1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/dlpi.h> 31 #include <sys/stropts.h> 32 #include <sys/sysmacros.h> 33 #include <sys/strsubr.h> 34 #include <sys/strlog.h> 35 #include <sys/strsun.h> 36 #include <sys/zone.h> 37 #define _SUN_TPI_VERSION 2 38 #include <sys/tihdr.h> 39 #include <sys/xti_inet.h> 40 #include <sys/ddi.h> 41 #include <sys/cmn_err.h> 42 #include <sys/debug.h> 43 #include <sys/kobj.h> 44 #include <sys/modctl.h> 45 #include <sys/atomic.h> 46 #include <sys/policy.h> 47 #include <sys/priv.h> 48 #include <sys/taskq.h> 49 50 #include <sys/systm.h> 51 #include <sys/param.h> 52 #include <sys/kmem.h> 53 #include <sys/sdt.h> 54 #include <sys/socket.h> 55 #include <sys/vtrace.h> 56 #include <sys/isa_defs.h> 57 #include <sys/mac.h> 58 #include <net/if.h> 59 #include <net/if_arp.h> 60 #include <net/route.h> 61 #include <sys/sockio.h> 62 #include <netinet/in.h> 63 #include <net/if_dl.h> 64 65 #include <inet/common.h> 66 #include <inet/mi.h> 67 #include <inet/mib2.h> 68 #include <inet/nd.h> 69 #include <inet/arp.h> 70 #include <inet/snmpcom.h> 71 #include <inet/optcom.h> 72 #include <inet/kstatcom.h> 73 74 #include <netinet/igmp_var.h> 75 #include <netinet/ip6.h> 76 #include <netinet/icmp6.h> 77 #include <netinet/sctp.h> 78 79 #include <inet/ip.h> 80 #include <inet/ip_impl.h> 81 #include <inet/ip6.h> 82 #include <inet/ip6_asp.h> 83 #include <inet/tcp.h> 84 #include <inet/tcp_impl.h> 85 #include <inet/ip_multi.h> 86 #include <inet/ip_if.h> 87 #include <inet/ip_ire.h> 88 #include <inet/ip_ftable.h> 89 #include <inet/ip_rts.h> 90 #include <inet/ip_ndp.h> 91 #include <inet/ip_listutils.h> 92 #include <netinet/igmp.h> 93 #include <netinet/ip_mroute.h> 94 #include <inet/ipp_common.h> 95 96 #include <net/pfkeyv2.h> 97 #include <inet/ipsec_info.h> 98 #include <inet/sadb.h> 99 #include <inet/ipsec_impl.h> 100 #include <sys/iphada.h> 101 #include <inet/tun.h> 102 #include <inet/ipdrop.h> 103 #include <inet/ip_netinfo.h> 104 105 #include <sys/ethernet.h> 106 #include <net/if_types.h> 107 #include <sys/cpuvar.h> 108 109 #include <ipp/ipp.h> 110 #include <ipp/ipp_impl.h> 111 #include <ipp/ipgpc/ipgpc.h> 112 113 #include <sys/multidata.h> 114 #include <sys/pattr.h> 115 116 #include <inet/ipclassifier.h> 117 #include <inet/sctp_ip.h> 118 #include <inet/sctp/sctp_impl.h> 119 #include <inet/udp_impl.h> 120 #include <inet/rawip_impl.h> 121 #include <inet/rts_impl.h> 122 123 #include <sys/tsol/label.h> 124 #include <sys/tsol/tnet.h> 125 126 #include <rpc/pmap_prot.h> 127 #include <sys/squeue_impl.h> 128 129 /* 130 * Values for squeue switch: 131 * IP_SQUEUE_ENTER_NODRAIN: SQ_NODRAIN 132 * IP_SQUEUE_ENTER: SQ_PROCESS 133 * IP_SQUEUE_FILL: SQ_FILL 134 */ 135 int ip_squeue_enter = 2; /* Setable in /etc/system */ 136 137 int ip_squeue_flag; 138 #define SET_BPREV_FLAG(x) ((mblk_t *)(uintptr_t)(x)) 139 140 /* 141 * Setable in /etc/system 142 */ 143 int ip_poll_normal_ms = 100; 144 int ip_poll_normal_ticks = 0; 145 int ip_modclose_ackwait_ms = 3000; 146 147 /* 148 * It would be nice to have these present only in DEBUG systems, but the 149 * current design of the global symbol checking logic requires them to be 150 * unconditionally present. 151 */ 152 uint_t ip_thread_data; /* TSD key for debug support */ 153 krwlock_t ip_thread_rwlock; 154 list_t ip_thread_list; 155 156 /* 157 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 158 */ 159 160 struct listptr_s { 161 mblk_t *lp_head; /* pointer to the head of the list */ 162 mblk_t *lp_tail; /* pointer to the tail of the list */ 163 }; 164 165 typedef struct listptr_s listptr_t; 166 167 /* 168 * This is used by ip_snmp_get_mib2_ip_route_media and 169 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 170 */ 171 typedef struct iproutedata_s { 172 uint_t ird_idx; 173 listptr_t ird_route; /* ipRouteEntryTable */ 174 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 175 listptr_t ird_attrs; /* ipRouteAttributeTable */ 176 } iproutedata_t; 177 178 /* 179 * Cluster specific hooks. These should be NULL when booted as a non-cluster 180 */ 181 182 /* 183 * Hook functions to enable cluster networking 184 * On non-clustered systems these vectors must always be NULL. 185 * 186 * Hook function to Check ip specified ip address is a shared ip address 187 * in the cluster 188 * 189 */ 190 int (*cl_inet_isclusterwide)(uint8_t protocol, 191 sa_family_t addr_family, uint8_t *laddrp) = NULL; 192 193 /* 194 * Hook function to generate cluster wide ip fragment identifier 195 */ 196 uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 197 uint8_t *laddrp, uint8_t *faddrp) = NULL; 198 199 /* 200 * Hook function to generate cluster wide SPI. 201 */ 202 void (*cl_inet_getspi)(uint8_t, uint8_t *, size_t) = NULL; 203 204 /* 205 * Hook function to verify if the SPI is already utlized. 206 */ 207 208 int (*cl_inet_checkspi)(uint8_t, uint32_t) = NULL; 209 210 /* 211 * Hook function to delete the SPI from the cluster wide repository. 212 */ 213 214 void (*cl_inet_deletespi)(uint8_t, uint32_t) = NULL; 215 216 /* 217 * Hook function to inform the cluster when packet received on an IDLE SA 218 */ 219 220 void (*cl_inet_idlesa)(uint8_t, uint32_t, sa_family_t, in6_addr_t, 221 in6_addr_t) = NULL; 222 223 /* 224 * Synchronization notes: 225 * 226 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 227 * MT level protection given by STREAMS. IP uses a combination of its own 228 * internal serialization mechanism and standard Solaris locking techniques. 229 * The internal serialization is per phyint (no IPMP) or per IPMP group. 230 * This is used to serialize plumbing operations, IPMP operations, certain 231 * multicast operations, most set ioctls, igmp/mld timers etc. 232 * 233 * Plumbing is a long sequence of operations involving message 234 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 235 * involved in plumbing operations. A natural model is to serialize these 236 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 237 * parallel without any interference. But various set ioctls on hme0 are best 238 * serialized. However if the system uses IPMP, the operations are easier if 239 * they are serialized on a per IPMP group basis since IPMP operations 240 * happen across ill's of a group. Thus the lowest common denominator is to 241 * serialize most set ioctls, multicast join/leave operations, IPMP operations 242 * igmp/mld timer operations, and processing of DLPI control messages received 243 * from drivers on a per IPMP group basis. If the system does not employ 244 * IPMP the serialization is on a per phyint basis. This serialization is 245 * provided by the ipsq_t and primitives operating on this. Details can 246 * be found in ip_if.c above the core primitives operating on ipsq_t. 247 * 248 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 249 * Simiarly lookup of an ire by a thread also returns a refheld ire. 250 * In addition ipif's and ill's referenced by the ire are also indirectly 251 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 252 * the ipif's address or netmask change as long as an ipif is refheld 253 * directly or indirectly. For example an SIOCLIFADDR ioctl that changes the 254 * address of an ipif has to go through the ipsq_t. This ensures that only 255 * 1 such exclusive operation proceeds at any time on the ipif. It then 256 * deletes all ires associated with this ipif, and waits for all refcnts 257 * associated with this ipif to come down to zero. The address is changed 258 * only after the ipif has been quiesced. Then the ipif is brought up again. 259 * More details are described above the comment in ip_sioctl_flags. 260 * 261 * Packet processing is based mostly on IREs and are fully multi-threaded 262 * using standard Solaris MT techniques. 263 * 264 * There are explicit locks in IP to handle: 265 * - The ip_g_head list maintained by mi_open_link() and friends. 266 * 267 * - The reassembly data structures (one lock per hash bucket) 268 * 269 * - conn_lock is meant to protect conn_t fields. The fields actually 270 * protected by conn_lock are documented in the conn_t definition. 271 * 272 * - ire_lock to protect some of the fields of the ire, IRE tables 273 * (one lock per hash bucket). Refer to ip_ire.c for details. 274 * 275 * - ndp_g_lock and nce_lock for protecting NCEs. 276 * 277 * - ill_lock protects fields of the ill and ipif. Details in ip.h 278 * 279 * - ill_g_lock: This is a global reader/writer lock. Protects the following 280 * * The AVL tree based global multi list of all ills. 281 * * The linked list of all ipifs of an ill 282 * * The <ill-ipsq> mapping 283 * * The ipsq->ipsq_phyint_list threaded by phyint_ipsq_next 284 * * The illgroup list threaded by ill_group_next. 285 * * <ill-phyint> association 286 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 287 * into an ill, changing the <ill-ipsq> mapping of an ill, insertion/deletion 288 * of an ill into the illgrp list, changing the <ill-phyint> assoc of an ill 289 * will all have to hold the ill_g_lock as writer for the actual duration 290 * of the insertion/deletion/change. More details about the <ill-ipsq> mapping 291 * may be found in the IPMP section. 292 * 293 * - ill_lock: This is a per ill mutex. 294 * It protects some members of the ill and is documented below. 295 * It also protects the <ill-ipsq> mapping 296 * It also protects the illgroup list threaded by ill_group_next. 297 * It also protects the <ill-phyint> assoc. 298 * It also protects the list of ipifs hanging off the ill. 299 * 300 * - ipsq_lock: This is a per ipsq_t mutex lock. 301 * This protects all the other members of the ipsq struct except 302 * ipsq_refs and ipsq_phyint_list which are protected by ill_g_lock 303 * 304 * - illgrp_lock: This is a per ill_group mutex lock. 305 * The only thing it protects is the illgrp_ill_schednext member of ill_group 306 * which dictates which is the next ill in an ill_group that is to be chosen 307 * for sending outgoing packets, through creation of an IRE_CACHE that 308 * references this ill. 309 * 310 * - phyint_lock: This is a per phyint mutex lock. Protects just the 311 * phyint_flags 312 * 313 * - ip_g_nd_lock: This is a global reader/writer lock. 314 * Any call to nd_load to load a new parameter to the ND table must hold the 315 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 316 * as reader. 317 * 318 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 319 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 320 * uniqueness check also done atomically. 321 * 322 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 323 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 324 * as a writer when adding or deleting elements from these lists, and 325 * as a reader when walking these lists to send a SADB update to the 326 * IPsec capable ills. 327 * 328 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 329 * group list linked by ill_usesrc_grp_next. It also protects the 330 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 331 * group is being added or deleted. This lock is taken as a reader when 332 * walking the list/group(eg: to get the number of members in a usesrc group). 333 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 334 * field is changing state i.e from NULL to non-NULL or vice-versa. For 335 * example, it is not necessary to take this lock in the initial portion 336 * of ip_sioctl_slifusesrc or at all in ip_sioctl_groupname and 337 * ip_sioctl_flags since the these operations are executed exclusively and 338 * that ensures that the "usesrc group state" cannot change. The "usesrc 339 * group state" change can happen only in the latter part of 340 * ip_sioctl_slifusesrc and in ill_delete. 341 * 342 * Changing <ill-phyint>, <ill-ipsq>, <ill-illgroup> assocications. 343 * 344 * To change the <ill-phyint> association, the ill_g_lock must be held 345 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 346 * must be held. 347 * 348 * To change the <ill-ipsq> association the ill_g_lock must be held as writer 349 * and the ill_lock of the ill in question must be held. 350 * 351 * To change the <ill-illgroup> association the ill_g_lock must be held as 352 * writer and the ill_lock of the ill in question must be held. 353 * 354 * To add or delete an ipif from the list of ipifs hanging off the ill, 355 * ill_g_lock (writer) and ill_lock must be held and the thread must be 356 * a writer on the associated ipsq,. 357 * 358 * To add or delete an ill to the system, the ill_g_lock must be held as 359 * writer and the thread must be a writer on the associated ipsq. 360 * 361 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 362 * must be a writer on the associated ipsq. 363 * 364 * Lock hierarchy 365 * 366 * Some lock hierarchy scenarios are listed below. 367 * 368 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 369 * ill_g_lock -> illgrp_lock -> ill_lock 370 * ill_g_lock -> ill_lock(s) -> phyint_lock 371 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 372 * ill_g_lock -> ip_addr_avail_lock 373 * conn_lock -> irb_lock -> ill_lock -> ire_lock 374 * ill_g_lock -> ip_g_nd_lock 375 * 376 * When more than 1 ill lock is needed to be held, all ill lock addresses 377 * are sorted on address and locked starting from highest addressed lock 378 * downward. 379 * 380 * IPsec scenarios 381 * 382 * ipsa_lock -> ill_g_lock -> ill_lock 383 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 384 * ipsec_capab_ills_lock -> ipsa_lock 385 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 386 * 387 * Trusted Solaris scenarios 388 * 389 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 390 * igsa_lock -> gcdb_lock 391 * gcgrp_rwlock -> ire_lock 392 * gcgrp_rwlock -> gcdb_lock 393 * 394 * squeue(sq_lock), flow related (ft_lock, fe_lock) locking 395 * 396 * cpu_lock --> ill_lock --> sqset_lock --> sq_lock 397 * sq_lock -> conn_lock -> QLOCK(q) 398 * ill_lock -> ft_lock -> fe_lock 399 * 400 * Routing/forwarding table locking notes: 401 * 402 * Lock acquisition order: Radix tree lock, irb_lock. 403 * Requirements: 404 * i. Walker must not hold any locks during the walker callback. 405 * ii Walker must not see a truncated tree during the walk because of any node 406 * deletion. 407 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 408 * in many places in the code to walk the irb list. Thus even if all the 409 * ires in a bucket have been deleted, we still can't free the radix node 410 * until the ires have actually been inactive'd (freed). 411 * 412 * Tree traversal - Need to hold the global tree lock in read mode. 413 * Before dropping the global tree lock, need to either increment the ire_refcnt 414 * to ensure that the radix node can't be deleted. 415 * 416 * Tree add - Need to hold the global tree lock in write mode to add a 417 * radix node. To prevent the node from being deleted, increment the 418 * irb_refcnt, after the node is added to the tree. The ire itself is 419 * added later while holding the irb_lock, but not the tree lock. 420 * 421 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 422 * All associated ires must be inactive (i.e. freed), and irb_refcnt 423 * must be zero. 424 * 425 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 426 * global tree lock (read mode) for traversal. 427 * 428 * IPsec notes : 429 * 430 * IP interacts with the IPsec code (AH/ESP) by tagging a M_CTL message 431 * in front of the actual packet. For outbound datagrams, the M_CTL 432 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 433 * information used by the IPsec code for applying the right level of 434 * protection. The information initialized by IP in the ipsec_out_t 435 * is determined by the per-socket policy or global policy in the system. 436 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 437 * ipsec_info.h) which starts out with nothing in it. It gets filled 438 * with the right information if it goes through the AH/ESP code, which 439 * happens if the incoming packet is secure. The information initialized 440 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 441 * the policy requirements needed by per-socket policy or global policy 442 * is met or not. 443 * 444 * If there is both per-socket policy (set using setsockopt) and there 445 * is also global policy match for the 5 tuples of the socket, 446 * ipsec_override_policy() makes the decision of which one to use. 447 * 448 * For fully connected sockets i.e dst, src [addr, port] is known, 449 * conn_policy_cached is set indicating that policy has been cached. 450 * conn_in_enforce_policy may or may not be set depending on whether 451 * there is a global policy match or per-socket policy match. 452 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 453 * Once the right policy is set on the conn_t, policy cannot change for 454 * this socket. This makes life simpler for TCP (UDP ?) where 455 * re-transmissions go out with the same policy. For symmetry, policy 456 * is cached for fully connected UDP sockets also. Thus if policy is cached, 457 * it also implies that policy is latched i.e policy cannot change 458 * on these sockets. As we have the right policy on the conn, we don't 459 * have to lookup global policy for every outbound and inbound datagram 460 * and thus serving as an optimization. Note that a global policy change 461 * does not affect fully connected sockets if they have policy. If fully 462 * connected sockets did not have any policy associated with it, global 463 * policy change may affect them. 464 * 465 * IP Flow control notes: 466 * 467 * Non-TCP streams are flow controlled by IP. On the send side, if the packet 468 * cannot be sent down to the driver by IP, because of a canput failure, IP 469 * does a putq on the conn_wq. This will cause ip_wsrv to run on the conn_wq. 470 * ip_wsrv in turn, inserts the conn in a list of conn's that need to be drained 471 * when the flowcontrol condition subsides. Ultimately STREAMS backenables the 472 * ip_wsrv on the IP module, which in turn does a qenable of the conn_wq of the 473 * first conn in the list of conn's to be drained. ip_wsrv on this conn drains 474 * the queued messages, and removes the conn from the drain list, if all 475 * messages were drained. It also qenables the next conn in the drain list to 476 * continue the drain process. 477 * 478 * In reality the drain list is not a single list, but a configurable number 479 * of lists. The ip_wsrv on the IP module, qenables the first conn in each 480 * list. If the ip_wsrv of the next qenabled conn does not run, because the 481 * stream closes, ip_close takes responsibility to qenable the next conn in 482 * the drain list. The directly called ip_wput path always does a putq, if 483 * it cannot putnext. Thus synchronization problems are handled between 484 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 485 * functions that manipulate this drain list. Furthermore conn_drain_insert 486 * is called only from ip_wsrv, and there can be only 1 instance of ip_wsrv 487 * running on a queue at any time. conn_drain_tail can be simultaneously called 488 * from both ip_wsrv and ip_close. 489 * 490 * IPQOS notes: 491 * 492 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 493 * and IPQoS modules. IPPF includes hooks in IP at different control points 494 * (callout positions) which direct packets to IPQoS modules for policy 495 * processing. Policies, if present, are global. 496 * 497 * The callout positions are located in the following paths: 498 * o local_in (packets destined for this host) 499 * o local_out (packets orginating from this host ) 500 * o fwd_in (packets forwarded by this m/c - inbound) 501 * o fwd_out (packets forwarded by this m/c - outbound) 502 * Hooks at these callout points can be enabled/disabled using the ndd variable 503 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 504 * By default all the callout positions are enabled. 505 * 506 * Outbound (local_out) 507 * Hooks are placed in ip_wput_ire and ipsec_out_process. 508 * 509 * Inbound (local_in) 510 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 511 * TCP and UDP fanout routines. 512 * 513 * Forwarding (in and out) 514 * Hooks are placed in ip_rput_forward. 515 * 516 * IP Policy Framework processing (IPPF processing) 517 * Policy processing for a packet is initiated by ip_process, which ascertains 518 * that the classifier (ipgpc) is loaded and configured, failing which the 519 * packet resumes normal processing in IP. If the clasifier is present, the 520 * packet is acted upon by one or more IPQoS modules (action instances), per 521 * filters configured in ipgpc and resumes normal IP processing thereafter. 522 * An action instance can drop a packet in course of its processing. 523 * 524 * A boolean variable, ip_policy, is used in all the fanout routines that can 525 * invoke ip_process for a packet. This variable indicates if the packet should 526 * to be sent for policy processing. The variable is set to B_TRUE by default, 527 * i.e. when the routines are invoked in the normal ip procesing path for a 528 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 529 * ip_policy is set to B_FALSE for all the routines called in these two 530 * functions because, in the former case, we don't process loopback traffic 531 * currently while in the latter, the packets have already been processed in 532 * icmp_inbound. 533 * 534 * Zones notes: 535 * 536 * The partitioning rules for networking are as follows: 537 * 1) Packets coming from a zone must have a source address belonging to that 538 * zone. 539 * 2) Packets coming from a zone can only be sent on a physical interface on 540 * which the zone has an IP address. 541 * 3) Between two zones on the same machine, packet delivery is only allowed if 542 * there's a matching route for the destination and zone in the forwarding 543 * table. 544 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 545 * different zones can bind to the same port with the wildcard address 546 * (INADDR_ANY). 547 * 548 * The granularity of interface partitioning is at the logical interface level. 549 * Therefore, every zone has its own IP addresses, and incoming packets can be 550 * attributed to a zone unambiguously. A logical interface is placed into a zone 551 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 552 * structure. Rule (1) is implemented by modifying the source address selection 553 * algorithm so that the list of eligible addresses is filtered based on the 554 * sending process zone. 555 * 556 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 557 * across all zones, depending on their type. Here is the break-up: 558 * 559 * IRE type Shared/exclusive 560 * -------- ---------------- 561 * IRE_BROADCAST Exclusive 562 * IRE_DEFAULT (default routes) Shared (*) 563 * IRE_LOCAL Exclusive (x) 564 * IRE_LOOPBACK Exclusive 565 * IRE_PREFIX (net routes) Shared (*) 566 * IRE_CACHE Exclusive 567 * IRE_IF_NORESOLVER (interface routes) Exclusive 568 * IRE_IF_RESOLVER (interface routes) Exclusive 569 * IRE_HOST (host routes) Shared (*) 570 * 571 * (*) A zone can only use a default or off-subnet route if the gateway is 572 * directly reachable from the zone, that is, if the gateway's address matches 573 * one of the zone's logical interfaces. 574 * 575 * (x) IRE_LOCAL are handled a bit differently, since for all other entries 576 * in ire_ctable and IRE_INTERFACE, ire_src_addr is what can be used as source 577 * when sending packets using the IRE. For IRE_LOCAL ire_src_addr is the IP 578 * address of the zone itself (the destination). Since IRE_LOCAL is used 579 * for communication between zones, ip_wput_ire has special logic to set 580 * the right source address when sending using an IRE_LOCAL. 581 * 582 * Furthermore, when ip_restrict_interzone_loopback is set (the default), 583 * ire_cache_lookup restricts loopback using an IRE_LOCAL 584 * between zone to the case when L2 would have conceptually looped the packet 585 * back, i.e. the loopback which is required since neither Ethernet drivers 586 * nor Ethernet hardware loops them back. This is the case when the normal 587 * routes (ignoring IREs with different zoneids) would send out the packet on 588 * the same ill (or ill group) as the ill with which is IRE_LOCAL is 589 * associated. 590 * 591 * Multiple zones can share a common broadcast address; typically all zones 592 * share the 255.255.255.255 address. Incoming as well as locally originated 593 * broadcast packets must be dispatched to all the zones on the broadcast 594 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 595 * since some zones may not be on the 10.16.72/24 network. To handle this, each 596 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 597 * sent to every zone that has an IRE_BROADCAST entry for the destination 598 * address on the input ill, see conn_wantpacket(). 599 * 600 * Applications in different zones can join the same multicast group address. 601 * For IPv4, group memberships are per-logical interface, so they're already 602 * inherently part of a zone. For IPv6, group memberships are per-physical 603 * interface, so we distinguish IPv6 group memberships based on group address, 604 * interface and zoneid. In both cases, received multicast packets are sent to 605 * every zone for which a group membership entry exists. On IPv6 we need to 606 * check that the target zone still has an address on the receiving physical 607 * interface; it could have been removed since the application issued the 608 * IPV6_JOIN_GROUP. 609 */ 610 611 /* 612 * Squeue Fanout flags: 613 * 0: No fanout. 614 * 1: Fanout across all squeues 615 */ 616 boolean_t ip_squeue_fanout = 0; 617 618 /* 619 * Maximum dups allowed per packet. 620 */ 621 uint_t ip_max_frag_dups = 10; 622 623 #define IS_SIMPLE_IPH(ipha) \ 624 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 625 626 /* RFC 1122 Conformance */ 627 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 628 629 #define ILL_MAX_NAMELEN LIFNAMSIZ 630 631 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 632 633 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag, 634 cred_t *credp, boolean_t isv6); 635 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t, 636 ipha_t **); 637 638 static void icmp_frag_needed(queue_t *, mblk_t *, int, zoneid_t, 639 ip_stack_t *); 640 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 641 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 642 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 643 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 644 mblk_t *, int, ip_stack_t *); 645 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 646 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 647 ill_t *, zoneid_t); 648 static void icmp_options_update(ipha_t *); 649 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t, zoneid_t, 650 ip_stack_t *); 651 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t, 652 zoneid_t zoneid, ip_stack_t *); 653 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_stack_t *); 654 static void icmp_redirect(ill_t *, mblk_t *); 655 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t, 656 ip_stack_t *); 657 658 static void ip_arp_news(queue_t *, mblk_t *); 659 static boolean_t ip_bind_get_ire_v4(mblk_t **, ire_t *, iulp_t *, ip_stack_t *); 660 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 661 char *ip_dot_addr(ipaddr_t, char *); 662 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 663 int ip_close(queue_t *, int); 664 static char *ip_dot_saddr(uchar_t *, char *); 665 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 666 boolean_t, boolean_t, ill_t *, zoneid_t); 667 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 668 boolean_t, boolean_t, zoneid_t); 669 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 670 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 671 static void ip_lrput(queue_t *, mblk_t *); 672 ipaddr_t ip_net_mask(ipaddr_t); 673 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, conn_t *, zoneid_t, 674 ip_stack_t *); 675 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 676 conn_t *, uint32_t, zoneid_t, ip_opt_info_t *); 677 char *ip_nv_lookup(nv_t *, int); 678 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 679 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 680 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 681 static boolean_t ip_param_register(IDP *ndp, ipparam_t *, size_t, 682 ipndp_t *, size_t); 683 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 684 void ip_rput(queue_t *, mblk_t *); 685 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 686 void *dummy_arg); 687 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 688 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *, 689 ip_stack_t *); 690 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 691 ire_t *, ip_stack_t *); 692 static boolean_t ip_rput_multimblk_ipoptions(queue_t *, ill_t *, 693 mblk_t *, ipha_t **, ipaddr_t *, ip_stack_t *); 694 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *, 695 ip_stack_t *); 696 static boolean_t ip_rput_fragment(queue_t *, mblk_t **, ipha_t *, uint32_t *, 697 uint16_t *); 698 int ip_snmp_get(queue_t *, mblk_t *, int); 699 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 700 mib2_ipIfStatsEntry_t *, ip_stack_t *); 701 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 702 ip_stack_t *); 703 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *); 704 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 705 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 706 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 707 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 708 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 709 ip_stack_t *ipst); 710 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 711 ip_stack_t *ipst); 712 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 713 ip_stack_t *ipst); 714 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 715 ip_stack_t *ipst); 716 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 717 ip_stack_t *ipst); 718 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 719 ip_stack_t *ipst); 720 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 721 ip_stack_t *ipst); 722 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 723 ip_stack_t *ipst); 724 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, 725 ip_stack_t *ipst); 726 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, 727 ip_stack_t *ipst); 728 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 729 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 730 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 731 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 732 static boolean_t ip_source_routed(ipha_t *, ip_stack_t *); 733 static boolean_t ip_source_route_included(ipha_t *); 734 static void ip_trash_ire_reclaim_stack(ip_stack_t *); 735 736 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t, 737 zoneid_t, ip_stack_t *, conn_t *); 738 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int, ip_stack_t *); 739 static void ip_wput_local_options(ipha_t *, ip_stack_t *); 740 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 741 zoneid_t, ip_stack_t *); 742 743 static void conn_drain_init(ip_stack_t *); 744 static void conn_drain_fini(ip_stack_t *); 745 static void conn_drain_tail(conn_t *connp, boolean_t closing); 746 747 static void conn_walk_drain(ip_stack_t *); 748 static void conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *, 749 zoneid_t); 750 751 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 752 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 753 static void ip_stack_fini(netstackid_t stackid, void *arg); 754 755 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 756 zoneid_t); 757 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 758 void *dummy_arg); 759 760 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 761 762 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 763 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 764 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 765 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 766 767 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 768 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 769 caddr_t, cred_t *); 770 extern int ip_helper_stream_setup(queue_t *, dev_t *, int, int, 771 cred_t *, boolean_t); 772 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 773 caddr_t cp, cred_t *cr); 774 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 775 cred_t *); 776 static int ipmp_hook_emulation_set(queue_t *, mblk_t *, char *, caddr_t, 777 cred_t *); 778 static int ip_squeue_switch(int); 779 780 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 781 static void ip_kstat_fini(netstackid_t, kstat_t *); 782 static int ip_kstat_update(kstat_t *kp, int rw); 783 static void *icmp_kstat_init(netstackid_t); 784 static void icmp_kstat_fini(netstackid_t, kstat_t *); 785 static int icmp_kstat_update(kstat_t *kp, int rw); 786 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 787 static void ip_kstat2_fini(netstackid_t, kstat_t *); 788 789 static int ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *); 790 791 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 792 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 793 794 static void ip_rput_process_forward(queue_t *, mblk_t *, ire_t *, 795 ipha_t *, ill_t *, boolean_t, boolean_t); 796 797 static void ipobs_init(ip_stack_t *); 798 static void ipobs_fini(ip_stack_t *); 799 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 800 801 /* How long, in seconds, we allow frags to hang around. */ 802 #define IP_FRAG_TIMEOUT 15 803 804 /* 805 * Threshold which determines whether MDT should be used when 806 * generating IP fragments; payload size must be greater than 807 * this threshold for MDT to take place. 808 */ 809 #define IP_WPUT_FRAG_MDT_MIN 32768 810 811 /* Setable in /etc/system only */ 812 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 813 814 static long ip_rput_pullups; 815 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 816 817 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */ 818 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */ 819 820 int ip_debug; 821 822 #ifdef DEBUG 823 uint32_t ipsechw_debug = 0; 824 #endif 825 826 /* 827 * Multirouting/CGTP stuff 828 */ 829 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 830 831 /* 832 * XXX following really should only be in a header. Would need more 833 * header and .c clean up first. 834 */ 835 extern optdb_obj_t ip_opt_obj; 836 837 ulong_t ip_squeue_enter_unbound = 0; 838 839 /* 840 * Named Dispatch Parameter Table. 841 * All of these are alterable, within the min/max values given, at run time. 842 */ 843 static ipparam_t lcl_param_arr[] = { 844 /* min max value name */ 845 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 846 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 847 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 848 { 0, 1, 0, "ip_respond_to_timestamp"}, 849 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 850 { 0, 1, 1, "ip_send_redirects"}, 851 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 852 { 0, 10, 0, "ip_mrtdebug"}, 853 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 854 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 855 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 856 { 1, 255, 255, "ip_def_ttl" }, 857 { 0, 1, 0, "ip_forward_src_routed"}, 858 { 0, 256, 32, "ip_wroff_extra" }, 859 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 860 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 861 { 0, 1, 1, "ip_path_mtu_discovery" }, 862 { 0, 240, 30, "ip_ignore_delete_time" }, 863 { 0, 1, 0, "ip_ignore_redirect" }, 864 { 0, 1, 1, "ip_output_queue" }, 865 { 1, 254, 1, "ip_broadcast_ttl" }, 866 { 0, 99999, 100, "ip_icmp_err_interval" }, 867 { 1, 99999, 10, "ip_icmp_err_burst" }, 868 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 869 { 0, 1, 0, "ip_strict_dst_multihoming" }, 870 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 871 { 0, 1, 0, "ipsec_override_persocket_policy" }, 872 { 0, 1, 1, "icmp_accept_clear_messages" }, 873 { 0, 1, 1, "igmp_accept_clear_messages" }, 874 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 875 "ip_ndp_delay_first_probe_time"}, 876 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 877 "ip_ndp_max_unicast_solicit"}, 878 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 879 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 880 { 0, 1, 0, "ip6_forward_src_routed"}, 881 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 882 { 0, 1, 1, "ip6_send_redirects"}, 883 { 0, 1, 0, "ip6_ignore_redirect" }, 884 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 885 886 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 887 888 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 889 890 { 0, 1, 1, "pim_accept_clear_messages" }, 891 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 892 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 893 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 894 { 0, 15, 0, "ip_policy_mask" }, 895 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 896 { 0, 255, 1, "ip_multirt_ttl" }, 897 { 0, 1, 1, "ip_multidata_outbound" }, 898 { 0, 3600000, 300000, "ip_ndp_defense_interval" }, 899 { 0, 999999, 60*60*24, "ip_max_temp_idle" }, 900 { 0, 1000, 1, "ip_max_temp_defend" }, 901 { 0, 1000, 3, "ip_max_defend" }, 902 { 0, 999999, 30, "ip_defend_interval" }, 903 { 0, 3600000, 300000, "ip_dup_recovery" }, 904 { 0, 1, 1, "ip_restrict_interzone_loopback" }, 905 { 0, 1, 1, "ip_lso_outbound" }, 906 { IGMP_V1_ROUTER, IGMP_V3_ROUTER, IGMP_V3_ROUTER, "igmp_max_version" }, 907 { MLD_V1_ROUTER, MLD_V2_ROUTER, MLD_V2_ROUTER, "mld_max_version" }, 908 { 68, 65535, 576, "ip_pmtu_min" }, 909 #ifdef DEBUG 910 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 911 #else 912 { 0, 0, 0, "" }, 913 #endif 914 }; 915 916 /* 917 * Extended NDP table 918 * The addresses for the first two are filled in to be ips_ip_g_forward 919 * and ips_ipv6_forward at init time. 920 */ 921 static ipndp_t lcl_ndp_arr[] = { 922 /* getf setf data name */ 923 #define IPNDP_IP_FORWARDING_OFFSET 0 924 { ip_param_generic_get, ip_forward_set, NULL, 925 "ip_forwarding" }, 926 #define IPNDP_IP6_FORWARDING_OFFSET 1 927 { ip_param_generic_get, ip_forward_set, NULL, 928 "ip6_forwarding" }, 929 { ip_ill_report, NULL, NULL, 930 "ip_ill_status" }, 931 { ip_ipif_report, NULL, NULL, 932 "ip_ipif_status" }, 933 { ip_conn_report, NULL, NULL, 934 "ip_conn_status" }, 935 { nd_get_long, nd_set_long, (caddr_t)&ip_rput_pullups, 936 "ip_rput_pullups" }, 937 { ip_srcid_report, NULL, NULL, 938 "ip_srcid_status" }, 939 { ip_param_generic_get, ip_input_proc_set, 940 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 941 { ip_param_generic_get, ip_int_set, 942 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 943 #define IPNDP_CGTP_FILTER_OFFSET 9 944 { ip_cgtp_filter_get, ip_cgtp_filter_set, NULL, 945 "ip_cgtp_filter" }, 946 #define IPNDP_IPMP_HOOK_OFFSET 10 947 { ip_param_generic_get, ipmp_hook_emulation_set, NULL, 948 "ipmp_hook_emulation" }, 949 { ip_param_generic_get, ip_int_set, (caddr_t)&ip_debug, 950 "ip_debug" }, 951 }; 952 953 /* 954 * Table of IP ioctls encoding the various properties of the ioctl and 955 * indexed based on the last byte of the ioctl command. Occasionally there 956 * is a clash, and there is more than 1 ioctl with the same last byte. 957 * In such a case 1 ioctl is encoded in the ndx table and the remaining 958 * ioctls are encoded in the misc table. An entry in the ndx table is 959 * retrieved by indexing on the last byte of the ioctl command and comparing 960 * the ioctl command with the value in the ndx table. In the event of a 961 * mismatch the misc table is then searched sequentially for the desired 962 * ioctl command. 963 * 964 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 965 */ 966 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 967 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 968 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 969 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 970 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 971 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 972 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 973 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 974 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 975 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 976 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 977 978 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 979 MISC_CMD, ip_siocaddrt, NULL }, 980 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 981 MISC_CMD, ip_siocdelrt, NULL }, 982 983 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 984 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 985 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 986 IF_CMD, ip_sioctl_get_addr, NULL }, 987 988 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 989 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 990 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 991 IPI_GET_CMD | IPI_REPL, 992 IF_CMD, ip_sioctl_get_dstaddr, NULL }, 993 994 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 995 IPI_PRIV | IPI_WR | IPI_REPL, 996 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 997 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 998 IPI_MODOK | IPI_GET_CMD | IPI_REPL, 999 IF_CMD, ip_sioctl_get_flags, NULL }, 1000 1001 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1002 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1003 1004 /* copyin size cannot be coded for SIOCGIFCONF */ 1005 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD, 1006 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1007 1008 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1009 IF_CMD, ip_sioctl_mtu, NULL }, 1010 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1011 IF_CMD, ip_sioctl_get_mtu, NULL }, 1012 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 1013 IPI_GET_CMD | IPI_REPL, 1014 IF_CMD, ip_sioctl_get_brdaddr, NULL }, 1015 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1016 IF_CMD, ip_sioctl_brdaddr, NULL }, 1017 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 1018 IPI_GET_CMD | IPI_REPL, 1019 IF_CMD, ip_sioctl_get_netmask, NULL }, 1020 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1021 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1022 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1023 IPI_GET_CMD | IPI_REPL, 1024 IF_CMD, ip_sioctl_get_metric, NULL }, 1025 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1026 IF_CMD, ip_sioctl_metric, NULL }, 1027 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1028 1029 /* See 166-168 below for extended SIOC*XARP ioctls */ 1030 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV, 1031 ARP_CMD, ip_sioctl_arp, NULL }, 1032 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD | IPI_REPL, 1033 ARP_CMD, ip_sioctl_arp, NULL }, 1034 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV, 1035 ARP_CMD, ip_sioctl_arp, NULL }, 1036 1037 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1038 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1039 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1040 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1041 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1042 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1043 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1044 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1045 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1046 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1047 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1048 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1049 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1050 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1051 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1052 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1053 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1054 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1055 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1056 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1057 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1058 1059 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1060 MISC_CMD, if_unitsel, if_unitsel_restart }, 1061 1062 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1063 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1064 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1065 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1066 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1067 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1068 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1069 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1070 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1071 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1072 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1073 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1074 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1075 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1076 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1077 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1078 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1079 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1080 1081 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1082 IPI_PRIV | IPI_WR | IPI_MODOK, 1083 IF_CMD, ip_sioctl_sifname, NULL }, 1084 1085 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1086 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1087 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1088 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1089 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1090 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1091 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1092 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1093 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1094 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1095 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1096 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1097 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1098 1099 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD | IPI_REPL, 1100 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1101 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1102 IF_CMD, ip_sioctl_get_muxid, NULL }, 1103 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1104 IPI_PRIV | IPI_WR | IPI_REPL, 1105 IF_CMD, ip_sioctl_muxid, NULL }, 1106 1107 /* Both if and lif variants share same func */ 1108 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1109 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1110 /* Both if and lif variants share same func */ 1111 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1112 IPI_PRIV | IPI_WR | IPI_REPL, 1113 IF_CMD, ip_sioctl_slifindex, NULL }, 1114 1115 /* copyin size cannot be coded for SIOCGIFCONF */ 1116 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD, 1117 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1118 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1119 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1120 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1121 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1122 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1123 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1124 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1125 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1126 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1127 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1128 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1129 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1130 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1131 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1132 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1133 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1134 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1135 1136 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1137 IPI_PRIV | IPI_WR | IPI_REPL, 1138 LIF_CMD, ip_sioctl_removeif, 1139 ip_sioctl_removeif_restart }, 1140 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1141 IPI_GET_CMD | IPI_PRIV | IPI_WR | IPI_REPL, 1142 LIF_CMD, ip_sioctl_addif, NULL }, 1143 #define SIOCLIFADDR_NDX 112 1144 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1145 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1146 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1147 IPI_GET_CMD | IPI_REPL, 1148 LIF_CMD, ip_sioctl_get_addr, NULL }, 1149 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1150 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1151 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1152 IPI_GET_CMD | IPI_REPL, 1153 LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1154 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1155 IPI_PRIV | IPI_WR | IPI_REPL, 1156 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1157 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1158 IPI_GET_CMD | IPI_MODOK | IPI_REPL, 1159 LIF_CMD, ip_sioctl_get_flags, NULL }, 1160 1161 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1162 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1163 1164 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1165 ip_sioctl_get_lifconf, NULL }, 1166 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1167 LIF_CMD, ip_sioctl_mtu, NULL }, 1168 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD | IPI_REPL, 1169 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1170 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1171 IPI_GET_CMD | IPI_REPL, 1172 LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1173 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1174 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1175 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1176 IPI_GET_CMD | IPI_REPL, 1177 LIF_CMD, ip_sioctl_get_netmask, NULL }, 1178 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1179 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1180 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1181 IPI_GET_CMD | IPI_REPL, 1182 LIF_CMD, ip_sioctl_get_metric, NULL }, 1183 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1184 LIF_CMD, ip_sioctl_metric, NULL }, 1185 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1186 IPI_PRIV | IPI_WR | IPI_MODOK | IPI_REPL, 1187 LIF_CMD, ip_sioctl_slifname, 1188 ip_sioctl_slifname_restart }, 1189 1190 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD | IPI_REPL, 1191 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1192 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1193 IPI_GET_CMD | IPI_REPL, 1194 LIF_CMD, ip_sioctl_get_muxid, NULL }, 1195 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1196 IPI_PRIV | IPI_WR | IPI_REPL, 1197 LIF_CMD, ip_sioctl_muxid, NULL }, 1198 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1199 IPI_GET_CMD | IPI_REPL, 1200 LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1201 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1202 IPI_PRIV | IPI_WR | IPI_REPL, 1203 LIF_CMD, ip_sioctl_slifindex, 0 }, 1204 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1205 LIF_CMD, ip_sioctl_token, NULL }, 1206 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1207 IPI_GET_CMD | IPI_REPL, 1208 LIF_CMD, ip_sioctl_get_token, NULL }, 1209 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1210 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1211 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1212 IPI_GET_CMD | IPI_REPL, 1213 LIF_CMD, ip_sioctl_get_subnet, NULL }, 1214 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1215 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1216 1217 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1218 IPI_GET_CMD | IPI_REPL, 1219 LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1220 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1221 LIF_CMD, ip_siocdelndp_v6, NULL }, 1222 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1223 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1224 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1225 LIF_CMD, ip_siocsetndp_v6, NULL }, 1226 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1227 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1228 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1229 MISC_CMD, ip_sioctl_tonlink, NULL }, 1230 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1231 MISC_CMD, ip_sioctl_tmysite, NULL }, 1232 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), IPI_REPL, 1233 TUN_CMD, ip_sioctl_tunparam, NULL }, 1234 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1235 IPI_PRIV | IPI_WR, 1236 TUN_CMD, ip_sioctl_tunparam, NULL }, 1237 1238 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1239 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1240 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1241 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1242 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1243 1244 /* 153 */ { SIOCLIFFAILOVER, sizeof (struct lifreq), 1245 IPI_PRIV | IPI_WR | IPI_REPL, 1246 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1247 /* 154 */ { SIOCLIFFAILBACK, sizeof (struct lifreq), 1248 IPI_PRIV | IPI_WR | IPI_REPL, 1249 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1250 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1251 IPI_PRIV | IPI_WR | IPI_REPL, 1252 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1253 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1254 IPI_GET_CMD | IPI_REPL, 1255 LIF_CMD, ip_sioctl_get_groupname, NULL }, 1256 /* 157 */ { SIOCGLIFOINDEX, sizeof (struct lifreq), 1257 IPI_GET_CMD | IPI_REPL, 1258 LIF_CMD, ip_sioctl_get_oindex, NULL }, 1259 1260 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1261 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1262 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1263 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1264 1265 /* 161 */ { SIOCSLIFOINDEX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1266 LIF_CMD, ip_sioctl_slifoindex, NULL }, 1267 1268 /* These are handled in ip_sioctl_copyin_setup itself */ 1269 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1270 MISC_CMD, NULL, NULL }, 1271 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1272 MISC_CMD, NULL, NULL }, 1273 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1274 1275 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1276 ip_sioctl_get_lifconf, NULL }, 1277 1278 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV, 1279 XARP_CMD, ip_sioctl_arp, NULL }, 1280 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD | IPI_REPL, 1281 XARP_CMD, ip_sioctl_arp, NULL }, 1282 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV, 1283 XARP_CMD, ip_sioctl_arp, NULL }, 1284 1285 /* SIOCPOPSOCKFS is not handled by IP */ 1286 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1287 1288 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1289 IPI_GET_CMD | IPI_REPL, 1290 LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1291 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1292 IPI_PRIV | IPI_WR | IPI_REPL, 1293 LIF_CMD, ip_sioctl_slifzone, 1294 ip_sioctl_slifzone_restart }, 1295 /* 172-174 are SCTP ioctls and not handled by IP */ 1296 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1297 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1298 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1299 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1300 IPI_GET_CMD, LIF_CMD, 1301 ip_sioctl_get_lifusesrc, 0 }, 1302 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1303 IPI_PRIV | IPI_WR, 1304 LIF_CMD, ip_sioctl_slifusesrc, 1305 NULL }, 1306 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1307 ip_sioctl_get_lifsrcof, NULL }, 1308 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1309 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1310 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1311 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1312 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1313 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1314 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1315 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1316 /* 182 */ { SIOCSIPMPFAILBACK, sizeof (int), IPI_PRIV, MISC_CMD, 1317 ip_sioctl_set_ipmpfailback, NULL }, 1318 /* SIOCSENABLESDP is handled by SDP */ 1319 /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL }, 1320 /* 184 */ { IPI_DONTCARE /* SIOCSQPTR */, 0, 0, 0, NULL, NULL }, 1321 }; 1322 1323 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1324 1325 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1326 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1327 IPI_GET_CMD | IPI_REPL, TUN_CMD, ip_sioctl_tunparam, NULL }, 1328 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1329 TUN_CMD, ip_sioctl_tunparam, NULL }, 1330 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1331 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1332 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1333 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1334 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1335 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1336 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1337 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_REPL | IPI_GET_CMD, 1338 MISC_CMD, mrt_ioctl}, 1339 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_REPL | IPI_GET_CMD, 1340 MISC_CMD, mrt_ioctl}, 1341 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_REPL | IPI_GET_CMD, 1342 MISC_CMD, mrt_ioctl} 1343 }; 1344 1345 int ip_misc_ioctl_count = 1346 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1347 1348 int conn_drain_nthreads; /* Number of drainers reqd. */ 1349 /* Settable in /etc/system */ 1350 /* Defined in ip_ire.c */ 1351 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1352 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1353 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1354 1355 static nv_t ire_nv_arr[] = { 1356 { IRE_BROADCAST, "BROADCAST" }, 1357 { IRE_LOCAL, "LOCAL" }, 1358 { IRE_LOOPBACK, "LOOPBACK" }, 1359 { IRE_CACHE, "CACHE" }, 1360 { IRE_DEFAULT, "DEFAULT" }, 1361 { IRE_PREFIX, "PREFIX" }, 1362 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1363 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1364 { IRE_HOST, "HOST" }, 1365 { 0 } 1366 }; 1367 1368 nv_t *ire_nv_tbl = ire_nv_arr; 1369 1370 /* Simple ICMP IP Header Template */ 1371 static ipha_t icmp_ipha = { 1372 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1373 }; 1374 1375 struct module_info ip_mod_info = { 1376 IP_MOD_ID, IP_MOD_NAME, IP_MOD_MINPSZ, IP_MOD_MAXPSZ, IP_MOD_HIWAT, 1377 IP_MOD_LOWAT 1378 }; 1379 1380 /* 1381 * Duplicate static symbols within a module confuses mdb; so we avoid the 1382 * problem by making the symbols here distinct from those in udp.c. 1383 */ 1384 1385 /* 1386 * Entry points for IP as a device and as a module. 1387 * FIXME: down the road we might want a separate module and driver qinit. 1388 * We have separate open functions for the /dev/ip and /dev/ip6 devices. 1389 */ 1390 static struct qinit iprinitv4 = { 1391 (pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL, 1392 &ip_mod_info 1393 }; 1394 1395 struct qinit iprinitv6 = { 1396 (pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL, 1397 &ip_mod_info 1398 }; 1399 1400 static struct qinit ipwinitv4 = { 1401 (pfi_t)ip_wput, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1402 &ip_mod_info 1403 }; 1404 1405 struct qinit ipwinitv6 = { 1406 (pfi_t)ip_wput_v6, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1407 &ip_mod_info 1408 }; 1409 1410 static struct qinit iplrinit = { 1411 (pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL, 1412 &ip_mod_info 1413 }; 1414 1415 static struct qinit iplwinit = { 1416 (pfi_t)ip_lwput, NULL, NULL, NULL, NULL, 1417 &ip_mod_info 1418 }; 1419 1420 /* For AF_INET aka /dev/ip */ 1421 struct streamtab ipinfov4 = { 1422 &iprinitv4, &ipwinitv4, &iplrinit, &iplwinit 1423 }; 1424 1425 /* For AF_INET6 aka /dev/ip6 */ 1426 struct streamtab ipinfov6 = { 1427 &iprinitv6, &ipwinitv6, &iplrinit, &iplwinit 1428 }; 1429 1430 #ifdef DEBUG 1431 static boolean_t skip_sctp_cksum = B_FALSE; 1432 #endif 1433 1434 /* 1435 * Prepend the zoneid using an ipsec_out_t for later use by functions like 1436 * ip_rput_v6(), ip_output(), etc. If the message 1437 * block already has a M_CTL at the front of it, then simply set the zoneid 1438 * appropriately. 1439 */ 1440 mblk_t * 1441 ip_prepend_zoneid(mblk_t *mp, zoneid_t zoneid, ip_stack_t *ipst) 1442 { 1443 mblk_t *first_mp; 1444 ipsec_out_t *io; 1445 1446 ASSERT(zoneid != ALL_ZONES); 1447 if (mp->b_datap->db_type == M_CTL) { 1448 io = (ipsec_out_t *)mp->b_rptr; 1449 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1450 io->ipsec_out_zoneid = zoneid; 1451 return (mp); 1452 } 1453 1454 first_mp = ipsec_alloc_ipsec_out(ipst->ips_netstack); 1455 if (first_mp == NULL) 1456 return (NULL); 1457 io = (ipsec_out_t *)first_mp->b_rptr; 1458 /* This is not a secure packet */ 1459 io->ipsec_out_secure = B_FALSE; 1460 io->ipsec_out_zoneid = zoneid; 1461 first_mp->b_cont = mp; 1462 return (first_mp); 1463 } 1464 1465 /* 1466 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1467 */ 1468 mblk_t * 1469 ip_copymsg(mblk_t *mp) 1470 { 1471 mblk_t *nmp; 1472 ipsec_info_t *in; 1473 1474 if (mp->b_datap->db_type != M_CTL) 1475 return (copymsg(mp)); 1476 1477 in = (ipsec_info_t *)mp->b_rptr; 1478 1479 /* 1480 * Note that M_CTL is also used for delivering ICMP error messages 1481 * upstream to transport layers. 1482 */ 1483 if (in->ipsec_info_type != IPSEC_OUT && 1484 in->ipsec_info_type != IPSEC_IN) 1485 return (copymsg(mp)); 1486 1487 nmp = copymsg(mp->b_cont); 1488 1489 if (in->ipsec_info_type == IPSEC_OUT) { 1490 return (ipsec_out_tag(mp, nmp, 1491 ((ipsec_out_t *)in)->ipsec_out_ns)); 1492 } else { 1493 return (ipsec_in_tag(mp, nmp, 1494 ((ipsec_in_t *)in)->ipsec_in_ns)); 1495 } 1496 } 1497 1498 /* Generate an ICMP fragmentation needed message. */ 1499 static void 1500 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu, zoneid_t zoneid, 1501 ip_stack_t *ipst) 1502 { 1503 icmph_t icmph; 1504 mblk_t *first_mp; 1505 boolean_t mctl_present; 1506 1507 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1508 1509 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 1510 if (mctl_present) 1511 freeb(first_mp); 1512 return; 1513 } 1514 1515 bzero(&icmph, sizeof (icmph_t)); 1516 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1517 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1518 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1519 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1520 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1521 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 1522 ipst); 1523 } 1524 1525 /* 1526 * icmp_inbound deals with ICMP messages in the following ways. 1527 * 1528 * 1) It needs to send a reply back and possibly delivering it 1529 * to the "interested" upper clients. 1530 * 2) It needs to send it to the upper clients only. 1531 * 3) It needs to change some values in IP only. 1532 * 4) It needs to change some values in IP and upper layers e.g TCP. 1533 * 1534 * We need to accomodate icmp messages coming in clear until we get 1535 * everything secure from the wire. If icmp_accept_clear_messages 1536 * is zero we check with the global policy and act accordingly. If 1537 * it is non-zero, we accept the message without any checks. But 1538 * *this does not mean* that this will be delivered to the upper 1539 * clients. By accepting we might send replies back, change our MTU 1540 * value etc. but delivery to the ULP/clients depends on their policy 1541 * dispositions. 1542 * 1543 * We handle the above 4 cases in the context of IPsec in the 1544 * following way : 1545 * 1546 * 1) Send the reply back in the same way as the request came in. 1547 * If it came in encrypted, it goes out encrypted. If it came in 1548 * clear, it goes out in clear. Thus, this will prevent chosen 1549 * plain text attack. 1550 * 2) The client may or may not expect things to come in secure. 1551 * If it comes in secure, the policy constraints are checked 1552 * before delivering it to the upper layers. If it comes in 1553 * clear, ipsec_inbound_accept_clear will decide whether to 1554 * accept this in clear or not. In both the cases, if the returned 1555 * message (IP header + 8 bytes) that caused the icmp message has 1556 * AH/ESP headers, it is sent up to AH/ESP for validation before 1557 * sending up. If there are only 8 bytes of returned message, then 1558 * upper client will not be notified. 1559 * 3) Check with global policy to see whether it matches the constaints. 1560 * But this will be done only if icmp_accept_messages_in_clear is 1561 * zero. 1562 * 4) If we need to change both in IP and ULP, then the decision taken 1563 * while affecting the values in IP and while delivering up to TCP 1564 * should be the same. 1565 * 1566 * There are two cases. 1567 * 1568 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1569 * failed), we will not deliver it to the ULP, even though they 1570 * are *willing* to accept in *clear*. This is fine as our global 1571 * disposition to icmp messages asks us reject the datagram. 1572 * 1573 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1574 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1575 * to deliver it to ULP (policy failed), it can lead to 1576 * consistency problems. The cases known at this time are 1577 * ICMP_DESTINATION_UNREACHABLE messages with following code 1578 * values : 1579 * 1580 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1581 * and Upper layer rejects. Then the communication will 1582 * come to a stop. This is solved by making similar decisions 1583 * at both levels. Currently, when we are unable to deliver 1584 * to the Upper Layer (due to policy failures) while IP has 1585 * adjusted ire_max_frag, the next outbound datagram would 1586 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1587 * will be with the right level of protection. Thus the right 1588 * value will be communicated even if we are not able to 1589 * communicate when we get from the wire initially. But this 1590 * assumes there would be at least one outbound datagram after 1591 * IP has adjusted its ire_max_frag value. To make things 1592 * simpler, we accept in clear after the validation of 1593 * AH/ESP headers. 1594 * 1595 * - Other ICMP ERRORS : We may not be able to deliver it to the 1596 * upper layer depending on the level of protection the upper 1597 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1598 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1599 * should be accepted in clear when the Upper layer expects secure. 1600 * Thus the communication may get aborted by some bad ICMP 1601 * packets. 1602 * 1603 * IPQoS Notes: 1604 * The only instance when a packet is sent for processing is when there 1605 * isn't an ICMP client and if we are interested in it. 1606 * If there is a client, IPPF processing will take place in the 1607 * ip_fanout_proto routine. 1608 * 1609 * Zones notes: 1610 * The packet is only processed in the context of the specified zone: typically 1611 * only this zone will reply to an echo request, and only interested clients in 1612 * this zone will receive a copy of the packet. This means that the caller must 1613 * call icmp_inbound() for each relevant zone. 1614 */ 1615 static void 1616 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1617 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1618 ill_t *recv_ill, zoneid_t zoneid) 1619 { 1620 icmph_t *icmph; 1621 ipha_t *ipha; 1622 int iph_hdr_length; 1623 int hdr_length; 1624 boolean_t interested; 1625 uint32_t ts; 1626 uchar_t *wptr; 1627 ipif_t *ipif; 1628 mblk_t *first_mp; 1629 ipsec_in_t *ii; 1630 ire_t *src_ire; 1631 boolean_t onlink; 1632 timestruc_t now; 1633 uint32_t ill_index; 1634 ip_stack_t *ipst; 1635 1636 ASSERT(ill != NULL); 1637 ipst = ill->ill_ipst; 1638 1639 first_mp = mp; 1640 if (mctl_present) { 1641 mp = first_mp->b_cont; 1642 ASSERT(mp != NULL); 1643 } 1644 1645 ipha = (ipha_t *)mp->b_rptr; 1646 if (ipst->ips_icmp_accept_clear_messages == 0) { 1647 first_mp = ipsec_check_global_policy(first_mp, NULL, 1648 ipha, NULL, mctl_present, ipst->ips_netstack); 1649 if (first_mp == NULL) 1650 return; 1651 } 1652 1653 /* 1654 * On a labeled system, we have to check whether the zone itself is 1655 * permitted to receive raw traffic. 1656 */ 1657 if (is_system_labeled()) { 1658 if (zoneid == ALL_ZONES) 1659 zoneid = tsol_packet_to_zoneid(mp); 1660 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1661 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1662 zoneid)); 1663 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1664 freemsg(first_mp); 1665 return; 1666 } 1667 } 1668 1669 /* 1670 * We have accepted the ICMP message. It means that we will 1671 * respond to the packet if needed. It may not be delivered 1672 * to the upper client depending on the policy constraints 1673 * and the disposition in ipsec_inbound_accept_clear. 1674 */ 1675 1676 ASSERT(ill != NULL); 1677 1678 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1679 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1680 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1681 /* Last chance to get real. */ 1682 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1683 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1684 freemsg(first_mp); 1685 return; 1686 } 1687 /* Refresh iph following the pullup. */ 1688 ipha = (ipha_t *)mp->b_rptr; 1689 } 1690 /* ICMP header checksum, including checksum field, should be zero. */ 1691 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1692 IP_CSUM(mp, iph_hdr_length, 0)) { 1693 BUMP_MIB(&ipst->ips_icmp_mib, icmpInCksumErrs); 1694 freemsg(first_mp); 1695 return; 1696 } 1697 /* The IP header will always be a multiple of four bytes */ 1698 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1699 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1700 icmph->icmph_code)); 1701 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1702 /* We will set "interested" to "true" if we want a copy */ 1703 interested = B_FALSE; 1704 switch (icmph->icmph_type) { 1705 case ICMP_ECHO_REPLY: 1706 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1707 break; 1708 case ICMP_DEST_UNREACHABLE: 1709 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1710 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1711 interested = B_TRUE; /* Pass up to transport */ 1712 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1713 break; 1714 case ICMP_SOURCE_QUENCH: 1715 interested = B_TRUE; /* Pass up to transport */ 1716 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1717 break; 1718 case ICMP_REDIRECT: 1719 if (!ipst->ips_ip_ignore_redirect) 1720 interested = B_TRUE; 1721 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1722 break; 1723 case ICMP_ECHO_REQUEST: 1724 /* 1725 * Whether to respond to echo requests that come in as IP 1726 * broadcasts or as IP multicast is subject to debate 1727 * (what isn't?). We aim to please, you pick it. 1728 * Default is do it. 1729 */ 1730 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1731 /* unicast: always respond */ 1732 interested = B_TRUE; 1733 } else if (CLASSD(ipha->ipha_dst)) { 1734 /* multicast: respond based on tunable */ 1735 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1736 } else if (broadcast) { 1737 /* broadcast: respond based on tunable */ 1738 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1739 } 1740 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1741 break; 1742 case ICMP_ROUTER_ADVERTISEMENT: 1743 case ICMP_ROUTER_SOLICITATION: 1744 break; 1745 case ICMP_TIME_EXCEEDED: 1746 interested = B_TRUE; /* Pass up to transport */ 1747 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1748 break; 1749 case ICMP_PARAM_PROBLEM: 1750 interested = B_TRUE; /* Pass up to transport */ 1751 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1752 break; 1753 case ICMP_TIME_STAMP_REQUEST: 1754 /* Response to Time Stamp Requests is local policy. */ 1755 if (ipst->ips_ip_g_resp_to_timestamp && 1756 /* So is whether to respond if it was an IP broadcast. */ 1757 (!broadcast || ipst->ips_ip_g_resp_to_timestamp_bcast)) { 1758 int tstamp_len = 3 * sizeof (uint32_t); 1759 1760 if (wptr + tstamp_len > mp->b_wptr) { 1761 if (!pullupmsg(mp, wptr + tstamp_len - 1762 mp->b_rptr)) { 1763 BUMP_MIB(ill->ill_ip_mib, 1764 ipIfStatsInDiscards); 1765 freemsg(first_mp); 1766 return; 1767 } 1768 /* Refresh ipha following the pullup. */ 1769 ipha = (ipha_t *)mp->b_rptr; 1770 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1771 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1772 } 1773 interested = B_TRUE; 1774 } 1775 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1776 break; 1777 case ICMP_TIME_STAMP_REPLY: 1778 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1779 break; 1780 case ICMP_INFO_REQUEST: 1781 /* Per RFC 1122 3.2.2.7, ignore this. */ 1782 case ICMP_INFO_REPLY: 1783 break; 1784 case ICMP_ADDRESS_MASK_REQUEST: 1785 if ((ipst->ips_ip_respond_to_address_mask_broadcast || 1786 !broadcast) && 1787 /* TODO m_pullup of complete header? */ 1788 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) { 1789 interested = B_TRUE; 1790 } 1791 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1792 break; 1793 case ICMP_ADDRESS_MASK_REPLY: 1794 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1795 break; 1796 default: 1797 interested = B_TRUE; /* Pass up to transport */ 1798 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1799 break; 1800 } 1801 /* See if there is an ICMP client. */ 1802 if (ipst->ips_ipcl_proto_fanout[IPPROTO_ICMP].connf_head != NULL) { 1803 /* If there is an ICMP client and we want one too, copy it. */ 1804 mblk_t *first_mp1; 1805 1806 if (!interested) { 1807 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1808 ip_policy, recv_ill, zoneid); 1809 return; 1810 } 1811 first_mp1 = ip_copymsg(first_mp); 1812 if (first_mp1 != NULL) { 1813 ip_fanout_proto(q, first_mp1, ill, ipha, 1814 0, mctl_present, ip_policy, recv_ill, zoneid); 1815 } 1816 } else if (!interested) { 1817 freemsg(first_mp); 1818 return; 1819 } else { 1820 /* 1821 * Initiate policy processing for this packet if ip_policy 1822 * is true. 1823 */ 1824 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 1825 ill_index = ill->ill_phyint->phyint_ifindex; 1826 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1827 if (mp == NULL) { 1828 if (mctl_present) { 1829 freeb(first_mp); 1830 } 1831 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1832 return; 1833 } 1834 } 1835 } 1836 /* We want to do something with it. */ 1837 /* Check db_ref to make sure we can modify the packet. */ 1838 if (mp->b_datap->db_ref > 1) { 1839 mblk_t *first_mp1; 1840 1841 first_mp1 = ip_copymsg(first_mp); 1842 freemsg(first_mp); 1843 if (!first_mp1) { 1844 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1845 return; 1846 } 1847 first_mp = first_mp1; 1848 if (mctl_present) { 1849 mp = first_mp->b_cont; 1850 ASSERT(mp != NULL); 1851 } else { 1852 mp = first_mp; 1853 } 1854 ipha = (ipha_t *)mp->b_rptr; 1855 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1856 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1857 } 1858 switch (icmph->icmph_type) { 1859 case ICMP_ADDRESS_MASK_REQUEST: 1860 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1861 if (ipif == NULL) { 1862 freemsg(first_mp); 1863 return; 1864 } 1865 /* 1866 * outging interface must be IPv4 1867 */ 1868 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1869 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1870 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1871 ipif_refrele(ipif); 1872 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1873 break; 1874 case ICMP_ECHO_REQUEST: 1875 icmph->icmph_type = ICMP_ECHO_REPLY; 1876 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1877 break; 1878 case ICMP_TIME_STAMP_REQUEST: { 1879 uint32_t *tsp; 1880 1881 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1882 tsp = (uint32_t *)wptr; 1883 tsp++; /* Skip past 'originate time' */ 1884 /* Compute # of milliseconds since midnight */ 1885 gethrestime(&now); 1886 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1887 now.tv_nsec / (NANOSEC / MILLISEC); 1888 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1889 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1890 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1891 break; 1892 } 1893 default: 1894 ipha = (ipha_t *)&icmph[1]; 1895 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1896 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1897 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1898 freemsg(first_mp); 1899 return; 1900 } 1901 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1902 ipha = (ipha_t *)&icmph[1]; 1903 } 1904 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1905 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1906 freemsg(first_mp); 1907 return; 1908 } 1909 hdr_length = IPH_HDR_LENGTH(ipha); 1910 if (hdr_length < sizeof (ipha_t)) { 1911 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1912 freemsg(first_mp); 1913 return; 1914 } 1915 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1916 if (!pullupmsg(mp, 1917 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1918 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1919 freemsg(first_mp); 1920 return; 1921 } 1922 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1923 ipha = (ipha_t *)&icmph[1]; 1924 } 1925 switch (icmph->icmph_type) { 1926 case ICMP_REDIRECT: 1927 /* 1928 * As there is no upper client to deliver, we don't 1929 * need the first_mp any more. 1930 */ 1931 if (mctl_present) { 1932 freeb(first_mp); 1933 } 1934 icmp_redirect(ill, mp); 1935 return; 1936 case ICMP_DEST_UNREACHABLE: 1937 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1938 if (!icmp_inbound_too_big(icmph, ipha, ill, 1939 zoneid, mp, iph_hdr_length, ipst)) { 1940 freemsg(first_mp); 1941 return; 1942 } 1943 /* 1944 * icmp_inbound_too_big() may alter mp. 1945 * Resynch ipha and icmph accordingly. 1946 */ 1947 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1948 ipha = (ipha_t *)&icmph[1]; 1949 } 1950 /* FALLTHRU */ 1951 default : 1952 /* 1953 * IPQoS notes: Since we have already done IPQoS 1954 * processing we don't want to do it again in 1955 * the fanout routines called by 1956 * icmp_inbound_error_fanout, hence the last 1957 * argument, ip_policy, is B_FALSE. 1958 */ 1959 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 1960 ipha, iph_hdr_length, hdr_length, mctl_present, 1961 B_FALSE, recv_ill, zoneid); 1962 } 1963 return; 1964 } 1965 /* Send out an ICMP packet */ 1966 icmph->icmph_checksum = 0; 1967 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 1968 if (broadcast || CLASSD(ipha->ipha_dst)) { 1969 ipif_t *ipif_chosen; 1970 /* 1971 * Make it look like it was directed to us, so we don't look 1972 * like a fool with a broadcast or multicast source address. 1973 */ 1974 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1975 /* 1976 * Make sure that we haven't grabbed an interface that's DOWN. 1977 */ 1978 if (ipif != NULL) { 1979 ipif_chosen = ipif_select_source(ipif->ipif_ill, 1980 ipha->ipha_src, zoneid); 1981 if (ipif_chosen != NULL) { 1982 ipif_refrele(ipif); 1983 ipif = ipif_chosen; 1984 } 1985 } 1986 if (ipif == NULL) { 1987 ip0dbg(("icmp_inbound: " 1988 "No source for broadcast/multicast:\n" 1989 "\tsrc 0x%x dst 0x%x ill %p " 1990 "ipif_lcl_addr 0x%x\n", 1991 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 1992 (void *)ill, 1993 ill->ill_ipif->ipif_lcl_addr)); 1994 freemsg(first_mp); 1995 return; 1996 } 1997 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1998 ipha->ipha_dst = ipif->ipif_src_addr; 1999 ipif_refrele(ipif); 2000 } 2001 /* Reset time to live. */ 2002 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 2003 { 2004 /* Swap source and destination addresses */ 2005 ipaddr_t tmp; 2006 2007 tmp = ipha->ipha_src; 2008 ipha->ipha_src = ipha->ipha_dst; 2009 ipha->ipha_dst = tmp; 2010 } 2011 ipha->ipha_ident = 0; 2012 if (!IS_SIMPLE_IPH(ipha)) 2013 icmp_options_update(ipha); 2014 2015 /* 2016 * ICMP echo replies should go out on the same interface 2017 * the request came on as probes used by in.mpathd for detecting 2018 * NIC failures are ECHO packets. We turn-off load spreading 2019 * by setting ipsec_in_attach_if to B_TRUE, which is copied 2020 * to ipsec_out_attach_if by ipsec_in_to_out called later in this 2021 * function. This is in turn handled by ip_wput and ip_newroute 2022 * to make sure that the packet goes out on the interface it came 2023 * in on. If we don't turnoff load spreading, the packets might get 2024 * dropped if there are no non-FAILED/INACTIVE interfaces for it 2025 * to go out and in.mpathd would wrongly detect a failure or 2026 * mis-detect a NIC failure for link failure. As load spreading 2027 * can happen only if ill_group is not NULL, we do only for 2028 * that case and this does not affect the normal case. 2029 * 2030 * We turn off load spreading only on echo packets that came from 2031 * on-link hosts. If the interface route has been deleted, this will 2032 * not be enforced as we can't do much. For off-link hosts, as the 2033 * default routes in IPv4 does not typically have an ire_ipif 2034 * pointer, we can't force MATCH_IRE_ILL in ip_wput/ip_newroute. 2035 * Moreover, expecting a default route through this interface may 2036 * not be correct. We use ipha_dst because of the swap above. 2037 */ 2038 onlink = B_FALSE; 2039 if (icmph->icmph_type == ICMP_ECHO_REPLY && ill->ill_group != NULL) { 2040 /* 2041 * First, we need to make sure that it is not one of our 2042 * local addresses. If we set onlink when it is one of 2043 * our local addresses, we will end up creating IRE_CACHES 2044 * for one of our local addresses. Then, we will never 2045 * accept packets for them afterwards. 2046 */ 2047 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_LOCAL, 2048 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2049 if (src_ire == NULL) { 2050 ipif = ipif_get_next_ipif(NULL, ill); 2051 if (ipif == NULL) { 2052 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2053 freemsg(mp); 2054 return; 2055 } 2056 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 2057 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 2058 NULL, MATCH_IRE_ILL | MATCH_IRE_TYPE, ipst); 2059 ipif_refrele(ipif); 2060 if (src_ire != NULL) { 2061 onlink = B_TRUE; 2062 ire_refrele(src_ire); 2063 } 2064 } else { 2065 ire_refrele(src_ire); 2066 } 2067 } 2068 if (!mctl_present) { 2069 /* 2070 * This packet should go out the same way as it 2071 * came in i.e in clear. To make sure that global 2072 * policy will not be applied to this in ip_wput_ire, 2073 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2074 */ 2075 ASSERT(first_mp == mp); 2076 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2077 if (first_mp == NULL) { 2078 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2079 freemsg(mp); 2080 return; 2081 } 2082 ii = (ipsec_in_t *)first_mp->b_rptr; 2083 2084 /* This is not a secure packet */ 2085 ii->ipsec_in_secure = B_FALSE; 2086 if (onlink) { 2087 ii->ipsec_in_attach_if = B_TRUE; 2088 ii->ipsec_in_ill_index = 2089 ill->ill_phyint->phyint_ifindex; 2090 ii->ipsec_in_rill_index = 2091 recv_ill->ill_phyint->phyint_ifindex; 2092 } 2093 first_mp->b_cont = mp; 2094 } else if (onlink) { 2095 ii = (ipsec_in_t *)first_mp->b_rptr; 2096 ii->ipsec_in_attach_if = B_TRUE; 2097 ii->ipsec_in_ill_index = ill->ill_phyint->phyint_ifindex; 2098 ii->ipsec_in_rill_index = recv_ill->ill_phyint->phyint_ifindex; 2099 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2100 } else { 2101 ii = (ipsec_in_t *)first_mp->b_rptr; 2102 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2103 } 2104 ii->ipsec_in_zoneid = zoneid; 2105 ASSERT(zoneid != ALL_ZONES); 2106 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2107 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2108 return; 2109 } 2110 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2111 put(WR(q), first_mp); 2112 } 2113 2114 static ipaddr_t 2115 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2116 { 2117 conn_t *connp; 2118 connf_t *connfp; 2119 ipaddr_t nexthop_addr = INADDR_ANY; 2120 int hdr_length = IPH_HDR_LENGTH(ipha); 2121 uint16_t *up; 2122 uint32_t ports; 2123 ip_stack_t *ipst = ill->ill_ipst; 2124 2125 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2126 switch (ipha->ipha_protocol) { 2127 case IPPROTO_TCP: 2128 { 2129 tcph_t *tcph; 2130 2131 /* do a reverse lookup */ 2132 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2133 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2134 TCPS_LISTEN, ipst); 2135 break; 2136 } 2137 case IPPROTO_UDP: 2138 { 2139 uint32_t dstport, srcport; 2140 2141 ((uint16_t *)&ports)[0] = up[1]; 2142 ((uint16_t *)&ports)[1] = up[0]; 2143 2144 /* Extract ports in net byte order */ 2145 dstport = htons(ntohl(ports) & 0xFFFF); 2146 srcport = htons(ntohl(ports) >> 16); 2147 2148 connfp = &ipst->ips_ipcl_udp_fanout[ 2149 IPCL_UDP_HASH(dstport, ipst)]; 2150 mutex_enter(&connfp->connf_lock); 2151 connp = connfp->connf_head; 2152 2153 /* do a reverse lookup */ 2154 while ((connp != NULL) && 2155 (!IPCL_UDP_MATCH(connp, dstport, 2156 ipha->ipha_src, srcport, ipha->ipha_dst) || 2157 !IPCL_ZONE_MATCH(connp, zoneid))) { 2158 connp = connp->conn_next; 2159 } 2160 if (connp != NULL) 2161 CONN_INC_REF(connp); 2162 mutex_exit(&connfp->connf_lock); 2163 break; 2164 } 2165 case IPPROTO_SCTP: 2166 { 2167 in6_addr_t map_src, map_dst; 2168 2169 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2170 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2171 ((uint16_t *)&ports)[0] = up[1]; 2172 ((uint16_t *)&ports)[1] = up[0]; 2173 2174 connp = sctp_find_conn(&map_src, &map_dst, ports, 2175 zoneid, ipst->ips_netstack->netstack_sctp); 2176 if (connp == NULL) { 2177 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2178 zoneid, ports, ipha, ipst); 2179 } else { 2180 CONN_INC_REF(connp); 2181 SCTP_REFRELE(CONN2SCTP(connp)); 2182 } 2183 break; 2184 } 2185 default: 2186 { 2187 ipha_t ripha; 2188 2189 ripha.ipha_src = ipha->ipha_dst; 2190 ripha.ipha_dst = ipha->ipha_src; 2191 ripha.ipha_protocol = ipha->ipha_protocol; 2192 2193 connfp = &ipst->ips_ipcl_proto_fanout[ 2194 ipha->ipha_protocol]; 2195 mutex_enter(&connfp->connf_lock); 2196 connp = connfp->connf_head; 2197 for (connp = connfp->connf_head; connp != NULL; 2198 connp = connp->conn_next) { 2199 if (IPCL_PROTO_MATCH(connp, 2200 ipha->ipha_protocol, &ripha, ill, 2201 0, zoneid)) { 2202 CONN_INC_REF(connp); 2203 break; 2204 } 2205 } 2206 mutex_exit(&connfp->connf_lock); 2207 } 2208 } 2209 if (connp != NULL) { 2210 if (connp->conn_nexthop_set) 2211 nexthop_addr = connp->conn_nexthop_v4; 2212 CONN_DEC_REF(connp); 2213 } 2214 return (nexthop_addr); 2215 } 2216 2217 /* Table from RFC 1191 */ 2218 static int icmp_frag_size_table[] = 2219 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2220 2221 /* 2222 * Process received ICMP Packet too big. 2223 * After updating any IRE it does the fanout to any matching transport streams. 2224 * Assumes the message has been pulled up till the IP header that caused 2225 * the error. 2226 * 2227 * Returns B_FALSE on failure and B_TRUE on success. 2228 */ 2229 static boolean_t 2230 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2231 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length, 2232 ip_stack_t *ipst) 2233 { 2234 ire_t *ire, *first_ire; 2235 int mtu, orig_mtu; 2236 int hdr_length; 2237 ipaddr_t nexthop_addr; 2238 boolean_t disable_pmtud; 2239 2240 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2241 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2242 ASSERT(ill != NULL); 2243 2244 hdr_length = IPH_HDR_LENGTH(ipha); 2245 2246 /* Drop if the original packet contained a source route */ 2247 if (ip_source_route_included(ipha)) { 2248 return (B_FALSE); 2249 } 2250 /* 2251 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport 2252 * header. 2253 */ 2254 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2255 mp->b_wptr) { 2256 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2257 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2258 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2259 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2260 return (B_FALSE); 2261 } 2262 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2263 ipha = (ipha_t *)&icmph[1]; 2264 } 2265 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2266 if (nexthop_addr != INADDR_ANY) { 2267 /* nexthop set */ 2268 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2269 nexthop_addr, 0, NULL, ALL_ZONES, MBLK_GETLABEL(mp), 2270 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, ipst); 2271 } else { 2272 /* nexthop not set */ 2273 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2274 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2275 } 2276 2277 if (!first_ire) { 2278 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2279 ntohl(ipha->ipha_dst))); 2280 return (B_FALSE); 2281 } 2282 2283 /* Check for MTU discovery advice as described in RFC 1191 */ 2284 mtu = ntohs(icmph->icmph_du_mtu); 2285 orig_mtu = mtu; 2286 disable_pmtud = B_FALSE; 2287 2288 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2289 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2290 ire = ire->ire_next) { 2291 /* 2292 * Look for the connection to which this ICMP message is 2293 * directed. If it has the IP_NEXTHOP option set, then the 2294 * search is limited to IREs with the MATCH_IRE_PRIVATE 2295 * option. Else the search is limited to regular IREs. 2296 */ 2297 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2298 (nexthop_addr != ire->ire_gateway_addr)) || 2299 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2300 (nexthop_addr != INADDR_ANY))) 2301 continue; 2302 2303 mutex_enter(&ire->ire_lock); 2304 if (icmph->icmph_du_zero != 0 || mtu < ipst->ips_ip_pmtu_min) { 2305 uint32_t length; 2306 int i; 2307 2308 /* 2309 * Use the table from RFC 1191 to figure out 2310 * the next "plateau" based on the length in 2311 * the original IP packet. 2312 */ 2313 length = ntohs(ipha->ipha_length); 2314 DTRACE_PROBE2(ip4__pmtu__guess, ire_t *, ire, 2315 uint32_t, length); 2316 if (ire->ire_max_frag <= length && 2317 ire->ire_max_frag >= length - hdr_length) { 2318 /* 2319 * Handle broken BSD 4.2 systems that 2320 * return the wrong iph_length in ICMP 2321 * errors. 2322 */ 2323 length -= hdr_length; 2324 } 2325 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2326 if (length > icmp_frag_size_table[i]) 2327 break; 2328 } 2329 if (i == A_CNT(icmp_frag_size_table)) { 2330 /* Smaller than 68! */ 2331 disable_pmtud = B_TRUE; 2332 mtu = ipst->ips_ip_pmtu_min; 2333 } else { 2334 mtu = icmp_frag_size_table[i]; 2335 if (mtu < ipst->ips_ip_pmtu_min) { 2336 mtu = ipst->ips_ip_pmtu_min; 2337 disable_pmtud = B_TRUE; 2338 } 2339 } 2340 /* Fool the ULP into believing our guessed PMTU. */ 2341 icmph->icmph_du_zero = 0; 2342 icmph->icmph_du_mtu = htons(mtu); 2343 } 2344 if (disable_pmtud) 2345 ire->ire_frag_flag = 0; 2346 /* Reduce the IRE max frag value as advised. */ 2347 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2348 mutex_exit(&ire->ire_lock); 2349 DTRACE_PROBE4(ip4__pmtu__change, icmph_t *, icmph, ire_t *, 2350 ire, int, orig_mtu, int, mtu); 2351 } 2352 rw_exit(&first_ire->ire_bucket->irb_lock); 2353 ire_refrele(first_ire); 2354 return (B_TRUE); 2355 } 2356 2357 /* 2358 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2359 * calls this function. 2360 */ 2361 static mblk_t * 2362 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2363 { 2364 ipha_t *ipha; 2365 icmph_t *icmph; 2366 ipha_t *in_ipha; 2367 int length; 2368 2369 ASSERT(mp->b_datap->db_type == M_DATA); 2370 2371 /* 2372 * For Self-encapsulated packets, we added an extra IP header 2373 * without the options. Inner IP header is the one from which 2374 * the outer IP header was formed. Thus, we need to remove the 2375 * outer IP header. To do this, we pullup the whole message 2376 * and overlay whatever follows the outer IP header over the 2377 * outer IP header. 2378 */ 2379 2380 if (!pullupmsg(mp, -1)) 2381 return (NULL); 2382 2383 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2384 ipha = (ipha_t *)&icmph[1]; 2385 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2386 2387 /* 2388 * The length that we want to overlay is following the inner 2389 * IP header. Subtracting the IP header + icmp header + outer 2390 * IP header's length should give us the length that we want to 2391 * overlay. 2392 */ 2393 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2394 hdr_length; 2395 /* 2396 * Overlay whatever follows the inner header over the 2397 * outer header. 2398 */ 2399 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2400 2401 /* Set the wptr to account for the outer header */ 2402 mp->b_wptr -= hdr_length; 2403 return (mp); 2404 } 2405 2406 /* 2407 * Try to pass the ICMP message upstream in case the ULP cares. 2408 * 2409 * If the packet that caused the ICMP error is secure, we send 2410 * it to AH/ESP to make sure that the attached packet has a 2411 * valid association. ipha in the code below points to the 2412 * IP header of the packet that caused the error. 2413 * 2414 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2415 * in the context of IPsec. Normally we tell the upper layer 2416 * whenever we send the ire (including ip_bind), the IPsec header 2417 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2418 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2419 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2420 * same thing. As TCP has the IPsec options size that needs to be 2421 * adjusted, we just pass the MTU unchanged. 2422 * 2423 * IFN could have been generated locally or by some router. 2424 * 2425 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2426 * This happens because IP adjusted its value of MTU on an 2427 * earlier IFN message and could not tell the upper layer, 2428 * the new adjusted value of MTU e.g. Packet was encrypted 2429 * or there was not enough information to fanout to upper 2430 * layers. Thus on the next outbound datagram, ip_wput_ire 2431 * generates the IFN, where IPsec processing has *not* been 2432 * done. 2433 * 2434 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2435 * could have generated this. This happens because ire_max_frag 2436 * value in IP was set to a new value, while the IPsec processing 2437 * was being done and after we made the fragmentation check in 2438 * ip_wput_ire. Thus on return from IPsec processing, 2439 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2440 * and generates the IFN. As IPsec processing is over, we fanout 2441 * to AH/ESP to remove the header. 2442 * 2443 * In both these cases, ipsec_in_loopback will be set indicating 2444 * that IFN was generated locally. 2445 * 2446 * ROUTER : IFN could be secure or non-secure. 2447 * 2448 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2449 * packet in error has AH/ESP headers to validate the AH/ESP 2450 * headers. AH/ESP will verify whether there is a valid SA or 2451 * not and send it back. We will fanout again if we have more 2452 * data in the packet. 2453 * 2454 * If the packet in error does not have AH/ESP, we handle it 2455 * like any other case. 2456 * 2457 * * NON_SECURE : If the packet in error has AH/ESP headers, 2458 * we attach a dummy ipsec_in and send it up to AH/ESP 2459 * for validation. AH/ESP will verify whether there is a 2460 * valid SA or not and send it back. We will fanout again if 2461 * we have more data in the packet. 2462 * 2463 * If the packet in error does not have AH/ESP, we handle it 2464 * like any other case. 2465 */ 2466 static void 2467 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2468 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2469 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2470 zoneid_t zoneid) 2471 { 2472 uint16_t *up; /* Pointer to ports in ULP header */ 2473 uint32_t ports; /* reversed ports for fanout */ 2474 ipha_t ripha; /* With reversed addresses */ 2475 mblk_t *first_mp; 2476 ipsec_in_t *ii; 2477 tcph_t *tcph; 2478 conn_t *connp; 2479 ip_stack_t *ipst; 2480 2481 ASSERT(ill != NULL); 2482 2483 ASSERT(recv_ill != NULL); 2484 ipst = recv_ill->ill_ipst; 2485 2486 first_mp = mp; 2487 if (mctl_present) { 2488 mp = first_mp->b_cont; 2489 ASSERT(mp != NULL); 2490 2491 ii = (ipsec_in_t *)first_mp->b_rptr; 2492 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2493 } else { 2494 ii = NULL; 2495 } 2496 2497 switch (ipha->ipha_protocol) { 2498 case IPPROTO_UDP: 2499 /* 2500 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2501 * transport header. 2502 */ 2503 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2504 mp->b_wptr) { 2505 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2506 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2507 goto discard_pkt; 2508 } 2509 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2510 ipha = (ipha_t *)&icmph[1]; 2511 } 2512 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2513 2514 /* 2515 * Attempt to find a client stream based on port. 2516 * Note that we do a reverse lookup since the header is 2517 * in the form we sent it out. 2518 * The ripha header is only used for the IP_UDP_MATCH and we 2519 * only set the src and dst addresses and protocol. 2520 */ 2521 ripha.ipha_src = ipha->ipha_dst; 2522 ripha.ipha_dst = ipha->ipha_src; 2523 ripha.ipha_protocol = ipha->ipha_protocol; 2524 ((uint16_t *)&ports)[0] = up[1]; 2525 ((uint16_t *)&ports)[1] = up[0]; 2526 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2527 ntohl(ipha->ipha_src), ntohs(up[0]), 2528 ntohl(ipha->ipha_dst), ntohs(up[1]), 2529 icmph->icmph_type, icmph->icmph_code)); 2530 2531 /* Have to change db_type after any pullupmsg */ 2532 DB_TYPE(mp) = M_CTL; 2533 2534 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2535 mctl_present, ip_policy, recv_ill, zoneid); 2536 return; 2537 2538 case IPPROTO_TCP: 2539 /* 2540 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2541 * transport header. 2542 */ 2543 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2544 mp->b_wptr) { 2545 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2546 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2547 goto discard_pkt; 2548 } 2549 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2550 ipha = (ipha_t *)&icmph[1]; 2551 } 2552 /* 2553 * Find a TCP client stream for this packet. 2554 * Note that we do a reverse lookup since the header is 2555 * in the form we sent it out. 2556 */ 2557 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2558 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN, 2559 ipst); 2560 if (connp == NULL) 2561 goto discard_pkt; 2562 2563 /* Have to change db_type after any pullupmsg */ 2564 DB_TYPE(mp) = M_CTL; 2565 SQUEUE_ENTER_ONE(connp->conn_sqp, first_mp, tcp_input, connp, 2566 SQ_FILL, SQTAG_TCP_INPUT_ICMP_ERR); 2567 return; 2568 2569 case IPPROTO_SCTP: 2570 /* 2571 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2572 * transport header. 2573 */ 2574 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2575 mp->b_wptr) { 2576 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2577 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2578 goto discard_pkt; 2579 } 2580 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2581 ipha = (ipha_t *)&icmph[1]; 2582 } 2583 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2584 /* 2585 * Find a SCTP client stream for this packet. 2586 * Note that we do a reverse lookup since the header is 2587 * in the form we sent it out. 2588 * The ripha header is only used for the matching and we 2589 * only set the src and dst addresses, protocol, and version. 2590 */ 2591 ripha.ipha_src = ipha->ipha_dst; 2592 ripha.ipha_dst = ipha->ipha_src; 2593 ripha.ipha_protocol = ipha->ipha_protocol; 2594 ripha.ipha_version_and_hdr_length = 2595 ipha->ipha_version_and_hdr_length; 2596 ((uint16_t *)&ports)[0] = up[1]; 2597 ((uint16_t *)&ports)[1] = up[0]; 2598 2599 /* Have to change db_type after any pullupmsg */ 2600 DB_TYPE(mp) = M_CTL; 2601 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2602 mctl_present, ip_policy, zoneid); 2603 return; 2604 2605 case IPPROTO_ESP: 2606 case IPPROTO_AH: { 2607 int ipsec_rc; 2608 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2609 2610 /* 2611 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2612 * We will re-use the IPSEC_IN if it is already present as 2613 * AH/ESP will not affect any fields in the IPSEC_IN for 2614 * ICMP errors. If there is no IPSEC_IN, allocate a new 2615 * one and attach it in the front. 2616 */ 2617 if (ii != NULL) { 2618 /* 2619 * ip_fanout_proto_again converts the ICMP errors 2620 * that come back from AH/ESP to M_DATA so that 2621 * if it is non-AH/ESP and we do a pullupmsg in 2622 * this function, it would work. Convert it back 2623 * to M_CTL before we send up as this is a ICMP 2624 * error. This could have been generated locally or 2625 * by some router. Validate the inner IPsec 2626 * headers. 2627 * 2628 * NOTE : ill_index is used by ip_fanout_proto_again 2629 * to locate the ill. 2630 */ 2631 ASSERT(ill != NULL); 2632 ii->ipsec_in_ill_index = 2633 ill->ill_phyint->phyint_ifindex; 2634 ii->ipsec_in_rill_index = 2635 recv_ill->ill_phyint->phyint_ifindex; 2636 DB_TYPE(first_mp->b_cont) = M_CTL; 2637 } else { 2638 /* 2639 * IPSEC_IN is not present. We attach a ipsec_in 2640 * message and send up to IPsec for validating 2641 * and removing the IPsec headers. Clear 2642 * ipsec_in_secure so that when we return 2643 * from IPsec, we don't mistakenly think that this 2644 * is a secure packet came from the network. 2645 * 2646 * NOTE : ill_index is used by ip_fanout_proto_again 2647 * to locate the ill. 2648 */ 2649 ASSERT(first_mp == mp); 2650 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2651 if (first_mp == NULL) { 2652 freemsg(mp); 2653 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2654 return; 2655 } 2656 ii = (ipsec_in_t *)first_mp->b_rptr; 2657 2658 /* This is not a secure packet */ 2659 ii->ipsec_in_secure = B_FALSE; 2660 first_mp->b_cont = mp; 2661 DB_TYPE(mp) = M_CTL; 2662 ASSERT(ill != NULL); 2663 ii->ipsec_in_ill_index = 2664 ill->ill_phyint->phyint_ifindex; 2665 ii->ipsec_in_rill_index = 2666 recv_ill->ill_phyint->phyint_ifindex; 2667 } 2668 ip2dbg(("icmp_inbound_error: ipsec\n")); 2669 2670 if (!ipsec_loaded(ipss)) { 2671 ip_proto_not_sup(q, first_mp, 0, zoneid, ipst); 2672 return; 2673 } 2674 2675 if (ipha->ipha_protocol == IPPROTO_ESP) 2676 ipsec_rc = ipsecesp_icmp_error(first_mp); 2677 else 2678 ipsec_rc = ipsecah_icmp_error(first_mp); 2679 if (ipsec_rc == IPSEC_STATUS_FAILED) 2680 return; 2681 2682 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2683 return; 2684 } 2685 default: 2686 /* 2687 * The ripha header is only used for the lookup and we 2688 * only set the src and dst addresses and protocol. 2689 */ 2690 ripha.ipha_src = ipha->ipha_dst; 2691 ripha.ipha_dst = ipha->ipha_src; 2692 ripha.ipha_protocol = ipha->ipha_protocol; 2693 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2694 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2695 ntohl(ipha->ipha_dst), 2696 icmph->icmph_type, icmph->icmph_code)); 2697 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2698 ipha_t *in_ipha; 2699 2700 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2701 mp->b_wptr) { 2702 if (!pullupmsg(mp, (uchar_t *)ipha + 2703 hdr_length + sizeof (ipha_t) - 2704 mp->b_rptr)) { 2705 goto discard_pkt; 2706 } 2707 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2708 ipha = (ipha_t *)&icmph[1]; 2709 } 2710 /* 2711 * Caller has verified that length has to be 2712 * at least the size of IP header. 2713 */ 2714 ASSERT(hdr_length >= sizeof (ipha_t)); 2715 /* 2716 * Check the sanity of the inner IP header like 2717 * we did for the outer header. 2718 */ 2719 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2720 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2721 goto discard_pkt; 2722 } 2723 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2724 goto discard_pkt; 2725 } 2726 /* Check for Self-encapsulated tunnels */ 2727 if (in_ipha->ipha_src == ipha->ipha_src && 2728 in_ipha->ipha_dst == ipha->ipha_dst) { 2729 2730 mp = icmp_inbound_self_encap_error(mp, 2731 iph_hdr_length, hdr_length); 2732 if (mp == NULL) 2733 goto discard_pkt; 2734 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2735 ipha = (ipha_t *)&icmph[1]; 2736 hdr_length = IPH_HDR_LENGTH(ipha); 2737 /* 2738 * The packet in error is self-encapsualted. 2739 * And we are finding it further encapsulated 2740 * which we could not have possibly generated. 2741 */ 2742 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2743 goto discard_pkt; 2744 } 2745 icmp_inbound_error_fanout(q, ill, first_mp, 2746 icmph, ipha, iph_hdr_length, hdr_length, 2747 mctl_present, ip_policy, recv_ill, zoneid); 2748 return; 2749 } 2750 } 2751 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2752 ipha->ipha_protocol == IPPROTO_IPV6) && 2753 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2754 ii != NULL && 2755 ii->ipsec_in_loopback && 2756 ii->ipsec_in_secure) { 2757 /* 2758 * For IP tunnels that get a looped-back 2759 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2760 * reported new MTU to take into account the IPsec 2761 * headers protecting this configured tunnel. 2762 * 2763 * This allows the tunnel module (tun.c) to blindly 2764 * accept the MTU reported in an ICMP "too big" 2765 * message. 2766 * 2767 * Non-looped back ICMP messages will just be 2768 * handled by the security protocols (if needed), 2769 * and the first subsequent packet will hit this 2770 * path. 2771 */ 2772 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2773 ipsec_in_extra_length(first_mp)); 2774 } 2775 /* Have to change db_type after any pullupmsg */ 2776 DB_TYPE(mp) = M_CTL; 2777 2778 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2779 ip_policy, recv_ill, zoneid); 2780 return; 2781 } 2782 /* NOTREACHED */ 2783 discard_pkt: 2784 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2785 drop_pkt:; 2786 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2787 freemsg(first_mp); 2788 } 2789 2790 /* 2791 * Common IP options parser. 2792 * 2793 * Setup routine: fill in *optp with options-parsing state, then 2794 * tail-call ipoptp_next to return the first option. 2795 */ 2796 uint8_t 2797 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2798 { 2799 uint32_t totallen; /* total length of all options */ 2800 2801 totallen = ipha->ipha_version_and_hdr_length - 2802 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2803 totallen <<= 2; 2804 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2805 optp->ipoptp_end = optp->ipoptp_next + totallen; 2806 optp->ipoptp_flags = 0; 2807 return (ipoptp_next(optp)); 2808 } 2809 2810 /* 2811 * Common IP options parser: extract next option. 2812 */ 2813 uint8_t 2814 ipoptp_next(ipoptp_t *optp) 2815 { 2816 uint8_t *end = optp->ipoptp_end; 2817 uint8_t *cur = optp->ipoptp_next; 2818 uint8_t opt, len, pointer; 2819 2820 /* 2821 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2822 * has been corrupted. 2823 */ 2824 ASSERT(cur <= end); 2825 2826 if (cur == end) 2827 return (IPOPT_EOL); 2828 2829 opt = cur[IPOPT_OPTVAL]; 2830 2831 /* 2832 * Skip any NOP options. 2833 */ 2834 while (opt == IPOPT_NOP) { 2835 cur++; 2836 if (cur == end) 2837 return (IPOPT_EOL); 2838 opt = cur[IPOPT_OPTVAL]; 2839 } 2840 2841 if (opt == IPOPT_EOL) 2842 return (IPOPT_EOL); 2843 2844 /* 2845 * Option requiring a length. 2846 */ 2847 if ((cur + 1) >= end) { 2848 optp->ipoptp_flags |= IPOPTP_ERROR; 2849 return (IPOPT_EOL); 2850 } 2851 len = cur[IPOPT_OLEN]; 2852 if (len < 2) { 2853 optp->ipoptp_flags |= IPOPTP_ERROR; 2854 return (IPOPT_EOL); 2855 } 2856 optp->ipoptp_cur = cur; 2857 optp->ipoptp_len = len; 2858 optp->ipoptp_next = cur + len; 2859 if (cur + len > end) { 2860 optp->ipoptp_flags |= IPOPTP_ERROR; 2861 return (IPOPT_EOL); 2862 } 2863 2864 /* 2865 * For the options which require a pointer field, make sure 2866 * its there, and make sure it points to either something 2867 * inside this option, or the end of the option. 2868 */ 2869 switch (opt) { 2870 case IPOPT_RR: 2871 case IPOPT_TS: 2872 case IPOPT_LSRR: 2873 case IPOPT_SSRR: 2874 if (len <= IPOPT_OFFSET) { 2875 optp->ipoptp_flags |= IPOPTP_ERROR; 2876 return (opt); 2877 } 2878 pointer = cur[IPOPT_OFFSET]; 2879 if (pointer - 1 > len) { 2880 optp->ipoptp_flags |= IPOPTP_ERROR; 2881 return (opt); 2882 } 2883 break; 2884 } 2885 2886 /* 2887 * Sanity check the pointer field based on the type of the 2888 * option. 2889 */ 2890 switch (opt) { 2891 case IPOPT_RR: 2892 case IPOPT_SSRR: 2893 case IPOPT_LSRR: 2894 if (pointer < IPOPT_MINOFF_SR) 2895 optp->ipoptp_flags |= IPOPTP_ERROR; 2896 break; 2897 case IPOPT_TS: 2898 if (pointer < IPOPT_MINOFF_IT) 2899 optp->ipoptp_flags |= IPOPTP_ERROR; 2900 /* 2901 * Note that the Internet Timestamp option also 2902 * contains two four bit fields (the Overflow field, 2903 * and the Flag field), which follow the pointer 2904 * field. We don't need to check that these fields 2905 * fall within the length of the option because this 2906 * was implicitely done above. We've checked that the 2907 * pointer value is at least IPOPT_MINOFF_IT, and that 2908 * it falls within the option. Since IPOPT_MINOFF_IT > 2909 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2910 */ 2911 ASSERT(len > IPOPT_POS_OV_FLG); 2912 break; 2913 } 2914 2915 return (opt); 2916 } 2917 2918 /* 2919 * Use the outgoing IP header to create an IP_OPTIONS option the way 2920 * it was passed down from the application. 2921 */ 2922 int 2923 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2924 { 2925 ipoptp_t opts; 2926 const uchar_t *opt; 2927 uint8_t optval; 2928 uint8_t optlen; 2929 uint32_t len = 0; 2930 uchar_t *buf1 = buf; 2931 2932 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2933 len += IP_ADDR_LEN; 2934 bzero(buf1, IP_ADDR_LEN); 2935 2936 /* 2937 * OK to cast away const here, as we don't store through the returned 2938 * opts.ipoptp_cur pointer. 2939 */ 2940 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 2941 optval != IPOPT_EOL; 2942 optval = ipoptp_next(&opts)) { 2943 int off; 2944 2945 opt = opts.ipoptp_cur; 2946 optlen = opts.ipoptp_len; 2947 switch (optval) { 2948 case IPOPT_SSRR: 2949 case IPOPT_LSRR: 2950 2951 /* 2952 * Insert ipha_dst as the first entry in the source 2953 * route and move down the entries on step. 2954 * The last entry gets placed at buf1. 2955 */ 2956 buf[IPOPT_OPTVAL] = optval; 2957 buf[IPOPT_OLEN] = optlen; 2958 buf[IPOPT_OFFSET] = optlen; 2959 2960 off = optlen - IP_ADDR_LEN; 2961 if (off < 0) { 2962 /* No entries in source route */ 2963 break; 2964 } 2965 /* Last entry in source route */ 2966 bcopy(opt + off, buf1, IP_ADDR_LEN); 2967 off -= IP_ADDR_LEN; 2968 2969 while (off > 0) { 2970 bcopy(opt + off, 2971 buf + off + IP_ADDR_LEN, 2972 IP_ADDR_LEN); 2973 off -= IP_ADDR_LEN; 2974 } 2975 /* ipha_dst into first slot */ 2976 bcopy(&ipha->ipha_dst, 2977 buf + off + IP_ADDR_LEN, 2978 IP_ADDR_LEN); 2979 buf += optlen; 2980 len += optlen; 2981 break; 2982 2983 case IPOPT_COMSEC: 2984 case IPOPT_SECURITY: 2985 /* if passing up a label is not ok, then remove */ 2986 if (is_system_labeled()) 2987 break; 2988 /* FALLTHROUGH */ 2989 default: 2990 bcopy(opt, buf, optlen); 2991 buf += optlen; 2992 len += optlen; 2993 break; 2994 } 2995 } 2996 done: 2997 /* Pad the resulting options */ 2998 while (len & 0x3) { 2999 *buf++ = IPOPT_EOL; 3000 len++; 3001 } 3002 return (len); 3003 } 3004 3005 /* 3006 * Update any record route or timestamp options to include this host. 3007 * Reverse any source route option. 3008 * This routine assumes that the options are well formed i.e. that they 3009 * have already been checked. 3010 */ 3011 static void 3012 icmp_options_update(ipha_t *ipha) 3013 { 3014 ipoptp_t opts; 3015 uchar_t *opt; 3016 uint8_t optval; 3017 ipaddr_t src; /* Our local address */ 3018 ipaddr_t dst; 3019 3020 ip2dbg(("icmp_options_update\n")); 3021 src = ipha->ipha_src; 3022 dst = ipha->ipha_dst; 3023 3024 for (optval = ipoptp_first(&opts, ipha); 3025 optval != IPOPT_EOL; 3026 optval = ipoptp_next(&opts)) { 3027 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 3028 opt = opts.ipoptp_cur; 3029 ip2dbg(("icmp_options_update: opt %d, len %d\n", 3030 optval, opts.ipoptp_len)); 3031 switch (optval) { 3032 int off1, off2; 3033 case IPOPT_SSRR: 3034 case IPOPT_LSRR: 3035 /* 3036 * Reverse the source route. The first entry 3037 * should be the next to last one in the current 3038 * source route (the last entry is our address). 3039 * The last entry should be the final destination. 3040 */ 3041 off1 = IPOPT_MINOFF_SR - 1; 3042 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 3043 if (off2 < 0) { 3044 /* No entries in source route */ 3045 ip1dbg(( 3046 "icmp_options_update: bad src route\n")); 3047 break; 3048 } 3049 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 3050 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 3051 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 3052 off2 -= IP_ADDR_LEN; 3053 3054 while (off1 < off2) { 3055 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 3056 bcopy((char *)opt + off2, (char *)opt + off1, 3057 IP_ADDR_LEN); 3058 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 3059 off1 += IP_ADDR_LEN; 3060 off2 -= IP_ADDR_LEN; 3061 } 3062 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 3063 break; 3064 } 3065 } 3066 } 3067 3068 /* 3069 * Process received ICMP Redirect messages. 3070 */ 3071 static void 3072 icmp_redirect(ill_t *ill, mblk_t *mp) 3073 { 3074 ipha_t *ipha; 3075 int iph_hdr_length; 3076 icmph_t *icmph; 3077 ipha_t *ipha_err; 3078 ire_t *ire; 3079 ire_t *prev_ire; 3080 ire_t *save_ire; 3081 ipaddr_t src, dst, gateway; 3082 iulp_t ulp_info = { 0 }; 3083 int error; 3084 ip_stack_t *ipst; 3085 3086 ASSERT(ill != NULL); 3087 ipst = ill->ill_ipst; 3088 3089 ipha = (ipha_t *)mp->b_rptr; 3090 iph_hdr_length = IPH_HDR_LENGTH(ipha); 3091 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 3092 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 3093 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3094 freemsg(mp); 3095 return; 3096 } 3097 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 3098 ipha_err = (ipha_t *)&icmph[1]; 3099 src = ipha->ipha_src; 3100 dst = ipha_err->ipha_dst; 3101 gateway = icmph->icmph_rd_gateway; 3102 /* Make sure the new gateway is reachable somehow. */ 3103 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 3104 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3105 /* 3106 * Make sure we had a route for the dest in question and that 3107 * that route was pointing to the old gateway (the source of the 3108 * redirect packet.) 3109 */ 3110 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 3111 NULL, MATCH_IRE_GW, ipst); 3112 /* 3113 * Check that 3114 * the redirect was not from ourselves 3115 * the new gateway and the old gateway are directly reachable 3116 */ 3117 if (!prev_ire || 3118 !ire || 3119 ire->ire_type == IRE_LOCAL) { 3120 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3121 freemsg(mp); 3122 if (ire != NULL) 3123 ire_refrele(ire); 3124 if (prev_ire != NULL) 3125 ire_refrele(prev_ire); 3126 return; 3127 } 3128 3129 /* 3130 * Should we use the old ULP info to create the new gateway? From 3131 * a user's perspective, we should inherit the info so that it 3132 * is a "smooth" transition. If we do not do that, then new 3133 * connections going thru the new gateway will have no route metrics, 3134 * which is counter-intuitive to user. From a network point of 3135 * view, this may or may not make sense even though the new gateway 3136 * is still directly connected to us so the route metrics should not 3137 * change much. 3138 * 3139 * But if the old ire_uinfo is not initialized, we do another 3140 * recursive lookup on the dest using the new gateway. There may 3141 * be a route to that. If so, use it to initialize the redirect 3142 * route. 3143 */ 3144 if (prev_ire->ire_uinfo.iulp_set) { 3145 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3146 } else { 3147 ire_t *tmp_ire; 3148 ire_t *sire; 3149 3150 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3151 ALL_ZONES, 0, NULL, 3152 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT), 3153 ipst); 3154 if (sire != NULL) { 3155 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3156 /* 3157 * If sire != NULL, ire_ftable_lookup() should not 3158 * return a NULL value. 3159 */ 3160 ASSERT(tmp_ire != NULL); 3161 ire_refrele(tmp_ire); 3162 ire_refrele(sire); 3163 } else if (tmp_ire != NULL) { 3164 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3165 sizeof (iulp_t)); 3166 ire_refrele(tmp_ire); 3167 } 3168 } 3169 if (prev_ire->ire_type == IRE_CACHE) 3170 ire_delete(prev_ire); 3171 ire_refrele(prev_ire); 3172 /* 3173 * TODO: more precise handling for cases 0, 2, 3, the latter two 3174 * require TOS routing 3175 */ 3176 switch (icmph->icmph_code) { 3177 case 0: 3178 case 1: 3179 /* TODO: TOS specificity for cases 2 and 3 */ 3180 case 2: 3181 case 3: 3182 break; 3183 default: 3184 freemsg(mp); 3185 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3186 ire_refrele(ire); 3187 return; 3188 } 3189 /* 3190 * Create a Route Association. This will allow us to remember that 3191 * someone we believe told us to use the particular gateway. 3192 */ 3193 save_ire = ire; 3194 ire = ire_create( 3195 (uchar_t *)&dst, /* dest addr */ 3196 (uchar_t *)&ip_g_all_ones, /* mask */ 3197 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3198 (uchar_t *)&gateway, /* gateway addr */ 3199 &save_ire->ire_max_frag, /* max frag */ 3200 NULL, /* no src nce */ 3201 NULL, /* no rfq */ 3202 NULL, /* no stq */ 3203 IRE_HOST, 3204 NULL, /* ipif */ 3205 0, /* cmask */ 3206 0, /* phandle */ 3207 0, /* ihandle */ 3208 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3209 &ulp_info, 3210 NULL, /* tsol_gc_t */ 3211 NULL, /* gcgrp */ 3212 ipst); 3213 3214 if (ire == NULL) { 3215 freemsg(mp); 3216 ire_refrele(save_ire); 3217 return; 3218 } 3219 error = ire_add(&ire, NULL, NULL, NULL, B_FALSE); 3220 ire_refrele(save_ire); 3221 atomic_inc_32(&ipst->ips_ip_redirect_cnt); 3222 3223 if (error == 0) { 3224 ire_refrele(ire); /* Held in ire_add_v4 */ 3225 /* tell routing sockets that we received a redirect */ 3226 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3227 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3228 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 3229 } 3230 3231 /* 3232 * Delete any existing IRE_HOST type redirect ires for this destination. 