1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 #include <sys/types.h> 31 #include <sys/stream.h> 32 #include <sys/dlpi.h> 33 #include <sys/stropts.h> 34 #include <sys/sysmacros.h> 35 #include <sys/strsubr.h> 36 #include <sys/strlog.h> 37 #include <sys/strsun.h> 38 #include <sys/zone.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/xti_inet.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/cmn_err.h> 45 #include <sys/debug.h> 46 #include <sys/kobj.h> 47 #include <sys/modctl.h> 48 #include <sys/atomic.h> 49 #include <sys/policy.h> 50 #include <sys/priv.h> 51 52 #include <sys/systm.h> 53 #include <sys/param.h> 54 #include <sys/kmem.h> 55 #include <sys/sdt.h> 56 #include <sys/socket.h> 57 #include <sys/vtrace.h> 58 #include <sys/isa_defs.h> 59 #include <net/if.h> 60 #include <net/if_arp.h> 61 #include <net/route.h> 62 #include <sys/sockio.h> 63 #include <netinet/in.h> 64 #include <net/if_dl.h> 65 66 #include <inet/common.h> 67 #include <inet/mi.h> 68 #include <inet/mib2.h> 69 #include <inet/nd.h> 70 #include <inet/arp.h> 71 #include <inet/snmpcom.h> 72 #include <inet/optcom.h> 73 #include <inet/kstatcom.h> 74 75 #include <netinet/igmp_var.h> 76 #include <netinet/ip6.h> 77 #include <netinet/icmp6.h> 78 #include <netinet/sctp.h> 79 80 #include <inet/ip.h> 81 #include <inet/ip_impl.h> 82 #include <inet/ip6.h> 83 #include <inet/ip6_asp.h> 84 #include <inet/tcp.h> 85 #include <inet/tcp_impl.h> 86 #include <inet/ip_multi.h> 87 #include <inet/ip_if.h> 88 #include <inet/ip_ire.h> 89 #include <inet/ip_ftable.h> 90 #include <inet/ip_rts.h> 91 #include <inet/ip_ndp.h> 92 #include <inet/ip_listutils.h> 93 #include <netinet/igmp.h> 94 #include <netinet/ip_mroute.h> 95 #include <inet/ipp_common.h> 96 97 #include <net/pfkeyv2.h> 98 #include <inet/ipsec_info.h> 99 #include <inet/sadb.h> 100 #include <inet/ipsec_impl.h> 101 #include <sys/iphada.h> 102 #include <inet/tun.h> 103 #include <inet/ipdrop.h> 104 #include <inet/ip_netinfo.h> 105 106 #include <sys/ethernet.h> 107 #include <net/if_types.h> 108 #include <sys/cpuvar.h> 109 110 #include <ipp/ipp.h> 111 #include <ipp/ipp_impl.h> 112 #include <ipp/ipgpc/ipgpc.h> 113 114 #include <sys/multidata.h> 115 #include <sys/pattr.h> 116 117 #include <inet/ipclassifier.h> 118 #include <inet/sctp_ip.h> 119 #include <inet/sctp/sctp_impl.h> 120 #include <inet/udp_impl.h> 121 #include <inet/rawip_impl.h> 122 #include <inet/rts_impl.h> 123 #include <sys/sunddi.h> 124 125 #include <sys/tsol/label.h> 126 #include <sys/tsol/tnet.h> 127 128 #include <rpc/pmap_prot.h> 129 130 /* 131 * Values for squeue switch: 132 * IP_SQUEUE_ENTER_NODRAIN: squeue_enter_nodrain 133 * IP_SQUEUE_ENTER: squeue_enter 134 * IP_SQUEUE_FILL: squeue_fill 135 */ 136 int ip_squeue_enter = 2; /* Setable in /etc/system */ 137 138 squeue_func_t ip_input_proc; 139 #define SET_BPREV_FLAG(x) ((mblk_t *)(uintptr_t)(x)) 140 141 /* 142 * Setable in /etc/system 143 */ 144 int ip_poll_normal_ms = 100; 145 int ip_poll_normal_ticks = 0; 146 int ip_modclose_ackwait_ms = 3000; 147 148 /* 149 * It would be nice to have these present only in DEBUG systems, but the 150 * current design of the global symbol checking logic requires them to be 151 * unconditionally present. 152 */ 153 uint_t ip_thread_data; /* TSD key for debug support */ 154 krwlock_t ip_thread_rwlock; 155 list_t ip_thread_list; 156 157 /* 158 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 159 */ 160 161 struct listptr_s { 162 mblk_t *lp_head; /* pointer to the head of the list */ 163 mblk_t *lp_tail; /* pointer to the tail of the list */ 164 }; 165 166 typedef struct listptr_s listptr_t; 167 168 /* 169 * This is used by ip_snmp_get_mib2_ip_route_media and 170 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 171 */ 172 typedef struct iproutedata_s { 173 uint_t ird_idx; 174 listptr_t ird_route; /* ipRouteEntryTable */ 175 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 176 listptr_t ird_attrs; /* ipRouteAttributeTable */ 177 } iproutedata_t; 178 179 /* 180 * Cluster specific hooks. These should be NULL when booted as a non-cluster 181 */ 182 183 /* 184 * Hook functions to enable cluster networking 185 * On non-clustered systems these vectors must always be NULL. 186 * 187 * Hook function to Check ip specified ip address is a shared ip address 188 * in the cluster 189 * 190 */ 191 int (*cl_inet_isclusterwide)(uint8_t protocol, 192 sa_family_t addr_family, uint8_t *laddrp) = NULL; 193 194 /* 195 * Hook function to generate cluster wide ip fragment identifier 196 */ 197 uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 198 uint8_t *laddrp, uint8_t *faddrp) = NULL; 199 200 /* 201 * Synchronization notes: 202 * 203 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 204 * MT level protection given by STREAMS. IP uses a combination of its own 205 * internal serialization mechanism and standard Solaris locking techniques. 206 * The internal serialization is per phyint (no IPMP) or per IPMP group. 207 * This is used to serialize plumbing operations, IPMP operations, certain 208 * multicast operations, most set ioctls, igmp/mld timers etc. 209 * 210 * Plumbing is a long sequence of operations involving message 211 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 212 * involved in plumbing operations. A natural model is to serialize these 213 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 214 * parallel without any interference. But various set ioctls on hme0 are best 215 * serialized. However if the system uses IPMP, the operations are easier if 216 * they are serialized on a per IPMP group basis since IPMP operations 217 * happen across ill's of a group. Thus the lowest common denominator is to 218 * serialize most set ioctls, multicast join/leave operations, IPMP operations 219 * igmp/mld timer operations, and processing of DLPI control messages received 220 * from drivers on a per IPMP group basis. If the system does not employ 221 * IPMP the serialization is on a per phyint basis. This serialization is 222 * provided by the ipsq_t and primitives operating on this. Details can 223 * be found in ip_if.c above the core primitives operating on ipsq_t. 224 * 225 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 226 * Simiarly lookup of an ire by a thread also returns a refheld ire. 227 * In addition ipif's and ill's referenced by the ire are also indirectly 228 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 229 * the ipif's address or netmask change as long as an ipif is refheld 230 * directly or indirectly. For example an SIOCLIFADDR ioctl that changes the 231 * address of an ipif has to go through the ipsq_t. This ensures that only 232 * 1 such exclusive operation proceeds at any time on the ipif. It then 233 * deletes all ires associated with this ipif, and waits for all refcnts 234 * associated with this ipif to come down to zero. The address is changed 235 * only after the ipif has been quiesced. Then the ipif is brought up again. 236 * More details are described above the comment in ip_sioctl_flags. 237 * 238 * Packet processing is based mostly on IREs and are fully multi-threaded 239 * using standard Solaris MT techniques. 240 * 241 * There are explicit locks in IP to handle: 242 * - The ip_g_head list maintained by mi_open_link() and friends. 243 * 244 * - The reassembly data structures (one lock per hash bucket) 245 * 246 * - conn_lock is meant to protect conn_t fields. The fields actually 247 * protected by conn_lock are documented in the conn_t definition. 248 * 249 * - ire_lock to protect some of the fields of the ire, IRE tables 250 * (one lock per hash bucket). Refer to ip_ire.c for details. 251 * 252 * - ndp_g_lock and nce_lock for protecting NCEs. 253 * 254 * - ill_lock protects fields of the ill and ipif. Details in ip.h 255 * 256 * - ill_g_lock: This is a global reader/writer lock. Protects the following 257 * * The AVL tree based global multi list of all ills. 258 * * The linked list of all ipifs of an ill 259 * * The <ill-ipsq> mapping 260 * * The ipsq->ipsq_phyint_list threaded by phyint_ipsq_next 261 * * The illgroup list threaded by ill_group_next. 262 * * <ill-phyint> association 263 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 264 * into an ill, changing the <ill-ipsq> mapping of an ill, insertion/deletion 265 * of an ill into the illgrp list, changing the <ill-phyint> assoc of an ill 266 * will all have to hold the ill_g_lock as writer for the actual duration 267 * of the insertion/deletion/change. More details about the <ill-ipsq> mapping 268 * may be found in the IPMP section. 269 * 270 * - ill_lock: This is a per ill mutex. 271 * It protects some members of the ill and is documented below. 272 * It also protects the <ill-ipsq> mapping 273 * It also protects the illgroup list threaded by ill_group_next. 274 * It also protects the <ill-phyint> assoc. 275 * It also protects the list of ipifs hanging off the ill. 276 * 277 * - ipsq_lock: This is a per ipsq_t mutex lock. 278 * This protects all the other members of the ipsq struct except 279 * ipsq_refs and ipsq_phyint_list which are protected by ill_g_lock 280 * 281 * - illgrp_lock: This is a per ill_group mutex lock. 282 * The only thing it protects is the illgrp_ill_schednext member of ill_group 283 * which dictates which is the next ill in an ill_group that is to be chosen 284 * for sending outgoing packets, through creation of an IRE_CACHE that 285 * references this ill. 286 * 287 * - phyint_lock: This is a per phyint mutex lock. Protects just the 288 * phyint_flags 289 * 290 * - ip_g_nd_lock: This is a global reader/writer lock. 291 * Any call to nd_load to load a new parameter to the ND table must hold the 292 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 293 * as reader. 294 * 295 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 296 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 297 * uniqueness check also done atomically. 298 * 299 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 300 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 301 * as a writer when adding or deleting elements from these lists, and 302 * as a reader when walking these lists to send a SADB update to the 303 * IPsec capable ills. 304 * 305 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 306 * group list linked by ill_usesrc_grp_next. It also protects the 307 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 308 * group is being added or deleted. This lock is taken as a reader when 309 * walking the list/group(eg: to get the number of members in a usesrc group). 310 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 311 * field is changing state i.e from NULL to non-NULL or vice-versa. For 312 * example, it is not necessary to take this lock in the initial portion 313 * of ip_sioctl_slifusesrc or at all in ip_sioctl_groupname and 314 * ip_sioctl_flags since the these operations are executed exclusively and 315 * that ensures that the "usesrc group state" cannot change. The "usesrc 316 * group state" change can happen only in the latter part of 317 * ip_sioctl_slifusesrc and in ill_delete. 318 * 319 * Changing <ill-phyint>, <ill-ipsq>, <ill-illgroup> assocications. 320 * 321 * To change the <ill-phyint> association, the ill_g_lock must be held 322 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 323 * must be held. 324 * 325 * To change the <ill-ipsq> association the ill_g_lock must be held as writer 326 * and the ill_lock of the ill in question must be held. 327 * 328 * To change the <ill-illgroup> association the ill_g_lock must be held as 329 * writer and the ill_lock of the ill in question must be held. 330 * 331 * To add or delete an ipif from the list of ipifs hanging off the ill, 332 * ill_g_lock (writer) and ill_lock must be held and the thread must be 333 * a writer on the associated ipsq,. 334 * 335 * To add or delete an ill to the system, the ill_g_lock must be held as 336 * writer and the thread must be a writer on the associated ipsq. 337 * 338 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 339 * must be a writer on the associated ipsq. 340 * 341 * Lock hierarchy 342 * 343 * Some lock hierarchy scenarios are listed below. 344 * 345 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 346 * ill_g_lock -> illgrp_lock -> ill_lock 347 * ill_g_lock -> ill_lock(s) -> phyint_lock 348 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 349 * ill_g_lock -> ip_addr_avail_lock 350 * conn_lock -> irb_lock -> ill_lock -> ire_lock 351 * ill_g_lock -> ip_g_nd_lock 352 * 353 * When more than 1 ill lock is needed to be held, all ill lock addresses 354 * are sorted on address and locked starting from highest addressed lock 355 * downward. 356 * 357 * IPsec scenarios 358 * 359 * ipsa_lock -> ill_g_lock -> ill_lock 360 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 361 * ipsec_capab_ills_lock -> ipsa_lock 362 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 363 * 364 * Trusted Solaris scenarios 365 * 366 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 367 * igsa_lock -> gcdb_lock 368 * gcgrp_rwlock -> ire_lock 369 * gcgrp_rwlock -> gcdb_lock 370 * 371 * 372 * Routing/forwarding table locking notes: 373 * 374 * Lock acquisition order: Radix tree lock, irb_lock. 375 * Requirements: 376 * i. Walker must not hold any locks during the walker callback. 377 * ii Walker must not see a truncated tree during the walk because of any node 378 * deletion. 379 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 380 * in many places in the code to walk the irb list. Thus even if all the 381 * ires in a bucket have been deleted, we still can't free the radix node 382 * until the ires have actually been inactive'd (freed). 383 * 384 * Tree traversal - Need to hold the global tree lock in read mode. 385 * Before dropping the global tree lock, need to either increment the ire_refcnt 386 * to ensure that the radix node can't be deleted. 387 * 388 * Tree add - Need to hold the global tree lock in write mode to add a 389 * radix node. To prevent the node from being deleted, increment the 390 * irb_refcnt, after the node is added to the tree. The ire itself is 391 * added later while holding the irb_lock, but not the tree lock. 392 * 393 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 394 * All associated ires must be inactive (i.e. freed), and irb_refcnt 395 * must be zero. 396 * 397 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 398 * global tree lock (read mode) for traversal. 399 * 400 * IPsec notes : 401 * 402 * IP interacts with the IPsec code (AH/ESP) by tagging a M_CTL message 403 * in front of the actual packet. For outbound datagrams, the M_CTL 404 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 405 * information used by the IPsec code for applying the right level of 406 * protection. The information initialized by IP in the ipsec_out_t 407 * is determined by the per-socket policy or global policy in the system. 408 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 409 * ipsec_info.h) which starts out with nothing in it. It gets filled 410 * with the right information if it goes through the AH/ESP code, which 411 * happens if the incoming packet is secure. The information initialized 412 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 413 * the policy requirements needed by per-socket policy or global policy 414 * is met or not. 415 * 416 * If there is both per-socket policy (set using setsockopt) and there 417 * is also global policy match for the 5 tuples of the socket, 418 * ipsec_override_policy() makes the decision of which one to use. 419 * 420 * For fully connected sockets i.e dst, src [addr, port] is known, 421 * conn_policy_cached is set indicating that policy has been cached. 422 * conn_in_enforce_policy may or may not be set depending on whether 423 * there is a global policy match or per-socket policy match. 424 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 425 * Once the right policy is set on the conn_t, policy cannot change for 426 * this socket. This makes life simpler for TCP (UDP ?) where 427 * re-transmissions go out with the same policy. For symmetry, policy 428 * is cached for fully connected UDP sockets also. Thus if policy is cached, 429 * it also implies that policy is latched i.e policy cannot change 430 * on these sockets. As we have the right policy on the conn, we don't 431 * have to lookup global policy for every outbound and inbound datagram 432 * and thus serving as an optimization. Note that a global policy change 433 * does not affect fully connected sockets if they have policy. If fully 434 * connected sockets did not have any policy associated with it, global 435 * policy change may affect them. 436 * 437 * IP Flow control notes: 438 * 439 * Non-TCP streams are flow controlled by IP. On the send side, if the packet 440 * cannot be sent down to the driver by IP, because of a canput failure, IP 441 * does a putq on the conn_wq. This will cause ip_wsrv to run on the conn_wq. 442 * ip_wsrv in turn, inserts the conn in a list of conn's that need to be drained 443 * when the flowcontrol condition subsides. Ultimately STREAMS backenables the 444 * ip_wsrv on the IP module, which in turn does a qenable of the conn_wq of the 445 * first conn in the list of conn's to be drained. ip_wsrv on this conn drains 446 * the queued messages, and removes the conn from the drain list, if all 447 * messages were drained. It also qenables the next conn in the drain list to 448 * continue the drain process. 449 * 450 * In reality the drain list is not a single list, but a configurable number 451 * of lists. The ip_wsrv on the IP module, qenables the first conn in each 452 * list. If the ip_wsrv of the next qenabled conn does not run, because the 453 * stream closes, ip_close takes responsibility to qenable the next conn in 454 * the drain list. The directly called ip_wput path always does a putq, if 455 * it cannot putnext. Thus synchronization problems are handled between 456 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 457 * functions that manipulate this drain list. Furthermore conn_drain_insert 458 * is called only from ip_wsrv, and there can be only 1 instance of ip_wsrv 459 * running on a queue at any time. conn_drain_tail can be simultaneously called 460 * from both ip_wsrv and ip_close. 461 * 462 * IPQOS notes: 463 * 464 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 465 * and IPQoS modules. IPPF includes hooks in IP at different control points 466 * (callout positions) which direct packets to IPQoS modules for policy 467 * processing. Policies, if present, are global. 468 * 469 * The callout positions are located in the following paths: 470 * o local_in (packets destined for this host) 471 * o local_out (packets orginating from this host ) 472 * o fwd_in (packets forwarded by this m/c - inbound) 473 * o fwd_out (packets forwarded by this m/c - outbound) 474 * Hooks at these callout points can be enabled/disabled using the ndd variable 475 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 476 * By default all the callout positions are enabled. 477 * 478 * Outbound (local_out) 479 * Hooks are placed in ip_wput_ire and ipsec_out_process. 480 * 481 * Inbound (local_in) 482 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 483 * TCP and UDP fanout routines. 484 * 485 * Forwarding (in and out) 486 * Hooks are placed in ip_rput_forward. 487 * 488 * IP Policy Framework processing (IPPF processing) 489 * Policy processing for a packet is initiated by ip_process, which ascertains 490 * that the classifier (ipgpc) is loaded and configured, failing which the 491 * packet resumes normal processing in IP. If the clasifier is present, the 492 * packet is acted upon by one or more IPQoS modules (action instances), per 493 * filters configured in ipgpc and resumes normal IP processing thereafter. 494 * An action instance can drop a packet in course of its processing. 495 * 496 * A boolean variable, ip_policy, is used in all the fanout routines that can 497 * invoke ip_process for a packet. This variable indicates if the packet should 498 * to be sent for policy processing. The variable is set to B_TRUE by default, 499 * i.e. when the routines are invoked in the normal ip procesing path for a 500 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 501 * ip_policy is set to B_FALSE for all the routines called in these two 502 * functions because, in the former case, we don't process loopback traffic 503 * currently while in the latter, the packets have already been processed in 504 * icmp_inbound. 505 * 506 * Zones notes: 507 * 508 * The partitioning rules for networking are as follows: 509 * 1) Packets coming from a zone must have a source address belonging to that 510 * zone. 511 * 2) Packets coming from a zone can only be sent on a physical interface on 512 * which the zone has an IP address. 513 * 3) Between two zones on the same machine, packet delivery is only allowed if 514 * there's a matching route for the destination and zone in the forwarding 515 * table. 516 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 517 * different zones can bind to the same port with the wildcard address 518 * (INADDR_ANY). 519 * 520 * The granularity of interface partitioning is at the logical interface level. 521 * Therefore, every zone has its own IP addresses, and incoming packets can be 522 * attributed to a zone unambiguously. A logical interface is placed into a zone 523 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 524 * structure. Rule (1) is implemented by modifying the source address selection 525 * algorithm so that the list of eligible addresses is filtered based on the 526 * sending process zone. 527 * 528 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 529 * across all zones, depending on their type. Here is the break-up: 530 * 531 * IRE type Shared/exclusive 532 * -------- ---------------- 533 * IRE_BROADCAST Exclusive 534 * IRE_DEFAULT (default routes) Shared (*) 535 * IRE_LOCAL Exclusive (x) 536 * IRE_LOOPBACK Exclusive 537 * IRE_PREFIX (net routes) Shared (*) 538 * IRE_CACHE Exclusive 539 * IRE_IF_NORESOLVER (interface routes) Exclusive 540 * IRE_IF_RESOLVER (interface routes) Exclusive 541 * IRE_HOST (host routes) Shared (*) 542 * 543 * (*) A zone can only use a default or off-subnet route if the gateway is 544 * directly reachable from the zone, that is, if the gateway's address matches 545 * one of the zone's logical interfaces. 546 * 547 * (x) IRE_LOCAL are handled a bit differently, since for all other entries 548 * in ire_ctable and IRE_INTERFACE, ire_src_addr is what can be used as source 549 * when sending packets using the IRE. For IRE_LOCAL ire_src_addr is the IP 550 * address of the zone itself (the destination). Since IRE_LOCAL is used 551 * for communication between zones, ip_wput_ire has special logic to set 552 * the right source address when sending using an IRE_LOCAL. 553 * 554 * Furthermore, when ip_restrict_interzone_loopback is set (the default), 555 * ire_cache_lookup restricts loopback using an IRE_LOCAL 556 * between zone to the case when L2 would have conceptually looped the packet 557 * back, i.e. the loopback which is required since neither Ethernet drivers 558 * nor Ethernet hardware loops them back. This is the case when the normal 559 * routes (ignoring IREs with different zoneids) would send out the packet on 560 * the same ill (or ill group) as the ill with which is IRE_LOCAL is 561 * associated. 562 * 563 * Multiple zones can share a common broadcast address; typically all zones 564 * share the 255.255.255.255 address. Incoming as well as locally originated 565 * broadcast packets must be dispatched to all the zones on the broadcast 566 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 567 * since some zones may not be on the 10.16.72/24 network. To handle this, each 568 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 569 * sent to every zone that has an IRE_BROADCAST entry for the destination 570 * address on the input ill, see conn_wantpacket(). 571 * 572 * Applications in different zones can join the same multicast group address. 573 * For IPv4, group memberships are per-logical interface, so they're already 574 * inherently part of a zone. For IPv6, group memberships are per-physical 575 * interface, so we distinguish IPv6 group memberships based on group address, 576 * interface and zoneid. In both cases, received multicast packets are sent to 577 * every zone for which a group membership entry exists. On IPv6 we need to 578 * check that the target zone still has an address on the receiving physical 579 * interface; it could have been removed since the application issued the 580 * IPV6_JOIN_GROUP. 581 */ 582 583 /* 584 * Squeue Fanout flags: 585 * 0: No fanout. 586 * 1: Fanout across all squeues 587 */ 588 boolean_t ip_squeue_fanout = 0; 589 590 /* 591 * Maximum dups allowed per packet. 592 */ 593 uint_t ip_max_frag_dups = 10; 594 595 #define IS_SIMPLE_IPH(ipha) \ 596 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 597 598 /* RFC1122 Conformance */ 599 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 600 601 #define ILL_MAX_NAMELEN LIFNAMSIZ 602 603 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 604 605 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag, 606 cred_t *credp, boolean_t isv6); 607 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t); 608 609 static void icmp_frag_needed(queue_t *, mblk_t *, int, zoneid_t, 610 ip_stack_t *); 611 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 612 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 613 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 614 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 615 mblk_t *, int, ip_stack_t *); 616 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 617 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 618 ill_t *, zoneid_t); 619 static void icmp_options_update(ipha_t *); 620 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t, zoneid_t, 621 ip_stack_t *); 622 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t, 623 zoneid_t zoneid, ip_stack_t *); 624 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_stack_t *); 625 static void icmp_redirect(ill_t *, mblk_t *); 626 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t, 627 ip_stack_t *); 628 629 static void ip_arp_news(queue_t *, mblk_t *); 630 static boolean_t ip_bind_insert_ire(mblk_t *, ire_t *, iulp_t *, 631 ip_stack_t *); 632 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 633 char *ip_dot_addr(ipaddr_t, char *); 634 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 635 int ip_close(queue_t *, int); 636 static char *ip_dot_saddr(uchar_t *, char *); 637 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 638 boolean_t, boolean_t, ill_t *, zoneid_t); 639 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 640 boolean_t, boolean_t, zoneid_t); 641 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 642 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 643 static void ip_lrput(queue_t *, mblk_t *); 644 ipaddr_t ip_net_mask(ipaddr_t); 645 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, conn_t *, zoneid_t, 646 ip_stack_t *); 647 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 648 conn_t *, uint32_t, zoneid_t, ip_opt_info_t *); 649 char *ip_nv_lookup(nv_t *, int); 650 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 651 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 652 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 653 static boolean_t ip_param_register(IDP *ndp, ipparam_t *, size_t, 654 ipndp_t *, size_t); 655 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 656 void ip_rput(queue_t *, mblk_t *); 657 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 658 void *dummy_arg); 659 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 660 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *, 661 ip_stack_t *); 662 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 663 ire_t *, ip_stack_t *); 664 static boolean_t ip_rput_multimblk_ipoptions(queue_t *, ill_t *, 665 mblk_t *, ipha_t **, ipaddr_t *, ip_stack_t *); 666 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *, 667 ip_stack_t *); 668 static boolean_t ip_rput_fragment(queue_t *, mblk_t **, ipha_t *, uint32_t *, 669 uint16_t *); 670 int ip_snmp_get(queue_t *, mblk_t *, int); 671 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 672 mib2_ipIfStatsEntry_t *, ip_stack_t *); 673 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 674 ip_stack_t *); 675 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *); 676 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 677 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 678 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 679 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 680 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 681 ip_stack_t *ipst); 682 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 683 ip_stack_t *ipst); 684 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 685 ip_stack_t *ipst); 686 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 687 ip_stack_t *ipst); 688 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 689 ip_stack_t *ipst); 690 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 691 ip_stack_t *ipst); 692 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 693 ip_stack_t *ipst); 694 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 695 ip_stack_t *ipst); 696 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, 697 ip_stack_t *ipst); 698 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, 699 ip_stack_t *ipst); 700 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 701 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 702 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 703 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 704 static boolean_t ip_source_routed(ipha_t *, ip_stack_t *); 705 static boolean_t ip_source_route_included(ipha_t *); 706 static void ip_trash_ire_reclaim_stack(ip_stack_t *); 707 708 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t, 709 zoneid_t, ip_stack_t *); 710 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int, ip_stack_t *); 711 static void ip_wput_local_options(ipha_t *, ip_stack_t *); 712 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 713 zoneid_t, ip_stack_t *); 714 715 static void conn_drain_init(ip_stack_t *); 716 static void conn_drain_fini(ip_stack_t *); 717 static void conn_drain_tail(conn_t *connp, boolean_t closing); 718 719 static void conn_walk_drain(ip_stack_t *); 720 static void conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *, 721 zoneid_t); 722 723 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 724 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 725 static void ip_stack_fini(netstackid_t stackid, void *arg); 726 727 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 728 zoneid_t); 729 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 730 void *dummy_arg); 731 732 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 733 734 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 735 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 736 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 737 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 738 739 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 740 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 741 caddr_t, cred_t *); 742 extern int ip_squeue_bind_set(queue_t *q, mblk_t *mp, char *value, 743 caddr_t cp, cred_t *cr); 744 extern int ip_squeue_profile_set(queue_t *, mblk_t *, char *, caddr_t, 745 cred_t *); 746 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 747 caddr_t cp, cred_t *cr); 748 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 749 cred_t *); 750 static int ipmp_hook_emulation_set(queue_t *, mblk_t *, char *, caddr_t, 751 cred_t *); 752 static squeue_func_t ip_squeue_switch(int); 753 754 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 755 static void ip_kstat_fini(netstackid_t, kstat_t *); 756 static int ip_kstat_update(kstat_t *kp, int rw); 757 static void *icmp_kstat_init(netstackid_t); 758 static void icmp_kstat_fini(netstackid_t, kstat_t *); 759 static int icmp_kstat_update(kstat_t *kp, int rw); 760 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 761 static void ip_kstat2_fini(netstackid_t, kstat_t *); 762 763 static int ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *); 764 765 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 766 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 767 768 static void ip_rput_process_forward(queue_t *, mblk_t *, ire_t *, 769 ipha_t *, ill_t *, boolean_t); 770 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 771 772 /* How long, in seconds, we allow frags to hang around. */ 773 #define IP_FRAG_TIMEOUT 60 774 775 /* 776 * Threshold which determines whether MDT should be used when 777 * generating IP fragments; payload size must be greater than 778 * this threshold for MDT to take place. 779 */ 780 #define IP_WPUT_FRAG_MDT_MIN 32768 781 782 /* Setable in /etc/system only */ 783 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 784 785 static long ip_rput_pullups; 786 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 787 788 vmem_t *ip_minor_arena; 789 790 int ip_debug; 791 792 #ifdef DEBUG 793 uint32_t ipsechw_debug = 0; 794 #endif 795 796 /* 797 * Multirouting/CGTP stuff 798 */ 799 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 800 801 /* 802 * XXX following really should only be in a header. Would need more 803 * header and .c clean up first. 804 */ 805 extern optdb_obj_t ip_opt_obj; 806 807 ulong_t ip_squeue_enter_unbound = 0; 808 809 /* 810 * Named Dispatch Parameter Table. 811 * All of these are alterable, within the min/max values given, at run time. 812 */ 813 static ipparam_t lcl_param_arr[] = { 814 /* min max value name */ 815 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 816 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 817 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 818 { 0, 1, 0, "ip_respond_to_timestamp"}, 819 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 820 { 0, 1, 1, "ip_send_redirects"}, 821 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 822 { 0, 10, 0, "ip_debug"}, 823 { 0, 10, 0, "ip_mrtdebug"}, 824 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 825 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 826 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 827 { 1, 255, 255, "ip_def_ttl" }, 828 { 0, 1, 0, "ip_forward_src_routed"}, 829 { 0, 256, 32, "ip_wroff_extra" }, 830 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 831 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 832 { 0, 1, 1, "ip_path_mtu_discovery" }, 833 { 0, 240, 30, "ip_ignore_delete_time" }, 834 { 0, 1, 0, "ip_ignore_redirect" }, 835 { 0, 1, 1, "ip_output_queue" }, 836 { 1, 254, 1, "ip_broadcast_ttl" }, 837 { 0, 99999, 100, "ip_icmp_err_interval" }, 838 { 1, 99999, 10, "ip_icmp_err_burst" }, 839 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 840 { 0, 1, 0, "ip_strict_dst_multihoming" }, 841 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 842 { 0, 1, 0, "ipsec_override_persocket_policy" }, 843 { 0, 1, 1, "icmp_accept_clear_messages" }, 844 { 0, 1, 1, "igmp_accept_clear_messages" }, 845 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 846 "ip_ndp_delay_first_probe_time"}, 847 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 848 "ip_ndp_max_unicast_solicit"}, 849 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 850 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 851 { 0, 1, 0, "ip6_forward_src_routed"}, 852 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 853 { 0, 1, 1, "ip6_send_redirects"}, 854 { 0, 1, 0, "ip6_ignore_redirect" }, 855 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 856 857 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 858 859 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 860 861 { 0, 1, 1, "pim_accept_clear_messages" }, 862 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 863 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 864 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 865 { 0, 15, 0, "ip_policy_mask" }, 866 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 867 { 0, 255, 1, "ip_multirt_ttl" }, 868 { 0, 1, 1, "ip_multidata_outbound" }, 869 { 0, 3600000, 300000, "ip_ndp_defense_interval" }, 870 { 0, 999999, 60*60*24, "ip_max_temp_idle" }, 871 { 0, 1000, 1, "ip_max_temp_defend" }, 872 { 0, 1000, 3, "ip_max_defend" }, 873 { 0, 999999, 30, "ip_defend_interval" }, 874 { 0, 3600000, 300000, "ip_dup_recovery" }, 875 { 0, 1, 1, "ip_restrict_interzone_loopback" }, 876 { 0, 1, 1, "ip_lso_outbound" }, 877 { IGMP_V1_ROUTER, IGMP_V3_ROUTER, IGMP_V3_ROUTER, "igmp_max_version" }, 878 { MLD_V1_ROUTER, MLD_V2_ROUTER, MLD_V2_ROUTER, "mld_max_version" }, 879 #ifdef DEBUG 880 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 881 #else 882 { 0, 0, 0, "" }, 883 #endif 884 }; 885 886 /* 887 * Extended NDP table 888 * The addresses for the first two are filled in to be ips_ip_g_forward 889 * and ips_ipv6_forward at init time. 890 */ 891 static ipndp_t lcl_ndp_arr[] = { 892 /* getf setf data name */ 893 #define IPNDP_IP_FORWARDING_OFFSET 0 894 { ip_param_generic_get, ip_forward_set, NULL, 895 "ip_forwarding" }, 896 #define IPNDP_IP6_FORWARDING_OFFSET 1 897 { ip_param_generic_get, ip_forward_set, NULL, 898 "ip6_forwarding" }, 899 { ip_ill_report, NULL, NULL, 900 "ip_ill_status" }, 901 { ip_ipif_report, NULL, NULL, 902 "ip_ipif_status" }, 903 { ip_ire_report, NULL, NULL, 904 "ipv4_ire_status" }, 905 { ip_ire_report_v6, NULL, NULL, 906 "ipv6_ire_status" }, 907 { ip_conn_report, NULL, NULL, 908 "ip_conn_status" }, 909 { nd_get_long, nd_set_long, (caddr_t)&ip_rput_pullups, 910 "ip_rput_pullups" }, 911 { ndp_report, NULL, NULL, 912 "ip_ndp_cache_report" }, 913 { ip_srcid_report, NULL, NULL, 914 "ip_srcid_status" }, 915 { ip_param_generic_get, ip_squeue_profile_set, 916 (caddr_t)&ip_squeue_profile, "ip_squeue_profile" }, 917 { ip_param_generic_get, ip_squeue_bind_set, 918 (caddr_t)&ip_squeue_bind, "ip_squeue_bind" }, 919 { ip_param_generic_get, ip_input_proc_set, 920 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 921 { ip_param_generic_get, ip_int_set, 922 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 923 #define IPNDP_CGTP_FILTER_OFFSET 14 924 { ip_cgtp_filter_get, ip_cgtp_filter_set, NULL, 925 "ip_cgtp_filter" }, 926 { ip_param_generic_get, ip_int_set, 927 (caddr_t)&ip_soft_rings_cnt, "ip_soft_rings_cnt" }, 928 #define IPNDP_IPMP_HOOK_OFFSET 16 929 { ip_param_generic_get, ipmp_hook_emulation_set, NULL, 930 "ipmp_hook_emulation" }, 931 }; 932 933 /* 934 * Table of IP ioctls encoding the various properties of the ioctl and 935 * indexed based on the last byte of the ioctl command. Occasionally there 936 * is a clash, and there is more than 1 ioctl with the same last byte. 937 * In such a case 1 ioctl is encoded in the ndx table and the remaining 938 * ioctls are encoded in the misc table. An entry in the ndx table is 939 * retrieved by indexing on the last byte of the ioctl command and comparing 940 * the ioctl command with the value in the ndx table. In the event of a 941 * mismatch the misc table is then searched sequentially for the desired 942 * ioctl command. 943 * 944 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 945 */ 946 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 947 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 948 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 949 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 950 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 951 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 952 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 953 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 954 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 955 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 956 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 957 958 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 959 MISC_CMD, ip_siocaddrt, NULL }, 960 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 961 MISC_CMD, ip_siocdelrt, NULL }, 962 963 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 964 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 965 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 966 IF_CMD, ip_sioctl_get_addr, NULL }, 967 968 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 969 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 970 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 971 IPI_GET_CMD | IPI_REPL, 972 IF_CMD, ip_sioctl_get_dstaddr, NULL }, 973 974 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 975 IPI_PRIV | IPI_WR | IPI_REPL, 976 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 977 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 978 IPI_MODOK | IPI_GET_CMD | IPI_REPL, 979 IF_CMD, ip_sioctl_get_flags, NULL }, 980 981 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 982 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 983 984 /* copyin size cannot be coded for SIOCGIFCONF */ 985 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD, 986 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 987 988 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 989 IF_CMD, ip_sioctl_mtu, NULL }, 990 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 991 IF_CMD, ip_sioctl_get_mtu, NULL }, 992 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 993 IPI_GET_CMD | IPI_REPL, 994 IF_CMD, ip_sioctl_get_brdaddr, NULL }, 995 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 996 IF_CMD, ip_sioctl_brdaddr, NULL }, 997 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 998 IPI_GET_CMD | IPI_REPL, 999 IF_CMD, ip_sioctl_get_netmask, NULL }, 1000 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1001 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1002 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1003 IPI_GET_CMD | IPI_REPL, 1004 IF_CMD, ip_sioctl_get_metric, NULL }, 1005 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1006 IF_CMD, ip_sioctl_metric, NULL }, 1007 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1008 1009 /* See 166-168 below for extended SIOC*XARP ioctls */ 1010 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV, 1011 ARP_CMD, ip_sioctl_arp, NULL }, 1012 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD | IPI_REPL, 1013 ARP_CMD, ip_sioctl_arp, NULL }, 1014 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV, 1015 ARP_CMD, ip_sioctl_arp, NULL }, 1016 1017 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1018 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1019 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1020 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1021 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1022 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1023 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1024 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1025 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1026 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1027 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1028 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1029 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1030 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1031 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1032 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1033 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1034 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1035 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1036 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1037 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1038 1039 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1040 MISC_CMD, if_unitsel, if_unitsel_restart }, 1041 1042 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1043 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1044 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1045 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1046 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1047 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1048 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1049 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1050 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1051 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1052 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1053 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1054 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1055 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1056 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1057 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1058 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1059 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1060 1061 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1062 IPI_PRIV | IPI_WR | IPI_MODOK, 1063 IF_CMD, ip_sioctl_sifname, NULL }, 1064 1065 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1066 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1067 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1068 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1069 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1070 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1071 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1072 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1073 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1074 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1075 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1076 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1077 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1078 1079 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD | IPI_REPL, 1080 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1081 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1082 IF_CMD, ip_sioctl_get_muxid, NULL }, 1083 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1084 IPI_PRIV | IPI_WR | IPI_REPL, 1085 IF_CMD, ip_sioctl_muxid, NULL }, 1086 1087 /* Both if and lif variants share same func */ 1088 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1089 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1090 /* Both if and lif variants share same func */ 1091 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1092 IPI_PRIV | IPI_WR | IPI_REPL, 1093 IF_CMD, ip_sioctl_slifindex, NULL }, 1094 1095 /* copyin size cannot be coded for SIOCGIFCONF */ 1096 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD, 1097 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1098 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1099 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1100 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1101 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1102 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1103 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1104 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1105 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1106 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1107 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1108 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1109 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1110 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1111 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1112 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1113 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1114 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1115 1116 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1117 IPI_PRIV | IPI_WR | IPI_REPL, 1118 LIF_CMD, ip_sioctl_removeif, 1119 ip_sioctl_removeif_restart }, 1120 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1121 IPI_GET_CMD | IPI_PRIV | IPI_WR | IPI_REPL, 1122 LIF_CMD, ip_sioctl_addif, NULL }, 1123 #define SIOCLIFADDR_NDX 112 1124 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1125 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1126 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1127 IPI_GET_CMD | IPI_REPL, 1128 LIF_CMD, ip_sioctl_get_addr, NULL }, 1129 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1130 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1131 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1132 IPI_GET_CMD | IPI_REPL, 1133 LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1134 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1135 IPI_PRIV | IPI_WR | IPI_REPL, 1136 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1137 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1138 IPI_GET_CMD | IPI_MODOK | IPI_REPL, 1139 LIF_CMD, ip_sioctl_get_flags, NULL }, 1140 1141 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1142 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1143 1144 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1145 ip_sioctl_get_lifconf, NULL }, 1146 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1147 LIF_CMD, ip_sioctl_mtu, NULL }, 1148 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD | IPI_REPL, 1149 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1150 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1151 IPI_GET_CMD | IPI_REPL, 1152 LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1153 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1154 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1155 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1156 IPI_GET_CMD | IPI_REPL, 1157 LIF_CMD, ip_sioctl_get_netmask, NULL }, 1158 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1159 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1160 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1161 IPI_GET_CMD | IPI_REPL, 1162 LIF_CMD, ip_sioctl_get_metric, NULL }, 1163 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1164 LIF_CMD, ip_sioctl_metric, NULL }, 1165 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1166 IPI_PRIV | IPI_WR | IPI_MODOK | IPI_REPL, 1167 LIF_CMD, ip_sioctl_slifname, 1168 ip_sioctl_slifname_restart }, 1169 1170 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD | IPI_REPL, 1171 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1172 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1173 IPI_GET_CMD | IPI_REPL, 1174 LIF_CMD, ip_sioctl_get_muxid, NULL }, 1175 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1176 IPI_PRIV | IPI_WR | IPI_REPL, 1177 LIF_CMD, ip_sioctl_muxid, NULL }, 1178 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1179 IPI_GET_CMD | IPI_REPL, 1180 LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1181 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1182 IPI_PRIV | IPI_WR | IPI_REPL, 1183 LIF_CMD, ip_sioctl_slifindex, 0 }, 1184 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1185 LIF_CMD, ip_sioctl_token, NULL }, 1186 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1187 IPI_GET_CMD | IPI_REPL, 1188 LIF_CMD, ip_sioctl_get_token, NULL }, 1189 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1190 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1191 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1192 IPI_GET_CMD | IPI_REPL, 1193 LIF_CMD, ip_sioctl_get_subnet, NULL }, 1194 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1195 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1196 1197 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1198 IPI_GET_CMD | IPI_REPL, 1199 LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1200 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1201 LIF_CMD, ip_siocdelndp_v6, NULL }, 1202 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1203 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1204 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1205 LIF_CMD, ip_siocsetndp_v6, NULL }, 1206 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1207 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1208 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1209 MISC_CMD, ip_sioctl_tonlink, NULL }, 1210 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1211 MISC_CMD, ip_sioctl_tmysite, NULL }, 1212 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), IPI_REPL, 1213 TUN_CMD, ip_sioctl_tunparam, NULL }, 1214 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1215 IPI_PRIV | IPI_WR, 1216 TUN_CMD, ip_sioctl_tunparam, NULL }, 1217 1218 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1219 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1220 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1221 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1222 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1223 1224 /* 153 */ { SIOCLIFFAILOVER, sizeof (struct lifreq), 1225 IPI_PRIV | IPI_WR | IPI_REPL, 1226 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1227 /* 154 */ { SIOCLIFFAILBACK, sizeof (struct lifreq), 1228 IPI_PRIV | IPI_WR | IPI_REPL, 1229 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1230 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1231 IPI_PRIV | IPI_WR, 1232 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1233 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1234 IPI_GET_CMD | IPI_REPL, 1235 LIF_CMD, ip_sioctl_get_groupname, NULL }, 1236 /* 157 */ { SIOCGLIFOINDEX, sizeof (struct lifreq), 1237 IPI_GET_CMD | IPI_REPL, 1238 LIF_CMD, ip_sioctl_get_oindex, NULL }, 1239 1240 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1241 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1242 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1243 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1244 1245 /* 161 */ { SIOCSLIFOINDEX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1246 LIF_CMD, ip_sioctl_slifoindex, NULL }, 1247 1248 /* These are handled in ip_sioctl_copyin_setup itself */ 1249 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1250 MISC_CMD, NULL, NULL }, 1251 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1252 MISC_CMD, NULL, NULL }, 1253 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1254 1255 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1256 ip_sioctl_get_lifconf, NULL }, 1257 1258 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV, 1259 XARP_CMD, ip_sioctl_arp, NULL }, 1260 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD | IPI_REPL, 1261 XARP_CMD, ip_sioctl_arp, NULL }, 1262 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV, 1263 XARP_CMD, ip_sioctl_arp, NULL }, 1264 1265 /* SIOCPOPSOCKFS is not handled by IP */ 1266 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1267 1268 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1269 IPI_GET_CMD | IPI_REPL, 1270 LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1271 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1272 IPI_PRIV | IPI_WR | IPI_REPL, 1273 LIF_CMD, ip_sioctl_slifzone, 1274 ip_sioctl_slifzone_restart }, 1275 /* 172-174 are SCTP ioctls and not handled by IP */ 1276 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1277 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1278 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1279 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1280 IPI_GET_CMD, LIF_CMD, 1281 ip_sioctl_get_lifusesrc, 0 }, 1282 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1283 IPI_PRIV | IPI_WR, 1284 LIF_CMD, ip_sioctl_slifusesrc, 1285 NULL }, 1286 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1287 ip_sioctl_get_lifsrcof, NULL }, 1288 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1289 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1290 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1291 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1292 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1293 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1294 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1295 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1296 /* 182 */ { SIOCSIPMPFAILBACK, sizeof (int), IPI_PRIV, MISC_CMD, 1297 ip_sioctl_set_ipmpfailback, NULL } 1298 }; 1299 1300 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1301 1302 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1303 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1304 IPI_GET_CMD | IPI_REPL, TUN_CMD, ip_sioctl_tunparam, NULL }, 1305 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1306 TUN_CMD, ip_sioctl_tunparam, NULL }, 1307 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1308 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1309 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1310 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1311 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1312 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1313 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1314 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_REPL | IPI_GET_CMD, 1315 MISC_CMD, mrt_ioctl}, 1316 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_REPL | IPI_GET_CMD, 1317 MISC_CMD, mrt_ioctl}, 1318 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_REPL | IPI_GET_CMD, 1319 MISC_CMD, mrt_ioctl} 1320 }; 1321 1322 int ip_misc_ioctl_count = 1323 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1324 1325 int conn_drain_nthreads; /* Number of drainers reqd. */ 1326 /* Settable in /etc/system */ 1327 /* Defined in ip_ire.c */ 1328 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1329 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1330 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1331 1332 static nv_t ire_nv_arr[] = { 1333 { IRE_BROADCAST, "BROADCAST" }, 1334 { IRE_LOCAL, "LOCAL" }, 1335 { IRE_LOOPBACK, "LOOPBACK" }, 1336 { IRE_CACHE, "CACHE" }, 1337 { IRE_DEFAULT, "DEFAULT" }, 1338 { IRE_PREFIX, "PREFIX" }, 1339 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1340 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1341 { IRE_HOST, "HOST" }, 1342 { 0 } 1343 }; 1344 1345 nv_t *ire_nv_tbl = ire_nv_arr; 1346 1347 /* Defined in ip_netinfo.c */ 1348 extern ddi_taskq_t *eventq_queue_nic; 1349 1350 /* Simple ICMP IP Header Template */ 1351 static ipha_t icmp_ipha = { 1352 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1353 }; 1354 1355 struct module_info ip_mod_info = { 1356 IP_MOD_ID, IP_MOD_NAME, 1, INFPSZ, 65536, 1024 1357 }; 1358 1359 /* 1360 * Duplicate static symbols within a module confuses mdb; so we avoid the 1361 * problem by making the symbols here distinct from those in udp.c. 1362 */ 1363 1364 /* 1365 * Entry points for IP as a device and as a module. 1366 * FIXME: down the road we might want a separate module and driver qinit. 1367 * We have separate open functions for the /dev/ip and /dev/ip6 devices. 1368 */ 1369 static struct qinit iprinitv4 = { 1370 (pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL, 1371 &ip_mod_info 1372 }; 1373 1374 struct qinit iprinitv6 = { 1375 (pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL, 1376 &ip_mod_info 1377 }; 1378 1379 static struct qinit ipwinitv4 = { 1380 (pfi_t)ip_wput, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1381 &ip_mod_info 1382 }; 1383 1384 struct qinit ipwinitv6 = { 1385 (pfi_t)ip_wput_v6, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1386 &ip_mod_info 1387 }; 1388 1389 static struct qinit iplrinit = { 1390 (pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL, 1391 &ip_mod_info 1392 }; 1393 1394 static struct qinit iplwinit = { 1395 (pfi_t)ip_lwput, NULL, NULL, NULL, NULL, 1396 &ip_mod_info 1397 }; 1398 1399 /* For AF_INET aka /dev/ip */ 1400 struct streamtab ipinfov4 = { 1401 &iprinitv4, &ipwinitv4, &iplrinit, &iplwinit 1402 }; 1403 1404 /* For AF_INET6 aka /dev/ip6 */ 1405 struct streamtab ipinfov6 = { 1406 &iprinitv6, &ipwinitv6, &iplrinit, &iplwinit 1407 }; 1408 1409 #ifdef DEBUG 1410 static boolean_t skip_sctp_cksum = B_FALSE; 1411 #endif 1412 1413 /* 1414 * Prepend the zoneid using an ipsec_out_t for later use by functions like 1415 * ip_rput_v6(), ip_output(), etc. If the message 1416 * block already has a M_CTL at the front of it, then simply set the zoneid 1417 * appropriately. 1418 */ 1419 mblk_t * 1420 ip_prepend_zoneid(mblk_t *mp, zoneid_t zoneid, ip_stack_t *ipst) 1421 { 1422 mblk_t *first_mp; 1423 ipsec_out_t *io; 1424 1425 ASSERT(zoneid != ALL_ZONES); 1426 if (mp->b_datap->db_type == M_CTL) { 1427 io = (ipsec_out_t *)mp->b_rptr; 1428 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1429 io->ipsec_out_zoneid = zoneid; 1430 return (mp); 1431 } 1432 1433 first_mp = ipsec_alloc_ipsec_out(ipst->ips_netstack); 1434 if (first_mp == NULL) 1435 return (NULL); 1436 io = (ipsec_out_t *)first_mp->b_rptr; 1437 /* This is not a secure packet */ 1438 io->ipsec_out_secure = B_FALSE; 1439 io->ipsec_out_zoneid = zoneid; 1440 first_mp->b_cont = mp; 1441 return (first_mp); 1442 } 1443 1444 /* 1445 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1446 */ 1447 mblk_t * 1448 ip_copymsg(mblk_t *mp) 1449 { 1450 mblk_t *nmp; 1451 ipsec_info_t *in; 1452 1453 if (mp->b_datap->db_type != M_CTL) 1454 return (copymsg(mp)); 1455 1456 in = (ipsec_info_t *)mp->b_rptr; 1457 1458 /* 1459 * Note that M_CTL is also used for delivering ICMP error messages 1460 * upstream to transport layers. 1461 */ 1462 if (in->ipsec_info_type != IPSEC_OUT && 1463 in->ipsec_info_type != IPSEC_IN) 1464 return (copymsg(mp)); 1465 1466 nmp = copymsg(mp->b_cont); 1467 1468 if (in->ipsec_info_type == IPSEC_OUT) { 1469 return (ipsec_out_tag(mp, nmp, 1470 ((ipsec_out_t *)in)->ipsec_out_ns)); 1471 } else { 1472 return (ipsec_in_tag(mp, nmp, 1473 ((ipsec_in_t *)in)->ipsec_in_ns)); 1474 } 1475 } 1476 1477 /* Generate an ICMP fragmentation needed message. */ 1478 static void 1479 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu, zoneid_t zoneid, 1480 ip_stack_t *ipst) 1481 { 1482 icmph_t icmph; 1483 mblk_t *first_mp; 1484 boolean_t mctl_present; 1485 1486 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1487 1488 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 1489 if (mctl_present) 1490 freeb(first_mp); 1491 return; 1492 } 1493 1494 bzero(&icmph, sizeof (icmph_t)); 1495 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1496 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1497 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1498 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1499 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1500 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 1501 ipst); 1502 } 1503 1504 /* 1505 * icmp_inbound deals with ICMP messages in the following ways. 1506 * 1507 * 1) It needs to send a reply back and possibly delivering it 1508 * to the "interested" upper clients. 1509 * 2) It needs to send it to the upper clients only. 1510 * 3) It needs to change some values in IP only. 1511 * 4) It needs to change some values in IP and upper layers e.g TCP. 1512 * 1513 * We need to accomodate icmp messages coming in clear until we get 1514 * everything secure from the wire. If icmp_accept_clear_messages 1515 * is zero we check with the global policy and act accordingly. If 1516 * it is non-zero, we accept the message without any checks. But 1517 * *this does not mean* that this will be delivered to the upper 1518 * clients. By accepting we might send replies back, change our MTU 1519 * value etc. but delivery to the ULP/clients depends on their policy 1520 * dispositions. 1521 * 1522 * We handle the above 4 cases in the context of IPsec in the 1523 * following way : 1524 * 1525 * 1) Send the reply back in the same way as the request came in. 1526 * If it came in encrypted, it goes out encrypted. If it came in 1527 * clear, it goes out in clear. Thus, this will prevent chosen 1528 * plain text attack. 1529 * 2) The client may or may not expect things to come in secure. 1530 * If it comes in secure, the policy constraints are checked 1531 * before delivering it to the upper layers. If it comes in 1532 * clear, ipsec_inbound_accept_clear will decide whether to 1533 * accept this in clear or not. In both the cases, if the returned 1534 * message (IP header + 8 bytes) that caused the icmp message has 1535 * AH/ESP headers, it is sent up to AH/ESP for validation before 1536 * sending up. If there are only 8 bytes of returned message, then 1537 * upper client will not be notified. 1538 * 3) Check with global policy to see whether it matches the constaints. 1539 * But this will be done only if icmp_accept_messages_in_clear is 1540 * zero. 1541 * 4) If we need to change both in IP and ULP, then the decision taken 1542 * while affecting the values in IP and while delivering up to TCP 1543 * should be the same. 1544 * 1545 * There are two cases. 1546 * 1547 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1548 * failed), we will not deliver it to the ULP, even though they 1549 * are *willing* to accept in *clear*. This is fine as our global 1550 * disposition to icmp messages asks us reject the datagram. 1551 * 1552 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1553 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1554 * to deliver it to ULP (policy failed), it can lead to 1555 * consistency problems. The cases known at this time are 1556 * ICMP_DESTINATION_UNREACHABLE messages with following code 1557 * values : 1558 * 1559 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1560 * and Upper layer rejects. Then the communication will 1561 * come to a stop. This is solved by making similar decisions 1562 * at both levels. Currently, when we are unable to deliver 1563 * to the Upper Layer (due to policy failures) while IP has 1564 * adjusted ire_max_frag, the next outbound datagram would 1565 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1566 * will be with the right level of protection. Thus the right 1567 * value will be communicated even if we are not able to 1568 * communicate when we get from the wire initially. But this 1569 * assumes there would be at least one outbound datagram after 1570 * IP has adjusted its ire_max_frag value. To make things 1571 * simpler, we accept in clear after the validation of 1572 * AH/ESP headers. 1573 * 1574 * - Other ICMP ERRORS : We may not be able to deliver it to the 1575 * upper layer depending on the level of protection the upper 1576 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1577 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1578 * should be accepted in clear when the Upper layer expects secure. 1579 * Thus the communication may get aborted by some bad ICMP 1580 * packets. 1581 * 1582 * IPQoS Notes: 1583 * The only instance when a packet is sent for processing is when there 1584 * isn't an ICMP client and if we are interested in it. 1585 * If there is a client, IPPF processing will take place in the 1586 * ip_fanout_proto routine. 1587 * 1588 * Zones notes: 1589 * The packet is only processed in the context of the specified zone: typically 1590 * only this zone will reply to an echo request, and only interested clients in 1591 * this zone will receive a copy of the packet. This means that the caller must 1592 * call icmp_inbound() for each relevant zone. 1593 */ 1594 static void 1595 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1596 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1597 ill_t *recv_ill, zoneid_t zoneid) 1598 { 1599 icmph_t *icmph; 1600 ipha_t *ipha; 1601 int iph_hdr_length; 1602 int hdr_length; 1603 boolean_t interested; 1604 uint32_t ts; 1605 uchar_t *wptr; 1606 ipif_t *ipif; 1607 mblk_t *first_mp; 1608 ipsec_in_t *ii; 1609 ire_t *src_ire; 1610 boolean_t onlink; 1611 timestruc_t now; 1612 uint32_t ill_index; 1613 ip_stack_t *ipst; 1614 1615 ASSERT(ill != NULL); 1616 ipst = ill->ill_ipst; 1617 1618 first_mp = mp; 1619 if (mctl_present) { 1620 mp = first_mp->b_cont; 1621 ASSERT(mp != NULL); 1622 } 1623 1624 ipha = (ipha_t *)mp->b_rptr; 1625 if (ipst->ips_icmp_accept_clear_messages == 0) { 1626 first_mp = ipsec_check_global_policy(first_mp, NULL, 1627 ipha, NULL, mctl_present, ipst->ips_netstack); 1628 if (first_mp == NULL) 1629 return; 1630 } 1631 1632 /* 1633 * On a labeled system, we have to check whether the zone itself is 1634 * permitted to receive raw traffic. 1635 */ 1636 if (is_system_labeled()) { 1637 if (zoneid == ALL_ZONES) 1638 zoneid = tsol_packet_to_zoneid(mp); 1639 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1640 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1641 zoneid)); 1642 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1643 freemsg(first_mp); 1644 return; 1645 } 1646 } 1647 1648 /* 1649 * We have accepted the ICMP message. It means that we will 1650 * respond to the packet if needed. It may not be delivered 1651 * to the upper client depending on the policy constraints 1652 * and the disposition in ipsec_inbound_accept_clear. 1653 */ 1654 1655 ASSERT(ill != NULL); 1656 1657 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1658 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1659 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1660 /* Last chance to get real. */ 1661 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1662 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1663 freemsg(first_mp); 1664 return; 1665 } 1666 /* Refresh iph following the pullup. */ 1667 ipha = (ipha_t *)mp->b_rptr; 1668 } 1669 /* ICMP header checksum, including checksum field, should be zero. */ 1670 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1671 IP_CSUM(mp, iph_hdr_length, 0)) { 1672 BUMP_MIB(&ipst->ips_icmp_mib, icmpInCksumErrs); 1673 freemsg(first_mp); 1674 return; 1675 } 1676 /* The IP header will always be a multiple of four bytes */ 1677 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1678 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1679 icmph->icmph_code)); 1680 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1681 /* We will set "interested" to "true" if we want a copy */ 1682 interested = B_FALSE; 1683 switch (icmph->icmph_type) { 1684 case ICMP_ECHO_REPLY: 1685 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1686 break; 1687 case ICMP_DEST_UNREACHABLE: 1688 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1689 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1690 interested = B_TRUE; /* Pass up to transport */ 1691 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1692 break; 1693 case ICMP_SOURCE_QUENCH: 1694 interested = B_TRUE; /* Pass up to transport */ 1695 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1696 break; 1697 case ICMP_REDIRECT: 1698 if (!ipst->ips_ip_ignore_redirect) 1699 interested = B_TRUE; 1700 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1701 break; 1702 case ICMP_ECHO_REQUEST: 1703 /* 1704 * Whether to respond to echo requests that come in as IP 1705 * broadcasts or as IP multicast is subject to debate 1706 * (what isn't?). We aim to please, you pick it. 1707 * Default is do it. 1708 */ 1709 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1710 /* unicast: always respond */ 1711 interested = B_TRUE; 1712 } else if (CLASSD(ipha->ipha_dst)) { 1713 /* multicast: respond based on tunable */ 1714 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1715 } else if (broadcast) { 1716 /* broadcast: respond based on tunable */ 1717 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1718 } 1719 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1720 break; 1721 case ICMP_ROUTER_ADVERTISEMENT: 1722 case ICMP_ROUTER_SOLICITATION: 1723 break; 1724 case ICMP_TIME_EXCEEDED: 1725 interested = B_TRUE; /* Pass up to transport */ 1726 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1727 break; 1728 case ICMP_PARAM_PROBLEM: 1729 interested = B_TRUE; /* Pass up to transport */ 1730 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1731 break; 1732 case ICMP_TIME_STAMP_REQUEST: 1733 /* Response to Time Stamp Requests is local policy. */ 1734 if (ipst->ips_ip_g_resp_to_timestamp && 1735 /* So is whether to respond if it was an IP broadcast. */ 1736 (!broadcast || ipst->ips_ip_g_resp_to_timestamp_bcast)) { 1737 int tstamp_len = 3 * sizeof (uint32_t); 1738 1739 if (wptr + tstamp_len > mp->b_wptr) { 1740 if (!pullupmsg(mp, wptr + tstamp_len - 1741 mp->b_rptr)) { 1742 BUMP_MIB(ill->ill_ip_mib, 1743 ipIfStatsInDiscards); 1744 freemsg(first_mp); 1745 return; 1746 } 1747 /* Refresh ipha following the pullup. */ 1748 ipha = (ipha_t *)mp->b_rptr; 1749 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1750 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1751 } 1752 interested = B_TRUE; 1753 } 1754 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1755 break; 1756 case ICMP_TIME_STAMP_REPLY: 1757 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1758 break; 1759 case ICMP_INFO_REQUEST: 1760 /* Per RFC 1122 3.2.2.7, ignore this. */ 1761 case ICMP_INFO_REPLY: 1762 break; 1763 case ICMP_ADDRESS_MASK_REQUEST: 1764 if ((ipst->ips_ip_respond_to_address_mask_broadcast || 1765 !broadcast) && 1766 /* TODO m_pullup of complete header? */ 1767 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) { 1768 interested = B_TRUE; 1769 } 1770 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1771 break; 1772 case ICMP_ADDRESS_MASK_REPLY: 1773 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1774 break; 1775 default: 1776 interested = B_TRUE; /* Pass up to transport */ 1777 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1778 break; 1779 } 1780 /* See if there is an ICMP client. */ 1781 if (ipst->ips_ipcl_proto_fanout[IPPROTO_ICMP].connf_head != NULL) { 1782 /* If there is an ICMP client and we want one too, copy it. */ 1783 mblk_t *first_mp1; 1784 1785 if (!interested) { 1786 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1787 ip_policy, recv_ill, zoneid); 1788 return; 1789 } 1790 first_mp1 = ip_copymsg(first_mp); 1791 if (first_mp1 != NULL) { 1792 ip_fanout_proto(q, first_mp1, ill, ipha, 1793 0, mctl_present, ip_policy, recv_ill, zoneid); 1794 } 1795 } else if (!interested) { 1796 freemsg(first_mp); 1797 return; 1798 } else { 1799 /* 1800 * Initiate policy processing for this packet if ip_policy 1801 * is true. 1802 */ 1803 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 1804 ill_index = ill->ill_phyint->phyint_ifindex; 1805 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1806 if (mp == NULL) { 1807 if (mctl_present) { 1808 freeb(first_mp); 1809 } 1810 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1811 return; 1812 } 1813 } 1814 } 1815 /* We want to do something with it. */ 1816 /* Check db_ref to make sure we can modify the packet. */ 1817 if (mp->b_datap->db_ref > 1) { 1818 mblk_t *first_mp1; 1819 1820 first_mp1 = ip_copymsg(first_mp); 1821 freemsg(first_mp); 1822 if (!first_mp1) { 1823 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1824 return; 1825 } 1826 first_mp = first_mp1; 1827 if (mctl_present) { 1828 mp = first_mp->b_cont; 1829 ASSERT(mp != NULL); 1830 } else { 1831 mp = first_mp; 1832 } 1833 ipha = (ipha_t *)mp->b_rptr; 1834 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1835 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1836 } 1837 switch (icmph->icmph_type) { 1838 case ICMP_ADDRESS_MASK_REQUEST: 1839 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1840 if (ipif == NULL) { 1841 freemsg(first_mp); 1842 return; 1843 } 1844 /* 1845 * outging interface must be IPv4 1846 */ 1847 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1848 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1849 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1850 ipif_refrele(ipif); 1851 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1852 break; 1853 case ICMP_ECHO_REQUEST: 1854 icmph->icmph_type = ICMP_ECHO_REPLY; 1855 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1856 break; 1857 case ICMP_TIME_STAMP_REQUEST: { 1858 uint32_t *tsp; 1859 1860 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1861 tsp = (uint32_t *)wptr; 1862 tsp++; /* Skip past 'originate time' */ 1863 /* Compute # of milliseconds since midnight */ 1864 gethrestime(&now); 1865 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1866 now.tv_nsec / (NANOSEC / MILLISEC); 1867 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1868 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1869 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1870 break; 1871 } 1872 default: 1873 ipha = (ipha_t *)&icmph[1]; 1874 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1875 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1876 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1877 freemsg(first_mp); 1878 return; 1879 } 1880 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1881 ipha = (ipha_t *)&icmph[1]; 1882 } 1883 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1884 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1885 freemsg(first_mp); 1886 return; 1887 } 1888 hdr_length = IPH_HDR_LENGTH(ipha); 1889 if (hdr_length < sizeof (ipha_t)) { 1890 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1891 freemsg(first_mp); 1892 return; 1893 } 1894 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1895 if (!pullupmsg(mp, 1896 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1897 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1898 freemsg(first_mp); 1899 return; 1900 } 1901 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1902 ipha = (ipha_t *)&icmph[1]; 1903 } 1904 switch (icmph->icmph_type) { 1905 case ICMP_REDIRECT: 1906 /* 1907 * As there is no upper client to deliver, we don't 1908 * need the first_mp any more. 1909 */ 1910 if (mctl_present) { 1911 freeb(first_mp); 1912 } 1913 icmp_redirect(ill, mp); 1914 return; 1915 case ICMP_DEST_UNREACHABLE: 1916 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1917 if (!icmp_inbound_too_big(icmph, ipha, ill, 1918 zoneid, mp, iph_hdr_length, ipst)) { 1919 freemsg(first_mp); 1920 return; 1921 } 1922 /* 1923 * icmp_inbound_too_big() may alter mp. 1924 * Resynch ipha and icmph accordingly. 1925 */ 1926 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1927 ipha = (ipha_t *)&icmph[1]; 1928 } 1929 /* FALLTHRU */ 1930 default : 1931 /* 1932 * IPQoS notes: Since we have already done IPQoS 1933 * processing we don't want to do it again in 1934 * the fanout routines called by 1935 * icmp_inbound_error_fanout, hence the last 1936 * argument, ip_policy, is B_FALSE. 1937 */ 1938 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 1939 ipha, iph_hdr_length, hdr_length, mctl_present, 1940 B_FALSE, recv_ill, zoneid); 1941 } 1942 return; 1943 } 1944 /* Send out an ICMP packet */ 1945 icmph->icmph_checksum = 0; 1946 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 1947 if (broadcast || CLASSD(ipha->ipha_dst)) { 1948 ipif_t *ipif_chosen; 1949 /* 1950 * Make it look like it was directed to us, so we don't look 1951 * like a fool with a broadcast or multicast source address. 1952 */ 1953 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1954 /* 1955 * Make sure that we haven't grabbed an interface that's DOWN. 1956 */ 1957 if (ipif != NULL) { 1958 ipif_chosen = ipif_select_source(ipif->ipif_ill, 1959 ipha->ipha_src, zoneid); 1960 if (ipif_chosen != NULL) { 1961 ipif_refrele(ipif); 1962 ipif = ipif_chosen; 1963 } 1964 } 1965 if (ipif == NULL) { 1966 ip0dbg(("icmp_inbound: " 1967 "No source for broadcast/multicast:\n" 1968 "\tsrc 0x%x dst 0x%x ill %p " 1969 "ipif_lcl_addr 0x%x\n", 1970 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 1971 (void *)ill, 1972 ill->ill_ipif->ipif_lcl_addr)); 1973 freemsg(first_mp); 1974 return; 1975 } 1976 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1977 ipha->ipha_dst = ipif->ipif_src_addr; 1978 ipif_refrele(ipif); 1979 } 1980 /* Reset time to live. */ 1981 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 1982 { 1983 /* Swap source and destination addresses */ 1984 ipaddr_t tmp; 1985 1986 tmp = ipha->ipha_src; 1987 ipha->ipha_src = ipha->ipha_dst; 1988 ipha->ipha_dst = tmp; 1989 } 1990 ipha->ipha_ident = 0; 1991 if (!IS_SIMPLE_IPH(ipha)) 1992 icmp_options_update(ipha); 1993 1994 /* 1995 * ICMP echo replies should go out on the same interface 1996 * the request came on as probes used by in.mpathd for detecting 1997 * NIC failures are ECHO packets. We turn-off load spreading 1998 * by setting ipsec_in_attach_if to B_TRUE, which is copied 1999 * to ipsec_out_attach_if by ipsec_in_to_out called later in this 2000 * function. This is in turn handled by ip_wput and ip_newroute 2001 * to make sure that the packet goes out on the interface it came 2002 * in on. If we don't turnoff load spreading, the packets might get 2003 * dropped if there are no non-FAILED/INACTIVE interfaces for it 2004 * to go out and in.mpathd would wrongly detect a failure or 2005 * mis-detect a NIC failure for link failure. As load spreading 2006 * can happen only if ill_group is not NULL, we do only for 2007 * that case and this does not affect the normal case. 2008 * 2009 * We turn off load spreading only on echo packets that came from 2010 * on-link hosts. If the interface route has been deleted, this will 2011 * not be enforced as we can't do much. For off-link hosts, as the 2012 * default routes in IPv4 does not typically have an ire_ipif 2013 * pointer, we can't force MATCH_IRE_ILL in ip_wput/ip_newroute. 2014 * Moreover, expecting a default route through this interface may 2015 * not be correct. We use ipha_dst because of the swap above. 2016 */ 2017 onlink = B_FALSE; 2018 if (icmph->icmph_type == ICMP_ECHO_REPLY && ill->ill_group != NULL) { 2019 /* 2020 * First, we need to make sure that it is not one of our 2021 * local addresses. If we set onlink when it is one of 2022 * our local addresses, we will end up creating IRE_CACHES 2023 * for one of our local addresses. Then, we will never 2024 * accept packets for them afterwards. 2025 */ 2026 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_LOCAL, 2027 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2028 if (src_ire == NULL) { 2029 ipif = ipif_get_next_ipif(NULL, ill); 2030 if (ipif == NULL) { 2031 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2032 freemsg(mp); 2033 return; 2034 } 2035 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 2036 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 2037 NULL, MATCH_IRE_ILL | MATCH_IRE_TYPE, ipst); 2038 ipif_refrele(ipif); 2039 if (src_ire != NULL) { 2040 onlink = B_TRUE; 2041 ire_refrele(src_ire); 2042 } 2043 } else { 2044 ire_refrele(src_ire); 2045 } 2046 } 2047 if (!mctl_present) { 2048 /* 2049 * This packet should go out the same way as it 2050 * came in i.e in clear. To make sure that global 2051 * policy will not be applied to this in ip_wput_ire, 2052 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2053 */ 2054 ASSERT(first_mp == mp); 2055 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2056 if (first_mp == NULL) { 2057 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2058 freemsg(mp); 2059 return; 2060 } 2061 ii = (ipsec_in_t *)first_mp->b_rptr; 2062 2063 /* This is not a secure packet */ 2064 ii->ipsec_in_secure = B_FALSE; 2065 if (onlink) { 2066 ii->ipsec_in_attach_if = B_TRUE; 2067 ii->ipsec_in_ill_index = 2068 ill->ill_phyint->phyint_ifindex; 2069 ii->ipsec_in_rill_index = 2070 recv_ill->ill_phyint->phyint_ifindex; 2071 } 2072 first_mp->b_cont = mp; 2073 } else if (onlink) { 2074 ii = (ipsec_in_t *)first_mp->b_rptr; 2075 ii->ipsec_in_attach_if = B_TRUE; 2076 ii->ipsec_in_ill_index = ill->ill_phyint->phyint_ifindex; 2077 ii->ipsec_in_rill_index = recv_ill->ill_phyint->phyint_ifindex; 2078 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2079 } else { 2080 ii = (ipsec_in_t *)first_mp->b_rptr; 2081 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2082 } 2083 ii->ipsec_in_zoneid = zoneid; 2084 ASSERT(zoneid != ALL_ZONES); 2085 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2086 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2087 return; 2088 } 2089 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2090 put(WR(q), first_mp); 2091 } 2092 2093 static ipaddr_t 2094 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2095 { 2096 conn_t *connp; 2097 connf_t *connfp; 2098 ipaddr_t nexthop_addr = INADDR_ANY; 2099 int hdr_length = IPH_HDR_LENGTH(ipha); 2100 uint16_t *up; 2101 uint32_t ports; 2102 ip_stack_t *ipst = ill->ill_ipst; 2103 2104 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2105 switch (ipha->ipha_protocol) { 2106 case IPPROTO_TCP: 2107 { 2108 tcph_t *tcph; 2109 2110 /* do a reverse lookup */ 2111 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2112 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2113 TCPS_LISTEN, ipst); 2114 break; 2115 } 2116 case IPPROTO_UDP: 2117 { 2118 uint32_t dstport, srcport; 2119 2120 ((uint16_t *)&ports)[0] = up[1]; 2121 ((uint16_t *)&ports)[1] = up[0]; 2122 2123 /* Extract ports in net byte order */ 2124 dstport = htons(ntohl(ports) & 0xFFFF); 2125 srcport = htons(ntohl(ports) >> 16); 2126 2127 connfp = &ipst->ips_ipcl_udp_fanout[ 2128 IPCL_UDP_HASH(dstport, ipst)]; 2129 mutex_enter(&connfp->connf_lock); 2130 connp = connfp->connf_head; 2131 2132 /* do a reverse lookup */ 2133 while ((connp != NULL) && 2134 (!IPCL_UDP_MATCH(connp, dstport, 2135 ipha->ipha_src, srcport, ipha->ipha_dst) || 2136 !IPCL_ZONE_MATCH(connp, zoneid))) { 2137 connp = connp->conn_next; 2138 } 2139 if (connp != NULL) 2140 CONN_INC_REF(connp); 2141 mutex_exit(&connfp->connf_lock); 2142 break; 2143 } 2144 case IPPROTO_SCTP: 2145 { 2146 in6_addr_t map_src, map_dst; 2147 2148 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2149 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2150 ((uint16_t *)&ports)[0] = up[1]; 2151 ((uint16_t *)&ports)[1] = up[0]; 2152 2153 connp = sctp_find_conn(&map_src, &map_dst, ports, 2154 zoneid, ipst->ips_netstack->netstack_sctp); 2155 if (connp == NULL) { 2156 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2157 zoneid, ports, ipha, ipst); 2158 } else { 2159 CONN_INC_REF(connp); 2160 SCTP_REFRELE(CONN2SCTP(connp)); 2161 } 2162 break; 2163 } 2164 default: 2165 { 2166 ipha_t ripha; 2167 2168 ripha.ipha_src = ipha->ipha_dst; 2169 ripha.ipha_dst = ipha->ipha_src; 2170 ripha.ipha_protocol = ipha->ipha_protocol; 2171 2172 connfp = &ipst->ips_ipcl_proto_fanout[ 2173 ipha->ipha_protocol]; 2174 mutex_enter(&connfp->connf_lock); 2175 connp = connfp->connf_head; 2176 for (connp = connfp->connf_head; connp != NULL; 2177 connp = connp->conn_next) { 2178 if (IPCL_PROTO_MATCH(connp, 2179 ipha->ipha_protocol, &ripha, ill, 2180 0, zoneid)) { 2181 CONN_INC_REF(connp); 2182 break; 2183 } 2184 } 2185 mutex_exit(&connfp->connf_lock); 2186 } 2187 } 2188 if (connp != NULL) { 2189 if (connp->conn_nexthop_set) 2190 nexthop_addr = connp->conn_nexthop_v4; 2191 CONN_DEC_REF(connp); 2192 } 2193 return (nexthop_addr); 2194 } 2195 2196 /* Table from RFC 1191 */ 2197 static int icmp_frag_size_table[] = 2198 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2199 2200 /* 2201 * Process received ICMP Packet too big. 2202 * After updating any IRE it does the fanout to any matching transport streams. 2203 * Assumes the message has been pulled up till the IP header that caused 2204 * the error. 2205 * 2206 * Returns B_FALSE on failure and B_TRUE on success. 2207 */ 2208 static boolean_t 2209 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2210 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length, 2211 ip_stack_t *ipst) 2212 { 2213 ire_t *ire, *first_ire; 2214 int mtu; 2215 int hdr_length; 2216 ipaddr_t nexthop_addr; 2217 2218 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2219 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2220 ASSERT(ill != NULL); 2221 2222 hdr_length = IPH_HDR_LENGTH(ipha); 2223 2224 /* Drop if the original packet contained a source route */ 2225 if (ip_source_route_included(ipha)) { 2226 return (B_FALSE); 2227 } 2228 /* 2229 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport 2230 * header. 2231 */ 2232 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2233 mp->b_wptr) { 2234 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2235 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2236 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2237 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2238 return (B_FALSE); 2239 } 2240 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2241 ipha = (ipha_t *)&icmph[1]; 2242 } 2243 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2244 if (nexthop_addr != INADDR_ANY) { 2245 /* nexthop set */ 2246 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2247 nexthop_addr, 0, NULL, ALL_ZONES, MBLK_GETLABEL(mp), 2248 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, ipst); 2249 } else { 2250 /* nexthop not set */ 2251 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2252 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2253 } 2254 2255 if (!first_ire) { 2256 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2257 ntohl(ipha->ipha_dst))); 2258 return (B_FALSE); 2259 } 2260 /* Check for MTU discovery advice as described in RFC 1191 */ 2261 mtu = ntohs(icmph->icmph_du_mtu); 2262 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2263 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2264 ire = ire->ire_next) { 2265 /* 2266 * Look for the connection to which this ICMP message is 2267 * directed. If it has the IP_NEXTHOP option set, then the 2268 * search is limited to IREs with the MATCH_IRE_PRIVATE 2269 * option. Else the search is limited to regular IREs. 2270 */ 2271 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2272 (nexthop_addr != ire->ire_gateway_addr)) || 2273 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2274 (nexthop_addr != INADDR_ANY))) 2275 continue; 2276 2277 mutex_enter(&ire->ire_lock); 2278 if (icmph->icmph_du_zero == 0 && mtu > 68) { 2279 /* Reduce the IRE max frag value as advised. */ 2280 ip1dbg(("Received mtu from router: %d (was %d)\n", 2281 mtu, ire->ire_max_frag)); 2282 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2283 } else { 2284 uint32_t length; 2285 int i; 2286 2287 /* 2288 * Use the table from RFC 1191 to figure out 2289 * the next "plateau" based on the length in 2290 * the original IP packet. 2291 */ 2292 length = ntohs(ipha->ipha_length); 2293 if (ire->ire_max_frag <= length && 2294 ire->ire_max_frag >= length - hdr_length) { 2295 /* 2296 * Handle broken BSD 4.2 systems that 2297 * return the wrong iph_length in ICMP 2298 * errors. 2299 */ 2300 ip1dbg(("Wrong mtu: sent %d, ire %d\n", 2301 length, ire->ire_max_frag)); 2302 length -= hdr_length; 2303 } 2304 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2305 if (length > icmp_frag_size_table[i]) 2306 break; 2307 } 2308 if (i == A_CNT(icmp_frag_size_table)) { 2309 /* Smaller than 68! */ 2310 ip1dbg(("Too big for packet size %d\n", 2311 length)); 2312 ire->ire_max_frag = MIN(ire->ire_max_frag, 576); 2313 ire->ire_frag_flag = 0; 2314 } else { 2315 mtu = icmp_frag_size_table[i]; 2316 ip1dbg(("Calculated mtu %d, packet size %d, " 2317 "before %d", mtu, length, 2318 ire->ire_max_frag)); 2319 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2320 ip1dbg((", after %d\n", ire->ire_max_frag)); 2321 } 2322 /* Record the new max frag size for the ULP. */ 2323 icmph->icmph_du_zero = 0; 2324 icmph->icmph_du_mtu = 2325 htons((uint16_t)ire->ire_max_frag); 2326 } 2327 mutex_exit(&ire->ire_lock); 2328 } 2329 rw_exit(&first_ire->ire_bucket->irb_lock); 2330 ire_refrele(first_ire); 2331 return (B_TRUE); 2332 } 2333 2334 /* 2335 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2336 * calls this function. 2337 */ 2338 static mblk_t * 2339 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2340 { 2341 ipha_t *ipha; 2342 icmph_t *icmph; 2343 ipha_t *in_ipha; 2344 int length; 2345 2346 ASSERT(mp->b_datap->db_type == M_DATA); 2347 2348 /* 2349 * For Self-encapsulated packets, we added an extra IP header 2350 * without the options. Inner IP header is the one from which 2351 * the outer IP header was formed. Thus, we need to remove the 2352 * outer IP header. To do this, we pullup the whole message 2353 * and overlay whatever follows the outer IP header over the 2354 * outer IP header. 2355 */ 2356 2357 if (!pullupmsg(mp, -1)) 2358 return (NULL); 2359 2360 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2361 ipha = (ipha_t *)&icmph[1]; 2362 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2363 2364 /* 2365 * The length that we want to overlay is following the inner 2366 * IP header. Subtracting the IP header + icmp header + outer 2367 * IP header's length should give us the length that we want to 2368 * overlay. 2369 */ 2370 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2371 hdr_length; 2372 /* 2373 * Overlay whatever follows the inner header over the 2374 * outer header. 2375 */ 2376 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2377 2378 /* Set the wptr to account for the outer header */ 2379 mp->b_wptr -= hdr_length; 2380 return (mp); 2381 } 2382 2383 /* 2384 * Try to pass the ICMP message upstream in case the ULP cares. 2385 * 2386 * If the packet that caused the ICMP error is secure, we send 2387 * it to AH/ESP to make sure that the attached packet has a 2388 * valid association. ipha in the code below points to the 2389 * IP header of the packet that caused the error. 2390 * 2391 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2392 * in the context of IPsec. Normally we tell the upper layer 2393 * whenever we send the ire (including ip_bind), the IPsec header 2394 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2395 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2396 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2397 * same thing. As TCP has the IPsec options size that needs to be 2398 * adjusted, we just pass the MTU unchanged. 2399 * 2400 * IFN could have been generated locally or by some router. 2401 * 2402 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2403 * This happens because IP adjusted its value of MTU on an 2404 * earlier IFN message and could not tell the upper layer, 2405 * the new adjusted value of MTU e.g. Packet was encrypted 2406 * or there was not enough information to fanout to upper 2407 * layers. Thus on the next outbound datagram, ip_wput_ire 2408 * generates the IFN, where IPsec processing has *not* been 2409 * done. 2410 * 2411 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2412 * could have generated this. This happens because ire_max_frag 2413 * value in IP was set to a new value, while the IPsec processing 2414 * was being done and after we made the fragmentation check in 2415 * ip_wput_ire. Thus on return from IPsec processing, 2416 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2417 * and generates the IFN. As IPsec processing is over, we fanout 2418 * to AH/ESP to remove the header. 2419 * 2420 * In both these cases, ipsec_in_loopback will be set indicating 2421 * that IFN was generated locally. 2422 * 2423 * ROUTER : IFN could be secure or non-secure. 2424 * 2425 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2426 * packet in error has AH/ESP headers to validate the AH/ESP 2427 * headers. AH/ESP will verify whether there is a valid SA or 2428 * not and send it back. We will fanout again if we have more 2429 * data in the packet. 2430 * 2431 * If the packet in error does not have AH/ESP, we handle it 2432 * like any other case. 2433 * 2434 * * NON_SECURE : If the packet in error has AH/ESP headers, 2435 * we attach a dummy ipsec_in and send it up to AH/ESP 2436 * for validation. AH/ESP will verify whether there is a 2437 * valid SA or not and send it back. We will fanout again if 2438 * we have more data in the packet. 2439 * 2440 * If the packet in error does not have AH/ESP, we handle it 2441 * like any other case. 2442 */ 2443 static void 2444 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2445 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2446 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2447 zoneid_t zoneid) 2448 { 2449 uint16_t *up; /* Pointer to ports in ULP header */ 2450 uint32_t ports; /* reversed ports for fanout */ 2451 ipha_t ripha; /* With reversed addresses */ 2452 mblk_t *first_mp; 2453 ipsec_in_t *ii; 2454 tcph_t *tcph; 2455 conn_t *connp; 2456 ip_stack_t *ipst; 2457 2458 ASSERT(ill != NULL); 2459 2460 ASSERT(recv_ill != NULL); 2461 ipst = recv_ill->ill_ipst; 2462 2463 first_mp = mp; 2464 if (mctl_present) { 2465 mp = first_mp->b_cont; 2466 ASSERT(mp != NULL); 2467 2468 ii = (ipsec_in_t *)first_mp->b_rptr; 2469 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2470 } else { 2471 ii = NULL; 2472 } 2473 2474 switch (ipha->ipha_protocol) { 2475 case IPPROTO_UDP: 2476 /* 2477 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2478 * transport header. 2479 */ 2480 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2481 mp->b_wptr) { 2482 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2483 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2484 goto discard_pkt; 2485 } 2486 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2487 ipha = (ipha_t *)&icmph[1]; 2488 } 2489 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2490 2491 /* 2492 * Attempt to find a client stream based on port. 2493 * Note that we do a reverse lookup since the header is 2494 * in the form we sent it out. 2495 * The ripha header is only used for the IP_UDP_MATCH and we 2496 * only set the src and dst addresses and protocol. 2497 */ 2498 ripha.ipha_src = ipha->ipha_dst; 2499 ripha.ipha_dst = ipha->ipha_src; 2500 ripha.ipha_protocol = ipha->ipha_protocol; 2501 ((uint16_t *)&ports)[0] = up[1]; 2502 ((uint16_t *)&ports)[1] = up[0]; 2503 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2504 ntohl(ipha->ipha_src), ntohs(up[0]), 2505 ntohl(ipha->ipha_dst), ntohs(up[1]), 2506 icmph->icmph_type, icmph->icmph_code)); 2507 2508 /* Have to change db_type after any pullupmsg */ 2509 DB_TYPE(mp) = M_CTL; 2510 2511 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2512 mctl_present, ip_policy, recv_ill, zoneid); 2513 return; 2514 2515 case IPPROTO_TCP: 2516 /* 2517 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2518 * transport header. 2519 */ 2520 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2521 mp->b_wptr) { 2522 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2523 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2524 goto discard_pkt; 2525 } 2526 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2527 ipha = (ipha_t *)&icmph[1]; 2528 } 2529 /* 2530 * Find a TCP client stream for this packet. 2531 * Note that we do a reverse lookup since the header is 2532 * in the form we sent it out. 2533 */ 2534 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2535 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN, 2536 ipst); 2537 if (connp == NULL) 2538 goto discard_pkt; 2539 2540 /* Have to change db_type after any pullupmsg */ 2541 DB_TYPE(mp) = M_CTL; 2542 squeue_fill(connp->conn_sqp, first_mp, tcp_input, 2543 connp, SQTAG_TCP_INPUT_ICMP_ERR); 2544 return; 2545 2546 case IPPROTO_SCTP: 2547 /* 2548 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2549 * transport header. 2550 */ 2551 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2552 mp->b_wptr) { 2553 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2554 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2555 goto discard_pkt; 2556 } 2557 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2558 ipha = (ipha_t *)&icmph[1]; 2559 } 2560 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2561 /* 2562 * Find a SCTP client stream for this packet. 2563 * Note that we do a reverse lookup since the header is 2564 * in the form we sent it out. 2565 * The ripha header is only used for the matching and we 2566 * only set the src and dst addresses, protocol, and version. 2567 */ 2568 ripha.ipha_src = ipha->ipha_dst; 2569 ripha.ipha_dst = ipha->ipha_src; 2570 ripha.ipha_protocol = ipha->ipha_protocol; 2571 ripha.ipha_version_and_hdr_length = 2572 ipha->ipha_version_and_hdr_length; 2573 ((uint16_t *)&ports)[0] = up[1]; 2574 ((uint16_t *)&ports)[1] = up[0]; 2575 2576 /* Have to change db_type after any pullupmsg */ 2577 DB_TYPE(mp) = M_CTL; 2578 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2579 mctl_present, ip_policy, zoneid); 2580 return; 2581 2582 case IPPROTO_ESP: 2583 case IPPROTO_AH: { 2584 int ipsec_rc; 2585 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2586 2587 /* 2588 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2589 * We will re-use the IPSEC_IN if it is already present as 2590 * AH/ESP will not affect any fields in the IPSEC_IN for 2591 * ICMP errors. If there is no IPSEC_IN, allocate a new 2592 * one and attach it in the front. 2593 */ 2594 if (ii != NULL) { 2595 /* 2596 * ip_fanout_proto_again converts the ICMP errors 2597 * that come back from AH/ESP to M_DATA so that 2598 * if it is non-AH/ESP and we do a pullupmsg in 2599 * this function, it would work. Convert it back 2600 * to M_CTL before we send up as this is a ICMP 2601 * error. This could have been generated locally or 2602 * by some router. Validate the inner IPsec 2603 * headers. 2604 * 2605 * NOTE : ill_index is used by ip_fanout_proto_again 2606 * to locate the ill. 2607 */ 2608 ASSERT(ill != NULL); 2609 ii->ipsec_in_ill_index = 2610 ill->ill_phyint->phyint_ifindex; 2611 ii->ipsec_in_rill_index = 2612 recv_ill->ill_phyint->phyint_ifindex; 2613 DB_TYPE(first_mp->b_cont) = M_CTL; 2614 } else { 2615 /* 2616 * IPSEC_IN is not present. We attach a ipsec_in 2617 * message and send up to IPsec for validating 2618 * and removing the IPsec headers. Clear 2619 * ipsec_in_secure so that when we return 2620 * from IPsec, we don't mistakenly think that this 2621 * is a secure packet came from the network. 2622 * 2623 * NOTE : ill_index is used by ip_fanout_proto_again 2624 * to locate the ill. 2625 */ 2626 ASSERT(first_mp == mp); 2627 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2628 if (first_mp == NULL) { 2629 freemsg(mp); 2630 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2631 return; 2632 } 2633 ii = (ipsec_in_t *)first_mp->b_rptr; 2634 2635 /* This is not a secure packet */ 2636 ii->ipsec_in_secure = B_FALSE; 2637 first_mp->b_cont = mp; 2638 DB_TYPE(mp) = M_CTL; 2639 ASSERT(ill != NULL); 2640 ii->ipsec_in_ill_index = 2641 ill->ill_phyint->phyint_ifindex; 2642 ii->ipsec_in_rill_index = 2643 recv_ill->ill_phyint->phyint_ifindex; 2644 } 2645 ip2dbg(("icmp_inbound_error: ipsec\n")); 2646 2647 if (!ipsec_loaded(ipss)) { 2648 ip_proto_not_sup(q, first_mp, 0, zoneid, ipst); 2649 return; 2650 } 2651 2652 if (ipha->ipha_protocol == IPPROTO_ESP) 2653 ipsec_rc = ipsecesp_icmp_error(first_mp); 2654 else 2655 ipsec_rc = ipsecah_icmp_error(first_mp); 2656 if (ipsec_rc == IPSEC_STATUS_FAILED) 2657 return; 2658 2659 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2660 return; 2661 } 2662 default: 2663 /* 2664 * The ripha header is only used for the lookup and we 2665 * only set the src and dst addresses and protocol. 2666 */ 2667 ripha.ipha_src = ipha->ipha_dst; 2668 ripha.ipha_dst = ipha->ipha_src; 2669 ripha.ipha_protocol = ipha->ipha_protocol; 2670 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2671 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2672 ntohl(ipha->ipha_dst), 2673 icmph->icmph_type, icmph->icmph_code)); 2674 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2675 ipha_t *in_ipha; 2676 2677 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2678 mp->b_wptr) { 2679 if (!pullupmsg(mp, (uchar_t *)ipha + 2680 hdr_length + sizeof (ipha_t) - 2681 mp->b_rptr)) { 2682 goto discard_pkt; 2683 } 2684 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2685 ipha = (ipha_t *)&icmph[1]; 2686 } 2687 /* 2688 * Caller has verified that length has to be 2689 * at least the size of IP header. 2690 */ 2691 ASSERT(hdr_length >= sizeof (ipha_t)); 2692 /* 2693 * Check the sanity of the inner IP header like 2694 * we did for the outer header. 2695 */ 2696 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2697 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2698 goto discard_pkt; 2699 } 2700 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2701 goto discard_pkt; 2702 } 2703 /* Check for Self-encapsulated tunnels */ 2704 if (in_ipha->ipha_src == ipha->ipha_src && 2705 in_ipha->ipha_dst == ipha->ipha_dst) { 2706 2707 mp = icmp_inbound_self_encap_error(mp, 2708 iph_hdr_length, hdr_length); 2709 if (mp == NULL) 2710 goto discard_pkt; 2711 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2712 ipha = (ipha_t *)&icmph[1]; 2713 hdr_length = IPH_HDR_LENGTH(ipha); 2714 /* 2715 * The packet in error is self-encapsualted. 2716 * And we are finding it further encapsulated 2717 * which we could not have possibly generated. 2718 */ 2719 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2720 goto discard_pkt; 2721 } 2722 icmp_inbound_error_fanout(q, ill, first_mp, 2723 icmph, ipha, iph_hdr_length, hdr_length, 2724 mctl_present, ip_policy, recv_ill, zoneid); 2725 return; 2726 } 2727 } 2728 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2729 ipha->ipha_protocol == IPPROTO_IPV6) && 2730 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2731 ii != NULL && 2732 ii->ipsec_in_loopback && 2733 ii->ipsec_in_secure) { 2734 /* 2735 * For IP tunnels that get a looped-back 2736 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2737 * reported new MTU to take into account the IPsec 2738 * headers protecting this configured tunnel. 2739 * 2740 * This allows the tunnel module (tun.c) to blindly 2741 * accept the MTU reported in an ICMP "too big" 2742 * message. 2743 * 2744 * Non-looped back ICMP messages will just be 2745 * handled by the security protocols (if needed), 2746 * and the first subsequent packet will hit this 2747 * path. 2748 */ 2749 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2750 ipsec_in_extra_length(first_mp)); 2751 } 2752 /* Have to change db_type after any pullupmsg */ 2753 DB_TYPE(mp) = M_CTL; 2754 2755 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2756 ip_policy, recv_ill, zoneid); 2757 return; 2758 } 2759 /* NOTREACHED */ 2760 discard_pkt: 2761 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2762 drop_pkt:; 2763 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2764 freemsg(first_mp); 2765 } 2766 2767 /* 2768 * Common IP options parser. 2769 * 2770 * Setup routine: fill in *optp with options-parsing state, then 2771 * tail-call ipoptp_next to return the first option. 2772 */ 2773 uint8_t 2774 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2775 { 2776 uint32_t totallen; /* total length of all options */ 2777 2778 totallen = ipha->ipha_version_and_hdr_length - 2779 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2780 totallen <<= 2; 2781 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2782 optp->ipoptp_end = optp->ipoptp_next + totallen; 2783 optp->ipoptp_flags = 0; 2784 return (ipoptp_next(optp)); 2785 } 2786 2787 /* 2788 * Common IP options parser: extract next option. 2789 */ 2790 uint8_t 2791 ipoptp_next(ipoptp_t *optp) 2792 { 2793 uint8_t *end = optp->ipoptp_end; 2794 uint8_t *cur = optp->ipoptp_next; 2795 uint8_t opt, len, pointer; 2796 2797 /* 2798 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2799 * has been corrupted. 2800 */ 2801 ASSERT(cur <= end); 2802 2803 if (cur == end) 2804 return (IPOPT_EOL); 2805 2806 opt = cur[IPOPT_OPTVAL]; 2807 2808 /* 2809 * Skip any NOP options. 2810 */ 2811 while (opt == IPOPT_NOP) { 2812 cur++; 2813 if (cur == end) 2814 return (IPOPT_EOL); 2815 opt = cur[IPOPT_OPTVAL]; 2816 } 2817 2818 if (opt == IPOPT_EOL) 2819 return (IPOPT_EOL); 2820 2821 /* 2822 * Option requiring a length. 2823 */ 2824 if ((cur + 1) >= end) { 2825 optp->ipoptp_flags |= IPOPTP_ERROR; 2826 return (IPOPT_EOL); 2827 } 2828 len = cur[IPOPT_OLEN]; 2829 if (len < 2) { 2830 optp->ipoptp_flags |= IPOPTP_ERROR; 2831 return (IPOPT_EOL); 2832 } 2833 optp->ipoptp_cur = cur; 2834 optp->ipoptp_len = len; 2835 optp->ipoptp_next = cur + len; 2836 if (cur + len > end) { 2837 optp->ipoptp_flags |= IPOPTP_ERROR; 2838 return (IPOPT_EOL); 2839 } 2840 2841 /* 2842 * For the options which require a pointer field, make sure 2843 * its there, and make sure it points to either something 2844 * inside this option, or the end of the option. 2845 */ 2846 switch (opt) { 2847 case IPOPT_RR: 2848 case IPOPT_TS: 2849 case IPOPT_LSRR: 2850 case IPOPT_SSRR: 2851 if (len <= IPOPT_OFFSET) { 2852 optp->ipoptp_flags |= IPOPTP_ERROR; 2853 return (opt); 2854 } 2855 pointer = cur[IPOPT_OFFSET]; 2856 if (pointer - 1 > len) { 2857 optp->ipoptp_flags |= IPOPTP_ERROR; 2858 return (opt); 2859 } 2860 break; 2861 } 2862 2863 /* 2864 * Sanity check the pointer field based on the type of the 2865 * option. 2866 */ 2867 switch (opt) { 2868 case IPOPT_RR: 2869 case IPOPT_SSRR: 2870 case IPOPT_LSRR: 2871 if (pointer < IPOPT_MINOFF_SR) 2872 optp->ipoptp_flags |= IPOPTP_ERROR; 2873 break; 2874 case IPOPT_TS: 2875 if (pointer < IPOPT_MINOFF_IT) 2876 optp->ipoptp_flags |= IPOPTP_ERROR; 2877 /* 2878 * Note that the Internet Timestamp option also 2879 * contains two four bit fields (the Overflow field, 2880 * and the Flag field), which follow the pointer 2881 * field. We don't need to check that these fields 2882 * fall within the length of the option because this 2883 * was implicitely done above. We've checked that the 2884 * pointer value is at least IPOPT_MINOFF_IT, and that 2885 * it falls within the option. Since IPOPT_MINOFF_IT > 2886 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2887 */ 2888 ASSERT(len > IPOPT_POS_OV_FLG); 2889 break; 2890 } 2891 2892 return (opt); 2893 } 2894 2895 /* 2896 * Use the outgoing IP header to create an IP_OPTIONS option the way 2897 * it was passed down from the application. 2898 */ 2899 int 2900 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2901 { 2902 ipoptp_t opts; 2903 const uchar_t *opt; 2904 uint8_t optval; 2905 uint8_t optlen; 2906 uint32_t len = 0; 2907 uchar_t *buf1 = buf; 2908 2909 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2910 len += IP_ADDR_LEN; 2911 bzero(buf1, IP_ADDR_LEN); 2912 2913 /* 2914 * OK to cast away const here, as we don't store through the returned 2915 * opts.ipoptp_cur pointer. 2916 */ 2917 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 2918 optval != IPOPT_EOL; 2919 optval = ipoptp_next(&opts)) { 2920 int off; 2921 2922 opt = opts.ipoptp_cur; 2923 optlen = opts.ipoptp_len; 2924 switch (optval) { 2925 case IPOPT_SSRR: 2926 case IPOPT_LSRR: 2927 2928 /* 2929 * Insert ipha_dst as the first entry in the source 2930 * route and move down the entries on step. 2931 * The last entry gets placed at buf1. 2932 */ 2933 buf[IPOPT_OPTVAL] = optval; 2934 buf[IPOPT_OLEN] = optlen; 2935 buf[IPOPT_OFFSET] = optlen; 2936 2937 off = optlen - IP_ADDR_LEN; 2938 if (off < 0) { 2939 /* No entries in source route */ 2940 break; 2941 } 2942 /* Last entry in source route */ 2943 bcopy(opt + off, buf1, IP_ADDR_LEN); 2944 off -= IP_ADDR_LEN; 2945 2946 while (off > 0) { 2947 bcopy(opt + off, 2948 buf + off + IP_ADDR_LEN, 2949 IP_ADDR_LEN); 2950 off -= IP_ADDR_LEN; 2951 } 2952 /* ipha_dst into first slot */ 2953 bcopy(&ipha->ipha_dst, 2954 buf + off + IP_ADDR_LEN, 2955 IP_ADDR_LEN); 2956 buf += optlen; 2957 len += optlen; 2958 break; 2959 2960 case IPOPT_COMSEC: 2961 case IPOPT_SECURITY: 2962 /* if passing up a label is not ok, then remove */ 2963 if (is_system_labeled()) 2964 break; 2965 /* FALLTHROUGH */ 2966 default: 2967 bcopy(opt, buf, optlen); 2968 buf += optlen; 2969 len += optlen; 2970 break; 2971 } 2972 } 2973 done: 2974 /* Pad the resulting options */ 2975 while (len & 0x3) { 2976 *buf++ = IPOPT_EOL; 2977 len++; 2978 } 2979 return (len); 2980 } 2981 2982 /* 2983 * Update any record route or timestamp options to include this host. 2984 * Reverse any source route option. 2985 * This routine assumes that the options are well formed i.e. that they 2986 * have already been checked. 2987 */ 2988 static void 2989 icmp_options_update(ipha_t *ipha) 2990 { 2991 ipoptp_t opts; 2992 uchar_t *opt; 2993 uint8_t optval; 2994 ipaddr_t src; /* Our local address */ 2995 ipaddr_t dst; 2996 2997 ip2dbg(("icmp_options_update\n")); 2998 src = ipha->ipha_src; 2999 dst = ipha->ipha_dst; 3000 3001 for (optval = ipoptp_first(&opts, ipha); 3002 optval != IPOPT_EOL; 3003 optval = ipoptp_next(&opts)) { 3004 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 3005 opt = opts.ipoptp_cur; 3006 ip2dbg(("icmp_options_update: opt %d, len %d\n", 3007 optval, opts.ipoptp_len)); 3008 switch (optval) { 3009 int off1, off2; 3010 case IPOPT_SSRR: 3011 case IPOPT_LSRR: 3012 /* 3013 * Reverse the source route. The first entry 3014 * should be the next to last one in the current 3015 * source route (the last entry is our address). 3016 * The last entry should be the final destination. 3017 */ 3018 off1 = IPOPT_MINOFF_SR - 1; 3019 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 3020 if (off2 < 0) { 3021 /* No entries in source route */ 3022 ip1dbg(( 3023 "icmp_options_update: bad src route\n")); 3024 break; 3025 } 3026 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 3027 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 3028 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 3029 off2 -= IP_ADDR_LEN; 3030 3031 while (off1 < off2) { 3032 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 3033 bcopy((char *)opt + off2, (char *)opt + off1, 3034 IP_ADDR_LEN); 3035 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 3036 off1 += IP_ADDR_LEN; 3037 off2 -= IP_ADDR_LEN; 3038 } 3039 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 3040 break; 3041 } 3042 } 3043 } 3044 3045 /* 3046 * Process received ICMP Redirect messages. 3047 */ 3048 static void 3049 icmp_redirect(ill_t *ill, mblk_t *mp) 3050 { 3051 ipha_t *ipha; 3052 int iph_hdr_length; 3053 icmph_t *icmph; 3054 ipha_t *ipha_err; 3055 ire_t *ire; 3056 ire_t *prev_ire; 3057 ire_t *save_ire; 3058 ipaddr_t src, dst, gateway; 3059 iulp_t ulp_info = { 0 }; 3060 int error; 3061 ip_stack_t *ipst; 3062 3063 ASSERT(ill != NULL); 3064 ipst = ill->ill_ipst; 3065 3066 ipha = (ipha_t *)mp->b_rptr; 3067 iph_hdr_length = IPH_HDR_LENGTH(ipha); 3068 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 3069 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 3070 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3071 freemsg(mp); 3072 return; 3073 } 3074 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 3075 ipha_err = (ipha_t *)&icmph[1]; 3076 src = ipha->ipha_src; 3077 dst = ipha_err->ipha_dst; 3078 gateway = icmph->icmph_rd_gateway; 3079 /* Make sure the new gateway is reachable somehow. */ 3080 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 3081 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3082 /* 3083 * Make sure we had a route for the dest in question and that 3084 * that route was pointing to the old gateway (the source of the 3085 * redirect packet.) 3086 */ 3087 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 3088 NULL, MATCH_IRE_GW, ipst); 3089 /* 3090 * Check that 3091 * the redirect was not from ourselves 3092 * the new gateway and the old gateway are directly reachable 3093 */ 3094 if (!prev_ire || 3095 !ire || 3096 ire->ire_type == IRE_LOCAL) { 3097 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3098 freemsg(mp); 3099 if (ire != NULL) 3100 ire_refrele(ire); 3101 if (prev_ire != NULL) 3102 ire_refrele(prev_ire); 3103 return; 3104 } 3105 3106 /* 3107 * Should we use the old ULP info to create the new gateway? From 3108 * a user's perspective, we should inherit the info so that it 3109 * is a "smooth" transition. If we do not do that, then new 3110 * connections going thru the new gateway will have no route metrics, 3111 * which is counter-intuitive to user. From a network point of 3112 * view, this may or may not make sense even though the new gateway 3113 * is still directly connected to us so the route metrics should not 3114 * change much. 3115 * 3116 * But if the old ire_uinfo is not initialized, we do another 3117 * recursive lookup on the dest using the new gateway. There may 3118 * be a route to that. If so, use it to initialize the redirect 3119 * route. 3120 */ 3121 if (prev_ire->ire_uinfo.iulp_set) { 3122 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3123 } else { 3124 ire_t *tmp_ire; 3125 ire_t *sire; 3126 3127 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3128 ALL_ZONES, 0, NULL, 3129 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT), 3130 ipst); 3131 if (sire != NULL) { 3132 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3133 /* 3134 * If sire != NULL, ire_ftable_lookup() should not 3135 * return a NULL value. 3136 */ 3137 ASSERT(tmp_ire != NULL); 3138 ire_refrele(tmp_ire); 3139 ire_refrele(sire); 3140 } else if (tmp_ire != NULL) { 3141 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3142 sizeof (iulp_t)); 3143 ire_refrele(tmp_ire); 3144 } 3145 } 3146 if (prev_ire->ire_type == IRE_CACHE) 3147 ire_delete(prev_ire); 3148 ire_refrele(prev_ire); 3149 /* 3150 * TODO: more precise handling for cases 0, 2, 3, the latter two 3151 * require TOS routing 3152 */ 3153 switch (icmph->icmph_code) { 3154 case 0: 3155 case 1: 3156 /* TODO: TOS specificity for cases 2 and 3 */ 3157 case 2: 3158 case 3: 3159 break; 3160 default: 3161 freemsg(mp); 3162 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3163 ire_refrele(ire); 3164 return; 3165 } 3166 /* 3167 * Create a Route Association. This will allow us to remember that 3168 * someone we believe told us to use the particular gateway. 3169 */ 3170 save_ire = ire; 3171 ire = ire_create( 3172 (uchar_t *)&dst, /* dest addr */ 3173 (uchar_t *)&ip_g_all_ones, /* mask */ 3174 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3175 (uchar_t *)&gateway, /* gateway addr */ 3176 &save_ire->ire_max_frag, /* max frag */ 3177 NULL, /* no src nce */ 3178 NULL, /* no rfq */ 3179 NULL, /* no stq */ 3180 IRE_HOST, 3181 NULL, /* ipif */ 3182 0, /* cmask */ 3183 0, /* phandle */ 3184 0, /* ihandle */ 3185 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3186 &ulp_info, 3187 NULL, /* tsol_gc_t */ 3188 NULL, /* gcgrp */ 3189 ipst); 3190 3191 if (ire == NULL) { 3192 freemsg(mp); 3193 ire_refrele(save_ire); 3194 return; 3195 } 3196 error = ire_add(&ire, NULL, NULL, NULL, B_FALSE); 3197 ire_refrele(save_ire); 3198 atomic_inc_32(&ipst->ips_ip_redirect_cnt); 3199 3200 if (error == 0) { 3201 ire_refrele(ire); /* Held in ire_add_v4 */ 3202 /* tell routing sockets that we received a redirect */ 3203 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3204 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3205 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 3206 } 3207 3208 /* 3209 * Delete any existing IRE_HOST type redirect ires for this destination. 3210 * This together with the added IRE has the effect of 3211 * modifying an existing redirect. 3212 */ 3213 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST, NULL, NULL, 3214 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), ipst); 3215 if (prev_ire != NULL) { 3216 if (prev_ire ->ire_flags & RTF_DYNAMIC) 3217 ire_delete(prev_ire); 3218 ire_refrele(prev_ire); 3219 } 3220 3221 freemsg(mp); 3222 } 3223 3224 /* 3225 * Generate an ICMP parameter problem message. 3226 */ 3227 static void 3228 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr, zoneid_t zoneid, 3229 ip_stack_t *ipst) 3230 { 3231 icmph_t icmph; 3232 boolean_t mctl_present; 3233 mblk_t *first_mp; 3234 3235 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3236 3237 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3238 if (mctl_present) 3239 freeb(first_mp); 3240 return; 3241 } 3242 3243 bzero(&icmph, sizeof (icmph_t)); 3244 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3245 icmph.icmph_pp_ptr = ptr; 3246 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 3247 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3248 ipst); 3249 } 3250 3251 /* 3252 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3253 * the ICMP header pointed to by "stuff". (May be called as writer.) 3254 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3255 * an icmp error packet can be sent. 3256 * Assigns an appropriate source address to the packet. If ipha_dst is 3257 * one of our addresses use it for source. Otherwise pick a source based 3258 * on a route lookup back to ipha_src. 3259 * Note that ipha_src must be set here since the 3260 * packet is likely to arrive on an ill queue in ip_wput() which will 3261 * not set a source address. 