips_ip_mib; 16399 16400 /* Initiate Read side IPPF processing */ 16401 if (IPP_ENABLED(IPP_FWD_IN, ipst)) { 16402 ip_process(IPP_FWD_IN, &mp, ill_index); 16403 if (mp == NULL) { 16404 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 16405 "during IPPF processing\n")); 16406 return; 16407 } 16408 } 16409 16410 /* Adjust the checksum to reflect the ttl decrement. */ 16411 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 16412 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 16413 16414 if (ipha->ipha_ttl-- <= 1) { 16415 if (ip_csum_hdr(ipha)) { 16416 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16417 goto drop_pkt; 16418 } 16419 /* 16420 * Note: ire_stq this will be NULL for multicast 16421 * datagrams using the long path through arp (the IRE 16422 * is not an IRE_CACHE). This should not cause 16423 * problems since we don't generate ICMP errors for 16424 * multicast packets. 16425 */ 16426 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16427 q = ire->ire_stq; 16428 if (q != NULL) { 16429 /* Sent by forwarding path, and router is global zone */ 16430 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED, 16431 GLOBAL_ZONEID, ipst); 16432 } else 16433 freemsg(mp); 16434 return; 16435 } 16436 16437 /* 16438 * Don't forward if the interface is down 16439 */ 16440 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 16441 BUMP_MIB(mibptr, ipIfStatsInDiscards); 16442 ip2dbg(("ip_rput_forward:interface is down\n")); 16443 goto drop_pkt; 16444 } 16445 16446 /* Get the ill_index of the outgoing ILL */ 16447 out_ill = ire_to_ill(ire); 16448 ill_index = out_ill->ill_phyint->phyint_ifindex; 16449 16450 DTRACE_PROBE4(ip4__forwarding__start, 16451 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16452 16453 FW_HOOKS(ipst->ips_ip4_forwarding_event, 16454 ipst->ips_ipv4firewall_forwarding, 16455 in_ill, out_ill, ipha, mp, mp, ipst); 16456 16457 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 16458 16459 if (mp == NULL) 16460 return; 16461 old_pkt_len = pkt_len = ntohs(ipha->ipha_length); 16462 16463 if (is_system_labeled()) { 16464 mblk_t *mp1; 16465 16466 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 16467 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16468 goto drop_pkt; 16469 } 16470 /* Size may have changed */ 16471 mp = mp1; 16472 ipha = (ipha_t *)mp->b_rptr; 16473 pkt_len = ntohs(ipha->ipha_length); 16474 } 16475 16476 /* Check if there are options to update */ 16477 if (!IS_SIMPLE_IPH(ipha)) { 16478 if (ip_csum_hdr(ipha)) { 16479 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16480 goto drop_pkt; 16481 } 16482 if (ip_rput_forward_options(mp, ipha, ire, ipst)) { 16483 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16484 return; 16485 } 16486 16487 ipha->ipha_hdr_checksum = 0; 16488 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 16489 } 16490 max_frag = ire->ire_max_frag; 16491 if (pkt_len > max_frag) { 16492 /* 16493 * It needs fragging on its way out. We haven't 16494 * verified the header checksum yet. Since we 16495 * are going to put a surely good checksum in the 16496 * outgoing header, we have to make sure that it 16497 * was good coming in. 16498 */ 16499 if (ip_csum_hdr(ipha)) { 16500 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16501 goto drop_pkt; 16502 } 16503 /* Initiate Write side IPPF processing */ 16504 if (IPP_ENABLED(IPP_FWD_OUT, ipst)) { 16505 ip_process(IPP_FWD_OUT, &mp, ill_index); 16506 if (mp == NULL) { 16507 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 16508 " during IPPF processing\n")); 16509 return; 16510 } 16511 } 16512 /* 16513 * Handle labeled packet resizing. 16514 * 16515 * If we have added a label, inform ip_wput_frag() of its 16516 * effect on the MTU for ICMP messages. 16517 */ 16518 if (pkt_len > old_pkt_len) { 16519 uint32_t secopt_size; 16520 16521 secopt_size = pkt_len - old_pkt_len; 16522 if (secopt_size < max_frag) 16523 max_frag -= secopt_size; 16524 } 16525 16526 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID, ipst); 16527 ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n")); 16528 return; 16529 } 16530 16531 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 16532 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16533 FW_HOOKS(ipst->ips_ip4_physical_out_event, 16534 ipst->ips_ipv4firewall_physical_out, 16535 NULL, out_ill, ipha, mp, mp, ipst); 16536 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 16537 if (mp == NULL) 16538 return; 16539 16540 mp->b_prev = (mblk_t *)IPP_FWD_OUT; 16541 ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n")); 16542 (void) ip_xmit_v4(mp, ire, NULL, B_FALSE); 16543 /* ip_xmit_v4 always consumes the packet */ 16544 return; 16545 16546 drop_pkt:; 16547 ip1dbg(("ip_rput_forward: drop pkt\n")); 16548 freemsg(mp); 16549 #undef rptr 16550 } 16551 16552 void 16553 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 16554 { 16555 ire_t *ire; 16556 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16557 16558 ASSERT(!ipif->ipif_isv6); 16559 /* 16560 * Find an IRE which matches the destination and the outgoing 16561 * queue in the cache table. All we need is an IRE_CACHE which 16562 * is pointing at ipif->ipif_ill. If it is part of some ill group, 16563 * then it is enough to have some IRE_CACHE in the group. 16564 */ 16565 if (ipif->ipif_flags & IPIF_POINTOPOINT) 16566 dst = ipif->ipif_pp_dst_addr; 16567 16568 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, MBLK_GETLABEL(mp), 16569 MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR, ipst); 16570 if (ire == NULL) { 16571 /* 16572 * Mark this packet to make it be delivered to 16573 * ip_rput_forward after the new ire has been 16574 * created. 16575 */ 16576 mp->b_prev = NULL; 16577 mp->b_next = mp; 16578 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 16579 NULL, 0, GLOBAL_ZONEID, &zero_info); 16580 } else { 16581 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 16582 IRE_REFRELE(ire); 16583 } 16584 } 16585 16586 /* Update any source route, record route or timestamp options */ 16587 static int 16588 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire, ip_stack_t *ipst) 16589 { 16590 ipoptp_t opts; 16591 uchar_t *opt; 16592 uint8_t optval; 16593 uint8_t optlen; 16594 ipaddr_t dst; 16595 uint32_t ts; 16596 ire_t *dst_ire = NULL; 16597 ire_t *tmp_ire = NULL; 16598 timestruc_t now; 16599 16600 ip2dbg(("ip_rput_forward_options\n")); 16601 dst = ipha->ipha_dst; 16602 for (optval = ipoptp_first(&opts, ipha); 16603 optval != IPOPT_EOL; 16604 optval = ipoptp_next(&opts)) { 16605 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 16606 opt = opts.ipoptp_cur; 16607 optlen = opts.ipoptp_len; 16608 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 16609 optval, opts.ipoptp_len)); 16610 switch (optval) { 16611 uint32_t off; 16612 case IPOPT_SSRR: 16613 case IPOPT_LSRR: 16614 /* Check if adminstratively disabled */ 16615 if (!ipst->ips_ip_forward_src_routed) { 16616 if (ire->ire_stq != NULL) { 16617 /* 16618 * Sent by forwarding path, and router 16619 * is global zone 16620 */ 16621 icmp_unreachable(ire->ire_stq, mp, 16622 ICMP_SOURCE_ROUTE_FAILED, 16623 GLOBAL_ZONEID, ipst); 16624 } else { 16625 ip0dbg(("ip_rput_forward_options: " 16626 "unable to send unreach\n")); 16627 freemsg(mp); 16628 } 16629 return (-1); 16630 } 16631 16632 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16633 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16634 if (dst_ire == NULL) { 16635 /* 16636 * Must be partial since ip_rput_options 16637 * checked for strict. 16638 */ 16639 break; 16640 } 16641 off = opt[IPOPT_OFFSET]; 16642 off--; 16643 redo_srr: 16644 if (optlen < IP_ADDR_LEN || 16645 off > optlen - IP_ADDR_LEN) { 16646 /* End of source route */ 16647 ip1dbg(( 16648 "ip_rput_forward_options: end of SR\n")); 16649 ire_refrele(dst_ire); 16650 break; 16651 } 16652 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16653 bcopy(&ire->ire_src_addr, (char *)opt + off, 16654 IP_ADDR_LEN); 16655 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 16656 ntohl(dst))); 16657 16658 /* 16659 * Check if our address is present more than 16660 * once as consecutive hops in source route. 16661 */ 16662 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16663 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16664 if (tmp_ire != NULL) { 16665 ire_refrele(tmp_ire); 16666 off += IP_ADDR_LEN; 16667 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16668 goto redo_srr; 16669 } 16670 ipha->ipha_dst = dst; 16671 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16672 ire_refrele(dst_ire); 16673 break; 16674 case IPOPT_RR: 16675 off = opt[IPOPT_OFFSET]; 16676 off--; 16677 if (optlen < IP_ADDR_LEN || 16678 off > optlen - IP_ADDR_LEN) { 16679 /* No more room - ignore */ 16680 ip1dbg(( 16681 "ip_rput_forward_options: end of RR\n")); 16682 break; 16683 } 16684 bcopy(&ire->ire_src_addr, (char *)opt + off, 16685 IP_ADDR_LEN); 16686 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16687 break; 16688 case IPOPT_TS: 16689 /* Insert timestamp if there is room */ 16690 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16691 case IPOPT_TS_TSONLY: 16692 off = IPOPT_TS_TIMELEN; 16693 break; 16694 case IPOPT_TS_PRESPEC: 16695 case IPOPT_TS_PRESPEC_RFC791: 16696 /* Verify that the address matched */ 16697 off = opt[IPOPT_OFFSET] - 1; 16698 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16699 dst_ire = ire_ctable_lookup(dst, 0, 16700 IRE_LOCAL, NULL, ALL_ZONES, NULL, 16701 MATCH_IRE_TYPE, ipst); 16702 if (dst_ire == NULL) { 16703 /* Not for us */ 16704 break; 16705 } 16706 ire_refrele(dst_ire); 16707 /* FALLTHRU */ 16708 case IPOPT_TS_TSANDADDR: 16709 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16710 break; 16711 default: 16712 /* 16713 * ip_*put_options should have already 16714 * dropped this packet. 16715 */ 16716 cmn_err(CE_PANIC, "ip_rput_forward_options: " 16717 "unknown IT - bug in ip_rput_options?\n"); 16718 return (0); /* Keep "lint" happy */ 16719 } 16720 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 16721 /* Increase overflow counter */ 16722 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 16723 opt[IPOPT_POS_OV_FLG] = 16724 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 16725 (off << 4)); 16726 break; 16727 } 16728 off = opt[IPOPT_OFFSET] - 1; 16729 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16730 case IPOPT_TS_PRESPEC: 16731 case IPOPT_TS_PRESPEC_RFC791: 16732 case IPOPT_TS_TSANDADDR: 16733 bcopy(&ire->ire_src_addr, 16734 (char *)opt + off, IP_ADDR_LEN); 16735 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16736 /* FALLTHRU */ 16737 case IPOPT_TS_TSONLY: 16738 off = opt[IPOPT_OFFSET] - 1; 16739 /* Compute # of milliseconds since midnight */ 16740 gethrestime(&now); 16741 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 16742 now.tv_nsec / (NANOSEC / MILLISEC); 16743 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 16744 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 16745 break; 16746 } 16747 break; 16748 } 16749 } 16750 return (0); 16751 } 16752 16753 /* 16754 * This is called after processing at least one of AH/ESP headers. 16755 * 16756 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 16757 * the actual, physical interface on which the packet was received, 16758 * but, when ip_strict_dst_multihoming is set to 1, could be the 16759 * interface which had the ipha_dst configured when the packet went 16760 * through ip_rput. The ill_index corresponding to the recv_ill 16761 * is saved in ipsec_in_rill_index 16762 * 16763 * NOTE2: The "ire" argument is only used in IPv4 cases. This function 16764 * cannot assume "ire" points to valid data for any IPv6 cases. 16765 */ 16766 void 16767 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 16768 { 16769 mblk_t *mp; 16770 ipaddr_t dst; 16771 in6_addr_t *v6dstp; 16772 ipha_t *ipha; 16773 ip6_t *ip6h; 16774 ipsec_in_t *ii; 16775 boolean_t ill_need_rele = B_FALSE; 16776 boolean_t rill_need_rele = B_FALSE; 16777 boolean_t ire_need_rele = B_FALSE; 16778 netstack_t *ns; 16779 ip_stack_t *ipst; 16780 16781 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 16782 ASSERT(ii->ipsec_in_ill_index != 0); 16783 ns = ii->ipsec_in_ns; 16784 ASSERT(ii->ipsec_in_ns != NULL); 16785 ipst = ns->netstack_ip; 16786 16787 mp = ipsec_mp->b_cont; 16788 ASSERT(mp != NULL); 16789 16790 16791 if (ill == NULL) { 16792 ASSERT(recv_ill == NULL); 16793 /* 16794 * We need to get the original queue on which ip_rput_local 16795 * or ip_rput_data_v6 was called. 16796 */ 16797 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 16798 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL, ipst); 16799 ill_need_rele = B_TRUE; 16800 16801 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 16802 recv_ill = ill_lookup_on_ifindex( 16803 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 16804 NULL, NULL, NULL, NULL, ipst); 16805 rill_need_rele = B_TRUE; 16806 } else { 16807 recv_ill = ill; 16808 } 16809 16810 if ((ill == NULL) || (recv_ill == NULL)) { 16811 ip0dbg(("ip_fanout_proto_again: interface " 16812 "disappeared\n")); 16813 if (ill != NULL) 16814 ill_refrele(ill); 16815 if (recv_ill != NULL) 16816 ill_refrele(recv_ill); 16817 freemsg(ipsec_mp); 16818 return; 16819 } 16820 } 16821 16822 ASSERT(ill != NULL && recv_ill != NULL); 16823 16824 if (mp->b_datap->db_type == M_CTL) { 16825 /* 16826 * AH/ESP is returning the ICMP message after 16827 * removing their headers. Fanout again till 16828 * it gets to the right protocol. 16829 */ 16830 if (ii->ipsec_in_v4) { 16831 icmph_t *icmph; 16832 int iph_hdr_length; 16833 int hdr_length; 16834 16835 ipha = (ipha_t *)mp->b_rptr; 16836 iph_hdr_length = IPH_HDR_LENGTH(ipha); 16837 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 16838 ipha = (ipha_t *)&icmph[1]; 16839 hdr_length = IPH_HDR_LENGTH(ipha); 16840 /* 16841 * icmp_inbound_error_fanout may need to do pullupmsg. 16842 * Reset the type to M_DATA. 16843 */ 16844 mp->b_datap->db_type = M_DATA; 16845 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 16846 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 16847 B_FALSE, ill, ii->ipsec_in_zoneid); 16848 } else { 16849 icmp6_t *icmp6; 16850 int hdr_length; 16851 16852 ip6h = (ip6_t *)mp->b_rptr; 16853 /* Don't call hdr_length_v6() unless you have to. */ 16854 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 16855 hdr_length = ip_hdr_length_v6(mp, ip6h); 16856 else 16857 hdr_length = IPV6_HDR_LEN; 16858 16859 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 16860 /* 16861 * icmp_inbound_error_fanout_v6 may need to do 16862 * pullupmsg. Reset the type to M_DATA. 16863 */ 16864 mp->b_datap->db_type = M_DATA; 16865 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 16866 ip6h, icmp6, ill, B_TRUE, ii->ipsec_in_zoneid); 16867 } 16868 if (ill_need_rele) 16869 ill_refrele(ill); 16870 if (rill_need_rele) 16871 ill_refrele(recv_ill); 16872 return; 16873 } 16874 16875 if (ii->ipsec_in_v4) { 16876 ipha = (ipha_t *)mp->b_rptr; 16877 dst = ipha->ipha_dst; 16878 if (CLASSD(dst)) { 16879 /* 16880 * Multicast has to be delivered to all streams. 16881 */ 16882 dst = INADDR_BROADCAST; 16883 } 16884 16885 if (ire == NULL) { 16886 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 16887 MBLK_GETLABEL(mp), ipst); 16888 if (ire == NULL) { 16889 if (ill_need_rele) 16890 ill_refrele(ill); 16891 if (rill_need_rele) 16892 ill_refrele(recv_ill); 16893 ip1dbg(("ip_fanout_proto_again: " 16894 "IRE not found")); 16895 freemsg(ipsec_mp); 16896 return; 16897 } 16898 ire_need_rele = B_TRUE; 16899 } 16900 16901 switch (ipha->ipha_protocol) { 16902 case IPPROTO_UDP: 16903 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 16904 recv_ill); 16905 if (ire_need_rele) 16906 ire_refrele(ire); 16907 break; 16908 case IPPROTO_TCP: 16909 if (!ire_need_rele) 16910 IRE_REFHOLD(ire); 16911 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 16912 ire, ipsec_mp, 0, ill->ill_rq, NULL); 16913 IRE_REFRELE(ire); 16914 if (mp != NULL) 16915 squeue_enter_chain(GET_SQUEUE(mp), mp, 16916 mp, 1, SQTAG_IP_PROTO_AGAIN); 16917 break; 16918 case IPPROTO_SCTP: 16919 if (!ire_need_rele) 16920 IRE_REFHOLD(ire); 16921 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 16922 ipsec_mp, 0, ill->ill_rq, dst); 16923 break; 16924 default: 16925 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 16926 recv_ill, B_FALSE); 16927 if (ire_need_rele) 16928 ire_refrele(ire); 16929 break; 16930 } 16931 } else { 16932 uint32_t rput_flags = 0; 16933 16934 ip6h = (ip6_t *)mp->b_rptr; 16935 v6dstp = &ip6h->ip6_dst; 16936 /* 16937 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 16938 * address. 16939 * 16940 * Currently, we don't store that state in the IPSEC_IN 16941 * message, and we may need to. 16942 */ 16943 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 16944 IP6_IN_LLMCAST : 0); 16945 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 16946 NULL, NULL); 16947 } 16948 if (ill_need_rele) 16949 ill_refrele(ill); 16950 if (rill_need_rele) 16951 ill_refrele(recv_ill); 16952 } 16953 16954 /* 16955 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 16956 * returns 'true' if there are still fragments left on the queue, in 16957 * which case we restart the timer. 16958 */ 16959 void 16960 ill_frag_timer(void *arg) 16961 { 16962 ill_t *ill = (ill_t *)arg; 16963 boolean_t frag_pending; 16964 ip_stack_t *ipst = ill->ill_ipst; 16965 16966 mutex_enter(&ill->ill_lock); 16967 ASSERT(!ill->ill_fragtimer_executing); 16968 if (ill->ill_state_flags & ILL_CONDEMNED) { 16969 ill->ill_frag_timer_id = 0; 16970 mutex_exit(&ill->ill_lock); 16971 return; 16972 } 16973 ill->ill_fragtimer_executing = 1; 16974 mutex_exit(&ill->ill_lock); 16975 16976 frag_pending = ill_frag_timeout(ill, ipst->ips_ip_g_frag_timeout); 16977 16978 /* 16979 * Restart the timer, if we have fragments pending or if someone 16980 * wanted us to be scheduled again. 16981 */ 16982 mutex_enter(&ill->ill_lock); 16983 ill->ill_fragtimer_executing = 0; 16984 ill->ill_frag_timer_id = 0; 16985 if (frag_pending || ill->ill_fragtimer_needrestart) 16986 ill_frag_timer_start(ill); 16987 mutex_exit(&ill->ill_lock); 16988 } 16989 16990 void 16991 ill_frag_timer_start(ill_t *ill) 16992 { 16993 ip_stack_t *ipst = ill->ill_ipst; 16994 16995 ASSERT(MUTEX_HELD(&ill->ill_lock)); 16996 16997 /* If the ill is closing or opening don't proceed */ 16998 if (ill->ill_state_flags & ILL_CONDEMNED) 16999 return; 17000 17001 if (ill->ill_fragtimer_executing) { 17002 /* 17003 * ill_frag_timer is currently executing. Just record the 17004 * the fact that we want the timer to be restarted. 17005 * ill_frag_timer will post a timeout before it returns, 17006 * ensuring it will be called again. 17007 */ 17008 ill->ill_fragtimer_needrestart = 1; 17009 return; 17010 } 17011 17012 if (ill->ill_frag_timer_id == 0) { 17013 /* 17014 * The timer is neither running nor is the timeout handler 17015 * executing. Post a timeout so that ill_frag_timer will be 17016 * called 17017 */ 17018 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 17019 MSEC_TO_TICK(ipst->ips_ip_g_frag_timo_ms >> 1)); 17020 ill->ill_fragtimer_needrestart = 0; 17021 } 17022 } 17023 17024 /* 17025 * This routine is needed for loopback when forwarding multicasts. 17026 * 17027 * IPQoS Notes: 17028 * IPPF processing is done in fanout routines. 17029 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 17030 * processing for IPsec packets is done when it comes back in clear. 17031 * NOTE : The callers of this function need to do the ire_refrele for the 17032 * ire that is being passed in. 17033 */ 17034 void 17035 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17036 ill_t *recv_ill, boolean_t esp_in_udp_packet) 17037 { 17038 ill_t *ill = (ill_t *)q->q_ptr; 17039 uint32_t sum; 17040 uint32_t u1; 17041 uint32_t u2; 17042 int hdr_length; 17043 boolean_t mctl_present; 17044 mblk_t *first_mp = mp; 17045 mblk_t *hada_mp = NULL; 17046 ipha_t *inner_ipha; 17047 ip_stack_t *ipst; 17048 17049 ASSERT(recv_ill != NULL); 17050 ipst = recv_ill->ill_ipst; 17051 17052 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 17053 "ip_rput_locl_start: q %p", q); 17054 17055 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17056 ASSERT(ill != NULL); 17057 17058 17059 #define rptr ((uchar_t *)ipha) 17060 #define iphs ((uint16_t *)ipha) 17061 17062 /* 17063 * no UDP or TCP packet should come here anymore. 17064 */ 17065 ASSERT(ipha->ipha_protocol != IPPROTO_TCP && 17066 ipha->ipha_protocol != IPPROTO_UDP); 17067 17068 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 17069 if (mctl_present && 17070 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 17071 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 17072 17073 /* 17074 * It's an IPsec accelerated packet. 17075 * Keep a pointer to the data attributes around until 17076 * we allocate the ipsec_info_t. 17077 */ 17078 IPSECHW_DEBUG(IPSECHW_PKT, 17079 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 17080 hada_mp = first_mp; 17081 hada_mp->b_cont = NULL; 17082 /* 17083 * Since it is accelerated, it comes directly from 17084 * the ill and the data attributes is followed by 17085 * the packet data. 17086 */ 17087 ASSERT(mp->b_datap->db_type != M_CTL); 17088 first_mp = mp; 17089 mctl_present = B_FALSE; 17090 } 17091 17092 /* 17093 * IF M_CTL is not present, then ipsec_in_is_secure 17094 * should return B_TRUE. There is a case where loopback 17095 * packets has an M_CTL in the front with all the 17096 * IPsec options set to IPSEC_PREF_NEVER - which means 17097 * ipsec_in_is_secure will return B_FALSE. As loopback 17098 * packets never comes here, it is safe to ASSERT the 17099 * following. 17100 */ 17101 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 17102 17103 /* 17104 * Also, we should never have an mctl_present if this is an 17105 * ESP-in-UDP packet. 17106 */ 17107 ASSERT(!mctl_present || !esp_in_udp_packet); 17108 17109 17110 /* u1 is # words of IP options */ 17111 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 17112 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 17113 17114 if (u1 || (!esp_in_udp_packet && !mctl_present)) { 17115 if (u1) { 17116 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 17117 if (hada_mp != NULL) 17118 freemsg(hada_mp); 17119 return; 17120 } 17121 } else { 17122 /* Check the IP header checksum. */ 17123 #define uph ((uint16_t *)ipha) 17124 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 17125 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 17126 #undef uph 17127 /* finish doing IP checksum */ 17128 sum = (sum & 0xFFFF) + (sum >> 16); 17129 sum = ~(sum + (sum >> 16)) & 0xFFFF; 17130 if (sum && sum != 0xFFFF) { 17131 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 17132 goto drop_pkt; 17133 } 17134 } 17135 } 17136 17137 /* 17138 * Count for SNMP of inbound packets for ire. As ip_proto_input 17139 * might be called more than once for secure packets, count only 17140 * the first time. 17141 */ 17142 if (!mctl_present) { 17143 UPDATE_IB_PKT_COUNT(ire); 17144 ire->ire_last_used_time = lbolt; 17145 } 17146 17147 /* Check for fragmentation offset. */ 17148 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 17149 u1 = u2 & (IPH_MF | IPH_OFFSET); 17150 if (u1) { 17151 /* 17152 * We re-assemble fragments before we do the AH/ESP 17153 * processing. Thus, M_CTL should not be present 17154 * while we are re-assembling. 17155 */ 17156 ASSERT(!mctl_present); 17157 ASSERT(first_mp == mp); 17158 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 17159 return; 17160 } 17161 /* 17162 * Make sure that first_mp points back to mp as 17163 * the mp we came in with could have changed in 17164 * ip_rput_fragment(). 17165 */ 17166 ipha = (ipha_t *)mp->b_rptr; 17167 first_mp = mp; 17168 } 17169 17170 /* 17171 * Clear hardware checksumming flag as it is currently only 17172 * used by TCP and UDP. 17173 */ 17174 DB_CKSUMFLAGS(mp) = 0; 17175 17176 /* Now we have a complete datagram, destined for this machine. */ 17177 u1 = IPH_HDR_LENGTH(ipha); 17178 switch (ipha->ipha_protocol) { 17179 case IPPROTO_ICMP: { 17180 ire_t *ire_zone; 17181 ilm_t *ilm; 17182 mblk_t *mp1; 17183 zoneid_t last_zoneid; 17184 17185 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(recv_ill)) { 17186 ASSERT(ire->ire_type == IRE_BROADCAST); 17187 /* 17188 * In the multicast case, applications may have joined 17189 * the group from different zones, so we need to deliver 17190 * the packet to each of them. Loop through the 17191 * multicast memberships structures (ilm) on the receive 17192 * ill and send a copy of the packet up each matching 17193 * one. However, we don't do this for multicasts sent on 17194 * the loopback interface (PHYI_LOOPBACK flag set) as 17195 * they must stay in the sender's zone. 17196 * 17197 * ilm_add_v6() ensures that ilms in the same zone are 17198 * contiguous in the ill_ilm list. We use this property 17199 * to avoid sending duplicates needed when two 17200 * applications in the same zone join the same group on 17201 * different logical interfaces: we ignore the ilm if 17202 * its zoneid is the same as the last matching one. 17203 * In addition, the sending of the packet for 17204 * ire_zoneid is delayed until all of the other ilms 17205 * have been exhausted. 17206 */ 17207 last_zoneid = -1; 17208 ILM_WALKER_HOLD(recv_ill); 17209 for (ilm = recv_ill->ill_ilm; ilm != NULL; 17210 ilm = ilm->ilm_next) { 17211 if ((ilm->ilm_flags & ILM_DELETED) || 17212 ipha->ipha_dst != ilm->ilm_addr || 17213 ilm->ilm_zoneid == last_zoneid || 17214 ilm->ilm_zoneid == ire->ire_zoneid || 17215 ilm->ilm_zoneid == ALL_ZONES || 17216 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 17217 continue; 17218 mp1 = ip_copymsg(first_mp); 17219 if (mp1 == NULL) 17220 continue; 17221 icmp_inbound(q, mp1, B_TRUE, ill, 17222 0, sum, mctl_present, B_TRUE, 17223 recv_ill, ilm->ilm_zoneid); 17224 last_zoneid = ilm->ilm_zoneid; 17225 } 17226 ILM_WALKER_RELE(recv_ill); 17227 } else if (ire->ire_type == IRE_BROADCAST) { 17228 /* 17229 * In the broadcast case, there may be many zones 17230 * which need a copy of the packet delivered to them. 17231 * There is one IRE_BROADCAST per broadcast address 17232 * and per zone; we walk those using a helper function. 17233 * In addition, the sending of the packet for ire is 17234 * delayed until all of the other ires have been 17235 * processed. 17236 */ 17237 IRB_REFHOLD(ire->ire_bucket); 17238 ire_zone = NULL; 17239 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 17240 ire)) != NULL) { 17241 mp1 = ip_copymsg(first_mp); 17242 if (mp1 == NULL) 17243 continue; 17244 17245 UPDATE_IB_PKT_COUNT(ire_zone); 17246 ire_zone->ire_last_used_time = lbolt; 17247 icmp_inbound(q, mp1, B_TRUE, ill, 17248 0, sum, mctl_present, B_TRUE, 17249 recv_ill, ire_zone->ire_zoneid); 17250 } 17251 IRB_REFRELE(ire->ire_bucket); 17252 } 17253 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 17254 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 17255 ire->ire_zoneid); 17256 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17257 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 17258 return; 17259 } 17260 case IPPROTO_IGMP: 17261 /* 17262 * If we are not willing to accept IGMP packets in clear, 17263 * then check with global policy. 17264 */ 17265 if (ipst->ips_igmp_accept_clear_messages == 0) { 17266 first_mp = ipsec_check_global_policy(first_mp, NULL, 17267 ipha, NULL, mctl_present, ipst->ips_netstack); 17268 if (first_mp == NULL) 17269 return; 17270 } 17271 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17272 freemsg(first_mp); 17273 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 17274 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17275 return; 17276 } 17277 if ((mp = igmp_input(q, mp, ill)) == NULL) { 17278 /* Bad packet - discarded by igmp_input */ 17279 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17280 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 17281 if (mctl_present) 17282 freeb(first_mp); 17283 return; 17284 } 17285 /* 17286 * igmp_input() may have returned the pulled up message. 17287 * So first_mp and ipha need to be reinitialized. 17288 */ 17289 ipha = (ipha_t *)mp->b_rptr; 17290 if (mctl_present) 17291 first_mp->b_cont = mp; 17292 else 17293 first_mp = mp; 17294 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17295 connf_head != NULL) { 17296 /* No user-level listener for IGMP packets */ 17297 goto drop_pkt; 17298 } 17299 /* deliver to local raw users */ 17300 break; 17301 case IPPROTO_PIM: 17302 /* 17303 * If we are not willing to accept PIM packets in clear, 17304 * then check with global policy. 17305 */ 17306 if (ipst->ips_pim_accept_clear_messages == 0) { 17307 first_mp = ipsec_check_global_policy(first_mp, NULL, 17308 ipha, NULL, mctl_present, ipst->ips_netstack); 17309 if (first_mp == NULL) 17310 return; 17311 } 17312 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17313 freemsg(first_mp); 17314 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 17315 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17316 return; 17317 } 17318 if (pim_input(q, mp, ill) != 0) { 17319 /* Bad packet - discarded by pim_input */ 17320 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17321 "ip_rput_locl_end: q %p (%S)", q, "pim"); 17322 if (mctl_present) 17323 freeb(first_mp); 17324 return; 17325 } 17326 17327 /* 17328 * pim_input() may have pulled up the message so ipha needs to 17329 * be reinitialized. 17330 */ 17331 ipha = (ipha_t *)mp->b_rptr; 17332 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17333 connf_head != NULL) { 17334 /* No user-level listener for PIM packets */ 17335 goto drop_pkt; 17336 } 17337 /* deliver to local raw users */ 17338 break; 17339 case IPPROTO_ENCAP: 17340 /* 17341 * Handle self-encapsulated packets (IP-in-IP where 17342 * the inner addresses == the outer addresses). 17343 */ 17344 hdr_length = IPH_HDR_LENGTH(ipha); 17345 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 17346 mp->b_wptr) { 17347 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 17348 sizeof (ipha_t) - mp->b_rptr)) { 17349 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17350 freemsg(first_mp); 17351 return; 17352 } 17353 ipha = (ipha_t *)mp->b_rptr; 17354 } 17355 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 17356 /* 17357 * Check the sanity of the inner IP header. 17358 */ 17359 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 17360 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17361 freemsg(first_mp); 17362 return; 17363 } 17364 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 17365 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17366 freemsg(first_mp); 17367 return; 17368 } 17369 if (inner_ipha->ipha_src == ipha->ipha_src && 17370 inner_ipha->ipha_dst == ipha->ipha_dst) { 17371 ipsec_in_t *ii; 17372 17373 /* 17374 * Self-encapsulated tunnel packet. Remove 17375 * the outer IP header and fanout again. 17376 * We also need to make sure that the inner 17377 * header is pulled up until options. 17378 */ 17379 mp->b_rptr = (uchar_t *)inner_ipha; 17380 ipha = inner_ipha; 17381 hdr_length = IPH_HDR_LENGTH(ipha); 17382 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 17383 if (!pullupmsg(mp, (uchar_t *)ipha + 17384 + hdr_length - mp->b_rptr)) { 17385 freemsg(first_mp); 17386 return; 17387 } 17388 ipha = (ipha_t *)mp->b_rptr; 17389 } 17390 if (!mctl_present) { 17391 ASSERT(first_mp == mp); 17392 /* 17393 * This means that somebody is sending 17394 * Self-encapsualted packets without AH/ESP. 17395 * If AH/ESP was present, we would have already 17396 * allocated the first_mp. 17397 */ 17398 first_mp = ipsec_in_alloc(B_TRUE, 17399 ipst->ips_netstack); 17400 if (first_mp == NULL) { 17401 ip1dbg(("ip_proto_input: IPSEC_IN " 17402 "allocation failure.\n")); 17403 BUMP_MIB(ill->ill_ip_mib, 17404 ipIfStatsInDiscards); 17405 freemsg(mp); 17406 return; 17407 } 17408 first_mp->b_cont = mp; 17409 } 17410 /* 17411 * We generally store the ill_index if we need to 17412 * do IPsec processing as we lose the ill queue when 17413 * we come back. But in this case, we never should 17414 * have to store the ill_index here as it should have 17415 * been stored previously when we processed the 17416 * AH/ESP header in this routine or for non-ipsec 17417 * cases, we still have the queue. But for some bad 17418 * packets from the wire, we can get to IPsec after 17419 * this and we better store the index for that case. 17420 */ 17421 ill = (ill_t *)q->q_ptr; 17422 ii = (ipsec_in_t *)first_mp->b_rptr; 17423 ii->ipsec_in_ill_index = 17424 ill->ill_phyint->phyint_ifindex; 17425 ii->ipsec_in_rill_index = 17426 recv_ill->ill_phyint->phyint_ifindex; 17427 if (ii->ipsec_in_decaps) { 17428 /* 17429 * This packet is self-encapsulated multiple 17430 * times. We don't want to recurse infinitely. 17431 * To keep it simple, drop the packet. 17432 */ 17433 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17434 freemsg(first_mp); 17435 return; 17436 } 17437 ii->ipsec_in_decaps = B_TRUE; 17438 ip_fanout_proto_again(first_mp, recv_ill, recv_ill, 17439 ire); 17440 return; 17441 } 17442 break; 17443 case IPPROTO_AH: 17444 case IPPROTO_ESP: { 17445 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 17446 17447 /* 17448 * Fast path for AH/ESP. If this is the first time 17449 * we are sending a datagram to AH/ESP, allocate 17450 * a IPSEC_IN message and prepend it. Otherwise, 17451 * just fanout. 17452 */ 17453 17454 int ipsec_rc; 17455 ipsec_in_t *ii; 17456 netstack_t *ns = ipst->ips_netstack; 17457 17458 IP_STAT(ipst, ipsec_proto_ahesp); 17459 if (!mctl_present) { 17460 ASSERT(first_mp == mp); 17461 first_mp = ipsec_in_alloc(B_TRUE, ns); 17462 if (first_mp == NULL) { 17463 ip1dbg(("ip_proto_input: IPSEC_IN " 17464 "allocation failure.\n")); 17465 freemsg(hada_mp); /* okay ifnull */ 17466 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17467 freemsg(mp); 17468 return; 17469 } 17470 /* 17471 * Store the ill_index so that when we come back 17472 * from IPsec we ride on the same queue. 17473 */ 17474 ill = (ill_t *)q->q_ptr; 17475 ii = (ipsec_in_t *)first_mp->b_rptr; 17476 ii->ipsec_in_ill_index = 17477 ill->ill_phyint->phyint_ifindex; 17478 ii->ipsec_in_rill_index = 17479 recv_ill->ill_phyint->phyint_ifindex; 17480 first_mp->b_cont = mp; 17481 /* 17482 * Cache hardware acceleration info. 17483 */ 17484 if (hada_mp != NULL) { 17485 IPSECHW_DEBUG(IPSECHW_PKT, 17486 ("ip_rput_local: caching data attr.\n")); 17487 ii->ipsec_in_accelerated = B_TRUE; 17488 ii->ipsec_in_da = hada_mp; 17489 hada_mp = NULL; 17490 } 17491 } else { 17492 ii = (ipsec_in_t *)first_mp->b_rptr; 17493 } 17494 17495 if (!ipsec_loaded(ipss)) { 17496 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 17497 ire->ire_zoneid, ipst); 17498 return; 17499 } 17500 17501 ns = ipst->ips_netstack; 17502 /* select inbound SA and have IPsec process the pkt */ 17503 if (ipha->ipha_protocol == IPPROTO_ESP) { 17504 esph_t *esph = ipsec_inbound_esp_sa(first_mp, ns); 17505 boolean_t esp_in_udp_sa; 17506 if (esph == NULL) 17507 return; 17508 ASSERT(ii->ipsec_in_esp_sa != NULL); 17509 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 17510 esp_in_udp_sa = ((ii->ipsec_in_esp_sa->ipsa_flags & 17511 IPSA_F_NATT) != 0); 17512 /* 17513 * The following is a fancy, but quick, way of saying: 17514 * ESP-in-UDP SA and Raw ESP packet --> drop 17515 * OR 17516 * ESP SA and ESP-in-UDP packet --> drop 17517 */ 17518 if (esp_in_udp_sa != esp_in_udp_packet) { 17519 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17520 ip_drop_packet(first_mp, B_TRUE, ill, NULL, 17521 DROPPER(ns->netstack_ipsec, ipds_esp_no_sa), 17522 &ns->netstack_ipsec->ipsec_dropper); 17523 return; 17524 } 17525 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 17526 first_mp, esph); 17527 } else { 17528 ah_t *ah = ipsec_inbound_ah_sa(first_mp, ns); 17529 if (ah == NULL) 17530 return; 17531 ASSERT(ii->ipsec_in_ah_sa != NULL); 17532 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 17533 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 17534 first_mp, ah); 17535 } 17536 17537 switch (ipsec_rc) { 17538 case IPSEC_STATUS_SUCCESS: 17539 break; 17540 case IPSEC_STATUS_FAILED: 17541 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17542 /* FALLTHRU */ 17543 case IPSEC_STATUS_PENDING: 17544 return; 17545 } 17546 /* we're done with IPsec processing, send it up */ 17547 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 17548 return; 17549 } 17550 default: 17551 break; 17552 } 17553 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 17554 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 17555 ire->ire_zoneid)); 17556 goto drop_pkt; 17557 } 17558 /* 17559 * Handle protocols with which IP is less intimate. There 17560 * can be more than one stream bound to a particular 17561 * protocol. When this is the case, each one gets a copy 17562 * of any incoming packets. 17563 */ 17564 ip_fanout_proto(q, first_mp, ill, ipha, 17565 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 17566 B_TRUE, recv_ill, ire->ire_zoneid); 17567 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17568 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 17569 return; 17570 17571 drop_pkt: 17572 freemsg(first_mp); 17573 if (hada_mp != NULL) 17574 freeb(hada_mp); 17575 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17576 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 17577 #undef rptr 17578 #undef iphs 17579 17580 } 17581 17582 /* 17583 * Update any source route, record route or timestamp options. 17584 * Check that we are at end of strict source route. 17585 * The options have already been checked for sanity in ip_rput_options(). 17586 */ 17587 static boolean_t 17588 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17589 ip_stack_t *ipst) 17590 { 17591 ipoptp_t opts; 17592 uchar_t *opt; 17593 uint8_t optval; 17594 uint8_t optlen; 17595 ipaddr_t dst; 17596 uint32_t ts; 17597 ire_t *dst_ire; 17598 timestruc_t now; 17599 zoneid_t zoneid; 17600 ill_t *ill; 17601 17602 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17603 17604 ip2dbg(("ip_rput_local_options\n")); 17605 17606 for (optval = ipoptp_first(&opts, ipha); 17607 optval != IPOPT_EOL; 17608 optval = ipoptp_next(&opts)) { 17609 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17610 opt = opts.ipoptp_cur; 17611 optlen = opts.ipoptp_len; 17612 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 17613 optval, optlen)); 17614 switch (optval) { 17615 uint32_t off; 17616 case IPOPT_SSRR: 17617 case IPOPT_LSRR: 17618 off = opt[IPOPT_OFFSET]; 17619 off--; 17620 if (optlen < IP_ADDR_LEN || 17621 off > optlen - IP_ADDR_LEN) { 17622 /* End of source route */ 17623 ip1dbg(("ip_rput_local_options: end of SR\n")); 17624 break; 17625 } 17626 /* 17627 * This will only happen if two consecutive entries 17628 * in the source route contains our address or if 17629 * it is a packet with a loose source route which 17630 * reaches us before consuming the whole source route 17631 */ 17632 ip1dbg(("ip_rput_local_options: not end of SR\n")); 17633 if (optval == IPOPT_SSRR) { 17634 goto bad_src_route; 17635 } 17636 /* 17637 * Hack: instead of dropping the packet truncate the 17638 * source route to what has been used by filling the 17639 * rest with IPOPT_NOP. 17640 */ 17641 opt[IPOPT_OLEN] = (uint8_t)off; 17642 while (off < optlen) { 17643 opt[off++] = IPOPT_NOP; 17644 } 17645 break; 17646 case IPOPT_RR: 17647 off = opt[IPOPT_OFFSET]; 17648 off--; 17649 if (optlen < IP_ADDR_LEN || 17650 off > optlen - IP_ADDR_LEN) { 17651 /* No more room - ignore */ 17652 ip1dbg(( 17653 "ip_rput_local_options: end of RR\n")); 17654 break; 17655 } 17656 bcopy(&ire->ire_src_addr, (char *)opt + off, 17657 IP_ADDR_LEN); 17658 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17659 break; 17660 case IPOPT_TS: 17661 /* Insert timestamp if there is romm */ 17662 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17663 case IPOPT_TS_TSONLY: 17664 off = IPOPT_TS_TIMELEN; 17665 break; 17666 case IPOPT_TS_PRESPEC: 17667 case IPOPT_TS_PRESPEC_RFC791: 17668 /* Verify that the address matched */ 17669 off = opt[IPOPT_OFFSET] - 1; 17670 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17671 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17672 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 17673 ipst); 17674 if (dst_ire == NULL) { 17675 /* Not for us */ 17676 break; 17677 } 17678 ire_refrele(dst_ire); 17679 /* FALLTHRU */ 17680 case IPOPT_TS_TSANDADDR: 17681 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17682 break; 17683 default: 17684 /* 17685 * ip_*put_options should have already 17686 * dropped this packet. 17687 */ 17688 cmn_err(CE_PANIC, "ip_rput_local_options: " 17689 "unknown IT - bug in ip_rput_options?\n"); 17690 return (B_TRUE); /* Keep "lint" happy */ 17691 } 17692 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 17693 /* Increase overflow counter */ 17694 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 17695 opt[IPOPT_POS_OV_FLG] = 17696 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 17697 (off << 4)); 17698 break; 17699 } 17700 off = opt[IPOPT_OFFSET] - 1; 17701 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17702 case IPOPT_TS_PRESPEC: 17703 case IPOPT_TS_PRESPEC_RFC791: 17704 case IPOPT_TS_TSANDADDR: 17705 bcopy(&ire->ire_src_addr, (char *)opt + off, 17706 IP_ADDR_LEN); 17707 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17708 /* FALLTHRU */ 17709 case IPOPT_TS_TSONLY: 17710 off = opt[IPOPT_OFFSET] - 1; 17711 /* Compute # of milliseconds since midnight */ 17712 gethrestime(&now); 17713 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 17714 now.tv_nsec / (NANOSEC / MILLISEC); 17715 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 17716 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 17717 break; 17718 } 17719 break; 17720 } 17721 } 17722 return (B_TRUE); 17723 17724 bad_src_route: 17725 q = WR(q); 17726 if (q->q_next != NULL) 17727 ill = q->q_ptr; 17728 else 17729 ill = NULL; 17730 17731 /* make sure we clear any indication of a hardware checksum */ 17732 DB_CKSUMFLAGS(mp) = 0; 17733 zoneid = ipif_lookup_addr_zoneid(ipha->ipha_dst, ill, ipst); 17734 if (zoneid == ALL_ZONES) 17735 freemsg(mp); 17736 else 17737 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 17738 return (B_FALSE); 17739 17740 } 17741 17742 /* 17743 * Process IP options in an inbound packet. If an option affects the 17744 * effective destination address, return the next hop address via dstp. 17745 * Returns -1 if something fails in which case an ICMP error has been sent 17746 * and mp freed. 17747 */ 17748 static int 17749 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp, 17750 ip_stack_t *ipst) 17751 { 17752 ipoptp_t opts; 17753 uchar_t *opt; 17754 uint8_t optval; 17755 uint8_t optlen; 17756 ipaddr_t dst; 17757 intptr_t code = 0; 17758 ire_t *ire = NULL; 17759 zoneid_t zoneid; 17760 ill_t *ill; 17761 17762 ip2dbg(("ip_rput_options\n")); 17763 dst = ipha->ipha_dst; 17764 for (optval = ipoptp_first(&opts, ipha); 17765 optval != IPOPT_EOL; 17766 optval = ipoptp_next(&opts)) { 17767 opt = opts.ipoptp_cur; 17768 optlen = opts.ipoptp_len; 17769 ip2dbg(("ip_rput_options: opt %d, len %d\n", 17770 optval, optlen)); 17771 /* 17772 * Note: we need to verify the checksum before we 17773 * modify anything thus this routine only extracts the next 17774 * hop dst from any source route. 17775 */ 17776 switch (optval) { 17777 uint32_t off; 17778 case IPOPT_SSRR: 17779 case IPOPT_LSRR: 17780 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17781 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17782 if (ire == NULL) { 17783 if (optval == IPOPT_SSRR) { 17784 ip1dbg(("ip_rput_options: not next" 17785 " strict source route 0x%x\n", 17786 ntohl(dst))); 17787 code = (char *)&ipha->ipha_dst - 17788 (char *)ipha; 17789 goto param_prob; /* RouterReq's */ 17790 } 17791 ip2dbg(("ip_rput_options: " 17792 "not next source route 0x%x\n", 17793 ntohl(dst))); 17794 break; 17795 } 17796 ire_refrele(ire); 17797 17798 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17799 ip1dbg(( 17800 "ip_rput_options: bad option offset\n")); 17801 code = (char *)&opt[IPOPT_OLEN] - 17802 (char *)ipha; 17803 goto param_prob; 17804 } 17805 off = opt[IPOPT_OFFSET]; 17806 off--; 17807 redo_srr: 17808 if (optlen < IP_ADDR_LEN || 17809 off > optlen - IP_ADDR_LEN) { 17810 /* End of source route */ 17811 ip1dbg(("ip_rput_options: end of SR\n")); 17812 break; 17813 } 17814 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17815 ip1dbg(("ip_rput_options: next hop 0x%x\n", 17816 ntohl(dst))); 17817 17818 /* 17819 * Check if our address is present more than 17820 * once as consecutive hops in source route. 17821 * XXX verify per-interface ip_forwarding 17822 * for source route? 17823 */ 17824 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17825 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17826 17827 if (ire != NULL) { 17828 ire_refrele(ire); 17829 off += IP_ADDR_LEN; 17830 goto redo_srr; 17831 } 17832 17833 if (dst == htonl(INADDR_LOOPBACK)) { 17834 ip1dbg(("ip_rput_options: loopback addr in " 17835 "source route!\n")); 17836 goto bad_src_route; 17837 } 17838 /* 17839 * For strict: verify that dst is directly 17840 * reachable. 17841 */ 17842 if (optval == IPOPT_SSRR) { 17843 ire = ire_ftable_lookup(dst, 0, 0, 17844 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 17845 MBLK_GETLABEL(mp), 17846 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 17847 if (ire == NULL) { 17848 ip1dbg(("ip_rput_options: SSRR not " 17849 "directly reachable: 0x%x\n", 17850 ntohl(dst))); 17851 goto bad_src_route; 17852 } 17853 ire_refrele(ire); 17854 } 17855 /* 17856 * Defer update of the offset and the record route 17857 * until the packet is forwarded. 17858 */ 17859 break; 17860 case IPOPT_RR: 17861 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17862 ip1dbg(( 17863 "ip_rput_options: bad option offset\n")); 17864 code = (char *)&opt[IPOPT_OLEN] - 17865 (char *)ipha; 17866 goto param_prob; 17867 } 17868 break; 17869 case IPOPT_TS: 17870 /* 17871 * Verify that length >= 5 and that there is either 17872 * room for another timestamp or that the overflow 17873 * counter is not maxed out. 17874 */ 17875 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 17876 if (optlen < IPOPT_MINLEN_IT) { 17877 goto param_prob; 17878 } 17879 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17880 ip1dbg(( 17881 "ip_rput_options: bad option offset\n")); 17882 code = (char *)&opt[IPOPT_OFFSET] - 17883 (char *)ipha; 17884 goto param_prob; 17885 } 17886 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17887 case IPOPT_TS_TSONLY: 17888 off = IPOPT_TS_TIMELEN; 17889 break; 17890 case IPOPT_TS_TSANDADDR: 17891 case IPOPT_TS_PRESPEC: 17892 case IPOPT_TS_PRESPEC_RFC791: 17893 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17894 break; 17895 default: 17896 code = (char *)&opt[IPOPT_POS_OV_FLG] - 17897 (char *)ipha; 17898 goto param_prob; 17899 } 17900 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 17901 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 17902 /* 17903 * No room and the overflow counter is 15 17904 * already. 17905 */ 17906 goto param_prob; 17907 } 17908 break; 17909 } 17910 } 17911 17912 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 17913 *dstp = dst; 17914 return (0); 17915 } 17916 17917 ip1dbg(("ip_rput_options: error processing IP options.")); 17918 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 17919 17920 param_prob: 17921 q = WR(q); 17922 if (q->q_next != NULL) 17923 ill = q->q_ptr; 17924 else 17925 ill = NULL; 17926 17927 /* make sure we clear any indication of a hardware checksum */ 17928 DB_CKSUMFLAGS(mp) = 0; 17929 /* Don't know whether this is for non-global or global/forwarding */ 17930 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 17931 if (zoneid == ALL_ZONES) 17932 freemsg(mp); 17933 else 17934 icmp_param_problem(q, mp, (uint8_t)code, zoneid, ipst); 17935 return (-1); 17936 17937 bad_src_route: 17938 q = WR(q); 17939 if (q->q_next != NULL) 17940 ill = q->q_ptr; 17941 else 17942 ill = NULL; 17943 17944 /* make sure we clear any indication of a hardware checksum */ 17945 DB_CKSUMFLAGS(mp) = 0; 17946 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 17947 if (zoneid == ALL_ZONES) 17948 freemsg(mp); 17949 else 17950 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 17951 return (-1); 17952 } 17953 17954 /* 17955 * IP & ICMP info in >=14 msg's ... 17956 * - ip fixed part (mib2_ip_t) 17957 * - icmp fixed part (mib2_icmp_t) 17958 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 17959 * - ipRouteEntryTable (ip 21) all IPv4 IREs 17960 * - ipNetToMediaEntryTable (ip 22) [filled in by the arp module] 17961 * - ipRouteAttributeTable (ip 102) labeled routes 17962 * - ip multicast membership (ip_member_t) 17963 * - ip multicast source filtering (ip_grpsrc_t) 17964 * - igmp fixed part (struct igmpstat) 17965 * - multicast routing stats (struct mrtstat) 17966 * - multicast routing vifs (array of struct vifctl) 17967 * - multicast routing routes (array of struct mfcctl) 17968 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 17969 * One per ill plus one generic 17970 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 17971 * One per ill plus one generic 17972 * - ipv6RouteEntry all IPv6 IREs 17973 * - ipv6RouteAttributeTable (ip6 102) labeled routes 17974 * - ipv6NetToMediaEntry all Neighbor Cache entries 17975 * - ipv6AddrEntry all IPv6 ipifs 17976 * - ipv6 multicast membership (ipv6_member_t) 17977 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 17978 * 17979 * MIB2_IP_MEDIA is filled in by the arp module with ARP cache entries. 17980 * 17981 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 17982 * already filled in by the caller. 17983 * Return value of 0 indicates that no messages were sent and caller 17984 * should free mpctl. 17985 */ 17986 int 17987 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level) 17988 { 17989 ip_stack_t *ipst; 17990 sctp_stack_t *sctps; 17991 17992 if (q->q_next != NULL) { 17993 ipst = ILLQ_TO_IPST(q); 17994 } else { 17995 ipst = CONNQ_TO_IPST(q); 17996 } 17997 ASSERT(ipst != NULL); 17998 sctps = ipst->ips_netstack->netstack_sctp; 17999 18000 if (mpctl == NULL || mpctl->b_cont == NULL) { 18001 return (0); 18002 } 18003 18004 /* 18005 * For the purposes of the (broken) packet shell use 18006 * of the level we make sure MIB2_TCP/MIB2_UDP can be used 18007 * to make TCP and UDP appear first in the list of mib items. 18008 * TBD: We could expand this and use it in netstat so that 18009 * the kernel doesn't have to produce large tables (connections, 18010 * routes, etc) when netstat only wants the statistics or a particular 18011 * table. 18012 */ 18013 if (!(level == MIB2_TCP || level == MIB2_UDP)) { 18014 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) { 18015 return (1); 18016 } 18017 } 18018 18019 if (level != MIB2_TCP) { 18020 if ((mpctl = udp_snmp_get(q, mpctl)) == NULL) { 18021 return (1); 18022 } 18023 } 18024 18025 if (level != MIB2_UDP) { 18026 if ((mpctl = tcp_snmp_get(q, mpctl)) == NULL) { 18027 return (1); 18028 } 18029 } 18030 18031 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 18032 ipst)) == NULL) { 18033 return (1); 18034 } 18035 18036 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst)) == NULL) { 18037 return (1); 18038 } 18039 18040 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 18041 return (1); 18042 } 18043 18044 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 18045 return (1); 18046 } 18047 18048 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 18049 return (1); 18050 } 18051 18052 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 18053 return (1); 18054 } 18055 18056 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst)) == NULL) { 18057 return (1); 18058 } 18059 18060 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst)) == NULL) { 18061 return (1); 18062 } 18063 18064 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 18065 return (1); 18066 } 18067 18068 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 18069 return (1); 18070 } 18071 18072 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 18073 return (1); 18074 } 18075 18076 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 18077 return (1); 18078 } 18079 18080 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 18081 return (1); 18082 } 18083 18084 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 18085 return (1); 18086 } 18087 18088 if ((mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, ipst)) == NULL) { 18089 return (1); 18090 } 18091 18092 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, ipst); 18093 if (mpctl == NULL) { 18094 return (1); 18095 } 18096 18097 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 18098 return (1); 18099 } 18100 freemsg(mpctl); 18101 return (1); 18102 } 18103 18104 18105 /* Get global (legacy) IPv4 statistics */ 18106 static mblk_t * 18107 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 18108 ip_stack_t *ipst) 18109 { 18110 mib2_ip_t old_ip_mib; 18111 struct opthdr *optp; 18112 mblk_t *mp2ctl; 18113 18114 /* 18115 * make a copy of the original message 18116 */ 18117 mp2ctl = copymsg(mpctl); 18118 18119 /* fixed length IP structure... */ 18120 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18121 optp->level = MIB2_IP; 18122 optp->name = 0; 18123 SET_MIB(old_ip_mib.ipForwarding, 18124 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 18125 SET_MIB(old_ip_mib.ipDefaultTTL, 18126 (uint32_t)ipst->ips_ip_def_ttl); 18127 SET_MIB(old_ip_mib.ipReasmTimeout, 18128 ipst->ips_ip_g_frag_timeout); 18129 SET_MIB(old_ip_mib.ipAddrEntrySize, 18130 sizeof (mib2_ipAddrEntry_t)); 18131 SET_MIB(old_ip_mib.ipRouteEntrySize, 18132 sizeof (mib2_ipRouteEntry_t)); 18133 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 18134 sizeof (mib2_ipNetToMediaEntry_t)); 18135 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 18136 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 18137 SET_MIB(old_ip_mib.ipRouteAttributeSize, 18138 sizeof (mib2_ipAttributeEntry_t)); 18139 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 18140 18141 /* 18142 * Grab the statistics from the new IP MIB 18143 */ 18144 SET_MIB(old_ip_mib.ipInReceives, 18145 (uint32_t)ipmib->ipIfStatsHCInReceives); 18146 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 18147 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 18148 SET_MIB(old_ip_mib.ipForwDatagrams, 18149 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 18150 SET_MIB(old_ip_mib.ipInUnknownProtos, 18151 ipmib->ipIfStatsInUnknownProtos); 18152 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 18153 SET_MIB(old_ip_mib.ipInDelivers, 18154 (uint32_t)ipmib->ipIfStatsHCInDelivers); 18155 SET_MIB(old_ip_mib.ipOutRequests, 18156 (uint32_t)ipmib->ipIfStatsHCOutRequests); 18157 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 18158 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 18159 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 18160 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 18161 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 18162 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 18163 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 18164 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 18165 18166 /* ipRoutingDiscards is not being used */ 18167 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 18168 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 18169 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 18170 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 18171 SET_MIB(old_ip_mib.ipReasmDuplicates, 18172 ipmib->ipIfStatsReasmDuplicates); 18173 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 18174 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 18175 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 18176 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 18177 SET_MIB(old_ip_mib.rawipInOverflows, 18178 ipmib->rawipIfStatsInOverflows); 18179 18180 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 18181 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 18182 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 18183 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 18184 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 18185 ipmib->ipIfStatsOutSwitchIPVersion); 18186 18187 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 18188 (int)sizeof (old_ip_mib))) { 18189 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 18190 (uint_t)sizeof (old_ip_mib))); 18191 } 18192 18193 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18194 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 18195 (int)optp->level, (int)optp->name, (int)optp->len)); 18196 qreply(q, mpctl); 18197 return (mp2ctl); 18198 } 18199 18200 /* Per interface IPv4 statistics */ 18201 static mblk_t * 18202 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18203 { 18204 struct opthdr *optp; 18205 mblk_t *mp2ctl; 18206 ill_t *ill; 18207 ill_walk_context_t ctx; 18208 mblk_t *mp_tail = NULL; 18209 mib2_ipIfStatsEntry_t global_ip_mib; 18210 18211 /* 18212 * Make a copy of the original message 18213 */ 18214 mp2ctl = copymsg(mpctl); 18215 18216 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18217 optp->level = MIB2_IP; 18218 optp->name = MIB2_IP_TRAFFIC_STATS; 18219 /* Include "unknown interface" ip_mib */ 18220 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 18221 ipst->ips_ip_mib.ipIfStatsIfIndex = 18222 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 18223 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 18224 (ipst->ips_ip_g_forward ? 