1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 #include <sys/types.h> 31 #include <sys/stream.h> 32 #include <sys/dlpi.h> 33 #include <sys/stropts.h> 34 #include <sys/sysmacros.h> 35 #include <sys/strsubr.h> 36 #include <sys/strlog.h> 37 #include <sys/strsun.h> 38 #include <sys/zone.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/xti_inet.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/cmn_err.h> 45 #include <sys/debug.h> 46 #include <sys/kobj.h> 47 #include <sys/modctl.h> 48 #include <sys/atomic.h> 49 #include <sys/policy.h> 50 #include <sys/priv.h> 51 52 #include <sys/systm.h> 53 #include <sys/param.h> 54 #include <sys/kmem.h> 55 #include <sys/sdt.h> 56 #include <sys/socket.h> 57 #include <sys/vtrace.h> 58 #include <sys/isa_defs.h> 59 #include <sys/mac.h> 60 #include <net/if.h> 61 #include <net/if_arp.h> 62 #include <net/route.h> 63 #include <sys/sockio.h> 64 #include <netinet/in.h> 65 #include <net/if_dl.h> 66 67 #include <inet/common.h> 68 #include <inet/mi.h> 69 #include <inet/mib2.h> 70 #include <inet/nd.h> 71 #include <inet/arp.h> 72 #include <inet/snmpcom.h> 73 #include <inet/optcom.h> 74 #include <inet/kstatcom.h> 75 76 #include <netinet/igmp_var.h> 77 #include <netinet/ip6.h> 78 #include <netinet/icmp6.h> 79 #include <netinet/sctp.h> 80 81 #include <inet/ip.h> 82 #include <inet/ip_impl.h> 83 #include <inet/ip6.h> 84 #include <inet/ip6_asp.h> 85 #include <inet/tcp.h> 86 #include <inet/tcp_impl.h> 87 #include <inet/ip_multi.h> 88 #include <inet/ip_if.h> 89 #include <inet/ip_ire.h> 90 #include <inet/ip_ftable.h> 91 #include <inet/ip_rts.h> 92 #include <inet/ip_ndp.h> 93 #include <inet/ip_listutils.h> 94 #include <netinet/igmp.h> 95 #include <netinet/ip_mroute.h> 96 #include <inet/ipp_common.h> 97 98 #include <net/pfkeyv2.h> 99 #include <inet/ipsec_info.h> 100 #include <inet/sadb.h> 101 #include <inet/ipsec_impl.h> 102 #include <sys/iphada.h> 103 #include <inet/tun.h> 104 #include <inet/ipdrop.h> 105 #include <inet/ip_netinfo.h> 106 107 #include <sys/ethernet.h> 108 #include <net/if_types.h> 109 #include <sys/cpuvar.h> 110 111 #include <ipp/ipp.h> 112 #include <ipp/ipp_impl.h> 113 #include <ipp/ipgpc/ipgpc.h> 114 115 #include <sys/multidata.h> 116 #include <sys/pattr.h> 117 118 #include <inet/ipclassifier.h> 119 #include <inet/sctp_ip.h> 120 #include <inet/sctp/sctp_impl.h> 121 #include <inet/udp_impl.h> 122 #include <inet/rawip_impl.h> 123 #include <inet/rts_impl.h> 124 #include <sys/sunddi.h> 125 126 #include <sys/tsol/label.h> 127 #include <sys/tsol/tnet.h> 128 129 #include <rpc/pmap_prot.h> 130 131 /* 132 * Values for squeue switch: 133 * IP_SQUEUE_ENTER_NODRAIN: squeue_enter_nodrain 134 * IP_SQUEUE_ENTER: squeue_enter 135 * IP_SQUEUE_FILL: squeue_fill 136 */ 137 int ip_squeue_enter = 2; /* Setable in /etc/system */ 138 139 squeue_func_t ip_input_proc; 140 #define SET_BPREV_FLAG(x) ((mblk_t *)(uintptr_t)(x)) 141 142 /* 143 * Setable in /etc/system 144 */ 145 int ip_poll_normal_ms = 100; 146 int ip_poll_normal_ticks = 0; 147 int ip_modclose_ackwait_ms = 3000; 148 149 /* 150 * It would be nice to have these present only in DEBUG systems, but the 151 * current design of the global symbol checking logic requires them to be 152 * unconditionally present. 153 */ 154 uint_t ip_thread_data; /* TSD key for debug support */ 155 krwlock_t ip_thread_rwlock; 156 list_t ip_thread_list; 157 158 /* 159 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 160 */ 161 162 struct listptr_s { 163 mblk_t *lp_head; /* pointer to the head of the list */ 164 mblk_t *lp_tail; /* pointer to the tail of the list */ 165 }; 166 167 typedef struct listptr_s listptr_t; 168 169 /* 170 * This is used by ip_snmp_get_mib2_ip_route_media and 171 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 172 */ 173 typedef struct iproutedata_s { 174 uint_t ird_idx; 175 listptr_t ird_route; /* ipRouteEntryTable */ 176 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 177 listptr_t ird_attrs; /* ipRouteAttributeTable */ 178 } iproutedata_t; 179 180 /* 181 * Cluster specific hooks. These should be NULL when booted as a non-cluster 182 */ 183 184 /* 185 * Hook functions to enable cluster networking 186 * On non-clustered systems these vectors must always be NULL. 187 * 188 * Hook function to Check ip specified ip address is a shared ip address 189 * in the cluster 190 * 191 */ 192 int (*cl_inet_isclusterwide)(uint8_t protocol, 193 sa_family_t addr_family, uint8_t *laddrp) = NULL; 194 195 /* 196 * Hook function to generate cluster wide ip fragment identifier 197 */ 198 uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 199 uint8_t *laddrp, uint8_t *faddrp) = NULL; 200 201 /* 202 * Synchronization notes: 203 * 204 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 205 * MT level protection given by STREAMS. IP uses a combination of its own 206 * internal serialization mechanism and standard Solaris locking techniques. 207 * The internal serialization is per phyint (no IPMP) or per IPMP group. 208 * This is used to serialize plumbing operations, IPMP operations, certain 209 * multicast operations, most set ioctls, igmp/mld timers etc. 210 * 211 * Plumbing is a long sequence of operations involving message 212 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 213 * involved in plumbing operations. A natural model is to serialize these 214 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 215 * parallel without any interference. But various set ioctls on hme0 are best 216 * serialized. However if the system uses IPMP, the operations are easier if 217 * they are serialized on a per IPMP group basis since IPMP operations 218 * happen across ill's of a group. Thus the lowest common denominator is to 219 * serialize most set ioctls, multicast join/leave operations, IPMP operations 220 * igmp/mld timer operations, and processing of DLPI control messages received 221 * from drivers on a per IPMP group basis. If the system does not employ 222 * IPMP the serialization is on a per phyint basis. This serialization is 223 * provided by the ipsq_t and primitives operating on this. Details can 224 * be found in ip_if.c above the core primitives operating on ipsq_t. 225 * 226 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 227 * Simiarly lookup of an ire by a thread also returns a refheld ire. 228 * In addition ipif's and ill's referenced by the ire are also indirectly 229 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 230 * the ipif's address or netmask change as long as an ipif is refheld 231 * directly or indirectly. For example an SIOCLIFADDR ioctl that changes the 232 * address of an ipif has to go through the ipsq_t. This ensures that only 233 * 1 such exclusive operation proceeds at any time on the ipif. It then 234 * deletes all ires associated with this ipif, and waits for all refcnts 235 * associated with this ipif to come down to zero. The address is changed 236 * only after the ipif has been quiesced. Then the ipif is brought up again. 237 * More details are described above the comment in ip_sioctl_flags. 238 * 239 * Packet processing is based mostly on IREs and are fully multi-threaded 240 * using standard Solaris MT techniques. 241 * 242 * There are explicit locks in IP to handle: 243 * - The ip_g_head list maintained by mi_open_link() and friends. 244 * 245 * - The reassembly data structures (one lock per hash bucket) 246 * 247 * - conn_lock is meant to protect conn_t fields. The fields actually 248 * protected by conn_lock are documented in the conn_t definition. 249 * 250 * - ire_lock to protect some of the fields of the ire, IRE tables 251 * (one lock per hash bucket). Refer to ip_ire.c for details. 252 * 253 * - ndp_g_lock and nce_lock for protecting NCEs. 254 * 255 * - ill_lock protects fields of the ill and ipif. Details in ip.h 256 * 257 * - ill_g_lock: This is a global reader/writer lock. Protects the following 258 * * The AVL tree based global multi list of all ills. 259 * * The linked list of all ipifs of an ill 260 * * The <ill-ipsq> mapping 261 * * The ipsq->ipsq_phyint_list threaded by phyint_ipsq_next 262 * * The illgroup list threaded by ill_group_next. 263 * * <ill-phyint> association 264 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 265 * into an ill, changing the <ill-ipsq> mapping of an ill, insertion/deletion 266 * of an ill into the illgrp list, changing the <ill-phyint> assoc of an ill 267 * will all have to hold the ill_g_lock as writer for the actual duration 268 * of the insertion/deletion/change. More details about the <ill-ipsq> mapping 269 * may be found in the IPMP section. 270 * 271 * - ill_lock: This is a per ill mutex. 272 * It protects some members of the ill and is documented below. 273 * It also protects the <ill-ipsq> mapping 274 * It also protects the illgroup list threaded by ill_group_next. 275 * It also protects the <ill-phyint> assoc. 276 * It also protects the list of ipifs hanging off the ill. 277 * 278 * - ipsq_lock: This is a per ipsq_t mutex lock. 279 * This protects all the other members of the ipsq struct except 280 * ipsq_refs and ipsq_phyint_list which are protected by ill_g_lock 281 * 282 * - illgrp_lock: This is a per ill_group mutex lock. 283 * The only thing it protects is the illgrp_ill_schednext member of ill_group 284 * which dictates which is the next ill in an ill_group that is to be chosen 285 * for sending outgoing packets, through creation of an IRE_CACHE that 286 * references this ill. 287 * 288 * - phyint_lock: This is a per phyint mutex lock. Protects just the 289 * phyint_flags 290 * 291 * - ip_g_nd_lock: This is a global reader/writer lock. 292 * Any call to nd_load to load a new parameter to the ND table must hold the 293 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 294 * as reader. 295 * 296 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 297 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 298 * uniqueness check also done atomically. 299 * 300 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 301 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 302 * as a writer when adding or deleting elements from these lists, and 303 * as a reader when walking these lists to send a SADB update to the 304 * IPsec capable ills. 305 * 306 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 307 * group list linked by ill_usesrc_grp_next. It also protects the 308 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 309 * group is being added or deleted. This lock is taken as a reader when 310 * walking the list/group(eg: to get the number of members in a usesrc group). 311 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 312 * field is changing state i.e from NULL to non-NULL or vice-versa. For 313 * example, it is not necessary to take this lock in the initial portion 314 * of ip_sioctl_slifusesrc or at all in ip_sioctl_groupname and 315 * ip_sioctl_flags since the these operations are executed exclusively and 316 * that ensures that the "usesrc group state" cannot change. The "usesrc 317 * group state" change can happen only in the latter part of 318 * ip_sioctl_slifusesrc and in ill_delete. 319 * 320 * Changing <ill-phyint>, <ill-ipsq>, <ill-illgroup> assocications. 321 * 322 * To change the <ill-phyint> association, the ill_g_lock must be held 323 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 324 * must be held. 325 * 326 * To change the <ill-ipsq> association the ill_g_lock must be held as writer 327 * and the ill_lock of the ill in question must be held. 328 * 329 * To change the <ill-illgroup> association the ill_g_lock must be held as 330 * writer and the ill_lock of the ill in question must be held. 331 * 332 * To add or delete an ipif from the list of ipifs hanging off the ill, 333 * ill_g_lock (writer) and ill_lock must be held and the thread must be 334 * a writer on the associated ipsq,. 335 * 336 * To add or delete an ill to the system, the ill_g_lock must be held as 337 * writer and the thread must be a writer on the associated ipsq. 338 * 339 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 340 * must be a writer on the associated ipsq. 341 * 342 * Lock hierarchy 343 * 344 * Some lock hierarchy scenarios are listed below. 345 * 346 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 347 * ill_g_lock -> illgrp_lock -> ill_lock 348 * ill_g_lock -> ill_lock(s) -> phyint_lock 349 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 350 * ill_g_lock -> ip_addr_avail_lock 351 * conn_lock -> irb_lock -> ill_lock -> ire_lock 352 * ill_g_lock -> ip_g_nd_lock 353 * 354 * When more than 1 ill lock is needed to be held, all ill lock addresses 355 * are sorted on address and locked starting from highest addressed lock 356 * downward. 357 * 358 * IPsec scenarios 359 * 360 * ipsa_lock -> ill_g_lock -> ill_lock 361 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 362 * ipsec_capab_ills_lock -> ipsa_lock 363 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 364 * 365 * Trusted Solaris scenarios 366 * 367 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 368 * igsa_lock -> gcdb_lock 369 * gcgrp_rwlock -> ire_lock 370 * gcgrp_rwlock -> gcdb_lock 371 * 372 * 373 * Routing/forwarding table locking notes: 374 * 375 * Lock acquisition order: Radix tree lock, irb_lock. 376 * Requirements: 377 * i. Walker must not hold any locks during the walker callback. 378 * ii Walker must not see a truncated tree during the walk because of any node 379 * deletion. 380 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 381 * in many places in the code to walk the irb list. Thus even if all the 382 * ires in a bucket have been deleted, we still can't free the radix node 383 * until the ires have actually been inactive'd (freed). 384 * 385 * Tree traversal - Need to hold the global tree lock in read mode. 386 * Before dropping the global tree lock, need to either increment the ire_refcnt 387 * to ensure that the radix node can't be deleted. 388 * 389 * Tree add - Need to hold the global tree lock in write mode to add a 390 * radix node. To prevent the node from being deleted, increment the 391 * irb_refcnt, after the node is added to the tree. The ire itself is 392 * added later while holding the irb_lock, but not the tree lock. 393 * 394 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 395 * All associated ires must be inactive (i.e. freed), and irb_refcnt 396 * must be zero. 397 * 398 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 399 * global tree lock (read mode) for traversal. 400 * 401 * IPsec notes : 402 * 403 * IP interacts with the IPsec code (AH/ESP) by tagging a M_CTL message 404 * in front of the actual packet. For outbound datagrams, the M_CTL 405 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 406 * information used by the IPsec code for applying the right level of 407 * protection. The information initialized by IP in the ipsec_out_t 408 * is determined by the per-socket policy or global policy in the system. 409 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 410 * ipsec_info.h) which starts out with nothing in it. It gets filled 411 * with the right information if it goes through the AH/ESP code, which 412 * happens if the incoming packet is secure. The information initialized 413 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 414 * the policy requirements needed by per-socket policy or global policy 415 * is met or not. 416 * 417 * If there is both per-socket policy (set using setsockopt) and there 418 * is also global policy match for the 5 tuples of the socket, 419 * ipsec_override_policy() makes the decision of which one to use. 420 * 421 * For fully connected sockets i.e dst, src [addr, port] is known, 422 * conn_policy_cached is set indicating that policy has been cached. 423 * conn_in_enforce_policy may or may not be set depending on whether 424 * there is a global policy match or per-socket policy match. 425 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 426 * Once the right policy is set on the conn_t, policy cannot change for 427 * this socket. This makes life simpler for TCP (UDP ?) where 428 * re-transmissions go out with the same policy. For symmetry, policy 429 * is cached for fully connected UDP sockets also. Thus if policy is cached, 430 * it also implies that policy is latched i.e policy cannot change 431 * on these sockets. As we have the right policy on the conn, we don't 432 * have to lookup global policy for every outbound and inbound datagram 433 * and thus serving as an optimization. Note that a global policy change 434 * does not affect fully connected sockets if they have policy. If fully 435 * connected sockets did not have any policy associated with it, global 436 * policy change may affect them. 437 * 438 * IP Flow control notes: 439 * 440 * Non-TCP streams are flow controlled by IP. On the send side, if the packet 441 * cannot be sent down to the driver by IP, because of a canput failure, IP 442 * does a putq on the conn_wq. This will cause ip_wsrv to run on the conn_wq. 443 * ip_wsrv in turn, inserts the conn in a list of conn's that need to be drained 444 * when the flowcontrol condition subsides. Ultimately STREAMS backenables the 445 * ip_wsrv on the IP module, which in turn does a qenable of the conn_wq of the 446 * first conn in the list of conn's to be drained. ip_wsrv on this conn drains 447 * the queued messages, and removes the conn from the drain list, if all 448 * messages were drained. It also qenables the next conn in the drain list to 449 * continue the drain process. 450 * 451 * In reality the drain list is not a single list, but a configurable number 452 * of lists. The ip_wsrv on the IP module, qenables the first conn in each 453 * list. If the ip_wsrv of the next qenabled conn does not run, because the 454 * stream closes, ip_close takes responsibility to qenable the next conn in 455 * the drain list. The directly called ip_wput path always does a putq, if 456 * it cannot putnext. Thus synchronization problems are handled between 457 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 458 * functions that manipulate this drain list. Furthermore conn_drain_insert 459 * is called only from ip_wsrv, and there can be only 1 instance of ip_wsrv 460 * running on a queue at any time. conn_drain_tail can be simultaneously called 461 * from both ip_wsrv and ip_close. 462 * 463 * IPQOS notes: 464 * 465 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 466 * and IPQoS modules. IPPF includes hooks in IP at different control points 467 * (callout positions) which direct packets to IPQoS modules for policy 468 * processing. Policies, if present, are global. 469 * 470 * The callout positions are located in the following paths: 471 * o local_in (packets destined for this host) 472 * o local_out (packets orginating from this host ) 473 * o fwd_in (packets forwarded by this m/c - inbound) 474 * o fwd_out (packets forwarded by this m/c - outbound) 475 * Hooks at these callout points can be enabled/disabled using the ndd variable 476 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 477 * By default all the callout positions are enabled. 478 * 479 * Outbound (local_out) 480 * Hooks are placed in ip_wput_ire and ipsec_out_process. 481 * 482 * Inbound (local_in) 483 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 484 * TCP and UDP fanout routines. 485 * 486 * Forwarding (in and out) 487 * Hooks are placed in ip_rput_forward. 488 * 489 * IP Policy Framework processing (IPPF processing) 490 * Policy processing for a packet is initiated by ip_process, which ascertains 491 * that the classifier (ipgpc) is loaded and configured, failing which the 492 * packet resumes normal processing in IP. If the clasifier is present, the 493 * packet is acted upon by one or more IPQoS modules (action instances), per 494 * filters configured in ipgpc and resumes normal IP processing thereafter. 495 * An action instance can drop a packet in course of its processing. 496 * 497 * A boolean variable, ip_policy, is used in all the fanout routines that can 498 * invoke ip_process for a packet. This variable indicates if the packet should 499 * to be sent for policy processing. The variable is set to B_TRUE by default, 500 * i.e. when the routines are invoked in the normal ip procesing path for a 501 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 502 * ip_policy is set to B_FALSE for all the routines called in these two 503 * functions because, in the former case, we don't process loopback traffic 504 * currently while in the latter, the packets have already been processed in 505 * icmp_inbound. 506 * 507 * Zones notes: 508 * 509 * The partitioning rules for networking are as follows: 510 * 1) Packets coming from a zone must have a source address belonging to that 511 * zone. 512 * 2) Packets coming from a zone can only be sent on a physical interface on 513 * which the zone has an IP address. 514 * 3) Between two zones on the same machine, packet delivery is only allowed if 515 * there's a matching route for the destination and zone in the forwarding 516 * table. 517 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 518 * different zones can bind to the same port with the wildcard address 519 * (INADDR_ANY). 520 * 521 * The granularity of interface partitioning is at the logical interface level. 522 * Therefore, every zone has its own IP addresses, and incoming packets can be 523 * attributed to a zone unambiguously. A logical interface is placed into a zone 524 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 525 * structure. Rule (1) is implemented by modifying the source address selection 526 * algorithm so that the list of eligible addresses is filtered based on the 527 * sending process zone. 528 * 529 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 530 * across all zones, depending on their type. Here is the break-up: 531 * 532 * IRE type Shared/exclusive 533 * -------- ---------------- 534 * IRE_BROADCAST Exclusive 535 * IRE_DEFAULT (default routes) Shared (*) 536 * IRE_LOCAL Exclusive (x) 537 * IRE_LOOPBACK Exclusive 538 * IRE_PREFIX (net routes) Shared (*) 539 * IRE_CACHE Exclusive 540 * IRE_IF_NORESOLVER (interface routes) Exclusive 541 * IRE_IF_RESOLVER (interface routes) Exclusive 542 * IRE_HOST (host routes) Shared (*) 543 * 544 * (*) A zone can only use a default or off-subnet route if the gateway is 545 * directly reachable from the zone, that is, if the gateway's address matches 546 * one of the zone's logical interfaces. 547 * 548 * (x) IRE_LOCAL are handled a bit differently, since for all other entries 549 * in ire_ctable and IRE_INTERFACE, ire_src_addr is what can be used as source 550 * when sending packets using the IRE. For IRE_LOCAL ire_src_addr is the IP 551 * address of the zone itself (the destination). Since IRE_LOCAL is used 552 * for communication between zones, ip_wput_ire has special logic to set 553 * the right source address when sending using an IRE_LOCAL. 554 * 555 * Furthermore, when ip_restrict_interzone_loopback is set (the default), 556 * ire_cache_lookup restricts loopback using an IRE_LOCAL 557 * between zone to the case when L2 would have conceptually looped the packet 558 * back, i.e. the loopback which is required since neither Ethernet drivers 559 * nor Ethernet hardware loops them back. This is the case when the normal 560 * routes (ignoring IREs with different zoneids) would send out the packet on 561 * the same ill (or ill group) as the ill with which is IRE_LOCAL is 562 * associated. 563 * 564 * Multiple zones can share a common broadcast address; typically all zones 565 * share the 255.255.255.255 address. Incoming as well as locally originated 566 * broadcast packets must be dispatched to all the zones on the broadcast 567 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 568 * since some zones may not be on the 10.16.72/24 network. To handle this, each 569 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 570 * sent to every zone that has an IRE_BROADCAST entry for the destination 571 * address on the input ill, see conn_wantpacket(). 572 * 573 * Applications in different zones can join the same multicast group address. 574 * For IPv4, group memberships are per-logical interface, so they're already 575 * inherently part of a zone. For IPv6, group memberships are per-physical 576 * interface, so we distinguish IPv6 group memberships based on group address, 577 * interface and zoneid. In both cases, received multicast packets are sent to 578 * every zone for which a group membership entry exists. On IPv6 we need to 579 * check that the target zone still has an address on the receiving physical 580 * interface; it could have been removed since the application issued the 581 * IPV6_JOIN_GROUP. 582 */ 583 584 /* 585 * Squeue Fanout flags: 586 * 0: No fanout. 587 * 1: Fanout across all squeues 588 */ 589 boolean_t ip_squeue_fanout = 0; 590 591 /* 592 * Maximum dups allowed per packet. 593 */ 594 uint_t ip_max_frag_dups = 10; 595 596 #define IS_SIMPLE_IPH(ipha) \ 597 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 598 599 /* RFC1122 Conformance */ 600 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 601 602 #define ILL_MAX_NAMELEN LIFNAMSIZ 603 604 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 605 606 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag, 607 cred_t *credp, boolean_t isv6); 608 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t, 609 ipha_t **); 610 611 static void icmp_frag_needed(queue_t *, mblk_t *, int, zoneid_t, 612 ip_stack_t *); 613 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 614 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 615 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 616 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 617 mblk_t *, int, ip_stack_t *); 618 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 619 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 620 ill_t *, zoneid_t); 621 static void icmp_options_update(ipha_t *); 622 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t, zoneid_t, 623 ip_stack_t *); 624 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t, 625 zoneid_t zoneid, ip_stack_t *); 626 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_stack_t *); 627 static void icmp_redirect(ill_t *, mblk_t *); 628 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t, 629 ip_stack_t *); 630 631 static void ip_arp_news(queue_t *, mblk_t *); 632 static boolean_t ip_bind_insert_ire(mblk_t *, ire_t *, iulp_t *, 633 ip_stack_t *); 634 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 635 char *ip_dot_addr(ipaddr_t, char *); 636 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 637 int ip_close(queue_t *, int); 638 static char *ip_dot_saddr(uchar_t *, char *); 639 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 640 boolean_t, boolean_t, ill_t *, zoneid_t); 641 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 642 boolean_t, boolean_t, zoneid_t); 643 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 644 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 645 static void ip_lrput(queue_t *, mblk_t *); 646 ipaddr_t ip_net_mask(ipaddr_t); 647 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, conn_t *, zoneid_t, 648 ip_stack_t *); 649 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 650 conn_t *, uint32_t, zoneid_t, ip_opt_info_t *); 651 char *ip_nv_lookup(nv_t *, int); 652 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 653 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 654 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 655 static boolean_t ip_param_register(IDP *ndp, ipparam_t *, size_t, 656 ipndp_t *, size_t); 657 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 658 void ip_rput(queue_t *, mblk_t *); 659 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 660 void *dummy_arg); 661 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 662 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *, 663 ip_stack_t *); 664 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 665 ire_t *, ip_stack_t *); 666 static boolean_t ip_rput_multimblk_ipoptions(queue_t *, ill_t *, 667 mblk_t *, ipha_t **, ipaddr_t *, ip_stack_t *); 668 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *, 669 ip_stack_t *); 670 static boolean_t ip_rput_fragment(queue_t *, mblk_t **, ipha_t *, uint32_t *, 671 uint16_t *); 672 int ip_snmp_get(queue_t *, mblk_t *, int); 673 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 674 mib2_ipIfStatsEntry_t *, ip_stack_t *); 675 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 676 ip_stack_t *); 677 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *); 678 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 679 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 680 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 681 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 682 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 683 ip_stack_t *ipst); 684 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 685 ip_stack_t *ipst); 686 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 687 ip_stack_t *ipst); 688 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 689 ip_stack_t *ipst); 690 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 691 ip_stack_t *ipst); 692 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 693 ip_stack_t *ipst); 694 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 695 ip_stack_t *ipst); 696 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 697 ip_stack_t *ipst); 698 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, 699 ip_stack_t *ipst); 700 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, 701 ip_stack_t *ipst); 702 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 703 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 704 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 705 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 706 static boolean_t ip_source_routed(ipha_t *, ip_stack_t *); 707 static boolean_t ip_source_route_included(ipha_t *); 708 static void ip_trash_ire_reclaim_stack(ip_stack_t *); 709 710 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t, 711 zoneid_t, ip_stack_t *); 712 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int, ip_stack_t *); 713 static void ip_wput_local_options(ipha_t *, ip_stack_t *); 714 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 715 zoneid_t, ip_stack_t *); 716 717 static void conn_drain_init(ip_stack_t *); 718 static void conn_drain_fini(ip_stack_t *); 719 static void conn_drain_tail(conn_t *connp, boolean_t closing); 720 721 static void conn_walk_drain(ip_stack_t *); 722 static void conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *, 723 zoneid_t); 724 725 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 726 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 727 static void ip_stack_fini(netstackid_t stackid, void *arg); 728 729 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 730 zoneid_t); 731 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 732 void *dummy_arg); 733 734 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 735 736 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 737 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 738 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 739 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 740 741 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 742 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 743 caddr_t, cred_t *); 744 extern int ip_squeue_bind_set(queue_t *q, mblk_t *mp, char *value, 745 caddr_t cp, cred_t *cr); 746 extern int ip_squeue_profile_set(queue_t *, mblk_t *, char *, caddr_t, 747 cred_t *); 748 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 749 caddr_t cp, cred_t *cr); 750 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 751 cred_t *); 752 static int ipmp_hook_emulation_set(queue_t *, mblk_t *, char *, caddr_t, 753 cred_t *); 754 static squeue_func_t ip_squeue_switch(int); 755 756 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 757 static void ip_kstat_fini(netstackid_t, kstat_t *); 758 static int ip_kstat_update(kstat_t *kp, int rw); 759 static void *icmp_kstat_init(netstackid_t); 760 static void icmp_kstat_fini(netstackid_t, kstat_t *); 761 static int icmp_kstat_update(kstat_t *kp, int rw); 762 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 763 static void ip_kstat2_fini(netstackid_t, kstat_t *); 764 765 static int ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *); 766 767 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 768 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 769 770 static void ip_rput_process_forward(queue_t *, mblk_t *, ire_t *, 771 ipha_t *, ill_t *, boolean_t); 772 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 773 774 /* How long, in seconds, we allow frags to hang around. */ 775 #define IP_FRAG_TIMEOUT 60 776 777 /* 778 * Threshold which determines whether MDT should be used when 779 * generating IP fragments; payload size must be greater than 780 * this threshold for MDT to take place. 781 */ 782 #define IP_WPUT_FRAG_MDT_MIN 32768 783 784 /* Setable in /etc/system only */ 785 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 786 787 static long ip_rput_pullups; 788 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 789 790 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */ 791 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */ 792 793 int ip_debug; 794 795 #ifdef DEBUG 796 uint32_t ipsechw_debug = 0; 797 #endif 798 799 /* 800 * Multirouting/CGTP stuff 801 */ 802 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 803 804 /* 805 * XXX following really should only be in a header. Would need more 806 * header and .c clean up first. 807 */ 808 extern optdb_obj_t ip_opt_obj; 809 810 ulong_t ip_squeue_enter_unbound = 0; 811 812 /* 813 * Named Dispatch Parameter Table. 814 * All of these are alterable, within the min/max values given, at run time. 815 */ 816 static ipparam_t lcl_param_arr[] = { 817 /* min max value name */ 818 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 819 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 820 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 821 { 0, 1, 0, "ip_respond_to_timestamp"}, 822 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 823 { 0, 1, 1, "ip_send_redirects"}, 824 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 825 { 0, 10, 0, "ip_mrtdebug"}, 826 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 827 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 828 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 829 { 1, 255, 255, "ip_def_ttl" }, 830 { 0, 1, 0, "ip_forward_src_routed"}, 831 { 0, 256, 32, "ip_wroff_extra" }, 832 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 833 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 834 { 0, 1, 1, "ip_path_mtu_discovery" }, 835 { 0, 240, 30, "ip_ignore_delete_time" }, 836 { 0, 1, 0, "ip_ignore_redirect" }, 837 { 0, 1, 1, "ip_output_queue" }, 838 { 1, 254, 1, "ip_broadcast_ttl" }, 839 { 0, 99999, 100, "ip_icmp_err_interval" }, 840 { 1, 99999, 10, "ip_icmp_err_burst" }, 841 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 842 { 0, 1, 0, "ip_strict_dst_multihoming" }, 843 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 844 { 0, 1, 0, "ipsec_override_persocket_policy" }, 845 { 0, 1, 1, "icmp_accept_clear_messages" }, 846 { 0, 1, 1, "igmp_accept_clear_messages" }, 847 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 848 "ip_ndp_delay_first_probe_time"}, 849 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 850 "ip_ndp_max_unicast_solicit"}, 851 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 852 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 853 { 0, 1, 0, "ip6_forward_src_routed"}, 854 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 855 { 0, 1, 1, "ip6_send_redirects"}, 856 { 0, 1, 0, "ip6_ignore_redirect" }, 857 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 858 859 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 860 861 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 862 863 { 0, 1, 1, "pim_accept_clear_messages" }, 864 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 865 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 866 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 867 { 0, 15, 0, "ip_policy_mask" }, 868 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 869 { 0, 255, 1, "ip_multirt_ttl" }, 870 { 0, 1, 1, "ip_multidata_outbound" }, 871 { 0, 3600000, 300000, "ip_ndp_defense_interval" }, 872 { 0, 999999, 60*60*24, "ip_max_temp_idle" }, 873 { 0, 1000, 1, "ip_max_temp_defend" }, 874 { 0, 1000, 3, "ip_max_defend" }, 875 { 0, 999999, 30, "ip_defend_interval" }, 876 { 0, 3600000, 300000, "ip_dup_recovery" }, 877 { 0, 1, 1, "ip_restrict_interzone_loopback" }, 878 { 0, 1, 1, "ip_lso_outbound" }, 879 { IGMP_V1_ROUTER, IGMP_V3_ROUTER, IGMP_V3_ROUTER, "igmp_max_version" }, 880 { MLD_V1_ROUTER, MLD_V2_ROUTER, MLD_V2_ROUTER, "mld_max_version" }, 881 #ifdef DEBUG 882 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 883 #else 884 { 0, 0, 0, "" }, 885 #endif 886 }; 887 888 /* 889 * Extended NDP table 890 * The addresses for the first two are filled in to be ips_ip_g_forward 891 * and ips_ipv6_forward at init time. 892 */ 893 static ipndp_t lcl_ndp_arr[] = { 894 /* getf setf data name */ 895 #define IPNDP_IP_FORWARDING_OFFSET 0 896 { ip_param_generic_get, ip_forward_set, NULL, 897 "ip_forwarding" }, 898 #define IPNDP_IP6_FORWARDING_OFFSET 1 899 { ip_param_generic_get, ip_forward_set, NULL, 900 "ip6_forwarding" }, 901 { ip_ill_report, NULL, NULL, 902 "ip_ill_status" }, 903 { ip_ipif_report, NULL, NULL, 904 "ip_ipif_status" }, 905 { ip_conn_report, NULL, NULL, 906 "ip_conn_status" }, 907 { nd_get_long, nd_set_long, (caddr_t)&ip_rput_pullups, 908 "ip_rput_pullups" }, 909 { ip_srcid_report, NULL, NULL, 910 "ip_srcid_status" }, 911 { ip_param_generic_get, ip_squeue_profile_set, 912 (caddr_t)&ip_squeue_profile, "ip_squeue_profile" }, 913 { ip_param_generic_get, ip_squeue_bind_set, 914 (caddr_t)&ip_squeue_bind, "ip_squeue_bind" }, 915 { ip_param_generic_get, ip_input_proc_set, 916 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 917 { ip_param_generic_get, ip_int_set, 918 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 919 #define IPNDP_CGTP_FILTER_OFFSET 11 920 { ip_cgtp_filter_get, ip_cgtp_filter_set, NULL, 921 "ip_cgtp_filter" }, 922 { ip_param_generic_get, ip_int_set, 923 (caddr_t)&ip_soft_rings_cnt, "ip_soft_rings_cnt" }, 924 #define IPNDP_IPMP_HOOK_OFFSET 13 925 { ip_param_generic_get, ipmp_hook_emulation_set, NULL, 926 "ipmp_hook_emulation" }, 927 { ip_param_generic_get, ip_int_set, (caddr_t)&ip_debug, 928 "ip_debug" }, 929 }; 930 931 /* 932 * Table of IP ioctls encoding the various properties of the ioctl and 933 * indexed based on the last byte of the ioctl command. Occasionally there 934 * is a clash, and there is more than 1 ioctl with the same last byte. 935 * In such a case 1 ioctl is encoded in the ndx table and the remaining 936 * ioctls are encoded in the misc table. An entry in the ndx table is 937 * retrieved by indexing on the last byte of the ioctl command and comparing 938 * the ioctl command with the value in the ndx table. In the event of a 939 * mismatch the misc table is then searched sequentially for the desired 940 * ioctl command. 941 * 942 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 943 */ 944 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 945 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 946 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 947 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 948 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 949 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 950 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 951 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 952 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 953 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 954 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 955 956 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 957 MISC_CMD, ip_siocaddrt, NULL }, 958 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 959 MISC_CMD, ip_siocdelrt, NULL }, 960 961 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 962 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 963 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 964 IF_CMD, ip_sioctl_get_addr, NULL }, 965 966 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 967 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 968 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 969 IPI_GET_CMD | IPI_REPL, 970 IF_CMD, ip_sioctl_get_dstaddr, NULL }, 971 972 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 973 IPI_PRIV | IPI_WR | IPI_REPL, 974 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 975 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 976 IPI_MODOK | IPI_GET_CMD | IPI_REPL, 977 IF_CMD, ip_sioctl_get_flags, NULL }, 978 979 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 980 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 981 982 /* copyin size cannot be coded for SIOCGIFCONF */ 983 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD, 984 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 985 986 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 987 IF_CMD, ip_sioctl_mtu, NULL }, 988 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 989 IF_CMD, ip_sioctl_get_mtu, NULL }, 990 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 991 IPI_GET_CMD | IPI_REPL, 992 IF_CMD, ip_sioctl_get_brdaddr, NULL }, 993 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 994 IF_CMD, ip_sioctl_brdaddr, NULL }, 995 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 996 IPI_GET_CMD | IPI_REPL, 997 IF_CMD, ip_sioctl_get_netmask, NULL }, 998 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 999 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1000 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1001 IPI_GET_CMD | IPI_REPL, 1002 IF_CMD, ip_sioctl_get_metric, NULL }, 1003 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1004 IF_CMD, ip_sioctl_metric, NULL }, 1005 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1006 1007 /* See 166-168 below for extended SIOC*XARP ioctls */ 1008 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV, 1009 ARP_CMD, ip_sioctl_arp, NULL }, 1010 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD | IPI_REPL, 1011 ARP_CMD, ip_sioctl_arp, NULL }, 1012 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV, 1013 ARP_CMD, ip_sioctl_arp, NULL }, 1014 1015 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1016 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1017 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1018 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1019 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1020 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1021 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1022 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1023 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1024 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1025 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1026 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1027 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1028 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1029 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1030 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1031 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1032 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1033 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1034 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1035 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1036 1037 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1038 MISC_CMD, if_unitsel, if_unitsel_restart }, 1039 1040 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1041 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1042 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1043 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1044 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1045 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1046 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1047 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1048 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1049 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1050 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1051 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1052 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1053 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1054 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1055 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1056 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1057 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1058 1059 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1060 IPI_PRIV | IPI_WR | IPI_MODOK, 1061 IF_CMD, ip_sioctl_sifname, NULL }, 1062 1063 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1064 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1065 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1066 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1067 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1068 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1069 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1070 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1071 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1072 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1073 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1074 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1075 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1076 1077 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD | IPI_REPL, 1078 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1079 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1080 IF_CMD, ip_sioctl_get_muxid, NULL }, 1081 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1082 IPI_PRIV | IPI_WR | IPI_REPL, 1083 IF_CMD, ip_sioctl_muxid, NULL }, 1084 1085 /* Both if and lif variants share same func */ 1086 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1087 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1088 /* Both if and lif variants share same func */ 1089 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1090 IPI_PRIV | IPI_WR | IPI_REPL, 1091 IF_CMD, ip_sioctl_slifindex, NULL }, 1092 1093 /* copyin size cannot be coded for SIOCGIFCONF */ 1094 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD, 1095 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1096 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1097 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1098 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1099 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1100 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1101 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1102 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1103 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1104 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1105 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1106 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1107 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1108 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1109 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1110 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1111 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1112 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1113 1114 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1115 IPI_PRIV | IPI_WR | IPI_REPL, 1116 LIF_CMD, ip_sioctl_removeif, 1117 ip_sioctl_removeif_restart }, 1118 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1119 IPI_GET_CMD | IPI_PRIV | IPI_WR | IPI_REPL, 1120 LIF_CMD, ip_sioctl_addif, NULL }, 1121 #define SIOCLIFADDR_NDX 112 1122 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1123 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1124 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1125 IPI_GET_CMD | IPI_REPL, 1126 LIF_CMD, ip_sioctl_get_addr, NULL }, 1127 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1128 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1129 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1130 IPI_GET_CMD | IPI_REPL, 1131 LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1132 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1133 IPI_PRIV | IPI_WR | IPI_REPL, 1134 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1135 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1136 IPI_GET_CMD | IPI_MODOK | IPI_REPL, 1137 LIF_CMD, ip_sioctl_get_flags, NULL }, 1138 1139 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1140 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1141 1142 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1143 ip_sioctl_get_lifconf, NULL }, 1144 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1145 LIF_CMD, ip_sioctl_mtu, NULL }, 1146 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD | IPI_REPL, 1147 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1148 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1149 IPI_GET_CMD | IPI_REPL, 1150 LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1151 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1152 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1153 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1154 IPI_GET_CMD | IPI_REPL, 1155 LIF_CMD, ip_sioctl_get_netmask, NULL }, 1156 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1157 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1158 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1159 IPI_GET_CMD | IPI_REPL, 1160 LIF_CMD, ip_sioctl_get_metric, NULL }, 1161 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1162 LIF_CMD, ip_sioctl_metric, NULL }, 1163 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1164 IPI_PRIV | IPI_WR | IPI_MODOK | IPI_REPL, 1165 LIF_CMD, ip_sioctl_slifname, 1166 ip_sioctl_slifname_restart }, 1167 1168 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD | IPI_REPL, 1169 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1170 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1171 IPI_GET_CMD | IPI_REPL, 1172 LIF_CMD, ip_sioctl_get_muxid, NULL }, 1173 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1174 IPI_PRIV | IPI_WR | IPI_REPL, 1175 LIF_CMD, ip_sioctl_muxid, NULL }, 1176 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1177 IPI_GET_CMD | IPI_REPL, 1178 LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1179 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1180 IPI_PRIV | IPI_WR | IPI_REPL, 1181 LIF_CMD, ip_sioctl_slifindex, 0 }, 1182 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1183 LIF_CMD, ip_sioctl_token, NULL }, 1184 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1185 IPI_GET_CMD | IPI_REPL, 1186 LIF_CMD, ip_sioctl_get_token, NULL }, 1187 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1188 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1189 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1190 IPI_GET_CMD | IPI_REPL, 1191 LIF_CMD, ip_sioctl_get_subnet, NULL }, 1192 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1193 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1194 1195 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1196 IPI_GET_CMD | IPI_REPL, 1197 LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1198 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1199 LIF_CMD, ip_siocdelndp_v6, NULL }, 1200 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1201 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1202 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1203 LIF_CMD, ip_siocsetndp_v6, NULL }, 1204 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1205 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1206 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1207 MISC_CMD, ip_sioctl_tonlink, NULL }, 1208 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1209 MISC_CMD, ip_sioctl_tmysite, NULL }, 1210 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), IPI_REPL, 1211 TUN_CMD, ip_sioctl_tunparam, NULL }, 1212 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1213 IPI_PRIV | IPI_WR, 1214 TUN_CMD, ip_sioctl_tunparam, NULL }, 1215 1216 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1217 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1218 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1219 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1220 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1221 1222 /* 153 */ { SIOCLIFFAILOVER, sizeof (struct lifreq), 1223 IPI_PRIV | IPI_WR | IPI_REPL, 1224 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1225 /* 154 */ { SIOCLIFFAILBACK, sizeof (struct lifreq), 1226 IPI_PRIV | IPI_WR | IPI_REPL, 1227 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1228 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1229 IPI_PRIV | IPI_WR, 1230 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1231 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1232 IPI_GET_CMD | IPI_REPL, 1233 LIF_CMD, ip_sioctl_get_groupname, NULL }, 1234 /* 157 */ { SIOCGLIFOINDEX, sizeof (struct lifreq), 1235 IPI_GET_CMD | IPI_REPL, 1236 LIF_CMD, ip_sioctl_get_oindex, NULL }, 1237 1238 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1239 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1240 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1241 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1242 1243 /* 161 */ { SIOCSLIFOINDEX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1244 LIF_CMD, ip_sioctl_slifoindex, NULL }, 1245 1246 /* These are handled in ip_sioctl_copyin_setup itself */ 1247 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1248 MISC_CMD, NULL, NULL }, 1249 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1250 MISC_CMD, NULL, NULL }, 1251 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1252 1253 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1254 ip_sioctl_get_lifconf, NULL }, 1255 1256 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV, 1257 XARP_CMD, ip_sioctl_arp, NULL }, 1258 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD | IPI_REPL, 1259 XARP_CMD, ip_sioctl_arp, NULL }, 1260 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV, 1261 XARP_CMD, ip_sioctl_arp, NULL }, 1262 1263 /* SIOCPOPSOCKFS is not handled by IP */ 1264 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1265 1266 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1267 IPI_GET_CMD | IPI_REPL, 1268 LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1269 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1270 IPI_PRIV | IPI_WR | IPI_REPL, 1271 LIF_CMD, ip_sioctl_slifzone, 1272 ip_sioctl_slifzone_restart }, 1273 /* 172-174 are SCTP ioctls and not handled by IP */ 1274 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1275 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1276 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1277 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1278 IPI_GET_CMD, LIF_CMD, 1279 ip_sioctl_get_lifusesrc, 0 }, 1280 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1281 IPI_PRIV | IPI_WR, 1282 LIF_CMD, ip_sioctl_slifusesrc, 1283 NULL }, 1284 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1285 ip_sioctl_get_lifsrcof, NULL }, 1286 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1287 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1288 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1289 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1290 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1291 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1292 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1293 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1294 /* 182 */ { SIOCSIPMPFAILBACK, sizeof (int), IPI_PRIV, MISC_CMD, 1295 ip_sioctl_set_ipmpfailback, NULL }, 1296 /* SIOCSENABLESDP is handled by SDP */ 1297 /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL }, 1298 }; 1299 1300 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1301 1302 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1303 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1304 IPI_GET_CMD | IPI_REPL, TUN_CMD, ip_sioctl_tunparam, NULL }, 1305 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1306 TUN_CMD, ip_sioctl_tunparam, NULL }, 1307 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1308 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1309 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1310 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1311 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1312 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1313 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1314 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_REPL | IPI_GET_CMD, 1315 MISC_CMD, mrt_ioctl}, 1316 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_REPL | IPI_GET_CMD, 1317 MISC_CMD, mrt_ioctl}, 1318 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_REPL | IPI_GET_CMD, 1319 MISC_CMD, mrt_ioctl} 1320 }; 1321 1322 int ip_misc_ioctl_count = 1323 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1324 1325 int conn_drain_nthreads; /* Number of drainers reqd. */ 1326 /* Settable in /etc/system */ 1327 /* Defined in ip_ire.c */ 1328 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1329 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1330 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1331 1332 static nv_t ire_nv_arr[] = { 1333 { IRE_BROADCAST, "BROADCAST" }, 1334 { IRE_LOCAL, "LOCAL" }, 1335 { IRE_LOOPBACK, "LOOPBACK" }, 1336 { IRE_CACHE, "CACHE" }, 1337 { IRE_DEFAULT, "DEFAULT" }, 1338 { IRE_PREFIX, "PREFIX" }, 1339 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1340 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1341 { IRE_HOST, "HOST" }, 1342 { 0 } 1343 }; 1344 1345 nv_t *ire_nv_tbl = ire_nv_arr; 1346 1347 /* Simple ICMP IP Header Template */ 1348 static ipha_t icmp_ipha = { 1349 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1350 }; 1351 1352 struct module_info ip_mod_info = { 1353 IP_MOD_ID, IP_MOD_NAME, 1, INFPSZ, 65536, 1024 1354 }; 1355 1356 /* 1357 * Duplicate static symbols within a module confuses mdb; so we avoid the 1358 * problem by making the symbols here distinct from those in udp.c. 1359 */ 1360 1361 /* 1362 * Entry points for IP as a device and as a module. 1363 * FIXME: down the road we might want a separate module and driver qinit. 1364 * We have separate open functions for the /dev/ip and /dev/ip6 devices. 1365 */ 1366 static struct qinit iprinitv4 = { 1367 (pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL, 1368 &ip_mod_info 1369 }; 1370 1371 struct qinit iprinitv6 = { 1372 (pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL, 1373 &ip_mod_info 1374 }; 1375 1376 static struct qinit ipwinitv4 = { 1377 (pfi_t)ip_wput, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1378 &ip_mod_info 1379 }; 1380 1381 struct qinit ipwinitv6 = { 1382 (pfi_t)ip_wput_v6, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1383 &ip_mod_info 1384 }; 1385 1386 static struct qinit iplrinit = { 1387 (pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL, 1388 &ip_mod_info 1389 }; 1390 1391 static struct qinit iplwinit = { 1392 (pfi_t)ip_lwput, NULL, NULL, NULL, NULL, 1393 &ip_mod_info 1394 }; 1395 1396 /* For AF_INET aka /dev/ip */ 1397 struct streamtab ipinfov4 = { 1398 &iprinitv4, &ipwinitv4, &iplrinit, &iplwinit 1399 }; 1400 1401 /* For AF_INET6 aka /dev/ip6 */ 1402 struct streamtab ipinfov6 = { 1403 &iprinitv6, &ipwinitv6, &iplrinit, &iplwinit 1404 }; 1405 1406 #ifdef DEBUG 1407 static boolean_t skip_sctp_cksum = B_FALSE; 1408 #endif 1409 1410 /* 1411 * Prepend the zoneid using an ipsec_out_t for later use by functions like 1412 * ip_rput_v6(), ip_output(), etc. If the message 1413 * block already has a M_CTL at the front of it, then simply set the zoneid 1414 * appropriately. 1415 */ 1416 mblk_t * 1417 ip_prepend_zoneid(mblk_t *mp, zoneid_t zoneid, ip_stack_t *ipst) 1418 { 1419 mblk_t *first_mp; 1420 ipsec_out_t *io; 1421 1422 ASSERT(zoneid != ALL_ZONES); 1423 if (mp->b_datap->db_type == M_CTL) { 1424 io = (ipsec_out_t *)mp->b_rptr; 1425 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1426 io->ipsec_out_zoneid = zoneid; 1427 return (mp); 1428 } 1429 1430 first_mp = ipsec_alloc_ipsec_out(ipst->ips_netstack); 1431 if (first_mp == NULL) 1432 return (NULL); 1433 io = (ipsec_out_t *)first_mp->b_rptr; 1434 /* This is not a secure packet */ 1435 io->ipsec_out_secure = B_FALSE; 1436 io->ipsec_out_zoneid = zoneid; 1437 first_mp->b_cont = mp; 1438 return (first_mp); 1439 } 1440 1441 /* 1442 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1443 */ 1444 mblk_t * 1445 ip_copymsg(mblk_t *mp) 1446 { 1447 mblk_t *nmp; 1448 ipsec_info_t *in; 1449 1450 if (mp->b_datap->db_type != M_CTL) 1451 return (copymsg(mp)); 1452 1453 in = (ipsec_info_t *)mp->b_rptr; 1454 1455 /* 1456 * Note that M_CTL is also used for delivering ICMP error messages 1457 * upstream to transport layers. 1458 */ 1459 if (in->ipsec_info_type != IPSEC_OUT && 1460 in->ipsec_info_type != IPSEC_IN) 1461 return (copymsg(mp)); 1462 1463 nmp = copymsg(mp->b_cont); 1464 1465 if (in->ipsec_info_type == IPSEC_OUT) { 1466 return (ipsec_out_tag(mp, nmp, 1467 ((ipsec_out_t *)in)->ipsec_out_ns)); 1468 } else { 1469 return (ipsec_in_tag(mp, nmp, 1470 ((ipsec_in_t *)in)->ipsec_in_ns)); 1471 } 1472 } 1473 1474 /* Generate an ICMP fragmentation needed message. */ 1475 static void 1476 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu, zoneid_t zoneid, 1477 ip_stack_t *ipst) 1478 { 1479 icmph_t icmph; 1480 mblk_t *first_mp; 1481 boolean_t mctl_present; 1482 1483 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1484 1485 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 1486 if (mctl_present) 1487 freeb(first_mp); 1488 return; 1489 } 1490 1491 bzero(&icmph, sizeof (icmph_t)); 1492 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1493 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1494 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1495 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1496 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1497 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 1498 ipst); 1499 } 1500 1501 /* 1502 * icmp_inbound deals with ICMP messages in the following ways. 1503 * 1504 * 1) It needs to send a reply back and possibly delivering it 1505 * to the "interested" upper clients. 1506 * 2) It needs to send it to the upper clients only. 1507 * 3) It needs to change some values in IP only. 1508 * 4) It needs to change some values in IP and upper layers e.g TCP. 1509 * 1510 * We need to accomodate icmp messages coming in clear until we get 1511 * everything secure from the wire. If icmp_accept_clear_messages 1512 * is zero we check with the global policy and act accordingly. If 1513 * it is non-zero, we accept the message without any checks. But 1514 * *this does not mean* that this will be delivered to the upper 1515 * clients. By accepting we might send replies back, change our MTU 1516 * value etc. but delivery to the ULP/clients depends on their policy 1517 * dispositions. 1518 * 1519 * We handle the above 4 cases in the context of IPsec in the 1520 * following way : 1521 * 1522 * 1) Send the reply back in the same way as the request came in. 1523 * If it came in encrypted, it goes out encrypted. If it came in 1524 * clear, it goes out in clear. Thus, this will prevent chosen 1525 * plain text attack. 1526 * 2) The client may or may not expect things to come in secure. 1527 * If it comes in secure, the policy constraints are checked 1528 * before delivering it to the upper layers. If it comes in 1529 * clear, ipsec_inbound_accept_clear will decide whether to 1530 * accept this in clear or not. In both the cases, if the returned 1531 * message (IP header + 8 bytes) that caused the icmp message has 1532 * AH/ESP headers, it is sent up to AH/ESP for validation before 1533 * sending up. If there are only 8 bytes of returned message, then 1534 * upper client will not be notified. 1535 * 3) Check with global policy to see whether it matches the constaints. 1536 * But this will be done only if icmp_accept_messages_in_clear is 1537 * zero. 1538 * 4) If we need to change both in IP and ULP, then the decision taken 1539 * while affecting the values in IP and while delivering up to TCP 1540 * should be the same. 1541 * 1542 * There are two cases. 1543 * 1544 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1545 * failed), we will not deliver it to the ULP, even though they 1546 * are *willing* to accept in *clear*. This is fine as our global 1547 * disposition to icmp messages asks us reject the datagram. 1548 * 1549 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1550 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1551 * to deliver it to ULP (policy failed), it can lead to 1552 * consistency problems. The cases known at this time are 1553 * ICMP_DESTINATION_UNREACHABLE messages with following code 1554 * values : 1555 * 1556 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1557 * and Upper layer rejects. Then the communication will 1558 * come to a stop. This is solved by making similar decisions 1559 * at both levels. Currently, when we are unable to deliver 1560 * to the Upper Layer (due to policy failures) while IP has 1561 * adjusted ire_max_frag, the next outbound datagram would 1562 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1563 * will be with the right level of protection. Thus the right 1564 * value will be communicated even if we are not able to 1565 * communicate when we get from the wire initially. But this 1566 * assumes there would be at least one outbound datagram after 1567 * IP has adjusted its ire_max_frag value. To make things 1568 * simpler, we accept in clear after the validation of 1569 * AH/ESP headers. 1570 * 1571 * - Other ICMP ERRORS : We may not be able to deliver it to the 1572 * upper layer depending on the level of protection the upper 1573 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1574 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1575 * should be accepted in clear when the Upper layer expects secure. 1576 * Thus the communication may get aborted by some bad ICMP 1577 * packets. 1578 * 1579 * IPQoS Notes: 1580 * The only instance when a packet is sent for processing is when there 1581 * isn't an ICMP client and if we are interested in it. 1582 * If there is a client, IPPF processing will take place in the 1583 * ip_fanout_proto routine. 1584 * 1585 * Zones notes: 1586 * The packet is only processed in the context of the specified zone: typically 1587 * only this zone will reply to an echo request, and only interested clients in 1588 * this zone will receive a copy of the packet. This means that the caller must 1589 * call icmp_inbound() for each relevant zone. 1590 */ 1591 static void 1592 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1593 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1594 ill_t *recv_ill, zoneid_t zoneid) 1595 { 1596 icmph_t *icmph; 1597 ipha_t *ipha; 1598 int iph_hdr_length; 1599 int hdr_length; 1600 boolean_t interested; 1601 uint32_t ts; 1602 uchar_t *wptr; 1603 ipif_t *ipif; 1604 mblk_t *first_mp; 1605 ipsec_in_t *ii; 1606 ire_t *src_ire; 1607 boolean_t onlink; 1608 timestruc_t now; 1609 uint32_t ill_index; 1610 ip_stack_t *ipst; 1611 1612 ASSERT(ill != NULL); 1613 ipst = ill->ill_ipst; 1614 1615 first_mp = mp; 1616 if (mctl_present) { 1617 mp = first_mp->b_cont; 1618 ASSERT(mp != NULL); 1619 } 1620 1621 ipha = (ipha_t *)mp->b_rptr; 1622 if (ipst->ips_icmp_accept_clear_messages == 0) { 1623 first_mp = ipsec_check_global_policy(first_mp, NULL, 1624 ipha, NULL, mctl_present, ipst->ips_netstack); 1625 if (first_mp == NULL) 1626 return; 1627 } 1628 1629 /* 1630 * On a labeled system, we have to check whether the zone itself is 1631 * permitted to receive raw traffic. 1632 */ 1633 if (is_system_labeled()) { 1634 if (zoneid == ALL_ZONES) 1635 zoneid = tsol_packet_to_zoneid(mp); 1636 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1637 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1638 zoneid)); 1639 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1640 freemsg(first_mp); 1641 return; 1642 } 1643 } 1644 1645 /* 1646 * We have accepted the ICMP message. It means that we will 1647 * respond to the packet if needed. It may not be delivered 1648 * to the upper client depending on the policy constraints 1649 * and the disposition in ipsec_inbound_accept_clear. 1650 */ 1651 1652 ASSERT(ill != NULL); 1653 1654 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1655 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1656 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1657 /* Last chance to get real. */ 1658 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1659 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1660 freemsg(first_mp); 1661 return; 1662 } 1663 /* Refresh iph following the pullup. */ 1664 ipha = (ipha_t *)mp->b_rptr; 1665 } 1666 /* ICMP header checksum, including checksum field, should be zero. */ 1667 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1668 IP_CSUM(mp, iph_hdr_length, 0)) { 1669 BUMP_MIB(&ipst->ips_icmp_mib, icmpInCksumErrs); 1670 freemsg(first_mp); 1671 return; 1672 } 1673 /* The IP header will always be a multiple of four bytes */ 1674 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1675 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1676 icmph->icmph_code)); 1677 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1678 /* We will set "interested" to "true" if we want a copy */ 1679 interested = B_FALSE; 1680 switch (icmph->icmph_type) { 1681 case ICMP_ECHO_REPLY: 1682 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1683 break; 1684 case ICMP_DEST_UNREACHABLE: 1685 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1686 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1687 interested = B_TRUE; /* Pass up to transport */ 1688 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1689 break; 1690 case ICMP_SOURCE_QUENCH: 1691 interested = B_TRUE; /* Pass up to transport */ 1692 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1693 break; 1694 case ICMP_REDIRECT: 1695 if (!ipst->ips_ip_ignore_redirect) 1696 interested = B_TRUE; 1697 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1698 break; 1699 case ICMP_ECHO_REQUEST: 1700 /* 1701 * Whether to respond to echo requests that come in as IP 1702 * broadcasts or as IP multicast is subject to debate 1703 * (what isn't?). We aim to please, you pick it. 1704 * Default is do it. 1705 */ 1706 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1707 /* unicast: always respond */ 1708 interested = B_TRUE; 1709 } else if (CLASSD(ipha->ipha_dst)) { 1710 /* multicast: respond based on tunable */ 1711 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1712 } else if (broadcast) { 1713 /* broadcast: respond based on tunable */ 1714 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1715 } 1716 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1717 break; 1718 case ICMP_ROUTER_ADVERTISEMENT: 1719 case ICMP_ROUTER_SOLICITATION: 1720 break; 1721 case ICMP_TIME_EXCEEDED: 1722 interested = B_TRUE; /* Pass up to transport */ 1723 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1724 break; 1725 case ICMP_PARAM_PROBLEM: 1726 interested = B_TRUE; /* Pass up to transport */ 1727 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1728 break; 1729 case ICMP_TIME_STAMP_REQUEST: 1730 /* Response to Time Stamp Requests is local policy. */ 1731 if (ipst->ips_ip_g_resp_to_timestamp && 1732 /* So is whether to respond if it was an IP broadcast. */ 1733 (!broadcast || ipst->ips_ip_g_resp_to_timestamp_bcast)) { 1734 int tstamp_len = 3 * sizeof (uint32_t); 1735 1736 if (wptr + tstamp_len > mp->b_wptr) { 1737 if (!pullupmsg(mp, wptr + tstamp_len - 1738 mp->b_rptr)) { 1739 BUMP_MIB(ill->ill_ip_mib, 1740 ipIfStatsInDiscards); 1741 freemsg(first_mp); 1742 return; 1743 } 1744 /* Refresh ipha following the pullup. */ 1745 ipha = (ipha_t *)mp->b_rptr; 1746 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1747 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1748 } 1749 interested = B_TRUE; 1750 } 1751 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1752 break; 1753 case ICMP_TIME_STAMP_REPLY: 1754 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1755 break; 1756 case ICMP_INFO_REQUEST: 1757 /* Per RFC 1122 3.2.2.7, ignore this. */ 1758 case ICMP_INFO_REPLY: 1759 break; 1760 case ICMP_ADDRESS_MASK_REQUEST: 1761 if ((ipst->ips_ip_respond_to_address_mask_broadcast || 1762 !broadcast) && 1763 /* TODO m_pullup of complete header? */ 1764 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) { 1765 interested = B_TRUE; 1766 } 1767 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1768 break; 1769 case ICMP_ADDRESS_MASK_REPLY: 1770 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1771 break; 1772 default: 1773 interested = B_TRUE; /* Pass up to transport */ 1774 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1775 break; 1776 } 1777 /* See if there is an ICMP client. */ 1778 if (ipst->ips_ipcl_proto_fanout[IPPROTO_ICMP].connf_head != NULL) { 1779 /* If there is an ICMP client and we want one too, copy it. */ 1780 mblk_t *first_mp1; 1781 1782 if (!interested) { 1783 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1784 ip_policy, recv_ill, zoneid); 1785 return; 1786 } 1787 first_mp1 = ip_copymsg(first_mp); 1788 if (first_mp1 != NULL) { 1789 ip_fanout_proto(q, first_mp1, ill, ipha, 1790 0, mctl_present, ip_policy, recv_ill, zoneid); 1791 } 1792 } else if (!interested) { 1793 freemsg(first_mp); 1794 return; 1795 } else { 1796 /* 1797 * Initiate policy processing for this packet if ip_policy 1798 * is true. 1799 */ 1800 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 1801 ill_index = ill->ill_phyint->phyint_ifindex; 1802 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1803 if (mp == NULL) { 1804 if (mctl_present) { 1805 freeb(first_mp); 1806 } 1807 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1808 return; 1809 } 1810 } 1811 } 1812 /* We want to do something with it. */ 1813 /* Check db_ref to make sure we can modify the packet. */ 1814 if (mp->b_datap->db_ref > 1) { 1815 mblk_t *first_mp1; 1816 1817 first_mp1 = ip_copymsg(first_mp); 1818 freemsg(first_mp); 1819 if (!first_mp1) { 1820 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1821 return; 1822 } 1823 first_mp = first_mp1; 1824 if (mctl_present) { 1825 mp = first_mp->b_cont; 1826 ASSERT(mp != NULL); 1827 } else { 1828 mp = first_mp; 1829 } 1830 ipha = (ipha_t *)mp->b_rptr; 1831 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1832 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1833 } 1834 switch (icmph->icmph_type) { 1835 case ICMP_ADDRESS_MASK_REQUEST: 1836 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1837 if (ipif == NULL) { 1838 freemsg(first_mp); 1839 return; 1840 } 1841 /* 1842 * outging interface must be IPv4 1843 */ 1844 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1845 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1846 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1847 ipif_refrele(ipif); 1848 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1849 break; 1850 case ICMP_ECHO_REQUEST: 1851 icmph->icmph_type = ICMP_ECHO_REPLY; 1852 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1853 break; 1854 case ICMP_TIME_STAMP_REQUEST: { 1855 uint32_t *tsp; 1856 1857 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1858 tsp = (uint32_t *)wptr; 1859 tsp++; /* Skip past 'originate time' */ 1860 /* Compute # of milliseconds since midnight */ 1861 gethrestime(&now); 1862 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1863 now.tv_nsec / (NANOSEC / MILLISEC); 1864 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1865 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1866 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1867 break; 1868 } 1869 default: 1870 ipha = (ipha_t *)&icmph[1]; 1871 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1872 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1873 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1874 freemsg(first_mp); 1875 return; 1876 } 1877 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1878 ipha = (ipha_t *)&icmph[1]; 1879 } 1880 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1881 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1882 freemsg(first_mp); 1883 return; 1884 } 1885 hdr_length = IPH_HDR_LENGTH(ipha); 1886 if (hdr_length < sizeof (ipha_t)) { 1887 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1888 freemsg(first_mp); 1889 return; 1890 } 1891 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1892 if (!pullupmsg(mp, 1893 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1894 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1895 freemsg(first_mp); 1896 return; 1897 } 1898 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1899 ipha = (ipha_t *)&icmph[1]; 1900 } 1901 switch (icmph->icmph_type) { 1902 case ICMP_REDIRECT: 1903 /* 1904 * As there is no upper client to deliver, we don't 1905 * need the first_mp any more. 1906 */ 1907 if (mctl_present) { 1908 freeb(first_mp); 1909 } 1910 icmp_redirect(ill, mp); 1911 return; 1912 case ICMP_DEST_UNREACHABLE: 1913 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1914 if (!icmp_inbound_too_big(icmph, ipha, ill, 1915 zoneid, mp, iph_hdr_length, ipst)) { 1916 freemsg(first_mp); 1917 return; 1918 } 1919 /* 1920 * icmp_inbound_too_big() may alter mp. 1921 * Resynch ipha and icmph accordingly. 1922 */ 1923 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1924 ipha = (ipha_t *)&icmph[1]; 1925 } 1926 /* FALLTHRU */ 1927 default : 1928 /* 1929 * IPQoS notes: Since we have already done IPQoS 1930 * processing we don't want to do it again in 1931 * the fanout routines called by 1932 * icmp_inbound_error_fanout, hence the last 1933 * argument, ip_policy, is B_FALSE. 1934 */ 1935 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 1936 ipha, iph_hdr_length, hdr_length, mctl_present, 1937 B_FALSE, recv_ill, zoneid); 1938 } 1939 return; 1940 } 1941 /* Send out an ICMP packet */ 1942 icmph->icmph_checksum = 0; 1943 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 1944 if (broadcast || CLASSD(ipha->ipha_dst)) { 1945 ipif_t *ipif_chosen; 1946 /* 1947 * Make it look like it was directed to us, so we don't look 1948 * like a fool with a broadcast or multicast source address. 1949 */ 1950 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1951 /* 1952 * Make sure that we haven't grabbed an interface that's DOWN. 1953 */ 1954 if (ipif != NULL) { 1955 ipif_chosen = ipif_select_source(ipif->ipif_ill, 1956 ipha->ipha_src, zoneid); 1957 if (ipif_chosen != NULL) { 1958 ipif_refrele(ipif); 1959 ipif = ipif_chosen; 1960 } 1961 } 1962 if (ipif == NULL) { 1963 ip0dbg(("icmp_inbound: " 1964 "No source for broadcast/multicast:\n" 1965 "\tsrc 0x%x dst 0x%x ill %p " 1966 "ipif_lcl_addr 0x%x\n", 1967 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 1968 (void *)ill, 1969 ill->ill_ipif->ipif_lcl_addr)); 1970 freemsg(first_mp); 1971 return; 1972 } 1973 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1974 ipha->ipha_dst = ipif->ipif_src_addr; 1975 ipif_refrele(ipif); 1976 } 1977 /* Reset time to live. */ 1978 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 1979 { 1980 /* Swap source and destination addresses */ 1981 ipaddr_t tmp; 1982 1983 tmp = ipha->ipha_src; 1984 ipha->ipha_src = ipha->ipha_dst; 1985 ipha->ipha_dst = tmp; 1986 } 1987 ipha->ipha_ident = 0; 1988 if (!IS_SIMPLE_IPH(ipha)) 1989 icmp_options_update(ipha); 1990 1991 /* 1992 * ICMP echo replies should go out on the same interface 1993 * the request came on as probes used by in.mpathd for detecting 1994 * NIC failures are ECHO packets. We turn-off load spreading 1995 * by setting ipsec_in_attach_if to B_TRUE, which is copied 1996 * to ipsec_out_attach_if by ipsec_in_to_out called later in this 1997 * function. This is in turn handled by ip_wput and ip_newroute 1998 * to make sure that the packet goes out on the interface it came 1999 * in on. If we don't turnoff load spreading, the packets might get 2000 * dropped if there are no non-FAILED/INACTIVE interfaces for it 2001 * to go out and in.mpathd would wrongly detect a failure or 2002 * mis-detect a NIC failure for link failure. As load spreading 2003 * can happen only if ill_group is not NULL, we do only for 2004 * that case and this does not affect the normal case. 2005 * 2006 * We turn off load spreading only on echo packets that came from 2007 * on-link hosts. If the interface route has been deleted, this will 2008 * not be enforced as we can't do much. For off-link hosts, as the 2009 * default routes in IPv4 does not typically have an ire_ipif 2010 * pointer, we can't force MATCH_IRE_ILL in ip_wput/ip_newroute. 2011 * Moreover, expecting a default route through this interface may 2012 * not be correct. We use ipha_dst because of the swap above. 2013 */ 2014 onlink = B_FALSE; 2015 if (icmph->icmph_type == ICMP_ECHO_REPLY && ill->ill_group != NULL) { 2016 /* 2017 * First, we need to make sure that it is not one of our 2018 * local addresses. If we set onlink when it is one of 2019 * our local addresses, we will end up creating IRE_CACHES 2020 * for one of our local addresses. Then, we will never 2021 * accept packets for them afterwards. 2022 */ 2023 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_LOCAL, 2024 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2025 if (src_ire == NULL) { 2026 ipif = ipif_get_next_ipif(NULL, ill); 2027 if (ipif == NULL) { 2028 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2029 freemsg(mp); 2030 return; 2031 } 2032 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 2033 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 2034 NULL, MATCH_IRE_ILL | MATCH_IRE_TYPE, ipst); 2035 ipif_refrele(ipif); 2036 if (src_ire != NULL) { 2037 onlink = B_TRUE; 2038 ire_refrele(src_ire); 2039 } 2040 } else { 2041 ire_refrele(src_ire); 2042 } 2043 } 2044 if (!mctl_present) { 2045 /* 2046 * This packet should go out the same way as it 2047 * came in i.e in clear. To make sure that global 2048 * policy will not be applied to this in ip_wput_ire, 2049 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2050 */ 2051 ASSERT(first_mp == mp); 2052 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2053 if (first_mp == NULL) { 2054 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2055 freemsg(mp); 2056 return; 2057 } 2058 ii = (ipsec_in_t *)first_mp->b_rptr; 2059 2060 /* This is not a secure packet */ 2061 ii->ipsec_in_secure = B_FALSE; 2062 if (onlink) { 2063 ii->ipsec_in_attach_if = B_TRUE; 2064 ii->ipsec_in_ill_index = 2065 ill->ill_phyint->phyint_ifindex; 2066 ii->ipsec_in_rill_index = 2067 recv_ill->ill_phyint->phyint_ifindex; 2068 } 2069 first_mp->b_cont = mp; 2070 } else if (onlink) { 2071 ii = (ipsec_in_t *)first_mp->b_rptr; 2072 ii->ipsec_in_attach_if = B_TRUE; 2073 ii->ipsec_in_ill_index = ill->ill_phyint->phyint_ifindex; 2074 ii->ipsec_in_rill_index = recv_ill->ill_phyint->phyint_ifindex; 2075 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2076 } else { 2077 ii = (ipsec_in_t *)first_mp->b_rptr; 2078 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2079 } 2080 ii->ipsec_in_zoneid = zoneid; 2081 ASSERT(zoneid != ALL_ZONES); 2082 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2083 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2084 return; 2085 } 2086 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2087 put(WR(q), first_mp); 2088 } 2089 2090 static ipaddr_t 2091 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2092 { 2093 conn_t *connp; 2094 connf_t *connfp; 2095 ipaddr_t nexthop_addr = INADDR_ANY; 2096 int hdr_length = IPH_HDR_LENGTH(ipha); 2097 uint16_t *up; 2098 uint32_t ports; 2099 ip_stack_t *ipst = ill->ill_ipst; 2100 2101 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2102 switch (ipha->ipha_protocol) { 2103 case IPPROTO_TCP: 2104 { 2105 tcph_t *tcph; 2106 2107 /* do a reverse lookup */ 2108 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2109 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2110 TCPS_LISTEN, ipst); 2111 break; 2112 } 2113 case IPPROTO_UDP: 2114 { 2115 uint32_t dstport, srcport; 2116 2117 ((uint16_t *)&ports)[0] = up[1]; 2118 ((uint16_t *)&ports)[1] = up[0]; 2119 2120 /* Extract ports in net byte order */ 2121 dstport = htons(ntohl(ports) & 0xFFFF); 2122 srcport = htons(ntohl(ports) >> 16); 2123 2124 connfp = &ipst->ips_ipcl_udp_fanout[ 2125 IPCL_UDP_HASH(dstport, ipst)]; 2126 mutex_enter(&connfp->connf_lock); 2127 connp = connfp->connf_head; 2128 2129 /* do a reverse lookup */ 2130 while ((connp != NULL) && 2131 (!IPCL_UDP_MATCH(connp, dstport, 2132 ipha->ipha_src, srcport, ipha->ipha_dst) || 2133 !IPCL_ZONE_MATCH(connp, zoneid))) { 2134 connp = connp->conn_next; 2135 } 2136 if (connp != NULL) 2137 CONN_INC_REF(connp); 2138 mutex_exit(&connfp->connf_lock); 2139 break; 2140 } 2141 case IPPROTO_SCTP: 2142 { 2143 in6_addr_t map_src, map_dst; 2144 2145 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2146 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2147 ((uint16_t *)&ports)[0] = up[1]; 2148 ((uint16_t *)&ports)[1] = up[0]; 2149 2150 connp = sctp_find_conn(&map_src, &map_dst, ports, 2151 zoneid, ipst->ips_netstack->netstack_sctp); 2152 if (connp == NULL) { 2153 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2154 zoneid, ports, ipha, ipst); 2155 } else { 2156 CONN_INC_REF(connp); 2157 SCTP_REFRELE(CONN2SCTP(connp)); 2158 } 2159 break; 2160 } 2161 default: 2162 { 2163 ipha_t ripha; 2164 2165 ripha.ipha_src = ipha->ipha_dst; 2166 ripha.ipha_dst = ipha->ipha_src; 2167 ripha.ipha_protocol = ipha->ipha_protocol; 2168 2169 connfp = &ipst->ips_ipcl_proto_fanout[ 2170 ipha->ipha_protocol]; 2171 mutex_enter(&connfp->connf_lock); 2172 connp = connfp->connf_head; 2173 for (connp = connfp->connf_head; connp != NULL; 2174 connp = connp->conn_next) { 2175 if (IPCL_PROTO_MATCH(connp, 2176 ipha->ipha_protocol, &ripha, ill, 2177 0, zoneid)) { 2178 CONN_INC_REF(connp); 2179 break; 2180 } 2181 } 2182 mutex_exit(&connfp->connf_lock); 2183 } 2184 } 2185 if (connp != NULL) { 2186 if (connp->conn_nexthop_set) 2187 nexthop_addr = connp->conn_nexthop_v4; 2188 CONN_DEC_REF(connp); 2189 } 2190 return (nexthop_addr); 2191 } 2192 2193 /* Table from RFC 1191 */ 2194 static int icmp_frag_size_table[] = 2195 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2196 2197 /* 2198 * Process received ICMP Packet too big. 2199 * After updating any IRE it does the fanout to any matching transport streams. 2200 * Assumes the message has been pulled up till the IP header that caused 2201 * the error. 2202 * 2203 * Returns B_FALSE on failure and B_TRUE on success. 2204 */ 2205 static boolean_t 2206 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2207 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length, 2208 ip_stack_t *ipst) 2209 { 2210 ire_t *ire, *first_ire; 2211 int mtu; 2212 int hdr_length; 2213 ipaddr_t nexthop_addr; 2214 2215 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2216 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2217 ASSERT(ill != NULL); 2218 2219 hdr_length = IPH_HDR_LENGTH(ipha); 2220 2221 /* Drop if the original packet contained a source route */ 2222 if (ip_source_route_included(ipha)) { 2223 return (B_FALSE); 2224 } 2225 /* 2226 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport 2227 * header. 2228 */ 2229 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2230 mp->b_wptr) { 2231 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2232 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2233 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2234 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2235 return (B_FALSE); 2236 } 2237 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2238 ipha = (ipha_t *)&icmph[1]; 2239 } 2240 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2241 if (nexthop_addr != INADDR_ANY) { 2242 /* nexthop set */ 2243 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2244 nexthop_addr, 0, NULL, ALL_ZONES, MBLK_GETLABEL(mp), 2245 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, ipst); 2246 } else { 2247 /* nexthop not set */ 2248 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2249 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2250 } 2251 2252 if (!first_ire) { 2253 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2254 ntohl(ipha->ipha_dst))); 2255 return (B_FALSE); 2256 } 2257 /* Check for MTU discovery advice as described in RFC 1191 */ 2258 mtu = ntohs(icmph->icmph_du_mtu); 2259 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2260 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2261 ire = ire->ire_next) { 2262 /* 2263 * Look for the connection to which this ICMP message is 2264 * directed. If it has the IP_NEXTHOP option set, then the 2265 * search is limited to IREs with the MATCH_IRE_PRIVATE 2266 * option. Else the search is limited to regular IREs. 2267 */ 2268 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2269 (nexthop_addr != ire->ire_gateway_addr)) || 2270 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2271 (nexthop_addr != INADDR_ANY))) 2272 continue; 2273 2274 mutex_enter(&ire->ire_lock); 2275 if (icmph->icmph_du_zero == 0 && mtu > 68) { 2276 /* Reduce the IRE max frag value as advised. */ 2277 ip1dbg(("Received mtu from router: %d (was %d)\n", 2278 mtu, ire->ire_max_frag)); 2279 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2280 } else { 2281 uint32_t length; 2282 int i; 2283 2284 /* 2285 * Use the table from RFC 1191 to figure out 2286 * the next "plateau" based on the length in 2287 * the original IP packet. 2288 */ 2289 length = ntohs(ipha->ipha_length); 2290 if (ire->ire_max_frag <= length && 2291 ire->ire_max_frag >= length - hdr_length) { 2292 /* 2293 * Handle broken BSD 4.2 systems that 2294 * return the wrong iph_length in ICMP 2295 * errors. 2296 */ 2297 ip1dbg(("Wrong mtu: sent %d, ire %d\n", 2298 length, ire->ire_max_frag)); 2299 length -= hdr_length; 2300 } 2301 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2302 if (length > icmp_frag_size_table[i]) 2303 break; 2304 } 2305 if (i == A_CNT(icmp_frag_size_table)) { 2306 /* Smaller than 68! */ 2307 ip1dbg(("Too big for packet size %d\n", 2308 length)); 2309 ire->ire_max_frag = MIN(ire->ire_max_frag, 576); 2310 ire->ire_frag_flag = 0; 2311 } else { 2312 mtu = icmp_frag_size_table[i]; 2313 ip1dbg(("Calculated mtu %d, packet size %d, " 2314 "before %d", mtu, length, 2315 ire->ire_max_frag)); 2316 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2317 ip1dbg((", after %d\n", ire->ire_max_frag)); 2318 } 2319 /* Record the new max frag size for the ULP. */ 2320 icmph->icmph_du_zero = 0; 2321 icmph->icmph_du_mtu = 2322 htons((uint16_t)ire->ire_max_frag); 2323 } 2324 mutex_exit(&ire->ire_lock); 2325 } 2326 rw_exit(&first_ire->ire_bucket->irb_lock); 2327 ire_refrele(first_ire); 2328 return (B_TRUE); 2329 } 2330 2331 /* 2332 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2333 * calls this function. 2334 */ 2335 static mblk_t * 2336 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2337 { 2338 ipha_t *ipha; 2339 icmph_t *icmph; 2340 ipha_t *in_ipha; 2341 int length; 2342 2343 ASSERT(mp->b_datap->db_type == M_DATA); 2344 2345 /* 2346 * For Self-encapsulated packets, we added an extra IP header 2347 * without the options. Inner IP header is the one from which 2348 * the outer IP header was formed. Thus, we need to remove the 2349 * outer IP header. To do this, we pullup the whole message 2350 * and overlay whatever follows the outer IP header over the 2351 * outer IP header. 2352 */ 2353 2354 if (!pullupmsg(mp, -1)) 2355 return (NULL); 2356 2357 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2358 ipha = (ipha_t *)&icmph[1]; 2359 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2360 2361 /* 2362 * The length that we want to overlay is following the inner 2363 * IP header. Subtracting the IP header + icmp header + outer 2364 * IP header's length should give us the length that we want to 2365 * overlay. 2366 */ 2367 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2368 hdr_length; 2369 /* 2370 * Overlay whatever follows the inner header over the 2371 * outer header. 2372 */ 2373 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2374 2375 /* Set the wptr to account for the outer header */ 2376 mp->b_wptr -= hdr_length; 2377 return (mp); 2378 } 2379 2380 /* 2381 * Try to pass the ICMP message upstream in case the ULP cares. 2382 * 2383 * If the packet that caused the ICMP error is secure, we send 2384 * it to AH/ESP to make sure that the attached packet has a 2385 * valid association. ipha in the code below points to the 2386 * IP header of the packet that caused the error. 2387 * 2388 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2389 * in the context of IPsec. Normally we tell the upper layer 2390 * whenever we send the ire (including ip_bind), the IPsec header 2391 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2392 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2393 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2394 * same thing. As TCP has the IPsec options size that needs to be 2395 * adjusted, we just pass the MTU unchanged. 2396 * 2397 * IFN could have been generated locally or by some router. 2398 * 2399 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2400 * This happens because IP adjusted its value of MTU on an 2401 * earlier IFN message and could not tell the upper layer, 2402 * the new adjusted value of MTU e.g. Packet was encrypted 2403 * or there was not enough information to fanout to upper 2404 * layers. Thus on the next outbound datagram, ip_wput_ire 2405 * generates the IFN, where IPsec processing has *not* been 2406 * done. 2407 * 2408 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2409 * could have generated this. This happens because ire_max_frag 2410 * value in IP was set to a new value, while the IPsec processing 2411 * was being done and after we made the fragmentation check in 2412 * ip_wput_ire. Thus on return from IPsec processing, 2413 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2414 * and generates the IFN. As IPsec processing is over, we fanout 2415 * to AH/ESP to remove the header. 2416 * 2417 * In both these cases, ipsec_in_loopback will be set indicating 2418 * that IFN was generated locally. 2419 * 2420 * ROUTER : IFN could be secure or non-secure. 2421 * 2422 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2423 * packet in error has AH/ESP headers to validate the AH/ESP 2424 * headers. AH/ESP will verify whether there is a valid SA or 2425 * not and send it back. We will fanout again if we have more 2426 * data in the packet. 2427 * 2428 * If the packet in error does not have AH/ESP, we handle it 2429 * like any other case. 2430 * 2431 * * NON_SECURE : If the packet in error has AH/ESP headers, 2432 * we attach a dummy ipsec_in and send it up to AH/ESP 2433 * for validation. AH/ESP will verify whether there is a 2434 * valid SA or not and send it back. We will fanout again if 2435 * we have more data in the packet. 2436 * 2437 * If the packet in error does not have AH/ESP, we handle it 2438 * like any other case. 2439 */ 2440 static void 2441 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2442 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2443 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2444 zoneid_t zoneid) 2445 { 2446 uint16_t *up; /* Pointer to ports in ULP header */ 2447 uint32_t ports; /* reversed ports for fanout */ 2448 ipha_t ripha; /* With reversed addresses */ 2449 mblk_t *first_mp; 2450 ipsec_in_t *ii; 2451 tcph_t *tcph; 2452 conn_t *connp; 2453 ip_stack_t *ipst; 2454 2455 ASSERT(ill != NULL); 2456 2457 ASSERT(recv_ill != NULL); 2458 ipst = recv_ill->ill_ipst; 2459 2460 first_mp = mp; 2461 if (mctl_present) { 2462 mp = first_mp->b_cont; 2463 ASSERT(mp != NULL); 2464 2465 ii = (ipsec_in_t *)first_mp->b_rptr; 2466 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2467 } else { 2468 ii = NULL; 2469 } 2470 2471 switch (ipha->ipha_protocol) { 2472 case IPPROTO_UDP: 2473 /* 2474 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2475 * transport header. 2476 */ 2477 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2478 mp->b_wptr) { 2479 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2480 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2481 goto discard_pkt; 2482 } 2483 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2484 ipha = (ipha_t *)&icmph[1]; 2485 } 2486 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2487 2488 /* 2489 * Attempt to find a client stream based on port. 2490 * Note that we do a reverse lookup since the header is 2491 * in the form we sent it out. 2492 * The ripha header is only used for the IP_UDP_MATCH and we 2493 * only set the src and dst addresses and protocol. 2494 */ 2495 ripha.ipha_src = ipha->ipha_dst; 2496 ripha.ipha_dst = ipha->ipha_src; 2497 ripha.ipha_protocol = ipha->ipha_protocol; 2498 ((uint16_t *)&ports)[0] = up[1]; 2499 ((uint16_t *)&ports)[1] = up[0]; 2500 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2501 ntohl(ipha->ipha_src), ntohs(up[0]), 2502 ntohl(ipha->ipha_dst), ntohs(up[1]), 2503 icmph->icmph_type, icmph->icmph_code)); 2504 2505 /* Have to change db_type after any pullupmsg */ 2506 DB_TYPE(mp) = M_CTL; 2507 2508 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2509 mctl_present, ip_policy, recv_ill, zoneid); 2510 return; 2511 2512 case IPPROTO_TCP: 2513 /* 2514 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2515 * transport header. 2516 */ 2517 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2518 mp->b_wptr) { 2519 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2520 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2521 goto discard_pkt; 2522 } 2523 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2524 ipha = (ipha_t *)&icmph[1]; 2525 } 2526 /* 2527 * Find a TCP client stream for this packet. 2528 * Note that we do a reverse lookup since the header is 2529 * in the form we sent it out. 2530 */ 2531 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2532 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN, 2533 ipst); 2534 if (connp == NULL) 2535 goto discard_pkt; 2536 2537 /* Have to change db_type after any pullupmsg */ 2538 DB_TYPE(mp) = M_CTL; 2539 squeue_fill(connp->conn_sqp, first_mp, tcp_input, 2540 connp, SQTAG_TCP_INPUT_ICMP_ERR); 2541 return; 2542 2543 case IPPROTO_SCTP: 2544 /* 2545 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2546 * transport header. 2547 */ 2548 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2549 mp->b_wptr) { 2550 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2551 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2552 goto discard_pkt; 2553 } 2554 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2555 ipha = (ipha_t *)&icmph[1]; 2556 } 2557 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2558 /* 2559 * Find a SCTP client stream for this packet. 2560 * Note that we do a reverse lookup since the header is 2561 * in the form we sent it out. 2562 * The ripha header is only used for the matching and we 2563 * only set the src and dst addresses, protocol, and version. 2564 */ 2565 ripha.ipha_src = ipha->ipha_dst; 2566 ripha.ipha_dst = ipha->ipha_src; 2567 ripha.ipha_protocol = ipha->ipha_protocol; 2568 ripha.ipha_version_and_hdr_length = 2569 ipha->ipha_version_and_hdr_length; 2570 ((uint16_t *)&ports)[0] = up[1]; 2571 ((uint16_t *)&ports)[1] = up[0]; 2572 2573 /* Have to change db_type after any pullupmsg */ 2574 DB_TYPE(mp) = M_CTL; 2575 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2576 mctl_present, ip_policy, zoneid); 2577 return; 2578 2579 case IPPROTO_ESP: 2580 case IPPROTO_AH: { 2581 int ipsec_rc; 2582 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2583 2584 /* 2585 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2586 * We will re-use the IPSEC_IN if it is already present as 2587 * AH/ESP will not affect any fields in the IPSEC_IN for 2588 * ICMP errors. If there is no IPSEC_IN, allocate a new 2589 * one and attach it in the front. 2590 */ 2591 if (ii != NULL) { 2592 /* 2593 * ip_fanout_proto_again converts the ICMP errors 2594 * that come back from AH/ESP to M_DATA so that 2595 * if it is non-AH/ESP and we do a pullupmsg in 2596 * this function, it would work. Convert it back 2597 * to M_CTL before we send up as this is a ICMP 2598 * error. This could have been generated locally or 2599 * by some router. Validate the inner IPsec 2600 * headers. 2601 * 2602 * NOTE : ill_index is used by ip_fanout_proto_again 2603 * to locate the ill. 2604 */ 2605 ASSERT(ill != NULL); 2606 ii->ipsec_in_ill_index = 2607 ill->ill_phyint->phyint_ifindex; 2608 ii->ipsec_in_rill_index = 2609 recv_ill->ill_phyint->phyint_ifindex; 2610 DB_TYPE(first_mp->b_cont) = M_CTL; 2611 } else { 2612 /* 2613 * IPSEC_IN is not present. We attach a ipsec_in 2614 * message and send up to IPsec for validating 2615 * and removing the IPsec headers. Clear 2616 * ipsec_in_secure so that when we return 2617 * from IPsec, we don't mistakenly think that this 2618 * is a secure packet came from the network. 2619 * 2620 * NOTE : ill_index is used by ip_fanout_proto_again 2621 * to locate the ill. 2622 */ 2623 ASSERT(first_mp == mp); 2624 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2625 if (first_mp == NULL) { 2626 freemsg(mp); 2627 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2628 return; 2629 } 2630 ii = (ipsec_in_t *)first_mp->b_rptr; 2631 2632 /* This is not a secure packet */ 2633 ii->ipsec_in_secure = B_FALSE; 2634 first_mp->b_cont = mp; 2635 DB_TYPE(mp) = M_CTL; 2636 ASSERT(ill != NULL); 2637 ii->ipsec_in_ill_index = 2638 ill->ill_phyint->phyint_ifindex; 2639 ii->ipsec_in_rill_index = 2640 recv_ill->ill_phyint->phyint_ifindex; 2641 } 2642 ip2dbg(("icmp_inbound_error: ipsec\n")); 2643 2644 if (!ipsec_loaded(ipss)) { 2645 ip_proto_not_sup(q, first_mp, 0, zoneid, ipst); 2646 return; 2647 } 2648 2649 if (ipha->ipha_protocol == IPPROTO_ESP) 2650 ipsec_rc = ipsecesp_icmp_error(first_mp); 2651 else 2652 ipsec_rc = ipsecah_icmp_error(first_mp); 2653 if (ipsec_rc == IPSEC_STATUS_FAILED) 2654 return; 2655 2656 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2657 return; 2658 } 2659 default: 2660 /* 2661 * The ripha header is only used for the lookup and we 2662 * only set the src and dst addresses and protocol. 2663 */ 2664 ripha.ipha_src = ipha->ipha_dst; 2665 ripha.ipha_dst = ipha->ipha_src; 2666 ripha.ipha_protocol = ipha->ipha_protocol; 2667 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2668 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2669 ntohl(ipha->ipha_dst), 2670 icmph->icmph_type, icmph->icmph_code)); 2671 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2672 ipha_t *in_ipha; 2673 2674 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2675 mp->b_wptr) { 2676 if (!pullupmsg(mp, (uchar_t *)ipha + 2677 hdr_length + sizeof (ipha_t) - 2678 mp->b_rptr)) { 2679 goto discard_pkt; 2680 } 2681 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2682 ipha = (ipha_t *)&icmph[1]; 2683 } 2684 /* 2685 * Caller has verified that length has to be 2686 * at least the size of IP header. 2687 */ 2688 ASSERT(hdr_length >= sizeof (ipha_t)); 2689 /* 2690 * Check the sanity of the inner IP header like 2691 * we did for the outer header. 2692 */ 2693 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2694 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2695 goto discard_pkt; 2696 } 2697 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2698 goto discard_pkt; 2699 } 2700 /* Check for Self-encapsulated tunnels */ 2701 if (in_ipha->ipha_src == ipha->ipha_src && 2702 in_ipha->ipha_dst == ipha->ipha_dst) { 2703 2704 mp = icmp_inbound_self_encap_error(mp, 2705 iph_hdr_length, hdr_length); 2706 if (mp == NULL) 2707 goto discard_pkt; 2708 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2709 ipha = (ipha_t *)&icmph[1]; 2710 hdr_length = IPH_HDR_LENGTH(ipha); 2711 /* 2712 * The packet in error is self-encapsualted. 2713 * And we are finding it further encapsulated 2714 * which we could not have possibly generated. 2715 */ 2716 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2717 goto discard_pkt; 2718 } 2719 icmp_inbound_error_fanout(q, ill, first_mp, 2720 icmph, ipha, iph_hdr_length, hdr_length, 2721 mctl_present, ip_policy, recv_ill, zoneid); 2722 return; 2723 } 2724 } 2725 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2726 ipha->ipha_protocol == IPPROTO_IPV6) && 2727 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2728 ii != NULL && 2729 ii->ipsec_in_loopback && 2730 ii->ipsec_in_secure) { 2731 /* 2732 * For IP tunnels that get a looped-back 2733 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2734 * reported new MTU to take into account the IPsec 2735 * headers protecting this configured tunnel. 2736 * 2737 * This allows the tunnel module (tun.c) to blindly 2738 * accept the MTU reported in an ICMP "too big" 2739 * message. 2740 * 2741 * Non-looped back ICMP messages will just be 2742 * handled by the security protocols (if needed), 2743 * and the first subsequent packet will hit this 2744 * path. 2745 */ 2746 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2747 ipsec_in_extra_length(first_mp)); 2748 } 2749 /* Have to change db_type after any pullupmsg */ 2750 DB_TYPE(mp) = M_CTL; 2751 2752 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2753 ip_policy, recv_ill, zoneid); 2754 return; 2755 } 2756 /* NOTREACHED */ 2757 discard_pkt: 2758 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2759 drop_pkt:; 2760 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2761 freemsg(first_mp); 2762 } 2763 2764 /* 2765 * Common IP options parser. 2766 * 2767 * Setup routine: fill in *optp with options-parsing state, then 2768 * tail-call ipoptp_next to return the first option. 2769 */ 2770 uint8_t 2771 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2772 { 2773 uint32_t totallen; /* total length of all options */ 2774 2775 totallen = ipha->ipha_version_and_hdr_length - 2776 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2777 totallen <<= 2; 2778 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2779 optp->ipoptp_end = optp->ipoptp_next + totallen; 2780 optp->ipoptp_flags = 0; 2781 return (ipoptp_next(optp)); 2782 } 2783 2784 /* 2785 * Common IP options parser: extract next option. 2786 */ 2787 uint8_t 2788 ipoptp_next(ipoptp_t *optp) 2789 { 2790 uint8_t *end = optp->ipoptp_end; 2791 uint8_t *cur = optp->ipoptp_next; 2792 uint8_t opt, len, pointer; 2793 2794 /* 2795 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2796 * has been corrupted. 2797 */ 2798 ASSERT(cur <= end); 2799 2800 if (cur == end) 2801 return (IPOPT_EOL); 2802 2803 opt = cur[IPOPT_OPTVAL]; 2804 2805 /* 2806 * Skip any NOP options. 2807 */ 2808 while (opt == IPOPT_NOP) { 2809 cur++; 2810 if (cur == end) 2811 return (IPOPT_EOL); 2812 opt = cur[IPOPT_OPTVAL]; 2813 } 2814 2815 if (opt == IPOPT_EOL) 2816 return (IPOPT_EOL); 2817 2818 /* 2819 * Option requiring a length. 2820 */ 2821 if ((cur + 1) >= end) { 2822 optp->ipoptp_flags |= IPOPTP_ERROR; 2823 return (IPOPT_EOL); 2824 } 2825 len = cur[IPOPT_OLEN]; 2826 if (len < 2) { 2827 optp->ipoptp_flags |= IPOPTP_ERROR; 2828 return (IPOPT_EOL); 2829 } 2830 optp->ipoptp_cur = cur; 2831 optp->ipoptp_len = len; 2832 optp->ipoptp_next = cur + len; 2833 if (cur + len > end) { 2834 optp->ipoptp_flags |= IPOPTP_ERROR; 2835 return (IPOPT_EOL); 2836 } 2837 2838 /* 2839 * For the options which require a pointer field, make sure 2840 * its there, and make sure it points to either something 2841 * inside this option, or the end of the option. 2842 */ 2843 switch (opt) { 2844 case IPOPT_RR: 2845 case IPOPT_TS: 2846 case IPOPT_LSRR: 2847 case IPOPT_SSRR: 2848 if (len <= IPOPT_OFFSET) { 2849 optp->ipoptp_flags |= IPOPTP_ERROR; 2850 return (opt); 2851 } 2852 pointer = cur[IPOPT_OFFSET]; 2853 if (pointer - 1 > len) { 2854 optp->ipoptp_flags |= IPOPTP_ERROR; 2855 return (opt); 2856 } 2857 break; 2858 } 2859 2860 /* 2861 * Sanity check the pointer field based on the type of the 2862 * option. 2863 */ 2864 switch (opt) { 2865 case IPOPT_RR: 2866 case IPOPT_SSRR: 2867 case IPOPT_LSRR: 2868 if (pointer < IPOPT_MINOFF_SR) 2869 optp->ipoptp_flags |= IPOPTP_ERROR; 2870 break; 2871 case IPOPT_TS: 2872 if (pointer < IPOPT_MINOFF_IT) 2873 optp->ipoptp_flags |= IPOPTP_ERROR; 2874 /* 2875 * Note that the Internet Timestamp option also 2876 * contains two four bit fields (the Overflow field, 2877 * and the Flag field), which follow the pointer 2878 * field. We don't need to check that these fields 2879 * fall within the length of the option because this 2880 * was implicitely done above. We've checked that the 2881 * pointer value is at least IPOPT_MINOFF_IT, and that 2882 * it falls within the option. Since IPOPT_MINOFF_IT > 2883 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2884 */ 2885 ASSERT(len > IPOPT_POS_OV_FLG); 2886 break; 2887 } 2888 2889 return (opt); 2890 } 2891 2892 /* 2893 * Use the outgoing IP header to create an IP_OPTIONS option the way 2894 * it was passed down from the application. 2895 */ 2896 int 2897 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2898 { 2899 ipoptp_t opts; 2900 const uchar_t *opt; 2901 uint8_t optval; 2902 uint8_t optlen; 2903 uint32_t len = 0; 2904 uchar_t *buf1 = buf; 2905 2906 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2907 len += IP_ADDR_LEN; 2908 bzero(buf1, IP_ADDR_LEN); 2909 2910 /* 2911 * OK to cast away const here, as we don't store through the returned 2912 * opts.ipoptp_cur pointer. 2913 */ 2914 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 2915 optval != IPOPT_EOL; 2916 optval = ipoptp_next(&opts)) { 2917 int off; 2918 2919 opt = opts.ipoptp_cur; 2920 optlen = opts.ipoptp_len; 2921 switch (optval) { 2922 case IPOPT_SSRR: 2923 case IPOPT_LSRR: 2924 2925 /* 2926 * Insert ipha_dst as the first entry in the source 2927 * route and move down the entries on step. 2928 * The last entry gets placed at buf1. 2929 */ 2930 buf[IPOPT_OPTVAL] = optval; 2931 buf[IPOPT_OLEN] = optlen; 2932 buf[IPOPT_OFFSET] = optlen; 2933 2934 off = optlen - IP_ADDR_LEN; 2935 if (off < 0) { 2936 /* No entries in source route */ 2937 break; 2938 } 2939 /* Last entry in source route */ 2940 bcopy(opt + off, buf1, IP_ADDR_LEN); 2941 off -= IP_ADDR_LEN; 2942 2943 while (off > 0) { 2944 bcopy(opt + off, 2945 buf + off + IP_ADDR_LEN, 2946 IP_ADDR_LEN); 2947 off -= IP_ADDR_LEN; 2948 } 2949 /* ipha_dst into first slot */ 2950 bcopy(&ipha->ipha_dst, 2951 buf + off + IP_ADDR_LEN, 2952 IP_ADDR_LEN); 2953 buf += optlen; 2954 len += optlen; 2955 break; 2956 2957 case IPOPT_COMSEC: 2958 case IPOPT_SECURITY: 2959 /* if passing up a label is not ok, then remove */ 2960 if (is_system_labeled()) 2961 break; 2962 /* FALLTHROUGH */ 2963 default: 2964 bcopy(opt, buf, optlen); 2965 buf += optlen; 2966 len += optlen; 2967 break; 2968 } 2969 } 2970 done: 2971 /* Pad the resulting options */ 2972 while (len & 0x3) { 2973 *buf++ = IPOPT_EOL; 2974 len++; 2975 } 2976 return (len); 2977 } 2978 2979 /* 2980 * Update any record route or timestamp options to include this host. 2981 * Reverse any source route option. 2982 * This routine assumes that the options are well formed i.e. that they 2983 * have already been checked. 2984 */ 2985 static void 2986 icmp_options_update(ipha_t *ipha) 2987 { 2988 ipoptp_t opts; 2989 uchar_t *opt; 2990 uint8_t optval; 2991 ipaddr_t src; /* Our local address */ 2992 ipaddr_t dst; 2993 2994 ip2dbg(("icmp_options_update\n")); 2995 src = ipha->ipha_src; 2996 dst = ipha->ipha_dst; 2997 2998 for (optval = ipoptp_first(&opts, ipha); 2999 optval != IPOPT_EOL; 3000 optval = ipoptp_next(&opts)) { 3001 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 3002 opt = opts.ipoptp_cur; 3003 ip2dbg(("icmp_options_update: opt %d, len %d\n", 3004 optval, opts.ipoptp_len)); 3005 switch (optval) { 3006 int off1, off2; 3007 case IPOPT_SSRR: 3008 case IPOPT_LSRR: 3009 /* 3010 * Reverse the source route. The first entry 3011 * should be the next to last one in the current 3012 * source route (the last entry is our address). 3013 * The last entry should be the final destination. 3014 */ 3015 off1 = IPOPT_MINOFF_SR - 1; 3016 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 3017 if (off2 < 0) { 3018 /* No entries in source route */ 3019 ip1dbg(( 3020 "icmp_options_update: bad src route\n")); 3021 break; 3022 } 3023 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 3024 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 3025 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 3026 off2 -= IP_ADDR_LEN; 3027 3028 while (off1 < off2) { 3029 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 3030 bcopy((char *)opt + off2, (char *)opt + off1, 3031 IP_ADDR_LEN); 3032 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 3033 off1 += IP_ADDR_LEN; 3034 off2 -= IP_ADDR_LEN; 3035 } 3036 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 3037 break; 3038 } 3039 } 3040 } 3041 3042 /* 3043 * Process received ICMP Redirect messages. 3044 */ 3045 static void 3046 icmp_redirect(ill_t *ill, mblk_t *mp) 3047 { 3048 ipha_t *ipha; 3049 int iph_hdr_length; 3050 icmph_t *icmph; 3051 ipha_t *ipha_err; 3052 ire_t *ire; 3053 ire_t *prev_ire; 3054 ire_t *save_ire; 3055 ipaddr_t src, dst, gateway; 3056 iulp_t ulp_info = { 0 }; 3057 int error; 3058 ip_stack_t *ipst; 3059 3060 ASSERT(ill != NULL); 3061 ipst = ill->ill_ipst; 3062 3063 ipha = (ipha_t *)mp->b_rptr; 3064 iph_hdr_length = IPH_HDR_LENGTH(ipha); 3065 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 3066 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 3067 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3068 freemsg(mp); 3069 return; 3070 } 3071 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 3072 ipha_err = (ipha_t *)&icmph[1]; 3073 src = ipha->ipha_src; 3074 dst = ipha_err->ipha_dst; 3075 gateway = icmph->icmph_rd_gateway; 3076 /* Make sure the new gateway is reachable somehow. */ 3077 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 3078 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3079 /* 3080 * Make sure we had a route for the dest in question and that 3081 * that route was pointing to the old gateway (the source of the 3082 * redirect packet.) 3083 */ 3084 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 3085 NULL, MATCH_IRE_GW, ipst); 3086 /* 3087 * Check that 3088 * the redirect was not from ourselves 3089 * the new gateway and the old gateway are directly reachable 3090 */ 3091 if (!prev_ire || 3092 !ire || 3093 ire->ire_type == IRE_LOCAL) { 3094 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3095 freemsg(mp); 3096 if (ire != NULL) 3097 ire_refrele(ire); 3098 if (prev_ire != NULL) 3099 ire_refrele(prev_ire); 3100 return; 3101 } 3102 3103 /* 3104 * Should we use the old ULP info to create the new gateway? From 3105 * a user's perspective, we should inherit the info so that it 3106 * is a "smooth" transition. If we do not do that, then new 3107 * connections going thru the new gateway will have no route metrics, 3108 * which is counter-intuitive to user. From a network point of 3109 * view, this may or may not make sense even though the new gateway 3110 * is still directly connected to us so the route metrics should not 3111 * change much. 3112 * 3113 * But if the old ire_uinfo is not initialized, we do another 3114 * recursive lookup on the dest using the new gateway. There may 3115 * be a route to that. If so, use it to initialize the redirect 3116 * route. 3117 */ 3118 if (prev_ire->ire_uinfo.iulp_set) { 3119 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3120 } else { 3121 ire_t *tmp_ire; 3122 ire_t *sire; 3123 3124 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3125 ALL_ZONES, 0, NULL, 3126 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT), 3127 ipst); 3128 if (sire != NULL) { 3129 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3130 /* 3131 * If sire != NULL, ire_ftable_lookup() should not 3132 * return a NULL value. 3133 */ 3134 ASSERT(tmp_ire != NULL); 3135 ire_refrele(tmp_ire); 3136 ire_refrele(sire); 3137 } else if (tmp_ire != NULL) { 3138 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3139 sizeof (iulp_t)); 3140 ire_refrele(tmp_ire); 3141 } 3142 } 3143 if (prev_ire->ire_type == IRE_CACHE) 3144 ire_delete(prev_ire); 3145 ire_refrele(prev_ire); 3146 /* 3147 * TODO: more precise handling for cases 0, 2, 3, the latter two 3148 * require TOS routing 3149 */ 3150 switch (icmph->icmph_code) { 3151 case 0: 3152 case 1: 3153 /* TODO: TOS specificity for cases 2 and 3 */ 3154 case 2: 3155 case 3: 3156 break; 3157 default: 3158 freemsg(mp); 3159 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3160 ire_refrele(ire); 3161 return; 3162 } 3163 /* 3164 * Create a Route Association. This will allow us to remember that 3165 * someone we believe told us to use the particular gateway. 3166 */ 3167 save_ire = ire; 3168 ire = ire_create( 3169 (uchar_t *)&dst, /* dest addr */ 3170 (uchar_t *)&ip_g_all_ones, /* mask */ 3171 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3172 (uchar_t *)&gateway, /* gateway addr */ 3173 &save_ire->ire_max_frag, /* max frag */ 3174 NULL, /* no src nce */ 3175 NULL, /* no rfq */ 3176 NULL, /* no stq */ 3177 IRE_HOST, 3178 NULL, /* ipif */ 3179 0, /* cmask */ 3180 0, /* phandle */ 3181 0, /* ihandle */ 3182 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3183 &ulp_info, 3184 NULL, /* tsol_gc_t */ 3185 NULL, /* gcgrp */ 3186 ipst); 3187 3188 if (ire == NULL) { 3189 freemsg(mp); 3190 ire_refrele(save_ire); 3191 return; 3192 } 3193 error = ire_add(&ire, NULL, NULL, NULL, B_FALSE); 3194 ire_refrele(save_ire); 3195 atomic_inc_32(&ipst->ips_ip_redirect_cnt); 3196 3197 if (error == 0) { 3198 ire_refrele(ire); /* Held in ire_add_v4 */ 3199 /* tell routing sockets that we received a redirect */ 3200 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3201 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3202 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 3203 } 3204 3205 /* 3206 * Delete any existing IRE_HOST type redirect ires for this destination. 3207 * This together with the added IRE has the effect of 3208 * modifying an existing redirect. 3209 */ 3210 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST, NULL, NULL, 3211 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), ipst); 3212 if (prev_ire != NULL) { 3213 if (prev_ire ->ire_flags & RTF_DYNAMIC) 3214 ire_delete(prev_ire); 3215 ire_refrele(prev_ire); 3216 } 3217 3218 freemsg(mp); 3219 } 3220 3221 /* 3222 * Generate an ICMP parameter problem message. 3223 */ 3224 static void 3225 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr, zoneid_t zoneid, 3226 ip_stack_t *ipst) 3227 { 3228 icmph_t icmph; 3229 boolean_t mctl_present; 3230 mblk_t *first_mp; 3231 3232 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3233 3234 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3235 if (mctl_present) 3236 freeb(first_mp); 3237 return; 3238 } 3239 3240 bzero(&icmph, sizeof (icmph_t)); 3241 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3242 icmph.icmph_pp_ptr = ptr; 3243 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 3244 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3245 ipst); 3246 } 3247 3248 /* 3249 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3250 * the ICMP header pointed to by "stuff". (May be called as writer.) 3251 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3252 * an icmp error packet can be sent. 3253 * Assigns an appropriate source address to the packet. If ipha_dst is 3254 * one of our addresses use it for source. Otherwise pick a source based 3255 * on a route lookup back to ipha_src. 3256 * Note that ipha_src must be set here since the 3257 * packet is likely to arrive on an ill queue in ip_wput() which will 3258 * not set a source address. 3259 */ 3260 static void 3261 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3262 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 3263 { 3264 ipaddr_t dst; 3265 icmph_t *icmph; 3266 ipha_t *ipha; 3267 uint_t len_needed; 3268 size_t msg_len; 3269 mblk_t *mp1; 3270 ipaddr_t src; 3271 ire_t *ire; 3272 mblk_t *ipsec_mp; 3273 ipsec_out_t *io = NULL; 3274 3275 if (mctl_present) { 3276 /* 3277 * If it is : 3278 * 3279 * 1) a IPSEC_OUT, then this is caused by outbound 3280 * datagram originating on this host. IPsec processing 3281 * may or may not have been done. Refer to comments above 3282 * icmp_inbound_error_fanout for details. 