3262 */ 3263 static void 3264 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3265 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 3266 { 3267 ipaddr_t dst; 3268 icmph_t *icmph; 3269 ipha_t *ipha; 3270 uint_t len_needed; 3271 size_t msg_len; 3272 mblk_t *mp1; 3273 ipaddr_t src; 3274 ire_t *ire; 3275 mblk_t *ipsec_mp; 3276 ipsec_out_t *io = NULL; 3277 3278 if (mctl_present) { 3279 /* 3280 * If it is : 3281 * 3282 * 1) a IPSEC_OUT, then this is caused by outbound 3283 * datagram originating on this host. IPsec processing 3284 * may or may not have been done. Refer to comments above 3285 * icmp_inbound_error_fanout for details. 3286 * 3287 * 2) a IPSEC_IN if we are generating a icmp_message 3288 * for an incoming datagram destined for us i.e called 3289 * from ip_fanout_send_icmp. 3290 */ 3291 ipsec_info_t *in; 3292 ipsec_mp = mp; 3293 mp = ipsec_mp->b_cont; 3294 3295 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3296 ipha = (ipha_t *)mp->b_rptr; 3297 3298 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3299 in->ipsec_info_type == IPSEC_IN); 3300 3301 if (in->ipsec_info_type == IPSEC_IN) { 3302 /* 3303 * Convert the IPSEC_IN to IPSEC_OUT. 3304 */ 3305 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3306 BUMP_MIB(&ipst->ips_ip_mib, 3307 ipIfStatsOutDiscards); 3308 return; 3309 } 3310 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3311 } else { 3312 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3313 io = (ipsec_out_t *)in; 3314 /* 3315 * Clear out ipsec_out_proc_begin, so we do a fresh 3316 * ire lookup. 3317 */ 3318 io->ipsec_out_proc_begin = B_FALSE; 3319 } 3320 ASSERT(zoneid == io->ipsec_out_zoneid); 3321 ASSERT(zoneid != ALL_ZONES); 3322 } else { 3323 /* 3324 * This is in clear. The icmp message we are building 3325 * here should go out in clear. 3326 * 3327 * Pardon the convolution of it all, but it's easier to 3328 * allocate a "use cleartext" IPSEC_IN message and convert 3329 * it than it is to allocate a new one. 3330 */ 3331 ipsec_in_t *ii; 3332 ASSERT(DB_TYPE(mp) == M_DATA); 3333 ipsec_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 3334 if (ipsec_mp == NULL) { 3335 freemsg(mp); 3336 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3337 return; 3338 } 3339 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3340 3341 /* This is not a secure packet */ 3342 ii->ipsec_in_secure = B_FALSE; 3343 /* 3344 * For trusted extensions using a shared IP address we can 3345 * send using any zoneid. 3346 */ 3347 if (zoneid == ALL_ZONES) 3348 ii->ipsec_in_zoneid = GLOBAL_ZONEID; 3349 else 3350 ii->ipsec_in_zoneid = zoneid; 3351 ipsec_mp->b_cont = mp; 3352 ipha = (ipha_t *)mp->b_rptr; 3353 /* 3354 * Convert the IPSEC_IN to IPSEC_OUT. 3355 */ 3356 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3357 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3358 return; 3359 } 3360 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3361 } 3362 3363 /* Remember our eventual destination */ 3364 dst = ipha->ipha_src; 3365 3366 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3367 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE, ipst); 3368 if (ire != NULL && 3369 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3370 src = ipha->ipha_dst; 3371 } else { 3372 if (ire != NULL) 3373 ire_refrele(ire); 3374 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3375 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY), 3376 ipst); 3377 if (ire == NULL) { 3378 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3379 freemsg(ipsec_mp); 3380 return; 3381 } 3382 src = ire->ire_src_addr; 3383 } 3384 3385 if (ire != NULL) 3386 ire_refrele(ire); 3387 3388 /* 3389 * Check if we can send back more then 8 bytes in addition to 3390 * the IP header. We try to send 64 bytes of data and the internal 3391 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 3392 */ 3393 len_needed = IPH_HDR_LENGTH(ipha); 3394 if (ipha->ipha_protocol == IPPROTO_ENCAP || 3395 ipha->ipha_protocol == IPPROTO_IPV6) { 3396 3397 if (!pullupmsg(mp, -1)) { 3398 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3399 freemsg(ipsec_mp); 3400 return; 3401 } 3402 ipha = (ipha_t *)mp->b_rptr; 3403 3404 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 3405 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 3406 len_needed)); 3407 } else { 3408 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 3409 3410 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 3411 len_needed += ip_hdr_length_v6(mp, ip6h); 3412 } 3413 } 3414 len_needed += ipst->ips_ip_icmp_return; 3415 msg_len = msgdsize(mp); 3416 if (msg_len > len_needed) { 3417 (void) adjmsg(mp, len_needed - msg_len); 3418 msg_len = len_needed; 3419 } 3420 mp1 = allocb_tmpl(sizeof (icmp_ipha) + len, mp); 3421 if (mp1 == NULL) { 3422 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 3423 freemsg(ipsec_mp); 3424 return; 3425 } 3426 mp1->b_cont = mp; 3427 mp = mp1; 3428 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3429 ipsec_mp->b_rptr == (uint8_t *)io && 3430 io->ipsec_out_type == IPSEC_OUT); 3431 ipsec_mp->b_cont = mp; 3432 3433 /* 3434 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3435 * node generates be accepted in peace by all on-host destinations. 3436 * If we do NOT assume that all on-host destinations trust 3437 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3438 * (Look for ipsec_out_icmp_loopback). 3439 */ 3440 io->ipsec_out_icmp_loopback = B_TRUE; 3441 3442 ipha = (ipha_t *)mp->b_rptr; 3443 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3444 *ipha = icmp_ipha; 3445 ipha->ipha_src = src; 3446 ipha->ipha_dst = dst; 3447 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 3448 msg_len += sizeof (icmp_ipha) + len; 3449 if (msg_len > IP_MAXPACKET) { 3450 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3451 msg_len = IP_MAXPACKET; 3452 } 3453 ipha->ipha_length = htons((uint16_t)msg_len); 3454 icmph = (icmph_t *)&ipha[1]; 3455 bcopy(stuff, icmph, len); 3456 icmph->icmph_checksum = 0; 3457 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3458 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 3459 put(q, ipsec_mp); 3460 } 3461 3462 /* 3463 * Determine if an ICMP error packet can be sent given the rate limit. 3464 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3465 * in milliseconds) and a burst size. Burst size number of packets can 3466 * be sent arbitrarely closely spaced. 3467 * The state is tracked using two variables to implement an approximate 3468 * token bucket filter: 3469 * icmp_pkt_err_last - lbolt value when the last burst started 3470 * icmp_pkt_err_sent - number of packets sent in current burst 3471 */ 3472 boolean_t 3473 icmp_err_rate_limit(ip_stack_t *ipst) 3474 { 3475 clock_t now = TICK_TO_MSEC(lbolt); 3476 uint_t refilled; /* Number of packets refilled in tbf since last */ 3477 /* Guard against changes by loading into local variable */ 3478 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 3479 3480 if (err_interval == 0) 3481 return (B_FALSE); 3482 3483 if (ipst->ips_icmp_pkt_err_last > now) { 3484 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3485 ipst->ips_icmp_pkt_err_last = 0; 3486 ipst->ips_icmp_pkt_err_sent = 0; 3487 } 3488 /* 3489 * If we are in a burst update the token bucket filter. 3490 * Update the "last" time to be close to "now" but make sure 3491 * we don't loose precision. 3492 */ 3493 if (ipst->ips_icmp_pkt_err_sent != 0) { 3494 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 3495 if (refilled > ipst->ips_icmp_pkt_err_sent) { 3496 ipst->ips_icmp_pkt_err_sent = 0; 3497 } else { 3498 ipst->ips_icmp_pkt_err_sent -= refilled; 3499 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 3500 } 3501 } 3502 if (ipst->ips_icmp_pkt_err_sent == 0) { 3503 /* Start of new burst */ 3504 ipst->ips_icmp_pkt_err_last = now; 3505 } 3506 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 3507 ipst->ips_icmp_pkt_err_sent++; 3508 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3509 ipst->ips_icmp_pkt_err_sent)); 3510 return (B_FALSE); 3511 } 3512 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3513 return (B_TRUE); 3514 } 3515 3516 /* 3517 * Check if it is ok to send an IPv4 ICMP error packet in 3518 * response to the IPv4 packet in mp. 3519 * Free the message and return null if no 3520 * ICMP error packet should be sent. 3521 */ 3522 static mblk_t * 3523 icmp_pkt_err_ok(mblk_t *mp, ip_stack_t *ipst) 3524 { 3525 icmph_t *icmph; 3526 ipha_t *ipha; 3527 uint_t len_needed; 3528 ire_t *src_ire; 3529 ire_t *dst_ire; 3530 3531 if (!mp) 3532 return (NULL); 3533 ipha = (ipha_t *)mp->b_rptr; 3534 if (ip_csum_hdr(ipha)) { 3535 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 3536 freemsg(mp); 3537 return (NULL); 3538 } 3539 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3540 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3541 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3542 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3543 if (src_ire != NULL || dst_ire != NULL || 3544 CLASSD(ipha->ipha_dst) || 3545 CLASSD(ipha->ipha_src) || 3546 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3547 /* Note: only errors to the fragment with offset 0 */ 3548 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3549 freemsg(mp); 3550 if (src_ire != NULL) 3551 ire_refrele(src_ire); 3552 if (dst_ire != NULL) 3553 ire_refrele(dst_ire); 3554 return (NULL); 3555 } 3556 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3557 /* 3558 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3559 * errors in response to any ICMP errors. 3560 */ 3561 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3562 if (mp->b_wptr - mp->b_rptr < len_needed) { 3563 if (!pullupmsg(mp, len_needed)) { 3564 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3565 freemsg(mp); 3566 return (NULL); 3567 } 3568 ipha = (ipha_t *)mp->b_rptr; 3569 } 3570 icmph = (icmph_t *) 3571 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3572 switch (icmph->icmph_type) { 3573 case ICMP_DEST_UNREACHABLE: 3574 case ICMP_SOURCE_QUENCH: 3575 case ICMP_TIME_EXCEEDED: 3576 case ICMP_PARAM_PROBLEM: 3577 case ICMP_REDIRECT: 3578 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3579 freemsg(mp); 3580 return (NULL); 3581 default: 3582 break; 3583 } 3584 } 3585 /* 3586 * If this is a labeled system, then check to see if we're allowed to 3587 * send a response to this particular sender. If not, then just drop. 3588 */ 3589 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3590 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3591 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3592 freemsg(mp); 3593 return (NULL); 3594 } 3595 if (icmp_err_rate_limit(ipst)) { 3596 /* 3597 * Only send ICMP error packets every so often. 3598 * This should be done on a per port/source basis, 3599 * but for now this will suffice. 3600 */ 3601 freemsg(mp); 3602 return (NULL); 3603 } 3604 return (mp); 3605 } 3606 3607 /* 3608 * Generate an ICMP redirect message. 3609 */ 3610 static void 3611 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway, ip_stack_t *ipst) 3612 { 3613 icmph_t icmph; 3614 3615 /* 3616 * We are called from ip_rput where we could 3617 * not have attached an IPSEC_IN. 3618 */ 3619 ASSERT(mp->b_datap->db_type == M_DATA); 3620 3621 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3622 return; 3623 } 3624 3625 bzero(&icmph, sizeof (icmph_t)); 3626 icmph.icmph_type = ICMP_REDIRECT; 3627 icmph.icmph_code = 1; 3628 icmph.icmph_rd_gateway = gateway; 3629 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3630 /* Redirects sent by router, and router is global zone */ 3631 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE, GLOBAL_ZONEID, ipst); 3632 } 3633 3634 /* 3635 * Generate an ICMP time exceeded message. 3636 */ 3637 void 3638 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3639 ip_stack_t *ipst) 3640 { 3641 icmph_t icmph; 3642 boolean_t mctl_present; 3643 mblk_t *first_mp; 3644 3645 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3646 3647 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3648 if (mctl_present) 3649 freeb(first_mp); 3650 return; 3651 } 3652 3653 bzero(&icmph, sizeof (icmph_t)); 3654 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3655 icmph.icmph_code = code; 3656 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3657 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3658 ipst); 3659 } 3660 3661 /* 3662 * Generate an ICMP unreachable message. 3663 */ 3664 void 3665 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3666 ip_stack_t *ipst) 3667 { 3668 icmph_t icmph; 3669 mblk_t *first_mp; 3670 boolean_t mctl_present; 3671 3672 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3673 3674 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3675 if (mctl_present) 3676 freeb(first_mp); 3677 return; 3678 } 3679 3680 bzero(&icmph, sizeof (icmph_t)); 3681 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3682 icmph.icmph_code = code; 3683 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3684 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3685 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present, 3686 zoneid, ipst); 3687 } 3688 3689 /* 3690 * Attempt to start recovery of an IPv4 interface that's been shut down as a 3691 * duplicate. As long as someone else holds the address, the interface will 3692 * stay down. When that conflict goes away, the interface is brought back up. 3693 * This is done so that accidental shutdowns of addresses aren't made 3694 * permanent. Your server will recover from a failure. 3695 * 3696 * For DHCP, recovery is not done in the kernel. Instead, it's handled by a 3697 * user space process (dhcpagent). 3698 * 3699 * Recovery completes if ARP reports that the address is now ours (via 3700 * AR_CN_READY). In that case, we go to ip_arp_excl to finish the operation. 3701 * 3702 * This function is entered on a timer expiry; the ID is in ipif_recovery_id. 3703 */ 3704 static void 3705 ipif_dup_recovery(void *arg) 3706 { 3707 ipif_t *ipif = arg; 3708 ill_t *ill = ipif->ipif_ill; 3709 mblk_t *arp_add_mp; 3710 mblk_t *arp_del_mp; 3711 area_t *area; 3712 ip_stack_t *ipst = ill->ill_ipst; 3713 3714 ipif->ipif_recovery_id = 0; 3715 3716 /* 3717 * No lock needed for moving or condemned check, as this is just an 3718 * optimization. 3719 */ 3720 if (ill->ill_arp_closing || !(ipif->ipif_flags & IPIF_DUPLICATE) || 3721 (ipif->ipif_flags & IPIF_POINTOPOINT) || 3722 (ipif->ipif_state_flags & (IPIF_MOVING | IPIF_CONDEMNED))) { 3723 /* No reason to try to bring this address back. */ 3724 return; 3725 } 3726 3727 if ((arp_add_mp = ipif_area_alloc(ipif)) == NULL) 3728 goto alloc_fail; 3729 3730 if (ipif->ipif_arp_del_mp == NULL) { 3731 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 3732 goto alloc_fail; 3733 ipif->ipif_arp_del_mp = arp_del_mp; 3734 } 3735 3736 /* Setting the 'unverified' flag restarts DAD */ 3737 area = (area_t *)arp_add_mp->b_rptr; 3738 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 3739 ACE_F_UNVERIFIED; 3740 putnext(ill->ill_rq, arp_add_mp); 3741 return; 3742 3743 alloc_fail: 3744 /* 3745 * On allocation failure, just restart the timer. Note that the ipif 3746 * is down here, so no other thread could be trying to start a recovery 3747 * timer. The ill_lock protects the condemned flag and the recovery 3748 * timer ID. 3749 */ 3750 freemsg(arp_add_mp); 3751 mutex_enter(&ill->ill_lock); 3752 if (ipst->ips_ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0 && 3753 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 3754 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, ipif, 3755 MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3756 } 3757 mutex_exit(&ill->ill_lock); 3758 } 3759 3760 /* 3761 * This is for exclusive changes due to ARP. Either tear down an interface due 3762 * to AR_CN_FAILED and AR_CN_BOGON, or bring one up for successful recovery. 3763 */ 3764 /* ARGSUSED */ 3765 static void 3766 ip_arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3767 { 3768 ill_t *ill = rq->q_ptr; 3769 arh_t *arh; 3770 ipaddr_t src; 3771 ipif_t *ipif; 3772 char ibuf[LIFNAMSIZ + 10]; /* 10 digits for logical i/f number */ 3773 char hbuf[MAC_STR_LEN]; 3774 char sbuf[INET_ADDRSTRLEN]; 3775 const char *failtype; 3776 boolean_t bring_up; 3777 ip_stack_t *ipst = ill->ill_ipst; 3778 3779 switch (((arcn_t *)mp->b_rptr)->arcn_code) { 3780 case AR_CN_READY: 3781 failtype = NULL; 3782 bring_up = B_TRUE; 3783 break; 3784 case AR_CN_FAILED: 3785 failtype = "in use"; 3786 bring_up = B_FALSE; 3787 break; 3788 default: 3789 failtype = "claimed"; 3790 bring_up = B_FALSE; 3791 break; 3792 } 3793 3794 arh = (arh_t *)mp->b_cont->b_rptr; 3795 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3796 3797 /* Handle failures due to probes */ 3798 if (src == 0) { 3799 bcopy((char *)&arh[1] + 2 * arh->arh_hlen + IP_ADDR_LEN, &src, 3800 IP_ADDR_LEN); 3801 } 3802 3803 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, hbuf, 3804 sizeof (hbuf)); 3805 (void) ip_dot_addr(src, sbuf); 3806 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3807 3808 if ((ipif->ipif_flags & IPIF_POINTOPOINT) || 3809 ipif->ipif_lcl_addr != src) { 3810 continue; 3811 } 3812 3813 /* 3814 * If we failed on a recovery probe, then restart the timer to 3815 * try again later. 3816 */ 3817 if (!bring_up && (ipif->ipif_flags & IPIF_DUPLICATE) && 3818 !(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3819 ill->ill_net_type == IRE_IF_RESOLVER && 3820 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3821 ipst->ips_ip_dup_recovery > 0 && 3822 ipif->ipif_recovery_id == 0) { 3823 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3824 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3825 continue; 3826 } 3827 3828 /* 3829 * If what we're trying to do has already been done, then do 3830 * nothing. 3831 */ 3832 if (bring_up == ((ipif->ipif_flags & IPIF_UP) != 0)) 3833 continue; 3834 3835 ipif_get_name(ipif, ibuf, sizeof (ibuf)); 3836 3837 if (failtype == NULL) { 3838 cmn_err(CE_NOTE, "recovered address %s on %s", sbuf, 3839 ibuf); 3840 } else { 3841 cmn_err(CE_WARN, "%s has duplicate address %s (%s " 3842 "by %s); disabled", ibuf, sbuf, failtype, hbuf); 3843 } 3844 3845 if (bring_up) { 3846 ASSERT(ill->ill_dl_up); 3847 /* 3848 * Free up the ARP delete message so we can allocate 3849 * a fresh one through the normal path. 3850 */ 3851 freemsg(ipif->ipif_arp_del_mp); 3852 ipif->ipif_arp_del_mp = NULL; 3853 if (ipif_resolver_up(ipif, Res_act_initial) != 3854 EINPROGRESS) { 3855 ipif->ipif_addr_ready = 1; 3856 (void) ipif_up_done(ipif); 3857 } 3858 continue; 3859 } 3860 3861 mutex_enter(&ill->ill_lock); 3862 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 3863 ipif->ipif_flags |= IPIF_DUPLICATE; 3864 ill->ill_ipif_dup_count++; 3865 mutex_exit(&ill->ill_lock); 3866 /* 3867 * Already exclusive on the ill; no need to handle deferred 3868 * processing here. 3869 */ 3870 (void) ipif_down(ipif, NULL, NULL); 3871 ipif_down_tail(ipif); 3872 mutex_enter(&ill->ill_lock); 3873 if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3874 ill->ill_net_type == IRE_IF_RESOLVER && 3875 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3876 ipst->ips_ip_dup_recovery > 0) { 3877 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3878 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3879 } 3880 mutex_exit(&ill->ill_lock); 3881 } 3882 freemsg(mp); 3883 } 3884 3885 /* ARGSUSED */ 3886 static void 3887 ip_arp_defend(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3888 { 3889 ill_t *ill = rq->q_ptr; 3890 arh_t *arh; 3891 ipaddr_t src; 3892 ipif_t *ipif; 3893 3894 arh = (arh_t *)mp->b_cont->b_rptr; 3895 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3896 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3897 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_lcl_addr == src) 3898 (void) ipif_resolver_up(ipif, Res_act_defend); 3899 } 3900 freemsg(mp); 3901 } 3902 3903 /* 3904 * News from ARP. ARP sends notification of interesting events down 3905 * to its clients using M_CTL messages with the interesting ARP packet 3906 * attached via b_cont. 3907 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3908 * queue as opposed to ARP sending the message to all the clients, i.e. all 3909 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3910 * table if a cache IRE is found to delete all the entries for the address in 3911 * the packet. 3912 */ 3913 static void 3914 ip_arp_news(queue_t *q, mblk_t *mp) 3915 { 3916 arcn_t *arcn; 3917 arh_t *arh; 3918 ire_t *ire = NULL; 3919 char hbuf[MAC_STR_LEN]; 3920 char sbuf[INET_ADDRSTRLEN]; 3921 ipaddr_t src; 3922 in6_addr_t v6src; 3923 boolean_t isv6 = B_FALSE; 3924 ipif_t *ipif; 3925 ill_t *ill; 3926 ip_stack_t *ipst; 3927 3928 if (CONN_Q(q)) { 3929 conn_t *connp = Q_TO_CONN(q); 3930 3931 ipst = connp->conn_netstack->netstack_ip; 3932 } else { 3933 ill_t *ill = (ill_t *)q->q_ptr; 3934 3935 ipst = ill->ill_ipst; 3936 } 3937 3938 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 3939 if (q->q_next) { 3940 putnext(q, mp); 3941 } else 3942 freemsg(mp); 3943 return; 3944 } 3945 arh = (arh_t *)mp->b_cont->b_rptr; 3946 /* Is it one we are interested in? */ 3947 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 3948 isv6 = B_TRUE; 3949 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 3950 IPV6_ADDR_LEN); 3951 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 3952 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 3953 IP_ADDR_LEN); 3954 } else { 3955 freemsg(mp); 3956 return; 3957 } 3958 3959 ill = q->q_ptr; 3960 3961 arcn = (arcn_t *)mp->b_rptr; 3962 switch (arcn->arcn_code) { 3963 case AR_CN_BOGON: 3964 /* 3965 * Someone is sending ARP packets with a source protocol 3966 * address that we have published and for which we believe our 3967 * entry is authoritative and (when ill_arp_extend is set) 3968 * verified to be unique on the network. 3969 * 3970 * The ARP module internally handles the cases where the sender 3971 * is just probing (for DAD) and where the hardware address of 3972 * a non-authoritative entry has changed. Thus, these are the 3973 * real conflicts, and we have to do resolution. 3974 * 3975 * We back away quickly from the address if it's from DHCP or 3976 * otherwise temporary and hasn't been used recently (or at 3977 * all). We'd like to include "deprecated" addresses here as 3978 * well (as there's no real reason to defend something we're 3979 * discarding), but IPMP "reuses" this flag to mean something 3980 * other than the standard meaning. 3981 * 3982 * If the ARP module above is not extended (meaning that it 3983 * doesn't know how to defend the address), then we just log 3984 * the problem as we always did and continue on. It's not 3985 * right, but there's little else we can do, and those old ATM 3986 * users are going away anyway. 3987 */ 3988 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, 3989 hbuf, sizeof (hbuf)); 3990 (void) ip_dot_addr(src, sbuf); 3991 if (isv6) { 3992 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL, 3993 ipst); 3994 } else { 3995 ire = ire_cache_lookup(src, ALL_ZONES, NULL, ipst); 3996 } 3997 if (ire != NULL && IRE_IS_LOCAL(ire)) { 3998 uint32_t now; 3999 uint32_t maxage; 4000 clock_t lused; 4001 uint_t maxdefense; 4002 uint_t defs; 4003 4004 /* 4005 * First, figure out if this address hasn't been used 4006 * in a while. If it hasn't, then it's a better 4007 * candidate for abandoning. 4008 */ 4009 ipif = ire->ire_ipif; 4010 ASSERT(ipif != NULL); 4011 now = gethrestime_sec(); 4012 maxage = now - ire->ire_create_time; 4013 if (maxage > ipst->ips_ip_max_temp_idle) 4014 maxage = ipst->ips_ip_max_temp_idle; 4015 lused = drv_hztousec(ddi_get_lbolt() - 4016 ire->ire_last_used_time) / MICROSEC + 1; 4017 if (lused >= maxage && (ipif->ipif_flags & 4018 (IPIF_DHCPRUNNING | IPIF_TEMPORARY))) 4019 maxdefense = ipst->ips_ip_max_temp_defend; 4020 else 4021 maxdefense = ipst->ips_ip_max_defend; 4022 4023 /* 4024 * Now figure out how many times we've defended 4025 * ourselves. Ignore defenses that happened long in 4026 * the past. 4027 */ 4028 mutex_enter(&ire->ire_lock); 4029 if ((defs = ire->ire_defense_count) > 0 && 4030 now - ire->ire_defense_time > 4031 ipst->ips_ip_defend_interval) { 4032 ire->ire_defense_count = defs = 0; 4033 } 4034 ire->ire_defense_count++; 4035 ire->ire_defense_time = now; 4036 mutex_exit(&ire->ire_lock); 4037 ill_refhold(ill); 4038 ire_refrele(ire); 4039 4040 /* 4041 * If we've defended ourselves too many times already, 4042 * then give up and tear down the interface(s) using 4043 * this address. Otherwise, defend by sending out a 4044 * gratuitous ARP. 4045 */ 4046 if (defs >= maxdefense && ill->ill_arp_extend) { 4047 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4048 B_FALSE); 4049 } else { 4050 cmn_err(CE_WARN, 4051 "node %s is using our IP address %s on %s", 4052 hbuf, sbuf, ill->ill_name); 4053 /* 4054 * If this is an old (ATM) ARP module, then 4055 * don't try to defend the address. Remain 4056 * compatible with the old behavior. Defend 4057 * only with new ARP. 4058 */ 4059 if (ill->ill_arp_extend) { 4060 qwriter_ip(ill, q, mp, ip_arp_defend, 4061 NEW_OP, B_FALSE); 4062 } else { 4063 ill_refrele(ill); 4064 } 4065 } 4066 return; 4067 } 4068 cmn_err(CE_WARN, 4069 "proxy ARP problem? Node '%s' is using %s on %s", 4070 hbuf, sbuf, ill->ill_name); 4071 if (ire != NULL) 4072 ire_refrele(ire); 4073 break; 4074 case AR_CN_ANNOUNCE: 4075 if (isv6) { 4076 /* 4077 * For XRESOLV interfaces. 4078 * Delete the IRE cache entry and NCE for this 4079 * v6 address 4080 */ 4081 ip_ire_clookup_and_delete_v6(&v6src, ipst); 4082 /* 4083 * If v6src is a non-zero, it's a router address 4084 * as below. Do the same sort of thing to clean 4085 * out off-net IRE_CACHE entries that go through 4086 * the router. 4087 */ 4088 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 4089 ire_walk_v6(ire_delete_cache_gw_v6, 4090 (char *)&v6src, ALL_ZONES, ipst); 4091 } 4092 } else { 4093 nce_hw_map_t hwm; 4094 4095 /* 4096 * ARP gives us a copy of any packet where it thinks 4097 * the address has changed, so that we can update our 4098 * caches. We're responsible for caching known answers 4099 * in the current design. We check whether the 4100 * hardware address really has changed in all of our 4101 * entries that have cached this mapping, and if so, we 4102 * blow them away. This way we will immediately pick 4103 * up the rare case of a host changing hardware 4104 * address. 4105 */ 4106 if (src == 0) 4107 break; 4108 hwm.hwm_addr = src; 4109 hwm.hwm_hwlen = arh->arh_hlen; 4110 hwm.hwm_hwaddr = (uchar_t *)(arh + 1); 4111 NDP_HW_CHANGE_INCR(ipst->ips_ndp4); 4112 ndp_walk_common(ipst->ips_ndp4, NULL, 4113 (pfi_t)nce_delete_hw_changed, &hwm, ALL_ZONES); 4114 NDP_HW_CHANGE_DECR(ipst->ips_ndp4); 4115 } 4116 break; 4117 case AR_CN_READY: 4118 /* No external v6 resolver has a contract to use this */ 4119 if (isv6) 4120 break; 4121 /* If the link is down, we'll retry this later */ 4122 if (!(ill->ill_phyint->phyint_flags & PHYI_RUNNING)) 4123 break; 4124 ipif = ipif_lookup_addr(src, ill, ALL_ZONES, NULL, NULL, 4125 NULL, NULL, ipst); 4126 if (ipif != NULL) { 4127 /* 4128 * If this is a duplicate recovery, then we now need to 4129 * go exclusive to bring this thing back up. 4130 */ 4131 if ((ipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)) == 4132 IPIF_DUPLICATE) { 4133 ipif_refrele(ipif); 4134 ill_refhold(ill); 4135 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4136 B_FALSE); 4137 return; 4138 } 4139 /* 4140 * If this is the first notice that this address is 4141 * ready, then let the user know now. 4142 */ 4143 if ((ipif->ipif_flags & IPIF_UP) && 4144 !ipif->ipif_addr_ready) { 4145 ipif_mask_reply(ipif); 4146 ip_rts_ifmsg(ipif); 4147 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 4148 sctp_update_ipif(ipif, SCTP_IPIF_UP); 4149 } 4150 ipif->ipif_addr_ready = 1; 4151 ipif_refrele(ipif); 4152 } 4153 ire = ire_cache_lookup(src, ALL_ZONES, MBLK_GETLABEL(mp), ipst); 4154 if (ire != NULL) { 4155 ire->ire_defense_count = 0; 4156 ire_refrele(ire); 4157 } 4158 break; 4159 case AR_CN_FAILED: 4160 /* No external v6 resolver has a contract to use this */ 4161 if (isv6) 4162 break; 4163 ill_refhold(ill); 4164 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, B_FALSE); 4165 return; 4166 } 4167 freemsg(mp); 4168 } 4169 4170 /* 4171 * Create a mblk suitable for carrying the interface index and/or source link 4172 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 4173 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 4174 * application. 4175 */ 4176 mblk_t * 4177 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags, zoneid_t zoneid, 4178 ip_stack_t *ipst) 4179 { 4180 mblk_t *mp; 4181 ip_pktinfo_t *pinfo; 4182 ipha_t *ipha; 4183 struct ether_header *pether; 4184 4185 mp = allocb(sizeof (ip_pktinfo_t), BPRI_MED); 4186 if (mp == NULL) { 4187 ip1dbg(("ip_add_info: allocation failure.\n")); 4188 return (data_mp); 4189 } 4190 4191 ipha = (ipha_t *)data_mp->b_rptr; 4192 pinfo = (ip_pktinfo_t *)mp->b_rptr; 4193 bzero(pinfo, sizeof (ip_pktinfo_t)); 4194 pinfo->ip_pkt_flags = (uchar_t)flags; 4195 pinfo->ip_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 4196 4197 if (flags & (IPF_RECVIF | IPF_RECVADDR)) 4198 pinfo->ip_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 4199 if (flags & IPF_RECVADDR) { 4200 ipif_t *ipif; 4201 ire_t *ire; 4202 4203 /* 4204 * Only valid for V4 4205 */ 4206 ASSERT((ipha->ipha_version_and_hdr_length & 0xf0) == 4207 (IPV4_VERSION << 4)); 4208 4209 ipif = ipif_get_next_ipif(NULL, ill); 4210 if (ipif != NULL) { 4211 /* 4212 * Since a decision has already been made to deliver the 4213 * packet, there is no need to test for SECATTR and 4214 * ZONEONLY. 4215 * When a multicast packet is transmitted 4216 * a cache entry is created for the multicast address. 4217 * When delivering a copy of the packet or when new 4218 * packets are received we do not want to match on the 4219 * cached entry so explicitly match on 4220 * IRE_LOCAL and IRE_LOOPBACK 4221 */ 4222 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4223 IRE_LOCAL | IRE_LOOPBACK, 4224 ipif, zoneid, NULL, 4225 MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP, ipst); 4226 if (ire == NULL) { 4227 /* 4228 * packet must have come on a different 4229 * interface. 4230 * Since a decision has already been made to 4231 * deliver the packet, there is no need to test 4232 * for SECATTR and ZONEONLY. 4233 * Only match on local and broadcast ire's. 4234 * See detailed comment above. 4235 */ 4236 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4237 IRE_LOCAL | IRE_LOOPBACK, ipif, zoneid, 4238 NULL, MATCH_IRE_TYPE, ipst); 4239 } 4240 4241 if (ire == NULL) { 4242 /* 4243 * This is either a multicast packet or 4244 * the address has been removed since 4245 * the packet was received. 4246 * Return INADDR_ANY so that normal source 4247 * selection occurs for the response. 4248 */ 4249 4250 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4251 } else { 4252 pinfo->ip_pkt_match_addr.s_addr = 4253 ire->ire_src_addr; 4254 ire_refrele(ire); 4255 } 4256 ipif_refrele(ipif); 4257 } else { 4258 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4259 } 4260 } 4261 4262 pether = (struct ether_header *)((char *)ipha 4263 - sizeof (struct ether_header)); 4264 /* 4265 * Make sure the interface is an ethernet type, since this option 4266 * is currently supported only on this type of interface. Also make 4267 * sure we are pointing correctly above db_base. 4268 */ 4269 4270 if ((flags & IPF_RECVSLLA) && 4271 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 4272 (ill->ill_type == IFT_ETHER) && 4273 (ill->ill_net_type == IRE_IF_RESOLVER)) { 4274 4275 pinfo->ip_pkt_slla.sdl_type = IFT_ETHER; 4276 bcopy((uchar_t *)pether->ether_shost.ether_addr_octet, 4277 (uchar_t *)pinfo->ip_pkt_slla.sdl_data, ETHERADDRL); 4278 } else { 4279 /* 4280 * Clear the bit. Indicate to upper layer that IP is not 4281 * sending this ancillary info. 4282 */ 4283 pinfo->ip_pkt_flags = pinfo->ip_pkt_flags & ~IPF_RECVSLLA; 4284 } 4285 4286 mp->b_datap->db_type = M_CTL; 4287 mp->b_wptr += sizeof (ip_pktinfo_t); 4288 mp->b_cont = data_mp; 4289 4290 return (mp); 4291 } 4292 4293 /* 4294 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 4295 * part of the bind request. 4296 */ 4297 4298 boolean_t 4299 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 4300 { 4301 ipsec_in_t *ii; 4302 4303 ASSERT(policy_mp != NULL); 4304 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 4305 4306 ii = (ipsec_in_t *)policy_mp->b_rptr; 4307 ASSERT(ii->ipsec_in_type == IPSEC_IN); 4308 4309 connp->conn_policy = ii->ipsec_in_policy; 4310 ii->ipsec_in_policy = NULL; 4311 4312 if (ii->ipsec_in_action != NULL) { 4313 if (connp->conn_latch == NULL) { 4314 connp->conn_latch = iplatch_create(); 4315 if (connp->conn_latch == NULL) 4316 return (B_FALSE); 4317 } 4318 ipsec_latch_inbound(connp->conn_latch, ii); 4319 } 4320 return (B_TRUE); 4321 } 4322 4323 /* 4324 * Upper level protocols (ULP) pass through bind requests to IP for inspection 4325 * and to arrange for power-fanout assist. The ULP is identified by 4326 * adding a single byte at the end of the original bind message. 4327 * A ULP other than UDP or TCP that wishes to be recognized passes 4328 * down a bind with a zero length address. 4329 * 4330 * The binding works as follows: 4331 * - A zero byte address means just bind to the protocol. 4332 * - A four byte address is treated as a request to validate 4333 * that the address is a valid local address, appropriate for 4334 * an application to bind to. This does not affect any fanout 4335 * information in IP. 4336 * - A sizeof sin_t byte address is used to bind to only the local address 4337 * and port. 4338 * - A sizeof ipa_conn_t byte address contains complete fanout information 4339 * consisting of local and remote addresses and ports. In 4340 * this case, the addresses are both validated as appropriate 4341 * for this operation, and, if so, the information is retained 4342 * for use in the inbound fanout. 4343 * 4344 * The ULP (except in the zero-length bind) can append an 4345 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4346 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4347 * a copy of the source or destination IRE (source for local bind; 4348 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4349 * policy information contained should be copied on to the conn. 4350 * 4351 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4352 */ 4353 mblk_t * 4354 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4355 { 4356 ssize_t len; 4357 struct T_bind_req *tbr; 4358 sin_t *sin; 4359 ipa_conn_t *ac; 4360 uchar_t *ucp; 4361 mblk_t *mp1; 4362 boolean_t ire_requested; 4363 boolean_t ipsec_policy_set = B_FALSE; 4364 int error = 0; 4365 int protocol; 4366 ipa_conn_x_t *acx; 4367 4368 ASSERT(!connp->conn_af_isv6); 4369 connp->conn_pkt_isv6 = B_FALSE; 4370 4371 len = MBLKL(mp); 4372 if (len < (sizeof (*tbr) + 1)) { 4373 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4374 "ip_bind: bogus msg, len %ld", len); 4375 /* XXX: Need to return something better */ 4376 goto bad_addr; 4377 } 4378 /* Back up and extract the protocol identifier. */ 4379 mp->b_wptr--; 4380 protocol = *mp->b_wptr & 0xFF; 4381 tbr = (struct T_bind_req *)mp->b_rptr; 4382 /* Reset the message type in preparation for shipping it back. */ 4383 DB_TYPE(mp) = M_PCPROTO; 4384 4385 connp->conn_ulp = (uint8_t)protocol; 4386 4387 /* 4388 * Check for a zero length address. This is from a protocol that 4389 * wants to register to receive all packets of its type. 4390 */ 4391 if (tbr->ADDR_length == 0) { 4392 /* 4393 * These protocols are now intercepted in ip_bind_v6(). 4394 * Reject protocol-level binds here for now. 4395 * 4396 * For SCTP raw socket, ICMP sends down a bind with sin_t 4397 * so that the protocol type cannot be SCTP. 4398 */ 4399 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4400 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4401 goto bad_addr; 4402 } 4403 4404 /* 4405 * 4406 * The udp module never sends down a zero-length address, 4407 * and allowing this on a labeled system will break MLP 4408 * functionality. 4409 */ 4410 if (is_system_labeled() && protocol == IPPROTO_UDP) 4411 goto bad_addr; 4412 4413 if (connp->conn_mac_exempt) 4414 goto bad_addr; 4415 4416 /* No hash here really. The table is big enough. */ 4417 connp->conn_srcv6 = ipv6_all_zeros; 4418 4419 ipcl_proto_insert(connp, protocol); 4420 4421 tbr->PRIM_type = T_BIND_ACK; 4422 return (mp); 4423 } 4424 4425 /* Extract the address pointer from the message. */ 4426 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4427 tbr->ADDR_length); 4428 if (ucp == NULL) { 4429 ip1dbg(("ip_bind: no address\n")); 4430 goto bad_addr; 4431 } 4432 if (!OK_32PTR(ucp)) { 4433 ip1dbg(("ip_bind: unaligned address\n")); 4434 goto bad_addr; 4435 } 4436 /* 4437 * Check for trailing mps. 4438 */ 4439 4440 mp1 = mp->b_cont; 4441 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 4442 ipsec_policy_set = (mp1 != NULL && DB_TYPE(mp1) == IPSEC_POLICY_SET); 4443 4444 switch (tbr->ADDR_length) { 4445 default: 4446 ip1dbg(("ip_bind: bad address length %d\n", 4447 (int)tbr->ADDR_length)); 4448 goto bad_addr; 4449 4450 case IP_ADDR_LEN: 4451 /* Verification of local address only */ 4452 error = ip_bind_laddr(connp, mp, *(ipaddr_t *)ucp, 0, 4453 ire_requested, ipsec_policy_set, B_FALSE); 4454 break; 4455 4456 case sizeof (sin_t): 4457 sin = (sin_t *)ucp; 4458 error = ip_bind_laddr(connp, mp, sin->sin_addr.s_addr, 4459 sin->sin_port, ire_requested, ipsec_policy_set, B_TRUE); 4460 break; 4461 4462 case sizeof (ipa_conn_t): 4463 ac = (ipa_conn_t *)ucp; 4464 /* For raw socket, the local port is not set. */ 4465 if (ac->ac_lport == 0) 4466 ac->ac_lport = connp->conn_lport; 4467 /* Always verify destination reachability. */ 4468 error = ip_bind_connected(connp, mp, &ac->ac_laddr, 4469 ac->ac_lport, ac->ac_faddr, ac->ac_fport, ire_requested, 4470 ipsec_policy_set, B_TRUE, B_TRUE); 4471 break; 4472 4473 case sizeof (ipa_conn_x_t): 4474 acx = (ipa_conn_x_t *)ucp; 4475 /* 4476 * Whether or not to verify destination reachability depends 4477 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4478 */ 4479 error = ip_bind_connected(connp, mp, &acx->acx_conn.ac_laddr, 4480 acx->acx_conn.ac_lport, acx->acx_conn.ac_faddr, 4481 acx->acx_conn.ac_fport, ire_requested, ipsec_policy_set, 4482 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0); 4483 break; 4484 } 4485 if (error == EINPROGRESS) 4486 return (NULL); 4487 else if (error != 0) 4488 goto bad_addr; 4489 /* 4490 * Pass the IPsec headers size in ire_ipsec_overhead. 4491 * We can't do this in ip_bind_insert_ire because the policy 4492 * may not have been inherited at that point in time and hence 4493 * conn_out_enforce_policy may not be set. 4494 */ 4495 mp1 = mp->b_cont; 4496 if (ire_requested && connp->conn_out_enforce_policy && 4497 mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE) { 4498 ire_t *ire = (ire_t *)mp1->b_rptr; 4499 ASSERT(MBLKL(mp1) >= sizeof (ire_t)); 4500 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 4501 } 4502 4503 /* Send it home. */ 4504 mp->b_datap->db_type = M_PCPROTO; 4505 tbr->PRIM_type = T_BIND_ACK; 4506 return (mp); 4507 4508 bad_addr: 4509 /* 4510 * If error = -1 then we generate a TBADADDR - otherwise error is 4511 * a unix errno. 4512 */ 4513 if (error > 0) 4514 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4515 else 4516 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4517 return (mp); 4518 } 4519 4520 /* 4521 * Here address is verified to be a valid local address. 4522 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4523 * address is also considered a valid local address. 4524 * In the case of a broadcast/multicast address, however, the 4525 * upper protocol is expected to reset the src address 4526 * to 0 if it sees a IRE_BROADCAST type returned so that 4527 * no packets are emitted with broadcast/multicast address as 4528 * source address (that violates hosts requirements RFC1122) 4529 * The addresses valid for bind are: 4530 * (1) - INADDR_ANY (0) 4531 * (2) - IP address of an UP interface 4532 * (3) - IP address of a DOWN interface 4533 * (4) - valid local IP broadcast addresses. In this case 4534 * the conn will only receive packets destined to 4535 * the specified broadcast address. 4536 * (5) - a multicast address. In this case 4537 * the conn will only receive packets destined to 4538 * the specified multicast address. Note: the 4539 * application still has to issue an 4540 * IP_ADD_MEMBERSHIP socket option. 4541 * 4542 * On error, return -1 for TBADADDR otherwise pass the 4543 * errno with TSYSERR reply. 4544 * 4545 * In all the above cases, the bound address must be valid in the current zone. 4546 * When the address is loopback, multicast or broadcast, there might be many 4547 * matching IREs so bind has to look up based on the zone. 4548 * 4549 * Note: lport is in network byte order. 4550 */ 4551 int 4552 ip_bind_laddr(conn_t *connp, mblk_t *mp, ipaddr_t src_addr, uint16_t lport, 4553 boolean_t ire_requested, boolean_t ipsec_policy_set, 4554 boolean_t fanout_insert) 4555 { 4556 int error = 0; 4557 ire_t *src_ire; 4558 mblk_t *policy_mp; 4559 ipif_t *ipif; 4560 zoneid_t zoneid; 4561 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4562 4563 if (ipsec_policy_set) { 4564 policy_mp = mp->b_cont; 4565 } 4566 4567 /* 4568 * If it was previously connected, conn_fully_bound would have 4569 * been set. 4570 */ 4571 connp->conn_fully_bound = B_FALSE; 4572 4573 src_ire = NULL; 4574 ipif = NULL; 4575 4576 zoneid = IPCL_ZONEID(connp); 4577 4578 if (src_addr) { 4579 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4580 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 4581 /* 4582 * If an address other than 0.0.0.0 is requested, 4583 * we verify that it is a valid address for bind 4584 * Note: Following code is in if-else-if form for 4585 * readability compared to a condition check. 4586 */ 4587 /* LINTED - statement has no consequent */ 4588 if (IRE_IS_LOCAL(src_ire)) { 4589 /* 4590 * (2) Bind to address of local UP interface 4591 */ 4592 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4593 /* 4594 * (4) Bind to broadcast address 4595 * Note: permitted only from transports that 4596 * request IRE 4597 */ 4598 if (!ire_requested) 4599 error = EADDRNOTAVAIL; 4600 } else { 4601 /* 4602 * (3) Bind to address of local DOWN interface 4603 * (ipif_lookup_addr() looks up all interfaces 4604 * but we do not get here for UP interfaces 4605 * - case (2) above) 4606 * We put the protocol byte back into the mblk 4607 * since we may come back via ip_wput_nondata() 4608 * later with this mblk if ipif_lookup_addr chooses 4609 * to defer processing. 4610 */ 4611 *mp->b_wptr++ = (char)connp->conn_ulp; 4612 if ((ipif = ipif_lookup_addr(src_addr, NULL, zoneid, 4613 CONNP_TO_WQ(connp), mp, ip_wput_nondata, 4614 &error, ipst)) != NULL) { 4615 ipif_refrele(ipif); 4616 } else if (error == EINPROGRESS) { 4617 if (src_ire != NULL) 4618 ire_refrele(src_ire); 4619 return (EINPROGRESS); 4620 } else if (CLASSD(src_addr)) { 4621 error = 0; 4622 if (src_ire != NULL) 4623 ire_refrele(src_ire); 4624 /* 4625 * (5) bind to multicast address. 4626 * Fake out the IRE returned to upper 4627 * layer to be a broadcast IRE. 4628 */ 4629 src_ire = ire_ctable_lookup( 4630 INADDR_BROADCAST, INADDR_ANY, 4631 IRE_BROADCAST, NULL, zoneid, NULL, 4632 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY), 4633 ipst); 4634 if (src_ire == NULL || !ire_requested) 4635 error = EADDRNOTAVAIL; 4636 } else { 4637 /* 4638 * Not a valid address for bind 4639 */ 4640 error = EADDRNOTAVAIL; 4641 } 4642 /* 4643 * Just to keep it consistent with the processing in 4644 * ip_bind_v4() 4645 */ 4646 mp->b_wptr--; 4647 } 4648 if (error) { 4649 /* Red Alert! Attempting to be a bogon! */ 4650 ip1dbg(("ip_bind: bad src address 0x%x\n", 4651 ntohl(src_addr))); 4652 goto bad_addr; 4653 } 4654 } 4655 4656 /* 4657 * Allow setting new policies. For example, disconnects come 4658 * down as ipa_t bind. As we would have set conn_policy_cached 4659 * to B_TRUE before, we should set it to B_FALSE, so that policy 4660 * can change after the disconnect. 4661 */ 4662 connp->conn_policy_cached = B_FALSE; 4663 4664 /* 4665 * If not fanout_insert this was just an address verification 4666 */ 4667 if (fanout_insert) { 4668 /* 4669 * The addresses have been verified. Time to insert in 4670 * the correct fanout list. 4671 */ 4672 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4673 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4674 connp->conn_lport = lport; 4675 connp->conn_fport = 0; 4676 /* 4677 * Do we need to add a check to reject Multicast packets 4678 */ 4679 error = ipcl_bind_insert(connp, *mp->b_wptr, src_addr, lport); 4680 } 4681 4682 if (error == 0) { 4683 if (ire_requested) { 4684 if (!ip_bind_insert_ire(mp, src_ire, NULL, ipst)) { 4685 error = -1; 4686 /* Falls through to bad_addr */ 4687 } 4688 } else if (ipsec_policy_set) { 4689 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4690 error = -1; 4691 /* Falls through to bad_addr */ 4692 } 4693 } 4694 } 4695 bad_addr: 4696 if (error != 0) { 4697 if (connp->conn_anon_port) { 4698 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4699 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4700 B_FALSE); 4701 } 4702 connp->conn_mlp_type = mlptSingle; 4703 } 4704 if (src_ire != NULL) 4705 IRE_REFRELE(src_ire); 4706 if (ipsec_policy_set) { 4707 ASSERT(policy_mp == mp->b_cont); 4708 ASSERT(policy_mp != NULL); 4709 freeb(policy_mp); 4710 /* 4711 * As of now assume that nothing else accompanies 4712 * IPSEC_POLICY_SET. 4713 */ 4714 mp->b_cont = NULL; 4715 } 4716 return (error); 4717 } 4718 4719 /* 4720 * Verify that both the source and destination addresses 4721 * are valid. If verify_dst is false, then the destination address may be 4722 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4723 * destination reachability, while tunnels do not. 4724 * Note that we allow connect to broadcast and multicast 4725 * addresses when ire_requested is set. Thus the ULP 4726 * has to check for IRE_BROADCAST and multicast. 4727 * 4728 * Returns zero if ok. 4729 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4730 * (for use with TSYSERR reply). 4731 * 4732 * Note: lport and fport are in network byte order. 4733 */ 4734 int 4735 ip_bind_connected(conn_t *connp, mblk_t *mp, ipaddr_t *src_addrp, 4736 uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4737 boolean_t ire_requested, boolean_t ipsec_policy_set, 4738 boolean_t fanout_insert, boolean_t verify_dst) 4739 { 4740 ire_t *src_ire; 4741 ire_t *dst_ire; 4742 int error = 0; 4743 int protocol; 4744 mblk_t *policy_mp; 4745 ire_t *sire = NULL; 4746 ire_t *md_dst_ire = NULL; 4747 ire_t *lso_dst_ire = NULL; 4748 ill_t *ill = NULL; 4749 zoneid_t zoneid; 4750 ipaddr_t src_addr = *src_addrp; 4751 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4752 4753 src_ire = dst_ire = NULL; 4754 protocol = *mp->b_wptr & 0xFF; 4755 4756 /* 4757 * If we never got a disconnect before, clear it now. 4758 */ 4759 connp->conn_fully_bound = B_FALSE; 4760 4761 if (ipsec_policy_set) { 4762 policy_mp = mp->b_cont; 4763 } 4764 4765 zoneid = IPCL_ZONEID(connp); 4766 4767 if (CLASSD(dst_addr)) { 4768 /* Pick up an IRE_BROADCAST */ 4769 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4770 NULL, zoneid, MBLK_GETLABEL(mp), 4771 (MATCH_IRE_RECURSIVE | 4772 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4773 MATCH_IRE_SECATTR), ipst); 4774 } else { 4775 /* 4776 * If conn_dontroute is set or if conn_nexthop_set is set, 4777 * and onlink ipif is not found set ENETUNREACH error. 4778 */ 4779 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4780 ipif_t *ipif; 4781 4782 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4783 dst_addr : connp->conn_nexthop_v4, zoneid, ipst); 4784 if (ipif == NULL) { 4785 error = ENETUNREACH; 4786 goto bad_addr; 4787 } 4788 ipif_refrele(ipif); 4789 } 4790 4791 if (connp->conn_nexthop_set) { 4792 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4793 0, 0, NULL, NULL, zoneid, MBLK_GETLABEL(mp), 4794 MATCH_IRE_SECATTR, ipst); 4795 } else { 4796 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4797 &sire, zoneid, MBLK_GETLABEL(mp), 4798 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4799 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4800 MATCH_IRE_SECATTR), ipst); 4801 } 4802 } 4803 /* 4804 * dst_ire can't be a broadcast when not ire_requested. 4805 * We also prevent ire's with src address INADDR_ANY to 4806 * be used, which are created temporarily for 4807 * sending out packets from endpoints that have 4808 * conn_unspec_src set. If verify_dst is true, the destination must be 4809 * reachable. If verify_dst is false, the destination needn't be 4810 * reachable. 4811 * 4812 * If we match on a reject or black hole, then we've got a 4813 * local failure. May as well fail out the connect() attempt, 4814 * since it's never going to succeed. 4815 */ 4816 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4817 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4818 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4819 /* 4820 * If we're verifying destination reachability, we always want 4821 * to complain here. 4822 * 4823 * If we're not verifying destination reachability but the 4824 * destination has a route, we still want to fail on the 4825 * temporary address and broadcast address tests. 4826 */ 4827 if (verify_dst || (dst_ire != NULL)) { 4828 if (ip_debug > 2) { 4829 pr_addr_dbg("ip_bind_connected: bad connected " 4830 "dst %s\n", AF_INET, &dst_addr); 4831 } 4832 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4833 error = ENETUNREACH; 4834 else 4835 error = EHOSTUNREACH; 4836 goto bad_addr; 4837 } 4838 } 4839 4840 /* 4841 * We now know that routing will allow us to reach the destination. 4842 * Check whether Trusted Solaris policy allows communication with this 4843 * host, and pretend that the destination is unreachable if not. 4844 * 4845 * This is never a problem for TCP, since that transport is known to 4846 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4847 * handling. If the remote is unreachable, it will be detected at that 4848 * point, so there's no reason to check it here. 4849 * 4850 * Note that for sendto (and other datagram-oriented friends), this 4851 * check is done as part of the data path label computation instead. 4852 * The check here is just to make non-TCP connect() report the right 4853 * error. 4854 */ 4855 if (dst_ire != NULL && is_system_labeled() && 4856 !IPCL_IS_TCP(connp) && 4857 tsol_compute_label(DB_CREDDEF(mp, connp->conn_cred), dst_addr, NULL, 4858 connp->conn_mac_exempt, ipst) != 0) { 4859 error = EHOSTUNREACH; 4860 if (ip_debug > 2) { 4861 pr_addr_dbg("ip_bind_connected: no label for dst %s\n", 4862 AF_INET, &dst_addr); 4863 } 4864 goto bad_addr; 4865 } 4866 4867 /* 4868 * If the app does a connect(), it means that it will most likely 4869 * send more than 1 packet to the destination. It makes sense 4870 * to clear the temporary flag. 4871 */ 4872 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4873 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4874 irb_t *irb = dst_ire->ire_bucket; 4875 4876 rw_enter(&irb->irb_lock, RW_WRITER); 4877 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4878 irb->irb_tmp_ire_cnt--; 4879 rw_exit(&irb->irb_lock); 4880 } 4881 4882 /* 4883 * See if we should notify ULP about LSO/MDT; we do this whether or not 4884 * ire_requested is TRUE, in order to handle active connects; LSO/MDT 4885 * eligibility tests for passive connects are handled separately 4886 * through tcp_adapt_ire(). We do this before the source address 4887 * selection, because dst_ire may change after a call to 4888 * ipif_select_source(). This is a best-effort check, as the 4889 * packet for this connection may not actually go through 4890 * dst_ire->ire_stq, and the exact IRE can only be known after 4891 * calling ip_newroute(). This is why we further check on the 4892 * IRE during LSO/Multidata packet transmission in 4893 * tcp_lsosend()/tcp_multisend(). 4894 */ 4895 if (!ipsec_policy_set && dst_ire != NULL && 4896 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4897 (ill = ire_to_ill(dst_ire), ill != NULL)) { 4898 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 4899 lso_dst_ire = dst_ire; 4900 IRE_REFHOLD(lso_dst_ire); 4901 } else if (ipst->ips_ip_multidata_outbound && 4902 ILL_MDT_CAPABLE(ill)) { 4903 md_dst_ire = dst_ire; 4904 IRE_REFHOLD(md_dst_ire); 4905 } 4906 } 4907 4908 if (dst_ire != NULL && 4909 dst_ire->ire_type == IRE_LOCAL && 4910 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4911 /* 4912 * If the IRE belongs to a different zone, look for a matching 4913 * route in the forwarding table and use the source address from 4914 * that route. 4915 */ 4916 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4917 zoneid, 0, NULL, 4918 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4919 MATCH_IRE_RJ_BHOLE, ipst); 4920 if (src_ire == NULL) { 4921 error = EHOSTUNREACH; 4922 goto bad_addr; 4923 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4924 if (!(src_ire->ire_type & IRE_HOST)) 4925 error = ENETUNREACH; 4926 else 4927 error = EHOSTUNREACH; 4928 goto bad_addr; 4929 } 4930 if (src_addr == INADDR_ANY) 4931 src_addr = src_ire->ire_src_addr; 4932 ire_refrele(src_ire); 4933 src_ire = NULL; 4934 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4935 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4936 src_addr = sire->ire_src_addr; 4937 ire_refrele(dst_ire); 4938 dst_ire = sire; 4939 sire = NULL; 4940 } else { 4941 /* 4942 * Pick a source address so that a proper inbound 4943 * load spreading would happen. 4944 */ 4945 ill_t *dst_ill = dst_ire->ire_ipif->ipif_ill; 4946 ipif_t *src_ipif = NULL; 4947 ire_t *ipif_ire; 4948 4949 /* 4950 * Supply a local source address such that inbound 4951 * load spreading happens. 4952 * 4953 * Determine the best source address on this ill for 4954 * the destination. 4955 * 4956 * 1) For broadcast, we should return a broadcast ire 4957 * found above so that upper layers know that the 4958 * destination address is a broadcast address. 4959 * 4960 * 2) If this is part of a group, select a better 4961 * source address so that better inbound load 4962 * balancing happens. Do the same if the ipif 4963 * is DEPRECATED. 4964 * 4965 * 3) If the outgoing interface is part of a usesrc 4966 * group, then try selecting a source address from 4967 * the usesrc ILL. 4968 */ 4969 if ((dst_ire->ire_zoneid != zoneid && 4970 dst_ire->ire_zoneid != ALL_ZONES) || 4971 (!(dst_ire->ire_type & IRE_BROADCAST) && 4972 ((dst_ill->ill_group != NULL) || 4973 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 4974 (dst_ill->ill_usesrc_ifindex != 0)))) { 4975 /* 4976 * If the destination is reachable via a 4977 * given gateway, the selected source address 4978 * should be in the same subnet as the gateway. 4979 * Otherwise, the destination is not reachable. 4980 * 4981 * If there are no interfaces on the same subnet 4982 * as the destination, ipif_select_source gives 4983 * first non-deprecated interface which might be 4984 * on a different subnet than the gateway. 4985 * This is not desirable. Hence pass the dst_ire 4986 * source address to ipif_select_source. 4987 * It is sure that the destination is reachable 4988 * with the dst_ire source address subnet. 4989 * So passing dst_ire source address to 4990 * ipif_select_source will make sure that the 4991 * selected source will be on the same subnet 4992 * as dst_ire source address. 4993 */ 4994 ipaddr_t saddr = 4995 dst_ire->ire_ipif->ipif_src_addr; 4996 src_ipif = ipif_select_source(dst_ill, 4997 saddr, zoneid); 4998 if (src_ipif != NULL) { 4999 if (IS_VNI(src_ipif->ipif_ill)) { 5000 /* 5001 * For VNI there is no 5002 * interface route 5003 */ 5004 src_addr = 5005 src_ipif->ipif_src_addr; 5006 } else { 5007 ipif_ire = 5008 ipif_to_ire(src_ipif); 5009 if (ipif_ire != NULL) { 5010 IRE_REFRELE(dst_ire); 5011 dst_ire = ipif_ire; 5012 } 5013 src_addr = 5014 dst_ire->ire_src_addr; 5015 } 5016 ipif_refrele(src_ipif); 5017 } else { 5018 src_addr = dst_ire->ire_src_addr; 5019 } 5020 } else { 5021 src_addr = dst_ire->ire_src_addr; 5022 } 5023 } 5024 } 5025 5026 /* 5027 * We do ire_route_lookup() here (and not 5028 * interface lookup as we assert that 5029 * src_addr should only come from an 5030 * UP interface for hard binding. 5031 */ 5032 ASSERT(src_ire == NULL); 5033 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 5034 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 5035 /* src_ire must be a local|loopback */ 5036 if (!IRE_IS_LOCAL(src_ire)) { 5037 if (ip_debug > 2) { 5038 pr_addr_dbg("ip_bind_connected: bad connected " 5039 "src %s\n", AF_INET, &src_addr); 5040 } 5041 error = EADDRNOTAVAIL; 5042 goto bad_addr; 5043 } 5044 5045 /* 5046 * If the source address is a loopback address, the 5047 * destination had best be local or multicast. 5048 * The transports that can't handle multicast will reject 5049 * those addresses. 5050 */ 5051 if (src_ire->ire_type == IRE_LOOPBACK && 5052 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 5053 ip1dbg(("ip_bind_connected: bad connected loopback\n")); 5054 error = -1; 5055 goto bad_addr; 5056 } 5057 5058 /* 5059 * Allow setting new policies. For example, disconnects come 5060 * down as ipa_t bind. As we would have set conn_policy_cached 5061 * to B_TRUE before, we should set it to B_FALSE, so that policy 5062 * can change after the disconnect. 5063 */ 5064 connp->conn_policy_cached = B_FALSE; 5065 5066 /* 5067 * Set the conn addresses/ports immediately, so the IPsec policy calls 5068 * can handle their passed-in conn's. 5069 */ 5070 5071 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 5072 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 5073 connp->conn_lport = lport; 5074 connp->conn_fport = fport; 5075 *src_addrp = src_addr; 5076 5077 ASSERT(!(ipsec_policy_set && ire_requested)); 5078 if (ire_requested) { 5079 iulp_t *ulp_info = NULL; 5080 5081 /* 5082 * Note that sire will not be NULL if this is an off-link 5083 * connection and there is not cache for that dest yet. 5084 * 5085 * XXX Because of an existing bug, if there are multiple 5086 * default routes, the IRE returned now may not be the actual 5087 * default route used (default routes are chosen in a 5088 * round robin fashion). So if the metrics for different 5089 * default routes are different, we may return the wrong 5090 * metrics. This will not be a problem if the existing 5091 * bug is fixed. 5092 */ 5093 if (sire != NULL) { 5094 ulp_info = &(sire->ire_uinfo); 5095 } 5096 if (!ip_bind_insert_ire(mp, dst_ire, ulp_info, ipst)) { 5097 error = -1; 5098 goto bad_addr; 5099 } 5100 } else if (ipsec_policy_set) { 5101 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 5102 error = -1; 5103 goto bad_addr; 5104 } 5105 } 5106 5107 /* 5108 * Cache IPsec policy in this conn. If we have per-socket policy, 5109 * we'll cache that. If we don't, we'll inherit global policy. 5110 * 5111 * We can't insert until the conn reflects the policy. Note that 5112 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 5113 * connections where we don't have a policy. This is to prevent 5114 * global policy lookups in the inbound path. 5115 * 5116 * If we insert before we set conn_policy_cached, 5117 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 5118 * because global policy cound be non-empty. We normally call 5119 * ipsec_check_policy() for conn_policy_cached connections only if 5120 * ipc_in_enforce_policy is set. But in this case, 5121 * conn_policy_cached can get set anytime since we made the 5122 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 5123 * called, which will make the above assumption false. Thus, we 5124 * need to insert after we set conn_policy_cached. 5125 */ 5126 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 5127 goto bad_addr; 5128 5129 if (fanout_insert) { 5130 /* 5131 * The addresses have been verified. Time to insert in 5132 * the correct fanout list. 5133 */ 5134 error = ipcl_conn_insert(connp, protocol, src_addr, 5135 dst_addr, connp->conn_ports); 5136 } 5137 5138 if (error == 0) { 5139 connp->conn_fully_bound = B_TRUE; 5140 /* 5141 * Our initial checks for LSO/MDT have passed; the IRE is not 5142 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 5143 * be supporting LSO/MDT. Pass the IRE, IPC and ILL into 5144 * ip_xxinfo_return(), which performs further checks 5145 * against them and upon success, returns the LSO/MDT info 5146 * mblk which we will attach to the bind acknowledgment. 5147 */ 5148 if (lso_dst_ire != NULL) { 5149 mblk_t *lsoinfo_mp; 5150 5151 ASSERT(ill->ill_lso_capab != NULL); 5152 if ((lsoinfo_mp = ip_lsoinfo_return(lso_dst_ire, connp, 5153 ill->ill_name, ill->ill_lso_capab)) != NULL) 5154 linkb(mp, lsoinfo_mp); 5155 } else if (md_dst_ire != NULL) { 5156 mblk_t *mdinfo_mp; 5157 5158 ASSERT(ill->ill_mdt_capab != NULL); 5159 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 5160 ill->ill_name, ill->ill_mdt_capab)) != NULL) 5161 linkb(mp, mdinfo_mp); 5162 } 5163 } 5164 bad_addr: 5165 if (ipsec_policy_set) { 5166 ASSERT(policy_mp == mp->b_cont); 5167 ASSERT(policy_mp != NULL); 5168 freeb(policy_mp); 5169 /* 5170 * As of now assume that nothing else accompanies 5171 * IPSEC_POLICY_SET. 5172 */ 5173 mp->b_cont = NULL; 5174 } 5175 if (src_ire != NULL) 5176 IRE_REFRELE(src_ire); 5177 if (dst_ire != NULL) 5178 IRE_REFRELE(dst_ire); 5179 if (sire != NULL) 5180 IRE_REFRELE(sire); 5181 if (md_dst_ire != NULL) 5182 IRE_REFRELE(md_dst_ire); 5183 if (lso_dst_ire != NULL) 5184 IRE_REFRELE(lso_dst_ire); 5185 return (error); 5186 } 5187 5188 /* 5189 * Insert the ire in b_cont. Returns false if it fails (due to lack of space). 5190 * Prefers dst_ire over src_ire. 5191 */ 5192 static boolean_t 5193 ip_bind_insert_ire(mblk_t *mp, ire_t *ire, iulp_t *ulp_info, ip_stack_t *ipst) 5194 { 5195 mblk_t *mp1; 5196 ire_t *ret_ire = NULL; 5197 5198 mp1 = mp->b_cont; 5199 ASSERT(mp1 != NULL); 5200 5201 if (ire != NULL) { 5202 /* 5203 * mp1 initialized above to IRE_DB_REQ_TYPE 5204 * appended mblk. Its <upper protocol>'s 5205 * job to make sure there is room. 5206 */ 5207 if ((mp1->b_datap->db_lim - mp1->b_rptr) < sizeof (ire_t)) 5208 return (0); 5209 5210 mp1->b_datap->db_type = IRE_DB_TYPE; 5211 mp1->b_wptr = mp1->b_rptr + sizeof (ire_t); 5212 bcopy(ire, mp1->b_rptr, sizeof (ire_t)); 5213 ret_ire = (ire_t *)mp1->b_rptr; 5214 /* 5215 * Pass the latest setting of the ip_path_mtu_discovery and 5216 * copy the ulp info if any. 5217 */ 5218 ret_ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? 5219 IPH_DF : 0; 5220 if (ulp_info != NULL) { 5221 bcopy(ulp_info, &(ret_ire->ire_uinfo), 5222 sizeof (iulp_t)); 5223 } 5224 ret_ire->ire_mp = mp1; 5225 } else { 5226 /* 5227 * No IRE was found. Remove IRE mblk. 5228 */ 5229 mp->b_cont = mp1->b_cont; 5230 freeb(mp1); 5231 } 5232 5233 return (1); 5234 } 5235 5236 /* 5237 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 5238 * the final piece where we don't. Return a pointer to the first mblk in the 5239 * result, and update the pointer to the next mblk to chew on. If anything 5240 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 5241 * NULL pointer. 5242 */ 5243 mblk_t * 5244 ip_carve_mp(mblk_t **mpp, ssize_t len) 5245 { 5246 mblk_t *mp0; 5247 mblk_t *mp1; 5248 mblk_t *mp2; 5249 5250 if (!len || !mpp || !(mp0 = *mpp)) 5251 return (NULL); 5252 /* If we aren't going to consume the first mblk, we need a dup. */ 5253 if (mp0->b_wptr - mp0->b_rptr > len) { 5254 mp1 = dupb(mp0); 5255 if (mp1) { 5256 /* Partition the data between the two mblks. */ 5257 mp1->b_wptr = mp1->b_rptr + len; 5258 mp0->b_rptr = mp1->b_wptr; 5259 /* 5260 * after adjustments if mblk not consumed is now 5261 * unaligned, try to align it. If this fails free 5262 * all messages and let upper layer recover. 5263 */ 5264 if (!OK_32PTR(mp0->b_rptr)) { 5265 if (!pullupmsg(mp0, -1)) { 5266 freemsg(mp0); 5267 freemsg(mp1); 5268 *mpp = NULL; 5269 return (NULL); 5270 } 5271 } 5272 } 5273 return (mp1); 5274 } 5275 /* Eat through as many mblks as we need to get len bytes. */ 5276 len -= mp0->b_wptr - mp0->b_rptr; 5277 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 5278 if (mp2->b_wptr - mp2->b_rptr > len) { 5279 /* 5280 * We won't consume the entire last mblk. Like 5281 * above, dup and partition it. 5282 */ 5283 mp1->b_cont = dupb(mp2); 5284 mp1 = mp1->b_cont; 5285 if (!mp1) { 5286 /* 5287 * Trouble. Rather than go to a lot of 5288 * trouble to clean up, we free the messages. 5289 * This won't be any worse than losing it on 5290 * the wire. 5291 */ 5292 freemsg(mp0); 5293 freemsg(mp2); 5294 *mpp = NULL; 5295 return (NULL); 5296 } 5297 mp1->b_wptr = mp1->b_rptr + len; 5298 mp2->b_rptr = mp1->b_wptr; 5299 /* 5300 * after adjustments if mblk not consumed is now 5301 * unaligned, try to align it. If this fails free 5302 * all messages and let upper layer recover. 5303 */ 5304 if (!OK_32PTR(mp2->b_rptr)) { 5305 if (!pullupmsg(mp2, -1)) { 5306 freemsg(mp0); 5307 freemsg(mp2); 5308 *mpp = NULL; 5309 return (NULL); 5310 } 5311 } 5312 *mpp = mp2; 5313 return (mp0); 5314 } 5315 /* Decrement len by the amount we just got. */ 5316 len -= mp2->b_wptr - mp2->b_rptr; 5317 } 5318 /* 5319 * len should be reduced to zero now. If not our caller has 5320 * screwed up. 5321 */ 5322 if (len) { 5323 /* Shouldn't happen! */ 5324 freemsg(mp0); 5325 *mpp = NULL; 5326 return (NULL); 5327 } 5328 /* 5329 * We consumed up to exactly the end of an mblk. Detach the part 5330 * we are returning from the rest of the chain. 5331 */ 5332 mp1->b_cont = NULL; 5333 *mpp = mp2; 5334 return (mp0); 5335 } 5336 5337 /* The ill stream is being unplumbed. Called from ip_close */ 5338 int 5339 ip_modclose(ill_t *ill) 5340 { 5341 boolean_t success; 5342 ipsq_t *ipsq; 5343 ipif_t *ipif; 5344 queue_t *q = ill->ill_rq; 5345 ip_stack_t *ipst = ill->ill_ipst; 5346 clock_t timeout; 5347 5348 /* 5349 * Wait for the ACKs of all deferred control messages to be processed. 5350 * In particular, we wait for a potential capability reset initiated 5351 * in ip_sioctl_plink() to complete before proceeding. 5352 * 5353 * Note: we wait for at most ip_modclose_ackwait_ms (by default 3000 ms) 5354 * in case the driver never replies. 5355 */ 5356 timeout = lbolt + MSEC_TO_TICK(ip_modclose_ackwait_ms); 5357 mutex_enter(&ill->ill_lock); 5358 while (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 5359 if (cv_timedwait(&ill->ill_cv, &ill->ill_lock, timeout) < 0) { 5360 /* Timeout */ 5361 break; 5362 } 5363 } 5364 mutex_exit(&ill->ill_lock); 5365 5366 /* 5367 * Forcibly enter the ipsq after some delay. This is to take 5368 * care of the case when some ioctl does not complete because 5369 * we sent a control message to the driver and it did not 5370 * send us a reply. We want to be able to at least unplumb 5371 * and replumb rather than force the user to reboot the system. 5372 */ 5373 success = ipsq_enter(ill, B_FALSE); 5374 5375 /* 5376 * Open/close/push/pop is guaranteed to be single threaded 5377 * per stream by STREAMS. FS guarantees that all references 5378 * from top are gone before close is called. So there can't 5379 * be another close thread that has set CONDEMNED on this ill. 5380 * and cause ipsq_enter to return failure. 5381 */ 5382 ASSERT(success); 5383 ipsq = ill->ill_phyint->phyint_ipsq; 5384 5385 /* 5386 * Mark it condemned. No new reference will be made to this ill. 5387 * Lookup functions will return an error. Threads that try to 5388 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5389 * that the refcnt will drop down to zero. 5390 */ 5391 mutex_enter(&ill->ill_lock); 5392 ill->ill_state_flags |= ILL_CONDEMNED; 5393 for (ipif = ill->ill_ipif; ipif != NULL; 5394 ipif = ipif->ipif_next) { 5395 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5396 } 5397 /* 5398 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5399 * returns error if ILL_CONDEMNED is set 5400 */ 5401 cv_broadcast(&ill->ill_cv); 5402 mutex_exit(&ill->ill_lock); 5403 5404 /* 5405 * Send all the deferred DLPI messages downstream which came in 5406 * during the small window right before ipsq_enter(). We do this 5407 * without waiting for the ACKs because all the ACKs for M_PROTO 5408 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 5409 */ 5410 ill_dlpi_send_deferred(ill); 5411 5412 /* 5413 * Shut down fragmentation reassembly. 5414 * ill_frag_timer won't start a timer again. 5415 * Now cancel any existing timer 5416 */ 5417 (void) untimeout(ill->ill_frag_timer_id); 5418 (void) ill_frag_timeout(ill, 0); 5419 5420 /* 5421 * If MOVE was in progress, clear the 5422 * move_in_progress fields also. 5423 */ 5424 if (ill->ill_move_in_progress) { 5425 ILL_CLEAR_MOVE(ill); 5426 } 5427 5428 /* 5429 * Call ill_delete to bring down the ipifs, ilms and ill on 5430 * this ill. Then wait for the refcnts to drop to zero. 5431 * ill_is_quiescent checks whether the ill is really quiescent. 5432 * Then make sure that threads that are waiting to enter the 5433 * ipsq have seen the error returned by ipsq_enter and have 5434 * gone away. Then we call ill_delete_tail which does the 5435 * DL_UNBIND_REQ with the driver and then qprocsoff. 5436 */ 5437 ill_delete(ill); 5438 mutex_enter(&ill->ill_lock); 5439 while (!ill_is_quiescent(ill)) 5440 cv_wait(&ill->ill_cv, &ill->ill_lock); 5441 while (ill->ill_waiters) 5442 cv_wait(&ill->ill_cv, &ill->ill_lock); 5443 5444 mutex_exit(&ill->ill_lock); 5445 5446 /* 5447 * ill_delete_tail drops reference on ill_ipst, but we need to keep 5448 * it held until the end of the function since the cleanup 5449 * below needs to be able to use the ip_stack_t. 5450 */ 5451 netstack_hold(ipst->ips_netstack); 5452 5453 /* qprocsoff is called in ill_delete_tail */ 5454 ill_delete_tail(ill); 5455 ASSERT(ill->ill_ipst == NULL); 5456 5457 /* 5458 * Walk through all upper (conn) streams and qenable 5459 * those that have queued data. 5460 * close synchronization needs this to 5461 * be done to ensure that all upper layers blocked 5462 * due to flow control to the closing device 5463 * get unblocked. 5464 */ 5465 ip1dbg(("ip_wsrv: walking\n")); 5466 conn_walk_drain(ipst); 5467 5468 mutex_enter(&ipst->ips_ip_mi_lock); 5469 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 5470 mutex_exit(&ipst->ips_ip_mi_lock); 5471 5472 /* 5473 * credp could be null if the open didn't succeed and ip_modopen 5474 * itself calls ip_close. 5475 */ 5476 if (ill->ill_credp != NULL) 5477 crfree(ill->ill_credp); 5478 5479 mutex_enter(&ill->ill_lock); 5480 ill_nic_info_dispatch(ill); 5481 mutex_exit(&ill->ill_lock); 5482 5483 /* 5484 * Now we are done with the module close pieces that 5485 * need the netstack_t. 5486 */ 5487 netstack_rele(ipst->ips_netstack); 5488 5489 mi_close_free((IDP)ill); 5490 q->q_ptr = WR(q)->q_ptr = NULL; 5491 5492 ipsq_exit(ipsq, B_TRUE, B_TRUE); 5493 5494 return (0); 5495 } 5496 5497 /* 5498 * This is called as part of close() for IP, UDP, ICMP, and RTS 5499 * in order to quiesce the conn. 5500 */ 5501 void 5502 ip_quiesce_conn(conn_t *connp) 5503 { 5504 boolean_t drain_cleanup_reqd = B_FALSE; 5505 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5506 boolean_t ilg_cleanup_reqd = B_FALSE; 5507 ip_stack_t *ipst; 5508 5509 ASSERT(!IPCL_IS_TCP(connp)); 5510 ipst = connp->conn_netstack->netstack_ip; 5511 5512 /* 5513 * Mark the conn as closing, and this conn must not be 5514 * inserted in future into any list. Eg. conn_drain_insert(), 5515 * won't insert this conn into the conn_drain_list. 5516 * Similarly ill_pending_mp_add() will not add any mp to 5517 * the pending mp list, after this conn has started closing. 5518 * 5519 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5520 * cannot get set henceforth. 5521 */ 5522 mutex_enter(&connp->conn_lock); 5523 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5524 connp->conn_state_flags |= CONN_CLOSING; 5525 if (connp->conn_idl != NULL) 5526 drain_cleanup_reqd = B_TRUE; 5527 if (connp->conn_oper_pending_ill != NULL) 5528 conn_ioctl_cleanup_reqd = B_TRUE; 5529 if (connp->conn_ilg_inuse != 0) 5530 ilg_cleanup_reqd = B_TRUE; 5531 mutex_exit(&connp->conn_lock); 5532 5533 if (conn_ioctl_cleanup_reqd) 5534 conn_ioctl_cleanup(connp); 5535 5536 if (is_system_labeled() && connp->conn_anon_port) { 5537 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5538 connp->conn_mlp_type, connp->conn_ulp, 5539 ntohs(connp->conn_lport), B_FALSE); 5540 connp->conn_anon_port = 0; 5541 } 5542 connp->conn_mlp_type = mlptSingle; 5543 5544 /* 5545 * Remove this conn from any fanout list it is on. 5546 * and then wait for any threads currently operating 5547 * on this endpoint to finish 5548 */ 5549 ipcl_hash_remove(connp); 5550 5551 /* 5552 * Remove this conn from the drain list, and do 5553 * any other cleanup that may be required. 5554 * (Only non-tcp streams may have a non-null conn_idl. 5555 * TCP streams are never flow controlled, and 5556 * conn_idl will be null) 5557 */ 5558 if (drain_cleanup_reqd) 5559 conn_drain_tail(connp, B_TRUE); 5560 5561 if (connp == ipst->ips_ip_g_mrouter) 5562 (void) ip_mrouter_done(NULL, ipst); 5563 5564 if (ilg_cleanup_reqd) 5565 ilg_delete_all(connp); 5566 5567 conn_delete_ire(connp, NULL); 5568 5569 /* 5570 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5571 * callers from write side can't be there now because close 5572 * is in progress. The only other caller is ipcl_walk 5573 * which checks for the condemned flag. 5574 */ 5575 mutex_enter(&connp->conn_lock); 5576 connp->conn_state_flags |= CONN_CONDEMNED; 5577 while (connp->conn_ref != 1) 5578 cv_wait(&connp->conn_cv, &connp->conn_lock); 5579 connp->conn_state_flags |= CONN_QUIESCED; 5580 mutex_exit(&connp->conn_lock); 5581 } 5582 5583 /* ARGSUSED */ 5584 int 5585 ip_close(queue_t *q, int flags) 5586 { 5587 conn_t *connp; 5588 5589 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5590 5591 /* 5592 * Call the appropriate delete routine depending on whether this is 5593 * a module or device. 5594 */ 5595 if (WR(q)->q_next != NULL) { 5596 /* This is a module close */ 5597 return (ip_modclose((ill_t *)q->q_ptr)); 5598 } 5599 5600 connp = q->q_ptr; 5601 ip_quiesce_conn(connp); 5602 5603 qprocsoff(q); 5604 5605 /* 5606 * Now we are truly single threaded on this stream, and can 5607 * delete the things hanging off the connp, and finally the connp. 5608 * We removed this connp from the fanout list, it cannot be 5609 * accessed thru the fanouts, and we already waited for the 5610 * conn_ref to drop to 0. We are already in close, so 5611 * there cannot be any other thread from the top. qprocsoff 5612 * has completed, and service has completed or won't run in 5613 * future. 5614 */ 5615 ASSERT(connp->conn_ref == 1); 5616 5617 inet_minor_free(ip_minor_arena, connp->conn_dev); 5618 5619 connp->conn_ref--; 5620 ipcl_conn_destroy(connp); 5621 5622 q->q_ptr = WR(q)->q_ptr = NULL; 5623 return (0); 5624 } 5625 5626 /* Return the IP checksum for the IP header at "iph". */ 5627 uint16_t 5628 ip_csum_hdr(ipha_t *ipha) 5629 { 5630 uint16_t *uph; 5631 uint32_t sum; 5632 int opt_len; 5633 5634 opt_len = (ipha->ipha_version_and_hdr_length & 0xF) - 5635 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 5636 uph = (uint16_t *)ipha; 5637 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 5638 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 5639 if (opt_len > 0) { 5640 do { 5641 sum += uph[10]; 5642 sum += uph[11]; 5643 uph += 2; 5644 } while (--opt_len); 5645 } 5646 sum = (sum & 0xFFFF) + (sum >> 16); 5647 sum = ~(sum + (sum >> 16)) & 0xFFFF; 5648 if (sum == 0xffff) 5649 sum = 0; 5650 return ((uint16_t)sum); 5651 } 5652 5653 /* 5654 * Called when the module is about to be unloaded 5655 */ 5656 void 5657 ip_ddi_destroy(void) 5658 { 5659 tnet_fini(); 5660 5661 icmp_ddi_destroy(); 5662 rts_ddi_destroy(); 5663 udp_ddi_destroy(); 5664 sctp_ddi_g_destroy(); 5665 tcp_ddi_g_destroy(); 5666 ipsec_policy_g_destroy(); 5667 ipcl_g_destroy(); 5668 ip_net_g_destroy(); 5669 ip_ire_g_fini(); 5670 inet_minor_destroy(ip_minor_arena); 5671 5672 #ifdef DEBUG 5673 list_destroy(&ip_thread_list); 5674 rw_destroy(&ip_thread_rwlock); 5675 tsd_destroy(&ip_thread_data); 5676 #endif 5677 5678 netstack_unregister(NS_IP); 5679 } 5680 5681 /* 5682 * First step in cleanup. 5683 */ 5684 /* ARGSUSED */ 5685 static void 5686 ip_stack_shutdown(netstackid_t stackid, void *arg) 5687 { 5688 ip_stack_t *ipst = (ip_stack_t *)arg; 5689 5690 #ifdef NS_DEBUG 5691 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 5692 #endif 5693 5694 /* Get rid of loopback interfaces and their IREs */ 5695 ip_loopback_cleanup(ipst); 5696 } 5697 5698 /* 5699 * Free the IP stack instance. 5700 */ 5701 static void 5702 ip_stack_fini(netstackid_t stackid, void *arg) 5703 { 5704 ip_stack_t *ipst = (ip_stack_t *)arg; 5705 int ret; 5706 5707 #ifdef NS_DEBUG 5708 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 5709 #endif 5710 ipv4_hook_destroy(ipst); 5711 ipv6_hook_destroy(ipst); 5712 ip_net_destroy(ipst); 5713 5714 rw_destroy(&ipst->ips_srcid_lock); 5715 5716 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 5717 ipst->ips_ip_mibkp = NULL; 5718 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 5719 ipst->ips_icmp_mibkp = NULL; 5720 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 5721 ipst->ips_ip_kstat = NULL; 5722 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 5723 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 5724 ipst->ips_ip6_kstat = NULL; 5725 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 5726 5727 nd_free(&ipst->ips_ip_g_nd); 5728 kmem_free(ipst->ips_param_arr, sizeof (lcl_param_arr)); 5729 ipst->ips_param_arr = NULL; 5730 kmem_free(ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5731 ipst->ips_ndp_arr = NULL; 5732 5733 ip_mrouter_stack_destroy(ipst); 5734 5735 mutex_destroy(&ipst->ips_ip_mi_lock); 5736 rw_destroy(&ipst->ips_ipsec_capab_ills_lock); 5737 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 5738 rw_destroy(&ipst->ips_ip_g_nd_lock); 5739 5740 ret = untimeout(ipst->ips_igmp_timeout_id); 5741 if (ret == -1) { 5742 ASSERT(ipst->ips_igmp_timeout_id == 0); 5743 } else { 5744 ASSERT(ipst->ips_igmp_timeout_id != 0); 5745 ipst->ips_igmp_timeout_id = 0; 5746 } 5747 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 5748 if (ret == -1) { 5749 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 5750 } else { 5751 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 5752 ipst->ips_igmp_slowtimeout_id = 0; 5753 } 5754 ret = untimeout(ipst->ips_mld_timeout_id); 5755 if (ret == -1) { 5756 ASSERT(ipst->ips_mld_timeout_id == 0); 5757 } else { 5758 ASSERT(ipst->ips_mld_timeout_id != 0); 5759 ipst->ips_mld_timeout_id = 0; 5760 } 5761 ret = untimeout(ipst->ips_mld_slowtimeout_id); 5762 if (ret == -1) { 5763 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 5764 } else { 5765 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 5766 ipst->ips_mld_slowtimeout_id = 0; 5767 } 5768 ret = untimeout(ipst->ips_ip_ire_expire_id); 5769 if (ret == -1) { 5770 ASSERT(ipst->ips_ip_ire_expire_id == 0); 5771 } else { 5772 ASSERT(ipst->ips_ip_ire_expire_id != 0); 5773 ipst->ips_ip_ire_expire_id = 0; 5774 } 5775 5776 mutex_destroy(&ipst->ips_igmp_timer_lock); 5777 mutex_destroy(&ipst->ips_mld_timer_lock); 5778 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 5779 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 5780 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 5781 rw_destroy(&ipst->ips_ill_g_lock); 5782 5783 ip_ire_fini(ipst); 5784 ip6_asp_free(ipst); 5785 conn_drain_fini(ipst); 5786 ipcl_destroy(ipst); 5787 5788 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 5789 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 5790 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 5791 ipst->ips_ndp4 = NULL; 5792 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 5793 ipst->ips_ndp6 = NULL; 5794 5795 if (ipst->ips_loopback_ksp != NULL) { 5796 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 5797 ipst->ips_loopback_ksp = NULL; 5798 } 5799 5800 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 5801 ipst->ips_phyint_g_list = NULL; 5802 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 5803 ipst->ips_ill_g_heads = NULL; 5804 5805 kmem_free(ipst, sizeof (*ipst)); 5806 } 5807 5808 /* 5809 * This function is called from the TSD destructor, and is used to debug 5810 * reference count issues in IP. See block comment in <inet/ip_if.h> for 5811 * details. 5812 */ 5813 static void 5814 ip_thread_exit(void *phash) 5815 { 5816 th_hash_t *thh = phash; 5817 5818 rw_enter(&ip_thread_rwlock, RW_WRITER); 5819 list_remove(&ip_thread_list, thh); 5820 rw_exit(&ip_thread_rwlock); 5821 mod_hash_destroy_hash(thh->thh_hash); 5822 kmem_free(thh, sizeof (*thh)); 5823 } 5824 5825 /* 5826 * Called when the IP kernel module is loaded into the kernel 5827 */ 5828 void 5829 ip_ddi_init(void) 5830 { 5831 ip_input_proc = ip_squeue_switch(ip_squeue_enter); 5832 5833 /* 5834 * For IP and TCP the minor numbers should start from 2 since we have 4 5835 * initial devices: ip, ip6, tcp, tcp6. 5836 */ 5837 if ((ip_minor_arena = inet_minor_create("ip_minor_arena", 5838 INET_MIN_DEV + 2, KM_SLEEP)) == NULL) { 5839 cmn_err(CE_PANIC, 5840 "ip_ddi_init: ip_minor_arena creation failed\n"); 5841 } 5842 5843 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5844 5845 ipcl_g_init(); 5846 ip_ire_g_init(); 5847 ip_net_g_init(); 5848 5849 #ifdef DEBUG 5850 tsd_create(&ip_thread_data, ip_thread_exit); 5851 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL); 5852 list_create(&ip_thread_list, sizeof (th_hash_t), 5853 offsetof(th_hash_t, thh_link)); 5854 #endif 5855 5856 /* 5857 * We want to be informed each time a stack is created or 5858 * destroyed in the kernel, so we can maintain the 5859 * set of udp_stack_t's. 5860 */ 5861 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 5862 ip_stack_fini); 5863 5864 ipsec_policy_g_init(); 5865 tcp_ddi_g_init(); 5866 sctp_ddi_g_init(); 5867 5868 tnet_init(); 5869 5870 udp_ddi_init(); 5871 rts_ddi_init(); 5872 icmp_ddi_init(); 5873 } 5874 5875 /* 5876 * Initialize the IP stack instance. 5877 */ 5878 static void * 5879 ip_stack_init(netstackid_t stackid, netstack_t *ns) 5880 { 5881 ip_stack_t *ipst; 5882 ipparam_t *pa; 5883 ipndp_t *na; 5884 5885 #ifdef NS_DEBUG 5886 printf("ip_stack_init(stack %d)\n", stackid); 5887 #endif 5888 5889 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 5890 ipst->ips_netstack = ns; 5891 5892 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 5893 KM_SLEEP); 5894 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 5895 KM_SLEEP); 5896 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5897 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5898 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5899 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5900 5901 rw_init(&ipst->ips_ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 5902 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5903 ipst->ips_igmp_deferred_next = INFINITY; 5904 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5905 ipst->ips_mld_deferred_next = INFINITY; 5906 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5907 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5908 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 5909 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 5910 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 5911 rw_init(&ipst->ips_ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 5912 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 5913 5914 ipcl_init(ipst); 5915 ip_ire_init(ipst); 5916 ip6_asp_init(ipst); 5917 ipif_init(ipst); 5918 conn_drain_init(ipst); 5919 ip_mrouter_stack_init(ipst); 5920 5921 ipst->ips_ip_g_frag_timeout = IP_FRAG_TIMEOUT; 5922 ipst->ips_ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 5923 5924 ipst->ips_ip_multirt_log_interval = 1000; 5925 5926 ipst->ips_ip_g_forward = IP_FORWARD_DEFAULT; 5927 ipst->ips_ipv6_forward = IP_FORWARD_DEFAULT; 5928 ipst->ips_ill_index = 1; 5929 5930 ipst->ips_saved_ip_g_forward = -1; 5931 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 5932 5933 pa = (ipparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP); 5934 ipst->ips_param_arr = pa; 5935 bcopy(lcl_param_arr, ipst->ips_param_arr, sizeof (lcl_param_arr)); 5936 5937 na = (ipndp_t *)kmem_alloc(sizeof (lcl_ndp_arr), KM_SLEEP); 5938 ipst->ips_ndp_arr = na; 5939 bcopy(lcl_ndp_arr, ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5940 ipst->ips_ndp_arr[IPNDP_IP_FORWARDING_OFFSET].ip_ndp_data = 5941 (caddr_t)&ipst->ips_ip_g_forward; 5942 ipst->ips_ndp_arr[IPNDP_IP6_FORWARDING_OFFSET].ip_ndp_data = 5943 (caddr_t)&ipst->ips_ipv6_forward; 5944 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_name, 5945 "ip_cgtp_filter") == 0); 5946 ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_data = 5947 (caddr_t)&ipst->ips_ip_cgtp_filter; 5948 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_name, 5949 "ipmp_hook_emulation") == 0); 5950 ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_data = 5951 (caddr_t)&ipst->ips_ipmp_hook_emulation; 5952 5953 (void) ip_param_register(&ipst->ips_ip_g_nd, 5954 ipst->ips_param_arr, A_CNT(lcl_param_arr), 5955 ipst->ips_ndp_arr, A_CNT(lcl_ndp_arr)); 5956 5957 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 5958 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 5959 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 5960 ipst->ips_ip6_kstat = 5961 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 5962 5963 ipst->ips_ipmp_enable_failback = B_TRUE; 5964 5965 ipst->ips_ip_src_id = 1; 5966 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 5967 5968 ip_net_init(ipst, ns); 5969 ipv4_hook_init(ipst); 5970 ipv6_hook_init(ipst); 5971 5972 return (ipst); 5973 } 5974 5975 /* 5976 * Allocate and initialize a DLPI template of the specified length. (May be 5977 * called as writer.) 5978 */ 5979 mblk_t * 5980 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 5981 { 5982 mblk_t *mp; 5983 5984 mp = allocb(len, BPRI_MED); 5985 if (!mp) 5986 return (NULL); 5987 5988 /* 5989 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 5990 * of which we don't seem to use) are sent with M_PCPROTO, and 5991 * that other DLPI are M_PROTO. 5992 */ 5993 if (prim == DL_INFO_REQ) { 5994 mp->b_datap->db_type = M_PCPROTO; 5995 } else { 5996 mp->b_datap->db_type = M_PROTO; 5997 } 5998 5999 mp->b_wptr = mp->b_rptr + len; 6000 bzero(mp->b_rptr, len); 6001 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 6002 return (mp); 6003 } 6004 6005 const char * 6006 dlpi_prim_str(int prim) 6007 { 6008 switch (prim) { 6009 case DL_INFO_REQ: return ("DL_INFO_REQ"); 6010 case DL_INFO_ACK: return ("DL_INFO_ACK"); 6011 case DL_ATTACH_REQ: return ("DL_ATTACH_REQ"); 6012 case DL_DETACH_REQ: return ("DL_DETACH_REQ"); 6013 case DL_BIND_REQ: return ("DL_BIND_REQ"); 6014 case DL_BIND_ACK: return ("DL_BIND_ACK"); 6015 case DL_UNBIND_REQ: return ("DL_UNBIND_REQ"); 6016 case DL_OK_ACK: return ("DL_OK_ACK"); 6017 case DL_ERROR_ACK: return ("DL_ERROR_ACK"); 6018 case DL_ENABMULTI_REQ: return ("DL_ENABMULTI_REQ"); 6019 case DL_DISABMULTI_REQ: return ("DL_DISABMULTI_REQ"); 6020 case DL_PROMISCON_REQ: return ("DL_PROMISCON_REQ"); 6021 case DL_PROMISCOFF_REQ: return ("DL_PROMISCOFF_REQ"); 6022 case DL_UNITDATA_REQ: return ("DL_UNITDATA_REQ"); 6023 case DL_UNITDATA_IND: return ("DL_UNITDATA_IND"); 6024 case DL_UDERROR_IND: return ("DL_UDERROR_IND"); 6025 case DL_PHYS_ADDR_REQ: return ("DL_PHYS_ADDR_REQ"); 6026 case DL_PHYS_ADDR_ACK: return ("DL_PHYS_ADDR_ACK"); 6027 case DL_SET_PHYS_ADDR_REQ: return ("DL_SET_PHYS_ADDR_REQ"); 6028 case DL_NOTIFY_REQ: return ("DL_NOTIFY_REQ"); 6029 case DL_NOTIFY_ACK: return ("DL_NOTIFY_ACK"); 6030 case DL_NOTIFY_IND: return ("DL_NOTIFY_IND"); 6031 case DL_CAPABILITY_REQ: return ("DL_CAPABILITY_REQ"); 6032 case DL_CAPABILITY_ACK: return ("DL_CAPABILITY_ACK"); 6033 case DL_CONTROL_REQ: return ("DL_CONTROL_REQ"); 6034 case DL_CONTROL_ACK: return ("DL_CONTROL_ACK"); 6035 default: return ("<unknown primitive>"); 6036 } 6037 } 6038 6039 const char * 6040 dlpi_err_str(int err) 6041 { 6042 switch (err) { 6043 case DL_ACCESS: return ("DL_ACCESS"); 6044 case DL_BADADDR: return ("DL_BADADDR"); 6045 case DL_BADCORR: return ("DL_BADCORR"); 6046 case DL_BADDATA: return ("DL_BADDATA"); 6047 case DL_BADPPA: return ("DL_BADPPA"); 6048 case DL_BADPRIM: return ("DL_BADPRIM"); 6049 case DL_BADQOSPARAM: return ("DL_BADQOSPARAM"); 6050 case DL_BADQOSTYPE: return ("DL_BADQOSTYPE"); 6051 case DL_BADSAP: return ("DL_BADSAP"); 6052 case DL_BADTOKEN: return ("DL_BADTOKEN"); 6053 case DL_BOUND: return ("DL_BOUND"); 6054 case DL_INITFAILED: return ("DL_INITFAILED"); 6055 case DL_NOADDR: return ("DL_NOADDR"); 6056 case DL_NOTINIT: return ("DL_NOTINIT"); 6057 case DL_OUTSTATE: return ("DL_OUTSTATE"); 6058 case DL_SYSERR: return ("DL_SYSERR"); 6059 case DL_UNSUPPORTED: return ("DL_UNSUPPORTED"); 6060 case DL_UNDELIVERABLE: return ("DL_UNDELIVERABLE"); 6061 case DL_NOTSUPPORTED : return ("DL_NOTSUPPORTED "); 6062 case DL_TOOMANY: return ("DL_TOOMANY"); 6063 case DL_NOTENAB: return ("DL_NOTENAB"); 6064 case DL_BUSY: return ("DL_BUSY"); 6065 case DL_NOAUTO: return ("DL_NOAUTO"); 6066 case DL_NOXIDAUTO: return ("DL_NOXIDAUTO"); 6067 case DL_NOTESTAUTO: return ("DL_NOTESTAUTO"); 6068 case DL_XIDAUTO: return ("DL_XIDAUTO"); 6069 case DL_TESTAUTO: return ("DL_TESTAUTO"); 6070 case DL_PENDING: return ("DL_PENDING"); 6071 default: return ("<unknown error>"); 6072 } 6073 } 6074 6075 /* 6076 * Debug formatting routine. Returns a character string representation of the 6077 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 6078 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 6079 * 6080 * Once the ndd table-printing interfaces are removed, this can be changed to 6081 * standard dotted-decimal form. 6082 */ 6083 char * 6084 ip_dot_addr(ipaddr_t addr, char *buf) 6085 { 6086 uint8_t *ap = (uint8_t *)&addr; 6087 6088 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 6089 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 6090 return (buf); 6091 } 6092 6093 /* 6094 * Write the given MAC address as a printable string in the usual colon- 6095 * separated format. 6096 */ 6097 const char * 6098 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 6099 { 6100 char *bp; 6101 6102 if (alen == 0 || buflen < 4) 6103 return ("?"); 6104 bp = buf; 6105 for (;;) { 6106 /* 6107 * If there are more MAC address bytes available, but we won't 6108 * have any room to print them, then add "..." to the string 6109 * instead. See below for the 'magic number' explanation. 6110 */ 6111 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 6112 (void) strcpy(bp, "..."); 6113 break; 6114 } 6115 (void) sprintf(bp, "%02x", *addr++); 6116 bp += 2; 6117 if (--alen == 0) 6118 break; 6119 *bp++ = ':'; 6120 buflen -= 3; 6121 /* 6122 * At this point, based on the first 'if' statement above, 6123 * either alen == 1 and buflen >= 3, or alen > 1 and 6124 * buflen >= 4. The first case leaves room for the final "xx" 6125 * number and trailing NUL byte. The second leaves room for at 6126 * least "...". Thus the apparently 'magic' numbers chosen for 6127 * that statement. 6128 */ 6129 } 6130 return (buf); 6131 } 6132 6133 /* 6134 * Send an ICMP error after patching up the packet appropriately. Returns 6135 * non-zero if the appropriate MIB should be bumped; zero otherwise. 6136 */ 6137 static boolean_t 6138 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 6139 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, 6140 zoneid_t zoneid, ip_stack_t *ipst) 6141 { 6142 ipha_t *ipha; 6143 mblk_t *first_mp; 6144 boolean_t secure; 6145 unsigned char db_type; 6146 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6147 6148 first_mp = mp; 6149 if (mctl_present) { 6150 mp = mp->b_cont; 6151 secure = ipsec_in_is_secure(first_mp); 6152 ASSERT(mp != NULL); 6153 } else { 6154 /* 6155 * If this is an ICMP error being reported - which goes 6156 * up as M_CTLs, we need to convert them to M_DATA till 6157 * we finish checking with global policy because 6158 * ipsec_check_global_policy() assumes M_DATA as clear 6159 * and M_CTL as secure. 6160 */ 6161 db_type = DB_TYPE(mp); 6162 DB_TYPE(mp) = M_DATA; 6163 secure = B_FALSE; 6164 } 6165 /* 6166 * We are generating an icmp error for some inbound packet. 6167 * Called from all ip_fanout_(udp, tcp, proto) functions. 6168 * Before we generate an error, check with global policy 6169 * to see whether this is allowed to enter the system. As 6170 * there is no "conn", we are checking with global policy. 6171 */ 6172 ipha = (ipha_t *)mp->b_rptr; 6173 if (secure || ipss->ipsec_inbound_v4_policy_present) { 6174 first_mp = ipsec_check_global_policy(first_mp, NULL, 6175 ipha, NULL, mctl_present, ipst->ips_netstack); 6176 if (first_mp == NULL) 6177 return (B_FALSE); 6178 } 6179 6180 if (!mctl_present) 6181 DB_TYPE(mp) = db_type; 6182 6183 if (flags & IP_FF_SEND_ICMP) { 6184 if (flags & IP_FF_HDR_COMPLETE) { 6185 if (ip_hdr_complete(ipha, zoneid, ipst)) { 6186 freemsg(first_mp); 6187 return (B_TRUE); 6188 } 6189 } 6190 if (flags & IP_FF_CKSUM) { 6191 /* 6192 * Have to correct checksum since 6193 * the packet might have been 6194 * fragmented and the reassembly code in ip_rput 6195 * does not restore the IP checksum. 6196 */ 6197 ipha->ipha_hdr_checksum = 0; 6198 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6199 } 6200 switch (icmp_type) { 6201 case ICMP_DEST_UNREACHABLE: 6202 icmp_unreachable(WR(q), first_mp, icmp_code, zoneid, 6203 ipst); 6204 break; 6205 default: 6206 freemsg(first_mp); 6207 break; 6208 } 6209 } else { 6210 freemsg(first_mp); 6211 return (B_FALSE); 6212 } 6213 6214 return (B_TRUE); 6215 } 6216 6217 /* 6218 * Used to send an ICMP error message when a packet is received for 6219 * a protocol that is not supported. The mblk passed as argument 6220 * is consumed by this function. 6221 */ 6222 void 6223 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid, 6224 ip_stack_t *ipst) 6225 { 6226 mblk_t *mp; 6227 ipha_t *ipha; 6228 ill_t *ill; 6229 ipsec_in_t *ii; 6230 6231 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6232 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6233 6234 mp = ipsec_mp->b_cont; 6235 ipsec_mp->b_cont = NULL; 6236 ipha = (ipha_t *)mp->b_rptr; 6237 /* Get ill from index in ipsec_in_t. */ 6238 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 6239 (IPH_HDR_VERSION(ipha) == IPV6_VERSION), NULL, NULL, NULL, NULL, 6240 ipst); 6241 if (ill != NULL) { 6242 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 6243 if (ip_fanout_send_icmp(q, mp, flags, 6244 ICMP_DEST_UNREACHABLE, 6245 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid, ipst)) { 6246 BUMP_MIB(ill->ill_ip_mib, 6247 ipIfStatsInUnknownProtos); 6248 } 6249 } else { 6250 if (ip_fanout_send_icmp_v6(q, mp, flags, 6251 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 6252 0, B_FALSE, zoneid, ipst)) { 6253 BUMP_MIB(ill->ill_ip_mib, 6254 ipIfStatsInUnknownProtos); 6255 } 6256 } 6257 ill_refrele(ill); 6258 } else { /* re-link for the freemsg() below. */ 6259 ipsec_mp->b_cont = mp; 6260 } 6261 6262 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 6263 freemsg(ipsec_mp); 6264 } 6265 6266 /* 6267 * See if the inbound datagram has had IPsec processing applied to it. 6268 */ 6269 boolean_t 6270 ipsec_in_is_secure(mblk_t *ipsec_mp) 6271 { 6272 ipsec_in_t *ii; 6273 6274 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6275 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6276 6277 if (ii->ipsec_in_loopback) { 6278 return (ii->ipsec_in_secure); 6279 } else { 6280 return (ii->ipsec_in_ah_sa != NULL || 6281 ii->ipsec_in_esp_sa != NULL || 6282 ii->ipsec_in_decaps); 6283 } 6284 } 6285 6286 /* 6287 * Handle protocols with which IP is less intimate. There 6288 * can be more than one stream bound to a particular 6289 * protocol. When this is the case, normally each one gets a copy 6290 * of any incoming packets. 6291 * 6292 * IPsec NOTE : 6293 * 6294 * Don't allow a secure packet going up a non-secure connection. 6295 * We don't allow this because 6296 * 6297 * 1) Reply might go out in clear which will be dropped at 6298 * the sending side. 6299 * 2) If the reply goes out in clear it will give the 6300 * adversary enough information for getting the key in 6301 * most of the cases. 6302 * 6303 * Moreover getting a secure packet when we expect clear 6304 * implies that SA's were added without checking for 6305 * policy on both ends. This should not happen once ISAKMP 6306 * is used to negotiate SAs as SAs will be added only after 6307 * verifying the policy. 6308 * 6309 * NOTE : If the packet was tunneled and not multicast we only send 6310 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 6311 * back to delivering packets to AF_INET6 raw sockets. 6312 * 6313 * IPQoS Notes: 6314 * Once we have determined the client, invoke IPPF processing. 6315 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6316 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6317 * ip_policy will be false. 6318 * 6319 * Zones notes: 6320 * Currently only applications in the global zone can create raw sockets for 6321 * protocols other than ICMP. So unlike the broadcast / multicast case of 6322 * ip_fanout_udp(), we only send a copy of the packet to streams in the 6323 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 6324 */ 6325 static void 6326 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 6327 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 6328 zoneid_t zoneid) 6329 { 6330 queue_t *rq; 6331 mblk_t *mp1, *first_mp1; 6332 uint_t protocol = ipha->ipha_protocol; 6333 ipaddr_t dst; 6334 boolean_t one_only; 6335 mblk_t *first_mp = mp; 6336 boolean_t secure; 6337 uint32_t ill_index; 6338 conn_t *connp, *first_connp, *next_connp; 6339 connf_t *connfp; 6340 boolean_t shared_addr; 6341 mib2_ipIfStatsEntry_t *mibptr; 6342 ip_stack_t *ipst = recv_ill->ill_ipst; 6343 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6344 6345 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 6346 if (mctl_present) { 6347 mp = first_mp->b_cont; 6348 secure = ipsec_in_is_secure(first_mp); 6349 ASSERT(mp != NULL); 6350 } else { 6351 secure = B_FALSE; 6352 } 6353 dst = ipha->ipha_dst; 6354 /* 6355 * If the packet was tunneled and not multicast we only send to it 6356 * the first match. 6357 */ 6358 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 6359 !CLASSD(dst)); 6360 6361 shared_addr = (zoneid == ALL_ZONES); 6362 if (shared_addr) { 6363 /* 6364 * We don't allow multilevel ports for raw IP, so no need to 6365 * check for that here. 6366 */ 6367 zoneid = tsol_packet_to_zoneid(mp); 6368 } 6369 6370 connfp = &ipst->ips_ipcl_proto_fanout[protocol]; 6371 mutex_enter(&connfp->connf_lock); 6372 connp = connfp->connf_head; 6373 for (connp = connfp->connf_head; connp != NULL; 6374 connp = connp->conn_next) { 6375 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 6376 zoneid) && 6377 (!is_system_labeled() || 6378 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6379 connp))) { 6380 break; 6381 } 6382 } 6383 6384 if (connp == NULL || connp->conn_upq == NULL) { 6385 /* 6386 * No one bound to these addresses. Is 6387 * there a client that wants all 6388 * unclaimed datagrams? 6389 */ 6390 mutex_exit(&connfp->connf_lock); 6391 /* 6392 * Check for IPPROTO_ENCAP... 6393 */ 6394 if (protocol == IPPROTO_ENCAP && ipst->ips_ip_g_mrouter) { 6395 /* 6396 * If an IPsec mblk is here on a multicast 6397 * tunnel (using ip_mroute stuff), check policy here, 6398 * THEN ship off to ip_mroute_decap(). 6399 * 6400 * BTW, If I match a configured IP-in-IP 6401 * tunnel, this path will not be reached, and 6402 * ip_mroute_decap will never be called. 6403 */ 6404 first_mp = ipsec_check_global_policy(first_mp, connp, 6405 ipha, NULL, mctl_present, ipst->ips_netstack); 6406 if (first_mp != NULL) { 6407 if (mctl_present) 6408 freeb(first_mp); 6409 ip_mroute_decap(q, mp, ill); 6410 } /* Else we already freed everything! */ 6411 } else { 6412 /* 6413 * Otherwise send an ICMP protocol unreachable. 6414 */ 6415 if (ip_fanout_send_icmp(q, first_mp, flags, 6416 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 6417 mctl_present, zoneid, ipst)) { 6418 BUMP_MIB(mibptr, ipIfStatsInUnknownProtos); 6419 } 6420 } 6421 return; 6422 } 6423 CONN_INC_REF(connp); 6424 first_connp = connp; 6425 6426 /* 6427 * Only send message to one tunnel driver by immediately 6428 * terminating the loop. 6429 */ 6430 connp = one_only ? NULL : connp->conn_next; 6431 6432 for (;;) { 6433 while (connp != NULL) { 6434 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 6435 flags, zoneid) && 6436 (!is_system_labeled() || 6437 tsol_receive_local(mp, &dst, IPV4_VERSION, 6438 shared_addr, connp))) 6439 break; 6440 connp = connp->conn_next; 6441 } 6442 6443 /* 6444 * Copy the packet. 6445 */ 6446 if (connp == NULL || connp->conn_upq == NULL || 6447 (((first_mp1 = dupmsg(first_mp)) == NULL) && 6448 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 6449 /* 6450 * No more interested clients or memory 6451 * allocation failed 6452 */ 6453 connp = first_connp; 6454 break; 6455 } 6456 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 6457 CONN_INC_REF(connp); 6458 mutex_exit(&connfp->connf_lock); 6459 rq = connp->conn_rq; 6460 if (!canputnext(rq)) { 6461 if (flags & IP_FF_RAWIP) { 6462 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6463 } else { 6464 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6465 } 6466 6467 freemsg(first_mp1); 6468 } else { 6469 /* 6470 * Don't enforce here if we're an actual tunnel - 6471 * let "tun" do it instead. 6472 */ 6473 if (!IPCL_IS_IPTUN(connp) && 6474 (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 6475 secure)) { 6476 first_mp1 = ipsec_check_inbound_policy 6477 (first_mp1, connp, ipha, NULL, 6478 mctl_present); 6479 } 6480 if (first_mp1 != NULL) { 6481 int in_flags = 0; 6482 /* 6483 * ip_fanout_proto also gets called from 6484 * icmp_inbound_error_fanout, in which case 6485 * the msg type is M_CTL. Don't add info 6486 * in this case for the time being. In future 6487 * when there is a need for knowing the 6488 * inbound iface index for ICMP error msgs, 6489 * then this can be changed. 6490 */ 6491 if (connp->conn_recvif) 6492 in_flags = IPF_RECVIF; 6493 /* 6494 * The ULP may support IP_RECVPKTINFO for both 6495 * IP v4 and v6 so pass the appropriate argument 6496 * based on conn IP version. 6497 */ 6498 if (connp->conn_ip_recvpktinfo) { 6499 if (connp->conn_af_isv6) { 6500 /* 6501 * V6 only needs index 6502 */ 6503 in_flags |= IPF_RECVIF; 6504 } else { 6505 /* 6506 * V4 needs index + 6507 * matching address. 6508 */ 6509 in_flags |= IPF_RECVADDR; 6510 } 6511 } 6512 if ((in_flags != 0) && 6513 (mp->b_datap->db_type != M_CTL)) { 6514 /* 6515 * the actual data will be 6516 * contained in b_cont upon 6517 * successful return of the 6518 * following call else 6519 * original mblk is returned 6520 */ 6521 ASSERT(recv_ill != NULL); 6522 mp1 = ip_add_info(mp1, recv_ill, 6523 in_flags, IPCL_ZONEID(connp), ipst); 6524 } 6525 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6526 if (mctl_present) 6527 freeb(first_mp1); 6528 (connp->conn_recv)(connp, mp1, NULL); 6529 } 6530 } 6531 mutex_enter(&connfp->connf_lock); 6532 /* Follow the next pointer before releasing the conn. */ 6533 next_connp = connp->conn_next; 6534 CONN_DEC_REF(connp); 6535 connp = next_connp; 6536 } 6537 6538 /* Last one. Send it upstream. */ 6539 mutex_exit(&connfp->connf_lock); 6540 6541 /* 6542 * If this packet is coming from icmp_inbound_error_fanout ip_policy 6543 * will be set to false. 6544 */ 6545 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6546 ill_index = ill->ill_phyint->phyint_ifindex; 6547 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6548 if (mp == NULL) { 6549 CONN_DEC_REF(connp); 6550 if (mctl_present) { 6551 freeb(first_mp); 6552 } 6553 return; 6554 } 6555 } 6556 6557 rq = connp->conn_rq; 6558 if (!canputnext(rq)) { 6559 if (flags & IP_FF_RAWIP) { 6560 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6561 } else { 6562 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6563 } 6564 6565 freemsg(first_mp); 6566 } else { 6567 if (IPCL_IS_IPTUN(connp)) { 6568 /* 6569 * Tunneled packet. We enforce policy in the tunnel 6570 * module itself. 6571 * 6572 * Send the WHOLE packet up (incl. IPSEC_IN) without 6573 * a policy check. 6574 * FIXME to use conn_recv for tun later. 6575 */ 6576 putnext(rq, first_mp); 6577 CONN_DEC_REF(connp); 6578 return; 6579 } 6580 6581 if ((CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure)) { 6582 first_mp = ipsec_check_inbound_policy(first_mp, connp, 6583 ipha, NULL, mctl_present); 6584 } 6585 6586 if (first_mp != NULL) { 6587 int in_flags = 0; 6588 6589 /* 6590 * ip_fanout_proto also gets called 6591 * from icmp_inbound_error_fanout, in 6592 * which case the msg type is M_CTL. 6593 * Don't add info in this case for time 6594 * being. In future when there is a 6595 * need for knowing the inbound iface 6596 * index for ICMP error msgs, then this 6597 * can be changed 6598 */ 6599 if (connp->conn_recvif) 6600 in_flags = IPF_RECVIF; 6601 if (connp->conn_ip_recvpktinfo) { 6602 if (connp->conn_af_isv6) { 6603 /* 6604 * V6 only needs index 6605 */ 6606 in_flags |= IPF_RECVIF; 6607 } else { 6608 /* 6609 * V4 needs index + 6610 * matching address. 6611 */ 6612 in_flags |= IPF_RECVADDR; 6613 } 6614 } 6615 if ((in_flags != 0) && 6616 (mp->b_datap->db_type != M_CTL)) { 6617 6618 /* 6619 * the actual data will be contained in 6620 * b_cont upon successful return 6621 * of the following call else original 6622 * mblk is returned 6623 */ 6624 ASSERT(recv_ill != NULL); 6625 mp = ip_add_info(mp, recv_ill, 6626 in_flags, IPCL_ZONEID(connp), ipst); 6627 } 6628 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6629 (connp->conn_recv)(connp, mp, NULL); 6630 if (mctl_present) 6631 freeb(first_mp); 6632 } 6633 } 6634 CONN_DEC_REF(connp); 6635 } 6636 6637 /* 6638 * Fanout for TCP packets 6639 * The caller puts <fport, lport> in the ports parameter. 6640 * 6641 * IPQoS Notes 6642 * Before sending it to the client, invoke IPPF processing. 6643 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6644 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6645 * ip_policy is false. 6646 */ 6647 static void 6648 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6649 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6650 { 6651 mblk_t *first_mp; 6652 boolean_t secure; 6653 uint32_t ill_index; 6654 int ip_hdr_len; 6655 tcph_t *tcph; 6656 boolean_t syn_present = B_FALSE; 6657 conn_t *connp; 6658 ip_stack_t *ipst = recv_ill->ill_ipst; 6659 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6660 6661 ASSERT(recv_ill != NULL); 6662 6663 first_mp = mp; 6664 if (mctl_present) { 6665 ASSERT(first_mp->b_datap->db_type == M_CTL); 6666 mp = first_mp->b_cont; 6667 secure = ipsec_in_is_secure(first_mp); 6668 ASSERT(mp != NULL); 6669 } else { 6670 secure = B_FALSE; 6671 } 6672 6673 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6674 6675 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 6676 zoneid, ipst)) == NULL) { 6677 /* 6678 * No connected connection or listener. Send a 6679 * TH_RST via tcp_xmit_listeners_reset. 6680 */ 6681 6682 /* Initiate IPPf processing, if needed. */ 6683 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 6684 uint32_t ill_index; 6685 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6686 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6687 if (first_mp == NULL) 6688 return; 6689 } 6690 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6691 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6692 zoneid)); 6693 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6694 ipst->ips_netstack->netstack_tcp, NULL); 6695 return; 6696 } 6697 6698 /* 6699 * Allocate the SYN for the TCP connection here itself 6700 */ 6701 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6702 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6703 if (IPCL_IS_TCP(connp)) { 6704 squeue_t *sqp; 6705 6706 /* 6707 * For fused tcp loopback, assign the eager's 6708 * squeue to be that of the active connect's. 6709 * Note that we don't check for IP_FF_LOOPBACK 6710 * here since this routine gets called only 6711 * for loopback (unlike the IPv6 counterpart). 6712 */ 6713 ASSERT(Q_TO_CONN(q) != NULL); 6714 if (do_tcp_fusion && 6715 !CONN_INBOUND_POLICY_PRESENT(connp, ipss) && 6716 !secure && 6717 !IPP_ENABLED(IPP_LOCAL_IN, ipst) && !ip_policy && 6718 IPCL_IS_TCP(Q_TO_CONN(q))) { 6719 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6720 sqp = Q_TO_CONN(q)->conn_sqp; 6721 } else { 6722 sqp = IP_SQUEUE_GET(lbolt); 6723 } 6724 6725 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6726 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6727 syn_present = B_TRUE; 6728 } 6729 } 6730 6731 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6732 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6733 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6734 if ((flags & TH_RST) || (flags & TH_URG)) { 6735 CONN_DEC_REF(connp); 6736 freemsg(first_mp); 6737 return; 6738 } 6739 if (flags & TH_ACK) { 6740 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6741 ipst->ips_netstack->netstack_tcp, connp); 6742 CONN_DEC_REF(connp); 6743 return; 6744 } 6745 6746 CONN_DEC_REF(connp); 6747 freemsg(first_mp); 6748 return; 6749 } 6750 6751 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6752 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6753 NULL, mctl_present); 6754 if (first_mp == NULL) { 6755 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6756 CONN_DEC_REF(connp); 6757 return; 6758 } 6759 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6760 ASSERT(syn_present); 6761 if (mctl_present) { 6762 ASSERT(first_mp != mp); 6763 first_mp->b_datap->db_struioflag |= 6764 STRUIO_POLICY; 6765 } else { 6766 ASSERT(first_mp == mp); 6767 mp->b_datap->db_struioflag &= 6768 ~STRUIO_EAGER; 6769 mp->b_datap->db_struioflag |= 6770 STRUIO_POLICY; 6771 } 6772 } else { 6773 /* 6774 * Discard first_mp early since we're dealing with a 6775 * fully-connected conn_t and tcp doesn't do policy in 6776 * this case. 6777 */ 6778 if (mctl_present) { 6779 freeb(first_mp); 6780 mctl_present = B_FALSE; 6781 } 6782 first_mp = mp; 6783 } 6784 } 6785 6786 /* 6787 * Initiate policy processing here if needed. If we get here from 6788 * icmp_inbound_error_fanout, ip_policy is false. 6789 */ 6790 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6791 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6792 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6793 if (mp == NULL) { 6794 CONN_DEC_REF(connp); 6795 if (mctl_present) 6796 freeb(first_mp); 6797 return; 6798 } else if (mctl_present) { 6799 ASSERT(first_mp != mp); 6800 first_mp->b_cont = mp; 6801 } else { 6802 first_mp = mp; 6803 } 6804 } 6805 6806 6807 6808 /* Handle socket options. */ 6809 if (!syn_present && 6810 connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 6811 /* Add header */ 6812 ASSERT(recv_ill != NULL); 6813 /* 6814 * Since tcp does not support IP_RECVPKTINFO for V4, only pass 6815 * IPF_RECVIF. 6816 */ 6817 mp = ip_add_info(mp, recv_ill, IPF_RECVIF, IPCL_ZONEID(connp), 6818 ipst); 6819 if (mp == NULL) { 6820 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6821 CONN_DEC_REF(connp); 6822 if (mctl_present) 6823 freeb(first_mp); 6824 return; 6825 } else if (mctl_present) { 6826 /* 6827 * ip_add_info might return a new mp. 6828 */ 6829 ASSERT(first_mp != mp); 6830 first_mp->b_cont = mp; 6831 } else { 6832 first_mp = mp; 6833 } 6834 } 6835 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6836 if (IPCL_IS_TCP(connp)) { 6837 /* do not drain, certain use cases can blow the stack */ 6838 squeue_enter_nodrain(connp->conn_sqp, first_mp, 6839 connp->conn_recv, connp, SQTAG_IP_FANOUT_TCP); 6840 } else { 6841 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 6842 (connp->conn_recv)(connp, first_mp, NULL); 6843 CONN_DEC_REF(connp); 6844 } 6845 } 6846 6847 /* 6848 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or 6849 * pass it along to ESP if the SPI is non-zero. Returns TRUE if the mblk 6850 * is not consumed. 6851 * 6852 * One of four things can happen, all of which affect the passed-in mblk: 6853 * 6854 * 1.) ICMP messages that go through here just get returned TRUE. 6855 * 6856 * 2.) The packet is stock UDP and gets its zero-SPI stripped. Return TRUE. 6857 * 6858 * 3.) The packet is ESP-in-UDP, gets transformed into an equivalent 6859 * ESP packet, and is passed along to ESP for consumption. Return FALSE. 6860 * 6861 * 4.) The packet is an ESP-in-UDP Keepalive. Drop it and return FALSE. 6862 */ 6863 static boolean_t 6864 zero_spi_check(queue_t *q, mblk_t *mp, ire_t *ire, ill_t *recv_ill, 6865 ipsec_stack_t *ipss) 6866 { 6867 int shift, plen, iph_len; 6868 ipha_t *ipha; 6869 udpha_t *udpha; 6870 uint32_t *spi; 6871 uint8_t *orptr; 6872 boolean_t udp_pkt, free_ire; 6873 6874 if (DB_TYPE(mp) == M_CTL) { 6875 /* 6876 * ICMP message with UDP inside. Don't bother stripping, just 6877 * send it up. 6878 * 6879 * NOTE: Any app with UDP_NAT_T_ENDPOINT set is probably going 6880 * to ignore errors set by ICMP anyway ('cause they might be 6881 * forged), but that's the app's decision, not ours. 6882 */ 6883 6884 /* Bunch of reality checks for DEBUG kernels... */ 6885 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION); 6886 ASSERT(((ipha_t *)mp->b_rptr)->ipha_protocol == IPPROTO_ICMP); 6887 6888 return (B_TRUE); 6889 } 6890 6891 ipha = (ipha_t *)mp->b_rptr; 6892 iph_len = IPH_HDR_LENGTH(ipha); 6893 plen = ntohs(ipha->ipha_length); 6894 6895 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) { 6896 /* 6897 * Most likely a keepalive for the benefit of an intervening 6898 * NAT. These aren't for us, per se, so drop it. 6899 * 6900 * RFC 3947/8 doesn't say for sure what to do for 2-3 6901 * byte packets (keepalives are 1-byte), but we'll drop them 6902 * also. 6903 */ 6904 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 6905 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper); 6906 return (B_FALSE); 6907 } 6908 6909 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) { 6910 /* might as well pull it all up - it might be ESP. */ 6911 if (!pullupmsg(mp, -1)) { 6912 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 6913 DROPPER(ipss, ipds_esp_nomem), 6914 &ipss->ipsec_dropper); 6915 return (B_FALSE); 6916 } 6917 6918 ipha = (ipha_t *)mp->b_rptr; 6919 } 6920 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t)); 6921 if (*spi == 0) { 6922 /* UDP packet - remove 0-spi. */ 6923 shift = sizeof (uint32_t); 6924 } else { 6925 /* ESP-in-UDP packet - reduce to ESP. */ 6926 ipha->ipha_protocol = IPPROTO_ESP; 6927 shift = sizeof (udpha_t); 6928 } 6929 6930 /* Fix IP header */ 6931 ipha->ipha_length = htons(plen - shift); 6932 ipha->ipha_hdr_checksum = 0; 6933 6934 orptr = mp->b_rptr; 6935 mp->b_rptr += shift; 6936 6937 if (*spi == 0) { 6938 ASSERT((uint8_t *)ipha == orptr); 6939 udpha = (udpha_t *)(orptr + iph_len); 6940 udpha->uha_length = htons(plen - shift - iph_len); 6941 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */ 6942 udp_pkt = B_TRUE; 6943 } else { 6944 udp_pkt = B_FALSE; 6945 } 6946 ovbcopy(orptr, orptr + shift, iph_len); 6947 if (!udp_pkt) /* Punt up for ESP processing. */ { 6948 ipha = (ipha_t *)(orptr + shift); 6949 6950 free_ire = (ire == NULL); 6951 if (free_ire) { 6952 /* Re-acquire ire. */ 6953 ire = ire_cache_lookup(ipha->ipha_dst, ALL_ZONES, NULL, 6954 ipss->ipsec_netstack->netstack_ip); 6955 if (ire == NULL || !(ire->ire_type & IRE_LOCAL)) { 6956 if (ire != NULL) 6957 ire_refrele(ire); 6958 /* 6959 * Do a regular freemsg(), as this is an IP 6960 * error (no local route) not an IPsec one. 6961 */ 6962 freemsg(mp); 6963 } 6964 } 6965 6966 ip_proto_input(q, mp, ipha, ire, recv_ill, B_TRUE); 6967 if (free_ire) 6968 ire_refrele(ire); 6969 } 6970 6971 return (udp_pkt); 6972 } 6973 6974 /* 6975 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 6976 * We are responsible for disposing of mp, such as by freemsg() or putnext() 6977 * Caller is responsible for dropping references to the conn, and freeing 6978 * first_mp. 6979 * 6980 * IPQoS Notes 6981 * Before sending it to the client, invoke IPPF processing. Policy processing 6982 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 6983 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 6984 * ip_wput_local, ip_policy is false. 6985 */ 6986 static void 6987 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 6988 boolean_t secure, ill_t *ill, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 6989 boolean_t ip_policy) 6990 { 6991 boolean_t mctl_present = (first_mp != NULL); 6992 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 6993 uint32_t ill_index; 6994 ip_stack_t *ipst = recv_ill->ill_ipst; 6995 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6996 6997 ASSERT(ill != NULL); 6998 6999 if (mctl_present) 7000 first_mp->b_cont = mp; 7001 else 7002 first_mp = mp; 7003 7004 if (CONN_UDP_FLOWCTLD(connp)) { 7005 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 7006 freemsg(first_mp); 7007 return; 7008 } 7009 7010 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 7011 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 7012 NULL, mctl_present); 7013 if (first_mp == NULL) { 7014 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7015 return; /* Freed by ipsec_check_inbound_policy(). */ 7016 } 7017 } 7018 if (mctl_present) 7019 freeb(first_mp); 7020 7021 /* Let's hope the compilers utter "branch, predict-not-taken..." ;) */ 7022 if (connp->conn_udp->udp_nat_t_endpoint) { 7023 if (mctl_present) { 7024 /* mctl_present *shouldn't* happen. */ 7025 ip_drop_packet(mp, B_TRUE, NULL, NULL, 7026 DROPPER(ipss, ipds_esp_nat_t_ipsec), 7027 &ipss->ipsec_dropper); 7028 return; 7029 } 7030 7031 if (!zero_spi_check(ill->ill_rq, mp, NULL, recv_ill, ipss)) 7032 return; 7033 } 7034 7035 /* Handle options. */ 7036 if (connp->conn_recvif) 7037 in_flags = IPF_RECVIF; 7038 /* 7039 * UDP supports IP_RECVPKTINFO option for both v4 and v6 so the flag 7040 * passed to ip_add_info is based on IP version of connp. 7041 */ 7042 if (connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 7043 if (connp->conn_af_isv6) { 7044 /* 7045 * V6 only needs index 7046 */ 7047 in_flags |= IPF_RECVIF; 7048 } else { 7049 /* 7050 * V4 needs index + matching address. 7051 */ 7052 in_flags |= IPF_RECVADDR; 7053 } 7054 } 7055 7056 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 7057 in_flags |= IPF_RECVSLLA; 7058 7059 /* 7060 * Initiate IPPF processing here, if needed. Note first_mp won't be 7061 * freed if the packet is dropped. The caller will do so. 7062 */ 7063 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 7064 ill_index = recv_ill->ill_phyint->phyint_ifindex; 7065 ip_process(IPP_LOCAL_IN, &mp, ill_index); 7066 if (mp == NULL) { 7067 return; 7068 } 7069 } 7070 if ((in_flags != 0) && 7071 (mp->b_datap->db_type != M_CTL)) { 7072 /* 7073 * The actual data will be contained in b_cont 7074 * upon successful return of the following call 7075 * else original mblk is returned 7076 */ 7077 ASSERT(recv_ill != NULL); 7078 mp = ip_add_info(mp, recv_ill, in_flags, IPCL_ZONEID(connp), 7079 ipst); 7080 } 7081 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 7082 /* Send it upstream */ 7083 (connp->conn_recv)(connp, mp, NULL); 7084 } 7085 7086 /* 7087 * Fanout for UDP packets. 7088 * The caller puts <fport, lport> in the ports parameter. 7089 * 7090 * If SO_REUSEADDR is set all multicast and broadcast packets 7091 * will be delivered to all streams bound to the same port. 7092 * 7093 * Zones notes: 7094 * Multicast and broadcast packets will be distributed to streams in all zones. 7095 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 7096 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 7097 * packets. To maintain this behavior with multiple zones, the conns are grouped 7098 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 7099 * each zone. If unset, all the following conns in the same zone are skipped. 