3233 * This together with the added IRE has the effect of 3234 * modifying an existing redirect. 3235 */ 3236 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST, NULL, NULL, 3237 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), ipst); 3238 if (prev_ire != NULL) { 3239 if (prev_ire ->ire_flags & RTF_DYNAMIC) 3240 ire_delete(prev_ire); 3241 ire_refrele(prev_ire); 3242 } 3243 3244 freemsg(mp); 3245 } 3246 3247 /* 3248 * Generate an ICMP parameter problem message. 3249 */ 3250 static void 3251 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr, zoneid_t zoneid, 3252 ip_stack_t *ipst) 3253 { 3254 icmph_t icmph; 3255 boolean_t mctl_present; 3256 mblk_t *first_mp; 3257 3258 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3259 3260 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3261 if (mctl_present) 3262 freeb(first_mp); 3263 return; 3264 } 3265 3266 bzero(&icmph, sizeof (icmph_t)); 3267 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3268 icmph.icmph_pp_ptr = ptr; 3269 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 3270 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3271 ipst); 3272 } 3273 3274 /* 3275 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3276 * the ICMP header pointed to by "stuff". (May be called as writer.) 3277 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3278 * an icmp error packet can be sent. 3279 * Assigns an appropriate source address to the packet. If ipha_dst is 3280 * one of our addresses use it for source. Otherwise pick a source based 3281 * on a route lookup back to ipha_src. 3282 * Note that ipha_src must be set here since the 3283 * packet is likely to arrive on an ill queue in ip_wput() which will 3284 * not set a source address. 3285 */ 3286 static void 3287 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3288 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 3289 { 3290 ipaddr_t dst; 3291 icmph_t *icmph; 3292 ipha_t *ipha; 3293 uint_t len_needed; 3294 size_t msg_len; 3295 mblk_t *mp1; 3296 ipaddr_t src; 3297 ire_t *ire; 3298 mblk_t *ipsec_mp; 3299 ipsec_out_t *io = NULL; 3300 3301 if (mctl_present) { 3302 /* 3303 * If it is : 3304 * 3305 * 1) a IPSEC_OUT, then this is caused by outbound 3306 * datagram originating on this host. IPsec processing 3307 * may or may not have been done. Refer to comments above 3308 * icmp_inbound_error_fanout for details. 3309 * 3310 * 2) a IPSEC_IN if we are generating a icmp_message 3311 * for an incoming datagram destined for us i.e called 3312 * from ip_fanout_send_icmp. 3313 */ 3314 ipsec_info_t *in; 3315 ipsec_mp = mp; 3316 mp = ipsec_mp->b_cont; 3317 3318 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3319 ipha = (ipha_t *)mp->b_rptr; 3320 3321 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3322 in->ipsec_info_type == IPSEC_IN); 3323 3324 if (in->ipsec_info_type == IPSEC_IN) { 3325 /* 3326 * Convert the IPSEC_IN to IPSEC_OUT. 3327 */ 3328 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3329 BUMP_MIB(&ipst->ips_ip_mib, 3330 ipIfStatsOutDiscards); 3331 return; 3332 } 3333 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3334 } else { 3335 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3336 io = (ipsec_out_t *)in; 3337 /* 3338 * Clear out ipsec_out_proc_begin, so we do a fresh 3339 * ire lookup. 3340 */ 3341 io->ipsec_out_proc_begin = B_FALSE; 3342 } 3343 ASSERT(zoneid == io->ipsec_out_zoneid); 3344 ASSERT(zoneid != ALL_ZONES); 3345 } else { 3346 /* 3347 * This is in clear. The icmp message we are building 3348 * here should go out in clear. 3349 * 3350 * Pardon the convolution of it all, but it's easier to 3351 * allocate a "use cleartext" IPSEC_IN message and convert 3352 * it than it is to allocate a new one. 3353 */ 3354 ipsec_in_t *ii; 3355 ASSERT(DB_TYPE(mp) == M_DATA); 3356 ipsec_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 3357 if (ipsec_mp == NULL) { 3358 freemsg(mp); 3359 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3360 return; 3361 } 3362 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3363 3364 /* This is not a secure packet */ 3365 ii->ipsec_in_secure = B_FALSE; 3366 /* 3367 * For trusted extensions using a shared IP address we can 3368 * send using any zoneid. 3369 */ 3370 if (zoneid == ALL_ZONES) 3371 ii->ipsec_in_zoneid = GLOBAL_ZONEID; 3372 else 3373 ii->ipsec_in_zoneid = zoneid; 3374 ipsec_mp->b_cont = mp; 3375 ipha = (ipha_t *)mp->b_rptr; 3376 /* 3377 * Convert the IPSEC_IN to IPSEC_OUT. 3378 */ 3379 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3380 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3381 return; 3382 } 3383 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3384 } 3385 3386 /* Remember our eventual destination */ 3387 dst = ipha->ipha_src; 3388 3389 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3390 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE, ipst); 3391 if (ire != NULL && 3392 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3393 src = ipha->ipha_dst; 3394 } else { 3395 if (ire != NULL) 3396 ire_refrele(ire); 3397 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3398 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY), 3399 ipst); 3400 if (ire == NULL) { 3401 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3402 freemsg(ipsec_mp); 3403 return; 3404 } 3405 src = ire->ire_src_addr; 3406 } 3407 3408 if (ire != NULL) 3409 ire_refrele(ire); 3410 3411 /* 3412 * Check if we can send back more then 8 bytes in addition to 3413 * the IP header. We try to send 64 bytes of data and the internal 3414 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 3415 */ 3416 len_needed = IPH_HDR_LENGTH(ipha); 3417 if (ipha->ipha_protocol == IPPROTO_ENCAP || 3418 ipha->ipha_protocol == IPPROTO_IPV6) { 3419 3420 if (!pullupmsg(mp, -1)) { 3421 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3422 freemsg(ipsec_mp); 3423 return; 3424 } 3425 ipha = (ipha_t *)mp->b_rptr; 3426 3427 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 3428 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 3429 len_needed)); 3430 } else { 3431 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 3432 3433 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 3434 len_needed += ip_hdr_length_v6(mp, ip6h); 3435 } 3436 } 3437 len_needed += ipst->ips_ip_icmp_return; 3438 msg_len = msgdsize(mp); 3439 if (msg_len > len_needed) { 3440 (void) adjmsg(mp, len_needed - msg_len); 3441 msg_len = len_needed; 3442 } 3443 mp1 = allocb_tmpl(sizeof (icmp_ipha) + len, mp); 3444 if (mp1 == NULL) { 3445 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 3446 freemsg(ipsec_mp); 3447 return; 3448 } 3449 mp1->b_cont = mp; 3450 mp = mp1; 3451 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3452 ipsec_mp->b_rptr == (uint8_t *)io && 3453 io->ipsec_out_type == IPSEC_OUT); 3454 ipsec_mp->b_cont = mp; 3455 3456 /* 3457 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3458 * node generates be accepted in peace by all on-host destinations. 3459 * If we do NOT assume that all on-host destinations trust 3460 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3461 * (Look for ipsec_out_icmp_loopback). 3462 */ 3463 io->ipsec_out_icmp_loopback = B_TRUE; 3464 3465 ipha = (ipha_t *)mp->b_rptr; 3466 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3467 *ipha = icmp_ipha; 3468 ipha->ipha_src = src; 3469 ipha->ipha_dst = dst; 3470 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 3471 msg_len += sizeof (icmp_ipha) + len; 3472 if (msg_len > IP_MAXPACKET) { 3473 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3474 msg_len = IP_MAXPACKET; 3475 } 3476 ipha->ipha_length = htons((uint16_t)msg_len); 3477 icmph = (icmph_t *)&ipha[1]; 3478 bcopy(stuff, icmph, len); 3479 icmph->icmph_checksum = 0; 3480 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3481 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 3482 put(q, ipsec_mp); 3483 } 3484 3485 /* 3486 * Determine if an ICMP error packet can be sent given the rate limit. 3487 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3488 * in milliseconds) and a burst size. Burst size number of packets can 3489 * be sent arbitrarely closely spaced. 3490 * The state is tracked using two variables to implement an approximate 3491 * token bucket filter: 3492 * icmp_pkt_err_last - lbolt value when the last burst started 3493 * icmp_pkt_err_sent - number of packets sent in current burst 3494 */ 3495 boolean_t 3496 icmp_err_rate_limit(ip_stack_t *ipst) 3497 { 3498 clock_t now = TICK_TO_MSEC(lbolt); 3499 uint_t refilled; /* Number of packets refilled in tbf since last */ 3500 /* Guard against changes by loading into local variable */ 3501 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 3502 3503 if (err_interval == 0) 3504 return (B_FALSE); 3505 3506 if (ipst->ips_icmp_pkt_err_last > now) { 3507 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3508 ipst->ips_icmp_pkt_err_last = 0; 3509 ipst->ips_icmp_pkt_err_sent = 0; 3510 } 3511 /* 3512 * If we are in a burst update the token bucket filter. 3513 * Update the "last" time to be close to "now" but make sure 3514 * we don't loose precision. 3515 */ 3516 if (ipst->ips_icmp_pkt_err_sent != 0) { 3517 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 3518 if (refilled > ipst->ips_icmp_pkt_err_sent) { 3519 ipst->ips_icmp_pkt_err_sent = 0; 3520 } else { 3521 ipst->ips_icmp_pkt_err_sent -= refilled; 3522 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 3523 } 3524 } 3525 if (ipst->ips_icmp_pkt_err_sent == 0) { 3526 /* Start of new burst */ 3527 ipst->ips_icmp_pkt_err_last = now; 3528 } 3529 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 3530 ipst->ips_icmp_pkt_err_sent++; 3531 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3532 ipst->ips_icmp_pkt_err_sent)); 3533 return (B_FALSE); 3534 } 3535 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3536 return (B_TRUE); 3537 } 3538 3539 /* 3540 * Check if it is ok to send an IPv4 ICMP error packet in 3541 * response to the IPv4 packet in mp. 3542 * Free the message and return null if no 3543 * ICMP error packet should be sent. 3544 */ 3545 static mblk_t * 3546 icmp_pkt_err_ok(mblk_t *mp, ip_stack_t *ipst) 3547 { 3548 icmph_t *icmph; 3549 ipha_t *ipha; 3550 uint_t len_needed; 3551 ire_t *src_ire; 3552 ire_t *dst_ire; 3553 3554 if (!mp) 3555 return (NULL); 3556 ipha = (ipha_t *)mp->b_rptr; 3557 if (ip_csum_hdr(ipha)) { 3558 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 3559 freemsg(mp); 3560 return (NULL); 3561 } 3562 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3563 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3564 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3565 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3566 if (src_ire != NULL || dst_ire != NULL || 3567 CLASSD(ipha->ipha_dst) || 3568 CLASSD(ipha->ipha_src) || 3569 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3570 /* Note: only errors to the fragment with offset 0 */ 3571 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3572 freemsg(mp); 3573 if (src_ire != NULL) 3574 ire_refrele(src_ire); 3575 if (dst_ire != NULL) 3576 ire_refrele(dst_ire); 3577 return (NULL); 3578 } 3579 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3580 /* 3581 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3582 * errors in response to any ICMP errors. 3583 */ 3584 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3585 if (mp->b_wptr - mp->b_rptr < len_needed) { 3586 if (!pullupmsg(mp, len_needed)) { 3587 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3588 freemsg(mp); 3589 return (NULL); 3590 } 3591 ipha = (ipha_t *)mp->b_rptr; 3592 } 3593 icmph = (icmph_t *) 3594 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3595 switch (icmph->icmph_type) { 3596 case ICMP_DEST_UNREACHABLE: 3597 case ICMP_SOURCE_QUENCH: 3598 case ICMP_TIME_EXCEEDED: 3599 case ICMP_PARAM_PROBLEM: 3600 case ICMP_REDIRECT: 3601 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3602 freemsg(mp); 3603 return (NULL); 3604 default: 3605 break; 3606 } 3607 } 3608 /* 3609 * If this is a labeled system, then check to see if we're allowed to 3610 * send a response to this particular sender. If not, then just drop. 3611 */ 3612 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3613 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3614 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3615 freemsg(mp); 3616 return (NULL); 3617 } 3618 if (icmp_err_rate_limit(ipst)) { 3619 /* 3620 * Only send ICMP error packets every so often. 3621 * This should be done on a per port/source basis, 3622 * but for now this will suffice. 3623 */ 3624 freemsg(mp); 3625 return (NULL); 3626 } 3627 return (mp); 3628 } 3629 3630 /* 3631 * Generate an ICMP redirect message. 3632 */ 3633 static void 3634 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway, ip_stack_t *ipst) 3635 { 3636 icmph_t icmph; 3637 3638 /* 3639 * We are called from ip_rput where we could 3640 * not have attached an IPSEC_IN. 3641 */ 3642 ASSERT(mp->b_datap->db_type == M_DATA); 3643 3644 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3645 return; 3646 } 3647 3648 bzero(&icmph, sizeof (icmph_t)); 3649 icmph.icmph_type = ICMP_REDIRECT; 3650 icmph.icmph_code = 1; 3651 icmph.icmph_rd_gateway = gateway; 3652 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3653 /* Redirects sent by router, and router is global zone */ 3654 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE, GLOBAL_ZONEID, ipst); 3655 } 3656 3657 /* 3658 * Generate an ICMP time exceeded message. 3659 */ 3660 void 3661 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3662 ip_stack_t *ipst) 3663 { 3664 icmph_t icmph; 3665 boolean_t mctl_present; 3666 mblk_t *first_mp; 3667 3668 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3669 3670 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3671 if (mctl_present) 3672 freeb(first_mp); 3673 return; 3674 } 3675 3676 bzero(&icmph, sizeof (icmph_t)); 3677 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3678 icmph.icmph_code = code; 3679 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3680 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3681 ipst); 3682 } 3683 3684 /* 3685 * Generate an ICMP unreachable message. 3686 */ 3687 void 3688 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3689 ip_stack_t *ipst) 3690 { 3691 icmph_t icmph; 3692 mblk_t *first_mp; 3693 boolean_t mctl_present; 3694 3695 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3696 3697 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3698 if (mctl_present) 3699 freeb(first_mp); 3700 return; 3701 } 3702 3703 bzero(&icmph, sizeof (icmph_t)); 3704 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3705 icmph.icmph_code = code; 3706 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3707 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3708 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present, 3709 zoneid, ipst); 3710 } 3711 3712 /* 3713 * Attempt to start recovery of an IPv4 interface that's been shut down as a 3714 * duplicate. As long as someone else holds the address, the interface will 3715 * stay down. When that conflict goes away, the interface is brought back up. 3716 * This is done so that accidental shutdowns of addresses aren't made 3717 * permanent. Your server will recover from a failure. 3718 * 3719 * For DHCP, recovery is not done in the kernel. Instead, it's handled by a 3720 * user space process (dhcpagent). 3721 * 3722 * Recovery completes if ARP reports that the address is now ours (via 3723 * AR_CN_READY). In that case, we go to ip_arp_excl to finish the operation. 3724 * 3725 * This function is entered on a timer expiry; the ID is in ipif_recovery_id. 3726 */ 3727 static void 3728 ipif_dup_recovery(void *arg) 3729 { 3730 ipif_t *ipif = arg; 3731 ill_t *ill = ipif->ipif_ill; 3732 mblk_t *arp_add_mp; 3733 mblk_t *arp_del_mp; 3734 area_t *area; 3735 ip_stack_t *ipst = ill->ill_ipst; 3736 3737 ipif->ipif_recovery_id = 0; 3738 3739 /* 3740 * No lock needed for moving or condemned check, as this is just an 3741 * optimization. 3742 */ 3743 if (ill->ill_arp_closing || !(ipif->ipif_flags & IPIF_DUPLICATE) || 3744 (ipif->ipif_flags & IPIF_POINTOPOINT) || 3745 (ipif->ipif_state_flags & (IPIF_MOVING | IPIF_CONDEMNED))) { 3746 /* No reason to try to bring this address back. */ 3747 return; 3748 } 3749 3750 if ((arp_add_mp = ipif_area_alloc(ipif)) == NULL) 3751 goto alloc_fail; 3752 3753 if (ipif->ipif_arp_del_mp == NULL) { 3754 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 3755 goto alloc_fail; 3756 ipif->ipif_arp_del_mp = arp_del_mp; 3757 } 3758 3759 /* Setting the 'unverified' flag restarts DAD */ 3760 area = (area_t *)arp_add_mp->b_rptr; 3761 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 3762 ACE_F_UNVERIFIED; 3763 putnext(ill->ill_rq, arp_add_mp); 3764 return; 3765 3766 alloc_fail: 3767 /* 3768 * On allocation failure, just restart the timer. Note that the ipif 3769 * is down here, so no other thread could be trying to start a recovery 3770 * timer. The ill_lock protects the condemned flag and the recovery 3771 * timer ID. 3772 */ 3773 freemsg(arp_add_mp); 3774 mutex_enter(&ill->ill_lock); 3775 if (ipst->ips_ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0 && 3776 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 3777 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, ipif, 3778 MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3779 } 3780 mutex_exit(&ill->ill_lock); 3781 } 3782 3783 /* 3784 * This is for exclusive changes due to ARP. Either tear down an interface due 3785 * to AR_CN_FAILED and AR_CN_BOGON, or bring one up for successful recovery. 3786 */ 3787 /* ARGSUSED */ 3788 static void 3789 ip_arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3790 { 3791 ill_t *ill = rq->q_ptr; 3792 arh_t *arh; 3793 ipaddr_t src; 3794 ipif_t *ipif; 3795 char ibuf[LIFNAMSIZ + 10]; /* 10 digits for logical i/f number */ 3796 char hbuf[MAC_STR_LEN]; 3797 char sbuf[INET_ADDRSTRLEN]; 3798 const char *failtype; 3799 boolean_t bring_up; 3800 ip_stack_t *ipst = ill->ill_ipst; 3801 3802 switch (((arcn_t *)mp->b_rptr)->arcn_code) { 3803 case AR_CN_READY: 3804 failtype = NULL; 3805 bring_up = B_TRUE; 3806 break; 3807 case AR_CN_FAILED: 3808 failtype = "in use"; 3809 bring_up = B_FALSE; 3810 break; 3811 default: 3812 failtype = "claimed"; 3813 bring_up = B_FALSE; 3814 break; 3815 } 3816 3817 arh = (arh_t *)mp->b_cont->b_rptr; 3818 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3819 3820 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, hbuf, 3821 sizeof (hbuf)); 3822 (void) ip_dot_addr(src, sbuf); 3823 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3824 3825 if ((ipif->ipif_flags & IPIF_POINTOPOINT) || 3826 ipif->ipif_lcl_addr != src) { 3827 continue; 3828 } 3829 3830 /* 3831 * If we failed on a recovery probe, then restart the timer to 3832 * try again later. 3833 */ 3834 if (!bring_up && (ipif->ipif_flags & IPIF_DUPLICATE) && 3835 !(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3836 ill->ill_net_type == IRE_IF_RESOLVER && 3837 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3838 ipst->ips_ip_dup_recovery > 0 && 3839 ipif->ipif_recovery_id == 0) { 3840 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3841 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3842 continue; 3843 } 3844 3845 /* 3846 * If what we're trying to do has already been done, then do 3847 * nothing. 3848 */ 3849 if (bring_up == ((ipif->ipif_flags & IPIF_UP) != 0)) 3850 continue; 3851 3852 ipif_get_name(ipif, ibuf, sizeof (ibuf)); 3853 3854 if (failtype == NULL) { 3855 cmn_err(CE_NOTE, "recovered address %s on %s", sbuf, 3856 ibuf); 3857 } else { 3858 cmn_err(CE_WARN, "%s has duplicate address %s (%s " 3859 "by %s); disabled", ibuf, sbuf, failtype, hbuf); 3860 } 3861 3862 if (bring_up) { 3863 ASSERT(ill->ill_dl_up); 3864 /* 3865 * Free up the ARP delete message so we can allocate 3866 * a fresh one through the normal path. 3867 */ 3868 freemsg(ipif->ipif_arp_del_mp); 3869 ipif->ipif_arp_del_mp = NULL; 3870 if (ipif_resolver_up(ipif, Res_act_initial) != 3871 EINPROGRESS) { 3872 ipif->ipif_addr_ready = 1; 3873 (void) ipif_up_done(ipif); 3874 } 3875 continue; 3876 } 3877 3878 mutex_enter(&ill->ill_lock); 3879 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 3880 ipif->ipif_flags |= IPIF_DUPLICATE; 3881 ill->ill_ipif_dup_count++; 3882 mutex_exit(&ill->ill_lock); 3883 /* 3884 * Already exclusive on the ill; no need to handle deferred 3885 * processing here. 3886 */ 3887 (void) ipif_down(ipif, NULL, NULL); 3888 ipif_down_tail(ipif); 3889 mutex_enter(&ill->ill_lock); 3890 if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3891 ill->ill_net_type == IRE_IF_RESOLVER && 3892 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3893 ipst->ips_ip_dup_recovery > 0) { 3894 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3895 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3896 } 3897 mutex_exit(&ill->ill_lock); 3898 } 3899 freemsg(mp); 3900 } 3901 3902 /* ARGSUSED */ 3903 static void 3904 ip_arp_defend(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3905 { 3906 ill_t *ill = rq->q_ptr; 3907 arh_t *arh; 3908 ipaddr_t src; 3909 ipif_t *ipif; 3910 3911 arh = (arh_t *)mp->b_cont->b_rptr; 3912 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3913 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3914 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_lcl_addr == src) 3915 (void) ipif_resolver_up(ipif, Res_act_defend); 3916 } 3917 freemsg(mp); 3918 } 3919 3920 /* 3921 * News from ARP. ARP sends notification of interesting events down 3922 * to its clients using M_CTL messages with the interesting ARP packet 3923 * attached via b_cont. 3924 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3925 * queue as opposed to ARP sending the message to all the clients, i.e. all 3926 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3927 * table if a cache IRE is found to delete all the entries for the address in 3928 * the packet. 3929 */ 3930 static void 3931 ip_arp_news(queue_t *q, mblk_t *mp) 3932 { 3933 arcn_t *arcn; 3934 arh_t *arh; 3935 ire_t *ire = NULL; 3936 char hbuf[MAC_STR_LEN]; 3937 char sbuf[INET_ADDRSTRLEN]; 3938 ipaddr_t src; 3939 in6_addr_t v6src; 3940 boolean_t isv6 = B_FALSE; 3941 ipif_t *ipif; 3942 ill_t *ill; 3943 ip_stack_t *ipst; 3944 3945 if (CONN_Q(q)) { 3946 conn_t *connp = Q_TO_CONN(q); 3947 3948 ipst = connp->conn_netstack->netstack_ip; 3949 } else { 3950 ill_t *ill = (ill_t *)q->q_ptr; 3951 3952 ipst = ill->ill_ipst; 3953 } 3954 3955 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 3956 if (q->q_next) { 3957 putnext(q, mp); 3958 } else 3959 freemsg(mp); 3960 return; 3961 } 3962 arh = (arh_t *)mp->b_cont->b_rptr; 3963 /* Is it one we are interested in? */ 3964 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 3965 isv6 = B_TRUE; 3966 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 3967 IPV6_ADDR_LEN); 3968 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 3969 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 3970 IP_ADDR_LEN); 3971 } else { 3972 freemsg(mp); 3973 return; 3974 } 3975 3976 ill = q->q_ptr; 3977 3978 arcn = (arcn_t *)mp->b_rptr; 3979 switch (arcn->arcn_code) { 3980 case AR_CN_BOGON: 3981 /* 3982 * Someone is sending ARP packets with a source protocol 3983 * address that we have published and for which we believe our 3984 * entry is authoritative and (when ill_arp_extend is set) 3985 * verified to be unique on the network. 3986 * 3987 * The ARP module internally handles the cases where the sender 3988 * is just probing (for DAD) and where the hardware address of 3989 * a non-authoritative entry has changed. Thus, these are the 3990 * real conflicts, and we have to do resolution. 3991 * 3992 * We back away quickly from the address if it's from DHCP or 3993 * otherwise temporary and hasn't been used recently (or at 3994 * all). We'd like to include "deprecated" addresses here as 3995 * well (as there's no real reason to defend something we're 3996 * discarding), but IPMP "reuses" this flag to mean something 3997 * other than the standard meaning. 3998 * 3999 * If the ARP module above is not extended (meaning that it 4000 * doesn't know how to defend the address), then we just log 4001 * the problem as we always did and continue on. It's not 4002 * right, but there's little else we can do, and those old ATM 4003 * users are going away anyway. 4004 */ 4005 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, 4006 hbuf, sizeof (hbuf)); 4007 (void) ip_dot_addr(src, sbuf); 4008 if (isv6) { 4009 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL, 4010 ipst); 4011 } else { 4012 ire = ire_cache_lookup(src, ALL_ZONES, NULL, ipst); 4013 } 4014 if (ire != NULL && IRE_IS_LOCAL(ire)) { 4015 uint32_t now; 4016 uint32_t maxage; 4017 clock_t lused; 4018 uint_t maxdefense; 4019 uint_t defs; 4020 4021 /* 4022 * First, figure out if this address hasn't been used 4023 * in a while. If it hasn't, then it's a better 4024 * candidate for abandoning. 4025 */ 4026 ipif = ire->ire_ipif; 4027 ASSERT(ipif != NULL); 4028 now = gethrestime_sec(); 4029 maxage = now - ire->ire_create_time; 4030 if (maxage > ipst->ips_ip_max_temp_idle) 4031 maxage = ipst->ips_ip_max_temp_idle; 4032 lused = drv_hztousec(ddi_get_lbolt() - 4033 ire->ire_last_used_time) / MICROSEC + 1; 4034 if (lused >= maxage && (ipif->ipif_flags & 4035 (IPIF_DHCPRUNNING | IPIF_TEMPORARY))) 4036 maxdefense = ipst->ips_ip_max_temp_defend; 4037 else 4038 maxdefense = ipst->ips_ip_max_defend; 4039 4040 /* 4041 * Now figure out how many times we've defended 4042 * ourselves. Ignore defenses that happened long in 4043 * the past. 4044 */ 4045 mutex_enter(&ire->ire_lock); 4046 if ((defs = ire->ire_defense_count) > 0 && 4047 now - ire->ire_defense_time > 4048 ipst->ips_ip_defend_interval) { 4049 ire->ire_defense_count = defs = 0; 4050 } 4051 ire->ire_defense_count++; 4052 ire->ire_defense_time = now; 4053 mutex_exit(&ire->ire_lock); 4054 ill_refhold(ill); 4055 ire_refrele(ire); 4056 4057 /* 4058 * If we've defended ourselves too many times already, 4059 * then give up and tear down the interface(s) using 4060 * this address. Otherwise, defend by sending out a 4061 * gratuitous ARP. 4062 */ 4063 if (defs >= maxdefense && ill->ill_arp_extend) { 4064 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4065 B_FALSE); 4066 } else { 4067 cmn_err(CE_WARN, 4068 "node %s is using our IP address %s on %s", 4069 hbuf, sbuf, ill->ill_name); 4070 /* 4071 * If this is an old (ATM) ARP module, then 4072 * don't try to defend the address. Remain 4073 * compatible with the old behavior. Defend 4074 * only with new ARP. 4075 */ 4076 if (ill->ill_arp_extend) { 4077 qwriter_ip(ill, q, mp, ip_arp_defend, 4078 NEW_OP, B_FALSE); 4079 } else { 4080 ill_refrele(ill); 4081 } 4082 } 4083 return; 4084 } 4085 cmn_err(CE_WARN, 4086 "proxy ARP problem? Node '%s' is using %s on %s", 4087 hbuf, sbuf, ill->ill_name); 4088 if (ire != NULL) 4089 ire_refrele(ire); 4090 break; 4091 case AR_CN_ANNOUNCE: 4092 if (isv6) { 4093 /* 4094 * For XRESOLV interfaces. 4095 * Delete the IRE cache entry and NCE for this 4096 * v6 address 4097 */ 4098 ip_ire_clookup_and_delete_v6(&v6src, ipst); 4099 /* 4100 * If v6src is a non-zero, it's a router address 4101 * as below. Do the same sort of thing to clean 4102 * out off-net IRE_CACHE entries that go through 4103 * the router. 4104 */ 4105 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 4106 ire_walk_v6(ire_delete_cache_gw_v6, 4107 (char *)&v6src, ALL_ZONES, ipst); 4108 } 4109 } else { 4110 nce_hw_map_t hwm; 4111 4112 /* 4113 * ARP gives us a copy of any packet where it thinks 4114 * the address has changed, so that we can update our 4115 * caches. We're responsible for caching known answers 4116 * in the current design. We check whether the 4117 * hardware address really has changed in all of our 4118 * entries that have cached this mapping, and if so, we 4119 * blow them away. This way we will immediately pick 4120 * up the rare case of a host changing hardware 4121 * address. 4122 */ 4123 if (src == 0) 4124 break; 4125 hwm.hwm_addr = src; 4126 hwm.hwm_hwlen = arh->arh_hlen; 4127 hwm.hwm_hwaddr = (uchar_t *)(arh + 1); 4128 NDP_HW_CHANGE_INCR(ipst->ips_ndp4); 4129 ndp_walk_common(ipst->ips_ndp4, NULL, 4130 (pfi_t)nce_delete_hw_changed, &hwm, ALL_ZONES); 4131 NDP_HW_CHANGE_DECR(ipst->ips_ndp4); 4132 } 4133 break; 4134 case AR_CN_READY: 4135 /* No external v6 resolver has a contract to use this */ 4136 if (isv6) 4137 break; 4138 /* If the link is down, we'll retry this later */ 4139 if (!(ill->ill_phyint->phyint_flags & PHYI_RUNNING)) 4140 break; 4141 ipif = ipif_lookup_addr(src, ill, ALL_ZONES, NULL, NULL, 4142 NULL, NULL, ipst); 4143 if (ipif != NULL) { 4144 /* 4145 * If this is a duplicate recovery, then we now need to 4146 * go exclusive to bring this thing back up. 4147 */ 4148 if ((ipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)) == 4149 IPIF_DUPLICATE) { 4150 ipif_refrele(ipif); 4151 ill_refhold(ill); 4152 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4153 B_FALSE); 4154 return; 4155 } 4156 /* 4157 * If this is the first notice that this address is 4158 * ready, then let the user know now. 4159 */ 4160 if ((ipif->ipif_flags & IPIF_UP) && 4161 !ipif->ipif_addr_ready) { 4162 ipif_mask_reply(ipif); 4163 ipif_up_notify(ipif); 4164 } 4165 ipif->ipif_addr_ready = 1; 4166 ipif_refrele(ipif); 4167 } 4168 ire = ire_cache_lookup(src, ALL_ZONES, MBLK_GETLABEL(mp), ipst); 4169 if (ire != NULL) { 4170 ire->ire_defense_count = 0; 4171 ire_refrele(ire); 4172 } 4173 break; 4174 case AR_CN_FAILED: 4175 /* No external v6 resolver has a contract to use this */ 4176 if (isv6) 4177 break; 4178 ill_refhold(ill); 4179 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, B_FALSE); 4180 return; 4181 } 4182 freemsg(mp); 4183 } 4184 4185 /* 4186 * Create a mblk suitable for carrying the interface index and/or source link 4187 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 4188 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 4189 * application. 4190 */ 4191 mblk_t * 4192 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags, zoneid_t zoneid, 4193 ip_stack_t *ipst) 4194 { 4195 mblk_t *mp; 4196 ip_pktinfo_t *pinfo; 4197 ipha_t *ipha; 4198 struct ether_header *pether; 4199 4200 mp = allocb(sizeof (ip_pktinfo_t), BPRI_MED); 4201 if (mp == NULL) { 4202 ip1dbg(("ip_add_info: allocation failure.\n")); 4203 return (data_mp); 4204 } 4205 4206 ipha = (ipha_t *)data_mp->b_rptr; 4207 pinfo = (ip_pktinfo_t *)mp->b_rptr; 4208 bzero(pinfo, sizeof (ip_pktinfo_t)); 4209 pinfo->ip_pkt_flags = (uchar_t)flags; 4210 pinfo->ip_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 4211 4212 if (flags & (IPF_RECVIF | IPF_RECVADDR)) 4213 pinfo->ip_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 4214 if (flags & IPF_RECVADDR) { 4215 ipif_t *ipif; 4216 ire_t *ire; 4217 4218 /* 4219 * Only valid for V4 4220 */ 4221 ASSERT((ipha->ipha_version_and_hdr_length & 0xf0) == 4222 (IPV4_VERSION << 4)); 4223 4224 ipif = ipif_get_next_ipif(NULL, ill); 4225 if (ipif != NULL) { 4226 /* 4227 * Since a decision has already been made to deliver the 4228 * packet, there is no need to test for SECATTR and 4229 * ZONEONLY. 4230 * When a multicast packet is transmitted 4231 * a cache entry is created for the multicast address. 4232 * When delivering a copy of the packet or when new 4233 * packets are received we do not want to match on the 4234 * cached entry so explicitly match on 4235 * IRE_LOCAL and IRE_LOOPBACK 4236 */ 4237 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4238 IRE_LOCAL | IRE_LOOPBACK, 4239 ipif, zoneid, NULL, 4240 MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP, ipst); 4241 if (ire == NULL) { 4242 /* 4243 * packet must have come on a different 4244 * interface. 4245 * Since a decision has already been made to 4246 * deliver the packet, there is no need to test 4247 * for SECATTR and ZONEONLY. 4248 * Only match on local and broadcast ire's. 4249 * See detailed comment above. 4250 */ 4251 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4252 IRE_LOCAL | IRE_LOOPBACK, ipif, zoneid, 4253 NULL, MATCH_IRE_TYPE, ipst); 4254 } 4255 4256 if (ire == NULL) { 4257 /* 4258 * This is either a multicast packet or 4259 * the address has been removed since 4260 * the packet was received. 4261 * Return INADDR_ANY so that normal source 4262 * selection occurs for the response. 4263 */ 4264 4265 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4266 } else { 4267 pinfo->ip_pkt_match_addr.s_addr = 4268 ire->ire_src_addr; 4269 ire_refrele(ire); 4270 } 4271 ipif_refrele(ipif); 4272 } else { 4273 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4274 } 4275 } 4276 4277 pether = (struct ether_header *)((char *)ipha 4278 - sizeof (struct ether_header)); 4279 /* 4280 * Make sure the interface is an ethernet type, since this option 4281 * is currently supported only on this type of interface. Also make 4282 * sure we are pointing correctly above db_base. 4283 */ 4284 4285 if ((flags & IPF_RECVSLLA) && 4286 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 4287 (ill->ill_type == IFT_ETHER) && 4288 (ill->ill_net_type == IRE_IF_RESOLVER)) { 4289 4290 pinfo->ip_pkt_slla.sdl_type = IFT_ETHER; 4291 bcopy((uchar_t *)pether->ether_shost.ether_addr_octet, 4292 (uchar_t *)pinfo->ip_pkt_slla.sdl_data, ETHERADDRL); 4293 } else { 4294 /* 4295 * Clear the bit. Indicate to upper layer that IP is not 4296 * sending this ancillary info. 4297 */ 4298 pinfo->ip_pkt_flags = pinfo->ip_pkt_flags & ~IPF_RECVSLLA; 4299 } 4300 4301 mp->b_datap->db_type = M_CTL; 4302 mp->b_wptr += sizeof (ip_pktinfo_t); 4303 mp->b_cont = data_mp; 4304 4305 return (mp); 4306 } 4307 4308 /* 4309 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 4310 * part of the bind request. 4311 */ 4312 4313 boolean_t 4314 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 4315 { 4316 ipsec_in_t *ii; 4317 4318 ASSERT(policy_mp != NULL); 4319 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 4320 4321 ii = (ipsec_in_t *)policy_mp->b_rptr; 4322 ASSERT(ii->ipsec_in_type == IPSEC_IN); 4323 4324 connp->conn_policy = ii->ipsec_in_policy; 4325 ii->ipsec_in_policy = NULL; 4326 4327 if (ii->ipsec_in_action != NULL) { 4328 if (connp->conn_latch == NULL) { 4329 connp->conn_latch = iplatch_create(); 4330 if (connp->conn_latch == NULL) 4331 return (B_FALSE); 4332 } 4333 ipsec_latch_inbound(connp->conn_latch, ii); 4334 } 4335 return (B_TRUE); 4336 } 4337 4338 static void 4339 ip_bind_post_handling(conn_t *connp, mblk_t *mp, boolean_t ire_requested) 4340 { 4341 /* 4342 * Pass the IPsec headers size in ire_ipsec_overhead. 4343 * We can't do this in ip_bind_get_ire because the policy 4344 * may not have been inherited at that point in time and hence 4345 * conn_out_enforce_policy may not be set. 4346 */ 4347 if (ire_requested && connp->conn_out_enforce_policy && 4348 mp != NULL && DB_TYPE(mp) == IRE_DB_REQ_TYPE) { 4349 ire_t *ire = (ire_t *)mp->b_rptr; 4350 ASSERT(MBLKL(mp) >= sizeof (ire_t)); 4351 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 4352 } 4353 } 4354 4355 /* 4356 * Upper level protocols (ULP) pass through bind requests to IP for inspection 4357 * and to arrange for power-fanout assist. The ULP is identified by 4358 * adding a single byte at the end of the original bind message. 4359 * A ULP other than UDP or TCP that wishes to be recognized passes 4360 * down a bind with a zero length address. 4361 * 4362 * The binding works as follows: 4363 * - A zero byte address means just bind to the protocol. 4364 * - A four byte address is treated as a request to validate 4365 * that the address is a valid local address, appropriate for 4366 * an application to bind to. This does not affect any fanout 4367 * information in IP. 4368 * - A sizeof sin_t byte address is used to bind to only the local address 4369 * and port. 4370 * - A sizeof ipa_conn_t byte address contains complete fanout information 4371 * consisting of local and remote addresses and ports. In 4372 * this case, the addresses are both validated as appropriate 4373 * for this operation, and, if so, the information is retained 4374 * for use in the inbound fanout. 4375 * 4376 * The ULP (except in the zero-length bind) can append an 4377 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4378 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4379 * a copy of the source or destination IRE (source for local bind; 4380 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4381 * policy information contained should be copied on to the conn. 4382 * 4383 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4384 */ 4385 mblk_t * 4386 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4387 { 4388 ssize_t len; 4389 struct T_bind_req *tbr; 4390 sin_t *sin; 4391 ipa_conn_t *ac; 4392 uchar_t *ucp; 4393 mblk_t *mp1; 4394 boolean_t ire_requested; 4395 int error = 0; 4396 int protocol; 4397 ipa_conn_x_t *acx; 4398 4399 ASSERT(!connp->conn_af_isv6); 4400 connp->conn_pkt_isv6 = B_FALSE; 4401 4402 len = MBLKL(mp); 4403 if (len < (sizeof (*tbr) + 1)) { 4404 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4405 "ip_bind: bogus msg, len %ld", len); 4406 /* XXX: Need to return something better */ 4407 goto bad_addr; 4408 } 4409 /* Back up and extract the protocol identifier. */ 4410 mp->b_wptr--; 4411 protocol = *mp->b_wptr & 0xFF; 4412 tbr = (struct T_bind_req *)mp->b_rptr; 4413 /* Reset the message type in preparation for shipping it back. */ 4414 DB_TYPE(mp) = M_PCPROTO; 4415 4416 connp->conn_ulp = (uint8_t)protocol; 4417 4418 /* 4419 * Check for a zero length address. This is from a protocol that 4420 * wants to register to receive all packets of its type. 4421 */ 4422 if (tbr->ADDR_length == 0) { 4423 /* 4424 * These protocols are now intercepted in ip_bind_v6(). 4425 * Reject protocol-level binds here for now. 4426 * 4427 * For SCTP raw socket, ICMP sends down a bind with sin_t 4428 * so that the protocol type cannot be SCTP. 4429 */ 4430 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4431 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4432 goto bad_addr; 4433 } 4434 4435 /* 4436 * 4437 * The udp module never sends down a zero-length address, 4438 * and allowing this on a labeled system will break MLP 4439 * functionality. 4440 */ 4441 if (is_system_labeled() && protocol == IPPROTO_UDP) 4442 goto bad_addr; 4443 4444 if (connp->conn_mac_exempt) 4445 goto bad_addr; 4446 4447 /* No hash here really. The table is big enough. */ 4448 connp->conn_srcv6 = ipv6_all_zeros; 4449 4450 ipcl_proto_insert(connp, protocol); 4451 4452 tbr->PRIM_type = T_BIND_ACK; 4453 return (mp); 4454 } 4455 4456 /* Extract the address pointer from the message. */ 4457 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4458 tbr->ADDR_length); 4459 if (ucp == NULL) { 4460 ip1dbg(("ip_bind: no address\n")); 4461 goto bad_addr; 4462 } 4463 if (!OK_32PTR(ucp)) { 4464 ip1dbg(("ip_bind: unaligned address\n")); 4465 goto bad_addr; 4466 } 4467 /* 4468 * Check for trailing mps. 4469 */ 4470 4471 mp1 = mp->b_cont; 4472 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 4473 4474 switch (tbr->ADDR_length) { 4475 default: 4476 ip1dbg(("ip_bind: bad address length %d\n", 4477 (int)tbr->ADDR_length)); 4478 goto bad_addr; 4479 4480 case IP_ADDR_LEN: 4481 /* Verification of local address only */ 4482 error = ip_bind_laddr_v4(connp, &mp1, protocol, 4483 *(ipaddr_t *)ucp, 0, B_FALSE); 4484 break; 4485 4486 case sizeof (sin_t): 4487 sin = (sin_t *)ucp; 4488 error = ip_bind_laddr_v4(connp, &mp1, protocol, 4489 sin->sin_addr.s_addr, sin->sin_port, B_TRUE); 4490 break; 4491 4492 case sizeof (ipa_conn_t): 4493 ac = (ipa_conn_t *)ucp; 4494 /* For raw socket, the local port is not set. */ 4495 if (ac->ac_lport == 0) 4496 ac->ac_lport = connp->conn_lport; 4497 /* Always verify destination reachability. */ 4498 error = ip_bind_connected_v4(connp, &mp1, protocol, 4499 &ac->ac_laddr, ac->ac_lport, ac->ac_faddr, ac->ac_fport, 4500 B_TRUE, B_TRUE); 4501 break; 4502 4503 case sizeof (ipa_conn_x_t): 4504 acx = (ipa_conn_x_t *)ucp; 4505 /* 4506 * Whether or not to verify destination reachability depends 4507 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4508 */ 4509 error = ip_bind_connected_v4(connp, &mp1, protocol, 4510 &acx->acx_conn.ac_laddr, acx->acx_conn.ac_lport, 4511 acx->acx_conn.ac_faddr, acx->acx_conn.ac_fport, 4512 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0); 4513 break; 4514 } 4515 ASSERT(error != EINPROGRESS); 4516 if (error != 0) 4517 goto bad_addr; 4518 4519 ip_bind_post_handling(connp, mp->b_cont, ire_requested); 4520 4521 /* Send it home. */ 4522 mp->b_datap->db_type = M_PCPROTO; 4523 tbr->PRIM_type = T_BIND_ACK; 4524 return (mp); 4525 4526 bad_addr: 4527 /* 4528 * If error = -1 then we generate a TBADADDR - otherwise error is 4529 * a unix errno. 4530 */ 4531 if (error > 0) 4532 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4533 else 4534 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4535 return (mp); 4536 } 4537 4538 /* 4539 * Here address is verified to be a valid local address. 4540 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4541 * address is also considered a valid local address. 4542 * In the case of a broadcast/multicast address, however, the 4543 * upper protocol is expected to reset the src address 4544 * to 0 if it sees a IRE_BROADCAST type returned so that 4545 * no packets are emitted with broadcast/multicast address as 4546 * source address (that violates hosts requirements RFC 1122) 4547 * The addresses valid for bind are: 4548 * (1) - INADDR_ANY (0) 4549 * (2) - IP address of an UP interface 4550 * (3) - IP address of a DOWN interface 4551 * (4) - valid local IP broadcast addresses. In this case 4552 * the conn will only receive packets destined to 4553 * the specified broadcast address. 4554 * (5) - a multicast address. In this case 4555 * the conn will only receive packets destined to 4556 * the specified multicast address. Note: the 4557 * application still has to issue an 4558 * IP_ADD_MEMBERSHIP socket option. 4559 * 4560 * On error, return -1 for TBADADDR otherwise pass the 4561 * errno with TSYSERR reply. 4562 * 4563 * In all the above cases, the bound address must be valid in the current zone. 4564 * When the address is loopback, multicast or broadcast, there might be many 4565 * matching IREs so bind has to look up based on the zone. 4566 * 4567 * Note: lport is in network byte order. 4568 * 4569 */ 4570 int 4571 ip_bind_laddr_v4(conn_t *connp, mblk_t **mpp, uint8_t protocol, 4572 ipaddr_t src_addr, uint16_t lport, boolean_t fanout_insert) 4573 { 4574 int error = 0; 4575 ire_t *src_ire; 4576 zoneid_t zoneid; 4577 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4578 mblk_t *mp = NULL; 4579 boolean_t ire_requested = B_FALSE; 4580 boolean_t ipsec_policy_set = B_FALSE; 4581 4582 if (mpp) 4583 mp = *mpp; 4584 4585 if (mp != NULL) { 4586 ire_requested = (DB_TYPE(mp) == IRE_DB_REQ_TYPE); 4587 ipsec_policy_set = (DB_TYPE(mp) == IPSEC_POLICY_SET); 4588 } 4589 4590 /* 4591 * If it was previously connected, conn_fully_bound would have 4592 * been set. 4593 */ 4594 connp->conn_fully_bound = B_FALSE; 4595 4596 src_ire = NULL; 4597 4598 zoneid = IPCL_ZONEID(connp); 4599 4600 if (src_addr) { 4601 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4602 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 4603 /* 4604 * If an address other than 0.0.0.0 is requested, 4605 * we verify that it is a valid address for bind 4606 * Note: Following code is in if-else-if form for 4607 * readability compared to a condition check. 4608 */ 4609 /* LINTED - statement has no consequence */ 4610 if (IRE_IS_LOCAL(src_ire)) { 4611 /* 4612 * (2) Bind to address of local UP interface 4613 */ 4614 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4615 /* 4616 * (4) Bind to broadcast address 4617 * Note: permitted only from transports that 4618 * request IRE 4619 */ 4620 if (!ire_requested) 4621 error = EADDRNOTAVAIL; 4622 } else { 4623 /* 4624 * (3) Bind to address of local DOWN interface 4625 * (ipif_lookup_addr() looks up all interfaces 4626 * but we do not get here for UP interfaces 4627 * - case (2) above) 4628 */ 4629 /* LINTED - statement has no consequent */ 4630 if (ip_addr_exists(src_addr, zoneid, ipst)) { 4631 /* The address exists */ 4632 } else if (CLASSD(src_addr)) { 4633 error = 0; 4634 if (src_ire != NULL) 4635 ire_refrele(src_ire); 4636 /* 4637 * (5) bind to multicast address. 4638 * Fake out the IRE returned to upper 4639 * layer to be a broadcast IRE. 4640 */ 4641 src_ire = ire_ctable_lookup( 4642 INADDR_BROADCAST, INADDR_ANY, 4643 IRE_BROADCAST, NULL, zoneid, NULL, 4644 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY), 4645 ipst); 4646 if (src_ire == NULL || !ire_requested) 4647 error = EADDRNOTAVAIL; 4648 } else { 4649 /* 4650 * Not a valid address for bind 4651 */ 4652 error = EADDRNOTAVAIL; 4653 } 4654 } 4655 if (error) { 4656 /* Red Alert! Attempting to be a bogon! */ 4657 ip1dbg(("ip_bind_laddr_v4: bad src address 0x%x\n", 4658 ntohl(src_addr))); 4659 goto bad_addr; 4660 } 4661 } 4662 4663 4664 /* 4665 * Allow setting new policies. For example, disconnects come 4666 * down as ipa_t bind. As we would have set conn_policy_cached 4667 * to B_TRUE before, we should set it to B_FALSE, so that policy 4668 * can change after the disconnect. 4669 */ 4670 connp->conn_policy_cached = B_FALSE; 4671 4672 /* 4673 * If not fanout_insert this was just an address verification 4674 */ 4675 if (fanout_insert) { 4676 /* 4677 * The addresses have been verified. Time to insert in 4678 * the correct fanout list. 4679 */ 4680 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4681 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4682 connp->conn_lport = lport; 4683 connp->conn_fport = 0; 4684 /* 4685 * Do we need to add a check to reject Multicast packets 4686 */ 4687 error = ipcl_bind_insert(connp, protocol, src_addr, lport); 4688 } 4689 4690 if (error == 0) { 4691 if (ire_requested) { 4692 if (!ip_bind_get_ire_v4(mpp, src_ire, NULL, ipst)) { 4693 error = -1; 4694 /* Falls through to bad_addr */ 4695 } 4696 } else if (ipsec_policy_set) { 4697 if (!ip_bind_ipsec_policy_set(connp, mp)) { 4698 error = -1; 4699 /* Falls through to bad_addr */ 4700 } 4701 } 4702 } 4703 bad_addr: 4704 if (error != 0) { 4705 if (connp->conn_anon_port) { 4706 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4707 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4708 B_FALSE); 4709 } 4710 connp->conn_mlp_type = mlptSingle; 4711 } 4712 if (src_ire != NULL) 4713 IRE_REFRELE(src_ire); 4714 return (error); 4715 } 4716 4717 int 4718 ip_proto_bind_laddr_v4(conn_t *connp, mblk_t **ire_mpp, uint8_t protocol, 4719 ipaddr_t src_addr, uint16_t lport, boolean_t fanout_insert) 4720 { 4721 int error; 4722 mblk_t *mp = NULL; 4723 boolean_t ire_requested; 4724 4725 if (ire_mpp) 4726 mp = *ire_mpp; 4727 ire_requested = (mp != NULL && DB_TYPE(mp) == IRE_DB_REQ_TYPE); 4728 4729 ASSERT(!connp->conn_af_isv6); 4730 connp->conn_pkt_isv6 = B_FALSE; 4731 connp->conn_ulp = protocol; 4732 4733 error = ip_bind_laddr_v4(connp, ire_mpp, protocol, src_addr, lport, 4734 fanout_insert); 4735 if (error == 0) { 4736 ip_bind_post_handling(connp, ire_mpp ? *ire_mpp : NULL, 4737 ire_requested); 4738 } else if (error < 0) { 4739 error = -TBADADDR; 4740 } 4741 return (error); 4742 } 4743 4744 /* 4745 * Verify that both the source and destination addresses 4746 * are valid. If verify_dst is false, then the destination address may be 4747 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4748 * destination reachability, while tunnels do not. 4749 * Note that we allow connect to broadcast and multicast 4750 * addresses when ire_requested is set. Thus the ULP 4751 * has to check for IRE_BROADCAST and multicast. 4752 * 4753 * Returns zero if ok. 4754 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4755 * (for use with TSYSERR reply). 4756 * 4757 * Note: lport and fport are in network byte order. 4758 */ 4759 int 4760 ip_bind_connected_v4(conn_t *connp, mblk_t **mpp, uint8_t protocol, 4761 ipaddr_t *src_addrp, uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4762 boolean_t fanout_insert, boolean_t verify_dst) 4763 { 4764 4765 ire_t *src_ire; 4766 ire_t *dst_ire; 4767 int error = 0; 4768 ire_t *sire = NULL; 4769 ire_t *md_dst_ire = NULL; 4770 ire_t *lso_dst_ire = NULL; 4771 ill_t *ill = NULL; 4772 zoneid_t zoneid; 4773 ipaddr_t src_addr = *src_addrp; 4774 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4775 mblk_t *mp = NULL; 4776 boolean_t ire_requested = B_FALSE; 4777 boolean_t ipsec_policy_set = B_FALSE; 4778 ts_label_t *tsl = NULL; 4779 4780 if (mpp) 4781 mp = *mpp; 4782 4783 if (mp != NULL) { 4784 ire_requested = (DB_TYPE(mp) == IRE_DB_REQ_TYPE); 4785 ipsec_policy_set = (DB_TYPE(mp) == IPSEC_POLICY_SET); 4786 tsl = MBLK_GETLABEL(mp); 4787 } 4788 4789 src_ire = dst_ire = NULL; 4790 4791 /* 4792 * If we never got a disconnect before, clear it now. 4793 */ 4794 connp->conn_fully_bound = B_FALSE; 4795 4796 zoneid = IPCL_ZONEID(connp); 4797 4798 if (CLASSD(dst_addr)) { 4799 /* Pick up an IRE_BROADCAST */ 4800 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4801 NULL, zoneid, tsl, 4802 (MATCH_IRE_RECURSIVE | 4803 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4804 MATCH_IRE_SECATTR), ipst); 4805 } else { 4806 /* 4807 * If conn_dontroute is set or if conn_nexthop_set is set, 4808 * and onlink ipif is not found set ENETUNREACH error. 4809 */ 4810 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4811 ipif_t *ipif; 4812 4813 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4814 dst_addr : connp->conn_nexthop_v4, zoneid, ipst); 4815 if (ipif == NULL) { 4816 error = ENETUNREACH; 4817 goto bad_addr; 4818 } 4819 ipif_refrele(ipif); 4820 } 4821 4822 if (connp->conn_nexthop_set) { 4823 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4824 0, 0, NULL, NULL, zoneid, tsl, 4825 MATCH_IRE_SECATTR, ipst); 4826 } else { 4827 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4828 &sire, zoneid, tsl, 4829 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4830 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4831 MATCH_IRE_SECATTR), ipst); 4832 } 4833 } 4834 /* 4835 * dst_ire can't be a broadcast when not ire_requested. 4836 * We also prevent ire's with src address INADDR_ANY to 4837 * be used, which are created temporarily for 4838 * sending out packets from endpoints that have 4839 * conn_unspec_src set. If verify_dst is true, the destination must be 4840 * reachable. If verify_dst is false, the destination needn't be 4841 * reachable. 4842 * 4843 * If we match on a reject or black hole, then we've got a 4844 * local failure. May as well fail out the connect() attempt, 4845 * since it's never going to succeed. 4846 */ 4847 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4848 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4849 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4850 /* 4851 * If we're verifying destination reachability, we always want 4852 * to complain here. 4853 * 4854 * If we're not verifying destination reachability but the 4855 * destination has a route, we still want to fail on the 4856 * temporary address and broadcast address tests. 4857 */ 4858 if (verify_dst || (dst_ire != NULL)) { 4859 if (ip_debug > 2) { 4860 pr_addr_dbg("ip_bind_connected_v4:" 4861 "bad connected dst %s\n", 4862 AF_INET, &dst_addr); 4863 } 4864 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4865 error = ENETUNREACH; 4866 else 4867 error = EHOSTUNREACH; 4868 goto bad_addr; 4869 } 4870 } 4871 4872 /* 4873 * We now know that routing will allow us to reach the destination. 4874 * Check whether Trusted Solaris policy allows communication with this 4875 * host, and pretend that the destination is unreachable if not. 4876 * 4877 * This is never a problem for TCP, since that transport is known to 4878 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4879 * handling. If the remote is unreachable, it will be detected at that 4880 * point, so there's no reason to check it here. 4881 * 4882 * Note that for sendto (and other datagram-oriented friends), this 4883 * check is done as part of the data path label computation instead. 4884 * The check here is just to make non-TCP connect() report the right 4885 * error. 4886 */ 4887 if (dst_ire != NULL && is_system_labeled() && 4888 !IPCL_IS_TCP(connp) && 4889 tsol_compute_label(DB_CREDDEF(mp, connp->conn_cred), dst_addr, NULL, 4890 connp->conn_mac_exempt, ipst) != 0) { 4891 error = EHOSTUNREACH; 4892 if (ip_debug > 2) { 4893 pr_addr_dbg("ip_bind_connected_v4:" 4894 " no label for dst %s\n", 4895 AF_INET, &dst_addr); 4896 } 4897 goto bad_addr; 4898 } 4899 4900 /* 4901 * If the app does a connect(), it means that it will most likely 4902 * send more than 1 packet to the destination. It makes sense 4903 * to clear the temporary flag. 4904 */ 4905 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4906 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4907 irb_t *irb = dst_ire->ire_bucket; 4908 4909 rw_enter(&irb->irb_lock, RW_WRITER); 4910 /* 4911 * We need to recheck for IRE_MARK_TEMPORARY after acquiring 4912 * the lock to guarantee irb_tmp_ire_cnt. 4913 */ 4914 if (dst_ire->ire_marks & IRE_MARK_TEMPORARY) { 4915 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4916 irb->irb_tmp_ire_cnt--; 4917 } 4918 rw_exit(&irb->irb_lock); 4919 } 4920 4921 /* 4922 * See if we should notify ULP about LSO/MDT; we do this whether or not 4923 * ire_requested is TRUE, in order to handle active connects; LSO/MDT 4924 * eligibility tests for passive connects are handled separately 4925 * through tcp_adapt_ire(). We do this before the source address 4926 * selection, because dst_ire may change after a call to 4927 * ipif_select_source(). This is a best-effort check, as the 4928 * packet for this connection may not actually go through 4929 * dst_ire->ire_stq, and the exact IRE can only be known after 4930 * calling ip_newroute(). This is why we further check on the 4931 * IRE during LSO/Multidata packet transmission in 4932 * tcp_lsosend()/tcp_multisend(). 4933 */ 4934 if (!ipsec_policy_set && dst_ire != NULL && 4935 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4936 (ill = ire_to_ill(dst_ire), ill != NULL)) { 4937 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 4938 lso_dst_ire = dst_ire; 4939 IRE_REFHOLD(lso_dst_ire); 4940 } else if (ipst->ips_ip_multidata_outbound && 4941 ILL_MDT_CAPABLE(ill)) { 4942 md_dst_ire = dst_ire; 4943 IRE_REFHOLD(md_dst_ire); 4944 } 4945 } 4946 4947 if (dst_ire != NULL && 4948 dst_ire->ire_type == IRE_LOCAL && 4949 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4950 /* 4951 * If the IRE belongs to a different zone, look for a matching 4952 * route in the forwarding table and use the source address from 4953 * that route. 4954 */ 4955 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4956 zoneid, 0, NULL, 4957 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4958 MATCH_IRE_RJ_BHOLE, ipst); 4959 if (src_ire == NULL) { 4960 error = EHOSTUNREACH; 4961 goto bad_addr; 4962 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4963 if (!(src_ire->ire_type & IRE_HOST)) 4964 error = ENETUNREACH; 4965 else 4966 error = EHOSTUNREACH; 4967 goto bad_addr; 4968 } 4969 if (src_addr == INADDR_ANY) 4970 src_addr = src_ire->ire_src_addr; 4971 ire_refrele(src_ire); 4972 src_ire = NULL; 4973 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4974 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4975 src_addr = sire->ire_src_addr; 4976 ire_refrele(dst_ire); 4977 dst_ire = sire; 4978 sire = NULL; 4979 } else { 4980 /* 4981 * Pick a source address so that a proper inbound 4982 * load spreading would happen. 4983 */ 4984 ill_t *dst_ill = dst_ire->ire_ipif->ipif_ill; 4985 ipif_t *src_ipif = NULL; 4986 ire_t *ipif_ire; 4987 4988 /* 4989 * Supply a local source address such that inbound 4990 * load spreading happens. 4991 * 4992 * Determine the best source address on this ill for 4993 * the destination. 4994 * 4995 * 1) For broadcast, we should return a broadcast ire 4996 * found above so that upper layers know that the 4997 * destination address is a broadcast address. 4998 * 4999 * 2) If this is part of a group, select a better 5000 * source address so that better inbound load 5001 * balancing happens. Do the same if the ipif 5002 * is DEPRECATED. 5003 * 5004 * 3) If the outgoing interface is part of a usesrc 5005 * group, then try selecting a source address from 5006 * the usesrc ILL. 5007 */ 5008 if ((dst_ire->ire_zoneid != zoneid && 5009 dst_ire->ire_zoneid != ALL_ZONES) || 5010 (!(dst_ire->ire_flags & RTF_SETSRC)) && 5011 (!(dst_ire->ire_type & IRE_BROADCAST) && 5012 ((dst_ill->ill_group != NULL) || 5013 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 5014 (dst_ill->ill_usesrc_ifindex != 0)))) { 5015 /* 5016 * If the destination is reachable via a 5017 * given gateway, the selected source address 5018 * should be in the same subnet as the gateway. 5019 * Otherwise, the destination is not reachable. 5020 * 5021 * If there are no interfaces on the same subnet 5022 * as the destination, ipif_select_source gives 5023 * first non-deprecated interface which might be 5024 * on a different subnet than the gateway. 5025 * This is not desirable. Hence pass the dst_ire 5026 * source address to ipif_select_source. 5027 * It is sure that the destination is reachable 5028 * with the dst_ire source address subnet. 5029 * So passing dst_ire source address to 5030 * ipif_select_source will make sure that the 5031 * selected source will be on the same subnet 5032 * as dst_ire source address. 5033 */ 5034 ipaddr_t saddr = 5035 dst_ire->ire_ipif->ipif_src_addr; 5036 src_ipif = ipif_select_source(dst_ill, 5037 saddr, zoneid); 5038 if (src_ipif != NULL) { 5039 if (IS_VNI(src_ipif->ipif_ill)) { 5040 /* 5041 * For VNI there is no 5042 * interface route 5043 */ 5044 src_addr = 5045 src_ipif->ipif_src_addr; 5046 } else { 5047 ipif_ire = 5048 ipif_to_ire(src_ipif); 5049 if (ipif_ire != NULL) { 5050 IRE_REFRELE(dst_ire); 5051 dst_ire = ipif_ire; 5052 } 5053 src_addr = 5054 dst_ire->ire_src_addr; 5055 } 5056 ipif_refrele(src_ipif); 5057 } else { 5058 src_addr = dst_ire->ire_src_addr; 5059 } 5060 } else { 5061 src_addr = dst_ire->ire_src_addr; 5062 } 5063 } 5064 } 5065 5066 /* 5067 * We do ire_route_lookup() here (and not 5068 * interface lookup as we assert that 5069 * src_addr should only come from an 5070 * UP interface for hard binding. 5071 */ 5072 ASSERT(src_ire == NULL); 5073 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 5074 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 5075 /* src_ire must be a local|loopback */ 5076 if (!IRE_IS_LOCAL(src_ire)) { 5077 if (ip_debug > 2) { 5078 pr_addr_dbg("ip_bind_connected_v4: bad connected " 5079 "src %s\n", AF_INET, &src_addr); 5080 } 5081 error = EADDRNOTAVAIL; 5082 goto bad_addr; 5083 } 5084 5085 /* 5086 * If the source address is a loopback address, the 5087 * destination had best be local or multicast. 5088 * The transports that can't handle multicast will reject 5089 * those addresses. 5090 */ 5091 if (src_ire->ire_type == IRE_LOOPBACK && 5092 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 5093 ip1dbg(("ip_bind_connected_v4: bad connected loopback\n")); 5094 error = -1; 5095 goto bad_addr; 5096 } 5097 5098 /* 5099 * Allow setting new policies. For example, disconnects come 5100 * down as ipa_t bind. As we would have set conn_policy_cached 5101 * to B_TRUE before, we should set it to B_FALSE, so that policy 5102 * can change after the disconnect. 5103 */ 5104 connp->conn_policy_cached = B_FALSE; 5105 5106 /* 5107 * Set the conn addresses/ports immediately, so the IPsec policy calls 5108 * can handle their passed-in conn's. 5109 */ 5110 5111 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 5112 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 5113 connp->conn_lport = lport; 5114 connp->conn_fport = fport; 5115 *src_addrp = src_addr; 5116 5117 ASSERT(!(ipsec_policy_set && ire_requested)); 5118 if (ire_requested) { 5119 iulp_t *ulp_info = NULL; 5120 5121 /* 5122 * Note that sire will not be NULL if this is an off-link 5123 * connection and there is not cache for that dest yet. 5124 * 5125 * XXX Because of an existing bug, if there are multiple 5126 * default routes, the IRE returned now may not be the actual 5127 * default route used (default routes are chosen in a 5128 * round robin fashion). So if the metrics for different 5129 * default routes are different, we may return the wrong 5130 * metrics. This will not be a problem if the existing 5131 * bug is fixed. 5132 */ 5133 if (sire != NULL) { 5134 ulp_info = &(sire->ire_uinfo); 5135 } 5136 if (!ip_bind_get_ire_v4(mpp, dst_ire, ulp_info, ipst)) { 5137 error = -1; 5138 goto bad_addr; 5139 } 5140 mp = *mpp; 5141 } else if (ipsec_policy_set) { 5142 if (!ip_bind_ipsec_policy_set(connp, mp)) { 5143 error = -1; 5144 goto bad_addr; 5145 } 5146 } 5147 5148 /* 5149 * Cache IPsec policy in this conn. If we have per-socket policy, 5150 * we'll cache that. If we don't, we'll inherit global policy. 5151 * 5152 * We can't insert until the conn reflects the policy. Note that 5153 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 5154 * connections where we don't have a policy. This is to prevent 5155 * global policy lookups in the inbound path. 5156 * 5157 * If we insert before we set conn_policy_cached, 5158 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 5159 * because global policy cound be non-empty. We normally call 5160 * ipsec_check_policy() for conn_policy_cached connections only if 5161 * ipc_in_enforce_policy is set. But in this case, 5162 * conn_policy_cached can get set anytime since we made the 5163 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 5164 * called, which will make the above assumption false. Thus, we 5165 * need to insert after we set conn_policy_cached. 5166 */ 5167 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 5168 goto bad_addr; 5169 5170 if (fanout_insert) { 5171 /* 5172 * The addresses have been verified. Time to insert in 5173 * the correct fanout list. 5174 */ 5175 error = ipcl_conn_insert(connp, protocol, src_addr, 5176 dst_addr, connp->conn_ports); 5177 } 5178 5179 if (error == 0) { 5180 connp->conn_fully_bound = B_TRUE; 5181 /* 5182 * Our initial checks for LSO/MDT have passed; the IRE is not 5183 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 5184 * be supporting LSO/MDT. Pass the IRE, IPC and ILL into 5185 * ip_xxinfo_return(), which performs further checks 5186 * against them and upon success, returns the LSO/MDT info 5187 * mblk which we will attach to the bind acknowledgment. 5188 */ 5189 if (lso_dst_ire != NULL) { 5190 mblk_t *lsoinfo_mp; 5191 5192 ASSERT(ill->ill_lso_capab != NULL); 5193 if ((lsoinfo_mp = ip_lsoinfo_return(lso_dst_ire, connp, 5194 ill->ill_name, ill->ill_lso_capab)) != NULL) { 5195 if (mp == NULL) { 5196 *mpp = lsoinfo_mp; 5197 } else { 5198 linkb(mp, lsoinfo_mp); 5199 } 5200 } 5201 } else if (md_dst_ire != NULL) { 5202 mblk_t *mdinfo_mp; 5203 5204 ASSERT(ill->ill_mdt_capab != NULL); 5205 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 5206 ill->ill_name, ill->ill_mdt_capab)) != NULL) { 5207 if (mp == NULL) { 5208 *mpp = mdinfo_mp; 5209 } else { 5210 linkb(mp, mdinfo_mp); 5211 } 5212 } 5213 } 5214 } 5215 bad_addr: 5216 if (ipsec_policy_set) { 5217 ASSERT(mp != NULL); 5218 freeb(mp); 5219 /* 5220 * As of now assume that nothing else accompanies 5221 * IPSEC_POLICY_SET. 5222 */ 5223 *mpp = NULL; 5224 } 5225 if (src_ire != NULL) 5226 IRE_REFRELE(src_ire); 5227 if (dst_ire != NULL) 5228 IRE_REFRELE(dst_ire); 5229 if (sire != NULL) 5230 IRE_REFRELE(sire); 5231 if (md_dst_ire != NULL) 5232 IRE_REFRELE(md_dst_ire); 5233 if (lso_dst_ire != NULL) 5234 IRE_REFRELE(lso_dst_ire); 5235 return (error); 5236 } 5237 5238 int 5239 ip_proto_bind_connected_v4(conn_t *connp, mblk_t **ire_mpp, uint8_t protocol, 5240 ipaddr_t *src_addrp, uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 5241 boolean_t fanout_insert, boolean_t verify_dst) 5242 { 5243 int error; 5244 mblk_t *mp = NULL; 5245 boolean_t ire_requested; 5246 5247 if (ire_mpp) 5248 mp = *ire_mpp; 5249 ire_requested = (mp != NULL && DB_TYPE(mp) == IRE_DB_REQ_TYPE); 5250 5251 ASSERT(!connp->conn_af_isv6); 5252 connp->conn_pkt_isv6 = B_FALSE; 5253 connp->conn_ulp = protocol; 5254 5255 /* For raw socket, the local port is not set. */ 5256 if (lport == 0) 5257 lport = connp->conn_lport; 5258 error = ip_bind_connected_v4(connp, ire_mpp, protocol, 5259 src_addrp, lport, dst_addr, fport, fanout_insert, verify_dst); 5260 if (error == 0) { 5261 ip_bind_post_handling(connp, ire_mpp ? *ire_mpp : NULL, 5262 ire_requested); 5263 } else if (error < 0) { 5264 error = -TBADADDR; 5265 } 5266 return (error); 5267 } 5268 5269 /* 5270 * Get the ire in *mpp. Returns false if it fails (due to lack of space). 5271 * Prefers dst_ire over src_ire. 5272 */ 5273 static boolean_t 5274 ip_bind_get_ire_v4(mblk_t **mpp, ire_t *ire, iulp_t *ulp_info, ip_stack_t *ipst) 5275 { 5276 mblk_t *mp = *mpp; 5277 ire_t *ret_ire; 5278 5279 ASSERT(mp != NULL); 5280 5281 if (ire != NULL) { 5282 /* 5283 * mp initialized above to IRE_DB_REQ_TYPE 5284 * appended mblk. Its <upper protocol>'s 5285 * job to make sure there is room. 5286 */ 5287 if ((mp->b_datap->db_lim - mp->b_rptr) < sizeof (ire_t)) 5288 return (B_FALSE); 5289 5290 mp->b_datap->db_type = IRE_DB_TYPE; 5291 mp->b_wptr = mp->b_rptr + sizeof (ire_t); 5292 bcopy(ire, mp->b_rptr, sizeof (ire_t)); 5293 ret_ire = (ire_t *)mp->b_rptr; 5294 /* 5295 * Pass the latest setting of the ip_path_mtu_discovery and 5296 * copy the ulp info if any. 5297 */ 5298 ret_ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? 5299 IPH_DF : 0; 5300 if (ulp_info != NULL) { 5301 bcopy(ulp_info, &(ret_ire->ire_uinfo), 5302 sizeof (iulp_t)); 5303 } 5304 ret_ire->ire_mp = mp; 5305 } else { 5306 /* 5307 * No IRE was found. Remove IRE mblk. 5308 */ 5309 *mpp = mp->b_cont; 5310 freeb(mp); 5311 } 5312 return (B_TRUE); 5313 } 5314 5315 /* 5316 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 5317 * the final piece where we don't. Return a pointer to the first mblk in the 5318 * result, and update the pointer to the next mblk to chew on. If anything 5319 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 5320 * NULL pointer. 5321 */ 5322 mblk_t * 5323 ip_carve_mp(mblk_t **mpp, ssize_t len) 5324 { 5325 mblk_t *mp0; 5326 mblk_t *mp1; 5327 mblk_t *mp2; 5328 5329 if (!len || !mpp || !(mp0 = *mpp)) 5330 return (NULL); 5331 /* If we aren't going to consume the first mblk, we need a dup. */ 5332 if (mp0->b_wptr - mp0->b_rptr > len) { 5333 mp1 = dupb(mp0); 5334 if (mp1) { 5335 /* Partition the data between the two mblks. */ 5336 mp1->b_wptr = mp1->b_rptr + len; 5337 mp0->b_rptr = mp1->b_wptr; 5338 /* 5339 * after adjustments if mblk not consumed is now 5340 * unaligned, try to align it. If this fails free 5341 * all messages and let upper layer recover. 5342 */ 5343 if (!OK_32PTR(mp0->b_rptr)) { 5344 if (!pullupmsg(mp0, -1)) { 5345 freemsg(mp0); 5346 freemsg(mp1); 5347 *mpp = NULL; 5348 return (NULL); 5349 } 5350 } 5351 } 5352 return (mp1); 5353 } 5354 /* Eat through as many mblks as we need to get len bytes. */ 5355 len -= mp0->b_wptr - mp0->b_rptr; 5356 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 5357 if (mp2->b_wptr - mp2->b_rptr > len) { 5358 /* 5359 * We won't consume the entire last mblk. Like 5360 * above, dup and partition it. 5361 */ 5362 mp1->b_cont = dupb(mp2); 5363 mp1 = mp1->b_cont; 5364 if (!mp1) { 5365 /* 5366 * Trouble. Rather than go to a lot of 5367 * trouble to clean up, we free the messages. 5368 * This won't be any worse than losing it on 5369 * the wire. 5370 */ 5371 freemsg(mp0); 5372 freemsg(mp2); 5373 *mpp = NULL; 5374 return (NULL); 5375 } 5376 mp1->b_wptr = mp1->b_rptr + len; 5377 mp2->b_rptr = mp1->b_wptr; 5378 /* 5379 * after adjustments if mblk not consumed is now 5380 * unaligned, try to align it. If this fails free 5381 * all messages and let upper layer recover. 5382 */ 5383 if (!OK_32PTR(mp2->b_rptr)) { 5384 if (!pullupmsg(mp2, -1)) { 5385 freemsg(mp0); 5386 freemsg(mp2); 5387 *mpp = NULL; 5388 return (NULL); 5389 } 5390 } 5391 *mpp = mp2; 5392 return (mp0); 5393 } 5394 /* Decrement len by the amount we just got. */ 5395 len -= mp2->b_wptr - mp2->b_rptr; 5396 } 5397 /* 5398 * len should be reduced to zero now. If not our caller has 5399 * screwed up. 5400 */ 5401 if (len) { 5402 /* Shouldn't happen! */ 5403 freemsg(mp0); 5404 *mpp = NULL; 5405 return (NULL); 5406 } 5407 /* 5408 * We consumed up to exactly the end of an mblk. Detach the part 5409 * we are returning from the rest of the chain. 5410 */ 5411 mp1->b_cont = NULL; 5412 *mpp = mp2; 5413 return (mp0); 5414 } 5415 5416 /* The ill stream is being unplumbed. Called from ip_close */ 5417 int 5418 ip_modclose(ill_t *ill) 5419 { 5420 boolean_t success; 5421 ipsq_t *ipsq; 5422 ipif_t *ipif; 5423 queue_t *q = ill->ill_rq; 5424 ip_stack_t *ipst = ill->ill_ipst; 5425 5426 /* 5427 * The punlink prior to this may have initiated a capability 5428 * negotiation. But ipsq_enter will block until that finishes or 5429 * times out. 5430 */ 5431 success = ipsq_enter(ill, B_FALSE, NEW_OP); 5432 5433 /* 5434 * Open/close/push/pop is guaranteed to be single threaded 5435 * per stream by STREAMS. FS guarantees that all references 5436 * from top are gone before close is called. So there can't 5437 * be another close thread that has set CONDEMNED on this ill. 5438 * and cause ipsq_enter to return failure. 5439 */ 5440 ASSERT(success); 5441 ipsq = ill->ill_phyint->phyint_ipsq; 5442 5443 /* 5444 * Mark it condemned. No new reference will be made to this ill. 5445 * Lookup functions will return an error. Threads that try to 5446 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5447 * that the refcnt will drop down to zero. 5448 */ 5449 mutex_enter(&ill->ill_lock); 5450 ill->ill_state_flags |= ILL_CONDEMNED; 5451 for (ipif = ill->ill_ipif; ipif != NULL; 5452 ipif = ipif->ipif_next) { 5453 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5454 } 5455 /* 5456 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5457 * returns error if ILL_CONDEMNED is set 5458 */ 5459 cv_broadcast(&ill->ill_cv); 5460 mutex_exit(&ill->ill_lock); 5461 5462 /* 5463 * Send all the deferred DLPI messages downstream which came in 5464 * during the small window right before ipsq_enter(). We do this 5465 * without waiting for the ACKs because all the ACKs for M_PROTO 5466 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 5467 */ 5468 ill_dlpi_send_deferred(ill); 5469 5470 /* 5471 * Shut down fragmentation reassembly. 5472 * ill_frag_timer won't start a timer again. 5473 * Now cancel any existing timer 5474 */ 5475 (void) untimeout(ill->ill_frag_timer_id); 5476 (void) ill_frag_timeout(ill, 0); 5477 5478 /* 5479 * If MOVE was in progress, clear the 5480 * move_in_progress fields also. 5481 */ 5482 if (ill->ill_move_in_progress) { 5483 ILL_CLEAR_MOVE(ill); 5484 } 5485 5486 /* 5487 * Call ill_delete to bring down the ipifs, ilms and ill on 5488 * this ill. Then wait for the refcnts to drop to zero. 5489 * ill_is_freeable checks whether the ill is really quiescent. 5490 * Then make sure that threads that are waiting to enter the 5491 * ipsq have seen the error returned by ipsq_enter and have 5492 * gone away. Then we call ill_delete_tail which does the 5493 * DL_UNBIND_REQ with the driver and then qprocsoff. 5494 */ 5495 ill_delete(ill); 5496 mutex_enter(&ill->ill_lock); 5497 while (!ill_is_freeable(ill)) 5498 cv_wait(&ill->ill_cv, &ill->ill_lock); 5499 while (ill->ill_waiters) 5500 cv_wait(&ill->ill_cv, &ill->ill_lock); 5501 5502 mutex_exit(&ill->ill_lock); 5503 5504 /* 5505 * ill_delete_tail drops reference on ill_ipst, but we need to keep 5506 * it held until the end of the function since the cleanup 5507 * below needs to be able to use the ip_stack_t. 5508 */ 5509 netstack_hold(ipst->ips_netstack); 5510 5511 /* qprocsoff is called in ill_delete_tail */ 5512 ill_delete_tail(ill); 5513 ASSERT(ill->ill_ipst == NULL); 5514 5515 /* 5516 * Walk through all upper (conn) streams and qenable 5517 * those that have queued data. 5518 * close synchronization needs this to 5519 * be done to ensure that all upper layers blocked 5520 * due to flow control to the closing device 5521 * get unblocked. 5522 */ 5523 ip1dbg(("ip_wsrv: walking\n")); 5524 conn_walk_drain(ipst); 5525 5526 mutex_enter(&ipst->ips_ip_mi_lock); 5527 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 5528 mutex_exit(&ipst->ips_ip_mi_lock); 5529 5530 /* 5531 * credp could be null if the open didn't succeed and ip_modopen 5532 * itself calls ip_close. 5533 */ 5534 if (ill->ill_credp != NULL) 5535 crfree(ill->ill_credp); 5536 5537 /* 5538 * Now we are done with the module close pieces that 5539 * need the netstack_t. 5540 */ 5541 netstack_rele(ipst->ips_netstack); 5542 5543 mi_close_free((IDP)ill); 5544 q->q_ptr = WR(q)->q_ptr = NULL; 5545 5546 ipsq_exit(ipsq); 5547 5548 return (0); 5549 } 5550 5551 /* 5552 * This is called as part of close() for IP, UDP, ICMP, and RTS 5553 * in order to quiesce the conn. 5554 */ 5555 void 5556 ip_quiesce_conn(conn_t *connp) 5557 { 5558 boolean_t drain_cleanup_reqd = B_FALSE; 5559 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5560 boolean_t ilg_cleanup_reqd = B_FALSE; 5561 ip_stack_t *ipst; 5562 5563 ASSERT(!IPCL_IS_TCP(connp)); 5564 ipst = connp->conn_netstack->netstack_ip; 5565 5566 /* 5567 * Mark the conn as closing, and this conn must not be 5568 * inserted in future into any list. Eg. conn_drain_insert(), 5569 * won't insert this conn into the conn_drain_list. 5570 * Similarly ill_pending_mp_add() will not add any mp to 5571 * the pending mp list, after this conn has started closing. 5572 * 5573 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5574 * cannot get set henceforth. 5575 */ 5576 mutex_enter(&connp->conn_lock); 5577 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5578 connp->conn_state_flags |= CONN_CLOSING; 5579 if (connp->conn_idl != NULL) 5580 drain_cleanup_reqd = B_TRUE; 5581 if (connp->conn_oper_pending_ill != NULL) 5582 conn_ioctl_cleanup_reqd = B_TRUE; 5583 if (connp->conn_dhcpinit_ill != NULL) { 5584 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0); 5585 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit); 5586 connp->conn_dhcpinit_ill = NULL; 5587 } 5588 if (connp->conn_ilg_inuse != 0) 5589 ilg_cleanup_reqd = B_TRUE; 5590 mutex_exit(&connp->conn_lock); 5591 5592 if (conn_ioctl_cleanup_reqd) 5593 conn_ioctl_cleanup(connp); 5594 5595 if (is_system_labeled() && connp->conn_anon_port) { 5596 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5597 connp->conn_mlp_type, connp->conn_ulp, 5598 ntohs(connp->conn_lport), B_FALSE); 5599 connp->conn_anon_port = 0; 5600 } 5601 connp->conn_mlp_type = mlptSingle; 5602 5603 /* 5604 * Remove this conn from any fanout list it is on. 5605 * and then wait for any threads currently operating 5606 * on this endpoint to finish 5607 */ 5608 ipcl_hash_remove(connp); 5609 5610 /* 5611 * Remove this conn from the drain list, and do 5612 * any other cleanup that may be required. 5613 * (Only non-tcp streams may have a non-null conn_idl. 5614 * TCP streams are never flow controlled, and 5615 * conn_idl will be null) 5616 */ 5617 if (drain_cleanup_reqd) 5618 conn_drain_tail(connp, B_TRUE); 5619 5620 if (connp == ipst->ips_ip_g_mrouter) 5621 (void) ip_mrouter_done(NULL, ipst); 5622 5623 if (ilg_cleanup_reqd) 5624 ilg_delete_all(connp); 5625 5626 conn_delete_ire(connp, NULL); 5627 5628 /* 5629 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5630 * callers from write side can't be there now because close 5631 * is in progress. The only other caller is ipcl_walk 5632 * which checks for the condemned flag. 5633 */ 5634 mutex_enter(&connp->conn_lock); 5635 connp->conn_state_flags |= CONN_CONDEMNED; 5636 while (connp->conn_ref != 1) 5637 cv_wait(&connp->conn_cv, &connp->conn_lock); 5638 connp->conn_state_flags |= CONN_QUIESCED; 5639 mutex_exit(&connp->conn_lock); 5640 } 5641 5642 /* ARGSUSED */ 5643 int 5644 ip_close(queue_t *q, int flags) 5645 { 5646 conn_t *connp; 5647 5648 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5649 5650 /* 5651 * Call the appropriate delete routine depending on whether this is 5652 * a module or device. 5653 */ 5654 if (WR(q)->q_next != NULL) { 5655 /* This is a module close */ 5656 return (ip_modclose((ill_t *)q->q_ptr)); 5657 } 5658 5659 connp = q->q_ptr; 5660 ip_quiesce_conn(connp); 5661 5662 qprocsoff(q); 5663 5664 /* 5665 * Now we are truly single threaded on this stream, and can 5666 * delete the things hanging off the connp, and finally the connp. 5667 * We removed this connp from the fanout list, it cannot be 5668 * accessed thru the fanouts, and we already waited for the 5669 * conn_ref to drop to 0. We are already in close, so 5670 * there cannot be any other thread from the top. qprocsoff 5671 * has completed, and service has completed or won't run in 5672 * future. 5673 */ 5674 ASSERT(connp->conn_ref == 1); 5675 5676 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 5677 5678 connp->conn_ref--; 5679 ipcl_conn_destroy(connp); 5680 5681 q->q_ptr = WR(q)->q_ptr = NULL; 5682 return (0); 5683 } 5684 5685 /* 5686 * Wapper around putnext() so that ip_rts_request can merely use 5687 * conn_recv. 5688 */ 5689 /*ARGSUSED2*/ 5690 static void 5691 ip_conn_input(void *arg1, mblk_t *mp, void *arg2) 5692 { 5693 conn_t *connp = (conn_t *)arg1; 5694 5695 putnext(connp->conn_rq, mp); 5696 } 5697 5698 /* 5699 * Called when the module is about to be unloaded 5700 */ 5701 void 5702 ip_ddi_destroy(void) 5703 { 5704 tnet_fini(); 5705 5706 icmp_ddi_g_destroy(); 5707 rts_ddi_g_destroy(); 5708 udp_ddi_g_destroy(); 5709 sctp_ddi_g_destroy(); 5710 tcp_ddi_g_destroy(); 5711 ipsec_policy_g_destroy(); 5712 ipcl_g_destroy(); 5713 ip_net_g_destroy(); 5714 ip_ire_g_fini(); 5715 inet_minor_destroy(ip_minor_arena_sa); 5716 #if defined(_LP64) 5717 inet_minor_destroy(ip_minor_arena_la); 5718 #endif 5719 5720 #ifdef DEBUG 5721 list_destroy(&ip_thread_list); 5722 rw_destroy(&ip_thread_rwlock); 5723 tsd_destroy(&ip_thread_data); 5724 #endif 5725 5726 netstack_unregister(NS_IP); 5727 } 5728 5729 /* 5730 * First step in cleanup. 5731 */ 5732 /* ARGSUSED */ 5733 static void 5734 ip_stack_shutdown(netstackid_t stackid, void *arg) 5735 { 5736 ip_stack_t *ipst = (ip_stack_t *)arg; 5737 5738 #ifdef NS_DEBUG 5739 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 5740 #endif 5741 5742 /* Get rid of loopback interfaces and their IREs */ 5743 ip_loopback_cleanup(ipst); 5744 5745 /* 5746 * The *_hook_shutdown()s start the process of notifying any 5747 * consumers that things are going away.... nothing is destroyed. 5748 */ 5749 ipv4_hook_shutdown(ipst); 5750 ipv6_hook_shutdown(ipst); 5751 5752 mutex_enter(&ipst->ips_capab_taskq_lock); 5753 ipst->ips_capab_taskq_quit = B_TRUE; 5754 cv_signal(&ipst->ips_capab_taskq_cv); 5755 mutex_exit(&ipst->ips_capab_taskq_lock); 5756 } 5757 5758 /* 5759 * Free the IP stack instance. 5760 */ 5761 static void 5762 ip_stack_fini(netstackid_t stackid, void *arg) 5763 { 5764 ip_stack_t *ipst = (ip_stack_t *)arg; 5765 int ret; 5766 5767 /* 5768 * At this point, all of the notifications that the events and 5769 * protocols are going away have been run, meaning that we can 5770 * now set about starting to clean things up. 5771 */ 5772 ipv4_hook_destroy(ipst); 5773 ipv6_hook_destroy(ipst); 5774 ip_net_destroy(ipst); 5775 5776 mutex_destroy(&ipst->ips_capab_taskq_lock); 5777 cv_destroy(&ipst->ips_capab_taskq_cv); 5778 list_destroy(&ipst->ips_capab_taskq_list); 5779 5780 #ifdef NS_DEBUG 5781 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 5782 #endif 5783 rw_destroy(&ipst->ips_srcid_lock); 5784 5785 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 5786 ipst->ips_ip_mibkp = NULL; 5787 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 5788 ipst->ips_icmp_mibkp = NULL; 5789 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 5790 ipst->ips_ip_kstat = NULL; 5791 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 5792 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 5793 ipst->ips_ip6_kstat = NULL; 5794 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 5795 5796 nd_free(&ipst->ips_ip_g_nd); 5797 kmem_free(ipst->ips_param_arr, sizeof (lcl_param_arr)); 5798 ipst->ips_param_arr = NULL; 5799 kmem_free(ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5800 ipst->ips_ndp_arr = NULL; 5801 5802 ip_mrouter_stack_destroy(ipst); 5803 5804 mutex_destroy(&ipst->ips_ip_mi_lock); 5805 rw_destroy(&ipst->ips_ipsec_capab_ills_lock); 5806 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 5807 rw_destroy(&ipst->ips_ip_g_nd_lock); 5808 5809 ret = untimeout(ipst->ips_igmp_timeout_id); 5810 if (ret == -1) { 5811 ASSERT(ipst->ips_igmp_timeout_id == 0); 5812 } else { 5813 ASSERT(ipst->ips_igmp_timeout_id != 0); 5814 ipst->ips_igmp_timeout_id = 0; 5815 } 5816 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 5817 if (ret == -1) { 5818 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 5819 } else { 5820 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 5821 ipst->ips_igmp_slowtimeout_id = 0; 5822 } 5823 ret = untimeout(ipst->ips_mld_timeout_id); 5824 if (ret == -1) { 5825 ASSERT(ipst->ips_mld_timeout_id == 0); 5826 } else { 5827 ASSERT(ipst->ips_mld_timeout_id != 0); 5828 ipst->ips_mld_timeout_id = 0; 5829 } 5830 ret = untimeout(ipst->ips_mld_slowtimeout_id); 5831 if (ret == -1) { 5832 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 5833 } else { 5834 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 5835 ipst->ips_mld_slowtimeout_id = 0; 5836 } 5837 ret = untimeout(ipst->ips_ip_ire_expire_id); 5838 if (ret == -1) { 5839 ASSERT(ipst->ips_ip_ire_expire_id == 0); 5840 } else { 5841 ASSERT(ipst->ips_ip_ire_expire_id != 0); 5842 ipst->ips_ip_ire_expire_id = 0; 5843 } 5844 5845 mutex_destroy(&ipst->ips_igmp_timer_lock); 5846 mutex_destroy(&ipst->ips_mld_timer_lock); 5847 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 5848 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 5849 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 5850 rw_destroy(&ipst->ips_ill_g_lock); 5851 5852 ipobs_fini(ipst); 5853 ip_ire_fini(ipst); 5854 ip6_asp_free(ipst); 5855 conn_drain_fini(ipst); 5856 ipcl_destroy(ipst); 5857 5858 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 5859 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 5860 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 5861 ipst->ips_ndp4 = NULL; 5862 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 5863 ipst->ips_ndp6 = NULL; 5864 5865 if (ipst->ips_loopback_ksp != NULL) { 5866 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 5867 ipst->ips_loopback_ksp = NULL; 5868 } 5869 5870 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 5871 ipst->ips_phyint_g_list = NULL; 5872 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 5873 ipst->ips_ill_g_heads = NULL; 5874 5875 ldi_ident_release(ipst->ips_ldi_ident); 5876 kmem_free(ipst, sizeof (*ipst)); 5877 } 5878 5879 /* 5880 * This function is called from the TSD destructor, and is used to debug 5881 * reference count issues in IP. See block comment in <inet/ip_if.h> for 5882 * details. 5883 */ 5884 static void 5885 ip_thread_exit(void *phash) 5886 { 5887 th_hash_t *thh = phash; 5888 5889 rw_enter(&ip_thread_rwlock, RW_WRITER); 5890 list_remove(&ip_thread_list, thh); 5891 rw_exit(&ip_thread_rwlock); 5892 mod_hash_destroy_hash(thh->thh_hash); 5893 kmem_free(thh, sizeof (*thh)); 5894 } 5895 5896 /* 5897 * Called when the IP kernel module is loaded into the kernel 5898 */ 5899 void 5900 ip_ddi_init(void) 5901 { 5902 ip_squeue_flag = ip_squeue_switch(ip_squeue_enter); 5903 5904 /* 5905 * For IP and TCP the minor numbers should start from 2 since we have 4 5906 * initial devices: ip, ip6, tcp, tcp6. 5907 */ 5908 /* 5909 * If this is a 64-bit kernel, then create two separate arenas - 5910 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the 5911 * other for socket apps in the range 2^^18 through 2^^32-1. 5912 */ 5913 ip_minor_arena_la = NULL; 5914 ip_minor_arena_sa = NULL; 5915 #if defined(_LP64) 5916 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 5917 INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) { 5918 cmn_err(CE_PANIC, 5919 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 5920 } 5921 if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la", 5922 MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) { 5923 cmn_err(CE_PANIC, 5924 "ip_ddi_init: ip_minor_arena_la creation failed\n"); 5925 } 5926 #else 5927 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 5928 INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) { 5929 cmn_err(CE_PANIC, 5930 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 5931 } 5932 #endif 5933 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5934 5935 ipcl_g_init(); 5936 ip_ire_g_init(); 5937 ip_net_g_init(); 5938 5939 #ifdef DEBUG 5940 tsd_create(&ip_thread_data, ip_thread_exit); 5941 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL); 5942 list_create(&ip_thread_list, sizeof (th_hash_t), 5943 offsetof(th_hash_t, thh_link)); 5944 #endif 5945 5946 /* 5947 * We want to be informed each time a stack is created or 5948 * destroyed in the kernel, so we can maintain the 5949 * set of udp_stack_t's. 5950 */ 5951 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 5952 ip_stack_fini); 5953 5954 ipsec_policy_g_init(); 5955 tcp_ddi_g_init(); 5956 sctp_ddi_g_init(); 5957 5958 tnet_init(); 5959 5960 udp_ddi_g_init(); 5961 rts_ddi_g_init(); 5962 icmp_ddi_g_init(); 5963 } 5964 5965 /* 5966 * Initialize the IP stack instance. 5967 */ 5968 static void * 5969 ip_stack_init(netstackid_t stackid, netstack_t *ns) 5970 { 5971 ip_stack_t *ipst; 5972 ipparam_t *pa; 5973 ipndp_t *na; 5974 major_t major; 5975 5976 #ifdef NS_DEBUG 5977 printf("ip_stack_init(stack %d)\n", stackid); 5978 #endif 5979 5980 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 5981 ipst->ips_netstack = ns; 5982 5983 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 5984 KM_SLEEP); 5985 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 5986 KM_SLEEP); 5987 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5988 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5989 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5990 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5991 5992 rw_init(&ipst->ips_ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 5993 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5994 ipst->ips_igmp_deferred_next = INFINITY; 5995 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5996 ipst->ips_mld_deferred_next = INFINITY; 5997 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5998 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5999 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 6000 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 6001 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 6002 rw_init(&ipst->ips_ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 6003 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 6004 6005 ipcl_init(ipst); 6006 ip_ire_init(ipst); 6007 ip6_asp_init(ipst); 6008 ipif_init(ipst); 6009 conn_drain_init(ipst); 6010 ip_mrouter_stack_init(ipst); 6011 6012 ipst->ips_ip_g_frag_timeout = IP_FRAG_TIMEOUT; 6013 ipst->ips_ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 6014 6015 ipst->ips_ip_multirt_log_interval = 1000; 6016 6017 ipst->ips_ip_g_forward = IP_FORWARD_DEFAULT; 6018 ipst->ips_ipv6_forward = IP_FORWARD_DEFAULT; 6019 ipst->ips_ill_index = 1; 6020 6021 ipst->ips_saved_ip_g_forward = -1; 6022 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 6023 6024 pa = (ipparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP); 6025 ipst->ips_param_arr = pa; 6026 bcopy(lcl_param_arr, ipst->ips_param_arr, sizeof (lcl_param_arr)); 6027 6028 na = (ipndp_t *)kmem_alloc(sizeof (lcl_ndp_arr), KM_SLEEP); 6029 ipst->ips_ndp_arr = na; 6030 bcopy(lcl_ndp_arr, ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 6031 ipst->ips_ndp_arr[IPNDP_IP_FORWARDING_OFFSET].ip_ndp_data = 6032 (caddr_t)&ipst->ips_ip_g_forward; 6033 ipst->ips_ndp_arr[IPNDP_IP6_FORWARDING_OFFSET].ip_ndp_data = 6034 (caddr_t)&ipst->ips_ipv6_forward; 6035 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_name, 6036 "ip_cgtp_filter") == 0); 6037 ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_data = 6038 (caddr_t)&ipst->ips_ip_cgtp_filter; 6039 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_name, 6040 "ipmp_hook_emulation") == 0); 6041 ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_data = 6042 (caddr_t)&ipst->ips_ipmp_hook_emulation; 6043 6044 (void) ip_param_register(&ipst->ips_ip_g_nd, 6045 ipst->ips_param_arr, A_CNT(lcl_param_arr), 6046 ipst->ips_ndp_arr, A_CNT(lcl_ndp_arr)); 6047 6048 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 6049 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 6050 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 6051 ipst->ips_ip6_kstat = 6052 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 6053 6054 ipst->ips_ipmp_enable_failback = B_TRUE; 6055 6056 ipst->ips_ip_src_id = 1; 6057 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 6058 6059 ipobs_init(ipst); 6060 ip_net_init(ipst, ns); 6061 ipv4_hook_init(ipst); 6062 ipv6_hook_init(ipst); 6063 6064 /* 6065 * Create the taskq dispatcher thread and initialize related stuff. 6066 */ 6067 ipst->ips_capab_taskq_thread = thread_create(NULL, 0, 6068 ill_taskq_dispatch, ipst, 0, &p0, TS_RUN, minclsyspri); 6069 mutex_init(&ipst->ips_capab_taskq_lock, NULL, MUTEX_DEFAULT, NULL); 6070 cv_init(&ipst->ips_capab_taskq_cv, NULL, CV_DEFAULT, NULL); 6071 list_create(&ipst->ips_capab_taskq_list, sizeof (mblk_t), 6072 offsetof(mblk_t, b_next)); 6073 6074 major = mod_name_to_major(INET_NAME); 6075 (void) ldi_ident_from_major(major, &ipst->ips_ldi_ident); 6076 return (ipst); 6077 } 6078 6079 /* 6080 * Allocate and initialize a DLPI template of the specified length. (May be 6081 * called as writer.) 6082 */ 6083 mblk_t * 6084 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 6085 { 6086 mblk_t *mp; 6087 6088 mp = allocb(len, BPRI_MED); 6089 if (!mp) 6090 return (NULL); 6091 6092 /* 6093 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 6094 * of which we don't seem to use) are sent with M_PCPROTO, and 6095 * that other DLPI are M_PROTO. 6096 */ 6097 if (prim == DL_INFO_REQ) { 6098 mp->b_datap->db_type = M_PCPROTO; 6099 } else { 6100 mp->b_datap->db_type = M_PROTO; 6101 } 6102 6103 mp->b_wptr = mp->b_rptr + len; 6104 bzero(mp->b_rptr, len); 6105 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 6106 return (mp); 6107 } 6108 6109 /* 6110 * Debug formatting routine. Returns a character string representation of the 6111 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 6112 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 6113 * 6114 * Once the ndd table-printing interfaces are removed, this can be changed to 6115 * standard dotted-decimal form. 6116 */ 6117 char * 6118 ip_dot_addr(ipaddr_t addr, char *buf) 6119 { 6120 uint8_t *ap = (uint8_t *)&addr; 6121 6122 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 6123 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 6124 return (buf); 6125 } 6126 6127 /* 6128 * Write the given MAC address as a printable string in the usual colon- 6129 * separated format. 6130 */ 6131 const char * 6132 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 6133 { 6134 char *bp; 6135 6136 if (alen == 0 || buflen < 4) 6137 return ("?"); 6138 bp = buf; 6139 for (;;) { 6140 /* 6141 * If there are more MAC address bytes available, but we won't 6142 * have any room to print them, then add "..." to the string 6143 * instead. See below for the 'magic number' explanation. 6144 */ 6145 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 6146 (void) strcpy(bp, "..."); 6147 break; 6148 } 6149 (void) sprintf(bp, "%02x", *addr++); 6150 bp += 2; 6151 if (--alen == 0) 6152 break; 6153 *bp++ = ':'; 6154 buflen -= 3; 6155 /* 6156 * At this point, based on the first 'if' statement above, 6157 * either alen == 1 and buflen >= 3, or alen > 1 and 6158 * buflen >= 4. The first case leaves room for the final "xx" 6159 * number and trailing NUL byte. The second leaves room for at 6160 * least "...". Thus the apparently 'magic' numbers chosen for 6161 * that statement. 6162 */ 6163 } 6164 return (buf); 6165 } 6166 6167 /* 6168 * Send an ICMP error after patching up the packet appropriately. Returns 6169 * non-zero if the appropriate MIB should be bumped; zero otherwise. 6170 */ 6171 static boolean_t 6172 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 6173 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, 6174 zoneid_t zoneid, ip_stack_t *ipst) 6175 { 6176 ipha_t *ipha; 6177 mblk_t *first_mp; 6178 boolean_t secure; 6179 unsigned char db_type; 6180 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6181 6182 first_mp = mp; 6183 if (mctl_present) { 6184 mp = mp->b_cont; 6185 secure = ipsec_in_is_secure(first_mp); 6186 ASSERT(mp != NULL); 6187 } else { 6188 /* 6189 * If this is an ICMP error being reported - which goes 6190 * up as M_CTLs, we need to convert them to M_DATA till 6191 * we finish checking with global policy because 6192 * ipsec_check_global_policy() assumes M_DATA as clear 6193 * and M_CTL as secure. 6194 */ 6195 db_type = DB_TYPE(mp); 6196 DB_TYPE(mp) = M_DATA; 6197 secure = B_FALSE; 6198 } 6199 /* 6200 * We are generating an icmp error for some inbound packet. 6201 * Called from all ip_fanout_(udp, tcp, proto) functions. 6202 * Before we generate an error, check with global policy 6203 * to see whether this is allowed to enter the system. As 6204 * there is no "conn", we are checking with global policy. 6205 */ 6206 ipha = (ipha_t *)mp->b_rptr; 6207 if (secure || ipss->ipsec_inbound_v4_policy_present) { 6208 first_mp = ipsec_check_global_policy(first_mp, NULL, 6209 ipha, NULL, mctl_present, ipst->ips_netstack); 6210 if (first_mp == NULL) 6211 return (B_FALSE); 6212 } 6213 6214 if (!mctl_present) 6215 DB_TYPE(mp) = db_type; 6216 6217 if (flags & IP_FF_SEND_ICMP) { 6218 if (flags & IP_FF_HDR_COMPLETE) { 6219 if (ip_hdr_complete(ipha, zoneid, ipst)) { 6220 freemsg(first_mp); 6221 return (B_TRUE); 6222 } 6223 } 6224 if (flags & IP_FF_CKSUM) { 6225 /* 6226 * Have to correct checksum since 6227 * the packet might have been 6228 * fragmented and the reassembly code in ip_rput 6229 * does not restore the IP checksum. 6230 */ 6231 ipha->ipha_hdr_checksum = 0; 6232 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6233 } 6234 switch (icmp_type) { 6235 case ICMP_DEST_UNREACHABLE: 6236 icmp_unreachable(WR(q), first_mp, icmp_code, zoneid, 6237 ipst); 6238 break; 6239 default: 6240 freemsg(first_mp); 6241 break; 6242 } 6243 } else { 6244 freemsg(first_mp); 6245 return (B_FALSE); 6246 } 6247 6248 return (B_TRUE); 6249 } 6250 6251 /* 6252 * Used to send an ICMP error message when a packet is received for 6253 * a protocol that is not supported. The mblk passed as argument 6254 * is consumed by this function. 6255 */ 6256 void 6257 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid, 6258 ip_stack_t *ipst) 6259 { 6260 mblk_t *mp; 6261 ipha_t *ipha; 6262 ill_t *ill; 6263 ipsec_in_t *ii; 6264 6265 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6266 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6267 6268 mp = ipsec_mp->b_cont; 6269 ipsec_mp->b_cont = NULL; 6270 ipha = (ipha_t *)mp->b_rptr; 6271 /* Get ill from index in ipsec_in_t. */ 6272 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 6273 (IPH_HDR_VERSION(ipha) == IPV6_VERSION), NULL, NULL, NULL, NULL, 6274 ipst); 6275 if (ill != NULL) { 6276 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 6277 if (ip_fanout_send_icmp(q, mp, flags, 6278 ICMP_DEST_UNREACHABLE, 6279 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid, ipst)) { 6280 BUMP_MIB(ill->ill_ip_mib, 6281 ipIfStatsInUnknownProtos); 6282 } 6283 } else { 6284 if (ip_fanout_send_icmp_v6(q, mp, flags, 6285 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 6286 0, B_FALSE, zoneid, ipst)) { 6287 BUMP_MIB(ill->ill_ip_mib, 6288 ipIfStatsInUnknownProtos); 6289 } 6290 } 6291 ill_refrele(ill); 6292 } else { /* re-link for the freemsg() below. */ 6293 ipsec_mp->b_cont = mp; 6294 } 6295 6296 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 6297 freemsg(ipsec_mp); 6298 } 6299 6300 /* 6301 * See if the inbound datagram has had IPsec processing applied to it. 6302 */ 6303 boolean_t 6304 ipsec_in_is_secure(mblk_t *ipsec_mp) 6305 { 6306 ipsec_in_t *ii; 6307 6308 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6309 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6310 6311 if (ii->ipsec_in_loopback) { 6312 return (ii->ipsec_in_secure); 6313 } else { 6314 return (ii->ipsec_in_ah_sa != NULL || 6315 ii->ipsec_in_esp_sa != NULL || 6316 ii->ipsec_in_decaps); 6317 } 6318 } 6319 6320 /* 6321 * Handle protocols with which IP is less intimate. There 6322 * can be more than one stream bound to a particular 6323 * protocol. When this is the case, normally each one gets a copy 6324 * of any incoming packets. 6325 * 6326 * IPsec NOTE : 6327 * 6328 * Don't allow a secure packet going up a non-secure connection. 6329 * We don't allow this because 6330 * 6331 * 1) Reply might go out in clear which will be dropped at 6332 * the sending side. 6333 * 2) If the reply goes out in clear it will give the 6334 * adversary enough information for getting the key in 6335 * most of the cases. 6336 * 6337 * Moreover getting a secure packet when we expect clear 6338 * implies that SA's were added without checking for 6339 * policy on both ends. This should not happen once ISAKMP 6340 * is used to negotiate SAs as SAs will be added only after 6341 * verifying the policy. 6342 * 6343 * NOTE : If the packet was tunneled and not multicast we only send 6344 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 6345 * back to delivering packets to AF_INET6 raw sockets. 6346 * 6347 * IPQoS Notes: 6348 * Once we have determined the client, invoke IPPF processing. 6349 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6350 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6351 * ip_policy will be false. 6352 * 6353 * Zones notes: 6354 * Currently only applications in the global zone can create raw sockets for 6355 * protocols other than ICMP. So unlike the broadcast / multicast case of 6356 * ip_fanout_udp(), we only send a copy of the packet to streams in the 6357 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 6358 */ 6359 static void 6360 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 6361 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 6362 zoneid_t zoneid) 6363 { 6364 queue_t *rq; 6365 mblk_t *mp1, *first_mp1; 6366 uint_t protocol = ipha->ipha_protocol; 6367 ipaddr_t dst; 6368 boolean_t one_only; 6369 mblk_t *first_mp = mp; 6370 boolean_t secure; 6371 uint32_t ill_index; 6372 conn_t *connp, *first_connp, *next_connp; 6373 connf_t *connfp; 6374 boolean_t shared_addr; 6375 mib2_ipIfStatsEntry_t *mibptr; 6376 ip_stack_t *ipst = recv_ill->ill_ipst; 6377 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6378 6379 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 6380 if (mctl_present) { 6381 mp = first_mp->b_cont; 6382 secure = ipsec_in_is_secure(first_mp); 6383 ASSERT(mp != NULL); 6384 } else { 6385 secure = B_FALSE; 6386 } 6387 dst = ipha->ipha_dst; 6388 /* 6389 * If the packet was tunneled and not multicast we only send to it 6390 * the first match. 6391 */ 6392 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 6393 !CLASSD(dst)); 6394 6395 shared_addr = (zoneid == ALL_ZONES); 6396 if (shared_addr) { 6397 /* 6398 * We don't allow multilevel ports for raw IP, so no need to 6399 * check for that here. 6400 */ 6401 zoneid = tsol_packet_to_zoneid(mp); 6402 } 6403 6404 connfp = &ipst->ips_ipcl_proto_fanout[protocol]; 6405 mutex_enter(&connfp->connf_lock); 6406 connp = connfp->connf_head; 6407 for (connp = connfp->connf_head; connp != NULL; 6408 connp = connp->conn_next) { 6409 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 6410 zoneid) && 6411 (!is_system_labeled() || 6412 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6413 connp))) { 6414 break; 6415 } 6416 } 6417 6418 if (connp == NULL) { 6419 /* 6420 * No one bound to these addresses. Is 6421 * there a client that wants all 6422 * unclaimed datagrams? 6423 */ 6424 mutex_exit(&connfp->connf_lock); 6425 /* 6426 * Check for IPPROTO_ENCAP... 6427 */ 6428 if (protocol == IPPROTO_ENCAP && ipst->ips_ip_g_mrouter) { 6429 /* 6430 * If an IPsec mblk is here on a multicast 6431 * tunnel (using ip_mroute stuff), check policy here, 6432 * THEN ship off to ip_mroute_decap(). 6433 * 6434 * BTW, If I match a configured IP-in-IP 6435 * tunnel, this path will not be reached, and 6436 * ip_mroute_decap will never be called. 6437 */ 6438 first_mp = ipsec_check_global_policy(first_mp, connp, 6439 ipha, NULL, mctl_present, ipst->ips_netstack); 6440 if (first_mp != NULL) { 6441 if (mctl_present) 6442 freeb(first_mp); 6443 ip_mroute_decap(q, mp, ill); 6444 } /* Else we already freed everything! */ 6445 } else { 6446 /* 6447 * Otherwise send an ICMP protocol unreachable. 6448 */ 6449 if (ip_fanout_send_icmp(q, first_mp, flags, 6450 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 6451 mctl_present, zoneid, ipst)) { 6452 BUMP_MIB(mibptr, ipIfStatsInUnknownProtos); 6453 } 6454 } 6455 return; 6456 } 6457 6458 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 6459 6460 CONN_INC_REF(connp); 6461 first_connp = connp; 6462 6463 /* 6464 * Only send message to one tunnel driver by immediately 6465 * terminating the loop. 6466 */ 6467 connp = one_only ? NULL : connp->conn_next; 6468 6469 for (;;) { 6470 while (connp != NULL) { 6471 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 6472 flags, zoneid) && 6473 (!is_system_labeled() || 6474 tsol_receive_local(mp, &dst, IPV4_VERSION, 6475 shared_addr, connp))) 6476 break; 6477 connp = connp->conn_next; 6478 } 6479 6480 /* 6481 * Copy the packet. 6482 */ 6483 if (connp == NULL || 6484 (((first_mp1 = dupmsg(first_mp)) == NULL) && 6485 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 6486 /* 6487 * No more interested clients or memory 6488 * allocation failed 6489 */ 6490 connp = first_connp; 6491 break; 6492 } 6493 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 6494 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 6495 CONN_INC_REF(connp); 6496 mutex_exit(&connfp->connf_lock); 6497 rq = connp->conn_rq; 6498 6499 /* 6500 * Check flow control 6501 */ 6502 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 6503 (!IPCL_IS_NONSTR(connp) && !canputnext(rq))) { 6504 if (flags & IP_FF_RAWIP) { 6505 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6506 } else { 6507 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6508 } 6509 6510 freemsg(first_mp1); 6511 } else { 6512 /* 6513 * Don't enforce here if we're an actual tunnel - 6514 * let "tun" do it instead. 6515 */ 6516 if (!IPCL_IS_IPTUN(connp) && 6517 (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 6518 secure)) { 6519 first_mp1 = ipsec_check_inbound_policy 6520 (first_mp1, connp, ipha, NULL, 6521 mctl_present); 6522 } 6523 if (first_mp1 != NULL) { 6524 int in_flags = 0; 6525 /* 6526 * ip_fanout_proto also gets called from 6527 * icmp_inbound_error_fanout, in which case 6528 * the msg type is M_CTL. Don't add info 6529 * in this case for the time being. In future 6530 * when there is a need for knowing the 6531 * inbound iface index for ICMP error msgs, 6532 * then this can be changed. 6533 */ 6534 if (connp->conn_recvif) 6535 in_flags = IPF_RECVIF; 6536 /* 6537 * The ULP may support IP_RECVPKTINFO for both 6538 * IP v4 and v6 so pass the appropriate argument 6539 * based on conn IP version. 6540 */ 6541 if (connp->conn_ip_recvpktinfo) { 6542 if (connp->conn_af_isv6) { 6543 /* 6544 * V6 only needs index 6545 */ 6546 in_flags |= IPF_RECVIF; 6547 } else { 6548 /* 6549 * V4 needs index + 6550 * matching address. 6551 */ 6552 in_flags |= IPF_RECVADDR; 6553 } 6554 } 6555 if ((in_flags != 0) && 6556 (mp->b_datap->db_type != M_CTL)) { 6557 /* 6558 * the actual data will be 6559 * contained in b_cont upon 6560 * successful return of the 6561 * following call else 6562 * original mblk is returned 6563 */ 6564 ASSERT(recv_ill != NULL); 6565 mp1 = ip_add_info(mp1, recv_ill, 6566 in_flags, IPCL_ZONEID(connp), ipst); 6567 } 6568 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6569 if (mctl_present) 6570 freeb(first_mp1); 6571 (connp->conn_recv)(connp, mp1, NULL); 6572 } 6573 } 6574 mutex_enter(&connfp->connf_lock); 6575 /* Follow the next pointer before releasing the conn. */ 6576 next_connp = connp->conn_next; 6577 CONN_DEC_REF(connp); 6578 connp = next_connp; 6579 } 6580 6581 /* Last one. Send it upstream. */ 6582 mutex_exit(&connfp->connf_lock); 6583 6584 /* 6585 * If this packet is coming from icmp_inbound_error_fanout ip_policy 6586 * will be set to false. 6587 */ 6588 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6589 ill_index = ill->ill_phyint->phyint_ifindex; 6590 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6591 if (mp == NULL) { 6592 CONN_DEC_REF(connp); 6593 if (mctl_present) { 6594 freeb(first_mp); 6595 } 6596 return; 6597 } 6598 } 6599 6600 rq = connp->conn_rq; 6601 /* 6602 * Check flow control 6603 */ 6604 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 6605 (!IPCL_IS_NONSTR(connp) && !canputnext(rq))) { 6606 if (flags & IP_FF_RAWIP) { 6607 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6608 } else { 6609 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6610 } 6611 6612 freemsg(first_mp); 6613 } else { 6614 if (IPCL_IS_IPTUN(connp)) { 6615 /* 6616 * Tunneled packet. We enforce policy in the tunnel 6617 * module itself. 6618 * 6619 * Send the WHOLE packet up (incl. IPSEC_IN) without 6620 * a policy check. 6621 * FIXME to use conn_recv for tun later. 6622 */ 6623 putnext(rq, first_mp); 6624 CONN_DEC_REF(connp); 6625 return; 6626 } 6627 6628 if ((CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure)) { 6629 first_mp = ipsec_check_inbound_policy(first_mp, connp, 6630 ipha, NULL, mctl_present); 6631 } 6632 6633 if (first_mp != NULL) { 6634 int in_flags = 0; 6635 6636 /* 6637 * ip_fanout_proto also gets called 6638 * from icmp_inbound_error_fanout, in 6639 * which case the msg type is M_CTL. 6640 * Don't add info in this case for time 6641 * being. In future when there is a 6642 * need for knowing the inbound iface 6643 * index for ICMP error msgs, then this 6644 * can be changed 6645 */ 6646 if (connp->conn_recvif) 6647 in_flags = IPF_RECVIF; 6648 if (connp->conn_ip_recvpktinfo) { 6649 if (connp->conn_af_isv6) { 6650 /* 6651 * V6 only needs index 6652 */ 6653 in_flags |= IPF_RECVIF; 6654 } else { 6655 /* 6656 * V4 needs index + 6657 * matching address. 6658 */ 6659 in_flags |= IPF_RECVADDR; 6660 } 6661 } 6662 if ((in_flags != 0) && 6663 (mp->b_datap->db_type != M_CTL)) { 6664 6665 /* 6666 * the actual data will be contained in 6667 * b_cont upon successful return 6668 * of the following call else original 6669 * mblk is returned 6670 */ 6671 ASSERT(recv_ill != NULL); 6672 mp = ip_add_info(mp, recv_ill, 6673 in_flags, IPCL_ZONEID(connp), ipst); 6674 } 6675 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6676 (connp->conn_recv)(connp, mp, NULL); 6677 if (mctl_present) 6678 freeb(first_mp); 6679 } 6680 } 6681 CONN_DEC_REF(connp); 6682 } 6683 6684 /* 6685 * Fanout for TCP packets 6686 * The caller puts <fport, lport> in the ports parameter. 6687 * 6688 * IPQoS Notes 6689 * Before sending it to the client, invoke IPPF processing. 6690 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6691 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6692 * ip_policy is false. 6693 */ 6694 static void 6695 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6696 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6697 { 6698 mblk_t *first_mp; 6699 boolean_t secure; 6700 uint32_t ill_index; 6701 int ip_hdr_len; 6702 tcph_t *tcph; 6703 boolean_t syn_present = B_FALSE; 6704 conn_t *connp; 6705 ip_stack_t *ipst = recv_ill->ill_ipst; 6706 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6707 6708 ASSERT(recv_ill != NULL); 6709 6710 first_mp = mp; 6711 if (mctl_present) { 6712 ASSERT(first_mp->b_datap->db_type == M_CTL); 6713 mp = first_mp->b_cont; 6714 secure = ipsec_in_is_secure(first_mp); 6715 ASSERT(mp != NULL); 6716 } else { 6717 secure = B_FALSE; 6718 } 6719 6720 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6721 6722 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 6723 zoneid, ipst)) == NULL) { 6724 /* 6725 * No connected connection or listener. Send a 6726 * TH_RST via tcp_xmit_listeners_reset. 6727 */ 6728 6729 /* Initiate IPPf processing, if needed. */ 6730 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 6731 uint32_t ill_index; 6732 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6733 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6734 if (first_mp == NULL) 6735 return; 6736 } 6737 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6738 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6739 zoneid)); 6740 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6741 ipst->ips_netstack->netstack_tcp, NULL); 6742 return; 6743 } 6744 6745 /* 6746 * Allocate the SYN for the TCP connection here itself 6747 */ 6748 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6749 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6750 if (IPCL_IS_TCP(connp)) { 6751 squeue_t *sqp; 6752 6753 /* 6754 * For fused tcp loopback, assign the eager's 6755 * squeue to be that of the active connect's. 6756 * Note that we don't check for IP_FF_LOOPBACK 6757 * here since this routine gets called only 6758 * for loopback (unlike the IPv6 counterpart). 6759 */ 6760 ASSERT(Q_TO_CONN(q) != NULL); 6761 if (do_tcp_fusion && 6762 !CONN_INBOUND_POLICY_PRESENT(connp, ipss) && 6763 !secure && 6764 !IPP_ENABLED(IPP_LOCAL_IN, ipst) && !ip_policy && 6765 IPCL_IS_TCP(Q_TO_CONN(q))) { 6766 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6767 sqp = Q_TO_CONN(q)->conn_sqp; 6768 } else { 6769 sqp = IP_SQUEUE_GET(lbolt); 6770 } 6771 6772 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6773 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6774 syn_present = B_TRUE; 6775 } 6776 } 6777 6778 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6779 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6780 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6781 if ((flags & TH_RST) || (flags & TH_URG)) { 6782 CONN_DEC_REF(connp); 6783 freemsg(first_mp); 6784 return; 6785 } 6786 if (flags & TH_ACK) { 6787 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6788 ipst->ips_netstack->netstack_tcp, connp); 6789 CONN_DEC_REF(connp); 6790 return; 6791 } 6792 6793 CONN_DEC_REF(connp); 6794 freemsg(first_mp); 6795 return; 6796 } 6797 6798 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6799 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6800 NULL, mctl_present); 6801 if (first_mp == NULL) { 6802 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6803 CONN_DEC_REF(connp); 6804 return; 6805 } 6806 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6807 ASSERT(syn_present); 6808 if (mctl_present) { 6809 ASSERT(first_mp != mp); 6810 first_mp->b_datap->db_struioflag |= 6811 STRUIO_POLICY; 6812 } else { 6813 ASSERT(first_mp == mp); 6814 mp->b_datap->db_struioflag &= 6815 ~STRUIO_EAGER; 6816 mp->b_datap->db_struioflag |= 6817 STRUIO_POLICY; 6818 } 6819 } else { 6820 /* 6821 * Discard first_mp early since we're dealing with a 6822 * fully-connected conn_t and tcp doesn't do policy in 6823 * this case. 6824 */ 6825 if (mctl_present) { 6826 freeb(first_mp); 6827 mctl_present = B_FALSE; 6828 } 6829 first_mp = mp; 6830 } 6831 } 6832 6833 /* 6834 * Initiate policy processing here if needed. If we get here from 6835 * icmp_inbound_error_fanout, ip_policy is false. 6836 */ 6837 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6838 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6839 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6840 if (mp == NULL) { 6841 CONN_DEC_REF(connp); 6842 if (mctl_present) 6843 freeb(first_mp); 6844 return; 6845 } else if (mctl_present) { 6846 ASSERT(first_mp != mp); 6847 first_mp->b_cont = mp; 6848 } else { 6849 first_mp = mp; 6850 } 6851 } 6852 6853 6854 6855 /* Handle socket options. */ 6856 if (!syn_present && 6857 connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 6858 /* Add header */ 6859 ASSERT(recv_ill != NULL); 6860 /* 6861 * Since tcp does not support IP_RECVPKTINFO for V4, only pass 6862 * IPF_RECVIF. 6863 */ 6864 mp = ip_add_info(mp, recv_ill, IPF_RECVIF, IPCL_ZONEID(connp), 6865 ipst); 6866 if (mp == NULL) { 6867 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6868 CONN_DEC_REF(connp); 6869 if (mctl_present) 6870 freeb(first_mp); 6871 return; 6872 } else if (mctl_present) { 6873 /* 6874 * ip_add_info might return a new mp. 6875 */ 6876 ASSERT(first_mp != mp); 6877 first_mp->b_cont = mp; 6878 } else { 6879 first_mp = mp; 6880 } 6881 } 6882 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6883 if (IPCL_IS_TCP(connp)) { 6884 /* do not drain, certain use cases can blow the stack */ 6885 SQUEUE_ENTER_ONE(connp->conn_sqp, first_mp, connp->conn_recv, 6886 connp, ip_squeue_flag, SQTAG_IP_FANOUT_TCP); 6887 } else { 6888 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 6889 (connp->conn_recv)(connp, first_mp, NULL); 6890 CONN_DEC_REF(connp); 6891 } 6892 } 6893 6894 /* 6895 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or 6896 * pass it along to ESP if the SPI is non-zero. Returns TRUE if the mblk 6897 * is not consumed. 6898 * 6899 * One of four things can happen, all of which affect the passed-in mblk: 6900 * 6901 * 1.) ICMP messages that go through here just get returned TRUE. 6902 * 6903 * 2.) The packet is stock UDP and gets its zero-SPI stripped. Return TRUE. 6904 * 6905 * 3.) The packet is ESP-in-UDP, gets transformed into an equivalent 6906 * ESP packet, and is passed along to ESP for consumption. Return FALSE. 6907 * 6908 * 4.) The packet is an ESP-in-UDP Keepalive. Drop it and return FALSE. 6909 */ 6910 static boolean_t 6911 zero_spi_check(queue_t *q, mblk_t *mp, ire_t *ire, ill_t *recv_ill, 6912 ipsec_stack_t *ipss) 6913 { 6914 int shift, plen, iph_len; 6915 ipha_t *ipha; 6916 udpha_t *udpha; 6917 uint32_t *spi; 6918 uint32_t esp_ports; 6919 uint8_t *orptr; 6920 boolean_t free_ire; 6921 6922 if (DB_TYPE(mp) == M_CTL) { 6923 /* 6924 * ICMP message with UDP inside. Don't bother stripping, just 6925 * send it up. 6926 * 6927 * NOTE: Any app with UDP_NAT_T_ENDPOINT set is probably going 6928 * to ignore errors set by ICMP anyway ('cause they might be 6929 * forged), but that's the app's decision, not ours. 6930 */ 6931 6932 /* Bunch of reality checks for DEBUG kernels... */ 6933 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION); 6934 ASSERT(((ipha_t *)mp->b_rptr)->ipha_protocol == IPPROTO_ICMP); 6935 6936 return (B_TRUE); 6937 } 6938 6939 ipha = (ipha_t *)mp->b_rptr; 6940 iph_len = IPH_HDR_LENGTH(ipha); 6941 plen = ntohs(ipha->ipha_length); 6942 6943 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) { 6944 /* 6945 * Most likely a keepalive for the benefit of an intervening 6946 * NAT. These aren't for us, per se, so drop it. 6947 * 6948 * RFC 3947/8 doesn't say for sure what to do for 2-3 6949 * byte packets (keepalives are 1-byte), but we'll drop them 6950 * also. 6951 */ 6952 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 6953 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper); 6954 return (B_FALSE); 6955 } 6956 6957 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) { 6958 /* might as well pull it all up - it might be ESP. */ 6959 if (!pullupmsg(mp, -1)) { 6960 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 6961 DROPPER(ipss, ipds_esp_nomem), 6962 &ipss->ipsec_dropper); 6963 return (B_FALSE); 6964 } 6965 6966 ipha = (ipha_t *)mp->b_rptr; 6967 } 6968 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t)); 6969 if (*spi == 0) { 6970 /* UDP packet - remove 0-spi. */ 6971 shift = sizeof (uint32_t); 6972 } else { 6973 /* ESP-in-UDP packet - reduce to ESP. */ 6974 ipha->ipha_protocol = IPPROTO_ESP; 6975 shift = sizeof (udpha_t); 6976 } 6977 6978 /* Fix IP header */ 6979 ipha->ipha_length = htons(plen - shift); 6980 ipha->ipha_hdr_checksum = 0; 6981 6982 orptr = mp->b_rptr; 6983 mp->b_rptr += shift; 6984 6985 udpha = (udpha_t *)(orptr + iph_len); 6986 if (*spi == 0) { 6987 ASSERT((uint8_t *)ipha == orptr); 6988 udpha->uha_length = htons(plen - shift - iph_len); 6989 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */ 6990 esp_ports = 0; 6991 } else { 6992 esp_ports = *((uint32_t *)udpha); 6993 ASSERT(esp_ports != 0); 6994 } 6995 ovbcopy(orptr, orptr + shift, iph_len); 6996 if (esp_ports != 0) /* Punt up for ESP processing. */ { 6997 ipha = (ipha_t *)(orptr + shift); 6998 6999 free_ire = (ire == NULL); 7000 if (free_ire) { 7001 /* Re-acquire ire. */ 7002 ire = ire_cache_lookup(ipha->ipha_dst, ALL_ZONES, NULL, 7003 ipss->ipsec_netstack->netstack_ip); 7004 if (ire == NULL || !(ire->ire_type & IRE_LOCAL)) { 7005 if (ire != NULL) 7006 ire_refrele(ire); 7007 /* 7008 * Do a regular freemsg(), as this is an IP 7009 * error (no local route) not an IPsec one. 7010 */ 7011 freemsg(mp); 7012 } 7013 } 7014 7015 ip_proto_input(q, mp, ipha, ire, recv_ill, esp_ports); 7016 if (free_ire) 7017 ire_refrele(ire); 7018 } 7019 7020 return (esp_ports == 0); 7021 } 7022 7023 /* 7024 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 7025 * We are responsible for disposing of mp, such as by freemsg() or putnext() 7026 * Caller is responsible for dropping references to the conn, and freeing 7027 * first_mp. 7028 * 7029 * IPQoS Notes 7030 * Before sending it to the client, invoke IPPF processing. Policy processing 7031 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 7032 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 7033 * ip_wput_local, ip_policy is false. 