1 : 2)); 18225 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 18226 (uint32_t)ipst->ips_ip_def_ttl); 18227 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 18228 sizeof (mib2_ipIfStatsEntry_t)); 18229 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 18230 sizeof (mib2_ipAddrEntry_t)); 18231 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 18232 sizeof (mib2_ipRouteEntry_t)); 18233 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 18234 sizeof (mib2_ipNetToMediaEntry_t)); 18235 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 18236 sizeof (ip_member_t)); 18237 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 18238 sizeof (ip_grpsrc_t)); 18239 18240 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18241 (char *)&ipst->ips_ip_mib, (int)sizeof (ipst->ips_ip_mib))) { 18242 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18243 "failed to allocate %u bytes\n", 18244 (uint_t)sizeof (ipst->ips_ip_mib))); 18245 } 18246 18247 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 18248 18249 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18250 ill = ILL_START_WALK_V4(&ctx, ipst); 18251 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18252 ill->ill_ip_mib->ipIfStatsIfIndex = 18253 ill->ill_phyint->phyint_ifindex; 18254 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 18255 (ipst->ips_ip_g_forward ? 1 : 2)); 18256 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 18257 (uint32_t)ipst->ips_ip_def_ttl); 18258 18259 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 18260 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18261 (char *)ill->ill_ip_mib, 18262 (int)sizeof (*ill->ill_ip_mib))) { 18263 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18264 "failed to allocate %u bytes\n", 18265 (uint_t)sizeof (*ill->ill_ip_mib))); 18266 } 18267 } 18268 rw_exit(&ipst->ips_ill_g_lock); 18269 18270 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18271 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18272 "level %d, name %d, len %d\n", 18273 (int)optp->level, (int)optp->name, (int)optp->len)); 18274 qreply(q, mpctl); 18275 18276 if (mp2ctl == NULL) 18277 return (NULL); 18278 18279 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst)); 18280 } 18281 18282 /* Global IPv4 ICMP statistics */ 18283 static mblk_t * 18284 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18285 { 18286 struct opthdr *optp; 18287 mblk_t *mp2ctl; 18288 18289 /* 18290 * Make a copy of the original message 18291 */ 18292 mp2ctl = copymsg(mpctl); 18293 18294 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18295 optp->level = MIB2_ICMP; 18296 optp->name = 0; 18297 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 18298 (int)sizeof (ipst->ips_icmp_mib))) { 18299 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 18300 (uint_t)sizeof (ipst->ips_icmp_mib))); 18301 } 18302 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18303 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 18304 (int)optp->level, (int)optp->name, (int)optp->len)); 18305 qreply(q, mpctl); 18306 return (mp2ctl); 18307 } 18308 18309 /* Global IPv4 IGMP statistics */ 18310 static mblk_t * 18311 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18312 { 18313 struct opthdr *optp; 18314 mblk_t *mp2ctl; 18315 18316 /* 18317 * make a copy of the original message 18318 */ 18319 mp2ctl = copymsg(mpctl); 18320 18321 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18322 optp->level = EXPER_IGMP; 18323 optp->name = 0; 18324 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 18325 (int)sizeof (ipst->ips_igmpstat))) { 18326 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 18327 (uint_t)sizeof (ipst->ips_igmpstat))); 18328 } 18329 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18330 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 18331 (int)optp->level, (int)optp->name, (int)optp->len)); 18332 qreply(q, mpctl); 18333 return (mp2ctl); 18334 } 18335 18336 /* Global IPv4 Multicast Routing statistics */ 18337 static mblk_t * 18338 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18339 { 18340 struct opthdr *optp; 18341 mblk_t *mp2ctl; 18342 18343 /* 18344 * make a copy of the original message 18345 */ 18346 mp2ctl = copymsg(mpctl); 18347 18348 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18349 optp->level = EXPER_DVMRP; 18350 optp->name = 0; 18351 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 18352 ip0dbg(("ip_mroute_stats: failed\n")); 18353 } 18354 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18355 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 18356 (int)optp->level, (int)optp->name, (int)optp->len)); 18357 qreply(q, mpctl); 18358 return (mp2ctl); 18359 } 18360 18361 /* IPv4 address information */ 18362 static mblk_t * 18363 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18364 { 18365 struct opthdr *optp; 18366 mblk_t *mp2ctl; 18367 mblk_t *mp_tail = NULL; 18368 ill_t *ill; 18369 ipif_t *ipif; 18370 uint_t bitval; 18371 mib2_ipAddrEntry_t mae; 18372 zoneid_t zoneid; 18373 ill_walk_context_t ctx; 18374 18375 /* 18376 * make a copy of the original message 18377 */ 18378 mp2ctl = copymsg(mpctl); 18379 18380 /* ipAddrEntryTable */ 18381 18382 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18383 optp->level = MIB2_IP; 18384 optp->name = MIB2_IP_ADDR; 18385 zoneid = Q_TO_CONN(q)->conn_zoneid; 18386 18387 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18388 ill = ILL_START_WALK_V4(&ctx, ipst); 18389 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18390 for (ipif = ill->ill_ipif; ipif != NULL; 18391 ipif = ipif->ipif_next) { 18392 if (ipif->ipif_zoneid != zoneid && 18393 ipif->ipif_zoneid != ALL_ZONES) 18394 continue; 18395 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18396 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18397 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18398 18399 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes, 18400 OCTET_LENGTH); 18401 mae.ipAdEntIfIndex.o_length = 18402 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 18403 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 18404 mae.ipAdEntNetMask = ipif->ipif_net_mask; 18405 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 18406 mae.ipAdEntInfo.ae_subnet_len = 18407 ip_mask_to_plen(ipif->ipif_net_mask); 18408 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 18409 for (bitval = 1; 18410 bitval && 18411 !(bitval & ipif->ipif_brd_addr); 18412 bitval <<= 1) 18413 noop; 18414 mae.ipAdEntBcastAddr = bitval; 18415 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 18416 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 18417 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 18418 mae.ipAdEntInfo.ae_broadcast_addr = 18419 ipif->ipif_brd_addr; 18420 mae.ipAdEntInfo.ae_pp_dst_addr = 18421 ipif->ipif_pp_dst_addr; 18422 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 18423 ill->ill_flags | ill->ill_phyint->phyint_flags; 18424 mae.ipAdEntRetransmitTime = AR_EQ_DEFAULT_XMIT_INTERVAL; 18425 18426 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18427 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 18428 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 18429 "allocate %u bytes\n", 18430 (uint_t)sizeof (mib2_ipAddrEntry_t))); 18431 } 18432 } 18433 } 18434 rw_exit(&ipst->ips_ill_g_lock); 18435 18436 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18437 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 18438 (int)optp->level, (int)optp->name, (int)optp->len)); 18439 qreply(q, mpctl); 18440 return (mp2ctl); 18441 } 18442 18443 /* IPv6 address information */ 18444 static mblk_t * 18445 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18446 { 18447 struct opthdr *optp; 18448 mblk_t *mp2ctl; 18449 mblk_t *mp_tail = NULL; 18450 ill_t *ill; 18451 ipif_t *ipif; 18452 mib2_ipv6AddrEntry_t mae6; 18453 zoneid_t zoneid; 18454 ill_walk_context_t ctx; 18455 18456 /* 18457 * make a copy of the original message 18458 */ 18459 mp2ctl = copymsg(mpctl); 18460 18461 /* ipv6AddrEntryTable */ 18462 18463 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18464 optp->level = MIB2_IP6; 18465 optp->name = MIB2_IP6_ADDR; 18466 zoneid = Q_TO_CONN(q)->conn_zoneid; 18467 18468 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18469 ill = ILL_START_WALK_V6(&ctx, ipst); 18470 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18471 for (ipif = ill->ill_ipif; ipif != NULL; 18472 ipif = ipif->ipif_next) { 18473 if (ipif->ipif_zoneid != zoneid && 18474 ipif->ipif_zoneid != ALL_ZONES) 18475 continue; 18476 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18477 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18478 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18479 18480 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes, 18481 OCTET_LENGTH); 18482 mae6.ipv6AddrIfIndex.o_length = 18483 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 18484 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 18485 mae6.ipv6AddrPfxLength = 18486 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 18487 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 18488 mae6.ipv6AddrInfo.ae_subnet_len = 18489 mae6.ipv6AddrPfxLength; 18490 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 18491 18492 /* Type: stateless(1), stateful(2), unknown(3) */ 18493 if (ipif->ipif_flags & IPIF_ADDRCONF) 18494 mae6.ipv6AddrType = 1; 18495 else 18496 mae6.ipv6AddrType = 2; 18497 /* Anycast: true(1), false(2) */ 18498 if (ipif->ipif_flags & IPIF_ANYCAST) 18499 mae6.ipv6AddrAnycastFlag = 1; 18500 else 18501 mae6.ipv6AddrAnycastFlag = 2; 18502 18503 /* 18504 * Address status: preferred(1), deprecated(2), 18505 * invalid(3), inaccessible(4), unknown(5) 18506 */ 18507 if (ipif->ipif_flags & IPIF_NOLOCAL) 18508 mae6.ipv6AddrStatus = 3; 18509 else if (ipif->ipif_flags & IPIF_DEPRECATED) 18510 mae6.ipv6AddrStatus = 2; 18511 else 18512 mae6.ipv6AddrStatus = 1; 18513 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 18514 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 18515 mae6.ipv6AddrInfo.ae_pp_dst_addr = 18516 ipif->ipif_v6pp_dst_addr; 18517 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 18518 ill->ill_flags | ill->ill_phyint->phyint_flags; 18519 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 18520 mae6.ipv6AddrIdentifier = ill->ill_token; 18521 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 18522 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 18523 mae6.ipv6AddrRetransmitTime = 18524 ill->ill_reachable_retrans_time; 18525 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18526 (char *)&mae6, 18527 (int)sizeof (mib2_ipv6AddrEntry_t))) { 18528 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 18529 "allocate %u bytes\n", 18530 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 18531 } 18532 } 18533 } 18534 rw_exit(&ipst->ips_ill_g_lock); 18535 18536 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18537 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 18538 (int)optp->level, (int)optp->name, (int)optp->len)); 18539 qreply(q, mpctl); 18540 return (mp2ctl); 18541 } 18542 18543 /* IPv4 multicast group membership. */ 18544 static mblk_t * 18545 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18546 { 18547 struct opthdr *optp; 18548 mblk_t *mp2ctl; 18549 ill_t *ill; 18550 ipif_t *ipif; 18551 ilm_t *ilm; 18552 ip_member_t ipm; 18553 mblk_t *mp_tail = NULL; 18554 ill_walk_context_t ctx; 18555 zoneid_t zoneid; 18556 18557 /* 18558 * make a copy of the original message 18559 */ 18560 mp2ctl = copymsg(mpctl); 18561 zoneid = Q_TO_CONN(q)->conn_zoneid; 18562 18563 /* ipGroupMember table */ 18564 optp = (struct opthdr *)&mpctl->b_rptr[ 18565 sizeof (struct T_optmgmt_ack)]; 18566 optp->level = MIB2_IP; 18567 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 18568 18569 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18570 ill = ILL_START_WALK_V4(&ctx, ipst); 18571 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18572 ILM_WALKER_HOLD(ill); 18573 for (ipif = ill->ill_ipif; ipif != NULL; 18574 ipif = ipif->ipif_next) { 18575 if (ipif->ipif_zoneid != zoneid && 18576 ipif->ipif_zoneid != ALL_ZONES) 18577 continue; /* not this zone */ 18578 ipif_get_name(ipif, ipm.ipGroupMemberIfIndex.o_bytes, 18579 OCTET_LENGTH); 18580 ipm.ipGroupMemberIfIndex.o_length = 18581 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 18582 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18583 ASSERT(ilm->ilm_ipif != NULL); 18584 ASSERT(ilm->ilm_ill == NULL); 18585 if (ilm->ilm_ipif != ipif) 18586 continue; 18587 ipm.ipGroupMemberAddress = ilm->ilm_addr; 18588 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 18589 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 18590 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18591 (char *)&ipm, (int)sizeof (ipm))) { 18592 ip1dbg(("ip_snmp_get_mib2_ip_group: " 18593 "failed to allocate %u bytes\n", 18594 (uint_t)sizeof (ipm))); 18595 } 18596 } 18597 } 18598 ILM_WALKER_RELE(ill); 18599 } 18600 rw_exit(&ipst->ips_ill_g_lock); 18601 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18602 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18603 (int)optp->level, (int)optp->name, (int)optp->len)); 18604 qreply(q, mpctl); 18605 return (mp2ctl); 18606 } 18607 18608 /* IPv6 multicast group membership. */ 18609 static mblk_t * 18610 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18611 { 18612 struct opthdr *optp; 18613 mblk_t *mp2ctl; 18614 ill_t *ill; 18615 ilm_t *ilm; 18616 ipv6_member_t ipm6; 18617 mblk_t *mp_tail = NULL; 18618 ill_walk_context_t ctx; 18619 zoneid_t zoneid; 18620 18621 /* 18622 * make a copy of the original message 18623 */ 18624 mp2ctl = copymsg(mpctl); 18625 zoneid = Q_TO_CONN(q)->conn_zoneid; 18626 18627 /* ip6GroupMember table */ 18628 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18629 optp->level = MIB2_IP6; 18630 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 18631 18632 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18633 ill = ILL_START_WALK_V6(&ctx, ipst); 18634 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18635 ILM_WALKER_HOLD(ill); 18636 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 18637 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18638 ASSERT(ilm->ilm_ipif == NULL); 18639 ASSERT(ilm->ilm_ill != NULL); 18640 if (ilm->ilm_zoneid != zoneid) 18641 continue; /* not this zone */ 18642 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 18643 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 18644 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 18645 if (!snmp_append_data2(mpctl->b_cont, 18646 &mp_tail, 18647 (char *)&ipm6, (int)sizeof (ipm6))) { 18648 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 18649 "failed to allocate %u bytes\n", 18650 (uint_t)sizeof (ipm6))); 18651 } 18652 } 18653 ILM_WALKER_RELE(ill); 18654 } 18655 rw_exit(&ipst->ips_ill_g_lock); 18656 18657 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18658 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18659 (int)optp->level, (int)optp->name, (int)optp->len)); 18660 qreply(q, mpctl); 18661 return (mp2ctl); 18662 } 18663 18664 /* IP multicast filtered sources */ 18665 static mblk_t * 18666 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18667 { 18668 struct opthdr *optp; 18669 mblk_t *mp2ctl; 18670 ill_t *ill; 18671 ipif_t *ipif; 18672 ilm_t *ilm; 18673 ip_grpsrc_t ips; 18674 mblk_t *mp_tail = NULL; 18675 ill_walk_context_t ctx; 18676 zoneid_t zoneid; 18677 int i; 18678 slist_t *sl; 18679 18680 /* 18681 * make a copy of the original message 18682 */ 18683 mp2ctl = copymsg(mpctl); 18684 zoneid = Q_TO_CONN(q)->conn_zoneid; 18685 18686 /* ipGroupSource table */ 18687 optp = (struct opthdr *)&mpctl->b_rptr[ 18688 sizeof (struct T_optmgmt_ack)]; 18689 optp->level = MIB2_IP; 18690 optp->name = EXPER_IP_GROUP_SOURCES; 18691 18692 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18693 ill = ILL_START_WALK_V4(&ctx, ipst); 18694 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18695 ILM_WALKER_HOLD(ill); 18696 for (ipif = ill->ill_ipif; ipif != NULL; 18697 ipif = ipif->ipif_next) { 18698 if (ipif->ipif_zoneid != zoneid) 18699 continue; /* not this zone */ 18700 ipif_get_name(ipif, ips.ipGroupSourceIfIndex.o_bytes, 18701 OCTET_LENGTH); 18702 ips.ipGroupSourceIfIndex.o_length = 18703 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 18704 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18705 ASSERT(ilm->ilm_ipif != NULL); 18706 ASSERT(ilm->ilm_ill == NULL); 18707 sl = ilm->ilm_filter; 18708 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 18709 continue; 18710 ips.ipGroupSourceGroup = ilm->ilm_addr; 18711 for (i = 0; i < sl->sl_numsrc; i++) { 18712 if (!IN6_IS_ADDR_V4MAPPED( 18713 &sl->sl_addr[i])) 18714 continue; 18715 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 18716 ips.ipGroupSourceAddress); 18717 if (snmp_append_data2(mpctl->b_cont, 18718 &mp_tail, (char *)&ips, 18719 (int)sizeof (ips)) == 0) { 18720 ip1dbg(("ip_snmp_get_mib2_" 18721 "ip_group_src: failed to " 18722 "allocate %u bytes\n", 18723 (uint_t)sizeof (ips))); 18724 } 18725 } 18726 } 18727 } 18728 ILM_WALKER_RELE(ill); 18729 } 18730 rw_exit(&ipst->ips_ill_g_lock); 18731 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18732 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18733 (int)optp->level, (int)optp->name, (int)optp->len)); 18734 qreply(q, mpctl); 18735 return (mp2ctl); 18736 } 18737 18738 /* IPv6 multicast filtered sources. */ 18739 static mblk_t * 18740 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18741 { 18742 struct opthdr *optp; 18743 mblk_t *mp2ctl; 18744 ill_t *ill; 18745 ilm_t *ilm; 18746 ipv6_grpsrc_t ips6; 18747 mblk_t *mp_tail = NULL; 18748 ill_walk_context_t ctx; 18749 zoneid_t zoneid; 18750 int i; 18751 slist_t *sl; 18752 18753 /* 18754 * make a copy of the original message 18755 */ 18756 mp2ctl = copymsg(mpctl); 18757 zoneid = Q_TO_CONN(q)->conn_zoneid; 18758 18759 /* ip6GroupMember table */ 18760 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18761 optp->level = MIB2_IP6; 18762 optp->name = EXPER_IP6_GROUP_SOURCES; 18763 18764 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18765 ill = ILL_START_WALK_V6(&ctx, ipst); 18766 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18767 ILM_WALKER_HOLD(ill); 18768 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 18769 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18770 ASSERT(ilm->ilm_ipif == NULL); 18771 ASSERT(ilm->ilm_ill != NULL); 18772 sl = ilm->ilm_filter; 18773 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 18774 continue; 18775 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 18776 for (i = 0; i < sl->sl_numsrc; i++) { 18777 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 18778 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18779 (char *)&ips6, (int)sizeof (ips6))) { 18780 ip1dbg(("ip_snmp_get_mib2_ip6_" 18781 "group_src: failed to allocate " 18782 "%u bytes\n", 18783 (uint_t)sizeof (ips6))); 18784 } 18785 } 18786 } 18787 ILM_WALKER_RELE(ill); 18788 } 18789 rw_exit(&ipst->ips_ill_g_lock); 18790 18791 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18792 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18793 (int)optp->level, (int)optp->name, (int)optp->len)); 18794 qreply(q, mpctl); 18795 return (mp2ctl); 18796 } 18797 18798 /* Multicast routing virtual interface table. */ 18799 static mblk_t * 18800 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18801 { 18802 struct opthdr *optp; 18803 mblk_t *mp2ctl; 18804 18805 /* 18806 * make a copy of the original message 18807 */ 18808 mp2ctl = copymsg(mpctl); 18809 18810 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18811 optp->level = EXPER_DVMRP; 18812 optp->name = EXPER_DVMRP_VIF; 18813 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 18814 ip0dbg(("ip_mroute_vif: failed\n")); 18815 } 18816 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18817 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 18818 (int)optp->level, (int)optp->name, (int)optp->len)); 18819 qreply(q, mpctl); 18820 return (mp2ctl); 18821 } 18822 18823 /* Multicast routing table. */ 18824 static mblk_t * 18825 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18826 { 18827 struct opthdr *optp; 18828 mblk_t *mp2ctl; 18829 18830 /* 18831 * make a copy of the original message 18832 */ 18833 mp2ctl = copymsg(mpctl); 18834 18835 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18836 optp->level = EXPER_DVMRP; 18837 optp->name = EXPER_DVMRP_MRT; 18838 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 18839 ip0dbg(("ip_mroute_mrt: failed\n")); 18840 } 18841 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18842 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 18843 (int)optp->level, (int)optp->name, (int)optp->len)); 18844 qreply(q, mpctl); 18845 return (mp2ctl); 18846 } 18847 18848 /* 18849 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 18850 * in one IRE walk. 18851 */ 18852 static mblk_t * 18853 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18854 { 18855 struct opthdr *optp; 18856 mblk_t *mp2ctl; /* Returned */ 18857 mblk_t *mp3ctl; /* nettomedia */ 18858 mblk_t *mp4ctl; /* routeattrs */ 18859 iproutedata_t ird; 18860 zoneid_t zoneid; 18861 18862 /* 18863 * make copies of the original message 18864 * - mp2ctl is returned unchanged to the caller for his use 18865 * - mpctl is sent upstream as ipRouteEntryTable 18866 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 18867 * - mp4ctl is sent upstream as ipRouteAttributeTable 18868 */ 18869 mp2ctl = copymsg(mpctl); 18870 mp3ctl = copymsg(mpctl); 18871 mp4ctl = copymsg(mpctl); 18872 if (mp3ctl == NULL || mp4ctl == NULL) { 18873 freemsg(mp4ctl); 18874 freemsg(mp3ctl); 18875 freemsg(mp2ctl); 18876 freemsg(mpctl); 18877 return (NULL); 18878 } 18879 18880 bzero(&ird, sizeof (ird)); 18881 18882 ird.ird_route.lp_head = mpctl->b_cont; 18883 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 18884 ird.ird_attrs.lp_head = mp4ctl->b_cont; 18885 18886 zoneid = Q_TO_CONN(q)->conn_zoneid; 18887 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 18888 18889 /* ipRouteEntryTable in mpctl */ 18890 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18891 optp->level = MIB2_IP; 18892 optp->name = MIB2_IP_ROUTE; 18893 optp->len = msgdsize(ird.ird_route.lp_head); 18894 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18895 (int)optp->level, (int)optp->name, (int)optp->len)); 18896 qreply(q, mpctl); 18897 18898 /* ipNetToMediaEntryTable in mp3ctl */ 18899 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18900 optp->level = MIB2_IP; 18901 optp->name = MIB2_IP_MEDIA; 18902 optp->len = msgdsize(ird.ird_netmedia.lp_head); 18903 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18904 (int)optp->level, (int)optp->name, (int)optp->len)); 18905 qreply(q, mp3ctl); 18906 18907 /* ipRouteAttributeTable in mp4ctl */ 18908 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18909 optp->level = MIB2_IP; 18910 optp->name = EXPER_IP_RTATTR; 18911 optp->len = msgdsize(ird.ird_attrs.lp_head); 18912 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18913 (int)optp->level, (int)optp->name, (int)optp->len)); 18914 if (optp->len == 0) 18915 freemsg(mp4ctl); 18916 else 18917 qreply(q, mp4ctl); 18918 18919 return (mp2ctl); 18920 } 18921 18922 /* 18923 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 18924 * ipv6NetToMediaEntryTable in an NDP walk. 18925 */ 18926 static mblk_t * 18927 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18928 { 18929 struct opthdr *optp; 18930 mblk_t *mp2ctl; /* Returned */ 18931 mblk_t *mp3ctl; /* nettomedia */ 18932 mblk_t *mp4ctl; /* routeattrs */ 18933 iproutedata_t ird; 18934 zoneid_t zoneid; 18935 18936 /* 18937 * make copies of the original message 18938 * - mp2ctl is returned unchanged to the caller for his use 18939 * - mpctl is sent upstream as ipv6RouteEntryTable 18940 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 18941 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 18942 */ 18943 mp2ctl = copymsg(mpctl); 18944 mp3ctl = copymsg(mpctl); 18945 mp4ctl = copymsg(mpctl); 18946 if (mp3ctl == NULL || mp4ctl == NULL) { 18947 freemsg(mp4ctl); 18948 freemsg(mp3ctl); 18949 freemsg(mp2ctl); 18950 freemsg(mpctl); 18951 return (NULL); 18952 } 18953 18954 bzero(&ird, sizeof (ird)); 18955 18956 ird.ird_route.lp_head = mpctl->b_cont; 18957 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 18958 ird.ird_attrs.lp_head = mp4ctl->b_cont; 18959 18960 zoneid = Q_TO_CONN(q)->conn_zoneid; 18961 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 18962 18963 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18964 optp->level = MIB2_IP6; 18965 optp->name = MIB2_IP6_ROUTE; 18966 optp->len = msgdsize(ird.ird_route.lp_head); 18967 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 18968 (int)optp->level, (int)optp->name, (int)optp->len)); 18969 qreply(q, mpctl); 18970 18971 /* ipv6NetToMediaEntryTable in mp3ctl */ 18972 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 18973 18974 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18975 optp->level = MIB2_IP6; 18976 optp->name = MIB2_IP6_MEDIA; 18977 optp->len = msgdsize(ird.ird_netmedia.lp_head); 18978 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 18979 (int)optp->level, (int)optp->name, (int)optp->len)); 18980 qreply(q, mp3ctl); 18981 18982 /* ipv6RouteAttributeTable in mp4ctl */ 18983 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18984 optp->level = MIB2_IP6; 18985 optp->name = EXPER_IP_RTATTR; 18986 optp->len = msgdsize(ird.ird_attrs.lp_head); 18987 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 18988 (int)optp->level, (int)optp->name, (int)optp->len)); 18989 if (optp->len == 0) 18990 freemsg(mp4ctl); 18991 else 18992 qreply(q, mp4ctl); 18993 18994 return (mp2ctl); 18995 } 18996 18997 /* 18998 * IPv6 mib: One per ill 18999 */ 19000 static mblk_t * 19001 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19002 { 19003 struct opthdr *optp; 19004 mblk_t *mp2ctl; 19005 ill_t *ill; 19006 ill_walk_context_t ctx; 19007 mblk_t *mp_tail = NULL; 19008 19009 /* 19010 * Make a copy of the original message 19011 */ 19012 mp2ctl = copymsg(mpctl); 19013 19014 /* fixed length IPv6 structure ... */ 19015 19016 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19017 optp->level = MIB2_IP6; 19018 optp->name = 0; 19019 /* Include "unknown interface" ip6_mib */ 19020 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 19021 ipst->ips_ip6_mib.ipIfStatsIfIndex = 19022 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 19023 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 19024 ipst->ips_ipv6_forward ? 1 : 2); 19025 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 19026 ipst->ips_ipv6_def_hops); 19027 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 19028 sizeof (mib2_ipIfStatsEntry_t)); 19029 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 19030 sizeof (mib2_ipv6AddrEntry_t)); 19031 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 19032 sizeof (mib2_ipv6RouteEntry_t)); 19033 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 19034 sizeof (mib2_ipv6NetToMediaEntry_t)); 19035 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 19036 sizeof (ipv6_member_t)); 19037 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 19038 sizeof (ipv6_grpsrc_t)); 19039 19040 /* 19041 * Synchronize 64- and 32-bit counters 19042 */ 19043 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 19044 ipIfStatsHCInReceives); 19045 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 19046 ipIfStatsHCInDelivers); 19047 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 19048 ipIfStatsHCOutRequests); 19049 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 19050 ipIfStatsHCOutForwDatagrams); 19051 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 19052 ipIfStatsHCOutMcastPkts); 19053 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 19054 ipIfStatsHCInMcastPkts); 19055 19056 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19057 (char *)&ipst->ips_ip6_mib, (int)sizeof (ipst->ips_ip6_mib))) { 19058 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 19059 (uint_t)sizeof (ipst->ips_ip6_mib))); 19060 } 19061 19062 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19063 ill = ILL_START_WALK_V6(&ctx, ipst); 19064 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19065 ill->ill_ip_mib->ipIfStatsIfIndex = 19066 ill->ill_phyint->phyint_ifindex; 19067 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 19068 ipst->ips_ipv6_forward ? 1 : 2); 19069 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 19070 ill->ill_max_hops); 19071 19072 /* 19073 * Synchronize 64- and 32-bit counters 19074 */ 19075 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 19076 ipIfStatsHCInReceives); 19077 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 19078 ipIfStatsHCInDelivers); 19079 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 19080 ipIfStatsHCOutRequests); 19081 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 19082 ipIfStatsHCOutForwDatagrams); 19083 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 19084 ipIfStatsHCOutMcastPkts); 19085 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 19086 ipIfStatsHCInMcastPkts); 19087 19088 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19089 (char *)ill->ill_ip_mib, 19090 (int)sizeof (*ill->ill_ip_mib))) { 19091 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 19092 "%u bytes\n", (uint_t)sizeof (*ill->ill_ip_mib))); 19093 } 19094 } 19095 rw_exit(&ipst->ips_ill_g_lock); 19096 19097 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19098 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 19099 (int)optp->level, (int)optp->name, (int)optp->len)); 19100 qreply(q, mpctl); 19101 return (mp2ctl); 19102 } 19103 19104 /* 19105 * ICMPv6 mib: One per ill 19106 */ 19107 static mblk_t * 19108 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19109 { 19110 struct opthdr *optp; 19111 mblk_t *mp2ctl; 19112 ill_t *ill; 19113 ill_walk_context_t ctx; 19114 mblk_t *mp_tail = NULL; 19115 /* 19116 * Make a copy of the original message 19117 */ 19118 mp2ctl = copymsg(mpctl); 19119 19120 /* fixed length ICMPv6 structure ... */ 19121 19122 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19123 optp->level = MIB2_ICMP6; 19124 optp->name = 0; 19125 /* Include "unknown interface" icmp6_mib */ 19126 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 19127 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 19128 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 19129 sizeof (mib2_ipv6IfIcmpEntry_t); 19130 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19131 (char *)&ipst->ips_icmp6_mib, 19132 (int)sizeof (ipst->ips_icmp6_mib))) { 19133 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 19134 (uint_t)sizeof (ipst->ips_icmp6_mib))); 19135 } 19136 19137 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19138 ill = ILL_START_WALK_V6(&ctx, ipst); 19139 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19140 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 19141 ill->ill_phyint->phyint_ifindex; 19142 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19143 (char *)ill->ill_icmp6_mib, 19144 (int)sizeof (*ill->ill_icmp6_mib))) { 19145 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 19146 "%u bytes\n", 19147 (uint_t)sizeof (*ill->ill_icmp6_mib))); 19148 } 19149 } 19150 rw_exit(&ipst->ips_ill_g_lock); 19151 19152 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19153 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 19154 (int)optp->level, (int)optp->name, (int)optp->len)); 19155 qreply(q, mpctl); 19156 return (mp2ctl); 19157 } 19158 19159 /* 19160 * ire_walk routine to create both ipRouteEntryTable and 19161 * ipRouteAttributeTable in one IRE walk 19162 */ 19163 static void 19164 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 19165 { 19166 ill_t *ill; 19167 ipif_t *ipif; 19168 mib2_ipRouteEntry_t *re; 19169 mib2_ipAttributeEntry_t *iae, *iaeptr; 19170 ipaddr_t gw_addr; 19171 tsol_ire_gw_secattr_t *attrp; 19172 tsol_gc_t *gc = NULL; 19173 tsol_gcgrp_t *gcgrp = NULL; 19174 uint_t sacnt = 0; 19175 int i; 19176 19177 ASSERT(ire->ire_ipversion == IPV4_VERSION); 19178 19179 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19180 return; 19181 19182 if ((attrp = ire->ire_gw_secattr) != NULL) { 19183 mutex_enter(&attrp->igsa_lock); 19184 if ((gc = attrp->igsa_gc) != NULL) { 19185 gcgrp = gc->gc_grp; 19186 ASSERT(gcgrp != NULL); 19187 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19188 sacnt = 1; 19189 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19190 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19191 gc = gcgrp->gcgrp_head; 19192 sacnt = gcgrp->gcgrp_count; 19193 } 19194 mutex_exit(&attrp->igsa_lock); 19195 19196 /* do nothing if there's no gc to report */ 19197 if (gc == NULL) { 19198 ASSERT(sacnt == 0); 19199 if (gcgrp != NULL) { 19200 /* we might as well drop the lock now */ 19201 rw_exit(&gcgrp->gcgrp_rwlock); 19202 gcgrp = NULL; 19203 } 19204 attrp = NULL; 19205 } 19206 19207 ASSERT(gc == NULL || (gcgrp != NULL && 19208 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19209 } 19210 ASSERT(sacnt == 0 || gc != NULL); 19211 19212 if (sacnt != 0 && 19213 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19214 kmem_free(re, sizeof (*re)); 19215 rw_exit(&gcgrp->gcgrp_rwlock); 19216 return; 19217 } 19218 19219 /* 19220 * Return all IRE types for route table... let caller pick and choose 19221 */ 19222 re->ipRouteDest = ire->ire_addr; 19223 ipif = ire->ire_ipif; 19224 re->ipRouteIfIndex.o_length = 0; 19225 if (ire->ire_type == IRE_CACHE) { 19226 ill = (ill_t *)ire->ire_stq->q_ptr; 19227 re->ipRouteIfIndex.o_length = 19228 ill->ill_name_length == 0 ? 0 : 19229 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19230 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 19231 re->ipRouteIfIndex.o_length); 19232 } else if (ipif != NULL) { 19233 ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH); 19234 re->ipRouteIfIndex.o_length = 19235 mi_strlen(re->ipRouteIfIndex.o_bytes); 19236 } 19237 re->ipRouteMetric1 = -1; 19238 re->ipRouteMetric2 = -1; 19239 re->ipRouteMetric3 = -1; 19240 re->ipRouteMetric4 = -1; 19241 19242 gw_addr = ire->ire_gateway_addr; 19243 19244 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 19245 re->ipRouteNextHop = ire->ire_src_addr; 19246 else 19247 re->ipRouteNextHop = gw_addr; 19248 /* indirect(4), direct(3), or invalid(2) */ 19249 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19250 re->ipRouteType = 2; 19251 else 19252 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 19253 re->ipRouteProto = -1; 19254 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 19255 re->ipRouteMask = ire->ire_mask; 19256 re->ipRouteMetric5 = -1; 19257 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 19258 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 19259 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19260 re->ipRouteInfo.re_ref = ire->ire_refcnt; 19261 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 19262 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19263 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19264 re->ipRouteInfo.re_flags = ire->ire_flags; 19265 19266 if (ire->ire_flags & RTF_DYNAMIC) { 19267 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19268 } else { 19269 re->ipRouteInfo.re_ire_type = ire->ire_type; 19270 } 19271 19272 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19273 (char *)re, (int)sizeof (*re))) { 19274 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19275 (uint_t)sizeof (*re))); 19276 } 19277 19278 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19279 iaeptr->iae_routeidx = ird->ird_idx; 19280 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19281 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19282 } 19283 19284 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19285 (char *)iae, sacnt * sizeof (*iae))) { 19286 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19287 (unsigned)(sacnt * sizeof (*iae)))); 19288 } 19289 19290 /* bump route index for next pass */ 19291 ird->ird_idx++; 19292 19293 kmem_free(re, sizeof (*re)); 19294 if (sacnt != 0) 19295 kmem_free(iae, sacnt * sizeof (*iae)); 19296 19297 if (gcgrp != NULL) 19298 rw_exit(&gcgrp->gcgrp_rwlock); 19299 } 19300 19301 /* 19302 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 19303 */ 19304 static void 19305 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 19306 { 19307 ill_t *ill; 19308 ipif_t *ipif; 19309 mib2_ipv6RouteEntry_t *re; 19310 mib2_ipAttributeEntry_t *iae, *iaeptr; 19311 in6_addr_t gw_addr_v6; 19312 tsol_ire_gw_secattr_t *attrp; 19313 tsol_gc_t *gc = NULL; 19314 tsol_gcgrp_t *gcgrp = NULL; 19315 uint_t sacnt = 0; 19316 int i; 19317 19318 ASSERT(ire->ire_ipversion == IPV6_VERSION); 19319 19320 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19321 return; 19322 19323 if ((attrp = ire->ire_gw_secattr) != NULL) { 19324 mutex_enter(&attrp->igsa_lock); 19325 if ((gc = attrp->igsa_gc) != NULL) { 19326 gcgrp = gc->gc_grp; 19327 ASSERT(gcgrp != NULL); 19328 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19329 sacnt = 1; 19330 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19331 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19332 gc = gcgrp->gcgrp_head; 19333 sacnt = gcgrp->gcgrp_count; 19334 } 19335 mutex_exit(&attrp->igsa_lock); 19336 19337 /* do nothing if there's no gc to report */ 19338 if (gc == NULL) { 19339 ASSERT(sacnt == 0); 19340 if (gcgrp != NULL) { 19341 /* we might as well drop the lock now */ 19342 rw_exit(&gcgrp->gcgrp_rwlock); 19343 gcgrp = NULL; 19344 } 19345 attrp = NULL; 19346 } 19347 19348 ASSERT(gc == NULL || (gcgrp != NULL && 19349 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19350 } 19351 ASSERT(sacnt == 0 || gc != NULL); 19352 19353 if (sacnt != 0 && 19354 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19355 kmem_free(re, sizeof (*re)); 19356 rw_exit(&gcgrp->gcgrp_rwlock); 19357 return; 19358 } 19359 19360 /* 19361 * Return all IRE types for route table... let caller pick and choose 19362 */ 19363 re->ipv6RouteDest = ire->ire_addr_v6; 19364 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 19365 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 19366 re->ipv6RouteIfIndex.o_length = 0; 19367 ipif = ire->ire_ipif; 19368 if (ire->ire_type == IRE_CACHE) { 19369 ill = (ill_t *)ire->ire_stq->q_ptr; 19370 re->ipv6RouteIfIndex.o_length = 19371 ill->ill_name_length == 0 ? 0 : 19372 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19373 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 19374 re->ipv6RouteIfIndex.o_length); 19375 } else if (ipif != NULL) { 19376 ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH); 19377 re->ipv6RouteIfIndex.o_length = 19378 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 19379 } 19380 19381 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19382 19383 mutex_enter(&ire->ire_lock); 19384 gw_addr_v6 = ire->ire_gateway_addr_v6; 19385 mutex_exit(&ire->ire_lock); 19386 19387 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 19388 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 19389 else 19390 re->ipv6RouteNextHop = gw_addr_v6; 19391 19392 /* remote(4), local(3), or discard(2) */ 19393 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19394 re->ipv6RouteType = 2; 19395 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 19396 re->ipv6RouteType = 3; 19397 else 19398 re->ipv6RouteType = 4; 19399 19400 re->ipv6RouteProtocol = -1; 19401 re->ipv6RoutePolicy = 0; 19402 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 19403 re->ipv6RouteNextHopRDI = 0; 19404 re->ipv6RouteWeight = 0; 19405 re->ipv6RouteMetric = 0; 19406 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 19407 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 19408 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19409 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 19410 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19411 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19412 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 19413 re->ipv6RouteInfo.re_flags = ire->ire_flags; 19414 19415 if (ire->ire_flags & RTF_DYNAMIC) { 19416 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19417 } else { 19418 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 19419 } 19420 19421 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19422 (char *)re, (int)sizeof (*re))) { 19423 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19424 (uint_t)sizeof (*re))); 19425 } 19426 19427 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19428 iaeptr->iae_routeidx = ird->ird_idx; 19429 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19430 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19431 } 19432 19433 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19434 (char *)iae, sacnt * sizeof (*iae))) { 19435 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19436 (unsigned)(sacnt * sizeof (*iae)))); 19437 } 19438 19439 /* bump route index for next pass */ 19440 ird->ird_idx++; 19441 19442 kmem_free(re, sizeof (*re)); 19443 if (sacnt != 0) 19444 kmem_free(iae, sacnt * sizeof (*iae)); 19445 19446 if (gcgrp != NULL) 19447 rw_exit(&gcgrp->gcgrp_rwlock); 19448 } 19449 19450 /* 19451 * ndp_walk routine to create ipv6NetToMediaEntryTable 19452 */ 19453 static int 19454 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 19455 { 19456 ill_t *ill; 19457 mib2_ipv6NetToMediaEntry_t ntme; 19458 dl_unitdata_req_t *dl; 19459 19460 ill = nce->nce_ill; 19461 if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */ 19462 return (0); 19463 19464 /* 19465 * Neighbor cache entry attached to IRE with on-link 19466 * destination. 19467 */ 19468 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 19469 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 19470 if ((ill->ill_flags & ILLF_XRESOLV) && 19471 (nce->nce_res_mp != NULL)) { 19472 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 19473 ntme.ipv6NetToMediaPhysAddress.o_length = 19474 dl->dl_dest_addr_length; 19475 } else { 19476 ntme.ipv6NetToMediaPhysAddress.o_length = 19477 ill->ill_phys_addr_length; 19478 } 19479 if (nce->nce_res_mp != NULL) { 19480 bcopy((char *)nce->nce_res_mp->b_rptr + 19481 NCE_LL_ADDR_OFFSET(ill), 19482 ntme.ipv6NetToMediaPhysAddress.o_bytes, 19483 ntme.ipv6NetToMediaPhysAddress.o_length); 19484 } else { 19485 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 19486 ill->ill_phys_addr_length); 19487 } 19488 /* 19489 * Note: Returns ND_* states. Should be: 19490 * reachable(1), stale(2), delay(3), probe(4), 19491 * invalid(5), unknown(6) 19492 */ 19493 ntme.ipv6NetToMediaState = nce->nce_state; 19494 ntme.ipv6NetToMediaLastUpdated = 0; 19495 19496 /* other(1), dynamic(2), static(3), local(4) */ 19497 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 19498 ntme.ipv6NetToMediaType = 4; 19499 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 19500 ntme.ipv6NetToMediaType = 1; 19501 } else { 19502 ntme.ipv6NetToMediaType = 2; 19503 } 19504 19505 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 19506 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 19507 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 19508 (uint_t)sizeof (ntme))); 19509 } 19510 return (0); 19511 } 19512 19513 /* 19514 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 19515 */ 19516 /* ARGSUSED */ 19517 int 19518 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 19519 { 19520 switch (level) { 19521 case MIB2_IP: 19522 case MIB2_ICMP: 19523 switch (name) { 19524 default: 19525 break; 19526 } 19527 return (1); 19528 default: 19529 return (1); 19530 } 19531 } 19532 19533 /* 19534 * When there exists both a 64- and 32-bit counter of a particular type 19535 * (i.e., InReceives), only the 64-bit counters are added. 19536 */ 19537 void 19538 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 19539 { 19540 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 19541 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 19542 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 19543 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 19544 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 19545 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 19546 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 19547 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 19548 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 19549 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 19550 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 19551 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 19552 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 19553 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 19554 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 19555 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 19556 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 19557 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 19558 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 19559 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 19560 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 19561 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 19562 o2->ipIfStatsInWrongIPVersion); 19563 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 19564 o2->ipIfStatsInWrongIPVersion); 19565 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 19566 o2->ipIfStatsOutSwitchIPVersion); 19567 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 19568 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 19569 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 19570 o2->ipIfStatsHCInForwDatagrams); 19571 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 19572 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 19573 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 19574 o2->ipIfStatsHCOutForwDatagrams); 19575 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 19576 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 19577 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 19578 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 19579 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 19580 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 19581 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 19582 o2->ipIfStatsHCOutMcastOctets); 19583 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 19584 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 19585 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 19586 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 19587 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 19588 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 19589 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 19590 } 19591 19592 void 19593 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 19594 { 19595 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 19596 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 19597 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 19598 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 19599 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 19600 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 19601 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 19602 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 19603 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 19604 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 19605 o2->ipv6IfIcmpInRouterSolicits); 19606 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 19607 o2->ipv6IfIcmpInRouterAdvertisements); 19608 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 19609 o2->ipv6IfIcmpInNeighborSolicits); 19610 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 19611 o2->ipv6IfIcmpInNeighborAdvertisements); 19612 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 19613 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 19614 o2->ipv6IfIcmpInGroupMembQueries); 19615 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 19616 o2->ipv6IfIcmpInGroupMembResponses); 19617 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 19618 o2->ipv6IfIcmpInGroupMembReductions); 19619 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 19620 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 19621 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 19622 o2->ipv6IfIcmpOutDestUnreachs); 19623 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 19624 o2->ipv6IfIcmpOutAdminProhibs); 19625 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 19626 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 19627 o2->ipv6IfIcmpOutParmProblems); 19628 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 19629 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 19630 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 19631 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 19632 o2->ipv6IfIcmpOutRouterSolicits); 19633 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 19634 o2->ipv6IfIcmpOutRouterAdvertisements); 19635 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 19636 o2->ipv6IfIcmpOutNeighborSolicits); 19637 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 19638 o2->ipv6IfIcmpOutNeighborAdvertisements); 19639 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 19640 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 19641 o2->ipv6IfIcmpOutGroupMembQueries); 19642 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 19643 o2->ipv6IfIcmpOutGroupMembResponses); 19644 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 19645 o2->ipv6IfIcmpOutGroupMembReductions); 19646 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 19647 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 19648 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 19649 o2->ipv6IfIcmpInBadNeighborAdvertisements); 19650 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 19651 o2->ipv6IfIcmpInBadNeighborSolicitations); 19652 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 19653 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 19654 o2->ipv6IfIcmpInGroupMembTotal); 19655 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 19656 o2->ipv6IfIcmpInGroupMembBadQueries); 19657 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 19658 o2->ipv6IfIcmpInGroupMembBadReports); 19659 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 19660 o2->ipv6IfIcmpInGroupMembOurReports); 19661 } 19662 19663 /* 19664 * Called before the options are updated to check if this packet will 19665 * be source routed from here. 19666 * This routine assumes that the options are well formed i.e. that they 19667 * have already been checked. 19668 */ 19669 static boolean_t 19670 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 19671 { 19672 ipoptp_t opts; 19673 uchar_t *opt; 19674 uint8_t optval; 19675 uint8_t optlen; 19676 ipaddr_t dst; 19677 ire_t *ire; 19678 19679 if (IS_SIMPLE_IPH(ipha)) { 19680 ip2dbg(("not source routed\n")); 19681 return (B_FALSE); 19682 } 19683 dst = ipha->ipha_dst; 19684 for (optval = ipoptp_first(&opts, ipha); 19685 optval != IPOPT_EOL; 19686 optval = ipoptp_next(&opts)) { 19687 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 19688 opt = opts.ipoptp_cur; 19689 optlen = opts.ipoptp_len; 19690 ip2dbg(("ip_source_routed: opt %d, len %d\n", 19691 optval, optlen)); 19692 switch (optval) { 19693 uint32_t off; 19694 case IPOPT_SSRR: 19695 case IPOPT_LSRR: 19696 /* 19697 * If dst is one of our addresses and there are some 19698 * entries left in the source route return (true). 