7100 */ 7101 static void 7102 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 7103 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 7104 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 7105 { 7106 uint32_t dstport, srcport; 7107 ipaddr_t dst; 7108 mblk_t *first_mp; 7109 boolean_t secure; 7110 in6_addr_t v6src; 7111 conn_t *connp; 7112 connf_t *connfp; 7113 conn_t *first_connp; 7114 conn_t *next_connp; 7115 mblk_t *mp1, *first_mp1; 7116 ipaddr_t src; 7117 zoneid_t last_zoneid; 7118 boolean_t reuseaddr; 7119 boolean_t shared_addr; 7120 ip_stack_t *ipst; 7121 7122 ASSERT(recv_ill != NULL); 7123 ipst = recv_ill->ill_ipst; 7124 7125 first_mp = mp; 7126 if (mctl_present) { 7127 mp = first_mp->b_cont; 7128 first_mp->b_cont = NULL; 7129 secure = ipsec_in_is_secure(first_mp); 7130 ASSERT(mp != NULL); 7131 } else { 7132 first_mp = NULL; 7133 secure = B_FALSE; 7134 } 7135 7136 /* Extract ports in net byte order */ 7137 dstport = htons(ntohl(ports) & 0xFFFF); 7138 srcport = htons(ntohl(ports) >> 16); 7139 dst = ipha->ipha_dst; 7140 src = ipha->ipha_src; 7141 7142 shared_addr = (zoneid == ALL_ZONES); 7143 if (shared_addr) { 7144 /* 7145 * No need to handle exclusive-stack zones since ALL_ZONES 7146 * only applies to the shared stack. 7147 */ 7148 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 7149 if (zoneid == ALL_ZONES) 7150 zoneid = tsol_packet_to_zoneid(mp); 7151 } 7152 7153 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7154 mutex_enter(&connfp->connf_lock); 7155 connp = connfp->connf_head; 7156 if (!broadcast && !CLASSD(dst)) { 7157 /* 7158 * Not broadcast or multicast. Send to the one (first) 7159 * client we find. No need to check conn_wantpacket() 7160 * since IP_BOUND_IF/conn_incoming_ill does not apply to 7161 * IPv4 unicast packets. 7162 */ 7163 while ((connp != NULL) && 7164 (!IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) || 7165 !IPCL_ZONE_MATCH(connp, zoneid))) { 7166 connp = connp->conn_next; 7167 } 7168 7169 if (connp == NULL || connp->conn_upq == NULL) 7170 goto notfound; 7171 7172 if (is_system_labeled() && 7173 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7174 connp)) 7175 goto notfound; 7176 7177 CONN_INC_REF(connp); 7178 mutex_exit(&connfp->connf_lock); 7179 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7180 flags, recv_ill, ip_policy); 7181 IP_STAT(ipst, ip_udp_fannorm); 7182 CONN_DEC_REF(connp); 7183 return; 7184 } 7185 7186 /* 7187 * Broadcast and multicast case 7188 * 7189 * Need to check conn_wantpacket(). 7190 * If SO_REUSEADDR has been set on the first we send the 7191 * packet to all clients that have joined the group and 7192 * match the port. 7193 */ 7194 7195 while (connp != NULL) { 7196 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 7197 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7198 (!is_system_labeled() || 7199 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7200 connp))) 7201 break; 7202 connp = connp->conn_next; 7203 } 7204 7205 if (connp == NULL || connp->conn_upq == NULL) 7206 goto notfound; 7207 7208 first_connp = connp; 7209 /* 7210 * When SO_REUSEADDR is not set, send the packet only to the first 7211 * matching connection in its zone by keeping track of the zoneid. 7212 */ 7213 reuseaddr = first_connp->conn_reuseaddr; 7214 last_zoneid = first_connp->conn_zoneid; 7215 7216 CONN_INC_REF(connp); 7217 connp = connp->conn_next; 7218 for (;;) { 7219 while (connp != NULL) { 7220 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 7221 (reuseaddr || connp->conn_zoneid != last_zoneid) && 7222 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7223 (!is_system_labeled() || 7224 tsol_receive_local(mp, &dst, IPV4_VERSION, 7225 shared_addr, connp))) 7226 break; 7227 connp = connp->conn_next; 7228 } 7229 /* 7230 * Just copy the data part alone. The mctl part is 7231 * needed just for verifying policy and it is never 7232 * sent up. 7233 */ 7234 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7235 ((mp1 = copymsg(mp)) == NULL))) { 7236 /* 7237 * No more interested clients or memory 7238 * allocation failed 7239 */ 7240 connp = first_connp; 7241 break; 7242 } 7243 if (connp->conn_zoneid != last_zoneid) { 7244 /* 7245 * Update the zoneid so that the packet isn't sent to 7246 * any more conns in the same zone unless SO_REUSEADDR 7247 * is set. 7248 */ 7249 reuseaddr = connp->conn_reuseaddr; 7250 last_zoneid = connp->conn_zoneid; 7251 } 7252 if (first_mp != NULL) { 7253 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7254 ipsec_info_type == IPSEC_IN); 7255 first_mp1 = ipsec_in_tag(first_mp, NULL, 7256 ipst->ips_netstack); 7257 if (first_mp1 == NULL) { 7258 freemsg(mp1); 7259 connp = first_connp; 7260 break; 7261 } 7262 } else { 7263 first_mp1 = NULL; 7264 } 7265 CONN_INC_REF(connp); 7266 mutex_exit(&connfp->connf_lock); 7267 /* 7268 * IPQoS notes: We don't send the packet for policy 7269 * processing here, will do it for the last one (below). 7270 * i.e. we do it per-packet now, but if we do policy 7271 * processing per-conn, then we would need to do it 7272 * here too. 7273 */ 7274 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7275 ipha, flags, recv_ill, B_FALSE); 7276 mutex_enter(&connfp->connf_lock); 7277 /* Follow the next pointer before releasing the conn. */ 7278 next_connp = connp->conn_next; 7279 IP_STAT(ipst, ip_udp_fanmb); 7280 CONN_DEC_REF(connp); 7281 connp = next_connp; 7282 } 7283 7284 /* Last one. Send it upstream. */ 7285 mutex_exit(&connfp->connf_lock); 7286 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7287 recv_ill, ip_policy); 7288 IP_STAT(ipst, ip_udp_fanmb); 7289 CONN_DEC_REF(connp); 7290 return; 7291 7292 notfound: 7293 7294 mutex_exit(&connfp->connf_lock); 7295 IP_STAT(ipst, ip_udp_fanothers); 7296 /* 7297 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 7298 * have already been matched above, since they live in the IPv4 7299 * fanout tables. This implies we only need to 7300 * check for IPv6 in6addr_any endpoints here. 7301 * Thus we compare using ipv6_all_zeros instead of the destination 7302 * address, except for the multicast group membership lookup which 7303 * uses the IPv4 destination. 7304 */ 7305 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 7306 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7307 mutex_enter(&connfp->connf_lock); 7308 connp = connfp->connf_head; 7309 if (!broadcast && !CLASSD(dst)) { 7310 while (connp != NULL) { 7311 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7312 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 7313 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7314 !connp->conn_ipv6_v6only) 7315 break; 7316 connp = connp->conn_next; 7317 } 7318 7319 if (connp != NULL && is_system_labeled() && 7320 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7321 connp)) 7322 connp = NULL; 7323 7324 if (connp == NULL || connp->conn_upq == NULL) { 7325 /* 7326 * No one bound to this port. Is 7327 * there a client that wants all 7328 * unclaimed datagrams? 7329 */ 7330 mutex_exit(&connfp->connf_lock); 7331 7332 if (mctl_present) 7333 first_mp->b_cont = mp; 7334 else 7335 first_mp = mp; 7336 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP]. 7337 connf_head != NULL) { 7338 ip_fanout_proto(q, first_mp, ill, ipha, 7339 flags | IP_FF_RAWIP, mctl_present, 7340 ip_policy, recv_ill, zoneid); 7341 } else { 7342 if (ip_fanout_send_icmp(q, first_mp, flags, 7343 ICMP_DEST_UNREACHABLE, 7344 ICMP_PORT_UNREACHABLE, 7345 mctl_present, zoneid, ipst)) { 7346 BUMP_MIB(ill->ill_ip_mib, 7347 udpIfStatsNoPorts); 7348 } 7349 } 7350 return; 7351 } 7352 7353 CONN_INC_REF(connp); 7354 mutex_exit(&connfp->connf_lock); 7355 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7356 flags, recv_ill, ip_policy); 7357 CONN_DEC_REF(connp); 7358 return; 7359 } 7360 /* 7361 * IPv4 multicast packet being delivered to an AF_INET6 7362 * in6addr_any endpoint. 7363 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 7364 * and not conn_wantpacket_v6() since any multicast membership is 7365 * for an IPv4-mapped multicast address. 7366 * The packet is sent to all clients in all zones that have joined the 7367 * group and match the port. 7368 */ 7369 while (connp != NULL) { 7370 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7371 srcport, v6src) && 7372 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7373 (!is_system_labeled() || 7374 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7375 connp))) 7376 break; 7377 connp = connp->conn_next; 7378 } 7379 7380 if (connp == NULL || connp->conn_upq == NULL) { 7381 /* 7382 * No one bound to this port. Is 7383 * there a client that wants all 7384 * unclaimed datagrams? 7385 */ 7386 mutex_exit(&connfp->connf_lock); 7387 7388 if (mctl_present) 7389 first_mp->b_cont = mp; 7390 else 7391 first_mp = mp; 7392 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP].connf_head != 7393 NULL) { 7394 ip_fanout_proto(q, first_mp, ill, ipha, 7395 flags | IP_FF_RAWIP, mctl_present, ip_policy, 7396 recv_ill, zoneid); 7397 } else { 7398 /* 7399 * We used to attempt to send an icmp error here, but 7400 * since this is known to be a multicast packet 7401 * and we don't send icmp errors in response to 7402 * multicast, just drop the packet and give up sooner. 7403 */ 7404 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 7405 freemsg(first_mp); 7406 } 7407 return; 7408 } 7409 7410 first_connp = connp; 7411 7412 CONN_INC_REF(connp); 7413 connp = connp->conn_next; 7414 for (;;) { 7415 while (connp != NULL) { 7416 if (IPCL_UDP_MATCH_V6(connp, dstport, 7417 ipv6_all_zeros, srcport, v6src) && 7418 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7419 (!is_system_labeled() || 7420 tsol_receive_local(mp, &dst, IPV4_VERSION, 7421 shared_addr, connp))) 7422 break; 7423 connp = connp->conn_next; 7424 } 7425 /* 7426 * Just copy the data part alone. The mctl part is 7427 * needed just for verifying policy and it is never 7428 * sent up. 7429 */ 7430 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7431 ((mp1 = copymsg(mp)) == NULL))) { 7432 /* 7433 * No more intested clients or memory 7434 * allocation failed 7435 */ 7436 connp = first_connp; 7437 break; 7438 } 7439 if (first_mp != NULL) { 7440 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7441 ipsec_info_type == IPSEC_IN); 7442 first_mp1 = ipsec_in_tag(first_mp, NULL, 7443 ipst->ips_netstack); 7444 if (first_mp1 == NULL) { 7445 freemsg(mp1); 7446 connp = first_connp; 7447 break; 7448 } 7449 } else { 7450 first_mp1 = NULL; 7451 } 7452 CONN_INC_REF(connp); 7453 mutex_exit(&connfp->connf_lock); 7454 /* 7455 * IPQoS notes: We don't send the packet for policy 7456 * processing here, will do it for the last one (below). 7457 * i.e. we do it per-packet now, but if we do policy 7458 * processing per-conn, then we would need to do it 7459 * here too. 7460 */ 7461 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7462 ipha, flags, recv_ill, B_FALSE); 7463 mutex_enter(&connfp->connf_lock); 7464 /* Follow the next pointer before releasing the conn. */ 7465 next_connp = connp->conn_next; 7466 CONN_DEC_REF(connp); 7467 connp = next_connp; 7468 } 7469 7470 /* Last one. Send it upstream. */ 7471 mutex_exit(&connfp->connf_lock); 7472 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7473 recv_ill, ip_policy); 7474 CONN_DEC_REF(connp); 7475 } 7476 7477 /* 7478 * Complete the ip_wput header so that it 7479 * is possible to generate ICMP 7480 * errors. 7481 */ 7482 int 7483 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid, ip_stack_t *ipst) 7484 { 7485 ire_t *ire; 7486 7487 if (ipha->ipha_src == INADDR_ANY) { 7488 ire = ire_lookup_local(zoneid, ipst); 7489 if (ire == NULL) { 7490 ip1dbg(("ip_hdr_complete: no source IRE\n")); 7491 return (1); 7492 } 7493 ipha->ipha_src = ire->ire_addr; 7494 ire_refrele(ire); 7495 } 7496 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 7497 ipha->ipha_hdr_checksum = 0; 7498 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 7499 return (0); 7500 } 7501 7502 /* 7503 * Nobody should be sending 7504 * packets up this stream 7505 */ 7506 static void 7507 ip_lrput(queue_t *q, mblk_t *mp) 7508 { 7509 mblk_t *mp1; 7510 7511 switch (mp->b_datap->db_type) { 7512 case M_FLUSH: 7513 /* Turn around */ 7514 if (*mp->b_rptr & FLUSHW) { 7515 *mp->b_rptr &= ~FLUSHR; 7516 qreply(q, mp); 7517 return; 7518 } 7519 break; 7520 } 7521 /* Could receive messages that passed through ar_rput */ 7522 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 7523 mp1->b_prev = mp1->b_next = NULL; 7524 freemsg(mp); 7525 } 7526 7527 /* Nobody should be sending packets down this stream */ 7528 /* ARGSUSED */ 7529 void 7530 ip_lwput(queue_t *q, mblk_t *mp) 7531 { 7532 freemsg(mp); 7533 } 7534 7535 /* 7536 * Move the first hop in any source route to ipha_dst and remove that part of 7537 * the source route. Called by other protocols. Errors in option formatting 7538 * are ignored - will be handled by ip_wput_options Return the final 7539 * destination (either ipha_dst or the last entry in a source route.) 7540 */ 7541 ipaddr_t 7542 ip_massage_options(ipha_t *ipha, netstack_t *ns) 7543 { 7544 ipoptp_t opts; 7545 uchar_t *opt; 7546 uint8_t optval; 7547 uint8_t optlen; 7548 ipaddr_t dst; 7549 int i; 7550 ire_t *ire; 7551 ip_stack_t *ipst = ns->netstack_ip; 7552 7553 ip2dbg(("ip_massage_options\n")); 7554 dst = ipha->ipha_dst; 7555 for (optval = ipoptp_first(&opts, ipha); 7556 optval != IPOPT_EOL; 7557 optval = ipoptp_next(&opts)) { 7558 opt = opts.ipoptp_cur; 7559 switch (optval) { 7560 uint8_t off; 7561 case IPOPT_SSRR: 7562 case IPOPT_LSRR: 7563 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 7564 ip1dbg(("ip_massage_options: bad src route\n")); 7565 break; 7566 } 7567 optlen = opts.ipoptp_len; 7568 off = opt[IPOPT_OFFSET]; 7569 off--; 7570 redo_srr: 7571 if (optlen < IP_ADDR_LEN || 7572 off > optlen - IP_ADDR_LEN) { 7573 /* End of source route */ 7574 ip1dbg(("ip_massage_options: end of SR\n")); 7575 break; 7576 } 7577 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 7578 ip1dbg(("ip_massage_options: next hop 0x%x\n", 7579 ntohl(dst))); 7580 /* 7581 * Check if our address is present more than 7582 * once as consecutive hops in source route. 7583 * XXX verify per-interface ip_forwarding 7584 * for source route? 7585 */ 7586 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 7587 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7588 if (ire != NULL) { 7589 ire_refrele(ire); 7590 off += IP_ADDR_LEN; 7591 goto redo_srr; 7592 } 7593 if (dst == htonl(INADDR_LOOPBACK)) { 7594 ip1dbg(("ip_massage_options: loopback addr in " 7595 "source route!\n")); 7596 break; 7597 } 7598 /* 7599 * Update ipha_dst to be the first hop and remove the 7600 * first hop from the source route (by overwriting 7601 * part of the option with NOP options). 7602 */ 7603 ipha->ipha_dst = dst; 7604 /* Put the last entry in dst */ 7605 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 7606 3; 7607 bcopy(&opt[off], &dst, IP_ADDR_LEN); 7608 7609 ip1dbg(("ip_massage_options: last hop 0x%x\n", 7610 ntohl(dst))); 7611 /* Move down and overwrite */ 7612 opt[IP_ADDR_LEN] = opt[0]; 7613 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 7614 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 7615 for (i = 0; i < IP_ADDR_LEN; i++) 7616 opt[i] = IPOPT_NOP; 7617 break; 7618 } 7619 } 7620 return (dst); 7621 } 7622 7623 /* 7624 * Return the network mask 7625 * associated with the specified address. 7626 */ 7627 ipaddr_t 7628 ip_net_mask(ipaddr_t addr) 7629 { 7630 uchar_t *up = (uchar_t *)&addr; 7631 ipaddr_t mask = 0; 7632 uchar_t *maskp = (uchar_t *)&mask; 7633 7634 #if defined(__i386) || defined(__amd64) 7635 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7636 #endif 7637 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7638 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7639 #endif 7640 if (CLASSD(addr)) { 7641 maskp[0] = 0xF0; 7642 return (mask); 7643 } 7644 if (addr == 0) 7645 return (0); 7646 maskp[0] = 0xFF; 7647 if ((up[0] & 0x80) == 0) 7648 return (mask); 7649 7650 maskp[1] = 0xFF; 7651 if ((up[0] & 0xC0) == 0x80) 7652 return (mask); 7653 7654 maskp[2] = 0xFF; 7655 if ((up[0] & 0xE0) == 0xC0) 7656 return (mask); 7657 7658 /* Must be experimental or multicast, indicate as much */ 7659 return ((ipaddr_t)0); 7660 } 7661 7662 /* 7663 * Select an ill for the packet by considering load spreading across 7664 * a different ill in the group if dst_ill is part of some group. 7665 */ 7666 ill_t * 7667 ip_newroute_get_dst_ill(ill_t *dst_ill) 7668 { 7669 ill_t *ill; 7670 7671 /* 7672 * We schedule irrespective of whether the source address is 7673 * INADDR_ANY or not. illgrp_scheduler returns a held ill. 7674 */ 7675 ill = illgrp_scheduler(dst_ill); 7676 if (ill == NULL) 7677 return (NULL); 7678 7679 /* 7680 * For groups with names ip_sioctl_groupname ensures that all 7681 * ills are of same type. For groups without names, ifgrp_insert 7682 * ensures this. 7683 */ 7684 ASSERT(dst_ill->ill_type == ill->ill_type); 7685 7686 return (ill); 7687 } 7688 7689 /* 7690 * Helper function for the IPIF_NOFAILOVER/ATTACH_IF interface attachment case. 7691 */ 7692 ill_t * 7693 ip_grab_attach_ill(ill_t *ill, mblk_t *first_mp, int ifindex, boolean_t isv6, 7694 ip_stack_t *ipst) 7695 { 7696 ill_t *ret_ill; 7697 7698 ASSERT(ifindex != 0); 7699 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 7700 ipst); 7701 if (ret_ill == NULL || 7702 (ret_ill->ill_phyint->phyint_flags & PHYI_OFFLINE)) { 7703 if (isv6) { 7704 if (ill != NULL) { 7705 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7706 } else { 7707 BUMP_MIB(&ipst->ips_ip6_mib, 7708 ipIfStatsOutDiscards); 7709 } 7710 ip1dbg(("ip_grab_attach_ill (IPv6): " 7711 "bad ifindex %d.\n", ifindex)); 7712 } else { 7713 if (ill != NULL) { 7714 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7715 } else { 7716 BUMP_MIB(&ipst->ips_ip_mib, 7717 ipIfStatsOutDiscards); 7718 } 7719 ip1dbg(("ip_grab_attach_ill (IPv4): " 7720 "bad ifindex %d.\n", ifindex)); 7721 } 7722 if (ret_ill != NULL) 7723 ill_refrele(ret_ill); 7724 freemsg(first_mp); 7725 return (NULL); 7726 } 7727 7728 return (ret_ill); 7729 } 7730 7731 /* 7732 * IPv4 - 7733 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7734 * out a packet to a destination address for which we do not have specific 7735 * (or sufficient) routing information. 7736 * 7737 * NOTE : These are the scopes of some of the variables that point at IRE, 7738 * which needs to be followed while making any future modifications 7739 * to avoid memory leaks. 7740 * 7741 * - ire and sire are the entries looked up initially by 7742 * ire_ftable_lookup. 7743 * - ipif_ire is used to hold the interface ire associated with 7744 * the new cache ire. But it's scope is limited, so we always REFRELE 7745 * it before branching out to error paths. 7746 * - save_ire is initialized before ire_create, so that ire returned 7747 * by ire_create will not over-write the ire. We REFRELE save_ire 7748 * before breaking out of the switch. 7749 * 7750 * Thus on failures, we have to REFRELE only ire and sire, if they 7751 * are not NULL. 7752 */ 7753 void 7754 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, conn_t *connp, 7755 zoneid_t zoneid, ip_stack_t *ipst) 7756 { 7757 areq_t *areq; 7758 ipaddr_t gw = 0; 7759 ire_t *ire = NULL; 7760 mblk_t *res_mp; 7761 ipaddr_t *addrp; 7762 ipaddr_t nexthop_addr; 7763 ipif_t *src_ipif = NULL; 7764 ill_t *dst_ill = NULL; 7765 ipha_t *ipha; 7766 ire_t *sire = NULL; 7767 mblk_t *first_mp; 7768 ire_t *save_ire; 7769 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER address */ 7770 ushort_t ire_marks = 0; 7771 boolean_t mctl_present; 7772 ipsec_out_t *io; 7773 mblk_t *saved_mp; 7774 ire_t *first_sire = NULL; 7775 mblk_t *copy_mp = NULL; 7776 mblk_t *xmit_mp = NULL; 7777 ipaddr_t save_dst; 7778 uint32_t multirt_flags = 7779 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7780 boolean_t multirt_is_resolvable; 7781 boolean_t multirt_resolve_next; 7782 boolean_t do_attach_ill = B_FALSE; 7783 boolean_t ip_nexthop = B_FALSE; 7784 tsol_ire_gw_secattr_t *attrp = NULL; 7785 tsol_gcgrp_t *gcgrp = NULL; 7786 tsol_gcgrp_addr_t ga; 7787 7788 if (ip_debug > 2) { 7789 /* ip1dbg */ 7790 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7791 } 7792 7793 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7794 if (mctl_present) { 7795 io = (ipsec_out_t *)first_mp->b_rptr; 7796 ASSERT(io->ipsec_out_type == IPSEC_OUT); 7797 ASSERT(zoneid == io->ipsec_out_zoneid); 7798 ASSERT(zoneid != ALL_ZONES); 7799 } 7800 7801 ipha = (ipha_t *)mp->b_rptr; 7802 7803 /* All multicast lookups come through ip_newroute_ipif() */ 7804 if (CLASSD(dst)) { 7805 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7806 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7807 freemsg(first_mp); 7808 return; 7809 } 7810 7811 if (mctl_present && io->ipsec_out_attach_if) { 7812 /* ip_grab_attach_ill returns a held ill */ 7813 attach_ill = ip_grab_attach_ill(NULL, first_mp, 7814 io->ipsec_out_ill_index, B_FALSE, ipst); 7815 7816 /* Failure case frees things for us. */ 7817 if (attach_ill == NULL) 7818 return; 7819 7820 /* 7821 * Check if we need an ire that will not be 7822 * looked up by anybody else i.e. HIDDEN. 7823 */ 7824 if (ill_is_probeonly(attach_ill)) 7825 ire_marks = IRE_MARK_HIDDEN; 7826 } 7827 if (mctl_present && io->ipsec_out_ip_nexthop) { 7828 ip_nexthop = B_TRUE; 7829 nexthop_addr = io->ipsec_out_nexthop_addr; 7830 } 7831 /* 7832 * If this IRE is created for forwarding or it is not for 7833 * traffic for congestion controlled protocols, mark it as temporary. 7834 */ 7835 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 7836 ire_marks |= IRE_MARK_TEMPORARY; 7837 7838 /* 7839 * Get what we can from ire_ftable_lookup which will follow an IRE 7840 * chain until it gets the most specific information available. 7841 * For example, we know that there is no IRE_CACHE for this dest, 7842 * but there may be an IRE_OFFSUBNET which specifies a gateway. 7843 * ire_ftable_lookup will look up the gateway, etc. 7844 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 7845 * to the destination, of equal netmask length in the forward table, 7846 * will be recursively explored. If no information is available 7847 * for the final gateway of that route, we force the returned ire 7848 * to be equal to sire using MATCH_IRE_PARENT. 7849 * At least, in this case we have a starting point (in the buckets) 7850 * to look for other routes to the destination in the forward table. 7851 * This is actually used only for multirouting, where a list 7852 * of routes has to be processed in sequence. 7853 * 7854 * In the process of coming up with the most specific information, 7855 * ire_ftable_lookup may end up with an incomplete IRE_CACHE entry 7856 * for the gateway (i.e., one for which the ire_nce->nce_state is 7857 * not yet ND_REACHABLE, and is in the middle of arp resolution). 7858 * Two caveats when handling incomplete ire's in ip_newroute: 7859 * - we should be careful when accessing its ire_nce (specifically 7860 * the nce_res_mp) ast it might change underneath our feet, and, 7861 * - not all legacy code path callers are prepared to handle 7862 * incomplete ire's, so we should not create/add incomplete 7863 * ire_cache entries here. (See discussion about temporary solution 7864 * further below). 7865 * 7866 * In order to minimize packet dropping, and to preserve existing 7867 * behavior, we treat this case as if there were no IRE_CACHE for the 7868 * gateway, and instead use the IF_RESOLVER ire to send out 7869 * another request to ARP (this is achieved by passing the 7870 * MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the 7871 * arp response comes back in ip_wput_nondata, we will create 7872 * a per-dst ire_cache that has an ND_COMPLETE ire. 7873 * 7874 * Note that this is a temporary solution; the correct solution is 7875 * to create an incomplete per-dst ire_cache entry, and send the 7876 * packet out when the gw's nce is resolved. In order to achieve this, 7877 * all packet processing must have been completed prior to calling 7878 * ire_add_then_send. Some legacy code paths (e.g. cgtp) would need 7879 * to be modified to accomodate this solution. 7880 */ 7881 if (ip_nexthop) { 7882 /* 7883 * The first time we come here, we look for an IRE_INTERFACE 7884 * entry for the specified nexthop, set the dst to be the 7885 * nexthop address and create an IRE_CACHE entry for the 7886 * nexthop. The next time around, we are able to find an 7887 * IRE_CACHE entry for the nexthop, set the gateway to be the 7888 * nexthop address and create an IRE_CACHE entry for the 7889 * destination address via the specified nexthop. 7890 */ 7891 ire = ire_cache_lookup(nexthop_addr, zoneid, 7892 MBLK_GETLABEL(mp), ipst); 7893 if (ire != NULL) { 7894 gw = nexthop_addr; 7895 ire_marks |= IRE_MARK_PRIVATE_ADDR; 7896 } else { 7897 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 7898 IRE_INTERFACE, NULL, NULL, zoneid, 0, 7899 MBLK_GETLABEL(mp), 7900 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 7901 ipst); 7902 if (ire != NULL) { 7903 dst = nexthop_addr; 7904 } 7905 } 7906 } else if (attach_ill == NULL) { 7907 ire = ire_ftable_lookup(dst, 0, 0, 0, 7908 NULL, &sire, zoneid, 0, MBLK_GETLABEL(mp), 7909 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 7910 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 7911 MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE, 7912 ipst); 7913 } else { 7914 /* 7915 * attach_ill is set only for communicating with 7916 * on-link hosts. So, don't look for DEFAULT. 7917 */ 7918 ipif_t *attach_ipif; 7919 7920 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 7921 if (attach_ipif == NULL) { 7922 ill_refrele(attach_ill); 7923 goto icmp_err_ret; 7924 } 7925 ire = ire_ftable_lookup(dst, 0, 0, 0, attach_ipif, 7926 &sire, zoneid, 0, MBLK_GETLABEL(mp), 7927 MATCH_IRE_RJ_BHOLE | MATCH_IRE_ILL | 7928 MATCH_IRE_SECATTR, ipst); 7929 ipif_refrele(attach_ipif); 7930 } 7931 ip3dbg(("ip_newroute: ire_ftable_lookup() " 7932 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 7933 7934 /* 7935 * This loop is run only once in most cases. 7936 * We loop to resolve further routes only when the destination 7937 * can be reached through multiple RTF_MULTIRT-flagged ires. 7938 */ 7939 do { 7940 /* Clear the previous iteration's values */ 7941 if (src_ipif != NULL) { 7942 ipif_refrele(src_ipif); 7943 src_ipif = NULL; 7944 } 7945 if (dst_ill != NULL) { 7946 ill_refrele(dst_ill); 7947 dst_ill = NULL; 7948 } 7949 7950 multirt_resolve_next = B_FALSE; 7951 /* 7952 * We check if packets have to be multirouted. 7953 * In this case, given the current <ire, sire> couple, 7954 * we look for the next suitable <ire, sire>. 7955 * This check is done in ire_multirt_lookup(), 7956 * which applies various criteria to find the next route 7957 * to resolve. ire_multirt_lookup() leaves <ire, sire> 7958 * unchanged if it detects it has not been tried yet. 7959 */ 7960 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7961 ip3dbg(("ip_newroute: starting next_resolution " 7962 "with first_mp %p, tag %d\n", 7963 (void *)first_mp, 7964 MULTIRT_DEBUG_TAGGED(first_mp))); 7965 7966 ASSERT(sire != NULL); 7967 multirt_is_resolvable = 7968 ire_multirt_lookup(&ire, &sire, multirt_flags, 7969 MBLK_GETLABEL(mp), ipst); 7970 7971 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 7972 "ire %p, sire %p\n", 7973 multirt_is_resolvable, 7974 (void *)ire, (void *)sire)); 7975 7976 if (!multirt_is_resolvable) { 7977 /* 7978 * No more multirt route to resolve; give up 7979 * (all routes resolved or no more 7980 * resolvable routes). 7981 */ 7982 if (ire != NULL) { 7983 ire_refrele(ire); 7984 ire = NULL; 7985 } 7986 } else { 7987 ASSERT(sire != NULL); 7988 ASSERT(ire != NULL); 7989 /* 7990 * We simply use first_sire as a flag that 7991 * indicates if a resolvable multirt route 7992 * has already been found. 7993 * If it is not the case, we may have to send 7994 * an ICMP error to report that the 7995 * destination is unreachable. 7996 * We do not IRE_REFHOLD first_sire. 7997 */ 7998 if (first_sire == NULL) { 7999 first_sire = sire; 8000 } 8001 } 8002 } 8003 if (ire == NULL) { 8004 if (ip_debug > 3) { 8005 /* ip2dbg */ 8006 pr_addr_dbg("ip_newroute: " 8007 "can't resolve %s\n", AF_INET, &dst); 8008 } 8009 ip3dbg(("ip_newroute: " 8010 "ire %p, sire %p, first_sire %p\n", 8011 (void *)ire, (void *)sire, (void *)first_sire)); 8012 8013 if (sire != NULL) { 8014 ire_refrele(sire); 8015 sire = NULL; 8016 } 8017 8018 if (first_sire != NULL) { 8019 /* 8020 * At least one multirt route has been found 8021 * in the same call to ip_newroute(); 8022 * there is no need to report an ICMP error. 8023 * first_sire was not IRE_REFHOLDed. 8024 */ 8025 MULTIRT_DEBUG_UNTAG(first_mp); 8026 freemsg(first_mp); 8027 return; 8028 } 8029 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 8030 RTA_DST, ipst); 8031 if (attach_ill != NULL) 8032 ill_refrele(attach_ill); 8033 goto icmp_err_ret; 8034 } 8035 8036 /* 8037 * Verify that the returned IRE does not have either 8038 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 8039 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 8040 */ 8041 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 8042 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 8043 if (attach_ill != NULL) 8044 ill_refrele(attach_ill); 8045 goto icmp_err_ret; 8046 } 8047 /* 8048 * Increment the ire_ob_pkt_count field for ire if it is an 8049 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 8050 * increment the same for the parent IRE, sire, if it is some 8051 * sort of prefix IRE (which includes DEFAULT, PREFIX, and HOST) 8052 */ 8053 if ((ire->ire_type & IRE_INTERFACE) != 0) { 8054 UPDATE_OB_PKT_COUNT(ire); 8055 ire->ire_last_used_time = lbolt; 8056 } 8057 8058 if (sire != NULL) { 8059 gw = sire->ire_gateway_addr; 8060 ASSERT((sire->ire_type & (IRE_CACHETABLE | 8061 IRE_INTERFACE)) == 0); 8062 UPDATE_OB_PKT_COUNT(sire); 8063 sire->ire_last_used_time = lbolt; 8064 } 8065 /* 8066 * We have a route to reach the destination. 8067 * 8068 * 1) If the interface is part of ill group, try to get a new 8069 * ill taking load spreading into account. 8070 * 8071 * 2) After selecting the ill, get a source address that 8072 * might create good inbound load spreading. 8073 * ipif_select_source does this for us. 8074 * 8075 * If the application specified the ill (ifindex), we still 8076 * load spread. Only if the packets needs to go out 8077 * specifically on a given ill e.g. binding to 8078 * IPIF_NOFAILOVER address, then we don't try to use a 8079 * different ill for load spreading. 8080 */ 8081 if (attach_ill == NULL) { 8082 /* 8083 * Don't perform outbound load spreading in the 8084 * case of an RTF_MULTIRT route, as we actually 8085 * typically want to replicate outgoing packets 8086 * through particular interfaces. 8087 */ 8088 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8089 dst_ill = ire->ire_ipif->ipif_ill; 8090 /* for uniformity */ 8091 ill_refhold(dst_ill); 8092 } else { 8093 /* 8094 * If we are here trying to create an IRE_CACHE 8095 * for an offlink destination and have the 8096 * IRE_CACHE for the next hop and the latter is 8097 * using virtual IP source address selection i.e 8098 * it's ire->ire_ipif is pointing to a virtual 8099 * network interface (vni) then 8100 * ip_newroute_get_dst_ll() will return the vni 8101 * interface as the dst_ill. Since the vni is 8102 * virtual i.e not associated with any physical 8103 * interface, it cannot be the dst_ill, hence 8104 * in such a case call ip_newroute_get_dst_ll() 8105 * with the stq_ill instead of the ire_ipif ILL. 8106 * The function returns a refheld ill. 8107 */ 8108 if ((ire->ire_type == IRE_CACHE) && 8109 IS_VNI(ire->ire_ipif->ipif_ill)) 8110 dst_ill = ip_newroute_get_dst_ill( 8111 ire->ire_stq->q_ptr); 8112 else 8113 dst_ill = ip_newroute_get_dst_ill( 8114 ire->ire_ipif->ipif_ill); 8115 } 8116 if (dst_ill == NULL) { 8117 if (ip_debug > 2) { 8118 pr_addr_dbg("ip_newroute: " 8119 "no dst ill for dst" 8120 " %s\n", AF_INET, &dst); 8121 } 8122 goto icmp_err_ret; 8123 } 8124 } else { 8125 dst_ill = ire->ire_ipif->ipif_ill; 8126 /* for uniformity */ 8127 ill_refhold(dst_ill); 8128 /* 8129 * We should have found a route matching ill as we 8130 * called ire_ftable_lookup with MATCH_IRE_ILL. 8131 * Rather than asserting, when there is a mismatch, 8132 * we just drop the packet. 8133 */ 8134 if (dst_ill != attach_ill) { 8135 ip0dbg(("ip_newroute: Packet dropped as " 8136 "IPIF_NOFAILOVER ill is %s, " 8137 "ire->ire_ipif->ipif_ill is %s\n", 8138 attach_ill->ill_name, 8139 dst_ill->ill_name)); 8140 ill_refrele(attach_ill); 8141 goto icmp_err_ret; 8142 } 8143 } 8144 /* attach_ill can't go in loop. IPMP and CGTP are disjoint */ 8145 if (attach_ill != NULL) { 8146 ill_refrele(attach_ill); 8147 attach_ill = NULL; 8148 do_attach_ill = B_TRUE; 8149 } 8150 ASSERT(dst_ill != NULL); 8151 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 8152 8153 /* 8154 * Pick the best source address from dst_ill. 8155 * 8156 * 1) If it is part of a multipathing group, we would 8157 * like to spread the inbound packets across different 8158 * interfaces. ipif_select_source picks a random source 8159 * across the different ills in the group. 8160 * 8161 * 2) If it is not part of a multipathing group, we try 8162 * to pick the source address from the destination 8163 * route. Clustering assumes that when we have multiple 8164 * prefixes hosted on an interface, the prefix of the 8165 * source address matches the prefix of the destination 8166 * route. We do this only if the address is not 8167 * DEPRECATED. 8168 * 8169 * 3) If the conn is in a different zone than the ire, we 8170 * need to pick a source address from the right zone. 8171 * 8172 * NOTE : If we hit case (1) above, the prefix of the source 8173 * address picked may not match the prefix of the 8174 * destination routes prefix as ipif_select_source 8175 * does not look at "dst" while picking a source 8176 * address. 8177 * If we want the same behavior as (2), we will need 8178 * to change the behavior of ipif_select_source. 8179 */ 8180 ASSERT(src_ipif == NULL); 8181 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 8182 /* 8183 * The RTF_SETSRC flag is set in the parent ire (sire). 8184 * Check that the ipif matching the requested source 8185 * address still exists. 8186 */ 8187 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 8188 zoneid, NULL, NULL, NULL, NULL, ipst); 8189 } 8190 if (src_ipif == NULL) { 8191 ire_marks |= IRE_MARK_USESRC_CHECK; 8192 if ((dst_ill->ill_group != NULL) || 8193 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 8194 (connp != NULL && ire->ire_zoneid != zoneid && 8195 ire->ire_zoneid != ALL_ZONES) || 8196 (dst_ill->ill_usesrc_ifindex != 0)) { 8197 /* 8198 * If the destination is reachable via a 8199 * given gateway, the selected source address 8200 * should be in the same subnet as the gateway. 8201 * Otherwise, the destination is not reachable. 8202 * 8203 * If there are no interfaces on the same subnet 8204 * as the destination, ipif_select_source gives 8205 * first non-deprecated interface which might be 8206 * on a different subnet than the gateway. 8207 * This is not desirable. Hence pass the dst_ire 8208 * source address to ipif_select_source. 8209 * It is sure that the destination is reachable 8210 * with the dst_ire source address subnet. 8211 * So passing dst_ire source address to 8212 * ipif_select_source will make sure that the 8213 * selected source will be on the same subnet 8214 * as dst_ire source address. 8215 */ 8216 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 8217 src_ipif = ipif_select_source(dst_ill, saddr, 8218 zoneid); 8219 if (src_ipif == NULL) { 8220 if (ip_debug > 2) { 8221 pr_addr_dbg("ip_newroute: " 8222 "no src for dst %s ", 8223 AF_INET, &dst); 8224 printf("through interface %s\n", 8225 dst_ill->ill_name); 8226 } 8227 goto icmp_err_ret; 8228 } 8229 } else { 8230 src_ipif = ire->ire_ipif; 8231 ASSERT(src_ipif != NULL); 8232 /* hold src_ipif for uniformity */ 8233 ipif_refhold(src_ipif); 8234 } 8235 } 8236 8237 /* 8238 * Assign a source address while we have the conn. 8239 * We can't have ip_wput_ire pick a source address when the 8240 * packet returns from arp since we need to look at 8241 * conn_unspec_src and conn_zoneid, and we lose the conn when 8242 * going through arp. 8243 * 8244 * NOTE : ip_newroute_v6 does not have this piece of code as 8245 * it uses ip6i to store this information. 8246 */ 8247 if (ipha->ipha_src == INADDR_ANY && 8248 (connp == NULL || !connp->conn_unspec_src)) { 8249 ipha->ipha_src = src_ipif->ipif_src_addr; 8250 } 8251 if (ip_debug > 3) { 8252 /* ip2dbg */ 8253 pr_addr_dbg("ip_newroute: first hop %s\n", 8254 AF_INET, &gw); 8255 } 8256 ip2dbg(("\tire type %s (%d)\n", 8257 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 8258 8259 /* 8260 * The TTL of multirouted packets is bounded by the 8261 * ip_multirt_ttl ndd variable. 8262 */ 8263 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8264 /* Force TTL of multirouted packets */ 8265 if ((ipst->ips_ip_multirt_ttl > 0) && 8266 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 8267 ip2dbg(("ip_newroute: forcing multirt TTL " 8268 "to %d (was %d), dst 0x%08x\n", 8269 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 8270 ntohl(sire->ire_addr))); 8271 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 8272 } 8273 } 8274 /* 8275 * At this point in ip_newroute(), ire is either the 8276 * IRE_CACHE of the next-hop gateway for an off-subnet 8277 * destination or an IRE_INTERFACE type that should be used 8278 * to resolve an on-subnet destination or an on-subnet 8279 * next-hop gateway. 8280 * 8281 * In the IRE_CACHE case, we have the following : 8282 * 8283 * 1) src_ipif - used for getting a source address. 8284 * 8285 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8286 * means packets using this IRE_CACHE will go out on 8287 * dst_ill. 8288 * 8289 * 3) The IRE sire will point to the prefix that is the 8290 * longest matching route for the destination. These 8291 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST. 8292 * 8293 * The newly created IRE_CACHE entry for the off-subnet 8294 * destination is tied to both the prefix route and the 8295 * interface route used to resolve the next-hop gateway 8296 * via the ire_phandle and ire_ihandle fields, 8297 * respectively. 8298 * 8299 * In the IRE_INTERFACE case, we have the following : 8300 * 8301 * 1) src_ipif - used for getting a source address. 8302 * 8303 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8304 * means packets using the IRE_CACHE that we will build 8305 * here will go out on dst_ill. 8306 * 8307 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 8308 * to be created will only be tied to the IRE_INTERFACE 8309 * that was derived from the ire_ihandle field. 8310 * 8311 * If sire is non-NULL, it means the destination is 8312 * off-link and we will first create the IRE_CACHE for the 8313 * gateway. Next time through ip_newroute, we will create 8314 * the IRE_CACHE for the final destination as described 8315 * above. 8316 * 8317 * In both cases, after the current resolution has been 8318 * completed (or possibly initialised, in the IRE_INTERFACE 8319 * case), the loop may be re-entered to attempt the resolution 8320 * of another RTF_MULTIRT route. 8321 * 8322 * When an IRE_CACHE entry for the off-subnet destination is 8323 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 8324 * for further processing in emission loops. 8325 */ 8326 save_ire = ire; 8327 switch (ire->ire_type) { 8328 case IRE_CACHE: { 8329 ire_t *ipif_ire; 8330 8331 ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE); 8332 if (gw == 0) 8333 gw = ire->ire_gateway_addr; 8334 /* 8335 * We need 3 ire's to create a new cache ire for an 8336 * off-link destination from the cache ire of the 8337 * gateway. 8338 * 8339 * 1. The prefix ire 'sire' (Note that this does 8340 * not apply to the conn_nexthop_set case) 8341 * 2. The cache ire of the gateway 'ire' 8342 * 3. The interface ire 'ipif_ire' 8343 * 8344 * We have (1) and (2). We lookup (3) below. 8345 * 8346 * If there is no interface route to the gateway, 8347 * it is a race condition, where we found the cache 8348 * but the interface route has been deleted. 8349 */ 8350 if (ip_nexthop) { 8351 ipif_ire = ire_ihandle_lookup_onlink(ire); 8352 } else { 8353 ipif_ire = 8354 ire_ihandle_lookup_offlink(ire, sire); 8355 } 8356 if (ipif_ire == NULL) { 8357 ip1dbg(("ip_newroute: " 8358 "ire_ihandle_lookup_offlink failed\n")); 8359 goto icmp_err_ret; 8360 } 8361 8362 /* 8363 * Check cached gateway IRE for any security 8364 * attributes; if found, associate the gateway 8365 * credentials group to the destination IRE. 8366 */ 8367 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 8368 mutex_enter(&attrp->igsa_lock); 8369 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 8370 GCGRP_REFHOLD(gcgrp); 8371 mutex_exit(&attrp->igsa_lock); 8372 } 8373 8374 /* 8375 * XXX For the source of the resolver mp, 8376 * we are using the same DL_UNITDATA_REQ 8377 * (from save_ire->ire_nce->nce_res_mp) 8378 * though the save_ire is not pointing at the same ill. 8379 * This is incorrect. We need to send it up to the 8380 * resolver to get the right res_mp. For ethernets 8381 * this may be okay (ill_type == DL_ETHER). 8382 */ 8383 8384 ire = ire_create( 8385 (uchar_t *)&dst, /* dest address */ 8386 (uchar_t *)&ip_g_all_ones, /* mask */ 8387 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8388 (uchar_t *)&gw, /* gateway address */ 8389 &save_ire->ire_max_frag, 8390 save_ire->ire_nce, /* src nce */ 8391 dst_ill->ill_rq, /* recv-from queue */ 8392 dst_ill->ill_wq, /* send-to queue */ 8393 IRE_CACHE, /* IRE type */ 8394 src_ipif, 8395 (sire != NULL) ? 8396 sire->ire_mask : 0, /* Parent mask */ 8397 (sire != NULL) ? 8398 sire->ire_phandle : 0, /* Parent handle */ 8399 ipif_ire->ire_ihandle, /* Interface handle */ 8400 (sire != NULL) ? (sire->ire_flags & 8401 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 8402 (sire != NULL) ? 8403 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 8404 NULL, 8405 gcgrp, 8406 ipst); 8407 8408 if (ire == NULL) { 8409 if (gcgrp != NULL) { 8410 GCGRP_REFRELE(gcgrp); 8411 gcgrp = NULL; 8412 } 8413 ire_refrele(ipif_ire); 8414 ire_refrele(save_ire); 8415 break; 8416 } 8417 8418 /* reference now held by IRE */ 8419 gcgrp = NULL; 8420 8421 ire->ire_marks |= ire_marks; 8422 8423 /* 8424 * Prevent sire and ipif_ire from getting deleted. 8425 * The newly created ire is tied to both of them via 8426 * the phandle and ihandle respectively. 8427 */ 8428 if (sire != NULL) { 8429 IRB_REFHOLD(sire->ire_bucket); 8430 /* Has it been removed already ? */ 8431 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 8432 IRB_REFRELE(sire->ire_bucket); 8433 ire_refrele(ipif_ire); 8434 ire_refrele(save_ire); 8435 break; 8436 } 8437 } 8438 8439 IRB_REFHOLD(ipif_ire->ire_bucket); 8440 /* Has it been removed already ? */ 8441 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 8442 IRB_REFRELE(ipif_ire->ire_bucket); 8443 if (sire != NULL) 8444 IRB_REFRELE(sire->ire_bucket); 8445 ire_refrele(ipif_ire); 8446 ire_refrele(save_ire); 8447 break; 8448 } 8449 8450 xmit_mp = first_mp; 8451 /* 8452 * In the case of multirouting, a copy 8453 * of the packet is done before its sending. 8454 * The copy is used to attempt another 8455 * route resolution, in a next loop. 8456 */ 8457 if (ire->ire_flags & RTF_MULTIRT) { 8458 copy_mp = copymsg(first_mp); 8459 if (copy_mp != NULL) { 8460 xmit_mp = copy_mp; 8461 MULTIRT_DEBUG_TAG(first_mp); 8462 } 8463 } 8464 ire_add_then_send(q, ire, xmit_mp); 8465 ire_refrele(save_ire); 8466 8467 /* Assert that sire is not deleted yet. */ 8468 if (sire != NULL) { 8469 ASSERT(sire->ire_ptpn != NULL); 8470 IRB_REFRELE(sire->ire_bucket); 8471 } 8472 8473 /* Assert that ipif_ire is not deleted yet. */ 8474 ASSERT(ipif_ire->ire_ptpn != NULL); 8475 IRB_REFRELE(ipif_ire->ire_bucket); 8476 ire_refrele(ipif_ire); 8477 8478 /* 8479 * If copy_mp is not NULL, multirouting was 8480 * requested. We loop to initiate a next 8481 * route resolution attempt, starting from sire. 8482 */ 8483 if (copy_mp != NULL) { 8484 /* 8485 * Search for the next unresolved 8486 * multirt route. 8487 */ 8488 copy_mp = NULL; 8489 ipif_ire = NULL; 8490 ire = NULL; 8491 multirt_resolve_next = B_TRUE; 8492 continue; 8493 } 8494 if (sire != NULL) 8495 ire_refrele(sire); 8496 ipif_refrele(src_ipif); 8497 ill_refrele(dst_ill); 8498 return; 8499 } 8500 case IRE_IF_NORESOLVER: { 8501 8502 if (dst_ill->ill_phys_addr_length != IP_ADDR_LEN && 8503 dst_ill->ill_resolver_mp == NULL) { 8504 ip1dbg(("ip_newroute: dst_ill %p " 8505 "for IRE_IF_NORESOLVER ire %p has " 8506 "no ill_resolver_mp\n", 8507 (void *)dst_ill, (void *)ire)); 8508 break; 8509 } 8510 8511 /* 8512 * TSol note: We are creating the ire cache for the 8513 * destination 'dst'. If 'dst' is offlink, going 8514 * through the first hop 'gw', the security attributes 8515 * of 'dst' must be set to point to the gateway 8516 * credentials of gateway 'gw'. If 'dst' is onlink, it 8517 * is possible that 'dst' is a potential gateway that is 8518 * referenced by some route that has some security 8519 * attributes. Thus in the former case, we need to do a 8520 * gcgrp_lookup of 'gw' while in the latter case we 8521 * need to do gcgrp_lookup of 'dst' itself. 8522 */ 8523 ga.ga_af = AF_INET; 8524 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 8525 &ga.ga_addr); 8526 gcgrp = gcgrp_lookup(&ga, B_FALSE); 8527 8528 ire = ire_create( 8529 (uchar_t *)&dst, /* dest address */ 8530 (uchar_t *)&ip_g_all_ones, /* mask */ 8531 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8532 (uchar_t *)&gw, /* gateway address */ 8533 &save_ire->ire_max_frag, 8534 NULL, /* no src nce */ 8535 dst_ill->ill_rq, /* recv-from queue */ 8536 dst_ill->ill_wq, /* send-to queue */ 8537 IRE_CACHE, 8538 src_ipif, 8539 save_ire->ire_mask, /* Parent mask */ 8540 (sire != NULL) ? /* Parent handle */ 8541 sire->ire_phandle : 0, 8542 save_ire->ire_ihandle, /* Interface handle */ 8543 (sire != NULL) ? sire->ire_flags & 8544 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 8545 &(save_ire->ire_uinfo), 8546 NULL, 8547 gcgrp, 8548 ipst); 8549 8550 if (ire == NULL) { 8551 if (gcgrp != NULL) { 8552 GCGRP_REFRELE(gcgrp); 8553 gcgrp = NULL; 8554 } 8555 ire_refrele(save_ire); 8556 break; 8557 } 8558 8559 /* reference now held by IRE */ 8560 gcgrp = NULL; 8561 8562 ire->ire_marks |= ire_marks; 8563 8564 /* Prevent save_ire from getting deleted */ 8565 IRB_REFHOLD(save_ire->ire_bucket); 8566 /* Has it been removed already ? */ 8567 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8568 IRB_REFRELE(save_ire->ire_bucket); 8569 ire_refrele(save_ire); 8570 break; 8571 } 8572 8573 /* 8574 * In the case of multirouting, a copy 8575 * of the packet is made before it is sent. 8576 * The copy is used in the next 8577 * loop to attempt another resolution. 8578 */ 8579 xmit_mp = first_mp; 8580 if ((sire != NULL) && 8581 (sire->ire_flags & RTF_MULTIRT)) { 8582 copy_mp = copymsg(first_mp); 8583 if (copy_mp != NULL) { 8584 xmit_mp = copy_mp; 8585 MULTIRT_DEBUG_TAG(first_mp); 8586 } 8587 } 8588 ire_add_then_send(q, ire, xmit_mp); 8589 8590 /* Assert that it is not deleted yet. */ 8591 ASSERT(save_ire->ire_ptpn != NULL); 8592 IRB_REFRELE(save_ire->ire_bucket); 8593 ire_refrele(save_ire); 8594 8595 if (copy_mp != NULL) { 8596 /* 8597 * If we found a (no)resolver, we ignore any 8598 * trailing top priority IRE_CACHE in further 8599 * loops. This ensures that we do not omit any 8600 * (no)resolver. 8601 * This IRE_CACHE, if any, will be processed 8602 * by another thread entering ip_newroute(). 8603 * IRE_CACHE entries, if any, will be processed 8604 * by another thread entering ip_newroute(), 8605 * (upon resolver response, for instance). 8606 * This aims to force parallel multirt 8607 * resolutions as soon as a packet must be sent. 8608 * In the best case, after the tx of only one 8609 * packet, all reachable routes are resolved. 8610 * Otherwise, the resolution of all RTF_MULTIRT 8611 * routes would require several emissions. 8612 */ 8613 multirt_flags &= ~MULTIRT_CACHEGW; 8614 8615 /* 8616 * Search for the next unresolved multirt 8617 * route. 8618 */ 8619 copy_mp = NULL; 8620 save_ire = NULL; 8621 ire = NULL; 8622 multirt_resolve_next = B_TRUE; 8623 continue; 8624 } 8625 8626 /* 8627 * Don't need sire anymore 8628 */ 8629 if (sire != NULL) 8630 ire_refrele(sire); 8631 8632 ipif_refrele(src_ipif); 8633 ill_refrele(dst_ill); 8634 return; 8635 } 8636 case IRE_IF_RESOLVER: 8637 /* 8638 * We can't build an IRE_CACHE yet, but at least we 8639 * found a resolver that can help. 8640 */ 8641 res_mp = dst_ill->ill_resolver_mp; 8642 if (!OK_RESOLVER_MP(res_mp)) 8643 break; 8644 8645 /* 8646 * To be at this point in the code with a non-zero gw 8647 * means that dst is reachable through a gateway that 8648 * we have never resolved. By changing dst to the gw 8649 * addr we resolve the gateway first. 8650 * When ire_add_then_send() tries to put the IP dg 8651 * to dst, it will reenter ip_newroute() at which 8652 * time we will find the IRE_CACHE for the gw and 8653 * create another IRE_CACHE in case IRE_CACHE above. 8654 */ 8655 if (gw != INADDR_ANY) { 8656 /* 8657 * The source ipif that was determined above was 8658 * relative to the destination address, not the 8659 * gateway's. If src_ipif was not taken out of 8660 * the IRE_IF_RESOLVER entry, we'll need to call 8661 * ipif_select_source() again. 8662 */ 8663 if (src_ipif != ire->ire_ipif) { 8664 ipif_refrele(src_ipif); 8665 src_ipif = ipif_select_source(dst_ill, 8666 gw, zoneid); 8667 if (src_ipif == NULL) { 8668 if (ip_debug > 2) { 8669 pr_addr_dbg( 8670 "ip_newroute: no " 8671 "src for gw %s ", 8672 AF_INET, &gw); 8673 printf("through " 8674 "interface %s\n", 8675 dst_ill->ill_name); 8676 } 8677 goto icmp_err_ret; 8678 } 8679 } 8680 save_dst = dst; 8681 dst = gw; 8682 gw = INADDR_ANY; 8683 } 8684 8685 /* 8686 * We obtain a partial IRE_CACHE which we will pass 8687 * along with the resolver query. When the response 8688 * comes back it will be there ready for us to add. 8689 * The ire_max_frag is atomically set under the 8690 * irebucket lock in ire_add_v[46]. 8691 */ 8692 8693 ire = ire_create_mp( 8694 (uchar_t *)&dst, /* dest address */ 8695 (uchar_t *)&ip_g_all_ones, /* mask */ 8696 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8697 (uchar_t *)&gw, /* gateway address */ 8698 NULL, /* ire_max_frag */ 8699 NULL, /* no src nce */ 8700 dst_ill->ill_rq, /* recv-from queue */ 8701 dst_ill->ill_wq, /* send-to queue */ 8702 IRE_CACHE, 8703 src_ipif, /* Interface ipif */ 8704 save_ire->ire_mask, /* Parent mask */ 8705 0, 8706 save_ire->ire_ihandle, /* Interface handle */ 8707 0, /* flags if any */ 8708 &(save_ire->ire_uinfo), 8709 NULL, 8710 NULL, 8711 ipst); 8712 8713 if (ire == NULL) { 8714 ire_refrele(save_ire); 8715 break; 8716 } 8717 8718 if ((sire != NULL) && 8719 (sire->ire_flags & RTF_MULTIRT)) { 8720 copy_mp = copymsg(first_mp); 8721 if (copy_mp != NULL) 8722 MULTIRT_DEBUG_TAG(copy_mp); 8723 } 8724 8725 ire->ire_marks |= ire_marks; 8726 8727 /* 8728 * Construct message chain for the resolver 8729 * of the form: 8730 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8731 * Packet could contain a IPSEC_OUT mp. 8732 * 8733 * NOTE : ire will be added later when the response 8734 * comes back from ARP. If the response does not 8735 * come back, ARP frees the packet. For this reason, 8736 * we can't REFHOLD the bucket of save_ire to prevent 8737 * deletions. We may not be able to REFRELE the bucket 8738 * if the response never comes back. Thus, before 8739 * adding the ire, ire_add_v4 will make sure that the 8740 * interface route does not get deleted. This is the 8741 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8742 * where we can always prevent deletions because of 8743 * the synchronous nature of adding IRES i.e 8744 * ire_add_then_send is called after creating the IRE. 8745 */ 8746 ASSERT(ire->ire_mp != NULL); 8747 ire->ire_mp->b_cont = first_mp; 8748 /* Have saved_mp handy, for cleanup if canput fails */ 8749 saved_mp = mp; 8750 mp = copyb(res_mp); 8751 if (mp == NULL) { 8752 /* Prepare for cleanup */ 8753 mp = saved_mp; /* pkt */ 8754 ire_delete(ire); /* ire_mp */ 8755 ire = NULL; 8756 ire_refrele(save_ire); 8757 if (copy_mp != NULL) { 8758 MULTIRT_DEBUG_UNTAG(copy_mp); 8759 freemsg(copy_mp); 8760 copy_mp = NULL; 8761 } 8762 break; 8763 } 8764 linkb(mp, ire->ire_mp); 8765 8766 /* 8767 * Fill in the source and dest addrs for the resolver. 8768 * NOTE: this depends on memory layouts imposed by 8769 * ill_init(). 8770 */ 8771 areq = (areq_t *)mp->b_rptr; 8772 addrp = (ipaddr_t *)((char *)areq + 8773 areq->areq_sender_addr_offset); 8774 if (do_attach_ill) { 8775 /* 8776 * This is bind to no failover case. 8777 * arp packet also must go out on attach_ill. 8778 */ 8779 ASSERT(ipha->ipha_src != NULL); 8780 *addrp = ipha->ipha_src; 8781 } else { 8782 *addrp = save_ire->ire_src_addr; 8783 } 8784 8785 ire_refrele(save_ire); 8786 addrp = (ipaddr_t *)((char *)areq + 8787 areq->areq_target_addr_offset); 8788 *addrp = dst; 8789 /* Up to the resolver. */ 8790 if (canputnext(dst_ill->ill_rq) && 8791 !(dst_ill->ill_arp_closing)) { 8792 putnext(dst_ill->ill_rq, mp); 8793 ire = NULL; 8794 if (copy_mp != NULL) { 8795 /* 8796 * If we found a resolver, we ignore 8797 * any trailing top priority IRE_CACHE 8798 * in the further loops. This ensures 8799 * that we do not omit any resolver. 8800 * IRE_CACHE entries, if any, will be 8801 * processed next time we enter 8802 * ip_newroute(). 8803 */ 8804 multirt_flags &= ~MULTIRT_CACHEGW; 8805 /* 8806 * Search for the next unresolved 8807 * multirt route. 8808 */ 8809 first_mp = copy_mp; 8810 copy_mp = NULL; 8811 /* Prepare the next resolution loop. */ 8812 mp = first_mp; 8813 EXTRACT_PKT_MP(mp, first_mp, 8814 mctl_present); 8815 if (mctl_present) 8816 io = (ipsec_out_t *) 8817 first_mp->b_rptr; 8818 ipha = (ipha_t *)mp->b_rptr; 8819 8820 ASSERT(sire != NULL); 8821 8822 dst = save_dst; 8823 multirt_resolve_next = B_TRUE; 8824 continue; 8825 } 8826 8827 if (sire != NULL) 8828 ire_refrele(sire); 8829 8830 /* 8831 * The response will come back in ip_wput 8832 * with db_type IRE_DB_TYPE. 8833 */ 8834 ipif_refrele(src_ipif); 8835 ill_refrele(dst_ill); 8836 return; 8837 } else { 8838 /* Prepare for cleanup */ 8839 DTRACE_PROBE1(ip__newroute__drop, mblk_t *, 8840 mp); 8841 mp->b_cont = NULL; 8842 freeb(mp); /* areq */ 8843 /* 8844 * this is an ire that is not added to the 8845 * cache. ire_freemblk will handle the release 8846 * of any resources associated with the ire. 8847 */ 8848 ire_delete(ire); /* ire_mp */ 8849 mp = saved_mp; /* pkt */ 8850 ire = NULL; 8851 if (copy_mp != NULL) { 8852 MULTIRT_DEBUG_UNTAG(copy_mp); 8853 freemsg(copy_mp); 8854 copy_mp = NULL; 8855 } 8856 break; 8857 } 8858 default: 8859 break; 8860 } 8861 } while (multirt_resolve_next); 8862 8863 ip1dbg(("ip_newroute: dropped\n")); 8864 /* Did this packet originate externally? */ 8865 if (mp->b_prev) { 8866 mp->b_next = NULL; 8867 mp->b_prev = NULL; 8868 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 8869 } else { 8870 if (dst_ill != NULL) { 8871 BUMP_MIB(dst_ill->ill_ip_mib, ipIfStatsOutDiscards); 8872 } else { 8873 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 8874 } 8875 } 8876 ASSERT(copy_mp == NULL); 8877 MULTIRT_DEBUG_UNTAG(first_mp); 8878 freemsg(first_mp); 8879 if (ire != NULL) 8880 ire_refrele(ire); 8881 if (sire != NULL) 8882 ire_refrele(sire); 8883 if (src_ipif != NULL) 8884 ipif_refrele(src_ipif); 8885 if (dst_ill != NULL) 8886 ill_refrele(dst_ill); 8887 return; 8888 8889 icmp_err_ret: 8890 ip1dbg(("ip_newroute: no route\n")); 8891 if (src_ipif != NULL) 8892 ipif_refrele(src_ipif); 8893 if (dst_ill != NULL) 8894 ill_refrele(dst_ill); 8895 if (sire != NULL) 8896 ire_refrele(sire); 8897 /* Did this packet originate externally? */ 8898 if (mp->b_prev) { 8899 mp->b_next = NULL; 8900 mp->b_prev = NULL; 8901 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInNoRoutes); 8902 q = WR(q); 8903 } else { 8904 /* 8905 * There is no outgoing ill, so just increment the 8906 * system MIB. 8907 */ 8908 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 8909 /* 8910 * Since ip_wput() isn't close to finished, we fill 8911 * in enough of the header for credible error reporting. 8912 */ 8913 if (ip_hdr_complete(ipha, zoneid, ipst)) { 8914 /* Failed */ 8915 MULTIRT_DEBUG_UNTAG(first_mp); 8916 freemsg(first_mp); 8917 if (ire != NULL) 8918 ire_refrele(ire); 8919 return; 8920 } 8921 } 8922 8923 /* 8924 * At this point we will have ire only if RTF_BLACKHOLE 8925 * or RTF_REJECT flags are set on the IRE. It will not 8926 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 8927 */ 8928 if (ire != NULL) { 8929 if (ire->ire_flags & RTF_BLACKHOLE) { 8930 ire_refrele(ire); 8931 MULTIRT_DEBUG_UNTAG(first_mp); 8932 freemsg(first_mp); 8933 return; 8934 } 8935 ire_refrele(ire); 8936 } 8937 if (ip_source_routed(ipha, ipst)) { 8938 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED, 8939 zoneid, ipst); 8940 return; 8941 } 8942 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 8943 } 8944 8945 ip_opt_info_t zero_info; 8946 8947 /* 8948 * IPv4 - 8949 * ip_newroute_ipif is called by ip_wput_multicast and 8950 * ip_rput_forward_multicast whenever we need to send 8951 * out a packet to a destination address for which we do not have specific 8952 * routing information. It is used when the packet will be sent out 8953 * on a specific interface. It is also called by ip_wput() when IP_XMIT_IF 8954 * socket option is set or icmp error message wants to go out on a particular 8955 * interface for a unicast packet. 8956 * 8957 * In most cases, the destination address is resolved thanks to the ipif 8958 * intrinsic resolver. However, there are some cases where the call to 8959 * ip_newroute_ipif must take into account the potential presence of 8960 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 8961 * that uses the interface. This is specified through flags, 8962 * which can be a combination of: 8963 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 8964 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 8965 * and flags. Additionally, the packet source address has to be set to 8966 * the specified address. The caller is thus expected to set this flag 8967 * if the packet has no specific source address yet. 8968 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 8969 * flag, the resulting ire will inherit the flag. All unresolved routes 8970 * to the destination must be explored in the same call to 8971 * ip_newroute_ipif(). 8972 */ 8973 static void 8974 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 8975 conn_t *connp, uint32_t flags, zoneid_t zoneid, ip_opt_info_t *infop) 8976 { 8977 areq_t *areq; 8978 ire_t *ire = NULL; 8979 mblk_t *res_mp; 8980 ipaddr_t *addrp; 8981 mblk_t *first_mp; 8982 ire_t *save_ire = NULL; 8983 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER */ 8984 ipif_t *src_ipif = NULL; 8985 ushort_t ire_marks = 0; 8986 ill_t *dst_ill = NULL; 8987 boolean_t mctl_present; 8988 ipsec_out_t *io; 8989 ipha_t *ipha; 8990 int ihandle = 0; 8991 mblk_t *saved_mp; 8992 ire_t *fire = NULL; 8993 mblk_t *copy_mp = NULL; 8994 boolean_t multirt_resolve_next; 8995 ipaddr_t ipha_dst; 8996 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 8997 8998 /* 8999 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 9000 * here for uniformity 9001 */ 9002 ipif_refhold(ipif); 9003 9004 /* 9005 * This loop is run only once in most cases. 9006 * We loop to resolve further routes only when the destination 9007 * can be reached through multiple RTF_MULTIRT-flagged ires. 9008 */ 9009 do { 9010 if (dst_ill != NULL) { 9011 ill_refrele(dst_ill); 9012 dst_ill = NULL; 9013 } 9014 if (src_ipif != NULL) { 9015 ipif_refrele(src_ipif); 9016 src_ipif = NULL; 9017 } 9018 multirt_resolve_next = B_FALSE; 9019 9020 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 9021 ipif->ipif_ill->ill_name)); 9022 9023 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 9024 if (mctl_present) 9025 io = (ipsec_out_t *)first_mp->b_rptr; 9026 9027 ipha = (ipha_t *)mp->b_rptr; 9028 9029 /* 9030 * Save the packet destination address, we may need it after 9031 * the packet has been consumed. 9032 */ 9033 ipha_dst = ipha->ipha_dst; 9034 9035 /* 9036 * If the interface is a pt-pt interface we look for an 9037 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 9038 * local_address and the pt-pt destination address. Otherwise 9039 * we just match the local address. 9040 * NOTE: dst could be different than ipha->ipha_dst in case 9041 * of sending igmp multicast packets over a point-to-point 9042 * connection. 9043 * Thus we must be careful enough to check ipha_dst to be a 9044 * multicast address, otherwise it will take xmit_if path for 9045 * multicast packets resulting into kernel stack overflow by 9046 * repeated calls to ip_newroute_ipif from ire_send(). 9047 */ 9048 if (CLASSD(ipha_dst) && 9049 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 9050 goto err_ret; 9051 } 9052 9053 /* 9054 * We check if an IRE_OFFSUBNET for the addr that goes through 9055 * ipif exists. We need it to determine if the RTF_SETSRC and/or 9056 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 9057 * propagate its flags to the new ire. 9058 */ 9059 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 9060 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 9061 ip2dbg(("ip_newroute_ipif: " 9062 "ipif_lookup_multi_ire(" 9063 "ipif %p, dst %08x) = fire %p\n", 9064 (void *)ipif, ntohl(dst), (void *)fire)); 9065 } 9066 9067 if (mctl_present && io->ipsec_out_attach_if) { 9068 attach_ill = ip_grab_attach_ill(NULL, first_mp, 9069 io->ipsec_out_ill_index, B_FALSE, ipst); 9070 9071 /* Failure case frees things for us. */ 9072 if (attach_ill == NULL) { 9073 ipif_refrele(ipif); 9074 if (fire != NULL) 9075 ire_refrele(fire); 9076 return; 9077 } 9078 9079 /* 9080 * Check if we need an ire that will not be 9081 * looked up by anybody else i.e. HIDDEN. 9082 */ 9083 if (ill_is_probeonly(attach_ill)) { 9084 ire_marks = IRE_MARK_HIDDEN; 9085 } 9086 /* 9087 * ip_wput passes the right ipif for IPIF_NOFAILOVER 9088 * case. 9089 */ 9090 dst_ill = ipif->ipif_ill; 9091 /* attach_ill has been refheld by ip_grab_attach_ill */ 9092 ASSERT(dst_ill == attach_ill); 9093 } else { 9094 /* 9095 * If this is set by IP_XMIT_IF, then make sure that 9096 * ipif is pointing to the same ill as the IP_XMIT_IF 9097 * specified ill. 9098 */ 9099 ASSERT((connp == NULL) || 9100 (connp->conn_xmit_if_ill == NULL) || 9101 (connp->conn_xmit_if_ill == ipif->ipif_ill)); 9102 /* 9103 * If the interface belongs to an interface group, 9104 * make sure the next possible interface in the group 9105 * is used. This encourages load spreading among 9106 * peers in an interface group. 9107 * Note: load spreading is disabled for RTF_MULTIRT 9108 * routes. 9109 */ 9110 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9111 (fire->ire_flags & RTF_MULTIRT)) { 9112 /* 9113 * Don't perform outbound load spreading 9114 * in the case of an RTF_MULTIRT issued route, 9115 * we actually typically want to replicate 9116 * outgoing packets through particular 9117 * interfaces. 9118 */ 9119 dst_ill = ipif->ipif_ill; 9120 ill_refhold(dst_ill); 9121 } else { 9122 dst_ill = ip_newroute_get_dst_ill( 9123 ipif->ipif_ill); 9124 } 9125 if (dst_ill == NULL) { 9126 if (ip_debug > 2) { 9127 pr_addr_dbg("ip_newroute_ipif: " 9128 "no dst ill for dst %s\n", 9129 AF_INET, &dst); 9130 } 9131 goto err_ret; 9132 } 9133 } 9134 9135 /* 9136 * Pick a source address preferring non-deprecated ones. 9137 * Unlike ip_newroute, we don't do any source address 9138 * selection here since for multicast it really does not help 9139 * in inbound load spreading as in the unicast case. 9140 */ 9141 if ((flags & RTF_SETSRC) && (fire != NULL) && 9142 (fire->ire_flags & RTF_SETSRC)) { 9143 /* 9144 * As requested by flags, an IRE_OFFSUBNET was looked up 9145 * on that interface. This ire has RTF_SETSRC flag, so 9146 * the source address of the packet must be changed. 9147 * Check that the ipif matching the requested source 9148 * address still exists. 9149 */ 9150 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 9151 zoneid, NULL, NULL, NULL, NULL, ipst); 9152 } 9153 if (((ipif->ipif_flags & IPIF_DEPRECATED) || 9154 (connp != NULL && ipif->ipif_zoneid != zoneid && 9155 ipif->ipif_zoneid != ALL_ZONES)) && 9156 (src_ipif == NULL)) { 9157 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 9158 if (src_ipif == NULL) { 9159 if (ip_debug > 2) { 9160 /* ip1dbg */ 9161 pr_addr_dbg("ip_newroute_ipif: " 9162 "no src for dst %s", 9163 AF_INET, &dst); 9164 } 9165 ip1dbg((" through interface %s\n", 9166 dst_ill->ill_name)); 9167 goto err_ret; 9168 } 9169 ipif_refrele(ipif); 9170 ipif = src_ipif; 9171 ipif_refhold(ipif); 9172 } 9173 if (src_ipif == NULL) { 9174 src_ipif = ipif; 9175 ipif_refhold(src_ipif); 9176 } 9177 9178 /* 9179 * Assign a source address while we have the conn. 9180 * We can't have ip_wput_ire pick a source address when the 9181 * packet returns from arp since conn_unspec_src might be set 9182 * and we loose the conn when going through arp. 9183 */ 9184 if (ipha->ipha_src == INADDR_ANY && 9185 (connp == NULL || !connp->conn_unspec_src)) { 9186 ipha->ipha_src = src_ipif->ipif_src_addr; 9187 } 9188 9189 /* 9190 * In the case of IP_XMIT_IF, it is possible that the 9191 * outgoing interface does not have an interface ire. 9192 */ 9193 if (CLASSD(ipha_dst) && (connp == NULL || 9194 connp->conn_xmit_if_ill == NULL) && 9195 infop->ip_opt_ill_index == 0) { 9196 /* ipif_to_ire returns an held ire */ 9197 ire = ipif_to_ire(ipif); 9198 if (ire == NULL) 9199 goto err_ret; 9200 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 9201 goto err_ret; 9202 /* 9203 * ihandle is needed when the ire is added to 9204 * cache table. 9205 */ 9206 save_ire = ire; 9207 ihandle = save_ire->ire_ihandle; 9208 9209 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 9210 "flags %04x\n", 9211 (void *)ire, (void *)ipif, flags)); 9212 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9213 (fire->ire_flags & RTF_MULTIRT)) { 9214 /* 9215 * As requested by flags, an IRE_OFFSUBNET was 9216 * looked up on that interface. This ire has 9217 * RTF_MULTIRT flag, so the resolution loop will 9218 * be re-entered to resolve additional routes on 9219 * other interfaces. For that purpose, a copy of 9220 * the packet is performed at this point. 9221 */ 9222 fire->ire_last_used_time = lbolt; 9223 copy_mp = copymsg(first_mp); 9224 if (copy_mp) { 9225 MULTIRT_DEBUG_TAG(copy_mp); 9226 } 9227 } 9228 if ((flags & RTF_SETSRC) && (fire != NULL) && 9229 (fire->ire_flags & RTF_SETSRC)) { 9230 /* 9231 * As requested by flags, an IRE_OFFSUBET was 9232 * looked up on that interface. This ire has 9233 * RTF_SETSRC flag, so the source address of the 9234 * packet must be changed. 9235 */ 9236 ipha->ipha_src = fire->ire_src_addr; 9237 } 9238 } else { 9239 ASSERT((connp == NULL) || 9240 (connp->conn_xmit_if_ill != NULL) || 9241 (connp->conn_dontroute) || 9242 infop->ip_opt_ill_index != 0); 9243 /* 9244 * The only ways we can come here are: 9245 * 1) IP_XMIT_IF socket option is set 9246 * 2) SO_DONTROUTE socket option is set 9247 * 3) IP_PKTINFO option is passed in as ancillary data. 9248 * In all cases, the new ire will not be added 9249 * into cache table. 9250 */ 9251 ire_marks |= IRE_MARK_NOADD; 9252 } 9253 9254 switch (ipif->ipif_net_type) { 9255 case IRE_IF_NORESOLVER: { 9256 /* We have what we need to build an IRE_CACHE. */ 9257 9258 if ((dst_ill->ill_phys_addr_length != IP_ADDR_LEN) && 9259 (dst_ill->ill_resolver_mp == NULL)) { 9260 ip1dbg(("ip_newroute_ipif: dst_ill %p " 9261 "for IRE_IF_NORESOLVER ire %p has " 9262 "no ill_resolver_mp\n", 9263 (void *)dst_ill, (void *)ire)); 9264 break; 9265 } 9266 9267 /* 9268 * The new ire inherits the IRE_OFFSUBNET flags 9269 * and source address, if this was requested. 9270 */ 9271 ire = ire_create( 9272 (uchar_t *)&dst, /* dest address */ 9273 (uchar_t *)&ip_g_all_ones, /* mask */ 9274 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9275 NULL, /* gateway address */ 9276 &ipif->ipif_mtu, 9277 NULL, /* no src nce */ 9278 dst_ill->ill_rq, /* recv-from queue */ 9279 dst_ill->ill_wq, /* send-to queue */ 9280 IRE_CACHE, 9281 src_ipif, 9282 (save_ire != NULL ? save_ire->ire_mask : 0), 9283 (fire != NULL) ? /* Parent handle */ 9284 fire->ire_phandle : 0, 9285 ihandle, /* Interface handle */ 9286 (fire != NULL) ? 9287 (fire->ire_flags & 9288 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9289 (save_ire == NULL ? &ire_uinfo_null : 9290 &save_ire->ire_uinfo), 9291 NULL, 9292 NULL, 9293 ipst); 9294 9295 if (ire == NULL) { 9296 if (save_ire != NULL) 9297 ire_refrele(save_ire); 9298 break; 9299 } 9300 9301 ire->ire_marks |= ire_marks; 9302 9303 /* 9304 * If IRE_MARK_NOADD is set then we need to convert 9305 * the max_fragp to a useable value now. This is 9306 * normally done in ire_add_v[46]. We also need to 9307 * associate the ire with an nce (normally would be 9308 * done in ip_wput_nondata()). 9309 * 9310 * Note that IRE_MARK_NOADD packets created here 9311 * do not have a non-null ire_mp pointer. The null 9312 * value of ire_bucket indicates that they were 9313 * never added. 9314 */ 9315 if (ire->ire_marks & IRE_MARK_NOADD) { 9316 uint_t max_frag; 9317 9318 max_frag = *ire->ire_max_fragp; 9319 ire->ire_max_fragp = NULL; 9320 ire->ire_max_frag = max_frag; 9321 9322 if ((ire->ire_nce = ndp_lookup_v4( 9323 ire_to_ill(ire), 9324 (ire->ire_gateway_addr != INADDR_ANY ? 9325 &ire->ire_gateway_addr : &ire->ire_addr), 9326 B_FALSE)) == NULL) { 9327 if (save_ire != NULL) 9328 ire_refrele(save_ire); 9329 break; 9330 } 9331 ASSERT(ire->ire_nce->nce_state == 9332 ND_REACHABLE); 9333 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 9334 } 9335 9336 /* Prevent save_ire from getting deleted */ 9337 if (save_ire != NULL) { 9338 IRB_REFHOLD(save_ire->ire_bucket); 9339 /* Has it been removed already ? */ 9340 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 9341 IRB_REFRELE(save_ire->ire_bucket); 9342 ire_refrele(save_ire); 9343 break; 9344 } 9345 } 9346 9347 ire_add_then_send(q, ire, first_mp); 9348 9349 /* Assert that save_ire is not deleted yet. */ 9350 if (save_ire != NULL) { 9351 ASSERT(save_ire->ire_ptpn != NULL); 9352 IRB_REFRELE(save_ire->ire_bucket); 9353 ire_refrele(save_ire); 9354 save_ire = NULL; 9355 } 9356 if (fire != NULL) { 9357 ire_refrele(fire); 9358 fire = NULL; 9359 } 9360 9361 /* 9362 * the resolution loop is re-entered if this 9363 * was requested through flags and if we 9364 * actually are in a multirouting case. 9365 */ 9366 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9367 boolean_t need_resolve = 9368 ire_multirt_need_resolve(ipha_dst, 9369 MBLK_GETLABEL(copy_mp), ipst); 9370 if (!need_resolve) { 9371 MULTIRT_DEBUG_UNTAG(copy_mp); 9372 freemsg(copy_mp); 9373 copy_mp = NULL; 9374 } else { 9375 /* 9376 * ipif_lookup_group() calls 9377 * ire_lookup_multi() that uses 9378 * ire_ftable_lookup() to find 9379 * an IRE_INTERFACE for the group. 9380 * In the multirt case, 9381 * ire_lookup_multi() then invokes 9382 * ire_multirt_lookup() to find 9383 * the next resolvable ire. 9384 * As a result, we obtain an new 9385 * interface, derived from the 9386 * next ire. 9387 */ 9388 ipif_refrele(ipif); 9389 ipif = ipif_lookup_group(ipha_dst, 9390 zoneid, ipst); 9391 ip2dbg(("ip_newroute_ipif: " 9392 "multirt dst %08x, ipif %p\n", 9393 htonl(dst), (void *)ipif)); 9394 if (ipif != NULL) { 9395 mp = copy_mp; 9396 copy_mp = NULL; 9397 multirt_resolve_next = B_TRUE; 9398 continue; 9399 } else { 9400 freemsg(copy_mp); 9401 } 9402 } 9403 } 9404 if (ipif != NULL) 9405 ipif_refrele(ipif); 9406 ill_refrele(dst_ill); 9407 ipif_refrele(src_ipif); 9408 return; 9409 } 9410 case IRE_IF_RESOLVER: 9411 /* 9412 * We can't build an IRE_CACHE yet, but at least 9413 * we found a resolver that can help. 9414 */ 9415 res_mp = dst_ill->ill_resolver_mp; 9416 if (!OK_RESOLVER_MP(res_mp)) 9417 break; 9418 9419 /* 9420 * We obtain a partial IRE_CACHE which we will pass 9421 * along with the resolver query. When the response 9422 * comes back it will be there ready for us to add. 9423 * The new ire inherits the IRE_OFFSUBNET flags 9424 * and source address, if this was requested. 9425 * The ire_max_frag is atomically set under the 9426 * irebucket lock in ire_add_v[46]. Only in the 9427 * case of IRE_MARK_NOADD, we set it here itself. 9428 */ 9429 ire = ire_create_mp( 9430 (uchar_t *)&dst, /* dest address */ 9431 (uchar_t *)&ip_g_all_ones, /* mask */ 9432 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9433 NULL, /* gateway address */ 9434 (ire_marks & IRE_MARK_NOADD) ? 9435 ipif->ipif_mtu : 0, /* max_frag */ 9436 NULL, /* no src nce */ 9437 dst_ill->ill_rq, /* recv-from queue */ 9438 dst_ill->ill_wq, /* send-to queue */ 9439 IRE_CACHE, 9440 src_ipif, 9441 (save_ire != NULL ? save_ire->ire_mask : 0), 9442 (fire != NULL) ? /* Parent handle */ 9443 fire->ire_phandle : 0, 9444 ihandle, /* Interface handle */ 9445 (fire != NULL) ? /* flags if any */ 9446 (fire->ire_flags & 9447 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9448 (save_ire == NULL ? &ire_uinfo_null : 9449 &save_ire->ire_uinfo), 9450 NULL, 9451 NULL, 9452 ipst); 9453 9454 if (save_ire != NULL) { 9455 ire_refrele(save_ire); 9456 save_ire = NULL; 9457 } 9458 if (ire == NULL) 9459 break; 9460 9461 ire->ire_marks |= ire_marks; 9462 /* 9463 * Construct message chain for the resolver of the 9464 * form: 9465 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 9466 * 9467 * NOTE : ire will be added later when the response 9468 * comes back from ARP. If the response does not 9469 * come back, ARP frees the packet. For this reason, 9470 * we can't REFHOLD the bucket of save_ire to prevent 9471 * deletions. We may not be able to REFRELE the 9472 * bucket if the response never comes back. 9473 * Thus, before adding the ire, ire_add_v4 will make 9474 * sure that the interface route does not get deleted. 9475 * This is the only case unlike ip_newroute_v6, 9476 * ip_newroute_ipif_v6 where we can always prevent 9477 * deletions because ire_add_then_send is called after 9478 * creating the IRE. 9479 * If IRE_MARK_NOADD is set, then ire_add_then_send 9480 * does not add this IRE into the IRE CACHE. 9481 */ 9482 ASSERT(ire->ire_mp != NULL); 9483 ire->ire_mp->b_cont = first_mp; 9484 /* Have saved_mp handy, for cleanup if canput fails */ 9485 saved_mp = mp; 9486 mp = copyb(res_mp); 9487 if (mp == NULL) { 9488 /* Prepare for cleanup */ 9489 mp = saved_mp; /* pkt */ 9490 ire_delete(ire); /* ire_mp */ 9491 ire = NULL; 9492 if (copy_mp != NULL) { 9493 MULTIRT_DEBUG_UNTAG(copy_mp); 9494 freemsg(copy_mp); 9495 copy_mp = NULL; 9496 } 9497 break; 9498 } 9499 linkb(mp, ire->ire_mp); 9500 9501 /* 9502 * Fill in the source and dest addrs for the resolver. 9503 * NOTE: this depends on memory layouts imposed by 9504 * ill_init(). 9505 */ 9506 areq = (areq_t *)mp->b_rptr; 9507 addrp = (ipaddr_t *)((char *)areq + 9508 areq->areq_sender_addr_offset); 9509 *addrp = ire->ire_src_addr; 9510 addrp = (ipaddr_t *)((char *)areq + 9511 areq->areq_target_addr_offset); 9512 *addrp = dst; 9513 /* Up to the resolver. */ 9514 if (canputnext(dst_ill->ill_rq) && 9515 !(dst_ill->ill_arp_closing)) { 9516 putnext(dst_ill->ill_rq, mp); 9517 /* 9518 * The response will come back in ip_wput 9519 * with db_type IRE_DB_TYPE. 9520 */ 9521 } else { 9522 mp->b_cont = NULL; 9523 freeb(mp); /* areq */ 9524 ire_delete(ire); /* ire_mp */ 9525 saved_mp->b_next = NULL; 9526 saved_mp->b_prev = NULL; 9527 freemsg(first_mp); /* pkt */ 9528 ip2dbg(("ip_newroute_ipif: dropped\n")); 9529 } 9530 9531 if (fire != NULL) { 9532 ire_refrele(fire); 9533 fire = NULL; 9534 } 9535 9536 9537 /* 9538 * The resolution loop is re-entered if this was 9539 * requested through flags and we actually are 9540 * in a multirouting case. 9541 */ 9542 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9543 boolean_t need_resolve = 9544 ire_multirt_need_resolve(ipha_dst, 9545 MBLK_GETLABEL(copy_mp), ipst); 9546 if (!need_resolve) { 9547 MULTIRT_DEBUG_UNTAG(copy_mp); 9548 freemsg(copy_mp); 9549 copy_mp = NULL; 9550 } else { 9551 /* 9552 * ipif_lookup_group() calls 9553 * ire_lookup_multi() that uses 9554 * ire_ftable_lookup() to find 9555 * an IRE_INTERFACE for the group. 9556 * In the multirt case, 9557 * ire_lookup_multi() then invokes 9558 * ire_multirt_lookup() to find 9559 * the next resolvable ire. 9560 * As a result, we obtain an new 9561 * interface, derived from the 9562 * next ire. 9563 */ 9564 ipif_refrele(ipif); 9565 ipif = ipif_lookup_group(ipha_dst, 9566 zoneid, ipst); 9567 if (ipif != NULL) { 9568 mp = copy_mp; 9569 copy_mp = NULL; 9570 multirt_resolve_next = B_TRUE; 9571 continue; 9572 } else { 9573 freemsg(copy_mp); 9574 } 9575 } 9576 } 9577 if (ipif != NULL) 9578 ipif_refrele(ipif); 9579 ill_refrele(dst_ill); 9580 ipif_refrele(src_ipif); 9581 return; 9582 default: 9583 break; 9584 } 9585 } while (multirt_resolve_next); 9586 9587 err_ret: 9588 ip2dbg(("ip_newroute_ipif: dropped\n")); 9589 if (fire != NULL) 9590 ire_refrele(fire); 9591 ipif_refrele(ipif); 9592 /* Did this packet originate externally? */ 9593 if (dst_ill != NULL) 9594 ill_refrele(dst_ill); 9595 if (src_ipif != NULL) 9596 ipif_refrele(src_ipif); 9597 if (mp->b_prev || mp->b_next) { 9598 mp->b_next = NULL; 9599 mp->b_prev = NULL; 9600 } else { 9601 /* 9602 * Since ip_wput() isn't close to finished, we fill 9603 * in enough of the header for credible error reporting. 9604 */ 9605 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 9606 /* Failed */ 9607 freemsg(first_mp); 9608 if (ire != NULL) 9609 ire_refrele(ire); 9610 return; 9611 } 9612 } 9613 /* 9614 * At this point we will have ire only if RTF_BLACKHOLE 9615 * or RTF_REJECT flags are set on the IRE. It will not 9616 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9617 */ 9618 if (ire != NULL) { 9619 if (ire->ire_flags & RTF_BLACKHOLE) { 9620 ire_refrele(ire); 9621 freemsg(first_mp); 9622 return; 9623 } 9624 ire_refrele(ire); 9625 } 9626 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9627 } 9628 9629 /* Name/Value Table Lookup Routine */ 9630 char * 9631 ip_nv_lookup(nv_t *nv, int value) 9632 { 9633 if (!nv) 9634 return (NULL); 9635 for (; nv->nv_name; nv++) { 9636 if (nv->nv_value == value) 9637 return (nv->nv_name); 9638 } 9639 return ("unknown"); 9640 } 9641 9642 /* 9643 * This is a module open, i.e. this is a control stream for access 9644 * to a DLPI device. We allocate an ill_t as the instance data in 9645 * this case. 9646 */ 9647 int 9648 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9649 { 9650 ill_t *ill; 9651 int err; 9652 zoneid_t zoneid; 9653 netstack_t *ns; 9654 ip_stack_t *ipst; 9655 9656 /* 9657 * Prevent unprivileged processes from pushing IP so that 9658 * they can't send raw IP. 9659 */ 9660 if (secpolicy_net_rawaccess(credp) != 0) 9661 return (EPERM); 9662 9663 ns = netstack_find_by_cred(credp); 9664 ASSERT(ns != NULL); 9665 ipst = ns->netstack_ip; 9666 ASSERT(ipst != NULL); 9667 9668 /* 9669 * For exclusive stacks we set the zoneid to zero 9670 * to make IP operate as if in the global zone. 9671 */ 9672 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9673 zoneid = GLOBAL_ZONEID; 9674 else 9675 zoneid = crgetzoneid(credp); 9676 9677 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9678 q->q_ptr = WR(q)->q_ptr = ill; 9679 ill->ill_ipst = ipst; 9680 ill->ill_zoneid = zoneid; 9681 9682 /* 9683 * ill_init initializes the ill fields and then sends down 9684 * down a DL_INFO_REQ after calling qprocson. 9685 */ 9686 err = ill_init(q, ill); 9687 if (err != 0) { 9688 mi_free(ill); 9689 netstack_rele(ipst->ips_netstack); 9690 q->q_ptr = NULL; 9691 WR(q)->q_ptr = NULL; 9692 return (err); 9693 } 9694 9695 /* ill_init initializes the ipsq marking this thread as writer */ 9696 ipsq_exit(ill->ill_phyint->phyint_ipsq, B_TRUE, B_TRUE); 9697 /* Wait for the DL_INFO_ACK */ 9698 mutex_enter(&ill->ill_lock); 9699 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9700 /* 9701 * Return value of 0 indicates a pending signal. 9702 */ 9703 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9704 if (err == 0) { 9705 mutex_exit(&ill->ill_lock); 9706 (void) ip_close(q, 0); 9707 return (EINTR); 9708 } 9709 } 9710 mutex_exit(&ill->ill_lock); 9711 9712 /* 9713 * ip_rput_other could have set an error in ill_error on 9714 * receipt of M_ERROR. 9715 */ 9716 9717 err = ill->ill_error; 9718 if (err != 0) { 9719 (void) ip_close(q, 0); 9720 return (err); 9721 } 9722 9723 ill->ill_credp = credp; 9724 crhold(credp); 9725 9726 mutex_enter(&ipst->ips_ip_mi_lock); 9727 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)ill, devp, flag, sflag, 9728 credp); 9729 mutex_exit(&ipst->ips_ip_mi_lock); 9730 if (err) { 9731 (void) ip_close(q, 0); 9732 return (err); 9733 } 9734 return (0); 9735 } 9736 9737 /* For /dev/ip aka AF_INET open */ 9738 int 9739 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9740 { 9741 return (ip_open(q, devp, flag, sflag, credp, B_FALSE)); 9742 } 9743 9744 /* For /dev/ip6 aka AF_INET6 open */ 9745 int 9746 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9747 { 9748 return (ip_open(q, devp, flag, sflag, credp, B_TRUE)); 9749 } 9750 9751 /* IP open routine. */ 9752 int 9753 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 9754 boolean_t isv6) 9755 { 9756 conn_t *connp; 9757 major_t maj; 9758 zoneid_t zoneid; 9759 netstack_t *ns; 9760 ip_stack_t *ipst; 9761 9762 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 9763 9764 /* Allow reopen. */ 9765 if (q->q_ptr != NULL) 9766 return (0); 9767 9768 if (sflag & MODOPEN) { 9769 /* This is a module open */ 9770 return (ip_modopen(q, devp, flag, sflag, credp)); 9771 } 9772 9773 ns = netstack_find_by_cred(credp); 9774 ASSERT(ns != NULL); 9775 ipst = ns->netstack_ip; 9776 ASSERT(ipst != NULL); 9777 9778 /* 9779 * For exclusive stacks we set the zoneid to zero 9780 * to make IP operate as if in the global zone. 9781 */ 9782 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9783 zoneid = GLOBAL_ZONEID; 9784 else 9785 zoneid = crgetzoneid(credp); 9786 9787 /* 9788 * We are opening as a device. This is an IP client stream, and we 9789 * allocate an conn_t as the instance data. 9790 */ 9791 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 9792 9793 /* 9794 * ipcl_conn_create did a netstack_hold. Undo the hold that was 9795 * done by netstack_find_by_cred() 9796 */ 9797 netstack_rele(ipst->ips_netstack); 9798 9799 connp->conn_zoneid = zoneid; 9800 9801 connp->conn_upq = q; 9802 q->q_ptr = WR(q)->q_ptr = connp; 9803 9804 if (flag & SO_SOCKSTR) 9805 connp->conn_flags |= IPCL_SOCKET; 9806 9807 /* Minor tells us which /dev entry was opened */ 9808 if (isv6) { 9809 connp->conn_flags |= IPCL_ISV6; 9810 connp->conn_af_isv6 = B_TRUE; 9811 ip_setpktversion(connp, isv6, B_FALSE, ipst); 9812 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9813 } else { 9814 connp->conn_af_isv6 = B_FALSE; 9815 connp->conn_pkt_isv6 = B_FALSE; 9816 } 9817 9818 if ((connp->conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) { 9819 /* CONN_DEC_REF takes care of netstack_rele() */ 9820 q->q_ptr = WR(q)->q_ptr = NULL; 9821 CONN_DEC_REF(connp); 9822 return (EBUSY); 9823 } 9824 9825 maj = getemajor(*devp); 9826 *devp = makedevice(maj, (minor_t)connp->conn_dev); 9827 9828 /* 9829 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 9830 */ 9831 connp->conn_cred = credp; 9832 crhold(connp->conn_cred); 9833 9834 /* 9835 * If the caller has the process-wide flag set, then default to MAC 9836 * exempt mode. This allows read-down to unlabeled hosts. 9837 */ 9838 if (getpflags(NET_MAC_AWARE, credp) != 0) 9839 connp->conn_mac_exempt = B_TRUE; 9840 9841 connp->conn_rq = q; 9842 connp->conn_wq = WR(q); 9843 9844 /* Non-zero default values */ 9845 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9846 9847 /* 9848 * Make the conn globally visible to walkers 9849 */ 9850 ASSERT(connp->conn_ref == 1); 9851 mutex_enter(&connp->conn_lock); 9852 connp->conn_state_flags &= ~CONN_INCIPIENT; 9853 mutex_exit(&connp->conn_lock); 9854 9855 qprocson(q); 9856 9857 return (0); 9858 } 9859 9860 /* 9861 * Change the output format (IPv4 vs. IPv6) for a conn_t. 9862 * Note that there is no race since either ip_output function works - it 9863 * is just an optimization to enter the best ip_output routine directly. 9864 */ 9865 void 9866 ip_setpktversion(conn_t *connp, boolean_t isv6, boolean_t bump_mib, 9867 ip_stack_t *ipst) 9868 { 9869 if (isv6) { 9870 if (bump_mib) { 9871 BUMP_MIB(&ipst->ips_ip6_mib, 9872 ipIfStatsOutSwitchIPVersion); 9873 } 9874 connp->conn_send = ip_output_v6; 9875 connp->conn_pkt_isv6 = B_TRUE; 9876 } else { 9877 if (bump_mib) { 9878 BUMP_MIB(&ipst->ips_ip_mib, 9879 ipIfStatsOutSwitchIPVersion); 9880 } 9881 connp->conn_send = ip_output; 9882 connp->conn_pkt_isv6 = B_FALSE; 9883 } 9884 9885 } 9886 9887 /* 9888 * See if IPsec needs loading because of the options in mp. 9889 */ 9890 static boolean_t 9891 ipsec_opt_present(mblk_t *mp) 9892 { 9893 uint8_t *optcp, *next_optcp, *opt_endcp; 9894 struct opthdr *opt; 9895 struct T_opthdr *topt; 9896 int opthdr_len; 9897 t_uscalar_t optname, optlevel; 9898 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 9899 ipsec_req_t *ipsr; 9900 9901 /* 9902 * Walk through the mess, and find IP_SEC_OPT. If it's there, 9903 * return TRUE. 9904 */ 9905 9906 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 9907 opt_endcp = optcp + tor->OPT_length; 9908 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9909 opthdr_len = sizeof (struct T_opthdr); 9910 } else { /* O_OPTMGMT_REQ */ 9911 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 9912 opthdr_len = sizeof (struct opthdr); 9913 } 9914 for (; optcp < opt_endcp; optcp = next_optcp) { 9915 if (optcp + opthdr_len > opt_endcp) 9916 return (B_FALSE); /* Not enough option header. */ 9917 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9918 topt = (struct T_opthdr *)optcp; 9919 optlevel = topt->level; 9920 optname = topt->name; 9921 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 9922 } else { 9923 opt = (struct opthdr *)optcp; 9924 optlevel = opt->level; 9925 optname = opt->name; 9926 next_optcp = optcp + opthdr_len + 9927 _TPI_ALIGN_OPT(opt->len); 9928 } 9929 if ((next_optcp < optcp) || /* wraparound pointer space */ 9930 ((next_optcp >= opt_endcp) && /* last option bad len */ 9931 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 9932 return (B_FALSE); /* bad option buffer */ 9933 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 9934 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 9935 /* 9936 * Check to see if it's an all-bypass or all-zeroes 9937 * IPsec request. Don't bother loading IPsec if 9938 * the socket doesn't want to use it. (A good example 9939 * is a bypass request.) 9940 * 9941 * Basically, if any of the non-NEVER bits are set, 9942 * load IPsec. 9943 */ 9944 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 9945 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 9946 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 9947 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 9948 != 0) 9949 return (B_TRUE); 9950 } 9951 } 9952 return (B_FALSE); 9953 } 9954 9955 /* 9956 * If conn is is waiting for ipsec to finish loading, kick it. 9957 */ 9958 /* ARGSUSED */ 9959 static void 9960 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 9961 { 9962 t_scalar_t optreq_prim; 9963 mblk_t *mp; 9964 cred_t *cr; 9965 int err = 0; 9966 9967 /* 9968 * This function is called, after ipsec loading is complete. 9969 * Since IP checks exclusively and atomically (i.e it prevents 9970 * ipsec load from completing until ip_optcom_req completes) 9971 * whether ipsec load is complete, there cannot be a race with IP 9972 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 9973 */ 9974 mutex_enter(&connp->conn_lock); 9975 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 9976 ASSERT(connp->conn_ipsec_opt_mp != NULL); 9977 mp = connp->conn_ipsec_opt_mp; 9978 connp->conn_ipsec_opt_mp = NULL; 9979 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 9980 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(CONNP_TO_WQ(connp))); 9981 mutex_exit(&connp->conn_lock); 9982 9983 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 9984 9985 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 9986 if (optreq_prim == T_OPTMGMT_REQ) { 9987 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 9988 &ip_opt_obj, B_FALSE); 9989 } else { 9990 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 9991 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 9992 &ip_opt_obj, B_FALSE); 9993 } 9994 if (err != EINPROGRESS) 9995 CONN_OPER_PENDING_DONE(connp); 9996 return; 9997 } 9998 mutex_exit(&connp->conn_lock); 9999 } 10000 10001 /* 10002 * Called from the ipsec_loader thread, outside any perimeter, to tell 10003 * ip qenable any of the queues waiting for the ipsec loader to 10004 * complete. 10005 */ 10006 void 10007 ip_ipsec_load_complete(ipsec_stack_t *ipss) 10008 { 10009 netstack_t *ns = ipss->ipsec_netstack; 10010 10011 ipcl_walk(conn_restart_ipsec_waiter, NULL, ns->netstack_ip); 10012 } 10013 10014 /* 10015 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 10016 * determines the grp on which it has to become exclusive, queues the mp 10017 * and sq draining restarts the optmgmt 10018 */ 10019 static boolean_t 10020 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 10021 { 10022 conn_t *connp = Q_TO_CONN(q); 10023 ipsec_stack_t *ipss = connp->conn_netstack->netstack_ipsec; 10024 10025 /* 10026 * Take IPsec requests and treat them special. 10027 */ 10028 if (ipsec_opt_present(mp)) { 10029 /* First check if IPsec is loaded. */ 10030 mutex_enter(&ipss->ipsec_loader_lock); 10031 if (ipss->ipsec_loader_state != IPSEC_LOADER_WAIT) { 10032 mutex_exit(&ipss->ipsec_loader_lock); 10033 return (B_FALSE); 10034 } 10035 mutex_enter(&connp->conn_lock); 10036 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 10037 10038 ASSERT(connp->conn_ipsec_opt_mp == NULL); 10039 connp->conn_ipsec_opt_mp = mp; 10040 mutex_exit(&connp->conn_lock); 10041 mutex_exit(&ipss->ipsec_loader_lock); 10042 10043 ipsec_loader_loadnow(ipss); 10044 return (B_TRUE); 10045 } 10046 return (B_FALSE); 10047 } 10048 10049 /* 10050 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 10051 * all of them are copied to the conn_t. If the req is "zero", the policy is 10052 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 10053 * fields. 10054 * We keep only the latest setting of the policy and thus policy setting 10055 * is not incremental/cumulative. 10056 * 10057 * Requests to set policies with multiple alternative actions will 10058 * go through a different API. 10059 */ 10060 int 10061 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 10062 { 10063 uint_t ah_req = 0; 10064 uint_t esp_req = 0; 10065 uint_t se_req = 0; 10066 ipsec_selkey_t sel; 10067 ipsec_act_t *actp = NULL; 10068 uint_t nact; 10069 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 10070 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 10071 ipsec_policy_root_t *pr; 10072 ipsec_policy_head_t *ph; 10073 int fam; 10074 boolean_t is_pol_reset; 10075 int error = 0; 10076 netstack_t *ns = connp->conn_netstack; 10077 ip_stack_t *ipst = ns->netstack_ip; 10078 ipsec_stack_t *ipss = ns->netstack_ipsec; 10079 10080 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 10081 10082 /* 10083 * The IP_SEC_OPT option does not allow variable length parameters, 10084 * hence a request cannot be NULL. 10085 */ 10086 if (req == NULL) 10087 return (EINVAL); 10088 10089 ah_req = req->ipsr_ah_req; 10090 esp_req = req->ipsr_esp_req; 10091 se_req = req->ipsr_self_encap_req; 10092 10093 /* 10094 * Are we dealing with a request to reset the policy (i.e. 10095 * zero requests). 10096 */ 10097 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 10098 (esp_req & REQ_MASK) == 0 && 10099 (se_req & REQ_MASK) == 0); 10100 10101 if (!is_pol_reset) { 10102 /* 10103 * If we couldn't load IPsec, fail with "protocol 10104 * not supported". 10105 * IPsec may not have been loaded for a request with zero 10106 * policies, so we don't fail in this case. 10107 */ 10108 mutex_enter(&ipss->ipsec_loader_lock); 10109 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 10110 mutex_exit(&ipss->ipsec_loader_lock); 10111 return (EPROTONOSUPPORT); 10112 } 10113 mutex_exit(&ipss->ipsec_loader_lock); 10114 10115 /* 10116 * Test for valid requests. Invalid algorithms 10117 * need to be tested by IPsec code because new 10118 * algorithms can be added dynamically. 10119 */ 10120 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10121 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10122 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 10123 return (EINVAL); 10124 } 10125 10126 /* 10127 * Only privileged users can issue these 10128 * requests. 10129 */ 10130 if (((ah_req & IPSEC_PREF_NEVER) || 10131 (esp_req & IPSEC_PREF_NEVER) || 10132 (se_req & IPSEC_PREF_NEVER)) && 10133 secpolicy_ip_config(cr, B_FALSE) != 0) { 10134 return (EPERM); 10135 } 10136 10137 /* 10138 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 10139 * are mutually exclusive. 10140 */ 10141 if (((ah_req & REQ_MASK) == REQ_MASK) || 10142 ((esp_req & REQ_MASK) == REQ_MASK) || 10143 ((se_req & REQ_MASK) == REQ_MASK)) { 10144 /* Both of them are set */ 10145 return (EINVAL); 10146 } 10147 } 10148 10149 mutex_enter(&connp->conn_lock); 10150 10151 /* 10152 * If we have already cached policies in ip_bind_connected*(), don't 10153 * let them change now. We cache policies for connections 10154 * whose src,dst [addr, port] is known. 10155 */ 10156 if (connp->conn_policy_cached) { 10157 mutex_exit(&connp->conn_lock); 10158 return (EINVAL); 10159 } 10160 10161 /* 10162 * We have a zero policies, reset the connection policy if already 10163 * set. This will cause the connection to inherit the 10164 * global policy, if any. 10165 */ 10166 if (is_pol_reset) { 10167 if (connp->conn_policy != NULL) { 10168 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 10169 connp->conn_policy = NULL; 10170 } 10171 connp->conn_flags &= ~IPCL_CHECK_POLICY; 10172 connp->conn_in_enforce_policy = B_FALSE; 10173 connp->conn_out_enforce_policy = B_FALSE; 10174 mutex_exit(&connp->conn_lock); 10175 return (0); 10176 } 10177 10178 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 10179 ipst->ips_netstack); 10180 if (ph == NULL) 10181 goto enomem; 10182 10183 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 10184 if (actp == NULL) 10185 goto enomem; 10186 10187 /* 10188 * Always allocate IPv4 policy entries, since they can also 10189 * apply to ipv6 sockets being used in ipv4-compat mode. 10190 */ 10191 bzero(&sel, sizeof (sel)); 10192 sel.ipsl_valid = IPSL_IPV4; 10193 10194 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10195 ipst->ips_netstack); 10196 if (pin4 == NULL) 10197 goto enomem; 10198 10199 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10200 ipst->ips_netstack); 10201 if (pout4 == NULL) 10202 goto enomem; 10203 10204 if (connp->conn_af_isv6) { 10205 /* 10206 * We're looking at a v6 socket, also allocate the 10207 * v6-specific entries... 10208 */ 10209 sel.ipsl_valid = IPSL_IPV6; 10210 pin6 = ipsec_policy_create(&sel, actp, nact, 10211 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10212 if (pin6 == NULL) 10213 goto enomem; 10214 10215 pout6 = ipsec_policy_create(&sel, actp, nact, 10216 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10217 if (pout6 == NULL) 10218 goto enomem; 10219 10220 /* 10221 * .. and file them away in the right place. 10222 */ 10223 fam = IPSEC_AF_V6; 10224 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10225 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 10226 ipsec_insert_always(&ph->iph_rulebyid, pin6); 10227 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10228 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 10229 ipsec_insert_always(&ph->iph_rulebyid, pout6); 10230 } 10231 10232 ipsec_actvec_free(actp, nact); 10233 10234 /* 10235 * File the v4 policies. 10236 */ 10237 fam = IPSEC_AF_V4; 10238 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10239 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 10240 ipsec_insert_always(&ph->iph_rulebyid, pin4); 10241 10242 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10243 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 10244 ipsec_insert_always(&ph->iph_rulebyid, pout4); 10245 10246 /* 10247 * If the requests need security, set enforce_policy. 10248 * If the requests are IPSEC_PREF_NEVER, one should 10249 * still set conn_out_enforce_policy so that an ipsec_out 10250 * gets attached in ip_wput. This is needed so that 10251 * for connections that we don't cache policy in ip_bind, 10252 * if global policy matches in ip_wput_attach_policy, we 10253 * don't wrongly inherit global policy. Similarly, we need 10254 * to set conn_in_enforce_policy also so that we don't verify 10255 * policy wrongly. 10256 */ 10257 if ((ah_req & REQ_MASK) != 0 || 10258 (esp_req & REQ_MASK) != 0 || 10259 (se_req & REQ_MASK) != 0) { 10260 connp->conn_in_enforce_policy = B_TRUE; 10261 connp->conn_out_enforce_policy = B_TRUE; 10262 connp->conn_flags |= IPCL_CHECK_POLICY; 10263 } 10264 10265 mutex_exit(&connp->conn_lock); 10266 return (error); 10267 #undef REQ_MASK 10268 10269 /* 10270 * Common memory-allocation-failure exit path. 10271 */ 10272 enomem: 10273 mutex_exit(&connp->conn_lock); 10274 if (actp != NULL) 10275 ipsec_actvec_free(actp, nact); 10276 if (pin4 != NULL) 10277 IPPOL_REFRELE(pin4, ipst->ips_netstack); 10278 if (pout4 != NULL) 10279 IPPOL_REFRELE(pout4, ipst->ips_netstack); 10280 if (pin6 != NULL) 10281 IPPOL_REFRELE(pin6, ipst->ips_netstack); 10282 if (pout6 != NULL) 10283 IPPOL_REFRELE(pout6, ipst->ips_netstack); 10284 return (ENOMEM); 10285 } 10286 10287 /* 10288 * Only for options that pass in an IP addr. Currently only V4 options 10289 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 10290 * So this function assumes level is IPPROTO_IP 10291 */ 10292 int 10293 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 10294 mblk_t *first_mp) 10295 { 10296 ipif_t *ipif = NULL; 10297 int error; 10298 ill_t *ill; 10299 int zoneid; 10300 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10301 10302 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 10303 10304 if (addr != INADDR_ANY || checkonly) { 10305 ASSERT(connp != NULL); 10306 zoneid = IPCL_ZONEID(connp); 10307 if (option == IP_NEXTHOP) { 10308 ipif = ipif_lookup_onlink_addr(addr, 10309 connp->conn_zoneid, ipst); 10310 } else { 10311 ipif = ipif_lookup_addr(addr, NULL, zoneid, 10312 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 10313 &error, ipst); 10314 } 10315 if (ipif == NULL) { 10316 if (error == EINPROGRESS) 10317 return (error); 10318 else if ((option == IP_MULTICAST_IF) || 10319 (option == IP_NEXTHOP)) 10320 return (EHOSTUNREACH); 10321 else 10322 return (EINVAL); 10323 } else if (checkonly) { 10324 if (option == IP_MULTICAST_IF) { 10325 ill = ipif->ipif_ill; 10326 /* not supported by the virtual network iface */ 10327 if (IS_VNI(ill)) { 10328 ipif_refrele(ipif); 10329 return (EINVAL); 10330 } 10331 } 10332 ipif_refrele(ipif); 10333 return (0); 10334 } 10335 ill = ipif->ipif_ill; 10336 mutex_enter(&connp->conn_lock); 10337 mutex_enter(&ill->ill_lock); 10338 if ((ill->ill_state_flags & ILL_CONDEMNED) || 10339 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 10340 mutex_exit(&ill->ill_lock); 10341 mutex_exit(&connp->conn_lock); 10342 ipif_refrele(ipif); 10343 return (option == IP_MULTICAST_IF ? 10344 EHOSTUNREACH : EINVAL); 10345 } 10346 } else { 10347 mutex_enter(&connp->conn_lock); 10348 } 10349 10350 /* None of the options below are supported on the VNI */ 10351 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 10352 mutex_exit(&ill->ill_lock); 10353 mutex_exit(&connp->conn_lock); 10354 ipif_refrele(ipif); 10355 return (EINVAL); 10356 } 10357 10358 switch (option) { 10359 case IP_DONTFAILOVER_IF: 10360 /* 10361 * This option is used by in.mpathd to ensure 10362 * that IPMP probe packets only go out on the 10363 * test interfaces. in.mpathd sets this option 10364 * on the non-failover interfaces. 10365 * For backward compatibility, this option 10366 * implicitly sets IP_MULTICAST_IF, as used 10367 * be done in bind(), so that ip_wput gets 10368 * this ipif to send mcast packets. 10369 */ 10370 if (ipif != NULL) { 10371 ASSERT(addr != INADDR_ANY); 10372 connp->conn_nofailover_ill = ipif->ipif_ill; 10373 connp->conn_multicast_ipif = ipif; 10374 } else { 10375 ASSERT(addr == INADDR_ANY); 10376 connp->conn_nofailover_ill = NULL; 10377 connp->conn_multicast_ipif = NULL; 10378 } 10379 break; 10380 10381 case IP_MULTICAST_IF: 10382 connp->conn_multicast_ipif = ipif; 10383 break; 10384 case IP_NEXTHOP: 10385 connp->conn_nexthop_v4 = addr; 10386 connp->conn_nexthop_set = B_TRUE; 10387 break; 10388 } 10389 10390 if (ipif != NULL) { 10391 mutex_exit(&ill->ill_lock); 10392 mutex_exit(&connp->conn_lock); 10393 ipif_refrele(ipif); 10394 return (0); 10395 } 10396 mutex_exit(&connp->conn_lock); 10397 /* We succeded in cleared the option */ 10398 return (0); 10399 } 10400 10401 /* 10402 * For options that pass in an ifindex specifying the ill. V6 options always 10403 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 10404 */ 10405 int 10406 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 10407 int level, int option, mblk_t *first_mp) 10408 { 10409 ill_t *ill = NULL; 10410 int error = 0; 10411 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10412 10413 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 10414 if (ifindex != 0) { 10415 ASSERT(connp != NULL); 10416 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 10417 first_mp, ip_restart_optmgmt, &error, ipst); 10418 if (ill != NULL) { 10419 if (checkonly) { 10420 /* not supported by the virtual network iface */ 10421 if (IS_VNI(ill)) { 10422 ill_refrele(ill); 10423 return (EINVAL); 10424 } 10425 ill_refrele(ill); 10426 return (0); 10427 } 10428 if (!ipif_lookup_zoneid_group(ill, connp->conn_zoneid, 10429 0, NULL)) { 10430 ill_refrele(ill); 10431 ill = NULL; 10432 mutex_enter(&connp->conn_lock); 10433 goto setit; 10434 } 10435 mutex_enter(&connp->conn_lock); 10436 mutex_enter(&ill->ill_lock); 10437 if (ill->ill_state_flags & ILL_CONDEMNED) { 10438 mutex_exit(&ill->ill_lock); 10439 mutex_exit(&connp->conn_lock); 10440 ill_refrele(ill); 10441 ill = NULL; 10442 mutex_enter(&connp->conn_lock); 10443 } 10444 goto setit; 10445 } else if (error == EINPROGRESS) { 10446 return (error); 10447 } else { 10448 error = 0; 10449 } 10450 } 10451 mutex_enter(&connp->conn_lock); 10452 setit: 10453 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 10454 10455 /* 10456 * The options below assume that the ILL (if any) transmits and/or 10457 * receives traffic. Neither of which is true for the virtual network 10458 * interface, so fail setting these on a VNI. 10459 */ 10460 if (IS_VNI(ill)) { 10461 ASSERT(ill != NULL); 10462 mutex_exit(&ill->ill_lock); 10463 mutex_exit(&connp->conn_lock); 10464 ill_refrele(ill); 10465 return (EINVAL); 10466 } 10467 10468 if (level == IPPROTO_IP) { 10469 switch (option) { 10470 case IP_BOUND_IF: 10471 connp->conn_incoming_ill = ill; 10472 connp->conn_outgoing_ill = ill; 10473 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10474 0 : ifindex; 10475 break; 10476 10477 case IP_XMIT_IF: 10478 /* 10479 * Similar to IP_BOUND_IF, but this only 10480 * determines the outgoing interface for 10481 * unicast packets. Also no IRE_CACHE entry 10482 * is added for the destination of the 10483 * outgoing packets. 10484 */ 10485 connp->conn_xmit_if_ill = ill; 10486 connp->conn_orig_xmit_ifindex = (ill == NULL) ? 10487 0 : ifindex; 10488 break; 10489 10490 case IP_MULTICAST_IF: 10491 /* 10492 * This option is an internal special. The socket 10493 * level IP_MULTICAST_IF specifies an 'ipaddr' and 10494 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 10495 * specifies an ifindex and we try first on V6 ill's. 10496 * If we don't find one, we they try using on v4 ill's 10497 * intenally and we come here. 10498 */ 10499 if (!checkonly && ill != NULL) { 10500 ipif_t *ipif; 10501 ipif = ill->ill_ipif; 10502 10503 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 10504 mutex_exit(&ill->ill_lock); 10505 mutex_exit(&connp->conn_lock); 10506 ill_refrele(ill); 10507 ill = NULL; 10508 mutex_enter(&connp->conn_lock); 10509 } else { 10510 connp->conn_multicast_ipif = ipif; 10511 } 10512 } 10513 break; 10514 } 10515 } else { 10516 switch (option) { 10517 case IPV6_BOUND_IF: 10518 connp->conn_incoming_ill = ill; 10519 connp->conn_outgoing_ill = ill; 10520 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10521 0 : ifindex; 10522 break; 10523 10524 case IPV6_BOUND_PIF: 10525 /* 10526 * Limit all transmit to this ill. 10527 * Unlike IPV6_BOUND_IF, using this option 10528 * prevents load spreading and failover from 10529 * happening when the interface is part of the 10530 * group. That's why we don't need to remember 10531 * the ifindex in orig_bound_ifindex as in 10532 * IPV6_BOUND_IF. 10533 */ 10534 connp->conn_outgoing_pill = ill; 10535 break; 10536 10537 case IPV6_DONTFAILOVER_IF: 10538 /* 10539 * This option is used by in.mpathd to ensure 10540 * that IPMP probe packets only go out on the 10541 * test interfaces. in.mpathd sets this option 10542 * on the non-failover interfaces. 10543 */ 10544 connp->conn_nofailover_ill = ill; 10545 /* 10546 * For backward compatibility, this option 10547 * implicitly sets ip_multicast_ill as used in 10548 * IPV6_MULTICAST_IF so that ip_wput gets 10549 * this ill to send mcast packets. 10550 */ 10551 connp->conn_multicast_ill = ill; 10552 connp->conn_orig_multicast_ifindex = (ill == NULL) ? 10553 0 : ifindex; 10554 break; 10555 10556 case IPV6_MULTICAST_IF: 10557 /* 10558 * Set conn_multicast_ill to be the IPv6 ill. 10559 * Set conn_multicast_ipif to be an IPv4 ipif 10560 * for ifindex to make IPv4 mapped addresses 10561 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 10562 * Even if no IPv6 ill exists for the ifindex 10563 * we need to check for an IPv4 ifindex in order 10564 * for this to work with mapped addresses. In that 10565 * case only set conn_multicast_ipif. 10566 */ 10567 if (!checkonly) { 10568 if (ifindex == 0) { 10569 connp->conn_multicast_ill = NULL; 10570 connp->conn_orig_multicast_ifindex = 0; 10571 connp->conn_multicast_ipif = NULL; 10572 } else if (ill != NULL) { 10573 connp->conn_multicast_ill = ill; 10574 connp->conn_orig_multicast_ifindex = 10575 ifindex; 10576 } 10577 } 10578 break; 10579 } 10580 } 10581 10582 if (ill != NULL) { 10583 mutex_exit(&ill->ill_lock); 10584 mutex_exit(&connp->conn_lock); 10585 ill_refrele(ill); 10586 return (0); 10587 } 10588 mutex_exit(&connp->conn_lock); 10589 /* 10590 * We succeeded in clearing the option (ifindex == 0) or failed to 10591 * locate the ill and could not set the option (ifindex != 0) 10592 */ 10593 return (ifindex == 0 ? 0 : EINVAL); 10594 } 10595 10596 /* This routine sets socket options. */ 10597 /* ARGSUSED */ 10598 int 10599 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10600 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10601 void *dummy, cred_t *cr, mblk_t *first_mp) 10602 { 10603 int *i1 = (int *)invalp; 10604 conn_t *connp = Q_TO_CONN(q); 10605 int error = 0; 10606 boolean_t checkonly; 10607 ire_t *ire; 10608 boolean_t found; 10609 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10610 10611 switch (optset_context) { 10612 10613 case SETFN_OPTCOM_CHECKONLY: 10614 checkonly = B_TRUE; 10615 /* 10616 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10617 * inlen != 0 implies value supplied and 10618 * we have to "pretend" to set it. 10619 * inlen == 0 implies that there is no 10620 * value part in T_CHECK request and just validation 10621 * done elsewhere should be enough, we just return here. 10622 */ 10623 if (inlen == 0) { 10624 *outlenp = 0; 10625 return (0); 10626 } 10627 break; 10628 case SETFN_OPTCOM_NEGOTIATE: 10629 case SETFN_UD_NEGOTIATE: 10630 case SETFN_CONN_NEGOTIATE: 10631 checkonly = B_FALSE; 10632 break; 10633 default: 10634 /* 10635 * We should never get here 10636 */ 10637 *outlenp = 0; 10638 return (EINVAL); 10639 } 10640 10641 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10642 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10643 10644 /* 10645 * For fixed length options, no sanity check 10646 * of passed in length is done. It is assumed *_optcom_req() 10647 * routines do the right thing. 10648 */ 10649 10650 switch (level) { 10651 case SOL_SOCKET: 10652 /* 10653 * conn_lock protects the bitfields, and is used to 10654 * set the fields atomically. 10655 */ 10656 switch (name) { 10657 case SO_BROADCAST: 10658 if (!checkonly) { 10659 /* TODO: use value someplace? */ 10660 mutex_enter(&connp->conn_lock); 10661 connp->conn_broadcast = *i1 ? 1 : 0; 10662 mutex_exit(&connp->conn_lock); 10663 } 10664 break; /* goto sizeof (int) option return */ 10665 case SO_USELOOPBACK: 10666 if (!checkonly) { 10667 /* TODO: use value someplace? */ 10668 mutex_enter(&connp->conn_lock); 10669 connp->conn_loopback = *i1 ? 1 : 0; 10670 mutex_exit(&connp->conn_lock); 10671 } 10672 break; /* goto sizeof (int) option return */ 10673 case SO_DONTROUTE: 10674 if (!checkonly) { 10675 mutex_enter(&connp->conn_lock); 10676 connp->conn_dontroute = *i1 ? 1 : 0; 10677 mutex_exit(&connp->conn_lock); 10678 } 10679 break; /* goto sizeof (int) option return */ 10680 case SO_REUSEADDR: 10681 if (!checkonly) { 10682 mutex_enter(&connp->conn_lock); 10683 connp->conn_reuseaddr = *i1 ? 1 : 0; 10684 mutex_exit(&connp->conn_lock); 10685 } 10686 break; /* goto sizeof (int) option return */ 10687 case SO_PROTOTYPE: 10688 if (!checkonly) { 10689 mutex_enter(&connp->conn_lock); 10690 connp->conn_proto = *i1; 10691 mutex_exit(&connp->conn_lock); 10692 } 10693 break; /* goto sizeof (int) option return */ 10694 case SO_ALLZONES: 10695 if (!checkonly) { 10696 mutex_enter(&connp->conn_lock); 10697 if (IPCL_IS_BOUND(connp)) { 10698 mutex_exit(&connp->conn_lock); 10699 return (EINVAL); 10700 } 10701 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10702 mutex_exit(&connp->conn_lock); 10703 } 10704 break; /* goto sizeof (int) option return */ 10705 case SO_ANON_MLP: 10706 if (!checkonly) { 10707 mutex_enter(&connp->conn_lock); 10708 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10709 mutex_exit(&connp->conn_lock); 10710 } 10711 break; /* goto sizeof (int) option return */ 10712 case SO_MAC_EXEMPT: 10713 if (secpolicy_net_mac_aware(cr) != 0 || 10714 IPCL_IS_BOUND(connp)) 10715 return (EACCES); 10716 if (!checkonly) { 10717 mutex_enter(&connp->conn_lock); 10718 connp->conn_mac_exempt = *i1 != 0 ? 1 : 0; 10719 mutex_exit(&connp->conn_lock); 10720 } 10721 break; /* goto sizeof (int) option return */ 10722 default: 10723 /* 10724 * "soft" error (negative) 10725 * option not handled at this level 10726 * Note: Do not modify *outlenp 10727 */ 10728 return (-EINVAL); 10729 } 10730 break; 10731 case IPPROTO_IP: 10732 switch (name) { 10733 case IP_NEXTHOP: 10734 if (secpolicy_ip_config(cr, B_FALSE) != 0) 10735 return (EPERM); 10736 /* FALLTHRU */ 10737 case IP_MULTICAST_IF: 10738 case IP_DONTFAILOVER_IF: { 10739 ipaddr_t addr = *i1; 10740 10741 error = ip_opt_set_ipif(connp, addr, checkonly, name, 10742 first_mp); 10743 if (error != 0) 10744 return (error); 10745 break; /* goto sizeof (int) option return */ 10746 } 10747 10748 case IP_MULTICAST_TTL: 10749 /* Recorded in transport above IP */ 10750 *outvalp = *invalp; 10751 *outlenp = sizeof (uchar_t); 10752 return (0); 10753 case IP_MULTICAST_LOOP: 10754 if (!checkonly) { 10755 mutex_enter(&connp->conn_lock); 10756 connp->conn_multicast_loop = *invalp ? 1 : 0; 10757 mutex_exit(&connp->conn_lock); 10758 } 10759 *outvalp = *invalp; 10760 *outlenp = sizeof (uchar_t); 10761 return (0); 10762 case IP_ADD_MEMBERSHIP: 10763 case MCAST_JOIN_GROUP: 10764 case IP_DROP_MEMBERSHIP: 10765 case MCAST_LEAVE_GROUP: { 10766 struct ip_mreq *mreqp; 10767 struct group_req *greqp; 10768 ire_t *ire; 10769 boolean_t done = B_FALSE; 10770 ipaddr_t group, ifaddr; 10771 struct sockaddr_in *sin; 10772 uint32_t *ifindexp; 10773 boolean_t mcast_opt = B_TRUE; 10774 mcast_record_t fmode; 10775 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10776 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10777 10778 switch (name) { 10779 case IP_ADD_MEMBERSHIP: 10780 mcast_opt = B_FALSE; 10781 /* FALLTHRU */ 10782 case MCAST_JOIN_GROUP: 10783 fmode = MODE_IS_EXCLUDE; 10784 optfn = ip_opt_add_group; 10785 break; 10786 10787 case IP_DROP_MEMBERSHIP: 10788 mcast_opt = B_FALSE; 10789 /* FALLTHRU */ 10790 case MCAST_LEAVE_GROUP: 10791 fmode = MODE_IS_INCLUDE; 10792 optfn = ip_opt_delete_group; 10793 break; 10794 } 10795 10796 if (mcast_opt) { 10797 greqp = (struct group_req *)i1; 10798 sin = (struct sockaddr_in *)&greqp->gr_group; 10799 if (sin->sin_family != AF_INET) { 10800 *outlenp = 0; 10801 return (ENOPROTOOPT); 10802 } 10803 group = (ipaddr_t)sin->sin_addr.s_addr; 10804 ifaddr = INADDR_ANY; 10805 ifindexp = &greqp->gr_interface; 10806 } else { 10807 mreqp = (struct ip_mreq *)i1; 10808 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 10809 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 10810 ifindexp = NULL; 10811 } 10812 10813 /* 10814 * In the multirouting case, we need to replicate 10815 * the request on all interfaces that will take part 10816 * in replication. We do so because multirouting is 10817 * reflective, thus we will probably receive multi- 10818 * casts on those interfaces. 10819 * The ip_multirt_apply_membership() succeeds if the 10820 * operation succeeds on at least one interface. 10821 */ 10822 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 10823 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10824 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10825 if (ire != NULL) { 10826 if (ire->ire_flags & RTF_MULTIRT) { 10827 error = ip_multirt_apply_membership( 10828 optfn, ire, connp, checkonly, group, 10829 fmode, INADDR_ANY, first_mp); 10830 done = B_TRUE; 10831 } 10832 ire_refrele(ire); 10833 } 10834 if (!done) { 10835 error = optfn(connp, checkonly, group, ifaddr, 10836 ifindexp, fmode, INADDR_ANY, first_mp); 10837 } 10838 if (error) { 10839 /* 10840 * EINPROGRESS is a soft error, needs retry 10841 * so don't make *outlenp zero. 10842 */ 10843 if (error != EINPROGRESS) 10844 *outlenp = 0; 10845 return (error); 10846 } 10847 /* OK return - copy input buffer into output buffer */ 10848 if (invalp != outvalp) { 10849 /* don't trust bcopy for identical src/dst */ 10850 bcopy(invalp, outvalp, inlen); 10851 } 10852 *outlenp = inlen; 10853 return (0); 10854 } 10855 case IP_BLOCK_SOURCE: 10856 case IP_UNBLOCK_SOURCE: 10857 case IP_ADD_SOURCE_MEMBERSHIP: 10858 case IP_DROP_SOURCE_MEMBERSHIP: 10859 case MCAST_BLOCK_SOURCE: 10860 case MCAST_UNBLOCK_SOURCE: 10861 case MCAST_JOIN_SOURCE_GROUP: 10862 case MCAST_LEAVE_SOURCE_GROUP: { 10863 struct ip_mreq_source *imreqp; 10864 struct group_source_req *gsreqp; 10865 in_addr_t grp, src, ifaddr = INADDR_ANY; 10866 uint32_t ifindex = 0; 10867 mcast_record_t fmode; 10868 struct sockaddr_in *sin; 10869 ire_t *ire; 10870 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 10871 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10872 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10873 10874 switch (name) { 10875 case IP_BLOCK_SOURCE: 10876 mcast_opt = B_FALSE; 10877 /* FALLTHRU */ 10878 case MCAST_BLOCK_SOURCE: 10879 fmode = MODE_IS_EXCLUDE; 10880 optfn = ip_opt_add_group; 10881 break; 10882 10883 case IP_UNBLOCK_SOURCE: 10884 mcast_opt = B_FALSE; 10885 /* FALLTHRU */ 10886 case MCAST_UNBLOCK_SOURCE: 10887 fmode = MODE_IS_EXCLUDE; 10888 optfn = ip_opt_delete_group; 10889 break; 10890 10891 case IP_ADD_SOURCE_MEMBERSHIP: 10892 mcast_opt = B_FALSE; 10893 /* FALLTHRU */ 10894 case MCAST_JOIN_SOURCE_GROUP: 10895 fmode = MODE_IS_INCLUDE; 10896 optfn = ip_opt_add_group; 10897 break; 10898 10899 case IP_DROP_SOURCE_MEMBERSHIP: 10900 mcast_opt = B_FALSE; 10901 /* FALLTHRU */ 10902 case MCAST_LEAVE_SOURCE_GROUP: 10903 fmode = MODE_IS_INCLUDE; 10904 optfn = ip_opt_delete_group; 10905 break; 10906 } 10907 10908 if (mcast_opt) { 10909 gsreqp = (struct group_source_req *)i1; 10910 if (gsreqp->gsr_group.ss_family != AF_INET) { 10911 *outlenp = 0; 10912 return (ENOPROTOOPT); 10913 } 10914 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 10915 grp = (ipaddr_t)sin->sin_addr.s_addr; 10916 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 10917 src = (ipaddr_t)sin->sin_addr.s_addr; 10918 ifindex = gsreqp->gsr_interface; 10919 } else { 10920 imreqp = (struct ip_mreq_source *)i1; 10921 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 10922 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 10923 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 10924 } 10925 10926 /* 10927 * In the multirouting case, we need to replicate 10928 * the request as noted in the mcast cases above. 10929 */ 10930 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 10931 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10932 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10933 if (ire != NULL) { 10934 if (ire->ire_flags & RTF_MULTIRT) { 10935 error = ip_multirt_apply_membership( 10936 optfn, ire, connp, checkonly, grp, 10937 fmode, src, first_mp); 10938 done = B_TRUE; 10939 } 10940 ire_refrele(ire); 10941 } 10942 if (!done) { 10943 error = optfn(connp, checkonly, grp, ifaddr, 10944 &ifindex, fmode, src, first_mp); 10945 } 10946 if (error != 0) { 10947 /* 10948 * EINPROGRESS is a soft error, needs retry 10949 * so don't make *outlenp zero. 10950 */ 10951 if (error != EINPROGRESS) 10952 *outlenp = 0; 10953 return (error); 10954 } 10955 /* OK return - copy input buffer into output buffer */ 10956 if (invalp != outvalp) { 10957 bcopy(invalp, outvalp, inlen); 10958 } 10959 *outlenp = inlen; 10960 return (0); 10961 } 10962 case IP_SEC_OPT: 10963 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 10964 if (error != 0) { 10965 *outlenp = 0; 10966 return (error); 10967 } 10968 break; 10969 case IP_HDRINCL: 10970 case IP_OPTIONS: 10971 case T_IP_OPTIONS: 10972 case IP_TOS: 10973 case T_IP_TOS: 10974 case IP_TTL: 10975 case IP_RECVDSTADDR: 10976 case IP_RECVOPTS: 10977 /* OK return - copy input buffer into output buffer */ 10978 if (invalp != outvalp) { 10979 /* don't trust bcopy for identical src/dst */ 10980 bcopy(invalp, outvalp, inlen); 10981 } 10982 *outlenp = inlen; 10983 return (0); 10984 case IP_RECVIF: 10985 /* Retrieve the inbound interface index */ 10986 if (!checkonly) { 10987 mutex_enter(&connp->conn_lock); 10988 connp->conn_recvif = *i1 ? 1 : 0; 10989 mutex_exit(&connp->conn_lock); 10990 } 10991 break; /* goto sizeof (int) option return */ 10992 case IP_RECVPKTINFO: 10993 if (!checkonly) { 10994 mutex_enter(&connp->conn_lock); 10995 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 10996 mutex_exit(&connp->conn_lock); 10997 } 10998 break; /* goto sizeof (int) option return */ 10999 case IP_RECVSLLA: 11000 /* Retrieve the source link layer address */ 11001 if (!checkonly) { 11002 mutex_enter(&connp->conn_lock); 11003 connp->conn_recvslla = *i1 ? 1 : 0; 11004 mutex_exit(&connp->conn_lock); 11005 } 11006 break; /* goto sizeof (int) option return */ 11007 case MRT_INIT: 11008 case MRT_DONE: 11009 case MRT_ADD_VIF: 11010 case MRT_DEL_VIF: 11011 case MRT_ADD_MFC: 11012 case MRT_DEL_MFC: 11013 case MRT_ASSERT: 11014 if ((error = secpolicy_ip_config(cr, B_FALSE)) != 0) { 11015 *outlenp = 0; 11016 return (error); 11017 } 11018 error = ip_mrouter_set((int)name, q, checkonly, 11019 (uchar_t *)invalp, inlen, first_mp); 11020 if (error) { 11021 *outlenp = 0; 11022 return (error); 11023 } 11024 /* OK return - copy input buffer into output buffer */ 11025 if (invalp != outvalp) { 11026 /* don't trust bcopy for identical src/dst */ 11027 bcopy(invalp, outvalp, inlen); 11028 } 11029 *outlenp = inlen; 11030 return (0); 11031 case IP_BOUND_IF: 11032 case IP_XMIT_IF: 11033 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11034 level, name, first_mp); 11035 if (error != 0) 11036 return (error); 11037 break; /* goto sizeof (int) option return */ 11038 11039 case IP_UNSPEC_SRC: 11040 /* Allow sending with a zero source address */ 11041 if (!checkonly) { 11042 mutex_enter(&connp->conn_lock); 11043 connp->conn_unspec_src = *i1 ? 