7034 */ 7035 static void 7036 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 7037 boolean_t secure, ill_t *ill, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 7038 boolean_t ip_policy) 7039 { 7040 boolean_t mctl_present = (first_mp != NULL); 7041 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 7042 uint32_t ill_index; 7043 ip_stack_t *ipst = recv_ill->ill_ipst; 7044 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 7045 7046 ASSERT(ill != NULL); 7047 7048 if (mctl_present) 7049 first_mp->b_cont = mp; 7050 else 7051 first_mp = mp; 7052 7053 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 7054 (!IPCL_IS_NONSTR(connp) && CONN_UDP_FLOWCTLD(connp))) { 7055 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 7056 freemsg(first_mp); 7057 return; 7058 } 7059 7060 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 7061 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 7062 NULL, mctl_present); 7063 /* Freed by ipsec_check_inbound_policy(). */ 7064 if (first_mp == NULL) { 7065 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7066 return; 7067 } 7068 } 7069 if (mctl_present) 7070 freeb(first_mp); 7071 7072 /* Let's hope the compilers utter "branch, predict-not-taken..." ;) */ 7073 if (connp->conn_udp->udp_nat_t_endpoint) { 7074 if (mctl_present) { 7075 /* mctl_present *shouldn't* happen. */ 7076 ip_drop_packet(mp, B_TRUE, NULL, NULL, 7077 DROPPER(ipss, ipds_esp_nat_t_ipsec), 7078 &ipss->ipsec_dropper); 7079 return; 7080 } 7081 7082 if (!zero_spi_check(ill->ill_rq, mp, NULL, recv_ill, ipss)) 7083 return; 7084 } 7085 7086 /* Handle options. */ 7087 if (connp->conn_recvif) 7088 in_flags = IPF_RECVIF; 7089 /* 7090 * UDP supports IP_RECVPKTINFO option for both v4 and v6 so the flag 7091 * passed to ip_add_info is based on IP version of connp. 7092 */ 7093 if (connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 7094 if (connp->conn_af_isv6) { 7095 /* 7096 * V6 only needs index 7097 */ 7098 in_flags |= IPF_RECVIF; 7099 } else { 7100 /* 7101 * V4 needs index + matching address. 7102 */ 7103 in_flags |= IPF_RECVADDR; 7104 } 7105 } 7106 7107 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 7108 in_flags |= IPF_RECVSLLA; 7109 7110 /* 7111 * Initiate IPPF processing here, if needed. Note first_mp won't be 7112 * freed if the packet is dropped. The caller will do so. 7113 */ 7114 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 7115 ill_index = recv_ill->ill_phyint->phyint_ifindex; 7116 ip_process(IPP_LOCAL_IN, &mp, ill_index); 7117 if (mp == NULL) { 7118 return; 7119 } 7120 } 7121 if ((in_flags != 0) && 7122 (mp->b_datap->db_type != M_CTL)) { 7123 /* 7124 * The actual data will be contained in b_cont 7125 * upon successful return of the following call 7126 * else original mblk is returned 7127 */ 7128 ASSERT(recv_ill != NULL); 7129 mp = ip_add_info(mp, recv_ill, in_flags, IPCL_ZONEID(connp), 7130 ipst); 7131 } 7132 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 7133 /* Send it upstream */ 7134 (connp->conn_recv)(connp, mp, NULL); 7135 } 7136 7137 /* 7138 * Fanout for UDP packets. 7139 * The caller puts <fport, lport> in the ports parameter. 7140 * 7141 * If SO_REUSEADDR is set all multicast and broadcast packets 7142 * will be delivered to all streams bound to the same port. 7143 * 7144 * Zones notes: 7145 * Multicast and broadcast packets will be distributed to streams in all zones. 7146 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 7147 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 7148 * packets. To maintain this behavior with multiple zones, the conns are grouped 7149 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 7150 * each zone. If unset, all the following conns in the same zone are skipped. 7151 */ 7152 static void 7153 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 7154 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 7155 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 7156 { 7157 uint32_t dstport, srcport; 7158 ipaddr_t dst; 7159 mblk_t *first_mp; 7160 boolean_t secure; 7161 in6_addr_t v6src; 7162 conn_t *connp; 7163 connf_t *connfp; 7164 conn_t *first_connp; 7165 conn_t *next_connp; 7166 mblk_t *mp1, *first_mp1; 7167 ipaddr_t src; 7168 zoneid_t last_zoneid; 7169 boolean_t reuseaddr; 7170 boolean_t shared_addr; 7171 boolean_t unlabeled; 7172 ip_stack_t *ipst; 7173 7174 ASSERT(recv_ill != NULL); 7175 ipst = recv_ill->ill_ipst; 7176 7177 first_mp = mp; 7178 if (mctl_present) { 7179 mp = first_mp->b_cont; 7180 first_mp->b_cont = NULL; 7181 secure = ipsec_in_is_secure(first_mp); 7182 ASSERT(mp != NULL); 7183 } else { 7184 first_mp = NULL; 7185 secure = B_FALSE; 7186 } 7187 7188 /* Extract ports in net byte order */ 7189 dstport = htons(ntohl(ports) & 0xFFFF); 7190 srcport = htons(ntohl(ports) >> 16); 7191 dst = ipha->ipha_dst; 7192 src = ipha->ipha_src; 7193 7194 unlabeled = B_FALSE; 7195 if (is_system_labeled()) 7196 /* Cred cannot be null on IPv4 */ 7197 unlabeled = (crgetlabel(DB_CRED(mp))->tsl_flags & 7198 TSLF_UNLABELED) != 0; 7199 shared_addr = (zoneid == ALL_ZONES); 7200 if (shared_addr) { 7201 /* 7202 * No need to handle exclusive-stack zones since ALL_ZONES 7203 * only applies to the shared stack. 7204 */ 7205 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 7206 /* 7207 * If no shared MLP is found, tsol_mlp_findzone returns 7208 * ALL_ZONES. In that case, we assume it's SLP, and 7209 * search for the zone based on the packet label. 7210 * 7211 * If there is such a zone, we prefer to find a 7212 * connection in it. Otherwise, we look for a 7213 * MAC-exempt connection in any zone whose label 7214 * dominates the default label on the packet. 7215 */ 7216 if (zoneid == ALL_ZONES) 7217 zoneid = tsol_packet_to_zoneid(mp); 7218 else 7219 unlabeled = B_FALSE; 7220 } 7221 7222 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7223 mutex_enter(&connfp->connf_lock); 7224 connp = connfp->connf_head; 7225 if (!broadcast && !CLASSD(dst)) { 7226 /* 7227 * Not broadcast or multicast. Send to the one (first) 7228 * client we find. No need to check conn_wantpacket() 7229 * since IP_BOUND_IF/conn_incoming_ill does not apply to 7230 * IPv4 unicast packets. 7231 */ 7232 while ((connp != NULL) && 7233 (!IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) || 7234 (!IPCL_ZONE_MATCH(connp, zoneid) && 7235 !(unlabeled && connp->conn_mac_exempt)))) { 7236 /* 7237 * We keep searching since the conn did not match, 7238 * or its zone did not match and it is not either 7239 * an allzones conn or a mac exempt conn (if the 7240 * sender is unlabeled.) 7241 */ 7242 connp = connp->conn_next; 7243 } 7244 7245 if (connp == NULL || 7246 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) 7247 goto notfound; 7248 7249 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7250 7251 if (is_system_labeled() && 7252 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7253 connp)) 7254 goto notfound; 7255 7256 CONN_INC_REF(connp); 7257 mutex_exit(&connfp->connf_lock); 7258 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7259 flags, recv_ill, ip_policy); 7260 IP_STAT(ipst, ip_udp_fannorm); 7261 CONN_DEC_REF(connp); 7262 return; 7263 } 7264 7265 /* 7266 * Broadcast and multicast case 7267 * 7268 * Need to check conn_wantpacket(). 7269 * If SO_REUSEADDR has been set on the first we send the 7270 * packet to all clients that have joined the group and 7271 * match the port. 7272 */ 7273 7274 while (connp != NULL) { 7275 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 7276 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7277 (!is_system_labeled() || 7278 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7279 connp))) 7280 break; 7281 connp = connp->conn_next; 7282 } 7283 7284 if (connp == NULL || 7285 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) 7286 goto notfound; 7287 7288 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7289 7290 first_connp = connp; 7291 /* 7292 * When SO_REUSEADDR is not set, send the packet only to the first 7293 * matching connection in its zone by keeping track of the zoneid. 7294 */ 7295 reuseaddr = first_connp->conn_reuseaddr; 7296 last_zoneid = first_connp->conn_zoneid; 7297 7298 CONN_INC_REF(connp); 7299 connp = connp->conn_next; 7300 for (;;) { 7301 while (connp != NULL) { 7302 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 7303 (reuseaddr || connp->conn_zoneid != last_zoneid) && 7304 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7305 (!is_system_labeled() || 7306 tsol_receive_local(mp, &dst, IPV4_VERSION, 7307 shared_addr, connp))) 7308 break; 7309 connp = connp->conn_next; 7310 } 7311 /* 7312 * Just copy the data part alone. The mctl part is 7313 * needed just for verifying policy and it is never 7314 * sent up. 7315 */ 7316 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7317 ((mp1 = copymsg(mp)) == NULL))) { 7318 /* 7319 * No more interested clients or memory 7320 * allocation failed 7321 */ 7322 connp = first_connp; 7323 break; 7324 } 7325 if (connp->conn_zoneid != last_zoneid) { 7326 /* 7327 * Update the zoneid so that the packet isn't sent to 7328 * any more conns in the same zone unless SO_REUSEADDR 7329 * is set. 7330 */ 7331 reuseaddr = connp->conn_reuseaddr; 7332 last_zoneid = connp->conn_zoneid; 7333 } 7334 if (first_mp != NULL) { 7335 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7336 ipsec_info_type == IPSEC_IN); 7337 first_mp1 = ipsec_in_tag(first_mp, NULL, 7338 ipst->ips_netstack); 7339 if (first_mp1 == NULL) { 7340 freemsg(mp1); 7341 connp = first_connp; 7342 break; 7343 } 7344 } else { 7345 first_mp1 = NULL; 7346 } 7347 CONN_INC_REF(connp); 7348 mutex_exit(&connfp->connf_lock); 7349 /* 7350 * IPQoS notes: We don't send the packet for policy 7351 * processing here, will do it for the last one (below). 7352 * i.e. we do it per-packet now, but if we do policy 7353 * processing per-conn, then we would need to do it 7354 * here too. 7355 */ 7356 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7357 ipha, flags, recv_ill, B_FALSE); 7358 mutex_enter(&connfp->connf_lock); 7359 /* Follow the next pointer before releasing the conn. */ 7360 next_connp = connp->conn_next; 7361 IP_STAT(ipst, ip_udp_fanmb); 7362 CONN_DEC_REF(connp); 7363 connp = next_connp; 7364 } 7365 7366 /* Last one. Send it upstream. */ 7367 mutex_exit(&connfp->connf_lock); 7368 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7369 recv_ill, ip_policy); 7370 IP_STAT(ipst, ip_udp_fanmb); 7371 CONN_DEC_REF(connp); 7372 return; 7373 7374 notfound: 7375 7376 mutex_exit(&connfp->connf_lock); 7377 IP_STAT(ipst, ip_udp_fanothers); 7378 /* 7379 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 7380 * have already been matched above, since they live in the IPv4 7381 * fanout tables. This implies we only need to 7382 * check for IPv6 in6addr_any endpoints here. 7383 * Thus we compare using ipv6_all_zeros instead of the destination 7384 * address, except for the multicast group membership lookup which 7385 * uses the IPv4 destination. 7386 */ 7387 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 7388 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7389 mutex_enter(&connfp->connf_lock); 7390 connp = connfp->connf_head; 7391 if (!broadcast && !CLASSD(dst)) { 7392 while (connp != NULL) { 7393 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7394 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 7395 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7396 !connp->conn_ipv6_v6only) 7397 break; 7398 connp = connp->conn_next; 7399 } 7400 7401 if (connp != NULL && is_system_labeled() && 7402 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7403 connp)) 7404 connp = NULL; 7405 7406 if (connp == NULL || 7407 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) { 7408 /* 7409 * No one bound to this port. Is 7410 * there a client that wants all 7411 * unclaimed datagrams? 7412 */ 7413 mutex_exit(&connfp->connf_lock); 7414 7415 if (mctl_present) 7416 first_mp->b_cont = mp; 7417 else 7418 first_mp = mp; 7419 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP]. 7420 connf_head != NULL) { 7421 ip_fanout_proto(q, first_mp, ill, ipha, 7422 flags | IP_FF_RAWIP, mctl_present, 7423 ip_policy, recv_ill, zoneid); 7424 } else { 7425 if (ip_fanout_send_icmp(q, first_mp, flags, 7426 ICMP_DEST_UNREACHABLE, 7427 ICMP_PORT_UNREACHABLE, 7428 mctl_present, zoneid, ipst)) { 7429 BUMP_MIB(ill->ill_ip_mib, 7430 udpIfStatsNoPorts); 7431 } 7432 } 7433 return; 7434 } 7435 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7436 7437 CONN_INC_REF(connp); 7438 mutex_exit(&connfp->connf_lock); 7439 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7440 flags, recv_ill, ip_policy); 7441 CONN_DEC_REF(connp); 7442 return; 7443 } 7444 /* 7445 * IPv4 multicast packet being delivered to an AF_INET6 7446 * in6addr_any endpoint. 7447 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 7448 * and not conn_wantpacket_v6() since any multicast membership is 7449 * for an IPv4-mapped multicast address. 7450 * The packet is sent to all clients in all zones that have joined the 7451 * group and match the port. 7452 */ 7453 while (connp != NULL) { 7454 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7455 srcport, v6src) && 7456 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7457 (!is_system_labeled() || 7458 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7459 connp))) 7460 break; 7461 connp = connp->conn_next; 7462 } 7463 7464 if (connp == NULL || 7465 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) { 7466 /* 7467 * No one bound to this port. Is 7468 * there a client that wants all 7469 * unclaimed datagrams? 7470 */ 7471 mutex_exit(&connfp->connf_lock); 7472 7473 if (mctl_present) 7474 first_mp->b_cont = mp; 7475 else 7476 first_mp = mp; 7477 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP].connf_head != 7478 NULL) { 7479 ip_fanout_proto(q, first_mp, ill, ipha, 7480 flags | IP_FF_RAWIP, mctl_present, ip_policy, 7481 recv_ill, zoneid); 7482 } else { 7483 /* 7484 * We used to attempt to send an icmp error here, but 7485 * since this is known to be a multicast packet 7486 * and we don't send icmp errors in response to 7487 * multicast, just drop the packet and give up sooner. 7488 */ 7489 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 7490 freemsg(first_mp); 7491 } 7492 return; 7493 } 7494 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7495 7496 first_connp = connp; 7497 7498 CONN_INC_REF(connp); 7499 connp = connp->conn_next; 7500 for (;;) { 7501 while (connp != NULL) { 7502 if (IPCL_UDP_MATCH_V6(connp, dstport, 7503 ipv6_all_zeros, srcport, v6src) && 7504 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7505 (!is_system_labeled() || 7506 tsol_receive_local(mp, &dst, IPV4_VERSION, 7507 shared_addr, connp))) 7508 break; 7509 connp = connp->conn_next; 7510 } 7511 /* 7512 * Just copy the data part alone. The mctl part is 7513 * needed just for verifying policy and it is never 7514 * sent up. 7515 */ 7516 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7517 ((mp1 = copymsg(mp)) == NULL))) { 7518 /* 7519 * No more intested clients or memory 7520 * allocation failed 7521 */ 7522 connp = first_connp; 7523 break; 7524 } 7525 if (first_mp != NULL) { 7526 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7527 ipsec_info_type == IPSEC_IN); 7528 first_mp1 = ipsec_in_tag(first_mp, NULL, 7529 ipst->ips_netstack); 7530 if (first_mp1 == NULL) { 7531 freemsg(mp1); 7532 connp = first_connp; 7533 break; 7534 } 7535 } else { 7536 first_mp1 = NULL; 7537 } 7538 CONN_INC_REF(connp); 7539 mutex_exit(&connfp->connf_lock); 7540 /* 7541 * IPQoS notes: We don't send the packet for policy 7542 * processing here, will do it for the last one (below). 7543 * i.e. we do it per-packet now, but if we do policy 7544 * processing per-conn, then we would need to do it 7545 * here too. 7546 */ 7547 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7548 ipha, flags, recv_ill, B_FALSE); 7549 mutex_enter(&connfp->connf_lock); 7550 /* Follow the next pointer before releasing the conn. */ 7551 next_connp = connp->conn_next; 7552 CONN_DEC_REF(connp); 7553 connp = next_connp; 7554 } 7555 7556 /* Last one. Send it upstream. */ 7557 mutex_exit(&connfp->connf_lock); 7558 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7559 recv_ill, ip_policy); 7560 CONN_DEC_REF(connp); 7561 } 7562 7563 /* 7564 * Complete the ip_wput header so that it 7565 * is possible to generate ICMP 7566 * errors. 7567 */ 7568 int 7569 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid, ip_stack_t *ipst) 7570 { 7571 ire_t *ire; 7572 7573 if (ipha->ipha_src == INADDR_ANY) { 7574 ire = ire_lookup_local(zoneid, ipst); 7575 if (ire == NULL) { 7576 ip1dbg(("ip_hdr_complete: no source IRE\n")); 7577 return (1); 7578 } 7579 ipha->ipha_src = ire->ire_addr; 7580 ire_refrele(ire); 7581 } 7582 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 7583 ipha->ipha_hdr_checksum = 0; 7584 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 7585 return (0); 7586 } 7587 7588 /* 7589 * Nobody should be sending 7590 * packets up this stream 7591 */ 7592 static void 7593 ip_lrput(queue_t *q, mblk_t *mp) 7594 { 7595 mblk_t *mp1; 7596 7597 switch (mp->b_datap->db_type) { 7598 case M_FLUSH: 7599 /* Turn around */ 7600 if (*mp->b_rptr & FLUSHW) { 7601 *mp->b_rptr &= ~FLUSHR; 7602 qreply(q, mp); 7603 return; 7604 } 7605 break; 7606 } 7607 /* Could receive messages that passed through ar_rput */ 7608 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 7609 mp1->b_prev = mp1->b_next = NULL; 7610 freemsg(mp); 7611 } 7612 7613 /* Nobody should be sending packets down this stream */ 7614 /* ARGSUSED */ 7615 void 7616 ip_lwput(queue_t *q, mblk_t *mp) 7617 { 7618 freemsg(mp); 7619 } 7620 7621 /* 7622 * Move the first hop in any source route to ipha_dst and remove that part of 7623 * the source route. Called by other protocols. Errors in option formatting 7624 * are ignored - will be handled by ip_wput_options Return the final 7625 * destination (either ipha_dst or the last entry in a source route.) 7626 */ 7627 ipaddr_t 7628 ip_massage_options(ipha_t *ipha, netstack_t *ns) 7629 { 7630 ipoptp_t opts; 7631 uchar_t *opt; 7632 uint8_t optval; 7633 uint8_t optlen; 7634 ipaddr_t dst; 7635 int i; 7636 ire_t *ire; 7637 ip_stack_t *ipst = ns->netstack_ip; 7638 7639 ip2dbg(("ip_massage_options\n")); 7640 dst = ipha->ipha_dst; 7641 for (optval = ipoptp_first(&opts, ipha); 7642 optval != IPOPT_EOL; 7643 optval = ipoptp_next(&opts)) { 7644 opt = opts.ipoptp_cur; 7645 switch (optval) { 7646 uint8_t off; 7647 case IPOPT_SSRR: 7648 case IPOPT_LSRR: 7649 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 7650 ip1dbg(("ip_massage_options: bad src route\n")); 7651 break; 7652 } 7653 optlen = opts.ipoptp_len; 7654 off = opt[IPOPT_OFFSET]; 7655 off--; 7656 redo_srr: 7657 if (optlen < IP_ADDR_LEN || 7658 off > optlen - IP_ADDR_LEN) { 7659 /* End of source route */ 7660 ip1dbg(("ip_massage_options: end of SR\n")); 7661 break; 7662 } 7663 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 7664 ip1dbg(("ip_massage_options: next hop 0x%x\n", 7665 ntohl(dst))); 7666 /* 7667 * Check if our address is present more than 7668 * once as consecutive hops in source route. 7669 * XXX verify per-interface ip_forwarding 7670 * for source route? 7671 */ 7672 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 7673 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7674 if (ire != NULL) { 7675 ire_refrele(ire); 7676 off += IP_ADDR_LEN; 7677 goto redo_srr; 7678 } 7679 if (dst == htonl(INADDR_LOOPBACK)) { 7680 ip1dbg(("ip_massage_options: loopback addr in " 7681 "source route!\n")); 7682 break; 7683 } 7684 /* 7685 * Update ipha_dst to be the first hop and remove the 7686 * first hop from the source route (by overwriting 7687 * part of the option with NOP options). 7688 */ 7689 ipha->ipha_dst = dst; 7690 /* Put the last entry in dst */ 7691 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 7692 3; 7693 bcopy(&opt[off], &dst, IP_ADDR_LEN); 7694 7695 ip1dbg(("ip_massage_options: last hop 0x%x\n", 7696 ntohl(dst))); 7697 /* Move down and overwrite */ 7698 opt[IP_ADDR_LEN] = opt[0]; 7699 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 7700 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 7701 for (i = 0; i < IP_ADDR_LEN; i++) 7702 opt[i] = IPOPT_NOP; 7703 break; 7704 } 7705 } 7706 return (dst); 7707 } 7708 7709 /* 7710 * Return the network mask 7711 * associated with the specified address. 7712 */ 7713 ipaddr_t 7714 ip_net_mask(ipaddr_t addr) 7715 { 7716 uchar_t *up = (uchar_t *)&addr; 7717 ipaddr_t mask = 0; 7718 uchar_t *maskp = (uchar_t *)&mask; 7719 7720 #if defined(__i386) || defined(__amd64) 7721 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7722 #endif 7723 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7724 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7725 #endif 7726 if (CLASSD(addr)) { 7727 maskp[0] = 0xF0; 7728 return (mask); 7729 } 7730 7731 /* We assume Class E default netmask to be 32 */ 7732 if (CLASSE(addr)) 7733 return (0xffffffffU); 7734 7735 if (addr == 0) 7736 return (0); 7737 maskp[0] = 0xFF; 7738 if ((up[0] & 0x80) == 0) 7739 return (mask); 7740 7741 maskp[1] = 0xFF; 7742 if ((up[0] & 0xC0) == 0x80) 7743 return (mask); 7744 7745 maskp[2] = 0xFF; 7746 if ((up[0] & 0xE0) == 0xC0) 7747 return (mask); 7748 7749 /* Otherwise return no mask */ 7750 return ((ipaddr_t)0); 7751 } 7752 7753 /* 7754 * Select an ill for the packet by considering load spreading across 7755 * a different ill in the group if dst_ill is part of some group. 7756 */ 7757 ill_t * 7758 ip_newroute_get_dst_ill(ill_t *dst_ill) 7759 { 7760 ill_t *ill; 7761 7762 /* 7763 * We schedule irrespective of whether the source address is 7764 * INADDR_ANY or not. illgrp_scheduler returns a held ill. 7765 */ 7766 ill = illgrp_scheduler(dst_ill); 7767 if (ill == NULL) 7768 return (NULL); 7769 7770 /* 7771 * For groups with names ip_sioctl_groupname ensures that all 7772 * ills are of same type. For groups without names, ifgrp_insert 7773 * ensures this. 7774 */ 7775 ASSERT(dst_ill->ill_type == ill->ill_type); 7776 7777 return (ill); 7778 } 7779 7780 /* 7781 * Helper function for the IPIF_NOFAILOVER/ATTACH_IF interface attachment case. 7782 */ 7783 ill_t * 7784 ip_grab_attach_ill(ill_t *ill, mblk_t *first_mp, int ifindex, boolean_t isv6, 7785 ip_stack_t *ipst) 7786 { 7787 ill_t *ret_ill; 7788 7789 ASSERT(ifindex != 0); 7790 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 7791 ipst); 7792 if (ret_ill == NULL || 7793 (ret_ill->ill_phyint->phyint_flags & PHYI_OFFLINE)) { 7794 if (isv6) { 7795 if (ill != NULL) { 7796 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7797 } else { 7798 BUMP_MIB(&ipst->ips_ip6_mib, 7799 ipIfStatsOutDiscards); 7800 } 7801 ip1dbg(("ip_grab_attach_ill (IPv6): " 7802 "bad ifindex %d.\n", ifindex)); 7803 } else { 7804 if (ill != NULL) { 7805 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7806 } else { 7807 BUMP_MIB(&ipst->ips_ip_mib, 7808 ipIfStatsOutDiscards); 7809 } 7810 ip1dbg(("ip_grab_attach_ill (IPv4): " 7811 "bad ifindex %d.\n", ifindex)); 7812 } 7813 if (ret_ill != NULL) 7814 ill_refrele(ret_ill); 7815 freemsg(first_mp); 7816 return (NULL); 7817 } 7818 7819 return (ret_ill); 7820 } 7821 7822 /* 7823 * IPv4 - 7824 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7825 * out a packet to a destination address for which we do not have specific 7826 * (or sufficient) routing information. 7827 * 7828 * NOTE : These are the scopes of some of the variables that point at IRE, 7829 * which needs to be followed while making any future modifications 7830 * to avoid memory leaks. 7831 * 7832 * - ire and sire are the entries looked up initially by 7833 * ire_ftable_lookup. 7834 * - ipif_ire is used to hold the interface ire associated with 7835 * the new cache ire. But it's scope is limited, so we always REFRELE 7836 * it before branching out to error paths. 7837 * - save_ire is initialized before ire_create, so that ire returned 7838 * by ire_create will not over-write the ire. We REFRELE save_ire 7839 * before breaking out of the switch. 7840 * 7841 * Thus on failures, we have to REFRELE only ire and sire, if they 7842 * are not NULL. 7843 */ 7844 void 7845 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, conn_t *connp, 7846 zoneid_t zoneid, ip_stack_t *ipst) 7847 { 7848 areq_t *areq; 7849 ipaddr_t gw = 0; 7850 ire_t *ire = NULL; 7851 mblk_t *res_mp; 7852 ipaddr_t *addrp; 7853 ipaddr_t nexthop_addr; 7854 ipif_t *src_ipif = NULL; 7855 ill_t *dst_ill = NULL; 7856 ipha_t *ipha; 7857 ire_t *sire = NULL; 7858 mblk_t *first_mp; 7859 ire_t *save_ire; 7860 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER address */ 7861 ushort_t ire_marks = 0; 7862 boolean_t mctl_present; 7863 ipsec_out_t *io; 7864 mblk_t *saved_mp; 7865 ire_t *first_sire = NULL; 7866 mblk_t *copy_mp = NULL; 7867 mblk_t *xmit_mp = NULL; 7868 ipaddr_t save_dst; 7869 uint32_t multirt_flags = 7870 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7871 boolean_t multirt_is_resolvable; 7872 boolean_t multirt_resolve_next; 7873 boolean_t unspec_src; 7874 boolean_t do_attach_ill = B_FALSE; 7875 boolean_t ip_nexthop = B_FALSE; 7876 tsol_ire_gw_secattr_t *attrp = NULL; 7877 tsol_gcgrp_t *gcgrp = NULL; 7878 tsol_gcgrp_addr_t ga; 7879 7880 if (ip_debug > 2) { 7881 /* ip1dbg */ 7882 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7883 } 7884 7885 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7886 if (mctl_present) { 7887 io = (ipsec_out_t *)first_mp->b_rptr; 7888 ASSERT(io->ipsec_out_type == IPSEC_OUT); 7889 ASSERT(zoneid == io->ipsec_out_zoneid); 7890 ASSERT(zoneid != ALL_ZONES); 7891 } 7892 7893 ipha = (ipha_t *)mp->b_rptr; 7894 7895 /* All multicast lookups come through ip_newroute_ipif() */ 7896 if (CLASSD(dst)) { 7897 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7898 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7899 freemsg(first_mp); 7900 return; 7901 } 7902 7903 if (mctl_present && io->ipsec_out_attach_if) { 7904 /* ip_grab_attach_ill returns a held ill */ 7905 attach_ill = ip_grab_attach_ill(NULL, first_mp, 7906 io->ipsec_out_ill_index, B_FALSE, ipst); 7907 7908 /* Failure case frees things for us. */ 7909 if (attach_ill == NULL) 7910 return; 7911 7912 /* 7913 * Check if we need an ire that will not be 7914 * looked up by anybody else i.e. HIDDEN. 7915 */ 7916 if (ill_is_probeonly(attach_ill)) 7917 ire_marks = IRE_MARK_HIDDEN; 7918 } 7919 if (mctl_present && io->ipsec_out_ip_nexthop) { 7920 ip_nexthop = B_TRUE; 7921 nexthop_addr = io->ipsec_out_nexthop_addr; 7922 } 7923 /* 7924 * If this IRE is created for forwarding or it is not for 7925 * traffic for congestion controlled protocols, mark it as temporary. 7926 */ 7927 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 7928 ire_marks |= IRE_MARK_TEMPORARY; 7929 7930 /* 7931 * Get what we can from ire_ftable_lookup which will follow an IRE 7932 * chain until it gets the most specific information available. 7933 * For example, we know that there is no IRE_CACHE for this dest, 7934 * but there may be an IRE_OFFSUBNET which specifies a gateway. 7935 * ire_ftable_lookup will look up the gateway, etc. 7936 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 7937 * to the destination, of equal netmask length in the forward table, 7938 * will be recursively explored. If no information is available 7939 * for the final gateway of that route, we force the returned ire 7940 * to be equal to sire using MATCH_IRE_PARENT. 7941 * At least, in this case we have a starting point (in the buckets) 7942 * to look for other routes to the destination in the forward table. 7943 * This is actually used only for multirouting, where a list 7944 * of routes has to be processed in sequence. 7945 * 7946 * In the process of coming up with the most specific information, 7947 * ire_ftable_lookup may end up with an incomplete IRE_CACHE entry 7948 * for the gateway (i.e., one for which the ire_nce->nce_state is 7949 * not yet ND_REACHABLE, and is in the middle of arp resolution). 7950 * Two caveats when handling incomplete ire's in ip_newroute: 7951 * - we should be careful when accessing its ire_nce (specifically 7952 * the nce_res_mp) ast it might change underneath our feet, and, 7953 * - not all legacy code path callers are prepared to handle 7954 * incomplete ire's, so we should not create/add incomplete 7955 * ire_cache entries here. (See discussion about temporary solution 7956 * further below). 7957 * 7958 * In order to minimize packet dropping, and to preserve existing 7959 * behavior, we treat this case as if there were no IRE_CACHE for the 7960 * gateway, and instead use the IF_RESOLVER ire to send out 7961 * another request to ARP (this is achieved by passing the 7962 * MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the 7963 * arp response comes back in ip_wput_nondata, we will create 7964 * a per-dst ire_cache that has an ND_COMPLETE ire. 7965 * 7966 * Note that this is a temporary solution; the correct solution is 7967 * to create an incomplete per-dst ire_cache entry, and send the 7968 * packet out when the gw's nce is resolved. In order to achieve this, 7969 * all packet processing must have been completed prior to calling 7970 * ire_add_then_send. Some legacy code paths (e.g. cgtp) would need 7971 * to be modified to accomodate this solution. 7972 */ 7973 if (ip_nexthop) { 7974 /* 7975 * The first time we come here, we look for an IRE_INTERFACE 7976 * entry for the specified nexthop, set the dst to be the 7977 * nexthop address and create an IRE_CACHE entry for the 7978 * nexthop. The next time around, we are able to find an 7979 * IRE_CACHE entry for the nexthop, set the gateway to be the 7980 * nexthop address and create an IRE_CACHE entry for the 7981 * destination address via the specified nexthop. 7982 */ 7983 ire = ire_cache_lookup(nexthop_addr, zoneid, 7984 MBLK_GETLABEL(mp), ipst); 7985 if (ire != NULL) { 7986 gw = nexthop_addr; 7987 ire_marks |= IRE_MARK_PRIVATE_ADDR; 7988 } else { 7989 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 7990 IRE_INTERFACE, NULL, NULL, zoneid, 0, 7991 MBLK_GETLABEL(mp), 7992 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 7993 ipst); 7994 if (ire != NULL) { 7995 dst = nexthop_addr; 7996 } 7997 } 7998 } else if (attach_ill == NULL) { 7999 ire = ire_ftable_lookup(dst, 0, 0, 0, 8000 NULL, &sire, zoneid, 0, MBLK_GETLABEL(mp), 8001 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 8002 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 8003 MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE, 8004 ipst); 8005 } else { 8006 /* 8007 * attach_ill is set only for communicating with 8008 * on-link hosts. So, don't look for DEFAULT. 8009 */ 8010 ipif_t *attach_ipif; 8011 8012 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 8013 if (attach_ipif == NULL) { 8014 ill_refrele(attach_ill); 8015 goto icmp_err_ret; 8016 } 8017 ire = ire_ftable_lookup(dst, 0, 0, 0, attach_ipif, 8018 &sire, zoneid, 0, MBLK_GETLABEL(mp), 8019 MATCH_IRE_RJ_BHOLE | MATCH_IRE_ILL | 8020 MATCH_IRE_SECATTR, ipst); 8021 ipif_refrele(attach_ipif); 8022 } 8023 ip3dbg(("ip_newroute: ire_ftable_lookup() " 8024 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 8025 8026 /* 8027 * This loop is run only once in most cases. 8028 * We loop to resolve further routes only when the destination 8029 * can be reached through multiple RTF_MULTIRT-flagged ires. 8030 */ 8031 do { 8032 /* Clear the previous iteration's values */ 8033 if (src_ipif != NULL) { 8034 ipif_refrele(src_ipif); 8035 src_ipif = NULL; 8036 } 8037 if (dst_ill != NULL) { 8038 ill_refrele(dst_ill); 8039 dst_ill = NULL; 8040 } 8041 8042 multirt_resolve_next = B_FALSE; 8043 /* 8044 * We check if packets have to be multirouted. 8045 * In this case, given the current <ire, sire> couple, 8046 * we look for the next suitable <ire, sire>. 8047 * This check is done in ire_multirt_lookup(), 8048 * which applies various criteria to find the next route 8049 * to resolve. ire_multirt_lookup() leaves <ire, sire> 8050 * unchanged if it detects it has not been tried yet. 8051 */ 8052 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8053 ip3dbg(("ip_newroute: starting next_resolution " 8054 "with first_mp %p, tag %d\n", 8055 (void *)first_mp, 8056 MULTIRT_DEBUG_TAGGED(first_mp))); 8057 8058 ASSERT(sire != NULL); 8059 multirt_is_resolvable = 8060 ire_multirt_lookup(&ire, &sire, multirt_flags, 8061 MBLK_GETLABEL(mp), ipst); 8062 8063 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 8064 "ire %p, sire %p\n", 8065 multirt_is_resolvable, 8066 (void *)ire, (void *)sire)); 8067 8068 if (!multirt_is_resolvable) { 8069 /* 8070 * No more multirt route to resolve; give up 8071 * (all routes resolved or no more 8072 * resolvable routes). 8073 */ 8074 if (ire != NULL) { 8075 ire_refrele(ire); 8076 ire = NULL; 8077 } 8078 } else { 8079 ASSERT(sire != NULL); 8080 ASSERT(ire != NULL); 8081 /* 8082 * We simply use first_sire as a flag that 8083 * indicates if a resolvable multirt route 8084 * has already been found. 8085 * If it is not the case, we may have to send 8086 * an ICMP error to report that the 8087 * destination is unreachable. 8088 * We do not IRE_REFHOLD first_sire. 8089 */ 8090 if (first_sire == NULL) { 8091 first_sire = sire; 8092 } 8093 } 8094 } 8095 if (ire == NULL) { 8096 if (ip_debug > 3) { 8097 /* ip2dbg */ 8098 pr_addr_dbg("ip_newroute: " 8099 "can't resolve %s\n", AF_INET, &dst); 8100 } 8101 ip3dbg(("ip_newroute: " 8102 "ire %p, sire %p, first_sire %p\n", 8103 (void *)ire, (void *)sire, (void *)first_sire)); 8104 8105 if (sire != NULL) { 8106 ire_refrele(sire); 8107 sire = NULL; 8108 } 8109 8110 if (first_sire != NULL) { 8111 /* 8112 * At least one multirt route has been found 8113 * in the same call to ip_newroute(); 8114 * there is no need to report an ICMP error. 8115 * first_sire was not IRE_REFHOLDed. 8116 */ 8117 MULTIRT_DEBUG_UNTAG(first_mp); 8118 freemsg(first_mp); 8119 return; 8120 } 8121 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 8122 RTA_DST, ipst); 8123 if (attach_ill != NULL) 8124 ill_refrele(attach_ill); 8125 goto icmp_err_ret; 8126 } 8127 8128 /* 8129 * Verify that the returned IRE does not have either 8130 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 8131 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 8132 */ 8133 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 8134 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 8135 if (attach_ill != NULL) 8136 ill_refrele(attach_ill); 8137 goto icmp_err_ret; 8138 } 8139 /* 8140 * Increment the ire_ob_pkt_count field for ire if it is an 8141 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 8142 * increment the same for the parent IRE, sire, if it is some 8143 * sort of prefix IRE (which includes DEFAULT, PREFIX, and HOST) 8144 */ 8145 if ((ire->ire_type & IRE_INTERFACE) != 0) { 8146 UPDATE_OB_PKT_COUNT(ire); 8147 ire->ire_last_used_time = lbolt; 8148 } 8149 8150 if (sire != NULL) { 8151 gw = sire->ire_gateway_addr; 8152 ASSERT((sire->ire_type & (IRE_CACHETABLE | 8153 IRE_INTERFACE)) == 0); 8154 UPDATE_OB_PKT_COUNT(sire); 8155 sire->ire_last_used_time = lbolt; 8156 } 8157 /* 8158 * We have a route to reach the destination. 8159 * 8160 * 1) If the interface is part of ill group, try to get a new 8161 * ill taking load spreading into account. 8162 * 8163 * 2) After selecting the ill, get a source address that 8164 * might create good inbound load spreading. 8165 * ipif_select_source does this for us. 8166 * 8167 * If the application specified the ill (ifindex), we still 8168 * load spread. Only if the packets needs to go out 8169 * specifically on a given ill e.g. binding to 8170 * IPIF_NOFAILOVER address, then we don't try to use a 8171 * different ill for load spreading. 8172 */ 8173 if (attach_ill == NULL) { 8174 /* 8175 * Don't perform outbound load spreading in the 8176 * case of an RTF_MULTIRT route, as we actually 8177 * typically want to replicate outgoing packets 8178 * through particular interfaces. 8179 */ 8180 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8181 dst_ill = ire->ire_ipif->ipif_ill; 8182 /* for uniformity */ 8183 ill_refhold(dst_ill); 8184 } else { 8185 /* 8186 * If we are here trying to create an IRE_CACHE 8187 * for an offlink destination and have the 8188 * IRE_CACHE for the next hop and the latter is 8189 * using virtual IP source address selection i.e 8190 * it's ire->ire_ipif is pointing to a virtual 8191 * network interface (vni) then 8192 * ip_newroute_get_dst_ll() will return the vni 8193 * interface as the dst_ill. Since the vni is 8194 * virtual i.e not associated with any physical 8195 * interface, it cannot be the dst_ill, hence 8196 * in such a case call ip_newroute_get_dst_ll() 8197 * with the stq_ill instead of the ire_ipif ILL. 8198 * The function returns a refheld ill. 8199 */ 8200 if ((ire->ire_type == IRE_CACHE) && 8201 IS_VNI(ire->ire_ipif->ipif_ill)) 8202 dst_ill = ip_newroute_get_dst_ill( 8203 ire->ire_stq->q_ptr); 8204 else 8205 dst_ill = ip_newroute_get_dst_ill( 8206 ire->ire_ipif->ipif_ill); 8207 } 8208 if (dst_ill == NULL) { 8209 if (ip_debug > 2) { 8210 pr_addr_dbg("ip_newroute: " 8211 "no dst ill for dst" 8212 " %s\n", AF_INET, &dst); 8213 } 8214 goto icmp_err_ret; 8215 } 8216 } else { 8217 dst_ill = ire->ire_ipif->ipif_ill; 8218 /* for uniformity */ 8219 ill_refhold(dst_ill); 8220 /* 8221 * We should have found a route matching ill as we 8222 * called ire_ftable_lookup with MATCH_IRE_ILL. 8223 * Rather than asserting, when there is a mismatch, 8224 * we just drop the packet. 8225 */ 8226 if (dst_ill != attach_ill) { 8227 ip0dbg(("ip_newroute: Packet dropped as " 8228 "IPIF_NOFAILOVER ill is %s, " 8229 "ire->ire_ipif->ipif_ill is %s\n", 8230 attach_ill->ill_name, 8231 dst_ill->ill_name)); 8232 ill_refrele(attach_ill); 8233 goto icmp_err_ret; 8234 } 8235 } 8236 /* attach_ill can't go in loop. IPMP and CGTP are disjoint */ 8237 if (attach_ill != NULL) { 8238 ill_refrele(attach_ill); 8239 attach_ill = NULL; 8240 do_attach_ill = B_TRUE; 8241 } 8242 ASSERT(dst_ill != NULL); 8243 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 8244 8245 /* 8246 * Pick the best source address from dst_ill. 8247 * 8248 * 1) If it is part of a multipathing group, we would 8249 * like to spread the inbound packets across different 8250 * interfaces. ipif_select_source picks a random source 8251 * across the different ills in the group. 8252 * 8253 * 2) If it is not part of a multipathing group, we try 8254 * to pick the source address from the destination 8255 * route. Clustering assumes that when we have multiple 8256 * prefixes hosted on an interface, the prefix of the 8257 * source address matches the prefix of the destination 8258 * route. We do this only if the address is not 8259 * DEPRECATED. 8260 * 8261 * 3) If the conn is in a different zone than the ire, we 8262 * need to pick a source address from the right zone. 8263 * 8264 * NOTE : If we hit case (1) above, the prefix of the source 8265 * address picked may not match the prefix of the 8266 * destination routes prefix as ipif_select_source 8267 * does not look at "dst" while picking a source 8268 * address. 8269 * If we want the same behavior as (2), we will need 8270 * to change the behavior of ipif_select_source. 8271 */ 8272 ASSERT(src_ipif == NULL); 8273 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 8274 /* 8275 * The RTF_SETSRC flag is set in the parent ire (sire). 8276 * Check that the ipif matching the requested source 8277 * address still exists. 8278 */ 8279 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 8280 zoneid, NULL, NULL, NULL, NULL, ipst); 8281 } 8282 8283 unspec_src = (connp != NULL && connp->conn_unspec_src); 8284 8285 if (src_ipif == NULL && 8286 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 8287 ire_marks |= IRE_MARK_USESRC_CHECK; 8288 if ((dst_ill->ill_group != NULL) || 8289 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 8290 (connp != NULL && ire->ire_zoneid != zoneid && 8291 ire->ire_zoneid != ALL_ZONES) || 8292 (dst_ill->ill_usesrc_ifindex != 0)) { 8293 /* 8294 * If the destination is reachable via a 8295 * given gateway, the selected source address 8296 * should be in the same subnet as the gateway. 8297 * Otherwise, the destination is not reachable. 8298 * 8299 * If there are no interfaces on the same subnet 8300 * as the destination, ipif_select_source gives 8301 * first non-deprecated interface which might be 8302 * on a different subnet than the gateway. 8303 * This is not desirable. Hence pass the dst_ire 8304 * source address to ipif_select_source. 8305 * It is sure that the destination is reachable 8306 * with the dst_ire source address subnet. 8307 * So passing dst_ire source address to 8308 * ipif_select_source will make sure that the 8309 * selected source will be on the same subnet 8310 * as dst_ire source address. 8311 */ 8312 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 8313 src_ipif = ipif_select_source(dst_ill, saddr, 8314 zoneid); 8315 if (src_ipif == NULL) { 8316 if (ip_debug > 2) { 8317 pr_addr_dbg("ip_newroute: " 8318 "no src for dst %s ", 8319 AF_INET, &dst); 8320 printf("through interface %s\n", 8321 dst_ill->ill_name); 8322 } 8323 goto icmp_err_ret; 8324 } 8325 } else { 8326 src_ipif = ire->ire_ipif; 8327 ASSERT(src_ipif != NULL); 8328 /* hold src_ipif for uniformity */ 8329 ipif_refhold(src_ipif); 8330 } 8331 } 8332 8333 /* 8334 * Assign a source address while we have the conn. 8335 * We can't have ip_wput_ire pick a source address when the 8336 * packet returns from arp since we need to look at 8337 * conn_unspec_src and conn_zoneid, and we lose the conn when 8338 * going through arp. 8339 * 8340 * NOTE : ip_newroute_v6 does not have this piece of code as 8341 * it uses ip6i to store this information. 8342 */ 8343 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 8344 ipha->ipha_src = src_ipif->ipif_src_addr; 8345 8346 if (ip_debug > 3) { 8347 /* ip2dbg */ 8348 pr_addr_dbg("ip_newroute: first hop %s\n", 8349 AF_INET, &gw); 8350 } 8351 ip2dbg(("\tire type %s (%d)\n", 8352 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 8353 8354 /* 8355 * The TTL of multirouted packets is bounded by the 8356 * ip_multirt_ttl ndd variable. 8357 */ 8358 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8359 /* Force TTL of multirouted packets */ 8360 if ((ipst->ips_ip_multirt_ttl > 0) && 8361 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 8362 ip2dbg(("ip_newroute: forcing multirt TTL " 8363 "to %d (was %d), dst 0x%08x\n", 8364 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 8365 ntohl(sire->ire_addr))); 8366 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 8367 } 8368 } 8369 /* 8370 * At this point in ip_newroute(), ire is either the 8371 * IRE_CACHE of the next-hop gateway for an off-subnet 8372 * destination or an IRE_INTERFACE type that should be used 8373 * to resolve an on-subnet destination or an on-subnet 8374 * next-hop gateway. 8375 * 8376 * In the IRE_CACHE case, we have the following : 8377 * 8378 * 1) src_ipif - used for getting a source address. 8379 * 8380 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8381 * means packets using this IRE_CACHE will go out on 8382 * dst_ill. 8383 * 8384 * 3) The IRE sire will point to the prefix that is the 8385 * longest matching route for the destination. These 8386 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST. 8387 * 8388 * The newly created IRE_CACHE entry for the off-subnet 8389 * destination is tied to both the prefix route and the 8390 * interface route used to resolve the next-hop gateway 8391 * via the ire_phandle and ire_ihandle fields, 8392 * respectively. 8393 * 8394 * In the IRE_INTERFACE case, we have the following : 8395 * 8396 * 1) src_ipif - used for getting a source address. 8397 * 8398 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8399 * means packets using the IRE_CACHE that we will build 8400 * here will go out on dst_ill. 8401 * 8402 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 8403 * to be created will only be tied to the IRE_INTERFACE 8404 * that was derived from the ire_ihandle field. 8405 * 8406 * If sire is non-NULL, it means the destination is 8407 * off-link and we will first create the IRE_CACHE for the 8408 * gateway. Next time through ip_newroute, we will create 8409 * the IRE_CACHE for the final destination as described 8410 * above. 8411 * 8412 * In both cases, after the current resolution has been 8413 * completed (or possibly initialised, in the IRE_INTERFACE 8414 * case), the loop may be re-entered to attempt the resolution 8415 * of another RTF_MULTIRT route. 8416 * 8417 * When an IRE_CACHE entry for the off-subnet destination is 8418 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 8419 * for further processing in emission loops. 8420 */ 8421 save_ire = ire; 8422 switch (ire->ire_type) { 8423 case IRE_CACHE: { 8424 ire_t *ipif_ire; 8425 8426 ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE); 8427 if (gw == 0) 8428 gw = ire->ire_gateway_addr; 8429 /* 8430 * We need 3 ire's to create a new cache ire for an 8431 * off-link destination from the cache ire of the 8432 * gateway. 8433 * 8434 * 1. The prefix ire 'sire' (Note that this does 8435 * not apply to the conn_nexthop_set case) 8436 * 2. The cache ire of the gateway 'ire' 8437 * 3. The interface ire 'ipif_ire' 8438 * 8439 * We have (1) and (2). We lookup (3) below. 8440 * 8441 * If there is no interface route to the gateway, 8442 * it is a race condition, where we found the cache 8443 * but the interface route has been deleted. 8444 */ 8445 if (ip_nexthop) { 8446 ipif_ire = ire_ihandle_lookup_onlink(ire); 8447 } else { 8448 ipif_ire = 8449 ire_ihandle_lookup_offlink(ire, sire); 8450 } 8451 if (ipif_ire == NULL) { 8452 ip1dbg(("ip_newroute: " 8453 "ire_ihandle_lookup_offlink failed\n")); 8454 goto icmp_err_ret; 8455 } 8456 8457 /* 8458 * Check cached gateway IRE for any security 8459 * attributes; if found, associate the gateway 8460 * credentials group to the destination IRE. 8461 */ 8462 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 8463 mutex_enter(&attrp->igsa_lock); 8464 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 8465 GCGRP_REFHOLD(gcgrp); 8466 mutex_exit(&attrp->igsa_lock); 8467 } 8468 8469 /* 8470 * XXX For the source of the resolver mp, 8471 * we are using the same DL_UNITDATA_REQ 8472 * (from save_ire->ire_nce->nce_res_mp) 8473 * though the save_ire is not pointing at the same ill. 8474 * This is incorrect. We need to send it up to the 8475 * resolver to get the right res_mp. For ethernets 8476 * this may be okay (ill_type == DL_ETHER). 8477 */ 8478 8479 ire = ire_create( 8480 (uchar_t *)&dst, /* dest address */ 8481 (uchar_t *)&ip_g_all_ones, /* mask */ 8482 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8483 (uchar_t *)&gw, /* gateway address */ 8484 &save_ire->ire_max_frag, 8485 save_ire->ire_nce, /* src nce */ 8486 dst_ill->ill_rq, /* recv-from queue */ 8487 dst_ill->ill_wq, /* send-to queue */ 8488 IRE_CACHE, /* IRE type */ 8489 src_ipif, 8490 (sire != NULL) ? 8491 sire->ire_mask : 0, /* Parent mask */ 8492 (sire != NULL) ? 8493 sire->ire_phandle : 0, /* Parent handle */ 8494 ipif_ire->ire_ihandle, /* Interface handle */ 8495 (sire != NULL) ? (sire->ire_flags & 8496 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 8497 (sire != NULL) ? 8498 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 8499 NULL, 8500 gcgrp, 8501 ipst); 8502 8503 if (ire == NULL) { 8504 if (gcgrp != NULL) { 8505 GCGRP_REFRELE(gcgrp); 8506 gcgrp = NULL; 8507 } 8508 ire_refrele(ipif_ire); 8509 ire_refrele(save_ire); 8510 break; 8511 } 8512 8513 /* reference now held by IRE */ 8514 gcgrp = NULL; 8515 8516 ire->ire_marks |= ire_marks; 8517 8518 /* 8519 * Prevent sire and ipif_ire from getting deleted. 8520 * The newly created ire is tied to both of them via 8521 * the phandle and ihandle respectively. 8522 */ 8523 if (sire != NULL) { 8524 IRB_REFHOLD(sire->ire_bucket); 8525 /* Has it been removed already ? */ 8526 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 8527 IRB_REFRELE(sire->ire_bucket); 8528 ire_refrele(ipif_ire); 8529 ire_refrele(save_ire); 8530 break; 8531 } 8532 } 8533 8534 IRB_REFHOLD(ipif_ire->ire_bucket); 8535 /* Has it been removed already ? */ 8536 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 8537 IRB_REFRELE(ipif_ire->ire_bucket); 8538 if (sire != NULL) 8539 IRB_REFRELE(sire->ire_bucket); 8540 ire_refrele(ipif_ire); 8541 ire_refrele(save_ire); 8542 break; 8543 } 8544 8545 xmit_mp = first_mp; 8546 /* 8547 * In the case of multirouting, a copy 8548 * of the packet is done before its sending. 8549 * The copy is used to attempt another 8550 * route resolution, in a next loop. 8551 */ 8552 if (ire->ire_flags & RTF_MULTIRT) { 8553 copy_mp = copymsg(first_mp); 8554 if (copy_mp != NULL) { 8555 xmit_mp = copy_mp; 8556 MULTIRT_DEBUG_TAG(first_mp); 8557 } 8558 } 8559 ire_add_then_send(q, ire, xmit_mp); 8560 ire_refrele(save_ire); 8561 8562 /* Assert that sire is not deleted yet. */ 8563 if (sire != NULL) { 8564 ASSERT(sire->ire_ptpn != NULL); 8565 IRB_REFRELE(sire->ire_bucket); 8566 } 8567 8568 /* Assert that ipif_ire is not deleted yet. */ 8569 ASSERT(ipif_ire->ire_ptpn != NULL); 8570 IRB_REFRELE(ipif_ire->ire_bucket); 8571 ire_refrele(ipif_ire); 8572 8573 /* 8574 * If copy_mp is not NULL, multirouting was 8575 * requested. We loop to initiate a next 8576 * route resolution attempt, starting from sire. 8577 */ 8578 if (copy_mp != NULL) { 8579 /* 8580 * Search for the next unresolved 8581 * multirt route. 8582 */ 8583 copy_mp = NULL; 8584 ipif_ire = NULL; 8585 ire = NULL; 8586 multirt_resolve_next = B_TRUE; 8587 continue; 8588 } 8589 if (sire != NULL) 8590 ire_refrele(sire); 8591 ipif_refrele(src_ipif); 8592 ill_refrele(dst_ill); 8593 return; 8594 } 8595 case IRE_IF_NORESOLVER: { 8596 if (dst_ill->ill_phys_addr_length != IP_ADDR_LEN && 8597 dst_ill->ill_resolver_mp == NULL) { 8598 ip1dbg(("ip_newroute: dst_ill %p " 8599 "for IRE_IF_NORESOLVER ire %p has " 8600 "no ill_resolver_mp\n", 8601 (void *)dst_ill, (void *)ire)); 8602 break; 8603 } 8604 8605 /* 8606 * TSol note: We are creating the ire cache for the 8607 * destination 'dst'. If 'dst' is offlink, going 8608 * through the first hop 'gw', the security attributes 8609 * of 'dst' must be set to point to the gateway 8610 * credentials of gateway 'gw'. If 'dst' is onlink, it 8611 * is possible that 'dst' is a potential gateway that is 8612 * referenced by some route that has some security 8613 * attributes. Thus in the former case, we need to do a 8614 * gcgrp_lookup of 'gw' while in the latter case we 8615 * need to do gcgrp_lookup of 'dst' itself. 8616 */ 8617 ga.ga_af = AF_INET; 8618 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 8619 &ga.ga_addr); 8620 gcgrp = gcgrp_lookup(&ga, B_FALSE); 8621 8622 ire = ire_create( 8623 (uchar_t *)&dst, /* dest address */ 8624 (uchar_t *)&ip_g_all_ones, /* mask */ 8625 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8626 (uchar_t *)&gw, /* gateway address */ 8627 &save_ire->ire_max_frag, 8628 NULL, /* no src nce */ 8629 dst_ill->ill_rq, /* recv-from queue */ 8630 dst_ill->ill_wq, /* send-to queue */ 8631 IRE_CACHE, 8632 src_ipif, 8633 save_ire->ire_mask, /* Parent mask */ 8634 (sire != NULL) ? /* Parent handle */ 8635 sire->ire_phandle : 0, 8636 save_ire->ire_ihandle, /* Interface handle */ 8637 (sire != NULL) ? sire->ire_flags & 8638 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 8639 &(save_ire->ire_uinfo), 8640 NULL, 8641 gcgrp, 8642 ipst); 8643 8644 if (ire == NULL) { 8645 if (gcgrp != NULL) { 8646 GCGRP_REFRELE(gcgrp); 8647 gcgrp = NULL; 8648 } 8649 ire_refrele(save_ire); 8650 break; 8651 } 8652 8653 /* reference now held by IRE */ 8654 gcgrp = NULL; 8655 8656 ire->ire_marks |= ire_marks; 8657 8658 /* Prevent save_ire from getting deleted */ 8659 IRB_REFHOLD(save_ire->ire_bucket); 8660 /* Has it been removed already ? */ 8661 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8662 IRB_REFRELE(save_ire->ire_bucket); 8663 ire_refrele(save_ire); 8664 break; 8665 } 8666 8667 /* 8668 * In the case of multirouting, a copy 8669 * of the packet is made before it is sent. 8670 * The copy is used in the next 8671 * loop to attempt another resolution. 8672 */ 8673 xmit_mp = first_mp; 8674 if ((sire != NULL) && 8675 (sire->ire_flags & RTF_MULTIRT)) { 8676 copy_mp = copymsg(first_mp); 8677 if (copy_mp != NULL) { 8678 xmit_mp = copy_mp; 8679 MULTIRT_DEBUG_TAG(first_mp); 8680 } 8681 } 8682 ire_add_then_send(q, ire, xmit_mp); 8683 8684 /* Assert that it is not deleted yet. */ 8685 ASSERT(save_ire->ire_ptpn != NULL); 8686 IRB_REFRELE(save_ire->ire_bucket); 8687 ire_refrele(save_ire); 8688 8689 if (copy_mp != NULL) { 8690 /* 8691 * If we found a (no)resolver, we ignore any 8692 * trailing top priority IRE_CACHE in further 8693 * loops. This ensures that we do not omit any 8694 * (no)resolver. 8695 * This IRE_CACHE, if any, will be processed 8696 * by another thread entering ip_newroute(). 8697 * IRE_CACHE entries, if any, will be processed 8698 * by another thread entering ip_newroute(), 8699 * (upon resolver response, for instance). 8700 * This aims to force parallel multirt 8701 * resolutions as soon as a packet must be sent. 8702 * In the best case, after the tx of only one 8703 * packet, all reachable routes are resolved. 8704 * Otherwise, the resolution of all RTF_MULTIRT 8705 * routes would require several emissions. 8706 */ 8707 multirt_flags &= ~MULTIRT_CACHEGW; 8708 8709 /* 8710 * Search for the next unresolved multirt 8711 * route. 8712 */ 8713 copy_mp = NULL; 8714 save_ire = NULL; 8715 ire = NULL; 8716 multirt_resolve_next = B_TRUE; 8717 continue; 8718 } 8719 8720 /* 8721 * Don't need sire anymore 8722 */ 8723 if (sire != NULL) 8724 ire_refrele(sire); 8725 8726 ipif_refrele(src_ipif); 8727 ill_refrele(dst_ill); 8728 return; 8729 } 8730 case IRE_IF_RESOLVER: 8731 /* 8732 * We can't build an IRE_CACHE yet, but at least we 8733 * found a resolver that can help. 8734 */ 8735 res_mp = dst_ill->ill_resolver_mp; 8736 if (!OK_RESOLVER_MP(res_mp)) 8737 break; 8738 8739 /* 8740 * To be at this point in the code with a non-zero gw 8741 * means that dst is reachable through a gateway that 8742 * we have never resolved. By changing dst to the gw 8743 * addr we resolve the gateway first. 8744 * When ire_add_then_send() tries to put the IP dg 8745 * to dst, it will reenter ip_newroute() at which 8746 * time we will find the IRE_CACHE for the gw and 8747 * create another IRE_CACHE in case IRE_CACHE above. 8748 */ 8749 if (gw != INADDR_ANY) { 8750 /* 8751 * The source ipif that was determined above was 8752 * relative to the destination address, not the 8753 * gateway's. If src_ipif was not taken out of 8754 * the IRE_IF_RESOLVER entry, we'll need to call 8755 * ipif_select_source() again. 8756 */ 8757 if (src_ipif != ire->ire_ipif) { 8758 ipif_refrele(src_ipif); 8759 src_ipif = ipif_select_source(dst_ill, 8760 gw, zoneid); 8761 if (src_ipif == NULL) { 8762 if (ip_debug > 2) { 8763 pr_addr_dbg( 8764 "ip_newroute: no " 8765 "src for gw %s ", 8766 AF_INET, &gw); 8767 printf("through " 8768 "interface %s\n", 8769 dst_ill->ill_name); 8770 } 8771 goto icmp_err_ret; 8772 } 8773 } 8774 save_dst = dst; 8775 dst = gw; 8776 gw = INADDR_ANY; 8777 } 8778 8779 /* 8780 * We obtain a partial IRE_CACHE which we will pass 8781 * along with the resolver query. When the response 8782 * comes back it will be there ready for us to add. 8783 * The ire_max_frag is atomically set under the 8784 * irebucket lock in ire_add_v[46]. 8785 */ 8786 8787 ire = ire_create_mp( 8788 (uchar_t *)&dst, /* dest address */ 8789 (uchar_t *)&ip_g_all_ones, /* mask */ 8790 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8791 (uchar_t *)&gw, /* gateway address */ 8792 NULL, /* ire_max_frag */ 8793 NULL, /* no src nce */ 8794 dst_ill->ill_rq, /* recv-from queue */ 8795 dst_ill->ill_wq, /* send-to queue */ 8796 IRE_CACHE, 8797 src_ipif, /* Interface ipif */ 8798 save_ire->ire_mask, /* Parent mask */ 8799 0, 8800 save_ire->ire_ihandle, /* Interface handle */ 8801 0, /* flags if any */ 8802 &(save_ire->ire_uinfo), 8803 NULL, 8804 NULL, 8805 ipst); 8806 8807 if (ire == NULL) { 8808 ire_refrele(save_ire); 8809 break; 8810 } 8811 8812 if ((sire != NULL) && 8813 (sire->ire_flags & RTF_MULTIRT)) { 8814 copy_mp = copymsg(first_mp); 8815 if (copy_mp != NULL) 8816 MULTIRT_DEBUG_TAG(copy_mp); 8817 } 8818 8819 ire->ire_marks |= ire_marks; 8820 8821 /* 8822 * Construct message chain for the resolver 8823 * of the form: 8824 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8825 * Packet could contain a IPSEC_OUT mp. 8826 * 8827 * NOTE : ire will be added later when the response 8828 * comes back from ARP. If the response does not 8829 * come back, ARP frees the packet. For this reason, 8830 * we can't REFHOLD the bucket of save_ire to prevent 8831 * deletions. We may not be able to REFRELE the bucket 8832 * if the response never comes back. Thus, before 8833 * adding the ire, ire_add_v4 will make sure that the 8834 * interface route does not get deleted. This is the 8835 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8836 * where we can always prevent deletions because of 8837 * the synchronous nature of adding IRES i.e 8838 * ire_add_then_send is called after creating the IRE. 8839 */ 8840 ASSERT(ire->ire_mp != NULL); 8841 ire->ire_mp->b_cont = first_mp; 8842 /* Have saved_mp handy, for cleanup if canput fails */ 8843 saved_mp = mp; 8844 mp = copyb(res_mp); 8845 if (mp == NULL) { 8846 /* Prepare for cleanup */ 8847 mp = saved_mp; /* pkt */ 8848 ire_delete(ire); /* ire_mp */ 8849 ire = NULL; 8850 ire_refrele(save_ire); 8851 if (copy_mp != NULL) { 8852 MULTIRT_DEBUG_UNTAG(copy_mp); 8853 freemsg(copy_mp); 8854 copy_mp = NULL; 8855 } 8856 break; 8857 } 8858 linkb(mp, ire->ire_mp); 8859 8860 /* 8861 * Fill in the source and dest addrs for the resolver. 8862 * NOTE: this depends on memory layouts imposed by 8863 * ill_init(). 8864 */ 8865 areq = (areq_t *)mp->b_rptr; 8866 addrp = (ipaddr_t *)((char *)areq + 8867 areq->areq_sender_addr_offset); 8868 if (do_attach_ill) { 8869 /* 8870 * This is bind to no failover case. 8871 * arp packet also must go out on attach_ill. 8872 */ 8873 ASSERT(ipha->ipha_src != NULL); 8874 *addrp = ipha->ipha_src; 8875 } else { 8876 *addrp = save_ire->ire_src_addr; 8877 } 8878 8879 ire_refrele(save_ire); 8880 addrp = (ipaddr_t *)((char *)areq + 8881 areq->areq_target_addr_offset); 8882 *addrp = dst; 8883 /* Up to the resolver. */ 8884 if (canputnext(dst_ill->ill_rq) && 8885 !(dst_ill->ill_arp_closing)) { 8886 putnext(dst_ill->ill_rq, mp); 8887 ire = NULL; 8888 if (copy_mp != NULL) { 8889 /* 8890 * If we found a resolver, we ignore 8891 * any trailing top priority IRE_CACHE 8892 * in the further loops. This ensures 8893 * that we do not omit any resolver. 8894 * IRE_CACHE entries, if any, will be 8895 * processed next time we enter 8896 * ip_newroute(). 8897 */ 8898 multirt_flags &= ~MULTIRT_CACHEGW; 8899 /* 8900 * Search for the next unresolved 8901 * multirt route. 8902 */ 8903 first_mp = copy_mp; 8904 copy_mp = NULL; 8905 /* Prepare the next resolution loop. */ 8906 mp = first_mp; 8907 EXTRACT_PKT_MP(mp, first_mp, 8908 mctl_present); 8909 if (mctl_present) 8910 io = (ipsec_out_t *) 8911 first_mp->b_rptr; 8912 ipha = (ipha_t *)mp->b_rptr; 8913 8914 ASSERT(sire != NULL); 8915 8916 dst = save_dst; 8917 multirt_resolve_next = B_TRUE; 8918 continue; 8919 } 8920 8921 if (sire != NULL) 8922 ire_refrele(sire); 8923 8924 /* 8925 * The response will come back in ip_wput 8926 * with db_type IRE_DB_TYPE. 8927 */ 8928 ipif_refrele(src_ipif); 8929 ill_refrele(dst_ill); 8930 return; 8931 } else { 8932 /* Prepare for cleanup */ 8933 DTRACE_PROBE1(ip__newroute__drop, mblk_t *, 8934 mp); 8935 mp->b_cont = NULL; 8936 freeb(mp); /* areq */ 8937 /* 8938 * this is an ire that is not added to the 8939 * cache. ire_freemblk will handle the release 8940 * of any resources associated with the ire. 8941 */ 8942 ire_delete(ire); /* ire_mp */ 8943 mp = saved_mp; /* pkt */ 8944 ire = NULL; 8945 if (copy_mp != NULL) { 8946 MULTIRT_DEBUG_UNTAG(copy_mp); 8947 freemsg(copy_mp); 8948 copy_mp = NULL; 8949 } 8950 break; 8951 } 8952 default: 8953 break; 8954 } 8955 } while (multirt_resolve_next); 8956 8957 ip1dbg(("ip_newroute: dropped\n")); 8958 /* Did this packet originate externally? */ 8959 if (mp->b_prev) { 8960 mp->b_next = NULL; 8961 mp->b_prev = NULL; 8962 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 8963 } else { 8964 if (dst_ill != NULL) { 8965 BUMP_MIB(dst_ill->ill_ip_mib, ipIfStatsOutDiscards); 8966 } else { 8967 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 8968 } 8969 } 8970 ASSERT(copy_mp == NULL); 8971 MULTIRT_DEBUG_UNTAG(first_mp); 8972 freemsg(first_mp); 8973 if (ire != NULL) 8974 ire_refrele(ire); 8975 if (sire != NULL) 8976 ire_refrele(sire); 8977 if (src_ipif != NULL) 8978 ipif_refrele(src_ipif); 8979 if (dst_ill != NULL) 8980 ill_refrele(dst_ill); 8981 return; 8982 8983 icmp_err_ret: 8984 ip1dbg(("ip_newroute: no route\n")); 8985 if (src_ipif != NULL) 8986 ipif_refrele(src_ipif); 8987 if (dst_ill != NULL) 8988 ill_refrele(dst_ill); 8989 if (sire != NULL) 8990 ire_refrele(sire); 8991 /* Did this packet originate externally? */ 8992 if (mp->b_prev) { 8993 mp->b_next = NULL; 8994 mp->b_prev = NULL; 8995 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInNoRoutes); 8996 q = WR(q); 8997 } else { 8998 /* 8999 * There is no outgoing ill, so just increment the 9000 * system MIB. 9001 */ 9002 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 9003 /* 9004 * Since ip_wput() isn't close to finished, we fill 9005 * in enough of the header for credible error reporting. 9006 */ 9007 if (ip_hdr_complete(ipha, zoneid, ipst)) { 9008 /* Failed */ 9009 MULTIRT_DEBUG_UNTAG(first_mp); 9010 freemsg(first_mp); 9011 if (ire != NULL) 9012 ire_refrele(ire); 9013 return; 9014 } 9015 } 9016 9017 /* 9018 * At this point we will have ire only if RTF_BLACKHOLE 9019 * or RTF_REJECT flags are set on the IRE. It will not 9020 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9021 */ 9022 if (ire != NULL) { 9023 if (ire->ire_flags & RTF_BLACKHOLE) { 9024 ire_refrele(ire); 9025 MULTIRT_DEBUG_UNTAG(first_mp); 9026 freemsg(first_mp); 9027 return; 9028 } 9029 ire_refrele(ire); 9030 } 9031 if (ip_source_routed(ipha, ipst)) { 9032 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED, 9033 zoneid, ipst); 9034 return; 9035 } 9036 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9037 } 9038 9039 ip_opt_info_t zero_info; 9040 9041 /* 9042 * IPv4 - 9043 * ip_newroute_ipif is called by ip_wput_multicast and 9044 * ip_rput_forward_multicast whenever we need to send 9045 * out a packet to a destination address for which we do not have specific 9046 * routing information. It is used when the packet will be sent out 9047 * on a specific interface. It is also called by ip_wput() when IP_BOUND_IF 9048 * socket option is set or icmp error message wants to go out on a particular 9049 * interface for a unicast packet. 9050 * 9051 * In most cases, the destination address is resolved thanks to the ipif 9052 * intrinsic resolver. However, there are some cases where the call to 9053 * ip_newroute_ipif must take into account the potential presence of 9054 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 9055 * that uses the interface. This is specified through flags, 9056 * which can be a combination of: 9057 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 9058 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 9059 * and flags. Additionally, the packet source address has to be set to 9060 * the specified address. The caller is thus expected to set this flag 9061 * if the packet has no specific source address yet. 9062 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 9063 * flag, the resulting ire will inherit the flag. All unresolved routes 9064 * to the destination must be explored in the same call to 9065 * ip_newroute_ipif(). 9066 */ 9067 static void 9068 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 9069 conn_t *connp, uint32_t flags, zoneid_t zoneid, ip_opt_info_t *infop) 9070 { 9071 areq_t *areq; 9072 ire_t *ire = NULL; 9073 mblk_t *res_mp; 9074 ipaddr_t *addrp; 9075 mblk_t *first_mp; 9076 ire_t *save_ire = NULL; 9077 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER */ 9078 ipif_t *src_ipif = NULL; 9079 ushort_t ire_marks = 0; 9080 ill_t *dst_ill = NULL; 9081 boolean_t mctl_present; 9082 ipsec_out_t *io; 9083 ipha_t *ipha; 9084 int ihandle = 0; 9085 mblk_t *saved_mp; 9086 ire_t *fire = NULL; 9087 mblk_t *copy_mp = NULL; 9088 boolean_t multirt_resolve_next; 9089 boolean_t unspec_src; 9090 ipaddr_t ipha_dst; 9091 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 9092 9093 /* 9094 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 9095 * here for uniformity 9096 */ 9097 ipif_refhold(ipif); 9098 9099 /* 9100 * This loop is run only once in most cases. 9101 * We loop to resolve further routes only when the destination 9102 * can be reached through multiple RTF_MULTIRT-flagged ires. 9103 */ 9104 do { 9105 if (dst_ill != NULL) { 9106 ill_refrele(dst_ill); 9107 dst_ill = NULL; 9108 } 9109 if (src_ipif != NULL) { 9110 ipif_refrele(src_ipif); 9111 src_ipif = NULL; 9112 } 9113 multirt_resolve_next = B_FALSE; 9114 9115 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 9116 ipif->ipif_ill->ill_name)); 9117 9118 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 9119 if (mctl_present) 9120 io = (ipsec_out_t *)first_mp->b_rptr; 9121 9122 ipha = (ipha_t *)mp->b_rptr; 9123 9124 /* 9125 * Save the packet destination address, we may need it after 9126 * the packet has been consumed. 9127 */ 9128 ipha_dst = ipha->ipha_dst; 9129 9130 /* 9131 * If the interface is a pt-pt interface we look for an 9132 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 9133 * local_address and the pt-pt destination address. Otherwise 9134 * we just match the local address. 9135 * NOTE: dst could be different than ipha->ipha_dst in case 9136 * of sending igmp multicast packets over a point-to-point 9137 * connection. 9138 * Thus we must be careful enough to check ipha_dst to be a 9139 * multicast address, otherwise it will take xmit_if path for 9140 * multicast packets resulting into kernel stack overflow by 9141 * repeated calls to ip_newroute_ipif from ire_send(). 9142 */ 9143 if (CLASSD(ipha_dst) && 9144 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 9145 goto err_ret; 9146 } 9147 9148 /* 9149 * We check if an IRE_OFFSUBNET for the addr that goes through 9150 * ipif exists. We need it to determine if the RTF_SETSRC and/or 9151 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 9152 * propagate its flags to the new ire. 9153 */ 9154 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 9155 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 9156 ip2dbg(("ip_newroute_ipif: " 9157 "ipif_lookup_multi_ire(" 9158 "ipif %p, dst %08x) = fire %p\n", 9159 (void *)ipif, ntohl(dst), (void *)fire)); 9160 } 9161 9162 if (mctl_present && io->ipsec_out_attach_if) { 9163 attach_ill = ip_grab_attach_ill(NULL, first_mp, 9164 io->ipsec_out_ill_index, B_FALSE, ipst); 9165 9166 /* Failure case frees things for us. */ 9167 if (attach_ill == NULL) { 9168 ipif_refrele(ipif); 9169 if (fire != NULL) 9170 ire_refrele(fire); 9171 return; 9172 } 9173 9174 /* 9175 * Check if we need an ire that will not be 9176 * looked up by anybody else i.e. HIDDEN. 9177 */ 9178 if (ill_is_probeonly(attach_ill)) { 9179 ire_marks = IRE_MARK_HIDDEN; 9180 } 9181 /* 9182 * ip_wput passes the right ipif for IPIF_NOFAILOVER 9183 * case. 9184 */ 9185 dst_ill = ipif->ipif_ill; 9186 /* attach_ill has been refheld by ip_grab_attach_ill */ 9187 ASSERT(dst_ill == attach_ill); 9188 } else { 9189 /* 9190 * If the interface belongs to an interface group, 9191 * make sure the next possible interface in the group 9192 * is used. This encourages load spreading among 9193 * peers in an interface group. 9194 * Note: load spreading is disabled for RTF_MULTIRT 9195 * routes. 9196 */ 9197 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9198 (fire->ire_flags & RTF_MULTIRT)) { 9199 /* 9200 * Don't perform outbound load spreading 9201 * in the case of an RTF_MULTIRT issued route, 9202 * we actually typically want to replicate 9203 * outgoing packets through particular 9204 * interfaces. 9205 */ 9206 dst_ill = ipif->ipif_ill; 9207 ill_refhold(dst_ill); 9208 } else { 9209 dst_ill = ip_newroute_get_dst_ill( 9210 ipif->ipif_ill); 9211 } 9212 if (dst_ill == NULL) { 9213 if (ip_debug > 2) { 9214 pr_addr_dbg("ip_newroute_ipif: " 9215 "no dst ill for dst %s\n", 9216 AF_INET, &dst); 9217 } 9218 goto err_ret; 9219 } 9220 } 9221 9222 /* 9223 * Pick a source address preferring non-deprecated ones. 9224 * Unlike ip_newroute, we don't do any source address 9225 * selection here since for multicast it really does not help 9226 * in inbound load spreading as in the unicast case. 9227 */ 9228 if ((flags & RTF_SETSRC) && (fire != NULL) && 9229 (fire->ire_flags & RTF_SETSRC)) { 9230 /* 9231 * As requested by flags, an IRE_OFFSUBNET was looked up 9232 * on that interface. This ire has RTF_SETSRC flag, so 9233 * the source address of the packet must be changed. 9234 * Check that the ipif matching the requested source 9235 * address still exists. 9236 */ 9237 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 9238 zoneid, NULL, NULL, NULL, NULL, ipst); 9239 } 9240 9241 unspec_src = (connp != NULL && connp->conn_unspec_src); 9242 9243 if (((!ipif->ipif_isv6 && ipif->ipif_lcl_addr == INADDR_ANY) || 9244 (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_UP)) != IPIF_UP || 9245 (connp != NULL && ipif->ipif_zoneid != zoneid && 9246 ipif->ipif_zoneid != ALL_ZONES)) && 9247 (src_ipif == NULL) && 9248 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 9249 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 9250 if (src_ipif == NULL) { 9251 if (ip_debug > 2) { 9252 /* ip1dbg */ 9253 pr_addr_dbg("ip_newroute_ipif: " 9254 "no src for dst %s", 9255 AF_INET, &dst); 9256 } 9257 ip1dbg((" through interface %s\n", 9258 dst_ill->ill_name)); 9259 goto err_ret; 9260 } 9261 ipif_refrele(ipif); 9262 ipif = src_ipif; 9263 ipif_refhold(ipif); 9264 } 9265 if (src_ipif == NULL) { 9266 src_ipif = ipif; 9267 ipif_refhold(src_ipif); 9268 } 9269 9270 /* 9271 * Assign a source address while we have the conn. 9272 * We can't have ip_wput_ire pick a source address when the 9273 * packet returns from arp since conn_unspec_src might be set 9274 * and we lose the conn when going through arp. 9275 */ 9276 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 9277 ipha->ipha_src = src_ipif->ipif_src_addr; 9278 9279 /* 9280 * In the case of IP_BOUND_IF and IP_PKTINFO, it is possible 9281 * that the outgoing interface does not have an interface ire. 9282 */ 9283 if (CLASSD(ipha_dst) && (connp == NULL || 9284 connp->conn_outgoing_ill == NULL) && 9285 infop->ip_opt_ill_index == 0) { 9286 /* ipif_to_ire returns an held ire */ 9287 ire = ipif_to_ire(ipif); 9288 if (ire == NULL) 9289 goto err_ret; 9290 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 9291 goto err_ret; 9292 /* 9293 * ihandle is needed when the ire is added to 9294 * cache table. 9295 */ 9296 save_ire = ire; 9297 ihandle = save_ire->ire_ihandle; 9298 9299 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 9300 "flags %04x\n", 9301 (void *)ire, (void *)ipif, flags)); 9302 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9303 (fire->ire_flags & RTF_MULTIRT)) { 9304 /* 9305 * As requested by flags, an IRE_OFFSUBNET was 9306 * looked up on that interface. This ire has 9307 * RTF_MULTIRT flag, so the resolution loop will 9308 * be re-entered to resolve additional routes on 9309 * other interfaces. For that purpose, a copy of 9310 * the packet is performed at this point. 9311 */ 9312 fire->ire_last_used_time = lbolt; 9313 copy_mp = copymsg(first_mp); 9314 if (copy_mp) { 9315 MULTIRT_DEBUG_TAG(copy_mp); 9316 } 9317 } 9318 if ((flags & RTF_SETSRC) && (fire != NULL) && 9319 (fire->ire_flags & RTF_SETSRC)) { 9320 /* 9321 * As requested by flags, an IRE_OFFSUBET was 9322 * looked up on that interface. This ire has 9323 * RTF_SETSRC flag, so the source address of the 9324 * packet must be changed. 9325 */ 9326 ipha->ipha_src = fire->ire_src_addr; 9327 } 9328 } else { 9329 ASSERT((connp == NULL) || 9330 (connp->conn_outgoing_ill != NULL) || 9331 (connp->conn_dontroute) || 9332 infop->ip_opt_ill_index != 0); 9333 /* 9334 * The only ways we can come here are: 9335 * 1) IP_BOUND_IF socket option is set 9336 * 2) SO_DONTROUTE socket option is set 9337 * 3) IP_PKTINFO option is passed in as ancillary data. 9338 * In all cases, the new ire will not be added 9339 * into cache table. 9340 */ 9341 ire_marks |= IRE_MARK_NOADD; 9342 } 9343 9344 switch (ipif->ipif_net_type) { 9345 case IRE_IF_NORESOLVER: { 9346 /* We have what we need to build an IRE_CACHE. */ 9347 9348 if ((dst_ill->ill_phys_addr_length != IP_ADDR_LEN) && 9349 (dst_ill->ill_resolver_mp == NULL)) { 9350 ip1dbg(("ip_newroute_ipif: dst_ill %p " 9351 "for IRE_IF_NORESOLVER ire %p has " 9352 "no ill_resolver_mp\n", 9353 (void *)dst_ill, (void *)ire)); 9354 break; 9355 } 9356 9357 /* 9358 * The new ire inherits the IRE_OFFSUBNET flags 9359 * and source address, if this was requested. 9360 */ 9361 ire = ire_create( 9362 (uchar_t *)&dst, /* dest address */ 9363 (uchar_t *)&ip_g_all_ones, /* mask */ 9364 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9365 NULL, /* gateway address */ 9366 &ipif->ipif_mtu, 9367 NULL, /* no src nce */ 9368 dst_ill->ill_rq, /* recv-from queue */ 9369 dst_ill->ill_wq, /* send-to queue */ 9370 IRE_CACHE, 9371 src_ipif, 9372 (save_ire != NULL ? save_ire->ire_mask : 0), 9373 (fire != NULL) ? /* Parent handle */ 9374 fire->ire_phandle : 0, 9375 ihandle, /* Interface handle */ 9376 (fire != NULL) ? 9377 (fire->ire_flags & 9378 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9379 (save_ire == NULL ? &ire_uinfo_null : 9380 &save_ire->ire_uinfo), 9381 NULL, 9382 NULL, 9383 ipst); 9384 9385 if (ire == NULL) { 9386 if (save_ire != NULL) 9387 ire_refrele(save_ire); 9388 break; 9389 } 9390 9391 ire->ire_marks |= ire_marks; 9392 9393 /* 9394 * If IRE_MARK_NOADD is set then we need to convert 9395 * the max_fragp to a useable value now. This is 9396 * normally done in ire_add_v[46]. We also need to 9397 * associate the ire with an nce (normally would be 9398 * done in ip_wput_nondata()). 9399 * 9400 * Note that IRE_MARK_NOADD packets created here 9401 * do not have a non-null ire_mp pointer. The null 9402 * value of ire_bucket indicates that they were 9403 * never added. 9404 */ 9405 if (ire->ire_marks & IRE_MARK_NOADD) { 9406 uint_t max_frag; 9407 9408 max_frag = *ire->ire_max_fragp; 9409 ire->ire_max_fragp = NULL; 9410 ire->ire_max_frag = max_frag; 9411 9412 if ((ire->ire_nce = ndp_lookup_v4( 9413 ire_to_ill(ire), 9414 (ire->ire_gateway_addr != INADDR_ANY ? 9415 &ire->ire_gateway_addr : &ire->ire_addr), 9416 B_FALSE)) == NULL) { 9417 if (save_ire != NULL) 9418 ire_refrele(save_ire); 9419 break; 9420 } 9421 ASSERT(ire->ire_nce->nce_state == 9422 ND_REACHABLE); 9423 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 9424 } 9425 9426 /* Prevent save_ire from getting deleted */ 9427 if (save_ire != NULL) { 9428 IRB_REFHOLD(save_ire->ire_bucket); 9429 /* Has it been removed already ? */ 9430 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 9431 IRB_REFRELE(save_ire->ire_bucket); 9432 ire_refrele(save_ire); 9433 break; 9434 } 9435 } 9436 9437 ire_add_then_send(q, ire, first_mp); 9438 9439 /* Assert that save_ire is not deleted yet. */ 9440 if (save_ire != NULL) { 9441 ASSERT(save_ire->ire_ptpn != NULL); 9442 IRB_REFRELE(save_ire->ire_bucket); 9443 ire_refrele(save_ire); 9444 save_ire = NULL; 9445 } 9446 if (fire != NULL) { 9447 ire_refrele(fire); 9448 fire = NULL; 9449 } 9450 9451 /* 9452 * the resolution loop is re-entered if this 9453 * was requested through flags and if we 9454 * actually are in a multirouting case. 9455 */ 9456 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9457 boolean_t need_resolve = 9458 ire_multirt_need_resolve(ipha_dst, 9459 MBLK_GETLABEL(copy_mp), ipst); 9460 if (!need_resolve) { 9461 MULTIRT_DEBUG_UNTAG(copy_mp); 9462 freemsg(copy_mp); 9463 copy_mp = NULL; 9464 } else { 9465 /* 9466 * ipif_lookup_group() calls 9467 * ire_lookup_multi() that uses 9468 * ire_ftable_lookup() to find 9469 * an IRE_INTERFACE for the group. 9470 * In the multirt case, 9471 * ire_lookup_multi() then invokes 9472 * ire_multirt_lookup() to find 9473 * the next resolvable ire. 9474 * As a result, we obtain an new 9475 * interface, derived from the 9476 * next ire. 9477 */ 9478 ipif_refrele(ipif); 9479 ipif = ipif_lookup_group(ipha_dst, 9480 zoneid, ipst); 9481 ip2dbg(("ip_newroute_ipif: " 9482 "multirt dst %08x, ipif %p\n", 9483 htonl(dst), (void *)ipif)); 9484 if (ipif != NULL) { 9485 mp = copy_mp; 9486 copy_mp = NULL; 9487 multirt_resolve_next = B_TRUE; 9488 continue; 9489 } else { 9490 freemsg(copy_mp); 9491 } 9492 } 9493 } 9494 if (ipif != NULL) 9495 ipif_refrele(ipif); 9496 ill_refrele(dst_ill); 9497 ipif_refrele(src_ipif); 9498 return; 9499 } 9500 case IRE_IF_RESOLVER: 9501 /* 9502 * We can't build an IRE_CACHE yet, but at least 9503 * we found a resolver that can help. 9504 */ 9505 res_mp = dst_ill->ill_resolver_mp; 9506 if (!OK_RESOLVER_MP(res_mp)) 9507 break; 9508 9509 /* 9510 * We obtain a partial IRE_CACHE which we will pass 9511 * along with the resolver query. When the response 9512 * comes back it will be there ready for us to add. 9513 * The new ire inherits the IRE_OFFSUBNET flags 9514 * and source address, if this was requested. 9515 * The ire_max_frag is atomically set under the 9516 * irebucket lock in ire_add_v[46]. Only in the 9517 * case of IRE_MARK_NOADD, we set it here itself. 9518 */ 9519 ire = ire_create_mp( 9520 (uchar_t *)&dst, /* dest address */ 9521 (uchar_t *)&ip_g_all_ones, /* mask */ 9522 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9523 NULL, /* gateway address */ 9524 (ire_marks & IRE_MARK_NOADD) ? 9525 ipif->ipif_mtu : 0, /* max_frag */ 9526 NULL, /* no src nce */ 9527 dst_ill->ill_rq, /* recv-from queue */ 9528 dst_ill->ill_wq, /* send-to queue */ 9529 IRE_CACHE, 9530 src_ipif, 9531 (save_ire != NULL ? save_ire->ire_mask : 0), 9532 (fire != NULL) ? /* Parent handle */ 9533 fire->ire_phandle : 0, 9534 ihandle, /* Interface handle */ 9535 (fire != NULL) ? /* flags if any */ 9536 (fire->ire_flags & 9537 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9538 (save_ire == NULL ? &ire_uinfo_null : 9539 &save_ire->ire_uinfo), 9540 NULL, 9541 NULL, 9542 ipst); 9543 9544 if (save_ire != NULL) { 9545 ire_refrele(save_ire); 9546 save_ire = NULL; 9547 } 9548 if (ire == NULL) 9549 break; 9550 9551 ire->ire_marks |= ire_marks; 9552 /* 9553 * Construct message chain for the resolver of the 9554 * form: 9555 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 9556 * 9557 * NOTE : ire will be added later when the response 9558 * comes back from ARP. If the response does not 9559 * come back, ARP frees the packet. For this reason, 9560 * we can't REFHOLD the bucket of save_ire to prevent 9561 * deletions. We may not be able to REFRELE the 9562 * bucket if the response never comes back. 9563 * Thus, before adding the ire, ire_add_v4 will make 9564 * sure that the interface route does not get deleted. 9565 * This is the only case unlike ip_newroute_v6, 9566 * ip_newroute_ipif_v6 where we can always prevent 9567 * deletions because ire_add_then_send is called after 9568 * creating the IRE. 9569 * If IRE_MARK_NOADD is set, then ire_add_then_send 9570 * does not add this IRE into the IRE CACHE. 9571 */ 9572 ASSERT(ire->ire_mp != NULL); 9573 ire->ire_mp->b_cont = first_mp; 9574 /* Have saved_mp handy, for cleanup if canput fails */ 9575 saved_mp = mp; 9576 mp = copyb(res_mp); 9577 if (mp == NULL) { 9578 /* Prepare for cleanup */ 9579 mp = saved_mp; /* pkt */ 9580 ire_delete(ire); /* ire_mp */ 9581 ire = NULL; 9582 if (copy_mp != NULL) { 9583 MULTIRT_DEBUG_UNTAG(copy_mp); 9584 freemsg(copy_mp); 9585 copy_mp = NULL; 9586 } 9587 break; 9588 } 9589 linkb(mp, ire->ire_mp); 9590 9591 /* 9592 * Fill in the source and dest addrs for the resolver. 9593 * NOTE: this depends on memory layouts imposed by 9594 * ill_init(). 9595 */ 9596 areq = (areq_t *)mp->b_rptr; 9597 addrp = (ipaddr_t *)((char *)areq + 9598 areq->areq_sender_addr_offset); 9599 *addrp = ire->ire_src_addr; 9600 addrp = (ipaddr_t *)((char *)areq + 9601 areq->areq_target_addr_offset); 9602 *addrp = dst; 9603 /* Up to the resolver. */ 9604 if (canputnext(dst_ill->ill_rq) && 9605 !(dst_ill->ill_arp_closing)) { 9606 putnext(dst_ill->ill_rq, mp); 9607 /* 9608 * The response will come back in ip_wput 9609 * with db_type IRE_DB_TYPE. 9610 */ 9611 } else { 9612 mp->b_cont = NULL; 9613 freeb(mp); /* areq */ 9614 ire_delete(ire); /* ire_mp */ 9615 saved_mp->b_next = NULL; 9616 saved_mp->b_prev = NULL; 9617 freemsg(first_mp); /* pkt */ 9618 ip2dbg(("ip_newroute_ipif: dropped\n")); 9619 } 9620 9621 if (fire != NULL) { 9622 ire_refrele(fire); 9623 fire = NULL; 9624 } 9625 9626 9627 /* 9628 * The resolution loop is re-entered if this was 9629 * requested through flags and we actually are 9630 * in a multirouting case. 9631 */ 9632 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9633 boolean_t need_resolve = 9634 ire_multirt_need_resolve(ipha_dst, 9635 MBLK_GETLABEL(copy_mp), ipst); 9636 if (!need_resolve) { 9637 MULTIRT_DEBUG_UNTAG(copy_mp); 9638 freemsg(copy_mp); 9639 copy_mp = NULL; 9640 } else { 9641 /* 9642 * ipif_lookup_group() calls 9643 * ire_lookup_multi() that uses 9644 * ire_ftable_lookup() to find 9645 * an IRE_INTERFACE for the group. 9646 * In the multirt case, 9647 * ire_lookup_multi() then invokes 9648 * ire_multirt_lookup() to find 9649 * the next resolvable ire. 9650 * As a result, we obtain an new 9651 * interface, derived from the 9652 * next ire. 9653 */ 9654 ipif_refrele(ipif); 9655 ipif = ipif_lookup_group(ipha_dst, 9656 zoneid, ipst); 9657 if (ipif != NULL) { 9658 mp = copy_mp; 9659 copy_mp = NULL; 9660 multirt_resolve_next = B_TRUE; 9661 continue; 9662 } else { 9663 freemsg(copy_mp); 9664 } 9665 } 9666 } 9667 if (ipif != NULL) 9668 ipif_refrele(ipif); 9669 ill_refrele(dst_ill); 9670 ipif_refrele(src_ipif); 9671 return; 9672 default: 9673 break; 9674 } 9675 } while (multirt_resolve_next); 9676 9677 err_ret: 9678 ip2dbg(("ip_newroute_ipif: dropped\n")); 9679 if (fire != NULL) 9680 ire_refrele(fire); 9681 ipif_refrele(ipif); 9682 /* Did this packet originate externally? */ 9683 if (dst_ill != NULL) 9684 ill_refrele(dst_ill); 9685 if (src_ipif != NULL) 9686 ipif_refrele(src_ipif); 9687 if (mp->b_prev || mp->b_next) { 9688 mp->b_next = NULL; 9689 mp->b_prev = NULL; 9690 } else { 9691 /* 9692 * Since ip_wput() isn't close to finished, we fill 9693 * in enough of the header for credible error reporting. 9694 */ 9695 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 9696 /* Failed */ 9697 freemsg(first_mp); 9698 if (ire != NULL) 9699 ire_refrele(ire); 9700 return; 9701 } 9702 } 9703 /* 9704 * At this point we will have ire only if RTF_BLACKHOLE 9705 * or RTF_REJECT flags are set on the IRE. It will not 9706 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9707 */ 9708 if (ire != NULL) { 9709 if (ire->ire_flags & RTF_BLACKHOLE) { 9710 ire_refrele(ire); 9711 freemsg(first_mp); 9712 return; 9713 } 9714 ire_refrele(ire); 9715 } 9716 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9717 } 9718 9719 /* Name/Value Table Lookup Routine */ 9720 char * 9721 ip_nv_lookup(nv_t *nv, int value) 9722 { 9723 if (!nv) 9724 return (NULL); 9725 for (; nv->nv_name; nv++) { 9726 if (nv->nv_value == value) 9727 return (nv->nv_name); 9728 } 9729 return ("unknown"); 9730 } 9731 9732 /* 9733 * This is a module open, i.e. this is a control stream for access 9734 * to a DLPI device. We allocate an ill_t as the instance data in 9735 * this case. 9736 */ 9737 int 9738 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9739 { 9740 ill_t *ill; 9741 int err; 9742 zoneid_t zoneid; 9743 netstack_t *ns; 9744 ip_stack_t *ipst; 9745 9746 /* 9747 * Prevent unprivileged processes from pushing IP so that 9748 * they can't send raw IP. 9749 */ 9750 if (secpolicy_net_rawaccess(credp) != 0) 9751 return (EPERM); 9752 9753 ns = netstack_find_by_cred(credp); 9754 ASSERT(ns != NULL); 9755 ipst = ns->netstack_ip; 9756 ASSERT(ipst != NULL); 9757 9758 /* 9759 * For exclusive stacks we set the zoneid to zero 9760 * to make IP operate as if in the global zone. 9761 */ 9762 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9763 zoneid = GLOBAL_ZONEID; 9764 else 9765 zoneid = crgetzoneid(credp); 9766 9767 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9768 q->q_ptr = WR(q)->q_ptr = ill; 9769 ill->ill_ipst = ipst; 9770 ill->ill_zoneid = zoneid; 9771 9772 /* 9773 * ill_init initializes the ill fields and then sends down 9774 * down a DL_INFO_REQ after calling qprocson. 9775 */ 9776 err = ill_init(q, ill); 9777 if (err != 0) { 9778 mi_free(ill); 9779 netstack_rele(ipst->ips_netstack); 9780 q->q_ptr = NULL; 9781 WR(q)->q_ptr = NULL; 9782 return (err); 9783 } 9784 9785 /* ill_init initializes the ipsq marking this thread as writer */ 9786 ipsq_exit(ill->ill_phyint->phyint_ipsq); 9787 /* Wait for the DL_INFO_ACK */ 9788 mutex_enter(&ill->ill_lock); 9789 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9790 /* 9791 * Return value of 0 indicates a pending signal. 9792 */ 9793 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9794 if (err == 0) { 9795 mutex_exit(&ill->ill_lock); 9796 (void) ip_close(q, 0); 9797 return (EINTR); 9798 } 9799 } 9800 mutex_exit(&ill->ill_lock); 9801 9802 /* 9803 * ip_rput_other could have set an error in ill_error on 9804 * receipt of M_ERROR. 9805 */ 9806 9807 err = ill->ill_error; 9808 if (err != 0) { 9809 (void) ip_close(q, 0); 9810 return (err); 9811 } 9812 9813 ill->ill_credp = credp; 9814 crhold(credp); 9815 9816 mutex_enter(&ipst->ips_ip_mi_lock); 9817 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)ill, devp, flag, sflag, 9818 credp); 9819 mutex_exit(&ipst->ips_ip_mi_lock); 9820 if (err) { 9821 (void) ip_close(q, 0); 9822 return (err); 9823 } 9824 return (0); 9825 } 9826 9827 /* For /dev/ip aka AF_INET open */ 9828 int 9829 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9830 { 9831 return (ip_open(q, devp, flag, sflag, credp, B_FALSE)); 9832 } 9833 9834 /* For /dev/ip6 aka AF_INET6 open */ 9835 int 9836 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9837 { 9838 return (ip_open(q, devp, flag, sflag, credp, B_TRUE)); 9839 } 9840 9841 /* IP open routine. */ 9842 int 9843 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 9844 boolean_t isv6) 9845 { 9846 conn_t *connp; 9847 major_t maj; 9848 zoneid_t zoneid; 9849 netstack_t *ns; 9850 ip_stack_t *ipst; 9851 9852 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 9853 9854 /* Allow reopen. */ 9855 if (q->q_ptr != NULL) 9856 return (0); 9857 9858 if (sflag & MODOPEN) { 9859 /* This is a module open */ 9860 return (ip_modopen(q, devp, flag, sflag, credp)); 9861 } 9862 9863 if ((flag & ~(FKLYR)) == IP_HELPER_STR) { 9864 /* 9865 * Non streams based socket looking for a stream 9866 * to access IP 9867 */ 9868 return (ip_helper_stream_setup(q, devp, flag, sflag, 9869 credp, isv6)); 9870 } 9871 9872 ns = netstack_find_by_cred(credp); 9873 ASSERT(ns != NULL); 9874 ipst = ns->netstack_ip; 9875 ASSERT(ipst != NULL); 9876 9877 /* 9878 * For exclusive stacks we set the zoneid to zero 9879 * to make IP operate as if in the global zone. 9880 */ 9881 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9882 zoneid = GLOBAL_ZONEID; 9883 else 9884 zoneid = crgetzoneid(credp); 9885 9886 /* 9887 * We are opening as a device. This is an IP client stream, and we 9888 * allocate an conn_t as the instance data. 9889 */ 9890 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 9891 9892 /* 9893 * ipcl_conn_create did a netstack_hold. Undo the hold that was 9894 * done by netstack_find_by_cred() 9895 */ 9896 netstack_rele(ipst->ips_netstack); 9897 9898 connp->conn_zoneid = zoneid; 9899 connp->conn_sqp = NULL; 9900 connp->conn_initial_sqp = NULL; 9901 connp->conn_final_sqp = NULL; 9902 9903 connp->conn_upq = q; 9904 q->q_ptr = WR(q)->q_ptr = connp; 9905 9906 if (flag & SO_SOCKSTR) 9907 connp->conn_flags |= IPCL_SOCKET; 9908 9909 /* Minor tells us which /dev entry was opened */ 9910 if (isv6) { 9911 connp->conn_flags |= IPCL_ISV6; 9912 connp->conn_af_isv6 = B_TRUE; 9913 ip_setpktversion(connp, isv6, B_FALSE, ipst); 9914 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9915 } else { 9916 connp->conn_af_isv6 = B_FALSE; 9917 connp->conn_pkt_isv6 = B_FALSE; 9918 } 9919 9920 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 9921 ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 9922 connp->conn_minor_arena = ip_minor_arena_la; 9923 } else { 9924 /* 9925 * Either minor numbers in the large arena were exhausted 9926 * or a non socket application is doing the open. 9927 * Try to allocate from the small arena. 9928 */ 9929 if ((connp->conn_dev = 9930 inet_minor_alloc(ip_minor_arena_sa)) == 0) { 9931 /* CONN_DEC_REF takes care of netstack_rele() */ 9932 q->q_ptr = WR(q)->q_ptr = NULL; 9933 CONN_DEC_REF(connp); 9934 return (EBUSY); 9935 } 9936 connp->conn_minor_arena = ip_minor_arena_sa; 9937 } 9938 9939 maj = getemajor(*devp); 9940 *devp = makedevice(maj, (minor_t)connp->conn_dev); 9941 9942 /* 9943 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 9944 */ 9945 connp->conn_cred = credp; 9946 9947 /* 9948 * Handle IP_RTS_REQUEST and other ioctls which use conn_recv 9949 */ 9950 connp->conn_recv = ip_conn_input; 9951 9952 crhold(connp->conn_cred); 9953 9954 /* 9955 * If the caller has the process-wide flag set, then default to MAC 9956 * exempt mode. This allows read-down to unlabeled hosts. 9957 */ 9958 if (getpflags(NET_MAC_AWARE, credp) != 0) 9959 connp->conn_mac_exempt = B_TRUE; 9960 9961 connp->conn_rq = q; 9962 connp->conn_wq = WR(q); 9963 9964 /* Non-zero default values */ 9965 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9966 9967 /* 9968 * Make the conn globally visible to walkers 9969 */ 9970 ASSERT(connp->conn_ref == 1); 9971 mutex_enter(&connp->conn_lock); 9972 connp->conn_state_flags &= ~CONN_INCIPIENT; 9973 mutex_exit(&connp->conn_lock); 9974 9975 qprocson(q); 9976 9977 return (0); 9978 } 9979 9980 /* 9981 * Change the output format (IPv4 vs. IPv6) for a conn_t. 9982 * Note that there is no race since either ip_output function works - it 9983 * is just an optimization to enter the best ip_output routine directly. 9984 */ 9985 void 9986 ip_setpktversion(conn_t *connp, boolean_t isv6, boolean_t bump_mib, 9987 ip_stack_t *ipst) 9988 { 9989 if (isv6) { 9990 if (bump_mib) { 9991 BUMP_MIB(&ipst->ips_ip6_mib, 9992 ipIfStatsOutSwitchIPVersion); 9993 } 9994 connp->conn_send = ip_output_v6; 9995 connp->conn_pkt_isv6 = B_TRUE; 9996 } else { 9997 if (bump_mib) { 9998 BUMP_MIB(&ipst->ips_ip_mib, 9999 ipIfStatsOutSwitchIPVersion); 10000 } 10001 connp->conn_send = ip_output; 10002 connp->conn_pkt_isv6 = B_FALSE; 10003 } 10004 10005 } 10006 10007 /* 10008 * See if IPsec needs loading because of the options in mp. 10009 */ 10010 static boolean_t 10011 ipsec_opt_present(mblk_t *mp) 10012 { 10013 uint8_t *optcp, *next_optcp, *opt_endcp; 10014 struct opthdr *opt; 10015 struct T_opthdr *topt; 10016 int opthdr_len; 10017 t_uscalar_t optname, optlevel; 10018 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 10019 ipsec_req_t *ipsr; 10020 10021 /* 10022 * Walk through the mess, and find IP_SEC_OPT. If it's there, 10023 * return TRUE. 10024 */ 10025 10026 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 10027 opt_endcp = optcp + tor->OPT_length; 10028 if (tor->PRIM_type == T_OPTMGMT_REQ) { 10029 opthdr_len = sizeof (struct T_opthdr); 10030 } else { /* O_OPTMGMT_REQ */ 10031 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 10032 opthdr_len = sizeof (struct opthdr); 10033 } 10034 for (; optcp < opt_endcp; optcp = next_optcp) { 10035 if (optcp + opthdr_len > opt_endcp) 10036 return (B_FALSE); /* Not enough option header. */ 10037 if (tor->PRIM_type == T_OPTMGMT_REQ) { 10038 topt = (struct T_opthdr *)optcp; 10039 optlevel = topt->level; 10040 optname = topt->name; 10041 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 10042 } else { 10043 opt = (struct opthdr *)optcp; 10044 optlevel = opt->level; 10045 optname = opt->name; 10046 next_optcp = optcp + opthdr_len + 10047 _TPI_ALIGN_OPT(opt->len); 10048 } 10049 if ((next_optcp < optcp) || /* wraparound pointer space */ 10050 ((next_optcp >= opt_endcp) && /* last option bad len */ 10051 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 10052 return (B_FALSE); /* bad option buffer */ 10053 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 10054 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 10055 /* 10056 * Check to see if it's an all-bypass or all-zeroes 10057 * IPsec request. Don't bother loading IPsec if 10058 * the socket doesn't want to use it. (A good example 10059 * is a bypass request.) 10060 * 10061 * Basically, if any of the non-NEVER bits are set, 10062 * load IPsec. 10063 */ 10064 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 10065 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 10066 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 10067 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 10068 != 0) 10069 return (B_TRUE); 10070 } 10071 } 10072 return (B_FALSE); 10073 } 10074 10075 /* 10076 * If conn is is waiting for ipsec to finish loading, kick it. 10077 */ 10078 /* ARGSUSED */ 10079 static void 10080 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 10081 { 10082 t_scalar_t optreq_prim; 10083 mblk_t *mp; 10084 cred_t *cr; 10085 int err = 0; 10086 10087 /* 10088 * This function is called, after ipsec loading is complete. 10089 * Since IP checks exclusively and atomically (i.e it prevents 10090 * ipsec load from completing until ip_optcom_req completes) 10091 * whether ipsec load is complete, there cannot be a race with IP 10092 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 10093 */ 10094 mutex_enter(&connp->conn_lock); 10095 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 10096 ASSERT(connp->conn_ipsec_opt_mp != NULL); 10097 mp = connp->conn_ipsec_opt_mp; 10098 connp->conn_ipsec_opt_mp = NULL; 10099 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 10100 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(CONNP_TO_WQ(connp))); 10101 mutex_exit(&connp->conn_lock); 10102 10103 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 10104 10105 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 10106 if (optreq_prim == T_OPTMGMT_REQ) { 10107 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10108 &ip_opt_obj, B_FALSE); 10109 } else { 10110 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 10111 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10112 &ip_opt_obj, B_FALSE); 10113 } 10114 if (err != EINPROGRESS) 10115 CONN_OPER_PENDING_DONE(connp); 10116 return; 10117 } 10118 mutex_exit(&connp->conn_lock); 10119 } 10120 10121 /* 10122 * Called from the ipsec_loader thread, outside any perimeter, to tell 10123 * ip qenable any of the queues waiting for the ipsec loader to 10124 * complete. 10125 */ 10126 void 10127 ip_ipsec_load_complete(ipsec_stack_t *ipss) 10128 { 10129 netstack_t *ns = ipss->ipsec_netstack; 10130 10131 ipcl_walk(conn_restart_ipsec_waiter, NULL, ns->netstack_ip); 10132 } 10133 10134 /* 10135 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 10136 * determines the grp on which it has to become exclusive, queues the mp 10137 * and sq draining restarts the optmgmt 10138 */ 10139 static boolean_t 10140 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 10141 { 10142 conn_t *connp = Q_TO_CONN(q); 10143 ipsec_stack_t *ipss = connp->conn_netstack->netstack_ipsec; 10144 10145 /* 10146 * Take IPsec requests and treat them special. 10147 */ 10148 if (ipsec_opt_present(mp)) { 10149 /* First check if IPsec is loaded. */ 10150 mutex_enter(&ipss->ipsec_loader_lock); 10151 if (ipss->ipsec_loader_state != IPSEC_LOADER_WAIT) { 10152 mutex_exit(&ipss->ipsec_loader_lock); 10153 return (B_FALSE); 10154 } 10155 mutex_enter(&connp->conn_lock); 10156 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 10157 10158 ASSERT(connp->conn_ipsec_opt_mp == NULL); 10159 connp->conn_ipsec_opt_mp = mp; 10160 mutex_exit(&connp->conn_lock); 10161 mutex_exit(&ipss->ipsec_loader_lock); 10162 10163 ipsec_loader_loadnow(ipss); 10164 return (B_TRUE); 10165 } 10166 return (B_FALSE); 10167 } 10168 10169 /* 10170 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 10171 * all of them are copied to the conn_t. If the req is "zero", the policy is 10172 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 10173 * fields. 10174 * We keep only the latest setting of the policy and thus policy setting 10175 * is not incremental/cumulative. 10176 * 10177 * Requests to set policies with multiple alternative actions will 10178 * go through a different API. 10179 */ 10180 int 10181 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 10182 { 10183 uint_t ah_req = 0; 10184 uint_t esp_req = 0; 10185 uint_t se_req = 0; 10186 ipsec_selkey_t sel; 10187 ipsec_act_t *actp = NULL; 10188 uint_t nact; 10189 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 10190 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 10191 ipsec_policy_root_t *pr; 10192 ipsec_policy_head_t *ph; 10193 int fam; 10194 boolean_t is_pol_reset; 10195 int error = 0; 10196 netstack_t *ns = connp->conn_netstack; 10197 ip_stack_t *ipst = ns->netstack_ip; 10198 ipsec_stack_t *ipss = ns->netstack_ipsec; 10199 10200 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 10201 10202 /* 10203 * The IP_SEC_OPT option does not allow variable length parameters, 10204 * hence a request cannot be NULL. 10205 */ 10206 if (req == NULL) 10207 return (EINVAL); 10208 10209 ah_req = req->ipsr_ah_req; 10210 esp_req = req->ipsr_esp_req; 10211 se_req = req->ipsr_self_encap_req; 10212 10213 /* Don't allow setting self-encap without one or more of AH/ESP. */ 10214 if (se_req != 0 && esp_req == 0 && ah_req == 0) 10215 return (EINVAL); 10216 10217 /* 10218 * Are we dealing with a request to reset the policy (i.e. 10219 * zero requests). 10220 */ 10221 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 10222 (esp_req & REQ_MASK) == 0 && 10223 (se_req & REQ_MASK) == 0); 10224 10225 if (!is_pol_reset) { 10226 /* 10227 * If we couldn't load IPsec, fail with "protocol 10228 * not supported". 10229 * IPsec may not have been loaded for a request with zero 10230 * policies, so we don't fail in this case. 10231 */ 10232 mutex_enter(&ipss->ipsec_loader_lock); 10233 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 10234 mutex_exit(&ipss->ipsec_loader_lock); 10235 return (EPROTONOSUPPORT); 10236 } 10237 mutex_exit(&ipss->ipsec_loader_lock); 10238 10239 /* 10240 * Test for valid requests. Invalid algorithms 10241 * need to be tested by IPsec code because new 10242 * algorithms can be added dynamically. 10243 */ 10244 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10245 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10246 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 10247 return (EINVAL); 10248 } 10249 10250 /* 10251 * Only privileged users can issue these 10252 * requests. 10253 */ 10254 if (((ah_req & IPSEC_PREF_NEVER) || 10255 (esp_req & IPSEC_PREF_NEVER) || 10256 (se_req & IPSEC_PREF_NEVER)) && 10257 secpolicy_ip_config(cr, B_FALSE) != 0) { 10258 return (EPERM); 10259 } 10260 10261 /* 10262 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 10263 * are mutually exclusive. 10264 */ 10265 if (((ah_req & REQ_MASK) == REQ_MASK) || 10266 ((esp_req & REQ_MASK) == REQ_MASK) || 10267 ((se_req & REQ_MASK) == REQ_MASK)) { 10268 /* Both of them are set */ 10269 return (EINVAL); 10270 } 10271 } 10272 10273 mutex_enter(&connp->conn_lock); 10274 10275 /* 10276 * If we have already cached policies in ip_bind_connected*(), don't 10277 * let them change now. We cache policies for connections 10278 * whose src,dst [addr, port] is known. 10279 */ 10280 if (connp->conn_policy_cached) { 10281 mutex_exit(&connp->conn_lock); 10282 return (EINVAL); 10283 } 10284 10285 /* 10286 * We have a zero policies, reset the connection policy if already 10287 * set. This will cause the connection to inherit the 10288 * global policy, if any. 10289 */ 10290 if (is_pol_reset) { 10291 if (connp->conn_policy != NULL) { 10292 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 10293 connp->conn_policy = NULL; 10294 } 10295 connp->conn_flags &= ~IPCL_CHECK_POLICY; 10296 connp->conn_in_enforce_policy = B_FALSE; 10297 connp->conn_out_enforce_policy = B_FALSE; 10298 mutex_exit(&connp->conn_lock); 10299 return (0); 10300 } 10301 10302 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 10303 ipst->ips_netstack); 10304 if (ph == NULL) 10305 goto enomem; 10306 10307 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 10308 if (actp == NULL) 10309 goto enomem; 10310 10311 /* 10312 * Always allocate IPv4 policy entries, since they can also 10313 * apply to ipv6 sockets being used in ipv4-compat mode. 10314 */ 10315 bzero(&sel, sizeof (sel)); 10316 sel.ipsl_valid = IPSL_IPV4; 10317 10318 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10319 ipst->ips_netstack); 10320 if (pin4 == NULL) 10321 goto enomem; 10322 10323 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10324 ipst->ips_netstack); 10325 if (pout4 == NULL) 10326 goto enomem; 10327 10328 if (connp->conn_af_isv6) { 10329 /* 10330 * We're looking at a v6 socket, also allocate the 10331 * v6-specific entries... 10332 */ 10333 sel.ipsl_valid = IPSL_IPV6; 10334 pin6 = ipsec_policy_create(&sel, actp, nact, 10335 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10336 if (pin6 == NULL) 10337 goto enomem; 10338 10339 pout6 = ipsec_policy_create(&sel, actp, nact, 10340 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10341 if (pout6 == NULL) 10342 goto enomem; 10343 10344 /* 10345 * .. and file them away in the right place. 10346 */ 10347 fam = IPSEC_AF_V6; 10348 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10349 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 10350 ipsec_insert_always(&ph->iph_rulebyid, pin6); 10351 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10352 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 10353 ipsec_insert_always(&ph->iph_rulebyid, pout6); 10354 } 10355 10356 ipsec_actvec_free(actp, nact); 10357 10358 /* 10359 * File the v4 policies. 10360 */ 10361 fam = IPSEC_AF_V4; 10362 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10363 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 10364 ipsec_insert_always(&ph->iph_rulebyid, pin4); 10365 10366 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10367 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 10368 ipsec_insert_always(&ph->iph_rulebyid, pout4); 10369 10370 /* 10371 * If the requests need security, set enforce_policy. 10372 * If the requests are IPSEC_PREF_NEVER, one should 10373 * still set conn_out_enforce_policy so that an ipsec_out 10374 * gets attached in ip_wput. This is needed so that 10375 * for connections that we don't cache policy in ip_bind, 10376 * if global policy matches in ip_wput_attach_policy, we 10377 * don't wrongly inherit global policy. Similarly, we need 10378 * to set conn_in_enforce_policy also so that we don't verify 10379 * policy wrongly. 10380 */ 10381 if ((ah_req & REQ_MASK) != 0 || 10382 (esp_req & REQ_MASK) != 0 || 10383 (se_req & REQ_MASK) != 0) { 10384 connp->conn_in_enforce_policy = B_TRUE; 10385 connp->conn_out_enforce_policy = B_TRUE; 10386 connp->conn_flags |= IPCL_CHECK_POLICY; 10387 } 10388 10389 mutex_exit(&connp->conn_lock); 10390 return (error); 10391 #undef REQ_MASK 10392 10393 /* 10394 * Common memory-allocation-failure exit path. 10395 */ 10396 enomem: 10397 mutex_exit(&connp->conn_lock); 10398 if (actp != NULL) 10399 ipsec_actvec_free(actp, nact); 10400 if (pin4 != NULL) 10401 IPPOL_REFRELE(pin4, ipst->ips_netstack); 10402 if (pout4 != NULL) 10403 IPPOL_REFRELE(pout4, ipst->ips_netstack); 10404 if (pin6 != NULL) 10405 IPPOL_REFRELE(pin6, ipst->ips_netstack); 10406 if (pout6 != NULL) 10407 IPPOL_REFRELE(pout6, ipst->ips_netstack); 10408 return (ENOMEM); 10409 } 10410 10411 /* 10412 * Only for options that pass in an IP addr. Currently only V4 options 10413 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 10414 * So this function assumes level is IPPROTO_IP 10415 */ 10416 int 10417 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 10418 mblk_t *first_mp) 10419 { 10420 ipif_t *ipif = NULL; 10421 int error; 10422 ill_t *ill; 10423 int zoneid; 10424 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10425 10426 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 10427 10428 if (addr != INADDR_ANY || checkonly) { 10429 ASSERT(connp != NULL); 10430 zoneid = IPCL_ZONEID(connp); 10431 if (option == IP_NEXTHOP) { 10432 ipif = ipif_lookup_onlink_addr(addr, 10433 connp->conn_zoneid, ipst); 10434 } else { 10435 ipif = ipif_lookup_addr(addr, NULL, zoneid, 10436 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 10437 &error, ipst); 10438 } 10439 if (ipif == NULL) { 10440 if (error == EINPROGRESS) 10441 return (error); 10442 if ((option == IP_MULTICAST_IF) || 10443 (option == IP_NEXTHOP)) 10444 return (EHOSTUNREACH); 10445 else 10446 return (EINVAL); 10447 } else if (checkonly) { 10448 if (option == IP_MULTICAST_IF) { 10449 ill = ipif->ipif_ill; 10450 /* not supported by the virtual network iface */ 10451 if (IS_VNI(ill)) { 10452 ipif_refrele(ipif); 10453 return (EINVAL); 10454 } 10455 } 10456 ipif_refrele(ipif); 10457 return (0); 10458 } 10459 ill = ipif->ipif_ill; 10460 mutex_enter(&connp->conn_lock); 10461 mutex_enter(&ill->ill_lock); 10462 if ((ill->ill_state_flags & ILL_CONDEMNED) || 10463 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 10464 mutex_exit(&ill->ill_lock); 10465 mutex_exit(&connp->conn_lock); 10466 ipif_refrele(ipif); 10467 return (option == IP_MULTICAST_IF ? 10468 EHOSTUNREACH : EINVAL); 10469 } 10470 } else { 10471 mutex_enter(&connp->conn_lock); 10472 } 10473 10474 /* None of the options below are supported on the VNI */ 10475 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 10476 mutex_exit(&ill->ill_lock); 10477 mutex_exit(&connp->conn_lock); 10478 ipif_refrele(ipif); 10479 return (EINVAL); 10480 } 10481 10482 switch (option) { 10483 case IP_DONTFAILOVER_IF: 10484 /* 10485 * This option is used by in.mpathd to ensure 10486 * that IPMP probe packets only go out on the 10487 * test interfaces. in.mpathd sets this option 10488 * on the non-failover interfaces. 10489 * For backward compatibility, this option 10490 * implicitly sets IP_MULTICAST_IF, as used 10491 * be done in bind(), so that ip_wput gets 10492 * this ipif to send mcast packets. 10493 */ 10494 if (ipif != NULL) { 10495 ASSERT(addr != INADDR_ANY); 10496 connp->conn_nofailover_ill = ipif->ipif_ill; 10497 connp->conn_multicast_ipif = ipif; 10498 } else { 10499 ASSERT(addr == INADDR_ANY); 10500 connp->conn_nofailover_ill = NULL; 10501 connp->conn_multicast_ipif = NULL; 10502 } 10503 break; 10504 10505 case IP_MULTICAST_IF: 10506 connp->conn_multicast_ipif = ipif; 10507 break; 10508 case IP_NEXTHOP: 10509 connp->conn_nexthop_v4 = addr; 10510 connp->conn_nexthop_set = B_TRUE; 10511 break; 10512 } 10513 10514 if (ipif != NULL) { 10515 mutex_exit(&ill->ill_lock); 10516 mutex_exit(&connp->conn_lock); 10517 ipif_refrele(ipif); 10518 return (0); 10519 } 10520 mutex_exit(&connp->conn_lock); 10521 /* We succeded in cleared the option */ 10522 return (0); 10523 } 10524 10525 /* 10526 * For options that pass in an ifindex specifying the ill. V6 options always 10527 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 10528 */ 10529 int 10530 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 10531 int level, int option, mblk_t *first_mp) 10532 { 10533 ill_t *ill = NULL; 10534 int error = 0; 10535 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10536 10537 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 10538 if (ifindex != 0) { 10539 ASSERT(connp != NULL); 10540 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 10541 first_mp, ip_restart_optmgmt, &error, ipst); 10542 if (ill != NULL) { 10543 if (checkonly) { 10544 /* not supported by the virtual network iface */ 10545 if (IS_VNI(ill)) { 10546 ill_refrele(ill); 10547 return (EINVAL); 10548 } 10549 ill_refrele(ill); 10550 return (0); 10551 } 10552 if (!ipif_lookup_zoneid_group(ill, connp->conn_zoneid, 10553 0, NULL)) { 10554 ill_refrele(ill); 10555 ill = NULL; 10556 mutex_enter(&connp->conn_lock); 10557 goto setit; 10558 } 10559 mutex_enter(&connp->conn_lock); 10560 mutex_enter(&ill->ill_lock); 10561 if (ill->ill_state_flags & ILL_CONDEMNED) { 10562 mutex_exit(&ill->ill_lock); 10563 mutex_exit(&connp->conn_lock); 10564 ill_refrele(ill); 10565 ill = NULL; 10566 mutex_enter(&connp->conn_lock); 10567 } 10568 goto setit; 10569 } else if (error == EINPROGRESS) { 10570 return (error); 10571 } else { 10572 error = 0; 10573 } 10574 } 10575 mutex_enter(&connp->conn_lock); 10576 setit: 10577 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 10578 10579 /* 10580 * The options below assume that the ILL (if any) transmits and/or 10581 * receives traffic. Neither of which is true for the virtual network 10582 * interface, so fail setting these on a VNI. 10583 */ 10584 if (IS_VNI(ill)) { 10585 ASSERT(ill != NULL); 10586 mutex_exit(&ill->ill_lock); 10587 mutex_exit(&connp->conn_lock); 10588 ill_refrele(ill); 10589 return (EINVAL); 10590 } 10591 10592 if (level == IPPROTO_IP) { 10593 switch (option) { 10594 case IP_BOUND_IF: 10595 connp->conn_incoming_ill = ill; 10596 connp->conn_outgoing_ill = ill; 10597 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10598 0 : ifindex; 10599 break; 10600 10601 case IP_MULTICAST_IF: 10602 /* 10603 * This option is an internal special. The socket 10604 * level IP_MULTICAST_IF specifies an 'ipaddr' and 10605 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 10606 * specifies an ifindex and we try first on V6 ill's. 10607 * If we don't find one, we they try using on v4 ill's 10608 * intenally and we come here. 10609 */ 10610 if (!checkonly && ill != NULL) { 10611 ipif_t *ipif; 10612 ipif = ill->ill_ipif; 10613 10614 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 10615 mutex_exit(&ill->ill_lock); 10616 mutex_exit(&connp->conn_lock); 10617 ill_refrele(ill); 10618 ill = NULL; 10619 mutex_enter(&connp->conn_lock); 10620 } else { 10621 connp->conn_multicast_ipif = ipif; 10622 } 10623 } 10624 break; 10625 10626 case IP_DHCPINIT_IF: 10627 if (connp->conn_dhcpinit_ill != NULL) { 10628 /* 10629 * We've locked the conn so conn_cleanup_ill() 10630 * cannot clear conn_dhcpinit_ill -- so it's 10631 * safe to access the ill. 10632 */ 10633 ill_t *oill = connp->conn_dhcpinit_ill; 10634 10635 ASSERT(oill->ill_dhcpinit != 0); 10636 atomic_dec_32(&oill->ill_dhcpinit); 10637 connp->conn_dhcpinit_ill = NULL; 10638 } 10639 10640 if (ill != NULL) { 10641 connp->conn_dhcpinit_ill = ill; 10642 atomic_inc_32(&ill->ill_dhcpinit); 10643 } 10644 break; 10645 } 10646 } else { 10647 switch (option) { 10648 case IPV6_BOUND_IF: 10649 connp->conn_incoming_ill = ill; 10650 connp->conn_outgoing_ill = ill; 10651 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10652 0 : ifindex; 10653 break; 10654 10655 case IPV6_BOUND_PIF: 10656 /* 10657 * Limit all transmit to this ill. 10658 * Unlike IPV6_BOUND_IF, using this option 10659 * prevents load spreading and failover from 10660 * happening when the interface is part of the 10661 * group. That's why we don't need to remember 10662 * the ifindex in orig_bound_ifindex as in 10663 * IPV6_BOUND_IF. 10664 */ 10665 connp->conn_outgoing_pill = ill; 10666 break; 10667 10668 case IPV6_DONTFAILOVER_IF: 10669 /* 10670 * This option is used by in.mpathd to ensure 10671 * that IPMP probe packets only go out on the 10672 * test interfaces. in.mpathd sets this option 10673 * on the non-failover interfaces. 10674 */ 10675 connp->conn_nofailover_ill = ill; 10676 /* 10677 * For backward compatibility, this option 10678 * implicitly sets ip_multicast_ill as used in 10679 * IPV6_MULTICAST_IF so that ip_wput gets 10680 * this ill to send mcast packets. 10681 */ 10682 connp->conn_multicast_ill = ill; 10683 connp->conn_orig_multicast_ifindex = (ill == NULL) ? 10684 0 : ifindex; 10685 break; 10686 10687 case IPV6_MULTICAST_IF: 10688 /* 10689 * Set conn_multicast_ill to be the IPv6 ill. 10690 * Set conn_multicast_ipif to be an IPv4 ipif 10691 * for ifindex to make IPv4 mapped addresses 10692 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 10693 * Even if no IPv6 ill exists for the ifindex 10694 * we need to check for an IPv4 ifindex in order 10695 * for this to work with mapped addresses. In that 10696 * case only set conn_multicast_ipif. 10697 */ 10698 if (!checkonly) { 10699 if (ifindex == 0) { 10700 connp->conn_multicast_ill = NULL; 10701 connp->conn_orig_multicast_ifindex = 0; 10702 connp->conn_multicast_ipif = NULL; 10703 } else if (ill != NULL) { 10704 connp->conn_multicast_ill = ill; 10705 connp->conn_orig_multicast_ifindex = 10706 ifindex; 10707 } 10708 } 10709 break; 10710 } 10711 } 10712 10713 if (ill != NULL) { 10714 mutex_exit(&ill->ill_lock); 10715 mutex_exit(&connp->conn_lock); 10716 ill_refrele(ill); 10717 return (0); 10718 } 10719 mutex_exit(&connp->conn_lock); 10720 /* 10721 * We succeeded in clearing the option (ifindex == 0) or failed to 10722 * locate the ill and could not set the option (ifindex != 0) 10723 */ 10724 return (ifindex == 0 ? 0 : EINVAL); 10725 } 10726 10727 /* This routine sets socket options. */ 10728 /* ARGSUSED */ 10729 int 10730 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10731 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10732 void *dummy, cred_t *cr, mblk_t *first_mp) 10733 { 10734 int *i1 = (int *)invalp; 10735 conn_t *connp = Q_TO_CONN(q); 10736 int error = 0; 10737 boolean_t checkonly; 10738 ire_t *ire; 10739 boolean_t found; 10740 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10741 10742 switch (optset_context) { 10743 10744 case SETFN_OPTCOM_CHECKONLY: 10745 checkonly = B_TRUE; 10746 /* 10747 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10748 * inlen != 0 implies value supplied and 10749 * we have to "pretend" to set it. 10750 * inlen == 0 implies that there is no 10751 * value part in T_CHECK request and just validation 10752 * done elsewhere should be enough, we just return here. 10753 */ 10754 if (inlen == 0) { 10755 *outlenp = 0; 10756 return (0); 10757 } 10758 break; 10759 case SETFN_OPTCOM_NEGOTIATE: 10760 case SETFN_UD_NEGOTIATE: 10761 case SETFN_CONN_NEGOTIATE: 10762 checkonly = B_FALSE; 10763 break; 10764 default: 10765 /* 10766 * We should never get here 10767 */ 10768 *outlenp = 0; 10769 return (EINVAL); 10770 } 10771 10772 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10773 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10774 10775 /* 10776 * For fixed length options, no sanity check 10777 * of passed in length is done. It is assumed *_optcom_req() 10778 * routines do the right thing. 10779 */ 10780 10781 switch (level) { 10782 case SOL_SOCKET: 10783 /* 10784 * conn_lock protects the bitfields, and is used to 10785 * set the fields atomically. 10786 */ 10787 switch (name) { 10788 case SO_BROADCAST: 10789 if (!checkonly) { 10790 /* TODO: use value someplace? */ 10791 mutex_enter(&connp->conn_lock); 10792 connp->conn_broadcast = *i1 ? 1 : 0; 10793 mutex_exit(&connp->conn_lock); 10794 } 10795 break; /* goto sizeof (int) option return */ 10796 case SO_USELOOPBACK: 10797 if (!checkonly) { 10798 /* TODO: use value someplace? */ 10799 mutex_enter(&connp->conn_lock); 10800 connp->conn_loopback = *i1 ? 1 : 0; 10801 mutex_exit(&connp->conn_lock); 10802 } 10803 break; /* goto sizeof (int) option return */ 10804 case SO_DONTROUTE: 10805 if (!checkonly) { 10806 mutex_enter(&connp->conn_lock); 10807 connp->conn_dontroute = *i1 ? 1 : 0; 10808 mutex_exit(&connp->conn_lock); 10809 } 10810 break; /* goto sizeof (int) option return */ 10811 case SO_REUSEADDR: 10812 if (!checkonly) { 10813 mutex_enter(&connp->conn_lock); 10814 connp->conn_reuseaddr = *i1 ? 1 : 0; 10815 mutex_exit(&connp->conn_lock); 10816 } 10817 break; /* goto sizeof (int) option return */ 10818 case SO_PROTOTYPE: 10819 if (!checkonly) { 10820 mutex_enter(&connp->conn_lock); 10821 connp->conn_proto = *i1; 10822 mutex_exit(&connp->conn_lock); 10823 } 10824 break; /* goto sizeof (int) option return */ 10825 case SO_ALLZONES: 10826 if (!checkonly) { 10827 mutex_enter(&connp->conn_lock); 10828 if (IPCL_IS_BOUND(connp)) { 10829 mutex_exit(&connp->conn_lock); 10830 return (EINVAL); 10831 } 10832 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10833 mutex_exit(&connp->conn_lock); 10834 } 10835 break; /* goto sizeof (int) option return */ 10836 case SO_ANON_MLP: 10837 if (!checkonly) { 10838 mutex_enter(&connp->conn_lock); 10839 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10840 mutex_exit(&connp->conn_lock); 10841 } 10842 break; /* goto sizeof (int) option return */ 10843 case SO_MAC_EXEMPT: 10844 if (secpolicy_net_mac_aware(cr) != 0 || 10845 IPCL_IS_BOUND(connp)) 10846 return (EACCES); 10847 if (!checkonly) { 10848 mutex_enter(&connp->conn_lock); 10849 connp->conn_mac_exempt = *i1 != 0 ? 1 : 0; 10850 mutex_exit(&connp->conn_lock); 10851 } 10852 break; /* goto sizeof (int) option return */ 10853 default: 10854 /* 10855 * "soft" error (negative) 10856 * option not handled at this level 10857 * Note: Do not modify *outlenp 10858 */ 10859 return (-EINVAL); 10860 } 10861 break; 10862 case IPPROTO_IP: 10863 switch (name) { 10864 case IP_NEXTHOP: 10865 if (secpolicy_ip_config(cr, B_FALSE) != 0) 10866 return (EPERM); 10867 /* FALLTHRU */ 10868 case IP_MULTICAST_IF: 10869 case IP_DONTFAILOVER_IF: { 10870 ipaddr_t addr = *i1; 10871 10872 error = ip_opt_set_ipif(connp, addr, checkonly, name, 10873 first_mp); 10874 if (error != 0) 10875 return (error); 10876 break; /* goto sizeof (int) option return */ 10877 } 10878 10879 case IP_MULTICAST_TTL: 10880 /* Recorded in transport above IP */ 10881 *outvalp = *invalp; 10882 *outlenp = sizeof (uchar_t); 10883 return (0); 10884 case IP_MULTICAST_LOOP: 10885 if (!checkonly) { 10886 mutex_enter(&connp->conn_lock); 10887 connp->conn_multicast_loop = *invalp ? 1 : 0; 10888 mutex_exit(&connp->conn_lock); 10889 } 10890 *outvalp = *invalp; 10891 *outlenp = sizeof (uchar_t); 10892 return (0); 10893 case IP_ADD_MEMBERSHIP: 10894 case MCAST_JOIN_GROUP: 10895 case IP_DROP_MEMBERSHIP: 10896 case MCAST_LEAVE_GROUP: { 10897 struct ip_mreq *mreqp; 10898 struct group_req *greqp; 10899 ire_t *ire; 10900 boolean_t done = B_FALSE; 10901 ipaddr_t group, ifaddr; 10902 struct sockaddr_in *sin; 10903 uint32_t *ifindexp; 10904 boolean_t mcast_opt = B_TRUE; 10905 mcast_record_t fmode; 10906 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10907 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10908 10909 switch (name) { 10910 case IP_ADD_MEMBERSHIP: 10911 mcast_opt = B_FALSE; 10912 /* FALLTHRU */ 10913 case MCAST_JOIN_GROUP: 10914 fmode = MODE_IS_EXCLUDE; 10915 optfn = ip_opt_add_group; 10916 break; 10917 10918 case IP_DROP_MEMBERSHIP: 10919 mcast_opt = B_FALSE; 10920 /* FALLTHRU */ 10921 case MCAST_LEAVE_GROUP: 10922 fmode = MODE_IS_INCLUDE; 10923 optfn = ip_opt_delete_group; 10924 break; 10925 } 10926 10927 if (mcast_opt) { 10928 greqp = (struct group_req *)i1; 10929 sin = (struct sockaddr_in *)&greqp->gr_group; 10930 if (sin->sin_family != AF_INET) { 10931 *outlenp = 0; 10932 return (ENOPROTOOPT); 10933 } 10934 group = (ipaddr_t)sin->sin_addr.s_addr; 10935 ifaddr = INADDR_ANY; 10936 ifindexp = &greqp->gr_interface; 10937 } else { 10938 mreqp = (struct ip_mreq *)i1; 10939 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 10940 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 10941 ifindexp = NULL; 10942 } 10943 10944 /* 10945 * In the multirouting case, we need to replicate 10946 * the request on all interfaces that will take part 10947 * in replication. We do so because multirouting is 10948 * reflective, thus we will probably receive multi- 10949 * casts on those interfaces. 