19699 */ 19700 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 19701 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 19702 if (ire == NULL) { 19703 ip2dbg(("ip_source_routed: not next" 19704 " source route 0x%x\n", 19705 ntohl(dst))); 19706 return (B_FALSE); 19707 } 19708 ire_refrele(ire); 19709 off = opt[IPOPT_OFFSET]; 19710 off--; 19711 if (optlen < IP_ADDR_LEN || 19712 off > optlen - IP_ADDR_LEN) { 19713 /* End of source route */ 19714 ip1dbg(("ip_source_routed: end of SR\n")); 19715 return (B_FALSE); 19716 } 19717 return (B_TRUE); 19718 } 19719 } 19720 ip2dbg(("not source routed\n")); 19721 return (B_FALSE); 19722 } 19723 19724 /* 19725 * Check if the packet contains any source route. 19726 */ 19727 static boolean_t 19728 ip_source_route_included(ipha_t *ipha) 19729 { 19730 ipoptp_t opts; 19731 uint8_t optval; 19732 19733 if (IS_SIMPLE_IPH(ipha)) 19734 return (B_FALSE); 19735 for (optval = ipoptp_first(&opts, ipha); 19736 optval != IPOPT_EOL; 19737 optval = ipoptp_next(&opts)) { 19738 switch (optval) { 19739 case IPOPT_SSRR: 19740 case IPOPT_LSRR: 19741 return (B_TRUE); 19742 } 19743 } 19744 return (B_FALSE); 19745 } 19746 19747 /* 19748 * Called when the IRE expiration timer fires. 19749 */ 19750 void 19751 ip_trash_timer_expire(void *args) 19752 { 19753 int flush_flag = 0; 19754 ire_expire_arg_t iea; 19755 ip_stack_t *ipst = (ip_stack_t *)args; 19756 19757 iea.iea_ipst = ipst; /* No netstack_hold */ 19758 19759 /* 19760 * ip_ire_expire_id is protected by ip_trash_timer_lock. 19761 * This lock makes sure that a new invocation of this function 19762 * that occurs due to an almost immediate timer firing will not 19763 * progress beyond this point until the current invocation is done 19764 */ 19765 mutex_enter(&ipst->ips_ip_trash_timer_lock); 19766 ipst->ips_ip_ire_expire_id = 0; 19767 mutex_exit(&ipst->ips_ip_trash_timer_lock); 19768 19769 /* Periodic timer */ 19770 if (ipst->ips_ip_ire_arp_time_elapsed >= 19771 ipst->ips_ip_ire_arp_interval) { 19772 /* 19773 * Remove all IRE_CACHE entries since they might 19774 * contain arp information. 19775 */ 19776 flush_flag |= FLUSH_ARP_TIME; 19777 ipst->ips_ip_ire_arp_time_elapsed = 0; 19778 IP_STAT(ipst, ip_ire_arp_timer_expired); 19779 } 19780 if (ipst->ips_ip_ire_rd_time_elapsed >= 19781 ipst->ips_ip_ire_redir_interval) { 19782 /* Remove all redirects */ 19783 flush_flag |= FLUSH_REDIRECT_TIME; 19784 ipst->ips_ip_ire_rd_time_elapsed = 0; 19785 IP_STAT(ipst, ip_ire_redirect_timer_expired); 19786 } 19787 if (ipst->ips_ip_ire_pmtu_time_elapsed >= 19788 ipst->ips_ip_ire_pathmtu_interval) { 19789 /* Increase path mtu */ 19790 flush_flag |= FLUSH_MTU_TIME; 19791 ipst->ips_ip_ire_pmtu_time_elapsed = 0; 19792 IP_STAT(ipst, ip_ire_pmtu_timer_expired); 19793 } 19794 19795 /* 19796 * Optimize for the case when there are no redirects in the 19797 * ftable, that is, no need to walk the ftable in that case. 19798 */ 19799 if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) { 19800 iea.iea_flush_flag = flush_flag; 19801 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire, 19802 (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 0, NULL, 19803 ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table, 19804 NULL, ALL_ZONES, ipst); 19805 } 19806 if ((flush_flag & FLUSH_REDIRECT_TIME) && 19807 ipst->ips_ip_redirect_cnt > 0) { 19808 iea.iea_flush_flag = flush_flag; 19809 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE, 19810 ire_expire, (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 19811 0, NULL, 0, NULL, NULL, ALL_ZONES, ipst); 19812 } 19813 if (flush_flag & FLUSH_MTU_TIME) { 19814 /* 19815 * Walk all IPv6 IRE's and update them 19816 * Note that ARP and redirect timers are not 19817 * needed since NUD handles stale entries. 19818 */ 19819 flush_flag = FLUSH_MTU_TIME; 19820 iea.iea_flush_flag = flush_flag; 19821 ire_walk_v6(ire_expire, (char *)(uintptr_t)&iea, 19822 ALL_ZONES, ipst); 19823 } 19824 19825 ipst->ips_ip_ire_arp_time_elapsed += ipst->ips_ip_timer_interval; 19826 ipst->ips_ip_ire_rd_time_elapsed += ipst->ips_ip_timer_interval; 19827 ipst->ips_ip_ire_pmtu_time_elapsed += ipst->ips_ip_timer_interval; 19828 19829 /* 19830 * Hold the lock to serialize timeout calls and prevent 19831 * stale values in ip_ire_expire_id. Otherwise it is possible 19832 * for the timer to fire and a new invocation of this function 19833 * to start before the return value of timeout has been stored 19834 * in ip_ire_expire_id by the current invocation. 19835 */ 19836 mutex_enter(&ipst->ips_ip_trash_timer_lock); 19837 ipst->ips_ip_ire_expire_id = timeout(ip_trash_timer_expire, 19838 (void *)ipst, MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 19839 mutex_exit(&ipst->ips_ip_trash_timer_lock); 19840 } 19841 19842 /* 19843 * Called by the memory allocator subsystem directly, when the system 19844 * is running low on memory. 19845 */ 19846 /* ARGSUSED */ 19847 void 19848 ip_trash_ire_reclaim(void *args) 19849 { 19850 netstack_handle_t nh; 19851 netstack_t *ns; 19852 19853 netstack_next_init(&nh); 19854 while ((ns = netstack_next(&nh)) != NULL) { 19855 ip_trash_ire_reclaim_stack(ns->netstack_ip); 19856 netstack_rele(ns); 19857 } 19858 netstack_next_fini(&nh); 19859 } 19860 19861 static void 19862 ip_trash_ire_reclaim_stack(ip_stack_t *ipst) 19863 { 19864 ire_cache_count_t icc; 19865 ire_cache_reclaim_t icr; 19866 ncc_cache_count_t ncc; 19867 nce_cache_reclaim_t ncr; 19868 uint_t delete_cnt; 19869 /* 19870 * Memory reclaim call back. 19871 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 19872 * Then, with a target of freeing 1/Nth of IRE_CACHE 19873 * entries, determine what fraction to free for 19874 * each category of IRE_CACHE entries giving absolute priority 19875 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 19876 * entry will be freed unless all offlink entries are freed). 19877 */ 19878 icc.icc_total = 0; 19879 icc.icc_unused = 0; 19880 icc.icc_offlink = 0; 19881 icc.icc_pmtu = 0; 19882 icc.icc_onlink = 0; 19883 ire_walk(ire_cache_count, (char *)&icc, ipst); 19884 19885 /* 19886 * Free NCEs for IPv6 like the onlink ires. 19887 */ 19888 ncc.ncc_total = 0; 19889 ncc.ncc_host = 0; 19890 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc, ipst); 19891 19892 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 19893 icc.icc_pmtu + icc.icc_onlink); 19894 delete_cnt = icc.icc_total/ipst->ips_ip_ire_reclaim_fraction; 19895 IP_STAT(ipst, ip_trash_ire_reclaim_calls); 19896 if (delete_cnt == 0) 19897 return; 19898 IP_STAT(ipst, ip_trash_ire_reclaim_success); 19899 /* Always delete all unused offlink entries */ 19900 icr.icr_ipst = ipst; 19901 icr.icr_unused = 1; 19902 if (delete_cnt <= icc.icc_unused) { 19903 /* 19904 * Only need to free unused entries. In other words, 19905 * there are enough unused entries to free to meet our 19906 * target number of freed ire cache entries. 19907 */ 19908 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 19909 ncr.ncr_host = 0; 19910 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 19911 /* 19912 * Only need to free unused entries, plus a fraction of offlink 19913 * entries. It follows from the first if statement that 19914 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 19915 */ 19916 delete_cnt -= icc.icc_unused; 19917 /* Round up # deleted by truncating fraction */ 19918 icr.icr_offlink = icc.icc_offlink / delete_cnt; 19919 icr.icr_pmtu = icr.icr_onlink = 0; 19920 ncr.ncr_host = 0; 19921 } else if (delete_cnt <= 19922 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 19923 /* 19924 * Free all unused and offlink entries, plus a fraction of 19925 * pmtu entries. It follows from the previous if statement 19926 * that icc_pmtu is non-zero, and that 19927 * delete_cnt != icc_unused + icc_offlink. 19928 */ 19929 icr.icr_offlink = 1; 19930 delete_cnt -= icc.icc_unused + icc.icc_offlink; 19931 /* Round up # deleted by truncating fraction */ 19932 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 19933 icr.icr_onlink = 0; 19934 ncr.ncr_host = 0; 19935 } else { 19936 /* 19937 * Free all unused, offlink, and pmtu entries, plus a fraction 19938 * of onlink entries. If we're here, then we know that 19939 * icc_onlink is non-zero, and that 19940 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 19941 */ 19942 icr.icr_offlink = icr.icr_pmtu = 1; 19943 delete_cnt -= icc.icc_unused + icc.icc_offlink + 19944 icc.icc_pmtu; 19945 /* Round up # deleted by truncating fraction */ 19946 icr.icr_onlink = icc.icc_onlink / delete_cnt; 19947 /* Using the same delete fraction as for onlink IREs */ 19948 ncr.ncr_host = ncc.ncc_host / delete_cnt; 19949 } 19950 #ifdef DEBUG 19951 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 19952 "fractions %d/%d/%d/%d\n", 19953 icc.icc_total/ipst->ips_ip_ire_reclaim_fraction, icc.icc_total, 19954 icc.icc_unused, icc.icc_offlink, 19955 icc.icc_pmtu, icc.icc_onlink, 19956 icr.icr_unused, icr.icr_offlink, 19957 icr.icr_pmtu, icr.icr_onlink)); 19958 #endif 19959 ire_walk(ire_cache_reclaim, (char *)&icr, ipst); 19960 if (ncr.ncr_host != 0) 19961 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 19962 (uchar_t *)&ncr, ipst); 19963 #ifdef DEBUG 19964 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 19965 icc.icc_pmtu = 0; icc.icc_onlink = 0; 19966 ire_walk(ire_cache_count, (char *)&icc, ipst); 19967 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 19968 icc.icc_total, icc.icc_unused, icc.icc_offlink, 19969 icc.icc_pmtu, icc.icc_onlink)); 19970 #endif 19971 } 19972 19973 /* 19974 * ip_unbind is called when a copy of an unbind request is received from the 19975 * upper level protocol. We remove this conn from any fanout hash list it is 19976 * on, and zero out the bind information. No reply is expected up above. 19977 */ 19978 mblk_t * 19979 ip_unbind(queue_t *q, mblk_t *mp) 19980 { 19981 conn_t *connp = Q_TO_CONN(q); 19982 19983 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 19984 19985 if (is_system_labeled() && connp->conn_anon_port) { 19986 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 19987 connp->conn_mlp_type, connp->conn_ulp, 19988 ntohs(connp->conn_lport), B_FALSE); 19989 connp->conn_anon_port = 0; 19990 } 19991 connp->conn_mlp_type = mlptSingle; 19992 19993 ipcl_hash_remove(connp); 19994 19995 ASSERT(mp->b_cont == NULL); 19996 /* 19997 * Convert mp into a T_OK_ACK 19998 */ 19999 mp = mi_tpi_ok_ack_alloc(mp); 20000 20001 /* 20002 * should not happen in practice... T_OK_ACK is smaller than the 20003 * original message. 20004 */ 20005 if (mp == NULL) 20006 return (NULL); 20007 20008 return (mp); 20009 } 20010 20011 /* 20012 * Write side put procedure. Outbound data, IOCTLs, responses from 20013 * resolvers, etc, come down through here. 20014 * 20015 * arg2 is always a queue_t *. 20016 * When that queue is an ill_t (i.e. q_next != NULL), then arg must be 20017 * the zoneid. 20018 * When that queue is not an ill_t, then arg must be a conn_t pointer. 20019 */ 20020 void 20021 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 20022 { 20023 ip_output_options(arg, mp, arg2, caller, &zero_info); 20024 } 20025 20026 void 20027 ip_output_options(void *arg, mblk_t *mp, void *arg2, int caller, 20028 ip_opt_info_t *infop) 20029 { 20030 conn_t *connp = NULL; 20031 queue_t *q = (queue_t *)arg2; 20032 ipha_t *ipha; 20033 #define rptr ((uchar_t *)ipha) 20034 ire_t *ire = NULL; 20035 ire_t *sctp_ire = NULL; 20036 uint32_t v_hlen_tos_len; 20037 ipaddr_t dst; 20038 mblk_t *first_mp = NULL; 20039 boolean_t mctl_present; 20040 ipsec_out_t *io; 20041 int match_flags; 20042 ill_t *attach_ill = NULL; 20043 /* Bind to IPIF_NOFAILOVER ill etc. */ 20044 ill_t *xmit_ill = NULL; /* IP_PKTINFO etc. */ 20045 ipif_t *dst_ipif; 20046 boolean_t multirt_need_resolve = B_FALSE; 20047 mblk_t *copy_mp = NULL; 20048 int err; 20049 zoneid_t zoneid; 20050 int adjust; 20051 uint16_t iplen; 20052 boolean_t need_decref = B_FALSE; 20053 boolean_t ignore_dontroute = B_FALSE; 20054 boolean_t ignore_nexthop = B_FALSE; 20055 boolean_t ip_nexthop = B_FALSE; 20056 ipaddr_t nexthop_addr; 20057 ip_stack_t *ipst; 20058 20059 #ifdef _BIG_ENDIAN 20060 #define V_HLEN (v_hlen_tos_len >> 24) 20061 #else 20062 #define V_HLEN (v_hlen_tos_len & 0xFF) 20063 #endif 20064 20065 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 20066 "ip_wput_start: q %p", q); 20067 20068 /* 20069 * ip_wput fast path 20070 */ 20071 20072 /* is packet from ARP ? */ 20073 if (q->q_next != NULL) { 20074 zoneid = (zoneid_t)(uintptr_t)arg; 20075 goto qnext; 20076 } 20077 20078 connp = (conn_t *)arg; 20079 ASSERT(connp != NULL); 20080 zoneid = connp->conn_zoneid; 20081 ipst = connp->conn_netstack->netstack_ip; 20082 20083 /* is queue flow controlled? */ 20084 if ((q->q_first != NULL || connp->conn_draining) && 20085 (caller == IP_WPUT)) { 20086 ASSERT(!need_decref); 20087 (void) putq(q, mp); 20088 return; 20089 } 20090 20091 /* Multidata transmit? */ 20092 if (DB_TYPE(mp) == M_MULTIDATA) { 20093 /* 20094 * We should never get here, since all Multidata messages 20095 * originating from tcp should have been directed over to 20096 * tcp_multisend() in the first place. 20097 */ 20098 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20099 freemsg(mp); 20100 return; 20101 } else if (DB_TYPE(mp) != M_DATA) 20102 goto notdata; 20103 20104 if (mp->b_flag & MSGHASREF) { 20105 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20106 mp->b_flag &= ~MSGHASREF; 20107 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 20108 need_decref = B_TRUE; 20109 } 20110 ipha = (ipha_t *)mp->b_rptr; 20111 20112 /* is IP header non-aligned or mblk smaller than basic IP header */ 20113 #ifndef SAFETY_BEFORE_SPEED 20114 if (!OK_32PTR(rptr) || 20115 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 20116 goto hdrtoosmall; 20117 #endif 20118 20119 ASSERT(OK_32PTR(ipha)); 20120 20121 /* 20122 * This function assumes that mp points to an IPv4 packet. If it's the 20123 * wrong version, we'll catch it again in ip_output_v6. 20124 * 20125 * Note that this is *only* locally-generated output here, and never 20126 * forwarded data, and that we need to deal only with transports that 20127 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 20128 * label.) 20129 */ 20130 if (is_system_labeled() && 20131 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 20132 !connp->conn_ulp_labeled) { 20133 err = tsol_check_label(BEST_CRED(mp, connp), &mp, &adjust, 20134 connp->conn_mac_exempt, ipst); 20135 ipha = (ipha_t *)mp->b_rptr; 20136 if (err != 0) { 20137 first_mp = mp; 20138 if (err == EINVAL) 20139 goto icmp_parameter_problem; 20140 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 20141 goto discard_pkt; 20142 } 20143 iplen = ntohs(ipha->ipha_length) + adjust; 20144 ipha->ipha_length = htons(iplen); 20145 } 20146 20147 ASSERT(infop != NULL); 20148 20149 if (infop->ip_opt_flags & IP_VERIFY_SRC) { 20150 /* 20151 * IP_PKTINFO ancillary option is present. 20152 * IPCL_ZONEID is used to honor IP_ALLZONES option which 20153 * allows using address of any zone as the source address. 20154 */ 20155 ire = ire_ctable_lookup(ipha->ipha_src, 0, 20156 (IRE_LOCAL|IRE_LOOPBACK), NULL, IPCL_ZONEID(connp), 20157 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 20158 if (ire == NULL) 20159 goto drop_pkt; 20160 ire_refrele(ire); 20161 ire = NULL; 20162 } 20163 20164 /* 20165 * IP_DONTFAILOVER_IF and IP_BOUND_IF have precedence over ill index 20166 * passed in IP_PKTINFO. 20167 */ 20168 if (infop->ip_opt_ill_index != 0 && 20169 connp->conn_outgoing_ill == NULL && 20170 connp->conn_nofailover_ill == NULL) { 20171 20172 xmit_ill = ill_lookup_on_ifindex( 20173 infop->ip_opt_ill_index, B_FALSE, NULL, NULL, NULL, NULL, 20174 ipst); 20175 20176 if (xmit_ill == NULL || IS_VNI(xmit_ill)) 20177 goto drop_pkt; 20178 /* 20179 * check that there is an ipif belonging 20180 * to our zone. IPCL_ZONEID is not used because 20181 * IP_ALLZONES option is valid only when the ill is 20182 * accessible from all zones i.e has a valid ipif in 20183 * all zones. 20184 */ 20185 if (!ipif_lookup_zoneid_group(xmit_ill, zoneid, 0, NULL)) { 20186 goto drop_pkt; 20187 } 20188 } 20189 20190 /* 20191 * If there is a policy, try to attach an ipsec_out in 20192 * the front. At the end, first_mp either points to a 20193 * M_DATA message or IPSEC_OUT message linked to a 20194 * M_DATA message. We have to do it now as we might 20195 * lose the "conn" if we go through ip_newroute. 20196 */ 20197 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 20198 if (((mp = ipsec_attach_ipsec_out(&mp, connp, NULL, 20199 ipha->ipha_protocol, ipst->ips_netstack)) == NULL)) { 20200 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20201 if (need_decref) 20202 CONN_DEC_REF(connp); 20203 return; 20204 } else { 20205 ASSERT(mp->b_datap->db_type == M_CTL); 20206 first_mp = mp; 20207 mp = mp->b_cont; 20208 mctl_present = B_TRUE; 20209 } 20210 } else { 20211 first_mp = mp; 20212 mctl_present = B_FALSE; 20213 } 20214 20215 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20216 20217 /* is wrong version or IP options present */ 20218 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 20219 goto version_hdrlen_check; 20220 dst = ipha->ipha_dst; 20221 20222 if (connp->conn_nofailover_ill != NULL) { 20223 attach_ill = conn_get_held_ill(connp, 20224 &connp->conn_nofailover_ill, &err); 20225 if (err == ILL_LOOKUP_FAILED) { 20226 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20227 if (need_decref) 20228 CONN_DEC_REF(connp); 20229 freemsg(first_mp); 20230 return; 20231 } 20232 } 20233 20234 /* If IP_BOUND_IF has been set, use that ill. */ 20235 if (connp->conn_outgoing_ill != NULL) { 20236 xmit_ill = conn_get_held_ill(connp, 20237 &connp->conn_outgoing_ill, &err); 20238 if (err == ILL_LOOKUP_FAILED) 20239 goto drop_pkt; 20240 20241 goto send_from_ill; 20242 } 20243 20244 /* is packet multicast? */ 20245 if (CLASSD(dst)) 20246 goto multicast; 20247 20248 /* 20249 * If xmit_ill is set above due to index passed in ip_pkt_info. It 20250 * takes precedence over conn_dontroute and conn_nexthop_set 20251 */ 20252 if (xmit_ill != NULL) 20253 goto send_from_ill; 20254 20255 if (connp->conn_dontroute || connp->conn_nexthop_set) { 20256 /* 20257 * If the destination is a broadcast, local, or loopback 20258 * address, SO_DONTROUTE and IP_NEXTHOP go through the 20259 * standard path. 20260 */ 20261 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20262 if ((ire == NULL) || (ire->ire_type & 20263 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK)) == 0) { 20264 if (ire != NULL) { 20265 ire_refrele(ire); 20266 /* No more access to ire */ 20267 ire = NULL; 20268 } 20269 /* 20270 * bypass routing checks and go directly to interface. 20271 */ 20272 if (connp->conn_dontroute) 20273 goto dontroute; 20274 20275 ASSERT(connp->conn_nexthop_set); 20276 ip_nexthop = B_TRUE; 20277 nexthop_addr = connp->conn_nexthop_v4; 20278 goto send_from_ill; 20279 } 20280 20281 /* Must be a broadcast, a loopback or a local ire */ 20282 ire_refrele(ire); 20283 /* No more access to ire */ 20284 ire = NULL; 20285 } 20286 20287 if (attach_ill != NULL) 20288 goto send_from_ill; 20289 20290 /* 20291 * We cache IRE_CACHEs to avoid lookups. We don't do 20292 * this for the tcp global queue and listen end point 20293 * as it does not really have a real destination to 20294 * talk to. This is also true for SCTP. 20295 */ 20296 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 20297 !connp->conn_fully_bound) { 20298 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20299 if (ire == NULL) 20300 goto noirefound; 20301 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20302 "ip_wput_end: q %p (%S)", q, "end"); 20303 20304 /* 20305 * Check if the ire has the RTF_MULTIRT flag, inherited 20306 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20307 */ 20308 if (ire->ire_flags & RTF_MULTIRT) { 20309 20310 /* 20311 * Force the TTL of multirouted packets if required. 20312 * The TTL of such packets is bounded by the 20313 * ip_multirt_ttl ndd variable. 20314 */ 20315 if ((ipst->ips_ip_multirt_ttl > 0) && 20316 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20317 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20318 "(was %d), dst 0x%08x\n", 20319 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20320 ntohl(ire->ire_addr))); 20321 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20322 } 20323 /* 20324 * We look at this point if there are pending 20325 * unresolved routes. ire_multirt_resolvable() 20326 * checks in O(n) that all IRE_OFFSUBNET ire 20327 * entries for the packet's destination and 20328 * flagged RTF_MULTIRT are currently resolved. 20329 * If some remain unresolved, we make a copy 20330 * of the current message. It will be used 20331 * to initiate additional route resolutions. 20332 */ 20333 multirt_need_resolve = 20334 ire_multirt_need_resolve(ire->ire_addr, 20335 MBLK_GETLABEL(first_mp), ipst); 20336 ip2dbg(("ip_wput[TCP]: ire %p, " 20337 "multirt_need_resolve %d, first_mp %p\n", 20338 (void *)ire, multirt_need_resolve, 20339 (void *)first_mp)); 20340 if (multirt_need_resolve) { 20341 copy_mp = copymsg(first_mp); 20342 if (copy_mp != NULL) { 20343 MULTIRT_DEBUG_TAG(copy_mp); 20344 } 20345 } 20346 } 20347 20348 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20349 20350 /* 20351 * Try to resolve another multiroute if 20352 * ire_multirt_need_resolve() deemed it necessary. 20353 */ 20354 if (copy_mp != NULL) 20355 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20356 if (need_decref) 20357 CONN_DEC_REF(connp); 20358 return; 20359 } 20360 20361 /* 20362 * Access to conn_ire_cache. (protected by conn_lock) 20363 * 20364 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 20365 * the ire bucket lock here to check for CONDEMNED as it is okay to 20366 * send a packet or two with the IRE_CACHE that is going away. 20367 * Access to the ire requires an ire refhold on the ire prior to 20368 * its use since an interface unplumb thread may delete the cached 20369 * ire and release the refhold at any time. 20370 * 20371 * Caching an ire in the conn_ire_cache 20372 * 20373 * o Caching an ire pointer in the conn requires a strict check for 20374 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 20375 * ires before cleaning up the conns. So the caching of an ire pointer 20376 * in the conn is done after making sure under the bucket lock that the 20377 * ire has not yet been marked CONDEMNED. Otherwise we will end up 20378 * caching an ire after the unplumb thread has cleaned up the conn. 20379 * If the conn does not send a packet subsequently the unplumb thread 20380 * will be hanging waiting for the ire count to drop to zero. 20381 * 20382 * o We also need to atomically test for a null conn_ire_cache and 20383 * set the conn_ire_cache under the the protection of the conn_lock 20384 * to avoid races among concurrent threads trying to simultaneously 20385 * cache an ire in the conn_ire_cache. 20386 */ 20387 mutex_enter(&connp->conn_lock); 20388 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 20389 20390 if (ire != NULL && ire->ire_addr == dst && 20391 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20392 20393 IRE_REFHOLD(ire); 20394 mutex_exit(&connp->conn_lock); 20395 20396 } else { 20397 boolean_t cached = B_FALSE; 20398 connp->conn_ire_cache = NULL; 20399 mutex_exit(&connp->conn_lock); 20400 /* Release the old ire */ 20401 if (ire != NULL && sctp_ire == NULL) 20402 IRE_REFRELE_NOTR(ire); 20403 20404 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20405 if (ire == NULL) 20406 goto noirefound; 20407 IRE_REFHOLD_NOTR(ire); 20408 20409 mutex_enter(&connp->conn_lock); 20410 if (CONN_CACHE_IRE(connp) && connp->conn_ire_cache == NULL) { 20411 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 20412 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20413 if (connp->conn_ulp == IPPROTO_TCP) 20414 TCP_CHECK_IREINFO(connp->conn_tcp, ire); 20415 connp->conn_ire_cache = ire; 20416 cached = B_TRUE; 20417 } 20418 rw_exit(&ire->ire_bucket->irb_lock); 20419 } 20420 mutex_exit(&connp->conn_lock); 20421 20422 /* 20423 * We can continue to use the ire but since it was 20424 * not cached, we should drop the extra reference. 20425 */ 20426 if (!cached) 20427 IRE_REFRELE_NOTR(ire); 20428 } 20429 20430 20431 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20432 "ip_wput_end: q %p (%S)", q, "end"); 20433 20434 /* 20435 * Check if the ire has the RTF_MULTIRT flag, inherited 20436 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20437 */ 20438 if (ire->ire_flags & RTF_MULTIRT) { 20439 20440 /* 20441 * Force the TTL of multirouted packets if required. 20442 * The TTL of such packets is bounded by the 20443 * ip_multirt_ttl ndd variable. 20444 */ 20445 if ((ipst->ips_ip_multirt_ttl > 0) && 20446 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20447 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20448 "(was %d), dst 0x%08x\n", 20449 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20450 ntohl(ire->ire_addr))); 20451 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20452 } 20453 20454 /* 20455 * At this point, we check to see if there are any pending 20456 * unresolved routes. ire_multirt_resolvable() 20457 * checks in O(n) that all IRE_OFFSUBNET ire 20458 * entries for the packet's destination and 20459 * flagged RTF_MULTIRT are currently resolved. 20460 * If some remain unresolved, we make a copy 20461 * of the current message. It will be used 20462 * to initiate additional route resolutions. 20463 */ 20464 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 20465 MBLK_GETLABEL(first_mp), ipst); 20466 ip2dbg(("ip_wput[not TCP]: ire %p, " 20467 "multirt_need_resolve %d, first_mp %p\n", 20468 (void *)ire, multirt_need_resolve, (void *)first_mp)); 20469 if (multirt_need_resolve) { 20470 copy_mp = copymsg(first_mp); 20471 if (copy_mp != NULL) { 20472 MULTIRT_DEBUG_TAG(copy_mp); 20473 } 20474 } 20475 } 20476 20477 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20478 20479 /* 20480 * Try to resolve another multiroute if 20481 * ire_multirt_resolvable() deemed it necessary 20482 */ 20483 if (copy_mp != NULL) 20484 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20485 if (need_decref) 20486 CONN_DEC_REF(connp); 20487 return; 20488 20489 qnext: 20490 /* 20491 * Upper Level Protocols pass down complete IP datagrams 20492 * as M_DATA messages. Everything else is a sideshow. 20493 * 20494 * 1) We could be re-entering ip_wput because of ip_neworute 20495 * in which case we could have a IPSEC_OUT message. We 20496 * need to pass through ip_wput like other datagrams and 20497 * hence cannot branch to ip_wput_nondata. 20498 * 20499 * 2) ARP, AH, ESP, and other clients who are on the module 20500 * instance of IP stream, give us something to deal with. 20501 * We will handle AH and ESP here and rest in ip_wput_nondata. 20502 * 20503 * 3) ICMP replies also could come here. 20504 */ 20505 ipst = ILLQ_TO_IPST(q); 20506 20507 if (DB_TYPE(mp) != M_DATA) { 20508 notdata: 20509 if (DB_TYPE(mp) == M_CTL) { 20510 /* 20511 * M_CTL messages are used by ARP, AH and ESP to 20512 * communicate with IP. We deal with IPSEC_IN and 20513 * IPSEC_OUT here. ip_wput_nondata handles other 20514 * cases. 20515 */ 20516 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 20517 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 20518 first_mp = mp->b_cont; 20519 first_mp->b_flag &= ~MSGHASREF; 20520 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20521 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 20522 CONN_DEC_REF(connp); 20523 connp = NULL; 20524 } 20525 if (ii->ipsec_info_type == IPSEC_IN) { 20526 /* 20527 * Either this message goes back to 20528 * IPsec for further processing or to 20529 * ULP after policy checks. 20530 */ 20531 ip_fanout_proto_again(mp, NULL, NULL, NULL); 20532 return; 20533 } else if (ii->ipsec_info_type == IPSEC_OUT) { 20534 io = (ipsec_out_t *)ii; 20535 if (io->ipsec_out_proc_begin) { 20536 /* 20537 * IPsec processing has already started. 20538 * Complete it. 20539 * IPQoS notes: We don't care what is 20540 * in ipsec_out_ill_index since this 20541 * won't be processed for IPQoS policies 20542 * in ipsec_out_process. 20543 */ 20544 ipsec_out_process(q, mp, NULL, 20545 io->ipsec_out_ill_index); 20546 return; 20547 } else { 20548 connp = (q->q_next != NULL) ? 20549 NULL : Q_TO_CONN(q); 20550 first_mp = mp; 20551 mp = mp->b_cont; 20552 mctl_present = B_TRUE; 20553 } 20554 zoneid = io->ipsec_out_zoneid; 20555 ASSERT(zoneid != ALL_ZONES); 20556 } else if (ii->ipsec_info_type == IPSEC_CTL) { 20557 /* 20558 * It's an IPsec control message requesting 20559 * an SADB update to be sent to the IPsec 20560 * hardware acceleration capable ills. 20561 */ 20562 ipsec_ctl_t *ipsec_ctl = 20563 (ipsec_ctl_t *)mp->b_rptr; 20564 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 20565 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 20566 mblk_t *cmp = mp->b_cont; 20567 20568 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 20569 ASSERT(cmp != NULL); 20570 20571 freeb(mp); 20572 ill_ipsec_capab_send_all(satype, cmp, sa, 20573 ipst->ips_netstack); 20574 return; 20575 } else { 20576 /* 20577 * This must be ARP or special TSOL signaling. 20578 */ 20579 ip_wput_nondata(NULL, q, mp, NULL); 20580 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20581 "ip_wput_end: q %p (%S)", q, "nondata"); 20582 return; 20583 } 20584 } else { 20585 /* 20586 * This must be non-(ARP/AH/ESP) messages. 20587 */ 20588 ASSERT(!need_decref); 20589 ip_wput_nondata(NULL, q, mp, NULL); 20590 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20591 "ip_wput_end: q %p (%S)", q, "nondata"); 20592 return; 20593 } 20594 } else { 20595 first_mp = mp; 20596 mctl_present = B_FALSE; 20597 } 20598 20599 ASSERT(first_mp != NULL); 20600 /* 20601 * ICMP echo replies attach an ipsec_out and set ipsec_out_attach_if 20602 * to make sure that this packet goes out on the same interface it 20603 * came in. We handle that here. 20604 */ 20605 if (mctl_present) { 20606 uint_t ifindex; 20607 20608 io = (ipsec_out_t *)first_mp->b_rptr; 20609 if (io->ipsec_out_attach_if || io->ipsec_out_ip_nexthop) { 20610 /* 20611 * We may have lost the conn context if we are 20612 * coming here from ip_newroute(). Copy the 20613 * nexthop information. 20614 */ 20615 if (io->ipsec_out_ip_nexthop) { 20616 ip_nexthop = B_TRUE; 20617 nexthop_addr = io->ipsec_out_nexthop_addr; 20618 20619 ipha = (ipha_t *)mp->b_rptr; 20620 dst = ipha->ipha_dst; 20621 goto send_from_ill; 20622 } else { 20623 ASSERT(io->ipsec_out_ill_index != 0); 20624 ifindex = io->ipsec_out_ill_index; 20625 attach_ill = ill_lookup_on_ifindex(ifindex, 20626 B_FALSE, NULL, NULL, NULL, NULL, ipst); 20627 if (attach_ill == NULL) { 20628 ASSERT(xmit_ill == NULL); 20629 ip1dbg(("ip_output: bad ifindex for " 20630 "(BIND TO IPIF_NOFAILOVER) %d\n", 20631 ifindex)); 20632 freemsg(first_mp); 20633 BUMP_MIB(&ipst->ips_ip_mib, 20634 ipIfStatsOutDiscards); 20635 ASSERT(!need_decref); 20636 return; 20637 } 20638 } 20639 } 20640 } 20641 20642 ASSERT(xmit_ill == NULL); 20643 20644 /* We have a complete IP datagram heading outbound. */ 20645 ipha = (ipha_t *)mp->b_rptr; 20646 20647 #ifndef SPEED_BEFORE_SAFETY 20648 /* 20649 * Make sure we have a full-word aligned message and that at least 20650 * a simple IP header is accessible in the first message. If not, 20651 * try a pullup. 20652 */ 20653 if (!OK_32PTR(rptr) || 20654 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) { 20655 hdrtoosmall: 20656 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 20657 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20658 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 20659 if (first_mp == NULL) 20660 first_mp = mp; 20661 goto discard_pkt; 20662 } 20663 20664 /* This function assumes that mp points to an IPv4 packet. */ 20665 if (is_system_labeled() && q->q_next == NULL && 20666 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 20667 !connp->conn_ulp_labeled) { 20668 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 20669 &adjust, connp->conn_mac_exempt, ipst); 20670 ipha = (ipha_t *)mp->b_rptr; 20671 if (first_mp != NULL) 20672 first_mp->b_cont = mp; 20673 if (err != 0) { 20674 if (first_mp == NULL) 20675 first_mp = mp; 20676 if (err == EINVAL) 20677 goto icmp_parameter_problem; 20678 ip2dbg(("ip_wput: label check failed (%d)\n", 20679 err)); 20680 goto discard_pkt; 20681 } 20682 iplen = ntohs(ipha->ipha_length) + adjust; 20683 ipha->ipha_length = htons(iplen); 20684 } 20685 20686 ipha = (ipha_t *)mp->b_rptr; 20687 if (first_mp == NULL) { 20688 ASSERT(attach_ill == NULL && xmit_ill == NULL); 20689 /* 20690 * If we got here because of "goto hdrtoosmall" 20691 * We need to attach a IPSEC_OUT. 20692 */ 20693 if (connp->conn_out_enforce_policy) { 20694 if (((mp = ipsec_attach_ipsec_out(&mp, connp, 20695 NULL, ipha->ipha_protocol, 20696 ipst->ips_netstack)) == NULL)) { 20697 BUMP_MIB(&ipst->ips_ip_mib, 20698 ipIfStatsOutDiscards); 20699 if (need_decref) 20700 CONN_DEC_REF(connp); 20701 return; 20702 } else { 20703 ASSERT(mp->b_datap->db_type == M_CTL); 20704 first_mp = mp; 20705 mp = mp->b_cont; 20706 mctl_present = B_TRUE; 20707 } 20708 } else { 20709 first_mp = mp; 20710 mctl_present = B_FALSE; 20711 } 20712 } 20713 } 20714 #endif 20715 20716 /* Most of the code below is written for speed, not readability */ 20717 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20718 20719 /* 20720 * If ip_newroute() fails, we're going to need a full 20721 * header for the icmp wraparound. 20722 */ 20723 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 20724 uint_t v_hlen; 20725 version_hdrlen_check: 20726 ASSERT(first_mp != NULL); 20727 v_hlen = V_HLEN; 20728 /* 20729 * siphon off IPv6 packets coming down from transport 20730 * layer modules here. 20731 * Note: high-order bit carries NUD reachability confirmation 20732 */ 20733 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 20734 /* 20735 * FIXME: assume that callers of ip_output* call 20736 * the right version? 20737 */ 20738 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutWrongIPVersion); 20739 ASSERT(xmit_ill == NULL); 20740 if (attach_ill != NULL) 20741 ill_refrele(attach_ill); 20742 if (need_decref) 20743 mp->b_flag |= MSGHASREF; 20744 (void) ip_output_v6(arg, first_mp, arg2, caller); 20745 return; 20746 } 20747 20748 if ((v_hlen >> 4) != IP_VERSION) { 20749 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20750 "ip_wput_end: q %p (%S)", q, "badvers"); 20751 goto discard_pkt; 20752 } 20753 /* 20754 * Is the header length at least 20 bytes? 20755 * 20756 * Are there enough bytes accessible in the header? If 20757 * not, try a pullup. 20758 */ 20759 v_hlen &= 0xF; 20760 v_hlen <<= 2; 20761 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 20762 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20763 "ip_wput_end: q %p (%S)", q, "badlen"); 20764 goto discard_pkt; 20765 } 20766 if (v_hlen > (mp->b_wptr - rptr)) { 20767 if (!pullupmsg(mp, v_hlen)) { 20768 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20769 "ip_wput_end: q %p (%S)", q, "badpullup2"); 20770 goto discard_pkt; 20771 } 20772 ipha = (ipha_t *)mp->b_rptr; 20773 } 20774 /* 20775 * Move first entry from any source route into ipha_dst and 20776 * verify the options 20777 */ 20778 if (ip_wput_options(q, first_mp, ipha, mctl_present, 20779 zoneid, ipst)) { 20780 ASSERT(xmit_ill == NULL); 20781 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20782 if (attach_ill != NULL) 20783 ill_refrele(attach_ill); 20784 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20785 "ip_wput_end: q %p (%S)", q, "badopts"); 20786 if (need_decref) 20787 CONN_DEC_REF(connp); 20788 return; 20789 } 20790 } 20791 dst = ipha->ipha_dst; 20792 20793 /* 20794 * Try to get an IRE_CACHE for the destination address. If we can't, 20795 * we have to run the packet through ip_newroute which will take 20796 * the appropriate action to arrange for an IRE_CACHE, such as querying 20797 * a resolver, or assigning a default gateway, etc. 20798 */ 20799 if (CLASSD(dst)) { 20800 ipif_t *ipif; 20801 uint32_t setsrc = 0; 20802 20803 multicast: 20804 ASSERT(first_mp != NULL); 20805 ip2dbg(("ip_wput: CLASSD\n")); 20806 if (connp == NULL) { 20807 /* 20808 * Use the first good ipif on the ill. 20809 * XXX Should this ever happen? (Appears 20810 * to show up with just ppp and no ethernet due 20811 * to in.rdisc.) 20812 * However, ire_send should be able to 20813 * call ip_wput_ire directly. 20814 * 20815 * XXX Also, this can happen for ICMP and other packets 20816 * with multicast source addresses. Perhaps we should 20817 * fix things so that we drop the packet in question, 20818 * but for now, just run with it. 20819 */ 20820 ill_t *ill = (ill_t *)q->q_ptr; 20821 20822 /* 20823 * Don't honor attach_if for this case. If ill 20824 * is part of the group, ipif could belong to 20825 * any ill and we cannot maintain attach_ill 20826 * and ipif_ill same anymore and the assert 20827 * below would fail. 20828 */ 20829 if (mctl_present && io->ipsec_out_attach_if) { 20830 io->ipsec_out_ill_index = 0; 20831 io->ipsec_out_attach_if = B_FALSE; 20832 ASSERT(attach_ill != NULL); 20833 ill_refrele(attach_ill); 20834 attach_ill = NULL; 20835 } 20836 20837 ASSERT(attach_ill == NULL); 20838 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 20839 if (ipif == NULL) { 20840 if (need_decref) 20841 CONN_DEC_REF(connp); 20842 freemsg(first_mp); 20843 return; 20844 } 20845 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 20846 ntohl(dst), ill->ill_name)); 20847 } else { 20848 /* 20849 * The order of precedence is IP_BOUND_IF, IP_PKTINFO 20850 * and IP_MULTICAST_IF. The block comment above this 20851 * function explains the locking mechanism used here. 20852 */ 20853 if (xmit_ill == NULL) { 20854 xmit_ill = conn_get_held_ill(connp, 20855 &connp->conn_outgoing_ill, &err); 20856 if (err == ILL_LOOKUP_FAILED) { 20857 ip1dbg(("ip_wput: No ill for " 20858 "IP_BOUND_IF\n")); 20859 BUMP_MIB(&ipst->ips_ip_mib, 20860 ipIfStatsOutNoRoutes); 20861 goto drop_pkt; 20862 } 20863 } 20864 20865 if (xmit_ill == NULL) { 20866 ipif = conn_get_held_ipif(connp, 20867 &connp->conn_multicast_ipif, &err); 20868 if (err == IPIF_LOOKUP_FAILED) { 20869 ip1dbg(("ip_wput: No ipif for " 20870 "multicast\n")); 20871 BUMP_MIB(&ipst->ips_ip_mib, 20872 ipIfStatsOutNoRoutes); 20873 goto drop_pkt; 20874 } 20875 } 20876 if (xmit_ill != NULL) { 20877 ipif = ipif_get_next_ipif(NULL, xmit_ill); 20878 if (ipif == NULL) { 20879 ip1dbg(("ip_wput: No ipif for " 20880 "xmit_ill\n")); 20881 BUMP_MIB(&ipst->ips_ip_mib, 20882 ipIfStatsOutNoRoutes); 20883 goto drop_pkt; 20884 } 20885 } else if (ipif == NULL || ipif->ipif_isv6) { 20886 /* 20887 * We must do this ipif determination here 20888 * else we could pass through ip_newroute 20889 * and come back here without the conn context. 20890 * 20891 * Note: we do late binding i.e. we bind to 20892 * the interface when the first packet is sent. 20893 * For performance reasons we do not rebind on 20894 * each packet but keep the binding until the 20895 * next IP_MULTICAST_IF option. 20896 * 20897 * conn_multicast_{ipif,ill} are shared between 20898 * IPv4 and IPv6 and AF_INET6 sockets can 20899 * send both IPv4 and IPv6 packets. Hence 20900 * we have to check that "isv6" matches above. 20901 */ 20902 if (ipif != NULL) 20903 ipif_refrele(ipif); 20904 ipif = ipif_lookup_group(dst, zoneid, ipst); 20905 if (ipif == NULL) { 20906 ip1dbg(("ip_wput: No ipif for " 20907 "multicast\n")); 20908 BUMP_MIB(&ipst->ips_ip_mib, 20909 ipIfStatsOutNoRoutes); 20910 goto drop_pkt; 20911 } 20912 err = conn_set_held_ipif(connp, 20913 &connp->conn_multicast_ipif, ipif); 20914 if (err == IPIF_LOOKUP_FAILED) { 20915 ipif_refrele(ipif); 20916 ip1dbg(("ip_wput: No ipif for " 20917 "multicast\n")); 20918 BUMP_MIB(&ipst->ips_ip_mib, 20919 ipIfStatsOutNoRoutes); 20920 goto drop_pkt; 20921 } 20922 } 20923 } 20924 ASSERT(!ipif->ipif_isv6); 20925 /* 20926 * As we may lose the conn by the time we reach ip_wput_ire, 20927 * we copy conn_multicast_loop and conn_dontroute on to an 20928 * ipsec_out. In case if this datagram goes out secure, 20929 * we need the ill_index also. Copy that also into the 20930 * ipsec_out. 20931 */ 20932 if (mctl_present) { 20933 io = (ipsec_out_t *)first_mp->b_rptr; 20934 ASSERT(first_mp->b_datap->db_type == M_CTL); 20935 ASSERT(io->ipsec_out_type == IPSEC_OUT); 20936 } else { 20937 ASSERT(mp == first_mp); 20938 if ((first_mp = allocb(sizeof (ipsec_info_t), 20939 BPRI_HI)) == NULL) { 20940 ipif_refrele(ipif); 20941 first_mp = mp; 20942 goto discard_pkt; 20943 } 20944 first_mp->b_datap->db_type = M_CTL; 20945 first_mp->b_wptr += sizeof (ipsec_info_t); 20946 /* ipsec_out_secure is B_FALSE now */ 20947 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 20948 io = (ipsec_out_t *)first_mp->b_rptr; 20949 io->ipsec_out_type = IPSEC_OUT; 20950 io->ipsec_out_len = sizeof (ipsec_out_t); 20951 io->ipsec_out_use_global_policy = B_TRUE; 20952 io->ipsec_out_ns = ipst->ips_netstack; 20953 first_mp->b_cont = mp; 20954 mctl_present = B_TRUE; 20955 } 20956 if (attach_ill != NULL) { 20957 ASSERT(attach_ill == ipif->ipif_ill); 20958 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 20959 20960 /* 20961 * Check if we need an ire that will not be 20962 * looked up by anybody else i.e. HIDDEN. 20963 */ 20964 if (ill_is_probeonly(attach_ill)) { 20965 match_flags |= MATCH_IRE_MARK_HIDDEN; 20966 } 20967 io->ipsec_out_ill_index = 20968 attach_ill->ill_phyint->phyint_ifindex; 20969 io->ipsec_out_attach_if = B_TRUE; 20970 } else { 20971 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 20972 io->ipsec_out_ill_index = 20973 ipif->ipif_ill->ill_phyint->phyint_ifindex; 20974 } 20975 if (connp != NULL) { 20976 io->ipsec_out_multicast_loop = 20977 connp->conn_multicast_loop; 20978 io->ipsec_out_dontroute = connp->conn_dontroute; 20979 io->ipsec_out_zoneid = connp->conn_zoneid; 20980 } 20981 /* 20982 * If the application uses IP_MULTICAST_IF with 20983 * different logical addresses of the same ILL, we 20984 * need to make sure that the soruce address of 20985 * the packet matches the logical IP address used 20986 * in the option. We do it by initializing ipha_src 20987 * here. This should keep IPsec also happy as 20988 * when we return from IPsec processing, we don't 20989 * have to worry about getting the right address on 20990 * the packet. Thus it is sufficient to look for 20991 * IRE_CACHE using MATCH_IRE_ILL rathen than 20992 * MATCH_IRE_IPIF. 20993 * 20994 * NOTE : We need to do it for non-secure case also as 20995 * this might go out secure if there is a global policy 20996 * match in ip_wput_ire. For bind to IPIF_NOFAILOVER 20997 * address, the source should be initialized already and 20998 * hence we won't be initializing here. 20999 * 21000 * As we do not have the ire yet, it is possible that 21001 * we set the source address here and then later discover 21002 * that the ire implies the source address to be assigned 21003 * through the RTF_SETSRC flag. 21004 * In that case, the setsrc variable will remind us 21005 * that overwritting the source address by the one 21006 * of the RTF_SETSRC-flagged ire is allowed. 21007 */ 21008 if (ipha->ipha_src == INADDR_ANY && 21009 (connp == NULL || !connp->conn_unspec_src)) { 21010 ipha->ipha_src = ipif->ipif_src_addr; 21011 setsrc = RTF_SETSRC; 21012 } 21013 /* 21014 * Find an IRE which matches the destination and the outgoing 21015 * queue (i.e. the outgoing interface.) 21016 * For loopback use a unicast IP address for 21017 * the ire lookup. 21018 */ 21019 if (IS_LOOPBACK(ipif->ipif_ill)) 21020 dst = ipif->ipif_lcl_addr; 21021 21022 /* 21023 * If xmit_ill is set, we branch out to ip_newroute_ipif. 21024 * We don't need to lookup ire in ctable as the packet 21025 * needs to be sent to the destination through the specified 21026 * ill irrespective of ires in the cache table. 21027 */ 21028 ire = NULL; 21029 if (xmit_ill == NULL) { 21030 ire = ire_ctable_lookup(dst, 0, 0, ipif, 21031 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21032 } 21033 21034 /* 21035 * refrele attach_ill as its not needed anymore. 21036 */ 21037 if (attach_ill != NULL) { 21038 ill_refrele(attach_ill); 21039 attach_ill = NULL; 21040 } 21041 21042 if (ire == NULL) { 21043 /* 21044 * Multicast loopback and multicast forwarding is 21045 * done in ip_wput_ire. 21046 * 21047 * Mark this packet to make it be delivered to 21048 * ip_wput_ire after the new ire has been 21049 * created. 21050 * 21051 * The call to ip_newroute_ipif takes into account 21052 * the setsrc reminder. In any case, we take care 21053 * of the RTF_MULTIRT flag. 21054 */ 21055 mp->b_prev = mp->b_next = NULL; 21056 if (xmit_ill == NULL || 21057 xmit_ill->ill_ipif_up_count > 0) { 21058 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 21059 setsrc | RTF_MULTIRT, zoneid, infop); 21060 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21061 "ip_wput_end: q %p (%S)", q, "noire"); 21062 } else { 21063 freemsg(first_mp); 21064 } 21065 ipif_refrele(ipif); 21066 if (xmit_ill != NULL) 21067 ill_refrele(xmit_ill); 21068 if (need_decref) 21069 CONN_DEC_REF(connp); 21070 return; 21071 } 21072 21073 ipif_refrele(ipif); 21074 ipif = NULL; 21075 ASSERT(xmit_ill == NULL); 21076 21077 /* 21078 * Honor the RTF_SETSRC flag for multicast packets, 21079 * if allowed by the setsrc reminder. 21080 */ 21081 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 21082 ipha->ipha_src = ire->ire_src_addr; 21083 } 21084 21085 /* 21086 * Unconditionally force the TTL to 1 for 21087 * multirouted multicast packets: 21088 * multirouted multicast should not cross 21089 * multicast routers. 21090 */ 21091 if (ire->ire_flags & RTF_MULTIRT) { 21092 if (ipha->ipha_ttl > 1) { 21093 ip2dbg(("ip_wput: forcing multicast " 21094 "multirt TTL to 1 (was %d), dst 0x%08x\n", 21095 ipha->ipha_ttl, ntohl(ire->ire_addr))); 21096 ipha->ipha_ttl = 1; 21097 } 21098 } 21099 } else { 21100 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 21101 if ((ire != NULL) && (ire->ire_type & 21102 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 21103 ignore_dontroute = B_TRUE; 21104 ignore_nexthop = B_TRUE; 21105 } 21106 if (ire != NULL) { 21107 ire_refrele(ire); 21108 ire = NULL; 21109 } 21110 /* 21111 * Guard against coming in from arp in which case conn is NULL. 21112 * Also guard against non M_DATA with dontroute set but 21113 * destined to local, loopback or broadcast addresses. 21114 */ 21115 if (connp != NULL && connp->conn_dontroute && 21116 !ignore_dontroute) { 21117 dontroute: 21118 /* 21119 * Set TTL to 1 if SO_DONTROUTE is set to prevent 21120 * routing protocols from seeing false direct 21121 * connectivity. 21122 */ 21123 ipha->ipha_ttl = 1; 21124 21125 /* If suitable ipif not found, drop packet */ 21126 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid, ipst); 21127 if (dst_ipif == NULL) { 21128 noroute: 21129 ip1dbg(("ip_wput: no route for dst using" 21130 " SO_DONTROUTE\n")); 21131 BUMP_MIB(&ipst->ips_ip_mib, 21132 ipIfStatsOutNoRoutes); 21133 mp->b_prev = mp->b_next = NULL; 21134 if (first_mp == NULL) 21135 first_mp = mp; 21136 goto drop_pkt; 21137 } else { 21138 /* 21139 * If suitable ipif has been found, set 21140 * xmit_ill to the corresponding 21141 * ipif_ill because we'll be using the 21142 * send_from_ill logic below. 21143 */ 21144 ASSERT(xmit_ill == NULL); 21145 xmit_ill = dst_ipif->ipif_ill; 21146 mutex_enter(&xmit_ill->ill_lock); 21147 if (!ILL_CAN_LOOKUP(xmit_ill)) { 21148 mutex_exit(&xmit_ill->ill_lock); 21149 xmit_ill = NULL; 21150 ipif_refrele(dst_ipif); 21151 goto noroute; 21152 } 21153 ill_refhold_locked(xmit_ill); 21154 mutex_exit(&xmit_ill->ill_lock); 21155 ipif_refrele(dst_ipif); 21156 } 21157 } 21158 /* 21159 * If we are bound to IPIF_NOFAILOVER address, look for 21160 * an IRE_CACHE matching the ill. 21161 */ 21162 send_from_ill: 21163 if (attach_ill != NULL) { 21164 ipif_t *attach_ipif; 21165 21166 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21167 21168 /* 21169 * Check if we need an ire that will not be 21170 * looked up by anybody else i.e. HIDDEN. 21171 */ 21172 if (ill_is_probeonly(attach_ill)) { 21173 match_flags |= MATCH_IRE_MARK_HIDDEN; 21174 } 21175 21176 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 21177 if (attach_ipif == NULL) { 21178 ip1dbg(("ip_wput: No ipif for attach_ill\n")); 21179 goto discard_pkt; 21180 } 21181 ire = ire_ctable_lookup(dst, 0, 0, attach_ipif, 21182 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21183 ipif_refrele(attach_ipif); 21184 } else if (xmit_ill != NULL) { 21185 ipif_t *ipif; 21186 21187 /* 21188 * Mark this packet as originated locally 21189 */ 21190 mp->b_prev = mp->b_next = NULL; 21191 21192 /* 21193 * Could be SO_DONTROUTE case also. 21194 * Verify that at least one ipif is up on the ill. 21195 */ 21196 if (xmit_ill->ill_ipif_up_count == 0) { 21197 ip1dbg(("ip_output: xmit_ill %s is down\n", 21198 xmit_ill->ill_name)); 21199 goto drop_pkt; 21200 } 21201 21202 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21203 if (ipif == NULL) { 21204 ip1dbg(("ip_output: xmit_ill %s NULL ipif\n", 21205 xmit_ill->ill_name)); 21206 goto drop_pkt; 21207 } 21208 21209 /* 21210 * Look for a ire that is part of the group, 21211 * if found use it else call ip_newroute_ipif. 21212 * IPCL_ZONEID is not used for matching because 21213 * IP_ALLZONES option is valid only when the 21214 * ill is accessible from all zones i.e has a 21215 * valid ipif in all zones. 21216 */ 21217 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 21218 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 21219 MBLK_GETLABEL(mp), match_flags, ipst); 21220 /* 21221 * If an ire exists use it or else create 21222 * an ire but don't add it to the cache. 21223 * Adding an ire may cause issues with 21224 * asymmetric routing. 21225 * In case of multiroute always act as if 21226 * ire does not exist. 21227 */ 21228 if (ire == NULL || ire->ire_flags & RTF_MULTIRT) { 21229 if (ire != NULL) 21230 ire_refrele(ire); 21231 ip_newroute_ipif(q, first_mp, ipif, 21232 dst, connp, 0, zoneid, infop); 21233 ipif_refrele(ipif); 21234 ip1dbg(("ip_output: xmit_ill via %s\n", 21235 xmit_ill->ill_name)); 21236 ill_refrele(xmit_ill); 21237 if (need_decref) 21238 CONN_DEC_REF(connp); 21239 return; 21240 } 21241 ipif_refrele(ipif); 21242 } else if (ip_nexthop || (connp != NULL && 21243 (connp->conn_nexthop_set)) && !ignore_nexthop) { 21244 if (!ip_nexthop) { 21245 ip_nexthop = B_TRUE; 21246 nexthop_addr = connp->conn_nexthop_v4; 21247 } 21248 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 21249 MATCH_IRE_GW; 21250 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 21251 NULL, zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21252 } else { 21253 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), 21254 ipst); 21255 } 21256 if (!ire) { 21257 /* 21258 * Make sure we don't load spread if this 21259 * is IPIF_NOFAILOVER case. 21260 */ 21261 if ((attach_ill != NULL) || 21262 (ip_nexthop && !ignore_nexthop)) { 21263 if (mctl_present) { 21264 io = (ipsec_out_t *)first_mp->b_rptr; 21265 ASSERT(first_mp->b_datap->db_type == 21266 M_CTL); 21267 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21268 } else { 21269 ASSERT(mp == first_mp); 21270 first_mp = allocb( 21271 sizeof (ipsec_info_t), BPRI_HI); 21272 if (first_mp == NULL) { 21273 first_mp = mp; 21274 goto discard_pkt; 21275 } 21276 first_mp->b_datap->db_type = M_CTL; 21277 first_mp->b_wptr += 21278 sizeof (ipsec_info_t); 21279 /* ipsec_out_secure is B_FALSE now */ 21280 bzero(first_mp->b_rptr, 21281 sizeof (ipsec_info_t)); 21282 io = (ipsec_out_t *)first_mp->b_rptr; 21283 io->ipsec_out_type = IPSEC_OUT; 21284 io->ipsec_out_len = 21285 sizeof (ipsec_out_t); 21286 io->ipsec_out_use_global_policy = 21287 B_TRUE; 21288 io->ipsec_out_ns = ipst->ips_netstack; 21289 first_mp->b_cont = mp; 21290 mctl_present = B_TRUE; 21291 } 21292 if (attach_ill != NULL) { 21293 io->ipsec_out_ill_index = attach_ill-> 21294 ill_phyint->phyint_ifindex; 21295 io->ipsec_out_attach_if = B_TRUE; 21296 } else { 21297 io->ipsec_out_ip_nexthop = ip_nexthop; 21298 io->ipsec_out_nexthop_addr = 21299 nexthop_addr; 21300 } 21301 } 21302 noirefound: 21303 /* 21304 * Mark this packet as having originated on 21305 * this machine. This will be noted in 21306 * ire_add_then_send, which needs to know 21307 * whether to run it back through ip_wput or 21308 * ip_rput following successful resolution. 21309 */ 21310 mp->b_prev = NULL; 21311 mp->b_next = NULL; 21312 ip_newroute(q, first_mp, dst, connp, zoneid, ipst); 21313 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21314 "ip_wput_end: q %p (%S)", q, "newroute"); 21315 if (attach_ill != NULL) 21316 ill_refrele(attach_ill); 21317 if (xmit_ill != NULL) 21318 ill_refrele(xmit_ill); 21319 if (need_decref) 21320 CONN_DEC_REF(connp); 21321 return; 21322 } 21323 } 21324 21325 /* We now know where we are going with it. */ 21326 21327 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21328 "ip_wput_end: q %p (%S)", q, "end"); 21329 21330 /* 21331 * Check if the ire has the RTF_MULTIRT flag, inherited 21332 * from an IRE_OFFSUBNET ire entry in ip_newroute. 21333 */ 21334 if (ire->ire_flags & RTF_MULTIRT) { 21335 /* 21336 * Force the TTL of multirouted packets if required. 21337 * The TTL of such packets is bounded by the 21338 * ip_multirt_ttl ndd variable. 21339 */ 21340 if ((ipst->ips_ip_multirt_ttl > 0) && 21341 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 21342 ip2dbg(("ip_wput: forcing multirt TTL to %d " 21343 "(was %d), dst 0x%08x\n", 21344 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 21345 ntohl(ire->ire_addr))); 21346 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 21347 } 21348 /* 21349 * At this point, we check to see if there are any pending 21350 * unresolved routes. ire_multirt_resolvable() 21351 * checks in O(n) that all IRE_OFFSUBNET ire 21352 * entries for the packet's destination and 21353 * flagged RTF_MULTIRT are currently resolved. 21354 * If some remain unresolved, we make a copy 21355 * of the current message. It will be used 21356 * to initiate additional route resolutions. 