1 : 0; 11044 mutex_exit(&connp->conn_lock); 11045 } 11046 break; /* goto sizeof (int) option return */ 11047 default: 11048 /* 11049 * "soft" error (negative) 11050 * option not handled at this level 11051 * Note: Do not modify *outlenp 11052 */ 11053 return (-EINVAL); 11054 } 11055 break; 11056 case IPPROTO_IPV6: 11057 switch (name) { 11058 case IPV6_BOUND_IF: 11059 case IPV6_BOUND_PIF: 11060 case IPV6_DONTFAILOVER_IF: 11061 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11062 level, name, first_mp); 11063 if (error != 0) 11064 return (error); 11065 break; /* goto sizeof (int) option return */ 11066 11067 case IPV6_MULTICAST_IF: 11068 /* 11069 * The only possible errors are EINPROGRESS and 11070 * EINVAL. EINPROGRESS will be restarted and is not 11071 * a hard error. We call this option on both V4 and V6 11072 * If both return EINVAL, then this call returns 11073 * EINVAL. If at least one of them succeeds we 11074 * return success. 11075 */ 11076 found = B_FALSE; 11077 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11078 level, name, first_mp); 11079 if (error == EINPROGRESS) 11080 return (error); 11081 if (error == 0) 11082 found = B_TRUE; 11083 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11084 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 11085 if (error == 0) 11086 found = B_TRUE; 11087 if (!found) 11088 return (error); 11089 break; /* goto sizeof (int) option return */ 11090 11091 case IPV6_MULTICAST_HOPS: 11092 /* Recorded in transport above IP */ 11093 break; /* goto sizeof (int) option return */ 11094 case IPV6_MULTICAST_LOOP: 11095 if (!checkonly) { 11096 mutex_enter(&connp->conn_lock); 11097 connp->conn_multicast_loop = *i1; 11098 mutex_exit(&connp->conn_lock); 11099 } 11100 break; /* goto sizeof (int) option return */ 11101 case IPV6_JOIN_GROUP: 11102 case MCAST_JOIN_GROUP: 11103 case IPV6_LEAVE_GROUP: 11104 case MCAST_LEAVE_GROUP: { 11105 struct ipv6_mreq *ip_mreqp; 11106 struct group_req *greqp; 11107 ire_t *ire; 11108 boolean_t done = B_FALSE; 11109 in6_addr_t groupv6; 11110 uint32_t ifindex; 11111 boolean_t mcast_opt = B_TRUE; 11112 mcast_record_t fmode; 11113 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11114 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11115 11116 switch (name) { 11117 case IPV6_JOIN_GROUP: 11118 mcast_opt = B_FALSE; 11119 /* FALLTHRU */ 11120 case MCAST_JOIN_GROUP: 11121 fmode = MODE_IS_EXCLUDE; 11122 optfn = ip_opt_add_group_v6; 11123 break; 11124 11125 case IPV6_LEAVE_GROUP: 11126 mcast_opt = B_FALSE; 11127 /* FALLTHRU */ 11128 case MCAST_LEAVE_GROUP: 11129 fmode = MODE_IS_INCLUDE; 11130 optfn = ip_opt_delete_group_v6; 11131 break; 11132 } 11133 11134 if (mcast_opt) { 11135 struct sockaddr_in *sin; 11136 struct sockaddr_in6 *sin6; 11137 greqp = (struct group_req *)i1; 11138 if (greqp->gr_group.ss_family == AF_INET) { 11139 sin = (struct sockaddr_in *) 11140 &(greqp->gr_group); 11141 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 11142 &groupv6); 11143 } else { 11144 sin6 = (struct sockaddr_in6 *) 11145 &(greqp->gr_group); 11146 groupv6 = sin6->sin6_addr; 11147 } 11148 ifindex = greqp->gr_interface; 11149 } else { 11150 ip_mreqp = (struct ipv6_mreq *)i1; 11151 groupv6 = ip_mreqp->ipv6mr_multiaddr; 11152 ifindex = ip_mreqp->ipv6mr_interface; 11153 } 11154 /* 11155 * In the multirouting case, we need to replicate 11156 * the request on all interfaces that will take part 11157 * in replication. We do so because multirouting is 11158 * reflective, thus we will probably receive multi- 11159 * casts on those interfaces. 11160 * The ip_multirt_apply_membership_v6() succeeds if 11161 * the operation succeeds on at least one interface. 11162 */ 11163 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 11164 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11165 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11166 if (ire != NULL) { 11167 if (ire->ire_flags & RTF_MULTIRT) { 11168 error = ip_multirt_apply_membership_v6( 11169 optfn, ire, connp, checkonly, 11170 &groupv6, fmode, &ipv6_all_zeros, 11171 first_mp); 11172 done = B_TRUE; 11173 } 11174 ire_refrele(ire); 11175 } 11176 if (!done) { 11177 error = optfn(connp, checkonly, &groupv6, 11178 ifindex, fmode, &ipv6_all_zeros, first_mp); 11179 } 11180 if (error) { 11181 /* 11182 * EINPROGRESS is a soft error, needs retry 11183 * so don't make *outlenp zero. 11184 */ 11185 if (error != EINPROGRESS) 11186 *outlenp = 0; 11187 return (error); 11188 } 11189 /* OK return - copy input buffer into output buffer */ 11190 if (invalp != outvalp) { 11191 /* don't trust bcopy for identical src/dst */ 11192 bcopy(invalp, outvalp, inlen); 11193 } 11194 *outlenp = inlen; 11195 return (0); 11196 } 11197 case MCAST_BLOCK_SOURCE: 11198 case MCAST_UNBLOCK_SOURCE: 11199 case MCAST_JOIN_SOURCE_GROUP: 11200 case MCAST_LEAVE_SOURCE_GROUP: { 11201 struct group_source_req *gsreqp; 11202 in6_addr_t v6grp, v6src; 11203 uint32_t ifindex; 11204 mcast_record_t fmode; 11205 ire_t *ire; 11206 boolean_t done = B_FALSE; 11207 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11208 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11209 11210 switch (name) { 11211 case MCAST_BLOCK_SOURCE: 11212 fmode = MODE_IS_EXCLUDE; 11213 optfn = ip_opt_add_group_v6; 11214 break; 11215 case MCAST_UNBLOCK_SOURCE: 11216 fmode = MODE_IS_EXCLUDE; 11217 optfn = ip_opt_delete_group_v6; 11218 break; 11219 case MCAST_JOIN_SOURCE_GROUP: 11220 fmode = MODE_IS_INCLUDE; 11221 optfn = ip_opt_add_group_v6; 11222 break; 11223 case MCAST_LEAVE_SOURCE_GROUP: 11224 fmode = MODE_IS_INCLUDE; 11225 optfn = ip_opt_delete_group_v6; 11226 break; 11227 } 11228 11229 gsreqp = (struct group_source_req *)i1; 11230 ifindex = gsreqp->gsr_interface; 11231 if (gsreqp->gsr_group.ss_family == AF_INET) { 11232 struct sockaddr_in *s; 11233 s = (struct sockaddr_in *)&gsreqp->gsr_group; 11234 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 11235 s = (struct sockaddr_in *)&gsreqp->gsr_source; 11236 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 11237 } else { 11238 struct sockaddr_in6 *s6; 11239 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 11240 v6grp = s6->sin6_addr; 11241 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 11242 v6src = s6->sin6_addr; 11243 } 11244 11245 /* 11246 * In the multirouting case, we need to replicate 11247 * the request as noted in the mcast cases above. 11248 */ 11249 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 11250 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11251 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11252 if (ire != NULL) { 11253 if (ire->ire_flags & RTF_MULTIRT) { 11254 error = ip_multirt_apply_membership_v6( 11255 optfn, ire, connp, checkonly, 11256 &v6grp, fmode, &v6src, first_mp); 11257 done = B_TRUE; 11258 } 11259 ire_refrele(ire); 11260 } 11261 if (!done) { 11262 error = optfn(connp, checkonly, &v6grp, 11263 ifindex, fmode, &v6src, first_mp); 11264 } 11265 if (error != 0) { 11266 /* 11267 * EINPROGRESS is a soft error, needs retry 11268 * so don't make *outlenp zero. 11269 */ 11270 if (error != EINPROGRESS) 11271 *outlenp = 0; 11272 return (error); 11273 } 11274 /* OK return - copy input buffer into output buffer */ 11275 if (invalp != outvalp) { 11276 bcopy(invalp, outvalp, inlen); 11277 } 11278 *outlenp = inlen; 11279 return (0); 11280 } 11281 case IPV6_UNICAST_HOPS: 11282 /* Recorded in transport above IP */ 11283 break; /* goto sizeof (int) option return */ 11284 case IPV6_UNSPEC_SRC: 11285 /* Allow sending with a zero source address */ 11286 if (!checkonly) { 11287 mutex_enter(&connp->conn_lock); 11288 connp->conn_unspec_src = *i1 ? 1 : 0; 11289 mutex_exit(&connp->conn_lock); 11290 } 11291 break; /* goto sizeof (int) option return */ 11292 case IPV6_RECVPKTINFO: 11293 if (!checkonly) { 11294 mutex_enter(&connp->conn_lock); 11295 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11296 mutex_exit(&connp->conn_lock); 11297 } 11298 break; /* goto sizeof (int) option return */ 11299 case IPV6_RECVTCLASS: 11300 if (!checkonly) { 11301 if (*i1 < 0 || *i1 > 1) { 11302 return (EINVAL); 11303 } 11304 mutex_enter(&connp->conn_lock); 11305 connp->conn_ipv6_recvtclass = *i1; 11306 mutex_exit(&connp->conn_lock); 11307 } 11308 break; 11309 case IPV6_RECVPATHMTU: 11310 if (!checkonly) { 11311 if (*i1 < 0 || *i1 > 1) { 11312 return (EINVAL); 11313 } 11314 mutex_enter(&connp->conn_lock); 11315 connp->conn_ipv6_recvpathmtu = *i1; 11316 mutex_exit(&connp->conn_lock); 11317 } 11318 break; 11319 case IPV6_RECVHOPLIMIT: 11320 if (!checkonly) { 11321 mutex_enter(&connp->conn_lock); 11322 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 11323 mutex_exit(&connp->conn_lock); 11324 } 11325 break; /* goto sizeof (int) option return */ 11326 case IPV6_RECVHOPOPTS: 11327 if (!checkonly) { 11328 mutex_enter(&connp->conn_lock); 11329 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 11330 mutex_exit(&connp->conn_lock); 11331 } 11332 break; /* goto sizeof (int) option return */ 11333 case IPV6_RECVDSTOPTS: 11334 if (!checkonly) { 11335 mutex_enter(&connp->conn_lock); 11336 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 11337 mutex_exit(&connp->conn_lock); 11338 } 11339 break; /* goto sizeof (int) option return */ 11340 case IPV6_RECVRTHDR: 11341 if (!checkonly) { 11342 mutex_enter(&connp->conn_lock); 11343 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 11344 mutex_exit(&connp->conn_lock); 11345 } 11346 break; /* goto sizeof (int) option return */ 11347 case IPV6_RECVRTHDRDSTOPTS: 11348 if (!checkonly) { 11349 mutex_enter(&connp->conn_lock); 11350 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 11351 mutex_exit(&connp->conn_lock); 11352 } 11353 break; /* goto sizeof (int) option return */ 11354 case IPV6_PKTINFO: 11355 if (inlen == 0) 11356 return (-EINVAL); /* clearing option */ 11357 error = ip6_set_pktinfo(cr, connp, 11358 (struct in6_pktinfo *)invalp, first_mp); 11359 if (error != 0) 11360 *outlenp = 0; 11361 else 11362 *outlenp = inlen; 11363 return (error); 11364 case IPV6_NEXTHOP: { 11365 struct sockaddr_in6 *sin6; 11366 11367 /* Verify that the nexthop is reachable */ 11368 if (inlen == 0) 11369 return (-EINVAL); /* clearing option */ 11370 11371 sin6 = (struct sockaddr_in6 *)invalp; 11372 ire = ire_route_lookup_v6(&sin6->sin6_addr, 11373 0, 0, 0, NULL, NULL, connp->conn_zoneid, 11374 NULL, MATCH_IRE_DEFAULT, ipst); 11375 11376 if (ire == NULL) { 11377 *outlenp = 0; 11378 return (EHOSTUNREACH); 11379 } 11380 ire_refrele(ire); 11381 return (-EINVAL); 11382 } 11383 case IPV6_SEC_OPT: 11384 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11385 if (error != 0) { 11386 *outlenp = 0; 11387 return (error); 11388 } 11389 break; 11390 case IPV6_SRC_PREFERENCES: { 11391 /* 11392 * This is implemented strictly in the ip module 11393 * (here and in tcp_opt_*() to accomodate tcp 11394 * sockets). Modules above ip pass this option 11395 * down here since ip is the only one that needs to 11396 * be aware of source address preferences. 11397 * 11398 * This socket option only affects connected 11399 * sockets that haven't already bound to a specific 11400 * IPv6 address. In other words, sockets that 11401 * don't call bind() with an address other than the 11402 * unspecified address and that call connect(). 11403 * ip_bind_connected_v6() passes these preferences 11404 * to the ipif_select_source_v6() function. 11405 */ 11406 if (inlen != sizeof (uint32_t)) 11407 return (EINVAL); 11408 error = ip6_set_src_preferences(connp, 11409 *(uint32_t *)invalp); 11410 if (error != 0) { 11411 *outlenp = 0; 11412 return (error); 11413 } else { 11414 *outlenp = sizeof (uint32_t); 11415 } 11416 break; 11417 } 11418 case IPV6_V6ONLY: 11419 if (*i1 < 0 || *i1 > 1) { 11420 return (EINVAL); 11421 } 11422 mutex_enter(&connp->conn_lock); 11423 connp->conn_ipv6_v6only = *i1; 11424 mutex_exit(&connp->conn_lock); 11425 break; 11426 default: 11427 return (-EINVAL); 11428 } 11429 break; 11430 default: 11431 /* 11432 * "soft" error (negative) 11433 * option not handled at this level 11434 * Note: Do not modify *outlenp 11435 */ 11436 return (-EINVAL); 11437 } 11438 /* 11439 * Common case of return from an option that is sizeof (int) 11440 */ 11441 *(int *)outvalp = *i1; 11442 *outlenp = sizeof (int); 11443 return (0); 11444 } 11445 11446 /* 11447 * This routine gets default values of certain options whose default 11448 * values are maintained by protocol specific code 11449 */ 11450 /* ARGSUSED */ 11451 int 11452 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 11453 { 11454 int *i1 = (int *)ptr; 11455 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11456 11457 switch (level) { 11458 case IPPROTO_IP: 11459 switch (name) { 11460 case IP_MULTICAST_TTL: 11461 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 11462 return (sizeof (uchar_t)); 11463 case IP_MULTICAST_LOOP: 11464 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 11465 return (sizeof (uchar_t)); 11466 default: 11467 return (-1); 11468 } 11469 case IPPROTO_IPV6: 11470 switch (name) { 11471 case IPV6_UNICAST_HOPS: 11472 *i1 = ipst->ips_ipv6_def_hops; 11473 return (sizeof (int)); 11474 case IPV6_MULTICAST_HOPS: 11475 *i1 = IP_DEFAULT_MULTICAST_TTL; 11476 return (sizeof (int)); 11477 case IPV6_MULTICAST_LOOP: 11478 *i1 = IP_DEFAULT_MULTICAST_LOOP; 11479 return (sizeof (int)); 11480 case IPV6_V6ONLY: 11481 *i1 = 1; 11482 return (sizeof (int)); 11483 default: 11484 return (-1); 11485 } 11486 default: 11487 return (-1); 11488 } 11489 /* NOTREACHED */ 11490 } 11491 11492 /* 11493 * Given a destination address and a pointer to where to put the information 11494 * this routine fills in the mtuinfo. 11495 */ 11496 int 11497 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 11498 struct ip6_mtuinfo *mtuinfo, netstack_t *ns) 11499 { 11500 ire_t *ire; 11501 ip_stack_t *ipst = ns->netstack_ip; 11502 11503 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 11504 return (-1); 11505 11506 bzero(mtuinfo, sizeof (*mtuinfo)); 11507 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 11508 mtuinfo->ip6m_addr.sin6_port = port; 11509 mtuinfo->ip6m_addr.sin6_addr = *in6; 11510 11511 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL, ipst); 11512 if (ire != NULL) { 11513 mtuinfo->ip6m_mtu = ire->ire_max_frag; 11514 ire_refrele(ire); 11515 } else { 11516 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 11517 } 11518 return (sizeof (struct ip6_mtuinfo)); 11519 } 11520 11521 /* 11522 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 11523 * checking of GET_QUEUE_CRED(q) and that ip_g_mrouter is set should be done and 11524 * isn't. This doesn't matter as the error checking is done properly for the 11525 * other MRT options coming in through ip_opt_set. 11526 */ 11527 int 11528 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 11529 { 11530 conn_t *connp = Q_TO_CONN(q); 11531 ipsec_req_t *req = (ipsec_req_t *)ptr; 11532 11533 switch (level) { 11534 case IPPROTO_IP: 11535 switch (name) { 11536 case MRT_VERSION: 11537 case MRT_ASSERT: 11538 (void) ip_mrouter_get(name, q, ptr); 11539 return (sizeof (int)); 11540 case IP_SEC_OPT: 11541 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 11542 case IP_NEXTHOP: 11543 if (connp->conn_nexthop_set) { 11544 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 11545 return (sizeof (ipaddr_t)); 11546 } else 11547 return (0); 11548 case IP_RECVPKTINFO: 11549 *(int *)ptr = connp->conn_ip_recvpktinfo ? 1: 0; 11550 return (sizeof (int)); 11551 default: 11552 break; 11553 } 11554 break; 11555 case IPPROTO_IPV6: 11556 switch (name) { 11557 case IPV6_SEC_OPT: 11558 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 11559 case IPV6_SRC_PREFERENCES: { 11560 return (ip6_get_src_preferences(connp, 11561 (uint32_t *)ptr)); 11562 } 11563 case IPV6_V6ONLY: 11564 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 11565 return (sizeof (int)); 11566 case IPV6_PATHMTU: 11567 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 11568 (struct ip6_mtuinfo *)ptr, connp->conn_netstack)); 11569 default: 11570 break; 11571 } 11572 break; 11573 default: 11574 break; 11575 } 11576 return (-1); 11577 } 11578 11579 /* Named Dispatch routine to get a current value out of our parameter table. */ 11580 /* ARGSUSED */ 11581 static int 11582 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11583 { 11584 ipparam_t *ippa = (ipparam_t *)cp; 11585 11586 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 11587 return (0); 11588 } 11589 11590 /* ARGSUSED */ 11591 static int 11592 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11593 { 11594 11595 (void) mi_mpprintf(mp, "%d", *(int *)cp); 11596 return (0); 11597 } 11598 11599 /* 11600 * Set ip{,6}_forwarding values. This means walking through all of the 11601 * ill's and toggling their forwarding values. 11602 */ 11603 /* ARGSUSED */ 11604 static int 11605 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11606 { 11607 long new_value; 11608 int *forwarding_value = (int *)cp; 11609 ill_t *ill; 11610 boolean_t isv6; 11611 ill_walk_context_t ctx; 11612 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11613 11614 isv6 = (forwarding_value == &ipst->ips_ipv6_forward); 11615 11616 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11617 new_value < 0 || new_value > 1) { 11618 return (EINVAL); 11619 } 11620 11621 *forwarding_value = new_value; 11622 11623 /* 11624 * Regardless of the current value of ip_forwarding, set all per-ill 11625 * values of ip_forwarding to the value being set. 11626 * 11627 * Bring all the ill's up to date with the new global value. 11628 */ 11629 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11630 11631 if (isv6) 11632 ill = ILL_START_WALK_V6(&ctx, ipst); 11633 else 11634 ill = ILL_START_WALK_V4(&ctx, ipst); 11635 11636 for (; ill != NULL; ill = ill_next(&ctx, ill)) 11637 (void) ill_forward_set(ill, new_value != 0); 11638 11639 rw_exit(&ipst->ips_ill_g_lock); 11640 return (0); 11641 } 11642 11643 /* 11644 * Walk through the param array specified registering each element with the 11645 * Named Dispatch handler. This is called only during init. So it is ok 11646 * not to acquire any locks 11647 */ 11648 static boolean_t 11649 ip_param_register(IDP *ndp, ipparam_t *ippa, size_t ippa_cnt, 11650 ipndp_t *ipnd, size_t ipnd_cnt) 11651 { 11652 for (; ippa_cnt-- > 0; ippa++) { 11653 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 11654 if (!nd_load(ndp, ippa->ip_param_name, 11655 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11656 nd_free(ndp); 11657 return (B_FALSE); 11658 } 11659 } 11660 } 11661 11662 for (; ipnd_cnt-- > 0; ipnd++) { 11663 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11664 if (!nd_load(ndp, ipnd->ip_ndp_name, 11665 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11666 ipnd->ip_ndp_data)) { 11667 nd_free(ndp); 11668 return (B_FALSE); 11669 } 11670 } 11671 } 11672 11673 return (B_TRUE); 11674 } 11675 11676 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11677 /* ARGSUSED */ 11678 static int 11679 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11680 { 11681 long new_value; 11682 ipparam_t *ippa = (ipparam_t *)cp; 11683 11684 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11685 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11686 return (EINVAL); 11687 } 11688 ippa->ip_param_value = new_value; 11689 return (0); 11690 } 11691 11692 /* 11693 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11694 * When an ipf is passed here for the first time, if 11695 * we already have in-order fragments on the queue, we convert from the fast- 11696 * path reassembly scheme to the hard-case scheme. From then on, additional 11697 * fragments are reassembled here. We keep track of the start and end offsets 11698 * of each piece, and the number of holes in the chain. When the hole count 11699 * goes to zero, we are done! 11700 * 11701 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11702 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11703 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11704 * after the call to ip_reassemble(). 11705 */ 11706 int 11707 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11708 size_t msg_len) 11709 { 11710 uint_t end; 11711 mblk_t *next_mp; 11712 mblk_t *mp1; 11713 uint_t offset; 11714 boolean_t incr_dups = B_TRUE; 11715 boolean_t offset_zero_seen = B_FALSE; 11716 boolean_t pkt_boundary_checked = B_FALSE; 11717 11718 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11719 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11720 11721 /* Add in byte count */ 11722 ipf->ipf_count += msg_len; 11723 if (ipf->ipf_end) { 11724 /* 11725 * We were part way through in-order reassembly, but now there 11726 * is a hole. We walk through messages already queued, and 11727 * mark them for hard case reassembly. We know that up till 11728 * now they were in order starting from offset zero. 11729 */ 11730 offset = 0; 11731 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11732 IP_REASS_SET_START(mp1, offset); 11733 if (offset == 0) { 11734 ASSERT(ipf->ipf_nf_hdr_len != 0); 11735 offset = -ipf->ipf_nf_hdr_len; 11736 } 11737 offset += mp1->b_wptr - mp1->b_rptr; 11738 IP_REASS_SET_END(mp1, offset); 11739 } 11740 /* One hole at the end. */ 11741 ipf->ipf_hole_cnt = 1; 11742 /* Brand it as a hard case, forever. */ 11743 ipf->ipf_end = 0; 11744 } 11745 /* Walk through all the new pieces. */ 11746 do { 11747 end = start + (mp->b_wptr - mp->b_rptr); 11748 /* 11749 * If start is 0, decrease 'end' only for the first mblk of 11750 * the fragment. Otherwise 'end' can get wrong value in the 11751 * second pass of the loop if first mblk is exactly the 11752 * size of ipf_nf_hdr_len. 11753 */ 11754 if (start == 0 && !offset_zero_seen) { 11755 /* First segment */ 11756 ASSERT(ipf->ipf_nf_hdr_len != 0); 11757 end -= ipf->ipf_nf_hdr_len; 11758 offset_zero_seen = B_TRUE; 11759 } 11760 next_mp = mp->b_cont; 11761 /* 11762 * We are checking to see if there is any interesing data 11763 * to process. If there isn't and the mblk isn't the 11764 * one which carries the unfragmentable header then we 11765 * drop it. It's possible to have just the unfragmentable 11766 * header come through without any data. That needs to be 11767 * saved. 11768 * 11769 * If the assert at the top of this function holds then the 11770 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 11771 * is infrequently traveled enough that the test is left in 11772 * to protect against future code changes which break that 11773 * invariant. 11774 */ 11775 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 11776 /* Empty. Blast it. */ 11777 IP_REASS_SET_START(mp, 0); 11778 IP_REASS_SET_END(mp, 0); 11779 /* 11780 * If the ipf points to the mblk we are about to free, 11781 * update ipf to point to the next mblk (or NULL 11782 * if none). 11783 */ 11784 if (ipf->ipf_mp->b_cont == mp) 11785 ipf->ipf_mp->b_cont = next_mp; 11786 freeb(mp); 11787 continue; 11788 } 11789 mp->b_cont = NULL; 11790 IP_REASS_SET_START(mp, start); 11791 IP_REASS_SET_END(mp, end); 11792 if (!ipf->ipf_tail_mp) { 11793 ipf->ipf_tail_mp = mp; 11794 ipf->ipf_mp->b_cont = mp; 11795 if (start == 0 || !more) { 11796 ipf->ipf_hole_cnt = 1; 11797 /* 11798 * if the first fragment comes in more than one 11799 * mblk, this loop will be executed for each 11800 * mblk. Need to adjust hole count so exiting 11801 * this routine will leave hole count at 1. 11802 */ 11803 if (next_mp) 11804 ipf->ipf_hole_cnt++; 11805 } else 11806 ipf->ipf_hole_cnt = 2; 11807 continue; 11808 } else if (ipf->ipf_last_frag_seen && !more && 11809 !pkt_boundary_checked) { 11810 /* 11811 * We check datagram boundary only if this fragment 11812 * claims to be the last fragment and we have seen a 11813 * last fragment in the past too. We do this only 11814 * once for a given fragment. 11815 * 11816 * start cannot be 0 here as fragments with start=0 11817 * and MF=0 gets handled as a complete packet. These 11818 * fragments should not reach here. 11819 */ 11820 11821 if (start + msgdsize(mp) != 11822 IP_REASS_END(ipf->ipf_tail_mp)) { 11823 /* 11824 * We have two fragments both of which claim 11825 * to be the last fragment but gives conflicting 11826 * information about the whole datagram size. 11827 * Something fishy is going on. Drop the 11828 * fragment and free up the reassembly list. 11829 */ 11830 return (IP_REASS_FAILED); 11831 } 11832 11833 /* 11834 * We shouldn't come to this code block again for this 11835 * particular fragment. 11836 */ 11837 pkt_boundary_checked = B_TRUE; 11838 } 11839 11840 /* New stuff at or beyond tail? */ 11841 offset = IP_REASS_END(ipf->ipf_tail_mp); 11842 if (start >= offset) { 11843 if (ipf->ipf_last_frag_seen) { 11844 /* current fragment is beyond last fragment */ 11845 return (IP_REASS_FAILED); 11846 } 11847 /* Link it on end. */ 11848 ipf->ipf_tail_mp->b_cont = mp; 11849 ipf->ipf_tail_mp = mp; 11850 if (more) { 11851 if (start != offset) 11852 ipf->ipf_hole_cnt++; 11853 } else if (start == offset && next_mp == NULL) 11854 ipf->ipf_hole_cnt--; 11855 continue; 11856 } 11857 mp1 = ipf->ipf_mp->b_cont; 11858 offset = IP_REASS_START(mp1); 11859 /* New stuff at the front? */ 11860 if (start < offset) { 11861 if (start == 0) { 11862 if (end >= offset) { 11863 /* Nailed the hole at the begining. */ 11864 ipf->ipf_hole_cnt--; 11865 } 11866 } else if (end < offset) { 11867 /* 11868 * A hole, stuff, and a hole where there used 11869 * to be just a hole. 11870 */ 11871 ipf->ipf_hole_cnt++; 11872 } 11873 mp->b_cont = mp1; 11874 /* Check for overlap. */ 11875 while (end > offset) { 11876 if (end < IP_REASS_END(mp1)) { 11877 mp->b_wptr -= end - offset; 11878 IP_REASS_SET_END(mp, offset); 11879 BUMP_MIB(ill->ill_ip_mib, 11880 ipIfStatsReasmPartDups); 11881 break; 11882 } 11883 /* Did we cover another hole? */ 11884 if ((mp1->b_cont && 11885 IP_REASS_END(mp1) != 11886 IP_REASS_START(mp1->b_cont) && 11887 end >= IP_REASS_START(mp1->b_cont)) || 11888 (!ipf->ipf_last_frag_seen && !more)) { 11889 ipf->ipf_hole_cnt--; 11890 } 11891 /* Clip out mp1. */ 11892 if ((mp->b_cont = mp1->b_cont) == NULL) { 11893 /* 11894 * After clipping out mp1, this guy 11895 * is now hanging off the end. 11896 */ 11897 ipf->ipf_tail_mp = mp; 11898 } 11899 IP_REASS_SET_START(mp1, 0); 11900 IP_REASS_SET_END(mp1, 0); 11901 /* Subtract byte count */ 11902 ipf->ipf_count -= mp1->b_datap->db_lim - 11903 mp1->b_datap->db_base; 11904 freeb(mp1); 11905 BUMP_MIB(ill->ill_ip_mib, 11906 ipIfStatsReasmPartDups); 11907 mp1 = mp->b_cont; 11908 if (!mp1) 11909 break; 11910 offset = IP_REASS_START(mp1); 11911 } 11912 ipf->ipf_mp->b_cont = mp; 11913 continue; 11914 } 11915 /* 11916 * The new piece starts somewhere between the start of the head 11917 * and before the end of the tail. 11918 */ 11919 for (; mp1; mp1 = mp1->b_cont) { 11920 offset = IP_REASS_END(mp1); 11921 if (start < offset) { 11922 if (end <= offset) { 11923 /* Nothing new. */ 11924 IP_REASS_SET_START(mp, 0); 11925 IP_REASS_SET_END(mp, 0); 11926 /* Subtract byte count */ 11927 ipf->ipf_count -= mp->b_datap->db_lim - 11928 mp->b_datap->db_base; 11929 if (incr_dups) { 11930 ipf->ipf_num_dups++; 11931 incr_dups = B_FALSE; 11932 } 11933 freeb(mp); 11934 BUMP_MIB(ill->ill_ip_mib, 11935 ipIfStatsReasmDuplicates); 11936 break; 11937 } 11938 /* 11939 * Trim redundant stuff off beginning of new 11940 * piece. 11941 */ 11942 IP_REASS_SET_START(mp, offset); 11943 mp->b_rptr += offset - start; 11944 BUMP_MIB(ill->ill_ip_mib, 11945 ipIfStatsReasmPartDups); 11946 start = offset; 11947 if (!mp1->b_cont) { 11948 /* 11949 * After trimming, this guy is now 11950 * hanging off the end. 11951 */ 11952 mp1->b_cont = mp; 11953 ipf->ipf_tail_mp = mp; 11954 if (!more) { 11955 ipf->ipf_hole_cnt--; 11956 } 11957 break; 11958 } 11959 } 11960 if (start >= IP_REASS_START(mp1->b_cont)) 11961 continue; 11962 /* Fill a hole */ 11963 if (start > offset) 11964 ipf->ipf_hole_cnt++; 11965 mp->b_cont = mp1->b_cont; 11966 mp1->b_cont = mp; 11967 mp1 = mp->b_cont; 11968 offset = IP_REASS_START(mp1); 11969 if (end >= offset) { 11970 ipf->ipf_hole_cnt--; 11971 /* Check for overlap. */ 11972 while (end > offset) { 11973 if (end < IP_REASS_END(mp1)) { 11974 mp->b_wptr -= end - offset; 11975 IP_REASS_SET_END(mp, offset); 11976 /* 11977 * TODO we might bump 11978 * this up twice if there is 11979 * overlap at both ends. 11980 */ 11981 BUMP_MIB(ill->ill_ip_mib, 11982 ipIfStatsReasmPartDups); 11983 break; 11984 } 11985 /* Did we cover another hole? */ 11986 if ((mp1->b_cont && 11987 IP_REASS_END(mp1) 11988 != IP_REASS_START(mp1->b_cont) && 11989 end >= 11990 IP_REASS_START(mp1->b_cont)) || 11991 (!ipf->ipf_last_frag_seen && 11992 !more)) { 11993 ipf->ipf_hole_cnt--; 11994 } 11995 /* Clip out mp1. */ 11996 if ((mp->b_cont = mp1->b_cont) == 11997 NULL) { 11998 /* 11999 * After clipping out mp1, 12000 * this guy is now hanging 12001 * off the end. 12002 */ 12003 ipf->ipf_tail_mp = mp; 12004 } 12005 IP_REASS_SET_START(mp1, 0); 12006 IP_REASS_SET_END(mp1, 0); 12007 /* Subtract byte count */ 12008 ipf->ipf_count -= 12009 mp1->b_datap->db_lim - 12010 mp1->b_datap->db_base; 12011 freeb(mp1); 12012 BUMP_MIB(ill->ill_ip_mib, 12013 ipIfStatsReasmPartDups); 12014 mp1 = mp->b_cont; 12015 if (!mp1) 12016 break; 12017 offset = IP_REASS_START(mp1); 12018 } 12019 } 12020 break; 12021 } 12022 } while (start = end, mp = next_mp); 12023 12024 /* Fragment just processed could be the last one. Remember this fact */ 12025 if (!more) 12026 ipf->ipf_last_frag_seen = B_TRUE; 12027 12028 /* Still got holes? */ 12029 if (ipf->ipf_hole_cnt) 12030 return (IP_REASS_PARTIAL); 12031 /* Clean up overloaded fields to avoid upstream disasters. */ 12032 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 12033 IP_REASS_SET_START(mp1, 0); 12034 IP_REASS_SET_END(mp1, 0); 12035 } 12036 return (IP_REASS_COMPLETE); 12037 } 12038 12039 /* 12040 * ipsec processing for the fast path, used for input UDP Packets 12041 * Returns true if ready for passup to UDP. 12042 * Return false if packet is not passable to UDP (e.g. it failed IPsec policy, 12043 * was an ESP-in-UDP packet, etc.). 12044 */ 12045 static boolean_t 12046 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 12047 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present, ire_t *ire) 12048 { 12049 uint32_t ill_index; 12050 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 12051 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 12052 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12053 udp_t *udp = connp->conn_udp; 12054 12055 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12056 /* The ill_index of the incoming ILL */ 12057 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 12058 12059 /* pass packet up to the transport */ 12060 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 12061 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 12062 NULL, mctl_present); 12063 if (*first_mpp == NULL) { 12064 return (B_FALSE); 12065 } 12066 } 12067 12068 /* Initiate IPPF processing for fastpath UDP */ 12069 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 12070 ip_process(IPP_LOCAL_IN, mpp, ill_index); 12071 if (*mpp == NULL) { 12072 ip2dbg(("ip_input_ipsec_process: UDP pkt " 12073 "deferred/dropped during IPPF processing\n")); 12074 return (B_FALSE); 12075 } 12076 } 12077 /* 12078 * Remove 0-spi if it's 0, or move everything behind 12079 * the UDP header over it and forward to ESP via 12080 * ip_proto_input(). 12081 */ 12082 if (udp->udp_nat_t_endpoint) { 12083 if (mctl_present) { 12084 /* mctl_present *shouldn't* happen. */ 12085 ip_drop_packet(*first_mpp, B_TRUE, NULL, 12086 NULL, DROPPER(ipss, ipds_esp_nat_t_ipsec), 12087 &ipss->ipsec_dropper); 12088 *first_mpp = NULL; 12089 return (B_FALSE); 12090 } 12091 12092 /* "ill" is "recv_ill" in actuality. */ 12093 if (!zero_spi_check(q, *mpp, ire, ill, ipss)) 12094 return (B_FALSE); 12095 12096 /* Else continue like a normal UDP packet. */ 12097 } 12098 12099 /* 12100 * We make the checks as below since we are in the fast path 12101 * and want to minimize the number of checks if the IP_RECVIF and/or 12102 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 12103 */ 12104 if (connp->conn_recvif || connp->conn_recvslla || 12105 connp->conn_ip_recvpktinfo) { 12106 if (connp->conn_recvif) { 12107 in_flags = IPF_RECVIF; 12108 } 12109 /* 12110 * UDP supports IP_RECVPKTINFO option for both v4 and v6 12111 * so the flag passed to ip_add_info is based on IP version 12112 * of connp. 12113 */ 12114 if (connp->conn_ip_recvpktinfo) { 12115 if (connp->conn_af_isv6) { 12116 /* 12117 * V6 only needs index 12118 */ 12119 in_flags |= IPF_RECVIF; 12120 } else { 12121 /* 12122 * V4 needs index + matching address. 12123 */ 12124 in_flags |= IPF_RECVADDR; 12125 } 12126 } 12127 if (connp->conn_recvslla) { 12128 in_flags |= IPF_RECVSLLA; 12129 } 12130 /* 12131 * since in_flags are being set ill will be 12132 * referenced in ip_add_info, so it better not 12133 * be NULL. 12134 */ 12135 /* 12136 * the actual data will be contained in b_cont 12137 * upon successful return of the following call. 12138 * If the call fails then the original mblk is 12139 * returned. 12140 */ 12141 *mpp = ip_add_info(*mpp, ill, in_flags, IPCL_ZONEID(connp), 12142 ipst); 12143 } 12144 12145 return (B_TRUE); 12146 } 12147 12148 /* 12149 * Fragmentation reassembly. Each ILL has a hash table for 12150 * queuing packets undergoing reassembly for all IPIFs 12151 * associated with the ILL. The hash is based on the packet 12152 * IP ident field. The ILL frag hash table was allocated 12153 * as a timer block at the time the ILL was created. Whenever 12154 * there is anything on the reassembly queue, the timer will 12155 * be running. Returns B_TRUE if successful else B_FALSE; 12156 * frees mp on failure. 12157 */ 12158 static boolean_t 12159 ip_rput_fragment(queue_t *q, mblk_t **mpp, ipha_t *ipha, 12160 uint32_t *cksum_val, uint16_t *cksum_flags) 12161 { 12162 uint32_t frag_offset_flags; 12163 ill_t *ill = (ill_t *)q->q_ptr; 12164 mblk_t *mp = *mpp; 12165 mblk_t *t_mp; 12166 ipaddr_t dst; 12167 uint8_t proto = ipha->ipha_protocol; 12168 uint32_t sum_val; 12169 uint16_t sum_flags; 12170 ipf_t *ipf; 12171 ipf_t **ipfp; 12172 ipfb_t *ipfb; 12173 uint16_t ident; 12174 uint32_t offset; 12175 ipaddr_t src; 12176 uint_t hdr_length; 12177 uint32_t end; 12178 mblk_t *mp1; 12179 mblk_t *tail_mp; 12180 size_t count; 12181 size_t msg_len; 12182 uint8_t ecn_info = 0; 12183 uint32_t packet_size; 12184 boolean_t pruned = B_FALSE; 12185 ip_stack_t *ipst = ill->ill_ipst; 12186 12187 if (cksum_val != NULL) 12188 *cksum_val = 0; 12189 if (cksum_flags != NULL) 12190 *cksum_flags = 0; 12191 12192 /* 12193 * Drop the fragmented as early as possible, if 12194 * we don't have resource(s) to re-assemble. 12195 */ 12196 if (ipst->ips_ip_reass_queue_bytes == 0) { 12197 freemsg(mp); 12198 return (B_FALSE); 12199 } 12200 12201 /* Check for fragmentation offset; return if there's none */ 12202 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 12203 (IPH_MF | IPH_OFFSET)) == 0) 12204 return (B_TRUE); 12205 12206 /* 12207 * We utilize hardware computed checksum info only for UDP since 12208 * IP fragmentation is a normal occurence for the protocol. In 12209 * addition, checksum offload support for IP fragments carrying 12210 * UDP payload is commonly implemented across network adapters. 12211 */ 12212 ASSERT(ill != NULL); 12213 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(ill) && 12214 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 12215 mblk_t *mp1 = mp->b_cont; 12216 int32_t len; 12217 12218 /* Record checksum information from the packet */ 12219 sum_val = (uint32_t)DB_CKSUM16(mp); 12220 sum_flags = DB_CKSUMFLAGS(mp); 12221 12222 /* IP payload offset from beginning of mblk */ 12223 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 12224 12225 if ((sum_flags & HCK_PARTIALCKSUM) && 12226 (mp1 == NULL || mp1->b_cont == NULL) && 12227 offset >= DB_CKSUMSTART(mp) && 12228 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 12229 uint32_t adj; 12230 /* 12231 * Partial checksum has been calculated by hardware 12232 * and attached to the packet; in addition, any 12233 * prepended extraneous data is even byte aligned. 12234 * If any such data exists, we adjust the checksum; 12235 * this would also handle any postpended data. 12236 */ 12237 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 12238 mp, mp1, len, adj); 12239 12240 /* One's complement subtract extraneous checksum */ 12241 if (adj >= sum_val) 12242 sum_val = ~(adj - sum_val) & 0xFFFF; 12243 else 12244 sum_val -= adj; 12245 } 12246 } else { 12247 sum_val = 0; 12248 sum_flags = 0; 12249 } 12250 12251 /* Clear hardware checksumming flag */ 12252 DB_CKSUMFLAGS(mp) = 0; 12253 12254 ident = ipha->ipha_ident; 12255 offset = (frag_offset_flags << 3) & 0xFFFF; 12256 src = ipha->ipha_src; 12257 dst = ipha->ipha_dst; 12258 hdr_length = IPH_HDR_LENGTH(ipha); 12259 end = ntohs(ipha->ipha_length) - hdr_length; 12260 12261 /* If end == 0 then we have a packet with no data, so just free it */ 12262 if (end == 0) { 12263 freemsg(mp); 12264 return (B_FALSE); 12265 } 12266 12267 /* Record the ECN field info. */ 12268 ecn_info = (ipha->ipha_type_of_service & 0x3); 12269 if (offset != 0) { 12270 /* 12271 * If this isn't the first piece, strip the header, and 12272 * add the offset to the end value. 12273 */ 12274 mp->b_rptr += hdr_length; 12275 end += offset; 12276 } 12277 12278 msg_len = MBLKSIZE(mp); 12279 tail_mp = mp; 12280 while (tail_mp->b_cont != NULL) { 12281 tail_mp = tail_mp->b_cont; 12282 msg_len += MBLKSIZE(tail_mp); 12283 } 12284 12285 /* If the reassembly list for this ILL will get too big, prune it */ 12286 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 12287 ipst->ips_ip_reass_queue_bytes) { 12288 ill_frag_prune(ill, 12289 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 12290 (ipst->ips_ip_reass_queue_bytes - msg_len)); 12291 pruned = B_TRUE; 12292 } 12293 12294 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 12295 mutex_enter(&ipfb->ipfb_lock); 12296 12297 ipfp = &ipfb->ipfb_ipf; 12298 /* Try to find an existing fragment queue for this packet. */ 12299 for (;;) { 12300 ipf = ipfp[0]; 12301 if (ipf != NULL) { 12302 /* 12303 * It has to match on ident and src/dst address. 12304 */ 12305 if (ipf->ipf_ident == ident && 12306 ipf->ipf_src == src && 12307 ipf->ipf_dst == dst && 12308 ipf->ipf_protocol == proto) { 12309 /* 12310 * If we have received too many 12311 * duplicate fragments for this packet 12312 * free it. 12313 */ 12314 if (ipf->ipf_num_dups > ip_max_frag_dups) { 12315 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12316 freemsg(mp); 12317 mutex_exit(&ipfb->ipfb_lock); 12318 return (B_FALSE); 12319 } 12320 /* Found it. */ 12321 break; 12322 } 12323 ipfp = &ipf->ipf_hash_next; 12324 continue; 12325 } 12326 12327 /* 12328 * If we pruned the list, do we want to store this new 12329 * fragment?. We apply an optimization here based on the 12330 * fact that most fragments will be received in order. 12331 * So if the offset of this incoming fragment is zero, 12332 * it is the first fragment of a new packet. We will 12333 * keep it. Otherwise drop the fragment, as we have 12334 * probably pruned the packet already (since the 12335 * packet cannot be found). 12336 */ 12337 if (pruned && offset != 0) { 12338 mutex_exit(&ipfb->ipfb_lock); 12339 freemsg(mp); 12340 return (B_FALSE); 12341 } 12342 12343 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 12344 /* 12345 * Too many fragmented packets in this hash 12346 * bucket. Free the oldest. 12347 */ 12348 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 12349 } 12350 12351 /* New guy. Allocate a frag message. */ 12352 mp1 = allocb(sizeof (*ipf), BPRI_MED); 12353 if (mp1 == NULL) { 12354 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12355 freemsg(mp); 12356 reass_done: 12357 mutex_exit(&ipfb->ipfb_lock); 12358 return (B_FALSE); 12359 } 12360 12361 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 12362 mp1->b_cont = mp; 12363 12364 /* Initialize the fragment header. */ 12365 ipf = (ipf_t *)mp1->b_rptr; 12366 ipf->ipf_mp = mp1; 12367 ipf->ipf_ptphn = ipfp; 12368 ipfp[0] = ipf; 12369 ipf->ipf_hash_next = NULL; 12370 ipf->ipf_ident = ident; 12371 ipf->ipf_protocol = proto; 12372 ipf->ipf_src = src; 12373 ipf->ipf_dst = dst; 12374 ipf->ipf_nf_hdr_len = 0; 12375 /* Record reassembly start time. */ 12376 ipf->ipf_timestamp = gethrestime_sec(); 12377 /* Record ipf generation and account for frag header */ 12378 ipf->ipf_gen = ill->ill_ipf_gen++; 12379 ipf->ipf_count = MBLKSIZE(mp1); 12380 ipf->ipf_last_frag_seen = B_FALSE; 12381 ipf->ipf_ecn = ecn_info; 12382 ipf->ipf_num_dups = 0; 12383 ipfb->ipfb_frag_pkts++; 12384 ipf->ipf_checksum = 0; 12385 ipf->ipf_checksum_flags = 0; 12386 12387 /* Store checksum value in fragment header */ 12388 if (sum_flags != 0) { 12389 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12390 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12391 ipf->ipf_checksum = sum_val; 12392 ipf->ipf_checksum_flags = sum_flags; 12393 } 12394 12395 /* 12396 * We handle reassembly two ways. In the easy case, 12397 * where all the fragments show up in order, we do 12398 * minimal bookkeeping, and just clip new pieces on 12399 * the end. If we ever see a hole, then we go off 12400 * to ip_reassemble which has to mark the pieces and 12401 * keep track of the number of holes, etc. Obviously, 12402 * the point of having both mechanisms is so we can 12403 * handle the easy case as efficiently as possible. 12404 */ 12405 if (offset == 0) { 12406 /* Easy case, in-order reassembly so far. */ 12407 ipf->ipf_count += msg_len; 12408 ipf->ipf_tail_mp = tail_mp; 12409 /* 12410 * Keep track of next expected offset in 12411 * ipf_end. 12412 */ 12413 ipf->ipf_end = end; 12414 ipf->ipf_nf_hdr_len = hdr_length; 12415 } else { 12416 /* Hard case, hole at the beginning. */ 12417 ipf->ipf_tail_mp = NULL; 12418 /* 12419 * ipf_end == 0 means that we have given up 12420 * on easy reassembly. 12421 */ 12422 ipf->ipf_end = 0; 12423 12424 /* Forget checksum offload from now on */ 12425 ipf->ipf_checksum_flags = 0; 12426 12427 /* 12428 * ipf_hole_cnt is set by ip_reassemble. 12429 * ipf_count is updated by ip_reassemble. 12430 * No need to check for return value here 12431 * as we don't expect reassembly to complete 12432 * or fail for the first fragment itself. 12433 */ 12434 (void) ip_reassemble(mp, ipf, 12435 (frag_offset_flags & IPH_OFFSET) << 3, 12436 (frag_offset_flags & IPH_MF), ill, msg_len); 12437 } 12438 /* Update per ipfb and ill byte counts */ 12439 ipfb->ipfb_count += ipf->ipf_count; 12440 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12441 ill->ill_frag_count += ipf->ipf_count; 12442 /* If the frag timer wasn't already going, start it. */ 12443 mutex_enter(&ill->ill_lock); 12444 ill_frag_timer_start(ill); 12445 mutex_exit(&ill->ill_lock); 12446 goto reass_done; 12447 } 12448 12449 /* 12450 * If the packet's flag has changed (it could be coming up 12451 * from an interface different than the previous, therefore 12452 * possibly different checksum capability), then forget about 12453 * any stored checksum states. Otherwise add the value to 12454 * the existing one stored in the fragment header. 12455 */ 12456 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 12457 sum_val += ipf->ipf_checksum; 12458 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12459 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12460 ipf->ipf_checksum = sum_val; 12461 } else if (ipf->ipf_checksum_flags != 0) { 12462 /* Forget checksum offload from now on */ 12463 ipf->ipf_checksum_flags = 0; 12464 } 12465 12466 /* 12467 * We have a new piece of a datagram which is already being 12468 * reassembled. Update the ECN info if all IP fragments 12469 * are ECN capable. If there is one which is not, clear 12470 * all the info. If there is at least one which has CE 12471 * code point, IP needs to report that up to transport. 12472 */ 12473 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 12474 if (ecn_info == IPH_ECN_CE) 12475 ipf->ipf_ecn = IPH_ECN_CE; 12476 } else { 12477 ipf->ipf_ecn = IPH_ECN_NECT; 12478 } 12479 if (offset && ipf->ipf_end == offset) { 12480 /* The new fragment fits at the end */ 12481 ipf->ipf_tail_mp->b_cont = mp; 12482 /* Update the byte count */ 12483 ipf->ipf_count += msg_len; 12484 /* Update per ipfb and ill byte counts */ 12485 ipfb->ipfb_count += msg_len; 12486 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12487 ill->ill_frag_count += msg_len; 12488 if (frag_offset_flags & IPH_MF) { 12489 /* More to come. */ 12490 ipf->ipf_end = end; 12491 ipf->ipf_tail_mp = tail_mp; 12492 goto reass_done; 12493 } 12494 } else { 12495 /* Go do the hard cases. */ 12496 int ret; 12497 12498 if (offset == 0) 12499 ipf->ipf_nf_hdr_len = hdr_length; 12500 12501 /* Save current byte count */ 12502 count = ipf->ipf_count; 12503 ret = ip_reassemble(mp, ipf, 12504 (frag_offset_flags & IPH_OFFSET) << 3, 12505 (frag_offset_flags & IPH_MF), ill, msg_len); 12506 /* Count of bytes added and subtracted (freeb()ed) */ 12507 count = ipf->ipf_count - count; 12508 if (count) { 12509 /* Update per ipfb and ill byte counts */ 12510 ipfb->ipfb_count += count; 12511 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12512 ill->ill_frag_count += count; 12513 } 12514 if (ret == IP_REASS_PARTIAL) { 12515 goto reass_done; 12516 } else if (ret == IP_REASS_FAILED) { 12517 /* Reassembly failed. Free up all resources */ 12518 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12519 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 12520 IP_REASS_SET_START(t_mp, 0); 12521 IP_REASS_SET_END(t_mp, 0); 12522 } 12523 freemsg(mp); 12524 goto reass_done; 12525 } 12526 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 12527 } 12528 /* 12529 * We have completed reassembly. Unhook the frag header from 12530 * the reassembly list. 12531 * 12532 * Before we free the frag header, record the ECN info 12533 * to report back to the transport. 12534 */ 12535 ecn_info = ipf->ipf_ecn; 12536 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 12537 ipfp = ipf->ipf_ptphn; 12538 12539 /* We need to supply these to caller */ 12540 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 12541 sum_val = ipf->ipf_checksum; 12542 else 12543 sum_val = 0; 12544 12545 mp1 = ipf->ipf_mp; 12546 count = ipf->ipf_count; 12547 ipf = ipf->ipf_hash_next; 12548 if (ipf != NULL) 12549 ipf->ipf_ptphn = ipfp; 12550 ipfp[0] = ipf; 12551 ill->ill_frag_count -= count; 12552 ASSERT(ipfb->ipfb_count >= count); 12553 ipfb->ipfb_count -= count; 12554 ipfb->ipfb_frag_pkts--; 12555 mutex_exit(&ipfb->ipfb_lock); 12556 /* Ditch the frag header. */ 12557 mp = mp1->b_cont; 12558 12559 freeb(mp1); 12560 12561 /* Restore original IP length in header. */ 12562 packet_size = (uint32_t)msgdsize(mp); 12563 if (packet_size > IP_MAXPACKET) { 12564 freemsg(mp); 12565 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 12566 return (B_FALSE); 12567 } 12568 12569 if (DB_REF(mp) > 1) { 12570 mblk_t *mp2 = copymsg(mp); 12571 12572 freemsg(mp); 12573 if (mp2 == NULL) { 12574 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12575 return (B_FALSE); 12576 } 12577 mp = mp2; 12578 } 12579 ipha = (ipha_t *)mp->b_rptr; 12580 12581 ipha->ipha_length = htons((uint16_t)packet_size); 12582 /* We're now complete, zip the frag state */ 12583 ipha->ipha_fragment_offset_and_flags = 0; 12584 /* Record the ECN info. */ 12585 ipha->ipha_type_of_service &= 0xFC; 12586 ipha->ipha_type_of_service |= ecn_info; 12587 *mpp = mp; 12588 12589 /* Reassembly is successful; return checksum information if needed */ 12590 if (cksum_val != NULL) 12591 *cksum_val = sum_val; 12592 if (cksum_flags != NULL) 12593 *cksum_flags = sum_flags; 12594 12595 return (B_TRUE); 12596 } 12597 12598 /* 12599 * Perform ip header check sum update local options. 12600 * return B_TRUE if all is well, else return B_FALSE and release 12601 * the mp. caller is responsible for decrementing ire ref cnt. 12602 */ 12603 static boolean_t 12604 ip_options_cksum(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12605 ip_stack_t *ipst) 12606 { 12607 mblk_t *first_mp; 12608 boolean_t mctl_present; 12609 uint16_t sum; 12610 12611 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12612 /* 12613 * Don't do the checksum if it has gone through AH/ESP 12614 * processing. 12615 */ 12616 if (!mctl_present) { 12617 sum = ip_csum_hdr(ipha); 12618 if (sum != 0) { 12619 if (ill != NULL) { 12620 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12621 } else { 12622 BUMP_MIB(&ipst->ips_ip_mib, 12623 ipIfStatsInCksumErrs); 12624 } 12625 freemsg(first_mp); 12626 return (B_FALSE); 12627 } 12628 } 12629 12630 if (!ip_rput_local_options(q, mp, ipha, ire, ipst)) { 12631 if (mctl_present) 12632 freeb(first_mp); 12633 return (B_FALSE); 12634 } 12635 12636 return (B_TRUE); 12637 } 12638 12639 /* 12640 * All udp packet are delivered to the local host via this routine. 12641 */ 12642 void 12643 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12644 ill_t *recv_ill) 12645 { 12646 uint32_t sum; 12647 uint32_t u1; 12648 boolean_t mctl_present; 12649 conn_t *connp; 12650 mblk_t *first_mp; 12651 uint16_t *up; 12652 ill_t *ill = (ill_t *)q->q_ptr; 12653 uint16_t reass_hck_flags = 0; 12654 ip_stack_t *ipst; 12655 12656 ASSERT(recv_ill != NULL); 12657 ipst = recv_ill->ill_ipst; 12658 12659 #define rptr ((uchar_t *)ipha) 12660 12661 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12662 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 12663 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12664 ASSERT(ill != NULL); 12665 12666 /* 12667 * FAST PATH for udp packets 12668 */ 12669 12670 /* u1 is # words of IP options */ 12671 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 12672 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12673 12674 /* IP options present */ 12675 if (u1 != 0) 12676 goto ipoptions; 12677 12678 /* Check the IP header checksum. */ 12679 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12680 /* Clear the IP header h/w cksum flag */ 12681 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12682 } else if (!mctl_present) { 12683 /* 12684 * Don't verify header checksum if this packet is coming 12685 * back from AH/ESP as we already did it. 12686 */ 12687 #define uph ((uint16_t *)ipha) 12688 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12689 uph[6] + uph[7] + uph[8] + uph[9]; 12690 #undef uph 12691 /* finish doing IP checksum */ 12692 sum = (sum & 0xFFFF) + (sum >> 16); 12693 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12694 if (sum != 0 && sum != 0xFFFF) { 12695 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12696 freemsg(first_mp); 12697 return; 12698 } 12699 } 12700 12701 /* 12702 * Count for SNMP of inbound packets for ire. 12703 * if mctl is present this might be a secure packet and 12704 * has already been counted for in ip_proto_input(). 12705 */ 12706 if (!mctl_present) { 12707 UPDATE_IB_PKT_COUNT(ire); 12708 ire->ire_last_used_time = lbolt; 12709 } 12710 12711 /* packet part of fragmented IP packet? */ 12712 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12713 if (u1 & (IPH_MF | IPH_OFFSET)) { 12714 goto fragmented; 12715 } 12716 12717 /* u1 = IP header length (20 bytes) */ 12718 u1 = IP_SIMPLE_HDR_LENGTH; 12719 12720 /* packet does not contain complete IP & UDP headers */ 12721 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12722 goto udppullup; 12723 12724 /* up points to UDP header */ 12725 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12726 #define iphs ((uint16_t *)ipha) 12727 12728 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12729 if (up[3] != 0) { 12730 mblk_t *mp1 = mp->b_cont; 12731 boolean_t cksum_err; 12732 uint16_t hck_flags = 0; 12733 12734 /* Pseudo-header checksum */ 12735 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12736 iphs[9] + up[2]; 12737 12738 /* 12739 * Revert to software checksum calculation if the interface 12740 * isn't capable of checksum offload or if IPsec is present. 12741 */ 12742 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12743 hck_flags = DB_CKSUMFLAGS(mp); 12744 12745 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12746 IP_STAT(ipst, ip_in_sw_cksum); 12747 12748 IP_CKSUM_RECV(hck_flags, u1, 12749 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12750 (int32_t)((uchar_t *)up - rptr), 12751 mp, mp1, cksum_err); 12752 12753 if (cksum_err) { 12754 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12755 if (hck_flags & HCK_FULLCKSUM) 12756 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12757 else if (hck_flags & HCK_PARTIALCKSUM) 12758 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12759 else 12760 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12761 12762 freemsg(first_mp); 12763 return; 12764 } 12765 } 12766 12767 /* Non-fragmented broadcast or multicast packet? */ 12768 if (ire->ire_type == IRE_BROADCAST) 12769 goto udpslowpath; 12770 12771 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 12772 ire->ire_zoneid, ipst)) != NULL) { 12773 ASSERT(connp->conn_upq != NULL); 12774 IP_STAT(ipst, ip_udp_fast_path); 12775 12776 if (CONN_UDP_FLOWCTLD(connp)) { 12777 freemsg(mp); 12778 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 12779 } else { 12780 if (!mctl_present) { 12781 BUMP_MIB(ill->ill_ip_mib, 12782 ipIfStatsHCInDelivers); 12783 } 12784 /* 12785 * mp and first_mp can change. 12786 */ 12787 if (ip_udp_check(q, connp, recv_ill, 12788 ipha, &mp, &first_mp, mctl_present, ire)) { 12789 /* Send it upstream */ 12790 (connp->conn_recv)(connp, mp, NULL); 12791 } 12792 } 12793 /* 12794 * freeb() cannot deal with null mblk being passed 12795 * in and first_mp can be set to null in the call 12796 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 12797 */ 12798 if (mctl_present && first_mp != NULL) { 12799 freeb(first_mp); 12800 } 12801 CONN_DEC_REF(connp); 12802 return; 12803 } 12804 12805 /* 12806 * if we got here we know the packet is not fragmented and 12807 * has no options. The classifier could not find a conn_t and 12808 * most likely its an icmp packet so send it through slow path. 12809 */ 12810 12811 goto udpslowpath; 12812 12813 ipoptions: 12814 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 12815 goto slow_done; 12816 } 12817 12818 UPDATE_IB_PKT_COUNT(ire); 12819 ire->ire_last_used_time = lbolt; 12820 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12821 if (u1 & (IPH_MF | IPH_OFFSET)) { 12822 fragmented: 12823 /* 12824 * "sum" and "reass_hck_flags" are non-zero if the 12825 * reassembled packet has a valid hardware computed 12826 * checksum information associated with it. 12827 */ 12828 if (!ip_rput_fragment(q, &mp, ipha, &sum, &reass_hck_flags)) 12829 goto slow_done; 12830 /* 12831 * Make sure that first_mp points back to mp as 12832 * the mp we came in with could have changed in 12833 * ip_rput_fragment(). 12834 */ 12835 ASSERT(!mctl_present); 12836 ipha = (ipha_t *)mp->b_rptr; 12837 first_mp = mp; 12838 } 12839 12840 /* Now we have a complete datagram, destined for this machine. */ 12841 u1 = IPH_HDR_LENGTH(ipha); 12842 /* Pull up the UDP header, if necessary. */ 12843 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 12844 udppullup: 12845 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 12846 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12847 freemsg(first_mp); 12848 goto slow_done; 12849 } 12850 ipha = (ipha_t *)mp->b_rptr; 12851 } 12852 12853 /* 12854 * Validate the checksum for the reassembled packet; for the 12855 * pullup case we calculate the payload checksum in software. 12856 */ 12857 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 12858 if (up[3] != 0) { 12859 boolean_t cksum_err; 12860 12861 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12862 IP_STAT(ipst, ip_in_sw_cksum); 12863 12864 IP_CKSUM_RECV_REASS(reass_hck_flags, 12865 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 12866 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12867 iphs[9] + up[2], sum, cksum_err); 12868 12869 if (cksum_err) { 12870 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12871 12872 if (reass_hck_flags & HCK_FULLCKSUM) 12873 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12874 else if (reass_hck_flags & HCK_PARTIALCKSUM) 12875 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12876 else 12877 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12878 12879 freemsg(first_mp); 12880 goto slow_done; 12881 } 12882 } 12883 udpslowpath: 12884 12885 /* Clear hardware checksum flag to be safe */ 12886 DB_CKSUMFLAGS(mp) = 0; 12887 12888 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 12889 (ire->ire_type == IRE_BROADCAST), 12890 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IPINFO, 12891 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 12892 12893 slow_done: 12894 IP_STAT(ipst, ip_udp_slow_path); 12895 return; 12896 12897 #undef iphs 12898 #undef rptr 12899 } 12900 12901 /* ARGSUSED */ 12902 static mblk_t * 12903 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 12904 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 12905 ill_rx_ring_t *ill_ring) 12906 { 12907 conn_t *connp; 12908 uint32_t sum; 12909 uint32_t u1; 12910 uint16_t *up; 12911 int offset; 12912 ssize_t len; 12913 mblk_t *mp1; 12914 boolean_t syn_present = B_FALSE; 12915 tcph_t *tcph; 12916 uint_t ip_hdr_len; 12917 ill_t *ill = (ill_t *)q->q_ptr; 12918 zoneid_t zoneid = ire->ire_zoneid; 12919 boolean_t cksum_err; 12920 uint16_t hck_flags = 0; 12921 ip_stack_t *ipst = recv_ill->ill_ipst; 12922 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12923 12924 #define rptr ((uchar_t *)ipha) 12925 12926 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 12927 ASSERT(ill != NULL); 12928 12929 /* 12930 * FAST PATH for tcp packets 12931 */ 12932 12933 /* u1 is # words of IP options */ 12934 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 12935 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12936 12937 /* IP options present */ 12938 if (u1) { 12939 goto ipoptions; 12940 } else if (!mctl_present) { 12941 /* Check the IP header checksum. */ 12942 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12943 /* Clear the IP header h/w cksum flag */ 12944 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12945 } else if (!mctl_present) { 12946 /* 12947 * Don't verify header checksum if this packet 12948 * is coming back from AH/ESP as we already did it. 12949 */ 12950 #define uph ((uint16_t *)ipha) 12951 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 12952 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 12953 #undef uph 12954 /* finish doing IP checksum */ 12955 sum = (sum & 0xFFFF) + (sum >> 16); 12956 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12957 if (sum != 0 && sum != 0xFFFF) { 12958 BUMP_MIB(ill->ill_ip_mib, 12959 ipIfStatsInCksumErrs); 12960 goto error; 12961 } 12962 } 12963 } 12964 12965 if (!mctl_present) { 12966 UPDATE_IB_PKT_COUNT(ire); 12967 ire->ire_last_used_time = lbolt; 12968 } 12969 12970 /* packet part of fragmented IP packet? */ 12971 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12972 if (u1 & (IPH_MF | IPH_OFFSET)) { 12973 goto fragmented; 12974 } 12975 12976 /* u1 = IP header length (20 bytes) */ 12977 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 12978 12979 /* does packet contain IP+TCP headers? */ 12980 len = mp->b_wptr - rptr; 12981 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 12982 IP_STAT(ipst, ip_tcppullup); 12983 goto tcppullup; 12984 } 12985 12986 /* TCP options present? */ 12987 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 12988 12989 /* 12990 * If options need to be pulled up, then goto tcpoptions. 12991 * otherwise we are still in the fast path 12992 */ 12993 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 12994 IP_STAT(ipst, ip_tcpoptions); 12995 goto tcpoptions; 12996 } 12997 12998 /* multiple mblks of tcp data? */ 12999 if ((mp1 = mp->b_cont) != NULL) { 13000 /* more then two? */ 13001 if (mp1->b_cont != NULL) { 13002 IP_STAT(ipst, ip_multipkttcp); 13003 goto multipkttcp; 13004 } 13005 len += mp1->b_wptr - mp1->b_rptr; 13006 } 13007 13008 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 13009 13010 /* part of pseudo checksum */ 13011 13012 /* TCP datagram length */ 13013 u1 = len - IP_SIMPLE_HDR_LENGTH; 13014 13015 #define iphs ((uint16_t *)ipha) 13016 13017 #ifdef _BIG_ENDIAN 13018 u1 += IPPROTO_TCP; 13019 #else 13020 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13021 #endif 13022 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13023 13024 /* 13025 * Revert to software checksum calculation if the interface 13026 * isn't capable of checksum offload or if IPsec is present. 13027 */ 13028 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 13029 hck_flags = DB_CKSUMFLAGS(mp); 13030 13031 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 13032 IP_STAT(ipst, ip_in_sw_cksum); 13033 13034 IP_CKSUM_RECV(hck_flags, u1, 13035 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 13036 (int32_t)((uchar_t *)up - rptr), 13037 mp, mp1, cksum_err); 13038 13039 if (cksum_err) { 13040 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13041 13042 if (hck_flags & HCK_FULLCKSUM) 13043 IP_STAT(ipst, ip_tcp_in_full_hw_cksum_err); 13044 else if (hck_flags & HCK_PARTIALCKSUM) 13045 IP_STAT(ipst, ip_tcp_in_part_hw_cksum_err); 13046 else 13047 IP_STAT(ipst, ip_tcp_in_sw_cksum_err); 13048 13049 goto error; 13050 } 13051 13052 try_again: 13053 13054 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 13055 zoneid, ipst)) == NULL) { 13056 /* Send the TH_RST */ 13057 goto no_conn; 13058 } 13059 13060 /* 13061 * TCP FAST PATH for AF_INET socket. 13062 * 13063 * TCP fast path to avoid extra work. An AF_INET socket type 13064 * does not have facility to receive extra information via 13065 * ip_process or ip_add_info. Also, when the connection was 13066 * established, we made a check if this connection is impacted 13067 * by any global IPsec policy or per connection policy (a 13068 * policy that comes in effect later will not apply to this 13069 * connection). Since all this can be determined at the 13070 * connection establishment time, a quick check of flags 13071 * can avoid extra work. 13072 */ 13073 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 13074 !IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13075 ASSERT(first_mp == mp); 13076 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13077 SET_SQUEUE(mp, tcp_rput_data, connp); 13078 return (mp); 13079 } 13080 13081 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 13082 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 13083 if (IPCL_IS_TCP(connp)) { 13084 mp->b_datap->db_struioflag |= STRUIO_EAGER; 13085 DB_CKSUMSTART(mp) = 13086 (intptr_t)ip_squeue_get(ill_ring); 13087 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 13088 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13089 BUMP_MIB(ill->ill_ip_mib, 13090 ipIfStatsHCInDelivers); 13091 SET_SQUEUE(mp, connp->conn_recv, connp); 13092 return (mp); 13093 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 13094 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13095 BUMP_MIB(ill->ill_ip_mib, 13096 ipIfStatsHCInDelivers); 13097 ip_squeue_enter_unbound++; 13098 SET_SQUEUE(mp, tcp_conn_request_unbound, 13099 connp); 13100 return (mp); 13101 } 13102 syn_present = B_TRUE; 13103 } 13104 13105 } 13106 13107 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 13108 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 13109 13110 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13111 /* No need to send this packet to TCP */ 13112 if ((flags & TH_RST) || (flags & TH_URG)) { 13113 CONN_DEC_REF(connp); 13114 freemsg(first_mp); 13115 return (NULL); 13116 } 13117 if (flags & TH_ACK) { 13118 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 13119 ipst->ips_netstack->netstack_tcp, connp); 13120 CONN_DEC_REF(connp); 13121 return (NULL); 13122 } 13123 13124 CONN_DEC_REF(connp); 13125 freemsg(first_mp); 13126 return (NULL); 13127 } 13128 13129 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 13130 first_mp = ipsec_check_inbound_policy(first_mp, connp, 13131 ipha, NULL, mctl_present); 13132 if (first_mp == NULL) { 13133 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13134 CONN_DEC_REF(connp); 13135 return (NULL); 13136 } 13137 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 13138 ASSERT(syn_present); 13139 if (mctl_present) { 13140 ASSERT(first_mp != mp); 13141 first_mp->b_datap->db_struioflag |= 13142 STRUIO_POLICY; 13143 } else { 13144 ASSERT(first_mp == mp); 13145 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 13146 mp->b_datap->db_struioflag |= STRUIO_POLICY; 13147 } 13148 } else { 13149 /* 13150 * Discard first_mp early since we're dealing with a 13151 * fully-connected conn_t and tcp doesn't do policy in 13152 * this case. 13153 */ 13154 if (mctl_present) { 13155 freeb(first_mp); 13156 mctl_present = B_FALSE; 13157 } 13158 first_mp = mp; 13159 } 13160 } 13161 13162 /* Initiate IPPF processing for fastpath */ 13163 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13164 uint32_t ill_index; 13165 13166 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13167 ip_process(IPP_LOCAL_IN, &mp, ill_index); 13168 if (mp == NULL) { 13169 ip2dbg(("ip_input_ipsec_process: TCP pkt " 13170 "deferred/dropped during IPPF processing\n")); 13171 CONN_DEC_REF(connp); 13172 if (mctl_present) 13173 freeb(first_mp); 13174 return (NULL); 13175 } else if (mctl_present) { 13176 /* 13177 * ip_process might return a new mp. 13178 */ 13179 ASSERT(first_mp != mp); 13180 first_mp->b_cont = mp; 13181 } else { 13182 first_mp = mp; 13183 } 13184 13185 } 13186 13187 if (!syn_present && connp->conn_ip_recvpktinfo) { 13188 /* 13189 * TCP does not support IP_RECVPKTINFO for v4 so lets 13190 * make sure IPF_RECVIF is passed to ip_add_info. 13191 */ 13192 mp = ip_add_info(mp, recv_ill, flags|IPF_RECVIF, 13193 IPCL_ZONEID(connp), ipst); 13194 if (mp == NULL) { 13195 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13196 CONN_DEC_REF(connp); 13197 if (mctl_present) 13198 freeb(first_mp); 13199 return (NULL); 13200 } else if (mctl_present) { 13201 /* 13202 * ip_add_info might return a new mp. 13203 */ 13204 ASSERT(first_mp != mp); 13205 first_mp->b_cont = mp; 13206 } else { 13207 first_mp = mp; 13208 } 13209 } 13210 13211 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13212 if (IPCL_IS_TCP(connp)) { 13213 SET_SQUEUE(first_mp, connp->conn_recv, connp); 13214 return (first_mp); 13215 } else { 13216 /* SOCK_RAW, IPPROTO_TCP case */ 13217 (connp->conn_recv)(connp, first_mp, NULL); 13218 CONN_DEC_REF(connp); 13219 return (NULL); 13220 } 13221 13222 no_conn: 13223 /* Initiate IPPf processing, if needed. */ 13224 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13225 uint32_t ill_index; 13226 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13227 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 13228 if (first_mp == NULL) { 13229 return (NULL); 13230 } 13231 } 13232 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13233 13234 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr), zoneid, 13235 ipst->ips_netstack->netstack_tcp, NULL); 13236 return (NULL); 13237 ipoptions: 13238 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) { 13239 goto slow_done; 13240 } 13241 13242 UPDATE_IB_PKT_COUNT(ire); 13243 ire->ire_last_used_time = lbolt; 13244 13245 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13246 if (u1 & (IPH_MF | IPH_OFFSET)) { 13247 fragmented: 13248 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 13249 if (mctl_present) 13250 freeb(first_mp); 13251 goto slow_done; 13252 } 13253 /* 13254 * Make sure that first_mp points back to mp as 13255 * the mp we came in with could have changed in 13256 * ip_rput_fragment(). 13257 */ 13258 ASSERT(!mctl_present); 13259 ipha = (ipha_t *)mp->b_rptr; 13260 first_mp = mp; 13261 } 13262 13263 /* Now we have a complete datagram, destined for this machine. */ 13264 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 13265 13266 len = mp->b_wptr - mp->b_rptr; 13267 /* Pull up a minimal TCP header, if necessary. */ 13268 if (len < (u1 + 20)) { 13269 tcppullup: 13270 if (!pullupmsg(mp, u1 + 20)) { 13271 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13272 goto error; 13273 } 13274 ipha = (ipha_t *)mp->b_rptr; 13275 len = mp->b_wptr - mp->b_rptr; 13276 } 13277 13278 /* 13279 * Extract the offset field from the TCP header. As usual, we 13280 * try to help the compiler more than the reader. 13281 */ 13282 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 13283 if (offset != 5) { 13284 tcpoptions: 13285 if (offset < 5) { 13286 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13287 goto error; 13288 } 13289 /* 13290 * There must be TCP options. 13291 * Make sure we can grab them. 13292 */ 13293 offset <<= 2; 13294 offset += u1; 13295 if (len < offset) { 13296 if (!pullupmsg(mp, offset)) { 13297 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13298 goto error; 13299 } 13300 ipha = (ipha_t *)mp->b_rptr; 13301 len = mp->b_wptr - rptr; 13302 } 13303 } 13304 13305 /* Get the total packet length in len, including headers. */ 13306 if (mp->b_cont) { 13307 multipkttcp: 13308 len = msgdsize(mp); 13309 } 13310 13311 /* 13312 * Check the TCP checksum by pulling together the pseudo- 13313 * header checksum, and passing it to ip_csum to be added in 13314 * with the TCP datagram. 13315 * 13316 * Since we are not using the hwcksum if available we must 13317 * clear the flag. We may come here via tcppullup or tcpoptions. 13318 * If either of these fails along the way the mblk is freed. 13319 * If this logic ever changes and mblk is reused to say send 13320 * ICMP's back, then this flag may need to be cleared in 13321 * other places as well. 13322 */ 13323 DB_CKSUMFLAGS(mp) = 0; 13324 13325 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 13326 13327 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 13328 #ifdef _BIG_ENDIAN 13329 u1 += IPPROTO_TCP; 13330 #else 13331 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13332 #endif 13333 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13334 /* 13335 * Not M_DATA mblk or its a dup, so do the checksum now. 13336 */ 13337 IP_STAT(ipst, ip_in_sw_cksum); 13338 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 13339 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13340 goto error; 13341 } 13342 13343 IP_STAT(ipst, ip_tcp_slow_path); 13344 goto try_again; 13345 #undef iphs 13346 #undef rptr 13347 13348 error: 13349 freemsg(first_mp); 13350 slow_done: 13351 return (NULL); 13352 } 13353 13354 /* ARGSUSED */ 13355 static void 13356 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13357 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 13358 { 13359 conn_t *connp; 13360 uint32_t sum; 13361 uint32_t u1; 13362 ssize_t len; 13363 sctp_hdr_t *sctph; 13364 zoneid_t zoneid = ire->ire_zoneid; 13365 uint32_t pktsum; 13366 uint32_t calcsum; 13367 uint32_t ports; 13368 in6_addr_t map_src, map_dst; 13369 ill_t *ill = (ill_t *)q->q_ptr; 13370 ip_stack_t *ipst; 13371 sctp_stack_t *sctps; 13372 13373 ASSERT(recv_ill != NULL); 13374 ipst = recv_ill->ill_ipst; 13375 sctps = ipst->ips_netstack->netstack_sctp; 13376 13377 #define rptr ((uchar_t *)ipha) 13378 13379 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 13380 ASSERT(ill != NULL); 13381 13382 /* u1 is # words of IP options */ 13383 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13384 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13385 13386 /* IP options present */ 13387 if (u1 > 0) { 13388 goto ipoptions; 13389 } else { 13390 /* Check the IP header checksum. */ 13391 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, ill) && 13392 !mctl_present) { 13393 #define uph ((uint16_t *)ipha) 13394 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13395 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13396 #undef uph 13397 /* finish doing IP checksum */ 13398 sum = (sum & 0xFFFF) + (sum >> 16); 13399 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13400 /* 13401 * Don't verify header checksum if this packet 13402 * is coming back from AH/ESP as we already did it. 13403 */ 13404 if (sum != 0 && sum != 0xFFFF) { 13405 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 13406 goto error; 13407 } 13408 } 13409 /* 13410 * Since there is no SCTP h/w cksum support yet, just 13411 * clear the flag. 13412 */ 13413 DB_CKSUMFLAGS(mp) = 0; 13414 } 13415 13416 /* 13417 * Don't verify header checksum if this packet is coming 13418 * back from AH/ESP as we already did it. 13419 */ 13420 if (!mctl_present) { 13421 UPDATE_IB_PKT_COUNT(ire); 13422 ire->ire_last_used_time = lbolt; 13423 } 13424 13425 /* packet part of fragmented IP packet? */ 13426 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13427 if (u1 & (IPH_MF | IPH_OFFSET)) 13428 goto fragmented; 13429 13430 /* u1 = IP header length (20 bytes) */ 13431 u1 = IP_SIMPLE_HDR_LENGTH; 13432 13433 find_sctp_client: 13434 /* Pullup if we don't have the sctp common header. */ 13435 len = MBLKL(mp); 13436 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 13437 if (mp->b_cont == NULL || 13438 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 13439 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13440 goto error; 13441 } 13442 ipha = (ipha_t *)mp->b_rptr; 13443 len = MBLKL(mp); 13444 } 13445 13446 sctph = (sctp_hdr_t *)(rptr + u1); 13447 #ifdef DEBUG 13448 if (!skip_sctp_cksum) { 13449 #endif 13450 pktsum = sctph->sh_chksum; 13451 sctph->sh_chksum = 0; 13452 calcsum = sctp_cksum(mp, u1); 13453 if (calcsum != pktsum) { 13454 BUMP_MIB(&sctps->sctps_mib, sctpChecksumError); 13455 goto error; 13456 } 13457 sctph->sh_chksum = pktsum; 13458 #ifdef DEBUG /* skip_sctp_cksum */ 13459 } 13460 #endif 13461 /* get the ports */ 13462 ports = *(uint32_t *)&sctph->sh_sport; 13463 13464 IRE_REFRELE(ire); 13465 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 13466 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 13467 if ((connp = sctp_fanout(&map_src, &map_dst, ports, zoneid, mp, 13468 sctps)) == NULL) { 13469 /* Check for raw socket or OOTB handling */ 13470 goto no_conn; 13471 } 13472 13473 /* Found a client; up it goes */ 13474 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13475 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 13476 return; 13477 13478 no_conn: 13479 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 13480 ports, mctl_present, flags, B_TRUE, zoneid); 13481 return; 13482 13483 ipoptions: 13484 DB_CKSUMFLAGS(mp) = 0; 13485 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) 13486 goto slow_done; 13487 13488 UPDATE_IB_PKT_COUNT(ire); 13489 ire->ire_last_used_time = lbolt; 13490 13491 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13492 if (u1 & (IPH_MF | IPH_OFFSET)) { 13493 fragmented: 13494 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) 13495 goto slow_done; 13496 /* 13497 * Make sure that first_mp points back to mp as 13498 * the mp we came in with could have changed in 13499 * ip_rput_fragment(). 13500 */ 13501 ASSERT(!mctl_present); 13502 ipha = (ipha_t *)mp->b_rptr; 13503 first_mp = mp; 13504 } 13505 13506 /* Now we have a complete datagram, destined for this machine. */ 13507 u1 = IPH_HDR_LENGTH(ipha); 13508 goto find_sctp_client; 13509 #undef iphs 13510 #undef rptr 13511 13512 error: 13513 freemsg(first_mp); 13514 slow_done: 13515 IRE_REFRELE(ire); 13516 } 13517 13518 #define VER_BITS 0xF0 13519 #define VERSION_6 0x60 13520 13521 static boolean_t 13522 ip_rput_multimblk_ipoptions(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t **iphapp, 13523 ipaddr_t *dstp, ip_stack_t *ipst) 13524 { 13525 uint_t opt_len; 13526 ipha_t *ipha; 13527 ssize_t len; 13528 uint_t pkt_len; 13529 13530 ASSERT(ill != NULL); 13531 IP_STAT(ipst, ip_ipoptions); 13532 ipha = *iphapp; 13533 13534 #define rptr ((uchar_t *)ipha) 13535 /* Assume no IPv6 packets arrive over the IPv4 queue */ 13536 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 13537 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 13538 freemsg(mp); 13539 return (B_FALSE); 13540 } 13541 13542 /* multiple mblk or too short */ 13543 pkt_len = ntohs(ipha->ipha_length); 13544 13545 /* Get the number of words of IP options in the IP header. */ 13546 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 13547 if (opt_len) { 13548 /* IP Options present! Validate and process. */ 13549 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 13550 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13551 goto done; 13552 } 13553 /* 13554 * Recompute complete header length and make sure we 13555 * have access to all of it. 13556 */ 13557 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 13558 if (len > (mp->b_wptr - rptr)) { 13559 if (len > pkt_len) { 13560 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13561 goto done; 13562 } 13563 if (!pullupmsg(mp, len)) { 13564 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13565 goto done; 13566 } 13567 ipha = (ipha_t *)mp->b_rptr; 13568 } 13569 /* 13570 * Go off to ip_rput_options which returns the next hop 13571 * destination address, which may have been affected 13572 * by source routing. 13573 */ 13574 IP_STAT(ipst, ip_opt); 13575 if (ip_rput_options(q, mp, ipha, dstp, ipst) == -1) { 13576 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13577 return (B_FALSE); 13578 } 13579 } 13580 *iphapp = ipha; 13581 return (B_TRUE); 13582 done: 13583 /* clear b_prev - used by ip_mroute_decap */ 13584 mp->b_prev = NULL; 13585 freemsg(mp); 13586 return (B_FALSE); 13587 #undef rptr 13588 } 13589 13590 /* 13591 * Deal with the fact that there is no ire for the destination. 13592 */ 13593 static ire_t * 13594 ip_rput_noire(queue_t *q, mblk_t *mp, int ll_multicast, ipaddr_t dst) 13595 { 13596 ipha_t *ipha; 13597 ill_t *ill; 13598 ire_t *ire; 13599 boolean_t check_multirt = B_FALSE; 13600 ip_stack_t *ipst; 13601 13602 ipha = (ipha_t *)mp->b_rptr; 13603 ill = (ill_t *)q->q_ptr; 13604 13605 ASSERT(ill != NULL); 13606 ipst = ill->ill_ipst; 13607 13608 /* 13609 * No IRE for this destination, so it can't be for us. 13610 * Unless we are forwarding, drop the packet. 13611 * We have to let source routed packets through 13612 * since we don't yet know if they are 'ping -l' 13613 * packets i.e. if they will go out over the 13614 * same interface as they came in on. 13615 */ 13616 if (ll_multicast) { 13617 freemsg(mp); 13618 return (NULL); 13619 } 13620 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha, ipst)) { 13621 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13622 freemsg(mp); 13623 return (NULL); 13624 } 13625 13626 /* 13627 * Mark this packet as having originated externally. 13628 * 13629 * For non-forwarding code path, ire_send later double 13630 * checks this interface to see if it is still exists 13631 * post-ARP resolution. 13632 * 13633 * Also, IPQOS uses this to differentiate between 13634 * IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP 13635 * QOS packet processing in ip_wput_attach_llhdr(). 13636 * The QoS module can mark the b_band for a fastpath message 13637 * or the dl_priority field in a unitdata_req header for 13638 * CoS marking. This info can only be found in 13639 * ip_wput_attach_llhdr(). 13640 */ 13641 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 13642 /* 13643 * Clear the indication that this may have a hardware checksum 13644 * as we are not using it 13645 */ 13646 DB_CKSUMFLAGS(mp) = 0; 13647 13648 ire = ire_forward(dst, &check_multirt, NULL, NULL, 13649 MBLK_GETLABEL(mp), ipst); 13650 13651 if (ire == NULL && check_multirt) { 13652 /* Let ip_newroute handle CGTP */ 13653 ip_newroute(q, mp, dst, NULL, GLOBAL_ZONEID, ipst); 13654 return (NULL); 13655 } 13656 13657 if (ire != NULL) 13658 return (ire); 13659 13660 mp->b_prev = mp->b_next = 0; 13661 /* send icmp unreachable */ 13662 q = WR(q); 13663 /* Sent by forwarding path, and router is global zone */ 13664 if (ip_source_routed(ipha, ipst)) { 13665 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, 13666 GLOBAL_ZONEID, ipst); 13667 } else { 13668 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 13669 ipst); 13670 } 13671 13672 return (NULL); 13673 13674 } 13675 13676 /* 13677 * check ip header length and align it. 13678 */ 13679 static boolean_t 13680 ip_check_and_align_header(queue_t *q, mblk_t *mp, ip_stack_t *ipst) 13681 { 13682 ssize_t len; 13683 ill_t *ill; 13684 ipha_t *ipha; 13685 13686 len = MBLKL(mp); 13687 13688 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13689 ill = (ill_t *)q->q_ptr; 13690 13691 if (!OK_32PTR(mp->b_rptr)) 13692 IP_STAT(ipst, ip_notaligned1); 13693 else 13694 IP_STAT(ipst, ip_notaligned2); 13695 /* Guard against bogus device drivers */ 13696 if (len < 0) { 13697 /* clear b_prev - used by ip_mroute_decap */ 13698 mp->b_prev = NULL; 13699 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13700 freemsg(mp); 13701 return (B_FALSE); 13702 } 13703 13704 if (ip_rput_pullups++ == 0) { 13705 ipha = (ipha_t *)mp->b_rptr; 13706 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 13707 "ip_check_and_align_header: %s forced us to " 13708 " pullup pkt, hdr len %ld, hdr addr %p", 13709 ill->ill_name, len, ipha); 13710 } 13711 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 13712 /* clear b_prev - used by ip_mroute_decap */ 13713 mp->b_prev = NULL; 13714 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13715 freemsg(mp); 13716 return (B_FALSE); 13717 } 13718 } 13719 return (B_TRUE); 13720 } 13721 13722 ire_t * 13723 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 13724 { 13725 ire_t *new_ire; 13726 ill_t *ire_ill; 13727 uint_t ifindex; 13728 ip_stack_t *ipst = ill->ill_ipst; 13729 boolean_t strict_check = B_FALSE; 13730 13731 /* 13732 * This packet came in on an interface other than the one associated 13733 * with the first ire we found for the destination address. We do 13734 * another ire lookup here, using the ingress ill, to see if the 13735 * interface is in an interface group. 13736 * As long as the ills belong to the same group, we don't consider 13737 * them to be arriving on the wrong interface. Thus, if the switch 13738 * is doing inbound load spreading, we won't drop packets when the 13739 * ip*_strict_dst_multihoming switch is on. Note, the same holds true 13740 * for 'usesrc groups' where the destination address may belong to 13741 * another interface to allow multipathing to happen. 13742 * We also need to check for IPIF_UNNUMBERED point2point interfaces 13743 * where the local address may not be unique. In this case we were 13744 * at the mercy of the initial ire cache lookup and the IRE_LOCAL it 13745 * actually returned. The new lookup, which is more specific, should 13746 * only find the IRE_LOCAL associated with the ingress ill if one 13747 * exists. 13748 */ 13749 13750 if (ire->ire_ipversion == IPV4_VERSION) { 13751 if (ipst->ips_ip_strict_dst_multihoming) 13752 strict_check = B_TRUE; 13753 new_ire = ire_ctable_lookup(*((ipaddr_t *)addr), 0, IRE_LOCAL, 13754 ill->ill_ipif, ALL_ZONES, NULL, 13755 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 13756 } else { 13757 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 13758 if (ipst->ips_ipv6_strict_dst_multihoming) 13759 strict_check = B_TRUE; 13760 new_ire = ire_ctable_lookup_v6((in6_addr_t *)addr, NULL, 13761 IRE_LOCAL, ill->ill_ipif, ALL_ZONES, NULL, 13762 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 13763 } 13764 /* 13765 * If the same ire that was returned in ip_input() is found then this 13766 * is an indication that interface groups are in use. The packet 13767 * arrived on a different ill in the group than the one associated with 13768 * the destination address. If a different ire was found then the same 13769 * IP address must be hosted on multiple ills. This is possible with 13770 * unnumbered point2point interfaces. We switch to use this new ire in 13771 * order to have accurate interface statistics. 13772 */ 13773 if (new_ire != NULL) { 13774 if ((new_ire != ire) && (new_ire->ire_rfq != NULL)) { 13775 ire_refrele(ire); 13776 ire = new_ire; 13777 } else { 13778 ire_refrele(new_ire); 13779 } 13780 return (ire); 13781 } else if ((ire->ire_rfq == NULL) && 13782 (ire->ire_ipversion == IPV4_VERSION)) { 13783 /* 13784 * The best match could have been the original ire which 13785 * was created against an IRE_LOCAL on lo0. In the IPv4 case 13786 * the strict multihoming checks are irrelevant as we consider 13787 * local addresses hosted on lo0 to be interface agnostic. We 13788 * only expect a null ire_rfq on IREs which are associated with 13789 * lo0 hence we can return now. 13790 */ 13791 return (ire); 13792 } 13793 13794 /* 13795 * Chase pointers once and store locally. 13796 */ 13797 ire_ill = (ire->ire_rfq == NULL) ? NULL : 13798 (ill_t *)(ire->ire_rfq->q_ptr); 13799 ifindex = ill->ill_usesrc_ifindex; 13800 13801 /* 13802 * Check if it's a legal address on the 'usesrc' interface. 13803 */ 13804 if ((ifindex != 0) && (ire_ill != NULL) && 13805 (ifindex == ire_ill->ill_phyint->phyint_ifindex)) { 13806 return (ire); 13807 } 13808 13809 /* 13810 * If the ip*_strict_dst_multihoming switch is on then we can 13811 * only accept this packet if the interface is marked as routing. 13812 */ 13813 if (!(strict_check)) 13814 return (ire); 13815 13816 if ((ill->ill_flags & ire->ire_ipif->ipif_ill->ill_flags & 13817 ILLF_ROUTER) != 0) { 13818 return (ire); 13819 } 13820 13821 ire_refrele(ire); 13822 return (NULL); 13823 } 13824 13825 ire_t * 13826 ip_fast_forward(ire_t *ire, ipaddr_t dst, ill_t *ill, mblk_t *mp) 13827 { 13828 ipha_t *ipha; 13829 ipaddr_t ip_dst, ip_src; 13830 ire_t *src_ire = NULL; 13831 ill_t *stq_ill; 13832 uint_t hlen; 13833 uint_t pkt_len; 13834 uint32_t sum; 13835 queue_t *dev_q; 13836 boolean_t check_multirt = B_FALSE; 13837 ip_stack_t *ipst = ill->ill_ipst; 13838 13839 ipha = (ipha_t *)mp->b_rptr; 13840 13841 /* 13842 * Martian Address Filtering [RFC 1812, Section 5.3.7] 13843 * The loopback address check for both src and dst has already 13844 * been checked in ip_input 13845 */ 13846 ip_dst = ntohl(dst); 13847 ip_src = ntohl(ipha->ipha_src); 13848 13849 if (ip_dst == INADDR_ANY || IN_BADCLASS(ip_dst) || 13850 IN_CLASSD(ip_src)) { 13851 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13852 goto drop; 13853 } 13854 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13855 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 13856 13857 if (src_ire != NULL) { 13858 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13859 goto drop; 13860 } 13861 13862 13863 /* No ire cache of nexthop. So first create one */ 13864 if (ire == NULL) { 13865 ire = ire_forward(dst, &check_multirt, NULL, NULL, NULL, ipst); 13866 /* 13867 * We only come to ip_fast_forward if ip_cgtp_filter is 13868 * is not set. So upon return from ire_forward 13869 * check_multirt should remain as false. 13870 */ 13871 ASSERT(!check_multirt); 13872 if (ire == NULL) { 13873 /* An attempt was made to forward the packet */ 13874 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13875 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13876 mp->b_prev = mp->b_next = 0; 13877 /* send icmp unreachable */ 13878 /* Sent by forwarding path, and router is global zone */ 13879 if (ip_source_routed(ipha, ipst)) { 13880 icmp_unreachable(ill->ill_wq, mp, 13881 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, 13882 ipst); 13883 } else { 13884 icmp_unreachable(ill->ill_wq, mp, 13885 ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 13886 ipst); 13887 } 13888 return (ire); 13889 } 13890 } 13891 13892 /* 13893 * Forwarding fastpath exception case: 13894 * If either of the follwoing case is true, we take 13895 * the slowpath 13896 * o forwarding is not enabled 13897 * o incoming and outgoing interface are the same, or the same 13898 * IPMP group 13899 * o corresponding ire is in incomplete state 13900 * o packet needs fragmentation 13901 * 13902 * The codeflow from here on is thus: 13903 * ip_rput_process_forward->ip_rput_forward->ip_xmit_v4 13904 */ 13905 pkt_len = ntohs(ipha->ipha_length); 13906 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 13907 if (!(stq_ill->ill_flags & ILLF_ROUTER) || 13908 !(ill->ill_flags & ILLF_ROUTER) || 13909 (ill == stq_ill) || 13910 (ill->ill_group != NULL && ill->ill_group == stq_ill->ill_group) || 13911 (ire->ire_nce == NULL) || 13912 (ire->ire_nce->nce_state != ND_REACHABLE) || 13913 (pkt_len > ire->ire_max_frag) || 13914 ipha->ipha_ttl <= 1) { 13915 ip_rput_process_forward(ill->ill_rq, mp, ire, 13916 ipha, ill, B_FALSE); 13917 return (ire); 13918 } 13919 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13920 13921 DTRACE_PROBE4(ip4__forwarding__start, 13922 ill_t *, ill, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 13923 13924 FW_HOOKS(ipst->ips_ip4_forwarding_event, 13925 ipst->ips_ipv4firewall_forwarding, 13926 ill, stq_ill, ipha, mp, mp, ipst); 13927 13928 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 13929 13930 if (mp == NULL) 13931 goto drop; 13932 13933 mp->b_datap->db_struioun.cksum.flags = 0; 13934 /* Adjust the checksum to reflect the ttl decrement. */ 13935 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 13936 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 13937 ipha->ipha_ttl--; 13938 13939 dev_q = ire->ire_stq->q_next; 13940 if ((dev_q->q_next != NULL || 13941 dev_q->q_first != NULL) && !canput(dev_q)) { 13942 goto indiscard; 13943 } 13944 13945 hlen = ire->ire_nce->nce_fp_mp != NULL ? 13946 MBLKL(ire->ire_nce->nce_fp_mp) : 0; 13947 13948 if (hlen != 0 || ire->ire_nce->nce_res_mp != NULL) { 13949 mblk_t *mpip = mp; 13950 13951 mp = ip_wput_attach_llhdr(mpip, ire, 0, 0); 13952 if (mp != NULL) { 13953 DTRACE_PROBE4(ip4__physical__out__start, 13954 ill_t *, NULL, ill_t *, stq_ill, 13955 ipha_t *, ipha, mblk_t *, mp); 13956 FW_HOOKS(ipst->ips_ip4_physical_out_event, 13957 ipst->ips_ipv4firewall_physical_out, 13958 NULL, stq_ill, ipha, mp, mpip, ipst); 13959 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, 13960 mp); 13961 if (mp == NULL) 13962 goto drop; 13963 13964 UPDATE_IB_PKT_COUNT(ire); 13965 ire->ire_last_used_time = lbolt; 13966 BUMP_MIB(stq_ill->ill_ip_mib, 13967 ipIfStatsHCOutForwDatagrams); 13968 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 13969 UPDATE_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutOctets, 13970 pkt_len); 13971 putnext(ire->ire_stq, mp); 13972 return (ire); 13973 } 13974 } 13975 13976 indiscard: 13977 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13978 drop: 13979 if (mp != NULL) 13980 freemsg(mp); 13981 if (src_ire != NULL) 13982 ire_refrele(src_ire); 13983 return (ire); 13984 13985 } 13986 13987 /* 13988 * This function is called in the forwarding slowpath, when 13989 * either the ire lacks the link-layer address, or the packet needs 13990 * further processing(eg. fragmentation), before transmission. 13991 */ 13992 13993 static void 13994 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 13995 ill_t *ill, boolean_t ll_multicast) 13996 { 13997 ill_group_t *ill_group; 13998 ill_group_t *ire_group; 13999 queue_t *dev_q; 14000 ire_t *src_ire; 14001 ip_stack_t *ipst = ill->ill_ipst; 14002 14003 ASSERT(ire->ire_stq != NULL); 14004 14005 mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */ 14006 mp->b_next = NULL; /* ip_rput_noire sets dst here */ 14007 14008 if (ll_multicast != 0) { 14009 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14010 goto drop_pkt; 14011 } 14012 14013 /* 14014 * check if ipha_src is a broadcast address. Note that this 14015 * check is redundant when we get here from ip_fast_forward() 14016 * which has already done this check. However, since we can 14017 * also get here from ip_rput_process_broadcast() or, for 14018 * for the slow path through ip_fast_forward(), we perform 14019 * the check again for code-reusability 14020 */ 14021 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 14022 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 14023 if (src_ire != NULL || ntohl(ipha->ipha_dst) == INADDR_ANY || 14024 IN_BADCLASS(ntohl(ipha->ipha_dst))) { 14025 if (src_ire != NULL) 14026 ire_refrele(src_ire); 14027 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14028 ip2dbg(("ip_rput_process_forward: Received packet with" 14029 " bad src/dst address on %s\n", ill->ill_name)); 14030 goto drop_pkt; 14031 } 14032 14033 ill_group = ill->ill_group; 14034 ire_group = ((ill_t *)(ire->ire_rfq)->q_ptr)->ill_group; 14035 /* 14036 * Check if we want to forward this one at this time. 14037 * We allow source routed packets on a host provided that 14038 * they go out the same interface or same interface group 14039 * as they came in on. 14040 * 14041 * XXX To be quicker, we may wish to not chase pointers to 14042 * get the ILLF_ROUTER flag and instead store the 14043 * forwarding policy in the ire. An unfortunate 14044 * side-effect of that would be requiring an ire flush 14045 * whenever the ILLF_ROUTER flag changes. 14046 */ 14047 if (((ill->ill_flags & 14048 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 14049 ILLF_ROUTER) == 0) && 14050 !(ip_source_routed(ipha, ipst) && (ire->ire_rfq == q || 14051 (ill_group != NULL && ill_group == ire_group)))) { 14052 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14053 if (ip_source_routed(ipha, ipst)) { 14054 q = WR(q); 14055 /* 14056 * Clear the indication that this may have 14057 * hardware checksum as we are not using it. 14058 */ 14059 DB_CKSUMFLAGS(mp) = 0; 14060 /* Sent by forwarding path, and router is global zone */ 14061 icmp_unreachable(q, mp, 14062 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, ipst); 14063 return; 14064 } 14065 goto drop_pkt; 14066 } 14067 14068 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14069 14070 /* Packet is being forwarded. Turning off hwcksum flag. */ 14071 DB_CKSUMFLAGS(mp) = 0; 14072 if (ipst->ips_ip_g_send_redirects) { 14073 /* 14074 * Check whether the incoming interface and outgoing 14075 * interface is part of the same group. If so, 14076 * send redirects. 14077 * 14078 * Check the source address to see if it originated 14079 * on the same logical subnet it is going back out on. 14080 * If so, we should be able to send it a redirect. 14081 * Avoid sending a redirect if the destination 14082 * is directly connected (i.e., ipha_dst is the same 14083 * as ire_gateway_addr or the ire_addr of the 14084 * nexthop IRE_CACHE ), or if the packet was source 14085 * routed out this interface. 14086 */ 14087 ipaddr_t src, nhop; 14088 mblk_t *mp1; 14089 ire_t *nhop_ire = NULL; 14090 14091 /* 14092 * Check whether ire_rfq and q are from the same ill 14093 * or if they are not same, they at least belong 14094 * to the same group. If so, send redirects. 14095 */ 14096 if ((ire->ire_rfq == q || 14097 (ill_group != NULL && ill_group == ire_group)) && 14098 !ip_source_routed(ipha, ipst)) { 14099 14100 nhop = (ire->ire_gateway_addr != 0 ? 14101 ire->ire_gateway_addr : ire->ire_addr); 14102 14103 if (ipha->ipha_dst == nhop) { 14104 /* 14105 * We avoid sending a redirect if the 14106 * destination is directly connected 14107 * because it is possible that multiple 14108 * IP subnets may have been configured on 14109 * the link, and the source may not 14110 * be on the same subnet as ip destination, 14111 * even though they are on the same 14112 * physical link. 14113 */ 14114 goto sendit; 14115 } 14116 14117 src = ipha->ipha_src; 14118 14119 /* 14120 * We look up the interface ire for the nexthop, 14121 * to see if ipha_src is in the same subnet 14122 * as the nexthop. 14123 * 14124 * Note that, if, in the future, IRE_CACHE entries 14125 * are obsoleted, this lookup will not be needed, 14126 * as the ire passed to this function will be the 14127 * same as the nhop_ire computed below. 14128 */ 14129 nhop_ire = ire_ftable_lookup(nhop, 0, 0, 14130 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 14131 0, NULL, MATCH_IRE_TYPE, ipst); 14132 14133 if (nhop_ire != NULL) { 14134 if ((src & nhop_ire->ire_mask) == 14135 (nhop & nhop_ire->ire_mask)) { 14136 /* 14137 * The source is directly connected. 14138 * Just copy the ip header (which is 14139 * in the first mblk) 14140 */ 14141 mp1 = copyb(mp); 14142 if (mp1 != NULL) { 14143 icmp_send_redirect(WR(q), mp1, 14144 nhop, ipst); 14145 } 14146 } 14147 ire_refrele(nhop_ire); 14148 } 14149 } 14150 } 14151 sendit: 14152 dev_q = ire->ire_stq->q_next; 14153 if ((dev_q->q_next || dev_q->q_first) && !canput(dev_q)) { 14154 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14155 freemsg(mp); 14156 return; 14157 } 14158 14159 ip_rput_forward(ire, ipha, mp, ill); 14160 return; 14161 14162 drop_pkt: 14163 ip2dbg(("ip_rput_process_forward: drop pkt\n")); 14164 freemsg(mp); 14165 } 14166 14167 ire_t * 14168 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14169 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 14170 { 14171 queue_t *q; 14172 uint16_t hcksumflags; 14173 ip_stack_t *ipst = ill->ill_ipst; 14174 14175 q = *qp; 14176 14177 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInBcastPkts); 14178 14179 /* 14180 * Clear the indication that this may have hardware 14181 * checksum as we are not using it for forwarding. 14182 */ 14183 hcksumflags = DB_CKSUMFLAGS(mp); 14184 DB_CKSUMFLAGS(mp) = 0; 14185 14186 /* 14187 * Directed broadcast forwarding: if the packet came in over a 14188 * different interface then it is routed out over we can forward it. 14189 */ 14190 if (ipha->ipha_protocol == IPPROTO_TCP) { 14191 ire_refrele(ire); 14192 freemsg(mp); 14193 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14194 return (NULL); 14195 } 14196 /* 14197 * For multicast we have set dst to be INADDR_BROADCAST 14198 * for delivering to all STREAMS. IRE_MARK_NORECV is really 14199 * only for broadcast packets. 14200 */ 14201 if (!CLASSD(ipha->ipha_dst)) { 14202 ire_t *new_ire; 14203 ipif_t *ipif; 14204 /* 14205 * For ill groups, as the switch duplicates broadcasts 14206 * across all the ports, we need to filter out and 14207 * send up only one copy. There is one copy for every 14208 * broadcast address on each ill. Thus, we look for a 14209 * specific IRE on this ill and look at IRE_MARK_NORECV 14210 * later to see whether this ill is eligible to receive 14211 * them or not. ill_nominate_bcast_rcv() nominates only 14212 * one set of IREs for receiving. 14213 */ 14214 14215 ipif = ipif_get_next_ipif(NULL, ill); 14216 if (ipif == NULL) { 14217 ire_refrele(ire); 14218 freemsg(mp); 14219 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14220 return (NULL); 14221 } 14222 new_ire = ire_ctable_lookup(dst, 0, 0, 14223 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL, ipst); 14224 ipif_refrele(ipif); 14225 14226 if (new_ire != NULL) { 14227 if (new_ire->ire_marks & IRE_MARK_NORECV) { 14228 ire_refrele(ire); 14229 ire_refrele(new_ire); 14230 freemsg(mp); 14231 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14232 return (NULL); 14233 } 14234 /* 14235 * In the special case of multirouted broadcast 14236 * packets, we unconditionally need to "gateway" 14237 * them to the appropriate interface here. 14238 * In the normal case, this cannot happen, because 14239 * there is no broadcast IRE tagged with the 14240 * RTF_MULTIRT flag. 14241 */ 14242 if (new_ire->ire_flags & RTF_MULTIRT) { 14243 ire_refrele(new_ire); 14244 if (ire->ire_rfq != NULL) { 14245 q = ire->ire_rfq; 14246 *qp = q; 14247 } 14248 } else { 14249 ire_refrele(ire); 14250 ire = new_ire; 14251 } 14252 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 14253 if (!ipst->ips_ip_g_forward_directed_bcast) { 14254 /* 14255 * Free the message if 14256 * ip_g_forward_directed_bcast is turned 14257 * off for non-local broadcast. 14258 */ 14259 ire_refrele(ire); 14260 freemsg(mp); 14261 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14262 return (NULL); 14263 } 14264 } else { 14265 /* 14266 * This CGTP packet successfully passed the 14267 * CGTP filter, but the related CGTP 14268 * broadcast IRE has not been found, 14269 * meaning that the redundant ipif is 14270 * probably down. However, if we discarded 14271 * this packet, its duplicate would be 14272 * filtered out by the CGTP filter so none 14273 * of them would get through. So we keep 14274 * going with this one. 14275 */ 14276 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 14277 if (ire->ire_rfq != NULL) { 14278 q = ire->ire_rfq; 14279 *qp = q; 14280 } 14281 } 14282 } 14283 if (ipst->ips_ip_g_forward_directed_bcast && ll_multicast == 0) { 14284 /* 14285 * Verify that there are not more then one 14286 * IRE_BROADCAST with this broadcast address which 14287 * has ire_stq set. 14288 * TODO: simplify, loop over all IRE's 14289 */ 14290 ire_t *ire1; 14291 int num_stq = 0; 14292 mblk_t *mp1; 14293 14294 /* Find the first one with ire_stq set */ 14295 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 14296 for (ire1 = ire; ire1 && 14297 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 14298 ire1 = ire1->ire_next) 14299 ; 14300 if (ire1) { 14301 ire_refrele(ire); 14302 ire = ire1; 14303 IRE_REFHOLD(ire); 14304 } 14305 14306 /* Check if there are additional ones with stq set */ 14307 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 14308 if (ire->ire_addr != ire1->ire_addr) 14309 break; 14310 if (ire1->ire_stq) { 14311 num_stq++; 14312 break; 14313 } 14314 } 14315 rw_exit(&ire->ire_bucket->irb_lock); 14316 if (num_stq == 1 && ire->ire_stq != NULL) { 14317 ip1dbg(("ip_rput_process_broadcast: directed " 14318 "broadcast to 0x%x\n", 14319 ntohl(ire->ire_addr))); 14320 mp1 = copymsg(mp); 14321 if (mp1) { 14322 switch (ipha->ipha_protocol) { 14323 case IPPROTO_UDP: 14324 ip_udp_input(q, mp1, ipha, ire, ill); 14325 break; 14326 default: 14327 ip_proto_input(q, mp1, ipha, ire, ill, 14328 B_FALSE); 14329 break; 14330 } 14331 } 14332 /* 14333 * Adjust ttl to 2 (1+1 - the forward engine 14334 * will decrement it by one. 14335 */ 14336 if (ip_csum_hdr(ipha)) { 14337 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 14338 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 14339 freemsg(mp); 14340 ire_refrele(ire); 14341 return (NULL); 14342 } 14343 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl + 1; 14344 ipha->ipha_hdr_checksum = 0; 14345 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14346 ip_rput_process_forward(q, mp, ire, ipha, 14347 ill, ll_multicast); 14348 ire_refrele(ire); 14349 return (NULL); 14350 } 14351 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 14352 ntohl(ire->ire_addr))); 14353 } 14354 14355 14356 /* Restore any hardware checksum flags */ 14357 DB_CKSUMFLAGS(mp) = hcksumflags; 14358 return (ire); 14359 } 14360 14361 /* ARGSUSED */ 14362 static boolean_t 14363 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 14364 int *ll_multicast, ipaddr_t *dstp) 14365 { 14366 ip_stack_t *ipst = ill->ill_ipst; 14367 14368 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastPkts); 14369 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastOctets, 14370 ntohs(ipha->ipha_length)); 14371 14372 /* 14373 * Forward packets only if we have joined the allmulti 14374 * group on this interface. 14375 */ 14376 if (ipst->ips_ip_g_mrouter && ill->ill_join_allmulti) { 14377 int retval; 14378 14379 /* 14380 * Clear the indication that this may have hardware 14381 * checksum as we are not using it. 14382 */ 14383 DB_CKSUMFLAGS(mp) = 0; 14384 retval = ip_mforward(ill, ipha, mp); 14385 /* ip_mforward updates mib variables if needed */ 14386 /* clear b_prev - used by ip_mroute_decap */ 14387 mp->b_prev = NULL; 14388 14389 switch (retval) { 14390 case 0: 14391 /* 14392 * pkt is okay and arrived on phyint. 14393 * 14394 * If we are running as a multicast router 14395 * we need to see all IGMP and/or PIM packets. 14396 */ 14397 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 14398 (ipha->ipha_protocol == IPPROTO_PIM)) { 14399 goto done; 14400 } 14401 break; 14402 case -1: 14403 /* pkt is mal-formed, toss it */ 14404 goto drop_pkt; 14405 case 1: 14406 /* pkt is okay and arrived on a tunnel */ 14407 /* 14408 * If we are running a multicast router 14409 * we need to see all igmp packets. 14410 */ 14411 if (ipha->ipha_protocol == IPPROTO_IGMP) { 14412 *dstp = INADDR_BROADCAST; 14413 *ll_multicast = 1; 14414 return (B_FALSE); 14415 } 14416 14417 goto drop_pkt; 14418 } 14419 } 14420 14421 ILM_WALKER_HOLD(ill); 14422 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 14423 /* 14424 * This might just be caused by the fact that 14425 * multiple IP Multicast addresses map to the same 14426 * link layer multicast - no need to increment counter! 14427 */ 14428 ILM_WALKER_RELE(ill); 14429 freemsg(mp); 14430 return (B_TRUE); 14431 } 14432 ILM_WALKER_RELE(ill); 14433 done: 14434 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 14435 /* 14436 * This assumes the we deliver to all streams for multicast 14437 * and broadcast packets. 14438 */ 14439 *dstp = INADDR_BROADCAST; 14440 *ll_multicast = 1; 14441 return (B_FALSE); 14442 drop_pkt: 14443 ip2dbg(("ip_rput: drop pkt\n")); 14444 freemsg(mp); 14445 return (B_TRUE); 14446 } 14447 14448 static boolean_t 14449 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 14450 int *ll_multicast, mblk_t **mpp) 14451 { 14452 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 14453 boolean_t must_copy = B_FALSE; 14454 struct iocblk *iocp; 14455 ipha_t *ipha; 14456 ip_stack_t *ipst = ill->ill_ipst; 14457 14458 #define rptr ((uchar_t *)ipha) 14459 14460 first_mp = *first_mpp; 14461 mp = *mpp; 14462 14463 ASSERT(first_mp == mp); 14464 14465 /* 14466 * if db_ref > 1 then copymsg and free original. Packet may be 14467 * changed and do not want other entity who has a reference to this 14468 * message to trip over the changes. This is a blind change because 14469 * trying to catch all places that might change packet is too 14470 * difficult (since it may be a module above this one) 14471 * 14472 * This corresponds to the non-fast path case. We walk down the full 14473 * chain in this case, and check the db_ref count of all the dblks, 14474 * and do a copymsg if required. It is possible that the db_ref counts 14475 * of the data blocks in the mblk chain can be different. 14476 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 14477 * count of 1, followed by a M_DATA block with a ref count of 2, if 14478 * 'snoop' is running. 14479 */ 14480 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 14481 if (mp1->b_datap->db_ref > 1) { 14482 must_copy = B_TRUE; 14483 break; 14484 } 14485 } 14486 14487 if (must_copy) { 14488 mp1 = copymsg(mp); 14489 if (mp1 == NULL) { 14490 for (mp1 = mp; mp1 != NULL; 14491 mp1 = mp1->b_cont) { 14492 mp1->b_next = NULL; 14493 mp1->b_prev = NULL; 14494 } 14495 freemsg(mp); 14496 if (ill != NULL) { 14497 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14498 } else { 14499 BUMP_MIB(&ipst->ips_ip_mib, 14500 ipIfStatsInDiscards); 14501 } 14502 return (B_TRUE); 14503 } 14504 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 14505 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 14506 /* Copy b_prev - used by ip_mroute_decap */ 14507 to_mp->b_prev = from_mp->b_prev; 14508 from_mp->b_prev = NULL; 14509 } 14510 *first_mpp = first_mp = mp1; 14511 freemsg(mp); 14512 mp = mp1; 14513 *mpp = mp1; 14514 } 14515 14516 ipha = (ipha_t *)mp->b_rptr; 14517 14518 /* 14519 * previous code has a case for M_DATA. 14520 * We want to check how that happens. 14521 */ 14522 ASSERT(first_mp->b_datap->db_type != M_DATA); 14523 switch (first_mp->b_datap->db_type) { 14524 case M_PROTO: 14525 case M_PCPROTO: 14526 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 14527 DL_UNITDATA_IND) { 14528 /* Go handle anything other than data elsewhere. */ 14529 ip_rput_dlpi(q, mp); 14530 return (B_TRUE); 14531 } 14532 *ll_multicast = ((dl_unitdata_ind_t *)rptr)->dl_group_address; 14533 /* Ditch the DLPI header. */ 14534 mp1 = mp->b_cont; 14535 ASSERT(first_mp == mp); 14536 *first_mpp = mp1; 14537 freeb(mp); 14538 *mpp = mp1; 14539 return (B_FALSE); 14540 case M_IOCACK: 14541 ip1dbg(("got iocack ")); 14542 iocp = (struct iocblk *)mp->b_rptr; 14543 switch (iocp->ioc_cmd) { 14544 case DL_IOC_HDR_INFO: 14545 ill = (ill_t *)q->q_ptr; 14546 ill_fastpath_ack(ill, mp); 14547 return (B_TRUE); 14548 case SIOCSTUNPARAM: 14549 case OSIOCSTUNPARAM: 14550 /* Go through qwriter_ip */ 14551 break; 14552 case SIOCGTUNPARAM: 14553 case OSIOCGTUNPARAM: 14554 ip_rput_other(NULL, q, mp, NULL); 14555 return (B_TRUE); 14556 default: 14557 putnext(q, mp); 14558 return (B_TRUE); 14559 } 14560 /* FALLTHRU */ 14561 case M_ERROR: 14562 case M_HANGUP: 14563 /* 14564 * Since this is on the ill stream we unconditionally 14565 * bump up the refcount 14566 */ 14567 ill_refhold(ill); 14568 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14569 return (B_TRUE); 14570 case M_CTL: 14571 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 14572 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 14573 IPHADA_M_CTL)) { 14574 /* 14575 * It's an IPsec accelerated packet. 14576 * Make sure that the ill from which we received the 14577 * packet has enabled IPsec hardware acceleration. 14578 */ 14579 if (!(ill->ill_capabilities & 14580 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 14581 /* IPsec kstats: bean counter */ 14582 freemsg(mp); 14583 return (B_TRUE); 14584 } 14585 14586 /* 14587 * Make mp point to the mblk following the M_CTL, 14588 * then process according to type of mp. 14589 * After this processing, first_mp will point to 14590 * the data-attributes and mp to the pkt following 14591 * the M_CTL. 14592 */ 14593 mp = first_mp->b_cont; 14594 if (mp == NULL) { 14595 freemsg(first_mp); 14596 return (B_TRUE); 14597 } 14598 /* 14599 * A Hardware Accelerated packet can only be M_DATA 14600 * ESP or AH packet. 14601 */ 14602 if (mp->b_datap->db_type != M_DATA) { 14603 /* non-M_DATA IPsec accelerated packet */ 14604 IPSECHW_DEBUG(IPSECHW_PKT, 14605 ("non-M_DATA IPsec accelerated pkt\n")); 14606 freemsg(first_mp); 14607 return (B_TRUE); 14608 } 14609 ipha = (ipha_t *)mp->b_rptr; 14610 if (ipha->ipha_protocol != IPPROTO_AH && 14611 ipha->ipha_protocol != IPPROTO_ESP) { 14612 IPSECHW_DEBUG(IPSECHW_PKT, 14613 ("non-M_DATA IPsec accelerated pkt\n")); 14614 freemsg(first_mp); 14615 return (B_TRUE); 14616 } 14617 *mpp = mp; 14618 return (B_FALSE); 14619 } 14620 putnext(q, mp); 14621 return (B_TRUE); 14622 case M_IOCNAK: 14623 ip1dbg(("got iocnak ")); 14624 iocp = (struct iocblk *)mp->b_rptr; 14625 switch (iocp->ioc_cmd) { 14626 case SIOCSTUNPARAM: 14627 case OSIOCSTUNPARAM: 14628 /* 14629 * Since this is on the ill stream we unconditionally 14630 * bump up the refcount 14631 */ 14632 ill_refhold(ill); 14633 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14634 return (B_TRUE); 14635 case DL_IOC_HDR_INFO: 14636 case SIOCGTUNPARAM: 14637 case OSIOCGTUNPARAM: 14638 ip_rput_other(NULL, q, mp, NULL); 14639 return (B_TRUE); 14640 default: 14641 break; 14642 } 14643 /* FALLTHRU */ 14644 default: 14645 putnext(q, mp); 14646 return (B_TRUE); 14647 } 14648 } 14649 14650 /* Read side put procedure. Packets coming from the wire arrive here. */ 14651 void 14652 ip_rput(queue_t *q, mblk_t *mp) 14653 { 14654 ill_t *ill; 14655 union DL_primitives *dl; 14656 14657 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 14658 14659 ill = (ill_t *)q->q_ptr; 14660 14661 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 14662 /* 14663 * If things are opening or closing, only accept high-priority 14664 * DLPI messages. (On open ill->ill_ipif has not yet been 14665 * created; on close, things hanging off the ill may have been 14666 * freed already.) 14667 */ 14668 dl = (union DL_primitives *)mp->b_rptr; 14669 if (DB_TYPE(mp) != M_PCPROTO || 14670 dl->dl_primitive == DL_UNITDATA_IND) { 14671 /* 14672 * SIOC[GS]TUNPARAM ioctls can come here. 14673 */ 14674 inet_freemsg(mp); 14675 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14676 "ip_rput_end: q %p (%S)", q, "uninit"); 14677 return; 14678 } 14679 } 14680 14681 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14682 "ip_rput_end: q %p (%S)", q, "end"); 14683 14684 ip_input(ill, NULL, mp, NULL); 14685 } 14686 14687 static mblk_t * 14688 ip_fix_dbref(ill_t *ill, mblk_t *mp) 14689 { 14690 mblk_t *mp1; 14691 boolean_t adjusted = B_FALSE; 14692 ip_stack_t *ipst = ill->ill_ipst; 14693 14694 IP_STAT(ipst, ip_db_ref); 14695 /* 14696 * The IP_RECVSLLA option depends on having the 14697 * link layer header. First check that: 14698 * a> the underlying device is of type ether, 14699 * since this option is currently supported only 14700 * over ethernet. 14701 * b> there is enough room to copy over the link 14702 * layer header. 14703 * 14704 * Once the checks are done, adjust rptr so that 14705 * the link layer header will be copied via 14706 * copymsg. Note that, IFT_ETHER may be returned 14707 * by some non-ethernet drivers but in this case 14708 * the second check will fail. 14709 */ 14710 if (ill->ill_type == IFT_ETHER && 14711 (mp->b_rptr - mp->b_datap->db_base) >= 14712 sizeof (struct ether_header)) { 14713 mp->b_rptr -= sizeof (struct ether_header); 14714 adjusted = B_TRUE; 14715 } 14716 mp1 = copymsg(mp); 14717 14718 if (mp1 == NULL) { 14719 mp->b_next = NULL; 14720 /* clear b_prev - used by ip_mroute_decap */ 14721 mp->b_prev = NULL; 14722 freemsg(mp); 14723 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14724 return (NULL); 14725 } 14726 14727 if (adjusted) { 14728 /* 14729 * Copy is done. Restore the pointer in 14730 * the _new_ mblk 14731 */ 14732 mp1->b_rptr += sizeof (struct ether_header); 14733 } 14734 14735 /* Copy b_prev - used by ip_mroute_decap */ 14736 mp1->b_prev = mp->b_prev; 14737 mp->b_prev = NULL; 14738 14739 /* preserve the hardware checksum flags and data, if present */ 14740 if (DB_CKSUMFLAGS(mp) != 0) { 14741 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 14742 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 14743 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 14744 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 14745 DB_CKSUM16(mp1) = DB_CKSUM16(mp); 14746 } 14747 14748 freemsg(mp); 14749 return (mp1); 14750 } 14751 14752 /* 14753 * Direct read side procedure capable of dealing with chains. GLDv3 based 14754 * drivers call this function directly with mblk chains while STREAMS 14755 * read side procedure ip_rput() calls this for single packet with ip_ring 14756 * set to NULL to process one packet at a time. 14757 * 14758 * The ill will always be valid if this function is called directly from 14759 * the driver. 14760 * 14761 * If ip_input() is called from GLDv3: 14762 * 14763 * - This must be a non-VLAN IP stream. 14764 * - 'mp' is either an untagged or a special priority-tagged packet. 14765 * - Any VLAN tag that was in the MAC header has been stripped. 14766 * 14767 * If the IP header in packet is not 32-bit aligned, every message in the 14768 * chain will be aligned before further operations. This is required on SPARC 14769 * platform. 14770 */ 14771 /* ARGSUSED */ 14772 void 14773 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, 14774 struct mac_header_info_s *mhip) 14775 { 14776 ipaddr_t dst = NULL; 14777 ipaddr_t prev_dst; 14778 ire_t *ire = NULL; 14779 ipha_t *ipha; 14780 uint_t pkt_len; 14781 ssize_t len; 14782 uint_t opt_len; 14783 int ll_multicast; 14784 int cgtp_flt_pkt; 14785 queue_t *q = ill->ill_rq; 14786 squeue_t *curr_sqp = NULL; 14787 mblk_t *head = NULL; 14788 mblk_t *tail = NULL; 14789 mblk_t *first_mp; 14790 mblk_t *mp; 14791 mblk_t *dmp; 14792 int cnt = 0; 14793 ip_stack_t *ipst = ill->ill_ipst; 14794 14795 ASSERT(mp_chain != NULL); 14796 ASSERT(ill != NULL); 14797 14798 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 14799 14800 #define rptr ((uchar_t *)ipha) 14801 14802 while (mp_chain != NULL) { 14803 first_mp = mp = mp_chain; 14804 mp_chain = mp_chain->b_next; 14805 mp->b_next = NULL; 14806 ll_multicast = 0; 14807 14808 /* 14809 * We do ire caching from one iteration to 14810 * another. In the event the packet chain contains 14811 * all packets from the same dst, this caching saves 14812 * an ire_cache_lookup for each of the succeeding 14813 * packets in a packet chain. 14814 */ 14815 prev_dst = dst; 14816 14817 /* 14818 * if db_ref > 1 then copymsg and free original. Packet 14819 * may be changed and we do not want the other entity 14820 * who has a reference to this message to trip over the 14821 * changes. This is a blind change because trying to 14822 * catch all places that might change the packet is too 14823 * difficult. 14824 * 14825 * This corresponds to the fast path case, where we have 14826 * a chain of M_DATA mblks. We check the db_ref count 14827 * of only the 1st data block in the mblk chain. There 14828 * doesn't seem to be a reason why a device driver would 14829 * send up data with varying db_ref counts in the mblk 14830 * chain. In any case the Fast path is a private 14831 * interface, and our drivers don't do such a thing. 14832 * Given the above assumption, there is no need to walk 14833 * down the entire mblk chain (which could have a 14834 * potential performance problem) 14835 */ 14836 14837 if (DB_REF(mp) > 1) { 14838 if ((mp = ip_fix_dbref(ill, mp)) == NULL) 14839 continue; 14840 } 14841 14842 /* 14843 * Check and align the IP header. 14844 */ 14845 first_mp = mp; 14846 if (DB_TYPE(mp) == M_DATA) { 14847 dmp = mp; 14848 } else if (DB_TYPE(mp) == M_PROTO && 14849 *(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) { 14850 dmp = mp->b_cont; 14851 } else { 14852 dmp = NULL; 14853 } 14854 if (dmp != NULL) { 14855 /* 14856 * IP header ptr not aligned? 14857 * OR IP header not complete in first mblk 14858 */ 14859 if (!OK_32PTR(dmp->b_rptr) || 14860 MBLKL(dmp) < IP_SIMPLE_HDR_LENGTH) { 14861 if (!ip_check_and_align_header(q, dmp, ipst)) 14862 continue; 14863 } 14864 } 14865 14866 /* 14867 * ip_input fast path 14868 */ 14869 14870 /* mblk type is not M_DATA */ 14871 if (DB_TYPE(mp) != M_DATA) { 14872 if (ip_rput_process_notdata(q, &first_mp, ill, 14873 &ll_multicast, &mp)) 14874 continue; 14875 } 14876 14877 /* Make sure its an M_DATA and that its aligned */ 14878 ASSERT(DB_TYPE(mp) == M_DATA); 14879 ASSERT(DB_REF(mp) == 1 && OK_32PTR(mp->b_rptr)); 14880 14881 ipha = (ipha_t *)mp->b_rptr; 14882 len = mp->b_wptr - rptr; 14883 pkt_len = ntohs(ipha->ipha_length); 14884 14885 /* 14886 * We must count all incoming packets, even if they end 14887 * up being dropped later on. 14888 */ 14889 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 14890 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 14891 14892 /* multiple mblk or too short */ 14893 len -= pkt_len; 14894 if (len != 0) { 14895 /* 14896 * Make sure we have data length consistent 14897 * with the IP header. 14898 */ 14899 if (mp->b_cont == NULL) { 14900 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 14901 BUMP_MIB(ill->ill_ip_mib, 14902 ipIfStatsInHdrErrors); 14903 ip2dbg(("ip_input: drop pkt\n")); 14904 freemsg(mp); 14905 continue; 14906 } 14907 mp->b_wptr = rptr + pkt_len; 14908 } else if ((len += msgdsize(mp->b_cont)) != 0) { 14909 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 14910 BUMP_MIB(ill->ill_ip_mib, 14911 ipIfStatsInHdrErrors); 14912 ip2dbg(("ip_input: drop pkt\n")); 14913 freemsg(mp); 14914 continue; 14915 } 14916 (void) adjmsg(mp, -len); 14917 IP_STAT(ipst, ip_multimblk3); 14918 } 14919 } 14920 14921 /* Obtain the dst of the current packet */ 14922 dst = ipha->ipha_dst; 14923 14924 if (IP_LOOPBACK_ADDR(dst) || 14925 IP_LOOPBACK_ADDR(ipha->ipha_src)) { 14926 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInAddrErrors); 14927 cmn_err(CE_CONT, "dst %X src %X\n", 14928 dst, ipha->ipha_src); 14929 freemsg(mp); 14930 continue; 14931 } 14932 14933 /* 14934 * The event for packets being received from a 'physical' 14935 * interface is placed after validation of the source and/or 14936 * destination address as being local so that packets can be 14937 * redirected to loopback addresses using ipnat. 