10950 * The ip_multirt_apply_membership() succeeds if the 10951 * operation succeeds on at least one interface. 10952 */ 10953 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 10954 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10955 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10956 if (ire != NULL) { 10957 if (ire->ire_flags & RTF_MULTIRT) { 10958 error = ip_multirt_apply_membership( 10959 optfn, ire, connp, checkonly, group, 10960 fmode, INADDR_ANY, first_mp); 10961 done = B_TRUE; 10962 } 10963 ire_refrele(ire); 10964 } 10965 if (!done) { 10966 error = optfn(connp, checkonly, group, ifaddr, 10967 ifindexp, fmode, INADDR_ANY, first_mp); 10968 } 10969 if (error) { 10970 /* 10971 * EINPROGRESS is a soft error, needs retry 10972 * so don't make *outlenp zero. 10973 */ 10974 if (error != EINPROGRESS) 10975 *outlenp = 0; 10976 return (error); 10977 } 10978 /* OK return - copy input buffer into output buffer */ 10979 if (invalp != outvalp) { 10980 /* don't trust bcopy for identical src/dst */ 10981 bcopy(invalp, outvalp, inlen); 10982 } 10983 *outlenp = inlen; 10984 return (0); 10985 } 10986 case IP_BLOCK_SOURCE: 10987 case IP_UNBLOCK_SOURCE: 10988 case IP_ADD_SOURCE_MEMBERSHIP: 10989 case IP_DROP_SOURCE_MEMBERSHIP: 10990 case MCAST_BLOCK_SOURCE: 10991 case MCAST_UNBLOCK_SOURCE: 10992 case MCAST_JOIN_SOURCE_GROUP: 10993 case MCAST_LEAVE_SOURCE_GROUP: { 10994 struct ip_mreq_source *imreqp; 10995 struct group_source_req *gsreqp; 10996 in_addr_t grp, src, ifaddr = INADDR_ANY; 10997 uint32_t ifindex = 0; 10998 mcast_record_t fmode; 10999 struct sockaddr_in *sin; 11000 ire_t *ire; 11001 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 11002 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 11003 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 11004 11005 switch (name) { 11006 case IP_BLOCK_SOURCE: 11007 mcast_opt = B_FALSE; 11008 /* FALLTHRU */ 11009 case MCAST_BLOCK_SOURCE: 11010 fmode = MODE_IS_EXCLUDE; 11011 optfn = ip_opt_add_group; 11012 break; 11013 11014 case IP_UNBLOCK_SOURCE: 11015 mcast_opt = B_FALSE; 11016 /* FALLTHRU */ 11017 case MCAST_UNBLOCK_SOURCE: 11018 fmode = MODE_IS_EXCLUDE; 11019 optfn = ip_opt_delete_group; 11020 break; 11021 11022 case IP_ADD_SOURCE_MEMBERSHIP: 11023 mcast_opt = B_FALSE; 11024 /* FALLTHRU */ 11025 case MCAST_JOIN_SOURCE_GROUP: 11026 fmode = MODE_IS_INCLUDE; 11027 optfn = ip_opt_add_group; 11028 break; 11029 11030 case IP_DROP_SOURCE_MEMBERSHIP: 11031 mcast_opt = B_FALSE; 11032 /* FALLTHRU */ 11033 case MCAST_LEAVE_SOURCE_GROUP: 11034 fmode = MODE_IS_INCLUDE; 11035 optfn = ip_opt_delete_group; 11036 break; 11037 } 11038 11039 if (mcast_opt) { 11040 gsreqp = (struct group_source_req *)i1; 11041 if (gsreqp->gsr_group.ss_family != AF_INET) { 11042 *outlenp = 0; 11043 return (ENOPROTOOPT); 11044 } 11045 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 11046 grp = (ipaddr_t)sin->sin_addr.s_addr; 11047 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 11048 src = (ipaddr_t)sin->sin_addr.s_addr; 11049 ifindex = gsreqp->gsr_interface; 11050 } else { 11051 imreqp = (struct ip_mreq_source *)i1; 11052 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 11053 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 11054 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 11055 } 11056 11057 /* 11058 * In the multirouting case, we need to replicate 11059 * the request as noted in the mcast cases above. 11060 */ 11061 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 11062 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11063 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11064 if (ire != NULL) { 11065 if (ire->ire_flags & RTF_MULTIRT) { 11066 error = ip_multirt_apply_membership( 11067 optfn, ire, connp, checkonly, grp, 11068 fmode, src, first_mp); 11069 done = B_TRUE; 11070 } 11071 ire_refrele(ire); 11072 } 11073 if (!done) { 11074 error = optfn(connp, checkonly, grp, ifaddr, 11075 &ifindex, fmode, src, first_mp); 11076 } 11077 if (error != 0) { 11078 /* 11079 * EINPROGRESS is a soft error, needs retry 11080 * so don't make *outlenp zero. 11081 */ 11082 if (error != EINPROGRESS) 11083 *outlenp = 0; 11084 return (error); 11085 } 11086 /* OK return - copy input buffer into output buffer */ 11087 if (invalp != outvalp) { 11088 bcopy(invalp, outvalp, inlen); 11089 } 11090 *outlenp = inlen; 11091 return (0); 11092 } 11093 case IP_SEC_OPT: 11094 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11095 if (error != 0) { 11096 *outlenp = 0; 11097 return (error); 11098 } 11099 break; 11100 case IP_HDRINCL: 11101 case IP_OPTIONS: 11102 case T_IP_OPTIONS: 11103 case IP_TOS: 11104 case T_IP_TOS: 11105 case IP_TTL: 11106 case IP_RECVDSTADDR: 11107 case IP_RECVOPTS: 11108 /* OK return - copy input buffer into output buffer */ 11109 if (invalp != outvalp) { 11110 /* don't trust bcopy for identical src/dst */ 11111 bcopy(invalp, outvalp, inlen); 11112 } 11113 *outlenp = inlen; 11114 return (0); 11115 case IP_RECVIF: 11116 /* Retrieve the inbound interface index */ 11117 if (!checkonly) { 11118 mutex_enter(&connp->conn_lock); 11119 connp->conn_recvif = *i1 ? 1 : 0; 11120 mutex_exit(&connp->conn_lock); 11121 } 11122 break; /* goto sizeof (int) option return */ 11123 case IP_RECVPKTINFO: 11124 if (!checkonly) { 11125 mutex_enter(&connp->conn_lock); 11126 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11127 mutex_exit(&connp->conn_lock); 11128 } 11129 break; /* goto sizeof (int) option return */ 11130 case IP_RECVSLLA: 11131 /* Retrieve the source link layer address */ 11132 if (!checkonly) { 11133 mutex_enter(&connp->conn_lock); 11134 connp->conn_recvslla = *i1 ? 1 : 0; 11135 mutex_exit(&connp->conn_lock); 11136 } 11137 break; /* goto sizeof (int) option return */ 11138 case MRT_INIT: 11139 case MRT_DONE: 11140 case MRT_ADD_VIF: 11141 case MRT_DEL_VIF: 11142 case MRT_ADD_MFC: 11143 case MRT_DEL_MFC: 11144 case MRT_ASSERT: 11145 if ((error = secpolicy_ip_config(cr, B_FALSE)) != 0) { 11146 *outlenp = 0; 11147 return (error); 11148 } 11149 error = ip_mrouter_set((int)name, q, checkonly, 11150 (uchar_t *)invalp, inlen, first_mp); 11151 if (error) { 11152 *outlenp = 0; 11153 return (error); 11154 } 11155 /* OK return - copy input buffer into output buffer */ 11156 if (invalp != outvalp) { 11157 /* don't trust bcopy for identical src/dst */ 11158 bcopy(invalp, outvalp, inlen); 11159 } 11160 *outlenp = inlen; 11161 return (0); 11162 case IP_BOUND_IF: 11163 case IP_DHCPINIT_IF: 11164 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11165 level, name, first_mp); 11166 if (error != 0) 11167 return (error); 11168 break; /* goto sizeof (int) option return */ 11169 11170 case IP_UNSPEC_SRC: 11171 /* Allow sending with a zero source address */ 11172 if (!checkonly) { 11173 mutex_enter(&connp->conn_lock); 11174 connp->conn_unspec_src = *i1 ? 1 : 0; 11175 mutex_exit(&connp->conn_lock); 11176 } 11177 break; /* goto sizeof (int) option return */ 11178 default: 11179 /* 11180 * "soft" error (negative) 11181 * option not handled at this level 11182 * Note: Do not modify *outlenp 11183 */ 11184 return (-EINVAL); 11185 } 11186 break; 11187 case IPPROTO_IPV6: 11188 switch (name) { 11189 case IPV6_BOUND_IF: 11190 case IPV6_BOUND_PIF: 11191 case IPV6_DONTFAILOVER_IF: 11192 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11193 level, name, first_mp); 11194 if (error != 0) 11195 return (error); 11196 break; /* goto sizeof (int) option return */ 11197 11198 case IPV6_MULTICAST_IF: 11199 /* 11200 * The only possible errors are EINPROGRESS and 11201 * EINVAL. EINPROGRESS will be restarted and is not 11202 * a hard error. We call this option on both V4 and V6 11203 * If both return EINVAL, then this call returns 11204 * EINVAL. If at least one of them succeeds we 11205 * return success. 11206 */ 11207 found = B_FALSE; 11208 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11209 level, name, first_mp); 11210 if (error == EINPROGRESS) 11211 return (error); 11212 if (error == 0) 11213 found = B_TRUE; 11214 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11215 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 11216 if (error == 0) 11217 found = B_TRUE; 11218 if (!found) 11219 return (error); 11220 break; /* goto sizeof (int) option return */ 11221 11222 case IPV6_MULTICAST_HOPS: 11223 /* Recorded in transport above IP */ 11224 break; /* goto sizeof (int) option return */ 11225 case IPV6_MULTICAST_LOOP: 11226 if (!checkonly) { 11227 mutex_enter(&connp->conn_lock); 11228 connp->conn_multicast_loop = *i1; 11229 mutex_exit(&connp->conn_lock); 11230 } 11231 break; /* goto sizeof (int) option return */ 11232 case IPV6_JOIN_GROUP: 11233 case MCAST_JOIN_GROUP: 11234 case IPV6_LEAVE_GROUP: 11235 case MCAST_LEAVE_GROUP: { 11236 struct ipv6_mreq *ip_mreqp; 11237 struct group_req *greqp; 11238 ire_t *ire; 11239 boolean_t done = B_FALSE; 11240 in6_addr_t groupv6; 11241 uint32_t ifindex; 11242 boolean_t mcast_opt = B_TRUE; 11243 mcast_record_t fmode; 11244 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11245 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11246 11247 switch (name) { 11248 case IPV6_JOIN_GROUP: 11249 mcast_opt = B_FALSE; 11250 /* FALLTHRU */ 11251 case MCAST_JOIN_GROUP: 11252 fmode = MODE_IS_EXCLUDE; 11253 optfn = ip_opt_add_group_v6; 11254 break; 11255 11256 case IPV6_LEAVE_GROUP: 11257 mcast_opt = B_FALSE; 11258 /* FALLTHRU */ 11259 case MCAST_LEAVE_GROUP: 11260 fmode = MODE_IS_INCLUDE; 11261 optfn = ip_opt_delete_group_v6; 11262 break; 11263 } 11264 11265 if (mcast_opt) { 11266 struct sockaddr_in *sin; 11267 struct sockaddr_in6 *sin6; 11268 greqp = (struct group_req *)i1; 11269 if (greqp->gr_group.ss_family == AF_INET) { 11270 sin = (struct sockaddr_in *) 11271 &(greqp->gr_group); 11272 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 11273 &groupv6); 11274 } else { 11275 sin6 = (struct sockaddr_in6 *) 11276 &(greqp->gr_group); 11277 groupv6 = sin6->sin6_addr; 11278 } 11279 ifindex = greqp->gr_interface; 11280 } else { 11281 ip_mreqp = (struct ipv6_mreq *)i1; 11282 groupv6 = ip_mreqp->ipv6mr_multiaddr; 11283 ifindex = ip_mreqp->ipv6mr_interface; 11284 } 11285 /* 11286 * In the multirouting case, we need to replicate 11287 * the request on all interfaces that will take part 11288 * in replication. We do so because multirouting is 11289 * reflective, thus we will probably receive multi- 11290 * casts on those interfaces. 11291 * The ip_multirt_apply_membership_v6() succeeds if 11292 * the operation succeeds on at least one interface. 11293 */ 11294 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 11295 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11296 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11297 if (ire != NULL) { 11298 if (ire->ire_flags & RTF_MULTIRT) { 11299 error = ip_multirt_apply_membership_v6( 11300 optfn, ire, connp, checkonly, 11301 &groupv6, fmode, &ipv6_all_zeros, 11302 first_mp); 11303 done = B_TRUE; 11304 } 11305 ire_refrele(ire); 11306 } 11307 if (!done) { 11308 error = optfn(connp, checkonly, &groupv6, 11309 ifindex, fmode, &ipv6_all_zeros, first_mp); 11310 } 11311 if (error) { 11312 /* 11313 * EINPROGRESS is a soft error, needs retry 11314 * so don't make *outlenp zero. 11315 */ 11316 if (error != EINPROGRESS) 11317 *outlenp = 0; 11318 return (error); 11319 } 11320 /* OK return - copy input buffer into output buffer */ 11321 if (invalp != outvalp) { 11322 /* don't trust bcopy for identical src/dst */ 11323 bcopy(invalp, outvalp, inlen); 11324 } 11325 *outlenp = inlen; 11326 return (0); 11327 } 11328 case MCAST_BLOCK_SOURCE: 11329 case MCAST_UNBLOCK_SOURCE: 11330 case MCAST_JOIN_SOURCE_GROUP: 11331 case MCAST_LEAVE_SOURCE_GROUP: { 11332 struct group_source_req *gsreqp; 11333 in6_addr_t v6grp, v6src; 11334 uint32_t ifindex; 11335 mcast_record_t fmode; 11336 ire_t *ire; 11337 boolean_t done = B_FALSE; 11338 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11339 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11340 11341 switch (name) { 11342 case MCAST_BLOCK_SOURCE: 11343 fmode = MODE_IS_EXCLUDE; 11344 optfn = ip_opt_add_group_v6; 11345 break; 11346 case MCAST_UNBLOCK_SOURCE: 11347 fmode = MODE_IS_EXCLUDE; 11348 optfn = ip_opt_delete_group_v6; 11349 break; 11350 case MCAST_JOIN_SOURCE_GROUP: 11351 fmode = MODE_IS_INCLUDE; 11352 optfn = ip_opt_add_group_v6; 11353 break; 11354 case MCAST_LEAVE_SOURCE_GROUP: 11355 fmode = MODE_IS_INCLUDE; 11356 optfn = ip_opt_delete_group_v6; 11357 break; 11358 } 11359 11360 gsreqp = (struct group_source_req *)i1; 11361 ifindex = gsreqp->gsr_interface; 11362 if (gsreqp->gsr_group.ss_family == AF_INET) { 11363 struct sockaddr_in *s; 11364 s = (struct sockaddr_in *)&gsreqp->gsr_group; 11365 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 11366 s = (struct sockaddr_in *)&gsreqp->gsr_source; 11367 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 11368 } else { 11369 struct sockaddr_in6 *s6; 11370 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 11371 v6grp = s6->sin6_addr; 11372 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 11373 v6src = s6->sin6_addr; 11374 } 11375 11376 /* 11377 * In the multirouting case, we need to replicate 11378 * the request as noted in the mcast cases above. 11379 */ 11380 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 11381 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11382 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11383 if (ire != NULL) { 11384 if (ire->ire_flags & RTF_MULTIRT) { 11385 error = ip_multirt_apply_membership_v6( 11386 optfn, ire, connp, checkonly, 11387 &v6grp, fmode, &v6src, first_mp); 11388 done = B_TRUE; 11389 } 11390 ire_refrele(ire); 11391 } 11392 if (!done) { 11393 error = optfn(connp, checkonly, &v6grp, 11394 ifindex, fmode, &v6src, first_mp); 11395 } 11396 if (error != 0) { 11397 /* 11398 * EINPROGRESS is a soft error, needs retry 11399 * so don't make *outlenp zero. 11400 */ 11401 if (error != EINPROGRESS) 11402 *outlenp = 0; 11403 return (error); 11404 } 11405 /* OK return - copy input buffer into output buffer */ 11406 if (invalp != outvalp) { 11407 bcopy(invalp, outvalp, inlen); 11408 } 11409 *outlenp = inlen; 11410 return (0); 11411 } 11412 case IPV6_UNICAST_HOPS: 11413 /* Recorded in transport above IP */ 11414 break; /* goto sizeof (int) option return */ 11415 case IPV6_UNSPEC_SRC: 11416 /* Allow sending with a zero source address */ 11417 if (!checkonly) { 11418 mutex_enter(&connp->conn_lock); 11419 connp->conn_unspec_src = *i1 ? 1 : 0; 11420 mutex_exit(&connp->conn_lock); 11421 } 11422 break; /* goto sizeof (int) option return */ 11423 case IPV6_RECVPKTINFO: 11424 if (!checkonly) { 11425 mutex_enter(&connp->conn_lock); 11426 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11427 mutex_exit(&connp->conn_lock); 11428 } 11429 break; /* goto sizeof (int) option return */ 11430 case IPV6_RECVTCLASS: 11431 if (!checkonly) { 11432 if (*i1 < 0 || *i1 > 1) { 11433 return (EINVAL); 11434 } 11435 mutex_enter(&connp->conn_lock); 11436 connp->conn_ipv6_recvtclass = *i1; 11437 mutex_exit(&connp->conn_lock); 11438 } 11439 break; 11440 case IPV6_RECVPATHMTU: 11441 if (!checkonly) { 11442 if (*i1 < 0 || *i1 > 1) { 11443 return (EINVAL); 11444 } 11445 mutex_enter(&connp->conn_lock); 11446 connp->conn_ipv6_recvpathmtu = *i1; 11447 mutex_exit(&connp->conn_lock); 11448 } 11449 break; 11450 case IPV6_RECVHOPLIMIT: 11451 if (!checkonly) { 11452 mutex_enter(&connp->conn_lock); 11453 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 11454 mutex_exit(&connp->conn_lock); 11455 } 11456 break; /* goto sizeof (int) option return */ 11457 case IPV6_RECVHOPOPTS: 11458 if (!checkonly) { 11459 mutex_enter(&connp->conn_lock); 11460 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 11461 mutex_exit(&connp->conn_lock); 11462 } 11463 break; /* goto sizeof (int) option return */ 11464 case IPV6_RECVDSTOPTS: 11465 if (!checkonly) { 11466 mutex_enter(&connp->conn_lock); 11467 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 11468 mutex_exit(&connp->conn_lock); 11469 } 11470 break; /* goto sizeof (int) option return */ 11471 case IPV6_RECVRTHDR: 11472 if (!checkonly) { 11473 mutex_enter(&connp->conn_lock); 11474 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 11475 mutex_exit(&connp->conn_lock); 11476 } 11477 break; /* goto sizeof (int) option return */ 11478 case IPV6_RECVRTHDRDSTOPTS: 11479 if (!checkonly) { 11480 mutex_enter(&connp->conn_lock); 11481 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 11482 mutex_exit(&connp->conn_lock); 11483 } 11484 break; /* goto sizeof (int) option return */ 11485 case IPV6_PKTINFO: 11486 if (inlen == 0) 11487 return (-EINVAL); /* clearing option */ 11488 error = ip6_set_pktinfo(cr, connp, 11489 (struct in6_pktinfo *)invalp, first_mp); 11490 if (error != 0) 11491 *outlenp = 0; 11492 else 11493 *outlenp = inlen; 11494 return (error); 11495 case IPV6_NEXTHOP: { 11496 struct sockaddr_in6 *sin6; 11497 11498 /* Verify that the nexthop is reachable */ 11499 if (inlen == 0) 11500 return (-EINVAL); /* clearing option */ 11501 11502 sin6 = (struct sockaddr_in6 *)invalp; 11503 ire = ire_route_lookup_v6(&sin6->sin6_addr, 11504 0, 0, 0, NULL, NULL, connp->conn_zoneid, 11505 NULL, MATCH_IRE_DEFAULT, ipst); 11506 11507 if (ire == NULL) { 11508 *outlenp = 0; 11509 return (EHOSTUNREACH); 11510 } 11511 ire_refrele(ire); 11512 return (-EINVAL); 11513 } 11514 case IPV6_SEC_OPT: 11515 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11516 if (error != 0) { 11517 *outlenp = 0; 11518 return (error); 11519 } 11520 break; 11521 case IPV6_SRC_PREFERENCES: { 11522 /* 11523 * This is implemented strictly in the ip module 11524 * (here and in tcp_opt_*() to accomodate tcp 11525 * sockets). Modules above ip pass this option 11526 * down here since ip is the only one that needs to 11527 * be aware of source address preferences. 11528 * 11529 * This socket option only affects connected 11530 * sockets that haven't already bound to a specific 11531 * IPv6 address. In other words, sockets that 11532 * don't call bind() with an address other than the 11533 * unspecified address and that call connect(). 11534 * ip_bind_connected_v6() passes these preferences 11535 * to the ipif_select_source_v6() function. 11536 */ 11537 if (inlen != sizeof (uint32_t)) 11538 return (EINVAL); 11539 error = ip6_set_src_preferences(connp, 11540 *(uint32_t *)invalp); 11541 if (error != 0) { 11542 *outlenp = 0; 11543 return (error); 11544 } else { 11545 *outlenp = sizeof (uint32_t); 11546 } 11547 break; 11548 } 11549 case IPV6_V6ONLY: 11550 if (*i1 < 0 || *i1 > 1) { 11551 return (EINVAL); 11552 } 11553 mutex_enter(&connp->conn_lock); 11554 connp->conn_ipv6_v6only = *i1; 11555 mutex_exit(&connp->conn_lock); 11556 break; 11557 default: 11558 return (-EINVAL); 11559 } 11560 break; 11561 default: 11562 /* 11563 * "soft" error (negative) 11564 * option not handled at this level 11565 * Note: Do not modify *outlenp 11566 */ 11567 return (-EINVAL); 11568 } 11569 /* 11570 * Common case of return from an option that is sizeof (int) 11571 */ 11572 *(int *)outvalp = *i1; 11573 *outlenp = sizeof (int); 11574 return (0); 11575 } 11576 11577 /* 11578 * This routine gets default values of certain options whose default 11579 * values are maintained by protocol specific code 11580 */ 11581 /* ARGSUSED */ 11582 int 11583 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 11584 { 11585 int *i1 = (int *)ptr; 11586 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11587 11588 switch (level) { 11589 case IPPROTO_IP: 11590 switch (name) { 11591 case IP_MULTICAST_TTL: 11592 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 11593 return (sizeof (uchar_t)); 11594 case IP_MULTICAST_LOOP: 11595 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 11596 return (sizeof (uchar_t)); 11597 default: 11598 return (-1); 11599 } 11600 case IPPROTO_IPV6: 11601 switch (name) { 11602 case IPV6_UNICAST_HOPS: 11603 *i1 = ipst->ips_ipv6_def_hops; 11604 return (sizeof (int)); 11605 case IPV6_MULTICAST_HOPS: 11606 *i1 = IP_DEFAULT_MULTICAST_TTL; 11607 return (sizeof (int)); 11608 case IPV6_MULTICAST_LOOP: 11609 *i1 = IP_DEFAULT_MULTICAST_LOOP; 11610 return (sizeof (int)); 11611 case IPV6_V6ONLY: 11612 *i1 = 1; 11613 return (sizeof (int)); 11614 default: 11615 return (-1); 11616 } 11617 default: 11618 return (-1); 11619 } 11620 /* NOTREACHED */ 11621 } 11622 11623 /* 11624 * Given a destination address and a pointer to where to put the information 11625 * this routine fills in the mtuinfo. 11626 */ 11627 int 11628 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 11629 struct ip6_mtuinfo *mtuinfo, netstack_t *ns) 11630 { 11631 ire_t *ire; 11632 ip_stack_t *ipst = ns->netstack_ip; 11633 11634 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 11635 return (-1); 11636 11637 bzero(mtuinfo, sizeof (*mtuinfo)); 11638 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 11639 mtuinfo->ip6m_addr.sin6_port = port; 11640 mtuinfo->ip6m_addr.sin6_addr = *in6; 11641 11642 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL, ipst); 11643 if (ire != NULL) { 11644 mtuinfo->ip6m_mtu = ire->ire_max_frag; 11645 ire_refrele(ire); 11646 } else { 11647 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 11648 } 11649 return (sizeof (struct ip6_mtuinfo)); 11650 } 11651 11652 /* 11653 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 11654 * checking of GET_QUEUE_CRED(q) and that ip_g_mrouter is set should be done and 11655 * isn't. This doesn't matter as the error checking is done properly for the 11656 * other MRT options coming in through ip_opt_set. 11657 */ 11658 int 11659 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 11660 { 11661 conn_t *connp = Q_TO_CONN(q); 11662 ipsec_req_t *req = (ipsec_req_t *)ptr; 11663 11664 switch (level) { 11665 case IPPROTO_IP: 11666 switch (name) { 11667 case MRT_VERSION: 11668 case MRT_ASSERT: 11669 (void) ip_mrouter_get(name, q, ptr); 11670 return (sizeof (int)); 11671 case IP_SEC_OPT: 11672 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 11673 case IP_NEXTHOP: 11674 if (connp->conn_nexthop_set) { 11675 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 11676 return (sizeof (ipaddr_t)); 11677 } else 11678 return (0); 11679 case IP_RECVPKTINFO: 11680 *(int *)ptr = connp->conn_ip_recvpktinfo ? 1: 0; 11681 return (sizeof (int)); 11682 default: 11683 break; 11684 } 11685 break; 11686 case IPPROTO_IPV6: 11687 switch (name) { 11688 case IPV6_SEC_OPT: 11689 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 11690 case IPV6_SRC_PREFERENCES: { 11691 return (ip6_get_src_preferences(connp, 11692 (uint32_t *)ptr)); 11693 } 11694 case IPV6_V6ONLY: 11695 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 11696 return (sizeof (int)); 11697 case IPV6_PATHMTU: 11698 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 11699 (struct ip6_mtuinfo *)ptr, connp->conn_netstack)); 11700 default: 11701 break; 11702 } 11703 break; 11704 default: 11705 break; 11706 } 11707 return (-1); 11708 } 11709 /* Named Dispatch routine to get a current value out of our parameter table. */ 11710 /* ARGSUSED */ 11711 static int 11712 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11713 { 11714 ipparam_t *ippa = (ipparam_t *)cp; 11715 11716 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 11717 return (0); 11718 } 11719 11720 /* ARGSUSED */ 11721 static int 11722 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11723 { 11724 11725 (void) mi_mpprintf(mp, "%d", *(int *)cp); 11726 return (0); 11727 } 11728 11729 /* 11730 * Set ip{,6}_forwarding values. This means walking through all of the 11731 * ill's and toggling their forwarding values. 11732 */ 11733 /* ARGSUSED */ 11734 static int 11735 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11736 { 11737 long new_value; 11738 int *forwarding_value = (int *)cp; 11739 ill_t *ill; 11740 boolean_t isv6; 11741 ill_walk_context_t ctx; 11742 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11743 11744 isv6 = (forwarding_value == &ipst->ips_ipv6_forward); 11745 11746 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11747 new_value < 0 || new_value > 1) { 11748 return (EINVAL); 11749 } 11750 11751 *forwarding_value = new_value; 11752 11753 /* 11754 * Regardless of the current value of ip_forwarding, set all per-ill 11755 * values of ip_forwarding to the value being set. 11756 * 11757 * Bring all the ill's up to date with the new global value. 11758 */ 11759 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11760 11761 if (isv6) 11762 ill = ILL_START_WALK_V6(&ctx, ipst); 11763 else 11764 ill = ILL_START_WALK_V4(&ctx, ipst); 11765 11766 for (; ill != NULL; ill = ill_next(&ctx, ill)) 11767 (void) ill_forward_set(ill, new_value != 0); 11768 11769 rw_exit(&ipst->ips_ill_g_lock); 11770 return (0); 11771 } 11772 11773 /* 11774 * Walk through the param array specified registering each element with the 11775 * Named Dispatch handler. This is called only during init. So it is ok 11776 * not to acquire any locks 11777 */ 11778 static boolean_t 11779 ip_param_register(IDP *ndp, ipparam_t *ippa, size_t ippa_cnt, 11780 ipndp_t *ipnd, size_t ipnd_cnt) 11781 { 11782 for (; ippa_cnt-- > 0; ippa++) { 11783 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 11784 if (!nd_load(ndp, ippa->ip_param_name, 11785 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11786 nd_free(ndp); 11787 return (B_FALSE); 11788 } 11789 } 11790 } 11791 11792 for (; ipnd_cnt-- > 0; ipnd++) { 11793 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11794 if (!nd_load(ndp, ipnd->ip_ndp_name, 11795 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11796 ipnd->ip_ndp_data)) { 11797 nd_free(ndp); 11798 return (B_FALSE); 11799 } 11800 } 11801 } 11802 11803 return (B_TRUE); 11804 } 11805 11806 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11807 /* ARGSUSED */ 11808 static int 11809 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11810 { 11811 long new_value; 11812 ipparam_t *ippa = (ipparam_t *)cp; 11813 11814 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11815 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11816 return (EINVAL); 11817 } 11818 ippa->ip_param_value = new_value; 11819 return (0); 11820 } 11821 11822 /* 11823 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11824 * When an ipf is passed here for the first time, if 11825 * we already have in-order fragments on the queue, we convert from the fast- 11826 * path reassembly scheme to the hard-case scheme. From then on, additional 11827 * fragments are reassembled here. We keep track of the start and end offsets 11828 * of each piece, and the number of holes in the chain. When the hole count 11829 * goes to zero, we are done! 11830 * 11831 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11832 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11833 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11834 * after the call to ip_reassemble(). 11835 */ 11836 int 11837 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11838 size_t msg_len) 11839 { 11840 uint_t end; 11841 mblk_t *next_mp; 11842 mblk_t *mp1; 11843 uint_t offset; 11844 boolean_t incr_dups = B_TRUE; 11845 boolean_t offset_zero_seen = B_FALSE; 11846 boolean_t pkt_boundary_checked = B_FALSE; 11847 11848 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11849 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11850 11851 /* Add in byte count */ 11852 ipf->ipf_count += msg_len; 11853 if (ipf->ipf_end) { 11854 /* 11855 * We were part way through in-order reassembly, but now there 11856 * is a hole. We walk through messages already queued, and 11857 * mark them for hard case reassembly. We know that up till 11858 * now they were in order starting from offset zero. 11859 */ 11860 offset = 0; 11861 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11862 IP_REASS_SET_START(mp1, offset); 11863 if (offset == 0) { 11864 ASSERT(ipf->ipf_nf_hdr_len != 0); 11865 offset = -ipf->ipf_nf_hdr_len; 11866 } 11867 offset += mp1->b_wptr - mp1->b_rptr; 11868 IP_REASS_SET_END(mp1, offset); 11869 } 11870 /* One hole at the end. */ 11871 ipf->ipf_hole_cnt = 1; 11872 /* Brand it as a hard case, forever. */ 11873 ipf->ipf_end = 0; 11874 } 11875 /* Walk through all the new pieces. */ 11876 do { 11877 end = start + (mp->b_wptr - mp->b_rptr); 11878 /* 11879 * If start is 0, decrease 'end' only for the first mblk of 11880 * the fragment. Otherwise 'end' can get wrong value in the 11881 * second pass of the loop if first mblk is exactly the 11882 * size of ipf_nf_hdr_len. 11883 */ 11884 if (start == 0 && !offset_zero_seen) { 11885 /* First segment */ 11886 ASSERT(ipf->ipf_nf_hdr_len != 0); 11887 end -= ipf->ipf_nf_hdr_len; 11888 offset_zero_seen = B_TRUE; 11889 } 11890 next_mp = mp->b_cont; 11891 /* 11892 * We are checking to see if there is any interesing data 11893 * to process. If there isn't and the mblk isn't the 11894 * one which carries the unfragmentable header then we 11895 * drop it. It's possible to have just the unfragmentable 11896 * header come through without any data. That needs to be 11897 * saved. 11898 * 11899 * If the assert at the top of this function holds then the 11900 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 11901 * is infrequently traveled enough that the test is left in 11902 * to protect against future code changes which break that 11903 * invariant. 11904 */ 11905 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 11906 /* Empty. Blast it. */ 11907 IP_REASS_SET_START(mp, 0); 11908 IP_REASS_SET_END(mp, 0); 11909 /* 11910 * If the ipf points to the mblk we are about to free, 11911 * update ipf to point to the next mblk (or NULL 11912 * if none). 11913 */ 11914 if (ipf->ipf_mp->b_cont == mp) 11915 ipf->ipf_mp->b_cont = next_mp; 11916 freeb(mp); 11917 continue; 11918 } 11919 mp->b_cont = NULL; 11920 IP_REASS_SET_START(mp, start); 11921 IP_REASS_SET_END(mp, end); 11922 if (!ipf->ipf_tail_mp) { 11923 ipf->ipf_tail_mp = mp; 11924 ipf->ipf_mp->b_cont = mp; 11925 if (start == 0 || !more) { 11926 ipf->ipf_hole_cnt = 1; 11927 /* 11928 * if the first fragment comes in more than one 11929 * mblk, this loop will be executed for each 11930 * mblk. Need to adjust hole count so exiting 11931 * this routine will leave hole count at 1. 11932 */ 11933 if (next_mp) 11934 ipf->ipf_hole_cnt++; 11935 } else 11936 ipf->ipf_hole_cnt = 2; 11937 continue; 11938 } else if (ipf->ipf_last_frag_seen && !more && 11939 !pkt_boundary_checked) { 11940 /* 11941 * We check datagram boundary only if this fragment 11942 * claims to be the last fragment and we have seen a 11943 * last fragment in the past too. We do this only 11944 * once for a given fragment. 11945 * 11946 * start cannot be 0 here as fragments with start=0 11947 * and MF=0 gets handled as a complete packet. These 11948 * fragments should not reach here. 11949 */ 11950 11951 if (start + msgdsize(mp) != 11952 IP_REASS_END(ipf->ipf_tail_mp)) { 11953 /* 11954 * We have two fragments both of which claim 11955 * to be the last fragment but gives conflicting 11956 * information about the whole datagram size. 11957 * Something fishy is going on. Drop the 11958 * fragment and free up the reassembly list. 11959 */ 11960 return (IP_REASS_FAILED); 11961 } 11962 11963 /* 11964 * We shouldn't come to this code block again for this 11965 * particular fragment. 11966 */ 11967 pkt_boundary_checked = B_TRUE; 11968 } 11969 11970 /* New stuff at or beyond tail? */ 11971 offset = IP_REASS_END(ipf->ipf_tail_mp); 11972 if (start >= offset) { 11973 if (ipf->ipf_last_frag_seen) { 11974 /* current fragment is beyond last fragment */ 11975 return (IP_REASS_FAILED); 11976 } 11977 /* Link it on end. */ 11978 ipf->ipf_tail_mp->b_cont = mp; 11979 ipf->ipf_tail_mp = mp; 11980 if (more) { 11981 if (start != offset) 11982 ipf->ipf_hole_cnt++; 11983 } else if (start == offset && next_mp == NULL) 11984 ipf->ipf_hole_cnt--; 11985 continue; 11986 } 11987 mp1 = ipf->ipf_mp->b_cont; 11988 offset = IP_REASS_START(mp1); 11989 /* New stuff at the front? */ 11990 if (start < offset) { 11991 if (start == 0) { 11992 if (end >= offset) { 11993 /* Nailed the hole at the begining. */ 11994 ipf->ipf_hole_cnt--; 11995 } 11996 } else if (end < offset) { 11997 /* 11998 * A hole, stuff, and a hole where there used 11999 * to be just a hole. 12000 */ 12001 ipf->ipf_hole_cnt++; 12002 } 12003 mp->b_cont = mp1; 12004 /* Check for overlap. */ 12005 while (end > offset) { 12006 if (end < IP_REASS_END(mp1)) { 12007 mp->b_wptr -= end - offset; 12008 IP_REASS_SET_END(mp, offset); 12009 BUMP_MIB(ill->ill_ip_mib, 12010 ipIfStatsReasmPartDups); 12011 break; 12012 } 12013 /* Did we cover another hole? */ 12014 if ((mp1->b_cont && 12015 IP_REASS_END(mp1) != 12016 IP_REASS_START(mp1->b_cont) && 12017 end >= IP_REASS_START(mp1->b_cont)) || 12018 (!ipf->ipf_last_frag_seen && !more)) { 12019 ipf->ipf_hole_cnt--; 12020 } 12021 /* Clip out mp1. */ 12022 if ((mp->b_cont = mp1->b_cont) == NULL) { 12023 /* 12024 * After clipping out mp1, this guy 12025 * is now hanging off the end. 12026 */ 12027 ipf->ipf_tail_mp = mp; 12028 } 12029 IP_REASS_SET_START(mp1, 0); 12030 IP_REASS_SET_END(mp1, 0); 12031 /* Subtract byte count */ 12032 ipf->ipf_count -= mp1->b_datap->db_lim - 12033 mp1->b_datap->db_base; 12034 freeb(mp1); 12035 BUMP_MIB(ill->ill_ip_mib, 12036 ipIfStatsReasmPartDups); 12037 mp1 = mp->b_cont; 12038 if (!mp1) 12039 break; 12040 offset = IP_REASS_START(mp1); 12041 } 12042 ipf->ipf_mp->b_cont = mp; 12043 continue; 12044 } 12045 /* 12046 * The new piece starts somewhere between the start of the head 12047 * and before the end of the tail. 12048 */ 12049 for (; mp1; mp1 = mp1->b_cont) { 12050 offset = IP_REASS_END(mp1); 12051 if (start < offset) { 12052 if (end <= offset) { 12053 /* Nothing new. */ 12054 IP_REASS_SET_START(mp, 0); 12055 IP_REASS_SET_END(mp, 0); 12056 /* Subtract byte count */ 12057 ipf->ipf_count -= mp->b_datap->db_lim - 12058 mp->b_datap->db_base; 12059 if (incr_dups) { 12060 ipf->ipf_num_dups++; 12061 incr_dups = B_FALSE; 12062 } 12063 freeb(mp); 12064 BUMP_MIB(ill->ill_ip_mib, 12065 ipIfStatsReasmDuplicates); 12066 break; 12067 } 12068 /* 12069 * Trim redundant stuff off beginning of new 12070 * piece. 12071 */ 12072 IP_REASS_SET_START(mp, offset); 12073 mp->b_rptr += offset - start; 12074 BUMP_MIB(ill->ill_ip_mib, 12075 ipIfStatsReasmPartDups); 12076 start = offset; 12077 if (!mp1->b_cont) { 12078 /* 12079 * After trimming, this guy is now 12080 * hanging off the end. 12081 */ 12082 mp1->b_cont = mp; 12083 ipf->ipf_tail_mp = mp; 12084 if (!more) { 12085 ipf->ipf_hole_cnt--; 12086 } 12087 break; 12088 } 12089 } 12090 if (start >= IP_REASS_START(mp1->b_cont)) 12091 continue; 12092 /* Fill a hole */ 12093 if (start > offset) 12094 ipf->ipf_hole_cnt++; 12095 mp->b_cont = mp1->b_cont; 12096 mp1->b_cont = mp; 12097 mp1 = mp->b_cont; 12098 offset = IP_REASS_START(mp1); 12099 if (end >= offset) { 12100 ipf->ipf_hole_cnt--; 12101 /* Check for overlap. */ 12102 while (end > offset) { 12103 if (end < IP_REASS_END(mp1)) { 12104 mp->b_wptr -= end - offset; 12105 IP_REASS_SET_END(mp, offset); 12106 /* 12107 * TODO we might bump 12108 * this up twice if there is 12109 * overlap at both ends. 12110 */ 12111 BUMP_MIB(ill->ill_ip_mib, 12112 ipIfStatsReasmPartDups); 12113 break; 12114 } 12115 /* Did we cover another hole? */ 12116 if ((mp1->b_cont && 12117 IP_REASS_END(mp1) 12118 != IP_REASS_START(mp1->b_cont) && 12119 end >= 12120 IP_REASS_START(mp1->b_cont)) || 12121 (!ipf->ipf_last_frag_seen && 12122 !more)) { 12123 ipf->ipf_hole_cnt--; 12124 } 12125 /* Clip out mp1. */ 12126 if ((mp->b_cont = mp1->b_cont) == 12127 NULL) { 12128 /* 12129 * After clipping out mp1, 12130 * this guy is now hanging 12131 * off the end. 12132 */ 12133 ipf->ipf_tail_mp = mp; 12134 } 12135 IP_REASS_SET_START(mp1, 0); 12136 IP_REASS_SET_END(mp1, 0); 12137 /* Subtract byte count */ 12138 ipf->ipf_count -= 12139 mp1->b_datap->db_lim - 12140 mp1->b_datap->db_base; 12141 freeb(mp1); 12142 BUMP_MIB(ill->ill_ip_mib, 12143 ipIfStatsReasmPartDups); 12144 mp1 = mp->b_cont; 12145 if (!mp1) 12146 break; 12147 offset = IP_REASS_START(mp1); 12148 } 12149 } 12150 break; 12151 } 12152 } while (start = end, mp = next_mp); 12153 12154 /* Fragment just processed could be the last one. Remember this fact */ 12155 if (!more) 12156 ipf->ipf_last_frag_seen = B_TRUE; 12157 12158 /* Still got holes? */ 12159 if (ipf->ipf_hole_cnt) 12160 return (IP_REASS_PARTIAL); 12161 /* Clean up overloaded fields to avoid upstream disasters. */ 12162 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 12163 IP_REASS_SET_START(mp1, 0); 12164 IP_REASS_SET_END(mp1, 0); 12165 } 12166 return (IP_REASS_COMPLETE); 12167 } 12168 12169 /* 12170 * ipsec processing for the fast path, used for input UDP Packets 12171 * Returns true if ready for passup to UDP. 12172 * Return false if packet is not passable to UDP (e.g. it failed IPsec policy, 12173 * was an ESP-in-UDP packet, etc.). 12174 */ 12175 static boolean_t 12176 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 12177 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present, ire_t *ire) 12178 { 12179 uint32_t ill_index; 12180 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 12181 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 12182 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12183 udp_t *udp = connp->conn_udp; 12184 12185 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12186 /* The ill_index of the incoming ILL */ 12187 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 12188 12189 /* pass packet up to the transport */ 12190 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 12191 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 12192 NULL, mctl_present); 12193 if (*first_mpp == NULL) { 12194 return (B_FALSE); 12195 } 12196 } 12197 12198 /* Initiate IPPF processing for fastpath UDP */ 12199 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 12200 ip_process(IPP_LOCAL_IN, mpp, ill_index); 12201 if (*mpp == NULL) { 12202 ip2dbg(("ip_input_ipsec_process: UDP pkt " 12203 "deferred/dropped during IPPF processing\n")); 12204 return (B_FALSE); 12205 } 12206 } 12207 /* 12208 * Remove 0-spi if it's 0, or move everything behind 12209 * the UDP header over it and forward to ESP via 12210 * ip_proto_input(). 12211 */ 12212 if (udp->udp_nat_t_endpoint) { 12213 if (mctl_present) { 12214 /* mctl_present *shouldn't* happen. */ 12215 ip_drop_packet(*first_mpp, B_TRUE, NULL, 12216 NULL, DROPPER(ipss, ipds_esp_nat_t_ipsec), 12217 &ipss->ipsec_dropper); 12218 *first_mpp = NULL; 12219 return (B_FALSE); 12220 } 12221 12222 /* "ill" is "recv_ill" in actuality. */ 12223 if (!zero_spi_check(q, *mpp, ire, ill, ipss)) 12224 return (B_FALSE); 12225 12226 /* Else continue like a normal UDP packet. */ 12227 } 12228 12229 /* 12230 * We make the checks as below since we are in the fast path 12231 * and want to minimize the number of checks if the IP_RECVIF and/or 12232 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 12233 */ 12234 if (connp->conn_recvif || connp->conn_recvslla || 12235 connp->conn_ip_recvpktinfo) { 12236 if (connp->conn_recvif) { 12237 in_flags = IPF_RECVIF; 12238 } 12239 /* 12240 * UDP supports IP_RECVPKTINFO option for both v4 and v6 12241 * so the flag passed to ip_add_info is based on IP version 12242 * of connp. 12243 */ 12244 if (connp->conn_ip_recvpktinfo) { 12245 if (connp->conn_af_isv6) { 12246 /* 12247 * V6 only needs index 12248 */ 12249 in_flags |= IPF_RECVIF; 12250 } else { 12251 /* 12252 * V4 needs index + matching address. 12253 */ 12254 in_flags |= IPF_RECVADDR; 12255 } 12256 } 12257 if (connp->conn_recvslla) { 12258 in_flags |= IPF_RECVSLLA; 12259 } 12260 /* 12261 * since in_flags are being set ill will be 12262 * referenced in ip_add_info, so it better not 12263 * be NULL. 12264 */ 12265 /* 12266 * the actual data will be contained in b_cont 12267 * upon successful return of the following call. 12268 * If the call fails then the original mblk is 12269 * returned. 12270 */ 12271 *mpp = ip_add_info(*mpp, ill, in_flags, IPCL_ZONEID(connp), 12272 ipst); 12273 } 12274 12275 return (B_TRUE); 12276 } 12277 12278 /* 12279 * Fragmentation reassembly. Each ILL has a hash table for 12280 * queuing packets undergoing reassembly for all IPIFs 12281 * associated with the ILL. The hash is based on the packet 12282 * IP ident field. The ILL frag hash table was allocated 12283 * as a timer block at the time the ILL was created. Whenever 12284 * there is anything on the reassembly queue, the timer will 12285 * be running. Returns B_TRUE if successful else B_FALSE; 12286 * frees mp on failure. 12287 */ 12288 static boolean_t 12289 ip_rput_fragment(queue_t *q, mblk_t **mpp, ipha_t *ipha, 12290 uint32_t *cksum_val, uint16_t *cksum_flags) 12291 { 12292 uint32_t frag_offset_flags; 12293 ill_t *ill = (ill_t *)q->q_ptr; 12294 mblk_t *mp = *mpp; 12295 mblk_t *t_mp; 12296 ipaddr_t dst; 12297 uint8_t proto = ipha->ipha_protocol; 12298 uint32_t sum_val; 12299 uint16_t sum_flags; 12300 ipf_t *ipf; 12301 ipf_t **ipfp; 12302 ipfb_t *ipfb; 12303 uint16_t ident; 12304 uint32_t offset; 12305 ipaddr_t src; 12306 uint_t hdr_length; 12307 uint32_t end; 12308 mblk_t *mp1; 12309 mblk_t *tail_mp; 12310 size_t count; 12311 size_t msg_len; 12312 uint8_t ecn_info = 0; 12313 uint32_t packet_size; 12314 boolean_t pruned = B_FALSE; 12315 ip_stack_t *ipst = ill->ill_ipst; 12316 12317 if (cksum_val != NULL) 12318 *cksum_val = 0; 12319 if (cksum_flags != NULL) 12320 *cksum_flags = 0; 12321 12322 /* 12323 * Drop the fragmented as early as possible, if 12324 * we don't have resource(s) to re-assemble. 12325 */ 12326 if (ipst->ips_ip_reass_queue_bytes == 0) { 12327 freemsg(mp); 12328 return (B_FALSE); 12329 } 12330 12331 /* Check for fragmentation offset; return if there's none */ 12332 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 12333 (IPH_MF | IPH_OFFSET)) == 0) 12334 return (B_TRUE); 12335 12336 /* 12337 * We utilize hardware computed checksum info only for UDP since 12338 * IP fragmentation is a normal occurence for the protocol. In 12339 * addition, checksum offload support for IP fragments carrying 12340 * UDP payload is commonly implemented across network adapters. 12341 */ 12342 ASSERT(ill != NULL); 12343 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(ill) && 12344 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 12345 mblk_t *mp1 = mp->b_cont; 12346 int32_t len; 12347 12348 /* Record checksum information from the packet */ 12349 sum_val = (uint32_t)DB_CKSUM16(mp); 12350 sum_flags = DB_CKSUMFLAGS(mp); 12351 12352 /* IP payload offset from beginning of mblk */ 12353 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 12354 12355 if ((sum_flags & HCK_PARTIALCKSUM) && 12356 (mp1 == NULL || mp1->b_cont == NULL) && 12357 offset >= DB_CKSUMSTART(mp) && 12358 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 12359 uint32_t adj; 12360 /* 12361 * Partial checksum has been calculated by hardware 12362 * and attached to the packet; in addition, any 12363 * prepended extraneous data is even byte aligned. 12364 * If any such data exists, we adjust the checksum; 12365 * this would also handle any postpended data. 12366 */ 12367 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 12368 mp, mp1, len, adj); 12369 12370 /* One's complement subtract extraneous checksum */ 12371 if (adj >= sum_val) 12372 sum_val = ~(adj - sum_val) & 0xFFFF; 12373 else 12374 sum_val -= adj; 12375 } 12376 } else { 12377 sum_val = 0; 12378 sum_flags = 0; 12379 } 12380 12381 /* Clear hardware checksumming flag */ 12382 DB_CKSUMFLAGS(mp) = 0; 12383 12384 ident = ipha->ipha_ident; 12385 offset = (frag_offset_flags << 3) & 0xFFFF; 12386 src = ipha->ipha_src; 12387 dst = ipha->ipha_dst; 12388 hdr_length = IPH_HDR_LENGTH(ipha); 12389 end = ntohs(ipha->ipha_length) - hdr_length; 12390 12391 /* If end == 0 then we have a packet with no data, so just free it */ 12392 if (end == 0) { 12393 freemsg(mp); 12394 return (B_FALSE); 12395 } 12396 12397 /* Record the ECN field info. */ 12398 ecn_info = (ipha->ipha_type_of_service & 0x3); 12399 if (offset != 0) { 12400 /* 12401 * If this isn't the first piece, strip the header, and 12402 * add the offset to the end value. 12403 */ 12404 mp->b_rptr += hdr_length; 12405 end += offset; 12406 } 12407 12408 msg_len = MBLKSIZE(mp); 12409 tail_mp = mp; 12410 while (tail_mp->b_cont != NULL) { 12411 tail_mp = tail_mp->b_cont; 12412 msg_len += MBLKSIZE(tail_mp); 12413 } 12414 12415 /* If the reassembly list for this ILL will get too big, prune it */ 12416 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 12417 ipst->ips_ip_reass_queue_bytes) { 12418 ill_frag_prune(ill, 12419 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 12420 (ipst->ips_ip_reass_queue_bytes - msg_len)); 12421 pruned = B_TRUE; 12422 } 12423 12424 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 12425 mutex_enter(&ipfb->ipfb_lock); 12426 12427 ipfp = &ipfb->ipfb_ipf; 12428 /* Try to find an existing fragment queue for this packet. */ 12429 for (;;) { 12430 ipf = ipfp[0]; 12431 if (ipf != NULL) { 12432 /* 12433 * It has to match on ident and src/dst address. 12434 */ 12435 if (ipf->ipf_ident == ident && 12436 ipf->ipf_src == src && 12437 ipf->ipf_dst == dst && 12438 ipf->ipf_protocol == proto) { 12439 /* 12440 * If we have received too many 12441 * duplicate fragments for this packet 12442 * free it. 12443 */ 12444 if (ipf->ipf_num_dups > ip_max_frag_dups) { 12445 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12446 freemsg(mp); 12447 mutex_exit(&ipfb->ipfb_lock); 12448 return (B_FALSE); 12449 } 12450 /* Found it. */ 12451 break; 12452 } 12453 ipfp = &ipf->ipf_hash_next; 12454 continue; 12455 } 12456 12457 /* 12458 * If we pruned the list, do we want to store this new 12459 * fragment?. We apply an optimization here based on the 12460 * fact that most fragments will be received in order. 12461 * So if the offset of this incoming fragment is zero, 12462 * it is the first fragment of a new packet. We will 12463 * keep it. Otherwise drop the fragment, as we have 12464 * probably pruned the packet already (since the 12465 * packet cannot be found). 12466 */ 12467 if (pruned && offset != 0) { 12468 mutex_exit(&ipfb->ipfb_lock); 12469 freemsg(mp); 12470 return (B_FALSE); 12471 } 12472 12473 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 12474 /* 12475 * Too many fragmented packets in this hash 12476 * bucket. Free the oldest. 12477 */ 12478 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 12479 } 12480 12481 /* New guy. Allocate a frag message. */ 12482 mp1 = allocb(sizeof (*ipf), BPRI_MED); 12483 if (mp1 == NULL) { 12484 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12485 freemsg(mp); 12486 reass_done: 12487 mutex_exit(&ipfb->ipfb_lock); 12488 return (B_FALSE); 12489 } 12490 12491 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 12492 mp1->b_cont = mp; 12493 12494 /* Initialize the fragment header. */ 12495 ipf = (ipf_t *)mp1->b_rptr; 12496 ipf->ipf_mp = mp1; 12497 ipf->ipf_ptphn = ipfp; 12498 ipfp[0] = ipf; 12499 ipf->ipf_hash_next = NULL; 12500 ipf->ipf_ident = ident; 12501 ipf->ipf_protocol = proto; 12502 ipf->ipf_src = src; 12503 ipf->ipf_dst = dst; 12504 ipf->ipf_nf_hdr_len = 0; 12505 /* Record reassembly start time. */ 12506 ipf->ipf_timestamp = gethrestime_sec(); 12507 /* Record ipf generation and account for frag header */ 12508 ipf->ipf_gen = ill->ill_ipf_gen++; 12509 ipf->ipf_count = MBLKSIZE(mp1); 12510 ipf->ipf_last_frag_seen = B_FALSE; 12511 ipf->ipf_ecn = ecn_info; 12512 ipf->ipf_num_dups = 0; 12513 ipfb->ipfb_frag_pkts++; 12514 ipf->ipf_checksum = 0; 12515 ipf->ipf_checksum_flags = 0; 12516 12517 /* Store checksum value in fragment header */ 12518 if (sum_flags != 0) { 12519 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12520 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12521 ipf->ipf_checksum = sum_val; 12522 ipf->ipf_checksum_flags = sum_flags; 12523 } 12524 12525 /* 12526 * We handle reassembly two ways. In the easy case, 12527 * where all the fragments show up in order, we do 12528 * minimal bookkeeping, and just clip new pieces on 12529 * the end. If we ever see a hole, then we go off 12530 * to ip_reassemble which has to mark the pieces and 12531 * keep track of the number of holes, etc. Obviously, 12532 * the point of having both mechanisms is so we can 12533 * handle the easy case as efficiently as possible. 12534 */ 12535 if (offset == 0) { 12536 /* Easy case, in-order reassembly so far. */ 12537 ipf->ipf_count += msg_len; 12538 ipf->ipf_tail_mp = tail_mp; 12539 /* 12540 * Keep track of next expected offset in 12541 * ipf_end. 12542 */ 12543 ipf->ipf_end = end; 12544 ipf->ipf_nf_hdr_len = hdr_length; 12545 } else { 12546 /* Hard case, hole at the beginning. */ 12547 ipf->ipf_tail_mp = NULL; 12548 /* 12549 * ipf_end == 0 means that we have given up 12550 * on easy reassembly. 12551 */ 12552 ipf->ipf_end = 0; 12553 12554 /* Forget checksum offload from now on */ 12555 ipf->ipf_checksum_flags = 0; 12556 12557 /* 12558 * ipf_hole_cnt is set by ip_reassemble. 12559 * ipf_count is updated by ip_reassemble. 12560 * No need to check for return value here 12561 * as we don't expect reassembly to complete 12562 * or fail for the first fragment itself. 12563 */ 12564 (void) ip_reassemble(mp, ipf, 12565 (frag_offset_flags & IPH_OFFSET) << 3, 12566 (frag_offset_flags & IPH_MF), ill, msg_len); 12567 } 12568 /* Update per ipfb and ill byte counts */ 12569 ipfb->ipfb_count += ipf->ipf_count; 12570 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12571 atomic_add_32(&ill->ill_frag_count, ipf->ipf_count); 12572 /* If the frag timer wasn't already going, start it. */ 12573 mutex_enter(&ill->ill_lock); 12574 ill_frag_timer_start(ill); 12575 mutex_exit(&ill->ill_lock); 12576 goto reass_done; 12577 } 12578 12579 /* 12580 * If the packet's flag has changed (it could be coming up 12581 * from an interface different than the previous, therefore 12582 * possibly different checksum capability), then forget about 12583 * any stored checksum states. Otherwise add the value to 12584 * the existing one stored in the fragment header. 12585 */ 12586 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 12587 sum_val += ipf->ipf_checksum; 12588 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12589 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12590 ipf->ipf_checksum = sum_val; 12591 } else if (ipf->ipf_checksum_flags != 0) { 12592 /* Forget checksum offload from now on */ 12593 ipf->ipf_checksum_flags = 0; 12594 } 12595 12596 /* 12597 * We have a new piece of a datagram which is already being 12598 * reassembled. Update the ECN info if all IP fragments 12599 * are ECN capable. If there is one which is not, clear 12600 * all the info. If there is at least one which has CE 12601 * code point, IP needs to report that up to transport. 12602 */ 12603 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 12604 if (ecn_info == IPH_ECN_CE) 12605 ipf->ipf_ecn = IPH_ECN_CE; 12606 } else { 12607 ipf->ipf_ecn = IPH_ECN_NECT; 12608 } 12609 if (offset && ipf->ipf_end == offset) { 12610 /* The new fragment fits at the end */ 12611 ipf->ipf_tail_mp->b_cont = mp; 12612 /* Update the byte count */ 12613 ipf->ipf_count += msg_len; 12614 /* Update per ipfb and ill byte counts */ 12615 ipfb->ipfb_count += msg_len; 12616 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12617 atomic_add_32(&ill->ill_frag_count, msg_len); 12618 if (frag_offset_flags & IPH_MF) { 12619 /* More to come. */ 12620 ipf->ipf_end = end; 12621 ipf->ipf_tail_mp = tail_mp; 12622 goto reass_done; 12623 } 12624 } else { 12625 /* Go do the hard cases. */ 12626 int ret; 12627 12628 if (offset == 0) 12629 ipf->ipf_nf_hdr_len = hdr_length; 12630 12631 /* Save current byte count */ 12632 count = ipf->ipf_count; 12633 ret = ip_reassemble(mp, ipf, 12634 (frag_offset_flags & IPH_OFFSET) << 3, 12635 (frag_offset_flags & IPH_MF), ill, msg_len); 12636 /* Count of bytes added and subtracted (freeb()ed) */ 12637 count = ipf->ipf_count - count; 12638 if (count) { 12639 /* Update per ipfb and ill byte counts */ 12640 ipfb->ipfb_count += count; 12641 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12642 atomic_add_32(&ill->ill_frag_count, count); 12643 } 12644 if (ret == IP_REASS_PARTIAL) { 12645 goto reass_done; 12646 } else if (ret == IP_REASS_FAILED) { 12647 /* Reassembly failed. Free up all resources */ 12648 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12649 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 12650 IP_REASS_SET_START(t_mp, 0); 12651 IP_REASS_SET_END(t_mp, 0); 12652 } 12653 freemsg(mp); 12654 goto reass_done; 12655 } 12656 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 12657 } 12658 /* 12659 * We have completed reassembly. Unhook the frag header from 12660 * the reassembly list. 12661 * 12662 * Before we free the frag header, record the ECN info 12663 * to report back to the transport. 12664 */ 12665 ecn_info = ipf->ipf_ecn; 12666 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 12667 ipfp = ipf->ipf_ptphn; 12668 12669 /* We need to supply these to caller */ 12670 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 12671 sum_val = ipf->ipf_checksum; 12672 else 12673 sum_val = 0; 12674 12675 mp1 = ipf->ipf_mp; 12676 count = ipf->ipf_count; 12677 ipf = ipf->ipf_hash_next; 12678 if (ipf != NULL) 12679 ipf->ipf_ptphn = ipfp; 12680 ipfp[0] = ipf; 12681 atomic_add_32(&ill->ill_frag_count, -count); 12682 ASSERT(ipfb->ipfb_count >= count); 12683 ipfb->ipfb_count -= count; 12684 ipfb->ipfb_frag_pkts--; 12685 mutex_exit(&ipfb->ipfb_lock); 12686 /* Ditch the frag header. */ 12687 mp = mp1->b_cont; 12688 12689 freeb(mp1); 12690 12691 /* Restore original IP length in header. */ 12692 packet_size = (uint32_t)msgdsize(mp); 12693 if (packet_size > IP_MAXPACKET) { 12694 freemsg(mp); 12695 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 12696 return (B_FALSE); 12697 } 12698 12699 if (DB_REF(mp) > 1) { 12700 mblk_t *mp2 = copymsg(mp); 12701 12702 freemsg(mp); 12703 if (mp2 == NULL) { 12704 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12705 return (B_FALSE); 12706 } 12707 mp = mp2; 12708 } 12709 ipha = (ipha_t *)mp->b_rptr; 12710 12711 ipha->ipha_length = htons((uint16_t)packet_size); 12712 /* We're now complete, zip the frag state */ 12713 ipha->ipha_fragment_offset_and_flags = 0; 12714 /* Record the ECN info. */ 12715 ipha->ipha_type_of_service &= 0xFC; 12716 ipha->ipha_type_of_service |= ecn_info; 12717 *mpp = mp; 12718 12719 /* Reassembly is successful; return checksum information if needed */ 12720 if (cksum_val != NULL) 12721 *cksum_val = sum_val; 12722 if (cksum_flags != NULL) 12723 *cksum_flags = sum_flags; 12724 12725 return (B_TRUE); 12726 } 12727 12728 /* 12729 * Perform ip header check sum update local options. 12730 * return B_TRUE if all is well, else return B_FALSE and release 12731 * the mp. caller is responsible for decrementing ire ref cnt. 12732 */ 12733 static boolean_t 12734 ip_options_cksum(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12735 ip_stack_t *ipst) 12736 { 12737 mblk_t *first_mp; 12738 boolean_t mctl_present; 12739 uint16_t sum; 12740 12741 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12742 /* 12743 * Don't do the checksum if it has gone through AH/ESP 12744 * processing. 12745 */ 12746 if (!mctl_present) { 12747 sum = ip_csum_hdr(ipha); 12748 if (sum != 0) { 12749 if (ill != NULL) { 12750 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12751 } else { 12752 BUMP_MIB(&ipst->ips_ip_mib, 12753 ipIfStatsInCksumErrs); 12754 } 12755 freemsg(first_mp); 12756 return (B_FALSE); 12757 } 12758 } 12759 12760 if (!ip_rput_local_options(q, mp, ipha, ire, ipst)) { 12761 if (mctl_present) 12762 freeb(first_mp); 12763 return (B_FALSE); 12764 } 12765 12766 return (B_TRUE); 12767 } 12768 12769 /* 12770 * All udp packet are delivered to the local host via this routine. 12771 */ 12772 void 12773 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12774 ill_t *recv_ill) 12775 { 12776 uint32_t sum; 12777 uint32_t u1; 12778 boolean_t mctl_present; 12779 conn_t *connp; 12780 mblk_t *first_mp; 12781 uint16_t *up; 12782 ill_t *ill = (ill_t *)q->q_ptr; 12783 uint16_t reass_hck_flags = 0; 12784 ip_stack_t *ipst; 12785 12786 ASSERT(recv_ill != NULL); 12787 ipst = recv_ill->ill_ipst; 12788 12789 #define rptr ((uchar_t *)ipha) 12790 12791 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12792 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 12793 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12794 ASSERT(ill != NULL); 12795 12796 /* 12797 * FAST PATH for udp packets 12798 */ 12799 12800 /* u1 is # words of IP options */ 12801 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 12802 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12803 12804 /* IP options present */ 12805 if (u1 != 0) 12806 goto ipoptions; 12807 12808 /* Check the IP header checksum. */ 12809 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12810 /* Clear the IP header h/w cksum flag */ 12811 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12812 } else if (!mctl_present) { 12813 /* 12814 * Don't verify header checksum if this packet is coming 12815 * back from AH/ESP as we already did it. 12816 */ 12817 #define uph ((uint16_t *)ipha) 12818 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12819 uph[6] + uph[7] + uph[8] + uph[9]; 12820 #undef uph 12821 /* finish doing IP checksum */ 12822 sum = (sum & 0xFFFF) + (sum >> 16); 12823 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12824 if (sum != 0 && sum != 0xFFFF) { 12825 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12826 freemsg(first_mp); 12827 return; 12828 } 12829 } 12830 12831 /* 12832 * Count for SNMP of inbound packets for ire. 12833 * if mctl is present this might be a secure packet and 12834 * has already been counted for in ip_proto_input(). 12835 */ 12836 if (!mctl_present) { 12837 UPDATE_IB_PKT_COUNT(ire); 12838 ire->ire_last_used_time = lbolt; 12839 } 12840 12841 /* packet part of fragmented IP packet? */ 12842 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12843 if (u1 & (IPH_MF | IPH_OFFSET)) { 12844 goto fragmented; 12845 } 12846 12847 /* u1 = IP header length (20 bytes) */ 12848 u1 = IP_SIMPLE_HDR_LENGTH; 12849 12850 /* packet does not contain complete IP & UDP headers */ 12851 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12852 goto udppullup; 12853 12854 /* up points to UDP header */ 12855 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12856 #define iphs ((uint16_t *)ipha) 12857 12858 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12859 if (up[3] != 0) { 12860 mblk_t *mp1 = mp->b_cont; 12861 boolean_t cksum_err; 12862 uint16_t hck_flags = 0; 12863 12864 /* Pseudo-header checksum */ 12865 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12866 iphs[9] + up[2]; 12867 12868 /* 12869 * Revert to software checksum calculation if the interface 12870 * isn't capable of checksum offload or if IPsec is present. 12871 */ 12872 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12873 hck_flags = DB_CKSUMFLAGS(mp); 12874 12875 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12876 IP_STAT(ipst, ip_in_sw_cksum); 12877 12878 IP_CKSUM_RECV(hck_flags, u1, 12879 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12880 (int32_t)((uchar_t *)up - rptr), 12881 mp, mp1, cksum_err); 12882 12883 if (cksum_err) { 12884 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12885 if (hck_flags & HCK_FULLCKSUM) 12886 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12887 else if (hck_flags & HCK_PARTIALCKSUM) 12888 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12889 else 12890 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12891 12892 freemsg(first_mp); 12893 return; 12894 } 12895 } 12896 12897 /* Non-fragmented broadcast or multicast packet? */ 12898 if (ire->ire_type == IRE_BROADCAST) 12899 goto udpslowpath; 12900 12901 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 12902 ire->ire_zoneid, ipst)) != NULL) { 12903 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 12904 IP_STAT(ipst, ip_udp_fast_path); 12905 12906 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 12907 (!IPCL_IS_NONSTR(connp) && CONN_UDP_FLOWCTLD(connp))) { 12908 freemsg(mp); 12909 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 12910 } else { 12911 if (!mctl_present) { 12912 BUMP_MIB(ill->ill_ip_mib, 12913 ipIfStatsHCInDelivers); 12914 } 12915 /* 12916 * mp and first_mp can change. 12917 */ 12918 if (ip_udp_check(q, connp, recv_ill, 12919 ipha, &mp, &first_mp, mctl_present, ire)) { 12920 /* Send it upstream */ 12921 (connp->conn_recv)(connp, mp, NULL); 12922 } 12923 } 12924 /* 12925 * freeb() cannot deal with null mblk being passed 12926 * in and first_mp can be set to null in the call 12927 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 12928 */ 12929 if (mctl_present && first_mp != NULL) { 12930 freeb(first_mp); 12931 } 12932 CONN_DEC_REF(connp); 12933 return; 12934 } 12935 12936 /* 12937 * if we got here we know the packet is not fragmented and 12938 * has no options. The classifier could not find a conn_t and 12939 * most likely its an icmp packet so send it through slow path. 12940 */ 12941 12942 goto udpslowpath; 12943 12944 ipoptions: 12945 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 12946 goto slow_done; 12947 } 12948 12949 UPDATE_IB_PKT_COUNT(ire); 12950 ire->ire_last_used_time = lbolt; 12951 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12952 if (u1 & (IPH_MF | IPH_OFFSET)) { 12953 fragmented: 12954 /* 12955 * "sum" and "reass_hck_flags" are non-zero if the 12956 * reassembled packet has a valid hardware computed 12957 * checksum information associated with it. 12958 */ 12959 if (!ip_rput_fragment(q, &mp, ipha, &sum, &reass_hck_flags)) 12960 goto slow_done; 12961 /* 12962 * Make sure that first_mp points back to mp as 12963 * the mp we came in with could have changed in 12964 * ip_rput_fragment(). 12965 */ 12966 ASSERT(!mctl_present); 12967 ipha = (ipha_t *)mp->b_rptr; 12968 first_mp = mp; 12969 } 12970 12971 /* Now we have a complete datagram, destined for this machine. */ 12972 u1 = IPH_HDR_LENGTH(ipha); 12973 /* Pull up the UDP header, if necessary. */ 12974 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 12975 udppullup: 12976 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 12977 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12978 freemsg(first_mp); 12979 goto slow_done; 12980 } 12981 ipha = (ipha_t *)mp->b_rptr; 12982 } 12983 12984 /* 12985 * Validate the checksum for the reassembled packet; for the 12986 * pullup case we calculate the payload checksum in software. 12987 */ 12988 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 12989 if (up[3] != 0) { 12990 boolean_t cksum_err; 12991 12992 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12993 IP_STAT(ipst, ip_in_sw_cksum); 12994 12995 IP_CKSUM_RECV_REASS(reass_hck_flags, 12996 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 12997 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12998 iphs[9] + up[2], sum, cksum_err); 12999 13000 if (cksum_err) { 13001 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 13002 13003 if (reass_hck_flags & HCK_FULLCKSUM) 13004 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 13005 else if (reass_hck_flags & HCK_PARTIALCKSUM) 13006 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 13007 else 13008 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 13009 13010 freemsg(first_mp); 13011 goto slow_done; 13012 } 13013 } 13014 udpslowpath: 13015 13016 /* Clear hardware checksum flag to be safe */ 13017 DB_CKSUMFLAGS(mp) = 0; 13018 13019 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 13020 (ire->ire_type == IRE_BROADCAST), 13021 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IPINFO, 13022 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 13023 13024 slow_done: 13025 IP_STAT(ipst, ip_udp_slow_path); 13026 return; 13027 13028 #undef iphs 13029 #undef rptr 13030 } 13031 13032 /* ARGSUSED */ 13033 static mblk_t * 13034 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13035 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 13036 ill_rx_ring_t *ill_ring) 13037 { 13038 conn_t *connp; 13039 uint32_t sum; 13040 uint32_t u1; 13041 uint16_t *up; 13042 int offset; 13043 ssize_t len; 13044 mblk_t *mp1; 13045 boolean_t syn_present = B_FALSE; 13046 tcph_t *tcph; 13047 uint_t tcph_flags; 13048 uint_t ip_hdr_len; 13049 ill_t *ill = (ill_t *)q->q_ptr; 13050 zoneid_t zoneid = ire->ire_zoneid; 13051 boolean_t cksum_err; 13052 uint16_t hck_flags = 0; 13053 ip_stack_t *ipst = recv_ill->ill_ipst; 13054 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 13055 13056 #define rptr ((uchar_t *)ipha) 13057 13058 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 13059 ASSERT(ill != NULL); 13060 13061 /* 13062 * FAST PATH for tcp packets 13063 */ 13064 13065 /* u1 is # words of IP options */ 13066 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13067 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13068 13069 /* IP options present */ 13070 if (u1) { 13071 goto ipoptions; 13072 } else if (!mctl_present) { 13073 /* Check the IP header checksum. */ 13074 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 13075 /* Clear the IP header h/w cksum flag */ 13076 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 13077 } else if (!mctl_present) { 13078 /* 13079 * Don't verify header checksum if this packet 13080 * is coming back from AH/ESP as we already did it. 13081 */ 13082 #define uph ((uint16_t *)ipha) 13083 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13084 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13085 #undef uph 13086 /* finish doing IP checksum */ 13087 sum = (sum & 0xFFFF) + (sum >> 16); 13088 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13089 if (sum != 0 && sum != 0xFFFF) { 13090 BUMP_MIB(ill->ill_ip_mib, 13091 ipIfStatsInCksumErrs); 13092 goto error; 13093 } 13094 } 13095 } 13096 13097 if (!mctl_present) { 13098 UPDATE_IB_PKT_COUNT(ire); 13099 ire->ire_last_used_time = lbolt; 13100 } 13101 13102 /* packet part of fragmented IP packet? */ 13103 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13104 if (u1 & (IPH_MF | IPH_OFFSET)) { 13105 goto fragmented; 13106 } 13107 13108 /* u1 = IP header length (20 bytes) */ 13109 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 13110 13111 /* does packet contain IP+TCP headers? */ 13112 len = mp->b_wptr - rptr; 13113 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 13114 IP_STAT(ipst, ip_tcppullup); 13115 goto tcppullup; 13116 } 13117 13118 /* TCP options present? */ 13119 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 13120 13121 /* 13122 * If options need to be pulled up, then goto tcpoptions. 13123 * otherwise we are still in the fast path 13124 */ 13125 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 13126 IP_STAT(ipst, ip_tcpoptions); 13127 goto tcpoptions; 13128 } 13129 13130 /* multiple mblks of tcp data? */ 13131 if ((mp1 = mp->b_cont) != NULL) { 13132 /* more then two? */ 13133 if (mp1->b_cont != NULL) { 13134 IP_STAT(ipst, ip_multipkttcp); 13135 goto multipkttcp; 13136 } 13137 len += mp1->b_wptr - mp1->b_rptr; 13138 } 13139 13140 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 13141 13142 /* part of pseudo checksum */ 13143 13144 /* TCP datagram length */ 13145 u1 = len - IP_SIMPLE_HDR_LENGTH; 13146 13147 #define iphs ((uint16_t *)ipha) 13148 13149 #ifdef _BIG_ENDIAN 13150 u1 += IPPROTO_TCP; 13151 #else 13152 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13153 #endif 13154 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13155 13156 /* 13157 * Revert to software checksum calculation if the interface 13158 * isn't capable of checksum offload or if IPsec is present. 13159 */ 13160 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 13161 hck_flags = DB_CKSUMFLAGS(mp); 13162 13163 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 13164 IP_STAT(ipst, ip_in_sw_cksum); 13165 13166 IP_CKSUM_RECV(hck_flags, u1, 13167 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 13168 (int32_t)((uchar_t *)up - rptr), 13169 mp, mp1, cksum_err); 13170 13171 if (cksum_err) { 13172 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13173 13174 if (hck_flags & HCK_FULLCKSUM) 13175 IP_STAT(ipst, ip_tcp_in_full_hw_cksum_err); 13176 else if (hck_flags & HCK_PARTIALCKSUM) 13177 IP_STAT(ipst, ip_tcp_in_part_hw_cksum_err); 13178 else 13179 IP_STAT(ipst, ip_tcp_in_sw_cksum_err); 13180 13181 goto error; 13182 } 13183 13184 try_again: 13185 13186 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 13187 zoneid, ipst)) == NULL) { 13188 /* Send the TH_RST */ 13189 goto no_conn; 13190 } 13191 13192 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 13193 tcph_flags = tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG); 13194 13195 /* 13196 * TCP FAST PATH for AF_INET socket. 13197 * 13198 * TCP fast path to avoid extra work. An AF_INET socket type 13199 * does not have facility to receive extra information via 13200 * ip_process or ip_add_info. Also, when the connection was 13201 * established, we made a check if this connection is impacted 13202 * by any global IPsec policy or per connection policy (a 13203 * policy that comes in effect later will not apply to this 13204 * connection). Since all this can be determined at the 13205 * connection establishment time, a quick check of flags 13206 * can avoid extra work. 13207 */ 13208 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 13209 !IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13210 ASSERT(first_mp == mp); 13211 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13212 if (tcph_flags != (TH_SYN | TH_ACK)) { 13213 SET_SQUEUE(mp, tcp_rput_data, connp); 13214 return (mp); 13215 } 13216 mp->b_datap->db_struioflag |= STRUIO_CONNECT; 13217 DB_CKSUMSTART(mp) = (intptr_t)ip_squeue_get(ill_ring); 13218 SET_SQUEUE(mp, tcp_input, connp); 13219 return (mp); 13220 } 13221 13222 if (tcph_flags == TH_SYN) { 13223 if (IPCL_IS_TCP(connp)) { 13224 mp->b_datap->db_struioflag |= STRUIO_EAGER; 13225 DB_CKSUMSTART(mp) = 13226 (intptr_t)ip_squeue_get(ill_ring); 13227 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 13228 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13229 BUMP_MIB(ill->ill_ip_mib, 13230 ipIfStatsHCInDelivers); 13231 SET_SQUEUE(mp, connp->conn_recv, connp); 13232 return (mp); 13233 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 13234 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13235 BUMP_MIB(ill->ill_ip_mib, 13236 ipIfStatsHCInDelivers); 13237 ip_squeue_enter_unbound++; 13238 SET_SQUEUE(mp, tcp_conn_request_unbound, 13239 connp); 13240 return (mp); 13241 } 13242 syn_present = B_TRUE; 13243 } 13244 } 13245 13246 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 13247 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 13248 13249 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13250 /* No need to send this packet to TCP */ 13251 if ((flags & TH_RST) || (flags & TH_URG)) { 13252 CONN_DEC_REF(connp); 13253 freemsg(first_mp); 13254 return (NULL); 13255 } 13256 if (flags & TH_ACK) { 13257 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 13258 ipst->ips_netstack->netstack_tcp, connp); 13259 CONN_DEC_REF(connp); 13260 return (NULL); 13261 } 13262 13263 CONN_DEC_REF(connp); 13264 freemsg(first_mp); 13265 return (NULL); 13266 } 13267 13268 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 13269 first_mp = ipsec_check_inbound_policy(first_mp, connp, 13270 ipha, NULL, mctl_present); 13271 if (first_mp == NULL) { 13272 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13273 CONN_DEC_REF(connp); 13274 return (NULL); 13275 } 13276 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 13277 ASSERT(syn_present); 13278 if (mctl_present) { 13279 ASSERT(first_mp != mp); 13280 first_mp->b_datap->db_struioflag |= 13281 STRUIO_POLICY; 13282 } else { 13283 ASSERT(first_mp == mp); 13284 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 13285 mp->b_datap->db_struioflag |= STRUIO_POLICY; 13286 } 13287 } else { 13288 /* 13289 * Discard first_mp early since we're dealing with a 13290 * fully-connected conn_t and tcp doesn't do policy in 13291 * this case. 13292 */ 13293 if (mctl_present) { 13294 freeb(first_mp); 13295 mctl_present = B_FALSE; 13296 } 13297 first_mp = mp; 13298 } 13299 } 13300 13301 /* Initiate IPPF processing for fastpath */ 13302 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13303 uint32_t ill_index; 13304 13305 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13306 ip_process(IPP_LOCAL_IN, &mp, ill_index); 13307 if (mp == NULL) { 13308 ip2dbg(("ip_input_ipsec_process: TCP pkt " 13309 "deferred/dropped during IPPF processing\n")); 13310 CONN_DEC_REF(connp); 13311 if (mctl_present) 13312 freeb(first_mp); 13313 return (NULL); 13314 } else if (mctl_present) { 13315 /* 13316 * ip_process might return a new mp. 13317 */ 13318 ASSERT(first_mp != mp); 13319 first_mp->b_cont = mp; 13320 } else { 13321 first_mp = mp; 13322 } 13323 13324 } 13325 13326 if (!syn_present && connp->conn_ip_recvpktinfo) { 13327 /* 13328 * TCP does not support IP_RECVPKTINFO for v4 so lets 13329 * make sure IPF_RECVIF is passed to ip_add_info. 13330 */ 13331 mp = ip_add_info(mp, recv_ill, flags|IPF_RECVIF, 13332 IPCL_ZONEID(connp), ipst); 13333 if (mp == NULL) { 13334 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13335 CONN_DEC_REF(connp); 13336 if (mctl_present) 13337 freeb(first_mp); 13338 return (NULL); 13339 } else if (mctl_present) { 13340 /* 13341 * ip_add_info might return a new mp. 13342 */ 13343 ASSERT(first_mp != mp); 13344 first_mp->b_cont = mp; 13345 } else { 13346 first_mp = mp; 13347 } 13348 } 13349 13350 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13351 if (IPCL_IS_TCP(connp)) { 13352 SET_SQUEUE(first_mp, connp->conn_recv, connp); 13353 return (first_mp); 13354 } else { 13355 /* SOCK_RAW, IPPROTO_TCP case */ 13356 (connp->conn_recv)(connp, first_mp, NULL); 13357 CONN_DEC_REF(connp); 13358 return (NULL); 13359 } 13360 13361 no_conn: 13362 /* Initiate IPPf processing, if needed. */ 13363 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13364 uint32_t ill_index; 13365 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13366 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 13367 if (first_mp == NULL) { 13368 return (NULL); 13369 } 13370 } 13371 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13372 13373 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr), zoneid, 13374 ipst->ips_netstack->netstack_tcp, NULL); 13375 return (NULL); 13376 ipoptions: 13377 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) { 13378 goto slow_done; 13379 } 13380 13381 UPDATE_IB_PKT_COUNT(ire); 13382 ire->ire_last_used_time = lbolt; 13383 13384 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13385 if (u1 & (IPH_MF | IPH_OFFSET)) { 13386 fragmented: 13387 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 13388 if (mctl_present) 13389 freeb(first_mp); 13390 goto slow_done; 13391 } 13392 /* 13393 * Make sure that first_mp points back to mp as 13394 * the mp we came in with could have changed in 13395 * ip_rput_fragment(). 13396 */ 13397 ASSERT(!mctl_present); 13398 ipha = (ipha_t *)mp->b_rptr; 13399 first_mp = mp; 13400 } 13401 13402 /* Now we have a complete datagram, destined for this machine. */ 13403 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 13404 13405 len = mp->b_wptr - mp->b_rptr; 13406 /* Pull up a minimal TCP header, if necessary. */ 13407 if (len < (u1 + 20)) { 13408 tcppullup: 13409 if (!pullupmsg(mp, u1 + 20)) { 13410 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13411 goto error; 13412 } 13413 ipha = (ipha_t *)mp->b_rptr; 13414 len = mp->b_wptr - mp->b_rptr; 13415 } 13416 13417 /* 13418 * Extract the offset field from the TCP header. As usual, we 13419 * try to help the compiler more than the reader. 13420 */ 13421 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 13422 if (offset != 5) { 13423 tcpoptions: 13424 if (offset < 5) { 13425 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13426 goto error; 13427 } 13428 /* 13429 * There must be TCP options. 13430 * Make sure we can grab them. 13431 */ 13432 offset <<= 2; 13433 offset += u1; 13434 if (len < offset) { 13435 if (!pullupmsg(mp, offset)) { 13436 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13437 goto error; 13438 } 13439 ipha = (ipha_t *)mp->b_rptr; 13440 len = mp->b_wptr - rptr; 13441 } 13442 } 13443 13444 /* Get the total packet length in len, including headers. */ 13445 if (mp->b_cont) { 13446 multipkttcp: 13447 len = msgdsize(mp); 13448 } 13449 13450 /* 13451 * Check the TCP checksum by pulling together the pseudo- 13452 * header checksum, and passing it to ip_csum to be added in 13453 * with the TCP datagram. 13454 * 13455 * Since we are not using the hwcksum if available we must 13456 * clear the flag. We may come here via tcppullup or tcpoptions. 13457 * If either of these fails along the way the mblk is freed. 13458 * If this logic ever changes and mblk is reused to say send 13459 * ICMP's back, then this flag may need to be cleared in 13460 * other places as well. 13461 */ 13462 DB_CKSUMFLAGS(mp) = 0; 13463 13464 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 13465 13466 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 13467 #ifdef _BIG_ENDIAN 13468 u1 += IPPROTO_TCP; 13469 #else 13470 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13471 #endif 13472 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13473 /* 13474 * Not M_DATA mblk or its a dup, so do the checksum now. 13475 */ 13476 IP_STAT(ipst, ip_in_sw_cksum); 13477 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 13478 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13479 goto error; 13480 } 13481 13482 IP_STAT(ipst, ip_tcp_slow_path); 13483 goto try_again; 13484 #undef iphs 13485 #undef rptr 13486 13487 error: 13488 freemsg(first_mp); 13489 slow_done: 13490 return (NULL); 13491 } 13492 13493 /* ARGSUSED */ 13494 static void 13495 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13496 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 13497 { 13498 conn_t *connp; 13499 uint32_t sum; 13500 uint32_t u1; 13501 ssize_t len; 13502 sctp_hdr_t *sctph; 13503 zoneid_t zoneid = ire->ire_zoneid; 13504 uint32_t pktsum; 13505 uint32_t calcsum; 13506 uint32_t ports; 13507 in6_addr_t map_src, map_dst; 13508 ill_t *ill = (ill_t *)q->q_ptr; 13509 ip_stack_t *ipst; 13510 sctp_stack_t *sctps; 13511 boolean_t sctp_csum_err = B_FALSE; 13512 13513 ASSERT(recv_ill != NULL); 13514 ipst = recv_ill->ill_ipst; 13515 sctps = ipst->ips_netstack->netstack_sctp; 13516 13517 #define rptr ((uchar_t *)ipha) 13518 13519 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 13520 ASSERT(ill != NULL); 13521 13522 /* u1 is # words of IP options */ 13523 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13524 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13525 13526 /* IP options present */ 13527 if (u1 > 0) { 13528 goto ipoptions; 13529 } else { 13530 /* Check the IP header checksum. */ 13531 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, ill) && 13532 !mctl_present) { 13533 #define uph ((uint16_t *)ipha) 13534 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13535 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13536 #undef uph 13537 /* finish doing IP checksum */ 13538 sum = (sum & 0xFFFF) + (sum >> 16); 13539 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13540 /* 13541 * Don't verify header checksum if this packet 13542 * is coming back from AH/ESP as we already did it. 13543 */ 13544 if (sum != 0 && sum != 0xFFFF) { 13545 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 13546 goto error; 13547 } 13548 } 13549 /* 13550 * Since there is no SCTP h/w cksum support yet, just 13551 * clear the flag. 13552 */ 13553 DB_CKSUMFLAGS(mp) = 0; 13554 } 13555 13556 /* 13557 * Don't verify header checksum if this packet is coming 13558 * back from AH/ESP as we already did it. 13559 */ 13560 if (!mctl_present) { 13561 UPDATE_IB_PKT_COUNT(ire); 13562 ire->ire_last_used_time = lbolt; 13563 } 13564 13565 /* packet part of fragmented IP packet? */ 13566 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13567 if (u1 & (IPH_MF | IPH_OFFSET)) 13568 goto fragmented; 13569 13570 /* u1 = IP header length (20 bytes) */ 13571 u1 = IP_SIMPLE_HDR_LENGTH; 13572 13573 find_sctp_client: 13574 /* Pullup if we don't have the sctp common header. */ 13575 len = MBLKL(mp); 13576 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 13577 if (mp->b_cont == NULL || 13578 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 13579 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13580 goto error; 13581 } 13582 ipha = (ipha_t *)mp->b_rptr; 13583 len = MBLKL(mp); 13584 } 13585 13586 sctph = (sctp_hdr_t *)(rptr + u1); 13587 #ifdef DEBUG 13588 if (!skip_sctp_cksum) { 13589 #endif 13590 pktsum = sctph->sh_chksum; 13591 sctph->sh_chksum = 0; 13592 calcsum = sctp_cksum(mp, u1); 13593 sctph->sh_chksum = pktsum; 13594 if (calcsum != pktsum) 13595 sctp_csum_err = B_TRUE; 13596 #ifdef DEBUG /* skip_sctp_cksum */ 13597 } 13598 #endif 13599 /* get the ports */ 13600 ports = *(uint32_t *)&sctph->sh_sport; 13601 13602 IRE_REFRELE(ire); 13603 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 13604 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 13605 if (sctp_csum_err) { 13606 /* 13607 * No potential sctp checksum errors go to the Sun 13608 * sctp stack however they might be Adler-32 summed 13609 * packets a userland stack bound to a raw IP socket 13610 * could reasonably use. Note though that Adler-32 is 13611 * a long deprecated algorithm and customer sctp 13612 * networks should eventually migrate to CRC-32 at 13613 * which time this facility should be removed. 13614 */ 13615 flags |= IP_FF_SCTP_CSUM_ERR; 13616 goto no_conn; 13617 } 13618 if ((connp = sctp_fanout(&map_src, &map_dst, ports, zoneid, mp, 13619 sctps)) == NULL) { 13620 /* Check for raw socket or OOTB handling */ 13621 goto no_conn; 13622 } 13623 13624 /* Found a client; up it goes */ 13625 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13626 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 13627 return; 13628 13629 no_conn: 13630 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 13631 ports, mctl_present, flags, B_TRUE, zoneid); 13632 return; 13633 13634 ipoptions: 13635 DB_CKSUMFLAGS(mp) = 0; 13636 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) 13637 goto slow_done; 13638 13639 UPDATE_IB_PKT_COUNT(ire); 13640 ire->ire_last_used_time = lbolt; 13641 13642 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13643 if (u1 & (IPH_MF | IPH_OFFSET)) { 13644 fragmented: 13645 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) 13646 goto slow_done; 13647 /* 13648 * Make sure that first_mp points back to mp as 13649 * the mp we came in with could have changed in 13650 * ip_rput_fragment(). 13651 */ 13652 ASSERT(!mctl_present); 13653 ipha = (ipha_t *)mp->b_rptr; 13654 first_mp = mp; 13655 } 13656 13657 /* Now we have a complete datagram, destined for this machine. */ 13658 u1 = IPH_HDR_LENGTH(ipha); 13659 goto find_sctp_client; 13660 #undef iphs 13661 #undef rptr 13662 13663 error: 13664 freemsg(first_mp); 13665 slow_done: 13666 IRE_REFRELE(ire); 13667 } 13668 13669 #define VER_BITS 0xF0 13670 #define VERSION_6 0x60 13671 13672 static boolean_t 13673 ip_rput_multimblk_ipoptions(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t **iphapp, 13674 ipaddr_t *dstp, ip_stack_t *ipst) 13675 { 13676 uint_t opt_len; 13677 ipha_t *ipha; 13678 ssize_t len; 13679 uint_t pkt_len; 13680 13681 ASSERT(ill != NULL); 13682 IP_STAT(ipst, ip_ipoptions); 13683 ipha = *iphapp; 13684 13685 #define rptr ((uchar_t *)ipha) 13686 /* Assume no IPv6 packets arrive over the IPv4 queue */ 13687 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 13688 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 13689 freemsg(mp); 13690 return (B_FALSE); 13691 } 13692 13693 /* multiple mblk or too short */ 13694 pkt_len = ntohs(ipha->ipha_length); 13695 13696 /* Get the number of words of IP options in the IP header. */ 13697 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 13698 if (opt_len) { 13699 /* IP Options present! Validate and process. */ 13700 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 13701 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13702 goto done; 13703 } 13704 /* 13705 * Recompute complete header length and make sure we 13706 * have access to all of it. 13707 */ 13708 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 13709 if (len > (mp->b_wptr - rptr)) { 13710 if (len > pkt_len) { 13711 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13712 goto done; 13713 } 13714 if (!pullupmsg(mp, len)) { 13715 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13716 goto done; 13717 } 13718 ipha = (ipha_t *)mp->b_rptr; 13719 } 13720 /* 13721 * Go off to ip_rput_options which returns the next hop 13722 * destination address, which may have been affected 13723 * by source routing. 13724 */ 13725 IP_STAT(ipst, ip_opt); 13726 if (ip_rput_options(q, mp, ipha, dstp, ipst) == -1) { 13727 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13728 return (B_FALSE); 13729 } 13730 } 13731 *iphapp = ipha; 13732 return (B_TRUE); 13733 done: 13734 /* clear b_prev - used by ip_mroute_decap */ 13735 mp->b_prev = NULL; 13736 freemsg(mp); 13737 return (B_FALSE); 13738 #undef rptr 13739 } 13740 13741 /* 13742 * Deal with the fact that there is no ire for the destination. 13743 */ 13744 static ire_t * 13745 ip_rput_noire(queue_t *q, mblk_t *mp, int ll_multicast, ipaddr_t dst) 13746 { 13747 ipha_t *ipha; 13748 ill_t *ill; 13749 ire_t *ire; 13750 ip_stack_t *ipst; 13751 enum ire_forward_action ret_action; 13752 13753 ipha = (ipha_t *)mp->b_rptr; 13754 ill = (ill_t *)q->q_ptr; 13755 13756 ASSERT(ill != NULL); 13757 ipst = ill->ill_ipst; 13758 13759 /* 13760 * No IRE for this destination, so it can't be for us. 13761 * Unless we are forwarding, drop the packet. 13762 * We have to let source routed packets through 13763 * since we don't yet know if they are 'ping -l' 13764 * packets i.e. if they will go out over the 13765 * same interface as they came in on. 13766 */ 13767 if (ll_multicast) { 13768 freemsg(mp); 13769 return (NULL); 13770 } 13771 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha, ipst)) { 13772 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13773 freemsg(mp); 13774 return (NULL); 13775 } 13776 13777 /* 13778 * Mark this packet as having originated externally. 13779 * 13780 * For non-forwarding code path, ire_send later double 13781 * checks this interface to see if it is still exists 13782 * post-ARP resolution. 13783 * 13784 * Also, IPQOS uses this to differentiate between 13785 * IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP 13786 * QOS packet processing in ip_wput_attach_llhdr(). 13787 * The QoS module can mark the b_band for a fastpath message 13788 * or the dl_priority field in a unitdata_req header for 13789 * CoS marking. This info can only be found in 13790 * ip_wput_attach_llhdr(). 13791 */ 13792 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 13793 /* 13794 * Clear the indication that this may have a hardware checksum 13795 * as we are not using it 13796 */ 13797 DB_CKSUMFLAGS(mp) = 0; 13798 13799 ire = ire_forward(dst, &ret_action, NULL, NULL, 13800 MBLK_GETLABEL(mp), ipst); 13801 13802 if (ire == NULL && ret_action == Forward_check_multirt) { 13803 /* Let ip_newroute handle CGTP */ 13804 ip_newroute(q, mp, dst, NULL, GLOBAL_ZONEID, ipst); 13805 return (NULL); 13806 } 13807 13808 if (ire != NULL) 13809 return (ire); 13810 13811 mp->b_prev = mp->b_next = 0; 13812 13813 if (ret_action == Forward_blackhole) { 13814 freemsg(mp); 13815 return (NULL); 13816 } 13817 /* send icmp unreachable */ 13818 q = WR(q); 13819 /* Sent by forwarding path, and router is global zone */ 13820 if (ip_source_routed(ipha, ipst)) { 13821 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, 13822 GLOBAL_ZONEID, ipst); 13823 } else { 13824 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 13825 ipst); 13826 } 13827 13828 return (NULL); 13829 13830 } 13831 13832 /* 13833 * check ip header length and align it. 13834 */ 13835 static boolean_t 13836 ip_check_and_align_header(queue_t *q, mblk_t *mp, ip_stack_t *ipst) 13837 { 13838 ssize_t len; 13839 ill_t *ill; 13840 ipha_t *ipha; 13841 13842 len = MBLKL(mp); 13843 13844 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13845 ill = (ill_t *)q->q_ptr; 13846 13847 if (!OK_32PTR(mp->b_rptr)) 13848 IP_STAT(ipst, ip_notaligned1); 13849 else 13850 IP_STAT(ipst, ip_notaligned2); 13851 /* Guard against bogus device drivers */ 13852 if (len < 0) { 13853 /* clear b_prev - used by ip_mroute_decap */ 13854 mp->b_prev = NULL; 13855 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13856 freemsg(mp); 13857 return (B_FALSE); 13858 } 13859 13860 if (ip_rput_pullups++ == 0) { 13861 ipha = (ipha_t *)mp->b_rptr; 13862 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 13863 "ip_check_and_align_header: %s forced us to " 13864 " pullup pkt, hdr len %ld, hdr addr %p", 13865 ill->ill_name, len, (void *)ipha); 13866 } 13867 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 13868 /* clear b_prev - used by ip_mroute_decap */ 13869 mp->b_prev = NULL; 13870 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13871 freemsg(mp); 13872 return (B_FALSE); 13873 } 13874 } 13875 return (B_TRUE); 13876 } 13877 13878 ire_t * 13879 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 13880 { 13881 ire_t *new_ire; 13882 ill_t *ire_ill; 13883 uint_t ifindex; 13884 ip_stack_t *ipst = ill->ill_ipst; 13885 boolean_t strict_check = B_FALSE; 13886 13887 /* 13888 * This packet came in on an interface other than the one associated 13889 * with the first ire we found for the destination address. We do 13890 * another ire lookup here, using the ingress ill, to see if the 13891 * interface is in an interface group. 13892 * As long as the ills belong to the same group, we don't consider 13893 * them to be arriving on the wrong interface. Thus, if the switch 13894 * is doing inbound load spreading, we won't drop packets when the 13895 * ip*_strict_dst_multihoming switch is on. Note, the same holds true 13896 * for 'usesrc groups' where the destination address may belong to 13897 * another interface to allow multipathing to happen. 13898 * We also need to check for IPIF_UNNUMBERED point2point interfaces 13899 * where the local address may not be unique. In this case we were 13900 * at the mercy of the initial ire cache lookup and the IRE_LOCAL it 13901 * actually returned. The new lookup, which is more specific, should 13902 * only find the IRE_LOCAL associated with the ingress ill if one 13903 * exists. 13904 */ 13905 13906 if (ire->ire_ipversion == IPV4_VERSION) { 13907 if (ipst->ips_ip_strict_dst_multihoming) 13908 strict_check = B_TRUE; 13909 new_ire = ire_ctable_lookup(*((ipaddr_t *)addr), 0, IRE_LOCAL, 13910 ill->ill_ipif, ALL_ZONES, NULL, 13911 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 13912 } else { 13913 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 13914 if (ipst->ips_ipv6_strict_dst_multihoming) 13915 strict_check = B_TRUE; 13916 new_ire = ire_ctable_lookup_v6((in6_addr_t *)addr, NULL, 13917 IRE_LOCAL, ill->ill_ipif, ALL_ZONES, NULL, 13918 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 13919 } 13920 /* 13921 * If the same ire that was returned in ip_input() is found then this 13922 * is an indication that interface groups are in use. The packet 13923 * arrived on a different ill in the group than the one associated with 13924 * the destination address. If a different ire was found then the same 13925 * IP address must be hosted on multiple ills. This is possible with 13926 * unnumbered point2point interfaces. We switch to use this new ire in 13927 * order to have accurate interface statistics. 13928 */ 13929 if (new_ire != NULL) { 13930 if ((new_ire != ire) && (new_ire->ire_rfq != NULL)) { 13931 ire_refrele(ire); 13932 ire = new_ire; 13933 } else { 13934 ire_refrele(new_ire); 13935 } 13936 return (ire); 13937 } else if ((ire->ire_rfq == NULL) && 13938 (ire->ire_ipversion == IPV4_VERSION)) { 13939 /* 13940 * The best match could have been the original ire which 13941 * was created against an IRE_LOCAL on lo0. In the IPv4 case 13942 * the strict multihoming checks are irrelevant as we consider 13943 * local addresses hosted on lo0 to be interface agnostic. We 13944 * only expect a null ire_rfq on IREs which are associated with 13945 * lo0 hence we can return now. 13946 */ 13947 return (ire); 13948 } 13949 13950 /* 13951 * Chase pointers once and store locally. 13952 */ 13953 ire_ill = (ire->ire_rfq == NULL) ? NULL : 13954 (ill_t *)(ire->ire_rfq->q_ptr); 13955 ifindex = ill->ill_usesrc_ifindex; 13956 13957 /* 13958 * Check if it's a legal address on the 'usesrc' interface. 13959 */ 13960 if ((ifindex != 0) && (ire_ill != NULL) && 13961 (ifindex == ire_ill->ill_phyint->phyint_ifindex)) { 13962 return (ire); 13963 } 13964 13965 /* 13966 * If the ip*_strict_dst_multihoming switch is on then we can 13967 * only accept this packet if the interface is marked as routing. 13968 */ 13969 if (!(strict_check)) 13970 return (ire); 13971 13972 if ((ill->ill_flags & ire->ire_ipif->ipif_ill->ill_flags & 13973 ILLF_ROUTER) != 0) { 13974 return (ire); 13975 } 13976 13977 ire_refrele(ire); 13978 return (NULL); 13979 } 13980 13981 /* 13982 * 13983 * This is the fast forward path. If we are here, we dont need to 13984 * worry about RSVP, CGTP, or TSol. Furthermore the ftable lookup 13985 * needed to find the nexthop in this case is much simpler 13986 */ 13987 ire_t * 13988 ip_fast_forward(ire_t *ire, ipaddr_t dst, ill_t *ill, mblk_t *mp) 13989 { 13990 ipha_t *ipha; 13991 ire_t *src_ire; 13992 ill_t *stq_ill; 13993 uint_t hlen; 13994 uint_t pkt_len; 13995 uint32_t sum; 13996 queue_t *dev_q; 13997 ip_stack_t *ipst = ill->ill_ipst; 13998 mblk_t *fpmp; 13999 enum ire_forward_action ret_action; 14000 14001 ipha = (ipha_t *)mp->b_rptr; 14002 14003 if (ire != NULL && 14004 ire->ire_zoneid != GLOBAL_ZONEID && 14005 ire->ire_zoneid != ALL_ZONES) { 14006 /* 14007 * Should only use IREs that are visible to the global 14008 * zone for forwarding. 14009 */ 14010 ire_refrele(ire); 14011 ire = ire_cache_lookup(dst, GLOBAL_ZONEID, NULL, ipst); 14012 /* 14013 * ire_cache_lookup() can return ire of IRE_LOCAL in 14014 * transient cases. In such case, just drop the packet 14015 */ 14016 if (ire->ire_type != IRE_CACHE) 14017 goto drop; 14018 } 14019 14020 /* 14021 * Martian Address Filtering [RFC 1812, Section 5.3.7] 14022 * The loopback address check for both src and dst has already 14023 * been checked in ip_input 14024 */ 14025 14026 if (dst == INADDR_ANY || CLASSD(ipha->ipha_src)) { 14027 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14028 goto drop; 14029 } 14030 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 14031 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 14032 14033 if (src_ire != NULL) { 14034 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14035 ire_refrele(src_ire); 14036 goto drop; 14037 } 14038 14039 /* No ire cache of nexthop. So first create one */ 14040 if (ire == NULL) { 14041 14042 ire = ire_forward_simple(dst, &ret_action, ipst); 14043 14044 /* 14045 * We only come to ip_fast_forward if ip_cgtp_filter 14046 * is not set. So ire_forward() should not return with 14047 * Forward_check_multirt as the next action. 14048 */ 14049 ASSERT(ret_action != Forward_check_multirt); 14050 if (ire == NULL) { 14051 /* An attempt was made to forward the packet */ 14052 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14053 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14054 mp->b_prev = mp->b_next = 0; 14055 /* send icmp unreachable */ 14056 /* Sent by forwarding path, and router is global zone */ 14057 if (ret_action == Forward_ret_icmp_err) { 14058 if (ip_source_routed(ipha, ipst)) { 14059 icmp_unreachable(ill->ill_wq, mp, 14060 ICMP_SOURCE_ROUTE_FAILED, 14061 GLOBAL_ZONEID, ipst); 14062 } else { 14063 icmp_unreachable(ill->ill_wq, mp, 14064 ICMP_HOST_UNREACHABLE, 14065 GLOBAL_ZONEID, ipst); 14066 } 14067 } else { 14068 freemsg(mp); 14069 } 14070 return (NULL); 14071 } 14072 } 14073 14074 /* 14075 * Forwarding fastpath exception case: 14076 * If either of the follwoing case is true, we take 14077 * the slowpath 14078 * o forwarding is not enabled 14079 * o incoming and outgoing interface are the same, or the same 14080 * IPMP group 14081 * o corresponding ire is in incomplete state 14082 * o packet needs fragmentation 14083 * o ARP cache is not resolved 14084 * 14085 * The codeflow from here on is thus: 14086 * ip_rput_process_forward->ip_rput_forward->ip_xmit_v4 14087 */ 14088 pkt_len = ntohs(ipha->ipha_length); 14089 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 14090 if (!(stq_ill->ill_flags & ILLF_ROUTER) || 14091 (ill == stq_ill) || 14092 (ill->ill_group != NULL && ill->ill_group == stq_ill->ill_group) || 14093 (ire->ire_nce == NULL) || 14094 (pkt_len > ire->ire_max_frag) || 14095 ((fpmp = ire->ire_nce->nce_fp_mp) == NULL) || 14096 ((hlen = MBLKL(fpmp)) > MBLKHEAD(mp)) || 14097 ipha->ipha_ttl <= 1) { 14098 ip_rput_process_forward(ill->ill_rq, mp, ire, 14099 ipha, ill, B_FALSE, B_TRUE); 14100 return (ire); 14101 } 14102 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14103 14104 DTRACE_PROBE4(ip4__forwarding__start, 14105 ill_t *, ill, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 14106 14107 FW_HOOKS(ipst->ips_ip4_forwarding_event, 14108 ipst->ips_ipv4firewall_forwarding, 14109 ill, stq_ill, ipha, mp, mp, 0, ipst); 14110 14111 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 14112 14113 if (mp == NULL) 14114 goto drop; 14115 14116 mp->b_datap->db_struioun.cksum.flags = 0; 14117 /* Adjust the checksum to reflect the ttl decrement. */ 14118 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 14119 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 14120 ipha->ipha_ttl--; 14121 14122 /* 14123 * Write the link layer header. We can do this safely here, 14124 * because we have already tested to make sure that the IP 14125 * policy is not set, and that we have a fast path destination 14126 * header. 14127 */ 14128 mp->b_rptr -= hlen; 14129 bcopy(fpmp->b_rptr, mp->b_rptr, hlen); 14130 14131 UPDATE_IB_PKT_COUNT(ire); 14132 ire->ire_last_used_time = lbolt; 14133 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 14134 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14135 UPDATE_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutOctets, pkt_len); 14136 14137 if (!ILL_DIRECT_CAPABLE(stq_ill) || DB_TYPE(mp) != M_DATA) { 14138 dev_q = ire->ire_stq->q_next; 14139 if (DEV_Q_FLOW_BLOCKED(dev_q)) 14140 goto indiscard; 14141 } 14142 14143 DTRACE_PROBE4(ip4__physical__out__start, 14144 ill_t *, NULL, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 14145 FW_HOOKS(ipst->ips_ip4_physical_out_event, 14146 ipst->ips_ipv4firewall_physical_out, 14147 NULL, stq_ill, ipha, mp, mp, 0, ipst); 14148 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 14149 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, void_ip_t *, 14150 ipha, __dtrace_ipsr_ill_t *, stq_ill, ipha_t *, ipha, 14151 ip6_t *, NULL, int, 0); 14152 14153 if (mp != NULL) { 14154 if (ipst->ips_ipobs_enabled) { 14155 zoneid_t szone; 14156 14157 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, 14158 ipst, ALL_ZONES); 14159 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, 14160 ALL_ZONES, ill, IPV4_VERSION, hlen, ipst); 14161 } 14162 14163 ILL_SEND_TX(stq_ill, ire, dst, mp, IP_DROP_ON_NO_DESC); 14164 } 14165 return (ire); 14166 14167 indiscard: 14168 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14169 drop: 14170 if (mp != NULL) 14171 freemsg(mp); 14172 return (ire); 14173 14174 } 14175 14176 /* 14177 * This function is called in the forwarding slowpath, when 14178 * either the ire lacks the link-layer address, or the packet needs 14179 * further processing(eg. fragmentation), before transmission. 14180 */ 14181 14182 static void 14183 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14184 ill_t *ill, boolean_t ll_multicast, boolean_t from_ip_fast_forward) 14185 { 14186 ill_group_t *ill_group; 14187 ill_group_t *ire_group; 14188 queue_t *dev_q; 14189 ire_t *src_ire; 14190 ip_stack_t *ipst = ill->ill_ipst; 14191 14192 ASSERT(ire->ire_stq != NULL); 14193 14194 mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */ 14195 mp->b_next = NULL; /* ip_rput_noire sets dst here */ 14196 14197 /* 14198 * If the caller of this function is ip_fast_forward() skip the 14199 * next three checks as it does not apply. 14200 */ 14201 if (from_ip_fast_forward) { 14202 ill_group = ill->ill_group; 14203 ire_group = ((ill_t *)(ire->ire_rfq)->q_ptr)->ill_group; 14204 goto skip; 14205 } 14206 14207 if (ll_multicast != 0) { 14208 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14209 goto drop_pkt; 14210 } 14211 14212 /* 14213 * check if ipha_src is a broadcast address. Note that this 14214 * check is redundant when we get here from ip_fast_forward() 14215 * which has already done this check. However, since we can 14216 * also get here from ip_rput_process_broadcast() or, for 14217 * for the slow path through ip_fast_forward(), we perform 14218 * the check again for code-reusability 14219 */ 14220 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 14221 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 14222 if (src_ire != NULL || ipha->ipha_dst == INADDR_ANY) { 14223 if (src_ire != NULL) 14224 ire_refrele(src_ire); 14225 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14226 ip2dbg(("ip_rput_process_forward: Received packet with" 14227 " bad src/dst address on %s\n", ill->ill_name)); 14228 goto drop_pkt; 14229 } 14230 14231 ill_group = ill->ill_group; 14232 ire_group = ((ill_t *)(ire->ire_rfq)->q_ptr)->ill_group; 14233 /* 14234 * Check if we want to forward this one at this time. 14235 * We allow source routed packets on a host provided that 14236 * they go out the same interface or same interface group 14237 * as they came in on. 14238 * 14239 * XXX To be quicker, we may wish to not chase pointers to 14240 * get the ILLF_ROUTER flag and instead store the 14241 * forwarding policy in the ire. An unfortunate 14242 * side-effect of that would be requiring an ire flush 14243 * whenever the ILLF_ROUTER flag changes. 14244 */ 14245 skip: 14246 if (((ill->ill_flags & 14247 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 14248 ILLF_ROUTER) == 0) && 14249 !(ip_source_routed(ipha, ipst) && (ire->ire_rfq == q || 14250 (ill_group != NULL && ill_group == ire_group)))) { 14251 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14252 if (ip_source_routed(ipha, ipst)) { 14253 q = WR(q); 14254 /* 14255 * Clear the indication that this may have 14256 * hardware checksum as we are not using it. 14257 */ 14258 DB_CKSUMFLAGS(mp) = 0; 14259 /* Sent by forwarding path, and router is global zone */ 14260 icmp_unreachable(q, mp, 14261 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, ipst); 14262 return; 14263 } 14264 goto drop_pkt; 14265 } 14266 14267 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14268 14269 /* Packet is being forwarded. Turning off hwcksum flag. */ 14270 DB_CKSUMFLAGS(mp) = 0; 14271 if (ipst->ips_ip_g_send_redirects) { 14272 /* 14273 * Check whether the incoming interface and outgoing 14274 * interface is part of the same group. If so, 14275 * send redirects. 14276 * 14277 * Check the source address to see if it originated 14278 * on the same logical subnet it is going back out on. 14279 * If so, we should be able to send it a redirect. 14280 * Avoid sending a redirect if the destination 14281 * is directly connected (i.e., ipha_dst is the same 14282 * as ire_gateway_addr or the ire_addr of the 14283 * nexthop IRE_CACHE ), or if the packet was source 14284 * routed out this interface. 14285 */ 14286 ipaddr_t src, nhop; 14287 mblk_t *mp1; 14288 ire_t *nhop_ire = NULL; 14289 14290 /* 14291 * Check whether ire_rfq and q are from the same ill 14292 * or if they are not same, they at least belong 14293 * to the same group. If so, send redirects. 14294 */ 14295 if ((ire->ire_rfq == q || 14296 (ill_group != NULL && ill_group == ire_group)) && 14297 !ip_source_routed(ipha, ipst)) { 14298 14299 nhop = (ire->ire_gateway_addr != 0 ? 14300 ire->ire_gateway_addr : ire->ire_addr); 14301 14302 if (ipha->ipha_dst == nhop) { 14303 /* 14304 * We avoid sending a redirect if the 14305 * destination is directly connected 14306 * because it is possible that multiple 14307 * IP subnets may have been configured on 14308 * the link, and the source may not 14309 * be on the same subnet as ip destination, 14310 * even though they are on the same 14311 * physical link. 14312 */ 14313 goto sendit; 14314 } 14315 14316 src = ipha->ipha_src; 14317 14318 /* 14319 * We look up the interface ire for the nexthop, 14320 * to see if ipha_src is in the same subnet 14321 * as the nexthop. 14322 * 14323 * Note that, if, in the future, IRE_CACHE entries 14324 * are obsoleted, this lookup will not be needed, 14325 * as the ire passed to this function will be the 14326 * same as the nhop_ire computed below. 14327 */ 14328 nhop_ire = ire_ftable_lookup(nhop, 0, 0, 14329 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 14330 0, NULL, MATCH_IRE_TYPE, ipst); 14331 14332 if (nhop_ire != NULL) { 14333 if ((src & nhop_ire->ire_mask) == 14334 (nhop & nhop_ire->ire_mask)) { 14335 /* 14336 * The source is directly connected. 14337 * Just copy the ip header (which is 14338 * in the first mblk) 14339 */ 14340 mp1 = copyb(mp); 14341 if (mp1 != NULL) { 14342 icmp_send_redirect(WR(q), mp1, 14343 nhop, ipst); 14344 } 14345 } 14346 ire_refrele(nhop_ire); 14347 } 14348 } 14349 } 14350 sendit: 14351 dev_q = ire->ire_stq->q_next; 14352 if (DEV_Q_FLOW_BLOCKED(dev_q)) { 14353 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14354 freemsg(mp); 14355 return; 14356 } 14357 14358 ip_rput_forward(ire, ipha, mp, ill); 14359 return; 14360 14361 drop_pkt: 14362 ip2dbg(("ip_rput_process_forward: drop pkt\n")); 14363 freemsg(mp); 14364 } 14365 14366 ire_t * 14367 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14368 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 14369 { 14370 queue_t *q; 14371 uint16_t hcksumflags; 14372 ip_stack_t *ipst = ill->ill_ipst; 14373 14374 q = *qp; 14375 14376 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInBcastPkts); 14377 14378 /* 14379 * Clear the indication that this may have hardware 14380 * checksum as we are not using it for forwarding. 14381 */ 14382 hcksumflags = DB_CKSUMFLAGS(mp); 14383 DB_CKSUMFLAGS(mp) = 0; 14384 14385 /* 14386 * Directed broadcast forwarding: if the packet came in over a 14387 * different interface then it is routed out over we can forward it. 14388 */ 14389 if (ipha->ipha_protocol == IPPROTO_TCP) { 14390 ire_refrele(ire); 14391 freemsg(mp); 14392 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14393 return (NULL); 14394 } 14395 /* 14396 * For multicast we have set dst to be INADDR_BROADCAST 14397 * for delivering to all STREAMS. IRE_MARK_NORECV is really 14398 * only for broadcast packets. 14399 */ 14400 if (!CLASSD(ipha->ipha_dst)) { 14401 ire_t *new_ire; 14402 ipif_t *ipif; 14403 /* 14404 * For ill groups, as the switch duplicates broadcasts 14405 * across all the ports, we need to filter out and 14406 * send up only one copy. There is one copy for every 14407 * broadcast address on each ill. Thus, we look for a 14408 * specific IRE on this ill and look at IRE_MARK_NORECV 14409 * later to see whether this ill is eligible to receive 14410 * them or not. ill_nominate_bcast_rcv() nominates only 14411 * one set of IREs for receiving. 14412 */ 14413 14414 ipif = ipif_get_next_ipif(NULL, ill); 14415 if (ipif == NULL) { 14416 ire_refrele(ire); 14417 freemsg(mp); 14418 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14419 return (NULL); 14420 } 14421 new_ire = ire_ctable_lookup(dst, 0, 0, 14422 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL, ipst); 14423 ipif_refrele(ipif); 14424 14425 if (new_ire != NULL) { 14426 if (new_ire->ire_marks & IRE_MARK_NORECV) { 14427 ire_refrele(ire); 14428 ire_refrele(new_ire); 14429 freemsg(mp); 14430 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14431 return (NULL); 14432 } 14433 /* 14434 * In the special case of multirouted broadcast 14435 * packets, we unconditionally need to "gateway" 14436 * them to the appropriate interface here. 14437 * In the normal case, this cannot happen, because 14438 * there is no broadcast IRE tagged with the 14439 * RTF_MULTIRT flag. 14440 */ 14441 if (new_ire->ire_flags & RTF_MULTIRT) { 14442 ire_refrele(new_ire); 14443 if (ire->ire_rfq != NULL) { 14444 q = ire->ire_rfq; 14445 *qp = q; 14446 } 14447 } else { 14448 ire_refrele(ire); 14449 ire = new_ire; 14450 } 14451 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 14452 if (!ipst->ips_ip_g_forward_directed_bcast) { 14453 /* 14454 * Free the message if 14455 * ip_g_forward_directed_bcast is turned 14456 * off for non-local broadcast. 14457 */ 14458 ire_refrele(ire); 14459 freemsg(mp); 14460 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14461 return (NULL); 14462 } 14463 } else { 14464 /* 14465 * This CGTP packet successfully passed the 14466 * CGTP filter, but the related CGTP 14467 * broadcast IRE has not been found, 14468 * meaning that the redundant ipif is 14469 * probably down. However, if we discarded 14470 * this packet, its duplicate would be 14471 * filtered out by the CGTP filter so none 14472 * of them would get through. So we keep 14473 * going with this one. 14474 */ 14475 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 14476 if (ire->ire_rfq != NULL) { 14477 q = ire->ire_rfq; 14478 *qp = q; 14479 } 14480 } 14481 } 14482 if (ipst->ips_ip_g_forward_directed_bcast && ll_multicast == 0) { 14483 /* 14484 * Verify that there are not more then one 14485 * IRE_BROADCAST with this broadcast address which 14486 * has ire_stq set. 14487 * TODO: simplify, loop over all IRE's 14488 */ 14489 ire_t *ire1; 14490 int num_stq = 0; 14491 mblk_t *mp1; 14492 14493 /* Find the first one with ire_stq set */ 14494 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 14495 for (ire1 = ire; ire1 && 14496 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 14497 ire1 = ire1->ire_next) 14498 ; 14499 if (ire1) { 14500 ire_refrele(ire); 14501 ire = ire1; 14502 IRE_REFHOLD(ire); 14503 } 14504 14505 /* Check if there are additional ones with stq set */ 14506 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 14507 if (ire->ire_addr != ire1->ire_addr) 14508 break; 14509 if (ire1->ire_stq) { 14510 num_stq++; 14511 break; 14512 } 14513 } 14514 rw_exit(&ire->ire_bucket->irb_lock); 14515 if (num_stq == 1 && ire->ire_stq != NULL) { 14516 ip1dbg(("ip_rput_process_broadcast: directed " 14517 "broadcast to 0x%x\n", 14518 ntohl(ire->ire_addr))); 14519 mp1 = copymsg(mp); 14520 if (mp1) { 14521 switch (ipha->ipha_protocol) { 14522 case IPPROTO_UDP: 14523 ip_udp_input(q, mp1, ipha, ire, ill); 14524 break; 14525 default: 14526 ip_proto_input(q, mp1, ipha, ire, ill, 14527 0); 14528 break; 14529 } 14530 } 14531 /* 14532 * Adjust ttl to 2 (1+1 - the forward engine 14533 * will decrement it by one. 14534 */ 14535 if (ip_csum_hdr(ipha)) { 14536 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 14537 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 14538 freemsg(mp); 14539 ire_refrele(ire); 14540 return (NULL); 14541 } 14542 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl + 1; 14543 ipha->ipha_hdr_checksum = 0; 14544 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14545 ip_rput_process_forward(q, mp, ire, ipha, 14546 ill, ll_multicast, B_FALSE); 14547 ire_refrele(ire); 14548 return (NULL); 14549 } 14550 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 14551 ntohl(ire->ire_addr))); 14552 } 14553 14554 14555 /* Restore any hardware checksum flags */ 14556 DB_CKSUMFLAGS(mp) = hcksumflags; 14557 return (ire); 14558 } 14559 14560 /* ARGSUSED */ 14561 static boolean_t 14562 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 14563 int *ll_multicast, ipaddr_t *dstp) 14564 { 14565 ip_stack_t *ipst = ill->ill_ipst; 14566 14567 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastPkts); 14568 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastOctets, 14569 ntohs(ipha->ipha_length)); 14570 14571 /* 14572 * Forward packets only if we have joined the allmulti 14573 * group on this interface. 14574 */ 14575 if (ipst->ips_ip_g_mrouter && ill->ill_join_allmulti) { 14576 int retval; 14577 14578 /* 14579 * Clear the indication that this may have hardware 14580 * checksum as we are not using it. 14581 */ 14582 DB_CKSUMFLAGS(mp) = 0; 14583 retval = ip_mforward(ill, ipha, mp); 14584 /* ip_mforward updates mib variables if needed */ 14585 /* clear b_prev - used by ip_mroute_decap */ 14586 mp->b_prev = NULL; 14587 14588 switch (retval) { 14589 case 0: 14590 /* 14591 * pkt is okay and arrived on phyint. 14592 * 14593 * If we are running as a multicast router 14594 * we need to see all IGMP and/or PIM packets. 14595 */ 14596 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 14597 (ipha->ipha_protocol == IPPROTO_PIM)) { 14598 goto done; 14599 } 14600 break; 14601 case -1: 14602 /* pkt is mal-formed, toss it */ 14603 goto drop_pkt; 14604 case 1: 14605 /* pkt is okay and arrived on a tunnel */ 14606 /* 14607 * If we are running a multicast router 14608 * we need to see all igmp packets. 14609 */ 14610 if (ipha->ipha_protocol == IPPROTO_IGMP) { 14611 *dstp = INADDR_BROADCAST; 14612 *ll_multicast = 1; 14613 return (B_FALSE); 14614 } 14615 14616 goto drop_pkt; 14617 } 14618 } 14619 14620 ILM_WALKER_HOLD(ill); 14621 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 14622 /* 14623 * This might just be caused by the fact that 14624 * multiple IP Multicast addresses map to the same 14625 * link layer multicast - no need to increment counter! 14626 */ 14627 ILM_WALKER_RELE(ill); 14628 freemsg(mp); 14629 return (B_TRUE); 14630 } 14631 ILM_WALKER_RELE(ill); 14632 done: 14633 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 14634 /* 14635 * This assumes the we deliver to all streams for multicast 14636 * and broadcast packets. 14637 */ 14638 *dstp = INADDR_BROADCAST; 14639 *ll_multicast = 1; 14640 return (B_FALSE); 14641 drop_pkt: 14642 ip2dbg(("ip_rput: drop pkt\n")); 14643 freemsg(mp); 14644 return (B_TRUE); 14645 } 14646 14647 /* 14648 * This function is used to both return an indication of whether or not 14649 * the packet received is a non-unicast packet (by way of the DL_UNITDATA_IND) 14650 * and in doing so, determine whether or not it is broadcast vs multicast. 14651 * For it to be a broadcast packet, we must have the appropriate mblk_t 14652 * hanging off the ill_t. If this is either not present or doesn't match 14653 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 14654 * to be multicast. Thus NICs that have no broadcast address (or no 14655 * capability for one, such as point to point links) cannot return as 14656 * the packet being broadcast. The use of HPE_BROADCAST/HPE_MULTICAST as 14657 * the return values simplifies the current use of the return value of this 14658 * function, which is to pass through the multicast/broadcast characteristic 14659 * to consumers of the netinfo/pfhooks API. While this is not cast in stone, 14660 * changing the return value to some other symbol demands the appropriate 14661 * "translation" when hpe_flags is set prior to calling hook_run() for 14662 * packet events. 14663 */ 14664 int 14665 ip_get_dlpi_mbcast(ill_t *ill, mblk_t *mb) 14666 { 14667 dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr; 14668 mblk_t *bmp; 14669 14670 if (ind->dl_group_address) { 14671 if (ind->dl_dest_addr_offset > sizeof (*ind) && 14672 ind->dl_dest_addr_offset + ind->dl_dest_addr_length < 14673 MBLKL(mb) && 14674 (bmp = ill->ill_bcast_mp) != NULL) { 14675 dl_unitdata_req_t *dlur; 14676 uint8_t *bphys_addr; 14677 14678 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 14679 if (ill->ill_sap_length < 0) 14680 bphys_addr = (uchar_t *)dlur + 14681 dlur->dl_dest_addr_offset; 14682 else 14683 bphys_addr = (uchar_t *)dlur + 14684 dlur->dl_dest_addr_offset + 14685 ill->ill_sap_length; 14686 14687 if (bcmp(mb->b_rptr + ind->dl_dest_addr_offset, 14688 bphys_addr, ind->dl_dest_addr_length) == 0) { 14689 return (HPE_BROADCAST); 14690 } 14691 return (HPE_MULTICAST); 14692 } 14693 return (HPE_MULTICAST); 14694 } 14695 return (0); 14696 } 14697 14698 static boolean_t 14699 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 14700 int *ll_multicast, mblk_t **mpp) 14701 { 14702 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 14703 boolean_t must_copy = B_FALSE; 14704 struct iocblk *iocp; 14705 ipha_t *ipha; 14706 ip_stack_t *ipst = ill->ill_ipst; 14707 14708 #define rptr ((uchar_t *)ipha) 14709 14710 first_mp = *first_mpp; 14711 mp = *mpp; 14712 14713 ASSERT(first_mp == mp); 14714 14715 /* 14716 * if db_ref > 1 then copymsg and free original. Packet may be 14717 * changed and do not want other entity who has a reference to this 14718 * message to trip over the changes. This is a blind change because 14719 * trying to catch all places that might change packet is too 14720 * difficult (since it may be a module above this one) 14721 * 14722 * This corresponds to the non-fast path case. We walk down the full 14723 * chain in this case, and check the db_ref count of all the dblks, 14724 * and do a copymsg if required. It is possible that the db_ref counts 14725 * of the data blocks in the mblk chain can be different. 14726 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 14727 * count of 1, followed by a M_DATA block with a ref count of 2, if 14728 * 'snoop' is running. 14729 */ 14730 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 14731 if (mp1->b_datap->db_ref > 1) { 14732 must_copy = B_TRUE; 14733 break; 14734 } 14735 } 14736 14737 if (must_copy) { 14738 mp1 = copymsg(mp); 14739 if (mp1 == NULL) { 14740 for (mp1 = mp; mp1 != NULL; 14741 mp1 = mp1->b_cont) { 14742 mp1->b_next = NULL; 14743 mp1->b_prev = NULL; 14744 } 14745 freemsg(mp); 14746 if (ill != NULL) { 14747 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14748 } else { 14749 BUMP_MIB(&ipst->ips_ip_mib, 14750 ipIfStatsInDiscards); 14751 } 14752 return (B_TRUE); 14753 } 14754 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 14755 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 14756 /* Copy b_prev - used by ip_mroute_decap */ 14757 to_mp->b_prev = from_mp->b_prev; 14758 from_mp->b_prev = NULL; 14759 } 14760 *first_mpp = first_mp = mp1; 14761 freemsg(mp); 14762 mp = mp1; 14763 *mpp = mp1; 14764 } 14765 14766 ipha = (ipha_t *)mp->b_rptr; 14767 14768 /* 14769 * previous code has a case for M_DATA. 14770 * We want to check how that happens. 