21357 */ 21358 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 21359 MBLK_GETLABEL(first_mp), ipst); 21360 ip2dbg(("ip_wput[noirefound]: ire %p, " 21361 "multirt_need_resolve %d, first_mp %p\n", 21362 (void *)ire, multirt_need_resolve, (void *)first_mp)); 21363 if (multirt_need_resolve) { 21364 copy_mp = copymsg(first_mp); 21365 if (copy_mp != NULL) { 21366 MULTIRT_DEBUG_TAG(copy_mp); 21367 } 21368 } 21369 } 21370 21371 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 21372 /* 21373 * Try to resolve another multiroute if 21374 * ire_multirt_resolvable() deemed it necessary. 21375 * At this point, we need to distinguish 21376 * multicasts from other packets. For multicasts, 21377 * we call ip_newroute_ipif() and request that both 21378 * multirouting and setsrc flags are checked. 21379 */ 21380 if (copy_mp != NULL) { 21381 if (CLASSD(dst)) { 21382 ipif_t *ipif = ipif_lookup_group(dst, zoneid, ipst); 21383 if (ipif) { 21384 ASSERT(infop->ip_opt_ill_index == 0); 21385 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 21386 RTF_SETSRC | RTF_MULTIRT, zoneid, infop); 21387 ipif_refrele(ipif); 21388 } else { 21389 MULTIRT_DEBUG_UNTAG(copy_mp); 21390 freemsg(copy_mp); 21391 copy_mp = NULL; 21392 } 21393 } else { 21394 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 21395 } 21396 } 21397 if (attach_ill != NULL) 21398 ill_refrele(attach_ill); 21399 if (xmit_ill != NULL) 21400 ill_refrele(xmit_ill); 21401 if (need_decref) 21402 CONN_DEC_REF(connp); 21403 return; 21404 21405 icmp_parameter_problem: 21406 /* could not have originated externally */ 21407 ASSERT(mp->b_prev == NULL); 21408 if (ip_hdr_complete(ipha, zoneid, ipst) == 0) { 21409 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 21410 /* it's the IP header length that's in trouble */ 21411 icmp_param_problem(q, first_mp, 0, zoneid, ipst); 21412 first_mp = NULL; 21413 } 21414 21415 discard_pkt: 21416 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21417 drop_pkt: 21418 ip1dbg(("ip_wput: dropped packet\n")); 21419 if (ire != NULL) 21420 ire_refrele(ire); 21421 if (need_decref) 21422 CONN_DEC_REF(connp); 21423 freemsg(first_mp); 21424 if (attach_ill != NULL) 21425 ill_refrele(attach_ill); 21426 if (xmit_ill != NULL) 21427 ill_refrele(xmit_ill); 21428 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21429 "ip_wput_end: q %p (%S)", q, "droppkt"); 21430 } 21431 21432 /* 21433 * If this is a conn_t queue, then we pass in the conn. This includes the 21434 * zoneid. 21435 * Otherwise, this is a message coming back from ARP or for an ill_t queue, 21436 * in which case we use the global zoneid since those are all part of 21437 * the global zone. 21438 */ 21439 void 21440 ip_wput(queue_t *q, mblk_t *mp) 21441 { 21442 if (CONN_Q(q)) 21443 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 21444 else 21445 ip_output(GLOBAL_ZONEID, mp, q, IP_WPUT); 21446 } 21447 21448 /* 21449 * 21450 * The following rules must be observed when accessing any ipif or ill 21451 * that has been cached in the conn. Typically conn_nofailover_ill, 21452 * conn_outgoing_ill, conn_multicast_ipif and conn_multicast_ill. 21453 * 21454 * Access: The ipif or ill pointed to from the conn can be accessed under 21455 * the protection of the conn_lock or after it has been refheld under the 21456 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 21457 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 21458 * The reason for this is that a concurrent unplumb could actually be 21459 * cleaning up these cached pointers by walking the conns and might have 21460 * finished cleaning up the conn in question. The macros check that an 21461 * unplumb has not yet started on the ipif or ill. 21462 * 21463 * Caching: An ipif or ill pointer may be cached in the conn only after 21464 * making sure that an unplumb has not started. So the caching is done 21465 * while holding both the conn_lock and the ill_lock and after using the 21466 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 21467 * flag before starting the cleanup of conns. 21468 * 21469 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 21470 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 21471 * or a reference to the ipif or a reference to an ire that references the 21472 * ipif. An ipif does not change its ill except for failover/failback. Since 21473 * failover/failback happens only after bringing down the ipif and making sure 21474 * the ipif refcnt has gone to zero and holding the ill_g_lock and ill_lock 21475 * the above holds. 21476 */ 21477 ipif_t * 21478 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 21479 { 21480 ipif_t *ipif; 21481 ill_t *ill; 21482 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 21483 21484 *err = 0; 21485 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21486 mutex_enter(&connp->conn_lock); 21487 ipif = *ipifp; 21488 if (ipif != NULL) { 21489 ill = ipif->ipif_ill; 21490 mutex_enter(&ill->ill_lock); 21491 if (IPIF_CAN_LOOKUP(ipif)) { 21492 ipif_refhold_locked(ipif); 21493 mutex_exit(&ill->ill_lock); 21494 mutex_exit(&connp->conn_lock); 21495 rw_exit(&ipst->ips_ill_g_lock); 21496 return (ipif); 21497 } else { 21498 *err = IPIF_LOOKUP_FAILED; 21499 } 21500 mutex_exit(&ill->ill_lock); 21501 } 21502 mutex_exit(&connp->conn_lock); 21503 rw_exit(&ipst->ips_ill_g_lock); 21504 return (NULL); 21505 } 21506 21507 ill_t * 21508 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 21509 { 21510 ill_t *ill; 21511 21512 *err = 0; 21513 mutex_enter(&connp->conn_lock); 21514 ill = *illp; 21515 if (ill != NULL) { 21516 mutex_enter(&ill->ill_lock); 21517 if (ILL_CAN_LOOKUP(ill)) { 21518 ill_refhold_locked(ill); 21519 mutex_exit(&ill->ill_lock); 21520 mutex_exit(&connp->conn_lock); 21521 return (ill); 21522 } else { 21523 *err = ILL_LOOKUP_FAILED; 21524 } 21525 mutex_exit(&ill->ill_lock); 21526 } 21527 mutex_exit(&connp->conn_lock); 21528 return (NULL); 21529 } 21530 21531 static int 21532 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 21533 { 21534 ill_t *ill; 21535 21536 ill = ipif->ipif_ill; 21537 mutex_enter(&connp->conn_lock); 21538 mutex_enter(&ill->ill_lock); 21539 if (IPIF_CAN_LOOKUP(ipif)) { 21540 *ipifp = ipif; 21541 mutex_exit(&ill->ill_lock); 21542 mutex_exit(&connp->conn_lock); 21543 return (0); 21544 } 21545 mutex_exit(&ill->ill_lock); 21546 mutex_exit(&connp->conn_lock); 21547 return (IPIF_LOOKUP_FAILED); 21548 } 21549 21550 /* 21551 * This is called if the outbound datagram needs fragmentation. 21552 * 21553 * NOTE : This function does not ire_refrele the ire argument passed in. 21554 */ 21555 static void 21556 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire, zoneid_t zoneid, 21557 ip_stack_t *ipst) 21558 { 21559 ipha_t *ipha; 21560 mblk_t *mp; 21561 uint32_t v_hlen_tos_len; 21562 uint32_t max_frag; 21563 uint32_t frag_flag; 21564 boolean_t dont_use; 21565 21566 if (ipsec_mp->b_datap->db_type == M_CTL) { 21567 mp = ipsec_mp->b_cont; 21568 } else { 21569 mp = ipsec_mp; 21570 } 21571 21572 ipha = (ipha_t *)mp->b_rptr; 21573 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21574 21575 #ifdef _BIG_ENDIAN 21576 #define V_HLEN (v_hlen_tos_len >> 24) 21577 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21578 #else 21579 #define V_HLEN (v_hlen_tos_len & 0xFF) 21580 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21581 #endif 21582 21583 #ifndef SPEED_BEFORE_SAFETY 21584 /* 21585 * Check that ipha_length is consistent with 21586 * the mblk length 21587 */ 21588 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 21589 ip0dbg(("Packet length mismatch: %d, %ld\n", 21590 LENGTH, msgdsize(mp))); 21591 freemsg(ipsec_mp); 21592 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21593 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 21594 "packet length mismatch"); 21595 return; 21596 } 21597 #endif 21598 /* 21599 * Don't use frag_flag if pre-built packet or source 21600 * routed or if multicast (since multicast packets do not solicit 21601 * ICMP "packet too big" messages). Get the values of 21602 * max_frag and frag_flag atomically by acquiring the 21603 * ire_lock. 21604 */ 21605 mutex_enter(&ire->ire_lock); 21606 max_frag = ire->ire_max_frag; 21607 frag_flag = ire->ire_frag_flag; 21608 mutex_exit(&ire->ire_lock); 21609 21610 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 21611 (V_HLEN != IP_SIMPLE_HDR_VERSION && 21612 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 21613 21614 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 21615 (dont_use ? 0 : frag_flag), zoneid, ipst); 21616 } 21617 21618 /* 21619 * Used for deciding the MSS size for the upper layer. Thus 21620 * we need to check the outbound policy values in the conn. 21621 */ 21622 int 21623 conn_ipsec_length(conn_t *connp) 21624 { 21625 ipsec_latch_t *ipl; 21626 21627 ipl = connp->conn_latch; 21628 if (ipl == NULL) 21629 return (0); 21630 21631 if (ipl->ipl_out_policy == NULL) 21632 return (0); 21633 21634 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 21635 } 21636 21637 /* 21638 * Returns an estimate of the IPsec headers size. This is used if 21639 * we don't want to call into IPsec to get the exact size. 21640 */ 21641 int 21642 ipsec_out_extra_length(mblk_t *ipsec_mp) 21643 { 21644 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 21645 ipsec_action_t *a; 21646 21647 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21648 if (!io->ipsec_out_secure) 21649 return (0); 21650 21651 a = io->ipsec_out_act; 21652 21653 if (a == NULL) { 21654 ASSERT(io->ipsec_out_policy != NULL); 21655 a = io->ipsec_out_policy->ipsp_act; 21656 } 21657 ASSERT(a != NULL); 21658 21659 return (a->ipa_ovhd); 21660 } 21661 21662 /* 21663 * Returns an estimate of the IPsec headers size. This is used if 21664 * we don't want to call into IPsec to get the exact size. 21665 */ 21666 int 21667 ipsec_in_extra_length(mblk_t *ipsec_mp) 21668 { 21669 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21670 ipsec_action_t *a; 21671 21672 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21673 21674 a = ii->ipsec_in_action; 21675 return (a == NULL ? 0 : a->ipa_ovhd); 21676 } 21677 21678 /* 21679 * If there are any source route options, return the true final 21680 * destination. Otherwise, return the destination. 21681 */ 21682 ipaddr_t 21683 ip_get_dst(ipha_t *ipha) 21684 { 21685 ipoptp_t opts; 21686 uchar_t *opt; 21687 uint8_t optval; 21688 uint8_t optlen; 21689 ipaddr_t dst; 21690 uint32_t off; 21691 21692 dst = ipha->ipha_dst; 21693 21694 if (IS_SIMPLE_IPH(ipha)) 21695 return (dst); 21696 21697 for (optval = ipoptp_first(&opts, ipha); 21698 optval != IPOPT_EOL; 21699 optval = ipoptp_next(&opts)) { 21700 opt = opts.ipoptp_cur; 21701 optlen = opts.ipoptp_len; 21702 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 21703 switch (optval) { 21704 case IPOPT_SSRR: 21705 case IPOPT_LSRR: 21706 off = opt[IPOPT_OFFSET]; 21707 /* 21708 * If one of the conditions is true, it means 21709 * end of options and dst already has the right 21710 * value. 21711 */ 21712 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 21713 off = optlen - IP_ADDR_LEN; 21714 bcopy(&opt[off], &dst, IP_ADDR_LEN); 21715 } 21716 return (dst); 21717 default: 21718 break; 21719 } 21720 } 21721 21722 return (dst); 21723 } 21724 21725 mblk_t * 21726 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 21727 conn_t *connp, boolean_t unspec_src, zoneid_t zoneid) 21728 { 21729 ipsec_out_t *io; 21730 mblk_t *first_mp; 21731 boolean_t policy_present; 21732 ip_stack_t *ipst; 21733 ipsec_stack_t *ipss; 21734 21735 ASSERT(ire != NULL); 21736 ipst = ire->ire_ipst; 21737 ipss = ipst->ips_netstack->netstack_ipsec; 21738 21739 first_mp = mp; 21740 if (mp->b_datap->db_type == M_CTL) { 21741 io = (ipsec_out_t *)first_mp->b_rptr; 21742 /* 21743 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 21744 * 21745 * 1) There is per-socket policy (including cached global 21746 * policy) or a policy on the IP-in-IP tunnel. 21747 * 2) There is no per-socket policy, but it is 21748 * a multicast packet that needs to go out 21749 * on a specific interface. This is the case 21750 * where (ip_wput and ip_wput_multicast) attaches 21751 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 21752 * 21753 * In case (2) we check with global policy to 21754 * see if there is a match and set the ill_index 21755 * appropriately so that we can lookup the ire 21756 * properly in ip_wput_ipsec_out. 21757 */ 21758 21759 /* 21760 * ipsec_out_use_global_policy is set to B_FALSE 21761 * in ipsec_in_to_out(). Refer to that function for 21762 * details. 21763 */ 21764 if ((io->ipsec_out_latch == NULL) && 21765 (io->ipsec_out_use_global_policy)) { 21766 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 21767 ire, connp, unspec_src, zoneid)); 21768 } 21769 if (!io->ipsec_out_secure) { 21770 /* 21771 * If this is not a secure packet, drop 21772 * the IPSEC_OUT mp and treat it as a clear 21773 * packet. This happens when we are sending 21774 * a ICMP reply back to a clear packet. See 21775 * ipsec_in_to_out() for details. 21776 */ 21777 mp = first_mp->b_cont; 21778 freeb(first_mp); 21779 } 21780 return (mp); 21781 } 21782 /* 21783 * See whether we need to attach a global policy here. We 21784 * don't depend on the conn (as it could be null) for deciding 21785 * what policy this datagram should go through because it 21786 * should have happened in ip_wput if there was some 21787 * policy. This normally happens for connections which are not 21788 * fully bound preventing us from caching policies in 21789 * ip_bind. Packets coming from the TCP listener/global queue 21790 * - which are non-hard_bound - could also be affected by 21791 * applying policy here. 21792 * 21793 * If this packet is coming from tcp global queue or listener, 21794 * we will be applying policy here. This may not be *right* 21795 * if these packets are coming from the detached connection as 21796 * it could have gone in clear before. This happens only if a 21797 * TCP connection started when there is no policy and somebody 21798 * added policy before it became detached. Thus packets of the 21799 * detached connection could go out secure and the other end 21800 * would drop it because it will be expecting in clear. The 21801 * converse is not true i.e if somebody starts a TCP 21802 * connection and deletes the policy, all the packets will 21803 * still go out with the policy that existed before deleting 21804 * because ip_unbind sends up policy information which is used 21805 * by TCP on subsequent ip_wputs. The right solution is to fix 21806 * TCP to attach a dummy IPSEC_OUT and set 21807 * ipsec_out_use_global_policy to B_FALSE. As this might 21808 * affect performance for normal cases, we are not doing it. 21809 * Thus, set policy before starting any TCP connections. 21810 * 21811 * NOTE - We might apply policy even for a hard bound connection 21812 * - for which we cached policy in ip_bind - if somebody added 21813 * global policy after we inherited the policy in ip_bind. 21814 * This means that the packets that were going out in clear 21815 * previously would start going secure and hence get dropped 21816 * on the other side. To fix this, TCP attaches a dummy 21817 * ipsec_out and make sure that we don't apply global policy. 21818 */ 21819 if (ipha != NULL) 21820 policy_present = ipss->ipsec_outbound_v4_policy_present; 21821 else 21822 policy_present = ipss->ipsec_outbound_v6_policy_present; 21823 if (!policy_present) 21824 return (mp); 21825 21826 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src, 21827 zoneid)); 21828 } 21829 21830 ire_t * 21831 conn_set_outgoing_ill(conn_t *connp, ire_t *ire, ill_t **conn_outgoing_ill) 21832 { 21833 ipaddr_t addr; 21834 ire_t *save_ire; 21835 irb_t *irb; 21836 ill_group_t *illgrp; 21837 int err; 21838 21839 save_ire = ire; 21840 addr = ire->ire_addr; 21841 21842 ASSERT(ire->ire_type == IRE_BROADCAST); 21843 21844 illgrp = connp->conn_outgoing_ill->ill_group; 21845 if (illgrp == NULL) { 21846 *conn_outgoing_ill = conn_get_held_ill(connp, 21847 &connp->conn_outgoing_ill, &err); 21848 if (err == ILL_LOOKUP_FAILED) { 21849 ire_refrele(save_ire); 21850 return (NULL); 21851 } 21852 return (save_ire); 21853 } 21854 /* 21855 * If IP_BOUND_IF has been done, conn_outgoing_ill will be set. 21856 * If it is part of the group, we need to send on the ire 21857 * that has been cleared of IRE_MARK_NORECV and that belongs 21858 * to this group. This is okay as IP_BOUND_IF really means 21859 * any ill in the group. We depend on the fact that the 21860 * first ire in the group is always cleared of IRE_MARK_NORECV 21861 * if such an ire exists. This is possible only if you have 21862 * at least one ill in the group that has not failed. 21863 * 21864 * First get to the ire that matches the address and group. 21865 * 21866 * We don't look for an ire with a matching zoneid because a given zone 21867 * won't always have broadcast ires on all ills in the group. 21868 */ 21869 irb = ire->ire_bucket; 21870 rw_enter(&irb->irb_lock, RW_READER); 21871 if (ire->ire_marks & IRE_MARK_NORECV) { 21872 /* 21873 * If the current zone only has an ire broadcast for this 21874 * address marked NORECV, the ire we want is ahead in the 21875 * bucket, so we look it up deliberately ignoring the zoneid. 21876 */ 21877 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 21878 if (ire->ire_addr != addr) 21879 continue; 21880 /* skip over deleted ires */ 21881 if (ire->ire_marks & IRE_MARK_CONDEMNED) 21882 continue; 21883 } 21884 } 21885 while (ire != NULL) { 21886 /* 21887 * If a new interface is coming up, we could end up 21888 * seeing the loopback ire and the non-loopback ire 21889 * may not have been added yet. So check for ire_stq 21890 */ 21891 if (ire->ire_stq != NULL && (ire->ire_addr != addr || 21892 ire->ire_ipif->ipif_ill->ill_group == illgrp)) { 21893 break; 21894 } 21895 ire = ire->ire_next; 21896 } 21897 if (ire != NULL && ire->ire_addr == addr && 21898 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 21899 IRE_REFHOLD(ire); 21900 rw_exit(&irb->irb_lock); 21901 ire_refrele(save_ire); 21902 *conn_outgoing_ill = ire_to_ill(ire); 21903 /* 21904 * Refhold the ill to make the conn_outgoing_ill 21905 * independent of the ire. ip_wput_ire goes in a loop 21906 * and may refrele the ire. Since we have an ire at this 21907 * point we don't need to use ILL_CAN_LOOKUP on the ill. 21908 */ 21909 ill_refhold(*conn_outgoing_ill); 21910 return (ire); 21911 } 21912 rw_exit(&irb->irb_lock); 21913 ip1dbg(("conn_set_outgoing_ill: No matching ire\n")); 21914 /* 21915 * If we can't find a suitable ire, return the original ire. 21916 */ 21917 return (save_ire); 21918 } 21919 21920 /* 21921 * This function does the ire_refrele of the ire passed in as the 21922 * argument. As this function looks up more ires i.e broadcast ires, 21923 * it needs to REFRELE them. Currently, for simplicity we don't 21924 * differentiate the one passed in and looked up here. We always 21925 * REFRELE. 21926 * IPQoS Notes: 21927 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 21928 * IPsec packets are done in ipsec_out_process. 21929 * 21930 */ 21931 void 21932 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller, 21933 zoneid_t zoneid) 21934 { 21935 ipha_t *ipha; 21936 #define rptr ((uchar_t *)ipha) 21937 queue_t *stq; 21938 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 21939 uint32_t v_hlen_tos_len; 21940 uint32_t ttl_protocol; 21941 ipaddr_t src; 21942 ipaddr_t dst; 21943 uint32_t cksum; 21944 ipaddr_t orig_src; 21945 ire_t *ire1; 21946 mblk_t *next_mp; 21947 uint_t hlen; 21948 uint16_t *up; 21949 uint32_t max_frag = ire->ire_max_frag; 21950 ill_t *ill = ire_to_ill(ire); 21951 int clusterwide; 21952 uint16_t ip_hdr_included; /* IP header included by ULP? */ 21953 int ipsec_len; 21954 mblk_t *first_mp; 21955 ipsec_out_t *io; 21956 boolean_t conn_dontroute; /* conn value for multicast */ 21957 boolean_t conn_multicast_loop; /* conn value for multicast */ 21958 boolean_t multicast_forward; /* Should we forward ? */ 21959 boolean_t unspec_src; 21960 ill_t *conn_outgoing_ill = NULL; 21961 ill_t *ire_ill; 21962 ill_t *ire1_ill; 21963 ill_t *out_ill; 21964 uint32_t ill_index = 0; 21965 boolean_t multirt_send = B_FALSE; 21966 int err; 21967 ipxmit_state_t pktxmit_state; 21968 ip_stack_t *ipst = ire->ire_ipst; 21969 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 21970 21971 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 21972 "ip_wput_ire_start: q %p", q); 21973 21974 multicast_forward = B_FALSE; 21975 unspec_src = (connp != NULL && connp->conn_unspec_src); 21976 21977 if (ire->ire_flags & RTF_MULTIRT) { 21978 /* 21979 * Multirouting case. The bucket where ire is stored 21980 * probably holds other RTF_MULTIRT flagged ire 21981 * to the destination. In this call to ip_wput_ire, 21982 * we attempt to send the packet through all 21983 * those ires. Thus, we first ensure that ire is the 21984 * first RTF_MULTIRT ire in the bucket, 21985 * before walking the ire list. 21986 */ 21987 ire_t *first_ire; 21988 irb_t *irb = ire->ire_bucket; 21989 ASSERT(irb != NULL); 21990 21991 /* Make sure we do not omit any multiroute ire. */ 21992 IRB_REFHOLD(irb); 21993 for (first_ire = irb->irb_ire; 21994 first_ire != NULL; 21995 first_ire = first_ire->ire_next) { 21996 if ((first_ire->ire_flags & RTF_MULTIRT) && 21997 (first_ire->ire_addr == ire->ire_addr) && 21998 !(first_ire->ire_marks & 21999 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 22000 break; 22001 } 22002 } 22003 22004 if ((first_ire != NULL) && (first_ire != ire)) { 22005 IRE_REFHOLD(first_ire); 22006 ire_refrele(ire); 22007 ire = first_ire; 22008 ill = ire_to_ill(ire); 22009 } 22010 IRB_REFRELE(irb); 22011 } 22012 22013 /* 22014 * conn_outgoing_ill variable is used only in the broadcast loop. 22015 * for performance we don't grab the mutexs in the fastpath 22016 */ 22017 if ((connp != NULL) && 22018 (ire->ire_type == IRE_BROADCAST) && 22019 ((connp->conn_nofailover_ill != NULL) || 22020 (connp->conn_outgoing_ill != NULL))) { 22021 /* 22022 * Bind to IPIF_NOFAILOVER address overrides IP_BOUND_IF 22023 * option. So, see if this endpoint is bound to a 22024 * IPIF_NOFAILOVER address. If so, honor it. This implies 22025 * that if the interface is failed, we will still send 22026 * the packet on the same ill which is what we want. 22027 */ 22028 conn_outgoing_ill = conn_get_held_ill(connp, 22029 &connp->conn_nofailover_ill, &err); 22030 if (err == ILL_LOOKUP_FAILED) { 22031 ire_refrele(ire); 22032 freemsg(mp); 22033 return; 22034 } 22035 if (conn_outgoing_ill == NULL) { 22036 /* 22037 * Choose a good ill in the group to send the 22038 * packets on. 22039 */ 22040 ire = conn_set_outgoing_ill(connp, ire, 22041 &conn_outgoing_ill); 22042 if (ire == NULL) { 22043 freemsg(mp); 22044 return; 22045 } 22046 } 22047 } 22048 22049 if (mp->b_datap->db_type != M_CTL) { 22050 ipha = (ipha_t *)mp->b_rptr; 22051 } else { 22052 io = (ipsec_out_t *)mp->b_rptr; 22053 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22054 ASSERT(zoneid == io->ipsec_out_zoneid); 22055 ASSERT(zoneid != ALL_ZONES); 22056 ipha = (ipha_t *)mp->b_cont->b_rptr; 22057 dst = ipha->ipha_dst; 22058 /* 22059 * For the multicast case, ipsec_out carries conn_dontroute and 22060 * conn_multicast_loop as conn may not be available here. We 22061 * need this for multicast loopback and forwarding which is done 22062 * later in the code. 22063 */ 22064 if (CLASSD(dst)) { 22065 conn_dontroute = io->ipsec_out_dontroute; 22066 conn_multicast_loop = io->ipsec_out_multicast_loop; 22067 /* 22068 * If conn_dontroute is not set or conn_multicast_loop 22069 * is set, we need to do forwarding/loopback. For 22070 * datagrams from ip_wput_multicast, conn_dontroute is 22071 * set to B_TRUE and conn_multicast_loop is set to 22072 * B_FALSE so that we neither do forwarding nor 22073 * loopback. 22074 */ 22075 if (!conn_dontroute || conn_multicast_loop) 22076 multicast_forward = B_TRUE; 22077 } 22078 } 22079 22080 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 22081 ire->ire_zoneid != ALL_ZONES) { 22082 /* 22083 * When a zone sends a packet to another zone, we try to deliver 22084 * the packet under the same conditions as if the destination 22085 * was a real node on the network. To do so, we look for a 22086 * matching route in the forwarding table. 22087 * RTF_REJECT and RTF_BLACKHOLE are handled just like 22088 * ip_newroute() does. 22089 * Note that IRE_LOCAL are special, since they are used 22090 * when the zoneid doesn't match in some cases. This means that 22091 * we need to handle ipha_src differently since ire_src_addr 22092 * belongs to the receiving zone instead of the sending zone. 22093 * When ip_restrict_interzone_loopback is set, then 22094 * ire_cache_lookup() ensures that IRE_LOCAL are only used 22095 * for loopback between zones when the logical "Ethernet" would 22096 * have looped them back. 22097 */ 22098 ire_t *src_ire; 22099 22100 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 22101 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 22102 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE), ipst); 22103 if (src_ire != NULL && 22104 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) && 22105 (!ipst->ips_ip_restrict_interzone_loopback || 22106 ire_local_same_ill_group(ire, src_ire))) { 22107 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 22108 ipha->ipha_src = src_ire->ire_src_addr; 22109 ire_refrele(src_ire); 22110 } else { 22111 ire_refrele(ire); 22112 if (conn_outgoing_ill != NULL) 22113 ill_refrele(conn_outgoing_ill); 22114 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 22115 if (src_ire != NULL) { 22116 if (src_ire->ire_flags & RTF_BLACKHOLE) { 22117 ire_refrele(src_ire); 22118 freemsg(mp); 22119 return; 22120 } 22121 ire_refrele(src_ire); 22122 } 22123 if (ip_hdr_complete(ipha, zoneid, ipst)) { 22124 /* Failed */ 22125 freemsg(mp); 22126 return; 22127 } 22128 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, zoneid, 22129 ipst); 22130 return; 22131 } 22132 } 22133 22134 if (mp->b_datap->db_type == M_CTL || 22135 ipss->ipsec_outbound_v4_policy_present) { 22136 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 22137 unspec_src, zoneid); 22138 if (mp == NULL) { 22139 ire_refrele(ire); 22140 if (conn_outgoing_ill != NULL) 22141 ill_refrele(conn_outgoing_ill); 22142 return; 22143 } 22144 } 22145 22146 first_mp = mp; 22147 ipsec_len = 0; 22148 22149 if (first_mp->b_datap->db_type == M_CTL) { 22150 io = (ipsec_out_t *)first_mp->b_rptr; 22151 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22152 mp = first_mp->b_cont; 22153 ipsec_len = ipsec_out_extra_length(first_mp); 22154 ASSERT(ipsec_len >= 0); 22155 /* We already picked up the zoneid from the M_CTL above */ 22156 ASSERT(zoneid == io->ipsec_out_zoneid); 22157 ASSERT(zoneid != ALL_ZONES); 22158 22159 /* 22160 * Drop M_CTL here if IPsec processing is not needed. 22161 * (Non-IPsec use of M_CTL extracted any information it 22162 * needed above). 22163 */ 22164 if (ipsec_len == 0) { 22165 freeb(first_mp); 22166 first_mp = mp; 22167 } 22168 } 22169 22170 /* 22171 * Fast path for ip_wput_ire 22172 */ 22173 22174 ipha = (ipha_t *)mp->b_rptr; 22175 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 22176 dst = ipha->ipha_dst; 22177 22178 /* 22179 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 22180 * if the socket is a SOCK_RAW type. The transport checksum should 22181 * be provided in the pre-built packet, so we don't need to compute it. 22182 * Also, other application set flags, like DF, should not be altered. 22183 * Other transport MUST pass down zero. 22184 */ 22185 ip_hdr_included = ipha->ipha_ident; 22186 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 22187 22188 if (CLASSD(dst)) { 22189 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 22190 ntohl(dst), 22191 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 22192 ntohl(ire->ire_addr))); 22193 } 22194 22195 /* Macros to extract header fields from data already in registers */ 22196 #ifdef _BIG_ENDIAN 22197 #define V_HLEN (v_hlen_tos_len >> 24) 22198 #define LENGTH (v_hlen_tos_len & 0xFFFF) 22199 #define PROTO (ttl_protocol & 0xFF) 22200 #else 22201 #define V_HLEN (v_hlen_tos_len & 0xFF) 22202 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 22203 #define PROTO (ttl_protocol >> 8) 22204 #endif 22205 22206 22207 orig_src = src = ipha->ipha_src; 22208 /* (The loop back to "another" is explained down below.) */ 22209 another:; 22210 /* 22211 * Assign an ident value for this packet. We assign idents on 22212 * a per destination basis out of the IRE. There could be 22213 * other threads targeting the same destination, so we have to 22214 * arrange for a atomic increment. Note that we use a 32-bit 22215 * atomic add because it has better performance than its 22216 * 16-bit sibling. 22217 * 22218 * If running in cluster mode and if the source address 22219 * belongs to a replicated service then vector through 22220 * cl_inet_ipident vector to allocate ip identifier 22221 * NOTE: This is a contract private interface with the 22222 * clustering group. 22223 */ 22224 clusterwide = 0; 22225 if (cl_inet_ipident) { 22226 ASSERT(cl_inet_isclusterwide); 22227 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 22228 AF_INET, (uint8_t *)(uintptr_t)src)) { 22229 ipha->ipha_ident = (*cl_inet_ipident)(IPPROTO_IP, 22230 AF_INET, (uint8_t *)(uintptr_t)src, 22231 (uint8_t *)(uintptr_t)dst); 22232 clusterwide = 1; 22233 } 22234 } 22235 if (!clusterwide) { 22236 ipha->ipha_ident = 22237 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 22238 } 22239 22240 #ifndef _BIG_ENDIAN 22241 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 22242 #endif 22243 22244 /* 22245 * Set source address unless sent on an ill or conn_unspec_src is set. 22246 * This is needed to obey conn_unspec_src when packets go through 22247 * ip_newroute + arp. 22248 * Assumes ip_newroute{,_multi} sets the source address as well. 22249 */ 22250 if (src == INADDR_ANY && !unspec_src) { 22251 /* 22252 * Assign the appropriate source address from the IRE if none 22253 * was specified. 22254 */ 22255 ASSERT(ire->ire_ipversion == IPV4_VERSION); 22256 22257 /* 22258 * With IP multipathing, broadcast packets are sent on the ire 22259 * that has been cleared of IRE_MARK_NORECV and that belongs to 22260 * the group. However, this ire might not be in the same zone so 22261 * we can't always use its source address. We look for a 22262 * broadcast ire in the same group and in the right zone. 22263 */ 22264 if (ire->ire_type == IRE_BROADCAST && 22265 ire->ire_zoneid != zoneid) { 22266 ire_t *src_ire = ire_ctable_lookup(dst, 0, 22267 IRE_BROADCAST, ire->ire_ipif, zoneid, NULL, 22268 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 22269 if (src_ire != NULL) { 22270 src = src_ire->ire_src_addr; 22271 ire_refrele(src_ire); 22272 } else { 22273 ire_refrele(ire); 22274 if (conn_outgoing_ill != NULL) 22275 ill_refrele(conn_outgoing_ill); 22276 freemsg(first_mp); 22277 if (ill != NULL) { 22278 BUMP_MIB(ill->ill_ip_mib, 22279 ipIfStatsOutDiscards); 22280 } else { 22281 BUMP_MIB(&ipst->ips_ip_mib, 22282 ipIfStatsOutDiscards); 22283 } 22284 return; 22285 } 22286 } else { 22287 src = ire->ire_src_addr; 22288 } 22289 22290 if (connp == NULL) { 22291 ip1dbg(("ip_wput_ire: no connp and no src " 22292 "address for dst 0x%x, using src 0x%x\n", 22293 ntohl(dst), 22294 ntohl(src))); 22295 } 22296 ipha->ipha_src = src; 22297 } 22298 stq = ire->ire_stq; 22299 22300 /* 22301 * We only allow ire chains for broadcasts since there will 22302 * be multiple IRE_CACHE entries for the same multicast 22303 * address (one per ipif). 22304 */ 22305 next_mp = NULL; 22306 22307 /* broadcast packet */ 22308 if (ire->ire_type == IRE_BROADCAST) 22309 goto broadcast; 22310 22311 /* loopback ? */ 22312 if (stq == NULL) 22313 goto nullstq; 22314 22315 /* The ill_index for outbound ILL */ 22316 ill_index = Q_TO_INDEX(stq); 22317 22318 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 22319 ttl_protocol = ((uint16_t *)ipha)[4]; 22320 22321 /* pseudo checksum (do it in parts for IP header checksum) */ 22322 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 22323 22324 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 22325 queue_t *dev_q = stq->q_next; 22326 22327 /* flow controlled */ 22328 if ((dev_q->q_next || dev_q->q_first) && 22329 !canput(dev_q)) 22330 goto blocked; 22331 if ((PROTO == IPPROTO_UDP) && 22332 (ip_hdr_included != IP_HDR_INCLUDED)) { 22333 hlen = (V_HLEN & 0xF) << 2; 22334 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22335 if (*up != 0) { 22336 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 22337 hlen, LENGTH, max_frag, ipsec_len, cksum); 22338 /* Software checksum? */ 22339 if (DB_CKSUMFLAGS(mp) == 0) { 22340 IP_STAT(ipst, ip_out_sw_cksum); 22341 IP_STAT_UPDATE(ipst, 22342 ip_udp_out_sw_cksum_bytes, 22343 LENGTH - hlen); 22344 } 22345 } 22346 } 22347 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 22348 hlen = (V_HLEN & 0xF) << 2; 22349 if (PROTO == IPPROTO_TCP) { 22350 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22351 /* 22352 * The packet header is processed once and for all, even 22353 * in the multirouting case. We disable hardware 22354 * checksum if the packet is multirouted, as it will be 22355 * replicated via several interfaces, and not all of 22356 * them may have this capability. 22357 */ 22358 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 22359 LENGTH, max_frag, ipsec_len, cksum); 22360 /* Software checksum? */ 22361 if (DB_CKSUMFLAGS(mp) == 0) { 22362 IP_STAT(ipst, ip_out_sw_cksum); 22363 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22364 LENGTH - hlen); 22365 } 22366 } else { 22367 sctp_hdr_t *sctph; 22368 22369 ASSERT(PROTO == IPPROTO_SCTP); 22370 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22371 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22372 /* 22373 * Zero out the checksum field to ensure proper 22374 * checksum calculation. 22375 */ 22376 sctph->sh_chksum = 0; 22377 #ifdef DEBUG 22378 if (!skip_sctp_cksum) 22379 #endif 22380 sctph->sh_chksum = sctp_cksum(mp, hlen); 22381 } 22382 } 22383 22384 /* 22385 * If this is a multicast packet and originated from ip_wput 22386 * we need to do loopback and forwarding checks. If it comes 22387 * from ip_wput_multicast, we SHOULD not do this. 22388 */ 22389 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 22390 22391 /* checksum */ 22392 cksum += ttl_protocol; 22393 22394 /* fragment the packet */ 22395 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 22396 goto fragmentit; 22397 /* 22398 * Don't use frag_flag if packet is pre-built or source 22399 * routed or if multicast (since multicast packets do 22400 * not solicit ICMP "packet too big" messages). 22401 */ 22402 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22403 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22404 !ip_source_route_included(ipha)) && 22405 !CLASSD(ipha->ipha_dst)) 22406 ipha->ipha_fragment_offset_and_flags |= 22407 htons(ire->ire_frag_flag); 22408 22409 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22410 /* calculate IP header checksum */ 22411 cksum += ipha->ipha_ident; 22412 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 22413 cksum += ipha->ipha_fragment_offset_and_flags; 22414 22415 /* IP options present */ 22416 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22417 if (hlen) 22418 goto checksumoptions; 22419 22420 /* calculate hdr checksum */ 22421 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22422 cksum = ~(cksum + (cksum >> 16)); 22423 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22424 } 22425 if (ipsec_len != 0) { 22426 /* 22427 * We will do the rest of the processing after 22428 * we come back from IPsec in ip_wput_ipsec_out(). 22429 */ 22430 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 22431 22432 io = (ipsec_out_t *)first_mp->b_rptr; 22433 io->ipsec_out_ill_index = ((ill_t *)stq->q_ptr)-> 22434 ill_phyint->phyint_ifindex; 22435 22436 ipsec_out_process(q, first_mp, ire, ill_index); 22437 ire_refrele(ire); 22438 if (conn_outgoing_ill != NULL) 22439 ill_refrele(conn_outgoing_ill); 22440 return; 22441 } 22442 22443 /* 22444 * In most cases, the emission loop below is entered only 22445 * once. Only in the case where the ire holds the 22446 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 22447 * flagged ires in the bucket, and send the packet 22448 * through all crossed RTF_MULTIRT routes. 22449 */ 22450 if (ire->ire_flags & RTF_MULTIRT) { 22451 multirt_send = B_TRUE; 22452 } 22453 do { 22454 if (multirt_send) { 22455 irb_t *irb; 22456 /* 22457 * We are in a multiple send case, need to get 22458 * the next ire and make a duplicate of the packet. 22459 * ire1 holds here the next ire to process in the 22460 * bucket. If multirouting is expected, 22461 * any non-RTF_MULTIRT ire that has the 22462 * right destination address is ignored. 22463 */ 22464 irb = ire->ire_bucket; 22465 ASSERT(irb != NULL); 22466 22467 IRB_REFHOLD(irb); 22468 for (ire1 = ire->ire_next; 22469 ire1 != NULL; 22470 ire1 = ire1->ire_next) { 22471 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 22472 continue; 22473 if (ire1->ire_addr != ire->ire_addr) 22474 continue; 22475 if (ire1->ire_marks & 22476 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 22477 continue; 22478 22479 /* Got one */ 22480 IRE_REFHOLD(ire1); 22481 break; 22482 } 22483 IRB_REFRELE(irb); 22484 22485 if (ire1 != NULL) { 22486 next_mp = copyb(mp); 22487 if ((next_mp == NULL) || 22488 ((mp->b_cont != NULL) && 22489 ((next_mp->b_cont = 22490 dupmsg(mp->b_cont)) == NULL))) { 22491 freemsg(next_mp); 22492 next_mp = NULL; 22493 ire_refrele(ire1); 22494 ire1 = NULL; 22495 } 22496 } 22497 22498 /* Last multiroute ire; don't loop anymore. */ 22499 if (ire1 == NULL) { 22500 multirt_send = B_FALSE; 22501 } 22502 } 22503 22504 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 22505 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha, 22506 mblk_t *, mp); 22507 FW_HOOKS(ipst->ips_ip4_physical_out_event, 22508 ipst->ips_ipv4firewall_physical_out, 22509 NULL, ire->ire_ipif->ipif_ill, ipha, mp, mp, ipst); 22510 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 22511 if (mp == NULL) 22512 goto release_ire_and_ill; 22513 22514 mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT); 22515 DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire); 22516 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE); 22517 if ((pktxmit_state == SEND_FAILED) || 22518 (pktxmit_state == LLHDR_RESLV_FAILED)) { 22519 ip2dbg(("ip_wput_ire: ip_xmit_v4 failed" 22520 "- packet dropped\n")); 22521 release_ire_and_ill: 22522 ire_refrele(ire); 22523 if (next_mp != NULL) { 22524 freemsg(next_mp); 22525 ire_refrele(ire1); 22526 } 22527 if (conn_outgoing_ill != NULL) 22528 ill_refrele(conn_outgoing_ill); 22529 return; 22530 } 22531 22532 if (CLASSD(dst)) { 22533 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastPkts); 22534 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastOctets, 22535 LENGTH); 22536 } 22537 22538 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22539 "ip_wput_ire_end: q %p (%S)", 22540 q, "last copy out"); 22541 IRE_REFRELE(ire); 22542 22543 if (multirt_send) { 22544 ASSERT(ire1); 22545 /* 22546 * Proceed with the next RTF_MULTIRT ire, 22547 * Also set up the send-to queue accordingly. 22548 */ 22549 ire = ire1; 22550 ire1 = NULL; 22551 stq = ire->ire_stq; 22552 mp = next_mp; 22553 next_mp = NULL; 22554 ipha = (ipha_t *)mp->b_rptr; 22555 ill_index = Q_TO_INDEX(stq); 22556 ill = (ill_t *)stq->q_ptr; 22557 } 22558 } while (multirt_send); 22559 if (conn_outgoing_ill != NULL) 22560 ill_refrele(conn_outgoing_ill); 22561 return; 22562 22563 /* 22564 * ire->ire_type == IRE_BROADCAST (minimize diffs) 22565 */ 22566 broadcast: 22567 { 22568 /* 22569 * To avoid broadcast storms, we usually set the TTL to 1 for 22570 * broadcasts. However, if SO_DONTROUTE isn't set, this value 22571 * can be overridden stack-wide through the ip_broadcast_ttl 22572 * ndd tunable, or on a per-connection basis through the 22573 * IP_BROADCAST_TTL socket option. 22574 * 22575 * In the event that we are replying to incoming ICMP packets, 22576 * connp could be NULL. 22577 */ 22578 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 22579 if (connp != NULL) { 22580 if (connp->conn_dontroute) 22581 ipha->ipha_ttl = 1; 22582 else if (connp->conn_broadcast_ttl != 0) 22583 ipha->ipha_ttl = connp->conn_broadcast_ttl; 22584 } 22585 22586 /* 22587 * Note that we are not doing a IRB_REFHOLD here. 22588 * Actually we don't care if the list changes i.e 22589 * if somebody deletes an IRE from the list while 22590 * we drop the lock, the next time we come around 22591 * ire_next will be NULL and hence we won't send 22592 * out multiple copies which is fine. 22593 */ 22594 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 22595 ire1 = ire->ire_next; 22596 if (conn_outgoing_ill != NULL) { 22597 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 22598 ASSERT(ire1 == ire->ire_next); 22599 if (ire1 != NULL && ire1->ire_addr == dst) { 22600 ire_refrele(ire); 22601 ire = ire1; 22602 IRE_REFHOLD(ire); 22603 ire1 = ire->ire_next; 22604 continue; 22605 } 22606 rw_exit(&ire->ire_bucket->irb_lock); 22607 /* Did not find a matching ill */ 22608 ip1dbg(("ip_wput_ire: broadcast with no " 22609 "matching IP_BOUND_IF ill %s dst %x\n", 22610 conn_outgoing_ill->ill_name, dst)); 22611 freemsg(first_mp); 22612 if (ire != NULL) 22613 ire_refrele(ire); 22614 ill_refrele(conn_outgoing_ill); 22615 return; 22616 } 22617 } else if (ire1 != NULL && ire1->ire_addr == dst) { 22618 /* 22619 * If the next IRE has the same address and is not one 22620 * of the two copies that we need to send, try to see 22621 * whether this copy should be sent at all. This 22622 * assumes that we insert loopbacks first and then 22623 * non-loopbacks. This is acheived by inserting the 22624 * loopback always before non-loopback. 22625 * This is used to send a single copy of a broadcast 22626 * packet out all physical interfaces that have an 22627 * matching IRE_BROADCAST while also looping 22628 * back one copy (to ip_wput_local) for each 22629 * matching physical interface. However, we avoid 22630 * sending packets out different logical that match by 22631 * having ipif_up/ipif_down supress duplicate 22632 * IRE_BROADCASTS. 22633 * 22634 * This feature is currently used to get broadcasts 22635 * sent to multiple interfaces, when the broadcast 22636 * address being used applies to multiple interfaces. 22637 * For example, a whole net broadcast will be 22638 * replicated on every connected subnet of 22639 * the target net. 22640 * 22641 * Each zone has its own set of IRE_BROADCASTs, so that 22642 * we're able to distribute inbound packets to multiple 22643 * zones who share a broadcast address. We avoid looping 22644 * back outbound packets in different zones but on the 22645 * same ill, as the application would see duplicates. 22646 * 22647 * If the interfaces are part of the same group, 22648 * we would want to send only one copy out for 22649 * whole group. 22650 * 22651 * This logic assumes that ire_add_v4() groups the 22652 * IRE_BROADCAST entries so that those with the same 22653 * ire_addr and ill_group are kept together. 22654 */ 22655 ire_ill = ire->ire_ipif->ipif_ill; 22656 if (ire->ire_stq == NULL && ire1->ire_stq != NULL) { 22657 if (ire_ill->ill_group != NULL && 22658 (ire->ire_marks & IRE_MARK_NORECV)) { 22659 /* 22660 * If the current zone only has an ire 22661 * broadcast for this address marked 22662 * NORECV, the ire we want is ahead in 22663 * the bucket, so we look it up 22664 * deliberately ignoring the zoneid. 22665 */ 22666 for (ire1 = ire->ire_bucket->irb_ire; 22667 ire1 != NULL; 22668 ire1 = ire1->ire_next) { 22669 ire1_ill = 22670 ire1->ire_ipif->ipif_ill; 22671 if (ire1->ire_addr != dst) 22672 continue; 22673 /* skip over the current ire */ 22674 if (ire1 == ire) 22675 continue; 22676 /* skip over deleted ires */ 22677 if (ire1->ire_marks & 22678 IRE_MARK_CONDEMNED) 22679 continue; 22680 /* 22681 * non-loopback ire in our 22682 * group: use it for the next 22683 * pass in the loop 22684 */ 22685 if (ire1->ire_stq != NULL && 22686 ire1_ill->ill_group == 22687 ire_ill->ill_group) 22688 break; 22689 } 22690 } 22691 } else { 22692 while (ire1 != NULL && ire1->ire_addr == dst) { 22693 ire1_ill = ire1->ire_ipif->ipif_ill; 22694 /* 22695 * We can have two broadcast ires on the 22696 * same ill in different zones; here 22697 * we'll send a copy of the packet on 22698 * each ill and the fanout code will 22699 * call conn_wantpacket() to check that 22700 * the zone has the broadcast address 22701 * configured on the ill. If the two 22702 * ires are in the same group we only 22703 * send one copy up. 22704 */ 22705 if (ire1_ill != ire_ill && 22706 (ire1_ill->ill_group == NULL || 22707 ire_ill->ill_group == NULL || 22708 ire1_ill->ill_group != 22709 ire_ill->ill_group)) { 22710 break; 22711 } 22712 ire1 = ire1->ire_next; 22713 } 22714 } 22715 } 22716 ASSERT(multirt_send == B_FALSE); 22717 if (ire1 != NULL && ire1->ire_addr == dst) { 22718 if ((ire->ire_flags & RTF_MULTIRT) && 22719 (ire1->ire_flags & RTF_MULTIRT)) { 22720 /* 22721 * We are in the multirouting case. 22722 * The message must be sent at least 22723 * on both ires. These ires have been 22724 * inserted AFTER the standard ones 22725 * in ip_rt_add(). There are thus no 22726 * other ire entries for the destination 22727 * address in the rest of the bucket 22728 * that do not have the RTF_MULTIRT 22729 * flag. We don't process a copy 22730 * of the message here. This will be 22731 * done in the final sending loop. 22732 */ 22733 multirt_send = B_TRUE; 22734 } else { 22735 next_mp = ip_copymsg(first_mp); 22736 if (next_mp != NULL) 22737 IRE_REFHOLD(ire1); 22738 } 22739 } 22740 rw_exit(&ire->ire_bucket->irb_lock); 22741 } 22742 22743 if (stq) { 22744 /* 22745 * A non-NULL send-to queue means this packet is going 22746 * out of this machine. 22747 */ 22748 out_ill = (ill_t *)stq->q_ptr; 22749 22750 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutRequests); 22751 ttl_protocol = ((uint16_t *)ipha)[4]; 22752 /* 22753 * We accumulate the pseudo header checksum in cksum. 22754 * This is pretty hairy code, so watch close. One 22755 * thing to keep in mind is that UDP and TCP have 22756 * stored their respective datagram lengths in their 22757 * checksum fields. This lines things up real nice. 22758 */ 22759 cksum = (dst >> 16) + (dst & 0xFFFF) + 22760 (src >> 16) + (src & 0xFFFF); 22761 /* 22762 * We assume the udp checksum field contains the 22763 * length, so to compute the pseudo header checksum, 22764 * all we need is the protocol number and src/dst. 22765 */ 22766 /* Provide the checksums for UDP and TCP. */ 22767 if ((PROTO == IPPROTO_TCP) && 22768 (ip_hdr_included != IP_HDR_INCLUDED)) { 22769 /* hlen gets the number of uchar_ts in the IP header */ 22770 hlen = (V_HLEN & 0xF) << 2; 22771 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22772 IP_STAT(ipst, ip_out_sw_cksum); 22773 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22774 LENGTH - hlen); 22775 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 22776 } else if (PROTO == IPPROTO_SCTP && 22777 (ip_hdr_included != IP_HDR_INCLUDED)) { 22778 sctp_hdr_t *sctph; 22779 22780 hlen = (V_HLEN & 0xF) << 2; 22781 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22782 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22783 sctph->sh_chksum = 0; 22784 #ifdef DEBUG 22785 if (!skip_sctp_cksum) 22786 #endif 22787 sctph->sh_chksum = sctp_cksum(mp, hlen); 22788 } else { 22789 queue_t *dev_q = stq->q_next; 22790 22791 if ((dev_q->q_next || dev_q->q_first) && 22792 !canput(dev_q)) { 22793 blocked: 22794 ipha->ipha_ident = ip_hdr_included; 22795 /* 22796 * If we don't have a conn to apply 22797 * backpressure, free the message. 22798 * In the ire_send path, we don't know 22799 * the position to requeue the packet. Rather 22800 * than reorder packets, we just drop this 22801 * packet. 22802 */ 22803 if (ipst->ips_ip_output_queue && 22804 connp != NULL && 22805 caller != IRE_SEND) { 22806 if (caller == IP_WSRV) { 22807 connp->conn_did_putbq = 1; 22808 (void) putbq(connp->conn_wq, 22809 first_mp); 22810 conn_drain_insert(connp); 22811 /* 22812 * This is the service thread, 22813 * and the queue is already 22814 * noenabled. The check for 22815 * canput and the putbq is not 22816 * atomic. So we need to check 22817 * again. 22818 */ 22819 if (canput(stq->q_next)) 22820 connp->conn_did_putbq 22821 = 0; 22822 IP_STAT(ipst, ip_conn_flputbq); 22823 } else { 22824 /* 22825 * We are not the service proc. 22826 * ip_wsrv will be scheduled or 22827 * is already running. 22828 */ 22829 (void) putq(connp->conn_wq, 22830 first_mp); 22831 } 22832 } else { 22833 out_ill = (ill_t *)stq->q_ptr; 22834 BUMP_MIB(out_ill->ill_ip_mib, 22835 ipIfStatsOutDiscards); 22836 freemsg(first_mp); 22837 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22838 "ip_wput_ire_end: q %p (%S)", 22839 q, "discard"); 22840 } 22841 ire_refrele(ire); 22842 if (next_mp) { 22843 ire_refrele(ire1); 22844 freemsg(next_mp); 22845 } 22846 if (conn_outgoing_ill != NULL) 22847 ill_refrele(conn_outgoing_ill); 22848 return; 22849 } 22850 if ((PROTO == IPPROTO_UDP) && 22851 (ip_hdr_included != IP_HDR_INCLUDED)) { 22852 /* 22853 * hlen gets the number of uchar_ts in the 22854 * IP header 22855 */ 22856 hlen = (V_HLEN & 0xF) << 2; 22857 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22858 max_frag = ire->ire_max_frag; 22859 if (*up != 0) { 22860 IP_CKSUM_XMIT(out_ill, ire, mp, ipha, 22861 up, PROTO, hlen, LENGTH, max_frag, 22862 ipsec_len, cksum); 22863 /* Software checksum? */ 22864 if (DB_CKSUMFLAGS(mp) == 0) { 22865 IP_STAT(ipst, ip_out_sw_cksum); 22866 IP_STAT_UPDATE(ipst, 22867 ip_udp_out_sw_cksum_bytes, 22868 LENGTH - hlen); 22869 } 22870 } 22871 } 22872 } 22873 /* 22874 * Need to do this even when fragmenting. The local 22875 * loopback can be done without computing checksums 22876 * but forwarding out other interface must be done 22877 * after the IP checksum (and ULP checksums) have been 22878 * computed. 22879 * 22880 * NOTE : multicast_forward is set only if this packet 22881 * originated from ip_wput. For packets originating from 22882 * ip_wput_multicast, it is not set. 22883 */ 22884 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 22885 multi_loopback: 22886 ip2dbg(("ip_wput: multicast, loop %d\n", 22887 conn_multicast_loop)); 22888 22889 /* Forget header checksum offload */ 22890 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 22891 22892 /* 22893 * Local loopback of multicasts? Check the 22894 * ill. 22895 * 22896 * Note that the loopback function will not come 22897 * in through ip_rput - it will only do the 22898 * client fanout thus we need to do an mforward 22899 * as well. The is different from the BSD 22900 * logic. 22901 */ 22902 if (ill != NULL) { 22903 ilm_t *ilm; 22904 22905 ILM_WALKER_HOLD(ill); 22906 ilm = ilm_lookup_ill(ill, ipha->ipha_dst, 22907 ALL_ZONES); 22908 ILM_WALKER_RELE(ill); 22909 if (ilm != NULL) { 22910 /* 22911 * Pass along the virtual output q. 22912 * ip_wput_local() will distribute the 22913 * packet to all the matching zones, 22914 * except the sending zone when 22915 * IP_MULTICAST_LOOP is false. 22916 */ 22917 ip_multicast_loopback(q, ill, first_mp, 22918 conn_multicast_loop ? 0 : 22919 IP_FF_NO_MCAST_LOOP, zoneid); 22920 } 22921 } 22922 if (ipha->ipha_ttl == 0) { 22923 /* 22924 * 0 => only to this host i.e. we are 22925 * done. We are also done if this was the 22926 * loopback interface since it is sufficient 22927 * to loopback one copy of a multicast packet. 22928 */ 22929 freemsg(first_mp); 22930 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22931 "ip_wput_ire_end: q %p (%S)", 22932 q, "loopback"); 22933 ire_refrele(ire); 22934 if (conn_outgoing_ill != NULL) 22935 ill_refrele(conn_outgoing_ill); 22936 return; 22937 } 22938 /* 22939 * ILLF_MULTICAST is checked in ip_newroute 22940 * i.e. we don't need to check it here since 22941 * all IRE_CACHEs come from ip_newroute. 22942 * For multicast traffic, SO_DONTROUTE is interpreted 22943 * to mean only send the packet out the interface 22944 * (optionally specified with IP_MULTICAST_IF) 22945 * and do not forward it out additional interfaces. 22946 * RSVP and the rsvp daemon is an example of a 22947 * protocol and user level process that 22948 * handles it's own routing. Hence, it uses the 22949 * SO_DONTROUTE option to accomplish this. 22950 */ 22951 22952 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 22953 ill != NULL) { 22954 /* Unconditionally redo the checksum */ 22955 ipha->ipha_hdr_checksum = 0; 22956 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 22957 22958 /* 22959 * If this needs to go out secure, we need 22960 * to wait till we finish the IPsec 22961 * processing. 22962 */ 22963 if (ipsec_len == 0 && 22964 ip_mforward(ill, ipha, mp)) { 22965 freemsg(first_mp); 22966 ip1dbg(("ip_wput: mforward failed\n")); 22967 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22968 "ip_wput_ire_end: q %p (%S)", 22969 q, "mforward failed"); 22970 ire_refrele(ire); 22971 if (conn_outgoing_ill != NULL) 22972 ill_refrele(conn_outgoing_ill); 22973 return; 22974 } 22975 } 22976 } 22977 max_frag = ire->ire_max_frag; 22978 cksum += ttl_protocol; 22979 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 22980 /* No fragmentation required for this one. */ 22981 /* 22982 * Don't use frag_flag if packet is pre-built or source 22983 * routed or if multicast (since multicast packets do 22984 * not solicit ICMP "packet too big" messages). 22985 */ 22986 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22987 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22988 !ip_source_route_included(ipha)) && 22989 !CLASSD(ipha->ipha_dst)) 22990 ipha->ipha_fragment_offset_and_flags |= 22991 htons(ire->ire_frag_flag); 22992 22993 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22994 /* Complete the IP header checksum. */ 22995 cksum += ipha->ipha_ident; 22996 cksum += (v_hlen_tos_len >> 16)+ 22997 (v_hlen_tos_len & 0xFFFF); 22998 cksum += ipha->ipha_fragment_offset_and_flags; 22999 hlen = (V_HLEN & 0xF) - 23000 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 23001 if (hlen) { 23002 checksumoptions: 23003 /* 23004 * Account for the IP Options in the IP 23005 * header checksum. 