3283 * 3284 * 2) a IPSEC_IN if we are generating a icmp_message 3285 * for an incoming datagram destined for us i.e called 3286 * from ip_fanout_send_icmp. 3287 */ 3288 ipsec_info_t *in; 3289 ipsec_mp = mp; 3290 mp = ipsec_mp->b_cont; 3291 3292 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3293 ipha = (ipha_t *)mp->b_rptr; 3294 3295 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3296 in->ipsec_info_type == IPSEC_IN); 3297 3298 if (in->ipsec_info_type == IPSEC_IN) { 3299 /* 3300 * Convert the IPSEC_IN to IPSEC_OUT. 3301 */ 3302 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3303 BUMP_MIB(&ipst->ips_ip_mib, 3304 ipIfStatsOutDiscards); 3305 return; 3306 } 3307 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3308 } else { 3309 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3310 io = (ipsec_out_t *)in; 3311 /* 3312 * Clear out ipsec_out_proc_begin, so we do a fresh 3313 * ire lookup. 3314 */ 3315 io->ipsec_out_proc_begin = B_FALSE; 3316 } 3317 ASSERT(zoneid == io->ipsec_out_zoneid); 3318 ASSERT(zoneid != ALL_ZONES); 3319 } else { 3320 /* 3321 * This is in clear. The icmp message we are building 3322 * here should go out in clear. 3323 * 3324 * Pardon the convolution of it all, but it's easier to 3325 * allocate a "use cleartext" IPSEC_IN message and convert 3326 * it than it is to allocate a new one. 3327 */ 3328 ipsec_in_t *ii; 3329 ASSERT(DB_TYPE(mp) == M_DATA); 3330 ipsec_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 3331 if (ipsec_mp == NULL) { 3332 freemsg(mp); 3333 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3334 return; 3335 } 3336 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3337 3338 /* This is not a secure packet */ 3339 ii->ipsec_in_secure = B_FALSE; 3340 /* 3341 * For trusted extensions using a shared IP address we can 3342 * send using any zoneid. 3343 */ 3344 if (zoneid == ALL_ZONES) 3345 ii->ipsec_in_zoneid = GLOBAL_ZONEID; 3346 else 3347 ii->ipsec_in_zoneid = zoneid; 3348 ipsec_mp->b_cont = mp; 3349 ipha = (ipha_t *)mp->b_rptr; 3350 /* 3351 * Convert the IPSEC_IN to IPSEC_OUT. 3352 */ 3353 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3354 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3355 return; 3356 } 3357 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3358 } 3359 3360 /* Remember our eventual destination */ 3361 dst = ipha->ipha_src; 3362 3363 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3364 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE, ipst); 3365 if (ire != NULL && 3366 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3367 src = ipha->ipha_dst; 3368 } else { 3369 if (ire != NULL) 3370 ire_refrele(ire); 3371 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3372 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY), 3373 ipst); 3374 if (ire == NULL) { 3375 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3376 freemsg(ipsec_mp); 3377 return; 3378 } 3379 src = ire->ire_src_addr; 3380 } 3381 3382 if (ire != NULL) 3383 ire_refrele(ire); 3384 3385 /* 3386 * Check if we can send back more then 8 bytes in addition to 3387 * the IP header. We try to send 64 bytes of data and the internal 3388 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 3389 */ 3390 len_needed = IPH_HDR_LENGTH(ipha); 3391 if (ipha->ipha_protocol == IPPROTO_ENCAP || 3392 ipha->ipha_protocol == IPPROTO_IPV6) { 3393 3394 if (!pullupmsg(mp, -1)) { 3395 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3396 freemsg(ipsec_mp); 3397 return; 3398 } 3399 ipha = (ipha_t *)mp->b_rptr; 3400 3401 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 3402 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 3403 len_needed)); 3404 } else { 3405 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 3406 3407 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 3408 len_needed += ip_hdr_length_v6(mp, ip6h); 3409 } 3410 } 3411 len_needed += ipst->ips_ip_icmp_return; 3412 msg_len = msgdsize(mp); 3413 if (msg_len > len_needed) { 3414 (void) adjmsg(mp, len_needed - msg_len); 3415 msg_len = len_needed; 3416 } 3417 mp1 = allocb_tmpl(sizeof (icmp_ipha) + len, mp); 3418 if (mp1 == NULL) { 3419 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 3420 freemsg(ipsec_mp); 3421 return; 3422 } 3423 mp1->b_cont = mp; 3424 mp = mp1; 3425 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3426 ipsec_mp->b_rptr == (uint8_t *)io && 3427 io->ipsec_out_type == IPSEC_OUT); 3428 ipsec_mp->b_cont = mp; 3429 3430 /* 3431 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3432 * node generates be accepted in peace by all on-host destinations. 3433 * If we do NOT assume that all on-host destinations trust 3434 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3435 * (Look for ipsec_out_icmp_loopback). 3436 */ 3437 io->ipsec_out_icmp_loopback = B_TRUE; 3438 3439 ipha = (ipha_t *)mp->b_rptr; 3440 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3441 *ipha = icmp_ipha; 3442 ipha->ipha_src = src; 3443 ipha->ipha_dst = dst; 3444 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 3445 msg_len += sizeof (icmp_ipha) + len; 3446 if (msg_len > IP_MAXPACKET) { 3447 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3448 msg_len = IP_MAXPACKET; 3449 } 3450 ipha->ipha_length = htons((uint16_t)msg_len); 3451 icmph = (icmph_t *)&ipha[1]; 3452 bcopy(stuff, icmph, len); 3453 icmph->icmph_checksum = 0; 3454 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3455 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 3456 put(q, ipsec_mp); 3457 } 3458 3459 /* 3460 * Determine if an ICMP error packet can be sent given the rate limit. 3461 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3462 * in milliseconds) and a burst size. Burst size number of packets can 3463 * be sent arbitrarely closely spaced. 3464 * The state is tracked using two variables to implement an approximate 3465 * token bucket filter: 3466 * icmp_pkt_err_last - lbolt value when the last burst started 3467 * icmp_pkt_err_sent - number of packets sent in current burst 3468 */ 3469 boolean_t 3470 icmp_err_rate_limit(ip_stack_t *ipst) 3471 { 3472 clock_t now = TICK_TO_MSEC(lbolt); 3473 uint_t refilled; /* Number of packets refilled in tbf since last */ 3474 /* Guard against changes by loading into local variable */ 3475 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 3476 3477 if (err_interval == 0) 3478 return (B_FALSE); 3479 3480 if (ipst->ips_icmp_pkt_err_last > now) { 3481 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3482 ipst->ips_icmp_pkt_err_last = 0; 3483 ipst->ips_icmp_pkt_err_sent = 0; 3484 } 3485 /* 3486 * If we are in a burst update the token bucket filter. 3487 * Update the "last" time to be close to "now" but make sure 3488 * we don't loose precision. 3489 */ 3490 if (ipst->ips_icmp_pkt_err_sent != 0) { 3491 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 3492 if (refilled > ipst->ips_icmp_pkt_err_sent) { 3493 ipst->ips_icmp_pkt_err_sent = 0; 3494 } else { 3495 ipst->ips_icmp_pkt_err_sent -= refilled; 3496 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 3497 } 3498 } 3499 if (ipst->ips_icmp_pkt_err_sent == 0) { 3500 /* Start of new burst */ 3501 ipst->ips_icmp_pkt_err_last = now; 3502 } 3503 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 3504 ipst->ips_icmp_pkt_err_sent++; 3505 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3506 ipst->ips_icmp_pkt_err_sent)); 3507 return (B_FALSE); 3508 } 3509 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3510 return (B_TRUE); 3511 } 3512 3513 /* 3514 * Check if it is ok to send an IPv4 ICMP error packet in 3515 * response to the IPv4 packet in mp. 3516 * Free the message and return null if no 3517 * ICMP error packet should be sent. 3518 */ 3519 static mblk_t * 3520 icmp_pkt_err_ok(mblk_t *mp, ip_stack_t *ipst) 3521 { 3522 icmph_t *icmph; 3523 ipha_t *ipha; 3524 uint_t len_needed; 3525 ire_t *src_ire; 3526 ire_t *dst_ire; 3527 3528 if (!mp) 3529 return (NULL); 3530 ipha = (ipha_t *)mp->b_rptr; 3531 if (ip_csum_hdr(ipha)) { 3532 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 3533 freemsg(mp); 3534 return (NULL); 3535 } 3536 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3537 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3538 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3539 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3540 if (src_ire != NULL || dst_ire != NULL || 3541 CLASSD(ipha->ipha_dst) || 3542 CLASSD(ipha->ipha_src) || 3543 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3544 /* Note: only errors to the fragment with offset 0 */ 3545 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3546 freemsg(mp); 3547 if (src_ire != NULL) 3548 ire_refrele(src_ire); 3549 if (dst_ire != NULL) 3550 ire_refrele(dst_ire); 3551 return (NULL); 3552 } 3553 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3554 /* 3555 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3556 * errors in response to any ICMP errors. 3557 */ 3558 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3559 if (mp->b_wptr - mp->b_rptr < len_needed) { 3560 if (!pullupmsg(mp, len_needed)) { 3561 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3562 freemsg(mp); 3563 return (NULL); 3564 } 3565 ipha = (ipha_t *)mp->b_rptr; 3566 } 3567 icmph = (icmph_t *) 3568 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3569 switch (icmph->icmph_type) { 3570 case ICMP_DEST_UNREACHABLE: 3571 case ICMP_SOURCE_QUENCH: 3572 case ICMP_TIME_EXCEEDED: 3573 case ICMP_PARAM_PROBLEM: 3574 case ICMP_REDIRECT: 3575 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3576 freemsg(mp); 3577 return (NULL); 3578 default: 3579 break; 3580 } 3581 } 3582 /* 3583 * If this is a labeled system, then check to see if we're allowed to 3584 * send a response to this particular sender. If not, then just drop. 3585 */ 3586 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3587 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3588 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3589 freemsg(mp); 3590 return (NULL); 3591 } 3592 if (icmp_err_rate_limit(ipst)) { 3593 /* 3594 * Only send ICMP error packets every so often. 3595 * This should be done on a per port/source basis, 3596 * but for now this will suffice. 3597 */ 3598 freemsg(mp); 3599 return (NULL); 3600 } 3601 return (mp); 3602 } 3603 3604 /* 3605 * Generate an ICMP redirect message. 3606 */ 3607 static void 3608 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway, ip_stack_t *ipst) 3609 { 3610 icmph_t icmph; 3611 3612 /* 3613 * We are called from ip_rput where we could 3614 * not have attached an IPSEC_IN. 3615 */ 3616 ASSERT(mp->b_datap->db_type == M_DATA); 3617 3618 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3619 return; 3620 } 3621 3622 bzero(&icmph, sizeof (icmph_t)); 3623 icmph.icmph_type = ICMP_REDIRECT; 3624 icmph.icmph_code = 1; 3625 icmph.icmph_rd_gateway = gateway; 3626 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3627 /* Redirects sent by router, and router is global zone */ 3628 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE, GLOBAL_ZONEID, ipst); 3629 } 3630 3631 /* 3632 * Generate an ICMP time exceeded message. 3633 */ 3634 void 3635 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3636 ip_stack_t *ipst) 3637 { 3638 icmph_t icmph; 3639 boolean_t mctl_present; 3640 mblk_t *first_mp; 3641 3642 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3643 3644 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3645 if (mctl_present) 3646 freeb(first_mp); 3647 return; 3648 } 3649 3650 bzero(&icmph, sizeof (icmph_t)); 3651 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3652 icmph.icmph_code = code; 3653 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3654 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3655 ipst); 3656 } 3657 3658 /* 3659 * Generate an ICMP unreachable message. 3660 */ 3661 void 3662 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3663 ip_stack_t *ipst) 3664 { 3665 icmph_t icmph; 3666 mblk_t *first_mp; 3667 boolean_t mctl_present; 3668 3669 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3670 3671 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3672 if (mctl_present) 3673 freeb(first_mp); 3674 return; 3675 } 3676 3677 bzero(&icmph, sizeof (icmph_t)); 3678 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3679 icmph.icmph_code = code; 3680 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3681 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3682 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present, 3683 zoneid, ipst); 3684 } 3685 3686 /* 3687 * Attempt to start recovery of an IPv4 interface that's been shut down as a 3688 * duplicate. As long as someone else holds the address, the interface will 3689 * stay down. When that conflict goes away, the interface is brought back up. 3690 * This is done so that accidental shutdowns of addresses aren't made 3691 * permanent. Your server will recover from a failure. 3692 * 3693 * For DHCP, recovery is not done in the kernel. Instead, it's handled by a 3694 * user space process (dhcpagent). 3695 * 3696 * Recovery completes if ARP reports that the address is now ours (via 3697 * AR_CN_READY). In that case, we go to ip_arp_excl to finish the operation. 3698 * 3699 * This function is entered on a timer expiry; the ID is in ipif_recovery_id. 3700 */ 3701 static void 3702 ipif_dup_recovery(void *arg) 3703 { 3704 ipif_t *ipif = arg; 3705 ill_t *ill = ipif->ipif_ill; 3706 mblk_t *arp_add_mp; 3707 mblk_t *arp_del_mp; 3708 area_t *area; 3709 ip_stack_t *ipst = ill->ill_ipst; 3710 3711 ipif->ipif_recovery_id = 0; 3712 3713 /* 3714 * No lock needed for moving or condemned check, as this is just an 3715 * optimization. 3716 */ 3717 if (ill->ill_arp_closing || !(ipif->ipif_flags & IPIF_DUPLICATE) || 3718 (ipif->ipif_flags & IPIF_POINTOPOINT) || 3719 (ipif->ipif_state_flags & (IPIF_MOVING | IPIF_CONDEMNED))) { 3720 /* No reason to try to bring this address back. */ 3721 return; 3722 } 3723 3724 if ((arp_add_mp = ipif_area_alloc(ipif)) == NULL) 3725 goto alloc_fail; 3726 3727 if (ipif->ipif_arp_del_mp == NULL) { 3728 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 3729 goto alloc_fail; 3730 ipif->ipif_arp_del_mp = arp_del_mp; 3731 } 3732 3733 /* Setting the 'unverified' flag restarts DAD */ 3734 area = (area_t *)arp_add_mp->b_rptr; 3735 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 3736 ACE_F_UNVERIFIED; 3737 putnext(ill->ill_rq, arp_add_mp); 3738 return; 3739 3740 alloc_fail: 3741 /* 3742 * On allocation failure, just restart the timer. Note that the ipif 3743 * is down here, so no other thread could be trying to start a recovery 3744 * timer. The ill_lock protects the condemned flag and the recovery 3745 * timer ID. 3746 */ 3747 freemsg(arp_add_mp); 3748 mutex_enter(&ill->ill_lock); 3749 if (ipst->ips_ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0 && 3750 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 3751 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, ipif, 3752 MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3753 } 3754 mutex_exit(&ill->ill_lock); 3755 } 3756 3757 /* 3758 * This is for exclusive changes due to ARP. Either tear down an interface due 3759 * to AR_CN_FAILED and AR_CN_BOGON, or bring one up for successful recovery. 3760 */ 3761 /* ARGSUSED */ 3762 static void 3763 ip_arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3764 { 3765 ill_t *ill = rq->q_ptr; 3766 arh_t *arh; 3767 ipaddr_t src; 3768 ipif_t *ipif; 3769 char ibuf[LIFNAMSIZ + 10]; /* 10 digits for logical i/f number */ 3770 char hbuf[MAC_STR_LEN]; 3771 char sbuf[INET_ADDRSTRLEN]; 3772 const char *failtype; 3773 boolean_t bring_up; 3774 ip_stack_t *ipst = ill->ill_ipst; 3775 3776 switch (((arcn_t *)mp->b_rptr)->arcn_code) { 3777 case AR_CN_READY: 3778 failtype = NULL; 3779 bring_up = B_TRUE; 3780 break; 3781 case AR_CN_FAILED: 3782 failtype = "in use"; 3783 bring_up = B_FALSE; 3784 break; 3785 default: 3786 failtype = "claimed"; 3787 bring_up = B_FALSE; 3788 break; 3789 } 3790 3791 arh = (arh_t *)mp->b_cont->b_rptr; 3792 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3793 3794 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, hbuf, 3795 sizeof (hbuf)); 3796 (void) ip_dot_addr(src, sbuf); 3797 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3798 3799 if ((ipif->ipif_flags & IPIF_POINTOPOINT) || 3800 ipif->ipif_lcl_addr != src) { 3801 continue; 3802 } 3803 3804 /* 3805 * If we failed on a recovery probe, then restart the timer to 3806 * try again later. 3807 */ 3808 if (!bring_up && (ipif->ipif_flags & IPIF_DUPLICATE) && 3809 !(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3810 ill->ill_net_type == IRE_IF_RESOLVER && 3811 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3812 ipst->ips_ip_dup_recovery > 0 && 3813 ipif->ipif_recovery_id == 0) { 3814 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3815 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3816 continue; 3817 } 3818 3819 /* 3820 * If what we're trying to do has already been done, then do 3821 * nothing. 3822 */ 3823 if (bring_up == ((ipif->ipif_flags & IPIF_UP) != 0)) 3824 continue; 3825 3826 ipif_get_name(ipif, ibuf, sizeof (ibuf)); 3827 3828 if (failtype == NULL) { 3829 cmn_err(CE_NOTE, "recovered address %s on %s", sbuf, 3830 ibuf); 3831 } else { 3832 cmn_err(CE_WARN, "%s has duplicate address %s (%s " 3833 "by %s); disabled", ibuf, sbuf, failtype, hbuf); 3834 } 3835 3836 if (bring_up) { 3837 ASSERT(ill->ill_dl_up); 3838 /* 3839 * Free up the ARP delete message so we can allocate 3840 * a fresh one through the normal path. 3841 */ 3842 freemsg(ipif->ipif_arp_del_mp); 3843 ipif->ipif_arp_del_mp = NULL; 3844 if (ipif_resolver_up(ipif, Res_act_initial) != 3845 EINPROGRESS) { 3846 ipif->ipif_addr_ready = 1; 3847 (void) ipif_up_done(ipif); 3848 } 3849 continue; 3850 } 3851 3852 mutex_enter(&ill->ill_lock); 3853 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 3854 ipif->ipif_flags |= IPIF_DUPLICATE; 3855 ill->ill_ipif_dup_count++; 3856 mutex_exit(&ill->ill_lock); 3857 /* 3858 * Already exclusive on the ill; no need to handle deferred 3859 * processing here. 3860 */ 3861 (void) ipif_down(ipif, NULL, NULL); 3862 ipif_down_tail(ipif); 3863 mutex_enter(&ill->ill_lock); 3864 if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3865 ill->ill_net_type == IRE_IF_RESOLVER && 3866 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3867 ipst->ips_ip_dup_recovery > 0) { 3868 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3869 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3870 } 3871 mutex_exit(&ill->ill_lock); 3872 } 3873 freemsg(mp); 3874 } 3875 3876 /* ARGSUSED */ 3877 static void 3878 ip_arp_defend(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3879 { 3880 ill_t *ill = rq->q_ptr; 3881 arh_t *arh; 3882 ipaddr_t src; 3883 ipif_t *ipif; 3884 3885 arh = (arh_t *)mp->b_cont->b_rptr; 3886 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3887 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3888 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_lcl_addr == src) 3889 (void) ipif_resolver_up(ipif, Res_act_defend); 3890 } 3891 freemsg(mp); 3892 } 3893 3894 /* 3895 * News from ARP. ARP sends notification of interesting events down 3896 * to its clients using M_CTL messages with the interesting ARP packet 3897 * attached via b_cont. 3898 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3899 * queue as opposed to ARP sending the message to all the clients, i.e. all 3900 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3901 * table if a cache IRE is found to delete all the entries for the address in 3902 * the packet. 3903 */ 3904 static void 3905 ip_arp_news(queue_t *q, mblk_t *mp) 3906 { 3907 arcn_t *arcn; 3908 arh_t *arh; 3909 ire_t *ire = NULL; 3910 char hbuf[MAC_STR_LEN]; 3911 char sbuf[INET_ADDRSTRLEN]; 3912 ipaddr_t src; 3913 in6_addr_t v6src; 3914 boolean_t isv6 = B_FALSE; 3915 ipif_t *ipif; 3916 ill_t *ill; 3917 ip_stack_t *ipst; 3918 3919 if (CONN_Q(q)) { 3920 conn_t *connp = Q_TO_CONN(q); 3921 3922 ipst = connp->conn_netstack->netstack_ip; 3923 } else { 3924 ill_t *ill = (ill_t *)q->q_ptr; 3925 3926 ipst = ill->ill_ipst; 3927 } 3928 3929 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 3930 if (q->q_next) { 3931 putnext(q, mp); 3932 } else 3933 freemsg(mp); 3934 return; 3935 } 3936 arh = (arh_t *)mp->b_cont->b_rptr; 3937 /* Is it one we are interested in? */ 3938 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 3939 isv6 = B_TRUE; 3940 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 3941 IPV6_ADDR_LEN); 3942 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 3943 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 3944 IP_ADDR_LEN); 3945 } else { 3946 freemsg(mp); 3947 return; 3948 } 3949 3950 ill = q->q_ptr; 3951 3952 arcn = (arcn_t *)mp->b_rptr; 3953 switch (arcn->arcn_code) { 3954 case AR_CN_BOGON: 3955 /* 3956 * Someone is sending ARP packets with a source protocol 3957 * address that we have published and for which we believe our 3958 * entry is authoritative and (when ill_arp_extend is set) 3959 * verified to be unique on the network. 3960 * 3961 * The ARP module internally handles the cases where the sender 3962 * is just probing (for DAD) and where the hardware address of 3963 * a non-authoritative entry has changed. Thus, these are the 3964 * real conflicts, and we have to do resolution. 3965 * 3966 * We back away quickly from the address if it's from DHCP or 3967 * otherwise temporary and hasn't been used recently (or at 3968 * all). We'd like to include "deprecated" addresses here as 3969 * well (as there's no real reason to defend something we're 3970 * discarding), but IPMP "reuses" this flag to mean something 3971 * other than the standard meaning. 3972 * 3973 * If the ARP module above is not extended (meaning that it 3974 * doesn't know how to defend the address), then we just log 3975 * the problem as we always did and continue on. It's not 3976 * right, but there's little else we can do, and those old ATM 3977 * users are going away anyway. 3978 */ 3979 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, 3980 hbuf, sizeof (hbuf)); 3981 (void) ip_dot_addr(src, sbuf); 3982 if (isv6) { 3983 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL, 3984 ipst); 3985 } else { 3986 ire = ire_cache_lookup(src, ALL_ZONES, NULL, ipst); 3987 } 3988 if (ire != NULL && IRE_IS_LOCAL(ire)) { 3989 uint32_t now; 3990 uint32_t maxage; 3991 clock_t lused; 3992 uint_t maxdefense; 3993 uint_t defs; 3994 3995 /* 3996 * First, figure out if this address hasn't been used 3997 * in a while. If it hasn't, then it's a better 3998 * candidate for abandoning. 3999 */ 4000 ipif = ire->ire_ipif; 4001 ASSERT(ipif != NULL); 4002 now = gethrestime_sec(); 4003 maxage = now - ire->ire_create_time; 4004 if (maxage > ipst->ips_ip_max_temp_idle) 4005 maxage = ipst->ips_ip_max_temp_idle; 4006 lused = drv_hztousec(ddi_get_lbolt() - 4007 ire->ire_last_used_time) / MICROSEC + 1; 4008 if (lused >= maxage && (ipif->ipif_flags & 4009 (IPIF_DHCPRUNNING | IPIF_TEMPORARY))) 4010 maxdefense = ipst->ips_ip_max_temp_defend; 4011 else 4012 maxdefense = ipst->ips_ip_max_defend; 4013 4014 /* 4015 * Now figure out how many times we've defended 4016 * ourselves. Ignore defenses that happened long in 4017 * the past. 4018 */ 4019 mutex_enter(&ire->ire_lock); 4020 if ((defs = ire->ire_defense_count) > 0 && 4021 now - ire->ire_defense_time > 4022 ipst->ips_ip_defend_interval) { 4023 ire->ire_defense_count = defs = 0; 4024 } 4025 ire->ire_defense_count++; 4026 ire->ire_defense_time = now; 4027 mutex_exit(&ire->ire_lock); 4028 ill_refhold(ill); 4029 ire_refrele(ire); 4030 4031 /* 4032 * If we've defended ourselves too many times already, 4033 * then give up and tear down the interface(s) using 4034 * this address. Otherwise, defend by sending out a 4035 * gratuitous ARP. 4036 */ 4037 if (defs >= maxdefense && ill->ill_arp_extend) { 4038 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4039 B_FALSE); 4040 } else { 4041 cmn_err(CE_WARN, 4042 "node %s is using our IP address %s on %s", 4043 hbuf, sbuf, ill->ill_name); 4044 /* 4045 * If this is an old (ATM) ARP module, then 4046 * don't try to defend the address. Remain 4047 * compatible with the old behavior. Defend 4048 * only with new ARP. 4049 */ 4050 if (ill->ill_arp_extend) { 4051 qwriter_ip(ill, q, mp, ip_arp_defend, 4052 NEW_OP, B_FALSE); 4053 } else { 4054 ill_refrele(ill); 4055 } 4056 } 4057 return; 4058 } 4059 cmn_err(CE_WARN, 4060 "proxy ARP problem? Node '%s' is using %s on %s", 4061 hbuf, sbuf, ill->ill_name); 4062 if (ire != NULL) 4063 ire_refrele(ire); 4064 break; 4065 case AR_CN_ANNOUNCE: 4066 if (isv6) { 4067 /* 4068 * For XRESOLV interfaces. 4069 * Delete the IRE cache entry and NCE for this 4070 * v6 address 4071 */ 4072 ip_ire_clookup_and_delete_v6(&v6src, ipst); 4073 /* 4074 * If v6src is a non-zero, it's a router address 4075 * as below. Do the same sort of thing to clean 4076 * out off-net IRE_CACHE entries that go through 4077 * the router. 4078 */ 4079 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 4080 ire_walk_v6(ire_delete_cache_gw_v6, 4081 (char *)&v6src, ALL_ZONES, ipst); 4082 } 4083 } else { 4084 nce_hw_map_t hwm; 4085 4086 /* 4087 * ARP gives us a copy of any packet where it thinks 4088 * the address has changed, so that we can update our 4089 * caches. We're responsible for caching known answers 4090 * in the current design. We check whether the 4091 * hardware address really has changed in all of our 4092 * entries that have cached this mapping, and if so, we 4093 * blow them away. This way we will immediately pick 4094 * up the rare case of a host changing hardware 4095 * address. 4096 */ 4097 if (src == 0) 4098 break; 4099 hwm.hwm_addr = src; 4100 hwm.hwm_hwlen = arh->arh_hlen; 4101 hwm.hwm_hwaddr = (uchar_t *)(arh + 1); 4102 NDP_HW_CHANGE_INCR(ipst->ips_ndp4); 4103 ndp_walk_common(ipst->ips_ndp4, NULL, 4104 (pfi_t)nce_delete_hw_changed, &hwm, ALL_ZONES); 4105 NDP_HW_CHANGE_DECR(ipst->ips_ndp4); 4106 } 4107 break; 4108 case AR_CN_READY: 4109 /* No external v6 resolver has a contract to use this */ 4110 if (isv6) 4111 break; 4112 /* If the link is down, we'll retry this later */ 4113 if (!(ill->ill_phyint->phyint_flags & PHYI_RUNNING)) 4114 break; 4115 ipif = ipif_lookup_addr(src, ill, ALL_ZONES, NULL, NULL, 4116 NULL, NULL, ipst); 4117 if (ipif != NULL) { 4118 /* 4119 * If this is a duplicate recovery, then we now need to 4120 * go exclusive to bring this thing back up. 4121 */ 4122 if ((ipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)) == 4123 IPIF_DUPLICATE) { 4124 ipif_refrele(ipif); 4125 ill_refhold(ill); 4126 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4127 B_FALSE); 4128 return; 4129 } 4130 /* 4131 * If this is the first notice that this address is 4132 * ready, then let the user know now. 4133 */ 4134 if ((ipif->ipif_flags & IPIF_UP) && 4135 !ipif->ipif_addr_ready) { 4136 ipif_mask_reply(ipif); 4137 ip_rts_ifmsg(ipif); 4138 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 4139 sctp_update_ipif(ipif, SCTP_IPIF_UP); 4140 } 4141 ipif->ipif_addr_ready = 1; 4142 ipif_refrele(ipif); 4143 } 4144 ire = ire_cache_lookup(src, ALL_ZONES, MBLK_GETLABEL(mp), ipst); 4145 if (ire != NULL) { 4146 ire->ire_defense_count = 0; 4147 ire_refrele(ire); 4148 } 4149 break; 4150 case AR_CN_FAILED: 4151 /* No external v6 resolver has a contract to use this */ 4152 if (isv6) 4153 break; 4154 ill_refhold(ill); 4155 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, B_FALSE); 4156 return; 4157 } 4158 freemsg(mp); 4159 } 4160 4161 /* 4162 * Create a mblk suitable for carrying the interface index and/or source link 4163 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 4164 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 4165 * application. 4166 */ 4167 mblk_t * 4168 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags, zoneid_t zoneid, 4169 ip_stack_t *ipst) 4170 { 4171 mblk_t *mp; 4172 ip_pktinfo_t *pinfo; 4173 ipha_t *ipha; 4174 struct ether_header *pether; 4175 4176 mp = allocb(sizeof (ip_pktinfo_t), BPRI_MED); 4177 if (mp == NULL) { 4178 ip1dbg(("ip_add_info: allocation failure.\n")); 4179 return (data_mp); 4180 } 4181 4182 ipha = (ipha_t *)data_mp->b_rptr; 4183 pinfo = (ip_pktinfo_t *)mp->b_rptr; 4184 bzero(pinfo, sizeof (ip_pktinfo_t)); 4185 pinfo->ip_pkt_flags = (uchar_t)flags; 4186 pinfo->ip_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 4187 4188 if (flags & (IPF_RECVIF | IPF_RECVADDR)) 4189 pinfo->ip_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 4190 if (flags & IPF_RECVADDR) { 4191 ipif_t *ipif; 4192 ire_t *ire; 4193 4194 /* 4195 * Only valid for V4 4196 */ 4197 ASSERT((ipha->ipha_version_and_hdr_length & 0xf0) == 4198 (IPV4_VERSION << 4)); 4199 4200 ipif = ipif_get_next_ipif(NULL, ill); 4201 if (ipif != NULL) { 4202 /* 4203 * Since a decision has already been made to deliver the 4204 * packet, there is no need to test for SECATTR and 4205 * ZONEONLY. 4206 * When a multicast packet is transmitted 4207 * a cache entry is created for the multicast address. 4208 * When delivering a copy of the packet or when new 4209 * packets are received we do not want to match on the 4210 * cached entry so explicitly match on 4211 * IRE_LOCAL and IRE_LOOPBACK 4212 */ 4213 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4214 IRE_LOCAL | IRE_LOOPBACK, 4215 ipif, zoneid, NULL, 4216 MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP, ipst); 4217 if (ire == NULL) { 4218 /* 4219 * packet must have come on a different 4220 * interface. 4221 * Since a decision has already been made to 4222 * deliver the packet, there is no need to test 4223 * for SECATTR and ZONEONLY. 4224 * Only match on local and broadcast ire's. 4225 * See detailed comment above. 4226 */ 4227 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4228 IRE_LOCAL | IRE_LOOPBACK, ipif, zoneid, 4229 NULL, MATCH_IRE_TYPE, ipst); 4230 } 4231 4232 if (ire == NULL) { 4233 /* 4234 * This is either a multicast packet or 4235 * the address has been removed since 4236 * the packet was received. 4237 * Return INADDR_ANY so that normal source 4238 * selection occurs for the response. 4239 */ 4240 4241 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4242 } else { 4243 pinfo->ip_pkt_match_addr.s_addr = 4244 ire->ire_src_addr; 4245 ire_refrele(ire); 4246 } 4247 ipif_refrele(ipif); 4248 } else { 4249 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4250 } 4251 } 4252 4253 pether = (struct ether_header *)((char *)ipha 4254 - sizeof (struct ether_header)); 4255 /* 4256 * Make sure the interface is an ethernet type, since this option 4257 * is currently supported only on this type of interface. Also make 4258 * sure we are pointing correctly above db_base. 4259 */ 4260 4261 if ((flags & IPF_RECVSLLA) && 4262 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 4263 (ill->ill_type == IFT_ETHER) && 4264 (ill->ill_net_type == IRE_IF_RESOLVER)) { 4265 4266 pinfo->ip_pkt_slla.sdl_type = IFT_ETHER; 4267 bcopy((uchar_t *)pether->ether_shost.ether_addr_octet, 4268 (uchar_t *)pinfo->ip_pkt_slla.sdl_data, ETHERADDRL); 4269 } else { 4270 /* 4271 * Clear the bit. Indicate to upper layer that IP is not 4272 * sending this ancillary info. 4273 */ 4274 pinfo->ip_pkt_flags = pinfo->ip_pkt_flags & ~IPF_RECVSLLA; 4275 } 4276 4277 mp->b_datap->db_type = M_CTL; 4278 mp->b_wptr += sizeof (ip_pktinfo_t); 4279 mp->b_cont = data_mp; 4280 4281 return (mp); 4282 } 4283 4284 /* 4285 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 4286 * part of the bind request. 4287 */ 4288 4289 boolean_t 4290 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 4291 { 4292 ipsec_in_t *ii; 4293 4294 ASSERT(policy_mp != NULL); 4295 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 4296 4297 ii = (ipsec_in_t *)policy_mp->b_rptr; 4298 ASSERT(ii->ipsec_in_type == IPSEC_IN); 4299 4300 connp->conn_policy = ii->ipsec_in_policy; 4301 ii->ipsec_in_policy = NULL; 4302 4303 if (ii->ipsec_in_action != NULL) { 4304 if (connp->conn_latch == NULL) { 4305 connp->conn_latch = iplatch_create(); 4306 if (connp->conn_latch == NULL) 4307 return (B_FALSE); 4308 } 4309 ipsec_latch_inbound(connp->conn_latch, ii); 4310 } 4311 return (B_TRUE); 4312 } 4313 4314 /* 4315 * Upper level protocols (ULP) pass through bind requests to IP for inspection 4316 * and to arrange for power-fanout assist. The ULP is identified by 4317 * adding a single byte at the end of the original bind message. 4318 * A ULP other than UDP or TCP that wishes to be recognized passes 4319 * down a bind with a zero length address. 4320 * 4321 * The binding works as follows: 4322 * - A zero byte address means just bind to the protocol. 4323 * - A four byte address is treated as a request to validate 4324 * that the address is a valid local address, appropriate for 4325 * an application to bind to. This does not affect any fanout 4326 * information in IP. 4327 * - A sizeof sin_t byte address is used to bind to only the local address 4328 * and port. 4329 * - A sizeof ipa_conn_t byte address contains complete fanout information 4330 * consisting of local and remote addresses and ports. In 4331 * this case, the addresses are both validated as appropriate 4332 * for this operation, and, if so, the information is retained 4333 * for use in the inbound fanout. 4334 * 4335 * The ULP (except in the zero-length bind) can append an 4336 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4337 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4338 * a copy of the source or destination IRE (source for local bind; 4339 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4340 * policy information contained should be copied on to the conn. 4341 * 4342 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4343 */ 4344 mblk_t * 4345 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4346 { 4347 ssize_t len; 4348 struct T_bind_req *tbr; 4349 sin_t *sin; 4350 ipa_conn_t *ac; 4351 uchar_t *ucp; 4352 mblk_t *mp1; 4353 boolean_t ire_requested; 4354 boolean_t ipsec_policy_set = B_FALSE; 4355 int error = 0; 4356 int protocol; 4357 ipa_conn_x_t *acx; 4358 4359 ASSERT(!connp->conn_af_isv6); 4360 connp->conn_pkt_isv6 = B_FALSE; 4361 4362 len = MBLKL(mp); 4363 if (len < (sizeof (*tbr) + 1)) { 4364 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4365 "ip_bind: bogus msg, len %ld", len); 4366 /* XXX: Need to return something better */ 4367 goto bad_addr; 4368 } 4369 /* Back up and extract the protocol identifier. */ 4370 mp->b_wptr--; 4371 protocol = *mp->b_wptr & 0xFF; 4372 tbr = (struct T_bind_req *)mp->b_rptr; 4373 /* Reset the message type in preparation for shipping it back. */ 4374 DB_TYPE(mp) = M_PCPROTO; 4375 4376 connp->conn_ulp = (uint8_t)protocol; 4377 4378 /* 4379 * Check for a zero length address. This is from a protocol that 4380 * wants to register to receive all packets of its type. 4381 */ 4382 if (tbr->ADDR_length == 0) { 4383 /* 4384 * These protocols are now intercepted in ip_bind_v6(). 4385 * Reject protocol-level binds here for now. 4386 * 4387 * For SCTP raw socket, ICMP sends down a bind with sin_t 4388 * so that the protocol type cannot be SCTP. 4389 */ 4390 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4391 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4392 goto bad_addr; 4393 } 4394 4395 /* 4396 * 4397 * The udp module never sends down a zero-length address, 4398 * and allowing this on a labeled system will break MLP 4399 * functionality. 4400 */ 4401 if (is_system_labeled() && protocol == IPPROTO_UDP) 4402 goto bad_addr; 4403 4404 if (connp->conn_mac_exempt) 4405 goto bad_addr; 4406 4407 /* No hash here really. The table is big enough. */ 4408 connp->conn_srcv6 = ipv6_all_zeros; 4409 4410 ipcl_proto_insert(connp, protocol); 4411 4412 tbr->PRIM_type = T_BIND_ACK; 4413 return (mp); 4414 } 4415 4416 /* Extract the address pointer from the message. */ 4417 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4418 tbr->ADDR_length); 4419 if (ucp == NULL) { 4420 ip1dbg(("ip_bind: no address\n")); 4421 goto bad_addr; 4422 } 4423 if (!OK_32PTR(ucp)) { 4424 ip1dbg(("ip_bind: unaligned address\n")); 4425 goto bad_addr; 4426 } 4427 /* 4428 * Check for trailing mps. 4429 */ 4430 4431 mp1 = mp->b_cont; 4432 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 4433 ipsec_policy_set = (mp1 != NULL && DB_TYPE(mp1) == IPSEC_POLICY_SET); 4434 4435 switch (tbr->ADDR_length) { 4436 default: 4437 ip1dbg(("ip_bind: bad address length %d\n", 4438 (int)tbr->ADDR_length)); 4439 goto bad_addr; 4440 4441 case IP_ADDR_LEN: 4442 /* Verification of local address only */ 4443 error = ip_bind_laddr(connp, mp, *(ipaddr_t *)ucp, 0, 4444 ire_requested, ipsec_policy_set, B_FALSE); 4445 break; 4446 4447 case sizeof (sin_t): 4448 sin = (sin_t *)ucp; 4449 error = ip_bind_laddr(connp, mp, sin->sin_addr.s_addr, 4450 sin->sin_port, ire_requested, ipsec_policy_set, B_TRUE); 4451 break; 4452 4453 case sizeof (ipa_conn_t): 4454 ac = (ipa_conn_t *)ucp; 4455 /* For raw socket, the local port is not set. */ 4456 if (ac->ac_lport == 0) 4457 ac->ac_lport = connp->conn_lport; 4458 /* Always verify destination reachability. */ 4459 error = ip_bind_connected(connp, mp, &ac->ac_laddr, 4460 ac->ac_lport, ac->ac_faddr, ac->ac_fport, ire_requested, 4461 ipsec_policy_set, B_TRUE, B_TRUE); 4462 break; 4463 4464 case sizeof (ipa_conn_x_t): 4465 acx = (ipa_conn_x_t *)ucp; 4466 /* 4467 * Whether or not to verify destination reachability depends 4468 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4469 */ 4470 error = ip_bind_connected(connp, mp, &acx->acx_conn.ac_laddr, 4471 acx->acx_conn.ac_lport, acx->acx_conn.ac_faddr, 4472 acx->acx_conn.ac_fport, ire_requested, ipsec_policy_set, 4473 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0); 4474 break; 4475 } 4476 if (error == EINPROGRESS) 4477 return (NULL); 4478 else if (error != 0) 4479 goto bad_addr; 4480 /* 4481 * Pass the IPsec headers size in ire_ipsec_overhead. 4482 * We can't do this in ip_bind_insert_ire because the policy 4483 * may not have been inherited at that point in time and hence 4484 * conn_out_enforce_policy may not be set. 4485 */ 4486 mp1 = mp->b_cont; 4487 if (ire_requested && connp->conn_out_enforce_policy && 4488 mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE) { 4489 ire_t *ire = (ire_t *)mp1->b_rptr; 4490 ASSERT(MBLKL(mp1) >= sizeof (ire_t)); 4491 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 4492 } 4493 4494 /* Send it home. */ 4495 mp->b_datap->db_type = M_PCPROTO; 4496 tbr->PRIM_type = T_BIND_ACK; 4497 return (mp); 4498 4499 bad_addr: 4500 /* 4501 * If error = -1 then we generate a TBADADDR - otherwise error is 4502 * a unix errno. 4503 */ 4504 if (error > 0) 4505 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4506 else 4507 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4508 return (mp); 4509 } 4510 4511 /* 4512 * Here address is verified to be a valid local address. 4513 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4514 * address is also considered a valid local address. 4515 * In the case of a broadcast/multicast address, however, the 4516 * upper protocol is expected to reset the src address 4517 * to 0 if it sees a IRE_BROADCAST type returned so that 4518 * no packets are emitted with broadcast/multicast address as 4519 * source address (that violates hosts requirements RFC1122) 4520 * The addresses valid for bind are: 4521 * (1) - INADDR_ANY (0) 4522 * (2) - IP address of an UP interface 4523 * (3) - IP address of a DOWN interface 4524 * (4) - valid local IP broadcast addresses. In this case 4525 * the conn will only receive packets destined to 4526 * the specified broadcast address. 4527 * (5) - a multicast address. In this case 4528 * the conn will only receive packets destined to 4529 * the specified multicast address. Note: the 4530 * application still has to issue an 4531 * IP_ADD_MEMBERSHIP socket option. 4532 * 4533 * On error, return -1 for TBADADDR otherwise pass the 4534 * errno with TSYSERR reply. 4535 * 4536 * In all the above cases, the bound address must be valid in the current zone. 4537 * When the address is loopback, multicast or broadcast, there might be many 4538 * matching IREs so bind has to look up based on the zone. 4539 * 4540 * Note: lport is in network byte order. 4541 */ 4542 int 4543 ip_bind_laddr(conn_t *connp, mblk_t *mp, ipaddr_t src_addr, uint16_t lport, 4544 boolean_t ire_requested, boolean_t ipsec_policy_set, 4545 boolean_t fanout_insert) 4546 { 4547 int error = 0; 4548 ire_t *src_ire; 4549 mblk_t *policy_mp; 4550 ipif_t *ipif; 4551 zoneid_t zoneid; 4552 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4553 4554 if (ipsec_policy_set) { 4555 policy_mp = mp->b_cont; 4556 } 4557 4558 /* 4559 * If it was previously connected, conn_fully_bound would have 4560 * been set. 4561 */ 4562 connp->conn_fully_bound = B_FALSE; 4563 4564 src_ire = NULL; 4565 ipif = NULL; 4566 4567 zoneid = IPCL_ZONEID(connp); 4568 4569 if (src_addr) { 4570 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4571 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 4572 /* 4573 * If an address other than 0.0.0.0 is requested, 4574 * we verify that it is a valid address for bind 4575 * Note: Following code is in if-else-if form for 4576 * readability compared to a condition check. 4577 */ 4578 /* LINTED - statement has no consequent */ 4579 if (IRE_IS_LOCAL(src_ire)) { 4580 /* 4581 * (2) Bind to address of local UP interface 4582 */ 4583 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4584 /* 4585 * (4) Bind to broadcast address 4586 * Note: permitted only from transports that 4587 * request IRE 4588 */ 4589 if (!ire_requested) 4590 error = EADDRNOTAVAIL; 4591 } else { 4592 /* 4593 * (3) Bind to address of local DOWN interface 4594 * (ipif_lookup_addr() looks up all interfaces 4595 * but we do not get here for UP interfaces 4596 * - case (2) above) 4597 * We put the protocol byte back into the mblk 4598 * since we may come back via ip_wput_nondata() 4599 * later with this mblk if ipif_lookup_addr chooses 4600 * to defer processing. 4601 */ 4602 *mp->b_wptr++ = (char)connp->conn_ulp; 4603 if ((ipif = ipif_lookup_addr(src_addr, NULL, zoneid, 4604 CONNP_TO_WQ(connp), mp, ip_wput_nondata, 4605 &error, ipst)) != NULL) { 4606 ipif_refrele(ipif); 4607 } else if (error == EINPROGRESS) { 4608 if (src_ire != NULL) 4609 ire_refrele(src_ire); 4610 return (EINPROGRESS); 4611 } else if (CLASSD(src_addr)) { 4612 error = 0; 4613 if (src_ire != NULL) 4614 ire_refrele(src_ire); 4615 /* 4616 * (5) bind to multicast address. 4617 * Fake out the IRE returned to upper 4618 * layer to be a broadcast IRE. 4619 */ 4620 src_ire = ire_ctable_lookup( 4621 INADDR_BROADCAST, INADDR_ANY, 4622 IRE_BROADCAST, NULL, zoneid, NULL, 4623 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY), 4624 ipst); 4625 if (src_ire == NULL || !ire_requested) 4626 error = EADDRNOTAVAIL; 4627 } else { 4628 /* 4629 * Not a valid address for bind 4630 */ 4631 error = EADDRNOTAVAIL; 4632 } 4633 /* 4634 * Just to keep it consistent with the processing in 4635 * ip_bind_v4() 4636 */ 4637 mp->b_wptr--; 4638 } 4639 if (error) { 4640 /* Red Alert! Attempting to be a bogon! */ 4641 ip1dbg(("ip_bind: bad src address 0x%x\n", 4642 ntohl(src_addr))); 4643 goto bad_addr; 4644 } 4645 } 4646 4647 /* 4648 * Allow setting new policies. For example, disconnects come 4649 * down as ipa_t bind. As we would have set conn_policy_cached 4650 * to B_TRUE before, we should set it to B_FALSE, so that policy 4651 * can change after the disconnect. 4652 */ 4653 connp->conn_policy_cached = B_FALSE; 4654 4655 /* 4656 * If not fanout_insert this was just an address verification 4657 */ 4658 if (fanout_insert) { 4659 /* 4660 * The addresses have been verified. Time to insert in 4661 * the correct fanout list. 4662 */ 4663 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4664 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4665 connp->conn_lport = lport; 4666 connp->conn_fport = 0; 4667 /* 4668 * Do we need to add a check to reject Multicast packets 4669 */ 4670 error = ipcl_bind_insert(connp, *mp->b_wptr, src_addr, lport); 4671 } 4672 4673 if (error == 0) { 4674 if (ire_requested) { 4675 if (!ip_bind_insert_ire(mp, src_ire, NULL, ipst)) { 4676 error = -1; 4677 /* Falls through to bad_addr */ 4678 } 4679 } else if (ipsec_policy_set) { 4680 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4681 error = -1; 4682 /* Falls through to bad_addr */ 4683 } 4684 } 4685 } 4686 bad_addr: 4687 if (error != 0) { 4688 if (connp->conn_anon_port) { 4689 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4690 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4691 B_FALSE); 4692 } 4693 connp->conn_mlp_type = mlptSingle; 4694 } 4695 if (src_ire != NULL) 4696 IRE_REFRELE(src_ire); 4697 if (ipsec_policy_set) { 4698 ASSERT(policy_mp == mp->b_cont); 4699 ASSERT(policy_mp != NULL); 4700 freeb(policy_mp); 4701 /* 4702 * As of now assume that nothing else accompanies 4703 * IPSEC_POLICY_SET. 4704 */ 4705 mp->b_cont = NULL; 4706 } 4707 return (error); 4708 } 4709 4710 /* 4711 * Verify that both the source and destination addresses 4712 * are valid. If verify_dst is false, then the destination address may be 4713 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4714 * destination reachability, while tunnels do not. 4715 * Note that we allow connect to broadcast and multicast 4716 * addresses when ire_requested is set. Thus the ULP 4717 * has to check for IRE_BROADCAST and multicast. 4718 * 4719 * Returns zero if ok. 4720 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4721 * (for use with TSYSERR reply). 4722 * 4723 * Note: lport and fport are in network byte order. 4724 */ 4725 int 4726 ip_bind_connected(conn_t *connp, mblk_t *mp, ipaddr_t *src_addrp, 4727 uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4728 boolean_t ire_requested, boolean_t ipsec_policy_set, 4729 boolean_t fanout_insert, boolean_t verify_dst) 4730 { 4731 ire_t *src_ire; 4732 ire_t *dst_ire; 4733 int error = 0; 4734 int protocol; 4735 mblk_t *policy_mp; 4736 ire_t *sire = NULL; 4737 ire_t *md_dst_ire = NULL; 4738 ire_t *lso_dst_ire = NULL; 4739 ill_t *ill = NULL; 4740 zoneid_t zoneid; 4741 ipaddr_t src_addr = *src_addrp; 4742 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4743 4744 src_ire = dst_ire = NULL; 4745 protocol = *mp->b_wptr & 0xFF; 4746 4747 /* 4748 * If we never got a disconnect before, clear it now. 4749 */ 4750 connp->conn_fully_bound = B_FALSE; 4751 4752 if (ipsec_policy_set) { 4753 policy_mp = mp->b_cont; 4754 } 4755 4756 zoneid = IPCL_ZONEID(connp); 4757 4758 if (CLASSD(dst_addr)) { 4759 /* Pick up an IRE_BROADCAST */ 4760 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4761 NULL, zoneid, MBLK_GETLABEL(mp), 4762 (MATCH_IRE_RECURSIVE | 4763 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4764 MATCH_IRE_SECATTR), ipst); 4765 } else { 4766 /* 4767 * If conn_dontroute is set or if conn_nexthop_set is set, 4768 * and onlink ipif is not found set ENETUNREACH error. 4769 */ 4770 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4771 ipif_t *ipif; 4772 4773 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4774 dst_addr : connp->conn_nexthop_v4, zoneid, ipst); 4775 if (ipif == NULL) { 4776 error = ENETUNREACH; 4777 goto bad_addr; 4778 } 4779 ipif_refrele(ipif); 4780 } 4781 4782 if (connp->conn_nexthop_set) { 4783 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4784 0, 0, NULL, NULL, zoneid, MBLK_GETLABEL(mp), 4785 MATCH_IRE_SECATTR, ipst); 4786 } else { 4787 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4788 &sire, zoneid, MBLK_GETLABEL(mp), 4789 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4790 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4791 MATCH_IRE_SECATTR), ipst); 4792 } 4793 } 4794 /* 4795 * dst_ire can't be a broadcast when not ire_requested. 4796 * We also prevent ire's with src address INADDR_ANY to 4797 * be used, which are created temporarily for 4798 * sending out packets from endpoints that have 4799 * conn_unspec_src set. If verify_dst is true, the destination must be 4800 * reachable. If verify_dst is false, the destination needn't be 4801 * reachable. 4802 * 4803 * If we match on a reject or black hole, then we've got a 4804 * local failure. May as well fail out the connect() attempt, 4805 * since it's never going to succeed. 4806 */ 4807 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4808 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4809 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4810 /* 4811 * If we're verifying destination reachability, we always want 4812 * to complain here. 4813 * 4814 * If we're not verifying destination reachability but the 4815 * destination has a route, we still want to fail on the 4816 * temporary address and broadcast address tests. 4817 */ 4818 if (verify_dst || (dst_ire != NULL)) { 4819 if (ip_debug > 2) { 4820 pr_addr_dbg("ip_bind_connected: bad connected " 4821 "dst %s\n", AF_INET, &dst_addr); 4822 } 4823 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4824 error = ENETUNREACH; 4825 else 4826 error = EHOSTUNREACH; 4827 goto bad_addr; 4828 } 4829 } 4830 4831 /* 4832 * We now know that routing will allow us to reach the destination. 4833 * Check whether Trusted Solaris policy allows communication with this 4834 * host, and pretend that the destination is unreachable if not. 4835 * 4836 * This is never a problem for TCP, since that transport is known to 4837 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4838 * handling. If the remote is unreachable, it will be detected at that 4839 * point, so there's no reason to check it here. 4840 * 4841 * Note that for sendto (and other datagram-oriented friends), this 4842 * check is done as part of the data path label computation instead. 4843 * The check here is just to make non-TCP connect() report the right 4844 * error. 4845 */ 4846 if (dst_ire != NULL && is_system_labeled() && 4847 !IPCL_IS_TCP(connp) && 4848 tsol_compute_label(DB_CREDDEF(mp, connp->conn_cred), dst_addr, NULL, 4849 connp->conn_mac_exempt, ipst) != 0) { 4850 error = EHOSTUNREACH; 4851 if (ip_debug > 2) { 4852 pr_addr_dbg("ip_bind_connected: no label for dst %s\n", 4853 AF_INET, &dst_addr); 4854 } 4855 goto bad_addr; 4856 } 4857 4858 /* 4859 * If the app does a connect(), it means that it will most likely 4860 * send more than 1 packet to the destination. It makes sense 4861 * to clear the temporary flag. 4862 */ 4863 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4864 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4865 irb_t *irb = dst_ire->ire_bucket; 4866 4867 rw_enter(&irb->irb_lock, RW_WRITER); 4868 /* 4869 * We need to recheck for IRE_MARK_TEMPORARY after acquiring 4870 * the lock to guarantee irb_tmp_ire_cnt. 4871 */ 4872 if (dst_ire->ire_marks & IRE_MARK_TEMPORARY) { 4873 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4874 irb->irb_tmp_ire_cnt--; 4875 } 4876 rw_exit(&irb->irb_lock); 4877 } 4878 4879 /* 4880 * See if we should notify ULP about LSO/MDT; we do this whether or not 4881 * ire_requested is TRUE, in order to handle active connects; LSO/MDT 4882 * eligibility tests for passive connects are handled separately 4883 * through tcp_adapt_ire(). We do this before the source address 4884 * selection, because dst_ire may change after a call to 4885 * ipif_select_source(). This is a best-effort check, as the 4886 * packet for this connection may not actually go through 4887 * dst_ire->ire_stq, and the exact IRE can only be known after 4888 * calling ip_newroute(). This is why we further check on the 4889 * IRE during LSO/Multidata packet transmission in 4890 * tcp_lsosend()/tcp_multisend(). 4891 */ 4892 if (!ipsec_policy_set && dst_ire != NULL && 4893 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4894 (ill = ire_to_ill(dst_ire), ill != NULL)) { 4895 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 4896 lso_dst_ire = dst_ire; 4897 IRE_REFHOLD(lso_dst_ire); 4898 } else if (ipst->ips_ip_multidata_outbound && 4899 ILL_MDT_CAPABLE(ill)) { 4900 md_dst_ire = dst_ire; 4901 IRE_REFHOLD(md_dst_ire); 4902 } 4903 } 4904 4905 if (dst_ire != NULL && 4906 dst_ire->ire_type == IRE_LOCAL && 4907 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4908 /* 4909 * If the IRE belongs to a different zone, look for a matching 4910 * route in the forwarding table and use the source address from 4911 * that route. 4912 */ 4913 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4914 zoneid, 0, NULL, 4915 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4916 MATCH_IRE_RJ_BHOLE, ipst); 4917 if (src_ire == NULL) { 4918 error = EHOSTUNREACH; 4919 goto bad_addr; 4920 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4921 if (!(src_ire->ire_type & IRE_HOST)) 4922 error = ENETUNREACH; 4923 else 4924 error = EHOSTUNREACH; 4925 goto bad_addr; 4926 } 4927 if (src_addr == INADDR_ANY) 4928 src_addr = src_ire->ire_src_addr; 4929 ire_refrele(src_ire); 4930 src_ire = NULL; 4931 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4932 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4933 src_addr = sire->ire_src_addr; 4934 ire_refrele(dst_ire); 4935 dst_ire = sire; 4936 sire = NULL; 4937 } else { 4938 /* 4939 * Pick a source address so that a proper inbound 4940 * load spreading would happen. 4941 */ 4942 ill_t *dst_ill = dst_ire->ire_ipif->ipif_ill; 4943 ipif_t *src_ipif = NULL; 4944 ire_t *ipif_ire; 4945 4946 /* 4947 * Supply a local source address such that inbound 4948 * load spreading happens. 4949 * 4950 * Determine the best source address on this ill for 4951 * the destination. 4952 * 4953 * 1) For broadcast, we should return a broadcast ire 4954 * found above so that upper layers know that the 4955 * destination address is a broadcast address. 4956 * 4957 * 2) If this is part of a group, select a better 4958 * source address so that better inbound load 4959 * balancing happens. Do the same if the ipif 4960 * is DEPRECATED. 4961 * 4962 * 3) If the outgoing interface is part of a usesrc 4963 * group, then try selecting a source address from 4964 * the usesrc ILL. 4965 */ 4966 if ((dst_ire->ire_zoneid != zoneid && 4967 dst_ire->ire_zoneid != ALL_ZONES) || 4968 (!(dst_ire->ire_flags & RTF_SETSRC)) && 4969 (!(dst_ire->ire_type & IRE_BROADCAST) && 4970 ((dst_ill->ill_group != NULL) || 4971 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 4972 (dst_ill->ill_usesrc_ifindex != 0)))) { 4973 /* 4974 * If the destination is reachable via a 4975 * given gateway, the selected source address 4976 * should be in the same subnet as the gateway. 4977 * Otherwise, the destination is not reachable. 4978 * 4979 * If there are no interfaces on the same subnet 4980 * as the destination, ipif_select_source gives 4981 * first non-deprecated interface which might be 4982 * on a different subnet than the gateway. 4983 * This is not desirable. Hence pass the dst_ire 4984 * source address to ipif_select_source. 4985 * It is sure that the destination is reachable 4986 * with the dst_ire source address subnet. 4987 * So passing dst_ire source address to 4988 * ipif_select_source will make sure that the 4989 * selected source will be on the same subnet 4990 * as dst_ire source address. 4991 */ 4992 ipaddr_t saddr = 4993 dst_ire->ire_ipif->ipif_src_addr; 4994 src_ipif = ipif_select_source(dst_ill, 4995 saddr, zoneid); 4996 if (src_ipif != NULL) { 4997 if (IS_VNI(src_ipif->ipif_ill)) { 4998 /* 4999 * For VNI there is no 5000 * interface route 5001 */ 5002 src_addr = 5003 src_ipif->ipif_src_addr; 5004 } else { 5005 ipif_ire = 5006 ipif_to_ire(src_ipif); 5007 if (ipif_ire != NULL) { 5008 IRE_REFRELE(dst_ire); 5009 dst_ire = ipif_ire; 5010 } 5011 src_addr = 5012 dst_ire->ire_src_addr; 5013 } 5014 ipif_refrele(src_ipif); 5015 } else { 5016 src_addr = dst_ire->ire_src_addr; 5017 } 5018 } else { 5019 src_addr = dst_ire->ire_src_addr; 5020 } 5021 } 5022 } 5023 5024 /* 5025 * We do ire_route_lookup() here (and not 5026 * interface lookup as we assert that 5027 * src_addr should only come from an 5028 * UP interface for hard binding. 5029 */ 5030 ASSERT(src_ire == NULL); 5031 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 5032 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 5033 /* src_ire must be a local|loopback */ 5034 if (!IRE_IS_LOCAL(src_ire)) { 5035 if (ip_debug > 2) { 5036 pr_addr_dbg("ip_bind_connected: bad connected " 5037 "src %s\n", AF_INET, &src_addr); 5038 } 5039 error = EADDRNOTAVAIL; 5040 goto bad_addr; 5041 } 5042 5043 /* 5044 * If the source address is a loopback address, the 5045 * destination had best be local or multicast. 5046 * The transports that can't handle multicast will reject 5047 * those addresses. 5048 */ 5049 if (src_ire->ire_type == IRE_LOOPBACK && 5050 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 5051 ip1dbg(("ip_bind_connected: bad connected loopback\n")); 5052 error = -1; 5053 goto bad_addr; 5054 } 5055 5056 /* 5057 * Allow setting new policies. For example, disconnects come 5058 * down as ipa_t bind. As we would have set conn_policy_cached 5059 * to B_TRUE before, we should set it to B_FALSE, so that policy 5060 * can change after the disconnect. 5061 */ 5062 connp->conn_policy_cached = B_FALSE; 5063 5064 /* 5065 * Set the conn addresses/ports immediately, so the IPsec policy calls 5066 * can handle their passed-in conn's. 5067 */ 5068 5069 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 5070 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 5071 connp->conn_lport = lport; 5072 connp->conn_fport = fport; 5073 *src_addrp = src_addr; 5074 5075 ASSERT(!(ipsec_policy_set && ire_requested)); 5076 if (ire_requested) { 5077 iulp_t *ulp_info = NULL; 5078 5079 /* 5080 * Note that sire will not be NULL if this is an off-link 5081 * connection and there is not cache for that dest yet. 5082 * 5083 * XXX Because of an existing bug, if there are multiple 5084 * default routes, the IRE returned now may not be the actual 5085 * default route used (default routes are chosen in a 5086 * round robin fashion). So if the metrics for different 5087 * default routes are different, we may return the wrong 5088 * metrics. This will not be a problem if the existing 5089 * bug is fixed. 5090 */ 5091 if (sire != NULL) { 5092 ulp_info = &(sire->ire_uinfo); 5093 } 5094 if (!ip_bind_insert_ire(mp, dst_ire, ulp_info, ipst)) { 5095 error = -1; 5096 goto bad_addr; 5097 } 5098 } else if (ipsec_policy_set) { 5099 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 5100 error = -1; 5101 goto bad_addr; 5102 } 5103 } 5104 5105 /* 5106 * Cache IPsec policy in this conn. If we have per-socket policy, 5107 * we'll cache that. If we don't, we'll inherit global policy. 5108 * 5109 * We can't insert until the conn reflects the policy. Note that 5110 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 5111 * connections where we don't have a policy. This is to prevent 5112 * global policy lookups in the inbound path. 5113 * 5114 * If we insert before we set conn_policy_cached, 5115 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 5116 * because global policy cound be non-empty. We normally call 5117 * ipsec_check_policy() for conn_policy_cached connections only if 5118 * ipc_in_enforce_policy is set. But in this case, 5119 * conn_policy_cached can get set anytime since we made the 5120 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 5121 * called, which will make the above assumption false. Thus, we 5122 * need to insert after we set conn_policy_cached. 5123 */ 5124 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 5125 goto bad_addr; 5126 5127 if (fanout_insert) { 5128 /* 5129 * The addresses have been verified. Time to insert in 5130 * the correct fanout list. 5131 */ 5132 error = ipcl_conn_insert(connp, protocol, src_addr, 5133 dst_addr, connp->conn_ports); 5134 } 5135 5136 if (error == 0) { 5137 connp->conn_fully_bound = B_TRUE; 5138 /* 5139 * Our initial checks for LSO/MDT have passed; the IRE is not 5140 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 5141 * be supporting LSO/MDT. Pass the IRE, IPC and ILL into 5142 * ip_xxinfo_return(), which performs further checks 5143 * against them and upon success, returns the LSO/MDT info 5144 * mblk which we will attach to the bind acknowledgment. 5145 */ 5146 if (lso_dst_ire != NULL) { 5147 mblk_t *lsoinfo_mp; 5148 5149 ASSERT(ill->ill_lso_capab != NULL); 5150 if ((lsoinfo_mp = ip_lsoinfo_return(lso_dst_ire, connp, 5151 ill->ill_name, ill->ill_lso_capab)) != NULL) 5152 linkb(mp, lsoinfo_mp); 5153 } else if (md_dst_ire != NULL) { 5154 mblk_t *mdinfo_mp; 5155 5156 ASSERT(ill->ill_mdt_capab != NULL); 5157 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 5158 ill->ill_name, ill->ill_mdt_capab)) != NULL) 5159 linkb(mp, mdinfo_mp); 5160 } 5161 } 5162 bad_addr: 5163 if (ipsec_policy_set) { 5164 ASSERT(policy_mp == mp->b_cont); 5165 ASSERT(policy_mp != NULL); 5166 freeb(policy_mp); 5167 /* 5168 * As of now assume that nothing else accompanies 5169 * IPSEC_POLICY_SET. 5170 */ 5171 mp->b_cont = NULL; 5172 } 5173 if (src_ire != NULL) 5174 IRE_REFRELE(src_ire); 5175 if (dst_ire != NULL) 5176 IRE_REFRELE(dst_ire); 5177 if (sire != NULL) 5178 IRE_REFRELE(sire); 5179 if (md_dst_ire != NULL) 5180 IRE_REFRELE(md_dst_ire); 5181 if (lso_dst_ire != NULL) 5182 IRE_REFRELE(lso_dst_ire); 5183 return (error); 5184 } 5185 5186 /* 5187 * Insert the ire in b_cont. Returns false if it fails (due to lack of space). 5188 * Prefers dst_ire over src_ire. 5189 */ 5190 static boolean_t 5191 ip_bind_insert_ire(mblk_t *mp, ire_t *ire, iulp_t *ulp_info, ip_stack_t *ipst) 5192 { 5193 mblk_t *mp1; 5194 ire_t *ret_ire = NULL; 5195 5196 mp1 = mp->b_cont; 5197 ASSERT(mp1 != NULL); 5198 5199 if (ire != NULL) { 5200 /* 5201 * mp1 initialized above to IRE_DB_REQ_TYPE 5202 * appended mblk. Its <upper protocol>'s 5203 * job to make sure there is room. 5204 */ 5205 if ((mp1->b_datap->db_lim - mp1->b_rptr) < sizeof (ire_t)) 5206 return (0); 5207 5208 mp1->b_datap->db_type = IRE_DB_TYPE; 5209 mp1->b_wptr = mp1->b_rptr + sizeof (ire_t); 5210 bcopy(ire, mp1->b_rptr, sizeof (ire_t)); 5211 ret_ire = (ire_t *)mp1->b_rptr; 5212 /* 5213 * Pass the latest setting of the ip_path_mtu_discovery and 5214 * copy the ulp info if any. 5215 */ 5216 ret_ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? 5217 IPH_DF : 0; 5218 if (ulp_info != NULL) { 5219 bcopy(ulp_info, &(ret_ire->ire_uinfo), 5220 sizeof (iulp_t)); 5221 } 5222 ret_ire->ire_mp = mp1; 5223 } else { 5224 /* 5225 * No IRE was found. Remove IRE mblk. 5226 */ 5227 mp->b_cont = mp1->b_cont; 5228 freeb(mp1); 5229 } 5230 5231 return (1); 5232 } 5233 5234 /* 5235 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 5236 * the final piece where we don't. Return a pointer to the first mblk in the 5237 * result, and update the pointer to the next mblk to chew on. If anything 5238 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 5239 * NULL pointer. 5240 */ 5241 mblk_t * 5242 ip_carve_mp(mblk_t **mpp, ssize_t len) 5243 { 5244 mblk_t *mp0; 5245 mblk_t *mp1; 5246 mblk_t *mp2; 5247 5248 if (!len || !mpp || !(mp0 = *mpp)) 5249 return (NULL); 5250 /* If we aren't going to consume the first mblk, we need a dup. */ 5251 if (mp0->b_wptr - mp0->b_rptr > len) { 5252 mp1 = dupb(mp0); 5253 if (mp1) { 5254 /* Partition the data between the two mblks. */ 5255 mp1->b_wptr = mp1->b_rptr + len; 5256 mp0->b_rptr = mp1->b_wptr; 5257 /* 5258 * after adjustments if mblk not consumed is now 5259 * unaligned, try to align it. If this fails free 5260 * all messages and let upper layer recover. 5261 */ 5262 if (!OK_32PTR(mp0->b_rptr)) { 5263 if (!pullupmsg(mp0, -1)) { 5264 freemsg(mp0); 5265 freemsg(mp1); 5266 *mpp = NULL; 5267 return (NULL); 5268 } 5269 } 5270 } 5271 return (mp1); 5272 } 5273 /* Eat through as many mblks as we need to get len bytes. */ 5274 len -= mp0->b_wptr - mp0->b_rptr; 5275 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 5276 if (mp2->b_wptr - mp2->b_rptr > len) { 5277 /* 5278 * We won't consume the entire last mblk. Like 5279 * above, dup and partition it. 5280 */ 5281 mp1->b_cont = dupb(mp2); 5282 mp1 = mp1->b_cont; 5283 if (!mp1) { 5284 /* 5285 * Trouble. Rather than go to a lot of 5286 * trouble to clean up, we free the messages. 5287 * This won't be any worse than losing it on 5288 * the wire. 5289 */ 5290 freemsg(mp0); 5291 freemsg(mp2); 5292 *mpp = NULL; 5293 return (NULL); 5294 } 5295 mp1->b_wptr = mp1->b_rptr + len; 5296 mp2->b_rptr = mp1->b_wptr; 5297 /* 5298 * after adjustments if mblk not consumed is now 5299 * unaligned, try to align it. If this fails free 5300 * all messages and let upper layer recover. 5301 */ 5302 if (!OK_32PTR(mp2->b_rptr)) { 5303 if (!pullupmsg(mp2, -1)) { 5304 freemsg(mp0); 5305 freemsg(mp2); 5306 *mpp = NULL; 5307 return (NULL); 5308 } 5309 } 5310 *mpp = mp2; 5311 return (mp0); 5312 } 5313 /* Decrement len by the amount we just got. */ 5314 len -= mp2->b_wptr - mp2->b_rptr; 5315 } 5316 /* 5317 * len should be reduced to zero now. If not our caller has 5318 * screwed up. 5319 */ 5320 if (len) { 5321 /* Shouldn't happen! */ 5322 freemsg(mp0); 5323 *mpp = NULL; 5324 return (NULL); 5325 } 5326 /* 5327 * We consumed up to exactly the end of an mblk. Detach the part 5328 * we are returning from the rest of the chain. 5329 */ 5330 mp1->b_cont = NULL; 5331 *mpp = mp2; 5332 return (mp0); 5333 } 5334 5335 /* The ill stream is being unplumbed. Called from ip_close */ 5336 int 5337 ip_modclose(ill_t *ill) 5338 { 5339 boolean_t success; 5340 ipsq_t *ipsq; 5341 ipif_t *ipif; 5342 queue_t *q = ill->ill_rq; 5343 ip_stack_t *ipst = ill->ill_ipst; 5344 clock_t timeout; 5345 5346 /* 5347 * Wait for the ACKs of all deferred control messages to be processed. 5348 * In particular, we wait for a potential capability reset initiated 5349 * in ip_sioctl_plink() to complete before proceeding. 5350 * 5351 * Note: we wait for at most ip_modclose_ackwait_ms (by default 3000 ms) 5352 * in case the driver never replies. 5353 */ 5354 timeout = lbolt + MSEC_TO_TICK(ip_modclose_ackwait_ms); 5355 mutex_enter(&ill->ill_lock); 5356 while (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 5357 if (cv_timedwait(&ill->ill_cv, &ill->ill_lock, timeout) < 0) { 5358 /* Timeout */ 5359 break; 5360 } 5361 } 5362 mutex_exit(&ill->ill_lock); 5363 5364 /* 5365 * Forcibly enter the ipsq after some delay. This is to take 5366 * care of the case when some ioctl does not complete because 5367 * we sent a control message to the driver and it did not 5368 * send us a reply. We want to be able to at least unplumb 5369 * and replumb rather than force the user to reboot the system. 5370 */ 5371 success = ipsq_enter(ill, B_FALSE); 5372 5373 /* 5374 * Open/close/push/pop is guaranteed to be single threaded 5375 * per stream by STREAMS. FS guarantees that all references 5376 * from top are gone before close is called. So there can't 5377 * be another close thread that has set CONDEMNED on this ill. 5378 * and cause ipsq_enter to return failure. 5379 */ 5380 ASSERT(success); 5381 ipsq = ill->ill_phyint->phyint_ipsq; 5382 5383 /* 5384 * Mark it condemned. No new reference will be made to this ill. 5385 * Lookup functions will return an error. Threads that try to 5386 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5387 * that the refcnt will drop down to zero. 5388 */ 5389 mutex_enter(&ill->ill_lock); 5390 ill->ill_state_flags |= ILL_CONDEMNED; 5391 for (ipif = ill->ill_ipif; ipif != NULL; 5392 ipif = ipif->ipif_next) { 5393 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5394 } 5395 /* 5396 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5397 * returns error if ILL_CONDEMNED is set 5398 */ 5399 cv_broadcast(&ill->ill_cv); 5400 mutex_exit(&ill->ill_lock); 5401 5402 /* 5403 * Send all the deferred DLPI messages downstream which came in 5404 * during the small window right before ipsq_enter(). We do this 5405 * without waiting for the ACKs because all the ACKs for M_PROTO 5406 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 5407 */ 5408 ill_dlpi_send_deferred(ill); 5409 5410 /* 5411 * Shut down fragmentation reassembly. 5412 * ill_frag_timer won't start a timer again. 5413 * Now cancel any existing timer 5414 */ 5415 (void) untimeout(ill->ill_frag_timer_id); 5416 (void) ill_frag_timeout(ill, 0); 5417 5418 /* 5419 * If MOVE was in progress, clear the 5420 * move_in_progress fields also. 5421 */ 5422 if (ill->ill_move_in_progress) { 5423 ILL_CLEAR_MOVE(ill); 5424 } 5425 5426 /* 5427 * Call ill_delete to bring down the ipifs, ilms and ill on 5428 * this ill. Then wait for the refcnts to drop to zero. 5429 * ill_is_freeable checks whether the ill is really quiescent. 5430 * Then make sure that threads that are waiting to enter the 5431 * ipsq have seen the error returned by ipsq_enter and have 5432 * gone away. Then we call ill_delete_tail which does the 5433 * DL_UNBIND_REQ with the driver and then qprocsoff. 5434 */ 5435 ill_delete(ill); 5436 mutex_enter(&ill->ill_lock); 5437 while (!ill_is_freeable(ill)) 5438 cv_wait(&ill->ill_cv, &ill->ill_lock); 5439 while (ill->ill_waiters) 5440 cv_wait(&ill->ill_cv, &ill->ill_lock); 5441 5442 mutex_exit(&ill->ill_lock); 5443 5444 /* 5445 * ill_delete_tail drops reference on ill_ipst, but we need to keep 5446 * it held until the end of the function since the cleanup 5447 * below needs to be able to use the ip_stack_t. 5448 */ 5449 netstack_hold(ipst->ips_netstack); 5450 5451 /* qprocsoff is called in ill_delete_tail */ 5452 ill_delete_tail(ill); 5453 ASSERT(ill->ill_ipst == NULL); 5454 5455 /* 5456 * Walk through all upper (conn) streams and qenable 5457 * those that have queued data. 5458 * close synchronization needs this to 5459 * be done to ensure that all upper layers blocked 5460 * due to flow control to the closing device 5461 * get unblocked. 5462 */ 5463 ip1dbg(("ip_wsrv: walking\n")); 5464 conn_walk_drain(ipst); 5465 5466 mutex_enter(&ipst->ips_ip_mi_lock); 5467 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 5468 mutex_exit(&ipst->ips_ip_mi_lock); 5469 5470 /* 5471 * credp could be null if the open didn't succeed and ip_modopen 5472 * itself calls ip_close. 5473 */ 5474 if (ill->ill_credp != NULL) 5475 crfree(ill->ill_credp); 5476 5477 mutex_enter(&ill->ill_lock); 5478 ill_nic_info_dispatch(ill); 5479 mutex_exit(&ill->ill_lock); 5480 5481 /* 5482 * Now we are done with the module close pieces that 5483 * need the netstack_t. 5484 */ 5485 netstack_rele(ipst->ips_netstack); 5486 5487 mi_close_free((IDP)ill); 5488 q->q_ptr = WR(q)->q_ptr = NULL; 5489 5490 ipsq_exit(ipsq); 5491 5492 return (0); 5493 } 5494 5495 /* 5496 * This is called as part of close() for IP, UDP, ICMP, and RTS 5497 * in order to quiesce the conn. 5498 */ 5499 void 5500 ip_quiesce_conn(conn_t *connp) 5501 { 5502 boolean_t drain_cleanup_reqd = B_FALSE; 5503 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5504 boolean_t ilg_cleanup_reqd = B_FALSE; 5505 ip_stack_t *ipst; 5506 5507 ASSERT(!IPCL_IS_TCP(connp)); 5508 ipst = connp->conn_netstack->netstack_ip; 5509 5510 /* 5511 * Mark the conn as closing, and this conn must not be 5512 * inserted in future into any list. Eg. conn_drain_insert(), 5513 * won't insert this conn into the conn_drain_list. 5514 * Similarly ill_pending_mp_add() will not add any mp to 5515 * the pending mp list, after this conn has started closing. 5516 * 5517 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5518 * cannot get set henceforth. 5519 */ 5520 mutex_enter(&connp->conn_lock); 5521 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5522 connp->conn_state_flags |= CONN_CLOSING; 5523 if (connp->conn_idl != NULL) 5524 drain_cleanup_reqd = B_TRUE; 5525 if (connp->conn_oper_pending_ill != NULL) 5526 conn_ioctl_cleanup_reqd = B_TRUE; 5527 if (connp->conn_dhcpinit_ill != NULL) { 5528 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0); 5529 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit); 5530 connp->conn_dhcpinit_ill = NULL; 5531 } 5532 if (connp->conn_ilg_inuse != 0) 5533 ilg_cleanup_reqd = B_TRUE; 5534 mutex_exit(&connp->conn_lock); 5535 5536 if (conn_ioctl_cleanup_reqd) 5537 conn_ioctl_cleanup(connp); 5538 5539 if (is_system_labeled() && connp->conn_anon_port) { 5540 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5541 connp->conn_mlp_type, connp->conn_ulp, 5542 ntohs(connp->conn_lport), B_FALSE); 5543 connp->conn_anon_port = 0; 5544 } 5545 connp->conn_mlp_type = mlptSingle; 5546 5547 /* 5548 * Remove this conn from any fanout list it is on. 5549 * and then wait for any threads currently operating 5550 * on this endpoint to finish 5551 */ 5552 ipcl_hash_remove(connp); 5553 5554 /* 5555 * Remove this conn from the drain list, and do 5556 * any other cleanup that may be required. 5557 * (Only non-tcp streams may have a non-null conn_idl. 5558 * TCP streams are never flow controlled, and 5559 * conn_idl will be null) 5560 */ 5561 if (drain_cleanup_reqd) 5562 conn_drain_tail(connp, B_TRUE); 5563 5564 if (connp == ipst->ips_ip_g_mrouter) 5565 (void) ip_mrouter_done(NULL, ipst); 5566 5567 if (ilg_cleanup_reqd) 5568 ilg_delete_all(connp); 5569 5570 conn_delete_ire(connp, NULL); 5571 5572 /* 5573 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5574 * callers from write side can't be there now because close 5575 * is in progress. The only other caller is ipcl_walk 5576 * which checks for the condemned flag. 5577 */ 5578 mutex_enter(&connp->conn_lock); 5579 connp->conn_state_flags |= CONN_CONDEMNED; 5580 while (connp->conn_ref != 1) 5581 cv_wait(&connp->conn_cv, &connp->conn_lock); 5582 connp->conn_state_flags |= CONN_QUIESCED; 5583 mutex_exit(&connp->conn_lock); 5584 } 5585 5586 /* ARGSUSED */ 5587 int 5588 ip_close(queue_t *q, int flags) 5589 { 5590 conn_t *connp; 5591 5592 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5593 5594 /* 5595 * Call the appropriate delete routine depending on whether this is 5596 * a module or device. 5597 */ 5598 if (WR(q)->q_next != NULL) { 5599 /* This is a module close */ 5600 return (ip_modclose((ill_t *)q->q_ptr)); 5601 } 5602 5603 connp = q->q_ptr; 5604 ip_quiesce_conn(connp); 5605 5606 qprocsoff(q); 5607 5608 /* 5609 * Now we are truly single threaded on this stream, and can 5610 * delete the things hanging off the connp, and finally the connp. 5611 * We removed this connp from the fanout list, it cannot be 5612 * accessed thru the fanouts, and we already waited for the 5613 * conn_ref to drop to 0. We are already in close, so 5614 * there cannot be any other thread from the top. qprocsoff 5615 * has completed, and service has completed or won't run in 5616 * future. 5617 */ 5618 ASSERT(connp->conn_ref == 1); 5619 5620 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 5621 5622 connp->conn_ref--; 5623 ipcl_conn_destroy(connp); 5624 5625 q->q_ptr = WR(q)->q_ptr = NULL; 5626 return (0); 5627 } 5628 5629 /* 5630 * Wapper around putnext() so that ip_rts_request can merely use 5631 * conn_recv. 5632 */ 5633 /*ARGSUSED2*/ 5634 static void 5635 ip_conn_input(void *arg1, mblk_t *mp, void *arg2) 5636 { 5637 conn_t *connp = (conn_t *)arg1; 5638 5639 putnext(connp->conn_rq, mp); 5640 } 5641 5642 /* Return the IP checksum for the IP header at "iph". */ 5643 uint16_t 5644 ip_csum_hdr(ipha_t *ipha) 5645 { 5646 uint16_t *uph; 5647 uint32_t sum; 5648 int opt_len; 5649 5650 opt_len = (ipha->ipha_version_and_hdr_length & 0xF) - 5651 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 5652 uph = (uint16_t *)ipha; 5653 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 5654 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 5655 if (opt_len > 0) { 5656 do { 5657 sum += uph[10]; 5658 sum += uph[11]; 5659 uph += 2; 5660 } while (--opt_len); 5661 } 5662 sum = (sum & 0xFFFF) + (sum >> 16); 5663 sum = ~(sum + (sum >> 16)) & 0xFFFF; 5664 if (sum == 0xffff) 5665 sum = 0; 5666 return ((uint16_t)sum); 5667 } 5668 5669 /* 5670 * Called when the module is about to be unloaded 5671 */ 5672 void 5673 ip_ddi_destroy(void) 5674 { 5675 tnet_fini(); 5676 5677 icmp_ddi_destroy(); 5678 rts_ddi_destroy(); 5679 udp_ddi_destroy(); 5680 sctp_ddi_g_destroy(); 5681 tcp_ddi_g_destroy(); 5682 ipsec_policy_g_destroy(); 5683 ipcl_g_destroy(); 5684 ip_net_g_destroy(); 5685 ip_ire_g_fini(); 5686 inet_minor_destroy(ip_minor_arena_sa); 5687 #if defined(_LP64) 5688 inet_minor_destroy(ip_minor_arena_la); 5689 #endif 5690 5691 #ifdef DEBUG 5692 list_destroy(&ip_thread_list); 5693 rw_destroy(&ip_thread_rwlock); 5694 tsd_destroy(&ip_thread_data); 5695 #endif 5696 5697 netstack_unregister(NS_IP); 5698 } 5699 5700 /* 5701 * First step in cleanup. 5702 */ 5703 /* ARGSUSED */ 5704 static void 5705 ip_stack_shutdown(netstackid_t stackid, void *arg) 5706 { 5707 ip_stack_t *ipst = (ip_stack_t *)arg; 5708 5709 #ifdef NS_DEBUG 5710 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 5711 #endif 5712 5713 /* Get rid of loopback interfaces and their IREs */ 5714 ip_loopback_cleanup(ipst); 5715 } 5716 5717 /* 5718 * Free the IP stack instance. 5719 */ 5720 static void 5721 ip_stack_fini(netstackid_t stackid, void *arg) 5722 { 5723 ip_stack_t *ipst = (ip_stack_t *)arg; 5724 int ret; 5725 5726 #ifdef NS_DEBUG 5727 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 5728 #endif 5729 ipv4_hook_destroy(ipst); 5730 ipv6_hook_destroy(ipst); 5731 ip_net_destroy(ipst); 5732 5733 rw_destroy(&ipst->ips_srcid_lock); 5734 5735 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 5736 ipst->ips_ip_mibkp = NULL; 5737 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 5738 ipst->ips_icmp_mibkp = NULL; 5739 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 5740 ipst->ips_ip_kstat = NULL; 5741 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 5742 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 5743 ipst->ips_ip6_kstat = NULL; 5744 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 5745 5746 nd_free(&ipst->ips_ip_g_nd); 5747 kmem_free(ipst->ips_param_arr, sizeof (lcl_param_arr)); 5748 ipst->ips_param_arr = NULL; 5749 kmem_free(ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5750 ipst->ips_ndp_arr = NULL; 5751 5752 ip_mrouter_stack_destroy(ipst); 5753 5754 mutex_destroy(&ipst->ips_ip_mi_lock); 5755 rw_destroy(&ipst->ips_ipsec_capab_ills_lock); 5756 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 5757 rw_destroy(&ipst->ips_ip_g_nd_lock); 5758 5759 ret = untimeout(ipst->ips_igmp_timeout_id); 5760 if (ret == -1) { 5761 ASSERT(ipst->ips_igmp_timeout_id == 0); 5762 } else { 5763 ASSERT(ipst->ips_igmp_timeout_id != 0); 5764 ipst->ips_igmp_timeout_id = 0; 5765 } 5766 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 5767 if (ret == -1) { 5768 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 5769 } else { 5770 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 5771 ipst->ips_igmp_slowtimeout_id = 0; 5772 } 5773 ret = untimeout(ipst->ips_mld_timeout_id); 5774 if (ret == -1) { 5775 ASSERT(ipst->ips_mld_timeout_id == 0); 5776 } else { 5777 ASSERT(ipst->ips_mld_timeout_id != 0); 5778 ipst->ips_mld_timeout_id = 0; 5779 } 5780 ret = untimeout(ipst->ips_mld_slowtimeout_id); 5781 if (ret == -1) { 5782 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 5783 } else { 5784 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 5785 ipst->ips_mld_slowtimeout_id = 0; 5786 } 5787 ret = untimeout(ipst->ips_ip_ire_expire_id); 5788 if (ret == -1) { 5789 ASSERT(ipst->ips_ip_ire_expire_id == 0); 5790 } else { 5791 ASSERT(ipst->ips_ip_ire_expire_id != 0); 5792 ipst->ips_ip_ire_expire_id = 0; 5793 } 5794 5795 mutex_destroy(&ipst->ips_igmp_timer_lock); 5796 mutex_destroy(&ipst->ips_mld_timer_lock); 5797 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 5798 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 5799 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 5800 rw_destroy(&ipst->ips_ill_g_lock); 5801 5802 ip_ire_fini(ipst); 5803 ip6_asp_free(ipst); 5804 conn_drain_fini(ipst); 5805 ipcl_destroy(ipst); 5806 5807 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 5808 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 5809 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 5810 ipst->ips_ndp4 = NULL; 5811 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 5812 ipst->ips_ndp6 = NULL; 5813 5814 if (ipst->ips_loopback_ksp != NULL) { 5815 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 5816 ipst->ips_loopback_ksp = NULL; 5817 } 5818 5819 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 5820 ipst->ips_phyint_g_list = NULL; 5821 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 5822 ipst->ips_ill_g_heads = NULL; 5823 5824 kmem_free(ipst, sizeof (*ipst)); 5825 } 5826 5827 /* 5828 * This function is called from the TSD destructor, and is used to debug 5829 * reference count issues in IP. See block comment in <inet/ip_if.h> for 5830 * details. 5831 */ 5832 static void 5833 ip_thread_exit(void *phash) 5834 { 5835 th_hash_t *thh = phash; 5836 5837 rw_enter(&ip_thread_rwlock, RW_WRITER); 5838 list_remove(&ip_thread_list, thh); 5839 rw_exit(&ip_thread_rwlock); 5840 mod_hash_destroy_hash(thh->thh_hash); 5841 kmem_free(thh, sizeof (*thh)); 5842 } 5843 5844 /* 5845 * Called when the IP kernel module is loaded into the kernel 5846 */ 5847 void 5848 ip_ddi_init(void) 5849 { 5850 ip_input_proc = ip_squeue_switch(ip_squeue_enter); 5851 5852 /* 5853 * For IP and TCP the minor numbers should start from 2 since we have 4 5854 * initial devices: ip, ip6, tcp, tcp6. 5855 */ 5856 /* 5857 * If this is a 64-bit kernel, then create two separate arenas - 5858 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the 5859 * other for socket apps in the range 2^^18 through 2^^32-1. 5860 */ 5861 ip_minor_arena_la = NULL; 5862 ip_minor_arena_sa = NULL; 5863 #if defined(_LP64) 5864 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 5865 INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) { 5866 cmn_err(CE_PANIC, 5867 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 5868 } 5869 if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la", 5870 MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) { 5871 cmn_err(CE_PANIC, 5872 "ip_ddi_init: ip_minor_arena_la creation failed\n"); 5873 } 5874 #else 5875 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 5876 INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) { 5877 cmn_err(CE_PANIC, 5878 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 5879 } 5880 #endif 5881 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5882 5883 ipcl_g_init(); 5884 ip_ire_g_init(); 5885 ip_net_g_init(); 5886 5887 #ifdef DEBUG 5888 tsd_create(&ip_thread_data, ip_thread_exit); 5889 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL); 5890 list_create(&ip_thread_list, sizeof (th_hash_t), 5891 offsetof(th_hash_t, thh_link)); 5892 #endif 5893 5894 /* 5895 * We want to be informed each time a stack is created or 5896 * destroyed in the kernel, so we can maintain the 5897 * set of udp_stack_t's. 5898 */ 5899 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 5900 ip_stack_fini); 5901 5902 ipsec_policy_g_init(); 5903 tcp_ddi_g_init(); 5904 sctp_ddi_g_init(); 5905 5906 tnet_init(); 5907 5908 udp_ddi_init(); 5909 rts_ddi_init(); 5910 icmp_ddi_init(); 5911 } 5912 5913 /* 5914 * Initialize the IP stack instance. 5915 */ 5916 static void * 5917 ip_stack_init(netstackid_t stackid, netstack_t *ns) 5918 { 5919 ip_stack_t *ipst; 5920 ipparam_t *pa; 5921 ipndp_t *na; 5922 5923 #ifdef NS_DEBUG 5924 printf("ip_stack_init(stack %d)\n", stackid); 5925 #endif 5926 5927 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 5928 ipst->ips_netstack = ns; 5929 5930 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 5931 KM_SLEEP); 5932 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 5933 KM_SLEEP); 5934 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5935 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5936 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5937 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5938 5939 rw_init(&ipst->ips_ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 5940 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5941 ipst->ips_igmp_deferred_next = INFINITY; 5942 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5943 ipst->ips_mld_deferred_next = INFINITY; 5944 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5945 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5946 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 5947 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 5948 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 5949 rw_init(&ipst->ips_ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 5950 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 5951 5952 ipcl_init(ipst); 5953 ip_ire_init(ipst); 5954 ip6_asp_init(ipst); 5955 ipif_init(ipst); 5956 conn_drain_init(ipst); 5957 ip_mrouter_stack_init(ipst); 5958 5959 ipst->ips_ip_g_frag_timeout = IP_FRAG_TIMEOUT; 5960 ipst->ips_ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 5961 5962 ipst->ips_ip_multirt_log_interval = 1000; 5963 5964 ipst->ips_ip_g_forward = IP_FORWARD_DEFAULT; 5965 ipst->ips_ipv6_forward = IP_FORWARD_DEFAULT; 5966 ipst->ips_ill_index = 1; 5967 5968 ipst->ips_saved_ip_g_forward = -1; 5969 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 5970 5971 pa = (ipparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP); 5972 ipst->ips_param_arr = pa; 5973 bcopy(lcl_param_arr, ipst->ips_param_arr, sizeof (lcl_param_arr)); 5974 5975 na = (ipndp_t *)kmem_alloc(sizeof (lcl_ndp_arr), KM_SLEEP); 5976 ipst->ips_ndp_arr = na; 5977 bcopy(lcl_ndp_arr, ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5978 ipst->ips_ndp_arr[IPNDP_IP_FORWARDING_OFFSET].ip_ndp_data = 5979 (caddr_t)&ipst->ips_ip_g_forward; 5980 ipst->ips_ndp_arr[IPNDP_IP6_FORWARDING_OFFSET].ip_ndp_data = 5981 (caddr_t)&ipst->ips_ipv6_forward; 5982 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_name, 5983 "ip_cgtp_filter") == 0); 5984 ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_data = 5985 (caddr_t)&ipst->ips_ip_cgtp_filter; 5986 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_name, 5987 "ipmp_hook_emulation") == 0); 5988 ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_data = 5989 (caddr_t)&ipst->ips_ipmp_hook_emulation; 5990 5991 (void) ip_param_register(&ipst->ips_ip_g_nd, 5992 ipst->ips_param_arr, A_CNT(lcl_param_arr), 5993 ipst->ips_ndp_arr, A_CNT(lcl_ndp_arr)); 5994 5995 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 5996 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 5997 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 5998 ipst->ips_ip6_kstat = 5999 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 6000 6001 ipst->ips_ipmp_enable_failback = B_TRUE; 6002 6003 ipst->ips_ip_src_id = 1; 6004 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 6005 6006 ip_net_init(ipst, ns); 6007 ipv4_hook_init(ipst); 6008 ipv6_hook_init(ipst); 6009 6010 return (ipst); 6011 } 6012 6013 /* 6014 * Allocate and initialize a DLPI template of the specified length. (May be 6015 * called as writer.) 6016 */ 6017 mblk_t * 6018 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 6019 { 6020 mblk_t *mp; 6021 6022 mp = allocb(len, BPRI_MED); 6023 if (!mp) 6024 return (NULL); 6025 6026 /* 6027 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 6028 * of which we don't seem to use) are sent with M_PCPROTO, and 6029 * that other DLPI are M_PROTO. 6030 */ 6031 if (prim == DL_INFO_REQ) { 6032 mp->b_datap->db_type = M_PCPROTO; 6033 } else { 6034 mp->b_datap->db_type = M_PROTO; 6035 } 6036 6037 mp->b_wptr = mp->b_rptr + len; 6038 bzero(mp->b_rptr, len); 6039 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 6040 return (mp); 6041 } 6042 6043 /* 6044 * Debug formatting routine. Returns a character string representation of the 6045 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 6046 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 6047 * 6048 * Once the ndd table-printing interfaces are removed, this can be changed to 6049 * standard dotted-decimal form. 6050 */ 6051 char * 6052 ip_dot_addr(ipaddr_t addr, char *buf) 6053 { 6054 uint8_t *ap = (uint8_t *)&addr; 6055 6056 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 6057 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 6058 return (buf); 6059 } 6060 6061 /* 6062 * Write the given MAC address as a printable string in the usual colon- 6063 * separated format. 6064 */ 6065 const char * 6066 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 6067 { 6068 char *bp; 6069 6070 if (alen == 0 || buflen < 4) 6071 return ("?"); 6072 bp = buf; 6073 for (;;) { 6074 /* 6075 * If there are more MAC address bytes available, but we won't 6076 * have any room to print them, then add "..." to the string 6077 * instead. See below for the 'magic number' explanation. 6078 */ 6079 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 6080 (void) strcpy(bp, "..."); 6081 break; 6082 } 6083 (void) sprintf(bp, "%02x", *addr++); 6084 bp += 2; 6085 if (--alen == 0) 6086 break; 6087 *bp++ = ':'; 6088 buflen -= 3; 6089 /* 6090 * At this point, based on the first 'if' statement above, 6091 * either alen == 1 and buflen >= 3, or alen > 1 and 6092 * buflen >= 4. The first case leaves room for the final "xx" 6093 * number and trailing NUL byte. The second leaves room for at 6094 * least "...". Thus the apparently 'magic' numbers chosen for 6095 * that statement. 6096 */ 6097 } 6098 return (buf); 6099 } 6100 6101 /* 6102 * Send an ICMP error after patching up the packet appropriately. Returns 6103 * non-zero if the appropriate MIB should be bumped; zero otherwise. 6104 */ 6105 static boolean_t 6106 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 6107 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, 6108 zoneid_t zoneid, ip_stack_t *ipst) 6109 { 6110 ipha_t *ipha; 6111 mblk_t *first_mp; 6112 boolean_t secure; 6113 unsigned char db_type; 6114 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6115 6116 first_mp = mp; 6117 if (mctl_present) { 6118 mp = mp->b_cont; 6119 secure = ipsec_in_is_secure(first_mp); 6120 ASSERT(mp != NULL); 6121 } else { 6122 /* 6123 * If this is an ICMP error being reported - which goes 6124 * up as M_CTLs, we need to convert them to M_DATA till 6125 * we finish checking with global policy because 6126 * ipsec_check_global_policy() assumes M_DATA as clear 6127 * and M_CTL as secure. 6128 */ 6129 db_type = DB_TYPE(mp); 6130 DB_TYPE(mp) = M_DATA; 6131 secure = B_FALSE; 6132 } 6133 /* 6134 * We are generating an icmp error for some inbound packet. 6135 * Called from all ip_fanout_(udp, tcp, proto) functions. 6136 * Before we generate an error, check with global policy 6137 * to see whether this is allowed to enter the system. As 6138 * there is no "conn", we are checking with global policy. 6139 */ 6140 ipha = (ipha_t *)mp->b_rptr; 6141 if (secure || ipss->ipsec_inbound_v4_policy_present) { 6142 first_mp = ipsec_check_global_policy(first_mp, NULL, 6143 ipha, NULL, mctl_present, ipst->ips_netstack); 6144 if (first_mp == NULL) 6145 return (B_FALSE); 6146 } 6147 6148 if (!mctl_present) 6149 DB_TYPE(mp) = db_type; 6150 6151 if (flags & IP_FF_SEND_ICMP) { 6152 if (flags & IP_FF_HDR_COMPLETE) { 6153 if (ip_hdr_complete(ipha, zoneid, ipst)) { 6154 freemsg(first_mp); 6155 return (B_TRUE); 6156 } 6157 } 6158 if (flags & IP_FF_CKSUM) { 6159 /* 6160 * Have to correct checksum since 6161 * the packet might have been 6162 * fragmented and the reassembly code in ip_rput 6163 * does not restore the IP checksum. 6164 */ 6165 ipha->ipha_hdr_checksum = 0; 6166 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6167 } 6168 switch (icmp_type) { 6169 case ICMP_DEST_UNREACHABLE: 6170 icmp_unreachable(WR(q), first_mp, icmp_code, zoneid, 6171 ipst); 6172 break; 6173 default: 6174 freemsg(first_mp); 6175 break; 6176 } 6177 } else { 6178 freemsg(first_mp); 6179 return (B_FALSE); 6180 } 6181 6182 return (B_TRUE); 6183 } 6184 6185 /* 6186 * Used to send an ICMP error message when a packet is received for 6187 * a protocol that is not supported. The mblk passed as argument 6188 * is consumed by this function. 6189 */ 6190 void 6191 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid, 6192 ip_stack_t *ipst) 6193 { 6194 mblk_t *mp; 6195 ipha_t *ipha; 6196 ill_t *ill; 6197 ipsec_in_t *ii; 6198 6199 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6200 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6201 6202 mp = ipsec_mp->b_cont; 6203 ipsec_mp->b_cont = NULL; 6204 ipha = (ipha_t *)mp->b_rptr; 6205 /* Get ill from index in ipsec_in_t. */ 6206 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 6207 (IPH_HDR_VERSION(ipha) == IPV6_VERSION), NULL, NULL, NULL, NULL, 6208 ipst); 6209 if (ill != NULL) { 6210 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 6211 if (ip_fanout_send_icmp(q, mp, flags, 6212 ICMP_DEST_UNREACHABLE, 6213 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid, ipst)) { 6214 BUMP_MIB(ill->ill_ip_mib, 6215 ipIfStatsInUnknownProtos); 6216 } 6217 } else { 6218 if (ip_fanout_send_icmp_v6(q, mp, flags, 6219 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 6220 0, B_FALSE, zoneid, ipst)) { 6221 BUMP_MIB(ill->ill_ip_mib, 6222 ipIfStatsInUnknownProtos); 6223 } 6224 } 6225 ill_refrele(ill); 6226 } else { /* re-link for the freemsg() below. */ 6227 ipsec_mp->b_cont = mp; 6228 } 6229 6230 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 6231 freemsg(ipsec_mp); 6232 } 6233 6234 /* 6235 * See if the inbound datagram has had IPsec processing applied to it. 6236 */ 6237 boolean_t 6238 ipsec_in_is_secure(mblk_t *ipsec_mp) 6239 { 6240 ipsec_in_t *ii; 6241 6242 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6243 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6244 6245 if (ii->ipsec_in_loopback) { 6246 return (ii->ipsec_in_secure); 6247 } else { 6248 return (ii->ipsec_in_ah_sa != NULL || 6249 ii->ipsec_in_esp_sa != NULL || 6250 ii->ipsec_in_decaps); 6251 } 6252 } 6253 6254 /* 6255 * Handle protocols with which IP is less intimate. There 6256 * can be more than one stream bound to a particular 6257 * protocol. When this is the case, normally each one gets a copy 6258 * of any incoming packets. 6259 * 6260 * IPsec NOTE : 6261 * 6262 * Don't allow a secure packet going up a non-secure connection. 6263 * We don't allow this because 6264 * 6265 * 1) Reply might go out in clear which will be dropped at 6266 * the sending side. 6267 * 2) If the reply goes out in clear it will give the 6268 * adversary enough information for getting the key in 6269 * most of the cases. 6270 * 6271 * Moreover getting a secure packet when we expect clear 6272 * implies that SA's were added without checking for 6273 * policy on both ends. This should not happen once ISAKMP 6274 * is used to negotiate SAs as SAs will be added only after 6275 * verifying the policy. 6276 * 6277 * NOTE : If the packet was tunneled and not multicast we only send 6278 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 6279 * back to delivering packets to AF_INET6 raw sockets. 6280 * 6281 * IPQoS Notes: 6282 * Once we have determined the client, invoke IPPF processing. 6283 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6284 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6285 * ip_policy will be false. 6286 * 6287 * Zones notes: 6288 * Currently only applications in the global zone can create raw sockets for 6289 * protocols other than ICMP. So unlike the broadcast / multicast case of 6290 * ip_fanout_udp(), we only send a copy of the packet to streams in the 6291 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 6292 */ 6293 static void 6294 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 6295 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 6296 zoneid_t zoneid) 6297 { 6298 queue_t *rq; 6299 mblk_t *mp1, *first_mp1; 6300 uint_t protocol = ipha->ipha_protocol; 6301 ipaddr_t dst; 6302 boolean_t one_only; 6303 mblk_t *first_mp = mp; 6304 boolean_t secure; 6305 uint32_t ill_index; 6306 conn_t *connp, *first_connp, *next_connp; 6307 connf_t *connfp; 6308 boolean_t shared_addr; 6309 mib2_ipIfStatsEntry_t *mibptr; 6310 ip_stack_t *ipst = recv_ill->ill_ipst; 6311 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6312 6313 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 6314 if (mctl_present) { 6315 mp = first_mp->b_cont; 6316 secure = ipsec_in_is_secure(first_mp); 6317 ASSERT(mp != NULL); 6318 } else { 6319 secure = B_FALSE; 6320 } 6321 dst = ipha->ipha_dst; 6322 /* 6323 * If the packet was tunneled and not multicast we only send to it 6324 * the first match. 6325 */ 6326 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 6327 !CLASSD(dst)); 6328 6329 shared_addr = (zoneid == ALL_ZONES); 6330 if (shared_addr) { 6331 /* 6332 * We don't allow multilevel ports for raw IP, so no need to 6333 * check for that here. 6334 */ 6335 zoneid = tsol_packet_to_zoneid(mp); 6336 } 6337 6338 connfp = &ipst->ips_ipcl_proto_fanout[protocol]; 6339 mutex_enter(&connfp->connf_lock); 6340 connp = connfp->connf_head; 6341 for (connp = connfp->connf_head; connp != NULL; 6342 connp = connp->conn_next) { 6343 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 6344 zoneid) && 6345 (!is_system_labeled() || 6346 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6347 connp))) { 6348 break; 6349 } 6350 } 6351 6352 if (connp == NULL || connp->conn_upq == NULL) { 6353 /* 6354 * No one bound to these addresses. Is 6355 * there a client that wants all 6356 * unclaimed datagrams? 6357 */ 6358 mutex_exit(&connfp->connf_lock); 6359 /* 6360 * Check for IPPROTO_ENCAP... 6361 */ 6362 if (protocol == IPPROTO_ENCAP && ipst->ips_ip_g_mrouter) { 6363 /* 6364 * If an IPsec mblk is here on a multicast 6365 * tunnel (using ip_mroute stuff), check policy here, 6366 * THEN ship off to ip_mroute_decap(). 6367 * 6368 * BTW, If I match a configured IP-in-IP 6369 * tunnel, this path will not be reached, and 6370 * ip_mroute_decap will never be called. 6371 */ 6372 first_mp = ipsec_check_global_policy(first_mp, connp, 6373 ipha, NULL, mctl_present, ipst->ips_netstack); 6374 if (first_mp != NULL) { 6375 if (mctl_present) 6376 freeb(first_mp); 6377 ip_mroute_decap(q, mp, ill); 6378 } /* Else we already freed everything! */ 6379 } else { 6380 /* 6381 * Otherwise send an ICMP protocol unreachable. 6382 */ 6383 if (ip_fanout_send_icmp(q, first_mp, flags, 6384 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 6385 mctl_present, zoneid, ipst)) { 6386 BUMP_MIB(mibptr, ipIfStatsInUnknownProtos); 6387 } 6388 } 6389 return; 6390 } 6391 CONN_INC_REF(connp); 6392 first_connp = connp; 6393 6394 /* 6395 * Only send message to one tunnel driver by immediately 6396 * terminating the loop. 6397 */ 6398 connp = one_only ? NULL : connp->conn_next; 6399 6400 for (;;) { 6401 while (connp != NULL) { 6402 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 6403 flags, zoneid) && 6404 (!is_system_labeled() || 6405 tsol_receive_local(mp, &dst, IPV4_VERSION, 6406 shared_addr, connp))) 6407 break; 6408 connp = connp->conn_next; 6409 } 6410 6411 /* 6412 * Copy the packet. 6413 */ 6414 if (connp == NULL || connp->conn_upq == NULL || 6415 (((first_mp1 = dupmsg(first_mp)) == NULL) && 6416 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 6417 /* 6418 * No more interested clients or memory 6419 * allocation failed 6420 */ 6421 connp = first_connp; 6422 break; 6423 } 6424 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 6425 CONN_INC_REF(connp); 6426 mutex_exit(&connfp->connf_lock); 6427 rq = connp->conn_rq; 6428 if (!canputnext(rq)) { 6429 if (flags & IP_FF_RAWIP) { 6430 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6431 } else { 6432 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6433 } 6434 6435 freemsg(first_mp1); 6436 } else { 6437 /* 6438 * Don't enforce here if we're an actual tunnel - 6439 * let "tun" do it instead. 6440 */ 6441 if (!IPCL_IS_IPTUN(connp) && 6442 (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 6443 secure)) { 6444 first_mp1 = ipsec_check_inbound_policy 6445 (first_mp1, connp, ipha, NULL, 6446 mctl_present); 6447 } 6448 if (first_mp1 != NULL) { 6449 int in_flags = 0; 6450 /* 6451 * ip_fanout_proto also gets called from 6452 * icmp_inbound_error_fanout, in which case 6453 * the msg type is M_CTL. Don't add info 6454 * in this case for the time being. In future 6455 * when there is a need for knowing the 6456 * inbound iface index for ICMP error msgs, 6457 * then this can be changed. 6458 */ 6459 if (connp->conn_recvif) 6460 in_flags = IPF_RECVIF; 6461 /* 6462 * The ULP may support IP_RECVPKTINFO for both 6463 * IP v4 and v6 so pass the appropriate argument 6464 * based on conn IP version. 6465 */ 6466 if (connp->conn_ip_recvpktinfo) { 6467 if (connp->conn_af_isv6) { 6468 /* 6469 * V6 only needs index 6470 */ 6471 in_flags |= IPF_RECVIF; 6472 } else { 6473 /* 6474 * V4 needs index + 6475 * matching address. 6476 */ 6477 in_flags |= IPF_RECVADDR; 6478 } 6479 } 6480 if ((in_flags != 0) && 6481 (mp->b_datap->db_type != M_CTL)) { 6482 /* 6483 * the actual data will be 6484 * contained in b_cont upon 6485 * successful return of the 6486 * following call else 6487 * original mblk is returned 6488 */ 6489 ASSERT(recv_ill != NULL); 6490 mp1 = ip_add_info(mp1, recv_ill, 6491 in_flags, IPCL_ZONEID(connp), ipst); 6492 } 6493 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6494 if (mctl_present) 6495 freeb(first_mp1); 6496 (connp->conn_recv)(connp, mp1, NULL); 6497 } 6498 } 6499 mutex_enter(&connfp->connf_lock); 6500 /* Follow the next pointer before releasing the conn. */ 6501 next_connp = connp->conn_next; 6502 CONN_DEC_REF(connp); 6503 connp = next_connp; 6504 } 6505 6506 /* Last one. Send it upstream. */ 6507 mutex_exit(&connfp->connf_lock); 6508 6509 /* 6510 * If this packet is coming from icmp_inbound_error_fanout ip_policy 6511 * will be set to false. 6512 */ 6513 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6514 ill_index = ill->ill_phyint->phyint_ifindex; 6515 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6516 if (mp == NULL) { 6517 CONN_DEC_REF(connp); 6518 if (mctl_present) { 6519 freeb(first_mp); 6520 } 6521 return; 6522 } 6523 } 6524 6525 rq = connp->conn_rq; 6526 if (!canputnext(rq)) { 6527 if (flags & IP_FF_RAWIP) { 6528 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6529 } else { 6530 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6531 } 6532 6533 freemsg(first_mp); 6534 } else { 6535 if (IPCL_IS_IPTUN(connp)) { 6536 /* 6537 * Tunneled packet. We enforce policy in the tunnel 6538 * module itself. 6539 * 6540 * Send the WHOLE packet up (incl. IPSEC_IN) without 6541 * a policy check. 6542 * FIXME to use conn_recv for tun later. 6543 */ 6544 putnext(rq, first_mp); 6545 CONN_DEC_REF(connp); 6546 return; 6547 } 6548 6549 if ((CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure)) { 6550 first_mp = ipsec_check_inbound_policy(first_mp, connp, 6551 ipha, NULL, mctl_present); 6552 } 6553 6554 if (first_mp != NULL) { 6555 int in_flags = 0; 6556 6557 /* 6558 * ip_fanout_proto also gets called 6559 * from icmp_inbound_error_fanout, in 6560 * which case the msg type is M_CTL. 6561 * Don't add info in this case for time 6562 * being. In future when there is a 6563 * need for knowing the inbound iface 6564 * index for ICMP error msgs, then this 6565 * can be changed 6566 */ 6567 if (connp->conn_recvif) 6568 in_flags = IPF_RECVIF; 6569 if (connp->conn_ip_recvpktinfo) { 6570 if (connp->conn_af_isv6) { 6571 /* 6572 * V6 only needs index 6573 */ 6574 in_flags |= IPF_RECVIF; 6575 } else { 6576 /* 6577 * V4 needs index + 6578 * matching address. 6579 */ 6580 in_flags |= IPF_RECVADDR; 6581 } 6582 } 6583 if ((in_flags != 0) && 6584 (mp->b_datap->db_type != M_CTL)) { 6585 6586 /* 6587 * the actual data will be contained in 6588 * b_cont upon successful return 6589 * of the following call else original 6590 * mblk is returned 6591 */ 6592 ASSERT(recv_ill != NULL); 6593 mp = ip_add_info(mp, recv_ill, 6594 in_flags, IPCL_ZONEID(connp), ipst); 6595 } 6596 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6597 (connp->conn_recv)(connp, mp, NULL); 6598 if (mctl_present) 6599 freeb(first_mp); 6600 } 6601 } 6602 CONN_DEC_REF(connp); 6603 } 6604 6605 /* 6606 * Fanout for TCP packets 6607 * The caller puts <fport, lport> in the ports parameter. 6608 * 6609 * IPQoS Notes 6610 * Before sending it to the client, invoke IPPF processing. 6611 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6612 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6613 * ip_policy is false. 6614 */ 6615 static void 6616 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6617 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6618 { 6619 mblk_t *first_mp; 6620 boolean_t secure; 6621 uint32_t ill_index; 6622 int ip_hdr_len; 6623 tcph_t *tcph; 6624 boolean_t syn_present = B_FALSE; 6625 conn_t *connp; 6626 ip_stack_t *ipst = recv_ill->ill_ipst; 6627 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6628 6629 ASSERT(recv_ill != NULL); 6630 6631 first_mp = mp; 6632 if (mctl_present) { 6633 ASSERT(first_mp->b_datap->db_type == M_CTL); 6634 mp = first_mp->b_cont; 6635 secure = ipsec_in_is_secure(first_mp); 6636 ASSERT(mp != NULL); 6637 } else { 6638 secure = B_FALSE; 6639 } 6640 6641 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6642 6643 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 6644 zoneid, ipst)) == NULL) { 6645 /* 6646 * No connected connection or listener. Send a 6647 * TH_RST via tcp_xmit_listeners_reset. 6648 */ 6649 6650 /* Initiate IPPf processing, if needed. */ 6651 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 6652 uint32_t ill_index; 6653 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6654 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6655 if (first_mp == NULL) 6656 return; 6657 } 6658 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6659 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6660 zoneid)); 6661 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6662 ipst->ips_netstack->netstack_tcp, NULL); 6663 return; 6664 } 6665 6666 /* 6667 * Allocate the SYN for the TCP connection here itself 6668 */ 6669 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6670 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6671 if (IPCL_IS_TCP(connp)) { 6672 squeue_t *sqp; 6673 6674 /* 6675 * For fused tcp loopback, assign the eager's 6676 * squeue to be that of the active connect's. 6677 * Note that we don't check for IP_FF_LOOPBACK 6678 * here since this routine gets called only 6679 * for loopback (unlike the IPv6 counterpart). 6680 */ 6681 ASSERT(Q_TO_CONN(q) != NULL); 6682 if (do_tcp_fusion && 6683 !CONN_INBOUND_POLICY_PRESENT(connp, ipss) && 6684 !secure && 6685 !IPP_ENABLED(IPP_LOCAL_IN, ipst) && !ip_policy && 6686 IPCL_IS_TCP(Q_TO_CONN(q))) { 6687 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6688 sqp = Q_TO_CONN(q)->conn_sqp; 6689 } else { 6690 sqp = IP_SQUEUE_GET(lbolt); 6691 } 6692 6693 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6694 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6695 syn_present = B_TRUE; 6696 } 6697 } 6698 6699 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6700 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6701 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6702 if ((flags & TH_RST) || (flags & TH_URG)) { 6703 CONN_DEC_REF(connp); 6704 freemsg(first_mp); 6705 return; 6706 } 6707 if (flags & TH_ACK) { 6708 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6709 ipst->ips_netstack->netstack_tcp, connp); 6710 CONN_DEC_REF(connp); 6711 return; 6712 } 6713 6714 CONN_DEC_REF(connp); 6715 freemsg(first_mp); 6716 return; 6717 } 6718 6719 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6720 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6721 NULL, mctl_present); 6722 if (first_mp == NULL) { 6723 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6724 CONN_DEC_REF(connp); 6725 return; 6726 } 6727 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6728 ASSERT(syn_present); 6729 if (mctl_present) { 6730 ASSERT(first_mp != mp); 6731 first_mp->b_datap->db_struioflag |= 6732 STRUIO_POLICY; 6733 } else { 6734 ASSERT(first_mp == mp); 6735 mp->b_datap->db_struioflag &= 6736 ~STRUIO_EAGER; 6737 mp->b_datap->db_struioflag |= 6738 STRUIO_POLICY; 6739 } 6740 } else { 6741 /* 6742 * Discard first_mp early since we're dealing with a 6743 * fully-connected conn_t and tcp doesn't do policy in 6744 * this case. 6745 */ 6746 if (mctl_present) { 6747 freeb(first_mp); 6748 mctl_present = B_FALSE; 6749 } 6750 first_mp = mp; 6751 } 6752 } 6753 6754 /* 6755 * Initiate policy processing here if needed. If we get here from 6756 * icmp_inbound_error_fanout, ip_policy is false. 6757 */ 6758 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6759 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6760 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6761 if (mp == NULL) { 6762 CONN_DEC_REF(connp); 6763 if (mctl_present) 6764 freeb(first_mp); 6765 return; 6766 } else if (mctl_present) { 6767 ASSERT(first_mp != mp); 6768 first_mp->b_cont = mp; 6769 } else { 6770 first_mp = mp; 6771 } 6772 } 6773 6774 6775 6776 /* Handle socket options. */ 6777 if (!syn_present && 6778 connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 6779 /* Add header */ 6780 ASSERT(recv_ill != NULL); 6781 /* 6782 * Since tcp does not support IP_RECVPKTINFO for V4, only pass 6783 * IPF_RECVIF. 6784 */ 6785 mp = ip_add_info(mp, recv_ill, IPF_RECVIF, IPCL_ZONEID(connp), 6786 ipst); 6787 if (mp == NULL) { 6788 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6789 CONN_DEC_REF(connp); 6790 if (mctl_present) 6791 freeb(first_mp); 6792 return; 6793 } else if (mctl_present) { 6794 /* 6795 * ip_add_info might return a new mp. 6796 */ 6797 ASSERT(first_mp != mp); 6798 first_mp->b_cont = mp; 6799 } else { 6800 first_mp = mp; 6801 } 6802 } 6803 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6804 if (IPCL_IS_TCP(connp)) { 6805 /* do not drain, certain use cases can blow the stack */ 6806 squeue_enter_nodrain(connp->conn_sqp, first_mp, 6807 connp->conn_recv, connp, SQTAG_IP_FANOUT_TCP); 6808 } else { 6809 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 6810 (connp->conn_recv)(connp, first_mp, NULL); 6811 CONN_DEC_REF(connp); 6812 } 6813 } 6814 6815 /* 6816 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or 6817 * pass it along to ESP if the SPI is non-zero. Returns TRUE if the mblk 6818 * is not consumed. 6819 * 6820 * One of four things can happen, all of which affect the passed-in mblk: 6821 * 6822 * 1.) ICMP messages that go through here just get returned TRUE. 6823 * 6824 * 2.) The packet is stock UDP and gets its zero-SPI stripped. Return TRUE. 6825 * 6826 * 3.) The packet is ESP-in-UDP, gets transformed into an equivalent 6827 * ESP packet, and is passed along to ESP for consumption. Return FALSE. 6828 * 6829 * 4.) The packet is an ESP-in-UDP Keepalive. Drop it and return FALSE. 6830 */ 6831 static boolean_t 6832 zero_spi_check(queue_t *q, mblk_t *mp, ire_t *ire, ill_t *recv_ill, 6833 ipsec_stack_t *ipss) 6834 { 6835 int shift, plen, iph_len; 6836 ipha_t *ipha; 6837 udpha_t *udpha; 6838 uint32_t *spi; 6839 uint32_t esp_ports; 6840 uint8_t *orptr; 6841 boolean_t free_ire; 6842 6843 if (DB_TYPE(mp) == M_CTL) { 6844 /* 6845 * ICMP message with UDP inside. Don't bother stripping, just 6846 * send it up. 6847 * 6848 * NOTE: Any app with UDP_NAT_T_ENDPOINT set is probably going 6849 * to ignore errors set by ICMP anyway ('cause they might be 6850 * forged), but that's the app's decision, not ours. 6851 */ 6852 6853 /* Bunch of reality checks for DEBUG kernels... */ 6854 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION); 6855 ASSERT(((ipha_t *)mp->b_rptr)->ipha_protocol == IPPROTO_ICMP); 6856 6857 return (B_TRUE); 6858 } 6859 6860 ipha = (ipha_t *)mp->b_rptr; 6861 iph_len = IPH_HDR_LENGTH(ipha); 6862 plen = ntohs(ipha->ipha_length); 6863 6864 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) { 6865 /* 6866 * Most likely a keepalive for the benefit of an intervening 6867 * NAT. These aren't for us, per se, so drop it. 6868 * 6869 * RFC 3947/8 doesn't say for sure what to do for 2-3 6870 * byte packets (keepalives are 1-byte), but we'll drop them 6871 * also. 6872 */ 6873 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 6874 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper); 6875 return (B_FALSE); 6876 } 6877 6878 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) { 6879 /* might as well pull it all up - it might be ESP. */ 6880 if (!pullupmsg(mp, -1)) { 6881 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 6882 DROPPER(ipss, ipds_esp_nomem), 6883 &ipss->ipsec_dropper); 6884 return (B_FALSE); 6885 } 6886 6887 ipha = (ipha_t *)mp->b_rptr; 6888 } 6889 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t)); 6890 if (*spi == 0) { 6891 /* UDP packet - remove 0-spi. */ 6892 shift = sizeof (uint32_t); 6893 } else { 6894 /* ESP-in-UDP packet - reduce to ESP. */ 6895 ipha->ipha_protocol = IPPROTO_ESP; 6896 shift = sizeof (udpha_t); 6897 } 6898 6899 /* Fix IP header */ 6900 ipha->ipha_length = htons(plen - shift); 6901 ipha->ipha_hdr_checksum = 0; 6902 6903 orptr = mp->b_rptr; 6904 mp->b_rptr += shift; 6905 6906 udpha = (udpha_t *)(orptr + iph_len); 6907 if (*spi == 0) { 6908 ASSERT((uint8_t *)ipha == orptr); 6909 udpha->uha_length = htons(plen - shift - iph_len); 6910 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */ 6911 esp_ports = 0; 6912 } else { 6913 esp_ports = *((uint32_t *)udpha); 6914 ASSERT(esp_ports != 0); 6915 } 6916 ovbcopy(orptr, orptr + shift, iph_len); 6917 if (esp_ports != 0) /* Punt up for ESP processing. */ { 6918 ipha = (ipha_t *)(orptr + shift); 6919 6920 free_ire = (ire == NULL); 6921 if (free_ire) { 6922 /* Re-acquire ire. */ 6923 ire = ire_cache_lookup(ipha->ipha_dst, ALL_ZONES, NULL, 6924 ipss->ipsec_netstack->netstack_ip); 6925 if (ire == NULL || !(ire->ire_type & IRE_LOCAL)) { 6926 if (ire != NULL) 6927 ire_refrele(ire); 6928 /* 6929 * Do a regular freemsg(), as this is an IP 6930 * error (no local route) not an IPsec one. 6931 */ 6932 freemsg(mp); 6933 } 6934 } 6935 6936 ip_proto_input(q, mp, ipha, ire, recv_ill, esp_ports); 6937 if (free_ire) 6938 ire_refrele(ire); 6939 } 6940 6941 return (esp_ports == 0); 6942 } 6943 6944 /* 6945 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 6946 * We are responsible for disposing of mp, such as by freemsg() or putnext() 6947 * Caller is responsible for dropping references to the conn, and freeing 6948 * first_mp. 6949 * 6950 * IPQoS Notes 6951 * Before sending it to the client, invoke IPPF processing. Policy processing 6952 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 6953 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 6954 * ip_wput_local, ip_policy is false. 6955 */ 6956 static void 6957 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 6958 boolean_t secure, ill_t *ill, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 6959 boolean_t ip_policy) 6960 { 6961 boolean_t mctl_present = (first_mp != NULL); 6962 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 6963 uint32_t ill_index; 6964 ip_stack_t *ipst = recv_ill->ill_ipst; 6965 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6966 6967 ASSERT(ill != NULL); 6968 6969 if (mctl_present) 6970 first_mp->b_cont = mp; 6971 else 6972 first_mp = mp; 6973 6974 if (CONN_UDP_FLOWCTLD(connp)) { 6975 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 6976 freemsg(first_mp); 6977 return; 6978 } 6979 6980 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6981 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6982 NULL, mctl_present); 6983 if (first_mp == NULL) { 6984 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 6985 return; /* Freed by ipsec_check_inbound_policy(). */ 6986 } 6987 } 6988 if (mctl_present) 6989 freeb(first_mp); 6990 6991 /* Let's hope the compilers utter "branch, predict-not-taken..." ;) */ 6992 if (connp->conn_udp->udp_nat_t_endpoint) { 6993 if (mctl_present) { 6994 /* mctl_present *shouldn't* happen. */ 6995 ip_drop_packet(mp, B_TRUE, NULL, NULL, 6996 DROPPER(ipss, ipds_esp_nat_t_ipsec), 6997 &ipss->ipsec_dropper); 6998 return; 6999 } 7000 7001 if (!zero_spi_check(ill->ill_rq, mp, NULL, recv_ill, ipss)) 7002 return; 7003 } 7004 7005 /* Handle options. */ 7006 if (connp->conn_recvif) 7007 in_flags = IPF_RECVIF; 7008 /* 7009 * UDP supports IP_RECVPKTINFO option for both v4 and v6 so the flag 7010 * passed to ip_add_info is based on IP version of connp. 7011 */ 7012 if (connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 7013 if (connp->conn_af_isv6) { 7014 /* 7015 * V6 only needs index 7016 */ 7017 in_flags |= IPF_RECVIF; 7018 } else { 7019 /* 7020 * V4 needs index + matching address. 7021 */ 7022 in_flags |= IPF_RECVADDR; 7023 } 7024 } 7025 7026 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 7027 in_flags |= IPF_RECVSLLA; 7028 7029 /* 7030 * Initiate IPPF processing here, if needed. Note first_mp won't be 7031 * freed if the packet is dropped. The caller will do so. 7032 */ 7033 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 7034 ill_index = recv_ill->ill_phyint->phyint_ifindex; 7035 ip_process(IPP_LOCAL_IN, &mp, ill_index); 7036 if (mp == NULL) { 7037 return; 7038 } 7039 } 7040 if ((in_flags != 0) && 7041 (mp->b_datap->db_type != M_CTL)) { 7042 /* 7043 * The actual data will be contained in b_cont 7044 * upon successful return of the following call 7045 * else original mblk is returned 7046 */ 7047 ASSERT(recv_ill != NULL); 7048 mp = ip_add_info(mp, recv_ill, in_flags, IPCL_ZONEID(connp), 7049 ipst); 7050 } 7051 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 7052 /* Send it upstream */ 7053 (connp->conn_recv)(connp, mp, NULL); 7054 } 7055 7056 /* 7057 * Fanout for UDP packets. 7058 * The caller puts <fport, lport> in the ports parameter. 7059 * 7060 * If SO_REUSEADDR is set all multicast and broadcast packets 7061 * will be delivered to all streams bound to the same port. 7062 * 7063 * Zones notes: 7064 * Multicast and broadcast packets will be distributed to streams in all zones. 7065 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 7066 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 7067 * packets. To maintain this behavior with multiple zones, the conns are grouped 7068 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 7069 * each zone. If unset, all the following conns in the same zone are skipped. 7070 */ 7071 static void 7072 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 7073 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 7074 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 7075 { 7076 uint32_t dstport, srcport; 7077 ipaddr_t dst; 7078 mblk_t *first_mp; 7079 boolean_t secure; 7080 in6_addr_t v6src; 7081 conn_t *connp; 7082 connf_t *connfp; 7083 conn_t *first_connp; 7084 conn_t *next_connp; 7085 mblk_t *mp1, *first_mp1; 7086 ipaddr_t src; 7087 zoneid_t last_zoneid; 7088 boolean_t reuseaddr; 7089 boolean_t shared_addr; 7090 boolean_t unlabeled; 7091 ip_stack_t *ipst; 7092 7093 ASSERT(recv_ill != NULL); 7094 ipst = recv_ill->ill_ipst; 7095 7096 first_mp = mp; 7097 if (mctl_present) { 7098 mp = first_mp->b_cont; 7099 first_mp->b_cont = NULL; 7100 secure = ipsec_in_is_secure(first_mp); 7101 ASSERT(mp != NULL); 7102 } else { 7103 first_mp = NULL; 7104 secure = B_FALSE; 7105 } 7106 7107 /* Extract ports in net byte order */ 7108 dstport = htons(ntohl(ports) & 0xFFFF); 7109 srcport = htons(ntohl(ports) >> 16); 7110 dst = ipha->ipha_dst; 7111 src = ipha->ipha_src; 7112 7113 unlabeled = B_FALSE; 7114 if (is_system_labeled()) 7115 /* Cred cannot be null on IPv4 */ 7116 unlabeled = (crgetlabel(DB_CRED(mp))->tsl_flags & 7117 TSLF_UNLABELED) != 0; 7118 shared_addr = (zoneid == ALL_ZONES); 7119 if (shared_addr) { 7120 /* 7121 * No need to handle exclusive-stack zones since ALL_ZONES 7122 * only applies to the shared stack. 7123 */ 7124 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 7125 /* 7126 * If no shared MLP is found, tsol_mlp_findzone returns 7127 * ALL_ZONES. In that case, we assume it's SLP, and 7128 * search for the zone based on the packet label. 7129 * 7130 * If there is such a zone, we prefer to find a 7131 * connection in it. Otherwise, we look for a 7132 * MAC-exempt connection in any zone whose label 7133 * dominates the default label on the packet. 7134 */ 7135 if (zoneid == ALL_ZONES) 7136 zoneid = tsol_packet_to_zoneid(mp); 7137 else 7138 unlabeled = B_FALSE; 7139 } 7140 7141 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7142 mutex_enter(&connfp->connf_lock); 7143 connp = connfp->connf_head; 7144 if (!broadcast && !CLASSD(dst)) { 7145 /* 7146 * Not broadcast or multicast. Send to the one (first) 7147 * client we find. No need to check conn_wantpacket() 7148 * since IP_BOUND_IF/conn_incoming_ill does not apply to 7149 * IPv4 unicast packets. 7150 */ 7151 while ((connp != NULL) && 7152 (!IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) || 7153 (!IPCL_ZONE_MATCH(connp, zoneid) && 7154 !(unlabeled && connp->conn_mac_exempt)))) { 7155 /* 7156 * We keep searching since the conn did not match, 7157 * or its zone did not match and it is not either 7158 * an allzones conn or a mac exempt conn (if the 7159 * sender is unlabeled.) 7160 */ 7161 connp = connp->conn_next; 7162 } 7163 7164 if (connp == NULL || connp->conn_upq == NULL) 7165 goto notfound; 7166 7167 if (is_system_labeled() && 7168 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7169 connp)) 7170 goto notfound; 7171 7172 CONN_INC_REF(connp); 7173 mutex_exit(&connfp->connf_lock); 7174 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7175 flags, recv_ill, ip_policy); 7176 IP_STAT(ipst, ip_udp_fannorm); 7177 CONN_DEC_REF(connp); 7178 return; 7179 } 7180 7181 /* 7182 * Broadcast and multicast case 7183 * 7184 * Need to check conn_wantpacket(). 