14771 */ 14772 ASSERT(first_mp->b_datap->db_type != M_DATA); 14773 switch (first_mp->b_datap->db_type) { 14774 case M_PROTO: 14775 case M_PCPROTO: 14776 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 14777 DL_UNITDATA_IND) { 14778 /* Go handle anything other than data elsewhere. */ 14779 ip_rput_dlpi(q, mp); 14780 return (B_TRUE); 14781 } 14782 14783 *ll_multicast = ip_get_dlpi_mbcast(ill, mp); 14784 /* Ditch the DLPI header. */ 14785 mp1 = mp->b_cont; 14786 ASSERT(first_mp == mp); 14787 *first_mpp = mp1; 14788 freeb(mp); 14789 *mpp = mp1; 14790 return (B_FALSE); 14791 case M_IOCACK: 14792 ip1dbg(("got iocack ")); 14793 iocp = (struct iocblk *)mp->b_rptr; 14794 switch (iocp->ioc_cmd) { 14795 case DL_IOC_HDR_INFO: 14796 ill = (ill_t *)q->q_ptr; 14797 ill_fastpath_ack(ill, mp); 14798 return (B_TRUE); 14799 case SIOCSTUNPARAM: 14800 case OSIOCSTUNPARAM: 14801 /* Go through qwriter_ip */ 14802 break; 14803 case SIOCGTUNPARAM: 14804 case OSIOCGTUNPARAM: 14805 ip_rput_other(NULL, q, mp, NULL); 14806 return (B_TRUE); 14807 default: 14808 putnext(q, mp); 14809 return (B_TRUE); 14810 } 14811 /* FALLTHRU */ 14812 case M_ERROR: 14813 case M_HANGUP: 14814 /* 14815 * Since this is on the ill stream we unconditionally 14816 * bump up the refcount 14817 */ 14818 ill_refhold(ill); 14819 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14820 return (B_TRUE); 14821 case M_CTL: 14822 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 14823 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 14824 IPHADA_M_CTL)) { 14825 /* 14826 * It's an IPsec accelerated packet. 14827 * Make sure that the ill from which we received the 14828 * packet has enabled IPsec hardware acceleration. 14829 */ 14830 if (!(ill->ill_capabilities & 14831 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 14832 /* IPsec kstats: bean counter */ 14833 freemsg(mp); 14834 return (B_TRUE); 14835 } 14836 14837 /* 14838 * Make mp point to the mblk following the M_CTL, 14839 * then process according to type of mp. 14840 * After this processing, first_mp will point to 14841 * the data-attributes and mp to the pkt following 14842 * the M_CTL. 14843 */ 14844 mp = first_mp->b_cont; 14845 if (mp == NULL) { 14846 freemsg(first_mp); 14847 return (B_TRUE); 14848 } 14849 /* 14850 * A Hardware Accelerated packet can only be M_DATA 14851 * ESP or AH packet. 14852 */ 14853 if (mp->b_datap->db_type != M_DATA) { 14854 /* non-M_DATA IPsec accelerated packet */ 14855 IPSECHW_DEBUG(IPSECHW_PKT, 14856 ("non-M_DATA IPsec accelerated pkt\n")); 14857 freemsg(first_mp); 14858 return (B_TRUE); 14859 } 14860 ipha = (ipha_t *)mp->b_rptr; 14861 if (ipha->ipha_protocol != IPPROTO_AH && 14862 ipha->ipha_protocol != IPPROTO_ESP) { 14863 IPSECHW_DEBUG(IPSECHW_PKT, 14864 ("non-M_DATA IPsec accelerated pkt\n")); 14865 freemsg(first_mp); 14866 return (B_TRUE); 14867 } 14868 *mpp = mp; 14869 return (B_FALSE); 14870 } 14871 putnext(q, mp); 14872 return (B_TRUE); 14873 case M_IOCNAK: 14874 ip1dbg(("got iocnak ")); 14875 iocp = (struct iocblk *)mp->b_rptr; 14876 switch (iocp->ioc_cmd) { 14877 case SIOCSTUNPARAM: 14878 case OSIOCSTUNPARAM: 14879 /* 14880 * Since this is on the ill stream we unconditionally 14881 * bump up the refcount 14882 */ 14883 ill_refhold(ill); 14884 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14885 return (B_TRUE); 14886 case DL_IOC_HDR_INFO: 14887 case SIOCGTUNPARAM: 14888 case OSIOCGTUNPARAM: 14889 ip_rput_other(NULL, q, mp, NULL); 14890 return (B_TRUE); 14891 default: 14892 break; 14893 } 14894 /* FALLTHRU */ 14895 default: 14896 putnext(q, mp); 14897 return (B_TRUE); 14898 } 14899 } 14900 14901 /* Read side put procedure. Packets coming from the wire arrive here. */ 14902 void 14903 ip_rput(queue_t *q, mblk_t *mp) 14904 { 14905 ill_t *ill; 14906 union DL_primitives *dl; 14907 14908 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 14909 14910 ill = (ill_t *)q->q_ptr; 14911 14912 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 14913 /* 14914 * If things are opening or closing, only accept high-priority 14915 * DLPI messages. (On open ill->ill_ipif has not yet been 14916 * created; on close, things hanging off the ill may have been 14917 * freed already.) 14918 */ 14919 dl = (union DL_primitives *)mp->b_rptr; 14920 if (DB_TYPE(mp) != M_PCPROTO || 14921 dl->dl_primitive == DL_UNITDATA_IND) { 14922 /* 14923 * SIOC[GS]TUNPARAM ioctls can come here. 14924 */ 14925 inet_freemsg(mp); 14926 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14927 "ip_rput_end: q %p (%S)", q, "uninit"); 14928 return; 14929 } 14930 } 14931 14932 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14933 "ip_rput_end: q %p (%S)", q, "end"); 14934 14935 ip_input(ill, NULL, mp, NULL); 14936 } 14937 14938 static mblk_t * 14939 ip_fix_dbref(ill_t *ill, mblk_t *mp) 14940 { 14941 mblk_t *mp1; 14942 boolean_t adjusted = B_FALSE; 14943 ip_stack_t *ipst = ill->ill_ipst; 14944 14945 IP_STAT(ipst, ip_db_ref); 14946 /* 14947 * The IP_RECVSLLA option depends on having the 14948 * link layer header. First check that: 14949 * a> the underlying device is of type ether, 14950 * since this option is currently supported only 14951 * over ethernet. 14952 * b> there is enough room to copy over the link 14953 * layer header. 14954 * 14955 * Once the checks are done, adjust rptr so that 14956 * the link layer header will be copied via 14957 * copymsg. Note that, IFT_ETHER may be returned 14958 * by some non-ethernet drivers but in this case 14959 * the second check will fail. 14960 */ 14961 if (ill->ill_type == IFT_ETHER && 14962 (mp->b_rptr - mp->b_datap->db_base) >= 14963 sizeof (struct ether_header)) { 14964 mp->b_rptr -= sizeof (struct ether_header); 14965 adjusted = B_TRUE; 14966 } 14967 mp1 = copymsg(mp); 14968 14969 if (mp1 == NULL) { 14970 mp->b_next = NULL; 14971 /* clear b_prev - used by ip_mroute_decap */ 14972 mp->b_prev = NULL; 14973 freemsg(mp); 14974 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14975 return (NULL); 14976 } 14977 14978 if (adjusted) { 14979 /* 14980 * Copy is done. Restore the pointer in 14981 * the _new_ mblk 14982 */ 14983 mp1->b_rptr += sizeof (struct ether_header); 14984 } 14985 14986 /* Copy b_prev - used by ip_mroute_decap */ 14987 mp1->b_prev = mp->b_prev; 14988 mp->b_prev = NULL; 14989 14990 /* preserve the hardware checksum flags and data, if present */ 14991 if (DB_CKSUMFLAGS(mp) != 0) { 14992 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 14993 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 14994 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 14995 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 14996 DB_CKSUM16(mp1) = DB_CKSUM16(mp); 14997 } 14998 14999 freemsg(mp); 15000 return (mp1); 15001 } 15002 15003 #define ADD_TO_CHAIN(head, tail, cnt, mp) { \ 15004 if (tail != NULL) \ 15005 tail->b_next = mp; \ 15006 else \ 15007 head = mp; \ 15008 tail = mp; \ 15009 cnt++; \ 15010 } 15011 15012 /* 15013 * Direct read side procedure capable of dealing with chains. GLDv3 based 15014 * drivers call this function directly with mblk chains while STREAMS 15015 * read side procedure ip_rput() calls this for single packet with ip_ring 15016 * set to NULL to process one packet at a time. 15017 * 15018 * The ill will always be valid if this function is called directly from 15019 * the driver. 15020 * 15021 * If ip_input() is called from GLDv3: 15022 * 15023 * - This must be a non-VLAN IP stream. 15024 * - 'mp' is either an untagged or a special priority-tagged packet. 15025 * - Any VLAN tag that was in the MAC header has been stripped. 15026 * 15027 * If the IP header in packet is not 32-bit aligned, every message in the 15028 * chain will be aligned before further operations. This is required on SPARC 15029 * platform. 15030 */ 15031 /* ARGSUSED */ 15032 void 15033 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, 15034 struct mac_header_info_s *mhip) 15035 { 15036 ipaddr_t dst = NULL; 15037 ipaddr_t prev_dst; 15038 ire_t *ire = NULL; 15039 ipha_t *ipha; 15040 uint_t pkt_len; 15041 ssize_t len; 15042 uint_t opt_len; 15043 int ll_multicast; 15044 int cgtp_flt_pkt; 15045 queue_t *q = ill->ill_rq; 15046 squeue_t *curr_sqp = NULL; 15047 mblk_t *head = NULL; 15048 mblk_t *tail = NULL; 15049 mblk_t *first_mp; 15050 int cnt = 0; 15051 ip_stack_t *ipst = ill->ill_ipst; 15052 mblk_t *mp; 15053 mblk_t *dmp; 15054 uint8_t tag; 15055 15056 ASSERT(mp_chain != NULL); 15057 ASSERT(ill != NULL); 15058 15059 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 15060 15061 tag = (ip_ring != NULL) ? SQTAG_IP_INPUT_RX_RING : SQTAG_IP_INPUT; 15062 15063 #define rptr ((uchar_t *)ipha) 15064 15065 while (mp_chain != NULL) { 15066 mp = mp_chain; 15067 mp_chain = mp_chain->b_next; 15068 mp->b_next = NULL; 15069 ll_multicast = 0; 15070 15071 /* 15072 * We do ire caching from one iteration to 15073 * another. In the event the packet chain contains 15074 * all packets from the same dst, this caching saves 15075 * an ire_cache_lookup for each of the succeeding 15076 * packets in a packet chain. 15077 */ 15078 prev_dst = dst; 15079 15080 /* 15081 * if db_ref > 1 then copymsg and free original. Packet 15082 * may be changed and we do not want the other entity 15083 * who has a reference to this message to trip over the 15084 * changes. This is a blind change because trying to 15085 * catch all places that might change the packet is too 15086 * difficult. 15087 * 15088 * This corresponds to the fast path case, where we have 15089 * a chain of M_DATA mblks. We check the db_ref count 15090 * of only the 1st data block in the mblk chain. There 15091 * doesn't seem to be a reason why a device driver would 15092 * send up data with varying db_ref counts in the mblk 15093 * chain. In any case the Fast path is a private 15094 * interface, and our drivers don't do such a thing. 15095 * Given the above assumption, there is no need to walk 15096 * down the entire mblk chain (which could have a 15097 * potential performance problem) 15098 * 15099 * The "(DB_REF(mp) > 1)" check was moved from ip_rput() 15100 * to here because of exclusive ip stacks and vnics. 15101 * Packets transmitted from exclusive stack over vnic 15102 * can have db_ref > 1 and when it gets looped back to 15103 * another vnic in a different zone, you have ip_input() 15104 * getting dblks with db_ref > 1. So if someone 15105 * complains of TCP performance under this scenario, 15106 * take a serious look here on the impact of copymsg(). 15107 */ 15108 15109 if (DB_REF(mp) > 1) { 15110 if ((mp = ip_fix_dbref(ill, mp)) == NULL) 15111 continue; 15112 } 15113 15114 /* 15115 * Check and align the IP header. 15116 */ 15117 first_mp = mp; 15118 if (DB_TYPE(mp) == M_DATA) { 15119 dmp = mp; 15120 } else if (DB_TYPE(mp) == M_PROTO && 15121 *(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) { 15122 dmp = mp->b_cont; 15123 } else { 15124 dmp = NULL; 15125 } 15126 if (dmp != NULL) { 15127 /* 15128 * IP header ptr not aligned? 15129 * OR IP header not complete in first mblk 15130 */ 15131 if (!OK_32PTR(dmp->b_rptr) || 15132 MBLKL(dmp) < IP_SIMPLE_HDR_LENGTH) { 15133 if (!ip_check_and_align_header(q, dmp, ipst)) 15134 continue; 15135 } 15136 } 15137 15138 /* 15139 * ip_input fast path 15140 */ 15141 15142 /* mblk type is not M_DATA */ 15143 if (DB_TYPE(mp) != M_DATA) { 15144 if (ip_rput_process_notdata(q, &first_mp, ill, 15145 &ll_multicast, &mp)) 15146 continue; 15147 15148 /* 15149 * The only way we can get here is if we had a 15150 * packet that was either a DL_UNITDATA_IND or 15151 * an M_CTL for an IPsec accelerated packet. 15152 * 15153 * In either case, the first_mp will point to 15154 * the leading M_PROTO or M_CTL. 15155 */ 15156 ASSERT(first_mp != NULL); 15157 } else if (mhip != NULL) { 15158 /* 15159 * ll_multicast is set here so that it is ready 15160 * for easy use with FW_HOOKS(). ip_get_dlpi_mbcast 15161 * manipulates ll_multicast in the same fashion when 15162 * called from ip_rput_process_notdata. 15163 */ 15164 switch (mhip->mhi_dsttype) { 15165 case MAC_ADDRTYPE_MULTICAST : 15166 ll_multicast = HPE_MULTICAST; 15167 break; 15168 case MAC_ADDRTYPE_BROADCAST : 15169 ll_multicast = HPE_BROADCAST; 15170 break; 15171 default : 15172 break; 15173 } 15174 } 15175 15176 /* Only M_DATA can come here and it is always aligned */ 15177 ASSERT(DB_TYPE(mp) == M_DATA); 15178 ASSERT(DB_REF(mp) == 1 && OK_32PTR(mp->b_rptr)); 15179 15180 ipha = (ipha_t *)mp->b_rptr; 15181 len = mp->b_wptr - rptr; 15182 pkt_len = ntohs(ipha->ipha_length); 15183 15184 /* 15185 * We must count all incoming packets, even if they end 15186 * up being dropped later on. 15187 */ 15188 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15189 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 15190 15191 /* multiple mblk or too short */ 15192 len -= pkt_len; 15193 if (len != 0) { 15194 /* 15195 * Make sure we have data length consistent 15196 * with the IP header. 15197 */ 15198 if (mp->b_cont == NULL) { 15199 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15200 BUMP_MIB(ill->ill_ip_mib, 15201 ipIfStatsInHdrErrors); 15202 ip2dbg(("ip_input: drop pkt\n")); 15203 freemsg(mp); 15204 continue; 15205 } 15206 mp->b_wptr = rptr + pkt_len; 15207 } else if ((len += msgdsize(mp->b_cont)) != 0) { 15208 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15209 BUMP_MIB(ill->ill_ip_mib, 15210 ipIfStatsInHdrErrors); 15211 ip2dbg(("ip_input: drop pkt\n")); 15212 freemsg(mp); 15213 continue; 15214 } 15215 (void) adjmsg(mp, -len); 15216 IP_STAT(ipst, ip_multimblk3); 15217 } 15218 } 15219 15220 /* Obtain the dst of the current packet */ 15221 dst = ipha->ipha_dst; 15222 15223 DTRACE_IP7(receive, mblk_t *, first_mp, conn_t *, NULL, 15224 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, 15225 ipha, ip6_t *, NULL, int, 0); 15226 15227 /* 15228 * The following test for loopback is faster than 15229 * IP_LOOPBACK_ADDR(), because it avoids any bitwise 15230 * operations. 15231 * Note that these addresses are always in network byte order 15232 */ 15233 if (((*(uchar_t *)&ipha->ipha_dst) == 127) || 15234 ((*(uchar_t *)&ipha->ipha_src) == 127)) { 15235 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInAddrErrors); 15236 freemsg(mp); 15237 continue; 15238 } 15239 15240 /* 15241 * The event for packets being received from a 'physical' 15242 * interface is placed after validation of the source and/or 15243 * destination address as being local so that packets can be 15244 * redirected to loopback addresses using ipnat. 15245 */ 15246 DTRACE_PROBE4(ip4__physical__in__start, 15247 ill_t *, ill, ill_t *, NULL, 15248 ipha_t *, ipha, mblk_t *, first_mp); 15249 15250 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15251 ipst->ips_ipv4firewall_physical_in, 15252 ill, NULL, ipha, first_mp, mp, ll_multicast, ipst); 15253 15254 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, first_mp); 15255 15256 if (first_mp == NULL) { 15257 continue; 15258 } 15259 dst = ipha->ipha_dst; 15260 /* 15261 * Attach any necessary label information to 15262 * this packet 15263 */ 15264 if (is_system_labeled() && 15265 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 15266 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 15267 freemsg(mp); 15268 continue; 15269 } 15270 15271 if (ipst->ips_ipobs_enabled) { 15272 zoneid_t dzone; 15273 15274 /* 15275 * On the inbound path the src zone will be unknown as 15276 * this packet has come from the wire. 15277 */ 15278 dzone = ip_get_zoneid_v4(dst, mp, ipst, ALL_ZONES); 15279 ipobs_hook(mp, IPOBS_HOOK_INBOUND, ALL_ZONES, dzone, 15280 ill, IPV4_VERSION, 0, ipst); 15281 } 15282 15283 /* 15284 * Reuse the cached ire only if the ipha_dst of the previous 15285 * packet is the same as the current packet AND it is not 15286 * INADDR_ANY. 15287 */ 15288 if (!(dst == prev_dst && dst != INADDR_ANY) && 15289 (ire != NULL)) { 15290 ire_refrele(ire); 15291 ire = NULL; 15292 } 15293 15294 opt_len = ipha->ipha_version_and_hdr_length - 15295 IP_SIMPLE_HDR_VERSION; 15296 15297 /* 15298 * Check to see if we can take the fastpath. 15299 * That is possible if the following conditions are met 15300 * o Tsol disabled 15301 * o CGTP disabled 15302 * o ipp_action_count is 0 15303 * o no options in the packet 15304 * o not a RSVP packet 15305 * o not a multicast packet 15306 * o ill not in IP_DHCPINIT_IF mode 15307 */ 15308 if (!is_system_labeled() && 15309 !ipst->ips_ip_cgtp_filter && ipp_action_count == 0 && 15310 opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP && 15311 !ll_multicast && !CLASSD(dst) && ill->ill_dhcpinit == 0) { 15312 if (ire == NULL) 15313 ire = ire_cache_lookup_simple(dst, ipst); 15314 /* 15315 * Unless forwarding is enabled, dont call 15316 * ip_fast_forward(). Incoming packet is for forwarding 15317 */ 15318 if ((ill->ill_flags & ILLF_ROUTER) && 15319 (ire == NULL || (ire->ire_type & IRE_CACHE))) { 15320 ire = ip_fast_forward(ire, dst, ill, mp); 15321 continue; 15322 } 15323 /* incoming packet is for local consumption */ 15324 if ((ire != NULL) && (ire->ire_type & IRE_LOCAL)) 15325 goto local; 15326 } 15327 15328 /* 15329 * Disable ire caching for anything more complex 15330 * than the simple fast path case we checked for above. 15331 */ 15332 if (ire != NULL) { 15333 ire_refrele(ire); 15334 ire = NULL; 15335 } 15336 15337 /* 15338 * Brutal hack for DHCPv4 unicast: RFC2131 allows a DHCP 15339 * server to unicast DHCP packets to a DHCP client using the 15340 * IP address it is offering to the client. This can be 15341 * disabled through the "broadcast bit", but not all DHCP 15342 * servers honor that bit. Therefore, to interoperate with as 15343 * many DHCP servers as possible, the DHCP client allows the 15344 * server to unicast, but we treat those packets as broadcast 15345 * here. Note that we don't rewrite the packet itself since 15346 * (a) that would mess up the checksums and (b) the DHCP 15347 * client conn is bound to INADDR_ANY so ip_fanout_udp() will 15348 * hand it the packet regardless. 15349 */ 15350 if (ill->ill_dhcpinit != 0 && 15351 IS_SIMPLE_IPH(ipha) && ipha->ipha_protocol == IPPROTO_UDP && 15352 pullupmsg(mp, sizeof (ipha_t) + sizeof (udpha_t)) == 1) { 15353 udpha_t *udpha; 15354 15355 /* 15356 * Reload ipha since pullupmsg() can change b_rptr. 15357 */ 15358 ipha = (ipha_t *)mp->b_rptr; 15359 udpha = (udpha_t *)&ipha[1]; 15360 15361 if (ntohs(udpha->uha_dst_port) == IPPORT_BOOTPC) { 15362 DTRACE_PROBE2(ip4__dhcpinit__pkt, ill_t *, ill, 15363 mblk_t *, mp); 15364 dst = INADDR_BROADCAST; 15365 } 15366 } 15367 15368 /* Full-blown slow path */ 15369 if (opt_len != 0) { 15370 if (len != 0) 15371 IP_STAT(ipst, ip_multimblk4); 15372 else 15373 IP_STAT(ipst, ip_ipoptions); 15374 if (!ip_rput_multimblk_ipoptions(q, ill, mp, &ipha, 15375 &dst, ipst)) 15376 continue; 15377 } 15378 15379 /* 15380 * Invoke the CGTP (multirouting) filtering module to process 15381 * the incoming packet. Packets identified as duplicates 15382 * must be discarded. Filtering is active only if the 15383 * the ip_cgtp_filter ndd variable is non-zero. 15384 */ 15385 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 15386 if (ipst->ips_ip_cgtp_filter && 15387 ipst->ips_ip_cgtp_filter_ops != NULL) { 15388 netstackid_t stackid; 15389 15390 stackid = ipst->ips_netstack->netstack_stackid; 15391 cgtp_flt_pkt = 15392 ipst->ips_ip_cgtp_filter_ops->cfo_filter(stackid, 15393 ill->ill_phyint->phyint_ifindex, mp); 15394 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 15395 freemsg(first_mp); 15396 continue; 15397 } 15398 } 15399 15400 /* 15401 * If rsvpd is running, let RSVP daemon handle its processing 15402 * and forwarding of RSVP multicast/unicast packets. 15403 * If rsvpd is not running but mrouted is running, RSVP 15404 * multicast packets are forwarded as multicast traffic 15405 * and RSVP unicast packets are forwarded by unicast router. 15406 * If neither rsvpd nor mrouted is running, RSVP multicast 15407 * packets are not forwarded, but the unicast packets are 15408 * forwarded like unicast traffic. 15409 */ 15410 if (ipha->ipha_protocol == IPPROTO_RSVP && 15411 ipst->ips_ipcl_proto_fanout[IPPROTO_RSVP].connf_head != 15412 NULL) { 15413 /* RSVP packet and rsvpd running. Treat as ours */ 15414 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 15415 /* 15416 * This assumes that we deliver to all streams for 15417 * multicast and broadcast packets. 15418 * We have to force ll_multicast to 1 to handle the 15419 * M_DATA messages passed in from ip_mroute_decap. 15420 */ 15421 dst = INADDR_BROADCAST; 15422 ll_multicast = 1; 15423 } else if (CLASSD(dst)) { 15424 /* packet is multicast */ 15425 mp->b_next = NULL; 15426 if (ip_rput_process_multicast(q, mp, ill, ipha, 15427 &ll_multicast, &dst)) 15428 continue; 15429 } 15430 15431 if (ire == NULL) { 15432 ire = ire_cache_lookup(dst, ALL_ZONES, 15433 MBLK_GETLABEL(mp), ipst); 15434 } 15435 15436 if (ire != NULL && ire->ire_stq != NULL && 15437 ire->ire_zoneid != GLOBAL_ZONEID && 15438 ire->ire_zoneid != ALL_ZONES) { 15439 /* 15440 * Should only use IREs that are visible from the 15441 * global zone for forwarding. 15442 */ 15443 ire_refrele(ire); 15444 ire = ire_cache_lookup(dst, GLOBAL_ZONEID, 15445 MBLK_GETLABEL(mp), ipst); 15446 } 15447 15448 if (ire == NULL) { 15449 /* 15450 * No IRE for this destination, so it can't be for us. 15451 * Unless we are forwarding, drop the packet. 15452 * We have to let source routed packets through 15453 * since we don't yet know if they are 'ping -l' 15454 * packets i.e. if they will go out over the 15455 * same interface as they came in on. 15456 */ 15457 ire = ip_rput_noire(q, mp, ll_multicast, dst); 15458 if (ire == NULL) 15459 continue; 15460 } 15461 15462 /* 15463 * Broadcast IRE may indicate either broadcast or 15464 * multicast packet 15465 */ 15466 if (ire->ire_type == IRE_BROADCAST) { 15467 /* 15468 * Skip broadcast checks if packet is UDP multicast; 15469 * we'd rather not enter ip_rput_process_broadcast() 15470 * unless the packet is broadcast for real, since 15471 * that routine is a no-op for multicast. 15472 */ 15473 if (ipha->ipha_protocol != IPPROTO_UDP || 15474 !CLASSD(ipha->ipha_dst)) { 15475 ire = ip_rput_process_broadcast(&q, mp, 15476 ire, ipha, ill, dst, cgtp_flt_pkt, 15477 ll_multicast); 15478 if (ire == NULL) 15479 continue; 15480 } 15481 } else if (ire->ire_stq != NULL) { 15482 /* fowarding? */ 15483 ip_rput_process_forward(q, mp, ire, ipha, ill, 15484 ll_multicast, B_FALSE); 15485 /* ip_rput_process_forward consumed the packet */ 15486 continue; 15487 } 15488 15489 local: 15490 /* 15491 * If the queue in the ire is different to the ingress queue 15492 * then we need to check to see if we can accept the packet. 15493 * Note that for multicast packets and broadcast packets sent 15494 * to a broadcast address which is shared between multiple 15495 * interfaces we should not do this since we just got a random 15496 * broadcast ire. 15497 */ 15498 if ((ire->ire_rfq != q) && (ire->ire_type != IRE_BROADCAST)) { 15499 if ((ire = ip_check_multihome(&ipha->ipha_dst, ire, 15500 ill)) == NULL) { 15501 /* Drop packet */ 15502 BUMP_MIB(ill->ill_ip_mib, 15503 ipIfStatsForwProhibits); 15504 freemsg(mp); 15505 continue; 15506 } 15507 if (ire->ire_rfq != NULL) 15508 q = ire->ire_rfq; 15509 } 15510 15511 switch (ipha->ipha_protocol) { 15512 case IPPROTO_TCP: 15513 ASSERT(first_mp == mp); 15514 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 15515 mp, 0, q, ip_ring)) != NULL) { 15516 if (curr_sqp == NULL) { 15517 curr_sqp = GET_SQUEUE(mp); 15518 ASSERT(cnt == 0); 15519 cnt++; 15520 head = tail = mp; 15521 } else if (curr_sqp == GET_SQUEUE(mp)) { 15522 ASSERT(tail != NULL); 15523 cnt++; 15524 tail->b_next = mp; 15525 tail = mp; 15526 } else { 15527 /* 15528 * A different squeue. Send the 15529 * chain for the previous squeue on 15530 * its way. This shouldn't happen 15531 * often unless interrupt binding 15532 * changes. 15533 */ 15534 IP_STAT(ipst, ip_input_multi_squeue); 15535 SQUEUE_ENTER(curr_sqp, head, 15536 tail, cnt, SQ_PROCESS, tag); 15537 curr_sqp = GET_SQUEUE(mp); 15538 head = mp; 15539 tail = mp; 15540 cnt = 1; 15541 } 15542 } 15543 continue; 15544 case IPPROTO_UDP: 15545 ASSERT(first_mp == mp); 15546 ip_udp_input(q, mp, ipha, ire, ill); 15547 continue; 15548 case IPPROTO_SCTP: 15549 ASSERT(first_mp == mp); 15550 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 15551 q, dst); 15552 /* ire has been released by ip_sctp_input */ 15553 ire = NULL; 15554 continue; 15555 default: 15556 ip_proto_input(q, first_mp, ipha, ire, ill, 0); 15557 continue; 15558 } 15559 } 15560 15561 if (ire != NULL) 15562 ire_refrele(ire); 15563 15564 if (head != NULL) 15565 SQUEUE_ENTER(curr_sqp, head, tail, cnt, SQ_PROCESS, tag); 15566 15567 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15568 "ip_input_end: q %p (%S)", q, "end"); 15569 #undef rptr 15570 } 15571 15572 /* 15573 * ip_accept_tcp() - This function is called by the squeue when it retrieves 15574 * a chain of packets in the poll mode. The packets have gone through the 15575 * data link processing but not IP processing. For performance and latency 15576 * reasons, the squeue wants to process the chain in line instead of feeding 15577 * it back via ip_input path. 15578 * 15579 * So this is a light weight function which checks to see if the packets 15580 * retrived are indeed TCP packets (TCP squeue always polls TCP soft ring 15581 * but we still do the paranoid check) meant for local machine and we don't 15582 * have labels etc enabled. Packets that meet the criterion are returned to 15583 * the squeue and processed inline while the rest go via ip_input path. 15584 */ 15585 /*ARGSUSED*/ 15586 mblk_t * 15587 ip_accept_tcp(ill_t *ill, ill_rx_ring_t *ip_ring, squeue_t *target_sqp, 15588 mblk_t *mp_chain, mblk_t **last, uint_t *cnt) 15589 { 15590 mblk_t *mp; 15591 ipaddr_t dst = NULL; 15592 ipaddr_t prev_dst; 15593 ire_t *ire = NULL; 15594 ipha_t *ipha; 15595 uint_t pkt_len; 15596 ssize_t len; 15597 uint_t opt_len; 15598 queue_t *q = ill->ill_rq; 15599 squeue_t *curr_sqp; 15600 mblk_t *ahead = NULL; /* Accepted head */ 15601 mblk_t *atail = NULL; /* Accepted tail */ 15602 uint_t acnt = 0; /* Accepted count */ 15603 mblk_t *utail = NULL; /* Unaccepted head */ 15604 mblk_t *uhead = NULL; /* Unaccepted tail */ 15605 uint_t ucnt = 0; /* Unaccepted cnt */ 15606 ip_stack_t *ipst = ill->ill_ipst; 15607 15608 *cnt = 0; 15609 15610 ASSERT(ill != NULL); 15611 ASSERT(ip_ring != NULL); 15612 15613 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_accept_tcp: q %p", q); 15614 15615 #define rptr ((uchar_t *)ipha) 15616 15617 while (mp_chain != NULL) { 15618 mp = mp_chain; 15619 mp_chain = mp_chain->b_next; 15620 mp->b_next = NULL; 15621 15622 /* 15623 * We do ire caching from one iteration to 15624 * another. In the event the packet chain contains 15625 * all packets from the same dst, this caching saves 15626 * an ire_cache_lookup for each of the succeeding 15627 * packets in a packet chain. 15628 */ 15629 prev_dst = dst; 15630 15631 ipha = (ipha_t *)mp->b_rptr; 15632 len = mp->b_wptr - rptr; 15633 15634 ASSERT(!MBLK_RX_FANOUT_SLOWPATH(mp, ipha)); 15635 15636 /* 15637 * If it is a non TCP packet, or doesn't have H/W cksum, 15638 * or doesn't have min len, reject. 15639 */ 15640 if ((ipha->ipha_protocol != IPPROTO_TCP) || (len < 15641 (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH))) { 15642 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15643 continue; 15644 } 15645 15646 pkt_len = ntohs(ipha->ipha_length); 15647 if (len != pkt_len) { 15648 if (len > pkt_len) { 15649 mp->b_wptr = rptr + pkt_len; 15650 } else { 15651 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15652 continue; 15653 } 15654 } 15655 15656 opt_len = ipha->ipha_version_and_hdr_length - 15657 IP_SIMPLE_HDR_VERSION; 15658 dst = ipha->ipha_dst; 15659 15660 /* IP version bad or there are IP options */ 15661 if (opt_len && (!ip_rput_multimblk_ipoptions(q, ill, 15662 mp, &ipha, &dst, ipst))) 15663 continue; 15664 15665 if (is_system_labeled() || (ill->ill_dhcpinit != 0) || 15666 (ipst->ips_ip_cgtp_filter && 15667 ipst->ips_ip_cgtp_filter_ops != NULL)) { 15668 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15669 continue; 15670 } 15671 15672 /* 15673 * Reuse the cached ire only if the ipha_dst of the previous 15674 * packet is the same as the current packet AND it is not 15675 * INADDR_ANY. 15676 */ 15677 if (!(dst == prev_dst && dst != INADDR_ANY) && 15678 (ire != NULL)) { 15679 ire_refrele(ire); 15680 ire = NULL; 15681 } 15682 15683 if (ire == NULL) 15684 ire = ire_cache_lookup_simple(dst, ipst); 15685 15686 /* 15687 * Unless forwarding is enabled, dont call 15688 * ip_fast_forward(). Incoming packet is for forwarding 15689 */ 15690 if ((ill->ill_flags & ILLF_ROUTER) && 15691 (ire == NULL || (ire->ire_type & IRE_CACHE))) { 15692 15693 DTRACE_PROBE4(ip4__physical__in__start, 15694 ill_t *, ill, ill_t *, NULL, 15695 ipha_t *, ipha, mblk_t *, mp); 15696 15697 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15698 ipst->ips_ipv4firewall_physical_in, 15699 ill, NULL, ipha, mp, mp, 0, ipst); 15700 15701 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, mp); 15702 15703 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15704 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, 15705 pkt_len); 15706 15707 ire = ip_fast_forward(ire, dst, ill, mp); 15708 continue; 15709 } 15710 15711 /* incoming packet is for local consumption */ 15712 if ((ire != NULL) && (ire->ire_type & IRE_LOCAL)) 15713 goto local_accept; 15714 15715 /* 15716 * Disable ire caching for anything more complex 15717 * than the simple fast path case we checked for above. 15718 */ 15719 if (ire != NULL) { 15720 ire_refrele(ire); 15721 ire = NULL; 15722 } 15723 15724 ire = ire_cache_lookup(dst, ALL_ZONES, MBLK_GETLABEL(mp), 15725 ipst); 15726 if (ire == NULL || ire->ire_type == IRE_BROADCAST || 15727 ire->ire_stq != NULL) { 15728 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15729 if (ire != NULL) { 15730 ire_refrele(ire); 15731 ire = NULL; 15732 } 15733 continue; 15734 } 15735 15736 local_accept: 15737 15738 if (ire->ire_rfq != q) { 15739 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15740 if (ire != NULL) { 15741 ire_refrele(ire); 15742 ire = NULL; 15743 } 15744 continue; 15745 } 15746 15747 /* 15748 * The event for packets being received from a 'physical' 15749 * interface is placed after validation of the source and/or 15750 * destination address as being local so that packets can be 15751 * redirected to loopback addresses using ipnat. 15752 */ 15753 DTRACE_PROBE4(ip4__physical__in__start, 15754 ill_t *, ill, ill_t *, NULL, 15755 ipha_t *, ipha, mblk_t *, mp); 15756 15757 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15758 ipst->ips_ipv4firewall_physical_in, 15759 ill, NULL, ipha, mp, mp, 0, ipst); 15760 15761 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, mp); 15762 15763 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15764 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 15765 15766 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, mp, 15767 0, q, ip_ring)) != NULL) { 15768 if ((curr_sqp = GET_SQUEUE(mp)) == target_sqp) { 15769 ADD_TO_CHAIN(ahead, atail, acnt, mp); 15770 } else { 15771 SQUEUE_ENTER(curr_sqp, mp, mp, 1, 15772 SQ_FILL, SQTAG_IP_INPUT); 15773 } 15774 } 15775 } 15776 15777 if (ire != NULL) 15778 ire_refrele(ire); 15779 15780 if (uhead != NULL) 15781 ip_input(ill, ip_ring, uhead, NULL); 15782 15783 if (ahead != NULL) { 15784 *last = atail; 15785 *cnt = acnt; 15786 return (ahead); 15787 } 15788 15789 return (NULL); 15790 #undef rptr 15791 } 15792 15793 static void 15794 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 15795 t_uscalar_t err) 15796 { 15797 if (dl_err == DL_SYSERR) { 15798 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15799 "%s: %s failed: DL_SYSERR (errno %u)\n", 15800 ill->ill_name, dl_primstr(prim), err); 15801 return; 15802 } 15803 15804 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15805 "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim), 15806 dl_errstr(dl_err)); 15807 } 15808 15809 /* 15810 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 15811 * than DL_UNITDATA_IND messages. If we need to process this message 15812 * exclusively, we call qwriter_ip, in which case we also need to call 15813 * ill_refhold before that, since qwriter_ip does an ill_refrele. 15814 */ 15815 void 15816 ip_rput_dlpi(queue_t *q, mblk_t *mp) 15817 { 15818 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15819 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15820 ill_t *ill = q->q_ptr; 15821 t_uscalar_t prim = dloa->dl_primitive; 15822 t_uscalar_t reqprim = DL_PRIM_INVAL; 15823 15824 ip1dbg(("ip_rput_dlpi")); 15825 15826 /* 15827 * If we received an ACK but didn't send a request for it, then it 15828 * can't be part of any pending operation; discard up-front. 15829 */ 15830 switch (prim) { 15831 case DL_ERROR_ACK: 15832 reqprim = dlea->dl_error_primitive; 15833 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s " 15834 "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim), 15835 reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno, 15836 dlea->dl_unix_errno)); 15837 break; 15838 case DL_OK_ACK: 15839 reqprim = dloa->dl_correct_primitive; 15840 break; 15841 case DL_INFO_ACK: 15842 reqprim = DL_INFO_REQ; 15843 break; 15844 case DL_BIND_ACK: 15845 reqprim = DL_BIND_REQ; 15846 break; 15847 case DL_PHYS_ADDR_ACK: 15848 reqprim = DL_PHYS_ADDR_REQ; 15849 break; 15850 case DL_NOTIFY_ACK: 15851 reqprim = DL_NOTIFY_REQ; 15852 break; 15853 case DL_CONTROL_ACK: 15854 reqprim = DL_CONTROL_REQ; 15855 break; 15856 case DL_CAPABILITY_ACK: 15857 reqprim = DL_CAPABILITY_REQ; 15858 break; 15859 } 15860 15861 if (prim != DL_NOTIFY_IND) { 15862 if (reqprim == DL_PRIM_INVAL || 15863 !ill_dlpi_pending(ill, reqprim)) { 15864 /* Not a DLPI message we support or expected */ 15865 freemsg(mp); 15866 return; 15867 } 15868 ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim), 15869 dl_primstr(reqprim))); 15870 } 15871 15872 switch (reqprim) { 15873 case DL_UNBIND_REQ: 15874 /* 15875 * NOTE: we mark the unbind as complete even if we got a 15876 * DL_ERROR_ACK, since there's not much else we can do. 15877 */ 15878 mutex_enter(&ill->ill_lock); 15879 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15880 cv_signal(&ill->ill_cv); 15881 mutex_exit(&ill->ill_lock); 15882 break; 15883 15884 case DL_ENABMULTI_REQ: 15885 if (prim == DL_OK_ACK) { 15886 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15887 ill->ill_dlpi_multicast_state = IDS_OK; 15888 } 15889 break; 15890 } 15891 15892 /* 15893 * The message is one we're waiting for (or DL_NOTIFY_IND), but we 15894 * need to become writer to continue to process it. Because an 15895 * exclusive operation doesn't complete until replies to all queued 15896 * DLPI messages have been received, we know we're in the middle of an 15897 * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND). 15898 * 15899 * As required by qwriter_ip(), we refhold the ill; it will refrele. 15900 * Since this is on the ill stream we unconditionally bump up the 15901 * refcount without doing ILL_CAN_LOOKUP(). 15902 */ 15903 ill_refhold(ill); 15904 if (prim == DL_NOTIFY_IND) 15905 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 15906 else 15907 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 15908 } 15909 15910 /* 15911 * Handling of DLPI messages that require exclusive access to the ipsq. 15912 * 15913 * Need to do ill_pending_mp_release on ioctl completion, which could 15914 * happen here. (along with mi_copy_done) 15915 */ 15916 /* ARGSUSED */ 15917 static void 15918 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15919 { 15920 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15921 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15922 int err = 0; 15923 ill_t *ill; 15924 ipif_t *ipif = NULL; 15925 mblk_t *mp1 = NULL; 15926 conn_t *connp = NULL; 15927 t_uscalar_t paddrreq; 15928 mblk_t *mp_hw; 15929 boolean_t success; 15930 boolean_t ioctl_aborted = B_FALSE; 15931 boolean_t log = B_TRUE; 15932 ip_stack_t *ipst; 15933 15934 ip1dbg(("ip_rput_dlpi_writer ..")); 15935 ill = (ill_t *)q->q_ptr; 15936 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 15937 15938 ASSERT(IAM_WRITER_ILL(ill)); 15939 15940 ipst = ill->ill_ipst; 15941 15942 /* 15943 * ipsq_pending_mp and ipsq_pending_ipif track each other. i.e. 15944 * both are null or non-null. However we can assert that only 15945 * after grabbing the ipsq_lock. So we don't make any assertion 15946 * here and in other places in the code. 15947 */ 15948 ipif = ipsq->ipsq_pending_ipif; 15949 /* 15950 * The current ioctl could have been aborted by the user and a new 15951 * ioctl to bring up another ill could have started. We could still 15952 * get a response from the driver later. 15953 */ 15954 if (ipif != NULL && ipif->ipif_ill != ill) 15955 ioctl_aborted = B_TRUE; 15956 15957 switch (dloa->dl_primitive) { 15958 case DL_ERROR_ACK: 15959 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 15960 dl_primstr(dlea->dl_error_primitive))); 15961 15962 switch (dlea->dl_error_primitive) { 15963 case DL_DISABMULTI_REQ: 15964 if (!ill->ill_isv6) 15965 ipsq_current_finish(ipsq); 15966 ill_dlpi_done(ill, dlea->dl_error_primitive); 15967 break; 15968 case DL_PROMISCON_REQ: 15969 case DL_PROMISCOFF_REQ: 15970 case DL_UNBIND_REQ: 15971 case DL_ATTACH_REQ: 15972 case DL_INFO_REQ: 15973 ill_dlpi_done(ill, dlea->dl_error_primitive); 15974 break; 15975 case DL_NOTIFY_REQ: 15976 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15977 log = B_FALSE; 15978 break; 15979 case DL_PHYS_ADDR_REQ: 15980 /* 15981 * For IPv6 only, there are two additional 15982 * phys_addr_req's sent to the driver to get the 15983 * IPv6 token and lla. This allows IP to acquire 15984 * the hardware address format for a given interface 15985 * without having built in knowledge of the hardware 15986 * address. ill_phys_addr_pend keeps track of the last 15987 * DL_PAR sent so we know which response we are 15988 * dealing with. ill_dlpi_done will update 15989 * ill_phys_addr_pend when it sends the next req. 15990 * We don't complete the IOCTL until all three DL_PARs 15991 * have been attempted, so set *_len to 0 and break. 15992 */ 15993 paddrreq = ill->ill_phys_addr_pend; 15994 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15995 if (paddrreq == DL_IPV6_TOKEN) { 15996 ill->ill_token_length = 0; 15997 log = B_FALSE; 15998 break; 15999 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 16000 ill->ill_nd_lla_len = 0; 16001 log = B_FALSE; 16002 break; 16003 } 16004 /* 16005 * Something went wrong with the DL_PHYS_ADDR_REQ. 16006 * We presumably have an IOCTL hanging out waiting 16007 * for completion. Find it and complete the IOCTL 16008 * with the error noted. 16009 * However, ill_dl_phys was called on an ill queue 16010 * (from SIOCSLIFNAME), thus conn_pending_ill is not 16011 * set. But the ioctl is known to be pending on ill_wq. 16012 */ 16013 if (!ill->ill_ifname_pending) 16014 break; 16015 ill->ill_ifname_pending = 0; 16016 if (!ioctl_aborted) 16017 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16018 if (mp1 != NULL) { 16019 /* 16020 * This operation (SIOCSLIFNAME) must have 16021 * happened on the ill. Assert there is no conn 16022 */ 16023 ASSERT(connp == NULL); 16024 q = ill->ill_wq; 16025 } 16026 break; 16027 case DL_BIND_REQ: 16028 ill_dlpi_done(ill, DL_BIND_REQ); 16029 if (ill->ill_ifname_pending) 16030 break; 16031 /* 16032 * Something went wrong with the bind. We presumably 16033 * have an IOCTL hanging out waiting for completion. 16034 * Find it, take down the interface that was coming 16035 * up, and complete the IOCTL with the error noted. 16036 */ 16037 if (!ioctl_aborted) 16038 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16039 if (mp1 != NULL) { 16040 /* 16041 * This operation (SIOCSLIFFLAGS) must have 16042 * happened from a conn. 16043 */ 16044 ASSERT(connp != NULL); 16045 q = CONNP_TO_WQ(connp); 16046 if (ill->ill_move_in_progress) { 16047 ILL_CLEAR_MOVE(ill); 16048 } 16049 (void) ipif_down(ipif, NULL, NULL); 16050 /* error is set below the switch */ 16051 } 16052 break; 16053 case DL_ENABMULTI_REQ: 16054 if (!ill->ill_isv6) 16055 ipsq_current_finish(ipsq); 16056 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 16057 16058 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 16059 ill->ill_dlpi_multicast_state = IDS_FAILED; 16060 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 16061 ipif_t *ipif; 16062 16063 printf("ip: joining multicasts failed (%d)" 16064 " on %s - will use link layer " 16065 "broadcasts for multicast\n", 16066 dlea->dl_errno, ill->ill_name); 16067 16068 /* 16069 * Set up the multicast mapping alone. 16070 * writer, so ok to access ill->ill_ipif 16071 * without any lock. 16072 */ 16073 ipif = ill->ill_ipif; 16074 mutex_enter(&ill->ill_phyint->phyint_lock); 16075 ill->ill_phyint->phyint_flags |= 16076 PHYI_MULTI_BCAST; 16077 mutex_exit(&ill->ill_phyint->phyint_lock); 16078 16079 if (!ill->ill_isv6) { 16080 (void) ipif_arp_setup_multicast(ipif, 16081 NULL); 16082 } else { 16083 (void) ipif_ndp_setup_multicast(ipif, 16084 NULL); 16085 } 16086 } 16087 freemsg(mp); /* Don't want to pass this up */ 16088 return; 16089 case DL_CONTROL_REQ: 16090 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 16091 "DL_CONTROL_REQ\n")); 16092 ill_dlpi_done(ill, dlea->dl_error_primitive); 16093 freemsg(mp); 16094 return; 16095 case DL_CAPABILITY_REQ: 16096 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 16097 "DL_CAPABILITY REQ\n")); 16098 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 16099 ill->ill_dlpi_capab_state = IDCS_FAILED; 16100 ill_capability_done(ill); 16101 freemsg(mp); 16102 return; 16103 } 16104 /* 16105 * Note the error for IOCTL completion (mp1 is set when 16106 * ready to complete ioctl). If ill_ifname_pending_err is 16107 * set, an error occured during plumbing (ill_ifname_pending), 16108 * so we want to report that error. 16109 * 16110 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 16111 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 16112 * expected to get errack'd if the driver doesn't support 16113 * these flags (e.g. ethernet). log will be set to B_FALSE 16114 * if these error conditions are encountered. 16115 */ 16116 if (mp1 != NULL) { 16117 if (ill->ill_ifname_pending_err != 0) { 16118 err = ill->ill_ifname_pending_err; 16119 ill->ill_ifname_pending_err = 0; 16120 } else { 16121 err = dlea->dl_unix_errno ? 16122 dlea->dl_unix_errno : ENXIO; 16123 } 16124 /* 16125 * If we're plumbing an interface and an error hasn't already 16126 * been saved, set ill_ifname_pending_err to the error passed 16127 * up. Ignore the error if log is B_FALSE (see comment above). 16128 */ 16129 } else if (log && ill->ill_ifname_pending && 16130 ill->ill_ifname_pending_err == 0) { 16131 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 16132 dlea->dl_unix_errno : ENXIO; 16133 } 16134 16135 if (log) 16136 ip_dlpi_error(ill, dlea->dl_error_primitive, 16137 dlea->dl_errno, dlea->dl_unix_errno); 16138 break; 16139 case DL_CAPABILITY_ACK: 16140 ill_capability_ack(ill, mp); 16141 /* 16142 * The message has been handed off to ill_capability_ack 16143 * and must not be freed below 16144 */ 16145 mp = NULL; 16146 break; 16147 16148 case DL_CONTROL_ACK: 16149 /* We treat all of these as "fire and forget" */ 16150 ill_dlpi_done(ill, DL_CONTROL_REQ); 16151 break; 16152 case DL_INFO_ACK: 16153 /* Call a routine to handle this one. */ 16154 ill_dlpi_done(ill, DL_INFO_REQ); 16155 ip_ll_subnet_defaults(ill, mp); 16156 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 16157 return; 16158 case DL_BIND_ACK: 16159 /* 16160 * We should have an IOCTL waiting on this unless 16161 * sent by ill_dl_phys, in which case just return 16162 */ 16163 ill_dlpi_done(ill, DL_BIND_REQ); 16164 if (ill->ill_ifname_pending) 16165 break; 16166 16167 if (!ioctl_aborted) 16168 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16169 if (mp1 == NULL) 16170 break; 16171 /* 16172 * Because mp1 was added by ill_dl_up(), and it always 16173 * passes a valid connp, connp must be valid here. 16174 */ 16175 ASSERT(connp != NULL); 16176 q = CONNP_TO_WQ(connp); 16177 16178 /* 16179 * We are exclusive. So nothing can change even after 16180 * we get the pending mp. If need be we can put it back 16181 * and restart, as in calling ipif_arp_up() below. 16182 */ 16183 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 16184 16185 mutex_enter(&ill->ill_lock); 16186 ill->ill_dl_up = 1; 16187 ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0); 16188 mutex_exit(&ill->ill_lock); 16189 16190 /* 16191 * Now bring up the resolver; when that is complete, we'll 16192 * create IREs. Note that we intentionally mirror what 16193 * ipif_up() would have done, because we got here by way of 16194 * ill_dl_up(), which stopped ipif_up()'s processing. 16195 */ 16196 if (ill->ill_isv6) { 16197 /* 16198 * v6 interfaces. 16199 * Unlike ARP which has to do another bind 16200 * and attach, once we get here we are 16201 * done with NDP. Except in the case of 16202 * ILLF_XRESOLV, in which case we send an 16203 * AR_INTERFACE_UP to the external resolver. 16204 * If all goes well, the ioctl will complete 16205 * in ip_rput(). If there's an error, we 16206 * complete it here. 16207 */ 16208 if ((err = ipif_ndp_up(ipif)) == 0) { 16209 if (ill->ill_flags & ILLF_XRESOLV) { 16210 mutex_enter(&connp->conn_lock); 16211 mutex_enter(&ill->ill_lock); 16212 success = ipsq_pending_mp_add( 16213 connp, ipif, q, mp1, 0); 16214 mutex_exit(&ill->ill_lock); 16215 mutex_exit(&connp->conn_lock); 16216 if (success) { 16217 err = ipif_resolver_up(ipif, 16218 Res_act_initial); 16219 if (err == EINPROGRESS) { 16220 freemsg(mp); 16221 return; 16222 } 16223 ASSERT(err != 0); 16224 mp1 = ipsq_pending_mp_get(ipsq, 16225 &connp); 16226 ASSERT(mp1 != NULL); 16227 } else { 16228 /* conn has started closing */ 16229 err = EINTR; 16230 } 16231 } else { /* Non XRESOLV interface */ 16232 (void) ipif_resolver_up(ipif, 16233 Res_act_initial); 16234 err = ipif_up_done_v6(ipif); 16235 } 16236 } 16237 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 16238 /* 16239 * ARP and other v4 external resolvers. 16240 * Leave the pending mblk intact so that 16241 * the ioctl completes in ip_rput(). 16242 */ 16243 mutex_enter(&connp->conn_lock); 16244 mutex_enter(&ill->ill_lock); 16245 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 16246 mutex_exit(&ill->ill_lock); 16247 mutex_exit(&connp->conn_lock); 16248 if (success) { 16249 err = ipif_resolver_up(ipif, Res_act_initial); 16250 if (err == EINPROGRESS) { 16251 freemsg(mp); 16252 return; 16253 } 16254 ASSERT(err != 0); 16255 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16256 } else { 16257 /* The conn has started closing */ 16258 err = EINTR; 16259 } 16260 } else { 16261 /* 16262 * This one is complete. Reply to pending ioctl. 16263 */ 16264 (void) ipif_resolver_up(ipif, Res_act_initial); 16265 err = ipif_up_done(ipif); 16266 } 16267 16268 if ((err == 0) && (ill->ill_up_ipifs)) { 16269 err = ill_up_ipifs(ill, q, mp1); 16270 if (err == EINPROGRESS) { 16271 freemsg(mp); 16272 return; 16273 } 16274 } 16275 16276 if (ill->ill_up_ipifs) { 16277 ill_group_cleanup(ill); 16278 } 16279 16280 break; 16281 case DL_NOTIFY_IND: { 16282 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 16283 ire_t *ire; 16284 boolean_t need_ire_walk_v4 = B_FALSE; 16285 boolean_t need_ire_walk_v6 = B_FALSE; 16286 16287 switch (notify->dl_notification) { 16288 case DL_NOTE_PHYS_ADDR: 16289 err = ill_set_phys_addr(ill, mp); 16290 break; 16291 16292 case DL_NOTE_FASTPATH_FLUSH: 16293 ill_fastpath_flush(ill); 16294 break; 16295 16296 case DL_NOTE_SDU_SIZE: 16297 /* 16298 * Change the MTU size of the interface, of all 16299 * attached ipif's, and of all relevant ire's. The 16300 * new value's a uint32_t at notify->dl_data. 16301 * Mtu change Vs. new ire creation - protocol below. 16302 * 16303 * a Mark the ipif as IPIF_CHANGING. 16304 * b Set the new mtu in the ipif. 16305 * c Change the ire_max_frag on all affected ires 16306 * d Unmark the IPIF_CHANGING 16307 * 16308 * To see how the protocol works, assume an interface 16309 * route is also being added simultaneously by 16310 * ip_rt_add and let 'ipif' be the ipif referenced by 16311 * the ire. If the ire is created before step a, 16312 * it will be cleaned up by step c. If the ire is 16313 * created after step d, it will see the new value of 16314 * ipif_mtu. Any attempt to create the ire between 16315 * steps a to d will fail because of the IPIF_CHANGING 16316 * flag. Note that ire_create() is passed a pointer to 16317 * the ipif_mtu, and not the value. During ire_add 16318 * under the bucket lock, the ire_max_frag of the 16319 * new ire being created is set from the ipif/ire from 16320 * which it is being derived. 16321 */ 16322 mutex_enter(&ill->ill_lock); 16323 ill->ill_max_frag = (uint_t)notify->dl_data; 16324 16325 /* 16326 * If an SIOCSLIFLNKINFO has changed the ill_max_mtu 16327 * leave it alone 16328 */ 16329 if (ill->ill_mtu_userspecified) { 16330 mutex_exit(&ill->ill_lock); 16331 break; 16332 } 16333 ill->ill_max_mtu = ill->ill_max_frag; 16334 if (ill->ill_isv6) { 16335 if (ill->ill_max_mtu < IPV6_MIN_MTU) 16336 ill->ill_max_mtu = IPV6_MIN_MTU; 16337 } else { 16338 if (ill->ill_max_mtu < IP_MIN_MTU) 16339 ill->ill_max_mtu = IP_MIN_MTU; 16340 } 16341 for (ipif = ill->ill_ipif; ipif != NULL; 16342 ipif = ipif->ipif_next) { 16343 /* 16344 * Don't override the mtu if the user 16345 * has explicitly set it. 16346 */ 16347 if (ipif->ipif_flags & IPIF_FIXEDMTU) 16348 continue; 16349 ipif->ipif_mtu = (uint_t)notify->dl_data; 16350 if (ipif->ipif_isv6) 16351 ire = ipif_to_ire_v6(ipif); 16352 else 16353 ire = ipif_to_ire(ipif); 16354 if (ire != NULL) { 16355 ire->ire_max_frag = ipif->ipif_mtu; 16356 ire_refrele(ire); 16357 } 16358 if (ipif->ipif_flags & IPIF_UP) { 16359 if (ill->ill_isv6) 16360 need_ire_walk_v6 = B_TRUE; 16361 else 16362 need_ire_walk_v4 = B_TRUE; 16363 } 16364 } 16365 mutex_exit(&ill->ill_lock); 16366 if (need_ire_walk_v4) 16367 ire_walk_v4(ill_mtu_change, (char *)ill, 16368 ALL_ZONES, ipst); 16369 if (need_ire_walk_v6) 16370 ire_walk_v6(ill_mtu_change, (char *)ill, 16371 ALL_ZONES, ipst); 16372 break; 16373 case DL_NOTE_LINK_UP: 16374 case DL_NOTE_LINK_DOWN: { 16375 /* 16376 * We are writer. ill / phyint / ipsq assocs stable. 16377 * The RUNNING flag reflects the state of the link. 16378 */ 16379 phyint_t *phyint = ill->ill_phyint; 16380 uint64_t new_phyint_flags; 16381 boolean_t changed = B_FALSE; 16382 boolean_t went_up; 16383 16384 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 16385 mutex_enter(&phyint->phyint_lock); 16386 new_phyint_flags = went_up ? 16387 phyint->phyint_flags | PHYI_RUNNING : 16388 phyint->phyint_flags & ~PHYI_RUNNING; 16389 if (new_phyint_flags != phyint->phyint_flags) { 16390 phyint->phyint_flags = new_phyint_flags; 16391 changed = B_TRUE; 16392 } 16393 mutex_exit(&phyint->phyint_lock); 16394 /* 16395 * ill_restart_dad handles the DAD restart and routing 16396 * socket notification logic. 16397 */ 16398 if (changed) { 16399 ill_restart_dad(phyint->phyint_illv4, went_up); 16400 ill_restart_dad(phyint->phyint_illv6, went_up); 16401 } 16402 break; 16403 } 16404 case DL_NOTE_PROMISC_ON_PHYS: 16405 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16406 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 16407 mutex_enter(&ill->ill_lock); 16408 ill->ill_promisc_on_phys = B_TRUE; 16409 mutex_exit(&ill->ill_lock); 16410 break; 16411 case DL_NOTE_PROMISC_OFF_PHYS: 16412 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16413 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 16414 mutex_enter(&ill->ill_lock); 16415 ill->ill_promisc_on_phys = B_FALSE; 16416 mutex_exit(&ill->ill_lock); 16417 break; 16418 case DL_NOTE_CAPAB_RENEG: 16419 /* 16420 * Something changed on the driver side. 16421 * It wants us to renegotiate the capabilities 16422 * on this ill. One possible cause is the aggregation 16423 * interface under us where a port got added or 16424 * went away. 16425 * 16426 * If the capability negotiation is already done 16427 * or is in progress, reset the capabilities and 16428 * mark the ill's ill_capab_reneg to be B_TRUE, 16429 * so that when the ack comes back, we can start 16430 * the renegotiation process. 16431 * 16432 * Note that if ill_capab_reneg is already B_TRUE 16433 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case), 16434 * the capability resetting request has been sent 16435 * and the renegotiation has not been started yet; 16436 * nothing needs to be done in this case. 16437 */ 16438 ipsq_current_start(ipsq, ill->ill_ipif, 0); 16439 ill_capability_reset(ill, B_TRUE); 16440 ipsq_current_finish(ipsq); 16441 break; 16442 default: 16443 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 16444 "type 0x%x for DL_NOTIFY_IND\n", 16445 notify->dl_notification)); 16446 break; 16447 } 16448 16449 /* 16450 * As this is an asynchronous operation, we 16451 * should not call ill_dlpi_done 16452 */ 16453 break; 16454 } 16455 case DL_NOTIFY_ACK: { 16456 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 16457 16458 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 16459 ill->ill_note_link = 1; 16460 ill_dlpi_done(ill, DL_NOTIFY_REQ); 16461 break; 16462 } 16463 case DL_PHYS_ADDR_ACK: { 16464 /* 16465 * As part of plumbing the interface via SIOCSLIFNAME, 16466 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 16467 * whose answers we receive here. As each answer is received, 16468 * we call ill_dlpi_done() to dispatch the next request as 16469 * we're processing the current one. Once all answers have 16470 * been received, we use ipsq_pending_mp_get() to dequeue the 16471 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 16472 * is invoked from an ill queue, conn_oper_pending_ill is not 16473 * available, but we know the ioctl is pending on ill_wq.) 16474 */ 16475 uint_t paddrlen, paddroff; 16476 16477 paddrreq = ill->ill_phys_addr_pend; 16478 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 16479 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 16480 16481 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 16482 if (paddrreq == DL_IPV6_TOKEN) { 16483 /* 16484 * bcopy to low-order bits of ill_token 16485 * 16486 * XXX Temporary hack - currently, all known tokens 16487 * are 64 bits, so I'll cheat for the moment. 16488 */ 16489 bcopy(mp->b_rptr + paddroff, 16490 &ill->ill_token.s6_addr32[2], paddrlen); 16491 ill->ill_token_length = paddrlen; 16492 break; 16493 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 16494 ASSERT(ill->ill_nd_lla_mp == NULL); 16495 ill_set_ndmp(ill, mp, paddroff, paddrlen); 16496 mp = NULL; 16497 break; 16498 } 16499 16500 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 16501 ASSERT(ill->ill_phys_addr_mp == NULL); 16502 if (!ill->ill_ifname_pending) 16503 break; 16504 ill->ill_ifname_pending = 0; 16505 if (!ioctl_aborted) 16506 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16507 if (mp1 != NULL) { 16508 ASSERT(connp == NULL); 16509 q = ill->ill_wq; 16510 } 16511 /* 16512 * If any error acks received during the plumbing sequence, 16513 * ill_ifname_pending_err will be set. Break out and send up 16514 * the error to the pending ioctl. 16515 */ 16516 if (ill->ill_ifname_pending_err != 0) { 16517 err = ill->ill_ifname_pending_err; 16518 ill->ill_ifname_pending_err = 0; 16519 break; 16520 } 16521 16522 ill->ill_phys_addr_mp = mp; 16523 ill->ill_phys_addr = mp->b_rptr + paddroff; 16524 mp = NULL; 16525 16526 /* 16527 * If paddrlen is zero, the DLPI provider doesn't support 16528 * physical addresses. The other two tests were historical 16529 * workarounds for bugs in our former PPP implementation, but 16530 * now other things have grown dependencies on them -- e.g., 16531 * the tun module specifies a dl_addr_length of zero in its 16532 * DL_BIND_ACK, but then specifies an incorrect value in its 16533 * DL_PHYS_ADDR_ACK. These bogus checks need to be removed, 16534 * but only after careful testing ensures that all dependent 16535 * broken DLPI providers have been fixed. 16536 */ 16537 if (paddrlen == 0 || ill->ill_phys_addr_length == 0 || 16538 ill->ill_phys_addr_length == IP_ADDR_LEN) { 16539 ill->ill_phys_addr = NULL; 16540 } else if (paddrlen != ill->ill_phys_addr_length) { 16541 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 16542 paddrlen, ill->ill_phys_addr_length)); 16543 err = EINVAL; 16544 break; 16545 } 16546 16547 if (ill->ill_nd_lla_mp == NULL) { 16548 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 16549 err = ENOMEM; 16550 break; 16551 } 16552 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 16553 } 16554 16555 /* 16556 * Set the interface token. If the zeroth interface address 16557 * is unspecified, then set it to the link local address. 16558 */ 16559 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 16560 (void) ill_setdefaulttoken(ill); 16561 16562 ASSERT(ill->ill_ipif->ipif_id == 0); 16563 if (ipif != NULL && 16564 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 16565 (void) ipif_setlinklocal(ipif); 16566 } 16567 break; 16568 } 16569 case DL_OK_ACK: 16570 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 16571 dl_primstr((int)dloa->dl_correct_primitive), 16572 dloa->dl_correct_primitive)); 16573 switch (dloa->dl_correct_primitive) { 16574 case DL_ENABMULTI_REQ: 16575 case DL_DISABMULTI_REQ: 16576 if (!ill->ill_isv6) 16577 ipsq_current_finish(ipsq); 16578 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16579 break; 16580 case DL_PROMISCON_REQ: 16581 case DL_PROMISCOFF_REQ: 16582 case DL_UNBIND_REQ: 16583 case DL_ATTACH_REQ: 16584 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16585 break; 16586 } 16587 break; 16588 default: 16589 break; 16590 } 16591 16592 freemsg(mp); 16593 if (mp1 != NULL) { 16594 /* 16595 * The operation must complete without EINPROGRESS 16596 * since ipsq_pending_mp_get() has removed the mblk 16597 * from ipsq_pending_mp. Otherwise, the operation 16598 * will be stuck forever in the ipsq. 16599 */ 16600 ASSERT(err != EINPROGRESS); 16601 16602 switch (ipsq->ipsq_current_ioctl) { 16603 case 0: 16604 ipsq_current_finish(ipsq); 16605 break; 16606 16607 case SIOCLIFADDIF: 16608 case SIOCSLIFNAME: 16609 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16610 break; 16611 16612 default: 16613 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16614 break; 16615 } 16616 } 16617 } 16618 16619 /* 16620 * ip_rput_other is called by ip_rput to handle messages modifying the global 16621 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 16622 */ 16623 /* ARGSUSED */ 16624 void 16625 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 16626 { 16627 ill_t *ill; 16628 struct iocblk *iocp; 16629 mblk_t *mp1; 16630 conn_t *connp = NULL; 16631 16632 ip1dbg(("ip_rput_other ")); 16633 ill = (ill_t *)q->q_ptr; 16634 /* 16635 * This routine is not a writer in the case of SIOCGTUNPARAM 16636 * in which case ipsq is NULL. 16637 */ 16638 if (ipsq != NULL) { 16639 ASSERT(IAM_WRITER_IPSQ(ipsq)); 16640 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 16641 } 16642 16643 switch (mp->b_datap->db_type) { 16644 case M_ERROR: 16645 case M_HANGUP: 16646 /* 16647 * The device has a problem. We force the ILL down. It can 16648 * be brought up again manually using SIOCSIFFLAGS (via 16649 * ifconfig or equivalent). 16650 */ 16651 ASSERT(ipsq != NULL); 16652 if (mp->b_rptr < mp->b_wptr) 16653 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 16654 if (ill->ill_error == 0) 16655 ill->ill_error = ENXIO; 16656 if (!ill_down_start(q, mp)) 16657 return; 16658 ipif_all_down_tail(ipsq, q, mp, NULL); 16659 break; 16660 case M_IOCACK: 16661 iocp = (struct iocblk *)mp->b_rptr; 16662 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 16663 switch (iocp->ioc_cmd) { 16664 case SIOCSTUNPARAM: 16665 case OSIOCSTUNPARAM: 16666 ASSERT(ipsq != NULL); 16667 /* 16668 * Finish socket ioctl passed through to tun. 16669 * We should have an IOCTL waiting on this. 16670 */ 16671 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16672 if (ill->ill_isv6) { 16673 struct iftun_req *ta; 16674 16675 /* 16676 * if a source or destination is 16677 * being set, try and set the link 16678 * local address for the tunnel 16679 */ 16680 ta = (struct iftun_req *)mp->b_cont-> 16681 b_cont->b_rptr; 16682 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 16683 ipif_set_tun_llink(ill, ta); 16684 } 16685 16686 } 16687 if (mp1 != NULL) { 16688 /* 16689 * Now copy back the b_next/b_prev used by 16690 * mi code for the mi_copy* functions. 16691 * See ip_sioctl_tunparam() for the reason. 16692 * Also protect against missing b_cont. 16693 */ 16694 if (mp->b_cont != NULL) { 16695 mp->b_cont->b_next = 16696 mp1->b_cont->b_next; 16697 mp->b_cont->b_prev = 16698 mp1->b_cont->b_prev; 16699 } 16700 inet_freemsg(mp1); 16701 ASSERT(connp != NULL); 16702 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16703 iocp->ioc_error, NO_COPYOUT, ipsq); 16704 } else { 16705 ASSERT(connp == NULL); 16706 putnext(q, mp); 16707 } 16708 break; 16709 case SIOCGTUNPARAM: 16710 case OSIOCGTUNPARAM: 16711 /* 16712 * This is really M_IOCDATA from the tunnel driver. 16713 * convert back and complete the ioctl. 16714 * We should have an IOCTL waiting on this. 16715 */ 16716 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 16717 if (mp1) { 16718 /* 16719 * Now copy back the b_next/b_prev used by 16720 * mi code for the mi_copy* functions. 16721 * See ip_sioctl_tunparam() for the reason. 16722 * Also protect against missing b_cont. 16723 */ 16724 if (mp->b_cont != NULL) { 16725 mp->b_cont->b_next = 16726 mp1->b_cont->b_next; 16727 mp->b_cont->b_prev = 16728 mp1->b_cont->b_prev; 16729 } 16730 inet_freemsg(mp1); 16731 if (iocp->ioc_error == 0) 16732 mp->b_datap->db_type = M_IOCDATA; 16733 ASSERT(connp != NULL); 16734 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16735 iocp->ioc_error, COPYOUT, NULL); 16736 } else { 16737 ASSERT(connp == NULL); 16738 putnext(q, mp); 16739 } 16740 break; 16741 default: 16742 break; 16743 } 16744 break; 16745 case M_IOCNAK: 16746 iocp = (struct iocblk *)mp->b_rptr; 16747 16748 switch (iocp->ioc_cmd) { 16749 int mode; 16750 16751 case DL_IOC_HDR_INFO: 16752 /* 16753 * If this was the first attempt turn of the 16754 * fastpath probing. 16755 */ 16756 mutex_enter(&ill->ill_lock); 16757 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 16758 ill->ill_dlpi_fastpath_state = IDS_FAILED; 16759 mutex_exit(&ill->ill_lock); 16760 ill_fastpath_nack(ill); 16761 ip1dbg(("ip_rput: DLPI fastpath off on " 16762 "interface %s\n", 16763 ill->ill_name)); 16764 } else { 16765 mutex_exit(&ill->ill_lock); 16766 } 16767 freemsg(mp); 16768 break; 16769 case SIOCSTUNPARAM: 16770 case OSIOCSTUNPARAM: 16771 ASSERT(ipsq != NULL); 16772 /* 16773 * Finish socket ioctl passed through to tun 16774 * We should have an IOCTL waiting on this. 16775 */ 16776 /* FALLTHRU */ 16777 case SIOCGTUNPARAM: 16778 case OSIOCGTUNPARAM: 16779 /* 16780 * This is really M_IOCDATA from the tunnel driver. 16781 * convert back and complete the ioctl. 16782 * We should have an IOCTL waiting on this. 16783 */ 16784 if (iocp->ioc_cmd == SIOCGTUNPARAM || 16785 iocp->ioc_cmd == OSIOCGTUNPARAM) { 16786 mp1 = ill_pending_mp_get(ill, &connp, 16787 iocp->ioc_id); 16788 mode = COPYOUT; 16789 ipsq = NULL; 16790 } else { 16791 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16792 mode = NO_COPYOUT; 16793 } 16794 if (mp1 != NULL) { 16795 /* 16796 * Now copy back the b_next/b_prev used by 16797 * mi code for the mi_copy* functions. 16798 * See ip_sioctl_tunparam() for the reason. 16799 * Also protect against missing b_cont. 16800 */ 16801 if (mp->b_cont != NULL) { 16802 mp->b_cont->b_next = 16803 mp1->b_cont->b_next; 16804 mp->b_cont->b_prev = 16805 mp1->b_cont->b_prev; 16806 } 16807 inet_freemsg(mp1); 16808 if (iocp->ioc_error == 0) 16809 iocp->ioc_error = EINVAL; 16810 ASSERT(connp != NULL); 16811 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16812 iocp->ioc_error, mode, ipsq); 16813 } else { 16814 ASSERT(connp == NULL); 16815 putnext(q, mp); 16816 } 16817 break; 16818 default: 16819 break; 16820 } 16821 default: 16822 break; 16823 } 16824 } 16825 16826 /* 16827 * NOTE : This function does not ire_refrele the ire argument passed in. 16828 * 16829 * IPQoS notes 16830 * IP policy is invoked twice for a forwarded packet, once on the read side 16831 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 16832 * enabled. An additional parameter, in_ill, has been added for this purpose. 16833 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 16834 * because ip_mroute drops this information. 16835 * 16836 */ 16837 void 16838 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 16839 { 16840 uint32_t old_pkt_len; 16841 uint32_t pkt_len; 16842 queue_t *q; 16843 uint32_t sum; 16844 #define rptr ((uchar_t *)ipha) 16845 uint32_t max_frag; 16846 uint32_t ill_index; 16847 ill_t *out_ill; 16848 mib2_ipIfStatsEntry_t *mibptr; 16849 ip_stack_t *ipst = ((ill_t *)(ire->ire_stq->q_ptr))->ill_ipst; 16850 16851 /* Get the ill_index of the incoming ILL */ 16852 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 16853 mibptr = (in_ill != NULL) ? in_ill->ill_ip_mib : &ipst->ips_ip_mib; 16854 16855 /* Initiate Read side IPPF processing */ 16856 if (IPP_ENABLED(IPP_FWD_IN, ipst)) { 16857 ip_process(IPP_FWD_IN, &mp, ill_index); 16858 if (mp == NULL) { 16859 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 16860 "during IPPF processing\n")); 16861 return; 16862 } 16863 } 16864 16865 /* Adjust the checksum to reflect the ttl decrement. */ 16866 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 16867 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 16868 16869 if (ipha->ipha_ttl-- <= 1) { 16870 if (ip_csum_hdr(ipha)) { 16871 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16872 goto drop_pkt; 16873 } 16874 /* 16875 * Note: ire_stq this will be NULL for multicast 16876 * datagrams using the long path through arp (the IRE 16877 * is not an IRE_CACHE). This should not cause 16878 * problems since we don't generate ICMP errors for 16879 * multicast packets. 16880 */ 16881 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16882 q = ire->ire_stq; 16883 if (q != NULL) { 16884 /* Sent by forwarding path, and router is global zone */ 16885 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED, 16886 GLOBAL_ZONEID, ipst); 16887 } else 16888 freemsg(mp); 16889 return; 16890 } 16891 16892 /* 16893 * Don't forward if the interface is down 16894 */ 16895 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 16896 BUMP_MIB(mibptr, ipIfStatsInDiscards); 16897 ip2dbg(("ip_rput_forward:interface is down\n")); 16898 goto drop_pkt; 16899 } 16900 16901 /* Get the ill_index of the outgoing ILL */ 16902 out_ill = ire_to_ill(ire); 16903 ill_index = out_ill->ill_phyint->phyint_ifindex; 16904 16905 DTRACE_PROBE4(ip4__forwarding__start, 16906 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16907 16908 FW_HOOKS(ipst->ips_ip4_forwarding_event, 16909 ipst->ips_ipv4firewall_forwarding, 16910 in_ill, out_ill, ipha, mp, mp, 0, ipst); 16911 16912 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 16913 16914 if (mp == NULL) 16915 return; 16916 old_pkt_len = pkt_len = ntohs(ipha->ipha_length); 16917 16918 if (is_system_labeled()) { 16919 mblk_t *mp1; 16920 16921 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 16922 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16923 goto drop_pkt; 16924 } 16925 /* Size may have changed */ 16926 mp = mp1; 16927 ipha = (ipha_t *)mp->b_rptr; 16928 pkt_len = ntohs(ipha->ipha_length); 16929 } 16930 16931 /* Check if there are options to update */ 16932 if (!IS_SIMPLE_IPH(ipha)) { 16933 if (ip_csum_hdr(ipha)) { 16934 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16935 goto drop_pkt; 16936 } 16937 if (ip_rput_forward_options(mp, ipha, ire, ipst)) { 16938 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16939 return; 16940 } 16941 16942 ipha->ipha_hdr_checksum = 0; 16943 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 16944 } 16945 max_frag = ire->ire_max_frag; 16946 if (pkt_len > max_frag) { 16947 /* 16948 * It needs fragging on its way out. We haven't 16949 * verified the header checksum yet. Since we 16950 * are going to put a surely good checksum in the 16951 * outgoing header, we have to make sure that it 16952 * was good coming in. 16953 */ 16954 if (ip_csum_hdr(ipha)) { 16955 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16956 goto drop_pkt; 16957 } 16958 /* Initiate Write side IPPF processing */ 16959 if (IPP_ENABLED(IPP_FWD_OUT, ipst)) { 16960 ip_process(IPP_FWD_OUT, &mp, ill_index); 16961 if (mp == NULL) { 16962 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 16963 " during IPPF processing\n")); 16964 return; 16965 } 16966 } 16967 /* 16968 * Handle labeled packet resizing. 16969 * 16970 * If we have added a label, inform ip_wput_frag() of its 16971 * effect on the MTU for ICMP messages. 16972 */ 16973 if (pkt_len > old_pkt_len) { 16974 uint32_t secopt_size; 16975 16976 secopt_size = pkt_len - old_pkt_len; 16977 if (secopt_size < max_frag) 16978 max_frag -= secopt_size; 16979 } 16980 16981 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, 16982 GLOBAL_ZONEID, ipst, NULL); 16983 ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n")); 16984 return; 16985 } 16986 16987 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 16988 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16989 FW_HOOKS(ipst->ips_ip4_physical_out_event, 16990 ipst->ips_ipv4firewall_physical_out, 16991 NULL, out_ill, ipha, mp, mp, 0, ipst); 16992 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 16993 if (mp == NULL) 16994 return; 16995 16996 mp->b_prev = (mblk_t *)IPP_FWD_OUT; 16997 ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n")); 16998 (void) ip_xmit_v4(mp, ire, NULL, B_FALSE, NULL); 16999 /* ip_xmit_v4 always consumes the packet */ 17000 return; 17001 17002 drop_pkt:; 17003 ip1dbg(("ip_rput_forward: drop pkt\n")); 17004 freemsg(mp); 17005 #undef rptr 17006 } 17007 17008 void 17009 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 17010 { 17011 ire_t *ire; 17012 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 17013 17014 ASSERT(!ipif->ipif_isv6); 17015 /* 17016 * Find an IRE which matches the destination and the outgoing 17017 * queue in the cache table. All we need is an IRE_CACHE which 17018 * is pointing at ipif->ipif_ill. If it is part of some ill group, 17019 * then it is enough to have some IRE_CACHE in the group. 17020 */ 17021 if (ipif->ipif_flags & IPIF_POINTOPOINT) 17022 dst = ipif->ipif_pp_dst_addr; 17023 17024 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, MBLK_GETLABEL(mp), 17025 MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR, ipst); 17026 if (ire == NULL) { 17027 /* 17028 * Mark this packet to make it be delivered to 17029 * ip_rput_forward after the new ire has been 17030 * created. 17031 */ 17032 mp->b_prev = NULL; 17033 mp->b_next = mp; 17034 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 17035 NULL, 0, GLOBAL_ZONEID, &zero_info); 17036 } else { 17037 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 17038 IRE_REFRELE(ire); 17039 } 17040 } 17041 17042 /* Update any source route, record route or timestamp options */ 17043 static int 17044 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire, ip_stack_t *ipst) 17045 { 17046 ipoptp_t opts; 17047 uchar_t *opt; 17048 uint8_t optval; 17049 uint8_t optlen; 17050 ipaddr_t dst; 17051 uint32_t ts; 17052 ire_t *dst_ire = NULL; 17053 ire_t *tmp_ire = NULL; 17054 timestruc_t now; 17055 17056 ip2dbg(("ip_rput_forward_options\n")); 17057 dst = ipha->ipha_dst; 17058 for (optval = ipoptp_first(&opts, ipha); 17059 optval != IPOPT_EOL; 17060 optval = ipoptp_next(&opts)) { 17061 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17062 opt = opts.ipoptp_cur; 17063 optlen = opts.ipoptp_len; 17064 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 17065 optval, opts.ipoptp_len)); 17066 switch (optval) { 17067 uint32_t off; 17068 case IPOPT_SSRR: 17069 case IPOPT_LSRR: 17070 /* Check if adminstratively disabled */ 17071 if (!ipst->ips_ip_forward_src_routed) { 17072 if (ire->ire_stq != NULL) { 17073 /* 17074 * Sent by forwarding path, and router 17075 * is global zone 17076 */ 17077 icmp_unreachable(ire->ire_stq, mp, 17078 ICMP_SOURCE_ROUTE_FAILED, 17079 GLOBAL_ZONEID, ipst); 17080 } else { 17081 ip0dbg(("ip_rput_forward_options: " 17082 "unable to send unreach\n")); 17083 freemsg(mp); 17084 } 17085 return (-1); 17086 } 17087 17088 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17089 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17090 if (dst_ire == NULL) { 17091 /* 17092 * Must be partial since ip_rput_options 17093 * checked for strict. 17094 */ 17095 break; 17096 } 17097 off = opt[IPOPT_OFFSET]; 17098 off--; 17099 redo_srr: 17100 if (optlen < IP_ADDR_LEN || 17101 off > optlen - IP_ADDR_LEN) { 17102 /* End of source route */ 17103 ip1dbg(( 17104 "ip_rput_forward_options: end of SR\n")); 17105 ire_refrele(dst_ire); 17106 break; 17107 } 17108 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17109 bcopy(&ire->ire_src_addr, (char *)opt + off, 17110 IP_ADDR_LEN); 17111 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 17112 ntohl(dst))); 17113 17114 /* 17115 * Check if our address is present more than 17116 * once as consecutive hops in source route. 17117 */ 17118 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17119 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17120 if (tmp_ire != NULL) { 17121 ire_refrele(tmp_ire); 17122 off += IP_ADDR_LEN; 17123 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17124 goto redo_srr; 17125 } 17126 ipha->ipha_dst = dst; 17127 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17128 ire_refrele(dst_ire); 17129 break; 17130 case IPOPT_RR: 17131 off = opt[IPOPT_OFFSET]; 17132 off--; 17133 if (optlen < IP_ADDR_LEN || 17134 off > optlen - IP_ADDR_LEN) { 17135 /* No more room - ignore */ 17136 ip1dbg(( 17137 "ip_rput_forward_options: end of RR\n")); 17138 break; 17139 } 17140 bcopy(&ire->ire_src_addr, (char *)opt + off, 17141 IP_ADDR_LEN); 17142 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17143 break; 17144 case IPOPT_TS: 17145 /* Insert timestamp if there is room */ 17146 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17147 case IPOPT_TS_TSONLY: 17148 off = IPOPT_TS_TIMELEN; 17149 break; 17150 case IPOPT_TS_PRESPEC: 17151 case IPOPT_TS_PRESPEC_RFC791: 17152 /* Verify that the address matched */ 17153 off = opt[IPOPT_OFFSET] - 1; 17154 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17155 dst_ire = ire_ctable_lookup(dst, 0, 17156 IRE_LOCAL, NULL, ALL_ZONES, NULL, 17157 MATCH_IRE_TYPE, ipst); 17158 if (dst_ire == NULL) { 17159 /* Not for us */ 17160 break; 17161 } 17162 ire_refrele(dst_ire); 17163 /* FALLTHRU */ 17164 case IPOPT_TS_TSANDADDR: 17165 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17166 break; 17167 default: 17168 /* 17169 * ip_*put_options should have already 17170 * dropped this packet. 17171 */ 17172 cmn_err(CE_PANIC, "ip_rput_forward_options: " 17173 "unknown IT - bug in ip_rput_options?\n"); 17174 return (0); /* Keep "lint" happy */ 17175 } 17176 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 17177 /* Increase overflow counter */ 17178 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 17179 opt[IPOPT_POS_OV_FLG] = 17180 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 17181 (off << 4)); 17182 break; 17183 } 17184 off = opt[IPOPT_OFFSET] - 1; 17185 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17186 case IPOPT_TS_PRESPEC: 17187 case IPOPT_TS_PRESPEC_RFC791: 17188 case IPOPT_TS_TSANDADDR: 17189 bcopy(&ire->ire_src_addr, 17190 (char *)opt + off, IP_ADDR_LEN); 17191 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17192 /* FALLTHRU */ 17193 case IPOPT_TS_TSONLY: 17194 off = opt[IPOPT_OFFSET] - 1; 17195 /* Compute # of milliseconds since midnight */ 17196 gethrestime(&now); 17197 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 17198 now.tv_nsec / (NANOSEC / MILLISEC); 17199 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 17200 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 17201 break; 17202 } 17203 break; 17204 } 17205 } 17206 return (0); 17207 } 17208 17209 /* 17210 * This is called after processing at least one of AH/ESP headers. 17211 * 17212 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 17213 * the actual, physical interface on which the packet was received, 17214 * but, when ip_strict_dst_multihoming is set to 1, could be the 17215 * interface which had the ipha_dst configured when the packet went 17216 * through ip_rput. The ill_index corresponding to the recv_ill 17217 * is saved in ipsec_in_rill_index 17218 * 17219 * NOTE2: The "ire" argument is only used in IPv4 cases. This function 17220 * cannot assume "ire" points to valid data for any IPv6 cases. 17221 */ 17222 void 17223 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 17224 { 17225 mblk_t *mp; 17226 ipaddr_t dst; 17227 in6_addr_t *v6dstp; 17228 ipha_t *ipha; 17229 ip6_t *ip6h; 17230 ipsec_in_t *ii; 17231 boolean_t ill_need_rele = B_FALSE; 17232 boolean_t rill_need_rele = B_FALSE; 17233 boolean_t ire_need_rele = B_FALSE; 17234 netstack_t *ns; 17235 ip_stack_t *ipst; 17236 17237 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 17238 ASSERT(ii->ipsec_in_ill_index != 0); 17239 ns = ii->ipsec_in_ns; 17240 ASSERT(ii->ipsec_in_ns != NULL); 17241 ipst = ns->netstack_ip; 17242 17243 mp = ipsec_mp->b_cont; 17244 ASSERT(mp != NULL); 17245 17246 17247 if (ill == NULL) { 17248 ASSERT(recv_ill == NULL); 17249 /* 17250 * We need to get the original queue on which ip_rput_local 17251 * or ip_rput_data_v6 was called. 17252 */ 17253 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 17254 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL, ipst); 17255 ill_need_rele = B_TRUE; 17256 17257 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 17258 recv_ill = ill_lookup_on_ifindex( 17259 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 17260 NULL, NULL, NULL, NULL, ipst); 17261 rill_need_rele = B_TRUE; 17262 } else { 17263 recv_ill = ill; 17264 } 17265 17266 if ((ill == NULL) || (recv_ill == NULL)) { 17267 ip0dbg(("ip_fanout_proto_again: interface " 17268 "disappeared\n")); 17269 if (ill != NULL) 17270 ill_refrele(ill); 17271 if (recv_ill != NULL) 17272 ill_refrele(recv_ill); 17273 freemsg(ipsec_mp); 17274 return; 17275 } 17276 } 17277 17278 ASSERT(ill != NULL && recv_ill != NULL); 17279 17280 if (mp->b_datap->db_type == M_CTL) { 17281 /* 17282 * AH/ESP is returning the ICMP message after 17283 * removing their headers. Fanout again till 17284 * it gets to the right protocol. 17285 */ 17286 if (ii->ipsec_in_v4) { 17287 icmph_t *icmph; 17288 int iph_hdr_length; 17289 int hdr_length; 17290 17291 ipha = (ipha_t *)mp->b_rptr; 17292 iph_hdr_length = IPH_HDR_LENGTH(ipha); 17293 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 17294 ipha = (ipha_t *)&icmph[1]; 17295 hdr_length = IPH_HDR_LENGTH(ipha); 17296 /* 17297 * icmp_inbound_error_fanout may need to do pullupmsg. 17298 * Reset the type to M_DATA. 17299 */ 17300 mp->b_datap->db_type = M_DATA; 17301 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 17302 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 17303 B_FALSE, ill, ii->ipsec_in_zoneid); 17304 } else { 17305 icmp6_t *icmp6; 17306 int hdr_length; 17307 17308 ip6h = (ip6_t *)mp->b_rptr; 17309 /* Don't call hdr_length_v6() unless you have to. */ 17310 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 17311 hdr_length = ip_hdr_length_v6(mp, ip6h); 17312 else 17313 hdr_length = IPV6_HDR_LEN; 17314 17315 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 17316 /* 17317 * icmp_inbound_error_fanout_v6 may need to do 17318 * pullupmsg. Reset the type to M_DATA. 17319 */ 17320 mp->b_datap->db_type = M_DATA; 17321 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 17322 ip6h, icmp6, ill, B_TRUE, ii->ipsec_in_zoneid); 17323 } 17324 if (ill_need_rele) 17325 ill_refrele(ill); 17326 if (rill_need_rele) 17327 ill_refrele(recv_ill); 17328 return; 17329 } 17330 17331 if (ii->ipsec_in_v4) { 17332 ipha = (ipha_t *)mp->b_rptr; 17333 dst = ipha->ipha_dst; 17334 if (CLASSD(dst)) { 17335 /* 17336 * Multicast has to be delivered to all streams. 17337 */ 17338 dst = INADDR_BROADCAST; 17339 } 17340 17341 if (ire == NULL) { 17342 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 17343 MBLK_GETLABEL(mp), ipst); 17344 if (ire == NULL) { 17345 if (ill_need_rele) 17346 ill_refrele(ill); 17347 if (rill_need_rele) 17348 ill_refrele(recv_ill); 17349 ip1dbg(("ip_fanout_proto_again: " 17350 "IRE not found")); 17351 freemsg(ipsec_mp); 17352 return; 17353 } 17354 ire_need_rele = B_TRUE; 17355 } 17356 17357 switch (ipha->ipha_protocol) { 17358 case IPPROTO_UDP: 17359 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 17360 recv_ill); 17361 if (ire_need_rele) 17362 ire_refrele(ire); 17363 break; 17364 case IPPROTO_TCP: 17365 if (!ire_need_rele) 17366 IRE_REFHOLD(ire); 17367 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 17368 ire, ipsec_mp, 0, ill->ill_rq, NULL); 17369 IRE_REFRELE(ire); 17370 if (mp != NULL) { 17371 17372 SQUEUE_ENTER(GET_SQUEUE(mp), mp, 17373 mp, 1, SQ_PROCESS, 17374 SQTAG_IP_PROTO_AGAIN); 17375 } 17376 break; 17377 case IPPROTO_SCTP: 17378 if (!ire_need_rele) 17379 IRE_REFHOLD(ire); 17380 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 17381 ipsec_mp, 0, ill->ill_rq, dst); 17382 break; 17383 default: 17384 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 17385 recv_ill, 0); 17386 if (ire_need_rele) 17387 ire_refrele(ire); 17388 break; 17389 } 17390 } else { 17391 uint32_t rput_flags = 0; 17392 17393 ip6h = (ip6_t *)mp->b_rptr; 17394 v6dstp = &ip6h->ip6_dst; 17395 /* 17396 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 17397 * address. 17398 * 17399 * Currently, we don't store that state in the IPSEC_IN 17400 * message, and we may need to. 17401 */ 17402 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 17403 IP6_IN_LLMCAST : 0); 17404 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 17405 NULL, NULL); 17406 } 17407 if (ill_need_rele) 17408 ill_refrele(ill); 17409 if (rill_need_rele) 17410 ill_refrele(recv_ill); 17411 } 17412 17413 /* 17414 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 17415 * returns 'true' if there are still fragments left on the queue, in 17416 * which case we restart the timer. 17417 */ 17418 void 17419 ill_frag_timer(void *arg) 17420 { 17421 ill_t *ill = (ill_t *)arg; 17422 boolean_t frag_pending; 17423 ip_stack_t *ipst = ill->ill_ipst; 17424 17425 mutex_enter(&ill->ill_lock); 17426 ASSERT(!ill->ill_fragtimer_executing); 17427 if (ill->ill_state_flags & ILL_CONDEMNED) { 17428 ill->ill_frag_timer_id = 0; 17429 mutex_exit(&ill->ill_lock); 17430 return; 17431 } 17432 ill->ill_fragtimer_executing = 1; 17433 mutex_exit(&ill->ill_lock); 17434 17435 frag_pending = ill_frag_timeout(ill, ipst->ips_ip_g_frag_timeout); 17436 17437 /* 17438 * Restart the timer, if we have fragments pending or if someone 17439 * wanted us to be scheduled again. 17440 */ 17441 mutex_enter(&ill->ill_lock); 17442 ill->ill_fragtimer_executing = 0; 17443 ill->ill_frag_timer_id = 0; 17444 if (frag_pending || ill->ill_fragtimer_needrestart) 17445 ill_frag_timer_start(ill); 17446 mutex_exit(&ill->ill_lock); 17447 } 17448 17449 void 17450 ill_frag_timer_start(ill_t *ill) 17451 { 17452 ip_stack_t *ipst = ill->ill_ipst; 17453 17454 ASSERT(MUTEX_HELD(&ill->ill_lock)); 17455 17456 /* If the ill is closing or opening don't proceed */ 17457 if (ill->ill_state_flags & ILL_CONDEMNED) 17458 return; 17459 17460 if (ill->ill_fragtimer_executing) { 17461 /* 17462 * ill_frag_timer is currently executing. Just record the 17463 * the fact that we want the timer to be restarted. 17464 * ill_frag_timer will post a timeout before it returns, 17465 * ensuring it will be called again. 17466 */ 17467 ill->ill_fragtimer_needrestart = 1; 17468 return; 17469 } 17470 17471 if (ill->ill_frag_timer_id == 0) { 17472 /* 17473 * The timer is neither running nor is the timeout handler 17474 * executing. Post a timeout so that ill_frag_timer will be 17475 * called 17476 */ 17477 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 17478 MSEC_TO_TICK(ipst->ips_ip_g_frag_timo_ms >> 1)); 17479 ill->ill_fragtimer_needrestart = 0; 17480 } 17481 } 17482 17483 /* 17484 * This routine is needed for loopback when forwarding multicasts. 17485 * 17486 * IPQoS Notes: 17487 * IPPF processing is done in fanout routines. 17488 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 17489 * processing for IPsec packets is done when it comes back in clear. 17490 * NOTE : The callers of this function need to do the ire_refrele for the 17491 * ire that is being passed in. 17492 */ 17493 void 17494 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17495 ill_t *recv_ill, uint32_t esp_udp_ports) 17496 { 17497 boolean_t esp_in_udp_packet = (esp_udp_ports != 0); 17498 ill_t *ill = (ill_t *)q->q_ptr; 17499 uint32_t sum; 17500 uint32_t u1; 17501 uint32_t u2; 17502 int hdr_length; 17503 boolean_t mctl_present; 17504 mblk_t *first_mp = mp; 17505 mblk_t *hada_mp = NULL; 17506 ipha_t *inner_ipha; 17507 ip_stack_t *ipst; 17508 17509 ASSERT(recv_ill != NULL); 17510 ipst = recv_ill->ill_ipst; 17511 17512 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 17513 "ip_rput_locl_start: q %p", q); 17514 17515 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17516 ASSERT(ill != NULL); 17517 17518 17519 #define rptr ((uchar_t *)ipha) 17520 #define iphs ((uint16_t *)ipha) 17521 17522 /* 17523 * no UDP or TCP packet should come here anymore. 17524 */ 17525 ASSERT(ipha->ipha_protocol != IPPROTO_TCP && 17526 ipha->ipha_protocol != IPPROTO_UDP); 17527 17528 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 17529 if (mctl_present && 17530 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 17531 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 17532 17533 /* 17534 * It's an IPsec accelerated packet. 17535 * Keep a pointer to the data attributes around until 17536 * we allocate the ipsec_info_t. 17537 */ 17538 IPSECHW_DEBUG(IPSECHW_PKT, 17539 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 17540 hada_mp = first_mp; 17541 hada_mp->b_cont = NULL; 17542 /* 17543 * Since it is accelerated, it comes directly from 17544 * the ill and the data attributes is followed by 17545 * the packet data. 17546 */ 17547 ASSERT(mp->b_datap->db_type != M_CTL); 17548 first_mp = mp; 17549 mctl_present = B_FALSE; 17550 } 17551 17552 /* 17553 * IF M_CTL is not present, then ipsec_in_is_secure 17554 * should return B_TRUE. There is a case where loopback 17555 * packets has an M_CTL in the front with all the 17556 * IPsec options set to IPSEC_PREF_NEVER - which means 17557 * ipsec_in_is_secure will return B_FALSE. As loopback 17558 * packets never comes here, it is safe to ASSERT the 17559 * following. 17560 */ 17561 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 17562 17563 /* 17564 * Also, we should never have an mctl_present if this is an 17565 * ESP-in-UDP packet. 17566 */ 17567 ASSERT(!mctl_present || !esp_in_udp_packet); 17568 17569 17570 /* u1 is # words of IP options */ 17571 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 17572 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 17573 17574 /* 17575 * Don't verify header checksum if we just removed UDP header or 17576 * packet is coming back from AH/ESP. 17577 */ 17578 if (!esp_in_udp_packet && !mctl_present) { 17579 if (u1) { 17580 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 17581 if (hada_mp != NULL) 17582 freemsg(hada_mp); 17583 return; 17584 } 17585 } else { 17586 /* Check the IP header checksum. */ 17587 #define uph ((uint16_t *)ipha) 17588 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 17589 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 17590 #undef uph 17591 /* finish doing IP checksum */ 17592 sum = (sum & 0xFFFF) + (sum >> 16); 17593 sum = ~(sum + (sum >> 16)) & 0xFFFF; 17594 if (sum && sum != 0xFFFF) { 17595 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 17596 goto drop_pkt; 17597 } 17598 } 17599 } 17600 17601 /* 17602 * Count for SNMP of inbound packets for ire. As ip_proto_input 17603 * might be called more than once for secure packets, count only 17604 * the first time. 17605 */ 17606 if (!mctl_present) { 17607 UPDATE_IB_PKT_COUNT(ire); 17608 ire->ire_last_used_time = lbolt; 17609 } 17610 17611 /* Check for fragmentation offset. */ 17612 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 17613 u1 = u2 & (IPH_MF | IPH_OFFSET); 17614 if (u1) { 17615 /* 17616 * We re-assemble fragments before we do the AH/ESP 17617 * processing. Thus, M_CTL should not be present 17618 * while we are re-assembling. 17619 */ 17620 ASSERT(!mctl_present); 17621 ASSERT(first_mp == mp); 17622 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 17623 return; 17624 } 17625 /* 17626 * Make sure that first_mp points back to mp as 17627 * the mp we came in with could have changed in 17628 * ip_rput_fragment(). 17629 */ 17630 ipha = (ipha_t *)mp->b_rptr; 17631 first_mp = mp; 17632 } 17633 17634 /* 17635 * Clear hardware checksumming flag as it is currently only 17636 * used by TCP and UDP. 17637 */ 17638 DB_CKSUMFLAGS(mp) = 0; 17639 17640 /* Now we have a complete datagram, destined for this machine. */ 17641 u1 = IPH_HDR_LENGTH(ipha); 17642 switch (ipha->ipha_protocol) { 17643 case IPPROTO_ICMP: { 17644 ire_t *ire_zone; 17645 ilm_t *ilm; 17646 mblk_t *mp1; 17647 zoneid_t last_zoneid; 17648 17649 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(recv_ill)) { 17650 ASSERT(ire->ire_type == IRE_BROADCAST); 17651 /* 17652 * Inactive/Failed interfaces are not supposed to 17653 * respond to the multicast packets. 17654 */ 17655 if (ill_is_probeonly(ill)) { 17656 freemsg(first_mp); 17657 return; 17658 } 17659 17660 /* 17661 * In the multicast case, applications may have joined 17662 * the group from different zones, so we need to deliver 17663 * the packet to each of them. Loop through the 17664 * multicast memberships structures (ilm) on the receive 17665 * ill and send a copy of the packet up each matching 17666 * one. However, we don't do this for multicasts sent on 17667 * the loopback interface (PHYI_LOOPBACK flag set) as 17668 * they must stay in the sender's zone. 17669 * 17670 * ilm_add_v6() ensures that ilms in the same zone are 17671 * contiguous in the ill_ilm list. We use this property 17672 * to avoid sending duplicates needed when two 17673 * applications in the same zone join the same group on 17674 * different logical interfaces: we ignore the ilm if 17675 * its zoneid is the same as the last matching one. 17676 * In addition, the sending of the packet for 17677 * ire_zoneid is delayed until all of the other ilms 17678 * have been exhausted. 17679 */ 17680 last_zoneid = -1; 17681 ILM_WALKER_HOLD(recv_ill); 17682 for (ilm = recv_ill->ill_ilm; ilm != NULL; 17683 ilm = ilm->ilm_next) { 17684 if ((ilm->ilm_flags & ILM_DELETED) || 17685 ipha->ipha_dst != ilm->ilm_addr || 17686 ilm->ilm_zoneid == last_zoneid || 17687 ilm->ilm_zoneid == ire->ire_zoneid || 17688 ilm->ilm_zoneid == ALL_ZONES || 17689 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 17690 continue; 17691 mp1 = ip_copymsg(first_mp); 17692 if (mp1 == NULL) 17693 continue; 17694 icmp_inbound(q, mp1, B_TRUE, ill, 17695 0, sum, mctl_present, B_TRUE, 17696 recv_ill, ilm->ilm_zoneid); 17697 last_zoneid = ilm->ilm_zoneid; 17698 } 17699 ILM_WALKER_RELE(recv_ill); 17700 } else if (ire->ire_type == IRE_BROADCAST) { 17701 /* 17702 * In the broadcast case, there may be many zones 17703 * which need a copy of the packet delivered to them. 17704 * There is one IRE_BROADCAST per broadcast address 17705 * and per zone; we walk those using a helper function. 17706 * In addition, the sending of the packet for ire is 17707 * delayed until all of the other ires have been 17708 * processed. 17709 */ 17710 IRB_REFHOLD(ire->ire_bucket); 17711 ire_zone = NULL; 17712 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 17713 ire)) != NULL) { 17714 mp1 = ip_copymsg(first_mp); 17715 if (mp1 == NULL) 17716 continue; 17717 17718 UPDATE_IB_PKT_COUNT(ire_zone); 17719 ire_zone->ire_last_used_time = lbolt; 17720 icmp_inbound(q, mp1, B_TRUE, ill, 17721 0, sum, mctl_present, B_TRUE, 17722 recv_ill, ire_zone->ire_zoneid); 17723 } 17724 IRB_REFRELE(ire->ire_bucket); 17725 } 17726 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 17727 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 17728 ire->ire_zoneid); 17729 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17730 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 17731 return; 17732 } 17733 case IPPROTO_IGMP: 17734 /* 17735 * If we are not willing to accept IGMP packets in clear, 17736 * then check with global policy. 17737 */ 17738 if (ipst->ips_igmp_accept_clear_messages == 0) { 17739 first_mp = ipsec_check_global_policy(first_mp, NULL, 17740 ipha, NULL, mctl_present, ipst->ips_netstack); 17741 if (first_mp == NULL) 17742 return; 17743 } 17744 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17745 freemsg(first_mp); 17746 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 17747 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17748 return; 17749 } 17750 if ((mp = igmp_input(q, mp, ill)) == NULL) { 17751 /* Bad packet - discarded by igmp_input */ 17752 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17753 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 17754 if (mctl_present) 17755 freeb(first_mp); 17756 return; 17757 } 17758 /* 17759 * igmp_input() may have returned the pulled up message. 17760 * So first_mp and ipha need to be reinitialized. 17761 */ 17762 ipha = (ipha_t *)mp->b_rptr; 17763 if (mctl_present) 17764 first_mp->b_cont = mp; 17765 else 17766 first_mp = mp; 17767 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17768 connf_head != NULL) { 17769 /* No user-level listener for IGMP packets */ 17770 goto drop_pkt; 17771 } 17772 /* deliver to local raw users */ 17773 break; 17774 case IPPROTO_PIM: 17775 /* 17776 * If we are not willing to accept PIM packets in clear, 17777 * then check with global policy. 17778 */ 17779 if (ipst->ips_pim_accept_clear_messages == 0) { 17780 first_mp = ipsec_check_global_policy(first_mp, NULL, 17781 ipha, NULL, mctl_present, ipst->ips_netstack); 17782 if (first_mp == NULL) 17783 return; 17784 } 17785 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17786 freemsg(first_mp); 17787 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 17788 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17789 return; 17790 } 17791 if (pim_input(q, mp, ill) != 0) { 17792 /* Bad packet - discarded by pim_input */ 17793 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17794 "ip_rput_locl_end: q %p (%S)", q, "pim"); 17795 if (mctl_present) 17796 freeb(first_mp); 17797 return; 17798 } 17799 17800 /* 17801 * pim_input() may have pulled up the message so ipha needs to 17802 * be reinitialized. 17803 */ 17804 ipha = (ipha_t *)mp->b_rptr; 17805 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17806 connf_head != NULL) { 17807 /* No user-level listener for PIM packets */ 17808 goto drop_pkt; 17809 } 17810 /* deliver to local raw users */ 17811 break; 17812 case IPPROTO_ENCAP: 17813 /* 17814 * Handle self-encapsulated packets (IP-in-IP where 17815 * the inner addresses == the outer addresses). 17816 */ 17817 hdr_length = IPH_HDR_LENGTH(ipha); 17818 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 17819 mp->b_wptr) { 17820 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 17821 sizeof (ipha_t) - mp->b_rptr)) { 17822 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17823 freemsg(first_mp); 17824 return; 17825 } 17826 ipha = (ipha_t *)mp->b_rptr; 17827 } 17828 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 17829 /* 17830 * Check the sanity of the inner IP header. 17831 */ 17832 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 17833 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17834 freemsg(first_mp); 17835 return; 17836 } 17837 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 17838 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17839 freemsg(first_mp); 17840 return; 17841 } 17842 if (inner_ipha->ipha_src == ipha->ipha_src && 17843 inner_ipha->ipha_dst == ipha->ipha_dst) { 17844 ipsec_in_t *ii; 17845 17846 /* 17847 * Self-encapsulated tunnel packet. Remove 17848 * the outer IP header and fanout again. 17849 * We also need to make sure that the inner 17850 * header is pulled up until options. 17851 */ 17852 mp->b_rptr = (uchar_t *)inner_ipha; 17853 ipha = inner_ipha; 17854 hdr_length = IPH_HDR_LENGTH(ipha); 17855 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 17856 if (!pullupmsg(mp, (uchar_t *)ipha + 17857 + hdr_length - mp->b_rptr)) { 17858 freemsg(first_mp); 17859 return; 17860 } 17861 ipha = (ipha_t *)mp->b_rptr; 17862 } 17863 if (hdr_length > sizeof (ipha_t)) { 17864 /* We got options on the inner packet. */ 17865 ipaddr_t dst = ipha->ipha_dst; 17866 17867 if (ip_rput_options(q, mp, ipha, &dst, ipst) == 17868 -1) { 17869 /* Bad options! */ 17870 return; 17871 } 17872 if (dst != ipha->ipha_dst) { 17873 /* 17874 * Someone put a source-route in 17875 * the inside header of a self- 17876 * encapsulated packet. Drop it 17877 * with extreme prejudice and let 17878 * the sender know. 17879 */ 17880 icmp_unreachable(q, first_mp, 17881 ICMP_SOURCE_ROUTE_FAILED, 17882 recv_ill->ill_zoneid, ipst); 17883 return; 17884 } 17885 } 17886 if (!mctl_present) { 17887 ASSERT(first_mp == mp); 17888 /* 17889 * This means that somebody is sending 17890 * Self-encapsualted packets without AH/ESP. 17891 * If AH/ESP was present, we would have already 17892 * allocated the first_mp. 17893 * 17894 * Send this packet to find a tunnel endpoint. 17895 * if I can't find one, an ICMP 17896 * PROTOCOL_UNREACHABLE will get sent. 17897 */ 17898 goto fanout; 17899 } 17900 /* 17901 * We generally store the ill_index if we need to 17902 * do IPsec processing as we lose the ill queue when 17903 * we come back. But in this case, we never should 17904 * have to store the ill_index here as it should have 17905 * been stored previously when we processed the 17906 * AH/ESP header in this routine or for non-ipsec 17907 * cases, we still have the queue. But for some bad 17908 * packets from the wire, we can get to IPsec after 17909 * this and we better store the index for that case. 17910 */ 17911 ill = (ill_t *)q->q_ptr; 17912 ii = (ipsec_in_t *)first_mp->b_rptr; 17913 ii->ipsec_in_ill_index = 17914 ill->ill_phyint->phyint_ifindex; 17915 ii->ipsec_in_rill_index = 17916 recv_ill->ill_phyint->phyint_ifindex; 17917 if (ii->ipsec_in_decaps) { 17918 /* 17919 * This packet is self-encapsulated multiple 17920 * times. We don't want to recurse infinitely. 17921 * To keep it simple, drop the packet. 17922 */ 17923 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17924 freemsg(first_mp); 17925 return; 17926 } 17927 ii->ipsec_in_decaps = B_TRUE; 17928 ip_fanout_proto_again(first_mp, recv_ill, recv_ill, 17929 ire); 17930 return; 17931 } 17932 break; 17933 case IPPROTO_AH: 17934 case IPPROTO_ESP: { 17935 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 17936 17937 /* 17938 * Fast path for AH/ESP. If this is the first time 17939 * we are sending a datagram to AH/ESP, allocate 17940 * a IPSEC_IN message and prepend it. Otherwise, 17941 * just fanout. 17942 */ 17943 17944 int ipsec_rc; 17945 ipsec_in_t *ii; 17946 netstack_t *ns = ipst->ips_netstack; 17947 17948 IP_STAT(ipst, ipsec_proto_ahesp); 17949 if (!mctl_present) { 17950 ASSERT(first_mp == mp); 17951 first_mp = ipsec_in_alloc(B_TRUE, ns); 17952 if (first_mp == NULL) { 17953 ip1dbg(("ip_proto_input: IPSEC_IN " 17954 "allocation failure.\n")); 17955 freemsg(hada_mp); /* okay ifnull */ 17956 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17957 freemsg(mp); 17958 return; 17959 } 17960 /* 17961 * Store the ill_index so that when we come back 17962 * from IPsec we ride on the same queue. 17963 */ 17964 ill = (ill_t *)q->q_ptr; 17965 ii = (ipsec_in_t *)first_mp->b_rptr; 17966 ii->ipsec_in_ill_index = 17967 ill->ill_phyint->phyint_ifindex; 17968 ii->ipsec_in_rill_index = 17969 recv_ill->ill_phyint->phyint_ifindex; 17970 first_mp->b_cont = mp; 17971 /* 17972 * Cache hardware acceleration info. 17973 */ 17974 if (hada_mp != NULL) { 17975 IPSECHW_DEBUG(IPSECHW_PKT, 17976 ("ip_rput_local: caching data attr.\n")); 17977 ii->ipsec_in_accelerated = B_TRUE; 17978 ii->ipsec_in_da = hada_mp; 17979 hada_mp = NULL; 17980 } 17981 } else { 17982 ii = (ipsec_in_t *)first_mp->b_rptr; 17983 } 17984 17985 ii->ipsec_in_esp_udp_ports = esp_udp_ports; 17986 17987 if (!ipsec_loaded(ipss)) { 17988 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 17989 ire->ire_zoneid, ipst); 17990 return; 17991 } 17992 17993 ns = ipst->ips_netstack; 17994 /* select inbound SA and have IPsec process the pkt */ 17995 if (ipha->ipha_protocol == IPPROTO_ESP) { 17996 esph_t *esph = ipsec_inbound_esp_sa(first_mp, ns); 17997 boolean_t esp_in_udp_sa; 17998 if (esph == NULL) 17999 return; 18000 ASSERT(ii->ipsec_in_esp_sa != NULL); 18001 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 18002 esp_in_udp_sa = ((ii->ipsec_in_esp_sa->ipsa_flags & 18003 IPSA_F_NATT) != 0); 18004 /* 18005 * The following is a fancy, but quick, way of saying: 18006 * ESP-in-UDP SA and Raw ESP packet --> drop 18007 * OR 18008 * ESP SA and ESP-in-UDP packet --> drop 18009 */ 18010 if (esp_in_udp_sa != esp_in_udp_packet) { 18011 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 18012 ip_drop_packet(first_mp, B_TRUE, ill, NULL, 18013 DROPPER(ns->netstack_ipsec, ipds_esp_no_sa), 18014 &ns->netstack_ipsec->ipsec_dropper); 18015 return; 18016 } 18017 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 18018 first_mp, esph); 18019 } else { 18020 ah_t *ah = ipsec_inbound_ah_sa(first_mp, ns); 18021 if (ah == NULL) 18022 return; 18023 ASSERT(ii->ipsec_in_ah_sa != NULL); 18024 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 18025 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 18026 first_mp, ah); 18027 } 18028 18029 switch (ipsec_rc) { 18030 case IPSEC_STATUS_SUCCESS: 18031 break; 18032 case IPSEC_STATUS_FAILED: 18033 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 18034 /* FALLTHRU */ 18035 case IPSEC_STATUS_PENDING: 18036 return; 18037 } 18038 /* we're done with IPsec processing, send it up */ 18039 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 18040 return; 18041 } 18042 default: 18043 break; 18044 } 18045 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 18046 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 18047 ire->ire_zoneid)); 18048 goto drop_pkt; 18049 } 18050 /* 18051 * Handle protocols with which IP is less intimate. There 18052 * can be more than one stream bound to a particular 18053 * protocol. When this is the case, each one gets a copy 18054 * of any incoming packets. 18055 */ 18056 fanout: 18057 ip_fanout_proto(q, first_mp, ill, ipha, 18058 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 18059 B_TRUE, recv_ill, ire->ire_zoneid); 18060 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 18061 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 18062 return; 18063 18064 drop_pkt: 18065 freemsg(first_mp); 18066 if (hada_mp != NULL) 18067 freeb(hada_mp); 18068 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 18069 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 18070 #undef rptr 18071 #undef iphs 18072 18073 } 18074 18075 /* 18076 * Update any source route, record route or timestamp options. 18077 * Check that we are at end of strict source route. 18078 * The options have already been checked for sanity in ip_rput_options(). 18079 */ 18080 static boolean_t 18081 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 18082 ip_stack_t *ipst) 18083 { 18084 ipoptp_t opts; 18085 uchar_t *opt; 18086 uint8_t optval; 18087 uint8_t optlen; 18088 ipaddr_t dst; 18089 uint32_t ts; 18090 ire_t *dst_ire; 18091 timestruc_t now; 18092 zoneid_t zoneid; 18093 ill_t *ill; 18094 18095 ASSERT(ire->ire_ipversion == IPV4_VERSION); 18096 18097 ip2dbg(("ip_rput_local_options\n")); 18098 18099 for (optval = ipoptp_first(&opts, ipha); 18100 optval != IPOPT_EOL; 18101 optval = ipoptp_next(&opts)) { 18102 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 18103 opt = opts.ipoptp_cur; 18104 optlen = opts.ipoptp_len; 18105 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 18106 optval, optlen)); 18107 switch (optval) { 18108 uint32_t off; 18109 case IPOPT_SSRR: 18110 case IPOPT_LSRR: 18111 off = opt[IPOPT_OFFSET]; 18112 off--; 18113 if (optlen < IP_ADDR_LEN || 18114 off > optlen - IP_ADDR_LEN) { 18115 /* End of source route */ 18116 ip1dbg(("ip_rput_local_options: end of SR\n")); 18117 break; 18118 } 18119 /* 18120 * This will only happen if two consecutive entries 18121 * in the source route contains our address or if 18122 * it is a packet with a loose source route which 18123 * reaches us before consuming the whole source route 18124 */ 18125 ip1dbg(("ip_rput_local_options: not end of SR\n")); 18126 if (optval == IPOPT_SSRR) { 18127 goto bad_src_route; 18128 } 18129 /* 18130 * Hack: instead of dropping the packet truncate the 18131 * source route to what has been used by filling the 18132 * rest with IPOPT_NOP. 18133 */ 18134 opt[IPOPT_OLEN] = (uint8_t)off; 18135 while (off < optlen) { 18136 opt[off++] = IPOPT_NOP; 18137 } 18138 break; 18139 case IPOPT_RR: 18140 off = opt[IPOPT_OFFSET]; 18141 off--; 18142 if (optlen < IP_ADDR_LEN || 18143 off > optlen - IP_ADDR_LEN) { 18144 /* No more room - ignore */ 18145 ip1dbg(( 18146 "ip_rput_local_options: end of RR\n")); 18147 break; 18148 } 18149 bcopy(&ire->ire_src_addr, (char *)opt + off, 18150 IP_ADDR_LEN); 18151 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 18152 break; 18153 case IPOPT_TS: 18154 /* Insert timestamp if there is romm */ 18155 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 18156 case IPOPT_TS_TSONLY: 18157 off = IPOPT_TS_TIMELEN; 18158 break; 18159 case IPOPT_TS_PRESPEC: 18160 case IPOPT_TS_PRESPEC_RFC791: 18161 /* Verify that the address matched */ 18162 off = opt[IPOPT_OFFSET] - 1; 18163 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 18164 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 18165 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 18166 ipst); 18167 if (dst_ire == NULL) { 18168 /* Not for us */ 18169 break; 18170 } 18171 ire_refrele(dst_ire); 18172 /* FALLTHRU */ 18173 case IPOPT_TS_TSANDADDR: 18174 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 18175 break; 18176 default: 18177 /* 18178 * ip_*put_options should have already 18179 * dropped this packet. 18180 */ 18181 cmn_err(CE_PANIC, "ip_rput_local_options: " 18182 "unknown IT - bug in ip_rput_options?\n"); 18183 return (B_TRUE); /* Keep "lint" happy */ 18184 } 18185 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 18186 /* Increase overflow counter */ 18187 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 18188 opt[IPOPT_POS_OV_FLG] = 18189 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 18190 (off << 4)); 18191 break; 18192 } 18193 off = opt[IPOPT_OFFSET] - 1; 18194 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 18195 case IPOPT_TS_PRESPEC: 18196 case IPOPT_TS_PRESPEC_RFC791: 18197 case IPOPT_TS_TSANDADDR: 18198 bcopy(&ire->ire_src_addr, (char *)opt + off, 18199 IP_ADDR_LEN); 18200 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 18201 /* FALLTHRU */ 18202 case IPOPT_TS_TSONLY: 18203 off = opt[IPOPT_OFFSET] - 1; 18204 /* Compute # of milliseconds since midnight */ 18205 gethrestime(&now); 18206 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 18207 now.tv_nsec / (NANOSEC / MILLISEC); 18208 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 18209 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 18210 break; 18211 } 18212 break; 18213 } 18214 } 18215 return (B_TRUE); 18216 18217 bad_src_route: 18218 q = WR(q); 18219 if (q->q_next != NULL) 18220 ill = q->q_ptr; 18221 else 18222 ill = NULL; 18223 18224 /* make sure we clear any indication of a hardware checksum */ 18225 DB_CKSUMFLAGS(mp) = 0; 18226 zoneid = ipif_lookup_addr_zoneid(ipha->ipha_dst, ill, ipst); 18227 if (zoneid == ALL_ZONES) 18228 freemsg(mp); 18229 else 18230 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 18231 return (B_FALSE); 18232 18233 } 18234 18235 /* 18236 * Process IP options in an inbound packet. If an option affects the 18237 * effective destination address, return the next hop address via dstp. 18238 * Returns -1 if something fails in which case an ICMP error has been sent 18239 * and mp freed. 18240 */ 18241 static int 18242 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp, 18243 ip_stack_t *ipst) 18244 { 18245 ipoptp_t opts; 18246 uchar_t *opt; 18247 uint8_t optval; 18248 uint8_t optlen; 18249 ipaddr_t dst; 18250 intptr_t code = 0; 18251 ire_t *ire = NULL; 18252 zoneid_t zoneid; 18253 ill_t *ill; 18254 18255 ip2dbg(("ip_rput_options\n")); 18256 dst = ipha->ipha_dst; 18257 for (optval = ipoptp_first(&opts, ipha); 18258 optval != IPOPT_EOL; 18259 optval = ipoptp_next(&opts)) { 18260 opt = opts.ipoptp_cur; 18261 optlen = opts.ipoptp_len; 18262 ip2dbg(("ip_rput_options: opt %d, len %d\n", 18263 optval, optlen)); 18264 /* 18265 * Note: we need to verify the checksum before we 18266 * modify anything thus this routine only extracts the next 18267 * hop dst from any source route. 18268 */ 18269 switch (optval) { 18270 uint32_t off; 18271 case IPOPT_SSRR: 18272 case IPOPT_LSRR: 18273 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 18274 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 18275 if (ire == NULL) { 18276 if (optval == IPOPT_SSRR) { 18277 ip1dbg(("ip_rput_options: not next" 18278 " strict source route 0x%x\n", 18279 ntohl(dst))); 18280 code = (char *)&ipha->ipha_dst - 18281 (char *)ipha; 18282 goto param_prob; /* RouterReq's */ 18283 } 18284 ip2dbg(("ip_rput_options: " 18285 "not next source route 0x%x\n", 18286 ntohl(dst))); 18287 break; 18288 } 18289 ire_refrele(ire); 18290 18291 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18292 ip1dbg(( 18293 "ip_rput_options: bad option offset\n")); 18294 code = (char *)&opt[IPOPT_OLEN] - 18295 (char *)ipha; 18296 goto param_prob; 18297 } 18298 off = opt[IPOPT_OFFSET]; 18299 off--; 18300 redo_srr: 18301 if (optlen < IP_ADDR_LEN || 18302 off > optlen - IP_ADDR_LEN) { 18303 /* End of source route */ 18304 ip1dbg(("ip_rput_options: end of SR\n")); 18305 break; 18306 } 18307 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 18308 ip1dbg(("ip_rput_options: next hop 0x%x\n", 18309 ntohl(dst))); 18310 18311 /* 18312 * Check if our address is present more than 18313 * once as consecutive hops in source route. 18314 * XXX verify per-interface ip_forwarding 18315 * for source route? 18316 */ 18317 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 18318 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 18319 18320 if (ire != NULL) { 18321 ire_refrele(ire); 18322 off += IP_ADDR_LEN; 18323 goto redo_srr; 18324 } 18325 18326 if (dst == htonl(INADDR_LOOPBACK)) { 18327 ip1dbg(("ip_rput_options: loopback addr in " 18328 "source route!\n")); 18329 goto bad_src_route; 18330 } 18331 /* 18332 * For strict: verify that dst is directly 18333 * reachable. 18334 */ 18335 if (optval == IPOPT_SSRR) { 18336 ire = ire_ftable_lookup(dst, 0, 0, 18337 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 18338 MBLK_GETLABEL(mp), 18339 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 18340 if (ire == NULL) { 18341 ip1dbg(("ip_rput_options: SSRR not " 18342 "directly reachable: 0x%x\n", 18343 ntohl(dst))); 18344 goto bad_src_route; 18345 } 18346 ire_refrele(ire); 18347 } 18348 /* 18349 * Defer update of the offset and the record route 18350 * until the packet is forwarded. 18351 */ 18352 break; 18353 case IPOPT_RR: 18354 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18355 ip1dbg(( 18356 "ip_rput_options: bad option offset\n")); 18357 code = (char *)&opt[IPOPT_OLEN] - 18358 (char *)ipha; 18359 goto param_prob; 18360 } 18361 break; 18362 case IPOPT_TS: 18363 /* 18364 * Verify that length >= 5 and that there is either 18365 * room for another timestamp or that the overflow 18366 * counter is not maxed out. 18367 */ 18368 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 18369 if (optlen < IPOPT_MINLEN_IT) { 18370 goto param_prob; 18371 } 18372 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18373 ip1dbg(( 18374 "ip_rput_options: bad option offset\n")); 18375 code = (char *)&opt[IPOPT_OFFSET] - 18376 (char *)ipha; 18377 goto param_prob; 18378 } 18379 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 18380 case IPOPT_TS_TSONLY: 18381 off = IPOPT_TS_TIMELEN; 18382 break; 18383 case IPOPT_TS_TSANDADDR: 18384 case IPOPT_TS_PRESPEC: 18385 case IPOPT_TS_PRESPEC_RFC791: 18386 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 18387 break; 18388 default: 18389 code = (char *)&opt[IPOPT_POS_OV_FLG] - 18390 (char *)ipha; 18391 goto param_prob; 18392 } 18393 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 18394 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 18395 /* 18396 * No room and the overflow counter is 15 18397 * already. 18398 */ 18399 goto param_prob; 18400 } 18401 break; 18402 } 18403 } 18404 18405 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 18406 *dstp = dst; 18407 return (0); 18408 } 18409 18410 ip1dbg(("ip_rput_options: error processing IP options.")); 18411 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 18412 18413 param_prob: 18414 q = WR(q); 18415 if (q->q_next != NULL) 18416 ill = q->q_ptr; 18417 else 18418 ill = NULL; 18419 18420 /* make sure we clear any indication of a hardware checksum */ 18421 DB_CKSUMFLAGS(mp) = 0; 18422 /* Don't know whether this is for non-global or global/forwarding */ 18423 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18424 if (zoneid == ALL_ZONES) 18425 freemsg(mp); 18426 else 18427 icmp_param_problem(q, mp, (uint8_t)code, zoneid, ipst); 18428 return (-1); 18429 18430 bad_src_route: 18431 q = WR(q); 18432 if (q->q_next != NULL) 18433 ill = q->q_ptr; 18434 else 18435 ill = NULL; 18436 18437 /* make sure we clear any indication of a hardware checksum */ 18438 DB_CKSUMFLAGS(mp) = 0; 18439 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18440 if (zoneid == ALL_ZONES) 18441 freemsg(mp); 18442 else 18443 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 18444 return (-1); 18445 } 18446 18447 /* 18448 * IP & ICMP info in >=14 msg's ... 18449 * - ip fixed part (mib2_ip_t) 18450 * - icmp fixed part (mib2_icmp_t) 18451 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 18452 * - ipRouteEntryTable (ip 21) all IPv4 IREs 18453 * - ipNetToMediaEntryTable (ip 22) [filled in by the arp module] 18454 * - ipRouteAttributeTable (ip 102) labeled routes 18455 * - ip multicast membership (ip_member_t) 18456 * - ip multicast source filtering (ip_grpsrc_t) 18457 * - igmp fixed part (struct igmpstat) 18458 * - multicast routing stats (struct mrtstat) 18459 * - multicast routing vifs (array of struct vifctl) 18460 * - multicast routing routes (array of struct mfcctl) 18461 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 18462 * One per ill plus one generic 18463 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 18464 * One per ill plus one generic 18465 * - ipv6RouteEntry all IPv6 IREs 18466 * - ipv6RouteAttributeTable (ip6 102) labeled routes 18467 * - ipv6NetToMediaEntry all Neighbor Cache entries 18468 * - ipv6AddrEntry all IPv6 ipifs 18469 * - ipv6 multicast membership (ipv6_member_t) 18470 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 18471 * 18472 * MIB2_IP_MEDIA is filled in by the arp module with ARP cache entries. 18473 * 18474 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 18475 * already filled in by the caller. 18476 * Return value of 0 indicates that no messages were sent and caller 18477 * should free mpctl. 18478 */ 18479 int 18480 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level) 18481 { 18482 ip_stack_t *ipst; 18483 sctp_stack_t *sctps; 18484 18485 if (q->q_next != NULL) { 18486 ipst = ILLQ_TO_IPST(q); 18487 } else { 18488 ipst = CONNQ_TO_IPST(q); 18489 } 18490 ASSERT(ipst != NULL); 18491 sctps = ipst->ips_netstack->netstack_sctp; 18492 18493 if (mpctl == NULL || mpctl->b_cont == NULL) { 18494 return (0); 18495 } 18496 18497 /* 18498 * For the purposes of the (broken) packet shell use 18499 * of the level we make sure MIB2_TCP/MIB2_UDP can be used 18500 * to make TCP and UDP appear first in the list of mib items. 18501 * TBD: We could expand this and use it in netstat so that 18502 * the kernel doesn't have to produce large tables (connections, 18503 * routes, etc) when netstat only wants the statistics or a particular 18504 * table. 18505 */ 18506 if (!