23006 */ 23007 up = (uint16_t *)(rptr+ 23008 IP_SIMPLE_HDR_LENGTH); 23009 do { 23010 cksum += up[0]; 23011 cksum += up[1]; 23012 up += 2; 23013 } while (--hlen); 23014 } 23015 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 23016 cksum = ~(cksum + (cksum >> 16)); 23017 ipha->ipha_hdr_checksum = (uint16_t)cksum; 23018 } 23019 if (ipsec_len != 0) { 23020 ipsec_out_process(q, first_mp, ire, ill_index); 23021 if (!next_mp) { 23022 ire_refrele(ire); 23023 if (conn_outgoing_ill != NULL) 23024 ill_refrele(conn_outgoing_ill); 23025 return; 23026 } 23027 goto next; 23028 } 23029 23030 /* 23031 * multirt_send has already been handled 23032 * for broadcast, but not yet for multicast 23033 * or IP options. 23034 */ 23035 if (next_mp == NULL) { 23036 if (ire->ire_flags & RTF_MULTIRT) { 23037 multirt_send = B_TRUE; 23038 } 23039 } 23040 23041 /* 23042 * In most cases, the emission loop below is 23043 * entered only once. Only in the case where 23044 * the ire holds the RTF_MULTIRT flag, do we loop 23045 * to process all RTF_MULTIRT ires in the bucket, 23046 * and send the packet through all crossed 23047 * RTF_MULTIRT routes. 23048 */ 23049 do { 23050 if (multirt_send) { 23051 irb_t *irb; 23052 23053 irb = ire->ire_bucket; 23054 ASSERT(irb != NULL); 23055 /* 23056 * We are in a multiple send case, 23057 * need to get the next IRE and make 23058 * a duplicate of the packet. 23059 */ 23060 IRB_REFHOLD(irb); 23061 for (ire1 = ire->ire_next; 23062 ire1 != NULL; 23063 ire1 = ire1->ire_next) { 23064 if (!(ire1->ire_flags & 23065 RTF_MULTIRT)) { 23066 continue; 23067 } 23068 if (ire1->ire_addr != 23069 ire->ire_addr) { 23070 continue; 23071 } 23072 if (ire1->ire_marks & 23073 (IRE_MARK_CONDEMNED| 23074 IRE_MARK_HIDDEN)) { 23075 continue; 23076 } 23077 23078 /* Got one */ 23079 IRE_REFHOLD(ire1); 23080 break; 23081 } 23082 IRB_REFRELE(irb); 23083 23084 if (ire1 != NULL) { 23085 next_mp = copyb(mp); 23086 if ((next_mp == NULL) || 23087 ((mp->b_cont != NULL) && 23088 ((next_mp->b_cont = 23089 dupmsg(mp->b_cont)) 23090 == NULL))) { 23091 freemsg(next_mp); 23092 next_mp = NULL; 23093 ire_refrele(ire1); 23094 ire1 = NULL; 23095 } 23096 } 23097 23098 /* 23099 * Last multiroute ire; don't loop 23100 * anymore. The emission is over 23101 * and next_mp is NULL. 23102 */ 23103 if (ire1 == NULL) { 23104 multirt_send = B_FALSE; 23105 } 23106 } 23107 23108 out_ill = ire_to_ill(ire); 23109 DTRACE_PROBE4(ip4__physical__out__start, 23110 ill_t *, NULL, 23111 ill_t *, out_ill, 23112 ipha_t *, ipha, mblk_t *, mp); 23113 FW_HOOKS(ipst->ips_ip4_physical_out_event, 23114 ipst->ips_ipv4firewall_physical_out, 23115 NULL, out_ill, ipha, mp, mp, ipst); 23116 DTRACE_PROBE1(ip4__physical__out__end, 23117 mblk_t *, mp); 23118 if (mp == NULL) 23119 goto release_ire_and_ill_2; 23120 23121 ASSERT(ipsec_len == 0); 23122 mp->b_prev = 23123 SET_BPREV_FLAG(IPP_LOCAL_OUT); 23124 DTRACE_PROBE2(ip__xmit__2, 23125 mblk_t *, mp, ire_t *, ire); 23126 pktxmit_state = ip_xmit_v4(mp, ire, 23127 NULL, B_TRUE); 23128 if ((pktxmit_state == SEND_FAILED) || 23129 (pktxmit_state == LLHDR_RESLV_FAILED)) { 23130 release_ire_and_ill_2: 23131 if (next_mp) { 23132 freemsg(next_mp); 23133 ire_refrele(ire1); 23134 } 23135 ire_refrele(ire); 23136 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23137 "ip_wput_ire_end: q %p (%S)", 23138 q, "discard MDATA"); 23139 if (conn_outgoing_ill != NULL) 23140 ill_refrele(conn_outgoing_ill); 23141 return; 23142 } 23143 23144 if (CLASSD(dst)) { 23145 BUMP_MIB(out_ill->ill_ip_mib, 23146 ipIfStatsHCOutMcastPkts); 23147 UPDATE_MIB(out_ill->ill_ip_mib, 23148 ipIfStatsHCOutMcastOctets, 23149 LENGTH); 23150 } else if (ire->ire_type == IRE_BROADCAST) { 23151 BUMP_MIB(out_ill->ill_ip_mib, 23152 ipIfStatsHCOutBcastPkts); 23153 } 23154 23155 if (multirt_send) { 23156 /* 23157 * We are in a multiple send case, 23158 * need to re-enter the sending loop 23159 * using the next ire. 23160 */ 23161 ire_refrele(ire); 23162 ire = ire1; 23163 stq = ire->ire_stq; 23164 mp = next_mp; 23165 next_mp = NULL; 23166 ipha = (ipha_t *)mp->b_rptr; 23167 ill_index = Q_TO_INDEX(stq); 23168 } 23169 } while (multirt_send); 23170 23171 if (!next_mp) { 23172 /* 23173 * Last copy going out (the ultra-common 23174 * case). Note that we intentionally replicate 23175 * the putnext rather than calling it before 23176 * the next_mp check in hopes of a little 23177 * tail-call action out of the compiler. 23178 */ 23179 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23180 "ip_wput_ire_end: q %p (%S)", 23181 q, "last copy out(1)"); 23182 ire_refrele(ire); 23183 if (conn_outgoing_ill != NULL) 23184 ill_refrele(conn_outgoing_ill); 23185 return; 23186 } 23187 /* More copies going out below. */ 23188 } else { 23189 int offset; 23190 fragmentit: 23191 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 23192 /* 23193 * If this would generate a icmp_frag_needed message, 23194 * we need to handle it before we do the IPsec 23195 * processing. Otherwise, we need to strip the IPsec 23196 * headers before we send up the message to the ULPs 23197 * which becomes messy and difficult. 23198 */ 23199 if (ipsec_len != 0) { 23200 if ((max_frag < (unsigned int)(LENGTH + 23201 ipsec_len)) && (offset & IPH_DF)) { 23202 out_ill = (ill_t *)stq->q_ptr; 23203 BUMP_MIB(out_ill->ill_ip_mib, 23204 ipIfStatsOutFragFails); 23205 BUMP_MIB(out_ill->ill_ip_mib, 23206 ipIfStatsOutFragReqds); 23207 ipha->ipha_hdr_checksum = 0; 23208 ipha->ipha_hdr_checksum = 23209 (uint16_t)ip_csum_hdr(ipha); 23210 icmp_frag_needed(ire->ire_stq, first_mp, 23211 max_frag, zoneid, ipst); 23212 if (!next_mp) { 23213 ire_refrele(ire); 23214 if (conn_outgoing_ill != NULL) { 23215 ill_refrele( 23216 conn_outgoing_ill); 23217 } 23218 return; 23219 } 23220 } else { 23221 /* 23222 * This won't cause a icmp_frag_needed 23223 * message. to be generated. Send it on 23224 * the wire. Note that this could still 23225 * cause fragmentation and all we 23226 * do is the generation of the message 23227 * to the ULP if needed before IPsec. 23228 */ 23229 if (!next_mp) { 23230 ipsec_out_process(q, first_mp, 23231 ire, ill_index); 23232 TRACE_2(TR_FAC_IP, 23233 TR_IP_WPUT_IRE_END, 23234 "ip_wput_ire_end: q %p " 23235 "(%S)", q, 23236 "last ipsec_out_process"); 23237 ire_refrele(ire); 23238 if (conn_outgoing_ill != NULL) { 23239 ill_refrele( 23240 conn_outgoing_ill); 23241 } 23242 return; 23243 } 23244 ipsec_out_process(q, first_mp, 23245 ire, ill_index); 23246 } 23247 } else { 23248 /* 23249 * Initiate IPPF processing. For 23250 * fragmentable packets we finish 23251 * all QOS packet processing before 23252 * calling: 23253 * ip_wput_ire_fragmentit->ip_wput_frag 23254 */ 23255 23256 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23257 ip_process(IPP_LOCAL_OUT, &mp, 23258 ill_index); 23259 if (mp == NULL) { 23260 out_ill = (ill_t *)stq->q_ptr; 23261 BUMP_MIB(out_ill->ill_ip_mib, 23262 ipIfStatsOutDiscards); 23263 if (next_mp != NULL) { 23264 freemsg(next_mp); 23265 ire_refrele(ire1); 23266 } 23267 ire_refrele(ire); 23268 TRACE_2(TR_FAC_IP, 23269 TR_IP_WPUT_IRE_END, 23270 "ip_wput_ire: q %p (%S)", 23271 q, "discard MDATA"); 23272 if (conn_outgoing_ill != NULL) { 23273 ill_refrele( 23274 conn_outgoing_ill); 23275 } 23276 return; 23277 } 23278 } 23279 if (!next_mp) { 23280 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23281 "ip_wput_ire_end: q %p (%S)", 23282 q, "last fragmentation"); 23283 ip_wput_ire_fragmentit(mp, ire, 23284 zoneid, ipst); 23285 ire_refrele(ire); 23286 if (conn_outgoing_ill != NULL) 23287 ill_refrele(conn_outgoing_ill); 23288 return; 23289 } 23290 ip_wput_ire_fragmentit(mp, ire, zoneid, ipst); 23291 } 23292 } 23293 } else { 23294 nullstq: 23295 /* A NULL stq means the destination address is local. */ 23296 UPDATE_OB_PKT_COUNT(ire); 23297 ire->ire_last_used_time = lbolt; 23298 ASSERT(ire->ire_ipif != NULL); 23299 if (!next_mp) { 23300 /* 23301 * Is there an "in" and "out" for traffic local 23302 * to a host (loopback)? The code in Solaris doesn't 23303 * explicitly draw a line in its code for in vs out, 23304 * so we've had to draw a line in the sand: ip_wput_ire 23305 * is considered to be the "output" side and 23306 * ip_wput_local to be the "input" side. 23307 */ 23308 out_ill = ire_to_ill(ire); 23309 23310 DTRACE_PROBE4(ip4__loopback__out__start, 23311 ill_t *, NULL, ill_t *, out_ill, 23312 ipha_t *, ipha, mblk_t *, first_mp); 23313 23314 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23315 ipst->ips_ipv4firewall_loopback_out, 23316 NULL, out_ill, ipha, first_mp, mp, ipst); 23317 23318 DTRACE_PROBE1(ip4__loopback__out_end, 23319 mblk_t *, first_mp); 23320 23321 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23322 "ip_wput_ire_end: q %p (%S)", 23323 q, "local address"); 23324 23325 if (first_mp != NULL) 23326 ip_wput_local(q, out_ill, ipha, 23327 first_mp, ire, 0, ire->ire_zoneid); 23328 ire_refrele(ire); 23329 if (conn_outgoing_ill != NULL) 23330 ill_refrele(conn_outgoing_ill); 23331 return; 23332 } 23333 23334 out_ill = ire_to_ill(ire); 23335 23336 DTRACE_PROBE4(ip4__loopback__out__start, 23337 ill_t *, NULL, ill_t *, out_ill, 23338 ipha_t *, ipha, mblk_t *, first_mp); 23339 23340 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23341 ipst->ips_ipv4firewall_loopback_out, 23342 NULL, out_ill, ipha, first_mp, mp, ipst); 23343 23344 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, first_mp); 23345 23346 if (first_mp != NULL) 23347 ip_wput_local(q, out_ill, ipha, 23348 first_mp, ire, 0, ire->ire_zoneid); 23349 } 23350 next: 23351 /* 23352 * More copies going out to additional interfaces. 23353 * ire1 has already been held. We don't need the 23354 * "ire" anymore. 23355 */ 23356 ire_refrele(ire); 23357 ire = ire1; 23358 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 23359 mp = next_mp; 23360 ASSERT(ire->ire_ipversion == IPV4_VERSION); 23361 ill = ire_to_ill(ire); 23362 first_mp = mp; 23363 if (ipsec_len != 0) { 23364 ASSERT(first_mp->b_datap->db_type == M_CTL); 23365 mp = mp->b_cont; 23366 } 23367 dst = ire->ire_addr; 23368 ipha = (ipha_t *)mp->b_rptr; 23369 /* 23370 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 23371 * Restore ipha_ident "no checksum" flag. 23372 */ 23373 src = orig_src; 23374 ipha->ipha_ident = ip_hdr_included; 23375 goto another; 23376 23377 #undef rptr 23378 #undef Q_TO_INDEX 23379 } 23380 23381 /* 23382 * Routine to allocate a message that is used to notify the ULP about MDT. 23383 * The caller may provide a pointer to the link-layer MDT capabilities, 23384 * or NULL if MDT is to be disabled on the stream. 23385 */ 23386 mblk_t * 23387 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 23388 { 23389 mblk_t *mp; 23390 ip_mdt_info_t *mdti; 23391 ill_mdt_capab_t *idst; 23392 23393 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 23394 DB_TYPE(mp) = M_CTL; 23395 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 23396 mdti = (ip_mdt_info_t *)mp->b_rptr; 23397 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 23398 idst = &(mdti->mdt_capab); 23399 23400 /* 23401 * If the caller provides us with the capability, copy 23402 * it over into our notification message; otherwise 23403 * we zero out the capability portion. 23404 */ 23405 if (isrc != NULL) 23406 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23407 else 23408 bzero((caddr_t)idst, sizeof (*idst)); 23409 } 23410 return (mp); 23411 } 23412 23413 /* 23414 * Routine which determines whether MDT can be enabled on the destination 23415 * IRE and IPC combination, and if so, allocates and returns the MDT 23416 * notification mblk that may be used by ULP. We also check if we need to 23417 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 23418 * MDT usage in the past have been lifted. This gets called during IP 23419 * and ULP binding. 23420 */ 23421 mblk_t * 23422 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23423 ill_mdt_capab_t *mdt_cap) 23424 { 23425 mblk_t *mp; 23426 boolean_t rc = B_FALSE; 23427 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23428 23429 ASSERT(dst_ire != NULL); 23430 ASSERT(connp != NULL); 23431 ASSERT(mdt_cap != NULL); 23432 23433 /* 23434 * Currently, we only support simple TCP/{IPv4,IPv6} with 23435 * Multidata, which is handled in tcp_multisend(). This 23436 * is the reason why we do all these checks here, to ensure 23437 * that we don't enable Multidata for the cases which we 23438 * can't handle at the moment. 23439 */ 23440 do { 23441 /* Only do TCP at the moment */ 23442 if (connp->conn_ulp != IPPROTO_TCP) 23443 break; 23444 23445 /* 23446 * IPsec outbound policy present? Note that we get here 23447 * after calling ipsec_conn_cache_policy() where the global 23448 * policy checking is performed. conn_latch will be 23449 * non-NULL as long as there's a policy defined, 23450 * i.e. conn_out_enforce_policy may be NULL in such case 23451 * when the connection is non-secure, and hence we check 23452 * further if the latch refers to an outbound policy. 23453 */ 23454 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 23455 break; 23456 23457 /* CGTP (multiroute) is enabled? */ 23458 if (dst_ire->ire_flags & RTF_MULTIRT) 23459 break; 23460 23461 /* Outbound IPQoS enabled? */ 23462 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23463 /* 23464 * In this case, we disable MDT for this and all 23465 * future connections going over the interface. 23466 */ 23467 mdt_cap->ill_mdt_on = 0; 23468 break; 23469 } 23470 23471 /* socket option(s) present? */ 23472 if (!CONN_IS_LSO_MD_FASTPATH(connp)) 23473 break; 23474 23475 rc = B_TRUE; 23476 /* CONSTCOND */ 23477 } while (0); 23478 23479 /* Remember the result */ 23480 connp->conn_mdt_ok = rc; 23481 23482 if (!rc) 23483 return (NULL); 23484 else if (!mdt_cap->ill_mdt_on) { 23485 /* 23486 * If MDT has been previously turned off in the past, and we 23487 * currently can do MDT (due to IPQoS policy removal, etc.) 23488 * then enable it for this interface. 23489 */ 23490 mdt_cap->ill_mdt_on = 1; 23491 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 23492 "interface %s\n", ill_name)); 23493 } 23494 23495 /* Allocate the MDT info mblk */ 23496 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 23497 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 23498 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23499 return (NULL); 23500 } 23501 return (mp); 23502 } 23503 23504 /* 23505 * Routine to allocate a message that is used to notify the ULP about LSO. 23506 * The caller may provide a pointer to the link-layer LSO capabilities, 23507 * or NULL if LSO is to be disabled on the stream. 23508 */ 23509 mblk_t * 23510 ip_lsoinfo_alloc(ill_lso_capab_t *isrc) 23511 { 23512 mblk_t *mp; 23513 ip_lso_info_t *lsoi; 23514 ill_lso_capab_t *idst; 23515 23516 if ((mp = allocb(sizeof (*lsoi), BPRI_HI)) != NULL) { 23517 DB_TYPE(mp) = M_CTL; 23518 mp->b_wptr = mp->b_rptr + sizeof (*lsoi); 23519 lsoi = (ip_lso_info_t *)mp->b_rptr; 23520 lsoi->lso_info_id = LSO_IOC_INFO_UPDATE; 23521 idst = &(lsoi->lso_capab); 23522 23523 /* 23524 * If the caller provides us with the capability, copy 23525 * it over into our notification message; otherwise 23526 * we zero out the capability portion. 23527 */ 23528 if (isrc != NULL) 23529 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23530 else 23531 bzero((caddr_t)idst, sizeof (*idst)); 23532 } 23533 return (mp); 23534 } 23535 23536 /* 23537 * Routine which determines whether LSO can be enabled on the destination 23538 * IRE and IPC combination, and if so, allocates and returns the LSO 23539 * notification mblk that may be used by ULP. We also check if we need to 23540 * turn LSO back to 'on' when certain restrictions prohibiting us to allow 23541 * LSO usage in the past have been lifted. This gets called during IP 23542 * and ULP binding. 23543 */ 23544 mblk_t * 23545 ip_lsoinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23546 ill_lso_capab_t *lso_cap) 23547 { 23548 mblk_t *mp; 23549 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23550 23551 ASSERT(dst_ire != NULL); 23552 ASSERT(connp != NULL); 23553 ASSERT(lso_cap != NULL); 23554 23555 connp->conn_lso_ok = B_TRUE; 23556 23557 if ((connp->conn_ulp != IPPROTO_TCP) || 23558 CONN_IPSEC_OUT_ENCAPSULATED(connp) || 23559 (dst_ire->ire_flags & RTF_MULTIRT) || 23560 !CONN_IS_LSO_MD_FASTPATH(connp) || 23561 (IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 23562 connp->conn_lso_ok = B_FALSE; 23563 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23564 /* 23565 * Disable LSO for this and all future connections going 23566 * over the interface. 23567 */ 23568 lso_cap->ill_lso_on = 0; 23569 } 23570 } 23571 23572 if (!connp->conn_lso_ok) 23573 return (NULL); 23574 else if (!lso_cap->ill_lso_on) { 23575 /* 23576 * If LSO has been previously turned off in the past, and we 23577 * currently can do LSO (due to IPQoS policy removal, etc.) 23578 * then enable it for this interface. 23579 */ 23580 lso_cap->ill_lso_on = 1; 23581 ip1dbg(("ip_mdinfo_return: reenabling LSO for interface %s\n", 23582 ill_name)); 23583 } 23584 23585 /* Allocate the LSO info mblk */ 23586 if ((mp = ip_lsoinfo_alloc(lso_cap)) == NULL) 23587 ip0dbg(("ip_lsoinfo_return: can't enable LSO for " 23588 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23589 23590 return (mp); 23591 } 23592 23593 /* 23594 * Create destination address attribute, and fill it with the physical 23595 * destination address and SAP taken from the template DL_UNITDATA_REQ 23596 * message block. 23597 */ 23598 boolean_t 23599 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 23600 { 23601 dl_unitdata_req_t *dlurp; 23602 pattr_t *pa; 23603 pattrinfo_t pa_info; 23604 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 23605 uint_t das_len, das_off; 23606 23607 ASSERT(dlmp != NULL); 23608 23609 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 23610 das_len = dlurp->dl_dest_addr_length; 23611 das_off = dlurp->dl_dest_addr_offset; 23612 23613 pa_info.type = PATTR_DSTADDRSAP; 23614 pa_info.len = sizeof (**das) + das_len - 1; 23615 23616 /* create and associate the attribute */ 23617 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23618 if (pa != NULL) { 23619 ASSERT(*das != NULL); 23620 (*das)->addr_is_group = 0; 23621 (*das)->addr_len = (uint8_t)das_len; 23622 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 23623 } 23624 23625 return (pa != NULL); 23626 } 23627 23628 /* 23629 * Create hardware checksum attribute and fill it with the values passed. 23630 */ 23631 boolean_t 23632 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 23633 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 23634 { 23635 pattr_t *pa; 23636 pattrinfo_t pa_info; 23637 23638 ASSERT(mmd != NULL); 23639 23640 pa_info.type = PATTR_HCKSUM; 23641 pa_info.len = sizeof (pattr_hcksum_t); 23642 23643 /* create and associate the attribute */ 23644 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23645 if (pa != NULL) { 23646 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 23647 23648 hck->hcksum_start_offset = start_offset; 23649 hck->hcksum_stuff_offset = stuff_offset; 23650 hck->hcksum_end_offset = end_offset; 23651 hck->hcksum_flags = flags; 23652 } 23653 return (pa != NULL); 23654 } 23655 23656 /* 23657 * Create zerocopy attribute and fill it with the specified flags 23658 */ 23659 boolean_t 23660 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 23661 { 23662 pattr_t *pa; 23663 pattrinfo_t pa_info; 23664 23665 ASSERT(mmd != NULL); 23666 pa_info.type = PATTR_ZCOPY; 23667 pa_info.len = sizeof (pattr_zcopy_t); 23668 23669 /* create and associate the attribute */ 23670 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23671 if (pa != NULL) { 23672 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 23673 23674 zcopy->zcopy_flags = flags; 23675 } 23676 return (pa != NULL); 23677 } 23678 23679 /* 23680 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 23681 * block chain. We could rewrite to handle arbitrary message block chains but 23682 * that would make the code complicated and slow. Right now there three 23683 * restrictions: 23684 * 23685 * 1. The first message block must contain the complete IP header and 23686 * at least 1 byte of payload data. 23687 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 23688 * so that we can use a single Multidata message. 23689 * 3. No frag must be distributed over two or more message blocks so 23690 * that we don't need more than two packet descriptors per frag. 23691 * 23692 * The above restrictions allow us to support userland applications (which 23693 * will send down a single message block) and NFS over UDP (which will 23694 * send down a chain of at most three message blocks). 23695 * 23696 * We also don't use MDT for payloads with less than or equal to 23697 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 23698 */ 23699 boolean_t 23700 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 23701 { 23702 int blocks; 23703 ssize_t total, missing, size; 23704 23705 ASSERT(mp != NULL); 23706 ASSERT(hdr_len > 0); 23707 23708 size = MBLKL(mp) - hdr_len; 23709 if (size <= 0) 23710 return (B_FALSE); 23711 23712 /* The first mblk contains the header and some payload. */ 23713 blocks = 1; 23714 total = size; 23715 size %= len; 23716 missing = (size == 0) ? 0 : (len - size); 23717 mp = mp->b_cont; 23718 23719 while (mp != NULL) { 23720 /* 23721 * Give up if we encounter a zero length message block. 23722 * In practice, this should rarely happen and therefore 23723 * not worth the trouble of freeing and re-linking the 23724 * mblk from the chain to handle such case. 23725 */ 23726 if ((size = MBLKL(mp)) == 0) 23727 return (B_FALSE); 23728 23729 /* Too many payload buffers for a single Multidata message? */ 23730 if (++blocks > MULTIDATA_MAX_PBUFS) 23731 return (B_FALSE); 23732 23733 total += size; 23734 /* Is a frag distributed over two or more message blocks? */ 23735 if (missing > size) 23736 return (B_FALSE); 23737 size -= missing; 23738 23739 size %= len; 23740 missing = (size == 0) ? 0 : (len - size); 23741 23742 mp = mp->b_cont; 23743 } 23744 23745 return (total > ip_wput_frag_mdt_min); 23746 } 23747 23748 /* 23749 * Outbound IPv4 fragmentation routine using MDT. 23750 */ 23751 static void 23752 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 23753 uint32_t frag_flag, int offset) 23754 { 23755 ipha_t *ipha_orig; 23756 int i1, ip_data_end; 23757 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 23758 mblk_t *hdr_mp, *md_mp = NULL; 23759 unsigned char *hdr_ptr, *pld_ptr; 23760 multidata_t *mmd; 23761 ip_pdescinfo_t pdi; 23762 ill_t *ill; 23763 ip_stack_t *ipst = ire->ire_ipst; 23764 23765 ASSERT(DB_TYPE(mp) == M_DATA); 23766 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 23767 23768 ill = ire_to_ill(ire); 23769 ASSERT(ill != NULL); 23770 23771 ipha_orig = (ipha_t *)mp->b_rptr; 23772 mp->b_rptr += sizeof (ipha_t); 23773 23774 /* Calculate how many packets we will send out */ 23775 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 23776 pkts = (i1 + len - 1) / len; 23777 ASSERT(pkts > 1); 23778 23779 /* Allocate a message block which will hold all the IP Headers. */ 23780 wroff = ipst->ips_ip_wroff_extra; 23781 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 23782 23783 i1 = pkts * hdr_chunk_len; 23784 /* 23785 * Create the header buffer, Multidata and destination address 23786 * and SAP attribute that should be associated with it. 23787 */ 23788 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 23789 ((hdr_mp->b_wptr += i1), 23790 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 23791 !ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) { 23792 freemsg(mp); 23793 if (md_mp == NULL) { 23794 freemsg(hdr_mp); 23795 } else { 23796 free_mmd: IP_STAT(ipst, ip_frag_mdt_discarded); 23797 freemsg(md_mp); 23798 } 23799 IP_STAT(ipst, ip_frag_mdt_allocfail); 23800 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 23801 return; 23802 } 23803 IP_STAT(ipst, ip_frag_mdt_allocd); 23804 23805 /* 23806 * Add a payload buffer to the Multidata; this operation must not 23807 * fail, or otherwise our logic in this routine is broken. There 23808 * is no memory allocation done by the routine, so any returned 23809 * failure simply tells us that we've done something wrong. 23810 * 23811 * A failure tells us that either we're adding the same payload 23812 * buffer more than once, or we're trying to add more buffers than 23813 * allowed. None of the above cases should happen, and we panic 23814 * because either there's horrible heap corruption, and/or 23815 * programming mistake. 23816 */ 23817 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23818 goto pbuf_panic; 23819 23820 hdr_ptr = hdr_mp->b_rptr; 23821 pld_ptr = mp->b_rptr; 23822 23823 /* Establish the ending byte offset, based on the starting offset. */ 23824 offset <<= 3; 23825 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 23826 IP_SIMPLE_HDR_LENGTH; 23827 23828 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 23829 23830 while (pld_ptr < mp->b_wptr) { 23831 ipha_t *ipha; 23832 uint16_t offset_and_flags; 23833 uint16_t ip_len; 23834 int error; 23835 23836 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 23837 ipha = (ipha_t *)(hdr_ptr + wroff); 23838 ASSERT(OK_32PTR(ipha)); 23839 *ipha = *ipha_orig; 23840 23841 if (ip_data_end - offset > len) { 23842 offset_and_flags = IPH_MF; 23843 } else { 23844 /* 23845 * Last frag. Set len to the length of this last piece. 23846 */ 23847 len = ip_data_end - offset; 23848 /* A frag of a frag might have IPH_MF non-zero */ 23849 offset_and_flags = 23850 ntohs(ipha->ipha_fragment_offset_and_flags) & 23851 IPH_MF; 23852 } 23853 offset_and_flags |= (uint16_t)(offset >> 3); 23854 offset_and_flags |= (uint16_t)frag_flag; 23855 /* Store the offset and flags in the IP header. */ 23856 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 23857 23858 /* Store the length in the IP header. */ 23859 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 23860 ipha->ipha_length = htons(ip_len); 23861 23862 /* 23863 * Set the IP header checksum. Note that mp is just 23864 * the header, so this is easy to pass to ip_csum. 23865 */ 23866 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23867 23868 /* 23869 * Record offset and size of header and data of the next packet 23870 * in the multidata message. 23871 */ 23872 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 23873 PDESC_PLD_INIT(&pdi); 23874 i1 = MIN(mp->b_wptr - pld_ptr, len); 23875 ASSERT(i1 > 0); 23876 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 23877 if (i1 == len) { 23878 pld_ptr += len; 23879 } else { 23880 i1 = len - i1; 23881 mp = mp->b_cont; 23882 ASSERT(mp != NULL); 23883 ASSERT(MBLKL(mp) >= i1); 23884 /* 23885 * Attach the next payload message block to the 23886 * multidata message. 23887 */ 23888 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23889 goto pbuf_panic; 23890 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 23891 pld_ptr = mp->b_rptr + i1; 23892 } 23893 23894 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 23895 KM_NOSLEEP)) == NULL) { 23896 /* 23897 * Any failure other than ENOMEM indicates that we 23898 * have passed in invalid pdesc info or parameters 23899 * to mmd_addpdesc, which must not happen. 23900 * 23901 * EINVAL is a result of failure on boundary checks 23902 * against the pdesc info contents. It should not 23903 * happen, and we panic because either there's 23904 * horrible heap corruption, and/or programming 23905 * mistake. 23906 */ 23907 if (error != ENOMEM) { 23908 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 23909 "pdesc logic error detected for " 23910 "mmd %p pinfo %p (%d)\n", 23911 (void *)mmd, (void *)&pdi, error); 23912 /* NOTREACHED */ 23913 } 23914 IP_STAT(ipst, ip_frag_mdt_addpdescfail); 23915 /* Free unattached payload message blocks as well */ 23916 md_mp->b_cont = mp->b_cont; 23917 goto free_mmd; 23918 } 23919 23920 /* Advance fragment offset. */ 23921 offset += len; 23922 23923 /* Advance to location for next header in the buffer. */ 23924 hdr_ptr += hdr_chunk_len; 23925 23926 /* Did we reach the next payload message block? */ 23927 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 23928 mp = mp->b_cont; 23929 /* 23930 * Attach the next message block with payload 23931 * data to the multidata message. 23932 */ 23933 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23934 goto pbuf_panic; 23935 pld_ptr = mp->b_rptr; 23936 } 23937 } 23938 23939 ASSERT(hdr_mp->b_wptr == hdr_ptr); 23940 ASSERT(mp->b_wptr == pld_ptr); 23941 23942 /* Update IP statistics */ 23943 IP_STAT_UPDATE(ipst, ip_frag_mdt_pkt_out, pkts); 23944 23945 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates, pkts); 23946 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 23947 23948 len = ntohs(ipha_orig->ipha_length) + (pkts - 1) * IP_SIMPLE_HDR_LENGTH; 23949 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, pkts); 23950 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, len); 23951 23952 if (pkt_type == OB_PKT) { 23953 ire->ire_ob_pkt_count += pkts; 23954 if (ire->ire_ipif != NULL) 23955 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 23956 } else { 23957 /* The type is IB_PKT in the forwarding path. */ 23958 ire->ire_ib_pkt_count += pkts; 23959 ASSERT(!IRE_IS_LOCAL(ire)); 23960 if (ire->ire_type & IRE_BROADCAST) { 23961 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 23962 } else { 23963 UPDATE_MIB(ill->ill_ip_mib, 23964 ipIfStatsHCOutForwDatagrams, pkts); 23965 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 23966 } 23967 } 23968 ire->ire_last_used_time = lbolt; 23969 /* Send it down */ 23970 putnext(ire->ire_stq, md_mp); 23971 return; 23972 23973 pbuf_panic: 23974 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 23975 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 23976 pbuf_idx); 23977 /* NOTREACHED */ 23978 } 23979 23980 /* 23981 * Outbound IP fragmentation routine. 23982 * 23983 * NOTE : This routine does not ire_refrele the ire that is passed in 23984 * as the argument. 23985 */ 23986 static void 23987 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 23988 uint32_t frag_flag, zoneid_t zoneid, ip_stack_t *ipst) 23989 { 23990 int i1; 23991 mblk_t *ll_hdr_mp; 23992 int ll_hdr_len; 23993 int hdr_len; 23994 mblk_t *hdr_mp; 23995 ipha_t *ipha; 23996 int ip_data_end; 23997 int len; 23998 mblk_t *mp = mp_orig, *mp1; 23999 int offset; 24000 queue_t *q; 24001 uint32_t v_hlen_tos_len; 24002 mblk_t *first_mp; 24003 boolean_t mctl_present; 24004 ill_t *ill; 24005 ill_t *out_ill; 24006 mblk_t *xmit_mp; 24007 mblk_t *carve_mp; 24008 ire_t *ire1 = NULL; 24009 ire_t *save_ire = NULL; 24010 mblk_t *next_mp = NULL; 24011 boolean_t last_frag = B_FALSE; 24012 boolean_t multirt_send = B_FALSE; 24013 ire_t *first_ire = NULL; 24014 irb_t *irb = NULL; 24015 mib2_ipIfStatsEntry_t *mibptr = NULL; 24016 24017 ill = ire_to_ill(ire); 24018 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 24019 24020 BUMP_MIB(mibptr, ipIfStatsOutFragReqds); 24021 24022 if (max_frag == 0) { 24023 ip1dbg(("ip_wput_frag: ire frag size is 0" 24024 " - dropping packet\n")); 24025 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24026 freemsg(mp); 24027 return; 24028 } 24029 24030 /* 24031 * IPsec does not allow hw accelerated packets to be fragmented 24032 * This check is made in ip_wput_ipsec_out prior to coming here 24033 * via ip_wput_ire_fragmentit. 24034 * 24035 * If at this point we have an ire whose ARP request has not 24036 * been sent out, we call ip_xmit_v4->ire_arpresolve to trigger 24037 * sending of ARP query and change ire's state to ND_INCOMPLETE. 24038 * This packet and all fragmentable packets for this ire will 24039 * continue to get dropped while ire_nce->nce_state remains in 24040 * ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to 24041 * ND_REACHABLE, all subsquent large packets for this ire will 24042 * get fragemented and sent out by this function. 24043 */ 24044 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 24045 /* If nce_state is ND_INITIAL, trigger ARP query */ 24046 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 24047 ip1dbg(("ip_wput_frag: mac address for ire is unresolved" 24048 " - dropping packet\n")); 24049 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24050 freemsg(mp); 24051 return; 24052 } 24053 24054 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 24055 "ip_wput_frag_start:"); 24056 24057 if (mp->b_datap->db_type == M_CTL) { 24058 first_mp = mp; 24059 mp_orig = mp = mp->b_cont; 24060 mctl_present = B_TRUE; 24061 } else { 24062 first_mp = mp; 24063 mctl_present = B_FALSE; 24064 } 24065 24066 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 24067 ipha = (ipha_t *)mp->b_rptr; 24068 24069 /* 24070 * If the Don't Fragment flag is on, generate an ICMP destination 24071 * unreachable, fragmentation needed. 24072 */ 24073 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 24074 if (offset & IPH_DF) { 24075 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24076 if (is_system_labeled()) { 24077 max_frag = tsol_pmtu_adjust(mp, ire->ire_max_frag, 24078 ire->ire_max_frag - max_frag, AF_INET); 24079 } 24080 /* 24081 * Need to compute hdr checksum if called from ip_wput_ire. 24082 * Note that ip_rput_forward verifies the checksum before 24083 * calling this routine so in that case this is a noop. 24084 */ 24085 ipha->ipha_hdr_checksum = 0; 24086 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24087 icmp_frag_needed(ire->ire_stq, first_mp, max_frag, zoneid, 24088 ipst); 24089 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24090 "ip_wput_frag_end:(%S)", 24091 "don't fragment"); 24092 return; 24093 } 24094 /* 24095 * Labeled systems adjust max_frag if they add a label 24096 * to send the correct path mtu. We need the real mtu since we 24097 * are fragmenting the packet after label adjustment. 24098 */ 24099 if (is_system_labeled()) 24100 max_frag = ire->ire_max_frag; 24101 if (mctl_present) 24102 freeb(first_mp); 24103 /* 24104 * Establish the starting offset. May not be zero if we are fragging 24105 * a fragment that is being forwarded. 24106 */ 24107 offset = offset & IPH_OFFSET; 24108 24109 /* TODO why is this test needed? */ 24110 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 24111 if (((max_frag - LENGTH) & ~7) < 8) { 24112 /* TODO: notify ulp somehow */ 24113 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24114 freemsg(mp); 24115 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24116 "ip_wput_frag_end:(%S)", 24117 "len < 8"); 24118 return; 24119 } 24120 24121 hdr_len = (V_HLEN & 0xF) << 2; 24122 24123 ipha->ipha_hdr_checksum = 0; 24124 24125 /* 24126 * Establish the number of bytes maximum per frag, after putting 24127 * in the header. 24128 */ 24129 len = (max_frag - hdr_len) & ~7; 24130 24131 /* Check if we can use MDT to send out the frags. */ 24132 ASSERT(!IRE_IS_LOCAL(ire)); 24133 if (hdr_len == IP_SIMPLE_HDR_LENGTH && 24134 ipst->ips_ip_multidata_outbound && 24135 !(ire->ire_flags & RTF_MULTIRT) && 24136 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 24137 ill != NULL && ILL_MDT_CAPABLE(ill) && 24138 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 24139 ASSERT(ill->ill_mdt_capab != NULL); 24140 if (!ill->ill_mdt_capab->ill_mdt_on) { 24141 /* 24142 * If MDT has been previously turned off in the past, 24143 * and we currently can do MDT (due to IPQoS policy 24144 * removal, etc.) then enable it for this interface. 24145 */ 24146 ill->ill_mdt_capab->ill_mdt_on = 1; 24147 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 24148 ill->ill_name)); 24149 } 24150 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 24151 offset); 24152 return; 24153 } 24154 24155 /* Get a copy of the header for the trailing frags */ 24156 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst); 24157 if (!hdr_mp) { 24158 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24159 freemsg(mp); 24160 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24161 "ip_wput_frag_end:(%S)", 24162 "couldn't copy hdr"); 24163 return; 24164 } 24165 if (DB_CRED(mp) != NULL) 24166 mblk_setcred(hdr_mp, DB_CRED(mp)); 24167 24168 /* Store the starting offset, with the MoreFrags flag. */ 24169 i1 = offset | IPH_MF | frag_flag; 24170 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 24171 24172 /* Establish the ending byte offset, based on the starting offset. */ 24173 offset <<= 3; 24174 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 24175 24176 /* Store the length of the first fragment in the IP header. */ 24177 i1 = len + hdr_len; 24178 ASSERT(i1 <= IP_MAXPACKET); 24179 ipha->ipha_length = htons((uint16_t)i1); 24180 24181 /* 24182 * Compute the IP header checksum for the first frag. We have to 24183 * watch out that we stop at the end of the header. 24184 */ 24185 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24186 24187 /* 24188 * Now carve off the first frag. Note that this will include the 24189 * original IP header. 24190 */ 24191 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 24192 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24193 freeb(hdr_mp); 24194 freemsg(mp_orig); 24195 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24196 "ip_wput_frag_end:(%S)", 24197 "couldn't carve first"); 24198 return; 24199 } 24200 24201 /* 24202 * Multirouting case. Each fragment is replicated 24203 * via all non-condemned RTF_MULTIRT routes 24204 * currently resolved. 24205 * We ensure that first_ire is the first RTF_MULTIRT 24206 * ire in the bucket. 24207 */ 24208 if (ire->ire_flags & RTF_MULTIRT) { 24209 irb = ire->ire_bucket; 24210 ASSERT(irb != NULL); 24211 24212 multirt_send = B_TRUE; 24213 24214 /* Make sure we do not omit any multiroute ire. */ 24215 IRB_REFHOLD(irb); 24216 for (first_ire = irb->irb_ire; 24217 first_ire != NULL; 24218 first_ire = first_ire->ire_next) { 24219 if ((first_ire->ire_flags & RTF_MULTIRT) && 24220 (first_ire->ire_addr == ire->ire_addr) && 24221 !(first_ire->ire_marks & 24222 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 24223 break; 24224 } 24225 } 24226 24227 if (first_ire != NULL) { 24228 if (first_ire != ire) { 24229 IRE_REFHOLD(first_ire); 24230 /* 24231 * Do not release the ire passed in 24232 * as the argument. 24233 */ 24234 ire = first_ire; 24235 } else { 24236 first_ire = NULL; 24237 } 24238 } 24239 IRB_REFRELE(irb); 24240 24241 /* 24242 * Save the first ire; we will need to restore it 24243 * for the trailing frags. 24244 * We REFHOLD save_ire, as each iterated ire will be 24245 * REFRELEd. 24246 */ 24247 save_ire = ire; 24248 IRE_REFHOLD(save_ire); 24249 } 24250 24251 /* 24252 * First fragment emission loop. 24253 * In most cases, the emission loop below is entered only 24254 * once. Only in the case where the ire holds the RTF_MULTIRT 24255 * flag, do we loop to process all RTF_MULTIRT ires in the 24256 * bucket, and send the fragment through all crossed 24257 * RTF_MULTIRT routes. 24258 */ 24259 do { 24260 if (ire->ire_flags & RTF_MULTIRT) { 24261 /* 24262 * We are in a multiple send case, need to get 24263 * the next ire and make a copy of the packet. 24264 * ire1 holds here the next ire to process in the 24265 * bucket. If multirouting is expected, 24266 * any non-RTF_MULTIRT ire that has the 24267 * right destination address is ignored. 24268 * 24269 * We have to take into account the MTU of 24270 * each walked ire. max_frag is set by the 24271 * the caller and generally refers to 24272 * the primary ire entry. Here we ensure that 24273 * no route with a lower MTU will be used, as 24274 * fragments are carved once for all ires, 24275 * then replicated. 24276 */ 24277 ASSERT(irb != NULL); 24278 IRB_REFHOLD(irb); 24279 for (ire1 = ire->ire_next; 24280 ire1 != NULL; 24281 ire1 = ire1->ire_next) { 24282 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 24283 continue; 24284 if (ire1->ire_addr != ire->ire_addr) 24285 continue; 24286 if (ire1->ire_marks & 24287 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 24288 continue; 24289 /* 24290 * Ensure we do not exceed the MTU 24291 * of the next route. 24292 */ 24293 if (ire1->ire_max_frag < max_frag) { 24294 ip_multirt_bad_mtu(ire1, max_frag); 24295 continue; 24296 } 24297 24298 /* Got one. */ 24299 IRE_REFHOLD(ire1); 24300 break; 24301 } 24302 IRB_REFRELE(irb); 24303 24304 if (ire1 != NULL) { 24305 next_mp = copyb(mp); 24306 if ((next_mp == NULL) || 24307 ((mp->b_cont != NULL) && 24308 ((next_mp->b_cont = 24309 dupmsg(mp->b_cont)) == NULL))) { 24310 freemsg(next_mp); 24311 next_mp = NULL; 24312 ire_refrele(ire1); 24313 ire1 = NULL; 24314 } 24315 } 24316 24317 /* Last multiroute ire; don't loop anymore. */ 24318 if (ire1 == NULL) { 24319 multirt_send = B_FALSE; 24320 } 24321 } 24322 24323 ll_hdr_len = 0; 24324 LOCK_IRE_FP_MP(ire); 24325 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24326 if (ll_hdr_mp != NULL) { 24327 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24328 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 24329 } else { 24330 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24331 } 24332 24333 /* If there is a transmit header, get a copy for this frag. */ 24334 /* 24335 * TODO: should check db_ref before calling ip_carve_mp since 24336 * it might give us a dup. 24337 */ 24338 if (!ll_hdr_mp) { 24339 /* No xmit header. */ 24340 xmit_mp = mp; 24341 24342 /* We have a link-layer header that can fit in our mblk. */ 24343 } else if (mp->b_datap->db_ref == 1 && 24344 ll_hdr_len != 0 && 24345 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24346 /* M_DATA fastpath */ 24347 mp->b_rptr -= ll_hdr_len; 24348 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 24349 xmit_mp = mp; 24350 24351 /* Corner case if copyb has failed */ 24352 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 24353 UNLOCK_IRE_FP_MP(ire); 24354 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24355 freeb(hdr_mp); 24356 freemsg(mp); 24357 freemsg(mp_orig); 24358 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24359 "ip_wput_frag_end:(%S)", 24360 "discard"); 24361 24362 if (multirt_send) { 24363 ASSERT(ire1); 24364 ASSERT(next_mp); 24365 24366 freemsg(next_mp); 24367 ire_refrele(ire1); 24368 } 24369 if (save_ire != NULL) 24370 IRE_REFRELE(save_ire); 24371 24372 if (first_ire != NULL) 24373 ire_refrele(first_ire); 24374 return; 24375 24376 /* 24377 * Case of res_mp OR the fastpath mp can't fit 24378 * in the mblk 24379 */ 24380 } else { 24381 xmit_mp->b_cont = mp; 24382 if (DB_CRED(mp) != NULL) 24383 mblk_setcred(xmit_mp, DB_CRED(mp)); 24384 /* 24385 * Get priority marking, if any. 24386 * We propagate the CoS marking from the 24387 * original packet that went to QoS processing 24388 * in ip_wput_ire to the newly carved mp. 24389 */ 24390 if (DB_TYPE(xmit_mp) == M_DATA) 24391 xmit_mp->b_band = mp->b_band; 24392 } 24393 UNLOCK_IRE_FP_MP(ire); 24394 24395 q = ire->ire_stq; 24396 out_ill = (ill_t *)q->q_ptr; 24397 24398 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24399 24400 DTRACE_PROBE4(ip4__physical__out__start, 24401 ill_t *, NULL, ill_t *, out_ill, 24402 ipha_t *, ipha, mblk_t *, xmit_mp); 24403 24404 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24405 ipst->ips_ipv4firewall_physical_out, 24406 NULL, out_ill, ipha, xmit_mp, mp, ipst); 24407 24408 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, xmit_mp); 24409 24410 if (xmit_mp != NULL) { 24411 putnext(q, xmit_mp); 24412 24413 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 24414 UPDATE_MIB(out_ill->ill_ip_mib, 24415 ipIfStatsHCOutOctets, i1); 24416 24417 if (pkt_type != OB_PKT) { 24418 /* 24419 * Update the packet count and MIB stats 24420 * of trailing RTF_MULTIRT ires. 24421 */ 24422 UPDATE_OB_PKT_COUNT(ire); 24423 BUMP_MIB(out_ill->ill_ip_mib, 24424 ipIfStatsOutFragReqds); 24425 } 24426 } 24427 24428 if (multirt_send) { 24429 /* 24430 * We are in a multiple send case; look for 24431 * the next ire and re-enter the loop. 24432 */ 24433 ASSERT(ire1); 24434 ASSERT(next_mp); 24435 /* REFRELE the current ire before looping */ 24436 ire_refrele(ire); 24437 ire = ire1; 24438 ire1 = NULL; 24439 mp = next_mp; 24440 next_mp = NULL; 24441 } 24442 } while (multirt_send); 24443 24444 ASSERT(ire1 == NULL); 24445 24446 /* Restore the original ire; we need it for the trailing frags */ 24447 if (save_ire != NULL) { 24448 /* REFRELE the last iterated ire */ 24449 ire_refrele(ire); 24450 /* save_ire has been REFHOLDed */ 24451 ire = save_ire; 24452 save_ire = NULL; 24453 q = ire->ire_stq; 24454 } 24455 24456 if (pkt_type == OB_PKT) { 24457 UPDATE_OB_PKT_COUNT(ire); 24458 } else { 24459 out_ill = (ill_t *)q->q_ptr; 24460 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 24461 UPDATE_IB_PKT_COUNT(ire); 24462 } 24463 24464 /* Advance the offset to the second frag starting point. */ 24465 offset += len; 24466 /* 24467 * Update hdr_len from the copied header - there might be less options 24468 * in the later fragments. 24469 */ 24470 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 24471 /* Loop until done. */ 24472 for (;;) { 24473 uint16_t offset_and_flags; 24474 uint16_t ip_len; 24475 24476 if (ip_data_end - offset > len) { 24477 /* 24478 * Carve off the appropriate amount from the original 24479 * datagram. 24480 */ 24481 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24482 mp = NULL; 24483 break; 24484 } 24485 /* 24486 * More frags after this one. Get another copy 24487 * of the header. 24488 */ 24489 if (carve_mp->b_datap->db_ref == 1 && 24490 hdr_mp->b_wptr - hdr_mp->b_rptr < 24491 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24492 /* Inline IP header */ 24493 carve_mp->b_rptr -= hdr_mp->b_wptr - 24494 hdr_mp->b_rptr; 24495 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24496 hdr_mp->b_wptr - hdr_mp->b_rptr); 24497 mp = carve_mp; 24498 } else { 24499 if (!(mp = copyb(hdr_mp))) { 24500 freemsg(carve_mp); 24501 break; 24502 } 24503 /* Get priority marking, if any. */ 24504 mp->b_band = carve_mp->b_band; 24505 mp->b_cont = carve_mp; 24506 } 24507 ipha = (ipha_t *)mp->b_rptr; 24508 offset_and_flags = IPH_MF; 24509 } else { 24510 /* 24511 * Last frag. Consume the header. Set len to 24512 * the length of this last piece. 24513 */ 24514 len = ip_data_end - offset; 24515 24516 /* 24517 * Carve off the appropriate amount from the original 24518 * datagram. 24519 */ 24520 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24521 mp = NULL; 24522 break; 24523 } 24524 if (carve_mp->b_datap->db_ref == 1 && 24525 hdr_mp->b_wptr - hdr_mp->b_rptr < 24526 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24527 /* Inline IP header */ 24528 carve_mp->b_rptr -= hdr_mp->b_wptr - 24529 hdr_mp->b_rptr; 24530 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24531 hdr_mp->b_wptr - hdr_mp->b_rptr); 24532 mp = carve_mp; 24533 freeb(hdr_mp); 24534 hdr_mp = mp; 24535 } else { 24536 mp = hdr_mp; 24537 /* Get priority marking, if any. */ 24538 mp->b_band = carve_mp->b_band; 24539 mp->b_cont = carve_mp; 24540 } 24541 ipha = (ipha_t *)mp->b_rptr; 24542 /* A frag of a frag might have IPH_MF non-zero */ 24543 offset_and_flags = 24544 ntohs(ipha->ipha_fragment_offset_and_flags) & 24545 IPH_MF; 24546 } 24547 offset_and_flags |= (uint16_t)(offset >> 3); 24548 offset_and_flags |= (uint16_t)frag_flag; 24549 /* Store the offset and flags in the IP header. */ 24550 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24551 24552 /* Store the length in the IP header. */ 24553 ip_len = (uint16_t)(len + hdr_len); 24554 ipha->ipha_length = htons(ip_len); 24555 24556 /* 24557 * Set the IP header checksum. Note that mp is just 24558 * the header, so this is easy to pass to ip_csum. 24559 */ 24560 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24561 24562 /* Attach a transmit header, if any, and ship it. */ 24563 if (pkt_type == OB_PKT) { 24564 UPDATE_OB_PKT_COUNT(ire); 24565 } else { 24566 out_ill = (ill_t *)q->q_ptr; 24567 BUMP_MIB(out_ill->ill_ip_mib, 24568 ipIfStatsHCOutForwDatagrams); 24569 UPDATE_IB_PKT_COUNT(ire); 24570 } 24571 24572 if (ire->ire_flags & RTF_MULTIRT) { 24573 irb = ire->ire_bucket; 24574 ASSERT(irb != NULL); 24575 24576 multirt_send = B_TRUE; 24577 24578 /* 24579 * Save the original ire; we will need to restore it 24580 * for the tailing frags. 24581 */ 24582 save_ire = ire; 24583 IRE_REFHOLD(save_ire); 24584 } 24585 /* 24586 * Emission loop for this fragment, similar 24587 * to what is done for the first fragment. 24588 */ 24589 do { 24590 if (multirt_send) { 24591 /* 24592 * We are in a multiple send case, need to get 24593 * the next ire and make a copy of the packet. 24594 */ 24595 ASSERT(irb != NULL); 24596 IRB_REFHOLD(irb); 24597 for (ire1 = ire->ire_next; 24598 ire1 != NULL; 24599 ire1 = ire1->ire_next) { 24600 if (!(ire1->ire_flags & RTF_MULTIRT)) 24601 continue; 24602 if (ire1->ire_addr != ire->ire_addr) 24603 continue; 24604 if (ire1->ire_marks & 24605 (IRE_MARK_CONDEMNED| 24606 IRE_MARK_HIDDEN)) { 24607 continue; 24608 } 24609 /* 24610 * Ensure we do not exceed the MTU 24611 * of the next route. 24612 */ 24613 if (ire1->ire_max_frag < max_frag) { 24614 ip_multirt_bad_mtu(ire1, 24615 max_frag); 24616 continue; 24617 } 24618 24619 /* Got one. */ 24620 IRE_REFHOLD(ire1); 24621 break; 24622 } 24623 IRB_REFRELE(irb); 24624 24625 if (ire1 != NULL) { 24626 next_mp = copyb(mp); 24627 if ((next_mp == NULL) || 24628 ((mp->b_cont != NULL) && 24629 ((next_mp->b_cont = 24630 dupmsg(mp->b_cont)) == NULL))) { 24631 freemsg(next_mp); 24632 next_mp = NULL; 24633 ire_refrele(ire1); 24634 ire1 = NULL; 24635 } 24636 } 24637 24638 /* Last multiroute ire; don't loop anymore. */ 24639 if (ire1 == NULL) { 24640 multirt_send = B_FALSE; 24641 } 24642 } 24643 24644 /* Update transmit header */ 24645 ll_hdr_len = 0; 24646 LOCK_IRE_FP_MP(ire); 24647 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24648 if (ll_hdr_mp != NULL) { 24649 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24650 ll_hdr_len = MBLKL(ll_hdr_mp); 24651 } else { 24652 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24653 } 24654 24655 if (!ll_hdr_mp) { 24656 xmit_mp = mp; 24657 24658 /* 24659 * We have link-layer header that can fit in 24660 * our mblk. 24661 */ 24662 } else if (mp->b_datap->db_ref == 1 && 24663 ll_hdr_len != 0 && 24664 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24665 /* M_DATA fastpath */ 24666 mp->b_rptr -= ll_hdr_len; 24667 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 24668 ll_hdr_len); 24669 xmit_mp = mp; 24670 24671 /* 24672 * Case of res_mp OR the fastpath mp can't fit 24673 * in the mblk 24674 */ 24675 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 24676 xmit_mp->b_cont = mp; 24677 if (DB_CRED(mp) != NULL) 24678 mblk_setcred(xmit_mp, DB_CRED(mp)); 24679 /* Get priority marking, if any. */ 24680 if (DB_TYPE(xmit_mp) == M_DATA) 24681 xmit_mp->b_band = mp->b_band; 24682 24683 /* Corner case if copyb failed */ 24684 } else { 24685 /* 24686 * Exit both the replication and 24687 * fragmentation loops. 24688 */ 24689 UNLOCK_IRE_FP_MP(ire); 24690 goto drop_pkt; 24691 } 24692 UNLOCK_IRE_FP_MP(ire); 24693 24694 mp1 = mp; 24695 out_ill = (ill_t *)q->q_ptr; 24696 24697 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24698 24699 DTRACE_PROBE4(ip4__physical__out__start, 24700 ill_t *, NULL, ill_t *, out_ill, 24701 ipha_t *, ipha, mblk_t *, xmit_mp); 24702 24703 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24704 ipst->ips_ipv4firewall_physical_out, 24705 NULL, out_ill, ipha, xmit_mp, mp, ipst); 24706 24707 DTRACE_PROBE1(ip4__physical__out__end, 24708 mblk_t *, xmit_mp); 24709 24710 if (mp != mp1 && hdr_mp == mp1) 24711 hdr_mp = mp; 24712 if (mp != mp1 && mp_orig == mp1) 24713 mp_orig = mp; 24714 24715 if (xmit_mp != NULL) { 24716 putnext(q, xmit_mp); 24717 24718 BUMP_MIB(out_ill->ill_ip_mib, 24719 ipIfStatsHCOutTransmits); 24720 UPDATE_MIB(out_ill->ill_ip_mib, 24721 ipIfStatsHCOutOctets, ip_len); 24722 24723 if (pkt_type != OB_PKT) { 24724 /* 24725 * Update the packet count of trailing 24726 * RTF_MULTIRT ires. 24727 */ 24728 UPDATE_OB_PKT_COUNT(ire); 24729 } 24730 } 24731 24732 /* All done if we just consumed the hdr_mp. */ 24733 if (mp == hdr_mp) { 24734 last_frag = B_TRUE; 24735 BUMP_MIB(out_ill->ill_ip_mib, 24736 ipIfStatsOutFragOKs); 24737 } 24738 24739 if (multirt_send) { 24740 /* 24741 * We are in a multiple send case; look for 24742 * the next ire and re-enter the loop. 24743 */ 24744 ASSERT(ire1); 24745 ASSERT(next_mp); 24746 /* REFRELE the current ire before looping */ 24747 ire_refrele(ire); 24748 ire = ire1; 24749 ire1 = NULL; 24750 q = ire->ire_stq; 24751 mp = next_mp; 24752 next_mp = NULL; 24753 } 24754 } while (multirt_send); 24755 /* 24756 * Restore the original ire; we need it for the 24757 * trailing frags 24758 */ 24759 if (save_ire != NULL) { 24760 ASSERT(ire1 == NULL); 24761 /* REFRELE the last iterated ire */ 24762 ire_refrele(ire); 24763 /* save_ire has been REFHOLDed */ 24764 ire = save_ire; 24765 q = ire->ire_stq; 24766 save_ire = NULL; 24767 } 24768 24769 if (last_frag) { 24770 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24771 "ip_wput_frag_end:(%S)", 24772 "consumed hdr_mp"); 24773 24774 if (first_ire != NULL) 24775 ire_refrele(first_ire); 24776 return; 24777 } 24778 /* Otherwise, advance and loop. */ 24779 offset += len; 24780 } 24781 24782 drop_pkt: 24783 /* Clean up following allocation failure. */ 24784 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24785 freemsg(mp); 24786 if (mp != hdr_mp) 24787 freeb(hdr_mp); 24788 if (mp != mp_orig) 24789 freemsg(mp_orig); 24790 24791 if (save_ire != NULL) 24792 IRE_REFRELE(save_ire); 24793 if (first_ire != NULL) 24794 ire_refrele(first_ire); 24795 24796 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24797 "ip_wput_frag_end:(%S)", 24798 "end--alloc failure"); 24799 } 24800 24801 /* 24802 * Copy the header plus those options which have the copy bit set 24803 */ 24804 static mblk_t * 24805 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst) 24806 { 24807 mblk_t *mp; 24808 uchar_t *up; 24809 24810 /* 24811 * Quick check if we need to look for options without the copy bit 24812 * set 24813 */ 24814 mp = allocb(ipst->ips_ip_wroff_extra + hdr_len, BPRI_HI); 24815 if (!mp) 24816 return (mp); 24817 mp->b_rptr += ipst->ips_ip_wroff_extra; 24818 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 24819 bcopy(rptr, mp->b_rptr, hdr_len); 24820 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 24821 return (mp); 24822 } 24823 up = mp->b_rptr; 24824 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 24825 up += IP_SIMPLE_HDR_LENGTH; 24826 rptr += IP_SIMPLE_HDR_LENGTH; 24827 hdr_len -= IP_SIMPLE_HDR_LENGTH; 24828 while (hdr_len > 0) { 24829 uint32_t optval; 24830 uint32_t optlen; 24831 24832 optval = *rptr; 24833 if (optval == IPOPT_EOL) 24834 break; 24835 if (optval == IPOPT_NOP) 24836 optlen = 1; 24837 else 24838 optlen = rptr[1]; 24839 if (optval & IPOPT_COPY) { 24840 bcopy(rptr, up, optlen); 24841 up += optlen; 24842 } 24843 rptr += optlen; 24844 hdr_len -= optlen; 24845 } 24846 /* 24847 * Make sure that we drop an even number of words by filling 24848 * with EOL to the next word boundary. 