7185 * If SO_REUSEADDR has been set on the first we send the 7186 * packet to all clients that have joined the group and 7187 * match the port. 7188 */ 7189 7190 while (connp != NULL) { 7191 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 7192 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7193 (!is_system_labeled() || 7194 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7195 connp))) 7196 break; 7197 connp = connp->conn_next; 7198 } 7199 7200 if (connp == NULL || connp->conn_upq == NULL) 7201 goto notfound; 7202 7203 first_connp = connp; 7204 /* 7205 * When SO_REUSEADDR is not set, send the packet only to the first 7206 * matching connection in its zone by keeping track of the zoneid. 7207 */ 7208 reuseaddr = first_connp->conn_reuseaddr; 7209 last_zoneid = first_connp->conn_zoneid; 7210 7211 CONN_INC_REF(connp); 7212 connp = connp->conn_next; 7213 for (;;) { 7214 while (connp != NULL) { 7215 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 7216 (reuseaddr || connp->conn_zoneid != last_zoneid) && 7217 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7218 (!is_system_labeled() || 7219 tsol_receive_local(mp, &dst, IPV4_VERSION, 7220 shared_addr, connp))) 7221 break; 7222 connp = connp->conn_next; 7223 } 7224 /* 7225 * Just copy the data part alone. The mctl part is 7226 * needed just for verifying policy and it is never 7227 * sent up. 7228 */ 7229 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7230 ((mp1 = copymsg(mp)) == NULL))) { 7231 /* 7232 * No more interested clients or memory 7233 * allocation failed 7234 */ 7235 connp = first_connp; 7236 break; 7237 } 7238 if (connp->conn_zoneid != last_zoneid) { 7239 /* 7240 * Update the zoneid so that the packet isn't sent to 7241 * any more conns in the same zone unless SO_REUSEADDR 7242 * is set. 7243 */ 7244 reuseaddr = connp->conn_reuseaddr; 7245 last_zoneid = connp->conn_zoneid; 7246 } 7247 if (first_mp != NULL) { 7248 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7249 ipsec_info_type == IPSEC_IN); 7250 first_mp1 = ipsec_in_tag(first_mp, NULL, 7251 ipst->ips_netstack); 7252 if (first_mp1 == NULL) { 7253 freemsg(mp1); 7254 connp = first_connp; 7255 break; 7256 } 7257 } else { 7258 first_mp1 = NULL; 7259 } 7260 CONN_INC_REF(connp); 7261 mutex_exit(&connfp->connf_lock); 7262 /* 7263 * IPQoS notes: We don't send the packet for policy 7264 * processing here, will do it for the last one (below). 7265 * i.e. we do it per-packet now, but if we do policy 7266 * processing per-conn, then we would need to do it 7267 * here too. 7268 */ 7269 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7270 ipha, flags, recv_ill, B_FALSE); 7271 mutex_enter(&connfp->connf_lock); 7272 /* Follow the next pointer before releasing the conn. */ 7273 next_connp = connp->conn_next; 7274 IP_STAT(ipst, ip_udp_fanmb); 7275 CONN_DEC_REF(connp); 7276 connp = next_connp; 7277 } 7278 7279 /* Last one. Send it upstream. */ 7280 mutex_exit(&connfp->connf_lock); 7281 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7282 recv_ill, ip_policy); 7283 IP_STAT(ipst, ip_udp_fanmb); 7284 CONN_DEC_REF(connp); 7285 return; 7286 7287 notfound: 7288 7289 mutex_exit(&connfp->connf_lock); 7290 IP_STAT(ipst, ip_udp_fanothers); 7291 /* 7292 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 7293 * have already been matched above, since they live in the IPv4 7294 * fanout tables. This implies we only need to 7295 * check for IPv6 in6addr_any endpoints here. 7296 * Thus we compare using ipv6_all_zeros instead of the destination 7297 * address, except for the multicast group membership lookup which 7298 * uses the IPv4 destination. 7299 */ 7300 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 7301 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7302 mutex_enter(&connfp->connf_lock); 7303 connp = connfp->connf_head; 7304 if (!broadcast && !CLASSD(dst)) { 7305 while (connp != NULL) { 7306 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7307 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 7308 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7309 !connp->conn_ipv6_v6only) 7310 break; 7311 connp = connp->conn_next; 7312 } 7313 7314 if (connp != NULL && is_system_labeled() && 7315 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7316 connp)) 7317 connp = NULL; 7318 7319 if (connp == NULL || connp->conn_upq == NULL) { 7320 /* 7321 * No one bound to this port. Is 7322 * there a client that wants all 7323 * unclaimed datagrams? 7324 */ 7325 mutex_exit(&connfp->connf_lock); 7326 7327 if (mctl_present) 7328 first_mp->b_cont = mp; 7329 else 7330 first_mp = mp; 7331 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP]. 7332 connf_head != NULL) { 7333 ip_fanout_proto(q, first_mp, ill, ipha, 7334 flags | IP_FF_RAWIP, mctl_present, 7335 ip_policy, recv_ill, zoneid); 7336 } else { 7337 if (ip_fanout_send_icmp(q, first_mp, flags, 7338 ICMP_DEST_UNREACHABLE, 7339 ICMP_PORT_UNREACHABLE, 7340 mctl_present, zoneid, ipst)) { 7341 BUMP_MIB(ill->ill_ip_mib, 7342 udpIfStatsNoPorts); 7343 } 7344 } 7345 return; 7346 } 7347 7348 CONN_INC_REF(connp); 7349 mutex_exit(&connfp->connf_lock); 7350 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7351 flags, recv_ill, ip_policy); 7352 CONN_DEC_REF(connp); 7353 return; 7354 } 7355 /* 7356 * IPv4 multicast packet being delivered to an AF_INET6 7357 * in6addr_any endpoint. 7358 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 7359 * and not conn_wantpacket_v6() since any multicast membership is 7360 * for an IPv4-mapped multicast address. 7361 * The packet is sent to all clients in all zones that have joined the 7362 * group and match the port. 7363 */ 7364 while (connp != NULL) { 7365 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7366 srcport, v6src) && 7367 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7368 (!is_system_labeled() || 7369 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7370 connp))) 7371 break; 7372 connp = connp->conn_next; 7373 } 7374 7375 if (connp == NULL || connp->conn_upq == NULL) { 7376 /* 7377 * No one bound to this port. Is 7378 * there a client that wants all 7379 * unclaimed datagrams? 7380 */ 7381 mutex_exit(&connfp->connf_lock); 7382 7383 if (mctl_present) 7384 first_mp->b_cont = mp; 7385 else 7386 first_mp = mp; 7387 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP].connf_head != 7388 NULL) { 7389 ip_fanout_proto(q, first_mp, ill, ipha, 7390 flags | IP_FF_RAWIP, mctl_present, ip_policy, 7391 recv_ill, zoneid); 7392 } else { 7393 /* 7394 * We used to attempt to send an icmp error here, but 7395 * since this is known to be a multicast packet 7396 * and we don't send icmp errors in response to 7397 * multicast, just drop the packet and give up sooner. 7398 */ 7399 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 7400 freemsg(first_mp); 7401 } 7402 return; 7403 } 7404 7405 first_connp = connp; 7406 7407 CONN_INC_REF(connp); 7408 connp = connp->conn_next; 7409 for (;;) { 7410 while (connp != NULL) { 7411 if (IPCL_UDP_MATCH_V6(connp, dstport, 7412 ipv6_all_zeros, srcport, v6src) && 7413 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7414 (!is_system_labeled() || 7415 tsol_receive_local(mp, &dst, IPV4_VERSION, 7416 shared_addr, connp))) 7417 break; 7418 connp = connp->conn_next; 7419 } 7420 /* 7421 * Just copy the data part alone. The mctl part is 7422 * needed just for verifying policy and it is never 7423 * sent up. 7424 */ 7425 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7426 ((mp1 = copymsg(mp)) == NULL))) { 7427 /* 7428 * No more intested clients or memory 7429 * allocation failed 7430 */ 7431 connp = first_connp; 7432 break; 7433 } 7434 if (first_mp != NULL) { 7435 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7436 ipsec_info_type == IPSEC_IN); 7437 first_mp1 = ipsec_in_tag(first_mp, NULL, 7438 ipst->ips_netstack); 7439 if (first_mp1 == NULL) { 7440 freemsg(mp1); 7441 connp = first_connp; 7442 break; 7443 } 7444 } else { 7445 first_mp1 = NULL; 7446 } 7447 CONN_INC_REF(connp); 7448 mutex_exit(&connfp->connf_lock); 7449 /* 7450 * IPQoS notes: We don't send the packet for policy 7451 * processing here, will do it for the last one (below). 7452 * i.e. we do it per-packet now, but if we do policy 7453 * processing per-conn, then we would need to do it 7454 * here too. 7455 */ 7456 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7457 ipha, flags, recv_ill, B_FALSE); 7458 mutex_enter(&connfp->connf_lock); 7459 /* Follow the next pointer before releasing the conn. */ 7460 next_connp = connp->conn_next; 7461 CONN_DEC_REF(connp); 7462 connp = next_connp; 7463 } 7464 7465 /* Last one. Send it upstream. */ 7466 mutex_exit(&connfp->connf_lock); 7467 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7468 recv_ill, ip_policy); 7469 CONN_DEC_REF(connp); 7470 } 7471 7472 /* 7473 * Complete the ip_wput header so that it 7474 * is possible to generate ICMP 7475 * errors. 7476 */ 7477 int 7478 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid, ip_stack_t *ipst) 7479 { 7480 ire_t *ire; 7481 7482 if (ipha->ipha_src == INADDR_ANY) { 7483 ire = ire_lookup_local(zoneid, ipst); 7484 if (ire == NULL) { 7485 ip1dbg(("ip_hdr_complete: no source IRE\n")); 7486 return (1); 7487 } 7488 ipha->ipha_src = ire->ire_addr; 7489 ire_refrele(ire); 7490 } 7491 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 7492 ipha->ipha_hdr_checksum = 0; 7493 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 7494 return (0); 7495 } 7496 7497 /* 7498 * Nobody should be sending 7499 * packets up this stream 7500 */ 7501 static void 7502 ip_lrput(queue_t *q, mblk_t *mp) 7503 { 7504 mblk_t *mp1; 7505 7506 switch (mp->b_datap->db_type) { 7507 case M_FLUSH: 7508 /* Turn around */ 7509 if (*mp->b_rptr & FLUSHW) { 7510 *mp->b_rptr &= ~FLUSHR; 7511 qreply(q, mp); 7512 return; 7513 } 7514 break; 7515 } 7516 /* Could receive messages that passed through ar_rput */ 7517 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 7518 mp1->b_prev = mp1->b_next = NULL; 7519 freemsg(mp); 7520 } 7521 7522 /* Nobody should be sending packets down this stream */ 7523 /* ARGSUSED */ 7524 void 7525 ip_lwput(queue_t *q, mblk_t *mp) 7526 { 7527 freemsg(mp); 7528 } 7529 7530 /* 7531 * Move the first hop in any source route to ipha_dst and remove that part of 7532 * the source route. Called by other protocols. Errors in option formatting 7533 * are ignored - will be handled by ip_wput_options Return the final 7534 * destination (either ipha_dst or the last entry in a source route.) 7535 */ 7536 ipaddr_t 7537 ip_massage_options(ipha_t *ipha, netstack_t *ns) 7538 { 7539 ipoptp_t opts; 7540 uchar_t *opt; 7541 uint8_t optval; 7542 uint8_t optlen; 7543 ipaddr_t dst; 7544 int i; 7545 ire_t *ire; 7546 ip_stack_t *ipst = ns->netstack_ip; 7547 7548 ip2dbg(("ip_massage_options\n")); 7549 dst = ipha->ipha_dst; 7550 for (optval = ipoptp_first(&opts, ipha); 7551 optval != IPOPT_EOL; 7552 optval = ipoptp_next(&opts)) { 7553 opt = opts.ipoptp_cur; 7554 switch (optval) { 7555 uint8_t off; 7556 case IPOPT_SSRR: 7557 case IPOPT_LSRR: 7558 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 7559 ip1dbg(("ip_massage_options: bad src route\n")); 7560 break; 7561 } 7562 optlen = opts.ipoptp_len; 7563 off = opt[IPOPT_OFFSET]; 7564 off--; 7565 redo_srr: 7566 if (optlen < IP_ADDR_LEN || 7567 off > optlen - IP_ADDR_LEN) { 7568 /* End of source route */ 7569 ip1dbg(("ip_massage_options: end of SR\n")); 7570 break; 7571 } 7572 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 7573 ip1dbg(("ip_massage_options: next hop 0x%x\n", 7574 ntohl(dst))); 7575 /* 7576 * Check if our address is present more than 7577 * once as consecutive hops in source route. 7578 * XXX verify per-interface ip_forwarding 7579 * for source route? 7580 */ 7581 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 7582 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7583 if (ire != NULL) { 7584 ire_refrele(ire); 7585 off += IP_ADDR_LEN; 7586 goto redo_srr; 7587 } 7588 if (dst == htonl(INADDR_LOOPBACK)) { 7589 ip1dbg(("ip_massage_options: loopback addr in " 7590 "source route!\n")); 7591 break; 7592 } 7593 /* 7594 * Update ipha_dst to be the first hop and remove the 7595 * first hop from the source route (by overwriting 7596 * part of the option with NOP options). 7597 */ 7598 ipha->ipha_dst = dst; 7599 /* Put the last entry in dst */ 7600 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 7601 3; 7602 bcopy(&opt[off], &dst, IP_ADDR_LEN); 7603 7604 ip1dbg(("ip_massage_options: last hop 0x%x\n", 7605 ntohl(dst))); 7606 /* Move down and overwrite */ 7607 opt[IP_ADDR_LEN] = opt[0]; 7608 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 7609 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 7610 for (i = 0; i < IP_ADDR_LEN; i++) 7611 opt[i] = IPOPT_NOP; 7612 break; 7613 } 7614 } 7615 return (dst); 7616 } 7617 7618 /* 7619 * Return the network mask 7620 * associated with the specified address. 7621 */ 7622 ipaddr_t 7623 ip_net_mask(ipaddr_t addr) 7624 { 7625 uchar_t *up = (uchar_t *)&addr; 7626 ipaddr_t mask = 0; 7627 uchar_t *maskp = (uchar_t *)&mask; 7628 7629 #if defined(__i386) || defined(__amd64) 7630 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7631 #endif 7632 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7633 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7634 #endif 7635 if (CLASSD(addr)) { 7636 maskp[0] = 0xF0; 7637 return (mask); 7638 } 7639 7640 /* We assume Class E default netmask to be 32 */ 7641 if (CLASSE(addr)) 7642 return (0xffffffffU); 7643 7644 if (addr == 0) 7645 return (0); 7646 maskp[0] = 0xFF; 7647 if ((up[0] & 0x80) == 0) 7648 return (mask); 7649 7650 maskp[1] = 0xFF; 7651 if ((up[0] & 0xC0) == 0x80) 7652 return (mask); 7653 7654 maskp[2] = 0xFF; 7655 if ((up[0] & 0xE0) == 0xC0) 7656 return (mask); 7657 7658 /* Otherwise return no mask */ 7659 return ((ipaddr_t)0); 7660 } 7661 7662 /* 7663 * Select an ill for the packet by considering load spreading across 7664 * a different ill in the group if dst_ill is part of some group. 7665 */ 7666 ill_t * 7667 ip_newroute_get_dst_ill(ill_t *dst_ill) 7668 { 7669 ill_t *ill; 7670 7671 /* 7672 * We schedule irrespective of whether the source address is 7673 * INADDR_ANY or not. illgrp_scheduler returns a held ill. 7674 */ 7675 ill = illgrp_scheduler(dst_ill); 7676 if (ill == NULL) 7677 return (NULL); 7678 7679 /* 7680 * For groups with names ip_sioctl_groupname ensures that all 7681 * ills are of same type. For groups without names, ifgrp_insert 7682 * ensures this. 7683 */ 7684 ASSERT(dst_ill->ill_type == ill->ill_type); 7685 7686 return (ill); 7687 } 7688 7689 /* 7690 * Helper function for the IPIF_NOFAILOVER/ATTACH_IF interface attachment case. 7691 */ 7692 ill_t * 7693 ip_grab_attach_ill(ill_t *ill, mblk_t *first_mp, int ifindex, boolean_t isv6, 7694 ip_stack_t *ipst) 7695 { 7696 ill_t *ret_ill; 7697 7698 ASSERT(ifindex != 0); 7699 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 7700 ipst); 7701 if (ret_ill == NULL || 7702 (ret_ill->ill_phyint->phyint_flags & PHYI_OFFLINE)) { 7703 if (isv6) { 7704 if (ill != NULL) { 7705 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7706 } else { 7707 BUMP_MIB(&ipst->ips_ip6_mib, 7708 ipIfStatsOutDiscards); 7709 } 7710 ip1dbg(("ip_grab_attach_ill (IPv6): " 7711 "bad ifindex %d.\n", ifindex)); 7712 } else { 7713 if (ill != NULL) { 7714 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7715 } else { 7716 BUMP_MIB(&ipst->ips_ip_mib, 7717 ipIfStatsOutDiscards); 7718 } 7719 ip1dbg(("ip_grab_attach_ill (IPv4): " 7720 "bad ifindex %d.\n", ifindex)); 7721 } 7722 if (ret_ill != NULL) 7723 ill_refrele(ret_ill); 7724 freemsg(first_mp); 7725 return (NULL); 7726 } 7727 7728 return (ret_ill); 7729 } 7730 7731 /* 7732 * IPv4 - 7733 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7734 * out a packet to a destination address for which we do not have specific 7735 * (or sufficient) routing information. 7736 * 7737 * NOTE : These are the scopes of some of the variables that point at IRE, 7738 * which needs to be followed while making any future modifications 7739 * to avoid memory leaks. 7740 * 7741 * - ire and sire are the entries looked up initially by 7742 * ire_ftable_lookup. 7743 * - ipif_ire is used to hold the interface ire associated with 7744 * the new cache ire. But it's scope is limited, so we always REFRELE 7745 * it before branching out to error paths. 7746 * - save_ire is initialized before ire_create, so that ire returned 7747 * by ire_create will not over-write the ire. We REFRELE save_ire 7748 * before breaking out of the switch. 7749 * 7750 * Thus on failures, we have to REFRELE only ire and sire, if they 7751 * are not NULL. 7752 */ 7753 void 7754 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, conn_t *connp, 7755 zoneid_t zoneid, ip_stack_t *ipst) 7756 { 7757 areq_t *areq; 7758 ipaddr_t gw = 0; 7759 ire_t *ire = NULL; 7760 mblk_t *res_mp; 7761 ipaddr_t *addrp; 7762 ipaddr_t nexthop_addr; 7763 ipif_t *src_ipif = NULL; 7764 ill_t *dst_ill = NULL; 7765 ipha_t *ipha; 7766 ire_t *sire = NULL; 7767 mblk_t *first_mp; 7768 ire_t *save_ire; 7769 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER address */ 7770 ushort_t ire_marks = 0; 7771 boolean_t mctl_present; 7772 ipsec_out_t *io; 7773 mblk_t *saved_mp; 7774 ire_t *first_sire = NULL; 7775 mblk_t *copy_mp = NULL; 7776 mblk_t *xmit_mp = NULL; 7777 ipaddr_t save_dst; 7778 uint32_t multirt_flags = 7779 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7780 boolean_t multirt_is_resolvable; 7781 boolean_t multirt_resolve_next; 7782 boolean_t unspec_src; 7783 boolean_t do_attach_ill = B_FALSE; 7784 boolean_t ip_nexthop = B_FALSE; 7785 tsol_ire_gw_secattr_t *attrp = NULL; 7786 tsol_gcgrp_t *gcgrp = NULL; 7787 tsol_gcgrp_addr_t ga; 7788 7789 if (ip_debug > 2) { 7790 /* ip1dbg */ 7791 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7792 } 7793 7794 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7795 if (mctl_present) { 7796 io = (ipsec_out_t *)first_mp->b_rptr; 7797 ASSERT(io->ipsec_out_type == IPSEC_OUT); 7798 ASSERT(zoneid == io->ipsec_out_zoneid); 7799 ASSERT(zoneid != ALL_ZONES); 7800 } 7801 7802 ipha = (ipha_t *)mp->b_rptr; 7803 7804 /* All multicast lookups come through ip_newroute_ipif() */ 7805 if (CLASSD(dst)) { 7806 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7807 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7808 freemsg(first_mp); 7809 return; 7810 } 7811 7812 if (mctl_present && io->ipsec_out_attach_if) { 7813 /* ip_grab_attach_ill returns a held ill */ 7814 attach_ill = ip_grab_attach_ill(NULL, first_mp, 7815 io->ipsec_out_ill_index, B_FALSE, ipst); 7816 7817 /* Failure case frees things for us. */ 7818 if (attach_ill == NULL) 7819 return; 7820 7821 /* 7822 * Check if we need an ire that will not be 7823 * looked up by anybody else i.e. HIDDEN. 7824 */ 7825 if (ill_is_probeonly(attach_ill)) 7826 ire_marks = IRE_MARK_HIDDEN; 7827 } 7828 if (mctl_present && io->ipsec_out_ip_nexthop) { 7829 ip_nexthop = B_TRUE; 7830 nexthop_addr = io->ipsec_out_nexthop_addr; 7831 } 7832 /* 7833 * If this IRE is created for forwarding or it is not for 7834 * traffic for congestion controlled protocols, mark it as temporary. 7835 */ 7836 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 7837 ire_marks |= IRE_MARK_TEMPORARY; 7838 7839 /* 7840 * Get what we can from ire_ftable_lookup which will follow an IRE 7841 * chain until it gets the most specific information available. 7842 * For example, we know that there is no IRE_CACHE for this dest, 7843 * but there may be an IRE_OFFSUBNET which specifies a gateway. 7844 * ire_ftable_lookup will look up the gateway, etc. 7845 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 7846 * to the destination, of equal netmask length in the forward table, 7847 * will be recursively explored. If no information is available 7848 * for the final gateway of that route, we force the returned ire 7849 * to be equal to sire using MATCH_IRE_PARENT. 7850 * At least, in this case we have a starting point (in the buckets) 7851 * to look for other routes to the destination in the forward table. 7852 * This is actually used only for multirouting, where a list 7853 * of routes has to be processed in sequence. 7854 * 7855 * In the process of coming up with the most specific information, 7856 * ire_ftable_lookup may end up with an incomplete IRE_CACHE entry 7857 * for the gateway (i.e., one for which the ire_nce->nce_state is 7858 * not yet ND_REACHABLE, and is in the middle of arp resolution). 7859 * Two caveats when handling incomplete ire's in ip_newroute: 7860 * - we should be careful when accessing its ire_nce (specifically 7861 * the nce_res_mp) ast it might change underneath our feet, and, 7862 * - not all legacy code path callers are prepared to handle 7863 * incomplete ire's, so we should not create/add incomplete 7864 * ire_cache entries here. (See discussion about temporary solution 7865 * further below). 7866 * 7867 * In order to minimize packet dropping, and to preserve existing 7868 * behavior, we treat this case as if there were no IRE_CACHE for the 7869 * gateway, and instead use the IF_RESOLVER ire to send out 7870 * another request to ARP (this is achieved by passing the 7871 * MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the 7872 * arp response comes back in ip_wput_nondata, we will create 7873 * a per-dst ire_cache that has an ND_COMPLETE ire. 7874 * 7875 * Note that this is a temporary solution; the correct solution is 7876 * to create an incomplete per-dst ire_cache entry, and send the 7877 * packet out when the gw's nce is resolved. In order to achieve this, 7878 * all packet processing must have been completed prior to calling 7879 * ire_add_then_send. Some legacy code paths (e.g. cgtp) would need 7880 * to be modified to accomodate this solution. 7881 */ 7882 if (ip_nexthop) { 7883 /* 7884 * The first time we come here, we look for an IRE_INTERFACE 7885 * entry for the specified nexthop, set the dst to be the 7886 * nexthop address and create an IRE_CACHE entry for the 7887 * nexthop. The next time around, we are able to find an 7888 * IRE_CACHE entry for the nexthop, set the gateway to be the 7889 * nexthop address and create an IRE_CACHE entry for the 7890 * destination address via the specified nexthop. 7891 */ 7892 ire = ire_cache_lookup(nexthop_addr, zoneid, 7893 MBLK_GETLABEL(mp), ipst); 7894 if (ire != NULL) { 7895 gw = nexthop_addr; 7896 ire_marks |= IRE_MARK_PRIVATE_ADDR; 7897 } else { 7898 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 7899 IRE_INTERFACE, NULL, NULL, zoneid, 0, 7900 MBLK_GETLABEL(mp), 7901 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 7902 ipst); 7903 if (ire != NULL) { 7904 dst = nexthop_addr; 7905 } 7906 } 7907 } else if (attach_ill == NULL) { 7908 ire = ire_ftable_lookup(dst, 0, 0, 0, 7909 NULL, &sire, zoneid, 0, MBLK_GETLABEL(mp), 7910 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 7911 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 7912 MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE, 7913 ipst); 7914 } else { 7915 /* 7916 * attach_ill is set only for communicating with 7917 * on-link hosts. So, don't look for DEFAULT. 7918 */ 7919 ipif_t *attach_ipif; 7920 7921 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 7922 if (attach_ipif == NULL) { 7923 ill_refrele(attach_ill); 7924 goto icmp_err_ret; 7925 } 7926 ire = ire_ftable_lookup(dst, 0, 0, 0, attach_ipif, 7927 &sire, zoneid, 0, MBLK_GETLABEL(mp), 7928 MATCH_IRE_RJ_BHOLE | MATCH_IRE_ILL | 7929 MATCH_IRE_SECATTR, ipst); 7930 ipif_refrele(attach_ipif); 7931 } 7932 ip3dbg(("ip_newroute: ire_ftable_lookup() " 7933 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 7934 7935 /* 7936 * This loop is run only once in most cases. 7937 * We loop to resolve further routes only when the destination 7938 * can be reached through multiple RTF_MULTIRT-flagged ires. 7939 */ 7940 do { 7941 /* Clear the previous iteration's values */ 7942 if (src_ipif != NULL) { 7943 ipif_refrele(src_ipif); 7944 src_ipif = NULL; 7945 } 7946 if (dst_ill != NULL) { 7947 ill_refrele(dst_ill); 7948 dst_ill = NULL; 7949 } 7950 7951 multirt_resolve_next = B_FALSE; 7952 /* 7953 * We check if packets have to be multirouted. 7954 * In this case, given the current <ire, sire> couple, 7955 * we look for the next suitable <ire, sire>. 7956 * This check is done in ire_multirt_lookup(), 7957 * which applies various criteria to find the next route 7958 * to resolve. ire_multirt_lookup() leaves <ire, sire> 7959 * unchanged if it detects it has not been tried yet. 7960 */ 7961 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7962 ip3dbg(("ip_newroute: starting next_resolution " 7963 "with first_mp %p, tag %d\n", 7964 (void *)first_mp, 7965 MULTIRT_DEBUG_TAGGED(first_mp))); 7966 7967 ASSERT(sire != NULL); 7968 multirt_is_resolvable = 7969 ire_multirt_lookup(&ire, &sire, multirt_flags, 7970 MBLK_GETLABEL(mp), ipst); 7971 7972 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 7973 "ire %p, sire %p\n", 7974 multirt_is_resolvable, 7975 (void *)ire, (void *)sire)); 7976 7977 if (!multirt_is_resolvable) { 7978 /* 7979 * No more multirt route to resolve; give up 7980 * (all routes resolved or no more 7981 * resolvable routes). 7982 */ 7983 if (ire != NULL) { 7984 ire_refrele(ire); 7985 ire = NULL; 7986 } 7987 } else { 7988 ASSERT(sire != NULL); 7989 ASSERT(ire != NULL); 7990 /* 7991 * We simply use first_sire as a flag that 7992 * indicates if a resolvable multirt route 7993 * has already been found. 7994 * If it is not the case, we may have to send 7995 * an ICMP error to report that the 7996 * destination is unreachable. 7997 * We do not IRE_REFHOLD first_sire. 7998 */ 7999 if (first_sire == NULL) { 8000 first_sire = sire; 8001 } 8002 } 8003 } 8004 if (ire == NULL) { 8005 if (ip_debug > 3) { 8006 /* ip2dbg */ 8007 pr_addr_dbg("ip_newroute: " 8008 "can't resolve %s\n", AF_INET, &dst); 8009 } 8010 ip3dbg(("ip_newroute: " 8011 "ire %p, sire %p, first_sire %p\n", 8012 (void *)ire, (void *)sire, (void *)first_sire)); 8013 8014 if (sire != NULL) { 8015 ire_refrele(sire); 8016 sire = NULL; 8017 } 8018 8019 if (first_sire != NULL) { 8020 /* 8021 * At least one multirt route has been found 8022 * in the same call to ip_newroute(); 8023 * there is no need to report an ICMP error. 8024 * first_sire was not IRE_REFHOLDed. 8025 */ 8026 MULTIRT_DEBUG_UNTAG(first_mp); 8027 freemsg(first_mp); 8028 return; 8029 } 8030 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 8031 RTA_DST, ipst); 8032 if (attach_ill != NULL) 8033 ill_refrele(attach_ill); 8034 goto icmp_err_ret; 8035 } 8036 8037 /* 8038 * Verify that the returned IRE does not have either 8039 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 8040 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 8041 */ 8042 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 8043 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 8044 if (attach_ill != NULL) 8045 ill_refrele(attach_ill); 8046 goto icmp_err_ret; 8047 } 8048 /* 8049 * Increment the ire_ob_pkt_count field for ire if it is an 8050 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 8051 * increment the same for the parent IRE, sire, if it is some 8052 * sort of prefix IRE (which includes DEFAULT, PREFIX, and HOST) 8053 */ 8054 if ((ire->ire_type & IRE_INTERFACE) != 0) { 8055 UPDATE_OB_PKT_COUNT(ire); 8056 ire->ire_last_used_time = lbolt; 8057 } 8058 8059 if (sire != NULL) { 8060 gw = sire->ire_gateway_addr; 8061 ASSERT((sire->ire_type & (IRE_CACHETABLE | 8062 IRE_INTERFACE)) == 0); 8063 UPDATE_OB_PKT_COUNT(sire); 8064 sire->ire_last_used_time = lbolt; 8065 } 8066 /* 8067 * We have a route to reach the destination. 8068 * 8069 * 1) If the interface is part of ill group, try to get a new 8070 * ill taking load spreading into account. 8071 * 8072 * 2) After selecting the ill, get a source address that 8073 * might create good inbound load spreading. 8074 * ipif_select_source does this for us. 8075 * 8076 * If the application specified the ill (ifindex), we still 8077 * load spread. Only if the packets needs to go out 8078 * specifically on a given ill e.g. binding to 8079 * IPIF_NOFAILOVER address, then we don't try to use a 8080 * different ill for load spreading. 8081 */ 8082 if (attach_ill == NULL) { 8083 /* 8084 * Don't perform outbound load spreading in the 8085 * case of an RTF_MULTIRT route, as we actually 8086 * typically want to replicate outgoing packets 8087 * through particular interfaces. 8088 */ 8089 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8090 dst_ill = ire->ire_ipif->ipif_ill; 8091 /* for uniformity */ 8092 ill_refhold(dst_ill); 8093 } else { 8094 /* 8095 * If we are here trying to create an IRE_CACHE 8096 * for an offlink destination and have the 8097 * IRE_CACHE for the next hop and the latter is 8098 * using virtual IP source address selection i.e 8099 * it's ire->ire_ipif is pointing to a virtual 8100 * network interface (vni) then 8101 * ip_newroute_get_dst_ll() will return the vni 8102 * interface as the dst_ill. Since the vni is 8103 * virtual i.e not associated with any physical 8104 * interface, it cannot be the dst_ill, hence 8105 * in such a case call ip_newroute_get_dst_ll() 8106 * with the stq_ill instead of the ire_ipif ILL. 8107 * The function returns a refheld ill. 8108 */ 8109 if ((ire->ire_type == IRE_CACHE) && 8110 IS_VNI(ire->ire_ipif->ipif_ill)) 8111 dst_ill = ip_newroute_get_dst_ill( 8112 ire->ire_stq->q_ptr); 8113 else 8114 dst_ill = ip_newroute_get_dst_ill( 8115 ire->ire_ipif->ipif_ill); 8116 } 8117 if (dst_ill == NULL) { 8118 if (ip_debug > 2) { 8119 pr_addr_dbg("ip_newroute: " 8120 "no dst ill for dst" 8121 " %s\n", AF_INET, &dst); 8122 } 8123 goto icmp_err_ret; 8124 } 8125 } else { 8126 dst_ill = ire->ire_ipif->ipif_ill; 8127 /* for uniformity */ 8128 ill_refhold(dst_ill); 8129 /* 8130 * We should have found a route matching ill as we 8131 * called ire_ftable_lookup with MATCH_IRE_ILL. 8132 * Rather than asserting, when there is a mismatch, 8133 * we just drop the packet. 8134 */ 8135 if (dst_ill != attach_ill) { 8136 ip0dbg(("ip_newroute: Packet dropped as " 8137 "IPIF_NOFAILOVER ill is %s, " 8138 "ire->ire_ipif->ipif_ill is %s\n", 8139 attach_ill->ill_name, 8140 dst_ill->ill_name)); 8141 ill_refrele(attach_ill); 8142 goto icmp_err_ret; 8143 } 8144 } 8145 /* attach_ill can't go in loop. IPMP and CGTP are disjoint */ 8146 if (attach_ill != NULL) { 8147 ill_refrele(attach_ill); 8148 attach_ill = NULL; 8149 do_attach_ill = B_TRUE; 8150 } 8151 ASSERT(dst_ill != NULL); 8152 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 8153 8154 /* 8155 * Pick the best source address from dst_ill. 8156 * 8157 * 1) If it is part of a multipathing group, we would 8158 * like to spread the inbound packets across different 8159 * interfaces. ipif_select_source picks a random source 8160 * across the different ills in the group. 8161 * 8162 * 2) If it is not part of a multipathing group, we try 8163 * to pick the source address from the destination 8164 * route. Clustering assumes that when we have multiple 8165 * prefixes hosted on an interface, the prefix of the 8166 * source address matches the prefix of the destination 8167 * route. We do this only if the address is not 8168 * DEPRECATED. 8169 * 8170 * 3) If the conn is in a different zone than the ire, we 8171 * need to pick a source address from the right zone. 8172 * 8173 * NOTE : If we hit case (1) above, the prefix of the source 8174 * address picked may not match the prefix of the 8175 * destination routes prefix as ipif_select_source 8176 * does not look at "dst" while picking a source 8177 * address. 8178 * If we want the same behavior as (2), we will need 8179 * to change the behavior of ipif_select_source. 8180 */ 8181 ASSERT(src_ipif == NULL); 8182 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 8183 /* 8184 * The RTF_SETSRC flag is set in the parent ire (sire). 8185 * Check that the ipif matching the requested source 8186 * address still exists. 8187 */ 8188 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 8189 zoneid, NULL, NULL, NULL, NULL, ipst); 8190 } 8191 8192 unspec_src = (connp != NULL && connp->conn_unspec_src); 8193 8194 if (src_ipif == NULL && 8195 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 8196 ire_marks |= IRE_MARK_USESRC_CHECK; 8197 if ((dst_ill->ill_group != NULL) || 8198 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 8199 (connp != NULL && ire->ire_zoneid != zoneid && 8200 ire->ire_zoneid != ALL_ZONES) || 8201 (dst_ill->ill_usesrc_ifindex != 0)) { 8202 /* 8203 * If the destination is reachable via a 8204 * given gateway, the selected source address 8205 * should be in the same subnet as the gateway. 8206 * Otherwise, the destination is not reachable. 8207 * 8208 * If there are no interfaces on the same subnet 8209 * as the destination, ipif_select_source gives 8210 * first non-deprecated interface which might be 8211 * on a different subnet than the gateway. 8212 * This is not desirable. Hence pass the dst_ire 8213 * source address to ipif_select_source. 8214 * It is sure that the destination is reachable 8215 * with the dst_ire source address subnet. 8216 * So passing dst_ire source address to 8217 * ipif_select_source will make sure that the 8218 * selected source will be on the same subnet 8219 * as dst_ire source address. 8220 */ 8221 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 8222 src_ipif = ipif_select_source(dst_ill, saddr, 8223 zoneid); 8224 if (src_ipif == NULL) { 8225 if (ip_debug > 2) { 8226 pr_addr_dbg("ip_newroute: " 8227 "no src for dst %s ", 8228 AF_INET, &dst); 8229 printf("through interface %s\n", 8230 dst_ill->ill_name); 8231 } 8232 goto icmp_err_ret; 8233 } 8234 } else { 8235 src_ipif = ire->ire_ipif; 8236 ASSERT(src_ipif != NULL); 8237 /* hold src_ipif for uniformity */ 8238 ipif_refhold(src_ipif); 8239 } 8240 } 8241 8242 /* 8243 * Assign a source address while we have the conn. 8244 * We can't have ip_wput_ire pick a source address when the 8245 * packet returns from arp since we need to look at 8246 * conn_unspec_src and conn_zoneid, and we lose the conn when 8247 * going through arp. 8248 * 8249 * NOTE : ip_newroute_v6 does not have this piece of code as 8250 * it uses ip6i to store this information. 8251 */ 8252 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 8253 ipha->ipha_src = src_ipif->ipif_src_addr; 8254 8255 if (ip_debug > 3) { 8256 /* ip2dbg */ 8257 pr_addr_dbg("ip_newroute: first hop %s\n", 8258 AF_INET, &gw); 8259 } 8260 ip2dbg(("\tire type %s (%d)\n", 8261 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 8262 8263 /* 8264 * The TTL of multirouted packets is bounded by the 8265 * ip_multirt_ttl ndd variable. 8266 */ 8267 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8268 /* Force TTL of multirouted packets */ 8269 if ((ipst->ips_ip_multirt_ttl > 0) && 8270 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 8271 ip2dbg(("ip_newroute: forcing multirt TTL " 8272 "to %d (was %d), dst 0x%08x\n", 8273 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 8274 ntohl(sire->ire_addr))); 8275 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 8276 } 8277 } 8278 /* 8279 * At this point in ip_newroute(), ire is either the 8280 * IRE_CACHE of the next-hop gateway for an off-subnet 8281 * destination or an IRE_INTERFACE type that should be used 8282 * to resolve an on-subnet destination or an on-subnet 8283 * next-hop gateway. 8284 * 8285 * In the IRE_CACHE case, we have the following : 8286 * 8287 * 1) src_ipif - used for getting a source address. 8288 * 8289 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8290 * means packets using this IRE_CACHE will go out on 8291 * dst_ill. 8292 * 8293 * 3) The IRE sire will point to the prefix that is the 8294 * longest matching route for the destination. These 8295 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST. 8296 * 8297 * The newly created IRE_CACHE entry for the off-subnet 8298 * destination is tied to both the prefix route and the 8299 * interface route used to resolve the next-hop gateway 8300 * via the ire_phandle and ire_ihandle fields, 8301 * respectively. 8302 * 8303 * In the IRE_INTERFACE case, we have the following : 8304 * 8305 * 1) src_ipif - used for getting a source address. 8306 * 8307 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8308 * means packets using the IRE_CACHE that we will build 8309 * here will go out on dst_ill. 8310 * 8311 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 8312 * to be created will only be tied to the IRE_INTERFACE 8313 * that was derived from the ire_ihandle field. 8314 * 8315 * If sire is non-NULL, it means the destination is 8316 * off-link and we will first create the IRE_CACHE for the 8317 * gateway. Next time through ip_newroute, we will create 8318 * the IRE_CACHE for the final destination as described 8319 * above. 8320 * 8321 * In both cases, after the current resolution has been 8322 * completed (or possibly initialised, in the IRE_INTERFACE 8323 * case), the loop may be re-entered to attempt the resolution 8324 * of another RTF_MULTIRT route. 8325 * 8326 * When an IRE_CACHE entry for the off-subnet destination is 8327 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 8328 * for further processing in emission loops. 8329 */ 8330 save_ire = ire; 8331 switch (ire->ire_type) { 8332 case IRE_CACHE: { 8333 ire_t *ipif_ire; 8334 8335 ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE); 8336 if (gw == 0) 8337 gw = ire->ire_gateway_addr; 8338 /* 8339 * We need 3 ire's to create a new cache ire for an 8340 * off-link destination from the cache ire of the 8341 * gateway. 8342 * 8343 * 1. The prefix ire 'sire' (Note that this does 8344 * not apply to the conn_nexthop_set case) 8345 * 2. The cache ire of the gateway 'ire' 8346 * 3. The interface ire 'ipif_ire' 8347 * 8348 * We have (1) and (2). We lookup (3) below. 8349 * 8350 * If there is no interface route to the gateway, 8351 * it is a race condition, where we found the cache 8352 * but the interface route has been deleted. 8353 */ 8354 if (ip_nexthop) { 8355 ipif_ire = ire_ihandle_lookup_onlink(ire); 8356 } else { 8357 ipif_ire = 8358 ire_ihandle_lookup_offlink(ire, sire); 8359 } 8360 if (ipif_ire == NULL) { 8361 ip1dbg(("ip_newroute: " 8362 "ire_ihandle_lookup_offlink failed\n")); 8363 goto icmp_err_ret; 8364 } 8365 8366 /* 8367 * Check cached gateway IRE for any security 8368 * attributes; if found, associate the gateway 8369 * credentials group to the destination IRE. 8370 */ 8371 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 8372 mutex_enter(&attrp->igsa_lock); 8373 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 8374 GCGRP_REFHOLD(gcgrp); 8375 mutex_exit(&attrp->igsa_lock); 8376 } 8377 8378 /* 8379 * XXX For the source of the resolver mp, 8380 * we are using the same DL_UNITDATA_REQ 8381 * (from save_ire->ire_nce->nce_res_mp) 8382 * though the save_ire is not pointing at the same ill. 8383 * This is incorrect. We need to send it up to the 8384 * resolver to get the right res_mp. For ethernets 8385 * this may be okay (ill_type == DL_ETHER). 8386 */ 8387 8388 ire = ire_create( 8389 (uchar_t *)&dst, /* dest address */ 8390 (uchar_t *)&ip_g_all_ones, /* mask */ 8391 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8392 (uchar_t *)&gw, /* gateway address */ 8393 &save_ire->ire_max_frag, 8394 save_ire->ire_nce, /* src nce */ 8395 dst_ill->ill_rq, /* recv-from queue */ 8396 dst_ill->ill_wq, /* send-to queue */ 8397 IRE_CACHE, /* IRE type */ 8398 src_ipif, 8399 (sire != NULL) ? 8400 sire->ire_mask : 0, /* Parent mask */ 8401 (sire != NULL) ? 8402 sire->ire_phandle : 0, /* Parent handle */ 8403 ipif_ire->ire_ihandle, /* Interface handle */ 8404 (sire != NULL) ? (sire->ire_flags & 8405 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 8406 (sire != NULL) ? 8407 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 8408 NULL, 8409 gcgrp, 8410 ipst); 8411 8412 if (ire == NULL) { 8413 if (gcgrp != NULL) { 8414 GCGRP_REFRELE(gcgrp); 8415 gcgrp = NULL; 8416 } 8417 ire_refrele(ipif_ire); 8418 ire_refrele(save_ire); 8419 break; 8420 } 8421 8422 /* reference now held by IRE */ 8423 gcgrp = NULL; 8424 8425 ire->ire_marks |= ire_marks; 8426 8427 /* 8428 * Prevent sire and ipif_ire from getting deleted. 8429 * The newly created ire is tied to both of them via 8430 * the phandle and ihandle respectively. 8431 */ 8432 if (sire != NULL) { 8433 IRB_REFHOLD(sire->ire_bucket); 8434 /* Has it been removed already ? */ 8435 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 8436 IRB_REFRELE(sire->ire_bucket); 8437 ire_refrele(ipif_ire); 8438 ire_refrele(save_ire); 8439 break; 8440 } 8441 } 8442 8443 IRB_REFHOLD(ipif_ire->ire_bucket); 8444 /* Has it been removed already ? */ 8445 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 8446 IRB_REFRELE(ipif_ire->ire_bucket); 8447 if (sire != NULL) 8448 IRB_REFRELE(sire->ire_bucket); 8449 ire_refrele(ipif_ire); 8450 ire_refrele(save_ire); 8451 break; 8452 } 8453 8454 xmit_mp = first_mp; 8455 /* 8456 * In the case of multirouting, a copy 8457 * of the packet is done before its sending. 8458 * The copy is used to attempt another 8459 * route resolution, in a next loop. 8460 */ 8461 if (ire->ire_flags & RTF_MULTIRT) { 8462 copy_mp = copymsg(first_mp); 8463 if (copy_mp != NULL) { 8464 xmit_mp = copy_mp; 8465 MULTIRT_DEBUG_TAG(first_mp); 8466 } 8467 } 8468 ire_add_then_send(q, ire, xmit_mp); 8469 ire_refrele(save_ire); 8470 8471 /* Assert that sire is not deleted yet. */ 8472 if (sire != NULL) { 8473 ASSERT(sire->ire_ptpn != NULL); 8474 IRB_REFRELE(sire->ire_bucket); 8475 } 8476 8477 /* Assert that ipif_ire is not deleted yet. */ 8478 ASSERT(ipif_ire->ire_ptpn != NULL); 8479 IRB_REFRELE(ipif_ire->ire_bucket); 8480 ire_refrele(ipif_ire); 8481 8482 /* 8483 * If copy_mp is not NULL, multirouting was 8484 * requested. We loop to initiate a next 8485 * route resolution attempt, starting from sire. 8486 */ 8487 if (copy_mp != NULL) { 8488 /* 8489 * Search for the next unresolved 8490 * multirt route. 8491 */ 8492 copy_mp = NULL; 8493 ipif_ire = NULL; 8494 ire = NULL; 8495 multirt_resolve_next = B_TRUE; 8496 continue; 8497 } 8498 if (sire != NULL) 8499 ire_refrele(sire); 8500 ipif_refrele(src_ipif); 8501 ill_refrele(dst_ill); 8502 return; 8503 } 8504 case IRE_IF_NORESOLVER: { 8505 8506 if (dst_ill->ill_phys_addr_length != IP_ADDR_LEN && 8507 dst_ill->ill_resolver_mp == NULL) { 8508 ip1dbg(("ip_newroute: dst_ill %p " 8509 "for IRE_IF_NORESOLVER ire %p has " 8510 "no ill_resolver_mp\n", 8511 (void *)dst_ill, (void *)ire)); 8512 break; 8513 } 8514 8515 /* 8516 * TSol note: We are creating the ire cache for the 8517 * destination 'dst'. If 'dst' is offlink, going 8518 * through the first hop 'gw', the security attributes 8519 * of 'dst' must be set to point to the gateway 8520 * credentials of gateway 'gw'. If 'dst' is onlink, it 8521 * is possible that 'dst' is a potential gateway that is 8522 * referenced by some route that has some security 8523 * attributes. Thus in the former case, we need to do a 8524 * gcgrp_lookup of 'gw' while in the latter case we 8525 * need to do gcgrp_lookup of 'dst' itself. 8526 */ 8527 ga.ga_af = AF_INET; 8528 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 8529 &ga.ga_addr); 8530 gcgrp = gcgrp_lookup(&ga, B_FALSE); 8531 8532 ire = ire_create( 8533 (uchar_t *)&dst, /* dest address */ 8534 (uchar_t *)&ip_g_all_ones, /* mask */ 8535 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8536 (uchar_t *)&gw, /* gateway address */ 8537 &save_ire->ire_max_frag, 8538 NULL, /* no src nce */ 8539 dst_ill->ill_rq, /* recv-from queue */ 8540 dst_ill->ill_wq, /* send-to queue */ 8541 IRE_CACHE, 8542 src_ipif, 8543 save_ire->ire_mask, /* Parent mask */ 8544 (sire != NULL) ? /* Parent handle */ 8545 sire->ire_phandle : 0, 8546 save_ire->ire_ihandle, /* Interface handle */ 8547 (sire != NULL) ? sire->ire_flags & 8548 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 8549 &(save_ire->ire_uinfo), 8550 NULL, 8551 gcgrp, 8552 ipst); 8553 8554 if (ire == NULL) { 8555 if (gcgrp != NULL) { 8556 GCGRP_REFRELE(gcgrp); 8557 gcgrp = NULL; 8558 } 8559 ire_refrele(save_ire); 8560 break; 8561 } 8562 8563 /* reference now held by IRE */ 8564 gcgrp = NULL; 8565 8566 ire->ire_marks |= ire_marks; 8567 8568 /* Prevent save_ire from getting deleted */ 8569 IRB_REFHOLD(save_ire->ire_bucket); 8570 /* Has it been removed already ? */ 8571 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8572 IRB_REFRELE(save_ire->ire_bucket); 8573 ire_refrele(save_ire); 8574 break; 8575 } 8576 8577 /* 8578 * In the case of multirouting, a copy 8579 * of the packet is made before it is sent. 8580 * The copy is used in the next 8581 * loop to attempt another resolution. 8582 */ 8583 xmit_mp = first_mp; 8584 if ((sire != NULL) && 8585 (sire->ire_flags & RTF_MULTIRT)) { 8586 copy_mp = copymsg(first_mp); 8587 if (copy_mp != NULL) { 8588 xmit_mp = copy_mp; 8589 MULTIRT_DEBUG_TAG(first_mp); 8590 } 8591 } 8592 ire_add_then_send(q, ire, xmit_mp); 8593 8594 /* Assert that it is not deleted yet. */ 8595 ASSERT(save_ire->ire_ptpn != NULL); 8596 IRB_REFRELE(save_ire->ire_bucket); 8597 ire_refrele(save_ire); 8598 8599 if (copy_mp != NULL) { 8600 /* 8601 * If we found a (no)resolver, we ignore any 8602 * trailing top priority IRE_CACHE in further 8603 * loops. This ensures that we do not omit any 8604 * (no)resolver. 8605 * This IRE_CACHE, if any, will be processed 8606 * by another thread entering ip_newroute(). 8607 * IRE_CACHE entries, if any, will be processed 8608 * by another thread entering ip_newroute(), 8609 * (upon resolver response, for instance). 8610 * This aims to force parallel multirt 8611 * resolutions as soon as a packet must be sent. 8612 * In the best case, after the tx of only one 8613 * packet, all reachable routes are resolved. 8614 * Otherwise, the resolution of all RTF_MULTIRT 8615 * routes would require several emissions. 8616 */ 8617 multirt_flags &= ~MULTIRT_CACHEGW; 8618 8619 /* 8620 * Search for the next unresolved multirt 8621 * route. 8622 */ 8623 copy_mp = NULL; 8624 save_ire = NULL; 8625 ire = NULL; 8626 multirt_resolve_next = B_TRUE; 8627 continue; 8628 } 8629 8630 /* 8631 * Don't need sire anymore 8632 */ 8633 if (sire != NULL) 8634 ire_refrele(sire); 8635 8636 ipif_refrele(src_ipif); 8637 ill_refrele(dst_ill); 8638 return; 8639 } 8640 case IRE_IF_RESOLVER: 8641 /* 8642 * We can't build an IRE_CACHE yet, but at least we 8643 * found a resolver that can help. 8644 */ 8645 res_mp = dst_ill->ill_resolver_mp; 8646 if (!OK_RESOLVER_MP(res_mp)) 8647 break; 8648 8649 /* 8650 * To be at this point in the code with a non-zero gw 8651 * means that dst is reachable through a gateway that 8652 * we have never resolved. By changing dst to the gw 8653 * addr we resolve the gateway first. 8654 * When ire_add_then_send() tries to put the IP dg 8655 * to dst, it will reenter ip_newroute() at which 8656 * time we will find the IRE_CACHE for the gw and 8657 * create another IRE_CACHE in case IRE_CACHE above. 8658 */ 8659 if (gw != INADDR_ANY) { 8660 /* 8661 * The source ipif that was determined above was 8662 * relative to the destination address, not the 8663 * gateway's. If src_ipif was not taken out of 8664 * the IRE_IF_RESOLVER entry, we'll need to call 8665 * ipif_select_source() again. 8666 */ 8667 if (src_ipif != ire->ire_ipif) { 8668 ipif_refrele(src_ipif); 8669 src_ipif = ipif_select_source(dst_ill, 8670 gw, zoneid); 8671 if (src_ipif == NULL) { 8672 if (ip_debug > 2) { 8673 pr_addr_dbg( 8674 "ip_newroute: no " 8675 "src for gw %s ", 8676 AF_INET, &gw); 8677 printf("through " 8678 "interface %s\n", 8679 dst_ill->ill_name); 8680 } 8681 goto icmp_err_ret; 8682 } 8683 } 8684 save_dst = dst; 8685 dst = gw; 8686 gw = INADDR_ANY; 8687 } 8688 8689 /* 8690 * We obtain a partial IRE_CACHE which we will pass 8691 * along with the resolver query. When the response 8692 * comes back it will be there ready for us to add. 8693 * The ire_max_frag is atomically set under the 8694 * irebucket lock in ire_add_v[46]. 8695 */ 8696 8697 ire = ire_create_mp( 8698 (uchar_t *)&dst, /* dest address */ 8699 (uchar_t *)&ip_g_all_ones, /* mask */ 8700 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8701 (uchar_t *)&gw, /* gateway address */ 8702 NULL, /* ire_max_frag */ 8703 NULL, /* no src nce */ 8704 dst_ill->ill_rq, /* recv-from queue */ 8705 dst_ill->ill_wq, /* send-to queue */ 8706 IRE_CACHE, 8707 src_ipif, /* Interface ipif */ 8708 save_ire->ire_mask, /* Parent mask */ 8709 0, 8710 save_ire->ire_ihandle, /* Interface handle */ 8711 0, /* flags if any */ 8712 &(save_ire->ire_uinfo), 8713 NULL, 8714 NULL, 8715 ipst); 8716 8717 if (ire == NULL) { 8718 ire_refrele(save_ire); 8719 break; 8720 } 8721 8722 if ((sire != NULL) && 8723 (sire->ire_flags & RTF_MULTIRT)) { 8724 copy_mp = copymsg(first_mp); 8725 if (copy_mp != NULL) 8726 MULTIRT_DEBUG_TAG(copy_mp); 8727 } 8728 8729 ire->ire_marks |= ire_marks; 8730 8731 /* 8732 * Construct message chain for the resolver 8733 * of the form: 8734 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8735 * Packet could contain a IPSEC_OUT mp. 8736 * 8737 * NOTE : ire will be added later when the response 8738 * comes back from ARP. If the response does not 8739 * come back, ARP frees the packet. For this reason, 8740 * we can't REFHOLD the bucket of save_ire to prevent 8741 * deletions. We may not be able to REFRELE the bucket 8742 * if the response never comes back. Thus, before 8743 * adding the ire, ire_add_v4 will make sure that the 8744 * interface route does not get deleted. This is the 8745 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8746 * where we can always prevent deletions because of 8747 * the synchronous nature of adding IRES i.e 8748 * ire_add_then_send is called after creating the IRE. 8749 */ 8750 ASSERT(ire->ire_mp != NULL); 8751 ire->ire_mp->b_cont = first_mp; 8752 /* Have saved_mp handy, for cleanup if canput fails */ 8753 saved_mp = mp; 8754 mp = copyb(res_mp); 8755 if (mp == NULL) { 8756 /* Prepare for cleanup */ 8757 mp = saved_mp; /* pkt */ 8758 ire_delete(ire); /* ire_mp */ 8759 ire = NULL; 8760 ire_refrele(save_ire); 8761 if (copy_mp != NULL) { 8762 MULTIRT_DEBUG_UNTAG(copy_mp); 8763 freemsg(copy_mp); 8764 copy_mp = NULL; 8765 } 8766 break; 8767 } 8768 linkb(mp, ire->ire_mp); 8769 8770 /* 8771 * Fill in the source and dest addrs for the resolver. 8772 * NOTE: this depends on memory layouts imposed by 8773 * ill_init(). 8774 */ 8775 areq = (areq_t *)mp->b_rptr; 8776 addrp = (ipaddr_t *)((char *)areq + 8777 areq->areq_sender_addr_offset); 8778 if (do_attach_ill) { 8779 /* 8780 * This is bind to no failover case. 8781 * arp packet also must go out on attach_ill. 8782 */ 8783 ASSERT(ipha->ipha_src != NULL); 8784 *addrp = ipha->ipha_src; 8785 } else { 8786 *addrp = save_ire->ire_src_addr; 8787 } 8788 8789 ire_refrele(save_ire); 8790 addrp = (ipaddr_t *)((char *)areq + 8791 areq->areq_target_addr_offset); 8792 *addrp = dst; 8793 /* Up to the resolver. */ 8794 if (canputnext(dst_ill->ill_rq) && 8795 !(dst_ill->ill_arp_closing)) { 8796 putnext(dst_ill->ill_rq, mp); 8797 ire = NULL; 8798 if (copy_mp != NULL) { 8799 /* 8800 * If we found a resolver, we ignore 8801 * any trailing top priority IRE_CACHE 8802 * in the further loops. This ensures 8803 * that we do not omit any resolver. 8804 * IRE_CACHE entries, if any, will be 8805 * processed next time we enter 8806 * ip_newroute(). 8807 */ 8808 multirt_flags &= ~MULTIRT_CACHEGW; 8809 /* 8810 * Search for the next unresolved 8811 * multirt route. 8812 */ 8813 first_mp = copy_mp; 8814 copy_mp = NULL; 8815 /* Prepare the next resolution loop. */ 8816 mp = first_mp; 8817 EXTRACT_PKT_MP(mp, first_mp, 8818 mctl_present); 8819 if (mctl_present) 8820 io = (ipsec_out_t *) 8821 first_mp->b_rptr; 8822 ipha = (ipha_t *)mp->b_rptr; 8823 8824 ASSERT(sire != NULL); 8825 8826 dst = save_dst; 8827 multirt_resolve_next = B_TRUE; 8828 continue; 8829 } 8830 8831 if (sire != NULL) 8832 ire_refrele(sire); 8833 8834 /* 8835 * The response will come back in ip_wput 8836 * with db_type IRE_DB_TYPE. 8837 */ 8838 ipif_refrele(src_ipif); 8839 ill_refrele(dst_ill); 8840 return; 8841 } else { 8842 /* Prepare for cleanup */ 8843 DTRACE_PROBE1(ip__newroute__drop, mblk_t *, 8844 mp); 8845 mp->b_cont = NULL; 8846 freeb(mp); /* areq */ 8847 /* 8848 * this is an ire that is not added to the 8849 * cache. ire_freemblk will handle the release 8850 * of any resources associated with the ire. 8851 */ 8852 ire_delete(ire); /* ire_mp */ 8853 mp = saved_mp; /* pkt */ 8854 ire = NULL; 8855 if (copy_mp != NULL) { 8856 MULTIRT_DEBUG_UNTAG(copy_mp); 8857 freemsg(copy_mp); 8858 copy_mp = NULL; 8859 } 8860 break; 8861 } 8862 default: 8863 break; 8864 } 8865 } while (multirt_resolve_next); 8866 8867 ip1dbg(("ip_newroute: dropped\n")); 8868 /* Did this packet originate externally? */ 8869 if (mp->b_prev) { 8870 mp->b_next = NULL; 8871 mp->b_prev = NULL; 8872 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 8873 } else { 8874 if (dst_ill != NULL) { 8875 BUMP_MIB(dst_ill->ill_ip_mib, ipIfStatsOutDiscards); 8876 } else { 8877 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 8878 } 8879 } 8880 ASSERT(copy_mp == NULL); 8881 MULTIRT_DEBUG_UNTAG(first_mp); 8882 freemsg(first_mp); 8883 if (ire != NULL) 8884 ire_refrele(ire); 8885 if (sire != NULL) 8886 ire_refrele(sire); 8887 if (src_ipif != NULL) 8888 ipif_refrele(src_ipif); 8889 if (dst_ill != NULL) 8890 ill_refrele(dst_ill); 8891 return; 8892 8893 icmp_err_ret: 8894 ip1dbg(("ip_newroute: no route\n")); 8895 if (src_ipif != NULL) 8896 ipif_refrele(src_ipif); 8897 if (dst_ill != NULL) 8898 ill_refrele(dst_ill); 8899 if (sire != NULL) 8900 ire_refrele(sire); 8901 /* Did this packet originate externally? */ 8902 if (mp->b_prev) { 8903 mp->b_next = NULL; 8904 mp->b_prev = NULL; 8905 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInNoRoutes); 8906 q = WR(q); 8907 } else { 8908 /* 8909 * There is no outgoing ill, so just increment the 8910 * system MIB. 8911 */ 8912 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 8913 /* 8914 * Since ip_wput() isn't close to finished, we fill 8915 * in enough of the header for credible error reporting. 8916 */ 8917 if (ip_hdr_complete(ipha, zoneid, ipst)) { 8918 /* Failed */ 8919 MULTIRT_DEBUG_UNTAG(first_mp); 8920 freemsg(first_mp); 8921 if (ire != NULL) 8922 ire_refrele(ire); 8923 return; 8924 } 8925 } 8926 8927 /* 8928 * At this point we will have ire only if RTF_BLACKHOLE 8929 * or RTF_REJECT flags are set on the IRE. It will not 8930 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 8931 */ 8932 if (ire != NULL) { 8933 if (ire->ire_flags & RTF_BLACKHOLE) { 8934 ire_refrele(ire); 8935 MULTIRT_DEBUG_UNTAG(first_mp); 8936 freemsg(first_mp); 8937 return; 8938 } 8939 ire_refrele(ire); 8940 } 8941 if (ip_source_routed(ipha, ipst)) { 8942 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED, 8943 zoneid, ipst); 8944 return; 8945 } 8946 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 8947 } 8948 8949 ip_opt_info_t zero_info; 8950 8951 /* 8952 * IPv4 - 8953 * ip_newroute_ipif is called by ip_wput_multicast and 8954 * ip_rput_forward_multicast whenever we need to send 8955 * out a packet to a destination address for which we do not have specific 8956 * routing information. It is used when the packet will be sent out 8957 * on a specific interface. It is also called by ip_wput() when IP_BOUND_IF 8958 * socket option is set or icmp error message wants to go out on a particular 8959 * interface for a unicast packet. 8960 * 8961 * In most cases, the destination address is resolved thanks to the ipif 8962 * intrinsic resolver. However, there are some cases where the call to 8963 * ip_newroute_ipif must take into account the potential presence of 8964 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 8965 * that uses the interface. This is specified through flags, 8966 * which can be a combination of: 8967 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 8968 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 8969 * and flags. Additionally, the packet source address has to be set to 8970 * the specified address. The caller is thus expected to set this flag 8971 * if the packet has no specific source address yet. 8972 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 8973 * flag, the resulting ire will inherit the flag. All unresolved routes 8974 * to the destination must be explored in the same call to 8975 * ip_newroute_ipif(). 8976 */ 8977 static void 8978 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 8979 conn_t *connp, uint32_t flags, zoneid_t zoneid, ip_opt_info_t *infop) 8980 { 8981 areq_t *areq; 8982 ire_t *ire = NULL; 8983 mblk_t *res_mp; 8984 ipaddr_t *addrp; 8985 mblk_t *first_mp; 8986 ire_t *save_ire = NULL; 8987 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER */ 8988 ipif_t *src_ipif = NULL; 8989 ushort_t ire_marks = 0; 8990 ill_t *dst_ill = NULL; 8991 boolean_t mctl_present; 8992 ipsec_out_t *io; 8993 ipha_t *ipha; 8994 int ihandle = 0; 8995 mblk_t *saved_mp; 8996 ire_t *fire = NULL; 8997 mblk_t *copy_mp = NULL; 8998 boolean_t multirt_resolve_next; 8999 boolean_t unspec_src; 9000 ipaddr_t ipha_dst; 9001 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 9002 9003 /* 9004 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 9005 * here for uniformity 9006 */ 9007 ipif_refhold(ipif); 9008 9009 /* 9010 * This loop is run only once in most cases. 9011 * We loop to resolve further routes only when the destination 9012 * can be reached through multiple RTF_MULTIRT-flagged ires. 9013 */ 9014 do { 9015 if (dst_ill != NULL) { 9016 ill_refrele(dst_ill); 9017 dst_ill = NULL; 9018 } 9019 if (src_ipif != NULL) { 9020 ipif_refrele(src_ipif); 9021 src_ipif = NULL; 9022 } 9023 multirt_resolve_next = B_FALSE; 9024 9025 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 9026 ipif->ipif_ill->ill_name)); 9027 9028 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 9029 if (mctl_present) 9030 io = (ipsec_out_t *)first_mp->b_rptr; 9031 9032 ipha = (ipha_t *)mp->b_rptr; 9033 9034 /* 9035 * Save the packet destination address, we may need it after 9036 * the packet has been consumed. 9037 */ 9038 ipha_dst = ipha->ipha_dst; 9039 9040 /* 9041 * If the interface is a pt-pt interface we look for an 9042 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 9043 * local_address and the pt-pt destination address. Otherwise 9044 * we just match the local address. 9045 * NOTE: dst could be different than ipha->ipha_dst in case 9046 * of sending igmp multicast packets over a point-to-point 9047 * connection. 9048 * Thus we must be careful enough to check ipha_dst to be a 9049 * multicast address, otherwise it will take xmit_if path for 9050 * multicast packets resulting into kernel stack overflow by 9051 * repeated calls to ip_newroute_ipif from ire_send(). 9052 */ 9053 if (CLASSD(ipha_dst) && 9054 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 9055 goto err_ret; 9056 } 9057 9058 /* 9059 * We check if an IRE_OFFSUBNET for the addr that goes through 9060 * ipif exists. We need it to determine if the RTF_SETSRC and/or 9061 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 9062 * propagate its flags to the new ire. 9063 */ 9064 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 9065 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 9066 ip2dbg(("ip_newroute_ipif: " 9067 "ipif_lookup_multi_ire(" 9068 "ipif %p, dst %08x) = fire %p\n", 9069 (void *)ipif, ntohl(dst), (void *)fire)); 9070 } 9071 9072 if (mctl_present && io->ipsec_out_attach_if) { 9073 attach_ill = ip_grab_attach_ill(NULL, first_mp, 9074 io->ipsec_out_ill_index, B_FALSE, ipst); 9075 9076 /* Failure case frees things for us. */ 9077 if (attach_ill == NULL) { 9078 ipif_refrele(ipif); 9079 if (fire != NULL) 9080 ire_refrele(fire); 9081 return; 9082 } 9083 9084 /* 9085 * Check if we need an ire that will not be 9086 * looked up by anybody else i.e. HIDDEN. 9087 */ 9088 if (ill_is_probeonly(attach_ill)) { 9089 ire_marks = IRE_MARK_HIDDEN; 9090 } 9091 /* 9092 * ip_wput passes the right ipif for IPIF_NOFAILOVER 9093 * case. 9094 */ 9095 dst_ill = ipif->ipif_ill; 9096 /* attach_ill has been refheld by ip_grab_attach_ill */ 9097 ASSERT(dst_ill == attach_ill); 9098 } else { 9099 /* 9100 * If the interface belongs to an interface group, 9101 * make sure the next possible interface in the group 9102 * is used. This encourages load spreading among 9103 * peers in an interface group. 9104 * Note: load spreading is disabled for RTF_MULTIRT 9105 * routes. 9106 */ 9107 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9108 (fire->ire_flags & RTF_MULTIRT)) { 9109 /* 9110 * Don't perform outbound load spreading 9111 * in the case of an RTF_MULTIRT issued route, 9112 * we actually typically want to replicate 9113 * outgoing packets through particular 9114 * interfaces. 9115 */ 9116 dst_ill = ipif->ipif_ill; 9117 ill_refhold(dst_ill); 9118 } else { 9119 dst_ill = ip_newroute_get_dst_ill( 9120 ipif->ipif_ill); 9121 } 9122 if (dst_ill == NULL) { 9123 if (ip_debug > 2) { 9124 pr_addr_dbg("ip_newroute_ipif: " 9125 "no dst ill for dst %s\n", 9126 AF_INET, &dst); 9127 } 9128 goto err_ret; 9129 } 9130 } 9131 9132 /* 9133 * Pick a source address preferring non-deprecated ones. 9134 * Unlike ip_newroute, we don't do any source address 9135 * selection here since for multicast it really does not help 9136 * in inbound load spreading as in the unicast case. 9137 */ 9138 if ((flags & RTF_SETSRC) && (fire != NULL) && 9139 (fire->ire_flags & RTF_SETSRC)) { 9140 /* 9141 * As requested by flags, an IRE_OFFSUBNET was looked up 9142 * on that interface. This ire has RTF_SETSRC flag, so 9143 * the source address of the packet must be changed. 9144 * Check that the ipif matching the requested source 9145 * address still exists. 9146 */ 9147 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 9148 zoneid, NULL, NULL, NULL, NULL, ipst); 9149 } 9150 9151 unspec_src = (connp != NULL && connp->conn_unspec_src); 9152 9153 if (((!ipif->ipif_isv6 && ipif->ipif_lcl_addr == INADDR_ANY) || 9154 (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_UP)) != IPIF_UP || 9155 (connp != NULL && ipif->ipif_zoneid != zoneid && 9156 ipif->ipif_zoneid != ALL_ZONES)) && 9157 (src_ipif == NULL) && 9158 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 9159 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 9160 if (src_ipif == NULL) { 9161 if (ip_debug > 2) { 9162 /* ip1dbg */ 9163 pr_addr_dbg("ip_newroute_ipif: " 9164 "no src for dst %s", 9165 AF_INET, &dst); 9166 } 9167 ip1dbg((" through interface %s\n", 9168 dst_ill->ill_name)); 9169 goto err_ret; 9170 } 9171 ipif_refrele(ipif); 9172 ipif = src_ipif; 9173 ipif_refhold(ipif); 9174 } 9175 if (src_ipif == NULL) { 9176 src_ipif = ipif; 9177 ipif_refhold(src_ipif); 9178 } 9179 9180 /* 9181 * Assign a source address while we have the conn. 9182 * We can't have ip_wput_ire pick a source address when the 9183 * packet returns from arp since conn_unspec_src might be set 9184 * and we lose the conn when going through arp. 9185 */ 9186 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 9187 ipha->ipha_src = src_ipif->ipif_src_addr; 9188 9189 /* 9190 * In the case of IP_BOUND_IF and IP_PKTINFO, it is possible 9191 * that the outgoing interface does not have an interface ire. 9192 */ 9193 if (CLASSD(ipha_dst) && (connp == NULL || 9194 connp->conn_outgoing_ill == NULL) && 9195 infop->ip_opt_ill_index == 0) { 9196 /* ipif_to_ire returns an held ire */ 9197 ire = ipif_to_ire(ipif); 9198 if (ire == NULL) 9199 goto err_ret; 9200 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 9201 goto err_ret; 9202 /* 9203 * ihandle is needed when the ire is added to 9204 * cache table. 9205 */ 9206 save_ire = ire; 9207 ihandle = save_ire->ire_ihandle; 9208 9209 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 9210 "flags %04x\n", 9211 (void *)ire, (void *)ipif, flags)); 9212 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9213 (fire->ire_flags & RTF_MULTIRT)) { 9214 /* 9215 * As requested by flags, an IRE_OFFSUBNET was 9216 * looked up on that interface. This ire has 9217 * RTF_MULTIRT flag, so the resolution loop will 9218 * be re-entered to resolve additional routes on 9219 * other interfaces. For that purpose, a copy of 9220 * the packet is performed at this point. 9221 */ 9222 fire->ire_last_used_time = lbolt; 9223 copy_mp = copymsg(first_mp); 9224 if (copy_mp) { 9225 MULTIRT_DEBUG_TAG(copy_mp); 9226 } 9227 } 9228 if ((flags & RTF_SETSRC) && (fire != NULL) && 9229 (fire->ire_flags & RTF_SETSRC)) { 9230 /* 9231 * As requested by flags, an IRE_OFFSUBET was 9232 * looked up on that interface. This ire has 9233 * RTF_SETSRC flag, so the source address of the 9234 * packet must be changed. 9235 */ 9236 ipha->ipha_src = fire->ire_src_addr; 9237 } 9238 } else { 9239 ASSERT((connp == NULL) || 9240 (connp->conn_outgoing_ill != NULL) || 9241 (connp->conn_dontroute) || 9242 infop->ip_opt_ill_index != 0); 9243 /* 9244 * The only ways we can come here are: 9245 * 1) IP_BOUND_IF socket option is set 9246 * 2) SO_DONTROUTE socket option is set 9247 * 3) IP_PKTINFO option is passed in as ancillary data. 9248 * In all cases, the new ire will not be added 9249 * into cache table. 9250 */ 9251 ire_marks |= IRE_MARK_NOADD; 9252 } 9253 9254 switch (ipif->ipif_net_type) { 9255 case IRE_IF_NORESOLVER: { 9256 /* We have what we need to build an IRE_CACHE. */ 9257 9258 if ((dst_ill->ill_phys_addr_length != IP_ADDR_LEN) && 9259 (dst_ill->ill_resolver_mp == NULL)) { 9260 ip1dbg(("ip_newroute_ipif: dst_ill %p " 9261 "for IRE_IF_NORESOLVER ire %p has " 9262 "no ill_resolver_mp\n", 9263 (void *)dst_ill, (void *)ire)); 9264 break; 9265 } 9266 9267 /* 9268 * The new ire inherits the IRE_OFFSUBNET flags 9269 * and source address, if this was requested. 9270 */ 9271 ire = ire_create( 9272 (uchar_t *)&dst, /* dest address */ 9273 (uchar_t *)&ip_g_all_ones, /* mask */ 9274 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9275 NULL, /* gateway address */ 9276 &ipif->ipif_mtu, 9277 NULL, /* no src nce */ 9278 dst_ill->ill_rq, /* recv-from queue */ 9279 dst_ill->ill_wq, /* send-to queue */ 9280 IRE_CACHE, 9281 src_ipif, 9282 (save_ire != NULL ? save_ire->ire_mask : 0), 9283 (fire != NULL) ? /* Parent handle */ 9284 fire->ire_phandle : 0, 9285 ihandle, /* Interface handle */ 9286 (fire != NULL) ? 9287 (fire->ire_flags & 9288 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9289 (save_ire == NULL ? &ire_uinfo_null : 9290 &save_ire->ire_uinfo), 9291 NULL, 9292 NULL, 9293 ipst); 9294 9295 if (ire == NULL) { 9296 if (save_ire != NULL) 9297 ire_refrele(save_ire); 9298 break; 9299 } 9300 9301 ire->ire_marks |= ire_marks; 9302 9303 /* 9304 * If IRE_MARK_NOADD is set then we need to convert 9305 * the max_fragp to a useable value now. This is 9306 * normally done in ire_add_v[46]. We also need to 9307 * associate the ire with an nce (normally would be 9308 * done in ip_wput_nondata()). 9309 * 9310 * Note that IRE_MARK_NOADD packets created here 9311 * do not have a non-null ire_mp pointer. The null 9312 * value of ire_bucket indicates that they were 9313 * never added. 9314 */ 9315 if (ire->ire_marks & IRE_MARK_NOADD) { 9316 uint_t max_frag; 9317 9318 max_frag = *ire->ire_max_fragp; 9319 ire->ire_max_fragp = NULL; 9320 ire->ire_max_frag = max_frag; 9321 9322 if ((ire->ire_nce = ndp_lookup_v4( 9323 ire_to_ill(ire), 9324 (ire->ire_gateway_addr != INADDR_ANY ? 9325 &ire->ire_gateway_addr : &ire->ire_addr), 9326 B_FALSE)) == NULL) { 9327 if (save_ire != NULL) 9328 ire_refrele(save_ire); 9329 break; 9330 } 9331 ASSERT(ire->ire_nce->nce_state == 9332 ND_REACHABLE); 9333 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 9334 } 9335 9336 /* Prevent save_ire from getting deleted */ 9337 if (save_ire != NULL) { 9338 IRB_REFHOLD(save_ire->ire_bucket); 9339 /* Has it been removed already ? */ 9340 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 9341 IRB_REFRELE(save_ire->ire_bucket); 9342 ire_refrele(save_ire); 9343 break; 9344 } 9345 } 9346 9347 ire_add_then_send(q, ire, first_mp); 9348 9349 /* Assert that save_ire is not deleted yet. */ 9350 if (save_ire != NULL) { 9351 ASSERT(save_ire->ire_ptpn != NULL); 9352 IRB_REFRELE(save_ire->ire_bucket); 9353 ire_refrele(save_ire); 9354 save_ire = NULL; 9355 } 9356 if (fire != NULL) { 9357 ire_refrele(fire); 9358 fire = NULL; 9359 } 9360 9361 /* 9362 * the resolution loop is re-entered if this 9363 * was requested through flags and if we 9364 * actually are in a multirouting case. 9365 */ 9366 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9367 boolean_t need_resolve = 9368 ire_multirt_need_resolve(ipha_dst, 9369 MBLK_GETLABEL(copy_mp), ipst); 9370 if (!need_resolve) { 9371 MULTIRT_DEBUG_UNTAG(copy_mp); 9372 freemsg(copy_mp); 9373 copy_mp = NULL; 9374 } else { 9375 /* 9376 * ipif_lookup_group() calls 9377 * ire_lookup_multi() that uses 9378 * ire_ftable_lookup() to find 9379 * an IRE_INTERFACE for the group. 9380 * In the multirt case, 9381 * ire_lookup_multi() then invokes 9382 * ire_multirt_lookup() to find 9383 * the next resolvable ire. 9384 * As a result, we obtain an new 9385 * interface, derived from the 9386 * next ire. 9387 */ 9388 ipif_refrele(ipif); 9389 ipif = ipif_lookup_group(ipha_dst, 9390 zoneid, ipst); 9391 ip2dbg(("ip_newroute_ipif: " 9392 "multirt dst %08x, ipif %p\n", 9393 htonl(dst), (void *)ipif)); 9394 if (ipif != NULL) { 9395 mp = copy_mp; 9396 copy_mp = NULL; 9397 multirt_resolve_next = B_TRUE; 9398 continue; 9399 } else { 9400 freemsg(copy_mp); 9401 } 9402 } 9403 } 9404 if (ipif != NULL) 9405 ipif_refrele(ipif); 9406 ill_refrele(dst_ill); 9407 ipif_refrele(src_ipif); 9408 return; 9409 } 9410 case IRE_IF_RESOLVER: 9411 /* 9412 * We can't build an IRE_CACHE yet, but at least 9413 * we found a resolver that can help. 9414 */ 9415 res_mp = dst_ill->ill_resolver_mp; 9416 if (!OK_RESOLVER_MP(res_mp)) 9417 break; 9418 9419 /* 9420 * We obtain a partial IRE_CACHE which we will pass 9421 * along with the resolver query. When the response 9422 * comes back it will be there ready for us to add. 9423 * The new ire inherits the IRE_OFFSUBNET flags 9424 * and source address, if this was requested. 9425 * The ire_max_frag is atomically set under the 9426 * irebucket lock in ire_add_v[46]. Only in the 9427 * case of IRE_MARK_NOADD, we set it here itself. 9428 */ 9429 ire = ire_create_mp( 9430 (uchar_t *)&dst, /* dest address */ 9431 (uchar_t *)&ip_g_all_ones, /* mask */ 9432 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9433 NULL, /* gateway address */ 9434 (ire_marks & IRE_MARK_NOADD) ? 9435 ipif->ipif_mtu : 0, /* max_frag */ 9436 NULL, /* no src nce */ 9437 dst_ill->ill_rq, /* recv-from queue */ 9438 dst_ill->ill_wq, /* send-to queue */ 9439 IRE_CACHE, 9440 src_ipif, 9441 (save_ire != NULL ? save_ire->ire_mask : 0), 9442 (fire != NULL) ? /* Parent handle */ 9443 fire->ire_phandle : 0, 9444 ihandle, /* Interface handle */ 9445 (fire != NULL) ? /* flags if any */ 9446 (fire->ire_flags & 9447 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9448 (save_ire == NULL ? &ire_uinfo_null : 9449 &save_ire->ire_uinfo), 9450 NULL, 9451 NULL, 9452 ipst); 9453 9454 if (save_ire != NULL) { 9455 ire_refrele(save_ire); 9456 save_ire = NULL; 9457 } 9458 if (ire == NULL) 9459 break; 9460 9461 ire->ire_marks |= ire_marks; 9462 /* 9463 * Construct message chain for the resolver of the 9464 * form: 9465 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 9466 * 9467 * NOTE : ire will be added later when the response 9468 * comes back from ARP. If the response does not 9469 * come back, ARP frees the packet. For this reason, 9470 * we can't REFHOLD the bucket of save_ire to prevent 9471 * deletions. We may not be able to REFRELE the 9472 * bucket if the response never comes back. 9473 * Thus, before adding the ire, ire_add_v4 will make 9474 * sure that the interface route does not get deleted. 9475 * This is the only case unlike ip_newroute_v6, 9476 * ip_newroute_ipif_v6 where we can always prevent 9477 * deletions because ire_add_then_send is called after 9478 * creating the IRE. 9479 * If IRE_MARK_NOADD is set, then ire_add_then_send 9480 * does not add this IRE into the IRE CACHE. 9481 */ 9482 ASSERT(ire->ire_mp != NULL); 9483 ire->ire_mp->b_cont = first_mp; 9484 /* Have saved_mp handy, for cleanup if canput fails */ 9485 saved_mp = mp; 9486 mp = copyb(res_mp); 9487 if (mp == NULL) { 9488 /* Prepare for cleanup */ 9489 mp = saved_mp; /* pkt */ 9490 ire_delete(ire); /* ire_mp */ 9491 ire = NULL; 9492 if (copy_mp != NULL) { 9493 MULTIRT_DEBUG_UNTAG(copy_mp); 9494 freemsg(copy_mp); 9495 copy_mp = NULL; 9496 } 9497 break; 9498 } 9499 linkb(mp, ire->ire_mp); 9500 9501 /* 9502 * Fill in the source and dest addrs for the resolver. 9503 * NOTE: this depends on memory layouts imposed by 9504 * ill_init(). 9505 */ 9506 areq = (areq_t *)mp->b_rptr; 9507 addrp = (ipaddr_t *)((char *)areq + 9508 areq->areq_sender_addr_offset); 9509 *addrp = ire->ire_src_addr; 9510 addrp = (ipaddr_t *)((char *)areq + 9511 areq->areq_target_addr_offset); 9512 *addrp = dst; 9513 /* Up to the resolver. */ 9514 if (canputnext(dst_ill->ill_rq) && 9515 !(dst_ill->ill_arp_closing)) { 9516 putnext(dst_ill->ill_rq, mp); 9517 /* 9518 * The response will come back in ip_wput 9519 * with db_type IRE_DB_TYPE. 9520 */ 9521 } else { 9522 mp->b_cont = NULL; 9523 freeb(mp); /* areq */ 9524 ire_delete(ire); /* ire_mp */ 9525 saved_mp->b_next = NULL; 9526 saved_mp->b_prev = NULL; 9527 freemsg(first_mp); /* pkt */ 9528 ip2dbg(("ip_newroute_ipif: dropped\n")); 9529 } 9530 9531 if (fire != NULL) { 9532 ire_refrele(fire); 9533 fire = NULL; 9534 } 9535 9536 9537 /* 9538 * The resolution loop is re-entered if this was 9539 * requested through flags and we actually are 9540 * in a multirouting case. 9541 */ 9542 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9543 boolean_t need_resolve = 9544 ire_multirt_need_resolve(ipha_dst, 9545 MBLK_GETLABEL(copy_mp), ipst); 9546 if (!need_resolve) { 9547 MULTIRT_DEBUG_UNTAG(copy_mp); 9548 freemsg(copy_mp); 9549 copy_mp = NULL; 9550 } else { 9551 /* 9552 * ipif_lookup_group() calls 9553 * ire_lookup_multi() that uses 9554 * ire_ftable_lookup() to find 9555 * an IRE_INTERFACE for the group. 9556 * In the multirt case, 9557 * ire_lookup_multi() then invokes 9558 * ire_multirt_lookup() to find 9559 * the next resolvable ire. 9560 * As a result, we obtain an new 9561 * interface, derived from the 9562 * next ire. 9563 */ 9564 ipif_refrele(ipif); 9565 ipif = ipif_lookup_group(ipha_dst, 9566 zoneid, ipst); 9567 if (ipif != NULL) { 9568 mp = copy_mp; 9569 copy_mp = NULL; 9570 multirt_resolve_next = B_TRUE; 9571 continue; 9572 } else { 9573 freemsg(copy_mp); 9574 } 9575 } 9576 } 9577 if (ipif != NULL) 9578 ipif_refrele(ipif); 9579 ill_refrele(dst_ill); 9580 ipif_refrele(src_ipif); 9581 return; 9582 default: 9583 break; 9584 } 9585 } while (multirt_resolve_next); 9586 9587 err_ret: 9588 ip2dbg(("ip_newroute_ipif: dropped\n")); 9589 if (fire != NULL) 9590 ire_refrele(fire); 9591 ipif_refrele(ipif); 9592 /* Did this packet originate externally? */ 9593 if (dst_ill != NULL) 9594 ill_refrele(dst_ill); 9595 if (src_ipif != NULL) 9596 ipif_refrele(src_ipif); 9597 if (mp->b_prev || mp->b_next) { 9598 mp->b_next = NULL; 9599 mp->b_prev = NULL; 9600 } else { 9601 /* 9602 * Since ip_wput() isn't close to finished, we fill 9603 * in enough of the header for credible error reporting. 9604 */ 9605 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 9606 /* Failed */ 9607 freemsg(first_mp); 9608 if (ire != NULL) 9609 ire_refrele(ire); 9610 return; 9611 } 9612 } 9613 /* 9614 * At this point we will have ire only if RTF_BLACKHOLE 9615 * or RTF_REJECT flags are set on the IRE. It will not 9616 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9617 */ 9618 if (ire != NULL) { 9619 if (ire->ire_flags & RTF_BLACKHOLE) { 9620 ire_refrele(ire); 9621 freemsg(first_mp); 9622 return; 9623 } 9624 ire_refrele(ire); 9625 } 9626 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9627 } 9628 9629 /* Name/Value Table Lookup Routine */ 9630 char * 9631 ip_nv_lookup(nv_t *nv, int value) 9632 { 9633 if (!nv) 9634 return (NULL); 9635 for (; nv->nv_name; nv++) { 9636 if (nv->nv_value == value) 9637 return (nv->nv_name); 9638 } 9639 return ("unknown"); 9640 } 9641 9642 /* 9643 * This is a module open, i.e. this is a control stream for access 9644 * to a DLPI device. We allocate an ill_t as the instance data in 9645 * this case. 9646 */ 9647 int 9648 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9649 { 9650 ill_t *ill; 9651 int err; 9652 zoneid_t zoneid; 9653 netstack_t *ns; 9654 ip_stack_t *ipst; 9655 9656 /* 9657 * Prevent unprivileged processes from pushing IP so that 9658 * they can't send raw IP. 9659 */ 9660 if (secpolicy_net_rawaccess(credp) != 0) 9661 return (EPERM); 9662 9663 ns = netstack_find_by_cred(credp); 9664 ASSERT(ns != NULL); 9665 ipst = ns->netstack_ip; 9666 ASSERT(ipst != NULL); 9667 9668 /* 9669 * For exclusive stacks we set the zoneid to zero 9670 * to make IP operate as if in the global zone. 9671 */ 9672 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9673 zoneid = GLOBAL_ZONEID; 9674 else 9675 zoneid = crgetzoneid(credp); 9676 9677 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9678 q->q_ptr = WR(q)->q_ptr = ill; 9679 ill->ill_ipst = ipst; 9680 ill->ill_zoneid = zoneid; 9681 9682 /* 9683 * ill_init initializes the ill fields and then sends down 9684 * down a DL_INFO_REQ after calling qprocson. 9685 */ 9686 err = ill_init(q, ill); 9687 if (err != 0) { 9688 mi_free(ill); 9689 netstack_rele(ipst->ips_netstack); 9690 q->q_ptr = NULL; 9691 WR(q)->q_ptr = NULL; 9692 return (err); 9693 } 9694 9695 /* ill_init initializes the ipsq marking this thread as writer */ 9696 ipsq_exit(ill->ill_phyint->phyint_ipsq); 9697 /* Wait for the DL_INFO_ACK */ 9698 mutex_enter(&ill->ill_lock); 9699 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9700 /* 9701 * Return value of 0 indicates a pending signal. 9702 */ 9703 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9704 if (err == 0) { 9705 mutex_exit(&ill->ill_lock); 9706 (void) ip_close(q, 0); 9707 return (EINTR); 9708 } 9709 } 9710 mutex_exit(&ill->ill_lock); 9711 9712 /* 9713 * ip_rput_other could have set an error in ill_error on 9714 * receipt of M_ERROR. 9715 */ 9716 9717 err = ill->ill_error; 9718 if (err != 0) { 9719 (void) ip_close(q, 0); 9720 return (err); 9721 } 9722 9723 ill->ill_credp = credp; 9724 crhold(credp); 9725 9726 mutex_enter(&ipst->ips_ip_mi_lock); 9727 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)ill, devp, flag, sflag, 9728 credp); 9729 mutex_exit(&ipst->ips_ip_mi_lock); 9730 if (err) { 9731 (void) ip_close(q, 0); 9732 return (err); 9733 } 9734 return (0); 9735 } 9736 9737 /* For /dev/ip aka AF_INET open */ 9738 int 9739 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9740 { 9741 return (ip_open(q, devp, flag, sflag, credp, B_FALSE)); 9742 } 9743 9744 /* For /dev/ip6 aka AF_INET6 open */ 9745 int 9746 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9747 { 9748 return (ip_open(q, devp, flag, sflag, credp, B_TRUE)); 9749 } 9750 9751 /* IP open routine. */ 9752 int 9753 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 9754 boolean_t isv6) 9755 { 9756 conn_t *connp; 9757 major_t maj; 9758 zoneid_t zoneid; 9759 netstack_t *ns; 9760 ip_stack_t *ipst; 9761 9762 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 9763 9764 /* Allow reopen. */ 9765 if (q->q_ptr != NULL) 9766 return (0); 9767 9768 if (sflag & MODOPEN) { 9769 /* This is a module open */ 9770 return (ip_modopen(q, devp, flag, sflag, credp)); 9771 } 9772 9773 ns = netstack_find_by_cred(credp); 9774 ASSERT(ns != NULL); 9775 ipst = ns->netstack_ip; 9776 ASSERT(ipst != NULL); 9777 9778 /* 9779 * For exclusive stacks we set the zoneid to zero 9780 * to make IP operate as if in the global zone. 9781 */ 9782 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9783 zoneid = GLOBAL_ZONEID; 9784 else 9785 zoneid = crgetzoneid(credp); 9786 9787 /* 9788 * We are opening as a device. This is an IP client stream, and we 9789 * allocate an conn_t as the instance data. 9790 */ 9791 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 9792 9793 /* 9794 * ipcl_conn_create did a netstack_hold. Undo the hold that was 9795 * done by netstack_find_by_cred() 9796 */ 9797 netstack_rele(ipst->ips_netstack); 9798 9799 connp->conn_zoneid = zoneid; 9800 9801 connp->conn_upq = q; 9802 q->q_ptr = WR(q)->q_ptr = connp; 9803 9804 if (flag & SO_SOCKSTR) 9805 connp->conn_flags |= IPCL_SOCKET; 9806 9807 /* Minor tells us which /dev entry was opened */ 9808 if (isv6) { 9809 connp->conn_flags |= IPCL_ISV6; 9810 connp->conn_af_isv6 = B_TRUE; 9811 ip_setpktversion(connp, isv6, B_FALSE, ipst); 9812 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9813 } else { 9814 connp->conn_af_isv6 = B_FALSE; 9815 connp->conn_pkt_isv6 = B_FALSE; 9816 } 9817 9818 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 9819 ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 9820 connp->conn_minor_arena = ip_minor_arena_la; 9821 } else { 9822 /* 9823 * Either minor numbers in the large arena were exhausted 9824 * or a non socket application is doing the open. 9825 * Try to allocate from the small arena. 9826 */ 9827 if ((connp->conn_dev = 9828 inet_minor_alloc(ip_minor_arena_sa)) == 0) { 9829 /* CONN_DEC_REF takes care of netstack_rele() */ 9830 q->q_ptr = WR(q)->q_ptr = NULL; 9831 CONN_DEC_REF(connp); 9832 return (EBUSY); 9833 } 9834 connp->conn_minor_arena = ip_minor_arena_sa; 9835 } 9836 9837 maj = getemajor(*devp); 9838 *devp = makedevice(maj, (minor_t)connp->conn_dev); 9839 9840 /* 9841 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 9842 */ 9843 connp->conn_cred = credp; 9844 9845 /* 9846 * Handle IP_RTS_REQUEST and other ioctls which use conn_recv 9847 */ 9848 connp->conn_recv = ip_conn_input; 9849 9850 crhold(connp->conn_cred); 9851 9852 /* 9853 * If the caller has the process-wide flag set, then default to MAC 9854 * exempt mode. This allows read-down to unlabeled hosts. 9855 */ 9856 if (getpflags(NET_MAC_AWARE, credp) != 0) 9857 connp->conn_mac_exempt = B_TRUE; 9858 9859 connp->conn_rq = q; 9860 connp->conn_wq = WR(q); 9861 9862 /* Non-zero default values */ 9863 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9864 9865 /* 9866 * Make the conn globally visible to walkers 9867 */ 9868 ASSERT(connp->conn_ref == 1); 9869 mutex_enter(&connp->conn_lock); 9870 connp->conn_state_flags &= ~CONN_INCIPIENT; 9871 mutex_exit(&connp->conn_lock); 9872 9873 qprocson(q); 9874 9875 return (0); 9876 } 9877 9878 /* 9879 * Change the output format (IPv4 vs. IPv6) for a conn_t. 9880 * Note that there is no race since either ip_output function works - it 9881 * is just an optimization to enter the best ip_output routine directly. 9882 */ 9883 void 9884 ip_setpktversion(conn_t *connp, boolean_t isv6, boolean_t bump_mib, 9885 ip_stack_t *ipst) 9886 { 9887 if (isv6) { 9888 if (bump_mib) { 9889 BUMP_MIB(&ipst->ips_ip6_mib, 9890 ipIfStatsOutSwitchIPVersion); 9891 } 9892 connp->conn_send = ip_output_v6; 9893 connp->conn_pkt_isv6 = B_TRUE; 9894 } else { 9895 if (bump_mib) { 9896 BUMP_MIB(&ipst->ips_ip_mib, 9897 ipIfStatsOutSwitchIPVersion); 9898 } 9899 connp->conn_send = ip_output; 9900 connp->conn_pkt_isv6 = B_FALSE; 9901 } 9902 9903 } 9904 9905 /* 9906 * See if IPsec needs loading because of the options in mp. 9907 */ 9908 static boolean_t 9909 ipsec_opt_present(mblk_t *mp) 9910 { 9911 uint8_t *optcp, *next_optcp, *opt_endcp; 9912 struct opthdr *opt; 9913 struct T_opthdr *topt; 9914 int opthdr_len; 9915 t_uscalar_t optname, optlevel; 9916 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 9917 ipsec_req_t *ipsr; 9918 9919 /* 9920 * Walk through the mess, and find IP_SEC_OPT. If it's there, 9921 * return TRUE. 9922 */ 9923 9924 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 9925 opt_endcp = optcp + tor->OPT_length; 9926 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9927 opthdr_len = sizeof (struct T_opthdr); 9928 } else { /* O_OPTMGMT_REQ */ 9929 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 9930 opthdr_len = sizeof (struct opthdr); 9931 } 9932 for (; optcp < opt_endcp; optcp = next_optcp) { 9933 if (optcp + opthdr_len > opt_endcp) 9934 return (B_FALSE); /* Not enough option header. */ 9935 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9936 topt = (struct T_opthdr *)optcp; 9937 optlevel = topt->level; 9938 optname = topt->name; 9939 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 9940 } else { 9941 opt = (struct opthdr *)optcp; 9942 optlevel = opt->level; 9943 optname = opt->name; 9944 next_optcp = optcp + opthdr_len + 9945 _TPI_ALIGN_OPT(opt->len); 9946 } 9947 if ((next_optcp < optcp) || /* wraparound pointer space */ 9948 ((next_optcp >= opt_endcp) && /* last option bad len */ 9949 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 9950 return (B_FALSE); /* bad option buffer */ 9951 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 9952 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 9953 /* 9954 * Check to see if it's an all-bypass or all-zeroes 9955 * IPsec request. Don't bother loading IPsec if 9956 * the socket doesn't want to use it. (A good example 9957 * is a bypass request.) 9958 * 9959 * Basically, if any of the non-NEVER bits are set, 9960 * load IPsec. 9961 */ 9962 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 9963 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 9964 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 9965 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 9966 != 0) 9967 return (B_TRUE); 9968 } 9969 } 9970 return (B_FALSE); 9971 } 9972 9973 /* 9974 * If conn is is waiting for ipsec to finish loading, kick it. 9975 */ 9976 /* ARGSUSED */ 9977 static void 9978 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 9979 { 9980 t_scalar_t optreq_prim; 9981 mblk_t *mp; 9982 cred_t *cr; 9983 int err = 0; 9984 9985 /* 9986 * This function is called, after ipsec loading is complete. 9987 * Since IP checks exclusively and atomically (i.e it prevents 9988 * ipsec load from completing until ip_optcom_req completes) 9989 * whether ipsec load is complete, there cannot be a race with IP 9990 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 9991 */ 9992 mutex_enter(&connp->conn_lock); 9993 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 9994 ASSERT(connp->conn_ipsec_opt_mp != NULL); 9995 mp = connp->conn_ipsec_opt_mp; 9996 connp->conn_ipsec_opt_mp = NULL; 9997 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 9998 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(CONNP_TO_WQ(connp))); 9999 mutex_exit(&connp->conn_lock); 10000 10001 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 10002 10003 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 10004 if (optreq_prim == T_OPTMGMT_REQ) { 10005 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10006 &ip_opt_obj, B_FALSE); 10007 } else { 10008 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 10009 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10010 &ip_opt_obj, B_FALSE); 10011 } 10012 if (err != EINPROGRESS) 10013 CONN_OPER_PENDING_DONE(connp); 10014 return; 10015 } 10016 mutex_exit(&connp->conn_lock); 10017 } 10018 10019 /* 10020 * Called from the ipsec_loader thread, outside any perimeter, to tell 10021 * ip qenable any of the queues waiting for the ipsec loader to 10022 * complete. 10023 */ 10024 void 10025 ip_ipsec_load_complete(ipsec_stack_t *ipss) 10026 { 10027 netstack_t *ns = ipss->ipsec_netstack; 10028 10029 ipcl_walk(conn_restart_ipsec_waiter, NULL, ns->netstack_ip); 10030 } 10031 10032 /* 10033 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 10034 * determines the grp on which it has to become exclusive, queues the mp 10035 * and sq draining restarts the optmgmt 10036 */ 10037 static boolean_t 10038 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 10039 { 10040 conn_t *connp = Q_TO_CONN(q); 10041 ipsec_stack_t *ipss = connp->conn_netstack->netstack_ipsec; 10042 10043 /* 10044 * Take IPsec requests and treat them special. 10045 */ 10046 if (ipsec_opt_present(mp)) { 10047 /* First check if IPsec is loaded. */ 10048 mutex_enter(&ipss->ipsec_loader_lock); 10049 if (ipss->ipsec_loader_state != IPSEC_LOADER_WAIT) { 10050 mutex_exit(&ipss->ipsec_loader_lock); 10051 return (B_FALSE); 10052 } 10053 mutex_enter(&connp->conn_lock); 10054 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 10055 10056 ASSERT(connp->conn_ipsec_opt_mp == NULL); 10057 connp->conn_ipsec_opt_mp = mp; 10058 mutex_exit(&connp->conn_lock); 10059 mutex_exit(&ipss->ipsec_loader_lock); 10060 10061 ipsec_loader_loadnow(ipss); 10062 return (B_TRUE); 10063 } 10064 return (B_FALSE); 10065 } 10066 10067 /* 10068 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 10069 * all of them are copied to the conn_t. If the req is "zero", the policy is 10070 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 10071 * fields. 10072 * We keep only the latest setting of the policy and thus policy setting 10073 * is not incremental/cumulative. 10074 * 10075 * Requests to set policies with multiple alternative actions will 10076 * go through a different API. 10077 */ 10078 int 10079 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 10080 { 10081 uint_t ah_req = 0; 10082 uint_t esp_req = 0; 10083 uint_t se_req = 0; 10084 ipsec_selkey_t sel; 10085 ipsec_act_t *actp = NULL; 10086 uint_t nact; 10087 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 10088 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 10089 ipsec_policy_root_t *pr; 10090 ipsec_policy_head_t *ph; 10091 int fam; 10092 boolean_t is_pol_reset; 10093 int error = 0; 10094 netstack_t *ns = connp->conn_netstack; 10095 ip_stack_t *ipst = ns->netstack_ip; 10096 ipsec_stack_t *ipss = ns->netstack_ipsec; 10097 10098 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 10099 10100 /* 10101 * The IP_SEC_OPT option does not allow variable length parameters, 10102 * hence a request cannot be NULL. 10103 */ 10104 if (req == NULL) 10105 return (EINVAL); 10106 10107 ah_req = req->ipsr_ah_req; 10108 esp_req = req->ipsr_esp_req; 10109 se_req = req->ipsr_self_encap_req; 10110 10111 /* Don't allow setting self-encap without one or more of AH/ESP. */ 10112 if (se_req != 0 && esp_req == 0 && ah_req == 0) 10113 return (EINVAL); 10114 10115 /* 10116 * Are we dealing with a request to reset the policy (i.e. 10117 * zero requests). 10118 */ 10119 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 10120 (esp_req & REQ_MASK) == 0 && 10121 (se_req & REQ_MASK) == 0); 10122 10123 if (!is_pol_reset) { 10124 /* 10125 * If we couldn't load IPsec, fail with "protocol 10126 * not supported". 10127 * IPsec may not have been loaded for a request with zero 10128 * policies, so we don't fail in this case. 10129 */ 10130 mutex_enter(&ipss->ipsec_loader_lock); 10131 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 10132 mutex_exit(&ipss->ipsec_loader_lock); 10133 return (EPROTONOSUPPORT); 10134 } 10135 mutex_exit(&ipss->ipsec_loader_lock); 10136 10137 /* 10138 * Test for valid requests. Invalid algorithms 10139 * need to be tested by IPsec code because new 10140 * algorithms can be added dynamically. 10141 */ 10142 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10143 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10144 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 10145 return (EINVAL); 10146 } 10147 10148 /* 10149 * Only privileged users can issue these 10150 * requests. 10151 */ 10152 if (((ah_req & IPSEC_PREF_NEVER) || 10153 (esp_req & IPSEC_PREF_NEVER) || 10154 (se_req & IPSEC_PREF_NEVER)) && 10155 secpolicy_ip_config(cr, B_FALSE) != 0) { 10156 return (EPERM); 10157 } 10158 10159 /* 10160 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 10161 * are mutually exclusive. 10162 */ 10163 if (((ah_req & REQ_MASK) == REQ_MASK) || 10164 ((esp_req & REQ_MASK) == REQ_MASK) || 10165 ((se_req & REQ_MASK) == REQ_MASK)) { 10166 /* Both of them are set */ 10167 return (EINVAL); 10168 } 10169 } 10170 10171 mutex_enter(&connp->conn_lock); 10172 10173 /* 10174 * If we have already cached policies in ip_bind_connected*(), don't 10175 * let them change now. We cache policies for connections 10176 * whose src,dst [addr, port] is known. 10177 */ 10178 if (connp->conn_policy_cached) { 10179 mutex_exit(&connp->conn_lock); 10180 return (EINVAL); 10181 } 10182 10183 /* 10184 * We have a zero policies, reset the connection policy if already 10185 * set. This will cause the connection to inherit the 10186 * global policy, if any. 10187 */ 10188 if (is_pol_reset) { 10189 if (connp->conn_policy != NULL) { 10190 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 10191 connp->conn_policy = NULL; 10192 } 10193 connp->conn_flags &= ~IPCL_CHECK_POLICY; 10194 connp->conn_in_enforce_policy = B_FALSE; 10195 connp->conn_out_enforce_policy = B_FALSE; 10196 mutex_exit(&connp->conn_lock); 10197 return (0); 10198 } 10199 10200 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 10201 ipst->ips_netstack); 10202 if (ph == NULL) 10203 goto enomem; 10204 10205 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 10206 if (actp == NULL) 10207 goto enomem; 10208 10209 /* 10210 * Always allocate IPv4 policy entries, since they can also 10211 * apply to ipv6 sockets being used in ipv4-compat mode. 10212 */ 10213 bzero(&sel, sizeof (sel)); 10214 sel.ipsl_valid = IPSL_IPV4; 10215 10216 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10217 ipst->ips_netstack); 10218 if (pin4 == NULL) 10219 goto enomem; 10220 10221 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10222 ipst->ips_netstack); 10223 if (pout4 == NULL) 10224 goto enomem; 10225 10226 if (connp->conn_af_isv6) { 10227 /* 10228 * We're looking at a v6 socket, also allocate the 10229 * v6-specific entries... 10230 */ 10231 sel.ipsl_valid = IPSL_IPV6; 10232 pin6 = ipsec_policy_create(&sel, actp, nact, 10233 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10234 if (pin6 == NULL) 10235 goto enomem; 10236 10237 pout6 = ipsec_policy_create(&sel, actp, nact, 10238 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10239 if (pout6 == NULL) 10240 goto enomem; 10241 10242 /* 10243 * .. and file them away in the right place. 10244 */ 10245 fam = IPSEC_AF_V6; 10246 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10247 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 10248 ipsec_insert_always(&ph->iph_rulebyid, pin6); 10249 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10250 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 10251 ipsec_insert_always(&ph->iph_rulebyid, pout6); 10252 } 10253 10254 ipsec_actvec_free(actp, nact); 10255 10256 /* 10257 * File the v4 policies. 10258 */ 10259 fam = IPSEC_AF_V4; 10260 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10261 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 10262 ipsec_insert_always(&ph->iph_rulebyid, pin4); 10263 10264 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10265 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 10266 ipsec_insert_always(&ph->iph_rulebyid, pout4); 10267 10268 /* 10269 * If the requests need security, set enforce_policy. 10270 * If the requests are IPSEC_PREF_NEVER, one should 10271 * still set conn_out_enforce_policy so that an ipsec_out 10272 * gets attached in ip_wput. This is needed so that 10273 * for connections that we don't cache policy in ip_bind, 10274 * if global policy matches in ip_wput_attach_policy, we 10275 * don't wrongly inherit global policy. Similarly, we need 10276 * to set conn_in_enforce_policy also so that we don't verify 10277 * policy wrongly. 10278 */ 10279 if ((ah_req & REQ_MASK) != 0 || 10280 (esp_req & REQ_MASK) != 0 || 10281 (se_req & REQ_MASK) != 0) { 10282 connp->conn_in_enforce_policy = B_TRUE; 10283 connp->conn_out_enforce_policy = B_TRUE; 10284 connp->conn_flags |= IPCL_CHECK_POLICY; 10285 } 10286 10287 mutex_exit(&connp->conn_lock); 10288 return (error); 10289 #undef REQ_MASK 10290 10291 /* 10292 * Common memory-allocation-failure exit path. 10293 */ 10294 enomem: 10295 mutex_exit(&connp->conn_lock); 10296 if (actp != NULL) 10297 ipsec_actvec_free(actp, nact); 10298 if (pin4 != NULL) 10299 IPPOL_REFRELE(pin4, ipst->ips_netstack); 10300 if (pout4 != NULL) 10301 IPPOL_REFRELE(pout4, ipst->ips_netstack); 10302 if (pin6 != NULL) 10303 IPPOL_REFRELE(pin6, ipst->ips_netstack); 10304 if (pout6 != NULL) 10305 IPPOL_REFRELE(pout6, ipst->ips_netstack); 10306 return (ENOMEM); 10307 } 10308 10309 /* 10310 * Only for options that pass in an IP addr. Currently only V4 options 10311 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 10312 * So this function assumes level is IPPROTO_IP 10313 */ 10314 int 10315 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 10316 mblk_t *first_mp) 10317 { 10318 ipif_t *ipif = NULL; 10319 int error; 10320 ill_t *ill; 10321 int zoneid; 10322 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10323 10324 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 10325 10326 if (addr != INADDR_ANY || checkonly) { 10327 ASSERT(connp != NULL); 10328 zoneid = IPCL_ZONEID(connp); 10329 if (option == IP_NEXTHOP) { 10330 ipif = ipif_lookup_onlink_addr(addr, 10331 connp->conn_zoneid, ipst); 10332 } else { 10333 ipif = ipif_lookup_addr(addr, NULL, zoneid, 10334 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 10335 &error, ipst); 10336 } 10337 if (ipif == NULL) { 10338 if (error == EINPROGRESS) 10339 return (error); 10340 else if ((option == IP_MULTICAST_IF) || 10341 (option == IP_NEXTHOP)) 10342 return (EHOSTUNREACH); 10343 else 10344 return (EINVAL); 10345 } else if (checkonly) { 10346 if (option == IP_MULTICAST_IF) { 10347 ill = ipif->ipif_ill; 10348 /* not supported by the virtual network iface */ 10349 if (IS_VNI(ill)) { 10350 ipif_refrele(ipif); 10351 return (EINVAL); 10352 } 10353 } 10354 ipif_refrele(ipif); 10355 return (0); 10356 } 10357 ill = ipif->ipif_ill; 10358 mutex_enter(&connp->conn_lock); 10359 mutex_enter(&ill->ill_lock); 10360 if ((ill->ill_state_flags & ILL_CONDEMNED) || 10361 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 10362 mutex_exit(&ill->ill_lock); 10363 mutex_exit(&connp->conn_lock); 10364 ipif_refrele(ipif); 10365 return (option == IP_MULTICAST_IF ? 10366 EHOSTUNREACH : EINVAL); 10367 } 10368 } else { 10369 mutex_enter(&connp->conn_lock); 10370 } 10371 10372 /* None of the options below are supported on the VNI */ 10373 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 10374 mutex_exit(&ill->ill_lock); 10375 mutex_exit(&connp->conn_lock); 10376 ipif_refrele(ipif); 10377 return (EINVAL); 10378 } 10379 10380 switch (option) { 10381 case IP_DONTFAILOVER_IF: 10382 /* 10383 * This option is used by in.mpathd to ensure 10384 * that IPMP probe packets only go out on the 10385 * test interfaces. in.mpathd sets this option 10386 * on the non-failover interfaces. 10387 * For backward compatibility, this option 10388 * implicitly sets IP_MULTICAST_IF, as used 10389 * be done in bind(), so that ip_wput gets 10390 * this ipif to send mcast packets. 10391 */ 10392 if (ipif != NULL) { 10393 ASSERT(addr != INADDR_ANY); 10394 connp->conn_nofailover_ill = ipif->ipif_ill; 10395 connp->conn_multicast_ipif = ipif; 10396 } else { 10397 ASSERT(addr == INADDR_ANY); 10398 connp->conn_nofailover_ill = NULL; 10399 connp->conn_multicast_ipif = NULL; 10400 } 10401 break; 10402 10403 case IP_MULTICAST_IF: 10404 connp->conn_multicast_ipif = ipif; 10405 break; 10406 case IP_NEXTHOP: 10407 connp->conn_nexthop_v4 = addr; 10408 connp->conn_nexthop_set = B_TRUE; 10409 break; 10410 } 10411 10412 if (ipif != NULL) { 10413 mutex_exit(&ill->ill_lock); 10414 mutex_exit(&connp->conn_lock); 10415 ipif_refrele(ipif); 10416 return (0); 10417 } 10418 mutex_exit(&connp->conn_lock); 10419 /* We succeded in cleared the option */ 10420 return (0); 10421 } 10422 10423 /* 10424 * For options that pass in an ifindex specifying the ill. V6 options always 10425 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 10426 */ 10427 int 10428 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 10429 int level, int option, mblk_t *first_mp) 10430 { 10431 ill_t *ill = NULL; 10432 int error = 0; 10433 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10434 10435 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 10436 if (ifindex != 0) { 10437 ASSERT(connp != NULL); 10438 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 10439 first_mp, ip_restart_optmgmt, &error, ipst); 10440 if (ill != NULL) { 10441 if (checkonly) { 10442 /* not supported by the virtual network iface */ 10443 if (IS_VNI(ill)) { 10444 ill_refrele(ill); 10445 return (EINVAL); 10446 } 10447 ill_refrele(ill); 10448 return (0); 10449 } 10450 if (!ipif_lookup_zoneid_group(ill, connp->conn_zoneid, 10451 0, NULL)) { 10452 ill_refrele(ill); 10453 ill = NULL; 10454 mutex_enter(&connp->conn_lock); 10455 goto setit; 10456 } 10457 mutex_enter(&connp->conn_lock); 10458 mutex_enter(&ill->ill_lock); 10459 if (ill->ill_state_flags & ILL_CONDEMNED) { 10460 mutex_exit(&ill->ill_lock); 10461 mutex_exit(&connp->conn_lock); 10462 ill_refrele(ill); 10463 ill = NULL; 10464 mutex_enter(&connp->conn_lock); 10465 } 10466 goto setit; 10467 } else if (error == EINPROGRESS) { 10468 return (error); 10469 } else { 10470 error = 0; 10471 } 10472 } 10473 mutex_enter(&connp->conn_lock); 10474 setit: 10475 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 10476 10477 /* 10478 * The options below assume that the ILL (if any) transmits and/or 10479 * receives traffic. Neither of which is true for the virtual network 10480 * interface, so fail setting these on a VNI. 10481 */ 10482 if (IS_VNI(ill)) { 10483 ASSERT(ill != NULL); 10484 mutex_exit(&ill->ill_lock); 10485 mutex_exit(&connp->conn_lock); 10486 ill_refrele(ill); 10487 return (EINVAL); 10488 } 10489 10490 if (level == IPPROTO_IP) { 10491 switch (option) { 10492 case IP_BOUND_IF: 10493 connp->conn_incoming_ill = ill; 10494 connp->conn_outgoing_ill = ill; 10495 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10496 0 : ifindex; 10497 break; 10498 10499 case IP_MULTICAST_IF: 10500 /* 10501 * This option is an internal special. The socket 10502 * level IP_MULTICAST_IF specifies an 'ipaddr' and 10503 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 10504 * specifies an ifindex and we try first on V6 ill's. 10505 * If we don't find one, we they try using on v4 ill's 10506 * intenally and we come here. 10507 */ 10508 if (!checkonly && ill != NULL) { 10509 ipif_t *ipif; 10510 ipif = ill->ill_ipif; 10511 10512 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 10513 mutex_exit(&ill->ill_lock); 10514 mutex_exit(&connp->conn_lock); 10515 ill_refrele(ill); 10516 ill = NULL; 10517 mutex_enter(&connp->conn_lock); 10518 } else { 10519 connp->conn_multicast_ipif = ipif; 10520 } 10521 } 10522 break; 10523 10524 case IP_DHCPINIT_IF: 10525 if (connp->conn_dhcpinit_ill != NULL) { 10526 /* 10527 * We've locked the conn so conn_cleanup_ill() 10528 * cannot clear conn_dhcpinit_ill -- so it's 10529 * safe to access the ill. 10530 */ 10531 ill_t *oill = connp->conn_dhcpinit_ill; 10532 10533 ASSERT(oill->ill_dhcpinit != 0); 10534 atomic_dec_32(&oill->ill_dhcpinit); 10535 connp->conn_dhcpinit_ill = NULL; 10536 } 10537 10538 if (ill != NULL) { 10539 connp->conn_dhcpinit_ill = ill; 10540 atomic_inc_32(&ill->ill_dhcpinit); 10541 } 10542 break; 10543 } 10544 } else { 10545 switch (option) { 10546 case IPV6_BOUND_IF: 10547 connp->conn_incoming_ill = ill; 10548 connp->conn_outgoing_ill = ill; 10549 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10550 0 : ifindex; 10551 break; 10552 10553 case IPV6_BOUND_PIF: 10554 /* 10555 * Limit all transmit to this ill. 10556 * Unlike IPV6_BOUND_IF, using this option 10557 * prevents load spreading and failover from 10558 * happening when the interface is part of the 10559 * group. That's why we don't need to remember 10560 * the ifindex in orig_bound_ifindex as in 10561 * IPV6_BOUND_IF. 10562 */ 10563 connp->conn_outgoing_pill = ill; 10564 break; 10565 10566 case IPV6_DONTFAILOVER_IF: 10567 /* 10568 * This option is used by in.mpathd to ensure 10569 * that IPMP probe packets only go out on the 10570 * test interfaces. in.mpathd sets this option 10571 * on the non-failover interfaces. 10572 */ 10573 connp->conn_nofailover_ill = ill; 10574 /* 10575 * For backward compatibility, this option 10576 * implicitly sets ip_multicast_ill as used in 10577 * IPV6_MULTICAST_IF so that ip_wput gets 10578 * this ill to send mcast packets. 10579 */ 10580 connp->conn_multicast_ill = ill; 10581 connp->conn_orig_multicast_ifindex = (ill == NULL) ? 10582 0 : ifindex; 10583 break; 10584 10585 case IPV6_MULTICAST_IF: 10586 /* 10587 * Set conn_multicast_ill to be the IPv6 ill. 10588 * Set conn_multicast_ipif to be an IPv4 ipif 10589 * for ifindex to make IPv4 mapped addresses 10590 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 10591 * Even if no IPv6 ill exists for the ifindex 10592 * we need to check for an IPv4 ifindex in order 10593 * for this to work with mapped addresses. In that 10594 * case only set conn_multicast_ipif. 10595 */ 10596 if (!checkonly) { 10597 if (ifindex == 0) { 10598 connp->conn_multicast_ill = NULL; 10599 connp->conn_orig_multicast_ifindex = 0; 10600 connp->conn_multicast_ipif = NULL; 10601 } else if (ill != NULL) { 10602 connp->conn_multicast_ill = ill; 10603 connp->conn_orig_multicast_ifindex = 10604 ifindex; 10605 } 10606 } 10607 break; 10608 } 10609 } 10610 10611 if (ill != NULL) { 10612 mutex_exit(&ill->ill_lock); 10613 mutex_exit(&connp->conn_lock); 10614 ill_refrele(ill); 10615 return (0); 10616 } 10617 mutex_exit(&connp->conn_lock); 10618 /* 10619 * We succeeded in clearing the option (ifindex == 0) or failed to 10620 * locate the ill and could not set the option (ifindex != 0) 10621 */ 10622 return (ifindex == 0 ? 0 : EINVAL); 10623 } 10624 10625 /* This routine sets socket options. */ 10626 /* ARGSUSED */ 10627 int 10628 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10629 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10630 void *dummy, cred_t *cr, mblk_t *first_mp) 10631 { 10632 int *i1 = (int *)invalp; 10633 conn_t *connp = Q_TO_CONN(q); 10634 int error = 0; 10635 boolean_t checkonly; 10636 ire_t *ire; 10637 boolean_t found; 10638 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10639 10640 switch (optset_context) { 10641 10642 case SETFN_OPTCOM_CHECKONLY: 10643 checkonly = B_TRUE; 10644 /* 10645 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10646 * inlen != 0 implies value supplied and 10647 * we have to "pretend" to set it. 10648 * inlen == 0 implies that there is no 10649 * value part in T_CHECK request and just validation 10650 * done elsewhere should be enough, we just return here. 10651 */ 10652 if (inlen == 0) { 10653 *outlenp = 0; 10654 return (0); 10655 } 10656 break; 10657 case SETFN_OPTCOM_NEGOTIATE: 10658 case SETFN_UD_NEGOTIATE: 10659 case SETFN_CONN_NEGOTIATE: 10660 checkonly = B_FALSE; 10661 break; 10662 default: 10663 /* 10664 * We should never get here 10665 */ 10666 *outlenp = 0; 10667 return (EINVAL); 10668 } 10669 10670 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10671 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10672 10673 /* 10674 * For fixed length options, no sanity check 10675 * of passed in length is done. It is assumed *_optcom_req() 10676 * routines do the right thing. 10677 */ 10678 10679 switch (level) { 10680 case SOL_SOCKET: 10681 /* 10682 * conn_lock protects the bitfields, and is used to 10683 * set the fields atomically. 10684 */ 10685 switch (name) { 10686 case SO_BROADCAST: 10687 if (!checkonly) { 10688 /* TODO: use value someplace? */ 10689 mutex_enter(&connp->conn_lock); 10690 connp->conn_broadcast = *i1 ? 1 : 0; 10691 mutex_exit(&connp->conn_lock); 10692 } 10693 break; /* goto sizeof (int) option return */ 10694 case SO_USELOOPBACK: 10695 if (!checkonly) { 10696 /* TODO: use value someplace? */ 10697 mutex_enter(&connp->conn_lock); 10698 connp->conn_loopback = *i1 ? 1 : 0; 10699 mutex_exit(&connp->conn_lock); 10700 } 10701 break; /* goto sizeof (int) option return */ 10702 case SO_DONTROUTE: 10703 if (!checkonly) { 10704 mutex_enter(&connp->conn_lock); 10705 connp->conn_dontroute = *i1 ? 1 : 0; 10706 mutex_exit(&connp->conn_lock); 10707 } 10708 break; /* goto sizeof (int) option return */ 10709 case SO_REUSEADDR: 10710 if (!checkonly) { 10711 mutex_enter(&connp->conn_lock); 10712 connp->conn_reuseaddr = *i1 ? 1 : 0; 10713 mutex_exit(&connp->conn_lock); 10714 } 10715 break; /* goto sizeof (int) option return */ 10716 case SO_PROTOTYPE: 10717 if (!checkonly) { 10718 mutex_enter(&connp->conn_lock); 10719 connp->conn_proto = *i1; 10720 mutex_exit(&connp->conn_lock); 10721 } 10722 break; /* goto sizeof (int) option return */ 10723 case SO_ALLZONES: 10724 if (!checkonly) { 10725 mutex_enter(&connp->conn_lock); 10726 if (IPCL_IS_BOUND(connp)) { 10727 mutex_exit(&connp->conn_lock); 10728 return (EINVAL); 10729 } 10730 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10731 mutex_exit(&connp->conn_lock); 10732 } 10733 break; /* goto sizeof (int) option return */ 10734 case SO_ANON_MLP: 10735 if (!checkonly) { 10736 mutex_enter(&connp->conn_lock); 10737 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10738 mutex_exit(&connp->conn_lock); 10739 } 10740 break; /* goto sizeof (int) option return */ 10741 case SO_MAC_EXEMPT: 10742 if (secpolicy_net_mac_aware(cr) != 0 || 10743 IPCL_IS_BOUND(connp)) 10744 return (EACCES); 10745 if (!checkonly) { 10746 mutex_enter(&connp->conn_lock); 10747 connp->conn_mac_exempt = *i1 != 0 ? 1 : 0; 10748 mutex_exit(&connp->conn_lock); 10749 } 10750 break; /* goto sizeof (int) option return */ 10751 default: 10752 /* 10753 * "soft" error (negative) 10754 * option not handled at this level 10755 * Note: Do not modify *outlenp 10756 */ 10757 return (-EINVAL); 10758 } 10759 break; 10760 case IPPROTO_IP: 10761 switch (name) { 10762 case IP_NEXTHOP: 10763 if (secpolicy_ip_config(cr, B_FALSE) != 0) 10764 return (EPERM); 10765 /* FALLTHRU */ 10766 case IP_MULTICAST_IF: 10767 case IP_DONTFAILOVER_IF: { 10768 ipaddr_t addr = *i1; 10769 10770 error = ip_opt_set_ipif(connp, addr, checkonly, name, 10771 first_mp); 10772 if (error != 0) 10773 return (error); 10774 break; /* goto sizeof (int) option return */ 10775 } 10776 10777 case IP_MULTICAST_TTL: 10778 /* Recorded in transport above IP */ 10779 *outvalp = *invalp; 10780 *outlenp = sizeof (uchar_t); 10781 return (0); 10782 case IP_MULTICAST_LOOP: 10783 if (!checkonly) { 10784 mutex_enter(&connp->conn_lock); 10785 connp->conn_multicast_loop = *invalp ? 1 : 0; 10786 mutex_exit(&connp->conn_lock); 10787 } 10788 *outvalp = *invalp; 10789 *outlenp = sizeof (uchar_t); 10790 return (0); 10791 case IP_ADD_MEMBERSHIP: 10792 case MCAST_JOIN_GROUP: 10793 case IP_DROP_MEMBERSHIP: 10794 case MCAST_LEAVE_GROUP: { 10795 struct ip_mreq *mreqp; 10796 struct group_req *greqp; 10797 ire_t *ire; 10798 boolean_t done = B_FALSE; 10799 ipaddr_t group, ifaddr; 10800 struct sockaddr_in *sin; 10801 uint32_t *ifindexp; 10802 boolean_t mcast_opt = B_TRUE; 10803 mcast_record_t fmode; 10804 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10805 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10806 10807 switch (name) { 10808 case IP_ADD_MEMBERSHIP: 10809 mcast_opt = B_FALSE; 10810 /* FALLTHRU */ 10811 case MCAST_JOIN_GROUP: 10812 fmode = MODE_IS_EXCLUDE; 10813 optfn = ip_opt_add_group; 10814 break; 10815 10816 case IP_DROP_MEMBERSHIP: 10817 mcast_opt = B_FALSE; 10818 /* FALLTHRU */ 10819 case MCAST_LEAVE_GROUP: 10820 fmode = MODE_IS_INCLUDE; 10821 optfn = ip_opt_delete_group; 10822 break; 10823 } 10824 10825 if (mcast_opt) { 10826 greqp = (struct group_req *)i1; 10827 sin = (struct sockaddr_in *)&greqp->gr_group; 10828 if (sin->sin_family != AF_INET) { 10829 *outlenp = 0; 10830 return (ENOPROTOOPT); 10831 } 10832 group = (ipaddr_t)sin->sin_addr.s_addr; 10833 ifaddr = INADDR_ANY; 10834 ifindexp = &greqp->gr_interface; 10835 } else { 10836 mreqp = (struct ip_mreq *)i1; 10837 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 10838 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 10839 ifindexp = NULL; 10840 } 10841 10842 /* 10843 * In the multirouting case, we need to replicate 10844 * the request on all interfaces that will take part 10845 * in replication. We do so because multirouting is 10846 * reflective, thus we will probably receive multi- 10847 * casts on those interfaces. 10848 * The ip_multirt_apply_membership() succeeds if the 10849 * operation succeeds on at least one interface. 10850 */ 10851 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 10852 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10853 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10854 if (ire != NULL) { 10855 if (ire->ire_flags & RTF_MULTIRT) { 10856 error = ip_multirt_apply_membership( 10857 optfn, ire, connp, checkonly, group, 10858 fmode, INADDR_ANY, first_mp); 10859 done = B_TRUE; 10860 } 10861 ire_refrele(ire); 10862 } 10863 if (!done) { 10864 error = optfn(connp, checkonly, group, ifaddr, 10865 ifindexp, fmode, INADDR_ANY, first_mp); 10866 } 10867 if (error) { 10868 /* 10869 * EINPROGRESS is a soft error, needs retry 10870 * so don't make *outlenp zero. 10871 */ 10872 if (error != EINPROGRESS) 10873 *outlenp = 0; 10874 return (error); 10875 } 10876 /* OK return - copy input buffer into output buffer */ 10877 if (invalp != outvalp) { 10878 /* don't trust bcopy for identical src/dst */ 10879 bcopy(invalp, outvalp, inlen); 10880 } 10881 *outlenp = inlen; 10882 return (0); 10883 } 10884 case IP_BLOCK_SOURCE: 10885 case IP_UNBLOCK_SOURCE: 10886 case IP_ADD_SOURCE_MEMBERSHIP: 10887 case IP_DROP_SOURCE_MEMBERSHIP: 10888 case MCAST_BLOCK_SOURCE: 10889 case MCAST_UNBLOCK_SOURCE: 10890 case MCAST_JOIN_SOURCE_GROUP: 10891 case MCAST_LEAVE_SOURCE_GROUP: { 10892 struct ip_mreq_source *imreqp; 10893 struct group_source_req *gsreqp; 10894 in_addr_t grp, src, ifaddr = INADDR_ANY; 10895 uint32_t ifindex = 0; 10896 mcast_record_t fmode; 10897 struct sockaddr_in *sin; 10898 ire_t *ire; 10899 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 10900 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10901 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10902 10903 switch (name) { 10904 case IP_BLOCK_SOURCE: 10905 mcast_opt = B_FALSE; 10906 /* FALLTHRU */ 10907 case MCAST_BLOCK_SOURCE: 10908 fmode = MODE_IS_EXCLUDE; 10909 optfn = ip_opt_add_group; 10910 break; 10911 10912 case IP_UNBLOCK_SOURCE: 10913 mcast_opt = B_FALSE; 10914 /* FALLTHRU */ 10915 case MCAST_UNBLOCK_SOURCE: 10916 fmode = MODE_IS_EXCLUDE; 10917 optfn = ip_opt_delete_group; 10918 break; 10919 10920 case IP_ADD_SOURCE_MEMBERSHIP: 10921 mcast_opt = B_FALSE; 10922 /* FALLTHRU */ 10923 case MCAST_JOIN_SOURCE_GROUP: 10924 fmode = MODE_IS_INCLUDE; 10925 optfn = ip_opt_add_group; 10926 break; 10927 10928 case IP_DROP_SOURCE_MEMBERSHIP: 10929 mcast_opt = B_FALSE; 10930 /* FALLTHRU */ 10931 case MCAST_LEAVE_SOURCE_GROUP: 10932 fmode = MODE_IS_INCLUDE; 10933 optfn = ip_opt_delete_group; 10934 break; 10935 } 10936 10937 if (mcast_opt) { 10938 gsreqp = (struct group_source_req *)i1; 10939 if (gsreqp->gsr_group.ss_family != AF_INET) { 10940 *outlenp = 0; 10941 return (ENOPROTOOPT); 10942 } 10943 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 10944 grp = (ipaddr_t)sin->sin_addr.s_addr; 10945 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 10946 src = (ipaddr_t)sin->sin_addr.s_addr; 10947 ifindex = gsreqp->gsr_interface; 10948 } else { 10949 imreqp = (struct ip_mreq_source *)i1; 10950 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 10951 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 10952 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 10953 } 10954 10955 /* 10956 * In the multirouting case, we need to replicate 10957 * the request as noted in the mcast cases above. 10958 */ 10959 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 10960 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10961 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10962 if (ire != NULL) { 10963 if (ire->ire_flags & RTF_MULTIRT) { 10964 error = ip_multirt_apply_membership( 10965 optfn, ire, connp, checkonly, grp, 10966 fmode, src, first_mp); 10967 done = B_TRUE; 10968 } 10969 ire_refrele(ire); 10970 } 10971 if (!done) { 10972 error = optfn(connp, checkonly, grp, ifaddr, 10973 &ifindex, fmode, src, first_mp); 10974 } 10975 if (error != 0) { 10976 /* 10977 * EINPROGRESS is a soft error, needs retry 10978 * so don't make *outlenp zero. 10979 */ 10980 if (error != EINPROGRESS) 10981 *outlenp = 0; 10982 return (error); 10983 } 10984 /* OK return - copy input buffer into output buffer */ 10985 if (invalp != outvalp) { 10986 bcopy(invalp, outvalp, inlen); 10987 } 10988 *outlenp = inlen; 10989 return (0); 10990 } 10991 case IP_SEC_OPT: 10992 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 10993 if (error != 0) { 10994 *outlenp = 0; 10995 return (error); 10996 } 10997 break; 10998 case IP_HDRINCL: 10999 case IP_OPTIONS: 11000 case T_IP_OPTIONS: 11001 case IP_TOS: 11002 case T_IP_TOS: 11003 case IP_TTL: 11004 case IP_RECVDSTADDR: 11005 case IP_RECVOPTS: 11006 /* OK return - copy input buffer into output buffer */ 11007 if (invalp != outvalp) { 11008 /* don't trust bcopy for identical src/dst */ 11009 bcopy(invalp, outvalp, inlen); 11010 } 11011 *outlenp = inlen; 11012 return (0); 11013 case IP_RECVIF: 11014 /* Retrieve the inbound interface index */ 11015 if (!checkonly) { 11016 mutex_enter(&connp->conn_lock); 11017 connp->conn_recvif = *i1 ? 1 : 0; 11018 mutex_exit(&connp->conn_lock); 11019 } 11020 break; /* goto sizeof (int) option return */ 11021 case IP_RECVPKTINFO: 11022 if (!checkonly) { 11023 mutex_enter(&connp->conn_lock); 11024 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11025 mutex_exit(&connp->conn_lock); 11026 } 11027 break; /* goto sizeof (int) option return */ 11028 case IP_RECVSLLA: 11029 /* Retrieve the source link layer address */ 11030 if (!checkonly) { 11031 mutex_enter(&connp->conn_lock); 11032 connp->conn_recvslla = *i1 ? 1 : 0; 11033 mutex_exit(&connp->conn_lock); 11034 } 11035 break; /* goto sizeof (int) option return */ 11036 case MRT_INIT: 11037 case MRT_DONE: 11038 case MRT_ADD_VIF: 11039 case MRT_DEL_VIF: 11040 case MRT_ADD_MFC: 11041 case MRT_DEL_MFC: 11042 case MRT_ASSERT: 11043 if ((error = secpolicy_ip_config(cr, B_FALSE)) != 0) { 11044 *outlenp = 0; 11045 return (error); 11046 } 11047 error = ip_mrouter_set((int)name, q, checkonly, 11048 (uchar_t *)invalp, inlen, first_mp); 11049 if (error) { 11050 *outlenp = 0; 11051 return (error); 11052 } 11053 /* OK return - copy input buffer into output buffer */ 11054 if (invalp != outvalp) { 11055 /* don't trust bcopy for identical src/dst */ 11056 bcopy(invalp, outvalp, inlen); 11057 } 11058 *outlenp = inlen; 11059 return (0); 11060 case IP_BOUND_IF: 11061 case IP_DHCPINIT_IF: 11062 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11063 level, name, first_mp); 11064 if (error != 0) 11065 return (error); 11066 break; /* goto sizeof (int) option return */ 11067 11068 case IP_UNSPEC_SRC: 11069 /* Allow sending with a zero source address */ 11070 if (!checkonly) { 11071 mutex_enter(&connp->conn_lock); 11072 connp->conn_unspec_src = *i1 ? 1 : 0; 11073 mutex_exit(&connp->conn_lock); 11074 } 11075 break; /* goto sizeof (int) option return */ 11076 default: 11077 /* 11078 * "soft" error (negative) 11079 * option not handled at this level 11080 * Note: Do not modify *outlenp 11081 */ 11082 return (-EINVAL); 11083 } 11084 break; 11085 case IPPROTO_IPV6: 11086 switch (name) { 11087 case IPV6_BOUND_IF: 11088 case IPV6_BOUND_PIF: 11089 case IPV6_DONTFAILOVER_IF: 11090 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11091 level, name, first_mp); 11092 if (error != 0) 11093 return (error); 11094 break; /* goto sizeof (int) option return */ 11095 11096 case IPV6_MULTICAST_IF: 11097 /* 11098 * The only possible errors are EINPROGRESS and 11099 * EINVAL. EINPROGRESS will be restarted and is not 11100 * a hard error. We call this option on both V4 and V6 11101 * If both return EINVAL, then this call returns 11102 * EINVAL. If at least one of them succeeds we 11103 * return success. 