(level == MIB2_TCP || level == MIB2_UDP)) { 18507 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) { 18508 return (1); 18509 } 18510 } 18511 18512 if (level != MIB2_TCP) { 18513 if ((mpctl = udp_snmp_get(q, mpctl)) == NULL) { 18514 return (1); 18515 } 18516 } 18517 18518 if (level != MIB2_UDP) { 18519 if ((mpctl = tcp_snmp_get(q, mpctl)) == NULL) { 18520 return (1); 18521 } 18522 } 18523 18524 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 18525 ipst)) == NULL) { 18526 return (1); 18527 } 18528 18529 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst)) == NULL) { 18530 return (1); 18531 } 18532 18533 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 18534 return (1); 18535 } 18536 18537 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 18538 return (1); 18539 } 18540 18541 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 18542 return (1); 18543 } 18544 18545 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 18546 return (1); 18547 } 18548 18549 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst)) == NULL) { 18550 return (1); 18551 } 18552 18553 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst)) == NULL) { 18554 return (1); 18555 } 18556 18557 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 18558 return (1); 18559 } 18560 18561 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 18562 return (1); 18563 } 18564 18565 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 18566 return (1); 18567 } 18568 18569 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 18570 return (1); 18571 } 18572 18573 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 18574 return (1); 18575 } 18576 18577 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 18578 return (1); 18579 } 18580 18581 if ((mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, ipst)) == NULL) { 18582 return (1); 18583 } 18584 18585 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, ipst); 18586 if (mpctl == NULL) { 18587 return (1); 18588 } 18589 18590 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 18591 return (1); 18592 } 18593 freemsg(mpctl); 18594 return (1); 18595 } 18596 18597 18598 /* Get global (legacy) IPv4 statistics */ 18599 static mblk_t * 18600 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 18601 ip_stack_t *ipst) 18602 { 18603 mib2_ip_t old_ip_mib; 18604 struct opthdr *optp; 18605 mblk_t *mp2ctl; 18606 18607 /* 18608 * make a copy of the original message 18609 */ 18610 mp2ctl = copymsg(mpctl); 18611 18612 /* fixed length IP structure... */ 18613 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18614 optp->level = MIB2_IP; 18615 optp->name = 0; 18616 SET_MIB(old_ip_mib.ipForwarding, 18617 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 18618 SET_MIB(old_ip_mib.ipDefaultTTL, 18619 (uint32_t)ipst->ips_ip_def_ttl); 18620 SET_MIB(old_ip_mib.ipReasmTimeout, 18621 ipst->ips_ip_g_frag_timeout); 18622 SET_MIB(old_ip_mib.ipAddrEntrySize, 18623 sizeof (mib2_ipAddrEntry_t)); 18624 SET_MIB(old_ip_mib.ipRouteEntrySize, 18625 sizeof (mib2_ipRouteEntry_t)); 18626 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 18627 sizeof (mib2_ipNetToMediaEntry_t)); 18628 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 18629 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 18630 SET_MIB(old_ip_mib.ipRouteAttributeSize, 18631 sizeof (mib2_ipAttributeEntry_t)); 18632 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 18633 18634 /* 18635 * Grab the statistics from the new IP MIB 18636 */ 18637 SET_MIB(old_ip_mib.ipInReceives, 18638 (uint32_t)ipmib->ipIfStatsHCInReceives); 18639 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 18640 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 18641 SET_MIB(old_ip_mib.ipForwDatagrams, 18642 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 18643 SET_MIB(old_ip_mib.ipInUnknownProtos, 18644 ipmib->ipIfStatsInUnknownProtos); 18645 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 18646 SET_MIB(old_ip_mib.ipInDelivers, 18647 (uint32_t)ipmib->ipIfStatsHCInDelivers); 18648 SET_MIB(old_ip_mib.ipOutRequests, 18649 (uint32_t)ipmib->ipIfStatsHCOutRequests); 18650 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 18651 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 18652 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 18653 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 18654 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 18655 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 18656 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 18657 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 18658 18659 /* ipRoutingDiscards is not being used */ 18660 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 18661 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 18662 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 18663 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 18664 SET_MIB(old_ip_mib.ipReasmDuplicates, 18665 ipmib->ipIfStatsReasmDuplicates); 18666 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 18667 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 18668 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 18669 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 18670 SET_MIB(old_ip_mib.rawipInOverflows, 18671 ipmib->rawipIfStatsInOverflows); 18672 18673 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 18674 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 18675 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 18676 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 18677 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 18678 ipmib->ipIfStatsOutSwitchIPVersion); 18679 18680 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 18681 (int)sizeof (old_ip_mib))) { 18682 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 18683 (uint_t)sizeof (old_ip_mib))); 18684 } 18685 18686 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18687 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 18688 (int)optp->level, (int)optp->name, (int)optp->len)); 18689 qreply(q, mpctl); 18690 return (mp2ctl); 18691 } 18692 18693 /* Per interface IPv4 statistics */ 18694 static mblk_t * 18695 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18696 { 18697 struct opthdr *optp; 18698 mblk_t *mp2ctl; 18699 ill_t *ill; 18700 ill_walk_context_t ctx; 18701 mblk_t *mp_tail = NULL; 18702 mib2_ipIfStatsEntry_t global_ip_mib; 18703 18704 /* 18705 * Make a copy of the original message 18706 */ 18707 mp2ctl = copymsg(mpctl); 18708 18709 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18710 optp->level = MIB2_IP; 18711 optp->name = MIB2_IP_TRAFFIC_STATS; 18712 /* Include "unknown interface" ip_mib */ 18713 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 18714 ipst->ips_ip_mib.ipIfStatsIfIndex = 18715 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 18716 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 18717 (ipst->ips_ip_g_forward ? 1 : 2)); 18718 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 18719 (uint32_t)ipst->ips_ip_def_ttl); 18720 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 18721 sizeof (mib2_ipIfStatsEntry_t)); 18722 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 18723 sizeof (mib2_ipAddrEntry_t)); 18724 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 18725 sizeof (mib2_ipRouteEntry_t)); 18726 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 18727 sizeof (mib2_ipNetToMediaEntry_t)); 18728 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 18729 sizeof (ip_member_t)); 18730 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 18731 sizeof (ip_grpsrc_t)); 18732 18733 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18734 (char *)&ipst->ips_ip_mib, (int)sizeof (ipst->ips_ip_mib))) { 18735 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18736 "failed to allocate %u bytes\n", 18737 (uint_t)sizeof (ipst->ips_ip_mib))); 18738 } 18739 18740 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 18741 18742 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18743 ill = ILL_START_WALK_V4(&ctx, ipst); 18744 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18745 ill->ill_ip_mib->ipIfStatsIfIndex = 18746 ill->ill_phyint->phyint_ifindex; 18747 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 18748 (ipst->ips_ip_g_forward ? 1 : 2)); 18749 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 18750 (uint32_t)ipst->ips_ip_def_ttl); 18751 18752 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 18753 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18754 (char *)ill->ill_ip_mib, 18755 (int)sizeof (*ill->ill_ip_mib))) { 18756 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18757 "failed to allocate %u bytes\n", 18758 (uint_t)sizeof (*ill->ill_ip_mib))); 18759 } 18760 } 18761 rw_exit(&ipst->ips_ill_g_lock); 18762 18763 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18764 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18765 "level %d, name %d, len %d\n", 18766 (int)optp->level, (int)optp->name, (int)optp->len)); 18767 qreply(q, mpctl); 18768 18769 if (mp2ctl == NULL) 18770 return (NULL); 18771 18772 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst)); 18773 } 18774 18775 /* Global IPv4 ICMP statistics */ 18776 static mblk_t * 18777 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18778 { 18779 struct opthdr *optp; 18780 mblk_t *mp2ctl; 18781 18782 /* 18783 * Make a copy of the original message 18784 */ 18785 mp2ctl = copymsg(mpctl); 18786 18787 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18788 optp->level = MIB2_ICMP; 18789 optp->name = 0; 18790 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 18791 (int)sizeof (ipst->ips_icmp_mib))) { 18792 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 18793 (uint_t)sizeof (ipst->ips_icmp_mib))); 18794 } 18795 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18796 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 18797 (int)optp->level, (int)optp->name, (int)optp->len)); 18798 qreply(q, mpctl); 18799 return (mp2ctl); 18800 } 18801 18802 /* Global IPv4 IGMP statistics */ 18803 static mblk_t * 18804 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18805 { 18806 struct opthdr *optp; 18807 mblk_t *mp2ctl; 18808 18809 /* 18810 * make a copy of the original message 18811 */ 18812 mp2ctl = copymsg(mpctl); 18813 18814 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18815 optp->level = EXPER_IGMP; 18816 optp->name = 0; 18817 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 18818 (int)sizeof (ipst->ips_igmpstat))) { 18819 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 18820 (uint_t)sizeof (ipst->ips_igmpstat))); 18821 } 18822 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18823 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 18824 (int)optp->level, (int)optp->name, (int)optp->len)); 18825 qreply(q, mpctl); 18826 return (mp2ctl); 18827 } 18828 18829 /* Global IPv4 Multicast Routing statistics */ 18830 static mblk_t * 18831 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18832 { 18833 struct opthdr *optp; 18834 mblk_t *mp2ctl; 18835 18836 /* 18837 * make a copy of the original message 18838 */ 18839 mp2ctl = copymsg(mpctl); 18840 18841 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18842 optp->level = EXPER_DVMRP; 18843 optp->name = 0; 18844 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 18845 ip0dbg(("ip_mroute_stats: failed\n")); 18846 } 18847 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18848 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 18849 (int)optp->level, (int)optp->name, (int)optp->len)); 18850 qreply(q, mpctl); 18851 return (mp2ctl); 18852 } 18853 18854 /* IPv4 address information */ 18855 static mblk_t * 18856 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18857 { 18858 struct opthdr *optp; 18859 mblk_t *mp2ctl; 18860 mblk_t *mp_tail = NULL; 18861 ill_t *ill; 18862 ipif_t *ipif; 18863 uint_t bitval; 18864 mib2_ipAddrEntry_t mae; 18865 zoneid_t zoneid; 18866 ill_walk_context_t ctx; 18867 18868 /* 18869 * make a copy of the original message 18870 */ 18871 mp2ctl = copymsg(mpctl); 18872 18873 /* ipAddrEntryTable */ 18874 18875 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18876 optp->level = MIB2_IP; 18877 optp->name = MIB2_IP_ADDR; 18878 zoneid = Q_TO_CONN(q)->conn_zoneid; 18879 18880 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18881 ill = ILL_START_WALK_V4(&ctx, ipst); 18882 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18883 for (ipif = ill->ill_ipif; ipif != NULL; 18884 ipif = ipif->ipif_next) { 18885 if (ipif->ipif_zoneid != zoneid && 18886 ipif->ipif_zoneid != ALL_ZONES) 18887 continue; 18888 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18889 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18890 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18891 18892 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes, 18893 OCTET_LENGTH); 18894 mae.ipAdEntIfIndex.o_length = 18895 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 18896 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 18897 mae.ipAdEntNetMask = ipif->ipif_net_mask; 18898 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 18899 mae.ipAdEntInfo.ae_subnet_len = 18900 ip_mask_to_plen(ipif->ipif_net_mask); 18901 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 18902 for (bitval = 1; 18903 bitval && 18904 !(bitval & ipif->ipif_brd_addr); 18905 bitval <<= 1) 18906 noop; 18907 mae.ipAdEntBcastAddr = bitval; 18908 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 18909 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 18910 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 18911 mae.ipAdEntInfo.ae_broadcast_addr = 18912 ipif->ipif_brd_addr; 18913 mae.ipAdEntInfo.ae_pp_dst_addr = 18914 ipif->ipif_pp_dst_addr; 18915 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 18916 ill->ill_flags | ill->ill_phyint->phyint_flags; 18917 mae.ipAdEntRetransmitTime = AR_EQ_DEFAULT_XMIT_INTERVAL; 18918 18919 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18920 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 18921 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 18922 "allocate %u bytes\n", 18923 (uint_t)sizeof (mib2_ipAddrEntry_t))); 18924 } 18925 } 18926 } 18927 rw_exit(&ipst->ips_ill_g_lock); 18928 18929 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18930 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 18931 (int)optp->level, (int)optp->name, (int)optp->len)); 18932 qreply(q, mpctl); 18933 return (mp2ctl); 18934 } 18935 18936 /* IPv6 address information */ 18937 static mblk_t * 18938 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18939 { 18940 struct opthdr *optp; 18941 mblk_t *mp2ctl; 18942 mblk_t *mp_tail = NULL; 18943 ill_t *ill; 18944 ipif_t *ipif; 18945 mib2_ipv6AddrEntry_t mae6; 18946 zoneid_t zoneid; 18947 ill_walk_context_t ctx; 18948 18949 /* 18950 * make a copy of the original message 18951 */ 18952 mp2ctl = copymsg(mpctl); 18953 18954 /* ipv6AddrEntryTable */ 18955 18956 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18957 optp->level = MIB2_IP6; 18958 optp->name = MIB2_IP6_ADDR; 18959 zoneid = Q_TO_CONN(q)->conn_zoneid; 18960 18961 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18962 ill = ILL_START_WALK_V6(&ctx, ipst); 18963 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18964 for (ipif = ill->ill_ipif; ipif != NULL; 18965 ipif = ipif->ipif_next) { 18966 if (ipif->ipif_zoneid != zoneid && 18967 ipif->ipif_zoneid != ALL_ZONES) 18968 continue; 18969 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18970 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18971 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18972 18973 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes, 18974 OCTET_LENGTH); 18975 mae6.ipv6AddrIfIndex.o_length = 18976 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 18977 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 18978 mae6.ipv6AddrPfxLength = 18979 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 18980 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 18981 mae6.ipv6AddrInfo.ae_subnet_len = 18982 mae6.ipv6AddrPfxLength; 18983 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 18984 18985 /* Type: stateless(1), stateful(2), unknown(3) */ 18986 if (ipif->ipif_flags & IPIF_ADDRCONF) 18987 mae6.ipv6AddrType = 1; 18988 else 18989 mae6.ipv6AddrType = 2; 18990 /* Anycast: true(1), false(2) */ 18991 if (ipif->ipif_flags & IPIF_ANYCAST) 18992 mae6.ipv6AddrAnycastFlag = 1; 18993 else 18994 mae6.ipv6AddrAnycastFlag = 2; 18995 18996 /* 18997 * Address status: preferred(1), deprecated(2), 18998 * invalid(3), inaccessible(4), unknown(5) 18999 */ 19000 if (ipif->ipif_flags & IPIF_NOLOCAL) 19001 mae6.ipv6AddrStatus = 3; 19002 else if (ipif->ipif_flags & IPIF_DEPRECATED) 19003 mae6.ipv6AddrStatus = 2; 19004 else 19005 mae6.ipv6AddrStatus = 1; 19006 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 19007 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 19008 mae6.ipv6AddrInfo.ae_pp_dst_addr = 19009 ipif->ipif_v6pp_dst_addr; 19010 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 19011 ill->ill_flags | ill->ill_phyint->phyint_flags; 19012 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 19013 mae6.ipv6AddrIdentifier = ill->ill_token; 19014 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 19015 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 19016 mae6.ipv6AddrRetransmitTime = 19017 ill->ill_reachable_retrans_time; 19018 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19019 (char *)&mae6, 19020 (int)sizeof (mib2_ipv6AddrEntry_t))) { 19021 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 19022 "allocate %u bytes\n", 19023 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 19024 } 19025 } 19026 } 19027 rw_exit(&ipst->ips_ill_g_lock); 19028 19029 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19030 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 19031 (int)optp->level, (int)optp->name, (int)optp->len)); 19032 qreply(q, mpctl); 19033 return (mp2ctl); 19034 } 19035 19036 /* IPv4 multicast group membership. */ 19037 static mblk_t * 19038 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19039 { 19040 struct opthdr *optp; 19041 mblk_t *mp2ctl; 19042 ill_t *ill; 19043 ipif_t *ipif; 19044 ilm_t *ilm; 19045 ip_member_t ipm; 19046 mblk_t *mp_tail = NULL; 19047 ill_walk_context_t ctx; 19048 zoneid_t zoneid; 19049 19050 /* 19051 * make a copy of the original message 19052 */ 19053 mp2ctl = copymsg(mpctl); 19054 zoneid = Q_TO_CONN(q)->conn_zoneid; 19055 19056 /* ipGroupMember table */ 19057 optp = (struct opthdr *)&mpctl->b_rptr[ 19058 sizeof (struct T_optmgmt_ack)]; 19059 optp->level = MIB2_IP; 19060 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 19061 19062 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19063 ill = ILL_START_WALK_V4(&ctx, ipst); 19064 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19065 ILM_WALKER_HOLD(ill); 19066 for (ipif = ill->ill_ipif; ipif != NULL; 19067 ipif = ipif->ipif_next) { 19068 if (ipif->ipif_zoneid != zoneid && 19069 ipif->ipif_zoneid != ALL_ZONES) 19070 continue; /* not this zone */ 19071 ipif_get_name(ipif, ipm.ipGroupMemberIfIndex.o_bytes, 19072 OCTET_LENGTH); 19073 ipm.ipGroupMemberIfIndex.o_length = 19074 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 19075 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 19076 ASSERT(ilm->ilm_ipif != NULL); 19077 ASSERT(ilm->ilm_ill == NULL); 19078 if (ilm->ilm_ipif != ipif) 19079 continue; 19080 ipm.ipGroupMemberAddress = ilm->ilm_addr; 19081 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 19082 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 19083 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19084 (char *)&ipm, (int)sizeof (ipm))) { 19085 ip1dbg(("ip_snmp_get_mib2_ip_group: " 19086 "failed to allocate %u bytes\n", 19087 (uint_t)sizeof (ipm))); 19088 } 19089 } 19090 } 19091 ILM_WALKER_RELE(ill); 19092 } 19093 rw_exit(&ipst->ips_ill_g_lock); 19094 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19095 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 19096 (int)optp->level, (int)optp->name, (int)optp->len)); 19097 qreply(q, mpctl); 19098 return (mp2ctl); 19099 } 19100 19101 /* IPv6 multicast group membership. */ 19102 static mblk_t * 19103 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19104 { 19105 struct opthdr *optp; 19106 mblk_t *mp2ctl; 19107 ill_t *ill; 19108 ilm_t *ilm; 19109 ipv6_member_t ipm6; 19110 mblk_t *mp_tail = NULL; 19111 ill_walk_context_t ctx; 19112 zoneid_t zoneid; 19113 19114 /* 19115 * make a copy of the original message 19116 */ 19117 mp2ctl = copymsg(mpctl); 19118 zoneid = Q_TO_CONN(q)->conn_zoneid; 19119 19120 /* ip6GroupMember table */ 19121 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19122 optp->level = MIB2_IP6; 19123 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 19124 19125 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19126 ill = ILL_START_WALK_V6(&ctx, ipst); 19127 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19128 ILM_WALKER_HOLD(ill); 19129 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 19130 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 19131 ASSERT(ilm->ilm_ipif == NULL); 19132 ASSERT(ilm->ilm_ill != NULL); 19133 if (ilm->ilm_zoneid != zoneid) 19134 continue; /* not this zone */ 19135 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 19136 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 19137 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 19138 if (!snmp_append_data2(mpctl->b_cont, 19139 &mp_tail, 19140 (char *)&ipm6, (int)sizeof (ipm6))) { 19141 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 19142 "failed to allocate %u bytes\n", 19143 (uint_t)sizeof (ipm6))); 19144 } 19145 } 19146 ILM_WALKER_RELE(ill); 19147 } 19148 rw_exit(&ipst->ips_ill_g_lock); 19149 19150 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19151 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 19152 (int)optp->level, (int)optp->name, (int)optp->len)); 19153 qreply(q, mpctl); 19154 return (mp2ctl); 19155 } 19156 19157 /* IP multicast filtered sources */ 19158 static mblk_t * 19159 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19160 { 19161 struct opthdr *optp; 19162 mblk_t *mp2ctl; 19163 ill_t *ill; 19164 ipif_t *ipif; 19165 ilm_t *ilm; 19166 ip_grpsrc_t ips; 19167 mblk_t *mp_tail = NULL; 19168 ill_walk_context_t ctx; 19169 zoneid_t zoneid; 19170 int i; 19171 slist_t *sl; 19172 19173 /* 19174 * make a copy of the original message 19175 */ 19176 mp2ctl = copymsg(mpctl); 19177 zoneid = Q_TO_CONN(q)->conn_zoneid; 19178 19179 /* ipGroupSource table */ 19180 optp = (struct opthdr *)&mpctl->b_rptr[ 19181 sizeof (struct T_optmgmt_ack)]; 19182 optp->level = MIB2_IP; 19183 optp->name = EXPER_IP_GROUP_SOURCES; 19184 19185 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19186 ill = ILL_START_WALK_V4(&ctx, ipst); 19187 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19188 ILM_WALKER_HOLD(ill); 19189 for (ipif = ill->ill_ipif; ipif != NULL; 19190 ipif = ipif->ipif_next) { 19191 if (ipif->ipif_zoneid != zoneid) 19192 continue; /* not this zone */ 19193 ipif_get_name(ipif, ips.ipGroupSourceIfIndex.o_bytes, 19194 OCTET_LENGTH); 19195 ips.ipGroupSourceIfIndex.o_length = 19196 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 19197 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 19198 ASSERT(ilm->ilm_ipif != NULL); 19199 ASSERT(ilm->ilm_ill == NULL); 19200 sl = ilm->ilm_filter; 19201 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 19202 continue; 19203 ips.ipGroupSourceGroup = ilm->ilm_addr; 19204 for (i = 0; i < sl->sl_numsrc; i++) { 19205 if (!IN6_IS_ADDR_V4MAPPED( 19206 &sl->sl_addr[i])) 19207 continue; 19208 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 19209 ips.ipGroupSourceAddress); 19210 if (snmp_append_data2(mpctl->b_cont, 19211 &mp_tail, (char *)&ips, 19212 (int)sizeof (ips)) == 0) { 19213 ip1dbg(("ip_snmp_get_mib2_" 19214 "ip_group_src: failed to " 19215 "allocate %u bytes\n", 19216 (uint_t)sizeof (ips))); 19217 } 19218 } 19219 } 19220 } 19221 ILM_WALKER_RELE(ill); 19222 } 19223 rw_exit(&ipst->ips_ill_g_lock); 19224 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19225 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 19226 (int)optp->level, (int)optp->name, (int)optp->len)); 19227 qreply(q, mpctl); 19228 return (mp2ctl); 19229 } 19230 19231 /* IPv6 multicast filtered sources. */ 19232 static mblk_t * 19233 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19234 { 19235 struct opthdr *optp; 19236 mblk_t *mp2ctl; 19237 ill_t *ill; 19238 ilm_t *ilm; 19239 ipv6_grpsrc_t ips6; 19240 mblk_t *mp_tail = NULL; 19241 ill_walk_context_t ctx; 19242 zoneid_t zoneid; 19243 int i; 19244 slist_t *sl; 19245 19246 /* 19247 * make a copy of the original message 19248 */ 19249 mp2ctl = copymsg(mpctl); 19250 zoneid = Q_TO_CONN(q)->conn_zoneid; 19251 19252 /* ip6GroupMember table */ 19253 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19254 optp->level = MIB2_IP6; 19255 optp->name = EXPER_IP6_GROUP_SOURCES; 19256 19257 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19258 ill = ILL_START_WALK_V6(&ctx, ipst); 19259 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19260 ILM_WALKER_HOLD(ill); 19261 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 19262 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 19263 ASSERT(ilm->ilm_ipif == NULL); 19264 ASSERT(ilm->ilm_ill != NULL); 19265 sl = ilm->ilm_filter; 19266 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 19267 continue; 19268 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 19269 for (i = 0; i < sl->sl_numsrc; i++) { 19270 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 19271 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19272 (char *)&ips6, (int)sizeof (ips6))) { 19273 ip1dbg(("ip_snmp_get_mib2_ip6_" 19274 "group_src: failed to allocate " 19275 "%u bytes\n", 19276 (uint_t)sizeof (ips6))); 19277 } 19278 } 19279 } 19280 ILM_WALKER_RELE(ill); 19281 } 19282 rw_exit(&ipst->ips_ill_g_lock); 19283 19284 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19285 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 19286 (int)optp->level, (int)optp->name, (int)optp->len)); 19287 qreply(q, mpctl); 19288 return (mp2ctl); 19289 } 19290 19291 /* Multicast routing virtual interface table. */ 19292 static mblk_t * 19293 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19294 { 19295 struct opthdr *optp; 19296 mblk_t *mp2ctl; 19297 19298 /* 19299 * make a copy of the original message 19300 */ 19301 mp2ctl = copymsg(mpctl); 19302 19303 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19304 optp->level = EXPER_DVMRP; 19305 optp->name = EXPER_DVMRP_VIF; 19306 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 19307 ip0dbg(("ip_mroute_vif: failed\n")); 19308 } 19309 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19310 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 19311 (int)optp->level, (int)optp->name, (int)optp->len)); 19312 qreply(q, mpctl); 19313 return (mp2ctl); 19314 } 19315 19316 /* Multicast routing table. */ 19317 static mblk_t * 19318 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19319 { 19320 struct opthdr *optp; 19321 mblk_t *mp2ctl; 19322 19323 /* 19324 * make a copy of the original message 19325 */ 19326 mp2ctl = copymsg(mpctl); 19327 19328 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19329 optp->level = EXPER_DVMRP; 19330 optp->name = EXPER_DVMRP_MRT; 19331 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 19332 ip0dbg(("ip_mroute_mrt: failed\n")); 19333 } 19334 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19335 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 19336 (int)optp->level, (int)optp->name, (int)optp->len)); 19337 qreply(q, mpctl); 19338 return (mp2ctl); 19339 } 19340 19341 /* 19342 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 19343 * in one IRE walk. 19344 */ 19345 static mblk_t * 19346 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19347 { 19348 struct opthdr *optp; 19349 mblk_t *mp2ctl; /* Returned */ 19350 mblk_t *mp3ctl; /* nettomedia */ 19351 mblk_t *mp4ctl; /* routeattrs */ 19352 iproutedata_t ird; 19353 zoneid_t zoneid; 19354 19355 /* 19356 * make copies of the original message 19357 * - mp2ctl is returned unchanged to the caller for his use 19358 * - mpctl is sent upstream as ipRouteEntryTable 19359 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 19360 * - mp4ctl is sent upstream as ipRouteAttributeTable 19361 */ 19362 mp2ctl = copymsg(mpctl); 19363 mp3ctl = copymsg(mpctl); 19364 mp4ctl = copymsg(mpctl); 19365 if (mp3ctl == NULL || mp4ctl == NULL) { 19366 freemsg(mp4ctl); 19367 freemsg(mp3ctl); 19368 freemsg(mp2ctl); 19369 freemsg(mpctl); 19370 return (NULL); 19371 } 19372 19373 bzero(&ird, sizeof (ird)); 19374 19375 ird.ird_route.lp_head = mpctl->b_cont; 19376 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19377 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19378 19379 zoneid = Q_TO_CONN(q)->conn_zoneid; 19380 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 19381 19382 /* ipRouteEntryTable in mpctl */ 19383 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19384 optp->level = MIB2_IP; 19385 optp->name = MIB2_IP_ROUTE; 19386 optp->len = msgdsize(ird.ird_route.lp_head); 19387 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19388 (int)optp->level, (int)optp->name, (int)optp->len)); 19389 qreply(q, mpctl); 19390 19391 /* ipNetToMediaEntryTable in mp3ctl */ 19392 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19393 optp->level = MIB2_IP; 19394 optp->name = MIB2_IP_MEDIA; 19395 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19396 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19397 (int)optp->level, (int)optp->name, (int)optp->len)); 19398 qreply(q, mp3ctl); 19399 19400 /* ipRouteAttributeTable in mp4ctl */ 19401 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19402 optp->level = MIB2_IP; 19403 optp->name = EXPER_IP_RTATTR; 19404 optp->len = msgdsize(ird.ird_attrs.lp_head); 19405 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19406 (int)optp->level, (int)optp->name, (int)optp->len)); 19407 if (optp->len == 0) 19408 freemsg(mp4ctl); 19409 else 19410 qreply(q, mp4ctl); 19411 19412 return (mp2ctl); 19413 } 19414 19415 /* 19416 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 19417 * ipv6NetToMediaEntryTable in an NDP walk. 19418 */ 19419 static mblk_t * 19420 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19421 { 19422 struct opthdr *optp; 19423 mblk_t *mp2ctl; /* Returned */ 19424 mblk_t *mp3ctl; /* nettomedia */ 19425 mblk_t *mp4ctl; /* routeattrs */ 19426 iproutedata_t ird; 19427 zoneid_t zoneid; 19428 19429 /* 19430 * make copies of the original message 19431 * - mp2ctl is returned unchanged to the caller for his use 19432 * - mpctl is sent upstream as ipv6RouteEntryTable 19433 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 19434 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 19435 */ 19436 mp2ctl = copymsg(mpctl); 19437 mp3ctl = copymsg(mpctl); 19438 mp4ctl = copymsg(mpctl); 19439 if (mp3ctl == NULL || mp4ctl == NULL) { 19440 freemsg(mp4ctl); 19441 freemsg(mp3ctl); 19442 freemsg(mp2ctl); 19443 freemsg(mpctl); 19444 return (NULL); 19445 } 19446 19447 bzero(&ird, sizeof (ird)); 19448 19449 ird.ird_route.lp_head = mpctl->b_cont; 19450 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19451 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19452 19453 zoneid = Q_TO_CONN(q)->conn_zoneid; 19454 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 19455 19456 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19457 optp->level = MIB2_IP6; 19458 optp->name = MIB2_IP6_ROUTE; 19459 optp->len = msgdsize(ird.ird_route.lp_head); 19460 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19461 (int)optp->level, (int)optp->name, (int)optp->len)); 19462 qreply(q, mpctl); 19463 19464 /* ipv6NetToMediaEntryTable in mp3ctl */ 19465 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 19466 19467 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19468 optp->level = MIB2_IP6; 19469 optp->name = MIB2_IP6_MEDIA; 19470 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19471 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19472 (int)optp->level, (int)optp->name, (int)optp->len)); 19473 qreply(q, mp3ctl); 19474 19475 /* ipv6RouteAttributeTable in mp4ctl */ 19476 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19477 optp->level = MIB2_IP6; 19478 optp->name = EXPER_IP_RTATTR; 19479 optp->len = msgdsize(ird.ird_attrs.lp_head); 19480 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19481 (int)optp->level, (int)optp->name, (int)optp->len)); 19482 if (optp->len == 0) 19483 freemsg(mp4ctl); 19484 else 19485 qreply(q, mp4ctl); 19486 19487 return (mp2ctl); 19488 } 19489 19490 /* 19491 * IPv6 mib: One per ill 19492 */ 19493 static mblk_t * 19494 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19495 { 19496 struct opthdr *optp; 19497 mblk_t *mp2ctl; 19498 ill_t *ill; 19499 ill_walk_context_t ctx; 19500 mblk_t *mp_tail = NULL; 19501 19502 /* 19503 * Make a copy of the original message 19504 */ 19505 mp2ctl = copymsg(mpctl); 19506 19507 /* fixed length IPv6 structure ... */ 19508 19509 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19510 optp->level = MIB2_IP6; 19511 optp->name = 0; 19512 /* Include "unknown interface" ip6_mib */ 19513 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 19514 ipst->ips_ip6_mib.ipIfStatsIfIndex = 19515 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 19516 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 19517 ipst->ips_ipv6_forward ? 1 : 2); 19518 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 19519 ipst->ips_ipv6_def_hops); 19520 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 19521 sizeof (mib2_ipIfStatsEntry_t)); 19522 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 19523 sizeof (mib2_ipv6AddrEntry_t)); 19524 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 19525 sizeof (mib2_ipv6RouteEntry_t)); 19526 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 19527 sizeof (mib2_ipv6NetToMediaEntry_t)); 19528 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 19529 sizeof (ipv6_member_t)); 19530 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 19531 sizeof (ipv6_grpsrc_t)); 19532 19533 /* 19534 * Synchronize 64- and 32-bit counters 19535 */ 19536 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 19537 ipIfStatsHCInReceives); 19538 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 19539 ipIfStatsHCInDelivers); 19540 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 19541 ipIfStatsHCOutRequests); 19542 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 19543 ipIfStatsHCOutForwDatagrams); 19544 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 19545 ipIfStatsHCOutMcastPkts); 19546 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 19547 ipIfStatsHCInMcastPkts); 19548 19549 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19550 (char *)&ipst->ips_ip6_mib, (int)sizeof (ipst->ips_ip6_mib))) { 19551 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 19552 (uint_t)sizeof (ipst->ips_ip6_mib))); 19553 } 19554 19555 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19556 ill = ILL_START_WALK_V6(&ctx, ipst); 19557 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19558 ill->ill_ip_mib->ipIfStatsIfIndex = 19559 ill->ill_phyint->phyint_ifindex; 19560 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 19561 ipst->ips_ipv6_forward ? 1 : 2); 19562 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 19563 ill->ill_max_hops); 19564 19565 /* 19566 * Synchronize 64- and 32-bit counters 19567 */ 19568 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 19569 ipIfStatsHCInReceives); 19570 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 19571 ipIfStatsHCInDelivers); 19572 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 19573 ipIfStatsHCOutRequests); 19574 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 19575 ipIfStatsHCOutForwDatagrams); 19576 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 19577 ipIfStatsHCOutMcastPkts); 19578 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 19579 ipIfStatsHCInMcastPkts); 19580 19581 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19582 (char *)ill->ill_ip_mib, 19583 (int)sizeof (*ill->ill_ip_mib))) { 19584 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 19585 "%u bytes\n", (uint_t)sizeof (*ill->ill_ip_mib))); 19586 } 19587 } 19588 rw_exit(&ipst->ips_ill_g_lock); 19589 19590 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19591 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 19592 (int)optp->level, (int)optp->name, (int)optp->len)); 19593 qreply(q, mpctl); 19594 return (mp2ctl); 19595 } 19596 19597 /* 19598 * ICMPv6 mib: One per ill 19599 */ 19600 static mblk_t * 19601 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19602 { 19603 struct opthdr *optp; 19604 mblk_t *mp2ctl; 19605 ill_t *ill; 19606 ill_walk_context_t ctx; 19607 mblk_t *mp_tail = NULL; 19608 /* 19609 * Make a copy of the original message 19610 */ 19611 mp2ctl = copymsg(mpctl); 19612 19613 /* fixed length ICMPv6 structure ... */ 19614 19615 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19616 optp->level = MIB2_ICMP6; 19617 optp->name = 0; 19618 /* Include "unknown interface" icmp6_mib */ 19619 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 19620 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 19621 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 19622 sizeof (mib2_ipv6IfIcmpEntry_t); 19623 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19624 (char *)&ipst->ips_icmp6_mib, 19625 (int)sizeof (ipst->ips_icmp6_mib))) { 19626 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 19627 (uint_t)sizeof (ipst->ips_icmp6_mib))); 19628 } 19629 19630 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19631 ill = ILL_START_WALK_V6(&ctx, ipst); 19632 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19633 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 19634 ill->ill_phyint->phyint_ifindex; 19635 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19636 (char *)ill->ill_icmp6_mib, 19637 (int)sizeof (*ill->ill_icmp6_mib))) { 19638 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 19639 "%u bytes\n", 19640 (uint_t)sizeof (*ill->ill_icmp6_mib))); 19641 } 19642 } 19643 rw_exit(&ipst->ips_ill_g_lock); 19644 19645 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19646 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 19647 (int)optp->level, (int)optp->name, (int)optp->len)); 19648 qreply(q, mpctl); 19649 return (mp2ctl); 19650 } 19651 19652 /* 19653 * ire_walk routine to create both ipRouteEntryTable and 19654 * ipRouteAttributeTable in one IRE walk 19655 */ 19656 static void 19657 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 19658 { 19659 ill_t *ill; 19660 ipif_t *ipif; 19661 mib2_ipRouteEntry_t *re; 19662 mib2_ipAttributeEntry_t *iae, *iaeptr; 19663 ipaddr_t gw_addr; 19664 tsol_ire_gw_secattr_t *attrp; 19665 tsol_gc_t *gc = NULL; 19666 tsol_gcgrp_t *gcgrp = NULL; 19667 uint_t sacnt = 0; 19668 int i; 19669 19670 ASSERT(ire->ire_ipversion == IPV4_VERSION); 19671 19672 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19673 return; 19674 19675 if ((attrp = ire->ire_gw_secattr) != NULL) { 19676 mutex_enter(&attrp->igsa_lock); 19677 if ((gc = attrp->igsa_gc) != NULL) { 19678 gcgrp = gc->gc_grp; 19679 ASSERT(gcgrp != NULL); 19680 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19681 sacnt = 1; 19682 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19683 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19684 gc = gcgrp->gcgrp_head; 19685 sacnt = gcgrp->gcgrp_count; 19686 } 19687 mutex_exit(&attrp->igsa_lock); 19688 19689 /* do nothing if there's no gc to report */ 19690 if (gc == NULL) { 19691 ASSERT(sacnt == 0); 19692 if (gcgrp != NULL) { 19693 /* we might as well drop the lock now */ 19694 rw_exit(&gcgrp->gcgrp_rwlock); 19695 gcgrp = NULL; 19696 } 19697 attrp = NULL; 19698 } 19699 19700 ASSERT(gc == NULL || (gcgrp != NULL && 19701 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19702 } 19703 ASSERT(sacnt == 0 || gc != NULL); 19704 19705 if (sacnt != 0 && 19706 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19707 kmem_free(re, sizeof (*re)); 19708 rw_exit(&gcgrp->gcgrp_rwlock); 19709 return; 19710 } 19711 19712 /* 19713 * Return all IRE types for route table... let caller pick and choose 19714 */ 19715 re->ipRouteDest = ire->ire_addr; 19716 ipif = ire->ire_ipif; 19717 re->ipRouteIfIndex.o_length = 0; 19718 if (ire->ire_type == IRE_CACHE) { 19719 ill = (ill_t *)ire->ire_stq->q_ptr; 19720 re->ipRouteIfIndex.o_length = 19721 ill->ill_name_length == 0 ? 0 : 19722 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19723 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 19724 re->ipRouteIfIndex.o_length); 19725 } else if (ipif != NULL) { 19726 ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH); 19727 re->ipRouteIfIndex.o_length = 19728 mi_strlen(re->ipRouteIfIndex.o_bytes); 19729 } 19730 re->ipRouteMetric1 = -1; 19731 re->ipRouteMetric2 = -1; 19732 re->ipRouteMetric3 = -1; 19733 re->ipRouteMetric4 = -1; 19734 19735 gw_addr = ire->ire_gateway_addr; 19736 19737 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 19738 re->ipRouteNextHop = ire->ire_src_addr; 19739 else 19740 re->ipRouteNextHop = gw_addr; 19741 /* indirect(4), direct(3), or invalid(2) */ 19742 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19743 re->ipRouteType = 2; 19744 else 19745 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 19746 re->ipRouteProto = -1; 19747 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 19748 re->ipRouteMask = ire->ire_mask; 19749 re->ipRouteMetric5 = -1; 19750 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 19751 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 19752 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19753 re->ipRouteInfo.re_ref = ire->ire_refcnt; 19754 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 19755 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19756 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19757 re->ipRouteInfo.re_flags = ire->ire_flags; 19758 19759 if (ire->ire_flags & RTF_DYNAMIC) { 19760 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19761 } else { 19762 re->ipRouteInfo.re_ire_type = ire->ire_type; 19763 } 19764 19765 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19766 (char *)re, (int)sizeof (*re))) { 19767 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19768 (uint_t)sizeof (*re))); 19769 } 19770 19771 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19772 iaeptr->iae_routeidx = ird->ird_idx; 19773 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19774 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19775 } 19776 19777 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19778 (char *)iae, sacnt * sizeof (*iae))) { 19779 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19780 (unsigned)(sacnt * sizeof (*iae)))); 19781 } 19782 19783 /* bump route index for next pass */ 19784 ird->ird_idx++; 19785 19786 kmem_free(re, sizeof (*re)); 19787 if (sacnt != 0) 19788 kmem_free(iae, sacnt * sizeof (*iae)); 19789 19790 if (gcgrp != NULL) 19791 rw_exit(&gcgrp->gcgrp_rwlock); 19792 } 19793 19794 /* 19795 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 19796 */ 19797 static void 19798 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 19799 { 19800 ill_t *ill; 19801 ipif_t *ipif; 19802 mib2_ipv6RouteEntry_t *re; 19803 mib2_ipAttributeEntry_t *iae, *iaeptr; 19804 in6_addr_t gw_addr_v6; 19805 tsol_ire_gw_secattr_t *attrp; 19806 tsol_gc_t *gc = NULL; 19807 tsol_gcgrp_t *gcgrp = NULL; 19808 uint_t sacnt = 0; 19809 int i; 19810 19811 ASSERT(ire->ire_ipversion == IPV6_VERSION); 19812 19813 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19814 return; 19815 19816 if ((attrp = ire->ire_gw_secattr) != NULL) { 19817 mutex_enter(&attrp->igsa_lock); 19818 if ((gc = attrp->igsa_gc) != NULL) { 19819 gcgrp = gc->gc_grp; 19820 ASSERT(gcgrp != NULL); 19821 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19822 sacnt = 1; 19823 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19824 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19825 gc = gcgrp->gcgrp_head; 19826 sacnt = gcgrp->gcgrp_count; 19827 } 19828 mutex_exit(&attrp->igsa_lock); 19829 19830 /* do nothing if there's no gc to report */ 19831 if (gc == NULL) { 19832 ASSERT(sacnt == 0); 19833 if (gcgrp != NULL) { 19834 /* we might as well drop the lock now */ 19835 rw_exit(&gcgrp->gcgrp_rwlock); 19836 gcgrp = NULL; 19837 } 19838 attrp = NULL; 19839 } 19840 19841 ASSERT(gc == NULL || (gcgrp != NULL && 19842 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19843 } 19844 ASSERT(sacnt == 0 || gc != NULL); 19845 19846 if (sacnt != 0 && 19847 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19848 kmem_free(re, sizeof (*re)); 19849 rw_exit(&gcgrp->gcgrp_rwlock); 19850 return; 19851 } 19852 19853 /* 19854 * Return all IRE types for route table... let caller pick and choose 19855 */ 19856 re->ipv6RouteDest = ire->ire_addr_v6; 19857 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 19858 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 19859 re->ipv6RouteIfIndex.o_length = 0; 19860 ipif = ire->ire_ipif; 19861 if (ire->ire_type == IRE_CACHE) { 19862 ill = (ill_t *)ire->ire_stq->q_ptr; 19863 re->ipv6RouteIfIndex.o_length = 19864 ill->ill_name_length == 0 ? 0 : 19865 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19866 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 19867 re->ipv6RouteIfIndex.o_length); 19868 } else if (ipif != NULL) { 19869 ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH); 19870 re->ipv6RouteIfIndex.o_length = 19871 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 19872 } 19873 19874 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19875 19876 mutex_enter(&ire->ire_lock); 19877 gw_addr_v6 = ire->ire_gateway_addr_v6; 19878 mutex_exit(&ire->ire_lock); 19879 19880 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 19881 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 19882 else 19883 re->ipv6RouteNextHop = gw_addr_v6; 19884 19885 /* remote(4), local(3), or discard(2) */ 19886 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19887 re->ipv6RouteType = 2; 19888 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 19889 re->ipv6RouteType = 3; 19890 else 19891 re->ipv6RouteType = 4; 19892 19893 re->ipv6RouteProtocol = -1; 19894 re->ipv6RoutePolicy = 0; 19895 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 19896 re->ipv6RouteNextHopRDI = 0; 19897 re->ipv6RouteWeight = 0; 19898 re->ipv6RouteMetric = 0; 19899 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 19900 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 19901 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19902 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 19903 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19904 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19905 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 19906 re->ipv6RouteInfo.re_flags = ire->ire_flags; 19907 19908 if (ire->ire_flags & RTF_DYNAMIC) { 19909 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19910 } else { 19911 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 19912 } 19913 19914 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19915 (char *)re, (int)sizeof (*re))) { 19916 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19917 (uint_t)sizeof (*re))); 19918 } 19919 19920 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19921 iaeptr->iae_routeidx = ird->ird_idx; 19922 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19923 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19924 } 19925 19926 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19927 (char *)iae, sacnt * sizeof (*iae))) { 19928 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19929 (unsigned)(sacnt * sizeof (*iae)))); 19930 } 19931 19932 /* bump route index for next pass */ 19933 ird->ird_idx++; 19934 19935 kmem_free(re, sizeof (*re)); 19936 if (sacnt != 0) 19937 kmem_free(iae, sacnt * sizeof (*iae)); 19938 19939 if (gcgrp != NULL) 19940 rw_exit(&gcgrp->gcgrp_rwlock); 19941 } 19942 19943 /* 19944 * ndp_walk routine to create ipv6NetToMediaEntryTable 19945 */ 19946 static int 19947 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 19948 { 19949 ill_t *ill; 19950 mib2_ipv6NetToMediaEntry_t ntme; 19951 dl_unitdata_req_t *dl; 19952 19953 ill = nce->nce_ill; 19954 if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */ 19955 return (0); 19956 19957 /* 19958 * Neighbor cache entry attached to IRE with on-link 19959 * destination. 19960 */ 19961 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 19962 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 19963 if ((ill->ill_flags & ILLF_XRESOLV) && 19964 (nce->nce_res_mp != NULL)) { 19965 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 19966 ntme.ipv6NetToMediaPhysAddress.o_length = 19967 dl->dl_dest_addr_length; 19968 } else { 19969 ntme.ipv6NetToMediaPhysAddress.o_length = 19970 ill->ill_phys_addr_length; 19971 } 19972 if (nce->nce_res_mp != NULL) { 19973 bcopy((char *)nce->nce_res_mp->b_rptr + 19974 NCE_LL_ADDR_OFFSET(ill), 19975 ntme.ipv6NetToMediaPhysAddress.o_bytes, 19976 ntme.ipv6NetToMediaPhysAddress.o_length); 19977 } else { 19978 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 19979 ill->ill_phys_addr_length); 19980 } 19981 /* 19982 * Note: Returns ND_* states. Should be: 19983 * reachable(1), stale(2), delay(3), probe(4), 19984 * invalid(5), unknown(6) 19985 */ 19986 ntme.ipv6NetToMediaState = nce->nce_state; 19987 ntme.ipv6NetToMediaLastUpdated = 0; 19988 19989 /* other(1), dynamic(2), static(3), local(4) */ 19990 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 19991 ntme.ipv6NetToMediaType = 4; 19992 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 19993 ntme.ipv6NetToMediaType = 1; 19994 } else { 19995 ntme.ipv6NetToMediaType = 2; 19996 } 19997 19998 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 19999 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 20000 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 20001 (uint_t)sizeof (ntme))); 20002 } 20003 return (0); 20004 } 20005 20006 /* 20007 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 20008 */ 20009 /* ARGSUSED */ 20010 int 20011 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 20012 { 20013 switch (level) { 20014 case MIB2_IP: 20015 case MIB2_ICMP: 20016 switch (name) { 20017 default: 20018 break; 20019 } 20020 return (1); 20021 default: 20022 return (1); 20023 } 20024 } 20025 20026 /* 20027 * When there exists both a 64- and 32-bit counter of a particular type 20028 * (i.e., InReceives), only the 64-bit counters are added. 20029 */ 20030 void 20031 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 20032 { 20033 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 20034 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 20035 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 20036 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 20037 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 20038 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 20039 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 20040 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 20041 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 20042 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 20043 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 20044 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 20045 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 20046 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 20047 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 20048 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 20049 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 20050 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 20051 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 20052 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 20053 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 20054 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 20055 o2->ipIfStatsInWrongIPVersion); 20056 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 20057 o2->ipIfStatsInWrongIPVersion); 20058 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 20059 o2->ipIfStatsOutSwitchIPVersion); 20060 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 20061 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 20062 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 20063 o2->ipIfStatsHCInForwDatagrams); 20064 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 20065 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 20066 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 20067 o2->ipIfStatsHCOutForwDatagrams); 20068 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 20069 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 20070 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 20071 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 20072 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 20073 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 20074 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 20075 o2->ipIfStatsHCOutMcastOctets); 20076 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 20077 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 20078 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 20079 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 20080 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 20081 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 20082 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 20083 } 20084 20085 void 20086 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 20087 { 20088 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 20089 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 20090 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 20091 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 20092 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 20093 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 20094 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 20095 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 20096 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 20097 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 20098 o2->ipv6IfIcmpInRouterSolicits); 20099 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 20100 o2->ipv6IfIcmpInRouterAdvertisements); 20101 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 20102 o2->ipv6IfIcmpInNeighborSolicits); 20103 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 20104 o2->ipv6IfIcmpInNeighborAdvertisements); 20105 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 20106 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 20107 o2->ipv6IfIcmpInGroupMembQueries); 20108 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 20109 o2->ipv6IfIcmpInGroupMembResponses); 20110 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 20111 o2->ipv6IfIcmpInGroupMembReductions); 20112 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 20113 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 20114 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 20115 o2->ipv6IfIcmpOutDestUnreachs); 20116 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 20117 o2->ipv6IfIcmpOutAdminProhibs); 20118 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 20119 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 20120 o2->ipv6IfIcmpOutParmProblems); 20121 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 20122 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 20123 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 20124 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 20125 o2->ipv6IfIcmpOutRouterSolicits); 20126 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 20127 o2->ipv6IfIcmpOutRouterAdvertisements); 20128 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 20129 o2->ipv6IfIcmpOutNeighborSolicits); 20130 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 20131 o2->ipv6IfIcmpOutNeighborAdvertisements); 20132 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 20133 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 20134 o2->ipv6IfIcmpOutGroupMembQueries); 20135 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 20136 o2->ipv6IfIcmpOutGroupMembResponses); 20137 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 20138 o2->ipv6IfIcmpOutGroupMembReductions); 20139 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 20140 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 20141 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 20142 o2->ipv6IfIcmpInBadNeighborAdvertisements); 20143 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 20144 o2->ipv6IfIcmpInBadNeighborSolicitations); 20145 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 20146 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 20147 o2->ipv6IfIcmpInGroupMembTotal); 20148 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 20149 o2->ipv6IfIcmpInGroupMembBadQueries); 20150 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 20151 o2->ipv6IfIcmpInGroupMembBadReports); 20152 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 20153 o2->ipv6IfIcmpInGroupMembOurReports); 20154 } 20155 20156 /* 20157 * Called before the options are updated to check if this packet will 20158 * be source routed from here. 20159 * This routine assumes that the options are well formed i.e. that they 20160 * have already been checked. 20161 */ 20162 static boolean_t 20163 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 20164 { 20165 ipoptp_t opts; 20166 uchar_t *opt; 20167 uint8_t optval; 20168 uint8_t optlen; 20169 ipaddr_t dst; 20170 ire_t *ire; 20171 20172 if (IS_SIMPLE_IPH(ipha)) { 20173 ip2dbg(("not source routed\n")); 20174 return (B_FALSE); 20175 } 20176 dst = ipha->ipha_dst; 20177 for (optval = ipoptp_first(&opts, ipha); 20178 optval != IPOPT_EOL; 20179 optval = ipoptp_next(&opts)) { 20180 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 20181 opt = opts.ipoptp_cur; 20182 optlen = opts.ipoptp_len; 20183 ip2dbg(("ip_source_routed: opt %d, len %d\n", 20184 optval, optlen)); 20185 switch (optval) { 20186 uint32_t off; 20187 case IPOPT_SSRR: 20188 case IPOPT_LSRR: 20189 /* 20190 * If dst is one of our addresses and there are some 20191 * entries left in the source route return (true). 20192 */ 20193 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 20194 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 20195 if (ire == NULL) { 20196 ip2dbg(("ip_source_routed: not next" 20197 " source route 0x%x\n", 20198 ntohl(dst))); 20199 return (B_FALSE); 20200 } 20201 ire_refrele(ire); 20202 off = opt[IPOPT_OFFSET]; 20203 off--; 20204 if (optlen < IP_ADDR_LEN || 20205 off > optlen - IP_ADDR_LEN) { 20206 /* End of source route */ 20207 ip1dbg(("ip_source_routed: end of SR\n")); 20208 return (B_FALSE); 20209 } 20210 return (B_TRUE); 20211 } 20212 } 20213 ip2dbg(("not source routed\n")); 20214 return (B_FALSE); 20215 } 20216 20217 /* 20218 * Check if the packet contains any source route. 20219 */ 20220 static boolean_t 20221 ip_source_route_included(ipha_t *ipha) 20222 { 20223 ipoptp_t opts; 20224 uint8_t optval; 20225 20226 if (IS_SIMPLE_IPH(ipha)) 20227 return (B_FALSE); 20228 for (optval = ipoptp_first(&opts, ipha); 20229 optval != IPOPT_EOL; 20230 optval = ipoptp_next(&opts)) { 20231 switch (optval) { 20232 case IPOPT_SSRR: 20233 case IPOPT_LSRR: 20234 return (B_TRUE); 20235 } 20236 } 20237 return (B_FALSE); 20238 } 20239 20240 /* 20241 * Called when the IRE expiration timer fires. 20242 */ 20243 void 20244 ip_trash_timer_expire(void *args) 20245 { 20246 int flush_flag = 0; 20247 ire_expire_arg_t iea; 20248 ip_stack_t *ipst = (ip_stack_t *)args; 20249 20250 iea.iea_ipst = ipst; /* No netstack_hold */ 20251 20252 /* 20253 * ip_ire_expire_id is protected by ip_trash_timer_lock. 20254 * This lock makes sure that a new invocation of this function 20255 * that occurs due to an almost immediate timer firing will not 20256 * progress beyond this point until the current invocation is done 20257 */ 20258 mutex_enter(&ipst->ips_ip_trash_timer_lock); 20259 ipst->ips_ip_ire_expire_id = 0; 20260 mutex_exit(&ipst->ips_ip_trash_timer_lock); 20261 20262 /* Periodic timer */ 20263 if (ipst->ips_ip_ire_arp_time_elapsed >= 20264 ipst->ips_ip_ire_arp_interval) { 20265 /* 20266 * Remove all IRE_CACHE entries since they might 20267 * contain arp information. 20268 */ 20269 flush_flag |= FLUSH_ARP_TIME; 20270 ipst->ips_ip_ire_arp_time_elapsed = 0; 20271 IP_STAT(ipst, ip_ire_arp_timer_expired); 20272 } 20273 if (ipst->ips_ip_ire_rd_time_elapsed >= 20274 ipst->ips_ip_ire_redir_interval) { 20275 /* Remove all redirects */ 20276 flush_flag |= FLUSH_REDIRECT_TIME; 20277 ipst->ips_ip_ire_rd_time_elapsed = 0; 20278 IP_STAT(ipst, ip_ire_redirect_timer_expired); 20279 } 20280 if (ipst->ips_ip_ire_pmtu_time_elapsed >= 20281 ipst->ips_ip_ire_pathmtu_interval) { 20282 /* Increase path mtu */ 20283 flush_flag |= FLUSH_MTU_TIME; 20284 ipst->ips_ip_ire_pmtu_time_elapsed = 0; 20285 IP_STAT(ipst, ip_ire_pmtu_timer_expired); 20286 } 20287 20288 /* 20289 * Optimize for the case when there are no redirects in the 20290 * ftable, that is, no need to walk the ftable in that case. 20291 */ 20292 if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) { 20293 iea.iea_flush_flag = flush_flag; 20294 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire, 20295 (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 0, NULL, 20296 ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table, 20297 NULL, ALL_ZONES, ipst); 20298 } 20299 if ((flush_flag & FLUSH_REDIRECT_TIME) && 20300 ipst->ips_ip_redirect_cnt > 0) { 20301 iea.iea_flush_flag = flush_flag; 20302 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE, 20303 ire_expire, (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 20304 0, NULL, 0, NULL, NULL, ALL_ZONES, ipst); 20305 } 20306 if (flush_flag & FLUSH_MTU_TIME) { 20307 /* 20308 * Walk all IPv6 IRE's and update them 20309 * Note that ARP and redirect timers are not 20310 * needed since NUD handles stale entries. 20311 */ 20312 flush_flag = FLUSH_MTU_TIME; 20313 iea.iea_flush_flag = flush_flag; 20314 ire_walk_v6(ire_expire, (char *)(uintptr_t)&iea, 20315 ALL_ZONES, ipst); 20316 } 20317 20318 ipst->ips_ip_ire_arp_time_elapsed += ipst->ips_ip_timer_interval; 20319 ipst->ips_ip_ire_rd_time_elapsed += ipst->ips_ip_timer_interval; 20320 ipst->ips_ip_ire_pmtu_time_elapsed += ipst->ips_ip_timer_interval; 20321 20322 /* 20323 * Hold the lock to serialize timeout calls and prevent 20324 * stale values in ip_ire_expire_id. Otherwise it is possible 20325 * for the timer to fire and a new invocation of this function 20326 * to start before the return value of timeout has been stored 20327 * in ip_ire_expire_id by the current invocation. 20328 */ 20329 mutex_enter(&ipst->ips_ip_trash_timer_lock); 20330 ipst->ips_ip_ire_expire_id = timeout(ip_trash_timer_expire, 20331 (void *)ipst, MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 20332 mutex_exit(&ipst->ips_ip_trash_timer_lock); 20333 } 20334 20335 /* 20336 * Called by the memory allocator subsystem directly, when the system 20337 * is running low on memory. 20338 */ 20339 /* ARGSUSED */ 20340 void 20341 ip_trash_ire_reclaim(void *args) 20342 { 20343 netstack_handle_t nh; 20344 netstack_t *ns; 20345 20346 netstack_next_init(&nh); 20347 while ((ns = netstack_next(&nh)) != NULL) { 20348 ip_trash_ire_reclaim_stack(ns->netstack_ip); 20349 netstack_rele(ns); 20350 } 20351 netstack_next_fini(&nh); 20352 } 20353 20354 static void 20355 ip_trash_ire_reclaim_stack(ip_stack_t *ipst) 20356 { 20357 ire_cache_count_t icc; 20358 ire_cache_reclaim_t icr; 20359 ncc_cache_count_t ncc; 20360 nce_cache_reclaim_t ncr; 20361 uint_t delete_cnt; 20362 /* 20363 * Memory reclaim call back. 20364 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 20365 * Then, with a target of freeing 1/Nth of IRE_CACHE 20366 * entries, determine what fraction to free for 20367 * each category of IRE_CACHE entries giving absolute priority 20368 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 20369 * entry will be freed unless all offlink entries are freed). 20370 */ 20371 icc.icc_total = 0; 20372 icc.icc_unused = 0; 20373 icc.icc_offlink = 0; 20374 icc.icc_pmtu = 0; 20375 icc.icc_onlink = 0; 20376 ire_walk(ire_cache_count, (char *)&icc, ipst); 20377 20378 /* 20379 * Free NCEs for IPv6 like the onlink ires. 20380 */ 20381 ncc.ncc_total = 0; 20382 ncc.ncc_host = 0; 20383 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc, ipst); 20384 20385 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 20386 icc.icc_pmtu + icc.icc_onlink); 20387 delete_cnt = icc.icc_total/ipst->ips_ip_ire_reclaim_fraction; 20388 IP_STAT(ipst, ip_trash_ire_reclaim_calls); 20389 if (delete_cnt == 0) 20390 return; 20391 IP_STAT(ipst, ip_trash_ire_reclaim_success); 20392 /* Always delete all unused offlink entries */ 20393 icr.icr_ipst = ipst; 20394 icr.icr_unused = 1; 20395 if (delete_cnt <= icc.icc_unused) { 20396 /* 20397 * Only need to free unused entries. In other words, 20398 * there are enough unused entries to free to meet our 20399 * target number of freed ire cache entries. 20400 */ 20401 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 20402 ncr.ncr_host = 0; 20403 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 20404 /* 20405 * Only need to free unused entries, plus a fraction of offlink 20406 * entries. It follows from the first if statement that 20407 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 20408 */ 20409 delete_cnt -= icc.icc_unused; 20410 /* Round up # deleted by truncating fraction */ 20411 icr.icr_offlink = icc.icc_offlink / delete_cnt; 20412 icr.icr_pmtu = icr.icr_onlink = 0; 20413 ncr.ncr_host = 0; 20414 } else if (delete_cnt <= 20415 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 20416 /* 20417 * Free all unused and offlink entries, plus a fraction of 20418 * pmtu entries. It follows from the previous if statement 20419 * that icc_pmtu is non-zero, and that 20420 * delete_cnt != icc_unused + icc_offlink. 20421 */ 20422 icr.icr_offlink = 1; 20423 delete_cnt -= icc.icc_unused + icc.icc_offlink; 20424 /* Round up # deleted by truncating fraction */ 20425 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 20426 icr.icr_onlink = 0; 20427 ncr.ncr_host = 0; 20428 } else { 20429 /* 20430 * Free all unused, offlink, and pmtu entries, plus a fraction 20431 * of onlink entries. If we're here, then we know that 20432 * icc_onlink is non-zero, and that 20433 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 20434 */ 20435 icr.icr_offlink = icr.icr_pmtu = 1; 20436 delete_cnt -= icc.icc_unused + icc.icc_offlink + 20437 icc.icc_pmtu; 20438 /* Round up # deleted by truncating fraction */ 20439 icr.icr_onlink = icc.icc_onlink / delete_cnt; 20440 /* Using the same delete fraction as for onlink IREs */ 20441 ncr.ncr_host = ncc.ncc_host / delete_cnt; 20442 } 20443 #ifdef DEBUG 20444 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 20445 "fractions %d/%d/%d/%d\n", 20446 icc.icc_total/ipst->ips_ip_ire_reclaim_fraction, icc.icc_total, 20447 icc.icc_unused, icc.icc_offlink, 20448 icc.icc_pmtu, icc.icc_onlink, 20449 icr.icr_unused, icr.icr_offlink, 20450 icr.icr_pmtu, icr.icr_onlink)); 20451 #endif 20452 ire_walk(ire_cache_reclaim, (char *)&icr, ipst); 20453 if (ncr.ncr_host != 0) 20454 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 20455 (uchar_t *)&ncr, ipst); 20456 #ifdef DEBUG 20457 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 20458 icc.icc_pmtu = 0; icc.icc_onlink = 0; 20459 ire_walk(ire_cache_count, (char *)&icc, ipst); 20460 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 20461 icc.icc_total, icc.icc_unused, icc.icc_offlink, 20462 icc.icc_pmtu, icc.icc_onlink)); 20463 #endif 20464 } 20465 20466 /* 20467 * ip_unbind is called when a copy of an unbind request is received from the 20468 * upper level protocol. We remove this conn from any fanout hash list it is 20469 * on, and zero out the bind information. No reply is expected up above. 20470 */ 20471 void 20472 ip_unbind(conn_t *connp) 20473 { 20474 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 20475 20476 if (is_system_labeled() && connp->conn_anon_port) { 20477 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 20478 connp->conn_mlp_type, connp->conn_ulp, 20479 ntohs(connp->conn_lport), B_FALSE); 20480 connp->conn_anon_port = 0; 20481 } 20482 connp->conn_mlp_type = mlptSingle; 20483 20484 ipcl_hash_remove(connp); 20485 20486 } 20487 20488 /* 20489 * Write side put procedure. Outbound data, IOCTLs, responses from 20490 * resolvers, etc, come down through here. 20491 * 20492 * arg2 is always a queue_t *. 20493 * When that queue is an ill_t (i.e. q_next != NULL), then arg must be 20494 * the zoneid. 20495 * When that queue is not an ill_t, then arg must be a conn_t pointer. 20496 */ 20497 void 20498 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 20499 { 20500 ip_output_options(arg, mp, arg2, caller, &zero_info); 20501 } 20502 20503 void 20504 ip_output_options(void *arg, mblk_t *mp, void *arg2, int caller, 20505 ip_opt_info_t *infop) 20506 { 20507 conn_t *connp = NULL; 20508 queue_t *q = (queue_t *)arg2; 20509 ipha_t *ipha; 20510 #define rptr ((uchar_t *)ipha) 20511 ire_t *ire = NULL; 20512 ire_t *sctp_ire = NULL; 20513 uint32_t v_hlen_tos_len; 20514 ipaddr_t dst; 20515 mblk_t *first_mp = NULL; 20516 boolean_t mctl_present; 20517 ipsec_out_t *io; 20518 int match_flags; 20519 ill_t *attach_ill = NULL; 20520 /* Bind to IPIF_NOFAILOVER ill etc. */ 20521 ill_t *xmit_ill = NULL; /* IP_PKTINFO etc. */ 20522 ipif_t *dst_ipif; 20523 boolean_t multirt_need_resolve = B_FALSE; 20524 mblk_t *copy_mp = NULL; 20525 int err; 20526 zoneid_t zoneid; 20527 boolean_t need_decref = B_FALSE; 20528 boolean_t ignore_dontroute = B_FALSE; 20529 boolean_t ignore_nexthop = B_FALSE; 20530 boolean_t ip_nexthop = B_FALSE; 20531 ipaddr_t nexthop_addr; 20532 ip_stack_t *ipst; 20533 20534 #ifdef _BIG_ENDIAN 20535 #define V_HLEN (v_hlen_tos_len >> 24) 20536 #else 20537 #define V_HLEN (v_hlen_tos_len & 0xFF) 20538 #endif 20539 20540 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 20541 "ip_wput_start: q %p", q); 20542 20543 /* 20544 * ip_wput fast path 20545 */ 20546 20547 /* is packet from ARP ? */ 20548 if (q->q_next != NULL) { 20549 zoneid = (zoneid_t)(uintptr_t)arg; 20550 goto qnext; 20551 } 20552 20553 connp = (conn_t *)arg; 20554 ASSERT(connp != NULL); 20555 zoneid = connp->conn_zoneid; 20556 ipst = connp->conn_netstack->netstack_ip; 20557 ASSERT(ipst != NULL); 20558 20559 /* is queue flow controlled? */ 20560 if ((q->q_first != NULL || connp->conn_draining) && 20561 (caller == IP_WPUT)) { 20562 ASSERT(!need_decref); 20563 ASSERT(!IP_FLOW_CONTROLLED_ULP(connp->conn_ulp)); 20564 (void) putq(q, mp); 20565 return; 20566 } 20567 20568 /* Multidata transmit? */ 20569 if (DB_TYPE(mp) == M_MULTIDATA) { 20570 /* 20571 * We should never get here, since all Multidata messages 20572 * originating from tcp should have been directed over to 20573 * tcp_multisend() in the first place. 20574 */ 20575 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20576 freemsg(mp); 20577 return; 20578 } else if (DB_TYPE(mp) != M_DATA) 20579 goto notdata; 20580 20581 if (mp->b_flag & MSGHASREF) { 20582 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20583 mp->b_flag &= ~MSGHASREF; 20584 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 20585 need_decref = B_TRUE; 20586 } 20587 ipha = (ipha_t *)mp->b_rptr; 20588 20589 /* is IP header non-aligned or mblk smaller than basic IP header */ 20590 #ifndef SAFETY_BEFORE_SPEED 20591 if (!OK_32PTR(rptr) || 20592 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 20593 goto hdrtoosmall; 20594 #endif 20595 20596 ASSERT(OK_32PTR(ipha)); 20597 20598 /* 20599 * This function assumes that mp points to an IPv4 packet. If it's the 20600 * wrong version, we'll catch it again in ip_output_v6. 20601 * 20602 * Note that this is *only* locally-generated output here, and never 20603 * forwarded data, and that we need to deal only with transports that 20604 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 20605 * label.) 20606 */ 20607 if (is_system_labeled() && 20608 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 20609 !connp->conn_ulp_labeled) { 20610 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 20611 connp->conn_mac_exempt, ipst); 20612 ipha = (ipha_t *)mp->b_rptr; 20613 if (err != 0) { 20614 first_mp = mp; 20615 if (err == EINVAL) 20616 goto icmp_parameter_problem; 20617 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 20618 goto discard_pkt; 20619 } 20620 } 20621 20622 ASSERT(infop != NULL); 20623 20624 if (infop->ip_opt_flags & IP_VERIFY_SRC) { 20625 /* 20626 * IP_PKTINFO ancillary option is present. 20627 * IPCL_ZONEID is used to honor IP_ALLZONES option which 20628 * allows using address of any zone as the source address. 20629 */ 20630 ire = ire_ctable_lookup(ipha->ipha_src, 0, 20631 (IRE_LOCAL|IRE_LOOPBACK), NULL, IPCL_ZONEID(connp), 20632 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 20633 if (ire == NULL) 20634 goto drop_pkt; 20635 ire_refrele(ire); 20636 ire = NULL; 20637 } 20638 20639 /* 20640 * IP_DONTFAILOVER_IF and IP_BOUND_IF have precedence over ill index 20641 * passed in IP_PKTINFO. 20642 */ 20643 if (infop->ip_opt_ill_index != 0 && 20644 connp->conn_outgoing_ill == NULL && 20645 connp->conn_nofailover_ill == NULL) { 20646 20647 xmit_ill = ill_lookup_on_ifindex( 20648 infop->ip_opt_ill_index, B_FALSE, NULL, NULL, NULL, NULL, 20649 ipst); 20650 20651 if (xmit_ill == NULL || IS_VNI(xmit_ill)) 20652 goto drop_pkt; 20653 /* 20654 * check that there is an ipif belonging 20655 * to our zone. IPCL_ZONEID is not used because 20656 * IP_ALLZONES option is valid only when the ill is 20657 * accessible from all zones i.e has a valid ipif in 20658 * all zones. 20659 */ 20660 if (!ipif_lookup_zoneid_group(xmit_ill, zoneid, 0, NULL)) { 20661 goto drop_pkt; 20662 } 20663 } 20664 20665 /* 20666 * If there is a policy, try to attach an ipsec_out in 20667 * the front. At the end, first_mp either points to a 20668 * M_DATA message or IPSEC_OUT message linked to a 20669 * M_DATA message. We have to do it now as we might 20670 * lose the "conn" if we go through ip_newroute. 20671 */ 20672 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 20673 if (((mp = ipsec_attach_ipsec_out(&mp, connp, NULL, 20674 ipha->ipha_protocol, ipst->ips_netstack)) == NULL)) { 20675 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20676 if (need_decref) 20677 CONN_DEC_REF(connp); 20678 return; 20679 } else { 20680 ASSERT(mp->b_datap->db_type == M_CTL); 20681 first_mp = mp; 20682 mp = mp->b_cont; 20683 mctl_present = B_TRUE; 20684 } 20685 } else { 20686 first_mp = mp; 20687 mctl_present = B_FALSE; 20688 } 20689 20690 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20691 20692 /* is wrong version or IP options present */ 20693 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 20694 goto version_hdrlen_check; 20695 dst = ipha->ipha_dst; 20696 20697 if (connp->conn_nofailover_ill != NULL) { 20698 attach_ill = conn_get_held_ill(connp, 20699 &connp->conn_nofailover_ill, &err); 20700 if (err == ILL_LOOKUP_FAILED) { 20701 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20702 if (need_decref) 20703 CONN_DEC_REF(connp); 20704 freemsg(first_mp); 20705 return; 20706 } 20707 } 20708 20709 /* If IP_BOUND_IF has been set, use that ill. */ 20710 if (connp->conn_outgoing_ill != NULL) { 20711 xmit_ill = conn_get_held_ill(connp, 20712 &connp->conn_outgoing_ill, &err); 20713 if (err == ILL_LOOKUP_FAILED) 20714 goto drop_pkt; 20715 20716 goto send_from_ill; 20717 } 20718 20719 /* is packet multicast? */ 20720 if (CLASSD(dst)) 20721 goto multicast; 20722 20723 /* 20724 * If xmit_ill is set above due to index passed in ip_pkt_info. It 20725 * takes precedence over conn_dontroute and conn_nexthop_set 20726 */ 20727 if (xmit_ill != NULL) 20728 goto send_from_ill; 20729 20730 if (connp->conn_dontroute || connp->conn_nexthop_set) { 20731 /* 20732 * If the destination is a broadcast, local, or loopback 20733 * address, SO_DONTROUTE and IP_NEXTHOP go through the 20734 * standard path. 20735 */ 20736 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20737 if ((ire == NULL) || (ire->ire_type & 20738 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK)) == 0) { 20739 if (ire != NULL) { 20740 ire_refrele(ire); 20741 /* No more access to ire */ 20742 ire = NULL; 20743 } 20744 /* 20745 * bypass routing checks and go directly to interface. 20746 */ 20747 if (connp->conn_dontroute) 20748 goto dontroute; 20749 20750 ASSERT(connp->conn_nexthop_set); 20751 ip_nexthop = B_TRUE; 20752 nexthop_addr = connp->conn_nexthop_v4; 20753 goto send_from_ill; 20754 } 20755 20756 /* Must be a broadcast, a loopback or a local ire */ 20757 ire_refrele(ire); 20758 /* No more access to ire */ 20759 ire = NULL; 20760 } 20761 20762 if (attach_ill != NULL) 20763 goto send_from_ill; 20764 20765 /* 20766 * We cache IRE_CACHEs to avoid lookups. We don't do 20767 * this for the tcp global queue and listen end point 20768 * as it does not really have a real destination to 20769 * talk to. This is also true for SCTP. 20770 */ 20771 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 20772 !connp->conn_fully_bound) { 20773 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20774 if (ire == NULL) 20775 goto noirefound; 20776 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20777 "ip_wput_end: q %p (%S)", q, "end"); 20778 20779 /* 20780 * Check if the ire has the RTF_MULTIRT flag, inherited 20781 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20782 */ 20783 if (ire->ire_flags & RTF_MULTIRT) { 20784 20785 /* 20786 * Force the TTL of multirouted packets if required. 20787 * The TTL of such packets is bounded by the 20788 * ip_multirt_ttl ndd variable. 20789 */ 20790 if ((ipst->ips_ip_multirt_ttl > 0) && 20791 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20792 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20793 "(was %d), dst 0x%08x\n", 20794 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20795 ntohl(ire->ire_addr))); 20796 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20797 } 20798 /* 20799 * We look at this point if there are pending 20800 * unresolved routes. ire_multirt_resolvable() 20801 * checks in O(n) that all IRE_OFFSUBNET ire 20802 * entries for the packet's destination and 20803 * flagged RTF_MULTIRT are currently resolved. 20804 * If some remain unresolved, we make a copy 20805 * of the current message. It will be used 20806 * to initiate additional route resolutions. 20807 */ 20808 multirt_need_resolve = 20809 ire_multirt_need_resolve(ire->ire_addr, 20810 MBLK_GETLABEL(first_mp), ipst); 20811 ip2dbg(("ip_wput[TCP]: ire %p, " 20812 "multirt_need_resolve %d, first_mp %p\n", 20813 (void *)ire, multirt_need_resolve, 20814 (void *)first_mp)); 20815 if (multirt_need_resolve) { 20816 copy_mp = copymsg(first_mp); 20817 if (copy_mp != NULL) { 20818 MULTIRT_DEBUG_TAG(copy_mp); 20819 } 20820 } 20821 } 20822 20823 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20824 20825 /* 20826 * Try to resolve another multiroute if 20827 * ire_multirt_need_resolve() deemed it necessary. 20828 */ 20829 if (copy_mp != NULL) 20830 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20831 if (need_decref) 20832 CONN_DEC_REF(connp); 20833 return; 20834 } 20835 20836 /* 20837 * Access to conn_ire_cache. (protected by conn_lock) 20838 * 20839 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 20840 * the ire bucket lock here to check for CONDEMNED as it is okay to 20841 * send a packet or two with the IRE_CACHE that is going away. 20842 * Access to the ire requires an ire refhold on the ire prior to 20843 * its use since an interface unplumb thread may delete the cached 20844 * ire and release the refhold at any time. 20845 * 20846 * Caching an ire in the conn_ire_cache 20847 * 20848 * o Caching an ire pointer in the conn requires a strict check for 20849 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 20850 * ires before cleaning up the conns. So the caching of an ire pointer 20851 * in the conn is done after making sure under the bucket lock that the 20852 * ire has not yet been marked CONDEMNED. Otherwise we will end up 20853 * caching an ire after the unplumb thread has cleaned up the conn. 20854 * If the conn does not send a packet subsequently the unplumb thread 20855 * will be hanging waiting for the ire count to drop to zero. 20856 * 20857 * o We also need to atomically test for a null conn_ire_cache and 20858 * set the conn_ire_cache under the the protection of the conn_lock 20859 * to avoid races among concurrent threads trying to simultaneously 20860 * cache an ire in the conn_ire_cache. 20861 */ 20862 mutex_enter(&connp->conn_lock); 20863 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 20864 20865 if (ire != NULL && ire->ire_addr == dst && 20866 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20867 20868 IRE_REFHOLD(ire); 20869 mutex_exit(&connp->conn_lock); 20870 20871 } else { 20872 boolean_t cached = B_FALSE; 20873 connp->conn_ire_cache = NULL; 20874 mutex_exit(&connp->conn_lock); 20875 /* Release the old ire */ 20876 if (ire != NULL && sctp_ire == NULL) 20877 IRE_REFRELE_NOTR(ire); 20878 20879 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20880 if (ire == NULL) 20881 goto noirefound; 20882 IRE_REFHOLD_NOTR(ire); 20883 20884 mutex_enter(&connp->conn_lock); 20885 if (CONN_CACHE_IRE(connp) && connp->conn_ire_cache == NULL) { 20886 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 20887 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20888 if (connp->conn_ulp == IPPROTO_TCP) 20889 TCP_CHECK_IREINFO(connp->conn_tcp, ire); 20890 connp->conn_ire_cache = ire; 20891 cached = B_TRUE; 20892 } 20893 rw_exit(&ire->ire_bucket->irb_lock); 20894 } 20895 mutex_exit(&connp->conn_lock); 20896 20897 /* 20898 * We can continue to use the ire but since it was 20899 * not cached, we should drop the extra reference. 20900 */ 20901 if (!cached) 20902 IRE_REFRELE_NOTR(ire); 20903 } 20904 20905 20906 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20907 "ip_wput_end: q %p (%S)", q, "end"); 20908 20909 /* 20910 * Check if the ire has the RTF_MULTIRT flag, inherited 20911 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20912 */ 20913 if (ire->ire_flags & RTF_MULTIRT) { 20914 20915 /* 20916 * Force the TTL of multirouted packets if required. 20917 * The TTL of such packets is bounded by the 20918 * ip_multirt_ttl ndd variable. 20919 */ 20920 if ((ipst->ips_ip_multirt_ttl > 0) && 20921 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20922 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20923 "(was %d), dst 0x%08x\n", 20924 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20925 ntohl(ire->ire_addr))); 20926 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20927 } 20928 20929 /* 20930 * At this point, we check to see if there are any pending 20931 * unresolved routes. ire_multirt_resolvable() 20932 * checks in O(n) that all IRE_OFFSUBNET ire 20933 * entries for the packet's destination and 20934 * flagged RTF_MULTIRT are currently resolved. 20935 * If some remain unresolved, we make a copy 20936 * of the current message. It will be used 20937 * to initiate additional route resolutions. 20938 */ 20939 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 20940 MBLK_GETLABEL(first_mp), ipst); 20941 ip2dbg(("ip_wput[not TCP]: ire %p, " 20942 "multirt_need_resolve %d, first_mp %p\n", 20943 (void *)ire, multirt_need_resolve, (void *)first_mp)); 20944 if (multirt_need_resolve) { 20945 copy_mp = copymsg(first_mp); 20946 if (copy_mp != NULL) { 20947 MULTIRT_DEBUG_TAG(copy_mp); 20948 } 20949 } 20950 } 20951 20952 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20953 20954 /* 20955 * Try to resolve another multiroute if 20956 * ire_multirt_resolvable() deemed it necessary 20957 */ 20958 if (copy_mp != NULL) 20959 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20960 if (need_decref) 20961 CONN_DEC_REF(connp); 20962 return; 20963 20964 qnext: 20965 /* 20966 * Upper Level Protocols pass down complete IP datagrams 20967 * as M_DATA messages. Everything else is a sideshow. 20968 * 20969 * 1) We could be re-entering ip_wput because of ip_neworute 20970 * in which case we could have a IPSEC_OUT message. We 20971 * need to pass through ip_wput like other datagrams and 20972 * hence cannot branch to ip_wput_nondata. 20973 * 20974 * 2) ARP, AH, ESP, and other clients who are on the module 20975 * instance of IP stream, give us something to deal with. 20976 * We will handle AH and ESP here and rest in ip_wput_nondata. 20977 * 20978 * 3) ICMP replies also could come here. 20979 */ 20980 ipst = ILLQ_TO_IPST(q); 20981 20982 if (DB_TYPE(mp) != M_DATA) { 20983 notdata: 20984 if (DB_TYPE(mp) == M_CTL) { 20985 /* 20986 * M_CTL messages are used by ARP, AH and ESP to 20987 * communicate with IP. We deal with IPSEC_IN and 20988 * IPSEC_OUT here. ip_wput_nondata handles other 20989 * cases. 20990 */ 20991 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 20992 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 20993 first_mp = mp->b_cont; 20994 first_mp->b_flag &= ~MSGHASREF; 20995 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20996 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 20997 CONN_DEC_REF(connp); 20998 connp = NULL; 20999 } 21000 if (ii->ipsec_info_type == IPSEC_IN) { 21001 /* 21002 * Either this message goes back to 21003 * IPsec for further processing or to 21004 * ULP after policy checks. 21005 */ 21006 ip_fanout_proto_again(mp, NULL, NULL, NULL); 21007 return; 21008 } else if (ii->ipsec_info_type == IPSEC_OUT) { 21009 io = (ipsec_out_t *)ii; 21010 if (io->ipsec_out_proc_begin) { 21011 /* 21012 * IPsec processing has already started. 21013 * Complete it. 21014 * IPQoS notes: We don't care what is 21015 * in ipsec_out_ill_index since this 21016 * won't be processed for IPQoS policies 21017 * in ipsec_out_process. 21018 */ 21019 ipsec_out_process(q, mp, NULL, 21020 io->ipsec_out_ill_index); 21021 return; 21022 } else { 21023 connp = (q->q_next != NULL) ? 21024 NULL : Q_TO_CONN(q); 21025 first_mp = mp; 21026 mp = mp->b_cont; 21027 mctl_present = B_TRUE; 21028 } 21029 zoneid = io->ipsec_out_zoneid; 21030 ASSERT(zoneid != ALL_ZONES); 21031 } else if (ii->ipsec_info_type == IPSEC_CTL) { 21032 /* 21033 * It's an IPsec control message requesting 21034 * an SADB update to be sent to the IPsec 21035 * hardware acceleration capable ills. 21036 */ 21037 ipsec_ctl_t *ipsec_ctl = 21038 (ipsec_ctl_t *)mp->b_rptr; 21039 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 21040 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 21041 mblk_t *cmp = mp->b_cont; 21042 21043 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 21044 ASSERT(cmp != NULL); 21045 21046 freeb(mp); 21047 ill_ipsec_capab_send_all(satype, cmp, sa, 21048 ipst->ips_netstack); 21049 return; 21050 } else { 21051 /* 21052 * This must be ARP or special TSOL signaling. 21053 */ 21054 ip_wput_nondata(NULL, q, mp, NULL); 21055 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21056 "ip_wput_end: q %p (%S)", q, "nondata"); 21057 return; 21058 } 21059 } else { 21060 /* 21061 * This must be non-(ARP/AH/ESP) messages. 21062 */ 21063 ASSERT(!need_decref); 21064 ip_wput_nondata(NULL, q, mp, NULL); 21065 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21066 "ip_wput_end: q %p (%S)", q, "nondata"); 21067 return; 21068 } 21069 } else { 21070 first_mp = mp; 21071 mctl_present = B_FALSE; 21072 } 21073 21074 ASSERT(first_mp != NULL); 21075 /* 21076 * ICMP echo replies attach an ipsec_out and set ipsec_out_attach_if 21077 * to make sure that this packet goes out on the same interface it 21078 * came in. We handle that here. 21079 */ 21080 if (mctl_present) { 21081 uint_t ifindex; 21082 21083 io = (ipsec_out_t *)first_mp->b_rptr; 21084 if (io->ipsec_out_attach_if || io->ipsec_out_ip_nexthop) { 21085 /* 21086 * We may have lost the conn context if we are 21087 * coming here from ip_newroute(). Copy the 21088 * nexthop information. 21089 */ 21090 if (io->ipsec_out_ip_nexthop) { 21091 ip_nexthop = B_TRUE; 21092 nexthop_addr = io->ipsec_out_nexthop_addr; 21093 21094 ipha = (ipha_t *)mp->b_rptr; 21095 dst = ipha->ipha_dst; 21096 goto send_from_ill; 21097 } else { 21098 ASSERT(io->ipsec_out_ill_index != 0); 21099 ifindex = io->ipsec_out_ill_index; 21100 attach_ill = ill_lookup_on_ifindex(ifindex, 21101 B_FALSE, NULL, NULL, NULL, NULL, ipst); 21102 if (attach_ill == NULL) { 21103 ASSERT(xmit_ill == NULL); 21104 ip1dbg(("ip_output: bad ifindex for " 21105 "(BIND TO IPIF_NOFAILOVER) %d\n", 21106 ifindex)); 21107 freemsg(first_mp); 21108 BUMP_MIB(&ipst->ips_ip_mib, 21109 ipIfStatsOutDiscards); 21110 ASSERT(!need_decref); 21111 return; 21112 } 21113 } 21114 } 21115 } 21116 21117 ASSERT(xmit_ill == NULL); 21118 21119 /* We have a complete IP datagram heading outbound. */ 21120 ipha = (ipha_t *)mp->b_rptr; 21121 21122 #ifndef SPEED_BEFORE_SAFETY 21123 /* 21124 * Make sure we have a full-word aligned message and that at least 21125 * a simple IP header is accessible in the first message. If not, 21126 * try a pullup. For labeled systems we need to always take this 21127 * path as M_CTLs are "notdata" but have trailing data to process. 21128 */ 21129 if (!OK_32PTR(rptr) || 21130 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH || is_system_labeled()) { 21131 hdrtoosmall: 21132 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 21133 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21134 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 21135 if (first_mp == NULL) 21136 first_mp = mp; 21137 goto discard_pkt; 21138 } 21139 21140 /* This function assumes that mp points to an IPv4 packet. */ 21141 if (is_system_labeled() && q->q_next == NULL && 21142 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 21143 !connp->conn_ulp_labeled) { 21144 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 21145 connp->conn_mac_exempt, ipst); 21146 ipha = (ipha_t *)mp->b_rptr; 21147 if (first_mp != NULL) 21148 first_mp->b_cont = mp; 21149 if (err != 0) { 21150 if (first_mp == NULL) 21151 first_mp = mp; 21152 if (err == EINVAL) 21153 goto icmp_parameter_problem; 21154 ip2dbg(("ip_wput: label check failed (%d)\n", 21155 err)); 21156 goto discard_pkt; 21157 } 21158 } 21159 21160 ipha = (ipha_t *)mp->b_rptr; 21161 if (first_mp == NULL) { 21162 ASSERT(attach_ill == NULL && xmit_ill == NULL); 21163 /* 21164 * If we got here because of "goto hdrtoosmall" 21165 * We need to attach a IPSEC_OUT. 21166 */ 21167 if (connp->conn_out_enforce_policy) { 21168 if (((mp = ipsec_attach_ipsec_out(&mp, connp, 21169 NULL, ipha->ipha_protocol, 21170 ipst->ips_netstack)) == NULL)) { 21171 BUMP_MIB(&ipst->ips_ip_mib, 21172 ipIfStatsOutDiscards); 21173 if (need_decref) 21174 CONN_DEC_REF(connp); 21175 return; 21176 } else { 21177 ASSERT(mp->b_datap->db_type == M_CTL); 21178 first_mp = mp; 21179 mp = mp->b_cont; 21180 mctl_present = B_TRUE; 21181 } 21182 } else { 21183 first_mp = mp; 21184 mctl_present = B_FALSE; 21185 } 21186 } 21187 } 21188 #endif 21189 21190 /* Most of the code below is written for speed, not readability */ 21191 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21192 21193 /* 21194 * If ip_newroute() fails, we're going to need a full 21195 * header for the icmp wraparound. 21196 */ 21197 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 21198 uint_t v_hlen; 21199 version_hdrlen_check: 21200 ASSERT(first_mp != NULL); 21201 v_hlen = V_HLEN; 21202 /* 21203 * siphon off IPv6 packets coming down from transport 21204 * layer modules here. 21205 * Note: high-order bit carries NUD reachability confirmation 21206 */ 21207 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 21208 /* 21209 * FIXME: assume that callers of ip_output* call 21210 * the right version? 21211 */ 21212 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutWrongIPVersion); 21213 ASSERT(xmit_ill == NULL); 21214 if (attach_ill != NULL) 21215 ill_refrele(attach_ill); 21216 if (need_decref) 21217 mp->b_flag |= MSGHASREF; 21218 (void) ip_output_v6(arg, first_mp, arg2, caller); 21219 return; 21220 } 21221 21222 if ((v_hlen >> 4) != IP_VERSION) { 21223 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21224 "ip_wput_end: q %p (%S)", q, "badvers"); 21225 goto discard_pkt; 21226 } 21227 /* 21228 * Is the header length at least 20 bytes? 21229 * 21230 * Are there enough bytes accessible in the header? If 21231 * not, try a pullup. 21232 */ 21233 v_hlen &= 0xF; 21234 v_hlen <<= 2; 21235 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 21236 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21237 "ip_wput_end: q %p (%S)", q, "badlen"); 21238 goto discard_pkt; 21239 } 21240 if (v_hlen > (mp->b_wptr - rptr)) { 21241 if (!pullupmsg(mp, v_hlen)) { 21242 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21243 "ip_wput_end: q %p (%S)", q, "badpullup2"); 21244 goto discard_pkt; 21245 } 21246 ipha = (ipha_t *)mp->b_rptr; 21247 } 21248 /* 21249 * Move first entry from any source route into ipha_dst and 21250 * verify the options 21251 */ 21252 if (ip_wput_options(q, first_mp, ipha, mctl_present, 21253 zoneid, ipst)) { 21254 ASSERT(xmit_ill == NULL); 21255 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21256 if (attach_ill != NULL) 21257 ill_refrele(attach_ill); 21258 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21259 "ip_wput_end: q %p (%S)", q, "badopts"); 21260 if (need_decref) 21261 CONN_DEC_REF(connp); 21262 return; 21263 } 21264 } 21265 dst = ipha->ipha_dst; 21266 21267 /* 21268 * Try to get an IRE_CACHE for the destination address. If we can't, 21269 * we have to run the packet through ip_newroute which will take 21270 * the appropriate action to arrange for an IRE_CACHE, such as querying 21271 * a resolver, or assigning a default gateway, etc. 21272 */ 21273 if (CLASSD(dst)) { 21274 ipif_t *ipif; 21275 uint32_t setsrc = 0; 21276 21277 multicast: 21278 ASSERT(first_mp != NULL); 21279 ip2dbg(("ip_wput: CLASSD\n")); 21280 if (connp == NULL) { 21281 /* 21282 * Use the first good ipif on the ill. 21283 * XXX Should this ever happen? (Appears 21284 * to show up with just ppp and no ethernet due 21285 * to in.rdisc.) 21286 * However, ire_send should be able to 21287 * call ip_wput_ire directly. 21288 * 21289 * XXX Also, this can happen for ICMP and other packets 21290 * with multicast source addresses. Perhaps we should 21291 * fix things so that we drop the packet in question, 21292 * but for now, just run with it. 21293 */ 21294 ill_t *ill = (ill_t *)q->q_ptr; 21295 21296 /* 21297 * Don't honor attach_if for this case. If ill 21298 * is part of the group, ipif could belong to 21299 * any ill and we cannot maintain attach_ill 21300 * and ipif_ill same anymore and the assert 21301 * below would fail. 21302 */ 21303 if (mctl_present && io->ipsec_out_attach_if) { 21304 io->ipsec_out_ill_index = 0; 21305 io->ipsec_out_attach_if = B_FALSE; 21306 ASSERT(attach_ill != NULL); 21307 ill_refrele(attach_ill); 21308 attach_ill = NULL; 21309 } 21310 21311 ASSERT(attach_ill == NULL); 21312 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 21313 if (ipif == NULL) { 21314 if (need_decref) 21315 CONN_DEC_REF(connp); 21316 freemsg(first_mp); 21317 return; 21318 } 21319 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 21320 ntohl(dst), ill->ill_name)); 21321 } else { 21322 /* 21323 * The order of precedence is IP_BOUND_IF, IP_PKTINFO 21324 * and IP_MULTICAST_IF. The block comment above this 21325 * function explains the locking mechanism used here. 21326 */ 21327 if (xmit_ill == NULL) { 21328 xmit_ill = conn_get_held_ill(connp, 21329 &connp->conn_outgoing_ill, &err); 21330 if (err == ILL_LOOKUP_FAILED) { 21331 ip1dbg(("ip_wput: No ill for " 21332 "IP_BOUND_IF\n")); 21333 BUMP_MIB(&ipst->ips_ip_mib, 21334 ipIfStatsOutNoRoutes); 21335 goto drop_pkt; 21336 } 21337 } 21338 21339 if (xmit_ill == NULL) { 21340 ipif = conn_get_held_ipif(connp, 21341 &connp->conn_multicast_ipif, &err); 21342 if (err == IPIF_LOOKUP_FAILED) { 21343 ip1dbg(("ip_wput: No ipif for " 21344 "multicast\n")); 21345 BUMP_MIB(&ipst->ips_ip_mib, 21346 ipIfStatsOutNoRoutes); 21347 goto drop_pkt; 21348 } 21349 } 21350 if (xmit_ill != NULL) { 21351 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21352 if (ipif == NULL) { 21353 ip1dbg(("ip_wput: No ipif for " 21354 "xmit_ill\n")); 21355 BUMP_MIB(&ipst->ips_ip_mib, 21356 ipIfStatsOutNoRoutes); 21357 goto drop_pkt; 21358 } 21359 } else if (ipif == NULL || ipif->ipif_isv6) { 21360 /* 21361 * We must do this ipif determination here 21362 * else we could pass through ip_newroute 21363 * and come back here without the conn context. 21364 * 21365 * Note: we do late binding i.e. we bind to 21366 * the interface when the first packet is sent. 21367 * For performance reasons we do not rebind on 21368 * each packet but keep the binding until the 21369 * next IP_MULTICAST_IF option. 21370 * 21371 * conn_multicast_{ipif,ill} are shared between 21372 * IPv4 and IPv6 and AF_INET6 sockets can 21373 * send both IPv4 and IPv6 packets. Hence 21374 * we have to check that "isv6" matches above. 21375 */ 21376 if (ipif != NULL) 21377 ipif_refrele(ipif); 21378 ipif = ipif_lookup_group(dst, zoneid, ipst); 21379 if (ipif == NULL) { 21380 ip1dbg(("ip_wput: No ipif for " 21381 "multicast\n")); 21382 BUMP_MIB(&ipst->ips_ip_mib, 21383 ipIfStatsOutNoRoutes); 21384 goto drop_pkt; 21385 } 21386 err = conn_set_held_ipif(connp, 21387 &connp->conn_multicast_ipif, ipif); 21388 if (err == IPIF_LOOKUP_FAILED) { 21389 ipif_refrele(ipif); 21390 ip1dbg(("ip_wput: No ipif for " 21391 "multicast\n")); 21392 BUMP_MIB(&ipst->ips_ip_mib, 21393 ipIfStatsOutNoRoutes); 21394 goto drop_pkt; 21395 } 21396 } 21397 } 21398 ASSERT(!ipif->ipif_isv6); 21399 /* 21400 * As we may lose the conn by the time we reach ip_wput_ire, 21401 * we copy conn_multicast_loop and conn_dontroute on to an 21402 * ipsec_out. In case if this datagram goes out secure, 21403 * we need the ill_index also. Copy that also into the 21404 * ipsec_out. 21405 */ 21406 if (mctl_present) { 21407 io = (ipsec_out_t *)first_mp->b_rptr; 21408 ASSERT(first_mp->b_datap->db_type == M_CTL); 21409 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21410 } else { 21411 ASSERT(mp == first_mp); 21412 if ((first_mp = allocb(sizeof (ipsec_info_t), 21413 BPRI_HI)) == NULL) { 21414 ipif_refrele(ipif); 21415 first_mp = mp; 21416 goto discard_pkt; 21417 } 21418 first_mp->b_datap->db_type = M_CTL; 21419 first_mp->b_wptr += sizeof (ipsec_info_t); 21420 /* ipsec_out_secure is B_FALSE now */ 21421 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 21422 io = (ipsec_out_t *)first_mp->b_rptr; 21423 io->ipsec_out_type = IPSEC_OUT; 21424 io->ipsec_out_len = sizeof (ipsec_out_t); 21425 io->ipsec_out_use_global_policy = B_TRUE; 21426 io->ipsec_out_ns = ipst->ips_netstack; 21427 first_mp->b_cont = mp; 21428 mctl_present = B_TRUE; 21429 } 21430 if (attach_ill != NULL) { 21431 ASSERT(attach_ill == ipif->ipif_ill); 21432 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21433 21434 /* 21435 * Check if we need an ire that will not be 21436 * looked up by anybody else i.e. HIDDEN. 21437 */ 21438 if (ill_is_probeonly(attach_ill)) { 21439 match_flags |= MATCH_IRE_MARK_HIDDEN; 21440 } 21441 io->ipsec_out_ill_index = 21442 attach_ill->ill_phyint->phyint_ifindex; 21443 io->ipsec_out_attach_if = B_TRUE; 21444 } else { 21445 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 21446 io->ipsec_out_ill_index = 21447 ipif->ipif_ill->ill_phyint->phyint_ifindex; 21448 } 21449 if (connp != NULL) { 21450 io->ipsec_out_multicast_loop = 21451 connp->conn_multicast_loop; 21452 io->ipsec_out_dontroute = connp->conn_dontroute; 21453 io->ipsec_out_zoneid = connp->conn_zoneid; 21454 } 21455 /* 21456 * If the application uses IP_MULTICAST_IF with 21457 * different logical addresses of the same ILL, we 21458 * need to make sure that the soruce address of 21459 * the packet matches the logical IP address used 21460 * in the option. We do it by initializing ipha_src 21461 * here. This should keep IPsec also happy as 21462 * when we return from IPsec processing, we don't 21463 * have to worry about getting the right address on 21464 * the packet. Thus it is sufficient to look for 21465 * IRE_CACHE using MATCH_IRE_ILL rathen than 21466 * MATCH_IRE_IPIF. 21467 * 21468 * NOTE : We need to do it for non-secure case also as 21469 * this might go out secure if there is a global policy 21470 * match in ip_wput_ire. For bind to IPIF_NOFAILOVER 21471 * address, the source should be initialized already and 21472 * hence we won't be initializing here. 21473 * 21474 * As we do not have the ire yet, it is possible that 21475 * we set the source address here and then later discover 21476 * that the ire implies the source address to be assigned 21477 * through the RTF_SETSRC flag. 21478 * In that case, the setsrc variable will remind us 21479 * that overwritting the source address by the one 21480 * of the RTF_SETSRC-flagged ire is allowed. 21481 */ 21482 if (ipha->ipha_src == INADDR_ANY && 21483 (connp == NULL || !connp->conn_unspec_src)) { 21484 ipha->ipha_src = ipif->ipif_src_addr; 21485 setsrc = RTF_SETSRC; 21486 } 21487 /* 21488 * Find an IRE which matches the destination and the outgoing 21489 * queue (i.e. the outgoing interface.) 21490 * For loopback use a unicast IP address for 21491 * the ire lookup. 21492 */ 21493 if (IS_LOOPBACK(ipif->ipif_ill)) 21494 dst = ipif->ipif_lcl_addr; 21495 21496 /* 21497 * If xmit_ill is set, we branch out to ip_newroute_ipif. 21498 * We don't need to lookup ire in ctable as the packet 21499 * needs to be sent to the destination through the specified 21500 * ill irrespective of ires in the cache table. 21501 */ 21502 ire = NULL; 21503 if (xmit_ill == NULL) { 21504 ire = ire_ctable_lookup(dst, 0, 0, ipif, 21505 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21506 } 21507 21508 /* 21509 * refrele attach_ill as its not needed anymore. 21510 */ 21511 if (attach_ill != NULL) { 21512 ill_refrele(attach_ill); 21513 attach_ill = NULL; 21514 } 21515 21516 if (ire == NULL) { 21517 /* 21518 * Multicast loopback and multicast forwarding is 21519 * done in ip_wput_ire. 21520 * 21521 * Mark this packet to make it be delivered to 21522 * ip_wput_ire after the new ire has been 21523 * created. 21524 * 21525 * The call to ip_newroute_ipif takes into account 21526 * the setsrc reminder. In any case, we take care 21527 * of the RTF_MULTIRT flag. 21528 */ 21529 mp->b_prev = mp->b_next = NULL; 21530 if (xmit_ill == NULL || 21531 xmit_ill->ill_ipif_up_count > 0) { 21532 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 21533 setsrc | RTF_MULTIRT, zoneid, infop); 21534 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21535 "ip_wput_end: q %p (%S)", q, "noire"); 21536 } else { 21537 freemsg(first_mp); 21538 } 21539 ipif_refrele(ipif); 21540 if (xmit_ill != NULL) 21541 ill_refrele(xmit_ill); 21542 if (need_decref) 21543 CONN_DEC_REF(connp); 21544 return; 21545 } 21546 21547 ipif_refrele(ipif); 21548 ipif = NULL; 21549 ASSERT(xmit_ill == NULL); 21550 21551 /* 21552 * Honor the RTF_SETSRC flag for multicast packets, 21553 * if allowed by the setsrc reminder. 21554 */ 21555 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 21556 ipha->ipha_src = ire->ire_src_addr; 21557 } 21558 21559 /* 21560 * Unconditionally force the TTL to 1 for 21561 * multirouted multicast packets: 21562 * multirouted multicast should not cross 21563 * multicast routers. 21564 */ 21565 if (ire->ire_flags & RTF_MULTIRT) { 21566 if (ipha->ipha_ttl > 1) { 21567 ip2dbg(("ip_wput: forcing multicast " 21568 "multirt TTL to 1 (was %d), dst 0x%08x\n", 21569 ipha->ipha_ttl, ntohl(ire->ire_addr))); 21570 ipha->ipha_ttl = 1; 21571 } 21572 } 21573 } else { 21574 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 21575 if ((ire != NULL) && (ire->ire_type & 21576 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 21577 ignore_dontroute = B_TRUE; 21578 ignore_nexthop = B_TRUE; 21579 } 21580 if (ire != NULL) { 21581 ire_refrele(ire); 21582 ire = NULL; 21583 } 21584 /* 21585 * Guard against coming in from arp in which case conn is NULL. 21586 * Also guard against non M_DATA with dontroute set but 21587 * destined to local, loopback or broadcast addresses. 21588 */ 21589 if (connp != NULL && connp->conn_dontroute && 21590 !ignore_dontroute) { 21591 dontroute: 21592 /* 21593 * Set TTL to 1 if SO_DONTROUTE is set to prevent 21594 * routing protocols from seeing false direct 21595 * connectivity. 21596 */ 21597 ipha->ipha_ttl = 1; 21598 /* If suitable ipif not found, drop packet */ 21599 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid, ipst); 21600 if (dst_ipif == NULL) { 21601 noroute: 21602 ip1dbg(("ip_wput: no route for dst using" 21603 " SO_DONTROUTE\n")); 21604 BUMP_MIB(&ipst->ips_ip_mib, 21605 ipIfStatsOutNoRoutes); 21606 mp->b_prev = mp->b_next = NULL; 21607 if (first_mp == NULL) 21608 first_mp = mp; 21609 goto drop_pkt; 21610 } else { 21611 /* 21612 * If suitable ipif has been found, set 21613 * xmit_ill to the corresponding 21614 * ipif_ill because we'll be using the 21615 * send_from_ill logic below. 21616 */ 21617 ASSERT(xmit_ill == NULL); 21618 xmit_ill = dst_ipif->ipif_ill; 21619 mutex_enter(&xmit_ill->ill_lock); 21620 if (!ILL_CAN_LOOKUP(xmit_ill)) { 21621 mutex_exit(&xmit_ill->ill_lock); 21622 xmit_ill = NULL; 21623 ipif_refrele(dst_ipif); 21624 goto noroute; 21625 } 21626 ill_refhold_locked(xmit_ill); 21627 mutex_exit(&xmit_ill->ill_lock); 21628 ipif_refrele(dst_ipif); 21629 } 21630 } 21631 /* 21632 * If we are bound to IPIF_NOFAILOVER address, look for 21633 * an IRE_CACHE matching the ill. 21634 */ 21635 send_from_ill: 21636 if (attach_ill != NULL) { 21637 ipif_t *attach_ipif; 21638 21639 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21640 21641 /* 21642 * Check if we need an ire that will not be 21643 * looked up by anybody else i.e. HIDDEN. 21644 */ 21645 if (ill_is_probeonly(attach_ill)) { 21646 match_flags |= MATCH_IRE_MARK_HIDDEN; 21647 } 21648 21649 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 21650 if (attach_ipif == NULL) { 21651 ip1dbg(("ip_wput: No ipif for attach_ill\n")); 21652 goto discard_pkt; 21653 } 21654 ire = ire_ctable_lookup(dst, 0, 0, attach_ipif, 21655 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21656 ipif_refrele(attach_ipif); 21657 } else if (xmit_ill != NULL) { 21658 ipif_t *ipif; 21659 21660 /* 21661 * Mark this packet as originated locally 21662 */ 21663 mp->b_prev = mp->b_next = NULL; 21664 21665 /* 21666 * Could be SO_DONTROUTE case also. 21667 * Verify that at least one ipif is up on the ill. 21668 */ 21669 if (xmit_ill->ill_ipif_up_count == 0) { 21670 ip1dbg(("ip_output: xmit_ill %s is down\n", 21671 xmit_ill->ill_name)); 21672 goto drop_pkt; 21673 } 21674 21675 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21676 if (ipif == NULL) { 21677 ip1dbg(("ip_output: xmit_ill %s NULL ipif\n", 21678 xmit_ill->ill_name)); 21679 goto drop_pkt; 21680 } 21681 21682 /* 21683 * Look for a ire that is part of the group, 21684 * if found use it else call ip_newroute_ipif. 21685 * IPCL_ZONEID is not used for matching because 21686 * IP_ALLZONES option is valid only when the 21687 * ill is accessible from all zones i.e has a 21688 * valid ipif in all zones. 21689 */ 21690 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 21691 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 21692 MBLK_GETLABEL(mp), match_flags, ipst); 21693 /* 21694 * If an ire exists use it or else create 21695 * an ire but don't add it to the cache. 21696 * Adding an ire may cause issues with 21697 * asymmetric routing. 21698 * In case of multiroute always act as if 21699 * ire does not exist. 21700 */ 21701 if (ire == NULL || ire->ire_flags & RTF_MULTIRT) { 21702 if (ire != NULL) 21703 ire_refrele(ire); 21704 ip_newroute_ipif(q, first_mp, ipif, 21705 dst, connp, 0, zoneid, infop); 21706 ipif_refrele(ipif); 21707 ip1dbg(("ip_output: xmit_ill via %s\n", 21708 xmit_ill->ill_name)); 21709 ill_refrele(xmit_ill); 21710 if (need_decref) 21711 CONN_DEC_REF(connp); 21712 return; 21713 } 21714 ipif_refrele(ipif); 21715 } else if (ip_nexthop || (connp != NULL && 21716 (connp->conn_nexthop_set)) && !ignore_nexthop) { 21717 if (!ip_nexthop) { 21718 ip_nexthop = B_TRUE; 21719 nexthop_addr = connp->conn_nexthop_v4; 21720 } 21721 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 21722 MATCH_IRE_GW; 21723 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 21724 NULL, zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21725 } else { 21726 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), 21727 ipst); 21728 } 21729 if (!ire) { 21730 /* 21731 * Make sure we don't load spread if this 21732 * is IPIF_NOFAILOVER case. 21733 */ 21734 if ((attach_ill != NULL) || 21735 (ip_nexthop && !ignore_nexthop)) { 21736 if (mctl_present) { 21737 io = (ipsec_out_t *)first_mp->b_rptr; 21738 ASSERT(first_mp->b_datap->db_type == 21739 M_CTL); 21740 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21741 } else { 21742 ASSERT(mp == first_mp); 21743 first_mp = allocb( 21744 sizeof (ipsec_info_t), BPRI_HI); 21745 if (first_mp == NULL) { 21746 first_mp = mp; 21747 goto discard_pkt; 21748 } 21749 first_mp->b_datap->db_type = M_CTL; 21750 first_mp->b_wptr += 21751 sizeof (ipsec_info_t); 21752 /* ipsec_out_secure is B_FALSE now */ 21753 bzero(first_mp->b_rptr, 21754 sizeof (ipsec_info_t)); 21755 io = (ipsec_out_t *)first_mp->b_rptr; 21756 io->ipsec_out_type = IPSEC_OUT; 21757 io->ipsec_out_len = 21758 sizeof (ipsec_out_t); 21759 io->ipsec_out_use_global_policy = 21760 B_TRUE; 21761 io->ipsec_out_ns = ipst->ips_netstack; 21762 first_mp->b_cont = mp; 21763 mctl_present = B_TRUE; 21764 } 21765 if (attach_ill != NULL) { 21766 io->ipsec_out_ill_index = attach_ill-> 21767 ill_phyint->phyint_ifindex; 21768 io->ipsec_out_attach_if = B_TRUE; 21769 } else { 21770 io->ipsec_out_ip_nexthop = ip_nexthop; 21771 io->ipsec_out_nexthop_addr = 21772 nexthop_addr; 21773 } 21774 } 21775 noirefound: 21776 /* 21777 * Mark this packet as having originated on 21778 * this machine. This will be noted in 21779 * ire_add_then_send, which needs to know 21780 * whether to run it back through ip_wput or 21781 * ip_rput following successful resolution. 21782 */ 21783 mp->b_prev = NULL; 21784 mp->b_next = NULL; 21785 ip_newroute(q, first_mp, dst, connp, zoneid, ipst); 21786 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21787 "ip_wput_end: q %p (%S)", q, "newroute"); 21788 if (attach_ill != NULL) 21789 ill_refrele(attach_ill); 21790 if (xmit_ill != NULL) 21791 ill_refrele(xmit_ill); 21792 if (need_decref) 21793 CONN_DEC_REF(connp); 21794 return; 21795 } 21796 } 21797 21798 /* We now know where we are going with it. */ 21799 21800 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21801 "ip_wput_end: q %p (%S)", q, "end"); 21802 21803 /* 21804 * Check if the ire has the RTF_MULTIRT flag, inherited 21805 * from an IRE_OFFSUBNET ire entry in ip_newroute. 21806 */ 21807 if (ire->ire_flags & RTF_MULTIRT) { 21808 /* 21809 * Force the TTL of multirouted packets if required. 21810 * The TTL of such packets is bounded by the 21811 * ip_multirt_ttl ndd variable. 21812 */ 21813 if ((ipst->ips_ip_multirt_ttl > 0) && 21814 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 21815 ip2dbg(("ip_wput: forcing multirt TTL to %d " 21816 "(was %d), dst 0x%08x\n", 21817 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 21818 ntohl(ire->ire_addr))); 21819 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 21820 } 21821 /* 21822 * At this point, we check to see if there are any pending 21823 * unresolved routes. ire_multirt_resolvable() 21824 * checks in O(n) that all IRE_OFFSUBNET ire 21825 * entries for the packet's destination and 21826 * flagged RTF_MULTIRT are currently resolved. 21827 * If some remain unresolved, we make a copy 21828 * of the current message. It will be used 21829 * to initiate additional route resolutions. 21830 */ 21831 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 21832 MBLK_GETLABEL(first_mp), ipst); 21833 ip2dbg(("ip_wput[noirefound]: ire %p, " 21834 "multirt_need_resolve %d, first_mp %p\n", 21835 (void *)ire, multirt_need_resolve, (void *)first_mp)); 21836 if (multirt_need_resolve) { 21837 copy_mp = copymsg(first_mp); 21838 if (copy_mp != NULL) { 21839 MULTIRT_DEBUG_TAG(copy_mp); 21840 } 21841 } 21842 } 21843 21844 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 21845 /* 21846 * Try to resolve another multiroute if 21847 * ire_multirt_resolvable() deemed it necessary. 21848 * At this point, we need to distinguish 21849 * multicasts from other packets. For multicasts, 21850 * we call ip_newroute_ipif() and request that both 21851 * multirouting and setsrc flags are checked. 21852 */ 21853 if (copy_mp != NULL) { 21854 if (CLASSD(dst)) { 21855 ipif_t *ipif = ipif_lookup_group(dst, zoneid, ipst); 21856 if (ipif) { 21857 ASSERT(infop->ip_opt_ill_index == 0); 21858 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 21859 RTF_SETSRC | RTF_MULTIRT, zoneid, infop); 21860 ipif_refrele(ipif); 21861 } else { 21862 MULTIRT_DEBUG_UNTAG(copy_mp); 21863 freemsg(copy_mp); 21864 copy_mp = NULL; 21865 } 21866 } else { 21867 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 21868 } 21869 } 21870 if (attach_ill != NULL) 21871 ill_refrele(attach_ill); 21872 if (xmit_ill != NULL) 21873 ill_refrele(xmit_ill); 21874 if (need_decref) 21875 CONN_DEC_REF(connp); 21876 return; 21877 21878 icmp_parameter_problem: 21879 /* could not have originated externally */ 21880 ASSERT(mp->b_prev == NULL); 21881 if (ip_hdr_complete(ipha, zoneid, ipst) == 0) { 21882 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 21883 /* it's the IP header length that's in trouble */ 21884 icmp_param_problem(q, first_mp, 0, zoneid, ipst); 21885 first_mp = NULL; 21886 } 21887 21888 discard_pkt: 21889 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21890 drop_pkt: 21891 ip1dbg(("ip_wput: dropped packet\n")); 21892 if (ire != NULL) 21893 ire_refrele(ire); 21894 if (need_decref) 21895 CONN_DEC_REF(connp); 21896 freemsg(first_mp); 21897 if (attach_ill != NULL) 21898 ill_refrele(attach_ill); 21899 if (xmit_ill != NULL) 21900 ill_refrele(xmit_ill); 21901 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21902 "ip_wput_end: q %p (%S)", q, "droppkt"); 21903 } 21904 21905 /* 21906 * If this is a conn_t queue, then we pass in the conn. This includes the 21907 * zoneid. 21908 * Otherwise, this is a message coming back from ARP or for an ill_t queue, 21909 * in which case we use the global zoneid since those are all part of 21910 * the global zone. 21911 */ 21912 void 21913 ip_wput(queue_t *q, mblk_t *mp) 21914 { 21915 if (CONN_Q(q)) 21916 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 21917 else 21918 ip_output(GLOBAL_ZONEID, mp, q, IP_WPUT); 21919 } 21920 21921 /* 21922 * 21923 * The following rules must be observed when accessing any ipif or ill 21924 * that has been cached in the conn. Typically conn_nofailover_ill, 21925 * conn_outgoing_ill, conn_multicast_ipif and conn_multicast_ill. 21926 * 21927 * Access: The ipif or ill pointed to from the conn can be accessed under 21928 * the protection of the conn_lock or after it has been refheld under the 21929 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 21930 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 21931 * The reason for this is that a concurrent unplumb could actually be 21932 * cleaning up these cached pointers by walking the conns and might have 21933 * finished cleaning up the conn in question. The macros check that an 21934 * unplumb has not yet started on the ipif or ill. 21935 * 21936 * Caching: An ipif or ill pointer may be cached in the conn only after 21937 * making sure that an unplumb has not started. So the caching is done 21938 * while holding both the conn_lock and the ill_lock and after using the 21939 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 21940 * flag before starting the cleanup of conns. 21941 * 21942 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 21943 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 21944 * or a reference to the ipif or a reference to an ire that references the 21945 * ipif. An ipif does not change its ill except for failover/failback. Since 21946 * failover/failback happens only after bringing down the ipif and making sure 21947 * the ipif refcnt has gone to zero and holding the ill_g_lock and ill_lock 21948 * the above holds. 21949 */ 21950 ipif_t * 21951 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 21952 { 21953 ipif_t *ipif; 21954 ill_t *ill; 21955 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 21956 21957 *err = 0; 21958 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21959 mutex_enter(&connp->conn_lock); 21960 ipif = *ipifp; 21961 if (ipif != NULL) { 21962 ill = ipif->ipif_ill; 21963 mutex_enter(&ill->ill_lock); 21964 if (IPIF_CAN_LOOKUP(ipif)) { 21965 ipif_refhold_locked(ipif); 21966 mutex_exit(&ill->ill_lock); 21967 mutex_exit(&connp->conn_lock); 21968 rw_exit(&ipst->ips_ill_g_lock); 21969 return (ipif); 21970 } else { 21971 *err = IPIF_LOOKUP_FAILED; 21972 } 21973 mutex_exit(&ill->ill_lock); 21974 } 21975 mutex_exit(&connp->conn_lock); 21976 rw_exit(&ipst->ips_ill_g_lock); 21977 return (NULL); 21978 } 21979 21980 ill_t * 21981 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 21982 { 21983 ill_t *ill; 21984 21985 *err = 0; 21986 mutex_enter(&connp->conn_lock); 21987 ill = *illp; 21988 if (ill != NULL) { 21989 mutex_enter(&ill->ill_lock); 21990 if (ILL_CAN_LOOKUP(ill)) { 21991 ill_refhold_locked(ill); 21992 mutex_exit(&ill->ill_lock); 21993 mutex_exit(&connp->conn_lock); 21994 return (ill); 21995 } else { 21996 *err = ILL_LOOKUP_FAILED; 21997 } 21998 mutex_exit(&ill->ill_lock); 21999 } 22000 mutex_exit(&connp->conn_lock); 22001 return (NULL); 22002 } 22003 22004 static int 22005 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 22006 { 22007 ill_t *ill; 22008 22009 ill = ipif->ipif_ill; 22010 mutex_enter(&connp->conn_lock); 22011 mutex_enter(&ill->ill_lock); 22012 if (IPIF_CAN_LOOKUP(ipif)) { 22013 *ipifp = ipif; 22014 mutex_exit(&ill->ill_lock); 22015 mutex_exit(&connp->conn_lock); 22016 return (0); 22017 } 22018 mutex_exit(&ill->ill_lock); 22019 mutex_exit(&connp->conn_lock); 22020 return (IPIF_LOOKUP_FAILED); 22021 } 22022 22023 /* 22024 * This is called if the outbound datagram needs fragmentation. 22025 * 22026 * NOTE : This function does not ire_refrele the ire argument passed in. 22027 */ 22028 static void 22029 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire, zoneid_t zoneid, 22030 ip_stack_t *ipst, conn_t *connp) 22031 { 22032 ipha_t *ipha; 22033 mblk_t *mp; 22034 uint32_t v_hlen_tos_len; 22035 uint32_t max_frag; 22036 uint32_t frag_flag; 22037 boolean_t dont_use; 22038 22039 if (ipsec_mp->b_datap->db_type == M_CTL) { 22040 mp = ipsec_mp->b_cont; 22041 } else { 22042 mp = ipsec_mp; 22043 } 22044 22045 ipha = (ipha_t *)mp->b_rptr; 22046 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 22047 22048 #ifdef _BIG_ENDIAN 22049 #define V_HLEN (v_hlen_tos_len >> 24) 22050 #define LENGTH (v_hlen_tos_len & 0xFFFF) 22051 #else 22052 #define V_HLEN (v_hlen_tos_len & 0xFF) 22053 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 22054 #endif 22055 22056 #ifndef SPEED_BEFORE_SAFETY 22057 /* 22058 * Check that ipha_length is consistent with 22059 * the mblk length 22060 */ 22061 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 22062 ip0dbg(("Packet length mismatch: %d, %ld\n", 22063 LENGTH, msgdsize(mp))); 22064 freemsg(ipsec_mp); 22065 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22066 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 22067 "packet length mismatch"); 22068 return; 22069 } 22070 #endif 22071 /* 22072 * Don't use frag_flag if pre-built packet or source 22073 * routed or if multicast (since multicast packets do not solicit 22074 * ICMP "packet too big" messages). Get the values of 22075 * max_frag and frag_flag atomically by acquiring the 22076 * ire_lock. 22077 */ 22078 mutex_enter(&ire->ire_lock); 22079 max_frag = ire->ire_max_frag; 22080 frag_flag = ire->ire_frag_flag; 22081 mutex_exit(&ire->ire_lock); 22082 22083 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 22084 (V_HLEN != IP_SIMPLE_HDR_VERSION && 22085 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 22086 22087 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 22088 (dont_use ? 