14938 */ 14939 DTRACE_PROBE4(ip4__physical__in__start, 14940 ill_t *, ill, ill_t *, NULL, 14941 ipha_t *, ipha, mblk_t *, first_mp); 14942 14943 FW_HOOKS(ipst->ips_ip4_physical_in_event, 14944 ipst->ips_ipv4firewall_physical_in, 14945 ill, NULL, ipha, first_mp, mp, ipst); 14946 14947 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, first_mp); 14948 14949 if (first_mp == NULL) { 14950 continue; 14951 } 14952 dst = ipha->ipha_dst; 14953 14954 /* 14955 * Attach any necessary label information to 14956 * this packet 14957 */ 14958 if (is_system_labeled() && 14959 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 14960 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14961 freemsg(mp); 14962 continue; 14963 } 14964 14965 /* 14966 * Reuse the cached ire only if the ipha_dst of the previous 14967 * packet is the same as the current packet AND it is not 14968 * INADDR_ANY. 14969 */ 14970 if (!(dst == prev_dst && dst != INADDR_ANY) && 14971 (ire != NULL)) { 14972 ire_refrele(ire); 14973 ire = NULL; 14974 } 14975 opt_len = ipha->ipha_version_and_hdr_length - 14976 IP_SIMPLE_HDR_VERSION; 14977 14978 /* 14979 * Check to see if we can take the fastpath. 14980 * That is possible if the following conditions are met 14981 * o Tsol disabled 14982 * o CGTP disabled 14983 * o ipp_action_count is 0 14984 * o no options in the packet 14985 * o not a RSVP packet 14986 * o not a multicast packet 14987 */ 14988 if (!is_system_labeled() && 14989 !ipst->ips_ip_cgtp_filter && ipp_action_count == 0 && 14990 opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP && 14991 !ll_multicast && !CLASSD(dst)) { 14992 if (ire == NULL) 14993 ire = ire_cache_lookup(dst, ALL_ZONES, NULL, 14994 ipst); 14995 14996 /* incoming packet is for forwarding */ 14997 if (ire == NULL || (ire->ire_type & IRE_CACHE)) { 14998 ire = ip_fast_forward(ire, dst, ill, mp); 14999 continue; 15000 } 15001 /* incoming packet is for local consumption */ 15002 if (ire->ire_type & IRE_LOCAL) 15003 goto local; 15004 } 15005 15006 /* 15007 * Disable ire caching for anything more complex 15008 * than the simple fast path case we checked for above. 15009 */ 15010 if (ire != NULL) { 15011 ire_refrele(ire); 15012 ire = NULL; 15013 } 15014 15015 /* Full-blown slow path */ 15016 if (opt_len != 0) { 15017 if (len != 0) 15018 IP_STAT(ipst, ip_multimblk4); 15019 else 15020 IP_STAT(ipst, ip_ipoptions); 15021 if (!ip_rput_multimblk_ipoptions(q, ill, mp, &ipha, 15022 &dst, ipst)) 15023 continue; 15024 } 15025 15026 /* 15027 * Invoke the CGTP (multirouting) filtering module to process 15028 * the incoming packet. Packets identified as duplicates 15029 * must be discarded. Filtering is active only if the 15030 * the ip_cgtp_filter ndd variable is non-zero. 15031 */ 15032 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 15033 if (ipst->ips_ip_cgtp_filter && 15034 ipst->ips_ip_cgtp_filter_ops != NULL) { 15035 netstackid_t stackid; 15036 15037 stackid = ipst->ips_netstack->netstack_stackid; 15038 cgtp_flt_pkt = 15039 ipst->ips_ip_cgtp_filter_ops->cfo_filter(stackid, 15040 ill->ill_phyint->phyint_ifindex, mp); 15041 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 15042 freemsg(first_mp); 15043 continue; 15044 } 15045 } 15046 15047 /* 15048 * If rsvpd is running, let RSVP daemon handle its processing 15049 * and forwarding of RSVP multicast/unicast packets. 15050 * If rsvpd is not running but mrouted is running, RSVP 15051 * multicast packets are forwarded as multicast traffic 15052 * and RSVP unicast packets are forwarded by unicast router. 15053 * If neither rsvpd nor mrouted is running, RSVP multicast 15054 * packets are not forwarded, but the unicast packets are 15055 * forwarded like unicast traffic. 15056 */ 15057 if (ipha->ipha_protocol == IPPROTO_RSVP && 15058 ipst->ips_ipcl_proto_fanout[IPPROTO_RSVP].connf_head != 15059 NULL) { 15060 /* RSVP packet and rsvpd running. Treat as ours */ 15061 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 15062 /* 15063 * This assumes that we deliver to all streams for 15064 * multicast and broadcast packets. 15065 * We have to force ll_multicast to 1 to handle the 15066 * M_DATA messages passed in from ip_mroute_decap. 15067 */ 15068 dst = INADDR_BROADCAST; 15069 ll_multicast = 1; 15070 } else if (CLASSD(dst)) { 15071 /* packet is multicast */ 15072 mp->b_next = NULL; 15073 if (ip_rput_process_multicast(q, mp, ill, ipha, 15074 &ll_multicast, &dst)) 15075 continue; 15076 } 15077 15078 if (ire == NULL) { 15079 ire = ire_cache_lookup(dst, ALL_ZONES, 15080 MBLK_GETLABEL(mp), ipst); 15081 } 15082 15083 if (ire == NULL) { 15084 /* 15085 * No IRE for this destination, so it can't be for us. 15086 * Unless we are forwarding, drop the packet. 15087 * We have to let source routed packets through 15088 * since we don't yet know if they are 'ping -l' 15089 * packets i.e. if they will go out over the 15090 * same interface as they came in on. 15091 */ 15092 ire = ip_rput_noire(q, mp, ll_multicast, dst); 15093 if (ire == NULL) 15094 continue; 15095 } 15096 15097 /* 15098 * Broadcast IRE may indicate either broadcast or 15099 * multicast packet 15100 */ 15101 if (ire->ire_type == IRE_BROADCAST) { 15102 /* 15103 * Skip broadcast checks if packet is UDP multicast; 15104 * we'd rather not enter ip_rput_process_broadcast() 15105 * unless the packet is broadcast for real, since 15106 * that routine is a no-op for multicast. 15107 */ 15108 if (ipha->ipha_protocol != IPPROTO_UDP || 15109 !CLASSD(ipha->ipha_dst)) { 15110 ire = ip_rput_process_broadcast(&q, mp, 15111 ire, ipha, ill, dst, cgtp_flt_pkt, 15112 ll_multicast); 15113 if (ire == NULL) 15114 continue; 15115 } 15116 } else if (ire->ire_stq != NULL) { 15117 /* fowarding? */ 15118 ip_rput_process_forward(q, mp, ire, ipha, ill, 15119 ll_multicast); 15120 /* ip_rput_process_forward consumed the packet */ 15121 continue; 15122 } 15123 15124 local: 15125 /* 15126 * If the queue in the ire is different to the ingress queue 15127 * then we need to check to see if we can accept the packet. 15128 * Note that for multicast packets and broadcast packets sent 15129 * to a broadcast address which is shared between multiple 15130 * interfaces we should not do this since we just got a random 15131 * broadcast ire. 15132 */ 15133 if ((ire->ire_rfq != q) && (ire->ire_type != IRE_BROADCAST)) { 15134 if ((ire = ip_check_multihome(&ipha->ipha_dst, ire, 15135 ill)) == NULL) { 15136 /* Drop packet */ 15137 BUMP_MIB(ill->ill_ip_mib, 15138 ipIfStatsForwProhibits); 15139 freemsg(mp); 15140 continue; 15141 } 15142 if (ire->ire_rfq != NULL) 15143 q = ire->ire_rfq; 15144 } 15145 15146 switch (ipha->ipha_protocol) { 15147 case IPPROTO_TCP: 15148 ASSERT(first_mp == mp); 15149 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 15150 mp, 0, q, ip_ring)) != NULL) { 15151 if (curr_sqp == NULL) { 15152 curr_sqp = GET_SQUEUE(mp); 15153 ASSERT(cnt == 0); 15154 cnt++; 15155 head = tail = mp; 15156 } else if (curr_sqp == GET_SQUEUE(mp)) { 15157 ASSERT(tail != NULL); 15158 cnt++; 15159 tail->b_next = mp; 15160 tail = mp; 15161 } else { 15162 /* 15163 * A different squeue. Send the 15164 * chain for the previous squeue on 15165 * its way. This shouldn't happen 15166 * often unless interrupt binding 15167 * changes. 15168 */ 15169 IP_STAT(ipst, ip_input_multi_squeue); 15170 squeue_enter_chain(curr_sqp, head, 15171 tail, cnt, SQTAG_IP_INPUT); 15172 curr_sqp = GET_SQUEUE(mp); 15173 head = mp; 15174 tail = mp; 15175 cnt = 1; 15176 } 15177 } 15178 continue; 15179 case IPPROTO_UDP: 15180 ASSERT(first_mp == mp); 15181 ip_udp_input(q, mp, ipha, ire, ill); 15182 continue; 15183 case IPPROTO_SCTP: 15184 ASSERT(first_mp == mp); 15185 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 15186 q, dst); 15187 /* ire has been released by ip_sctp_input */ 15188 ire = NULL; 15189 continue; 15190 default: 15191 ip_proto_input(q, first_mp, ipha, ire, ill, B_FALSE); 15192 continue; 15193 } 15194 } 15195 15196 if (ire != NULL) 15197 ire_refrele(ire); 15198 15199 if (head != NULL) 15200 squeue_enter_chain(curr_sqp, head, tail, cnt, SQTAG_IP_INPUT); 15201 15202 /* 15203 * This code is there just to make netperf/ttcp look good. 15204 * 15205 * Its possible that after being in polling mode (and having cleared 15206 * the backlog), squeues have turned the interrupt frequency higher 15207 * to improve latency at the expense of more CPU utilization (less 15208 * packets per interrupts or more number of interrupts). Workloads 15209 * like ttcp/netperf do manage to tickle polling once in a while 15210 * but for the remaining time, stay in higher interrupt mode since 15211 * their packet arrival rate is pretty uniform and this shows up 15212 * as higher CPU utilization. Since people care about CPU utilization 15213 * while running netperf/ttcp, turn the interrupt frequency back to 15214 * normal/default if polling has not been used in ip_poll_normal_ticks. 15215 */ 15216 if (ip_ring != NULL && (ip_ring->rr_poll_state & ILL_POLLING)) { 15217 if (lbolt >= (ip_ring->rr_poll_time + ip_poll_normal_ticks)) { 15218 ip_ring->rr_poll_state &= ~ILL_POLLING; 15219 ip_ring->rr_blank(ip_ring->rr_handle, 15220 ip_ring->rr_normal_blank_time, 15221 ip_ring->rr_normal_pkt_cnt); 15222 } 15223 } 15224 15225 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15226 "ip_input_end: q %p (%S)", q, "end"); 15227 #undef rptr 15228 } 15229 15230 static void 15231 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 15232 t_uscalar_t err) 15233 { 15234 if (dl_err == DL_SYSERR) { 15235 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15236 "%s: %s failed: DL_SYSERR (errno %u)\n", 15237 ill->ill_name, dlpi_prim_str(prim), err); 15238 return; 15239 } 15240 15241 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15242 "%s: %s failed: %s\n", ill->ill_name, dlpi_prim_str(prim), 15243 dlpi_err_str(dl_err)); 15244 } 15245 15246 /* 15247 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 15248 * than DL_UNITDATA_IND messages. If we need to process this message 15249 * exclusively, we call qwriter_ip, in which case we also need to call 15250 * ill_refhold before that, since qwriter_ip does an ill_refrele. 15251 */ 15252 void 15253 ip_rput_dlpi(queue_t *q, mblk_t *mp) 15254 { 15255 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15256 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15257 ill_t *ill = (ill_t *)q->q_ptr; 15258 boolean_t pending; 15259 15260 ip1dbg(("ip_rput_dlpi")); 15261 if (dloa->dl_primitive == DL_ERROR_ACK) { 15262 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK %s (0x%x): " 15263 "%s (0x%x), unix %u\n", ill->ill_name, 15264 dlpi_prim_str(dlea->dl_error_primitive), 15265 dlea->dl_error_primitive, 15266 dlpi_err_str(dlea->dl_errno), 15267 dlea->dl_errno, 15268 dlea->dl_unix_errno)); 15269 } 15270 15271 /* 15272 * If we received an ACK but didn't send a request for it, then it 15273 * can't be part of any pending operation; discard up-front. 15274 */ 15275 switch (dloa->dl_primitive) { 15276 case DL_NOTIFY_IND: 15277 pending = B_TRUE; 15278 break; 15279 case DL_ERROR_ACK: 15280 pending = ill_dlpi_pending(ill, dlea->dl_error_primitive); 15281 break; 15282 case DL_OK_ACK: 15283 pending = ill_dlpi_pending(ill, dloa->dl_correct_primitive); 15284 break; 15285 case DL_INFO_ACK: 15286 pending = ill_dlpi_pending(ill, DL_INFO_REQ); 15287 break; 15288 case DL_BIND_ACK: 15289 pending = ill_dlpi_pending(ill, DL_BIND_REQ); 15290 break; 15291 case DL_PHYS_ADDR_ACK: 15292 pending = ill_dlpi_pending(ill, DL_PHYS_ADDR_REQ); 15293 break; 15294 case DL_NOTIFY_ACK: 15295 pending = ill_dlpi_pending(ill, DL_NOTIFY_REQ); 15296 break; 15297 case DL_CONTROL_ACK: 15298 pending = ill_dlpi_pending(ill, DL_CONTROL_REQ); 15299 break; 15300 case DL_CAPABILITY_ACK: 15301 pending = ill_dlpi_pending(ill, DL_CAPABILITY_REQ); 15302 break; 15303 default: 15304 /* Not a DLPI message we support or were expecting */ 15305 freemsg(mp); 15306 return; 15307 } 15308 15309 if (!pending) { 15310 freemsg(mp); 15311 return; 15312 } 15313 15314 switch (dloa->dl_primitive) { 15315 case DL_ERROR_ACK: 15316 if (dlea->dl_error_primitive == DL_UNBIND_REQ) { 15317 mutex_enter(&ill->ill_lock); 15318 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15319 cv_signal(&ill->ill_cv); 15320 mutex_exit(&ill->ill_lock); 15321 } 15322 break; 15323 15324 case DL_OK_ACK: 15325 ip1dbg(("ip_rput: DL_OK_ACK for %s\n", 15326 dlpi_prim_str((int)dloa->dl_correct_primitive))); 15327 switch (dloa->dl_correct_primitive) { 15328 case DL_UNBIND_REQ: 15329 mutex_enter(&ill->ill_lock); 15330 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15331 cv_signal(&ill->ill_cv); 15332 mutex_exit(&ill->ill_lock); 15333 break; 15334 15335 case DL_ENABMULTI_REQ: 15336 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15337 ill->ill_dlpi_multicast_state = IDS_OK; 15338 break; 15339 } 15340 break; 15341 default: 15342 break; 15343 } 15344 15345 /* 15346 * We know the message is one we're waiting for (or DL_NOTIFY_IND), 15347 * and we need to become writer to continue to process it. If it's not 15348 * a DL_NOTIFY_IND, we assume we're in the middle of an exclusive 15349 * operation and pass CUR_OP. If this isn't true, we'll end up doing 15350 * some work as part of the current exclusive operation that actually 15351 * is not part of it -- which is wrong, but better than the 15352 * alternative of deadlock (if NEW_OP is always used). Someday, we 15353 * should track which DLPI requests have ACKs that we wait on 15354 * synchronously so we can know whether to use CUR_OP or NEW_OP. 15355 * 15356 * As required by qwriter_ip(), we refhold the ill; it will refrele. 15357 * Since this is on the ill stream we unconditionally bump up the 15358 * refcount without doing ILL_CAN_LOOKUP(). 15359 */ 15360 ill_refhold(ill); 15361 if (dloa->dl_primitive == DL_NOTIFY_IND) 15362 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 15363 else 15364 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 15365 } 15366 15367 /* 15368 * Handling of DLPI messages that require exclusive access to the ipsq. 15369 * 15370 * Need to do ill_pending_mp_release on ioctl completion, which could 15371 * happen here. (along with mi_copy_done) 15372 */ 15373 /* ARGSUSED */ 15374 static void 15375 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15376 { 15377 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15378 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15379 int err = 0; 15380 ill_t *ill; 15381 ipif_t *ipif = NULL; 15382 mblk_t *mp1 = NULL; 15383 conn_t *connp = NULL; 15384 t_uscalar_t paddrreq; 15385 mblk_t *mp_hw; 15386 boolean_t success; 15387 boolean_t ioctl_aborted = B_FALSE; 15388 boolean_t log = B_TRUE; 15389 hook_nic_event_t *info; 15390 ip_stack_t *ipst; 15391 15392 ip1dbg(("ip_rput_dlpi_writer ..")); 15393 ill = (ill_t *)q->q_ptr; 15394 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 15395 15396 ASSERT(IAM_WRITER_ILL(ill)); 15397 15398 ipst = ill->ill_ipst; 15399 15400 /* 15401 * ipsq_pending_mp and ipsq_pending_ipif track each other. i.e. 15402 * both are null or non-null. However we can assert that only 15403 * after grabbing the ipsq_lock. So we don't make any assertion 15404 * here and in other places in the code. 15405 */ 15406 ipif = ipsq->ipsq_pending_ipif; 15407 /* 15408 * The current ioctl could have been aborted by the user and a new 15409 * ioctl to bring up another ill could have started. We could still 15410 * get a response from the driver later. 15411 */ 15412 if (ipif != NULL && ipif->ipif_ill != ill) 15413 ioctl_aborted = B_TRUE; 15414 15415 switch (dloa->dl_primitive) { 15416 case DL_ERROR_ACK: 15417 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 15418 dlpi_prim_str(dlea->dl_error_primitive))); 15419 15420 switch (dlea->dl_error_primitive) { 15421 case DL_PROMISCON_REQ: 15422 case DL_PROMISCOFF_REQ: 15423 case DL_DISABMULTI_REQ: 15424 case DL_UNBIND_REQ: 15425 case DL_ATTACH_REQ: 15426 case DL_INFO_REQ: 15427 ill_dlpi_done(ill, dlea->dl_error_primitive); 15428 break; 15429 case DL_NOTIFY_REQ: 15430 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15431 log = B_FALSE; 15432 break; 15433 case DL_PHYS_ADDR_REQ: 15434 /* 15435 * For IPv6 only, there are two additional 15436 * phys_addr_req's sent to the driver to get the 15437 * IPv6 token and lla. This allows IP to acquire 15438 * the hardware address format for a given interface 15439 * without having built in knowledge of the hardware 15440 * address. ill_phys_addr_pend keeps track of the last 15441 * DL_PAR sent so we know which response we are 15442 * dealing with. ill_dlpi_done will update 15443 * ill_phys_addr_pend when it sends the next req. 15444 * We don't complete the IOCTL until all three DL_PARs 15445 * have been attempted, so set *_len to 0 and break. 15446 */ 15447 paddrreq = ill->ill_phys_addr_pend; 15448 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15449 if (paddrreq == DL_IPV6_TOKEN) { 15450 ill->ill_token_length = 0; 15451 log = B_FALSE; 15452 break; 15453 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 15454 ill->ill_nd_lla_len = 0; 15455 log = B_FALSE; 15456 break; 15457 } 15458 /* 15459 * Something went wrong with the DL_PHYS_ADDR_REQ. 15460 * We presumably have an IOCTL hanging out waiting 15461 * for completion. Find it and complete the IOCTL 15462 * with the error noted. 15463 * However, ill_dl_phys was called on an ill queue 15464 * (from SIOCSLIFNAME), thus conn_pending_ill is not 15465 * set. But the ioctl is known to be pending on ill_wq. 15466 */ 15467 if (!ill->ill_ifname_pending) 15468 break; 15469 ill->ill_ifname_pending = 0; 15470 if (!ioctl_aborted) 15471 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15472 if (mp1 != NULL) { 15473 /* 15474 * This operation (SIOCSLIFNAME) must have 15475 * happened on the ill. Assert there is no conn 15476 */ 15477 ASSERT(connp == NULL); 15478 q = ill->ill_wq; 15479 } 15480 break; 15481 case DL_BIND_REQ: 15482 ill_dlpi_done(ill, DL_BIND_REQ); 15483 if (ill->ill_ifname_pending) 15484 break; 15485 /* 15486 * Something went wrong with the bind. We presumably 15487 * have an IOCTL hanging out waiting for completion. 15488 * Find it, take down the interface that was coming 15489 * up, and complete the IOCTL with the error noted. 15490 */ 15491 if (!ioctl_aborted) 15492 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15493 if (mp1 != NULL) { 15494 /* 15495 * This operation (SIOCSLIFFLAGS) must have 15496 * happened from a conn. 15497 */ 15498 ASSERT(connp != NULL); 15499 q = CONNP_TO_WQ(connp); 15500 if (ill->ill_move_in_progress) { 15501 ILL_CLEAR_MOVE(ill); 15502 } 15503 (void) ipif_down(ipif, NULL, NULL); 15504 /* error is set below the switch */ 15505 } 15506 break; 15507 case DL_ENABMULTI_REQ: 15508 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 15509 15510 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15511 ill->ill_dlpi_multicast_state = IDS_FAILED; 15512 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 15513 ipif_t *ipif; 15514 15515 printf("ip: joining multicasts failed (%d)" 15516 " on %s - will use link layer " 15517 "broadcasts for multicast\n", 15518 dlea->dl_errno, ill->ill_name); 15519 15520 /* 15521 * Set up the multicast mapping alone. 15522 * writer, so ok to access ill->ill_ipif 15523 * without any lock. 15524 */ 15525 ipif = ill->ill_ipif; 15526 mutex_enter(&ill->ill_phyint->phyint_lock); 15527 ill->ill_phyint->phyint_flags |= 15528 PHYI_MULTI_BCAST; 15529 mutex_exit(&ill->ill_phyint->phyint_lock); 15530 15531 if (!ill->ill_isv6) { 15532 (void) ipif_arp_setup_multicast(ipif, 15533 NULL); 15534 } else { 15535 (void) ipif_ndp_setup_multicast(ipif, 15536 NULL); 15537 } 15538 } 15539 freemsg(mp); /* Don't want to pass this up */ 15540 return; 15541 15542 case DL_CAPABILITY_REQ: 15543 case DL_CONTROL_REQ: 15544 ill_dlpi_done(ill, dlea->dl_error_primitive); 15545 ill->ill_dlpi_capab_state = IDS_FAILED; 15546 freemsg(mp); 15547 return; 15548 } 15549 /* 15550 * Note the error for IOCTL completion (mp1 is set when 15551 * ready to complete ioctl). If ill_ifname_pending_err is 15552 * set, an error occured during plumbing (ill_ifname_pending), 15553 * so we want to report that error. 15554 * 15555 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 15556 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 15557 * expected to get errack'd if the driver doesn't support 15558 * these flags (e.g. ethernet). log will be set to B_FALSE 15559 * if these error conditions are encountered. 15560 */ 15561 if (mp1 != NULL) { 15562 if (ill->ill_ifname_pending_err != 0) { 15563 err = ill->ill_ifname_pending_err; 15564 ill->ill_ifname_pending_err = 0; 15565 } else { 15566 err = dlea->dl_unix_errno ? 15567 dlea->dl_unix_errno : ENXIO; 15568 } 15569 /* 15570 * If we're plumbing an interface and an error hasn't already 15571 * been saved, set ill_ifname_pending_err to the error passed 15572 * up. Ignore the error if log is B_FALSE (see comment above). 15573 */ 15574 } else if (log && ill->ill_ifname_pending && 15575 ill->ill_ifname_pending_err == 0) { 15576 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 15577 dlea->dl_unix_errno : ENXIO; 15578 } 15579 15580 if (log) 15581 ip_dlpi_error(ill, dlea->dl_error_primitive, 15582 dlea->dl_errno, dlea->dl_unix_errno); 15583 break; 15584 case DL_CAPABILITY_ACK: 15585 /* Call a routine to handle this one. */ 15586 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 15587 ill_capability_ack(ill, mp); 15588 15589 /* 15590 * If the ack is due to renegotiation, we will need to send 15591 * a new CAPABILITY_REQ to start the renegotiation. 15592 */ 15593 if (ill->ill_capab_reneg) { 15594 ill->ill_capab_reneg = B_FALSE; 15595 ill_capability_probe(ill); 15596 } 15597 break; 15598 case DL_CONTROL_ACK: 15599 /* We treat all of these as "fire and forget" */ 15600 ill_dlpi_done(ill, DL_CONTROL_REQ); 15601 break; 15602 case DL_INFO_ACK: 15603 /* Call a routine to handle this one. */ 15604 ill_dlpi_done(ill, DL_INFO_REQ); 15605 ip_ll_subnet_defaults(ill, mp); 15606 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 15607 return; 15608 case DL_BIND_ACK: 15609 /* 15610 * We should have an IOCTL waiting on this unless 15611 * sent by ill_dl_phys, in which case just return 15612 */ 15613 ill_dlpi_done(ill, DL_BIND_REQ); 15614 if (ill->ill_ifname_pending) 15615 break; 15616 15617 if (!ioctl_aborted) 15618 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15619 if (mp1 == NULL) 15620 break; 15621 /* 15622 * Because mp1 was added by ill_dl_up(), and it always 15623 * passes a valid connp, connp must be valid here. 15624 */ 15625 ASSERT(connp != NULL); 15626 q = CONNP_TO_WQ(connp); 15627 15628 /* 15629 * We are exclusive. So nothing can change even after 15630 * we get the pending mp. If need be we can put it back 15631 * and restart, as in calling ipif_arp_up() below. 15632 */ 15633 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 15634 15635 mutex_enter(&ill->ill_lock); 15636 15637 ill->ill_dl_up = 1; 15638 15639 if ((info = ill->ill_nic_event_info) != NULL) { 15640 ip2dbg(("ip_rput_dlpi_writer: unexpected nic event %d " 15641 "attached for %s\n", info->hne_event, 15642 ill->ill_name)); 15643 if (info->hne_data != NULL) 15644 kmem_free(info->hne_data, info->hne_datalen); 15645 kmem_free(info, sizeof (hook_nic_event_t)); 15646 } 15647 15648 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 15649 if (info != NULL) { 15650 info->hne_nic = ill->ill_phyint->phyint_hook_ifindex; 15651 info->hne_lif = 0; 15652 info->hne_event = NE_UP; 15653 info->hne_data = NULL; 15654 info->hne_datalen = 0; 15655 info->hne_family = ill->ill_isv6 ? 15656 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 15657 } else 15658 ip2dbg(("ip_rput_dlpi_writer: could not attach UP nic " 15659 "event information for %s (ENOMEM)\n", 15660 ill->ill_name)); 15661 15662 ill->ill_nic_event_info = info; 15663 15664 mutex_exit(&ill->ill_lock); 15665 15666 /* 15667 * Now bring up the resolver; when that is complete, we'll 15668 * create IREs. Note that we intentionally mirror what 15669 * ipif_up() would have done, because we got here by way of 15670 * ill_dl_up(), which stopped ipif_up()'s processing. 15671 */ 15672 if (ill->ill_isv6) { 15673 /* 15674 * v6 interfaces. 15675 * Unlike ARP which has to do another bind 15676 * and attach, once we get here we are 15677 * done with NDP. Except in the case of 15678 * ILLF_XRESOLV, in which case we send an 15679 * AR_INTERFACE_UP to the external resolver. 15680 * If all goes well, the ioctl will complete 15681 * in ip_rput(). If there's an error, we 15682 * complete it here. 15683 */ 15684 if ((err = ipif_ndp_up(ipif)) == 0) { 15685 if (ill->ill_flags & ILLF_XRESOLV) { 15686 mutex_enter(&connp->conn_lock); 15687 mutex_enter(&ill->ill_lock); 15688 success = ipsq_pending_mp_add( 15689 connp, ipif, q, mp1, 0); 15690 mutex_exit(&ill->ill_lock); 15691 mutex_exit(&connp->conn_lock); 15692 if (success) { 15693 err = ipif_resolver_up(ipif, 15694 Res_act_initial); 15695 if (err == EINPROGRESS) { 15696 freemsg(mp); 15697 return; 15698 } 15699 ASSERT(err != 0); 15700 mp1 = ipsq_pending_mp_get(ipsq, 15701 &connp); 15702 ASSERT(mp1 != NULL); 15703 } else { 15704 /* conn has started closing */ 15705 err = EINTR; 15706 } 15707 } else { /* Non XRESOLV interface */ 15708 (void) ipif_resolver_up(ipif, 15709 Res_act_initial); 15710 err = ipif_up_done_v6(ipif); 15711 } 15712 } 15713 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 15714 /* 15715 * ARP and other v4 external resolvers. 15716 * Leave the pending mblk intact so that 15717 * the ioctl completes in ip_rput(). 15718 */ 15719 mutex_enter(&connp->conn_lock); 15720 mutex_enter(&ill->ill_lock); 15721 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 15722 mutex_exit(&ill->ill_lock); 15723 mutex_exit(&connp->conn_lock); 15724 if (success) { 15725 err = ipif_resolver_up(ipif, Res_act_initial); 15726 if (err == EINPROGRESS) { 15727 freemsg(mp); 15728 return; 15729 } 15730 ASSERT(err != 0); 15731 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15732 } else { 15733 /* The conn has started closing */ 15734 err = EINTR; 15735 } 15736 } else { 15737 /* 15738 * This one is complete. Reply to pending ioctl. 15739 */ 15740 (void) ipif_resolver_up(ipif, Res_act_initial); 15741 err = ipif_up_done(ipif); 15742 } 15743 15744 if ((err == 0) && (ill->ill_up_ipifs)) { 15745 err = ill_up_ipifs(ill, q, mp1); 15746 if (err == EINPROGRESS) { 15747 freemsg(mp); 15748 return; 15749 } 15750 } 15751 15752 if (ill->ill_up_ipifs) { 15753 ill_group_cleanup(ill); 15754 } 15755 15756 break; 15757 case DL_NOTIFY_IND: { 15758 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 15759 ire_t *ire; 15760 boolean_t need_ire_walk_v4 = B_FALSE; 15761 boolean_t need_ire_walk_v6 = B_FALSE; 15762 15763 switch (notify->dl_notification) { 15764 case DL_NOTE_PHYS_ADDR: 15765 err = ill_set_phys_addr(ill, mp); 15766 break; 15767 15768 case DL_NOTE_FASTPATH_FLUSH: 15769 ill_fastpath_flush(ill); 15770 break; 15771 15772 case DL_NOTE_SDU_SIZE: 15773 /* 15774 * Change the MTU size of the interface, of all 15775 * attached ipif's, and of all relevant ire's. The 15776 * new value's a uint32_t at notify->dl_data. 15777 * Mtu change Vs. new ire creation - protocol below. 15778 * 15779 * a Mark the ipif as IPIF_CHANGING. 15780 * b Set the new mtu in the ipif. 15781 * c Change the ire_max_frag on all affected ires 15782 * d Unmark the IPIF_CHANGING 15783 * 15784 * To see how the protocol works, assume an interface 15785 * route is also being added simultaneously by 15786 * ip_rt_add and let 'ipif' be the ipif referenced by 15787 * the ire. If the ire is created before step a, 15788 * it will be cleaned up by step c. If the ire is 15789 * created after step d, it will see the new value of 15790 * ipif_mtu. Any attempt to create the ire between 15791 * steps a to d will fail because of the IPIF_CHANGING 15792 * flag. Note that ire_create() is passed a pointer to 15793 * the ipif_mtu, and not the value. During ire_add 15794 * under the bucket lock, the ire_max_frag of the 15795 * new ire being created is set from the ipif/ire from 15796 * which it is being derived. 15797 */ 15798 mutex_enter(&ill->ill_lock); 15799 ill->ill_max_frag = (uint_t)notify->dl_data; 15800 15801 /* 15802 * If an SIOCSLIFLNKINFO has changed the ill_max_mtu 15803 * leave it alone 15804 */ 15805 if (ill->ill_mtu_userspecified) { 15806 mutex_exit(&ill->ill_lock); 15807 break; 15808 } 15809 ill->ill_max_mtu = ill->ill_max_frag; 15810 if (ill->ill_isv6) { 15811 if (ill->ill_max_mtu < IPV6_MIN_MTU) 15812 ill->ill_max_mtu = IPV6_MIN_MTU; 15813 } else { 15814 if (ill->ill_max_mtu < IP_MIN_MTU) 15815 ill->ill_max_mtu = IP_MIN_MTU; 15816 } 15817 for (ipif = ill->ill_ipif; ipif != NULL; 15818 ipif = ipif->ipif_next) { 15819 /* 15820 * Don't override the mtu if the user 15821 * has explicitly set it. 15822 */ 15823 if (ipif->ipif_flags & IPIF_FIXEDMTU) 15824 continue; 15825 ipif->ipif_mtu = (uint_t)notify->dl_data; 15826 if (ipif->ipif_isv6) 15827 ire = ipif_to_ire_v6(ipif); 15828 else 15829 ire = ipif_to_ire(ipif); 15830 if (ire != NULL) { 15831 ire->ire_max_frag = ipif->ipif_mtu; 15832 ire_refrele(ire); 15833 } 15834 if (ipif->ipif_flags & IPIF_UP) { 15835 if (ill->ill_isv6) 15836 need_ire_walk_v6 = B_TRUE; 15837 else 15838 need_ire_walk_v4 = B_TRUE; 15839 } 15840 } 15841 mutex_exit(&ill->ill_lock); 15842 if (need_ire_walk_v4) 15843 ire_walk_v4(ill_mtu_change, (char *)ill, 15844 ALL_ZONES, ipst); 15845 if (need_ire_walk_v6) 15846 ire_walk_v6(ill_mtu_change, (char *)ill, 15847 ALL_ZONES, ipst); 15848 break; 15849 case DL_NOTE_LINK_UP: 15850 case DL_NOTE_LINK_DOWN: { 15851 /* 15852 * We are writer. ill / phyint / ipsq assocs stable. 15853 * The RUNNING flag reflects the state of the link. 15854 */ 15855 phyint_t *phyint = ill->ill_phyint; 15856 uint64_t new_phyint_flags; 15857 boolean_t changed = B_FALSE; 15858 boolean_t went_up; 15859 15860 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 15861 mutex_enter(&phyint->phyint_lock); 15862 new_phyint_flags = went_up ? 15863 phyint->phyint_flags | PHYI_RUNNING : 15864 phyint->phyint_flags & ~PHYI_RUNNING; 15865 if (new_phyint_flags != phyint->phyint_flags) { 15866 phyint->phyint_flags = new_phyint_flags; 15867 changed = B_TRUE; 15868 } 15869 mutex_exit(&phyint->phyint_lock); 15870 /* 15871 * ill_restart_dad handles the DAD restart and routing 15872 * socket notification logic. 15873 */ 15874 if (changed) { 15875 ill_restart_dad(phyint->phyint_illv4, went_up); 15876 ill_restart_dad(phyint->phyint_illv6, went_up); 15877 } 15878 break; 15879 } 15880 case DL_NOTE_PROMISC_ON_PHYS: 15881 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 15882 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 15883 mutex_enter(&ill->ill_lock); 15884 ill->ill_promisc_on_phys = B_TRUE; 15885 mutex_exit(&ill->ill_lock); 15886 break; 15887 case DL_NOTE_PROMISC_OFF_PHYS: 15888 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 15889 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 15890 mutex_enter(&ill->ill_lock); 15891 ill->ill_promisc_on_phys = B_FALSE; 15892 mutex_exit(&ill->ill_lock); 15893 break; 15894 case DL_NOTE_CAPAB_RENEG: 15895 /* 15896 * Something changed on the driver side. 15897 * It wants us to renegotiate the capabilities 15898 * on this ill. One possible cause is the aggregation 15899 * interface under us where a port got added or 15900 * went away. 15901 * 15902 * If the capability negotiation is already done 15903 * or is in progress, reset the capabilities and 15904 * mark the ill's ill_capab_reneg to be B_TRUE, 15905 * so that when the ack comes back, we can start 15906 * the renegotiation process. 15907 * 15908 * Note that if ill_capab_reneg is already B_TRUE 15909 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case), 15910 * the capability resetting request has been sent 15911 * and the renegotiation has not been started yet; 15912 * nothing needs to be done in this case. 15913 */ 15914 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN) { 15915 ill_capability_reset(ill); 15916 ill->ill_capab_reneg = B_TRUE; 15917 } 15918 break; 15919 default: 15920 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 15921 "type 0x%x for DL_NOTIFY_IND\n", 15922 notify->dl_notification)); 15923 break; 15924 } 15925 15926 /* 15927 * As this is an asynchronous operation, we 15928 * should not call ill_dlpi_done 15929 */ 15930 break; 15931 } 15932 case DL_NOTIFY_ACK: { 15933 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 15934 15935 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 15936 ill->ill_note_link = 1; 15937 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15938 break; 15939 } 15940 case DL_PHYS_ADDR_ACK: { 15941 /* 15942 * As part of plumbing the interface via SIOCSLIFNAME, 15943 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 15944 * whose answers we receive here. As each answer is received, 15945 * we call ill_dlpi_done() to dispatch the next request as 15946 * we're processing the current one. Once all answers have 15947 * been received, we use ipsq_pending_mp_get() to dequeue the 15948 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 15949 * is invoked from an ill queue, conn_oper_pending_ill is not 15950 * available, but we know the ioctl is pending on ill_wq.) 15951 */ 15952 uint_t paddrlen, paddroff; 15953 15954 paddrreq = ill->ill_phys_addr_pend; 15955 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 15956 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 15957 15958 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15959 if (paddrreq == DL_IPV6_TOKEN) { 15960 /* 15961 * bcopy to low-order bits of ill_token 15962 * 15963 * XXX Temporary hack - currently, all known tokens 15964 * are 64 bits, so I'll cheat for the moment. 15965 */ 15966 bcopy(mp->b_rptr + paddroff, 15967 &ill->ill_token.s6_addr32[2], paddrlen); 15968 ill->ill_token_length = paddrlen; 15969 break; 15970 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 15971 ASSERT(ill->ill_nd_lla_mp == NULL); 15972 ill_set_ndmp(ill, mp, paddroff, paddrlen); 15973 mp = NULL; 15974 break; 15975 } 15976 15977 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 15978 ASSERT(ill->ill_phys_addr_mp == NULL); 15979 if (!ill->ill_ifname_pending) 15980 break; 15981 ill->ill_ifname_pending = 0; 15982 if (!ioctl_aborted) 15983 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15984 if (mp1 != NULL) { 15985 ASSERT(connp == NULL); 15986 q = ill->ill_wq; 15987 } 15988 /* 15989 * If any error acks received during the plumbing sequence, 15990 * ill_ifname_pending_err will be set. Break out and send up 15991 * the error to the pending ioctl. 15992 */ 15993 if (ill->ill_ifname_pending_err != 0) { 15994 err = ill->ill_ifname_pending_err; 15995 ill->ill_ifname_pending_err = 0; 15996 break; 15997 } 15998 15999 ill->ill_phys_addr_mp = mp; 16000 ill->ill_phys_addr = mp->b_rptr + paddroff; 16001 mp = NULL; 16002 16003 /* 16004 * If paddrlen is zero, the DLPI provider doesn't support 16005 * physical addresses. The other two tests were historical 16006 * workarounds for bugs in our former PPP implementation, but 16007 * now other things have grown dependencies on them -- e.g., 16008 * the tun module specifies a dl_addr_length of zero in its 16009 * DL_BIND_ACK, but then specifies an incorrect value in its 16010 * DL_PHYS_ADDR_ACK. These bogus checks need to be removed, 16011 * but only after careful testing ensures that all dependent 16012 * broken DLPI providers have been fixed. 16013 */ 16014 if (paddrlen == 0 || ill->ill_phys_addr_length == 0 || 16015 ill->ill_phys_addr_length == IP_ADDR_LEN) { 16016 ill->ill_phys_addr = NULL; 16017 } else if (paddrlen != ill->ill_phys_addr_length) { 16018 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 16019 paddrlen, ill->ill_phys_addr_length)); 16020 err = EINVAL; 16021 break; 16022 } 16023 16024 if (ill->ill_nd_lla_mp == NULL) { 16025 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 16026 err = ENOMEM; 16027 break; 16028 } 16029 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 16030 } 16031 16032 /* 16033 * Set the interface token. If the zeroth interface address 16034 * is unspecified, then set it to the link local address. 16035 */ 16036 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 16037 (void) ill_setdefaulttoken(ill); 16038 16039 ASSERT(ill->ill_ipif->ipif_id == 0); 16040 if (ipif != NULL && 16041 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 16042 (void) ipif_setlinklocal(ipif); 16043 } 16044 break; 16045 } 16046 case DL_OK_ACK: 16047 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 16048 dlpi_prim_str((int)dloa->dl_correct_primitive), 16049 dloa->dl_correct_primitive)); 16050 switch (dloa->dl_correct_primitive) { 16051 case DL_PROMISCON_REQ: 16052 case DL_PROMISCOFF_REQ: 16053 case DL_ENABMULTI_REQ: 16054 case DL_DISABMULTI_REQ: 16055 case DL_UNBIND_REQ: 16056 case DL_ATTACH_REQ: 16057 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16058 break; 16059 } 16060 break; 16061 default: 16062 break; 16063 } 16064 16065 freemsg(mp); 16066 if (mp1 != NULL) { 16067 /* 16068 * The operation must complete without EINPROGRESS 16069 * since ipsq_pending_mp_get() has removed the mblk 16070 * from ipsq_pending_mp. Otherwise, the operation 16071 * will be stuck forever in the ipsq. 16072 */ 16073 ASSERT(err != EINPROGRESS); 16074 16075 switch (ipsq->ipsq_current_ioctl) { 16076 case 0: 16077 ipsq_current_finish(ipsq); 16078 break; 16079 16080 case SIOCLIFADDIF: 16081 case SIOCSLIFNAME: 16082 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16083 break; 16084 16085 default: 16086 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16087 break; 16088 } 16089 } 16090 } 16091 16092 /* 16093 * ip_rput_other is called by ip_rput to handle messages modifying the global 16094 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 16095 */ 16096 /* ARGSUSED */ 16097 void 16098 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 16099 { 16100 ill_t *ill; 16101 struct iocblk *iocp; 16102 mblk_t *mp1; 16103 conn_t *connp = NULL; 16104 16105 ip1dbg(("ip_rput_other ")); 16106 ill = (ill_t *)q->q_ptr; 16107 /* 16108 * This routine is not a writer in the case of SIOCGTUNPARAM 16109 * in which case ipsq is NULL. 16110 */ 16111 if (ipsq != NULL) { 16112 ASSERT(IAM_WRITER_IPSQ(ipsq)); 16113 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 16114 } 16115 16116 switch (mp->b_datap->db_type) { 16117 case M_ERROR: 16118 case M_HANGUP: 16119 /* 16120 * The device has a problem. We force the ILL down. It can 16121 * be brought up again manually using SIOCSIFFLAGS (via 16122 * ifconfig or equivalent). 16123 */ 16124 ASSERT(ipsq != NULL); 16125 if (mp->b_rptr < mp->b_wptr) 16126 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 16127 if (ill->ill_error == 0) 16128 ill->ill_error = ENXIO; 16129 if (!ill_down_start(q, mp)) 16130 return; 16131 ipif_all_down_tail(ipsq, q, mp, NULL); 16132 break; 16133 case M_IOCACK: 16134 iocp = (struct iocblk *)mp->b_rptr; 16135 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 16136 switch (iocp->ioc_cmd) { 16137 case SIOCSTUNPARAM: 16138 case OSIOCSTUNPARAM: 16139 ASSERT(ipsq != NULL); 16140 /* 16141 * Finish socket ioctl passed through to tun. 16142 * We should have an IOCTL waiting on this. 16143 */ 16144 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16145 if (ill->ill_isv6) { 16146 struct iftun_req *ta; 16147 16148 /* 16149 * if a source or destination is 16150 * being set, try and set the link 16151 * local address for the tunnel 16152 */ 16153 ta = (struct iftun_req *)mp->b_cont-> 16154 b_cont->b_rptr; 16155 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 16156 ipif_set_tun_llink(ill, ta); 16157 } 16158 16159 } 16160 if (mp1 != NULL) { 16161 /* 16162 * Now copy back the b_next/b_prev used by 16163 * mi code for the mi_copy* functions. 16164 * See ip_sioctl_tunparam() for the reason. 16165 * Also protect against missing b_cont. 16166 */ 16167 if (mp->b_cont != NULL) { 16168 mp->b_cont->b_next = 16169 mp1->b_cont->b_next; 16170 mp->b_cont->b_prev = 16171 mp1->b_cont->b_prev; 16172 } 16173 inet_freemsg(mp1); 16174 ASSERT(connp != NULL); 16175 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16176 iocp->ioc_error, NO_COPYOUT, ipsq); 16177 } else { 16178 ASSERT(connp == NULL); 16179 putnext(q, mp); 16180 } 16181 break; 16182 case SIOCGTUNPARAM: 16183 case OSIOCGTUNPARAM: 16184 /* 16185 * This is really M_IOCDATA from the tunnel driver. 16186 * convert back and complete the ioctl. 16187 * We should have an IOCTL waiting on this. 16188 */ 16189 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 16190 if (mp1) { 16191 /* 16192 * Now copy back the b_next/b_prev used by 16193 * mi code for the mi_copy* functions. 16194 * See ip_sioctl_tunparam() for the reason. 16195 * Also protect against missing b_cont. 16196 */ 16197 if (mp->b_cont != NULL) { 16198 mp->b_cont->b_next = 16199 mp1->b_cont->b_next; 16200 mp->b_cont->b_prev = 16201 mp1->b_cont->b_prev; 16202 } 16203 inet_freemsg(mp1); 16204 if (iocp->ioc_error == 0) 16205 mp->b_datap->db_type = M_IOCDATA; 16206 ASSERT(connp != NULL); 16207 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16208 iocp->ioc_error, COPYOUT, NULL); 16209 } else { 16210 ASSERT(connp == NULL); 16211 putnext(q, mp); 16212 } 16213 break; 16214 default: 16215 break; 16216 } 16217 break; 16218 case M_IOCNAK: 16219 iocp = (struct iocblk *)mp->b_rptr; 16220 16221 switch (iocp->ioc_cmd) { 16222 int mode; 16223 16224 case DL_IOC_HDR_INFO: 16225 /* 16226 * If this was the first attempt turn of the 16227 * fastpath probing. 16228 */ 16229 mutex_enter(&ill->ill_lock); 16230 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 16231 ill->ill_dlpi_fastpath_state = IDS_FAILED; 16232 mutex_exit(&ill->ill_lock); 16233 ill_fastpath_nack(ill); 16234 ip1dbg(("ip_rput: DLPI fastpath off on " 16235 "interface %s\n", 16236 ill->ill_name)); 16237 } else { 16238 mutex_exit(&ill->ill_lock); 16239 } 16240 freemsg(mp); 16241 break; 16242 case SIOCSTUNPARAM: 16243 case OSIOCSTUNPARAM: 16244 ASSERT(ipsq != NULL); 16245 /* 16246 * Finish socket ioctl passed through to tun 16247 * We should have an IOCTL waiting on this. 16248 */ 16249 /* FALLTHRU */ 16250 case SIOCGTUNPARAM: 16251 case OSIOCGTUNPARAM: 16252 /* 16253 * This is really M_IOCDATA from the tunnel driver. 16254 * convert back and complete the ioctl. 16255 * We should have an IOCTL waiting on this. 16256 */ 16257 if (iocp->ioc_cmd == SIOCGTUNPARAM || 16258 iocp->ioc_cmd == OSIOCGTUNPARAM) { 16259 mp1 = ill_pending_mp_get(ill, &connp, 16260 iocp->ioc_id); 16261 mode = COPYOUT; 16262 ipsq = NULL; 16263 } else { 16264 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16265 mode = NO_COPYOUT; 16266 } 16267 if (mp1 != NULL) { 16268 /* 16269 * Now copy back the b_next/b_prev used by 16270 * mi code for the mi_copy* functions. 16271 * See ip_sioctl_tunparam() for the reason. 16272 * Also protect against missing b_cont. 16273 */ 16274 if (mp->b_cont != NULL) { 16275 mp->b_cont->b_next = 16276 mp1->b_cont->b_next; 16277 mp->b_cont->b_prev = 16278 mp1->b_cont->b_prev; 16279 } 16280 inet_freemsg(mp1); 16281 if (iocp->ioc_error == 0) 16282 iocp->ioc_error = EINVAL; 16283 ASSERT(connp != NULL); 16284 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16285 iocp->ioc_error, mode, ipsq); 16286 } else { 16287 ASSERT(connp == NULL); 16288 putnext(q, mp); 16289 } 16290 break; 16291 default: 16292 break; 16293 } 16294 default: 16295 break; 16296 } 16297 } 16298 16299 /* 16300 * NOTE : This function does not ire_refrele the ire argument passed in. 16301 * 16302 * IPQoS notes 16303 * IP policy is invoked twice for a forwarded packet, once on the read side 16304 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 16305 * enabled. An additional parameter, in_ill, has been added for this purpose. 16306 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 16307 * because ip_mroute drops this information. 16308 * 16309 */ 16310 void 16311 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 16312 { 16313 uint32_t old_pkt_len; 16314 uint32_t pkt_len; 16315 queue_t *q; 16316 uint32_t sum; 16317 #define rptr ((uchar_t *)ipha) 16318 uint32_t max_frag; 16319 uint32_t ill_index; 16320 ill_t *out_ill; 16321 mib2_ipIfStatsEntry_t *mibptr; 16322 ip_stack_t *ipst = ((ill_t *)(ire->ire_stq->q_ptr))->ill_ipst; 16323 16324 /* Get the ill_index of the incoming ILL */ 16325 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 16326 mibptr = (in_ill != NULL) ? in_ill->ill_ip_mib : &ipst->ips_ip_mib; 16327 16328 /* Initiate Read side IPPF processing */ 16329 if (IPP_ENABLED(IPP_FWD_IN, ipst)) { 16330 ip_process(IPP_FWD_IN, &mp, ill_index); 16331 if (mp == NULL) { 16332 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 16333 "during IPPF processing\n")); 16334 return; 16335 } 16336 } 16337 16338 /* Adjust the checksum to reflect the ttl decrement. */ 16339 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 16340 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 16341 16342 if (ipha->ipha_ttl-- <= 1) { 16343 if (ip_csum_hdr(ipha)) { 16344 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16345 goto drop_pkt; 16346 } 16347 /* 16348 * Note: ire_stq this will be NULL for multicast 16349 * datagrams using the long path through arp (the IRE 16350 * is not an IRE_CACHE). This should not cause 16351 * problems since we don't generate ICMP errors for 16352 * multicast packets. 16353 */ 16354 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16355 q = ire->ire_stq; 16356 if (q != NULL) { 16357 /* Sent by forwarding path, and router is global zone */ 16358 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED, 16359 GLOBAL_ZONEID, ipst); 16360 } else 16361 freemsg(mp); 16362 return; 16363 } 16364 16365 /* 16366 * Don't forward if the interface is down 16367 */ 16368 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 16369 BUMP_MIB(mibptr, ipIfStatsInDiscards); 16370 ip2dbg(("ip_rput_forward:interface is down\n")); 16371 goto drop_pkt; 16372 } 16373 16374 /* Get the ill_index of the outgoing ILL */ 16375 out_ill = ire_to_ill(ire); 16376 ill_index = out_ill->ill_phyint->phyint_ifindex; 16377 16378 DTRACE_PROBE4(ip4__forwarding__start, 16379 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16380 16381 FW_HOOKS(ipst->ips_ip4_forwarding_event, 16382 ipst->ips_ipv4firewall_forwarding, 16383 in_ill, out_ill, ipha, mp, mp, ipst); 16384 16385 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 16386 16387 if (mp == NULL) 16388 return; 16389 old_pkt_len = pkt_len = ntohs(ipha->ipha_length); 16390 16391 if (is_system_labeled()) { 16392 mblk_t *mp1; 16393 16394 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 16395 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16396 goto drop_pkt; 16397 } 16398 /* Size may have changed */ 16399 mp = mp1; 16400 ipha = (ipha_t *)mp->b_rptr; 16401 pkt_len = ntohs(ipha->ipha_length); 16402 } 16403 16404 /* Check if there are options to update */ 16405 if (!IS_SIMPLE_IPH(ipha)) { 16406 if (ip_csum_hdr(ipha)) { 16407 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16408 goto drop_pkt; 16409 } 16410 if (ip_rput_forward_options(mp, ipha, ire, ipst)) { 16411 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16412 return; 16413 } 16414 16415 ipha->ipha_hdr_checksum = 0; 16416 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 16417 } 16418 max_frag = ire->ire_max_frag; 16419 if (pkt_len > max_frag) { 16420 /* 16421 * It needs fragging on its way out. We haven't 16422 * verified the header checksum yet. Since we 16423 * are going to put a surely good checksum in the 16424 * outgoing header, we have to make sure that it 16425 * was good coming in. 16426 */ 16427 if (ip_csum_hdr(ipha)) { 16428 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16429 goto drop_pkt; 16430 } 16431 /* Initiate Write side IPPF processing */ 16432 if (IPP_ENABLED(IPP_FWD_OUT, ipst)) { 16433 ip_process(IPP_FWD_OUT, &mp, ill_index); 16434 if (mp == NULL) { 16435 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 16436 " during IPPF processing\n")); 16437 return; 16438 } 16439 } 16440 /* 16441 * Handle labeled packet resizing. 16442 * 16443 * If we have added a label, inform ip_wput_frag() of its 16444 * effect on the MTU for ICMP messages. 16445 */ 16446 if (pkt_len > old_pkt_len) { 16447 uint32_t secopt_size; 16448 16449 secopt_size = pkt_len - old_pkt_len; 16450 if (secopt_size < max_frag) 16451 max_frag -= secopt_size; 16452 } 16453 16454 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID, ipst); 16455 ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n")); 16456 return; 16457 } 16458 16459 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 16460 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16461 FW_HOOKS(ipst->ips_ip4_physical_out_event, 16462 ipst->ips_ipv4firewall_physical_out, 16463 NULL, out_ill, ipha, mp, mp, ipst); 16464 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 16465 if (mp == NULL) 16466 return; 16467 16468 mp->b_prev = (mblk_t *)IPP_FWD_OUT; 16469 ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n")); 16470 (void) ip_xmit_v4(mp, ire, NULL, B_FALSE); 16471 /* ip_xmit_v4 always consumes the packet */ 16472 return; 16473 16474 drop_pkt:; 16475 ip1dbg(("ip_rput_forward: drop pkt\n")); 16476 freemsg(mp); 16477 #undef rptr 16478 } 16479 16480 void 16481 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 16482 { 16483 ire_t *ire; 16484 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16485 16486 ASSERT(!ipif->ipif_isv6); 16487 /* 16488 * Find an IRE which matches the destination and the outgoing 16489 * queue in the cache table. All we need is an IRE_CACHE which 16490 * is pointing at ipif->ipif_ill. If it is part of some ill group, 16491 * then it is enough to have some IRE_CACHE in the group. 16492 */ 16493 if (ipif->ipif_flags & IPIF_POINTOPOINT) 16494 dst = ipif->ipif_pp_dst_addr; 16495 16496 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, MBLK_GETLABEL(mp), 16497 MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR, ipst); 16498 if (ire == NULL) { 16499 /* 16500 * Mark this packet to make it be delivered to 16501 * ip_rput_forward after the new ire has been 16502 * created. 16503 */ 16504 mp->b_prev = NULL; 16505 mp->b_next = mp; 16506 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 16507 NULL, 0, GLOBAL_ZONEID, &zero_info); 16508 } else { 16509 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 16510 IRE_REFRELE(ire); 16511 } 16512 } 16513 16514 /* Update any source route, record route or timestamp options */ 16515 static int 16516 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire, ip_stack_t *ipst) 16517 { 16518 ipoptp_t opts; 16519 uchar_t *opt; 16520 uint8_t optval; 16521 uint8_t optlen; 16522 ipaddr_t dst; 16523 uint32_t ts; 16524 ire_t *dst_ire = NULL; 16525 ire_t *tmp_ire = NULL; 16526 timestruc_t now; 16527 16528 ip2dbg(("ip_rput_forward_options\n")); 16529 dst = ipha->ipha_dst; 16530 for (optval = ipoptp_first(&opts, ipha); 16531 optval != IPOPT_EOL; 16532 optval = ipoptp_next(&opts)) { 16533 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 16534 opt = opts.ipoptp_cur; 16535 optlen = opts.ipoptp_len; 16536 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 16537 optval, opts.ipoptp_len)); 16538 switch (optval) { 16539 uint32_t off; 16540 case IPOPT_SSRR: 16541 case IPOPT_LSRR: 16542 /* Check if adminstratively disabled */ 16543 if (!ipst->ips_ip_forward_src_routed) { 16544 if (ire->ire_stq != NULL) { 16545 /* 16546 * Sent by forwarding path, and router 16547 * is global zone 16548 */ 16549 icmp_unreachable(ire->ire_stq, mp, 16550 ICMP_SOURCE_ROUTE_FAILED, 16551 GLOBAL_ZONEID, ipst); 16552 } else { 16553 ip0dbg(("ip_rput_forward_options: " 16554 "unable to send unreach\n")); 16555 freemsg(mp); 16556 } 16557 return (-1); 16558 } 16559 16560 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16561 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16562 if (dst_ire == NULL) { 16563 /* 16564 * Must be partial since ip_rput_options 16565 * checked for strict. 16566 */ 16567 break; 16568 } 16569 off = opt[IPOPT_OFFSET]; 16570 off--; 16571 redo_srr: 16572 if (optlen < IP_ADDR_LEN || 16573 off > optlen - IP_ADDR_LEN) { 16574 /* End of source route */ 16575 ip1dbg(( 16576 "ip_rput_forward_options: end of SR\n")); 16577 ire_refrele(dst_ire); 16578 break; 16579 } 16580 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16581 bcopy(&ire->ire_src_addr, (char *)opt + off, 16582 IP_ADDR_LEN); 16583 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 16584 ntohl(dst))); 16585 16586 /* 16587 * Check if our address is present more than 16588 * once as consecutive hops in source route. 16589 */ 16590 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16591 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16592 if (tmp_ire != NULL) { 16593 ire_refrele(tmp_ire); 16594 off += IP_ADDR_LEN; 16595 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16596 goto redo_srr; 16597 } 16598 ipha->ipha_dst = dst; 16599 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16600 ire_refrele(dst_ire); 16601 break; 16602 case IPOPT_RR: 16603 off = opt[IPOPT_OFFSET]; 16604 off--; 16605 if (optlen < IP_ADDR_LEN || 16606 off > optlen - IP_ADDR_LEN) { 16607 /* No more room - ignore */ 16608 ip1dbg(( 16609 "ip_rput_forward_options: end of RR\n")); 16610 break; 16611 } 16612 bcopy(&ire->ire_src_addr, (char *)opt + off, 16613 IP_ADDR_LEN); 16614 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16615 break; 16616 case IPOPT_TS: 16617 /* Insert timestamp if there is room */ 16618 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16619 case IPOPT_TS_TSONLY: 16620 off = IPOPT_TS_TIMELEN; 16621 break; 16622 case IPOPT_TS_PRESPEC: 16623 case IPOPT_TS_PRESPEC_RFC791: 16624 /* Verify that the address matched */ 16625 off = opt[IPOPT_OFFSET] - 1; 16626 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16627 dst_ire = ire_ctable_lookup(dst, 0, 16628 IRE_LOCAL, NULL, ALL_ZONES, NULL, 16629 MATCH_IRE_TYPE, ipst); 16630 if (dst_ire == NULL) { 16631 /* Not for us */ 16632 break; 16633 } 16634 ire_refrele(dst_ire); 16635 /* FALLTHRU */ 16636 case IPOPT_TS_TSANDADDR: 16637 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16638 break; 16639 default: 16640 /* 16641 * ip_*put_options should have already 16642 * dropped this packet. 16643 */ 16644 cmn_err(CE_PANIC, "ip_rput_forward_options: " 16645 "unknown IT - bug in ip_rput_options?\n"); 16646 return (0); /* Keep "lint" happy */ 16647 } 16648 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 16649 /* Increase overflow counter */ 16650 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 16651 opt[IPOPT_POS_OV_FLG] = 16652 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 16653 (off << 4)); 16654 break; 16655 } 16656 off = opt[IPOPT_OFFSET] - 1; 16657 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16658 case IPOPT_TS_PRESPEC: 16659 case IPOPT_TS_PRESPEC_RFC791: 16660 case IPOPT_TS_TSANDADDR: 16661 bcopy(&ire->ire_src_addr, 16662 (char *)opt + off, IP_ADDR_LEN); 16663 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16664 /* FALLTHRU */ 16665 case IPOPT_TS_TSONLY: 16666 off = opt[IPOPT_OFFSET] - 1; 16667 /* Compute # of milliseconds since midnight */ 16668 gethrestime(&now); 16669 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 16670 now.tv_nsec / (NANOSEC / MILLISEC); 16671 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 16672 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 16673 break; 16674 } 16675 break; 16676 } 16677 } 16678 return (0); 16679 } 16680 16681 /* 16682 * This is called after processing at least one of AH/ESP headers. 16683 * 16684 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 16685 * the actual, physical interface on which the packet was received, 16686 * but, when ip_strict_dst_multihoming is set to 1, could be the 16687 * interface which had the ipha_dst configured when the packet went 16688 * through ip_rput. The ill_index corresponding to the recv_ill 16689 * is saved in ipsec_in_rill_index 16690 * 16691 * NOTE2: The "ire" argument is only used in IPv4 cases. This function 16692 * cannot assume "ire" points to valid data for any IPv6 cases. 16693 */ 16694 void 16695 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 16696 { 16697 mblk_t *mp; 16698 ipaddr_t dst; 16699 in6_addr_t *v6dstp; 16700 ipha_t *ipha; 16701 ip6_t *ip6h; 16702 ipsec_in_t *ii; 16703 boolean_t ill_need_rele = B_FALSE; 16704 boolean_t rill_need_rele = B_FALSE; 16705 boolean_t ire_need_rele = B_FALSE; 16706 netstack_t *ns; 16707 ip_stack_t *ipst; 16708 16709 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 16710 ASSERT(ii->ipsec_in_ill_index != 0); 16711 ns = ii->ipsec_in_ns; 16712 ASSERT(ii->ipsec_in_ns != NULL); 16713 ipst = ns->netstack_ip; 16714 16715 mp = ipsec_mp->b_cont; 16716 ASSERT(mp != NULL); 16717 16718 16719 if (ill == NULL) { 16720 ASSERT(recv_ill == NULL); 16721 /* 16722 * We need to get the original queue on which ip_rput_local 16723 * or ip_rput_data_v6 was called. 16724 */ 16725 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 16726 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL, ipst); 16727 ill_need_rele = B_TRUE; 16728 16729 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 16730 recv_ill = ill_lookup_on_ifindex( 16731 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 16732 NULL, NULL, NULL, NULL, ipst); 16733 rill_need_rele = B_TRUE; 16734 } else { 16735 recv_ill = ill; 16736 } 16737 16738 if ((ill == NULL) || (recv_ill == NULL)) { 16739 ip0dbg(("ip_fanout_proto_again: interface " 16740 "disappeared\n")); 16741 if (ill != NULL) 16742 ill_refrele(ill); 16743 if (recv_ill != NULL) 16744 ill_refrele(recv_ill); 16745 freemsg(ipsec_mp); 16746 return; 16747 } 16748 } 16749 16750 ASSERT(ill != NULL && recv_ill != NULL); 16751 16752 if (mp->b_datap->db_type == M_CTL) { 16753 /* 16754 * AH/ESP is returning the ICMP message after 16755 * removing their headers. Fanout again till 16756 * it gets to the right protocol. 16757 */ 16758 if (ii->ipsec_in_v4) { 16759 icmph_t *icmph; 16760 int iph_hdr_length; 16761 int hdr_length; 16762 16763 ipha = (ipha_t *)mp->b_rptr; 16764 iph_hdr_length = IPH_HDR_LENGTH(ipha); 16765 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 16766 ipha = (ipha_t *)&icmph[1]; 16767 hdr_length = IPH_HDR_LENGTH(ipha); 16768 /* 16769 * icmp_inbound_error_fanout may need to do pullupmsg. 16770 * Reset the type to M_DATA. 16771 */ 16772 mp->b_datap->db_type = M_DATA; 16773 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 16774 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 16775 B_FALSE, ill, ii->ipsec_in_zoneid); 16776 } else { 16777 icmp6_t *icmp6; 16778 int hdr_length; 16779 16780 ip6h = (ip6_t *)mp->b_rptr; 16781 /* Don't call hdr_length_v6() unless you have to. */ 16782 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 16783 hdr_length = ip_hdr_length_v6(mp, ip6h); 16784 else 16785 hdr_length = IPV6_HDR_LEN; 16786 16787 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 16788 /* 16789 * icmp_inbound_error_fanout_v6 may need to do 16790 * pullupmsg. Reset the type to M_DATA. 16791 */ 16792 mp->b_datap->db_type = M_DATA; 16793 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 16794 ip6h, icmp6, ill, B_TRUE, ii->ipsec_in_zoneid); 16795 } 16796 if (ill_need_rele) 16797 ill_refrele(ill); 16798 if (rill_need_rele) 16799 ill_refrele(recv_ill); 16800 return; 16801 } 16802 16803 if (ii->ipsec_in_v4) { 16804 ipha = (ipha_t *)mp->b_rptr; 16805 dst = ipha->ipha_dst; 16806 if (CLASSD(dst)) { 16807 /* 16808 * Multicast has to be delivered to all streams. 16809 */ 16810 dst = INADDR_BROADCAST; 16811 } 16812 16813 if (ire == NULL) { 16814 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 16815 MBLK_GETLABEL(mp), ipst); 16816 if (ire == NULL) { 16817 if (ill_need_rele) 16818 ill_refrele(ill); 16819 if (rill_need_rele) 16820 ill_refrele(recv_ill); 16821 ip1dbg(("ip_fanout_proto_again: " 16822 "IRE not found")); 16823 freemsg(ipsec_mp); 16824 return; 16825 } 16826 ire_need_rele = B_TRUE; 16827 } 16828 16829 switch (ipha->ipha_protocol) { 16830 case IPPROTO_UDP: 16831 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 16832 recv_ill); 16833 if (ire_need_rele) 16834 ire_refrele(ire); 16835 break; 16836 case IPPROTO_TCP: 16837 if (!ire_need_rele) 16838 IRE_REFHOLD(ire); 16839 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 16840 ire, ipsec_mp, 0, ill->ill_rq, NULL); 16841 IRE_REFRELE(ire); 16842 if (mp != NULL) 16843 squeue_enter_chain(GET_SQUEUE(mp), mp, 16844 mp, 1, SQTAG_IP_PROTO_AGAIN); 16845 break; 16846 case IPPROTO_SCTP: 16847 if (!ire_need_rele) 16848 IRE_REFHOLD(ire); 16849 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 16850 ipsec_mp, 0, ill->ill_rq, dst); 16851 break; 16852 default: 16853 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 16854 recv_ill, B_FALSE); 16855 if (ire_need_rele) 16856 ire_refrele(ire); 16857 break; 16858 } 16859 } else { 16860 uint32_t rput_flags = 0; 16861 16862 ip6h = (ip6_t *)mp->b_rptr; 16863 v6dstp = &ip6h->ip6_dst; 16864 /* 16865 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 16866 * address. 16867 * 16868 * Currently, we don't store that state in the IPSEC_IN 16869 * message, and we may need to. 16870 */ 16871 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 16872 IP6_IN_LLMCAST : 0); 16873 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 16874 NULL, NULL); 16875 } 16876 if (ill_need_rele) 16877 ill_refrele(ill); 16878 if (rill_need_rele) 16879 ill_refrele(recv_ill); 16880 } 16881 16882 /* 16883 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 16884 * returns 'true' if there are still fragments left on the queue, in 16885 * which case we restart the timer. 16886 */ 16887 void 16888 ill_frag_timer(void *arg) 16889 { 16890 ill_t *ill = (ill_t *)arg; 16891 boolean_t frag_pending; 16892 ip_stack_t *ipst = ill->ill_ipst; 16893 16894 mutex_enter(&ill->ill_lock); 16895 ASSERT(!ill->ill_fragtimer_executing); 16896 if (ill->ill_state_flags & ILL_CONDEMNED) { 16897 ill->ill_frag_timer_id = 0; 16898 mutex_exit(&ill->ill_lock); 16899 return; 16900 } 16901 ill->ill_fragtimer_executing = 1; 16902 mutex_exit(&ill->ill_lock); 16903 16904 frag_pending = ill_frag_timeout(ill, ipst->ips_ip_g_frag_timeout); 16905 16906 /* 16907 * Restart the timer, if we have fragments pending or if someone 16908 * wanted us to be scheduled again. 16909 */ 16910 mutex_enter(&ill->ill_lock); 16911 ill->ill_fragtimer_executing = 0; 16912 ill->ill_frag_timer_id = 0; 16913 if (frag_pending || ill->ill_fragtimer_needrestart) 16914 ill_frag_timer_start(ill); 16915 mutex_exit(&ill->ill_lock); 16916 } 16917 16918 void 16919 ill_frag_timer_start(ill_t *ill) 16920 { 16921 ip_stack_t *ipst = ill->ill_ipst; 16922 16923 ASSERT(MUTEX_HELD(&ill->ill_lock)); 16924 16925 /* If the ill is closing or opening don't proceed */ 16926 if (ill->ill_state_flags & ILL_CONDEMNED) 16927 return; 16928 16929 if (ill->ill_fragtimer_executing) { 16930 /* 16931 * ill_frag_timer is currently executing. Just record the 16932 * the fact that we want the timer to be restarted. 16933 * ill_frag_timer will post a timeout before it returns, 16934 * ensuring it will be called again. 16935 */ 16936 ill->ill_fragtimer_needrestart = 1; 16937 return; 16938 } 16939 16940 if (ill->ill_frag_timer_id == 0) { 16941 /* 16942 * The timer is neither running nor is the timeout handler 16943 * executing. Post a timeout so that ill_frag_timer will be 16944 * called 16945 */ 16946 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 16947 MSEC_TO_TICK(ipst->ips_ip_g_frag_timo_ms >> 1)); 16948 ill->ill_fragtimer_needrestart = 0; 16949 } 16950 } 16951 16952 /* 16953 * This routine is needed for loopback when forwarding multicasts. 16954 * 16955 * IPQoS Notes: 16956 * IPPF processing is done in fanout routines. 16957 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 16958 * processing for IPsec packets is done when it comes back in clear. 16959 * NOTE : The callers of this function need to do the ire_refrele for the 16960 * ire that is being passed in. 16961 */ 16962 void 16963 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 16964 ill_t *recv_ill, boolean_t esp_in_udp_packet) 16965 { 16966 ill_t *ill = (ill_t *)q->q_ptr; 16967 uint32_t sum; 16968 uint32_t u1; 16969 uint32_t u2; 16970 int hdr_length; 16971 boolean_t mctl_present; 16972 mblk_t *first_mp = mp; 16973 mblk_t *hada_mp = NULL; 16974 ipha_t *inner_ipha; 16975 ip_stack_t *ipst; 16976 16977 ASSERT(recv_ill != NULL); 16978 ipst = recv_ill->ill_ipst; 16979 16980 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 16981 "ip_rput_locl_start: q %p", q); 16982 16983 ASSERT(ire->ire_ipversion == IPV4_VERSION); 16984 ASSERT(ill != NULL); 16985 16986 16987 #define rptr ((uchar_t *)ipha) 16988 #define iphs ((uint16_t *)ipha) 16989 16990 /* 16991 * no UDP or TCP packet should come here anymore. 16992 */ 16993 ASSERT(ipha->ipha_protocol != IPPROTO_TCP && 16994 ipha->ipha_protocol != IPPROTO_UDP); 16995 16996 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 16997 if (mctl_present && 16998 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 16999 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 17000 17001 /* 17002 * It's an IPsec accelerated packet. 17003 * Keep a pointer to the data attributes around until 17004 * we allocate the ipsec_info_t. 17005 */ 17006 IPSECHW_DEBUG(IPSECHW_PKT, 17007 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 17008 hada_mp = first_mp; 17009 hada_mp->b_cont = NULL; 17010 /* 17011 * Since it is accelerated, it comes directly from 17012 * the ill and the data attributes is followed by 17013 * the packet data. 17014 */ 17015 ASSERT(mp->b_datap->db_type != M_CTL); 17016 first_mp = mp; 17017 mctl_present = B_FALSE; 17018 } 17019 17020 /* 17021 * IF M_CTL is not present, then ipsec_in_is_secure 17022 * should return B_TRUE. There is a case where loopback 17023 * packets has an M_CTL in the front with all the 17024 * IPsec options set to IPSEC_PREF_NEVER - which means 17025 * ipsec_in_is_secure will return B_FALSE. As loopback 17026 * packets never comes here, it is safe to ASSERT the 17027 * following. 17028 */ 17029 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 17030 17031 /* 17032 * Also, we should never have an mctl_present if this is an 17033 * ESP-in-UDP packet. 17034 */ 17035 ASSERT(!mctl_present || !esp_in_udp_packet); 17036 17037 17038 /* u1 is # words of IP options */ 17039 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 17040 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 17041 17042 if (u1 || (!esp_in_udp_packet && !mctl_present)) { 17043 if (u1) { 17044 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 17045 if (hada_mp != NULL) 17046 freemsg(hada_mp); 17047 return; 17048 } 17049 } else { 17050 /* Check the IP header checksum. */ 17051 #define uph ((uint16_t *)ipha) 17052 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 17053 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 17054 #undef uph 17055 /* finish doing IP checksum */ 17056 sum = (sum & 0xFFFF) + (sum >> 16); 17057 sum = ~(sum + (sum >> 16)) & 0xFFFF; 17058 if (sum && sum != 0xFFFF) { 17059 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 17060 goto drop_pkt; 17061 } 17062 } 17063 } 17064 17065 /* 17066 * Count for SNMP of inbound packets for ire. As ip_proto_input 17067 * might be called more than once for secure packets, count only 17068 * the first time. 17069 */ 17070 if (!mctl_present) { 17071 UPDATE_IB_PKT_COUNT(ire); 17072 ire->ire_last_used_time = lbolt; 17073 } 17074 17075 /* Check for fragmentation offset. */ 17076 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 17077 u1 = u2 & (IPH_MF | IPH_OFFSET); 17078 if (u1) { 17079 /* 17080 * We re-assemble fragments before we do the AH/ESP 17081 * processing. Thus, M_CTL should not be present 17082 * while we are re-assembling. 17083 */ 17084 ASSERT(!mctl_present); 17085 ASSERT(first_mp == mp); 17086 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 17087 return; 17088 } 17089 /* 17090 * Make sure that first_mp points back to mp as 17091 * the mp we came in with could have changed in 17092 * ip_rput_fragment(). 17093 */ 17094 ipha = (ipha_t *)mp->b_rptr; 17095 first_mp = mp; 17096 } 17097 17098 /* 17099 * Clear hardware checksumming flag as it is currently only 17100 * used by TCP and UDP. 17101 */ 17102 DB_CKSUMFLAGS(mp) = 0; 17103 17104 /* Now we have a complete datagram, destined for this machine. */ 17105 u1 = IPH_HDR_LENGTH(ipha); 17106 switch (ipha->ipha_protocol) { 17107 case IPPROTO_ICMP: { 17108 ire_t *ire_zone; 17109 ilm_t *ilm; 17110 mblk_t *mp1; 17111 zoneid_t last_zoneid; 17112 17113 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(recv_ill)) { 17114 ASSERT(ire->ire_type == IRE_BROADCAST); 17115 /* 17116 * In the multicast case, applications may have joined 17117 * the group from different zones, so we need to deliver 17118 * the packet to each of them. Loop through the 17119 * multicast memberships structures (ilm) on the receive 17120 * ill and send a copy of the packet up each matching 17121 * one. However, we don't do this for multicasts sent on 17122 * the loopback interface (PHYI_LOOPBACK flag set) as 17123 * they must stay in the sender's zone. 17124 * 17125 * ilm_add_v6() ensures that ilms in the same zone are 17126 * contiguous in the ill_ilm list. We use this property 17127 * to avoid sending duplicates needed when two 17128 * applications in the same zone join the same group on 17129 * different logical interfaces: we ignore the ilm if 17130 * its zoneid is the same as the last matching one. 17131 * In addition, the sending of the packet for 17132 * ire_zoneid is delayed until all of the other ilms 17133 * have been exhausted. 17134 */ 17135 last_zoneid = -1; 17136 ILM_WALKER_HOLD(recv_ill); 17137 for (ilm = recv_ill->ill_ilm; ilm != NULL; 17138 ilm = ilm->ilm_next) { 17139 if ((ilm->ilm_flags & ILM_DELETED) || 17140 ipha->ipha_dst != ilm->ilm_addr || 17141 ilm->ilm_zoneid == last_zoneid || 17142 ilm->ilm_zoneid == ire->ire_zoneid || 17143 ilm->ilm_zoneid == ALL_ZONES || 17144 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 17145 continue; 17146 mp1 = ip_copymsg(first_mp); 17147 if (mp1 == NULL) 17148 continue; 17149 icmp_inbound(q, mp1, B_TRUE, ill, 17150 0, sum, mctl_present, B_TRUE, 17151 recv_ill, ilm->ilm_zoneid); 17152 last_zoneid = ilm->ilm_zoneid; 17153 } 17154 ILM_WALKER_RELE(recv_ill); 17155 } else if (ire->ire_type == IRE_BROADCAST) { 17156 /* 17157 * In the broadcast case, there may be many zones 17158 * which need a copy of the packet delivered to them. 17159 * There is one IRE_BROADCAST per broadcast address 17160 * and per zone; we walk those using a helper function. 17161 * In addition, the sending of the packet for ire is 17162 * delayed until all of the other ires have been 17163 * processed. 17164 */ 17165 IRB_REFHOLD(ire->ire_bucket); 17166 ire_zone = NULL; 17167 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 17168 ire)) != NULL) { 17169 mp1 = ip_copymsg(first_mp); 17170 if (mp1 == NULL) 17171 continue; 17172 17173 UPDATE_IB_PKT_COUNT(ire_zone); 17174 ire_zone->ire_last_used_time = lbolt; 17175 icmp_inbound(q, mp1, B_TRUE, ill, 17176 0, sum, mctl_present, B_TRUE, 17177 recv_ill, ire_zone->ire_zoneid); 17178 } 17179 IRB_REFRELE(ire->ire_bucket); 17180 } 17181 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 17182 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 17183 ire->ire_zoneid); 17184 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17185 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 17186 return; 17187 } 17188 case IPPROTO_IGMP: 17189 /* 17190 * If we are not willing to accept IGMP packets in clear, 17191 * then check with global policy. 17192 */ 17193 if (ipst->ips_igmp_accept_clear_messages == 0) { 17194 first_mp = ipsec_check_global_policy(first_mp, NULL, 17195 ipha, NULL, mctl_present, ipst->ips_netstack); 17196 if (first_mp == NULL) 17197 return; 17198 } 17199 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17200 freemsg(first_mp); 17201 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 17202 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17203 return; 17204 } 17205 if ((mp = igmp_input(q, mp, ill)) == NULL) { 17206 /* Bad packet - discarded by igmp_input */ 17207 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17208 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 17209 if (mctl_present) 17210 freeb(first_mp); 17211 return; 17212 } 17213 /* 17214 * igmp_input() may have returned the pulled up message. 17215 * So first_mp and ipha need to be reinitialized. 17216 */ 17217 ipha = (ipha_t *)mp->b_rptr; 17218 if (mctl_present) 17219 first_mp->b_cont = mp; 17220 else 17221 first_mp = mp; 17222 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17223 connf_head != NULL) { 17224 /* No user-level listener for IGMP packets */ 17225 goto drop_pkt; 17226 } 17227 /* deliver to local raw users */ 17228 break; 17229 case IPPROTO_PIM: 17230 /* 17231 * If we are not willing to accept PIM packets in clear, 17232 * then check with global policy. 17233 */ 17234 if (ipst->ips_pim_accept_clear_messages == 0) { 17235 first_mp = ipsec_check_global_policy(first_mp, NULL, 17236 ipha, NULL, mctl_present, ipst->ips_netstack); 17237 if (first_mp == NULL) 17238 return; 17239 } 17240 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17241 freemsg(first_mp); 17242 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 17243 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17244 return; 17245 } 17246 if (pim_input(q, mp, ill) != 0) { 17247 /* Bad packet - discarded by pim_input */ 17248 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17249 "ip_rput_locl_end: q %p (%S)", q, "pim"); 17250 if (mctl_present) 17251 freeb(first_mp); 17252 return; 17253 } 17254 17255 /* 17256 * pim_input() may have pulled up the message so ipha needs to 17257 * be reinitialized. 17258 */ 17259 ipha = (ipha_t *)mp->b_rptr; 17260 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17261 connf_head != NULL) { 17262 /* No user-level listener for PIM packets */ 17263 goto drop_pkt; 17264 } 17265 /* deliver to local raw users */ 17266 break; 17267 case IPPROTO_ENCAP: 17268 /* 17269 * Handle self-encapsulated packets (IP-in-IP where 17270 * the inner addresses == the outer addresses). 17271 */ 17272 hdr_length = IPH_HDR_LENGTH(ipha); 17273 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 17274 mp->b_wptr) { 17275 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 17276 sizeof (ipha_t) - mp->b_rptr)) { 17277 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17278 freemsg(first_mp); 17279 return; 17280 } 17281 ipha = (ipha_t *)mp->b_rptr; 17282 } 17283 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 17284 /* 17285 * Check the sanity of the inner IP header. 17286 */ 17287 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 17288 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17289 freemsg(first_mp); 17290 return; 17291 } 17292 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 17293 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17294 freemsg(first_mp); 17295 return; 17296 } 17297 if (inner_ipha->ipha_src == ipha->ipha_src && 17298 inner_ipha->ipha_dst == ipha->ipha_dst) { 17299 ipsec_in_t *ii; 17300 17301 /* 17302 * Self-encapsulated tunnel packet. Remove 17303 * the outer IP header and fanout again. 17304 * We also need to make sure that the inner 17305 * header is pulled up until options. 17306 */ 17307 mp->b_rptr = (uchar_t *)inner_ipha; 17308 ipha = inner_ipha; 17309 hdr_length = IPH_HDR_LENGTH(ipha); 17310 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 17311 if (!pullupmsg(mp, (uchar_t *)ipha + 17312 + hdr_length - mp->b_rptr)) { 17313 freemsg(first_mp); 17314 return; 17315 } 17316 ipha = (ipha_t *)mp->b_rptr; 17317 } 17318 if (!mctl_present) { 17319 ASSERT(first_mp == mp); 17320 /* 17321 * This means that somebody is sending 17322 * Self-encapsualted packets without AH/ESP. 17323 * If AH/ESP was present, we would have already 17324 * allocated the first_mp. 17325 */ 17326 first_mp = ipsec_in_alloc(B_TRUE, 17327 ipst->ips_netstack); 17328 if (first_mp == NULL) { 17329 ip1dbg(("ip_proto_input: IPSEC_IN " 17330 "allocation failure.\n")); 17331 BUMP_MIB(ill->ill_ip_mib, 17332 ipIfStatsInDiscards); 17333 freemsg(mp); 17334 return; 17335 } 17336 first_mp->b_cont = mp; 17337 } 17338 /* 17339 * We generally store the ill_index if we need to 17340 * do IPsec processing as we lose the ill queue when 17341 * we come back. But in this case, we never should 17342 * have to store the ill_index here as it should have 17343 * been stored previously when we processed the 17344 * AH/ESP header in this routine or for non-ipsec 17345 * cases, we still have the queue. But for some bad 17346 * packets from the wire, we can get to IPsec after 17347 * this and we better store the index for that case. 17348 */ 17349 ill = (ill_t *)q->q_ptr; 17350 ii = (ipsec_in_t *)first_mp->b_rptr; 17351 ii->ipsec_in_ill_index = 17352 ill->ill_phyint->phyint_ifindex; 17353 ii->ipsec_in_rill_index = 17354 recv_ill->ill_phyint->phyint_ifindex; 17355 if (ii->ipsec_in_decaps) { 17356 /* 17357 * This packet is self-encapsulated multiple 17358 * times. We don't want to recurse infinitely. 17359 * To keep it simple, drop the packet. 17360 */ 17361 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17362 freemsg(first_mp); 17363 return; 17364 } 17365 ii->ipsec_in_decaps = B_TRUE; 17366 ip_fanout_proto_again(first_mp, recv_ill, recv_ill, 17367 ire); 17368 return; 17369 } 17370 break; 17371 case IPPROTO_AH: 17372 case IPPROTO_ESP: { 17373 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 17374 17375 /* 17376 * Fast path for AH/ESP. If this is the first time 17377 * we are sending a datagram to AH/ESP, allocate 17378 * a IPSEC_IN message and prepend it. Otherwise, 17379 * just fanout. 17380 */ 17381 17382 int ipsec_rc; 17383 ipsec_in_t *ii; 17384 netstack_t *ns = ipst->ips_netstack; 17385 17386 IP_STAT(ipst, ipsec_proto_ahesp); 17387 if (!mctl_present) { 17388 ASSERT(first_mp == mp); 17389 first_mp = ipsec_in_alloc(B_TRUE, ns); 17390 if (first_mp == NULL) { 17391 ip1dbg(("ip_proto_input: IPSEC_IN " 17392 "allocation failure.\n")); 17393 freemsg(hada_mp); /* okay ifnull */ 17394 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17395 freemsg(mp); 17396 return; 17397 } 17398 /* 17399 * Store the ill_index so that when we come back 17400 * from IPsec we ride on the same queue. 17401 */ 17402 ill = (ill_t *)q->q_ptr; 17403 ii = (ipsec_in_t *)first_mp->b_rptr; 17404 ii->ipsec_in_ill_index = 17405 ill->ill_phyint->phyint_ifindex; 17406 ii->ipsec_in_rill_index = 17407 recv_ill->ill_phyint->phyint_ifindex; 17408 first_mp->b_cont = mp; 17409 /* 17410 * Cache hardware acceleration info. 17411 */ 17412 if (hada_mp != NULL) { 17413 IPSECHW_DEBUG(IPSECHW_PKT, 17414 ("ip_rput_local: caching data attr.\n")); 17415 ii->ipsec_in_accelerated = B_TRUE; 17416 ii->ipsec_in_da = hada_mp; 17417 hada_mp = NULL; 17418 } 17419 } else { 17420 ii = (ipsec_in_t *)first_mp->b_rptr; 17421 } 17422 17423 if (!ipsec_loaded(ipss)) { 17424 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 17425 ire->ire_zoneid, ipst); 17426 return; 17427 } 17428 17429 ns = ipst->ips_netstack; 17430 /* select inbound SA and have IPsec process the pkt */ 17431 if (ipha->ipha_protocol == IPPROTO_ESP) { 17432 esph_t *esph = ipsec_inbound_esp_sa(first_mp, ns); 17433 boolean_t esp_in_udp_sa; 17434 if (esph == NULL) 17435 return; 17436 ASSERT(ii->ipsec_in_esp_sa != NULL); 17437 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 17438 esp_in_udp_sa = ((ii->ipsec_in_esp_sa->ipsa_flags & 17439 IPSA_F_NATT) != 0); 17440 /* 17441 * The following is a fancy, but quick, way of saying: 17442 * ESP-in-UDP SA and Raw ESP packet --> drop 17443 * OR 17444 * ESP SA and ESP-in-UDP packet --> drop 17445 */ 17446 if (esp_in_udp_sa != esp_in_udp_packet) { 17447 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17448 ip_drop_packet(first_mp, B_TRUE, ill, NULL, 17449 DROPPER(ns->netstack_ipsec, ipds_esp_no_sa), 17450 &ns->netstack_ipsec->ipsec_dropper); 17451 return; 17452 } 17453 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 17454 first_mp, esph); 17455 } else { 17456 ah_t *ah = ipsec_inbound_ah_sa(first_mp, ns); 17457 if (ah == NULL) 17458 return; 17459 ASSERT(ii->ipsec_in_ah_sa != NULL); 17460 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 17461 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 17462 first_mp, ah); 17463 } 17464 17465 switch (ipsec_rc) { 17466 case IPSEC_STATUS_SUCCESS: 17467 break; 17468 case IPSEC_STATUS_FAILED: 17469 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17470 /* FALLTHRU */ 17471 case IPSEC_STATUS_PENDING: 17472 return; 17473 } 17474 /* we're done with IPsec processing, send it up */ 17475 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 17476 return; 17477 } 17478 default: 17479 break; 17480 } 17481 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 17482 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 17483 ire->ire_zoneid)); 17484 goto drop_pkt; 17485 } 17486 /* 17487 * Handle protocols with which IP is less intimate. There 17488 * can be more than one stream bound to a particular 17489 * protocol. When this is the case, each one gets a copy 17490 * of any incoming packets. 17491 */ 17492 ip_fanout_proto(q, first_mp, ill, ipha, 17493 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 17494 B_TRUE, recv_ill, ire->ire_zoneid); 17495 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17496 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 17497 return; 17498 17499 drop_pkt: 17500 freemsg(first_mp); 17501 if (hada_mp != NULL) 17502 freeb(hada_mp); 17503 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17504 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 17505 #undef rptr 17506 #undef iphs 17507 17508 } 17509 17510 /* 17511 * Update any source route, record route or timestamp options. 17512 * Check that we are at end of strict source route. 17513 * The options have already been checked for sanity in ip_rput_options(). 17514 */ 17515 static boolean_t 17516 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17517 ip_stack_t *ipst) 17518 { 17519 ipoptp_t opts; 17520 uchar_t *opt; 17521 uint8_t optval; 17522 uint8_t optlen; 17523 ipaddr_t dst; 17524 uint32_t ts; 17525 ire_t *dst_ire; 17526 timestruc_t now; 17527 zoneid_t zoneid; 17528 ill_t *ill; 17529 17530 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17531 17532 ip2dbg(("ip_rput_local_options\n")); 17533 17534 for (optval = ipoptp_first(&opts, ipha); 17535 optval != IPOPT_EOL; 17536 optval = ipoptp_next(&opts)) { 17537 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17538 opt = opts.ipoptp_cur; 17539 optlen = opts.ipoptp_len; 17540 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 17541 optval, optlen)); 17542 switch (optval) { 17543 uint32_t off; 17544 case IPOPT_SSRR: 17545 case IPOPT_LSRR: 17546 off = opt[IPOPT_OFFSET]; 17547 off--; 17548 if (optlen < IP_ADDR_LEN || 17549 off > optlen - IP_ADDR_LEN) { 17550 /* End of source route */ 17551 ip1dbg(("ip_rput_local_options: end of SR\n")); 17552 break; 17553 } 17554 /* 17555 * This will only happen if two consecutive entries 17556 * in the source route contains our address or if 17557 * it is a packet with a loose source route which 17558 * reaches us before consuming the whole source route 17559 */ 17560 ip1dbg(("ip_rput_local_options: not end of SR\n")); 17561 if (optval == IPOPT_SSRR) { 17562 goto bad_src_route; 17563 } 17564 /* 17565 * Hack: instead of dropping the packet truncate the 17566 * source route to what has been used by filling the 17567 * rest with IPOPT_NOP. 17568 */ 17569 opt[IPOPT_OLEN] = (uint8_t)off; 17570 while (off < optlen) { 17571 opt[off++] = IPOPT_NOP; 17572 } 17573 break; 17574 case IPOPT_RR: 17575 off = opt[IPOPT_OFFSET]; 17576 off--; 17577 if (optlen < IP_ADDR_LEN || 17578 off > optlen - IP_ADDR_LEN) { 17579 /* No more room - ignore */ 17580 ip1dbg(( 17581 "ip_rput_local_options: end of RR\n")); 17582 break; 17583 } 17584 bcopy(&ire->ire_src_addr, (char *)opt + off, 17585 IP_ADDR_LEN); 17586 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17587 break; 17588 case IPOPT_TS: 17589 /* Insert timestamp if there is romm */ 17590 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17591 case IPOPT_TS_TSONLY: 17592 off = IPOPT_TS_TIMELEN; 17593 break; 17594 case IPOPT_TS_PRESPEC: 17595 case IPOPT_TS_PRESPEC_RFC791: 17596 /* Verify that the address matched */ 17597 off = opt[IPOPT_OFFSET] - 1; 17598 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17599 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17600 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 17601 ipst); 17602 if (dst_ire == NULL) { 17603 /* Not for us */ 17604 break; 17605 } 17606 ire_refrele(dst_ire); 17607 /* FALLTHRU */ 17608 case IPOPT_TS_TSANDADDR: 17609 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17610 break; 17611 default: 17612 /* 17613 * ip_*put_options should have already 17614 * dropped this packet. 17615 */ 17616 cmn_err(CE_PANIC, "ip_rput_local_options: " 17617 "unknown IT - bug in ip_rput_options?\n"); 17618 return (B_TRUE); /* Keep "lint" happy */ 17619 } 17620 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 17621 /* Increase overflow counter */ 17622 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 17623 opt[IPOPT_POS_OV_FLG] = 17624 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 17625 (off << 4)); 17626 break; 17627 } 17628 off = opt[IPOPT_OFFSET] - 1; 17629 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17630 case IPOPT_TS_PRESPEC: 17631 case IPOPT_TS_PRESPEC_RFC791: 17632 case IPOPT_TS_TSANDADDR: 17633 bcopy(&ire->ire_src_addr, (char *)opt + off, 17634 IP_ADDR_LEN); 17635 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17636 /* FALLTHRU */ 17637 case IPOPT_TS_TSONLY: 17638 off = opt[IPOPT_OFFSET] - 1; 17639 /* Compute # of milliseconds since midnight */ 17640 gethrestime(&now); 17641 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 17642 now.tv_nsec / (NANOSEC / MILLISEC); 17643 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 17644 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 17645 break; 17646 } 17647 break; 17648 } 17649 } 17650 return (B_TRUE); 17651 17652 bad_src_route: 17653 q = WR(q); 17654 if (q->q_next != NULL) 17655 ill = q->q_ptr; 17656 else 17657 ill = NULL; 17658 17659 /* make sure we clear any indication of a hardware checksum */ 17660 DB_CKSUMFLAGS(mp) = 0; 17661 zoneid = ipif_lookup_addr_zoneid(ipha->ipha_dst, ill, ipst); 17662 if (zoneid == ALL_ZONES) 17663 freemsg(mp); 17664 else 17665 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 17666 return (B_FALSE); 17667 17668 } 17669 17670 /* 17671 * Process IP options in an inbound packet. If an option affects the 17672 * effective destination address, return the next hop address via dstp. 17673 * Returns -1 if something fails in which case an ICMP error has been sent 17674 * and mp freed. 17675 */ 17676 static int 17677 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp, 17678 ip_stack_t *ipst) 17679 { 17680 ipoptp_t opts; 17681 uchar_t *opt; 17682 uint8_t optval; 17683 uint8_t optlen; 17684 ipaddr_t dst; 17685 intptr_t code = 0; 17686 ire_t *ire = NULL; 17687 zoneid_t zoneid; 17688 ill_t *ill; 17689 17690 ip2dbg(("ip_rput_options\n")); 17691 dst = ipha->ipha_dst; 17692 for (optval = ipoptp_first(&opts, ipha); 17693 optval != IPOPT_EOL; 17694 optval = ipoptp_next(&opts)) { 17695 opt = opts.ipoptp_cur; 17696 optlen = opts.ipoptp_len; 17697 ip2dbg(("ip_rput_options: opt %d, len %d\n", 17698 optval, optlen)); 17699 /* 17700 * Note: we need to verify the checksum before we 17701 * modify anything thus this routine only extracts the next 17702 * hop dst from any source route. 17703 */ 17704 switch (optval) { 17705 uint32_t off; 17706 case IPOPT_SSRR: 17707 case IPOPT_LSRR: 17708 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17709 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17710 if (ire == NULL) { 17711 if (optval == IPOPT_SSRR) { 17712 ip1dbg(("ip_rput_options: not next" 17713 " strict source route 0x%x\n", 17714 ntohl(dst))); 17715 code = (char *)&ipha->ipha_dst - 17716 (char *)ipha; 17717 goto param_prob; /* RouterReq's */ 17718 } 17719 ip2dbg(("ip_rput_options: " 17720 "not next source route 0x%x\n", 17721 ntohl(dst))); 17722 break; 17723 } 17724 ire_refrele(ire); 17725 17726 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17727 ip1dbg(( 17728 "ip_rput_options: bad option offset\n")); 17729 code = (char *)&opt[IPOPT_OLEN] - 17730 (char *)ipha; 17731 goto param_prob; 17732 } 17733 off = opt[IPOPT_OFFSET]; 17734 off--; 17735 redo_srr: 17736 if (optlen < IP_ADDR_LEN || 17737 off > optlen - IP_ADDR_LEN) { 17738 /* End of source route */ 17739 ip1dbg(("ip_rput_options: end of SR\n")); 17740 break; 17741 } 17742 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17743 ip1dbg(("ip_rput_options: next hop 0x%x\n", 17744 ntohl(dst))); 17745 17746 /* 17747 * Check if our address is present more than 17748 * once as consecutive hops in source route. 17749 * XXX verify per-interface ip_forwarding 17750 * for source route? 17751 */ 17752 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17753 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17754 17755 if (ire != NULL) { 17756 ire_refrele(ire); 17757 off += IP_ADDR_LEN; 17758 goto redo_srr; 17759 } 17760 17761 if (dst == htonl(INADDR_LOOPBACK)) { 17762 ip1dbg(("ip_rput_options: loopback addr in " 17763 "source route!\n")); 17764 goto bad_src_route; 17765 } 17766 /* 17767 * For strict: verify that dst is directly 17768 * reachable. 17769 */ 17770 if (optval == IPOPT_SSRR) { 17771 ire = ire_ftable_lookup(dst, 0, 0, 17772 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 17773 MBLK_GETLABEL(mp), 17774 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 17775 if (ire == NULL) { 17776 ip1dbg(("ip_rput_options: SSRR not " 17777 "directly reachable: 0x%x\n", 17778 ntohl(dst))); 17779 goto bad_src_route; 17780 } 17781 ire_refrele(ire); 17782 } 17783 /* 17784 * Defer update of the offset and the record route 17785 * until the packet is forwarded. 17786 */ 17787 break; 17788 case IPOPT_RR: 17789 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17790 ip1dbg(( 17791 "ip_rput_options: bad option offset\n")); 17792 code = (char *)&opt[IPOPT_OLEN] - 17793 (char *)ipha; 17794 goto param_prob; 17795 } 17796 break; 17797 case IPOPT_TS: 17798 /* 17799 * Verify that length >= 5 and that there is either 17800 * room for another timestamp or that the overflow 17801 * counter is not maxed out. 17802 */ 17803 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 17804 if (optlen < IPOPT_MINLEN_IT) { 17805 goto param_prob; 17806 } 17807 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17808 ip1dbg(( 17809 "ip_rput_options: bad option offset\n")); 17810 code = (char *)&opt[IPOPT_OFFSET] - 17811 (char *)ipha; 17812 goto param_prob; 17813 } 17814 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17815 case IPOPT_TS_TSONLY: 17816 off = IPOPT_TS_TIMELEN; 17817 break; 17818 case IPOPT_TS_TSANDADDR: 17819 case IPOPT_TS_PRESPEC: 17820 case IPOPT_TS_PRESPEC_RFC791: 17821 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17822 break; 17823 default: 17824 code = (char *)&opt[IPOPT_POS_OV_FLG] - 17825 (char *)ipha; 17826 goto param_prob; 17827 } 17828 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 17829 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 17830 /* 17831 * No room and the overflow counter is 15 17832 * already. 17833 */ 17834 goto param_prob; 17835 } 17836 break; 17837 } 17838 } 17839 17840 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 17841 *dstp = dst; 17842 return (0); 17843 } 17844 17845 ip1dbg(("ip_rput_options: error processing IP options.")); 17846 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 17847 17848 param_prob: 17849 q = WR(q); 17850 if (q->q_next != NULL) 17851 ill = q->q_ptr; 17852 else 17853 ill = NULL; 17854 17855 /* make sure we clear any indication of a hardware checksum */ 17856 DB_CKSUMFLAGS(mp) = 0; 17857 /* Don't know whether this is for non-global or global/forwarding */ 17858 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 17859 if (zoneid == ALL_ZONES) 17860 freemsg(mp); 17861 else 17862 icmp_param_problem(q, mp, (uint8_t)code, zoneid, ipst); 17863 return (-1); 17864 17865 bad_src_route: 17866 q = WR(q); 17867 if (q->q_next != NULL) 17868 ill = q->q_ptr; 17869 else 17870 ill = NULL; 17871 17872 /* make sure we clear any indication of a hardware checksum */ 17873 DB_CKSUMFLAGS(mp) = 0; 17874 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 17875 if (zoneid == ALL_ZONES) 17876 freemsg(mp); 17877 else 17878 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 17879 return (-1); 17880 } 17881 17882 /* 17883 * IP & ICMP info in >=14 msg's ... 17884 * - ip fixed part (mib2_ip_t) 17885 * - icmp fixed part (mib2_icmp_t) 17886 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 17887 * - ipRouteEntryTable (ip 21) all IPv4 IREs 17888 * - ipNetToMediaEntryTable (ip 22) [filled in by the arp module] 17889 * - ipRouteAttributeTable (ip 102) labeled routes 17890 * - ip multicast membership (ip_member_t) 17891 * - ip multicast source filtering (ip_grpsrc_t) 17892 * - igmp fixed part (struct igmpstat) 17893 * - multicast routing stats (struct mrtstat) 17894 * - multicast routing vifs (array of struct vifctl) 17895 * - multicast routing routes (array of struct mfcctl) 17896 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 17897 * One per ill plus one generic 17898 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 17899 * One per ill plus one generic 17900 * - ipv6RouteEntry all IPv6 IREs 17901 * - ipv6RouteAttributeTable (ip6 102) labeled routes 17902 * - ipv6NetToMediaEntry all Neighbor Cache entries 17903 * - ipv6AddrEntry all IPv6 ipifs 17904 * - ipv6 multicast membership (ipv6_member_t) 17905 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 17906 * 17907 * MIB2_IP_MEDIA is filled in by the arp module with ARP cache entries. 17908 * 17909 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 17910 * already filled in by the caller. 17911 * Return value of 0 indicates that no messages were sent and caller 17912 * should free mpctl. 17913 */ 17914 int 17915 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level) 17916 { 17917 ip_stack_t *ipst; 17918 sctp_stack_t *sctps; 17919 17920 if (q->q_next != NULL) { 17921 ipst = ILLQ_TO_IPST(q); 17922 } else { 17923 ipst = CONNQ_TO_IPST(q); 17924 } 17925 ASSERT(ipst != NULL); 17926 sctps = ipst->ips_netstack->netstack_sctp; 17927 17928 if (mpctl == NULL || mpctl->b_cont == NULL) { 17929 return (0); 17930 } 17931 17932 /* 17933 * For the purposes of the (broken) packet shell use 17934 * of the level we make sure MIB2_TCP/MIB2_UDP can be used 17935 * to make TCP and UDP appear first in the list of mib items. 17936 * TBD: We could expand this and use it in netstat so that 17937 * the kernel doesn't have to produce large tables (connections, 17938 * routes, etc) when netstat only wants the statistics or a particular 17939 * table. 17940 */ 17941 if (!(level == MIB2_TCP || level == MIB2_UDP)) { 17942 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) { 17943 return (1); 17944 } 17945 } 17946 17947 if (level != MIB2_TCP) { 17948 if ((mpctl = udp_snmp_get(q, mpctl)) == NULL) { 17949 return (1); 17950 } 17951 } 17952 17953 if (level != MIB2_UDP) { 17954 if ((mpctl = tcp_snmp_get(q, mpctl)) == NULL) { 17955 return (1); 17956 } 17957 } 17958 17959 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 17960 ipst)) == NULL) { 17961 return (1); 17962 } 17963 17964 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst)) == NULL) { 17965 return (1); 17966 } 17967 17968 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 17969 return (1); 17970 } 17971 17972 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 17973 return (1); 17974 } 17975 17976 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 17977 return (1); 17978 } 17979 17980 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 17981 return (1); 17982 } 17983 17984 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst)) == NULL) { 17985 return (1); 17986 } 17987 17988 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst)) == NULL) { 17989 return (1); 17990 } 17991 17992 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 17993 return (1); 17994 } 17995 17996 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 17997 return (1); 17998 } 17999 18000 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 18001 return (1); 18002 } 18003 18004 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 18005 return (1); 18006 } 18007 18008 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 18009 return (1); 18010 } 18011 18012 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 18013 return (1); 18014 } 18015 18016 if ((mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, ipst)) == NULL) { 18017 return (1); 18018 } 18019 18020 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, ipst); 18021 if (mpctl == NULL) { 18022 return (1); 18023 } 18024 18025 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 18026 return (1); 18027 } 18028 freemsg(mpctl); 18029 return (1); 18030 } 18031 18032 18033 /* Get global (legacy) IPv4 statistics */ 18034 static mblk_t * 18035 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 18036 ip_stack_t *ipst) 18037 { 18038 mib2_ip_t old_ip_mib; 18039 struct opthdr *optp; 18040 mblk_t *mp2ctl; 18041 18042 /* 18043 * make a copy of the original message 18044 */ 18045 mp2ctl = copymsg(mpctl); 18046 18047 /* fixed length IP structure... */ 18048 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18049 optp->level = MIB2_IP; 18050 optp->name = 0; 18051 SET_MIB(old_ip_mib.ipForwarding, 18052 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 18053 SET_MIB(old_ip_mib.ipDefaultTTL, 18054 (uint32_t)ipst->ips_ip_def_ttl); 18055 SET_MIB(old_ip_mib.ipReasmTimeout, 18056 ipst->ips_ip_g_frag_timeout); 18057 SET_MIB(old_ip_mib.ipAddrEntrySize, 18058 sizeof (mib2_ipAddrEntry_t)); 18059 SET_MIB(old_ip_mib.ipRouteEntrySize, 18060 sizeof (mib2_ipRouteEntry_t)); 18061 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 18062 sizeof (mib2_ipNetToMediaEntry_t)); 18063 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 18064 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 18065 SET_MIB(old_ip_mib.ipRouteAttributeSize, 18066 sizeof (mib2_ipAttributeEntry_t)); 18067 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 18068 18069 /* 18070 * Grab the statistics from the new IP MIB 18071 */ 18072 SET_MIB(old_ip_mib.ipInReceives, 18073 (uint32_t)ipmib->ipIfStatsHCInReceives); 18074 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 18075 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 18076 SET_MIB(old_ip_mib.ipForwDatagrams, 18077 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 18078 SET_MIB(old_ip_mib.ipInUnknownProtos, 18079 ipmib->ipIfStatsInUnknownProtos); 18080 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 18081 SET_MIB(old_ip_mib.ipInDelivers, 18082 (uint32_t)ipmib->ipIfStatsHCInDelivers); 18083 SET_MIB(old_ip_mib.ipOutRequests, 18084 (uint32_t)ipmib->ipIfStatsHCOutRequests); 18085 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 18086 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 18087 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 18088 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 18089 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 18090 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 18091 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 18092 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 18093 18094 /* ipRoutingDiscards is not being used */ 18095 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 18096 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 18097 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 18098 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 18099 SET_MIB(old_ip_mib.ipReasmDuplicates, 18100 ipmib->ipIfStatsReasmDuplicates); 18101 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 18102 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 18103 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 18104 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 18105 SET_MIB(old_ip_mib.rawipInOverflows, 18106 ipmib->rawipIfStatsInOverflows); 18107 18108 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 18109 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 18110 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 18111 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 18112 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 18113 ipmib->ipIfStatsOutSwitchIPVersion); 18114 18115 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 18116 (int)sizeof (old_ip_mib))) { 18117 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 18118 (uint_t)sizeof (old_ip_mib))); 18119 } 18120 18121 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18122 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 18123 (int)optp->level, (int)optp->name, (int)optp->len)); 18124 qreply(q, mpctl); 18125 return (mp2ctl); 18126 } 18127 18128 /* Per interface IPv4 statistics */ 18129 static mblk_t * 18130 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18131 { 18132 struct opthdr *optp; 18133 mblk_t *mp2ctl; 18134 ill_t *ill; 18135 ill_walk_context_t ctx; 18136 mblk_t *mp_tail = NULL; 18137 mib2_ipIfStatsEntry_t global_ip_mib; 18138 18139 /* 18140 * Make a copy of the original message 18141 */ 18142 mp2ctl = copymsg(mpctl); 18143 18144 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18145 optp->level = MIB2_IP; 18146 optp->name = MIB2_IP_TRAFFIC_STATS; 18147 /* Include "unknown interface" ip_mib */ 18148 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 18149 ipst->ips_ip_mib.ipIfStatsIfIndex = 18150 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 18151 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 18152 (ipst->ips_ip_g_forward ? 1 : 2)); 18153 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 18154 (uint32_t)ipst->ips_ip_def_ttl); 18155 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 18156 sizeof (mib2_ipIfStatsEntry_t)); 18157 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 18158 sizeof (mib2_ipAddrEntry_t)); 18159 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 18160 sizeof (mib2_ipRouteEntry_t)); 18161 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 18162 sizeof (mib2_ipNetToMediaEntry_t)); 18163 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 18164 sizeof (ip_member_t)); 18165 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 18166 sizeof (ip_grpsrc_t)); 18167 18168 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18169 (char *)&ipst->ips_ip_mib, (int)sizeof (ipst->ips_ip_mib))) { 18170 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18171 "failed to allocate %u bytes\n", 18172 (uint_t)sizeof (ipst->ips_ip_mib))); 18173 } 18174 18175 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 18176 18177 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18178 ill = ILL_START_WALK_V4(&ctx, ipst); 18179 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18180 ill->ill_ip_mib->ipIfStatsIfIndex = 18181 ill->ill_phyint->phyint_ifindex; 18182 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 18183 (ipst->ips_ip_g_forward ? 1 : 2)); 18184 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 18185 (uint32_t)ipst->ips_ip_def_ttl); 18186 18187 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 18188 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18189 (char *)ill->ill_ip_mib, 18190 (int)sizeof (*ill->ill_ip_mib))) { 18191 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18192 "failed to allocate %u bytes\n", 18193 (uint_t)sizeof (*ill->ill_ip_mib))); 18194 } 18195 } 18196 rw_exit(&ipst->ips_ill_g_lock); 18197 18198 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18199 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18200 "level %d, name %d, len %d\n", 18201 (int)optp->level, (int)optp->name, (int)optp->len)); 18202 qreply(q, mpctl); 18203 18204 if (mp2ctl == NULL) 18205 return (NULL); 18206 18207 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst)); 18208 } 18209 18210 /* Global IPv4 ICMP statistics */ 18211 static mblk_t * 18212 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18213 { 18214 struct opthdr *optp; 18215 mblk_t *mp2ctl; 18216 18217 /* 18218 * Make a copy of the original message 18219 */ 18220 mp2ctl = copymsg(mpctl); 18221 18222 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18223 optp->level = MIB2_ICMP; 18224 optp->name = 0; 18225 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 18226 (int)sizeof (ipst->ips_icmp_mib))) { 18227 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 18228 (uint_t)sizeof (ipst->ips_icmp_mib))); 18229 } 18230 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18231 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 18232 (int)optp->level, (int)optp->name, (int)optp->len)); 18233 qreply(q, mpctl); 18234 return (mp2ctl); 18235 } 18236 18237 /* Global IPv4 IGMP statistics */ 18238 static mblk_t * 18239 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18240 { 18241 struct opthdr *optp; 18242 mblk_t *mp2ctl; 18243 18244 /* 18245 * make a copy of the original message 18246 */ 18247 mp2ctl = copymsg(mpctl); 18248 18249 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18250 optp->level = EXPER_IGMP; 18251 optp->name = 0; 18252 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 18253 (int)sizeof (ipst->ips_igmpstat))) { 18254 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 18255 (uint_t)sizeof (ipst->ips_igmpstat))); 18256 } 18257 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18258 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 18259 (int)optp->level, (int)optp->name, (int)optp->len)); 18260 qreply(q, mpctl); 18261 return (mp2ctl); 18262 } 18263 18264 /* Global IPv4 Multicast Routing statistics */ 18265 static mblk_t * 18266 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18267 { 18268 struct opthdr *optp; 18269 mblk_t *mp2ctl; 18270 18271 /* 18272 * make a copy of the original message 18273 */ 18274 mp2ctl = copymsg(mpctl); 18275 18276 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18277 optp->level = EXPER_DVMRP; 18278 optp->name = 0; 18279 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 18280 ip0dbg(("ip_mroute_stats: failed\n")); 18281 } 18282 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18283 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 18284 (int)optp->level, (int)optp->name, (int)optp->len)); 18285 qreply(q, mpctl); 18286 return (mp2ctl); 18287 } 18288 18289 /* IPv4 address information */ 18290 static mblk_t * 18291 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18292 { 18293 struct opthdr *optp; 18294 mblk_t *mp2ctl; 18295 mblk_t *mp_tail = NULL; 18296 ill_t *ill; 18297 ipif_t *ipif; 18298 uint_t bitval; 18299 mib2_ipAddrEntry_t mae; 18300 zoneid_t zoneid; 18301 ill_walk_context_t ctx; 18302 18303 /* 18304 * make a copy of the original message 18305 */ 18306 mp2ctl = copymsg(mpctl); 18307 18308 /* ipAddrEntryTable */ 18309 18310 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18311 optp->level = MIB2_IP; 18312 optp->name = MIB2_IP_ADDR; 18313 zoneid = Q_TO_CONN(q)->conn_zoneid; 18314 18315 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18316 ill = ILL_START_WALK_V4(&ctx, ipst); 18317 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18318 for (ipif = ill->ill_ipif; ipif != NULL; 18319 ipif = ipif->ipif_next) { 18320 if (ipif->ipif_zoneid != zoneid && 18321 ipif->ipif_zoneid != ALL_ZONES) 18322 continue; 18323 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18324 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18325 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18326 18327 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes, 18328 OCTET_LENGTH); 18329 mae.ipAdEntIfIndex.o_length = 18330 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 18331 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 18332 mae.ipAdEntNetMask = ipif->ipif_net_mask; 18333 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 18334 mae.ipAdEntInfo.ae_subnet_len = 18335 ip_mask_to_plen(ipif->ipif_net_mask); 18336 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 18337 for (bitval = 1; 18338 bitval && 18339 !(bitval & ipif->ipif_brd_addr); 18340 bitval <<= 1) 18341 noop; 18342 mae.ipAdEntBcastAddr = bitval; 18343 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 18344 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 18345 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 18346 mae.ipAdEntInfo.ae_broadcast_addr = 18347 ipif->ipif_brd_addr; 18348 mae.ipAdEntInfo.ae_pp_dst_addr = 18349 ipif->ipif_pp_dst_addr; 18350 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 18351 ill->ill_flags | ill->ill_phyint->phyint_flags; 18352 mae.ipAdEntRetransmitTime = AR_EQ_DEFAULT_XMIT_INTERVAL; 18353 18354 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18355 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 18356 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 18357 "allocate %u bytes\n", 18358 (uint_t)sizeof (mib2_ipAddrEntry_t))); 18359 } 18360 } 18361 } 18362 rw_exit(&ipst->ips_ill_g_lock); 18363 18364 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18365 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 18366 (int)optp->level, (int)optp->name, (int)optp->len)); 18367 qreply(q, mpctl); 18368 return (mp2ctl); 18369 } 18370 18371 /* IPv6 address information */ 18372 static mblk_t * 18373 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18374 { 18375 struct opthdr *optp; 18376 mblk_t *mp2ctl; 18377 mblk_t *mp_tail = NULL; 18378 ill_t *ill; 18379 ipif_t *ipif; 18380 mib2_ipv6AddrEntry_t mae6; 18381 zoneid_t zoneid; 18382 ill_walk_context_t ctx; 18383 18384 /* 18385 * make a copy of the original message 18386 */ 18387 mp2ctl = copymsg(mpctl); 18388 18389 /* ipv6AddrEntryTable */ 18390 18391 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18392 optp->level = MIB2_IP6; 18393 optp->name = MIB2_IP6_ADDR; 18394 zoneid = Q_TO_CONN(q)->conn_zoneid; 18395 18396 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18397 ill = ILL_START_WALK_V6(&ctx, ipst); 18398 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18399 for (ipif = ill->ill_ipif; ipif != NULL; 18400 ipif = ipif->ipif_next) { 18401 if (ipif->ipif_zoneid != zoneid && 18402 ipif->ipif_zoneid != ALL_ZONES) 18403 continue; 18404 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18405 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18406 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18407 18408 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes, 18409 OCTET_LENGTH); 18410 mae6.ipv6AddrIfIndex.o_length = 18411 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 18412 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 18413 mae6.ipv6AddrPfxLength = 18414 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 18415 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 18416 mae6.ipv6AddrInfo.ae_subnet_len = 18417 mae6.ipv6AddrPfxLength; 18418 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 18419 18420 /* Type: stateless(1), stateful(2), unknown(3) */ 18421 if (ipif->ipif_flags & IPIF_ADDRCONF) 18422 mae6.ipv6AddrType = 1; 18423 else 18424 mae6.ipv6AddrType = 2; 18425 /* Anycast: true(1), false(2) */ 18426 if (ipif->ipif_flags & IPIF_ANYCAST) 18427 mae6.ipv6AddrAnycastFlag = 1; 18428 else 18429 mae6.ipv6AddrAnycastFlag = 2; 18430 18431 /* 18432 * Address status: preferred(1), deprecated(2), 18433 * invalid(3), inaccessible(4), unknown(5) 18434 */ 18435 if (ipif->ipif_flags & IPIF_NOLOCAL) 18436 mae6.ipv6AddrStatus = 3; 18437 else if (ipif->ipif_flags & IPIF_DEPRECATED) 18438 mae6.ipv6AddrStatus = 2; 18439 else 18440 mae6.ipv6AddrStatus = 1; 18441 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 18442 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 18443 mae6.ipv6AddrInfo.ae_pp_dst_addr = 18444 ipif->ipif_v6pp_dst_addr; 18445 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 18446 ill->ill_flags | ill->ill_phyint->phyint_flags; 18447 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 18448 mae6.ipv6AddrIdentifier = ill->ill_token; 18449 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 18450 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 18451 mae6.ipv6AddrRetransmitTime = 18452 ill->ill_reachable_retrans_time; 18453 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18454 (char *)&mae6, 18455 (int)sizeof (mib2_ipv6AddrEntry_t))) { 18456 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 18457 "allocate %u bytes\n", 18458 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 18459 } 18460 } 18461 } 18462 rw_exit(&ipst->ips_ill_g_lock); 18463 18464 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18465 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 18466 (int)optp->level, (int)optp->name, (int)optp->len)); 18467 qreply(q, mpctl); 18468 return (mp2ctl); 18469 } 18470 18471 /* IPv4 multicast group membership. */ 18472 static mblk_t * 18473 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18474 { 18475 struct opthdr *optp; 18476 mblk_t *mp2ctl; 18477 ill_t *ill; 18478 ipif_t *ipif; 18479 ilm_t *ilm; 18480 ip_member_t ipm; 18481 mblk_t *mp_tail = NULL; 18482 ill_walk_context_t ctx; 18483 zoneid_t zoneid; 18484 18485 /* 18486 * make a copy of the original message 18487 */ 18488 mp2ctl = copymsg(mpctl); 18489 zoneid = Q_TO_CONN(q)->conn_zoneid; 18490 18491 /* ipGroupMember table */ 18492 optp = (struct opthdr *)&mpctl->b_rptr[ 18493 sizeof (struct T_optmgmt_ack)]; 18494 optp->level = MIB2_IP; 18495 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 18496 18497 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18498 ill = ILL_START_WALK_V4(&ctx, ipst); 18499 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18500 ILM_WALKER_HOLD(ill); 18501 for (ipif = ill->ill_ipif; ipif != NULL; 18502 ipif = ipif->ipif_next) { 18503 if (ipif->ipif_zoneid != zoneid && 18504 ipif->ipif_zoneid != ALL_ZONES) 18505 continue; /* not this zone */ 18506 ipif_get_name(ipif, ipm.ipGroupMemberIfIndex.o_bytes, 18507 OCTET_LENGTH); 18508 ipm.ipGroupMemberIfIndex.o_length = 18509 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 18510 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18511 ASSERT(ilm->ilm_ipif != NULL); 18512 ASSERT(ilm->ilm_ill == NULL); 18513 if (ilm->ilm_ipif != ipif) 18514 continue; 18515 ipm.ipGroupMemberAddress = ilm->ilm_addr; 18516 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 18517 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 18518 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18519 (char *)&ipm, (int)sizeof (ipm))) { 18520 ip1dbg(("ip_snmp_get_mib2_ip_group: " 18521 "failed to allocate %u bytes\n", 18522 (uint_t)sizeof (ipm))); 18523 } 18524 } 18525 } 18526 ILM_WALKER_RELE(ill); 18527 } 18528 rw_exit(&ipst->ips_ill_g_lock); 18529 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18530 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18531 (int)optp->level, (int)optp->name, (int)optp->len)); 18532 qreply(q, mpctl); 18533 return (mp2ctl); 18534 } 18535 18536 /* IPv6 multicast group membership. */ 18537 static mblk_t * 18538 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18539 { 18540 struct opthdr *optp; 18541 mblk_t *mp2ctl; 18542 ill_t *ill; 18543 ilm_t *ilm; 18544 ipv6_member_t ipm6; 18545 mblk_t *mp_tail = NULL; 18546 ill_walk_context_t ctx; 18547 zoneid_t zoneid; 18548 18549 /* 18550 * make a copy of the original message 18551 */ 18552 mp2ctl = copymsg(mpctl); 18553 zoneid = Q_TO_CONN(q)->conn_zoneid; 18554 18555 /* ip6GroupMember table */ 18556 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18557 optp->level = MIB2_IP6; 18558 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 18559 18560 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18561 ill = ILL_START_WALK_V6(&ctx, ipst); 18562 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18563 ILM_WALKER_HOLD(ill); 18564 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 18565 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18566 ASSERT(ilm->ilm_ipif == NULL); 18567 ASSERT(ilm->ilm_ill != NULL); 18568 if (ilm->ilm_zoneid != zoneid) 18569 continue; /* not this zone */ 18570 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 18571 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 18572 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 18573 if (!snmp_append_data2(mpctl->b_cont, 18574 &mp_tail, 18575 (char *)&ipm6, (int)sizeof (ipm6))) { 18576 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 18577 "failed to allocate %u bytes\n", 18578 (uint_t)sizeof (ipm6))); 18579 } 18580 } 18581 ILM_WALKER_RELE(ill); 18582 } 18583 rw_exit(&ipst->ips_ill_g_lock); 18584 18585 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18586 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18587 (int)optp->level, (int)optp->name, (int)optp->len)); 18588 qreply(q, mpctl); 18589 return (mp2ctl); 18590 } 18591 18592 /* IP multicast filtered sources */ 18593 static mblk_t * 18594 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18595 { 18596 struct opthdr *optp; 18597 mblk_t *mp2ctl; 18598 ill_t *ill; 18599 ipif_t *ipif; 18600 ilm_t *ilm; 18601 ip_grpsrc_t ips; 18602 mblk_t *mp_tail = NULL; 18603 ill_walk_context_t ctx; 18604 zoneid_t zoneid; 18605 int i; 18606 slist_t *sl; 18607 18608 /* 18609 * make a copy of the original message 18610 */ 18611 mp2ctl = copymsg(mpctl); 18612 zoneid = Q_TO_CONN(q)->conn_zoneid; 18613 18614 /* ipGroupSource table */ 18615 optp = (struct opthdr *)&mpctl->b_rptr[ 18616 sizeof (struct T_optmgmt_ack)]; 18617 optp->level = MIB2_IP; 18618 optp->name = EXPER_IP_GROUP_SOURCES; 18619 18620 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18621 ill = ILL_START_WALK_V4(&ctx, ipst); 18622 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18623 ILM_WALKER_HOLD(ill); 18624 for (ipif = ill->ill_ipif; ipif != NULL; 18625 ipif = ipif->ipif_next) { 18626 if (ipif->ipif_zoneid != zoneid) 18627 continue; /* not this zone */ 18628 ipif_get_name(ipif, ips.ipGroupSourceIfIndex.o_bytes, 18629 OCTET_LENGTH); 18630 ips.ipGroupSourceIfIndex.o_length = 18631 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 18632 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18633 ASSERT(ilm->ilm_ipif != NULL); 18634 ASSERT(ilm->ilm_ill == NULL); 18635 sl = ilm->ilm_filter; 18636 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 18637 continue; 18638 ips.ipGroupSourceGroup = ilm->ilm_addr; 18639 for (i = 0; i < sl->sl_numsrc; i++) { 18640 if (!IN6_IS_ADDR_V4MAPPED( 18641 &sl->sl_addr[i])) 18642 continue; 18643 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 18644 ips.ipGroupSourceAddress); 18645 if (snmp_append_data2(mpctl->b_cont, 18646 &mp_tail, (char *)&ips, 18647 (int)sizeof (ips)) == 0) { 18648 ip1dbg(("ip_snmp_get_mib2_" 18649 "ip_group_src: failed to " 18650 "allocate %u bytes\n", 18651 (uint_t)sizeof (ips))); 18652 } 18653 } 18654 } 18655 } 18656 ILM_WALKER_RELE(ill); 18657 } 18658 rw_exit(&ipst->ips_ill_g_lock); 18659 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18660 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18661 (int)optp->level, (int)optp->name, (int)optp->len)); 18662 qreply(q, mpctl); 18663 return (mp2ctl); 18664 } 18665 18666 /* IPv6 multicast filtered sources. */ 18667 static mblk_t * 18668 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18669 { 18670 struct opthdr *optp; 18671 mblk_t *mp2ctl; 18672 ill_t *ill; 18673 ilm_t *ilm; 18674 ipv6_grpsrc_t ips6; 18675 mblk_t *mp_tail = NULL; 18676 ill_walk_context_t ctx; 18677 zoneid_t zoneid; 18678 int i; 18679 slist_t *sl; 18680 18681 /* 18682 * make a copy of the original message 18683 */ 18684 mp2ctl = copymsg(mpctl); 18685 zoneid = Q_TO_CONN(q)->conn_zoneid; 18686 18687 /* ip6GroupMember table */ 18688 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18689 optp->level = MIB2_IP6; 18690 optp->name = EXPER_IP6_GROUP_SOURCES; 18691 18692 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18693 ill = ILL_START_WALK_V6(&ctx, ipst); 18694 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18695 ILM_WALKER_HOLD(ill); 18696 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 18697 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18698 ASSERT(ilm->ilm_ipif == NULL); 18699 ASSERT(ilm->ilm_ill != NULL); 18700 sl = ilm->ilm_filter; 18701 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 18702 continue; 18703 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 18704 for (i = 0; i < sl->sl_numsrc; i++) { 18705 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 18706 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18707 (char *)&ips6, (int)sizeof (ips6))) { 18708 ip1dbg(("ip_snmp_get_mib2_ip6_" 18709 "group_src: failed to allocate " 18710 "%u bytes\n", 18711 (uint_t)sizeof (ips6))); 18712 } 18713 } 18714 } 18715 ILM_WALKER_RELE(ill); 18716 } 18717 rw_exit(&ipst->ips_ill_g_lock); 18718 18719 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18720 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18721 (int)optp->level, (int)optp->name, (int)optp->len)); 18722 qreply(q, mpctl); 18723 return (mp2ctl); 18724 } 18725 18726 /* Multicast routing virtual interface table. */ 18727 static mblk_t * 18728 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18729 { 18730 struct opthdr *optp; 18731 mblk_t *mp2ctl; 18732 18733 /* 18734 * make a copy of the original message 18735 */ 18736 mp2ctl = copymsg(mpctl); 18737 18738 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18739 optp->level = EXPER_DVMRP; 18740 optp->name = EXPER_DVMRP_VIF; 18741 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 18742 ip0dbg(("ip_mroute_vif: failed\n")); 18743 } 18744 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18745 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 18746 (int)optp->level, (int)optp->name, (int)optp->len)); 18747 qreply(q, mpctl); 18748 return (mp2ctl); 18749 } 18750 18751 /* Multicast routing table. */ 18752 static mblk_t * 18753 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18754 { 18755 struct opthdr *optp; 18756 mblk_t *mp2ctl; 18757 18758 /* 18759 * make a copy of the original message 18760 */ 18761 mp2ctl = copymsg(mpctl); 18762 18763 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18764 optp->level = EXPER_DVMRP; 18765 optp->name = EXPER_DVMRP_MRT; 18766 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 18767 ip0dbg(("ip_mroute_mrt: failed\n")); 18768 } 18769 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18770 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 18771 (int)optp->level, (int)optp->name, (int)optp->len)); 18772 qreply(q, mpctl); 18773 return (mp2ctl); 18774 } 18775 18776 /* 18777 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 18778 * in one IRE walk. 18779 */ 18780 static mblk_t * 18781 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18782 { 18783 struct opthdr *optp; 18784 mblk_t *mp2ctl; /* Returned */ 18785 mblk_t *mp3ctl; /* nettomedia */ 18786 mblk_t *mp4ctl; /* routeattrs */ 18787 iproutedata_t ird; 18788 zoneid_t zoneid; 18789 18790 /* 18791 * make copies of the original message 18792 * - mp2ctl is returned unchanged to the caller for his use 18793 * - mpctl is sent upstream as ipRouteEntryTable 18794 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 18795 * - mp4ctl is sent upstream as ipRouteAttributeTable 18796 */ 18797 mp2ctl = copymsg(mpctl); 18798 mp3ctl = copymsg(mpctl); 18799 mp4ctl = copymsg(mpctl); 18800 if (mp3ctl == NULL || mp4ctl == NULL) { 18801 freemsg(mp4ctl); 18802 freemsg(mp3ctl); 18803 freemsg(mp2ctl); 18804 freemsg(mpctl); 18805 return (NULL); 18806 } 18807 18808 bzero(&ird, sizeof (ird)); 18809 18810 ird.ird_route.lp_head = mpctl->b_cont; 18811 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 18812 ird.ird_attrs.lp_head = mp4ctl->b_cont; 18813 18814 zoneid = Q_TO_CONN(q)->conn_zoneid; 18815 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 18816 18817 /* ipRouteEntryTable in mpctl */ 18818 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18819 optp->level = MIB2_IP; 18820 optp->name = MIB2_IP_ROUTE; 18821 optp->len = msgdsize(ird.ird_route.lp_head); 18822 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18823 (int)optp->level, (int)optp->name, (int)optp->len)); 18824 qreply(q, mpctl); 18825 18826 /* ipNetToMediaEntryTable in mp3ctl */ 18827 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18828 optp->level = MIB2_IP; 18829 optp->name = MIB2_IP_MEDIA; 18830 optp->len = msgdsize(ird.ird_netmedia.lp_head); 18831 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18832 (int)optp->level, (int)optp->name, (int)optp->len)); 18833 qreply(q, mp3ctl); 18834 18835 /* ipRouteAttributeTable in mp4ctl */ 18836 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18837 optp->level = MIB2_IP; 18838 optp->name = EXPER_IP_RTATTR; 18839 optp->len = msgdsize(ird.ird_attrs.lp_head); 18840 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18841 (int)optp->level, (int)optp->name, (int)optp->len)); 18842 if (optp->len == 0) 18843 freemsg(mp4ctl); 18844 else 18845 qreply(q, mp4ctl); 18846 18847 return (mp2ctl); 18848 } 18849 18850 /* 18851 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 18852 * ipv6NetToMediaEntryTable in an NDP walk. 18853 */ 18854 static mblk_t * 18855 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18856 { 18857 struct opthdr *optp; 18858 mblk_t *mp2ctl; /* Returned */ 18859 mblk_t *mp3ctl; /* nettomedia */ 18860 mblk_t *mp4ctl; /* routeattrs */ 18861 iproutedata_t ird; 18862 zoneid_t zoneid; 18863 18864 /* 18865 * make copies of the original message 18866 * - mp2ctl is returned unchanged to the caller for his use 18867 * - mpctl is sent upstream as ipv6RouteEntryTable 18868 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 18869 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 18870 */ 18871 mp2ctl = copymsg(mpctl); 18872 mp3ctl = copymsg(mpctl); 18873 mp4ctl = copymsg(mpctl); 18874 if (mp3ctl == NULL || mp4ctl == NULL) { 18875 freemsg(mp4ctl); 18876 freemsg(mp3ctl); 18877 freemsg(mp2ctl); 18878 freemsg(mpctl); 18879 return (NULL); 18880 } 18881 18882 bzero(&ird, sizeof (ird)); 18883 18884 ird.ird_route.lp_head = mpctl->b_cont; 18885 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 18886 ird.ird_attrs.lp_head = mp4ctl->b_cont; 18887 18888 zoneid = Q_TO_CONN(q)->conn_zoneid; 18889 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 18890 18891 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18892 optp->level = MIB2_IP6; 18893 optp->name = MIB2_IP6_ROUTE; 18894 optp->len = msgdsize(ird.ird_route.lp_head); 18895 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 18896 (int)optp->level, (int)optp->name, (int)optp->len)); 18897 qreply(q, mpctl); 18898 18899 /* ipv6NetToMediaEntryTable in mp3ctl */ 18900 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 18901 18902 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18903 optp->level = MIB2_IP6; 18904 optp->name = MIB2_IP6_MEDIA; 18905 optp->len = msgdsize(ird.ird_netmedia.lp_head); 18906 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 18907 (int)optp->level, (int)optp->name, (int)optp->len)); 18908 qreply(q, mp3ctl); 18909 18910 /* ipv6RouteAttributeTable in mp4ctl */ 18911 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18912 optp->level = MIB2_IP6; 18913 optp->name = EXPER_IP_RTATTR; 18914 optp->len = msgdsize(ird.ird_attrs.lp_head); 18915 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 18916 (int)optp->level, (int)optp->name, (int)optp->len)); 18917 if (optp->len == 0) 18918 freemsg(mp4ctl); 18919 else 18920 qreply(q, mp4ctl); 18921 18922 return (mp2ctl); 18923 } 18924 18925 /* 18926 * IPv6 mib: One per ill 18927 */ 18928 static mblk_t * 18929 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18930 { 18931 struct opthdr *optp; 18932 mblk_t *mp2ctl; 18933 ill_t *ill; 18934 ill_walk_context_t ctx; 18935 mblk_t *mp_tail = NULL; 18936 18937 /* 18938 * Make a copy of the original message 18939 */ 18940 mp2ctl = copymsg(mpctl); 18941 18942 /* fixed length IPv6 structure ... */ 18943 18944 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18945 optp->level = MIB2_IP6; 18946 optp->name = 0; 18947 /* Include "unknown interface" ip6_mib */ 18948 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 18949 ipst->ips_ip6_mib.ipIfStatsIfIndex = 18950 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 18951 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 18952 ipst->ips_ipv6_forward ? 