11104 */ 11105 found = B_FALSE; 11106 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11107 level, name, first_mp); 11108 if (error == EINPROGRESS) 11109 return (error); 11110 if (error == 0) 11111 found = B_TRUE; 11112 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11113 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 11114 if (error == 0) 11115 found = B_TRUE; 11116 if (!found) 11117 return (error); 11118 break; /* goto sizeof (int) option return */ 11119 11120 case IPV6_MULTICAST_HOPS: 11121 /* Recorded in transport above IP */ 11122 break; /* goto sizeof (int) option return */ 11123 case IPV6_MULTICAST_LOOP: 11124 if (!checkonly) { 11125 mutex_enter(&connp->conn_lock); 11126 connp->conn_multicast_loop = *i1; 11127 mutex_exit(&connp->conn_lock); 11128 } 11129 break; /* goto sizeof (int) option return */ 11130 case IPV6_JOIN_GROUP: 11131 case MCAST_JOIN_GROUP: 11132 case IPV6_LEAVE_GROUP: 11133 case MCAST_LEAVE_GROUP: { 11134 struct ipv6_mreq *ip_mreqp; 11135 struct group_req *greqp; 11136 ire_t *ire; 11137 boolean_t done = B_FALSE; 11138 in6_addr_t groupv6; 11139 uint32_t ifindex; 11140 boolean_t mcast_opt = B_TRUE; 11141 mcast_record_t fmode; 11142 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11143 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11144 11145 switch (name) { 11146 case IPV6_JOIN_GROUP: 11147 mcast_opt = B_FALSE; 11148 /* FALLTHRU */ 11149 case MCAST_JOIN_GROUP: 11150 fmode = MODE_IS_EXCLUDE; 11151 optfn = ip_opt_add_group_v6; 11152 break; 11153 11154 case IPV6_LEAVE_GROUP: 11155 mcast_opt = B_FALSE; 11156 /* FALLTHRU */ 11157 case MCAST_LEAVE_GROUP: 11158 fmode = MODE_IS_INCLUDE; 11159 optfn = ip_opt_delete_group_v6; 11160 break; 11161 } 11162 11163 if (mcast_opt) { 11164 struct sockaddr_in *sin; 11165 struct sockaddr_in6 *sin6; 11166 greqp = (struct group_req *)i1; 11167 if (greqp->gr_group.ss_family == AF_INET) { 11168 sin = (struct sockaddr_in *) 11169 &(greqp->gr_group); 11170 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 11171 &groupv6); 11172 } else { 11173 sin6 = (struct sockaddr_in6 *) 11174 &(greqp->gr_group); 11175 groupv6 = sin6->sin6_addr; 11176 } 11177 ifindex = greqp->gr_interface; 11178 } else { 11179 ip_mreqp = (struct ipv6_mreq *)i1; 11180 groupv6 = ip_mreqp->ipv6mr_multiaddr; 11181 ifindex = ip_mreqp->ipv6mr_interface; 11182 } 11183 /* 11184 * In the multirouting case, we need to replicate 11185 * the request on all interfaces that will take part 11186 * in replication. We do so because multirouting is 11187 * reflective, thus we will probably receive multi- 11188 * casts on those interfaces. 11189 * The ip_multirt_apply_membership_v6() succeeds if 11190 * the operation succeeds on at least one interface. 11191 */ 11192 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 11193 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11194 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11195 if (ire != NULL) { 11196 if (ire->ire_flags & RTF_MULTIRT) { 11197 error = ip_multirt_apply_membership_v6( 11198 optfn, ire, connp, checkonly, 11199 &groupv6, fmode, &ipv6_all_zeros, 11200 first_mp); 11201 done = B_TRUE; 11202 } 11203 ire_refrele(ire); 11204 } 11205 if (!done) { 11206 error = optfn(connp, checkonly, &groupv6, 11207 ifindex, fmode, &ipv6_all_zeros, first_mp); 11208 } 11209 if (error) { 11210 /* 11211 * EINPROGRESS is a soft error, needs retry 11212 * so don't make *outlenp zero. 11213 */ 11214 if (error != EINPROGRESS) 11215 *outlenp = 0; 11216 return (error); 11217 } 11218 /* OK return - copy input buffer into output buffer */ 11219 if (invalp != outvalp) { 11220 /* don't trust bcopy for identical src/dst */ 11221 bcopy(invalp, outvalp, inlen); 11222 } 11223 *outlenp = inlen; 11224 return (0); 11225 } 11226 case MCAST_BLOCK_SOURCE: 11227 case MCAST_UNBLOCK_SOURCE: 11228 case MCAST_JOIN_SOURCE_GROUP: 11229 case MCAST_LEAVE_SOURCE_GROUP: { 11230 struct group_source_req *gsreqp; 11231 in6_addr_t v6grp, v6src; 11232 uint32_t ifindex; 11233 mcast_record_t fmode; 11234 ire_t *ire; 11235 boolean_t done = B_FALSE; 11236 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11237 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11238 11239 switch (name) { 11240 case MCAST_BLOCK_SOURCE: 11241 fmode = MODE_IS_EXCLUDE; 11242 optfn = ip_opt_add_group_v6; 11243 break; 11244 case MCAST_UNBLOCK_SOURCE: 11245 fmode = MODE_IS_EXCLUDE; 11246 optfn = ip_opt_delete_group_v6; 11247 break; 11248 case MCAST_JOIN_SOURCE_GROUP: 11249 fmode = MODE_IS_INCLUDE; 11250 optfn = ip_opt_add_group_v6; 11251 break; 11252 case MCAST_LEAVE_SOURCE_GROUP: 11253 fmode = MODE_IS_INCLUDE; 11254 optfn = ip_opt_delete_group_v6; 11255 break; 11256 } 11257 11258 gsreqp = (struct group_source_req *)i1; 11259 ifindex = gsreqp->gsr_interface; 11260 if (gsreqp->gsr_group.ss_family == AF_INET) { 11261 struct sockaddr_in *s; 11262 s = (struct sockaddr_in *)&gsreqp->gsr_group; 11263 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 11264 s = (struct sockaddr_in *)&gsreqp->gsr_source; 11265 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 11266 } else { 11267 struct sockaddr_in6 *s6; 11268 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 11269 v6grp = s6->sin6_addr; 11270 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 11271 v6src = s6->sin6_addr; 11272 } 11273 11274 /* 11275 * In the multirouting case, we need to replicate 11276 * the request as noted in the mcast cases above. 11277 */ 11278 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 11279 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11280 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11281 if (ire != NULL) { 11282 if (ire->ire_flags & RTF_MULTIRT) { 11283 error = ip_multirt_apply_membership_v6( 11284 optfn, ire, connp, checkonly, 11285 &v6grp, fmode, &v6src, first_mp); 11286 done = B_TRUE; 11287 } 11288 ire_refrele(ire); 11289 } 11290 if (!done) { 11291 error = optfn(connp, checkonly, &v6grp, 11292 ifindex, fmode, &v6src, first_mp); 11293 } 11294 if (error != 0) { 11295 /* 11296 * EINPROGRESS is a soft error, needs retry 11297 * so don't make *outlenp zero. 11298 */ 11299 if (error != EINPROGRESS) 11300 *outlenp = 0; 11301 return (error); 11302 } 11303 /* OK return - copy input buffer into output buffer */ 11304 if (invalp != outvalp) { 11305 bcopy(invalp, outvalp, inlen); 11306 } 11307 *outlenp = inlen; 11308 return (0); 11309 } 11310 case IPV6_UNICAST_HOPS: 11311 /* Recorded in transport above IP */ 11312 break; /* goto sizeof (int) option return */ 11313 case IPV6_UNSPEC_SRC: 11314 /* Allow sending with a zero source address */ 11315 if (!checkonly) { 11316 mutex_enter(&connp->conn_lock); 11317 connp->conn_unspec_src = *i1 ? 1 : 0; 11318 mutex_exit(&connp->conn_lock); 11319 } 11320 break; /* goto sizeof (int) option return */ 11321 case IPV6_RECVPKTINFO: 11322 if (!checkonly) { 11323 mutex_enter(&connp->conn_lock); 11324 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11325 mutex_exit(&connp->conn_lock); 11326 } 11327 break; /* goto sizeof (int) option return */ 11328 case IPV6_RECVTCLASS: 11329 if (!checkonly) { 11330 if (*i1 < 0 || *i1 > 1) { 11331 return (EINVAL); 11332 } 11333 mutex_enter(&connp->conn_lock); 11334 connp->conn_ipv6_recvtclass = *i1; 11335 mutex_exit(&connp->conn_lock); 11336 } 11337 break; 11338 case IPV6_RECVPATHMTU: 11339 if (!checkonly) { 11340 if (*i1 < 0 || *i1 > 1) { 11341 return (EINVAL); 11342 } 11343 mutex_enter(&connp->conn_lock); 11344 connp->conn_ipv6_recvpathmtu = *i1; 11345 mutex_exit(&connp->conn_lock); 11346 } 11347 break; 11348 case IPV6_RECVHOPLIMIT: 11349 if (!checkonly) { 11350 mutex_enter(&connp->conn_lock); 11351 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 11352 mutex_exit(&connp->conn_lock); 11353 } 11354 break; /* goto sizeof (int) option return */ 11355 case IPV6_RECVHOPOPTS: 11356 if (!checkonly) { 11357 mutex_enter(&connp->conn_lock); 11358 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 11359 mutex_exit(&connp->conn_lock); 11360 } 11361 break; /* goto sizeof (int) option return */ 11362 case IPV6_RECVDSTOPTS: 11363 if (!checkonly) { 11364 mutex_enter(&connp->conn_lock); 11365 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 11366 mutex_exit(&connp->conn_lock); 11367 } 11368 break; /* goto sizeof (int) option return */ 11369 case IPV6_RECVRTHDR: 11370 if (!checkonly) { 11371 mutex_enter(&connp->conn_lock); 11372 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 11373 mutex_exit(&connp->conn_lock); 11374 } 11375 break; /* goto sizeof (int) option return */ 11376 case IPV6_RECVRTHDRDSTOPTS: 11377 if (!checkonly) { 11378 mutex_enter(&connp->conn_lock); 11379 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 11380 mutex_exit(&connp->conn_lock); 11381 } 11382 break; /* goto sizeof (int) option return */ 11383 case IPV6_PKTINFO: 11384 if (inlen == 0) 11385 return (-EINVAL); /* clearing option */ 11386 error = ip6_set_pktinfo(cr, connp, 11387 (struct in6_pktinfo *)invalp, first_mp); 11388 if (error != 0) 11389 *outlenp = 0; 11390 else 11391 *outlenp = inlen; 11392 return (error); 11393 case IPV6_NEXTHOP: { 11394 struct sockaddr_in6 *sin6; 11395 11396 /* Verify that the nexthop is reachable */ 11397 if (inlen == 0) 11398 return (-EINVAL); /* clearing option */ 11399 11400 sin6 = (struct sockaddr_in6 *)invalp; 11401 ire = ire_route_lookup_v6(&sin6->sin6_addr, 11402 0, 0, 0, NULL, NULL, connp->conn_zoneid, 11403 NULL, MATCH_IRE_DEFAULT, ipst); 11404 11405 if (ire == NULL) { 11406 *outlenp = 0; 11407 return (EHOSTUNREACH); 11408 } 11409 ire_refrele(ire); 11410 return (-EINVAL); 11411 } 11412 case IPV6_SEC_OPT: 11413 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11414 if (error != 0) { 11415 *outlenp = 0; 11416 return (error); 11417 } 11418 break; 11419 case IPV6_SRC_PREFERENCES: { 11420 /* 11421 * This is implemented strictly in the ip module 11422 * (here and in tcp_opt_*() to accomodate tcp 11423 * sockets). Modules above ip pass this option 11424 * down here since ip is the only one that needs to 11425 * be aware of source address preferences. 11426 * 11427 * This socket option only affects connected 11428 * sockets that haven't already bound to a specific 11429 * IPv6 address. In other words, sockets that 11430 * don't call bind() with an address other than the 11431 * unspecified address and that call connect(). 11432 * ip_bind_connected_v6() passes these preferences 11433 * to the ipif_select_source_v6() function. 11434 */ 11435 if (inlen != sizeof (uint32_t)) 11436 return (EINVAL); 11437 error = ip6_set_src_preferences(connp, 11438 *(uint32_t *)invalp); 11439 if (error != 0) { 11440 *outlenp = 0; 11441 return (error); 11442 } else { 11443 *outlenp = sizeof (uint32_t); 11444 } 11445 break; 11446 } 11447 case IPV6_V6ONLY: 11448 if (*i1 < 0 || *i1 > 1) { 11449 return (EINVAL); 11450 } 11451 mutex_enter(&connp->conn_lock); 11452 connp->conn_ipv6_v6only = *i1; 11453 mutex_exit(&connp->conn_lock); 11454 break; 11455 default: 11456 return (-EINVAL); 11457 } 11458 break; 11459 default: 11460 /* 11461 * "soft" error (negative) 11462 * option not handled at this level 11463 * Note: Do not modify *outlenp 11464 */ 11465 return (-EINVAL); 11466 } 11467 /* 11468 * Common case of return from an option that is sizeof (int) 11469 */ 11470 *(int *)outvalp = *i1; 11471 *outlenp = sizeof (int); 11472 return (0); 11473 } 11474 11475 /* 11476 * This routine gets default values of certain options whose default 11477 * values are maintained by protocol specific code 11478 */ 11479 /* ARGSUSED */ 11480 int 11481 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 11482 { 11483 int *i1 = (int *)ptr; 11484 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11485 11486 switch (level) { 11487 case IPPROTO_IP: 11488 switch (name) { 11489 case IP_MULTICAST_TTL: 11490 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 11491 return (sizeof (uchar_t)); 11492 case IP_MULTICAST_LOOP: 11493 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 11494 return (sizeof (uchar_t)); 11495 default: 11496 return (-1); 11497 } 11498 case IPPROTO_IPV6: 11499 switch (name) { 11500 case IPV6_UNICAST_HOPS: 11501 *i1 = ipst->ips_ipv6_def_hops; 11502 return (sizeof (int)); 11503 case IPV6_MULTICAST_HOPS: 11504 *i1 = IP_DEFAULT_MULTICAST_TTL; 11505 return (sizeof (int)); 11506 case IPV6_MULTICAST_LOOP: 11507 *i1 = IP_DEFAULT_MULTICAST_LOOP; 11508 return (sizeof (int)); 11509 case IPV6_V6ONLY: 11510 *i1 = 1; 11511 return (sizeof (int)); 11512 default: 11513 return (-1); 11514 } 11515 default: 11516 return (-1); 11517 } 11518 /* NOTREACHED */ 11519 } 11520 11521 /* 11522 * Given a destination address and a pointer to where to put the information 11523 * this routine fills in the mtuinfo. 11524 */ 11525 int 11526 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 11527 struct ip6_mtuinfo *mtuinfo, netstack_t *ns) 11528 { 11529 ire_t *ire; 11530 ip_stack_t *ipst = ns->netstack_ip; 11531 11532 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 11533 return (-1); 11534 11535 bzero(mtuinfo, sizeof (*mtuinfo)); 11536 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 11537 mtuinfo->ip6m_addr.sin6_port = port; 11538 mtuinfo->ip6m_addr.sin6_addr = *in6; 11539 11540 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL, ipst); 11541 if (ire != NULL) { 11542 mtuinfo->ip6m_mtu = ire->ire_max_frag; 11543 ire_refrele(ire); 11544 } else { 11545 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 11546 } 11547 return (sizeof (struct ip6_mtuinfo)); 11548 } 11549 11550 /* 11551 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 11552 * checking of GET_QUEUE_CRED(q) and that ip_g_mrouter is set should be done and 11553 * isn't. This doesn't matter as the error checking is done properly for the 11554 * other MRT options coming in through ip_opt_set. 11555 */ 11556 int 11557 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 11558 { 11559 conn_t *connp = Q_TO_CONN(q); 11560 ipsec_req_t *req = (ipsec_req_t *)ptr; 11561 11562 switch (level) { 11563 case IPPROTO_IP: 11564 switch (name) { 11565 case MRT_VERSION: 11566 case MRT_ASSERT: 11567 (void) ip_mrouter_get(name, q, ptr); 11568 return (sizeof (int)); 11569 case IP_SEC_OPT: 11570 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 11571 case IP_NEXTHOP: 11572 if (connp->conn_nexthop_set) { 11573 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 11574 return (sizeof (ipaddr_t)); 11575 } else 11576 return (0); 11577 case IP_RECVPKTINFO: 11578 *(int *)ptr = connp->conn_ip_recvpktinfo ? 1: 0; 11579 return (sizeof (int)); 11580 default: 11581 break; 11582 } 11583 break; 11584 case IPPROTO_IPV6: 11585 switch (name) { 11586 case IPV6_SEC_OPT: 11587 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 11588 case IPV6_SRC_PREFERENCES: { 11589 return (ip6_get_src_preferences(connp, 11590 (uint32_t *)ptr)); 11591 } 11592 case IPV6_V6ONLY: 11593 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 11594 return (sizeof (int)); 11595 case IPV6_PATHMTU: 11596 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 11597 (struct ip6_mtuinfo *)ptr, connp->conn_netstack)); 11598 default: 11599 break; 11600 } 11601 break; 11602 default: 11603 break; 11604 } 11605 return (-1); 11606 } 11607 11608 /* Named Dispatch routine to get a current value out of our parameter table. */ 11609 /* ARGSUSED */ 11610 static int 11611 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11612 { 11613 ipparam_t *ippa = (ipparam_t *)cp; 11614 11615 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 11616 return (0); 11617 } 11618 11619 /* ARGSUSED */ 11620 static int 11621 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11622 { 11623 11624 (void) mi_mpprintf(mp, "%d", *(int *)cp); 11625 return (0); 11626 } 11627 11628 /* 11629 * Set ip{,6}_forwarding values. This means walking through all of the 11630 * ill's and toggling their forwarding values. 11631 */ 11632 /* ARGSUSED */ 11633 static int 11634 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11635 { 11636 long new_value; 11637 int *forwarding_value = (int *)cp; 11638 ill_t *ill; 11639 boolean_t isv6; 11640 ill_walk_context_t ctx; 11641 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11642 11643 isv6 = (forwarding_value == &ipst->ips_ipv6_forward); 11644 11645 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11646 new_value < 0 || new_value > 1) { 11647 return (EINVAL); 11648 } 11649 11650 *forwarding_value = new_value; 11651 11652 /* 11653 * Regardless of the current value of ip_forwarding, set all per-ill 11654 * values of ip_forwarding to the value being set. 11655 * 11656 * Bring all the ill's up to date with the new global value. 11657 */ 11658 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11659 11660 if (isv6) 11661 ill = ILL_START_WALK_V6(&ctx, ipst); 11662 else 11663 ill = ILL_START_WALK_V4(&ctx, ipst); 11664 11665 for (; ill != NULL; ill = ill_next(&ctx, ill)) 11666 (void) ill_forward_set(ill, new_value != 0); 11667 11668 rw_exit(&ipst->ips_ill_g_lock); 11669 return (0); 11670 } 11671 11672 /* 11673 * Walk through the param array specified registering each element with the 11674 * Named Dispatch handler. This is called only during init. So it is ok 11675 * not to acquire any locks 11676 */ 11677 static boolean_t 11678 ip_param_register(IDP *ndp, ipparam_t *ippa, size_t ippa_cnt, 11679 ipndp_t *ipnd, size_t ipnd_cnt) 11680 { 11681 for (; ippa_cnt-- > 0; ippa++) { 11682 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 11683 if (!nd_load(ndp, ippa->ip_param_name, 11684 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11685 nd_free(ndp); 11686 return (B_FALSE); 11687 } 11688 } 11689 } 11690 11691 for (; ipnd_cnt-- > 0; ipnd++) { 11692 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11693 if (!nd_load(ndp, ipnd->ip_ndp_name, 11694 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11695 ipnd->ip_ndp_data)) { 11696 nd_free(ndp); 11697 return (B_FALSE); 11698 } 11699 } 11700 } 11701 11702 return (B_TRUE); 11703 } 11704 11705 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11706 /* ARGSUSED */ 11707 static int 11708 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11709 { 11710 long new_value; 11711 ipparam_t *ippa = (ipparam_t *)cp; 11712 11713 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11714 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11715 return (EINVAL); 11716 } 11717 ippa->ip_param_value = new_value; 11718 return (0); 11719 } 11720 11721 /* 11722 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11723 * When an ipf is passed here for the first time, if 11724 * we already have in-order fragments on the queue, we convert from the fast- 11725 * path reassembly scheme to the hard-case scheme. From then on, additional 11726 * fragments are reassembled here. We keep track of the start and end offsets 11727 * of each piece, and the number of holes in the chain. When the hole count 11728 * goes to zero, we are done! 11729 * 11730 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11731 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11732 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11733 * after the call to ip_reassemble(). 11734 */ 11735 int 11736 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11737 size_t msg_len) 11738 { 11739 uint_t end; 11740 mblk_t *next_mp; 11741 mblk_t *mp1; 11742 uint_t offset; 11743 boolean_t incr_dups = B_TRUE; 11744 boolean_t offset_zero_seen = B_FALSE; 11745 boolean_t pkt_boundary_checked = B_FALSE; 11746 11747 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11748 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11749 11750 /* Add in byte count */ 11751 ipf->ipf_count += msg_len; 11752 if (ipf->ipf_end) { 11753 /* 11754 * We were part way through in-order reassembly, but now there 11755 * is a hole. We walk through messages already queued, and 11756 * mark them for hard case reassembly. We know that up till 11757 * now they were in order starting from offset zero. 11758 */ 11759 offset = 0; 11760 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11761 IP_REASS_SET_START(mp1, offset); 11762 if (offset == 0) { 11763 ASSERT(ipf->ipf_nf_hdr_len != 0); 11764 offset = -ipf->ipf_nf_hdr_len; 11765 } 11766 offset += mp1->b_wptr - mp1->b_rptr; 11767 IP_REASS_SET_END(mp1, offset); 11768 } 11769 /* One hole at the end. */ 11770 ipf->ipf_hole_cnt = 1; 11771 /* Brand it as a hard case, forever. */ 11772 ipf->ipf_end = 0; 11773 } 11774 /* Walk through all the new pieces. */ 11775 do { 11776 end = start + (mp->b_wptr - mp->b_rptr); 11777 /* 11778 * If start is 0, decrease 'end' only for the first mblk of 11779 * the fragment. Otherwise 'end' can get wrong value in the 11780 * second pass of the loop if first mblk is exactly the 11781 * size of ipf_nf_hdr_len. 11782 */ 11783 if (start == 0 && !offset_zero_seen) { 11784 /* First segment */ 11785 ASSERT(ipf->ipf_nf_hdr_len != 0); 11786 end -= ipf->ipf_nf_hdr_len; 11787 offset_zero_seen = B_TRUE; 11788 } 11789 next_mp = mp->b_cont; 11790 /* 11791 * We are checking to see if there is any interesing data 11792 * to process. If there isn't and the mblk isn't the 11793 * one which carries the unfragmentable header then we 11794 * drop it. It's possible to have just the unfragmentable 11795 * header come through without any data. That needs to be 11796 * saved. 11797 * 11798 * If the assert at the top of this function holds then the 11799 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 11800 * is infrequently traveled enough that the test is left in 11801 * to protect against future code changes which break that 11802 * invariant. 11803 */ 11804 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 11805 /* Empty. Blast it. */ 11806 IP_REASS_SET_START(mp, 0); 11807 IP_REASS_SET_END(mp, 0); 11808 /* 11809 * If the ipf points to the mblk we are about to free, 11810 * update ipf to point to the next mblk (or NULL 11811 * if none). 11812 */ 11813 if (ipf->ipf_mp->b_cont == mp) 11814 ipf->ipf_mp->b_cont = next_mp; 11815 freeb(mp); 11816 continue; 11817 } 11818 mp->b_cont = NULL; 11819 IP_REASS_SET_START(mp, start); 11820 IP_REASS_SET_END(mp, end); 11821 if (!ipf->ipf_tail_mp) { 11822 ipf->ipf_tail_mp = mp; 11823 ipf->ipf_mp->b_cont = mp; 11824 if (start == 0 || !more) { 11825 ipf->ipf_hole_cnt = 1; 11826 /* 11827 * if the first fragment comes in more than one 11828 * mblk, this loop will be executed for each 11829 * mblk. Need to adjust hole count so exiting 11830 * this routine will leave hole count at 1. 11831 */ 11832 if (next_mp) 11833 ipf->ipf_hole_cnt++; 11834 } else 11835 ipf->ipf_hole_cnt = 2; 11836 continue; 11837 } else if (ipf->ipf_last_frag_seen && !more && 11838 !pkt_boundary_checked) { 11839 /* 11840 * We check datagram boundary only if this fragment 11841 * claims to be the last fragment and we have seen a 11842 * last fragment in the past too. We do this only 11843 * once for a given fragment. 11844 * 11845 * start cannot be 0 here as fragments with start=0 11846 * and MF=0 gets handled as a complete packet. These 11847 * fragments should not reach here. 11848 */ 11849 11850 if (start + msgdsize(mp) != 11851 IP_REASS_END(ipf->ipf_tail_mp)) { 11852 /* 11853 * We have two fragments both of which claim 11854 * to be the last fragment but gives conflicting 11855 * information about the whole datagram size. 11856 * Something fishy is going on. Drop the 11857 * fragment and free up the reassembly list. 11858 */ 11859 return (IP_REASS_FAILED); 11860 } 11861 11862 /* 11863 * We shouldn't come to this code block again for this 11864 * particular fragment. 11865 */ 11866 pkt_boundary_checked = B_TRUE; 11867 } 11868 11869 /* New stuff at or beyond tail? */ 11870 offset = IP_REASS_END(ipf->ipf_tail_mp); 11871 if (start >= offset) { 11872 if (ipf->ipf_last_frag_seen) { 11873 /* current fragment is beyond last fragment */ 11874 return (IP_REASS_FAILED); 11875 } 11876 /* Link it on end. */ 11877 ipf->ipf_tail_mp->b_cont = mp; 11878 ipf->ipf_tail_mp = mp; 11879 if (more) { 11880 if (start != offset) 11881 ipf->ipf_hole_cnt++; 11882 } else if (start == offset && next_mp == NULL) 11883 ipf->ipf_hole_cnt--; 11884 continue; 11885 } 11886 mp1 = ipf->ipf_mp->b_cont; 11887 offset = IP_REASS_START(mp1); 11888 /* New stuff at the front? */ 11889 if (start < offset) { 11890 if (start == 0) { 11891 if (end >= offset) { 11892 /* Nailed the hole at the begining. */ 11893 ipf->ipf_hole_cnt--; 11894 } 11895 } else if (end < offset) { 11896 /* 11897 * A hole, stuff, and a hole where there used 11898 * to be just a hole. 11899 */ 11900 ipf->ipf_hole_cnt++; 11901 } 11902 mp->b_cont = mp1; 11903 /* Check for overlap. */ 11904 while (end > offset) { 11905 if (end < IP_REASS_END(mp1)) { 11906 mp->b_wptr -= end - offset; 11907 IP_REASS_SET_END(mp, offset); 11908 BUMP_MIB(ill->ill_ip_mib, 11909 ipIfStatsReasmPartDups); 11910 break; 11911 } 11912 /* Did we cover another hole? */ 11913 if ((mp1->b_cont && 11914 IP_REASS_END(mp1) != 11915 IP_REASS_START(mp1->b_cont) && 11916 end >= IP_REASS_START(mp1->b_cont)) || 11917 (!ipf->ipf_last_frag_seen && !more)) { 11918 ipf->ipf_hole_cnt--; 11919 } 11920 /* Clip out mp1. */ 11921 if ((mp->b_cont = mp1->b_cont) == NULL) { 11922 /* 11923 * After clipping out mp1, this guy 11924 * is now hanging off the end. 11925 */ 11926 ipf->ipf_tail_mp = mp; 11927 } 11928 IP_REASS_SET_START(mp1, 0); 11929 IP_REASS_SET_END(mp1, 0); 11930 /* Subtract byte count */ 11931 ipf->ipf_count -= mp1->b_datap->db_lim - 11932 mp1->b_datap->db_base; 11933 freeb(mp1); 11934 BUMP_MIB(ill->ill_ip_mib, 11935 ipIfStatsReasmPartDups); 11936 mp1 = mp->b_cont; 11937 if (!mp1) 11938 break; 11939 offset = IP_REASS_START(mp1); 11940 } 11941 ipf->ipf_mp->b_cont = mp; 11942 continue; 11943 } 11944 /* 11945 * The new piece starts somewhere between the start of the head 11946 * and before the end of the tail. 11947 */ 11948 for (; mp1; mp1 = mp1->b_cont) { 11949 offset = IP_REASS_END(mp1); 11950 if (start < offset) { 11951 if (end <= offset) { 11952 /* Nothing new. */ 11953 IP_REASS_SET_START(mp, 0); 11954 IP_REASS_SET_END(mp, 0); 11955 /* Subtract byte count */ 11956 ipf->ipf_count -= mp->b_datap->db_lim - 11957 mp->b_datap->db_base; 11958 if (incr_dups) { 11959 ipf->ipf_num_dups++; 11960 incr_dups = B_FALSE; 11961 } 11962 freeb(mp); 11963 BUMP_MIB(ill->ill_ip_mib, 11964 ipIfStatsReasmDuplicates); 11965 break; 11966 } 11967 /* 11968 * Trim redundant stuff off beginning of new 11969 * piece. 11970 */ 11971 IP_REASS_SET_START(mp, offset); 11972 mp->b_rptr += offset - start; 11973 BUMP_MIB(ill->ill_ip_mib, 11974 ipIfStatsReasmPartDups); 11975 start = offset; 11976 if (!mp1->b_cont) { 11977 /* 11978 * After trimming, this guy is now 11979 * hanging off the end. 11980 */ 11981 mp1->b_cont = mp; 11982 ipf->ipf_tail_mp = mp; 11983 if (!more) { 11984 ipf->ipf_hole_cnt--; 11985 } 11986 break; 11987 } 11988 } 11989 if (start >= IP_REASS_START(mp1->b_cont)) 11990 continue; 11991 /* Fill a hole */ 11992 if (start > offset) 11993 ipf->ipf_hole_cnt++; 11994 mp->b_cont = mp1->b_cont; 11995 mp1->b_cont = mp; 11996 mp1 = mp->b_cont; 11997 offset = IP_REASS_START(mp1); 11998 if (end >= offset) { 11999 ipf->ipf_hole_cnt--; 12000 /* Check for overlap. */ 12001 while (end > offset) { 12002 if (end < IP_REASS_END(mp1)) { 12003 mp->b_wptr -= end - offset; 12004 IP_REASS_SET_END(mp, offset); 12005 /* 12006 * TODO we might bump 12007 * this up twice if there is 12008 * overlap at both ends. 12009 */ 12010 BUMP_MIB(ill->ill_ip_mib, 12011 ipIfStatsReasmPartDups); 12012 break; 12013 } 12014 /* Did we cover another hole? */ 12015 if ((mp1->b_cont && 12016 IP_REASS_END(mp1) 12017 != IP_REASS_START(mp1->b_cont) && 12018 end >= 12019 IP_REASS_START(mp1->b_cont)) || 12020 (!ipf->ipf_last_frag_seen && 12021 !more)) { 12022 ipf->ipf_hole_cnt--; 12023 } 12024 /* Clip out mp1. */ 12025 if ((mp->b_cont = mp1->b_cont) == 12026 NULL) { 12027 /* 12028 * After clipping out mp1, 12029 * this guy is now hanging 12030 * off the end. 12031 */ 12032 ipf->ipf_tail_mp = mp; 12033 } 12034 IP_REASS_SET_START(mp1, 0); 12035 IP_REASS_SET_END(mp1, 0); 12036 /* Subtract byte count */ 12037 ipf->ipf_count -= 12038 mp1->b_datap->db_lim - 12039 mp1->b_datap->db_base; 12040 freeb(mp1); 12041 BUMP_MIB(ill->ill_ip_mib, 12042 ipIfStatsReasmPartDups); 12043 mp1 = mp->b_cont; 12044 if (!mp1) 12045 break; 12046 offset = IP_REASS_START(mp1); 12047 } 12048 } 12049 break; 12050 } 12051 } while (start = end, mp = next_mp); 12052 12053 /* Fragment just processed could be the last one. Remember this fact */ 12054 if (!more) 12055 ipf->ipf_last_frag_seen = B_TRUE; 12056 12057 /* Still got holes? */ 12058 if (ipf->ipf_hole_cnt) 12059 return (IP_REASS_PARTIAL); 12060 /* Clean up overloaded fields to avoid upstream disasters. */ 12061 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 12062 IP_REASS_SET_START(mp1, 0); 12063 IP_REASS_SET_END(mp1, 0); 12064 } 12065 return (IP_REASS_COMPLETE); 12066 } 12067 12068 /* 12069 * ipsec processing for the fast path, used for input UDP Packets 12070 * Returns true if ready for passup to UDP. 12071 * Return false if packet is not passable to UDP (e.g. it failed IPsec policy, 12072 * was an ESP-in-UDP packet, etc.). 12073 */ 12074 static boolean_t 12075 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 12076 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present, ire_t *ire) 12077 { 12078 uint32_t ill_index; 12079 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 12080 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 12081 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12082 udp_t *udp = connp->conn_udp; 12083 12084 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12085 /* The ill_index of the incoming ILL */ 12086 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 12087 12088 /* pass packet up to the transport */ 12089 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 12090 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 12091 NULL, mctl_present); 12092 if (*first_mpp == NULL) { 12093 return (B_FALSE); 12094 } 12095 } 12096 12097 /* Initiate IPPF processing for fastpath UDP */ 12098 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 12099 ip_process(IPP_LOCAL_IN, mpp, ill_index); 12100 if (*mpp == NULL) { 12101 ip2dbg(("ip_input_ipsec_process: UDP pkt " 12102 "deferred/dropped during IPPF processing\n")); 12103 return (B_FALSE); 12104 } 12105 } 12106 /* 12107 * Remove 0-spi if it's 0, or move everything behind 12108 * the UDP header over it and forward to ESP via 12109 * ip_proto_input(). 12110 */ 12111 if (udp->udp_nat_t_endpoint) { 12112 if (mctl_present) { 12113 /* mctl_present *shouldn't* happen. */ 12114 ip_drop_packet(*first_mpp, B_TRUE, NULL, 12115 NULL, DROPPER(ipss, ipds_esp_nat_t_ipsec), 12116 &ipss->ipsec_dropper); 12117 *first_mpp = NULL; 12118 return (B_FALSE); 12119 } 12120 12121 /* "ill" is "recv_ill" in actuality. */ 12122 if (!zero_spi_check(q, *mpp, ire, ill, ipss)) 12123 return (B_FALSE); 12124 12125 /* Else continue like a normal UDP packet. */ 12126 } 12127 12128 /* 12129 * We make the checks as below since we are in the fast path 12130 * and want to minimize the number of checks if the IP_RECVIF and/or 12131 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 12132 */ 12133 if (connp->conn_recvif || connp->conn_recvslla || 12134 connp->conn_ip_recvpktinfo) { 12135 if (connp->conn_recvif) { 12136 in_flags = IPF_RECVIF; 12137 } 12138 /* 12139 * UDP supports IP_RECVPKTINFO option for both v4 and v6 12140 * so the flag passed to ip_add_info is based on IP version 12141 * of connp. 12142 */ 12143 if (connp->conn_ip_recvpktinfo) { 12144 if (connp->conn_af_isv6) { 12145 /* 12146 * V6 only needs index 12147 */ 12148 in_flags |= IPF_RECVIF; 12149 } else { 12150 /* 12151 * V4 needs index + matching address. 12152 */ 12153 in_flags |= IPF_RECVADDR; 12154 } 12155 } 12156 if (connp->conn_recvslla) { 12157 in_flags |= IPF_RECVSLLA; 12158 } 12159 /* 12160 * since in_flags are being set ill will be 12161 * referenced in ip_add_info, so it better not 12162 * be NULL. 12163 */ 12164 /* 12165 * the actual data will be contained in b_cont 12166 * upon successful return of the following call. 12167 * If the call fails then the original mblk is 12168 * returned. 12169 */ 12170 *mpp = ip_add_info(*mpp, ill, in_flags, IPCL_ZONEID(connp), 12171 ipst); 12172 } 12173 12174 return (B_TRUE); 12175 } 12176 12177 /* 12178 * Fragmentation reassembly. Each ILL has a hash table for 12179 * queuing packets undergoing reassembly for all IPIFs 12180 * associated with the ILL. The hash is based on the packet 12181 * IP ident field. The ILL frag hash table was allocated 12182 * as a timer block at the time the ILL was created. Whenever 12183 * there is anything on the reassembly queue, the timer will 12184 * be running. Returns B_TRUE if successful else B_FALSE; 12185 * frees mp on failure. 12186 */ 12187 static boolean_t 12188 ip_rput_fragment(queue_t *q, mblk_t **mpp, ipha_t *ipha, 12189 uint32_t *cksum_val, uint16_t *cksum_flags) 12190 { 12191 uint32_t frag_offset_flags; 12192 ill_t *ill = (ill_t *)q->q_ptr; 12193 mblk_t *mp = *mpp; 12194 mblk_t *t_mp; 12195 ipaddr_t dst; 12196 uint8_t proto = ipha->ipha_protocol; 12197 uint32_t sum_val; 12198 uint16_t sum_flags; 12199 ipf_t *ipf; 12200 ipf_t **ipfp; 12201 ipfb_t *ipfb; 12202 uint16_t ident; 12203 uint32_t offset; 12204 ipaddr_t src; 12205 uint_t hdr_length; 12206 uint32_t end; 12207 mblk_t *mp1; 12208 mblk_t *tail_mp; 12209 size_t count; 12210 size_t msg_len; 12211 uint8_t ecn_info = 0; 12212 uint32_t packet_size; 12213 boolean_t pruned = B_FALSE; 12214 ip_stack_t *ipst = ill->ill_ipst; 12215 12216 if (cksum_val != NULL) 12217 *cksum_val = 0; 12218 if (cksum_flags != NULL) 12219 *cksum_flags = 0; 12220 12221 /* 12222 * Drop the fragmented as early as possible, if 12223 * we don't have resource(s) to re-assemble. 12224 */ 12225 if (ipst->ips_ip_reass_queue_bytes == 0) { 12226 freemsg(mp); 12227 return (B_FALSE); 12228 } 12229 12230 /* Check for fragmentation offset; return if there's none */ 12231 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 12232 (IPH_MF | IPH_OFFSET)) == 0) 12233 return (B_TRUE); 12234 12235 /* 12236 * We utilize hardware computed checksum info only for UDP since 12237 * IP fragmentation is a normal occurence for the protocol. In 12238 * addition, checksum offload support for IP fragments carrying 12239 * UDP payload is commonly implemented across network adapters. 12240 */ 12241 ASSERT(ill != NULL); 12242 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(ill) && 12243 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 12244 mblk_t *mp1 = mp->b_cont; 12245 int32_t len; 12246 12247 /* Record checksum information from the packet */ 12248 sum_val = (uint32_t)DB_CKSUM16(mp); 12249 sum_flags = DB_CKSUMFLAGS(mp); 12250 12251 /* IP payload offset from beginning of mblk */ 12252 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 12253 12254 if ((sum_flags & HCK_PARTIALCKSUM) && 12255 (mp1 == NULL || mp1->b_cont == NULL) && 12256 offset >= DB_CKSUMSTART(mp) && 12257 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 12258 uint32_t adj; 12259 /* 12260 * Partial checksum has been calculated by hardware 12261 * and attached to the packet; in addition, any 12262 * prepended extraneous data is even byte aligned. 12263 * If any such data exists, we adjust the checksum; 12264 * this would also handle any postpended data. 12265 */ 12266 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 12267 mp, mp1, len, adj); 12268 12269 /* One's complement subtract extraneous checksum */ 12270 if (adj >= sum_val) 12271 sum_val = ~(adj - sum_val) & 0xFFFF; 12272 else 12273 sum_val -= adj; 12274 } 12275 } else { 12276 sum_val = 0; 12277 sum_flags = 0; 12278 } 12279 12280 /* Clear hardware checksumming flag */ 12281 DB_CKSUMFLAGS(mp) = 0; 12282 12283 ident = ipha->ipha_ident; 12284 offset = (frag_offset_flags << 3) & 0xFFFF; 12285 src = ipha->ipha_src; 12286 dst = ipha->ipha_dst; 12287 hdr_length = IPH_HDR_LENGTH(ipha); 12288 end = ntohs(ipha->ipha_length) - hdr_length; 12289 12290 /* If end == 0 then we have a packet with no data, so just free it */ 12291 if (end == 0) { 12292 freemsg(mp); 12293 return (B_FALSE); 12294 } 12295 12296 /* Record the ECN field info. */ 12297 ecn_info = (ipha->ipha_type_of_service & 0x3); 12298 if (offset != 0) { 12299 /* 12300 * If this isn't the first piece, strip the header, and 12301 * add the offset to the end value. 12302 */ 12303 mp->b_rptr += hdr_length; 12304 end += offset; 12305 } 12306 12307 msg_len = MBLKSIZE(mp); 12308 tail_mp = mp; 12309 while (tail_mp->b_cont != NULL) { 12310 tail_mp = tail_mp->b_cont; 12311 msg_len += MBLKSIZE(tail_mp); 12312 } 12313 12314 /* If the reassembly list for this ILL will get too big, prune it */ 12315 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 12316 ipst->ips_ip_reass_queue_bytes) { 12317 ill_frag_prune(ill, 12318 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 12319 (ipst->ips_ip_reass_queue_bytes - msg_len)); 12320 pruned = B_TRUE; 12321 } 12322 12323 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 12324 mutex_enter(&ipfb->ipfb_lock); 12325 12326 ipfp = &ipfb->ipfb_ipf; 12327 /* Try to find an existing fragment queue for this packet. */ 12328 for (;;) { 12329 ipf = ipfp[0]; 12330 if (ipf != NULL) { 12331 /* 12332 * It has to match on ident and src/dst address. 12333 */ 12334 if (ipf->ipf_ident == ident && 12335 ipf->ipf_src == src && 12336 ipf->ipf_dst == dst && 12337 ipf->ipf_protocol == proto) { 12338 /* 12339 * If we have received too many 12340 * duplicate fragments for this packet 12341 * free it. 12342 */ 12343 if (ipf->ipf_num_dups > ip_max_frag_dups) { 12344 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12345 freemsg(mp); 12346 mutex_exit(&ipfb->ipfb_lock); 12347 return (B_FALSE); 12348 } 12349 /* Found it. */ 12350 break; 12351 } 12352 ipfp = &ipf->ipf_hash_next; 12353 continue; 12354 } 12355 12356 /* 12357 * If we pruned the list, do we want to store this new 12358 * fragment?. We apply an optimization here based on the 12359 * fact that most fragments will be received in order. 12360 * So if the offset of this incoming fragment is zero, 12361 * it is the first fragment of a new packet. We will 12362 * keep it. Otherwise drop the fragment, as we have 12363 * probably pruned the packet already (since the 12364 * packet cannot be found). 12365 */ 12366 if (pruned && offset != 0) { 12367 mutex_exit(&ipfb->ipfb_lock); 12368 freemsg(mp); 12369 return (B_FALSE); 12370 } 12371 12372 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 12373 /* 12374 * Too many fragmented packets in this hash 12375 * bucket. Free the oldest. 12376 */ 12377 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 12378 } 12379 12380 /* New guy. Allocate a frag message. */ 12381 mp1 = allocb(sizeof (*ipf), BPRI_MED); 12382 if (mp1 == NULL) { 12383 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12384 freemsg(mp); 12385 reass_done: 12386 mutex_exit(&ipfb->ipfb_lock); 12387 return (B_FALSE); 12388 } 12389 12390 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 12391 mp1->b_cont = mp; 12392 12393 /* Initialize the fragment header. */ 12394 ipf = (ipf_t *)mp1->b_rptr; 12395 ipf->ipf_mp = mp1; 12396 ipf->ipf_ptphn = ipfp; 12397 ipfp[0] = ipf; 12398 ipf->ipf_hash_next = NULL; 12399 ipf->ipf_ident = ident; 12400 ipf->ipf_protocol = proto; 12401 ipf->ipf_src = src; 12402 ipf->ipf_dst = dst; 12403 ipf->ipf_nf_hdr_len = 0; 12404 /* Record reassembly start time. */ 12405 ipf->ipf_timestamp = gethrestime_sec(); 12406 /* Record ipf generation and account for frag header */ 12407 ipf->ipf_gen = ill->ill_ipf_gen++; 12408 ipf->ipf_count = MBLKSIZE(mp1); 12409 ipf->ipf_last_frag_seen = B_FALSE; 12410 ipf->ipf_ecn = ecn_info; 12411 ipf->ipf_num_dups = 0; 12412 ipfb->ipfb_frag_pkts++; 12413 ipf->ipf_checksum = 0; 12414 ipf->ipf_checksum_flags = 0; 12415 12416 /* Store checksum value in fragment header */ 12417 if (sum_flags != 0) { 12418 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12419 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12420 ipf->ipf_checksum = sum_val; 12421 ipf->ipf_checksum_flags = sum_flags; 12422 } 12423 12424 /* 12425 * We handle reassembly two ways. In the easy case, 12426 * where all the fragments show up in order, we do 12427 * minimal bookkeeping, and just clip new pieces on 12428 * the end. If we ever see a hole, then we go off 12429 * to ip_reassemble which has to mark the pieces and 12430 * keep track of the number of holes, etc. Obviously, 12431 * the point of having both mechanisms is so we can 12432 * handle the easy case as efficiently as possible. 12433 */ 12434 if (offset == 0) { 12435 /* Easy case, in-order reassembly so far. */ 12436 ipf->ipf_count += msg_len; 12437 ipf->ipf_tail_mp = tail_mp; 12438 /* 12439 * Keep track of next expected offset in 12440 * ipf_end. 12441 */ 12442 ipf->ipf_end = end; 12443 ipf->ipf_nf_hdr_len = hdr_length; 12444 } else { 12445 /* Hard case, hole at the beginning. */ 12446 ipf->ipf_tail_mp = NULL; 12447 /* 12448 * ipf_end == 0 means that we have given up 12449 * on easy reassembly. 12450 */ 12451 ipf->ipf_end = 0; 12452 12453 /* Forget checksum offload from now on */ 12454 ipf->ipf_checksum_flags = 0; 12455 12456 /* 12457 * ipf_hole_cnt is set by ip_reassemble. 12458 * ipf_count is updated by ip_reassemble. 12459 * No need to check for return value here 12460 * as we don't expect reassembly to complete 12461 * or fail for the first fragment itself. 12462 */ 12463 (void) ip_reassemble(mp, ipf, 12464 (frag_offset_flags & IPH_OFFSET) << 3, 12465 (frag_offset_flags & IPH_MF), ill, msg_len); 12466 } 12467 /* Update per ipfb and ill byte counts */ 12468 ipfb->ipfb_count += ipf->ipf_count; 12469 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12470 atomic_add_32(&ill->ill_frag_count, ipf->ipf_count); 12471 /* If the frag timer wasn't already going, start it. */ 12472 mutex_enter(&ill->ill_lock); 12473 ill_frag_timer_start(ill); 12474 mutex_exit(&ill->ill_lock); 12475 goto reass_done; 12476 } 12477 12478 /* 12479 * If the packet's flag has changed (it could be coming up 12480 * from an interface different than the previous, therefore 12481 * possibly different checksum capability), then forget about 12482 * any stored checksum states. Otherwise add the value to 12483 * the existing one stored in the fragment header. 12484 */ 12485 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 12486 sum_val += ipf->ipf_checksum; 12487 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12488 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12489 ipf->ipf_checksum = sum_val; 12490 } else if (ipf->ipf_checksum_flags != 0) { 12491 /* Forget checksum offload from now on */ 12492 ipf->ipf_checksum_flags = 0; 12493 } 12494 12495 /* 12496 * We have a new piece of a datagram which is already being 12497 * reassembled. Update the ECN info if all IP fragments 12498 * are ECN capable. If there is one which is not, clear 12499 * all the info. If there is at least one which has CE 12500 * code point, IP needs to report that up to transport. 12501 */ 12502 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 12503 if (ecn_info == IPH_ECN_CE) 12504 ipf->ipf_ecn = IPH_ECN_CE; 12505 } else { 12506 ipf->ipf_ecn = IPH_ECN_NECT; 12507 } 12508 if (offset && ipf->ipf_end == offset) { 12509 /* The new fragment fits at the end */ 12510 ipf->ipf_tail_mp->b_cont = mp; 12511 /* Update the byte count */ 12512 ipf->ipf_count += msg_len; 12513 /* Update per ipfb and ill byte counts */ 12514 ipfb->ipfb_count += msg_len; 12515 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12516 atomic_add_32(&ill->ill_frag_count, msg_len); 12517 if (frag_offset_flags & IPH_MF) { 12518 /* More to come. */ 12519 ipf->ipf_end = end; 12520 ipf->ipf_tail_mp = tail_mp; 12521 goto reass_done; 12522 } 12523 } else { 12524 /* Go do the hard cases. */ 12525 int ret; 12526 12527 if (offset == 0) 12528 ipf->ipf_nf_hdr_len = hdr_length; 12529 12530 /* Save current byte count */ 12531 count = ipf->ipf_count; 12532 ret = ip_reassemble(mp, ipf, 12533 (frag_offset_flags & IPH_OFFSET) << 3, 12534 (frag_offset_flags & IPH_MF), ill, msg_len); 12535 /* Count of bytes added and subtracted (freeb()ed) */ 12536 count = ipf->ipf_count - count; 12537 if (count) { 12538 /* Update per ipfb and ill byte counts */ 12539 ipfb->ipfb_count += count; 12540 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12541 atomic_add_32(&ill->ill_frag_count, count); 12542 } 12543 if (ret == IP_REASS_PARTIAL) { 12544 goto reass_done; 12545 } else if (ret == IP_REASS_FAILED) { 12546 /* Reassembly failed. Free up all resources */ 12547 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12548 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 12549 IP_REASS_SET_START(t_mp, 0); 12550 IP_REASS_SET_END(t_mp, 0); 12551 } 12552 freemsg(mp); 12553 goto reass_done; 12554 } 12555 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 12556 } 12557 /* 12558 * We have completed reassembly. Unhook the frag header from 12559 * the reassembly list. 12560 * 12561 * Before we free the frag header, record the ECN info 12562 * to report back to the transport. 12563 */ 12564 ecn_info = ipf->ipf_ecn; 12565 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 12566 ipfp = ipf->ipf_ptphn; 12567 12568 /* We need to supply these to caller */ 12569 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 12570 sum_val = ipf->ipf_checksum; 12571 else 12572 sum_val = 0; 12573 12574 mp1 = ipf->ipf_mp; 12575 count = ipf->ipf_count; 12576 ipf = ipf->ipf_hash_next; 12577 if (ipf != NULL) 12578 ipf->ipf_ptphn = ipfp; 12579 ipfp[0] = ipf; 12580 atomic_add_32(&ill->ill_frag_count, -count); 12581 ASSERT(ipfb->ipfb_count >= count); 12582 ipfb->ipfb_count -= count; 12583 ipfb->ipfb_frag_pkts--; 12584 mutex_exit(&ipfb->ipfb_lock); 12585 /* Ditch the frag header. */ 12586 mp = mp1->b_cont; 12587 12588 freeb(mp1); 12589 12590 /* Restore original IP length in header. */ 12591 packet_size = (uint32_t)msgdsize(mp); 12592 if (packet_size > IP_MAXPACKET) { 12593 freemsg(mp); 12594 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 12595 return (B_FALSE); 12596 } 12597 12598 if (DB_REF(mp) > 1) { 12599 mblk_t *mp2 = copymsg(mp); 12600 12601 freemsg(mp); 12602 if (mp2 == NULL) { 12603 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12604 return (B_FALSE); 12605 } 12606 mp = mp2; 12607 } 12608 ipha = (ipha_t *)mp->b_rptr; 12609 12610 ipha->ipha_length = htons((uint16_t)packet_size); 12611 /* We're now complete, zip the frag state */ 12612 ipha->ipha_fragment_offset_and_flags = 0; 12613 /* Record the ECN info. */ 12614 ipha->ipha_type_of_service &= 0xFC; 12615 ipha->ipha_type_of_service |= ecn_info; 12616 *mpp = mp; 12617 12618 /* Reassembly is successful; return checksum information if needed */ 12619 if (cksum_val != NULL) 12620 *cksum_val = sum_val; 12621 if (cksum_flags != NULL) 12622 *cksum_flags = sum_flags; 12623 12624 return (B_TRUE); 12625 } 12626 12627 /* 12628 * Perform ip header check sum update local options. 12629 * return B_TRUE if all is well, else return B_FALSE and release 12630 * the mp. caller is responsible for decrementing ire ref cnt. 12631 */ 12632 static boolean_t 12633 ip_options_cksum(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12634 ip_stack_t *ipst) 12635 { 12636 mblk_t *first_mp; 12637 boolean_t mctl_present; 12638 uint16_t sum; 12639 12640 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12641 /* 12642 * Don't do the checksum if it has gone through AH/ESP 12643 * processing. 12644 */ 12645 if (!mctl_present) { 12646 sum = ip_csum_hdr(ipha); 12647 if (sum != 0) { 12648 if (ill != NULL) { 12649 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12650 } else { 12651 BUMP_MIB(&ipst->ips_ip_mib, 12652 ipIfStatsInCksumErrs); 12653 } 12654 freemsg(first_mp); 12655 return (B_FALSE); 12656 } 12657 } 12658 12659 if (!ip_rput_local_options(q, mp, ipha, ire, ipst)) { 12660 if (mctl_present) 12661 freeb(first_mp); 12662 return (B_FALSE); 12663 } 12664 12665 return (B_TRUE); 12666 } 12667 12668 /* 12669 * All udp packet are delivered to the local host via this routine. 12670 */ 12671 void 12672 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12673 ill_t *recv_ill) 12674 { 12675 uint32_t sum; 12676 uint32_t u1; 12677 boolean_t mctl_present; 12678 conn_t *connp; 12679 mblk_t *first_mp; 12680 uint16_t *up; 12681 ill_t *ill = (ill_t *)q->q_ptr; 12682 uint16_t reass_hck_flags = 0; 12683 ip_stack_t *ipst; 12684 12685 ASSERT(recv_ill != NULL); 12686 ipst = recv_ill->ill_ipst; 12687 12688 #define rptr ((uchar_t *)ipha) 12689 12690 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12691 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 12692 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12693 ASSERT(ill != NULL); 12694 12695 /* 12696 * FAST PATH for udp packets 12697 */ 12698 12699 /* u1 is # words of IP options */ 12700 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 12701 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12702 12703 /* IP options present */ 12704 if (u1 != 0) 12705 goto ipoptions; 12706 12707 /* Check the IP header checksum. */ 12708 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12709 /* Clear the IP header h/w cksum flag */ 12710 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12711 } else if (!mctl_present) { 12712 /* 12713 * Don't verify header checksum if this packet is coming 12714 * back from AH/ESP as we already did it. 12715 */ 12716 #define uph ((uint16_t *)ipha) 12717 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12718 uph[6] + uph[7] + uph[8] + uph[9]; 12719 #undef uph 12720 /* finish doing IP checksum */ 12721 sum = (sum & 0xFFFF) + (sum >> 16); 12722 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12723 if (sum != 0 && sum != 0xFFFF) { 12724 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12725 freemsg(first_mp); 12726 return; 12727 } 12728 } 12729 12730 /* 12731 * Count for SNMP of inbound packets for ire. 12732 * if mctl is present this might be a secure packet and 12733 * has already been counted for in ip_proto_input(). 12734 */ 12735 if (!mctl_present) { 12736 UPDATE_IB_PKT_COUNT(ire); 12737 ire->ire_last_used_time = lbolt; 12738 } 12739 12740 /* packet part of fragmented IP packet? */ 12741 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12742 if (u1 & (IPH_MF | IPH_OFFSET)) { 12743 goto fragmented; 12744 } 12745 12746 /* u1 = IP header length (20 bytes) */ 12747 u1 = IP_SIMPLE_HDR_LENGTH; 12748 12749 /* packet does not contain complete IP & UDP headers */ 12750 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12751 goto udppullup; 12752 12753 /* up points to UDP header */ 12754 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12755 #define iphs ((uint16_t *)ipha) 12756 12757 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12758 if (up[3] != 0) { 12759 mblk_t *mp1 = mp->b_cont; 12760 boolean_t cksum_err; 12761 uint16_t hck_flags = 0; 12762 12763 /* Pseudo-header checksum */ 12764 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12765 iphs[9] + up[2]; 12766 12767 /* 12768 * Revert to software checksum calculation if the interface 12769 * isn't capable of checksum offload or if IPsec is present. 12770 */ 12771 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12772 hck_flags = DB_CKSUMFLAGS(mp); 12773 12774 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12775 IP_STAT(ipst, ip_in_sw_cksum); 12776 12777 IP_CKSUM_RECV(hck_flags, u1, 12778 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12779 (int32_t)((uchar_t *)up - rptr), 12780 mp, mp1, cksum_err); 12781 12782 if (cksum_err) { 12783 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12784 if (hck_flags & HCK_FULLCKSUM) 12785 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12786 else if (hck_flags & HCK_PARTIALCKSUM) 12787 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12788 else 12789 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12790 12791 freemsg(first_mp); 12792 return; 12793 } 12794 } 12795 12796 /* Non-fragmented broadcast or multicast packet? */ 12797 if (ire->ire_type == IRE_BROADCAST) 12798 goto udpslowpath; 12799 12800 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 12801 ire->ire_zoneid, ipst)) != NULL) { 12802 ASSERT(connp->conn_upq != NULL); 12803 IP_STAT(ipst, ip_udp_fast_path); 12804 12805 if (CONN_UDP_FLOWCTLD(connp)) { 12806 freemsg(mp); 12807 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 12808 } else { 12809 if (!mctl_present) { 12810 BUMP_MIB(ill->ill_ip_mib, 12811 ipIfStatsHCInDelivers); 12812 } 12813 /* 12814 * mp and first_mp can change. 12815 */ 12816 if (ip_udp_check(q, connp, recv_ill, 12817 ipha, &mp, &first_mp, mctl_present, ire)) { 12818 /* Send it upstream */ 12819 (connp->conn_recv)(connp, mp, NULL); 12820 } 12821 } 12822 /* 12823 * freeb() cannot deal with null mblk being passed 12824 * in and first_mp can be set to null in the call 12825 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 12826 */ 12827 if (mctl_present && first_mp != NULL) { 12828 freeb(first_mp); 12829 } 12830 CONN_DEC_REF(connp); 12831 return; 12832 } 12833 12834 /* 12835 * if we got here we know the packet is not fragmented and 12836 * has no options. The classifier could not find a conn_t and 12837 * most likely its an icmp packet so send it through slow path. 12838 */ 12839 12840 goto udpslowpath; 12841 12842 ipoptions: 12843 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 12844 goto slow_done; 12845 } 12846 12847 UPDATE_IB_PKT_COUNT(ire); 12848 ire->ire_last_used_time = lbolt; 12849 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12850 if (u1 & (IPH_MF | IPH_OFFSET)) { 12851 fragmented: 12852 /* 12853 * "sum" and "reass_hck_flags" are non-zero if the 12854 * reassembled packet has a valid hardware computed 12855 * checksum information associated with it. 12856 */ 12857 if (!ip_rput_fragment(q, &mp, ipha, &sum, &reass_hck_flags)) 12858 goto slow_done; 12859 /* 12860 * Make sure that first_mp points back to mp as 12861 * the mp we came in with could have changed in 12862 * ip_rput_fragment(). 12863 */ 12864 ASSERT(!mctl_present); 12865 ipha = (ipha_t *)mp->b_rptr; 12866 first_mp = mp; 12867 } 12868 12869 /* Now we have a complete datagram, destined for this machine. */ 12870 u1 = IPH_HDR_LENGTH(ipha); 12871 /* Pull up the UDP header, if necessary. */ 12872 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 12873 udppullup: 12874 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 12875 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12876 freemsg(first_mp); 12877 goto slow_done; 12878 } 12879 ipha = (ipha_t *)mp->b_rptr; 12880 } 12881 12882 /* 12883 * Validate the checksum for the reassembled packet; for the 12884 * pullup case we calculate the payload checksum in software. 12885 */ 12886 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 12887 if (up[3] != 0) { 12888 boolean_t cksum_err; 12889 12890 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12891 IP_STAT(ipst, ip_in_sw_cksum); 12892 12893 IP_CKSUM_RECV_REASS(reass_hck_flags, 12894 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 12895 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12896 iphs[9] + up[2], sum, cksum_err); 12897 12898 if (cksum_err) { 12899 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12900 12901 if (reass_hck_flags & HCK_FULLCKSUM) 12902 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12903 else if (reass_hck_flags & HCK_PARTIALCKSUM) 12904 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12905 else 12906 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12907 12908 freemsg(first_mp); 12909 goto slow_done; 12910 } 12911 } 12912 udpslowpath: 12913 12914 /* Clear hardware checksum flag to be safe */ 12915 DB_CKSUMFLAGS(mp) = 0; 12916 12917 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 12918 (ire->ire_type == IRE_BROADCAST), 12919 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IPINFO, 12920 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 12921 12922 slow_done: 12923 IP_STAT(ipst, ip_udp_slow_path); 12924 return; 12925 12926 #undef iphs 12927 #undef rptr 12928 } 12929 12930 /* ARGSUSED */ 12931 static mblk_t * 12932 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 12933 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 12934 ill_rx_ring_t *ill_ring) 12935 { 12936 conn_t *connp; 12937 uint32_t sum; 12938 uint32_t u1; 12939 uint16_t *up; 12940 int offset; 12941 ssize_t len; 12942 mblk_t *mp1; 12943 boolean_t syn_present = B_FALSE; 12944 tcph_t *tcph; 12945 uint_t ip_hdr_len; 12946 ill_t *ill = (ill_t *)q->q_ptr; 12947 zoneid_t zoneid = ire->ire_zoneid; 12948 boolean_t cksum_err; 12949 uint16_t hck_flags = 0; 12950 ip_stack_t *ipst = recv_ill->ill_ipst; 12951 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12952 12953 #define rptr ((uchar_t *)ipha) 12954 12955 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 12956 ASSERT(ill != NULL); 12957 12958 /* 12959 * FAST PATH for tcp packets 12960 */ 12961 12962 /* u1 is # words of IP options */ 12963 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 12964 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12965 12966 /* IP options present */ 12967 if (u1) { 12968 goto ipoptions; 12969 } else if (!mctl_present) { 12970 /* Check the IP header checksum. */ 12971 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12972 /* Clear the IP header h/w cksum flag */ 12973 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12974 } else if (!mctl_present) { 12975 /* 12976 * Don't verify header checksum if this packet 12977 * is coming back from AH/ESP as we already did it. 12978 */ 12979 #define uph ((uint16_t *)ipha) 12980 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 12981 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 12982 #undef uph 12983 /* finish doing IP checksum */ 12984 sum = (sum & 0xFFFF) + (sum >> 16); 12985 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12986 if (sum != 0 && sum != 0xFFFF) { 12987 BUMP_MIB(ill->ill_ip_mib, 12988 ipIfStatsInCksumErrs); 12989 goto error; 12990 } 12991 } 12992 } 12993 12994 if (!mctl_present) { 12995 UPDATE_IB_PKT_COUNT(ire); 12996 ire->ire_last_used_time = lbolt; 12997 } 12998 12999 /* packet part of fragmented IP packet? */ 13000 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13001 if (u1 & (IPH_MF | IPH_OFFSET)) { 13002 goto fragmented; 13003 } 13004 13005 /* u1 = IP header length (20 bytes) */ 13006 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 13007 13008 /* does packet contain IP+TCP headers? */ 13009 len = mp->b_wptr - rptr; 13010 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 13011 IP_STAT(ipst, ip_tcppullup); 13012 goto tcppullup; 13013 } 13014 13015 /* TCP options present? */ 13016 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 13017 13018 /* 13019 * If options need to be pulled up, then goto tcpoptions. 13020 * otherwise we are still in the fast path 13021 */ 13022 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 13023 IP_STAT(ipst, ip_tcpoptions); 13024 goto tcpoptions; 13025 } 13026 13027 /* multiple mblks of tcp data? */ 13028 if ((mp1 = mp->b_cont) != NULL) { 13029 /* more then two? */ 13030 if (mp1->b_cont != NULL) { 13031 IP_STAT(ipst, ip_multipkttcp); 13032 goto multipkttcp; 13033 } 13034 len += mp1->b_wptr - mp1->b_rptr; 13035 } 13036 13037 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 13038 13039 /* part of pseudo checksum */ 13040 13041 /* TCP datagram length */ 13042 u1 = len - IP_SIMPLE_HDR_LENGTH; 13043 13044 #define iphs ((uint16_t *)ipha) 13045 13046 #ifdef _BIG_ENDIAN 13047 u1 += IPPROTO_TCP; 13048 #else 13049 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13050 #endif 13051 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13052 13053 /* 13054 * Revert to software checksum calculation if the interface 13055 * isn't capable of checksum offload or if IPsec is present. 13056 */ 13057 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 13058 hck_flags = DB_CKSUMFLAGS(mp); 13059 13060 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 13061 IP_STAT(ipst, ip_in_sw_cksum); 13062 13063 IP_CKSUM_RECV(hck_flags, u1, 13064 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 13065 (int32_t)((uchar_t *)up - rptr), 13066 mp, mp1, cksum_err); 13067 13068 if (cksum_err) { 13069 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13070 13071 if (hck_flags & HCK_FULLCKSUM) 13072 IP_STAT(ipst, ip_tcp_in_full_hw_cksum_err); 13073 else if (hck_flags & HCK_PARTIALCKSUM) 13074 IP_STAT(ipst, ip_tcp_in_part_hw_cksum_err); 13075 else 13076 IP_STAT(ipst, ip_tcp_in_sw_cksum_err); 13077 13078 goto error; 13079 } 13080 13081 try_again: 13082 13083 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 13084 zoneid, ipst)) == NULL) { 13085 /* Send the TH_RST */ 13086 goto no_conn; 13087 } 13088 13089 /* 13090 * TCP FAST PATH for AF_INET socket. 13091 * 13092 * TCP fast path to avoid extra work. An AF_INET socket type 13093 * does not have facility to receive extra information via 13094 * ip_process or ip_add_info. Also, when the connection was 13095 * established, we made a check if this connection is impacted 13096 * by any global IPsec policy or per connection policy (a 13097 * policy that comes in effect later will not apply to this 13098 * connection). Since all this can be determined at the 13099 * connection establishment time, a quick check of flags 13100 * can avoid extra work. 13101 */ 13102 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 13103 !IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13104 ASSERT(first_mp == mp); 13105 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13106 SET_SQUEUE(mp, tcp_rput_data, connp); 13107 return (mp); 13108 } 13109 13110 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 13111 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 13112 if (IPCL_IS_TCP(connp)) { 13113 mp->b_datap->db_struioflag |= STRUIO_EAGER; 13114 DB_CKSUMSTART(mp) = 13115 (intptr_t)ip_squeue_get(ill_ring); 13116 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 13117 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13118 BUMP_MIB(ill->ill_ip_mib, 13119 ipIfStatsHCInDelivers); 13120 SET_SQUEUE(mp, connp->conn_recv, connp); 13121 return (mp); 13122 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 13123 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13124 BUMP_MIB(ill->ill_ip_mib, 13125 ipIfStatsHCInDelivers); 13126 ip_squeue_enter_unbound++; 13127 SET_SQUEUE(mp, tcp_conn_request_unbound, 13128 connp); 13129 return (mp); 13130 } 13131 syn_present = B_TRUE; 13132 } 13133 13134 } 13135 13136 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 13137 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 13138 13139 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13140 /* No need to send this packet to TCP */ 13141 if ((flags & TH_RST) || (flags & TH_URG)) { 13142 CONN_DEC_REF(connp); 13143 freemsg(first_mp); 13144 return (NULL); 13145 } 13146 if (flags & TH_ACK) { 13147 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 13148 ipst->ips_netstack->netstack_tcp, connp); 13149 CONN_DEC_REF(connp); 13150 return (NULL); 13151 } 13152 13153 CONN_DEC_REF(connp); 13154 freemsg(first_mp); 13155 return (NULL); 13156 } 13157 13158 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 13159 first_mp = ipsec_check_inbound_policy(first_mp, connp, 13160 ipha, NULL, mctl_present); 13161 if (first_mp == NULL) { 13162 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13163 CONN_DEC_REF(connp); 13164 return (NULL); 13165 } 13166 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 13167 ASSERT(syn_present); 13168 if (mctl_present) { 13169 ASSERT(first_mp != mp); 13170 first_mp->b_datap->db_struioflag |= 13171 STRUIO_POLICY; 13172 } else { 13173 ASSERT(first_mp == mp); 13174 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 13175 mp->b_datap->db_struioflag |= STRUIO_POLICY; 13176 } 13177 } else { 13178 /* 13179 * Discard first_mp early since we're dealing with a 13180 * fully-connected conn_t and tcp doesn't do policy in 13181 * this case. 13182 */ 13183 if (mctl_present) { 13184 freeb(first_mp); 13185 mctl_present = B_FALSE; 13186 } 13187 first_mp = mp; 13188 } 13189 } 13190 13191 /* Initiate IPPF processing for fastpath */ 13192 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13193 uint32_t ill_index; 13194 13195 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13196 ip_process(IPP_LOCAL_IN, &mp, ill_index); 13197 if (mp == NULL) { 13198 ip2dbg(("ip_input_ipsec_process: TCP pkt " 13199 "deferred/dropped during IPPF processing\n")); 13200 CONN_DEC_REF(connp); 13201 if (mctl_present) 13202 freeb(first_mp); 13203 return (NULL); 13204 } else if (mctl_present) { 13205 /* 13206 * ip_process might return a new mp. 13207 */ 13208 ASSERT(first_mp != mp); 13209 first_mp->b_cont = mp; 13210 } else { 13211 first_mp = mp; 13212 } 13213 13214 } 13215 13216 if (!syn_present && connp->conn_ip_recvpktinfo) { 13217 /* 13218 * TCP does not support IP_RECVPKTINFO for v4 so lets 13219 * make sure IPF_RECVIF is passed to ip_add_info. 13220 */ 13221 mp = ip_add_info(mp, recv_ill, flags|IPF_RECVIF, 13222 IPCL_ZONEID(connp), ipst); 13223 if (mp == NULL) { 13224 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13225 CONN_DEC_REF(connp); 13226 if (mctl_present) 13227 freeb(first_mp); 13228 return (NULL); 13229 } else if (mctl_present) { 13230 /* 13231 * ip_add_info might return a new mp. 13232 */ 13233 ASSERT(first_mp != mp); 13234 first_mp->b_cont = mp; 13235 } else { 13236 first_mp = mp; 13237 } 13238 } 13239 13240 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13241 if (IPCL_IS_TCP(connp)) { 13242 SET_SQUEUE(first_mp, connp->conn_recv, connp); 13243 return (first_mp); 13244 } else { 13245 /* SOCK_RAW, IPPROTO_TCP case */ 13246 (connp->conn_recv)(connp, first_mp, NULL); 13247 CONN_DEC_REF(connp); 13248 return (NULL); 13249 } 13250 13251 no_conn: 13252 /* Initiate IPPf processing, if needed. */ 13253 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13254 uint32_t ill_index; 13255 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13256 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 13257 if (first_mp == NULL) { 13258 return (NULL); 13259 } 13260 } 13261 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13262 13263 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr), zoneid, 13264 ipst->ips_netstack->netstack_tcp, NULL); 13265 return (NULL); 13266 ipoptions: 13267 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) { 13268 goto slow_done; 13269 } 13270 13271 UPDATE_IB_PKT_COUNT(ire); 13272 ire->ire_last_used_time = lbolt; 13273 13274 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13275 if (u1 & (IPH_MF | IPH_OFFSET)) { 13276 fragmented: 13277 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 13278 if (mctl_present) 13279 freeb(first_mp); 13280 goto slow_done; 13281 } 13282 /* 13283 * Make sure that first_mp points back to mp as 13284 * the mp we came in with could have changed in 13285 * ip_rput_fragment(). 13286 */ 13287 ASSERT(!mctl_present); 13288 ipha = (ipha_t *)mp->b_rptr; 13289 first_mp = mp; 13290 } 13291 13292 /* Now we have a complete datagram, destined for this machine. */ 13293 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 13294 13295 len = mp->b_wptr - mp->b_rptr; 13296 /* Pull up a minimal TCP header, if necessary. */ 13297 if (len < (u1 + 20)) { 13298 tcppullup: 13299 if (!pullupmsg(mp, u1 + 20)) { 13300 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13301 goto error; 13302 } 13303 ipha = (ipha_t *)mp->b_rptr; 13304 len = mp->b_wptr - mp->b_rptr; 13305 } 13306 13307 /* 13308 * Extract the offset field from the TCP header. As usual, we 13309 * try to help the compiler more than the reader. 13310 */ 13311 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 13312 if (offset != 5) { 13313 tcpoptions: 13314 if (offset < 5) { 13315 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13316 goto error; 13317 } 13318 /* 13319 * There must be TCP options. 13320 * Make sure we can grab them. 13321 */ 13322 offset <<= 2; 13323 offset += u1; 13324 if (len < offset) { 13325 if (!pullupmsg(mp, offset)) { 13326 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13327 goto error; 13328 } 13329 ipha = (ipha_t *)mp->b_rptr; 13330 len = mp->b_wptr - rptr; 13331 } 13332 } 13333 13334 /* Get the total packet length in len, including headers. */ 13335 if (mp->b_cont) { 13336 multipkttcp: 13337 len = msgdsize(mp); 13338 } 13339 13340 /* 13341 * Check the TCP checksum by pulling together the pseudo- 13342 * header checksum, and passing it to ip_csum to be added in 13343 * with the TCP datagram. 13344 * 13345 * Since we are not using the hwcksum if available we must 13346 * clear the flag. We may come here via tcppullup or tcpoptions. 13347 * If either of these fails along the way the mblk is freed. 13348 * If this logic ever changes and mblk is reused to say send 13349 * ICMP's back, then this flag may need to be cleared in 13350 * other places as well. 13351 */ 13352 DB_CKSUMFLAGS(mp) = 0; 13353 13354 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 13355 13356 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 13357 #ifdef _BIG_ENDIAN 13358 u1 += IPPROTO_TCP; 13359 #else 13360 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13361 #endif 13362 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13363 /* 13364 * Not M_DATA mblk or its a dup, so do the checksum now. 13365 */ 13366 IP_STAT(ipst, ip_in_sw_cksum); 13367 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 13368 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13369 goto error; 13370 } 13371 13372 IP_STAT(ipst, ip_tcp_slow_path); 13373 goto try_again; 13374 #undef iphs 13375 #undef rptr 13376 13377 error: 13378 freemsg(first_mp); 13379 slow_done: 13380 return (NULL); 13381 } 13382 13383 /* ARGSUSED */ 13384 static void 13385 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13386 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 13387 { 13388 conn_t *connp; 13389 uint32_t sum; 13390 uint32_t u1; 13391 ssize_t len; 13392 sctp_hdr_t *sctph; 13393 zoneid_t zoneid = ire->ire_zoneid; 13394 uint32_t pktsum; 13395 uint32_t calcsum; 13396 uint32_t ports; 13397 in6_addr_t map_src, map_dst; 13398 ill_t *ill = (ill_t *)q->q_ptr; 13399 ip_stack_t *ipst; 13400 sctp_stack_t *sctps; 13401 boolean_t sctp_csum_err = B_FALSE; 13402 13403 ASSERT(recv_ill != NULL); 13404 ipst = recv_ill->ill_ipst; 13405 sctps = ipst->ips_netstack->netstack_sctp; 13406 13407 #define rptr ((uchar_t *)ipha) 13408 13409 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 13410 ASSERT(ill != NULL); 13411 13412 /* u1 is # words of IP options */ 13413 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13414 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13415 13416 /* IP options present */ 13417 if (u1 > 0) { 13418 goto ipoptions; 13419 } else { 13420 /* Check the IP header checksum. */ 13421 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, ill) && 13422 !mctl_present) { 13423 #define uph ((uint16_t *)ipha) 13424 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13425 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13426 #undef uph 13427 /* finish doing IP checksum */ 13428 sum = (sum & 0xFFFF) + (sum >> 16); 13429 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13430 /* 13431 * Don't verify header checksum if this packet 13432 * is coming back from AH/ESP as we already did it. 13433 */ 13434 if (sum != 0 && sum != 0xFFFF) { 13435 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 13436 goto error; 13437 } 13438 } 13439 /* 13440 * Since there is no SCTP h/w cksum support yet, just 13441 * clear the flag. 13442 */ 13443 DB_CKSUMFLAGS(mp) = 0; 13444 } 13445 13446 /* 13447 * Don't verify header checksum if this packet is coming 13448 * back from AH/ESP as we already did it. 13449 */ 13450 if (!mctl_present) { 13451 UPDATE_IB_PKT_COUNT(ire); 13452 ire->ire_last_used_time = lbolt; 13453 } 13454 13455 /* packet part of fragmented IP packet? */ 13456 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13457 if (u1 & (IPH_MF | IPH_OFFSET)) 13458 goto fragmented; 13459 13460 /* u1 = IP header length (20 bytes) */ 13461 u1 = IP_SIMPLE_HDR_LENGTH; 13462 13463 find_sctp_client: 13464 /* Pullup if we don't have the sctp common header. */ 13465 len = MBLKL(mp); 13466 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 13467 if (mp->b_cont == NULL || 13468 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 13469 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13470 goto error; 13471 } 13472 ipha = (ipha_t *)mp->b_rptr; 13473 len = MBLKL(mp); 13474 } 13475 13476 sctph = (sctp_hdr_t *)(rptr + u1); 13477 #ifdef DEBUG 13478 if (!skip_sctp_cksum) { 13479 #endif 13480 pktsum = sctph->sh_chksum; 13481 sctph->sh_chksum = 0; 13482 calcsum = sctp_cksum(mp, u1); 13483 sctph->sh_chksum = pktsum; 13484 if (calcsum != pktsum) 13485 sctp_csum_err = B_TRUE; 13486 #ifdef DEBUG /* skip_sctp_cksum */ 13487 } 13488 #endif 13489 /* get the ports */ 13490 ports = *(uint32_t *)&sctph->sh_sport; 13491 13492 IRE_REFRELE(ire); 13493 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 13494 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 13495 if (sctp_csum_err) { 13496 /* 13497 * No potential sctp checksum errors go to the Sun 13498 * sctp stack however they might be Adler-32 summed 13499 * packets a userland stack bound to a raw IP socket 13500 * could reasonably use. Note though that Adler-32 is 13501 * a long deprecated algorithm and customer sctp 13502 * networks should eventually migrate to CRC-32 at 13503 * which time this facility should be removed. 13504 */ 13505 flags |= IP_FF_SCTP_CSUM_ERR; 13506 goto no_conn; 13507 } 13508 if ((connp = sctp_fanout(&map_src, &map_dst, ports, zoneid, mp, 13509 sctps)) == NULL) { 13510 /* Check for raw socket or OOTB handling */ 13511 goto no_conn; 13512 } 13513 13514 /* Found a client; up it goes */ 13515 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13516 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 13517 return; 13518 13519 no_conn: 13520 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 13521 ports, mctl_present, flags, B_TRUE, zoneid); 13522 return; 13523 13524 ipoptions: 13525 DB_CKSUMFLAGS(mp) = 0; 13526 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) 13527 goto slow_done; 13528 13529 UPDATE_IB_PKT_COUNT(ire); 13530 ire->ire_last_used_time = lbolt; 13531 13532 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13533 if (u1 & (IPH_MF | IPH_OFFSET)) { 13534 fragmented: 13535 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) 13536 goto slow_done; 13537 /* 13538 * Make sure that first_mp points back to mp as 13539 * the mp we came in with could have changed in 13540 * ip_rput_fragment(). 13541 */ 13542 ASSERT(!mctl_present); 13543 ipha = (ipha_t *)mp->b_rptr; 13544 first_mp = mp; 13545 } 13546 13547 /* Now we have a complete datagram, destined for this machine. */ 13548 u1 = IPH_HDR_LENGTH(ipha); 13549 goto find_sctp_client; 13550 #undef iphs 13551 #undef rptr 13552 13553 error: 13554 freemsg(first_mp); 13555 slow_done: 13556 IRE_REFRELE(ire); 13557 } 13558 13559 #define VER_BITS 0xF0 13560 #define VERSION_6 0x60 13561 13562 static boolean_t 13563 ip_rput_multimblk_ipoptions(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t **iphapp, 13564 ipaddr_t *dstp, ip_stack_t *ipst) 13565 { 13566 uint_t opt_len; 13567 ipha_t *ipha; 13568 ssize_t len; 13569 uint_t pkt_len; 13570 13571 ASSERT(ill != NULL); 13572 IP_STAT(ipst, ip_ipoptions); 13573 ipha = *iphapp; 13574 13575 #define rptr ((uchar_t *)ipha) 13576 /* Assume no IPv6 packets arrive over the IPv4 queue */ 13577 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 13578 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 13579 freemsg(mp); 13580 return (B_FALSE); 13581 } 13582 13583 /* multiple mblk or too short */ 13584 pkt_len = ntohs(ipha->ipha_length); 13585 13586 /* Get the number of words of IP options in the IP header. */ 13587 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 13588 if (opt_len) { 13589 /* IP Options present! Validate and process. */ 13590 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 13591 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13592 goto done; 13593 } 13594 /* 13595 * Recompute complete header length and make sure we 13596 * have access to all of it. 13597 */ 13598 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 13599 if (len > (mp->b_wptr - rptr)) { 13600 if (len > pkt_len) { 13601 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13602 goto done; 13603 } 13604 if (!pullupmsg(mp, len)) { 13605 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13606 goto done; 13607 } 13608 ipha = (ipha_t *)mp->b_rptr; 13609 } 13610 /* 13611 * Go off to ip_rput_options which returns the next hop 13612 * destination address, which may have been affected 13613 * by source routing. 13614 */ 13615 IP_STAT(ipst, ip_opt); 13616 if (ip_rput_options(q, mp, ipha, dstp, ipst) == -1) { 13617 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13618 return (B_FALSE); 13619 } 13620 } 13621 *iphapp = ipha; 13622 return (B_TRUE); 13623 done: 13624 /* clear b_prev - used by ip_mroute_decap */ 13625 mp->b_prev = NULL; 13626 freemsg(mp); 13627 return (B_FALSE); 13628 #undef rptr 13629 } 13630 13631 /* 13632 * Deal with the fact that there is no ire for the destination. 13633 */ 13634 static ire_t * 13635 ip_rput_noire(queue_t *q, mblk_t *mp, int ll_multicast, ipaddr_t dst) 13636 { 13637 ipha_t *ipha; 13638 ill_t *ill; 13639 ire_t *ire; 13640 ip_stack_t *ipst; 13641 enum ire_forward_action ret_action; 13642 13643 ipha = (ipha_t *)mp->b_rptr; 13644 ill = (ill_t *)q->q_ptr; 13645 13646 ASSERT(ill != NULL); 13647 ipst = ill->ill_ipst; 13648 13649 /* 13650 * No IRE for this destination, so it can't be for us. 13651 * Unless we are forwarding, drop the packet. 13652 * We have to let source routed packets through 13653 * since we don't yet know if they are 'ping -l' 13654 * packets i.e. if they will go out over the 13655 * same interface as they came in on. 13656 */ 13657 if (ll_multicast) { 13658 freemsg(mp); 13659 return (NULL); 13660 } 13661 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha, ipst)) { 13662 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13663 freemsg(mp); 13664 return (NULL); 13665 } 13666 13667 /* 13668 * Mark this packet as having originated externally. 13669 * 13670 * For non-forwarding code path, ire_send later double 13671 * checks this interface to see if it is still exists 13672 * post-ARP resolution. 13673 * 13674 * Also, IPQOS uses this to differentiate between 13675 * IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP 13676 * QOS packet processing in ip_wput_attach_llhdr(). 13677 * The QoS module can mark the b_band for a fastpath message 13678 * or the dl_priority field in a unitdata_req header for 13679 * CoS marking. This info can only be found in 13680 * ip_wput_attach_llhdr(). 13681 */ 13682 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 13683 /* 13684 * Clear the indication that this may have a hardware checksum 13685 * as we are not using it 13686 */ 13687 DB_CKSUMFLAGS(mp) = 0; 13688 13689 ire = ire_forward(dst, &ret_action, NULL, NULL, 13690 MBLK_GETLABEL(mp), ipst); 13691 13692 if (ire == NULL && ret_action == Forward_check_multirt) { 13693 /* Let ip_newroute handle CGTP */ 13694 ip_newroute(q, mp, dst, NULL, GLOBAL_ZONEID, ipst); 13695 return (NULL); 13696 } 13697 13698 if (ire != NULL) 13699 return (ire); 13700 13701 mp->b_prev = mp->b_next = 0; 13702 13703 if (ret_action == Forward_blackhole) { 13704 freemsg(mp); 13705 return (NULL); 13706 } 13707 /* send icmp unreachable */ 13708 q = WR(q); 13709 /* Sent by forwarding path, and router is global zone */ 13710 if (ip_source_routed(ipha, ipst)) { 13711 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, 13712 GLOBAL_ZONEID, ipst); 13713 } else { 13714 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 13715 ipst); 13716 } 13717 13718 return (NULL); 13719 13720 } 13721 13722 /* 13723 * check ip header length and align it. 13724 */ 13725 static boolean_t 13726 ip_check_and_align_header(queue_t *q, mblk_t *mp, ip_stack_t *ipst) 13727 { 13728 ssize_t len; 13729 ill_t *ill; 13730 ipha_t *ipha; 13731 13732 len = MBLKL(mp); 13733 13734 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13735 ill = (ill_t *)q->q_ptr; 13736 13737 if (!OK_32PTR(mp->b_rptr)) 13738 IP_STAT(ipst, ip_notaligned1); 13739 else 13740 IP_STAT(ipst, ip_notaligned2); 13741 /* Guard against bogus device drivers */ 13742 if (len < 0) { 13743 /* clear b_prev - used by ip_mroute_decap */ 13744 mp->b_prev = NULL; 13745 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13746 freemsg(mp); 13747 return (B_FALSE); 13748 } 13749 13750 if (ip_rput_pullups++ == 0) { 13751 ipha = (ipha_t *)mp->b_rptr; 13752 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 13753 "ip_check_and_align_header: %s forced us to " 13754 " pullup pkt, hdr len %ld, hdr addr %p", 13755 ill->ill_name, len, ipha); 13756 } 13757 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 13758 /* clear b_prev - used by ip_mroute_decap */ 13759 mp->b_prev = NULL; 13760 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13761 freemsg(mp); 13762 return (B_FALSE); 13763 } 13764 } 13765 return (B_TRUE); 13766 } 13767 13768 ire_t * 13769 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 13770 { 13771 ire_t *new_ire; 13772 ill_t *ire_ill; 13773 uint_t ifindex; 13774 ip_stack_t *ipst = ill->ill_ipst; 13775 boolean_t strict_check = B_FALSE; 13776 13777 /* 13778 * This packet came in on an interface other than the one associated 13779 * with the first ire we found for the destination address. We do 13780 * another ire lookup here, using the ingress ill, to see if the 13781 * interface is in an interface group. 13782 * As long as the ills belong to the same group, we don't consider 13783 * them to be arriving on the wrong interface. Thus, if the switch 13784 * is doing inbound load spreading, we won't drop packets when the 13785 * ip*_strict_dst_multihoming switch is on. Note, the same holds true 13786 * for 'usesrc groups' where the destination address may belong to 13787 * another interface to allow multipathing to happen. 13788 * We also need to check for IPIF_UNNUMBERED point2point interfaces 13789 * where the local address may not be unique. In this case we were 13790 * at the mercy of the initial ire cache lookup and the IRE_LOCAL it 13791 * actually returned. The new lookup, which is more specific, should 13792 * only find the IRE_LOCAL associated with the ingress ill if one 13793 * exists. 13794 */ 13795 13796 if (ire->ire_ipversion == IPV4_VERSION) { 13797 if (ipst->ips_ip_strict_dst_multihoming) 13798 strict_check = B_TRUE; 13799 new_ire = ire_ctable_lookup(*((ipaddr_t *)addr), 0, IRE_LOCAL, 13800 ill->ill_ipif, ALL_ZONES, NULL, 13801 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 13802 } else { 13803 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 13804 if (ipst->ips_ipv6_strict_dst_multihoming) 13805 strict_check = B_TRUE; 13806 new_ire = ire_ctable_lookup_v6((in6_addr_t *)addr, NULL, 13807 IRE_LOCAL, ill->ill_ipif, ALL_ZONES, NULL, 13808 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 13809 } 13810 /* 13811 * If the same ire that was returned in ip_input() is found then this 13812 * is an indication that interface groups are in use. The packet 13813 * arrived on a different ill in the group than the one associated with 13814 * the destination address. If a different ire was found then the same 13815 * IP address must be hosted on multiple ills. This is possible with 13816 * unnumbered point2point interfaces. We switch to use this new ire in 13817 * order to have accurate interface statistics. 13818 */ 13819 if (new_ire != NULL) { 13820 if ((new_ire != ire) && (new_ire->ire_rfq != NULL)) { 13821 ire_refrele(ire); 13822 ire = new_ire; 13823 } else { 13824 ire_refrele(new_ire); 13825 } 13826 return (ire); 13827 } else if ((ire->ire_rfq == NULL) && 13828 (ire->ire_ipversion == IPV4_VERSION)) { 13829 /* 13830 * The best match could have been the original ire which 13831 * was created against an IRE_LOCAL on lo0. In the IPv4 case 13832 * the strict multihoming checks are irrelevant as we consider 13833 * local addresses hosted on lo0 to be interface agnostic. We 13834 * only expect a null ire_rfq on IREs which are associated with 13835 * lo0 hence we can return now. 13836 */ 13837 return (ire); 13838 } 13839 13840 /* 13841 * Chase pointers once and store locally. 13842 */ 13843 ire_ill = (ire->ire_rfq == NULL) ? NULL : 13844 (ill_t *)(ire->ire_rfq->q_ptr); 13845 ifindex = ill->ill_usesrc_ifindex; 13846 13847 /* 13848 * Check if it's a legal address on the 'usesrc' interface. 13849 */ 13850 if ((ifindex != 0) && (ire_ill != NULL) && 13851 (ifindex == ire_ill->ill_phyint->phyint_ifindex)) { 13852 return (ire); 13853 } 13854 13855 /* 13856 * If the ip*_strict_dst_multihoming switch is on then we can 13857 * only accept this packet if the interface is marked as routing. 13858 */ 13859 if (!(strict_check)) 13860 return (ire); 13861 13862 if ((ill->ill_flags & ire->ire_ipif->ipif_ill->ill_flags & 13863 ILLF_ROUTER) != 0) { 13864 return (ire); 13865 } 13866 13867 ire_refrele(ire); 13868 return (NULL); 13869 } 13870 13871 ire_t * 13872 ip_fast_forward(ire_t *ire, ipaddr_t dst, ill_t *ill, mblk_t *mp) 13873 { 13874 ipha_t *ipha; 13875 ire_t *src_ire; 13876 ill_t *stq_ill; 13877 uint_t hlen; 13878 uint_t pkt_len; 13879 uint32_t sum; 13880 queue_t *dev_q; 13881 ip_stack_t *ipst = ill->ill_ipst; 13882 mblk_t *fpmp; 13883 enum ire_forward_action ret_action; 13884 13885 ipha = (ipha_t *)mp->b_rptr; 13886 13887 if (ire != NULL && 13888 ire->ire_zoneid != GLOBAL_ZONEID && 13889 ire->ire_zoneid != ALL_ZONES) { 13890 /* 13891 * Should only use IREs that are visible to the global 13892 * zone for forwarding. 13893 */ 13894 ire_refrele(ire); 13895 ire = ire_cache_lookup(dst, GLOBAL_ZONEID, NULL, ipst); 13896 } 13897 13898 /* 13899 * Martian Address Filtering [RFC 1812, Section 5.3.7] 13900 * The loopback address check for both src and dst has already 13901 * been checked in ip_input 13902 */ 13903 13904 if (dst == INADDR_ANY || CLASSD(ipha->ipha_src)) { 13905 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13906 goto drop; 13907 } 13908 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13909 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 13910 13911 if (src_ire != NULL) { 13912 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13913 ire_refrele(src_ire); 13914 goto drop; 13915 } 13916 13917 /* No ire cache of nexthop. So first create one */ 13918 if (ire == NULL) { 13919 13920 ire = ire_forward(dst, &ret_action, NULL, NULL, 13921 NULL, ipst); 13922 /* 13923 * We only come to ip_fast_forward if ip_cgtp_filter 13924 * is not set. So ire_forward() should not return with 13925 * Forward_check_multirt as the next action. 13926 */ 13927 ASSERT(ret_action != Forward_check_multirt); 13928 if (ire == NULL) { 13929 /* An attempt was made to forward the packet */ 13930 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13931 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13932 mp->b_prev = mp->b_next = 0; 13933 /* send icmp unreachable */ 13934 /* Sent by forwarding path, and router is global zone */ 13935 if (ret_action == Forward_ret_icmp_err) { 13936 if (ip_source_routed(ipha, ipst)) { 13937 icmp_unreachable(ill->ill_wq, mp, 13938 ICMP_SOURCE_ROUTE_FAILED, 13939 GLOBAL_ZONEID, ipst); 13940 } else { 13941 icmp_unreachable(ill->ill_wq, mp, 13942 ICMP_HOST_UNREACHABLE, 13943 GLOBAL_ZONEID, ipst); 13944 } 13945 } else { 13946 freemsg(mp); 13947 } 13948 return (NULL); 13949 } 13950 } 13951 13952 /* 13953 * Forwarding fastpath exception case: 13954 * If either of the follwoing case is true, we take 13955 * the slowpath 13956 * o forwarding is not enabled 13957 * o incoming and outgoing interface are the same, or the same 13958 * IPMP group 13959 * o corresponding ire is in incomplete state 13960 * o packet needs fragmentation 13961 * o ARP cache is not resolved 13962 * 13963 * The codeflow from here on is thus: 13964 * ip_rput_process_forward->ip_rput_forward->ip_xmit_v4 13965 */ 13966 pkt_len = ntohs(ipha->ipha_length); 13967 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 13968 if (!(stq_ill->ill_flags & ILLF_ROUTER) || 13969 !(ill->ill_flags & ILLF_ROUTER) || 13970 (ill == stq_ill) || 13971 (ill->ill_group != NULL && ill->ill_group == stq_ill->ill_group) || 13972 (ire->ire_nce == NULL) || 13973 (pkt_len > ire->ire_max_frag) || 13974 ((fpmp = ire->ire_nce->nce_fp_mp) == NULL) || 13975 ((hlen = MBLKL(fpmp)) > MBLKHEAD(mp)) || 13976 ipha->ipha_ttl <= 1) { 13977 ip_rput_process_forward(ill->ill_rq, mp, ire, 13978 ipha, ill, B_FALSE); 13979 return (ire); 13980 } 13981 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13982 13983 DTRACE_PROBE4(ip4__forwarding__start, 13984 ill_t *, ill, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 13985 13986 FW_HOOKS(ipst->ips_ip4_forwarding_event, 13987 ipst->ips_ipv4firewall_forwarding, 13988 ill, stq_ill, ipha, mp, mp, 0, ipst); 13989 13990 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 13991 13992 if (mp == NULL) 13993 goto drop; 13994 13995 mp->b_datap->db_struioun.cksum.flags = 0; 13996 /* Adjust the checksum to reflect the ttl decrement. */ 13997 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 13998 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 13999 ipha->ipha_ttl--; 14000 14001 /* 14002 * Write the link layer header. We can do this safely here, 14003 * because we have already tested to make sure that the IP 14004 * policy is not set, and that we have a fast path destination 14005 * header. 14006 */ 14007 mp->b_rptr -= hlen; 14008 bcopy(fpmp->b_rptr, mp->b_rptr, hlen); 14009 14010 UPDATE_IB_PKT_COUNT(ire); 14011 ire->ire_last_used_time = lbolt; 14012 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 14013 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14014 UPDATE_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutOctets, pkt_len); 14015 14016 dev_q = ire->ire_stq->q_next; 14017 if ((dev_q->q_next != NULL || dev_q->q_first != NULL) && 14018 !canputnext(ire->ire_stq)) { 14019 goto indiscard; 14020 } 14021 if (ILL_DLS_CAPABLE(stq_ill)) { 14022 /* 14023 * Send the packet directly to DLD, where it 14024 * may be queued depending on the availability 14025 * of transmit resources at the media layer. 14026 */ 14027 IP_DLS_ILL_TX(stq_ill, ipha, mp, ipst); 14028 } else { 14029 DTRACE_PROBE4(ip4__physical__out__start, 14030 ill_t *, NULL, ill_t *, stq_ill, 14031 ipha_t *, ipha, mblk_t *, mp); 14032 FW_HOOKS(ipst->ips_ip4_physical_out_event, 14033 ipst->ips_ipv4firewall_physical_out, 14034 NULL, stq_ill, ipha, mp, mp, 0, ipst); 14035 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 14036 if (mp == NULL) 14037 goto drop; 14038 14039 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, void_ip_t *, 14040 ipha, __dtrace_ipsr_ill_t *, stq_ill, ipha_t *, ipha, 14041 ip6_t *, NULL, int, 0); 14042 14043 putnext(ire->ire_stq, mp); 14044 } 14045 return (ire); 14046 14047 indiscard: 14048 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14049 drop: 14050 if (mp != NULL) 14051 freemsg(mp); 14052 return (ire); 14053 14054 } 14055 14056 /* 14057 * This function is called in the forwarding slowpath, when 14058 * either the ire lacks the link-layer address, or the packet needs 14059 * further processing(eg. fragmentation), before transmission. 14060 */ 14061 14062 static void 14063 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14064 ill_t *ill, boolean_t ll_multicast) 14065 { 14066 ill_group_t *ill_group; 14067 ill_group_t *ire_group; 14068 queue_t *dev_q; 14069 ire_t *src_ire; 14070 ip_stack_t *ipst = ill->ill_ipst; 14071 14072 ASSERT(ire->ire_stq != NULL); 14073 14074 mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */ 14075 mp->b_next = NULL; /* ip_rput_noire sets dst here */ 14076 14077 if (ll_multicast != 0) { 14078 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14079 goto drop_pkt; 14080 } 14081 14082 /* 14083 * check if ipha_src is a broadcast address. Note that this 14084 * check is redundant when we get here from ip_fast_forward() 14085 * which has already done this check. However, since we can 14086 * also get here from ip_rput_process_broadcast() or, for 14087 * for the slow path through ip_fast_forward(), we perform 14088 * the check again for code-reusability 14089 */ 14090 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 14091 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 14092 if (src_ire != NULL || ipha->ipha_dst == INADDR_ANY) { 14093 if (src_ire != NULL) 14094 ire_refrele(src_ire); 14095 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14096 ip2dbg(("ip_rput_process_forward: Received packet with" 14097 " bad src/dst address on %s\n", ill->ill_name)); 14098 goto drop_pkt; 14099 } 14100 14101 ill_group = ill->ill_group; 14102 ire_group = ((ill_t *)(ire->ire_rfq)->q_ptr)->ill_group; 14103 /* 14104 * Check if we want to forward this one at this time. 14105 * We allow source routed packets on a host provided that 14106 * they go out the same interface or same interface group 14107 * as they came in on. 14108 * 14109 * XXX To be quicker, we may wish to not chase pointers to 14110 * get the ILLF_ROUTER flag and instead store the 14111 * forwarding policy in the ire. An unfortunate 14112 * side-effect of that would be requiring an ire flush 14113 * whenever the ILLF_ROUTER flag changes. 14114 */ 14115 if (((ill->ill_flags & 14116 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 14117 ILLF_ROUTER) == 0) && 14118 !(ip_source_routed(ipha, ipst) && (ire->ire_rfq == q || 14119 (ill_group != NULL && ill_group == ire_group)))) { 14120 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14121 if (ip_source_routed(ipha, ipst)) { 14122 q = WR(q); 14123 /* 14124 * Clear the indication that this may have 14125 * hardware checksum as we are not using it. 14126 */ 14127 DB_CKSUMFLAGS(mp) = 0; 14128 /* Sent by forwarding path, and router is global zone */ 14129 icmp_unreachable(q, mp, 14130 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, ipst); 14131 return; 14132 } 14133 goto drop_pkt; 14134 } 14135 14136 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14137 14138 /* Packet is being forwarded. Turning off hwcksum flag. */ 14139 DB_CKSUMFLAGS(mp) = 0; 14140 if (ipst->ips_ip_g_send_redirects) { 14141 /* 14142 * Check whether the incoming interface and outgoing 14143 * interface is part of the same group. If so, 14144 * send redirects. 14145 * 14146 * Check the source address to see if it originated 14147 * on the same logical subnet it is going back out on. 14148 * If so, we should be able to send it a redirect. 14149 * Avoid sending a redirect if the destination 14150 * is directly connected (i.e., ipha_dst is the same 14151 * as ire_gateway_addr or the ire_addr of the 14152 * nexthop IRE_CACHE ), or if the packet was source 14153 * routed out this interface. 14154 */ 14155 ipaddr_t src, nhop; 14156 mblk_t *mp1; 14157 ire_t *nhop_ire = NULL; 14158 14159 /* 14160 * Check whether ire_rfq and q are from the same ill 14161 * or if they are not same, they at least belong 14162 * to the same group. If so, send redirects. 14163 */ 14164 if ((ire->ire_rfq == q || 14165 (ill_group != NULL && ill_group == ire_group)) && 14166 !ip_source_routed(ipha, ipst)) { 14167 14168 nhop = (ire->ire_gateway_addr != 0 ? 14169 ire->ire_gateway_addr : ire->ire_addr); 14170 14171 if (ipha->ipha_dst == nhop) { 14172 /* 14173 * We avoid sending a redirect if the 14174 * destination is directly connected 14175 * because it is possible that multiple 14176 * IP subnets may have been configured on 14177 * the link, and the source may not 14178 * be on the same subnet as ip destination, 14179 * even though they are on the same 14180 * physical link. 14181 */ 14182 goto sendit; 14183 } 14184 14185 src = ipha->ipha_src; 14186 14187 /* 14188 * We look up the interface ire for the nexthop, 14189 * to see if ipha_src is in the same subnet 14190 * as the nexthop. 14191 * 14192 * Note that, if, in the future, IRE_CACHE entries 14193 * are obsoleted, this lookup will not be needed, 14194 * as the ire passed to this function will be the 14195 * same as the nhop_ire computed below. 14196 */ 14197 nhop_ire = ire_ftable_lookup(nhop, 0, 0, 14198 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 14199 0, NULL, MATCH_IRE_TYPE, ipst); 14200 14201 if (nhop_ire != NULL) { 14202 if ((src & nhop_ire->ire_mask) == 14203 (nhop & nhop_ire->ire_mask)) { 14204 /* 14205 * The source is directly connected. 14206 * Just copy the ip header (which is 14207 * in the first mblk) 14208 */ 14209 mp1 = copyb(mp); 14210 if (mp1 != NULL) { 14211 icmp_send_redirect(WR(q), mp1, 14212 nhop, ipst); 14213 } 14214 } 14215 ire_refrele(nhop_ire); 14216 } 14217 } 14218 } 14219 sendit: 14220 dev_q = ire->ire_stq->q_next; 14221 if ((dev_q->q_next || dev_q->q_first) && !canput(dev_q)) { 14222 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14223 freemsg(mp); 14224 return; 14225 } 14226 14227 ip_rput_forward(ire, ipha, mp, ill); 14228 return; 14229 14230 drop_pkt: 14231 ip2dbg(("ip_rput_process_forward: drop pkt\n")); 14232 freemsg(mp); 14233 } 14234 14235 ire_t * 14236 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14237 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 14238 { 14239 queue_t *q; 14240 uint16_t hcksumflags; 14241 ip_stack_t *ipst = ill->ill_ipst; 14242 14243 q = *qp; 14244 14245 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInBcastPkts); 14246 14247 /* 14248 * Clear the indication that this may have hardware 14249 * checksum as we are not using it for forwarding. 14250 */ 14251 hcksumflags = DB_CKSUMFLAGS(mp); 14252 DB_CKSUMFLAGS(mp) = 0; 14253 14254 /* 14255 * Directed broadcast forwarding: if the packet came in over a 14256 * different interface then it is routed out over we can forward it. 14257 */ 14258 if (ipha->ipha_protocol == IPPROTO_TCP) { 14259 ire_refrele(ire); 14260 freemsg(mp); 14261 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14262 return (NULL); 14263 } 14264 /* 14265 * For multicast we have set dst to be INADDR_BROADCAST 14266 * for delivering to all STREAMS. IRE_MARK_NORECV is really 14267 * only for broadcast packets. 14268 */ 14269 if (!CLASSD(ipha->ipha_dst)) { 14270 ire_t *new_ire; 14271 ipif_t *ipif; 14272 /* 14273 * For ill groups, as the switch duplicates broadcasts 14274 * across all the ports, we need to filter out and 14275 * send up only one copy. There is one copy for every 14276 * broadcast address on each ill. Thus, we look for a 14277 * specific IRE on this ill and look at IRE_MARK_NORECV 14278 * later to see whether this ill is eligible to receive 14279 * them or not. ill_nominate_bcast_rcv() nominates only 14280 * one set of IREs for receiving. 14281 */ 14282 14283 ipif = ipif_get_next_ipif(NULL, ill); 14284 if (ipif == NULL) { 14285 ire_refrele(ire); 14286 freemsg(mp); 14287 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14288 return (NULL); 14289 } 14290 new_ire = ire_ctable_lookup(dst, 0, 0, 14291 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL, ipst); 14292 ipif_refrele(ipif); 14293 14294 if (new_ire != NULL) { 14295 if (new_ire->ire_marks & IRE_MARK_NORECV) { 14296 ire_refrele(ire); 14297 ire_refrele(new_ire); 14298 freemsg(mp); 14299 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14300 return (NULL); 14301 } 14302 /* 14303 * In the special case of multirouted broadcast 14304 * packets, we unconditionally need to "gateway" 14305 * them to the appropriate interface here. 14306 * In the normal case, this cannot happen, because 14307 * there is no broadcast IRE tagged with the 14308 * RTF_MULTIRT flag. 14309 */ 14310 if (new_ire->ire_flags & RTF_MULTIRT) { 14311 ire_refrele(new_ire); 14312 if (ire->ire_rfq != NULL) { 14313 q = ire->ire_rfq; 14314 *qp = q; 14315 } 14316 } else { 14317 ire_refrele(ire); 14318 ire = new_ire; 14319 } 14320 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 14321 if (!ipst->ips_ip_g_forward_directed_bcast) { 14322 /* 14323 * Free the message if 14324 * ip_g_forward_directed_bcast is turned 14325 * off for non-local broadcast. 14326 */ 14327 ire_refrele(ire); 14328 freemsg(mp); 14329 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14330 return (NULL); 14331 } 14332 } else { 14333 /* 14334 * This CGTP packet successfully passed the 14335 * CGTP filter, but the related CGTP 14336 * broadcast IRE has not been found, 14337 * meaning that the redundant ipif is 14338 * probably down. However, if we discarded 14339 * this packet, its duplicate would be 14340 * filtered out by the CGTP filter so none 14341 * of them would get through. So we keep 14342 * going with this one. 14343 */ 14344 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 14345 if (ire->ire_rfq != NULL) { 14346 q = ire->ire_rfq; 14347 *qp = q; 14348 } 14349 } 14350 } 14351 if (ipst->ips_ip_g_forward_directed_bcast && ll_multicast == 0) { 14352 /* 14353 * Verify that there are not more then one 14354 * IRE_BROADCAST with this broadcast address which 14355 * has ire_stq set. 14356 * TODO: simplify, loop over all IRE's 14357 */ 14358 ire_t *ire1; 14359 int num_stq = 0; 14360 mblk_t *mp1; 14361 14362 /* Find the first one with ire_stq set */ 14363 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 14364 for (ire1 = ire; ire1 && 14365 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 14366 ire1 = ire1->ire_next) 14367 ; 14368 if (ire1) { 14369 ire_refrele(ire); 14370 ire = ire1; 14371 IRE_REFHOLD(ire); 14372 } 14373 14374 /* Check if there are additional ones with stq set */ 14375 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 14376 if (ire->ire_addr != ire1->ire_addr) 14377 break; 14378 if (ire1->ire_stq) { 14379 num_stq++; 14380 break; 14381 } 14382 } 14383 rw_exit(&ire->ire_bucket->irb_lock); 14384 if (num_stq == 1 && ire->ire_stq != NULL) { 14385 ip1dbg(("ip_rput_process_broadcast: directed " 14386 "broadcast to 0x%x\n", 14387 ntohl(ire->ire_addr))); 14388 mp1 = copymsg(mp); 14389 if (mp1) { 14390 switch (ipha->ipha_protocol) { 14391 case IPPROTO_UDP: 14392 ip_udp_input(q, mp1, ipha, ire, ill); 14393 break; 14394 default: 14395 ip_proto_input(q, mp1, ipha, ire, ill, 14396 0); 14397 break; 14398 } 14399 } 14400 /* 14401 * Adjust ttl to 2 (1+1 - the forward engine 14402 * will decrement it by one. 14403 */ 14404 if (ip_csum_hdr(ipha)) { 14405 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 14406 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 14407 freemsg(mp); 14408 ire_refrele(ire); 14409 return (NULL); 14410 } 14411 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl + 1; 14412 ipha->ipha_hdr_checksum = 0; 14413 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14414 ip_rput_process_forward(q, mp, ire, ipha, 14415 ill, ll_multicast); 14416 ire_refrele(ire); 14417 return (NULL); 14418 } 14419 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 14420 ntohl(ire->ire_addr))); 14421 } 14422 14423 14424 /* Restore any hardware checksum flags */ 14425 DB_CKSUMFLAGS(mp) = hcksumflags; 14426 return (ire); 14427 } 14428 14429 /* ARGSUSED */ 14430 static boolean_t 14431 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 14432 int *ll_multicast, ipaddr_t *dstp) 14433 { 14434 ip_stack_t *ipst = ill->ill_ipst; 14435 14436 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastPkts); 14437 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastOctets, 14438 ntohs(ipha->ipha_length)); 14439 14440 /* 14441 * Forward packets only if we have joined the allmulti 14442 * group on this interface. 14443 */ 14444 if (ipst->ips_ip_g_mrouter && ill->ill_join_allmulti) { 14445 int retval; 14446 14447 /* 14448 * Clear the indication that this may have hardware 14449 * checksum as we are not using it. 14450 */ 14451 DB_CKSUMFLAGS(mp) = 0; 14452 retval = ip_mforward(ill, ipha, mp); 14453 /* ip_mforward updates mib variables if needed */ 14454 /* clear b_prev - used by ip_mroute_decap */ 14455 mp->b_prev = NULL; 14456 14457 switch (retval) { 14458 case 0: 14459 /* 14460 * pkt is okay and arrived on phyint. 14461 * 14462 * If we are running as a multicast router 14463 * we need to see all IGMP and/or PIM packets. 14464 */ 14465 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 14466 (ipha->ipha_protocol == IPPROTO_PIM)) { 14467 goto done; 14468 } 14469 break; 14470 case -1: 14471 /* pkt is mal-formed, toss it */ 14472 goto drop_pkt; 14473 case 1: 14474 /* pkt is okay and arrived on a tunnel */ 14475 /* 14476 * If we are running a multicast router 14477 * we need to see all igmp packets. 14478 */ 14479 if (ipha->ipha_protocol == IPPROTO_IGMP) { 14480 *dstp = INADDR_BROADCAST; 14481 *ll_multicast = 1; 14482 return (B_FALSE); 14483 } 14484 14485 goto drop_pkt; 14486 } 14487 } 14488 14489 ILM_WALKER_HOLD(ill); 14490 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 14491 /* 14492 * This might just be caused by the fact that 14493 * multiple IP Multicast addresses map to the same 14494 * link layer multicast - no need to increment counter! 14495 */ 14496 ILM_WALKER_RELE(ill); 14497 freemsg(mp); 14498 return (B_TRUE); 14499 } 14500 ILM_WALKER_RELE(ill); 14501 done: 14502 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 14503 /* 14504 * This assumes the we deliver to all streams for multicast 14505 * and broadcast packets. 14506 */ 14507 *dstp = INADDR_BROADCAST; 14508 *ll_multicast = 1; 14509 return (B_FALSE); 14510 drop_pkt: 14511 ip2dbg(("ip_rput: drop pkt\n")); 14512 freemsg(mp); 14513 return (B_TRUE); 14514 } 14515 14516 /* 14517 * This function is used to both return an indication of whether or not 14518 * the packet received is a non-unicast packet (by way of the DL_UNITDATA_IND) 14519 * and in doing so, determine whether or not it is broadcast vs multicast. 14520 * For it to be a broadcast packet, we must have the appropriate mblk_t 14521 * hanging off the ill_t. If this is either not present or doesn't match 14522 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 14523 * to be multicast. Thus NICs that have no broadcast address (or no 14524 * capability for one, such as point to point links) cannot return as 14525 * the packet being broadcast. The use of HPE_BROADCAST/HPE_MULTICAST as 14526 * the return values simplifies the current use of the return value of this 14527 * function, which is to pass through the multicast/broadcast characteristic 14528 * to consumers of the netinfo/pfhooks API. While this is not cast in stone, 14529 * changing the return value to some other symbol demands the appropriate 14530 * "translation" when hpe_flags is set prior to calling hook_run() for 14531 * packet events. 14532 */ 14533 int 14534 ip_get_dlpi_mbcast(ill_t *ill, mblk_t *mb) 14535 { 14536 dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr; 14537 mblk_t *bmp; 14538 14539 if (ind->dl_group_address) { 14540 if (ind->dl_dest_addr_offset > sizeof (*ind) && 14541 ind->dl_dest_addr_offset + ind->dl_dest_addr_length < 14542 MBLKL(mb) && 14543 (bmp = ill->ill_bcast_mp) != NULL) { 14544 dl_unitdata_req_t *dlur; 14545 uint8_t *bphys_addr; 14546 14547 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 14548 if (ill->ill_sap_length < 0) 14549 bphys_addr = (uchar_t *)dlur + 14550 dlur->dl_dest_addr_offset; 14551 else 14552 bphys_addr = (uchar_t *)dlur + 14553 dlur->dl_dest_addr_offset + 14554 ill->ill_sap_length; 14555 14556 if (bcmp(mb->b_rptr + ind->dl_dest_addr_offset, 14557 bphys_addr, ind->dl_dest_addr_length) == 0) { 14558 return (HPE_BROADCAST); 14559 } 14560 return (HPE_MULTICAST); 14561 } 14562 return (HPE_MULTICAST); 14563 } 14564 return (0); 14565 } 14566 14567 static boolean_t 14568 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 14569 int *ll_multicast, mblk_t **mpp) 14570 { 14571 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 14572 boolean_t must_copy = B_FALSE; 14573 struct iocblk *iocp; 14574 ipha_t *ipha; 14575 ip_stack_t *ipst = ill->ill_ipst; 14576 14577 #define rptr ((uchar_t *)ipha) 14578 14579 first_mp = *first_mpp; 14580 mp = *mpp; 14581 14582 ASSERT(first_mp == mp); 14583 14584 /* 14585 * if db_ref > 1 then copymsg and free original. Packet may be 14586 * changed and do not want other entity who has a reference to this 14587 * message to trip over the changes. This is a blind change because 14588 * trying to catch all places that might change packet is too 14589 * difficult (since it may be a module above this one) 14590 * 14591 * This corresponds to the non-fast path case. We walk down the full 14592 * chain in this case, and check the db_ref count of all the dblks, 14593 * and do a copymsg if required. It is possible that the db_ref counts 14594 * of the data blocks in the mblk chain can be different. 14595 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 14596 * count of 1, followed by a M_DATA block with a ref count of 2, if 14597 * 'snoop' is running. 14598 */ 14599 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 14600 if (mp1->b_datap->db_ref > 1) { 14601 must_copy = B_TRUE; 14602 break; 14603 } 14604 } 14605 14606 if (must_copy) { 14607 mp1 = copymsg(mp); 14608 if (mp1 == NULL) { 14609 for (mp1 = mp; mp1 != NULL; 14610 mp1 = mp1->b_cont) { 14611 mp1->b_next = NULL; 14612 mp1->b_prev = NULL; 14613 } 14614 freemsg(mp); 14615 if (ill != NULL) { 14616 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14617 } else { 14618 BUMP_MIB(&ipst->ips_ip_mib, 14619 ipIfStatsInDiscards); 14620 } 14621 return (B_TRUE); 14622 } 14623 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 14624 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 14625 /* Copy b_prev - used by ip_mroute_decap */ 14626 to_mp->b_prev = from_mp->b_prev; 14627 from_mp->b_prev = NULL; 14628 } 14629 *first_mpp = first_mp = mp1; 14630 freemsg(mp); 14631 mp = mp1; 14632 *mpp = mp1; 14633 } 14634 14635 ipha = (ipha_t *)mp->b_rptr; 14636 14637 /* 14638 * previous code has a case for M_DATA. 14639 * We want to check how that happens. 14640 */ 14641 ASSERT(first_mp->b_datap->db_type != M_DATA); 14642 switch (first_mp->b_datap->db_type) { 14643 case M_PROTO: 14644 case M_PCPROTO: 14645 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 14646 DL_UNITDATA_IND) { 14647 /* Go handle anything other than data elsewhere. */ 14648 ip_rput_dlpi(q, mp); 14649 return (B_TRUE); 14650 } 14651 14652 *ll_multicast = ip_get_dlpi_mbcast(ill, mp); 14653 /* Ditch the DLPI header. */ 14654 mp1 = mp->b_cont; 14655 ASSERT(first_mp == mp); 14656 *first_mpp = mp1; 14657 freeb(mp); 14658 *mpp = mp1; 14659 return (B_FALSE); 14660 case M_IOCACK: 14661 ip1dbg(("got iocack ")); 14662 iocp = (struct iocblk *)mp->b_rptr; 14663 switch (iocp->ioc_cmd) { 14664 case DL_IOC_HDR_INFO: 14665 ill = (ill_t *)q->q_ptr; 14666 ill_fastpath_ack(ill, mp); 14667 return (B_TRUE); 14668 case SIOCSTUNPARAM: 14669 case OSIOCSTUNPARAM: 14670 /* Go through qwriter_ip */ 14671 break; 14672 case SIOCGTUNPARAM: 14673 case OSIOCGTUNPARAM: 14674 ip_rput_other(NULL, q, mp, NULL); 14675 return (B_TRUE); 14676 default: 14677 putnext(q, mp); 14678 return (B_TRUE); 14679 } 14680 /* FALLTHRU */ 14681 case M_ERROR: 14682 case M_HANGUP: 14683 /* 14684 * Since this is on the ill stream we unconditionally 14685 * bump up the refcount 14686 */ 14687 ill_refhold(ill); 14688 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14689 return (B_TRUE); 14690 case M_CTL: 14691 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 14692 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 14693 IPHADA_M_CTL)) { 14694 /* 14695 * It's an IPsec accelerated packet. 14696 * Make sure that the ill from which we received the 14697 * packet has enabled IPsec hardware acceleration. 14698 */ 14699 if (!(ill->ill_capabilities & 14700 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 14701 /* IPsec kstats: bean counter */ 14702 freemsg(mp); 14703 return (B_TRUE); 14704 } 14705 14706 /* 14707 * Make mp point to the mblk following the M_CTL, 14708 * then process according to type of mp. 14709 * After this processing, first_mp will point to 14710 * the data-attributes and mp to the pkt following 14711 * the M_CTL. 14712 */ 14713 mp = first_mp->b_cont; 14714 if (mp == NULL) { 14715 freemsg(first_mp); 14716 return (B_TRUE); 14717 } 14718 /* 14719 * A Hardware Accelerated packet can only be M_DATA 14720 * ESP or AH packet. 14721 */ 14722 if (mp->b_datap->db_type != M_DATA) { 14723 /* non-M_DATA IPsec accelerated packet */ 14724 IPSECHW_DEBUG(IPSECHW_PKT, 14725 ("non-M_DATA IPsec accelerated pkt\n")); 14726 freemsg(first_mp); 14727 return (B_TRUE); 14728 } 14729 ipha = (ipha_t *)mp->b_rptr; 14730 if (ipha->ipha_protocol != IPPROTO_AH && 14731 ipha->ipha_protocol != IPPROTO_ESP) { 14732 IPSECHW_DEBUG(IPSECHW_PKT, 14733 ("non-M_DATA IPsec accelerated pkt\n")); 14734 freemsg(first_mp); 14735 return (B_TRUE); 14736 } 14737 *mpp = mp; 14738 return (B_FALSE); 14739 } 14740 putnext(q, mp); 14741 return (B_TRUE); 14742 case M_IOCNAK: 14743 ip1dbg(("got iocnak ")); 14744 iocp = (struct iocblk *)mp->b_rptr; 14745 switch (iocp->ioc_cmd) { 14746 case SIOCSTUNPARAM: 14747 case OSIOCSTUNPARAM: 14748 /* 14749 * Since this is on the ill stream we unconditionally 14750 * bump up the refcount 14751 */ 14752 ill_refhold(ill); 14753 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14754 return (B_TRUE); 14755 case DL_IOC_HDR_INFO: 14756 case SIOCGTUNPARAM: 14757 case OSIOCGTUNPARAM: 14758 ip_rput_other(NULL, q, mp, NULL); 14759 return (B_TRUE); 14760 default: 14761 break; 14762 } 14763 /* FALLTHRU */ 14764 default: 14765 putnext(q, mp); 14766 return (B_TRUE); 14767 } 14768 } 14769 14770 /* Read side put procedure. Packets coming from the wire arrive here. */ 14771 void 14772 ip_rput(queue_t *q, mblk_t *mp) 14773 { 14774 ill_t *ill; 14775 union DL_primitives *dl; 14776 14777 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 14778 14779 ill = (ill_t *)q->q_ptr; 14780 14781 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 14782 /* 14783 * If things are opening or closing, only accept high-priority 14784 * DLPI messages. (On open ill->ill_ipif has not yet been 14785 * created; on close, things hanging off the ill may have been 14786 * freed already.) 14787 */ 14788 dl = (union DL_primitives *)mp->b_rptr; 14789 if (DB_TYPE(mp) != M_PCPROTO || 14790 dl->dl_primitive == DL_UNITDATA_IND) { 14791 /* 14792 * SIOC[GS]TUNPARAM ioctls can come here. 14793 */ 14794 inet_freemsg(mp); 14795 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14796 "ip_rput_end: q %p (%S)", q, "uninit"); 14797 return; 14798 } 14799 } 14800 14801 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14802 "ip_rput_end: q %p (%S)", q, "end"); 14803 14804 ip_input(ill, NULL, mp, NULL); 14805 } 14806 14807 static mblk_t * 14808 ip_fix_dbref(ill_t *ill, mblk_t *mp) 14809 { 14810 mblk_t *mp1; 14811 boolean_t adjusted = B_FALSE; 14812 ip_stack_t *ipst = ill->ill_ipst; 14813 14814 IP_STAT(ipst, ip_db_ref); 14815 /* 14816 * The IP_RECVSLLA option depends on having the 14817 * link layer header. First check that: 14818 * a> the underlying device is of type ether, 14819 * since this option is currently supported only 14820 * over ethernet. 14821 * b> there is enough room to copy over the link 14822 * layer header. 14823 * 14824 * Once the checks are done, adjust rptr so that 14825 * the link layer header will be copied via 14826 * copymsg. Note that, IFT_ETHER may be returned 14827 * by some non-ethernet drivers but in this case 14828 * the second check will fail. 14829 */ 14830 if (ill->ill_type == IFT_ETHER && 14831 (mp->b_rptr - mp->b_datap->db_base) >= 14832 sizeof (struct ether_header)) { 14833 mp->b_rptr -= sizeof (struct ether_header); 14834 adjusted = B_TRUE; 14835 } 14836 mp1 = copymsg(mp); 14837 14838 if (mp1 == NULL) { 14839 mp->b_next = NULL; 14840 /* clear b_prev - used by ip_mroute_decap */ 14841 mp->b_prev = NULL; 14842 freemsg(mp); 14843 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14844 return (NULL); 14845 } 14846 14847 if (adjusted) { 14848 /* 14849 * Copy is done. Restore the pointer in 14850 * the _new_ mblk 14851 */ 14852 mp1->b_rptr += sizeof (struct ether_header); 14853 } 14854 14855 /* Copy b_prev - used by ip_mroute_decap */ 14856 mp1->b_prev = mp->b_prev; 14857 mp->b_prev = NULL; 14858 14859 /* preserve the hardware checksum flags and data, if present */ 14860 if (DB_CKSUMFLAGS(mp) != 0) { 14861 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 14862 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 14863 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 14864 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 14865 DB_CKSUM16(mp1) = DB_CKSUM16(mp); 14866 } 14867 14868 freemsg(mp); 14869 return (mp1); 14870 } 14871 14872 /* 14873 * Direct read side procedure capable of dealing with chains. GLDv3 based 14874 * drivers call this function directly with mblk chains while STREAMS 14875 * read side procedure ip_rput() calls this for single packet with ip_ring 14876 * set to NULL to process one packet at a time. 14877 * 14878 * The ill will always be valid if this function is called directly from 14879 * the driver. 14880 * 14881 * If ip_input() is called from GLDv3: 14882 * 14883 * - This must be a non-VLAN IP stream. 14884 * - 'mp' is either an untagged or a special priority-tagged packet. 14885 * - Any VLAN tag that was in the MAC header has been stripped. 14886 * 14887 * If the IP header in packet is not 32-bit aligned, every message in the 14888 * chain will be aligned before further operations. This is required on SPARC 14889 * platform. 14890 */ 14891 /* ARGSUSED */ 14892 void 14893 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, 14894 struct mac_header_info_s *mhip) 14895 { 14896 ipaddr_t dst = NULL; 14897 ipaddr_t prev_dst; 14898 ire_t *ire = NULL; 14899 ipha_t *ipha; 14900 uint_t pkt_len; 14901 ssize_t len; 14902 uint_t opt_len; 14903 int ll_multicast; 14904 int cgtp_flt_pkt; 14905 queue_t *q = ill->ill_rq; 14906 squeue_t *curr_sqp = NULL; 14907 mblk_t *head = NULL; 14908 mblk_t *tail = NULL; 14909 mblk_t *first_mp; 14910 mblk_t *mp; 14911 mblk_t *dmp; 14912 int cnt = 0; 14913 ip_stack_t *ipst = ill->ill_ipst; 14914 14915 ASSERT(mp_chain != NULL); 14916 ASSERT(ill != NULL); 14917 14918 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 14919 14920 #define rptr ((uchar_t *)ipha) 14921 14922 while (mp_chain != NULL) { 14923 first_mp = mp = mp_chain; 14924 mp_chain = mp_chain->b_next; 14925 mp->b_next = NULL; 14926 ll_multicast = 0; 14927 14928 /* 14929 * We do ire caching from one iteration to 14930 * another. In the event the packet chain contains 14931 * all packets from the same dst, this caching saves 14932 * an ire_cache_lookup for each of the succeeding 14933 * packets in a packet chain. 14934 */ 14935 prev_dst = dst; 14936 14937 /* 14938 * if db_ref > 1 then copymsg and free original. Packet 14939 * may be changed and we do not want the other entity 14940 * who has a reference to this message to trip over the 14941 * changes. This is a blind change because trying to 14942 * catch all places that might change the packet is too 14943 * difficult. 14944 * 14945 * This corresponds to the fast path case, where we have 14946 * a chain of M_DATA mblks. We check the db_ref count 14947 * of only the 1st data block in the mblk chain. There 14948 * doesn't seem to be a reason why a device driver would 14949 * send up data with varying db_ref counts in the mblk 14950 * chain. In any case the Fast path is a private 14951 * interface, and our drivers don't do such a thing. 14952 * Given the above assumption, there is no need to walk 14953 * down the entire mblk chain (which could have a 14954 * potential performance problem) 14955 */ 14956 14957 if (DB_REF(mp) > 1) { 14958 if ((mp = ip_fix_dbref(ill, mp)) == NULL) 14959 continue; 14960 } 14961 14962 /* 14963 * Check and align the IP header. 14964 */ 14965 first_mp = mp; 14966 if (DB_TYPE(mp) == M_DATA) { 14967 dmp = mp; 14968 } else if (DB_TYPE(mp) == M_PROTO && 14969 *(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) { 14970 dmp = mp->b_cont; 14971 } else { 14972 dmp = NULL; 14973 } 14974 if (dmp != NULL) { 14975 /* 14976 * IP header ptr not aligned? 14977 * OR IP header not complete in first mblk 14978 */ 14979 if (!OK_32PTR(dmp->b_rptr) || 14980 MBLKL(dmp) < IP_SIMPLE_HDR_LENGTH) { 14981 if (!ip_check_and_align_header(q, dmp, ipst)) 14982 continue; 14983 } 14984 } 14985 14986 /* 14987 * ip_input fast path 14988 */ 14989 14990 /* mblk type is not M_DATA */ 14991 if (DB_TYPE(mp) != M_DATA) { 14992 if (ip_rput_process_notdata(q, &first_mp, ill, 14993 &ll_multicast, &mp)) 14994 continue; 14995 14996 /* 14997 * The only way we can get here is if we had a 14998 * packet that was either a DL_UNITDATA_IND or 14999 * an M_CTL for an IPsec accelerated packet. 15000 * 15001 * In either case, the first_mp will point to 15002 * the leading M_PROTO or M_CTL. 15003 */ 15004 ASSERT(first_mp != NULL); 15005 } else if (mhip != NULL) { 15006 /* 15007 * ll_multicast is set here so that it is ready 15008 * for easy use with FW_HOOKS(). ip_get_dlpi_mbcast 15009 * manipulates ll_multicast in the same fashion when 15010 * called from ip_rput_process_notdata. 15011 */ 15012 switch (mhip->mhi_dsttype) { 15013 case MAC_ADDRTYPE_MULTICAST : 15014 ll_multicast = HPE_MULTICAST; 15015 break; 15016 case MAC_ADDRTYPE_BROADCAST : 15017 ll_multicast = HPE_BROADCAST; 15018 break; 15019 default : 15020 break; 15021 } 15022 } 15023 15024 /* Make sure its an M_DATA and that its aligned */ 15025 ASSERT(DB_TYPE(mp) == M_DATA); 15026 ASSERT(DB_REF(mp) == 1 && OK_32PTR(mp->b_rptr)); 15027 15028 ipha = (ipha_t *)mp->b_rptr; 15029 len = mp->b_wptr - rptr; 15030 pkt_len = ntohs(ipha->ipha_length); 15031 15032 /* 15033 * We must count all incoming packets, even if they end 15034 * up being dropped later on. 15035 */ 15036 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15037 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 15038 15039 /* multiple mblk or too short */ 15040 len -= pkt_len; 15041 if (len != 0) { 15042 /* 15043 * Make sure we have data length consistent 15044 * with the IP header. 15045 */ 15046 if (mp->b_cont == NULL) { 15047 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15048 BUMP_MIB(ill->ill_ip_mib, 15049 ipIfStatsInHdrErrors); 15050 ip2dbg(("ip_input: drop pkt\n")); 15051 freemsg(mp); 15052 continue; 15053 } 15054 mp->b_wptr = rptr + pkt_len; 15055 } else if ((len += msgdsize(mp->b_cont)) != 0) { 15056 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15057 BUMP_MIB(ill->ill_ip_mib, 15058 ipIfStatsInHdrErrors); 15059 ip2dbg(("ip_input: drop pkt\n")); 15060 freemsg(mp); 15061 continue; 15062 } 15063 (void) adjmsg(mp, -len); 15064 IP_STAT(ipst, ip_multimblk3); 15065 } 15066 } 15067 15068 /* Obtain the dst of the current packet */ 15069 dst = ipha->ipha_dst; 15070 15071 DTRACE_IP7(receive, mblk_t *, first_mp, conn_t *, NULL, 15072 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, 15073 ipha, ip6_t *, NULL, int, 0); 15074 15075 /* 15076 * The following test for loopback is faster than 15077 * IP_LOOPBACK_ADDR(), because it avoids any bitwise 15078 * operations. 