24849 */ 24850 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 24851 hdr_len & 0x3; hdr_len++) 24852 *up++ = IPOPT_EOL; 24853 mp->b_wptr = up; 24854 /* Update header length */ 24855 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 24856 return (mp); 24857 } 24858 24859 /* 24860 * Delivery to local recipients including fanout to multiple recipients. 24861 * Does not do checksumming of UDP/TCP. 24862 * Note: q should be the read side queue for either the ill or conn. 24863 * Note: rq should be the read side q for the lower (ill) stream. 24864 * We don't send packets to IPPF processing, thus the last argument 24865 * to all the fanout calls are B_FALSE. 24866 */ 24867 void 24868 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 24869 int fanout_flags, zoneid_t zoneid) 24870 { 24871 uint32_t protocol; 24872 mblk_t *first_mp; 24873 boolean_t mctl_present; 24874 int ire_type; 24875 #define rptr ((uchar_t *)ipha) 24876 ip_stack_t *ipst = ill->ill_ipst; 24877 24878 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 24879 "ip_wput_local_start: q %p", q); 24880 24881 if (ire != NULL) { 24882 ire_type = ire->ire_type; 24883 } else { 24884 /* 24885 * Only ip_multicast_loopback() calls us with a NULL ire. If the 24886 * packet is not multicast, we can't tell the ire type. 24887 */ 24888 ASSERT(CLASSD(ipha->ipha_dst)); 24889 ire_type = IRE_BROADCAST; 24890 } 24891 24892 first_mp = mp; 24893 if (first_mp->b_datap->db_type == M_CTL) { 24894 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 24895 if (!io->ipsec_out_secure) { 24896 /* 24897 * This ipsec_out_t was allocated in ip_wput 24898 * for multicast packets to store the ill_index. 24899 * As this is being delivered locally, we don't 24900 * need this anymore. 24901 */ 24902 mp = first_mp->b_cont; 24903 freeb(first_mp); 24904 first_mp = mp; 24905 mctl_present = B_FALSE; 24906 } else { 24907 /* 24908 * Convert IPSEC_OUT to IPSEC_IN, preserving all 24909 * security properties for the looped-back packet. 24910 */ 24911 mctl_present = B_TRUE; 24912 mp = first_mp->b_cont; 24913 ASSERT(mp != NULL); 24914 ipsec_out_to_in(first_mp); 24915 } 24916 } else { 24917 mctl_present = B_FALSE; 24918 } 24919 24920 DTRACE_PROBE4(ip4__loopback__in__start, 24921 ill_t *, ill, ill_t *, NULL, 24922 ipha_t *, ipha, mblk_t *, first_mp); 24923 24924 FW_HOOKS(ipst->ips_ip4_loopback_in_event, 24925 ipst->ips_ipv4firewall_loopback_in, 24926 ill, NULL, ipha, first_mp, mp, ipst); 24927 24928 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, first_mp); 24929 24930 if (first_mp == NULL) 24931 return; 24932 24933 ipst->ips_loopback_packets++; 24934 24935 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 24936 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 24937 if (!IS_SIMPLE_IPH(ipha)) { 24938 ip_wput_local_options(ipha, ipst); 24939 } 24940 24941 protocol = ipha->ipha_protocol; 24942 switch (protocol) { 24943 case IPPROTO_ICMP: { 24944 ire_t *ire_zone; 24945 ilm_t *ilm; 24946 mblk_t *mp1; 24947 zoneid_t last_zoneid; 24948 24949 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(ill)) { 24950 ASSERT(ire_type == IRE_BROADCAST); 24951 /* 24952 * In the multicast case, applications may have joined 24953 * the group from different zones, so we need to deliver 24954 * the packet to each of them. Loop through the 24955 * multicast memberships structures (ilm) on the receive 24956 * ill and send a copy of the packet up each matching 24957 * one. However, we don't do this for multicasts sent on 24958 * the loopback interface (PHYI_LOOPBACK flag set) as 24959 * they must stay in the sender's zone. 24960 * 24961 * ilm_add_v6() ensures that ilms in the same zone are 24962 * contiguous in the ill_ilm list. We use this property 24963 * to avoid sending duplicates needed when two 24964 * applications in the same zone join the same group on 24965 * different logical interfaces: we ignore the ilm if 24966 * it's zoneid is the same as the last matching one. 24967 * In addition, the sending of the packet for 24968 * ire_zoneid is delayed until all of the other ilms 24969 * have been exhausted. 24970 */ 24971 last_zoneid = -1; 24972 ILM_WALKER_HOLD(ill); 24973 for (ilm = ill->ill_ilm; ilm != NULL; 24974 ilm = ilm->ilm_next) { 24975 if ((ilm->ilm_flags & ILM_DELETED) || 24976 ipha->ipha_dst != ilm->ilm_addr || 24977 ilm->ilm_zoneid == last_zoneid || 24978 ilm->ilm_zoneid == zoneid || 24979 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 24980 continue; 24981 mp1 = ip_copymsg(first_mp); 24982 if (mp1 == NULL) 24983 continue; 24984 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 24985 mctl_present, B_FALSE, ill, 24986 ilm->ilm_zoneid); 24987 last_zoneid = ilm->ilm_zoneid; 24988 } 24989 ILM_WALKER_RELE(ill); 24990 /* 24991 * Loopback case: the sending endpoint has 24992 * IP_MULTICAST_LOOP disabled, therefore we don't 24993 * dispatch the multicast packet to the sending zone. 24994 */ 24995 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 24996 freemsg(first_mp); 24997 return; 24998 } 24999 } else if (ire_type == IRE_BROADCAST) { 25000 /* 25001 * In the broadcast case, there may be many zones 25002 * which need a copy of the packet delivered to them. 25003 * There is one IRE_BROADCAST per broadcast address 25004 * and per zone; we walk those using a helper function. 25005 * In addition, the sending of the packet for zoneid is 25006 * delayed until all of the other ires have been 25007 * processed. 25008 */ 25009 IRB_REFHOLD(ire->ire_bucket); 25010 ire_zone = NULL; 25011 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 25012 ire)) != NULL) { 25013 mp1 = ip_copymsg(first_mp); 25014 if (mp1 == NULL) 25015 continue; 25016 25017 UPDATE_IB_PKT_COUNT(ire_zone); 25018 ire_zone->ire_last_used_time = lbolt; 25019 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25020 mctl_present, B_FALSE, ill, 25021 ire_zone->ire_zoneid); 25022 } 25023 IRB_REFRELE(ire->ire_bucket); 25024 } 25025 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 25026 0, mctl_present, B_FALSE, ill, zoneid); 25027 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25028 "ip_wput_local_end: q %p (%S)", 25029 q, "icmp"); 25030 return; 25031 } 25032 case IPPROTO_IGMP: 25033 if ((mp = igmp_input(q, mp, ill)) == NULL) { 25034 /* Bad packet - discarded by igmp_input */ 25035 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25036 "ip_wput_local_end: q %p (%S)", 25037 q, "igmp_input--bad packet"); 25038 if (mctl_present) 25039 freeb(first_mp); 25040 return; 25041 } 25042 /* 25043 * igmp_input() may have returned the pulled up message. 25044 * So first_mp and ipha need to be reinitialized. 25045 */ 25046 ipha = (ipha_t *)mp->b_rptr; 25047 if (mctl_present) 25048 first_mp->b_cont = mp; 25049 else 25050 first_mp = mp; 25051 /* deliver to local raw users */ 25052 break; 25053 case IPPROTO_ENCAP: 25054 /* 25055 * This case is covered by either ip_fanout_proto, or by 25056 * the above security processing for self-tunneled packets. 25057 */ 25058 break; 25059 case IPPROTO_UDP: { 25060 uint16_t *up; 25061 uint32_t ports; 25062 25063 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 25064 UDP_PORTS_OFFSET); 25065 /* Force a 'valid' checksum. */ 25066 up[3] = 0; 25067 25068 ports = *(uint32_t *)up; 25069 ip_fanout_udp(q, first_mp, ill, ipha, ports, 25070 (ire_type == IRE_BROADCAST), 25071 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25072 IP_FF_SEND_SLLA | IP_FF_IPINFO, mctl_present, B_FALSE, 25073 ill, zoneid); 25074 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25075 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 25076 return; 25077 } 25078 case IPPROTO_TCP: { 25079 25080 /* 25081 * For TCP, discard broadcast packets. 25082 */ 25083 if ((ushort_t)ire_type == IRE_BROADCAST) { 25084 freemsg(first_mp); 25085 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 25086 ip2dbg(("ip_wput_local: discard broadcast\n")); 25087 return; 25088 } 25089 25090 if (mp->b_datap->db_type == M_DATA) { 25091 /* 25092 * M_DATA mblk, so init mblk (chain) for no struio(). 25093 */ 25094 mblk_t *mp1 = mp; 25095 25096 do { 25097 mp1->b_datap->db_struioflag = 0; 25098 } while ((mp1 = mp1->b_cont) != NULL); 25099 } 25100 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 25101 <= mp->b_wptr); 25102 ip_fanout_tcp(q, first_mp, ill, ipha, 25103 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25104 IP_FF_SYN_ADDIRE | IP_FF_IPINFO, 25105 mctl_present, B_FALSE, zoneid); 25106 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25107 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 25108 return; 25109 } 25110 case IPPROTO_SCTP: 25111 { 25112 uint32_t ports; 25113 25114 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 25115 ip_fanout_sctp(first_mp, ill, ipha, ports, 25116 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25117 IP_FF_IPINFO, mctl_present, B_FALSE, zoneid); 25118 return; 25119 } 25120 25121 default: 25122 break; 25123 } 25124 /* 25125 * Find a client for some other protocol. We give 25126 * copies to multiple clients, if more than one is 25127 * bound. 25128 */ 25129 ip_fanout_proto(q, first_mp, ill, ipha, 25130 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 25131 mctl_present, B_FALSE, ill, zoneid); 25132 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25133 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 25134 #undef rptr 25135 } 25136 25137 /* 25138 * Update any source route, record route, or timestamp options. 25139 * Check that we are at end of strict source route. 25140 * The options have been sanity checked by ip_wput_options(). 25141 */ 25142 static void 25143 ip_wput_local_options(ipha_t *ipha, ip_stack_t *ipst) 25144 { 25145 ipoptp_t opts; 25146 uchar_t *opt; 25147 uint8_t optval; 25148 uint8_t optlen; 25149 ipaddr_t dst; 25150 uint32_t ts; 25151 ire_t *ire; 25152 timestruc_t now; 25153 25154 ip2dbg(("ip_wput_local_options\n")); 25155 for (optval = ipoptp_first(&opts, ipha); 25156 optval != IPOPT_EOL; 25157 optval = ipoptp_next(&opts)) { 25158 opt = opts.ipoptp_cur; 25159 optlen = opts.ipoptp_len; 25160 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 25161 switch (optval) { 25162 uint32_t off; 25163 case IPOPT_SSRR: 25164 case IPOPT_LSRR: 25165 off = opt[IPOPT_OFFSET]; 25166 off--; 25167 if (optlen < IP_ADDR_LEN || 25168 off > optlen - IP_ADDR_LEN) { 25169 /* End of source route */ 25170 break; 25171 } 25172 /* 25173 * This will only happen if two consecutive entries 25174 * in the source route contains our address or if 25175 * it is a packet with a loose source route which 25176 * reaches us before consuming the whole source route 25177 */ 25178 ip1dbg(("ip_wput_local_options: not end of SR\n")); 25179 if (optval == IPOPT_SSRR) { 25180 return; 25181 } 25182 /* 25183 * Hack: instead of dropping the packet truncate the 25184 * source route to what has been used by filling the 25185 * rest with IPOPT_NOP. 25186 */ 25187 opt[IPOPT_OLEN] = (uint8_t)off; 25188 while (off < optlen) { 25189 opt[off++] = IPOPT_NOP; 25190 } 25191 break; 25192 case IPOPT_RR: 25193 off = opt[IPOPT_OFFSET]; 25194 off--; 25195 if (optlen < IP_ADDR_LEN || 25196 off > optlen - IP_ADDR_LEN) { 25197 /* No more room - ignore */ 25198 ip1dbg(( 25199 "ip_wput_forward_options: end of RR\n")); 25200 break; 25201 } 25202 dst = htonl(INADDR_LOOPBACK); 25203 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25204 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25205 break; 25206 case IPOPT_TS: 25207 /* Insert timestamp if there is romm */ 25208 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25209 case IPOPT_TS_TSONLY: 25210 off = IPOPT_TS_TIMELEN; 25211 break; 25212 case IPOPT_TS_PRESPEC: 25213 case IPOPT_TS_PRESPEC_RFC791: 25214 /* Verify that the address matched */ 25215 off = opt[IPOPT_OFFSET] - 1; 25216 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 25217 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 25218 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 25219 ipst); 25220 if (ire == NULL) { 25221 /* Not for us */ 25222 break; 25223 } 25224 ire_refrele(ire); 25225 /* FALLTHRU */ 25226 case IPOPT_TS_TSANDADDR: 25227 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 25228 break; 25229 default: 25230 /* 25231 * ip_*put_options should have already 25232 * dropped this packet. 25233 */ 25234 cmn_err(CE_PANIC, "ip_wput_local_options: " 25235 "unknown IT - bug in ip_wput_options?\n"); 25236 return; /* Keep "lint" happy */ 25237 } 25238 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 25239 /* Increase overflow counter */ 25240 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 25241 opt[IPOPT_POS_OV_FLG] = (uint8_t) 25242 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 25243 (off << 4); 25244 break; 25245 } 25246 off = opt[IPOPT_OFFSET] - 1; 25247 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25248 case IPOPT_TS_PRESPEC: 25249 case IPOPT_TS_PRESPEC_RFC791: 25250 case IPOPT_TS_TSANDADDR: 25251 dst = htonl(INADDR_LOOPBACK); 25252 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25253 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25254 /* FALLTHRU */ 25255 case IPOPT_TS_TSONLY: 25256 off = opt[IPOPT_OFFSET] - 1; 25257 /* Compute # of milliseconds since midnight */ 25258 gethrestime(&now); 25259 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 25260 now.tv_nsec / (NANOSEC / MILLISEC); 25261 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 25262 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 25263 break; 25264 } 25265 break; 25266 } 25267 } 25268 } 25269 25270 /* 25271 * Send out a multicast packet on interface ipif. 25272 * The sender does not have an conn. 25273 * Caller verifies that this isn't a PHYI_LOOPBACK. 25274 */ 25275 void 25276 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif, zoneid_t zoneid) 25277 { 25278 ipha_t *ipha; 25279 ire_t *ire; 25280 ipaddr_t dst; 25281 mblk_t *first_mp; 25282 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 25283 25284 /* igmp_sendpkt always allocates a ipsec_out_t */ 25285 ASSERT(mp->b_datap->db_type == M_CTL); 25286 ASSERT(!ipif->ipif_isv6); 25287 ASSERT(!IS_LOOPBACK(ipif->ipif_ill)); 25288 25289 first_mp = mp; 25290 mp = first_mp->b_cont; 25291 ASSERT(mp->b_datap->db_type == M_DATA); 25292 ipha = (ipha_t *)mp->b_rptr; 25293 25294 /* 25295 * Find an IRE which matches the destination and the outgoing 25296 * queue (i.e. the outgoing interface.) 25297 */ 25298 if (ipif->ipif_flags & IPIF_POINTOPOINT) 25299 dst = ipif->ipif_pp_dst_addr; 25300 else 25301 dst = ipha->ipha_dst; 25302 /* 25303 * The source address has already been initialized by the 25304 * caller and hence matching on ILL (MATCH_IRE_ILL) would 25305 * be sufficient rather than MATCH_IRE_IPIF. 25306 * 25307 * This function is used for sending IGMP packets. We need 25308 * to make sure that we send the packet out of the interface 25309 * (ipif->ipif_ill) where we joined the group. This is to 25310 * prevent from switches doing IGMP snooping to send us multicast 25311 * packets for a given group on the interface we have joined. 25312 * If we can't find an ire, igmp_sendpkt has already initialized 25313 * ipsec_out_attach_if so that this will not be load spread in 25314 * ip_newroute_ipif. 25315 */ 25316 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, NULL, 25317 MATCH_IRE_ILL, ipst); 25318 if (!ire) { 25319 /* 25320 * Mark this packet to make it be delivered to 25321 * ip_wput_ire after the new ire has been 25322 * created. 25323 */ 25324 mp->b_prev = NULL; 25325 mp->b_next = NULL; 25326 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC, 25327 zoneid, &zero_info); 25328 return; 25329 } 25330 25331 /* 25332 * Honor the RTF_SETSRC flag; this is the only case 25333 * where we force this addr whatever the current src addr is, 25334 * because this address is set by igmp_sendpkt(), and 25335 * cannot be specified by any user. 25336 */ 25337 if (ire->ire_flags & RTF_SETSRC) { 25338 ipha->ipha_src = ire->ire_src_addr; 25339 } 25340 25341 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE, zoneid); 25342 } 25343 25344 /* 25345 * NOTE : This function does not ire_refrele the ire argument passed in. 25346 * 25347 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 25348 * failure. The nce_fp_mp can vanish any time in the case of 25349 * IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 25350 * the ire_lock to access the nce_fp_mp in this case. 25351 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 25352 * prepending a fastpath message IPQoS processing must precede it, we also set 25353 * the b_band of the fastpath message to that of the mblk returned by IPQoS 25354 * (IPQoS might have set the b_band for CoS marking). 25355 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 25356 * must follow it so that IPQoS can mark the dl_priority field for CoS 25357 * marking, if needed. 25358 */ 25359 static mblk_t * 25360 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, uint32_t ill_index) 25361 { 25362 uint_t hlen; 25363 ipha_t *ipha; 25364 mblk_t *mp1; 25365 boolean_t qos_done = B_FALSE; 25366 uchar_t *ll_hdr; 25367 ip_stack_t *ipst = ire->ire_ipst; 25368 25369 #define rptr ((uchar_t *)ipha) 25370 25371 ipha = (ipha_t *)mp->b_rptr; 25372 hlen = 0; 25373 LOCK_IRE_FP_MP(ire); 25374 if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) { 25375 ASSERT(DB_TYPE(mp1) == M_DATA); 25376 /* Initiate IPPF processing */ 25377 if ((proc != 0) && IPP_ENABLED(proc, ipst)) { 25378 UNLOCK_IRE_FP_MP(ire); 25379 ip_process(proc, &mp, ill_index); 25380 if (mp == NULL) 25381 return (NULL); 25382 25383 ipha = (ipha_t *)mp->b_rptr; 25384 LOCK_IRE_FP_MP(ire); 25385 if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) { 25386 qos_done = B_TRUE; 25387 goto no_fp_mp; 25388 } 25389 ASSERT(DB_TYPE(mp1) == M_DATA); 25390 } 25391 hlen = MBLKL(mp1); 25392 /* 25393 * Check if we have enough room to prepend fastpath 25394 * header 25395 */ 25396 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 25397 ll_hdr = rptr - hlen; 25398 bcopy(mp1->b_rptr, ll_hdr, hlen); 25399 /* 25400 * Set the b_rptr to the start of the link layer 25401 * header 25402 */ 25403 mp->b_rptr = ll_hdr; 25404 mp1 = mp; 25405 } else { 25406 mp1 = copyb(mp1); 25407 if (mp1 == NULL) 25408 goto unlock_err; 25409 mp1->b_band = mp->b_band; 25410 mp1->b_cont = mp; 25411 /* 25412 * certain system generated traffic may not 25413 * have cred/label in ip header block. This 25414 * is true even for a labeled system. But for 25415 * labeled traffic, inherit the label in the 25416 * new header. 25417 */ 25418 if (DB_CRED(mp) != NULL) 25419 mblk_setcred(mp1, DB_CRED(mp)); 25420 /* 25421 * XXX disable ICK_VALID and compute checksum 25422 * here; can happen if nce_fp_mp changes and 25423 * it can't be copied now due to insufficient 25424 * space. (unlikely, fp mp can change, but it 25425 * does not increase in length) 25426 */ 25427 } 25428 UNLOCK_IRE_FP_MP(ire); 25429 } else { 25430 no_fp_mp: 25431 mp1 = copyb(ire->ire_nce->nce_res_mp); 25432 if (mp1 == NULL) { 25433 unlock_err: 25434 UNLOCK_IRE_FP_MP(ire); 25435 freemsg(mp); 25436 return (NULL); 25437 } 25438 UNLOCK_IRE_FP_MP(ire); 25439 mp1->b_cont = mp; 25440 /* 25441 * certain system generated traffic may not 25442 * have cred/label in ip header block. This 25443 * is true even for a labeled system. But for 25444 * labeled traffic, inherit the label in the 25445 * new header. 25446 */ 25447 if (DB_CRED(mp) != NULL) 25448 mblk_setcred(mp1, DB_CRED(mp)); 25449 if (!qos_done && (proc != 0) && IPP_ENABLED(proc, ipst)) { 25450 ip_process(proc, &mp1, ill_index); 25451 if (mp1 == NULL) 25452 return (NULL); 25453 } 25454 } 25455 return (mp1); 25456 #undef rptr 25457 } 25458 25459 /* 25460 * Finish the outbound IPsec processing for an IPv6 packet. This function 25461 * is called from ipsec_out_process() if the IPsec packet was processed 25462 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25463 * asynchronously. 25464 */ 25465 void 25466 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 25467 ire_t *ire_arg) 25468 { 25469 in6_addr_t *v6dstp; 25470 ire_t *ire; 25471 mblk_t *mp; 25472 ip6_t *ip6h1; 25473 uint_t ill_index; 25474 ipsec_out_t *io; 25475 boolean_t attach_if, hwaccel; 25476 uint32_t flags = IP6_NO_IPPOLICY; 25477 int match_flags; 25478 zoneid_t zoneid; 25479 boolean_t ill_need_rele = B_FALSE; 25480 boolean_t ire_need_rele = B_FALSE; 25481 ip_stack_t *ipst; 25482 25483 mp = ipsec_mp->b_cont; 25484 ip6h1 = (ip6_t *)mp->b_rptr; 25485 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25486 ASSERT(io->ipsec_out_ns != NULL); 25487 ipst = io->ipsec_out_ns->netstack_ip; 25488 ill_index = io->ipsec_out_ill_index; 25489 if (io->ipsec_out_reachable) { 25490 flags |= IPV6_REACHABILITY_CONFIRMATION; 25491 } 25492 attach_if = io->ipsec_out_attach_if; 25493 hwaccel = io->ipsec_out_accelerated; 25494 zoneid = io->ipsec_out_zoneid; 25495 ASSERT(zoneid != ALL_ZONES); 25496 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 25497 /* Multicast addresses should have non-zero ill_index. */ 25498 v6dstp = &ip6h->ip6_dst; 25499 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 25500 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 25501 ASSERT(!attach_if || ill_index != 0); 25502 if (ill_index != 0) { 25503 if (ill == NULL) { 25504 ill = ip_grab_attach_ill(NULL, ipsec_mp, ill_index, 25505 B_TRUE, ipst); 25506 25507 /* Failure case frees things for us. */ 25508 if (ill == NULL) 25509 return; 25510 25511 ill_need_rele = B_TRUE; 25512 } 25513 /* 25514 * If this packet needs to go out on a particular interface 25515 * honor it. 25516 */ 25517 if (attach_if) { 25518 match_flags = MATCH_IRE_ILL; 25519 25520 /* 25521 * Check if we need an ire that will not be 25522 * looked up by anybody else i.e. HIDDEN. 25523 */ 25524 if (ill_is_probeonly(ill)) { 25525 match_flags |= MATCH_IRE_MARK_HIDDEN; 25526 } 25527 } 25528 } 25529 ASSERT(mp != NULL); 25530 25531 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 25532 boolean_t unspec_src; 25533 ipif_t *ipif; 25534 25535 /* 25536 * Use the ill_index to get the right ill. 25537 */ 25538 unspec_src = io->ipsec_out_unspec_src; 25539 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25540 if (ipif == NULL) { 25541 if (ill_need_rele) 25542 ill_refrele(ill); 25543 freemsg(ipsec_mp); 25544 return; 25545 } 25546 25547 if (ire_arg != NULL) { 25548 ire = ire_arg; 25549 } else { 25550 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25551 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25552 ire_need_rele = B_TRUE; 25553 } 25554 if (ire != NULL) { 25555 ipif_refrele(ipif); 25556 /* 25557 * XXX Do the multicast forwarding now, as the IPsec 25558 * processing has been done. 25559 */ 25560 goto send; 25561 } 25562 25563 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 25564 mp->b_prev = NULL; 25565 mp->b_next = NULL; 25566 25567 /* 25568 * If the IPsec packet was processed asynchronously, 25569 * drop it now. 25570 */ 25571 if (q == NULL) { 25572 if (ill_need_rele) 25573 ill_refrele(ill); 25574 freemsg(ipsec_mp); 25575 return; 25576 } 25577 25578 ip_newroute_ipif_v6(q, ipsec_mp, ipif, *v6dstp, 25579 unspec_src, zoneid); 25580 ipif_refrele(ipif); 25581 } else { 25582 if (attach_if) { 25583 ipif_t *ipif; 25584 25585 ipif = ipif_get_next_ipif(NULL, ill); 25586 if (ipif == NULL) { 25587 if (ill_need_rele) 25588 ill_refrele(ill); 25589 freemsg(ipsec_mp); 25590 return; 25591 } 25592 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25593 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25594 ire_need_rele = B_TRUE; 25595 ipif_refrele(ipif); 25596 } else { 25597 if (ire_arg != NULL) { 25598 ire = ire_arg; 25599 } else { 25600 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL, 25601 ipst); 25602 ire_need_rele = B_TRUE; 25603 } 25604 } 25605 if (ire != NULL) 25606 goto send; 25607 /* 25608 * ire disappeared underneath. 25609 * 25610 * What we need to do here is the ip_newroute 25611 * logic to get the ire without doing the IPsec 25612 * processing. Follow the same old path. But this 25613 * time, ip_wput or ire_add_then_send will call us 25614 * directly as all the IPsec operations are done. 25615 */ 25616 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 25617 mp->b_prev = NULL; 25618 mp->b_next = NULL; 25619 25620 /* 25621 * If the IPsec packet was processed asynchronously, 25622 * drop it now. 25623 */ 25624 if (q == NULL) { 25625 if (ill_need_rele) 25626 ill_refrele(ill); 25627 freemsg(ipsec_mp); 25628 return; 25629 } 25630 25631 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 25632 zoneid, ipst); 25633 } 25634 if (ill != NULL && ill_need_rele) 25635 ill_refrele(ill); 25636 return; 25637 send: 25638 if (ill != NULL && ill_need_rele) 25639 ill_refrele(ill); 25640 25641 /* Local delivery */ 25642 if (ire->ire_stq == NULL) { 25643 ill_t *out_ill; 25644 ASSERT(q != NULL); 25645 25646 /* PFHooks: LOOPBACK_OUT */ 25647 out_ill = ire_to_ill(ire); 25648 25649 DTRACE_PROBE4(ip6__loopback__out__start, 25650 ill_t *, NULL, ill_t *, out_ill, 25651 ip6_t *, ip6h1, mblk_t *, ipsec_mp); 25652 25653 FW_HOOKS6(ipst->ips_ip6_loopback_out_event, 25654 ipst->ips_ipv6firewall_loopback_out, 25655 NULL, out_ill, ip6h1, ipsec_mp, mp, ipst); 25656 25657 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, ipsec_mp); 25658 25659 if (ipsec_mp != NULL) 25660 ip_wput_local_v6(RD(q), out_ill, 25661 ip6h, ipsec_mp, ire, 0); 25662 if (ire_need_rele) 25663 ire_refrele(ire); 25664 return; 25665 } 25666 /* 25667 * Everything is done. Send it out on the wire. 25668 * We force the insertion of a fragment header using the 25669 * IPH_FRAG_HDR flag in two cases: 25670 * - after reception of an ICMPv6 "packet too big" message 25671 * with a MTU < 1280 (cf. RFC 2460 section 5) 25672 * - for multirouted IPv6 packets, so that the receiver can 25673 * discard duplicates according to their fragment identifier 25674 */ 25675 /* XXX fix flow control problems. */ 25676 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 25677 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 25678 if (hwaccel) { 25679 /* 25680 * hardware acceleration does not handle these 25681 * "slow path" cases. 25682 */ 25683 /* IPsec KSTATS: should bump bean counter here. */ 25684 if (ire_need_rele) 25685 ire_refrele(ire); 25686 freemsg(ipsec_mp); 25687 return; 25688 } 25689 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 25690 (mp->b_cont ? msgdsize(mp) : 25691 mp->b_wptr - (uchar_t *)ip6h)) { 25692 /* IPsec KSTATS: should bump bean counter here. */ 25693 ip0dbg(("Packet length mismatch: %d, %ld\n", 25694 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 25695 msgdsize(mp))); 25696 if (ire_need_rele) 25697 ire_refrele(ire); 25698 freemsg(ipsec_mp); 25699 return; 25700 } 25701 ASSERT(mp->b_prev == NULL); 25702 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 25703 ntohs(ip6h->ip6_plen) + 25704 IPV6_HDR_LEN, ire->ire_max_frag)); 25705 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 25706 ire->ire_max_frag); 25707 } else { 25708 UPDATE_OB_PKT_COUNT(ire); 25709 ire->ire_last_used_time = lbolt; 25710 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 25711 } 25712 if (ire_need_rele) 25713 ire_refrele(ire); 25714 freeb(ipsec_mp); 25715 } 25716 25717 void 25718 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 25719 { 25720 mblk_t *hada_mp; /* attributes M_CTL mblk */ 25721 da_ipsec_t *hada; /* data attributes */ 25722 ill_t *ill = (ill_t *)q->q_ptr; 25723 25724 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 25725 25726 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 25727 /* IPsec KSTATS: Bump lose counter here! */ 25728 freemsg(mp); 25729 return; 25730 } 25731 25732 /* 25733 * It's an IPsec packet that must be 25734 * accelerated by the Provider, and the 25735 * outbound ill is IPsec acceleration capable. 25736 * Prepends the mblk with an IPHADA_M_CTL, and ship it 25737 * to the ill. 25738 * IPsec KSTATS: should bump packet counter here. 25739 */ 25740 25741 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 25742 if (hada_mp == NULL) { 25743 /* IPsec KSTATS: should bump packet counter here. */ 25744 freemsg(mp); 25745 return; 25746 } 25747 25748 hada_mp->b_datap->db_type = M_CTL; 25749 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 25750 hada_mp->b_cont = mp; 25751 25752 hada = (da_ipsec_t *)hada_mp->b_rptr; 25753 bzero(hada, sizeof (da_ipsec_t)); 25754 hada->da_type = IPHADA_M_CTL; 25755 25756 putnext(q, hada_mp); 25757 } 25758 25759 /* 25760 * Finish the outbound IPsec processing. This function is called from 25761 * ipsec_out_process() if the IPsec packet was processed 25762 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25763 * asynchronously. 25764 */ 25765 void 25766 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 25767 ire_t *ire_arg) 25768 { 25769 uint32_t v_hlen_tos_len; 25770 ipaddr_t dst; 25771 ipif_t *ipif = NULL; 25772 ire_t *ire; 25773 ire_t *ire1 = NULL; 25774 mblk_t *next_mp = NULL; 25775 uint32_t max_frag; 25776 boolean_t multirt_send = B_FALSE; 25777 mblk_t *mp; 25778 ipha_t *ipha1; 25779 uint_t ill_index; 25780 ipsec_out_t *io; 25781 boolean_t attach_if; 25782 int match_flags; 25783 irb_t *irb = NULL; 25784 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 25785 zoneid_t zoneid; 25786 ipxmit_state_t pktxmit_state; 25787 ip_stack_t *ipst; 25788 25789 #ifdef _BIG_ENDIAN 25790 #define LENGTH (v_hlen_tos_len & 0xFFFF) 25791 #else 25792 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 25793 #endif 25794 25795 mp = ipsec_mp->b_cont; 25796 ipha1 = (ipha_t *)mp->b_rptr; 25797 ASSERT(mp != NULL); 25798 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 25799 dst = ipha->ipha_dst; 25800 25801 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25802 ill_index = io->ipsec_out_ill_index; 25803 attach_if = io->ipsec_out_attach_if; 25804 zoneid = io->ipsec_out_zoneid; 25805 ASSERT(zoneid != ALL_ZONES); 25806 ipst = io->ipsec_out_ns->netstack_ip; 25807 ASSERT(io->ipsec_out_ns != NULL); 25808 25809 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 25810 if (ill_index != 0) { 25811 if (ill == NULL) { 25812 ill = ip_grab_attach_ill(NULL, ipsec_mp, 25813 ill_index, B_FALSE, ipst); 25814 25815 /* Failure case frees things for us. */ 25816 if (ill == NULL) 25817 return; 25818 25819 ill_need_rele = B_TRUE; 25820 } 25821 /* 25822 * If this packet needs to go out on a particular interface 25823 * honor it. 25824 */ 25825 if (attach_if) { 25826 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 25827 25828 /* 25829 * Check if we need an ire that will not be 25830 * looked up by anybody else i.e. HIDDEN. 25831 */ 25832 if (ill_is_probeonly(ill)) { 25833 match_flags |= MATCH_IRE_MARK_HIDDEN; 25834 } 25835 } 25836 } 25837 25838 if (CLASSD(dst)) { 25839 boolean_t conn_dontroute; 25840 /* 25841 * Use the ill_index to get the right ipif. 25842 */ 25843 conn_dontroute = io->ipsec_out_dontroute; 25844 if (ill_index == 0) 25845 ipif = ipif_lookup_group(dst, zoneid, ipst); 25846 else 25847 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25848 if (ipif == NULL) { 25849 ip1dbg(("ip_wput_ipsec_out: No ipif for" 25850 " multicast\n")); 25851 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 25852 freemsg(ipsec_mp); 25853 goto done; 25854 } 25855 /* 25856 * ipha_src has already been intialized with the 25857 * value of the ipif in ip_wput. All we need now is 25858 * an ire to send this downstream. 25859 */ 25860 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 25861 MBLK_GETLABEL(mp), match_flags, ipst); 25862 if (ire != NULL) { 25863 ill_t *ill1; 25864 /* 25865 * Do the multicast forwarding now, as the IPsec 25866 * processing has been done. 25867 */ 25868 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 25869 (ill1 = ire_to_ill(ire))) { 25870 if (ip_mforward(ill1, ipha, mp)) { 25871 freemsg(ipsec_mp); 25872 ip1dbg(("ip_wput_ipsec_out: mforward " 25873 "failed\n")); 25874 ire_refrele(ire); 25875 goto done; 25876 } 25877 } 25878 goto send; 25879 } 25880 25881 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 25882 mp->b_prev = NULL; 25883 mp->b_next = NULL; 25884 25885 /* 25886 * If the IPsec packet was processed asynchronously, 25887 * drop it now. 25888 */ 25889 if (q == NULL) { 25890 freemsg(ipsec_mp); 25891 goto done; 25892 } 25893 25894 /* 25895 * We may be using a wrong ipif to create the ire. 25896 * But it is okay as the source address is assigned 25897 * for the packet already. Next outbound packet would 25898 * create the IRE with the right IPIF in ip_wput. 25899 * 25900 * Also handle RTF_MULTIRT routes. 25901 */ 25902 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT, 25903 zoneid, &zero_info); 25904 } else { 25905 if (attach_if) { 25906 ire = ire_ctable_lookup(dst, 0, 0, ill->ill_ipif, 25907 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25908 } else { 25909 if (ire_arg != NULL) { 25910 ire = ire_arg; 25911 ire_need_rele = B_FALSE; 25912 } else { 25913 ire = ire_cache_lookup(dst, zoneid, 25914 MBLK_GETLABEL(mp), ipst); 25915 } 25916 } 25917 if (ire != NULL) { 25918 goto send; 25919 } 25920 25921 /* 25922 * ire disappeared underneath. 25923 * 25924 * What we need to do here is the ip_newroute 25925 * logic to get the ire without doing the IPsec 25926 * processing. Follow the same old path. But this 25927 * time, ip_wput or ire_add_then_put will call us 25928 * directly as all the IPsec operations are done. 25929 */ 25930 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 25931 mp->b_prev = NULL; 25932 mp->b_next = NULL; 25933 25934 /* 25935 * If the IPsec packet was processed asynchronously, 25936 * drop it now. 25937 */ 25938 if (q == NULL) { 25939 freemsg(ipsec_mp); 25940 goto done; 25941 } 25942 25943 /* 25944 * Since we're going through ip_newroute() again, we 25945 * need to make sure we don't: 25946 * 25947 * 1.) Trigger the ASSERT() with the ipha_ident 25948 * overloading. 25949 * 2.) Redo transport-layer checksumming, since we've 25950 * already done all that to get this far. 25951 * 25952 * The easiest way not do either of the above is to set 25953 * the ipha_ident field to IP_HDR_INCLUDED. 25954 */ 25955 ipha->ipha_ident = IP_HDR_INCLUDED; 25956 ip_newroute(q, ipsec_mp, dst, (CONN_Q(q) ? Q_TO_CONN(q) : NULL), 25957 zoneid, ipst); 25958 } 25959 goto done; 25960 send: 25961 if (ire->ire_stq == NULL) { 25962 ill_t *out_ill; 25963 /* 25964 * Loopbacks go through ip_wput_local except for one case. 25965 * We come here if we generate a icmp_frag_needed message 25966 * after IPsec processing is over. When this function calls 25967 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 25968 * icmp_frag_needed. The message generated comes back here 25969 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 25970 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 25971 * source address as it is usually set in ip_wput_ire. As 25972 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 25973 * and we end up here. We can't enter ip_wput_ire once the 25974 * IPsec processing is over and hence we need to do it here. 25975 */ 25976 ASSERT(q != NULL); 25977 UPDATE_OB_PKT_COUNT(ire); 25978 ire->ire_last_used_time = lbolt; 25979 if (ipha->ipha_src == 0) 25980 ipha->ipha_src = ire->ire_src_addr; 25981 25982 /* PFHooks: LOOPBACK_OUT */ 25983 out_ill = ire_to_ill(ire); 25984 25985 DTRACE_PROBE4(ip4__loopback__out__start, 25986 ill_t *, NULL, ill_t *, out_ill, 25987 ipha_t *, ipha1, mblk_t *, ipsec_mp); 25988 25989 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 25990 ipst->ips_ipv4firewall_loopback_out, 25991 NULL, out_ill, ipha1, ipsec_mp, mp, ipst); 25992 25993 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, ipsec_mp); 25994 25995 if (ipsec_mp != NULL) 25996 ip_wput_local(RD(q), out_ill, 25997 ipha, ipsec_mp, ire, 0, zoneid); 25998 if (ire_need_rele) 25999 ire_refrele(ire); 26000 goto done; 26001 } 26002 26003 if (ire->ire_max_frag < (unsigned int)LENGTH) { 26004 /* 26005 * We are through with IPsec processing. 26006 * Fragment this and send it on the wire. 26007 */ 26008 if (io->ipsec_out_accelerated) { 26009 /* 26010 * The packet has been accelerated but must 26011 * be fragmented. This should not happen 26012 * since AH and ESP must not accelerate 26013 * packets that need fragmentation, however 26014 * the configuration could have changed 26015 * since the AH or ESP processing. 26016 * Drop packet. 26017 * IPsec KSTATS: bump bean counter here. 26018 */ 26019 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 26020 "fragmented accelerated packet!\n")); 26021 freemsg(ipsec_mp); 26022 } else { 26023 ip_wput_ire_fragmentit(ipsec_mp, ire, zoneid, ipst); 26024 } 26025 if (ire_need_rele) 26026 ire_refrele(ire); 26027 goto done; 26028 } 26029 26030 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 26031 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 26032 (void *)ire->ire_ipif, (void *)ipif)); 26033 26034 /* 26035 * Multiroute the secured packet, unless IPsec really 26036 * requires the packet to go out only through a particular 26037 * interface. 26038 */ 26039 if ((ire->ire_flags & RTF_MULTIRT) && !attach_if) { 26040 ire_t *first_ire; 26041 irb = ire->ire_bucket; 26042 ASSERT(irb != NULL); 26043 /* 26044 * This ire has been looked up as the one that 26045 * goes through the given ipif; 26046 * make sure we do not omit any other multiroute ire 26047 * that may be present in the bucket before this one. 26048 */ 26049 IRB_REFHOLD(irb); 26050 for (first_ire = irb->irb_ire; 26051 first_ire != NULL; 26052 first_ire = first_ire->ire_next) { 26053 if ((first_ire->ire_flags & RTF_MULTIRT) && 26054 (first_ire->ire_addr == ire->ire_addr) && 26055 !(first_ire->ire_marks & 26056 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 26057 break; 26058 } 26059 } 26060 26061 if ((first_ire != NULL) && (first_ire != ire)) { 26062 /* 26063 * Don't change the ire if the packet must 26064 * be fragmented if sent via this new one. 26065 */ 26066 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 26067 IRE_REFHOLD(first_ire); 26068 if (ire_need_rele) 26069 ire_refrele(ire); 26070 else 26071 ire_need_rele = B_TRUE; 26072 ire = first_ire; 26073 } 26074 } 26075 IRB_REFRELE(irb); 26076 26077 multirt_send = B_TRUE; 26078 max_frag = ire->ire_max_frag; 26079 } else { 26080 if ((ire->ire_flags & RTF_MULTIRT) && attach_if) { 26081 ip1dbg(("ip_wput_ipsec_out: ignoring multirouting " 26082 "flag, attach_if %d\n", attach_if)); 26083 } 26084 } 26085 26086 /* 26087 * In most cases, the emission loop below is entered only once. 26088 * Only in the case where the ire holds the RTF_MULTIRT 26089 * flag, we loop to process all RTF_MULTIRT ires in the 26090 * bucket, and send the packet through all crossed 26091 * RTF_MULTIRT routes. 26092 */ 26093 do { 26094 if (multirt_send) { 26095 /* 26096 * ire1 holds here the next ire to process in the 26097 * bucket. If multirouting is expected, 26098 * any non-RTF_MULTIRT ire that has the 26099 * right destination address is ignored. 26100 */ 26101 ASSERT(irb != NULL); 26102 IRB_REFHOLD(irb); 26103 for (ire1 = ire->ire_next; 26104 ire1 != NULL; 26105 ire1 = ire1->ire_next) { 26106 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 26107 continue; 26108 if (ire1->ire_addr != ire->ire_addr) 26109 continue; 26110 if (ire1->ire_marks & 26111 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 26112 continue; 26113 /* No loopback here */ 26114 if (ire1->ire_stq == NULL) 26115 continue; 26116 /* 26117 * Ensure we do not exceed the MTU 26118 * of the next route. 26119 */ 26120 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 26121 ip_multirt_bad_mtu(ire1, max_frag); 26122 continue; 26123 } 26124 26125 IRE_REFHOLD(ire1); 26126 break; 26127 } 26128 IRB_REFRELE(irb); 26129 if (ire1 != NULL) { 26130 /* 26131 * We are in a multiple send case, need to 26132 * make a copy of the packet. 26133 */ 26134 next_mp = copymsg(ipsec_mp); 26135 if (next_mp == NULL) { 26136 ire_refrele(ire1); 26137 ire1 = NULL; 26138 } 26139 } 26140 } 26141 /* 26142 * Everything is done. Send it out on the wire 26143 * 26144 * ip_xmit_v4 will call ip_wput_attach_llhdr and then 26145 * either send it on the wire or, in the case of 26146 * HW acceleration, call ipsec_hw_putnext. 26147 */ 26148 if (ire->ire_nce && 26149 ire->ire_nce->nce_state != ND_REACHABLE) { 26150 DTRACE_PROBE2(ip__wput__ipsec__bail, 26151 (ire_t *), ire, (mblk_t *), ipsec_mp); 26152 /* 26153 * If ire's link-layer is unresolved (this 26154 * would only happen if the incomplete ire 26155 * was added to cachetable via forwarding path) 26156 * don't bother going to ip_xmit_v4. Just drop the 26157 * packet. 26158 * There is a slight risk here, in that, if we 26159 * have the forwarding path create an incomplete 26160 * IRE, then until the IRE is completed, any 26161 * transmitted IPsec packets will be dropped 26162 * instead of being queued waiting for resolution. 26163 * 26164 * But the likelihood of a forwarding packet and a wput 26165 * packet sending to the same dst at the same time 26166 * and there not yet be an ARP entry for it is small. 26167 * Furthermore, if this actually happens, it might 26168 * be likely that wput would generate multiple 26169 * packets (and forwarding would also have a train 26170 * of packets) for that destination. If this is 26171 * the case, some of them would have been dropped 26172 * anyway, since ARP only queues a few packets while 26173 * waiting for resolution 26174 * 26175 * NOTE: We should really call ip_xmit_v4, 26176 * and let it queue the packet and send the 26177 * ARP query and have ARP come back thus: 26178 * <ARP> ip_wput->ip_output->ip-wput_nondata-> 26179 * ip_xmit_v4->ip_wput_attach_llhdr + ipsec 26180 * hw accel work. But it's too complex to get 26181 * the IPsec hw acceleration approach to fit 26182 * well with ip_xmit_v4 doing ARP without 26183 * doing IPsec simplification. For now, we just 26184 * poke ip_xmit_v4 to trigger the arp resolve, so 26185 * that we can continue with the send on the next 26186 * attempt. 26187 * 26188 * XXX THis should be revisited, when 26189 * the IPsec/IP interaction is cleaned up 26190 */ 26191 ip1dbg(("ip_wput_ipsec_out: ire is incomplete" 26192 " - dropping packet\n")); 26193 freemsg(ipsec_mp); 26194 /* 26195 * Call ip_xmit_v4() to trigger ARP query 26196 * in case the nce_state is ND_INITIAL 26197 */ 26198 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 26199 goto drop_pkt; 26200 } 26201 26202 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 26203 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha1, 26204 mblk_t *, ipsec_mp); 26205 FW_HOOKS(ipst->ips_ip4_physical_out_event, 26206 ipst->ips_ipv4firewall_physical_out, 26207 NULL, ire->ire_ipif->ipif_ill, ipha1, ipsec_mp, mp, ipst); 26208 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, ipsec_mp); 26209 if (ipsec_mp == NULL) 26210 goto drop_pkt; 26211 26212 ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n")); 26213 pktxmit_state = ip_xmit_v4(mp, ire, 26214 (io->ipsec_out_accelerated ? io : NULL), B_FALSE); 26215 26216 if ((pktxmit_state == SEND_FAILED) || 26217 (pktxmit_state == LLHDR_RESLV_FAILED)) { 26218 26219 freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */ 26220 drop_pkt: 26221 BUMP_MIB(((ill_t *)ire->ire_stq->q_ptr)->ill_ip_mib, 26222 ipIfStatsOutDiscards); 26223 if (ire_need_rele) 26224 ire_refrele(ire); 26225 if (ire1 != NULL) { 26226 ire_refrele(ire1); 26227 freemsg(next_mp); 26228 } 26229 goto done; 26230 } 26231 26232 freeb(ipsec_mp); 26233 if (ire_need_rele) 26234 ire_refrele(ire); 26235 26236 if (ire1 != NULL) { 26237 ire = ire1; 26238 ire_need_rele = B_TRUE; 26239 ASSERT(next_mp); 26240 ipsec_mp = next_mp; 26241 mp = ipsec_mp->b_cont; 26242 ire1 = NULL; 26243 next_mp = NULL; 26244 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26245 } else { 26246 multirt_send = B_FALSE; 26247 } 26248 } while (multirt_send); 26249 done: 26250 if (ill != NULL && ill_need_rele) 26251 ill_refrele(ill); 26252 if (ipif != NULL) 26253 ipif_refrele(ipif); 26254 } 26255 26256 /* 26257 * Get the ill corresponding to the specified ire, and compare its 26258 * capabilities with the protocol and algorithms specified by the 26259 * the SA obtained from ipsec_out. If they match, annotate the 26260 * ipsec_out structure to indicate that the packet needs acceleration. 26261 * 26262 * 26263 * A packet is eligible for outbound hardware acceleration if the 26264 * following conditions are satisfied: 26265 * 26266 * 1. the packet will not be fragmented 26267 * 2. the provider supports the algorithm 26268 * 3. there is no pending control message being exchanged 26269 * 4. snoop is not attached 26270 * 5. the destination address is not a broadcast or multicast address. 26271 * 26272 * Rationale: 26273 * - Hardware drivers do not support fragmentation with 26274 * the current interface. 26275 * - snoop, multicast, and broadcast may result in exposure of 26276 * a cleartext datagram. 26277 * We check all five of these conditions here. 26278 * 26279 * XXX would like to nuke "ire_t *" parameter here; problem is that 26280 * IRE is only way to figure out if a v4 address is a broadcast and 26281 * thus ineligible for acceleration... 26282 */ 26283 static void 26284 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 26285 { 26286 ipsec_out_t *io; 26287 mblk_t *data_mp; 26288 uint_t plen, overhead; 26289 ip_stack_t *ipst; 26290 26291 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 26292 return; 26293 26294 if (ill == NULL) 26295 return; 26296 ipst = ill->ill_ipst; 26297 /* 26298 * Destination address is a broadcast or multicast. Punt. 26299 */ 26300 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 26301 IRE_LOCAL))) 26302 return; 26303 26304 data_mp = ipsec_mp->b_cont; 26305 26306 if (ill->ill_isv6) { 26307 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 26308 26309 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 26310 return; 26311 26312 plen = ip6h->ip6_plen; 26313 } else { 26314 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 26315 26316 if (CLASSD(ipha->ipha_dst)) 26317 return; 26318 26319 plen = ipha->ipha_length; 26320 } 26321 /* 26322 * Is there a pending DLPI control message being exchanged 26323 * between IP/IPsec and the DLS Provider? If there is, it 26324 * could be a SADB update, and the state of the DLS Provider 26325 * SADB might not be in sync with the SADB maintained by 26326 * IPsec. To avoid dropping packets or using the wrong keying 26327 * material, we do not accelerate this packet. 26328 */ 26329 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 26330 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26331 "ill_dlpi_pending! don't accelerate packet\n")); 26332 return; 26333 } 26334 26335 /* 26336 * Is the Provider in promiscous mode? If it does, we don't 26337 * accelerate the packet since it will bounce back up to the 26338 * listeners in the clear. 26339 */ 26340 if (ill->ill_promisc_on_phys) { 26341 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26342 "ill in promiscous mode, don't accelerate packet\n")); 26343 return; 26344 } 26345 26346 /* 26347 * Will the packet require fragmentation? 26348 */ 26349 26350 /* 26351 * IPsec ESP note: this is a pessimistic estimate, but the same 26352 * as is used elsewhere. 26353 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 26354 * + 2-byte trailer 26355 */ 26356 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 26357 IPSEC_BASE_ESP_HDR_SIZE(sa); 26358 26359 if ((plen + overhead) > ill->ill_max_mtu) 26360 return; 26361 26362 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26363 26364 /* 26365 * Can the ill accelerate this IPsec protocol and algorithm 26366 * specified by the SA? 26367 */ 26368 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 26369 ill->ill_isv6, sa, ipst->ips_netstack)) { 26370 return; 26371 } 26372 26373 /* 26374 * Tell AH or ESP that the outbound ill is capable of 26375 * accelerating this packet. 26376 */ 26377 io->ipsec_out_is_capab_ill = B_TRUE; 26378 } 26379 26380 /* 26381 * Select which AH & ESP SA's to use (if any) for the outbound packet. 26382 * 26383 * If this function returns B_TRUE, the requested SA's have been filled 26384 * into the ipsec_out_*_sa pointers. 26385 * 26386 * If the function returns B_FALSE, the packet has been "consumed", most 26387 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 26388 * 26389 * The SA references created by the protocol-specific "select" 26390 * function will be released when the ipsec_mp is freed, thanks to the 26391 * ipsec_out_free destructor -- see spd.c. 26392 */ 26393 static boolean_t 26394 ipsec_out_select_sa(mblk_t *ipsec_mp) 26395 { 26396 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 26397 ipsec_out_t *io; 26398 ipsec_policy_t *pp; 26399 ipsec_action_t *ap; 26400 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26401 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26402 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26403 26404 if (!io->ipsec_out_secure) { 26405 /* 26406 * We came here by mistake. 26407 * Don't bother with ipsec processing 26408 * We should "discourage" this path in the future. 26409 */ 26410 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26411 return (B_FALSE); 26412 } 26413 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26414 ASSERT((io->ipsec_out_policy != NULL) || 26415 (io->ipsec_out_act != NULL)); 26416 26417 ASSERT(io->ipsec_out_failed == B_FALSE); 26418 26419 /* 26420 * IPsec processing has started. 26421 */ 26422 io->ipsec_out_proc_begin = B_TRUE; 26423 ap = io->ipsec_out_act; 26424 if (ap == NULL) { 26425 pp = io->ipsec_out_policy; 26426 ASSERT(pp != NULL); 26427 ap = pp->ipsp_act; 26428 ASSERT(ap != NULL); 26429 } 26430 26431 /* 26432 * We have an action. now, let's select SA's. 26433 * (In the future, we can cache this in the conn_t..) 26434 */ 26435 if (ap->ipa_want_esp) { 26436 if (io->ipsec_out_esp_sa == NULL) { 26437 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 26438 IPPROTO_ESP); 26439 } 26440 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 26441 } 26442 26443 if (ap->ipa_want_ah) { 26444 if (io->ipsec_out_ah_sa == NULL) { 26445 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 26446 IPPROTO_AH); 26447 } 26448 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 26449 /* 26450 * The ESP and AH processing order needs to be preserved 26451 * when both protocols are required (ESP should be applied 26452 * before AH for an outbound packet). Force an ESP ACQUIRE 26453 * when both ESP and AH are required, and an AH ACQUIRE 26454 * is needed. 26455 */ 26456 if (ap->ipa_want_esp && need_ah_acquire) 26457 need_esp_acquire = B_TRUE; 26458 } 26459 26460 /* 26461 * Send an ACQUIRE (extended, regular, or both) if we need one. 26462 * Release SAs that got referenced, but will not be used until we 26463 * acquire _all_ of the SAs we need. 26464 */ 26465 if (need_ah_acquire || need_esp_acquire) { 26466 if (io->ipsec_out_ah_sa != NULL) { 26467 IPSA_REFRELE(io->ipsec_out_ah_sa); 26468 io->ipsec_out_ah_sa = NULL; 26469 } 26470 if (io->ipsec_out_esp_sa != NULL) { 26471 IPSA_REFRELE(io->ipsec_out_esp_sa); 26472 io->ipsec_out_esp_sa = NULL; 26473 } 26474 26475 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 26476 return (B_FALSE); 26477 } 26478 26479 return (B_TRUE); 26480 } 26481 26482 /* 26483 * Process an IPSEC_OUT message and see what you can 26484 * do with it. 26485 * IPQoS Notes: 26486 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 26487 * IPsec. 26488 * XXX would like to nuke ire_t. 26489 * XXX ill_index better be "real" 26490 */ 26491 void 26492 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 26493 { 26494 ipsec_out_t *io; 26495 ipsec_policy_t *pp; 26496 ipsec_action_t *ap; 26497 ipha_t *ipha; 26498 ip6_t *ip6h; 26499 mblk_t *mp; 26500 ill_t *ill; 26501 zoneid_t zoneid; 26502 ipsec_status_t ipsec_rc; 26503 boolean_t ill_need_rele = B_FALSE; 26504 ip_stack_t *ipst; 26505 ipsec_stack_t *ipss; 26506 26507 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26508 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26509 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26510 ipst = io->ipsec_out_ns->netstack_ip; 26511 mp = ipsec_mp->b_cont; 26512 26513 /* 26514 * Initiate IPPF processing. We do it here to account for packets 26515 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 26516 * We can check for ipsec_out_proc_begin even for such packets, as 26517 * they will always be false (asserted below). 26518 */ 26519 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst) && !io->ipsec_out_proc_begin) { 26520 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 26521 io->ipsec_out_ill_index : ill_index); 26522 if (mp == NULL) { 26523 ip2dbg(("ipsec_out_process: packet dropped "\ 26524 "during IPPF processing\n")); 26525 freeb(ipsec_mp); 26526 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26527 return; 26528 } 26529 } 26530 26531 if (!io->ipsec_out_secure) { 26532 /* 26533 * We came here by mistake. 26534 * Don't bother with ipsec processing 26535 * Should "discourage" this path in the future. 26536 */ 26537 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26538 goto done; 26539 } 26540 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26541 ASSERT((io->ipsec_out_policy != NULL) || 26542 (io->ipsec_out_act != NULL)); 26543 ASSERT(io->ipsec_out_failed == B_FALSE); 26544 26545 ipss = ipst->ips_netstack->netstack_ipsec; 26546 if (!ipsec_loaded(ipss)) { 26547 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 26548 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26549 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26550 } else { 26551 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 26552 } 26553 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 26554 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 26555 &ipss->ipsec_dropper); 26556 return; 26557 } 26558 26559 /* 26560 * IPsec processing has started. 