1 : 2); 18953 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 18954 ipst->ips_ipv6_def_hops); 18955 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 18956 sizeof (mib2_ipIfStatsEntry_t)); 18957 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 18958 sizeof (mib2_ipv6AddrEntry_t)); 18959 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 18960 sizeof (mib2_ipv6RouteEntry_t)); 18961 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 18962 sizeof (mib2_ipv6NetToMediaEntry_t)); 18963 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 18964 sizeof (ipv6_member_t)); 18965 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 18966 sizeof (ipv6_grpsrc_t)); 18967 18968 /* 18969 * Synchronize 64- and 32-bit counters 18970 */ 18971 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 18972 ipIfStatsHCInReceives); 18973 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 18974 ipIfStatsHCInDelivers); 18975 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 18976 ipIfStatsHCOutRequests); 18977 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 18978 ipIfStatsHCOutForwDatagrams); 18979 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 18980 ipIfStatsHCOutMcastPkts); 18981 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 18982 ipIfStatsHCInMcastPkts); 18983 18984 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18985 (char *)&ipst->ips_ip6_mib, (int)sizeof (ipst->ips_ip6_mib))) { 18986 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 18987 (uint_t)sizeof (ipst->ips_ip6_mib))); 18988 } 18989 18990 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18991 ill = ILL_START_WALK_V6(&ctx, ipst); 18992 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18993 ill->ill_ip_mib->ipIfStatsIfIndex = 18994 ill->ill_phyint->phyint_ifindex; 18995 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 18996 ipst->ips_ipv6_forward ? 1 : 2); 18997 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 18998 ill->ill_max_hops); 18999 19000 /* 19001 * Synchronize 64- and 32-bit counters 19002 */ 19003 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 19004 ipIfStatsHCInReceives); 19005 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 19006 ipIfStatsHCInDelivers); 19007 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 19008 ipIfStatsHCOutRequests); 19009 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 19010 ipIfStatsHCOutForwDatagrams); 19011 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 19012 ipIfStatsHCOutMcastPkts); 19013 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 19014 ipIfStatsHCInMcastPkts); 19015 19016 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19017 (char *)ill->ill_ip_mib, 19018 (int)sizeof (*ill->ill_ip_mib))) { 19019 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 19020 "%u bytes\n", (uint_t)sizeof (*ill->ill_ip_mib))); 19021 } 19022 } 19023 rw_exit(&ipst->ips_ill_g_lock); 19024 19025 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19026 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 19027 (int)optp->level, (int)optp->name, (int)optp->len)); 19028 qreply(q, mpctl); 19029 return (mp2ctl); 19030 } 19031 19032 /* 19033 * ICMPv6 mib: One per ill 19034 */ 19035 static mblk_t * 19036 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19037 { 19038 struct opthdr *optp; 19039 mblk_t *mp2ctl; 19040 ill_t *ill; 19041 ill_walk_context_t ctx; 19042 mblk_t *mp_tail = NULL; 19043 /* 19044 * Make a copy of the original message 19045 */ 19046 mp2ctl = copymsg(mpctl); 19047 19048 /* fixed length ICMPv6 structure ... */ 19049 19050 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19051 optp->level = MIB2_ICMP6; 19052 optp->name = 0; 19053 /* Include "unknown interface" icmp6_mib */ 19054 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 19055 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 19056 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 19057 sizeof (mib2_ipv6IfIcmpEntry_t); 19058 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19059 (char *)&ipst->ips_icmp6_mib, 19060 (int)sizeof (ipst->ips_icmp6_mib))) { 19061 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 19062 (uint_t)sizeof (ipst->ips_icmp6_mib))); 19063 } 19064 19065 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19066 ill = ILL_START_WALK_V6(&ctx, ipst); 19067 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19068 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 19069 ill->ill_phyint->phyint_ifindex; 19070 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19071 (char *)ill->ill_icmp6_mib, 19072 (int)sizeof (*ill->ill_icmp6_mib))) { 19073 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 19074 "%u bytes\n", 19075 (uint_t)sizeof (*ill->ill_icmp6_mib))); 19076 } 19077 } 19078 rw_exit(&ipst->ips_ill_g_lock); 19079 19080 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19081 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 19082 (int)optp->level, (int)optp->name, (int)optp->len)); 19083 qreply(q, mpctl); 19084 return (mp2ctl); 19085 } 19086 19087 /* 19088 * ire_walk routine to create both ipRouteEntryTable and 19089 * ipRouteAttributeTable in one IRE walk 19090 */ 19091 static void 19092 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 19093 { 19094 ill_t *ill; 19095 ipif_t *ipif; 19096 mib2_ipRouteEntry_t *re; 19097 mib2_ipAttributeEntry_t *iae, *iaeptr; 19098 ipaddr_t gw_addr; 19099 tsol_ire_gw_secattr_t *attrp; 19100 tsol_gc_t *gc = NULL; 19101 tsol_gcgrp_t *gcgrp = NULL; 19102 uint_t sacnt = 0; 19103 int i; 19104 19105 ASSERT(ire->ire_ipversion == IPV4_VERSION); 19106 19107 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19108 return; 19109 19110 if ((attrp = ire->ire_gw_secattr) != NULL) { 19111 mutex_enter(&attrp->igsa_lock); 19112 if ((gc = attrp->igsa_gc) != NULL) { 19113 gcgrp = gc->gc_grp; 19114 ASSERT(gcgrp != NULL); 19115 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19116 sacnt = 1; 19117 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19118 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19119 gc = gcgrp->gcgrp_head; 19120 sacnt = gcgrp->gcgrp_count; 19121 } 19122 mutex_exit(&attrp->igsa_lock); 19123 19124 /* do nothing if there's no gc to report */ 19125 if (gc == NULL) { 19126 ASSERT(sacnt == 0); 19127 if (gcgrp != NULL) { 19128 /* we might as well drop the lock now */ 19129 rw_exit(&gcgrp->gcgrp_rwlock); 19130 gcgrp = NULL; 19131 } 19132 attrp = NULL; 19133 } 19134 19135 ASSERT(gc == NULL || (gcgrp != NULL && 19136 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19137 } 19138 ASSERT(sacnt == 0 || gc != NULL); 19139 19140 if (sacnt != 0 && 19141 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19142 kmem_free(re, sizeof (*re)); 19143 rw_exit(&gcgrp->gcgrp_rwlock); 19144 return; 19145 } 19146 19147 /* 19148 * Return all IRE types for route table... let caller pick and choose 19149 */ 19150 re->ipRouteDest = ire->ire_addr; 19151 ipif = ire->ire_ipif; 19152 re->ipRouteIfIndex.o_length = 0; 19153 if (ire->ire_type == IRE_CACHE) { 19154 ill = (ill_t *)ire->ire_stq->q_ptr; 19155 re->ipRouteIfIndex.o_length = 19156 ill->ill_name_length == 0 ? 0 : 19157 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19158 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 19159 re->ipRouteIfIndex.o_length); 19160 } else if (ipif != NULL) { 19161 ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH); 19162 re->ipRouteIfIndex.o_length = 19163 mi_strlen(re->ipRouteIfIndex.o_bytes); 19164 } 19165 re->ipRouteMetric1 = -1; 19166 re->ipRouteMetric2 = -1; 19167 re->ipRouteMetric3 = -1; 19168 re->ipRouteMetric4 = -1; 19169 19170 gw_addr = ire->ire_gateway_addr; 19171 19172 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 19173 re->ipRouteNextHop = ire->ire_src_addr; 19174 else 19175 re->ipRouteNextHop = gw_addr; 19176 /* indirect(4), direct(3), or invalid(2) */ 19177 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19178 re->ipRouteType = 2; 19179 else 19180 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 19181 re->ipRouteProto = -1; 19182 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 19183 re->ipRouteMask = ire->ire_mask; 19184 re->ipRouteMetric5 = -1; 19185 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 19186 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 19187 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19188 re->ipRouteInfo.re_ref = ire->ire_refcnt; 19189 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 19190 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19191 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19192 re->ipRouteInfo.re_flags = ire->ire_flags; 19193 19194 if (ire->ire_flags & RTF_DYNAMIC) { 19195 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19196 } else { 19197 re->ipRouteInfo.re_ire_type = ire->ire_type; 19198 } 19199 19200 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19201 (char *)re, (int)sizeof (*re))) { 19202 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19203 (uint_t)sizeof (*re))); 19204 } 19205 19206 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19207 iaeptr->iae_routeidx = ird->ird_idx; 19208 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19209 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19210 } 19211 19212 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19213 (char *)iae, sacnt * sizeof (*iae))) { 19214 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19215 (unsigned)(sacnt * sizeof (*iae)))); 19216 } 19217 19218 /* bump route index for next pass */ 19219 ird->ird_idx++; 19220 19221 kmem_free(re, sizeof (*re)); 19222 if (sacnt != 0) 19223 kmem_free(iae, sacnt * sizeof (*iae)); 19224 19225 if (gcgrp != NULL) 19226 rw_exit(&gcgrp->gcgrp_rwlock); 19227 } 19228 19229 /* 19230 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 19231 */ 19232 static void 19233 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 19234 { 19235 ill_t *ill; 19236 ipif_t *ipif; 19237 mib2_ipv6RouteEntry_t *re; 19238 mib2_ipAttributeEntry_t *iae, *iaeptr; 19239 in6_addr_t gw_addr_v6; 19240 tsol_ire_gw_secattr_t *attrp; 19241 tsol_gc_t *gc = NULL; 19242 tsol_gcgrp_t *gcgrp = NULL; 19243 uint_t sacnt = 0; 19244 int i; 19245 19246 ASSERT(ire->ire_ipversion == IPV6_VERSION); 19247 19248 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19249 return; 19250 19251 if ((attrp = ire->ire_gw_secattr) != NULL) { 19252 mutex_enter(&attrp->igsa_lock); 19253 if ((gc = attrp->igsa_gc) != NULL) { 19254 gcgrp = gc->gc_grp; 19255 ASSERT(gcgrp != NULL); 19256 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19257 sacnt = 1; 19258 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19259 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19260 gc = gcgrp->gcgrp_head; 19261 sacnt = gcgrp->gcgrp_count; 19262 } 19263 mutex_exit(&attrp->igsa_lock); 19264 19265 /* do nothing if there's no gc to report */ 19266 if (gc == NULL) { 19267 ASSERT(sacnt == 0); 19268 if (gcgrp != NULL) { 19269 /* we might as well drop the lock now */ 19270 rw_exit(&gcgrp->gcgrp_rwlock); 19271 gcgrp = NULL; 19272 } 19273 attrp = NULL; 19274 } 19275 19276 ASSERT(gc == NULL || (gcgrp != NULL && 19277 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19278 } 19279 ASSERT(sacnt == 0 || gc != NULL); 19280 19281 if (sacnt != 0 && 19282 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19283 kmem_free(re, sizeof (*re)); 19284 rw_exit(&gcgrp->gcgrp_rwlock); 19285 return; 19286 } 19287 19288 /* 19289 * Return all IRE types for route table... let caller pick and choose 19290 */ 19291 re->ipv6RouteDest = ire->ire_addr_v6; 19292 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 19293 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 19294 re->ipv6RouteIfIndex.o_length = 0; 19295 ipif = ire->ire_ipif; 19296 if (ire->ire_type == IRE_CACHE) { 19297 ill = (ill_t *)ire->ire_stq->q_ptr; 19298 re->ipv6RouteIfIndex.o_length = 19299 ill->ill_name_length == 0 ? 0 : 19300 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19301 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 19302 re->ipv6RouteIfIndex.o_length); 19303 } else if (ipif != NULL) { 19304 ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH); 19305 re->ipv6RouteIfIndex.o_length = 19306 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 19307 } 19308 19309 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19310 19311 mutex_enter(&ire->ire_lock); 19312 gw_addr_v6 = ire->ire_gateway_addr_v6; 19313 mutex_exit(&ire->ire_lock); 19314 19315 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 19316 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 19317 else 19318 re->ipv6RouteNextHop = gw_addr_v6; 19319 19320 /* remote(4), local(3), or discard(2) */ 19321 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19322 re->ipv6RouteType = 2; 19323 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 19324 re->ipv6RouteType = 3; 19325 else 19326 re->ipv6RouteType = 4; 19327 19328 re->ipv6RouteProtocol = -1; 19329 re->ipv6RoutePolicy = 0; 19330 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 19331 re->ipv6RouteNextHopRDI = 0; 19332 re->ipv6RouteWeight = 0; 19333 re->ipv6RouteMetric = 0; 19334 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 19335 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 19336 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19337 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 19338 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19339 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19340 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 19341 re->ipv6RouteInfo.re_flags = ire->ire_flags; 19342 19343 if (ire->ire_flags & RTF_DYNAMIC) { 19344 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19345 } else { 19346 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 19347 } 19348 19349 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19350 (char *)re, (int)sizeof (*re))) { 19351 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19352 (uint_t)sizeof (*re))); 19353 } 19354 19355 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19356 iaeptr->iae_routeidx = ird->ird_idx; 19357 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19358 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19359 } 19360 19361 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19362 (char *)iae, sacnt * sizeof (*iae))) { 19363 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19364 (unsigned)(sacnt * sizeof (*iae)))); 19365 } 19366 19367 /* bump route index for next pass */ 19368 ird->ird_idx++; 19369 19370 kmem_free(re, sizeof (*re)); 19371 if (sacnt != 0) 19372 kmem_free(iae, sacnt * sizeof (*iae)); 19373 19374 if (gcgrp != NULL) 19375 rw_exit(&gcgrp->gcgrp_rwlock); 19376 } 19377 19378 /* 19379 * ndp_walk routine to create ipv6NetToMediaEntryTable 19380 */ 19381 static int 19382 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 19383 { 19384 ill_t *ill; 19385 mib2_ipv6NetToMediaEntry_t ntme; 19386 dl_unitdata_req_t *dl; 19387 19388 ill = nce->nce_ill; 19389 if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */ 19390 return (0); 19391 19392 /* 19393 * Neighbor cache entry attached to IRE with on-link 19394 * destination. 19395 */ 19396 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 19397 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 19398 if ((ill->ill_flags & ILLF_XRESOLV) && 19399 (nce->nce_res_mp != NULL)) { 19400 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 19401 ntme.ipv6NetToMediaPhysAddress.o_length = 19402 dl->dl_dest_addr_length; 19403 } else { 19404 ntme.ipv6NetToMediaPhysAddress.o_length = 19405 ill->ill_phys_addr_length; 19406 } 19407 if (nce->nce_res_mp != NULL) { 19408 bcopy((char *)nce->nce_res_mp->b_rptr + 19409 NCE_LL_ADDR_OFFSET(ill), 19410 ntme.ipv6NetToMediaPhysAddress.o_bytes, 19411 ntme.ipv6NetToMediaPhysAddress.o_length); 19412 } else { 19413 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 19414 ill->ill_phys_addr_length); 19415 } 19416 /* 19417 * Note: Returns ND_* states. Should be: 19418 * reachable(1), stale(2), delay(3), probe(4), 19419 * invalid(5), unknown(6) 19420 */ 19421 ntme.ipv6NetToMediaState = nce->nce_state; 19422 ntme.ipv6NetToMediaLastUpdated = 0; 19423 19424 /* other(1), dynamic(2), static(3), local(4) */ 19425 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 19426 ntme.ipv6NetToMediaType = 4; 19427 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 19428 ntme.ipv6NetToMediaType = 1; 19429 } else { 19430 ntme.ipv6NetToMediaType = 2; 19431 } 19432 19433 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 19434 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 19435 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 19436 (uint_t)sizeof (ntme))); 19437 } 19438 return (0); 19439 } 19440 19441 /* 19442 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 19443 */ 19444 /* ARGSUSED */ 19445 int 19446 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 19447 { 19448 switch (level) { 19449 case MIB2_IP: 19450 case MIB2_ICMP: 19451 switch (name) { 19452 default: 19453 break; 19454 } 19455 return (1); 19456 default: 19457 return (1); 19458 } 19459 } 19460 19461 /* 19462 * When there exists both a 64- and 32-bit counter of a particular type 19463 * (i.e., InReceives), only the 64-bit counters are added. 19464 */ 19465 void 19466 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 19467 { 19468 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 19469 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 19470 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 19471 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 19472 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 19473 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 19474 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 19475 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 19476 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 19477 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 19478 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 19479 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 19480 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 19481 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 19482 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 19483 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 19484 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 19485 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 19486 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 19487 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 19488 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 19489 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 19490 o2->ipIfStatsInWrongIPVersion); 19491 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 19492 o2->ipIfStatsInWrongIPVersion); 19493 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 19494 o2->ipIfStatsOutSwitchIPVersion); 19495 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 19496 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 19497 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 19498 o2->ipIfStatsHCInForwDatagrams); 19499 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 19500 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 19501 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 19502 o2->ipIfStatsHCOutForwDatagrams); 19503 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 19504 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 19505 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 19506 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 19507 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 19508 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 19509 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 19510 o2->ipIfStatsHCOutMcastOctets); 19511 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 19512 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 19513 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 19514 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 19515 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 19516 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 19517 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 19518 } 19519 19520 void 19521 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 19522 { 19523 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 19524 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 19525 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 19526 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 19527 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 19528 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 19529 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 19530 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 19531 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 19532 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 19533 o2->ipv6IfIcmpInRouterSolicits); 19534 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 19535 o2->ipv6IfIcmpInRouterAdvertisements); 19536 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 19537 o2->ipv6IfIcmpInNeighborSolicits); 19538 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 19539 o2->ipv6IfIcmpInNeighborAdvertisements); 19540 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 19541 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 19542 o2->ipv6IfIcmpInGroupMembQueries); 19543 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 19544 o2->ipv6IfIcmpInGroupMembResponses); 19545 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 19546 o2->ipv6IfIcmpInGroupMembReductions); 19547 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 19548 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 19549 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 19550 o2->ipv6IfIcmpOutDestUnreachs); 19551 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 19552 o2->ipv6IfIcmpOutAdminProhibs); 19553 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 19554 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 19555 o2->ipv6IfIcmpOutParmProblems); 19556 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 19557 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 19558 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 19559 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 19560 o2->ipv6IfIcmpOutRouterSolicits); 19561 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 19562 o2->ipv6IfIcmpOutRouterAdvertisements); 19563 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 19564 o2->ipv6IfIcmpOutNeighborSolicits); 19565 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 19566 o2->ipv6IfIcmpOutNeighborAdvertisements); 19567 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 19568 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 19569 o2->ipv6IfIcmpOutGroupMembQueries); 19570 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 19571 o2->ipv6IfIcmpOutGroupMembResponses); 19572 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 19573 o2->ipv6IfIcmpOutGroupMembReductions); 19574 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 19575 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 19576 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 19577 o2->ipv6IfIcmpInBadNeighborAdvertisements); 19578 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 19579 o2->ipv6IfIcmpInBadNeighborSolicitations); 19580 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 19581 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 19582 o2->ipv6IfIcmpInGroupMembTotal); 19583 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 19584 o2->ipv6IfIcmpInGroupMembBadQueries); 19585 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 19586 o2->ipv6IfIcmpInGroupMembBadReports); 19587 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 19588 o2->ipv6IfIcmpInGroupMembOurReports); 19589 } 19590 19591 /* 19592 * Called before the options are updated to check if this packet will 19593 * be source routed from here. 19594 * This routine assumes that the options are well formed i.e. that they 19595 * have already been checked. 19596 */ 19597 static boolean_t 19598 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 19599 { 19600 ipoptp_t opts; 19601 uchar_t *opt; 19602 uint8_t optval; 19603 uint8_t optlen; 19604 ipaddr_t dst; 19605 ire_t *ire; 19606 19607 if (IS_SIMPLE_IPH(ipha)) { 19608 ip2dbg(("not source routed\n")); 19609 return (B_FALSE); 19610 } 19611 dst = ipha->ipha_dst; 19612 for (optval = ipoptp_first(&opts, ipha); 19613 optval != IPOPT_EOL; 19614 optval = ipoptp_next(&opts)) { 19615 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 19616 opt = opts.ipoptp_cur; 19617 optlen = opts.ipoptp_len; 19618 ip2dbg(("ip_source_routed: opt %d, len %d\n", 19619 optval, optlen)); 19620 switch (optval) { 19621 uint32_t off; 19622 case IPOPT_SSRR: 19623 case IPOPT_LSRR: 19624 /* 19625 * If dst is one of our addresses and there are some 19626 * entries left in the source route return (true). 19627 */ 19628 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 19629 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 19630 if (ire == NULL) { 19631 ip2dbg(("ip_source_routed: not next" 19632 " source route 0x%x\n", 19633 ntohl(dst))); 19634 return (B_FALSE); 19635 } 19636 ire_refrele(ire); 19637 off = opt[IPOPT_OFFSET]; 19638 off--; 19639 if (optlen < IP_ADDR_LEN || 19640 off > optlen - IP_ADDR_LEN) { 19641 /* End of source route */ 19642 ip1dbg(("ip_source_routed: end of SR\n")); 19643 return (B_FALSE); 19644 } 19645 return (B_TRUE); 19646 } 19647 } 19648 ip2dbg(("not source routed\n")); 19649 return (B_FALSE); 19650 } 19651 19652 /* 19653 * Check if the packet contains any source route. 19654 */ 19655 static boolean_t 19656 ip_source_route_included(ipha_t *ipha) 19657 { 19658 ipoptp_t opts; 19659 uint8_t optval; 19660 19661 if (IS_SIMPLE_IPH(ipha)) 19662 return (B_FALSE); 19663 for (optval = ipoptp_first(&opts, ipha); 19664 optval != IPOPT_EOL; 19665 optval = ipoptp_next(&opts)) { 19666 switch (optval) { 19667 case IPOPT_SSRR: 19668 case IPOPT_LSRR: 19669 return (B_TRUE); 19670 } 19671 } 19672 return (B_FALSE); 19673 } 19674 19675 /* 19676 * Called when the IRE expiration timer fires. 19677 */ 19678 void 19679 ip_trash_timer_expire(void *args) 19680 { 19681 int flush_flag = 0; 19682 ire_expire_arg_t iea; 19683 ip_stack_t *ipst = (ip_stack_t *)args; 19684 19685 iea.iea_ipst = ipst; /* No netstack_hold */ 19686 19687 /* 19688 * ip_ire_expire_id is protected by ip_trash_timer_lock. 19689 * This lock makes sure that a new invocation of this function 19690 * that occurs due to an almost immediate timer firing will not 19691 * progress beyond this point until the current invocation is done 19692 */ 19693 mutex_enter(&ipst->ips_ip_trash_timer_lock); 19694 ipst->ips_ip_ire_expire_id = 0; 19695 mutex_exit(&ipst->ips_ip_trash_timer_lock); 19696 19697 /* Periodic timer */ 19698 if (ipst->ips_ip_ire_arp_time_elapsed >= 19699 ipst->ips_ip_ire_arp_interval) { 19700 /* 19701 * Remove all IRE_CACHE entries since they might 19702 * contain arp information. 19703 */ 19704 flush_flag |= FLUSH_ARP_TIME; 19705 ipst->ips_ip_ire_arp_time_elapsed = 0; 19706 IP_STAT(ipst, ip_ire_arp_timer_expired); 19707 } 19708 if (ipst->ips_ip_ire_rd_time_elapsed >= 19709 ipst->ips_ip_ire_redir_interval) { 19710 /* Remove all redirects */ 19711 flush_flag |= FLUSH_REDIRECT_TIME; 19712 ipst->ips_ip_ire_rd_time_elapsed = 0; 19713 IP_STAT(ipst, ip_ire_redirect_timer_expired); 19714 } 19715 if (ipst->ips_ip_ire_pmtu_time_elapsed >= 19716 ipst->ips_ip_ire_pathmtu_interval) { 19717 /* Increase path mtu */ 19718 flush_flag |= FLUSH_MTU_TIME; 19719 ipst->ips_ip_ire_pmtu_time_elapsed = 0; 19720 IP_STAT(ipst, ip_ire_pmtu_timer_expired); 19721 } 19722 19723 /* 19724 * Optimize for the case when there are no redirects in the 19725 * ftable, that is, no need to walk the ftable in that case. 19726 */ 19727 if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) { 19728 iea.iea_flush_flag = flush_flag; 19729 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire, 19730 (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 0, NULL, 19731 ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table, 19732 NULL, ALL_ZONES, ipst); 19733 } 19734 if ((flush_flag & FLUSH_REDIRECT_TIME) && 19735 ipst->ips_ip_redirect_cnt > 0) { 19736 iea.iea_flush_flag = flush_flag; 19737 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE, 19738 ire_expire, (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 19739 0, NULL, 0, NULL, NULL, ALL_ZONES, ipst); 19740 } 19741 if (flush_flag & FLUSH_MTU_TIME) { 19742 /* 19743 * Walk all IPv6 IRE's and update them 19744 * Note that ARP and redirect timers are not 19745 * needed since NUD handles stale entries. 19746 */ 19747 flush_flag = FLUSH_MTU_TIME; 19748 iea.iea_flush_flag = flush_flag; 19749 ire_walk_v6(ire_expire, (char *)(uintptr_t)&iea, 19750 ALL_ZONES, ipst); 19751 } 19752 19753 ipst->ips_ip_ire_arp_time_elapsed += ipst->ips_ip_timer_interval; 19754 ipst->ips_ip_ire_rd_time_elapsed += ipst->ips_ip_timer_interval; 19755 ipst->ips_ip_ire_pmtu_time_elapsed += ipst->ips_ip_timer_interval; 19756 19757 /* 19758 * Hold the lock to serialize timeout calls and prevent 19759 * stale values in ip_ire_expire_id. Otherwise it is possible 19760 * for the timer to fire and a new invocation of this function 19761 * to start before the return value of timeout has been stored 19762 * in ip_ire_expire_id by the current invocation. 19763 */ 19764 mutex_enter(&ipst->ips_ip_trash_timer_lock); 19765 ipst->ips_ip_ire_expire_id = timeout(ip_trash_timer_expire, 19766 (void *)ipst, MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 19767 mutex_exit(&ipst->ips_ip_trash_timer_lock); 19768 } 19769 19770 /* 19771 * Called by the memory allocator subsystem directly, when the system 19772 * is running low on memory. 19773 */ 19774 /* ARGSUSED */ 19775 void 19776 ip_trash_ire_reclaim(void *args) 19777 { 19778 netstack_handle_t nh; 19779 netstack_t *ns; 19780 19781 netstack_next_init(&nh); 19782 while ((ns = netstack_next(&nh)) != NULL) { 19783 ip_trash_ire_reclaim_stack(ns->netstack_ip); 19784 netstack_rele(ns); 19785 } 19786 netstack_next_fini(&nh); 19787 } 19788 19789 static void 19790 ip_trash_ire_reclaim_stack(ip_stack_t *ipst) 19791 { 19792 ire_cache_count_t icc; 19793 ire_cache_reclaim_t icr; 19794 ncc_cache_count_t ncc; 19795 nce_cache_reclaim_t ncr; 19796 uint_t delete_cnt; 19797 /* 19798 * Memory reclaim call back. 19799 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 19800 * Then, with a target of freeing 1/Nth of IRE_CACHE 19801 * entries, determine what fraction to free for 19802 * each category of IRE_CACHE entries giving absolute priority 19803 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 19804 * entry will be freed unless all offlink entries are freed). 19805 */ 19806 icc.icc_total = 0; 19807 icc.icc_unused = 0; 19808 icc.icc_offlink = 0; 19809 icc.icc_pmtu = 0; 19810 icc.icc_onlink = 0; 19811 ire_walk(ire_cache_count, (char *)&icc, ipst); 19812 19813 /* 19814 * Free NCEs for IPv6 like the onlink ires. 19815 */ 19816 ncc.ncc_total = 0; 19817 ncc.ncc_host = 0; 19818 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc, ipst); 19819 19820 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 19821 icc.icc_pmtu + icc.icc_onlink); 19822 delete_cnt = icc.icc_total/ipst->ips_ip_ire_reclaim_fraction; 19823 IP_STAT(ipst, ip_trash_ire_reclaim_calls); 19824 if (delete_cnt == 0) 19825 return; 19826 IP_STAT(ipst, ip_trash_ire_reclaim_success); 19827 /* Always delete all unused offlink entries */ 19828 icr.icr_ipst = ipst; 19829 icr.icr_unused = 1; 19830 if (delete_cnt <= icc.icc_unused) { 19831 /* 19832 * Only need to free unused entries. In other words, 19833 * there are enough unused entries to free to meet our 19834 * target number of freed ire cache entries. 19835 */ 19836 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 19837 ncr.ncr_host = 0; 19838 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 19839 /* 19840 * Only need to free unused entries, plus a fraction of offlink 19841 * entries. It follows from the first if statement that 19842 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 19843 */ 19844 delete_cnt -= icc.icc_unused; 19845 /* Round up # deleted by truncating fraction */ 19846 icr.icr_offlink = icc.icc_offlink / delete_cnt; 19847 icr.icr_pmtu = icr.icr_onlink = 0; 19848 ncr.ncr_host = 0; 19849 } else if (delete_cnt <= 19850 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 19851 /* 19852 * Free all unused and offlink entries, plus a fraction of 19853 * pmtu entries. It follows from the previous if statement 19854 * that icc_pmtu is non-zero, and that 19855 * delete_cnt != icc_unused + icc_offlink. 19856 */ 19857 icr.icr_offlink = 1; 19858 delete_cnt -= icc.icc_unused + icc.icc_offlink; 19859 /* Round up # deleted by truncating fraction */ 19860 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 19861 icr.icr_onlink = 0; 19862 ncr.ncr_host = 0; 19863 } else { 19864 /* 19865 * Free all unused, offlink, and pmtu entries, plus a fraction 19866 * of onlink entries. If we're here, then we know that 19867 * icc_onlink is non-zero, and that 19868 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 19869 */ 19870 icr.icr_offlink = icr.icr_pmtu = 1; 19871 delete_cnt -= icc.icc_unused + icc.icc_offlink + 19872 icc.icc_pmtu; 19873 /* Round up # deleted by truncating fraction */ 19874 icr.icr_onlink = icc.icc_onlink / delete_cnt; 19875 /* Using the same delete fraction as for onlink IREs */ 19876 ncr.ncr_host = ncc.ncc_host / delete_cnt; 19877 } 19878 #ifdef DEBUG 19879 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 19880 "fractions %d/%d/%d/%d\n", 19881 icc.icc_total/ipst->ips_ip_ire_reclaim_fraction, icc.icc_total, 19882 icc.icc_unused, icc.icc_offlink, 19883 icc.icc_pmtu, icc.icc_onlink, 19884 icr.icr_unused, icr.icr_offlink, 19885 icr.icr_pmtu, icr.icr_onlink)); 19886 #endif 19887 ire_walk(ire_cache_reclaim, (char *)&icr, ipst); 19888 if (ncr.ncr_host != 0) 19889 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 19890 (uchar_t *)&ncr, ipst); 19891 #ifdef DEBUG 19892 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 19893 icc.icc_pmtu = 0; icc.icc_onlink = 0; 19894 ire_walk(ire_cache_count, (char *)&icc, ipst); 19895 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 19896 icc.icc_total, icc.icc_unused, icc.icc_offlink, 19897 icc.icc_pmtu, icc.icc_onlink)); 19898 #endif 19899 } 19900 19901 /* 19902 * ip_unbind is called when a copy of an unbind request is received from the 19903 * upper level protocol. We remove this conn from any fanout hash list it is 19904 * on, and zero out the bind information. No reply is expected up above. 19905 */ 19906 mblk_t * 19907 ip_unbind(queue_t *q, mblk_t *mp) 19908 { 19909 conn_t *connp = Q_TO_CONN(q); 19910 19911 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 19912 19913 if (is_system_labeled() && connp->conn_anon_port) { 19914 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 19915 connp->conn_mlp_type, connp->conn_ulp, 19916 ntohs(connp->conn_lport), B_FALSE); 19917 connp->conn_anon_port = 0; 19918 } 19919 connp->conn_mlp_type = mlptSingle; 19920 19921 ipcl_hash_remove(connp); 19922 19923 ASSERT(mp->b_cont == NULL); 19924 /* 19925 * Convert mp into a T_OK_ACK 19926 */ 19927 mp = mi_tpi_ok_ack_alloc(mp); 19928 19929 /* 19930 * should not happen in practice... T_OK_ACK is smaller than the 19931 * original message. 19932 */ 19933 if (mp == NULL) 19934 return (NULL); 19935 19936 return (mp); 19937 } 19938 19939 /* 19940 * Write side put procedure. Outbound data, IOCTLs, responses from 19941 * resolvers, etc, come down through here. 19942 * 19943 * arg2 is always a queue_t *. 19944 * When that queue is an ill_t (i.e. q_next != NULL), then arg must be 19945 * the zoneid. 19946 * When that queue is not an ill_t, then arg must be a conn_t pointer. 19947 */ 19948 void 19949 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 19950 { 19951 ip_output_options(arg, mp, arg2, caller, &zero_info); 19952 } 19953 19954 void 19955 ip_output_options(void *arg, mblk_t *mp, void *arg2, int caller, 19956 ip_opt_info_t *infop) 19957 { 19958 conn_t *connp = NULL; 19959 queue_t *q = (queue_t *)arg2; 19960 ipha_t *ipha; 19961 #define rptr ((uchar_t *)ipha) 19962 ire_t *ire = NULL; 19963 ire_t *sctp_ire = NULL; 19964 uint32_t v_hlen_tos_len; 19965 ipaddr_t dst; 19966 mblk_t *first_mp = NULL; 19967 boolean_t mctl_present; 19968 ipsec_out_t *io; 19969 int match_flags; 19970 ill_t *attach_ill = NULL; 19971 /* Bind to IPIF_NOFAILOVER ill etc. */ 19972 ill_t *xmit_ill = NULL; /* IP_XMIT_IF etc. */ 19973 ipif_t *dst_ipif; 19974 boolean_t multirt_need_resolve = B_FALSE; 19975 mblk_t *copy_mp = NULL; 19976 int err; 19977 zoneid_t zoneid; 19978 int adjust; 19979 uint16_t iplen; 19980 boolean_t need_decref = B_FALSE; 19981 boolean_t ignore_dontroute = B_FALSE; 19982 boolean_t ignore_nexthop = B_FALSE; 19983 boolean_t ip_nexthop = B_FALSE; 19984 ipaddr_t nexthop_addr; 19985 ip_stack_t *ipst; 19986 19987 #ifdef _BIG_ENDIAN 19988 #define V_HLEN (v_hlen_tos_len >> 24) 19989 #else 19990 #define V_HLEN (v_hlen_tos_len & 0xFF) 19991 #endif 19992 19993 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 19994 "ip_wput_start: q %p", q); 19995 19996 /* 19997 * ip_wput fast path 19998 */ 19999 20000 /* is packet from ARP ? */ 20001 if (q->q_next != NULL) { 20002 zoneid = (zoneid_t)(uintptr_t)arg; 20003 goto qnext; 20004 } 20005 20006 connp = (conn_t *)arg; 20007 ASSERT(connp != NULL); 20008 zoneid = connp->conn_zoneid; 20009 ipst = connp->conn_netstack->netstack_ip; 20010 20011 /* is queue flow controlled? */ 20012 if ((q->q_first != NULL || connp->conn_draining) && 20013 (caller == IP_WPUT)) { 20014 ASSERT(!need_decref); 20015 (void) putq(q, mp); 20016 return; 20017 } 20018 20019 /* Multidata transmit? */ 20020 if (DB_TYPE(mp) == M_MULTIDATA) { 20021 /* 20022 * We should never get here, since all Multidata messages 20023 * originating from tcp should have been directed over to 20024 * tcp_multisend() in the first place. 20025 */ 20026 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20027 freemsg(mp); 20028 return; 20029 } else if (DB_TYPE(mp) != M_DATA) 20030 goto notdata; 20031 20032 if (mp->b_flag & MSGHASREF) { 20033 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20034 mp->b_flag &= ~MSGHASREF; 20035 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 20036 need_decref = B_TRUE; 20037 } 20038 ipha = (ipha_t *)mp->b_rptr; 20039 20040 /* is IP header non-aligned or mblk smaller than basic IP header */ 20041 #ifndef SAFETY_BEFORE_SPEED 20042 if (!OK_32PTR(rptr) || 20043 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 20044 goto hdrtoosmall; 20045 #endif 20046 20047 ASSERT(OK_32PTR(ipha)); 20048 20049 /* 20050 * This function assumes that mp points to an IPv4 packet. If it's the 20051 * wrong version, we'll catch it again in ip_output_v6. 20052 * 20053 * Note that this is *only* locally-generated output here, and never 20054 * forwarded data, and that we need to deal only with transports that 20055 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 20056 * label.) 20057 */ 20058 if (is_system_labeled() && 20059 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 20060 !connp->conn_ulp_labeled) { 20061 err = tsol_check_label(BEST_CRED(mp, connp), &mp, &adjust, 20062 connp->conn_mac_exempt, ipst); 20063 ipha = (ipha_t *)mp->b_rptr; 20064 if (err != 0) { 20065 first_mp = mp; 20066 if (err == EINVAL) 20067 goto icmp_parameter_problem; 20068 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 20069 goto discard_pkt; 20070 } 20071 iplen = ntohs(ipha->ipha_length) + adjust; 20072 ipha->ipha_length = htons(iplen); 20073 } 20074 20075 ASSERT(infop != NULL); 20076 20077 if (infop->ip_opt_flags & IP_VERIFY_SRC) { 20078 /* 20079 * IP_PKTINFO ancillary option is present. 20080 * IPCL_ZONEID is used to honor IP_ALLZONES option which 20081 * allows using address of any zone as the source address. 20082 */ 20083 ire = ire_ctable_lookup(ipha->ipha_src, 0, 20084 (IRE_LOCAL|IRE_LOOPBACK), NULL, IPCL_ZONEID(connp), 20085 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 20086 if (ire == NULL) 20087 goto drop_pkt; 20088 ire_refrele(ire); 20089 ire = NULL; 20090 } 20091 20092 /* 20093 * IP_DONTFAILOVER_IF and IP_XMIT_IF have precedence over 20094 * ill index passed in IP_PKTINFO. 20095 */ 20096 if (infop->ip_opt_ill_index != 0 && 20097 connp->conn_xmit_if_ill == NULL && 20098 connp->conn_nofailover_ill == NULL) { 20099 20100 xmit_ill = ill_lookup_on_ifindex( 20101 infop->ip_opt_ill_index, B_FALSE, NULL, NULL, NULL, NULL, 20102 ipst); 20103 20104 if (xmit_ill == NULL || IS_VNI(xmit_ill)) 20105 goto drop_pkt; 20106 /* 20107 * check that there is an ipif belonging 20108 * to our zone. IPCL_ZONEID is not used because 20109 * IP_ALLZONES option is valid only when the ill is 20110 * accessible from all zones i.e has a valid ipif in 20111 * all zones. 20112 */ 20113 if (!ipif_lookup_zoneid_group(xmit_ill, zoneid, 0, NULL)) { 20114 goto drop_pkt; 20115 } 20116 } 20117 20118 /* 20119 * If there is a policy, try to attach an ipsec_out in 20120 * the front. At the end, first_mp either points to a 20121 * M_DATA message or IPSEC_OUT message linked to a 20122 * M_DATA message. We have to do it now as we might 20123 * lose the "conn" if we go through ip_newroute. 20124 */ 20125 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 20126 if (((mp = ipsec_attach_ipsec_out(&mp, connp, NULL, 20127 ipha->ipha_protocol, ipst->ips_netstack)) == NULL)) { 20128 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20129 if (need_decref) 20130 CONN_DEC_REF(connp); 20131 return; 20132 } else { 20133 ASSERT(mp->b_datap->db_type == M_CTL); 20134 first_mp = mp; 20135 mp = mp->b_cont; 20136 mctl_present = B_TRUE; 20137 } 20138 } else { 20139 first_mp = mp; 20140 mctl_present = B_FALSE; 20141 } 20142 20143 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20144 20145 /* is wrong version or IP options present */ 20146 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 20147 goto version_hdrlen_check; 20148 dst = ipha->ipha_dst; 20149 20150 if (connp->conn_nofailover_ill != NULL) { 20151 attach_ill = conn_get_held_ill(connp, 20152 &connp->conn_nofailover_ill, &err); 20153 if (err == ILL_LOOKUP_FAILED) { 20154 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20155 if (need_decref) 20156 CONN_DEC_REF(connp); 20157 freemsg(first_mp); 20158 return; 20159 } 20160 } 20161 20162 20163 /* is packet multicast? */ 20164 if (CLASSD(dst)) 20165 goto multicast; 20166 20167 /* 20168 * If xmit_ill is set above due to index passed in ip_pkt_info. It 20169 * takes precedence over conn_dontroute and conn_nexthop_set 20170 */ 20171 if (xmit_ill != NULL) { 20172 goto send_from_ill; 20173 } 20174 20175 if ((connp->conn_dontroute) || (connp->conn_xmit_if_ill != NULL) || 20176 (connp->conn_nexthop_set)) { 20177 /* 20178 * If the destination is a broadcast or a loopback 20179 * address, SO_DONTROUTE, IP_XMIT_IF and IP_NEXTHOP go 20180 * through the standard path. But in the case of local 20181 * destination only SO_DONTROUTE and IP_NEXTHOP go through 20182 * the standard path not IP_XMIT_IF. 20183 */ 20184 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20185 if ((ire == NULL) || ((ire->ire_type != IRE_BROADCAST) && 20186 (ire->ire_type != IRE_LOOPBACK))) { 20187 if ((connp->conn_dontroute || 20188 connp->conn_nexthop_set) && (ire != NULL) && 20189 (ire->ire_type == IRE_LOCAL)) 20190 goto standard_path; 20191 20192 if (ire != NULL) { 20193 ire_refrele(ire); 20194 /* No more access to ire */ 20195 ire = NULL; 20196 } 20197 /* 20198 * bypass routing checks and go directly to 20199 * interface. 20200 */ 20201 if (connp->conn_dontroute) { 20202 goto dontroute; 20203 } else if (connp->conn_nexthop_set) { 20204 ip_nexthop = B_TRUE; 20205 nexthop_addr = connp->conn_nexthop_v4; 20206 goto send_from_ill; 20207 } 20208 20209 /* 20210 * If IP_XMIT_IF socket option is set, 20211 * then we allow unicast and multicast 20212 * packets to go through the ill. It is 20213 * quite possible that the destination 20214 * is not in the ire cache table and we 20215 * do not want to go to ip_newroute() 20216 * instead we call ip_newroute_ipif. 20217 */ 20218 xmit_ill = conn_get_held_ill(connp, 20219 &connp->conn_xmit_if_ill, &err); 20220 if (err == ILL_LOOKUP_FAILED) { 20221 BUMP_MIB(&ipst->ips_ip_mib, 20222 ipIfStatsOutDiscards); 20223 if (attach_ill != NULL) 20224 ill_refrele(attach_ill); 20225 if (need_decref) 20226 CONN_DEC_REF(connp); 20227 freemsg(first_mp); 20228 return; 20229 } 20230 goto send_from_ill; 20231 } 20232 standard_path: 20233 /* Must be a broadcast, a loopback or a local ire */ 20234 if (ire != NULL) { 20235 ire_refrele(ire); 20236 /* No more access to ire */ 20237 ire = NULL; 20238 } 20239 } 20240 20241 if (attach_ill != NULL) 20242 goto send_from_ill; 20243 20244 /* 20245 * We cache IRE_CACHEs to avoid lookups. We don't do 20246 * this for the tcp global queue and listen end point 20247 * as it does not really have a real destination to 20248 * talk to. This is also true for SCTP. 20249 */ 20250 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 20251 !connp->conn_fully_bound) { 20252 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20253 if (ire == NULL) 20254 goto noirefound; 20255 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20256 "ip_wput_end: q %p (%S)", q, "end"); 20257 20258 /* 20259 * Check if the ire has the RTF_MULTIRT flag, inherited 20260 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20261 */ 20262 if (ire->ire_flags & RTF_MULTIRT) { 20263 20264 /* 20265 * Force the TTL of multirouted packets if required. 20266 * The TTL of such packets is bounded by the 20267 * ip_multirt_ttl ndd variable. 20268 */ 20269 if ((ipst->ips_ip_multirt_ttl > 0) && 20270 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20271 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20272 "(was %d), dst 0x%08x\n", 20273 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20274 ntohl(ire->ire_addr))); 20275 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20276 } 20277 /* 20278 * We look at this point if there are pending 20279 * unresolved routes. ire_multirt_resolvable() 20280 * checks in O(n) that all IRE_OFFSUBNET ire 20281 * entries for the packet's destination and 20282 * flagged RTF_MULTIRT are currently resolved. 20283 * If some remain unresolved, we make a copy 20284 * of the current message. It will be used 20285 * to initiate additional route resolutions. 20286 */ 20287 multirt_need_resolve = 20288 ire_multirt_need_resolve(ire->ire_addr, 20289 MBLK_GETLABEL(first_mp), ipst); 20290 ip2dbg(("ip_wput[TCP]: ire %p, " 20291 "multirt_need_resolve %d, first_mp %p\n", 20292 (void *)ire, multirt_need_resolve, 20293 (void *)first_mp)); 20294 if (multirt_need_resolve) { 20295 copy_mp = copymsg(first_mp); 20296 if (copy_mp != NULL) { 20297 MULTIRT_DEBUG_TAG(copy_mp); 20298 } 20299 } 20300 } 20301 20302 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20303 20304 /* 20305 * Try to resolve another multiroute if 20306 * ire_multirt_need_resolve() deemed it necessary. 20307 */ 20308 if (copy_mp != NULL) 20309 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20310 if (need_decref) 20311 CONN_DEC_REF(connp); 20312 return; 20313 } 20314 20315 /* 20316 * Access to conn_ire_cache. (protected by conn_lock) 20317 * 20318 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 20319 * the ire bucket lock here to check for CONDEMNED as it is okay to 20320 * send a packet or two with the IRE_CACHE that is going away. 20321 * Access to the ire requires an ire refhold on the ire prior to 20322 * its use since an interface unplumb thread may delete the cached 20323 * ire and release the refhold at any time. 20324 * 20325 * Caching an ire in the conn_ire_cache 20326 * 20327 * o Caching an ire pointer in the conn requires a strict check for 20328 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 20329 * ires before cleaning up the conns. So the caching of an ire pointer 20330 * in the conn is done after making sure under the bucket lock that the 20331 * ire has not yet been marked CONDEMNED. Otherwise we will end up 20332 * caching an ire after the unplumb thread has cleaned up the conn. 20333 * If the conn does not send a packet subsequently the unplumb thread 20334 * will be hanging waiting for the ire count to drop to zero. 20335 * 20336 * o We also need to atomically test for a null conn_ire_cache and 20337 * set the conn_ire_cache under the the protection of the conn_lock 20338 * to avoid races among concurrent threads trying to simultaneously 20339 * cache an ire in the conn_ire_cache. 20340 */ 20341 mutex_enter(&connp->conn_lock); 20342 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 20343 20344 if (ire != NULL && ire->ire_addr == dst && 20345 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20346 20347 IRE_REFHOLD(ire); 20348 mutex_exit(&connp->conn_lock); 20349 20350 } else { 20351 boolean_t cached = B_FALSE; 20352 connp->conn_ire_cache = NULL; 20353 mutex_exit(&connp->conn_lock); 20354 /* Release the old ire */ 20355 if (ire != NULL && sctp_ire == NULL) 20356 IRE_REFRELE_NOTR(ire); 20357 20358 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20359 if (ire == NULL) 20360 goto noirefound; 20361 IRE_REFHOLD_NOTR(ire); 20362 20363 mutex_enter(&connp->conn_lock); 20364 if (CONN_CACHE_IRE(connp) && connp->conn_ire_cache == NULL) { 20365 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 20366 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20367 if (connp->conn_ulp == IPPROTO_TCP) 20368 TCP_CHECK_IREINFO(connp->conn_tcp, ire); 20369 connp->conn_ire_cache = ire; 20370 cached = B_TRUE; 20371 } 20372 rw_exit(&ire->ire_bucket->irb_lock); 20373 } 20374 mutex_exit(&connp->conn_lock); 20375 20376 /* 20377 * We can continue to use the ire but since it was 20378 * not cached, we should drop the extra reference. 20379 */ 20380 if (!cached) 20381 IRE_REFRELE_NOTR(ire); 20382 } 20383 20384 20385 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20386 "ip_wput_end: q %p (%S)", q, "end"); 20387 20388 /* 20389 * Check if the ire has the RTF_MULTIRT flag, inherited 20390 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20391 */ 20392 if (ire->ire_flags & RTF_MULTIRT) { 20393 20394 /* 20395 * Force the TTL of multirouted packets if required. 20396 * The TTL of such packets is bounded by the 20397 * ip_multirt_ttl ndd variable. 20398 */ 20399 if ((ipst->ips_ip_multirt_ttl > 0) && 20400 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20401 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20402 "(was %d), dst 0x%08x\n", 20403 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20404 ntohl(ire->ire_addr))); 20405 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20406 } 20407 20408 /* 20409 * At this point, we check to see if there are any pending 20410 * unresolved routes. ire_multirt_resolvable() 20411 * checks in O(n) that all IRE_OFFSUBNET ire 20412 * entries for the packet's destination and 20413 * flagged RTF_MULTIRT are currently resolved. 20414 * If some remain unresolved, we make a copy 20415 * of the current message. It will be used 20416 * to initiate additional route resolutions. 20417 */ 20418 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 20419 MBLK_GETLABEL(first_mp), ipst); 20420 ip2dbg(("ip_wput[not TCP]: ire %p, " 20421 "multirt_need_resolve %d, first_mp %p\n", 20422 (void *)ire, multirt_need_resolve, (void *)first_mp)); 20423 if (multirt_need_resolve) { 20424 copy_mp = copymsg(first_mp); 20425 if (copy_mp != NULL) { 20426 MULTIRT_DEBUG_TAG(copy_mp); 20427 } 20428 } 20429 } 20430 20431 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20432 20433 /* 20434 * Try to resolve another multiroute if 20435 * ire_multirt_resolvable() deemed it necessary 20436 */ 20437 if (copy_mp != NULL) 20438 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20439 if (need_decref) 20440 CONN_DEC_REF(connp); 20441 return; 20442 20443 qnext: 20444 /* 20445 * Upper Level Protocols pass down complete IP datagrams 20446 * as M_DATA messages. Everything else is a sideshow. 20447 * 20448 * 1) We could be re-entering ip_wput because of ip_neworute 20449 * in which case we could have a IPSEC_OUT message. We 20450 * need to pass through ip_wput like other datagrams and 20451 * hence cannot branch to ip_wput_nondata. 20452 * 20453 * 2) ARP, AH, ESP, and other clients who are on the module 20454 * instance of IP stream, give us something to deal with. 20455 * We will handle AH and ESP here and rest in ip_wput_nondata. 20456 * 20457 * 3) ICMP replies also could come here. 20458 */ 20459 ipst = ILLQ_TO_IPST(q); 20460 20461 if (DB_TYPE(mp) != M_DATA) { 20462 notdata: 20463 if (DB_TYPE(mp) == M_CTL) { 20464 /* 20465 * M_CTL messages are used by ARP, AH and ESP to 20466 * communicate with IP. We deal with IPSEC_IN and 20467 * IPSEC_OUT here. ip_wput_nondata handles other 20468 * cases. 20469 */ 20470 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 20471 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 20472 first_mp = mp->b_cont; 20473 first_mp->b_flag &= ~MSGHASREF; 20474 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20475 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 20476 CONN_DEC_REF(connp); 20477 connp = NULL; 20478 } 20479 if (ii->ipsec_info_type == IPSEC_IN) { 20480 /* 20481 * Either this message goes back to 20482 * IPsec for further processing or to 20483 * ULP after policy checks. 20484 */ 20485 ip_fanout_proto_again(mp, NULL, NULL, NULL); 20486 return; 20487 } else if (ii->ipsec_info_type == IPSEC_OUT) { 20488 io = (ipsec_out_t *)ii; 20489 if (io->ipsec_out_proc_begin) { 20490 /* 20491 * IPsec processing has already started. 20492 * Complete it. 20493 * IPQoS notes: We don't care what is 20494 * in ipsec_out_ill_index since this 20495 * won't be processed for IPQoS policies 20496 * in ipsec_out_process. 20497 */ 20498 ipsec_out_process(q, mp, NULL, 20499 io->ipsec_out_ill_index); 20500 return; 20501 } else { 20502 connp = (q->q_next != NULL) ? 20503 NULL : Q_TO_CONN(q); 20504 first_mp = mp; 20505 mp = mp->b_cont; 20506 mctl_present = B_TRUE; 20507 } 20508 zoneid = io->ipsec_out_zoneid; 20509 ASSERT(zoneid != ALL_ZONES); 20510 } else if (ii->ipsec_info_type == IPSEC_CTL) { 20511 /* 20512 * It's an IPsec control message requesting 20513 * an SADB update to be sent to the IPsec 20514 * hardware acceleration capable ills. 20515 */ 20516 ipsec_ctl_t *ipsec_ctl = 20517 (ipsec_ctl_t *)mp->b_rptr; 20518 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 20519 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 20520 mblk_t *cmp = mp->b_cont; 20521 20522 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 20523 ASSERT(cmp != NULL); 20524 20525 freeb(mp); 20526 ill_ipsec_capab_send_all(satype, cmp, sa, 20527 ipst->ips_netstack); 20528 return; 20529 } else { 20530 /* 20531 * This must be ARP or special TSOL signaling. 20532 */ 20533 ip_wput_nondata(NULL, q, mp, NULL); 20534 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20535 "ip_wput_end: q %p (%S)", q, "nondata"); 20536 return; 20537 } 20538 } else { 20539 /* 20540 * This must be non-(ARP/AH/ESP) messages. 20541 */ 20542 ASSERT(!need_decref); 20543 ip_wput_nondata(NULL, q, mp, NULL); 20544 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20545 "ip_wput_end: q %p (%S)", q, "nondata"); 20546 return; 20547 } 20548 } else { 20549 first_mp = mp; 20550 mctl_present = B_FALSE; 20551 } 20552 20553 ASSERT(first_mp != NULL); 20554 /* 20555 * ICMP echo replies attach an ipsec_out and set ipsec_out_attach_if 20556 * to make sure that this packet goes out on the same interface it 20557 * came in. We handle that here. 20558 */ 20559 if (mctl_present) { 20560 uint_t ifindex; 20561 20562 io = (ipsec_out_t *)first_mp->b_rptr; 20563 if (io->ipsec_out_attach_if || io->ipsec_out_ip_nexthop) { 20564 /* 20565 * We may have lost the conn context if we are 20566 * coming here from ip_newroute(). Copy the 20567 * nexthop information. 20568 */ 20569 if (io->ipsec_out_ip_nexthop) { 20570 ip_nexthop = B_TRUE; 20571 nexthop_addr = io->ipsec_out_nexthop_addr; 20572 20573 ipha = (ipha_t *)mp->b_rptr; 20574 dst = ipha->ipha_dst; 20575 goto send_from_ill; 20576 } else { 20577 ASSERT(io->ipsec_out_ill_index != 0); 20578 ifindex = io->ipsec_out_ill_index; 20579 attach_ill = ill_lookup_on_ifindex(ifindex, 20580 B_FALSE, NULL, NULL, NULL, NULL, ipst); 20581 if (attach_ill == NULL) { 20582 ASSERT(xmit_ill == NULL); 20583 ip1dbg(("ip_output: bad ifindex for " 20584 "(BIND TO IPIF_NOFAILOVER) %d\n", 20585 ifindex)); 20586 freemsg(first_mp); 20587 BUMP_MIB(&ipst->ips_ip_mib, 20588 ipIfStatsOutDiscards); 20589 ASSERT(!need_decref); 20590 return; 20591 } 20592 } 20593 } 20594 } 20595 20596 ASSERT(xmit_ill == NULL); 20597 20598 /* We have a complete IP datagram heading outbound. */ 20599 ipha = (ipha_t *)mp->b_rptr; 20600 20601 #ifndef SPEED_BEFORE_SAFETY 20602 /* 20603 * Make sure we have a full-word aligned message and that at least 20604 * a simple IP header is accessible in the first message. If not, 20605 * try a pullup. 20606 */ 20607 if (!OK_32PTR(rptr) || 20608 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) { 20609 hdrtoosmall: 20610 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 20611 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20612 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 20613 if (first_mp == NULL) 20614 first_mp = mp; 20615 goto discard_pkt; 20616 } 20617 20618 /* This function assumes that mp points to an IPv4 packet. */ 20619 if (is_system_labeled() && q->q_next == NULL && 20620 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 20621 !connp->conn_ulp_labeled) { 20622 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 20623 &adjust, connp->conn_mac_exempt, ipst); 20624 ipha = (ipha_t *)mp->b_rptr; 20625 if (first_mp != NULL) 20626 first_mp->b_cont = mp; 20627 if (err != 0) { 20628 if (first_mp == NULL) 20629 first_mp = mp; 20630 if (err == EINVAL) 20631 goto icmp_parameter_problem; 20632 ip2dbg(("ip_wput: label check failed (%d)\n", 20633 err)); 20634 goto discard_pkt; 20635 } 20636 iplen = ntohs(ipha->ipha_length) + adjust; 20637 ipha->ipha_length = htons(iplen); 20638 } 20639 20640 ipha = (ipha_t *)mp->b_rptr; 20641 if (first_mp == NULL) { 20642 ASSERT(attach_ill == NULL && xmit_ill == NULL); 20643 /* 20644 * If we got here because of "goto hdrtoosmall" 20645 * We need to attach a IPSEC_OUT. 20646 */ 20647 if (connp->conn_out_enforce_policy) { 20648 if (((mp = ipsec_attach_ipsec_out(&mp, connp, 20649 NULL, ipha->ipha_protocol, 20650 ipst->ips_netstack)) == NULL)) { 20651 BUMP_MIB(&ipst->ips_ip_mib, 20652 ipIfStatsOutDiscards); 20653 if (need_decref) 20654 CONN_DEC_REF(connp); 20655 return; 20656 } else { 20657 ASSERT(mp->b_datap->db_type == M_CTL); 20658 first_mp = mp; 20659 mp = mp->b_cont; 20660 mctl_present = B_TRUE; 20661 } 20662 } else { 20663 first_mp = mp; 20664 mctl_present = B_FALSE; 20665 } 20666 } 20667 } 20668 #endif 20669 20670 /* Most of the code below is written for speed, not readability */ 20671 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20672 20673 /* 20674 * If ip_newroute() fails, we're going to need a full 20675 * header for the icmp wraparound. 20676 */ 20677 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 20678 uint_t v_hlen; 20679 version_hdrlen_check: 20680 ASSERT(first_mp != NULL); 20681 v_hlen = V_HLEN; 20682 /* 20683 * siphon off IPv6 packets coming down from transport 20684 * layer modules here. 20685 * Note: high-order bit carries NUD reachability confirmation 20686 */ 20687 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 20688 /* 20689 * FIXME: assume that callers of ip_output* call 20690 * the right version? 20691 */ 20692 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutWrongIPVersion); 20693 ASSERT(xmit_ill == NULL); 20694 if (attach_ill != NULL) 20695 ill_refrele(attach_ill); 20696 if (need_decref) 20697 mp->b_flag |= MSGHASREF; 20698 (void) ip_output_v6(arg, first_mp, arg2, caller); 20699 return; 20700 } 20701 20702 if ((v_hlen >> 4) != IP_VERSION) { 20703 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20704 "ip_wput_end: q %p (%S)", q, "badvers"); 20705 goto discard_pkt; 20706 } 20707 /* 20708 * Is the header length at least 20 bytes? 20709 * 20710 * Are there enough bytes accessible in the header? If 20711 * not, try a pullup. 20712 */ 20713 v_hlen &= 0xF; 20714 v_hlen <<= 2; 20715 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 20716 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20717 "ip_wput_end: q %p (%S)", q, "badlen"); 20718 goto discard_pkt; 20719 } 20720 if (v_hlen > (mp->b_wptr - rptr)) { 20721 if (!pullupmsg(mp, v_hlen)) { 20722 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20723 "ip_wput_end: q %p (%S)", q, "badpullup2"); 20724 goto discard_pkt; 20725 } 20726 ipha = (ipha_t *)mp->b_rptr; 20727 } 20728 /* 20729 * Move first entry from any source route into ipha_dst and 20730 * verify the options 20731 */ 20732 if (ip_wput_options(q, first_mp, ipha, mctl_present, 20733 zoneid, ipst)) { 20734 ASSERT(xmit_ill == NULL); 20735 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20736 if (attach_ill != NULL) 20737 ill_refrele(attach_ill); 20738 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20739 "ip_wput_end: q %p (%S)", q, "badopts"); 20740 if (need_decref) 20741 CONN_DEC_REF(connp); 20742 return; 20743 } 20744 } 20745 dst = ipha->ipha_dst; 20746 20747 /* 20748 * Try to get an IRE_CACHE for the destination address. If we can't, 20749 * we have to run the packet through ip_newroute which will take 20750 * the appropriate action to arrange for an IRE_CACHE, such as querying 20751 * a resolver, or assigning a default gateway, etc. 20752 */ 20753 if (CLASSD(dst)) { 20754 ipif_t *ipif; 20755 uint32_t setsrc = 0; 20756 20757 multicast: 20758 ASSERT(first_mp != NULL); 20759 ip2dbg(("ip_wput: CLASSD\n")); 20760 if (connp == NULL) { 20761 /* 20762 * Use the first good ipif on the ill. 20763 * XXX Should this ever happen? (Appears 20764 * to show up with just ppp and no ethernet due 20765 * to in.rdisc.) 20766 * However, ire_send should be able to 20767 * call ip_wput_ire directly. 20768 * 20769 * XXX Also, this can happen for ICMP and other packets 20770 * with multicast source addresses. Perhaps we should 20771 * fix things so that we drop the packet in question, 20772 * but for now, just run with it. 20773 */ 20774 ill_t *ill = (ill_t *)q->q_ptr; 20775 20776 /* 20777 * Don't honor attach_if for this case. If ill 20778 * is part of the group, ipif could belong to 20779 * any ill and we cannot maintain attach_ill 20780 * and ipif_ill same anymore and the assert 20781 * below would fail. 20782 */ 20783 if (mctl_present && io->ipsec_out_attach_if) { 20784 io->ipsec_out_ill_index = 0; 20785 io->ipsec_out_attach_if = B_FALSE; 20786 ASSERT(attach_ill != NULL); 20787 ill_refrele(attach_ill); 20788 attach_ill = NULL; 20789 } 20790 20791 ASSERT(attach_ill == NULL); 20792 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 20793 if (ipif == NULL) { 20794 if (need_decref) 20795 CONN_DEC_REF(connp); 20796 freemsg(first_mp); 20797 return; 20798 } 20799 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 20800 ntohl(dst), ill->ill_name)); 20801 } else { 20802 /* 20803 * The order of precedence is IP_XMIT_IF, IP_PKTINFO 20804 * and IP_MULTICAST_IF. 20805 * Block comment above this function explains the 20806 * locking mechanism used here 20807 */ 20808 if (xmit_ill == NULL) { 20809 xmit_ill = conn_get_held_ill(connp, 20810 &connp->conn_xmit_if_ill, &err); 20811 if (err == ILL_LOOKUP_FAILED) { 20812 ip1dbg(("ip_wput: No ill for " 20813 "IP_XMIT_IF\n")); 20814 BUMP_MIB(&ipst->ips_ip_mib, 20815 ipIfStatsOutNoRoutes); 20816 goto drop_pkt; 20817 } 20818 } 20819 20820 if (xmit_ill == NULL) { 20821 ipif = conn_get_held_ipif(connp, 20822 &connp->conn_multicast_ipif, &err); 20823 if (err == IPIF_LOOKUP_FAILED) { 20824 ip1dbg(("ip_wput: No ipif for " 20825 "multicast\n")); 20826 BUMP_MIB(&ipst->ips_ip_mib, 20827 ipIfStatsOutNoRoutes); 20828 goto drop_pkt; 20829 } 20830 } 20831 if (xmit_ill != NULL) { 20832 ipif = ipif_get_next_ipif(NULL, xmit_ill); 20833 if (ipif == NULL) { 20834 ip1dbg(("ip_wput: No ipif for " 20835 "IP_XMIT_IF\n")); 20836 BUMP_MIB(&ipst->ips_ip_mib, 20837 ipIfStatsOutNoRoutes); 20838 goto drop_pkt; 20839 } 20840 } else if (ipif == NULL || ipif->ipif_isv6) { 20841 /* 20842 * We must do this ipif determination here 20843 * else we could pass through ip_newroute 20844 * and come back here without the conn context. 20845 * 20846 * Note: we do late binding i.e. we bind to 20847 * the interface when the first packet is sent. 20848 * For performance reasons we do not rebind on 20849 * each packet but keep the binding until the 20850 * next IP_MULTICAST_IF option. 20851 * 20852 * conn_multicast_{ipif,ill} are shared between 20853 * IPv4 and IPv6 and AF_INET6 sockets can 20854 * send both IPv4 and IPv6 packets. Hence 20855 * we have to check that "isv6" matches above. 20856 */ 20857 if (ipif != NULL) 20858 ipif_refrele(ipif); 20859 ipif = ipif_lookup_group(dst, zoneid, ipst); 20860 if (ipif == NULL) { 20861 ip1dbg(("ip_wput: No ipif for " 20862 "multicast\n")); 20863 BUMP_MIB(&ipst->ips_ip_mib, 20864 ipIfStatsOutNoRoutes); 20865 goto drop_pkt; 20866 } 20867 err = conn_set_held_ipif(connp, 20868 &connp->conn_multicast_ipif, ipif); 20869 if (err == IPIF_LOOKUP_FAILED) { 20870 ipif_refrele(ipif); 20871 ip1dbg(("ip_wput: No ipif for " 20872 "multicast\n")); 20873 BUMP_MIB(&ipst->ips_ip_mib, 20874 ipIfStatsOutNoRoutes); 20875 goto drop_pkt; 20876 } 20877 } 20878 } 20879 ASSERT(!ipif->ipif_isv6); 20880 /* 20881 * As we may lose the conn by the time we reach ip_wput_ire, 20882 * we copy conn_multicast_loop and conn_dontroute on to an 20883 * ipsec_out. In case if this datagram goes out secure, 20884 * we need the ill_index also. Copy that also into the 20885 * ipsec_out. 20886 */ 20887 if (mctl_present) { 20888 io = (ipsec_out_t *)first_mp->b_rptr; 20889 ASSERT(first_mp->b_datap->db_type == M_CTL); 20890 ASSERT(io->ipsec_out_type == IPSEC_OUT); 20891 } else { 20892 ASSERT(mp == first_mp); 20893 if ((first_mp = allocb(sizeof (ipsec_info_t), 20894 BPRI_HI)) == NULL) { 20895 ipif_refrele(ipif); 20896 first_mp = mp; 20897 goto discard_pkt; 20898 } 20899 first_mp->b_datap->db_type = M_CTL; 20900 first_mp->b_wptr += sizeof (ipsec_info_t); 20901 /* ipsec_out_secure is B_FALSE now */ 20902 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 20903 io = (ipsec_out_t *)first_mp->b_rptr; 20904 io->ipsec_out_type = IPSEC_OUT; 20905 io->ipsec_out_len = sizeof (ipsec_out_t); 20906 io->ipsec_out_use_global_policy = B_TRUE; 20907 io->ipsec_out_ns = ipst->ips_netstack; 20908 first_mp->b_cont = mp; 20909 mctl_present = B_TRUE; 20910 } 20911 if (attach_ill != NULL) { 20912 ASSERT(attach_ill == ipif->ipif_ill); 20913 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 20914 20915 /* 20916 * Check if we need an ire that will not be 20917 * looked up by anybody else i.e. HIDDEN. 20918 */ 20919 if (ill_is_probeonly(attach_ill)) { 20920 match_flags |= MATCH_IRE_MARK_HIDDEN; 20921 } 20922 io->ipsec_out_ill_index = 20923 attach_ill->ill_phyint->phyint_ifindex; 20924 io->ipsec_out_attach_if = B_TRUE; 20925 } else { 20926 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 20927 io->ipsec_out_ill_index = 20928 ipif->ipif_ill->ill_phyint->phyint_ifindex; 20929 } 20930 if (connp != NULL) { 20931 io->ipsec_out_multicast_loop = 20932 connp->conn_multicast_loop; 20933 io->ipsec_out_dontroute = connp->conn_dontroute; 20934 io->ipsec_out_zoneid = connp->conn_zoneid; 20935 } 20936 /* 20937 * If the application uses IP_MULTICAST_IF with 20938 * different logical addresses of the same ILL, we 20939 * need to make sure that the soruce address of 20940 * the packet matches the logical IP address used 20941 * in the option. We do it by initializing ipha_src 20942 * here. This should keep IPsec also happy as 20943 * when we return from IPsec processing, we don't 20944 * have to worry about getting the right address on 20945 * the packet. Thus it is sufficient to look for 20946 * IRE_CACHE using MATCH_IRE_ILL rathen than 20947 * MATCH_IRE_IPIF. 20948 * 20949 * NOTE : We need to do it for non-secure case also as 20950 * this might go out secure if there is a global policy 20951 * match in ip_wput_ire. For bind to IPIF_NOFAILOVER 20952 * address, the source should be initialized already and 20953 * hence we won't be initializing here. 20954 * 20955 * As we do not have the ire yet, it is possible that 20956 * we set the source address here and then later discover 20957 * that the ire implies the source address to be assigned 20958 * through the RTF_SETSRC flag. 20959 * In that case, the setsrc variable will remind us 20960 * that overwritting the source address by the one 20961 * of the RTF_SETSRC-flagged ire is allowed. 20962 */ 20963 if (ipha->ipha_src == INADDR_ANY && 20964 (connp == NULL || !connp->conn_unspec_src)) { 20965 ipha->ipha_src = ipif->ipif_src_addr; 20966 setsrc = RTF_SETSRC; 20967 } 20968 /* 20969 * Find an IRE which matches the destination and the outgoing 20970 * queue (i.e. the outgoing interface.) 20971 * For loopback use a unicast IP address for 20972 * the ire lookup. 20973 */ 20974 if (IS_LOOPBACK(ipif->ipif_ill)) 20975 dst = ipif->ipif_lcl_addr; 20976 20977 /* 20978 * If IP_XMIT_IF is set, we branch out to ip_newroute_ipif. 20979 * We don't need to lookup ire in ctable as the packet 20980 * needs to be sent to the destination through the specified 20981 * ill irrespective of ires in the cache table. 20982 */ 20983 ire = NULL; 20984 if (xmit_ill == NULL) { 20985 ire = ire_ctable_lookup(dst, 0, 0, ipif, 20986 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 20987 } 20988 20989 /* 20990 * refrele attach_ill as its not needed anymore. 20991 */ 20992 if (attach_ill != NULL) { 20993 ill_refrele(attach_ill); 20994 attach_ill = NULL; 20995 } 20996 20997 if (ire == NULL) { 20998 /* 20999 * Multicast loopback and multicast forwarding is 21000 * done in ip_wput_ire. 21001 * 21002 * Mark this packet to make it be delivered to 21003 * ip_wput_ire after the new ire has been 21004 * created. 21005 * 21006 * The call to ip_newroute_ipif takes into account 21007 * the setsrc reminder. In any case, we take care 21008 * of the RTF_MULTIRT flag. 21009 */ 21010 mp->b_prev = mp->b_next = NULL; 21011 if (xmit_ill == NULL || 21012 xmit_ill->ill_ipif_up_count > 0) { 21013 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 21014 setsrc | RTF_MULTIRT, zoneid, infop); 21015 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21016 "ip_wput_end: q %p (%S)", q, "noire"); 21017 } else { 21018 freemsg(first_mp); 21019 } 21020 ipif_refrele(ipif); 21021 if (xmit_ill != NULL) 21022 ill_refrele(xmit_ill); 21023 if (need_decref) 21024 CONN_DEC_REF(connp); 21025 return; 21026 } 21027 21028 ipif_refrele(ipif); 21029 ipif = NULL; 21030 ASSERT(xmit_ill == NULL); 21031 21032 /* 21033 * Honor the RTF_SETSRC flag for multicast packets, 21034 * if allowed by the setsrc reminder. 21035 */ 21036 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 21037 ipha->ipha_src = ire->ire_src_addr; 21038 } 21039 21040 /* 21041 * Unconditionally force the TTL to 1 for 21042 * multirouted multicast packets: 21043 * multirouted multicast should not cross 21044 * multicast routers. 21045 */ 21046 if (ire->ire_flags & RTF_MULTIRT) { 21047 if (ipha->ipha_ttl > 1) { 21048 ip2dbg(("ip_wput: forcing multicast " 21049 "multirt TTL to 1 (was %d), dst 0x%08x\n", 21050 ipha->ipha_ttl, ntohl(ire->ire_addr))); 21051 ipha->ipha_ttl = 1; 21052 } 21053 } 21054 } else { 21055 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 21056 if ((ire != NULL) && (ire->ire_type & 21057 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 21058 ignore_dontroute = B_TRUE; 21059 ignore_nexthop = B_TRUE; 21060 } 21061 if (ire != NULL) { 21062 ire_refrele(ire); 21063 ire = NULL; 21064 } 21065 /* 21066 * Guard against coming in from arp in which case conn is NULL. 21067 * Also guard against non M_DATA with dontroute set but 21068 * destined to local, loopback or broadcast addresses. 21069 */ 21070 if (connp != NULL && connp->conn_dontroute && 21071 !ignore_dontroute) { 21072 dontroute: 21073 /* 21074 * Set TTL to 1 if SO_DONTROUTE is set to prevent 21075 * routing protocols from seeing false direct 21076 * connectivity. 21077 */ 21078 ipha->ipha_ttl = 1; 21079 /* 21080 * If IP_XMIT_IF is also set (conn_xmit_if_ill != NULL) 21081 * along with SO_DONTROUTE, higher precedence is 21082 * given to IP_XMIT_IF and the IP_XMIT_IF ipif is used. 21083 */ 21084 if (connp->conn_xmit_if_ill == NULL) { 21085 /* If suitable ipif not found, drop packet */ 21086 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid, 21087 ipst); 21088 if (dst_ipif == NULL) { 21089 ip1dbg(("ip_wput: no route for " 21090 "dst using SO_DONTROUTE\n")); 21091 BUMP_MIB(&ipst->ips_ip_mib, 21092 ipIfStatsOutNoRoutes); 21093 mp->b_prev = mp->b_next = NULL; 21094 if (first_mp == NULL) 21095 first_mp = mp; 21096 goto drop_pkt; 21097 } else { 21098 /* 21099 * If suitable ipif has been found, set 21100 * xmit_ill to the corresponding 21101 * ipif_ill because we'll be following 21102 * the IP_XMIT_IF logic. 21103 */ 21104 ASSERT(xmit_ill == NULL); 21105 xmit_ill = dst_ipif->ipif_ill; 21106 mutex_enter(&xmit_ill->ill_lock); 21107 if (!ILL_CAN_LOOKUP(xmit_ill)) { 21108 mutex_exit(&xmit_ill->ill_lock); 21109 xmit_ill = NULL; 21110 ipif_refrele(dst_ipif); 21111 ip1dbg(("ip_wput: no route for" 21112 " dst using" 21113 " SO_DONTROUTE\n")); 21114 BUMP_MIB(&ipst->ips_ip_mib, 21115 ipIfStatsOutNoRoutes); 21116 mp->b_prev = mp->b_next = NULL; 21117 if (first_mp == NULL) 21118 first_mp = mp; 21119 goto drop_pkt; 21120 } 21121 ill_refhold_locked(xmit_ill); 21122 mutex_exit(&xmit_ill->ill_lock); 21123 ipif_refrele(dst_ipif); 21124 } 21125 } 21126 21127 } 21128 /* 21129 * If we are bound to IPIF_NOFAILOVER address, look for 21130 * an IRE_CACHE matching the ill. 21131 */ 21132 send_from_ill: 21133 if (attach_ill != NULL) { 21134 ipif_t *attach_ipif; 21135 21136 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21137 21138 /* 21139 * Check if we need an ire that will not be 21140 * looked up by anybody else i.e. HIDDEN. 21141 */ 21142 if (ill_is_probeonly(attach_ill)) { 21143 match_flags |= MATCH_IRE_MARK_HIDDEN; 21144 } 21145 21146 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 21147 if (attach_ipif == NULL) { 21148 ip1dbg(("ip_wput: No ipif for attach_ill\n")); 21149 goto discard_pkt; 21150 } 21151 ire = ire_ctable_lookup(dst, 0, 0, attach_ipif, 21152 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21153 ipif_refrele(attach_ipif); 21154 } else if (xmit_ill != NULL || (connp != NULL && 21155 connp->conn_xmit_if_ill != NULL)) { 21156 /* 21157 * Mark this packet as originated locally 21158 */ 21159 mp->b_prev = mp->b_next = NULL; 21160 /* 21161 * xmit_ill could be NULL if SO_DONTROUTE 21162 * is also set. 21163 */ 21164 if (xmit_ill == NULL) { 21165 xmit_ill = conn_get_held_ill(connp, 21166 &connp->conn_xmit_if_ill, &err); 21167 if (err == ILL_LOOKUP_FAILED) { 21168 BUMP_MIB(&ipst->ips_ip_mib, 21169 ipIfStatsOutDiscards); 21170 if (need_decref) 21171 CONN_DEC_REF(connp); 21172 freemsg(first_mp); 21173 return; 21174 } 21175 if (xmit_ill == NULL) { 21176 if (connp->conn_dontroute) 21177 goto dontroute; 21178 goto send_from_ill; 21179 } 21180 } 21181 /* 21182 * Could be SO_DONTROUTE case also. 21183 * check at least one interface is UP as 21184 * specified by this ILL 21185 */ 21186 if (xmit_ill->ill_ipif_up_count > 0) { 21187 ipif_t *ipif; 21188 21189 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21190 if (ipif == NULL) { 21191 ip1dbg(("ip_output: " 21192 "xmit_ill NULL ipif\n")); 21193 goto drop_pkt; 21194 } 21195 /* 21196 * Look for a ire that is part of the group, 21197 * if found use it else call ip_newroute_ipif. 21198 * IPCL_ZONEID is not used for matching because 21199 * IP_ALLZONES option is valid only when the 21200 * ill is accessible from all zones i.e has a 21201 * valid ipif in all zones. 21202 */ 21203 match_flags = MATCH_IRE_ILL_GROUP | 21204 MATCH_IRE_SECATTR; 21205 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 21206 MBLK_GETLABEL(mp), match_flags, ipst); 21207 /* 21208 * If an ire exists use it or else create 21209 * an ire but don't add it to the cache. 21210 * Adding an ire may cause issues with 21211 * asymmetric routing. 21212 * In case of multiroute always act as if 21213 * ire does not exist. 21214 */ 21215 if (ire == NULL || 21216 ire->ire_flags & RTF_MULTIRT) { 21217 if (ire != NULL) 21218 ire_refrele(ire); 21219 ip_newroute_ipif(q, first_mp, ipif, 21220 dst, connp, 0, zoneid, infop); 21221 ipif_refrele(ipif); 21222 ip1dbg(("ip_wput: ip_unicast_if\n")); 21223 ill_refrele(xmit_ill); 21224 if (need_decref) 21225 CONN_DEC_REF(connp); 21226 return; 21227 } 21228 ipif_refrele(ipif); 21229 } else { 21230 goto drop_pkt; 21231 } 21232 } else if (ip_nexthop || (connp != NULL && 21233 (connp->conn_nexthop_set)) && !ignore_nexthop) { 21234 if (!ip_nexthop) { 21235 ip_nexthop = B_TRUE; 21236 nexthop_addr = connp->conn_nexthop_v4; 21237 } 21238 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 21239 MATCH_IRE_GW; 21240 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 21241 NULL, zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21242 } else { 21243 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), 21244 ipst); 21245 } 21246 if (!ire) { 21247 /* 21248 * Make sure we don't load spread if this 21249 * is IPIF_NOFAILOVER case. 21250 */ 21251 if ((attach_ill != NULL) || 21252 (ip_nexthop && !ignore_nexthop)) { 21253 if (mctl_present) { 21254 io = (ipsec_out_t *)first_mp->b_rptr; 21255 ASSERT(first_mp->b_datap->db_type == 21256 M_CTL); 21257 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21258 } else { 21259 ASSERT(mp == first_mp); 21260 first_mp = allocb( 21261 sizeof (ipsec_info_t), BPRI_HI); 21262 if (first_mp == NULL) { 21263 first_mp = mp; 21264 goto discard_pkt; 21265 } 21266 first_mp->b_datap->db_type = M_CTL; 21267 first_mp->b_wptr += 21268 sizeof (ipsec_info_t); 21269 /* ipsec_out_secure is B_FALSE now */ 21270 bzero(first_mp->b_rptr, 21271 sizeof (ipsec_info_t)); 21272 io = (ipsec_out_t *)first_mp->b_rptr; 21273 io->ipsec_out_type = IPSEC_OUT; 21274 io->ipsec_out_len = 21275 sizeof (ipsec_out_t); 21276 io->ipsec_out_use_global_policy = 21277 B_TRUE; 21278 io->ipsec_out_ns = ipst->ips_netstack; 21279 first_mp->b_cont = mp; 21280 mctl_present = B_TRUE; 21281 } 21282 if (attach_ill != NULL) { 21283 io->ipsec_out_ill_index = attach_ill-> 21284 ill_phyint->phyint_ifindex; 21285 io->ipsec_out_attach_if = B_TRUE; 21286 } else { 21287 io->ipsec_out_ip_nexthop = ip_nexthop; 21288 io->ipsec_out_nexthop_addr = 21289 nexthop_addr; 21290 } 21291 } 21292 noirefound: 21293 /* 21294 * Mark this packet as having originated on 21295 * this machine. This will be noted in 21296 * ire_add_then_send, which needs to know 21297 * whether to run it back through ip_wput or 21298 * ip_rput following successful resolution. 21299 */ 21300 mp->b_prev = NULL; 21301 mp->b_next = NULL; 21302 ip_newroute(q, first_mp, dst, connp, zoneid, ipst); 21303 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21304 "ip_wput_end: q %p (%S)", q, "newroute"); 21305 if (attach_ill != NULL) 21306 ill_refrele(attach_ill); 21307 if (xmit_ill != NULL) 21308 ill_refrele(xmit_ill); 21309 if (need_decref) 21310 CONN_DEC_REF(connp); 21311 return; 21312 } 21313 } 21314 21315 /* We now know where we are going with it. */ 21316 21317 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21318 "ip_wput_end: q %p (%S)", q, "end"); 21319 21320 /* 21321 * Check if the ire has the RTF_MULTIRT flag, inherited 21322 * from an IRE_OFFSUBNET ire entry in ip_newroute. 21323 */ 21324 if (ire->ire_flags & RTF_MULTIRT) { 21325 /* 21326 * Force the TTL of multirouted packets if required. 21327 * The TTL of such packets is bounded by the 21328 * ip_multirt_ttl ndd variable. 21329 */ 21330 if ((ipst->ips_ip_multirt_ttl > 0) && 21331 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 21332 ip2dbg(("ip_wput: forcing multirt TTL to %d " 21333 "(was %d), dst 0x%08x\n", 21334 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 21335 ntohl(ire->ire_addr))); 21336 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 21337 } 21338 /* 21339 * At this point, we check to see if there are any pending 21340 * unresolved routes. ire_multirt_resolvable() 21341 * checks in O(n) that all IRE_OFFSUBNET ire 21342 * entries for the packet's destination and 21343 * flagged RTF_MULTIRT are currently resolved. 21344 * If some remain unresolved, we make a copy 21345 * of the current message. It will be used 21346 * to initiate additional route resolutions. 21347 */ 21348 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 21349 MBLK_GETLABEL(first_mp), ipst); 21350 ip2dbg(("ip_wput[noirefound]: ire %p, " 21351 "multirt_need_resolve %d, first_mp %p\n", 21352 (void *)ire, multirt_need_resolve, (void *)first_mp)); 21353 if (multirt_need_resolve) { 21354 copy_mp = copymsg(first_mp); 21355 if (copy_mp != NULL) { 21356 MULTIRT_DEBUG_TAG(copy_mp); 21357 } 21358 } 21359 } 21360 21361 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 21362 /* 21363 * Try to resolve another multiroute if 21364 * ire_multirt_resolvable() deemed it necessary. 21365 * At this point, we need to distinguish 21366 * multicasts from other packets. For multicasts, 21367 * we call ip_newroute_ipif() and request that both 21368 * multirouting and setsrc flags are checked. 21369 */ 21370 if (copy_mp != NULL) { 21371 if (CLASSD(dst)) { 21372 ipif_t *ipif = ipif_lookup_group(dst, zoneid, ipst); 21373 if (ipif) { 21374 ASSERT(infop->ip_opt_ill_index == 0); 21375 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 21376 RTF_SETSRC | RTF_MULTIRT, zoneid, infop); 21377 ipif_refrele(ipif); 21378 } else { 21379 MULTIRT_DEBUG_UNTAG(copy_mp); 21380 freemsg(copy_mp); 21381 copy_mp = NULL; 21382 } 21383 } else { 21384 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 21385 } 21386 } 21387 if (attach_ill != NULL) 21388 ill_refrele(attach_ill); 21389 if (xmit_ill != NULL) 21390 ill_refrele(xmit_ill); 21391 if (need_decref) 21392 CONN_DEC_REF(connp); 21393 return; 21394 21395 icmp_parameter_problem: 21396 /* could not have originated externally */ 21397 ASSERT(mp->b_prev == NULL); 21398 if (ip_hdr_complete(ipha, zoneid, ipst) == 0) { 21399 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 21400 /* it's the IP header length that's in trouble */ 21401 icmp_param_problem(q, first_mp, 0, zoneid, ipst); 21402 first_mp = NULL; 21403 } 21404 21405 discard_pkt: 21406 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21407 drop_pkt: 21408 ip1dbg(("ip_wput: dropped packet\n")); 21409 if (ire != NULL) 21410 ire_refrele(ire); 21411 if (need_decref) 21412 CONN_DEC_REF(connp); 21413 freemsg(first_mp); 21414 if (attach_ill != NULL) 21415 ill_refrele(attach_ill); 21416 if (xmit_ill != NULL) 21417 ill_refrele(xmit_ill); 21418 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21419 "ip_wput_end: q %p (%S)", q, "droppkt"); 21420 } 21421 21422 /* 21423 * If this is a conn_t queue, then we pass in the conn. This includes the 21424 * zoneid. 21425 * Otherwise, this is a message coming back from ARP or for an ill_t queue, 21426 * in which case we use the global zoneid since those are all part of 21427 * the global zone. 21428 */ 21429 void 21430 ip_wput(queue_t *q, mblk_t *mp) 21431 { 21432 if (CONN_Q(q)) 21433 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 21434 else 21435 ip_output(GLOBAL_ZONEID, mp, q, IP_WPUT); 21436 } 21437 21438 /* 21439 * 21440 * The following rules must be observed when accessing any ipif or ill 21441 * that has been cached in the conn. Typically conn_nofailover_ill, 21442 * conn_xmit_if_ill, conn_multicast_ipif and conn_multicast_ill. 21443 * 21444 * Access: The ipif or ill pointed to from the conn can be accessed under 21445 * the protection of the conn_lock or after it has been refheld under the 21446 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 21447 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 21448 * The reason for this is that a concurrent unplumb could actually be 21449 * cleaning up these cached pointers by walking the conns and might have 21450 * finished cleaning up the conn in question. The macros check that an 21451 * unplumb has not yet started on the ipif or ill. 21452 * 21453 * Caching: An ipif or ill pointer may be cached in the conn only after 21454 * making sure that an unplumb has not started. So the caching is done 21455 * while holding both the conn_lock and the ill_lock and after using the 21456 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 21457 * flag before starting the cleanup of conns. 21458 * 21459 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 21460 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 21461 * or a reference to the ipif or a reference to an ire that references the 21462 * ipif. An ipif does not change its ill except for failover/failback. Since 21463 * failover/failback happens only after bringing down the ipif and making sure 21464 * the ipif refcnt has gone to zero and holding the ill_g_lock and ill_lock 21465 * the above holds. 21466 */ 21467 ipif_t * 21468 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 21469 { 21470 ipif_t *ipif; 21471 ill_t *ill; 21472 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 21473 21474 *err = 0; 21475 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21476 mutex_enter(&connp->conn_lock); 21477 ipif = *ipifp; 21478 if (ipif != NULL) { 21479 ill = ipif->ipif_ill; 21480 mutex_enter(&ill->ill_lock); 21481 if (IPIF_CAN_LOOKUP(ipif)) { 21482 ipif_refhold_locked(ipif); 21483 mutex_exit(&ill->ill_lock); 21484 mutex_exit(&connp->conn_lock); 21485 rw_exit(&ipst->ips_ill_g_lock); 21486 return (ipif); 21487 } else { 21488 *err = IPIF_LOOKUP_FAILED; 21489 } 21490 mutex_exit(&ill->ill_lock); 21491 } 21492 mutex_exit(&connp->conn_lock); 21493 rw_exit(&ipst->ips_ill_g_lock); 21494 return (NULL); 21495 } 21496 21497 ill_t * 21498 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 21499 { 21500 ill_t *ill; 21501 21502 *err = 0; 21503 mutex_enter(&connp->conn_lock); 21504 ill = *illp; 21505 if (ill != NULL) { 21506 mutex_enter(&ill->ill_lock); 21507 if (ILL_CAN_LOOKUP(ill)) { 21508 ill_refhold_locked(ill); 21509 mutex_exit(&ill->ill_lock); 21510 mutex_exit(&connp->conn_lock); 21511 return (ill); 21512 } else { 21513 *err = ILL_LOOKUP_FAILED; 21514 } 21515 mutex_exit(&ill->ill_lock); 21516 } 21517 mutex_exit(&connp->conn_lock); 21518 return (NULL); 21519 } 21520 21521 static int 21522 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 21523 { 21524 ill_t *ill; 21525 21526 ill = ipif->ipif_ill; 21527 mutex_enter(&connp->conn_lock); 21528 mutex_enter(&ill->ill_lock); 21529 if (IPIF_CAN_LOOKUP(ipif)) { 21530 *ipifp = ipif; 21531 mutex_exit(&ill->ill_lock); 21532 mutex_exit(&connp->conn_lock); 21533 return (0); 21534 } 21535 mutex_exit(&ill->ill_lock); 21536 mutex_exit(&connp->conn_lock); 21537 return (IPIF_LOOKUP_FAILED); 21538 } 21539 21540 /* 21541 * This is called if the outbound datagram needs fragmentation. 21542 * 21543 * NOTE : This function does not ire_refrele the ire argument passed in. 21544 */ 21545 static void 21546 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire, zoneid_t zoneid, 21547 ip_stack_t *ipst) 21548 { 21549 ipha_t *ipha; 21550 mblk_t *mp; 21551 uint32_t v_hlen_tos_len; 21552 uint32_t max_frag; 21553 uint32_t frag_flag; 21554 boolean_t dont_use; 21555 21556 if (ipsec_mp->b_datap->db_type == M_CTL) { 21557 mp = ipsec_mp->b_cont; 21558 } else { 21559 mp = ipsec_mp; 21560 } 21561 21562 ipha = (ipha_t *)mp->b_rptr; 21563 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21564 21565 #ifdef _BIG_ENDIAN 21566 #define V_HLEN (v_hlen_tos_len >> 24) 21567 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21568 #else 21569 #define V_HLEN (v_hlen_tos_len & 0xFF) 21570 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21571 #endif 21572 21573 #ifndef SPEED_BEFORE_SAFETY 21574 /* 21575 * Check that ipha_length is consistent with 21576 * the mblk length 21577 */ 21578 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 21579 ip0dbg(("Packet length mismatch: %d, %ld\n", 21580 LENGTH, msgdsize(mp))); 21581 freemsg(ipsec_mp); 21582 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21583 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 21584 "packet length mismatch"); 21585 return; 21586 } 21587 #endif 21588 /* 21589 * Don't use frag_flag if pre-built packet or source 21590 * routed or if multicast (since multicast packets do not solicit 21591 * ICMP "packet too big" messages). Get the values of 21592 * max_frag and frag_flag atomically by acquiring the 21593 * ire_lock. 21594 */ 21595 mutex_enter(&ire->ire_lock); 21596 max_frag = ire->ire_max_frag; 21597 frag_flag = ire->ire_frag_flag; 21598 mutex_exit(&ire->ire_lock); 21599 21600 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 21601 (V_HLEN != IP_SIMPLE_HDR_VERSION && 21602 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 21603 21604 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 21605 (dont_use ? 0 : frag_flag), zoneid, ipst); 21606 } 21607 21608 /* 21609 * Used for deciding the MSS size for the upper layer. Thus 21610 * we need to check the outbound policy values in the conn. 21611 */ 21612 int 21613 conn_ipsec_length(conn_t *connp) 21614 { 21615 ipsec_latch_t *ipl; 21616 21617 ipl = connp->conn_latch; 21618 if (ipl == NULL) 21619 return (0); 21620 21621 if (ipl->ipl_out_policy == NULL) 21622 return (0); 21623 21624 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 21625 } 21626 21627 /* 21628 * Returns an estimate of the IPsec headers size. This is used if 21629 * we don't want to call into IPsec to get the exact size. 21630 */ 21631 int 21632 ipsec_out_extra_length(mblk_t *ipsec_mp) 21633 { 21634 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 21635 ipsec_action_t *a; 21636 21637 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21638 if (!io->ipsec_out_secure) 21639 return (0); 21640 21641 a = io->ipsec_out_act; 21642 21643 if (a == NULL) { 21644 ASSERT(io->ipsec_out_policy != NULL); 21645 a = io->ipsec_out_policy->ipsp_act; 21646 } 21647 ASSERT(a != NULL); 21648 21649 return (a->ipa_ovhd); 21650 } 21651 21652 /* 21653 * Returns an estimate of the IPsec headers size. This is used if 21654 * we don't want to call into IPsec to get the exact size. 21655 */ 21656 int 21657 ipsec_in_extra_length(mblk_t *ipsec_mp) 21658 { 21659 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21660 ipsec_action_t *a; 21661 21662 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21663 21664 a = ii->ipsec_in_action; 21665 return (a == NULL ? 0 : a->ipa_ovhd); 21666 } 21667 21668 /* 21669 * If there are any source route options, return the true final 21670 * destination. Otherwise, return the destination. 21671 */ 21672 ipaddr_t 21673 ip_get_dst(ipha_t *ipha) 21674 { 21675 ipoptp_t opts; 21676 uchar_t *opt; 21677 uint8_t optval; 21678 uint8_t optlen; 21679 ipaddr_t dst; 21680 uint32_t off; 21681 21682 dst = ipha->ipha_dst; 21683 21684 if (IS_SIMPLE_IPH(ipha)) 21685 return (dst); 21686 21687 for (optval = ipoptp_first(&opts, ipha); 21688 optval != IPOPT_EOL; 21689 optval = ipoptp_next(&opts)) { 21690 opt = opts.ipoptp_cur; 21691 optlen = opts.ipoptp_len; 21692 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 21693 switch (optval) { 21694 case IPOPT_SSRR: 21695 case IPOPT_LSRR: 21696 off = opt[IPOPT_OFFSET]; 21697 /* 21698 * If one of the conditions is true, it means 21699 * end of options and dst already has the right 21700 * value. 21701 */ 21702 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 21703 off = optlen - IP_ADDR_LEN; 21704 bcopy(&opt[off], &dst, IP_ADDR_LEN); 21705 } 21706 return (dst); 21707 default: 21708 break; 21709 } 21710 } 21711 21712 return (dst); 21713 } 21714 21715 mblk_t * 21716 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 21717 conn_t *connp, boolean_t unspec_src, zoneid_t zoneid) 21718 { 21719 ipsec_out_t *io; 21720 mblk_t *first_mp; 21721 boolean_t policy_present; 21722 ip_stack_t *ipst; 21723 ipsec_stack_t *ipss; 21724 21725 ASSERT(ire != NULL); 21726 ipst = ire->ire_ipst; 21727 ipss = ipst->ips_netstack->netstack_ipsec; 21728 21729 first_mp = mp; 21730 if (mp->b_datap->db_type == M_CTL) { 21731 io = (ipsec_out_t *)first_mp->b_rptr; 21732 /* 21733 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 21734 * 21735 * 1) There is per-socket policy (including cached global 21736 * policy) or a policy on the IP-in-IP tunnel. 21737 * 2) There is no per-socket policy, but it is 21738 * a multicast packet that needs to go out 21739 * on a specific interface. This is the case 21740 * where (ip_wput and ip_wput_multicast) attaches 21741 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 21742 * 21743 * In case (2) we check with global policy to 21744 * see if there is a match and set the ill_index 21745 * appropriately so that we can lookup the ire 21746 * properly in ip_wput_ipsec_out. 21747 */ 21748 21749 /* 21750 * ipsec_out_use_global_policy is set to B_FALSE 21751 * in ipsec_in_to_out(). Refer to that function for 21752 * details. 21753 */ 21754 if ((io->ipsec_out_latch == NULL) && 21755 (io->ipsec_out_use_global_policy)) { 21756 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 21757 ire, connp, unspec_src, zoneid)); 21758 } 21759 if (!io->ipsec_out_secure) { 21760 /* 21761 * If this is not a secure packet, drop 21762 * the IPSEC_OUT mp and treat it as a clear 21763 * packet. This happens when we are sending 21764 * a ICMP reply back to a clear packet. See 21765 * ipsec_in_to_out() for details. 21766 */ 21767 mp = first_mp->b_cont; 21768 freeb(first_mp); 21769 } 21770 return (mp); 21771 } 21772 /* 21773 * See whether we need to attach a global policy here. We 21774 * don't depend on the conn (as it could be null) for deciding 21775 * what policy this datagram should go through because it 21776 * should have happened in ip_wput if there was some 21777 * policy. This normally happens for connections which are not 21778 * fully bound preventing us from caching policies in 21779 * ip_bind. Packets coming from the TCP listener/global queue 21780 * - which are non-hard_bound - could also be affected by 21781 * applying policy here. 21782 * 21783 * If this packet is coming from tcp global queue or listener, 21784 * we will be applying policy here. This may not be *right* 21785 * if these packets are coming from the detached connection as 21786 * it could have gone in clear before. This happens only if a 21787 * TCP connection started when there is no policy and somebody 21788 * added policy before it became detached. Thus packets of the 21789 * detached connection could go out secure and the other end 21790 * would drop it because it will be expecting in clear. The 21791 * converse is not true i.e if somebody starts a TCP 21792 * connection and deletes the policy, all the packets will 21793 * still go out with the policy that existed before deleting 21794 * because ip_unbind sends up policy information which is used 21795 * by TCP on subsequent ip_wputs. The right solution is to fix 21796 * TCP to attach a dummy IPSEC_OUT and set 21797 * ipsec_out_use_global_policy to B_FALSE. As this might 21798 * affect performance for normal cases, we are not doing it. 21799 * Thus, set policy before starting any TCP connections. 21800 * 21801 * NOTE - We might apply policy even for a hard bound connection 21802 * - for which we cached policy in ip_bind - if somebody added 21803 * global policy after we inherited the policy in ip_bind. 21804 * This means that the packets that were going out in clear 21805 * previously would start going secure and hence get dropped 21806 * on the other side. To fix this, TCP attaches a dummy 21807 * ipsec_out and make sure that we don't apply global policy. 21808 */ 21809 if (ipha != NULL) 21810 policy_present = ipss->ipsec_outbound_v4_policy_present; 21811 else 21812 policy_present = ipss->ipsec_outbound_v6_policy_present; 21813 if (!policy_present) 21814 return (mp); 21815 21816 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src, 21817 zoneid)); 21818 } 21819 21820 ire_t * 21821 conn_set_outgoing_ill(conn_t *connp, ire_t *ire, ill_t **conn_outgoing_ill) 21822 { 21823 ipaddr_t addr; 21824 ire_t *save_ire; 21825 irb_t *irb; 21826 ill_group_t *illgrp; 21827 int err; 21828 21829 save_ire = ire; 21830 addr = ire->ire_addr; 21831 21832 ASSERT(ire->ire_type == IRE_BROADCAST); 21833 21834 illgrp = connp->conn_outgoing_ill->ill_group; 21835 if (illgrp == NULL) { 21836 *conn_outgoing_ill = conn_get_held_ill(connp, 21837 &connp->conn_outgoing_ill, &err); 21838 if (err == ILL_LOOKUP_FAILED) { 21839 ire_refrele(save_ire); 21840 return (NULL); 21841 } 21842 return (save_ire); 21843 } 21844 /* 21845 * If IP_BOUND_IF has been done, conn_outgoing_ill will be set. 21846 * If it is part of the group, we need to send on the ire 21847 * that has been cleared of IRE_MARK_NORECV and that belongs 21848 * to this group. This is okay as IP_BOUND_IF really means 21849 * any ill in the group. We depend on the fact that the 21850 * first ire in the group is always cleared of IRE_MARK_NORECV 21851 * if such an ire exists. This is possible only if you have 21852 * at least one ill in the group that has not failed. 21853 * 21854 * First get to the ire that matches the address and group. 21855 * 21856 * We don't look for an ire with a matching zoneid because a given zone 21857 * won't always have broadcast ires on all ills in the group. 21858 */ 21859 irb = ire->ire_bucket; 21860 rw_enter(&irb->irb_lock, RW_READER); 21861 if (ire->ire_marks & IRE_MARK_NORECV) { 21862 /* 21863 * If the current zone only has an ire broadcast for this 21864 * address marked NORECV, the ire we want is ahead in the 21865 * bucket, so we look it up deliberately ignoring the zoneid. 21866 */ 21867 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 21868 if (ire->ire_addr != addr) 21869 continue; 21870 /* skip over deleted ires */ 21871 if (ire->ire_marks & IRE_MARK_CONDEMNED) 21872 continue; 21873 } 21874 } 21875 while (ire != NULL) { 21876 /* 21877 * If a new interface is coming up, we could end up 21878 * seeing the loopback ire and the non-loopback ire 21879 * may not have been added yet. So check for ire_stq 21880 */ 21881 if (ire->ire_stq != NULL && (ire->ire_addr != addr || 21882 ire->ire_ipif->ipif_ill->ill_group == illgrp)) { 21883 break; 21884 } 21885 ire = ire->ire_next; 21886 } 21887 if (ire != NULL && ire->ire_addr == addr && 21888 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 21889 IRE_REFHOLD(ire); 21890 rw_exit(&irb->irb_lock); 21891 ire_refrele(save_ire); 21892 *conn_outgoing_ill = ire_to_ill(ire); 21893 /* 21894 * Refhold the ill to make the conn_outgoing_ill 21895 * independent of the ire. ip_wput_ire goes in a loop 21896 * and may refrele the ire. Since we have an ire at this 21897 * point we don't need to use ILL_CAN_LOOKUP on the ill. 21898 */ 21899 ill_refhold(*conn_outgoing_ill); 21900 return (ire); 21901 } 21902 rw_exit(&irb->irb_lock); 21903 ip1dbg(("conn_set_outgoing_ill: No matching ire\n")); 21904 /* 21905 * If we can't find a suitable ire, return the original ire. 21906 */ 21907 return (save_ire); 21908 } 21909 21910 /* 21911 * This function does the ire_refrele of the ire passed in as the 21912 * argument. As this function looks up more ires i.e broadcast ires, 21913 * it needs to REFRELE them. Currently, for simplicity we don't 21914 * differentiate the one passed in and looked up here. We always 21915 * REFRELE. 21916 * IPQoS Notes: 21917 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 21918 * IPsec packets are done in ipsec_out_process. 21919 * 21920 */ 21921 void 21922 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller, 21923 zoneid_t zoneid) 21924 { 21925 ipha_t *ipha; 21926 #define rptr ((uchar_t *)ipha) 21927 queue_t *stq; 21928 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 21929 uint32_t v_hlen_tos_len; 21930 uint32_t ttl_protocol; 21931 ipaddr_t src; 21932 ipaddr_t dst; 21933 uint32_t cksum; 21934 ipaddr_t orig_src; 21935 ire_t *ire1; 21936 mblk_t *next_mp; 21937 uint_t hlen; 21938 uint16_t *up; 21939 uint32_t max_frag = ire->ire_max_frag; 21940 ill_t *ill = ire_to_ill(ire); 21941 int clusterwide; 21942 uint16_t ip_hdr_included; /* IP header included by ULP? */ 21943 int ipsec_len; 21944 mblk_t *first_mp; 21945 ipsec_out_t *io; 21946 boolean_t conn_dontroute; /* conn value for multicast */ 21947 boolean_t conn_multicast_loop; /* conn value for multicast */ 21948 boolean_t multicast_forward; /* Should we forward ? */ 21949 boolean_t unspec_src; 21950 ill_t *conn_outgoing_ill = NULL; 21951 ill_t *ire_ill; 21952 ill_t *ire1_ill; 21953 ill_t *out_ill; 21954 uint32_t ill_index = 0; 21955 boolean_t multirt_send = B_FALSE; 21956 int err; 21957 ipxmit_state_t pktxmit_state; 21958 ip_stack_t *ipst = ire->ire_ipst; 21959 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 21960 21961 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 21962 "ip_wput_ire_start: q %p", q); 21963 21964 multicast_forward = B_FALSE; 21965 unspec_src = (connp != NULL && connp->conn_unspec_src); 21966 21967 if (ire->ire_flags & RTF_MULTIRT) { 21968 /* 21969 * Multirouting case. The bucket where ire is stored 21970 * probably holds other RTF_MULTIRT flagged ire 21971 * to the destination. In this call to ip_wput_ire, 21972 * we attempt to send the packet through all 21973 * those ires. Thus, we first ensure that ire is the 21974 * first RTF_MULTIRT ire in the bucket, 21975 * before walking the ire list. 21976 */ 21977 ire_t *first_ire; 21978 irb_t *irb = ire->ire_bucket; 21979 ASSERT(irb != NULL); 21980 21981 /* Make sure we do not omit any multiroute ire. */ 21982 IRB_REFHOLD(irb); 21983 for (first_ire = irb->irb_ire; 21984 first_ire != NULL; 21985 first_ire = first_ire->ire_next) { 21986 if ((first_ire->ire_flags & RTF_MULTIRT) && 21987 (first_ire->ire_addr == ire->ire_addr) && 21988 !(first_ire->ire_marks & 21989 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 21990 break; 21991 } 21992 } 21993 21994 if ((first_ire != NULL) && (first_ire != ire)) { 21995 IRE_REFHOLD(first_ire); 21996 ire_refrele(ire); 21997 ire = first_ire; 21998 ill = ire_to_ill(ire); 21999 } 22000 IRB_REFRELE(irb); 22001 } 22002 22003 /* 22004 * conn_outgoing_ill is used only in the broadcast loop. 22005 * for performance we don't grab the mutexs in the fastpath 22006 */ 22007 if ((connp != NULL) && 22008 (connp->conn_xmit_if_ill == NULL) && 22009 (ire->ire_type == IRE_BROADCAST) && 22010 ((connp->conn_nofailover_ill != NULL) || 22011 (connp->conn_outgoing_ill != NULL))) { 22012 /* 22013 * Bind to IPIF_NOFAILOVER address overrides IP_BOUND_IF 22014 * option. So, see if this endpoint is bound to a 22015 * IPIF_NOFAILOVER address. If so, honor it. This implies 22016 * that if the interface is failed, we will still send 22017 * the packet on the same ill which is what we want. 22018 */ 22019 conn_outgoing_ill = conn_get_held_ill(connp, 22020 &connp->conn_nofailover_ill, &err); 22021 if (err == ILL_LOOKUP_FAILED) { 22022 ire_refrele(ire); 22023 freemsg(mp); 22024 return; 22025 } 22026 if (conn_outgoing_ill == NULL) { 22027 /* 22028 * Choose a good ill in the group to send the 22029 * packets on. 22030 */ 22031 ire = conn_set_outgoing_ill(connp, ire, 22032 &conn_outgoing_ill); 22033 if (ire == NULL) { 22034 freemsg(mp); 22035 return; 22036 } 22037 } 22038 } 22039 22040 if (mp->b_datap->db_type != M_CTL) { 22041 ipha = (ipha_t *)mp->b_rptr; 22042 } else { 22043 io = (ipsec_out_t *)mp->b_rptr; 22044 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22045 ASSERT(zoneid == io->ipsec_out_zoneid); 22046 ASSERT(zoneid != ALL_ZONES); 22047 ipha = (ipha_t *)mp->b_cont->b_rptr; 22048 dst = ipha->ipha_dst; 22049 /* 22050 * For the multicast case, ipsec_out carries conn_dontroute and 22051 * conn_multicast_loop as conn may not be available here. We 22052 * need this for multicast loopback and forwarding which is done 22053 * later in the code. 22054 */ 22055 if (CLASSD(dst)) { 22056 conn_dontroute = io->ipsec_out_dontroute; 22057 conn_multicast_loop = io->ipsec_out_multicast_loop; 22058 /* 22059 * If conn_dontroute is not set or conn_multicast_loop 22060 * is set, we need to do forwarding/loopback. For 22061 * datagrams from ip_wput_multicast, conn_dontroute is 22062 * set to B_TRUE and conn_multicast_loop is set to 22063 * B_FALSE so that we neither do forwarding nor 22064 * loopback. 22065 */ 22066 if (!conn_dontroute || conn_multicast_loop) 22067 multicast_forward = B_TRUE; 22068 } 22069 } 22070 22071 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 22072 ire->ire_zoneid != ALL_ZONES) { 22073 /* 22074 * When a zone sends a packet to another zone, we try to deliver 22075 * the packet under the same conditions as if the destination 22076 * was a real node on the network. To do so, we look for a 22077 * matching route in the forwarding table. 22078 * RTF_REJECT and RTF_BLACKHOLE are handled just like 22079 * ip_newroute() does. 22080 * Note that IRE_LOCAL are special, since they are used 22081 * when the zoneid doesn't match in some cases. This means that 22082 * we need to handle ipha_src differently since ire_src_addr 22083 * belongs to the receiving zone instead of the sending zone. 22084 * When ip_restrict_interzone_loopback is set, then 22085 * ire_cache_lookup() ensures that IRE_LOCAL are only used 22086 * for loopback between zones when the logical "Ethernet" would 22087 * have looped them back. 22088 */ 22089 ire_t *src_ire; 22090 22091 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 22092 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 22093 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE), ipst); 22094 if (src_ire != NULL && 22095 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) && 22096 (!ipst->ips_ip_restrict_interzone_loopback || 22097 ire_local_same_ill_group(ire, src_ire))) { 22098 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 22099 ipha->ipha_src = src_ire->ire_src_addr; 22100 ire_refrele(src_ire); 22101 } else { 22102 ire_refrele(ire); 22103 if (conn_outgoing_ill != NULL) 22104 ill_refrele(conn_outgoing_ill); 22105 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 22106 if (src_ire != NULL) { 22107 if (src_ire->ire_flags & RTF_BLACKHOLE) { 22108 ire_refrele(src_ire); 22109 freemsg(mp); 22110 return; 22111 } 22112 ire_refrele(src_ire); 22113 } 22114 if (ip_hdr_complete(ipha, zoneid, ipst)) { 22115 /* Failed */ 22116 freemsg(mp); 22117 return; 22118 } 22119 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, zoneid, 22120 ipst); 22121 return; 22122 } 22123 } 22124 22125 if (mp->b_datap->db_type == M_CTL || 22126 ipss->ipsec_outbound_v4_policy_present) { 22127 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 22128 unspec_src, zoneid); 22129 if (mp == NULL) { 22130 ire_refrele(ire); 22131 if (conn_outgoing_ill != NULL) 22132 ill_refrele(conn_outgoing_ill); 22133 return; 22134 } 22135 } 22136 22137 first_mp = mp; 22138 ipsec_len = 0; 22139 22140 if (first_mp->b_datap->db_type == M_CTL) { 22141 io = (ipsec_out_t *)first_mp->b_rptr; 22142 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22143 mp = first_mp->b_cont; 22144 ipsec_len = ipsec_out_extra_length(first_mp); 22145 ASSERT(ipsec_len >= 0); 22146 /* We already picked up the zoneid from the M_CTL above */ 22147 ASSERT(zoneid == io->ipsec_out_zoneid); 22148 ASSERT(zoneid != ALL_ZONES); 22149 22150 /* 22151 * Drop M_CTL here if IPsec processing is not needed. 22152 * (Non-IPsec use of M_CTL extracted any information it 22153 * needed above). 22154 */ 22155 if (ipsec_len == 0) { 22156 freeb(first_mp); 22157 first_mp = mp; 22158 } 22159 } 22160 22161 /* 22162 * Fast path for ip_wput_ire 22163 */ 22164 22165 ipha = (ipha_t *)mp->b_rptr; 22166 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 22167 dst = ipha->ipha_dst; 22168 22169 /* 22170 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 22171 * if the socket is a SOCK_RAW type. The transport checksum should 22172 * be provided in the pre-built packet, so we don't need to compute it. 22173 * Also, other application set flags, like DF, should not be altered. 22174 * Other transport MUST pass down zero. 22175 */ 22176 ip_hdr_included = ipha->ipha_ident; 22177 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 22178 22179 if (CLASSD(dst)) { 22180 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 22181 ntohl(dst), 22182 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 22183 ntohl(ire->ire_addr))); 22184 } 22185 22186 /* Macros to extract header fields from data already in registers */ 22187 #ifdef _BIG_ENDIAN 22188 #define V_HLEN (v_hlen_tos_len >> 24) 22189 #define LENGTH (v_hlen_tos_len & 0xFFFF) 22190 #define PROTO (ttl_protocol & 0xFF) 22191 #else 22192 #define V_HLEN (v_hlen_tos_len & 0xFF) 22193 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 22194 #define PROTO (ttl_protocol >> 8) 22195 #endif 22196 22197 22198 orig_src = src = ipha->ipha_src; 22199 /* (The loop back to "another" is explained down below.) */ 22200 another:; 22201 /* 22202 * Assign an ident value for this packet. We assign idents on 22203 * a per destination basis out of the IRE. There could be 22204 * other threads targeting the same destination, so we have to 22205 * arrange for a atomic increment. Note that we use a 32-bit 22206 * atomic add because it has better performance than its 22207 * 16-bit sibling. 22208 * 22209 * If running in cluster mode and if the source address 22210 * belongs to a replicated service then vector through 22211 * cl_inet_ipident vector to allocate ip identifier 22212 * NOTE: This is a contract private interface with the 22213 * clustering group. 22214 */ 22215 clusterwide = 0; 22216 if (cl_inet_ipident) { 22217 ASSERT(cl_inet_isclusterwide); 22218 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 22219 AF_INET, (uint8_t *)(uintptr_t)src)) { 22220 ipha->ipha_ident = (*cl_inet_ipident)(IPPROTO_IP, 22221 AF_INET, (uint8_t *)(uintptr_t)src, 22222 (uint8_t *)(uintptr_t)dst); 22223 clusterwide = 1; 22224 } 22225 } 22226 if (!clusterwide) { 22227 ipha->ipha_ident = 22228 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 22229 } 22230 22231 #ifndef _BIG_ENDIAN 22232 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 22233 #endif 22234 22235 /* 22236 * Set source address unless sent on an ill or conn_unspec_src is set. 22237 * This is needed to obey conn_unspec_src when packets go through 22238 * ip_newroute + arp. 22239 * Assumes ip_newroute{,_multi} sets the source address as well. 22240 */ 22241 if (src == INADDR_ANY && !unspec_src) { 22242 /* 22243 * Assign the appropriate source address from the IRE if none 22244 * was specified. 22245 */ 22246 ASSERT(ire->ire_ipversion == IPV4_VERSION); 22247 22248 /* 22249 * With IP multipathing, broadcast packets are sent on the ire 22250 * that has been cleared of IRE_MARK_NORECV and that belongs to 22251 * the group. However, this ire might not be in the same zone so 22252 * we can't always use its source address. We look for a 22253 * broadcast ire in the same group and in the right zone. 22254 */ 22255 if (ire->ire_type == IRE_BROADCAST && 22256 ire->ire_zoneid != zoneid) { 22257 ire_t *src_ire = ire_ctable_lookup(dst, 0, 22258 IRE_BROADCAST, ire->ire_ipif, zoneid, NULL, 22259 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 22260 if (src_ire != NULL) { 22261 src = src_ire->ire_src_addr; 22262 ire_refrele(src_ire); 22263 } else { 22264 ire_refrele(ire); 22265 if (conn_outgoing_ill != NULL) 22266 ill_refrele(conn_outgoing_ill); 22267 freemsg(first_mp); 22268 if (ill != NULL) { 22269 BUMP_MIB(ill->ill_ip_mib, 22270 ipIfStatsOutDiscards); 22271 } else { 22272 BUMP_MIB(&ipst->ips_ip_mib, 22273 ipIfStatsOutDiscards); 22274 } 22275 return; 22276 } 22277 } else { 22278 src = ire->ire_src_addr; 22279 } 22280 22281 if (connp == NULL) { 22282 ip1dbg(("ip_wput_ire: no connp and no src " 22283 "address for dst 0x%x, using src 0x%x\n", 22284 ntohl(dst), 22285 ntohl(src))); 22286 } 22287 ipha->ipha_src = src; 22288 } 22289 stq = ire->ire_stq; 22290 22291 /* 22292 * We only allow ire chains for broadcasts since there will 22293 * be multiple IRE_CACHE entries for the same multicast 22294 * address (one per ipif). 