15079 * Note that these addresses are always in network byte order 15080 */ 15081 if (((*(uchar_t *)&ipha->ipha_dst) == 127) || 15082 ((*(uchar_t *)&ipha->ipha_src) == 127)) { 15083 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInAddrErrors); 15084 freemsg(mp); 15085 continue; 15086 } 15087 15088 /* 15089 * The event for packets being received from a 'physical' 15090 * interface is placed after validation of the source and/or 15091 * destination address as being local so that packets can be 15092 * redirected to loopback addresses using ipnat. 15093 */ 15094 DTRACE_PROBE4(ip4__physical__in__start, 15095 ill_t *, ill, ill_t *, NULL, 15096 ipha_t *, ipha, mblk_t *, first_mp); 15097 15098 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15099 ipst->ips_ipv4firewall_physical_in, 15100 ill, NULL, ipha, first_mp, mp, ll_multicast, ipst); 15101 15102 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, first_mp); 15103 15104 if (first_mp == NULL) { 15105 continue; 15106 } 15107 dst = ipha->ipha_dst; 15108 15109 /* 15110 * Attach any necessary label information to 15111 * this packet 15112 */ 15113 if (is_system_labeled() && 15114 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 15115 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 15116 freemsg(mp); 15117 continue; 15118 } 15119 15120 /* 15121 * Reuse the cached ire only if the ipha_dst of the previous 15122 * packet is the same as the current packet AND it is not 15123 * INADDR_ANY. 15124 */ 15125 if (!(dst == prev_dst && dst != INADDR_ANY) && 15126 (ire != NULL)) { 15127 ire_refrele(ire); 15128 ire = NULL; 15129 } 15130 opt_len = ipha->ipha_version_and_hdr_length - 15131 IP_SIMPLE_HDR_VERSION; 15132 15133 /* 15134 * Check to see if we can take the fastpath. 15135 * That is possible if the following conditions are met 15136 * o Tsol disabled 15137 * o CGTP disabled 15138 * o ipp_action_count is 0 15139 * o no options in the packet 15140 * o not a RSVP packet 15141 * o not a multicast packet 15142 * o ill not in IP_DHCPINIT_IF mode 15143 */ 15144 if (!is_system_labeled() && 15145 !ipst->ips_ip_cgtp_filter && ipp_action_count == 0 && 15146 opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP && 15147 !ll_multicast && !CLASSD(dst) && ill->ill_dhcpinit == 0) { 15148 if (ire == NULL) 15149 ire = ire_cache_lookup(dst, ALL_ZONES, NULL, 15150 ipst); 15151 15152 /* incoming packet is for forwarding */ 15153 if (ire == NULL || (ire->ire_type & IRE_CACHE)) { 15154 ire = ip_fast_forward(ire, dst, ill, mp); 15155 continue; 15156 } 15157 /* incoming packet is for local consumption */ 15158 if (ire->ire_type & IRE_LOCAL) 15159 goto local; 15160 } 15161 15162 /* 15163 * Disable ire caching for anything more complex 15164 * than the simple fast path case we checked for above. 15165 */ 15166 if (ire != NULL) { 15167 ire_refrele(ire); 15168 ire = NULL; 15169 } 15170 15171 /* 15172 * Brutal hack for DHCPv4 unicast: RFC2131 allows a DHCP 15173 * server to unicast DHCP packets to a DHCP client using the 15174 * IP address it is offering to the client. This can be 15175 * disabled through the "broadcast bit", but not all DHCP 15176 * servers honor that bit. Therefore, to interoperate with as 15177 * many DHCP servers as possible, the DHCP client allows the 15178 * server to unicast, but we treat those packets as broadcast 15179 * here. Note that we don't rewrite the packet itself since 15180 * (a) that would mess up the checksums and (b) the DHCP 15181 * client conn is bound to INADDR_ANY so ip_fanout_udp() will 15182 * hand it the packet regardless. 15183 */ 15184 if (ill->ill_dhcpinit != 0 && 15185 IS_SIMPLE_IPH(ipha) && ipha->ipha_protocol == IPPROTO_UDP && 15186 pullupmsg(mp, sizeof (ipha_t) + sizeof (udpha_t)) == 1) { 15187 udpha_t *udpha; 15188 15189 /* 15190 * Reload ipha since pullupmsg() can change b_rptr. 15191 */ 15192 ipha = (ipha_t *)mp->b_rptr; 15193 udpha = (udpha_t *)&ipha[1]; 15194 15195 if (ntohs(udpha->uha_dst_port) == IPPORT_BOOTPC) { 15196 DTRACE_PROBE2(ip4__dhcpinit__pkt, ill_t *, ill, 15197 mblk_t *, mp); 15198 dst = INADDR_BROADCAST; 15199 } 15200 } 15201 15202 /* Full-blown slow path */ 15203 if (opt_len != 0) { 15204 if (len != 0) 15205 IP_STAT(ipst, ip_multimblk4); 15206 else 15207 IP_STAT(ipst, ip_ipoptions); 15208 if (!ip_rput_multimblk_ipoptions(q, ill, mp, &ipha, 15209 &dst, ipst)) 15210 continue; 15211 } 15212 15213 /* 15214 * Invoke the CGTP (multirouting) filtering module to process 15215 * the incoming packet. Packets identified as duplicates 15216 * must be discarded. Filtering is active only if the 15217 * the ip_cgtp_filter ndd variable is non-zero. 15218 */ 15219 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 15220 if (ipst->ips_ip_cgtp_filter && 15221 ipst->ips_ip_cgtp_filter_ops != NULL) { 15222 netstackid_t stackid; 15223 15224 stackid = ipst->ips_netstack->netstack_stackid; 15225 cgtp_flt_pkt = 15226 ipst->ips_ip_cgtp_filter_ops->cfo_filter(stackid, 15227 ill->ill_phyint->phyint_ifindex, mp); 15228 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 15229 freemsg(first_mp); 15230 continue; 15231 } 15232 } 15233 15234 /* 15235 * If rsvpd is running, let RSVP daemon handle its processing 15236 * and forwarding of RSVP multicast/unicast packets. 15237 * If rsvpd is not running but mrouted is running, RSVP 15238 * multicast packets are forwarded as multicast traffic 15239 * and RSVP unicast packets are forwarded by unicast router. 15240 * If neither rsvpd nor mrouted is running, RSVP multicast 15241 * packets are not forwarded, but the unicast packets are 15242 * forwarded like unicast traffic. 15243 */ 15244 if (ipha->ipha_protocol == IPPROTO_RSVP && 15245 ipst->ips_ipcl_proto_fanout[IPPROTO_RSVP].connf_head != 15246 NULL) { 15247 /* RSVP packet and rsvpd running. Treat as ours */ 15248 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 15249 /* 15250 * This assumes that we deliver to all streams for 15251 * multicast and broadcast packets. 15252 * We have to force ll_multicast to 1 to handle the 15253 * M_DATA messages passed in from ip_mroute_decap. 15254 */ 15255 dst = INADDR_BROADCAST; 15256 ll_multicast = 1; 15257 } else if (CLASSD(dst)) { 15258 /* packet is multicast */ 15259 mp->b_next = NULL; 15260 if (ip_rput_process_multicast(q, mp, ill, ipha, 15261 &ll_multicast, &dst)) 15262 continue; 15263 } 15264 15265 if (ire == NULL) { 15266 ire = ire_cache_lookup(dst, ALL_ZONES, 15267 MBLK_GETLABEL(mp), ipst); 15268 } 15269 15270 if (ire != NULL && ire->ire_stq != NULL && 15271 ire->ire_zoneid != GLOBAL_ZONEID && 15272 ire->ire_zoneid != ALL_ZONES) { 15273 /* 15274 * Should only use IREs that are visible from the 15275 * global zone for forwarding. 15276 */ 15277 ire_refrele(ire); 15278 ire = ire_cache_lookup(dst, GLOBAL_ZONEID, 15279 MBLK_GETLABEL(mp), ipst); 15280 } 15281 15282 if (ire == NULL) { 15283 /* 15284 * No IRE for this destination, so it can't be for us. 15285 * Unless we are forwarding, drop the packet. 15286 * We have to let source routed packets through 15287 * since we don't yet know if they are 'ping -l' 15288 * packets i.e. if they will go out over the 15289 * same interface as they came in on. 15290 */ 15291 ire = ip_rput_noire(q, mp, ll_multicast, dst); 15292 if (ire == NULL) 15293 continue; 15294 } 15295 15296 /* 15297 * Broadcast IRE may indicate either broadcast or 15298 * multicast packet 15299 */ 15300 if (ire->ire_type == IRE_BROADCAST) { 15301 /* 15302 * Skip broadcast checks if packet is UDP multicast; 15303 * we'd rather not enter ip_rput_process_broadcast() 15304 * unless the packet is broadcast for real, since 15305 * that routine is a no-op for multicast. 15306 */ 15307 if (ipha->ipha_protocol != IPPROTO_UDP || 15308 !CLASSD(ipha->ipha_dst)) { 15309 ire = ip_rput_process_broadcast(&q, mp, 15310 ire, ipha, ill, dst, cgtp_flt_pkt, 15311 ll_multicast); 15312 if (ire == NULL) 15313 continue; 15314 } 15315 } else if (ire->ire_stq != NULL) { 15316 /* fowarding? */ 15317 ip_rput_process_forward(q, mp, ire, ipha, ill, 15318 ll_multicast); 15319 /* ip_rput_process_forward consumed the packet */ 15320 continue; 15321 } 15322 15323 local: 15324 /* 15325 * If the queue in the ire is different to the ingress queue 15326 * then we need to check to see if we can accept the packet. 15327 * Note that for multicast packets and broadcast packets sent 15328 * to a broadcast address which is shared between multiple 15329 * interfaces we should not do this since we just got a random 15330 * broadcast ire. 15331 */ 15332 if ((ire->ire_rfq != q) && (ire->ire_type != IRE_BROADCAST)) { 15333 if ((ire = ip_check_multihome(&ipha->ipha_dst, ire, 15334 ill)) == NULL) { 15335 /* Drop packet */ 15336 BUMP_MIB(ill->ill_ip_mib, 15337 ipIfStatsForwProhibits); 15338 freemsg(mp); 15339 continue; 15340 } 15341 if (ire->ire_rfq != NULL) 15342 q = ire->ire_rfq; 15343 } 15344 15345 switch (ipha->ipha_protocol) { 15346 case IPPROTO_TCP: 15347 ASSERT(first_mp == mp); 15348 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 15349 mp, 0, q, ip_ring)) != NULL) { 15350 if (curr_sqp == NULL) { 15351 curr_sqp = GET_SQUEUE(mp); 15352 ASSERT(cnt == 0); 15353 cnt++; 15354 head = tail = mp; 15355 } else if (curr_sqp == GET_SQUEUE(mp)) { 15356 ASSERT(tail != NULL); 15357 cnt++; 15358 tail->b_next = mp; 15359 tail = mp; 15360 } else { 15361 /* 15362 * A different squeue. Send the 15363 * chain for the previous squeue on 15364 * its way. This shouldn't happen 15365 * often unless interrupt binding 15366 * changes. 15367 */ 15368 IP_STAT(ipst, ip_input_multi_squeue); 15369 squeue_enter_chain(curr_sqp, head, 15370 tail, cnt, SQTAG_IP_INPUT); 15371 curr_sqp = GET_SQUEUE(mp); 15372 head = mp; 15373 tail = mp; 15374 cnt = 1; 15375 } 15376 } 15377 continue; 15378 case IPPROTO_UDP: 15379 ASSERT(first_mp == mp); 15380 ip_udp_input(q, mp, ipha, ire, ill); 15381 continue; 15382 case IPPROTO_SCTP: 15383 ASSERT(first_mp == mp); 15384 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 15385 q, dst); 15386 /* ire has been released by ip_sctp_input */ 15387 ire = NULL; 15388 continue; 15389 default: 15390 ip_proto_input(q, first_mp, ipha, ire, ill, 0); 15391 continue; 15392 } 15393 } 15394 15395 if (ire != NULL) 15396 ire_refrele(ire); 15397 15398 if (head != NULL) 15399 squeue_enter_chain(curr_sqp, head, tail, cnt, SQTAG_IP_INPUT); 15400 15401 /* 15402 * This code is there just to make netperf/ttcp look good. 15403 * 15404 * Its possible that after being in polling mode (and having cleared 15405 * the backlog), squeues have turned the interrupt frequency higher 15406 * to improve latency at the expense of more CPU utilization (less 15407 * packets per interrupts or more number of interrupts). Workloads 15408 * like ttcp/netperf do manage to tickle polling once in a while 15409 * but for the remaining time, stay in higher interrupt mode since 15410 * their packet arrival rate is pretty uniform and this shows up 15411 * as higher CPU utilization. Since people care about CPU utilization 15412 * while running netperf/ttcp, turn the interrupt frequency back to 15413 * normal/default if polling has not been used in ip_poll_normal_ticks. 15414 */ 15415 if (ip_ring != NULL && (ip_ring->rr_poll_state & ILL_POLLING)) { 15416 if (lbolt >= (ip_ring->rr_poll_time + ip_poll_normal_ticks)) { 15417 ip_ring->rr_poll_state &= ~ILL_POLLING; 15418 ip_ring->rr_blank(ip_ring->rr_handle, 15419 ip_ring->rr_normal_blank_time, 15420 ip_ring->rr_normal_pkt_cnt); 15421 } 15422 } 15423 15424 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15425 "ip_input_end: q %p (%S)", q, "end"); 15426 #undef rptr 15427 } 15428 15429 static void 15430 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 15431 t_uscalar_t err) 15432 { 15433 if (dl_err == DL_SYSERR) { 15434 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15435 "%s: %s failed: DL_SYSERR (errno %u)\n", 15436 ill->ill_name, dl_primstr(prim), err); 15437 return; 15438 } 15439 15440 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15441 "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim), 15442 dl_errstr(dl_err)); 15443 } 15444 15445 /* 15446 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 15447 * than DL_UNITDATA_IND messages. If we need to process this message 15448 * exclusively, we call qwriter_ip, in which case we also need to call 15449 * ill_refhold before that, since qwriter_ip does an ill_refrele. 15450 */ 15451 void 15452 ip_rput_dlpi(queue_t *q, mblk_t *mp) 15453 { 15454 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15455 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15456 ill_t *ill = q->q_ptr; 15457 t_uscalar_t prim = dloa->dl_primitive; 15458 t_uscalar_t reqprim = DL_PRIM_INVAL; 15459 15460 ip1dbg(("ip_rput_dlpi")); 15461 15462 /* 15463 * If we received an ACK but didn't send a request for it, then it 15464 * can't be part of any pending operation; discard up-front. 15465 */ 15466 switch (prim) { 15467 case DL_ERROR_ACK: 15468 reqprim = dlea->dl_error_primitive; 15469 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s " 15470 "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim), 15471 reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno, 15472 dlea->dl_unix_errno)); 15473 break; 15474 case DL_OK_ACK: 15475 reqprim = dloa->dl_correct_primitive; 15476 break; 15477 case DL_INFO_ACK: 15478 reqprim = DL_INFO_REQ; 15479 break; 15480 case DL_BIND_ACK: 15481 reqprim = DL_BIND_REQ; 15482 break; 15483 case DL_PHYS_ADDR_ACK: 15484 reqprim = DL_PHYS_ADDR_REQ; 15485 break; 15486 case DL_NOTIFY_ACK: 15487 reqprim = DL_NOTIFY_REQ; 15488 break; 15489 case DL_CONTROL_ACK: 15490 reqprim = DL_CONTROL_REQ; 15491 break; 15492 case DL_CAPABILITY_ACK: 15493 reqprim = DL_CAPABILITY_REQ; 15494 break; 15495 } 15496 15497 if (prim != DL_NOTIFY_IND) { 15498 if (reqprim == DL_PRIM_INVAL || 15499 !ill_dlpi_pending(ill, reqprim)) { 15500 /* Not a DLPI message we support or expected */ 15501 freemsg(mp); 15502 return; 15503 } 15504 ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim), 15505 dl_primstr(reqprim))); 15506 } 15507 15508 switch (reqprim) { 15509 case DL_UNBIND_REQ: 15510 /* 15511 * NOTE: we mark the unbind as complete even if we got a 15512 * DL_ERROR_ACK, since there's not much else we can do. 15513 */ 15514 mutex_enter(&ill->ill_lock); 15515 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15516 cv_signal(&ill->ill_cv); 15517 mutex_exit(&ill->ill_lock); 15518 break; 15519 15520 case DL_ENABMULTI_REQ: 15521 if (prim == DL_OK_ACK) { 15522 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15523 ill->ill_dlpi_multicast_state = IDS_OK; 15524 } 15525 break; 15526 } 15527 15528 /* 15529 * The message is one we're waiting for (or DL_NOTIFY_IND), but we 15530 * need to become writer to continue to process it. Because an 15531 * exclusive operation doesn't complete until replies to all queued 15532 * DLPI messages have been received, we know we're in the middle of an 15533 * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND). 15534 * 15535 * As required by qwriter_ip(), we refhold the ill; it will refrele. 15536 * Since this is on the ill stream we unconditionally bump up the 15537 * refcount without doing ILL_CAN_LOOKUP(). 15538 */ 15539 ill_refhold(ill); 15540 if (prim == DL_NOTIFY_IND) 15541 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 15542 else 15543 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 15544 } 15545 15546 /* 15547 * Handling of DLPI messages that require exclusive access to the ipsq. 15548 * 15549 * Need to do ill_pending_mp_release on ioctl completion, which could 15550 * happen here. (along with mi_copy_done) 15551 */ 15552 /* ARGSUSED */ 15553 static void 15554 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15555 { 15556 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15557 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15558 int err = 0; 15559 ill_t *ill; 15560 ipif_t *ipif = NULL; 15561 mblk_t *mp1 = NULL; 15562 conn_t *connp = NULL; 15563 t_uscalar_t paddrreq; 15564 mblk_t *mp_hw; 15565 boolean_t success; 15566 boolean_t ioctl_aborted = B_FALSE; 15567 boolean_t log = B_TRUE; 15568 ip_stack_t *ipst; 15569 15570 ip1dbg(("ip_rput_dlpi_writer ..")); 15571 ill = (ill_t *)q->q_ptr; 15572 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 15573 15574 ASSERT(IAM_WRITER_ILL(ill)); 15575 15576 ipst = ill->ill_ipst; 15577 15578 /* 15579 * ipsq_pending_mp and ipsq_pending_ipif track each other. i.e. 15580 * both are null or non-null. However we can assert that only 15581 * after grabbing the ipsq_lock. So we don't make any assertion 15582 * here and in other places in the code. 15583 */ 15584 ipif = ipsq->ipsq_pending_ipif; 15585 /* 15586 * The current ioctl could have been aborted by the user and a new 15587 * ioctl to bring up another ill could have started. We could still 15588 * get a response from the driver later. 15589 */ 15590 if (ipif != NULL && ipif->ipif_ill != ill) 15591 ioctl_aborted = B_TRUE; 15592 15593 switch (dloa->dl_primitive) { 15594 case DL_ERROR_ACK: 15595 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 15596 dl_primstr(dlea->dl_error_primitive))); 15597 15598 switch (dlea->dl_error_primitive) { 15599 case DL_DISABMULTI_REQ: 15600 if (!ill->ill_isv6) 15601 ipsq_current_finish(ipsq); 15602 ill_dlpi_done(ill, dlea->dl_error_primitive); 15603 break; 15604 case DL_PROMISCON_REQ: 15605 case DL_PROMISCOFF_REQ: 15606 case DL_UNBIND_REQ: 15607 case DL_ATTACH_REQ: 15608 case DL_INFO_REQ: 15609 ill_dlpi_done(ill, dlea->dl_error_primitive); 15610 break; 15611 case DL_NOTIFY_REQ: 15612 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15613 log = B_FALSE; 15614 break; 15615 case DL_PHYS_ADDR_REQ: 15616 /* 15617 * For IPv6 only, there are two additional 15618 * phys_addr_req's sent to the driver to get the 15619 * IPv6 token and lla. This allows IP to acquire 15620 * the hardware address format for a given interface 15621 * without having built in knowledge of the hardware 15622 * address. ill_phys_addr_pend keeps track of the last 15623 * DL_PAR sent so we know which response we are 15624 * dealing with. ill_dlpi_done will update 15625 * ill_phys_addr_pend when it sends the next req. 15626 * We don't complete the IOCTL until all three DL_PARs 15627 * have been attempted, so set *_len to 0 and break. 15628 */ 15629 paddrreq = ill->ill_phys_addr_pend; 15630 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15631 if (paddrreq == DL_IPV6_TOKEN) { 15632 ill->ill_token_length = 0; 15633 log = B_FALSE; 15634 break; 15635 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 15636 ill->ill_nd_lla_len = 0; 15637 log = B_FALSE; 15638 break; 15639 } 15640 /* 15641 * Something went wrong with the DL_PHYS_ADDR_REQ. 15642 * We presumably have an IOCTL hanging out waiting 15643 * for completion. Find it and complete the IOCTL 15644 * with the error noted. 15645 * However, ill_dl_phys was called on an ill queue 15646 * (from SIOCSLIFNAME), thus conn_pending_ill is not 15647 * set. But the ioctl is known to be pending on ill_wq. 15648 */ 15649 if (!ill->ill_ifname_pending) 15650 break; 15651 ill->ill_ifname_pending = 0; 15652 if (!ioctl_aborted) 15653 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15654 if (mp1 != NULL) { 15655 /* 15656 * This operation (SIOCSLIFNAME) must have 15657 * happened on the ill. Assert there is no conn 15658 */ 15659 ASSERT(connp == NULL); 15660 q = ill->ill_wq; 15661 } 15662 break; 15663 case DL_BIND_REQ: 15664 ill_dlpi_done(ill, DL_BIND_REQ); 15665 if (ill->ill_ifname_pending) 15666 break; 15667 /* 15668 * Something went wrong with the bind. We presumably 15669 * have an IOCTL hanging out waiting for completion. 15670 * Find it, take down the interface that was coming 15671 * up, and complete the IOCTL with the error noted. 15672 */ 15673 if (!ioctl_aborted) 15674 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15675 if (mp1 != NULL) { 15676 /* 15677 * This operation (SIOCSLIFFLAGS) must have 15678 * happened from a conn. 15679 */ 15680 ASSERT(connp != NULL); 15681 q = CONNP_TO_WQ(connp); 15682 if (ill->ill_move_in_progress) { 15683 ILL_CLEAR_MOVE(ill); 15684 } 15685 (void) ipif_down(ipif, NULL, NULL); 15686 /* error is set below the switch */ 15687 } 15688 break; 15689 case DL_ENABMULTI_REQ: 15690 if (!ill->ill_isv6) 15691 ipsq_current_finish(ipsq); 15692 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 15693 15694 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15695 ill->ill_dlpi_multicast_state = IDS_FAILED; 15696 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 15697 ipif_t *ipif; 15698 15699 printf("ip: joining multicasts failed (%d)" 15700 " on %s - will use link layer " 15701 "broadcasts for multicast\n", 15702 dlea->dl_errno, ill->ill_name); 15703 15704 /* 15705 * Set up the multicast mapping alone. 15706 * writer, so ok to access ill->ill_ipif 15707 * without any lock. 15708 */ 15709 ipif = ill->ill_ipif; 15710 mutex_enter(&ill->ill_phyint->phyint_lock); 15711 ill->ill_phyint->phyint_flags |= 15712 PHYI_MULTI_BCAST; 15713 mutex_exit(&ill->ill_phyint->phyint_lock); 15714 15715 if (!ill->ill_isv6) { 15716 (void) ipif_arp_setup_multicast(ipif, 15717 NULL); 15718 } else { 15719 (void) ipif_ndp_setup_multicast(ipif, 15720 NULL); 15721 } 15722 } 15723 freemsg(mp); /* Don't want to pass this up */ 15724 return; 15725 15726 case DL_CAPABILITY_REQ: 15727 case DL_CONTROL_REQ: 15728 ill_dlpi_done(ill, dlea->dl_error_primitive); 15729 ill->ill_dlpi_capab_state = IDS_FAILED; 15730 freemsg(mp); 15731 return; 15732 } 15733 /* 15734 * Note the error for IOCTL completion (mp1 is set when 15735 * ready to complete ioctl). If ill_ifname_pending_err is 15736 * set, an error occured during plumbing (ill_ifname_pending), 15737 * so we want to report that error. 15738 * 15739 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 15740 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 15741 * expected to get errack'd if the driver doesn't support 15742 * these flags (e.g. ethernet). log will be set to B_FALSE 15743 * if these error conditions are encountered. 15744 */ 15745 if (mp1 != NULL) { 15746 if (ill->ill_ifname_pending_err != 0) { 15747 err = ill->ill_ifname_pending_err; 15748 ill->ill_ifname_pending_err = 0; 15749 } else { 15750 err = dlea->dl_unix_errno ? 15751 dlea->dl_unix_errno : ENXIO; 15752 } 15753 /* 15754 * If we're plumbing an interface and an error hasn't already 15755 * been saved, set ill_ifname_pending_err to the error passed 15756 * up. Ignore the error if log is B_FALSE (see comment above). 15757 */ 15758 } else if (log && ill->ill_ifname_pending && 15759 ill->ill_ifname_pending_err == 0) { 15760 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 15761 dlea->dl_unix_errno : ENXIO; 15762 } 15763 15764 if (log) 15765 ip_dlpi_error(ill, dlea->dl_error_primitive, 15766 dlea->dl_errno, dlea->dl_unix_errno); 15767 break; 15768 case DL_CAPABILITY_ACK: 15769 /* Call a routine to handle this one. */ 15770 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 15771 ill_capability_ack(ill, mp); 15772 15773 /* 15774 * If the ack is due to renegotiation, we will need to send 15775 * a new CAPABILITY_REQ to start the renegotiation. 15776 */ 15777 if (ill->ill_capab_reneg) { 15778 ill->ill_capab_reneg = B_FALSE; 15779 ill_capability_probe(ill); 15780 } 15781 break; 15782 case DL_CONTROL_ACK: 15783 /* We treat all of these as "fire and forget" */ 15784 ill_dlpi_done(ill, DL_CONTROL_REQ); 15785 break; 15786 case DL_INFO_ACK: 15787 /* Call a routine to handle this one. */ 15788 ill_dlpi_done(ill, DL_INFO_REQ); 15789 ip_ll_subnet_defaults(ill, mp); 15790 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 15791 return; 15792 case DL_BIND_ACK: 15793 /* 15794 * We should have an IOCTL waiting on this unless 15795 * sent by ill_dl_phys, in which case just return 15796 */ 15797 ill_dlpi_done(ill, DL_BIND_REQ); 15798 if (ill->ill_ifname_pending) 15799 break; 15800 15801 if (!ioctl_aborted) 15802 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15803 if (mp1 == NULL) 15804 break; 15805 /* 15806 * Because mp1 was added by ill_dl_up(), and it always 15807 * passes a valid connp, connp must be valid here. 15808 */ 15809 ASSERT(connp != NULL); 15810 q = CONNP_TO_WQ(connp); 15811 15812 /* 15813 * We are exclusive. So nothing can change even after 15814 * we get the pending mp. If need be we can put it back 15815 * and restart, as in calling ipif_arp_up() below. 15816 */ 15817 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 15818 15819 mutex_enter(&ill->ill_lock); 15820 ill->ill_dl_up = 1; 15821 (void) ill_hook_event_create(ill, 0, NE_UP, NULL, 0); 15822 mutex_exit(&ill->ill_lock); 15823 15824 /* 15825 * Now bring up the resolver; when that is complete, we'll 15826 * create IREs. Note that we intentionally mirror what 15827 * ipif_up() would have done, because we got here by way of 15828 * ill_dl_up(), which stopped ipif_up()'s processing. 15829 */ 15830 if (ill->ill_isv6) { 15831 /* 15832 * v6 interfaces. 15833 * Unlike ARP which has to do another bind 15834 * and attach, once we get here we are 15835 * done with NDP. Except in the case of 15836 * ILLF_XRESOLV, in which case we send an 15837 * AR_INTERFACE_UP to the external resolver. 15838 * If all goes well, the ioctl will complete 15839 * in ip_rput(). If there's an error, we 15840 * complete it here. 15841 */ 15842 if ((err = ipif_ndp_up(ipif)) == 0) { 15843 if (ill->ill_flags & ILLF_XRESOLV) { 15844 mutex_enter(&connp->conn_lock); 15845 mutex_enter(&ill->ill_lock); 15846 success = ipsq_pending_mp_add( 15847 connp, ipif, q, mp1, 0); 15848 mutex_exit(&ill->ill_lock); 15849 mutex_exit(&connp->conn_lock); 15850 if (success) { 15851 err = ipif_resolver_up(ipif, 15852 Res_act_initial); 15853 if (err == EINPROGRESS) { 15854 freemsg(mp); 15855 return; 15856 } 15857 ASSERT(err != 0); 15858 mp1 = ipsq_pending_mp_get(ipsq, 15859 &connp); 15860 ASSERT(mp1 != NULL); 15861 } else { 15862 /* conn has started closing */ 15863 err = EINTR; 15864 } 15865 } else { /* Non XRESOLV interface */ 15866 (void) ipif_resolver_up(ipif, 15867 Res_act_initial); 15868 err = ipif_up_done_v6(ipif); 15869 } 15870 } 15871 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 15872 /* 15873 * ARP and other v4 external resolvers. 15874 * Leave the pending mblk intact so that 15875 * the ioctl completes in ip_rput(). 15876 */ 15877 mutex_enter(&connp->conn_lock); 15878 mutex_enter(&ill->ill_lock); 15879 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 15880 mutex_exit(&ill->ill_lock); 15881 mutex_exit(&connp->conn_lock); 15882 if (success) { 15883 err = ipif_resolver_up(ipif, Res_act_initial); 15884 if (err == EINPROGRESS) { 15885 freemsg(mp); 15886 return; 15887 } 15888 ASSERT(err != 0); 15889 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15890 } else { 15891 /* The conn has started closing */ 15892 err = EINTR; 15893 } 15894 } else { 15895 /* 15896 * This one is complete. Reply to pending ioctl. 15897 */ 15898 (void) ipif_resolver_up(ipif, Res_act_initial); 15899 err = ipif_up_done(ipif); 15900 } 15901 15902 if ((err == 0) && (ill->ill_up_ipifs)) { 15903 err = ill_up_ipifs(ill, q, mp1); 15904 if (err == EINPROGRESS) { 15905 freemsg(mp); 15906 return; 15907 } 15908 } 15909 15910 if (ill->ill_up_ipifs) { 15911 ill_group_cleanup(ill); 15912 } 15913 15914 break; 15915 case DL_NOTIFY_IND: { 15916 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 15917 ire_t *ire; 15918 boolean_t need_ire_walk_v4 = B_FALSE; 15919 boolean_t need_ire_walk_v6 = B_FALSE; 15920 15921 switch (notify->dl_notification) { 15922 case DL_NOTE_PHYS_ADDR: 15923 err = ill_set_phys_addr(ill, mp); 15924 break; 15925 15926 case DL_NOTE_FASTPATH_FLUSH: 15927 ill_fastpath_flush(ill); 15928 break; 15929 15930 case DL_NOTE_SDU_SIZE: 15931 /* 15932 * Change the MTU size of the interface, of all 15933 * attached ipif's, and of all relevant ire's. The 15934 * new value's a uint32_t at notify->dl_data. 15935 * Mtu change Vs. new ire creation - protocol below. 15936 * 15937 * a Mark the ipif as IPIF_CHANGING. 15938 * b Set the new mtu in the ipif. 15939 * c Change the ire_max_frag on all affected ires 15940 * d Unmark the IPIF_CHANGING 15941 * 15942 * To see how the protocol works, assume an interface 15943 * route is also being added simultaneously by 15944 * ip_rt_add and let 'ipif' be the ipif referenced by 15945 * the ire. If the ire is created before step a, 15946 * it will be cleaned up by step c. If the ire is 15947 * created after step d, it will see the new value of 15948 * ipif_mtu. Any attempt to create the ire between 15949 * steps a to d will fail because of the IPIF_CHANGING 15950 * flag. Note that ire_create() is passed a pointer to 15951 * the ipif_mtu, and not the value. During ire_add 15952 * under the bucket lock, the ire_max_frag of the 15953 * new ire being created is set from the ipif/ire from 15954 * which it is being derived. 15955 */ 15956 mutex_enter(&ill->ill_lock); 15957 ill->ill_max_frag = (uint_t)notify->dl_data; 15958 15959 /* 15960 * If an SIOCSLIFLNKINFO has changed the ill_max_mtu 15961 * leave it alone 15962 */ 15963 if (ill->ill_mtu_userspecified) { 15964 mutex_exit(&ill->ill_lock); 15965 break; 15966 } 15967 ill->ill_max_mtu = ill->ill_max_frag; 15968 if (ill->ill_isv6) { 15969 if (ill->ill_max_mtu < IPV6_MIN_MTU) 15970 ill->ill_max_mtu = IPV6_MIN_MTU; 15971 } else { 15972 if (ill->ill_max_mtu < IP_MIN_MTU) 15973 ill->ill_max_mtu = IP_MIN_MTU; 15974 } 15975 for (ipif = ill->ill_ipif; ipif != NULL; 15976 ipif = ipif->ipif_next) { 15977 /* 15978 * Don't override the mtu if the user 15979 * has explicitly set it. 15980 */ 15981 if (ipif->ipif_flags & IPIF_FIXEDMTU) 15982 continue; 15983 ipif->ipif_mtu = (uint_t)notify->dl_data; 15984 if (ipif->ipif_isv6) 15985 ire = ipif_to_ire_v6(ipif); 15986 else 15987 ire = ipif_to_ire(ipif); 15988 if (ire != NULL) { 15989 ire->ire_max_frag = ipif->ipif_mtu; 15990 ire_refrele(ire); 15991 } 15992 if (ipif->ipif_flags & IPIF_UP) { 15993 if (ill->ill_isv6) 15994 need_ire_walk_v6 = B_TRUE; 15995 else 15996 need_ire_walk_v4 = B_TRUE; 15997 } 15998 } 15999 mutex_exit(&ill->ill_lock); 16000 if (need_ire_walk_v4) 16001 ire_walk_v4(ill_mtu_change, (char *)ill, 16002 ALL_ZONES, ipst); 16003 if (need_ire_walk_v6) 16004 ire_walk_v6(ill_mtu_change, (char *)ill, 16005 ALL_ZONES, ipst); 16006 break; 16007 case DL_NOTE_LINK_UP: 16008 case DL_NOTE_LINK_DOWN: { 16009 /* 16010 * We are writer. ill / phyint / ipsq assocs stable. 16011 * The RUNNING flag reflects the state of the link. 16012 */ 16013 phyint_t *phyint = ill->ill_phyint; 16014 uint64_t new_phyint_flags; 16015 boolean_t changed = B_FALSE; 16016 boolean_t went_up; 16017 16018 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 16019 mutex_enter(&phyint->phyint_lock); 16020 new_phyint_flags = went_up ? 16021 phyint->phyint_flags | PHYI_RUNNING : 16022 phyint->phyint_flags & ~PHYI_RUNNING; 16023 if (new_phyint_flags != phyint->phyint_flags) { 16024 phyint->phyint_flags = new_phyint_flags; 16025 changed = B_TRUE; 16026 } 16027 mutex_exit(&phyint->phyint_lock); 16028 /* 16029 * ill_restart_dad handles the DAD restart and routing 16030 * socket notification logic. 16031 */ 16032 if (changed) { 16033 ill_restart_dad(phyint->phyint_illv4, went_up); 16034 ill_restart_dad(phyint->phyint_illv6, went_up); 16035 } 16036 break; 16037 } 16038 case DL_NOTE_PROMISC_ON_PHYS: 16039 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16040 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 16041 mutex_enter(&ill->ill_lock); 16042 ill->ill_promisc_on_phys = B_TRUE; 16043 mutex_exit(&ill->ill_lock); 16044 break; 16045 case DL_NOTE_PROMISC_OFF_PHYS: 16046 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16047 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 16048 mutex_enter(&ill->ill_lock); 16049 ill->ill_promisc_on_phys = B_FALSE; 16050 mutex_exit(&ill->ill_lock); 16051 break; 16052 case DL_NOTE_CAPAB_RENEG: 16053 /* 16054 * Something changed on the driver side. 16055 * It wants us to renegotiate the capabilities 16056 * on this ill. One possible cause is the aggregation 16057 * interface under us where a port got added or 16058 * went away. 16059 * 16060 * If the capability negotiation is already done 16061 * or is in progress, reset the capabilities and 16062 * mark the ill's ill_capab_reneg to be B_TRUE, 16063 * so that when the ack comes back, we can start 16064 * the renegotiation process. 16065 * 16066 * Note that if ill_capab_reneg is already B_TRUE 16067 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case), 16068 * the capability resetting request has been sent 16069 * and the renegotiation has not been started yet; 16070 * nothing needs to be done in this case. 16071 */ 16072 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN) { 16073 ill_capability_reset(ill); 16074 ill->ill_capab_reneg = B_TRUE; 16075 } 16076 break; 16077 default: 16078 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 16079 "type 0x%x for DL_NOTIFY_IND\n", 16080 notify->dl_notification)); 16081 break; 16082 } 16083 16084 /* 16085 * As this is an asynchronous operation, we 16086 * should not call ill_dlpi_done 16087 */ 16088 break; 16089 } 16090 case DL_NOTIFY_ACK: { 16091 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 16092 16093 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 16094 ill->ill_note_link = 1; 16095 ill_dlpi_done(ill, DL_NOTIFY_REQ); 16096 break; 16097 } 16098 case DL_PHYS_ADDR_ACK: { 16099 /* 16100 * As part of plumbing the interface via SIOCSLIFNAME, 16101 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 16102 * whose answers we receive here. As each answer is received, 16103 * we call ill_dlpi_done() to dispatch the next request as 16104 * we're processing the current one. Once all answers have 16105 * been received, we use ipsq_pending_mp_get() to dequeue the 16106 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 16107 * is invoked from an ill queue, conn_oper_pending_ill is not 16108 * available, but we know the ioctl is pending on ill_wq.) 16109 */ 16110 uint_t paddrlen, paddroff; 16111 16112 paddrreq = ill->ill_phys_addr_pend; 16113 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 16114 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 16115 16116 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 16117 if (paddrreq == DL_IPV6_TOKEN) { 16118 /* 16119 * bcopy to low-order bits of ill_token 16120 * 16121 * XXX Temporary hack - currently, all known tokens 16122 * are 64 bits, so I'll cheat for the moment. 16123 */ 16124 bcopy(mp->b_rptr + paddroff, 16125 &ill->ill_token.s6_addr32[2], paddrlen); 16126 ill->ill_token_length = paddrlen; 16127 break; 16128 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 16129 ASSERT(ill->ill_nd_lla_mp == NULL); 16130 ill_set_ndmp(ill, mp, paddroff, paddrlen); 16131 mp = NULL; 16132 break; 16133 } 16134 16135 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 16136 ASSERT(ill->ill_phys_addr_mp == NULL); 16137 if (!ill->ill_ifname_pending) 16138 break; 16139 ill->ill_ifname_pending = 0; 16140 if (!ioctl_aborted) 16141 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16142 if (mp1 != NULL) { 16143 ASSERT(connp == NULL); 16144 q = ill->ill_wq; 16145 } 16146 /* 16147 * If any error acks received during the plumbing sequence, 16148 * ill_ifname_pending_err will be set. Break out and send up 16149 * the error to the pending ioctl. 16150 */ 16151 if (ill->ill_ifname_pending_err != 0) { 16152 err = ill->ill_ifname_pending_err; 16153 ill->ill_ifname_pending_err = 0; 16154 break; 16155 } 16156 16157 ill->ill_phys_addr_mp = mp; 16158 ill->ill_phys_addr = mp->b_rptr + paddroff; 16159 mp = NULL; 16160 16161 /* 16162 * If paddrlen is zero, the DLPI provider doesn't support 16163 * physical addresses. The other two tests were historical 16164 * workarounds for bugs in our former PPP implementation, but 16165 * now other things have grown dependencies on them -- e.g., 16166 * the tun module specifies a dl_addr_length of zero in its 16167 * DL_BIND_ACK, but then specifies an incorrect value in its 16168 * DL_PHYS_ADDR_ACK. These bogus checks need to be removed, 16169 * but only after careful testing ensures that all dependent 16170 * broken DLPI providers have been fixed. 16171 */ 16172 if (paddrlen == 0 || ill->ill_phys_addr_length == 0 || 16173 ill->ill_phys_addr_length == IP_ADDR_LEN) { 16174 ill->ill_phys_addr = NULL; 16175 } else if (paddrlen != ill->ill_phys_addr_length) { 16176 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 16177 paddrlen, ill->ill_phys_addr_length)); 16178 err = EINVAL; 16179 break; 16180 } 16181 16182 if (ill->ill_nd_lla_mp == NULL) { 16183 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 16184 err = ENOMEM; 16185 break; 16186 } 16187 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 16188 } 16189 16190 /* 16191 * Set the interface token. If the zeroth interface address 16192 * is unspecified, then set it to the link local address. 16193 */ 16194 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 16195 (void) ill_setdefaulttoken(ill); 16196 16197 ASSERT(ill->ill_ipif->ipif_id == 0); 16198 if (ipif != NULL && 16199 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 16200 (void) ipif_setlinklocal(ipif); 16201 } 16202 break; 16203 } 16204 case DL_OK_ACK: 16205 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 16206 dl_primstr((int)dloa->dl_correct_primitive), 16207 dloa->dl_correct_primitive)); 16208 switch (dloa->dl_correct_primitive) { 16209 case DL_ENABMULTI_REQ: 16210 case DL_DISABMULTI_REQ: 16211 if (!ill->ill_isv6) 16212 ipsq_current_finish(ipsq); 16213 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16214 break; 16215 case DL_PROMISCON_REQ: 16216 case DL_PROMISCOFF_REQ: 16217 case DL_UNBIND_REQ: 16218 case DL_ATTACH_REQ: 16219 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16220 break; 16221 } 16222 break; 16223 default: 16224 break; 16225 } 16226 16227 freemsg(mp); 16228 if (mp1 != NULL) { 16229 /* 16230 * The operation must complete without EINPROGRESS 16231 * since ipsq_pending_mp_get() has removed the mblk 16232 * from ipsq_pending_mp. Otherwise, the operation 16233 * will be stuck forever in the ipsq. 16234 */ 16235 ASSERT(err != EINPROGRESS); 16236 16237 switch (ipsq->ipsq_current_ioctl) { 16238 case 0: 16239 ipsq_current_finish(ipsq); 16240 break; 16241 16242 case SIOCLIFADDIF: 16243 case SIOCSLIFNAME: 16244 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16245 break; 16246 16247 default: 16248 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16249 break; 16250 } 16251 } 16252 } 16253 16254 /* 16255 * ip_rput_other is called by ip_rput to handle messages modifying the global 16256 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 16257 */ 16258 /* ARGSUSED */ 16259 void 16260 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 16261 { 16262 ill_t *ill; 16263 struct iocblk *iocp; 16264 mblk_t *mp1; 16265 conn_t *connp = NULL; 16266 16267 ip1dbg(("ip_rput_other ")); 16268 ill = (ill_t *)q->q_ptr; 16269 /* 16270 * This routine is not a writer in the case of SIOCGTUNPARAM 16271 * in which case ipsq is NULL. 16272 */ 16273 if (ipsq != NULL) { 16274 ASSERT(IAM_WRITER_IPSQ(ipsq)); 16275 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 16276 } 16277 16278 switch (mp->b_datap->db_type) { 16279 case M_ERROR: 16280 case M_HANGUP: 16281 /* 16282 * The device has a problem. We force the ILL down. It can 16283 * be brought up again manually using SIOCSIFFLAGS (via 16284 * ifconfig or equivalent). 16285 */ 16286 ASSERT(ipsq != NULL); 16287 if (mp->b_rptr < mp->b_wptr) 16288 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 16289 if (ill->ill_error == 0) 16290 ill->ill_error = ENXIO; 16291 if (!ill_down_start(q, mp)) 16292 return; 16293 ipif_all_down_tail(ipsq, q, mp, NULL); 16294 break; 16295 case M_IOCACK: 16296 iocp = (struct iocblk *)mp->b_rptr; 16297 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 16298 switch (iocp->ioc_cmd) { 16299 case SIOCSTUNPARAM: 16300 case OSIOCSTUNPARAM: 16301 ASSERT(ipsq != NULL); 16302 /* 16303 * Finish socket ioctl passed through to tun. 16304 * We should have an IOCTL waiting on this. 16305 */ 16306 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16307 if (ill->ill_isv6) { 16308 struct iftun_req *ta; 16309 16310 /* 16311 * if a source or destination is 16312 * being set, try and set the link 16313 * local address for the tunnel 16314 */ 16315 ta = (struct iftun_req *)mp->b_cont-> 16316 b_cont->b_rptr; 16317 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 16318 ipif_set_tun_llink(ill, ta); 16319 } 16320 16321 } 16322 if (mp1 != NULL) { 16323 /* 16324 * Now copy back the b_next/b_prev used by 16325 * mi code for the mi_copy* functions. 16326 * See ip_sioctl_tunparam() for the reason. 16327 * Also protect against missing b_cont. 16328 */ 16329 if (mp->b_cont != NULL) { 16330 mp->b_cont->b_next = 16331 mp1->b_cont->b_next; 16332 mp->b_cont->b_prev = 16333 mp1->b_cont->b_prev; 16334 } 16335 inet_freemsg(mp1); 16336 ASSERT(connp != NULL); 16337 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16338 iocp->ioc_error, NO_COPYOUT, ipsq); 16339 } else { 16340 ASSERT(connp == NULL); 16341 putnext(q, mp); 16342 } 16343 break; 16344 case SIOCGTUNPARAM: 16345 case OSIOCGTUNPARAM: 16346 /* 16347 * This is really M_IOCDATA from the tunnel driver. 16348 * convert back and complete the ioctl. 16349 * We should have an IOCTL waiting on this. 16350 */ 16351 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 16352 if (mp1) { 16353 /* 16354 * Now copy back the b_next/b_prev used by 16355 * mi code for the mi_copy* functions. 16356 * See ip_sioctl_tunparam() for the reason. 16357 * Also protect against missing b_cont. 16358 */ 16359 if (mp->b_cont != NULL) { 16360 mp->b_cont->b_next = 16361 mp1->b_cont->b_next; 16362 mp->b_cont->b_prev = 16363 mp1->b_cont->b_prev; 16364 } 16365 inet_freemsg(mp1); 16366 if (iocp->ioc_error == 0) 16367 mp->b_datap->db_type = M_IOCDATA; 16368 ASSERT(connp != NULL); 16369 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16370 iocp->ioc_error, COPYOUT, NULL); 16371 } else { 16372 ASSERT(connp == NULL); 16373 putnext(q, mp); 16374 } 16375 break; 16376 default: 16377 break; 16378 } 16379 break; 16380 case M_IOCNAK: 16381 iocp = (struct iocblk *)mp->b_rptr; 16382 16383 switch (iocp->ioc_cmd) { 16384 int mode; 16385 16386 case DL_IOC_HDR_INFO: 16387 /* 16388 * If this was the first attempt turn of the 16389 * fastpath probing. 16390 */ 16391 mutex_enter(&ill->ill_lock); 16392 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 16393 ill->ill_dlpi_fastpath_state = IDS_FAILED; 16394 mutex_exit(&ill->ill_lock); 16395 ill_fastpath_nack(ill); 16396 ip1dbg(("ip_rput: DLPI fastpath off on " 16397 "interface %s\n", 16398 ill->ill_name)); 16399 } else { 16400 mutex_exit(&ill->ill_lock); 16401 } 16402 freemsg(mp); 16403 break; 16404 case SIOCSTUNPARAM: 16405 case OSIOCSTUNPARAM: 16406 ASSERT(ipsq != NULL); 16407 /* 16408 * Finish socket ioctl passed through to tun 16409 * We should have an IOCTL waiting on this. 16410 */ 16411 /* FALLTHRU */ 16412 case SIOCGTUNPARAM: 16413 case OSIOCGTUNPARAM: 16414 /* 16415 * This is really M_IOCDATA from the tunnel driver. 16416 * convert back and complete the ioctl. 16417 * We should have an IOCTL waiting on this. 16418 */ 16419 if (iocp->ioc_cmd == SIOCGTUNPARAM || 16420 iocp->ioc_cmd == OSIOCGTUNPARAM) { 16421 mp1 = ill_pending_mp_get(ill, &connp, 16422 iocp->ioc_id); 16423 mode = COPYOUT; 16424 ipsq = NULL; 16425 } else { 16426 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16427 mode = NO_COPYOUT; 16428 } 16429 if (mp1 != NULL) { 16430 /* 16431 * Now copy back the b_next/b_prev used by 16432 * mi code for the mi_copy* functions. 16433 * See ip_sioctl_tunparam() for the reason. 16434 * Also protect against missing b_cont. 16435 */ 16436 if (mp->b_cont != NULL) { 16437 mp->b_cont->b_next = 16438 mp1->b_cont->b_next; 16439 mp->b_cont->b_prev = 16440 mp1->b_cont->b_prev; 16441 } 16442 inet_freemsg(mp1); 16443 if (iocp->ioc_error == 0) 16444 iocp->ioc_error = EINVAL; 16445 ASSERT(connp != NULL); 16446 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16447 iocp->ioc_error, mode, ipsq); 16448 } else { 16449 ASSERT(connp == NULL); 16450 putnext(q, mp); 16451 } 16452 break; 16453 default: 16454 break; 16455 } 16456 default: 16457 break; 16458 } 16459 } 16460 16461 /* 16462 * NOTE : This function does not ire_refrele the ire argument passed in. 16463 * 16464 * IPQoS notes 16465 * IP policy is invoked twice for a forwarded packet, once on the read side 16466 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 16467 * enabled. An additional parameter, in_ill, has been added for this purpose. 16468 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 16469 * because ip_mroute drops this information. 16470 * 16471 */ 16472 void 16473 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 16474 { 16475 uint32_t old_pkt_len; 16476 uint32_t pkt_len; 16477 queue_t *q; 16478 uint32_t sum; 16479 #define rptr ((uchar_t *)ipha) 16480 uint32_t max_frag; 16481 uint32_t ill_index; 16482 ill_t *out_ill; 16483 mib2_ipIfStatsEntry_t *mibptr; 16484 ip_stack_t *ipst = ((ill_t *)(ire->ire_stq->q_ptr))->ill_ipst; 16485 16486 /* Get the ill_index of the incoming ILL */ 16487 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 16488 mibptr = (in_ill != NULL) ? in_ill->ill_ip_mib : &ipst->ips_ip_mib; 16489 16490 /* Initiate Read side IPPF processing */ 16491 if (IPP_ENABLED(IPP_FWD_IN, ipst)) { 16492 ip_process(IPP_FWD_IN, &mp, ill_index); 16493 if (mp == NULL) { 16494 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 16495 "during IPPF processing\n")); 16496 return; 16497 } 16498 } 16499 16500 /* Adjust the checksum to reflect the ttl decrement. */ 16501 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 16502 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 16503 16504 if (ipha->ipha_ttl-- <= 1) { 16505 if (ip_csum_hdr(ipha)) { 16506 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16507 goto drop_pkt; 16508 } 16509 /* 16510 * Note: ire_stq this will be NULL for multicast 16511 * datagrams using the long path through arp (the IRE 16512 * is not an IRE_CACHE). This should not cause 16513 * problems since we don't generate ICMP errors for 16514 * multicast packets. 16515 */ 16516 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16517 q = ire->ire_stq; 16518 if (q != NULL) { 16519 /* Sent by forwarding path, and router is global zone */ 16520 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED, 16521 GLOBAL_ZONEID, ipst); 16522 } else 16523 freemsg(mp); 16524 return; 16525 } 16526 16527 /* 16528 * Don't forward if the interface is down 16529 */ 16530 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 16531 BUMP_MIB(mibptr, ipIfStatsInDiscards); 16532 ip2dbg(("ip_rput_forward:interface is down\n")); 16533 goto drop_pkt; 16534 } 16535 16536 /* Get the ill_index of the outgoing ILL */ 16537 out_ill = ire_to_ill(ire); 16538 ill_index = out_ill->ill_phyint->phyint_ifindex; 16539 16540 DTRACE_PROBE4(ip4__forwarding__start, 16541 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16542 16543 FW_HOOKS(ipst->ips_ip4_forwarding_event, 16544 ipst->ips_ipv4firewall_forwarding, 16545 in_ill, out_ill, ipha, mp, mp, 0, ipst); 16546 16547 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 16548 16549 if (mp == NULL) 16550 return; 16551 old_pkt_len = pkt_len = ntohs(ipha->ipha_length); 16552 16553 if (is_system_labeled()) { 16554 mblk_t *mp1; 16555 16556 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 16557 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16558 goto drop_pkt; 16559 } 16560 /* Size may have changed */ 16561 mp = mp1; 16562 ipha = (ipha_t *)mp->b_rptr; 16563 pkt_len = ntohs(ipha->ipha_length); 16564 } 16565 16566 /* Check if there are options to update */ 16567 if (!IS_SIMPLE_IPH(ipha)) { 16568 if (ip_csum_hdr(ipha)) { 16569 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16570 goto drop_pkt; 16571 } 16572 if (ip_rput_forward_options(mp, ipha, ire, ipst)) { 16573 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16574 return; 16575 } 16576 16577 ipha->ipha_hdr_checksum = 0; 16578 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 16579 } 16580 max_frag = ire->ire_max_frag; 16581 if (pkt_len > max_frag) { 16582 /* 16583 * It needs fragging on its way out. We haven't 16584 * verified the header checksum yet. Since we 16585 * are going to put a surely good checksum in the 16586 * outgoing header, we have to make sure that it 16587 * was good coming in. 16588 */ 16589 if (ip_csum_hdr(ipha)) { 16590 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16591 goto drop_pkt; 16592 } 16593 /* Initiate Write side IPPF processing */ 16594 if (IPP_ENABLED(IPP_FWD_OUT, ipst)) { 16595 ip_process(IPP_FWD_OUT, &mp, ill_index); 16596 if (mp == NULL) { 16597 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 16598 " during IPPF processing\n")); 16599 return; 16600 } 16601 } 16602 /* 16603 * Handle labeled packet resizing. 16604 * 16605 * If we have added a label, inform ip_wput_frag() of its 16606 * effect on the MTU for ICMP messages. 16607 */ 16608 if (pkt_len > old_pkt_len) { 16609 uint32_t secopt_size; 16610 16611 secopt_size = pkt_len - old_pkt_len; 16612 if (secopt_size < max_frag) 16613 max_frag -= secopt_size; 16614 } 16615 16616 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID, ipst); 16617 ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n")); 16618 return; 16619 } 16620 16621 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 16622 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16623 FW_HOOKS(ipst->ips_ip4_physical_out_event, 16624 ipst->ips_ipv4firewall_physical_out, 16625 NULL, out_ill, ipha, mp, mp, 0, ipst); 16626 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 16627 if (mp == NULL) 16628 return; 16629 16630 mp->b_prev = (mblk_t *)IPP_FWD_OUT; 16631 ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n")); 16632 (void) ip_xmit_v4(mp, ire, NULL, B_FALSE); 16633 /* ip_xmit_v4 always consumes the packet */ 16634 return; 16635 16636 drop_pkt:; 16637 ip1dbg(("ip_rput_forward: drop pkt\n")); 16638 freemsg(mp); 16639 #undef rptr 16640 } 16641 16642 void 16643 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 16644 { 16645 ire_t *ire; 16646 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16647 16648 ASSERT(!ipif->ipif_isv6); 16649 /* 16650 * Find an IRE which matches the destination and the outgoing 16651 * queue in the cache table. All we need is an IRE_CACHE which 16652 * is pointing at ipif->ipif_ill. If it is part of some ill group, 16653 * then it is enough to have some IRE_CACHE in the group. 16654 */ 16655 if (ipif->ipif_flags & IPIF_POINTOPOINT) 16656 dst = ipif->ipif_pp_dst_addr; 16657 16658 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, MBLK_GETLABEL(mp), 16659 MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR, ipst); 16660 if (ire == NULL) { 16661 /* 16662 * Mark this packet to make it be delivered to 16663 * ip_rput_forward after the new ire has been 16664 * created. 16665 */ 16666 mp->b_prev = NULL; 16667 mp->b_next = mp; 16668 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 16669 NULL, 0, GLOBAL_ZONEID, &zero_info); 16670 } else { 16671 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 16672 IRE_REFRELE(ire); 16673 } 16674 } 16675 16676 /* Update any source route, record route or timestamp options */ 16677 static int 16678 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire, ip_stack_t *ipst) 16679 { 16680 ipoptp_t opts; 16681 uchar_t *opt; 16682 uint8_t optval; 16683 uint8_t optlen; 16684 ipaddr_t dst; 16685 uint32_t ts; 16686 ire_t *dst_ire = NULL; 16687 ire_t *tmp_ire = NULL; 16688 timestruc_t now; 16689 16690 ip2dbg(("ip_rput_forward_options\n")); 16691 dst = ipha->ipha_dst; 16692 for (optval = ipoptp_first(&opts, ipha); 16693 optval != IPOPT_EOL; 16694 optval = ipoptp_next(&opts)) { 16695 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 16696 opt = opts.ipoptp_cur; 16697 optlen = opts.ipoptp_len; 16698 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 16699 optval, opts.ipoptp_len)); 16700 switch (optval) { 16701 uint32_t off; 16702 case IPOPT_SSRR: 16703 case IPOPT_LSRR: 16704 /* Check if adminstratively disabled */ 16705 if (!ipst->ips_ip_forward_src_routed) { 16706 if (ire->ire_stq != NULL) { 16707 /* 16708 * Sent by forwarding path, and router 16709 * is global zone 16710 */ 16711 icmp_unreachable(ire->ire_stq, mp, 16712 ICMP_SOURCE_ROUTE_FAILED, 16713 GLOBAL_ZONEID, ipst); 16714 } else { 16715 ip0dbg(("ip_rput_forward_options: " 16716 "unable to send unreach\n")); 16717 freemsg(mp); 16718 } 16719 return (-1); 16720 } 16721 16722 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16723 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16724 if (dst_ire == NULL) { 16725 /* 16726 * Must be partial since ip_rput_options 16727 * checked for strict. 16728 */ 16729 break; 16730 } 16731 off = opt[IPOPT_OFFSET]; 16732 off--; 16733 redo_srr: 16734 if (optlen < IP_ADDR_LEN || 16735 off > optlen - IP_ADDR_LEN) { 16736 /* End of source route */ 16737 ip1dbg(( 16738 "ip_rput_forward_options: end of SR\n")); 16739 ire_refrele(dst_ire); 16740 break; 16741 } 16742 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16743 bcopy(&ire->ire_src_addr, (char *)opt + off, 16744 IP_ADDR_LEN); 16745 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 16746 ntohl(dst))); 16747 16748 /* 16749 * Check if our address is present more than 16750 * once as consecutive hops in source route. 16751 */ 16752 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16753 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16754 if (tmp_ire != NULL) { 16755 ire_refrele(tmp_ire); 16756 off += IP_ADDR_LEN; 16757 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16758 goto redo_srr; 16759 } 16760 ipha->ipha_dst = dst; 16761 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16762 ire_refrele(dst_ire); 16763 break; 16764 case IPOPT_RR: 16765 off = opt[IPOPT_OFFSET]; 16766 off--; 16767 if (optlen < IP_ADDR_LEN || 16768 off > optlen - IP_ADDR_LEN) { 16769 /* No more room - ignore */ 16770 ip1dbg(( 16771 "ip_rput_forward_options: end of RR\n")); 16772 break; 16773 } 16774 bcopy(&ire->ire_src_addr, (char *)opt + off, 16775 IP_ADDR_LEN); 16776 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16777 break; 16778 case IPOPT_TS: 16779 /* Insert timestamp if there is room */ 16780 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16781 case IPOPT_TS_TSONLY: 16782 off = IPOPT_TS_TIMELEN; 16783 break; 16784 case IPOPT_TS_PRESPEC: 16785 case IPOPT_TS_PRESPEC_RFC791: 16786 /* Verify that the address matched */ 16787 off = opt[IPOPT_OFFSET] - 1; 16788 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16789 dst_ire = ire_ctable_lookup(dst, 0, 16790 IRE_LOCAL, NULL, ALL_ZONES, NULL, 16791 MATCH_IRE_TYPE, ipst); 16792 if (dst_ire == NULL) { 16793 /* Not for us */ 16794 break; 16795 } 16796 ire_refrele(dst_ire); 16797 /* FALLTHRU */ 16798 case IPOPT_TS_TSANDADDR: 16799 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16800 break; 16801 default: 16802 /* 16803 * ip_*put_options should have already 16804 * dropped this packet. 16805 */ 16806 cmn_err(CE_PANIC, "ip_rput_forward_options: " 16807 "unknown IT - bug in ip_rput_options?\n"); 16808 return (0); /* Keep "lint" happy */ 16809 } 16810 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 16811 /* Increase overflow counter */ 16812 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 16813 opt[IPOPT_POS_OV_FLG] = 16814 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 16815 (off << 4)); 16816 break; 16817 } 16818 off = opt[IPOPT_OFFSET] - 1; 16819 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16820 case IPOPT_TS_PRESPEC: 16821 case IPOPT_TS_PRESPEC_RFC791: 16822 case IPOPT_TS_TSANDADDR: 16823 bcopy(&ire->ire_src_addr, 16824 (char *)opt + off, IP_ADDR_LEN); 16825 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16826 /* FALLTHRU */ 16827 case IPOPT_TS_TSONLY: 16828 off = opt[IPOPT_OFFSET] - 1; 16829 /* Compute # of milliseconds since midnight */ 16830 gethrestime(&now); 16831 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 16832 now.tv_nsec / (NANOSEC / MILLISEC); 16833 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 16834 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 16835 break; 16836 } 16837 break; 16838 } 16839 } 16840 return (0); 16841 } 16842 16843 /* 16844 * This is called after processing at least one of AH/ESP headers. 16845 * 16846 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 16847 * the actual, physical interface on which the packet was received, 16848 * but, when ip_strict_dst_multihoming is set to 1, could be the 16849 * interface which had the ipha_dst configured when the packet went 16850 * through ip_rput. The ill_index corresponding to the recv_ill 16851 * is saved in ipsec_in_rill_index 16852 * 16853 * NOTE2: The "ire" argument is only used in IPv4 cases. This function 16854 * cannot assume "ire" points to valid data for any IPv6 cases. 16855 */ 16856 void 16857 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 16858 { 16859 mblk_t *mp; 16860 ipaddr_t dst; 16861 in6_addr_t *v6dstp; 16862 ipha_t *ipha; 16863 ip6_t *ip6h; 16864 ipsec_in_t *ii; 16865 boolean_t ill_need_rele = B_FALSE; 16866 boolean_t rill_need_rele = B_FALSE; 16867 boolean_t ire_need_rele = B_FALSE; 16868 netstack_t *ns; 16869 ip_stack_t *ipst; 16870 16871 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 16872 ASSERT(ii->ipsec_in_ill_index != 0); 16873 ns = ii->ipsec_in_ns; 16874 ASSERT(ii->ipsec_in_ns != NULL); 16875 ipst = ns->netstack_ip; 16876 16877 mp = ipsec_mp->b_cont; 16878 ASSERT(mp != NULL); 16879 16880 16881 if (ill == NULL) { 16882 ASSERT(recv_ill == NULL); 16883 /* 16884 * We need to get the original queue on which ip_rput_local 16885 * or ip_rput_data_v6 was called. 16886 */ 16887 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 16888 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL, ipst); 16889 ill_need_rele = B_TRUE; 16890 16891 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 16892 recv_ill = ill_lookup_on_ifindex( 16893 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 16894 NULL, NULL, NULL, NULL, ipst); 16895 rill_need_rele = B_TRUE; 16896 } else { 16897 recv_ill = ill; 16898 } 16899 16900 if ((ill == NULL) || (recv_ill == NULL)) { 16901 ip0dbg(("ip_fanout_proto_again: interface " 16902 "disappeared\n")); 16903 if (ill != NULL) 16904 ill_refrele(ill); 16905 if (recv_ill != NULL) 16906 ill_refrele(recv_ill); 16907 freemsg(ipsec_mp); 16908 return; 16909 } 16910 } 16911 16912 ASSERT(ill != NULL && recv_ill != NULL); 16913 16914 if (mp->b_datap->db_type == M_CTL) { 16915 /* 16916 * AH/ESP is returning the ICMP message after 16917 * removing their headers. Fanout again till 16918 * it gets to the right protocol. 16919 */ 16920 if (ii->ipsec_in_v4) { 16921 icmph_t *icmph; 16922 int iph_hdr_length; 16923 int hdr_length; 16924 16925 ipha = (ipha_t *)mp->b_rptr; 16926 iph_hdr_length = IPH_HDR_LENGTH(ipha); 16927 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 16928 ipha = (ipha_t *)&icmph[1]; 16929 hdr_length = IPH_HDR_LENGTH(ipha); 16930 /* 16931 * icmp_inbound_error_fanout may need to do pullupmsg. 16932 * Reset the type to M_DATA. 16933 */ 16934 mp->b_datap->db_type = M_DATA; 16935 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 16936 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 16937 B_FALSE, ill, ii->ipsec_in_zoneid); 16938 } else { 16939 icmp6_t *icmp6; 16940 int hdr_length; 16941 16942 ip6h = (ip6_t *)mp->b_rptr; 16943 /* Don't call hdr_length_v6() unless you have to. */ 16944 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 16945 hdr_length = ip_hdr_length_v6(mp, ip6h); 16946 else 16947 hdr_length = IPV6_HDR_LEN; 16948 16949 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 16950 /* 16951 * icmp_inbound_error_fanout_v6 may need to do 16952 * pullupmsg. Reset the type to M_DATA. 16953 */ 16954 mp->b_datap->db_type = M_DATA; 16955 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 16956 ip6h, icmp6, ill, B_TRUE, ii->ipsec_in_zoneid); 16957 } 16958 if (ill_need_rele) 16959 ill_refrele(ill); 16960 if (rill_need_rele) 16961 ill_refrele(recv_ill); 16962 return; 16963 } 16964 16965 if (ii->ipsec_in_v4) { 16966 ipha = (ipha_t *)mp->b_rptr; 16967 dst = ipha->ipha_dst; 16968 if (CLASSD(dst)) { 16969 /* 16970 * Multicast has to be delivered to all streams. 16971 */ 16972 dst = INADDR_BROADCAST; 16973 } 16974 16975 if (ire == NULL) { 16976 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 16977 MBLK_GETLABEL(mp), ipst); 16978 if (ire == NULL) { 16979 if (ill_need_rele) 16980 ill_refrele(ill); 16981 if (rill_need_rele) 16982 ill_refrele(recv_ill); 16983 ip1dbg(("ip_fanout_proto_again: " 16984 "IRE not found")); 16985 freemsg(ipsec_mp); 16986 return; 16987 } 16988 ire_need_rele = B_TRUE; 16989 } 16990 16991 switch (ipha->ipha_protocol) { 16992 case IPPROTO_UDP: 16993 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 16994 recv_ill); 16995 if (ire_need_rele) 16996 ire_refrele(ire); 16997 break; 16998 case IPPROTO_TCP: 16999 if (!ire_need_rele) 17000 IRE_REFHOLD(ire); 17001 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 17002 ire, ipsec_mp, 0, ill->ill_rq, NULL); 17003 IRE_REFRELE(ire); 17004 if (mp != NULL) 17005 squeue_enter_chain(GET_SQUEUE(mp), mp, 17006 mp, 1, SQTAG_IP_PROTO_AGAIN); 17007 break; 17008 case IPPROTO_SCTP: 17009 if (!ire_need_rele) 17010 IRE_REFHOLD(ire); 17011 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 17012 ipsec_mp, 0, ill->ill_rq, dst); 17013 break; 17014 default: 17015 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 17016 recv_ill, 0); 17017 if (ire_need_rele) 17018 ire_refrele(ire); 17019 break; 17020 } 17021 } else { 17022 uint32_t rput_flags = 0; 17023 17024 ip6h = (ip6_t *)mp->b_rptr; 17025 v6dstp = &ip6h->ip6_dst; 17026 /* 17027 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 17028 * address. 17029 * 17030 * Currently, we don't store that state in the IPSEC_IN 17031 * message, and we may need to. 17032 */ 17033 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 17034 IP6_IN_LLMCAST : 0); 17035 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 17036 NULL, NULL); 17037 } 17038 if (ill_need_rele) 17039 ill_refrele(ill); 17040 if (rill_need_rele) 17041 ill_refrele(recv_ill); 17042 } 17043 17044 /* 17045 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 17046 * returns 'true' if there are still fragments left on the queue, in 17047 * which case we restart the timer. 17048 */ 17049 void 17050 ill_frag_timer(void *arg) 17051 { 17052 ill_t *ill = (ill_t *)arg; 17053 boolean_t frag_pending; 17054 ip_stack_t *ipst = ill->ill_ipst; 17055 17056 mutex_enter(&ill->ill_lock); 17057 ASSERT(!ill->ill_fragtimer_executing); 17058 if (ill->ill_state_flags & ILL_CONDEMNED) { 17059 ill->ill_frag_timer_id = 0; 17060 mutex_exit(&ill->ill_lock); 17061 return; 17062 } 17063 ill->ill_fragtimer_executing = 1; 17064 mutex_exit(&ill->ill_lock); 17065 17066 frag_pending = ill_frag_timeout(ill, ipst->ips_ip_g_frag_timeout); 17067 17068 /* 17069 * Restart the timer, if we have fragments pending or if someone 17070 * wanted us to be scheduled again. 17071 */ 17072 mutex_enter(&ill->ill_lock); 17073 ill->ill_fragtimer_executing = 0; 17074 ill->ill_frag_timer_id = 0; 17075 if (frag_pending || ill->ill_fragtimer_needrestart) 17076 ill_frag_timer_start(ill); 17077 mutex_exit(&ill->ill_lock); 17078 } 17079 17080 void 17081 ill_frag_timer_start(ill_t *ill) 17082 { 17083 ip_stack_t *ipst = ill->ill_ipst; 17084 17085 ASSERT(MUTEX_HELD(&ill->ill_lock)); 17086 17087 /* If the ill is closing or opening don't proceed */ 17088 if (ill->ill_state_flags & ILL_CONDEMNED) 17089 return; 17090 17091 if (ill->ill_fragtimer_executing) { 17092 /* 17093 * ill_frag_timer is currently executing. Just record the 17094 * the fact that we want the timer to be restarted. 17095 * ill_frag_timer will post a timeout before it returns, 17096 * ensuring it will be called again. 17097 */ 17098 ill->ill_fragtimer_needrestart = 1; 17099 return; 17100 } 17101 17102 if (ill->ill_frag_timer_id == 0) { 17103 /* 17104 * The timer is neither running nor is the timeout handler 17105 * executing. Post a timeout so that ill_frag_timer will be 17106 * called 17107 */ 17108 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 17109 MSEC_TO_TICK(ipst->ips_ip_g_frag_timo_ms >> 1)); 17110 ill->ill_fragtimer_needrestart = 0; 17111 } 17112 } 17113 17114 /* 17115 * This routine is needed for loopback when forwarding multicasts. 17116 * 17117 * IPQoS Notes: 17118 * IPPF processing is done in fanout routines. 17119 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 17120 * processing for IPsec packets is done when it comes back in clear. 17121 * NOTE : The callers of this function need to do the ire_refrele for the 17122 * ire that is being passed in. 17123 */ 17124 void 17125 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17126 ill_t *recv_ill, uint32_t esp_udp_ports) 17127 { 17128 boolean_t esp_in_udp_packet = (esp_udp_ports != 0); 17129 ill_t *ill = (ill_t *)q->q_ptr; 17130 uint32_t sum; 17131 uint32_t u1; 17132 uint32_t u2; 17133 int hdr_length; 17134 boolean_t mctl_present; 17135 mblk_t *first_mp = mp; 17136 mblk_t *hada_mp = NULL; 17137 ipha_t *inner_ipha; 17138 ip_stack_t *ipst; 17139 17140 ASSERT(recv_ill != NULL); 17141 ipst = recv_ill->ill_ipst; 17142 17143 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 17144 "ip_rput_locl_start: q %p", q); 17145 17146 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17147 ASSERT(ill != NULL); 17148 17149 17150 #define rptr ((uchar_t *)ipha) 17151 #define iphs ((uint16_t *)ipha) 17152 17153 /* 17154 * no UDP or TCP packet should come here anymore. 17155 */ 17156 ASSERT(ipha->ipha_protocol != IPPROTO_TCP && 17157 ipha->ipha_protocol != IPPROTO_UDP); 17158 17159 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 17160 if (mctl_present && 17161 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 17162 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 17163 17164 /* 17165 * It's an IPsec accelerated packet. 17166 * Keep a pointer to the data attributes around until 17167 * we allocate the ipsec_info_t. 17168 */ 17169 IPSECHW_DEBUG(IPSECHW_PKT, 17170 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 17171 hada_mp = first_mp; 17172 hada_mp->b_cont = NULL; 17173 /* 17174 * Since it is accelerated, it comes directly from 17175 * the ill and the data attributes is followed by 17176 * the packet data. 17177 */ 17178 ASSERT(mp->b_datap->db_type != M_CTL); 17179 first_mp = mp; 17180 mctl_present = B_FALSE; 17181 } 17182 17183 /* 17184 * IF M_CTL is not present, then ipsec_in_is_secure 17185 * should return B_TRUE. There is a case where loopback 17186 * packets has an M_CTL in the front with all the 17187 * IPsec options set to IPSEC_PREF_NEVER - which means 17188 * ipsec_in_is_secure will return B_FALSE. As loopback 17189 * packets never comes here, it is safe to ASSERT the 17190 * following. 17191 */ 17192 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 17193 17194 /* 17195 * Also, we should never have an mctl_present if this is an 17196 * ESP-in-UDP packet. 17197 */ 17198 ASSERT(!mctl_present || !esp_in_udp_packet); 17199 17200 17201 /* u1 is # words of IP options */ 17202 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 17203 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 17204 17205 /* 17206 * Don't verify header checksum if we just removed UDP header or 17207 * packet is coming back from AH/ESP. 17208 */ 17209 if (!esp_in_udp_packet && !mctl_present) { 17210 if (u1) { 17211 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 17212 if (hada_mp != NULL) 17213 freemsg(hada_mp); 17214 return; 17215 } 17216 } else { 17217 /* Check the IP header checksum. */ 17218 #define uph ((uint16_t *)ipha) 17219 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 17220 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 17221 #undef uph 17222 /* finish doing IP checksum */ 17223 sum = (sum & 0xFFFF) + (sum >> 16); 17224 sum = ~(sum + (sum >> 16)) & 0xFFFF; 17225 if (sum && sum != 0xFFFF) { 17226 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 17227 goto drop_pkt; 17228 } 17229 } 17230 } 17231 17232 /* 17233 * Count for SNMP of inbound packets for ire. As ip_proto_input 17234 * might be called more than once for secure packets, count only 17235 * the first time. 17236 */ 17237 if (!mctl_present) { 17238 UPDATE_IB_PKT_COUNT(ire); 17239 ire->ire_last_used_time = lbolt; 17240 } 17241 17242 /* Check for fragmentation offset. */ 17243 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 17244 u1 = u2 & (IPH_MF | IPH_OFFSET); 17245 if (u1) { 17246 /* 17247 * We re-assemble fragments before we do the AH/ESP 17248 * processing. Thus, M_CTL should not be present 17249 * while we are re-assembling. 17250 */ 17251 ASSERT(!mctl_present); 17252 ASSERT(first_mp == mp); 17253 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 17254 return; 17255 } 17256 /* 17257 * Make sure that first_mp points back to mp as 17258 * the mp we came in with could have changed in 17259 * ip_rput_fragment(). 17260 */ 17261 ipha = (ipha_t *)mp->b_rptr; 17262 first_mp = mp; 17263 } 17264 17265 /* 17266 * Clear hardware checksumming flag as it is currently only 17267 * used by TCP and UDP. 17268 */ 17269 DB_CKSUMFLAGS(mp) = 0; 17270 17271 /* Now we have a complete datagram, destined for this machine. */ 17272 u1 = IPH_HDR_LENGTH(ipha); 17273 switch (ipha->ipha_protocol) { 17274 case IPPROTO_ICMP: { 17275 ire_t *ire_zone; 17276 ilm_t *ilm; 17277 mblk_t *mp1; 17278 zoneid_t last_zoneid; 17279 17280 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(recv_ill)) { 17281 ASSERT(ire->ire_type == IRE_BROADCAST); 17282 /* 17283 * In the multicast case, applications may have joined 17284 * the group from different zones, so we need to deliver 17285 * the packet to each of them. Loop through the 17286 * multicast memberships structures (ilm) on the receive 17287 * ill and send a copy of the packet up each matching 17288 * one. However, we don't do this for multicasts sent on 17289 * the loopback interface (PHYI_LOOPBACK flag set) as 17290 * they must stay in the sender's zone. 17291 * 17292 * ilm_add_v6() ensures that ilms in the same zone are 17293 * contiguous in the ill_ilm list. We use this property 17294 * to avoid sending duplicates needed when two 17295 * applications in the same zone join the same group on 17296 * different logical interfaces: we ignore the ilm if 17297 * its zoneid is the same as the last matching one. 17298 * In addition, the sending of the packet for 17299 * ire_zoneid is delayed until all of the other ilms 17300 * have been exhausted. 17301 */ 17302 last_zoneid = -1; 17303 ILM_WALKER_HOLD(recv_ill); 17304 for (ilm = recv_ill->ill_ilm; ilm != NULL; 17305 ilm = ilm->ilm_next) { 17306 if ((ilm->ilm_flags & ILM_DELETED) || 17307 ipha->ipha_dst != ilm->ilm_addr || 17308 ilm->ilm_zoneid == last_zoneid || 17309 ilm->ilm_zoneid == ire->ire_zoneid || 17310 ilm->ilm_zoneid == ALL_ZONES || 17311 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 17312 continue; 17313 mp1 = ip_copymsg(first_mp); 17314 if (mp1 == NULL) 17315 continue; 17316 icmp_inbound(q, mp1, B_TRUE, ill, 17317 0, sum, mctl_present, B_TRUE, 17318 recv_ill, ilm->ilm_zoneid); 17319 last_zoneid = ilm->ilm_zoneid; 17320 } 17321 ILM_WALKER_RELE(recv_ill); 17322 } else if (ire->ire_type == IRE_BROADCAST) { 17323 /* 17324 * In the broadcast case, there may be many zones 17325 * which need a copy of the packet delivered to them. 17326 * There is one IRE_BROADCAST per broadcast address 17327 * and per zone; we walk those using a helper function. 17328 * In addition, the sending of the packet for ire is 17329 * delayed until all of the other ires have been 17330 * processed. 17331 */ 17332 IRB_REFHOLD(ire->ire_bucket); 17333 ire_zone = NULL; 17334 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 17335 ire)) != NULL) { 17336 mp1 = ip_copymsg(first_mp); 17337 if (mp1 == NULL) 17338 continue; 17339 17340 UPDATE_IB_PKT_COUNT(ire_zone); 17341 ire_zone->ire_last_used_time = lbolt; 17342 icmp_inbound(q, mp1, B_TRUE, ill, 17343 0, sum, mctl_present, B_TRUE, 17344 recv_ill, ire_zone->ire_zoneid); 17345 } 17346 IRB_REFRELE(ire->ire_bucket); 17347 } 17348 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 17349 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 17350 ire->ire_zoneid); 17351 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17352 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 17353 return; 17354 } 17355 case IPPROTO_IGMP: 17356 /* 17357 * If we are not willing to accept IGMP packets in clear, 17358 * then check with global policy. 17359 */ 17360 if (ipst->ips_igmp_accept_clear_messages == 0) { 17361 first_mp = ipsec_check_global_policy(first_mp, NULL, 17362 ipha, NULL, mctl_present, ipst->ips_netstack); 17363 if (first_mp == NULL) 17364 return; 17365 } 17366 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17367 freemsg(first_mp); 17368 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 17369 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17370 return; 17371 } 17372 if ((mp = igmp_input(q, mp, ill)) == NULL) { 17373 /* Bad packet - discarded by igmp_input */ 17374 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17375 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 17376 if (mctl_present) 17377 freeb(first_mp); 17378 return; 17379 } 17380 /* 17381 * igmp_input() may have returned the pulled up message. 17382 * So first_mp and ipha need to be reinitialized. 17383 */ 17384 ipha = (ipha_t *)mp->b_rptr; 17385 if (mctl_present) 17386 first_mp->b_cont = mp; 17387 else 17388 first_mp = mp; 17389 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17390 connf_head != NULL) { 17391 /* No user-level listener for IGMP packets */ 17392 goto drop_pkt; 17393 } 17394 /* deliver to local raw users */ 17395 break; 17396 case IPPROTO_PIM: 17397 /* 17398 * If we are not willing to accept PIM packets in clear, 17399 * then check with global policy. 17400 */ 17401 if (ipst->ips_pim_accept_clear_messages == 0) { 17402 first_mp = ipsec_check_global_policy(first_mp, NULL, 17403 ipha, NULL, mctl_present, ipst->ips_netstack); 17404 if (first_mp == NULL) 17405 return; 17406 } 17407 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17408 freemsg(first_mp); 17409 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 17410 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17411 return; 17412 } 17413 if (pim_input(q, mp, ill) != 0) { 17414 /* Bad packet - discarded by pim_input */ 17415 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17416 "ip_rput_locl_end: q %p (%S)", q, "pim"); 17417 if (mctl_present) 17418 freeb(first_mp); 17419 return; 17420 } 17421 17422 /* 17423 * pim_input() may have pulled up the message so ipha needs to 17424 * be reinitialized. 17425 */ 17426 ipha = (ipha_t *)mp->b_rptr; 17427 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17428 connf_head != NULL) { 17429 /* No user-level listener for PIM packets */ 17430 goto drop_pkt; 17431 } 17432 /* deliver to local raw users */ 17433 break; 17434 case IPPROTO_ENCAP: 17435 /* 17436 * Handle self-encapsulated packets (IP-in-IP where 17437 * the inner addresses == the outer addresses). 17438 */ 17439 hdr_length = IPH_HDR_LENGTH(ipha); 17440 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 17441 mp->b_wptr) { 17442 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 17443 sizeof (ipha_t) - mp->b_rptr)) { 17444 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17445 freemsg(first_mp); 17446 return; 17447 } 17448 ipha = (ipha_t *)mp->b_rptr; 17449 } 17450 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 17451 /* 17452 * Check the sanity of the inner IP header. 17453 */ 17454 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 17455 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17456 freemsg(first_mp); 17457 return; 17458 } 17459 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 17460 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17461 freemsg(first_mp); 17462 return; 17463 } 17464 if (inner_ipha->ipha_src == ipha->ipha_src && 17465 inner_ipha->ipha_dst == ipha->ipha_dst) { 17466 ipsec_in_t *ii; 17467 17468 /* 17469 * Self-encapsulated tunnel packet. Remove 17470 * the outer IP header and fanout again. 17471 * We also need to make sure that the inner 17472 * header is pulled up until options. 17473 */ 17474 mp->b_rptr = (uchar_t *)inner_ipha; 17475 ipha = inner_ipha; 17476 hdr_length = IPH_HDR_LENGTH(ipha); 17477 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 17478 if (!pullupmsg(mp, (uchar_t *)ipha + 17479 + hdr_length - mp->b_rptr)) { 17480 freemsg(first_mp); 17481 return; 17482 } 17483 ipha = (ipha_t *)mp->b_rptr; 17484 } 17485 if (hdr_length > sizeof (ipha_t)) { 17486 /* We got options on the inner packet. */ 17487 ipaddr_t dst = ipha->ipha_dst; 17488 17489 if (ip_rput_options(q, mp, ipha, &dst, ipst) == 17490 -1) { 17491 /* Bad options! */ 17492 return; 17493 } 17494 if (dst != ipha->ipha_dst) { 17495 /* 17496 * Someone put a source-route in 17497 * the inside header of a self- 17498 * encapsulated packet. Drop it 17499 * with extreme prejudice and let 17500 * the sender know. 17501 */ 17502 icmp_unreachable(q, first_mp, 17503 ICMP_SOURCE_ROUTE_FAILED, 17504 recv_ill->ill_zoneid, ipst); 17505 return; 17506 } 17507 } 17508 if (!mctl_present) { 17509 ASSERT(first_mp == mp); 17510 /* 17511 * This means that somebody is sending 17512 * Self-encapsualted packets without AH/ESP. 17513 * If AH/ESP was present, we would have already 17514 * allocated the first_mp. 17515 * 17516 * Send this packet to find a tunnel endpoint. 17517 * if I can't find one, an ICMP 17518 * PROTOCOL_UNREACHABLE will get sent. 17519 */ 17520 goto fanout; 17521 } 17522 /* 17523 * We generally store the ill_index if we need to 17524 * do IPsec processing as we lose the ill queue when 17525 * we come back. But in this case, we never should 17526 * have to store the ill_index here as it should have 17527 * been stored previously when we processed the 17528 * AH/ESP header in this routine or for non-ipsec 17529 * cases, we still have the queue. But for some bad 17530 * packets from the wire, we can get to IPsec after 17531 * this and we better store the index for that case. 17532 */ 17533 ill = (ill_t *)q->q_ptr; 17534 ii = (ipsec_in_t *)first_mp->b_rptr; 17535 ii->ipsec_in_ill_index = 17536 ill->ill_phyint->phyint_ifindex; 17537 ii->ipsec_in_rill_index = 17538 recv_ill->ill_phyint->phyint_ifindex; 17539 if (ii->ipsec_in_decaps) { 17540 /* 17541 * This packet is self-encapsulated multiple 17542 * times. We don't want to recurse infinitely. 17543 * To keep it simple, drop the packet. 17544 */ 17545 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17546 freemsg(first_mp); 17547 return; 17548 } 17549 ii->ipsec_in_decaps = B_TRUE; 17550 ip_fanout_proto_again(first_mp, recv_ill, recv_ill, 17551 ire); 17552 return; 17553 } 17554 break; 17555 case IPPROTO_AH: 17556 case IPPROTO_ESP: { 17557 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 17558 17559 /* 17560 * Fast path for AH/ESP. If this is the first time 17561 * we are sending a datagram to AH/ESP, allocate 17562 * a IPSEC_IN message and prepend it. Otherwise, 17563 * just fanout. 17564 */ 17565 17566 int ipsec_rc; 17567 ipsec_in_t *ii; 17568 netstack_t *ns = ipst->ips_netstack; 17569 17570 IP_STAT(ipst, ipsec_proto_ahesp); 17571 if (!mctl_present) { 17572 ASSERT(first_mp == mp); 17573 first_mp = ipsec_in_alloc(B_TRUE, ns); 17574 if (first_mp == NULL) { 17575 ip1dbg(("ip_proto_input: IPSEC_IN " 17576 "allocation failure.\n")); 17577 freemsg(hada_mp); /* okay ifnull */ 17578 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17579 freemsg(mp); 17580 return; 17581 } 17582 /* 17583 * Store the ill_index so that when we come back 17584 * from IPsec we ride on the same queue. 17585 */ 17586 ill = (ill_t *)q->q_ptr; 17587 ii = (ipsec_in_t *)first_mp->b_rptr; 17588 ii->ipsec_in_ill_index = 17589 ill->ill_phyint->phyint_ifindex; 17590 ii->ipsec_in_rill_index = 17591 recv_ill->ill_phyint->phyint_ifindex; 17592 first_mp->b_cont = mp; 17593 /* 17594 * Cache hardware acceleration info. 17595 */ 17596 if (hada_mp != NULL) { 17597 IPSECHW_DEBUG(IPSECHW_PKT, 17598 ("ip_rput_local: caching data attr.\n")); 17599 ii->ipsec_in_accelerated = B_TRUE; 17600 ii->ipsec_in_da = hada_mp; 17601 hada_mp = NULL; 17602 } 17603 } else { 17604 ii = (ipsec_in_t *)first_mp->b_rptr; 17605 } 17606 17607 ii->ipsec_in_esp_udp_ports = esp_udp_ports; 17608 17609 if (!ipsec_loaded(ipss)) { 17610 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 17611 ire->ire_zoneid, ipst); 17612 return; 17613 } 17614 17615 ns = ipst->ips_netstack; 17616 /* select inbound SA and have IPsec process the pkt */ 17617 if (ipha->ipha_protocol == IPPROTO_ESP) { 17618 esph_t *esph = ipsec_inbound_esp_sa(first_mp, ns); 17619 boolean_t esp_in_udp_sa; 17620 if (esph == NULL) 17621 return; 17622 ASSERT(ii->ipsec_in_esp_sa != NULL); 17623 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 17624 esp_in_udp_sa = ((ii->ipsec_in_esp_sa->ipsa_flags & 17625 IPSA_F_NATT) != 0); 17626 /* 17627 * The following is a fancy, but quick, way of saying: 17628 * ESP-in-UDP SA and Raw ESP packet --> drop 17629 * OR 17630 * ESP SA and ESP-in-UDP packet --> drop 17631 */ 17632 if (esp_in_udp_sa != esp_in_udp_packet) { 17633 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17634 ip_drop_packet(first_mp, B_TRUE, ill, NULL, 17635 DROPPER(ns->netstack_ipsec, ipds_esp_no_sa), 17636 &ns->netstack_ipsec->ipsec_dropper); 17637 return; 17638 } 17639 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 17640 first_mp, esph); 17641 } else { 17642 ah_t *ah = ipsec_inbound_ah_sa(first_mp, ns); 17643 if (ah == NULL) 17644 return; 17645 ASSERT(ii->ipsec_in_ah_sa != NULL); 17646 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 17647 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 17648 first_mp, ah); 17649 } 17650 17651 switch (ipsec_rc) { 17652 case IPSEC_STATUS_SUCCESS: 17653 break; 17654 case IPSEC_STATUS_FAILED: 17655 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17656 /* FALLTHRU */ 17657 case IPSEC_STATUS_PENDING: 17658 return; 17659 } 17660 /* we're done with IPsec processing, send it up */ 17661 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 17662 return; 17663 } 17664 default: 17665 break; 17666 } 17667 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 17668 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 17669 ire->ire_zoneid)); 17670 goto drop_pkt; 17671 } 17672 /* 17673 * Handle protocols with which IP is less intimate. There 17674 * can be more than one stream bound to a particular 17675 * protocol. When this is the case, each one gets a copy 17676 * of any incoming packets. 17677 */ 17678 fanout: 17679 ip_fanout_proto(q, first_mp, ill, ipha, 17680 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 17681 B_TRUE, recv_ill, ire->ire_zoneid); 17682 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17683 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 17684 return; 17685 17686 drop_pkt: 17687 freemsg(first_mp); 17688 if (hada_mp != NULL) 17689 freeb(hada_mp); 17690 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17691 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 17692 #undef rptr 17693 #undef iphs 17694 17695 } 17696 17697 /* 17698 * Update any source route, record route or timestamp options. 17699 * Check that we are at end of strict source route. 17700 * The options have already been checked for sanity in ip_rput_options(). 17701 */ 17702 static boolean_t 17703 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17704 ip_stack_t *ipst) 17705 { 17706 ipoptp_t opts; 17707 uchar_t *opt; 17708 uint8_t optval; 17709 uint8_t optlen; 17710 ipaddr_t dst; 17711 uint32_t ts; 17712 ire_t *dst_ire; 17713 timestruc_t now; 17714 zoneid_t zoneid; 17715 ill_t *ill; 17716 17717 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17718 17719 ip2dbg(("ip_rput_local_options\n")); 17720 17721 for (optval = ipoptp_first(&opts, ipha); 17722 optval != IPOPT_EOL; 17723 optval = ipoptp_next(&opts)) { 17724 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17725 opt = opts.ipoptp_cur; 17726 optlen = opts.ipoptp_len; 17727 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 17728 optval, optlen)); 17729 switch (optval) { 17730 uint32_t off; 17731 case IPOPT_SSRR: 17732 case IPOPT_LSRR: 17733 off = opt[IPOPT_OFFSET]; 17734 off--; 17735 if (optlen < IP_ADDR_LEN || 17736 off > optlen - IP_ADDR_LEN) { 17737 /* End of source route */ 17738 ip1dbg(("ip_rput_local_options: end of SR\n")); 17739 break; 17740 } 17741 /* 17742 * This will only happen if two consecutive entries 17743 * in the source route contains our address or if 17744 * it is a packet with a loose source route which 17745 * reaches us before consuming the whole source route 17746 */ 17747 ip1dbg(("ip_rput_local_options: not end of SR\n")); 17748 if (optval == IPOPT_SSRR) { 17749 goto bad_src_route; 17750 } 17751 /* 17752 * Hack: instead of dropping the packet truncate the 17753 * source route to what has been used by filling the 17754 * rest with IPOPT_NOP. 17755 */ 17756 opt[IPOPT_OLEN] = (uint8_t)off; 17757 while (off < optlen) { 17758 opt[off++] = IPOPT_NOP; 17759 } 17760 break; 17761 case IPOPT_RR: 17762 off = opt[IPOPT_OFFSET]; 17763 off--; 17764 if (optlen < IP_ADDR_LEN || 17765 off > optlen - IP_ADDR_LEN) { 17766 /* No more room - ignore */ 17767 ip1dbg(( 17768 "ip_rput_local_options: end of RR\n")); 17769 break; 17770 } 17771 bcopy(&ire->ire_src_addr, (char *)opt + off, 17772 IP_ADDR_LEN); 17773 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17774 break; 17775 case IPOPT_TS: 17776 /* Insert timestamp if there is romm */ 17777 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17778 case IPOPT_TS_TSONLY: 17779 off = IPOPT_TS_TIMELEN; 17780 break; 17781 case IPOPT_TS_PRESPEC: 17782 case IPOPT_TS_PRESPEC_RFC791: 17783 /* Verify that the address matched */ 17784 off = opt[IPOPT_OFFSET] - 1; 17785 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17786 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17787 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 17788 ipst); 17789 if (dst_ire == NULL) { 17790 /* Not for us */ 17791 break; 17792 } 17793 ire_refrele(dst_ire); 17794 /* FALLTHRU */ 17795 case IPOPT_TS_TSANDADDR: 17796 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17797 break; 17798 default: 17799 /* 17800 * ip_*put_options should have already 17801 * dropped this packet. 17802 */ 17803 cmn_err(CE_PANIC, "ip_rput_local_options: " 17804 "unknown IT - bug in ip_rput_options?\n"); 17805 return (B_TRUE); /* Keep "lint" happy */ 17806 } 17807 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 17808 /* Increase overflow counter */ 17809 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 17810 opt[IPOPT_POS_OV_FLG] = 17811 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 17812 (off << 4)); 17813 break; 17814 } 17815 off = opt[IPOPT_OFFSET] - 1; 17816 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17817 case IPOPT_TS_PRESPEC: 17818 case IPOPT_TS_PRESPEC_RFC791: 17819 case IPOPT_TS_TSANDADDR: 17820 bcopy(&ire->ire_src_addr, (char *)opt + off, 17821 IP_ADDR_LEN); 17822 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17823 /* FALLTHRU */ 17824 case IPOPT_TS_TSONLY: 17825 off = opt[IPOPT_OFFSET] - 1; 17826 /* Compute # of milliseconds since midnight */ 17827 gethrestime(&now); 17828 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 17829 now.tv_nsec / (NANOSEC / MILLISEC); 17830 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 17831 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 17832 break; 17833 } 17834 break; 17835 } 17836 } 17837 return (B_TRUE); 17838 17839 bad_src_route: 17840 q = WR(q); 17841 if (q->q_next != NULL) 17842 ill = q->q_ptr; 17843 else 17844 ill = NULL; 17845 17846 /* make sure we clear any indication of a hardware checksum */ 17847 DB_CKSUMFLAGS(mp) = 0; 17848 zoneid = ipif_lookup_addr_zoneid(ipha->ipha_dst, ill, ipst); 17849 if (zoneid == ALL_ZONES) 17850 freemsg(mp); 17851 else 17852 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 17853 return (B_FALSE); 17854 17855 } 17856 17857 /* 17858 * Process IP options in an inbound packet. If an option affects the 17859 * effective destination address, return the next hop address via dstp. 17860 * Returns -1 if something fails in which case an ICMP error has been sent 17861 * and mp freed. 17862 */ 17863 static int 17864 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp, 17865 ip_stack_t *ipst) 17866 { 17867 ipoptp_t opts; 17868 uchar_t *opt; 17869 uint8_t optval; 17870 uint8_t optlen; 17871 ipaddr_t dst; 17872 intptr_t code = 0; 17873 ire_t *ire = NULL; 17874 zoneid_t zoneid; 17875 ill_t *ill; 17876 17877 ip2dbg(("ip_rput_options\n")); 17878 dst = ipha->ipha_dst; 17879 for (optval = ipoptp_first(&opts, ipha); 17880 optval != IPOPT_EOL; 17881 optval = ipoptp_next(&opts)) { 17882 opt = opts.ipoptp_cur; 17883 optlen = opts.ipoptp_len; 17884 ip2dbg(("ip_rput_options: opt %d, len %d\n", 17885 optval, optlen)); 17886 /* 17887 * Note: we need to verify the checksum before we 17888 * modify anything thus this routine only extracts the next 17889 * hop dst from any source route. 17890 */ 17891 switch (optval) { 17892 uint32_t off; 17893 case IPOPT_SSRR: 17894 case IPOPT_LSRR: 17895 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17896 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17897 if (ire == NULL) { 17898 if (optval == IPOPT_SSRR) { 17899 ip1dbg(("ip_rput_options: not next" 17900 " strict source route 0x%x\n", 17901 ntohl(dst))); 17902 code = (char *)&ipha->ipha_dst - 17903 (char *)ipha; 17904 goto param_prob; /* RouterReq's */ 17905 } 17906 ip2dbg(("ip_rput_options: " 17907 "not next source route 0x%x\n", 17908 ntohl(dst))); 17909 break; 17910 } 17911 ire_refrele(ire); 17912 17913 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17914 ip1dbg(( 17915 "ip_rput_options: bad option offset\n")); 17916 code = (char *)&opt[IPOPT_OLEN] - 17917 (char *)ipha; 17918 goto param_prob; 17919 } 17920 off = opt[IPOPT_OFFSET]; 17921 off--; 17922 redo_srr: 17923 if (optlen < IP_ADDR_LEN || 17924 off > optlen - IP_ADDR_LEN) { 17925 /* End of source route */ 17926 ip1dbg(("ip_rput_options: end of SR\n")); 17927 break; 17928 } 17929 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17930 ip1dbg(("ip_rput_options: next hop 0x%x\n", 17931 ntohl(dst))); 17932 17933 /* 17934 * Check if our address is present more than 17935 * once as consecutive hops in source route. 17936 * XXX verify per-interface ip_forwarding 17937 * for source route? 17938 */ 17939 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17940 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17941 17942 if (ire != NULL) { 17943 ire_refrele(ire); 17944 off += IP_ADDR_LEN; 17945 goto redo_srr; 17946 } 17947 17948 if (dst == htonl(INADDR_LOOPBACK)) { 17949 ip1dbg(("ip_rput_options: loopback addr in " 17950 "source route!\n")); 17951 goto bad_src_route; 17952 } 17953 /* 17954 * For strict: verify that dst is directly 17955 * reachable. 17956 */ 17957 if (optval == IPOPT_SSRR) { 17958 ire = ire_ftable_lookup(dst, 0, 0, 17959 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 17960 MBLK_GETLABEL(mp), 17961 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 17962 if (ire == NULL) { 17963 ip1dbg(("ip_rput_options: SSRR not " 17964 "directly reachable: 0x%x\n", 17965 ntohl(dst))); 17966 goto bad_src_route; 17967 } 17968 ire_refrele(ire); 17969 } 17970 /* 17971 * Defer update of the offset and the record route 17972 * until the packet is forwarded. 17973 */ 17974 break; 17975 case IPOPT_RR: 17976 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17977 ip1dbg(( 17978 "ip_rput_options: bad option offset\n")); 17979 code = (char *)&opt[IPOPT_OLEN] - 17980 (char *)ipha; 17981 goto param_prob; 17982 } 17983 break; 17984 case IPOPT_TS: 17985 /* 17986 * Verify that length >= 5 and that there is either 17987 * room for another timestamp or that the overflow 17988 * counter is not maxed out. 17989 */ 17990 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 17991 if (optlen < IPOPT_MINLEN_IT) { 17992 goto param_prob; 17993 } 17994 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17995 ip1dbg(( 17996 "ip_rput_options: bad option offset\n")); 17997 code = (char *)&opt[IPOPT_OFFSET] - 17998 (char *)ipha; 17999 goto param_prob; 18000 } 18001 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 18002 case IPOPT_TS_TSONLY: 18003 off = IPOPT_TS_TIMELEN; 18004 break; 18005 case IPOPT_TS_TSANDADDR: 18006 case IPOPT_TS_PRESPEC: 18007 case IPOPT_TS_PRESPEC_RFC791: 18008 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 18009 break; 18010 default: 18011 code = (char *)&opt[IPOPT_POS_OV_FLG] - 18012 (char *)ipha; 18013 goto param_prob; 18014 } 18015 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 18016 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 18017 /* 18018 * No room and the overflow counter is 15 18019 * already. 18020 */ 18021 goto param_prob; 18022 } 18023 break; 18024 } 18025 } 18026 18027 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 18028 *dstp = dst; 18029 return (0); 18030 } 18031 18032 ip1dbg(("ip_rput_options: error processing IP options.")); 18033 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 18034 18035 param_prob: 18036 q = WR(q); 18037 if (q->q_next != NULL) 18038 ill = q->q_ptr; 18039 else 18040 ill = NULL; 18041 18042 /* make sure we clear any indication of a hardware checksum */ 18043 DB_CKSUMFLAGS(mp) = 0; 18044 /* Don't know whether this is for non-global or global/forwarding */ 18045 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18046 if (zoneid == ALL_ZONES) 18047 freemsg(mp); 18048 else 18049 icmp_param_problem(q, mp, (uint8_t)code, zoneid, ipst); 18050 return (-1); 18051 18052 bad_src_route: 18053 q = WR(q); 18054 if (q->q_next != NULL) 18055 ill = q->q_ptr; 18056 else 18057 ill = NULL; 18058 18059 /* make sure we clear any indication of a hardware checksum */ 18060 DB_CKSUMFLAGS(mp) = 0; 18061 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18062 if (zoneid == ALL_ZONES) 18063 freemsg(mp); 18064 else 18065 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 18066 return (-1); 18067 } 18068 18069 /* 18070 * IP & ICMP info in >=14 msg's ... 18071 * - ip fixed part (mib2_ip_t) 18072 * - icmp fixed part (mib2_icmp_t) 18073 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 18074 * - ipRouteEntryTable (ip 21) all IPv4 IREs 18075 * - ipNetToMediaEntryTable (ip 22) [filled in by the arp module] 18076 * - ipRouteAttributeTable (ip 102) labeled routes 18077 * - ip multicast membership (ip_member_t) 18078 * - ip multicast source filtering (ip_grpsrc_t) 18079 * - igmp fixed part (struct igmpstat) 18080 * - multicast routing stats (struct mrtstat) 18081 * - multicast routing vifs (array of struct vifctl) 18082 * - multicast routing routes (array of struct mfcctl) 18083 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 18084 * One per ill plus one generic 18085 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 18086 * One per ill plus one generic 18087 * - ipv6RouteEntry all IPv6 IREs 18088 * - ipv6RouteAttributeTable (ip6 102) labeled routes 18089 * - ipv6NetToMediaEntry all Neighbor Cache entries 18090 * - ipv6AddrEntry all IPv6 ipifs 18091 * - ipv6 multicast membership (ipv6_member_t) 18092 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 18093 * 18094 * MIB2_IP_MEDIA is filled in by the arp module with ARP cache entries. 18095 * 18096 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 18097 * already filled in by the caller. 18098 * Return value of 0 indicates that no messages were sent and caller 18099 * should free mpctl. 18100 */ 18101 int 18102 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level) 18103 { 18104 ip_stack_t *ipst; 18105 sctp_stack_t *sctps; 18106 18107 if (q->q_next != NULL) { 18108 ipst = ILLQ_TO_IPST(q); 18109 } else { 18110 ipst = CONNQ_TO_IPST(q); 18111 } 18112 ASSERT(ipst != NULL); 18113 sctps = ipst->ips_netstack->netstack_sctp; 18114 18115 if (mpctl == NULL || mpctl->b_cont == NULL) { 18116 return (0); 18117 } 18118 18119 /* 18120 * For the purposes of the (broken) packet shell use 18121 * of the level we make sure MIB2_TCP/MIB2_UDP can be used 18122 * to make TCP and UDP appear first in the list of mib items. 18123 * TBD: We could expand this and use it in netstat so that 18124 * the kernel doesn't have to produce large tables (connections, 18125 * routes, etc) when netstat only wants the statistics or a particular 18126 * table. 18127 */ 18128 if (!(level == MIB2_TCP || level == MIB2_UDP)) { 18129 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) { 18130 return (1); 18131 } 18132 } 18133 18134 if (level != MIB2_TCP) { 18135 if ((mpctl = udp_snmp_get(q, mpctl)) == NULL) { 18136 return (1); 18137 } 18138 } 18139 18140 if (level != MIB2_UDP) { 18141 if ((mpctl = tcp_snmp_get(q, mpctl)) == NULL) { 18142 return (1); 18143 } 18144 } 18145 18146 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 18147 ipst)) == NULL) { 18148 return (1); 18149 } 18150 18151 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst)) == NULL) { 18152 return (1); 18153 } 18154 18155 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 18156 return (1); 18157 } 18158 18159 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 18160 return (1); 18161 } 18162 18163 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 18164 return (1); 18165 } 18166 18167 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 18168 return (1); 18169 } 18170 18171 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst)) == NULL) { 18172 return (1); 18173 } 18174 18175 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst)) == NULL) { 18176 return (1); 18177 } 18178 18179 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 18180 return (1); 18181 } 18182 18183 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 18184 return (1); 18185 } 18186 18187 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 18188 return (1); 18189 } 18190 18191 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 18192 return (1); 18193 } 18194 18195 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 18196 return (1); 18197 } 18198 18199 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 18200 return (1); 18201 } 18202 18203 if ((mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, ipst)) == NULL) { 18204 return (1); 18205 } 18206 18207 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, ipst); 18208 if (mpctl == NULL) { 18209 return (1); 18210 } 18211 18212 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 18213 return (1); 18214 } 18215 freemsg(mpctl); 18216 return (1); 18217 } 18218 18219 18220 /* Get global (legacy) IPv4 statistics */ 18221 static mblk_t * 18222 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 18223 ip_stack_t *ipst) 18224 { 18225 mib2_ip_t old_ip_mib; 18226 struct opthdr *optp; 18227 mblk_t *mp2ctl; 18228 18229 /* 18230 * make a copy of the original message 18231 */ 18232 mp2ctl = copymsg(mpctl); 18233 18234 /* fixed length IP structure... */ 18235 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18236 optp->level = MIB2_IP; 18237 optp->name = 0; 18238 SET_MIB(old_ip_mib.ipForwarding, 18239 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 18240 SET_MIB(old_ip_mib.ipDefaultTTL, 18241 (uint32_t)ipst->ips_ip_def_ttl); 18242 SET_MIB(old_ip_mib.ipReasmTimeout, 18243 ipst->ips_ip_g_frag_timeout); 18244 SET_MIB(old_ip_mib.ipAddrEntrySize, 18245 sizeof (mib2_ipAddrEntry_t)); 18246 SET_MIB(old_ip_mib.ipRouteEntrySize, 18247 sizeof (mib2_ipRouteEntry_t)); 18248 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 18249 sizeof (mib2_ipNetToMediaEntry_t)); 18250 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 18251 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 18252 SET_MIB(old_ip_mib.ipRouteAttributeSize, 18253 sizeof (mib2_ipAttributeEntry_t)); 18254 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 18255 18256 /* 18257 * Grab the statistics from the new IP MIB 18258 */ 18259 SET_MIB(old_ip_mib.ipInReceives, 18260 (uint32_t)ipmib->ipIfStatsHCInReceives); 18261 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 18262 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 18263 SET_MIB(old_ip_mib.ipForwDatagrams, 18264 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 18265 SET_MIB(old_ip_mib.ipInUnknownProtos, 18266 ipmib->ipIfStatsInUnknownProtos); 18267 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 18268 SET_MIB(old_ip_mib.ipInDelivers, 18269 (uint32_t)ipmib->ipIfStatsHCInDelivers); 18270 SET_MIB(old_ip_mib.ipOutRequests, 18271 (uint32_t)ipmib->ipIfStatsHCOutRequests); 18272 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 18273 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 18274 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 18275 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 18276 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 18277 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 18278 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 18279 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 18280 18281 /* ipRoutingDiscards is not being used */ 18282 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 18283 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 18284 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 18285 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 18286 SET_MIB(old_ip_mib.ipReasmDuplicates, 18287 ipmib->ipIfStatsReasmDuplicates); 18288 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 18289 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 18290 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 18291 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 18292 SET_MIB(old_ip_mib.rawipInOverflows, 18293 ipmib->rawipIfStatsInOverflows); 18294 18295 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 18296 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 18297 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 18298 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 18299 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 18300 ipmib->ipIfStatsOutSwitchIPVersion); 18301 18302 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 18303 (int)sizeof (old_ip_mib))) { 18304 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 18305 (uint_t)sizeof (old_ip_mib))); 18306 } 18307 18308 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18309 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 18310 (int)optp->level, (int)optp->name, (int)optp->len)); 18311 qreply(q, mpctl); 18312 return (mp2ctl); 18313 } 18314 18315 /* Per interface IPv4 statistics */ 18316 static mblk_t * 18317 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18318 { 18319 struct opthdr *optp; 18320 mblk_t *mp2ctl; 18321 ill_t *ill; 18322 ill_walk_context_t ctx; 18323 mblk_t *mp_tail = NULL; 18324 mib2_ipIfStatsEntry_t global_ip_mib; 18325 18326 /* 18327 * Make a copy of the original message 18328 */ 18329 mp2ctl = copymsg(mpctl); 18330 18331 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18332 optp->level = MIB2_IP; 18333 optp->name = MIB2_IP_TRAFFIC_STATS; 18334 /* Include "unknown interface" ip_mib */ 18335 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 18336 ipst->ips_ip_mib.ipIfStatsIfIndex = 18337 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 18338 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 18339 (ipst->ips_ip_g_forward ? 1 : 2)); 18340 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 18341 (uint32_t)ipst->ips_ip_def_ttl); 18342 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 18343 sizeof (mib2_ipIfStatsEntry_t)); 18344 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 18345 sizeof (mib2_ipAddrEntry_t)); 18346 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 18347 sizeof (mib2_ipRouteEntry_t)); 18348 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 18349 sizeof (mib2_ipNetToMediaEntry_t)); 18350 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 18351 sizeof (ip_member_t)); 18352 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 18353 sizeof (ip_grpsrc_t)); 18354 18355 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18356 (char *)&ipst->ips_ip_mib, (int)sizeof (ipst->ips_ip_mib))) { 18357 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18358 "failed to allocate %u bytes\n", 18359 (uint_t)sizeof (ipst->ips_ip_mib))); 18360 } 18361 18362 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 18363 18364 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18365 ill = ILL_START_WALK_V4(&ctx, ipst); 18366 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18367 ill->ill_ip_mib->ipIfStatsIfIndex = 18368 ill->ill_phyint->phyint_ifindex; 18369 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 18370 (ipst->ips_ip_g_forward ? 1 : 2)); 18371 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 18372 (uint32_t)ipst->ips_ip_def_ttl); 18373 18374 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 18375 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18376 (char *)ill->ill_ip_mib, 18377 (int)sizeof (*ill->ill_ip_mib))) { 18378 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18379 "failed to allocate %u bytes\n", 18380 (uint_t)sizeof (*ill->ill_ip_mib))); 18381 } 18382 } 18383 rw_exit(&ipst->ips_ill_g_lock); 18384 18385 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18386 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18387 "level %d, name %d, len %d\n", 18388 (int)optp->level, (int)optp->name, (int)optp->len)); 18389 qreply(q, mpctl); 18390 18391 if (mp2ctl == NULL) 18392 return (NULL); 18393 18394 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst)); 18395 } 18396 18397 /* Global IPv4 ICMP statistics */ 18398 static mblk_t * 18399 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18400 { 18401 struct opthdr *optp; 18402 mblk_t *mp2ctl; 18403 18404 /* 18405 * Make a copy of the original message 18406 */ 18407 mp2ctl = copymsg(mpctl); 18408 18409 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18410 optp->level = MIB2_ICMP; 18411 optp->name = 0; 18412 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 18413 (int)sizeof (ipst->ips_icmp_mib))) { 18414 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 18415 (uint_t)sizeof (ipst->ips_icmp_mib))); 18416 } 18417 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18418 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 18419 (int)optp->level, (int)optp->name, (int)optp->len)); 18420 qreply(q, mpctl); 18421 return (mp2ctl); 18422 } 18423 18424 /* Global IPv4 IGMP statistics */ 18425 static mblk_t * 18426 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18427 { 18428 struct opthdr *optp; 18429 mblk_t *mp2ctl; 18430 18431 /* 18432 * make a copy of the original message 18433 */ 18434 mp2ctl = copymsg(mpctl); 18435 18436 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18437 optp->level = EXPER_IGMP; 18438 optp->name = 0; 18439 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 18440 (int)sizeof (ipst->ips_igmpstat))) { 18441 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 18442 (uint_t)sizeof (ipst->ips_igmpstat))); 18443 } 18444 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18445 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 18446 (int)optp->level, (int)optp->name, (int)optp->len)); 18447 qreply(q, mpctl); 18448 return (mp2ctl); 18449 } 18450 18451 /* Global IPv4 Multicast Routing statistics */ 18452 static mblk_t * 18453 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18454 { 18455 struct opthdr *optp; 18456 mblk_t *mp2ctl; 18457 18458 /* 18459 * make a copy of the original message 18460 */ 18461 mp2ctl = copymsg(mpctl); 18462 18463 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18464 optp->level = EXPER_DVMRP; 18465 optp->name = 0; 18466 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 18467 ip0dbg(("ip_mroute_stats: failed\n")); 18468 } 18469 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18470 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 18471 (int)optp->level, (int)optp->name, (int)optp->len)); 18472 qreply(q, mpctl); 18473 return (mp2ctl); 18474 } 18475 18476 /* IPv4 address information */ 18477 static mblk_t * 18478 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18479 { 18480 struct opthdr *optp; 18481 mblk_t *mp2ctl; 18482 mblk_t *mp_tail = NULL; 18483 ill_t *ill; 18484 ipif_t *ipif; 18485 uint_t bitval; 18486 mib2_ipAddrEntry_t mae; 18487 zoneid_t zoneid; 18488 ill_walk_context_t ctx; 18489 18490 /* 18491 * make a copy of the original message 18492 */ 18493 mp2ctl = copymsg(mpctl); 18494 18495 /* ipAddrEntryTable */ 18496 18497 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18498 optp->level = MIB2_IP; 18499 optp->name = MIB2_IP_ADDR; 18500 zoneid = Q_TO_CONN(q)->conn_zoneid; 18501 18502 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18503 ill = ILL_START_WALK_V4(&ctx, ipst); 18504 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18505 for (ipif = ill->ill_ipif; ipif != NULL; 18506 ipif = ipif->ipif_next) { 18507 if (ipif->ipif_zoneid != zoneid && 18508 ipif->ipif_zoneid != ALL_ZONES) 18509 continue; 18510 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18511 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18512 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18513 18514 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes, 18515 OCTET_LENGTH); 18516 mae.ipAdEntIfIndex.o_length = 18517 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 18518 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 18519 mae.ipAdEntNetMask = ipif->ipif_net_mask; 18520 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 18521 mae.ipAdEntInfo.ae_subnet_len = 18522 ip_mask_to_plen(ipif->ipif_net_mask); 18523 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 18524 for (bitval = 1; 18525 bitval && 18526 !(bitval & ipif->ipif_brd_addr); 18527 bitval <<= 1) 18528 noop; 18529 mae.ipAdEntBcastAddr = bitval; 18530 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 18531 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 18532 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 18533 mae.ipAdEntInfo.ae_broadcast_addr = 18534 ipif->ipif_brd_addr; 18535 mae.ipAdEntInfo.ae_pp_dst_addr = 18536 ipif->ipif_pp_dst_addr; 18537 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 18538 ill->ill_flags | ill->ill_phyint->phyint_flags; 18539 mae.ipAdEntRetransmitTime = AR_EQ_DEFAULT_XMIT_INTERVAL; 18540 18541 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18542 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 18543 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 18544 "allocate %u bytes\n", 18545 (uint_t)sizeof (mib2_ipAddrEntry_t))); 18546 } 18547 } 18548 } 18549 rw_exit(&ipst->ips_ill_g_lock); 18550 18551 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18552 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 18553 (int)optp->level, (int)optp->name, (int)optp->len)); 18554 qreply(q, mpctl); 18555 return (mp2ctl); 18556 } 18557 18558 /* IPv6 address information */ 18559 static mblk_t * 18560 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18561 { 18562 struct opthdr *optp; 18563 mblk_t *mp2ctl; 18564 mblk_t *mp_tail = NULL; 18565 ill_t *ill; 18566 ipif_t *ipif; 18567 mib2_ipv6AddrEntry_t mae6; 18568 zoneid_t zoneid; 18569 ill_walk_context_t ctx; 18570 18571 /* 18572 * make a copy of the original message 18573 */ 18574 mp2ctl = copymsg(mpctl); 18575 18576 /* ipv6AddrEntryTable */ 18577 18578 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18579 optp->level = MIB2_IP6; 18580 optp->name = MIB2_IP6_ADDR; 18581 zoneid = Q_TO_CONN(q)->conn_zoneid; 18582 18583 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18584 ill = ILL_START_WALK_V6(&ctx, ipst); 18585 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18586 for (ipif = ill->ill_ipif; ipif != NULL; 18587 ipif = ipif->ipif_next) { 18588 if (ipif->ipif_zoneid != zoneid && 18589 ipif->ipif_zoneid != ALL_ZONES) 18590 continue; 18591 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18592 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18593 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18594 18595 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes, 18596 OCTET_LENGTH); 18597 mae6.ipv6AddrIfIndex.o_length = 18598 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 18599 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 18600 mae6.ipv6AddrPfxLength = 18601 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 18602 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 18603 mae6.ipv6AddrInfo.ae_subnet_len = 18604 mae6.ipv6AddrPfxLength; 18605 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 18606 18607 /* Type: stateless(1), stateful(2), unknown(3) */ 18608 if (ipif->ipif_flags & IPIF_ADDRCONF) 18609 mae6.ipv6AddrType = 1; 18610 else 18611 mae6.ipv6AddrType = 2; 18612 /* Anycast: true(1), false(2) */ 18613 if (ipif->ipif_flags & IPIF_ANYCAST) 18614 mae6.ipv6AddrAnycastFlag = 1; 18615 else 18616 mae6.ipv6AddrAnycastFlag = 2; 18617 18618 /* 18619 * Address status: preferred(1), deprecated(2), 18620 * invalid(3), inaccessible(4), unknown(5) 18621 */ 18622 if (ipif->ipif_flags & IPIF_NOLOCAL) 18623 mae6.ipv6AddrStatus = 3; 18624 else if (ipif->ipif_flags & IPIF_DEPRECATED) 18625 mae6.ipv6AddrStatus = 2; 18626 else 18627 mae6.ipv6AddrStatus = 1; 18628 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 18629 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 18630 mae6.ipv6AddrInfo.ae_pp_dst_addr = 18631 ipif->ipif_v6pp_dst_addr; 18632 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 18633 ill->ill_flags | ill->ill_phyint->phyint_flags; 18634 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 18635 mae6.ipv6AddrIdentifier = ill->ill_token; 18636 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 18637 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 18638 mae6.ipv6AddrRetransmitTime = 18639 ill->ill_reachable_retrans_time; 18640 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18641 (char *)&mae6, 18642 (int)sizeof (mib2_ipv6AddrEntry_t))) { 18643 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 18644 "allocate %u bytes\n", 18645 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 18646 } 18647 } 18648 } 18649 rw_exit(&ipst->ips_ill_g_lock); 18650 18651 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18652 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 18653 (int)optp->level, (int)optp->name, (int)optp->len)); 18654 qreply(q, mpctl); 18655 return (mp2ctl); 18656 } 18657 18658 /* IPv4 multicast group membership. */ 18659 static mblk_t * 18660 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18661 { 18662 struct opthdr *optp; 18663 mblk_t *mp2ctl; 18664 ill_t *ill; 18665 ipif_t *ipif; 18666 ilm_t *ilm; 18667 ip_member_t ipm; 18668 mblk_t *mp_tail = NULL; 18669 ill_walk_context_t ctx; 18670 zoneid_t zoneid; 18671 18672 /* 18673 * make a copy of the original message 18674 */ 18675 mp2ctl = copymsg(mpctl); 18676 zoneid = Q_TO_CONN(q)->conn_zoneid; 18677 18678 /* ipGroupMember table */ 18679 optp = (struct opthdr *)&mpctl->b_rptr[ 18680 sizeof (struct T_optmgmt_ack)]; 18681 optp->level = MIB2_IP; 18682 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 18683 18684 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18685 ill = ILL_START_WALK_V4(&ctx, ipst); 18686 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18687 ILM_WALKER_HOLD(ill); 18688 for (ipif = ill->ill_ipif; ipif != NULL; 18689 ipif = ipif->ipif_next) { 18690 if (ipif->ipif_zoneid != zoneid && 18691 ipif->ipif_zoneid != ALL_ZONES) 18692 continue; /* not this zone */ 18693 ipif_get_name(ipif, ipm.ipGroupMemberIfIndex.o_bytes, 18694 OCTET_LENGTH); 18695 ipm.ipGroupMemberIfIndex.o_length = 18696 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 18697 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18698 ASSERT(ilm->ilm_ipif != NULL); 18699 ASSERT(ilm->ilm_ill == NULL); 18700 if (ilm->ilm_ipif != ipif) 18701 continue; 18702 ipm.ipGroupMemberAddress = ilm->ilm_addr; 18703 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 18704 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 18705 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18706 (char *)&ipm, (int)sizeof (ipm))) { 18707 ip1dbg(("ip_snmp_get_mib2_ip_group: " 18708 "failed to allocate %u bytes\n", 18709 (uint_t)sizeof (ipm))); 18710 } 18711 } 18712 } 18713 ILM_WALKER_RELE(ill); 18714 } 18715 rw_exit(&ipst->ips_ill_g_lock); 18716 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18717 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18718 (int)optp->level, (int)optp->name, (int)optp->len)); 18719 qreply(q, mpctl); 18720 return (mp2ctl); 18721 } 18722 18723 /* IPv6 multicast group membership. */ 18724 static mblk_t * 18725 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18726 { 18727 struct opthdr *optp; 18728 mblk_t *mp2ctl; 18729 ill_t *ill; 18730 ilm_t *ilm; 18731 ipv6_member_t ipm6; 18732 mblk_t *mp_tail = NULL; 18733 ill_walk_context_t ctx; 18734 zoneid_t zoneid; 18735 18736 /* 18737 * make a copy of the original message 18738 */ 18739 mp2ctl = copymsg(mpctl); 18740 zoneid = Q_TO_CONN(q)->conn_zoneid; 18741 18742 /* ip6GroupMember table */ 18743 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18744 optp->level = MIB2_IP6; 18745 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 18746 18747 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18748 ill = ILL_START_WALK_V6(&ctx, ipst); 18749 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18750 ILM_WALKER_HOLD(ill); 18751 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 18752 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18753 ASSERT(ilm->ilm_ipif == NULL); 18754 ASSERT(ilm->ilm_ill != NULL); 18755 if (ilm->ilm_zoneid != zoneid) 18756 continue; /* not this zone */ 18757 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 18758 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 18759 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 18760 if (!snmp_append_data2(mpctl->b_cont, 18761 &mp_tail, 18762 (char *)&ipm6, (int)sizeof (ipm6))) { 18763 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 18764 "failed to allocate %u bytes\n", 18765 (uint_t)sizeof (ipm6))); 18766 } 18767 } 18768 ILM_WALKER_RELE(ill); 18769 } 18770 rw_exit(&ipst->ips_ill_g_lock); 18771 18772 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18773 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18774 (int)optp->level, (int)optp->name, (int)optp->len)); 18775 qreply(q, mpctl); 18776 return (mp2ctl); 18777 } 18778 18779 /* IP multicast filtered sources */ 18780 static mblk_t * 18781 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18782 { 18783 struct opthdr *optp; 18784 mblk_t *mp2ctl; 18785 ill_t *ill; 18786 ipif_t *ipif; 18787 ilm_t *ilm; 18788 ip_grpsrc_t ips; 18789 mblk_t *mp_tail = NULL; 18790 ill_walk_context_t ctx; 18791 zoneid_t zoneid; 18792 int i; 18793 slist_t *sl; 18794 18795 /* 18796 * make a copy of the original message 18797 */ 18798 mp2ctl = copymsg(mpctl); 18799 zoneid = Q_TO_CONN(q)->conn_zoneid; 18800 18801 /* ipGroupSource table */ 18802 optp = (struct opthdr *)&mpctl->b_rptr[ 18803 sizeof (struct T_optmgmt_ack)]; 18804 optp->level = MIB2_IP; 18805 optp->name = EXPER_IP_GROUP_SOURCES; 18806 18807 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18808 ill = ILL_START_WALK_V4(&ctx, ipst); 18809 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18810 ILM_WALKER_HOLD(ill); 18811 for (ipif = ill->ill_ipif; ipif != NULL; 18812 ipif = ipif->ipif_next) { 18813 if (ipif->ipif_zoneid != zoneid) 18814 continue; /* not this zone */ 18815 ipif_get_name(ipif, ips.ipGroupSourceIfIndex.o_bytes, 18816 OCTET_LENGTH); 18817 ips.ipGroupSourceIfIndex.o_length = 18818 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 18819 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18820 ASSERT(ilm->ilm_ipif != NULL); 18821 ASSERT(ilm->ilm_ill == NULL); 18822 sl = ilm->ilm_filter; 18823 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 18824 continue; 18825 ips.ipGroupSourceGroup = ilm->ilm_addr; 18826 for (i = 0; i < sl->sl_numsrc; i++) { 18827 if (!IN6_IS_ADDR_V4MAPPED( 18828 &sl->sl_addr[i])) 18829 continue; 18830 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 18831 ips.ipGroupSourceAddress); 18832 if (snmp_append_data2(mpctl->b_cont, 18833 &mp_tail, (char *)&ips, 18834 (int)sizeof (ips)) == 0) { 18835 ip1dbg(("ip_snmp_get_mib2_" 18836 "ip_group_src: failed to " 18837 "allocate %u bytes\n", 18838 (uint_t)sizeof (ips))); 18839 } 18840 } 18841 } 18842 } 18843 ILM_WALKER_RELE(ill); 18844 } 18845 rw_exit(&ipst->ips_ill_g_lock); 18846 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18847 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18848 (int)optp->level, (int)optp->name, (int)optp->len)); 18849 qreply(q, mpctl); 18850 return (mp2ctl); 18851 } 18852 18853 /* IPv6 multicast filtered sources. */ 18854 static mblk_t * 18855 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18856 { 18857 struct opthdr *optp; 18858 mblk_t *mp2ctl; 18859 ill_t *ill; 18860 ilm_t *ilm; 18861 ipv6_grpsrc_t ips6; 18862 mblk_t *mp_tail = NULL; 18863 ill_walk_context_t ctx; 18864 zoneid_t zoneid; 18865 int i; 18866 slist_t *sl; 18867 18868 /* 18869 * make a copy of the original message 18870 */ 18871 mp2ctl = copymsg(mpctl); 18872 zoneid = Q_TO_CONN(q)->conn_zoneid; 18873 18874 /* ip6GroupMember table */ 18875 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18876 optp->level = MIB2_IP6; 18877 optp->name = EXPER_IP6_GROUP_SOURCES; 18878 18879 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18880 ill = ILL_START_WALK_V6(&ctx, ipst); 18881 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18882 ILM_WALKER_HOLD(ill); 18883 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 18884 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18885 ASSERT(ilm->ilm_ipif == NULL); 18886 ASSERT(ilm->ilm_ill != NULL); 18887 sl = ilm->ilm_filter; 18888 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 18889 continue; 18890 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 18891 for (i = 0; i < sl->sl_numsrc; i++) { 18892 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 18893 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18894 (char *)&ips6, (int)sizeof (ips6))) { 18895 ip1dbg(("ip_snmp_get_mib2_ip6_" 18896 "group_src: failed to allocate " 18897 "%u bytes\n", 18898 (uint_t)sizeof (ips6))); 18899 } 18900 } 18901 } 18902 ILM_WALKER_RELE(ill); 18903 } 18904 rw_exit(&ipst->ips_ill_g_lock); 18905 18906 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18907 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18908 (int)optp->level, (int)optp->name, (int)optp->len)); 18909 qreply(q, mpctl); 18910 return (mp2ctl); 18911 } 18912 18913 /* Multicast routing virtual interface table. */ 18914 static mblk_t * 18915 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18916 { 18917 struct opthdr *optp; 18918 mblk_t *mp2ctl; 18919 18920 /* 18921 * make a copy of the original message 18922 */ 18923 mp2ctl = copymsg(mpctl); 18924 18925 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18926 optp->level = EXPER_DVMRP; 18927 optp->name = EXPER_DVMRP_VIF; 18928 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 18929 ip0dbg(("ip_mroute_vif: failed\n")); 18930 } 18931 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18932 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 18933 (int)optp->level, (int)optp->name, (int)optp->len)); 18934 qreply(q, mpctl); 18935 return (mp2ctl); 18936 } 18937 18938 /* Multicast routing table. */ 18939 static mblk_t * 18940 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18941 { 18942 struct opthdr *optp; 18943 mblk_t *mp2ctl; 18944 18945 /* 18946 * make a copy of the original message 18947 */ 18948 mp2ctl = copymsg(mpctl); 18949 18950 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18951 optp->level = EXPER_DVMRP; 18952 optp->name = EXPER_DVMRP_MRT; 18953 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 18954 ip0dbg(("ip_mroute_mrt: failed\n")); 18955 } 18956 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18957 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 18958 (int)optp->level, (int)optp->name, (int)optp->len)); 18959 qreply(q, mpctl); 18960 return (mp2ctl); 18961 } 18962 18963 /* 18964 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 18965 * in one IRE walk. 18966 */ 18967 static mblk_t * 18968 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18969 { 18970 struct opthdr *optp; 18971 mblk_t *mp2ctl; /* Returned */ 18972 mblk_t *mp3ctl; /* nettomedia */ 18973 mblk_t *mp4ctl; /* routeattrs */ 18974 iproutedata_t ird; 18975 zoneid_t zoneid; 18976 18977 /* 18978 * make copies of the original message 18979 * - mp2ctl is returned unchanged to the caller for his use 18980 * - mpctl is sent upstream as ipRouteEntryTable 18981 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 18982 * - mp4ctl is sent upstream as ipRouteAttributeTable 18983 */ 18984 mp2ctl = copymsg(mpctl); 18985 mp3ctl = copymsg(mpctl); 18986 mp4ctl = copymsg(mpctl); 18987 if (mp3ctl == NULL || mp4ctl == NULL) { 18988 freemsg(mp4ctl); 18989 freemsg(mp3ctl); 18990 freemsg(mp2ctl); 18991 freemsg(mpctl); 18992 return (NULL); 18993 } 18994 18995 bzero(&ird, sizeof (ird)); 18996 18997 ird.ird_route.lp_head = mpctl->b_cont; 18998 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 18999 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19000 19001 zoneid = Q_TO_CONN(q)->conn_zoneid; 19002 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 19003 19004 /* ipRouteEntryTable in mpctl */ 19005 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19006 optp->level = MIB2_IP; 19007 optp->name = MIB2_IP_ROUTE; 19008 optp->len = msgdsize(ird.ird_route.lp_head); 19009 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19010 (int)optp->level, (int)optp->name, (int)optp->len)); 19011 qreply(q, mpctl); 19012 19013 /* ipNetToMediaEntryTable in mp3ctl */ 19014 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19015 optp->level = MIB2_IP; 19016 optp->name = MIB2_IP_MEDIA; 19017 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19018 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19019 (int)optp->level, (int)optp->name, (int)optp->len)); 19020 qreply(q, mp3ctl); 19021 19022 /* ipRouteAttributeTable in mp4ctl */ 19023 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19024 optp->level = MIB2_IP; 19025 optp->name = EXPER_IP_RTATTR; 19026 optp->len = msgdsize(ird.ird_attrs.lp_head); 19027 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19028 (int)optp->level, (int)optp->name, (int)optp->len)); 19029 if (optp->len == 0) 19030 freemsg(mp4ctl); 19031 else 19032 qreply(q, mp4ctl); 19033 19034 return (mp2ctl); 19035 } 19036 19037 /* 19038 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 19039 * ipv6NetToMediaEntryTable in an NDP walk. 19040 */ 19041 static mblk_t * 19042 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19043 { 19044 struct opthdr *optp; 19045 mblk_t *mp2ctl; /* Returned */ 19046 mblk_t *mp3ctl; /* nettomedia */ 19047 mblk_t *mp4ctl; /* routeattrs */ 19048 iproutedata_t ird; 19049 zoneid_t zoneid; 19050 19051 /* 19052 * make copies of the original message 19053 * - mp2ctl is returned unchanged to the caller for his use 19054 * - mpctl is sent upstream as ipv6RouteEntryTable 19055 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 19056 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 19057 */ 19058 mp2ctl = copymsg(mpctl); 19059 mp3ctl = copymsg(mpctl); 19060 mp4ctl = copymsg(mpctl); 19061 if (mp3ctl == NULL || mp4ctl == NULL) { 19062 freemsg(mp4ctl); 19063 freemsg(mp3ctl); 19064 freemsg(mp2ctl); 19065 freemsg(mpctl); 19066 return (NULL); 19067 } 19068 19069 bzero(&ird, sizeof (ird)); 19070 19071 ird.ird_route.lp_head = mpctl->b_cont; 19072 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19073 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19074 19075 zoneid = Q_TO_CONN(q)->conn_zoneid; 19076 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 19077 19078 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19079 optp->level = MIB2_IP6; 19080 optp->name = MIB2_IP6_ROUTE; 19081 optp->len = msgdsize(ird.ird_route.lp_head); 19082 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19083 (int)optp->level, (int)optp->name, (int)optp->len)); 19084 qreply(q, mpctl); 19085 19086 /* ipv6NetToMediaEntryTable in mp3ctl */ 19087 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 19088 19089 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19090 optp->level = MIB2_IP6; 19091 optp->name = MIB2_IP6_MEDIA; 19092 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19093 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19094 (int)optp->level, (int)optp->name, (int)optp->len)); 19095 qreply(q, mp3ctl); 19096 19097 /* ipv6RouteAttributeTable in mp4ctl */ 19098 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19099 optp->level = MIB2_IP6; 19100 optp->name = EXPER_IP_RTATTR; 19101 optp->len = msgdsize(ird.ird_attrs.lp_head); 19102 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19103 (int)optp->level, (int)optp->name, (int)optp->len)); 19104 if (optp->len == 0) 19105 freemsg(mp4ctl); 19106 else 19107 qreply(q, mp4ctl); 19108 19109 return (mp2ctl); 19110 } 19111 19112 /* 19113 * IPv6 mib: One per ill 19114 */ 19115 static mblk_t * 19116 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19117 { 19118 struct opthdr *optp; 19119 mblk_t *mp2ctl; 19120 ill_t *ill; 19121 ill_walk_context_t ctx; 19122 mblk_t *mp_tail = NULL; 19123 19124 /* 19125 * Make a copy of the original message 19126 */ 19127 mp2ctl = copymsg(mpctl); 19128 19129 /* fixed length IPv6 structure ... */ 19130 19131 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19132 optp->level = MIB2_IP6; 19133 optp->name = 0; 19134 /* Include "unknown interface" ip6_mib */ 19135 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 19136 ipst->ips_ip6_mib.ipIfStatsIfIndex = 19137 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 19138 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 19139 ipst->ips_ipv6_forward ? 