26561 */ 26562 io->ipsec_out_proc_begin = B_TRUE; 26563 ap = io->ipsec_out_act; 26564 if (ap == NULL) { 26565 pp = io->ipsec_out_policy; 26566 ASSERT(pp != NULL); 26567 ap = pp->ipsp_act; 26568 ASSERT(ap != NULL); 26569 } 26570 26571 /* 26572 * Save the outbound ill index. When the packet comes back 26573 * from IPsec, we make sure the ill hasn't changed or disappeared 26574 * before sending it the accelerated packet. 26575 */ 26576 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 26577 int ifindex; 26578 ill = ire_to_ill(ire); 26579 ifindex = ill->ill_phyint->phyint_ifindex; 26580 io->ipsec_out_capab_ill_index = ifindex; 26581 } 26582 26583 /* 26584 * The order of processing is first insert a IP header if needed. 26585 * Then insert the ESP header and then the AH header. 26586 */ 26587 if ((io->ipsec_out_se_done == B_FALSE) && 26588 (ap->ipa_want_se)) { 26589 /* 26590 * First get the outer IP header before sending 26591 * it to ESP. 26592 */ 26593 ipha_t *oipha, *iipha; 26594 mblk_t *outer_mp, *inner_mp; 26595 26596 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 26597 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 26598 "ipsec_out_process: " 26599 "Self-Encapsulation failed: Out of memory\n"); 26600 freemsg(ipsec_mp); 26601 if (ill != NULL) { 26602 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26603 } else { 26604 BUMP_MIB(&ipst->ips_ip_mib, 26605 ipIfStatsOutDiscards); 26606 } 26607 return; 26608 } 26609 inner_mp = ipsec_mp->b_cont; 26610 ASSERT(inner_mp->b_datap->db_type == M_DATA); 26611 oipha = (ipha_t *)outer_mp->b_rptr; 26612 iipha = (ipha_t *)inner_mp->b_rptr; 26613 *oipha = *iipha; 26614 outer_mp->b_wptr += sizeof (ipha_t); 26615 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 26616 sizeof (ipha_t)); 26617 oipha->ipha_protocol = IPPROTO_ENCAP; 26618 oipha->ipha_version_and_hdr_length = 26619 IP_SIMPLE_HDR_VERSION; 26620 oipha->ipha_hdr_checksum = 0; 26621 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 26622 outer_mp->b_cont = inner_mp; 26623 ipsec_mp->b_cont = outer_mp; 26624 26625 io->ipsec_out_se_done = B_TRUE; 26626 io->ipsec_out_tunnel = B_TRUE; 26627 } 26628 26629 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 26630 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 26631 !ipsec_out_select_sa(ipsec_mp)) 26632 return; 26633 26634 /* 26635 * By now, we know what SA's to use. Toss over to ESP & AH 26636 * to do the heavy lifting. 26637 */ 26638 zoneid = io->ipsec_out_zoneid; 26639 ASSERT(zoneid != ALL_ZONES); 26640 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 26641 ASSERT(io->ipsec_out_esp_sa != NULL); 26642 io->ipsec_out_esp_done = B_TRUE; 26643 /* 26644 * Note that since hw accel can only apply one transform, 26645 * not two, we skip hw accel for ESP if we also have AH 26646 * This is an design limitation of the interface 26647 * which should be revisited. 26648 */ 26649 ASSERT(ire != NULL); 26650 if (io->ipsec_out_ah_sa == NULL) { 26651 ill = (ill_t *)ire->ire_stq->q_ptr; 26652 ipsec_out_is_accelerated(ipsec_mp, 26653 io->ipsec_out_esp_sa, ill, ire); 26654 } 26655 26656 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 26657 switch (ipsec_rc) { 26658 case IPSEC_STATUS_SUCCESS: 26659 break; 26660 case IPSEC_STATUS_FAILED: 26661 if (ill != NULL) { 26662 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26663 } else { 26664 BUMP_MIB(&ipst->ips_ip_mib, 26665 ipIfStatsOutDiscards); 26666 } 26667 /* FALLTHRU */ 26668 case IPSEC_STATUS_PENDING: 26669 return; 26670 } 26671 } 26672 26673 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 26674 ASSERT(io->ipsec_out_ah_sa != NULL); 26675 io->ipsec_out_ah_done = B_TRUE; 26676 if (ire == NULL) { 26677 int idx = io->ipsec_out_capab_ill_index; 26678 ill = ill_lookup_on_ifindex(idx, B_FALSE, 26679 NULL, NULL, NULL, NULL, ipst); 26680 ill_need_rele = B_TRUE; 26681 } else { 26682 ill = (ill_t *)ire->ire_stq->q_ptr; 26683 } 26684 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 26685 ire); 26686 26687 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 26688 switch (ipsec_rc) { 26689 case IPSEC_STATUS_SUCCESS: 26690 break; 26691 case IPSEC_STATUS_FAILED: 26692 if (ill != NULL) { 26693 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26694 } else { 26695 BUMP_MIB(&ipst->ips_ip_mib, 26696 ipIfStatsOutDiscards); 26697 } 26698 /* FALLTHRU */ 26699 case IPSEC_STATUS_PENDING: 26700 if (ill != NULL && ill_need_rele) 26701 ill_refrele(ill); 26702 return; 26703 } 26704 } 26705 /* 26706 * We are done with IPsec processing. Send it over 26707 * the wire. 26708 */ 26709 done: 26710 mp = ipsec_mp->b_cont; 26711 ipha = (ipha_t *)mp->b_rptr; 26712 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26713 ip_wput_ipsec_out(q, ipsec_mp, ipha, ill, ire); 26714 } else { 26715 ip6h = (ip6_t *)ipha; 26716 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ill, ire); 26717 } 26718 if (ill != NULL && ill_need_rele) 26719 ill_refrele(ill); 26720 } 26721 26722 /* ARGSUSED */ 26723 void 26724 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 26725 { 26726 opt_restart_t *or; 26727 int err; 26728 conn_t *connp; 26729 26730 ASSERT(CONN_Q(q)); 26731 connp = Q_TO_CONN(q); 26732 26733 ASSERT(first_mp->b_datap->db_type == M_CTL); 26734 or = (opt_restart_t *)first_mp->b_rptr; 26735 /* 26736 * We don't need to pass any credentials here since this is just 26737 * a restart. The credentials are passed in when svr4_optcom_req 26738 * is called the first time (from ip_wput_nondata). 26739 */ 26740 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 26741 err = svr4_optcom_req(q, first_mp, NULL, 26742 &ip_opt_obj, B_FALSE); 26743 } else { 26744 ASSERT(or->or_type == T_OPTMGMT_REQ); 26745 err = tpi_optcom_req(q, first_mp, NULL, 26746 &ip_opt_obj, B_FALSE); 26747 } 26748 if (err != EINPROGRESS) { 26749 /* operation is done */ 26750 CONN_OPER_PENDING_DONE(connp); 26751 } 26752 } 26753 26754 /* 26755 * ioctls that go through a down/up sequence may need to wait for the down 26756 * to complete. This involves waiting for the ire and ipif refcnts to go down 26757 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 26758 */ 26759 /* ARGSUSED */ 26760 void 26761 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 26762 { 26763 struct iocblk *iocp; 26764 mblk_t *mp1; 26765 ip_ioctl_cmd_t *ipip; 26766 int err; 26767 sin_t *sin; 26768 struct lifreq *lifr; 26769 struct ifreq *ifr; 26770 26771 iocp = (struct iocblk *)mp->b_rptr; 26772 ASSERT(ipsq != NULL); 26773 /* Existence of mp1 verified in ip_wput_nondata */ 26774 mp1 = mp->b_cont->b_cont; 26775 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26776 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 26777 /* 26778 * Special case where ipsq_current_ipif is not set: 26779 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 26780 * ill could also have become part of a ipmp group in the 26781 * process, we are here as were not able to complete the 26782 * operation in ipif_set_values because we could not become 26783 * exclusive on the new ipsq, In such a case ipsq_current_ipif 26784 * will not be set so we need to set it. 26785 */ 26786 ill_t *ill = q->q_ptr; 26787 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 26788 } 26789 ASSERT(ipsq->ipsq_current_ipif != NULL); 26790 26791 if (ipip->ipi_cmd_type == IF_CMD) { 26792 /* This a old style SIOC[GS]IF* command */ 26793 ifr = (struct ifreq *)mp1->b_rptr; 26794 sin = (sin_t *)&ifr->ifr_addr; 26795 } else if (ipip->ipi_cmd_type == LIF_CMD) { 26796 /* This a new style SIOC[GS]LIF* command */ 26797 lifr = (struct lifreq *)mp1->b_rptr; 26798 sin = (sin_t *)&lifr->lifr_addr; 26799 } else { 26800 sin = NULL; 26801 } 26802 26803 err = (*ipip->ipi_func_restart)(ipsq->ipsq_current_ipif, sin, q, mp, 26804 ipip, mp1->b_rptr); 26805 26806 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 26807 } 26808 26809 /* 26810 * ioctl processing 26811 * 26812 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up 26813 * the ioctl command in the ioctl tables, determines the copyin data size 26814 * from the ipi_copyin_size field, and does an mi_copyin() of that size. 26815 * 26816 * ioctl processing then continues when the M_IOCDATA makes its way down to 26817 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its 26818 * associated 'conn' is refheld till the end of the ioctl and the general 26819 * ioctl processing function ip_process_ioctl() is called to extract the 26820 * arguments and process the ioctl. To simplify extraction, ioctl commands 26821 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a 26822 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq()) 26823 * is used to extract the ioctl's arguments. 26824 * 26825 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 26826 * so goes thru the serialization primitive ipsq_try_enter. Then the 26827 * appropriate function to handle the ioctl is called based on the entry in 26828 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 26829 * which also refreleases the 'conn' that was refheld at the start of the 26830 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 26831 * 26832 * Many exclusive ioctls go thru an internal down up sequence as part of 26833 * the operation. For example an attempt to change the IP address of an 26834 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 26835 * does all the cleanup such as deleting all ires that use this address. 26836 * Then we need to wait till all references to the interface go away. 26837 */ 26838 void 26839 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 26840 { 26841 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 26842 ip_ioctl_cmd_t *ipip = arg; 26843 ip_extract_func_t *extract_funcp; 26844 cmd_info_t ci; 26845 int err; 26846 boolean_t entered_ipsq = B_FALSE; 26847 26848 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 26849 26850 if (ipip == NULL) 26851 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26852 26853 /* 26854 * SIOCLIFADDIF needs to go thru a special path since the 26855 * ill may not exist yet. This happens in the case of lo0 26856 * which is created using this ioctl. 26857 */ 26858 if (ipip->ipi_cmd == SIOCLIFADDIF) { 26859 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 26860 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26861 return; 26862 } 26863 26864 ci.ci_ipif = NULL; 26865 if (ipip->ipi_cmd_type == MISC_CMD) { 26866 /* 26867 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF. 26868 */ 26869 if (ipip->ipi_cmd == IF_UNITSEL) { 26870 /* ioctl comes down the ill */ 26871 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 26872 ipif_refhold(ci.ci_ipif); 26873 } 26874 err = 0; 26875 ci.ci_sin = NULL; 26876 ci.ci_sin6 = NULL; 26877 ci.ci_lifr = NULL; 26878 } else { 26879 switch (ipip->ipi_cmd_type) { 26880 case IF_CMD: 26881 case LIF_CMD: 26882 extract_funcp = ip_extract_lifreq; 26883 break; 26884 26885 case ARP_CMD: 26886 case XARP_CMD: 26887 extract_funcp = ip_extract_arpreq; 26888 break; 26889 26890 case TUN_CMD: 26891 extract_funcp = ip_extract_tunreq; 26892 break; 26893 26894 case MSFILT_CMD: 26895 extract_funcp = ip_extract_msfilter; 26896 break; 26897 26898 default: 26899 ASSERT(0); 26900 } 26901 26902 err = (*extract_funcp)(q, mp, ipip, &ci, ip_process_ioctl); 26903 if (err != 0) { 26904 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26905 return; 26906 } 26907 26908 /* 26909 * All of the extraction functions return a refheld ipif. 26910 */ 26911 ASSERT(ci.ci_ipif != NULL); 26912 } 26913 26914 /* 26915 * If ipsq is non-null, we are already being called exclusively 26916 */ 26917 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 26918 if (!(ipip->ipi_flags & IPI_WR)) { 26919 /* 26920 * A return value of EINPROGRESS means the ioctl is 26921 * either queued and waiting for some reason or has 26922 * already completed. 26923 */ 26924 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 26925 ci.ci_lifr); 26926 if (ci.ci_ipif != NULL) 26927 ipif_refrele(ci.ci_ipif); 26928 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26929 return; 26930 } 26931 26932 ASSERT(ci.ci_ipif != NULL); 26933 26934 if (ipsq == NULL) { 26935 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, 26936 ip_process_ioctl, NEW_OP, B_TRUE); 26937 entered_ipsq = B_TRUE; 26938 } 26939 /* 26940 * Release the ipif so that ipif_down and friends that wait for 26941 * references to go away are not misled about the current ipif_refcnt 26942 * values. We are writer so we can access the ipif even after releasing 26943 * the ipif. 26944 */ 26945 ipif_refrele(ci.ci_ipif); 26946 if (ipsq == NULL) 26947 return; 26948 26949 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 26950 26951 /* 26952 * For most set ioctls that come here, this serves as a single point 26953 * where we set the IPIF_CHANGING flag. This ensures that there won't 26954 * be any new references to the ipif. This helps functions that go 26955 * through this path and end up trying to wait for the refcnts 26956 * associated with the ipif to go down to zero. Some exceptions are 26957 * Failover, Failback, and Groupname commands that operate on more than 26958 * just the ci.ci_ipif. These commands internally determine the 26959 * set of ipif's they operate on and set and clear the IPIF_CHANGING 26960 * flags on that set. Another exception is the Removeif command that 26961 * sets the IPIF_CONDEMNED flag internally after identifying the right 26962 * ipif to operate on. 26963 */ 26964 mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock); 26965 if (ipip->ipi_cmd != SIOCLIFREMOVEIF && 26966 ipip->ipi_cmd != SIOCLIFFAILOVER && 26967 ipip->ipi_cmd != SIOCLIFFAILBACK && 26968 ipip->ipi_cmd != SIOCSLIFGROUPNAME) 26969 (ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING; 26970 mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock); 26971 26972 /* 26973 * A return value of EINPROGRESS means the ioctl is 26974 * either queued and waiting for some reason or has 26975 * already completed. 26976 */ 26977 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 26978 26979 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 26980 26981 if (entered_ipsq) 26982 ipsq_exit(ipsq, B_TRUE, B_TRUE); 26983 } 26984 26985 /* 26986 * Complete the ioctl. Typically ioctls use the mi package and need to 26987 * do mi_copyout/mi_copy_done. 26988 */ 26989 void 26990 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 26991 { 26992 conn_t *connp = NULL; 26993 26994 if (err == EINPROGRESS) 26995 return; 26996 26997 if (CONN_Q(q)) { 26998 connp = Q_TO_CONN(q); 26999 ASSERT(connp->conn_ref >= 2); 27000 } 27001 27002 switch (mode) { 27003 case COPYOUT: 27004 if (err == 0) 27005 mi_copyout(q, mp); 27006 else 27007 mi_copy_done(q, mp, err); 27008 break; 27009 27010 case NO_COPYOUT: 27011 mi_copy_done(q, mp, err); 27012 break; 27013 27014 default: 27015 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 27016 break; 27017 } 27018 27019 /* 27020 * The refhold placed at the start of the ioctl is released here. 27021 */ 27022 if (connp != NULL) 27023 CONN_OPER_PENDING_DONE(connp); 27024 27025 if (ipsq != NULL) 27026 ipsq_current_finish(ipsq); 27027 } 27028 27029 /* 27030 * This is called from ip_wput_nondata to resume a deferred TCP bind. 27031 */ 27032 /* ARGSUSED */ 27033 void 27034 ip_resume_tcp_bind(void *arg, mblk_t *mp, void *arg2) 27035 { 27036 conn_t *connp = arg; 27037 tcp_t *tcp; 27038 27039 ASSERT(connp != NULL && IPCL_IS_TCP(connp) && connp->conn_tcp != NULL); 27040 tcp = connp->conn_tcp; 27041 27042 if (connp->conn_tcp->tcp_state == TCPS_CLOSED) 27043 freemsg(mp); 27044 else 27045 tcp_rput_other(tcp, mp); 27046 CONN_OPER_PENDING_DONE(connp); 27047 } 27048 27049 /* Called from ip_wput for all non data messages */ 27050 /* ARGSUSED */ 27051 void 27052 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 27053 { 27054 mblk_t *mp1; 27055 ire_t *ire, *fake_ire; 27056 ill_t *ill; 27057 struct iocblk *iocp; 27058 ip_ioctl_cmd_t *ipip; 27059 cred_t *cr; 27060 conn_t *connp; 27061 int err; 27062 nce_t *nce; 27063 ipif_t *ipif; 27064 ip_stack_t *ipst; 27065 char *proto_str; 27066 27067 if (CONN_Q(q)) { 27068 connp = Q_TO_CONN(q); 27069 ipst = connp->conn_netstack->netstack_ip; 27070 } else { 27071 connp = NULL; 27072 ipst = ILLQ_TO_IPST(q); 27073 } 27074 27075 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(q)); 27076 27077 switch (DB_TYPE(mp)) { 27078 case M_IOCTL: 27079 /* 27080 * IOCTL processing begins in ip_sioctl_copyin_setup which 27081 * will arrange to copy in associated control structures. 27082 */ 27083 ip_sioctl_copyin_setup(q, mp); 27084 return; 27085 case M_IOCDATA: 27086 /* 27087 * Ensure that this is associated with one of our trans- 27088 * parent ioctls. If it's not ours, discard it if we're 27089 * running as a driver, or pass it on if we're a module. 27090 */ 27091 iocp = (struct iocblk *)mp->b_rptr; 27092 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27093 if (ipip == NULL) { 27094 if (q->q_next == NULL) { 27095 goto nak; 27096 } else { 27097 putnext(q, mp); 27098 } 27099 return; 27100 } 27101 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 27102 /* 27103 * the ioctl is one we recognise, but is not 27104 * consumed by IP as a module, pass M_IOCDATA 27105 * for processing downstream, but only for 27106 * common Streams ioctls. 27107 */ 27108 if (ipip->ipi_flags & IPI_PASS_DOWN) { 27109 putnext(q, mp); 27110 return; 27111 } else { 27112 goto nak; 27113 } 27114 } 27115 27116 /* IOCTL continuation following copyin or copyout. */ 27117 if (mi_copy_state(q, mp, NULL) == -1) { 27118 /* 27119 * The copy operation failed. mi_copy_state already 27120 * cleaned up, so we're out of here. 27121 */ 27122 return; 27123 } 27124 /* 27125 * If we just completed a copy in, we become writer and 27126 * continue processing in ip_sioctl_copyin_done. If it 27127 * was a copy out, we call mi_copyout again. If there is 27128 * nothing more to copy out, it will complete the IOCTL. 27129 */ 27130 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 27131 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 27132 mi_copy_done(q, mp, EPROTO); 27133 return; 27134 } 27135 /* 27136 * Check for cases that need more copying. A return 27137 * value of 0 means a second copyin has been started, 27138 * so we return; a return value of 1 means no more 27139 * copying is needed, so we continue. 27140 */ 27141 if (ipip->ipi_cmd_type == MSFILT_CMD && 27142 MI_COPY_COUNT(mp) == 1) { 27143 if (ip_copyin_msfilter(q, mp) == 0) 27144 return; 27145 } 27146 /* 27147 * Refhold the conn, till the ioctl completes. This is 27148 * needed in case the ioctl ends up in the pending mp 27149 * list. Every mp in the ill_pending_mp list and 27150 * the ipsq_pending_mp must have a refhold on the conn 27151 * to resume processing. The refhold is released when 27152 * the ioctl completes. (normally or abnormally) 27153 * In all cases ip_ioctl_finish is called to finish 27154 * the ioctl. 27155 */ 27156 if (connp != NULL) { 27157 /* This is not a reentry */ 27158 ASSERT(ipsq == NULL); 27159 CONN_INC_REF(connp); 27160 } else { 27161 if (!(ipip->ipi_flags & IPI_MODOK)) { 27162 mi_copy_done(q, mp, EINVAL); 27163 return; 27164 } 27165 } 27166 27167 ip_process_ioctl(ipsq, q, mp, ipip); 27168 27169 } else { 27170 mi_copyout(q, mp); 27171 } 27172 return; 27173 nak: 27174 iocp->ioc_error = EINVAL; 27175 mp->b_datap->db_type = M_IOCNAK; 27176 iocp->ioc_count = 0; 27177 qreply(q, mp); 27178 return; 27179 27180 case M_IOCNAK: 27181 /* 27182 * The only way we could get here is if a resolver didn't like 27183 * an IOCTL we sent it. This shouldn't happen. 27184 */ 27185 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 27186 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 27187 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 27188 freemsg(mp); 27189 return; 27190 case M_IOCACK: 27191 /* /dev/ip shouldn't see this */ 27192 if (CONN_Q(q)) 27193 goto nak; 27194 27195 /* Finish socket ioctls passed through to ARP. */ 27196 ip_sioctl_iocack(q, mp); 27197 return; 27198 case M_FLUSH: 27199 if (*mp->b_rptr & FLUSHW) 27200 flushq(q, FLUSHALL); 27201 if (q->q_next) { 27202 putnext(q, mp); 27203 return; 27204 } 27205 if (*mp->b_rptr & FLUSHR) { 27206 *mp->b_rptr &= ~FLUSHW; 27207 qreply(q, mp); 27208 return; 27209 } 27210 freemsg(mp); 27211 return; 27212 case IRE_DB_REQ_TYPE: 27213 if (connp == NULL) { 27214 proto_str = "IRE_DB_REQ_TYPE"; 27215 goto protonak; 27216 } 27217 /* An Upper Level Protocol wants a copy of an IRE. */ 27218 ip_ire_req(q, mp); 27219 return; 27220 case M_CTL: 27221 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 27222 break; 27223 27224 if (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == 27225 TUN_HELLO) { 27226 ASSERT(connp != NULL); 27227 connp->conn_flags |= IPCL_IPTUN; 27228 freeb(mp); 27229 return; 27230 } 27231 27232 /* M_CTL messages are used by ARP to tell us things. */ 27233 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 27234 break; 27235 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 27236 case AR_ENTRY_SQUERY: 27237 ip_wput_ctl(q, mp); 27238 return; 27239 case AR_CLIENT_NOTIFY: 27240 ip_arp_news(q, mp); 27241 return; 27242 case AR_DLPIOP_DONE: 27243 ASSERT(q->q_next != NULL); 27244 ill = (ill_t *)q->q_ptr; 27245 /* qwriter_ip releases the refhold */ 27246 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 27247 ill_refhold(ill); 27248 qwriter_ip(ill, q, mp, ip_arp_done, CUR_OP, B_FALSE); 27249 return; 27250 case AR_ARP_CLOSING: 27251 /* 27252 * ARP (above us) is closing. If no ARP bringup is 27253 * currently pending, ack the message so that ARP 27254 * can complete its close. Also mark ill_arp_closing 27255 * so that new ARP bringups will fail. If any 27256 * ARP bringup is currently in progress, we will 27257 * ack this when the current ARP bringup completes. 27258 */ 27259 ASSERT(q->q_next != NULL); 27260 ill = (ill_t *)q->q_ptr; 27261 mutex_enter(&ill->ill_lock); 27262 ill->ill_arp_closing = 1; 27263 if (!ill->ill_arp_bringup_pending) { 27264 mutex_exit(&ill->ill_lock); 27265 qreply(q, mp); 27266 } else { 27267 mutex_exit(&ill->ill_lock); 27268 freemsg(mp); 27269 } 27270 return; 27271 case AR_ARP_EXTEND: 27272 /* 27273 * The ARP module above us is capable of duplicate 27274 * address detection. Old ATM drivers will not send 27275 * this message. 27276 */ 27277 ASSERT(q->q_next != NULL); 27278 ill = (ill_t *)q->q_ptr; 27279 ill->ill_arp_extend = B_TRUE; 27280 freemsg(mp); 27281 return; 27282 default: 27283 break; 27284 } 27285 break; 27286 case M_PROTO: 27287 case M_PCPROTO: 27288 /* 27289 * The only PROTO messages we expect are ULP binds and 27290 * copies of option negotiation acknowledgements. 27291 */ 27292 switch (((union T_primitives *)mp->b_rptr)->type) { 27293 case O_T_BIND_REQ: 27294 case T_BIND_REQ: { 27295 /* Request can get queued in bind */ 27296 if (connp == NULL) { 27297 proto_str = "O_T_BIND_REQ/T_BIND_REQ"; 27298 goto protonak; 27299 } 27300 /* 27301 * The transports except SCTP call ip_bind_{v4,v6}() 27302 * directly instead of a a putnext. SCTP doesn't 27303 * generate any T_BIND_REQ since it has its own 27304 * fanout data structures. However, ESP and AH 27305 * come in for regular binds; all other cases are 27306 * bind retries. 27307 */ 27308 ASSERT(!IPCL_IS_SCTP(connp)); 27309 27310 /* Don't increment refcnt if this is a re-entry */ 27311 if (ipsq == NULL) 27312 CONN_INC_REF(connp); 27313 27314 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 27315 connp, NULL) : ip_bind_v4(q, mp, connp); 27316 if (mp == NULL) 27317 return; 27318 if (IPCL_IS_TCP(connp)) { 27319 /* 27320 * In the case of TCP endpoint we 27321 * come here only for bind retries 27322 */ 27323 ASSERT(ipsq != NULL); 27324 CONN_INC_REF(connp); 27325 squeue_fill(connp->conn_sqp, mp, 27326 ip_resume_tcp_bind, connp, 27327 SQTAG_BIND_RETRY); 27328 } else if (IPCL_IS_UDP(connp)) { 27329 /* 27330 * In the case of UDP endpoint we 27331 * come here only for bind retries 27332 */ 27333 ASSERT(ipsq != NULL); 27334 udp_resume_bind(connp, mp); 27335 } else if (IPCL_IS_RAWIP(connp)) { 27336 /* 27337 * In the case of RAWIP endpoint we 27338 * come here only for bind retries 27339 */ 27340 ASSERT(ipsq != NULL); 27341 rawip_resume_bind(connp, mp); 27342 } else { 27343 /* The case of AH and ESP */ 27344 qreply(q, mp); 27345 CONN_OPER_PENDING_DONE(connp); 27346 } 27347 return; 27348 } 27349 case T_SVR4_OPTMGMT_REQ: 27350 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 27351 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 27352 27353 if (connp == NULL) { 27354 proto_str = "T_SVR4_OPTMGMT_REQ"; 27355 goto protonak; 27356 } 27357 27358 if (!snmpcom_req(q, mp, ip_snmp_set, 27359 ip_snmp_get, cr)) { 27360 /* 27361 * Call svr4_optcom_req so that it can 27362 * generate the ack. We don't come here 27363 * if this operation is being restarted. 27364 * ip_restart_optmgmt will drop the conn ref. 27365 * In the case of ipsec option after the ipsec 27366 * load is complete conn_restart_ipsec_waiter 27367 * drops the conn ref. 27368 */ 27369 ASSERT(ipsq == NULL); 27370 CONN_INC_REF(connp); 27371 if (ip_check_for_ipsec_opt(q, mp)) 27372 return; 27373 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj, 27374 B_FALSE); 27375 if (err != EINPROGRESS) { 27376 /* Operation is done */ 27377 CONN_OPER_PENDING_DONE(connp); 27378 } 27379 } 27380 return; 27381 case T_OPTMGMT_REQ: 27382 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 27383 /* 27384 * Note: No snmpcom_req support through new 27385 * T_OPTMGMT_REQ. 27386 * Call tpi_optcom_req so that it can 27387 * generate the ack. 27388 */ 27389 if (connp == NULL) { 27390 proto_str = "T_OPTMGMT_REQ"; 27391 goto protonak; 27392 } 27393 27394 ASSERT(ipsq == NULL); 27395 /* 27396 * We don't come here for restart. ip_restart_optmgmt 27397 * will drop the conn ref. In the case of ipsec option 27398 * after the ipsec load is complete 27399 * conn_restart_ipsec_waiter drops the conn ref. 27400 */ 27401 CONN_INC_REF(connp); 27402 if (ip_check_for_ipsec_opt(q, mp)) 27403 return; 27404 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj, B_FALSE); 27405 if (err != EINPROGRESS) { 27406 /* Operation is done */ 27407 CONN_OPER_PENDING_DONE(connp); 27408 } 27409 return; 27410 case T_UNBIND_REQ: 27411 if (connp == NULL) { 27412 proto_str = "T_UNBIND_REQ"; 27413 goto protonak; 27414 } 27415 mp = ip_unbind(q, mp); 27416 qreply(q, mp); 27417 return; 27418 default: 27419 /* 27420 * Have to drop any DLPI messages coming down from 27421 * arp (such as an info_req which would cause ip 27422 * to receive an extra info_ack if it was passed 27423 * through. 27424 */ 27425 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 27426 (int)*(uint_t *)mp->b_rptr)); 27427 freemsg(mp); 27428 return; 27429 } 27430 /* NOTREACHED */ 27431 case IRE_DB_TYPE: { 27432 nce_t *nce; 27433 ill_t *ill; 27434 in6_addr_t gw_addr_v6; 27435 27436 27437 /* 27438 * This is a response back from a resolver. It 27439 * consists of a message chain containing: 27440 * IRE_MBLK-->LL_HDR_MBLK->pkt 27441 * The IRE_MBLK is the one we allocated in ip_newroute. 27442 * The LL_HDR_MBLK is the DLPI header to use to get 27443 * the attached packet, and subsequent ones for the 27444 * same destination, transmitted. 27445 */ 27446 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 27447 break; 27448 /* 27449 * First, check to make sure the resolution succeeded. 27450 * If it failed, the second mblk will be empty. 27451 * If it is, free the chain, dropping the packet. 27452 * (We must ire_delete the ire; that frees the ire mblk) 27453 * We're doing this now to support PVCs for ATM; it's 27454 * a partial xresolv implementation. When we fully implement 27455 * xresolv interfaces, instead of freeing everything here 27456 * we'll initiate neighbor discovery. 27457 * 27458 * For v4 (ARP and other external resolvers) the resolver 27459 * frees the message, so no check is needed. This check 27460 * is required, though, for a full xresolve implementation. 27461 * Including this code here now both shows how external 27462 * resolvers can NACK a resolution request using an 27463 * existing design that has no specific provisions for NACKs, 27464 * and also takes into account that the current non-ARP 27465 * external resolver has been coded to use this method of 27466 * NACKing for all IPv6 (xresolv) cases, 27467 * whether our xresolv implementation is complete or not. 27468 * 27469 */ 27470 ire = (ire_t *)mp->b_rptr; 27471 ill = ire_to_ill(ire); 27472 mp1 = mp->b_cont; /* dl_unitdata_req */ 27473 if (mp1->b_rptr == mp1->b_wptr) { 27474 if (ire->ire_ipversion == IPV6_VERSION) { 27475 /* 27476 * XRESOLV interface. 27477 */ 27478 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27479 mutex_enter(&ire->ire_lock); 27480 gw_addr_v6 = ire->ire_gateway_addr_v6; 27481 mutex_exit(&ire->ire_lock); 27482 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27483 nce = ndp_lookup_v6(ill, 27484 &ire->ire_addr_v6, B_FALSE); 27485 } else { 27486 nce = ndp_lookup_v6(ill, &gw_addr_v6, 27487 B_FALSE); 27488 } 27489 if (nce != NULL) { 27490 nce_resolv_failed(nce); 27491 ndp_delete(nce); 27492 NCE_REFRELE(nce); 27493 } 27494 } 27495 mp->b_cont = NULL; 27496 freemsg(mp1); /* frees the pkt as well */ 27497 ASSERT(ire->ire_nce == NULL); 27498 ire_delete((ire_t *)mp->b_rptr); 27499 return; 27500 } 27501 27502 /* 27503 * Split them into IRE_MBLK and pkt and feed it into 27504 * ire_add_then_send. Then in ire_add_then_send 27505 * the IRE will be added, and then the packet will be 27506 * run back through ip_wput. This time it will make 27507 * it to the wire. 27508 */ 27509 mp->b_cont = NULL; 27510 mp = mp1->b_cont; /* now, mp points to pkt */ 27511 mp1->b_cont = NULL; 27512 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 27513 if (ire->ire_ipversion == IPV6_VERSION) { 27514 /* 27515 * XRESOLV interface. Find the nce and put a copy 27516 * of the dl_unitdata_req in nce_res_mp 27517 */ 27518 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27519 mutex_enter(&ire->ire_lock); 27520 gw_addr_v6 = ire->ire_gateway_addr_v6; 27521 mutex_exit(&ire->ire_lock); 27522 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27523 nce = ndp_lookup_v6(ill, &ire->ire_addr_v6, 27524 B_FALSE); 27525 } else { 27526 nce = ndp_lookup_v6(ill, &gw_addr_v6, B_FALSE); 27527 } 27528 if (nce != NULL) { 27529 /* 27530 * We have to protect nce_res_mp here 27531 * from being accessed by other threads 27532 * while we change the mblk pointer. 27533 * Other functions will also lock the nce when 27534 * accessing nce_res_mp. 27535 * 27536 * The reason we change the mblk pointer 27537 * here rather than copying the resolved address 27538 * into the template is that, unlike with 27539 * ethernet, we have no guarantee that the 27540 * resolved address length will be 27541 * smaller than or equal to the lla length 27542 * with which the template was allocated, 27543 * (for ethernet, they're equal) 27544 * so we have to use the actual resolved 27545 * address mblk - which holds the real 27546 * dl_unitdata_req with the resolved address. 27547 * 27548 * Doing this is the same behavior as was 27549 * previously used in the v4 ARP case. 27550 */ 27551 mutex_enter(&nce->nce_lock); 27552 if (nce->nce_res_mp != NULL) 27553 freemsg(nce->nce_res_mp); 27554 nce->nce_res_mp = mp1; 27555 mutex_exit(&nce->nce_lock); 27556 /* 27557 * We do a fastpath probe here because 27558 * we have resolved the address without 27559 * using Neighbor Discovery. 27560 * In the non-XRESOLV v6 case, the fastpath 27561 * probe is done right after neighbor 27562 * discovery completes. 27563 */ 27564 if (nce->nce_res_mp != NULL) { 27565 int res; 27566 nce_fastpath_list_add(nce); 27567 res = ill_fastpath_probe(ill, 27568 nce->nce_res_mp); 27569 if (res != 0 && res != EAGAIN) 27570 nce_fastpath_list_delete(nce); 27571 } 27572 27573 ire_add_then_send(q, ire, mp); 27574 /* 27575 * Now we have to clean out any packets 27576 * that may have been queued on the nce 27577 * while it was waiting for address resolution 27578 * to complete. 27579 */ 27580 mutex_enter(&nce->nce_lock); 27581 mp1 = nce->nce_qd_mp; 27582 nce->nce_qd_mp = NULL; 27583 mutex_exit(&nce->nce_lock); 27584 while (mp1 != NULL) { 27585 mblk_t *nxt_mp; 27586 queue_t *fwdq = NULL; 27587 ill_t *inbound_ill; 27588 uint_t ifindex; 27589 27590 nxt_mp = mp1->b_next; 27591 mp1->b_next = NULL; 27592 /* 27593 * Retrieve ifindex stored in 27594 * ip_rput_data_v6() 27595 */ 27596 ifindex = 27597 (uint_t)(uintptr_t)mp1->b_prev; 27598 inbound_ill = 27599 ill_lookup_on_ifindex(ifindex, 27600 B_TRUE, NULL, NULL, NULL, 27601 NULL, ipst); 27602 mp1->b_prev = NULL; 27603 if (inbound_ill != NULL) 27604 fwdq = inbound_ill->ill_rq; 27605 27606 if (fwdq != NULL) { 27607 put(fwdq, mp1); 27608 ill_refrele(inbound_ill); 27609 } else 27610 put(WR(ill->ill_rq), mp1); 27611 mp1 = nxt_mp; 27612 } 27613 NCE_REFRELE(nce); 27614 } else { /* nce is NULL; clean up */ 27615 ire_delete(ire); 27616 freemsg(mp); 27617 freemsg(mp1); 27618 return; 27619 } 27620 } else { 27621 nce_t *arpce; 27622 /* 27623 * Link layer resolution succeeded. Recompute the 27624 * ire_nce. 27625 */ 27626 ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST)); 27627 if ((arpce = ndp_lookup_v4(ill, 27628 (ire->ire_gateway_addr != INADDR_ANY ? 27629 &ire->ire_gateway_addr : &ire->ire_addr), 27630 B_FALSE)) == NULL) { 27631 freeb(ire->ire_mp); 27632 freeb(mp1); 27633 freemsg(mp); 27634 return; 27635 } 27636 mutex_enter(&arpce->nce_lock); 27637 arpce->nce_last = TICK_TO_MSEC(lbolt64); 27638 if (arpce->nce_state == ND_REACHABLE) { 27639 /* 27640 * Someone resolved this before us; 27641 * cleanup the res_mp. Since ire has 27642 * not been added yet, the call to ire_add_v4 27643 * from ire_add_then_send (when a dup is 27644 * detected) will clean up the ire. 27645 */ 27646 freeb(mp1); 27647 } else { 27648 ASSERT(arpce->nce_res_mp == NULL); 27649 arpce->nce_res_mp = mp1; 27650 arpce->nce_state = ND_REACHABLE; 27651 } 27652 mutex_exit(&arpce->nce_lock); 27653 if (ire->ire_marks & IRE_MARK_NOADD) { 27654 /* 27655 * this ire will not be added to the ire 27656 * cache table, so we can set the ire_nce 27657 * here, as there are no atomicity constraints. 27658 */ 27659 ire->ire_nce = arpce; 27660 /* 27661 * We are associating this nce with the ire 27662 * so change the nce ref taken in 27663 * ndp_lookup_v4() from 27664 * NCE_REFHOLD to NCE_REFHOLD_NOTR 27665 */ 27666 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 27667 } else { 27668 NCE_REFRELE(arpce); 27669 } 27670 ire_add_then_send(q, ire, mp); 27671 } 27672 return; /* All is well, the packet has been sent. */ 27673 } 27674 case IRE_ARPRESOLVE_TYPE: { 27675 27676 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */ 27677 break; 27678 mp1 = mp->b_cont; /* dl_unitdata_req */ 27679 mp->b_cont = NULL; 27680 /* 27681 * First, check to make sure the resolution succeeded. 27682 * If it failed, the second mblk will be empty. 27683 */ 27684 if (mp1->b_rptr == mp1->b_wptr) { 27685 /* cleanup the incomplete ire, free queued packets */ 27686 freemsg(mp); /* fake ire */ 27687 freeb(mp1); /* dl_unitdata response */ 27688 return; 27689 } 27690 27691 /* 27692 * update any incomplete nce_t found. we lookup the ctable 27693 * and find the nce from the ire->ire_nce because we need 27694 * to pass the ire to ip_xmit_v4 later, and can find both 27695 * ire and nce in one lookup from the ctable. 27696 */ 27697 fake_ire = (ire_t *)mp->b_rptr; 27698 /* 27699 * By the time we come back here from ARP 27700 * the logical outgoing interface of the incomplete ire 27701 * we added in ire_forward could have disappeared, 27702 * causing the incomplete ire to also have 27703 * dissapeared. So we need to retreive the 27704 * proper ipif for the ire before looking 27705 * in ctable; do the ctablelookup based on ire_ipif_seqid 27706 */ 27707 ill = q->q_ptr; 27708 27709 /* Get the outgoing ipif */ 27710 mutex_enter(&ill->ill_lock); 27711 if (ill->ill_state_flags & ILL_CONDEMNED) { 27712 mutex_exit(&ill->ill_lock); 27713 freemsg(mp); /* fake ire */ 27714 freeb(mp1); /* dl_unitdata response */ 27715 return; 27716 } 27717 ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid); 27718 27719 if (ipif == NULL) { 27720 mutex_exit(&ill->ill_lock); 27721 ip1dbg(("logical intrf to incomplete ire vanished\n")); 27722 freemsg(mp); 27723 freeb(mp1); 27724 return; 27725 } 27726 ipif_refhold_locked(ipif); 27727 mutex_exit(&ill->ill_lock); 27728 ire = ire_ctable_lookup(fake_ire->ire_addr, 27729 fake_ire->ire_gateway_addr, IRE_CACHE, 27730 ipif, fake_ire->ire_zoneid, NULL, 27731 (MATCH_IRE_GW|MATCH_IRE_IPIF|MATCH_IRE_ZONEONLY), ipst); 27732 ipif_refrele(ipif); 27733 if (ire == NULL) { 27734 /* 27735 * no ire was found; check if there is an nce 27736 * for this lookup; if it has no ire's pointing at it 27737 * cleanup. 27738 */ 27739 if ((nce = ndp_lookup_v4(ill, 27740 (fake_ire->ire_gateway_addr != INADDR_ANY ? 27741 &fake_ire->ire_gateway_addr : &fake_ire->ire_addr), 27742 B_FALSE)) != NULL) { 27743 /* 27744 * cleanup: 27745 * We check for refcnt 2 (one for the nce 27746 * hash list + 1 for the ref taken by 27747 * ndp_lookup_v4) to check that there are 27748 * no ire's pointing at the nce. 27749 */ 27750 if (nce->nce_refcnt == 2) 27751 ndp_delete(nce); 27752 NCE_REFRELE(nce); 27753 } 27754 freeb(mp1); /* dl_unitdata response */ 27755 freemsg(mp); /* fake ire */ 27756 return; 27757 } 27758 nce = ire->ire_nce; 27759 DTRACE_PROBE2(ire__arpresolve__type, 27760 ire_t *, ire, nce_t *, nce); 27761 ASSERT(nce->nce_state != ND_INITIAL); 27762 mutex_enter(&nce->nce_lock); 27763 nce->nce_last = TICK_TO_MSEC(lbolt64); 27764 if (nce->nce_state == ND_REACHABLE) { 27765 /* 27766 * Someone resolved this before us; 27767 * our response is not needed any more. 27768 */ 27769 mutex_exit(&nce->nce_lock); 27770 freeb(mp1); /* dl_unitdata response */ 27771 } else { 27772 ASSERT(nce->nce_res_mp == NULL); 27773 nce->nce_res_mp = mp1; 27774 nce->nce_state = ND_REACHABLE; 27775 mutex_exit(&nce->nce_lock); 27776 nce_fastpath(nce); 27777 } 27778 /* 27779 * The cached nce_t has been updated to be reachable; 27780 * Clear the IRE_MARK_UNCACHED flag and free the fake_ire. 27781 */ 27782 fake_ire->ire_marks &= ~IRE_MARK_UNCACHED; 27783 freemsg(mp); 27784 /* 27785 * send out queued packets. 27786 */ 27787 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 27788 27789 IRE_REFRELE(ire); 27790 return; 27791 } 27792 default: 27793 break; 27794 } 27795 if (q->q_next) { 27796 putnext(q, mp); 27797 } else 27798 freemsg(mp); 27799 return; 27800 27801 protonak: 27802 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 27803 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 27804 qreply(q, mp); 27805 } 27806 27807 /* 27808 * Process IP options in an outbound packet. Modify the destination if there 27809 * is a source route option. 27810 * Returns non-zero if something fails in which case an ICMP error has been 27811 * sent and mp freed. 27812 */ 27813 static int 27814 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 27815 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 27816 { 27817 ipoptp_t opts; 27818 uchar_t *opt; 27819 uint8_t optval; 27820 uint8_t optlen; 27821 ipaddr_t dst; 27822 intptr_t code = 0; 27823 mblk_t *mp; 27824 ire_t *ire = NULL; 27825 27826 ip2dbg(("ip_wput_options\n")); 27827 mp = ipsec_mp; 27828 if (mctl_present) { 27829 mp = ipsec_mp->b_cont; 27830 } 27831 27832 dst = ipha->ipha_dst; 27833 for (optval = ipoptp_first(&opts, ipha); 27834 optval != IPOPT_EOL; 27835 optval = ipoptp_next(&opts)) { 27836 opt = opts.ipoptp_cur; 27837 optlen = opts.ipoptp_len; 27838 ip2dbg(("ip_wput_options: opt %d, len %d\n", 27839 optval, optlen)); 27840 switch (optval) { 27841 uint32_t off; 27842 case IPOPT_SSRR: 27843 case IPOPT_LSRR: 27844 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27845 ip1dbg(( 27846 "ip_wput_options: bad option offset\n")); 27847 code = (char *)&opt[IPOPT_OLEN] - 27848 (char *)ipha; 27849 goto param_prob; 27850 } 27851 off = opt[IPOPT_OFFSET]; 27852 ip1dbg(("ip_wput_options: next hop 0x%x\n", 27853 ntohl(dst))); 27854 /* 27855 * For strict: verify that dst is directly 27856 * reachable. 27857 */ 27858 if (optval == IPOPT_SSRR) { 27859 ire = ire_ftable_lookup(dst, 0, 0, 27860 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 27861 MBLK_GETLABEL(mp), 27862 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 27863 if (ire == NULL) { 27864 ip1dbg(("ip_wput_options: SSRR not" 27865 " directly reachable: 0x%x\n", 27866 ntohl(dst))); 27867 goto bad_src_route; 27868 } 27869 ire_refrele(ire); 27870 } 27871 break; 27872 case IPOPT_RR: 27873 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27874 ip1dbg(( 27875 "ip_wput_options: bad option offset\n")); 27876 code = (char *)&opt[IPOPT_OLEN] - 27877 (char *)ipha; 27878 goto param_prob; 27879 } 27880 break; 27881 case IPOPT_TS: 27882 /* 27883 * Verify that length >=5 and that there is either 27884 * room for another timestamp or that the overflow 27885 * counter is not maxed out. 27886 */ 27887 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 27888 if (optlen < IPOPT_MINLEN_IT) { 27889 goto param_prob; 27890 } 27891 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27892 ip1dbg(( 27893 "ip_wput_options: bad option offset\n")); 27894 code = (char *)&opt[IPOPT_OFFSET] - 27895 (char *)ipha; 27896 goto param_prob; 27897 } 27898 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 27899 case IPOPT_TS_TSONLY: 27900 off = IPOPT_TS_TIMELEN; 27901 break; 27902 case IPOPT_TS_TSANDADDR: 27903 case IPOPT_TS_PRESPEC: 27904 case IPOPT_TS_PRESPEC_RFC791: 27905 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 27906 break; 27907 default: 27908 code = (char *)&opt[IPOPT_POS_OV_FLG] - 27909 (char *)ipha; 27910 goto param_prob; 27911 } 27912 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 27913 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 27914 /* 27915 * No room and the overflow counter is 15 27916 * already. 27917 */ 27918 goto param_prob; 27919 } 27920 break; 27921 } 27922 } 27923 27924 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 27925 return (0); 27926 27927 ip1dbg(("ip_wput_options: error processing IP options.")); 27928 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 27929 27930 param_prob: 27931 /* 27932 * Since ip_wput() isn't close to finished, we fill 27933 * in enough of the header for credible error reporting. 27934 */ 27935 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 27936 /* Failed */ 27937 freemsg(ipsec_mp); 27938 return (-1); 27939 } 27940 icmp_param_problem(q, ipsec_mp, (uint8_t)code, zoneid, ipst); 27941 return (-1); 27942 27943 bad_src_route: 27944 /* 27945 * Since ip_wput() isn't close to finished, we fill 27946 * in enough of the header for credible error reporting. 27947 */ 27948 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 27949 /* Failed */ 27950 freemsg(ipsec_mp); 27951 return (-1); 27952 } 27953 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 27954 return (-1); 27955 } 27956 27957 /* 27958 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 27959 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 27960 * thru /etc/system. 27961 */ 27962 #define CONN_MAXDRAINCNT 64 27963 27964 static void 27965 conn_drain_init(ip_stack_t *ipst) 27966 { 27967 int i; 27968 27969 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 27970 27971 if ((ipst->ips_conn_drain_list_cnt == 0) || 27972 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 27973 /* 27974 * Default value of the number of drainers is the 27975 * number of cpus, subject to maximum of 8 drainers. 27976 */ 27977 if (boot_max_ncpus != -1) 27978 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 27979 else 27980 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 27981 } 27982 27983 ipst->ips_conn_drain_list = kmem_zalloc(ipst->ips_conn_drain_list_cnt * 27984 sizeof (idl_t), KM_SLEEP); 27985 27986 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 27987 mutex_init(&ipst->ips_conn_drain_list[i].idl_lock, NULL, 27988 MUTEX_DEFAULT, NULL); 27989 } 27990 } 27991 27992 static void 27993 conn_drain_fini(ip_stack_t *ipst) 27994 { 27995 int i; 27996 27997 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) 27998 mutex_destroy(&ipst->ips_conn_drain_list[i].idl_lock); 27999 kmem_free(ipst->ips_conn_drain_list, 28000 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 28001 ipst->ips_conn_drain_list = NULL; 28002 } 28003 28004 /* 28005 * Note: For an overview of how flowcontrol is handled in IP please see the 28006 * IP Flowcontrol notes at the top of this file. 28007 * 28008 * Flow control has blocked us from proceeding. Insert the given conn in one 28009 * of the conn drain lists. These conn wq's will be qenabled later on when 28010 * STREAMS flow control does a backenable. conn_walk_drain will enable 28011 * the first conn in each of these drain lists. Each of these qenabled conns 28012 * in turn enables the next in the list, after it runs, or when it closes, 28013 * thus sustaining the drain process. 28014 * 28015 * The only possible calling sequence is ip_wsrv (on conn) -> ip_wput -> 28016 * conn_drain_insert. Thus there can be only 1 instance of conn_drain_insert 28017 * running at any time, on a given conn, since there can be only 1 service proc 28018 * running on a queue at any time. 28019 */ 28020 void 28021 conn_drain_insert(conn_t *connp) 28022 { 28023 idl_t *idl; 28024 uint_t index; 28025 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28026 28027 mutex_enter(&connp->conn_lock); 28028 if (connp->conn_state_flags & CONN_CLOSING) { 28029 /* 28030 * The conn is closing as a result of which CONN_CLOSING 28031 * is set. Return. 28032 */ 28033 mutex_exit(&connp->conn_lock); 28034 return; 28035 } else if (connp->conn_idl == NULL) { 28036 /* 28037 * Assign the next drain list round robin. We dont' use 28038 * a lock, and thus it may not be strictly round robin. 28039 * Atomicity of load/stores is enough to make sure that 28040 * conn_drain_list_index is always within bounds. 28041 */ 28042 index = ipst->ips_conn_drain_list_index; 28043 ASSERT(index < ipst->ips_conn_drain_list_cnt); 28044 connp->conn_idl = &ipst->ips_conn_drain_list[index]; 28045 index++; 28046 if (index == ipst->ips_conn_drain_list_cnt) 28047 index = 0; 28048 ipst->ips_conn_drain_list_index = index; 28049 } 28050 mutex_exit(&connp->conn_lock); 28051 28052 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28053 if ((connp->conn_drain_prev != NULL) || 28054 (connp->conn_state_flags & CONN_CLOSING)) { 28055 /* 28056 * The conn is already in the drain list, OR 28057 * the conn is closing. We need to check again for 28058 * the closing case again since close can happen 28059 * after we drop the conn_lock, and before we 28060 * acquire the CONN_DRAIN_LIST_LOCK. 28061 */ 28062 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28063 return; 28064 } else { 28065 idl = connp->conn_idl; 28066 } 28067 28068 /* 28069 * The conn is not in the drain list. Insert it at the 28070 * tail of the drain list. The drain list is circular 28071 * and doubly linked. idl_conn points to the 1st element 28072 * in the list. 28073 */ 28074 if (idl->idl_conn == NULL) { 28075 idl->idl_conn = connp; 28076 connp->conn_drain_next = connp; 28077 connp->conn_drain_prev = connp; 28078 } else { 28079 conn_t *head = idl->idl_conn; 28080 28081 connp->conn_drain_next = head; 28082 connp->conn_drain_prev = head->conn_drain_prev; 28083 head->conn_drain_prev->conn_drain_next = connp; 28084 head->conn_drain_prev = connp; 28085 } 28086 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28087 } 28088 28089 /* 28090 * This conn is closing, and we are called from ip_close. OR 28091 * This conn has been serviced by ip_wsrv, and we need to do the tail 28092 * processing. 28093 * If this conn is part of the drain list, we may need to sustain the drain 28094 * process by qenabling the next conn in the drain list. We may also need to 28095 * remove this conn from the list, if it is done. 28096 */ 28097 static void 28098 conn_drain_tail(conn_t *connp, boolean_t closing) 28099 { 28100 idl_t *idl; 28101 28102 /* 28103 * connp->conn_idl is stable at this point, and no lock is needed 28104 * to check it. If we are called from ip_close, close has already 28105 * set CONN_CLOSING, thus freezing the value of conn_idl, and 28106 * called us only because conn_idl is non-null. If we are called thru 28107 * service, conn_idl could be null, but it cannot change because 28108 * service is single-threaded per queue, and there cannot be another 28109 * instance of service trying to call conn_drain_insert on this conn 28110 * now. 28111 */ 28112 ASSERT(!closing || (connp->conn_idl != NULL)); 28113 28114 /* 28115 * If connp->conn_idl is null, the conn has not been inserted into any 28116 * drain list even once since creation of the conn. Just return. 28117 */ 28118 if (connp->conn_idl == NULL) 28119 return; 28120 28121 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28122 28123 if (connp->conn_drain_prev == NULL) { 28124 /* This conn is currently not in the drain list. */ 28125 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28126 return; 28127 } 28128 idl = connp->conn_idl; 28129 if (idl->idl_conn_draining == connp) { 28130 /* 28131 * This conn is the current drainer. If this is the last conn 28132 * in the drain list, we need to do more checks, in the 'if' 28133 * below. Otherwwise we need to just qenable the next conn, 28134 * to sustain the draining, and is handled in the 'else' 28135 * below. 28136 */ 28137 if (connp->conn_drain_next == idl->idl_conn) { 28138 /* 28139 * This conn is the last in this list. This round 28140 * of draining is complete. If idl_repeat is set, 28141 * it means another flow enabling has happened from 28142 * the driver/streams and we need to another round 28143 * of draining. 28144 * If there are more than 2 conns in the drain list, 28145 * do a left rotate by 1, so that all conns except the 28146 * conn at the head move towards the head by 1, and the 28147 * the conn at the head goes to the tail. This attempts 28148 * a more even share for all queues that are being 28149 * drained. 28150 */ 28151 if ((connp->conn_drain_next != connp) && 28152 (idl->idl_conn->conn_drain_next != connp)) { 28153 idl->idl_conn = idl->idl_conn->conn_drain_next; 28154 } 28155 if (idl->idl_repeat) { 28156 qenable(idl->idl_conn->conn_wq); 28157 idl->idl_conn_draining = idl->idl_conn; 28158 idl->idl_repeat = 0; 28159 } else { 28160 idl->idl_conn_draining = NULL; 28161 } 28162 } else { 28163 /* 28164 * If the next queue that we are now qenable'ing, 28165 * is closing, it will remove itself from this list 28166 * and qenable the subsequent queue in ip_close(). 28167 * Serialization is acheived thru idl_lock. 28168 */ 28169 qenable(connp->conn_drain_next->conn_wq); 28170 idl->idl_conn_draining = connp->conn_drain_next; 28171 } 28172 } 28173 if (!connp->conn_did_putbq || closing) { 28174 /* 28175 * Remove ourself from the drain list, if we did not do 28176 * a putbq, or if the conn is closing. 28177 * Note: It is possible that q->q_first is non-null. It means 28178 * that these messages landed after we did a enableok() in 28179 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 28180 * service them. 28181 */ 28182 if (connp->conn_drain_next == connp) { 28183 /* Singleton in the list */ 28184 ASSERT(connp->conn_drain_prev == connp); 28185 idl->idl_conn = NULL; 28186 idl->idl_conn_draining = NULL; 28187 } else { 28188 connp->conn_drain_prev->conn_drain_next = 28189 connp->conn_drain_next; 28190 connp->conn_drain_next->conn_drain_prev = 28191 connp->conn_drain_prev; 28192 if (idl->idl_conn == connp) 28193 idl->idl_conn = connp->conn_drain_next; 28194 ASSERT(idl->idl_conn_draining != connp); 28195 28196 } 28197 connp->conn_drain_next = NULL; 28198 connp->conn_drain_prev = NULL; 28199 } 28200 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28201 } 28202 28203 /* 28204 * Write service routine. Shared perimeter entry point. 28205 * ip_wsrv can be called in any of the following ways. 28206 * 1. The device queue's messages has fallen below the low water mark 28207 * and STREAMS has backenabled the ill_wq. We walk thru all the 28208 * the drain lists and backenable the first conn in each list. 28209 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 28210 * qenabled non-tcp upper layers. We start dequeing messages and call 28211 * ip_wput for each message. 28212 */ 28213 28214 void 28215 ip_wsrv(queue_t *q) 28216 { 28217 conn_t *connp; 28218 ill_t *ill; 28219 mblk_t *mp; 28220 28221 if (q->q_next) { 28222 ill = (ill_t *)q->q_ptr; 28223 if (ill->ill_state_flags == 0) { 28224 /* 28225 * The device flow control has opened up. 28226 * Walk through conn drain lists and qenable the 28227 * first conn in each list. This makes sense only 28228 * if the stream is fully plumbed and setup. 28229 * Hence the if check above. 28230 */ 28231 ip1dbg(("ip_wsrv: walking\n")); 28232 conn_walk_drain(ill->ill_ipst); 28233 } 28234 return; 28235 } 28236 28237 connp = Q_TO_CONN(q); 28238 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 28239 28240 /* 28241 * 1. Set conn_draining flag to signal that service is active. 28242 * 28243 * 2. ip_output determines whether it has been called from service, 28244 * based on the last parameter. If it is IP_WSRV it concludes it 28245 * has been called from service. 28246 * 28247 * 3. Message ordering is preserved by the following logic. 28248 * i. A directly called ip_output (i.e. not thru service) will queue 28249 * the message at the tail, if conn_draining is set (i.e. service 28250 * is running) or if q->q_first is non-null. 28251 * 28252 * ii. If ip_output is called from service, and if ip_output cannot 28253 * putnext due to flow control, it does a putbq. 28254 * 28255 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 28256 * (causing an infinite loop). 28257 */ 28258 ASSERT(!connp->conn_did_putbq); 28259 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 28260 connp->conn_draining = 1; 28261 noenable(q); 28262 while ((mp = getq(q)) != NULL) { 28263 ASSERT(CONN_Q(q)); 28264 28265 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 28266 if (connp->conn_did_putbq) { 28267 /* ip_wput did a putbq */ 28268 break; 28269 } 28270 } 28271 /* 28272 * At this point, a thread coming down from top, calling 28273 * ip_wput, may end up queueing the message. We have not yet 28274 * enabled the queue, so ip_wsrv won't be called again. 28275 * To avoid this race, check q->q_first again (in the loop) 28276 * If the other thread queued the message before we call 28277 * enableok(), we will catch it in the q->q_first check. 28278 * If the other thread queues the message after we call 28279 * enableok(), ip_wsrv will be called again by STREAMS. 