22295 */ 22296 next_mp = NULL; 22297 22298 /* broadcast packet */ 22299 if (ire->ire_type == IRE_BROADCAST) 22300 goto broadcast; 22301 22302 /* loopback ? */ 22303 if (stq == NULL) 22304 goto nullstq; 22305 22306 /* The ill_index for outbound ILL */ 22307 ill_index = Q_TO_INDEX(stq); 22308 22309 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 22310 ttl_protocol = ((uint16_t *)ipha)[4]; 22311 22312 /* pseudo checksum (do it in parts for IP header checksum) */ 22313 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 22314 22315 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 22316 queue_t *dev_q = stq->q_next; 22317 22318 /* flow controlled */ 22319 if ((dev_q->q_next || dev_q->q_first) && 22320 !canput(dev_q)) 22321 goto blocked; 22322 if ((PROTO == IPPROTO_UDP) && 22323 (ip_hdr_included != IP_HDR_INCLUDED)) { 22324 hlen = (V_HLEN & 0xF) << 2; 22325 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22326 if (*up != 0) { 22327 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 22328 hlen, LENGTH, max_frag, ipsec_len, cksum); 22329 /* Software checksum? */ 22330 if (DB_CKSUMFLAGS(mp) == 0) { 22331 IP_STAT(ipst, ip_out_sw_cksum); 22332 IP_STAT_UPDATE(ipst, 22333 ip_udp_out_sw_cksum_bytes, 22334 LENGTH - hlen); 22335 } 22336 } 22337 } 22338 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 22339 hlen = (V_HLEN & 0xF) << 2; 22340 if (PROTO == IPPROTO_TCP) { 22341 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22342 /* 22343 * The packet header is processed once and for all, even 22344 * in the multirouting case. We disable hardware 22345 * checksum if the packet is multirouted, as it will be 22346 * replicated via several interfaces, and not all of 22347 * them may have this capability. 22348 */ 22349 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 22350 LENGTH, max_frag, ipsec_len, cksum); 22351 /* Software checksum? */ 22352 if (DB_CKSUMFLAGS(mp) == 0) { 22353 IP_STAT(ipst, ip_out_sw_cksum); 22354 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22355 LENGTH - hlen); 22356 } 22357 } else { 22358 sctp_hdr_t *sctph; 22359 22360 ASSERT(PROTO == IPPROTO_SCTP); 22361 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22362 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22363 /* 22364 * Zero out the checksum field to ensure proper 22365 * checksum calculation. 22366 */ 22367 sctph->sh_chksum = 0; 22368 #ifdef DEBUG 22369 if (!skip_sctp_cksum) 22370 #endif 22371 sctph->sh_chksum = sctp_cksum(mp, hlen); 22372 } 22373 } 22374 22375 /* 22376 * If this is a multicast packet and originated from ip_wput 22377 * we need to do loopback and forwarding checks. If it comes 22378 * from ip_wput_multicast, we SHOULD not do this. 22379 */ 22380 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 22381 22382 /* checksum */ 22383 cksum += ttl_protocol; 22384 22385 /* fragment the packet */ 22386 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 22387 goto fragmentit; 22388 /* 22389 * Don't use frag_flag if packet is pre-built or source 22390 * routed or if multicast (since multicast packets do 22391 * not solicit ICMP "packet too big" messages). 22392 */ 22393 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22394 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22395 !ip_source_route_included(ipha)) && 22396 !CLASSD(ipha->ipha_dst)) 22397 ipha->ipha_fragment_offset_and_flags |= 22398 htons(ire->ire_frag_flag); 22399 22400 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22401 /* calculate IP header checksum */ 22402 cksum += ipha->ipha_ident; 22403 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 22404 cksum += ipha->ipha_fragment_offset_and_flags; 22405 22406 /* IP options present */ 22407 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22408 if (hlen) 22409 goto checksumoptions; 22410 22411 /* calculate hdr checksum */ 22412 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22413 cksum = ~(cksum + (cksum >> 16)); 22414 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22415 } 22416 if (ipsec_len != 0) { 22417 /* 22418 * We will do the rest of the processing after 22419 * we come back from IPsec in ip_wput_ipsec_out(). 22420 */ 22421 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 22422 22423 io = (ipsec_out_t *)first_mp->b_rptr; 22424 io->ipsec_out_ill_index = ((ill_t *)stq->q_ptr)-> 22425 ill_phyint->phyint_ifindex; 22426 22427 ipsec_out_process(q, first_mp, ire, ill_index); 22428 ire_refrele(ire); 22429 if (conn_outgoing_ill != NULL) 22430 ill_refrele(conn_outgoing_ill); 22431 return; 22432 } 22433 22434 /* 22435 * In most cases, the emission loop below is entered only 22436 * once. Only in the case where the ire holds the 22437 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 22438 * flagged ires in the bucket, and send the packet 22439 * through all crossed RTF_MULTIRT routes. 22440 */ 22441 if (ire->ire_flags & RTF_MULTIRT) { 22442 multirt_send = B_TRUE; 22443 } 22444 do { 22445 if (multirt_send) { 22446 irb_t *irb; 22447 /* 22448 * We are in a multiple send case, need to get 22449 * the next ire and make a duplicate of the packet. 22450 * ire1 holds here the next ire to process in the 22451 * bucket. If multirouting is expected, 22452 * any non-RTF_MULTIRT ire that has the 22453 * right destination address is ignored. 22454 */ 22455 irb = ire->ire_bucket; 22456 ASSERT(irb != NULL); 22457 22458 IRB_REFHOLD(irb); 22459 for (ire1 = ire->ire_next; 22460 ire1 != NULL; 22461 ire1 = ire1->ire_next) { 22462 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 22463 continue; 22464 if (ire1->ire_addr != ire->ire_addr) 22465 continue; 22466 if (ire1->ire_marks & 22467 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 22468 continue; 22469 22470 /* Got one */ 22471 IRE_REFHOLD(ire1); 22472 break; 22473 } 22474 IRB_REFRELE(irb); 22475 22476 if (ire1 != NULL) { 22477 next_mp = copyb(mp); 22478 if ((next_mp == NULL) || 22479 ((mp->b_cont != NULL) && 22480 ((next_mp->b_cont = 22481 dupmsg(mp->b_cont)) == NULL))) { 22482 freemsg(next_mp); 22483 next_mp = NULL; 22484 ire_refrele(ire1); 22485 ire1 = NULL; 22486 } 22487 } 22488 22489 /* Last multiroute ire; don't loop anymore. */ 22490 if (ire1 == NULL) { 22491 multirt_send = B_FALSE; 22492 } 22493 } 22494 22495 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 22496 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha, 22497 mblk_t *, mp); 22498 FW_HOOKS(ipst->ips_ip4_physical_out_event, 22499 ipst->ips_ipv4firewall_physical_out, 22500 NULL, ire->ire_ipif->ipif_ill, ipha, mp, mp, ipst); 22501 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 22502 if (mp == NULL) 22503 goto release_ire_and_ill; 22504 22505 mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT); 22506 DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire); 22507 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE); 22508 if ((pktxmit_state == SEND_FAILED) || 22509 (pktxmit_state == LLHDR_RESLV_FAILED)) { 22510 ip2dbg(("ip_wput_ire: ip_xmit_v4 failed" 22511 "- packet dropped\n")); 22512 release_ire_and_ill: 22513 ire_refrele(ire); 22514 if (next_mp != NULL) { 22515 freemsg(next_mp); 22516 ire_refrele(ire1); 22517 } 22518 if (conn_outgoing_ill != NULL) 22519 ill_refrele(conn_outgoing_ill); 22520 return; 22521 } 22522 22523 if (CLASSD(dst)) { 22524 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastPkts); 22525 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastOctets, 22526 LENGTH); 22527 } 22528 22529 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22530 "ip_wput_ire_end: q %p (%S)", 22531 q, "last copy out"); 22532 IRE_REFRELE(ire); 22533 22534 if (multirt_send) { 22535 ASSERT(ire1); 22536 /* 22537 * Proceed with the next RTF_MULTIRT ire, 22538 * Also set up the send-to queue accordingly. 22539 */ 22540 ire = ire1; 22541 ire1 = NULL; 22542 stq = ire->ire_stq; 22543 mp = next_mp; 22544 next_mp = NULL; 22545 ipha = (ipha_t *)mp->b_rptr; 22546 ill_index = Q_TO_INDEX(stq); 22547 ill = (ill_t *)stq->q_ptr; 22548 } 22549 } while (multirt_send); 22550 if (conn_outgoing_ill != NULL) 22551 ill_refrele(conn_outgoing_ill); 22552 return; 22553 22554 /* 22555 * ire->ire_type == IRE_BROADCAST (minimize diffs) 22556 */ 22557 broadcast: 22558 { 22559 /* 22560 * Avoid broadcast storms by setting the ttl to 1 22561 * for broadcasts. This parameter can be set 22562 * via ndd, so make sure that for the SO_DONTROUTE 22563 * case that ipha_ttl is always set to 1. 22564 * In the event that we are replying to incoming 22565 * ICMP packets, conn could be NULL. 22566 */ 22567 if ((connp != NULL) && connp->conn_dontroute) 22568 ipha->ipha_ttl = 1; 22569 else 22570 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 22571 22572 /* 22573 * Note that we are not doing a IRB_REFHOLD here. 22574 * Actually we don't care if the list changes i.e 22575 * if somebody deletes an IRE from the list while 22576 * we drop the lock, the next time we come around 22577 * ire_next will be NULL and hence we won't send 22578 * out multiple copies which is fine. 22579 */ 22580 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 22581 ire1 = ire->ire_next; 22582 if (conn_outgoing_ill != NULL) { 22583 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 22584 ASSERT(ire1 == ire->ire_next); 22585 if (ire1 != NULL && ire1->ire_addr == dst) { 22586 ire_refrele(ire); 22587 ire = ire1; 22588 IRE_REFHOLD(ire); 22589 ire1 = ire->ire_next; 22590 continue; 22591 } 22592 rw_exit(&ire->ire_bucket->irb_lock); 22593 /* Did not find a matching ill */ 22594 ip1dbg(("ip_wput_ire: broadcast with no " 22595 "matching IP_BOUND_IF ill %s\n", 22596 conn_outgoing_ill->ill_name)); 22597 freemsg(first_mp); 22598 if (ire != NULL) 22599 ire_refrele(ire); 22600 ill_refrele(conn_outgoing_ill); 22601 return; 22602 } 22603 } else if (ire1 != NULL && ire1->ire_addr == dst) { 22604 /* 22605 * If the next IRE has the same address and is not one 22606 * of the two copies that we need to send, try to see 22607 * whether this copy should be sent at all. This 22608 * assumes that we insert loopbacks first and then 22609 * non-loopbacks. This is acheived by inserting the 22610 * loopback always before non-loopback. 22611 * This is used to send a single copy of a broadcast 22612 * packet out all physical interfaces that have an 22613 * matching IRE_BROADCAST while also looping 22614 * back one copy (to ip_wput_local) for each 22615 * matching physical interface. However, we avoid 22616 * sending packets out different logical that match by 22617 * having ipif_up/ipif_down supress duplicate 22618 * IRE_BROADCASTS. 22619 * 22620 * This feature is currently used to get broadcasts 22621 * sent to multiple interfaces, when the broadcast 22622 * address being used applies to multiple interfaces. 22623 * For example, a whole net broadcast will be 22624 * replicated on every connected subnet of 22625 * the target net. 22626 * 22627 * Each zone has its own set of IRE_BROADCASTs, so that 22628 * we're able to distribute inbound packets to multiple 22629 * zones who share a broadcast address. We avoid looping 22630 * back outbound packets in different zones but on the 22631 * same ill, as the application would see duplicates. 22632 * 22633 * If the interfaces are part of the same group, 22634 * we would want to send only one copy out for 22635 * whole group. 22636 * 22637 * This logic assumes that ire_add_v4() groups the 22638 * IRE_BROADCAST entries so that those with the same 22639 * ire_addr and ill_group are kept together. 22640 */ 22641 ire_ill = ire->ire_ipif->ipif_ill; 22642 if (ire->ire_stq == NULL && ire1->ire_stq != NULL) { 22643 if (ire_ill->ill_group != NULL && 22644 (ire->ire_marks & IRE_MARK_NORECV)) { 22645 /* 22646 * If the current zone only has an ire 22647 * broadcast for this address marked 22648 * NORECV, the ire we want is ahead in 22649 * the bucket, so we look it up 22650 * deliberately ignoring the zoneid. 22651 */ 22652 for (ire1 = ire->ire_bucket->irb_ire; 22653 ire1 != NULL; 22654 ire1 = ire1->ire_next) { 22655 ire1_ill = 22656 ire1->ire_ipif->ipif_ill; 22657 if (ire1->ire_addr != dst) 22658 continue; 22659 /* skip over the current ire */ 22660 if (ire1 == ire) 22661 continue; 22662 /* skip over deleted ires */ 22663 if (ire1->ire_marks & 22664 IRE_MARK_CONDEMNED) 22665 continue; 22666 /* 22667 * non-loopback ire in our 22668 * group: use it for the next 22669 * pass in the loop 22670 */ 22671 if (ire1->ire_stq != NULL && 22672 ire1_ill->ill_group == 22673 ire_ill->ill_group) 22674 break; 22675 } 22676 } 22677 } else { 22678 while (ire1 != NULL && ire1->ire_addr == dst) { 22679 ire1_ill = ire1->ire_ipif->ipif_ill; 22680 /* 22681 * We can have two broadcast ires on the 22682 * same ill in different zones; here 22683 * we'll send a copy of the packet on 22684 * each ill and the fanout code will 22685 * call conn_wantpacket() to check that 22686 * the zone has the broadcast address 22687 * configured on the ill. If the two 22688 * ires are in the same group we only 22689 * send one copy up. 22690 */ 22691 if (ire1_ill != ire_ill && 22692 (ire1_ill->ill_group == NULL || 22693 ire_ill->ill_group == NULL || 22694 ire1_ill->ill_group != 22695 ire_ill->ill_group)) { 22696 break; 22697 } 22698 ire1 = ire1->ire_next; 22699 } 22700 } 22701 } 22702 ASSERT(multirt_send == B_FALSE); 22703 if (ire1 != NULL && ire1->ire_addr == dst) { 22704 if ((ire->ire_flags & RTF_MULTIRT) && 22705 (ire1->ire_flags & RTF_MULTIRT)) { 22706 /* 22707 * We are in the multirouting case. 22708 * The message must be sent at least 22709 * on both ires. These ires have been 22710 * inserted AFTER the standard ones 22711 * in ip_rt_add(). There are thus no 22712 * other ire entries for the destination 22713 * address in the rest of the bucket 22714 * that do not have the RTF_MULTIRT 22715 * flag. We don't process a copy 22716 * of the message here. This will be 22717 * done in the final sending loop. 22718 */ 22719 multirt_send = B_TRUE; 22720 } else { 22721 next_mp = ip_copymsg(first_mp); 22722 if (next_mp != NULL) 22723 IRE_REFHOLD(ire1); 22724 } 22725 } 22726 rw_exit(&ire->ire_bucket->irb_lock); 22727 } 22728 22729 if (stq) { 22730 /* 22731 * A non-NULL send-to queue means this packet is going 22732 * out of this machine. 22733 */ 22734 out_ill = (ill_t *)stq->q_ptr; 22735 22736 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutRequests); 22737 ttl_protocol = ((uint16_t *)ipha)[4]; 22738 /* 22739 * We accumulate the pseudo header checksum in cksum. 22740 * This is pretty hairy code, so watch close. One 22741 * thing to keep in mind is that UDP and TCP have 22742 * stored their respective datagram lengths in their 22743 * checksum fields. This lines things up real nice. 22744 */ 22745 cksum = (dst >> 16) + (dst & 0xFFFF) + 22746 (src >> 16) + (src & 0xFFFF); 22747 /* 22748 * We assume the udp checksum field contains the 22749 * length, so to compute the pseudo header checksum, 22750 * all we need is the protocol number and src/dst. 22751 */ 22752 /* Provide the checksums for UDP and TCP. */ 22753 if ((PROTO == IPPROTO_TCP) && 22754 (ip_hdr_included != IP_HDR_INCLUDED)) { 22755 /* hlen gets the number of uchar_ts in the IP header */ 22756 hlen = (V_HLEN & 0xF) << 2; 22757 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22758 IP_STAT(ipst, ip_out_sw_cksum); 22759 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22760 LENGTH - hlen); 22761 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 22762 } else if (PROTO == IPPROTO_SCTP && 22763 (ip_hdr_included != IP_HDR_INCLUDED)) { 22764 sctp_hdr_t *sctph; 22765 22766 hlen = (V_HLEN & 0xF) << 2; 22767 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22768 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22769 sctph->sh_chksum = 0; 22770 #ifdef DEBUG 22771 if (!skip_sctp_cksum) 22772 #endif 22773 sctph->sh_chksum = sctp_cksum(mp, hlen); 22774 } else { 22775 queue_t *dev_q = stq->q_next; 22776 22777 if ((dev_q->q_next || dev_q->q_first) && 22778 !canput(dev_q)) { 22779 blocked: 22780 ipha->ipha_ident = ip_hdr_included; 22781 /* 22782 * If we don't have a conn to apply 22783 * backpressure, free the message. 22784 * In the ire_send path, we don't know 22785 * the position to requeue the packet. Rather 22786 * than reorder packets, we just drop this 22787 * packet. 22788 */ 22789 if (ipst->ips_ip_output_queue && 22790 connp != NULL && 22791 caller != IRE_SEND) { 22792 if (caller == IP_WSRV) { 22793 connp->conn_did_putbq = 1; 22794 (void) putbq(connp->conn_wq, 22795 first_mp); 22796 conn_drain_insert(connp); 22797 /* 22798 * This is the service thread, 22799 * and the queue is already 22800 * noenabled. The check for 22801 * canput and the putbq is not 22802 * atomic. So we need to check 22803 * again. 22804 */ 22805 if (canput(stq->q_next)) 22806 connp->conn_did_putbq 22807 = 0; 22808 IP_STAT(ipst, ip_conn_flputbq); 22809 } else { 22810 /* 22811 * We are not the service proc. 22812 * ip_wsrv will be scheduled or 22813 * is already running. 22814 */ 22815 (void) putq(connp->conn_wq, 22816 first_mp); 22817 } 22818 } else { 22819 out_ill = (ill_t *)stq->q_ptr; 22820 BUMP_MIB(out_ill->ill_ip_mib, 22821 ipIfStatsOutDiscards); 22822 freemsg(first_mp); 22823 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22824 "ip_wput_ire_end: q %p (%S)", 22825 q, "discard"); 22826 } 22827 ire_refrele(ire); 22828 if (next_mp) { 22829 ire_refrele(ire1); 22830 freemsg(next_mp); 22831 } 22832 if (conn_outgoing_ill != NULL) 22833 ill_refrele(conn_outgoing_ill); 22834 return; 22835 } 22836 if ((PROTO == IPPROTO_UDP) && 22837 (ip_hdr_included != IP_HDR_INCLUDED)) { 22838 /* 22839 * hlen gets the number of uchar_ts in the 22840 * IP header 22841 */ 22842 hlen = (V_HLEN & 0xF) << 2; 22843 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22844 max_frag = ire->ire_max_frag; 22845 if (*up != 0) { 22846 IP_CKSUM_XMIT(out_ill, ire, mp, ipha, 22847 up, PROTO, hlen, LENGTH, max_frag, 22848 ipsec_len, cksum); 22849 /* Software checksum? */ 22850 if (DB_CKSUMFLAGS(mp) == 0) { 22851 IP_STAT(ipst, ip_out_sw_cksum); 22852 IP_STAT_UPDATE(ipst, 22853 ip_udp_out_sw_cksum_bytes, 22854 LENGTH - hlen); 22855 } 22856 } 22857 } 22858 } 22859 /* 22860 * Need to do this even when fragmenting. The local 22861 * loopback can be done without computing checksums 22862 * but forwarding out other interface must be done 22863 * after the IP checksum (and ULP checksums) have been 22864 * computed. 22865 * 22866 * NOTE : multicast_forward is set only if this packet 22867 * originated from ip_wput. For packets originating from 22868 * ip_wput_multicast, it is not set. 22869 */ 22870 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 22871 multi_loopback: 22872 ip2dbg(("ip_wput: multicast, loop %d\n", 22873 conn_multicast_loop)); 22874 22875 /* Forget header checksum offload */ 22876 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 22877 22878 /* 22879 * Local loopback of multicasts? Check the 22880 * ill. 22881 * 22882 * Note that the loopback function will not come 22883 * in through ip_rput - it will only do the 22884 * client fanout thus we need to do an mforward 22885 * as well. The is different from the BSD 22886 * logic. 22887 */ 22888 if (ill != NULL) { 22889 ilm_t *ilm; 22890 22891 ILM_WALKER_HOLD(ill); 22892 ilm = ilm_lookup_ill(ill, ipha->ipha_dst, 22893 ALL_ZONES); 22894 ILM_WALKER_RELE(ill); 22895 if (ilm != NULL) { 22896 /* 22897 * Pass along the virtual output q. 22898 * ip_wput_local() will distribute the 22899 * packet to all the matching zones, 22900 * except the sending zone when 22901 * IP_MULTICAST_LOOP is false. 22902 */ 22903 ip_multicast_loopback(q, ill, first_mp, 22904 conn_multicast_loop ? 0 : 22905 IP_FF_NO_MCAST_LOOP, zoneid); 22906 } 22907 } 22908 if (ipha->ipha_ttl == 0) { 22909 /* 22910 * 0 => only to this host i.e. we are 22911 * done. We are also done if this was the 22912 * loopback interface since it is sufficient 22913 * to loopback one copy of a multicast packet. 22914 */ 22915 freemsg(first_mp); 22916 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22917 "ip_wput_ire_end: q %p (%S)", 22918 q, "loopback"); 22919 ire_refrele(ire); 22920 if (conn_outgoing_ill != NULL) 22921 ill_refrele(conn_outgoing_ill); 22922 return; 22923 } 22924 /* 22925 * ILLF_MULTICAST is checked in ip_newroute 22926 * i.e. we don't need to check it here since 22927 * all IRE_CACHEs come from ip_newroute. 22928 * For multicast traffic, SO_DONTROUTE is interpreted 22929 * to mean only send the packet out the interface 22930 * (optionally specified with IP_MULTICAST_IF) 22931 * and do not forward it out additional interfaces. 22932 * RSVP and the rsvp daemon is an example of a 22933 * protocol and user level process that 22934 * handles it's own routing. Hence, it uses the 22935 * SO_DONTROUTE option to accomplish this. 22936 */ 22937 22938 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 22939 ill != NULL) { 22940 /* Unconditionally redo the checksum */ 22941 ipha->ipha_hdr_checksum = 0; 22942 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 22943 22944 /* 22945 * If this needs to go out secure, we need 22946 * to wait till we finish the IPsec 22947 * processing. 22948 */ 22949 if (ipsec_len == 0 && 22950 ip_mforward(ill, ipha, mp)) { 22951 freemsg(first_mp); 22952 ip1dbg(("ip_wput: mforward failed\n")); 22953 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22954 "ip_wput_ire_end: q %p (%S)", 22955 q, "mforward failed"); 22956 ire_refrele(ire); 22957 if (conn_outgoing_ill != NULL) 22958 ill_refrele(conn_outgoing_ill); 22959 return; 22960 } 22961 } 22962 } 22963 max_frag = ire->ire_max_frag; 22964 cksum += ttl_protocol; 22965 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 22966 /* No fragmentation required for this one. */ 22967 /* 22968 * Don't use frag_flag if packet is pre-built or source 22969 * routed or if multicast (since multicast packets do 22970 * not solicit ICMP "packet too big" messages). 22971 */ 22972 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22973 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22974 !ip_source_route_included(ipha)) && 22975 !CLASSD(ipha->ipha_dst)) 22976 ipha->ipha_fragment_offset_and_flags |= 22977 htons(ire->ire_frag_flag); 22978 22979 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22980 /* Complete the IP header checksum. */ 22981 cksum += ipha->ipha_ident; 22982 cksum += (v_hlen_tos_len >> 16)+ 22983 (v_hlen_tos_len & 0xFFFF); 22984 cksum += ipha->ipha_fragment_offset_and_flags; 22985 hlen = (V_HLEN & 0xF) - 22986 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22987 if (hlen) { 22988 checksumoptions: 22989 /* 22990 * Account for the IP Options in the IP 22991 * header checksum. 22992 */ 22993 up = (uint16_t *)(rptr+ 22994 IP_SIMPLE_HDR_LENGTH); 22995 do { 22996 cksum += up[0]; 22997 cksum += up[1]; 22998 up += 2; 22999 } while (--hlen); 23000 } 23001 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 23002 cksum = ~(cksum + (cksum >> 16)); 23003 ipha->ipha_hdr_checksum = (uint16_t)cksum; 23004 } 23005 if (ipsec_len != 0) { 23006 ipsec_out_process(q, first_mp, ire, ill_index); 23007 if (!next_mp) { 23008 ire_refrele(ire); 23009 if (conn_outgoing_ill != NULL) 23010 ill_refrele(conn_outgoing_ill); 23011 return; 23012 } 23013 goto next; 23014 } 23015 23016 /* 23017 * multirt_send has already been handled 23018 * for broadcast, but not yet for multicast 23019 * or IP options. 23020 */ 23021 if (next_mp == NULL) { 23022 if (ire->ire_flags & RTF_MULTIRT) { 23023 multirt_send = B_TRUE; 23024 } 23025 } 23026 23027 /* 23028 * In most cases, the emission loop below is 23029 * entered only once. Only in the case where 23030 * the ire holds the RTF_MULTIRT flag, do we loop 23031 * to process all RTF_MULTIRT ires in the bucket, 23032 * and send the packet through all crossed 23033 * RTF_MULTIRT routes. 23034 */ 23035 do { 23036 if (multirt_send) { 23037 irb_t *irb; 23038 23039 irb = ire->ire_bucket; 23040 ASSERT(irb != NULL); 23041 /* 23042 * We are in a multiple send case, 23043 * need to get the next IRE and make 23044 * a duplicate of the packet. 23045 */ 23046 IRB_REFHOLD(irb); 23047 for (ire1 = ire->ire_next; 23048 ire1 != NULL; 23049 ire1 = ire1->ire_next) { 23050 if (!(ire1->ire_flags & 23051 RTF_MULTIRT)) { 23052 continue; 23053 } 23054 if (ire1->ire_addr != 23055 ire->ire_addr) { 23056 continue; 23057 } 23058 if (ire1->ire_marks & 23059 (IRE_MARK_CONDEMNED| 23060 IRE_MARK_HIDDEN)) { 23061 continue; 23062 } 23063 23064 /* Got one */ 23065 IRE_REFHOLD(ire1); 23066 break; 23067 } 23068 IRB_REFRELE(irb); 23069 23070 if (ire1 != NULL) { 23071 next_mp = copyb(mp); 23072 if ((next_mp == NULL) || 23073 ((mp->b_cont != NULL) && 23074 ((next_mp->b_cont = 23075 dupmsg(mp->b_cont)) 23076 == NULL))) { 23077 freemsg(next_mp); 23078 next_mp = NULL; 23079 ire_refrele(ire1); 23080 ire1 = NULL; 23081 } 23082 } 23083 23084 /* 23085 * Last multiroute ire; don't loop 23086 * anymore. The emission is over 23087 * and next_mp is NULL. 23088 */ 23089 if (ire1 == NULL) { 23090 multirt_send = B_FALSE; 23091 } 23092 } 23093 23094 out_ill = ire_to_ill(ire); 23095 DTRACE_PROBE4(ip4__physical__out__start, 23096 ill_t *, NULL, 23097 ill_t *, out_ill, 23098 ipha_t *, ipha, mblk_t *, mp); 23099 FW_HOOKS(ipst->ips_ip4_physical_out_event, 23100 ipst->ips_ipv4firewall_physical_out, 23101 NULL, out_ill, ipha, mp, mp, ipst); 23102 DTRACE_PROBE1(ip4__physical__out__end, 23103 mblk_t *, mp); 23104 if (mp == NULL) 23105 goto release_ire_and_ill_2; 23106 23107 ASSERT(ipsec_len == 0); 23108 mp->b_prev = 23109 SET_BPREV_FLAG(IPP_LOCAL_OUT); 23110 DTRACE_PROBE2(ip__xmit__2, 23111 mblk_t *, mp, ire_t *, ire); 23112 pktxmit_state = ip_xmit_v4(mp, ire, 23113 NULL, B_TRUE); 23114 if ((pktxmit_state == SEND_FAILED) || 23115 (pktxmit_state == LLHDR_RESLV_FAILED)) { 23116 release_ire_and_ill_2: 23117 if (next_mp) { 23118 freemsg(next_mp); 23119 ire_refrele(ire1); 23120 } 23121 ire_refrele(ire); 23122 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23123 "ip_wput_ire_end: q %p (%S)", 23124 q, "discard MDATA"); 23125 if (conn_outgoing_ill != NULL) 23126 ill_refrele(conn_outgoing_ill); 23127 return; 23128 } 23129 23130 if (CLASSD(dst)) { 23131 BUMP_MIB(out_ill->ill_ip_mib, 23132 ipIfStatsHCOutMcastPkts); 23133 UPDATE_MIB(out_ill->ill_ip_mib, 23134 ipIfStatsHCOutMcastOctets, 23135 LENGTH); 23136 } else if (ire->ire_type == IRE_BROADCAST) { 23137 BUMP_MIB(out_ill->ill_ip_mib, 23138 ipIfStatsHCOutBcastPkts); 23139 } 23140 23141 if (multirt_send) { 23142 /* 23143 * We are in a multiple send case, 23144 * need to re-enter the sending loop 23145 * using the next ire. 23146 */ 23147 ire_refrele(ire); 23148 ire = ire1; 23149 stq = ire->ire_stq; 23150 mp = next_mp; 23151 next_mp = NULL; 23152 ipha = (ipha_t *)mp->b_rptr; 23153 ill_index = Q_TO_INDEX(stq); 23154 } 23155 } while (multirt_send); 23156 23157 if (!next_mp) { 23158 /* 23159 * Last copy going out (the ultra-common 23160 * case). Note that we intentionally replicate 23161 * the putnext rather than calling it before 23162 * the next_mp check in hopes of a little 23163 * tail-call action out of the compiler. 23164 */ 23165 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23166 "ip_wput_ire_end: q %p (%S)", 23167 q, "last copy out(1)"); 23168 ire_refrele(ire); 23169 if (conn_outgoing_ill != NULL) 23170 ill_refrele(conn_outgoing_ill); 23171 return; 23172 } 23173 /* More copies going out below. */ 23174 } else { 23175 int offset; 23176 fragmentit: 23177 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 23178 /* 23179 * If this would generate a icmp_frag_needed message, 23180 * we need to handle it before we do the IPsec 23181 * processing. Otherwise, we need to strip the IPsec 23182 * headers before we send up the message to the ULPs 23183 * which becomes messy and difficult. 23184 */ 23185 if (ipsec_len != 0) { 23186 if ((max_frag < (unsigned int)(LENGTH + 23187 ipsec_len)) && (offset & IPH_DF)) { 23188 out_ill = (ill_t *)stq->q_ptr; 23189 BUMP_MIB(out_ill->ill_ip_mib, 23190 ipIfStatsOutFragFails); 23191 BUMP_MIB(out_ill->ill_ip_mib, 23192 ipIfStatsOutFragReqds); 23193 ipha->ipha_hdr_checksum = 0; 23194 ipha->ipha_hdr_checksum = 23195 (uint16_t)ip_csum_hdr(ipha); 23196 icmp_frag_needed(ire->ire_stq, first_mp, 23197 max_frag, zoneid, ipst); 23198 if (!next_mp) { 23199 ire_refrele(ire); 23200 if (conn_outgoing_ill != NULL) { 23201 ill_refrele( 23202 conn_outgoing_ill); 23203 } 23204 return; 23205 } 23206 } else { 23207 /* 23208 * This won't cause a icmp_frag_needed 23209 * message. to be generated. Send it on 23210 * the wire. Note that this could still 23211 * cause fragmentation and all we 23212 * do is the generation of the message 23213 * to the ULP if needed before IPsec. 23214 */ 23215 if (!next_mp) { 23216 ipsec_out_process(q, first_mp, 23217 ire, ill_index); 23218 TRACE_2(TR_FAC_IP, 23219 TR_IP_WPUT_IRE_END, 23220 "ip_wput_ire_end: q %p " 23221 "(%S)", q, 23222 "last ipsec_out_process"); 23223 ire_refrele(ire); 23224 if (conn_outgoing_ill != NULL) { 23225 ill_refrele( 23226 conn_outgoing_ill); 23227 } 23228 return; 23229 } 23230 ipsec_out_process(q, first_mp, 23231 ire, ill_index); 23232 } 23233 } else { 23234 /* 23235 * Initiate IPPF processing. For 23236 * fragmentable packets we finish 23237 * all QOS packet processing before 23238 * calling: 23239 * ip_wput_ire_fragmentit->ip_wput_frag 23240 */ 23241 23242 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23243 ip_process(IPP_LOCAL_OUT, &mp, 23244 ill_index); 23245 if (mp == NULL) { 23246 out_ill = (ill_t *)stq->q_ptr; 23247 BUMP_MIB(out_ill->ill_ip_mib, 23248 ipIfStatsOutDiscards); 23249 if (next_mp != NULL) { 23250 freemsg(next_mp); 23251 ire_refrele(ire1); 23252 } 23253 ire_refrele(ire); 23254 TRACE_2(TR_FAC_IP, 23255 TR_IP_WPUT_IRE_END, 23256 "ip_wput_ire: q %p (%S)", 23257 q, "discard MDATA"); 23258 if (conn_outgoing_ill != NULL) { 23259 ill_refrele( 23260 conn_outgoing_ill); 23261 } 23262 return; 23263 } 23264 } 23265 if (!next_mp) { 23266 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23267 "ip_wput_ire_end: q %p (%S)", 23268 q, "last fragmentation"); 23269 ip_wput_ire_fragmentit(mp, ire, 23270 zoneid, ipst); 23271 ire_refrele(ire); 23272 if (conn_outgoing_ill != NULL) 23273 ill_refrele(conn_outgoing_ill); 23274 return; 23275 } 23276 ip_wput_ire_fragmentit(mp, ire, zoneid, ipst); 23277 } 23278 } 23279 } else { 23280 nullstq: 23281 /* A NULL stq means the destination address is local. */ 23282 UPDATE_OB_PKT_COUNT(ire); 23283 ire->ire_last_used_time = lbolt; 23284 ASSERT(ire->ire_ipif != NULL); 23285 if (!next_mp) { 23286 /* 23287 * Is there an "in" and "out" for traffic local 23288 * to a host (loopback)? The code in Solaris doesn't 23289 * explicitly draw a line in its code for in vs out, 23290 * so we've had to draw a line in the sand: ip_wput_ire 23291 * is considered to be the "output" side and 23292 * ip_wput_local to be the "input" side. 23293 */ 23294 out_ill = ire_to_ill(ire); 23295 23296 DTRACE_PROBE4(ip4__loopback__out__start, 23297 ill_t *, NULL, ill_t *, out_ill, 23298 ipha_t *, ipha, mblk_t *, first_mp); 23299 23300 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23301 ipst->ips_ipv4firewall_loopback_out, 23302 NULL, out_ill, ipha, first_mp, mp, ipst); 23303 23304 DTRACE_PROBE1(ip4__loopback__out_end, 23305 mblk_t *, first_mp); 23306 23307 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23308 "ip_wput_ire_end: q %p (%S)", 23309 q, "local address"); 23310 23311 if (first_mp != NULL) 23312 ip_wput_local(q, out_ill, ipha, 23313 first_mp, ire, 0, ire->ire_zoneid); 23314 ire_refrele(ire); 23315 if (conn_outgoing_ill != NULL) 23316 ill_refrele(conn_outgoing_ill); 23317 return; 23318 } 23319 23320 out_ill = ire_to_ill(ire); 23321 23322 DTRACE_PROBE4(ip4__loopback__out__start, 23323 ill_t *, NULL, ill_t *, out_ill, 23324 ipha_t *, ipha, mblk_t *, first_mp); 23325 23326 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23327 ipst->ips_ipv4firewall_loopback_out, 23328 NULL, out_ill, ipha, first_mp, mp, ipst); 23329 23330 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, first_mp); 23331 23332 if (first_mp != NULL) 23333 ip_wput_local(q, out_ill, ipha, 23334 first_mp, ire, 0, ire->ire_zoneid); 23335 } 23336 next: 23337 /* 23338 * More copies going out to additional interfaces. 23339 * ire1 has already been held. We don't need the 23340 * "ire" anymore. 23341 */ 23342 ire_refrele(ire); 23343 ire = ire1; 23344 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 23345 mp = next_mp; 23346 ASSERT(ire->ire_ipversion == IPV4_VERSION); 23347 ill = ire_to_ill(ire); 23348 first_mp = mp; 23349 if (ipsec_len != 0) { 23350 ASSERT(first_mp->b_datap->db_type == M_CTL); 23351 mp = mp->b_cont; 23352 } 23353 dst = ire->ire_addr; 23354 ipha = (ipha_t *)mp->b_rptr; 23355 /* 23356 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 23357 * Restore ipha_ident "no checksum" flag. 23358 */ 23359 src = orig_src; 23360 ipha->ipha_ident = ip_hdr_included; 23361 goto another; 23362 23363 #undef rptr 23364 #undef Q_TO_INDEX 23365 } 23366 23367 /* 23368 * Routine to allocate a message that is used to notify the ULP about MDT. 23369 * The caller may provide a pointer to the link-layer MDT capabilities, 23370 * or NULL if MDT is to be disabled on the stream. 23371 */ 23372 mblk_t * 23373 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 23374 { 23375 mblk_t *mp; 23376 ip_mdt_info_t *mdti; 23377 ill_mdt_capab_t *idst; 23378 23379 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 23380 DB_TYPE(mp) = M_CTL; 23381 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 23382 mdti = (ip_mdt_info_t *)mp->b_rptr; 23383 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 23384 idst = &(mdti->mdt_capab); 23385 23386 /* 23387 * If the caller provides us with the capability, copy 23388 * it over into our notification message; otherwise 23389 * we zero out the capability portion. 23390 */ 23391 if (isrc != NULL) 23392 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23393 else 23394 bzero((caddr_t)idst, sizeof (*idst)); 23395 } 23396 return (mp); 23397 } 23398 23399 /* 23400 * Routine which determines whether MDT can be enabled on the destination 23401 * IRE and IPC combination, and if so, allocates and returns the MDT 23402 * notification mblk that may be used by ULP. We also check if we need to 23403 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 23404 * MDT usage in the past have been lifted. This gets called during IP 23405 * and ULP binding. 23406 */ 23407 mblk_t * 23408 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23409 ill_mdt_capab_t *mdt_cap) 23410 { 23411 mblk_t *mp; 23412 boolean_t rc = B_FALSE; 23413 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23414 23415 ASSERT(dst_ire != NULL); 23416 ASSERT(connp != NULL); 23417 ASSERT(mdt_cap != NULL); 23418 23419 /* 23420 * Currently, we only support simple TCP/{IPv4,IPv6} with 23421 * Multidata, which is handled in tcp_multisend(). This 23422 * is the reason why we do all these checks here, to ensure 23423 * that we don't enable Multidata for the cases which we 23424 * can't handle at the moment. 23425 */ 23426 do { 23427 /* Only do TCP at the moment */ 23428 if (connp->conn_ulp != IPPROTO_TCP) 23429 break; 23430 23431 /* 23432 * IPsec outbound policy present? Note that we get here 23433 * after calling ipsec_conn_cache_policy() where the global 23434 * policy checking is performed. conn_latch will be 23435 * non-NULL as long as there's a policy defined, 23436 * i.e. conn_out_enforce_policy may be NULL in such case 23437 * when the connection is non-secure, and hence we check 23438 * further if the latch refers to an outbound policy. 23439 */ 23440 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 23441 break; 23442 23443 /* CGTP (multiroute) is enabled? */ 23444 if (dst_ire->ire_flags & RTF_MULTIRT) 23445 break; 23446 23447 /* Outbound IPQoS enabled? */ 23448 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23449 /* 23450 * In this case, we disable MDT for this and all 23451 * future connections going over the interface. 23452 */ 23453 mdt_cap->ill_mdt_on = 0; 23454 break; 23455 } 23456 23457 /* socket option(s) present? */ 23458 if (!CONN_IS_LSO_MD_FASTPATH(connp)) 23459 break; 23460 23461 rc = B_TRUE; 23462 /* CONSTCOND */ 23463 } while (0); 23464 23465 /* Remember the result */ 23466 connp->conn_mdt_ok = rc; 23467 23468 if (!rc) 23469 return (NULL); 23470 else if (!mdt_cap->ill_mdt_on) { 23471 /* 23472 * If MDT has been previously turned off in the past, and we 23473 * currently can do MDT (due to IPQoS policy removal, etc.) 23474 * then enable it for this interface. 23475 */ 23476 mdt_cap->ill_mdt_on = 1; 23477 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 23478 "interface %s\n", ill_name)); 23479 } 23480 23481 /* Allocate the MDT info mblk */ 23482 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 23483 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 23484 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23485 return (NULL); 23486 } 23487 return (mp); 23488 } 23489 23490 /* 23491 * Routine to allocate a message that is used to notify the ULP about LSO. 23492 * The caller may provide a pointer to the link-layer LSO capabilities, 23493 * or NULL if LSO is to be disabled on the stream. 23494 */ 23495 mblk_t * 23496 ip_lsoinfo_alloc(ill_lso_capab_t *isrc) 23497 { 23498 mblk_t *mp; 23499 ip_lso_info_t *lsoi; 23500 ill_lso_capab_t *idst; 23501 23502 if ((mp = allocb(sizeof (*lsoi), BPRI_HI)) != NULL) { 23503 DB_TYPE(mp) = M_CTL; 23504 mp->b_wptr = mp->b_rptr + sizeof (*lsoi); 23505 lsoi = (ip_lso_info_t *)mp->b_rptr; 23506 lsoi->lso_info_id = LSO_IOC_INFO_UPDATE; 23507 idst = &(lsoi->lso_capab); 23508 23509 /* 23510 * If the caller provides us with the capability, copy 23511 * it over into our notification message; otherwise 23512 * we zero out the capability portion. 23513 */ 23514 if (isrc != NULL) 23515 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23516 else 23517 bzero((caddr_t)idst, sizeof (*idst)); 23518 } 23519 return (mp); 23520 } 23521 23522 /* 23523 * Routine which determines whether LSO can be enabled on the destination 23524 * IRE and IPC combination, and if so, allocates and returns the LSO 23525 * notification mblk that may be used by ULP. We also check if we need to 23526 * turn LSO back to 'on' when certain restrictions prohibiting us to allow 23527 * LSO usage in the past have been lifted. This gets called during IP 23528 * and ULP binding. 23529 */ 23530 mblk_t * 23531 ip_lsoinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23532 ill_lso_capab_t *lso_cap) 23533 { 23534 mblk_t *mp; 23535 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23536 23537 ASSERT(dst_ire != NULL); 23538 ASSERT(connp != NULL); 23539 ASSERT(lso_cap != NULL); 23540 23541 connp->conn_lso_ok = B_TRUE; 23542 23543 if ((connp->conn_ulp != IPPROTO_TCP) || 23544 CONN_IPSEC_OUT_ENCAPSULATED(connp) || 23545 (dst_ire->ire_flags & RTF_MULTIRT) || 23546 !CONN_IS_LSO_MD_FASTPATH(connp) || 23547 (IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 23548 connp->conn_lso_ok = B_FALSE; 23549 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23550 /* 23551 * Disable LSO for this and all future connections going 23552 * over the interface. 23553 */ 23554 lso_cap->ill_lso_on = 0; 23555 } 23556 } 23557 23558 if (!connp->conn_lso_ok) 23559 return (NULL); 23560 else if (!lso_cap->ill_lso_on) { 23561 /* 23562 * If LSO has been previously turned off in the past, and we 23563 * currently can do LSO (due to IPQoS policy removal, etc.) 23564 * then enable it for this interface. 23565 */ 23566 lso_cap->ill_lso_on = 1; 23567 ip1dbg(("ip_mdinfo_return: reenabling LSO for interface %s\n", 23568 ill_name)); 23569 } 23570 23571 /* Allocate the LSO info mblk */ 23572 if ((mp = ip_lsoinfo_alloc(lso_cap)) == NULL) 23573 ip0dbg(("ip_lsoinfo_return: can't enable LSO for " 23574 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23575 23576 return (mp); 23577 } 23578 23579 /* 23580 * Create destination address attribute, and fill it with the physical 23581 * destination address and SAP taken from the template DL_UNITDATA_REQ 23582 * message block. 23583 */ 23584 boolean_t 23585 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 23586 { 23587 dl_unitdata_req_t *dlurp; 23588 pattr_t *pa; 23589 pattrinfo_t pa_info; 23590 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 23591 uint_t das_len, das_off; 23592 23593 ASSERT(dlmp != NULL); 23594 23595 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 23596 das_len = dlurp->dl_dest_addr_length; 23597 das_off = dlurp->dl_dest_addr_offset; 23598 23599 pa_info.type = PATTR_DSTADDRSAP; 23600 pa_info.len = sizeof (**das) + das_len - 1; 23601 23602 /* create and associate the attribute */ 23603 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23604 if (pa != NULL) { 23605 ASSERT(*das != NULL); 23606 (*das)->addr_is_group = 0; 23607 (*das)->addr_len = (uint8_t)das_len; 23608 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 23609 } 23610 23611 return (pa != NULL); 23612 } 23613 23614 /* 23615 * Create hardware checksum attribute and fill it with the values passed. 23616 */ 23617 boolean_t 23618 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 23619 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 23620 { 23621 pattr_t *pa; 23622 pattrinfo_t pa_info; 23623 23624 ASSERT(mmd != NULL); 23625 23626 pa_info.type = PATTR_HCKSUM; 23627 pa_info.len = sizeof (pattr_hcksum_t); 23628 23629 /* create and associate the attribute */ 23630 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23631 if (pa != NULL) { 23632 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 23633 23634 hck->hcksum_start_offset = start_offset; 23635 hck->hcksum_stuff_offset = stuff_offset; 23636 hck->hcksum_end_offset = end_offset; 23637 hck->hcksum_flags = flags; 23638 } 23639 return (pa != NULL); 23640 } 23641 23642 /* 23643 * Create zerocopy attribute and fill it with the specified flags 23644 */ 23645 boolean_t 23646 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 23647 { 23648 pattr_t *pa; 23649 pattrinfo_t pa_info; 23650 23651 ASSERT(mmd != NULL); 23652 pa_info.type = PATTR_ZCOPY; 23653 pa_info.len = sizeof (pattr_zcopy_t); 23654 23655 /* create and associate the attribute */ 23656 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23657 if (pa != NULL) { 23658 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 23659 23660 zcopy->zcopy_flags = flags; 23661 } 23662 return (pa != NULL); 23663 } 23664 23665 /* 23666 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 23667 * block chain. We could rewrite to handle arbitrary message block chains but 23668 * that would make the code complicated and slow. Right now there three 23669 * restrictions: 23670 * 23671 * 1. The first message block must contain the complete IP header and 23672 * at least 1 byte of payload data. 23673 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 23674 * so that we can use a single Multidata message. 23675 * 3. No frag must be distributed over two or more message blocks so 23676 * that we don't need more than two packet descriptors per frag. 23677 * 23678 * The above restrictions allow us to support userland applications (which 23679 * will send down a single message block) and NFS over UDP (which will 23680 * send down a chain of at most three message blocks). 23681 * 23682 * We also don't use MDT for payloads with less than or equal to 23683 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 23684 */ 23685 boolean_t 23686 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 23687 { 23688 int blocks; 23689 ssize_t total, missing, size; 23690 23691 ASSERT(mp != NULL); 23692 ASSERT(hdr_len > 0); 23693 23694 size = MBLKL(mp) - hdr_len; 23695 if (size <= 0) 23696 return (B_FALSE); 23697 23698 /* The first mblk contains the header and some payload. */ 23699 blocks = 1; 23700 total = size; 23701 size %= len; 23702 missing = (size == 0) ? 0 : (len - size); 23703 mp = mp->b_cont; 23704 23705 while (mp != NULL) { 23706 /* 23707 * Give up if we encounter a zero length message block. 23708 * In practice, this should rarely happen and therefore 23709 * not worth the trouble of freeing and re-linking the 23710 * mblk from the chain to handle such case. 23711 */ 23712 if ((size = MBLKL(mp)) == 0) 23713 return (B_FALSE); 23714 23715 /* Too many payload buffers for a single Multidata message? */ 23716 if (++blocks > MULTIDATA_MAX_PBUFS) 23717 return (B_FALSE); 23718 23719 total += size; 23720 /* Is a frag distributed over two or more message blocks? */ 23721 if (missing > size) 23722 return (B_FALSE); 23723 size -= missing; 23724 23725 size %= len; 23726 missing = (size == 0) ? 0 : (len - size); 23727 23728 mp = mp->b_cont; 23729 } 23730 23731 return (total > ip_wput_frag_mdt_min); 23732 } 23733 23734 /* 23735 * Outbound IPv4 fragmentation routine using MDT. 23736 */ 23737 static void 23738 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 23739 uint32_t frag_flag, int offset) 23740 { 23741 ipha_t *ipha_orig; 23742 int i1, ip_data_end; 23743 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 23744 mblk_t *hdr_mp, *md_mp = NULL; 23745 unsigned char *hdr_ptr, *pld_ptr; 23746 multidata_t *mmd; 23747 ip_pdescinfo_t pdi; 23748 ill_t *ill; 23749 ip_stack_t *ipst = ire->ire_ipst; 23750 23751 ASSERT(DB_TYPE(mp) == M_DATA); 23752 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 23753 23754 ill = ire_to_ill(ire); 23755 ASSERT(ill != NULL); 23756 23757 ipha_orig = (ipha_t *)mp->b_rptr; 23758 mp->b_rptr += sizeof (ipha_t); 23759 23760 /* Calculate how many packets we will send out */ 23761 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 23762 pkts = (i1 + len - 1) / len; 23763 ASSERT(pkts > 1); 23764 23765 /* Allocate a message block which will hold all the IP Headers. */ 23766 wroff = ipst->ips_ip_wroff_extra; 23767 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 23768 23769 i1 = pkts * hdr_chunk_len; 23770 /* 23771 * Create the header buffer, Multidata and destination address 23772 * and SAP attribute that should be associated with it. 23773 */ 23774 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 23775 ((hdr_mp->b_wptr += i1), 23776 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 23777 !ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) { 23778 freemsg(mp); 23779 if (md_mp == NULL) { 23780 freemsg(hdr_mp); 23781 } else { 23782 free_mmd: IP_STAT(ipst, ip_frag_mdt_discarded); 23783 freemsg(md_mp); 23784 } 23785 IP_STAT(ipst, ip_frag_mdt_allocfail); 23786 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 23787 return; 23788 } 23789 IP_STAT(ipst, ip_frag_mdt_allocd); 23790 23791 /* 23792 * Add a payload buffer to the Multidata; this operation must not 23793 * fail, or otherwise our logic in this routine is broken. There 23794 * is no memory allocation done by the routine, so any returned 23795 * failure simply tells us that we've done something wrong. 23796 * 23797 * A failure tells us that either we're adding the same payload 23798 * buffer more than once, or we're trying to add more buffers than 23799 * allowed. None of the above cases should happen, and we panic 23800 * because either there's horrible heap corruption, and/or 23801 * programming mistake. 23802 */ 23803 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23804 goto pbuf_panic; 23805 23806 hdr_ptr = hdr_mp->b_rptr; 23807 pld_ptr = mp->b_rptr; 23808 23809 /* Establish the ending byte offset, based on the starting offset. */ 23810 offset <<= 3; 23811 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 23812 IP_SIMPLE_HDR_LENGTH; 23813 23814 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 23815 23816 while (pld_ptr < mp->b_wptr) { 23817 ipha_t *ipha; 23818 uint16_t offset_and_flags; 23819 uint16_t ip_len; 23820 int error; 23821 23822 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 23823 ipha = (ipha_t *)(hdr_ptr + wroff); 23824 ASSERT(OK_32PTR(ipha)); 23825 *ipha = *ipha_orig; 23826 23827 if (ip_data_end - offset > len) { 23828 offset_and_flags = IPH_MF; 23829 } else { 23830 /* 23831 * Last frag. Set len to the length of this last piece. 23832 */ 23833 len = ip_data_end - offset; 23834 /* A frag of a frag might have IPH_MF non-zero */ 23835 offset_and_flags = 23836 ntohs(ipha->ipha_fragment_offset_and_flags) & 23837 IPH_MF; 23838 } 23839 offset_and_flags |= (uint16_t)(offset >> 3); 23840 offset_and_flags |= (uint16_t)frag_flag; 23841 /* Store the offset and flags in the IP header. */ 23842 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 23843 23844 /* Store the length in the IP header. */ 23845 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 23846 ipha->ipha_length = htons(ip_len); 23847 23848 /* 23849 * Set the IP header checksum. Note that mp is just 23850 * the header, so this is easy to pass to ip_csum. 23851 */ 23852 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23853 23854 /* 23855 * Record offset and size of header and data of the next packet 23856 * in the multidata message. 23857 */ 23858 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 23859 PDESC_PLD_INIT(&pdi); 23860 i1 = MIN(mp->b_wptr - pld_ptr, len); 23861 ASSERT(i1 > 0); 23862 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 23863 if (i1 == len) { 23864 pld_ptr += len; 23865 } else { 23866 i1 = len - i1; 23867 mp = mp->b_cont; 23868 ASSERT(mp != NULL); 23869 ASSERT(MBLKL(mp) >= i1); 23870 /* 23871 * Attach the next payload message block to the 23872 * multidata message. 23873 */ 23874 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23875 goto pbuf_panic; 23876 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 23877 pld_ptr = mp->b_rptr + i1; 23878 } 23879 23880 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 23881 KM_NOSLEEP)) == NULL) { 23882 /* 23883 * Any failure other than ENOMEM indicates that we 23884 * have passed in invalid pdesc info or parameters 23885 * to mmd_addpdesc, which must not happen. 23886 * 23887 * EINVAL is a result of failure on boundary checks 23888 * against the pdesc info contents. It should not 23889 * happen, and we panic because either there's 23890 * horrible heap corruption, and/or programming 23891 * mistake. 23892 */ 23893 if (error != ENOMEM) { 23894 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 23895 "pdesc logic error detected for " 23896 "mmd %p pinfo %p (%d)\n", 23897 (void *)mmd, (void *)&pdi, error); 23898 /* NOTREACHED */ 23899 } 23900 IP_STAT(ipst, ip_frag_mdt_addpdescfail); 23901 /* Free unattached payload message blocks as well */ 23902 md_mp->b_cont = mp->b_cont; 23903 goto free_mmd; 23904 } 23905 23906 /* Advance fragment offset. */ 23907 offset += len; 23908 23909 /* Advance to location for next header in the buffer. */ 23910 hdr_ptr += hdr_chunk_len; 23911 23912 /* Did we reach the next payload message block? */ 23913 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 23914 mp = mp->b_cont; 23915 /* 23916 * Attach the next message block with payload 23917 * data to the multidata message. 23918 */ 23919 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23920 goto pbuf_panic; 23921 pld_ptr = mp->b_rptr; 23922 } 23923 } 23924 23925 ASSERT(hdr_mp->b_wptr == hdr_ptr); 23926 ASSERT(mp->b_wptr == pld_ptr); 23927 23928 /* Update IP statistics */ 23929 IP_STAT_UPDATE(ipst, ip_frag_mdt_pkt_out, pkts); 23930 23931 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates, pkts); 23932 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 23933 23934 len = ntohs(ipha_orig->ipha_length) + (pkts - 1) * IP_SIMPLE_HDR_LENGTH; 23935 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, pkts); 23936 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, len); 23937 23938 if (pkt_type == OB_PKT) { 23939 ire->ire_ob_pkt_count += pkts; 23940 if (ire->ire_ipif != NULL) 23941 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 23942 } else { 23943 /* The type is IB_PKT in the forwarding path. */ 23944 ire->ire_ib_pkt_count += pkts; 23945 ASSERT(!IRE_IS_LOCAL(ire)); 23946 if (ire->ire_type & IRE_BROADCAST) { 23947 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 23948 } else { 23949 UPDATE_MIB(ill->ill_ip_mib, 23950 ipIfStatsHCOutForwDatagrams, pkts); 23951 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 23952 } 23953 } 23954 ire->ire_last_used_time = lbolt; 23955 /* Send it down */ 23956 putnext(ire->ire_stq, md_mp); 23957 return; 23958 23959 pbuf_panic: 23960 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 23961 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 23962 pbuf_idx); 23963 /* NOTREACHED */ 23964 } 23965 23966 /* 23967 * Outbound IP fragmentation routine. 23968 * 23969 * NOTE : This routine does not ire_refrele the ire that is passed in 23970 * as the argument. 23971 */ 23972 static void 23973 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 23974 uint32_t frag_flag, zoneid_t zoneid, ip_stack_t *ipst) 23975 { 23976 int i1; 23977 mblk_t *ll_hdr_mp; 23978 int ll_hdr_len; 23979 int hdr_len; 23980 mblk_t *hdr_mp; 23981 ipha_t *ipha; 23982 int ip_data_end; 23983 int len; 23984 mblk_t *mp = mp_orig, *mp1; 23985 int offset; 23986 queue_t *q; 23987 uint32_t v_hlen_tos_len; 23988 mblk_t *first_mp; 23989 boolean_t mctl_present; 23990 ill_t *ill; 23991 ill_t *out_ill; 23992 mblk_t *xmit_mp; 23993 mblk_t *carve_mp; 23994 ire_t *ire1 = NULL; 23995 ire_t *save_ire = NULL; 23996 mblk_t *next_mp = NULL; 23997 boolean_t last_frag = B_FALSE; 23998 boolean_t multirt_send = B_FALSE; 23999 ire_t *first_ire = NULL; 24000 irb_t *irb = NULL; 24001 mib2_ipIfStatsEntry_t *mibptr = NULL; 24002 24003 ill = ire_to_ill(ire); 24004 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 24005 24006 BUMP_MIB(mibptr, ipIfStatsOutFragReqds); 24007 24008 if (max_frag == 0) { 24009 ip1dbg(("ip_wput_frag: ire frag size is 0" 24010 " - dropping packet\n")); 24011 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24012 freemsg(mp); 24013 return; 24014 } 24015 24016 /* 24017 * IPsec does not allow hw accelerated packets to be fragmented 24018 * This check is made in ip_wput_ipsec_out prior to coming here 24019 * via ip_wput_ire_fragmentit. 24020 * 24021 * If at this point we have an ire whose ARP request has not 24022 * been sent out, we call ip_xmit_v4->ire_arpresolve to trigger 24023 * sending of ARP query and change ire's state to ND_INCOMPLETE. 24024 * This packet and all fragmentable packets for this ire will 24025 * continue to get dropped while ire_nce->nce_state remains in 24026 * ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to 24027 * ND_REACHABLE, all subsquent large packets for this ire will 24028 * get fragemented and sent out by this function. 24029 */ 24030 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 24031 /* If nce_state is ND_INITIAL, trigger ARP query */ 24032 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 24033 ip1dbg(("ip_wput_frag: mac address for ire is unresolved" 24034 " - dropping packet\n")); 24035 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24036 freemsg(mp); 24037 return; 24038 } 24039 24040 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 24041 "ip_wput_frag_start:"); 24042 24043 if (mp->b_datap->db_type == M_CTL) { 24044 first_mp = mp; 24045 mp_orig = mp = mp->b_cont; 24046 mctl_present = B_TRUE; 24047 } else { 24048 first_mp = mp; 24049 mctl_present = B_FALSE; 24050 } 24051 24052 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 24053 ipha = (ipha_t *)mp->b_rptr; 24054 24055 /* 24056 * If the Don't Fragment flag is on, generate an ICMP destination 24057 * unreachable, fragmentation needed. 24058 */ 24059 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 24060 if (offset & IPH_DF) { 24061 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24062 if (is_system_labeled()) { 24063 max_frag = tsol_pmtu_adjust(mp, ire->ire_max_frag, 24064 ire->ire_max_frag - max_frag, AF_INET); 24065 } 24066 /* 24067 * Need to compute hdr checksum if called from ip_wput_ire. 24068 * Note that ip_rput_forward verifies the checksum before 24069 * calling this routine so in that case this is a noop. 24070 */ 24071 ipha->ipha_hdr_checksum = 0; 24072 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24073 icmp_frag_needed(ire->ire_stq, first_mp, max_frag, zoneid, 24074 ipst); 24075 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24076 "ip_wput_frag_end:(%S)", 24077 "don't fragment"); 24078 return; 24079 } 24080 /* 24081 * Labeled systems adjust max_frag if they add a label 24082 * to send the correct path mtu. We need the real mtu since we 24083 * are fragmenting the packet after label adjustment. 24084 */ 24085 if (is_system_labeled()) 24086 max_frag = ire->ire_max_frag; 24087 if (mctl_present) 24088 freeb(first_mp); 24089 /* 24090 * Establish the starting offset. May not be zero if we are fragging 24091 * a fragment that is being forwarded. 24092 */ 24093 offset = offset & IPH_OFFSET; 24094 24095 /* TODO why is this test needed? */ 24096 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 24097 if (((max_frag - LENGTH) & ~7) < 8) { 24098 /* TODO: notify ulp somehow */ 24099 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24100 freemsg(mp); 24101 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24102 "ip_wput_frag_end:(%S)", 24103 "len < 8"); 24104 return; 24105 } 24106 24107 hdr_len = (V_HLEN & 0xF) << 2; 24108 24109 ipha->ipha_hdr_checksum = 0; 24110 24111 /* 24112 * Establish the number of bytes maximum per frag, after putting 24113 * in the header. 24114 */ 24115 len = (max_frag - hdr_len) & ~7; 24116 24117 /* Check if we can use MDT to send out the frags. */ 24118 ASSERT(!IRE_IS_LOCAL(ire)); 24119 if (hdr_len == IP_SIMPLE_HDR_LENGTH && 24120 ipst->ips_ip_multidata_outbound && 24121 !(ire->ire_flags & RTF_MULTIRT) && 24122 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 24123 ill != NULL && ILL_MDT_CAPABLE(ill) && 24124 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 24125 ASSERT(ill->ill_mdt_capab != NULL); 24126 if (!ill->ill_mdt_capab->ill_mdt_on) { 24127 /* 24128 * If MDT has been previously turned off in the past, 24129 * and we currently can do MDT (due to IPQoS policy 24130 * removal, etc.) then enable it for this interface. 24131 */ 24132 ill->ill_mdt_capab->ill_mdt_on = 1; 24133 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 24134 ill->ill_name)); 24135 } 24136 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 24137 offset); 24138 return; 24139 } 24140 24141 /* Get a copy of the header for the trailing frags */ 24142 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst); 24143 if (!hdr_mp) { 24144 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24145 freemsg(mp); 24146 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24147 "ip_wput_frag_end:(%S)", 24148 "couldn't copy hdr"); 24149 return; 24150 } 24151 if (DB_CRED(mp) != NULL) 24152 mblk_setcred(hdr_mp, DB_CRED(mp)); 24153 24154 /* Store the starting offset, with the MoreFrags flag. */ 24155 i1 = offset | IPH_MF | frag_flag; 24156 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 24157 24158 /* Establish the ending byte offset, based on the starting offset. */ 24159 offset <<= 3; 24160 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 24161 24162 /* Store the length of the first fragment in the IP header. */ 24163 i1 = len + hdr_len; 24164 ASSERT(i1 <= IP_MAXPACKET); 24165 ipha->ipha_length = htons((uint16_t)i1); 24166 24167 /* 24168 * Compute the IP header checksum for the first frag. We have to 24169 * watch out that we stop at the end of the header. 24170 */ 24171 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24172 24173 /* 24174 * Now carve off the first frag. Note that this will include the 24175 * original IP header. 24176 */ 24177 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 24178 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24179 freeb(hdr_mp); 24180 freemsg(mp_orig); 24181 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24182 "ip_wput_frag_end:(%S)", 24183 "couldn't carve first"); 24184 return; 24185 } 24186 24187 /* 24188 * Multirouting case. Each fragment is replicated 24189 * via all non-condemned RTF_MULTIRT routes 24190 * currently resolved. 24191 * We ensure that first_ire is the first RTF_MULTIRT 24192 * ire in the bucket. 24193 */ 24194 if (ire->ire_flags & RTF_MULTIRT) { 24195 irb = ire->ire_bucket; 24196 ASSERT(irb != NULL); 24197 24198 multirt_send = B_TRUE; 24199 24200 /* Make sure we do not omit any multiroute ire. */ 24201 IRB_REFHOLD(irb); 24202 for (first_ire = irb->irb_ire; 24203 first_ire != NULL; 24204 first_ire = first_ire->ire_next) { 24205 if ((first_ire->ire_flags & RTF_MULTIRT) && 24206 (first_ire->ire_addr == ire->ire_addr) && 24207 !(first_ire->ire_marks & 24208 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 24209 break; 24210 } 24211 } 24212 24213 if (first_ire != NULL) { 24214 if (first_ire != ire) { 24215 IRE_REFHOLD(first_ire); 24216 /* 24217 * Do not release the ire passed in 24218 * as the argument. 24219 */ 24220 ire = first_ire; 24221 } else { 24222 first_ire = NULL; 24223 } 24224 } 24225 IRB_REFRELE(irb); 24226 24227 /* 24228 * Save the first ire; we will need to restore it 24229 * for the trailing frags. 24230 * We REFHOLD save_ire, as each iterated ire will be 24231 * REFRELEd. 24232 */ 24233 save_ire = ire; 24234 IRE_REFHOLD(save_ire); 24235 } 24236 24237 /* 24238 * First fragment emission loop. 24239 * In most cases, the emission loop below is entered only 24240 * once. Only in the case where the ire holds the RTF_MULTIRT 24241 * flag, do we loop to process all RTF_MULTIRT ires in the 24242 * bucket, and send the fragment through all crossed 24243 * RTF_MULTIRT routes. 24244 */ 24245 do { 24246 if (ire->ire_flags & RTF_MULTIRT) { 24247 /* 24248 * We are in a multiple send case, need to get 24249 * the next ire and make a copy of the packet. 24250 * ire1 holds here the next ire to process in the 24251 * bucket. If multirouting is expected, 24252 * any non-RTF_MULTIRT ire that has the 24253 * right destination address is ignored. 24254 * 24255 * We have to take into account the MTU of 24256 * each walked ire. max_frag is set by the 24257 * the caller and generally refers to 24258 * the primary ire entry. Here we ensure that 24259 * no route with a lower MTU will be used, as 24260 * fragments are carved once for all ires, 24261 * then replicated. 24262 */ 24263 ASSERT(irb != NULL); 24264 IRB_REFHOLD(irb); 24265 for (ire1 = ire->ire_next; 24266 ire1 != NULL; 24267 ire1 = ire1->ire_next) { 24268 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 24269 continue; 24270 if (ire1->ire_addr != ire->ire_addr) 24271 continue; 24272 if (ire1->ire_marks & 24273 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 24274 continue; 24275 /* 24276 * Ensure we do not exceed the MTU 24277 * of the next route. 24278 */ 24279 if (ire1->ire_max_frag < max_frag) { 24280 ip_multirt_bad_mtu(ire1, max_frag); 24281 continue; 24282 } 24283 24284 /* Got one. */ 24285 IRE_REFHOLD(ire1); 24286 break; 24287 } 24288 IRB_REFRELE(irb); 24289 24290 if (ire1 != NULL) { 24291 next_mp = copyb(mp); 24292 if ((next_mp == NULL) || 24293 ((mp->b_cont != NULL) && 24294 ((next_mp->b_cont = 24295 dupmsg(mp->b_cont)) == NULL))) { 24296 freemsg(next_mp); 24297 next_mp = NULL; 24298 ire_refrele(ire1); 24299 ire1 = NULL; 24300 } 24301 } 24302 24303 /* Last multiroute ire; don't loop anymore. */ 24304 if (ire1 == NULL) { 24305 multirt_send = B_FALSE; 24306 } 24307 } 24308 24309 ll_hdr_len = 0; 24310 LOCK_IRE_FP_MP(ire); 24311 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24312 if (ll_hdr_mp != NULL) { 24313 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24314 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 24315 } else { 24316 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24317 } 24318 24319 /* If there is a transmit header, get a copy for this frag. */ 24320 /* 24321 * TODO: should check db_ref before calling ip_carve_mp since 24322 * it might give us a dup. 24323 */ 24324 if (!ll_hdr_mp) { 24325 /* No xmit header. */ 24326 xmit_mp = mp; 24327 24328 /* We have a link-layer header that can fit in our mblk. */ 24329 } else if (mp->b_datap->db_ref == 1 && 24330 ll_hdr_len != 0 && 24331 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24332 /* M_DATA fastpath */ 24333 mp->b_rptr -= ll_hdr_len; 24334 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 24335 xmit_mp = mp; 24336 24337 /* Corner case if copyb has failed */ 24338 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 24339 UNLOCK_IRE_FP_MP(ire); 24340 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24341 freeb(hdr_mp); 24342 freemsg(mp); 24343 freemsg(mp_orig); 24344 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24345 "ip_wput_frag_end:(%S)", 24346 "discard"); 24347 24348 if (multirt_send) { 24349 ASSERT(ire1); 24350 ASSERT(next_mp); 24351 24352 freemsg(next_mp); 24353 ire_refrele(ire1); 24354 } 24355 if (save_ire != NULL) 24356 IRE_REFRELE(save_ire); 24357 24358 if (first_ire != NULL) 24359 ire_refrele(first_ire); 24360 return; 24361 24362 /* 24363 * Case of res_mp OR the fastpath mp can't fit 24364 * in the mblk 24365 */ 24366 } else { 24367 xmit_mp->b_cont = mp; 24368 if (DB_CRED(mp) != NULL) 24369 mblk_setcred(xmit_mp, DB_CRED(mp)); 24370 /* 24371 * Get priority marking, if any. 24372 * We propagate the CoS marking from the 24373 * original packet that went to QoS processing 24374 * in ip_wput_ire to the newly carved mp. 24375 */ 24376 if (DB_TYPE(xmit_mp) == M_DATA) 24377 xmit_mp->b_band = mp->b_band; 24378 } 24379 UNLOCK_IRE_FP_MP(ire); 24380 24381 q = ire->ire_stq; 24382 out_ill = (ill_t *)q->q_ptr; 24383 24384 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24385 24386 DTRACE_PROBE4(ip4__physical__out__start, 24387 ill_t *, NULL, ill_t *, out_ill, 24388 ipha_t *, ipha, mblk_t *, xmit_mp); 24389 24390 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24391 ipst->ips_ipv4firewall_physical_out, 24392 NULL, out_ill, ipha, xmit_mp, mp, ipst); 24393 24394 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, xmit_mp); 24395 24396 if (xmit_mp != NULL) { 24397 putnext(q, xmit_mp); 24398 24399 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 24400 UPDATE_MIB(out_ill->ill_ip_mib, 24401 ipIfStatsHCOutOctets, i1); 24402 24403 if (pkt_type != OB_PKT) { 24404 /* 24405 * Update the packet count and MIB stats 24406 * of trailing RTF_MULTIRT ires. 24407 */ 24408 UPDATE_OB_PKT_COUNT(ire); 24409 BUMP_MIB(out_ill->ill_ip_mib, 24410 ipIfStatsOutFragReqds); 24411 } 24412 } 24413 24414 if (multirt_send) { 24415 /* 24416 * We are in a multiple send case; look for 24417 * the next ire and re-enter the loop. 24418 */ 24419 ASSERT(ire1); 24420 ASSERT(next_mp); 24421 /* REFRELE the current ire before looping */ 24422 ire_refrele(ire); 24423 ire = ire1; 24424 ire1 = NULL; 24425 mp = next_mp; 24426 next_mp = NULL; 24427 } 24428 } while (multirt_send); 24429 24430 ASSERT(ire1 == NULL); 24431 24432 /* Restore the original ire; we need it for the trailing frags */ 24433 if (save_ire != NULL) { 24434 /* REFRELE the last iterated ire */ 24435 ire_refrele(ire); 24436 /* save_ire has been REFHOLDed */ 24437 ire = save_ire; 24438 save_ire = NULL; 24439 q = ire->ire_stq; 24440 } 24441 24442 if (pkt_type == OB_PKT) { 24443 UPDATE_OB_PKT_COUNT(ire); 24444 } else { 24445 out_ill = (ill_t *)q->q_ptr; 24446 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 24447 UPDATE_IB_PKT_COUNT(ire); 24448 } 24449 24450 /* Advance the offset to the second frag starting point. */ 24451 offset += len; 24452 /* 24453 * Update hdr_len from the copied header - there might be less options 24454 * in the later fragments. 24455 */ 24456 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 24457 /* Loop until done. */ 24458 for (;;) { 24459 uint16_t offset_and_flags; 24460 uint16_t ip_len; 24461 24462 if (ip_data_end - offset > len) { 24463 /* 24464 * Carve off the appropriate amount from the original 24465 * datagram. 24466 */ 24467 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24468 mp = NULL; 24469 break; 24470 } 24471 /* 24472 * More frags after this one. Get another copy 24473 * of the header. 24474 */ 24475 if (carve_mp->b_datap->db_ref == 1 && 24476 hdr_mp->b_wptr - hdr_mp->b_rptr < 24477 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24478 /* Inline IP header */ 24479 carve_mp->b_rptr -= hdr_mp->b_wptr - 24480 hdr_mp->b_rptr; 24481 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24482 hdr_mp->b_wptr - hdr_mp->b_rptr); 24483 mp = carve_mp; 24484 } else { 24485 if (!(mp = copyb(hdr_mp))) { 24486 freemsg(carve_mp); 24487 break; 24488 } 24489 /* Get priority marking, if any. */ 24490 mp->b_band = carve_mp->b_band; 24491 mp->b_cont = carve_mp; 24492 } 24493 ipha = (ipha_t *)mp->b_rptr; 24494 offset_and_flags = IPH_MF; 24495 } else { 24496 /* 24497 * Last frag. Consume the header. Set len to 24498 * the length of this last piece. 24499 */ 24500 len = ip_data_end - offset; 24501 24502 /* 24503 * Carve off the appropriate amount from the original 24504 * datagram. 24505 */ 24506 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24507 mp = NULL; 24508 break; 24509 } 24510 if (carve_mp->b_datap->db_ref == 1 && 24511 hdr_mp->b_wptr - hdr_mp->b_rptr < 24512 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24513 /* Inline IP header */ 24514 carve_mp->b_rptr -= hdr_mp->b_wptr - 24515 hdr_mp->b_rptr; 24516 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24517 hdr_mp->b_wptr - hdr_mp->b_rptr); 24518 mp = carve_mp; 24519 freeb(hdr_mp); 24520 hdr_mp = mp; 24521 } else { 24522 mp = hdr_mp; 24523 /* Get priority marking, if any. */ 24524 mp->b_band = carve_mp->b_band; 24525 mp->b_cont = carve_mp; 24526 } 24527 ipha = (ipha_t *)mp->b_rptr; 24528 /* A frag of a frag might have IPH_MF non-zero */ 24529 offset_and_flags = 24530 ntohs(ipha->ipha_fragment_offset_and_flags) & 24531 IPH_MF; 24532 } 24533 offset_and_flags |= (uint16_t)(offset >> 3); 24534 offset_and_flags |= (uint16_t)frag_flag; 24535 /* Store the offset and flags in the IP header. */ 24536 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24537 24538 /* Store the length in the IP header. */ 24539 ip_len = (uint16_t)(len + hdr_len); 24540 ipha->ipha_length = htons(ip_len); 24541 24542 /* 24543 * Set the IP header checksum. Note that mp is just 24544 * the header, so this is easy to pass to ip_csum. 24545 */ 24546 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24547 24548 /* Attach a transmit header, if any, and ship it. */ 24549 if (pkt_type == OB_PKT) { 24550 UPDATE_OB_PKT_COUNT(ire); 24551 } else { 24552 out_ill = (ill_t *)q->q_ptr; 24553 BUMP_MIB(out_ill->ill_ip_mib, 24554 ipIfStatsHCOutForwDatagrams); 24555 UPDATE_IB_PKT_COUNT(ire); 24556 } 24557 24558 if (ire->ire_flags & RTF_MULTIRT) { 24559 irb = ire->ire_bucket; 24560 ASSERT(irb != NULL); 24561 24562 multirt_send = B_TRUE; 24563 24564 /* 24565 * Save the original ire; we will need to restore it 24566 * for the tailing frags. 24567 */ 24568 save_ire = ire; 24569 IRE_REFHOLD(save_ire); 24570 } 24571 /* 24572 * Emission loop for this fragment, similar 24573 * to what is done for the first fragment. 24574 */ 24575 do { 24576 if (multirt_send) { 24577 /* 24578 * We are in a multiple send case, need to get 24579 * the next ire and make a copy of the packet. 24580 */ 24581 ASSERT(irb != NULL); 24582 IRB_REFHOLD(irb); 24583 for (ire1 = ire->ire_next; 24584 ire1 != NULL; 24585 ire1 = ire1->ire_next) { 24586 if (!(ire1->ire_flags & RTF_MULTIRT)) 24587 continue; 24588 if (ire1->ire_addr != ire->ire_addr) 24589 continue; 24590 if (ire1->ire_marks & 24591 (IRE_MARK_CONDEMNED| 24592 IRE_MARK_HIDDEN)) { 24593 continue; 24594 } 24595 /* 24596 * Ensure we do not exceed the MTU 24597 * of the next route. 24598 */ 24599 if (ire1->ire_max_frag < max_frag) { 24600 ip_multirt_bad_mtu(ire1, 24601 max_frag); 24602 continue; 24603 } 24604 24605 /* Got one. */ 24606 IRE_REFHOLD(ire1); 24607 break; 24608 } 24609 IRB_REFRELE(irb); 24610 24611 if (ire1 != NULL) { 24612 next_mp = copyb(mp); 24613 if ((next_mp == NULL) || 24614 ((mp->b_cont != NULL) && 24615 ((next_mp->b_cont = 24616 dupmsg(mp->b_cont)) == NULL))) { 24617 freemsg(next_mp); 24618 next_mp = NULL; 24619 ire_refrele(ire1); 24620 ire1 = NULL; 24621 } 24622 } 24623 24624 /* Last multiroute ire; don't loop anymore. */ 24625 if (ire1 == NULL) { 24626 multirt_send = B_FALSE; 24627 } 24628 } 24629 24630 /* Update transmit header */ 24631 ll_hdr_len = 0; 24632 LOCK_IRE_FP_MP(ire); 24633 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24634 if (ll_hdr_mp != NULL) { 24635 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24636 ll_hdr_len = MBLKL(ll_hdr_mp); 24637 } else { 24638 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24639 } 24640 24641 if (!ll_hdr_mp) { 24642 xmit_mp = mp; 24643 24644 /* 24645 * We have link-layer header that can fit in 24646 * our mblk. 24647 */ 24648 } else if (mp->b_datap->db_ref == 1 && 24649 ll_hdr_len != 0 && 24650 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24651 /* M_DATA fastpath */ 24652 mp->b_rptr -= ll_hdr_len; 24653 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 24654 ll_hdr_len); 24655 xmit_mp = mp; 24656 24657 /* 24658 * Case of res_mp OR the fastpath mp can't fit 24659 * in the mblk 24660 */ 24661 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 24662 xmit_mp->b_cont = mp; 24663 if (DB_CRED(mp) != NULL) 24664 mblk_setcred(xmit_mp, DB_CRED(mp)); 24665 /* Get priority marking, if any. */ 24666 if (DB_TYPE(xmit_mp) == M_DATA) 24667 xmit_mp->b_band = mp->b_band; 24668 24669 /* Corner case if copyb failed */ 24670 } else { 24671 /* 24672 * Exit both the replication and 24673 * fragmentation loops. 24674 */ 24675 UNLOCK_IRE_FP_MP(ire); 24676 goto drop_pkt; 24677 } 24678 UNLOCK_IRE_FP_MP(ire); 24679 24680 mp1 = mp; 24681 out_ill = (ill_t *)q->q_ptr; 24682 24683 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24684 24685 DTRACE_PROBE4(ip4__physical__out__start, 24686 ill_t *, NULL, ill_t *, out_ill, 24687 ipha_t *, ipha, mblk_t *, xmit_mp); 24688 24689 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24690 ipst->ips_ipv4firewall_physical_out, 24691 NULL, out_ill, ipha, xmit_mp, mp, ipst); 24692 24693 DTRACE_PROBE1(ip4__physical__out__end, 24694 mblk_t *, xmit_mp); 24695 24696 if (mp != mp1 && hdr_mp == mp1) 24697 hdr_mp = mp; 24698 if (mp != mp1 && mp_orig == mp1) 24699 mp_orig = mp; 24700 24701 if (xmit_mp != NULL) { 24702 putnext(q, xmit_mp); 24703 24704 BUMP_MIB(out_ill->ill_ip_mib, 24705 ipIfStatsHCOutTransmits); 24706 UPDATE_MIB(out_ill->ill_ip_mib, 24707 ipIfStatsHCOutOctets, ip_len); 24708 24709 if (pkt_type != OB_PKT) { 24710 /* 24711 * Update the packet count of trailing 24712 * RTF_MULTIRT ires. 24713 */ 24714 UPDATE_OB_PKT_COUNT(ire); 24715 } 24716 } 24717 24718 /* All done if we just consumed the hdr_mp. */ 24719 if (mp == hdr_mp) { 24720 last_frag = B_TRUE; 24721 BUMP_MIB(out_ill->ill_ip_mib, 24722 ipIfStatsOutFragOKs); 24723 } 24724 24725 if (multirt_send) { 24726 /* 24727 * We are in a multiple send case; look for 24728 * the next ire and re-enter the loop. 24729 */ 24730 ASSERT(ire1); 24731 ASSERT(next_mp); 24732 /* REFRELE the current ire before looping */ 24733 ire_refrele(ire); 24734 ire = ire1; 24735 ire1 = NULL; 24736 q = ire->ire_stq; 24737 mp = next_mp; 24738 next_mp = NULL; 24739 } 24740 } while (multirt_send); 24741 /* 24742 * Restore the original ire; we need it for the 24743 * trailing frags 24744 */ 24745 if (save_ire != NULL) { 24746 ASSERT(ire1 == NULL); 24747 /* REFRELE the last iterated ire */ 24748 ire_refrele(ire); 24749 /* save_ire has been REFHOLDed */ 24750 ire = save_ire; 24751 q = ire->ire_stq; 24752 save_ire = NULL; 24753 } 24754 24755 if (last_frag) { 24756 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24757 "ip_wput_frag_end:(%S)", 24758 "consumed hdr_mp"); 24759 24760 if (first_ire != NULL) 24761 ire_refrele(first_ire); 24762 return; 24763 } 24764 /* Otherwise, advance and loop. */ 24765 offset += len; 24766 } 24767 24768 drop_pkt: 24769 /* Clean up following allocation failure. */ 24770 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24771 freemsg(mp); 24772 if (mp != hdr_mp) 24773 freeb(hdr_mp); 24774 if (mp != mp_orig) 24775 freemsg(mp_orig); 24776 24777 if (save_ire != NULL) 24778 IRE_REFRELE(save_ire); 24779 if (first_ire != NULL) 24780 ire_refrele(first_ire); 24781 24782 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24783 "ip_wput_frag_end:(%S)", 24784 "end--alloc failure"); 24785 } 24786 24787 /* 24788 * Copy the header plus those options which have the copy bit set 24789 */ 24790 static mblk_t * 24791 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst) 24792 { 24793 mblk_t *mp; 24794 uchar_t *up; 24795 24796 /* 24797 * Quick check if we need to look for options without the copy bit 24798 * set 24799 */ 24800 mp = allocb(ipst->ips_ip_wroff_extra + hdr_len, BPRI_HI); 24801 if (!mp) 24802 return (mp); 24803 mp->b_rptr += ipst->ips_ip_wroff_extra; 24804 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 24805 bcopy(rptr, mp->b_rptr, hdr_len); 24806 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 24807 return (mp); 24808 } 24809 up = mp->b_rptr; 24810 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 24811 up += IP_SIMPLE_HDR_LENGTH; 24812 rptr += IP_SIMPLE_HDR_LENGTH; 24813 hdr_len -= IP_SIMPLE_HDR_LENGTH; 24814 while (hdr_len > 0) { 24815 uint32_t optval; 24816 uint32_t optlen; 24817 24818 optval = *rptr; 24819 if (optval == IPOPT_EOL) 24820 break; 24821 if (optval == IPOPT_NOP) 24822 optlen = 1; 24823 else 24824 optlen = rptr[1]; 24825 if (optval & IPOPT_COPY) { 24826 bcopy(rptr, up, optlen); 24827 up += optlen; 24828 } 24829 rptr += optlen; 24830 hdr_len -= optlen; 24831 } 24832 /* 24833 * Make sure that we drop an even number of words by filling 24834 * with EOL to the next word boundary. 24835 */ 24836 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 24837 hdr_len & 0x3; hdr_len++) 24838 *up++ = IPOPT_EOL; 24839 mp->b_wptr = up; 24840 /* Update header length */ 24841 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 24842 return (mp); 24843 } 24844 24845 /* 24846 * Delivery to local recipients including fanout to multiple recipients. 24847 * Does not do checksumming of UDP/TCP. 24848 * Note: q should be the read side queue for either the ill or conn. 24849 * Note: rq should be the read side q for the lower (ill) stream. 24850 * We don't send packets to IPPF processing, thus the last argument 24851 * to all the fanout calls are B_FALSE. 24852 */ 24853 void 24854 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 24855 int fanout_flags, zoneid_t zoneid) 24856 { 24857 uint32_t protocol; 24858 mblk_t *first_mp; 24859 boolean_t mctl_present; 24860 int ire_type; 24861 #define rptr ((uchar_t *)ipha) 24862 ip_stack_t *ipst = ill->ill_ipst; 24863 24864 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 24865 "ip_wput_local_start: q %p", q); 24866 24867 if (ire != NULL) { 24868 ire_type = ire->ire_type; 24869 } else { 24870 /* 24871 * Only ip_multicast_loopback() calls us with a NULL ire. If the 24872 * packet is not multicast, we can't tell the ire type. 24873 */ 24874 ASSERT(CLASSD(ipha->ipha_dst)); 24875 ire_type = IRE_BROADCAST; 24876 } 24877 24878 first_mp = mp; 24879 if (first_mp->b_datap->db_type == M_CTL) { 24880 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 24881 if (!io->ipsec_out_secure) { 24882 /* 24883 * This ipsec_out_t was allocated in ip_wput 24884 * for multicast packets to store the ill_index. 24885 * As this is being delivered locally, we don't 24886 * need this anymore. 24887 */ 24888 mp = first_mp->b_cont; 24889 freeb(first_mp); 24890 first_mp = mp; 24891 mctl_present = B_FALSE; 24892 } else { 24893 /* 24894 * Convert IPSEC_OUT to IPSEC_IN, preserving all 24895 * security properties for the looped-back packet. 24896 */ 24897 mctl_present = B_TRUE; 24898 mp = first_mp->b_cont; 24899 ASSERT(mp != NULL); 24900 ipsec_out_to_in(first_mp); 24901 } 24902 } else { 24903 mctl_present = B_FALSE; 24904 } 24905 24906 DTRACE_PROBE4(ip4__loopback__in__start, 24907 ill_t *, ill, ill_t *, NULL, 24908 ipha_t *, ipha, mblk_t *, first_mp); 24909 24910 FW_HOOKS(ipst->ips_ip4_loopback_in_event, 24911 ipst->ips_ipv4firewall_loopback_in, 24912 ill, NULL, ipha, first_mp, mp, ipst); 24913 24914 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, first_mp); 24915 24916 if (first_mp == NULL) 24917 return; 24918 24919 ipst->ips_loopback_packets++; 24920 24921 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 24922 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 24923 if (!IS_SIMPLE_IPH(ipha)) { 24924 ip_wput_local_options(ipha, ipst); 24925 } 24926 24927 protocol = ipha->ipha_protocol; 24928 switch (protocol) { 24929 case IPPROTO_ICMP: { 24930 ire_t *ire_zone; 24931 ilm_t *ilm; 24932 mblk_t *mp1; 24933 zoneid_t last_zoneid; 24934 24935 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(ill)) { 24936 ASSERT(ire_type == IRE_BROADCAST); 24937 /* 24938 * In the multicast case, applications may have joined 24939 * the group from different zones, so we need to deliver 24940 * the packet to each of them. Loop through the 24941 * multicast memberships structures (ilm) on the receive 24942 * ill and send a copy of the packet up each matching 24943 * one. However, we don't do this for multicasts sent on 24944 * the loopback interface (PHYI_LOOPBACK flag set) as 24945 * they must stay in the sender's zone. 24946 * 24947 * ilm_add_v6() ensures that ilms in the same zone are 24948 * contiguous in the ill_ilm list. We use this property 24949 * to avoid sending duplicates needed when two 24950 * applications in the same zone join the same group on 24951 * different logical interfaces: we ignore the ilm if 24952 * it's zoneid is the same as the last matching one. 24953 * In addition, the sending of the packet for 24954 * ire_zoneid is delayed until all of the other ilms 24955 * have been exhausted. 24956 */ 24957 last_zoneid = -1; 24958 ILM_WALKER_HOLD(ill); 24959 for (ilm = ill->ill_ilm; ilm != NULL; 24960 ilm = ilm->ilm_next) { 24961 if ((ilm->ilm_flags & ILM_DELETED) || 24962 ipha->ipha_dst != ilm->ilm_addr || 24963 ilm->ilm_zoneid == last_zoneid || 24964 ilm->ilm_zoneid == zoneid || 24965 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 24966 continue; 24967 mp1 = ip_copymsg(first_mp); 24968 if (mp1 == NULL) 24969 continue; 24970 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 24971 mctl_present, B_FALSE, ill, 24972 ilm->ilm_zoneid); 24973 last_zoneid = ilm->ilm_zoneid; 24974 } 24975 ILM_WALKER_RELE(ill); 24976 /* 24977 * Loopback case: the sending endpoint has 24978 * IP_MULTICAST_LOOP disabled, therefore we don't 24979 * dispatch the multicast packet to the sending zone. 24980 */ 24981 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 24982 freemsg(first_mp); 24983 return; 24984 } 24985 } else if (ire_type == IRE_BROADCAST) { 24986 /* 24987 * In the broadcast case, there may be many zones 24988 * which need a copy of the packet delivered to them. 24989 * There is one IRE_BROADCAST per broadcast address 24990 * and per zone; we walk those using a helper function. 24991 * In addition, the sending of the packet for zoneid is 24992 * delayed until all of the other ires have been 24993 * processed. 24994 */ 24995 IRB_REFHOLD(ire->ire_bucket); 24996 ire_zone = NULL; 24997 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 24998 ire)) != NULL) { 24999 mp1 = ip_copymsg(first_mp); 25000 if (mp1 == NULL) 25001 continue; 25002 25003 UPDATE_IB_PKT_COUNT(ire_zone); 25004 ire_zone->ire_last_used_time = lbolt; 25005 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25006 mctl_present, B_FALSE, ill, 25007 ire_zone->ire_zoneid); 25008 } 25009 IRB_REFRELE(ire->ire_bucket); 25010 } 25011 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 25012 0, mctl_present, B_FALSE, ill, zoneid); 25013 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25014 "ip_wput_local_end: q %p (%S)", 25015 q, "icmp"); 25016 return; 25017 } 25018 case IPPROTO_IGMP: 25019 if ((mp = igmp_input(q, mp, ill)) == NULL) { 25020 /* Bad packet - discarded by igmp_input */ 25021 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25022 "ip_wput_local_end: q %p (%S)", 25023 q, "igmp_input--bad packet"); 25024 if (mctl_present) 25025 freeb(first_mp); 25026 return; 25027 } 25028 /* 25029 * igmp_input() may have returned the pulled up message. 25030 * So first_mp and ipha need to be reinitialized. 25031 */ 25032 ipha = (ipha_t *)mp->b_rptr; 25033 if (mctl_present) 25034 first_mp->b_cont = mp; 25035 else 25036 first_mp = mp; 25037 /* deliver to local raw users */ 25038 break; 25039 case IPPROTO_ENCAP: 25040 /* 25041 * This case is covered by either ip_fanout_proto, or by 25042 * the above security processing for self-tunneled packets. 25043 */ 25044 break; 25045 case IPPROTO_UDP: { 25046 uint16_t *up; 25047 uint32_t ports; 25048 25049 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 25050 UDP_PORTS_OFFSET); 25051 /* Force a 'valid' checksum. */ 25052 up[3] = 0; 25053 25054 ports = *(uint32_t *)up; 25055 ip_fanout_udp(q, first_mp, ill, ipha, ports, 25056 (ire_type == IRE_BROADCAST), 25057 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25058 IP_FF_SEND_SLLA | IP_FF_IPINFO, mctl_present, B_FALSE, 25059 ill, zoneid); 25060 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25061 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 25062 return; 25063 } 25064 case IPPROTO_TCP: { 25065 25066 /* 25067 * For TCP, discard broadcast packets. 25068 */ 25069 if ((ushort_t)ire_type == IRE_BROADCAST) { 25070 freemsg(first_mp); 25071 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 25072 ip2dbg(("ip_wput_local: discard broadcast\n")); 25073 return; 25074 } 25075 25076 if (mp->b_datap->db_type == M_DATA) { 25077 /* 25078 * M_DATA mblk, so init mblk (chain) for no struio(). 25079 */ 25080 mblk_t *mp1 = mp; 25081 25082 do { 25083 mp1->b_datap->db_struioflag = 0; 25084 } while ((mp1 = mp1->b_cont) != NULL); 25085 } 25086 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 25087 <= mp->b_wptr); 25088 ip_fanout_tcp(q, first_mp, ill, ipha, 25089 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25090 IP_FF_SYN_ADDIRE | IP_FF_IPINFO, 25091 mctl_present, B_FALSE, zoneid); 25092 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25093 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 25094 return; 25095 } 25096 case IPPROTO_SCTP: 25097 { 25098 uint32_t ports; 25099 25100 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 25101 ip_fanout_sctp(first_mp, ill, ipha, ports, 25102 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25103 IP_FF_IPINFO, mctl_present, B_FALSE, zoneid); 25104 return; 25105 } 25106 25107 default: 25108 break; 25109 } 25110 /* 25111 * Find a client for some other protocol. We give 25112 * copies to multiple clients, if more than one is 25113 * bound. 25114 */ 25115 ip_fanout_proto(q, first_mp, ill, ipha, 25116 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 25117 mctl_present, B_FALSE, ill, zoneid); 25118 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25119 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 25120 #undef rptr 25121 } 25122 25123 /* 25124 * Update any source route, record route, or timestamp options. 25125 * Check that we are at end of strict source route. 25126 * The options have been sanity checked by ip_wput_options(). 25127 */ 25128 static void 25129 ip_wput_local_options(ipha_t *ipha, ip_stack_t *ipst) 25130 { 25131 ipoptp_t opts; 25132 uchar_t *opt; 25133 uint8_t optval; 25134 uint8_t optlen; 25135 ipaddr_t dst; 25136 uint32_t ts; 25137 ire_t *ire; 25138 timestruc_t now; 25139 25140 ip2dbg(("ip_wput_local_options\n")); 25141 for (optval = ipoptp_first(&opts, ipha); 25142 optval != IPOPT_EOL; 25143 optval = ipoptp_next(&opts)) { 25144 opt = opts.ipoptp_cur; 25145 optlen = opts.ipoptp_len; 25146 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 25147 switch (optval) { 25148 uint32_t off; 25149 case IPOPT_SSRR: 25150 case IPOPT_LSRR: 25151 off = opt[IPOPT_OFFSET]; 25152 off--; 25153 if (optlen < IP_ADDR_LEN || 25154 off > optlen - IP_ADDR_LEN) { 25155 /* End of source route */ 25156 break; 25157 } 25158 /* 25159 * This will only happen if two consecutive entries 25160 * in the source route contains our address or if 25161 * it is a packet with a loose source route which 25162 * reaches us before consuming the whole source route 25163 */ 25164 ip1dbg(("ip_wput_local_options: not end of SR\n")); 25165 if (optval == IPOPT_SSRR) { 25166 return; 25167 } 25168 /* 25169 * Hack: instead of dropping the packet truncate the 25170 * source route to what has been used by filling the 25171 * rest with IPOPT_NOP. 25172 */ 25173 opt[IPOPT_OLEN] = (uint8_t)off; 25174 while (off < optlen) { 25175 opt[off++] = IPOPT_NOP; 25176 } 25177 break; 25178 case IPOPT_RR: 25179 off = opt[IPOPT_OFFSET]; 25180 off--; 25181 if (optlen < IP_ADDR_LEN || 25182 off > optlen - IP_ADDR_LEN) { 25183 /* No more room - ignore */ 25184 ip1dbg(( 25185 "ip_wput_forward_options: end of RR\n")); 25186 break; 25187 } 25188 dst = htonl(INADDR_LOOPBACK); 25189 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25190 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25191 break; 25192 case IPOPT_TS: 25193 /* Insert timestamp if there is romm */ 25194 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25195 case IPOPT_TS_TSONLY: 25196 off = IPOPT_TS_TIMELEN; 25197 break; 25198 case IPOPT_TS_PRESPEC: 25199 case IPOPT_TS_PRESPEC_RFC791: 25200 /* Verify that the address matched */ 25201 off = opt[IPOPT_OFFSET] - 1; 25202 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 25203 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 25204 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 25205 ipst); 25206 if (ire == NULL) { 25207 /* Not for us */ 25208 break; 25209 } 25210 ire_refrele(ire); 25211 /* FALLTHRU */ 25212 case IPOPT_TS_TSANDADDR: 25213 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 25214 break; 25215 default: 25216 /* 25217 * ip_*put_options should have already 25218 * dropped this packet. 25219 */ 25220 cmn_err(CE_PANIC, "ip_wput_local_options: " 25221 "unknown IT - bug in ip_wput_options?\n"); 25222 return; /* Keep "lint" happy */ 25223 } 25224 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 25225 /* Increase overflow counter */ 25226 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 25227 opt[IPOPT_POS_OV_FLG] = (uint8_t) 25228 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 25229 (off << 4); 25230 break; 25231 } 25232 off = opt[IPOPT_OFFSET] - 1; 25233 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25234 case IPOPT_TS_PRESPEC: 25235 case IPOPT_TS_PRESPEC_RFC791: 25236 case IPOPT_TS_TSANDADDR: 25237 dst = htonl(INADDR_LOOPBACK); 25238 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25239 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25240 /* FALLTHRU */ 25241 case IPOPT_TS_TSONLY: 25242 off = opt[IPOPT_OFFSET] - 1; 25243 /* Compute # of milliseconds since midnight */ 25244 gethrestime(&now); 25245 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 25246 now.tv_nsec / (NANOSEC / MILLISEC); 25247 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 25248 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 25249 break; 25250 } 25251 break; 25252 } 25253 } 25254 } 25255 25256 /* 25257 * Send out a multicast packet on interface ipif. 25258 * The sender does not have an conn. 25259 * Caller verifies that this isn't a PHYI_LOOPBACK. 25260 */ 25261 void 25262 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif, zoneid_t zoneid) 25263 { 25264 ipha_t *ipha; 25265 ire_t *ire; 25266 ipaddr_t dst; 25267 mblk_t *first_mp; 25268 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 25269 25270 /* igmp_sendpkt always allocates a ipsec_out_t */ 25271 ASSERT(mp->b_datap->db_type == M_CTL); 25272 ASSERT(!ipif->ipif_isv6); 25273 ASSERT(!IS_LOOPBACK(ipif->ipif_ill)); 25274 25275 first_mp = mp; 25276 mp = first_mp->b_cont; 25277 ASSERT(mp->b_datap->db_type == M_DATA); 25278 ipha = (ipha_t *)mp->b_rptr; 25279 25280 /* 25281 * Find an IRE which matches the destination and the outgoing 25282 * queue (i.e. the outgoing interface.) 25283 */ 25284 if (ipif->ipif_flags & IPIF_POINTOPOINT) 25285 dst = ipif->ipif_pp_dst_addr; 25286 else 25287 dst = ipha->ipha_dst; 25288 /* 25289 * The source address has already been initialized by the 25290 * caller and hence matching on ILL (MATCH_IRE_ILL) would 25291 * be sufficient rather than MATCH_IRE_IPIF. 25292 * 25293 * This function is used for sending IGMP packets. We need 25294 * to make sure that we send the packet out of the interface 25295 * (ipif->ipif_ill) where we joined the group. This is to 25296 * prevent from switches doing IGMP snooping to send us multicast 25297 * packets for a given group on the interface we have joined. 25298 * If we can't find an ire, igmp_sendpkt has already initialized 25299 * ipsec_out_attach_if so that this will not be load spread in 25300 * ip_newroute_ipif. 25301 */ 25302 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, NULL, 25303 MATCH_IRE_ILL, ipst); 25304 if (!ire) { 25305 /* 25306 * Mark this packet to make it be delivered to 25307 * ip_wput_ire after the new ire has been 25308 * created. 25309 */ 25310 mp->b_prev = NULL; 25311 mp->b_next = NULL; 25312 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC, 25313 zoneid, &zero_info); 25314 return; 25315 } 25316 25317 /* 25318 * Honor the RTF_SETSRC flag; this is the only case 25319 * where we force this addr whatever the current src addr is, 25320 * because this address is set by igmp_sendpkt(), and 25321 * cannot be specified by any user. 25322 */ 25323 if (ire->ire_flags & RTF_SETSRC) { 25324 ipha->ipha_src = ire->ire_src_addr; 25325 } 25326 25327 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE, zoneid); 25328 } 25329 25330 /* 25331 * NOTE : This function does not ire_refrele the ire argument passed in. 25332 * 25333 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 25334 * failure. The nce_fp_mp can vanish any time in the case of 25335 * IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 25336 * the ire_lock to access the nce_fp_mp in this case. 25337 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 25338 * prepending a fastpath message IPQoS processing must precede it, we also set 25339 * the b_band of the fastpath message to that of the mblk returned by IPQoS 25340 * (IPQoS might have set the b_band for CoS marking). 25341 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 25342 * must follow it so that IPQoS can mark the dl_priority field for CoS 25343 * marking, if needed. 25344 */ 25345 static mblk_t * 25346 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, uint32_t ill_index) 25347 { 25348 uint_t hlen; 25349 ipha_t *ipha; 25350 mblk_t *mp1; 25351 boolean_t qos_done = B_FALSE; 25352 uchar_t *ll_hdr; 25353 ip_stack_t *ipst = ire->ire_ipst; 25354 25355 #define rptr ((uchar_t *)ipha) 25356 25357 ipha = (ipha_t *)mp->b_rptr; 25358 hlen = 0; 25359 LOCK_IRE_FP_MP(ire); 25360 if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) { 25361 ASSERT(DB_TYPE(mp1) == M_DATA); 25362 /* Initiate IPPF processing */ 25363 if ((proc != 0) && IPP_ENABLED(proc, ipst)) { 25364 UNLOCK_IRE_FP_MP(ire); 25365 ip_process(proc, &mp, ill_index); 25366 if (mp == NULL) 25367 return (NULL); 25368 25369 ipha = (ipha_t *)mp->b_rptr; 25370 LOCK_IRE_FP_MP(ire); 25371 if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) { 25372 qos_done = B_TRUE; 25373 goto no_fp_mp; 25374 } 25375 ASSERT(DB_TYPE(mp1) == M_DATA); 25376 } 25377 hlen = MBLKL(mp1); 25378 /* 25379 * Check if we have enough room to prepend fastpath 25380 * header 25381 */ 25382 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 25383 ll_hdr = rptr - hlen; 25384 bcopy(mp1->b_rptr, ll_hdr, hlen); 25385 /* 25386 * Set the b_rptr to the start of the link layer 25387 * header 25388 */ 25389 mp->b_rptr = ll_hdr; 25390 mp1 = mp; 25391 } else { 25392 mp1 = copyb(mp1); 25393 if (mp1 == NULL) 25394 goto unlock_err; 25395 mp1->b_band = mp->b_band; 25396 mp1->b_cont = mp; 25397 /* 25398 * certain system generated traffic may not 25399 * have cred/label in ip header block. This 25400 * is true even for a labeled system. But for 25401 * labeled traffic, inherit the label in the 25402 * new header. 25403 */ 25404 if (DB_CRED(mp) != NULL) 25405 mblk_setcred(mp1, DB_CRED(mp)); 25406 /* 25407 * XXX disable ICK_VALID and compute checksum 25408 * here; can happen if nce_fp_mp changes and 25409 * it can't be copied now due to insufficient 25410 * space. (unlikely, fp mp can change, but it 25411 * does not increase in length) 25412 */ 25413 } 25414 UNLOCK_IRE_FP_MP(ire); 25415 } else { 25416 no_fp_mp: 25417 mp1 = copyb(ire->ire_nce->nce_res_mp); 25418 if (mp1 == NULL) { 25419 unlock_err: 25420 UNLOCK_IRE_FP_MP(ire); 25421 freemsg(mp); 25422 return (NULL); 25423 } 25424 UNLOCK_IRE_FP_MP(ire); 25425 mp1->b_cont = mp; 25426 /* 25427 * certain system generated traffic may not 25428 * have cred/label in ip header block. This 25429 * is true even for a labeled system. But for 25430 * labeled traffic, inherit the label in the 25431 * new header. 25432 */ 25433 if (DB_CRED(mp) != NULL) 25434 mblk_setcred(mp1, DB_CRED(mp)); 25435 if (!qos_done && (proc != 0) && IPP_ENABLED(proc, ipst)) { 25436 ip_process(proc, &mp1, ill_index); 25437 if (mp1 == NULL) 25438 return (NULL); 25439 } 25440 } 25441 return (mp1); 25442 #undef rptr 25443 } 25444 25445 /* 25446 * Finish the outbound IPsec processing for an IPv6 packet. This function 25447 * is called from ipsec_out_process() if the IPsec packet was processed 25448 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25449 * asynchronously. 25450 */ 25451 void 25452 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 25453 ire_t *ire_arg) 25454 { 25455 in6_addr_t *v6dstp; 25456 ire_t *ire; 25457 mblk_t *mp; 25458 ip6_t *ip6h1; 25459 uint_t ill_index; 25460 ipsec_out_t *io; 25461 boolean_t attach_if, hwaccel; 25462 uint32_t flags = IP6_NO_IPPOLICY; 25463 int match_flags; 25464 zoneid_t zoneid; 25465 boolean_t ill_need_rele = B_FALSE; 25466 boolean_t ire_need_rele = B_FALSE; 25467 ip_stack_t *ipst; 25468 25469 mp = ipsec_mp->b_cont; 25470 ip6h1 = (ip6_t *)mp->b_rptr; 25471 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25472 ASSERT(io->ipsec_out_ns != NULL); 25473 ipst = io->ipsec_out_ns->netstack_ip; 25474 ill_index = io->ipsec_out_ill_index; 25475 if (io->ipsec_out_reachable) { 25476 flags |= IPV6_REACHABILITY_CONFIRMATION; 25477 } 25478 attach_if = io->ipsec_out_attach_if; 25479 hwaccel = io->ipsec_out_accelerated; 25480 zoneid = io->ipsec_out_zoneid; 25481 ASSERT(zoneid != ALL_ZONES); 25482 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 25483 /* Multicast addresses should have non-zero ill_index. */ 25484 v6dstp = &ip6h->ip6_dst; 25485 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 25486 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 25487 ASSERT(!attach_if || ill_index != 0); 25488 if (ill_index != 0) { 25489 if (ill == NULL) { 25490 ill = ip_grab_attach_ill(NULL, ipsec_mp, ill_index, 25491 B_TRUE, ipst); 25492 25493 /* Failure case frees things for us. */ 25494 if (ill == NULL) 25495 return; 25496 25497 ill_need_rele = B_TRUE; 25498 } 25499 /* 25500 * If this packet needs to go out on a particular interface 25501 * honor it. 25502 */ 25503 if (attach_if) { 25504 match_flags = MATCH_IRE_ILL; 25505 25506 /* 25507 * Check if we need an ire that will not be 25508 * looked up by anybody else i.e. HIDDEN. 25509 */ 25510 if (ill_is_probeonly(ill)) { 25511 match_flags |= MATCH_IRE_MARK_HIDDEN; 25512 } 25513 } 25514 } 25515 ASSERT(mp != NULL); 25516 25517 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 25518 boolean_t unspec_src; 25519 ipif_t *ipif; 25520 25521 /* 25522 * Use the ill_index to get the right ill. 25523 */ 25524 unspec_src = io->ipsec_out_unspec_src; 25525 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25526 if (ipif == NULL) { 25527 if (ill_need_rele) 25528 ill_refrele(ill); 25529 freemsg(ipsec_mp); 25530 return; 25531 } 25532 25533 if (ire_arg != NULL) { 25534 ire = ire_arg; 25535 } else { 25536 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25537 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25538 ire_need_rele = B_TRUE; 25539 } 25540 if (ire != NULL) { 25541 ipif_refrele(ipif); 25542 /* 25543 * XXX Do the multicast forwarding now, as the IPsec 25544 * processing has been done. 25545 */ 25546 goto send; 25547 } 25548 25549 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 25550 mp->b_prev = NULL; 25551 mp->b_next = NULL; 25552 25553 /* 25554 * If the IPsec packet was processed asynchronously, 25555 * drop it now. 25556 */ 25557 if (q == NULL) { 25558 if (ill_need_rele) 25559 ill_refrele(ill); 25560 freemsg(ipsec_mp); 25561 return; 25562 } 25563 25564 ip_newroute_ipif_v6(q, ipsec_mp, ipif, *v6dstp, 25565 unspec_src, zoneid); 25566 ipif_refrele(ipif); 25567 } else { 25568 if (attach_if) { 25569 ipif_t *ipif; 25570 25571 ipif = ipif_get_next_ipif(NULL, ill); 25572 if (ipif == NULL) { 25573 if (ill_need_rele) 25574 ill_refrele(ill); 25575 freemsg(ipsec_mp); 25576 return; 25577 } 25578 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25579 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25580 ire_need_rele = B_TRUE; 25581 ipif_refrele(ipif); 25582 } else { 25583 if (ire_arg != NULL) { 25584 ire = ire_arg; 25585 } else { 25586 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL, 25587 ipst); 25588 ire_need_rele = B_TRUE; 25589 } 25590 } 25591 if (ire != NULL) 25592 goto send; 25593 /* 25594 * ire disappeared underneath. 25595 * 25596 * What we need to do here is the ip_newroute 25597 * logic to get the ire without doing the IPsec 25598 * processing. Follow the same old path. But this 25599 * time, ip_wput or ire_add_then_send will call us 25600 * directly as all the IPsec operations are done. 25601 */ 25602 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 25603 mp->b_prev = NULL; 25604 mp->b_next = NULL; 25605 25606 /* 25607 * If the IPsec packet was processed asynchronously, 25608 * drop it now. 25609 */ 25610 if (q == NULL) { 25611 if (ill_need_rele) 25612 ill_refrele(ill); 25613 freemsg(ipsec_mp); 25614 return; 25615 } 25616 25617 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 25618 zoneid, ipst); 25619 } 25620 if (ill != NULL && ill_need_rele) 25621 ill_refrele(ill); 25622 return; 25623 send: 25624 if (ill != NULL && ill_need_rele) 25625 ill_refrele(ill); 25626 25627 /* Local delivery */ 25628 if (ire->ire_stq == NULL) { 25629 ill_t *out_ill; 25630 ASSERT(q != NULL); 25631 25632 /* PFHooks: LOOPBACK_OUT */ 25633 out_ill = ire_to_ill(ire); 25634 25635 DTRACE_PROBE4(ip6__loopback__out__start, 25636 ill_t *, NULL, ill_t *, out_ill, 25637 ip6_t *, ip6h1, mblk_t *, ipsec_mp); 25638 25639 FW_HOOKS6(ipst->ips_ip6_loopback_out_event, 25640 ipst->ips_ipv6firewall_loopback_out, 25641 NULL, out_ill, ip6h1, ipsec_mp, mp, ipst); 25642 25643 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, ipsec_mp); 25644 25645 if (ipsec_mp != NULL) 25646 ip_wput_local_v6(RD(q), out_ill, 25647 ip6h, ipsec_mp, ire, 0); 25648 if (ire_need_rele) 25649 ire_refrele(ire); 25650 return; 25651 } 25652 /* 25653 * Everything is done. Send it out on the wire. 25654 * We force the insertion of a fragment header using the 25655 * IPH_FRAG_HDR flag in two cases: 25656 * - after reception of an ICMPv6 "packet too big" message 25657 * with a MTU < 1280 (cf. RFC 2460 section 5) 25658 * - for multirouted IPv6 packets, so that the receiver can 25659 * discard duplicates according to their fragment identifier 25660 */ 25661 /* XXX fix flow control problems. */ 25662 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 25663 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 25664 if (hwaccel) { 25665 /* 25666 * hardware acceleration does not handle these 25667 * "slow path" cases. 25668 */ 25669 /* IPsec KSTATS: should bump bean counter here. */ 25670 if (ire_need_rele) 25671 ire_refrele(ire); 25672 freemsg(ipsec_mp); 25673 return; 25674 } 25675 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 25676 (mp->b_cont ? msgdsize(mp) : 25677 mp->b_wptr - (uchar_t *)ip6h)) { 25678 /* IPsec KSTATS: should bump bean counter here. */ 25679 ip0dbg(("Packet length mismatch: %d, %ld\n", 25680 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 25681 msgdsize(mp))); 25682 if (ire_need_rele) 25683 ire_refrele(ire); 25684 freemsg(ipsec_mp); 25685 return; 25686 } 25687 ASSERT(mp->b_prev == NULL); 25688 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 25689 ntohs(ip6h->ip6_plen) + 25690 IPV6_HDR_LEN, ire->ire_max_frag)); 25691 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 25692 ire->ire_max_frag); 25693 } else { 25694 UPDATE_OB_PKT_COUNT(ire); 25695 ire->ire_last_used_time = lbolt; 25696 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 25697 } 25698 if (ire_need_rele) 25699 ire_refrele(ire); 25700 freeb(ipsec_mp); 25701 } 25702 25703 void 25704 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 25705 { 25706 mblk_t *hada_mp; /* attributes M_CTL mblk */ 25707 da_ipsec_t *hada; /* data attributes */ 25708 ill_t *ill = (ill_t *)q->q_ptr; 25709 25710 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 25711 25712 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 25713 /* IPsec KSTATS: Bump lose counter here! */ 25714 freemsg(mp); 25715 return; 25716 } 25717 25718 /* 25719 * It's an IPsec packet that must be 25720 * accelerated by the Provider, and the 25721 * outbound ill is IPsec acceleration capable. 25722 * Prepends the mblk with an IPHADA_M_CTL, and ship it 25723 * to the ill. 25724 * IPsec KSTATS: should bump packet counter here. 25725 */ 25726 25727 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 25728 if (hada_mp == NULL) { 25729 /* IPsec KSTATS: should bump packet counter here. */ 25730 freemsg(mp); 25731 return; 25732 } 25733 25734 hada_mp->b_datap->db_type = M_CTL; 25735 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 25736 hada_mp->b_cont = mp; 25737 25738 hada = (da_ipsec_t *)hada_mp->b_rptr; 25739 bzero(hada, sizeof (da_ipsec_t)); 25740 hada->da_type = IPHADA_M_CTL; 25741 25742 putnext(q, hada_mp); 25743 } 25744 25745 /* 25746 * Finish the outbound IPsec processing. This function is called from 25747 * ipsec_out_process() if the IPsec packet was processed 25748 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25749 * asynchronously. 25750 */ 25751 void 25752 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 25753 ire_t *ire_arg) 25754 { 25755 uint32_t v_hlen_tos_len; 25756 ipaddr_t dst; 25757 ipif_t *ipif = NULL; 25758 ire_t *ire; 25759 ire_t *ire1 = NULL; 25760 mblk_t *next_mp = NULL; 25761 uint32_t max_frag; 25762 boolean_t multirt_send = B_FALSE; 25763 mblk_t *mp; 25764 ipha_t *ipha1; 25765 uint_t ill_index; 25766 ipsec_out_t *io; 25767 boolean_t attach_if; 25768 int match_flags; 25769 irb_t *irb = NULL; 25770 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 25771 zoneid_t zoneid; 25772 ipxmit_state_t pktxmit_state; 25773 ip_stack_t *ipst; 25774 25775 #ifdef _BIG_ENDIAN 25776 #define LENGTH (v_hlen_tos_len & 0xFFFF) 25777 #else 25778 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 25779 #endif 25780 25781 mp = ipsec_mp->b_cont; 25782 ipha1 = (ipha_t *)mp->b_rptr; 25783 ASSERT(mp != NULL); 25784 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 25785 dst = ipha->ipha_dst; 25786 25787 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25788 ill_index = io->ipsec_out_ill_index; 25789 attach_if = io->ipsec_out_attach_if; 25790 zoneid = io->ipsec_out_zoneid; 25791 ASSERT(zoneid != ALL_ZONES); 25792 ipst = io->ipsec_out_ns->netstack_ip; 25793 ASSERT(io->ipsec_out_ns != NULL); 25794 25795 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 25796 if (ill_index != 0) { 25797 if (ill == NULL) { 25798 ill = ip_grab_attach_ill(NULL, ipsec_mp, 25799 ill_index, B_FALSE, ipst); 25800 25801 /* Failure case frees things for us. */ 25802 if (ill == NULL) 25803 return; 25804 25805 ill_need_rele = B_TRUE; 25806 } 25807 /* 25808 * If this packet needs to go out on a particular interface 25809 * honor it. 25810 */ 25811 if (attach_if) { 25812 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 25813 25814 /* 25815 * Check if we need an ire that will not be 25816 * looked up by anybody else i.e. HIDDEN. 25817 */ 25818 if (ill_is_probeonly(ill)) { 25819 match_flags |= MATCH_IRE_MARK_HIDDEN; 25820 } 25821 } 25822 } 25823 25824 if (CLASSD(dst)) { 25825 boolean_t conn_dontroute; 25826 /* 25827 * Use the ill_index to get the right ipif. 25828 */ 25829 conn_dontroute = io->ipsec_out_dontroute; 25830 if (ill_index == 0) 25831 ipif = ipif_lookup_group(dst, zoneid, ipst); 25832 else 25833 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25834 if (ipif == NULL) { 25835 ip1dbg(("ip_wput_ipsec_out: No ipif for" 25836 " multicast\n")); 25837 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 25838 freemsg(ipsec_mp); 25839 goto done; 25840 } 25841 /* 25842 * ipha_src has already been intialized with the 25843 * value of the ipif in ip_wput. All we need now is 25844 * an ire to send this downstream. 25845 */ 25846 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 25847 MBLK_GETLABEL(mp), match_flags, ipst); 25848 if (ire != NULL) { 25849 ill_t *ill1; 25850 /* 25851 * Do the multicast forwarding now, as the IPsec 25852 * processing has been done. 25853 */ 25854 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 25855 (ill1 = ire_to_ill(ire))) { 25856 if (ip_mforward(ill1, ipha, mp)) { 25857 freemsg(ipsec_mp); 25858 ip1dbg(("ip_wput_ipsec_out: mforward " 25859 "failed\n")); 25860 ire_refrele(ire); 25861 goto done; 25862 } 25863 } 25864 goto send; 25865 } 25866 25867 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 25868 mp->b_prev = NULL; 25869 mp->b_next = NULL; 25870 25871 /* 25872 * If the IPsec packet was processed asynchronously, 25873 * drop it now. 25874 */ 25875 if (q == NULL) { 25876 freemsg(ipsec_mp); 25877 goto done; 25878 } 25879 25880 /* 25881 * We may be using a wrong ipif to create the ire. 25882 * But it is okay as the source address is assigned 25883 * for the packet already. Next outbound packet would 25884 * create the IRE with the right IPIF in ip_wput. 25885 * 25886 * Also handle RTF_MULTIRT routes. 25887 */ 25888 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT, 25889 zoneid, &zero_info); 25890 } else { 25891 if (attach_if) { 25892 ire = ire_ctable_lookup(dst, 0, 0, ill->ill_ipif, 25893 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25894 } else { 25895 if (ire_arg != NULL) { 25896 ire = ire_arg; 25897 ire_need_rele = B_FALSE; 25898 } else { 25899 ire = ire_cache_lookup(dst, zoneid, 25900 MBLK_GETLABEL(mp), ipst); 25901 } 25902 } 25903 if (ire != NULL) { 25904 goto send; 25905 } 25906 25907 /* 25908 * ire disappeared underneath. 25909 * 25910 * What we need to do here is the ip_newroute 25911 * logic to get the ire without doing the IPsec 25912 * processing. Follow the same old path. But this 25913 * time, ip_wput or ire_add_then_put will call us 25914 * directly as all the IPsec operations are done. 25915 */ 25916 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 25917 mp->b_prev = NULL; 25918 mp->b_next = NULL; 25919 25920 /* 25921 * If the IPsec packet was processed asynchronously, 25922 * drop it now. 25923 */ 25924 if (q == NULL) { 25925 freemsg(ipsec_mp); 25926 goto done; 25927 } 25928 25929 /* 25930 * Since we're going through ip_newroute() again, we 25931 * need to make sure we don't: 25932 * 25933 * 1.) Trigger the ASSERT() with the ipha_ident 25934 * overloading. 25935 * 2.) Redo transport-layer checksumming, since we've 25936 * already done all that to get this far. 25937 * 25938 * The easiest way not do either of the above is to set 25939 * the ipha_ident field to IP_HDR_INCLUDED. 25940 */ 25941 ipha->ipha_ident = IP_HDR_INCLUDED; 25942 ip_newroute(q, ipsec_mp, dst, (CONN_Q(q) ? Q_TO_CONN(q) : NULL), 25943 zoneid, ipst); 25944 } 25945 goto done; 25946 send: 25947 if (ire->ire_stq == NULL) { 25948 ill_t *out_ill; 25949 /* 25950 * Loopbacks go through ip_wput_local except for one case. 25951 * We come here if we generate a icmp_frag_needed message 25952 * after IPsec processing is over. When this function calls 25953 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 25954 * icmp_frag_needed. The message generated comes back here 25955 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 25956 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 25957 * source address as it is usually set in ip_wput_ire. As 25958 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 25959 * and we end up here. We can't enter ip_wput_ire once the 25960 * IPsec processing is over and hence we need to do it here. 25961 */ 25962 ASSERT(q != NULL); 25963 UPDATE_OB_PKT_COUNT(ire); 25964 ire->ire_last_used_time = lbolt; 25965 if (ipha->ipha_src == 0) 25966 ipha->ipha_src = ire->ire_src_addr; 25967 25968 /* PFHooks: LOOPBACK_OUT */ 25969 out_ill = ire_to_ill(ire); 25970 25971 DTRACE_PROBE4(ip4__loopback__out__start, 25972 ill_t *, NULL, ill_t *, out_ill, 25973 ipha_t *, ipha1, mblk_t *, ipsec_mp); 25974 25975 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 25976 ipst->ips_ipv4firewall_loopback_out, 25977 NULL, out_ill, ipha1, ipsec_mp, mp, ipst); 25978 25979 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, ipsec_mp); 25980 25981 if (ipsec_mp != NULL) 25982 ip_wput_local(RD(q), out_ill, 25983 ipha, ipsec_mp, ire, 0, zoneid); 25984 if (ire_need_rele) 25985 ire_refrele(ire); 25986 goto done; 25987 } 25988 25989 if (ire->ire_max_frag < (unsigned int)LENGTH) { 25990 /* 25991 * We are through with IPsec processing. 25992 * Fragment this and send it on the wire. 25993 */ 25994 if (io->ipsec_out_accelerated) { 25995 /* 25996 * The packet has been accelerated but must 25997 * be fragmented. This should not happen 25998 * since AH and ESP must not accelerate 25999 * packets that need fragmentation, however 26000 * the configuration could have changed 26001 * since the AH or ESP processing. 26002 * Drop packet. 26003 * IPsec KSTATS: bump bean counter here. 26004 */ 26005 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 26006 "fragmented accelerated packet!\n")); 26007 freemsg(ipsec_mp); 26008 } else { 26009 ip_wput_ire_fragmentit(ipsec_mp, ire, zoneid, ipst); 26010 } 26011 if (ire_need_rele) 26012 ire_refrele(ire); 26013 goto done; 26014 } 26015 26016 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 26017 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 26018 (void *)ire->ire_ipif, (void *)ipif)); 26019 26020 /* 26021 * Multiroute the secured packet, unless IPsec really 26022 * requires the packet to go out only through a particular 26023 * interface. 26024 */ 26025 if ((ire->ire_flags & RTF_MULTIRT) && !attach_if) { 26026 ire_t *first_ire; 26027 irb = ire->ire_bucket; 26028 ASSERT(irb != NULL); 26029 /* 26030 * This ire has been looked up as the one that 26031 * goes through the given ipif; 26032 * make sure we do not omit any other multiroute ire 26033 * that may be present in the bucket before this one. 26034 */ 26035 IRB_REFHOLD(irb); 26036 for (first_ire = irb->irb_ire; 26037 first_ire != NULL; 26038 first_ire = first_ire->ire_next) { 26039 if ((first_ire->ire_flags & RTF_MULTIRT) && 26040 (first_ire->ire_addr == ire->ire_addr) && 26041 !(first_ire->ire_marks & 26042 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 26043 break; 26044 } 26045 } 26046 26047 if ((first_ire != NULL) && (first_ire != ire)) { 26048 /* 26049 * Don't change the ire if the packet must 26050 * be fragmented if sent via this new one. 26051 */ 26052 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 26053 IRE_REFHOLD(first_ire); 26054 if (ire_need_rele) 26055 ire_refrele(ire); 26056 else 26057 ire_need_rele = B_TRUE; 26058 ire = first_ire; 26059 } 26060 } 26061 IRB_REFRELE(irb); 26062 26063 multirt_send = B_TRUE; 26064 max_frag = ire->ire_max_frag; 26065 } else { 26066 if ((ire->ire_flags & RTF_MULTIRT) && attach_if) { 26067 ip1dbg(("ip_wput_ipsec_out: ignoring multirouting " 26068 "flag, attach_if %d\n", attach_if)); 26069 } 26070 } 26071 26072 /* 26073 * In most cases, the emission loop below is entered only once. 26074 * Only in the case where the ire holds the RTF_MULTIRT 26075 * flag, we loop to process all RTF_MULTIRT ires in the 26076 * bucket, and send the packet through all crossed 26077 * RTF_MULTIRT routes. 26078 */ 26079 do { 26080 if (multirt_send) { 26081 /* 26082 * ire1 holds here the next ire to process in the 26083 * bucket. If multirouting is expected, 26084 * any non-RTF_MULTIRT ire that has the 26085 * right destination address is ignored. 26086 */ 26087 ASSERT(irb != NULL); 26088 IRB_REFHOLD(irb); 26089 for (ire1 = ire->ire_next; 26090 ire1 != NULL; 26091 ire1 = ire1->ire_next) { 26092 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 26093 continue; 26094 if (ire1->ire_addr != ire->ire_addr) 26095 continue; 26096 if (ire1->ire_marks & 26097 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 26098 continue; 26099 /* No loopback here */ 26100 if (ire1->ire_stq == NULL) 26101 continue; 26102 /* 26103 * Ensure we do not exceed the MTU 26104 * of the next route. 26105 */ 26106 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 26107 ip_multirt_bad_mtu(ire1, max_frag); 26108 continue; 26109 } 26110 26111 IRE_REFHOLD(ire1); 26112 break; 26113 } 26114 IRB_REFRELE(irb); 26115 if (ire1 != NULL) { 26116 /* 26117 * We are in a multiple send case, need to 26118 * make a copy of the packet. 26119 */ 26120 next_mp = copymsg(ipsec_mp); 26121 if (next_mp == NULL) { 26122 ire_refrele(ire1); 26123 ire1 = NULL; 26124 } 26125 } 26126 } 26127 /* 26128 * Everything is done. Send it out on the wire 26129 * 26130 * ip_xmit_v4 will call ip_wput_attach_llhdr and then 26131 * either send it on the wire or, in the case of 26132 * HW acceleration, call ipsec_hw_putnext. 26133 */ 26134 if (ire->ire_nce && 26135 ire->ire_nce->nce_state != ND_REACHABLE) { 26136 DTRACE_PROBE2(ip__wput__ipsec__bail, 26137 (ire_t *), ire, (mblk_t *), ipsec_mp); 26138 /* 26139 * If ire's link-layer is unresolved (this 26140 * would only happen if the incomplete ire 26141 * was added to cachetable via forwarding path) 26142 * don't bother going to ip_xmit_v4. Just drop the 26143 * packet. 26144 * There is a slight risk here, in that, if we 26145 * have the forwarding path create an incomplete 26146 * IRE, then until the IRE is completed, any 26147 * transmitted IPsec packets will be dropped 26148 * instead of being queued waiting for resolution. 26149 * 26150 * But the likelihood of a forwarding packet and a wput 26151 * packet sending to the same dst at the same time 26152 * and there not yet be an ARP entry for it is small. 26153 * Furthermore, if this actually happens, it might 26154 * be likely that wput would generate multiple 26155 * packets (and forwarding would also have a train 26156 * of packets) for that destination. If this is 26157 * the case, some of them would have been dropped 26158 * anyway, since ARP only queues a few packets while 26159 * waiting for resolution 26160 * 26161 * NOTE: We should really call ip_xmit_v4, 26162 * and let it queue the packet and send the 26163 * ARP query and have ARP come back thus: 26164 * <ARP> ip_wput->ip_output->ip-wput_nondata-> 26165 * ip_xmit_v4->ip_wput_attach_llhdr + ipsec 26166 * hw accel work. But it's too complex to get 26167 * the IPsec hw acceleration approach to fit 26168 * well with ip_xmit_v4 doing ARP without 26169 * doing IPsec simplification. For now, we just 26170 * poke ip_xmit_v4 to trigger the arp resolve, so 26171 * that we can continue with the send on the next 26172 * attempt. 