1 : 2); 19140 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 19141 ipst->ips_ipv6_def_hops); 19142 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 19143 sizeof (mib2_ipIfStatsEntry_t)); 19144 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 19145 sizeof (mib2_ipv6AddrEntry_t)); 19146 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 19147 sizeof (mib2_ipv6RouteEntry_t)); 19148 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 19149 sizeof (mib2_ipv6NetToMediaEntry_t)); 19150 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 19151 sizeof (ipv6_member_t)); 19152 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 19153 sizeof (ipv6_grpsrc_t)); 19154 19155 /* 19156 * Synchronize 64- and 32-bit counters 19157 */ 19158 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 19159 ipIfStatsHCInReceives); 19160 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 19161 ipIfStatsHCInDelivers); 19162 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 19163 ipIfStatsHCOutRequests); 19164 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 19165 ipIfStatsHCOutForwDatagrams); 19166 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 19167 ipIfStatsHCOutMcastPkts); 19168 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 19169 ipIfStatsHCInMcastPkts); 19170 19171 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19172 (char *)&ipst->ips_ip6_mib, (int)sizeof (ipst->ips_ip6_mib))) { 19173 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 19174 (uint_t)sizeof (ipst->ips_ip6_mib))); 19175 } 19176 19177 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19178 ill = ILL_START_WALK_V6(&ctx, ipst); 19179 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19180 ill->ill_ip_mib->ipIfStatsIfIndex = 19181 ill->ill_phyint->phyint_ifindex; 19182 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 19183 ipst->ips_ipv6_forward ? 1 : 2); 19184 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 19185 ill->ill_max_hops); 19186 19187 /* 19188 * Synchronize 64- and 32-bit counters 19189 */ 19190 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 19191 ipIfStatsHCInReceives); 19192 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 19193 ipIfStatsHCInDelivers); 19194 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 19195 ipIfStatsHCOutRequests); 19196 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 19197 ipIfStatsHCOutForwDatagrams); 19198 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 19199 ipIfStatsHCOutMcastPkts); 19200 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 19201 ipIfStatsHCInMcastPkts); 19202 19203 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19204 (char *)ill->ill_ip_mib, 19205 (int)sizeof (*ill->ill_ip_mib))) { 19206 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 19207 "%u bytes\n", (uint_t)sizeof (*ill->ill_ip_mib))); 19208 } 19209 } 19210 rw_exit(&ipst->ips_ill_g_lock); 19211 19212 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19213 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 19214 (int)optp->level, (int)optp->name, (int)optp->len)); 19215 qreply(q, mpctl); 19216 return (mp2ctl); 19217 } 19218 19219 /* 19220 * ICMPv6 mib: One per ill 19221 */ 19222 static mblk_t * 19223 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19224 { 19225 struct opthdr *optp; 19226 mblk_t *mp2ctl; 19227 ill_t *ill; 19228 ill_walk_context_t ctx; 19229 mblk_t *mp_tail = NULL; 19230 /* 19231 * Make a copy of the original message 19232 */ 19233 mp2ctl = copymsg(mpctl); 19234 19235 /* fixed length ICMPv6 structure ... */ 19236 19237 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19238 optp->level = MIB2_ICMP6; 19239 optp->name = 0; 19240 /* Include "unknown interface" icmp6_mib */ 19241 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 19242 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 19243 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 19244 sizeof (mib2_ipv6IfIcmpEntry_t); 19245 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19246 (char *)&ipst->ips_icmp6_mib, 19247 (int)sizeof (ipst->ips_icmp6_mib))) { 19248 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 19249 (uint_t)sizeof (ipst->ips_icmp6_mib))); 19250 } 19251 19252 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19253 ill = ILL_START_WALK_V6(&ctx, ipst); 19254 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19255 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 19256 ill->ill_phyint->phyint_ifindex; 19257 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19258 (char *)ill->ill_icmp6_mib, 19259 (int)sizeof (*ill->ill_icmp6_mib))) { 19260 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 19261 "%u bytes\n", 19262 (uint_t)sizeof (*ill->ill_icmp6_mib))); 19263 } 19264 } 19265 rw_exit(&ipst->ips_ill_g_lock); 19266 19267 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19268 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 19269 (int)optp->level, (int)optp->name, (int)optp->len)); 19270 qreply(q, mpctl); 19271 return (mp2ctl); 19272 } 19273 19274 /* 19275 * ire_walk routine to create both ipRouteEntryTable and 19276 * ipRouteAttributeTable in one IRE walk 19277 */ 19278 static void 19279 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 19280 { 19281 ill_t *ill; 19282 ipif_t *ipif; 19283 mib2_ipRouteEntry_t *re; 19284 mib2_ipAttributeEntry_t *iae, *iaeptr; 19285 ipaddr_t gw_addr; 19286 tsol_ire_gw_secattr_t *attrp; 19287 tsol_gc_t *gc = NULL; 19288 tsol_gcgrp_t *gcgrp = NULL; 19289 uint_t sacnt = 0; 19290 int i; 19291 19292 ASSERT(ire->ire_ipversion == IPV4_VERSION); 19293 19294 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19295 return; 19296 19297 if ((attrp = ire->ire_gw_secattr) != NULL) { 19298 mutex_enter(&attrp->igsa_lock); 19299 if ((gc = attrp->igsa_gc) != NULL) { 19300 gcgrp = gc->gc_grp; 19301 ASSERT(gcgrp != NULL); 19302 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19303 sacnt = 1; 19304 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19305 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19306 gc = gcgrp->gcgrp_head; 19307 sacnt = gcgrp->gcgrp_count; 19308 } 19309 mutex_exit(&attrp->igsa_lock); 19310 19311 /* do nothing if there's no gc to report */ 19312 if (gc == NULL) { 19313 ASSERT(sacnt == 0); 19314 if (gcgrp != NULL) { 19315 /* we might as well drop the lock now */ 19316 rw_exit(&gcgrp->gcgrp_rwlock); 19317 gcgrp = NULL; 19318 } 19319 attrp = NULL; 19320 } 19321 19322 ASSERT(gc == NULL || (gcgrp != NULL && 19323 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19324 } 19325 ASSERT(sacnt == 0 || gc != NULL); 19326 19327 if (sacnt != 0 && 19328 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19329 kmem_free(re, sizeof (*re)); 19330 rw_exit(&gcgrp->gcgrp_rwlock); 19331 return; 19332 } 19333 19334 /* 19335 * Return all IRE types for route table... let caller pick and choose 19336 */ 19337 re->ipRouteDest = ire->ire_addr; 19338 ipif = ire->ire_ipif; 19339 re->ipRouteIfIndex.o_length = 0; 19340 if (ire->ire_type == IRE_CACHE) { 19341 ill = (ill_t *)ire->ire_stq->q_ptr; 19342 re->ipRouteIfIndex.o_length = 19343 ill->ill_name_length == 0 ? 0 : 19344 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19345 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 19346 re->ipRouteIfIndex.o_length); 19347 } else if (ipif != NULL) { 19348 ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH); 19349 re->ipRouteIfIndex.o_length = 19350 mi_strlen(re->ipRouteIfIndex.o_bytes); 19351 } 19352 re->ipRouteMetric1 = -1; 19353 re->ipRouteMetric2 = -1; 19354 re->ipRouteMetric3 = -1; 19355 re->ipRouteMetric4 = -1; 19356 19357 gw_addr = ire->ire_gateway_addr; 19358 19359 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 19360 re->ipRouteNextHop = ire->ire_src_addr; 19361 else 19362 re->ipRouteNextHop = gw_addr; 19363 /* indirect(4), direct(3), or invalid(2) */ 19364 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19365 re->ipRouteType = 2; 19366 else 19367 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 19368 re->ipRouteProto = -1; 19369 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 19370 re->ipRouteMask = ire->ire_mask; 19371 re->ipRouteMetric5 = -1; 19372 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 19373 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 19374 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19375 re->ipRouteInfo.re_ref = ire->ire_refcnt; 19376 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 19377 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19378 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19379 re->ipRouteInfo.re_flags = ire->ire_flags; 19380 19381 if (ire->ire_flags & RTF_DYNAMIC) { 19382 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19383 } else { 19384 re->ipRouteInfo.re_ire_type = ire->ire_type; 19385 } 19386 19387 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19388 (char *)re, (int)sizeof (*re))) { 19389 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19390 (uint_t)sizeof (*re))); 19391 } 19392 19393 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19394 iaeptr->iae_routeidx = ird->ird_idx; 19395 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19396 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19397 } 19398 19399 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19400 (char *)iae, sacnt * sizeof (*iae))) { 19401 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19402 (unsigned)(sacnt * sizeof (*iae)))); 19403 } 19404 19405 /* bump route index for next pass */ 19406 ird->ird_idx++; 19407 19408 kmem_free(re, sizeof (*re)); 19409 if (sacnt != 0) 19410 kmem_free(iae, sacnt * sizeof (*iae)); 19411 19412 if (gcgrp != NULL) 19413 rw_exit(&gcgrp->gcgrp_rwlock); 19414 } 19415 19416 /* 19417 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 19418 */ 19419 static void 19420 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 19421 { 19422 ill_t *ill; 19423 ipif_t *ipif; 19424 mib2_ipv6RouteEntry_t *re; 19425 mib2_ipAttributeEntry_t *iae, *iaeptr; 19426 in6_addr_t gw_addr_v6; 19427 tsol_ire_gw_secattr_t *attrp; 19428 tsol_gc_t *gc = NULL; 19429 tsol_gcgrp_t *gcgrp = NULL; 19430 uint_t sacnt = 0; 19431 int i; 19432 19433 ASSERT(ire->ire_ipversion == IPV6_VERSION); 19434 19435 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19436 return; 19437 19438 if ((attrp = ire->ire_gw_secattr) != NULL) { 19439 mutex_enter(&attrp->igsa_lock); 19440 if ((gc = attrp->igsa_gc) != NULL) { 19441 gcgrp = gc->gc_grp; 19442 ASSERT(gcgrp != NULL); 19443 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19444 sacnt = 1; 19445 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19446 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19447 gc = gcgrp->gcgrp_head; 19448 sacnt = gcgrp->gcgrp_count; 19449 } 19450 mutex_exit(&attrp->igsa_lock); 19451 19452 /* do nothing if there's no gc to report */ 19453 if (gc == NULL) { 19454 ASSERT(sacnt == 0); 19455 if (gcgrp != NULL) { 19456 /* we might as well drop the lock now */ 19457 rw_exit(&gcgrp->gcgrp_rwlock); 19458 gcgrp = NULL; 19459 } 19460 attrp = NULL; 19461 } 19462 19463 ASSERT(gc == NULL || (gcgrp != NULL && 19464 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19465 } 19466 ASSERT(sacnt == 0 || gc != NULL); 19467 19468 if (sacnt != 0 && 19469 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19470 kmem_free(re, sizeof (*re)); 19471 rw_exit(&gcgrp->gcgrp_rwlock); 19472 return; 19473 } 19474 19475 /* 19476 * Return all IRE types for route table... let caller pick and choose 19477 */ 19478 re->ipv6RouteDest = ire->ire_addr_v6; 19479 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 19480 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 19481 re->ipv6RouteIfIndex.o_length = 0; 19482 ipif = ire->ire_ipif; 19483 if (ire->ire_type == IRE_CACHE) { 19484 ill = (ill_t *)ire->ire_stq->q_ptr; 19485 re->ipv6RouteIfIndex.o_length = 19486 ill->ill_name_length == 0 ? 0 : 19487 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19488 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 19489 re->ipv6RouteIfIndex.o_length); 19490 } else if (ipif != NULL) { 19491 ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH); 19492 re->ipv6RouteIfIndex.o_length = 19493 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 19494 } 19495 19496 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19497 19498 mutex_enter(&ire->ire_lock); 19499 gw_addr_v6 = ire->ire_gateway_addr_v6; 19500 mutex_exit(&ire->ire_lock); 19501 19502 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 19503 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 19504 else 19505 re->ipv6RouteNextHop = gw_addr_v6; 19506 19507 /* remote(4), local(3), or discard(2) */ 19508 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19509 re->ipv6RouteType = 2; 19510 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 19511 re->ipv6RouteType = 3; 19512 else 19513 re->ipv6RouteType = 4; 19514 19515 re->ipv6RouteProtocol = -1; 19516 re->ipv6RoutePolicy = 0; 19517 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 19518 re->ipv6RouteNextHopRDI = 0; 19519 re->ipv6RouteWeight = 0; 19520 re->ipv6RouteMetric = 0; 19521 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 19522 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 19523 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19524 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 19525 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19526 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19527 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 19528 re->ipv6RouteInfo.re_flags = ire->ire_flags; 19529 19530 if (ire->ire_flags & RTF_DYNAMIC) { 19531 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19532 } else { 19533 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 19534 } 19535 19536 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19537 (char *)re, (int)sizeof (*re))) { 19538 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19539 (uint_t)sizeof (*re))); 19540 } 19541 19542 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19543 iaeptr->iae_routeidx = ird->ird_idx; 19544 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19545 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19546 } 19547 19548 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19549 (char *)iae, sacnt * sizeof (*iae))) { 19550 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19551 (unsigned)(sacnt * sizeof (*iae)))); 19552 } 19553 19554 /* bump route index for next pass */ 19555 ird->ird_idx++; 19556 19557 kmem_free(re, sizeof (*re)); 19558 if (sacnt != 0) 19559 kmem_free(iae, sacnt * sizeof (*iae)); 19560 19561 if (gcgrp != NULL) 19562 rw_exit(&gcgrp->gcgrp_rwlock); 19563 } 19564 19565 /* 19566 * ndp_walk routine to create ipv6NetToMediaEntryTable 19567 */ 19568 static int 19569 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 19570 { 19571 ill_t *ill; 19572 mib2_ipv6NetToMediaEntry_t ntme; 19573 dl_unitdata_req_t *dl; 19574 19575 ill = nce->nce_ill; 19576 if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */ 19577 return (0); 19578 19579 /* 19580 * Neighbor cache entry attached to IRE with on-link 19581 * destination. 19582 */ 19583 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 19584 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 19585 if ((ill->ill_flags & ILLF_XRESOLV) && 19586 (nce->nce_res_mp != NULL)) { 19587 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 19588 ntme.ipv6NetToMediaPhysAddress.o_length = 19589 dl->dl_dest_addr_length; 19590 } else { 19591 ntme.ipv6NetToMediaPhysAddress.o_length = 19592 ill->ill_phys_addr_length; 19593 } 19594 if (nce->nce_res_mp != NULL) { 19595 bcopy((char *)nce->nce_res_mp->b_rptr + 19596 NCE_LL_ADDR_OFFSET(ill), 19597 ntme.ipv6NetToMediaPhysAddress.o_bytes, 19598 ntme.ipv6NetToMediaPhysAddress.o_length); 19599 } else { 19600 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 19601 ill->ill_phys_addr_length); 19602 } 19603 /* 19604 * Note: Returns ND_* states. Should be: 19605 * reachable(1), stale(2), delay(3), probe(4), 19606 * invalid(5), unknown(6) 19607 */ 19608 ntme.ipv6NetToMediaState = nce->nce_state; 19609 ntme.ipv6NetToMediaLastUpdated = 0; 19610 19611 /* other(1), dynamic(2), static(3), local(4) */ 19612 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 19613 ntme.ipv6NetToMediaType = 4; 19614 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 19615 ntme.ipv6NetToMediaType = 1; 19616 } else { 19617 ntme.ipv6NetToMediaType = 2; 19618 } 19619 19620 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 19621 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 19622 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 19623 (uint_t)sizeof (ntme))); 19624 } 19625 return (0); 19626 } 19627 19628 /* 19629 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 19630 */ 19631 /* ARGSUSED */ 19632 int 19633 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 19634 { 19635 switch (level) { 19636 case MIB2_IP: 19637 case MIB2_ICMP: 19638 switch (name) { 19639 default: 19640 break; 19641 } 19642 return (1); 19643 default: 19644 return (1); 19645 } 19646 } 19647 19648 /* 19649 * When there exists both a 64- and 32-bit counter of a particular type 19650 * (i.e., InReceives), only the 64-bit counters are added. 19651 */ 19652 void 19653 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 19654 { 19655 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 19656 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 19657 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 19658 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 19659 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 19660 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 19661 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 19662 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 19663 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 19664 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 19665 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 19666 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 19667 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 19668 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 19669 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 19670 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 19671 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 19672 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 19673 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 19674 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 19675 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 19676 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 19677 o2->ipIfStatsInWrongIPVersion); 19678 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 19679 o2->ipIfStatsInWrongIPVersion); 19680 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 19681 o2->ipIfStatsOutSwitchIPVersion); 19682 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 19683 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 19684 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 19685 o2->ipIfStatsHCInForwDatagrams); 19686 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 19687 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 19688 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 19689 o2->ipIfStatsHCOutForwDatagrams); 19690 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 19691 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 19692 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 19693 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 19694 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 19695 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 19696 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 19697 o2->ipIfStatsHCOutMcastOctets); 19698 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 19699 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 19700 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 19701 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 19702 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 19703 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 19704 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 19705 } 19706 19707 void 19708 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 19709 { 19710 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 19711 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 19712 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 19713 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 19714 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 19715 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 19716 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 19717 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 19718 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 19719 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 19720 o2->ipv6IfIcmpInRouterSolicits); 19721 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 19722 o2->ipv6IfIcmpInRouterAdvertisements); 19723 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 19724 o2->ipv6IfIcmpInNeighborSolicits); 19725 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 19726 o2->ipv6IfIcmpInNeighborAdvertisements); 19727 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 19728 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 19729 o2->ipv6IfIcmpInGroupMembQueries); 19730 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 19731 o2->ipv6IfIcmpInGroupMembResponses); 19732 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 19733 o2->ipv6IfIcmpInGroupMembReductions); 19734 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 19735 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 19736 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 19737 o2->ipv6IfIcmpOutDestUnreachs); 19738 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 19739 o2->ipv6IfIcmpOutAdminProhibs); 19740 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 19741 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 19742 o2->ipv6IfIcmpOutParmProblems); 19743 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 19744 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 19745 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 19746 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 19747 o2->ipv6IfIcmpOutRouterSolicits); 19748 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 19749 o2->ipv6IfIcmpOutRouterAdvertisements); 19750 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 19751 o2->ipv6IfIcmpOutNeighborSolicits); 19752 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 19753 o2->ipv6IfIcmpOutNeighborAdvertisements); 19754 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 19755 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 19756 o2->ipv6IfIcmpOutGroupMembQueries); 19757 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 19758 o2->ipv6IfIcmpOutGroupMembResponses); 19759 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 19760 o2->ipv6IfIcmpOutGroupMembReductions); 19761 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 19762 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 19763 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 19764 o2->ipv6IfIcmpInBadNeighborAdvertisements); 19765 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 19766 o2->ipv6IfIcmpInBadNeighborSolicitations); 19767 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 19768 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 19769 o2->ipv6IfIcmpInGroupMembTotal); 19770 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 19771 o2->ipv6IfIcmpInGroupMembBadQueries); 19772 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 19773 o2->ipv6IfIcmpInGroupMembBadReports); 19774 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 19775 o2->ipv6IfIcmpInGroupMembOurReports); 19776 } 19777 19778 /* 19779 * Called before the options are updated to check if this packet will 19780 * be source routed from here. 19781 * This routine assumes that the options are well formed i.e. that they 19782 * have already been checked. 19783 */ 19784 static boolean_t 19785 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 19786 { 19787 ipoptp_t opts; 19788 uchar_t *opt; 19789 uint8_t optval; 19790 uint8_t optlen; 19791 ipaddr_t dst; 19792 ire_t *ire; 19793 19794 if (IS_SIMPLE_IPH(ipha)) { 19795 ip2dbg(("not source routed\n")); 19796 return (B_FALSE); 19797 } 19798 dst = ipha->ipha_dst; 19799 for (optval = ipoptp_first(&opts, ipha); 19800 optval != IPOPT_EOL; 19801 optval = ipoptp_next(&opts)) { 19802 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 19803 opt = opts.ipoptp_cur; 19804 optlen = opts.ipoptp_len; 19805 ip2dbg(("ip_source_routed: opt %d, len %d\n", 19806 optval, optlen)); 19807 switch (optval) { 19808 uint32_t off; 19809 case IPOPT_SSRR: 19810 case IPOPT_LSRR: 19811 /* 19812 * If dst is one of our addresses and there are some 19813 * entries left in the source route return (true). 19814 */ 19815 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 19816 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 19817 if (ire == NULL) { 19818 ip2dbg(("ip_source_routed: not next" 19819 " source route 0x%x\n", 19820 ntohl(dst))); 19821 return (B_FALSE); 19822 } 19823 ire_refrele(ire); 19824 off = opt[IPOPT_OFFSET]; 19825 off--; 19826 if (optlen < IP_ADDR_LEN || 19827 off > optlen - IP_ADDR_LEN) { 19828 /* End of source route */ 19829 ip1dbg(("ip_source_routed: end of SR\n")); 19830 return (B_FALSE); 19831 } 19832 return (B_TRUE); 19833 } 19834 } 19835 ip2dbg(("not source routed\n")); 19836 return (B_FALSE); 19837 } 19838 19839 /* 19840 * Check if the packet contains any source route. 19841 */ 19842 static boolean_t 19843 ip_source_route_included(ipha_t *ipha) 19844 { 19845 ipoptp_t opts; 19846 uint8_t optval; 19847 19848 if (IS_SIMPLE_IPH(ipha)) 19849 return (B_FALSE); 19850 for (optval = ipoptp_first(&opts, ipha); 19851 optval != IPOPT_EOL; 19852 optval = ipoptp_next(&opts)) { 19853 switch (optval) { 19854 case IPOPT_SSRR: 19855 case IPOPT_LSRR: 19856 return (B_TRUE); 19857 } 19858 } 19859 return (B_FALSE); 19860 } 19861 19862 /* 19863 * Called when the IRE expiration timer fires. 19864 */ 19865 void 19866 ip_trash_timer_expire(void *args) 19867 { 19868 int flush_flag = 0; 19869 ire_expire_arg_t iea; 19870 ip_stack_t *ipst = (ip_stack_t *)args; 19871 19872 iea.iea_ipst = ipst; /* No netstack_hold */ 19873 19874 /* 19875 * ip_ire_expire_id is protected by ip_trash_timer_lock. 19876 * This lock makes sure that a new invocation of this function 19877 * that occurs due to an almost immediate timer firing will not 19878 * progress beyond this point until the current invocation is done 19879 */ 19880 mutex_enter(&ipst->ips_ip_trash_timer_lock); 19881 ipst->ips_ip_ire_expire_id = 0; 19882 mutex_exit(&ipst->ips_ip_trash_timer_lock); 19883 19884 /* Periodic timer */ 19885 if (ipst->ips_ip_ire_arp_time_elapsed >= 19886 ipst->ips_ip_ire_arp_interval) { 19887 /* 19888 * Remove all IRE_CACHE entries since they might 19889 * contain arp information. 19890 */ 19891 flush_flag |= FLUSH_ARP_TIME; 19892 ipst->ips_ip_ire_arp_time_elapsed = 0; 19893 IP_STAT(ipst, ip_ire_arp_timer_expired); 19894 } 19895 if (ipst->ips_ip_ire_rd_time_elapsed >= 19896 ipst->ips_ip_ire_redir_interval) { 19897 /* Remove all redirects */ 19898 flush_flag |= FLUSH_REDIRECT_TIME; 19899 ipst->ips_ip_ire_rd_time_elapsed = 0; 19900 IP_STAT(ipst, ip_ire_redirect_timer_expired); 19901 } 19902 if (ipst->ips_ip_ire_pmtu_time_elapsed >= 19903 ipst->ips_ip_ire_pathmtu_interval) { 19904 /* Increase path mtu */ 19905 flush_flag |= FLUSH_MTU_TIME; 19906 ipst->ips_ip_ire_pmtu_time_elapsed = 0; 19907 IP_STAT(ipst, ip_ire_pmtu_timer_expired); 19908 } 19909 19910 /* 19911 * Optimize for the case when there are no redirects in the 19912 * ftable, that is, no need to walk the ftable in that case. 19913 */ 19914 if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) { 19915 iea.iea_flush_flag = flush_flag; 19916 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire, 19917 (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 0, NULL, 19918 ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table, 19919 NULL, ALL_ZONES, ipst); 19920 } 19921 if ((flush_flag & FLUSH_REDIRECT_TIME) && 19922 ipst->ips_ip_redirect_cnt > 0) { 19923 iea.iea_flush_flag = flush_flag; 19924 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE, 19925 ire_expire, (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 19926 0, NULL, 0, NULL, NULL, ALL_ZONES, ipst); 19927 } 19928 if (flush_flag & FLUSH_MTU_TIME) { 19929 /* 19930 * Walk all IPv6 IRE's and update them 19931 * Note that ARP and redirect timers are not 19932 * needed since NUD handles stale entries. 19933 */ 19934 flush_flag = FLUSH_MTU_TIME; 19935 iea.iea_flush_flag = flush_flag; 19936 ire_walk_v6(ire_expire, (char *)(uintptr_t)&iea, 19937 ALL_ZONES, ipst); 19938 } 19939 19940 ipst->ips_ip_ire_arp_time_elapsed += ipst->ips_ip_timer_interval; 19941 ipst->ips_ip_ire_rd_time_elapsed += ipst->ips_ip_timer_interval; 19942 ipst->ips_ip_ire_pmtu_time_elapsed += ipst->ips_ip_timer_interval; 19943 19944 /* 19945 * Hold the lock to serialize timeout calls and prevent 19946 * stale values in ip_ire_expire_id. Otherwise it is possible 19947 * for the timer to fire and a new invocation of this function 19948 * to start before the return value of timeout has been stored 19949 * in ip_ire_expire_id by the current invocation. 19950 */ 19951 mutex_enter(&ipst->ips_ip_trash_timer_lock); 19952 ipst->ips_ip_ire_expire_id = timeout(ip_trash_timer_expire, 19953 (void *)ipst, MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 19954 mutex_exit(&ipst->ips_ip_trash_timer_lock); 19955 } 19956 19957 /* 19958 * Called by the memory allocator subsystem directly, when the system 19959 * is running low on memory. 19960 */ 19961 /* ARGSUSED */ 19962 void 19963 ip_trash_ire_reclaim(void *args) 19964 { 19965 netstack_handle_t nh; 19966 netstack_t *ns; 19967 19968 netstack_next_init(&nh); 19969 while ((ns = netstack_next(&nh)) != NULL) { 19970 ip_trash_ire_reclaim_stack(ns->netstack_ip); 19971 netstack_rele(ns); 19972 } 19973 netstack_next_fini(&nh); 19974 } 19975 19976 static void 19977 ip_trash_ire_reclaim_stack(ip_stack_t *ipst) 19978 { 19979 ire_cache_count_t icc; 19980 ire_cache_reclaim_t icr; 19981 ncc_cache_count_t ncc; 19982 nce_cache_reclaim_t ncr; 19983 uint_t delete_cnt; 19984 /* 19985 * Memory reclaim call back. 19986 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 19987 * Then, with a target of freeing 1/Nth of IRE_CACHE 19988 * entries, determine what fraction to free for 19989 * each category of IRE_CACHE entries giving absolute priority 19990 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 19991 * entry will be freed unless all offlink entries are freed). 19992 */ 19993 icc.icc_total = 0; 19994 icc.icc_unused = 0; 19995 icc.icc_offlink = 0; 19996 icc.icc_pmtu = 0; 19997 icc.icc_onlink = 0; 19998 ire_walk(ire_cache_count, (char *)&icc, ipst); 19999 20000 /* 20001 * Free NCEs for IPv6 like the onlink ires. 20002 */ 20003 ncc.ncc_total = 0; 20004 ncc.ncc_host = 0; 20005 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc, ipst); 20006 20007 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 20008 icc.icc_pmtu + icc.icc_onlink); 20009 delete_cnt = icc.icc_total/ipst->ips_ip_ire_reclaim_fraction; 20010 IP_STAT(ipst, ip_trash_ire_reclaim_calls); 20011 if (delete_cnt == 0) 20012 return; 20013 IP_STAT(ipst, ip_trash_ire_reclaim_success); 20014 /* Always delete all unused offlink entries */ 20015 icr.icr_ipst = ipst; 20016 icr.icr_unused = 1; 20017 if (delete_cnt <= icc.icc_unused) { 20018 /* 20019 * Only need to free unused entries. In other words, 20020 * there are enough unused entries to free to meet our 20021 * target number of freed ire cache entries. 20022 */ 20023 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 20024 ncr.ncr_host = 0; 20025 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 20026 /* 20027 * Only need to free unused entries, plus a fraction of offlink 20028 * entries. It follows from the first if statement that 20029 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 20030 */ 20031 delete_cnt -= icc.icc_unused; 20032 /* Round up # deleted by truncating fraction */ 20033 icr.icr_offlink = icc.icc_offlink / delete_cnt; 20034 icr.icr_pmtu = icr.icr_onlink = 0; 20035 ncr.ncr_host = 0; 20036 } else if (delete_cnt <= 20037 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 20038 /* 20039 * Free all unused and offlink entries, plus a fraction of 20040 * pmtu entries. It follows from the previous if statement 20041 * that icc_pmtu is non-zero, and that 20042 * delete_cnt != icc_unused + icc_offlink. 20043 */ 20044 icr.icr_offlink = 1; 20045 delete_cnt -= icc.icc_unused + icc.icc_offlink; 20046 /* Round up # deleted by truncating fraction */ 20047 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 20048 icr.icr_onlink = 0; 20049 ncr.ncr_host = 0; 20050 } else { 20051 /* 20052 * Free all unused, offlink, and pmtu entries, plus a fraction 20053 * of onlink entries. If we're here, then we know that 20054 * icc_onlink is non-zero, and that 20055 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 20056 */ 20057 icr.icr_offlink = icr.icr_pmtu = 1; 20058 delete_cnt -= icc.icc_unused + icc.icc_offlink + 20059 icc.icc_pmtu; 20060 /* Round up # deleted by truncating fraction */ 20061 icr.icr_onlink = icc.icc_onlink / delete_cnt; 20062 /* Using the same delete fraction as for onlink IREs */ 20063 ncr.ncr_host = ncc.ncc_host / delete_cnt; 20064 } 20065 #ifdef DEBUG 20066 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 20067 "fractions %d/%d/%d/%d\n", 20068 icc.icc_total/ipst->ips_ip_ire_reclaim_fraction, icc.icc_total, 20069 icc.icc_unused, icc.icc_offlink, 20070 icc.icc_pmtu, icc.icc_onlink, 20071 icr.icr_unused, icr.icr_offlink, 20072 icr.icr_pmtu, icr.icr_onlink)); 20073 #endif 20074 ire_walk(ire_cache_reclaim, (char *)&icr, ipst); 20075 if (ncr.ncr_host != 0) 20076 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 20077 (uchar_t *)&ncr, ipst); 20078 #ifdef DEBUG 20079 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 20080 icc.icc_pmtu = 0; icc.icc_onlink = 0; 20081 ire_walk(ire_cache_count, (char *)&icc, ipst); 20082 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 20083 icc.icc_total, icc.icc_unused, icc.icc_offlink, 20084 icc.icc_pmtu, icc.icc_onlink)); 20085 #endif 20086 } 20087 20088 /* 20089 * ip_unbind is called when a copy of an unbind request is received from the 20090 * upper level protocol. We remove this conn from any fanout hash list it is 20091 * on, and zero out the bind information. No reply is expected up above. 20092 */ 20093 mblk_t * 20094 ip_unbind(queue_t *q, mblk_t *mp) 20095 { 20096 conn_t *connp = Q_TO_CONN(q); 20097 20098 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 20099 20100 if (is_system_labeled() && connp->conn_anon_port) { 20101 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 20102 connp->conn_mlp_type, connp->conn_ulp, 20103 ntohs(connp->conn_lport), B_FALSE); 20104 connp->conn_anon_port = 0; 20105 } 20106 connp->conn_mlp_type = mlptSingle; 20107 20108 ipcl_hash_remove(connp); 20109 20110 ASSERT(mp->b_cont == NULL); 20111 /* 20112 * Convert mp into a T_OK_ACK 20113 */ 20114 mp = mi_tpi_ok_ack_alloc(mp); 20115 20116 /* 20117 * should not happen in practice... T_OK_ACK is smaller than the 20118 * original message. 20119 */ 20120 if (mp == NULL) 20121 return (NULL); 20122 20123 return (mp); 20124 } 20125 20126 /* 20127 * Write side put procedure. Outbound data, IOCTLs, responses from 20128 * resolvers, etc, come down through here. 20129 * 20130 * arg2 is always a queue_t *. 20131 * When that queue is an ill_t (i.e. q_next != NULL), then arg must be 20132 * the zoneid. 20133 * When that queue is not an ill_t, then arg must be a conn_t pointer. 20134 */ 20135 void 20136 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 20137 { 20138 ip_output_options(arg, mp, arg2, caller, &zero_info); 20139 } 20140 20141 void 20142 ip_output_options(void *arg, mblk_t *mp, void *arg2, int caller, 20143 ip_opt_info_t *infop) 20144 { 20145 conn_t *connp = NULL; 20146 queue_t *q = (queue_t *)arg2; 20147 ipha_t *ipha; 20148 #define rptr ((uchar_t *)ipha) 20149 ire_t *ire = NULL; 20150 ire_t *sctp_ire = NULL; 20151 uint32_t v_hlen_tos_len; 20152 ipaddr_t dst; 20153 mblk_t *first_mp = NULL; 20154 boolean_t mctl_present; 20155 ipsec_out_t *io; 20156 int match_flags; 20157 ill_t *attach_ill = NULL; 20158 /* Bind to IPIF_NOFAILOVER ill etc. */ 20159 ill_t *xmit_ill = NULL; /* IP_PKTINFO etc. */ 20160 ipif_t *dst_ipif; 20161 boolean_t multirt_need_resolve = B_FALSE; 20162 mblk_t *copy_mp = NULL; 20163 int err; 20164 zoneid_t zoneid; 20165 boolean_t need_decref = B_FALSE; 20166 boolean_t ignore_dontroute = B_FALSE; 20167 boolean_t ignore_nexthop = B_FALSE; 20168 boolean_t ip_nexthop = B_FALSE; 20169 ipaddr_t nexthop_addr; 20170 ip_stack_t *ipst; 20171 20172 #ifdef _BIG_ENDIAN 20173 #define V_HLEN (v_hlen_tos_len >> 24) 20174 #else 20175 #define V_HLEN (v_hlen_tos_len & 0xFF) 20176 #endif 20177 20178 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 20179 "ip_wput_start: q %p", q); 20180 20181 /* 20182 * ip_wput fast path 20183 */ 20184 20185 /* is packet from ARP ? */ 20186 if (q->q_next != NULL) { 20187 zoneid = (zoneid_t)(uintptr_t)arg; 20188 goto qnext; 20189 } 20190 20191 connp = (conn_t *)arg; 20192 ASSERT(connp != NULL); 20193 zoneid = connp->conn_zoneid; 20194 ipst = connp->conn_netstack->netstack_ip; 20195 20196 /* is queue flow controlled? */ 20197 if ((q->q_first != NULL || connp->conn_draining) && 20198 (caller == IP_WPUT)) { 20199 ASSERT(!need_decref); 20200 (void) putq(q, mp); 20201 return; 20202 } 20203 20204 /* Multidata transmit? */ 20205 if (DB_TYPE(mp) == M_MULTIDATA) { 20206 /* 20207 * We should never get here, since all Multidata messages 20208 * originating from tcp should have been directed over to 20209 * tcp_multisend() in the first place. 20210 */ 20211 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20212 freemsg(mp); 20213 return; 20214 } else if (DB_TYPE(mp) != M_DATA) 20215 goto notdata; 20216 20217 if (mp->b_flag & MSGHASREF) { 20218 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20219 mp->b_flag &= ~MSGHASREF; 20220 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 20221 need_decref = B_TRUE; 20222 } 20223 ipha = (ipha_t *)mp->b_rptr; 20224 20225 /* is IP header non-aligned or mblk smaller than basic IP header */ 20226 #ifndef SAFETY_BEFORE_SPEED 20227 if (!OK_32PTR(rptr) || 20228 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 20229 goto hdrtoosmall; 20230 #endif 20231 20232 ASSERT(OK_32PTR(ipha)); 20233 20234 /* 20235 * This function assumes that mp points to an IPv4 packet. If it's the 20236 * wrong version, we'll catch it again in ip_output_v6. 20237 * 20238 * Note that this is *only* locally-generated output here, and never 20239 * forwarded data, and that we need to deal only with transports that 20240 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 20241 * label.) 20242 */ 20243 if (is_system_labeled() && 20244 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 20245 !connp->conn_ulp_labeled) { 20246 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 20247 connp->conn_mac_exempt, ipst); 20248 ipha = (ipha_t *)mp->b_rptr; 20249 if (err != 0) { 20250 first_mp = mp; 20251 if (err == EINVAL) 20252 goto icmp_parameter_problem; 20253 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 20254 goto discard_pkt; 20255 } 20256 } 20257 20258 ASSERT(infop != NULL); 20259 20260 if (infop->ip_opt_flags & IP_VERIFY_SRC) { 20261 /* 20262 * IP_PKTINFO ancillary option is present. 20263 * IPCL_ZONEID is used to honor IP_ALLZONES option which 20264 * allows using address of any zone as the source address. 20265 */ 20266 ire = ire_ctable_lookup(ipha->ipha_src, 0, 20267 (IRE_LOCAL|IRE_LOOPBACK), NULL, IPCL_ZONEID(connp), 20268 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 20269 if (ire == NULL) 20270 goto drop_pkt; 20271 ire_refrele(ire); 20272 ire = NULL; 20273 } 20274 20275 /* 20276 * IP_DONTFAILOVER_IF and IP_BOUND_IF have precedence over ill index 20277 * passed in IP_PKTINFO. 20278 */ 20279 if (infop->ip_opt_ill_index != 0 && 20280 connp->conn_outgoing_ill == NULL && 20281 connp->conn_nofailover_ill == NULL) { 20282 20283 xmit_ill = ill_lookup_on_ifindex( 20284 infop->ip_opt_ill_index, B_FALSE, NULL, NULL, NULL, NULL, 20285 ipst); 20286 20287 if (xmit_ill == NULL || IS_VNI(xmit_ill)) 20288 goto drop_pkt; 20289 /* 20290 * check that there is an ipif belonging 20291 * to our zone. IPCL_ZONEID is not used because 20292 * IP_ALLZONES option is valid only when the ill is 20293 * accessible from all zones i.e has a valid ipif in 20294 * all zones. 20295 */ 20296 if (!ipif_lookup_zoneid_group(xmit_ill, zoneid, 0, NULL)) { 20297 goto drop_pkt; 20298 } 20299 } 20300 20301 /* 20302 * If there is a policy, try to attach an ipsec_out in 20303 * the front. At the end, first_mp either points to a 20304 * M_DATA message or IPSEC_OUT message linked to a 20305 * M_DATA message. We have to do it now as we might 20306 * lose the "conn" if we go through ip_newroute. 20307 */ 20308 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 20309 if (((mp = ipsec_attach_ipsec_out(&mp, connp, NULL, 20310 ipha->ipha_protocol, ipst->ips_netstack)) == NULL)) { 20311 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20312 if (need_decref) 20313 CONN_DEC_REF(connp); 20314 return; 20315 } else { 20316 ASSERT(mp->b_datap->db_type == M_CTL); 20317 first_mp = mp; 20318 mp = mp->b_cont; 20319 mctl_present = B_TRUE; 20320 } 20321 } else { 20322 first_mp = mp; 20323 mctl_present = B_FALSE; 20324 } 20325 20326 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20327 20328 /* is wrong version or IP options present */ 20329 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 20330 goto version_hdrlen_check; 20331 dst = ipha->ipha_dst; 20332 20333 if (connp->conn_nofailover_ill != NULL) { 20334 attach_ill = conn_get_held_ill(connp, 20335 &connp->conn_nofailover_ill, &err); 20336 if (err == ILL_LOOKUP_FAILED) { 20337 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20338 if (need_decref) 20339 CONN_DEC_REF(connp); 20340 freemsg(first_mp); 20341 return; 20342 } 20343 } 20344 20345 /* If IP_BOUND_IF has been set, use that ill. */ 20346 if (connp->conn_outgoing_ill != NULL) { 20347 xmit_ill = conn_get_held_ill(connp, 20348 &connp->conn_outgoing_ill, &err); 20349 if (err == ILL_LOOKUP_FAILED) 20350 goto drop_pkt; 20351 20352 goto send_from_ill; 20353 } 20354 20355 /* is packet multicast? */ 20356 if (CLASSD(dst)) 20357 goto multicast; 20358 20359 /* 20360 * If xmit_ill is set above due to index passed in ip_pkt_info. It 20361 * takes precedence over conn_dontroute and conn_nexthop_set 20362 */ 20363 if (xmit_ill != NULL) 20364 goto send_from_ill; 20365 20366 if (connp->conn_dontroute || connp->conn_nexthop_set) { 20367 /* 20368 * If the destination is a broadcast, local, or loopback 20369 * address, SO_DONTROUTE and IP_NEXTHOP go through the 20370 * standard path. 20371 */ 20372 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20373 if ((ire == NULL) || (ire->ire_type & 20374 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK)) == 0) { 20375 if (ire != NULL) { 20376 ire_refrele(ire); 20377 /* No more access to ire */ 20378 ire = NULL; 20379 } 20380 /* 20381 * bypass routing checks and go directly to interface. 20382 */ 20383 if (connp->conn_dontroute) 20384 goto dontroute; 20385 20386 ASSERT(connp->conn_nexthop_set); 20387 ip_nexthop = B_TRUE; 20388 nexthop_addr = connp->conn_nexthop_v4; 20389 goto send_from_ill; 20390 } 20391 20392 /* Must be a broadcast, a loopback or a local ire */ 20393 ire_refrele(ire); 20394 /* No more access to ire */ 20395 ire = NULL; 20396 } 20397 20398 if (attach_ill != NULL) 20399 goto send_from_ill; 20400 20401 /* 20402 * We cache IRE_CACHEs to avoid lookups. We don't do 20403 * this for the tcp global queue and listen end point 20404 * as it does not really have a real destination to 20405 * talk to. This is also true for SCTP. 20406 */ 20407 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 20408 !connp->conn_fully_bound) { 20409 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20410 if (ire == NULL) 20411 goto noirefound; 20412 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20413 "ip_wput_end: q %p (%S)", q, "end"); 20414 20415 /* 20416 * Check if the ire has the RTF_MULTIRT flag, inherited 20417 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20418 */ 20419 if (ire->ire_flags & RTF_MULTIRT) { 20420 20421 /* 20422 * Force the TTL of multirouted packets if required. 20423 * The TTL of such packets is bounded by the 20424 * ip_multirt_ttl ndd variable. 20425 */ 20426 if ((ipst->ips_ip_multirt_ttl > 0) && 20427 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20428 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20429 "(was %d), dst 0x%08x\n", 20430 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20431 ntohl(ire->ire_addr))); 20432 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20433 } 20434 /* 20435 * We look at this point if there are pending 20436 * unresolved routes. ire_multirt_resolvable() 20437 * checks in O(n) that all IRE_OFFSUBNET ire 20438 * entries for the packet's destination and 20439 * flagged RTF_MULTIRT are currently resolved. 20440 * If some remain unresolved, we make a copy 20441 * of the current message. It will be used 20442 * to initiate additional route resolutions. 20443 */ 20444 multirt_need_resolve = 20445 ire_multirt_need_resolve(ire->ire_addr, 20446 MBLK_GETLABEL(first_mp), ipst); 20447 ip2dbg(("ip_wput[TCP]: ire %p, " 20448 "multirt_need_resolve %d, first_mp %p\n", 20449 (void *)ire, multirt_need_resolve, 20450 (void *)first_mp)); 20451 if (multirt_need_resolve) { 20452 copy_mp = copymsg(first_mp); 20453 if (copy_mp != NULL) { 20454 MULTIRT_DEBUG_TAG(copy_mp); 20455 } 20456 } 20457 } 20458 20459 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20460 20461 /* 20462 * Try to resolve another multiroute if 20463 * ire_multirt_need_resolve() deemed it necessary. 20464 */ 20465 if (copy_mp != NULL) 20466 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20467 if (need_decref) 20468 CONN_DEC_REF(connp); 20469 return; 20470 } 20471 20472 /* 20473 * Access to conn_ire_cache. (protected by conn_lock) 20474 * 20475 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 20476 * the ire bucket lock here to check for CONDEMNED as it is okay to 20477 * send a packet or two with the IRE_CACHE that is going away. 20478 * Access to the ire requires an ire refhold on the ire prior to 20479 * its use since an interface unplumb thread may delete the cached 20480 * ire and release the refhold at any time. 20481 * 20482 * Caching an ire in the conn_ire_cache 20483 * 20484 * o Caching an ire pointer in the conn requires a strict check for 20485 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 20486 * ires before cleaning up the conns. So the caching of an ire pointer 20487 * in the conn is done after making sure under the bucket lock that the 20488 * ire has not yet been marked CONDEMNED. Otherwise we will end up 20489 * caching an ire after the unplumb thread has cleaned up the conn. 20490 * If the conn does not send a packet subsequently the unplumb thread 20491 * will be hanging waiting for the ire count to drop to zero. 20492 * 20493 * o We also need to atomically test for a null conn_ire_cache and 20494 * set the conn_ire_cache under the the protection of the conn_lock 20495 * to avoid races among concurrent threads trying to simultaneously 20496 * cache an ire in the conn_ire_cache. 20497 */ 20498 mutex_enter(&connp->conn_lock); 20499 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 20500 20501 if (ire != NULL && ire->ire_addr == dst && 20502 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20503 20504 IRE_REFHOLD(ire); 20505 mutex_exit(&connp->conn_lock); 20506 20507 } else { 20508 boolean_t cached = B_FALSE; 20509 connp->conn_ire_cache = NULL; 20510 mutex_exit(&connp->conn_lock); 20511 /* Release the old ire */ 20512 if (ire != NULL && sctp_ire == NULL) 20513 IRE_REFRELE_NOTR(ire); 20514 20515 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20516 if (ire == NULL) 20517 goto noirefound; 20518 IRE_REFHOLD_NOTR(ire); 20519 20520 mutex_enter(&connp->conn_lock); 20521 if (CONN_CACHE_IRE(connp) && connp->conn_ire_cache == NULL) { 20522 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 20523 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20524 if (connp->conn_ulp == IPPROTO_TCP) 20525 TCP_CHECK_IREINFO(connp->conn_tcp, ire); 20526 connp->conn_ire_cache = ire; 20527 cached = B_TRUE; 20528 } 20529 rw_exit(&ire->ire_bucket->irb_lock); 20530 } 20531 mutex_exit(&connp->conn_lock); 20532 20533 /* 20534 * We can continue to use the ire but since it was 20535 * not cached, we should drop the extra reference. 20536 */ 20537 if (!cached) 20538 IRE_REFRELE_NOTR(ire); 20539 } 20540 20541 20542 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20543 "ip_wput_end: q %p (%S)", q, "end"); 20544 20545 /* 20546 * Check if the ire has the RTF_MULTIRT flag, inherited 20547 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20548 */ 20549 if (ire->ire_flags & RTF_MULTIRT) { 20550 20551 /* 20552 * Force the TTL of multirouted packets if required. 20553 * The TTL of such packets is bounded by the 20554 * ip_multirt_ttl ndd variable. 20555 */ 20556 if ((ipst->ips_ip_multirt_ttl > 0) && 20557 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20558 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20559 "(was %d), dst 0x%08x\n", 20560 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20561 ntohl(ire->ire_addr))); 20562 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20563 } 20564 20565 /* 20566 * At this point, we check to see if there are any pending 20567 * unresolved routes. ire_multirt_resolvable() 20568 * checks in O(n) that all IRE_OFFSUBNET ire 20569 * entries for the packet's destination and 20570 * flagged RTF_MULTIRT are currently resolved. 20571 * If some remain unresolved, we make a copy 20572 * of the current message. It will be used 20573 * to initiate additional route resolutions. 20574 */ 20575 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 20576 MBLK_GETLABEL(first_mp), ipst); 20577 ip2dbg(("ip_wput[not TCP]: ire %p, " 20578 "multirt_need_resolve %d, first_mp %p\n", 20579 (void *)ire, multirt_need_resolve, (void *)first_mp)); 20580 if (multirt_need_resolve) { 20581 copy_mp = copymsg(first_mp); 20582 if (copy_mp != NULL) { 20583 MULTIRT_DEBUG_TAG(copy_mp); 20584 } 20585 } 20586 } 20587 20588 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20589 20590 /* 20591 * Try to resolve another multiroute if 20592 * ire_multirt_resolvable() deemed it necessary 20593 */ 20594 if (copy_mp != NULL) 20595 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20596 if (need_decref) 20597 CONN_DEC_REF(connp); 20598 return; 20599 20600 qnext: 20601 /* 20602 * Upper Level Protocols pass down complete IP datagrams 20603 * as M_DATA messages. Everything else is a sideshow. 20604 * 20605 * 1) We could be re-entering ip_wput because of ip_neworute 20606 * in which case we could have a IPSEC_OUT message. We 20607 * need to pass through ip_wput like other datagrams and 20608 * hence cannot branch to ip_wput_nondata. 20609 * 20610 * 2) ARP, AH, ESP, and other clients who are on the module 20611 * instance of IP stream, give us something to deal with. 20612 * We will handle AH and ESP here and rest in ip_wput_nondata. 20613 * 20614 * 3) ICMP replies also could come here. 20615 */ 20616 ipst = ILLQ_TO_IPST(q); 20617 20618 if (DB_TYPE(mp) != M_DATA) { 20619 notdata: 20620 if (DB_TYPE(mp) == M_CTL) { 20621 /* 20622 * M_CTL messages are used by ARP, AH and ESP to 20623 * communicate with IP. We deal with IPSEC_IN and 20624 * IPSEC_OUT here. ip_wput_nondata handles other 20625 * cases. 20626 */ 20627 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 20628 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 20629 first_mp = mp->b_cont; 20630 first_mp->b_flag &= ~MSGHASREF; 20631 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20632 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 20633 CONN_DEC_REF(connp); 20634 connp = NULL; 20635 } 20636 if (ii->ipsec_info_type == IPSEC_IN) { 20637 /* 20638 * Either this message goes back to 20639 * IPsec for further processing or to 20640 * ULP after policy checks. 20641 */ 20642 ip_fanout_proto_again(mp, NULL, NULL, NULL); 20643 return; 20644 } else if (ii->ipsec_info_type == IPSEC_OUT) { 20645 io = (ipsec_out_t *)ii; 20646 if (io->ipsec_out_proc_begin) { 20647 /* 20648 * IPsec processing has already started. 20649 * Complete it. 20650 * IPQoS notes: We don't care what is 20651 * in ipsec_out_ill_index since this 20652 * won't be processed for IPQoS policies 20653 * in ipsec_out_process. 20654 */ 20655 ipsec_out_process(q, mp, NULL, 20656 io->ipsec_out_ill_index); 20657 return; 20658 } else { 20659 connp = (q->q_next != NULL) ? 20660 NULL : Q_TO_CONN(q); 20661 first_mp = mp; 20662 mp = mp->b_cont; 20663 mctl_present = B_TRUE; 20664 } 20665 zoneid = io->ipsec_out_zoneid; 20666 ASSERT(zoneid != ALL_ZONES); 20667 } else if (ii->ipsec_info_type == IPSEC_CTL) { 20668 /* 20669 * It's an IPsec control message requesting 20670 * an SADB update to be sent to the IPsec 20671 * hardware acceleration capable ills. 20672 */ 20673 ipsec_ctl_t *ipsec_ctl = 20674 (ipsec_ctl_t *)mp->b_rptr; 20675 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 20676 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 20677 mblk_t *cmp = mp->b_cont; 20678 20679 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 20680 ASSERT(cmp != NULL); 20681 20682 freeb(mp); 20683 ill_ipsec_capab_send_all(satype, cmp, sa, 20684 ipst->ips_netstack); 20685 return; 20686 } else { 20687 /* 20688 * This must be ARP or special TSOL signaling. 20689 */ 20690 ip_wput_nondata(NULL, q, mp, NULL); 20691 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20692 "ip_wput_end: q %p (%S)", q, "nondata"); 20693 return; 20694 } 20695 } else { 20696 /* 20697 * This must be non-(ARP/AH/ESP) messages. 20698 */ 20699 ASSERT(!need_decref); 20700 ip_wput_nondata(NULL, q, mp, NULL); 20701 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20702 "ip_wput_end: q %p (%S)", q, "nondata"); 20703 return; 20704 } 20705 } else { 20706 first_mp = mp; 20707 mctl_present = B_FALSE; 20708 } 20709 20710 ASSERT(first_mp != NULL); 20711 /* 20712 * ICMP echo replies attach an ipsec_out and set ipsec_out_attach_if 20713 * to make sure that this packet goes out on the same interface it 20714 * came in. We handle that here. 20715 */ 20716 if (mctl_present) { 20717 uint_t ifindex; 20718 20719 io = (ipsec_out_t *)first_mp->b_rptr; 20720 if (io->ipsec_out_attach_if || io->ipsec_out_ip_nexthop) { 20721 /* 20722 * We may have lost the conn context if we are 20723 * coming here from ip_newroute(). Copy the 20724 * nexthop information. 20725 */ 20726 if (io->ipsec_out_ip_nexthop) { 20727 ip_nexthop = B_TRUE; 20728 nexthop_addr = io->ipsec_out_nexthop_addr; 20729 20730 ipha = (ipha_t *)mp->b_rptr; 20731 dst = ipha->ipha_dst; 20732 goto send_from_ill; 20733 } else { 20734 ASSERT(io->ipsec_out_ill_index != 0); 20735 ifindex = io->ipsec_out_ill_index; 20736 attach_ill = ill_lookup_on_ifindex(ifindex, 20737 B_FALSE, NULL, NULL, NULL, NULL, ipst); 20738 if (attach_ill == NULL) { 20739 ASSERT(xmit_ill == NULL); 20740 ip1dbg(("ip_output: bad ifindex for " 20741 "(BIND TO IPIF_NOFAILOVER) %d\n", 20742 ifindex)); 20743 freemsg(first_mp); 20744 BUMP_MIB(&ipst->ips_ip_mib, 20745 ipIfStatsOutDiscards); 20746 ASSERT(!need_decref); 20747 return; 20748 } 20749 } 20750 } 20751 } 20752 20753 ASSERT(xmit_ill == NULL); 20754 20755 /* We have a complete IP datagram heading outbound. */ 20756 ipha = (ipha_t *)mp->b_rptr; 20757 20758 #ifndef SPEED_BEFORE_SAFETY 20759 /* 20760 * Make sure we have a full-word aligned message and that at least 20761 * a simple IP header is accessible in the first message. If not, 20762 * try a pullup. For labeled systems we need to always take this 20763 * path as M_CTLs are "notdata" but have trailing data to process. 20764 */ 20765 if (!OK_32PTR(rptr) || 20766 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH || is_system_labeled()) { 20767 hdrtoosmall: 20768 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 20769 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20770 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 20771 if (first_mp == NULL) 20772 first_mp = mp; 20773 goto discard_pkt; 20774 } 20775 20776 /* This function assumes that mp points to an IPv4 packet. */ 20777 if (is_system_labeled() && q->q_next == NULL && 20778 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 20779 !connp->conn_ulp_labeled) { 20780 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 20781 connp->conn_mac_exempt, ipst); 20782 ipha = (ipha_t *)mp->b_rptr; 20783 if (first_mp != NULL) 20784 first_mp->b_cont = mp; 20785 if (err != 0) { 20786 if (first_mp == NULL) 20787 first_mp = mp; 20788 if (err == EINVAL) 20789 goto icmp_parameter_problem; 20790 ip2dbg(("ip_wput: label check failed (%d)\n", 20791 err)); 20792 goto discard_pkt; 20793 } 20794 } 20795 20796 ipha = (ipha_t *)mp->b_rptr; 20797 if (first_mp == NULL) { 20798 ASSERT(attach_ill == NULL && xmit_ill == NULL); 20799 /* 20800 * If we got here because of "goto hdrtoosmall" 20801 * We need to attach a IPSEC_OUT. 20802 */ 20803 if (connp->conn_out_enforce_policy) { 20804 if (((mp = ipsec_attach_ipsec_out(&mp, connp, 20805 NULL, ipha->ipha_protocol, 20806 ipst->ips_netstack)) == NULL)) { 20807 BUMP_MIB(&ipst->ips_ip_mib, 20808 ipIfStatsOutDiscards); 20809 if (need_decref) 20810 CONN_DEC_REF(connp); 20811 return; 20812 } else { 20813 ASSERT(mp->b_datap->db_type == M_CTL); 20814 first_mp = mp; 20815 mp = mp->b_cont; 20816 mctl_present = B_TRUE; 20817 } 20818 } else { 20819 first_mp = mp; 20820 mctl_present = B_FALSE; 20821 } 20822 } 20823 } 20824 #endif 20825 20826 /* Most of the code below is written for speed, not readability */ 20827 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20828 20829 /* 20830 * If ip_newroute() fails, we're going to need a full 20831 * header for the icmp wraparound. 20832 */ 20833 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 20834 uint_t v_hlen; 20835 version_hdrlen_check: 20836 ASSERT(first_mp != NULL); 20837 v_hlen = V_HLEN; 20838 /* 20839 * siphon off IPv6 packets coming down from transport 20840 * layer modules here. 20841 * Note: high-order bit carries NUD reachability confirmation 20842 */ 20843 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 20844 /* 20845 * FIXME: assume that callers of ip_output* call 20846 * the right version? 20847 */ 20848 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutWrongIPVersion); 20849 ASSERT(xmit_ill == NULL); 20850 if (attach_ill != NULL) 20851 ill_refrele(attach_ill); 20852 if (need_decref) 20853 mp->b_flag |= MSGHASREF; 20854 (void) ip_output_v6(arg, first_mp, arg2, caller); 20855 return; 20856 } 20857 20858 if ((v_hlen >> 4) != IP_VERSION) { 20859 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20860 "ip_wput_end: q %p (%S)", q, "badvers"); 20861 goto discard_pkt; 20862 } 20863 /* 20864 * Is the header length at least 20 bytes? 20865 * 20866 * Are there enough bytes accessible in the header? If 20867 * not, try a pullup. 20868 */ 20869 v_hlen &= 0xF; 20870 v_hlen <<= 2; 20871 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 20872 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20873 "ip_wput_end: q %p (%S)", q, "badlen"); 20874 goto discard_pkt; 20875 } 20876 if (v_hlen > (mp->b_wptr - rptr)) { 20877 if (!pullupmsg(mp, v_hlen)) { 20878 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20879 "ip_wput_end: q %p (%S)", q, "badpullup2"); 20880 goto discard_pkt; 20881 } 20882 ipha = (ipha_t *)mp->b_rptr; 20883 } 20884 /* 20885 * Move first entry from any source route into ipha_dst and 20886 * verify the options 20887 */ 20888 if (ip_wput_options(q, first_mp, ipha, mctl_present, 20889 zoneid, ipst)) { 20890 ASSERT(xmit_ill == NULL); 20891 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20892 if (attach_ill != NULL) 20893 ill_refrele(attach_ill); 20894 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20895 "ip_wput_end: q %p (%S)", q, "badopts"); 20896 if (need_decref) 20897 CONN_DEC_REF(connp); 20898 return; 20899 } 20900 } 20901 dst = ipha->ipha_dst; 20902 20903 /* 20904 * Try to get an IRE_CACHE for the destination address. If we can't, 20905 * we have to run the packet through ip_newroute which will take 20906 * the appropriate action to arrange for an IRE_CACHE, such as querying 20907 * a resolver, or assigning a default gateway, etc. 20908 */ 20909 if (CLASSD(dst)) { 20910 ipif_t *ipif; 20911 uint32_t setsrc = 0; 20912 20913 multicast: 20914 ASSERT(first_mp != NULL); 20915 ip2dbg(("ip_wput: CLASSD\n")); 20916 if (connp == NULL) { 20917 /* 20918 * Use the first good ipif on the ill. 20919 * XXX Should this ever happen? (Appears 20920 * to show up with just ppp and no ethernet due 20921 * to in.rdisc.) 20922 * However, ire_send should be able to 20923 * call ip_wput_ire directly. 20924 * 20925 * XXX Also, this can happen for ICMP and other packets 20926 * with multicast source addresses. Perhaps we should 20927 * fix things so that we drop the packet in question, 20928 * but for now, just run with it. 20929 */ 20930 ill_t *ill = (ill_t *)q->q_ptr; 20931 20932 /* 20933 * Don't honor attach_if for this case. If ill 20934 * is part of the group, ipif could belong to 20935 * any ill and we cannot maintain attach_ill 20936 * and ipif_ill same anymore and the assert 20937 * below would fail. 20938 */ 20939 if (mctl_present && io->ipsec_out_attach_if) { 20940 io->ipsec_out_ill_index = 0; 20941 io->ipsec_out_attach_if = B_FALSE; 20942 ASSERT(attach_ill != NULL); 20943 ill_refrele(attach_ill); 20944 attach_ill = NULL; 20945 } 20946 20947 ASSERT(attach_ill == NULL); 20948 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 20949 if (ipif == NULL) { 20950 if (need_decref) 20951 CONN_DEC_REF(connp); 20952 freemsg(first_mp); 20953 return; 20954 } 20955 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 20956 ntohl(dst), ill->ill_name)); 20957 } else { 20958 /* 20959 * The order of precedence is IP_BOUND_IF, IP_PKTINFO 20960 * and IP_MULTICAST_IF. The block comment above this 20961 * function explains the locking mechanism used here. 20962 */ 20963 if (xmit_ill == NULL) { 20964 xmit_ill = conn_get_held_ill(connp, 20965 &connp->conn_outgoing_ill, &err); 20966 if (err == ILL_LOOKUP_FAILED) { 20967 ip1dbg(("ip_wput: No ill for " 20968 "IP_BOUND_IF\n")); 20969 BUMP_MIB(&ipst->ips_ip_mib, 20970 ipIfStatsOutNoRoutes); 20971 goto drop_pkt; 20972 } 20973 } 20974 20975 if (xmit_ill == NULL) { 20976 ipif = conn_get_held_ipif(connp, 20977 &connp->conn_multicast_ipif, &err); 20978 if (err == IPIF_LOOKUP_FAILED) { 20979 ip1dbg(("ip_wput: No ipif for " 20980 "multicast\n")); 20981 BUMP_MIB(&ipst->ips_ip_mib, 20982 ipIfStatsOutNoRoutes); 20983 goto drop_pkt; 20984 } 20985 } 20986 if (xmit_ill != NULL) { 20987 ipif = ipif_get_next_ipif(NULL, xmit_ill); 20988 if (ipif == NULL) { 20989 ip1dbg(("ip_wput: No ipif for " 20990 "xmit_ill\n")); 20991 BUMP_MIB(&ipst->ips_ip_mib, 20992 ipIfStatsOutNoRoutes); 20993 goto drop_pkt; 20994 } 20995 } else if (ipif == NULL || ipif->ipif_isv6) { 20996 /* 20997 * We must do this ipif determination here 20998 * else we could pass through ip_newroute 20999 * and come back here without the conn context. 21000 * 21001 * Note: we do late binding i.e. we bind to 21002 * the interface when the first packet is sent. 21003 * For performance reasons we do not rebind on 21004 * each packet but keep the binding until the 21005 * next IP_MULTICAST_IF option. 21006 * 21007 * conn_multicast_{ipif,ill} are shared between 21008 * IPv4 and IPv6 and AF_INET6 sockets can 21009 * send both IPv4 and IPv6 packets. Hence 21010 * we have to check that "isv6" matches above. 21011 */ 21012 if (ipif != NULL) 21013 ipif_refrele(ipif); 21014 ipif = ipif_lookup_group(dst, zoneid, ipst); 21015 if (ipif == NULL) { 21016 ip1dbg(("ip_wput: No ipif for " 21017 "multicast\n")); 21018 BUMP_MIB(&ipst->ips_ip_mib, 21019 ipIfStatsOutNoRoutes); 21020 goto drop_pkt; 21021 } 21022 err = conn_set_held_ipif(connp, 21023 &connp->conn_multicast_ipif, ipif); 21024 if (err == IPIF_LOOKUP_FAILED) { 21025 ipif_refrele(ipif); 21026 ip1dbg(("ip_wput: No ipif for " 21027 "multicast\n")); 21028 BUMP_MIB(&ipst->ips_ip_mib, 21029 ipIfStatsOutNoRoutes); 21030 goto drop_pkt; 21031 } 21032 } 21033 } 21034 ASSERT(!ipif->ipif_isv6); 21035 /* 21036 * As we may lose the conn by the time we reach ip_wput_ire, 21037 * we copy conn_multicast_loop and conn_dontroute on to an 21038 * ipsec_out. In case if this datagram goes out secure, 21039 * we need the ill_index also. Copy that also into the 21040 * ipsec_out. 21041 */ 21042 if (mctl_present) { 21043 io = (ipsec_out_t *)first_mp->b_rptr; 21044 ASSERT(first_mp->b_datap->db_type == M_CTL); 21045 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21046 } else { 21047 ASSERT(mp == first_mp); 21048 if ((first_mp = allocb(sizeof (ipsec_info_t), 21049 BPRI_HI)) == NULL) { 21050 ipif_refrele(ipif); 21051 first_mp = mp; 21052 goto discard_pkt; 21053 } 21054 first_mp->b_datap->db_type = M_CTL; 21055 first_mp->b_wptr += sizeof (ipsec_info_t); 21056 /* ipsec_out_secure is B_FALSE now */ 21057 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 21058 io = (ipsec_out_t *)first_mp->b_rptr; 21059 io->ipsec_out_type = IPSEC_OUT; 21060 io->ipsec_out_len = sizeof (ipsec_out_t); 21061 io->ipsec_out_use_global_policy = B_TRUE; 21062 io->ipsec_out_ns = ipst->ips_netstack; 21063 first_mp->b_cont = mp; 21064 mctl_present = B_TRUE; 21065 } 21066 if (attach_ill != NULL) { 21067 ASSERT(attach_ill == ipif->ipif_ill); 21068 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21069 21070 /* 21071 * Check if we need an ire that will not be 21072 * looked up by anybody else i.e. HIDDEN. 21073 */ 21074 if (ill_is_probeonly(attach_ill)) { 21075 match_flags |= MATCH_IRE_MARK_HIDDEN; 21076 } 21077 io->ipsec_out_ill_index = 21078 attach_ill->ill_phyint->phyint_ifindex; 21079 io->ipsec_out_attach_if = B_TRUE; 21080 } else { 21081 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 21082 io->ipsec_out_ill_index = 21083 ipif->ipif_ill->ill_phyint->phyint_ifindex; 21084 } 21085 if (connp != NULL) { 21086 io->ipsec_out_multicast_loop = 21087 connp->conn_multicast_loop; 21088 io->ipsec_out_dontroute = connp->conn_dontroute; 21089 io->ipsec_out_zoneid = connp->conn_zoneid; 21090 } 21091 /* 21092 * If the application uses IP_MULTICAST_IF with 21093 * different logical addresses of the same ILL, we 21094 * need to make sure that the soruce address of 21095 * the packet matches the logical IP address used 21096 * in the option. We do it by initializing ipha_src 21097 * here. This should keep IPsec also happy as 21098 * when we return from IPsec processing, we don't 21099 * have to worry about getting the right address on 21100 * the packet. Thus it is sufficient to look for 21101 * IRE_CACHE using MATCH_IRE_ILL rathen than 21102 * MATCH_IRE_IPIF. 21103 * 21104 * NOTE : We need to do it for non-secure case also as 21105 * this might go out secure if there is a global policy 21106 * match in ip_wput_ire. For bind to IPIF_NOFAILOVER 21107 * address, the source should be initialized already and 21108 * hence we won't be initializing here. 21109 * 21110 * As we do not have the ire yet, it is possible that 21111 * we set the source address here and then later discover 21112 * that the ire implies the source address to be assigned 21113 * through the RTF_SETSRC flag. 21114 * In that case, the setsrc variable will remind us 21115 * that overwritting the source address by the one 21116 * of the RTF_SETSRC-flagged ire is allowed. 21117 */ 21118 if (ipha->ipha_src == INADDR_ANY && 21119 (connp == NULL || !connp->conn_unspec_src)) { 21120 ipha->ipha_src = ipif->ipif_src_addr; 21121 setsrc = RTF_SETSRC; 21122 } 21123 /* 21124 * Find an IRE which matches the destination and the outgoing 21125 * queue (i.e. the outgoing interface.) 21126 * For loopback use a unicast IP address for 21127 * the ire lookup. 21128 */ 21129 if (IS_LOOPBACK(ipif->ipif_ill)) 21130 dst = ipif->ipif_lcl_addr; 21131 21132 /* 21133 * If xmit_ill is set, we branch out to ip_newroute_ipif. 21134 * We don't need to lookup ire in ctable as the packet 21135 * needs to be sent to the destination through the specified 21136 * ill irrespective of ires in the cache table. 21137 */ 21138 ire = NULL; 21139 if (xmit_ill == NULL) { 21140 ire = ire_ctable_lookup(dst, 0, 0, ipif, 21141 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21142 } 21143 21144 /* 21145 * refrele attach_ill as its not needed anymore. 21146 */ 21147 if (attach_ill != NULL) { 21148 ill_refrele(attach_ill); 21149 attach_ill = NULL; 21150 } 21151 21152 if (ire == NULL) { 21153 /* 21154 * Multicast loopback and multicast forwarding is 21155 * done in ip_wput_ire. 21156 * 21157 * Mark this packet to make it be delivered to 21158 * ip_wput_ire after the new ire has been 21159 * created. 21160 * 21161 * The call to ip_newroute_ipif takes into account 21162 * the setsrc reminder. In any case, we take care 21163 * of the RTF_MULTIRT flag. 21164 */ 21165 mp->b_prev = mp->b_next = NULL; 21166 if (xmit_ill == NULL || 21167 xmit_ill->ill_ipif_up_count > 0) { 21168 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 21169 setsrc | RTF_MULTIRT, zoneid, infop); 21170 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21171 "ip_wput_end: q %p (%S)", q, "noire"); 21172 } else { 21173 freemsg(first_mp); 21174 } 21175 ipif_refrele(ipif); 21176 if (xmit_ill != NULL) 21177 ill_refrele(xmit_ill); 21178 if (need_decref) 21179 CONN_DEC_REF(connp); 21180 return; 21181 } 21182 21183 ipif_refrele(ipif); 21184 ipif = NULL; 21185 ASSERT(xmit_ill == NULL); 21186 21187 /* 21188 * Honor the RTF_SETSRC flag for multicast packets, 21189 * if allowed by the setsrc reminder. 21190 */ 21191 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 21192 ipha->ipha_src = ire->ire_src_addr; 21193 } 21194 21195 /* 21196 * Unconditionally force the TTL to 1 for 21197 * multirouted multicast packets: 21198 * multirouted multicast should not cross 21199 * multicast routers. 21200 */ 21201 if (ire->ire_flags & RTF_MULTIRT) { 21202 if (ipha->ipha_ttl > 1) { 21203 ip2dbg(("ip_wput: forcing multicast " 21204 "multirt TTL to 1 (was %d), dst 0x%08x\n", 21205 ipha->ipha_ttl, ntohl(ire->ire_addr))); 21206 ipha->ipha_ttl = 1; 21207 } 21208 } 21209 } else { 21210 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 21211 if ((ire != NULL) && (ire->ire_type & 21212 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 21213 ignore_dontroute = B_TRUE; 21214 ignore_nexthop = B_TRUE; 21215 } 21216 if (ire != NULL) { 21217 ire_refrele(ire); 21218 ire = NULL; 21219 } 21220 /* 21221 * Guard against coming in from arp in which case conn is NULL. 21222 * Also guard against non M_DATA with dontroute set but 21223 * destined to local, loopback or broadcast addresses. 21224 */ 21225 if (connp != NULL && connp->conn_dontroute && 21226 !ignore_dontroute) { 21227 dontroute: 21228 /* 21229 * Set TTL to 1 if SO_DONTROUTE is set to prevent 21230 * routing protocols from seeing false direct 21231 * connectivity. 21232 */ 21233 ipha->ipha_ttl = 1; 21234 21235 /* If suitable ipif not found, drop packet */ 21236 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid, ipst); 21237 if (dst_ipif == NULL) { 21238 noroute: 21239 ip1dbg(("ip_wput: no route for dst using" 21240 " SO_DONTROUTE\n")); 21241 BUMP_MIB(&ipst->ips_ip_mib, 21242 ipIfStatsOutNoRoutes); 21243 mp->b_prev = mp->b_next = NULL; 21244 if (first_mp == NULL) 21245 first_mp = mp; 21246 goto drop_pkt; 21247 } else { 21248 /* 21249 * If suitable ipif has been found, set 21250 * xmit_ill to the corresponding 21251 * ipif_ill because we'll be using the 21252 * send_from_ill logic below. 21253 */ 21254 ASSERT(xmit_ill == NULL); 21255 xmit_ill = dst_ipif->ipif_ill; 21256 mutex_enter(&xmit_ill->ill_lock); 21257 if (!ILL_CAN_LOOKUP(xmit_ill)) { 21258 mutex_exit(&xmit_ill->ill_lock); 21259 xmit_ill = NULL; 21260 ipif_refrele(dst_ipif); 21261 goto noroute; 21262 } 21263 ill_refhold_locked(xmit_ill); 21264 mutex_exit(&xmit_ill->ill_lock); 21265 ipif_refrele(dst_ipif); 21266 } 21267 } 21268 /* 21269 * If we are bound to IPIF_NOFAILOVER address, look for 21270 * an IRE_CACHE matching the ill. 21271 */ 21272 send_from_ill: 21273 if (attach_ill != NULL) { 21274 ipif_t *attach_ipif; 21275 21276 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21277 21278 /* 21279 * Check if we need an ire that will not be 21280 * looked up by anybody else i.e. HIDDEN. 21281 */ 21282 if (ill_is_probeonly(attach_ill)) { 21283 match_flags |= MATCH_IRE_MARK_HIDDEN; 21284 } 21285 21286 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 21287 if (attach_ipif == NULL) { 21288 ip1dbg(("ip_wput: No ipif for attach_ill\n")); 21289 goto discard_pkt; 21290 } 21291 ire = ire_ctable_lookup(dst, 0, 0, attach_ipif, 21292 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21293 ipif_refrele(attach_ipif); 21294 } else if (xmit_ill != NULL) { 21295 ipif_t *ipif; 21296 21297 /* 21298 * Mark this packet as originated locally 21299 */ 21300 mp->b_prev = mp->b_next = NULL; 21301 21302 /* 21303 * Could be SO_DONTROUTE case also. 21304 * Verify that at least one ipif is up on the ill. 21305 */ 21306 if (xmit_ill->ill_ipif_up_count == 0) { 21307 ip1dbg(("ip_output: xmit_ill %s is down\n", 21308 xmit_ill->ill_name)); 21309 goto drop_pkt; 21310 } 21311 21312 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21313 if (ipif == NULL) { 21314 ip1dbg(("ip_output: xmit_ill %s NULL ipif\n", 21315 xmit_ill->ill_name)); 21316 goto drop_pkt; 21317 } 21318 21319 /* 21320 * Look for a ire that is part of the group, 21321 * if found use it else call ip_newroute_ipif. 21322 * IPCL_ZONEID is not used for matching because 21323 * IP_ALLZONES option is valid only when the 21324 * ill is accessible from all zones i.e has a 21325 * valid ipif in all zones. 21326 */ 21327 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 21328 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 21329 MBLK_GETLABEL(mp), match_flags, ipst); 21330 /* 21331 * If an ire exists use it or else create 21332 * an ire but don't add it to the cache. 21333 * Adding an ire may cause issues with 21334 * asymmetric routing. 21335 * In case of multiroute always act as if 21336 * ire does not exist. 21337 */ 21338 if (ire == NULL || ire->ire_flags & RTF_MULTIRT) { 21339 if (ire != NULL) 21340 ire_refrele(ire); 21341 ip_newroute_ipif(q, first_mp, ipif, 21342 dst, connp, 0, zoneid, infop); 21343 ipif_refrele(ipif); 21344 ip1dbg(("ip_output: xmit_ill via %s\n", 21345 xmit_ill->ill_name)); 21346 ill_refrele(xmit_ill); 21347 if (need_decref) 21348 CONN_DEC_REF(connp); 21349 return; 21350 } 21351 ipif_refrele(ipif); 21352 } else if (ip_nexthop || (connp != NULL && 21353 (connp->conn_nexthop_set)) && !ignore_nexthop) { 21354 if (!ip_nexthop) { 21355 ip_nexthop = B_TRUE; 21356 nexthop_addr = connp->conn_nexthop_v4; 21357 } 21358 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 21359 MATCH_IRE_GW; 21360 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 21361 NULL, zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21362 } else { 21363 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), 21364 ipst); 21365 } 21366 if (!ire) { 21367 /* 21368 * Make sure we don't load spread if this 21369 * is IPIF_NOFAILOVER case. 21370 */ 21371 if ((attach_ill != NULL) || 21372 (ip_nexthop && !ignore_nexthop)) { 21373 if (mctl_present) { 21374 io = (ipsec_out_t *)first_mp->b_rptr; 21375 ASSERT(first_mp->b_datap->db_type == 21376 M_CTL); 21377 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21378 } else { 21379 ASSERT(mp == first_mp); 21380 first_mp = allocb( 21381 sizeof (ipsec_info_t), BPRI_HI); 21382 if (first_mp == NULL) { 21383 first_mp = mp; 21384 goto discard_pkt; 21385 } 21386 first_mp->b_datap->db_type = M_CTL; 21387 first_mp->b_wptr += 21388 sizeof (ipsec_info_t); 21389 /* ipsec_out_secure is B_FALSE now */ 21390 bzero(first_mp->b_rptr, 21391 sizeof (ipsec_info_t)); 21392 io = (ipsec_out_t *)first_mp->b_rptr; 21393 io->ipsec_out_type = IPSEC_OUT; 21394 io->ipsec_out_len = 21395 sizeof (ipsec_out_t); 21396 io->ipsec_out_use_global_policy = 21397 B_TRUE; 21398 io->ipsec_out_ns = ipst->ips_netstack; 21399 first_mp->b_cont = mp; 21400 mctl_present = B_TRUE; 21401 } 21402 if (attach_ill != NULL) { 21403 io->ipsec_out_ill_index = attach_ill-> 21404 ill_phyint->phyint_ifindex; 21405 io->ipsec_out_attach_if = B_TRUE; 21406 } else { 21407 io->ipsec_out_ip_nexthop = ip_nexthop; 21408 io->ipsec_out_nexthop_addr = 21409 nexthop_addr; 21410 } 21411 } 21412 noirefound: 21413 /* 21414 * Mark this packet as having originated on 21415 * this machine. This will be noted in 21416 * ire_add_then_send, which needs to know 21417 * whether to run it back through ip_wput or 21418 * ip_rput following successful resolution. 21419 */ 21420 mp->b_prev = NULL; 21421 mp->b_next = NULL; 21422 ip_newroute(q, first_mp, dst, connp, zoneid, ipst); 21423 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21424 "ip_wput_end: q %p (%S)", q, "newroute"); 21425 if (attach_ill != NULL) 21426 ill_refrele(attach_ill); 21427 if (xmit_ill != NULL) 21428 ill_refrele(xmit_ill); 21429 if (need_decref) 21430 CONN_DEC_REF(connp); 21431 return; 21432 } 21433 } 21434 21435 /* We now know where we are going with it. */ 21436 21437 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21438 "ip_wput_end: q %p (%S)", q, "end"); 21439 21440 /* 21441 * Check if the ire has the RTF_MULTIRT flag, inherited 21442 * from an IRE_OFFSUBNET ire entry in ip_newroute. 21443 */ 21444 if (ire->ire_flags & RTF_MULTIRT) { 21445 /* 21446 * Force the TTL of multirouted packets if required. 21447 * The TTL of such packets is bounded by the 21448 * ip_multirt_ttl ndd variable. 21449 */ 21450 if ((ipst->ips_ip_multirt_ttl > 0) && 21451 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 21452 ip2dbg(("ip_wput: forcing multirt TTL to %d " 21453 "(was %d), dst 0x%08x\n", 21454 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 21455 ntohl(ire->ire_addr))); 21456 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 21457 } 21458 /* 21459 * At this point, we check to see if there are any pending 21460 * unresolved routes. ire_multirt_resolvable() 21461 * checks in O(n) that all IRE_OFFSUBNET ire 21462 * entries for the packet's destination and 21463 * flagged RTF_MULTIRT are currently resolved. 21464 * If some remain unresolved, we make a copy 21465 * of the current message. It will be used 21466 * to initiate additional route resolutions. 21467 */ 21468 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 21469 MBLK_GETLABEL(first_mp), ipst); 21470 ip2dbg(("ip_wput[noirefound]: ire %p, " 21471 "multirt_need_resolve %d, first_mp %p\n", 21472 (void *)ire, multirt_need_resolve, (void *)first_mp)); 21473 if (multirt_need_resolve) { 21474 copy_mp = copymsg(first_mp); 21475 if (copy_mp != NULL) { 21476 MULTIRT_DEBUG_TAG(copy_mp); 21477 } 21478 } 21479 } 21480 21481 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 21482 /* 21483 * Try to resolve another multiroute if 21484 * ire_multirt_resolvable() deemed it necessary. 21485 * At this point, we need to distinguish 21486 * multicasts from other packets. For multicasts, 21487 * we call ip_newroute_ipif() and request that both 21488 * multirouting and setsrc flags are checked. 21489 */ 21490 if (copy_mp != NULL) { 21491 if (CLASSD(dst)) { 21492 ipif_t *ipif = ipif_lookup_group(dst, zoneid, ipst); 21493 if (ipif) { 21494 ASSERT(infop->ip_opt_ill_index == 0); 21495 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 21496 RTF_SETSRC | RTF_MULTIRT, zoneid, infop); 21497 ipif_refrele(ipif); 21498 } else { 21499 MULTIRT_DEBUG_UNTAG(copy_mp); 21500 freemsg(copy_mp); 21501 copy_mp = NULL; 21502 } 21503 } else { 21504 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 21505 } 21506 } 21507 if (attach_ill != NULL) 21508 ill_refrele(attach_ill); 21509 if (xmit_ill != NULL) 21510 ill_refrele(xmit_ill); 21511 if (need_decref) 21512 CONN_DEC_REF(connp); 21513 return; 21514 21515 icmp_parameter_problem: 21516 /* could not have originated externally */ 21517 ASSERT(mp->b_prev == NULL); 21518 if (ip_hdr_complete(ipha, zoneid, ipst) == 0) { 21519 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 21520 /* it's the IP header length that's in trouble */ 21521 icmp_param_problem(q, first_mp, 0, zoneid, ipst); 21522 first_mp = NULL; 21523 } 21524 21525 discard_pkt: 21526 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21527 drop_pkt: 21528 ip1dbg(("ip_wput: dropped packet\n")); 21529 if (ire != NULL) 21530 ire_refrele(ire); 21531 if (need_decref) 21532 CONN_DEC_REF(connp); 21533 freemsg(first_mp); 21534 if (attach_ill != NULL) 21535 ill_refrele(attach_ill); 21536 if (xmit_ill != NULL) 21537 ill_refrele(xmit_ill); 21538 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21539 "ip_wput_end: q %p (%S)", q, "droppkt"); 21540 } 21541 21542 /* 21543 * If this is a conn_t queue, then we pass in the conn. This includes the 21544 * zoneid. 21545 * Otherwise, this is a message coming back from ARP or for an ill_t queue, 21546 * in which case we use the global zoneid since those are all part of 21547 * the global zone. 21548 */ 21549 void 21550 ip_wput(queue_t *q, mblk_t *mp) 21551 { 21552 if (CONN_Q(q)) 21553 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 21554 else 21555 ip_output(GLOBAL_ZONEID, mp, q, IP_WPUT); 21556 } 21557 21558 /* 21559 * 21560 * The following rules must be observed when accessing any ipif or ill 21561 * that has been cached in the conn. Typically conn_nofailover_ill, 21562 * conn_outgoing_ill, conn_multicast_ipif and conn_multicast_ill. 21563 * 21564 * Access: The ipif or ill pointed to from the conn can be accessed under 21565 * the protection of the conn_lock or after it has been refheld under the 21566 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 21567 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 21568 * The reason for this is that a concurrent unplumb could actually be 21569 * cleaning up these cached pointers by walking the conns and might have 21570 * finished cleaning up the conn in question. The macros check that an 21571 * unplumb has not yet started on the ipif or ill. 21572 * 21573 * Caching: An ipif or ill pointer may be cached in the conn only after 21574 * making sure that an unplumb has not started. So the caching is done 21575 * while holding both the conn_lock and the ill_lock and after using the 21576 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 21577 * flag before starting the cleanup of conns. 21578 * 21579 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 21580 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 21581 * or a reference to the ipif or a reference to an ire that references the 21582 * ipif. An ipif does not change its ill except for failover/failback. Since 21583 * failover/failback happens only after bringing down the ipif and making sure 21584 * the ipif refcnt has gone to zero and holding the ill_g_lock and ill_lock 21585 * the above holds. 21586 */ 21587 ipif_t * 21588 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 21589 { 21590 ipif_t *ipif; 21591 ill_t *ill; 21592 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 21593 21594 *err = 0; 21595 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21596 mutex_enter(&connp->conn_lock); 21597 ipif = *ipifp; 21598 if (ipif != NULL) { 21599 ill = ipif->ipif_ill; 21600 mutex_enter(&ill->ill_lock); 21601 if (IPIF_CAN_LOOKUP(ipif)) { 21602 ipif_refhold_locked(ipif); 21603 mutex_exit(&ill->ill_lock); 21604 mutex_exit(&connp->conn_lock); 21605 rw_exit(&ipst->ips_ill_g_lock); 21606 return (ipif); 21607 } else { 21608 *err = IPIF_LOOKUP_FAILED; 21609 } 21610 mutex_exit(&ill->ill_lock); 21611 } 21612 mutex_exit(&connp->conn_lock); 21613 rw_exit(&ipst->ips_ill_g_lock); 21614 return (NULL); 21615 } 21616 21617 ill_t * 21618 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 21619 { 21620 ill_t *ill; 21621 21622 *err = 0; 21623 mutex_enter(&connp->conn_lock); 21624 ill = *illp; 21625 if (ill != NULL) { 21626 mutex_enter(&ill->ill_lock); 21627 if (ILL_CAN_LOOKUP(ill)) { 21628 ill_refhold_locked(ill); 21629 mutex_exit(&ill->ill_lock); 21630 mutex_exit(&connp->conn_lock); 21631 return (ill); 21632 } else { 21633 *err = ILL_LOOKUP_FAILED; 21634 } 21635 mutex_exit(&ill->ill_lock); 21636 } 21637 mutex_exit(&connp->conn_lock); 21638 return (NULL); 21639 } 21640 21641 static int 21642 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 21643 { 21644 ill_t *ill; 21645 21646 ill = ipif->ipif_ill; 21647 mutex_enter(&connp->conn_lock); 21648 mutex_enter(&ill->ill_lock); 21649 if (IPIF_CAN_LOOKUP(ipif)) { 21650 *ipifp = ipif; 21651 mutex_exit(&ill->ill_lock); 21652 mutex_exit(&connp->conn_lock); 21653 return (0); 21654 } 21655 mutex_exit(&ill->ill_lock); 21656 mutex_exit(&connp->conn_lock); 21657 return (IPIF_LOOKUP_FAILED); 21658 } 21659 21660 /* 21661 * This is called if the outbound datagram needs fragmentation. 21662 * 21663 * NOTE : This function does not ire_refrele the ire argument passed in. 21664 */ 21665 static void 21666 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire, zoneid_t zoneid, 21667 ip_stack_t *ipst) 21668 { 21669 ipha_t *ipha; 21670 mblk_t *mp; 21671 uint32_t v_hlen_tos_len; 21672 uint32_t max_frag; 21673 uint32_t frag_flag; 21674 boolean_t dont_use; 21675 21676 if (ipsec_mp->b_datap->db_type == M_CTL) { 21677 mp = ipsec_mp->b_cont; 21678 } else { 21679 mp = ipsec_mp; 21680 } 21681 21682 ipha = (ipha_t *)mp->b_rptr; 21683 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21684 21685 #ifdef _BIG_ENDIAN 21686 #define V_HLEN (v_hlen_tos_len >> 24) 21687 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21688 #else 21689 #define V_HLEN (v_hlen_tos_len & 0xFF) 21690 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21691 #endif 21692 21693 #ifndef SPEED_BEFORE_SAFETY 21694 /* 21695 * Check that ipha_length is consistent with 21696 * the mblk length 21697 */ 21698 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 21699 ip0dbg(("Packet length mismatch: %d, %ld\n", 21700 LENGTH, msgdsize(mp))); 21701 freemsg(ipsec_mp); 21702 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21703 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 21704 "packet length mismatch"); 21705 return; 21706 } 21707 #endif 21708 /* 21709 * Don't use frag_flag if pre-built packet or source 21710 * routed or if multicast (since multicast packets do not solicit 21711 * ICMP "packet too big" messages). Get the values of 21712 * max_frag and frag_flag atomically by acquiring the 21713 * ire_lock. 21714 */ 21715 mutex_enter(&ire->ire_lock); 21716 max_frag = ire->ire_max_frag; 21717 frag_flag = ire->ire_frag_flag; 21718 mutex_exit(&ire->ire_lock); 21719 21720 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 21721 (V_HLEN != IP_SIMPLE_HDR_VERSION && 21722 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 21723 21724 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 21725 (dont_use ? 0 : frag_flag), zoneid, ipst); 21726 } 21727 21728 /* 21729 * Used for deciding the MSS size for the upper layer. Thus 21730 * we need to check the outbound policy values in the conn. 21731 */ 21732 int 21733 conn_ipsec_length(conn_t *connp) 21734 { 21735 ipsec_latch_t *ipl; 21736 21737 ipl = connp->conn_latch; 21738 if (ipl == NULL) 21739 return (0); 21740 21741 if (ipl->ipl_out_policy == NULL) 21742 return (0); 21743 21744 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 21745 } 21746 21747 /* 21748 * Returns an estimate of the IPsec headers size. This is used if 21749 * we don't want to call into IPsec to get the exact size. 21750 */ 21751 int 21752 ipsec_out_extra_length(mblk_t *ipsec_mp) 21753 { 21754 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 21755 ipsec_action_t *a; 21756 21757 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21758 if (!io->ipsec_out_secure) 21759 return (0); 21760 21761 a = io->ipsec_out_act; 21762 21763 if (a == NULL) { 21764 ASSERT(io->ipsec_out_policy != NULL); 21765 a = io->ipsec_out_policy->ipsp_act; 21766 } 21767 ASSERT(a != NULL); 21768 21769 return (a->ipa_ovhd); 21770 } 21771 21772 /* 21773 * Returns an estimate of the IPsec headers size. This is used if 21774 * we don't want to call into IPsec to get the exact size. 21775 */ 21776 int 21777 ipsec_in_extra_length(mblk_t *ipsec_mp) 21778 { 21779 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21780 ipsec_action_t *a; 21781 21782 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21783 21784 a = ii->ipsec_in_action; 21785 return (a == NULL ? 0 : a->ipa_ovhd); 21786 } 21787 21788 /* 21789 * If there are any source route options, return the true final 21790 * destination. Otherwise, return the destination. 21791 */ 21792 ipaddr_t 21793 ip_get_dst(ipha_t *ipha) 21794 { 21795 ipoptp_t opts; 21796 uchar_t *opt; 21797 uint8_t optval; 21798 uint8_t optlen; 21799 ipaddr_t dst; 21800 uint32_t off; 21801 21802 dst = ipha->ipha_dst; 21803 21804 if (IS_SIMPLE_IPH(ipha)) 21805 return (dst); 21806 21807 for (optval = ipoptp_first(&opts, ipha); 21808 optval != IPOPT_EOL; 21809 optval = ipoptp_next(&opts)) { 21810 opt = opts.ipoptp_cur; 21811 optlen = opts.ipoptp_len; 21812 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 21813 switch (optval) { 21814 case IPOPT_SSRR: 21815 case IPOPT_LSRR: 21816 off = opt[IPOPT_OFFSET]; 21817 /* 21818 * If one of the conditions is true, it means 21819 * end of options and dst already has the right 21820 * value. 21821 */ 21822 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 21823 off = optlen - IP_ADDR_LEN; 21824 bcopy(&opt[off], &dst, IP_ADDR_LEN); 21825 } 21826 return (dst); 21827 default: 21828 break; 21829 } 21830 } 21831 21832 return (dst); 21833 } 21834 21835 mblk_t * 21836 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 21837 conn_t *connp, boolean_t unspec_src, zoneid_t zoneid) 21838 { 21839 ipsec_out_t *io; 21840 mblk_t *first_mp; 21841 boolean_t policy_present; 21842 ip_stack_t *ipst; 21843 ipsec_stack_t *ipss; 21844 21845 ASSERT(ire != NULL); 21846 ipst = ire->ire_ipst; 21847 ipss = ipst->ips_netstack->netstack_ipsec; 21848 21849 first_mp = mp; 21850 if (mp->b_datap->db_type == M_CTL) { 21851 io = (ipsec_out_t *)first_mp->b_rptr; 21852 /* 21853 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 21854 * 21855 * 1) There is per-socket policy (including cached global 21856 * policy) or a policy on the IP-in-IP tunnel. 21857 * 2) There is no per-socket policy, but it is 21858 * a multicast packet that needs to go out 21859 * on a specific interface. This is the case 21860 * where (ip_wput and ip_wput_multicast) attaches 21861 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 21862 * 21863 * In case (2) we check with global policy to 21864 * see if there is a match and set the ill_index 21865 * appropriately so that we can lookup the ire 21866 * properly in ip_wput_ipsec_out. 21867 */ 21868 21869 /* 21870 * ipsec_out_use_global_policy is set to B_FALSE 21871 * in ipsec_in_to_out(). Refer to that function for 21872 * details. 21873 */ 21874 if ((io->ipsec_out_latch == NULL) && 21875 (io->ipsec_out_use_global_policy)) { 21876 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 21877 ire, connp, unspec_src, zoneid)); 21878 } 21879 if (!io->ipsec_out_secure) { 21880 /* 21881 * If this is not a secure packet, drop 21882 * the IPSEC_OUT mp and treat it as a clear 21883 * packet. This happens when we are sending 21884 * a ICMP reply back to a clear packet. See 21885 * ipsec_in_to_out() for details. 21886 */ 21887 mp = first_mp->b_cont; 21888 freeb(first_mp); 21889 } 21890 return (mp); 21891 } 21892 /* 21893 * See whether we need to attach a global policy here. We 21894 * don't depend on the conn (as it could be null) for deciding 21895 * what policy this datagram should go through because it 21896 * should have happened in ip_wput if there was some 21897 * policy. This normally happens for connections which are not 21898 * fully bound preventing us from caching policies in 21899 * ip_bind. Packets coming from the TCP listener/global queue 21900 * - which are non-hard_bound - could also be affected by 21901 * applying policy here. 21902 * 21903 * If this packet is coming from tcp global queue or listener, 21904 * we will be applying policy here. This may not be *right* 21905 * if these packets are coming from the detached connection as 21906 * it could have gone in clear before. This happens only if a 21907 * TCP connection started when there is no policy and somebody 21908 * added policy before it became detached. Thus packets of the 21909 * detached connection could go out secure and the other end 21910 * would drop it because it will be expecting in clear. The 21911 * converse is not true i.e if somebody starts a TCP 21912 * connection and deletes the policy, all the packets will 21913 * still go out with the policy that existed before deleting 21914 * because ip_unbind sends up policy information which is used 21915 * by TCP on subsequent ip_wputs. The right solution is to fix 21916 * TCP to attach a dummy IPSEC_OUT and set 21917 * ipsec_out_use_global_policy to B_FALSE. As this might 21918 * affect performance for normal cases, we are not doing it. 21919 * Thus, set policy before starting any TCP connections. 21920 * 21921 * NOTE - We might apply policy even for a hard bound connection 21922 * - for which we cached policy in ip_bind - if somebody added 21923 * global policy after we inherited the policy in ip_bind. 21924 * This means that the packets that were going out in clear 21925 * previously would start going secure and hence get dropped 21926 * on the other side. To fix this, TCP attaches a dummy 21927 * ipsec_out and make sure that we don't apply global policy. 21928 */ 21929 if (ipha != NULL) 21930 policy_present = ipss->ipsec_outbound_v4_policy_present; 21931 else 21932 policy_present = ipss->ipsec_outbound_v6_policy_present; 21933 if (!policy_present) 21934 return (mp); 21935 21936 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src, 21937 zoneid)); 21938 } 21939 21940 ire_t * 21941 conn_set_outgoing_ill(conn_t *connp, ire_t *ire, ill_t **conn_outgoing_ill) 21942 { 21943 ipaddr_t addr; 21944 ire_t *save_ire; 21945 irb_t *irb; 21946 ill_group_t *illgrp; 21947 int err; 21948 21949 save_ire = ire; 21950 addr = ire->ire_addr; 21951 21952 ASSERT(ire->ire_type == IRE_BROADCAST); 21953 21954 illgrp = connp->conn_outgoing_ill->ill_group; 21955 if (illgrp == NULL) { 21956 *conn_outgoing_ill = conn_get_held_ill(connp, 21957 &connp->conn_outgoing_ill, &err); 21958 if (err == ILL_LOOKUP_FAILED) { 21959 ire_refrele(save_ire); 21960 return (NULL); 21961 } 21962 return (save_ire); 21963 } 21964 /* 21965 * If IP_BOUND_IF has been done, conn_outgoing_ill will be set. 21966 * If it is part of the group, we need to send on the ire 21967 * that has been cleared of IRE_MARK_NORECV and that belongs 21968 * to this group. This is okay as IP_BOUND_IF really means 21969 * any ill in the group. We depend on the fact that the 21970 * first ire in the group is always cleared of IRE_MARK_NORECV 21971 * if such an ire exists. This is possible only if you have 21972 * at least one ill in the group that has not failed. 21973 * 21974 * First get to the ire that matches the address and group. 21975 * 21976 * We don't look for an ire with a matching zoneid because a given zone 21977 * won't always have broadcast ires on all ills in the group. 21978 */ 21979 irb = ire->ire_bucket; 21980 rw_enter(&irb->irb_lock, RW_READER); 21981 if (ire->ire_marks & IRE_MARK_NORECV) { 21982 /* 21983 * If the current zone only has an ire broadcast for this 21984 * address marked NORECV, the ire we want is ahead in the 21985 * bucket, so we look it up deliberately ignoring the zoneid. 21986 */ 21987 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 21988 if (ire->ire_addr != addr) 21989 continue; 21990 /* skip over deleted ires */ 21991 if (ire->ire_marks & IRE_MARK_CONDEMNED) 21992 continue; 21993 } 21994 } 21995 while (ire != NULL) { 21996 /* 21997 * If a new interface is coming up, we could end up 21998 * seeing the loopback ire and the non-loopback ire 21999 * may not have been added yet. So check for ire_stq 22000 */ 22001 if (ire->ire_stq != NULL && (ire->ire_addr != addr || 22002 ire->ire_ipif->ipif_ill->ill_group == illgrp)) { 22003 break; 22004 } 22005 ire = ire->ire_next; 22006 } 22007 if (ire != NULL && ire->ire_addr == addr && 22008 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 22009 IRE_REFHOLD(ire); 22010 rw_exit(&irb->irb_lock); 22011 ire_refrele(save_ire); 22012 *conn_outgoing_ill = ire_to_ill(ire); 22013 /* 22014 * Refhold the ill to make the conn_outgoing_ill 22015 * independent of the ire. ip_wput_ire goes in a loop 22016 * and may refrele the ire. Since we have an ire at this 22017 * point we don't need to use ILL_CAN_LOOKUP on the ill. 22018 */ 22019 ill_refhold(*conn_outgoing_ill); 22020 return (ire); 22021 } 22022 rw_exit(&irb->irb_lock); 22023 ip1dbg(("conn_set_outgoing_ill: No matching ire\n")); 22024 /* 22025 * If we can't find a suitable ire, return the original ire. 22026 */ 22027 return (save_ire); 22028 } 22029 22030 /* 22031 * This function does the ire_refrele of the ire passed in as the 22032 * argument. As this function looks up more ires i.e broadcast ires, 22033 * it needs to REFRELE them. Currently, for simplicity we don't 22034 * differentiate the one passed in and looked up here. We always 22035 * REFRELE. 22036 * IPQoS Notes: 22037 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 22038 * IPsec packets are done in ipsec_out_process. 22039 * 22040 */ 22041 void 22042 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller, 22043 zoneid_t zoneid) 22044 { 22045 ipha_t *ipha; 22046 #define rptr ((uchar_t *)ipha) 22047 queue_t *stq; 22048 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 22049 uint32_t v_hlen_tos_len; 22050 uint32_t ttl_protocol; 22051 ipaddr_t src; 22052 ipaddr_t dst; 22053 uint32_t cksum; 22054 ipaddr_t orig_src; 22055 ire_t *ire1; 22056 mblk_t *next_mp; 22057 uint_t hlen; 22058 uint16_t *up; 22059 uint32_t max_frag = ire->ire_max_frag; 22060 ill_t *ill = ire_to_ill(ire); 22061 int clusterwide; 22062 uint16_t ip_hdr_included; /* IP header included by ULP? */ 22063 int ipsec_len; 22064 mblk_t *first_mp; 22065 ipsec_out_t *io; 22066 boolean_t conn_dontroute; /* conn value for multicast */ 22067 boolean_t conn_multicast_loop; /* conn value for multicast */ 22068 boolean_t multicast_forward; /* Should we forward ? */ 22069 boolean_t unspec_src; 22070 ill_t *conn_outgoing_ill = NULL; 22071 ill_t *ire_ill; 22072 ill_t *ire1_ill; 22073 ill_t *out_ill; 22074 uint32_t ill_index = 0; 22075 boolean_t multirt_send = B_FALSE; 22076 int err; 22077 ipxmit_state_t pktxmit_state; 22078 ip_stack_t *ipst = ire->ire_ipst; 22079 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 22080 22081 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 22082 "ip_wput_ire_start: q %p", q); 22083 22084 multicast_forward = B_FALSE; 22085 unspec_src = (connp != NULL && connp->conn_unspec_src); 22086 22087 if (ire->ire_flags & RTF_MULTIRT) { 22088 /* 22089 * Multirouting case. The bucket where ire is stored 22090 * probably holds other RTF_MULTIRT flagged ire 22091 * to the destination. In this call to ip_wput_ire, 22092 * we attempt to send the packet through all 22093 * those ires. Thus, we first ensure that ire is the 22094 * first RTF_MULTIRT ire in the bucket, 22095 * before walking the ire list. 22096 */ 22097 ire_t *first_ire; 22098 irb_t *irb = ire->ire_bucket; 22099 ASSERT(irb != NULL); 22100 22101 /* Make sure we do not omit any multiroute ire. */ 22102 IRB_REFHOLD(irb); 22103 for (first_ire = irb->irb_ire; 22104 first_ire != NULL; 22105 first_ire = first_ire->ire_next) { 22106 if ((first_ire->ire_flags & RTF_MULTIRT) && 22107 (first_ire->ire_addr == ire->ire_addr) && 22108 !(first_ire->ire_marks & 22109 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 22110 break; 22111 } 22112 } 22113 22114 if ((first_ire != NULL) && (first_ire != ire)) { 22115 IRE_REFHOLD(first_ire); 22116 ire_refrele(ire); 22117 ire = first_ire; 22118 ill = ire_to_ill(ire); 22119 } 22120 IRB_REFRELE(irb); 22121 } 22122 22123 /* 22124 * conn_outgoing_ill variable is used only in the broadcast loop. 22125 * for performance we don't grab the mutexs in the fastpath 22126 */ 22127 if ((connp != NULL) && 22128 (ire->ire_type == IRE_BROADCAST) && 22129 ((connp->conn_nofailover_ill != NULL) || 22130 (connp->conn_outgoing_ill != NULL))) { 22131 /* 22132 * Bind to IPIF_NOFAILOVER address overrides IP_BOUND_IF 22133 * option. So, see if this endpoint is bound to a 22134 * IPIF_NOFAILOVER address. If so, honor it. This implies 22135 * that if the interface is failed, we will still send 22136 * the packet on the same ill which is what we want. 22137 */ 22138 conn_outgoing_ill = conn_get_held_ill(connp, 22139 &connp->conn_nofailover_ill, &err); 22140 if (err == ILL_LOOKUP_FAILED) { 22141 ire_refrele(ire); 22142 freemsg(mp); 22143 return; 22144 } 22145 if (conn_outgoing_ill == NULL) { 22146 /* 22147 * Choose a good ill in the group to send the 22148 * packets on. 22149 */ 22150 ire = conn_set_outgoing_ill(connp, ire, 22151 &conn_outgoing_ill); 22152 if (ire == NULL) { 22153 freemsg(mp); 22154 return; 22155 } 22156 } 22157 } 22158 22159 if (mp->b_datap->db_type != M_CTL) { 22160 ipha = (ipha_t *)mp->b_rptr; 22161 } else { 22162 io = (ipsec_out_t *)mp->b_rptr; 22163 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22164 ASSERT(zoneid == io->ipsec_out_zoneid); 22165 ASSERT(zoneid != ALL_ZONES); 22166 ipha = (ipha_t *)mp->b_cont->b_rptr; 22167 dst = ipha->ipha_dst; 22168 /* 22169 * For the multicast case, ipsec_out carries conn_dontroute and 22170 * conn_multicast_loop as conn may not be available here. We 22171 * need this for multicast loopback and forwarding which is done 22172 * later in the code. 22173 */ 22174 if (CLASSD(dst)) { 22175 conn_dontroute = io->ipsec_out_dontroute; 22176 conn_multicast_loop = io->ipsec_out_multicast_loop; 22177 /* 22178 * If conn_dontroute is not set or conn_multicast_loop 22179 * is set, we need to do forwarding/loopback. For 22180 * datagrams from ip_wput_multicast, conn_dontroute is 22181 * set to B_TRUE and conn_multicast_loop is set to 22182 * B_FALSE so that we neither do forwarding nor 22183 * loopback. 22184 */ 22185 if (!conn_dontroute || conn_multicast_loop) 22186 multicast_forward = B_TRUE; 22187 } 22188 } 22189 22190 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 22191 ire->ire_zoneid != ALL_ZONES) { 22192 /* 22193 * When a zone sends a packet to another zone, we try to deliver 22194 * the packet under the same conditions as if the destination 22195 * was a real node on the network. To do so, we look for a 22196 * matching route in the forwarding table. 22197 * RTF_REJECT and RTF_BLACKHOLE are handled just like 22198 * ip_newroute() does. 22199 * Note that IRE_LOCAL are special, since they are used 22200 * when the zoneid doesn't match in some cases. This means that 22201 * we need to handle ipha_src differently since ire_src_addr 22202 * belongs to the receiving zone instead of the sending zone. 22203 * When ip_restrict_interzone_loopback is set, then 22204 * ire_cache_lookup() ensures that IRE_LOCAL are only used 22205 * for loopback between zones when the logical "Ethernet" would 22206 * have looped them back. 22207 */ 22208 ire_t *src_ire; 22209 22210 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 22211 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 22212 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE), ipst); 22213 if (src_ire != NULL && 22214 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) && 22215 (!ipst->ips_ip_restrict_interzone_loopback || 22216 ire_local_same_ill_group(ire, src_ire))) { 22217 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 22218 ipha->ipha_src = src_ire->ire_src_addr; 22219 ire_refrele(src_ire); 22220 } else { 22221 ire_refrele(ire); 22222 if (conn_outgoing_ill != NULL) 22223 ill_refrele(conn_outgoing_ill); 22224 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 22225 if (src_ire != NULL) { 22226 if (src_ire->ire_flags & RTF_BLACKHOLE) { 22227 ire_refrele(src_ire); 22228 freemsg(mp); 22229 return; 22230 } 22231 ire_refrele(src_ire); 22232 } 22233 if (ip_hdr_complete(ipha, zoneid, ipst)) { 22234 /* Failed */ 22235 freemsg(mp); 22236 return; 22237 } 22238 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, zoneid, 22239 ipst); 22240 return; 22241 } 22242 } 22243 22244 if (mp->b_datap->db_type == M_CTL || 22245 ipss->ipsec_outbound_v4_policy_present) { 22246 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 22247 unspec_src, zoneid); 22248 if (mp == NULL) { 22249 ire_refrele(ire); 22250 if (conn_outgoing_ill != NULL) 22251 ill_refrele(conn_outgoing_ill); 22252 return; 22253 } 22254 /* 22255 * Trusted Extensions supports all-zones interfaces, so 22256 * zoneid == ALL_ZONES is valid, but IPsec maps ALL_ZONES to 22257 * the global zone. 22258 */ 22259 if (zoneid == ALL_ZONES && mp->b_datap->db_type == M_CTL) { 22260 io = (ipsec_out_t *)mp->b_rptr; 22261 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22262 zoneid = io->ipsec_out_zoneid; 22263 } 22264 } 22265 22266 first_mp = mp; 22267 ipsec_len = 0; 22268 22269 if (first_mp->b_datap->db_type == M_CTL) { 22270 io = (ipsec_out_t *)first_mp->b_rptr; 22271 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22272 mp = first_mp->b_cont; 22273 ipsec_len = ipsec_out_extra_length(first_mp); 22274 ASSERT(ipsec_len >= 0); 22275 /* We already picked up the zoneid from the M_CTL above */ 22276 ASSERT(zoneid == io->ipsec_out_zoneid); 22277 ASSERT(zoneid != ALL_ZONES); 22278 22279 /* 22280 * Drop M_CTL here if IPsec processing is not needed. 22281 * (Non-IPsec use of M_CTL extracted any information it 22282 * needed above). 22283 */ 22284 if (ipsec_len == 0) { 22285 freeb(first_mp); 22286 first_mp = mp; 22287 } 22288 } 22289 22290 /* 22291 * Fast path for ip_wput_ire 22292 */ 22293 22294 ipha = (ipha_t *)mp->b_rptr; 22295 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 22296 dst = ipha->ipha_dst; 22297 22298 /* 22299 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 22300 * if the socket is a SOCK_RAW type. The transport checksum should 22301 * be provided in the pre-built packet, so we don't need to compute it. 22302 * Also, other application set flags, like DF, should not be altered. 22303 * Other transport MUST pass down zero. 22304 */ 22305 ip_hdr_included = ipha->ipha_ident; 22306 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 22307 22308 if (CLASSD(dst)) { 22309 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 22310 ntohl(dst), 22311 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 22312 ntohl(ire->ire_addr))); 22313 } 22314 22315 /* Macros to extract header fields from data already in registers */ 22316 #ifdef _BIG_ENDIAN 22317 #define V_HLEN (v_hlen_tos_len >> 24) 22318 #define LENGTH (v_hlen_tos_len & 0xFFFF) 22319 #define PROTO (ttl_protocol & 0xFF) 22320 #else 22321 #define V_HLEN (v_hlen_tos_len & 0xFF) 22322 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 22323 #define PROTO (ttl_protocol >> 8) 22324 #endif 22325 22326 22327 orig_src = src = ipha->ipha_src; 22328 /* (The loop back to "another" is explained down below.) */ 22329 another:; 22330 /* 22331 * Assign an ident value for this packet. We assign idents on 22332 * a per destination basis out of the IRE. There could be 22333 * other threads targeting the same destination, so we have to 22334 * arrange for a atomic increment. Note that we use a 32-bit 22335 * atomic add because it has better performance than its 22336 * 16-bit sibling. 22337 * 22338 * If running in cluster mode and if the source address 22339 * belongs to a replicated service then vector through 22340 * cl_inet_ipident vector to allocate ip identifier 22341 * NOTE: This is a contract private interface with the 22342 * clustering group. 22343 */ 22344 clusterwide = 0; 22345 if (cl_inet_ipident) { 22346 ASSERT(cl_inet_isclusterwide); 22347 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 22348 AF_INET, (uint8_t *)(uintptr_t)src)) { 22349 ipha->ipha_ident = (*cl_inet_ipident)(IPPROTO_IP, 22350 AF_INET, (uint8_t *)(uintptr_t)src, 22351 (uint8_t *)(uintptr_t)dst); 22352 clusterwide = 1; 22353 } 22354 } 22355 if (!clusterwide) { 22356 ipha->ipha_ident = 22357 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 22358 } 22359 22360 #ifndef _BIG_ENDIAN 22361 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 22362 #endif 22363 22364 /* 22365 * Set source address unless sent on an ill or conn_unspec_src is set. 22366 * This is needed to obey conn_unspec_src when packets go through 22367 * ip_newroute + arp. 22368 * Assumes ip_newroute{,_multi} sets the source address as well. 22369 */ 22370 if (src == INADDR_ANY && !unspec_src) { 22371 /* 22372 * Assign the appropriate source address from the IRE if none 22373 * was specified. 22374 */ 22375 ASSERT(ire->ire_ipversion == IPV4_VERSION); 22376 22377 /* 22378 * With IP multipathing, broadcast packets are sent on the ire 22379 * that has been cleared of IRE_MARK_NORECV and that belongs to 22380 * the group. However, this ire might not be in the same zone so 22381 * we can't always use its source address. We look for a 22382 * broadcast ire in the same group and in the right zone. 22383 */ 22384 if (ire->ire_type == IRE_BROADCAST && 22385 ire->ire_zoneid != zoneid) { 22386 ire_t *src_ire = ire_ctable_lookup(dst, 0, 22387 IRE_BROADCAST, ire->ire_ipif, zoneid, NULL, 22388 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 22389 if (src_ire != NULL) { 22390 src = src_ire->ire_src_addr; 22391 ire_refrele(src_ire); 22392 } else { 22393 ire_refrele(ire); 22394 if (conn_outgoing_ill != NULL) 22395 ill_refrele(conn_outgoing_ill); 22396 freemsg(first_mp); 22397 if (ill != NULL) { 22398 BUMP_MIB(ill->ill_ip_mib, 22399 ipIfStatsOutDiscards); 22400 } else { 22401 BUMP_MIB(&ipst->ips_ip_mib, 22402 ipIfStatsOutDiscards); 22403 } 22404 return; 22405 } 22406 } else { 22407 src = ire->ire_src_addr; 22408 } 22409 22410 if (connp == NULL) { 22411 ip1dbg(("ip_wput_ire: no connp and no src " 22412 "address for dst 0x%x, using src 0x%x\n", 22413 ntohl(dst), 22414 ntohl(src))); 22415 } 22416 ipha->ipha_src = src; 22417 } 22418 stq = ire->ire_stq; 22419 22420 /* 22421 * We only allow ire chains for broadcasts since there will 22422 * be multiple IRE_CACHE entries for the same multicast 22423 * address (one per ipif). 22424 */ 22425 next_mp = NULL; 22426 22427 /* broadcast packet */ 22428 if (ire->ire_type == IRE_BROADCAST) 22429 goto broadcast; 22430 22431 /* loopback ? */ 22432 if (stq == NULL) 22433 goto nullstq; 22434 22435 /* The ill_index for outbound ILL */ 22436 ill_index = Q_TO_INDEX(stq); 22437 22438 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 22439 ttl_protocol = ((uint16_t *)ipha)[4]; 22440 22441 /* pseudo checksum (do it in parts for IP header checksum) */ 22442 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 22443 22444 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 22445 queue_t *dev_q = stq->q_next; 22446 22447 /* flow controlled */ 22448 if ((dev_q->q_next || dev_q->q_first) && 22449 !canput(dev_q)) 22450 goto blocked; 22451 if ((PROTO == IPPROTO_UDP) && 22452 (ip_hdr_included != IP_HDR_INCLUDED)) { 22453 hlen = (V_HLEN & 0xF) << 2; 22454 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22455 if (*up != 0) { 22456 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 22457 hlen, LENGTH, max_frag, ipsec_len, cksum); 22458 /* Software checksum? */ 22459 if (DB_CKSUMFLAGS(mp) == 0) { 22460 IP_STAT(ipst, ip_out_sw_cksum); 22461 IP_STAT_UPDATE(ipst, 22462 ip_udp_out_sw_cksum_bytes, 22463 LENGTH - hlen); 22464 } 22465 } 22466 } 22467 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 22468 hlen = (V_HLEN & 0xF) << 2; 22469 if (PROTO == IPPROTO_TCP) { 22470 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22471 /* 22472 * The packet header is processed once and for all, even 22473 * in the multirouting case. We disable hardware 22474 * checksum if the packet is multirouted, as it will be 22475 * replicated via several interfaces, and not all of 22476 * them may have this capability. 