28280 */ 28281 connp->conn_draining = 0; 28282 enableok(q); 28283 } 28284 28285 /* Enable the next conn for draining */ 28286 conn_drain_tail(connp, B_FALSE); 28287 28288 connp->conn_did_putbq = 0; 28289 } 28290 28291 /* 28292 * Walk the list of all conn's calling the function provided with the 28293 * specified argument for each. Note that this only walks conn's that 28294 * have been bound. 28295 * Applies to both IPv4 and IPv6. 28296 */ 28297 static void 28298 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 28299 { 28300 conn_walk_fanout_table(ipst->ips_ipcl_udp_fanout, 28301 ipst->ips_ipcl_udp_fanout_size, 28302 func, arg, zoneid); 28303 conn_walk_fanout_table(ipst->ips_ipcl_conn_fanout, 28304 ipst->ips_ipcl_conn_fanout_size, 28305 func, arg, zoneid); 28306 conn_walk_fanout_table(ipst->ips_ipcl_bind_fanout, 28307 ipst->ips_ipcl_bind_fanout_size, 28308 func, arg, zoneid); 28309 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout, 28310 IPPROTO_MAX, func, arg, zoneid); 28311 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout_v6, 28312 IPPROTO_MAX, func, arg, zoneid); 28313 } 28314 28315 /* 28316 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 28317 * of conns that need to be drained, check if drain is already in progress. 28318 * If so set the idl_repeat bit, indicating that the last conn in the list 28319 * needs to reinitiate the drain once again, for the list. If drain is not 28320 * in progress for the list, initiate the draining, by qenabling the 1st 28321 * conn in the list. The drain is self-sustaining, each qenabled conn will 28322 * in turn qenable the next conn, when it is done/blocked/closing. 28323 */ 28324 static void 28325 conn_walk_drain(ip_stack_t *ipst) 28326 { 28327 int i; 28328 idl_t *idl; 28329 28330 IP_STAT(ipst, ip_conn_walk_drain); 28331 28332 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28333 idl = &ipst->ips_conn_drain_list[i]; 28334 mutex_enter(&idl->idl_lock); 28335 if (idl->idl_conn == NULL) { 28336 mutex_exit(&idl->idl_lock); 28337 continue; 28338 } 28339 /* 28340 * If this list is not being drained currently by 28341 * an ip_wsrv thread, start the process. 28342 */ 28343 if (idl->idl_conn_draining == NULL) { 28344 ASSERT(idl->idl_repeat == 0); 28345 qenable(idl->idl_conn->conn_wq); 28346 idl->idl_conn_draining = idl->idl_conn; 28347 } else { 28348 idl->idl_repeat = 1; 28349 } 28350 mutex_exit(&idl->idl_lock); 28351 } 28352 } 28353 28354 /* 28355 * Walk an conn hash table of `count' buckets, calling func for each entry. 28356 */ 28357 static void 28358 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg, 28359 zoneid_t zoneid) 28360 { 28361 conn_t *connp; 28362 28363 while (count-- > 0) { 28364 mutex_enter(&connfp->connf_lock); 28365 for (connp = connfp->connf_head; connp != NULL; 28366 connp = connp->conn_next) { 28367 if (zoneid == GLOBAL_ZONEID || 28368 zoneid == connp->conn_zoneid) { 28369 CONN_INC_REF(connp); 28370 mutex_exit(&connfp->connf_lock); 28371 (*func)(connp, arg); 28372 mutex_enter(&connfp->connf_lock); 28373 CONN_DEC_REF(connp); 28374 } 28375 } 28376 mutex_exit(&connfp->connf_lock); 28377 connfp++; 28378 } 28379 } 28380 28381 /* conn_walk_fanout routine invoked for ip_conn_report for each conn. */ 28382 static void 28383 conn_report1(conn_t *connp, void *mp) 28384 { 28385 char buf1[INET6_ADDRSTRLEN]; 28386 char buf2[INET6_ADDRSTRLEN]; 28387 uint_t print_len, buf_len; 28388 28389 ASSERT(connp != NULL); 28390 28391 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 28392 if (buf_len <= 0) 28393 return; 28394 (void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)); 28395 (void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)); 28396 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 28397 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 28398 "%5d %s/%05d %s/%05d\n", 28399 (void *)connp, (void *)CONNP_TO_RQ(connp), 28400 (void *)CONNP_TO_WQ(connp), connp->conn_zoneid, 28401 buf1, connp->conn_lport, 28402 buf2, connp->conn_fport); 28403 if (print_len < buf_len) { 28404 ((mblk_t *)mp)->b_wptr += print_len; 28405 } else { 28406 ((mblk_t *)mp)->b_wptr += buf_len; 28407 } 28408 } 28409 28410 /* 28411 * Named Dispatch routine to produce a formatted report on all conns 28412 * that are listed in one of the fanout tables. 28413 * This report is accessed by using the ndd utility to "get" ND variable 28414 * "ip_conn_status". 28415 */ 28416 /* ARGSUSED */ 28417 static int 28418 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 28419 { 28420 conn_t *connp = Q_TO_CONN(q); 28421 28422 (void) mi_mpprintf(mp, 28423 "CONN " MI_COL_HDRPAD_STR 28424 "rfq " MI_COL_HDRPAD_STR 28425 "stq " MI_COL_HDRPAD_STR 28426 " zone local remote"); 28427 28428 /* 28429 * Because of the ndd constraint, at most we can have 64K buffer 28430 * to put in all conn info. So to be more efficient, just 28431 * allocate a 64K buffer here, assuming we need that large buffer. 28432 * This should be OK as only privileged processes can do ndd /dev/ip. 28433 */ 28434 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 28435 /* The following may work even if we cannot get a large buf. */ 28436 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 28437 return (0); 28438 } 28439 28440 conn_walk_fanout(conn_report1, mp->b_cont, connp->conn_zoneid, 28441 connp->conn_netstack->netstack_ip); 28442 return (0); 28443 } 28444 28445 /* 28446 * Determine if the ill and multicast aspects of that packets 28447 * "matches" the conn. 28448 */ 28449 boolean_t 28450 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 28451 zoneid_t zoneid) 28452 { 28453 ill_t *in_ill; 28454 boolean_t found; 28455 ipif_t *ipif; 28456 ire_t *ire; 28457 ipaddr_t dst, src; 28458 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28459 28460 dst = ipha->ipha_dst; 28461 src = ipha->ipha_src; 28462 28463 /* 28464 * conn_incoming_ill is set by IP_BOUND_IF which limits 28465 * unicast, broadcast and multicast reception to 28466 * conn_incoming_ill. conn_wantpacket itself is called 28467 * only for BROADCAST and multicast. 28468 * 28469 * 1) ip_rput supresses duplicate broadcasts if the ill 28470 * is part of a group. Hence, we should be receiving 28471 * just one copy of broadcast for the whole group. 28472 * Thus, if it is part of the group the packet could 28473 * come on any ill of the group and hence we need a 28474 * match on the group. Otherwise, match on ill should 28475 * be sufficient. 28476 * 28477 * 2) ip_rput does not suppress duplicate multicast packets. 28478 * If there are two interfaces in a ill group and we have 28479 * 2 applications (conns) joined a multicast group G on 28480 * both the interfaces, ilm_lookup_ill filter in ip_rput 28481 * will give us two packets because we join G on both the 28482 * interfaces rather than nominating just one interface 28483 * for receiving multicast like broadcast above. So, 28484 * we have to call ilg_lookup_ill to filter out duplicate 28485 * copies, if ill is part of a group. 28486 */ 28487 in_ill = connp->conn_incoming_ill; 28488 if (in_ill != NULL) { 28489 if (in_ill->ill_group == NULL) { 28490 if (in_ill != ill) 28491 return (B_FALSE); 28492 } else if (in_ill->ill_group != ill->ill_group) { 28493 return (B_FALSE); 28494 } 28495 } 28496 28497 if (!CLASSD(dst)) { 28498 if (IPCL_ZONE_MATCH(connp, zoneid)) 28499 return (B_TRUE); 28500 /* 28501 * The conn is in a different zone; we need to check that this 28502 * broadcast address is configured in the application's zone and 28503 * on one ill in the group. 28504 */ 28505 ipif = ipif_get_next_ipif(NULL, ill); 28506 if (ipif == NULL) 28507 return (B_FALSE); 28508 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 28509 connp->conn_zoneid, NULL, 28510 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 28511 ipif_refrele(ipif); 28512 if (ire != NULL) { 28513 ire_refrele(ire); 28514 return (B_TRUE); 28515 } else { 28516 return (B_FALSE); 28517 } 28518 } 28519 28520 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 28521 connp->conn_zoneid == zoneid) { 28522 /* 28523 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 28524 * disabled, therefore we don't dispatch the multicast packet to 28525 * the sending zone. 28526 */ 28527 return (B_FALSE); 28528 } 28529 28530 if (IS_LOOPBACK(ill) && connp->conn_zoneid != zoneid) { 28531 /* 28532 * Multicast packet on the loopback interface: we only match 28533 * conns who joined the group in the specified zone. 28534 */ 28535 return (B_FALSE); 28536 } 28537 28538 if (connp->conn_multi_router) { 28539 /* multicast packet and multicast router socket: send up */ 28540 return (B_TRUE); 28541 } 28542 28543 mutex_enter(&connp->conn_lock); 28544 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 28545 mutex_exit(&connp->conn_lock); 28546 return (found); 28547 } 28548 28549 /* 28550 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 28551 */ 28552 /* ARGSUSED */ 28553 static void 28554 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 28555 { 28556 ill_t *ill = (ill_t *)q->q_ptr; 28557 mblk_t *mp1, *mp2; 28558 ipif_t *ipif; 28559 int err = 0; 28560 conn_t *connp = NULL; 28561 ipsq_t *ipsq; 28562 arc_t *arc; 28563 28564 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 28565 28566 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 28567 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 28568 28569 ASSERT(IAM_WRITER_ILL(ill)); 28570 mp2 = mp->b_cont; 28571 mp->b_cont = NULL; 28572 28573 /* 28574 * We have now received the arp bringup completion message 28575 * from ARP. Mark the arp bringup as done. Also if the arp 28576 * stream has already started closing, send up the AR_ARP_CLOSING 28577 * ack now since ARP is waiting in close for this ack. 28578 */ 28579 mutex_enter(&ill->ill_lock); 28580 ill->ill_arp_bringup_pending = 0; 28581 if (ill->ill_arp_closing) { 28582 mutex_exit(&ill->ill_lock); 28583 /* Let's reuse the mp for sending the ack */ 28584 arc = (arc_t *)mp->b_rptr; 28585 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 28586 arc->arc_cmd = AR_ARP_CLOSING; 28587 qreply(q, mp); 28588 } else { 28589 mutex_exit(&ill->ill_lock); 28590 freeb(mp); 28591 } 28592 28593 ipsq = ill->ill_phyint->phyint_ipsq; 28594 ipif = ipsq->ipsq_pending_ipif; 28595 mp1 = ipsq_pending_mp_get(ipsq, &connp); 28596 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 28597 if (mp1 == NULL) { 28598 /* bringup was aborted by the user */ 28599 freemsg(mp2); 28600 return; 28601 } 28602 28603 /* 28604 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 28605 * must have an associated conn_t. Otherwise, we're bringing this 28606 * interface back up as part of handling an asynchronous event (e.g., 28607 * physical address change). 28608 */ 28609 if (ipsq->ipsq_current_ioctl != 0) { 28610 ASSERT(connp != NULL); 28611 q = CONNP_TO_WQ(connp); 28612 } else { 28613 ASSERT(connp == NULL); 28614 q = ill->ill_rq; 28615 } 28616 28617 /* 28618 * If the DL_BIND_REQ fails, it is noted 28619 * in arc_name_offset. 28620 */ 28621 err = *((int *)mp2->b_rptr); 28622 if (err == 0) { 28623 if (ipif->ipif_isv6) { 28624 if ((err = ipif_up_done_v6(ipif)) != 0) 28625 ip0dbg(("ip_arp_done: init failed\n")); 28626 } else { 28627 if ((err = ipif_up_done(ipif)) != 0) 28628 ip0dbg(("ip_arp_done: init failed\n")); 28629 } 28630 } else { 28631 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 28632 } 28633 28634 freemsg(mp2); 28635 28636 if ((err == 0) && (ill->ill_up_ipifs)) { 28637 err = ill_up_ipifs(ill, q, mp1); 28638 if (err == EINPROGRESS) 28639 return; 28640 } 28641 28642 if (ill->ill_up_ipifs) 28643 ill_group_cleanup(ill); 28644 28645 /* 28646 * The operation must complete without EINPROGRESS since 28647 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 28648 * Otherwise, the operation will be stuck forever in the ipsq. 28649 */ 28650 ASSERT(err != EINPROGRESS); 28651 if (ipsq->ipsq_current_ioctl != 0) 28652 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 28653 else 28654 ipsq_current_finish(ipsq); 28655 } 28656 28657 /* Allocate the private structure */ 28658 static int 28659 ip_priv_alloc(void **bufp) 28660 { 28661 void *buf; 28662 28663 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 28664 return (ENOMEM); 28665 28666 *bufp = buf; 28667 return (0); 28668 } 28669 28670 /* Function to delete the private structure */ 28671 void 28672 ip_priv_free(void *buf) 28673 { 28674 ASSERT(buf != NULL); 28675 kmem_free(buf, sizeof (ip_priv_t)); 28676 } 28677 28678 /* 28679 * The entry point for IPPF processing. 28680 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 28681 * routine just returns. 28682 * 28683 * When called, ip_process generates an ipp_packet_t structure 28684 * which holds the state information for this packet and invokes the 28685 * the classifier (via ipp_packet_process). The classification, depending on 28686 * configured filters, results in a list of actions for this packet. Invoking 28687 * an action may cause the packet to be dropped, in which case the resulting 28688 * mblk (*mpp) is NULL. proc indicates the callout position for 28689 * this packet and ill_index is the interface this packet on or will leave 28690 * on (inbound and outbound resp.). 28691 */ 28692 void 28693 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 28694 { 28695 mblk_t *mp; 28696 ip_priv_t *priv; 28697 ipp_action_id_t aid; 28698 int rc = 0; 28699 ipp_packet_t *pp; 28700 #define IP_CLASS "ip" 28701 28702 /* If the classifier is not loaded, return */ 28703 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 28704 return; 28705 } 28706 28707 mp = *mpp; 28708 ASSERT(mp != NULL); 28709 28710 /* Allocate the packet structure */ 28711 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 28712 if (rc != 0) { 28713 *mpp = NULL; 28714 freemsg(mp); 28715 return; 28716 } 28717 28718 /* Allocate the private structure */ 28719 rc = ip_priv_alloc((void **)&priv); 28720 if (rc != 0) { 28721 *mpp = NULL; 28722 freemsg(mp); 28723 ipp_packet_free(pp); 28724 return; 28725 } 28726 priv->proc = proc; 28727 priv->ill_index = ill_index; 28728 ipp_packet_set_private(pp, priv, ip_priv_free); 28729 ipp_packet_set_data(pp, mp); 28730 28731 /* Invoke the classifier */ 28732 rc = ipp_packet_process(&pp); 28733 if (pp != NULL) { 28734 mp = ipp_packet_get_data(pp); 28735 ipp_packet_free(pp); 28736 if (rc != 0) { 28737 freemsg(mp); 28738 *mpp = NULL; 28739 } 28740 } else { 28741 *mpp = NULL; 28742 } 28743 #undef IP_CLASS 28744 } 28745 28746 /* 28747 * Propagate a multicast group membership operation (add/drop) on 28748 * all the interfaces crossed by the related multirt routes. 28749 * The call is considered successful if the operation succeeds 28750 * on at least one interface. 28751 */ 28752 static int 28753 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 28754 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 28755 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 28756 mblk_t *first_mp) 28757 { 28758 ire_t *ire_gw; 28759 irb_t *irb; 28760 int error = 0; 28761 opt_restart_t *or; 28762 ip_stack_t *ipst = ire->ire_ipst; 28763 28764 irb = ire->ire_bucket; 28765 ASSERT(irb != NULL); 28766 28767 ASSERT(DB_TYPE(first_mp) == M_CTL); 28768 28769 or = (opt_restart_t *)first_mp->b_rptr; 28770 IRB_REFHOLD(irb); 28771 for (; ire != NULL; ire = ire->ire_next) { 28772 if ((ire->ire_flags & RTF_MULTIRT) == 0) 28773 continue; 28774 if (ire->ire_addr != group) 28775 continue; 28776 28777 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 28778 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 28779 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE, ipst); 28780 /* No resolver exists for the gateway; skip this ire. */ 28781 if (ire_gw == NULL) 28782 continue; 28783 28784 /* 28785 * This function can return EINPROGRESS. If so the operation 28786 * will be restarted from ip_restart_optmgmt which will 28787 * call ip_opt_set and option processing will restart for 28788 * this option. So we may end up calling 'fn' more than once. 28789 * This requires that 'fn' is idempotent except for the 28790 * return value. The operation is considered a success if 28791 * it succeeds at least once on any one interface. 28792 */ 28793 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 28794 NULL, fmode, src, first_mp); 28795 if (error == 0) 28796 or->or_private = CGTP_MCAST_SUCCESS; 28797 28798 if (ip_debug > 0) { 28799 ulong_t off; 28800 char *ksym; 28801 ksym = kobj_getsymname((uintptr_t)fn, &off); 28802 ip2dbg(("ip_multirt_apply_membership: " 28803 "called %s, multirt group 0x%08x via itf 0x%08x, " 28804 "error %d [success %u]\n", 28805 ksym ? ksym : "?", 28806 ntohl(group), ntohl(ire_gw->ire_src_addr), 28807 error, or->or_private)); 28808 } 28809 28810 ire_refrele(ire_gw); 28811 if (error == EINPROGRESS) { 28812 IRB_REFRELE(irb); 28813 return (error); 28814 } 28815 } 28816 IRB_REFRELE(irb); 28817 /* 28818 * Consider the call as successful if we succeeded on at least 28819 * one interface. Otherwise, return the last encountered error. 28820 */ 28821 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 28822 } 28823 28824 28825 /* 28826 * Issue a warning regarding a route crossing an interface with an 28827 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 28828 * amount of time is logged. 28829 */ 28830 static void 28831 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 28832 { 28833 hrtime_t current = gethrtime(); 28834 char buf[INET_ADDRSTRLEN]; 28835 ip_stack_t *ipst = ire->ire_ipst; 28836 28837 /* Convert interval in ms to hrtime in ns */ 28838 if (ipst->ips_multirt_bad_mtu_last_time + 28839 ((hrtime_t)ipst->ips_ip_multirt_log_interval * (hrtime_t)1000000) <= 28840 current) { 28841 cmn_err(CE_WARN, "ip: ignoring multiroute " 28842 "to %s, incorrect MTU %u (expected %u)\n", 28843 ip_dot_addr(ire->ire_addr, buf), 28844 ire->ire_max_frag, max_frag); 28845 28846 ipst->ips_multirt_bad_mtu_last_time = current; 28847 } 28848 } 28849 28850 28851 /* 28852 * Get the CGTP (multirouting) filtering status. 28853 * If 0, the CGTP hooks are transparent. 28854 */ 28855 /* ARGSUSED */ 28856 static int 28857 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 28858 { 28859 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28860 28861 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 28862 return (0); 28863 } 28864 28865 28866 /* 28867 * Set the CGTP (multirouting) filtering status. 28868 * If the status is changed from active to transparent 28869 * or from transparent to active, forward the new status 28870 * to the filtering module (if loaded). 28871 */ 28872 /* ARGSUSED */ 28873 static int 28874 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 28875 cred_t *ioc_cr) 28876 { 28877 long new_value; 28878 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28879 ip_stack_t *ipst = CONNQ_TO_IPST(q); 28880 28881 if (secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 28882 return (EPERM); 28883 28884 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 28885 new_value < 0 || new_value > 1) { 28886 return (EINVAL); 28887 } 28888 28889 if ((!*ip_cgtp_filter_value) && new_value) { 28890 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 28891 ipst->ips_ip_cgtp_filter_ops == NULL ? 28892 " (module not loaded)" : ""); 28893 } 28894 if (*ip_cgtp_filter_value && (!new_value)) { 28895 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 28896 ipst->ips_ip_cgtp_filter_ops == NULL ? 28897 " (module not loaded)" : ""); 28898 } 28899 28900 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 28901 int res; 28902 netstackid_t stackid; 28903 28904 stackid = ipst->ips_netstack->netstack_stackid; 28905 res = ipst->ips_ip_cgtp_filter_ops->cfo_change_state(stackid, 28906 new_value); 28907 if (res) 28908 return (res); 28909 } 28910 28911 *ip_cgtp_filter_value = (boolean_t)new_value; 28912 28913 return (0); 28914 } 28915 28916 28917 /* 28918 * Return the expected CGTP hooks version number. 28919 */ 28920 int 28921 ip_cgtp_filter_supported(void) 28922 { 28923 return (ip_cgtp_filter_rev); 28924 } 28925 28926 28927 /* 28928 * CGTP hooks can be registered by invoking this function. 28929 * Checks that the version number matches. 28930 */ 28931 int 28932 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops) 28933 { 28934 netstack_t *ns; 28935 ip_stack_t *ipst; 28936 28937 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 28938 return (ENOTSUP); 28939 28940 ns = netstack_find_by_stackid(stackid); 28941 if (ns == NULL) 28942 return (EINVAL); 28943 ipst = ns->netstack_ip; 28944 ASSERT(ipst != NULL); 28945 28946 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 28947 netstack_rele(ns); 28948 return (EALREADY); 28949 } 28950 28951 ipst->ips_ip_cgtp_filter_ops = ops; 28952 netstack_rele(ns); 28953 return (0); 28954 } 28955 28956 /* 28957 * CGTP hooks can be unregistered by invoking this function. 28958 * Returns ENXIO if there was no registration. 28959 * Returns EBUSY if the ndd variable has not been turned off. 28960 */ 28961 int 28962 ip_cgtp_filter_unregister(netstackid_t stackid) 28963 { 28964 netstack_t *ns; 28965 ip_stack_t *ipst; 28966 28967 ns = netstack_find_by_stackid(stackid); 28968 if (ns == NULL) 28969 return (EINVAL); 28970 ipst = ns->netstack_ip; 28971 ASSERT(ipst != NULL); 28972 28973 if (ipst->ips_ip_cgtp_filter) { 28974 netstack_rele(ns); 28975 return (EBUSY); 28976 } 28977 28978 if (ipst->ips_ip_cgtp_filter_ops == NULL) { 28979 netstack_rele(ns); 28980 return (ENXIO); 28981 } 28982 ipst->ips_ip_cgtp_filter_ops = NULL; 28983 netstack_rele(ns); 28984 return (0); 28985 } 28986 28987 /* 28988 * Check whether there is a CGTP filter registration. 28989 * Returns non-zero if there is a registration, otherwise returns zero. 28990 * Note: returns zero if bad stackid. 28991 */ 28992 int 28993 ip_cgtp_filter_is_registered(netstackid_t stackid) 28994 { 28995 netstack_t *ns; 28996 ip_stack_t *ipst; 28997 int ret; 28998 28999 ns = netstack_find_by_stackid(stackid); 29000 if (ns == NULL) 29001 return (0); 29002 ipst = ns->netstack_ip; 29003 ASSERT(ipst != NULL); 29004 29005 if (ipst->ips_ip_cgtp_filter_ops != NULL) 29006 ret = 1; 29007 else 29008 ret = 0; 29009 29010 netstack_rele(ns); 29011 return (ret); 29012 } 29013 29014 static squeue_func_t 29015 ip_squeue_switch(int val) 29016 { 29017 squeue_func_t rval = squeue_fill; 29018 29019 switch (val) { 29020 case IP_SQUEUE_ENTER_NODRAIN: 29021 rval = squeue_enter_nodrain; 29022 break; 29023 case IP_SQUEUE_ENTER: 29024 rval = squeue_enter; 29025 break; 29026 default: 29027 break; 29028 } 29029 return (rval); 29030 } 29031 29032 /* ARGSUSED */ 29033 static int 29034 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 29035 caddr_t addr, cred_t *cr) 29036 { 29037 int *v = (int *)addr; 29038 long new_value; 29039 29040 if (secpolicy_net_config(cr, B_FALSE) != 0) 29041 return (EPERM); 29042 29043 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29044 return (EINVAL); 29045 29046 ip_input_proc = ip_squeue_switch(new_value); 29047 *v = new_value; 29048 return (0); 29049 } 29050 29051 /* 29052 * Handle ndd set of variables which require PRIV_SYS_NET_CONFIG such as 29053 * ip_debug. 29054 */ 29055 /* ARGSUSED */ 29056 static int 29057 ip_int_set(queue_t *q, mblk_t *mp, char *value, 29058 caddr_t addr, cred_t *cr) 29059 { 29060 int *v = (int *)addr; 29061 long new_value; 29062 29063 if (secpolicy_net_config(cr, B_FALSE) != 0) 29064 return (EPERM); 29065 29066 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29067 return (EINVAL); 29068 29069 *v = new_value; 29070 return (0); 29071 } 29072 29073 /* 29074 * Handle changes to ipmp_hook_emulation ndd variable. 29075 * Need to update phyint_hook_ifindex. 29076 * Also generate a nic plumb event should a new ifidex be assigned to a group. 29077 */ 29078 static void 29079 ipmp_hook_emulation_changed(ip_stack_t *ipst) 29080 { 29081 phyint_t *phyi; 29082 phyint_t *phyi_tmp; 29083 char *groupname; 29084 int namelen; 29085 ill_t *ill; 29086 boolean_t new_group; 29087 29088 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29089 /* 29090 * Group indicies are stored in the phyint - a common structure 29091 * to both IPv4 and IPv6. 29092 */ 29093 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 29094 for (; phyi != NULL; 29095 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 29096 phyi, AVL_AFTER)) { 29097 /* Ignore the ones that do not have a group */ 29098 if (phyi->phyint_groupname_len == 0) 29099 continue; 29100 29101 /* 29102 * Look for other phyint in group. 29103 * Clear name/namelen so the lookup doesn't find ourselves. 29104 */ 29105 namelen = phyi->phyint_groupname_len; 29106 groupname = phyi->phyint_groupname; 29107 phyi->phyint_groupname_len = 0; 29108 phyi->phyint_groupname = NULL; 29109 29110 phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst); 29111 /* Restore */ 29112 phyi->phyint_groupname_len = namelen; 29113 phyi->phyint_groupname = groupname; 29114 29115 new_group = B_FALSE; 29116 if (ipst->ips_ipmp_hook_emulation) { 29117 /* 29118 * If the group already exists and has already 29119 * been assigned a group ifindex, we use the existing 29120 * group_ifindex, otherwise we pick a new group_ifindex 29121 * here. 29122 */ 29123 if (phyi_tmp != NULL && 29124 phyi_tmp->phyint_group_ifindex != 0) { 29125 phyi->phyint_group_ifindex = 29126 phyi_tmp->phyint_group_ifindex; 29127 } else { 29128 /* XXX We need a recovery strategy here. */ 29129 if (!ip_assign_ifindex( 29130 &phyi->phyint_group_ifindex, ipst)) 29131 cmn_err(CE_PANIC, 29132 "ip_assign_ifindex() failed"); 29133 new_group = B_TRUE; 29134 } 29135 } else { 29136 phyi->phyint_group_ifindex = 0; 29137 } 29138 if (ipst->ips_ipmp_hook_emulation) 29139 phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex; 29140 else 29141 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 29142 29143 /* 29144 * For IP Filter to find out the relationship between 29145 * names and interface indicies, we need to generate 29146 * a NE_PLUMB event when a new group can appear. 29147 * We always generate events when a new interface appears 29148 * (even when ipmp_hook_emulation is set) so there 29149 * is no need to generate NE_PLUMB events when 29150 * ipmp_hook_emulation is turned off. 29151 * And since it isn't critical for IP Filter to get 29152 * the NE_UNPLUMB events we skip those here. 29153 */ 29154 if (new_group) { 29155 /* 29156 * First phyint in group - generate group PLUMB event. 29157 * Since we are not running inside the ipsq we do 29158 * the dispatch immediately. 29159 */ 29160 if (phyi->phyint_illv4 != NULL) 29161 ill = phyi->phyint_illv4; 29162 else 29163 ill = phyi->phyint_illv6; 29164 29165 if (ill != NULL) { 29166 mutex_enter(&ill->ill_lock); 29167 ill_nic_info_plumb(ill, B_TRUE); 29168 ill_nic_info_dispatch(ill); 29169 mutex_exit(&ill->ill_lock); 29170 } 29171 } 29172 } 29173 rw_exit(&ipst->ips_ill_g_lock); 29174 } 29175 29176 /* ARGSUSED */ 29177 static int 29178 ipmp_hook_emulation_set(queue_t *q, mblk_t *mp, char *value, 29179 caddr_t addr, cred_t *cr) 29180 { 29181 int *v = (int *)addr; 29182 long new_value; 29183 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29184 29185 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29186 return (EINVAL); 29187 29188 if (*v != new_value) { 29189 *v = new_value; 29190 ipmp_hook_emulation_changed(ipst); 29191 } 29192 return (0); 29193 } 29194 29195 static void * 29196 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 29197 { 29198 kstat_t *ksp; 29199 29200 ip_stat_t template = { 29201 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 29202 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 29203 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 29204 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 29205 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 29206 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 29207 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 29208 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 29209 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 29210 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 29211 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 29212 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 29213 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 29214 { "ip_db_ref", KSTAT_DATA_UINT64 }, 29215 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 29216 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 29217 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 29218 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 29219 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 29220 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 29221 { "ip_opt", KSTAT_DATA_UINT64 }, 29222 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 29223 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 29224 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 29225 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 29226 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 29227 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 29228 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 29229 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 29230 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 29231 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 29232 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 29233 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 29234 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29235 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29236 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29237 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29238 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29239 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29240 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29241 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29242 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 29243 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 29244 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 29245 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 29246 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 29247 }; 29248 29249 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 29250 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 29251 KSTAT_FLAG_VIRTUAL, stackid); 29252 29253 if (ksp == NULL) 29254 return (NULL); 29255 29256 bcopy(&template, ip_statisticsp, sizeof (template)); 29257 ksp->ks_data = (void *)ip_statisticsp; 29258 ksp->ks_private = (void *)(uintptr_t)stackid; 29259 29260 kstat_install(ksp); 29261 return (ksp); 29262 } 29263 29264 static void 29265 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 29266 { 29267 if (ksp != NULL) { 29268 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29269 kstat_delete_netstack(ksp, stackid); 29270 } 29271 } 29272 29273 static void * 29274 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 29275 { 29276 kstat_t *ksp; 29277 29278 ip_named_kstat_t template = { 29279 { "forwarding", KSTAT_DATA_UINT32, 0 }, 29280 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 29281 { "inReceives", KSTAT_DATA_UINT64, 0 }, 29282 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 29283 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 29284 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 29285 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 29286 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 29287 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 29288 { "outRequests", KSTAT_DATA_UINT64, 0 }, 29289 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 29290 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 29291 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 29292 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 29293 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 29294 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 29295 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 29296 { "fragFails", KSTAT_DATA_UINT32, 0 }, 29297 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 29298 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 29299 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 29300 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 29301 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 29302 { "inErrs", KSTAT_DATA_UINT32, 0 }, 29303 { "noPorts", KSTAT_DATA_UINT32, 0 }, 29304 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 29305 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 29306 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 29307 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 29308 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 29309 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 29310 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 29311 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 29312 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 29313 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 29314 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 29315 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 29316 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 29317 }; 29318 29319 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 29320 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 29321 if (ksp == NULL || ksp->ks_data == NULL) 29322 return (NULL); 29323 29324 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 29325 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 29326 template.reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29327 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 29328 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 29329 29330 template.netToMediaEntrySize.value.i32 = 29331 sizeof (mib2_ipNetToMediaEntry_t); 29332 29333 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 29334 29335 bcopy(&template, ksp->ks_data, sizeof (template)); 29336 ksp->ks_update = ip_kstat_update; 29337 ksp->ks_private = (void *)(uintptr_t)stackid; 29338 29339 kstat_install(ksp); 29340 return (ksp); 29341 } 29342 29343 static void 29344 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29345 { 29346 if (ksp != NULL) { 29347 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29348 kstat_delete_netstack(ksp, stackid); 29349 } 29350 } 29351 29352 static int 29353 ip_kstat_update(kstat_t *kp, int rw) 29354 { 29355 ip_named_kstat_t *ipkp; 29356 mib2_ipIfStatsEntry_t ipmib; 29357 ill_walk_context_t ctx; 29358 ill_t *ill; 29359 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29360 netstack_t *ns; 29361 ip_stack_t *ipst; 29362 29363 if (kp == NULL || kp->ks_data == NULL) 29364 return (EIO); 29365 29366 if (rw == KSTAT_WRITE) 29367 return (EACCES); 29368 29369 ns = netstack_find_by_stackid(stackid); 29370 if (ns == NULL) 29371 return (-1); 29372 ipst = ns->netstack_ip; 29373 if (ipst == NULL) { 29374 netstack_rele(ns); 29375 return (-1); 29376 } 29377 ipkp = (ip_named_kstat_t *)kp->ks_data; 29378 29379 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 29380 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29381 ill = ILL_START_WALK_V4(&ctx, ipst); 29382 for (; ill != NULL; ill = ill_next(&ctx, ill)) 29383 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 29384 rw_exit(&ipst->ips_ill_g_lock); 29385 29386 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 29387 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 29388 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 29389 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 29390 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 29391 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 29392 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 29393 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 29394 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 29395 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 29396 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 29397 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 29398 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29399 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 29400 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 29401 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 29402 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 29403 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 29404 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 29405 29406 ipkp->routingDiscards.value.ui32 = 0; 29407 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 29408 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 29409 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 29410 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 29411 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 29412 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 29413 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 29414 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 29415 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 29416 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 29417 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 29418 29419 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 29420 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 29421 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 29422 29423 netstack_rele(ns); 29424 29425 return (0); 29426 } 29427 29428 static void * 29429 icmp_kstat_init(netstackid_t stackid) 29430 { 29431 kstat_t *ksp; 29432 29433 icmp_named_kstat_t template = { 29434 { "inMsgs", KSTAT_DATA_UINT32 }, 29435 { "inErrors", KSTAT_DATA_UINT32 }, 29436 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 29437 { "inTimeExcds", KSTAT_DATA_UINT32 }, 29438 { "inParmProbs", KSTAT_DATA_UINT32 }, 29439 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 29440 { "inRedirects", KSTAT_DATA_UINT32 }, 29441 { "inEchos", KSTAT_DATA_UINT32 }, 29442 { "inEchoReps", KSTAT_DATA_UINT32 }, 29443 { "inTimestamps", KSTAT_DATA_UINT32 }, 29444 { "inTimestampReps", KSTAT_DATA_UINT32 }, 29445 { "inAddrMasks", KSTAT_DATA_UINT32 }, 29446 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 29447 { "outMsgs", KSTAT_DATA_UINT32 }, 29448 { "outErrors", KSTAT_DATA_UINT32 }, 29449 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 29450 { "outTimeExcds", KSTAT_DATA_UINT32 }, 29451 { "outParmProbs", KSTAT_DATA_UINT32 }, 29452 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 29453 { "outRedirects", KSTAT_DATA_UINT32 }, 29454 { "outEchos", KSTAT_DATA_UINT32 }, 29455 { "outEchoReps", KSTAT_DATA_UINT32 }, 29456 { "outTimestamps", KSTAT_DATA_UINT32 }, 29457 { "outTimestampReps", KSTAT_DATA_UINT32 }, 29458 { "outAddrMasks", KSTAT_DATA_UINT32 }, 29459 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 29460 { "inChksumErrs", KSTAT_DATA_UINT32 }, 29461 { "inUnknowns", KSTAT_DATA_UINT32 }, 29462 { "inFragNeeded", KSTAT_DATA_UINT32 }, 29463 { "outFragNeeded", KSTAT_DATA_UINT32 }, 29464 { "outDrops", KSTAT_DATA_UINT32 }, 29465 { "inOverFlows", KSTAT_DATA_UINT32 }, 29466 { "inBadRedirects", KSTAT_DATA_UINT32 }, 29467 }; 29468 29469 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 29470 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 29471 if (ksp == NULL || ksp->ks_data == NULL) 29472 return (NULL); 29473 29474 bcopy(&template, ksp->ks_data, sizeof (template)); 29475 29476 ksp->ks_update = icmp_kstat_update; 29477 ksp->ks_private = (void *)(uintptr_t)stackid; 29478 29479 kstat_install(ksp); 29480 return (ksp); 29481 } 29482 29483 static void 29484 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29485 { 29486 if (ksp != NULL) { 29487 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29488 kstat_delete_netstack(ksp, stackid); 29489 } 29490 } 29491 29492 static int 29493 icmp_kstat_update(kstat_t *kp, int rw) 29494 { 29495 icmp_named_kstat_t *icmpkp; 29496 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29497 netstack_t *ns; 29498 ip_stack_t *ipst; 29499 29500 if ((kp == NULL) || (kp->ks_data == NULL)) 29501 return (EIO); 29502 29503 if (rw == KSTAT_WRITE) 29504 return (EACCES); 29505 29506 ns = netstack_find_by_stackid(stackid); 29507 if (ns == NULL) 29508 return (-1); 29509 ipst = ns->netstack_ip; 29510 if (ipst == NULL) { 29511 netstack_rele(ns); 29512 return (-1); 29513 } 29514 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 29515 29516 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 29517 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 29518 icmpkp->inDestUnreachs.value.ui32 = 29519 ipst->ips_icmp_mib.icmpInDestUnreachs; 29520 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 29521 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 29522 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 29523 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 29524 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 29525 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 29526 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 29527 icmpkp->inTimestampReps.value.ui32 = 29528 ipst->ips_icmp_mib.icmpInTimestampReps; 29529 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 29530 icmpkp->inAddrMaskReps.value.ui32 = 29531 ipst->ips_icmp_mib.icmpInAddrMaskReps; 29532 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 29533 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 29534 icmpkp->outDestUnreachs.value.ui32 = 29535 ipst->ips_icmp_mib.icmpOutDestUnreachs; 29536 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 29537 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 29538 icmpkp->outSrcQuenchs.value.ui32 = 29539 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 29540 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 29541 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 29542 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 29543 icmpkp->outTimestamps.value.ui32 = 29544 ipst->ips_icmp_mib.icmpOutTimestamps; 29545 icmpkp->outTimestampReps.value.ui32 = 29546 ipst->ips_icmp_mib.icmpOutTimestampReps; 29547 icmpkp->outAddrMasks.value.ui32 = 29548 ipst->ips_icmp_mib.icmpOutAddrMasks; 29549 icmpkp->outAddrMaskReps.value.ui32 = 29550 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 29551 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 29552 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 29553 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 29554 icmpkp->outFragNeeded.value.ui32 = 29555 ipst->ips_icmp_mib.icmpOutFragNeeded; 29556 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 29557 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 29558 icmpkp->inBadRedirects.value.ui32 = 29559 ipst->ips_icmp_mib.icmpInBadRedirects; 29560 29561 netstack_rele(ns); 29562 return (0); 29563 } 29564 29565 /* 29566 * This is the fanout function for raw socket opened for SCTP. Note 29567 * that it is called after SCTP checks that there is no socket which 29568 * wants a packet. Then before SCTP handles this out of the blue packet, 29569 * this function is called to see if there is any raw socket for SCTP. 29570 * If there is and it is bound to the correct address, the packet will 29571 * be sent to that socket. Note that only one raw socket can be bound to 29572 * a port. This is assured in ipcl_sctp_hash_insert(); 29573 */ 29574 void 29575 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 29576 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 29577 zoneid_t zoneid) 29578 { 29579 conn_t *connp; 29580 queue_t *rq; 29581 mblk_t *first_mp; 29582 boolean_t secure; 29583 ip6_t *ip6h; 29584 ip_stack_t *ipst = recv_ill->ill_ipst; 29585 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 29586 29587 first_mp = mp; 29588 if (mctl_present) { 29589 mp = first_mp->b_cont; 29590 secure = ipsec_in_is_secure(first_mp); 29591 ASSERT(mp != NULL); 29592 } else { 29593 secure = B_FALSE; 29594 } 29595 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 29596 29597 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha, ipst); 29598 if (connp == NULL) { 29599 sctp_ootb_input(first_mp, recv_ill, zoneid, mctl_present); 29600 return; 29601 } 29602 rq = connp->conn_rq; 29603 if (!canputnext(rq)) { 29604 CONN_DEC_REF(connp); 29605 BUMP_MIB(recv_ill->ill_ip_mib, rawipIfStatsInOverflows); 29606 freemsg(first_mp); 29607 return; 29608 } 29609 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 29610 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || secure) { 29611 first_mp = ipsec_check_inbound_policy(first_mp, connp, 29612 (isv4 ? ipha : NULL), ip6h, mctl_present); 29613 if (first_mp == NULL) { 29614 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 29615 CONN_DEC_REF(connp); 29616 return; 29617 } 29618 } 29619 /* 29620 * We probably should not send M_CTL message up to 29621 * raw socket. 29622 */ 29623 if (mctl_present) 29624 freeb(first_mp); 29625 29626 /* Initiate IPPF processing here if needed. */ 29627 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) || 29628 (!isv4 && IP6_IN_IPP(flags, ipst))) { 29629 ip_process(IPP_LOCAL_IN, &mp, 29630 recv_ill->ill_phyint->phyint_ifindex); 29631 if (mp == NULL) { 29632 CONN_DEC_REF(connp); 29633 return; 29634 } 29635 } 29636 29637 if (connp->conn_recvif || connp->conn_recvslla || 29638 ((connp->conn_ip_recvpktinfo || 29639 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 29640 (flags & IP_FF_IPINFO))) { 29641 int in_flags = 0; 29642 29643 /* 29644 * Since sctp does not support IP_RECVPKTINFO for v4, only pass 29645 * IPF_RECVIF. 29646 */ 29647 if (connp->conn_recvif || connp->conn_ip_recvpktinfo) { 29648 in_flags = IPF_RECVIF; 29649 } 29650 if (connp->conn_recvslla) { 29651 in_flags |= IPF_RECVSLLA; 29652 } 29653 if (isv4) { 29654 mp = ip_add_info(mp, recv_ill, in_flags, 29655 IPCL_ZONEID(connp), ipst); 29656 } else { 29657 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 29658 if (mp == NULL) { 29659 BUMP_MIB(recv_ill->ill_ip_mib, 29660 ipIfStatsInDiscards); 29661 CONN_DEC_REF(connp); 29662 return; 29663 } 29664 } 29665 } 29666 29667 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 29668 /* 29669 * We are sending the IPSEC_IN message also up. Refer 29670 * to comments above this function. 29671 * This is the SOCK_RAW, IPPROTO_SCTP case. 29672 */ 29673 (connp->conn_recv)(connp, mp, NULL); 29674 CONN_DEC_REF(connp); 29675 } 29676 29677 #define UPDATE_IP_MIB_OB_COUNTERS(ill, len) \ 29678 { \ 29679 BUMP_MIB((ill)->ill_ip_mib, ipIfStatsHCOutTransmits); \ 29680 UPDATE_MIB((ill)->ill_ip_mib, ipIfStatsHCOutOctets, (len)); \ 29681 } 29682 /* 29683 * This function should be called only if all packet processing 29684 * including fragmentation is complete. Callers of this function 29685 * must set mp->b_prev to one of these values: 29686 * {0, IPP_FWD_OUT, IPP_LOCAL_OUT} 29687 * prior to handing over the mp as first argument to this function. 29688 * 29689 * If the ire passed by caller is incomplete, this function 29690 * queues the packet and if necessary, sends ARP request and bails. 29691 * If the ire passed is fully resolved, we simply prepend 29692 * the link-layer header to the packet, do ipsec hw acceleration 29693 * work if necessary, and send the packet out on the wire. 29694 * 29695 * NOTE: IPsec will only call this function with fully resolved 29696 * ires if hw acceleration is involved. 29697 * TODO list : 29698 * a Handle M_MULTIDATA so that 29699 * tcp_multisend->tcp_multisend_data can 29700 * call ip_xmit_v4 directly 29701 * b Handle post-ARP work for fragments so that 29702 * ip_wput_frag can call this function. 29703 */ 29704 ipxmit_state_t 29705 ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, boolean_t flow_ctl_enabled) 29706 { 29707 nce_t *arpce; 29708 queue_t *q; 29709 int ill_index; 29710 mblk_t *nxt_mp, *first_mp; 29711 boolean_t xmit_drop = B_FALSE; 29712 ip_proc_t proc; 29713 ill_t *out_ill; 29714 int pkt_len; 29715 29716 arpce = ire->ire_nce; 29717 ASSERT(arpce != NULL); 29718 29719 DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire, nce_t *, arpce); 29720 29721 mutex_enter(&arpce->nce_lock); 29722 switch (arpce->nce_state) { 29723 case ND_REACHABLE: 29724 /* If there are other queued packets, queue this packet */ 29725 if (arpce->nce_qd_mp != NULL) { 29726 if (mp != NULL) 29727 nce_queue_mp_common(arpce, mp, B_FALSE); 29728 mp = arpce->nce_qd_mp; 29729 } 29730 arpce->nce_qd_mp = NULL; 29731 mutex_exit(&arpce->nce_lock); 29732 29733 /* 29734 * Flush the queue. In the common case, where the 29735 * ARP is already resolved, it will go through the 29736 * while loop only once. 29737 */ 29738 while (mp != NULL) { 29739 29740 nxt_mp = mp->b_next; 29741 mp->b_next = NULL; 29742 ASSERT(mp->b_datap->db_type != M_CTL); 29743 pkt_len = ntohs(((ipha_t *)mp->b_rptr)->ipha_length); 29744 /* 29745 * This info is needed for IPQOS to do COS marking 29746 * in ip_wput_attach_llhdr->ip_process. 29747 */ 29748 proc = (ip_proc_t)(uintptr_t)mp->b_prev; 29749 mp->b_prev = NULL; 29750 29751 /* set up ill index for outbound qos processing */ 29752 out_ill = ire_to_ill(ire); 29753 ill_index = out_ill->ill_phyint->phyint_ifindex; 29754 first_mp = ip_wput_attach_llhdr(mp, ire, proc, 29755 ill_index); 29756 if (first_mp == NULL) { 29757 xmit_drop = B_TRUE; 29758 BUMP_MIB(out_ill->ill_ip_mib, 29759 ipIfStatsOutDiscards); 29760 goto next_mp; 29761 } 29762 /* non-ipsec hw accel case */ 29763 if (io == NULL || !io->ipsec_out_accelerated) { 29764 /* send it */ 29765 q = ire->ire_stq; 29766 if (proc == IPP_FWD_OUT) { 29767 UPDATE_IB_PKT_COUNT(ire); 29768 } else { 29769 UPDATE_OB_PKT_COUNT(ire); 29770 } 29771 ire->ire_last_used_time = lbolt; 29772 29773 if (flow_ctl_enabled || canputnext(q)) { 29774 if (proc == IPP_FWD_OUT) { 29775 29776 BUMP_MIB(out_ill->ill_ip_mib, 29777 ipIfStatsHCOutForwDatagrams); 29778 29779 } 29780 UPDATE_IP_MIB_OB_COUNTERS(out_ill, 29781 pkt_len); 29782 29783 putnext(q, first_mp); 29784 } else { 29785 BUMP_MIB(out_ill->ill_ip_mib, 29786 ipIfStatsOutDiscards); 29787 xmit_drop = B_TRUE; 29788 freemsg(first_mp); 29789 } 29790 } else { 29791 /* 29792 * Safety Pup says: make sure this 29793 * is going to the right interface! 29794 */ 29795 ill_t *ill1 = 29796 (ill_t *)ire->ire_stq->q_ptr; 29797 int ifindex = 29798 ill1->ill_phyint->phyint_ifindex; 29799 if (ifindex != 29800 io->ipsec_out_capab_ill_index) { 29801 xmit_drop = B_TRUE; 29802 freemsg(mp); 29803 } else { 29804 UPDATE_IP_MIB_OB_COUNTERS(ill1, 29805 pkt_len); 29806 ipsec_hw_putnext(ire->ire_stq, mp); 29807 } 29808 } 29809 next_mp: 29810 mp = nxt_mp; 29811 } /* while (mp != NULL) */ 29812 if (xmit_drop) 29813 return (SEND_FAILED); 29814 else 29815 return (SEND_PASSED); 29816 29817 case ND_INITIAL: 29818 case ND_INCOMPLETE: 29819 29820 /* 29821 * While we do send off packets to dests that 29822 * use fully-resolved CGTP routes, we do not 29823 * handle unresolved CGTP routes. 29824 */ 29825 ASSERT(!(ire->ire_flags & RTF_MULTIRT)); 29826 ASSERT(io == NULL || !io->ipsec_out_accelerated); 29827 29828 if (mp != NULL) { 29829 /* queue the packet */ 29830 nce_queue_mp_common(arpce, mp, B_FALSE); 29831 } 29832 29833 if (arpce->nce_state == ND_INCOMPLETE) { 29834 mutex_exit(&arpce->nce_lock); 29835 DTRACE_PROBE3(ip__xmit__incomplete, 29836 (ire_t *), ire, (mblk_t *), mp, 29837 (ipsec_out_t *), io); 29838 return (LOOKUP_IN_PROGRESS); 29839 } 29840 29841 arpce->nce_state = ND_INCOMPLETE; 29842 mutex_exit(&arpce->nce_lock); 29843 /* 29844 * Note that ire_add() (called from ire_forward()) 29845 * holds a ref on the ire until ARP is completed. 29846 */ 29847 29848 ire_arpresolve(ire, ire_to_ill(ire)); 29849 return (LOOKUP_IN_PROGRESS); 29850 default: 29851 ASSERT(0); 29852 mutex_exit(&arpce->nce_lock); 29853 return (LLHDR_RESLV_FAILED); 29854 } 29855 } 29856 29857 #undef UPDATE_IP_MIB_OB_COUNTERS 29858 29859 /* 29860 * Return B_TRUE if the buffers differ in length or content. 29861 * This is used for comparing extension header buffers. 29862 * Note that an extension header would be declared different 29863 * even if all that changed was the next header value in that header i.e. 29864 * what really changed is the next extension header. 29865 */ 29866 boolean_t 29867 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 29868 uint_t blen) 29869 { 29870 if (!b_valid) 29871 blen = 0; 29872 29873 if (alen != blen) 29874 return (B_TRUE); 29875 if (alen == 0) 29876 return (B_FALSE); /* Both zero length */ 29877 return (bcmp(abuf, bbuf, alen)); 29878 } 29879 29880 /* 29881 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 29882 * Return B_FALSE if memory allocation fails - don't change any state! 29883 */ 29884 boolean_t 29885 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 29886 const void *src, uint_t srclen) 29887 { 29888 void *dst; 29889 29890 if (!src_valid) 29891 srclen = 0; 29892 29893 ASSERT(*dstlenp == 0); 29894 if (src != NULL && srclen != 0) { 29895 dst = mi_alloc(srclen, BPRI_MED); 29896 if (dst == NULL) 29897 return (B_FALSE); 29898 } else { 29899 dst = NULL; 29900 } 29901 if (*dstp != NULL) 29902 mi_free(*dstp); 29903 *dstp = dst; 29904 *dstlenp = dst == NULL ? 0 : srclen; 29905 return (B_TRUE); 29906 } 29907 29908 /* 29909 * Replace what is in *dst, *dstlen with the source. 29910 * Assumes ip_allocbuf has already been called. 29911 */ 29912 void 29913 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 29914 const void *src, uint_t srclen) 29915 { 29916 if (!src_valid) 29917 srclen = 0; 29918 29919 ASSERT(*dstlenp == srclen); 29920 if (src != NULL && srclen != 0) 29921 bcopy(src, *dstp, srclen); 29922 } 29923 29924 /* 29925 * Free the storage pointed to by the members of an ip6_pkt_t. 29926 */ 29927 void 29928 ip6_pkt_free(ip6_pkt_t *ipp) 29929 { 29930 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 29931 29932 if (ipp->ipp_fields & IPPF_HOPOPTS) { 29933 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 29934 ipp->ipp_hopopts = NULL; 29935 ipp->ipp_hopoptslen = 0; 29936 } 29937 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 29938 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 29939 ipp->ipp_rtdstopts = NULL; 29940 ipp->ipp_rtdstoptslen = 0; 29941 } 29942 if (ipp->ipp_fields & IPPF_DSTOPTS) { 29943 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 29944 ipp->ipp_dstopts = NULL; 29945 ipp->ipp_dstoptslen = 0; 29946 } 29947 if (ipp->ipp_fields & IPPF_RTHDR) { 29948 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 29949 ipp->ipp_rthdr = NULL; 29950 ipp->ipp_rthdrlen = 0; 29951 } 29952 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 29953 IPPF_RTHDR); 29954 } 29955