26173 * 26174 * XXX THis should be revisited, when 26175 * the IPsec/IP interaction is cleaned up 26176 */ 26177 ip1dbg(("ip_wput_ipsec_out: ire is incomplete" 26178 " - dropping packet\n")); 26179 freemsg(ipsec_mp); 26180 /* 26181 * Call ip_xmit_v4() to trigger ARP query 26182 * in case the nce_state is ND_INITIAL 26183 */ 26184 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 26185 goto drop_pkt; 26186 } 26187 26188 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 26189 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha1, 26190 mblk_t *, ipsec_mp); 26191 FW_HOOKS(ipst->ips_ip4_physical_out_event, 26192 ipst->ips_ipv4firewall_physical_out, 26193 NULL, ire->ire_ipif->ipif_ill, ipha1, ipsec_mp, mp, ipst); 26194 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, ipsec_mp); 26195 if (ipsec_mp == NULL) 26196 goto drop_pkt; 26197 26198 ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n")); 26199 pktxmit_state = ip_xmit_v4(mp, ire, 26200 (io->ipsec_out_accelerated ? io : NULL), B_FALSE); 26201 26202 if ((pktxmit_state == SEND_FAILED) || 26203 (pktxmit_state == LLHDR_RESLV_FAILED)) { 26204 26205 freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */ 26206 drop_pkt: 26207 BUMP_MIB(((ill_t *)ire->ire_stq->q_ptr)->ill_ip_mib, 26208 ipIfStatsOutDiscards); 26209 if (ire_need_rele) 26210 ire_refrele(ire); 26211 if (ire1 != NULL) { 26212 ire_refrele(ire1); 26213 freemsg(next_mp); 26214 } 26215 goto done; 26216 } 26217 26218 freeb(ipsec_mp); 26219 if (ire_need_rele) 26220 ire_refrele(ire); 26221 26222 if (ire1 != NULL) { 26223 ire = ire1; 26224 ire_need_rele = B_TRUE; 26225 ASSERT(next_mp); 26226 ipsec_mp = next_mp; 26227 mp = ipsec_mp->b_cont; 26228 ire1 = NULL; 26229 next_mp = NULL; 26230 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26231 } else { 26232 multirt_send = B_FALSE; 26233 } 26234 } while (multirt_send); 26235 done: 26236 if (ill != NULL && ill_need_rele) 26237 ill_refrele(ill); 26238 if (ipif != NULL) 26239 ipif_refrele(ipif); 26240 } 26241 26242 /* 26243 * Get the ill corresponding to the specified ire, and compare its 26244 * capabilities with the protocol and algorithms specified by the 26245 * the SA obtained from ipsec_out. If they match, annotate the 26246 * ipsec_out structure to indicate that the packet needs acceleration. 26247 * 26248 * 26249 * A packet is eligible for outbound hardware acceleration if the 26250 * following conditions are satisfied: 26251 * 26252 * 1. the packet will not be fragmented 26253 * 2. the provider supports the algorithm 26254 * 3. there is no pending control message being exchanged 26255 * 4. snoop is not attached 26256 * 5. the destination address is not a broadcast or multicast address. 26257 * 26258 * Rationale: 26259 * - Hardware drivers do not support fragmentation with 26260 * the current interface. 26261 * - snoop, multicast, and broadcast may result in exposure of 26262 * a cleartext datagram. 26263 * We check all five of these conditions here. 26264 * 26265 * XXX would like to nuke "ire_t *" parameter here; problem is that 26266 * IRE is only way to figure out if a v4 address is a broadcast and 26267 * thus ineligible for acceleration... 26268 */ 26269 static void 26270 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 26271 { 26272 ipsec_out_t *io; 26273 mblk_t *data_mp; 26274 uint_t plen, overhead; 26275 ip_stack_t *ipst; 26276 26277 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 26278 return; 26279 26280 if (ill == NULL) 26281 return; 26282 ipst = ill->ill_ipst; 26283 /* 26284 * Destination address is a broadcast or multicast. Punt. 26285 */ 26286 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 26287 IRE_LOCAL))) 26288 return; 26289 26290 data_mp = ipsec_mp->b_cont; 26291 26292 if (ill->ill_isv6) { 26293 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 26294 26295 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 26296 return; 26297 26298 plen = ip6h->ip6_plen; 26299 } else { 26300 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 26301 26302 if (CLASSD(ipha->ipha_dst)) 26303 return; 26304 26305 plen = ipha->ipha_length; 26306 } 26307 /* 26308 * Is there a pending DLPI control message being exchanged 26309 * between IP/IPsec and the DLS Provider? If there is, it 26310 * could be a SADB update, and the state of the DLS Provider 26311 * SADB might not be in sync with the SADB maintained by 26312 * IPsec. To avoid dropping packets or using the wrong keying 26313 * material, we do not accelerate this packet. 26314 */ 26315 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 26316 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26317 "ill_dlpi_pending! don't accelerate packet\n")); 26318 return; 26319 } 26320 26321 /* 26322 * Is the Provider in promiscous mode? If it does, we don't 26323 * accelerate the packet since it will bounce back up to the 26324 * listeners in the clear. 26325 */ 26326 if (ill->ill_promisc_on_phys) { 26327 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26328 "ill in promiscous mode, don't accelerate packet\n")); 26329 return; 26330 } 26331 26332 /* 26333 * Will the packet require fragmentation? 26334 */ 26335 26336 /* 26337 * IPsec ESP note: this is a pessimistic estimate, but the same 26338 * as is used elsewhere. 26339 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 26340 * + 2-byte trailer 26341 */ 26342 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 26343 IPSEC_BASE_ESP_HDR_SIZE(sa); 26344 26345 if ((plen + overhead) > ill->ill_max_mtu) 26346 return; 26347 26348 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26349 26350 /* 26351 * Can the ill accelerate this IPsec protocol and algorithm 26352 * specified by the SA? 26353 */ 26354 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 26355 ill->ill_isv6, sa, ipst->ips_netstack)) { 26356 return; 26357 } 26358 26359 /* 26360 * Tell AH or ESP that the outbound ill is capable of 26361 * accelerating this packet. 26362 */ 26363 io->ipsec_out_is_capab_ill = B_TRUE; 26364 } 26365 26366 /* 26367 * Select which AH & ESP SA's to use (if any) for the outbound packet. 26368 * 26369 * If this function returns B_TRUE, the requested SA's have been filled 26370 * into the ipsec_out_*_sa pointers. 26371 * 26372 * If the function returns B_FALSE, the packet has been "consumed", most 26373 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 26374 * 26375 * The SA references created by the protocol-specific "select" 26376 * function will be released when the ipsec_mp is freed, thanks to the 26377 * ipsec_out_free destructor -- see spd.c. 26378 */ 26379 static boolean_t 26380 ipsec_out_select_sa(mblk_t *ipsec_mp) 26381 { 26382 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 26383 ipsec_out_t *io; 26384 ipsec_policy_t *pp; 26385 ipsec_action_t *ap; 26386 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26387 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26388 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26389 26390 if (!io->ipsec_out_secure) { 26391 /* 26392 * We came here by mistake. 26393 * Don't bother with ipsec processing 26394 * We should "discourage" this path in the future. 26395 */ 26396 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26397 return (B_FALSE); 26398 } 26399 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26400 ASSERT((io->ipsec_out_policy != NULL) || 26401 (io->ipsec_out_act != NULL)); 26402 26403 ASSERT(io->ipsec_out_failed == B_FALSE); 26404 26405 /* 26406 * IPsec processing has started. 26407 */ 26408 io->ipsec_out_proc_begin = B_TRUE; 26409 ap = io->ipsec_out_act; 26410 if (ap == NULL) { 26411 pp = io->ipsec_out_policy; 26412 ASSERT(pp != NULL); 26413 ap = pp->ipsp_act; 26414 ASSERT(ap != NULL); 26415 } 26416 26417 /* 26418 * We have an action. now, let's select SA's. 26419 * (In the future, we can cache this in the conn_t..) 26420 */ 26421 if (ap->ipa_want_esp) { 26422 if (io->ipsec_out_esp_sa == NULL) { 26423 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 26424 IPPROTO_ESP); 26425 } 26426 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 26427 } 26428 26429 if (ap->ipa_want_ah) { 26430 if (io->ipsec_out_ah_sa == NULL) { 26431 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 26432 IPPROTO_AH); 26433 } 26434 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 26435 /* 26436 * The ESP and AH processing order needs to be preserved 26437 * when both protocols are required (ESP should be applied 26438 * before AH for an outbound packet). Force an ESP ACQUIRE 26439 * when both ESP and AH are required, and an AH ACQUIRE 26440 * is needed. 26441 */ 26442 if (ap->ipa_want_esp && need_ah_acquire) 26443 need_esp_acquire = B_TRUE; 26444 } 26445 26446 /* 26447 * Send an ACQUIRE (extended, regular, or both) if we need one. 26448 * Release SAs that got referenced, but will not be used until we 26449 * acquire _all_ of the SAs we need. 26450 */ 26451 if (need_ah_acquire || need_esp_acquire) { 26452 if (io->ipsec_out_ah_sa != NULL) { 26453 IPSA_REFRELE(io->ipsec_out_ah_sa); 26454 io->ipsec_out_ah_sa = NULL; 26455 } 26456 if (io->ipsec_out_esp_sa != NULL) { 26457 IPSA_REFRELE(io->ipsec_out_esp_sa); 26458 io->ipsec_out_esp_sa = NULL; 26459 } 26460 26461 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 26462 return (B_FALSE); 26463 } 26464 26465 return (B_TRUE); 26466 } 26467 26468 /* 26469 * Process an IPSEC_OUT message and see what you can 26470 * do with it. 26471 * IPQoS Notes: 26472 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 26473 * IPsec. 26474 * XXX would like to nuke ire_t. 26475 * XXX ill_index better be "real" 26476 */ 26477 void 26478 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 26479 { 26480 ipsec_out_t *io; 26481 ipsec_policy_t *pp; 26482 ipsec_action_t *ap; 26483 ipha_t *ipha; 26484 ip6_t *ip6h; 26485 mblk_t *mp; 26486 ill_t *ill; 26487 zoneid_t zoneid; 26488 ipsec_status_t ipsec_rc; 26489 boolean_t ill_need_rele = B_FALSE; 26490 ip_stack_t *ipst; 26491 ipsec_stack_t *ipss; 26492 26493 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26494 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26495 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26496 ipst = io->ipsec_out_ns->netstack_ip; 26497 mp = ipsec_mp->b_cont; 26498 26499 /* 26500 * Initiate IPPF processing. We do it here to account for packets 26501 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 26502 * We can check for ipsec_out_proc_begin even for such packets, as 26503 * they will always be false (asserted below). 26504 */ 26505 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst) && !io->ipsec_out_proc_begin) { 26506 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 26507 io->ipsec_out_ill_index : ill_index); 26508 if (mp == NULL) { 26509 ip2dbg(("ipsec_out_process: packet dropped "\ 26510 "during IPPF processing\n")); 26511 freeb(ipsec_mp); 26512 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26513 return; 26514 } 26515 } 26516 26517 if (!io->ipsec_out_secure) { 26518 /* 26519 * We came here by mistake. 26520 * Don't bother with ipsec processing 26521 * Should "discourage" this path in the future. 26522 */ 26523 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26524 goto done; 26525 } 26526 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26527 ASSERT((io->ipsec_out_policy != NULL) || 26528 (io->ipsec_out_act != NULL)); 26529 ASSERT(io->ipsec_out_failed == B_FALSE); 26530 26531 ipss = ipst->ips_netstack->netstack_ipsec; 26532 if (!ipsec_loaded(ipss)) { 26533 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 26534 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26535 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26536 } else { 26537 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 26538 } 26539 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 26540 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 26541 &ipss->ipsec_dropper); 26542 return; 26543 } 26544 26545 /* 26546 * IPsec processing has started. 26547 */ 26548 io->ipsec_out_proc_begin = B_TRUE; 26549 ap = io->ipsec_out_act; 26550 if (ap == NULL) { 26551 pp = io->ipsec_out_policy; 26552 ASSERT(pp != NULL); 26553 ap = pp->ipsp_act; 26554 ASSERT(ap != NULL); 26555 } 26556 26557 /* 26558 * Save the outbound ill index. When the packet comes back 26559 * from IPsec, we make sure the ill hasn't changed or disappeared 26560 * before sending it the accelerated packet. 26561 */ 26562 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 26563 int ifindex; 26564 ill = ire_to_ill(ire); 26565 ifindex = ill->ill_phyint->phyint_ifindex; 26566 io->ipsec_out_capab_ill_index = ifindex; 26567 } 26568 26569 /* 26570 * The order of processing is first insert a IP header if needed. 26571 * Then insert the ESP header and then the AH header. 26572 */ 26573 if ((io->ipsec_out_se_done == B_FALSE) && 26574 (ap->ipa_want_se)) { 26575 /* 26576 * First get the outer IP header before sending 26577 * it to ESP. 26578 */ 26579 ipha_t *oipha, *iipha; 26580 mblk_t *outer_mp, *inner_mp; 26581 26582 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 26583 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 26584 "ipsec_out_process: " 26585 "Self-Encapsulation failed: Out of memory\n"); 26586 freemsg(ipsec_mp); 26587 if (ill != NULL) { 26588 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26589 } else { 26590 BUMP_MIB(&ipst->ips_ip_mib, 26591 ipIfStatsOutDiscards); 26592 } 26593 return; 26594 } 26595 inner_mp = ipsec_mp->b_cont; 26596 ASSERT(inner_mp->b_datap->db_type == M_DATA); 26597 oipha = (ipha_t *)outer_mp->b_rptr; 26598 iipha = (ipha_t *)inner_mp->b_rptr; 26599 *oipha = *iipha; 26600 outer_mp->b_wptr += sizeof (ipha_t); 26601 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 26602 sizeof (ipha_t)); 26603 oipha->ipha_protocol = IPPROTO_ENCAP; 26604 oipha->ipha_version_and_hdr_length = 26605 IP_SIMPLE_HDR_VERSION; 26606 oipha->ipha_hdr_checksum = 0; 26607 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 26608 outer_mp->b_cont = inner_mp; 26609 ipsec_mp->b_cont = outer_mp; 26610 26611 io->ipsec_out_se_done = B_TRUE; 26612 io->ipsec_out_tunnel = B_TRUE; 26613 } 26614 26615 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 26616 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 26617 !ipsec_out_select_sa(ipsec_mp)) 26618 return; 26619 26620 /* 26621 * By now, we know what SA's to use. Toss over to ESP & AH 26622 * to do the heavy lifting. 26623 */ 26624 zoneid = io->ipsec_out_zoneid; 26625 ASSERT(zoneid != ALL_ZONES); 26626 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 26627 ASSERT(io->ipsec_out_esp_sa != NULL); 26628 io->ipsec_out_esp_done = B_TRUE; 26629 /* 26630 * Note that since hw accel can only apply one transform, 26631 * not two, we skip hw accel for ESP if we also have AH 26632 * This is an design limitation of the interface 26633 * which should be revisited. 26634 */ 26635 ASSERT(ire != NULL); 26636 if (io->ipsec_out_ah_sa == NULL) { 26637 ill = (ill_t *)ire->ire_stq->q_ptr; 26638 ipsec_out_is_accelerated(ipsec_mp, 26639 io->ipsec_out_esp_sa, ill, ire); 26640 } 26641 26642 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 26643 switch (ipsec_rc) { 26644 case IPSEC_STATUS_SUCCESS: 26645 break; 26646 case IPSEC_STATUS_FAILED: 26647 if (ill != NULL) { 26648 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26649 } else { 26650 BUMP_MIB(&ipst->ips_ip_mib, 26651 ipIfStatsOutDiscards); 26652 } 26653 /* FALLTHRU */ 26654 case IPSEC_STATUS_PENDING: 26655 return; 26656 } 26657 } 26658 26659 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 26660 ASSERT(io->ipsec_out_ah_sa != NULL); 26661 io->ipsec_out_ah_done = B_TRUE; 26662 if (ire == NULL) { 26663 int idx = io->ipsec_out_capab_ill_index; 26664 ill = ill_lookup_on_ifindex(idx, B_FALSE, 26665 NULL, NULL, NULL, NULL, ipst); 26666 ill_need_rele = B_TRUE; 26667 } else { 26668 ill = (ill_t *)ire->ire_stq->q_ptr; 26669 } 26670 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 26671 ire); 26672 26673 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 26674 switch (ipsec_rc) { 26675 case IPSEC_STATUS_SUCCESS: 26676 break; 26677 case IPSEC_STATUS_FAILED: 26678 if (ill != NULL) { 26679 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26680 } else { 26681 BUMP_MIB(&ipst->ips_ip_mib, 26682 ipIfStatsOutDiscards); 26683 } 26684 /* FALLTHRU */ 26685 case IPSEC_STATUS_PENDING: 26686 if (ill != NULL && ill_need_rele) 26687 ill_refrele(ill); 26688 return; 26689 } 26690 } 26691 /* 26692 * We are done with IPsec processing. Send it over 26693 * the wire. 26694 */ 26695 done: 26696 mp = ipsec_mp->b_cont; 26697 ipha = (ipha_t *)mp->b_rptr; 26698 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26699 ip_wput_ipsec_out(q, ipsec_mp, ipha, ill, ire); 26700 } else { 26701 ip6h = (ip6_t *)ipha; 26702 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ill, ire); 26703 } 26704 if (ill != NULL && ill_need_rele) 26705 ill_refrele(ill); 26706 } 26707 26708 /* ARGSUSED */ 26709 void 26710 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 26711 { 26712 opt_restart_t *or; 26713 int err; 26714 conn_t *connp; 26715 26716 ASSERT(CONN_Q(q)); 26717 connp = Q_TO_CONN(q); 26718 26719 ASSERT(first_mp->b_datap->db_type == M_CTL); 26720 or = (opt_restart_t *)first_mp->b_rptr; 26721 /* 26722 * We don't need to pass any credentials here since this is just 26723 * a restart. The credentials are passed in when svr4_optcom_req 26724 * is called the first time (from ip_wput_nondata). 26725 */ 26726 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 26727 err = svr4_optcom_req(q, first_mp, NULL, 26728 &ip_opt_obj, B_FALSE); 26729 } else { 26730 ASSERT(or->or_type == T_OPTMGMT_REQ); 26731 err = tpi_optcom_req(q, first_mp, NULL, 26732 &ip_opt_obj, B_FALSE); 26733 } 26734 if (err != EINPROGRESS) { 26735 /* operation is done */ 26736 CONN_OPER_PENDING_DONE(connp); 26737 } 26738 } 26739 26740 /* 26741 * ioctls that go through a down/up sequence may need to wait for the down 26742 * to complete. This involves waiting for the ire and ipif refcnts to go down 26743 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 26744 */ 26745 /* ARGSUSED */ 26746 void 26747 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 26748 { 26749 struct iocblk *iocp; 26750 mblk_t *mp1; 26751 ip_ioctl_cmd_t *ipip; 26752 int err; 26753 sin_t *sin; 26754 struct lifreq *lifr; 26755 struct ifreq *ifr; 26756 26757 iocp = (struct iocblk *)mp->b_rptr; 26758 ASSERT(ipsq != NULL); 26759 /* Existence of mp1 verified in ip_wput_nondata */ 26760 mp1 = mp->b_cont->b_cont; 26761 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26762 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 26763 /* 26764 * Special case where ipsq_current_ipif is not set: 26765 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 26766 * ill could also have become part of a ipmp group in the 26767 * process, we are here as were not able to complete the 26768 * operation in ipif_set_values because we could not become 26769 * exclusive on the new ipsq, In such a case ipsq_current_ipif 26770 * will not be set so we need to set it. 26771 */ 26772 ill_t *ill = q->q_ptr; 26773 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 26774 } 26775 ASSERT(ipsq->ipsq_current_ipif != NULL); 26776 26777 if (ipip->ipi_cmd_type == IF_CMD) { 26778 /* This a old style SIOC[GS]IF* command */ 26779 ifr = (struct ifreq *)mp1->b_rptr; 26780 sin = (sin_t *)&ifr->ifr_addr; 26781 } else if (ipip->ipi_cmd_type == LIF_CMD) { 26782 /* This a new style SIOC[GS]LIF* command */ 26783 lifr = (struct lifreq *)mp1->b_rptr; 26784 sin = (sin_t *)&lifr->lifr_addr; 26785 } else { 26786 sin = NULL; 26787 } 26788 26789 err = (*ipip->ipi_func_restart)(ipsq->ipsq_current_ipif, sin, q, mp, 26790 ipip, mp1->b_rptr); 26791 26792 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 26793 } 26794 26795 /* 26796 * ioctl processing 26797 * 26798 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up 26799 * the ioctl command in the ioctl tables, determines the copyin data size 26800 * from the ipi_copyin_size field, and does an mi_copyin() of that size. 26801 * 26802 * ioctl processing then continues when the M_IOCDATA makes its way down to 26803 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its 26804 * associated 'conn' is refheld till the end of the ioctl and the general 26805 * ioctl processing function ip_process_ioctl() is called to extract the 26806 * arguments and process the ioctl. To simplify extraction, ioctl commands 26807 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a 26808 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq()) 26809 * is used to extract the ioctl's arguments. 26810 * 26811 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 26812 * so goes thru the serialization primitive ipsq_try_enter. Then the 26813 * appropriate function to handle the ioctl is called based on the entry in 26814 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 26815 * which also refreleases the 'conn' that was refheld at the start of the 26816 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 26817 * 26818 * Many exclusive ioctls go thru an internal down up sequence as part of 26819 * the operation. For example an attempt to change the IP address of an 26820 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 26821 * does all the cleanup such as deleting all ires that use this address. 26822 * Then we need to wait till all references to the interface go away. 26823 */ 26824 void 26825 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 26826 { 26827 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 26828 ip_ioctl_cmd_t *ipip = arg; 26829 ip_extract_func_t *extract_funcp; 26830 cmd_info_t ci; 26831 int err; 26832 boolean_t entered_ipsq = B_FALSE; 26833 26834 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 26835 26836 if (ipip == NULL) 26837 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26838 26839 /* 26840 * SIOCLIFADDIF needs to go thru a special path since the 26841 * ill may not exist yet. This happens in the case of lo0 26842 * which is created using this ioctl. 26843 */ 26844 if (ipip->ipi_cmd == SIOCLIFADDIF) { 26845 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 26846 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26847 return; 26848 } 26849 26850 ci.ci_ipif = NULL; 26851 if (ipip->ipi_cmd_type == MISC_CMD) { 26852 /* 26853 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF. 26854 */ 26855 if (ipip->ipi_cmd == IF_UNITSEL) { 26856 /* ioctl comes down the ill */ 26857 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 26858 ipif_refhold(ci.ci_ipif); 26859 } 26860 err = 0; 26861 ci.ci_sin = NULL; 26862 ci.ci_sin6 = NULL; 26863 ci.ci_lifr = NULL; 26864 } else { 26865 switch (ipip->ipi_cmd_type) { 26866 case IF_CMD: 26867 case LIF_CMD: 26868 extract_funcp = ip_extract_lifreq; 26869 break; 26870 26871 case ARP_CMD: 26872 case XARP_CMD: 26873 extract_funcp = ip_extract_arpreq; 26874 break; 26875 26876 case TUN_CMD: 26877 extract_funcp = ip_extract_tunreq; 26878 break; 26879 26880 case MSFILT_CMD: 26881 extract_funcp = ip_extract_msfilter; 26882 break; 26883 26884 default: 26885 ASSERT(0); 26886 } 26887 26888 err = (*extract_funcp)(q, mp, ipip, &ci, ip_process_ioctl); 26889 if (err != 0) { 26890 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26891 return; 26892 } 26893 26894 /* 26895 * All of the extraction functions return a refheld ipif. 26896 */ 26897 ASSERT(ci.ci_ipif != NULL); 26898 } 26899 26900 /* 26901 * If ipsq is non-null, we are already being called exclusively 26902 */ 26903 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 26904 if (!(ipip->ipi_flags & IPI_WR)) { 26905 /* 26906 * A return value of EINPROGRESS means the ioctl is 26907 * either queued and waiting for some reason or has 26908 * already completed. 26909 */ 26910 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 26911 ci.ci_lifr); 26912 if (ci.ci_ipif != NULL) 26913 ipif_refrele(ci.ci_ipif); 26914 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26915 return; 26916 } 26917 26918 ASSERT(ci.ci_ipif != NULL); 26919 26920 if (ipsq == NULL) { 26921 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, 26922 ip_process_ioctl, NEW_OP, B_TRUE); 26923 entered_ipsq = B_TRUE; 26924 } 26925 /* 26926 * Release the ipif so that ipif_down and friends that wait for 26927 * references to go away are not misled about the current ipif_refcnt 26928 * values. We are writer so we can access the ipif even after releasing 26929 * the ipif. 26930 */ 26931 ipif_refrele(ci.ci_ipif); 26932 if (ipsq == NULL) 26933 return; 26934 26935 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 26936 26937 /* 26938 * For most set ioctls that come here, this serves as a single point 26939 * where we set the IPIF_CHANGING flag. This ensures that there won't 26940 * be any new references to the ipif. This helps functions that go 26941 * through this path and end up trying to wait for the refcnts 26942 * associated with the ipif to go down to zero. Some exceptions are 26943 * Failover, Failback, and Groupname commands that operate on more than 26944 * just the ci.ci_ipif. These commands internally determine the 26945 * set of ipif's they operate on and set and clear the IPIF_CHANGING 26946 * flags on that set. Another exception is the Removeif command that 26947 * sets the IPIF_CONDEMNED flag internally after identifying the right 26948 * ipif to operate on. 26949 */ 26950 mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock); 26951 if (ipip->ipi_cmd != SIOCLIFREMOVEIF && 26952 ipip->ipi_cmd != SIOCLIFFAILOVER && 26953 ipip->ipi_cmd != SIOCLIFFAILBACK && 26954 ipip->ipi_cmd != SIOCSLIFGROUPNAME) 26955 (ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING; 26956 mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock); 26957 26958 /* 26959 * A return value of EINPROGRESS means the ioctl is 26960 * either queued and waiting for some reason or has 26961 * already completed. 26962 */ 26963 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 26964 26965 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 26966 26967 if (entered_ipsq) 26968 ipsq_exit(ipsq, B_TRUE, B_TRUE); 26969 } 26970 26971 /* 26972 * Complete the ioctl. Typically ioctls use the mi package and need to 26973 * do mi_copyout/mi_copy_done. 26974 */ 26975 void 26976 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 26977 { 26978 conn_t *connp = NULL; 26979 26980 if (err == EINPROGRESS) 26981 return; 26982 26983 if (CONN_Q(q)) { 26984 connp = Q_TO_CONN(q); 26985 ASSERT(connp->conn_ref >= 2); 26986 } 26987 26988 switch (mode) { 26989 case COPYOUT: 26990 if (err == 0) 26991 mi_copyout(q, mp); 26992 else 26993 mi_copy_done(q, mp, err); 26994 break; 26995 26996 case NO_COPYOUT: 26997 mi_copy_done(q, mp, err); 26998 break; 26999 27000 default: 27001 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 27002 break; 27003 } 27004 27005 /* 27006 * The refhold placed at the start of the ioctl is released here. 27007 */ 27008 if (connp != NULL) 27009 CONN_OPER_PENDING_DONE(connp); 27010 27011 if (ipsq != NULL) 27012 ipsq_current_finish(ipsq); 27013 } 27014 27015 /* 27016 * This is called from ip_wput_nondata to resume a deferred TCP bind. 27017 */ 27018 /* ARGSUSED */ 27019 void 27020 ip_resume_tcp_bind(void *arg, mblk_t *mp, void *arg2) 27021 { 27022 conn_t *connp = arg; 27023 tcp_t *tcp; 27024 27025 ASSERT(connp != NULL && IPCL_IS_TCP(connp) && connp->conn_tcp != NULL); 27026 tcp = connp->conn_tcp; 27027 27028 if (connp->conn_tcp->tcp_state == TCPS_CLOSED) 27029 freemsg(mp); 27030 else 27031 tcp_rput_other(tcp, mp); 27032 CONN_OPER_PENDING_DONE(connp); 27033 } 27034 27035 /* Called from ip_wput for all non data messages */ 27036 /* ARGSUSED */ 27037 void 27038 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 27039 { 27040 mblk_t *mp1; 27041 ire_t *ire, *fake_ire; 27042 ill_t *ill; 27043 struct iocblk *iocp; 27044 ip_ioctl_cmd_t *ipip; 27045 cred_t *cr; 27046 conn_t *connp; 27047 int err; 27048 nce_t *nce; 27049 ipif_t *ipif; 27050 ip_stack_t *ipst; 27051 char *proto_str; 27052 27053 if (CONN_Q(q)) { 27054 connp = Q_TO_CONN(q); 27055 ipst = connp->conn_netstack->netstack_ip; 27056 } else { 27057 connp = NULL; 27058 ipst = ILLQ_TO_IPST(q); 27059 } 27060 27061 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(q)); 27062 27063 switch (DB_TYPE(mp)) { 27064 case M_IOCTL: 27065 /* 27066 * IOCTL processing begins in ip_sioctl_copyin_setup which 27067 * will arrange to copy in associated control structures. 27068 */ 27069 ip_sioctl_copyin_setup(q, mp); 27070 return; 27071 case M_IOCDATA: 27072 /* 27073 * Ensure that this is associated with one of our trans- 27074 * parent ioctls. If it's not ours, discard it if we're 27075 * running as a driver, or pass it on if we're a module. 27076 */ 27077 iocp = (struct iocblk *)mp->b_rptr; 27078 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27079 if (ipip == NULL) { 27080 if (q->q_next == NULL) { 27081 goto nak; 27082 } else { 27083 putnext(q, mp); 27084 } 27085 return; 27086 } 27087 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 27088 /* 27089 * the ioctl is one we recognise, but is not 27090 * consumed by IP as a module, pass M_IOCDATA 27091 * for processing downstream, but only for 27092 * common Streams ioctls. 27093 */ 27094 if (ipip->ipi_flags & IPI_PASS_DOWN) { 27095 putnext(q, mp); 27096 return; 27097 } else { 27098 goto nak; 27099 } 27100 } 27101 27102 /* IOCTL continuation following copyin or copyout. */ 27103 if (mi_copy_state(q, mp, NULL) == -1) { 27104 /* 27105 * The copy operation failed. mi_copy_state already 27106 * cleaned up, so we're out of here. 27107 */ 27108 return; 27109 } 27110 /* 27111 * If we just completed a copy in, we become writer and 27112 * continue processing in ip_sioctl_copyin_done. If it 27113 * was a copy out, we call mi_copyout again. If there is 27114 * nothing more to copy out, it will complete the IOCTL. 27115 */ 27116 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 27117 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 27118 mi_copy_done(q, mp, EPROTO); 27119 return; 27120 } 27121 /* 27122 * Check for cases that need more copying. A return 27123 * value of 0 means a second copyin has been started, 27124 * so we return; a return value of 1 means no more 27125 * copying is needed, so we continue. 27126 */ 27127 if (ipip->ipi_cmd_type == MSFILT_CMD && 27128 MI_COPY_COUNT(mp) == 1) { 27129 if (ip_copyin_msfilter(q, mp) == 0) 27130 return; 27131 } 27132 /* 27133 * Refhold the conn, till the ioctl completes. This is 27134 * needed in case the ioctl ends up in the pending mp 27135 * list. Every mp in the ill_pending_mp list and 27136 * the ipsq_pending_mp must have a refhold on the conn 27137 * to resume processing. The refhold is released when 27138 * the ioctl completes. (normally or abnormally) 27139 * In all cases ip_ioctl_finish is called to finish 27140 * the ioctl. 27141 */ 27142 if (connp != NULL) { 27143 /* This is not a reentry */ 27144 ASSERT(ipsq == NULL); 27145 CONN_INC_REF(connp); 27146 } else { 27147 if (!(ipip->ipi_flags & IPI_MODOK)) { 27148 mi_copy_done(q, mp, EINVAL); 27149 return; 27150 } 27151 } 27152 27153 ip_process_ioctl(ipsq, q, mp, ipip); 27154 27155 } else { 27156 mi_copyout(q, mp); 27157 } 27158 return; 27159 nak: 27160 iocp->ioc_error = EINVAL; 27161 mp->b_datap->db_type = M_IOCNAK; 27162 iocp->ioc_count = 0; 27163 qreply(q, mp); 27164 return; 27165 27166 case M_IOCNAK: 27167 /* 27168 * The only way we could get here is if a resolver didn't like 27169 * an IOCTL we sent it. This shouldn't happen. 27170 */ 27171 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 27172 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 27173 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 27174 freemsg(mp); 27175 return; 27176 case M_IOCACK: 27177 /* /dev/ip shouldn't see this */ 27178 if (CONN_Q(q)) 27179 goto nak; 27180 27181 /* Finish socket ioctls passed through to ARP. */ 27182 ip_sioctl_iocack(q, mp); 27183 return; 27184 case M_FLUSH: 27185 if (*mp->b_rptr & FLUSHW) 27186 flushq(q, FLUSHALL); 27187 if (q->q_next) { 27188 putnext(q, mp); 27189 return; 27190 } 27191 if (*mp->b_rptr & FLUSHR) { 27192 *mp->b_rptr &= ~FLUSHW; 27193 qreply(q, mp); 27194 return; 27195 } 27196 freemsg(mp); 27197 return; 27198 case IRE_DB_REQ_TYPE: 27199 if (connp == NULL) { 27200 proto_str = "IRE_DB_REQ_TYPE"; 27201 goto protonak; 27202 } 27203 /* An Upper Level Protocol wants a copy of an IRE. */ 27204 ip_ire_req(q, mp); 27205 return; 27206 case M_CTL: 27207 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 27208 break; 27209 27210 if (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == 27211 TUN_HELLO) { 27212 ASSERT(connp != NULL); 27213 connp->conn_flags |= IPCL_IPTUN; 27214 freeb(mp); 27215 return; 27216 } 27217 27218 /* M_CTL messages are used by ARP to tell us things. */ 27219 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 27220 break; 27221 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 27222 case AR_ENTRY_SQUERY: 27223 ip_wput_ctl(q, mp); 27224 return; 27225 case AR_CLIENT_NOTIFY: 27226 ip_arp_news(q, mp); 27227 return; 27228 case AR_DLPIOP_DONE: 27229 ASSERT(q->q_next != NULL); 27230 ill = (ill_t *)q->q_ptr; 27231 /* qwriter_ip releases the refhold */ 27232 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 27233 ill_refhold(ill); 27234 qwriter_ip(ill, q, mp, ip_arp_done, CUR_OP, B_FALSE); 27235 return; 27236 case AR_ARP_CLOSING: 27237 /* 27238 * ARP (above us) is closing. If no ARP bringup is 27239 * currently pending, ack the message so that ARP 27240 * can complete its close. Also mark ill_arp_closing 27241 * so that new ARP bringups will fail. If any 27242 * ARP bringup is currently in progress, we will 27243 * ack this when the current ARP bringup completes. 27244 */ 27245 ASSERT(q->q_next != NULL); 27246 ill = (ill_t *)q->q_ptr; 27247 mutex_enter(&ill->ill_lock); 27248 ill->ill_arp_closing = 1; 27249 if (!ill->ill_arp_bringup_pending) { 27250 mutex_exit(&ill->ill_lock); 27251 qreply(q, mp); 27252 } else { 27253 mutex_exit(&ill->ill_lock); 27254 freemsg(mp); 27255 } 27256 return; 27257 case AR_ARP_EXTEND: 27258 /* 27259 * The ARP module above us is capable of duplicate 27260 * address detection. Old ATM drivers will not send 27261 * this message. 27262 */ 27263 ASSERT(q->q_next != NULL); 27264 ill = (ill_t *)q->q_ptr; 27265 ill->ill_arp_extend = B_TRUE; 27266 freemsg(mp); 27267 return; 27268 default: 27269 break; 27270 } 27271 break; 27272 case M_PROTO: 27273 case M_PCPROTO: 27274 /* 27275 * The only PROTO messages we expect are ULP binds and 27276 * copies of option negotiation acknowledgements. 27277 */ 27278 switch (((union T_primitives *)mp->b_rptr)->type) { 27279 case O_T_BIND_REQ: 27280 case T_BIND_REQ: { 27281 /* Request can get queued in bind */ 27282 if (connp == NULL) { 27283 proto_str = "O_T_BIND_REQ/T_BIND_REQ"; 27284 goto protonak; 27285 } 27286 /* 27287 * The transports except SCTP call ip_bind_{v4,v6}() 27288 * directly instead of a a putnext. SCTP doesn't 27289 * generate any T_BIND_REQ since it has its own 27290 * fanout data structures. However, ESP and AH 27291 * come in for regular binds; all other cases are 27292 * bind retries. 27293 */ 27294 ASSERT(!IPCL_IS_SCTP(connp)); 27295 27296 /* Don't increment refcnt if this is a re-entry */ 27297 if (ipsq == NULL) 27298 CONN_INC_REF(connp); 27299 27300 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 27301 connp, NULL) : ip_bind_v4(q, mp, connp); 27302 if (mp == NULL) 27303 return; 27304 if (IPCL_IS_TCP(connp)) { 27305 /* 27306 * In the case of TCP endpoint we 27307 * come here only for bind retries 27308 */ 27309 ASSERT(ipsq != NULL); 27310 CONN_INC_REF(connp); 27311 squeue_fill(connp->conn_sqp, mp, 27312 ip_resume_tcp_bind, connp, 27313 SQTAG_BIND_RETRY); 27314 } else if (IPCL_IS_UDP(connp)) { 27315 /* 27316 * In the case of UDP endpoint we 27317 * come here only for bind retries 27318 */ 27319 ASSERT(ipsq != NULL); 27320 udp_resume_bind(connp, mp); 27321 } else if (IPCL_IS_RAWIP(connp)) { 27322 /* 27323 * In the case of RAWIP endpoint we 27324 * come here only for bind retries 27325 */ 27326 ASSERT(ipsq != NULL); 27327 rawip_resume_bind(connp, mp); 27328 } else { 27329 /* The case of AH and ESP */ 27330 qreply(q, mp); 27331 CONN_OPER_PENDING_DONE(connp); 27332 } 27333 return; 27334 } 27335 case T_SVR4_OPTMGMT_REQ: 27336 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 27337 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 27338 27339 if (connp == NULL) { 27340 proto_str = "T_SVR4_OPTMGMT_REQ"; 27341 goto protonak; 27342 } 27343 27344 if (!snmpcom_req(q, mp, ip_snmp_set, 27345 ip_snmp_get, cr)) { 27346 /* 27347 * Call svr4_optcom_req so that it can 27348 * generate the ack. We don't come here 27349 * if this operation is being restarted. 27350 * ip_restart_optmgmt will drop the conn ref. 27351 * In the case of ipsec option after the ipsec 27352 * load is complete conn_restart_ipsec_waiter 27353 * drops the conn ref. 27354 */ 27355 ASSERT(ipsq == NULL); 27356 CONN_INC_REF(connp); 27357 if (ip_check_for_ipsec_opt(q, mp)) 27358 return; 27359 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj, 27360 B_FALSE); 27361 if (err != EINPROGRESS) { 27362 /* Operation is done */ 27363 CONN_OPER_PENDING_DONE(connp); 27364 } 27365 } 27366 return; 27367 case T_OPTMGMT_REQ: 27368 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 27369 /* 27370 * Note: No snmpcom_req support through new 27371 * T_OPTMGMT_REQ. 27372 * Call tpi_optcom_req so that it can 27373 * generate the ack. 27374 */ 27375 if (connp == NULL) { 27376 proto_str = "T_OPTMGMT_REQ"; 27377 goto protonak; 27378 } 27379 27380 ASSERT(ipsq == NULL); 27381 /* 27382 * We don't come here for restart. ip_restart_optmgmt 27383 * will drop the conn ref. In the case of ipsec option 27384 * after the ipsec load is complete 27385 * conn_restart_ipsec_waiter drops the conn ref. 27386 */ 27387 CONN_INC_REF(connp); 27388 if (ip_check_for_ipsec_opt(q, mp)) 27389 return; 27390 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj, B_FALSE); 27391 if (err != EINPROGRESS) { 27392 /* Operation is done */ 27393 CONN_OPER_PENDING_DONE(connp); 27394 } 27395 return; 27396 case T_UNBIND_REQ: 27397 if (connp == NULL) { 27398 proto_str = "T_UNBIND_REQ"; 27399 goto protonak; 27400 } 27401 mp = ip_unbind(q, mp); 27402 qreply(q, mp); 27403 return; 27404 default: 27405 /* 27406 * Have to drop any DLPI messages coming down from 27407 * arp (such as an info_req which would cause ip 27408 * to receive an extra info_ack if it was passed 27409 * through. 27410 */ 27411 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 27412 (int)*(uint_t *)mp->b_rptr)); 27413 freemsg(mp); 27414 return; 27415 } 27416 /* NOTREACHED */ 27417 case IRE_DB_TYPE: { 27418 nce_t *nce; 27419 ill_t *ill; 27420 in6_addr_t gw_addr_v6; 27421 27422 27423 /* 27424 * This is a response back from a resolver. It 27425 * consists of a message chain containing: 27426 * IRE_MBLK-->LL_HDR_MBLK->pkt 27427 * The IRE_MBLK is the one we allocated in ip_newroute. 27428 * The LL_HDR_MBLK is the DLPI header to use to get 27429 * the attached packet, and subsequent ones for the 27430 * same destination, transmitted. 27431 */ 27432 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 27433 break; 27434 /* 27435 * First, check to make sure the resolution succeeded. 27436 * If it failed, the second mblk will be empty. 27437 * If it is, free the chain, dropping the packet. 27438 * (We must ire_delete the ire; that frees the ire mblk) 27439 * We're doing this now to support PVCs for ATM; it's 27440 * a partial xresolv implementation. When we fully implement 27441 * xresolv interfaces, instead of freeing everything here 27442 * we'll initiate neighbor discovery. 27443 * 27444 * For v4 (ARP and other external resolvers) the resolver 27445 * frees the message, so no check is needed. This check 27446 * is required, though, for a full xresolve implementation. 27447 * Including this code here now both shows how external 27448 * resolvers can NACK a resolution request using an 27449 * existing design that has no specific provisions for NACKs, 27450 * and also takes into account that the current non-ARP 27451 * external resolver has been coded to use this method of 27452 * NACKing for all IPv6 (xresolv) cases, 27453 * whether our xresolv implementation is complete or not. 27454 * 27455 */ 27456 ire = (ire_t *)mp->b_rptr; 27457 ill = ire_to_ill(ire); 27458 mp1 = mp->b_cont; /* dl_unitdata_req */ 27459 if (mp1->b_rptr == mp1->b_wptr) { 27460 if (ire->ire_ipversion == IPV6_VERSION) { 27461 /* 27462 * XRESOLV interface. 27463 */ 27464 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27465 mutex_enter(&ire->ire_lock); 27466 gw_addr_v6 = ire->ire_gateway_addr_v6; 27467 mutex_exit(&ire->ire_lock); 27468 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27469 nce = ndp_lookup_v6(ill, 27470 &ire->ire_addr_v6, B_FALSE); 27471 } else { 27472 nce = ndp_lookup_v6(ill, &gw_addr_v6, 27473 B_FALSE); 27474 } 27475 if (nce != NULL) { 27476 nce_resolv_failed(nce); 27477 ndp_delete(nce); 27478 NCE_REFRELE(nce); 27479 } 27480 } 27481 mp->b_cont = NULL; 27482 freemsg(mp1); /* frees the pkt as well */ 27483 ASSERT(ire->ire_nce == NULL); 27484 ire_delete((ire_t *)mp->b_rptr); 27485 return; 27486 } 27487 27488 /* 27489 * Split them into IRE_MBLK and pkt and feed it into 27490 * ire_add_then_send. Then in ire_add_then_send 27491 * the IRE will be added, and then the packet will be 27492 * run back through ip_wput. This time it will make 27493 * it to the wire. 27494 */ 27495 mp->b_cont = NULL; 27496 mp = mp1->b_cont; /* now, mp points to pkt */ 27497 mp1->b_cont = NULL; 27498 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 27499 if (ire->ire_ipversion == IPV6_VERSION) { 27500 /* 27501 * XRESOLV interface. Find the nce and put a copy 27502 * of the dl_unitdata_req in nce_res_mp 27503 */ 27504 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27505 mutex_enter(&ire->ire_lock); 27506 gw_addr_v6 = ire->ire_gateway_addr_v6; 27507 mutex_exit(&ire->ire_lock); 27508 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27509 nce = ndp_lookup_v6(ill, &ire->ire_addr_v6, 27510 B_FALSE); 27511 } else { 27512 nce = ndp_lookup_v6(ill, &gw_addr_v6, B_FALSE); 27513 } 27514 if (nce != NULL) { 27515 /* 27516 * We have to protect nce_res_mp here 27517 * from being accessed by other threads 27518 * while we change the mblk pointer. 27519 * Other functions will also lock the nce when 27520 * accessing nce_res_mp. 27521 * 27522 * The reason we change the mblk pointer 27523 * here rather than copying the resolved address 27524 * into the template is that, unlike with 27525 * ethernet, we have no guarantee that the 27526 * resolved address length will be 27527 * smaller than or equal to the lla length 27528 * with which the template was allocated, 27529 * (for ethernet, they're equal) 27530 * so we have to use the actual resolved 27531 * address mblk - which holds the real 27532 * dl_unitdata_req with the resolved address. 27533 * 27534 * Doing this is the same behavior as was 27535 * previously used in the v4 ARP case. 27536 */ 27537 mutex_enter(&nce->nce_lock); 27538 if (nce->nce_res_mp != NULL) 27539 freemsg(nce->nce_res_mp); 27540 nce->nce_res_mp = mp1; 27541 mutex_exit(&nce->nce_lock); 27542 /* 27543 * We do a fastpath probe here because 27544 * we have resolved the address without 27545 * using Neighbor Discovery. 27546 * In the non-XRESOLV v6 case, the fastpath 27547 * probe is done right after neighbor 27548 * discovery completes. 27549 */ 27550 if (nce->nce_res_mp != NULL) { 27551 int res; 27552 nce_fastpath_list_add(nce); 27553 res = ill_fastpath_probe(ill, 27554 nce->nce_res_mp); 27555 if (res != 0 && res != EAGAIN) 27556 nce_fastpath_list_delete(nce); 27557 } 27558 27559 ire_add_then_send(q, ire, mp); 27560 /* 27561 * Now we have to clean out any packets 27562 * that may have been queued on the nce 27563 * while it was waiting for address resolution 27564 * to complete. 27565 */ 27566 mutex_enter(&nce->nce_lock); 27567 mp1 = nce->nce_qd_mp; 27568 nce->nce_qd_mp = NULL; 27569 mutex_exit(&nce->nce_lock); 27570 while (mp1 != NULL) { 27571 mblk_t *nxt_mp; 27572 queue_t *fwdq = NULL; 27573 ill_t *inbound_ill; 27574 uint_t ifindex; 27575 27576 nxt_mp = mp1->b_next; 27577 mp1->b_next = NULL; 27578 /* 27579 * Retrieve ifindex stored in 27580 * ip_rput_data_v6() 27581 */ 27582 ifindex = 27583 (uint_t)(uintptr_t)mp1->b_prev; 27584 inbound_ill = 27585 ill_lookup_on_ifindex(ifindex, 27586 B_TRUE, NULL, NULL, NULL, 27587 NULL, ipst); 27588 mp1->b_prev = NULL; 27589 if (inbound_ill != NULL) 27590 fwdq = inbound_ill->ill_rq; 27591 27592 if (fwdq != NULL) { 27593 put(fwdq, mp1); 27594 ill_refrele(inbound_ill); 27595 } else 27596 put(WR(ill->ill_rq), mp1); 27597 mp1 = nxt_mp; 27598 } 27599 NCE_REFRELE(nce); 27600 } else { /* nce is NULL; clean up */ 27601 ire_delete(ire); 27602 freemsg(mp); 27603 freemsg(mp1); 27604 return; 27605 } 27606 } else { 27607 nce_t *arpce; 27608 /* 27609 * Link layer resolution succeeded. Recompute the 27610 * ire_nce. 27611 */ 27612 ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST)); 27613 if ((arpce = ndp_lookup_v4(ill, 27614 (ire->ire_gateway_addr != INADDR_ANY ? 27615 &ire->ire_gateway_addr : &ire->ire_addr), 27616 B_FALSE)) == NULL) { 27617 freeb(ire->ire_mp); 27618 freeb(mp1); 27619 freemsg(mp); 27620 return; 27621 } 27622 mutex_enter(&arpce->nce_lock); 27623 arpce->nce_last = TICK_TO_MSEC(lbolt64); 27624 if (arpce->nce_state == ND_REACHABLE) { 27625 /* 27626 * Someone resolved this before us; 27627 * cleanup the res_mp. Since ire has 27628 * not been added yet, the call to ire_add_v4 27629 * from ire_add_then_send (when a dup is 27630 * detected) will clean up the ire. 27631 */ 27632 freeb(mp1); 27633 } else { 27634 ASSERT(arpce->nce_res_mp == NULL); 27635 arpce->nce_res_mp = mp1; 27636 arpce->nce_state = ND_REACHABLE; 27637 } 27638 mutex_exit(&arpce->nce_lock); 27639 if (ire->ire_marks & IRE_MARK_NOADD) { 27640 /* 27641 * this ire will not be added to the ire 27642 * cache table, so we can set the ire_nce 27643 * here, as there are no atomicity constraints. 27644 */ 27645 ire->ire_nce = arpce; 27646 /* 27647 * We are associating this nce with the ire 27648 * so change the nce ref taken in 27649 * ndp_lookup_v4() from 27650 * NCE_REFHOLD to NCE_REFHOLD_NOTR 27651 */ 27652 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 27653 } else { 27654 NCE_REFRELE(arpce); 27655 } 27656 ire_add_then_send(q, ire, mp); 27657 } 27658 return; /* All is well, the packet has been sent. */ 27659 } 27660 case IRE_ARPRESOLVE_TYPE: { 27661 27662 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */ 27663 break; 27664 mp1 = mp->b_cont; /* dl_unitdata_req */ 27665 mp->b_cont = NULL; 27666 /* 27667 * First, check to make sure the resolution succeeded. 27668 * If it failed, the second mblk will be empty. 27669 */ 27670 if (mp1->b_rptr == mp1->b_wptr) { 27671 /* cleanup the incomplete ire, free queued packets */ 27672 freemsg(mp); /* fake ire */ 27673 freeb(mp1); /* dl_unitdata response */ 27674 return; 27675 } 27676 27677 /* 27678 * update any incomplete nce_t found. we lookup the ctable 27679 * and find the nce from the ire->ire_nce because we need 27680 * to pass the ire to ip_xmit_v4 later, and can find both 27681 * ire and nce in one lookup from the ctable. 27682 */ 27683 fake_ire = (ire_t *)mp->b_rptr; 27684 /* 27685 * By the time we come back here from ARP 27686 * the logical outgoing interface of the incomplete ire 27687 * we added in ire_forward could have disappeared, 27688 * causing the incomplete ire to also have 27689 * dissapeared. So we need to retreive the 27690 * proper ipif for the ire before looking 27691 * in ctable; do the ctablelookup based on ire_ipif_seqid 27692 */ 27693 ill = q->q_ptr; 27694 27695 /* Get the outgoing ipif */ 27696 mutex_enter(&ill->ill_lock); 27697 if (ill->ill_state_flags & ILL_CONDEMNED) { 27698 mutex_exit(&ill->ill_lock); 27699 freemsg(mp); /* fake ire */ 27700 freeb(mp1); /* dl_unitdata response */ 27701 return; 27702 } 27703 ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid); 27704 27705 if (ipif == NULL) { 27706 mutex_exit(&ill->ill_lock); 27707 ip1dbg(("logical intrf to incomplete ire vanished\n")); 27708 freemsg(mp); 27709 freeb(mp1); 27710 return; 27711 } 27712 ipif_refhold_locked(ipif); 27713 mutex_exit(&ill->ill_lock); 27714 ire = ire_ctable_lookup(fake_ire->ire_addr, 27715 fake_ire->ire_gateway_addr, IRE_CACHE, 27716 ipif, fake_ire->ire_zoneid, NULL, 27717 (MATCH_IRE_GW|MATCH_IRE_IPIF|MATCH_IRE_ZONEONLY), ipst); 27718 ipif_refrele(ipif); 27719 if (ire == NULL) { 27720 /* 27721 * no ire was found; check if there is an nce 27722 * for this lookup; if it has no ire's pointing at it 27723 * cleanup. 27724 */ 27725 if ((nce = ndp_lookup_v4(ill, 27726 (fake_ire->ire_gateway_addr != INADDR_ANY ? 27727 &fake_ire->ire_gateway_addr : &fake_ire->ire_addr), 27728 B_FALSE)) != NULL) { 27729 /* 27730 * cleanup: 27731 * We check for refcnt 2 (one for the nce 27732 * hash list + 1 for the ref taken by 27733 * ndp_lookup_v4) to check that there are 27734 * no ire's pointing at the nce. 27735 */ 27736 if (nce->nce_refcnt == 2) 27737 ndp_delete(nce); 27738 NCE_REFRELE(nce); 27739 } 27740 freeb(mp1); /* dl_unitdata response */ 27741 freemsg(mp); /* fake ire */ 27742 return; 27743 } 27744 nce = ire->ire_nce; 27745 DTRACE_PROBE2(ire__arpresolve__type, 27746 ire_t *, ire, nce_t *, nce); 27747 ASSERT(nce->nce_state != ND_INITIAL); 27748 mutex_enter(&nce->nce_lock); 27749 nce->nce_last = TICK_TO_MSEC(lbolt64); 27750 if (nce->nce_state == ND_REACHABLE) { 27751 /* 27752 * Someone resolved this before us; 27753 * our response is not needed any more. 27754 */ 27755 mutex_exit(&nce->nce_lock); 27756 freeb(mp1); /* dl_unitdata response */ 27757 } else { 27758 ASSERT(nce->nce_res_mp == NULL); 27759 nce->nce_res_mp = mp1; 27760 nce->nce_state = ND_REACHABLE; 27761 mutex_exit(&nce->nce_lock); 27762 nce_fastpath(nce); 27763 } 27764 /* 27765 * The cached nce_t has been updated to be reachable; 27766 * Clear the IRE_MARK_UNCACHED flag and free the fake_ire. 27767 */ 27768 fake_ire->ire_marks &= ~IRE_MARK_UNCACHED; 27769 freemsg(mp); 27770 /* 27771 * send out queued packets. 27772 */ 27773 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 27774 27775 IRE_REFRELE(ire); 27776 return; 27777 } 27778 default: 27779 break; 27780 } 27781 if (q->q_next) { 27782 putnext(q, mp); 27783 } else 27784 freemsg(mp); 27785 return; 27786 27787 protonak: 27788 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 27789 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 27790 qreply(q, mp); 27791 } 27792 27793 /* 27794 * Process IP options in an outbound packet. Modify the destination if there 27795 * is a source route option. 27796 * Returns non-zero if something fails in which case an ICMP error has been 27797 * sent and mp freed. 27798 */ 27799 static int 27800 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 27801 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 27802 { 27803 ipoptp_t opts; 27804 uchar_t *opt; 27805 uint8_t optval; 27806 uint8_t optlen; 27807 ipaddr_t dst; 27808 intptr_t code = 0; 27809 mblk_t *mp; 27810 ire_t *ire = NULL; 27811 27812 ip2dbg(("ip_wput_options\n")); 27813 mp = ipsec_mp; 27814 if (mctl_present) { 27815 mp = ipsec_mp->b_cont; 27816 } 27817 27818 dst = ipha->ipha_dst; 27819 for (optval = ipoptp_first(&opts, ipha); 27820 optval != IPOPT_EOL; 27821 optval = ipoptp_next(&opts)) { 27822 opt = opts.ipoptp_cur; 27823 optlen = opts.ipoptp_len; 27824 ip2dbg(("ip_wput_options: opt %d, len %d\n", 27825 optval, optlen)); 27826 switch (optval) { 27827 uint32_t off; 27828 case IPOPT_SSRR: 27829 case IPOPT_LSRR: 27830 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27831 ip1dbg(( 27832 "ip_wput_options: bad option offset\n")); 27833 code = (char *)&opt[IPOPT_OLEN] - 27834 (char *)ipha; 27835 goto param_prob; 27836 } 27837 off = opt[IPOPT_OFFSET]; 27838 ip1dbg(("ip_wput_options: next hop 0x%x\n", 27839 ntohl(dst))); 27840 /* 27841 * For strict: verify that dst is directly 27842 * reachable. 27843 */ 27844 if (optval == IPOPT_SSRR) { 27845 ire = ire_ftable_lookup(dst, 0, 0, 27846 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 27847 MBLK_GETLABEL(mp), 27848 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 27849 if (ire == NULL) { 27850 ip1dbg(("ip_wput_options: SSRR not" 27851 " directly reachable: 0x%x\n", 27852 ntohl(dst))); 27853 goto bad_src_route; 27854 } 27855 ire_refrele(ire); 27856 } 27857 break; 27858 case IPOPT_RR: 27859 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27860 ip1dbg(( 27861 "ip_wput_options: bad option offset\n")); 27862 code = (char *)&opt[IPOPT_OLEN] - 27863 (char *)ipha; 27864 goto param_prob; 27865 } 27866 break; 27867 case IPOPT_TS: 27868 /* 27869 * Verify that length >=5 and that there is either 27870 * room for another timestamp or that the overflow 27871 * counter is not maxed out. 27872 */ 27873 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 27874 if (optlen < IPOPT_MINLEN_IT) { 27875 goto param_prob; 27876 } 27877 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27878 ip1dbg(( 27879 "ip_wput_options: bad option offset\n")); 27880 code = (char *)&opt[IPOPT_OFFSET] - 27881 (char *)ipha; 27882 goto param_prob; 27883 } 27884 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 27885 case IPOPT_TS_TSONLY: 27886 off = IPOPT_TS_TIMELEN; 27887 break; 27888 case IPOPT_TS_TSANDADDR: 27889 case IPOPT_TS_PRESPEC: 27890 case IPOPT_TS_PRESPEC_RFC791: 27891 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 27892 break; 27893 default: 27894 code = (char *)&opt[IPOPT_POS_OV_FLG] - 27895 (char *)ipha; 27896 goto param_prob; 27897 } 27898 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 27899 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 27900 /* 27901 * No room and the overflow counter is 15 27902 * already. 27903 */ 27904 goto param_prob; 27905 } 27906 break; 27907 } 27908 } 27909 27910 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 27911 return (0); 27912 27913 ip1dbg(("ip_wput_options: error processing IP options.")); 27914 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 27915 27916 param_prob: 27917 /* 27918 * Since ip_wput() isn't close to finished, we fill 27919 * in enough of the header for credible error reporting. 27920 */ 27921 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 27922 /* Failed */ 27923 freemsg(ipsec_mp); 27924 return (-1); 27925 } 27926 icmp_param_problem(q, ipsec_mp, (uint8_t)code, zoneid, ipst); 27927 return (-1); 27928 27929 bad_src_route: 27930 /* 27931 * Since ip_wput() isn't close to finished, we fill 27932 * in enough of the header for credible error reporting. 27933 */ 27934 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 27935 /* Failed */ 27936 freemsg(ipsec_mp); 27937 return (-1); 27938 } 27939 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 27940 return (-1); 27941 } 27942 27943 /* 27944 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 27945 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 27946 * thru /etc/system. 27947 */ 27948 #define CONN_MAXDRAINCNT 64 27949 27950 static void 27951 conn_drain_init(ip_stack_t *ipst) 27952 { 27953 int i; 27954 27955 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 27956 27957 if ((ipst->ips_conn_drain_list_cnt == 0) || 27958 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 27959 /* 27960 * Default value of the number of drainers is the 27961 * number of cpus, subject to maximum of 8 drainers. 27962 */ 27963 if (boot_max_ncpus != -1) 27964 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 27965 else 27966 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 27967 } 27968 27969 ipst->ips_conn_drain_list = kmem_zalloc(ipst->ips_conn_drain_list_cnt * 27970 sizeof (idl_t), KM_SLEEP); 27971 27972 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 27973 mutex_init(&ipst->ips_conn_drain_list[i].idl_lock, NULL, 27974 MUTEX_DEFAULT, NULL); 27975 } 27976 } 27977 27978 static void 27979 conn_drain_fini(ip_stack_t *ipst) 27980 { 27981 int i; 27982 27983 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) 27984 mutex_destroy(&ipst->ips_conn_drain_list[i].idl_lock); 27985 kmem_free(ipst->ips_conn_drain_list, 27986 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 27987 ipst->ips_conn_drain_list = NULL; 27988 } 27989 27990 /* 27991 * Note: For an overview of how flowcontrol is handled in IP please see the 27992 * IP Flowcontrol notes at the top of this file. 27993 * 27994 * Flow control has blocked us from proceeding. Insert the given conn in one 27995 * of the conn drain lists. These conn wq's will be qenabled later on when 27996 * STREAMS flow control does a backenable. conn_walk_drain will enable 27997 * the first conn in each of these drain lists. Each of these qenabled conns 27998 * in turn enables the next in the list, after it runs, or when it closes, 27999 * thus sustaining the drain process. 28000 * 28001 * The only possible calling sequence is ip_wsrv (on conn) -> ip_wput -> 28002 * conn_drain_insert. Thus there can be only 1 instance of conn_drain_insert 28003 * running at any time, on a given conn, since there can be only 1 service proc 28004 * running on a queue at any time. 28005 */ 28006 void 28007 conn_drain_insert(conn_t *connp) 28008 { 28009 idl_t *idl; 28010 uint_t index; 28011 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28012 28013 mutex_enter(&connp->conn_lock); 28014 if (connp->conn_state_flags & CONN_CLOSING) { 28015 /* 28016 * The conn is closing as a result of which CONN_CLOSING 28017 * is set. Return. 28018 */ 28019 mutex_exit(&connp->conn_lock); 28020 return; 28021 } else if (connp->conn_idl == NULL) { 28022 /* 28023 * Assign the next drain list round robin. We dont' use 28024 * a lock, and thus it may not be strictly round robin. 28025 * Atomicity of load/stores is enough to make sure that 28026 * conn_drain_list_index is always within bounds. 28027 */ 28028 index = ipst->ips_conn_drain_list_index; 28029 ASSERT(index < ipst->ips_conn_drain_list_cnt); 28030 connp->conn_idl = &ipst->ips_conn_drain_list[index]; 28031 index++; 28032 if (index == ipst->ips_conn_drain_list_cnt) 28033 index = 0; 28034 ipst->ips_conn_drain_list_index = index; 28035 } 28036 mutex_exit(&connp->conn_lock); 28037 28038 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28039 if ((connp->conn_drain_prev != NULL) || 28040 (connp->conn_state_flags & CONN_CLOSING)) { 28041 /* 28042 * The conn is already in the drain list, OR 28043 * the conn is closing. We need to check again for 28044 * the closing case again since close can happen 28045 * after we drop the conn_lock, and before we 28046 * acquire the CONN_DRAIN_LIST_LOCK. 28047 */ 28048 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28049 return; 28050 } else { 28051 idl = connp->conn_idl; 28052 } 28053 28054 /* 28055 * The conn is not in the drain list. Insert it at the 28056 * tail of the drain list. The drain list is circular 28057 * and doubly linked. idl_conn points to the 1st element 28058 * in the list. 28059 */ 28060 if (idl->idl_conn == NULL) { 28061 idl->idl_conn = connp; 28062 connp->conn_drain_next = connp; 28063 connp->conn_drain_prev = connp; 28064 } else { 28065 conn_t *head = idl->idl_conn; 28066 28067 connp->conn_drain_next = head; 28068 connp->conn_drain_prev = head->conn_drain_prev; 28069 head->conn_drain_prev->conn_drain_next = connp; 28070 head->conn_drain_prev = connp; 28071 } 28072 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28073 } 28074 28075 /* 28076 * This conn is closing, and we are called from ip_close. OR 28077 * This conn has been serviced by ip_wsrv, and we need to do the tail 28078 * processing. 28079 * If this conn is part of the drain list, we may need to sustain the drain 28080 * process by qenabling the next conn in the drain list. We may also need to 28081 * remove this conn from the list, if it is done. 28082 */ 28083 static void 28084 conn_drain_tail(conn_t *connp, boolean_t closing) 28085 { 28086 idl_t *idl; 28087 28088 /* 28089 * connp->conn_idl is stable at this point, and no lock is needed 28090 * to check it. If we are called from ip_close, close has already 28091 * set CONN_CLOSING, thus freezing the value of conn_idl, and 28092 * called us only because conn_idl is non-null. If we are called thru 28093 * service, conn_idl could be null, but it cannot change because 28094 * service is single-threaded per queue, and there cannot be another 28095 * instance of service trying to call conn_drain_insert on this conn 28096 * now. 28097 */ 28098 ASSERT(!closing || (connp->conn_idl != NULL)); 28099 28100 /* 28101 * If connp->conn_idl is null, the conn has not been inserted into any 28102 * drain list even once since creation of the conn. Just return. 28103 */ 28104 if (connp->conn_idl == NULL) 28105 return; 28106 28107 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28108 28109 if (connp->conn_drain_prev == NULL) { 28110 /* This conn is currently not in the drain list. */ 28111 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28112 return; 28113 } 28114 idl = connp->conn_idl; 28115 if (idl->idl_conn_draining == connp) { 28116 /* 28117 * This conn is the current drainer. If this is the last conn 28118 * in the drain list, we need to do more checks, in the 'if' 28119 * below. Otherwwise we need to just qenable the next conn, 28120 * to sustain the draining, and is handled in the 'else' 28121 * below. 28122 */ 28123 if (connp->conn_drain_next == idl->idl_conn) { 28124 /* 28125 * This conn is the last in this list. This round 28126 * of draining is complete. If idl_repeat is set, 28127 * it means another flow enabling has happened from 28128 * the driver/streams and we need to another round 28129 * of draining. 28130 * If there are more than 2 conns in the drain list, 28131 * do a left rotate by 1, so that all conns except the 28132 * conn at the head move towards the head by 1, and the 28133 * the conn at the head goes to the tail. This attempts 28134 * a more even share for all queues that are being 28135 * drained. 28136 */ 28137 if ((connp->conn_drain_next != connp) && 28138 (idl->idl_conn->conn_drain_next != connp)) { 28139 idl->idl_conn = idl->idl_conn->conn_drain_next; 28140 } 28141 if (idl->idl_repeat) { 28142 qenable(idl->idl_conn->conn_wq); 28143 idl->idl_conn_draining = idl->idl_conn; 28144 idl->idl_repeat = 0; 28145 } else { 28146 idl->idl_conn_draining = NULL; 28147 } 28148 } else { 28149 /* 28150 * If the next queue that we are now qenable'ing, 28151 * is closing, it will remove itself from this list 28152 * and qenable the subsequent queue in ip_close(). 28153 * Serialization is acheived thru idl_lock. 28154 */ 28155 qenable(connp->conn_drain_next->conn_wq); 28156 idl->idl_conn_draining = connp->conn_drain_next; 28157 } 28158 } 28159 if (!connp->conn_did_putbq || closing) { 28160 /* 28161 * Remove ourself from the drain list, if we did not do 28162 * a putbq, or if the conn is closing. 28163 * Note: It is possible that q->q_first is non-null. It means 28164 * that these messages landed after we did a enableok() in 28165 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 28166 * service them. 28167 */ 28168 if (connp->conn_drain_next == connp) { 28169 /* Singleton in the list */ 28170 ASSERT(connp->conn_drain_prev == connp); 28171 idl->idl_conn = NULL; 28172 idl->idl_conn_draining = NULL; 28173 } else { 28174 connp->conn_drain_prev->conn_drain_next = 28175 connp->conn_drain_next; 28176 connp->conn_drain_next->conn_drain_prev = 28177 connp->conn_drain_prev; 28178 if (idl->idl_conn == connp) 28179 idl->idl_conn = connp->conn_drain_next; 28180 ASSERT(idl->idl_conn_draining != connp); 28181 28182 } 28183 connp->conn_drain_next = NULL; 28184 connp->conn_drain_prev = NULL; 28185 } 28186 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28187 } 28188 28189 /* 28190 * Write service routine. Shared perimeter entry point. 28191 * ip_wsrv can be called in any of the following ways. 28192 * 1. The device queue's messages has fallen below the low water mark 28193 * and STREAMS has backenabled the ill_wq. We walk thru all the 28194 * the drain lists and backenable the first conn in each list. 28195 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 28196 * qenabled non-tcp upper layers. We start dequeing messages and call 28197 * ip_wput for each message. 28198 */ 28199 28200 void 28201 ip_wsrv(queue_t *q) 28202 { 28203 conn_t *connp; 28204 ill_t *ill; 28205 mblk_t *mp; 28206 28207 if (q->q_next) { 28208 ill = (ill_t *)q->q_ptr; 28209 if (ill->ill_state_flags == 0) { 28210 /* 28211 * The device flow control has opened up. 28212 * Walk through conn drain lists and qenable the 28213 * first conn in each list. This makes sense only 28214 * if the stream is fully plumbed and setup. 28215 * Hence the if check above. 28216 */ 28217 ip1dbg(("ip_wsrv: walking\n")); 28218 conn_walk_drain(ill->ill_ipst); 28219 } 28220 return; 28221 } 28222 28223 connp = Q_TO_CONN(q); 28224 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 28225 28226 /* 28227 * 1. Set conn_draining flag to signal that service is active. 28228 * 28229 * 2. ip_output determines whether it has been called from service, 28230 * based on the last parameter. If it is IP_WSRV it concludes it 28231 * has been called from service. 28232 * 28233 * 3. Message ordering is preserved by the following logic. 28234 * i. A directly called ip_output (i.e. not thru service) will queue 28235 * the message at the tail, if conn_draining is set (i.e. service 28236 * is running) or if q->q_first is non-null. 28237 * 28238 * ii. If ip_output is called from service, and if ip_output cannot 28239 * putnext due to flow control, it does a putbq. 28240 * 28241 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 28242 * (causing an infinite loop). 28243 */ 28244 ASSERT(!connp->conn_did_putbq); 28245 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 28246 connp->conn_draining = 1; 28247 noenable(q); 28248 while ((mp = getq(q)) != NULL) { 28249 ASSERT(CONN_Q(q)); 28250 28251 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 28252 if (connp->conn_did_putbq) { 28253 /* ip_wput did a putbq */ 28254 break; 28255 } 28256 } 28257 /* 28258 * At this point, a thread coming down from top, calling 28259 * ip_wput, may end up queueing the message. We have not yet 28260 * enabled the queue, so ip_wsrv won't be called again. 28261 * To avoid this race, check q->q_first again (in the loop) 28262 * If the other thread queued the message before we call 28263 * enableok(), we will catch it in the q->q_first check. 28264 * If the other thread queues the message after we call 28265 * enableok(), ip_wsrv will be called again by STREAMS. 28266 */ 28267 connp->conn_draining = 0; 28268 enableok(q); 28269 } 28270 28271 /* Enable the next conn for draining */ 28272 conn_drain_tail(connp, B_FALSE); 28273 28274 connp->conn_did_putbq = 0; 28275 } 28276 28277 /* 28278 * Walk the list of all conn's calling the function provided with the 28279 * specified argument for each. Note that this only walks conn's that 28280 * have been bound. 28281 * Applies to both IPv4 and IPv6. 28282 */ 28283 static void 28284 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 28285 { 28286 conn_walk_fanout_table(ipst->ips_ipcl_udp_fanout, 28287 ipst->ips_ipcl_udp_fanout_size, 28288 func, arg, zoneid); 28289 conn_walk_fanout_table(ipst->ips_ipcl_conn_fanout, 28290 ipst->ips_ipcl_conn_fanout_size, 28291 func, arg, zoneid); 28292 conn_walk_fanout_table(ipst->ips_ipcl_bind_fanout, 28293 ipst->ips_ipcl_bind_fanout_size, 28294 func, arg, zoneid); 28295 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout, 28296 IPPROTO_MAX, func, arg, zoneid); 28297 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout_v6, 28298 IPPROTO_MAX, func, arg, zoneid); 28299 } 28300 28301 /* 28302 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 28303 * of conns that need to be drained, check if drain is already in progress. 28304 * If so set the idl_repeat bit, indicating that the last conn in the list 28305 * needs to reinitiate the drain once again, for the list. If drain is not 28306 * in progress for the list, initiate the draining, by qenabling the 1st 28307 * conn in the list. The drain is self-sustaining, each qenabled conn will 28308 * in turn qenable the next conn, when it is done/blocked/closing. 28309 */ 28310 static void 28311 conn_walk_drain(ip_stack_t *ipst) 28312 { 28313 int i; 28314 idl_t *idl; 28315 28316 IP_STAT(ipst, ip_conn_walk_drain); 28317 28318 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28319 idl = &ipst->ips_conn_drain_list[i]; 28320 mutex_enter(&idl->idl_lock); 28321 if (idl->idl_conn == NULL) { 28322 mutex_exit(&idl->idl_lock); 28323 continue; 28324 } 28325 /* 28326 * If this list is not being drained currently by 28327 * an ip_wsrv thread, start the process. 28328 */ 28329 if (idl->idl_conn_draining == NULL) { 28330 ASSERT(idl->idl_repeat == 0); 28331 qenable(idl->idl_conn->conn_wq); 28332 idl->idl_conn_draining = idl->idl_conn; 28333 } else { 28334 idl->idl_repeat = 1; 28335 } 28336 mutex_exit(&idl->idl_lock); 28337 } 28338 } 28339 28340 /* 28341 * Walk an conn hash table of `count' buckets, calling func for each entry. 28342 */ 28343 static void 28344 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg, 28345 zoneid_t zoneid) 28346 { 28347 conn_t *connp; 28348 28349 while (count-- > 0) { 28350 mutex_enter(&connfp->connf_lock); 28351 for (connp = connfp->connf_head; connp != NULL; 28352 connp = connp->conn_next) { 28353 if (zoneid == GLOBAL_ZONEID || 28354 zoneid == connp->conn_zoneid) { 28355 CONN_INC_REF(connp); 28356 mutex_exit(&connfp->connf_lock); 28357 (*func)(connp, arg); 28358 mutex_enter(&connfp->connf_lock); 28359 CONN_DEC_REF(connp); 28360 } 28361 } 28362 mutex_exit(&connfp->connf_lock); 28363 connfp++; 28364 } 28365 } 28366 28367 /* conn_walk_fanout routine invoked for ip_conn_report for each conn. */ 28368 static void 28369 conn_report1(conn_t *connp, void *mp) 28370 { 28371 char buf1[INET6_ADDRSTRLEN]; 28372 char buf2[INET6_ADDRSTRLEN]; 28373 uint_t print_len, buf_len; 28374 28375 ASSERT(connp != NULL); 28376 28377 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 28378 if (buf_len <= 0) 28379 return; 28380 (void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)); 28381 (void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)); 28382 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 28383 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 28384 "%5d %s/%05d %s/%05d\n", 28385 (void *)connp, (void *)CONNP_TO_RQ(connp), 28386 (void *)CONNP_TO_WQ(connp), connp->conn_zoneid, 28387 buf1, connp->conn_lport, 28388 buf2, connp->conn_fport); 28389 if (print_len < buf_len) { 28390 ((mblk_t *)mp)->b_wptr += print_len; 28391 } else { 28392 ((mblk_t *)mp)->b_wptr += buf_len; 28393 } 28394 } 28395 28396 /* 28397 * Named Dispatch routine to produce a formatted report on all conns 28398 * that are listed in one of the fanout tables. 28399 * This report is accessed by using the ndd utility to "get" ND variable 28400 * "ip_conn_status". 28401 */ 28402 /* ARGSUSED */ 28403 static int 28404 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 28405 { 28406 conn_t *connp = Q_TO_CONN(q); 28407 28408 (void) mi_mpprintf(mp, 28409 "CONN " MI_COL_HDRPAD_STR 28410 "rfq " MI_COL_HDRPAD_STR 28411 "stq " MI_COL_HDRPAD_STR 28412 " zone local remote"); 28413 28414 /* 28415 * Because of the ndd constraint, at most we can have 64K buffer 28416 * to put in all conn info. So to be more efficient, just 28417 * allocate a 64K buffer here, assuming we need that large buffer. 28418 * This should be OK as only privileged processes can do ndd /dev/ip. 28419 */ 28420 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 28421 /* The following may work even if we cannot get a large buf. */ 28422 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 28423 return (0); 28424 } 28425 28426 conn_walk_fanout(conn_report1, mp->b_cont, connp->conn_zoneid, 28427 connp->conn_netstack->netstack_ip); 28428 return (0); 28429 } 28430 28431 /* 28432 * Determine if the ill and multicast aspects of that packets 28433 * "matches" the conn. 28434 */ 28435 boolean_t 28436 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 28437 zoneid_t zoneid) 28438 { 28439 ill_t *in_ill; 28440 boolean_t found; 28441 ipif_t *ipif; 28442 ire_t *ire; 28443 ipaddr_t dst, src; 28444 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28445 28446 dst = ipha->ipha_dst; 28447 src = ipha->ipha_src; 28448 28449 /* 28450 * conn_incoming_ill is set by IP_BOUND_IF which limits 28451 * unicast, broadcast and multicast reception to 28452 * conn_incoming_ill. conn_wantpacket itself is called 28453 * only for BROADCAST and multicast. 28454 * 28455 * 1) ip_rput supresses duplicate broadcasts if the ill 28456 * is part of a group. Hence, we should be receiving 28457 * just one copy of broadcast for the whole group. 28458 * Thus, if it is part of the group the packet could 28459 * come on any ill of the group and hence we need a 28460 * match on the group. Otherwise, match on ill should 28461 * be sufficient. 28462 * 28463 * 2) ip_rput does not suppress duplicate multicast packets. 28464 * If there are two interfaces in a ill group and we have 28465 * 2 applications (conns) joined a multicast group G on 28466 * both the interfaces, ilm_lookup_ill filter in ip_rput 28467 * will give us two packets because we join G on both the 28468 * interfaces rather than nominating just one interface 28469 * for receiving multicast like broadcast above. So, 28470 * we have to call ilg_lookup_ill to filter out duplicate 28471 * copies, if ill is part of a group. 28472 */ 28473 in_ill = connp->conn_incoming_ill; 28474 if (in_ill != NULL) { 28475 if (in_ill->ill_group == NULL) { 28476 if (in_ill != ill) 28477 return (B_FALSE); 28478 } else if (in_ill->ill_group != ill->ill_group) { 28479 return (B_FALSE); 28480 } 28481 } 28482 28483 if (!CLASSD(dst)) { 28484 if (IPCL_ZONE_MATCH(connp, zoneid)) 28485 return (B_TRUE); 28486 /* 28487 * The conn is in a different zone; we need to check that this 28488 * broadcast address is configured in the application's zone and 28489 * on one ill in the group. 28490 */ 28491 ipif = ipif_get_next_ipif(NULL, ill); 28492 if (ipif == NULL) 28493 return (B_FALSE); 28494 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 28495 connp->conn_zoneid, NULL, 28496 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 28497 ipif_refrele(ipif); 28498 if (ire != NULL) { 28499 ire_refrele(ire); 28500 return (B_TRUE); 28501 } else { 28502 return (B_FALSE); 28503 } 28504 } 28505 28506 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 28507 connp->conn_zoneid == zoneid) { 28508 /* 28509 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 28510 * disabled, therefore we don't dispatch the multicast packet to 28511 * the sending zone. 28512 */ 28513 return (B_FALSE); 28514 } 28515 28516 if (IS_LOOPBACK(ill) && connp->conn_zoneid != zoneid) { 28517 /* 28518 * Multicast packet on the loopback interface: we only match 28519 * conns who joined the group in the specified zone. 28520 */ 28521 return (B_FALSE); 28522 } 28523 28524 if (connp->conn_multi_router) { 28525 /* multicast packet and multicast router socket: send up */ 28526 return (B_TRUE); 28527 } 28528 28529 mutex_enter(&connp->conn_lock); 28530 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 28531 mutex_exit(&connp->conn_lock); 28532 return (found); 28533 } 28534 28535 /* 28536 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 28537 */ 28538 /* ARGSUSED */ 28539 static void 28540 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 28541 { 28542 ill_t *ill = (ill_t *)q->q_ptr; 28543 mblk_t *mp1, *mp2; 28544 ipif_t *ipif; 28545 int err = 0; 28546 conn_t *connp = NULL; 28547 ipsq_t *ipsq; 28548 arc_t *arc; 28549 28550 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 28551 28552 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 28553 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 28554 28555 ASSERT(IAM_WRITER_ILL(ill)); 28556 mp2 = mp->b_cont; 28557 mp->b_cont = NULL; 28558 28559 /* 28560 * We have now received the arp bringup completion message 28561 * from ARP. Mark the arp bringup as done. Also if the arp 28562 * stream has already started closing, send up the AR_ARP_CLOSING 28563 * ack now since ARP is waiting in close for this ack. 28564 */ 28565 mutex_enter(&ill->ill_lock); 28566 ill->ill_arp_bringup_pending = 0; 28567 if (ill->ill_arp_closing) { 28568 mutex_exit(&ill->ill_lock); 28569 /* Let's reuse the mp for sending the ack */ 28570 arc = (arc_t *)mp->b_rptr; 28571 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 28572 arc->arc_cmd = AR_ARP_CLOSING; 28573 qreply(q, mp); 28574 } else { 28575 mutex_exit(&ill->ill_lock); 28576 freeb(mp); 28577 } 28578 28579 ipsq = ill->ill_phyint->phyint_ipsq; 28580 ipif = ipsq->ipsq_pending_ipif; 28581 mp1 = ipsq_pending_mp_get(ipsq, &connp); 28582 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 28583 if (mp1 == NULL) { 28584 /* bringup was aborted by the user */ 28585 freemsg(mp2); 28586 return; 28587 } 28588 28589 /* 28590 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 28591 * must have an associated conn_t. Otherwise, we're bringing this 28592 * interface back up as part of handling an asynchronous event (e.g., 28593 * physical address change). 28594 */ 28595 if (ipsq->ipsq_current_ioctl != 0) { 28596 ASSERT(connp != NULL); 28597 q = CONNP_TO_WQ(connp); 28598 } else { 28599 ASSERT(connp == NULL); 28600 q = ill->ill_rq; 28601 } 28602 28603 /* 28604 * If the DL_BIND_REQ fails, it is noted 28605 * in arc_name_offset. 28606 */ 28607 err = *((int *)mp2->b_rptr); 28608 if (err == 0) { 28609 if (ipif->ipif_isv6) { 28610 if ((err = ipif_up_done_v6(ipif)) != 0) 28611 ip0dbg(("ip_arp_done: init failed\n")); 28612 } else { 28613 if ((err = ipif_up_done(ipif)) != 0) 28614 ip0dbg(("ip_arp_done: init failed\n")); 28615 } 28616 } else { 28617 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 28618 } 28619 28620 freemsg(mp2); 28621 28622 if ((err == 0) && (ill->ill_up_ipifs)) { 28623 err = ill_up_ipifs(ill, q, mp1); 28624 if (err == EINPROGRESS) 28625 return; 28626 } 28627 28628 if (ill->ill_up_ipifs) 28629 ill_group_cleanup(ill); 28630 28631 /* 28632 * The operation must complete without EINPROGRESS since 28633 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 28634 * Otherwise, the operation will be stuck forever in the ipsq. 28635 */ 28636 ASSERT(err != EINPROGRESS); 28637 if (ipsq->ipsq_current_ioctl != 0) 28638 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 28639 else 28640 ipsq_current_finish(ipsq); 28641 } 28642 28643 /* Allocate the private structure */ 28644 static int 28645 ip_priv_alloc(void **bufp) 28646 { 28647 void *buf; 28648 28649 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 28650 return (ENOMEM); 28651 28652 *bufp = buf; 28653 return (0); 28654 } 28655 28656 /* Function to delete the private structure */ 28657 void 28658 ip_priv_free(void *buf) 28659 { 28660 ASSERT(buf != NULL); 28661 kmem_free(buf, sizeof (ip_priv_t)); 28662 } 28663 28664 /* 28665 * The entry point for IPPF processing. 28666 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 28667 * routine just returns. 28668 * 28669 * When called, ip_process generates an ipp_packet_t structure 28670 * which holds the state information for this packet and invokes the 28671 * the classifier (via ipp_packet_process). The classification, depending on 28672 * configured filters, results in a list of actions for this packet. Invoking 28673 * an action may cause the packet to be dropped, in which case the resulting 28674 * mblk (*mpp) is NULL. proc indicates the callout position for 28675 * this packet and ill_index is the interface this packet on or will leave 28676 * on (inbound and outbound resp.). 28677 */ 28678 void 28679 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 28680 { 28681 mblk_t *mp; 28682 ip_priv_t *priv; 28683 ipp_action_id_t aid; 28684 int rc = 0; 28685 ipp_packet_t *pp; 28686 #define IP_CLASS "ip" 28687 28688 /* If the classifier is not loaded, return */ 28689 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 28690 return; 28691 } 28692 28693 mp = *mpp; 28694 ASSERT(mp != NULL); 28695 28696 /* Allocate the packet structure */ 28697 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 28698 if (rc != 0) { 28699 *mpp = NULL; 28700 freemsg(mp); 28701 return; 28702 } 28703 28704 /* Allocate the private structure */ 28705 rc = ip_priv_alloc((void **)&priv); 28706 if (rc != 0) { 28707 *mpp = NULL; 28708 freemsg(mp); 28709 ipp_packet_free(pp); 28710 return; 28711 } 28712 priv->proc = proc; 28713 priv->ill_index = ill_index; 28714 ipp_packet_set_private(pp, priv, ip_priv_free); 28715 ipp_packet_set_data(pp, mp); 28716 28717 /* Invoke the classifier */ 28718 rc = ipp_packet_process(&pp); 28719 if (pp != NULL) { 28720 mp = ipp_packet_get_data(pp); 28721 ipp_packet_free(pp); 28722 if (rc != 0) { 28723 freemsg(mp); 28724 *mpp = NULL; 28725 } 28726 } else { 28727 *mpp = NULL; 28728 } 28729 #undef IP_CLASS 28730 } 28731 28732 /* 28733 * Propagate a multicast group membership operation (add/drop) on 28734 * all the interfaces crossed by the related multirt routes. 28735 * The call is considered successful if the operation succeeds 28736 * on at least one interface. 28737 */ 28738 static int 28739 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 28740 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 28741 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 28742 mblk_t *first_mp) 28743 { 28744 ire_t *ire_gw; 28745 irb_t *irb; 28746 int error = 0; 28747 opt_restart_t *or; 28748 ip_stack_t *ipst = ire->ire_ipst; 28749 28750 irb = ire->ire_bucket; 28751 ASSERT(irb != NULL); 28752 28753 ASSERT(DB_TYPE(first_mp) == M_CTL); 28754 28755 or = (opt_restart_t *)first_mp->b_rptr; 28756 IRB_REFHOLD(irb); 28757 for (; ire != NULL; ire = ire->ire_next) { 28758 if ((ire->ire_flags & RTF_MULTIRT) == 0) 28759 continue; 28760 if (ire->ire_addr != group) 28761 continue; 28762 28763 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 28764 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 28765 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE, ipst); 28766 /* No resolver exists for the gateway; skip this ire. */ 28767 if (ire_gw == NULL) 28768 continue; 28769 28770 /* 28771 * This function can return EINPROGRESS. If so the operation 28772 * will be restarted from ip_restart_optmgmt which will 28773 * call ip_opt_set and option processing will restart for 28774 * this option. So we may end up calling 'fn' more than once. 28775 * This requires that 'fn' is idempotent except for the 28776 * return value. The operation is considered a success if 28777 * it succeeds at least once on any one interface. 28778 */ 28779 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 28780 NULL, fmode, src, first_mp); 28781 if (error == 0) 28782 or->or_private = CGTP_MCAST_SUCCESS; 28783 28784 if (ip_debug > 0) { 28785 ulong_t off; 28786 char *ksym; 28787 ksym = kobj_getsymname((uintptr_t)fn, &off); 28788 ip2dbg(("ip_multirt_apply_membership: " 28789 "called %s, multirt group 0x%08x via itf 0x%08x, " 28790 "error %d [success %u]\n", 28791 ksym ? ksym : "?", 28792 ntohl(group), ntohl(ire_gw->ire_src_addr), 28793 error, or->or_private)); 28794 } 28795 28796 ire_refrele(ire_gw); 28797 if (error == EINPROGRESS) { 28798 IRB_REFRELE(irb); 28799 return (error); 28800 } 28801 } 28802 IRB_REFRELE(irb); 28803 /* 28804 * Consider the call as successful if we succeeded on at least 28805 * one interface. Otherwise, return the last encountered error. 28806 */ 28807 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 28808 } 28809 28810 28811 /* 28812 * Issue a warning regarding a route crossing an interface with an 28813 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 28814 * amount of time is logged. 28815 */ 28816 static void 28817 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 28818 { 28819 hrtime_t current = gethrtime(); 28820 char buf[INET_ADDRSTRLEN]; 28821 ip_stack_t *ipst = ire->ire_ipst; 28822 28823 /* Convert interval in ms to hrtime in ns */ 28824 if (ipst->ips_multirt_bad_mtu_last_time + 28825 ((hrtime_t)ipst->ips_ip_multirt_log_interval * (hrtime_t)1000000) <= 28826 current) { 28827 cmn_err(CE_WARN, "ip: ignoring multiroute " 28828 "to %s, incorrect MTU %u (expected %u)\n", 28829 ip_dot_addr(ire->ire_addr, buf), 28830 ire->ire_max_frag, max_frag); 28831 28832 ipst->ips_multirt_bad_mtu_last_time = current; 28833 } 28834 } 28835 28836 28837 /* 28838 * Get the CGTP (multirouting) filtering status. 28839 * If 0, the CGTP hooks are transparent. 28840 */ 28841 /* ARGSUSED */ 28842 static int 28843 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 28844 { 28845 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28846 28847 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 28848 return (0); 28849 } 28850 28851 28852 /* 28853 * Set the CGTP (multirouting) filtering status. 28854 * If the status is changed from active to transparent 28855 * or from transparent to active, forward the new status 28856 * to the filtering module (if loaded). 28857 */ 28858 /* ARGSUSED */ 28859 static int 28860 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 28861 cred_t *ioc_cr) 28862 { 28863 long new_value; 28864 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28865 ip_stack_t *ipst = CONNQ_TO_IPST(q); 28866 28867 if (secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 28868 return (EPERM); 28869 28870 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 28871 new_value < 0 || new_value > 1) { 28872 return (EINVAL); 28873 } 28874 28875 if ((!*ip_cgtp_filter_value) && new_value) { 28876 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 28877 ipst->ips_ip_cgtp_filter_ops == NULL ? 28878 " (module not loaded)" : ""); 28879 } 28880 if (*ip_cgtp_filter_value && (!new_value)) { 28881 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 28882 ipst->ips_ip_cgtp_filter_ops == NULL ? 28883 " (module not loaded)" : ""); 28884 } 28885 28886 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 28887 int res; 28888 netstackid_t stackid; 28889 28890 stackid = ipst->ips_netstack->netstack_stackid; 28891 res = ipst->ips_ip_cgtp_filter_ops->cfo_change_state(stackid, 28892 new_value); 28893 if (res) 28894 return (res); 28895 } 28896 28897 *ip_cgtp_filter_value = (boolean_t)new_value; 28898 28899 return (0); 28900 } 28901 28902 28903 /* 28904 * Return the expected CGTP hooks version number. 28905 */ 28906 int 28907 ip_cgtp_filter_supported(void) 28908 { 28909 return (ip_cgtp_filter_rev); 28910 } 28911 28912 28913 /* 28914 * CGTP hooks can be registered by invoking this function. 28915 * Checks that the version number matches. 28916 */ 28917 int 28918 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops) 28919 { 28920 netstack_t *ns; 28921 ip_stack_t *ipst; 28922 28923 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 28924 return (ENOTSUP); 28925 28926 ns = netstack_find_by_stackid(stackid); 28927 if (ns == NULL) 28928 return (EINVAL); 28929 ipst = ns->netstack_ip; 28930 ASSERT(ipst != NULL); 28931 28932 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 28933 netstack_rele(ns); 28934 return (EALREADY); 28935 } 28936 28937 ipst->ips_ip_cgtp_filter_ops = ops; 28938 netstack_rele(ns); 28939 return (0); 28940 } 28941 28942 /* 28943 * CGTP hooks can be unregistered by invoking this function. 28944 * Returns ENXIO if there was no registration. 28945 * Returns EBUSY if the ndd variable has not been turned off. 28946 */ 28947 int 28948 ip_cgtp_filter_unregister(netstackid_t stackid) 28949 { 28950 netstack_t *ns; 28951 ip_stack_t *ipst; 28952 28953 ns = netstack_find_by_stackid(stackid); 28954 if (ns == NULL) 28955 return (EINVAL); 28956 ipst = ns->netstack_ip; 28957 ASSERT(ipst != NULL); 28958 28959 if (ipst->ips_ip_cgtp_filter) { 28960 netstack_rele(ns); 28961 return (EBUSY); 28962 } 28963 28964 if (ipst->ips_ip_cgtp_filter_ops == NULL) { 28965 netstack_rele(ns); 28966 return (ENXIO); 28967 } 28968 ipst->ips_ip_cgtp_filter_ops = NULL; 28969 netstack_rele(ns); 28970 return (0); 28971 } 28972 28973 /* 28974 * Check whether there is a CGTP filter registration. 28975 * Returns non-zero if there is a registration, otherwise returns zero. 28976 * Note: returns zero if bad stackid. 28977 */ 28978 int 28979 ip_cgtp_filter_is_registered(netstackid_t stackid) 28980 { 28981 netstack_t *ns; 28982 ip_stack_t *ipst; 28983 int ret; 28984 28985 ns = netstack_find_by_stackid(stackid); 28986 if (ns == NULL) 28987 return (0); 28988 ipst = ns->netstack_ip; 28989 ASSERT(ipst != NULL); 28990 28991 if (ipst->ips_ip_cgtp_filter_ops != NULL) 28992 ret = 1; 28993 else 28994 ret = 0; 28995 28996 netstack_rele(ns); 28997 return (ret); 28998 } 28999 29000 static squeue_func_t 29001 ip_squeue_switch(int val) 29002 { 29003 squeue_func_t rval = squeue_fill; 29004 29005 switch (val) { 29006 case IP_SQUEUE_ENTER_NODRAIN: 29007 rval = squeue_enter_nodrain; 29008 break; 29009 case IP_SQUEUE_ENTER: 29010 rval = squeue_enter; 29011 break; 29012 default: 29013 break; 29014 } 29015 return (rval); 29016 } 29017 29018 /* ARGSUSED */ 29019 static int 29020 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 29021 caddr_t addr, cred_t *cr) 29022 { 29023 int *v = (int *)addr; 29024 long new_value; 29025 29026 if (secpolicy_net_config(cr, B_FALSE) != 0) 29027 return (EPERM); 29028 29029 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29030 return (EINVAL); 29031 29032 ip_input_proc = ip_squeue_switch(new_value); 29033 *v = new_value; 29034 return (0); 29035 } 29036 29037 /* ARGSUSED */ 29038 static int 29039 ip_int_set(queue_t *q, mblk_t *mp, char *value, 29040 caddr_t addr, cred_t *cr) 29041 { 29042 int *v = (int *)addr; 29043 long new_value; 29044 29045 if (secpolicy_net_config(cr, B_FALSE) != 0) 29046 return (EPERM); 29047 29048 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29049 return (EINVAL); 29050 29051 *v = new_value; 29052 return (0); 29053 } 29054 29055 /* 29056 * Handle changes to ipmp_hook_emulation ndd variable. 29057 * Need to update phyint_hook_ifindex. 29058 * Also generate a nic plumb event should a new ifidex be assigned to a group. 29059 */ 29060 static void 29061 ipmp_hook_emulation_changed(ip_stack_t *ipst) 29062 { 29063 phyint_t *phyi; 29064 phyint_t *phyi_tmp; 29065 char *groupname; 29066 int namelen; 29067 ill_t *ill; 29068 boolean_t new_group; 29069 29070 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29071 /* 29072 * Group indicies are stored in the phyint - a common structure 29073 * to both IPv4 and IPv6. 29074 */ 29075 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 29076 for (; phyi != NULL; 29077 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 29078 phyi, AVL_AFTER)) { 29079 /* Ignore the ones that do not have a group */ 29080 if (phyi->phyint_groupname_len == 0) 29081 continue; 29082 29083 /* 29084 * Look for other phyint in group. 29085 * Clear name/namelen so the lookup doesn't find ourselves. 29086 */ 29087 namelen = phyi->phyint_groupname_len; 29088 groupname = phyi->phyint_groupname; 29089 phyi->phyint_groupname_len = 0; 29090 phyi->phyint_groupname = NULL; 29091 29092 phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst); 29093 /* Restore */ 29094 phyi->phyint_groupname_len = namelen; 29095 phyi->phyint_groupname = groupname; 29096 29097 new_group = B_FALSE; 29098 if (ipst->ips_ipmp_hook_emulation) { 29099 /* 29100 * If the group already exists and has already 29101 * been assigned a group ifindex, we use the existing 29102 * group_ifindex, otherwise we pick a new group_ifindex 29103 * here. 29104 */ 29105 if (phyi_tmp != NULL && 29106 phyi_tmp->phyint_group_ifindex != 0) { 29107 phyi->phyint_group_ifindex = 29108 phyi_tmp->phyint_group_ifindex; 29109 } else { 29110 /* XXX We need a recovery strategy here. */ 29111 if (!ip_assign_ifindex( 29112 &phyi->phyint_group_ifindex, ipst)) 29113 cmn_err(CE_PANIC, 29114 "ip_assign_ifindex() failed"); 29115 new_group = B_TRUE; 29116 } 29117 } else { 29118 phyi->phyint_group_ifindex = 0; 29119 } 29120 if (ipst->ips_ipmp_hook_emulation) 29121 phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex; 29122 else 29123 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 29124 29125 /* 29126 * For IP Filter to find out the relationship between 29127 * names and interface indicies, we need to generate 29128 * a NE_PLUMB event when a new group can appear. 29129 * We always generate events when a new interface appears 29130 * (even when ipmp_hook_emulation is set) so there 29131 * is no need to generate NE_PLUMB events when 29132 * ipmp_hook_emulation is turned off. 29133 * And since it isn't critical for IP Filter to get 29134 * the NE_UNPLUMB events we skip those here. 29135 */ 29136 if (new_group) { 29137 /* 29138 * First phyint in group - generate group PLUMB event. 29139 * Since we are not running inside the ipsq we do 29140 * the dispatch immediately. 29141 */ 29142 if (phyi->phyint_illv4 != NULL) 29143 ill = phyi->phyint_illv4; 29144 else 29145 ill = phyi->phyint_illv6; 29146 29147 if (ill != NULL) { 29148 mutex_enter(&ill->ill_lock); 29149 ill_nic_info_plumb(ill, B_TRUE); 29150 ill_nic_info_dispatch(ill); 29151 mutex_exit(&ill->ill_lock); 29152 } 29153 } 29154 } 29155 rw_exit(&ipst->ips_ill_g_lock); 29156 } 29157 29158 /* ARGSUSED */ 29159 static int 29160 ipmp_hook_emulation_set(queue_t *q, mblk_t *mp, char *value, 29161 caddr_t addr, cred_t *cr) 29162 { 29163 int *v = (int *)addr; 29164 long new_value; 29165 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29166 29167 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29168 return (EINVAL); 29169 29170 if (*v != new_value) { 29171 *v = new_value; 29172 ipmp_hook_emulation_changed(ipst); 29173 } 29174 return (0); 29175 } 29176 29177 static void * 29178 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 29179 { 29180 kstat_t *ksp; 29181 29182 ip_stat_t template = { 29183 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 29184 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 29185 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 29186 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 29187 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 29188 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 29189 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 29190 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 29191 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 29192 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 29193 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 29194 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 29195 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 29196 { "ip_db_ref", KSTAT_DATA_UINT64 }, 29197 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 29198 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 29199 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 29200 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 29201 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 29202 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 29203 { "ip_opt", KSTAT_DATA_UINT64 }, 29204 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 29205 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 29206 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 29207 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 29208 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 29209 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 29210 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 29211 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 29212 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 29213 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 29214 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 29215 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 29216 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29217 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29218 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29219 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29220 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29221 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29222 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29223 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29224 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 29225 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 29226 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 29227 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 29228 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 29229 }; 29230 29231 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 29232 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 29233 KSTAT_FLAG_VIRTUAL, stackid); 29234 29235 if (ksp == NULL) 29236 return (NULL); 29237 29238 bcopy(&template, ip_statisticsp, sizeof (template)); 29239 ksp->ks_data = (void *)ip_statisticsp; 29240 ksp->ks_private = (void *)(uintptr_t)stackid; 29241 29242 kstat_install(ksp); 29243 return (ksp); 29244 } 29245 29246 static void 29247 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 29248 { 29249 if (ksp != NULL) { 29250 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29251 kstat_delete_netstack(ksp, stackid); 29252 } 29253 } 29254 29255 static void * 29256 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 29257 { 29258 kstat_t *ksp; 29259 29260 ip_named_kstat_t template = { 29261 { "forwarding", KSTAT_DATA_UINT32, 0 }, 29262 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 29263 { "inReceives", KSTAT_DATA_UINT64, 0 }, 29264 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 29265 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 29266 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 29267 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 29268 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 29269 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 29270 { "outRequests", KSTAT_DATA_UINT64, 0 }, 29271 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 29272 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 29273 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 29274 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 29275 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 29276 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 29277 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 29278 { "fragFails", KSTAT_DATA_UINT32, 0 }, 29279 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 29280 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 29281 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 29282 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 29283 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 29284 { "inErrs", KSTAT_DATA_UINT32, 0 }, 29285 { "noPorts", KSTAT_DATA_UINT32, 0 }, 29286 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 29287 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 29288 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 29289 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 29290 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 29291 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 29292 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 29293 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 29294 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 29295 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 29296 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 29297 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 29298 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 29299 }; 29300 29301 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 29302 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 29303 if (ksp == NULL || ksp->ks_data == NULL) 29304 return (NULL); 29305 29306 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 29307 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 29308 template.reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29309 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 29310 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 29311 29312 template.netToMediaEntrySize.value.i32 = 29313 sizeof (mib2_ipNetToMediaEntry_t); 29314 29315 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 29316 29317 bcopy(&template, ksp->ks_data, sizeof (template)); 29318 ksp->ks_update = ip_kstat_update; 29319 ksp->ks_private = (void *)(uintptr_t)stackid; 29320 29321 kstat_install(ksp); 29322 return (ksp); 29323 } 29324 29325 static void 29326 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29327 { 29328 if (ksp != NULL) { 29329 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29330 kstat_delete_netstack(ksp, stackid); 29331 } 29332 } 29333 29334 static int 29335 ip_kstat_update(kstat_t *kp, int rw) 29336 { 29337 ip_named_kstat_t *ipkp; 29338 mib2_ipIfStatsEntry_t ipmib; 29339 ill_walk_context_t ctx; 29340 ill_t *ill; 29341 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29342 netstack_t *ns; 29343 ip_stack_t *ipst; 29344 29345 if (kp == NULL || kp->ks_data == NULL) 29346 return (EIO); 29347 29348 if (rw == KSTAT_WRITE) 29349 return (EACCES); 29350 29351 ns = netstack_find_by_stackid(stackid); 29352 if (ns == NULL) 29353 return (-1); 29354 ipst = ns->netstack_ip; 29355 if (ipst == NULL) { 29356 netstack_rele(ns); 29357 return (-1); 29358 } 29359 ipkp = (ip_named_kstat_t *)kp->ks_data; 29360 29361 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 29362 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29363 ill = ILL_START_WALK_V4(&ctx, ipst); 29364 for (; ill != NULL; ill = ill_next(&ctx, ill)) 29365 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 29366 rw_exit(&ipst->ips_ill_g_lock); 29367 29368 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 29369 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 29370 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 29371 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 29372 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 29373 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 29374 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 29375 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 29376 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 29377 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 29378 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 29379 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 29380 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29381 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 29382 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 29383 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 29384 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 29385 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 29386 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 29387 29388 ipkp->routingDiscards.value.ui32 = 0; 29389 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 29390 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 29391 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 29392 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 29393 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 29394 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 29395 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 29396 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 29397 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 29398 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 29399 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 29400 29401 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 29402 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 29403 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 29404 29405 netstack_rele(ns); 29406 29407 return (0); 29408 } 29409 29410 static void * 29411 icmp_kstat_init(netstackid_t stackid) 29412 { 29413 kstat_t *ksp; 29414 29415 icmp_named_kstat_t template = { 29416 { "inMsgs", KSTAT_DATA_UINT32 }, 29417 { "inErrors", KSTAT_DATA_UINT32 }, 29418 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 29419 { "inTimeExcds", KSTAT_DATA_UINT32 }, 29420 { "inParmProbs", KSTAT_DATA_UINT32 }, 29421 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 29422 { "inRedirects", KSTAT_DATA_UINT32 }, 29423 { "inEchos", KSTAT_DATA_UINT32 }, 29424 { "inEchoReps", KSTAT_DATA_UINT32 }, 29425 { "inTimestamps", KSTAT_DATA_UINT32 }, 29426 { "inTimestampReps", KSTAT_DATA_UINT32 }, 29427 { "inAddrMasks", KSTAT_DATA_UINT32 }, 29428 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 29429 { "outMsgs", KSTAT_DATA_UINT32 }, 29430 { "outErrors", KSTAT_DATA_UINT32 }, 29431 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 29432 { "outTimeExcds", KSTAT_DATA_UINT32 }, 29433 { "outParmProbs", KSTAT_DATA_UINT32 }, 29434 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 29435 { "outRedirects", KSTAT_DATA_UINT32 }, 29436 { "outEchos", KSTAT_DATA_UINT32 }, 29437 { "outEchoReps", KSTAT_DATA_UINT32 }, 29438 { "outTimestamps", KSTAT_DATA_UINT32 }, 29439 { "outTimestampReps", KSTAT_DATA_UINT32 }, 29440 { "outAddrMasks", KSTAT_DATA_UINT32 }, 29441 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 29442 { "inChksumErrs", KSTAT_DATA_UINT32 }, 29443 { "inUnknowns", KSTAT_DATA_UINT32 }, 29444 { "inFragNeeded", KSTAT_DATA_UINT32 }, 29445 { "outFragNeeded", KSTAT_DATA_UINT32 }, 29446 { "outDrops", KSTAT_DATA_UINT32 }, 29447 { "inOverFlows", KSTAT_DATA_UINT32 }, 29448 { "inBadRedirects", KSTAT_DATA_UINT32 }, 29449 }; 29450 29451 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 29452 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 29453 if (ksp == NULL || ksp->ks_data == NULL) 29454 return (NULL); 29455 29456 bcopy(&template, ksp->ks_data, sizeof (template)); 29457 29458 ksp->ks_update = icmp_kstat_update; 29459 ksp->ks_private = (void *)(uintptr_t)stackid; 29460 29461 kstat_install(ksp); 29462 return (ksp); 29463 } 29464 29465 static void 29466 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29467 { 29468 if (ksp != NULL) { 29469 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29470 kstat_delete_netstack(ksp, stackid); 29471 } 29472 } 29473 29474 static int 29475 icmp_kstat_update(kstat_t *kp, int rw) 29476 { 29477 icmp_named_kstat_t *icmpkp; 29478 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29479 netstack_t *ns; 29480 ip_stack_t *ipst; 29481 29482 if ((kp == NULL) || (kp->ks_data == NULL)) 29483 return (EIO); 29484 29485 if (rw == KSTAT_WRITE) 29486 return (EACCES); 29487 29488 ns = netstack_find_by_stackid(stackid); 29489 if (ns == NULL) 29490 return (-1); 29491 ipst = ns->netstack_ip; 29492 if (ipst == NULL) { 29493 netstack_rele(ns); 29494 return (-1); 29495 } 29496 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 29497 29498 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 29499 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 29500 icmpkp->inDestUnreachs.value.ui32 = 29501 ipst->ips_icmp_mib.icmpInDestUnreachs; 29502 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 29503 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 29504 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 29505 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 29506 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 29507 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 29508 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 29509 icmpkp->inTimestampReps.value.ui32 = 29510 ipst->ips_icmp_mib.icmpInTimestampReps; 29511 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 29512 icmpkp->inAddrMaskReps.value.ui32 = 29513 ipst->ips_icmp_mib.icmpInAddrMaskReps; 29514 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 29515 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 29516 icmpkp->outDestUnreachs.value.ui32 = 29517 ipst->ips_icmp_mib.icmpOutDestUnreachs; 29518 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 29519 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 29520 icmpkp->outSrcQuenchs.value.ui32 = 29521 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 29522 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 29523 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 29524 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 29525 icmpkp->outTimestamps.value.ui32 = 29526 ipst->ips_icmp_mib.icmpOutTimestamps; 29527 icmpkp->outTimestampReps.value.ui32 = 29528 ipst->ips_icmp_mib.icmpOutTimestampReps; 29529 icmpkp->outAddrMasks.value.ui32 = 29530 ipst->ips_icmp_mib.icmpOutAddrMasks; 29531 icmpkp->outAddrMaskReps.value.ui32 = 29532 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 29533 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 29534 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 29535 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 29536 icmpkp->outFragNeeded.value.ui32 = 29537 ipst->ips_icmp_mib.icmpOutFragNeeded; 29538 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 29539 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 29540 icmpkp->inBadRedirects.value.ui32 = 29541 ipst->ips_icmp_mib.icmpInBadRedirects; 29542 29543 netstack_rele(ns); 29544 return (0); 29545 } 29546 29547 /* 29548 * This is the fanout function for raw socket opened for SCTP. Note 29549 * that it is called after SCTP checks that there is no socket which 29550 * wants a packet. Then before SCTP handles this out of the blue packet, 29551 * this function is called to see if there is any raw socket for SCTP. 29552 * If there is and it is bound to the correct address, the packet will 29553 * be sent to that socket. Note that only one raw socket can be bound to 29554 * a port. This is assured in ipcl_sctp_hash_insert(); 29555 */ 29556 void 29557 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 29558 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 29559 zoneid_t zoneid) 29560 { 29561 conn_t *connp; 29562 queue_t *rq; 29563 mblk_t *first_mp; 29564 boolean_t secure; 29565 ip6_t *ip6h; 29566 ip_stack_t *ipst = recv_ill->ill_ipst; 29567 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 29568 29569 first_mp = mp; 29570 if (mctl_present) { 29571 mp = first_mp->b_cont; 29572 secure = ipsec_in_is_secure(first_mp); 29573 ASSERT(mp != NULL); 29574 } else { 29575 secure = B_FALSE; 29576 } 29577 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 29578 29579 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha, ipst); 29580 if (connp == NULL) { 29581 sctp_ootb_input(first_mp, recv_ill, zoneid, mctl_present); 29582 return; 29583 } 29584 rq = connp->conn_rq; 29585 if (!canputnext(rq)) { 29586 CONN_DEC_REF(connp); 29587 BUMP_MIB(recv_ill->ill_ip_mib, rawipIfStatsInOverflows); 29588 freemsg(first_mp); 29589 return; 29590 } 29591 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 29592 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || secure) { 29593 first_mp = ipsec_check_inbound_policy(first_mp, connp, 29594 (isv4 ? ipha : NULL), ip6h, mctl_present); 29595 if (first_mp == NULL) { 29596 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 29597 CONN_DEC_REF(connp); 29598 return; 29599 } 29600 } 29601 /* 29602 * We probably should not send M_CTL message up to 29603 * raw socket. 29604 */ 29605 if (mctl_present) 29606 freeb(first_mp); 29607 29608 /* Initiate IPPF processing here if needed. */ 29609 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) || 29610 (!isv4 && IP6_IN_IPP(flags, ipst))) { 29611 ip_process(IPP_LOCAL_IN, &mp, 29612 recv_ill->ill_phyint->phyint_ifindex); 29613 if (mp == NULL) { 29614 CONN_DEC_REF(connp); 29615 return; 29616 } 29617 } 29618 29619 if (connp->conn_recvif || connp->conn_recvslla || 29620 ((connp->conn_ip_recvpktinfo || 29621 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 29622 (flags & IP_FF_IPINFO))) { 29623 int in_flags = 0; 29624 29625 /* 29626 * Since sctp does not support IP_RECVPKTINFO for v4, only pass 29627 * IPF_RECVIF. 29628 */ 29629 if (connp->conn_recvif || connp->conn_ip_recvpktinfo) { 29630 in_flags = IPF_RECVIF; 29631 } 29632 if (connp->conn_recvslla) { 29633 in_flags |= IPF_RECVSLLA; 29634 } 29635 if (isv4) { 29636 mp = ip_add_info(mp, recv_ill, in_flags, 29637 IPCL_ZONEID(connp), ipst); 29638 } else { 29639 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 29640 if (mp == NULL) { 29641 BUMP_MIB(recv_ill->ill_ip_mib, 29642 ipIfStatsInDiscards); 29643 CONN_DEC_REF(connp); 29644 return; 29645 } 29646 } 29647 } 29648 29649 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 29650 /* 29651 * We are sending the IPSEC_IN message also up. Refer 29652 * to comments above this function. 29653 * This is the SOCK_RAW, IPPROTO_SCTP case. 29654 */ 29655 (connp->conn_recv)(connp, mp, NULL); 29656 CONN_DEC_REF(connp); 29657 } 29658 29659 #define UPDATE_IP_MIB_OB_COUNTERS(ill, len) \ 29660 { \ 29661 BUMP_MIB((ill)->ill_ip_mib, ipIfStatsHCOutTransmits); \ 29662 UPDATE_MIB((ill)->ill_ip_mib, ipIfStatsHCOutOctets, (len)); \ 29663 } 29664 /* 29665 * This function should be called only if all packet processing 29666 * including fragmentation is complete. Callers of this function 29667 * must set mp->b_prev to one of these values: 29668 * {0, IPP_FWD_OUT, IPP_LOCAL_OUT} 29669 * prior to handing over the mp as first argument to this function. 29670 * 29671 * If the ire passed by caller is incomplete, this function 29672 * queues the packet and if necessary, sends ARP request and bails. 29673 * If the ire passed is fully resolved, we simply prepend 29674 * the link-layer header to the packet, do ipsec hw acceleration 29675 * work if necessary, and send the packet out on the wire. 29676 * 29677 * NOTE: IPsec will only call this function with fully resolved 29678 * ires if hw acceleration is involved. 29679 * TODO list : 29680 * a Handle M_MULTIDATA so that 29681 * tcp_multisend->tcp_multisend_data can 29682 * call ip_xmit_v4 directly 29683 * b Handle post-ARP work for fragments so that 29684 * ip_wput_frag can call this function. 29685 */ 29686 ipxmit_state_t 29687 ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, boolean_t flow_ctl_enabled) 29688 { 29689 nce_t *arpce; 29690 queue_t *q; 29691 int ill_index; 29692 mblk_t *nxt_mp, *first_mp; 29693 boolean_t xmit_drop = B_FALSE; 29694 ip_proc_t proc; 29695 ill_t *out_ill; 29696 int pkt_len; 29697 29698 arpce = ire->ire_nce; 29699 ASSERT(arpce != NULL); 29700 29701 DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire, nce_t *, arpce); 29702 29703 mutex_enter(&arpce->nce_lock); 29704 switch (arpce->nce_state) { 29705 case ND_REACHABLE: 29706 /* If there are other queued packets, queue this packet */ 29707 if (arpce->nce_qd_mp != NULL) { 29708 if (mp != NULL) 29709 nce_queue_mp_common(arpce, mp, B_FALSE); 29710 mp = arpce->nce_qd_mp; 29711 } 29712 arpce->nce_qd_mp = NULL; 29713 mutex_exit(&arpce->nce_lock); 29714 29715 /* 29716 * Flush the queue. In the common case, where the 29717 * ARP is already resolved, it will go through the 29718 * while loop only once. 29719 */ 29720 while (mp != NULL) { 29721 29722 nxt_mp = mp->b_next; 29723 mp->b_next = NULL; 29724 ASSERT(mp->b_datap->db_type != M_CTL); 29725 pkt_len = ntohs(((ipha_t *)mp->b_rptr)->ipha_length); 29726 /* 29727 * This info is needed for IPQOS to do COS marking 29728 * in ip_wput_attach_llhdr->ip_process. 29729 */ 29730 proc = (ip_proc_t)(uintptr_t)mp->b_prev; 29731 mp->b_prev = NULL; 29732 29733 /* set up ill index for outbound qos processing */ 29734 out_ill = ire_to_ill(ire); 29735 ill_index = out_ill->ill_phyint->phyint_ifindex; 29736 first_mp = ip_wput_attach_llhdr(mp, ire, proc, 29737 ill_index); 29738 if (first_mp == NULL) { 29739 xmit_drop = B_TRUE; 29740 BUMP_MIB(out_ill->ill_ip_mib, 29741 ipIfStatsOutDiscards); 29742 goto next_mp; 29743 } 29744 /* non-ipsec hw accel case */ 29745 if (io == NULL || !io->ipsec_out_accelerated) { 29746 /* send it */ 29747 q = ire->ire_stq; 29748 if (proc == IPP_FWD_OUT) { 29749 UPDATE_IB_PKT_COUNT(ire); 29750 } else { 29751 UPDATE_OB_PKT_COUNT(ire); 29752 } 29753 ire->ire_last_used_time = lbolt; 29754 29755 if (flow_ctl_enabled || canputnext(q)) { 29756 if (proc == IPP_FWD_OUT) { 29757 29758 BUMP_MIB(out_ill->ill_ip_mib, 29759 ipIfStatsHCOutForwDatagrams); 29760 29761 } 29762 UPDATE_IP_MIB_OB_COUNTERS(out_ill, 29763 pkt_len); 29764 29765 putnext(q, first_mp); 29766 } else { 29767 BUMP_MIB(out_ill->ill_ip_mib, 29768 ipIfStatsOutDiscards); 29769 xmit_drop = B_TRUE; 29770 freemsg(first_mp); 29771 } 29772 } else { 29773 /* 29774 * Safety Pup says: make sure this 29775 * is going to the right interface! 29776 */ 29777 ill_t *ill1 = 29778 (ill_t *)ire->ire_stq->q_ptr; 29779 int ifindex = 29780 ill1->ill_phyint->phyint_ifindex; 29781 if (ifindex != 29782 io->ipsec_out_capab_ill_index) { 29783 xmit_drop = B_TRUE; 29784 freemsg(mp); 29785 } else { 29786 UPDATE_IP_MIB_OB_COUNTERS(ill1, 29787 pkt_len); 29788 ipsec_hw_putnext(ire->ire_stq, mp); 29789 } 29790 } 29791 next_mp: 29792 mp = nxt_mp; 29793 } /* while (mp != NULL) */ 29794 if (xmit_drop) 29795 return (SEND_FAILED); 29796 else 29797 return (SEND_PASSED); 29798 29799 case ND_INITIAL: 29800 case ND_INCOMPLETE: 29801 29802 /* 29803 * While we do send off packets to dests that 29804 * use fully-resolved CGTP routes, we do not 29805 * handle unresolved CGTP routes. 29806 */ 29807 ASSERT(!(ire->ire_flags & RTF_MULTIRT)); 29808 ASSERT(io == NULL || !io->ipsec_out_accelerated); 29809 29810 if (mp != NULL) { 29811 /* queue the packet */ 29812 nce_queue_mp_common(arpce, mp, B_FALSE); 29813 } 29814 29815 if (arpce->nce_state == ND_INCOMPLETE) { 29816 mutex_exit(&arpce->nce_lock); 29817 DTRACE_PROBE3(ip__xmit__incomplete, 29818 (ire_t *), ire, (mblk_t *), mp, 29819 (ipsec_out_t *), io); 29820 return (LOOKUP_IN_PROGRESS); 29821 } 29822 29823 arpce->nce_state = ND_INCOMPLETE; 29824 mutex_exit(&arpce->nce_lock); 29825 /* 29826 * Note that ire_add() (called from ire_forward()) 29827 * holds a ref on the ire until ARP is completed. 29828 */ 29829 29830 ire_arpresolve(ire, ire_to_ill(ire)); 29831 return (LOOKUP_IN_PROGRESS); 29832 default: 29833 ASSERT(0); 29834 mutex_exit(&arpce->nce_lock); 29835 return (LLHDR_RESLV_FAILED); 29836 } 29837 } 29838 29839 #undef UPDATE_IP_MIB_OB_COUNTERS 29840 29841 /* 29842 * Return B_TRUE if the buffers differ in length or content. 29843 * This is used for comparing extension header buffers. 29844 * Note that an extension header would be declared different 29845 * even if all that changed was the next header value in that header i.e. 29846 * what really changed is the next extension header. 29847 */ 29848 boolean_t 29849 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 29850 uint_t blen) 29851 { 29852 if (!b_valid) 29853 blen = 0; 29854 29855 if (alen != blen) 29856 return (B_TRUE); 29857 if (alen == 0) 29858 return (B_FALSE); /* Both zero length */ 29859 return (bcmp(abuf, bbuf, alen)); 29860 } 29861 29862 /* 29863 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 29864 * Return B_FALSE if memory allocation fails - don't change any state! 29865 */ 29866 boolean_t 29867 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 29868 const void *src, uint_t srclen) 29869 { 29870 void *dst; 29871 29872 if (!src_valid) 29873 srclen = 0; 29874 29875 ASSERT(*dstlenp == 0); 29876 if (src != NULL && srclen != 0) { 29877 dst = mi_alloc(srclen, BPRI_MED); 29878 if (dst == NULL) 29879 return (B_FALSE); 29880 } else { 29881 dst = NULL; 29882 } 29883 if (*dstp != NULL) 29884 mi_free(*dstp); 29885 *dstp = dst; 29886 *dstlenp = dst == NULL ? 0 : srclen; 29887 return (B_TRUE); 29888 } 29889 29890 /* 29891 * Replace what is in *dst, *dstlen with the source. 29892 * Assumes ip_allocbuf has already been called. 29893 */ 29894 void 29895 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 29896 const void *src, uint_t srclen) 29897 { 29898 if (!src_valid) 29899 srclen = 0; 29900 29901 ASSERT(*dstlenp == srclen); 29902 if (src != NULL && srclen != 0) 29903 bcopy(src, *dstp, srclen); 29904 } 29905 29906 /* 29907 * Free the storage pointed to by the members of an ip6_pkt_t. 29908 */ 29909 void 29910 ip6_pkt_free(ip6_pkt_t *ipp) 29911 { 29912 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 29913 29914 if (ipp->ipp_fields & IPPF_HOPOPTS) { 29915 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 29916 ipp->ipp_hopopts = NULL; 29917 ipp->ipp_hopoptslen = 0; 29918 } 29919 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 29920 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 29921 ipp->ipp_rtdstopts = NULL; 29922 ipp->ipp_rtdstoptslen = 0; 29923 } 29924 if (ipp->ipp_fields & IPPF_DSTOPTS) { 29925 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 29926 ipp->ipp_dstopts = NULL; 29927 ipp->ipp_dstoptslen = 0; 29928 } 29929 if (ipp->ipp_fields & IPPF_RTHDR) { 29930 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 29931 ipp->ipp_rthdr = NULL; 29932 ipp->ipp_rthdrlen = 0; 29933 } 29934 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 29935 IPPF_RTHDR); 29936 } 29937