22477 */ 22478 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 22479 LENGTH, max_frag, ipsec_len, cksum); 22480 /* Software checksum? */ 22481 if (DB_CKSUMFLAGS(mp) == 0) { 22482 IP_STAT(ipst, ip_out_sw_cksum); 22483 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22484 LENGTH - hlen); 22485 } 22486 } else { 22487 sctp_hdr_t *sctph; 22488 22489 ASSERT(PROTO == IPPROTO_SCTP); 22490 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22491 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22492 /* 22493 * Zero out the checksum field to ensure proper 22494 * checksum calculation. 22495 */ 22496 sctph->sh_chksum = 0; 22497 #ifdef DEBUG 22498 if (!skip_sctp_cksum) 22499 #endif 22500 sctph->sh_chksum = sctp_cksum(mp, hlen); 22501 } 22502 } 22503 22504 /* 22505 * If this is a multicast packet and originated from ip_wput 22506 * we need to do loopback and forwarding checks. If it comes 22507 * from ip_wput_multicast, we SHOULD not do this. 22508 */ 22509 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 22510 22511 /* checksum */ 22512 cksum += ttl_protocol; 22513 22514 /* fragment the packet */ 22515 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 22516 goto fragmentit; 22517 /* 22518 * Don't use frag_flag if packet is pre-built or source 22519 * routed or if multicast (since multicast packets do 22520 * not solicit ICMP "packet too big" messages). 22521 */ 22522 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22523 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22524 !ip_source_route_included(ipha)) && 22525 !CLASSD(ipha->ipha_dst)) 22526 ipha->ipha_fragment_offset_and_flags |= 22527 htons(ire->ire_frag_flag); 22528 22529 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22530 /* calculate IP header checksum */ 22531 cksum += ipha->ipha_ident; 22532 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 22533 cksum += ipha->ipha_fragment_offset_and_flags; 22534 22535 /* IP options present */ 22536 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22537 if (hlen) 22538 goto checksumoptions; 22539 22540 /* calculate hdr checksum */ 22541 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22542 cksum = ~(cksum + (cksum >> 16)); 22543 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22544 } 22545 if (ipsec_len != 0) { 22546 /* 22547 * We will do the rest of the processing after 22548 * we come back from IPsec in ip_wput_ipsec_out(). 22549 */ 22550 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 22551 22552 io = (ipsec_out_t *)first_mp->b_rptr; 22553 io->ipsec_out_ill_index = ((ill_t *)stq->q_ptr)-> 22554 ill_phyint->phyint_ifindex; 22555 22556 ipsec_out_process(q, first_mp, ire, ill_index); 22557 ire_refrele(ire); 22558 if (conn_outgoing_ill != NULL) 22559 ill_refrele(conn_outgoing_ill); 22560 return; 22561 } 22562 22563 /* 22564 * In most cases, the emission loop below is entered only 22565 * once. Only in the case where the ire holds the 22566 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 22567 * flagged ires in the bucket, and send the packet 22568 * through all crossed RTF_MULTIRT routes. 22569 */ 22570 if (ire->ire_flags & RTF_MULTIRT) { 22571 multirt_send = B_TRUE; 22572 } 22573 do { 22574 if (multirt_send) { 22575 irb_t *irb; 22576 /* 22577 * We are in a multiple send case, need to get 22578 * the next ire and make a duplicate of the packet. 22579 * ire1 holds here the next ire to process in the 22580 * bucket. If multirouting is expected, 22581 * any non-RTF_MULTIRT ire that has the 22582 * right destination address is ignored. 22583 */ 22584 irb = ire->ire_bucket; 22585 ASSERT(irb != NULL); 22586 22587 IRB_REFHOLD(irb); 22588 for (ire1 = ire->ire_next; 22589 ire1 != NULL; 22590 ire1 = ire1->ire_next) { 22591 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 22592 continue; 22593 if (ire1->ire_addr != ire->ire_addr) 22594 continue; 22595 if (ire1->ire_marks & 22596 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 22597 continue; 22598 22599 /* Got one */ 22600 IRE_REFHOLD(ire1); 22601 break; 22602 } 22603 IRB_REFRELE(irb); 22604 22605 if (ire1 != NULL) { 22606 next_mp = copyb(mp); 22607 if ((next_mp == NULL) || 22608 ((mp->b_cont != NULL) && 22609 ((next_mp->b_cont = 22610 dupmsg(mp->b_cont)) == NULL))) { 22611 freemsg(next_mp); 22612 next_mp = NULL; 22613 ire_refrele(ire1); 22614 ire1 = NULL; 22615 } 22616 } 22617 22618 /* Last multiroute ire; don't loop anymore. */ 22619 if (ire1 == NULL) { 22620 multirt_send = B_FALSE; 22621 } 22622 } 22623 22624 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 22625 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha, 22626 mblk_t *, mp); 22627 FW_HOOKS(ipst->ips_ip4_physical_out_event, 22628 ipst->ips_ipv4firewall_physical_out, 22629 NULL, ire->ire_ipif->ipif_ill, ipha, mp, mp, 0, ipst); 22630 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 22631 if (mp == NULL) 22632 goto release_ire_and_ill; 22633 22634 mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT); 22635 DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire); 22636 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE); 22637 if ((pktxmit_state == SEND_FAILED) || 22638 (pktxmit_state == LLHDR_RESLV_FAILED)) { 22639 ip2dbg(("ip_wput_ire: ip_xmit_v4 failed" 22640 "- packet dropped\n")); 22641 release_ire_and_ill: 22642 ire_refrele(ire); 22643 if (next_mp != NULL) { 22644 freemsg(next_mp); 22645 ire_refrele(ire1); 22646 } 22647 if (conn_outgoing_ill != NULL) 22648 ill_refrele(conn_outgoing_ill); 22649 return; 22650 } 22651 22652 if (CLASSD(dst)) { 22653 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastPkts); 22654 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastOctets, 22655 LENGTH); 22656 } 22657 22658 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22659 "ip_wput_ire_end: q %p (%S)", 22660 q, "last copy out"); 22661 IRE_REFRELE(ire); 22662 22663 if (multirt_send) { 22664 ASSERT(ire1); 22665 /* 22666 * Proceed with the next RTF_MULTIRT ire, 22667 * Also set up the send-to queue accordingly. 22668 */ 22669 ire = ire1; 22670 ire1 = NULL; 22671 stq = ire->ire_stq; 22672 mp = next_mp; 22673 next_mp = NULL; 22674 ipha = (ipha_t *)mp->b_rptr; 22675 ill_index = Q_TO_INDEX(stq); 22676 ill = (ill_t *)stq->q_ptr; 22677 } 22678 } while (multirt_send); 22679 if (conn_outgoing_ill != NULL) 22680 ill_refrele(conn_outgoing_ill); 22681 return; 22682 22683 /* 22684 * ire->ire_type == IRE_BROADCAST (minimize diffs) 22685 */ 22686 broadcast: 22687 { 22688 /* 22689 * To avoid broadcast storms, we usually set the TTL to 1 for 22690 * broadcasts. However, if SO_DONTROUTE isn't set, this value 22691 * can be overridden stack-wide through the ip_broadcast_ttl 22692 * ndd tunable, or on a per-connection basis through the 22693 * IP_BROADCAST_TTL socket option. 22694 * 22695 * In the event that we are replying to incoming ICMP packets, 22696 * connp could be NULL. 22697 */ 22698 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 22699 if (connp != NULL) { 22700 if (connp->conn_dontroute) 22701 ipha->ipha_ttl = 1; 22702 else if (connp->conn_broadcast_ttl != 0) 22703 ipha->ipha_ttl = connp->conn_broadcast_ttl; 22704 } 22705 22706 /* 22707 * Note that we are not doing a IRB_REFHOLD here. 22708 * Actually we don't care if the list changes i.e 22709 * if somebody deletes an IRE from the list while 22710 * we drop the lock, the next time we come around 22711 * ire_next will be NULL and hence we won't send 22712 * out multiple copies which is fine. 22713 */ 22714 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 22715 ire1 = ire->ire_next; 22716 if (conn_outgoing_ill != NULL) { 22717 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 22718 ASSERT(ire1 == ire->ire_next); 22719 if (ire1 != NULL && ire1->ire_addr == dst) { 22720 ire_refrele(ire); 22721 ire = ire1; 22722 IRE_REFHOLD(ire); 22723 ire1 = ire->ire_next; 22724 continue; 22725 } 22726 rw_exit(&ire->ire_bucket->irb_lock); 22727 /* Did not find a matching ill */ 22728 ip1dbg(("ip_wput_ire: broadcast with no " 22729 "matching IP_BOUND_IF ill %s dst %x\n", 22730 conn_outgoing_ill->ill_name, dst)); 22731 freemsg(first_mp); 22732 if (ire != NULL) 22733 ire_refrele(ire); 22734 ill_refrele(conn_outgoing_ill); 22735 return; 22736 } 22737 } else if (ire1 != NULL && ire1->ire_addr == dst) { 22738 /* 22739 * If the next IRE has the same address and is not one 22740 * of the two copies that we need to send, try to see 22741 * whether this copy should be sent at all. This 22742 * assumes that we insert loopbacks first and then 22743 * non-loopbacks. This is acheived by inserting the 22744 * loopback always before non-loopback. 22745 * This is used to send a single copy of a broadcast 22746 * packet out all physical interfaces that have an 22747 * matching IRE_BROADCAST while also looping 22748 * back one copy (to ip_wput_local) for each 22749 * matching physical interface. However, we avoid 22750 * sending packets out different logical that match by 22751 * having ipif_up/ipif_down supress duplicate 22752 * IRE_BROADCASTS. 22753 * 22754 * This feature is currently used to get broadcasts 22755 * sent to multiple interfaces, when the broadcast 22756 * address being used applies to multiple interfaces. 22757 * For example, a whole net broadcast will be 22758 * replicated on every connected subnet of 22759 * the target net. 22760 * 22761 * Each zone has its own set of IRE_BROADCASTs, so that 22762 * we're able to distribute inbound packets to multiple 22763 * zones who share a broadcast address. We avoid looping 22764 * back outbound packets in different zones but on the 22765 * same ill, as the application would see duplicates. 22766 * 22767 * If the interfaces are part of the same group, 22768 * we would want to send only one copy out for 22769 * whole group. 22770 * 22771 * This logic assumes that ire_add_v4() groups the 22772 * IRE_BROADCAST entries so that those with the same 22773 * ire_addr and ill_group are kept together. 22774 */ 22775 ire_ill = ire->ire_ipif->ipif_ill; 22776 if (ire->ire_stq == NULL && ire1->ire_stq != NULL) { 22777 if (ire_ill->ill_group != NULL && 22778 (ire->ire_marks & IRE_MARK_NORECV)) { 22779 /* 22780 * If the current zone only has an ire 22781 * broadcast for this address marked 22782 * NORECV, the ire we want is ahead in 22783 * the bucket, so we look it up 22784 * deliberately ignoring the zoneid. 22785 */ 22786 for (ire1 = ire->ire_bucket->irb_ire; 22787 ire1 != NULL; 22788 ire1 = ire1->ire_next) { 22789 ire1_ill = 22790 ire1->ire_ipif->ipif_ill; 22791 if (ire1->ire_addr != dst) 22792 continue; 22793 /* skip over the current ire */ 22794 if (ire1 == ire) 22795 continue; 22796 /* skip over deleted ires */ 22797 if (ire1->ire_marks & 22798 IRE_MARK_CONDEMNED) 22799 continue; 22800 /* 22801 * non-loopback ire in our 22802 * group: use it for the next 22803 * pass in the loop 22804 */ 22805 if (ire1->ire_stq != NULL && 22806 ire1_ill->ill_group == 22807 ire_ill->ill_group) 22808 break; 22809 } 22810 } 22811 } else { 22812 while (ire1 != NULL && ire1->ire_addr == dst) { 22813 ire1_ill = ire1->ire_ipif->ipif_ill; 22814 /* 22815 * We can have two broadcast ires on the 22816 * same ill in different zones; here 22817 * we'll send a copy of the packet on 22818 * each ill and the fanout code will 22819 * call conn_wantpacket() to check that 22820 * the zone has the broadcast address 22821 * configured on the ill. If the two 22822 * ires are in the same group we only 22823 * send one copy up. 22824 */ 22825 if (ire1_ill != ire_ill && 22826 (ire1_ill->ill_group == NULL || 22827 ire_ill->ill_group == NULL || 22828 ire1_ill->ill_group != 22829 ire_ill->ill_group)) { 22830 break; 22831 } 22832 ire1 = ire1->ire_next; 22833 } 22834 } 22835 } 22836 ASSERT(multirt_send == B_FALSE); 22837 if (ire1 != NULL && ire1->ire_addr == dst) { 22838 if ((ire->ire_flags & RTF_MULTIRT) && 22839 (ire1->ire_flags & RTF_MULTIRT)) { 22840 /* 22841 * We are in the multirouting case. 22842 * The message must be sent at least 22843 * on both ires. These ires have been 22844 * inserted AFTER the standard ones 22845 * in ip_rt_add(). There are thus no 22846 * other ire entries for the destination 22847 * address in the rest of the bucket 22848 * that do not have the RTF_MULTIRT 22849 * flag. We don't process a copy 22850 * of the message here. This will be 22851 * done in the final sending loop. 22852 */ 22853 multirt_send = B_TRUE; 22854 } else { 22855 next_mp = ip_copymsg(first_mp); 22856 if (next_mp != NULL) 22857 IRE_REFHOLD(ire1); 22858 } 22859 } 22860 rw_exit(&ire->ire_bucket->irb_lock); 22861 } 22862 22863 if (stq) { 22864 /* 22865 * A non-NULL send-to queue means this packet is going 22866 * out of this machine. 22867 */ 22868 out_ill = (ill_t *)stq->q_ptr; 22869 22870 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutRequests); 22871 ttl_protocol = ((uint16_t *)ipha)[4]; 22872 /* 22873 * We accumulate the pseudo header checksum in cksum. 22874 * This is pretty hairy code, so watch close. One 22875 * thing to keep in mind is that UDP and TCP have 22876 * stored their respective datagram lengths in their 22877 * checksum fields. This lines things up real nice. 22878 */ 22879 cksum = (dst >> 16) + (dst & 0xFFFF) + 22880 (src >> 16) + (src & 0xFFFF); 22881 /* 22882 * We assume the udp checksum field contains the 22883 * length, so to compute the pseudo header checksum, 22884 * all we need is the protocol number and src/dst. 22885 */ 22886 /* Provide the checksums for UDP and TCP. */ 22887 if ((PROTO == IPPROTO_TCP) && 22888 (ip_hdr_included != IP_HDR_INCLUDED)) { 22889 /* hlen gets the number of uchar_ts in the IP header */ 22890 hlen = (V_HLEN & 0xF) << 2; 22891 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22892 IP_STAT(ipst, ip_out_sw_cksum); 22893 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22894 LENGTH - hlen); 22895 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 22896 } else if (PROTO == IPPROTO_SCTP && 22897 (ip_hdr_included != IP_HDR_INCLUDED)) { 22898 sctp_hdr_t *sctph; 22899 22900 hlen = (V_HLEN & 0xF) << 2; 22901 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22902 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22903 sctph->sh_chksum = 0; 22904 #ifdef DEBUG 22905 if (!skip_sctp_cksum) 22906 #endif 22907 sctph->sh_chksum = sctp_cksum(mp, hlen); 22908 } else { 22909 queue_t *dev_q = stq->q_next; 22910 22911 if ((dev_q->q_next || dev_q->q_first) && 22912 !canput(dev_q)) { 22913 blocked: 22914 ipha->ipha_ident = ip_hdr_included; 22915 /* 22916 * If we don't have a conn to apply 22917 * backpressure, free the message. 22918 * In the ire_send path, we don't know 22919 * the position to requeue the packet. Rather 22920 * than reorder packets, we just drop this 22921 * packet. 22922 */ 22923 if (ipst->ips_ip_output_queue && 22924 connp != NULL && 22925 caller != IRE_SEND) { 22926 if (caller == IP_WSRV) { 22927 connp->conn_did_putbq = 1; 22928 (void) putbq(connp->conn_wq, 22929 first_mp); 22930 conn_drain_insert(connp); 22931 /* 22932 * This is the service thread, 22933 * and the queue is already 22934 * noenabled. The check for 22935 * canput and the putbq is not 22936 * atomic. So we need to check 22937 * again. 22938 */ 22939 if (canput(stq->q_next)) 22940 connp->conn_did_putbq 22941 = 0; 22942 IP_STAT(ipst, ip_conn_flputbq); 22943 } else { 22944 /* 22945 * We are not the service proc. 22946 * ip_wsrv will be scheduled or 22947 * is already running. 22948 */ 22949 (void) putq(connp->conn_wq, 22950 first_mp); 22951 } 22952 } else { 22953 out_ill = (ill_t *)stq->q_ptr; 22954 BUMP_MIB(out_ill->ill_ip_mib, 22955 ipIfStatsOutDiscards); 22956 freemsg(first_mp); 22957 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22958 "ip_wput_ire_end: q %p (%S)", 22959 q, "discard"); 22960 } 22961 ire_refrele(ire); 22962 if (next_mp) { 22963 ire_refrele(ire1); 22964 freemsg(next_mp); 22965 } 22966 if (conn_outgoing_ill != NULL) 22967 ill_refrele(conn_outgoing_ill); 22968 return; 22969 } 22970 if ((PROTO == IPPROTO_UDP) && 22971 (ip_hdr_included != IP_HDR_INCLUDED)) { 22972 /* 22973 * hlen gets the number of uchar_ts in the 22974 * IP header 22975 */ 22976 hlen = (V_HLEN & 0xF) << 2; 22977 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22978 max_frag = ire->ire_max_frag; 22979 if (*up != 0) { 22980 IP_CKSUM_XMIT(out_ill, ire, mp, ipha, 22981 up, PROTO, hlen, LENGTH, max_frag, 22982 ipsec_len, cksum); 22983 /* Software checksum? */ 22984 if (DB_CKSUMFLAGS(mp) == 0) { 22985 IP_STAT(ipst, ip_out_sw_cksum); 22986 IP_STAT_UPDATE(ipst, 22987 ip_udp_out_sw_cksum_bytes, 22988 LENGTH - hlen); 22989 } 22990 } 22991 } 22992 } 22993 /* 22994 * Need to do this even when fragmenting. The local 22995 * loopback can be done without computing checksums 22996 * but forwarding out other interface must be done 22997 * after the IP checksum (and ULP checksums) have been 22998 * computed. 22999 * 23000 * NOTE : multicast_forward is set only if this packet 23001 * originated from ip_wput. For packets originating from 23002 * ip_wput_multicast, it is not set. 23003 */ 23004 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 23005 multi_loopback: 23006 ip2dbg(("ip_wput: multicast, loop %d\n", 23007 conn_multicast_loop)); 23008 23009 /* Forget header checksum offload */ 23010 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 23011 23012 /* 23013 * Local loopback of multicasts? Check the 23014 * ill. 23015 * 23016 * Note that the loopback function will not come 23017 * in through ip_rput - it will only do the 23018 * client fanout thus we need to do an mforward 23019 * as well. The is different from the BSD 23020 * logic. 23021 */ 23022 if (ill != NULL) { 23023 ilm_t *ilm; 23024 23025 ILM_WALKER_HOLD(ill); 23026 ilm = ilm_lookup_ill(ill, ipha->ipha_dst, 23027 ALL_ZONES); 23028 ILM_WALKER_RELE(ill); 23029 if (ilm != NULL) { 23030 /* 23031 * Pass along the virtual output q. 23032 * ip_wput_local() will distribute the 23033 * packet to all the matching zones, 23034 * except the sending zone when 23035 * IP_MULTICAST_LOOP is false. 23036 */ 23037 ip_multicast_loopback(q, ill, first_mp, 23038 conn_multicast_loop ? 0 : 23039 IP_FF_NO_MCAST_LOOP, zoneid); 23040 } 23041 } 23042 if (ipha->ipha_ttl == 0) { 23043 /* 23044 * 0 => only to this host i.e. we are 23045 * done. We are also done if this was the 23046 * loopback interface since it is sufficient 23047 * to loopback one copy of a multicast packet. 23048 */ 23049 freemsg(first_mp); 23050 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23051 "ip_wput_ire_end: q %p (%S)", 23052 q, "loopback"); 23053 ire_refrele(ire); 23054 if (conn_outgoing_ill != NULL) 23055 ill_refrele(conn_outgoing_ill); 23056 return; 23057 } 23058 /* 23059 * ILLF_MULTICAST is checked in ip_newroute 23060 * i.e. we don't need to check it here since 23061 * all IRE_CACHEs come from ip_newroute. 23062 * For multicast traffic, SO_DONTROUTE is interpreted 23063 * to mean only send the packet out the interface 23064 * (optionally specified with IP_MULTICAST_IF) 23065 * and do not forward it out additional interfaces. 23066 * RSVP and the rsvp daemon is an example of a 23067 * protocol and user level process that 23068 * handles it's own routing. Hence, it uses the 23069 * SO_DONTROUTE option to accomplish this. 23070 */ 23071 23072 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 23073 ill != NULL) { 23074 /* Unconditionally redo the checksum */ 23075 ipha->ipha_hdr_checksum = 0; 23076 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23077 23078 /* 23079 * If this needs to go out secure, we need 23080 * to wait till we finish the IPsec 23081 * processing. 23082 */ 23083 if (ipsec_len == 0 && 23084 ip_mforward(ill, ipha, mp)) { 23085 freemsg(first_mp); 23086 ip1dbg(("ip_wput: mforward failed\n")); 23087 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23088 "ip_wput_ire_end: q %p (%S)", 23089 q, "mforward failed"); 23090 ire_refrele(ire); 23091 if (conn_outgoing_ill != NULL) 23092 ill_refrele(conn_outgoing_ill); 23093 return; 23094 } 23095 } 23096 } 23097 max_frag = ire->ire_max_frag; 23098 cksum += ttl_protocol; 23099 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 23100 /* No fragmentation required for this one. */ 23101 /* 23102 * Don't use frag_flag if packet is pre-built or source 23103 * routed or if multicast (since multicast packets do 23104 * not solicit ICMP "packet too big" messages). 23105 */ 23106 if ((ip_hdr_included != IP_HDR_INCLUDED) && 23107 (V_HLEN == IP_SIMPLE_HDR_VERSION || 23108 !ip_source_route_included(ipha)) && 23109 !CLASSD(ipha->ipha_dst)) 23110 ipha->ipha_fragment_offset_and_flags |= 23111 htons(ire->ire_frag_flag); 23112 23113 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 23114 /* Complete the IP header checksum. */ 23115 cksum += ipha->ipha_ident; 23116 cksum += (v_hlen_tos_len >> 16)+ 23117 (v_hlen_tos_len & 0xFFFF); 23118 cksum += ipha->ipha_fragment_offset_and_flags; 23119 hlen = (V_HLEN & 0xF) - 23120 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 23121 if (hlen) { 23122 checksumoptions: 23123 /* 23124 * Account for the IP Options in the IP 23125 * header checksum. 23126 */ 23127 up = (uint16_t *)(rptr+ 23128 IP_SIMPLE_HDR_LENGTH); 23129 do { 23130 cksum += up[0]; 23131 cksum += up[1]; 23132 up += 2; 23133 } while (--hlen); 23134 } 23135 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 23136 cksum = ~(cksum + (cksum >> 16)); 23137 ipha->ipha_hdr_checksum = (uint16_t)cksum; 23138 } 23139 if (ipsec_len != 0) { 23140 ipsec_out_process(q, first_mp, ire, ill_index); 23141 if (!next_mp) { 23142 ire_refrele(ire); 23143 if (conn_outgoing_ill != NULL) 23144 ill_refrele(conn_outgoing_ill); 23145 return; 23146 } 23147 goto next; 23148 } 23149 23150 /* 23151 * multirt_send has already been handled 23152 * for broadcast, but not yet for multicast 23153 * or IP options. 23154 */ 23155 if (next_mp == NULL) { 23156 if (ire->ire_flags & RTF_MULTIRT) { 23157 multirt_send = B_TRUE; 23158 } 23159 } 23160 23161 /* 23162 * In most cases, the emission loop below is 23163 * entered only once. Only in the case where 23164 * the ire holds the RTF_MULTIRT flag, do we loop 23165 * to process all RTF_MULTIRT ires in the bucket, 23166 * and send the packet through all crossed 23167 * RTF_MULTIRT routes. 23168 */ 23169 do { 23170 if (multirt_send) { 23171 irb_t *irb; 23172 23173 irb = ire->ire_bucket; 23174 ASSERT(irb != NULL); 23175 /* 23176 * We are in a multiple send case, 23177 * need to get the next IRE and make 23178 * a duplicate of the packet. 23179 */ 23180 IRB_REFHOLD(irb); 23181 for (ire1 = ire->ire_next; 23182 ire1 != NULL; 23183 ire1 = ire1->ire_next) { 23184 if (!(ire1->ire_flags & 23185 RTF_MULTIRT)) { 23186 continue; 23187 } 23188 if (ire1->ire_addr != 23189 ire->ire_addr) { 23190 continue; 23191 } 23192 if (ire1->ire_marks & 23193 (IRE_MARK_CONDEMNED| 23194 IRE_MARK_HIDDEN)) { 23195 continue; 23196 } 23197 23198 /* Got one */ 23199 IRE_REFHOLD(ire1); 23200 break; 23201 } 23202 IRB_REFRELE(irb); 23203 23204 if (ire1 != NULL) { 23205 next_mp = copyb(mp); 23206 if ((next_mp == NULL) || 23207 ((mp->b_cont != NULL) && 23208 ((next_mp->b_cont = 23209 dupmsg(mp->b_cont)) 23210 == NULL))) { 23211 freemsg(next_mp); 23212 next_mp = NULL; 23213 ire_refrele(ire1); 23214 ire1 = NULL; 23215 } 23216 } 23217 23218 /* 23219 * Last multiroute ire; don't loop 23220 * anymore. The emission is over 23221 * and next_mp is NULL. 23222 */ 23223 if (ire1 == NULL) { 23224 multirt_send = B_FALSE; 23225 } 23226 } 23227 23228 out_ill = ire_to_ill(ire); 23229 DTRACE_PROBE4(ip4__physical__out__start, 23230 ill_t *, NULL, 23231 ill_t *, out_ill, 23232 ipha_t *, ipha, mblk_t *, mp); 23233 FW_HOOKS(ipst->ips_ip4_physical_out_event, 23234 ipst->ips_ipv4firewall_physical_out, 23235 NULL, out_ill, ipha, mp, mp, 0, ipst); 23236 DTRACE_PROBE1(ip4__physical__out__end, 23237 mblk_t *, mp); 23238 if (mp == NULL) 23239 goto release_ire_and_ill_2; 23240 23241 ASSERT(ipsec_len == 0); 23242 mp->b_prev = 23243 SET_BPREV_FLAG(IPP_LOCAL_OUT); 23244 DTRACE_PROBE2(ip__xmit__2, 23245 mblk_t *, mp, ire_t *, ire); 23246 pktxmit_state = ip_xmit_v4(mp, ire, 23247 NULL, B_TRUE); 23248 if ((pktxmit_state == SEND_FAILED) || 23249 (pktxmit_state == LLHDR_RESLV_FAILED)) { 23250 release_ire_and_ill_2: 23251 if (next_mp) { 23252 freemsg(next_mp); 23253 ire_refrele(ire1); 23254 } 23255 ire_refrele(ire); 23256 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23257 "ip_wput_ire_end: q %p (%S)", 23258 q, "discard MDATA"); 23259 if (conn_outgoing_ill != NULL) 23260 ill_refrele(conn_outgoing_ill); 23261 return; 23262 } 23263 23264 if (CLASSD(dst)) { 23265 BUMP_MIB(out_ill->ill_ip_mib, 23266 ipIfStatsHCOutMcastPkts); 23267 UPDATE_MIB(out_ill->ill_ip_mib, 23268 ipIfStatsHCOutMcastOctets, 23269 LENGTH); 23270 } else if (ire->ire_type == IRE_BROADCAST) { 23271 BUMP_MIB(out_ill->ill_ip_mib, 23272 ipIfStatsHCOutBcastPkts); 23273 } 23274 23275 if (multirt_send) { 23276 /* 23277 * We are in a multiple send case, 23278 * need to re-enter the sending loop 23279 * using the next ire. 23280 */ 23281 ire_refrele(ire); 23282 ire = ire1; 23283 stq = ire->ire_stq; 23284 mp = next_mp; 23285 next_mp = NULL; 23286 ipha = (ipha_t *)mp->b_rptr; 23287 ill_index = Q_TO_INDEX(stq); 23288 } 23289 } while (multirt_send); 23290 23291 if (!next_mp) { 23292 /* 23293 * Last copy going out (the ultra-common 23294 * case). Note that we intentionally replicate 23295 * the putnext rather than calling it before 23296 * the next_mp check in hopes of a little 23297 * tail-call action out of the compiler. 23298 */ 23299 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23300 "ip_wput_ire_end: q %p (%S)", 23301 q, "last copy out(1)"); 23302 ire_refrele(ire); 23303 if (conn_outgoing_ill != NULL) 23304 ill_refrele(conn_outgoing_ill); 23305 return; 23306 } 23307 /* More copies going out below. */ 23308 } else { 23309 int offset; 23310 fragmentit: 23311 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 23312 /* 23313 * If this would generate a icmp_frag_needed message, 23314 * we need to handle it before we do the IPsec 23315 * processing. Otherwise, we need to strip the IPsec 23316 * headers before we send up the message to the ULPs 23317 * which becomes messy and difficult. 23318 */ 23319 if (ipsec_len != 0) { 23320 if ((max_frag < (unsigned int)(LENGTH + 23321 ipsec_len)) && (offset & IPH_DF)) { 23322 out_ill = (ill_t *)stq->q_ptr; 23323 BUMP_MIB(out_ill->ill_ip_mib, 23324 ipIfStatsOutFragFails); 23325 BUMP_MIB(out_ill->ill_ip_mib, 23326 ipIfStatsOutFragReqds); 23327 ipha->ipha_hdr_checksum = 0; 23328 ipha->ipha_hdr_checksum = 23329 (uint16_t)ip_csum_hdr(ipha); 23330 icmp_frag_needed(ire->ire_stq, first_mp, 23331 max_frag, zoneid, ipst); 23332 if (!next_mp) { 23333 ire_refrele(ire); 23334 if (conn_outgoing_ill != NULL) { 23335 ill_refrele( 23336 conn_outgoing_ill); 23337 } 23338 return; 23339 } 23340 } else { 23341 /* 23342 * This won't cause a icmp_frag_needed 23343 * message. to be generated. Send it on 23344 * the wire. Note that this could still 23345 * cause fragmentation and all we 23346 * do is the generation of the message 23347 * to the ULP if needed before IPsec. 23348 */ 23349 if (!next_mp) { 23350 ipsec_out_process(q, first_mp, 23351 ire, ill_index); 23352 TRACE_2(TR_FAC_IP, 23353 TR_IP_WPUT_IRE_END, 23354 "ip_wput_ire_end: q %p " 23355 "(%S)", q, 23356 "last ipsec_out_process"); 23357 ire_refrele(ire); 23358 if (conn_outgoing_ill != NULL) { 23359 ill_refrele( 23360 conn_outgoing_ill); 23361 } 23362 return; 23363 } 23364 ipsec_out_process(q, first_mp, 23365 ire, ill_index); 23366 } 23367 } else { 23368 /* 23369 * Initiate IPPF processing. For 23370 * fragmentable packets we finish 23371 * all QOS packet processing before 23372 * calling: 23373 * ip_wput_ire_fragmentit->ip_wput_frag 23374 */ 23375 23376 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23377 ip_process(IPP_LOCAL_OUT, &mp, 23378 ill_index); 23379 if (mp == NULL) { 23380 out_ill = (ill_t *)stq->q_ptr; 23381 BUMP_MIB(out_ill->ill_ip_mib, 23382 ipIfStatsOutDiscards); 23383 if (next_mp != NULL) { 23384 freemsg(next_mp); 23385 ire_refrele(ire1); 23386 } 23387 ire_refrele(ire); 23388 TRACE_2(TR_FAC_IP, 23389 TR_IP_WPUT_IRE_END, 23390 "ip_wput_ire: q %p (%S)", 23391 q, "discard MDATA"); 23392 if (conn_outgoing_ill != NULL) { 23393 ill_refrele( 23394 conn_outgoing_ill); 23395 } 23396 return; 23397 } 23398 } 23399 if (!next_mp) { 23400 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23401 "ip_wput_ire_end: q %p (%S)", 23402 q, "last fragmentation"); 23403 ip_wput_ire_fragmentit(mp, ire, 23404 zoneid, ipst); 23405 ire_refrele(ire); 23406 if (conn_outgoing_ill != NULL) 23407 ill_refrele(conn_outgoing_ill); 23408 return; 23409 } 23410 ip_wput_ire_fragmentit(mp, ire, zoneid, ipst); 23411 } 23412 } 23413 } else { 23414 nullstq: 23415 /* A NULL stq means the destination address is local. */ 23416 UPDATE_OB_PKT_COUNT(ire); 23417 ire->ire_last_used_time = lbolt; 23418 ASSERT(ire->ire_ipif != NULL); 23419 if (!next_mp) { 23420 /* 23421 * Is there an "in" and "out" for traffic local 23422 * to a host (loopback)? The code in Solaris doesn't 23423 * explicitly draw a line in its code for in vs out, 23424 * so we've had to draw a line in the sand: ip_wput_ire 23425 * is considered to be the "output" side and 23426 * ip_wput_local to be the "input" side. 23427 */ 23428 out_ill = ire_to_ill(ire); 23429 23430 /* 23431 * DTrace this as ip:::send. A blocked packet will 23432 * fire the send probe, but not the receive probe. 23433 */ 23434 DTRACE_IP7(send, mblk_t *, first_mp, conn_t *, NULL, 23435 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 23436 ipha_t *, ipha, ip6_t *, NULL, int, 1); 23437 23438 DTRACE_PROBE4(ip4__loopback__out__start, 23439 ill_t *, NULL, ill_t *, out_ill, 23440 ipha_t *, ipha, mblk_t *, first_mp); 23441 23442 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23443 ipst->ips_ipv4firewall_loopback_out, 23444 NULL, out_ill, ipha, first_mp, mp, 0, ipst); 23445 23446 DTRACE_PROBE1(ip4__loopback__out_end, 23447 mblk_t *, first_mp); 23448 23449 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23450 "ip_wput_ire_end: q %p (%S)", 23451 q, "local address"); 23452 23453 if (first_mp != NULL) 23454 ip_wput_local(q, out_ill, ipha, 23455 first_mp, ire, 0, ire->ire_zoneid); 23456 ire_refrele(ire); 23457 if (conn_outgoing_ill != NULL) 23458 ill_refrele(conn_outgoing_ill); 23459 return; 23460 } 23461 23462 out_ill = ire_to_ill(ire); 23463 23464 /* 23465 * DTrace this as ip:::send. A blocked packet will fire the 23466 * send probe, but not the receive probe. 23467 */ 23468 DTRACE_IP7(send, mblk_t *, first_mp, conn_t *, NULL, 23469 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 23470 ipha_t *, ipha, ip6_t *, NULL, int, 1); 23471 23472 DTRACE_PROBE4(ip4__loopback__out__start, 23473 ill_t *, NULL, ill_t *, out_ill, 23474 ipha_t *, ipha, mblk_t *, first_mp); 23475 23476 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23477 ipst->ips_ipv4firewall_loopback_out, 23478 NULL, out_ill, ipha, first_mp, mp, 0, ipst); 23479 23480 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, first_mp); 23481 23482 if (first_mp != NULL) 23483 ip_wput_local(q, out_ill, ipha, 23484 first_mp, ire, 0, ire->ire_zoneid); 23485 } 23486 next: 23487 /* 23488 * More copies going out to additional interfaces. 23489 * ire1 has already been held. We don't need the 23490 * "ire" anymore. 23491 */ 23492 ire_refrele(ire); 23493 ire = ire1; 23494 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 23495 mp = next_mp; 23496 ASSERT(ire->ire_ipversion == IPV4_VERSION); 23497 ill = ire_to_ill(ire); 23498 first_mp = mp; 23499 if (ipsec_len != 0) { 23500 ASSERT(first_mp->b_datap->db_type == M_CTL); 23501 mp = mp->b_cont; 23502 } 23503 dst = ire->ire_addr; 23504 ipha = (ipha_t *)mp->b_rptr; 23505 /* 23506 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 23507 * Restore ipha_ident "no checksum" flag. 23508 */ 23509 src = orig_src; 23510 ipha->ipha_ident = ip_hdr_included; 23511 goto another; 23512 23513 #undef rptr 23514 #undef Q_TO_INDEX 23515 } 23516 23517 /* 23518 * Routine to allocate a message that is used to notify the ULP about MDT. 23519 * The caller may provide a pointer to the link-layer MDT capabilities, 23520 * or NULL if MDT is to be disabled on the stream. 23521 */ 23522 mblk_t * 23523 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 23524 { 23525 mblk_t *mp; 23526 ip_mdt_info_t *mdti; 23527 ill_mdt_capab_t *idst; 23528 23529 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 23530 DB_TYPE(mp) = M_CTL; 23531 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 23532 mdti = (ip_mdt_info_t *)mp->b_rptr; 23533 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 23534 idst = &(mdti->mdt_capab); 23535 23536 /* 23537 * If the caller provides us with the capability, copy 23538 * it over into our notification message; otherwise 23539 * we zero out the capability portion. 23540 */ 23541 if (isrc != NULL) 23542 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23543 else 23544 bzero((caddr_t)idst, sizeof (*idst)); 23545 } 23546 return (mp); 23547 } 23548 23549 /* 23550 * Routine which determines whether MDT can be enabled on the destination 23551 * IRE and IPC combination, and if so, allocates and returns the MDT 23552 * notification mblk that may be used by ULP. We also check if we need to 23553 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 23554 * MDT usage in the past have been lifted. This gets called during IP 23555 * and ULP binding. 23556 */ 23557 mblk_t * 23558 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23559 ill_mdt_capab_t *mdt_cap) 23560 { 23561 mblk_t *mp; 23562 boolean_t rc = B_FALSE; 23563 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23564 23565 ASSERT(dst_ire != NULL); 23566 ASSERT(connp != NULL); 23567 ASSERT(mdt_cap != NULL); 23568 23569 /* 23570 * Currently, we only support simple TCP/{IPv4,IPv6} with 23571 * Multidata, which is handled in tcp_multisend(). This 23572 * is the reason why we do all these checks here, to ensure 23573 * that we don't enable Multidata for the cases which we 23574 * can't handle at the moment. 23575 */ 23576 do { 23577 /* Only do TCP at the moment */ 23578 if (connp->conn_ulp != IPPROTO_TCP) 23579 break; 23580 23581 /* 23582 * IPsec outbound policy present? Note that we get here 23583 * after calling ipsec_conn_cache_policy() where the global 23584 * policy checking is performed. conn_latch will be 23585 * non-NULL as long as there's a policy defined, 23586 * i.e. conn_out_enforce_policy may be NULL in such case 23587 * when the connection is non-secure, and hence we check 23588 * further if the latch refers to an outbound policy. 23589 */ 23590 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 23591 break; 23592 23593 /* CGTP (multiroute) is enabled? */ 23594 if (dst_ire->ire_flags & RTF_MULTIRT) 23595 break; 23596 23597 /* Outbound IPQoS enabled? */ 23598 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23599 /* 23600 * In this case, we disable MDT for this and all 23601 * future connections going over the interface. 23602 */ 23603 mdt_cap->ill_mdt_on = 0; 23604 break; 23605 } 23606 23607 /* socket option(s) present? */ 23608 if (!CONN_IS_LSO_MD_FASTPATH(connp)) 23609 break; 23610 23611 rc = B_TRUE; 23612 /* CONSTCOND */ 23613 } while (0); 23614 23615 /* Remember the result */ 23616 connp->conn_mdt_ok = rc; 23617 23618 if (!rc) 23619 return (NULL); 23620 else if (!mdt_cap->ill_mdt_on) { 23621 /* 23622 * If MDT has been previously turned off in the past, and we 23623 * currently can do MDT (due to IPQoS policy removal, etc.) 23624 * then enable it for this interface. 23625 */ 23626 mdt_cap->ill_mdt_on = 1; 23627 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 23628 "interface %s\n", ill_name)); 23629 } 23630 23631 /* Allocate the MDT info mblk */ 23632 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 23633 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 23634 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23635 return (NULL); 23636 } 23637 return (mp); 23638 } 23639 23640 /* 23641 * Routine to allocate a message that is used to notify the ULP about LSO. 23642 * The caller may provide a pointer to the link-layer LSO capabilities, 23643 * or NULL if LSO is to be disabled on the stream. 23644 */ 23645 mblk_t * 23646 ip_lsoinfo_alloc(ill_lso_capab_t *isrc) 23647 { 23648 mblk_t *mp; 23649 ip_lso_info_t *lsoi; 23650 ill_lso_capab_t *idst; 23651 23652 if ((mp = allocb(sizeof (*lsoi), BPRI_HI)) != NULL) { 23653 DB_TYPE(mp) = M_CTL; 23654 mp->b_wptr = mp->b_rptr + sizeof (*lsoi); 23655 lsoi = (ip_lso_info_t *)mp->b_rptr; 23656 lsoi->lso_info_id = LSO_IOC_INFO_UPDATE; 23657 idst = &(lsoi->lso_capab); 23658 23659 /* 23660 * If the caller provides us with the capability, copy 23661 * it over into our notification message; otherwise 23662 * we zero out the capability portion. 23663 */ 23664 if (isrc != NULL) 23665 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23666 else 23667 bzero((caddr_t)idst, sizeof (*idst)); 23668 } 23669 return (mp); 23670 } 23671 23672 /* 23673 * Routine which determines whether LSO can be enabled on the destination 23674 * IRE and IPC combination, and if so, allocates and returns the LSO 23675 * notification mblk that may be used by ULP. We also check if we need to 23676 * turn LSO back to 'on' when certain restrictions prohibiting us to allow 23677 * LSO usage in the past have been lifted. This gets called during IP 23678 * and ULP binding. 23679 */ 23680 mblk_t * 23681 ip_lsoinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23682 ill_lso_capab_t *lso_cap) 23683 { 23684 mblk_t *mp; 23685 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23686 23687 ASSERT(dst_ire != NULL); 23688 ASSERT(connp != NULL); 23689 ASSERT(lso_cap != NULL); 23690 23691 connp->conn_lso_ok = B_TRUE; 23692 23693 if ((connp->conn_ulp != IPPROTO_TCP) || 23694 CONN_IPSEC_OUT_ENCAPSULATED(connp) || 23695 (dst_ire->ire_flags & RTF_MULTIRT) || 23696 !CONN_IS_LSO_MD_FASTPATH(connp) || 23697 (IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 23698 connp->conn_lso_ok = B_FALSE; 23699 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23700 /* 23701 * Disable LSO for this and all future connections going 23702 * over the interface. 23703 */ 23704 lso_cap->ill_lso_on = 0; 23705 } 23706 } 23707 23708 if (!connp->conn_lso_ok) 23709 return (NULL); 23710 else if (!lso_cap->ill_lso_on) { 23711 /* 23712 * If LSO has been previously turned off in the past, and we 23713 * currently can do LSO (due to IPQoS policy removal, etc.) 23714 * then enable it for this interface. 23715 */ 23716 lso_cap->ill_lso_on = 1; 23717 ip1dbg(("ip_mdinfo_return: reenabling LSO for interface %s\n", 23718 ill_name)); 23719 } 23720 23721 /* Allocate the LSO info mblk */ 23722 if ((mp = ip_lsoinfo_alloc(lso_cap)) == NULL) 23723 ip0dbg(("ip_lsoinfo_return: can't enable LSO for " 23724 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23725 23726 return (mp); 23727 } 23728 23729 /* 23730 * Create destination address attribute, and fill it with the physical 23731 * destination address and SAP taken from the template DL_UNITDATA_REQ 23732 * message block. 23733 */ 23734 boolean_t 23735 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 23736 { 23737 dl_unitdata_req_t *dlurp; 23738 pattr_t *pa; 23739 pattrinfo_t pa_info; 23740 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 23741 uint_t das_len, das_off; 23742 23743 ASSERT(dlmp != NULL); 23744 23745 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 23746 das_len = dlurp->dl_dest_addr_length; 23747 das_off = dlurp->dl_dest_addr_offset; 23748 23749 pa_info.type = PATTR_DSTADDRSAP; 23750 pa_info.len = sizeof (**das) + das_len - 1; 23751 23752 /* create and associate the attribute */ 23753 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23754 if (pa != NULL) { 23755 ASSERT(*das != NULL); 23756 (*das)->addr_is_group = 0; 23757 (*das)->addr_len = (uint8_t)das_len; 23758 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 23759 } 23760 23761 return (pa != NULL); 23762 } 23763 23764 /* 23765 * Create hardware checksum attribute and fill it with the values passed. 23766 */ 23767 boolean_t 23768 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 23769 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 23770 { 23771 pattr_t *pa; 23772 pattrinfo_t pa_info; 23773 23774 ASSERT(mmd != NULL); 23775 23776 pa_info.type = PATTR_HCKSUM; 23777 pa_info.len = sizeof (pattr_hcksum_t); 23778 23779 /* create and associate the attribute */ 23780 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23781 if (pa != NULL) { 23782 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 23783 23784 hck->hcksum_start_offset = start_offset; 23785 hck->hcksum_stuff_offset = stuff_offset; 23786 hck->hcksum_end_offset = end_offset; 23787 hck->hcksum_flags = flags; 23788 } 23789 return (pa != NULL); 23790 } 23791 23792 /* 23793 * Create zerocopy attribute and fill it with the specified flags 23794 */ 23795 boolean_t 23796 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 23797 { 23798 pattr_t *pa; 23799 pattrinfo_t pa_info; 23800 23801 ASSERT(mmd != NULL); 23802 pa_info.type = PATTR_ZCOPY; 23803 pa_info.len = sizeof (pattr_zcopy_t); 23804 23805 /* create and associate the attribute */ 23806 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23807 if (pa != NULL) { 23808 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 23809 23810 zcopy->zcopy_flags = flags; 23811 } 23812 return (pa != NULL); 23813 } 23814 23815 /* 23816 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 23817 * block chain. We could rewrite to handle arbitrary message block chains but 23818 * that would make the code complicated and slow. Right now there three 23819 * restrictions: 23820 * 23821 * 1. The first message block must contain the complete IP header and 23822 * at least 1 byte of payload data. 23823 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 23824 * so that we can use a single Multidata message. 23825 * 3. No frag must be distributed over two or more message blocks so 23826 * that we don't need more than two packet descriptors per frag. 23827 * 23828 * The above restrictions allow us to support userland applications (which 23829 * will send down a single message block) and NFS over UDP (which will 23830 * send down a chain of at most three message blocks). 23831 * 23832 * We also don't use MDT for payloads with less than or equal to 23833 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 23834 */ 23835 boolean_t 23836 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 23837 { 23838 int blocks; 23839 ssize_t total, missing, size; 23840 23841 ASSERT(mp != NULL); 23842 ASSERT(hdr_len > 0); 23843 23844 size = MBLKL(mp) - hdr_len; 23845 if (size <= 0) 23846 return (B_FALSE); 23847 23848 /* The first mblk contains the header and some payload. */ 23849 blocks = 1; 23850 total = size; 23851 size %= len; 23852 missing = (size == 0) ? 0 : (len - size); 23853 mp = mp->b_cont; 23854 23855 while (mp != NULL) { 23856 /* 23857 * Give up if we encounter a zero length message block. 23858 * In practice, this should rarely happen and therefore 23859 * not worth the trouble of freeing and re-linking the 23860 * mblk from the chain to handle such case. 23861 */ 23862 if ((size = MBLKL(mp)) == 0) 23863 return (B_FALSE); 23864 23865 /* Too many payload buffers for a single Multidata message? */ 23866 if (++blocks > MULTIDATA_MAX_PBUFS) 23867 return (B_FALSE); 23868 23869 total += size; 23870 /* Is a frag distributed over two or more message blocks? */ 23871 if (missing > size) 23872 return (B_FALSE); 23873 size -= missing; 23874 23875 size %= len; 23876 missing = (size == 0) ? 0 : (len - size); 23877 23878 mp = mp->b_cont; 23879 } 23880 23881 return (total > ip_wput_frag_mdt_min); 23882 } 23883 23884 /* 23885 * Outbound IPv4 fragmentation routine using MDT. 23886 */ 23887 static void 23888 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 23889 uint32_t frag_flag, int offset) 23890 { 23891 ipha_t *ipha_orig; 23892 int i1, ip_data_end; 23893 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 23894 mblk_t *hdr_mp, *md_mp = NULL; 23895 unsigned char *hdr_ptr, *pld_ptr; 23896 multidata_t *mmd; 23897 ip_pdescinfo_t pdi; 23898 ill_t *ill; 23899 ip_stack_t *ipst = ire->ire_ipst; 23900 23901 ASSERT(DB_TYPE(mp) == M_DATA); 23902 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 23903 23904 ill = ire_to_ill(ire); 23905 ASSERT(ill != NULL); 23906 23907 ipha_orig = (ipha_t *)mp->b_rptr; 23908 mp->b_rptr += sizeof (ipha_t); 23909 23910 /* Calculate how many packets we will send out */ 23911 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 23912 pkts = (i1 + len - 1) / len; 23913 ASSERT(pkts > 1); 23914 23915 /* Allocate a message block which will hold all the IP Headers. */ 23916 wroff = ipst->ips_ip_wroff_extra; 23917 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 23918 23919 i1 = pkts * hdr_chunk_len; 23920 /* 23921 * Create the header buffer, Multidata and destination address 23922 * and SAP attribute that should be associated with it. 23923 */ 23924 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 23925 ((hdr_mp->b_wptr += i1), 23926 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 23927 !ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) { 23928 freemsg(mp); 23929 if (md_mp == NULL) { 23930 freemsg(hdr_mp); 23931 } else { 23932 free_mmd: IP_STAT(ipst, ip_frag_mdt_discarded); 23933 freemsg(md_mp); 23934 } 23935 IP_STAT(ipst, ip_frag_mdt_allocfail); 23936 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 23937 return; 23938 } 23939 IP_STAT(ipst, ip_frag_mdt_allocd); 23940 23941 /* 23942 * Add a payload buffer to the Multidata; this operation must not 23943 * fail, or otherwise our logic in this routine is broken. There 23944 * is no memory allocation done by the routine, so any returned 23945 * failure simply tells us that we've done something wrong. 23946 * 23947 * A failure tells us that either we're adding the same payload 23948 * buffer more than once, or we're trying to add more buffers than 23949 * allowed. None of the above cases should happen, and we panic 23950 * because either there's horrible heap corruption, and/or 23951 * programming mistake. 23952 */ 23953 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23954 goto pbuf_panic; 23955 23956 hdr_ptr = hdr_mp->b_rptr; 23957 pld_ptr = mp->b_rptr; 23958 23959 /* Establish the ending byte offset, based on the starting offset. */ 23960 offset <<= 3; 23961 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 23962 IP_SIMPLE_HDR_LENGTH; 23963 23964 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 23965 23966 while (pld_ptr < mp->b_wptr) { 23967 ipha_t *ipha; 23968 uint16_t offset_and_flags; 23969 uint16_t ip_len; 23970 int error; 23971 23972 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 23973 ipha = (ipha_t *)(hdr_ptr + wroff); 23974 ASSERT(OK_32PTR(ipha)); 23975 *ipha = *ipha_orig; 23976 23977 if (ip_data_end - offset > len) { 23978 offset_and_flags = IPH_MF; 23979 } else { 23980 /* 23981 * Last frag. Set len to the length of this last piece. 23982 */ 23983 len = ip_data_end - offset; 23984 /* A frag of a frag might have IPH_MF non-zero */ 23985 offset_and_flags = 23986 ntohs(ipha->ipha_fragment_offset_and_flags) & 23987 IPH_MF; 23988 } 23989 offset_and_flags |= (uint16_t)(offset >> 3); 23990 offset_and_flags |= (uint16_t)frag_flag; 23991 /* Store the offset and flags in the IP header. */ 23992 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 23993 23994 /* Store the length in the IP header. */ 23995 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 23996 ipha->ipha_length = htons(ip_len); 23997 23998 /* 23999 * Set the IP header checksum. Note that mp is just 24000 * the header, so this is easy to pass to ip_csum. 24001 */ 24002 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24003 24004 DTRACE_IP7(send, mblk_t *, md_mp, conn_t *, NULL, void_ip_t *, 24005 ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, ip6_t *, 24006 NULL, int, 0); 24007 24008 /* 24009 * Record offset and size of header and data of the next packet 24010 * in the multidata message. 24011 */ 24012 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 24013 PDESC_PLD_INIT(&pdi); 24014 i1 = MIN(mp->b_wptr - pld_ptr, len); 24015 ASSERT(i1 > 0); 24016 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 24017 if (i1 == len) { 24018 pld_ptr += len; 24019 } else { 24020 i1 = len - i1; 24021 mp = mp->b_cont; 24022 ASSERT(mp != NULL); 24023 ASSERT(MBLKL(mp) >= i1); 24024 /* 24025 * Attach the next payload message block to the 24026 * multidata message. 24027 */ 24028 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24029 goto pbuf_panic; 24030 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 24031 pld_ptr = mp->b_rptr + i1; 24032 } 24033 24034 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 24035 KM_NOSLEEP)) == NULL) { 24036 /* 24037 * Any failure other than ENOMEM indicates that we 24038 * have passed in invalid pdesc info or parameters 24039 * to mmd_addpdesc, which must not happen. 24040 * 24041 * EINVAL is a result of failure on boundary checks 24042 * against the pdesc info contents. It should not 24043 * happen, and we panic because either there's 24044 * horrible heap corruption, and/or programming 24045 * mistake. 24046 */ 24047 if (error != ENOMEM) { 24048 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 24049 "pdesc logic error detected for " 24050 "mmd %p pinfo %p (%d)\n", 24051 (void *)mmd, (void *)&pdi, error); 24052 /* NOTREACHED */ 24053 } 24054 IP_STAT(ipst, ip_frag_mdt_addpdescfail); 24055 /* Free unattached payload message blocks as well */ 24056 md_mp->b_cont = mp->b_cont; 24057 goto free_mmd; 24058 } 24059 24060 /* Advance fragment offset. */ 24061 offset += len; 24062 24063 /* Advance to location for next header in the buffer. */ 24064 hdr_ptr += hdr_chunk_len; 24065 24066 /* Did we reach the next payload message block? */ 24067 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 24068 mp = mp->b_cont; 24069 /* 24070 * Attach the next message block with payload 24071 * data to the multidata message. 24072 */ 24073 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24074 goto pbuf_panic; 24075 pld_ptr = mp->b_rptr; 24076 } 24077 } 24078 24079 ASSERT(hdr_mp->b_wptr == hdr_ptr); 24080 ASSERT(mp->b_wptr == pld_ptr); 24081 24082 /* Update IP statistics */ 24083 IP_STAT_UPDATE(ipst, ip_frag_mdt_pkt_out, pkts); 24084 24085 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates, pkts); 24086 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 24087 24088 len = ntohs(ipha_orig->ipha_length) + (pkts - 1) * IP_SIMPLE_HDR_LENGTH; 24089 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, pkts); 24090 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, len); 24091 24092 if (pkt_type == OB_PKT) { 24093 ire->ire_ob_pkt_count += pkts; 24094 if (ire->ire_ipif != NULL) 24095 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 24096 } else { 24097 /* The type is IB_PKT in the forwarding path. */ 24098 ire->ire_ib_pkt_count += pkts; 24099 ASSERT(!IRE_IS_LOCAL(ire)); 24100 if (ire->ire_type & IRE_BROADCAST) { 24101 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 24102 } else { 24103 UPDATE_MIB(ill->ill_ip_mib, 24104 ipIfStatsHCOutForwDatagrams, pkts); 24105 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 24106 } 24107 } 24108 ire->ire_last_used_time = lbolt; 24109 /* Send it down */ 24110 putnext(ire->ire_stq, md_mp); 24111 return; 24112 24113 pbuf_panic: 24114 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 24115 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 24116 pbuf_idx); 24117 /* NOTREACHED */ 24118 } 24119 24120 /* 24121 * Outbound IP fragmentation routine. 24122 * 24123 * NOTE : This routine does not ire_refrele the ire that is passed in 24124 * as the argument. 24125 */ 24126 static void 24127 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 24128 uint32_t frag_flag, zoneid_t zoneid, ip_stack_t *ipst) 24129 { 24130 int i1; 24131 mblk_t *ll_hdr_mp; 24132 int ll_hdr_len; 24133 int hdr_len; 24134 mblk_t *hdr_mp; 24135 ipha_t *ipha; 24136 int ip_data_end; 24137 int len; 24138 mblk_t *mp = mp_orig, *mp1; 24139 int offset; 24140 queue_t *q; 24141 uint32_t v_hlen_tos_len; 24142 mblk_t *first_mp; 24143 boolean_t mctl_present; 24144 ill_t *ill; 24145 ill_t *out_ill; 24146 mblk_t *xmit_mp; 24147 mblk_t *carve_mp; 24148 ire_t *ire1 = NULL; 24149 ire_t *save_ire = NULL; 24150 mblk_t *next_mp = NULL; 24151 boolean_t last_frag = B_FALSE; 24152 boolean_t multirt_send = B_FALSE; 24153 ire_t *first_ire = NULL; 24154 irb_t *irb = NULL; 24155 mib2_ipIfStatsEntry_t *mibptr = NULL; 24156 24157 ill = ire_to_ill(ire); 24158 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 24159 24160 BUMP_MIB(mibptr, ipIfStatsOutFragReqds); 24161 24162 if (max_frag == 0) { 24163 ip1dbg(("ip_wput_frag: ire frag size is 0" 24164 " - dropping packet\n")); 24165 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24166 freemsg(mp); 24167 return; 24168 } 24169 24170 /* 24171 * IPsec does not allow hw accelerated packets to be fragmented 24172 * This check is made in ip_wput_ipsec_out prior to coming here 24173 * via ip_wput_ire_fragmentit. 24174 * 24175 * If at this point we have an ire whose ARP request has not 24176 * been sent out, we call ip_xmit_v4->ire_arpresolve to trigger 24177 * sending of ARP query and change ire's state to ND_INCOMPLETE. 24178 * This packet and all fragmentable packets for this ire will 24179 * continue to get dropped while ire_nce->nce_state remains in 24180 * ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to 24181 * ND_REACHABLE, all subsquent large packets for this ire will 24182 * get fragemented and sent out by this function. 24183 */ 24184 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 24185 /* If nce_state is ND_INITIAL, trigger ARP query */ 24186 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 24187 ip1dbg(("ip_wput_frag: mac address for ire is unresolved" 24188 " - dropping packet\n")); 24189 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24190 freemsg(mp); 24191 return; 24192 } 24193 24194 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 24195 "ip_wput_frag_start:"); 24196 24197 if (mp->b_datap->db_type == M_CTL) { 24198 first_mp = mp; 24199 mp_orig = mp = mp->b_cont; 24200 mctl_present = B_TRUE; 24201 } else { 24202 first_mp = mp; 24203 mctl_present = B_FALSE; 24204 } 24205 24206 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 24207 ipha = (ipha_t *)mp->b_rptr; 24208 24209 /* 24210 * If the Don't Fragment flag is on, generate an ICMP destination 24211 * unreachable, fragmentation needed. 24212 */ 24213 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 24214 if (offset & IPH_DF) { 24215 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24216 if (is_system_labeled()) { 24217 max_frag = tsol_pmtu_adjust(mp, ire->ire_max_frag, 24218 ire->ire_max_frag - max_frag, AF_INET); 24219 } 24220 /* 24221 * Need to compute hdr checksum if called from ip_wput_ire. 24222 * Note that ip_rput_forward verifies the checksum before 24223 * calling this routine so in that case this is a noop. 24224 */ 24225 ipha->ipha_hdr_checksum = 0; 24226 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24227 icmp_frag_needed(ire->ire_stq, first_mp, max_frag, zoneid, 24228 ipst); 24229 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24230 "ip_wput_frag_end:(%S)", 24231 "don't fragment"); 24232 return; 24233 } 24234 /* 24235 * Labeled systems adjust max_frag if they add a label 24236 * to send the correct path mtu. We need the real mtu since we 24237 * are fragmenting the packet after label adjustment. 24238 */ 24239 if (is_system_labeled()) 24240 max_frag = ire->ire_max_frag; 24241 if (mctl_present) 24242 freeb(first_mp); 24243 /* 24244 * Establish the starting offset. May not be zero if we are fragging 24245 * a fragment that is being forwarded. 24246 */ 24247 offset = offset & IPH_OFFSET; 24248 24249 /* TODO why is this test needed? */ 24250 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 24251 if (((max_frag - LENGTH) & ~7) < 8) { 24252 /* TODO: notify ulp somehow */ 24253 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24254 freemsg(mp); 24255 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24256 "ip_wput_frag_end:(%S)", 24257 "len < 8"); 24258 return; 24259 } 24260 24261 hdr_len = (V_HLEN & 0xF) << 2; 24262 24263 ipha->ipha_hdr_checksum = 0; 24264 24265 /* 24266 * Establish the number of bytes maximum per frag, after putting 24267 * in the header. 24268 */ 24269 len = (max_frag - hdr_len) & ~7; 24270 24271 /* Check if we can use MDT to send out the frags. */ 24272 ASSERT(!IRE_IS_LOCAL(ire)); 24273 if (hdr_len == IP_SIMPLE_HDR_LENGTH && 24274 ipst->ips_ip_multidata_outbound && 24275 !(ire->ire_flags & RTF_MULTIRT) && 24276 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 24277 ill != NULL && ILL_MDT_CAPABLE(ill) && 24278 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 24279 ASSERT(ill->ill_mdt_capab != NULL); 24280 if (!ill->ill_mdt_capab->ill_mdt_on) { 24281 /* 24282 * If MDT has been previously turned off in the past, 24283 * and we currently can do MDT (due to IPQoS policy 24284 * removal, etc.) then enable it for this interface. 24285 */ 24286 ill->ill_mdt_capab->ill_mdt_on = 1; 24287 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 24288 ill->ill_name)); 24289 } 24290 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 24291 offset); 24292 return; 24293 } 24294 24295 /* Get a copy of the header for the trailing frags */ 24296 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst); 24297 if (!hdr_mp) { 24298 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24299 freemsg(mp); 24300 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24301 "ip_wput_frag_end:(%S)", 24302 "couldn't copy hdr"); 24303 return; 24304 } 24305 if (DB_CRED(mp) != NULL) 24306 mblk_setcred(hdr_mp, DB_CRED(mp)); 24307 24308 /* Store the starting offset, with the MoreFrags flag. */ 24309 i1 = offset | IPH_MF | frag_flag; 24310 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 24311 24312 /* Establish the ending byte offset, based on the starting offset. */ 24313 offset <<= 3; 24314 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 24315 24316 /* Store the length of the first fragment in the IP header. */ 24317 i1 = len + hdr_len; 24318 ASSERT(i1 <= IP_MAXPACKET); 24319 ipha->ipha_length = htons((uint16_t)i1); 24320 24321 /* 24322 * Compute the IP header checksum for the first frag. We have to 24323 * watch out that we stop at the end of the header. 24324 */ 24325 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24326 24327 /* 24328 * Now carve off the first frag. Note that this will include the 24329 * original IP header. 24330 */ 24331 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 24332 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24333 freeb(hdr_mp); 24334 freemsg(mp_orig); 24335 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24336 "ip_wput_frag_end:(%S)", 24337 "couldn't carve first"); 24338 return; 24339 } 24340 24341 /* 24342 * Multirouting case. Each fragment is replicated 24343 * via all non-condemned RTF_MULTIRT routes 24344 * currently resolved. 24345 * We ensure that first_ire is the first RTF_MULTIRT 24346 * ire in the bucket. 24347 */ 24348 if (ire->ire_flags & RTF_MULTIRT) { 24349 irb = ire->ire_bucket; 24350 ASSERT(irb != NULL); 24351 24352 multirt_send = B_TRUE; 24353 24354 /* Make sure we do not omit any multiroute ire. */ 24355 IRB_REFHOLD(irb); 24356 for (first_ire = irb->irb_ire; 24357 first_ire != NULL; 24358 first_ire = first_ire->ire_next) { 24359 if ((first_ire->ire_flags & RTF_MULTIRT) && 24360 (first_ire->ire_addr == ire->ire_addr) && 24361 !(first_ire->ire_marks & 24362 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 24363 break; 24364 } 24365 } 24366 24367 if (first_ire != NULL) { 24368 if (first_ire != ire) { 24369 IRE_REFHOLD(first_ire); 24370 /* 24371 * Do not release the ire passed in 24372 * as the argument. 24373 */ 24374 ire = first_ire; 24375 } else { 24376 first_ire = NULL; 24377 } 24378 } 24379 IRB_REFRELE(irb); 24380 24381 /* 24382 * Save the first ire; we will need to restore it 24383 * for the trailing frags. 24384 * We REFHOLD save_ire, as each iterated ire will be 24385 * REFRELEd. 24386 */ 24387 save_ire = ire; 24388 IRE_REFHOLD(save_ire); 24389 } 24390 24391 /* 24392 * First fragment emission loop. 24393 * In most cases, the emission loop below is entered only 24394 * once. Only in the case where the ire holds the RTF_MULTIRT 24395 * flag, do we loop to process all RTF_MULTIRT ires in the 24396 * bucket, and send the fragment through all crossed 24397 * RTF_MULTIRT routes. 24398 */ 24399 do { 24400 if (ire->ire_flags & RTF_MULTIRT) { 24401 /* 24402 * We are in a multiple send case, need to get 24403 * the next ire and make a copy of the packet. 24404 * ire1 holds here the next ire to process in the 24405 * bucket. If multirouting is expected, 24406 * any non-RTF_MULTIRT ire that has the 24407 * right destination address is ignored. 24408 * 24409 * We have to take into account the MTU of 24410 * each walked ire. max_frag is set by the 24411 * the caller and generally refers to 24412 * the primary ire entry. Here we ensure that 24413 * no route with a lower MTU will be used, as 24414 * fragments are carved once for all ires, 24415 * then replicated. 24416 */ 24417 ASSERT(irb != NULL); 24418 IRB_REFHOLD(irb); 24419 for (ire1 = ire->ire_next; 24420 ire1 != NULL; 24421 ire1 = ire1->ire_next) { 24422 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 24423 continue; 24424 if (ire1->ire_addr != ire->ire_addr) 24425 continue; 24426 if (ire1->ire_marks & 24427 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 24428 continue; 24429 /* 24430 * Ensure we do not exceed the MTU 24431 * of the next route. 24432 */ 24433 if (ire1->ire_max_frag < max_frag) { 24434 ip_multirt_bad_mtu(ire1, max_frag); 24435 continue; 24436 } 24437 24438 /* Got one. */ 24439 IRE_REFHOLD(ire1); 24440 break; 24441 } 24442 IRB_REFRELE(irb); 24443 24444 if (ire1 != NULL) { 24445 next_mp = copyb(mp); 24446 if ((next_mp == NULL) || 24447 ((mp->b_cont != NULL) && 24448 ((next_mp->b_cont = 24449 dupmsg(mp->b_cont)) == NULL))) { 24450 freemsg(next_mp); 24451 next_mp = NULL; 24452 ire_refrele(ire1); 24453 ire1 = NULL; 24454 } 24455 } 24456 24457 /* Last multiroute ire; don't loop anymore. */ 24458 if (ire1 == NULL) { 24459 multirt_send = B_FALSE; 24460 } 24461 } 24462 24463 ll_hdr_len = 0; 24464 LOCK_IRE_FP_MP(ire); 24465 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24466 if (ll_hdr_mp != NULL) { 24467 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24468 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 24469 } else { 24470 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24471 } 24472 24473 /* If there is a transmit header, get a copy for this frag. */ 24474 /* 24475 * TODO: should check db_ref before calling ip_carve_mp since 24476 * it might give us a dup. 24477 */ 24478 if (!ll_hdr_mp) { 24479 /* No xmit header. */ 24480 xmit_mp = mp; 24481 24482 /* We have a link-layer header that can fit in our mblk. */ 24483 } else if (mp->b_datap->db_ref == 1 && 24484 ll_hdr_len != 0 && 24485 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24486 /* M_DATA fastpath */ 24487 mp->b_rptr -= ll_hdr_len; 24488 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 24489 xmit_mp = mp; 24490 24491 /* Corner case if copyb has failed */ 24492 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 24493 UNLOCK_IRE_FP_MP(ire); 24494 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24495 freeb(hdr_mp); 24496 freemsg(mp); 24497 freemsg(mp_orig); 24498 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24499 "ip_wput_frag_end:(%S)", 24500 "discard"); 24501 24502 if (multirt_send) { 24503 ASSERT(ire1); 24504 ASSERT(next_mp); 24505 24506 freemsg(next_mp); 24507 ire_refrele(ire1); 24508 } 24509 if (save_ire != NULL) 24510 IRE_REFRELE(save_ire); 24511 24512 if (first_ire != NULL) 24513 ire_refrele(first_ire); 24514 return; 24515 24516 /* 24517 * Case of res_mp OR the fastpath mp can't fit 24518 * in the mblk 24519 */ 24520 } else { 24521 xmit_mp->b_cont = mp; 24522 if (DB_CRED(mp) != NULL) 24523 mblk_setcred(xmit_mp, DB_CRED(mp)); 24524 /* 24525 * Get priority marking, if any. 24526 * We propagate the CoS marking from the 24527 * original packet that went to QoS processing 24528 * in ip_wput_ire to the newly carved mp. 24529 */ 24530 if (DB_TYPE(xmit_mp) == M_DATA) 24531 xmit_mp->b_band = mp->b_band; 24532 } 24533 UNLOCK_IRE_FP_MP(ire); 24534 24535 q = ire->ire_stq; 24536 out_ill = (ill_t *)q->q_ptr; 24537 24538 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24539 24540 DTRACE_PROBE4(ip4__physical__out__start, 24541 ill_t *, NULL, ill_t *, out_ill, 24542 ipha_t *, ipha, mblk_t *, xmit_mp); 24543 24544 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24545 ipst->ips_ipv4firewall_physical_out, 24546 NULL, out_ill, ipha, xmit_mp, mp, 0, ipst); 24547 24548 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, xmit_mp); 24549 24550 if (xmit_mp != NULL) { 24551 DTRACE_IP7(send, mblk_t *, xmit_mp, conn_t *, NULL, 24552 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 24553 ipha_t *, ipha, ip6_t *, NULL, int, 0); 24554 24555 putnext(q, xmit_mp); 24556 24557 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 24558 UPDATE_MIB(out_ill->ill_ip_mib, 24559 ipIfStatsHCOutOctets, i1); 24560 24561 if (pkt_type != OB_PKT) { 24562 /* 24563 * Update the packet count and MIB stats 24564 * of trailing RTF_MULTIRT ires. 24565 */ 24566 UPDATE_OB_PKT_COUNT(ire); 24567 BUMP_MIB(out_ill->ill_ip_mib, 24568 ipIfStatsOutFragReqds); 24569 } 24570 } 24571 24572 if (multirt_send) { 24573 /* 24574 * We are in a multiple send case; look for 24575 * the next ire and re-enter the loop. 24576 */ 24577 ASSERT(ire1); 24578 ASSERT(next_mp); 24579 /* REFRELE the current ire before looping */ 24580 ire_refrele(ire); 24581 ire = ire1; 24582 ire1 = NULL; 24583 mp = next_mp; 24584 next_mp = NULL; 24585 } 24586 } while (multirt_send); 24587 24588 ASSERT(ire1 == NULL); 24589 24590 /* Restore the original ire; we need it for the trailing frags */ 24591 if (save_ire != NULL) { 24592 /* REFRELE the last iterated ire */ 24593 ire_refrele(ire); 24594 /* save_ire has been REFHOLDed */ 24595 ire = save_ire; 24596 save_ire = NULL; 24597 q = ire->ire_stq; 24598 } 24599 24600 if (pkt_type == OB_PKT) { 24601 UPDATE_OB_PKT_COUNT(ire); 24602 } else { 24603 out_ill = (ill_t *)q->q_ptr; 24604 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 24605 UPDATE_IB_PKT_COUNT(ire); 24606 } 24607 24608 /* Advance the offset to the second frag starting point. */ 24609 offset += len; 24610 /* 24611 * Update hdr_len from the copied header - there might be less options 24612 * in the later fragments. 24613 */ 24614 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 24615 /* Loop until done. */ 24616 for (;;) { 24617 uint16_t offset_and_flags; 24618 uint16_t ip_len; 24619 24620 if (ip_data_end - offset > len) { 24621 /* 24622 * Carve off the appropriate amount from the original 24623 * datagram. 24624 */ 24625 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24626 mp = NULL; 24627 break; 24628 } 24629 /* 24630 * More frags after this one. Get another copy 24631 * of the header. 24632 */ 24633 if (carve_mp->b_datap->db_ref == 1 && 24634 hdr_mp->b_wptr - hdr_mp->b_rptr < 24635 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24636 /* Inline IP header */ 24637 carve_mp->b_rptr -= hdr_mp->b_wptr - 24638 hdr_mp->b_rptr; 24639 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24640 hdr_mp->b_wptr - hdr_mp->b_rptr); 24641 mp = carve_mp; 24642 } else { 24643 if (!(mp = copyb(hdr_mp))) { 24644 freemsg(carve_mp); 24645 break; 24646 } 24647 /* Get priority marking, if any. */ 24648 mp->b_band = carve_mp->b_band; 24649 mp->b_cont = carve_mp; 24650 } 24651 ipha = (ipha_t *)mp->b_rptr; 24652 offset_and_flags = IPH_MF; 24653 } else { 24654 /* 24655 * Last frag. Consume the header. Set len to 24656 * the length of this last piece. 24657 */ 24658 len = ip_data_end - offset; 24659 24660 /* 24661 * Carve off the appropriate amount from the original 24662 * datagram. 24663 */ 24664 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24665 mp = NULL; 24666 break; 24667 } 24668 if (carve_mp->b_datap->db_ref == 1 && 24669 hdr_mp->b_wptr - hdr_mp->b_rptr < 24670 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24671 /* Inline IP header */ 24672 carve_mp->b_rptr -= hdr_mp->b_wptr - 24673 hdr_mp->b_rptr; 24674 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24675 hdr_mp->b_wptr - hdr_mp->b_rptr); 24676 mp = carve_mp; 24677 freeb(hdr_mp); 24678 hdr_mp = mp; 24679 } else { 24680 mp = hdr_mp; 24681 /* Get priority marking, if any. */ 24682 mp->b_band = carve_mp->b_band; 24683 mp->b_cont = carve_mp; 24684 } 24685 ipha = (ipha_t *)mp->b_rptr; 24686 /* A frag of a frag might have IPH_MF non-zero */ 24687 offset_and_flags = 24688 ntohs(ipha->ipha_fragment_offset_and_flags) & 24689 IPH_MF; 24690 } 24691 offset_and_flags |= (uint16_t)(offset >> 3); 24692 offset_and_flags |= (uint16_t)frag_flag; 24693 /* Store the offset and flags in the IP header. */ 24694 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24695 24696 /* Store the length in the IP header. */ 24697 ip_len = (uint16_t)(len + hdr_len); 24698 ipha->ipha_length = htons(ip_len); 24699 24700 /* 24701 * Set the IP header checksum. Note that mp is just 24702 * the header, so this is easy to pass to ip_csum. 24703 */ 24704 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24705 24706 /* Attach a transmit header, if any, and ship it. */ 24707 if (pkt_type == OB_PKT) { 24708 UPDATE_OB_PKT_COUNT(ire); 24709 } else { 24710 out_ill = (ill_t *)q->q_ptr; 24711 BUMP_MIB(out_ill->ill_ip_mib, 24712 ipIfStatsHCOutForwDatagrams); 24713 UPDATE_IB_PKT_COUNT(ire); 24714 } 24715 24716 if (ire->ire_flags & RTF_MULTIRT) { 24717 irb = ire->ire_bucket; 24718 ASSERT(irb != NULL); 24719 24720 multirt_send = B_TRUE; 24721 24722 /* 24723 * Save the original ire; we will need to restore it 24724 * for the tailing frags. 24725 */ 24726 save_ire = ire; 24727 IRE_REFHOLD(save_ire); 24728 } 24729 /* 24730 * Emission loop for this fragment, similar 24731 * to what is done for the first fragment. 24732 */ 24733 do { 24734 if (multirt_send) { 24735 /* 24736 * We are in a multiple send case, need to get 24737 * the next ire and make a copy of the packet. 24738 */ 24739 ASSERT(irb != NULL); 24740 IRB_REFHOLD(irb); 24741 for (ire1 = ire->ire_next; 24742 ire1 != NULL; 24743 ire1 = ire1->ire_next) { 24744 if (!(ire1->ire_flags & RTF_MULTIRT)) 24745 continue; 24746 if (ire1->ire_addr != ire->ire_addr) 24747 continue; 24748 if (ire1->ire_marks & 24749 (IRE_MARK_CONDEMNED| 24750 IRE_MARK_HIDDEN)) { 24751 continue; 24752 } 24753 /* 24754 * Ensure we do not exceed the MTU 24755 * of the next route. 24756 */ 24757 if (ire1->ire_max_frag < max_frag) { 24758 ip_multirt_bad_mtu(ire1, 24759 max_frag); 24760 continue; 24761 } 24762 24763 /* Got one. */ 24764 IRE_REFHOLD(ire1); 24765 break; 24766 } 24767 IRB_REFRELE(irb); 24768 24769 if (ire1 != NULL) { 24770 next_mp = copyb(mp); 24771 if ((next_mp == NULL) || 24772 ((mp->b_cont != NULL) && 24773 ((next_mp->b_cont = 24774 dupmsg(mp->b_cont)) == NULL))) { 24775 freemsg(next_mp); 24776 next_mp = NULL; 24777 ire_refrele(ire1); 24778 ire1 = NULL; 24779 } 24780 } 24781 24782 /* Last multiroute ire; don't loop anymore. */ 24783 if (ire1 == NULL) { 24784 multirt_send = B_FALSE; 24785 } 24786 } 24787 24788 /* Update transmit header */ 24789 ll_hdr_len = 0; 24790 LOCK_IRE_FP_MP(ire); 24791 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24792 if (ll_hdr_mp != NULL) { 24793 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24794 ll_hdr_len = MBLKL(ll_hdr_mp); 24795 } else { 24796 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24797 } 24798 24799 if (!ll_hdr_mp) { 24800 xmit_mp = mp; 24801 24802 /* 24803 * We have link-layer header that can fit in 24804 * our mblk. 24805 */ 24806 } else if (mp->b_datap->db_ref == 1 && 24807 ll_hdr_len != 0 && 24808 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24809 /* M_DATA fastpath */ 24810 mp->b_rptr -= ll_hdr_len; 24811 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 24812 ll_hdr_len); 24813 xmit_mp = mp; 24814 24815 /* 24816 * Case of res_mp OR the fastpath mp can't fit 24817 * in the mblk 24818 */ 24819 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 24820 xmit_mp->b_cont = mp; 24821 if (DB_CRED(mp) != NULL) 24822 mblk_setcred(xmit_mp, DB_CRED(mp)); 24823 /* Get priority marking, if any. */ 24824 if (DB_TYPE(xmit_mp) == M_DATA) 24825 xmit_mp->b_band = mp->b_band; 24826 24827 /* Corner case if copyb failed */ 24828 } else { 24829 /* 24830 * Exit both the replication and 24831 * fragmentation loops. 24832 */ 24833 UNLOCK_IRE_FP_MP(ire); 24834 goto drop_pkt; 24835 } 24836 UNLOCK_IRE_FP_MP(ire); 24837 24838 mp1 = mp; 24839 out_ill = (ill_t *)q->q_ptr; 24840 24841 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24842 24843 DTRACE_PROBE4(ip4__physical__out__start, 24844 ill_t *, NULL, ill_t *, out_ill, 24845 ipha_t *, ipha, mblk_t *, xmit_mp); 24846 24847 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24848 ipst->ips_ipv4firewall_physical_out, 24849 NULL, out_ill, ipha, xmit_mp, mp, 0, ipst); 24850 24851 DTRACE_PROBE1(ip4__physical__out__end, 24852 mblk_t *, xmit_mp); 24853 24854 if (mp != mp1 && hdr_mp == mp1) 24855 hdr_mp = mp; 24856 if (mp != mp1 && mp_orig == mp1) 24857 mp_orig = mp; 24858 24859 if (xmit_mp != NULL) { 24860 DTRACE_IP7(send, mblk_t *, xmit_mp, conn_t *, 24861 NULL, void_ip_t *, ipha, 24862 __dtrace_ipsr_ill_t *, out_ill, ipha_t *, 24863 ipha, ip6_t *, NULL, int, 0); 24864 24865 putnext(q, xmit_mp); 24866 24867 BUMP_MIB(out_ill->ill_ip_mib, 24868 ipIfStatsHCOutTransmits); 24869 UPDATE_MIB(out_ill->ill_ip_mib, 24870 ipIfStatsHCOutOctets, ip_len); 24871 24872 if (pkt_type != OB_PKT) { 24873 /* 24874 * Update the packet count of trailing 24875 * RTF_MULTIRT ires. 24876 */ 24877 UPDATE_OB_PKT_COUNT(ire); 24878 } 24879 } 24880 24881 /* All done if we just consumed the hdr_mp. */ 24882 if (mp == hdr_mp) { 24883 last_frag = B_TRUE; 24884 BUMP_MIB(out_ill->ill_ip_mib, 24885 ipIfStatsOutFragOKs); 24886 } 24887 24888 if (multirt_send) { 24889 /* 24890 * We are in a multiple send case; look for 24891 * the next ire and re-enter the loop. 24892 */ 24893 ASSERT(ire1); 24894 ASSERT(next_mp); 24895 /* REFRELE the current ire before looping */ 24896 ire_refrele(ire); 24897 ire = ire1; 24898 ire1 = NULL; 24899 q = ire->ire_stq; 24900 mp = next_mp; 24901 next_mp = NULL; 24902 } 24903 } while (multirt_send); 24904 /* 24905 * Restore the original ire; we need it for the 24906 * trailing frags 24907 */ 24908 if (save_ire != NULL) { 24909 ASSERT(ire1 == NULL); 24910 /* REFRELE the last iterated ire */ 24911 ire_refrele(ire); 24912 /* save_ire has been REFHOLDed */ 24913 ire = save_ire; 24914 q = ire->ire_stq; 24915 save_ire = NULL; 24916 } 24917 24918 if (last_frag) { 24919 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24920 "ip_wput_frag_end:(%S)", 24921 "consumed hdr_mp"); 24922 24923 if (first_ire != NULL) 24924 ire_refrele(first_ire); 24925 return; 24926 } 24927 /* Otherwise, advance and loop. */ 24928 offset += len; 24929 } 24930 24931 drop_pkt: 24932 /* Clean up following allocation failure. */ 24933 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24934 freemsg(mp); 24935 if (mp != hdr_mp) 24936 freeb(hdr_mp); 24937 if (mp != mp_orig) 24938 freemsg(mp_orig); 24939 24940 if (save_ire != NULL) 24941 IRE_REFRELE(save_ire); 24942 if (first_ire != NULL) 24943 ire_refrele(first_ire); 24944 24945 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24946 "ip_wput_frag_end:(%S)", 24947 "end--alloc failure"); 24948 } 24949 24950 /* 24951 * Copy the header plus those options which have the copy bit set 24952 */ 24953 static mblk_t * 24954 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst) 24955 { 24956 mblk_t *mp; 24957 uchar_t *up; 24958 24959 /* 24960 * Quick check if we need to look for options without the copy bit 24961 * set 24962 */ 24963 mp = allocb(ipst->ips_ip_wroff_extra + hdr_len, BPRI_HI); 24964 if (!mp) 24965 return (mp); 24966 mp->b_rptr += ipst->ips_ip_wroff_extra; 24967 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 24968 bcopy(rptr, mp->b_rptr, hdr_len); 24969 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 24970 return (mp); 24971 } 24972 up = mp->b_rptr; 24973 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 24974 up += IP_SIMPLE_HDR_LENGTH; 24975 rptr += IP_SIMPLE_HDR_LENGTH; 24976 hdr_len -= IP_SIMPLE_HDR_LENGTH; 24977 while (hdr_len > 0) { 24978 uint32_t optval; 24979 uint32_t optlen; 24980 24981 optval = *rptr; 24982 if (optval == IPOPT_EOL) 24983 break; 24984 if (optval == IPOPT_NOP) 24985 optlen = 1; 24986 else 24987 optlen = rptr[1]; 24988 if (optval & IPOPT_COPY) { 24989 bcopy(rptr, up, optlen); 24990 up += optlen; 24991 } 24992 rptr += optlen; 24993 hdr_len -= optlen; 24994 } 24995 /* 24996 * Make sure that we drop an even number of words by filling 24997 * with EOL to the next word boundary. 24998 */ 24999 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 25000 hdr_len & 0x3; hdr_len++) 25001 *up++ = IPOPT_EOL; 25002 mp->b_wptr = up; 25003 /* Update header length */ 25004 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 25005 return (mp); 25006 } 25007 25008 /* 25009 * Delivery to local recipients including fanout to multiple recipients. 25010 * Does not do checksumming of UDP/TCP. 25011 * Note: q should be the read side queue for either the ill or conn. 25012 * Note: rq should be the read side q for the lower (ill) stream. 25013 * We don't send packets to IPPF processing, thus the last argument 25014 * to all the fanout calls are B_FALSE. 25015 */ 25016 void 25017 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 25018 int fanout_flags, zoneid_t zoneid) 25019 { 25020 uint32_t protocol; 25021 mblk_t *first_mp; 25022 boolean_t mctl_present; 25023 int ire_type; 25024 #define rptr ((uchar_t *)ipha) 25025 ip_stack_t *ipst = ill->ill_ipst; 25026 25027 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 25028 "ip_wput_local_start: q %p", q); 25029 25030 if (ire != NULL) { 25031 ire_type = ire->ire_type; 25032 } else { 25033 /* 25034 * Only ip_multicast_loopback() calls us with a NULL ire. If the 25035 * packet is not multicast, we can't tell the ire type. 25036 */ 25037 ASSERT(CLASSD(ipha->ipha_dst)); 25038 ire_type = IRE_BROADCAST; 25039 } 25040 25041 first_mp = mp; 25042 if (first_mp->b_datap->db_type == M_CTL) { 25043 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 25044 if (!io->ipsec_out_secure) { 25045 /* 25046 * This ipsec_out_t was allocated in ip_wput 25047 * for multicast packets to store the ill_index. 25048 * As this is being delivered locally, we don't 25049 * need this anymore. 25050 */ 25051 mp = first_mp->b_cont; 25052 freeb(first_mp); 25053 first_mp = mp; 25054 mctl_present = B_FALSE; 25055 } else { 25056 /* 25057 * Convert IPSEC_OUT to IPSEC_IN, preserving all 25058 * security properties for the looped-back packet. 25059 */ 25060 mctl_present = B_TRUE; 25061 mp = first_mp->b_cont; 25062 ASSERT(mp != NULL); 25063 ipsec_out_to_in(first_mp); 25064 } 25065 } else { 25066 mctl_present = B_FALSE; 25067 } 25068 25069 DTRACE_PROBE4(ip4__loopback__in__start, 25070 ill_t *, ill, ill_t *, NULL, 25071 ipha_t *, ipha, mblk_t *, first_mp); 25072 25073 FW_HOOKS(ipst->ips_ip4_loopback_in_event, 25074 ipst->ips_ipv4firewall_loopback_in, 25075 ill, NULL, ipha, first_mp, mp, 0, ipst); 25076 25077 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, first_mp); 25078 25079 if (first_mp == NULL) 25080 return; 25081 25082 DTRACE_IP7(receive, mblk_t *, first_mp, conn_t *, NULL, void_ip_t *, 25083 ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, ip6_t *, NULL, 25084 int, 1); 25085 25086 ipst->ips_loopback_packets++; 25087 25088 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 25089 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 25090 if (!IS_SIMPLE_IPH(ipha)) { 25091 ip_wput_local_options(ipha, ipst); 25092 } 25093 25094 protocol = ipha->ipha_protocol; 25095 switch (protocol) { 25096 case IPPROTO_ICMP: { 25097 ire_t *ire_zone; 25098 ilm_t *ilm; 25099 mblk_t *mp1; 25100 zoneid_t last_zoneid; 25101 25102 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(ill)) { 25103 ASSERT(ire_type == IRE_BROADCAST); 25104 /* 25105 * In the multicast case, applications may have joined 25106 * the group from different zones, so we need to deliver 25107 * the packet to each of them. Loop through the 25108 * multicast memberships structures (ilm) on the receive 25109 * ill and send a copy of the packet up each matching 25110 * one. However, we don't do this for multicasts sent on 25111 * the loopback interface (PHYI_LOOPBACK flag set) as 25112 * they must stay in the sender's zone. 25113 * 25114 * ilm_add_v6() ensures that ilms in the same zone are 25115 * contiguous in the ill_ilm list. We use this property 25116 * to avoid sending duplicates needed when two 25117 * applications in the same zone join the same group on 25118 * different logical interfaces: we ignore the ilm if 25119 * it's zoneid is the same as the last matching one. 25120 * In addition, the sending of the packet for 25121 * ire_zoneid is delayed until all of the other ilms 25122 * have been exhausted. 25123 */ 25124 last_zoneid = -1; 25125 ILM_WALKER_HOLD(ill); 25126 for (ilm = ill->ill_ilm; ilm != NULL; 25127 ilm = ilm->ilm_next) { 25128 if ((ilm->ilm_flags & ILM_DELETED) || 25129 ipha->ipha_dst != ilm->ilm_addr || 25130 ilm->ilm_zoneid == last_zoneid || 25131 ilm->ilm_zoneid == zoneid || 25132 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 25133 continue; 25134 mp1 = ip_copymsg(first_mp); 25135 if (mp1 == NULL) 25136 continue; 25137 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25138 mctl_present, B_FALSE, ill, 25139 ilm->ilm_zoneid); 25140 last_zoneid = ilm->ilm_zoneid; 25141 } 25142 ILM_WALKER_RELE(ill); 25143 /* 25144 * Loopback case: the sending endpoint has 25145 * IP_MULTICAST_LOOP disabled, therefore we don't 25146 * dispatch the multicast packet to the sending zone. 25147 */ 25148 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 25149 freemsg(first_mp); 25150 return; 25151 } 25152 } else if (ire_type == IRE_BROADCAST) { 25153 /* 25154 * In the broadcast case, there may be many zones 25155 * which need a copy of the packet delivered to them. 25156 * There is one IRE_BROADCAST per broadcast address 25157 * and per zone; we walk those using a helper function. 25158 * In addition, the sending of the packet for zoneid is 25159 * delayed until all of the other ires have been 25160 * processed. 25161 */ 25162 IRB_REFHOLD(ire->ire_bucket); 25163 ire_zone = NULL; 25164 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 25165 ire)) != NULL) { 25166 mp1 = ip_copymsg(first_mp); 25167 if (mp1 == NULL) 25168 continue; 25169 25170 UPDATE_IB_PKT_COUNT(ire_zone); 25171 ire_zone->ire_last_used_time = lbolt; 25172 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25173 mctl_present, B_FALSE, ill, 25174 ire_zone->ire_zoneid); 25175 } 25176 IRB_REFRELE(ire->ire_bucket); 25177 } 25178 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 25179 0, mctl_present, B_FALSE, ill, zoneid); 25180 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25181 "ip_wput_local_end: q %p (%S)", 25182 q, "icmp"); 25183 return; 25184 } 25185 case IPPROTO_IGMP: 25186 if ((mp = igmp_input(q, mp, ill)) == NULL) { 25187 /* Bad packet - discarded by igmp_input */ 25188 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25189 "ip_wput_local_end: q %p (%S)", 25190 q, "igmp_input--bad packet"); 25191 if (mctl_present) 25192 freeb(first_mp); 25193 return; 25194 } 25195 /* 25196 * igmp_input() may have returned the pulled up message. 25197 * So first_mp and ipha need to be reinitialized. 25198 */ 25199 ipha = (ipha_t *)mp->b_rptr; 25200 if (mctl_present) 25201 first_mp->b_cont = mp; 25202 else 25203 first_mp = mp; 25204 /* deliver to local raw users */ 25205 break; 25206 case IPPROTO_ENCAP: 25207 /* 25208 * This case is covered by either ip_fanout_proto, or by 25209 * the above security processing for self-tunneled packets. 25210 */ 25211 break; 25212 case IPPROTO_UDP: { 25213 uint16_t *up; 25214 uint32_t ports; 25215 25216 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 25217 UDP_PORTS_OFFSET); 25218 /* Force a 'valid' checksum. */ 25219 up[3] = 0; 25220 25221 ports = *(uint32_t *)up; 25222 ip_fanout_udp(q, first_mp, ill, ipha, ports, 25223 (ire_type == IRE_BROADCAST), 25224 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25225 IP_FF_SEND_SLLA | IP_FF_IPINFO, mctl_present, B_FALSE, 25226 ill, zoneid); 25227 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25228 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 25229 return; 25230 } 25231 case IPPROTO_TCP: { 25232 25233 /* 25234 * For TCP, discard broadcast packets. 25235 */ 25236 if ((ushort_t)ire_type == IRE_BROADCAST) { 25237 freemsg(first_mp); 25238 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 25239 ip2dbg(("ip_wput_local: discard broadcast\n")); 25240 return; 25241 } 25242 25243 if (mp->b_datap->db_type == M_DATA) { 25244 /* 25245 * M_DATA mblk, so init mblk (chain) for no struio(). 25246 */ 25247 mblk_t *mp1 = mp; 25248 25249 do { 25250 mp1->b_datap->db_struioflag = 0; 25251 } while ((mp1 = mp1->b_cont) != NULL); 25252 } 25253 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 25254 <= mp->b_wptr); 25255 ip_fanout_tcp(q, first_mp, ill, ipha, 25256 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25257 IP_FF_SYN_ADDIRE | IP_FF_IPINFO, 25258 mctl_present, B_FALSE, zoneid); 25259 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25260 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 25261 return; 25262 } 25263 case IPPROTO_SCTP: 25264 { 25265 uint32_t ports; 25266 25267 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 25268 ip_fanout_sctp(first_mp, ill, ipha, ports, 25269 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25270 IP_FF_IPINFO, mctl_present, B_FALSE, zoneid); 25271 return; 25272 } 25273 25274 default: 25275 break; 25276 } 25277 /* 25278 * Find a client for some other protocol. We give 25279 * copies to multiple clients, if more than one is 25280 * bound. 25281 */ 25282 ip_fanout_proto(q, first_mp, ill, ipha, 25283 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 25284 mctl_present, B_FALSE, ill, zoneid); 25285 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25286 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 25287 #undef rptr 25288 } 25289 25290 /* 25291 * Update any source route, record route, or timestamp options. 25292 * Check that we are at end of strict source route. 25293 * The options have been sanity checked by ip_wput_options(). 25294 */ 25295 static void 25296 ip_wput_local_options(ipha_t *ipha, ip_stack_t *ipst) 25297 { 25298 ipoptp_t opts; 25299 uchar_t *opt; 25300 uint8_t optval; 25301 uint8_t optlen; 25302 ipaddr_t dst; 25303 uint32_t ts; 25304 ire_t *ire; 25305 timestruc_t now; 25306 25307 ip2dbg(("ip_wput_local_options\n")); 25308 for (optval = ipoptp_first(&opts, ipha); 25309 optval != IPOPT_EOL; 25310 optval = ipoptp_next(&opts)) { 25311 opt = opts.ipoptp_cur; 25312 optlen = opts.ipoptp_len; 25313 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 25314 switch (optval) { 25315 uint32_t off; 25316 case IPOPT_SSRR: 25317 case IPOPT_LSRR: 25318 off = opt[IPOPT_OFFSET]; 25319 off--; 25320 if (optlen < IP_ADDR_LEN || 25321 off > optlen - IP_ADDR_LEN) { 25322 /* End of source route */ 25323 break; 25324 } 25325 /* 25326 * This will only happen if two consecutive entries 25327 * in the source route contains our address or if 25328 * it is a packet with a loose source route which 25329 * reaches us before consuming the whole source route 25330 */ 25331 ip1dbg(("ip_wput_local_options: not end of SR\n")); 25332 if (optval == IPOPT_SSRR) { 25333 return; 25334 } 25335 /* 25336 * Hack: instead of dropping the packet truncate the 25337 * source route to what has been used by filling the 25338 * rest with IPOPT_NOP. 25339 */ 25340 opt[IPOPT_OLEN] = (uint8_t)off; 25341 while (off < optlen) { 25342 opt[off++] = IPOPT_NOP; 25343 } 25344 break; 25345 case IPOPT_RR: 25346 off = opt[IPOPT_OFFSET]; 25347 off--; 25348 if (optlen < IP_ADDR_LEN || 25349 off > optlen - IP_ADDR_LEN) { 25350 /* No more room - ignore */ 25351 ip1dbg(( 25352 "ip_wput_forward_options: end of RR\n")); 25353 break; 25354 } 25355 dst = htonl(INADDR_LOOPBACK); 25356 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25357 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25358 break; 25359 case IPOPT_TS: 25360 /* Insert timestamp if there is romm */ 25361 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25362 case IPOPT_TS_TSONLY: 25363 off = IPOPT_TS_TIMELEN; 25364 break; 25365 case IPOPT_TS_PRESPEC: 25366 case IPOPT_TS_PRESPEC_RFC791: 25367 /* Verify that the address matched */ 25368 off = opt[IPOPT_OFFSET] - 1; 25369 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 25370 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 25371 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 25372 ipst); 25373 if (ire == NULL) { 25374 /* Not for us */ 25375 break; 25376 } 25377 ire_refrele(ire); 25378 /* FALLTHRU */ 25379 case IPOPT_TS_TSANDADDR: 25380 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 25381 break; 25382 default: 25383 /* 25384 * ip_*put_options should have already 25385 * dropped this packet. 25386 */ 25387 cmn_err(CE_PANIC, "ip_wput_local_options: " 25388 "unknown IT - bug in ip_wput_options?\n"); 25389 return; /* Keep "lint" happy */ 25390 } 25391 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 25392 /* Increase overflow counter */ 25393 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 25394 opt[IPOPT_POS_OV_FLG] = (uint8_t) 25395 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 25396 (off << 4); 25397 break; 25398 } 25399 off = opt[IPOPT_OFFSET] - 1; 25400 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25401 case IPOPT_TS_PRESPEC: 25402 case IPOPT_TS_PRESPEC_RFC791: 25403 case IPOPT_TS_TSANDADDR: 25404 dst = htonl(INADDR_LOOPBACK); 25405 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25406 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25407 /* FALLTHRU */ 25408 case IPOPT_TS_TSONLY: 25409 off = opt[IPOPT_OFFSET] - 1; 25410 /* Compute # of milliseconds since midnight */ 25411 gethrestime(&now); 25412 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 25413 now.tv_nsec / (NANOSEC / MILLISEC); 25414 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 25415 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 25416 break; 25417 } 25418 break; 25419 } 25420 } 25421 } 25422 25423 /* 25424 * Send out a multicast packet on interface ipif. 25425 * The sender does not have an conn. 25426 * Caller verifies that this isn't a PHYI_LOOPBACK. 25427 */ 25428 void 25429 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif, zoneid_t zoneid) 25430 { 25431 ipha_t *ipha; 25432 ire_t *ire; 25433 ipaddr_t dst; 25434 mblk_t *first_mp; 25435 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 25436 25437 /* igmp_sendpkt always allocates a ipsec_out_t */ 25438 ASSERT(mp->b_datap->db_type == M_CTL); 25439 ASSERT(!ipif->ipif_isv6); 25440 ASSERT(!IS_LOOPBACK(ipif->ipif_ill)); 25441 25442 first_mp = mp; 25443 mp = first_mp->b_cont; 25444 ASSERT(mp->b_datap->db_type == M_DATA); 25445 ipha = (ipha_t *)mp->b_rptr; 25446 25447 /* 25448 * Find an IRE which matches the destination and the outgoing 25449 * queue (i.e. the outgoing interface.) 25450 */ 25451 if (ipif->ipif_flags & IPIF_POINTOPOINT) 25452 dst = ipif->ipif_pp_dst_addr; 25453 else 25454 dst = ipha->ipha_dst; 25455 /* 25456 * The source address has already been initialized by the 25457 * caller and hence matching on ILL (MATCH_IRE_ILL) would 25458 * be sufficient rather than MATCH_IRE_IPIF. 25459 * 25460 * This function is used for sending IGMP packets. We need 25461 * to make sure that we send the packet out of the interface 25462 * (ipif->ipif_ill) where we joined the group. This is to 25463 * prevent from switches doing IGMP snooping to send us multicast 25464 * packets for a given group on the interface we have joined. 25465 * If we can't find an ire, igmp_sendpkt has already initialized 25466 * ipsec_out_attach_if so that this will not be load spread in 25467 * ip_newroute_ipif. 25468 */ 25469 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, NULL, 25470 MATCH_IRE_ILL, ipst); 25471 if (!ire) { 25472 /* 25473 * Mark this packet to make it be delivered to 25474 * ip_wput_ire after the new ire has been 25475 * created. 25476 */ 25477 mp->b_prev = NULL; 25478 mp->b_next = NULL; 25479 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC, 25480 zoneid, &zero_info); 25481 return; 25482 } 25483 25484 /* 25485 * Honor the RTF_SETSRC flag; this is the only case 25486 * where we force this addr whatever the current src addr is, 25487 * because this address is set by igmp_sendpkt(), and 25488 * cannot be specified by any user. 25489 */ 25490 if (ire->ire_flags & RTF_SETSRC) { 25491 ipha->ipha_src = ire->ire_src_addr; 25492 } 25493 25494 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE, zoneid); 25495 } 25496 25497 /* 25498 * NOTE : This function does not ire_refrele the ire argument passed in. 25499 * 25500 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 25501 * failure. The nce_fp_mp can vanish any time in the case of 25502 * IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 25503 * the ire_lock to access the nce_fp_mp in this case. 25504 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 25505 * prepending a fastpath message IPQoS processing must precede it, we also set 25506 * the b_band of the fastpath message to that of the mblk returned by IPQoS 25507 * (IPQoS might have set the b_band for CoS marking). 25508 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 25509 * must follow it so that IPQoS can mark the dl_priority field for CoS 25510 * marking, if needed. 25511 */ 25512 static mblk_t * 25513 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, 25514 uint32_t ill_index, ipha_t **iphap) 25515 { 25516 uint_t hlen; 25517 ipha_t *ipha; 25518 mblk_t *mp1; 25519 boolean_t qos_done = B_FALSE; 25520 uchar_t *ll_hdr; 25521 ip_stack_t *ipst = ire->ire_ipst; 25522 25523 #define rptr ((uchar_t *)ipha) 25524 25525 ipha = (ipha_t *)mp->b_rptr; 25526 hlen = 0; 25527 LOCK_IRE_FP_MP(ire); 25528 if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) { 25529 ASSERT(DB_TYPE(mp1) == M_DATA); 25530 /* Initiate IPPF processing */ 25531 if ((proc != 0) && IPP_ENABLED(proc, ipst)) { 25532 UNLOCK_IRE_FP_MP(ire); 25533 ip_process(proc, &mp, ill_index); 25534 if (mp == NULL) 25535 return (NULL); 25536 25537 ipha = (ipha_t *)mp->b_rptr; 25538 LOCK_IRE_FP_MP(ire); 25539 if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) { 25540 qos_done = B_TRUE; 25541 goto no_fp_mp; 25542 } 25543 ASSERT(DB_TYPE(mp1) == M_DATA); 25544 } 25545 hlen = MBLKL(mp1); 25546 /* 25547 * Check if we have enough room to prepend fastpath 25548 * header 25549 */ 25550 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 25551 ll_hdr = rptr - hlen; 25552 bcopy(mp1->b_rptr, ll_hdr, hlen); 25553 /* 25554 * Set the b_rptr to the start of the link layer 25555 * header 25556 */ 25557 mp->b_rptr = ll_hdr; 25558 mp1 = mp; 25559 } else { 25560 mp1 = copyb(mp1); 25561 if (mp1 == NULL) 25562 goto unlock_err; 25563 mp1->b_band = mp->b_band; 25564 mp1->b_cont = mp; 25565 /* 25566 * certain system generated traffic may not 25567 * have cred/label in ip header block. This 25568 * is true even for a labeled system. But for 25569 * labeled traffic, inherit the label in the 25570 * new header. 25571 */ 25572 if (DB_CRED(mp) != NULL) 25573 mblk_setcred(mp1, DB_CRED(mp)); 25574 /* 25575 * XXX disable ICK_VALID and compute checksum 25576 * here; can happen if nce_fp_mp changes and 25577 * it can't be copied now due to insufficient 25578 * space. (unlikely, fp mp can change, but it 25579 * does not increase in length) 25580 */ 25581 } 25582 UNLOCK_IRE_FP_MP(ire); 25583 } else { 25584 no_fp_mp: 25585 mp1 = copyb(ire->ire_nce->nce_res_mp); 25586 if (mp1 == NULL) { 25587 unlock_err: 25588 UNLOCK_IRE_FP_MP(ire); 25589 freemsg(mp); 25590 return (NULL); 25591 } 25592 UNLOCK_IRE_FP_MP(ire); 25593 mp1->b_cont = mp; 25594 /* 25595 * certain system generated traffic may not 25596 * have cred/label in ip header block. This 25597 * is true even for a labeled system. But for 25598 * labeled traffic, inherit the label in the 25599 * new header. 25600 */ 25601 if (DB_CRED(mp) != NULL) 25602 mblk_setcred(mp1, DB_CRED(mp)); 25603 if (!qos_done && (proc != 0) && IPP_ENABLED(proc, ipst)) { 25604 ip_process(proc, &mp1, ill_index); 25605 if (mp1 == NULL) 25606 return (NULL); 25607 25608 if (mp1->b_cont == NULL) 25609 ipha = NULL; 25610 else 25611 ipha = (ipha_t *)mp1->b_cont->b_rptr; 25612 } 25613 } 25614 25615 *iphap = ipha; 25616 return (mp1); 25617 #undef rptr 25618 } 25619 25620 /* 25621 * Finish the outbound IPsec processing for an IPv6 packet. This function 25622 * is called from ipsec_out_process() if the IPsec packet was processed 25623 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25624 * asynchronously. 25625 */ 25626 void 25627 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 25628 ire_t *ire_arg) 25629 { 25630 in6_addr_t *v6dstp; 25631 ire_t *ire; 25632 mblk_t *mp; 25633 ip6_t *ip6h1; 25634 uint_t ill_index; 25635 ipsec_out_t *io; 25636 boolean_t attach_if, hwaccel; 25637 uint32_t flags = IP6_NO_IPPOLICY; 25638 int match_flags; 25639 zoneid_t zoneid; 25640 boolean_t ill_need_rele = B_FALSE; 25641 boolean_t ire_need_rele = B_FALSE; 25642 ip_stack_t *ipst; 25643 25644 mp = ipsec_mp->b_cont; 25645 ip6h1 = (ip6_t *)mp->b_rptr; 25646 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25647 ASSERT(io->ipsec_out_ns != NULL); 25648 ipst = io->ipsec_out_ns->netstack_ip; 25649 ill_index = io->ipsec_out_ill_index; 25650 if (io->ipsec_out_reachable) { 25651 flags |= IPV6_REACHABILITY_CONFIRMATION; 25652 } 25653 attach_if = io->ipsec_out_attach_if; 25654 hwaccel = io->ipsec_out_accelerated; 25655 zoneid = io->ipsec_out_zoneid; 25656 ASSERT(zoneid != ALL_ZONES); 25657 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 25658 /* Multicast addresses should have non-zero ill_index. */ 25659 v6dstp = &ip6h->ip6_dst; 25660 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 25661 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 25662 ASSERT(!attach_if || ill_index != 0); 25663 if (ill_index != 0) { 25664 if (ill == NULL) { 25665 ill = ip_grab_attach_ill(NULL, ipsec_mp, ill_index, 25666 B_TRUE, ipst); 25667 25668 /* Failure case frees things for us. */ 25669 if (ill == NULL) 25670 return; 25671 25672 ill_need_rele = B_TRUE; 25673 } 25674 /* 25675 * If this packet needs to go out on a particular interface 25676 * honor it. 25677 */ 25678 if (attach_if) { 25679 match_flags = MATCH_IRE_ILL; 25680 25681 /* 25682 * Check if we need an ire that will not be 25683 * looked up by anybody else i.e. HIDDEN. 25684 */ 25685 if (ill_is_probeonly(ill)) { 25686 match_flags |= MATCH_IRE_MARK_HIDDEN; 25687 } 25688 } 25689 } 25690 ASSERT(mp != NULL); 25691 25692 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 25693 boolean_t unspec_src; 25694 ipif_t *ipif; 25695 25696 /* 25697 * Use the ill_index to get the right ill. 25698 */ 25699 unspec_src = io->ipsec_out_unspec_src; 25700 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25701 if (ipif == NULL) { 25702 if (ill_need_rele) 25703 ill_refrele(ill); 25704 freemsg(ipsec_mp); 25705 return; 25706 } 25707 25708 if (ire_arg != NULL) { 25709 ire = ire_arg; 25710 } else { 25711 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25712 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25713 ire_need_rele = B_TRUE; 25714 } 25715 if (ire != NULL) { 25716 ipif_refrele(ipif); 25717 /* 25718 * XXX Do the multicast forwarding now, as the IPsec 25719 * processing has been done. 25720 */ 25721 goto send; 25722 } 25723 25724 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 25725 mp->b_prev = NULL; 25726 mp->b_next = NULL; 25727 25728 /* 25729 * If the IPsec packet was processed asynchronously, 25730 * drop it now. 25731 */ 25732 if (q == NULL) { 25733 if (ill_need_rele) 25734 ill_refrele(ill); 25735 freemsg(ipsec_mp); 25736 return; 25737 } 25738 25739 ip_newroute_ipif_v6(q, ipsec_mp, ipif, *v6dstp, 25740 unspec_src, zoneid); 25741 ipif_refrele(ipif); 25742 } else { 25743 if (attach_if) { 25744 ipif_t *ipif; 25745 25746 ipif = ipif_get_next_ipif(NULL, ill); 25747 if (ipif == NULL) { 25748 if (ill_need_rele) 25749 ill_refrele(ill); 25750 freemsg(ipsec_mp); 25751 return; 25752 } 25753 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25754 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25755 ire_need_rele = B_TRUE; 25756 ipif_refrele(ipif); 25757 } else { 25758 if (ire_arg != NULL) { 25759 ire = ire_arg; 25760 } else { 25761 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL, 25762 ipst); 25763 ire_need_rele = B_TRUE; 25764 } 25765 } 25766 if (ire != NULL) 25767 goto send; 25768 /* 25769 * ire disappeared underneath. 25770 * 25771 * What we need to do here is the ip_newroute 25772 * logic to get the ire without doing the IPsec 25773 * processing. Follow the same old path. But this 25774 * time, ip_wput or ire_add_then_send will call us 25775 * directly as all the IPsec operations are done. 25776 */ 25777 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 25778 mp->b_prev = NULL; 25779 mp->b_next = NULL; 25780 25781 /* 25782 * If the IPsec packet was processed asynchronously, 25783 * drop it now. 25784 */ 25785 if (q == NULL) { 25786 if (ill_need_rele) 25787 ill_refrele(ill); 25788 freemsg(ipsec_mp); 25789 return; 25790 } 25791 25792 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 25793 zoneid, ipst); 25794 } 25795 if (ill != NULL && ill_need_rele) 25796 ill_refrele(ill); 25797 return; 25798 send: 25799 if (ill != NULL && ill_need_rele) 25800 ill_refrele(ill); 25801 25802 /* Local delivery */ 25803 if (ire->ire_stq == NULL) { 25804 ill_t *out_ill; 25805 ASSERT(q != NULL); 25806 25807 /* PFHooks: LOOPBACK_OUT */ 25808 out_ill = ire_to_ill(ire); 25809 25810 /* 25811 * DTrace this as ip:::send. A blocked packet will fire the 25812 * send probe, but not the receive probe. 25813 */ 25814 DTRACE_IP7(send, mblk_t *, ipsec_mp, conn_t *, NULL, 25815 void_ip_t *, ip6h, __dtrace_ipsr_ill_t *, out_ill, 25816 ipha_t *, NULL, ip6_t *, ip6h, int, 1); 25817 25818 DTRACE_PROBE4(ip6__loopback__out__start, 25819 ill_t *, NULL, ill_t *, out_ill, 25820 ip6_t *, ip6h1, mblk_t *, ipsec_mp); 25821 25822 FW_HOOKS6(ipst->ips_ip6_loopback_out_event, 25823 ipst->ips_ipv6firewall_loopback_out, 25824 NULL, out_ill, ip6h1, ipsec_mp, mp, 0, ipst); 25825 25826 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, ipsec_mp); 25827 25828 if (ipsec_mp != NULL) 25829 ip_wput_local_v6(RD(q), out_ill, 25830 ip6h, ipsec_mp, ire, 0); 25831 if (ire_need_rele) 25832 ire_refrele(ire); 25833 return; 25834 } 25835 /* 25836 * Everything is done. Send it out on the wire. 25837 * We force the insertion of a fragment header using the 25838 * IPH_FRAG_HDR flag in two cases: 25839 * - after reception of an ICMPv6 "packet too big" message 25840 * with a MTU < 1280 (cf. RFC 2460 section 5) 25841 * - for multirouted IPv6 packets, so that the receiver can 25842 * discard duplicates according to their fragment identifier 25843 */ 25844 /* XXX fix flow control problems. */ 25845 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 25846 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 25847 if (hwaccel) { 25848 /* 25849 * hardware acceleration does not handle these 25850 * "slow path" cases. 25851 */ 25852 /* IPsec KSTATS: should bump bean counter here. */ 25853 if (ire_need_rele) 25854 ire_refrele(ire); 25855 freemsg(ipsec_mp); 25856 return; 25857 } 25858 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 25859 (mp->b_cont ? msgdsize(mp) : 25860 mp->b_wptr - (uchar_t *)ip6h)) { 25861 /* IPsec KSTATS: should bump bean counter here. */ 25862 ip0dbg(("Packet length mismatch: %d, %ld\n", 25863 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 25864 msgdsize(mp))); 25865 if (ire_need_rele) 25866 ire_refrele(ire); 25867 freemsg(ipsec_mp); 25868 return; 25869 } 25870 ASSERT(mp->b_prev == NULL); 25871 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 25872 ntohs(ip6h->ip6_plen) + 25873 IPV6_HDR_LEN, ire->ire_max_frag)); 25874 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 25875 ire->ire_max_frag); 25876 } else { 25877 UPDATE_OB_PKT_COUNT(ire); 25878 ire->ire_last_used_time = lbolt; 25879 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 25880 } 25881 if (ire_need_rele) 25882 ire_refrele(ire); 25883 freeb(ipsec_mp); 25884 } 25885 25886 void 25887 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 25888 { 25889 mblk_t *hada_mp; /* attributes M_CTL mblk */ 25890 da_ipsec_t *hada; /* data attributes */ 25891 ill_t *ill = (ill_t *)q->q_ptr; 25892 25893 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 25894 25895 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 25896 /* IPsec KSTATS: Bump lose counter here! */ 25897 freemsg(mp); 25898 return; 25899 } 25900 25901 /* 25902 * It's an IPsec packet that must be 25903 * accelerated by the Provider, and the 25904 * outbound ill is IPsec acceleration capable. 25905 * Prepends the mblk with an IPHADA_M_CTL, and ship it 25906 * to the ill. 25907 * IPsec KSTATS: should bump packet counter here. 25908 */ 25909 25910 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 25911 if (hada_mp == NULL) { 25912 /* IPsec KSTATS: should bump packet counter here. */ 25913 freemsg(mp); 25914 return; 25915 } 25916 25917 hada_mp->b_datap->db_type = M_CTL; 25918 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 25919 hada_mp->b_cont = mp; 25920 25921 hada = (da_ipsec_t *)hada_mp->b_rptr; 25922 bzero(hada, sizeof (da_ipsec_t)); 25923 hada->da_type = IPHADA_M_CTL; 25924 25925 putnext(q, hada_mp); 25926 } 25927 25928 /* 25929 * Finish the outbound IPsec processing. This function is called from 25930 * ipsec_out_process() if the IPsec packet was processed 25931 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25932 * asynchronously. 25933 */ 25934 void 25935 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 25936 ire_t *ire_arg) 25937 { 25938 uint32_t v_hlen_tos_len; 25939 ipaddr_t dst; 25940 ipif_t *ipif = NULL; 25941 ire_t *ire; 25942 ire_t *ire1 = NULL; 25943 mblk_t *next_mp = NULL; 25944 uint32_t max_frag; 25945 boolean_t multirt_send = B_FALSE; 25946 mblk_t *mp; 25947 ipha_t *ipha1; 25948 uint_t ill_index; 25949 ipsec_out_t *io; 25950 boolean_t attach_if; 25951 int match_flags; 25952 irb_t *irb = NULL; 25953 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 25954 zoneid_t zoneid; 25955 ipxmit_state_t pktxmit_state; 25956 ip_stack_t *ipst; 25957 25958 #ifdef _BIG_ENDIAN 25959 #define LENGTH (v_hlen_tos_len & 0xFFFF) 25960 #else 25961 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 25962 #endif 25963 25964 mp = ipsec_mp->b_cont; 25965 ipha1 = (ipha_t *)mp->b_rptr; 25966 ASSERT(mp != NULL); 25967 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 25968 dst = ipha->ipha_dst; 25969 25970 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25971 ill_index = io->ipsec_out_ill_index; 25972 attach_if = io->ipsec_out_attach_if; 25973 zoneid = io->ipsec_out_zoneid; 25974 ASSERT(zoneid != ALL_ZONES); 25975 ipst = io->ipsec_out_ns->netstack_ip; 25976 ASSERT(io->ipsec_out_ns != NULL); 25977 25978 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 25979 if (ill_index != 0) { 25980 if (ill == NULL) { 25981 ill = ip_grab_attach_ill(NULL, ipsec_mp, 25982 ill_index, B_FALSE, ipst); 25983 25984 /* Failure case frees things for us. */ 25985 if (ill == NULL) 25986 return; 25987 25988 ill_need_rele = B_TRUE; 25989 } 25990 /* 25991 * If this packet needs to go out on a particular interface 25992 * honor it. 25993 */ 25994 if (attach_if) { 25995 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 25996 25997 /* 25998 * Check if we need an ire that will not be 25999 * looked up by anybody else i.e. HIDDEN. 26000 */ 26001 if (ill_is_probeonly(ill)) { 26002 match_flags |= MATCH_IRE_MARK_HIDDEN; 26003 } 26004 } 26005 } 26006 26007 if (CLASSD(dst)) { 26008 boolean_t conn_dontroute; 26009 /* 26010 * Use the ill_index to get the right ipif. 26011 */ 26012 conn_dontroute = io->ipsec_out_dontroute; 26013 if (ill_index == 0) 26014 ipif = ipif_lookup_group(dst, zoneid, ipst); 26015 else 26016 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 26017 if (ipif == NULL) { 26018 ip1dbg(("ip_wput_ipsec_out: No ipif for" 26019 " multicast\n")); 26020 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 26021 freemsg(ipsec_mp); 26022 goto done; 26023 } 26024 /* 26025 * ipha_src has already been intialized with the 26026 * value of the ipif in ip_wput. All we need now is 26027 * an ire to send this downstream. 26028 */ 26029 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 26030 MBLK_GETLABEL(mp), match_flags, ipst); 26031 if (ire != NULL) { 26032 ill_t *ill1; 26033 /* 26034 * Do the multicast forwarding now, as the IPsec 26035 * processing has been done. 26036 */ 26037 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 26038 (ill1 = ire_to_ill(ire))) { 26039 if (ip_mforward(ill1, ipha, mp)) { 26040 freemsg(ipsec_mp); 26041 ip1dbg(("ip_wput_ipsec_out: mforward " 26042 "failed\n")); 26043 ire_refrele(ire); 26044 goto done; 26045 } 26046 } 26047 goto send; 26048 } 26049 26050 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 26051 mp->b_prev = NULL; 26052 mp->b_next = NULL; 26053 26054 /* 26055 * If the IPsec packet was processed asynchronously, 26056 * drop it now. 26057 */ 26058 if (q == NULL) { 26059 freemsg(ipsec_mp); 26060 goto done; 26061 } 26062 26063 /* 26064 * We may be using a wrong ipif to create the ire. 26065 * But it is okay as the source address is assigned 26066 * for the packet already. Next outbound packet would 26067 * create the IRE with the right IPIF in ip_wput. 26068 * 26069 * Also handle RTF_MULTIRT routes. 26070 */ 26071 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT, 26072 zoneid, &zero_info); 26073 } else { 26074 if (attach_if) { 26075 ire = ire_ctable_lookup(dst, 0, 0, ill->ill_ipif, 26076 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 26077 } else { 26078 if (ire_arg != NULL) { 26079 ire = ire_arg; 26080 ire_need_rele = B_FALSE; 26081 } else { 26082 ire = ire_cache_lookup(dst, zoneid, 26083 MBLK_GETLABEL(mp), ipst); 26084 } 26085 } 26086 if (ire != NULL) { 26087 goto send; 26088 } 26089 26090 /* 26091 * ire disappeared underneath. 26092 * 26093 * What we need to do here is the ip_newroute 26094 * logic to get the ire without doing the IPsec 26095 * processing. Follow the same old path. But this 26096 * time, ip_wput or ire_add_then_put will call us 26097 * directly as all the IPsec operations are done. 26098 */ 26099 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 26100 mp->b_prev = NULL; 26101 mp->b_next = NULL; 26102 26103 /* 26104 * If the IPsec packet was processed asynchronously, 26105 * drop it now. 26106 */ 26107 if (q == NULL) { 26108 freemsg(ipsec_mp); 26109 goto done; 26110 } 26111 26112 /* 26113 * Since we're going through ip_newroute() again, we 26114 * need to make sure we don't: 26115 * 26116 * 1.) Trigger the ASSERT() with the ipha_ident 26117 * overloading. 26118 * 2.) Redo transport-layer checksumming, since we've 26119 * already done all that to get this far. 26120 * 26121 * The easiest way not do either of the above is to set 26122 * the ipha_ident field to IP_HDR_INCLUDED. 26123 */ 26124 ipha->ipha_ident = IP_HDR_INCLUDED; 26125 ip_newroute(q, ipsec_mp, dst, (CONN_Q(q) ? Q_TO_CONN(q) : NULL), 26126 zoneid, ipst); 26127 } 26128 goto done; 26129 send: 26130 if (ire->ire_stq == NULL) { 26131 ill_t *out_ill; 26132 /* 26133 * Loopbacks go through ip_wput_local except for one case. 26134 * We come here if we generate a icmp_frag_needed message 26135 * after IPsec processing is over. When this function calls 26136 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 26137 * icmp_frag_needed. The message generated comes back here 26138 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 26139 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 26140 * source address as it is usually set in ip_wput_ire. As 26141 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 26142 * and we end up here. We can't enter ip_wput_ire once the 26143 * IPsec processing is over and hence we need to do it here. 26144 */ 26145 ASSERT(q != NULL); 26146 UPDATE_OB_PKT_COUNT(ire); 26147 ire->ire_last_used_time = lbolt; 26148 if (ipha->ipha_src == 0) 26149 ipha->ipha_src = ire->ire_src_addr; 26150 26151 /* PFHooks: LOOPBACK_OUT */ 26152 out_ill = ire_to_ill(ire); 26153 26154 /* 26155 * DTrace this as ip:::send. A blocked packet will fire the 26156 * send probe, but not the receive probe. 26157 */ 26158 DTRACE_IP7(send, mblk_t *, ipsec_mp, conn_t *, NULL, 26159 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 26160 ipha_t *, ipha, ip6_t *, NULL, int, 1); 26161 26162 DTRACE_PROBE4(ip4__loopback__out__start, 26163 ill_t *, NULL, ill_t *, out_ill, 26164 ipha_t *, ipha1, mblk_t *, ipsec_mp); 26165 26166 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 26167 ipst->ips_ipv4firewall_loopback_out, 26168 NULL, out_ill, ipha1, ipsec_mp, mp, 0, ipst); 26169 26170 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, ipsec_mp); 26171 26172 if (ipsec_mp != NULL) 26173 ip_wput_local(RD(q), out_ill, 26174 ipha, ipsec_mp, ire, 0, zoneid); 26175 if (ire_need_rele) 26176 ire_refrele(ire); 26177 goto done; 26178 } 26179 26180 if (ire->ire_max_frag < (unsigned int)LENGTH) { 26181 /* 26182 * We are through with IPsec processing. 26183 * Fragment this and send it on the wire. 26184 */ 26185 if (io->ipsec_out_accelerated) { 26186 /* 26187 * The packet has been accelerated but must 26188 * be fragmented. This should not happen 26189 * since AH and ESP must not accelerate 26190 * packets that need fragmentation, however 26191 * the configuration could have changed 26192 * since the AH or ESP processing. 26193 * Drop packet. 26194 * IPsec KSTATS: bump bean counter here. 26195 */ 26196 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 26197 "fragmented accelerated packet!\n")); 26198 freemsg(ipsec_mp); 26199 } else { 26200 ip_wput_ire_fragmentit(ipsec_mp, ire, zoneid, ipst); 26201 } 26202 if (ire_need_rele) 26203 ire_refrele(ire); 26204 goto done; 26205 } 26206 26207 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 26208 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 26209 (void *)ire->ire_ipif, (void *)ipif)); 26210 26211 /* 26212 * Multiroute the secured packet, unless IPsec really 26213 * requires the packet to go out only through a particular 26214 * interface. 26215 */ 26216 if ((ire->ire_flags & RTF_MULTIRT) && !attach_if) { 26217 ire_t *first_ire; 26218 irb = ire->ire_bucket; 26219 ASSERT(irb != NULL); 26220 /* 26221 * This ire has been looked up as the one that 26222 * goes through the given ipif; 26223 * make sure we do not omit any other multiroute ire 26224 * that may be present in the bucket before this one. 26225 */ 26226 IRB_REFHOLD(irb); 26227 for (first_ire = irb->irb_ire; 26228 first_ire != NULL; 26229 first_ire = first_ire->ire_next) { 26230 if ((first_ire->ire_flags & RTF_MULTIRT) && 26231 (first_ire->ire_addr == ire->ire_addr) && 26232 !(first_ire->ire_marks & 26233 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 26234 break; 26235 } 26236 } 26237 26238 if ((first_ire != NULL) && (first_ire != ire)) { 26239 /* 26240 * Don't change the ire if the packet must 26241 * be fragmented if sent via this new one. 26242 */ 26243 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 26244 IRE_REFHOLD(first_ire); 26245 if (ire_need_rele) 26246 ire_refrele(ire); 26247 else 26248 ire_need_rele = B_TRUE; 26249 ire = first_ire; 26250 } 26251 } 26252 IRB_REFRELE(irb); 26253 26254 multirt_send = B_TRUE; 26255 max_frag = ire->ire_max_frag; 26256 } else { 26257 if ((ire->ire_flags & RTF_MULTIRT) && attach_if) { 26258 ip1dbg(("ip_wput_ipsec_out: ignoring multirouting " 26259 "flag, attach_if %d\n", attach_if)); 26260 } 26261 } 26262 26263 /* 26264 * In most cases, the emission loop below is entered only once. 26265 * Only in the case where the ire holds the RTF_MULTIRT 26266 * flag, we loop to process all RTF_MULTIRT ires in the 26267 * bucket, and send the packet through all crossed 26268 * RTF_MULTIRT routes. 26269 */ 26270 do { 26271 if (multirt_send) { 26272 /* 26273 * ire1 holds here the next ire to process in the 26274 * bucket. If multirouting is expected, 26275 * any non-RTF_MULTIRT ire that has the 26276 * right destination address is ignored. 26277 */ 26278 ASSERT(irb != NULL); 26279 IRB_REFHOLD(irb); 26280 for (ire1 = ire->ire_next; 26281 ire1 != NULL; 26282 ire1 = ire1->ire_next) { 26283 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 26284 continue; 26285 if (ire1->ire_addr != ire->ire_addr) 26286 continue; 26287 if (ire1->ire_marks & 26288 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 26289 continue; 26290 /* No loopback here */ 26291 if (ire1->ire_stq == NULL) 26292 continue; 26293 /* 26294 * Ensure we do not exceed the MTU 26295 * of the next route. 26296 */ 26297 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 26298 ip_multirt_bad_mtu(ire1, max_frag); 26299 continue; 26300 } 26301 26302 IRE_REFHOLD(ire1); 26303 break; 26304 } 26305 IRB_REFRELE(irb); 26306 if (ire1 != NULL) { 26307 /* 26308 * We are in a multiple send case, need to 26309 * make a copy of the packet. 26310 */ 26311 next_mp = copymsg(ipsec_mp); 26312 if (next_mp == NULL) { 26313 ire_refrele(ire1); 26314 ire1 = NULL; 26315 } 26316 } 26317 } 26318 /* 26319 * Everything is done. Send it out on the wire 26320 * 26321 * ip_xmit_v4 will call ip_wput_attach_llhdr and then 26322 * either send it on the wire or, in the case of 26323 * HW acceleration, call ipsec_hw_putnext. 26324 */ 26325 if (ire->ire_nce && 26326 ire->ire_nce->nce_state != ND_REACHABLE) { 26327 DTRACE_PROBE2(ip__wput__ipsec__bail, 26328 (ire_t *), ire, (mblk_t *), ipsec_mp); 26329 /* 26330 * If ire's link-layer is unresolved (this 26331 * would only happen if the incomplete ire 26332 * was added to cachetable via forwarding path) 26333 * don't bother going to ip_xmit_v4. Just drop the 26334 * packet. 26335 * There is a slight risk here, in that, if we 26336 * have the forwarding path create an incomplete 26337 * IRE, then until the IRE is completed, any 26338 * transmitted IPsec packets will be dropped 26339 * instead of being queued waiting for resolution. 26340 * 26341 * But the likelihood of a forwarding packet and a wput 26342 * packet sending to the same dst at the same time 26343 * and there not yet be an ARP entry for it is small. 26344 * Furthermore, if this actually happens, it might 26345 * be likely that wput would generate multiple 26346 * packets (and forwarding would also have a train 26347 * of packets) for that destination. If this is 26348 * the case, some of them would have been dropped 26349 * anyway, since ARP only queues a few packets while 26350 * waiting for resolution 26351 * 26352 * NOTE: We should really call ip_xmit_v4, 26353 * and let it queue the packet and send the 26354 * ARP query and have ARP come back thus: 26355 * <ARP> ip_wput->ip_output->ip-wput_nondata-> 26356 * ip_xmit_v4->ip_wput_attach_llhdr + ipsec 26357 * hw accel work. But it's too complex to get 26358 * the IPsec hw acceleration approach to fit 26359 * well with ip_xmit_v4 doing ARP without 26360 * doing IPsec simplification. For now, we just 26361 * poke ip_xmit_v4 to trigger the arp resolve, so 26362 * that we can continue with the send on the next 26363 * attempt. 