0 : frag_flag), zoneid, ipst, connp); 22089 } 22090 22091 /* 22092 * Used for deciding the MSS size for the upper layer. Thus 22093 * we need to check the outbound policy values in the conn. 22094 */ 22095 int 22096 conn_ipsec_length(conn_t *connp) 22097 { 22098 ipsec_latch_t *ipl; 22099 22100 ipl = connp->conn_latch; 22101 if (ipl == NULL) 22102 return (0); 22103 22104 if (ipl->ipl_out_policy == NULL) 22105 return (0); 22106 22107 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 22108 } 22109 22110 /* 22111 * Returns an estimate of the IPsec headers size. This is used if 22112 * we don't want to call into IPsec to get the exact size. 22113 */ 22114 int 22115 ipsec_out_extra_length(mblk_t *ipsec_mp) 22116 { 22117 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 22118 ipsec_action_t *a; 22119 22120 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22121 if (!io->ipsec_out_secure) 22122 return (0); 22123 22124 a = io->ipsec_out_act; 22125 22126 if (a == NULL) { 22127 ASSERT(io->ipsec_out_policy != NULL); 22128 a = io->ipsec_out_policy->ipsp_act; 22129 } 22130 ASSERT(a != NULL); 22131 22132 return (a->ipa_ovhd); 22133 } 22134 22135 /* 22136 * Returns an estimate of the IPsec headers size. This is used if 22137 * we don't want to call into IPsec to get the exact size. 22138 */ 22139 int 22140 ipsec_in_extra_length(mblk_t *ipsec_mp) 22141 { 22142 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 22143 ipsec_action_t *a; 22144 22145 ASSERT(ii->ipsec_in_type == IPSEC_IN); 22146 22147 a = ii->ipsec_in_action; 22148 return (a == NULL ? 0 : a->ipa_ovhd); 22149 } 22150 22151 /* 22152 * If there are any source route options, return the true final 22153 * destination. Otherwise, return the destination. 22154 */ 22155 ipaddr_t 22156 ip_get_dst(ipha_t *ipha) 22157 { 22158 ipoptp_t opts; 22159 uchar_t *opt; 22160 uint8_t optval; 22161 uint8_t optlen; 22162 ipaddr_t dst; 22163 uint32_t off; 22164 22165 dst = ipha->ipha_dst; 22166 22167 if (IS_SIMPLE_IPH(ipha)) 22168 return (dst); 22169 22170 for (optval = ipoptp_first(&opts, ipha); 22171 optval != IPOPT_EOL; 22172 optval = ipoptp_next(&opts)) { 22173 opt = opts.ipoptp_cur; 22174 optlen = opts.ipoptp_len; 22175 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 22176 switch (optval) { 22177 case IPOPT_SSRR: 22178 case IPOPT_LSRR: 22179 off = opt[IPOPT_OFFSET]; 22180 /* 22181 * If one of the conditions is true, it means 22182 * end of options and dst already has the right 22183 * value. 22184 */ 22185 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 22186 off = optlen - IP_ADDR_LEN; 22187 bcopy(&opt[off], &dst, IP_ADDR_LEN); 22188 } 22189 return (dst); 22190 default: 22191 break; 22192 } 22193 } 22194 22195 return (dst); 22196 } 22197 22198 mblk_t * 22199 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 22200 conn_t *connp, boolean_t unspec_src, zoneid_t zoneid) 22201 { 22202 ipsec_out_t *io; 22203 mblk_t *first_mp; 22204 boolean_t policy_present; 22205 ip_stack_t *ipst; 22206 ipsec_stack_t *ipss; 22207 22208 ASSERT(ire != NULL); 22209 ipst = ire->ire_ipst; 22210 ipss = ipst->ips_netstack->netstack_ipsec; 22211 22212 first_mp = mp; 22213 if (mp->b_datap->db_type == M_CTL) { 22214 io = (ipsec_out_t *)first_mp->b_rptr; 22215 /* 22216 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 22217 * 22218 * 1) There is per-socket policy (including cached global 22219 * policy) or a policy on the IP-in-IP tunnel. 22220 * 2) There is no per-socket policy, but it is 22221 * a multicast packet that needs to go out 22222 * on a specific interface. This is the case 22223 * where (ip_wput and ip_wput_multicast) attaches 22224 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 22225 * 22226 * In case (2) we check with global policy to 22227 * see if there is a match and set the ill_index 22228 * appropriately so that we can lookup the ire 22229 * properly in ip_wput_ipsec_out. 22230 */ 22231 22232 /* 22233 * ipsec_out_use_global_policy is set to B_FALSE 22234 * in ipsec_in_to_out(). Refer to that function for 22235 * details. 22236 */ 22237 if ((io->ipsec_out_latch == NULL) && 22238 (io->ipsec_out_use_global_policy)) { 22239 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 22240 ire, connp, unspec_src, zoneid)); 22241 } 22242 if (!io->ipsec_out_secure) { 22243 /* 22244 * If this is not a secure packet, drop 22245 * the IPSEC_OUT mp and treat it as a clear 22246 * packet. This happens when we are sending 22247 * a ICMP reply back to a clear packet. See 22248 * ipsec_in_to_out() for details. 22249 */ 22250 mp = first_mp->b_cont; 22251 freeb(first_mp); 22252 } 22253 return (mp); 22254 } 22255 /* 22256 * See whether we need to attach a global policy here. We 22257 * don't depend on the conn (as it could be null) for deciding 22258 * what policy this datagram should go through because it 22259 * should have happened in ip_wput if there was some 22260 * policy. This normally happens for connections which are not 22261 * fully bound preventing us from caching policies in 22262 * ip_bind. Packets coming from the TCP listener/global queue 22263 * - which are non-hard_bound - could also be affected by 22264 * applying policy here. 22265 * 22266 * If this packet is coming from tcp global queue or listener, 22267 * we will be applying policy here. This may not be *right* 22268 * if these packets are coming from the detached connection as 22269 * it could have gone in clear before. This happens only if a 22270 * TCP connection started when there is no policy and somebody 22271 * added policy before it became detached. Thus packets of the 22272 * detached connection could go out secure and the other end 22273 * would drop it because it will be expecting in clear. The 22274 * converse is not true i.e if somebody starts a TCP 22275 * connection and deletes the policy, all the packets will 22276 * still go out with the policy that existed before deleting 22277 * because ip_unbind sends up policy information which is used 22278 * by TCP on subsequent ip_wputs. The right solution is to fix 22279 * TCP to attach a dummy IPSEC_OUT and set 22280 * ipsec_out_use_global_policy to B_FALSE. As this might 22281 * affect performance for normal cases, we are not doing it. 22282 * Thus, set policy before starting any TCP connections. 22283 * 22284 * NOTE - We might apply policy even for a hard bound connection 22285 * - for which we cached policy in ip_bind - if somebody added 22286 * global policy after we inherited the policy in ip_bind. 22287 * This means that the packets that were going out in clear 22288 * previously would start going secure and hence get dropped 22289 * on the other side. To fix this, TCP attaches a dummy 22290 * ipsec_out and make sure that we don't apply global policy. 22291 */ 22292 if (ipha != NULL) 22293 policy_present = ipss->ipsec_outbound_v4_policy_present; 22294 else 22295 policy_present = ipss->ipsec_outbound_v6_policy_present; 22296 if (!policy_present) 22297 return (mp); 22298 22299 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src, 22300 zoneid)); 22301 } 22302 22303 ire_t * 22304 conn_set_outgoing_ill(conn_t *connp, ire_t *ire, ill_t **conn_outgoing_ill) 22305 { 22306 ipaddr_t addr; 22307 ire_t *save_ire; 22308 irb_t *irb; 22309 ill_group_t *illgrp; 22310 int err; 22311 22312 save_ire = ire; 22313 addr = ire->ire_addr; 22314 22315 ASSERT(ire->ire_type == IRE_BROADCAST); 22316 22317 illgrp = connp->conn_outgoing_ill->ill_group; 22318 if (illgrp == NULL) { 22319 *conn_outgoing_ill = conn_get_held_ill(connp, 22320 &connp->conn_outgoing_ill, &err); 22321 if (err == ILL_LOOKUP_FAILED) { 22322 ire_refrele(save_ire); 22323 return (NULL); 22324 } 22325 return (save_ire); 22326 } 22327 /* 22328 * If IP_BOUND_IF has been done, conn_outgoing_ill will be set. 22329 * If it is part of the group, we need to send on the ire 22330 * that has been cleared of IRE_MARK_NORECV and that belongs 22331 * to this group. This is okay as IP_BOUND_IF really means 22332 * any ill in the group. We depend on the fact that the 22333 * first ire in the group is always cleared of IRE_MARK_NORECV 22334 * if such an ire exists. This is possible only if you have 22335 * at least one ill in the group that has not failed. 22336 * 22337 * First get to the ire that matches the address and group. 22338 * 22339 * We don't look for an ire with a matching zoneid because a given zone 22340 * won't always have broadcast ires on all ills in the group. 22341 */ 22342 irb = ire->ire_bucket; 22343 rw_enter(&irb->irb_lock, RW_READER); 22344 if (ire->ire_marks & IRE_MARK_NORECV) { 22345 /* 22346 * If the current zone only has an ire broadcast for this 22347 * address marked NORECV, the ire we want is ahead in the 22348 * bucket, so we look it up deliberately ignoring the zoneid. 22349 */ 22350 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 22351 if (ire->ire_addr != addr) 22352 continue; 22353 /* skip over deleted ires */ 22354 if (ire->ire_marks & IRE_MARK_CONDEMNED) 22355 continue; 22356 } 22357 } 22358 while (ire != NULL) { 22359 /* 22360 * If a new interface is coming up, we could end up 22361 * seeing the loopback ire and the non-loopback ire 22362 * may not have been added yet. So check for ire_stq 22363 */ 22364 if (ire->ire_stq != NULL && (ire->ire_addr != addr || 22365 ire->ire_ipif->ipif_ill->ill_group == illgrp)) { 22366 break; 22367 } 22368 ire = ire->ire_next; 22369 } 22370 if (ire != NULL && ire->ire_addr == addr && 22371 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 22372 IRE_REFHOLD(ire); 22373 rw_exit(&irb->irb_lock); 22374 ire_refrele(save_ire); 22375 *conn_outgoing_ill = ire_to_ill(ire); 22376 /* 22377 * Refhold the ill to make the conn_outgoing_ill 22378 * independent of the ire. ip_wput_ire goes in a loop 22379 * and may refrele the ire. Since we have an ire at this 22380 * point we don't need to use ILL_CAN_LOOKUP on the ill. 22381 */ 22382 ill_refhold(*conn_outgoing_ill); 22383 return (ire); 22384 } 22385 rw_exit(&irb->irb_lock); 22386 ip1dbg(("conn_set_outgoing_ill: No matching ire\n")); 22387 /* 22388 * If we can't find a suitable ire, return the original ire. 22389 */ 22390 return (save_ire); 22391 } 22392 22393 /* 22394 * This function does the ire_refrele of the ire passed in as the 22395 * argument. As this function looks up more ires i.e broadcast ires, 22396 * it needs to REFRELE them. Currently, for simplicity we don't 22397 * differentiate the one passed in and looked up here. We always 22398 * REFRELE. 22399 * IPQoS Notes: 22400 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 22401 * IPsec packets are done in ipsec_out_process. 22402 * 22403 */ 22404 void 22405 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller, 22406 zoneid_t zoneid) 22407 { 22408 ipha_t *ipha; 22409 #define rptr ((uchar_t *)ipha) 22410 queue_t *stq; 22411 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 22412 uint32_t v_hlen_tos_len; 22413 uint32_t ttl_protocol; 22414 ipaddr_t src; 22415 ipaddr_t dst; 22416 uint32_t cksum; 22417 ipaddr_t orig_src; 22418 ire_t *ire1; 22419 mblk_t *next_mp; 22420 uint_t hlen; 22421 uint16_t *up; 22422 uint32_t max_frag = ire->ire_max_frag; 22423 ill_t *ill = ire_to_ill(ire); 22424 int clusterwide; 22425 uint16_t ip_hdr_included; /* IP header included by ULP? */ 22426 int ipsec_len; 22427 mblk_t *first_mp; 22428 ipsec_out_t *io; 22429 boolean_t conn_dontroute; /* conn value for multicast */ 22430 boolean_t conn_multicast_loop; /* conn value for multicast */ 22431 boolean_t multicast_forward; /* Should we forward ? */ 22432 boolean_t unspec_src; 22433 ill_t *conn_outgoing_ill = NULL; 22434 ill_t *ire_ill; 22435 ill_t *ire1_ill; 22436 ill_t *out_ill; 22437 uint32_t ill_index = 0; 22438 boolean_t multirt_send = B_FALSE; 22439 int err; 22440 ipxmit_state_t pktxmit_state; 22441 ip_stack_t *ipst = ire->ire_ipst; 22442 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 22443 22444 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 22445 "ip_wput_ire_start: q %p", q); 22446 22447 multicast_forward = B_FALSE; 22448 unspec_src = (connp != NULL && connp->conn_unspec_src); 22449 22450 if (ire->ire_flags & RTF_MULTIRT) { 22451 /* 22452 * Multirouting case. The bucket where ire is stored 22453 * probably holds other RTF_MULTIRT flagged ire 22454 * to the destination. In this call to ip_wput_ire, 22455 * we attempt to send the packet through all 22456 * those ires. Thus, we first ensure that ire is the 22457 * first RTF_MULTIRT ire in the bucket, 22458 * before walking the ire list. 22459 */ 22460 ire_t *first_ire; 22461 irb_t *irb = ire->ire_bucket; 22462 ASSERT(irb != NULL); 22463 22464 /* Make sure we do not omit any multiroute ire. */ 22465 IRB_REFHOLD(irb); 22466 for (first_ire = irb->irb_ire; 22467 first_ire != NULL; 22468 first_ire = first_ire->ire_next) { 22469 if ((first_ire->ire_flags & RTF_MULTIRT) && 22470 (first_ire->ire_addr == ire->ire_addr) && 22471 !(first_ire->ire_marks & 22472 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 22473 break; 22474 } 22475 } 22476 22477 if ((first_ire != NULL) && (first_ire != ire)) { 22478 IRE_REFHOLD(first_ire); 22479 ire_refrele(ire); 22480 ire = first_ire; 22481 ill = ire_to_ill(ire); 22482 } 22483 IRB_REFRELE(irb); 22484 } 22485 22486 /* 22487 * conn_outgoing_ill variable is used only in the broadcast loop. 22488 * for performance we don't grab the mutexs in the fastpath 22489 */ 22490 if ((connp != NULL) && 22491 (ire->ire_type == IRE_BROADCAST) && 22492 ((connp->conn_nofailover_ill != NULL) || 22493 (connp->conn_outgoing_ill != NULL))) { 22494 /* 22495 * Bind to IPIF_NOFAILOVER address overrides IP_BOUND_IF 22496 * option. So, see if this endpoint is bound to a 22497 * IPIF_NOFAILOVER address. If so, honor it. This implies 22498 * that if the interface is failed, we will still send 22499 * the packet on the same ill which is what we want. 22500 */ 22501 conn_outgoing_ill = conn_get_held_ill(connp, 22502 &connp->conn_nofailover_ill, &err); 22503 if (err == ILL_LOOKUP_FAILED) { 22504 ire_refrele(ire); 22505 freemsg(mp); 22506 return; 22507 } 22508 if (conn_outgoing_ill == NULL) { 22509 /* 22510 * Choose a good ill in the group to send the 22511 * packets on. 22512 */ 22513 ire = conn_set_outgoing_ill(connp, ire, 22514 &conn_outgoing_ill); 22515 if (ire == NULL) { 22516 freemsg(mp); 22517 return; 22518 } 22519 } 22520 } 22521 22522 if (mp->b_datap->db_type != M_CTL) { 22523 ipha = (ipha_t *)mp->b_rptr; 22524 } else { 22525 io = (ipsec_out_t *)mp->b_rptr; 22526 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22527 ASSERT(zoneid == io->ipsec_out_zoneid); 22528 ASSERT(zoneid != ALL_ZONES); 22529 ipha = (ipha_t *)mp->b_cont->b_rptr; 22530 dst = ipha->ipha_dst; 22531 /* 22532 * For the multicast case, ipsec_out carries conn_dontroute and 22533 * conn_multicast_loop as conn may not be available here. We 22534 * need this for multicast loopback and forwarding which is done 22535 * later in the code. 22536 */ 22537 if (CLASSD(dst)) { 22538 conn_dontroute = io->ipsec_out_dontroute; 22539 conn_multicast_loop = io->ipsec_out_multicast_loop; 22540 /* 22541 * If conn_dontroute is not set or conn_multicast_loop 22542 * is set, we need to do forwarding/loopback. For 22543 * datagrams from ip_wput_multicast, conn_dontroute is 22544 * set to B_TRUE and conn_multicast_loop is set to 22545 * B_FALSE so that we neither do forwarding nor 22546 * loopback. 22547 */ 22548 if (!conn_dontroute || conn_multicast_loop) 22549 multicast_forward = B_TRUE; 22550 } 22551 } 22552 22553 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 22554 ire->ire_zoneid != ALL_ZONES) { 22555 /* 22556 * When a zone sends a packet to another zone, we try to deliver 22557 * the packet under the same conditions as if the destination 22558 * was a real node on the network. To do so, we look for a 22559 * matching route in the forwarding table. 22560 * RTF_REJECT and RTF_BLACKHOLE are handled just like 22561 * ip_newroute() does. 22562 * Note that IRE_LOCAL are special, since they are used 22563 * when the zoneid doesn't match in some cases. This means that 22564 * we need to handle ipha_src differently since ire_src_addr 22565 * belongs to the receiving zone instead of the sending zone. 22566 * When ip_restrict_interzone_loopback is set, then 22567 * ire_cache_lookup() ensures that IRE_LOCAL are only used 22568 * for loopback between zones when the logical "Ethernet" would 22569 * have looped them back. 22570 */ 22571 ire_t *src_ire; 22572 22573 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 22574 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 22575 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE), ipst); 22576 if (src_ire != NULL && 22577 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) && 22578 (!ipst->ips_ip_restrict_interzone_loopback || 22579 ire_local_same_ill_group(ire, src_ire))) { 22580 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 22581 ipha->ipha_src = src_ire->ire_src_addr; 22582 ire_refrele(src_ire); 22583 } else { 22584 ire_refrele(ire); 22585 if (conn_outgoing_ill != NULL) 22586 ill_refrele(conn_outgoing_ill); 22587 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 22588 if (src_ire != NULL) { 22589 if (src_ire->ire_flags & RTF_BLACKHOLE) { 22590 ire_refrele(src_ire); 22591 freemsg(mp); 22592 return; 22593 } 22594 ire_refrele(src_ire); 22595 } 22596 if (ip_hdr_complete(ipha, zoneid, ipst)) { 22597 /* Failed */ 22598 freemsg(mp); 22599 return; 22600 } 22601 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, zoneid, 22602 ipst); 22603 return; 22604 } 22605 } 22606 22607 if (mp->b_datap->db_type == M_CTL || 22608 ipss->ipsec_outbound_v4_policy_present) { 22609 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 22610 unspec_src, zoneid); 22611 if (mp == NULL) { 22612 ire_refrele(ire); 22613 if (conn_outgoing_ill != NULL) 22614 ill_refrele(conn_outgoing_ill); 22615 return; 22616 } 22617 /* 22618 * Trusted Extensions supports all-zones interfaces, so 22619 * zoneid == ALL_ZONES is valid, but IPsec maps ALL_ZONES to 22620 * the global zone. 22621 */ 22622 if (zoneid == ALL_ZONES && mp->b_datap->db_type == M_CTL) { 22623 io = (ipsec_out_t *)mp->b_rptr; 22624 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22625 zoneid = io->ipsec_out_zoneid; 22626 } 22627 } 22628 22629 first_mp = mp; 22630 ipsec_len = 0; 22631 22632 if (first_mp->b_datap->db_type == M_CTL) { 22633 io = (ipsec_out_t *)first_mp->b_rptr; 22634 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22635 mp = first_mp->b_cont; 22636 ipsec_len = ipsec_out_extra_length(first_mp); 22637 ASSERT(ipsec_len >= 0); 22638 /* We already picked up the zoneid from the M_CTL above */ 22639 ASSERT(zoneid == io->ipsec_out_zoneid); 22640 ASSERT(zoneid != ALL_ZONES); 22641 22642 /* 22643 * Drop M_CTL here if IPsec processing is not needed. 22644 * (Non-IPsec use of M_CTL extracted any information it 22645 * needed above). 22646 */ 22647 if (ipsec_len == 0) { 22648 freeb(first_mp); 22649 first_mp = mp; 22650 } 22651 } 22652 22653 /* 22654 * Fast path for ip_wput_ire 22655 */ 22656 22657 ipha = (ipha_t *)mp->b_rptr; 22658 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 22659 dst = ipha->ipha_dst; 22660 22661 /* 22662 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 22663 * if the socket is a SOCK_RAW type. The transport checksum should 22664 * be provided in the pre-built packet, so we don't need to compute it. 22665 * Also, other application set flags, like DF, should not be altered. 22666 * Other transport MUST pass down zero. 22667 */ 22668 ip_hdr_included = ipha->ipha_ident; 22669 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 22670 22671 if (CLASSD(dst)) { 22672 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 22673 ntohl(dst), 22674 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 22675 ntohl(ire->ire_addr))); 22676 } 22677 22678 /* Macros to extract header fields from data already in registers */ 22679 #ifdef _BIG_ENDIAN 22680 #define V_HLEN (v_hlen_tos_len >> 24) 22681 #define LENGTH (v_hlen_tos_len & 0xFFFF) 22682 #define PROTO (ttl_protocol & 0xFF) 22683 #else 22684 #define V_HLEN (v_hlen_tos_len & 0xFF) 22685 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 22686 #define PROTO (ttl_protocol >> 8) 22687 #endif 22688 22689 22690 orig_src = src = ipha->ipha_src; 22691 /* (The loop back to "another" is explained down below.) */ 22692 another:; 22693 /* 22694 * Assign an ident value for this packet. We assign idents on 22695 * a per destination basis out of the IRE. There could be 22696 * other threads targeting the same destination, so we have to 22697 * arrange for a atomic increment. Note that we use a 32-bit 22698 * atomic add because it has better performance than its 22699 * 16-bit sibling. 22700 * 22701 * If running in cluster mode and if the source address 22702 * belongs to a replicated service then vector through 22703 * cl_inet_ipident vector to allocate ip identifier 22704 * NOTE: This is a contract private interface with the 22705 * clustering group. 22706 */ 22707 clusterwide = 0; 22708 if (cl_inet_ipident) { 22709 ASSERT(cl_inet_isclusterwide); 22710 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 22711 AF_INET, (uint8_t *)(uintptr_t)src)) { 22712 ipha->ipha_ident = (*cl_inet_ipident)(IPPROTO_IP, 22713 AF_INET, (uint8_t *)(uintptr_t)src, 22714 (uint8_t *)(uintptr_t)dst); 22715 clusterwide = 1; 22716 } 22717 } 22718 if (!clusterwide) { 22719 ipha->ipha_ident = 22720 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 22721 } 22722 22723 #ifndef _BIG_ENDIAN 22724 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 22725 #endif 22726 22727 /* 22728 * Set source address unless sent on an ill or conn_unspec_src is set. 22729 * This is needed to obey conn_unspec_src when packets go through 22730 * ip_newroute + arp. 22731 * Assumes ip_newroute{,_multi} sets the source address as well. 22732 */ 22733 if (src == INADDR_ANY && !unspec_src) { 22734 /* 22735 * Assign the appropriate source address from the IRE if none 22736 * was specified. 22737 */ 22738 ASSERT(ire->ire_ipversion == IPV4_VERSION); 22739 22740 /* 22741 * With IP multipathing, broadcast packets are sent on the ire 22742 * that has been cleared of IRE_MARK_NORECV and that belongs to 22743 * the group. However, this ire might not be in the same zone so 22744 * we can't always use its source address. We look for a 22745 * broadcast ire in the same group and in the right zone. 22746 */ 22747 if (ire->ire_type == IRE_BROADCAST && 22748 ire->ire_zoneid != zoneid) { 22749 ire_t *src_ire = ire_ctable_lookup(dst, 0, 22750 IRE_BROADCAST, ire->ire_ipif, zoneid, NULL, 22751 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 22752 if (src_ire != NULL) { 22753 src = src_ire->ire_src_addr; 22754 ire_refrele(src_ire); 22755 } else { 22756 ire_refrele(ire); 22757 if (conn_outgoing_ill != NULL) 22758 ill_refrele(conn_outgoing_ill); 22759 freemsg(first_mp); 22760 if (ill != NULL) { 22761 BUMP_MIB(ill->ill_ip_mib, 22762 ipIfStatsOutDiscards); 22763 } else { 22764 BUMP_MIB(&ipst->ips_ip_mib, 22765 ipIfStatsOutDiscards); 22766 } 22767 return; 22768 } 22769 } else { 22770 src = ire->ire_src_addr; 22771 } 22772 22773 if (connp == NULL) { 22774 ip1dbg(("ip_wput_ire: no connp and no src " 22775 "address for dst 0x%x, using src 0x%x\n", 22776 ntohl(dst), 22777 ntohl(src))); 22778 } 22779 ipha->ipha_src = src; 22780 } 22781 stq = ire->ire_stq; 22782 22783 /* 22784 * We only allow ire chains for broadcasts since there will 22785 * be multiple IRE_CACHE entries for the same multicast 22786 * address (one per ipif). 22787 */ 22788 next_mp = NULL; 22789 22790 /* broadcast packet */ 22791 if (ire->ire_type == IRE_BROADCAST) 22792 goto broadcast; 22793 22794 /* loopback ? */ 22795 if (stq == NULL) 22796 goto nullstq; 22797 22798 /* The ill_index for outbound ILL */ 22799 ill_index = Q_TO_INDEX(stq); 22800 22801 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 22802 ttl_protocol = ((uint16_t *)ipha)[4]; 22803 22804 /* pseudo checksum (do it in parts for IP header checksum) */ 22805 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 22806 22807 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 22808 queue_t *dev_q = stq->q_next; 22809 22810 /* flow controlled */ 22811 if (DEV_Q_FLOW_BLOCKED(dev_q)) 22812 goto blocked; 22813 22814 if ((PROTO == IPPROTO_UDP) && 22815 (ip_hdr_included != IP_HDR_INCLUDED)) { 22816 hlen = (V_HLEN & 0xF) << 2; 22817 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22818 if (*up != 0) { 22819 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 22820 hlen, LENGTH, max_frag, ipsec_len, cksum); 22821 /* Software checksum? */ 22822 if (DB_CKSUMFLAGS(mp) == 0) { 22823 IP_STAT(ipst, ip_out_sw_cksum); 22824 IP_STAT_UPDATE(ipst, 22825 ip_udp_out_sw_cksum_bytes, 22826 LENGTH - hlen); 22827 } 22828 } 22829 } 22830 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 22831 hlen = (V_HLEN & 0xF) << 2; 22832 if (PROTO == IPPROTO_TCP) { 22833 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22834 /* 22835 * The packet header is processed once and for all, even 22836 * in the multirouting case. We disable hardware 22837 * checksum if the packet is multirouted, as it will be 22838 * replicated via several interfaces, and not all of 22839 * them may have this capability. 22840 */ 22841 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 22842 LENGTH, max_frag, ipsec_len, cksum); 22843 /* Software checksum? */ 22844 if (DB_CKSUMFLAGS(mp) == 0) { 22845 IP_STAT(ipst, ip_out_sw_cksum); 22846 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22847 LENGTH - hlen); 22848 } 22849 } else { 22850 sctp_hdr_t *sctph; 22851 22852 ASSERT(PROTO == IPPROTO_SCTP); 22853 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22854 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22855 /* 22856 * Zero out the checksum field to ensure proper 22857 * checksum calculation. 22858 */ 22859 sctph->sh_chksum = 0; 22860 #ifdef DEBUG 22861 if (!skip_sctp_cksum) 22862 #endif 22863 sctph->sh_chksum = sctp_cksum(mp, hlen); 22864 } 22865 } 22866 22867 /* 22868 * If this is a multicast packet and originated from ip_wput 22869 * we need to do loopback and forwarding checks. If it comes 22870 * from ip_wput_multicast, we SHOULD not do this. 22871 */ 22872 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 22873 22874 /* checksum */ 22875 cksum += ttl_protocol; 22876 22877 /* fragment the packet */ 22878 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 22879 goto fragmentit; 22880 /* 22881 * Don't use frag_flag if packet is pre-built or source 22882 * routed or if multicast (since multicast packets do 22883 * not solicit ICMP "packet too big" messages). 22884 */ 22885 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22886 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22887 !ip_source_route_included(ipha)) && 22888 !CLASSD(ipha->ipha_dst)) 22889 ipha->ipha_fragment_offset_and_flags |= 22890 htons(ire->ire_frag_flag); 22891 22892 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22893 /* calculate IP header checksum */ 22894 cksum += ipha->ipha_ident; 22895 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 22896 cksum += ipha->ipha_fragment_offset_and_flags; 22897 22898 /* IP options present */ 22899 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22900 if (hlen) 22901 goto checksumoptions; 22902 22903 /* calculate hdr checksum */ 22904 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22905 cksum = ~(cksum + (cksum >> 16)); 22906 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22907 } 22908 if (ipsec_len != 0) { 22909 /* 22910 * We will do the rest of the processing after 22911 * we come back from IPsec in ip_wput_ipsec_out(). 22912 */ 22913 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 22914 22915 io = (ipsec_out_t *)first_mp->b_rptr; 22916 io->ipsec_out_ill_index = ((ill_t *)stq->q_ptr)-> 22917 ill_phyint->phyint_ifindex; 22918 22919 ipsec_out_process(q, first_mp, ire, ill_index); 22920 ire_refrele(ire); 22921 if (conn_outgoing_ill != NULL) 22922 ill_refrele(conn_outgoing_ill); 22923 return; 22924 } 22925 22926 /* 22927 * In most cases, the emission loop below is entered only 22928 * once. Only in the case where the ire holds the 22929 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 22930 * flagged ires in the bucket, and send the packet 22931 * through all crossed RTF_MULTIRT routes. 22932 */ 22933 if (ire->ire_flags & RTF_MULTIRT) { 22934 multirt_send = B_TRUE; 22935 } 22936 do { 22937 if (multirt_send) { 22938 irb_t *irb; 22939 /* 22940 * We are in a multiple send case, need to get 22941 * the next ire and make a duplicate of the packet. 22942 * ire1 holds here the next ire to process in the 22943 * bucket. If multirouting is expected, 22944 * any non-RTF_MULTIRT ire that has the 22945 * right destination address is ignored. 22946 */ 22947 irb = ire->ire_bucket; 22948 ASSERT(irb != NULL); 22949 22950 IRB_REFHOLD(irb); 22951 for (ire1 = ire->ire_next; 22952 ire1 != NULL; 22953 ire1 = ire1->ire_next) { 22954 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 22955 continue; 22956 if (ire1->ire_addr != ire->ire_addr) 22957 continue; 22958 if (ire1->ire_marks & 22959 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 22960 continue; 22961 22962 /* Got one */ 22963 IRE_REFHOLD(ire1); 22964 break; 22965 } 22966 IRB_REFRELE(irb); 22967 22968 if (ire1 != NULL) { 22969 next_mp = copyb(mp); 22970 if ((next_mp == NULL) || 22971 ((mp->b_cont != NULL) && 22972 ((next_mp->b_cont = 22973 dupmsg(mp->b_cont)) == NULL))) { 22974 freemsg(next_mp); 22975 next_mp = NULL; 22976 ire_refrele(ire1); 22977 ire1 = NULL; 22978 } 22979 } 22980 22981 /* Last multiroute ire; don't loop anymore. */ 22982 if (ire1 == NULL) { 22983 multirt_send = B_FALSE; 22984 } 22985 } 22986 22987 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 22988 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha, 22989 mblk_t *, mp); 22990 FW_HOOKS(ipst->ips_ip4_physical_out_event, 22991 ipst->ips_ipv4firewall_physical_out, 22992 NULL, ire->ire_ipif->ipif_ill, ipha, mp, mp, 0, ipst); 22993 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 22994 22995 if (mp == NULL) 22996 goto release_ire_and_ill; 22997 22998 if (ipst->ips_ipobs_enabled) { 22999 zoneid_t szone; 23000 23001 /* 23002 * On the outbound path the destination zone will be 23003 * unknown as we're sending this packet out on the 23004 * wire. 23005 */ 23006 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, ipst, 23007 ALL_ZONES); 23008 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 23009 ire->ire_ipif->ipif_ill, IPV4_VERSION, 0, ipst); 23010 } 23011 mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT); 23012 DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire); 23013 23014 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE, connp); 23015 23016 if ((pktxmit_state == SEND_FAILED) || 23017 (pktxmit_state == LLHDR_RESLV_FAILED)) { 23018 ip2dbg(("ip_wput_ire: ip_xmit_v4 failed" 23019 "- packet dropped\n")); 23020 release_ire_and_ill: 23021 ire_refrele(ire); 23022 if (next_mp != NULL) { 23023 freemsg(next_mp); 23024 ire_refrele(ire1); 23025 } 23026 if (conn_outgoing_ill != NULL) 23027 ill_refrele(conn_outgoing_ill); 23028 return; 23029 } 23030 23031 if (CLASSD(dst)) { 23032 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastPkts); 23033 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastOctets, 23034 LENGTH); 23035 } 23036 23037 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23038 "ip_wput_ire_end: q %p (%S)", 23039 q, "last copy out"); 23040 IRE_REFRELE(ire); 23041 23042 if (multirt_send) { 23043 ASSERT(ire1); 23044 /* 23045 * Proceed with the next RTF_MULTIRT ire, 23046 * Also set up the send-to queue accordingly. 23047 */ 23048 ire = ire1; 23049 ire1 = NULL; 23050 stq = ire->ire_stq; 23051 mp = next_mp; 23052 next_mp = NULL; 23053 ipha = (ipha_t *)mp->b_rptr; 23054 ill_index = Q_TO_INDEX(stq); 23055 ill = (ill_t *)stq->q_ptr; 23056 } 23057 } while (multirt_send); 23058 if (conn_outgoing_ill != NULL) 23059 ill_refrele(conn_outgoing_ill); 23060 return; 23061 23062 /* 23063 * ire->ire_type == IRE_BROADCAST (minimize diffs) 23064 */ 23065 broadcast: 23066 { 23067 /* 23068 * To avoid broadcast storms, we usually set the TTL to 1 for 23069 * broadcasts. However, if SO_DONTROUTE isn't set, this value 23070 * can be overridden stack-wide through the ip_broadcast_ttl 23071 * ndd tunable, or on a per-connection basis through the 23072 * IP_BROADCAST_TTL socket option. 23073 * 23074 * In the event that we are replying to incoming ICMP packets, 23075 * connp could be NULL. 23076 */ 23077 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 23078 if (connp != NULL) { 23079 if (connp->conn_dontroute) 23080 ipha->ipha_ttl = 1; 23081 else if (connp->conn_broadcast_ttl != 0) 23082 ipha->ipha_ttl = connp->conn_broadcast_ttl; 23083 } 23084 23085 /* 23086 * Note that we are not doing a IRB_REFHOLD here. 23087 * Actually we don't care if the list changes i.e 23088 * if somebody deletes an IRE from the list while 23089 * we drop the lock, the next time we come around 23090 * ire_next will be NULL and hence we won't send 23091 * out multiple copies which is fine. 23092 */ 23093 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 23094 ire1 = ire->ire_next; 23095 if (conn_outgoing_ill != NULL) { 23096 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 23097 ASSERT(ire1 == ire->ire_next); 23098 if (ire1 != NULL && ire1->ire_addr == dst) { 23099 ire_refrele(ire); 23100 ire = ire1; 23101 IRE_REFHOLD(ire); 23102 ire1 = ire->ire_next; 23103 continue; 23104 } 23105 rw_exit(&ire->ire_bucket->irb_lock); 23106 /* Did not find a matching ill */ 23107 ip1dbg(("ip_wput_ire: broadcast with no " 23108 "matching IP_BOUND_IF ill %s dst %x\n", 23109 conn_outgoing_ill->ill_name, dst)); 23110 freemsg(first_mp); 23111 if (ire != NULL) 23112 ire_refrele(ire); 23113 ill_refrele(conn_outgoing_ill); 23114 return; 23115 } 23116 } else if (ire1 != NULL && ire1->ire_addr == dst) { 23117 /* 23118 * If the next IRE has the same address and is not one 23119 * of the two copies that we need to send, try to see 23120 * whether this copy should be sent at all. This 23121 * assumes that we insert loopbacks first and then 23122 * non-loopbacks. This is acheived by inserting the 23123 * loopback always before non-loopback. 23124 * This is used to send a single copy of a broadcast 23125 * packet out all physical interfaces that have an 23126 * matching IRE_BROADCAST while also looping 23127 * back one copy (to ip_wput_local) for each 23128 * matching physical interface. However, we avoid 23129 * sending packets out different logical that match by 23130 * having ipif_up/ipif_down supress duplicate 23131 * IRE_BROADCASTS. 23132 * 23133 * This feature is currently used to get broadcasts 23134 * sent to multiple interfaces, when the broadcast 23135 * address being used applies to multiple interfaces. 23136 * For example, a whole net broadcast will be 23137 * replicated on every connected subnet of 23138 * the target net. 23139 * 23140 * Each zone has its own set of IRE_BROADCASTs, so that 23141 * we're able to distribute inbound packets to multiple 23142 * zones who share a broadcast address. We avoid looping 23143 * back outbound packets in different zones but on the 23144 * same ill, as the application would see duplicates. 23145 * 23146 * If the interfaces are part of the same group, 23147 * we would want to send only one copy out for 23148 * whole group. 23149 * 23150 * This logic assumes that ire_add_v4() groups the 23151 * IRE_BROADCAST entries so that those with the same 23152 * ire_addr and ill_group are kept together. 23153 */ 23154 ire_ill = ire->ire_ipif->ipif_ill; 23155 if (ire->ire_stq == NULL && ire1->ire_stq != NULL) { 23156 if (ire_ill->ill_group != NULL && 23157 (ire->ire_marks & IRE_MARK_NORECV)) { 23158 /* 23159 * If the current zone only has an ire 23160 * broadcast for this address marked 23161 * NORECV, the ire we want is ahead in 23162 * the bucket, so we look it up 23163 * deliberately ignoring the zoneid. 23164 */ 23165 for (ire1 = ire->ire_bucket->irb_ire; 23166 ire1 != NULL; 23167 ire1 = ire1->ire_next) { 23168 ire1_ill = 23169 ire1->ire_ipif->ipif_ill; 23170 if (ire1->ire_addr != dst) 23171 continue; 23172 /* skip over the current ire */ 23173 if (ire1 == ire) 23174 continue; 23175 /* skip over deleted ires */ 23176 if (ire1->ire_marks & 23177 IRE_MARK_CONDEMNED) 23178 continue; 23179 /* 23180 * non-loopback ire in our 23181 * group: use it for the next 23182 * pass in the loop 23183 */ 23184 if (ire1->ire_stq != NULL && 23185 ire1_ill->ill_group == 23186 ire_ill->ill_group) 23187 break; 23188 } 23189 } 23190 } else { 23191 while (ire1 != NULL && ire1->ire_addr == dst) { 23192 ire1_ill = ire1->ire_ipif->ipif_ill; 23193 /* 23194 * We can have two broadcast ires on the 23195 * same ill in different zones; here 23196 * we'll send a copy of the packet on 23197 * each ill and the fanout code will 23198 * call conn_wantpacket() to check that 23199 * the zone has the broadcast address 23200 * configured on the ill. If the two 23201 * ires are in the same group we only 23202 * send one copy up. 23203 */ 23204 if (ire1_ill != ire_ill && 23205 (ire1_ill->ill_group == NULL || 23206 ire_ill->ill_group == NULL || 23207 ire1_ill->ill_group != 23208 ire_ill->ill_group)) { 23209 break; 23210 } 23211 ire1 = ire1->ire_next; 23212 } 23213 } 23214 } 23215 ASSERT(multirt_send == B_FALSE); 23216 if (ire1 != NULL && ire1->ire_addr == dst) { 23217 if ((ire->ire_flags & RTF_MULTIRT) && 23218 (ire1->ire_flags & RTF_MULTIRT)) { 23219 /* 23220 * We are in the multirouting case. 23221 * The message must be sent at least 23222 * on both ires. These ires have been 23223 * inserted AFTER the standard ones 23224 * in ip_rt_add(). There are thus no 23225 * other ire entries for the destination 23226 * address in the rest of the bucket 23227 * that do not have the RTF_MULTIRT 23228 * flag. We don't process a copy 23229 * of the message here. This will be 23230 * done in the final sending loop. 23231 */ 23232 multirt_send = B_TRUE; 23233 } else { 23234 next_mp = ip_copymsg(first_mp); 23235 if (next_mp != NULL) 23236 IRE_REFHOLD(ire1); 23237 } 23238 } 23239 rw_exit(&ire->ire_bucket->irb_lock); 23240 } 23241 23242 if (stq) { 23243 /* 23244 * A non-NULL send-to queue means this packet is going 23245 * out of this machine. 23246 */ 23247 out_ill = (ill_t *)stq->q_ptr; 23248 23249 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutRequests); 23250 ttl_protocol = ((uint16_t *)ipha)[4]; 23251 /* 23252 * We accumulate the pseudo header checksum in cksum. 23253 * This is pretty hairy code, so watch close. One 23254 * thing to keep in mind is that UDP and TCP have 23255 * stored their respective datagram lengths in their 23256 * checksum fields. This lines things up real nice. 23257 */ 23258 cksum = (dst >> 16) + (dst & 0xFFFF) + 23259 (src >> 16) + (src & 0xFFFF); 23260 /* 23261 * We assume the udp checksum field contains the 23262 * length, so to compute the pseudo header checksum, 23263 * all we need is the protocol number and src/dst. 23264 */ 23265 /* Provide the checksums for UDP and TCP. */ 23266 if ((PROTO == IPPROTO_TCP) && 23267 (ip_hdr_included != IP_HDR_INCLUDED)) { 23268 /* hlen gets the number of uchar_ts in the IP header */ 23269 hlen = (V_HLEN & 0xF) << 2; 23270 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 23271 IP_STAT(ipst, ip_out_sw_cksum); 23272 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 23273 LENGTH - hlen); 23274 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 23275 } else if (PROTO == IPPROTO_SCTP && 23276 (ip_hdr_included != IP_HDR_INCLUDED)) { 23277 sctp_hdr_t *sctph; 23278 23279 hlen = (V_HLEN & 0xF) << 2; 23280 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 23281 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 23282 sctph->sh_chksum = 0; 23283 #ifdef DEBUG 23284 if (!skip_sctp_cksum) 23285 #endif 23286 sctph->sh_chksum = sctp_cksum(mp, hlen); 23287 } else { 23288 queue_t *dev_q = stq->q_next; 23289 23290 if (DEV_Q_FLOW_BLOCKED(dev_q)) { 23291 blocked: 23292 ipha->ipha_ident = ip_hdr_included; 23293 /* 23294 * If we don't have a conn to apply 23295 * backpressure, free the message. 23296 * In the ire_send path, we don't know 23297 * the position to requeue the packet. Rather 23298 * than reorder packets, we just drop this 23299 * packet. 23300 */ 23301 if (ipst->ips_ip_output_queue && 23302 connp != NULL && 23303 caller != IRE_SEND) { 23304 if (caller == IP_WSRV) { 23305 connp->conn_did_putbq = 1; 23306 (void) putbq(connp->conn_wq, 23307 first_mp); 23308 conn_drain_insert(connp); 23309 /* 23310 * This is the service thread, 23311 * and the queue is already 23312 * noenabled. The check for 23313 * canput and the putbq is not 23314 * atomic. So we need to check 23315 * again. 23316 */ 23317 if (canput(stq->q_next)) 23318 connp->conn_did_putbq 23319 = 0; 23320 IP_STAT(ipst, ip_conn_flputbq); 23321 } else { 23322 /* 23323 * We are not the service proc. 23324 * ip_wsrv will be scheduled or 23325 * is already running. 23326 */ 23327 23328 (void) putq(connp->conn_wq, 23329 first_mp); 23330 } 23331 } else { 23332 out_ill = (ill_t *)stq->q_ptr; 23333 BUMP_MIB(out_ill->ill_ip_mib, 23334 ipIfStatsOutDiscards); 23335 freemsg(first_mp); 23336 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23337 "ip_wput_ire_end: q %p (%S)", 23338 q, "discard"); 23339 } 23340 ire_refrele(ire); 23341 if (next_mp) { 23342 ire_refrele(ire1); 23343 freemsg(next_mp); 23344 } 23345 if (conn_outgoing_ill != NULL) 23346 ill_refrele(conn_outgoing_ill); 23347 return; 23348 } 23349 if ((PROTO == IPPROTO_UDP) && 23350 (ip_hdr_included != IP_HDR_INCLUDED)) { 23351 /* 23352 * hlen gets the number of uchar_ts in the 23353 * IP header 23354 */ 23355 hlen = (V_HLEN & 0xF) << 2; 23356 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 23357 max_frag = ire->ire_max_frag; 23358 if (*up != 0) { 23359 IP_CKSUM_XMIT(out_ill, ire, mp, ipha, 23360 up, PROTO, hlen, LENGTH, max_frag, 23361 ipsec_len, cksum); 23362 /* Software checksum? */ 23363 if (DB_CKSUMFLAGS(mp) == 0) { 23364 IP_STAT(ipst, ip_out_sw_cksum); 23365 IP_STAT_UPDATE(ipst, 23366 ip_udp_out_sw_cksum_bytes, 23367 LENGTH - hlen); 23368 } 23369 } 23370 } 23371 } 23372 /* 23373 * Need to do this even when fragmenting. The local 23374 * loopback can be done without computing checksums 23375 * but forwarding out other interface must be done 23376 * after the IP checksum (and ULP checksums) have been 23377 * computed. 23378 * 23379 * NOTE : multicast_forward is set only if this packet 23380 * originated from ip_wput. For packets originating from 23381 * ip_wput_multicast, it is not set. 23382 */ 23383 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 23384 multi_loopback: 23385 ip2dbg(("ip_wput: multicast, loop %d\n", 23386 conn_multicast_loop)); 23387 23388 /* Forget header checksum offload */ 23389 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 23390 23391 /* 23392 * Local loopback of multicasts? Check the 23393 * ill. 23394 * 23395 * Note that the loopback function will not come 23396 * in through ip_rput - it will only do the 23397 * client fanout thus we need to do an mforward 23398 * as well. The is different from the BSD 23399 * logic. 23400 */ 23401 if (ill != NULL) { 23402 ilm_t *ilm; 23403 23404 ILM_WALKER_HOLD(ill); 23405 ilm = ilm_lookup_ill(ill, ipha->ipha_dst, 23406 ALL_ZONES); 23407 ILM_WALKER_RELE(ill); 23408 if (ilm != NULL) { 23409 /* 23410 * Pass along the virtual output q. 23411 * ip_wput_local() will distribute the 23412 * packet to all the matching zones, 23413 * except the sending zone when 23414 * IP_MULTICAST_LOOP is false. 23415 */ 23416 ip_multicast_loopback(q, ill, first_mp, 23417 conn_multicast_loop ? 0 : 23418 IP_FF_NO_MCAST_LOOP, zoneid); 23419 } 23420 } 23421 if (ipha->ipha_ttl == 0) { 23422 /* 23423 * 0 => only to this host i.e. we are 23424 * done. We are also done if this was the 23425 * loopback interface since it is sufficient 23426 * to loopback one copy of a multicast packet. 23427 */ 23428 freemsg(first_mp); 23429 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23430 "ip_wput_ire_end: q %p (%S)", 23431 q, "loopback"); 23432 ire_refrele(ire); 23433 if (conn_outgoing_ill != NULL) 23434 ill_refrele(conn_outgoing_ill); 23435 return; 23436 } 23437 /* 23438 * ILLF_MULTICAST is checked in ip_newroute 23439 * i.e. we don't need to check it here since 23440 * all IRE_CACHEs come from ip_newroute. 23441 * For multicast traffic, SO_DONTROUTE is interpreted 23442 * to mean only send the packet out the interface 23443 * (optionally specified with IP_MULTICAST_IF) 23444 * and do not forward it out additional interfaces. 23445 * RSVP and the rsvp daemon is an example of a 23446 * protocol and user level process that 23447 * handles it's own routing. Hence, it uses the 23448 * SO_DONTROUTE option to accomplish this. 23449 */ 23450 23451 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 23452 ill != NULL) { 23453 /* Unconditionally redo the checksum */ 23454 ipha->ipha_hdr_checksum = 0; 23455 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23456 23457 /* 23458 * If this needs to go out secure, we need 23459 * to wait till we finish the IPsec 23460 * processing. 23461 */ 23462 if (ipsec_len == 0 && 23463 ip_mforward(ill, ipha, mp)) { 23464 freemsg(first_mp); 23465 ip1dbg(("ip_wput: mforward failed\n")); 23466 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23467 "ip_wput_ire_end: q %p (%S)", 23468 q, "mforward failed"); 23469 ire_refrele(ire); 23470 if (conn_outgoing_ill != NULL) 23471 ill_refrele(conn_outgoing_ill); 23472 return; 23473 } 23474 } 23475 } 23476 max_frag = ire->ire_max_frag; 23477 cksum += ttl_protocol; 23478 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 23479 /* No fragmentation required for this one. */ 23480 /* 23481 * Don't use frag_flag if packet is pre-built or source 23482 * routed or if multicast (since multicast packets do 23483 * not solicit ICMP "packet too big" messages). 23484 */ 23485 if ((ip_hdr_included != IP_HDR_INCLUDED) && 23486 (V_HLEN == IP_SIMPLE_HDR_VERSION || 23487 !ip_source_route_included(ipha)) && 23488 !CLASSD(ipha->ipha_dst)) 23489 ipha->ipha_fragment_offset_and_flags |= 23490 htons(ire->ire_frag_flag); 23491 23492 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 23493 /* Complete the IP header checksum. */ 23494 cksum += ipha->ipha_ident; 23495 cksum += (v_hlen_tos_len >> 16)+ 23496 (v_hlen_tos_len & 0xFFFF); 23497 cksum += ipha->ipha_fragment_offset_and_flags; 23498 hlen = (V_HLEN & 0xF) - 23499 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 23500 if (hlen) { 23501 checksumoptions: 23502 /* 23503 * Account for the IP Options in the IP 23504 * header checksum. 23505 */ 23506 up = (uint16_t *)(rptr+ 23507 IP_SIMPLE_HDR_LENGTH); 23508 do { 23509 cksum += up[0]; 23510 cksum += up[1]; 23511 up += 2; 23512 } while (--hlen); 23513 } 23514 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 23515 cksum = ~(cksum + (cksum >> 16)); 23516 ipha->ipha_hdr_checksum = (uint16_t)cksum; 23517 } 23518 if (ipsec_len != 0) { 23519 ipsec_out_process(q, first_mp, ire, ill_index); 23520 if (!next_mp) { 23521 ire_refrele(ire); 23522 if (conn_outgoing_ill != NULL) 23523 ill_refrele(conn_outgoing_ill); 23524 return; 23525 } 23526 goto next; 23527 } 23528 23529 /* 23530 * multirt_send has already been handled 23531 * for broadcast, but not yet for multicast 23532 * or IP options. 23533 */ 23534 if (next_mp == NULL) { 23535 if (ire->ire_flags & RTF_MULTIRT) { 23536 multirt_send = B_TRUE; 23537 } 23538 } 23539 23540 /* 23541 * In most cases, the emission loop below is 23542 * entered only once. Only in the case where 23543 * the ire holds the RTF_MULTIRT flag, do we loop 23544 * to process all RTF_MULTIRT ires in the bucket, 23545 * and send the packet through all crossed 23546 * RTF_MULTIRT routes. 23547 */ 23548 do { 23549 if (multirt_send) { 23550 irb_t *irb; 23551 23552 irb = ire->ire_bucket; 23553 ASSERT(irb != NULL); 23554 /* 23555 * We are in a multiple send case, 23556 * need to get the next IRE and make 23557 * a duplicate of the packet. 23558 */ 23559 IRB_REFHOLD(irb); 23560 for (ire1 = ire->ire_next; 23561 ire1 != NULL; 23562 ire1 = ire1->ire_next) { 23563 if (!(ire1->ire_flags & 23564 RTF_MULTIRT)) { 23565 continue; 23566 } 23567 if (ire1->ire_addr != 23568 ire->ire_addr) { 23569 continue; 23570 } 23571 if (ire1->ire_marks & 23572 (IRE_MARK_CONDEMNED| 23573 IRE_MARK_HIDDEN)) { 23574 continue; 23575 } 23576 23577 /* Got one */ 23578 IRE_REFHOLD(ire1); 23579 break; 23580 } 23581 IRB_REFRELE(irb); 23582 23583 if (ire1 != NULL) { 23584 next_mp = copyb(mp); 23585 if ((next_mp == NULL) || 23586 ((mp->b_cont != NULL) && 23587 ((next_mp->b_cont = 23588 dupmsg(mp->b_cont)) 23589 == NULL))) { 23590 freemsg(next_mp); 23591 next_mp = NULL; 23592 ire_refrele(ire1); 23593 ire1 = NULL; 23594 } 23595 } 23596 23597 /* 23598 * Last multiroute ire; don't loop 23599 * anymore. The emission is over 23600 * and next_mp is NULL. 23601 */ 23602 if (ire1 == NULL) { 23603 multirt_send = B_FALSE; 23604 } 23605 } 23606 23607 out_ill = ire_to_ill(ire); 23608 DTRACE_PROBE4(ip4__physical__out__start, 23609 ill_t *, NULL, 23610 ill_t *, out_ill, 23611 ipha_t *, ipha, mblk_t *, mp); 23612 FW_HOOKS(ipst->ips_ip4_physical_out_event, 23613 ipst->ips_ipv4firewall_physical_out, 23614 NULL, out_ill, ipha, mp, mp, 0, ipst); 23615 DTRACE_PROBE1(ip4__physical__out__end, 23616 mblk_t *, mp); 23617 if (mp == NULL) 23618 goto release_ire_and_ill_2; 23619 23620 ASSERT(ipsec_len == 0); 23621 mp->b_prev = 23622 SET_BPREV_FLAG(IPP_LOCAL_OUT); 23623 DTRACE_PROBE2(ip__xmit__2, 23624 mblk_t *, mp, ire_t *, ire); 23625 pktxmit_state = ip_xmit_v4(mp, ire, 23626 NULL, B_TRUE, connp); 23627 if ((pktxmit_state == SEND_FAILED) || 23628 (pktxmit_state == LLHDR_RESLV_FAILED)) { 23629 release_ire_and_ill_2: 23630 if (next_mp) { 23631 freemsg(next_mp); 23632 ire_refrele(ire1); 23633 } 23634 ire_refrele(ire); 23635 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23636 "ip_wput_ire_end: q %p (%S)", 23637 q, "discard MDATA"); 23638 if (conn_outgoing_ill != NULL) 23639 ill_refrele(conn_outgoing_ill); 23640 return; 23641 } 23642 23643 if (CLASSD(dst)) { 23644 BUMP_MIB(out_ill->ill_ip_mib, 23645 ipIfStatsHCOutMcastPkts); 23646 UPDATE_MIB(out_ill->ill_ip_mib, 23647 ipIfStatsHCOutMcastOctets, 23648 LENGTH); 23649 } else if (ire->ire_type == IRE_BROADCAST) { 23650 BUMP_MIB(out_ill->ill_ip_mib, 23651 ipIfStatsHCOutBcastPkts); 23652 } 23653 23654 if (multirt_send) { 23655 /* 23656 * We are in a multiple send case, 23657 * need to re-enter the sending loop 23658 * using the next ire. 23659 */ 23660 ire_refrele(ire); 23661 ire = ire1; 23662 stq = ire->ire_stq; 23663 mp = next_mp; 23664 next_mp = NULL; 23665 ipha = (ipha_t *)mp->b_rptr; 23666 ill_index = Q_TO_INDEX(stq); 23667 } 23668 } while (multirt_send); 23669 23670 if (!next_mp) { 23671 /* 23672 * Last copy going out (the ultra-common 23673 * case). Note that we intentionally replicate 23674 * the putnext rather than calling it before 23675 * the next_mp check in hopes of a little 23676 * tail-call action out of the compiler. 23677 */ 23678 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23679 "ip_wput_ire_end: q %p (%S)", 23680 q, "last copy out(1)"); 23681 ire_refrele(ire); 23682 if (conn_outgoing_ill != NULL) 23683 ill_refrele(conn_outgoing_ill); 23684 return; 23685 } 23686 /* More copies going out below. */ 23687 } else { 23688 int offset; 23689 fragmentit: 23690 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 23691 /* 23692 * If this would generate a icmp_frag_needed message, 23693 * we need to handle it before we do the IPsec 23694 * processing. Otherwise, we need to strip the IPsec 23695 * headers before we send up the message to the ULPs 23696 * which becomes messy and difficult. 23697 */ 23698 if (ipsec_len != 0) { 23699 if ((max_frag < (unsigned int)(LENGTH + 23700 ipsec_len)) && (offset & IPH_DF)) { 23701 out_ill = (ill_t *)stq->q_ptr; 23702 BUMP_MIB(out_ill->ill_ip_mib, 23703 ipIfStatsOutFragFails); 23704 BUMP_MIB(out_ill->ill_ip_mib, 23705 ipIfStatsOutFragReqds); 23706 ipha->ipha_hdr_checksum = 0; 23707 ipha->ipha_hdr_checksum = 23708 (uint16_t)ip_csum_hdr(ipha); 23709 icmp_frag_needed(ire->ire_stq, first_mp, 23710 max_frag, zoneid, ipst); 23711 if (!next_mp) { 23712 ire_refrele(ire); 23713 if (conn_outgoing_ill != NULL) { 23714 ill_refrele( 23715 conn_outgoing_ill); 23716 } 23717 return; 23718 } 23719 } else { 23720 /* 23721 * This won't cause a icmp_frag_needed 23722 * message. to be generated. Send it on 23723 * the wire. Note that this could still 23724 * cause fragmentation and all we 23725 * do is the generation of the message 23726 * to the ULP if needed before IPsec. 23727 */ 23728 if (!next_mp) { 23729 ipsec_out_process(q, first_mp, 23730 ire, ill_index); 23731 TRACE_2(TR_FAC_IP, 23732 TR_IP_WPUT_IRE_END, 23733 "ip_wput_ire_end: q %p " 23734 "(%S)", q, 23735 "last ipsec_out_process"); 23736 ire_refrele(ire); 23737 if (conn_outgoing_ill != NULL) { 23738 ill_refrele( 23739 conn_outgoing_ill); 23740 } 23741 return; 23742 } 23743 ipsec_out_process(q, first_mp, 23744 ire, ill_index); 23745 } 23746 } else { 23747 /* 23748 * Initiate IPPF processing. For 23749 * fragmentable packets we finish 23750 * all QOS packet processing before 23751 * calling: 23752 * ip_wput_ire_fragmentit->ip_wput_frag 23753 */ 23754 23755 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23756 ip_process(IPP_LOCAL_OUT, &mp, 23757 ill_index); 23758 if (mp == NULL) { 23759 out_ill = (ill_t *)stq->q_ptr; 23760 BUMP_MIB(out_ill->ill_ip_mib, 23761 ipIfStatsOutDiscards); 23762 if (next_mp != NULL) { 23763 freemsg(next_mp); 23764 ire_refrele(ire1); 23765 } 23766 ire_refrele(ire); 23767 TRACE_2(TR_FAC_IP, 23768 TR_IP_WPUT_IRE_END, 23769 "ip_wput_ire: q %p (%S)", 23770 q, "discard MDATA"); 23771 if (conn_outgoing_ill != NULL) { 23772 ill_refrele( 23773 conn_outgoing_ill); 23774 } 23775 return; 23776 } 23777 } 23778 if (!next_mp) { 23779 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23780 "ip_wput_ire_end: q %p (%S)", 23781 q, "last fragmentation"); 23782 ip_wput_ire_fragmentit(mp, ire, 23783 zoneid, ipst, connp); 23784 ire_refrele(ire); 23785 if (conn_outgoing_ill != NULL) 23786 ill_refrele(conn_outgoing_ill); 23787 return; 23788 } 23789 ip_wput_ire_fragmentit(mp, ire, 23790 zoneid, ipst, connp); 23791 } 23792 } 23793 } else { 23794 nullstq: 23795 /* A NULL stq means the destination address is local. */ 23796 UPDATE_OB_PKT_COUNT(ire); 23797 ire->ire_last_used_time = lbolt; 23798 ASSERT(ire->ire_ipif != NULL); 23799 if (!next_mp) { 23800 /* 23801 * Is there an "in" and "out" for traffic local 23802 * to a host (loopback)? The code in Solaris doesn't 23803 * explicitly draw a line in its code for in vs out, 23804 * so we've had to draw a line in the sand: ip_wput_ire 23805 * is considered to be the "output" side and 23806 * ip_wput_local to be the "input" side. 23807 */ 23808 out_ill = ire_to_ill(ire); 23809 23810 /* 23811 * DTrace this as ip:::send. A blocked packet will 23812 * fire the send probe, but not the receive probe. 23813 */ 23814 DTRACE_IP7(send, mblk_t *, first_mp, conn_t *, NULL, 23815 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 23816 ipha_t *, ipha, ip6_t *, NULL, int, 1); 23817 23818 DTRACE_PROBE4(ip4__loopback__out__start, 23819 ill_t *, NULL, ill_t *, out_ill, 23820 ipha_t *, ipha, mblk_t *, first_mp); 23821 23822 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23823 ipst->ips_ipv4firewall_loopback_out, 23824 NULL, out_ill, ipha, first_mp, mp, 0, ipst); 23825 23826 DTRACE_PROBE1(ip4__loopback__out_end, 23827 mblk_t *, first_mp); 23828 23829 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23830 "ip_wput_ire_end: q %p (%S)", 23831 q, "local address"); 23832 23833 if (first_mp != NULL) 23834 ip_wput_local(q, out_ill, ipha, 23835 first_mp, ire, 0, ire->ire_zoneid); 23836 ire_refrele(ire); 23837 if (conn_outgoing_ill != NULL) 23838 ill_refrele(conn_outgoing_ill); 23839 return; 23840 } 23841 23842 out_ill = ire_to_ill(ire); 23843 23844 /* 23845 * DTrace this as ip:::send. A blocked packet will fire the 23846 * send probe, but not the receive probe. 23847 */ 23848 DTRACE_IP7(send, mblk_t *, first_mp, conn_t *, NULL, 23849 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 23850 ipha_t *, ipha, ip6_t *, NULL, int, 1); 23851 23852 DTRACE_PROBE4(ip4__loopback__out__start, 23853 ill_t *, NULL, ill_t *, out_ill, 23854 ipha_t *, ipha, mblk_t *, first_mp); 23855 23856 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23857 ipst->ips_ipv4firewall_loopback_out, 23858 NULL, out_ill, ipha, first_mp, mp, 0, ipst); 23859 23860 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, first_mp); 23861 23862 if (first_mp != NULL) 23863 ip_wput_local(q, out_ill, ipha, 23864 first_mp, ire, 0, ire->ire_zoneid); 23865 } 23866 next: 23867 /* 23868 * More copies going out to additional interfaces. 23869 * ire1 has already been held. We don't need the 23870 * "ire" anymore. 23871 */ 23872 ire_refrele(ire); 23873 ire = ire1; 23874 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 23875 mp = next_mp; 23876 ASSERT(ire->ire_ipversion == IPV4_VERSION); 23877 ill = ire_to_ill(ire); 23878 first_mp = mp; 23879 if (ipsec_len != 0) { 23880 ASSERT(first_mp->b_datap->db_type == M_CTL); 23881 mp = mp->b_cont; 23882 } 23883 dst = ire->ire_addr; 23884 ipha = (ipha_t *)mp->b_rptr; 23885 /* 23886 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 23887 * Restore ipha_ident "no checksum" flag. 23888 */ 23889 src = orig_src; 23890 ipha->ipha_ident = ip_hdr_included; 23891 goto another; 23892 23893 #undef rptr 23894 #undef Q_TO_INDEX 23895 } 23896 23897 /* 23898 * Routine to allocate a message that is used to notify the ULP about MDT. 23899 * The caller may provide a pointer to the link-layer MDT capabilities, 23900 * or NULL if MDT is to be disabled on the stream. 23901 */ 23902 mblk_t * 23903 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 23904 { 23905 mblk_t *mp; 23906 ip_mdt_info_t *mdti; 23907 ill_mdt_capab_t *idst; 23908 23909 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 23910 DB_TYPE(mp) = M_CTL; 23911 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 23912 mdti = (ip_mdt_info_t *)mp->b_rptr; 23913 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 23914 idst = &(mdti->mdt_capab); 23915 23916 /* 23917 * If the caller provides us with the capability, copy 23918 * it over into our notification message; otherwise 23919 * we zero out the capability portion. 23920 */ 23921 if (isrc != NULL) 23922 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23923 else 23924 bzero((caddr_t)idst, sizeof (*idst)); 23925 } 23926 return (mp); 23927 } 23928 23929 /* 23930 * Routine which determines whether MDT can be enabled on the destination 23931 * IRE and IPC combination, and if so, allocates and returns the MDT 23932 * notification mblk that may be used by ULP. We also check if we need to 23933 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 23934 * MDT usage in the past have been lifted. This gets called during IP 23935 * and ULP binding. 23936 */ 23937 mblk_t * 23938 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23939 ill_mdt_capab_t *mdt_cap) 23940 { 23941 mblk_t *mp; 23942 boolean_t rc = B_FALSE; 23943 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23944 23945 ASSERT(dst_ire != NULL); 23946 ASSERT(connp != NULL); 23947 ASSERT(mdt_cap != NULL); 23948 23949 /* 23950 * Currently, we only support simple TCP/{IPv4,IPv6} with 23951 * Multidata, which is handled in tcp_multisend(). This 23952 * is the reason why we do all these checks here, to ensure 23953 * that we don't enable Multidata for the cases which we 23954 * can't handle at the moment. 23955 */ 23956 do { 23957 /* Only do TCP at the moment */ 23958 if (connp->conn_ulp != IPPROTO_TCP) 23959 break; 23960 23961 /* 23962 * IPsec outbound policy present? Note that we get here 23963 * after calling ipsec_conn_cache_policy() where the global 23964 * policy checking is performed. conn_latch will be 23965 * non-NULL as long as there's a policy defined, 23966 * i.e. conn_out_enforce_policy may be NULL in such case 23967 * when the connection is non-secure, and hence we check 23968 * further if the latch refers to an outbound policy. 23969 */ 23970 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 23971 break; 23972 23973 /* CGTP (multiroute) is enabled? */ 23974 if (dst_ire->ire_flags & RTF_MULTIRT) 23975 break; 23976 23977 /* Outbound IPQoS enabled? */ 23978 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23979 /* 23980 * In this case, we disable MDT for this and all 23981 * future connections going over the interface. 23982 */ 23983 mdt_cap->ill_mdt_on = 0; 23984 break; 23985 } 23986 23987 /* socket option(s) present? */ 23988 if (!CONN_IS_LSO_MD_FASTPATH(connp)) 23989 break; 23990 23991 rc = B_TRUE; 23992 /* CONSTCOND */ 23993 } while (0); 23994 23995 /* Remember the result */ 23996 connp->conn_mdt_ok = rc; 23997 23998 if (!rc) 23999 return (NULL); 24000 else if (!mdt_cap->ill_mdt_on) { 24001 /* 24002 * If MDT has been previously turned off in the past, and we 24003 * currently can do MDT (due to IPQoS policy removal, etc.) 24004 * then enable it for this interface. 24005 */ 24006 mdt_cap->ill_mdt_on = 1; 24007 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 24008 "interface %s\n", ill_name)); 24009 } 24010 24011 /* Allocate the MDT info mblk */ 24012 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 24013 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 24014 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 24015 return (NULL); 24016 } 24017 return (mp); 24018 } 24019 24020 /* 24021 * Routine to allocate a message that is used to notify the ULP about LSO. 24022 * The caller may provide a pointer to the link-layer LSO capabilities, 24023 * or NULL if LSO is to be disabled on the stream. 24024 */ 24025 mblk_t * 24026 ip_lsoinfo_alloc(ill_lso_capab_t *isrc) 24027 { 24028 mblk_t *mp; 24029 ip_lso_info_t *lsoi; 24030 ill_lso_capab_t *idst; 24031 24032 if ((mp = allocb(sizeof (*lsoi), BPRI_HI)) != NULL) { 24033 DB_TYPE(mp) = M_CTL; 24034 mp->b_wptr = mp->b_rptr + sizeof (*lsoi); 24035 lsoi = (ip_lso_info_t *)mp->b_rptr; 24036 lsoi->lso_info_id = LSO_IOC_INFO_UPDATE; 24037 idst = &(lsoi->lso_capab); 24038 24039 /* 24040 * If the caller provides us with the capability, copy 24041 * it over into our notification message; otherwise 24042 * we zero out the capability portion. 24043 */ 24044 if (isrc != NULL) 24045 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 24046 else 24047 bzero((caddr_t)idst, sizeof (*idst)); 24048 } 24049 return (mp); 24050 } 24051 24052 /* 24053 * Routine which determines whether LSO can be enabled on the destination 24054 * IRE and IPC combination, and if so, allocates and returns the LSO 24055 * notification mblk that may be used by ULP. We also check if we need to 24056 * turn LSO back to 'on' when certain restrictions prohibiting us to allow 24057 * LSO usage in the past have been lifted. This gets called during IP 24058 * and ULP binding. 24059 */ 24060 mblk_t * 24061 ip_lsoinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 24062 ill_lso_capab_t *lso_cap) 24063 { 24064 mblk_t *mp; 24065 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 24066 24067 ASSERT(dst_ire != NULL); 24068 ASSERT(connp != NULL); 24069 ASSERT(lso_cap != NULL); 24070 24071 connp->conn_lso_ok = B_TRUE; 24072 24073 if ((connp->conn_ulp != IPPROTO_TCP) || 24074 CONN_IPSEC_OUT_ENCAPSULATED(connp) || 24075 (dst_ire->ire_flags & RTF_MULTIRT) || 24076 !CONN_IS_LSO_MD_FASTPATH(connp) || 24077 (IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 24078 connp->conn_lso_ok = B_FALSE; 24079 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 24080 /* 24081 * Disable LSO for this and all future connections going 24082 * over the interface. 24083 */ 24084 lso_cap->ill_lso_on = 0; 24085 } 24086 } 24087 24088 if (!connp->conn_lso_ok) 24089 return (NULL); 24090 else if (!lso_cap->ill_lso_on) { 24091 /* 24092 * If LSO has been previously turned off in the past, and we 24093 * currently can do LSO (due to IPQoS policy removal, etc.) 24094 * then enable it for this interface. 24095 */ 24096 lso_cap->ill_lso_on = 1; 24097 ip1dbg(("ip_mdinfo_return: reenabling LSO for interface %s\n", 24098 ill_name)); 24099 } 24100 24101 /* Allocate the LSO info mblk */ 24102 if ((mp = ip_lsoinfo_alloc(lso_cap)) == NULL) 24103 ip0dbg(("ip_lsoinfo_return: can't enable LSO for " 24104 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 24105 24106 return (mp); 24107 } 24108 24109 /* 24110 * Create destination address attribute, and fill it with the physical 24111 * destination address and SAP taken from the template DL_UNITDATA_REQ 24112 * message block. 24113 */ 24114 boolean_t 24115 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 24116 { 24117 dl_unitdata_req_t *dlurp; 24118 pattr_t *pa; 24119 pattrinfo_t pa_info; 24120 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 24121 uint_t das_len, das_off; 24122 24123 ASSERT(dlmp != NULL); 24124 24125 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 24126 das_len = dlurp->dl_dest_addr_length; 24127 das_off = dlurp->dl_dest_addr_offset; 24128 24129 pa_info.type = PATTR_DSTADDRSAP; 24130 pa_info.len = sizeof (**das) + das_len - 1; 24131 24132 /* create and associate the attribute */ 24133 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 24134 if (pa != NULL) { 24135 ASSERT(*das != NULL); 24136 (*das)->addr_is_group = 0; 24137 (*das)->addr_len = (uint8_t)das_len; 24138 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 24139 } 24140 24141 return (pa != NULL); 24142 } 24143 24144 /* 24145 * Create hardware checksum attribute and fill it with the values passed. 24146 */ 24147 boolean_t 24148 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 24149 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 24150 { 24151 pattr_t *pa; 24152 pattrinfo_t pa_info; 24153 24154 ASSERT(mmd != NULL); 24155 24156 pa_info.type = PATTR_HCKSUM; 24157 pa_info.len = sizeof (pattr_hcksum_t); 24158 24159 /* create and associate the attribute */ 24160 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 24161 if (pa != NULL) { 24162 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 24163 24164 hck->hcksum_start_offset = start_offset; 24165 hck->hcksum_stuff_offset = stuff_offset; 24166 hck->hcksum_end_offset = end_offset; 24167 hck->hcksum_flags = flags; 24168 } 24169 return (pa != NULL); 24170 } 24171 24172 /* 24173 * Create zerocopy attribute and fill it with the specified flags 24174 */ 24175 boolean_t 24176 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 24177 { 24178 pattr_t *pa; 24179 pattrinfo_t pa_info; 24180 24181 ASSERT(mmd != NULL); 24182 pa_info.type = PATTR_ZCOPY; 24183 pa_info.len = sizeof (pattr_zcopy_t); 24184 24185 /* create and associate the attribute */ 24186 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 24187 if (pa != NULL) { 24188 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 24189 24190 zcopy->zcopy_flags = flags; 24191 } 24192 return (pa != NULL); 24193 } 24194 24195 /* 24196 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 24197 * block chain. We could rewrite to handle arbitrary message block chains but 24198 * that would make the code complicated and slow. Right now there three 24199 * restrictions: 24200 * 24201 * 1. The first message block must contain the complete IP header and 24202 * at least 1 byte of payload data. 24203 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 24204 * so that we can use a single Multidata message. 24205 * 3. No frag must be distributed over two or more message blocks so 24206 * that we don't need more than two packet descriptors per frag. 24207 * 24208 * The above restrictions allow us to support userland applications (which 24209 * will send down a single message block) and NFS over UDP (which will 24210 * send down a chain of at most three message blocks). 24211 * 24212 * We also don't use MDT for payloads with less than or equal to 24213 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 24214 */ 24215 boolean_t 24216 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 24217 { 24218 int blocks; 24219 ssize_t total, missing, size; 24220 24221 ASSERT(mp != NULL); 24222 ASSERT(hdr_len > 0); 24223 24224 size = MBLKL(mp) - hdr_len; 24225 if (size <= 0) 24226 return (B_FALSE); 24227 24228 /* The first mblk contains the header and some payload. */ 24229 blocks = 1; 24230 total = size; 24231 size %= len; 24232 missing = (size == 0) ? 0 : (len - size); 24233 mp = mp->b_cont; 24234 24235 while (mp != NULL) { 24236 /* 24237 * Give up if we encounter a zero length message block. 24238 * In practice, this should rarely happen and therefore 24239 * not worth the trouble of freeing and re-linking the 24240 * mblk from the chain to handle such case. 24241 */ 24242 if ((size = MBLKL(mp)) == 0) 24243 return (B_FALSE); 24244 24245 /* Too many payload buffers for a single Multidata message? */ 24246 if (++blocks > MULTIDATA_MAX_PBUFS) 24247 return (B_FALSE); 24248 24249 total += size; 24250 /* Is a frag distributed over two or more message blocks? */ 24251 if (missing > size) 24252 return (B_FALSE); 24253 size -= missing; 24254 24255 size %= len; 24256 missing = (size == 0) ? 0 : (len - size); 24257 24258 mp = mp->b_cont; 24259 } 24260 24261 return (total > ip_wput_frag_mdt_min); 24262 } 24263 24264 /* 24265 * Outbound IPv4 fragmentation routine using MDT. 24266 */ 24267 static void 24268 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 24269 uint32_t frag_flag, int offset) 24270 { 24271 ipha_t *ipha_orig; 24272 int i1, ip_data_end; 24273 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 24274 mblk_t *hdr_mp, *md_mp = NULL; 24275 unsigned char *hdr_ptr, *pld_ptr; 24276 multidata_t *mmd; 24277 ip_pdescinfo_t pdi; 24278 ill_t *ill; 24279 ip_stack_t *ipst = ire->ire_ipst; 24280 24281 ASSERT(DB_TYPE(mp) == M_DATA); 24282 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 24283 24284 ill = ire_to_ill(ire); 24285 ASSERT(ill != NULL); 24286 24287 ipha_orig = (ipha_t *)mp->b_rptr; 24288 mp->b_rptr += sizeof (ipha_t); 24289 24290 /* Calculate how many packets we will send out */ 24291 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 24292 pkts = (i1 + len - 1) / len; 24293 ASSERT(pkts > 1); 24294 24295 /* Allocate a message block which will hold all the IP Headers. */ 24296 wroff = ipst->ips_ip_wroff_extra; 24297 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 24298 24299 i1 = pkts * hdr_chunk_len; 24300 /* 24301 * Create the header buffer, Multidata and destination address 24302 * and SAP attribute that should be associated with it. 24303 */ 24304 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 24305 ((hdr_mp->b_wptr += i1), 24306 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 24307 !ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) { 24308 freemsg(mp); 24309 if (md_mp == NULL) { 24310 freemsg(hdr_mp); 24311 } else { 24312 free_mmd: IP_STAT(ipst, ip_frag_mdt_discarded); 24313 freemsg(md_mp); 24314 } 24315 IP_STAT(ipst, ip_frag_mdt_allocfail); 24316 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 24317 return; 24318 } 24319 IP_STAT(ipst, ip_frag_mdt_allocd); 24320 24321 /* 24322 * Add a payload buffer to the Multidata; this operation must not 24323 * fail, or otherwise our logic in this routine is broken. There 24324 * is no memory allocation done by the routine, so any returned 24325 * failure simply tells us that we've done something wrong. 24326 * 24327 * A failure tells us that either we're adding the same payload 24328 * buffer more than once, or we're trying to add more buffers than 24329 * allowed. None of the above cases should happen, and we panic 24330 * because either there's horrible heap corruption, and/or 24331 * programming mistake. 24332 */ 24333 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24334 goto pbuf_panic; 24335 24336 hdr_ptr = hdr_mp->b_rptr; 24337 pld_ptr = mp->b_rptr; 24338 24339 /* Establish the ending byte offset, based on the starting offset. */ 24340 offset <<= 3; 24341 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 24342 IP_SIMPLE_HDR_LENGTH; 24343 24344 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 24345 24346 while (pld_ptr < mp->b_wptr) { 24347 ipha_t *ipha; 24348 uint16_t offset_and_flags; 24349 uint16_t ip_len; 24350 int error; 24351 24352 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 24353 ipha = (ipha_t *)(hdr_ptr + wroff); 24354 ASSERT(OK_32PTR(ipha)); 24355 *ipha = *ipha_orig; 24356 24357 if (ip_data_end - offset > len) { 24358 offset_and_flags = IPH_MF; 24359 } else { 24360 /* 24361 * Last frag. Set len to the length of this last piece. 24362 */ 24363 len = ip_data_end - offset; 24364 /* A frag of a frag might have IPH_MF non-zero */ 24365 offset_and_flags = 24366 ntohs(ipha->ipha_fragment_offset_and_flags) & 24367 IPH_MF; 24368 } 24369 offset_and_flags |= (uint16_t)(offset >> 3); 24370 offset_and_flags |= (uint16_t)frag_flag; 24371 /* Store the offset and flags in the IP header. */ 24372 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24373 24374 /* Store the length in the IP header. */ 24375 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 24376 ipha->ipha_length = htons(ip_len); 24377 24378 /* 24379 * Set the IP header checksum. Note that mp is just 24380 * the header, so this is easy to pass to ip_csum. 24381 */ 24382 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24383 24384 DTRACE_IP7(send, mblk_t *, md_mp, conn_t *, NULL, void_ip_t *, 24385 ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, ip6_t *, 24386 NULL, int, 0); 24387 24388 /* 24389 * Record offset and size of header and data of the next packet 24390 * in the multidata message. 24391 */ 24392 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 24393 PDESC_PLD_INIT(&pdi); 24394 i1 = MIN(mp->b_wptr - pld_ptr, len); 24395 ASSERT(i1 > 0); 24396 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 24397 if (i1 == len) { 24398 pld_ptr += len; 24399 } else { 24400 i1 = len - i1; 24401 mp = mp->b_cont; 24402 ASSERT(mp != NULL); 24403 ASSERT(MBLKL(mp) >= i1); 24404 /* 24405 * Attach the next payload message block to the 24406 * multidata message. 24407 */ 24408 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24409 goto pbuf_panic; 24410 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 24411 pld_ptr = mp->b_rptr + i1; 24412 } 24413 24414 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 24415 KM_NOSLEEP)) == NULL) { 24416 /* 24417 * Any failure other than ENOMEM indicates that we 24418 * have passed in invalid pdesc info or parameters 24419 * to mmd_addpdesc, which must not happen. 24420 * 24421 * EINVAL is a result of failure on boundary checks 24422 * against the pdesc info contents. It should not 24423 * happen, and we panic because either there's 24424 * horrible heap corruption, and/or programming 24425 * mistake. 24426 */ 24427 if (error != ENOMEM) { 24428 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 24429 "pdesc logic error detected for " 24430 "mmd %p pinfo %p (%d)\n", 24431 (void *)mmd, (void *)&pdi, error); 24432 /* NOTREACHED */ 24433 } 24434 IP_STAT(ipst, ip_frag_mdt_addpdescfail); 24435 /* Free unattached payload message blocks as well */ 24436 md_mp->b_cont = mp->b_cont; 24437 goto free_mmd; 24438 } 24439 24440 /* Advance fragment offset. */ 24441 offset += len; 24442 24443 /* Advance to location for next header in the buffer. */ 24444 hdr_ptr += hdr_chunk_len; 24445 24446 /* Did we reach the next payload message block? */ 24447 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 24448 mp = mp->b_cont; 24449 /* 24450 * Attach the next message block with payload 24451 * data to the multidata message. 24452 */ 24453 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24454 goto pbuf_panic; 24455 pld_ptr = mp->b_rptr; 24456 } 24457 } 24458 24459 ASSERT(hdr_mp->b_wptr == hdr_ptr); 24460 ASSERT(mp->b_wptr == pld_ptr); 24461 24462 /* Update IP statistics */ 24463 IP_STAT_UPDATE(ipst, ip_frag_mdt_pkt_out, pkts); 24464 24465 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates, pkts); 24466 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 24467 24468 len = ntohs(ipha_orig->ipha_length) + (pkts - 1) * IP_SIMPLE_HDR_LENGTH; 24469 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, pkts); 24470 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, len); 24471 24472 if (pkt_type == OB_PKT) { 24473 ire->ire_ob_pkt_count += pkts; 24474 if (ire->ire_ipif != NULL) 24475 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 24476 } else { 24477 /* The type is IB_PKT in the forwarding path. */ 24478 ire->ire_ib_pkt_count += pkts; 24479 ASSERT(!IRE_IS_LOCAL(ire)); 24480 if (ire->ire_type & IRE_BROADCAST) { 24481 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 24482 } else { 24483 UPDATE_MIB(ill->ill_ip_mib, 24484 ipIfStatsHCOutForwDatagrams, pkts); 24485 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 24486 } 24487 } 24488 ire->ire_last_used_time = lbolt; 24489 /* Send it down */ 24490 putnext(ire->ire_stq, md_mp); 24491 return; 24492 24493 pbuf_panic: 24494 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 24495 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 24496 pbuf_idx); 24497 /* NOTREACHED */ 24498 } 24499 24500 /* 24501 * Outbound IP fragmentation routine. 24502 * 24503 * NOTE : This routine does not ire_refrele the ire that is passed in 24504 * as the argument. 24505 */ 24506 static void 24507 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 24508 uint32_t frag_flag, zoneid_t zoneid, ip_stack_t *ipst, conn_t *connp) 24509 { 24510 int i1; 24511 mblk_t *ll_hdr_mp; 24512 int ll_hdr_len; 24513 int hdr_len; 24514 mblk_t *hdr_mp; 24515 ipha_t *ipha; 24516 int ip_data_end; 24517 int len; 24518 mblk_t *mp = mp_orig, *mp1; 24519 int offset; 24520 queue_t *q; 24521 uint32_t v_hlen_tos_len; 24522 mblk_t *first_mp; 24523 boolean_t mctl_present; 24524 ill_t *ill; 24525 ill_t *out_ill; 24526 mblk_t *xmit_mp; 24527 mblk_t *carve_mp; 24528 ire_t *ire1 = NULL; 24529 ire_t *save_ire = NULL; 24530 mblk_t *next_mp = NULL; 24531 boolean_t last_frag = B_FALSE; 24532 boolean_t multirt_send = B_FALSE; 24533 ire_t *first_ire = NULL; 24534 irb_t *irb = NULL; 24535 mib2_ipIfStatsEntry_t *mibptr = NULL; 24536 24537 ill = ire_to_ill(ire); 24538 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 24539 24540 BUMP_MIB(mibptr, ipIfStatsOutFragReqds); 24541 24542 if (max_frag == 0) { 24543 ip1dbg(("ip_wput_frag: ire frag size is 0" 24544 " - dropping packet\n")); 24545 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24546 freemsg(mp); 24547 return; 24548 } 24549 24550 /* 24551 * IPsec does not allow hw accelerated packets to be fragmented 24552 * This check is made in ip_wput_ipsec_out prior to coming here 24553 * via ip_wput_ire_fragmentit. 24554 * 24555 * If at this point we have an ire whose ARP request has not 24556 * been sent out, we call ip_xmit_v4->ire_arpresolve to trigger 24557 * sending of ARP query and change ire's state to ND_INCOMPLETE. 24558 * This packet and all fragmentable packets for this ire will 24559 * continue to get dropped while ire_nce->nce_state remains in 24560 * ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to 24561 * ND_REACHABLE, all subsquent large packets for this ire will 24562 * get fragemented and sent out by this function. 24563 */ 24564 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 24565 /* If nce_state is ND_INITIAL, trigger ARP query */ 24566 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE, NULL); 24567 ip1dbg(("ip_wput_frag: mac address for ire is unresolved" 24568 " - dropping packet\n")); 24569 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24570 freemsg(mp); 24571 return; 24572 } 24573 24574 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 24575 "ip_wput_frag_start:"); 24576 24577 if (mp->b_datap->db_type == M_CTL) { 24578 first_mp = mp; 24579 mp_orig = mp = mp->b_cont; 24580 mctl_present = B_TRUE; 24581 } else { 24582 first_mp = mp; 24583 mctl_present = B_FALSE; 24584 } 24585 24586 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 24587 ipha = (ipha_t *)mp->b_rptr; 24588 24589 /* 24590 * If the Don't Fragment flag is on, generate an ICMP destination 24591 * unreachable, fragmentation needed. 24592 */ 24593 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 24594 if (offset & IPH_DF) { 24595 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24596 if (is_system_labeled()) { 24597 max_frag = tsol_pmtu_adjust(mp, ire->ire_max_frag, 24598 ire->ire_max_frag - max_frag, AF_INET); 24599 } 24600 /* 24601 * Need to compute hdr checksum if called from ip_wput_ire. 24602 * Note that ip_rput_forward verifies the checksum before 24603 * calling this routine so in that case this is a noop. 24604 */ 24605 ipha->ipha_hdr_checksum = 0; 24606 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24607 icmp_frag_needed(ire->ire_stq, first_mp, max_frag, zoneid, 24608 ipst); 24609 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24610 "ip_wput_frag_end:(%S)", 24611 "don't fragment"); 24612 return; 24613 } 24614 /* 24615 * Labeled systems adjust max_frag if they add a label 24616 * to send the correct path mtu. We need the real mtu since we 24617 * are fragmenting the packet after label adjustment. 24618 */ 24619 if (is_system_labeled()) 24620 max_frag = ire->ire_max_frag; 24621 if (mctl_present) 24622 freeb(first_mp); 24623 /* 24624 * Establish the starting offset. May not be zero if we are fragging 24625 * a fragment that is being forwarded. 24626 */ 24627 offset = offset & IPH_OFFSET; 24628 24629 /* TODO why is this test needed? */ 24630 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 24631 if (((max_frag - LENGTH) & ~7) < 8) { 24632 /* TODO: notify ulp somehow */ 24633 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24634 freemsg(mp); 24635 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24636 "ip_wput_frag_end:(%S)", 24637 "len < 8"); 24638 return; 24639 } 24640 24641 hdr_len = (V_HLEN & 0xF) << 2; 24642 24643 ipha->ipha_hdr_checksum = 0; 24644 24645 /* 24646 * Establish the number of bytes maximum per frag, after putting 24647 * in the header. 24648 */ 24649 len = (max_frag - hdr_len) & ~7; 24650 24651 /* Check if we can use MDT to send out the frags. */ 24652 ASSERT(!IRE_IS_LOCAL(ire)); 24653 if (hdr_len == IP_SIMPLE_HDR_LENGTH && 24654 ipst->ips_ip_multidata_outbound && 24655 !(ire->ire_flags & RTF_MULTIRT) && 24656 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 24657 ill != NULL && ILL_MDT_CAPABLE(ill) && 24658 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 24659 ASSERT(ill->ill_mdt_capab != NULL); 24660 if (!ill->ill_mdt_capab->ill_mdt_on) { 24661 /* 24662 * If MDT has been previously turned off in the past, 24663 * and we currently can do MDT (due to IPQoS policy 24664 * removal, etc.) then enable it for this interface. 24665 */ 24666 ill->ill_mdt_capab->ill_mdt_on = 1; 24667 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 24668 ill->ill_name)); 24669 } 24670 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 24671 offset); 24672 return; 24673 } 24674 24675 /* Get a copy of the header for the trailing frags */ 24676 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst); 24677 if (!hdr_mp) { 24678 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24679 freemsg(mp); 24680 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24681 "ip_wput_frag_end:(%S)", 24682 "couldn't copy hdr"); 24683 return; 24684 } 24685 if (DB_CRED(mp) != NULL) 24686 mblk_setcred(hdr_mp, DB_CRED(mp)); 24687 24688 /* Store the starting offset, with the MoreFrags flag. */ 24689 i1 = offset | IPH_MF | frag_flag; 24690 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 24691 24692 /* Establish the ending byte offset, based on the starting offset. */ 24693 offset <<= 3; 24694 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 24695 24696 /* Store the length of the first fragment in the IP header. */ 24697 i1 = len + hdr_len; 24698 ASSERT(i1 <= IP_MAXPACKET); 24699 ipha->ipha_length = htons((uint16_t)i1); 24700 24701 /* 24702 * Compute the IP header checksum for the first frag. We have to 24703 * watch out that we stop at the end of the header. 24704 */ 24705 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24706 24707 /* 24708 * Now carve off the first frag. Note that this will include the 24709 * original IP header. 24710 */ 24711 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 24712 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24713 freeb(hdr_mp); 24714 freemsg(mp_orig); 24715 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24716 "ip_wput_frag_end:(%S)", 24717 "couldn't carve first"); 24718 return; 24719 } 24720 24721 /* 24722 * Multirouting case. Each fragment is replicated 24723 * via all non-condemned RTF_MULTIRT routes 24724 * currently resolved. 24725 * We ensure that first_ire is the first RTF_MULTIRT 24726 * ire in the bucket. 24727 */ 24728 if (ire->ire_flags & RTF_MULTIRT) { 24729 irb = ire->ire_bucket; 24730 ASSERT(irb != NULL); 24731 24732 multirt_send = B_TRUE; 24733 24734 /* Make sure we do not omit any multiroute ire. */ 24735 IRB_REFHOLD(irb); 24736 for (first_ire = irb->irb_ire; 24737 first_ire != NULL; 24738 first_ire = first_ire->ire_next) { 24739 if ((first_ire->ire_flags & RTF_MULTIRT) && 24740 (first_ire->ire_addr == ire->ire_addr) && 24741 !(first_ire->ire_marks & 24742 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 24743 break; 24744 } 24745 } 24746 24747 if (first_ire != NULL) { 24748 if (first_ire != ire) { 24749 IRE_REFHOLD(first_ire); 24750 /* 24751 * Do not release the ire passed in 24752 * as the argument. 24753 */ 24754 ire = first_ire; 24755 } else { 24756 first_ire = NULL; 24757 } 24758 } 24759 IRB_REFRELE(irb); 24760 24761 /* 24762 * Save the first ire; we will need to restore it 24763 * for the trailing frags. 24764 * We REFHOLD save_ire, as each iterated ire will be 24765 * REFRELEd. 24766 */ 24767 save_ire = ire; 24768 IRE_REFHOLD(save_ire); 24769 } 24770 24771 /* 24772 * First fragment emission loop. 24773 * In most cases, the emission loop below is entered only 24774 * once. Only in the case where the ire holds the RTF_MULTIRT 24775 * flag, do we loop to process all RTF_MULTIRT ires in the 24776 * bucket, and send the fragment through all crossed 24777 * RTF_MULTIRT routes. 24778 */ 24779 do { 24780 if (ire->ire_flags & RTF_MULTIRT) { 24781 /* 24782 * We are in a multiple send case, need to get 24783 * the next ire and make a copy of the packet. 24784 * ire1 holds here the next ire to process in the 24785 * bucket. If multirouting is expected, 24786 * any non-RTF_MULTIRT ire that has the 24787 * right destination address is ignored. 24788 * 24789 * We have to take into account the MTU of 24790 * each walked ire. max_frag is set by the 24791 * the caller and generally refers to 24792 * the primary ire entry. Here we ensure that 24793 * no route with a lower MTU will be used, as 24794 * fragments are carved once for all ires, 24795 * then replicated. 24796 */ 24797 ASSERT(irb != NULL); 24798 IRB_REFHOLD(irb); 24799 for (ire1 = ire->ire_next; 24800 ire1 != NULL; 24801 ire1 = ire1->ire_next) { 24802 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 24803 continue; 24804 if (ire1->ire_addr != ire->ire_addr) 24805 continue; 24806 if (ire1->ire_marks & 24807 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 24808 continue; 24809 /* 24810 * Ensure we do not exceed the MTU 24811 * of the next route. 24812 */ 24813 if (ire1->ire_max_frag < max_frag) { 24814 ip_multirt_bad_mtu(ire1, max_frag); 24815 continue; 24816 } 24817 24818 /* Got one. */ 24819 IRE_REFHOLD(ire1); 24820 break; 24821 } 24822 IRB_REFRELE(irb); 24823 24824 if (ire1 != NULL) { 24825 next_mp = copyb(mp); 24826 if ((next_mp == NULL) || 24827 ((mp->b_cont != NULL) && 24828 ((next_mp->b_cont = 24829 dupmsg(mp->b_cont)) == NULL))) { 24830 freemsg(next_mp); 24831 next_mp = NULL; 24832 ire_refrele(ire1); 24833 ire1 = NULL; 24834 } 24835 } 24836 24837 /* Last multiroute ire; don't loop anymore. */ 24838 if (ire1 == NULL) { 24839 multirt_send = B_FALSE; 24840 } 24841 } 24842 24843 ll_hdr_len = 0; 24844 LOCK_IRE_FP_MP(ire); 24845 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24846 if (ll_hdr_mp != NULL) { 24847 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24848 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 24849 } else { 24850 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24851 } 24852 24853 /* If there is a transmit header, get a copy for this frag. */ 24854 /* 24855 * TODO: should check db_ref before calling ip_carve_mp since 24856 * it might give us a dup. 24857 */ 24858 if (!ll_hdr_mp) { 24859 /* No xmit header. */ 24860 xmit_mp = mp; 24861 24862 /* We have a link-layer header that can fit in our mblk. */ 24863 } else if (mp->b_datap->db_ref == 1 && 24864 ll_hdr_len != 0 && 24865 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24866 /* M_DATA fastpath */ 24867 mp->b_rptr -= ll_hdr_len; 24868 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 24869 xmit_mp = mp; 24870 24871 /* Corner case if copyb has failed */ 24872 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 24873 UNLOCK_IRE_FP_MP(ire); 24874 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24875 freeb(hdr_mp); 24876 freemsg(mp); 24877 freemsg(mp_orig); 24878 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24879 "ip_wput_frag_end:(%S)", 24880 "discard"); 24881 24882 if (multirt_send) { 24883 ASSERT(ire1); 24884 ASSERT(next_mp); 24885 24886 freemsg(next_mp); 24887 ire_refrele(ire1); 24888 } 24889 if (save_ire != NULL) 24890 IRE_REFRELE(save_ire); 24891 24892 if (first_ire != NULL) 24893 ire_refrele(first_ire); 24894 return; 24895 24896 /* 24897 * Case of res_mp OR the fastpath mp can't fit 24898 * in the mblk 24899 */ 24900 } else { 24901 xmit_mp->b_cont = mp; 24902 if (DB_CRED(mp) != NULL) 24903 mblk_setcred(xmit_mp, DB_CRED(mp)); 24904 /* 24905 * Get priority marking, if any. 24906 * We propagate the CoS marking from the 24907 * original packet that went to QoS processing 24908 * in ip_wput_ire to the newly carved mp. 24909 */ 24910 if (DB_TYPE(xmit_mp) == M_DATA) 24911 xmit_mp->b_band = mp->b_band; 24912 } 24913 UNLOCK_IRE_FP_MP(ire); 24914 24915 q = ire->ire_stq; 24916 out_ill = (ill_t *)q->q_ptr; 24917 24918 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24919 24920 DTRACE_PROBE4(ip4__physical__out__start, 24921 ill_t *, NULL, ill_t *, out_ill, 24922 ipha_t *, ipha, mblk_t *, xmit_mp); 24923 24924 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24925 ipst->ips_ipv4firewall_physical_out, 24926 NULL, out_ill, ipha, xmit_mp, mp, 0, ipst); 24927 24928 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, xmit_mp); 24929 24930 if (xmit_mp != NULL) { 24931 DTRACE_IP7(send, mblk_t *, xmit_mp, conn_t *, NULL, 24932 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 24933 ipha_t *, ipha, ip6_t *, NULL, int, 0); 24934 24935 ILL_SEND_TX(out_ill, ire, connp, xmit_mp, 0); 24936 24937 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 24938 UPDATE_MIB(out_ill->ill_ip_mib, 24939 ipIfStatsHCOutOctets, i1); 24940 24941 if (pkt_type != OB_PKT) { 24942 /* 24943 * Update the packet count and MIB stats 24944 * of trailing RTF_MULTIRT ires. 24945 */ 24946 UPDATE_OB_PKT_COUNT(ire); 24947 BUMP_MIB(out_ill->ill_ip_mib, 24948 ipIfStatsOutFragReqds); 24949 } 24950 } 24951 24952 if (multirt_send) { 24953 /* 24954 * We are in a multiple send case; look for 24955 * the next ire and re-enter the loop. 24956 */ 24957 ASSERT(ire1); 24958 ASSERT(next_mp); 24959 /* REFRELE the current ire before looping */ 24960 ire_refrele(ire); 24961 ire = ire1; 24962 ire1 = NULL; 24963 mp = next_mp; 24964 next_mp = NULL; 24965 } 24966 } while (multirt_send); 24967 24968 ASSERT(ire1 == NULL); 24969 24970 /* Restore the original ire; we need it for the trailing frags */ 24971 if (save_ire != NULL) { 24972 /* REFRELE the last iterated ire */ 24973 ire_refrele(ire); 24974 /* save_ire has been REFHOLDed */ 24975 ire = save_ire; 24976 save_ire = NULL; 24977 q = ire->ire_stq; 24978 } 24979 24980 if (pkt_type == OB_PKT) { 24981 UPDATE_OB_PKT_COUNT(ire); 24982 } else { 24983 out_ill = (ill_t *)q->q_ptr; 24984 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 24985 UPDATE_IB_PKT_COUNT(ire); 24986 } 24987 24988 /* Advance the offset to the second frag starting point. */ 24989 offset += len; 24990 /* 24991 * Update hdr_len from the copied header - there might be less options 24992 * in the later fragments. 24993 */ 24994 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 24995 /* Loop until done. */ 24996 for (;;) { 24997 uint16_t offset_and_flags; 24998 uint16_t ip_len; 24999 25000 if (ip_data_end - offset > len) { 25001 /* 25002 * Carve off the appropriate amount from the original 25003 * datagram. 25004 */ 25005 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 25006 mp = NULL; 25007 break; 25008 } 25009 /* 25010 * More frags after this one. Get another copy 25011 * of the header. 25012 */ 25013 if (carve_mp->b_datap->db_ref == 1 && 25014 hdr_mp->b_wptr - hdr_mp->b_rptr < 25015 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 25016 /* Inline IP header */ 25017 carve_mp->b_rptr -= hdr_mp->b_wptr - 25018 hdr_mp->b_rptr; 25019 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 25020 hdr_mp->b_wptr - hdr_mp->b_rptr); 25021 mp = carve_mp; 25022 } else { 25023 if (!(mp = copyb(hdr_mp))) { 25024 freemsg(carve_mp); 25025 break; 25026 } 25027 /* Get priority marking, if any. */ 25028 mp->b_band = carve_mp->b_band; 25029 mp->b_cont = carve_mp; 25030 } 25031 ipha = (ipha_t *)mp->b_rptr; 25032 offset_and_flags = IPH_MF; 25033 } else { 25034 /* 25035 * Last frag. Consume the header. Set len to 25036 * the length of this last piece. 25037 */ 25038 len = ip_data_end - offset; 25039 25040 /* 25041 * Carve off the appropriate amount from the original 25042 * datagram. 25043 */ 25044 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 25045 mp = NULL; 25046 break; 25047 } 25048 if (carve_mp->b_datap->db_ref == 1 && 25049 hdr_mp->b_wptr - hdr_mp->b_rptr < 25050 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 25051 /* Inline IP header */ 25052 carve_mp->b_rptr -= hdr_mp->b_wptr - 25053 hdr_mp->b_rptr; 25054 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 25055 hdr_mp->b_wptr - hdr_mp->b_rptr); 25056 mp = carve_mp; 25057 freeb(hdr_mp); 25058 hdr_mp = mp; 25059 } else { 25060 mp = hdr_mp; 25061 /* Get priority marking, if any. */ 25062 mp->b_band = carve_mp->b_band; 25063 mp->b_cont = carve_mp; 25064 } 25065 ipha = (ipha_t *)mp->b_rptr; 25066 /* A frag of a frag might have IPH_MF non-zero */ 25067 offset_and_flags = 25068 ntohs(ipha->ipha_fragment_offset_and_flags) & 25069 IPH_MF; 25070 } 25071 offset_and_flags |= (uint16_t)(offset >> 3); 25072 offset_and_flags |= (uint16_t)frag_flag; 25073 /* Store the offset and flags in the IP header. */ 25074 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 25075 25076 /* Store the length in the IP header. */ 25077 ip_len = (uint16_t)(len + hdr_len); 25078 ipha->ipha_length = htons(ip_len); 25079 25080 /* 25081 * Set the IP header checksum. Note that mp is just 25082 * the header, so this is easy to pass to ip_csum. 25083 */ 25084 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 25085 25086 /* Attach a transmit header, if any, and ship it. */ 25087 if (pkt_type == OB_PKT) { 25088 UPDATE_OB_PKT_COUNT(ire); 25089 } else { 25090 out_ill = (ill_t *)q->q_ptr; 25091 BUMP_MIB(out_ill->ill_ip_mib, 25092 ipIfStatsHCOutForwDatagrams); 25093 UPDATE_IB_PKT_COUNT(ire); 25094 } 25095 25096 if (ire->ire_flags & RTF_MULTIRT) { 25097 irb = ire->ire_bucket; 25098 ASSERT(irb != NULL); 25099 25100 multirt_send = B_TRUE; 25101 25102 /* 25103 * Save the original ire; we will need to restore it 25104 * for the tailing frags. 25105 */ 25106 save_ire = ire; 25107 IRE_REFHOLD(save_ire); 25108 } 25109 /* 25110 * Emission loop for this fragment, similar 25111 * to what is done for the first fragment. 25112 */ 25113 do { 25114 if (multirt_send) { 25115 /* 25116 * We are in a multiple send case, need to get 25117 * the next ire and make a copy of the packet. 25118 */ 25119 ASSERT(irb != NULL); 25120 IRB_REFHOLD(irb); 25121 for (ire1 = ire->ire_next; 25122 ire1 != NULL; 25123 ire1 = ire1->ire_next) { 25124 if (!(ire1->ire_flags & RTF_MULTIRT)) 25125 continue; 25126 if (ire1->ire_addr != ire->ire_addr) 25127 continue; 25128 if (ire1->ire_marks & 25129 (IRE_MARK_CONDEMNED| 25130 IRE_MARK_HIDDEN)) { 25131 continue; 25132 } 25133 /* 25134 * Ensure we do not exceed the MTU 25135 * of the next route. 25136 */ 25137 if (ire1->ire_max_frag < max_frag) { 25138 ip_multirt_bad_mtu(ire1, 25139 max_frag); 25140 continue; 25141 } 25142 25143 /* Got one. */ 25144 IRE_REFHOLD(ire1); 25145 break; 25146 } 25147 IRB_REFRELE(irb); 25148 25149 if (ire1 != NULL) { 25150 next_mp = copyb(mp); 25151 if ((next_mp == NULL) || 25152 ((mp->b_cont != NULL) && 25153 ((next_mp->b_cont = 25154 dupmsg(mp->b_cont)) == NULL))) { 25155 freemsg(next_mp); 25156 next_mp = NULL; 25157 ire_refrele(ire1); 25158 ire1 = NULL; 25159 } 25160 } 25161 25162 /* Last multiroute ire; don't loop anymore. */ 25163 if (ire1 == NULL) { 25164 multirt_send = B_FALSE; 25165 } 25166 } 25167 25168 /* Update transmit header */ 25169 ll_hdr_len = 0; 25170 LOCK_IRE_FP_MP(ire); 25171 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 25172 if (ll_hdr_mp != NULL) { 25173 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 25174 ll_hdr_len = MBLKL(ll_hdr_mp); 25175 } else { 25176 ll_hdr_mp = ire->ire_nce->nce_res_mp; 25177 } 25178 25179 if (!ll_hdr_mp) { 25180 xmit_mp = mp; 25181 25182 /* 25183 * We have link-layer header that can fit in 25184 * our mblk. 25185 */ 25186 } else if (mp->b_datap->db_ref == 1 && 25187 ll_hdr_len != 0 && 25188 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 25189 /* M_DATA fastpath */ 25190 mp->b_rptr -= ll_hdr_len; 25191 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 25192 ll_hdr_len); 25193 xmit_mp = mp; 25194 25195 /* 25196 * Case of res_mp OR the fastpath mp can't fit 25197 * in the mblk 25198 */ 25199 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 25200 xmit_mp->b_cont = mp; 25201 if (DB_CRED(mp) != NULL) 25202 mblk_setcred(xmit_mp, DB_CRED(mp)); 25203 /* Get priority marking, if any. */ 25204 if (DB_TYPE(xmit_mp) == M_DATA) 25205 xmit_mp->b_band = mp->b_band; 25206 25207 /* Corner case if copyb failed */ 25208 } else { 25209 /* 25210 * Exit both the replication and 25211 * fragmentation loops. 25212 */ 25213 UNLOCK_IRE_FP_MP(ire); 25214 goto drop_pkt; 25215 } 25216 UNLOCK_IRE_FP_MP(ire); 25217 25218 mp1 = mp; 25219 out_ill = (ill_t *)q->q_ptr; 25220 25221 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 25222 25223 DTRACE_PROBE4(ip4__physical__out__start, 25224 ill_t *, NULL, ill_t *, out_ill, 25225 ipha_t *, ipha, mblk_t *, xmit_mp); 25226 25227 FW_HOOKS(ipst->ips_ip4_physical_out_event, 25228 ipst->ips_ipv4firewall_physical_out, 25229 NULL, out_ill, ipha, xmit_mp, mp, 0, ipst); 25230 25231 DTRACE_PROBE1(ip4__physical__out__end, 25232 mblk_t *, xmit_mp); 25233 25234 if (mp != mp1 && hdr_mp == mp1) 25235 hdr_mp = mp; 25236 if (mp != mp1 && mp_orig == mp1) 25237 mp_orig = mp; 25238 25239 if (xmit_mp != NULL) { 25240 DTRACE_IP7(send, mblk_t *, xmit_mp, conn_t *, 25241 NULL, void_ip_t *, ipha, 25242 __dtrace_ipsr_ill_t *, out_ill, ipha_t *, 25243 ipha, ip6_t *, NULL, int, 0); 25244 25245 ILL_SEND_TX(out_ill, ire, connp, xmit_mp, 0); 25246 25247 BUMP_MIB(out_ill->ill_ip_mib, 25248 ipIfStatsHCOutTransmits); 25249 UPDATE_MIB(out_ill->ill_ip_mib, 25250 ipIfStatsHCOutOctets, ip_len); 25251 25252 if (pkt_type != OB_PKT) { 25253 /* 25254 * Update the packet count of trailing 25255 * RTF_MULTIRT ires. 25256 */ 25257 UPDATE_OB_PKT_COUNT(ire); 25258 } 25259 } 25260 25261 /* All done if we just consumed the hdr_mp. */ 25262 if (mp == hdr_mp) { 25263 last_frag = B_TRUE; 25264 BUMP_MIB(out_ill->ill_ip_mib, 25265 ipIfStatsOutFragOKs); 25266 } 25267 25268 if (multirt_send) { 25269 /* 25270 * We are in a multiple send case; look for 25271 * the next ire and re-enter the loop. 25272 */ 25273 ASSERT(ire1); 25274 ASSERT(next_mp); 25275 /* REFRELE the current ire before looping */ 25276 ire_refrele(ire); 25277 ire = ire1; 25278 ire1 = NULL; 25279 q = ire->ire_stq; 25280 mp = next_mp; 25281 next_mp = NULL; 25282 } 25283 } while (multirt_send); 25284 /* 25285 * Restore the original ire; we need it for the 25286 * trailing frags 25287 */ 25288 if (save_ire != NULL) { 25289 ASSERT(ire1 == NULL); 25290 /* REFRELE the last iterated ire */ 25291 ire_refrele(ire); 25292 /* save_ire has been REFHOLDed */ 25293 ire = save_ire; 25294 q = ire->ire_stq; 25295 save_ire = NULL; 25296 } 25297 25298 if (last_frag) { 25299 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 25300 "ip_wput_frag_end:(%S)", 25301 "consumed hdr_mp"); 25302 25303 if (first_ire != NULL) 25304 ire_refrele(first_ire); 25305 return; 25306 } 25307 /* Otherwise, advance and loop. */ 25308 offset += len; 25309 } 25310 25311 drop_pkt: 25312 /* Clean up following allocation failure. */ 25313 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 25314 freemsg(mp); 25315 if (mp != hdr_mp) 25316 freeb(hdr_mp); 25317 if (mp != mp_orig) 25318 freemsg(mp_orig); 25319 25320 if (save_ire != NULL) 25321 IRE_REFRELE(save_ire); 25322 if (first_ire != NULL) 25323 ire_refrele(first_ire); 25324 25325 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 25326 "ip_wput_frag_end:(%S)", 25327 "end--alloc failure"); 25328 } 25329 25330 /* 25331 * Copy the header plus those options which have the copy bit set 25332 */ 25333 static mblk_t * 25334 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst) 25335 { 25336 mblk_t *mp; 25337 uchar_t *up; 25338 25339 /* 25340 * Quick check if we need to look for options without the copy bit 25341 * set 25342 */ 25343 mp = allocb(ipst->ips_ip_wroff_extra + hdr_len, BPRI_HI); 25344 if (!mp) 25345 return (mp); 25346 mp->b_rptr += ipst->ips_ip_wroff_extra; 25347 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 25348 bcopy(rptr, mp->b_rptr, hdr_len); 25349 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 25350 return (mp); 25351 } 25352 up = mp->b_rptr; 25353 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 25354 up += IP_SIMPLE_HDR_LENGTH; 25355 rptr += IP_SIMPLE_HDR_LENGTH; 25356 hdr_len -= IP_SIMPLE_HDR_LENGTH; 25357 while (hdr_len > 0) { 25358 uint32_t optval; 25359 uint32_t optlen; 25360 25361 optval = *rptr; 25362 if (optval == IPOPT_EOL) 25363 break; 25364 if (optval == IPOPT_NOP) 25365 optlen = 1; 25366 else 25367 optlen = rptr[1]; 25368 if (optval & IPOPT_COPY) { 25369 bcopy(rptr, up, optlen); 25370 up += optlen; 25371 } 25372 rptr += optlen; 25373 hdr_len -= optlen; 25374 } 25375 /* 25376 * Make sure that we drop an even number of words by filling 25377 * with EOL to the next word boundary. 25378 */ 25379 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 25380 hdr_len & 0x3; hdr_len++) 25381 *up++ = IPOPT_EOL; 25382 mp->b_wptr = up; 25383 /* Update header length */ 25384 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 25385 return (mp); 25386 } 25387 25388 /* 25389 * Delivery to local recipients including fanout to multiple recipients. 25390 * Does not do checksumming of UDP/TCP. 25391 * Note: q should be the read side queue for either the ill or conn. 25392 * Note: rq should be the read side q for the lower (ill) stream. 25393 * We don't send packets to IPPF processing, thus the last argument 25394 * to all the fanout calls are B_FALSE. 25395 */ 25396 void 25397 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 25398 int fanout_flags, zoneid_t zoneid) 25399 { 25400 uint32_t protocol; 25401 mblk_t *first_mp; 25402 boolean_t mctl_present; 25403 int ire_type; 25404 #define rptr ((uchar_t *)ipha) 25405 ip_stack_t *ipst = ill->ill_ipst; 25406 25407 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 25408 "ip_wput_local_start: q %p", q); 25409 25410 if (ire != NULL) { 25411 ire_type = ire->ire_type; 25412 } else { 25413 /* 25414 * Only ip_multicast_loopback() calls us with a NULL ire. If the 25415 * packet is not multicast, we can't tell the ire type. 25416 */ 25417 ASSERT(CLASSD(ipha->ipha_dst)); 25418 ire_type = IRE_BROADCAST; 25419 } 25420 25421 first_mp = mp; 25422 if (first_mp->b_datap->db_type == M_CTL) { 25423 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 25424 if (!io->ipsec_out_secure) { 25425 /* 25426 * This ipsec_out_t was allocated in ip_wput 25427 * for multicast packets to store the ill_index. 25428 * As this is being delivered locally, we don't 25429 * need this anymore. 25430 */ 25431 mp = first_mp->b_cont; 25432 freeb(first_mp); 25433 first_mp = mp; 25434 mctl_present = B_FALSE; 25435 } else { 25436 /* 25437 * Convert IPSEC_OUT to IPSEC_IN, preserving all 25438 * security properties for the looped-back packet. 25439 */ 25440 mctl_present = B_TRUE; 25441 mp = first_mp->b_cont; 25442 ASSERT(mp != NULL); 25443 ipsec_out_to_in(first_mp); 25444 } 25445 } else { 25446 mctl_present = B_FALSE; 25447 } 25448 25449 DTRACE_PROBE4(ip4__loopback__in__start, 25450 ill_t *, ill, ill_t *, NULL, 25451 ipha_t *, ipha, mblk_t *, first_mp); 25452 25453 FW_HOOKS(ipst->ips_ip4_loopback_in_event, 25454 ipst->ips_ipv4firewall_loopback_in, 25455 ill, NULL, ipha, first_mp, mp, 0, ipst); 25456 25457 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, first_mp); 25458 25459 if (first_mp == NULL) 25460 return; 25461 25462 if (ipst->ips_ipobs_enabled) { 25463 zoneid_t szone, dzone, lookup_zoneid = ALL_ZONES; 25464 zoneid_t stackzoneid = netstackid_to_zoneid( 25465 ipst->ips_netstack->netstack_stackid); 25466 25467 dzone = (stackzoneid == GLOBAL_ZONEID) ? zoneid : stackzoneid; 25468 /* 25469 * 127.0.0.1 is special, as we cannot lookup its zoneid by 25470 * address. Restrict the lookup below to the destination zone. 25471 */ 25472 if (ipha->ipha_src == ntohl(INADDR_LOOPBACK)) 25473 lookup_zoneid = zoneid; 25474 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, ipst, 25475 lookup_zoneid); 25476 ipobs_hook(mp, IPOBS_HOOK_LOCAL, szone, dzone, ill, 25477 IPV4_VERSION, 0, ipst); 25478 } 25479 25480 DTRACE_IP7(receive, mblk_t *, first_mp, conn_t *, NULL, void_ip_t *, 25481 ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, ip6_t *, NULL, 25482 int, 1); 25483 25484 ipst->ips_loopback_packets++; 25485 25486 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 25487 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 25488 if (!IS_SIMPLE_IPH(ipha)) { 25489 ip_wput_local_options(ipha, ipst); 25490 } 25491 25492 protocol = ipha->ipha_protocol; 25493 switch (protocol) { 25494 case IPPROTO_ICMP: { 25495 ire_t *ire_zone; 25496 ilm_t *ilm; 25497 mblk_t *mp1; 25498 zoneid_t last_zoneid; 25499 25500 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(ill)) { 25501 ASSERT(ire_type == IRE_BROADCAST); 25502 /* 25503 * In the multicast case, applications may have joined 25504 * the group from different zones, so we need to deliver 25505 * the packet to each of them. Loop through the 25506 * multicast memberships structures (ilm) on the receive 25507 * ill and send a copy of the packet up each matching 25508 * one. However, we don't do this for multicasts sent on 25509 * the loopback interface (PHYI_LOOPBACK flag set) as 25510 * they must stay in the sender's zone. 25511 * 25512 * ilm_add_v6() ensures that ilms in the same zone are 25513 * contiguous in the ill_ilm list. We use this property 25514 * to avoid sending duplicates needed when two 25515 * applications in the same zone join the same group on 25516 * different logical interfaces: we ignore the ilm if 25517 * it's zoneid is the same as the last matching one. 25518 * In addition, the sending of the packet for 25519 * ire_zoneid is delayed until all of the other ilms 25520 * have been exhausted. 25521 */ 25522 last_zoneid = -1; 25523 ILM_WALKER_HOLD(ill); 25524 for (ilm = ill->ill_ilm; ilm != NULL; 25525 ilm = ilm->ilm_next) { 25526 if ((ilm->ilm_flags & ILM_DELETED) || 25527 ipha->ipha_dst != ilm->ilm_addr || 25528 ilm->ilm_zoneid == last_zoneid || 25529 ilm->ilm_zoneid == zoneid || 25530 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 25531 continue; 25532 mp1 = ip_copymsg(first_mp); 25533 if (mp1 == NULL) 25534 continue; 25535 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25536 mctl_present, B_FALSE, ill, 25537 ilm->ilm_zoneid); 25538 last_zoneid = ilm->ilm_zoneid; 25539 } 25540 ILM_WALKER_RELE(ill); 25541 /* 25542 * Loopback case: the sending endpoint has 25543 * IP_MULTICAST_LOOP disabled, therefore we don't 25544 * dispatch the multicast packet to the sending zone. 25545 */ 25546 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 25547 freemsg(first_mp); 25548 return; 25549 } 25550 } else if (ire_type == IRE_BROADCAST) { 25551 /* 25552 * In the broadcast case, there may be many zones 25553 * which need a copy of the packet delivered to them. 25554 * There is one IRE_BROADCAST per broadcast address 25555 * and per zone; we walk those using a helper function. 25556 * In addition, the sending of the packet for zoneid is 25557 * delayed until all of the other ires have been 25558 * processed. 25559 */ 25560 IRB_REFHOLD(ire->ire_bucket); 25561 ire_zone = NULL; 25562 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 25563 ire)) != NULL) { 25564 mp1 = ip_copymsg(first_mp); 25565 if (mp1 == NULL) 25566 continue; 25567 25568 UPDATE_IB_PKT_COUNT(ire_zone); 25569 ire_zone->ire_last_used_time = lbolt; 25570 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25571 mctl_present, B_FALSE, ill, 25572 ire_zone->ire_zoneid); 25573 } 25574 IRB_REFRELE(ire->ire_bucket); 25575 } 25576 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 25577 0, mctl_present, B_FALSE, ill, zoneid); 25578 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25579 "ip_wput_local_end: q %p (%S)", 25580 q, "icmp"); 25581 return; 25582 } 25583 case IPPROTO_IGMP: 25584 if ((mp = igmp_input(q, mp, ill)) == NULL) { 25585 /* Bad packet - discarded by igmp_input */ 25586 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25587 "ip_wput_local_end: q %p (%S)", 25588 q, "igmp_input--bad packet"); 25589 if (mctl_present) 25590 freeb(first_mp); 25591 return; 25592 } 25593 /* 25594 * igmp_input() may have returned the pulled up message. 25595 * So first_mp and ipha need to be reinitialized. 25596 */ 25597 ipha = (ipha_t *)mp->b_rptr; 25598 if (mctl_present) 25599 first_mp->b_cont = mp; 25600 else 25601 first_mp = mp; 25602 /* deliver to local raw users */ 25603 break; 25604 case IPPROTO_ENCAP: 25605 /* 25606 * This case is covered by either ip_fanout_proto, or by 25607 * the above security processing for self-tunneled packets. 25608 */ 25609 break; 25610 case IPPROTO_UDP: { 25611 uint16_t *up; 25612 uint32_t ports; 25613 25614 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 25615 UDP_PORTS_OFFSET); 25616 /* Force a 'valid' checksum. */ 25617 up[3] = 0; 25618 25619 ports = *(uint32_t *)up; 25620 ip_fanout_udp(q, first_mp, ill, ipha, ports, 25621 (ire_type == IRE_BROADCAST), 25622 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25623 IP_FF_SEND_SLLA | IP_FF_IPINFO, mctl_present, B_FALSE, 25624 ill, zoneid); 25625 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25626 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 25627 return; 25628 } 25629 case IPPROTO_TCP: { 25630 25631 /* 25632 * For TCP, discard broadcast packets. 25633 */ 25634 if ((ushort_t)ire_type == IRE_BROADCAST) { 25635 freemsg(first_mp); 25636 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 25637 ip2dbg(("ip_wput_local: discard broadcast\n")); 25638 return; 25639 } 25640 25641 if (mp->b_datap->db_type == M_DATA) { 25642 /* 25643 * M_DATA mblk, so init mblk (chain) for no struio(). 25644 */ 25645 mblk_t *mp1 = mp; 25646 25647 do { 25648 mp1->b_datap->db_struioflag = 0; 25649 } while ((mp1 = mp1->b_cont) != NULL); 25650 } 25651 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 25652 <= mp->b_wptr); 25653 ip_fanout_tcp(q, first_mp, ill, ipha, 25654 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25655 IP_FF_SYN_ADDIRE | IP_FF_IPINFO, 25656 mctl_present, B_FALSE, zoneid); 25657 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25658 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 25659 return; 25660 } 25661 case IPPROTO_SCTP: 25662 { 25663 uint32_t ports; 25664 25665 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 25666 ip_fanout_sctp(first_mp, ill, ipha, ports, 25667 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25668 IP_FF_IPINFO, mctl_present, B_FALSE, zoneid); 25669 return; 25670 } 25671 25672 default: 25673 break; 25674 } 25675 /* 25676 * Find a client for some other protocol. We give 25677 * copies to multiple clients, if more than one is 25678 * bound. 25679 */ 25680 ip_fanout_proto(q, first_mp, ill, ipha, 25681 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 25682 mctl_present, B_FALSE, ill, zoneid); 25683 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25684 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 25685 #undef rptr 25686 } 25687 25688 /* 25689 * Update any source route, record route, or timestamp options. 25690 * Check that we are at end of strict source route. 25691 * The options have been sanity checked by ip_wput_options(). 25692 */ 25693 static void 25694 ip_wput_local_options(ipha_t *ipha, ip_stack_t *ipst) 25695 { 25696 ipoptp_t opts; 25697 uchar_t *opt; 25698 uint8_t optval; 25699 uint8_t optlen; 25700 ipaddr_t dst; 25701 uint32_t ts; 25702 ire_t *ire; 25703 timestruc_t now; 25704 25705 ip2dbg(("ip_wput_local_options\n")); 25706 for (optval = ipoptp_first(&opts, ipha); 25707 optval != IPOPT_EOL; 25708 optval = ipoptp_next(&opts)) { 25709 opt = opts.ipoptp_cur; 25710 optlen = opts.ipoptp_len; 25711 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 25712 switch (optval) { 25713 uint32_t off; 25714 case IPOPT_SSRR: 25715 case IPOPT_LSRR: 25716 off = opt[IPOPT_OFFSET]; 25717 off--; 25718 if (optlen < IP_ADDR_LEN || 25719 off > optlen - IP_ADDR_LEN) { 25720 /* End of source route */ 25721 break; 25722 } 25723 /* 25724 * This will only happen if two consecutive entries 25725 * in the source route contains our address or if 25726 * it is a packet with a loose source route which 25727 * reaches us before consuming the whole source route 25728 */ 25729 ip1dbg(("ip_wput_local_options: not end of SR\n")); 25730 if (optval == IPOPT_SSRR) { 25731 return; 25732 } 25733 /* 25734 * Hack: instead of dropping the packet truncate the 25735 * source route to what has been used by filling the 25736 * rest with IPOPT_NOP. 25737 */ 25738 opt[IPOPT_OLEN] = (uint8_t)off; 25739 while (off < optlen) { 25740 opt[off++] = IPOPT_NOP; 25741 } 25742 break; 25743 case IPOPT_RR: 25744 off = opt[IPOPT_OFFSET]; 25745 off--; 25746 if (optlen < IP_ADDR_LEN || 25747 off > optlen - IP_ADDR_LEN) { 25748 /* No more room - ignore */ 25749 ip1dbg(( 25750 "ip_wput_forward_options: end of RR\n")); 25751 break; 25752 } 25753 dst = htonl(INADDR_LOOPBACK); 25754 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25755 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25756 break; 25757 case IPOPT_TS: 25758 /* Insert timestamp if there is romm */ 25759 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25760 case IPOPT_TS_TSONLY: 25761 off = IPOPT_TS_TIMELEN; 25762 break; 25763 case IPOPT_TS_PRESPEC: 25764 case IPOPT_TS_PRESPEC_RFC791: 25765 /* Verify that the address matched */ 25766 off = opt[IPOPT_OFFSET] - 1; 25767 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 25768 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 25769 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 25770 ipst); 25771 if (ire == NULL) { 25772 /* Not for us */ 25773 break; 25774 } 25775 ire_refrele(ire); 25776 /* FALLTHRU */ 25777 case IPOPT_TS_TSANDADDR: 25778 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 25779 break; 25780 default: 25781 /* 25782 * ip_*put_options should have already 25783 * dropped this packet. 25784 */ 25785 cmn_err(CE_PANIC, "ip_wput_local_options: " 25786 "unknown IT - bug in ip_wput_options?\n"); 25787 return; /* Keep "lint" happy */ 25788 } 25789 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 25790 /* Increase overflow counter */ 25791 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 25792 opt[IPOPT_POS_OV_FLG] = (uint8_t) 25793 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 25794 (off << 4); 25795 break; 25796 } 25797 off = opt[IPOPT_OFFSET] - 1; 25798 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25799 case IPOPT_TS_PRESPEC: 25800 case IPOPT_TS_PRESPEC_RFC791: 25801 case IPOPT_TS_TSANDADDR: 25802 dst = htonl(INADDR_LOOPBACK); 25803 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25804 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25805 /* FALLTHRU */ 25806 case IPOPT_TS_TSONLY: 25807 off = opt[IPOPT_OFFSET] - 1; 25808 /* Compute # of milliseconds since midnight */ 25809 gethrestime(&now); 25810 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 25811 now.tv_nsec / (NANOSEC / MILLISEC); 25812 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 25813 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 25814 break; 25815 } 25816 break; 25817 } 25818 } 25819 } 25820 25821 /* 25822 * Send out a multicast packet on interface ipif. 25823 * The sender does not have an conn. 25824 * Caller verifies that this isn't a PHYI_LOOPBACK. 25825 */ 25826 void 25827 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif, zoneid_t zoneid) 25828 { 25829 ipha_t *ipha; 25830 ire_t *ire; 25831 ipaddr_t dst; 25832 mblk_t *first_mp; 25833 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 25834 25835 /* igmp_sendpkt always allocates a ipsec_out_t */ 25836 ASSERT(mp->b_datap->db_type == M_CTL); 25837 ASSERT(!ipif->ipif_isv6); 25838 ASSERT(!IS_LOOPBACK(ipif->ipif_ill)); 25839 25840 first_mp = mp; 25841 mp = first_mp->b_cont; 25842 ASSERT(mp->b_datap->db_type == M_DATA); 25843 ipha = (ipha_t *)mp->b_rptr; 25844 25845 /* 25846 * Find an IRE which matches the destination and the outgoing 25847 * queue (i.e. the outgoing interface.) 25848 */ 25849 if (ipif->ipif_flags & IPIF_POINTOPOINT) 25850 dst = ipif->ipif_pp_dst_addr; 25851 else 25852 dst = ipha->ipha_dst; 25853 /* 25854 * The source address has already been initialized by the 25855 * caller and hence matching on ILL (MATCH_IRE_ILL) would 25856 * be sufficient rather than MATCH_IRE_IPIF. 25857 * 25858 * This function is used for sending IGMP packets. We need 25859 * to make sure that we send the packet out of the interface 25860 * (ipif->ipif_ill) where we joined the group. This is to 25861 * prevent from switches doing IGMP snooping to send us multicast 25862 * packets for a given group on the interface we have joined. 25863 * If we can't find an ire, igmp_sendpkt has already initialized 25864 * ipsec_out_attach_if so that this will not be load spread in 25865 * ip_newroute_ipif. 25866 */ 25867 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, NULL, 25868 MATCH_IRE_ILL, ipst); 25869 if (!ire) { 25870 /* 25871 * Mark this packet to make it be delivered to 25872 * ip_wput_ire after the new ire has been 25873 * created. 