26364 * 26365 * XXX THis should be revisited, when 26366 * the IPsec/IP interaction is cleaned up 26367 */ 26368 ip1dbg(("ip_wput_ipsec_out: ire is incomplete" 26369 " - dropping packet\n")); 26370 freemsg(ipsec_mp); 26371 /* 26372 * Call ip_xmit_v4() to trigger ARP query 26373 * in case the nce_state is ND_INITIAL 26374 */ 26375 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 26376 goto drop_pkt; 26377 } 26378 26379 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 26380 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha1, 26381 mblk_t *, ipsec_mp); 26382 FW_HOOKS(ipst->ips_ip4_physical_out_event, 26383 ipst->ips_ipv4firewall_physical_out, NULL, 26384 ire->ire_ipif->ipif_ill, ipha1, ipsec_mp, mp, 0, ipst); 26385 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, ipsec_mp); 26386 if (ipsec_mp == NULL) 26387 goto drop_pkt; 26388 26389 ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n")); 26390 pktxmit_state = ip_xmit_v4(mp, ire, 26391 (io->ipsec_out_accelerated ? io : NULL), B_FALSE); 26392 26393 if ((pktxmit_state == SEND_FAILED) || 26394 (pktxmit_state == LLHDR_RESLV_FAILED)) { 26395 26396 freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */ 26397 drop_pkt: 26398 BUMP_MIB(((ill_t *)ire->ire_stq->q_ptr)->ill_ip_mib, 26399 ipIfStatsOutDiscards); 26400 if (ire_need_rele) 26401 ire_refrele(ire); 26402 if (ire1 != NULL) { 26403 ire_refrele(ire1); 26404 freemsg(next_mp); 26405 } 26406 goto done; 26407 } 26408 26409 freeb(ipsec_mp); 26410 if (ire_need_rele) 26411 ire_refrele(ire); 26412 26413 if (ire1 != NULL) { 26414 ire = ire1; 26415 ire_need_rele = B_TRUE; 26416 ASSERT(next_mp); 26417 ipsec_mp = next_mp; 26418 mp = ipsec_mp->b_cont; 26419 ire1 = NULL; 26420 next_mp = NULL; 26421 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26422 } else { 26423 multirt_send = B_FALSE; 26424 } 26425 } while (multirt_send); 26426 done: 26427 if (ill != NULL && ill_need_rele) 26428 ill_refrele(ill); 26429 if (ipif != NULL) 26430 ipif_refrele(ipif); 26431 } 26432 26433 /* 26434 * Get the ill corresponding to the specified ire, and compare its 26435 * capabilities with the protocol and algorithms specified by the 26436 * the SA obtained from ipsec_out. If they match, annotate the 26437 * ipsec_out structure to indicate that the packet needs acceleration. 26438 * 26439 * 26440 * A packet is eligible for outbound hardware acceleration if the 26441 * following conditions are satisfied: 26442 * 26443 * 1. the packet will not be fragmented 26444 * 2. the provider supports the algorithm 26445 * 3. there is no pending control message being exchanged 26446 * 4. snoop is not attached 26447 * 5. the destination address is not a broadcast or multicast address. 26448 * 26449 * Rationale: 26450 * - Hardware drivers do not support fragmentation with 26451 * the current interface. 26452 * - snoop, multicast, and broadcast may result in exposure of 26453 * a cleartext datagram. 26454 * We check all five of these conditions here. 26455 * 26456 * XXX would like to nuke "ire_t *" parameter here; problem is that 26457 * IRE is only way to figure out if a v4 address is a broadcast and 26458 * thus ineligible for acceleration... 26459 */ 26460 static void 26461 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 26462 { 26463 ipsec_out_t *io; 26464 mblk_t *data_mp; 26465 uint_t plen, overhead; 26466 ip_stack_t *ipst; 26467 26468 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 26469 return; 26470 26471 if (ill == NULL) 26472 return; 26473 ipst = ill->ill_ipst; 26474 /* 26475 * Destination address is a broadcast or multicast. Punt. 26476 */ 26477 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 26478 IRE_LOCAL))) 26479 return; 26480 26481 data_mp = ipsec_mp->b_cont; 26482 26483 if (ill->ill_isv6) { 26484 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 26485 26486 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 26487 return; 26488 26489 plen = ip6h->ip6_plen; 26490 } else { 26491 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 26492 26493 if (CLASSD(ipha->ipha_dst)) 26494 return; 26495 26496 plen = ipha->ipha_length; 26497 } 26498 /* 26499 * Is there a pending DLPI control message being exchanged 26500 * between IP/IPsec and the DLS Provider? If there is, it 26501 * could be a SADB update, and the state of the DLS Provider 26502 * SADB might not be in sync with the SADB maintained by 26503 * IPsec. To avoid dropping packets or using the wrong keying 26504 * material, we do not accelerate this packet. 26505 */ 26506 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 26507 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26508 "ill_dlpi_pending! don't accelerate packet\n")); 26509 return; 26510 } 26511 26512 /* 26513 * Is the Provider in promiscous mode? If it does, we don't 26514 * accelerate the packet since it will bounce back up to the 26515 * listeners in the clear. 26516 */ 26517 if (ill->ill_promisc_on_phys) { 26518 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26519 "ill in promiscous mode, don't accelerate packet\n")); 26520 return; 26521 } 26522 26523 /* 26524 * Will the packet require fragmentation? 26525 */ 26526 26527 /* 26528 * IPsec ESP note: this is a pessimistic estimate, but the same 26529 * as is used elsewhere. 26530 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 26531 * + 2-byte trailer 26532 */ 26533 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 26534 IPSEC_BASE_ESP_HDR_SIZE(sa); 26535 26536 if ((plen + overhead) > ill->ill_max_mtu) 26537 return; 26538 26539 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26540 26541 /* 26542 * Can the ill accelerate this IPsec protocol and algorithm 26543 * specified by the SA? 26544 */ 26545 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 26546 ill->ill_isv6, sa, ipst->ips_netstack)) { 26547 return; 26548 } 26549 26550 /* 26551 * Tell AH or ESP that the outbound ill is capable of 26552 * accelerating this packet. 26553 */ 26554 io->ipsec_out_is_capab_ill = B_TRUE; 26555 } 26556 26557 /* 26558 * Select which AH & ESP SA's to use (if any) for the outbound packet. 26559 * 26560 * If this function returns B_TRUE, the requested SA's have been filled 26561 * into the ipsec_out_*_sa pointers. 26562 * 26563 * If the function returns B_FALSE, the packet has been "consumed", most 26564 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 26565 * 26566 * The SA references created by the protocol-specific "select" 26567 * function will be released when the ipsec_mp is freed, thanks to the 26568 * ipsec_out_free destructor -- see spd.c. 26569 */ 26570 static boolean_t 26571 ipsec_out_select_sa(mblk_t *ipsec_mp) 26572 { 26573 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 26574 ipsec_out_t *io; 26575 ipsec_policy_t *pp; 26576 ipsec_action_t *ap; 26577 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26578 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26579 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26580 26581 if (!io->ipsec_out_secure) { 26582 /* 26583 * We came here by mistake. 26584 * Don't bother with ipsec processing 26585 * We should "discourage" this path in the future. 26586 */ 26587 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26588 return (B_FALSE); 26589 } 26590 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26591 ASSERT((io->ipsec_out_policy != NULL) || 26592 (io->ipsec_out_act != NULL)); 26593 26594 ASSERT(io->ipsec_out_failed == B_FALSE); 26595 26596 /* 26597 * IPsec processing has started. 26598 */ 26599 io->ipsec_out_proc_begin = B_TRUE; 26600 ap = io->ipsec_out_act; 26601 if (ap == NULL) { 26602 pp = io->ipsec_out_policy; 26603 ASSERT(pp != NULL); 26604 ap = pp->ipsp_act; 26605 ASSERT(ap != NULL); 26606 } 26607 26608 /* 26609 * We have an action. now, let's select SA's. 26610 * (In the future, we can cache this in the conn_t..) 26611 */ 26612 if (ap->ipa_want_esp) { 26613 if (io->ipsec_out_esp_sa == NULL) { 26614 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 26615 IPPROTO_ESP); 26616 } 26617 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 26618 } 26619 26620 if (ap->ipa_want_ah) { 26621 if (io->ipsec_out_ah_sa == NULL) { 26622 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 26623 IPPROTO_AH); 26624 } 26625 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 26626 /* 26627 * The ESP and AH processing order needs to be preserved 26628 * when both protocols are required (ESP should be applied 26629 * before AH for an outbound packet). Force an ESP ACQUIRE 26630 * when both ESP and AH are required, and an AH ACQUIRE 26631 * is needed. 26632 */ 26633 if (ap->ipa_want_esp && need_ah_acquire) 26634 need_esp_acquire = B_TRUE; 26635 } 26636 26637 /* 26638 * Send an ACQUIRE (extended, regular, or both) if we need one. 26639 * Release SAs that got referenced, but will not be used until we 26640 * acquire _all_ of the SAs we need. 26641 */ 26642 if (need_ah_acquire || need_esp_acquire) { 26643 if (io->ipsec_out_ah_sa != NULL) { 26644 IPSA_REFRELE(io->ipsec_out_ah_sa); 26645 io->ipsec_out_ah_sa = NULL; 26646 } 26647 if (io->ipsec_out_esp_sa != NULL) { 26648 IPSA_REFRELE(io->ipsec_out_esp_sa); 26649 io->ipsec_out_esp_sa = NULL; 26650 } 26651 26652 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 26653 return (B_FALSE); 26654 } 26655 26656 return (B_TRUE); 26657 } 26658 26659 /* 26660 * Process an IPSEC_OUT message and see what you can 26661 * do with it. 26662 * IPQoS Notes: 26663 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 26664 * IPsec. 26665 * XXX would like to nuke ire_t. 26666 * XXX ill_index better be "real" 26667 */ 26668 void 26669 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 26670 { 26671 ipsec_out_t *io; 26672 ipsec_policy_t *pp; 26673 ipsec_action_t *ap; 26674 ipha_t *ipha; 26675 ip6_t *ip6h; 26676 mblk_t *mp; 26677 ill_t *ill; 26678 zoneid_t zoneid; 26679 ipsec_status_t ipsec_rc; 26680 boolean_t ill_need_rele = B_FALSE; 26681 ip_stack_t *ipst; 26682 ipsec_stack_t *ipss; 26683 26684 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26685 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26686 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26687 ipst = io->ipsec_out_ns->netstack_ip; 26688 mp = ipsec_mp->b_cont; 26689 26690 /* 26691 * Initiate IPPF processing. We do it here to account for packets 26692 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 26693 * We can check for ipsec_out_proc_begin even for such packets, as 26694 * they will always be false (asserted below). 26695 */ 26696 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst) && !io->ipsec_out_proc_begin) { 26697 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 26698 io->ipsec_out_ill_index : ill_index); 26699 if (mp == NULL) { 26700 ip2dbg(("ipsec_out_process: packet dropped "\ 26701 "during IPPF processing\n")); 26702 freeb(ipsec_mp); 26703 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26704 return; 26705 } 26706 } 26707 26708 if (!io->ipsec_out_secure) { 26709 /* 26710 * We came here by mistake. 26711 * Don't bother with ipsec processing 26712 * Should "discourage" this path in the future. 26713 */ 26714 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26715 goto done; 26716 } 26717 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26718 ASSERT((io->ipsec_out_policy != NULL) || 26719 (io->ipsec_out_act != NULL)); 26720 ASSERT(io->ipsec_out_failed == B_FALSE); 26721 26722 ipss = ipst->ips_netstack->netstack_ipsec; 26723 if (!ipsec_loaded(ipss)) { 26724 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 26725 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26726 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26727 } else { 26728 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 26729 } 26730 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 26731 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 26732 &ipss->ipsec_dropper); 26733 return; 26734 } 26735 26736 /* 26737 * IPsec processing has started. 26738 */ 26739 io->ipsec_out_proc_begin = B_TRUE; 26740 ap = io->ipsec_out_act; 26741 if (ap == NULL) { 26742 pp = io->ipsec_out_policy; 26743 ASSERT(pp != NULL); 26744 ap = pp->ipsp_act; 26745 ASSERT(ap != NULL); 26746 } 26747 26748 /* 26749 * Save the outbound ill index. When the packet comes back 26750 * from IPsec, we make sure the ill hasn't changed or disappeared 26751 * before sending it the accelerated packet. 26752 */ 26753 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 26754 int ifindex; 26755 ill = ire_to_ill(ire); 26756 ifindex = ill->ill_phyint->phyint_ifindex; 26757 io->ipsec_out_capab_ill_index = ifindex; 26758 } 26759 26760 /* 26761 * The order of processing is first insert a IP header if needed. 26762 * Then insert the ESP header and then the AH header. 26763 */ 26764 if ((io->ipsec_out_se_done == B_FALSE) && 26765 (ap->ipa_want_se)) { 26766 /* 26767 * First get the outer IP header before sending 26768 * it to ESP. 26769 */ 26770 ipha_t *oipha, *iipha; 26771 mblk_t *outer_mp, *inner_mp; 26772 26773 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 26774 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 26775 "ipsec_out_process: " 26776 "Self-Encapsulation failed: Out of memory\n"); 26777 freemsg(ipsec_mp); 26778 if (ill != NULL) { 26779 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26780 } else { 26781 BUMP_MIB(&ipst->ips_ip_mib, 26782 ipIfStatsOutDiscards); 26783 } 26784 return; 26785 } 26786 inner_mp = ipsec_mp->b_cont; 26787 ASSERT(inner_mp->b_datap->db_type == M_DATA); 26788 oipha = (ipha_t *)outer_mp->b_rptr; 26789 iipha = (ipha_t *)inner_mp->b_rptr; 26790 *oipha = *iipha; 26791 outer_mp->b_wptr += sizeof (ipha_t); 26792 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 26793 sizeof (ipha_t)); 26794 oipha->ipha_protocol = IPPROTO_ENCAP; 26795 oipha->ipha_version_and_hdr_length = 26796 IP_SIMPLE_HDR_VERSION; 26797 oipha->ipha_hdr_checksum = 0; 26798 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 26799 outer_mp->b_cont = inner_mp; 26800 ipsec_mp->b_cont = outer_mp; 26801 26802 io->ipsec_out_se_done = B_TRUE; 26803 io->ipsec_out_tunnel = B_TRUE; 26804 } 26805 26806 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 26807 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 26808 !ipsec_out_select_sa(ipsec_mp)) 26809 return; 26810 26811 /* 26812 * By now, we know what SA's to use. Toss over to ESP & AH 26813 * to do the heavy lifting. 26814 */ 26815 zoneid = io->ipsec_out_zoneid; 26816 ASSERT(zoneid != ALL_ZONES); 26817 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 26818 ASSERT(io->ipsec_out_esp_sa != NULL); 26819 io->ipsec_out_esp_done = B_TRUE; 26820 /* 26821 * Note that since hw accel can only apply one transform, 26822 * not two, we skip hw accel for ESP if we also have AH 26823 * This is an design limitation of the interface 26824 * which should be revisited. 26825 */ 26826 ASSERT(ire != NULL); 26827 if (io->ipsec_out_ah_sa == NULL) { 26828 ill = (ill_t *)ire->ire_stq->q_ptr; 26829 ipsec_out_is_accelerated(ipsec_mp, 26830 io->ipsec_out_esp_sa, ill, ire); 26831 } 26832 26833 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 26834 switch (ipsec_rc) { 26835 case IPSEC_STATUS_SUCCESS: 26836 break; 26837 case IPSEC_STATUS_FAILED: 26838 if (ill != NULL) { 26839 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26840 } else { 26841 BUMP_MIB(&ipst->ips_ip_mib, 26842 ipIfStatsOutDiscards); 26843 } 26844 /* FALLTHRU */ 26845 case IPSEC_STATUS_PENDING: 26846 return; 26847 } 26848 } 26849 26850 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 26851 ASSERT(io->ipsec_out_ah_sa != NULL); 26852 io->ipsec_out_ah_done = B_TRUE; 26853 if (ire == NULL) { 26854 int idx = io->ipsec_out_capab_ill_index; 26855 ill = ill_lookup_on_ifindex(idx, B_FALSE, 26856 NULL, NULL, NULL, NULL, ipst); 26857 ill_need_rele = B_TRUE; 26858 } else { 26859 ill = (ill_t *)ire->ire_stq->q_ptr; 26860 } 26861 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 26862 ire); 26863 26864 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 26865 switch (ipsec_rc) { 26866 case IPSEC_STATUS_SUCCESS: 26867 break; 26868 case IPSEC_STATUS_FAILED: 26869 if (ill != NULL) { 26870 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26871 } else { 26872 BUMP_MIB(&ipst->ips_ip_mib, 26873 ipIfStatsOutDiscards); 26874 } 26875 /* FALLTHRU */ 26876 case IPSEC_STATUS_PENDING: 26877 if (ill != NULL && ill_need_rele) 26878 ill_refrele(ill); 26879 return; 26880 } 26881 } 26882 /* 26883 * We are done with IPsec processing. Send it over 26884 * the wire. 26885 */ 26886 done: 26887 mp = ipsec_mp->b_cont; 26888 ipha = (ipha_t *)mp->b_rptr; 26889 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26890 ip_wput_ipsec_out(q, ipsec_mp, ipha, ill, ire); 26891 } else { 26892 ip6h = (ip6_t *)ipha; 26893 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ill, ire); 26894 } 26895 if (ill != NULL && ill_need_rele) 26896 ill_refrele(ill); 26897 } 26898 26899 /* ARGSUSED */ 26900 void 26901 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 26902 { 26903 opt_restart_t *or; 26904 int err; 26905 conn_t *connp; 26906 26907 ASSERT(CONN_Q(q)); 26908 connp = Q_TO_CONN(q); 26909 26910 ASSERT(first_mp->b_datap->db_type == M_CTL); 26911 or = (opt_restart_t *)first_mp->b_rptr; 26912 /* 26913 * We don't need to pass any credentials here since this is just 26914 * a restart. The credentials are passed in when svr4_optcom_req 26915 * is called the first time (from ip_wput_nondata). 26916 */ 26917 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 26918 err = svr4_optcom_req(q, first_mp, NULL, 26919 &ip_opt_obj, B_FALSE); 26920 } else { 26921 ASSERT(or->or_type == T_OPTMGMT_REQ); 26922 err = tpi_optcom_req(q, first_mp, NULL, 26923 &ip_opt_obj, B_FALSE); 26924 } 26925 if (err != EINPROGRESS) { 26926 /* operation is done */ 26927 CONN_OPER_PENDING_DONE(connp); 26928 } 26929 } 26930 26931 /* 26932 * ioctls that go through a down/up sequence may need to wait for the down 26933 * to complete. This involves waiting for the ire and ipif refcnts to go down 26934 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 26935 */ 26936 /* ARGSUSED */ 26937 void 26938 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 26939 { 26940 struct iocblk *iocp; 26941 mblk_t *mp1; 26942 ip_ioctl_cmd_t *ipip; 26943 int err; 26944 sin_t *sin; 26945 struct lifreq *lifr; 26946 struct ifreq *ifr; 26947 26948 iocp = (struct iocblk *)mp->b_rptr; 26949 ASSERT(ipsq != NULL); 26950 /* Existence of mp1 verified in ip_wput_nondata */ 26951 mp1 = mp->b_cont->b_cont; 26952 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26953 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 26954 /* 26955 * Special case where ipsq_current_ipif is not set: 26956 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 26957 * ill could also have become part of a ipmp group in the 26958 * process, we are here as were not able to complete the 26959 * operation in ipif_set_values because we could not become 26960 * exclusive on the new ipsq, In such a case ipsq_current_ipif 26961 * will not be set so we need to set it. 26962 */ 26963 ill_t *ill = q->q_ptr; 26964 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 26965 } 26966 ASSERT(ipsq->ipsq_current_ipif != NULL); 26967 26968 if (ipip->ipi_cmd_type == IF_CMD) { 26969 /* This a old style SIOC[GS]IF* command */ 26970 ifr = (struct ifreq *)mp1->b_rptr; 26971 sin = (sin_t *)&ifr->ifr_addr; 26972 } else if (ipip->ipi_cmd_type == LIF_CMD) { 26973 /* This a new style SIOC[GS]LIF* command */ 26974 lifr = (struct lifreq *)mp1->b_rptr; 26975 sin = (sin_t *)&lifr->lifr_addr; 26976 } else { 26977 sin = NULL; 26978 } 26979 26980 err = (*ipip->ipi_func_restart)(ipsq->ipsq_current_ipif, sin, q, mp, 26981 ipip, mp1->b_rptr); 26982 26983 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 26984 } 26985 26986 /* 26987 * ioctl processing 26988 * 26989 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up 26990 * the ioctl command in the ioctl tables, determines the copyin data size 26991 * from the ipi_copyin_size field, and does an mi_copyin() of that size. 26992 * 26993 * ioctl processing then continues when the M_IOCDATA makes its way down to 26994 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its 26995 * associated 'conn' is refheld till the end of the ioctl and the general 26996 * ioctl processing function ip_process_ioctl() is called to extract the 26997 * arguments and process the ioctl. To simplify extraction, ioctl commands 26998 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a 26999 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq()) 27000 * is used to extract the ioctl's arguments. 27001 * 27002 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 27003 * so goes thru the serialization primitive ipsq_try_enter. Then the 27004 * appropriate function to handle the ioctl is called based on the entry in 27005 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 27006 * which also refreleases the 'conn' that was refheld at the start of the 27007 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 27008 * 27009 * Many exclusive ioctls go thru an internal down up sequence as part of 27010 * the operation. For example an attempt to change the IP address of an 27011 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 27012 * does all the cleanup such as deleting all ires that use this address. 27013 * Then we need to wait till all references to the interface go away. 27014 */ 27015 void 27016 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 27017 { 27018 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 27019 ip_ioctl_cmd_t *ipip = arg; 27020 ip_extract_func_t *extract_funcp; 27021 cmd_info_t ci; 27022 int err; 27023 boolean_t entered_ipsq = B_FALSE; 27024 27025 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 27026 27027 if (ipip == NULL) 27028 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27029 27030 /* 27031 * SIOCLIFADDIF needs to go thru a special path since the 27032 * ill may not exist yet. This happens in the case of lo0 27033 * which is created using this ioctl. 27034 */ 27035 if (ipip->ipi_cmd == SIOCLIFADDIF) { 27036 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 27037 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27038 return; 27039 } 27040 27041 ci.ci_ipif = NULL; 27042 if (ipip->ipi_cmd_type == MISC_CMD) { 27043 /* 27044 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF. 27045 */ 27046 if (ipip->ipi_cmd == IF_UNITSEL) { 27047 /* ioctl comes down the ill */ 27048 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 27049 ipif_refhold(ci.ci_ipif); 27050 } 27051 err = 0; 27052 ci.ci_sin = NULL; 27053 ci.ci_sin6 = NULL; 27054 ci.ci_lifr = NULL; 27055 } else { 27056 switch (ipip->ipi_cmd_type) { 27057 case IF_CMD: 27058 case LIF_CMD: 27059 extract_funcp = ip_extract_lifreq; 27060 break; 27061 27062 case ARP_CMD: 27063 case XARP_CMD: 27064 extract_funcp = ip_extract_arpreq; 27065 break; 27066 27067 case TUN_CMD: 27068 extract_funcp = ip_extract_tunreq; 27069 break; 27070 27071 case MSFILT_CMD: 27072 extract_funcp = ip_extract_msfilter; 27073 break; 27074 27075 default: 27076 ASSERT(0); 27077 } 27078 27079 err = (*extract_funcp)(q, mp, ipip, &ci, ip_process_ioctl); 27080 if (err != 0) { 27081 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27082 return; 27083 } 27084 27085 /* 27086 * All of the extraction functions return a refheld ipif. 27087 */ 27088 ASSERT(ci.ci_ipif != NULL); 27089 } 27090 27091 /* 27092 * If ipsq is non-null, we are already being called exclusively 27093 */ 27094 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 27095 if (!(ipip->ipi_flags & IPI_WR)) { 27096 /* 27097 * A return value of EINPROGRESS means the ioctl is 27098 * either queued and waiting for some reason or has 27099 * already completed. 27100 */ 27101 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 27102 ci.ci_lifr); 27103 if (ci.ci_ipif != NULL) 27104 ipif_refrele(ci.ci_ipif); 27105 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27106 return; 27107 } 27108 27109 ASSERT(ci.ci_ipif != NULL); 27110 27111 if (ipsq == NULL) { 27112 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, 27113 ip_process_ioctl, NEW_OP, B_TRUE); 27114 entered_ipsq = B_TRUE; 27115 } 27116 /* 27117 * Release the ipif so that ipif_down and friends that wait for 27118 * references to go away are not misled about the current ipif_refcnt 27119 * values. We are writer so we can access the ipif even after releasing 27120 * the ipif. 27121 */ 27122 ipif_refrele(ci.ci_ipif); 27123 if (ipsq == NULL) 27124 return; 27125 27126 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 27127 27128 /* 27129 * For most set ioctls that come here, this serves as a single point 27130 * where we set the IPIF_CHANGING flag. This ensures that there won't 27131 * be any new references to the ipif. This helps functions that go 27132 * through this path and end up trying to wait for the refcnts 27133 * associated with the ipif to go down to zero. Some exceptions are 27134 * Failover, Failback, and Groupname commands that operate on more than 27135 * just the ci.ci_ipif. These commands internally determine the 27136 * set of ipif's they operate on and set and clear the IPIF_CHANGING 27137 * flags on that set. Another exception is the Removeif command that 27138 * sets the IPIF_CONDEMNED flag internally after identifying the right 27139 * ipif to operate on. 27140 */ 27141 mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock); 27142 if (ipip->ipi_cmd != SIOCLIFREMOVEIF && 27143 ipip->ipi_cmd != SIOCLIFFAILOVER && 27144 ipip->ipi_cmd != SIOCLIFFAILBACK && 27145 ipip->ipi_cmd != SIOCSLIFGROUPNAME) 27146 (ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING; 27147 mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock); 27148 27149 /* 27150 * A return value of EINPROGRESS means the ioctl is 27151 * either queued and waiting for some reason or has 27152 * already completed. 27153 */ 27154 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 27155 27156 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 27157 27158 if (entered_ipsq) 27159 ipsq_exit(ipsq); 27160 } 27161 27162 /* 27163 * Complete the ioctl. Typically ioctls use the mi package and need to 27164 * do mi_copyout/mi_copy_done. 27165 */ 27166 void 27167 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 27168 { 27169 conn_t *connp = NULL; 27170 27171 if (err == EINPROGRESS) 27172 return; 27173 27174 if (CONN_Q(q)) { 27175 connp = Q_TO_CONN(q); 27176 ASSERT(connp->conn_ref >= 2); 27177 } 27178 27179 switch (mode) { 27180 case COPYOUT: 27181 if (err == 0) 27182 mi_copyout(q, mp); 27183 else 27184 mi_copy_done(q, mp, err); 27185 break; 27186 27187 case NO_COPYOUT: 27188 mi_copy_done(q, mp, err); 27189 break; 27190 27191 default: 27192 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 27193 break; 27194 } 27195 27196 /* 27197 * The refhold placed at the start of the ioctl is released here. 27198 */ 27199 if (connp != NULL) 27200 CONN_OPER_PENDING_DONE(connp); 27201 27202 if (ipsq != NULL) 27203 ipsq_current_finish(ipsq); 27204 } 27205 27206 /* 27207 * This is called from ip_wput_nondata to resume a deferred TCP bind. 27208 */ 27209 /* ARGSUSED */ 27210 void 27211 ip_resume_tcp_bind(void *arg, mblk_t *mp, void *arg2) 27212 { 27213 conn_t *connp = arg; 27214 tcp_t *tcp; 27215 27216 ASSERT(connp != NULL && IPCL_IS_TCP(connp) && connp->conn_tcp != NULL); 27217 tcp = connp->conn_tcp; 27218 27219 if (connp->conn_tcp->tcp_state == TCPS_CLOSED) 27220 freemsg(mp); 27221 else 27222 tcp_rput_other(tcp, mp); 27223 CONN_OPER_PENDING_DONE(connp); 27224 } 27225 27226 /* Called from ip_wput for all non data messages */ 27227 /* ARGSUSED */ 27228 void 27229 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 27230 { 27231 mblk_t *mp1; 27232 ire_t *ire, *fake_ire; 27233 ill_t *ill; 27234 struct iocblk *iocp; 27235 ip_ioctl_cmd_t *ipip; 27236 cred_t *cr; 27237 conn_t *connp; 27238 int err; 27239 nce_t *nce; 27240 ipif_t *ipif; 27241 ip_stack_t *ipst; 27242 char *proto_str; 27243 27244 if (CONN_Q(q)) { 27245 connp = Q_TO_CONN(q); 27246 ipst = connp->conn_netstack->netstack_ip; 27247 } else { 27248 connp = NULL; 27249 ipst = ILLQ_TO_IPST(q); 27250 } 27251 27252 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(q)); 27253 27254 switch (DB_TYPE(mp)) { 27255 case M_IOCTL: 27256 /* 27257 * IOCTL processing begins in ip_sioctl_copyin_setup which 27258 * will arrange to copy in associated control structures. 27259 */ 27260 ip_sioctl_copyin_setup(q, mp); 27261 return; 27262 case M_IOCDATA: 27263 /* 27264 * Ensure that this is associated with one of our trans- 27265 * parent ioctls. If it's not ours, discard it if we're 27266 * running as a driver, or pass it on if we're a module. 27267 */ 27268 iocp = (struct iocblk *)mp->b_rptr; 27269 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27270 if (ipip == NULL) { 27271 if (q->q_next == NULL) { 27272 goto nak; 27273 } else { 27274 putnext(q, mp); 27275 } 27276 return; 27277 } 27278 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 27279 /* 27280 * the ioctl is one we recognise, but is not 27281 * consumed by IP as a module, pass M_IOCDATA 27282 * for processing downstream, but only for 27283 * common Streams ioctls. 27284 */ 27285 if (ipip->ipi_flags & IPI_PASS_DOWN) { 27286 putnext(q, mp); 27287 return; 27288 } else { 27289 goto nak; 27290 } 27291 } 27292 27293 /* IOCTL continuation following copyin or copyout. */ 27294 if (mi_copy_state(q, mp, NULL) == -1) { 27295 /* 27296 * The copy operation failed. mi_copy_state already 27297 * cleaned up, so we're out of here. 27298 */ 27299 return; 27300 } 27301 /* 27302 * If we just completed a copy in, we become writer and 27303 * continue processing in ip_sioctl_copyin_done. If it 27304 * was a copy out, we call mi_copyout again. If there is 27305 * nothing more to copy out, it will complete the IOCTL. 27306 */ 27307 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 27308 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 27309 mi_copy_done(q, mp, EPROTO); 27310 return; 27311 } 27312 /* 27313 * Check for cases that need more copying. A return 27314 * value of 0 means a second copyin has been started, 27315 * so we return; a return value of 1 means no more 27316 * copying is needed, so we continue. 27317 */ 27318 if (ipip->ipi_cmd_type == MSFILT_CMD && 27319 MI_COPY_COUNT(mp) == 1) { 27320 if (ip_copyin_msfilter(q, mp) == 0) 27321 return; 27322 } 27323 /* 27324 * Refhold the conn, till the ioctl completes. This is 27325 * needed in case the ioctl ends up in the pending mp 27326 * list. Every mp in the ill_pending_mp list and 27327 * the ipsq_pending_mp must have a refhold on the conn 27328 * to resume processing. The refhold is released when 27329 * the ioctl completes. (normally or abnormally) 27330 * In all cases ip_ioctl_finish is called to finish 27331 * the ioctl. 27332 */ 27333 if (connp != NULL) { 27334 /* This is not a reentry */ 27335 ASSERT(ipsq == NULL); 27336 CONN_INC_REF(connp); 27337 } else { 27338 if (!(ipip->ipi_flags & IPI_MODOK)) { 27339 mi_copy_done(q, mp, EINVAL); 27340 return; 27341 } 27342 } 27343 27344 ip_process_ioctl(ipsq, q, mp, ipip); 27345 27346 } else { 27347 mi_copyout(q, mp); 27348 } 27349 return; 27350 nak: 27351 iocp->ioc_error = EINVAL; 27352 mp->b_datap->db_type = M_IOCNAK; 27353 iocp->ioc_count = 0; 27354 qreply(q, mp); 27355 return; 27356 27357 case M_IOCNAK: 27358 /* 27359 * The only way we could get here is if a resolver didn't like 27360 * an IOCTL we sent it. This shouldn't happen. 27361 */ 27362 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 27363 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 27364 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 27365 freemsg(mp); 27366 return; 27367 case M_IOCACK: 27368 /* /dev/ip shouldn't see this */ 27369 if (CONN_Q(q)) 27370 goto nak; 27371 27372 /* Finish socket ioctls passed through to ARP. */ 27373 ip_sioctl_iocack(q, mp); 27374 return; 27375 case M_FLUSH: 27376 if (*mp->b_rptr & FLUSHW) 27377 flushq(q, FLUSHALL); 27378 if (q->q_next) { 27379 putnext(q, mp); 27380 return; 27381 } 27382 if (*mp->b_rptr & FLUSHR) { 27383 *mp->b_rptr &= ~FLUSHW; 27384 qreply(q, mp); 27385 return; 27386 } 27387 freemsg(mp); 27388 return; 27389 case IRE_DB_REQ_TYPE: 27390 if (connp == NULL) { 27391 proto_str = "IRE_DB_REQ_TYPE"; 27392 goto protonak; 27393 } 27394 /* An Upper Level Protocol wants a copy of an IRE. */ 27395 ip_ire_req(q, mp); 27396 return; 27397 case M_CTL: 27398 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 27399 break; 27400 27401 if (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == 27402 TUN_HELLO) { 27403 ASSERT(connp != NULL); 27404 connp->conn_flags |= IPCL_IPTUN; 27405 freeb(mp); 27406 return; 27407 } 27408 27409 /* M_CTL messages are used by ARP to tell us things. */ 27410 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 27411 break; 27412 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 27413 case AR_ENTRY_SQUERY: 27414 ip_wput_ctl(q, mp); 27415 return; 27416 case AR_CLIENT_NOTIFY: 27417 ip_arp_news(q, mp); 27418 return; 27419 case AR_DLPIOP_DONE: 27420 ASSERT(q->q_next != NULL); 27421 ill = (ill_t *)q->q_ptr; 27422 /* qwriter_ip releases the refhold */ 27423 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 27424 ill_refhold(ill); 27425 qwriter_ip(ill, q, mp, ip_arp_done, CUR_OP, B_FALSE); 27426 return; 27427 case AR_ARP_CLOSING: 27428 /* 27429 * ARP (above us) is closing. If no ARP bringup is 27430 * currently pending, ack the message so that ARP 27431 * can complete its close. Also mark ill_arp_closing 27432 * so that new ARP bringups will fail. If any 27433 * ARP bringup is currently in progress, we will 27434 * ack this when the current ARP bringup completes. 27435 */ 27436 ASSERT(q->q_next != NULL); 27437 ill = (ill_t *)q->q_ptr; 27438 mutex_enter(&ill->ill_lock); 27439 ill->ill_arp_closing = 1; 27440 if (!ill->ill_arp_bringup_pending) { 27441 mutex_exit(&ill->ill_lock); 27442 qreply(q, mp); 27443 } else { 27444 mutex_exit(&ill->ill_lock); 27445 freemsg(mp); 27446 } 27447 return; 27448 case AR_ARP_EXTEND: 27449 /* 27450 * The ARP module above us is capable of duplicate 27451 * address detection. Old ATM drivers will not send 27452 * this message. 27453 */ 27454 ASSERT(q->q_next != NULL); 27455 ill = (ill_t *)q->q_ptr; 27456 ill->ill_arp_extend = B_TRUE; 27457 freemsg(mp); 27458 return; 27459 default: 27460 break; 27461 } 27462 break; 27463 case M_PROTO: 27464 case M_PCPROTO: 27465 /* 27466 * The only PROTO messages we expect are ULP binds and 27467 * copies of option negotiation acknowledgements. 27468 */ 27469 switch (((union T_primitives *)mp->b_rptr)->type) { 27470 case O_T_BIND_REQ: 27471 case T_BIND_REQ: { 27472 /* Request can get queued in bind */ 27473 if (connp == NULL) { 27474 proto_str = "O_T_BIND_REQ/T_BIND_REQ"; 27475 goto protonak; 27476 } 27477 /* 27478 * The transports except SCTP call ip_bind_{v4,v6}() 27479 * directly instead of a a putnext. SCTP doesn't 27480 * generate any T_BIND_REQ since it has its own 27481 * fanout data structures. However, ESP and AH 27482 * come in for regular binds; all other cases are 27483 * bind retries. 27484 */ 27485 ASSERT(!IPCL_IS_SCTP(connp)); 27486 27487 /* Don't increment refcnt if this is a re-entry */ 27488 if (ipsq == NULL) 27489 CONN_INC_REF(connp); 27490 27491 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 27492 connp, NULL) : ip_bind_v4(q, mp, connp); 27493 if (mp == NULL) 27494 return; 27495 if (IPCL_IS_TCP(connp)) { 27496 /* 27497 * In the case of TCP endpoint we 27498 * come here only for bind retries 27499 */ 27500 ASSERT(ipsq != NULL); 27501 CONN_INC_REF(connp); 27502 squeue_fill(connp->conn_sqp, mp, 27503 ip_resume_tcp_bind, connp, 27504 SQTAG_BIND_RETRY); 27505 } else if (IPCL_IS_UDP(connp)) { 27506 /* 27507 * In the case of UDP endpoint we 27508 * come here only for bind retries 27509 */ 27510 ASSERT(ipsq != NULL); 27511 udp_resume_bind(connp, mp); 27512 } else if (IPCL_IS_RAWIP(connp)) { 27513 /* 27514 * In the case of RAWIP endpoint we 27515 * come here only for bind retries 27516 */ 27517 ASSERT(ipsq != NULL); 27518 rawip_resume_bind(connp, mp); 27519 } else { 27520 /* The case of AH and ESP */ 27521 qreply(q, mp); 27522 CONN_OPER_PENDING_DONE(connp); 27523 } 27524 return; 27525 } 27526 case T_SVR4_OPTMGMT_REQ: 27527 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 27528 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 27529 27530 if (connp == NULL) { 27531 proto_str = "T_SVR4_OPTMGMT_REQ"; 27532 goto protonak; 27533 } 27534 27535 if (!snmpcom_req(q, mp, ip_snmp_set, 27536 ip_snmp_get, cr)) { 27537 /* 27538 * Call svr4_optcom_req so that it can 27539 * generate the ack. We don't come here 27540 * if this operation is being restarted. 27541 * ip_restart_optmgmt will drop the conn ref. 27542 * In the case of ipsec option after the ipsec 27543 * load is complete conn_restart_ipsec_waiter 27544 * drops the conn ref. 27545 */ 27546 ASSERT(ipsq == NULL); 27547 CONN_INC_REF(connp); 27548 if (ip_check_for_ipsec_opt(q, mp)) 27549 return; 27550 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj, 27551 B_FALSE); 27552 if (err != EINPROGRESS) { 27553 /* Operation is done */ 27554 CONN_OPER_PENDING_DONE(connp); 27555 } 27556 } 27557 return; 27558 case T_OPTMGMT_REQ: 27559 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 27560 /* 27561 * Note: No snmpcom_req support through new 27562 * T_OPTMGMT_REQ. 27563 * Call tpi_optcom_req so that it can 27564 * generate the ack. 27565 */ 27566 if (connp == NULL) { 27567 proto_str = "T_OPTMGMT_REQ"; 27568 goto protonak; 27569 } 27570 27571 ASSERT(ipsq == NULL); 27572 /* 27573 * We don't come here for restart. ip_restart_optmgmt 27574 * will drop the conn ref. In the case of ipsec option 27575 * after the ipsec load is complete 27576 * conn_restart_ipsec_waiter drops the conn ref. 27577 */ 27578 CONN_INC_REF(connp); 27579 if (ip_check_for_ipsec_opt(q, mp)) 27580 return; 27581 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj, B_FALSE); 27582 if (err != EINPROGRESS) { 27583 /* Operation is done */ 27584 CONN_OPER_PENDING_DONE(connp); 27585 } 27586 return; 27587 case T_UNBIND_REQ: 27588 if (connp == NULL) { 27589 proto_str = "T_UNBIND_REQ"; 27590 goto protonak; 27591 } 27592 mp = ip_unbind(q, mp); 27593 qreply(q, mp); 27594 return; 27595 default: 27596 /* 27597 * Have to drop any DLPI messages coming down from 27598 * arp (such as an info_req which would cause ip 27599 * to receive an extra info_ack if it was passed 27600 * through. 27601 */ 27602 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 27603 (int)*(uint_t *)mp->b_rptr)); 27604 freemsg(mp); 27605 return; 27606 } 27607 /* NOTREACHED */ 27608 case IRE_DB_TYPE: { 27609 nce_t *nce; 27610 ill_t *ill; 27611 in6_addr_t gw_addr_v6; 27612 27613 27614 /* 27615 * This is a response back from a resolver. It 27616 * consists of a message chain containing: 27617 * IRE_MBLK-->LL_HDR_MBLK->pkt 27618 * The IRE_MBLK is the one we allocated in ip_newroute. 27619 * The LL_HDR_MBLK is the DLPI header to use to get 27620 * the attached packet, and subsequent ones for the 27621 * same destination, transmitted. 27622 */ 27623 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 27624 break; 27625 /* 27626 * First, check to make sure the resolution succeeded. 27627 * If it failed, the second mblk will be empty. 27628 * If it is, free the chain, dropping the packet. 27629 * (We must ire_delete the ire; that frees the ire mblk) 27630 * We're doing this now to support PVCs for ATM; it's 27631 * a partial xresolv implementation. When we fully implement 27632 * xresolv interfaces, instead of freeing everything here 27633 * we'll initiate neighbor discovery. 27634 * 27635 * For v4 (ARP and other external resolvers) the resolver 27636 * frees the message, so no check is needed. This check 27637 * is required, though, for a full xresolve implementation. 27638 * Including this code here now both shows how external 27639 * resolvers can NACK a resolution request using an 27640 * existing design that has no specific provisions for NACKs, 27641 * and also takes into account that the current non-ARP 27642 * external resolver has been coded to use this method of 27643 * NACKing for all IPv6 (xresolv) cases, 27644 * whether our xresolv implementation is complete or not. 27645 * 27646 */ 27647 ire = (ire_t *)mp->b_rptr; 27648 ill = ire_to_ill(ire); 27649 mp1 = mp->b_cont; /* dl_unitdata_req */ 27650 if (mp1->b_rptr == mp1->b_wptr) { 27651 if (ire->ire_ipversion == IPV6_VERSION) { 27652 /* 27653 * XRESOLV interface. 27654 */ 27655 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27656 mutex_enter(&ire->ire_lock); 27657 gw_addr_v6 = ire->ire_gateway_addr_v6; 27658 mutex_exit(&ire->ire_lock); 27659 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27660 nce = ndp_lookup_v6(ill, 27661 &ire->ire_addr_v6, B_FALSE); 27662 } else { 27663 nce = ndp_lookup_v6(ill, &gw_addr_v6, 27664 B_FALSE); 27665 } 27666 if (nce != NULL) { 27667 nce_resolv_failed(nce); 27668 ndp_delete(nce); 27669 NCE_REFRELE(nce); 27670 } 27671 } 27672 mp->b_cont = NULL; 27673 freemsg(mp1); /* frees the pkt as well */ 27674 ASSERT(ire->ire_nce == NULL); 27675 ire_delete((ire_t *)mp->b_rptr); 27676 return; 27677 } 27678 27679 /* 27680 * Split them into IRE_MBLK and pkt and feed it into 27681 * ire_add_then_send. Then in ire_add_then_send 27682 * the IRE will be added, and then the packet will be 27683 * run back through ip_wput. This time it will make 27684 * it to the wire. 27685 */ 27686 mp->b_cont = NULL; 27687 mp = mp1->b_cont; /* now, mp points to pkt */ 27688 mp1->b_cont = NULL; 27689 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 27690 if (ire->ire_ipversion == IPV6_VERSION) { 27691 /* 27692 * XRESOLV interface. Find the nce and put a copy 27693 * of the dl_unitdata_req in nce_res_mp 27694 */ 27695 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27696 mutex_enter(&ire->ire_lock); 27697 gw_addr_v6 = ire->ire_gateway_addr_v6; 27698 mutex_exit(&ire->ire_lock); 27699 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27700 nce = ndp_lookup_v6(ill, &ire->ire_addr_v6, 27701 B_FALSE); 27702 } else { 27703 nce = ndp_lookup_v6(ill, &gw_addr_v6, B_FALSE); 27704 } 27705 if (nce != NULL) { 27706 /* 27707 * We have to protect nce_res_mp here 27708 * from being accessed by other threads 27709 * while we change the mblk pointer. 27710 * Other functions will also lock the nce when 27711 * accessing nce_res_mp. 27712 * 27713 * The reason we change the mblk pointer 27714 * here rather than copying the resolved address 27715 * into the template is that, unlike with 27716 * ethernet, we have no guarantee that the 27717 * resolved address length will be 27718 * smaller than or equal to the lla length 27719 * with which the template was allocated, 27720 * (for ethernet, they're equal) 27721 * so we have to use the actual resolved 27722 * address mblk - which holds the real 27723 * dl_unitdata_req with the resolved address. 27724 * 27725 * Doing this is the same behavior as was 27726 * previously used in the v4 ARP case. 27727 */ 27728 mutex_enter(&nce->nce_lock); 27729 if (nce->nce_res_mp != NULL) 27730 freemsg(nce->nce_res_mp); 27731 nce->nce_res_mp = mp1; 27732 mutex_exit(&nce->nce_lock); 27733 /* 27734 * We do a fastpath probe here because 27735 * we have resolved the address without 27736 * using Neighbor Discovery. 27737 * In the non-XRESOLV v6 case, the fastpath 27738 * probe is done right after neighbor 27739 * discovery completes. 27740 */ 27741 if (nce->nce_res_mp != NULL) { 27742 int res; 27743 nce_fastpath_list_add(nce); 27744 res = ill_fastpath_probe(ill, 27745 nce->nce_res_mp); 27746 if (res != 0 && res != EAGAIN) 27747 nce_fastpath_list_delete(nce); 27748 } 27749 27750 ire_add_then_send(q, ire, mp); 27751 /* 27752 * Now we have to clean out any packets 27753 * that may have been queued on the nce 27754 * while it was waiting for address resolution 27755 * to complete. 27756 */ 27757 mutex_enter(&nce->nce_lock); 27758 mp1 = nce->nce_qd_mp; 27759 nce->nce_qd_mp = NULL; 27760 mutex_exit(&nce->nce_lock); 27761 while (mp1 != NULL) { 27762 mblk_t *nxt_mp; 27763 queue_t *fwdq = NULL; 27764 ill_t *inbound_ill; 27765 uint_t ifindex; 27766 27767 nxt_mp = mp1->b_next; 27768 mp1->b_next = NULL; 27769 /* 27770 * Retrieve ifindex stored in 27771 * ip_rput_data_v6() 27772 */ 27773 ifindex = 27774 (uint_t)(uintptr_t)mp1->b_prev; 27775 inbound_ill = 27776 ill_lookup_on_ifindex(ifindex, 27777 B_TRUE, NULL, NULL, NULL, 27778 NULL, ipst); 27779 mp1->b_prev = NULL; 27780 if (inbound_ill != NULL) 27781 fwdq = inbound_ill->ill_rq; 27782 27783 if (fwdq != NULL) { 27784 put(fwdq, mp1); 27785 ill_refrele(inbound_ill); 27786 } else 27787 put(WR(ill->ill_rq), mp1); 27788 mp1 = nxt_mp; 27789 } 27790 NCE_REFRELE(nce); 27791 } else { /* nce is NULL; clean up */ 27792 ire_delete(ire); 27793 freemsg(mp); 27794 freemsg(mp1); 27795 return; 27796 } 27797 } else { 27798 nce_t *arpce; 27799 /* 27800 * Link layer resolution succeeded. Recompute the 27801 * ire_nce. 27802 */ 27803 ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST)); 27804 if ((arpce = ndp_lookup_v4(ill, 27805 (ire->ire_gateway_addr != INADDR_ANY ? 27806 &ire->ire_gateway_addr : &ire->ire_addr), 27807 B_FALSE)) == NULL) { 27808 freeb(ire->ire_mp); 27809 freeb(mp1); 27810 freemsg(mp); 27811 return; 27812 } 27813 mutex_enter(&arpce->nce_lock); 27814 arpce->nce_last = TICK_TO_MSEC(lbolt64); 27815 if (arpce->nce_state == ND_REACHABLE) { 27816 /* 27817 * Someone resolved this before us; 27818 * cleanup the res_mp. Since ire has 27819 * not been added yet, the call to ire_add_v4 27820 * from ire_add_then_send (when a dup is 27821 * detected) will clean up the ire. 27822 */ 27823 freeb(mp1); 27824 } else { 27825 ASSERT(arpce->nce_res_mp == NULL); 27826 arpce->nce_res_mp = mp1; 27827 arpce->nce_state = ND_REACHABLE; 27828 } 27829 mutex_exit(&arpce->nce_lock); 27830 if (ire->ire_marks & IRE_MARK_NOADD) { 27831 /* 27832 * this ire will not be added to the ire 27833 * cache table, so we can set the ire_nce 27834 * here, as there are no atomicity constraints. 27835 */ 27836 ire->ire_nce = arpce; 27837 /* 27838 * We are associating this nce with the ire 27839 * so change the nce ref taken in 27840 * ndp_lookup_v4() from 27841 * NCE_REFHOLD to NCE_REFHOLD_NOTR 27842 */ 27843 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 27844 } else { 27845 NCE_REFRELE(arpce); 27846 } 27847 ire_add_then_send(q, ire, mp); 27848 } 27849 return; /* All is well, the packet has been sent. */ 27850 } 27851 case IRE_ARPRESOLVE_TYPE: { 27852 27853 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */ 27854 break; 27855 mp1 = mp->b_cont; /* dl_unitdata_req */ 27856 mp->b_cont = NULL; 27857 /* 27858 * First, check to make sure the resolution succeeded. 27859 * If it failed, the second mblk will be empty. 27860 */ 27861 if (mp1->b_rptr == mp1->b_wptr) { 27862 /* cleanup the incomplete ire, free queued packets */ 27863 freemsg(mp); /* fake ire */ 27864 freeb(mp1); /* dl_unitdata response */ 27865 return; 27866 } 27867 27868 /* 27869 * update any incomplete nce_t found. we lookup the ctable 27870 * and find the nce from the ire->ire_nce because we need 27871 * to pass the ire to ip_xmit_v4 later, and can find both 27872 * ire and nce in one lookup from the ctable. 27873 */ 27874 fake_ire = (ire_t *)mp->b_rptr; 27875 /* 27876 * By the time we come back here from ARP 27877 * the logical outgoing interface of the incomplete ire 27878 * we added in ire_forward could have disappeared, 27879 * causing the incomplete ire to also have 27880 * dissapeared. So we need to retreive the 27881 * proper ipif for the ire before looking 27882 * in ctable; do the ctablelookup based on ire_ipif_seqid 27883 */ 27884 ill = q->q_ptr; 27885 27886 /* Get the outgoing ipif */ 27887 mutex_enter(&ill->ill_lock); 27888 if (ill->ill_state_flags & ILL_CONDEMNED) { 27889 mutex_exit(&ill->ill_lock); 27890 freemsg(mp); /* fake ire */ 27891 freeb(mp1); /* dl_unitdata response */ 27892 return; 27893 } 27894 ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid); 27895 27896 if (ipif == NULL) { 27897 mutex_exit(&ill->ill_lock); 27898 ip1dbg(("logical intrf to incomplete ire vanished\n")); 27899 freemsg(mp); 27900 freeb(mp1); 27901 return; 27902 } 27903 ipif_refhold_locked(ipif); 27904 mutex_exit(&ill->ill_lock); 27905 ire = ire_ctable_lookup(fake_ire->ire_addr, 27906 fake_ire->ire_gateway_addr, IRE_CACHE, 27907 ipif, fake_ire->ire_zoneid, NULL, 27908 (MATCH_IRE_GW|MATCH_IRE_IPIF|MATCH_IRE_ZONEONLY| 27909 MATCH_IRE_TYPE), ipst); 27910 ipif_refrele(ipif); 27911 if (ire == NULL) { 27912 /* 27913 * no ire was found; check if there is an nce 27914 * for this lookup; if it has no ire's pointing at it 27915 * cleanup. 27916 */ 27917 if ((nce = ndp_lookup_v4(ill, 27918 (fake_ire->ire_gateway_addr != INADDR_ANY ? 27919 &fake_ire->ire_gateway_addr : &fake_ire->ire_addr), 27920 B_FALSE)) != NULL) { 27921 /* 27922 * cleanup: 27923 * We check for refcnt 2 (one for the nce 27924 * hash list + 1 for the ref taken by 27925 * ndp_lookup_v4) to check that there are 27926 * no ire's pointing at the nce. 27927 */ 27928 if (nce->nce_refcnt == 2) 27929 ndp_delete(nce); 27930 NCE_REFRELE(nce); 27931 } 27932 freeb(mp1); /* dl_unitdata response */ 27933 freemsg(mp); /* fake ire */ 27934 return; 27935 } 27936 nce = ire->ire_nce; 27937 DTRACE_PROBE2(ire__arpresolve__type, 27938 ire_t *, ire, nce_t *, nce); 27939 ASSERT(nce->nce_state != ND_INITIAL); 27940 mutex_enter(&nce->nce_lock); 27941 nce->nce_last = TICK_TO_MSEC(lbolt64); 27942 if (nce->nce_state == ND_REACHABLE) { 27943 /* 27944 * Someone resolved this before us; 27945 * our response is not needed any more. 27946 */ 27947 mutex_exit(&nce->nce_lock); 27948 freeb(mp1); /* dl_unitdata response */ 27949 } else { 27950 ASSERT(nce->nce_res_mp == NULL); 27951 nce->nce_res_mp = mp1; 27952 nce->nce_state = ND_REACHABLE; 27953 mutex_exit(&nce->nce_lock); 27954 nce_fastpath(nce); 27955 } 27956 /* 27957 * The cached nce_t has been updated to be reachable; 27958 * Clear the IRE_MARK_UNCACHED flag and free the fake_ire. 27959 */ 27960 fake_ire->ire_marks &= ~IRE_MARK_UNCACHED; 27961 freemsg(mp); 27962 /* 27963 * send out queued packets. 27964 */ 27965 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 27966 27967 IRE_REFRELE(ire); 27968 return; 27969 } 27970 default: 27971 break; 27972 } 27973 if (q->q_next) { 27974 putnext(q, mp); 27975 } else 27976 freemsg(mp); 27977 return; 27978 27979 protonak: 27980 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 27981 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 27982 qreply(q, mp); 27983 } 27984 27985 /* 27986 * Process IP options in an outbound packet. Modify the destination if there 27987 * is a source route option. 27988 * Returns non-zero if something fails in which case an ICMP error has been 27989 * sent and mp freed. 27990 */ 27991 static int 27992 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 27993 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 27994 { 27995 ipoptp_t opts; 27996 uchar_t *opt; 27997 uint8_t optval; 27998 uint8_t optlen; 27999 ipaddr_t dst; 28000 intptr_t code = 0; 28001 mblk_t *mp; 28002 ire_t *ire = NULL; 28003 28004 ip2dbg(("ip_wput_options\n")); 28005 mp = ipsec_mp; 28006 if (mctl_present) { 28007 mp = ipsec_mp->b_cont; 28008 } 28009 28010 dst = ipha->ipha_dst; 28011 for (optval = ipoptp_first(&opts, ipha); 28012 optval != IPOPT_EOL; 28013 optval = ipoptp_next(&opts)) { 28014 opt = opts.ipoptp_cur; 28015 optlen = opts.ipoptp_len; 28016 ip2dbg(("ip_wput_options: opt %d, len %d\n", 28017 optval, optlen)); 28018 switch (optval) { 28019 uint32_t off; 28020 case IPOPT_SSRR: 28021 case IPOPT_LSRR: 28022 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28023 ip1dbg(( 28024 "ip_wput_options: bad option offset\n")); 28025 code = (char *)&opt[IPOPT_OLEN] - 28026 (char *)ipha; 28027 goto param_prob; 28028 } 28029 off = opt[IPOPT_OFFSET]; 28030 ip1dbg(("ip_wput_options: next hop 0x%x\n", 28031 ntohl(dst))); 28032 /* 28033 * For strict: verify that dst is directly 28034 * reachable. 28035 */ 28036 if (optval == IPOPT_SSRR) { 28037 ire = ire_ftable_lookup(dst, 0, 0, 28038 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 28039 MBLK_GETLABEL(mp), 28040 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 28041 if (ire == NULL) { 28042 ip1dbg(("ip_wput_options: SSRR not" 28043 " directly reachable: 0x%x\n", 28044 ntohl(dst))); 28045 goto bad_src_route; 28046 } 28047 ire_refrele(ire); 28048 } 28049 break; 28050 case IPOPT_RR: 28051 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28052 ip1dbg(( 28053 "ip_wput_options: bad option offset\n")); 28054 code = (char *)&opt[IPOPT_OLEN] - 28055 (char *)ipha; 28056 goto param_prob; 28057 } 28058 break; 28059 case IPOPT_TS: 28060 /* 28061 * Verify that length >=5 and that there is either 28062 * room for another timestamp or that the overflow 28063 * counter is not maxed out. 28064 */ 28065 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 28066 if (optlen < IPOPT_MINLEN_IT) { 28067 goto param_prob; 28068 } 28069 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28070 ip1dbg(( 28071 "ip_wput_options: bad option offset\n")); 28072 code = (char *)&opt[IPOPT_OFFSET] - 28073 (char *)ipha; 28074 goto param_prob; 28075 } 28076 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 28077 case IPOPT_TS_TSONLY: 28078 off = IPOPT_TS_TIMELEN; 28079 break; 28080 case IPOPT_TS_TSANDADDR: 28081 case IPOPT_TS_PRESPEC: 28082 case IPOPT_TS_PRESPEC_RFC791: 28083 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 28084 break; 28085 default: 28086 code = (char *)&opt[IPOPT_POS_OV_FLG] - 28087 (char *)ipha; 28088 goto param_prob; 28089 } 28090 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 28091 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 28092 /* 28093 * No room and the overflow counter is 15 28094 * already. 28095 */ 28096 goto param_prob; 28097 } 28098 break; 28099 } 28100 } 28101 28102 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 28103 return (0); 28104 28105 ip1dbg(("ip_wput_options: error processing IP options.")); 28106 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 28107 28108 param_prob: 28109 /* 28110 * Since ip_wput() isn't close to finished, we fill 28111 * in enough of the header for credible error reporting. 28112 */ 28113 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28114 /* Failed */ 28115 freemsg(ipsec_mp); 28116 return (-1); 28117 } 28118 icmp_param_problem(q, ipsec_mp, (uint8_t)code, zoneid, ipst); 28119 return (-1); 28120 28121 bad_src_route: 28122 /* 28123 * Since ip_wput() isn't close to finished, we fill 28124 * in enough of the header for credible error reporting. 28125 */ 28126 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28127 /* Failed */ 28128 freemsg(ipsec_mp); 28129 return (-1); 28130 } 28131 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 28132 return (-1); 28133 } 28134 28135 /* 28136 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 28137 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 28138 * thru /etc/system. 28139 */ 28140 #define CONN_MAXDRAINCNT 64 28141 28142 static void 28143 conn_drain_init(ip_stack_t *ipst) 28144 { 28145 int i; 28146 28147 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 28148 28149 if ((ipst->ips_conn_drain_list_cnt == 0) || 28150 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 28151 /* 28152 * Default value of the number of drainers is the 28153 * number of cpus, subject to maximum of 8 drainers. 28154 */ 28155 if (boot_max_ncpus != -1) 28156 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 28157 else 28158 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 28159 } 28160 28161 ipst->ips_conn_drain_list = kmem_zalloc(ipst->ips_conn_drain_list_cnt * 28162 sizeof (idl_t), KM_SLEEP); 28163 28164 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28165 mutex_init(&ipst->ips_conn_drain_list[i].idl_lock, NULL, 28166 MUTEX_DEFAULT, NULL); 28167 } 28168 } 28169 28170 static void 28171 conn_drain_fini(ip_stack_t *ipst) 28172 { 28173 int i; 28174 28175 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) 28176 mutex_destroy(&ipst->ips_conn_drain_list[i].idl_lock); 28177 kmem_free(ipst->ips_conn_drain_list, 28178 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 28179 ipst->ips_conn_drain_list = NULL; 28180 } 28181 28182 /* 28183 * Note: For an overview of how flowcontrol is handled in IP please see the 28184 * IP Flowcontrol notes at the top of this file. 28185 * 28186 * Flow control has blocked us from proceeding. Insert the given conn in one 28187 * of the conn drain lists. These conn wq's will be qenabled later on when 28188 * STREAMS flow control does a backenable. conn_walk_drain will enable 28189 * the first conn in each of these drain lists. Each of these qenabled conns 28190 * in turn enables the next in the list, after it runs, or when it closes, 28191 * thus sustaining the drain process. 28192 * 28193 * The only possible calling sequence is ip_wsrv (on conn) -> ip_wput -> 28194 * conn_drain_insert. Thus there can be only 1 instance of conn_drain_insert 28195 * running at any time, on a given conn, since there can be only 1 service proc 28196 * running on a queue at any time. 28197 */ 28198 void 28199 conn_drain_insert(conn_t *connp) 28200 { 28201 idl_t *idl; 28202 uint_t index; 28203 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28204 28205 mutex_enter(&connp->conn_lock); 28206 if (connp->conn_state_flags & CONN_CLOSING) { 28207 /* 28208 * The conn is closing as a result of which CONN_CLOSING 28209 * is set. Return. 28210 */ 28211 mutex_exit(&connp->conn_lock); 28212 return; 28213 } else if (connp->conn_idl == NULL) { 28214 /* 28215 * Assign the next drain list round robin. We dont' use 28216 * a lock, and thus it may not be strictly round robin. 28217 * Atomicity of load/stores is enough to make sure that 28218 * conn_drain_list_index is always within bounds. 28219 */ 28220 index = ipst->ips_conn_drain_list_index; 28221 ASSERT(index < ipst->ips_conn_drain_list_cnt); 28222 connp->conn_idl = &ipst->ips_conn_drain_list[index]; 28223 index++; 28224 if (index == ipst->ips_conn_drain_list_cnt) 28225 index = 0; 28226 ipst->ips_conn_drain_list_index = index; 28227 } 28228 mutex_exit(&connp->conn_lock); 28229 28230 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28231 if ((connp->conn_drain_prev != NULL) || 28232 (connp->conn_state_flags & CONN_CLOSING)) { 28233 /* 28234 * The conn is already in the drain list, OR 28235 * the conn is closing. We need to check again for 28236 * the closing case again since close can happen 28237 * after we drop the conn_lock, and before we 28238 * acquire the CONN_DRAIN_LIST_LOCK. 28239 */ 28240 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28241 return; 28242 } else { 28243 idl = connp->conn_idl; 28244 } 28245 28246 /* 28247 * The conn is not in the drain list. Insert it at the 28248 * tail of the drain list. The drain list is circular 28249 * and doubly linked. idl_conn points to the 1st element 28250 * in the list. 28251 */ 28252 if (idl->idl_conn == NULL) { 28253 idl->idl_conn = connp; 28254 connp->conn_drain_next = connp; 28255 connp->conn_drain_prev = connp; 28256 } else { 28257 conn_t *head = idl->idl_conn; 28258 28259 connp->conn_drain_next = head; 28260 connp->conn_drain_prev = head->conn_drain_prev; 28261 head->conn_drain_prev->conn_drain_next = connp; 28262 head->conn_drain_prev = connp; 28263 } 28264 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28265 } 28266 28267 /* 28268 * This conn is closing, and we are called from ip_close. OR 28269 * This conn has been serviced by ip_wsrv, and we need to do the tail 28270 * processing. 28271 * If this conn is part of the drain list, we may need to sustain the drain 28272 * process by qenabling the next conn in the drain list. We may also need to 28273 * remove this conn from the list, if it is done. 28274 */ 28275 static void 28276 conn_drain_tail(conn_t *connp, boolean_t closing) 28277 { 28278 idl_t *idl; 28279 28280 /* 28281 * connp->conn_idl is stable at this point, and no lock is needed 28282 * to check it. If we are called from ip_close, close has already 28283 * set CONN_CLOSING, thus freezing the value of conn_idl, and 28284 * called us only because conn_idl is non-null. If we are called thru 28285 * service, conn_idl could be null, but it cannot change because 28286 * service is single-threaded per queue, and there cannot be another 28287 * instance of service trying to call conn_drain_insert on this conn 28288 * now. 28289 */ 28290 ASSERT(!closing || (connp->conn_idl != NULL)); 28291 28292 /* 28293 * If connp->conn_idl is null, the conn has not been inserted into any 28294 * drain list even once since creation of the conn. Just return. 28295 */ 28296 if (connp->conn_idl == NULL) 28297 return; 28298 28299 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28300 28301 if (connp->conn_drain_prev == NULL) { 28302 /* This conn is currently not in the drain list. */ 28303 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28304 return; 28305 } 28306 idl = connp->conn_idl; 28307 if (idl->idl_conn_draining == connp) { 28308 /* 28309 * This conn is the current drainer. If this is the last conn 28310 * in the drain list, we need to do more checks, in the 'if' 28311 * below. Otherwwise we need to just qenable the next conn, 28312 * to sustain the draining, and is handled in the 'else' 28313 * below. 28314 */ 28315 if (connp->conn_drain_next == idl->idl_conn) { 28316 /* 28317 * This conn is the last in this list. This round 28318 * of draining is complete. If idl_repeat is set, 28319 * it means another flow enabling has happened from 28320 * the driver/streams and we need to another round 28321 * of draining. 28322 * If there are more than 2 conns in the drain list, 28323 * do a left rotate by 1, so that all conns except the 28324 * conn at the head move towards the head by 1, and the 28325 * the conn at the head goes to the tail. This attempts 28326 * a more even share for all queues that are being 28327 * drained. 28328 */ 28329 if ((connp->conn_drain_next != connp) && 28330 (idl->idl_conn->conn_drain_next != connp)) { 28331 idl->idl_conn = idl->idl_conn->conn_drain_next; 28332 } 28333 if (idl->idl_repeat) { 28334 qenable(idl->idl_conn->conn_wq); 28335 idl->idl_conn_draining = idl->idl_conn; 28336 idl->idl_repeat = 0; 28337 } else { 28338 idl->idl_conn_draining = NULL; 28339 } 28340 } else { 28341 /* 28342 * If the next queue that we are now qenable'ing, 28343 * is closing, it will remove itself from this list 28344 * and qenable the subsequent queue in ip_close(). 28345 * Serialization is acheived thru idl_lock. 28346 */ 28347 qenable(connp->conn_drain_next->conn_wq); 28348 idl->idl_conn_draining = connp->conn_drain_next; 28349 } 28350 } 28351 if (!connp->conn_did_putbq || closing) { 28352 /* 28353 * Remove ourself from the drain list, if we did not do 28354 * a putbq, or if the conn is closing. 28355 * Note: It is possible that q->q_first is non-null. It means 28356 * that these messages landed after we did a enableok() in 28357 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 28358 * service them. 28359 */ 28360 if (connp->conn_drain_next == connp) { 28361 /* Singleton in the list */ 28362 ASSERT(connp->conn_drain_prev == connp); 28363 idl->idl_conn = NULL; 28364 idl->idl_conn_draining = NULL; 28365 } else { 28366 connp->conn_drain_prev->conn_drain_next = 28367 connp->conn_drain_next; 28368 connp->conn_drain_next->conn_drain_prev = 28369 connp->conn_drain_prev; 28370 if (idl->idl_conn == connp) 28371 idl->idl_conn = connp->conn_drain_next; 28372 ASSERT(idl->idl_conn_draining != connp); 28373 28374 } 28375 connp->conn_drain_next = NULL; 28376 connp->conn_drain_prev = NULL; 28377 } 28378 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28379 } 28380 28381 /* 28382 * Write service routine. Shared perimeter entry point. 28383 * ip_wsrv can be called in any of the following ways. 28384 * 1. The device queue's messages has fallen below the low water mark 28385 * and STREAMS has backenabled the ill_wq. We walk thru all the 28386 * the drain lists and backenable the first conn in each list. 28387 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 28388 * qenabled non-tcp upper layers. We start dequeing messages and call 28389 * ip_wput for each message. 28390 */ 28391 28392 void 28393 ip_wsrv(queue_t *q) 28394 { 28395 conn_t *connp; 28396 ill_t *ill; 28397 mblk_t *mp; 28398 28399 if (q->q_next) { 28400 ill = (ill_t *)q->q_ptr; 28401 if (ill->ill_state_flags == 0) { 28402 /* 28403 * The device flow control has opened up. 28404 * Walk through conn drain lists and qenable the 28405 * first conn in each list. This makes sense only 28406 * if the stream is fully plumbed and setup. 28407 * Hence the if check above. 28408 */ 28409 ip1dbg(("ip_wsrv: walking\n")); 28410 conn_walk_drain(ill->ill_ipst); 28411 } 28412 return; 28413 } 28414 28415 connp = Q_TO_CONN(q); 28416 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 28417 28418 /* 28419 * 1. Set conn_draining flag to signal that service is active. 28420 * 28421 * 2. ip_output determines whether it has been called from service, 28422 * based on the last parameter. If it is IP_WSRV it concludes it 28423 * has been called from service. 28424 * 28425 * 3. Message ordering is preserved by the following logic. 28426 * i. A directly called ip_output (i.e. not thru service) will queue 28427 * the message at the tail, if conn_draining is set (i.e. service 28428 * is running) or if q->q_first is non-null. 28429 * 28430 * ii. If ip_output is called from service, and if ip_output cannot 28431 * putnext due to flow control, it does a putbq. 28432 * 28433 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 28434 * (causing an infinite loop). 28435 */ 28436 ASSERT(!connp->conn_did_putbq); 28437 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 28438 connp->conn_draining = 1; 28439 noenable(q); 28440 while ((mp = getq(q)) != NULL) { 28441 ASSERT(CONN_Q(q)); 28442 28443 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 28444 if (connp->conn_did_putbq) { 28445 /* ip_wput did a putbq */ 28446 break; 28447 } 28448 } 28449 /* 28450 * At this point, a thread coming down from top, calling 28451 * ip_wput, may end up queueing the message. We have not yet 28452 * enabled the queue, so ip_wsrv won't be called again. 28453 * To avoid this race, check q->q_first again (in the loop) 28454 * If the other thread queued the message before we call 28455 * enableok(), we will catch it in the q->q_first check. 28456 * If the other thread queues the message after we call 28457 * enableok(), ip_wsrv will be called again by STREAMS. 28458 */ 28459 connp->conn_draining = 0; 28460 enableok(q); 28461 } 28462 28463 /* Enable the next conn for draining */ 28464 conn_drain_tail(connp, B_FALSE); 28465 28466 connp->conn_did_putbq = 0; 28467 } 28468 28469 /* 28470 * Walk the list of all conn's calling the function provided with the 28471 * specified argument for each. Note that this only walks conn's that 28472 * have been bound. 28473 * Applies to both IPv4 and IPv6. 28474 */ 28475 static void 28476 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 28477 { 28478 conn_walk_fanout_table(ipst->ips_ipcl_udp_fanout, 28479 ipst->ips_ipcl_udp_fanout_size, 28480 func, arg, zoneid); 28481 conn_walk_fanout_table(ipst->ips_ipcl_conn_fanout, 28482 ipst->ips_ipcl_conn_fanout_size, 28483 func, arg, zoneid); 28484 conn_walk_fanout_table(ipst->ips_ipcl_bind_fanout, 28485 ipst->ips_ipcl_bind_fanout_size, 28486 func, arg, zoneid); 28487 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout, 28488 IPPROTO_MAX, func, arg, zoneid); 28489 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout_v6, 28490 IPPROTO_MAX, func, arg, zoneid); 28491 } 28492 28493 /* 28494 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 28495 * of conns that need to be drained, check if drain is already in progress. 28496 * If so set the idl_repeat bit, indicating that the last conn in the list 28497 * needs to reinitiate the drain once again, for the list. If drain is not 28498 * in progress for the list, initiate the draining, by qenabling the 1st 28499 * conn in the list. The drain is self-sustaining, each qenabled conn will 28500 * in turn qenable the next conn, when it is done/blocked/closing. 28501 */ 28502 static void 28503 conn_walk_drain(ip_stack_t *ipst) 28504 { 28505 int i; 28506 idl_t *idl; 28507 28508 IP_STAT(ipst, ip_conn_walk_drain); 28509 28510 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28511 idl = &ipst->ips_conn_drain_list[i]; 28512 mutex_enter(&idl->idl_lock); 28513 if (idl->idl_conn == NULL) { 28514 mutex_exit(&idl->idl_lock); 28515 continue; 28516 } 28517 /* 28518 * If this list is not being drained currently by 28519 * an ip_wsrv thread, start the process. 28520 */ 28521 if (idl->idl_conn_draining == NULL) { 28522 ASSERT(idl->idl_repeat == 0); 28523 qenable(idl->idl_conn->conn_wq); 28524 idl->idl_conn_draining = idl->idl_conn; 28525 } else { 28526 idl->idl_repeat = 1; 28527 } 28528 mutex_exit(&idl->idl_lock); 28529 } 28530 } 28531 28532 /* 28533 * Walk an conn hash table of `count' buckets, calling func for each entry. 28534 */ 28535 static void 28536 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg, 28537 zoneid_t zoneid) 28538 { 28539 conn_t *connp; 28540 28541 while (count-- > 0) { 28542 mutex_enter(&connfp->connf_lock); 28543 for (connp = connfp->connf_head; connp != NULL; 28544 connp = connp->conn_next) { 28545 if (zoneid == GLOBAL_ZONEID || 28546 zoneid == connp->conn_zoneid) { 28547 CONN_INC_REF(connp); 28548 mutex_exit(&connfp->connf_lock); 28549 (*func)(connp, arg); 28550 mutex_enter(&connfp->connf_lock); 28551 CONN_DEC_REF(connp); 28552 } 28553 } 28554 mutex_exit(&connfp->connf_lock); 28555 connfp++; 28556 } 28557 } 28558 28559 /* conn_walk_fanout routine invoked for ip_conn_report for each conn. */ 28560 static void 28561 conn_report1(conn_t *connp, void *mp) 28562 { 28563 char buf1[INET6_ADDRSTRLEN]; 28564 char buf2[INET6_ADDRSTRLEN]; 28565 uint_t print_len, buf_len; 28566 28567 ASSERT(connp != NULL); 28568 28569 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 28570 if (buf_len <= 0) 28571 return; 28572 (void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)); 28573 (void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)); 28574 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 28575 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 28576 "%5d %s/%05d %s/%05d\n", 28577 (void *)connp, (void *)CONNP_TO_RQ(connp), 28578 (void *)CONNP_TO_WQ(connp), connp->conn_zoneid, 28579 buf1, connp->conn_lport, 28580 buf2, connp->conn_fport); 28581 if (print_len < buf_len) { 28582 ((mblk_t *)mp)->b_wptr += print_len; 28583 } else { 28584 ((mblk_t *)mp)->b_wptr += buf_len; 28585 } 28586 } 28587 28588 /* 28589 * Named Dispatch routine to produce a formatted report on all conns 28590 * that are listed in one of the fanout tables. 28591 * This report is accessed by using the ndd utility to "get" ND variable 28592 * "ip_conn_status". 28593 */ 28594 /* ARGSUSED */ 28595 static int 28596 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 28597 { 28598 conn_t *connp = Q_TO_CONN(q); 28599 28600 (void) mi_mpprintf(mp, 28601 "CONN " MI_COL_HDRPAD_STR 28602 "rfq " MI_COL_HDRPAD_STR 28603 "stq " MI_COL_HDRPAD_STR 28604 " zone local remote"); 28605 28606 /* 28607 * Because of the ndd constraint, at most we can have 64K buffer 28608 * to put in all conn info. So to be more efficient, just 28609 * allocate a 64K buffer here, assuming we need that large buffer. 28610 * This should be OK as only privileged processes can do ndd /dev/ip. 28611 */ 28612 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 28613 /* The following may work even if we cannot get a large buf. */ 28614 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 28615 return (0); 28616 } 28617 28618 conn_walk_fanout(conn_report1, mp->b_cont, connp->conn_zoneid, 28619 connp->conn_netstack->netstack_ip); 28620 return (0); 28621 } 28622 28623 /* 28624 * Determine if the ill and multicast aspects of that packets 28625 * "matches" the conn. 28626 */ 28627 boolean_t 28628 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 28629 zoneid_t zoneid) 28630 { 28631 ill_t *in_ill; 28632 boolean_t found; 28633 ipif_t *ipif; 28634 ire_t *ire; 28635 ipaddr_t dst, src; 28636 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28637 28638 dst = ipha->ipha_dst; 28639 src = ipha->ipha_src; 28640 28641 /* 28642 * conn_incoming_ill is set by IP_BOUND_IF which limits 28643 * unicast, broadcast and multicast reception to 28644 * conn_incoming_ill. conn_wantpacket itself is called 28645 * only for BROADCAST and multicast. 28646 * 28647 * 1) ip_rput supresses duplicate broadcasts if the ill 28648 * is part of a group. Hence, we should be receiving 28649 * just one copy of broadcast for the whole group. 28650 * Thus, if it is part of the group the packet could 28651 * come on any ill of the group and hence we need a 28652 * match on the group. Otherwise, match on ill should 28653 * be sufficient. 28654 * 28655 * 2) ip_rput does not suppress duplicate multicast packets. 28656 * If there are two interfaces in a ill group and we have 28657 * 2 applications (conns) joined a multicast group G on 28658 * both the interfaces, ilm_lookup_ill filter in ip_rput 28659 * will give us two packets because we join G on both the 28660 * interfaces rather than nominating just one interface 28661 * for receiving multicast like broadcast above. So, 28662 * we have to call ilg_lookup_ill to filter out duplicate 28663 * copies, if ill is part of a group. 28664 */ 28665 in_ill = connp->conn_incoming_ill; 28666 if (in_ill != NULL) { 28667 if (in_ill->ill_group == NULL) { 28668 if (in_ill != ill) 28669 return (B_FALSE); 28670 } else if (in_ill->ill_group != ill->ill_group) { 28671 return (B_FALSE); 28672 } 28673 } 28674 28675 if (!CLASSD(dst)) { 28676 if (IPCL_ZONE_MATCH(connp, zoneid)) 28677 return (B_TRUE); 28678 /* 28679 * The conn is in a different zone; we need to check that this 28680 * broadcast address is configured in the application's zone and 28681 * on one ill in the group. 28682 */ 28683 ipif = ipif_get_next_ipif(NULL, ill); 28684 if (ipif == NULL) 28685 return (B_FALSE); 28686 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 28687 connp->conn_zoneid, NULL, 28688 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 28689 ipif_refrele(ipif); 28690 if (ire != NULL) { 28691 ire_refrele(ire); 28692 return (B_TRUE); 28693 } else { 28694 return (B_FALSE); 28695 } 28696 } 28697 28698 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 28699 connp->conn_zoneid == zoneid) { 28700 /* 28701 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 28702 * disabled, therefore we don't dispatch the multicast packet to 28703 * the sending zone. 28704 */ 28705 return (B_FALSE); 28706 } 28707 28708 if (IS_LOOPBACK(ill) && connp->conn_zoneid != zoneid) { 28709 /* 28710 * Multicast packet on the loopback interface: we only match 28711 * conns who joined the group in the specified zone. 28712 */ 28713 return (B_FALSE); 28714 } 28715 28716 if (connp->conn_multi_router) { 28717 /* multicast packet and multicast router socket: send up */ 28718 return (B_TRUE); 28719 } 28720 28721 mutex_enter(&connp->conn_lock); 28722 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 28723 mutex_exit(&connp->conn_lock); 28724 return (found); 28725 } 28726 28727 /* 28728 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 28729 */ 28730 /* ARGSUSED */ 28731 static void 28732 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 28733 { 28734 ill_t *ill = (ill_t *)q->q_ptr; 28735 mblk_t *mp1, *mp2; 28736 ipif_t *ipif; 28737 int err = 0; 28738 conn_t *connp = NULL; 28739 ipsq_t *ipsq; 28740 arc_t *arc; 28741 28742 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 28743 28744 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 28745 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 28746 28747 ASSERT(IAM_WRITER_ILL(ill)); 28748 mp2 = mp->b_cont; 28749 mp->b_cont = NULL; 28750 28751 /* 28752 * We have now received the arp bringup completion message 28753 * from ARP. Mark the arp bringup as done. Also if the arp 28754 * stream has already started closing, send up the AR_ARP_CLOSING 28755 * ack now since ARP is waiting in close for this ack. 28756 */ 28757 mutex_enter(&ill->ill_lock); 28758 ill->ill_arp_bringup_pending = 0; 28759 if (ill->ill_arp_closing) { 28760 mutex_exit(&ill->ill_lock); 28761 /* Let's reuse the mp for sending the ack */ 28762 arc = (arc_t *)mp->b_rptr; 28763 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 28764 arc->arc_cmd = AR_ARP_CLOSING; 28765 qreply(q, mp); 28766 } else { 28767 mutex_exit(&ill->ill_lock); 28768 freeb(mp); 28769 } 28770 28771 ipsq = ill->ill_phyint->phyint_ipsq; 28772 ipif = ipsq->ipsq_pending_ipif; 28773 mp1 = ipsq_pending_mp_get(ipsq, &connp); 28774 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 28775 if (mp1 == NULL) { 28776 /* bringup was aborted by the user */ 28777 freemsg(mp2); 28778 return; 28779 } 28780 28781 /* 28782 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 28783 * must have an associated conn_t. Otherwise, we're bringing this 28784 * interface back up as part of handling an asynchronous event (e.g., 28785 * physical address change). 28786 */ 28787 if (ipsq->ipsq_current_ioctl != 0) { 28788 ASSERT(connp != NULL); 28789 q = CONNP_TO_WQ(connp); 28790 } else { 28791 ASSERT(connp == NULL); 28792 q = ill->ill_rq; 28793 } 28794 28795 /* 28796 * If the DL_BIND_REQ fails, it is noted 28797 * in arc_name_offset. 28798 */ 28799 err = *((int *)mp2->b_rptr); 28800 if (err == 0) { 28801 if (ipif->ipif_isv6) { 28802 if ((err = ipif_up_done_v6(ipif)) != 0) 28803 ip0dbg(("ip_arp_done: init failed\n")); 28804 } else { 28805 if ((err = ipif_up_done(ipif)) != 0) 28806 ip0dbg(("ip_arp_done: init failed\n")); 28807 } 28808 } else { 28809 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 28810 } 28811 28812 freemsg(mp2); 28813 28814 if ((err == 0) && (ill->ill_up_ipifs)) { 28815 err = ill_up_ipifs(ill, q, mp1); 28816 if (err == EINPROGRESS) 28817 return; 28818 } 28819 28820 if (ill->ill_up_ipifs) 28821 ill_group_cleanup(ill); 28822 28823 /* 28824 * The operation must complete without EINPROGRESS since 28825 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 28826 * Otherwise, the operation will be stuck forever in the ipsq. 28827 */ 28828 ASSERT(err != EINPROGRESS); 28829 if (ipsq->ipsq_current_ioctl != 0) 28830 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 28831 else 28832 ipsq_current_finish(ipsq); 28833 } 28834 28835 /* Allocate the private structure */ 28836 static int 28837 ip_priv_alloc(void **bufp) 28838 { 28839 void *buf; 28840 28841 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 28842 return (ENOMEM); 28843 28844 *bufp = buf; 28845 return (0); 28846 } 28847 28848 /* Function to delete the private structure */ 28849 void 28850 ip_priv_free(void *buf) 28851 { 28852 ASSERT(buf != NULL); 28853 kmem_free(buf, sizeof (ip_priv_t)); 28854 } 28855 28856 /* 28857 * The entry point for IPPF processing. 28858 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 28859 * routine just returns. 28860 * 28861 * When called, ip_process generates an ipp_packet_t structure 28862 * which holds the state information for this packet and invokes the 28863 * the classifier (via ipp_packet_process). The classification, depending on 28864 * configured filters, results in a list of actions for this packet. Invoking 28865 * an action may cause the packet to be dropped, in which case the resulting 28866 * mblk (*mpp) is NULL. proc indicates the callout position for 28867 * this packet and ill_index is the interface this packet on or will leave 28868 * on (inbound and outbound resp.). 28869 */ 28870 void 28871 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 28872 { 28873 mblk_t *mp; 28874 ip_priv_t *priv; 28875 ipp_action_id_t aid; 28876 int rc = 0; 28877 ipp_packet_t *pp; 28878 #define IP_CLASS "ip" 28879 28880 /* If the classifier is not loaded, return */ 28881 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 28882 return; 28883 } 28884 28885 mp = *mpp; 28886 ASSERT(mp != NULL); 28887 28888 /* Allocate the packet structure */ 28889 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 28890 if (rc != 0) { 28891 *mpp = NULL; 28892 freemsg(mp); 28893 return; 28894 } 28895 28896 /* Allocate the private structure */ 28897 rc = ip_priv_alloc((void **)&priv); 28898 if (rc != 0) { 28899 *mpp = NULL; 28900 freemsg(mp); 28901 ipp_packet_free(pp); 28902 return; 28903 } 28904 priv->proc = proc; 28905 priv->ill_index = ill_index; 28906 ipp_packet_set_private(pp, priv, ip_priv_free); 28907 ipp_packet_set_data(pp, mp); 28908 28909 /* Invoke the classifier */ 28910 rc = ipp_packet_process(&pp); 28911 if (pp != NULL) { 28912 mp = ipp_packet_get_data(pp); 28913 ipp_packet_free(pp); 28914 if (rc != 0) { 28915 freemsg(mp); 28916 *mpp = NULL; 28917 } 28918 } else { 28919 *mpp = NULL; 28920 } 28921 #undef IP_CLASS 28922 } 28923 28924 /* 28925 * Propagate a multicast group membership operation (add/drop) on 28926 * all the interfaces crossed by the related multirt routes. 28927 * The call is considered successful if the operation succeeds 28928 * on at least one interface. 28929 */ 28930 static int 28931 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 28932 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 28933 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 28934 mblk_t *first_mp) 28935 { 28936 ire_t *ire_gw; 28937 irb_t *irb; 28938 int error = 0; 28939 opt_restart_t *or; 28940 ip_stack_t *ipst = ire->ire_ipst; 28941 28942 irb = ire->ire_bucket; 28943 ASSERT(irb != NULL); 28944 28945 ASSERT(DB_TYPE(first_mp) == M_CTL); 28946 28947 or = (opt_restart_t *)first_mp->b_rptr; 28948 IRB_REFHOLD(irb); 28949 for (; ire != NULL; ire = ire->ire_next) { 28950 if ((ire->ire_flags & RTF_MULTIRT) == 0) 28951 continue; 28952 if (ire->ire_addr != group) 28953 continue; 28954 28955 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 28956 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 28957 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE, ipst); 28958 /* No resolver exists for the gateway; skip this ire. */ 28959 if (ire_gw == NULL) 28960 continue; 28961 28962 /* 28963 * This function can return EINPROGRESS. If so the operation 28964 * will be restarted from ip_restart_optmgmt which will 28965 * call ip_opt_set and option processing will restart for 28966 * this option. So we may end up calling 'fn' more than once. 28967 * This requires that 'fn' is idempotent except for the 28968 * return value. The operation is considered a success if 28969 * it succeeds at least once on any one interface. 28970 */ 28971 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 28972 NULL, fmode, src, first_mp); 28973 if (error == 0) 28974 or->or_private = CGTP_MCAST_SUCCESS; 28975 28976 if (ip_debug > 0) { 28977 ulong_t off; 28978 char *ksym; 28979 ksym = kobj_getsymname((uintptr_t)fn, &off); 28980 ip2dbg(("ip_multirt_apply_membership: " 28981 "called %s, multirt group 0x%08x via itf 0x%08x, " 28982 "error %d [success %u]\n", 28983 ksym ? ksym : "?", 28984 ntohl(group), ntohl(ire_gw->ire_src_addr), 28985 error, or->or_private)); 28986 } 28987 28988 ire_refrele(ire_gw); 28989 if (error == EINPROGRESS) { 28990 IRB_REFRELE(irb); 28991 return (error); 28992 } 28993 } 28994 IRB_REFRELE(irb); 28995 /* 28996 * Consider the call as successful if we succeeded on at least 28997 * one interface. Otherwise, return the last encountered error. 28998 */ 28999 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 29000 } 29001 29002 29003 /* 29004 * Issue a warning regarding a route crossing an interface with an 29005 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 29006 * amount of time is logged. 29007 */ 29008 static void 29009 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 29010 { 29011 hrtime_t current = gethrtime(); 29012 char buf[INET_ADDRSTRLEN]; 29013 ip_stack_t *ipst = ire->ire_ipst; 29014 29015 /* Convert interval in ms to hrtime in ns */ 29016 if (ipst->ips_multirt_bad_mtu_last_time + 29017 ((hrtime_t)ipst->ips_ip_multirt_log_interval * (hrtime_t)1000000) <= 29018 current) { 29019 cmn_err(CE_WARN, "ip: ignoring multiroute " 29020 "to %s, incorrect MTU %u (expected %u)\n", 29021 ip_dot_addr(ire->ire_addr, buf), 29022 ire->ire_max_frag, max_frag); 29023 29024 ipst->ips_multirt_bad_mtu_last_time = current; 29025 } 29026 } 29027 29028 29029 /* 29030 * Get the CGTP (multirouting) filtering status. 29031 * If 0, the CGTP hooks are transparent. 29032 */ 29033 /* ARGSUSED */ 29034 static int 29035 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 29036 { 29037 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 29038 29039 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 29040 return (0); 29041 } 29042 29043 29044 /* 29045 * Set the CGTP (multirouting) filtering status. 29046 * If the status is changed from active to transparent 29047 * or from transparent to active, forward the new status 29048 * to the filtering module (if loaded). 29049 */ 29050 /* ARGSUSED */ 29051 static int 29052 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 29053 cred_t *ioc_cr) 29054 { 29055 long new_value; 29056 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 29057 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29058 29059 if (secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 29060 return (EPERM); 29061 29062 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 29063 new_value < 0 || new_value > 1) { 29064 return (EINVAL); 29065 } 29066 29067 if ((!*ip_cgtp_filter_value) && new_value) { 29068 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 29069 ipst->ips_ip_cgtp_filter_ops == NULL ? 29070 " (module not loaded)" : ""); 29071 } 29072 if (*ip_cgtp_filter_value && (!new_value)) { 29073 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 29074 ipst->ips_ip_cgtp_filter_ops == NULL ? 29075 " (module not loaded)" : ""); 29076 } 29077 29078 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 29079 int res; 29080 netstackid_t stackid; 29081 29082 stackid = ipst->ips_netstack->netstack_stackid; 29083 res = ipst->ips_ip_cgtp_filter_ops->cfo_change_state(stackid, 29084 new_value); 29085 if (res) 29086 return (res); 29087 } 29088 29089 *ip_cgtp_filter_value = (boolean_t)new_value; 29090 29091 return (0); 29092 } 29093 29094 29095 /* 29096 * Return the expected CGTP hooks version number. 29097 */ 29098 int 29099 ip_cgtp_filter_supported(void) 29100 { 29101 return (ip_cgtp_filter_rev); 29102 } 29103 29104 29105 /* 29106 * CGTP hooks can be registered by invoking this function. 29107 * Checks that the version number matches. 29108 */ 29109 int 29110 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops) 29111 { 29112 netstack_t *ns; 29113 ip_stack_t *ipst; 29114 29115 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 29116 return (ENOTSUP); 29117 29118 ns = netstack_find_by_stackid(stackid); 29119 if (ns == NULL) 29120 return (EINVAL); 29121 ipst = ns->netstack_ip; 29122 ASSERT(ipst != NULL); 29123 29124 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 29125 netstack_rele(ns); 29126 return (EALREADY); 29127 } 29128 29129 ipst->ips_ip_cgtp_filter_ops = ops; 29130 netstack_rele(ns); 29131 return (0); 29132 } 29133 29134 /* 29135 * CGTP hooks can be unregistered by invoking this function. 29136 * Returns ENXIO if there was no registration. 29137 * Returns EBUSY if the ndd variable has not been turned off. 29138 */ 29139 int 29140 ip_cgtp_filter_unregister(netstackid_t stackid) 29141 { 29142 netstack_t *ns; 29143 ip_stack_t *ipst; 29144 29145 ns = netstack_find_by_stackid(stackid); 29146 if (ns == NULL) 29147 return (EINVAL); 29148 ipst = ns->netstack_ip; 29149 ASSERT(ipst != NULL); 29150 29151 if (ipst->ips_ip_cgtp_filter) { 29152 netstack_rele(ns); 29153 return (EBUSY); 29154 } 29155 29156 if (ipst->ips_ip_cgtp_filter_ops == NULL) { 29157 netstack_rele(ns); 29158 return (ENXIO); 29159 } 29160 ipst->ips_ip_cgtp_filter_ops = NULL; 29161 netstack_rele(ns); 29162 return (0); 29163 } 29164 29165 /* 29166 * Check whether there is a CGTP filter registration. 29167 * Returns non-zero if there is a registration, otherwise returns zero. 29168 * Note: returns zero if bad stackid. 29169 */ 29170 int 29171 ip_cgtp_filter_is_registered(netstackid_t stackid) 29172 { 29173 netstack_t *ns; 29174 ip_stack_t *ipst; 29175 int ret; 29176 29177 ns = netstack_find_by_stackid(stackid); 29178 if (ns == NULL) 29179 return (0); 29180 ipst = ns->netstack_ip; 29181 ASSERT(ipst != NULL); 29182 29183 if (ipst->ips_ip_cgtp_filter_ops != NULL) 29184 ret = 1; 29185 else 29186 ret = 0; 29187 29188 netstack_rele(ns); 29189 return (ret); 29190 } 29191 29192 static squeue_func_t 29193 ip_squeue_switch(int val) 29194 { 29195 squeue_func_t rval = squeue_fill; 29196 29197 switch (val) { 29198 case IP_SQUEUE_ENTER_NODRAIN: 29199 rval = squeue_enter_nodrain; 29200 break; 29201 case IP_SQUEUE_ENTER: 29202 rval = squeue_enter; 29203 break; 29204 default: 29205 break; 29206 } 29207 return (rval); 29208 } 29209 29210 /* ARGSUSED */ 29211 static int 29212 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 29213 caddr_t addr, cred_t *cr) 29214 { 29215 int *v = (int *)addr; 29216 long new_value; 29217 29218 if (secpolicy_net_config(cr, B_FALSE) != 0) 29219 return (EPERM); 29220 29221 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29222 return (EINVAL); 29223 29224 ip_input_proc = ip_squeue_switch(new_value); 29225 *v = new_value; 29226 return (0); 29227 } 29228 29229 /* 29230 * Handle ndd set of variables which require PRIV_SYS_NET_CONFIG such as 29231 * ip_debug. 29232 */ 29233 /* ARGSUSED */ 29234 static int 29235 ip_int_set(queue_t *q, mblk_t *mp, char *value, 29236 caddr_t addr, cred_t *cr) 29237 { 29238 int *v = (int *)addr; 29239 long new_value; 29240 29241 if (secpolicy_net_config(cr, B_FALSE) != 0) 29242 return (EPERM); 29243 29244 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29245 return (EINVAL); 29246 29247 *v = new_value; 29248 return (0); 29249 } 29250 29251 /* 29252 * Handle changes to ipmp_hook_emulation ndd variable. 29253 * Need to update phyint_hook_ifindex. 29254 * Also generate a nic plumb event should a new ifidex be assigned to a group. 29255 */ 29256 static void 29257 ipmp_hook_emulation_changed(ip_stack_t *ipst) 29258 { 29259 phyint_t *phyi; 29260 phyint_t *phyi_tmp; 29261 char *groupname; 29262 int namelen; 29263 ill_t *ill; 29264 boolean_t new_group; 29265 29266 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29267 /* 29268 * Group indicies are stored in the phyint - a common structure 29269 * to both IPv4 and IPv6. 29270 */ 29271 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 29272 for (; phyi != NULL; 29273 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 29274 phyi, AVL_AFTER)) { 29275 /* Ignore the ones that do not have a group */ 29276 if (phyi->phyint_groupname_len == 0) 29277 continue; 29278 29279 /* 29280 * Look for other phyint in group. 29281 * Clear name/namelen so the lookup doesn't find ourselves. 29282 */ 29283 namelen = phyi->phyint_groupname_len; 29284 groupname = phyi->phyint_groupname; 29285 phyi->phyint_groupname_len = 0; 29286 phyi->phyint_groupname = NULL; 29287 29288 phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst); 29289 /* Restore */ 29290 phyi->phyint_groupname_len = namelen; 29291 phyi->phyint_groupname = groupname; 29292 29293 new_group = B_FALSE; 29294 if (ipst->ips_ipmp_hook_emulation) { 29295 /* 29296 * If the group already exists and has already 29297 * been assigned a group ifindex, we use the existing 29298 * group_ifindex, otherwise we pick a new group_ifindex 29299 * here. 29300 */ 29301 if (phyi_tmp != NULL && 29302 phyi_tmp->phyint_group_ifindex != 0) { 29303 phyi->phyint_group_ifindex = 29304 phyi_tmp->phyint_group_ifindex; 29305 } else { 29306 /* XXX We need a recovery strategy here. */ 29307 if (!ip_assign_ifindex( 29308 &phyi->phyint_group_ifindex, ipst)) 29309 cmn_err(CE_PANIC, 29310 "ip_assign_ifindex() failed"); 29311 new_group = B_TRUE; 29312 } 29313 } else { 29314 phyi->phyint_group_ifindex = 0; 29315 } 29316 if (ipst->ips_ipmp_hook_emulation) 29317 phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex; 29318 else 29319 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 29320 29321 /* 29322 * For IP Filter to find out the relationship between 29323 * names and interface indicies, we need to generate 29324 * a NE_PLUMB event when a new group can appear. 29325 * We always generate events when a new interface appears 29326 * (even when ipmp_hook_emulation is set) so there 29327 * is no need to generate NE_PLUMB events when 29328 * ipmp_hook_emulation is turned off. 29329 * And since it isn't critical for IP Filter to get 29330 * the NE_UNPLUMB events we skip those here. 29331 */ 29332 if (new_group) { 29333 /* 29334 * First phyint in group - generate group PLUMB event. 29335 * Since we are not running inside the ipsq we do 29336 * the dispatch immediately. 29337 */ 29338 if (phyi->phyint_illv4 != NULL) 29339 ill = phyi->phyint_illv4; 29340 else 29341 ill = phyi->phyint_illv6; 29342 29343 if (ill != NULL) { 29344 mutex_enter(&ill->ill_lock); 29345 ill_nic_info_plumb(ill, B_TRUE); 29346 ill_nic_info_dispatch(ill); 29347 mutex_exit(&ill->ill_lock); 29348 } 29349 } 29350 } 29351 rw_exit(&ipst->ips_ill_g_lock); 29352 } 29353 29354 /* ARGSUSED */ 29355 static int 29356 ipmp_hook_emulation_set(queue_t *q, mblk_t *mp, char *value, 29357 caddr_t addr, cred_t *cr) 29358 { 29359 int *v = (int *)addr; 29360 long new_value; 29361 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29362 29363 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29364 return (EINVAL); 29365 29366 if (*v != new_value) { 29367 *v = new_value; 29368 ipmp_hook_emulation_changed(ipst); 29369 } 29370 return (0); 29371 } 29372 29373 static void * 29374 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 29375 { 29376 kstat_t *ksp; 29377 29378 ip_stat_t template = { 29379 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 29380 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 29381 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 29382 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 29383 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 29384 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 29385 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 29386 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 29387 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 29388 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 29389 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 29390 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 29391 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 29392 { "ip_db_ref", KSTAT_DATA_UINT64 }, 29393 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 29394 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 29395 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 29396 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 29397 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 29398 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 29399 { "ip_opt", KSTAT_DATA_UINT64 }, 29400 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 29401 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 29402 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 29403 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 29404 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 29405 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 29406 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 29407 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 29408 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 29409 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 29410 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 29411 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 29412 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29413 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29414 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29415 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29416 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29417 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29418 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29419 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29420 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 29421 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 29422 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 29423 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 29424 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 29425 }; 29426 29427 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 29428 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 29429 KSTAT_FLAG_VIRTUAL, stackid); 29430 29431 if (ksp == NULL) 29432 return (NULL); 29433 29434 bcopy(&template, ip_statisticsp, sizeof (template)); 29435 ksp->ks_data = (void *)ip_statisticsp; 29436 ksp->ks_private = (void *)(uintptr_t)stackid; 29437 29438 kstat_install(ksp); 29439 return (ksp); 29440 } 29441 29442 static void 29443 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 29444 { 29445 if (ksp != NULL) { 29446 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29447 kstat_delete_netstack(ksp, stackid); 29448 } 29449 } 29450 29451 static void * 29452 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 29453 { 29454 kstat_t *ksp; 29455 29456 ip_named_kstat_t template = { 29457 { "forwarding", KSTAT_DATA_UINT32, 0 }, 29458 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 29459 { "inReceives", KSTAT_DATA_UINT64, 0 }, 29460 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 29461 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 29462 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 29463 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 29464 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 29465 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 29466 { "outRequests", KSTAT_DATA_UINT64, 0 }, 29467 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 29468 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 29469 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 29470 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 29471 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 29472 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 29473 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 29474 { "fragFails", KSTAT_DATA_UINT32, 0 }, 29475 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 29476 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 29477 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 29478 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 29479 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 29480 { "inErrs", KSTAT_DATA_UINT32, 0 }, 29481 { "noPorts", KSTAT_DATA_UINT32, 0 }, 29482 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 29483 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 29484 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 29485 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 29486 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 29487 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 29488 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 29489 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 29490 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 29491 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 29492 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 29493 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 29494 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 29495 }; 29496 29497 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 29498 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 29499 if (ksp == NULL || ksp->ks_data == NULL) 29500 return (NULL); 29501 29502 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 29503 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 29504 template.reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29505 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 29506 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 29507 29508 template.netToMediaEntrySize.value.i32 = 29509 sizeof (mib2_ipNetToMediaEntry_t); 29510 29511 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 29512 29513 bcopy(&template, ksp->ks_data, sizeof (template)); 29514 ksp->ks_update = ip_kstat_update; 29515 ksp->ks_private = (void *)(uintptr_t)stackid; 29516 29517 kstat_install(ksp); 29518 return (ksp); 29519 } 29520 29521 static void 29522 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29523 { 29524 if (ksp != NULL) { 29525 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29526 kstat_delete_netstack(ksp, stackid); 29527 } 29528 } 29529 29530 static int 29531 ip_kstat_update(kstat_t *kp, int rw) 29532 { 29533 ip_named_kstat_t *ipkp; 29534 mib2_ipIfStatsEntry_t ipmib; 29535 ill_walk_context_t ctx; 29536 ill_t *ill; 29537 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29538 netstack_t *ns; 29539 ip_stack_t *ipst; 29540 29541 if (kp == NULL || kp->ks_data == NULL) 29542 return (EIO); 29543 29544 if (rw == KSTAT_WRITE) 29545 return (EACCES); 29546 29547 ns = netstack_find_by_stackid(stackid); 29548 if (ns == NULL) 29549 return (-1); 29550 ipst = ns->netstack_ip; 29551 if (ipst == NULL) { 29552 netstack_rele(ns); 29553 return (-1); 29554 } 29555 ipkp = (ip_named_kstat_t *)kp->ks_data; 29556 29557 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 29558 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29559 ill = ILL_START_WALK_V4(&ctx, ipst); 29560 for (; ill != NULL; ill = ill_next(&ctx, ill)) 29561 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 29562 rw_exit(&ipst->ips_ill_g_lock); 29563 29564 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 29565 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 29566 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 29567 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 29568 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 29569 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 29570 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 29571 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 29572 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 29573 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 29574 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 29575 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 29576 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29577 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 29578 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 29579 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 29580 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 29581 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 29582 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 29583 29584 ipkp->routingDiscards.value.ui32 = 0; 29585 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 29586 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 29587 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 29588 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 29589 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 29590 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 29591 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 29592 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 29593 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 29594 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 29595 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 29596 29597 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 29598 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 29599 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 29600 29601 netstack_rele(ns); 29602 29603 return (0); 29604 } 29605 29606 static void * 29607 icmp_kstat_init(netstackid_t stackid) 29608 { 29609 kstat_t *ksp; 29610 29611 icmp_named_kstat_t template = { 29612 { "inMsgs", KSTAT_DATA_UINT32 }, 29613 { "inErrors", KSTAT_DATA_UINT32 }, 29614 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 29615 { "inTimeExcds", KSTAT_DATA_UINT32 }, 29616 { "inParmProbs", KSTAT_DATA_UINT32 }, 29617 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 29618 { "inRedirects", KSTAT_DATA_UINT32 }, 29619 { "inEchos", KSTAT_DATA_UINT32 }, 29620 { "inEchoReps", KSTAT_DATA_UINT32 }, 29621 { "inTimestamps", KSTAT_DATA_UINT32 }, 29622 { "inTimestampReps", KSTAT_DATA_UINT32 }, 29623 { "inAddrMasks", KSTAT_DATA_UINT32 }, 29624 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 29625 { "outMsgs", KSTAT_DATA_UINT32 }, 29626 { "outErrors", KSTAT_DATA_UINT32 }, 29627 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 29628 { "outTimeExcds", KSTAT_DATA_UINT32 }, 29629 { "outParmProbs", KSTAT_DATA_UINT32 }, 29630 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 29631 { "outRedirects", KSTAT_DATA_UINT32 }, 29632 { "outEchos", KSTAT_DATA_UINT32 }, 29633 { "outEchoReps", KSTAT_DATA_UINT32 }, 29634 { "outTimestamps", KSTAT_DATA_UINT32 }, 29635 { "outTimestampReps", KSTAT_DATA_UINT32 }, 29636 { "outAddrMasks", KSTAT_DATA_UINT32 }, 29637 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 29638 { "inChksumErrs", KSTAT_DATA_UINT32 }, 29639 { "inUnknowns", KSTAT_DATA_UINT32 }, 29640 { "inFragNeeded", KSTAT_DATA_UINT32 }, 29641 { "outFragNeeded", KSTAT_DATA_UINT32 }, 29642 { "outDrops", KSTAT_DATA_UINT32 }, 29643 { "inOverFlows", KSTAT_DATA_UINT32 }, 29644 { "inBadRedirects", KSTAT_DATA_UINT32 }, 29645 }; 29646 29647 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 29648 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 29649 if (ksp == NULL || ksp->ks_data == NULL) 29650 return (NULL); 29651 29652 bcopy(&template, ksp->ks_data, sizeof (template)); 29653 29654 ksp->ks_update = icmp_kstat_update; 29655 ksp->ks_private = (void *)(uintptr_t)stackid; 29656 29657 kstat_install(ksp); 29658 return (ksp); 29659 } 29660 29661 static void 29662 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29663 { 29664 if (ksp != NULL) { 29665 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29666 kstat_delete_netstack(ksp, stackid); 29667 } 29668 } 29669 29670 static int 29671 icmp_kstat_update(kstat_t *kp, int rw) 29672 { 29673 icmp_named_kstat_t *icmpkp; 29674 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29675 netstack_t *ns; 29676 ip_stack_t *ipst; 29677 29678 if ((kp == NULL) || (kp->ks_data == NULL)) 29679 return (EIO); 29680 29681 if (rw == KSTAT_WRITE) 29682 return (EACCES); 29683 29684 ns = netstack_find_by_stackid(stackid); 29685 if (ns == NULL) 29686 return (-1); 29687 ipst = ns->netstack_ip; 29688 if (ipst == NULL) { 29689 netstack_rele(ns); 29690 return (-1); 29691 } 29692 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 29693 29694 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 29695 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 29696 icmpkp->inDestUnreachs.value.ui32 = 29697 ipst->ips_icmp_mib.icmpInDestUnreachs; 29698 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 29699 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 29700 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 29701 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 29702 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 29703 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 29704 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 29705 icmpkp->inTimestampReps.value.ui32 = 29706 ipst->ips_icmp_mib.icmpInTimestampReps; 29707 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 29708 icmpkp->inAddrMaskReps.value.ui32 = 29709 ipst->ips_icmp_mib.icmpInAddrMaskReps; 29710 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 29711 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 29712 icmpkp->outDestUnreachs.value.ui32 = 29713 ipst->ips_icmp_mib.icmpOutDestUnreachs; 29714 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 29715 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 29716 icmpkp->outSrcQuenchs.value.ui32 = 29717 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 29718 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 29719 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 29720 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 29721 icmpkp->outTimestamps.value.ui32 = 29722 ipst->ips_icmp_mib.icmpOutTimestamps; 29723 icmpkp->outTimestampReps.value.ui32 = 29724 ipst->ips_icmp_mib.icmpOutTimestampReps; 29725 icmpkp->outAddrMasks.value.ui32 = 29726 ipst->ips_icmp_mib.icmpOutAddrMasks; 29727 icmpkp->outAddrMaskReps.value.ui32 = 29728 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 29729 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 29730 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 29731 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 29732 icmpkp->outFragNeeded.value.ui32 = 29733 ipst->ips_icmp_mib.icmpOutFragNeeded; 29734 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 29735 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 29736 icmpkp->inBadRedirects.value.ui32 = 29737 ipst->ips_icmp_mib.icmpInBadRedirects; 29738 29739 netstack_rele(ns); 29740 return (0); 29741 } 29742 29743 /* 29744 * This is the fanout function for raw socket opened for SCTP. Note 29745 * that it is called after SCTP checks that there is no socket which 29746 * wants a packet. Then before SCTP handles this out of the blue packet, 29747 * this function is called to see if there is any raw socket for SCTP. 29748 * If there is and it is bound to the correct address, the packet will 29749 * be sent to that socket. Note that only one raw socket can be bound to 29750 * a port. This is assured in ipcl_sctp_hash_insert(); 29751 */ 29752 void 29753 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 29754 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 29755 zoneid_t zoneid) 29756 { 29757 conn_t *connp; 29758 queue_t *rq; 29759 mblk_t *first_mp; 29760 boolean_t secure; 29761 ip6_t *ip6h; 29762 ip_stack_t *ipst = recv_ill->ill_ipst; 29763 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 29764 sctp_stack_t *sctps = ipst->ips_netstack->netstack_sctp; 29765 boolean_t sctp_csum_err = B_FALSE; 29766 29767 if (flags & IP_FF_SCTP_CSUM_ERR) { 29768 sctp_csum_err = B_TRUE; 29769 flags &= ~IP_FF_SCTP_CSUM_ERR; 29770 } 29771 29772 first_mp = mp; 29773 if (mctl_present) { 29774 mp = first_mp->b_cont; 29775 secure = ipsec_in_is_secure(first_mp); 29776 ASSERT(mp != NULL); 29777 } else { 29778 secure = B_FALSE; 29779 } 29780 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 29781 29782 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha, ipst); 29783 if (connp == NULL) { 29784 /* 29785 * Although raw sctp is not summed, OOB chunks must be. 29786 * Drop the packet here if the sctp checksum failed. 29787 */ 29788 if (sctp_csum_err) { 29789 BUMP_MIB(&sctps->sctps_mib, sctpChecksumError); 29790 freemsg(first_mp); 29791 return; 29792 } 29793 sctp_ootb_input(first_mp, recv_ill, zoneid, mctl_present); 29794 return; 29795 } 29796 rq = connp->conn_rq; 29797 if (!canputnext(rq)) { 29798 CONN_DEC_REF(connp); 29799 BUMP_MIB(recv_ill->ill_ip_mib, rawipIfStatsInOverflows); 29800 freemsg(first_mp); 29801 return; 29802 } 29803 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 29804 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || secure) { 29805 first_mp = ipsec_check_inbound_policy(first_mp, connp, 29806 (isv4 ? ipha : NULL), ip6h, mctl_present); 29807 if (first_mp == NULL) { 29808 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 29809 CONN_DEC_REF(connp); 29810 return; 29811 } 29812 } 29813 /* 29814 * We probably should not send M_CTL message up to 29815 * raw socket. 29816 */ 29817 if (mctl_present) 29818 freeb(first_mp); 29819 29820 /* Initiate IPPF processing here if needed. */ 29821 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) || 29822 (!isv4 && IP6_IN_IPP(flags, ipst))) { 29823 ip_process(IPP_LOCAL_IN, &mp, 29824 recv_ill->ill_phyint->phyint_ifindex); 29825 if (mp == NULL) { 29826 CONN_DEC_REF(connp); 29827 return; 29828 } 29829 } 29830 29831 if (connp->conn_recvif || connp->conn_recvslla || 29832 ((connp->conn_ip_recvpktinfo || 29833 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 29834 (flags & IP_FF_IPINFO))) { 29835 int in_flags = 0; 29836 29837 /* 29838 * Since sctp does not support IP_RECVPKTINFO for v4, only pass 29839 * IPF_RECVIF. 29840 */ 29841 if (connp->conn_recvif || connp->conn_ip_recvpktinfo) { 29842 in_flags = IPF_RECVIF; 29843 } 29844 if (connp->conn_recvslla) { 29845 in_flags |= IPF_RECVSLLA; 29846 } 29847 if (isv4) { 29848 mp = ip_add_info(mp, recv_ill, in_flags, 29849 IPCL_ZONEID(connp), ipst); 29850 } else { 29851 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 29852 if (mp == NULL) { 29853 BUMP_MIB(recv_ill->ill_ip_mib, 29854 ipIfStatsInDiscards); 29855 CONN_DEC_REF(connp); 29856 return; 29857 } 29858 } 29859 } 29860 29861 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 29862 /* 29863 * We are sending the IPSEC_IN message also up. Refer 29864 * to comments above this function. 29865 * This is the SOCK_RAW, IPPROTO_SCTP case. 29866 */ 29867 (connp->conn_recv)(connp, mp, NULL); 29868 CONN_DEC_REF(connp); 29869 } 29870 29871 #define UPDATE_IP_MIB_OB_COUNTERS(ill, len) \ 29872 { \ 29873 BUMP_MIB((ill)->ill_ip_mib, ipIfStatsHCOutTransmits); \ 29874 UPDATE_MIB((ill)->ill_ip_mib, ipIfStatsHCOutOctets, (len)); \ 29875 } 29876 /* 29877 * This function should be called only if all packet processing 29878 * including fragmentation is complete. Callers of this function 29879 * must set mp->b_prev to one of these values: 29880 * {0, IPP_FWD_OUT, IPP_LOCAL_OUT} 29881 * prior to handing over the mp as first argument to this function. 29882 * 29883 * If the ire passed by caller is incomplete, this function 29884 * queues the packet and if necessary, sends ARP request and bails. 29885 * If the ire passed is fully resolved, we simply prepend 29886 * the link-layer header to the packet, do ipsec hw acceleration 29887 * work if necessary, and send the packet out on the wire. 29888 * 29889 * NOTE: IPsec will only call this function with fully resolved 29890 * ires if hw acceleration is involved. 29891 * TODO list : 29892 * a Handle M_MULTIDATA so that 29893 * tcp_multisend->tcp_multisend_data can 29894 * call ip_xmit_v4 directly 29895 * b Handle post-ARP work for fragments so that 29896 * ip_wput_frag can call this function. 29897 */ 29898 ipxmit_state_t 29899 ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, boolean_t flow_ctl_enabled) 29900 { 29901 nce_t *arpce; 29902 ipha_t *ipha; 29903 queue_t *q; 29904 int ill_index; 29905 mblk_t *nxt_mp, *first_mp; 29906 boolean_t xmit_drop = B_FALSE; 29907 ip_proc_t proc; 29908 ill_t *out_ill; 29909 int pkt_len; 29910 29911 arpce = ire->ire_nce; 29912 ASSERT(arpce != NULL); 29913 29914 DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire, nce_t *, arpce); 29915 29916 mutex_enter(&arpce->nce_lock); 29917 switch (arpce->nce_state) { 29918 case ND_REACHABLE: 29919 /* If there are other queued packets, queue this packet */ 29920 if (arpce->nce_qd_mp != NULL) { 29921 if (mp != NULL) 29922 nce_queue_mp_common(arpce, mp, B_FALSE); 29923 mp = arpce->nce_qd_mp; 29924 } 29925 arpce->nce_qd_mp = NULL; 29926 mutex_exit(&arpce->nce_lock); 29927 29928 /* 29929 * Flush the queue. In the common case, where the 29930 * ARP is already resolved, it will go through the 29931 * while loop only once. 29932 */ 29933 while (mp != NULL) { 29934 29935 nxt_mp = mp->b_next; 29936 mp->b_next = NULL; 29937 ASSERT(mp->b_datap->db_type != M_CTL); 29938 pkt_len = ntohs(((ipha_t *)mp->b_rptr)->ipha_length); 29939 /* 29940 * This info is needed for IPQOS to do COS marking 29941 * in ip_wput_attach_llhdr->ip_process. 29942 */ 29943 proc = (ip_proc_t)(uintptr_t)mp->b_prev; 29944 mp->b_prev = NULL; 29945 29946 /* set up ill index for outbound qos processing */ 29947 out_ill = ire_to_ill(ire); 29948 ill_index = out_ill->ill_phyint->phyint_ifindex; 29949 first_mp = ip_wput_attach_llhdr(mp, ire, proc, 29950 ill_index, &ipha); 29951 if (first_mp == NULL) { 29952 xmit_drop = B_TRUE; 29953 BUMP_MIB(out_ill->ill_ip_mib, 29954 ipIfStatsOutDiscards); 29955 goto next_mp; 29956 } 29957 29958 /* non-ipsec hw accel case */ 29959 if (io == NULL || !io->ipsec_out_accelerated) { 29960 /* send it */ 29961 q = ire->ire_stq; 29962 if (proc == IPP_FWD_OUT) { 29963 UPDATE_IB_PKT_COUNT(ire); 29964 } else { 29965 UPDATE_OB_PKT_COUNT(ire); 29966 } 29967 ire->ire_last_used_time = lbolt; 29968 29969 if (flow_ctl_enabled || canputnext(q)) { 29970 if (proc == IPP_FWD_OUT) { 29971 29972 BUMP_MIB(out_ill->ill_ip_mib, 29973 ipIfStatsHCOutForwDatagrams); 29974 29975 } 29976 UPDATE_IP_MIB_OB_COUNTERS(out_ill, 29977 pkt_len); 29978 29979 DTRACE_IP7(send, mblk_t *, first_mp, 29980 conn_t *, NULL, void_ip_t *, ipha, 29981 __dtrace_ipsr_ill_t *, out_ill, 29982 ipha_t *, ipha, ip6_t *, NULL, int, 29983 0); 29984 29985 putnext(q, first_mp); 29986 } else { 29987 BUMP_MIB(out_ill->ill_ip_mib, 29988 ipIfStatsOutDiscards); 29989 xmit_drop = B_TRUE; 29990 freemsg(first_mp); 29991 } 29992 } else { 29993 /* 29994 * Safety Pup says: make sure this 29995 * is going to the right interface! 29996 */ 29997 ill_t *ill1 = 29998 (ill_t *)ire->ire_stq->q_ptr; 29999 int ifindex = 30000 ill1->ill_phyint->phyint_ifindex; 30001 if (ifindex != 30002 io->ipsec_out_capab_ill_index) { 30003 xmit_drop = B_TRUE; 30004 freemsg(mp); 30005 } else { 30006 UPDATE_IP_MIB_OB_COUNTERS(ill1, 30007 pkt_len); 30008 30009 DTRACE_IP7(send, mblk_t *, first_mp, 30010 conn_t *, NULL, void_ip_t *, ipha, 30011 __dtrace_ipsr_ill_t *, ill1, 30012 ipha_t *, ipha, ip6_t *, NULL, 30013 int, 0); 30014 30015 ipsec_hw_putnext(ire->ire_stq, mp); 30016 } 30017 } 30018 next_mp: 30019 mp = nxt_mp; 30020 } /* while (mp != NULL) */ 30021 if (xmit_drop) 30022 return (SEND_FAILED); 30023 else 30024 return (SEND_PASSED); 30025 30026 case ND_INITIAL: 30027 case ND_INCOMPLETE: 30028 30029 /* 30030 * While we do send off packets to dests that 30031 * use fully-resolved CGTP routes, we do not 30032 * handle unresolved CGTP routes. 30033 */ 30034 ASSERT(!(ire->ire_flags & RTF_MULTIRT)); 30035 ASSERT(io == NULL || !io->ipsec_out_accelerated); 30036 30037 if (mp != NULL) { 30038 /* queue the packet */ 30039 nce_queue_mp_common(arpce, mp, B_FALSE); 30040 } 30041 30042 if (arpce->nce_state == ND_INCOMPLETE) { 30043 mutex_exit(&arpce->nce_lock); 30044 DTRACE_PROBE3(ip__xmit__incomplete, 30045 (ire_t *), ire, (mblk_t *), mp, 30046 (ipsec_out_t *), io); 30047 return (LOOKUP_IN_PROGRESS); 30048 } 30049 30050 arpce->nce_state = ND_INCOMPLETE; 30051 mutex_exit(&arpce->nce_lock); 30052 /* 30053 * Note that ire_add() (called from ire_forward()) 30054 * holds a ref on the ire until ARP is completed. 30055 */ 30056 30057 ire_arpresolve(ire, ire_to_ill(ire)); 30058 return (LOOKUP_IN_PROGRESS); 30059 default: 30060 ASSERT(0); 30061 mutex_exit(&arpce->nce_lock); 30062 return (LLHDR_RESLV_FAILED); 30063 } 30064 } 30065 30066 #undef UPDATE_IP_MIB_OB_COUNTERS 30067 30068 /* 30069 * Return B_TRUE if the buffers differ in length or content. 30070 * This is used for comparing extension header buffers. 30071 * Note that an extension header would be declared different 30072 * even if all that changed was the next header value in that header i.e. 30073 * what really changed is the next extension header. 30074 */ 30075 boolean_t 30076 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 30077 uint_t blen) 30078 { 30079 if (!b_valid) 30080 blen = 0; 30081 30082 if (alen != blen) 30083 return (B_TRUE); 30084 if (alen == 0) 30085 return (B_FALSE); /* Both zero length */ 30086 return (bcmp(abuf, bbuf, alen)); 30087 } 30088 30089 /* 30090 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 30091 * Return B_FALSE if memory allocation fails - don't change any state! 30092 */ 30093 boolean_t 30094 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 30095 const void *src, uint_t srclen) 30096 { 30097 void *dst; 30098 30099 if (!src_valid) 30100 srclen = 0; 30101 30102 ASSERT(*dstlenp == 0); 30103 if (src != NULL && srclen != 0) { 30104 dst = mi_alloc(srclen, BPRI_MED); 30105 if (dst == NULL) 30106 return (B_FALSE); 30107 } else { 30108 dst = NULL; 30109 } 30110 if (*dstp != NULL) 30111 mi_free(*dstp); 30112 *dstp = dst; 30113 *dstlenp = dst == NULL ? 0 : srclen; 30114 return (B_TRUE); 30115 } 30116 30117 /* 30118 * Replace what is in *dst, *dstlen with the source. 30119 * Assumes ip_allocbuf has already been called. 30120 */ 30121 void 30122 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 30123 const void *src, uint_t srclen) 30124 { 30125 if (!src_valid) 30126 srclen = 0; 30127 30128 ASSERT(*dstlenp == srclen); 30129 if (src != NULL && srclen != 0) 30130 bcopy(src, *dstp, srclen); 30131 } 30132 30133 /* 30134 * Free the storage pointed to by the members of an ip6_pkt_t. 30135 */ 30136 void 30137 ip6_pkt_free(ip6_pkt_t *ipp) 30138 { 30139 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 30140 30141 if (ipp->ipp_fields & IPPF_HOPOPTS) { 30142 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 30143 ipp->ipp_hopopts = NULL; 30144 ipp->ipp_hopoptslen = 0; 30145 } 30146 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 30147 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 30148 ipp->ipp_rtdstopts = NULL; 30149 ipp->ipp_rtdstoptslen = 0; 30150 } 30151 if (ipp->ipp_fields & IPPF_DSTOPTS) { 30152 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 30153 ipp->ipp_dstopts = NULL; 30154 ipp->ipp_dstoptslen = 0; 30155 } 30156 if (ipp->ipp_fields & IPPF_RTHDR) { 30157 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 30158 ipp->ipp_rthdr = NULL; 30159 ipp->ipp_rthdrlen = 0; 30160 } 30161 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 30162 IPPF_RTHDR); 30163 } 30164