25874 */ 25875 mp->b_prev = NULL; 25876 mp->b_next = NULL; 25877 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC, 25878 zoneid, &zero_info); 25879 return; 25880 } 25881 25882 /* 25883 * Honor the RTF_SETSRC flag; this is the only case 25884 * where we force this addr whatever the current src addr is, 25885 * because this address is set by igmp_sendpkt(), and 25886 * cannot be specified by any user. 25887 */ 25888 if (ire->ire_flags & RTF_SETSRC) { 25889 ipha->ipha_src = ire->ire_src_addr; 25890 } 25891 25892 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE, zoneid); 25893 } 25894 25895 /* 25896 * NOTE : This function does not ire_refrele the ire argument passed in. 25897 * 25898 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 25899 * failure. The nce_fp_mp can vanish any time in the case of 25900 * IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 25901 * the ire_lock to access the nce_fp_mp in this case. 25902 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 25903 * prepending a fastpath message IPQoS processing must precede it, we also set 25904 * the b_band of the fastpath message to that of the mblk returned by IPQoS 25905 * (IPQoS might have set the b_band for CoS marking). 25906 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 25907 * must follow it so that IPQoS can mark the dl_priority field for CoS 25908 * marking, if needed. 25909 */ 25910 static mblk_t * 25911 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, 25912 uint32_t ill_index, ipha_t **iphap) 25913 { 25914 uint_t hlen; 25915 ipha_t *ipha; 25916 mblk_t *mp1; 25917 boolean_t qos_done = B_FALSE; 25918 uchar_t *ll_hdr; 25919 ip_stack_t *ipst = ire->ire_ipst; 25920 25921 #define rptr ((uchar_t *)ipha) 25922 25923 ipha = (ipha_t *)mp->b_rptr; 25924 hlen = 0; 25925 LOCK_IRE_FP_MP(ire); 25926 if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) { 25927 ASSERT(DB_TYPE(mp1) == M_DATA); 25928 /* Initiate IPPF processing */ 25929 if ((proc != 0) && IPP_ENABLED(proc, ipst)) { 25930 UNLOCK_IRE_FP_MP(ire); 25931 ip_process(proc, &mp, ill_index); 25932 if (mp == NULL) 25933 return (NULL); 25934 25935 ipha = (ipha_t *)mp->b_rptr; 25936 LOCK_IRE_FP_MP(ire); 25937 if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) { 25938 qos_done = B_TRUE; 25939 goto no_fp_mp; 25940 } 25941 ASSERT(DB_TYPE(mp1) == M_DATA); 25942 } 25943 hlen = MBLKL(mp1); 25944 /* 25945 * Check if we have enough room to prepend fastpath 25946 * header 25947 */ 25948 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 25949 ll_hdr = rptr - hlen; 25950 bcopy(mp1->b_rptr, ll_hdr, hlen); 25951 /* 25952 * Set the b_rptr to the start of the link layer 25953 * header 25954 */ 25955 mp->b_rptr = ll_hdr; 25956 mp1 = mp; 25957 } else { 25958 mp1 = copyb(mp1); 25959 if (mp1 == NULL) 25960 goto unlock_err; 25961 mp1->b_band = mp->b_band; 25962 mp1->b_cont = mp; 25963 /* 25964 * certain system generated traffic may not 25965 * have cred/label in ip header block. This 25966 * is true even for a labeled system. But for 25967 * labeled traffic, inherit the label in the 25968 * new header. 25969 */ 25970 if (DB_CRED(mp) != NULL) 25971 mblk_setcred(mp1, DB_CRED(mp)); 25972 /* 25973 * XXX disable ICK_VALID and compute checksum 25974 * here; can happen if nce_fp_mp changes and 25975 * it can't be copied now due to insufficient 25976 * space. (unlikely, fp mp can change, but it 25977 * does not increase in length) 25978 */ 25979 } 25980 UNLOCK_IRE_FP_MP(ire); 25981 } else { 25982 no_fp_mp: 25983 mp1 = copyb(ire->ire_nce->nce_res_mp); 25984 if (mp1 == NULL) { 25985 unlock_err: 25986 UNLOCK_IRE_FP_MP(ire); 25987 freemsg(mp); 25988 return (NULL); 25989 } 25990 UNLOCK_IRE_FP_MP(ire); 25991 mp1->b_cont = mp; 25992 /* 25993 * certain system generated traffic may not 25994 * have cred/label in ip header block. This 25995 * is true even for a labeled system. But for 25996 * labeled traffic, inherit the label in the 25997 * new header. 25998 */ 25999 if (DB_CRED(mp) != NULL) 26000 mblk_setcred(mp1, DB_CRED(mp)); 26001 if (!qos_done && (proc != 0) && IPP_ENABLED(proc, ipst)) { 26002 ip_process(proc, &mp1, ill_index); 26003 if (mp1 == NULL) 26004 return (NULL); 26005 26006 if (mp1->b_cont == NULL) 26007 ipha = NULL; 26008 else 26009 ipha = (ipha_t *)mp1->b_cont->b_rptr; 26010 } 26011 } 26012 26013 *iphap = ipha; 26014 return (mp1); 26015 #undef rptr 26016 } 26017 26018 /* 26019 * Finish the outbound IPsec processing for an IPv6 packet. This function 26020 * is called from ipsec_out_process() if the IPsec packet was processed 26021 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 26022 * asynchronously. 26023 */ 26024 void 26025 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 26026 ire_t *ire_arg) 26027 { 26028 in6_addr_t *v6dstp; 26029 ire_t *ire; 26030 mblk_t *mp; 26031 ip6_t *ip6h1; 26032 uint_t ill_index; 26033 ipsec_out_t *io; 26034 boolean_t attach_if, hwaccel; 26035 uint32_t flags = IP6_NO_IPPOLICY; 26036 int match_flags; 26037 zoneid_t zoneid; 26038 boolean_t ill_need_rele = B_FALSE; 26039 boolean_t ire_need_rele = B_FALSE; 26040 ip_stack_t *ipst; 26041 26042 mp = ipsec_mp->b_cont; 26043 ip6h1 = (ip6_t *)mp->b_rptr; 26044 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26045 ASSERT(io->ipsec_out_ns != NULL); 26046 ipst = io->ipsec_out_ns->netstack_ip; 26047 ill_index = io->ipsec_out_ill_index; 26048 if (io->ipsec_out_reachable) { 26049 flags |= IPV6_REACHABILITY_CONFIRMATION; 26050 } 26051 attach_if = io->ipsec_out_attach_if; 26052 hwaccel = io->ipsec_out_accelerated; 26053 zoneid = io->ipsec_out_zoneid; 26054 ASSERT(zoneid != ALL_ZONES); 26055 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 26056 /* Multicast addresses should have non-zero ill_index. */ 26057 v6dstp = &ip6h->ip6_dst; 26058 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 26059 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 26060 ASSERT(!attach_if || ill_index != 0); 26061 if (ill_index != 0) { 26062 if (ill == NULL) { 26063 ill = ip_grab_attach_ill(NULL, ipsec_mp, ill_index, 26064 B_TRUE, ipst); 26065 26066 /* Failure case frees things for us. */ 26067 if (ill == NULL) 26068 return; 26069 26070 ill_need_rele = B_TRUE; 26071 } 26072 /* 26073 * If this packet needs to go out on a particular interface 26074 * honor it. 26075 */ 26076 if (attach_if) { 26077 match_flags = MATCH_IRE_ILL; 26078 26079 /* 26080 * Check if we need an ire that will not be 26081 * looked up by anybody else i.e. HIDDEN. 26082 */ 26083 if (ill_is_probeonly(ill)) { 26084 match_flags |= MATCH_IRE_MARK_HIDDEN; 26085 } 26086 } 26087 } 26088 ASSERT(mp != NULL); 26089 26090 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 26091 boolean_t unspec_src; 26092 ipif_t *ipif; 26093 26094 /* 26095 * Use the ill_index to get the right ill. 26096 */ 26097 unspec_src = io->ipsec_out_unspec_src; 26098 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 26099 if (ipif == NULL) { 26100 if (ill_need_rele) 26101 ill_refrele(ill); 26102 freemsg(ipsec_mp); 26103 return; 26104 } 26105 26106 if (ire_arg != NULL) { 26107 ire = ire_arg; 26108 } else { 26109 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 26110 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 26111 ire_need_rele = B_TRUE; 26112 } 26113 if (ire != NULL) { 26114 ipif_refrele(ipif); 26115 /* 26116 * XXX Do the multicast forwarding now, as the IPsec 26117 * processing has been done. 26118 */ 26119 goto send; 26120 } 26121 26122 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 26123 mp->b_prev = NULL; 26124 mp->b_next = NULL; 26125 26126 /* 26127 * If the IPsec packet was processed asynchronously, 26128 * drop it now. 26129 */ 26130 if (q == NULL) { 26131 if (ill_need_rele) 26132 ill_refrele(ill); 26133 freemsg(ipsec_mp); 26134 return; 26135 } 26136 26137 ip_newroute_ipif_v6(q, ipsec_mp, ipif, *v6dstp, 26138 unspec_src, zoneid); 26139 ipif_refrele(ipif); 26140 } else { 26141 if (attach_if) { 26142 ipif_t *ipif; 26143 26144 ipif = ipif_get_next_ipif(NULL, ill); 26145 if (ipif == NULL) { 26146 if (ill_need_rele) 26147 ill_refrele(ill); 26148 freemsg(ipsec_mp); 26149 return; 26150 } 26151 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 26152 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 26153 ire_need_rele = B_TRUE; 26154 ipif_refrele(ipif); 26155 } else { 26156 if (ire_arg != NULL) { 26157 ire = ire_arg; 26158 } else { 26159 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL, 26160 ipst); 26161 ire_need_rele = B_TRUE; 26162 } 26163 } 26164 if (ire != NULL) 26165 goto send; 26166 /* 26167 * ire disappeared underneath. 26168 * 26169 * What we need to do here is the ip_newroute 26170 * logic to get the ire without doing the IPsec 26171 * processing. Follow the same old path. But this 26172 * time, ip_wput or ire_add_then_send will call us 26173 * directly as all the IPsec operations are done. 26174 */ 26175 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 26176 mp->b_prev = NULL; 26177 mp->b_next = NULL; 26178 26179 /* 26180 * If the IPsec packet was processed asynchronously, 26181 * drop it now. 26182 */ 26183 if (q == NULL) { 26184 if (ill_need_rele) 26185 ill_refrele(ill); 26186 freemsg(ipsec_mp); 26187 return; 26188 } 26189 26190 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 26191 zoneid, ipst); 26192 } 26193 if (ill != NULL && ill_need_rele) 26194 ill_refrele(ill); 26195 return; 26196 send: 26197 if (ill != NULL && ill_need_rele) 26198 ill_refrele(ill); 26199 26200 /* Local delivery */ 26201 if (ire->ire_stq == NULL) { 26202 ill_t *out_ill; 26203 ASSERT(q != NULL); 26204 26205 /* PFHooks: LOOPBACK_OUT */ 26206 out_ill = ire_to_ill(ire); 26207 26208 /* 26209 * DTrace this as ip:::send. A blocked packet will fire the 26210 * send probe, but not the receive probe. 26211 */ 26212 DTRACE_IP7(send, mblk_t *, ipsec_mp, conn_t *, NULL, 26213 void_ip_t *, ip6h, __dtrace_ipsr_ill_t *, out_ill, 26214 ipha_t *, NULL, ip6_t *, ip6h, int, 1); 26215 26216 DTRACE_PROBE4(ip6__loopback__out__start, 26217 ill_t *, NULL, ill_t *, out_ill, 26218 ip6_t *, ip6h1, mblk_t *, ipsec_mp); 26219 26220 FW_HOOKS6(ipst->ips_ip6_loopback_out_event, 26221 ipst->ips_ipv6firewall_loopback_out, 26222 NULL, out_ill, ip6h1, ipsec_mp, mp, 0, ipst); 26223 26224 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, ipsec_mp); 26225 26226 if (ipsec_mp != NULL) { 26227 ip_wput_local_v6(RD(q), out_ill, 26228 ip6h, ipsec_mp, ire, 0, zoneid); 26229 } 26230 if (ire_need_rele) 26231 ire_refrele(ire); 26232 return; 26233 } 26234 /* 26235 * Everything is done. Send it out on the wire. 26236 * We force the insertion of a fragment header using the 26237 * IPH_FRAG_HDR flag in two cases: 26238 * - after reception of an ICMPv6 "packet too big" message 26239 * with a MTU < 1280 (cf. RFC 2460 section 5) 26240 * - for multirouted IPv6 packets, so that the receiver can 26241 * discard duplicates according to their fragment identifier 26242 */ 26243 /* XXX fix flow control problems. */ 26244 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 26245 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 26246 if (hwaccel) { 26247 /* 26248 * hardware acceleration does not handle these 26249 * "slow path" cases. 26250 */ 26251 /* IPsec KSTATS: should bump bean counter here. */ 26252 if (ire_need_rele) 26253 ire_refrele(ire); 26254 freemsg(ipsec_mp); 26255 return; 26256 } 26257 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 26258 (mp->b_cont ? msgdsize(mp) : 26259 mp->b_wptr - (uchar_t *)ip6h)) { 26260 /* IPsec KSTATS: should bump bean counter here. */ 26261 ip0dbg(("Packet length mismatch: %d, %ld\n", 26262 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 26263 msgdsize(mp))); 26264 if (ire_need_rele) 26265 ire_refrele(ire); 26266 freemsg(ipsec_mp); 26267 return; 26268 } 26269 ASSERT(mp->b_prev == NULL); 26270 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 26271 ntohs(ip6h->ip6_plen) + 26272 IPV6_HDR_LEN, ire->ire_max_frag)); 26273 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 26274 ire->ire_max_frag); 26275 } else { 26276 UPDATE_OB_PKT_COUNT(ire); 26277 ire->ire_last_used_time = lbolt; 26278 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 26279 } 26280 if (ire_need_rele) 26281 ire_refrele(ire); 26282 freeb(ipsec_mp); 26283 } 26284 26285 void 26286 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 26287 { 26288 mblk_t *hada_mp; /* attributes M_CTL mblk */ 26289 da_ipsec_t *hada; /* data attributes */ 26290 ill_t *ill = (ill_t *)q->q_ptr; 26291 26292 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 26293 26294 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 26295 /* IPsec KSTATS: Bump lose counter here! */ 26296 freemsg(mp); 26297 return; 26298 } 26299 26300 /* 26301 * It's an IPsec packet that must be 26302 * accelerated by the Provider, and the 26303 * outbound ill is IPsec acceleration capable. 26304 * Prepends the mblk with an IPHADA_M_CTL, and ship it 26305 * to the ill. 26306 * IPsec KSTATS: should bump packet counter here. 26307 */ 26308 26309 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 26310 if (hada_mp == NULL) { 26311 /* IPsec KSTATS: should bump packet counter here. */ 26312 freemsg(mp); 26313 return; 26314 } 26315 26316 hada_mp->b_datap->db_type = M_CTL; 26317 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 26318 hada_mp->b_cont = mp; 26319 26320 hada = (da_ipsec_t *)hada_mp->b_rptr; 26321 bzero(hada, sizeof (da_ipsec_t)); 26322 hada->da_type = IPHADA_M_CTL; 26323 26324 putnext(q, hada_mp); 26325 } 26326 26327 /* 26328 * Finish the outbound IPsec processing. This function is called from 26329 * ipsec_out_process() if the IPsec packet was processed 26330 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 26331 * asynchronously. 26332 */ 26333 void 26334 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 26335 ire_t *ire_arg) 26336 { 26337 uint32_t v_hlen_tos_len; 26338 ipaddr_t dst; 26339 ipif_t *ipif = NULL; 26340 ire_t *ire; 26341 ire_t *ire1 = NULL; 26342 mblk_t *next_mp = NULL; 26343 uint32_t max_frag; 26344 boolean_t multirt_send = B_FALSE; 26345 mblk_t *mp; 26346 ipha_t *ipha1; 26347 uint_t ill_index; 26348 ipsec_out_t *io; 26349 boolean_t attach_if; 26350 int match_flags; 26351 irb_t *irb = NULL; 26352 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 26353 zoneid_t zoneid; 26354 ipxmit_state_t pktxmit_state; 26355 ip_stack_t *ipst; 26356 26357 #ifdef _BIG_ENDIAN 26358 #define LENGTH (v_hlen_tos_len & 0xFFFF) 26359 #else 26360 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 26361 #endif 26362 26363 mp = ipsec_mp->b_cont; 26364 ipha1 = (ipha_t *)mp->b_rptr; 26365 ASSERT(mp != NULL); 26366 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 26367 dst = ipha->ipha_dst; 26368 26369 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26370 ill_index = io->ipsec_out_ill_index; 26371 attach_if = io->ipsec_out_attach_if; 26372 zoneid = io->ipsec_out_zoneid; 26373 ASSERT(zoneid != ALL_ZONES); 26374 ipst = io->ipsec_out_ns->netstack_ip; 26375 ASSERT(io->ipsec_out_ns != NULL); 26376 26377 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 26378 if (ill_index != 0) { 26379 if (ill == NULL) { 26380 ill = ip_grab_attach_ill(NULL, ipsec_mp, 26381 ill_index, B_FALSE, ipst); 26382 26383 /* Failure case frees things for us. */ 26384 if (ill == NULL) 26385 return; 26386 26387 ill_need_rele = B_TRUE; 26388 } 26389 /* 26390 * If this packet needs to go out on a particular interface 26391 * honor it. 26392 */ 26393 if (attach_if) { 26394 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 26395 26396 /* 26397 * Check if we need an ire that will not be 26398 * looked up by anybody else i.e. HIDDEN. 26399 */ 26400 if (ill_is_probeonly(ill)) { 26401 match_flags |= MATCH_IRE_MARK_HIDDEN; 26402 } 26403 } 26404 } 26405 26406 if (CLASSD(dst)) { 26407 boolean_t conn_dontroute; 26408 /* 26409 * Use the ill_index to get the right ipif. 26410 */ 26411 conn_dontroute = io->ipsec_out_dontroute; 26412 if (ill_index == 0) 26413 ipif = ipif_lookup_group(dst, zoneid, ipst); 26414 else 26415 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 26416 if (ipif == NULL) { 26417 ip1dbg(("ip_wput_ipsec_out: No ipif for" 26418 " multicast\n")); 26419 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 26420 freemsg(ipsec_mp); 26421 goto done; 26422 } 26423 /* 26424 * ipha_src has already been intialized with the 26425 * value of the ipif in ip_wput. All we need now is 26426 * an ire to send this downstream. 26427 */ 26428 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 26429 MBLK_GETLABEL(mp), match_flags, ipst); 26430 if (ire != NULL) { 26431 ill_t *ill1; 26432 /* 26433 * Do the multicast forwarding now, as the IPsec 26434 * processing has been done. 26435 */ 26436 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 26437 (ill1 = ire_to_ill(ire))) { 26438 if (ip_mforward(ill1, ipha, mp)) { 26439 freemsg(ipsec_mp); 26440 ip1dbg(("ip_wput_ipsec_out: mforward " 26441 "failed\n")); 26442 ire_refrele(ire); 26443 goto done; 26444 } 26445 } 26446 goto send; 26447 } 26448 26449 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 26450 mp->b_prev = NULL; 26451 mp->b_next = NULL; 26452 26453 /* 26454 * If the IPsec packet was processed asynchronously, 26455 * drop it now. 26456 */ 26457 if (q == NULL) { 26458 freemsg(ipsec_mp); 26459 goto done; 26460 } 26461 26462 /* 26463 * We may be using a wrong ipif to create the ire. 26464 * But it is okay as the source address is assigned 26465 * for the packet already. Next outbound packet would 26466 * create the IRE with the right IPIF in ip_wput. 26467 * 26468 * Also handle RTF_MULTIRT routes. 26469 */ 26470 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT, 26471 zoneid, &zero_info); 26472 } else { 26473 if (attach_if) { 26474 ire = ire_ctable_lookup(dst, 0, 0, ill->ill_ipif, 26475 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 26476 } else { 26477 if (ire_arg != NULL) { 26478 ire = ire_arg; 26479 ire_need_rele = B_FALSE; 26480 } else { 26481 ire = ire_cache_lookup(dst, zoneid, 26482 MBLK_GETLABEL(mp), ipst); 26483 } 26484 } 26485 if (ire != NULL) { 26486 goto send; 26487 } 26488 26489 /* 26490 * ire disappeared underneath. 26491 * 26492 * What we need to do here is the ip_newroute 26493 * logic to get the ire without doing the IPsec 26494 * processing. Follow the same old path. But this 26495 * time, ip_wput or ire_add_then_put will call us 26496 * directly as all the IPsec operations are done. 26497 */ 26498 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 26499 mp->b_prev = NULL; 26500 mp->b_next = NULL; 26501 26502 /* 26503 * If the IPsec packet was processed asynchronously, 26504 * drop it now. 26505 */ 26506 if (q == NULL) { 26507 freemsg(ipsec_mp); 26508 goto done; 26509 } 26510 26511 /* 26512 * Since we're going through ip_newroute() again, we 26513 * need to make sure we don't: 26514 * 26515 * 1.) Trigger the ASSERT() with the ipha_ident 26516 * overloading. 26517 * 2.) Redo transport-layer checksumming, since we've 26518 * already done all that to get this far. 26519 * 26520 * The easiest way not do either of the above is to set 26521 * the ipha_ident field to IP_HDR_INCLUDED. 26522 */ 26523 ipha->ipha_ident = IP_HDR_INCLUDED; 26524 ip_newroute(q, ipsec_mp, dst, (CONN_Q(q) ? Q_TO_CONN(q) : NULL), 26525 zoneid, ipst); 26526 } 26527 goto done; 26528 send: 26529 if (ire->ire_stq == NULL) { 26530 ill_t *out_ill; 26531 /* 26532 * Loopbacks go through ip_wput_local except for one case. 26533 * We come here if we generate a icmp_frag_needed message 26534 * after IPsec processing is over. When this function calls 26535 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 26536 * icmp_frag_needed. The message generated comes back here 26537 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 26538 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 26539 * source address as it is usually set in ip_wput_ire. As 26540 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 26541 * and we end up here. We can't enter ip_wput_ire once the 26542 * IPsec processing is over and hence we need to do it here. 26543 */ 26544 ASSERT(q != NULL); 26545 UPDATE_OB_PKT_COUNT(ire); 26546 ire->ire_last_used_time = lbolt; 26547 if (ipha->ipha_src == 0) 26548 ipha->ipha_src = ire->ire_src_addr; 26549 26550 /* PFHooks: LOOPBACK_OUT */ 26551 out_ill = ire_to_ill(ire); 26552 26553 /* 26554 * DTrace this as ip:::send. A blocked packet will fire the 26555 * send probe, but not the receive probe. 26556 */ 26557 DTRACE_IP7(send, mblk_t *, ipsec_mp, conn_t *, NULL, 26558 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 26559 ipha_t *, ipha, ip6_t *, NULL, int, 1); 26560 26561 DTRACE_PROBE4(ip4__loopback__out__start, 26562 ill_t *, NULL, ill_t *, out_ill, 26563 ipha_t *, ipha1, mblk_t *, ipsec_mp); 26564 26565 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 26566 ipst->ips_ipv4firewall_loopback_out, 26567 NULL, out_ill, ipha1, ipsec_mp, mp, 0, ipst); 26568 26569 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, ipsec_mp); 26570 26571 if (ipsec_mp != NULL) 26572 ip_wput_local(RD(q), out_ill, 26573 ipha, ipsec_mp, ire, 0, zoneid); 26574 if (ire_need_rele) 26575 ire_refrele(ire); 26576 goto done; 26577 } 26578 26579 if (ire->ire_max_frag < (unsigned int)LENGTH) { 26580 /* 26581 * We are through with IPsec processing. 26582 * Fragment this and send it on the wire. 26583 */ 26584 if (io->ipsec_out_accelerated) { 26585 /* 26586 * The packet has been accelerated but must 26587 * be fragmented. This should not happen 26588 * since AH and ESP must not accelerate 26589 * packets that need fragmentation, however 26590 * the configuration could have changed 26591 * since the AH or ESP processing. 26592 * Drop packet. 26593 * IPsec KSTATS: bump bean counter here. 26594 */ 26595 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 26596 "fragmented accelerated packet!\n")); 26597 freemsg(ipsec_mp); 26598 } else { 26599 ip_wput_ire_fragmentit(ipsec_mp, ire, 26600 zoneid, ipst, NULL); 26601 } 26602 if (ire_need_rele) 26603 ire_refrele(ire); 26604 goto done; 26605 } 26606 26607 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 26608 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 26609 (void *)ire->ire_ipif, (void *)ipif)); 26610 26611 /* 26612 * Multiroute the secured packet, unless IPsec really 26613 * requires the packet to go out only through a particular 26614 * interface. 26615 */ 26616 if ((ire->ire_flags & RTF_MULTIRT) && !attach_if) { 26617 ire_t *first_ire; 26618 irb = ire->ire_bucket; 26619 ASSERT(irb != NULL); 26620 /* 26621 * This ire has been looked up as the one that 26622 * goes through the given ipif; 26623 * make sure we do not omit any other multiroute ire 26624 * that may be present in the bucket before this one. 26625 */ 26626 IRB_REFHOLD(irb); 26627 for (first_ire = irb->irb_ire; 26628 first_ire != NULL; 26629 first_ire = first_ire->ire_next) { 26630 if ((first_ire->ire_flags & RTF_MULTIRT) && 26631 (first_ire->ire_addr == ire->ire_addr) && 26632 !(first_ire->ire_marks & 26633 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 26634 break; 26635 } 26636 } 26637 26638 if ((first_ire != NULL) && (first_ire != ire)) { 26639 /* 26640 * Don't change the ire if the packet must 26641 * be fragmented if sent via this new one. 26642 */ 26643 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 26644 IRE_REFHOLD(first_ire); 26645 if (ire_need_rele) 26646 ire_refrele(ire); 26647 else 26648 ire_need_rele = B_TRUE; 26649 ire = first_ire; 26650 } 26651 } 26652 IRB_REFRELE(irb); 26653 26654 multirt_send = B_TRUE; 26655 max_frag = ire->ire_max_frag; 26656 } else { 26657 if ((ire->ire_flags & RTF_MULTIRT) && attach_if) { 26658 ip1dbg(("ip_wput_ipsec_out: ignoring multirouting " 26659 "flag, attach_if %d\n", attach_if)); 26660 } 26661 } 26662 26663 /* 26664 * In most cases, the emission loop below is entered only once. 26665 * Only in the case where the ire holds the RTF_MULTIRT 26666 * flag, we loop to process all RTF_MULTIRT ires in the 26667 * bucket, and send the packet through all crossed 26668 * RTF_MULTIRT routes. 26669 */ 26670 do { 26671 if (multirt_send) { 26672 /* 26673 * ire1 holds here the next ire to process in the 26674 * bucket. If multirouting is expected, 26675 * any non-RTF_MULTIRT ire that has the 26676 * right destination address is ignored. 26677 */ 26678 ASSERT(irb != NULL); 26679 IRB_REFHOLD(irb); 26680 for (ire1 = ire->ire_next; 26681 ire1 != NULL; 26682 ire1 = ire1->ire_next) { 26683 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 26684 continue; 26685 if (ire1->ire_addr != ire->ire_addr) 26686 continue; 26687 if (ire1->ire_marks & 26688 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 26689 continue; 26690 /* No loopback here */ 26691 if (ire1->ire_stq == NULL) 26692 continue; 26693 /* 26694 * Ensure we do not exceed the MTU 26695 * of the next route. 26696 */ 26697 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 26698 ip_multirt_bad_mtu(ire1, max_frag); 26699 continue; 26700 } 26701 26702 IRE_REFHOLD(ire1); 26703 break; 26704 } 26705 IRB_REFRELE(irb); 26706 if (ire1 != NULL) { 26707 /* 26708 * We are in a multiple send case, need to 26709 * make a copy of the packet. 26710 */ 26711 next_mp = copymsg(ipsec_mp); 26712 if (next_mp == NULL) { 26713 ire_refrele(ire1); 26714 ire1 = NULL; 26715 } 26716 } 26717 } 26718 /* 26719 * Everything is done. Send it out on the wire 26720 * 26721 * ip_xmit_v4 will call ip_wput_attach_llhdr and then 26722 * either send it on the wire or, in the case of 26723 * HW acceleration, call ipsec_hw_putnext. 26724 */ 26725 if (ire->ire_nce && 26726 ire->ire_nce->nce_state != ND_REACHABLE) { 26727 DTRACE_PROBE2(ip__wput__ipsec__bail, 26728 (ire_t *), ire, (mblk_t *), ipsec_mp); 26729 /* 26730 * If ire's link-layer is unresolved (this 26731 * would only happen if the incomplete ire 26732 * was added to cachetable via forwarding path) 26733 * don't bother going to ip_xmit_v4. Just drop the 26734 * packet. 26735 * There is a slight risk here, in that, if we 26736 * have the forwarding path create an incomplete 26737 * IRE, then until the IRE is completed, any 26738 * transmitted IPsec packets will be dropped 26739 * instead of being queued waiting for resolution. 26740 * 26741 * But the likelihood of a forwarding packet and a wput 26742 * packet sending to the same dst at the same time 26743 * and there not yet be an ARP entry for it is small. 26744 * Furthermore, if this actually happens, it might 26745 * be likely that wput would generate multiple 26746 * packets (and forwarding would also have a train 26747 * of packets) for that destination. If this is 26748 * the case, some of them would have been dropped 26749 * anyway, since ARP only queues a few packets while 26750 * waiting for resolution 26751 * 26752 * NOTE: We should really call ip_xmit_v4, 26753 * and let it queue the packet and send the 26754 * ARP query and have ARP come back thus: 26755 * <ARP> ip_wput->ip_output->ip-wput_nondata-> 26756 * ip_xmit_v4->ip_wput_attach_llhdr + ipsec 26757 * hw accel work. But it's too complex to get 26758 * the IPsec hw acceleration approach to fit 26759 * well with ip_xmit_v4 doing ARP without 26760 * doing IPsec simplification. For now, we just 26761 * poke ip_xmit_v4 to trigger the arp resolve, so 26762 * that we can continue with the send on the next 26763 * attempt. 26764 * 26765 * XXX THis should be revisited, when 26766 * the IPsec/IP interaction is cleaned up 26767 */ 26768 ip1dbg(("ip_wput_ipsec_out: ire is incomplete" 26769 " - dropping packet\n")); 26770 freemsg(ipsec_mp); 26771 /* 26772 * Call ip_xmit_v4() to trigger ARP query 26773 * in case the nce_state is ND_INITIAL 26774 */ 26775 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE, NULL); 26776 goto drop_pkt; 26777 } 26778 26779 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 26780 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha1, 26781 mblk_t *, ipsec_mp); 26782 FW_HOOKS(ipst->ips_ip4_physical_out_event, 26783 ipst->ips_ipv4firewall_physical_out, NULL, 26784 ire->ire_ipif->ipif_ill, ipha1, ipsec_mp, mp, 0, ipst); 26785 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, ipsec_mp); 26786 if (ipsec_mp == NULL) 26787 goto drop_pkt; 26788 26789 ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n")); 26790 pktxmit_state = ip_xmit_v4(mp, ire, 26791 (io->ipsec_out_accelerated ? io : NULL), B_FALSE, NULL); 26792 26793 if ((pktxmit_state == SEND_FAILED) || 26794 (pktxmit_state == LLHDR_RESLV_FAILED)) { 26795 26796 freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */ 26797 drop_pkt: 26798 BUMP_MIB(((ill_t *)ire->ire_stq->q_ptr)->ill_ip_mib, 26799 ipIfStatsOutDiscards); 26800 if (ire_need_rele) 26801 ire_refrele(ire); 26802 if (ire1 != NULL) { 26803 ire_refrele(ire1); 26804 freemsg(next_mp); 26805 } 26806 goto done; 26807 } 26808 26809 freeb(ipsec_mp); 26810 if (ire_need_rele) 26811 ire_refrele(ire); 26812 26813 if (ire1 != NULL) { 26814 ire = ire1; 26815 ire_need_rele = B_TRUE; 26816 ASSERT(next_mp); 26817 ipsec_mp = next_mp; 26818 mp = ipsec_mp->b_cont; 26819 ire1 = NULL; 26820 next_mp = NULL; 26821 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26822 } else { 26823 multirt_send = B_FALSE; 26824 } 26825 } while (multirt_send); 26826 done: 26827 if (ill != NULL && ill_need_rele) 26828 ill_refrele(ill); 26829 if (ipif != NULL) 26830 ipif_refrele(ipif); 26831 } 26832 26833 /* 26834 * Get the ill corresponding to the specified ire, and compare its 26835 * capabilities with the protocol and algorithms specified by the 26836 * the SA obtained from ipsec_out. If they match, annotate the 26837 * ipsec_out structure to indicate that the packet needs acceleration. 26838 * 26839 * 26840 * A packet is eligible for outbound hardware acceleration if the 26841 * following conditions are satisfied: 26842 * 26843 * 1. the packet will not be fragmented 26844 * 2. the provider supports the algorithm 26845 * 3. there is no pending control message being exchanged 26846 * 4. snoop is not attached 26847 * 5. the destination address is not a broadcast or multicast address. 26848 * 26849 * Rationale: 26850 * - Hardware drivers do not support fragmentation with 26851 * the current interface. 26852 * - snoop, multicast, and broadcast may result in exposure of 26853 * a cleartext datagram. 26854 * We check all five of these conditions here. 26855 * 26856 * XXX would like to nuke "ire_t *" parameter here; problem is that 26857 * IRE is only way to figure out if a v4 address is a broadcast and 26858 * thus ineligible for acceleration... 26859 */ 26860 static void 26861 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 26862 { 26863 ipsec_out_t *io; 26864 mblk_t *data_mp; 26865 uint_t plen, overhead; 26866 ip_stack_t *ipst; 26867 26868 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 26869 return; 26870 26871 if (ill == NULL) 26872 return; 26873 ipst = ill->ill_ipst; 26874 /* 26875 * Destination address is a broadcast or multicast. Punt. 26876 */ 26877 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 26878 IRE_LOCAL))) 26879 return; 26880 26881 data_mp = ipsec_mp->b_cont; 26882 26883 if (ill->ill_isv6) { 26884 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 26885 26886 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 26887 return; 26888 26889 plen = ip6h->ip6_plen; 26890 } else { 26891 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 26892 26893 if (CLASSD(ipha->ipha_dst)) 26894 return; 26895 26896 plen = ipha->ipha_length; 26897 } 26898 /* 26899 * Is there a pending DLPI control message being exchanged 26900 * between IP/IPsec and the DLS Provider? If there is, it 26901 * could be a SADB update, and the state of the DLS Provider 26902 * SADB might not be in sync with the SADB maintained by 26903 * IPsec. To avoid dropping packets or using the wrong keying 26904 * material, we do not accelerate this packet. 26905 */ 26906 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 26907 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26908 "ill_dlpi_pending! don't accelerate packet\n")); 26909 return; 26910 } 26911 26912 /* 26913 * Is the Provider in promiscous mode? If it does, we don't 26914 * accelerate the packet since it will bounce back up to the 26915 * listeners in the clear. 26916 */ 26917 if (ill->ill_promisc_on_phys) { 26918 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26919 "ill in promiscous mode, don't accelerate packet\n")); 26920 return; 26921 } 26922 26923 /* 26924 * Will the packet require fragmentation? 26925 */ 26926 26927 /* 26928 * IPsec ESP note: this is a pessimistic estimate, but the same 26929 * as is used elsewhere. 26930 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 26931 * + 2-byte trailer 26932 */ 26933 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 26934 IPSEC_BASE_ESP_HDR_SIZE(sa); 26935 26936 if ((plen + overhead) > ill->ill_max_mtu) 26937 return; 26938 26939 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26940 26941 /* 26942 * Can the ill accelerate this IPsec protocol and algorithm 26943 * specified by the SA? 26944 */ 26945 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 26946 ill->ill_isv6, sa, ipst->ips_netstack)) { 26947 return; 26948 } 26949 26950 /* 26951 * Tell AH or ESP that the outbound ill is capable of 26952 * accelerating this packet. 26953 */ 26954 io->ipsec_out_is_capab_ill = B_TRUE; 26955 } 26956 26957 /* 26958 * Select which AH & ESP SA's to use (if any) for the outbound packet. 26959 * 26960 * If this function returns B_TRUE, the requested SA's have been filled 26961 * into the ipsec_out_*_sa pointers. 26962 * 26963 * If the function returns B_FALSE, the packet has been "consumed", most 26964 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 26965 * 26966 * The SA references created by the protocol-specific "select" 26967 * function will be released when the ipsec_mp is freed, thanks to the 26968 * ipsec_out_free destructor -- see spd.c. 26969 */ 26970 static boolean_t 26971 ipsec_out_select_sa(mblk_t *ipsec_mp) 26972 { 26973 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 26974 ipsec_out_t *io; 26975 ipsec_policy_t *pp; 26976 ipsec_action_t *ap; 26977 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26978 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26979 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26980 26981 if (!io->ipsec_out_secure) { 26982 /* 26983 * We came here by mistake. 26984 * Don't bother with ipsec processing 26985 * We should "discourage" this path in the future. 26986 */ 26987 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26988 return (B_FALSE); 26989 } 26990 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26991 ASSERT((io->ipsec_out_policy != NULL) || 26992 (io->ipsec_out_act != NULL)); 26993 26994 ASSERT(io->ipsec_out_failed == B_FALSE); 26995 26996 /* 26997 * IPsec processing has started. 26998 */ 26999 io->ipsec_out_proc_begin = B_TRUE; 27000 ap = io->ipsec_out_act; 27001 if (ap == NULL) { 27002 pp = io->ipsec_out_policy; 27003 ASSERT(pp != NULL); 27004 ap = pp->ipsp_act; 27005 ASSERT(ap != NULL); 27006 } 27007 27008 /* 27009 * We have an action. now, let's select SA's. 27010 * (In the future, we can cache this in the conn_t..) 27011 */ 27012 if (ap->ipa_want_esp) { 27013 if (io->ipsec_out_esp_sa == NULL) { 27014 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 27015 IPPROTO_ESP); 27016 } 27017 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 27018 } 27019 27020 if (ap->ipa_want_ah) { 27021 if (io->ipsec_out_ah_sa == NULL) { 27022 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 27023 IPPROTO_AH); 27024 } 27025 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 27026 /* 27027 * The ESP and AH processing order needs to be preserved 27028 * when both protocols are required (ESP should be applied 27029 * before AH for an outbound packet). Force an ESP ACQUIRE 27030 * when both ESP and AH are required, and an AH ACQUIRE 27031 * is needed. 27032 */ 27033 if (ap->ipa_want_esp && need_ah_acquire) 27034 need_esp_acquire = B_TRUE; 27035 } 27036 27037 /* 27038 * Send an ACQUIRE (extended, regular, or both) if we need one. 27039 * Release SAs that got referenced, but will not be used until we 27040 * acquire _all_ of the SAs we need. 27041 */ 27042 if (need_ah_acquire || need_esp_acquire) { 27043 if (io->ipsec_out_ah_sa != NULL) { 27044 IPSA_REFRELE(io->ipsec_out_ah_sa); 27045 io->ipsec_out_ah_sa = NULL; 27046 } 27047 if (io->ipsec_out_esp_sa != NULL) { 27048 IPSA_REFRELE(io->ipsec_out_esp_sa); 27049 io->ipsec_out_esp_sa = NULL; 27050 } 27051 27052 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 27053 return (B_FALSE); 27054 } 27055 27056 return (B_TRUE); 27057 } 27058 27059 /* 27060 * Process an IPSEC_OUT message and see what you can 27061 * do with it. 27062 * IPQoS Notes: 27063 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 27064 * IPsec. 27065 * XXX would like to nuke ire_t. 27066 * XXX ill_index better be "real" 27067 */ 27068 void 27069 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 27070 { 27071 ipsec_out_t *io; 27072 ipsec_policy_t *pp; 27073 ipsec_action_t *ap; 27074 ipha_t *ipha; 27075 ip6_t *ip6h; 27076 mblk_t *mp; 27077 ill_t *ill; 27078 zoneid_t zoneid; 27079 ipsec_status_t ipsec_rc; 27080 boolean_t ill_need_rele = B_FALSE; 27081 ip_stack_t *ipst; 27082 ipsec_stack_t *ipss; 27083 27084 io = (ipsec_out_t *)ipsec_mp->b_rptr; 27085 ASSERT(io->ipsec_out_type == IPSEC_OUT); 27086 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 27087 ipst = io->ipsec_out_ns->netstack_ip; 27088 mp = ipsec_mp->b_cont; 27089 27090 /* 27091 * Initiate IPPF processing. We do it here to account for packets 27092 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 27093 * We can check for ipsec_out_proc_begin even for such packets, as 27094 * they will always be false (asserted below). 27095 */ 27096 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst) && !io->ipsec_out_proc_begin) { 27097 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 27098 io->ipsec_out_ill_index : ill_index); 27099 if (mp == NULL) { 27100 ip2dbg(("ipsec_out_process: packet dropped "\ 27101 "during IPPF processing\n")); 27102 freeb(ipsec_mp); 27103 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 27104 return; 27105 } 27106 } 27107 27108 if (!io->ipsec_out_secure) { 27109 /* 27110 * We came here by mistake. 27111 * Don't bother with ipsec processing 27112 * Should "discourage" this path in the future. 27113 */ 27114 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 27115 goto done; 27116 } 27117 ASSERT(io->ipsec_out_need_policy == B_FALSE); 27118 ASSERT((io->ipsec_out_policy != NULL) || 27119 (io->ipsec_out_act != NULL)); 27120 ASSERT(io->ipsec_out_failed == B_FALSE); 27121 27122 ipss = ipst->ips_netstack->netstack_ipsec; 27123 if (!ipsec_loaded(ipss)) { 27124 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 27125 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 27126 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 27127 } else { 27128 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 27129 } 27130 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 27131 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 27132 &ipss->ipsec_dropper); 27133 return; 27134 } 27135 27136 /* 27137 * IPsec processing has started. 27138 */ 27139 io->ipsec_out_proc_begin = B_TRUE; 27140 ap = io->ipsec_out_act; 27141 if (ap == NULL) { 27142 pp = io->ipsec_out_policy; 27143 ASSERT(pp != NULL); 27144 ap = pp->ipsp_act; 27145 ASSERT(ap != NULL); 27146 } 27147 27148 /* 27149 * Save the outbound ill index. When the packet comes back 27150 * from IPsec, we make sure the ill hasn't changed or disappeared 27151 * before sending it the accelerated packet. 27152 */ 27153 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 27154 int ifindex; 27155 ill = ire_to_ill(ire); 27156 ifindex = ill->ill_phyint->phyint_ifindex; 27157 io->ipsec_out_capab_ill_index = ifindex; 27158 } 27159 27160 /* 27161 * The order of processing is first insert a IP header if needed. 27162 * Then insert the ESP header and then the AH header. 27163 */ 27164 if ((io->ipsec_out_se_done == B_FALSE) && 27165 (ap->ipa_want_se)) { 27166 /* 27167 * First get the outer IP header before sending 27168 * it to ESP. 27169 */ 27170 ipha_t *oipha, *iipha; 27171 mblk_t *outer_mp, *inner_mp; 27172 27173 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 27174 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 27175 "ipsec_out_process: " 27176 "Self-Encapsulation failed: Out of memory\n"); 27177 freemsg(ipsec_mp); 27178 if (ill != NULL) { 27179 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 27180 } else { 27181 BUMP_MIB(&ipst->ips_ip_mib, 27182 ipIfStatsOutDiscards); 27183 } 27184 return; 27185 } 27186 inner_mp = ipsec_mp->b_cont; 27187 ASSERT(inner_mp->b_datap->db_type == M_DATA); 27188 oipha = (ipha_t *)outer_mp->b_rptr; 27189 iipha = (ipha_t *)inner_mp->b_rptr; 27190 *oipha = *iipha; 27191 outer_mp->b_wptr += sizeof (ipha_t); 27192 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 27193 sizeof (ipha_t)); 27194 oipha->ipha_protocol = IPPROTO_ENCAP; 27195 oipha->ipha_version_and_hdr_length = 27196 IP_SIMPLE_HDR_VERSION; 27197 oipha->ipha_hdr_checksum = 0; 27198 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 27199 outer_mp->b_cont = inner_mp; 27200 ipsec_mp->b_cont = outer_mp; 27201 27202 io->ipsec_out_se_done = B_TRUE; 27203 io->ipsec_out_tunnel = B_TRUE; 27204 } 27205 27206 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 27207 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 27208 !ipsec_out_select_sa(ipsec_mp)) 27209 return; 27210 27211 /* 27212 * By now, we know what SA's to use. Toss over to ESP & AH 27213 * to do the heavy lifting. 27214 */ 27215 zoneid = io->ipsec_out_zoneid; 27216 ASSERT(zoneid != ALL_ZONES); 27217 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 27218 ASSERT(io->ipsec_out_esp_sa != NULL); 27219 io->ipsec_out_esp_done = B_TRUE; 27220 /* 27221 * Note that since hw accel can only apply one transform, 27222 * not two, we skip hw accel for ESP if we also have AH 27223 * This is an design limitation of the interface 27224 * which should be revisited. 27225 */ 27226 ASSERT(ire != NULL); 27227 if (io->ipsec_out_ah_sa == NULL) { 27228 ill = (ill_t *)ire->ire_stq->q_ptr; 27229 ipsec_out_is_accelerated(ipsec_mp, 27230 io->ipsec_out_esp_sa, ill, ire); 27231 } 27232 27233 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 27234 switch (ipsec_rc) { 27235 case IPSEC_STATUS_SUCCESS: 27236 break; 27237 case IPSEC_STATUS_FAILED: 27238 if (ill != NULL) { 27239 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 27240 } else { 27241 BUMP_MIB(&ipst->ips_ip_mib, 27242 ipIfStatsOutDiscards); 27243 } 27244 /* FALLTHRU */ 27245 case IPSEC_STATUS_PENDING: 27246 return; 27247 } 27248 } 27249 27250 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 27251 ASSERT(io->ipsec_out_ah_sa != NULL); 27252 io->ipsec_out_ah_done = B_TRUE; 27253 if (ire == NULL) { 27254 int idx = io->ipsec_out_capab_ill_index; 27255 ill = ill_lookup_on_ifindex(idx, B_FALSE, 27256 NULL, NULL, NULL, NULL, ipst); 27257 ill_need_rele = B_TRUE; 27258 } else { 27259 ill = (ill_t *)ire->ire_stq->q_ptr; 27260 } 27261 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 27262 ire); 27263 27264 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 27265 switch (ipsec_rc) { 27266 case IPSEC_STATUS_SUCCESS: 27267 break; 27268 case IPSEC_STATUS_FAILED: 27269 if (ill != NULL) { 27270 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 27271 } else { 27272 BUMP_MIB(&ipst->ips_ip_mib, 27273 ipIfStatsOutDiscards); 27274 } 27275 /* FALLTHRU */ 27276 case IPSEC_STATUS_PENDING: 27277 if (ill != NULL && ill_need_rele) 27278 ill_refrele(ill); 27279 return; 27280 } 27281 } 27282 /* 27283 * We are done with IPsec processing. Send it over 27284 * the wire. 27285 */ 27286 done: 27287 mp = ipsec_mp->b_cont; 27288 ipha = (ipha_t *)mp->b_rptr; 27289 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 27290 ip_wput_ipsec_out(q, ipsec_mp, ipha, ill, ire); 27291 } else { 27292 ip6h = (ip6_t *)ipha; 27293 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ill, ire); 27294 } 27295 if (ill != NULL && ill_need_rele) 27296 ill_refrele(ill); 27297 } 27298 27299 /* ARGSUSED */ 27300 void 27301 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 27302 { 27303 opt_restart_t *or; 27304 int err; 27305 conn_t *connp; 27306 27307 ASSERT(CONN_Q(q)); 27308 connp = Q_TO_CONN(q); 27309 27310 ASSERT(first_mp->b_datap->db_type == M_CTL); 27311 or = (opt_restart_t *)first_mp->b_rptr; 27312 /* 27313 * We don't need to pass any credentials here since this is just 27314 * a restart. The credentials are passed in when svr4_optcom_req 27315 * is called the first time (from ip_wput_nondata). 27316 */ 27317 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 27318 err = svr4_optcom_req(q, first_mp, NULL, 27319 &ip_opt_obj, B_FALSE); 27320 } else { 27321 ASSERT(or->or_type == T_OPTMGMT_REQ); 27322 err = tpi_optcom_req(q, first_mp, NULL, 27323 &ip_opt_obj, B_FALSE); 27324 } 27325 if (err != EINPROGRESS) { 27326 /* operation is done */ 27327 CONN_OPER_PENDING_DONE(connp); 27328 } 27329 } 27330 27331 /* 27332 * ioctls that go through a down/up sequence may need to wait for the down 27333 * to complete. This involves waiting for the ire and ipif refcnts to go down 27334 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 27335 */ 27336 /* ARGSUSED */ 27337 void 27338 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 27339 { 27340 struct iocblk *iocp; 27341 mblk_t *mp1; 27342 ip_ioctl_cmd_t *ipip; 27343 int err; 27344 sin_t *sin; 27345 struct lifreq *lifr; 27346 struct ifreq *ifr; 27347 27348 iocp = (struct iocblk *)mp->b_rptr; 27349 ASSERT(ipsq != NULL); 27350 /* Existence of mp1 verified in ip_wput_nondata */ 27351 mp1 = mp->b_cont->b_cont; 27352 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27353 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 27354 /* 27355 * Special case where ipsq_current_ipif is not set: 27356 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 27357 * ill could also have become part of a ipmp group in the 27358 * process, we are here as were not able to complete the 27359 * operation in ipif_set_values because we could not become 27360 * exclusive on the new ipsq, In such a case ipsq_current_ipif 27361 * will not be set so we need to set it. 27362 */ 27363 ill_t *ill = q->q_ptr; 27364 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 27365 } 27366 ASSERT(ipsq->ipsq_current_ipif != NULL); 27367 27368 if (ipip->ipi_cmd_type == IF_CMD) { 27369 /* This a old style SIOC[GS]IF* command */ 27370 ifr = (struct ifreq *)mp1->b_rptr; 27371 sin = (sin_t *)&ifr->ifr_addr; 27372 } else if (ipip->ipi_cmd_type == LIF_CMD) { 27373 /* This a new style SIOC[GS]LIF* command */ 27374 lifr = (struct lifreq *)mp1->b_rptr; 27375 sin = (sin_t *)&lifr->lifr_addr; 27376 } else { 27377 sin = NULL; 27378 } 27379 27380 err = (*ipip->ipi_func_restart)(ipsq->ipsq_current_ipif, sin, q, mp, 27381 ipip, mp1->b_rptr); 27382 27383 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 27384 } 27385 27386 /* 27387 * ioctl processing 27388 * 27389 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up 27390 * the ioctl command in the ioctl tables, determines the copyin data size 27391 * from the ipi_copyin_size field, and does an mi_copyin() of that size. 27392 * 27393 * ioctl processing then continues when the M_IOCDATA makes its way down to 27394 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its 27395 * associated 'conn' is refheld till the end of the ioctl and the general 27396 * ioctl processing function ip_process_ioctl() is called to extract the 27397 * arguments and process the ioctl. To simplify extraction, ioctl commands 27398 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a 27399 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq()) 27400 * is used to extract the ioctl's arguments. 27401 * 27402 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 27403 * so goes thru the serialization primitive ipsq_try_enter. Then the 27404 * appropriate function to handle the ioctl is called based on the entry in 27405 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 27406 * which also refreleases the 'conn' that was refheld at the start of the 27407 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 27408 * 27409 * Many exclusive ioctls go thru an internal down up sequence as part of 27410 * the operation. For example an attempt to change the IP address of an 27411 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 27412 * does all the cleanup such as deleting all ires that use this address. 27413 * Then we need to wait till all references to the interface go away. 27414 */ 27415 void 27416 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 27417 { 27418 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 27419 ip_ioctl_cmd_t *ipip = arg; 27420 ip_extract_func_t *extract_funcp; 27421 cmd_info_t ci; 27422 int err; 27423 27424 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 27425 27426 if (ipip == NULL) 27427 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27428 27429 /* 27430 * SIOCLIFADDIF needs to go thru a special path since the 27431 * ill may not exist yet. This happens in the case of lo0 27432 * which is created using this ioctl. 27433 */ 27434 if (ipip->ipi_cmd == SIOCLIFADDIF) { 27435 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 27436 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27437 return; 27438 } 27439 27440 ci.ci_ipif = NULL; 27441 if (ipip->ipi_cmd_type == MISC_CMD) { 27442 /* 27443 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF. 27444 */ 27445 if (ipip->ipi_cmd == IF_UNITSEL) { 27446 /* ioctl comes down the ill */ 27447 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 27448 ipif_refhold(ci.ci_ipif); 27449 } 27450 err = 0; 27451 ci.ci_sin = NULL; 27452 ci.ci_sin6 = NULL; 27453 ci.ci_lifr = NULL; 27454 } else { 27455 switch (ipip->ipi_cmd_type) { 27456 case IF_CMD: 27457 case LIF_CMD: 27458 extract_funcp = ip_extract_lifreq; 27459 break; 27460 27461 case ARP_CMD: 27462 case XARP_CMD: 27463 extract_funcp = ip_extract_arpreq; 27464 break; 27465 27466 case TUN_CMD: 27467 extract_funcp = ip_extract_tunreq; 27468 break; 27469 27470 case MSFILT_CMD: 27471 extract_funcp = ip_extract_msfilter; 27472 break; 27473 27474 default: 27475 ASSERT(0); 27476 } 27477 27478 err = (*extract_funcp)(q, mp, ipip, &ci, ip_process_ioctl); 27479 if (err != 0) { 27480 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27481 return; 27482 } 27483 27484 /* 27485 * All of the extraction functions return a refheld ipif. 27486 */ 27487 ASSERT(ci.ci_ipif != NULL); 27488 } 27489 27490 if (!(ipip->ipi_flags & IPI_WR)) { 27491 /* 27492 * A return value of EINPROGRESS means the ioctl is 27493 * either queued and waiting for some reason or has 27494 * already completed. 27495 */ 27496 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 27497 ci.ci_lifr); 27498 if (ci.ci_ipif != NULL) 27499 ipif_refrele(ci.ci_ipif); 27500 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27501 return; 27502 } 27503 27504 /* 27505 * If ipsq is non-null, we are already being called exclusively on an 27506 * ill but in the case of a failover in progress it is the "from" ill, 27507 * rather than the "to" ill (which is the ill ptr passed in). 27508 * In order to ensure we are exclusive on both ILLs we rerun 27509 * ipsq_try_enter() here, ipsq's support recursive entry. 27510 */ 27511 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 27512 ASSERT(ci.ci_ipif != NULL); 27513 27514 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl, 27515 NEW_OP, B_TRUE); 27516 27517 /* 27518 * Release the ipif so that ipif_down and friends that wait for 27519 * references to go away are not misled about the current ipif_refcnt 27520 * values. We are writer so we can access the ipif even after releasing 27521 * the ipif. 27522 */ 27523 ipif_refrele(ci.ci_ipif); 27524 if (ipsq == NULL) 27525 return; 27526 27527 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 27528 27529 /* 27530 * For most set ioctls that come here, this serves as a single point 27531 * where we set the IPIF_CHANGING flag. This ensures that there won't 27532 * be any new references to the ipif. This helps functions that go 27533 * through this path and end up trying to wait for the refcnts 27534 * associated with the ipif to go down to zero. Some exceptions are 27535 * Failover, Failback, and Groupname commands that operate on more than 27536 * just the ci.ci_ipif. These commands internally determine the 27537 * set of ipif's they operate on and set and clear the IPIF_CHANGING 27538 * flags on that set. Another exception is the Removeif command that 27539 * sets the IPIF_CONDEMNED flag internally after identifying the right 27540 * ipif to operate on. 27541 */ 27542 mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock); 27543 if (ipip->ipi_cmd != SIOCLIFREMOVEIF && 27544 ipip->ipi_cmd != SIOCLIFFAILOVER && 27545 ipip->ipi_cmd != SIOCLIFFAILBACK && 27546 ipip->ipi_cmd != SIOCSLIFGROUPNAME) 27547 (ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING; 27548 mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock); 27549 27550 /* 27551 * A return value of EINPROGRESS means the ioctl is 27552 * either queued and waiting for some reason or has 27553 * already completed. 27554 */ 27555 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 27556 27557 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 27558 27559 ipsq_exit(ipsq); 27560 } 27561 27562 /* 27563 * Complete the ioctl. Typically ioctls use the mi package and need to 27564 * do mi_copyout/mi_copy_done. 27565 */ 27566 void 27567 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 27568 { 27569 conn_t *connp = NULL; 27570 27571 if (err == EINPROGRESS) 27572 return; 27573 27574 if (CONN_Q(q)) { 27575 connp = Q_TO_CONN(q); 27576 ASSERT(connp->conn_ref >= 2); 27577 } 27578 27579 switch (mode) { 27580 case COPYOUT: 27581 if (err == 0) 27582 mi_copyout(q, mp); 27583 else 27584 mi_copy_done(q, mp, err); 27585 break; 27586 27587 case NO_COPYOUT: 27588 mi_copy_done(q, mp, err); 27589 break; 27590 27591 default: 27592 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 27593 break; 27594 } 27595 27596 /* 27597 * The refhold placed at the start of the ioctl is released here. 27598 */ 27599 if (connp != NULL) 27600 CONN_OPER_PENDING_DONE(connp); 27601 27602 if (ipsq != NULL) 27603 ipsq_current_finish(ipsq); 27604 } 27605 27606 /* Called from ip_wput for all non data messages */ 27607 /* ARGSUSED */ 27608 void 27609 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 27610 { 27611 mblk_t *mp1; 27612 ire_t *ire, *fake_ire; 27613 ill_t *ill; 27614 struct iocblk *iocp; 27615 ip_ioctl_cmd_t *ipip; 27616 cred_t *cr; 27617 conn_t *connp; 27618 int err; 27619 nce_t *nce; 27620 ipif_t *ipif; 27621 ip_stack_t *ipst; 27622 char *proto_str; 27623 27624 if (CONN_Q(q)) { 27625 connp = Q_TO_CONN(q); 27626 ipst = connp->conn_netstack->netstack_ip; 27627 } else { 27628 connp = NULL; 27629 ipst = ILLQ_TO_IPST(q); 27630 } 27631 27632 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(q)); 27633 27634 switch (DB_TYPE(mp)) { 27635 case M_IOCTL: 27636 /* 27637 * IOCTL processing begins in ip_sioctl_copyin_setup which 27638 * will arrange to copy in associated control structures. 27639 */ 27640 ip_sioctl_copyin_setup(q, mp); 27641 return; 27642 case M_IOCDATA: 27643 /* 27644 * Ensure that this is associated with one of our trans- 27645 * parent ioctls. If it's not ours, discard it if we're 27646 * running as a driver, or pass it on if we're a module. 27647 */ 27648 iocp = (struct iocblk *)mp->b_rptr; 27649 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27650 if (ipip == NULL) { 27651 if (q->q_next == NULL) { 27652 goto nak; 27653 } else { 27654 putnext(q, mp); 27655 } 27656 return; 27657 } 27658 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 27659 /* 27660 * the ioctl is one we recognise, but is not 27661 * consumed by IP as a module, pass M_IOCDATA 27662 * for processing downstream, but only for 27663 * common Streams ioctls. 27664 */ 27665 if (ipip->ipi_flags & IPI_PASS_DOWN) { 27666 putnext(q, mp); 27667 return; 27668 } else { 27669 goto nak; 27670 } 27671 } 27672 27673 /* IOCTL continuation following copyin or copyout. */ 27674 if (mi_copy_state(q, mp, NULL) == -1) { 27675 /* 27676 * The copy operation failed. mi_copy_state already 27677 * cleaned up, so we're out of here. 27678 */ 27679 return; 27680 } 27681 /* 27682 * If we just completed a copy in, we become writer and 27683 * continue processing in ip_sioctl_copyin_done. If it 27684 * was a copy out, we call mi_copyout again. If there is 27685 * nothing more to copy out, it will complete the IOCTL. 27686 */ 27687 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 27688 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 27689 mi_copy_done(q, mp, EPROTO); 27690 return; 27691 } 27692 /* 27693 * Check for cases that need more copying. A return 27694 * value of 0 means a second copyin has been started, 27695 * so we return; a return value of 1 means no more 27696 * copying is needed, so we continue. 27697 */ 27698 if (ipip->ipi_cmd_type == MSFILT_CMD && 27699 MI_COPY_COUNT(mp) == 1) { 27700 if (ip_copyin_msfilter(q, mp) == 0) 27701 return; 27702 } 27703 /* 27704 * Refhold the conn, till the ioctl completes. This is 27705 * needed in case the ioctl ends up in the pending mp 27706 * list. Every mp in the ill_pending_mp list and 27707 * the ipsq_pending_mp must have a refhold on the conn 27708 * to resume processing. The refhold is released when 27709 * the ioctl completes. (normally or abnormally) 27710 * In all cases ip_ioctl_finish is called to finish 27711 * the ioctl. 27712 */ 27713 if (connp != NULL) { 27714 /* This is not a reentry */ 27715 ASSERT(ipsq == NULL); 27716 CONN_INC_REF(connp); 27717 } else { 27718 if (!(ipip->ipi_flags & IPI_MODOK)) { 27719 mi_copy_done(q, mp, EINVAL); 27720 return; 27721 } 27722 } 27723 27724 ip_process_ioctl(ipsq, q, mp, ipip); 27725 27726 } else { 27727 mi_copyout(q, mp); 27728 } 27729 return; 27730 nak: 27731 iocp->ioc_error = EINVAL; 27732 mp->b_datap->db_type = M_IOCNAK; 27733 iocp->ioc_count = 0; 27734 qreply(q, mp); 27735 return; 27736 27737 case M_IOCNAK: 27738 /* 27739 * The only way we could get here is if a resolver didn't like 27740 * an IOCTL we sent it. This shouldn't happen. 27741 */ 27742 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 27743 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 27744 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 27745 freemsg(mp); 27746 return; 27747 case M_IOCACK: 27748 /* /dev/ip shouldn't see this */ 27749 if (CONN_Q(q)) 27750 goto nak; 27751 27752 /* Finish socket ioctls passed through to ARP. */ 27753 ip_sioctl_iocack(q, mp); 27754 return; 27755 case M_FLUSH: 27756 if (*mp->b_rptr & FLUSHW) 27757 flushq(q, FLUSHALL); 27758 if (q->q_next) { 27759 putnext(q, mp); 27760 return; 27761 } 27762 if (*mp->b_rptr & FLUSHR) { 27763 *mp->b_rptr &= ~FLUSHW; 27764 qreply(q, mp); 27765 return; 27766 } 27767 freemsg(mp); 27768 return; 27769 case IRE_DB_REQ_TYPE: 27770 if (connp == NULL) { 27771 proto_str = "IRE_DB_REQ_TYPE"; 27772 goto protonak; 27773 } 27774 /* An Upper Level Protocol wants a copy of an IRE. */ 27775 ip_ire_req(q, mp); 27776 return; 27777 case M_CTL: 27778 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 27779 break; 27780 27781 if (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == 27782 TUN_HELLO) { 27783 ASSERT(connp != NULL); 27784 connp->conn_flags |= IPCL_IPTUN; 27785 freeb(mp); 27786 return; 27787 } 27788 27789 /* M_CTL messages are used by ARP to tell us things. */ 27790 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 27791 break; 27792 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 27793 case AR_ENTRY_SQUERY: 27794 ip_wput_ctl(q, mp); 27795 return; 27796 case AR_CLIENT_NOTIFY: 27797 ip_arp_news(q, mp); 27798 return; 27799 case AR_DLPIOP_DONE: 27800 ASSERT(q->q_next != NULL); 27801 ill = (ill_t *)q->q_ptr; 27802 /* qwriter_ip releases the refhold */ 27803 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 27804 ill_refhold(ill); 27805 qwriter_ip(ill, q, mp, ip_arp_done, CUR_OP, B_FALSE); 27806 return; 27807 case AR_ARP_CLOSING: 27808 /* 27809 * ARP (above us) is closing. If no ARP bringup is 27810 * currently pending, ack the message so that ARP 27811 * can complete its close. Also mark ill_arp_closing 27812 * so that new ARP bringups will fail. If any 27813 * ARP bringup is currently in progress, we will 27814 * ack this when the current ARP bringup completes. 27815 */ 27816 ASSERT(q->q_next != NULL); 27817 ill = (ill_t *)q->q_ptr; 27818 mutex_enter(&ill->ill_lock); 27819 ill->ill_arp_closing = 1; 27820 if (!ill->ill_arp_bringup_pending) { 27821 mutex_exit(&ill->ill_lock); 27822 qreply(q, mp); 27823 } else { 27824 mutex_exit(&ill->ill_lock); 27825 freemsg(mp); 27826 } 27827 return; 27828 case AR_ARP_EXTEND: 27829 /* 27830 * The ARP module above us is capable of duplicate 27831 * address detection. Old ATM drivers will not send 27832 * this message. 27833 */ 27834 ASSERT(q->q_next != NULL); 27835 ill = (ill_t *)q->q_ptr; 27836 ill->ill_arp_extend = B_TRUE; 27837 freemsg(mp); 27838 return; 27839 default: 27840 break; 27841 } 27842 break; 27843 case M_PROTO: 27844 case M_PCPROTO: 27845 /* 27846 * The only PROTO messages we expect are copies of option 27847 * negotiation acknowledgements, AH and ESP bind requests 27848 * are also expected. 27849 */ 27850 switch (((union T_primitives *)mp->b_rptr)->type) { 27851 case O_T_BIND_REQ: 27852 case T_BIND_REQ: { 27853 /* Request can get queued in bind */ 27854 if (connp == NULL) { 27855 proto_str = "O_T_BIND_REQ/T_BIND_REQ"; 27856 goto protonak; 27857 } 27858 /* 27859 * The transports except SCTP call ip_bind_{v4,v6}() 27860 * directly instead of a a putnext. SCTP doesn't 27861 * generate any T_BIND_REQ since it has its own 27862 * fanout data structures. However, ESP and AH 27863 * come in for regular binds; all other cases are 27864 * bind retries. 27865 */ 27866 ASSERT(!IPCL_IS_SCTP(connp)); 27867 27868 /* Don't increment refcnt if this is a re-entry */ 27869 if (ipsq == NULL) 27870 CONN_INC_REF(connp); 27871 27872 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 27873 connp, NULL) : ip_bind_v4(q, mp, connp); 27874 ASSERT(mp != NULL); 27875 27876 ASSERT(!IPCL_IS_TCP(connp)); 27877 ASSERT(!IPCL_IS_UDP(connp)); 27878 ASSERT(!IPCL_IS_RAWIP(connp)); 27879 27880 /* The case of AH and ESP */ 27881 qreply(q, mp); 27882 CONN_OPER_PENDING_DONE(connp); 27883 return; 27884 } 27885 case T_SVR4_OPTMGMT_REQ: 27886 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 27887 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 27888 27889 if (connp == NULL) { 27890 proto_str = "T_SVR4_OPTMGMT_REQ"; 27891 goto protonak; 27892 } 27893 27894 if (!snmpcom_req(q, mp, ip_snmp_set, 27895 ip_snmp_get, cr)) { 27896 /* 27897 * Call svr4_optcom_req so that it can 27898 * generate the ack. We don't come here 27899 * if this operation is being restarted. 27900 * ip_restart_optmgmt will drop the conn ref. 27901 * In the case of ipsec option after the ipsec 27902 * load is complete conn_restart_ipsec_waiter 27903 * drops the conn ref. 27904 */ 27905 ASSERT(ipsq == NULL); 27906 CONN_INC_REF(connp); 27907 if (ip_check_for_ipsec_opt(q, mp)) 27908 return; 27909 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj, 27910 B_FALSE); 27911 if (err != EINPROGRESS) { 27912 /* Operation is done */ 27913 CONN_OPER_PENDING_DONE(connp); 27914 } 27915 } 27916 return; 27917 case T_OPTMGMT_REQ: 27918 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 27919 /* 27920 * Note: No snmpcom_req support through new 27921 * T_OPTMGMT_REQ. 27922 * Call tpi_optcom_req so that it can 27923 * generate the ack. 27924 */ 27925 if (connp == NULL) { 27926 proto_str = "T_OPTMGMT_REQ"; 27927 goto protonak; 27928 } 27929 27930 ASSERT(ipsq == NULL); 27931 /* 27932 * We don't come here for restart. ip_restart_optmgmt 27933 * will drop the conn ref. In the case of ipsec option 27934 * after the ipsec load is complete 27935 * conn_restart_ipsec_waiter drops the conn ref. 27936 */ 27937 CONN_INC_REF(connp); 27938 if (ip_check_for_ipsec_opt(q, mp)) 27939 return; 27940 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj, B_FALSE); 27941 if (err != EINPROGRESS) { 27942 /* Operation is done */ 27943 CONN_OPER_PENDING_DONE(connp); 27944 } 27945 return; 27946 case T_UNBIND_REQ: 27947 if (connp == NULL) { 27948 proto_str = "T_UNBIND_REQ"; 27949 goto protonak; 27950 } 27951 ip_unbind(Q_TO_CONN(q)); 27952 mp = mi_tpi_ok_ack_alloc(mp); 27953 qreply(q, mp); 27954 return; 27955 default: 27956 /* 27957 * Have to drop any DLPI messages coming down from 27958 * arp (such as an info_req which would cause ip 27959 * to receive an extra info_ack if it was passed 27960 * through. 27961 */ 27962 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 27963 (int)*(uint_t *)mp->b_rptr)); 27964 freemsg(mp); 27965 return; 27966 } 27967 /* NOTREACHED */ 27968 case IRE_DB_TYPE: { 27969 nce_t *nce; 27970 ill_t *ill; 27971 in6_addr_t gw_addr_v6; 27972 27973 27974 /* 27975 * This is a response back from a resolver. It 27976 * consists of a message chain containing: 27977 * IRE_MBLK-->LL_HDR_MBLK->pkt 27978 * The IRE_MBLK is the one we allocated in ip_newroute. 27979 * The LL_HDR_MBLK is the DLPI header to use to get 27980 * the attached packet, and subsequent ones for the 27981 * same destination, transmitted. 27982 */ 27983 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 27984 break; 27985 /* 27986 * First, check to make sure the resolution succeeded. 27987 * If it failed, the second mblk will be empty. 27988 * If it is, free the chain, dropping the packet. 27989 * (We must ire_delete the ire; that frees the ire mblk) 27990 * We're doing this now to support PVCs for ATM; it's 27991 * a partial xresolv implementation. When we fully implement 27992 * xresolv interfaces, instead of freeing everything here 27993 * we'll initiate neighbor discovery. 27994 * 27995 * For v4 (ARP and other external resolvers) the resolver 27996 * frees the message, so no check is needed. This check 27997 * is required, though, for a full xresolve implementation. 27998 * Including this code here now both shows how external 27999 * resolvers can NACK a resolution request using an 28000 * existing design that has no specific provisions for NACKs, 28001 * and also takes into account that the current non-ARP 28002 * external resolver has been coded to use this method of 28003 * NACKing for all IPv6 (xresolv) cases, 28004 * whether our xresolv implementation is complete or not. 28005 * 28006 */ 28007 ire = (ire_t *)mp->b_rptr; 28008 ill = ire_to_ill(ire); 28009 mp1 = mp->b_cont; /* dl_unitdata_req */ 28010 if (mp1->b_rptr == mp1->b_wptr) { 28011 if (ire->ire_ipversion == IPV6_VERSION) { 28012 /* 28013 * XRESOLV interface. 28014 */ 28015 ASSERT(ill->ill_flags & ILLF_XRESOLV); 28016 mutex_enter(&ire->ire_lock); 28017 gw_addr_v6 = ire->ire_gateway_addr_v6; 28018 mutex_exit(&ire->ire_lock); 28019 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 28020 nce = ndp_lookup_v6(ill, 28021 &ire->ire_addr_v6, B_FALSE); 28022 } else { 28023 nce = ndp_lookup_v6(ill, &gw_addr_v6, 28024 B_FALSE); 28025 } 28026 if (nce != NULL) { 28027 nce_resolv_failed(nce); 28028 ndp_delete(nce); 28029 NCE_REFRELE(nce); 28030 } 28031 } 28032 mp->b_cont = NULL; 28033 freemsg(mp1); /* frees the pkt as well */ 28034 ASSERT(ire->ire_nce == NULL); 28035 ire_delete((ire_t *)mp->b_rptr); 28036 return; 28037 } 28038 28039 /* 28040 * Split them into IRE_MBLK and pkt and feed it into 28041 * ire_add_then_send. Then in ire_add_then_send 28042 * the IRE will be added, and then the packet will be 28043 * run back through ip_wput. This time it will make 28044 * it to the wire. 28045 */ 28046 mp->b_cont = NULL; 28047 mp = mp1->b_cont; /* now, mp points to pkt */ 28048 mp1->b_cont = NULL; 28049 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 28050 if (ire->ire_ipversion == IPV6_VERSION) { 28051 /* 28052 * XRESOLV interface. Find the nce and put a copy 28053 * of the dl_unitdata_req in nce_res_mp 28054 */ 28055 ASSERT(ill->ill_flags & ILLF_XRESOLV); 28056 mutex_enter(&ire->ire_lock); 28057 gw_addr_v6 = ire->ire_gateway_addr_v6; 28058 mutex_exit(&ire->ire_lock); 28059 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 28060 nce = ndp_lookup_v6(ill, &ire->ire_addr_v6, 28061 B_FALSE); 28062 } else { 28063 nce = ndp_lookup_v6(ill, &gw_addr_v6, B_FALSE); 28064 } 28065 if (nce != NULL) { 28066 /* 28067 * We have to protect nce_res_mp here 28068 * from being accessed by other threads 28069 * while we change the mblk pointer. 28070 * Other functions will also lock the nce when 28071 * accessing nce_res_mp. 28072 * 28073 * The reason we change the mblk pointer 28074 * here rather than copying the resolved address 28075 * into the template is that, unlike with 28076 * ethernet, we have no guarantee that the 28077 * resolved address length will be 28078 * smaller than or equal to the lla length 28079 * with which the template was allocated, 28080 * (for ethernet, they're equal) 28081 * so we have to use the actual resolved 28082 * address mblk - which holds the real 28083 * dl_unitdata_req with the resolved address. 28084 * 28085 * Doing this is the same behavior as was 28086 * previously used in the v4 ARP case. 28087 */ 28088 mutex_enter(&nce->nce_lock); 28089 if (nce->nce_res_mp != NULL) 28090 freemsg(nce->nce_res_mp); 28091 nce->nce_res_mp = mp1; 28092 mutex_exit(&nce->nce_lock); 28093 /* 28094 * We do a fastpath probe here because 28095 * we have resolved the address without 28096 * using Neighbor Discovery. 28097 * In the non-XRESOLV v6 case, the fastpath 28098 * probe is done right after neighbor 28099 * discovery completes. 28100 */ 28101 if (nce->nce_res_mp != NULL) { 28102 int res; 28103 nce_fastpath_list_add(nce); 28104 res = ill_fastpath_probe(ill, 28105 nce->nce_res_mp); 28106 if (res != 0 && res != EAGAIN) 28107 nce_fastpath_list_delete(nce); 28108 } 28109 28110 ire_add_then_send(q, ire, mp); 28111 /* 28112 * Now we have to clean out any packets 28113 * that may have been queued on the nce 28114 * while it was waiting for address resolution 28115 * to complete. 28116 */ 28117 mutex_enter(&nce->nce_lock); 28118 mp1 = nce->nce_qd_mp; 28119 nce->nce_qd_mp = NULL; 28120 mutex_exit(&nce->nce_lock); 28121 while (mp1 != NULL) { 28122 mblk_t *nxt_mp; 28123 queue_t *fwdq = NULL; 28124 ill_t *inbound_ill; 28125 uint_t ifindex; 28126 28127 nxt_mp = mp1->b_next; 28128 mp1->b_next = NULL; 28129 /* 28130 * Retrieve ifindex stored in 28131 * ip_rput_data_v6() 28132 */ 28133 ifindex = 28134 (uint_t)(uintptr_t)mp1->b_prev; 28135 inbound_ill = 28136 ill_lookup_on_ifindex(ifindex, 28137 B_TRUE, NULL, NULL, NULL, 28138 NULL, ipst); 28139 mp1->b_prev = NULL; 28140 if (inbound_ill != NULL) 28141 fwdq = inbound_ill->ill_rq; 28142 28143 if (fwdq != NULL) { 28144 put(fwdq, mp1); 28145 ill_refrele(inbound_ill); 28146 } else 28147 put(WR(ill->ill_rq), mp1); 28148 mp1 = nxt_mp; 28149 } 28150 NCE_REFRELE(nce); 28151 } else { /* nce is NULL; clean up */ 28152 ire_delete(ire); 28153 freemsg(mp); 28154 freemsg(mp1); 28155 return; 28156 } 28157 } else { 28158 nce_t *arpce; 28159 /* 28160 * Link layer resolution succeeded. Recompute the 28161 * ire_nce. 28162 */ 28163 ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST)); 28164 if ((arpce = ndp_lookup_v4(ill, 28165 (ire->ire_gateway_addr != INADDR_ANY ? 28166 &ire->ire_gateway_addr : &ire->ire_addr), 28167 B_FALSE)) == NULL) { 28168 freeb(ire->ire_mp); 28169 freeb(mp1); 28170 freemsg(mp); 28171 return; 28172 } 28173 mutex_enter(&arpce->nce_lock); 28174 arpce->nce_last = TICK_TO_MSEC(lbolt64); 28175 if (arpce->nce_state == ND_REACHABLE) { 28176 /* 28177 * Someone resolved this before us; 28178 * cleanup the res_mp. Since ire has 28179 * not been added yet, the call to ire_add_v4 28180 * from ire_add_then_send (when a dup is 28181 * detected) will clean up the ire. 28182 */ 28183 freeb(mp1); 28184 } else { 28185 ASSERT(arpce->nce_res_mp == NULL); 28186 arpce->nce_res_mp = mp1; 28187 arpce->nce_state = ND_REACHABLE; 28188 } 28189 mutex_exit(&arpce->nce_lock); 28190 if (ire->ire_marks & IRE_MARK_NOADD) { 28191 /* 28192 * this ire will not be added to the ire 28193 * cache table, so we can set the ire_nce 28194 * here, as there are no atomicity constraints. 28195 */ 28196 ire->ire_nce = arpce; 28197 /* 28198 * We are associating this nce with the ire 28199 * so change the nce ref taken in 28200 * ndp_lookup_v4() from 28201 * NCE_REFHOLD to NCE_REFHOLD_NOTR 28202 */ 28203 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 28204 } else { 28205 NCE_REFRELE(arpce); 28206 } 28207 ire_add_then_send(q, ire, mp); 28208 } 28209 return; /* All is well, the packet has been sent. */ 28210 } 28211 case IRE_ARPRESOLVE_TYPE: { 28212 28213 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */ 28214 break; 28215 mp1 = mp->b_cont; /* dl_unitdata_req */ 28216 mp->b_cont = NULL; 28217 /* 28218 * First, check to make sure the resolution succeeded. 28219 * If it failed, the second mblk will be empty. 28220 */ 28221 if (mp1->b_rptr == mp1->b_wptr) { 28222 /* cleanup the incomplete ire, free queued packets */ 28223 freemsg(mp); /* fake ire */ 28224 freeb(mp1); /* dl_unitdata response */ 28225 return; 28226 } 28227 28228 /* 28229 * Update any incomplete nce_t found. We search the ctable 28230 * and find the nce from the ire->ire_nce because we need 28231 * to pass the ire to ip_xmit_v4 later, and can find both 28232 * ire and nce in one lookup. 28233 */ 28234 fake_ire = (ire_t *)mp->b_rptr; 28235 28236 /* 28237 * By the time we come back here from ARP the incomplete ire 28238 * created in ire_forward() could have been removed. We use 28239 * the parameters stored in the fake_ire to specify the real 28240 * ire as explicitly as possible. This avoids problems when 28241 * IPMP groups are configured as an ipif can 'float' 28242 * across several ill queues. We can be confident that the 28243 * the inability to find an ire is because it no longer exists. 28244 */ 28245 ill = ill_lookup_on_ifindex(fake_ire->ire_ipif_ifindex, B_FALSE, 28246 NULL, NULL, NULL, NULL, ipst); 28247 if (ill == NULL) { 28248 ip1dbg(("ill for incomplete ire vanished\n")); 28249 freemsg(mp); /* fake ire */ 28250 freeb(mp1); /* dl_unitdata response */ 28251 return; 28252 } 28253 28254 /* Get the outgoing ipif */ 28255 mutex_enter(&ill->ill_lock); 28256 ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid); 28257 if (ipif == NULL) { 28258 mutex_exit(&ill->ill_lock); 28259 ill_refrele(ill); 28260 ip1dbg(("logical intrf to incomplete ire vanished\n")); 28261 freemsg(mp); /* fake_ire */ 28262 freeb(mp1); /* dl_unitdata response */ 28263 return; 28264 } 28265 28266 ipif_refhold_locked(ipif); 28267 mutex_exit(&ill->ill_lock); 28268 ill_refrele(ill); 28269 ire = ire_arpresolve_lookup(fake_ire->ire_addr, 28270 fake_ire->ire_gateway_addr, ipif, fake_ire->ire_zoneid, 28271 ipst, ((ill_t *)q->q_ptr)->ill_wq); 28272 ipif_refrele(ipif); 28273 if (ire == NULL) { 28274 /* 28275 * no ire was found; check if there is an nce 28276 * for this lookup; if it has no ire's pointing at it 28277 * cleanup. 28278 */ 28279 if ((nce = ndp_lookup_v4(q->q_ptr, 28280 (fake_ire->ire_gateway_addr != INADDR_ANY ? 28281 &fake_ire->ire_gateway_addr : &fake_ire->ire_addr), 28282 B_FALSE)) != NULL) { 28283 /* 28284 * cleanup: 28285 * We check for refcnt 2 (one for the nce 28286 * hash list + 1 for the ref taken by 28287 * ndp_lookup_v4) to check that there are 28288 * no ire's pointing at the nce. 28289 */ 28290 if (nce->nce_refcnt == 2) 28291 ndp_delete(nce); 28292 NCE_REFRELE(nce); 28293 } 28294 freeb(mp1); /* dl_unitdata response */ 28295 freemsg(mp); /* fake ire */ 28296 return; 28297 } 28298 nce = ire->ire_nce; 28299 DTRACE_PROBE2(ire__arpresolve__type, 28300 ire_t *, ire, nce_t *, nce); 28301 ASSERT(nce->nce_state != ND_INITIAL); 28302 mutex_enter(&nce->nce_lock); 28303 nce->nce_last = TICK_TO_MSEC(lbolt64); 28304 if (nce->nce_state == ND_REACHABLE) { 28305 /* 28306 * Someone resolved this before us; 28307 * our response is not needed any more. 28308 */ 28309 mutex_exit(&nce->nce_lock); 28310 freeb(mp1); /* dl_unitdata response */ 28311 } else { 28312 ASSERT(nce->nce_res_mp == NULL); 28313 nce->nce_res_mp = mp1; 28314 nce->nce_state = ND_REACHABLE; 28315 mutex_exit(&nce->nce_lock); 28316 nce_fastpath(nce); 28317 } 28318 /* 28319 * The cached nce_t has been updated to be reachable; 28320 * Clear the IRE_MARK_UNCACHED flag and free the fake_ire. 28321 */ 28322 fake_ire->ire_marks &= ~IRE_MARK_UNCACHED; 28323 freemsg(mp); 28324 /* 28325 * send out queued packets. 28326 */ 28327 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE, NULL); 28328 28329 IRE_REFRELE(ire); 28330 return; 28331 } 28332 default: 28333 break; 28334 } 28335 if (q->q_next) { 28336 putnext(q, mp); 28337 } else 28338 freemsg(mp); 28339 return; 28340 28341 protonak: 28342 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 28343 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 28344 qreply(q, mp); 28345 } 28346 28347 /* 28348 * Process IP options in an outbound packet. Modify the destination if there 28349 * is a source route option. 28350 * Returns non-zero if something fails in which case an ICMP error has been 28351 * sent and mp freed. 28352 */ 28353 static int 28354 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 28355 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 28356 { 28357 ipoptp_t opts; 28358 uchar_t *opt; 28359 uint8_t optval; 28360 uint8_t optlen; 28361 ipaddr_t dst; 28362 intptr_t code = 0; 28363 mblk_t *mp; 28364 ire_t *ire = NULL; 28365 28366 ip2dbg(("ip_wput_options\n")); 28367 mp = ipsec_mp; 28368 if (mctl_present) { 28369 mp = ipsec_mp->b_cont; 28370 } 28371 28372 dst = ipha->ipha_dst; 28373 for (optval = ipoptp_first(&opts, ipha); 28374 optval != IPOPT_EOL; 28375 optval = ipoptp_next(&opts)) { 28376 opt = opts.ipoptp_cur; 28377 optlen = opts.ipoptp_len; 28378 ip2dbg(("ip_wput_options: opt %d, len %d\n", 28379 optval, optlen)); 28380 switch (optval) { 28381 uint32_t off; 28382 case IPOPT_SSRR: 28383 case IPOPT_LSRR: 28384 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28385 ip1dbg(( 28386 "ip_wput_options: bad option offset\n")); 28387 code = (char *)&opt[IPOPT_OLEN] - 28388 (char *)ipha; 28389 goto param_prob; 28390 } 28391 off = opt[IPOPT_OFFSET]; 28392 ip1dbg(("ip_wput_options: next hop 0x%x\n", 28393 ntohl(dst))); 28394 /* 28395 * For strict: verify that dst is directly 28396 * reachable. 28397 */ 28398 if (optval == IPOPT_SSRR) { 28399 ire = ire_ftable_lookup(dst, 0, 0, 28400 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 28401 MBLK_GETLABEL(mp), 28402 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 28403 if (ire == NULL) { 28404 ip1dbg(("ip_wput_options: SSRR not" 28405 " directly reachable: 0x%x\n", 28406 ntohl(dst))); 28407 goto bad_src_route; 28408 } 28409 ire_refrele(ire); 28410 } 28411 break; 28412 case IPOPT_RR: 28413 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28414 ip1dbg(( 28415 "ip_wput_options: bad option offset\n")); 28416 code = (char *)&opt[IPOPT_OLEN] - 28417 (char *)ipha; 28418 goto param_prob; 28419 } 28420 break; 28421 case IPOPT_TS: 28422 /* 28423 * Verify that length >=5 and that there is either 28424 * room for another timestamp or that the overflow 28425 * counter is not maxed out. 28426 */ 28427 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 28428 if (optlen < IPOPT_MINLEN_IT) { 28429 goto param_prob; 28430 } 28431 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28432 ip1dbg(( 28433 "ip_wput_options: bad option offset\n")); 28434 code = (char *)&opt[IPOPT_OFFSET] - 28435 (char *)ipha; 28436 goto param_prob; 28437 } 28438 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 28439 case IPOPT_TS_TSONLY: 28440 off = IPOPT_TS_TIMELEN; 28441 break; 28442 case IPOPT_TS_TSANDADDR: 28443 case IPOPT_TS_PRESPEC: 28444 case IPOPT_TS_PRESPEC_RFC791: 28445 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 28446 break; 28447 default: 28448 code = (char *)&opt[IPOPT_POS_OV_FLG] - 28449 (char *)ipha; 28450 goto param_prob; 28451 } 28452 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 28453 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 28454 /* 28455 * No room and the overflow counter is 15 28456 * already. 28457 */ 28458 goto param_prob; 28459 } 28460 break; 28461 } 28462 } 28463 28464 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 28465 return (0); 28466 28467 ip1dbg(("ip_wput_options: error processing IP options.")); 28468 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 28469 28470 param_prob: 28471 /* 28472 * Since ip_wput() isn't close to finished, we fill 28473 * in enough of the header for credible error reporting. 28474 */ 28475 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28476 /* Failed */ 28477 freemsg(ipsec_mp); 28478 return (-1); 28479 } 28480 icmp_param_problem(q, ipsec_mp, (uint8_t)code, zoneid, ipst); 28481 return (-1); 28482 28483 bad_src_route: 28484 /* 28485 * Since ip_wput() isn't close to finished, we fill 28486 * in enough of the header for credible error reporting. 28487 */ 28488 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28489 /* Failed */ 28490 freemsg(ipsec_mp); 28491 return (-1); 28492 } 28493 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 28494 return (-1); 28495 } 28496 28497 /* 28498 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 28499 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 28500 * thru /etc/system. 28501 */ 28502 #define CONN_MAXDRAINCNT 64 28503 28504 static void 28505 conn_drain_init(ip_stack_t *ipst) 28506 { 28507 int i; 28508 28509 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 28510 28511 if ((ipst->ips_conn_drain_list_cnt == 0) || 28512 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 28513 /* 28514 * Default value of the number of drainers is the 28515 * number of cpus, subject to maximum of 8 drainers. 28516 */ 28517 if (boot_max_ncpus != -1) 28518 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 28519 else 28520 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 28521 } 28522 28523 ipst->ips_conn_drain_list = kmem_zalloc(ipst->ips_conn_drain_list_cnt * 28524 sizeof (idl_t), KM_SLEEP); 28525 28526 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28527 mutex_init(&ipst->ips_conn_drain_list[i].idl_lock, NULL, 28528 MUTEX_DEFAULT, NULL); 28529 } 28530 } 28531 28532 static void 28533 conn_drain_fini(ip_stack_t *ipst) 28534 { 28535 int i; 28536 28537 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) 28538 mutex_destroy(&ipst->ips_conn_drain_list[i].idl_lock); 28539 kmem_free(ipst->ips_conn_drain_list, 28540 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 28541 ipst->ips_conn_drain_list = NULL; 28542 } 28543 28544 /* 28545 * Note: For an overview of how flowcontrol is handled in IP please see the 28546 * IP Flowcontrol notes at the top of this file. 28547 * 28548 * Flow control has blocked us from proceeding. Insert the given conn in one 28549 * of the conn drain lists. These conn wq's will be qenabled later on when 28550 * STREAMS flow control does a backenable. conn_walk_drain will enable 28551 * the first conn in each of these drain lists. Each of these qenabled conns 28552 * in turn enables the next in the list, after it runs, or when it closes, 28553 * thus sustaining the drain process. 28554 * 28555 * The only possible calling sequence is ip_wsrv (on conn) -> ip_wput -> 28556 * conn_drain_insert. Thus there can be only 1 instance of conn_drain_insert 28557 * running at any time, on a given conn, since there can be only 1 service proc 28558 * running on a queue at any time. 28559 */ 28560 void 28561 conn_drain_insert(conn_t *connp) 28562 { 28563 idl_t *idl; 28564 uint_t index; 28565 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28566 28567 mutex_enter(&connp->conn_lock); 28568 if (connp->conn_state_flags & CONN_CLOSING) { 28569 /* 28570 * The conn is closing as a result of which CONN_CLOSING 28571 * is set. Return. 28572 */ 28573 mutex_exit(&connp->conn_lock); 28574 return; 28575 } else if (connp->conn_idl == NULL) { 28576 /* 28577 * Assign the next drain list round robin. We dont' use 28578 * a lock, and thus it may not be strictly round robin. 28579 * Atomicity of load/stores is enough to make sure that 28580 * conn_drain_list_index is always within bounds. 28581 */ 28582 index = ipst->ips_conn_drain_list_index; 28583 ASSERT(index < ipst->ips_conn_drain_list_cnt); 28584 connp->conn_idl = &ipst->ips_conn_drain_list[index]; 28585 index++; 28586 if (index == ipst->ips_conn_drain_list_cnt) 28587 index = 0; 28588 ipst->ips_conn_drain_list_index = index; 28589 } 28590 mutex_exit(&connp->conn_lock); 28591 28592 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28593 if ((connp->conn_drain_prev != NULL) || 28594 (connp->conn_state_flags & CONN_CLOSING)) { 28595 /* 28596 * The conn is already in the drain list, OR 28597 * the conn is closing. We need to check again for 28598 * the closing case again since close can happen 28599 * after we drop the conn_lock, and before we 28600 * acquire the CONN_DRAIN_LIST_LOCK. 28601 */ 28602 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28603 return; 28604 } else { 28605 idl = connp->conn_idl; 28606 } 28607 28608 /* 28609 * The conn is not in the drain list. Insert it at the 28610 * tail of the drain list. The drain list is circular 28611 * and doubly linked. idl_conn points to the 1st element 28612 * in the list. 28613 */ 28614 if (idl->idl_conn == NULL) { 28615 idl->idl_conn = connp; 28616 connp->conn_drain_next = connp; 28617 connp->conn_drain_prev = connp; 28618 } else { 28619 conn_t *head = idl->idl_conn; 28620 28621 connp->conn_drain_next = head; 28622 connp->conn_drain_prev = head->conn_drain_prev; 28623 head->conn_drain_prev->conn_drain_next = connp; 28624 head->conn_drain_prev = connp; 28625 } 28626 /* 28627 * For non streams based sockets assert flow control. 28628 */ 28629 (*connp->conn_upcalls->su_txq_full) 28630 (connp->conn_upper_handle, B_TRUE); 28631 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28632 } 28633 28634 /* 28635 * This conn is closing, and we are called from ip_close. OR 28636 * This conn has been serviced by ip_wsrv, and we need to do the tail 28637 * processing. 28638 * If this conn is part of the drain list, we may need to sustain the drain 28639 * process by qenabling the next conn in the drain list. We may also need to 28640 * remove this conn from the list, if it is done. 28641 */ 28642 static void 28643 conn_drain_tail(conn_t *connp, boolean_t closing) 28644 { 28645 idl_t *idl; 28646 28647 /* 28648 * connp->conn_idl is stable at this point, and no lock is needed 28649 * to check it. If we are called from ip_close, close has already 28650 * set CONN_CLOSING, thus freezing the value of conn_idl, and 28651 * called us only because conn_idl is non-null. If we are called thru 28652 * service, conn_idl could be null, but it cannot change because 28653 * service is single-threaded per queue, and there cannot be another 28654 * instance of service trying to call conn_drain_insert on this conn 28655 * now. 28656 */ 28657 ASSERT(!closing || (connp->conn_idl != NULL)); 28658 28659 /* 28660 * If connp->conn_idl is null, the conn has not been inserted into any 28661 * drain list even once since creation of the conn. Just return. 28662 */ 28663 if (connp->conn_idl == NULL) 28664 return; 28665 28666 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28667 28668 if (connp->conn_drain_prev == NULL) { 28669 /* This conn is currently not in the drain list. */ 28670 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28671 return; 28672 } 28673 idl = connp->conn_idl; 28674 if (idl->idl_conn_draining == connp) { 28675 /* 28676 * This conn is the current drainer. If this is the last conn 28677 * in the drain list, we need to do more checks, in the 'if' 28678 * below. Otherwwise we need to just qenable the next conn, 28679 * to sustain the draining, and is handled in the 'else' 28680 * below. 28681 */ 28682 if (connp->conn_drain_next == idl->idl_conn) { 28683 /* 28684 * This conn is the last in this list. This round 28685 * of draining is complete. If idl_repeat is set, 28686 * it means another flow enabling has happened from 28687 * the driver/streams and we need to another round 28688 * of draining. 28689 * If there are more than 2 conns in the drain list, 28690 * do a left rotate by 1, so that all conns except the 28691 * conn at the head move towards the head by 1, and the 28692 * the conn at the head goes to the tail. This attempts 28693 * a more even share for all queues that are being 28694 * drained. 28695 */ 28696 if ((connp->conn_drain_next != connp) && 28697 (idl->idl_conn->conn_drain_next != connp)) { 28698 idl->idl_conn = idl->idl_conn->conn_drain_next; 28699 } 28700 if (idl->idl_repeat) { 28701 qenable(idl->idl_conn->conn_wq); 28702 idl->idl_conn_draining = idl->idl_conn; 28703 idl->idl_repeat = 0; 28704 } else { 28705 idl->idl_conn_draining = NULL; 28706 } 28707 } else { 28708 /* 28709 * If the next queue that we are now qenable'ing, 28710 * is closing, it will remove itself from this list 28711 * and qenable the subsequent queue in ip_close(). 28712 * Serialization is acheived thru idl_lock. 28713 */ 28714 qenable(connp->conn_drain_next->conn_wq); 28715 idl->idl_conn_draining = connp->conn_drain_next; 28716 } 28717 } 28718 if (!connp->conn_did_putbq || closing) { 28719 /* 28720 * Remove ourself from the drain list, if we did not do 28721 * a putbq, or if the conn is closing. 28722 * Note: It is possible that q->q_first is non-null. It means 28723 * that these messages landed after we did a enableok() in 28724 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 28725 * service them. 28726 */ 28727 if (connp->conn_drain_next == connp) { 28728 /* Singleton in the list */ 28729 ASSERT(connp->conn_drain_prev == connp); 28730 idl->idl_conn = NULL; 28731 idl->idl_conn_draining = NULL; 28732 } else { 28733 connp->conn_drain_prev->conn_drain_next = 28734 connp->conn_drain_next; 28735 connp->conn_drain_next->conn_drain_prev = 28736 connp->conn_drain_prev; 28737 if (idl->idl_conn == connp) 28738 idl->idl_conn = connp->conn_drain_next; 28739 ASSERT(idl->idl_conn_draining != connp); 28740 28741 } 28742 connp->conn_drain_next = NULL; 28743 connp->conn_drain_prev = NULL; 28744 28745 /* 28746 * For non streams based sockets open up flow control. 28747 */ 28748 if (IPCL_IS_NONSTR(connp)) { 28749 (*connp->conn_upcalls->su_txq_full) 28750 (connp->conn_upper_handle, B_FALSE); 28751 } 28752 } 28753 28754 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28755 } 28756 28757 /* 28758 * Write service routine. Shared perimeter entry point. 28759 * ip_wsrv can be called in any of the following ways. 28760 * 1. The device queue's messages has fallen below the low water mark 28761 * and STREAMS has backenabled the ill_wq. We walk thru all the 28762 * the drain lists and backenable the first conn in each list. 28763 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 28764 * qenabled non-tcp upper layers. We start dequeing messages and call 28765 * ip_wput for each message. 28766 */ 28767 28768 void 28769 ip_wsrv(queue_t *q) 28770 { 28771 conn_t *connp; 28772 ill_t *ill; 28773 mblk_t *mp; 28774 28775 if (q->q_next) { 28776 ill = (ill_t *)q->q_ptr; 28777 if (ill->ill_state_flags == 0) { 28778 /* 28779 * The device flow control has opened up. 28780 * Walk through conn drain lists and qenable the 28781 * first conn in each list. This makes sense only 28782 * if the stream is fully plumbed and setup. 28783 * Hence the if check above. 28784 */ 28785 ip1dbg(("ip_wsrv: walking\n")); 28786 conn_walk_drain(ill->ill_ipst); 28787 } 28788 return; 28789 } 28790 28791 connp = Q_TO_CONN(q); 28792 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 28793 28794 /* 28795 * 1. Set conn_draining flag to signal that service is active. 28796 * 28797 * 2. ip_output determines whether it has been called from service, 28798 * based on the last parameter. If it is IP_WSRV it concludes it 28799 * has been called from service. 28800 * 28801 * 3. Message ordering is preserved by the following logic. 28802 * i. A directly called ip_output (i.e. not thru service) will queue 28803 * the message at the tail, if conn_draining is set (i.e. service 28804 * is running) or if q->q_first is non-null. 28805 * 28806 * ii. If ip_output is called from service, and if ip_output cannot 28807 * putnext due to flow control, it does a putbq. 28808 * 28809 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 28810 * (causing an infinite loop). 28811 */ 28812 ASSERT(!connp->conn_did_putbq); 28813 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 28814 connp->conn_draining = 1; 28815 noenable(q); 28816 while ((mp = getq(q)) != NULL) { 28817 ASSERT(CONN_Q(q)); 28818 28819 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 28820 if (connp->conn_did_putbq) { 28821 /* ip_wput did a putbq */ 28822 break; 28823 } 28824 } 28825 /* 28826 * At this point, a thread coming down from top, calling 28827 * ip_wput, may end up queueing the message. We have not yet 28828 * enabled the queue, so ip_wsrv won't be called again. 28829 * To avoid this race, check q->q_first again (in the loop) 28830 * If the other thread queued the message before we call 28831 * enableok(), we will catch it in the q->q_first check. 28832 * If the other thread queues the message after we call 28833 * enableok(), ip_wsrv will be called again by STREAMS. 28834 */ 28835 connp->conn_draining = 0; 28836 enableok(q); 28837 28838 } 28839 28840 /* Enable the next conn for draining */ 28841 conn_drain_tail(connp, B_FALSE); 28842 28843 connp->conn_did_putbq = 0; 28844 } 28845 28846 /* 28847 * Callback to disable flow control in IP. 28848 * 28849 * This is a mac client callback added when the DLD_CAPAB_DIRECT capability 28850 * is enabled. 28851 * 28852 * When MAC_TX() is not able to send any more packets, dld sets its queue 28853 * to QFULL and enable the STREAMS flow control. Later, when the underlying 28854 * driver is able to continue to send packets, it calls mac_tx_(ring_)update() 28855 * function and wakes up corresponding mac worker threads, which in turn 28856 * calls this callback function, and disables flow control. 28857 */ 28858 /* ARGSUSED */ 28859 void 28860 ill_flow_enable(void *ill, ip_mac_tx_cookie_t cookie) 28861 { 28862 qenable(((ill_t *)ill)->ill_wq); 28863 } 28864 28865 /* 28866 * Walk the list of all conn's calling the function provided with the 28867 * specified argument for each. Note that this only walks conn's that 28868 * have been bound. 28869 * Applies to both IPv4 and IPv6. 28870 */ 28871 static void 28872 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 28873 { 28874 conn_walk_fanout_table(ipst->ips_ipcl_udp_fanout, 28875 ipst->ips_ipcl_udp_fanout_size, 28876 func, arg, zoneid); 28877 conn_walk_fanout_table(ipst->ips_ipcl_conn_fanout, 28878 ipst->ips_ipcl_conn_fanout_size, 28879 func, arg, zoneid); 28880 conn_walk_fanout_table(ipst->ips_ipcl_bind_fanout, 28881 ipst->ips_ipcl_bind_fanout_size, 28882 func, arg, zoneid); 28883 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout, 28884 IPPROTO_MAX, func, arg, zoneid); 28885 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout_v6, 28886 IPPROTO_MAX, func, arg, zoneid); 28887 } 28888 28889 /* 28890 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 28891 * of conns that need to be drained, check if drain is already in progress. 28892 * If so set the idl_repeat bit, indicating that the last conn in the list 28893 * needs to reinitiate the drain once again, for the list. If drain is not 28894 * in progress for the list, initiate the draining, by qenabling the 1st 28895 * conn in the list. The drain is self-sustaining, each qenabled conn will 28896 * in turn qenable the next conn, when it is done/blocked/closing. 28897 */ 28898 static void 28899 conn_walk_drain(ip_stack_t *ipst) 28900 { 28901 int i; 28902 idl_t *idl; 28903 28904 IP_STAT(ipst, ip_conn_walk_drain); 28905 28906 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28907 idl = &ipst->ips_conn_drain_list[i]; 28908 mutex_enter(&idl->idl_lock); 28909 if (idl->idl_conn == NULL) { 28910 mutex_exit(&idl->idl_lock); 28911 continue; 28912 } 28913 /* 28914 * If this list is not being drained currently by 28915 * an ip_wsrv thread, start the process. 28916 */ 28917 if (idl->idl_conn_draining == NULL) { 28918 ASSERT(idl->idl_repeat == 0); 28919 qenable(idl->idl_conn->conn_wq); 28920 idl->idl_conn_draining = idl->idl_conn; 28921 } else { 28922 idl->idl_repeat = 1; 28923 } 28924 mutex_exit(&idl->idl_lock); 28925 } 28926 } 28927 28928 /* 28929 * Walk an conn hash table of `count' buckets, calling func for each entry. 28930 */ 28931 static void 28932 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg, 28933 zoneid_t zoneid) 28934 { 28935 conn_t *connp; 28936 28937 while (count-- > 0) { 28938 mutex_enter(&connfp->connf_lock); 28939 for (connp = connfp->connf_head; connp != NULL; 28940 connp = connp->conn_next) { 28941 if (zoneid == GLOBAL_ZONEID || 28942 zoneid == connp->conn_zoneid) { 28943 CONN_INC_REF(connp); 28944 mutex_exit(&connfp->connf_lock); 28945 (*func)(connp, arg); 28946 mutex_enter(&connfp->connf_lock); 28947 CONN_DEC_REF(connp); 28948 } 28949 } 28950 mutex_exit(&connfp->connf_lock); 28951 connfp++; 28952 } 28953 } 28954 28955 /* conn_walk_fanout routine invoked for ip_conn_report for each conn. */ 28956 static void 28957 conn_report1(conn_t *connp, void *mp) 28958 { 28959 char buf1[INET6_ADDRSTRLEN]; 28960 char buf2[INET6_ADDRSTRLEN]; 28961 uint_t print_len, buf_len; 28962 28963 ASSERT(connp != NULL); 28964 28965 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 28966 if (buf_len <= 0) 28967 return; 28968 (void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)); 28969 (void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)); 28970 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 28971 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 28972 "%5d %s/%05d %s/%05d\n", 28973 (void *)connp, (void *)CONNP_TO_RQ(connp), 28974 (void *)CONNP_TO_WQ(connp), connp->conn_zoneid, 28975 buf1, connp->conn_lport, 28976 buf2, connp->conn_fport); 28977 if (print_len < buf_len) { 28978 ((mblk_t *)mp)->b_wptr += print_len; 28979 } else { 28980 ((mblk_t *)mp)->b_wptr += buf_len; 28981 } 28982 } 28983 28984 /* 28985 * Named Dispatch routine to produce a formatted report on all conns 28986 * that are listed in one of the fanout tables. 28987 * This report is accessed by using the ndd utility to "get" ND variable 28988 * "ip_conn_status". 28989 */ 28990 /* ARGSUSED */ 28991 static int 28992 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 28993 { 28994 conn_t *connp = Q_TO_CONN(q); 28995 28996 (void) mi_mpprintf(mp, 28997 "CONN " MI_COL_HDRPAD_STR 28998 "rfq " MI_COL_HDRPAD_STR 28999 "stq " MI_COL_HDRPAD_STR 29000 " zone local remote"); 29001 29002 /* 29003 * Because of the ndd constraint, at most we can have 64K buffer 29004 * to put in all conn info. So to be more efficient, just 29005 * allocate a 64K buffer here, assuming we need that large buffer. 29006 * This should be OK as only privileged processes can do ndd /dev/ip. 29007 */ 29008 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 29009 /* The following may work even if we cannot get a large buf. */ 29010 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 29011 return (0); 29012 } 29013 29014 conn_walk_fanout(conn_report1, mp->b_cont, connp->conn_zoneid, 29015 connp->conn_netstack->netstack_ip); 29016 return (0); 29017 } 29018 29019 /* 29020 * Determine if the ill and multicast aspects of that packets 29021 * "matches" the conn. 29022 */ 29023 boolean_t 29024 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 29025 zoneid_t zoneid) 29026 { 29027 ill_t *in_ill; 29028 boolean_t found; 29029 ipif_t *ipif; 29030 ire_t *ire; 29031 ipaddr_t dst, src; 29032 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 29033 29034 dst = ipha->ipha_dst; 29035 src = ipha->ipha_src; 29036 29037 /* 29038 * conn_incoming_ill is set by IP_BOUND_IF which limits 29039 * unicast, broadcast and multicast reception to 29040 * conn_incoming_ill. conn_wantpacket itself is called 29041 * only for BROADCAST and multicast. 29042 * 29043 * 1) ip_rput supresses duplicate broadcasts if the ill 29044 * is part of a group. Hence, we should be receiving 29045 * just one copy of broadcast for the whole group. 29046 * Thus, if it is part of the group the packet could 29047 * come on any ill of the group and hence we need a 29048 * match on the group. Otherwise, match on ill should 29049 * be sufficient. 29050 * 29051 * 2) ip_rput does not suppress duplicate multicast packets. 29052 * If there are two interfaces in a ill group and we have 29053 * 2 applications (conns) joined a multicast group G on 29054 * both the interfaces, ilm_lookup_ill filter in ip_rput 29055 * will give us two packets because we join G on both the 29056 * interfaces rather than nominating just one interface 29057 * for receiving multicast like broadcast above. So, 29058 * we have to call ilg_lookup_ill to filter out duplicate 29059 * copies, if ill is part of a group. 29060 */ 29061 in_ill = connp->conn_incoming_ill; 29062 if (in_ill != NULL) { 29063 if (in_ill->ill_group == NULL) { 29064 if (in_ill != ill) 29065 return (B_FALSE); 29066 } else if (in_ill->ill_group != ill->ill_group) { 29067 return (B_FALSE); 29068 } 29069 } 29070 29071 if (!CLASSD(dst)) { 29072 if (IPCL_ZONE_MATCH(connp, zoneid)) 29073 return (B_TRUE); 29074 /* 29075 * The conn is in a different zone; we need to check that this 29076 * broadcast address is configured in the application's zone and 29077 * on one ill in the group. 29078 */ 29079 ipif = ipif_get_next_ipif(NULL, ill); 29080 if (ipif == NULL) 29081 return (B_FALSE); 29082 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 29083 connp->conn_zoneid, NULL, 29084 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 29085 ipif_refrele(ipif); 29086 if (ire != NULL) { 29087 ire_refrele(ire); 29088 return (B_TRUE); 29089 } else { 29090 return (B_FALSE); 29091 } 29092 } 29093 29094 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 29095 connp->conn_zoneid == zoneid) { 29096 /* 29097 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 29098 * disabled, therefore we don't dispatch the multicast packet to 29099 * the sending zone. 29100 */ 29101 return (B_FALSE); 29102 } 29103 29104 if (IS_LOOPBACK(ill) && connp->conn_zoneid != zoneid) { 29105 /* 29106 * Multicast packet on the loopback interface: we only match 29107 * conns who joined the group in the specified zone. 29108 */ 29109 return (B_FALSE); 29110 } 29111 29112 if (connp->conn_multi_router) { 29113 /* multicast packet and multicast router socket: send up */ 29114 return (B_TRUE); 29115 } 29116 29117 mutex_enter(&connp->conn_lock); 29118 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 29119 mutex_exit(&connp->conn_lock); 29120 return (found); 29121 } 29122 29123 /* 29124 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 29125 */ 29126 /* ARGSUSED */ 29127 static void 29128 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 29129 { 29130 ill_t *ill = (ill_t *)q->q_ptr; 29131 mblk_t *mp1, *mp2; 29132 ipif_t *ipif; 29133 int err = 0; 29134 conn_t *connp = NULL; 29135 ipsq_t *ipsq; 29136 arc_t *arc; 29137 29138 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 29139 29140 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 29141 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 29142 29143 ASSERT(IAM_WRITER_ILL(ill)); 29144 mp2 = mp->b_cont; 29145 mp->b_cont = NULL; 29146 29147 /* 29148 * We have now received the arp bringup completion message 29149 * from ARP. Mark the arp bringup as done. Also if the arp 29150 * stream has already started closing, send up the AR_ARP_CLOSING 29151 * ack now since ARP is waiting in close for this ack. 29152 */ 29153 mutex_enter(&ill->ill_lock); 29154 ill->ill_arp_bringup_pending = 0; 29155 if (ill->ill_arp_closing) { 29156 mutex_exit(&ill->ill_lock); 29157 /* Let's reuse the mp for sending the ack */ 29158 arc = (arc_t *)mp->b_rptr; 29159 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 29160 arc->arc_cmd = AR_ARP_CLOSING; 29161 qreply(q, mp); 29162 } else { 29163 mutex_exit(&ill->ill_lock); 29164 freeb(mp); 29165 } 29166 29167 ipsq = ill->ill_phyint->phyint_ipsq; 29168 ipif = ipsq->ipsq_pending_ipif; 29169 mp1 = ipsq_pending_mp_get(ipsq, &connp); 29170 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 29171 if (mp1 == NULL) { 29172 /* bringup was aborted by the user */ 29173 freemsg(mp2); 29174 return; 29175 } 29176 29177 /* 29178 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 29179 * must have an associated conn_t. Otherwise, we're bringing this 29180 * interface back up as part of handling an asynchronous event (e.g., 29181 * physical address change). 29182 */ 29183 if (ipsq->ipsq_current_ioctl != 0) { 29184 ASSERT(connp != NULL); 29185 q = CONNP_TO_WQ(connp); 29186 } else { 29187 ASSERT(connp == NULL); 29188 q = ill->ill_rq; 29189 } 29190 29191 /* 29192 * If the DL_BIND_REQ fails, it is noted 29193 * in arc_name_offset. 29194 */ 29195 err = *((int *)mp2->b_rptr); 29196 if (err == 0) { 29197 if (ipif->ipif_isv6) { 29198 if ((err = ipif_up_done_v6(ipif)) != 0) 29199 ip0dbg(("ip_arp_done: init failed\n")); 29200 } else { 29201 if ((err = ipif_up_done(ipif)) != 0) 29202 ip0dbg(("ip_arp_done: init failed\n")); 29203 } 29204 } else { 29205 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 29206 } 29207 29208 freemsg(mp2); 29209 29210 if ((err == 0) && (ill->ill_up_ipifs)) { 29211 err = ill_up_ipifs(ill, q, mp1); 29212 if (err == EINPROGRESS) 29213 return; 29214 } 29215 29216 if (ill->ill_up_ipifs) 29217 ill_group_cleanup(ill); 29218 29219 /* 29220 * The operation must complete without EINPROGRESS since 29221 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 29222 * Otherwise, the operation will be stuck forever in the ipsq. 29223 */ 29224 ASSERT(err != EINPROGRESS); 29225 if (ipsq->ipsq_current_ioctl != 0) 29226 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 29227 else 29228 ipsq_current_finish(ipsq); 29229 } 29230 29231 /* Allocate the private structure */ 29232 static int 29233 ip_priv_alloc(void **bufp) 29234 { 29235 void *buf; 29236 29237 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 29238 return (ENOMEM); 29239 29240 *bufp = buf; 29241 return (0); 29242 } 29243 29244 /* Function to delete the private structure */ 29245 void 29246 ip_priv_free(void *buf) 29247 { 29248 ASSERT(buf != NULL); 29249 kmem_free(buf, sizeof (ip_priv_t)); 29250 } 29251 29252 /* 29253 * The entry point for IPPF processing. 29254 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 29255 * routine just returns. 29256 * 29257 * When called, ip_process generates an ipp_packet_t structure 29258 * which holds the state information for this packet and invokes the 29259 * the classifier (via ipp_packet_process). The classification, depending on 29260 * configured filters, results in a list of actions for this packet. Invoking 29261 * an action may cause the packet to be dropped, in which case the resulting 29262 * mblk (*mpp) is NULL. proc indicates the callout position for 29263 * this packet and ill_index is the interface this packet on or will leave 29264 * on (inbound and outbound resp.). 29265 */ 29266 void 29267 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 29268 { 29269 mblk_t *mp; 29270 ip_priv_t *priv; 29271 ipp_action_id_t aid; 29272 int rc = 0; 29273 ipp_packet_t *pp; 29274 #define IP_CLASS "ip" 29275 29276 /* If the classifier is not loaded, return */ 29277 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 29278 return; 29279 } 29280 29281 mp = *mpp; 29282 ASSERT(mp != NULL); 29283 29284 /* Allocate the packet structure */ 29285 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 29286 if (rc != 0) { 29287 *mpp = NULL; 29288 freemsg(mp); 29289 return; 29290 } 29291 29292 /* Allocate the private structure */ 29293 rc = ip_priv_alloc((void **)&priv); 29294 if (rc != 0) { 29295 *mpp = NULL; 29296 freemsg(mp); 29297 ipp_packet_free(pp); 29298 return; 29299 } 29300 priv->proc = proc; 29301 priv->ill_index = ill_index; 29302 ipp_packet_set_private(pp, priv, ip_priv_free); 29303 ipp_packet_set_data(pp, mp); 29304 29305 /* Invoke the classifier */ 29306 rc = ipp_packet_process(&pp); 29307 if (pp != NULL) { 29308 mp = ipp_packet_get_data(pp); 29309 ipp_packet_free(pp); 29310 if (rc != 0) { 29311 freemsg(mp); 29312 *mpp = NULL; 29313 } 29314 } else { 29315 *mpp = NULL; 29316 } 29317 #undef IP_CLASS 29318 } 29319 29320 /* 29321 * Propagate a multicast group membership operation (add/drop) on 29322 * all the interfaces crossed by the related multirt routes. 29323 * The call is considered successful if the operation succeeds 29324 * on at least one interface. 29325 */ 29326 static int 29327 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 29328 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 29329 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 29330 mblk_t *first_mp) 29331 { 29332 ire_t *ire_gw; 29333 irb_t *irb; 29334 int error = 0; 29335 opt_restart_t *or; 29336 ip_stack_t *ipst = ire->ire_ipst; 29337 29338 irb = ire->ire_bucket; 29339 ASSERT(irb != NULL); 29340 29341 ASSERT(DB_TYPE(first_mp) == M_CTL); 29342 29343 or = (opt_restart_t *)first_mp->b_rptr; 29344 IRB_REFHOLD(irb); 29345 for (; ire != NULL; ire = ire->ire_next) { 29346 if ((ire->ire_flags & RTF_MULTIRT) == 0) 29347 continue; 29348 if (ire->ire_addr != group) 29349 continue; 29350 29351 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 29352 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 29353 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE, ipst); 29354 /* No resolver exists for the gateway; skip this ire. */ 29355 if (ire_gw == NULL) 29356 continue; 29357 29358 /* 29359 * This function can return EINPROGRESS. If so the operation 29360 * will be restarted from ip_restart_optmgmt which will 29361 * call ip_opt_set and option processing will restart for 29362 * this option. So we may end up calling 'fn' more than once. 29363 * This requires that 'fn' is idempotent except for the 29364 * return value. The operation is considered a success if 29365 * it succeeds at least once on any one interface. 29366 */ 29367 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 29368 NULL, fmode, src, first_mp); 29369 if (error == 0) 29370 or->or_private = CGTP_MCAST_SUCCESS; 29371 29372 if (ip_debug > 0) { 29373 ulong_t off; 29374 char *ksym; 29375 ksym = kobj_getsymname((uintptr_t)fn, &off); 29376 ip2dbg(("ip_multirt_apply_membership: " 29377 "called %s, multirt group 0x%08x via itf 0x%08x, " 29378 "error %d [success %u]\n", 29379 ksym ? ksym : "?", 29380 ntohl(group), ntohl(ire_gw->ire_src_addr), 29381 error, or->or_private)); 29382 } 29383 29384 ire_refrele(ire_gw); 29385 if (error == EINPROGRESS) { 29386 IRB_REFRELE(irb); 29387 return (error); 29388 } 29389 } 29390 IRB_REFRELE(irb); 29391 /* 29392 * Consider the call as successful if we succeeded on at least 29393 * one interface. Otherwise, return the last encountered error. 29394 */ 29395 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 29396 } 29397 29398 /* 29399 * Issue a warning regarding a route crossing an interface with an 29400 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 29401 * amount of time is logged. 29402 */ 29403 static void 29404 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 29405 { 29406 hrtime_t current = gethrtime(); 29407 char buf[INET_ADDRSTRLEN]; 29408 ip_stack_t *ipst = ire->ire_ipst; 29409 29410 /* Convert interval in ms to hrtime in ns */ 29411 if (ipst->ips_multirt_bad_mtu_last_time + 29412 ((hrtime_t)ipst->ips_ip_multirt_log_interval * (hrtime_t)1000000) <= 29413 current) { 29414 cmn_err(CE_WARN, "ip: ignoring multiroute " 29415 "to %s, incorrect MTU %u (expected %u)\n", 29416 ip_dot_addr(ire->ire_addr, buf), 29417 ire->ire_max_frag, max_frag); 29418 29419 ipst->ips_multirt_bad_mtu_last_time = current; 29420 } 29421 } 29422 29423 29424 /* 29425 * Get the CGTP (multirouting) filtering status. 29426 * If 0, the CGTP hooks are transparent. 29427 */ 29428 /* ARGSUSED */ 29429 static int 29430 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 29431 { 29432 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 29433 29434 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 29435 return (0); 29436 } 29437 29438 29439 /* 29440 * Set the CGTP (multirouting) filtering status. 29441 * If the status is changed from active to transparent 29442 * or from transparent to active, forward the new status 29443 * to the filtering module (if loaded). 29444 */ 29445 /* ARGSUSED */ 29446 static int 29447 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 29448 cred_t *ioc_cr) 29449 { 29450 long new_value; 29451 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 29452 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29453 29454 if (secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 29455 return (EPERM); 29456 29457 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 29458 new_value < 0 || new_value > 1) { 29459 return (EINVAL); 29460 } 29461 29462 if ((!*ip_cgtp_filter_value) && new_value) { 29463 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 29464 ipst->ips_ip_cgtp_filter_ops == NULL ? 29465 " (module not loaded)" : ""); 29466 } 29467 if (*ip_cgtp_filter_value && (!new_value)) { 29468 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 29469 ipst->ips_ip_cgtp_filter_ops == NULL ? 29470 " (module not loaded)" : ""); 29471 } 29472 29473 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 29474 int res; 29475 netstackid_t stackid; 29476 29477 stackid = ipst->ips_netstack->netstack_stackid; 29478 res = ipst->ips_ip_cgtp_filter_ops->cfo_change_state(stackid, 29479 new_value); 29480 if (res) 29481 return (res); 29482 } 29483 29484 *ip_cgtp_filter_value = (boolean_t)new_value; 29485 29486 return (0); 29487 } 29488 29489 29490 /* 29491 * Return the expected CGTP hooks version number. 29492 */ 29493 int 29494 ip_cgtp_filter_supported(void) 29495 { 29496 return (ip_cgtp_filter_rev); 29497 } 29498 29499 29500 /* 29501 * CGTP hooks can be registered by invoking this function. 29502 * Checks that the version number matches. 29503 */ 29504 int 29505 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops) 29506 { 29507 netstack_t *ns; 29508 ip_stack_t *ipst; 29509 29510 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 29511 return (ENOTSUP); 29512 29513 ns = netstack_find_by_stackid(stackid); 29514 if (ns == NULL) 29515 return (EINVAL); 29516 ipst = ns->netstack_ip; 29517 ASSERT(ipst != NULL); 29518 29519 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 29520 netstack_rele(ns); 29521 return (EALREADY); 29522 } 29523 29524 ipst->ips_ip_cgtp_filter_ops = ops; 29525 netstack_rele(ns); 29526 return (0); 29527 } 29528 29529 /* 29530 * CGTP hooks can be unregistered by invoking this function. 29531 * Returns ENXIO if there was no registration. 29532 * Returns EBUSY if the ndd variable has not been turned off. 29533 */ 29534 int 29535 ip_cgtp_filter_unregister(netstackid_t stackid) 29536 { 29537 netstack_t *ns; 29538 ip_stack_t *ipst; 29539 29540 ns = netstack_find_by_stackid(stackid); 29541 if (ns == NULL) 29542 return (EINVAL); 29543 ipst = ns->netstack_ip; 29544 ASSERT(ipst != NULL); 29545 29546 if (ipst->ips_ip_cgtp_filter) { 29547 netstack_rele(ns); 29548 return (EBUSY); 29549 } 29550 29551 if (ipst->ips_ip_cgtp_filter_ops == NULL) { 29552 netstack_rele(ns); 29553 return (ENXIO); 29554 } 29555 ipst->ips_ip_cgtp_filter_ops = NULL; 29556 netstack_rele(ns); 29557 return (0); 29558 } 29559 29560 /* 29561 * Check whether there is a CGTP filter registration. 29562 * Returns non-zero if there is a registration, otherwise returns zero. 29563 * Note: returns zero if bad stackid. 29564 */ 29565 int 29566 ip_cgtp_filter_is_registered(netstackid_t stackid) 29567 { 29568 netstack_t *ns; 29569 ip_stack_t *ipst; 29570 int ret; 29571 29572 ns = netstack_find_by_stackid(stackid); 29573 if (ns == NULL) 29574 return (0); 29575 ipst = ns->netstack_ip; 29576 ASSERT(ipst != NULL); 29577 29578 if (ipst->ips_ip_cgtp_filter_ops != NULL) 29579 ret = 1; 29580 else 29581 ret = 0; 29582 29583 netstack_rele(ns); 29584 return (ret); 29585 } 29586 29587 static int 29588 ip_squeue_switch(int val) 29589 { 29590 int rval = SQ_FILL; 29591 29592 switch (val) { 29593 case IP_SQUEUE_ENTER_NODRAIN: 29594 rval = SQ_NODRAIN; 29595 break; 29596 case IP_SQUEUE_ENTER: 29597 rval = SQ_PROCESS; 29598 break; 29599 default: 29600 break; 29601 } 29602 return (rval); 29603 } 29604 29605 /* ARGSUSED */ 29606 static int 29607 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 29608 caddr_t addr, cred_t *cr) 29609 { 29610 int *v = (int *)addr; 29611 long new_value; 29612 29613 if (secpolicy_net_config(cr, B_FALSE) != 0) 29614 return (EPERM); 29615 29616 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29617 return (EINVAL); 29618 29619 ip_squeue_flag = ip_squeue_switch(new_value); 29620 *v = new_value; 29621 return (0); 29622 } 29623 29624 /* 29625 * Handle ndd set of variables which require PRIV_SYS_NET_CONFIG such as 29626 * ip_debug. 29627 */ 29628 /* ARGSUSED */ 29629 static int 29630 ip_int_set(queue_t *q, mblk_t *mp, char *value, 29631 caddr_t addr, cred_t *cr) 29632 { 29633 int *v = (int *)addr; 29634 long new_value; 29635 29636 if (secpolicy_net_config(cr, B_FALSE) != 0) 29637 return (EPERM); 29638 29639 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29640 return (EINVAL); 29641 29642 *v = new_value; 29643 return (0); 29644 } 29645 29646 /* 29647 * Handle changes to ipmp_hook_emulation ndd variable. 29648 * Need to update phyint_hook_ifindex. 29649 * Also generate a nic plumb event should a new ifidex be assigned to a group. 29650 */ 29651 static void 29652 ipmp_hook_emulation_changed(ip_stack_t *ipst) 29653 { 29654 phyint_t *phyi; 29655 phyint_t *phyi_tmp; 29656 char *groupname; 29657 int namelen; 29658 ill_t *ill; 29659 boolean_t new_group; 29660 29661 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29662 /* 29663 * Group indicies are stored in the phyint - a common structure 29664 * to both IPv4 and IPv6. 29665 */ 29666 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 29667 for (; phyi != NULL; 29668 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 29669 phyi, AVL_AFTER)) { 29670 /* Ignore the ones that do not have a group */ 29671 if (phyi->phyint_groupname_len == 0) 29672 continue; 29673 29674 /* 29675 * Look for other phyint in group. 29676 * Clear name/namelen so the lookup doesn't find ourselves. 29677 */ 29678 namelen = phyi->phyint_groupname_len; 29679 groupname = phyi->phyint_groupname; 29680 phyi->phyint_groupname_len = 0; 29681 phyi->phyint_groupname = NULL; 29682 29683 phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst); 29684 /* Restore */ 29685 phyi->phyint_groupname_len = namelen; 29686 phyi->phyint_groupname = groupname; 29687 29688 new_group = B_FALSE; 29689 if (ipst->ips_ipmp_hook_emulation) { 29690 /* 29691 * If the group already exists and has already 29692 * been assigned a group ifindex, we use the existing 29693 * group_ifindex, otherwise we pick a new group_ifindex 29694 * here. 29695 */ 29696 if (phyi_tmp != NULL && 29697 phyi_tmp->phyint_group_ifindex != 0) { 29698 phyi->phyint_group_ifindex = 29699 phyi_tmp->phyint_group_ifindex; 29700 } else { 29701 /* XXX We need a recovery strategy here. */ 29702 if (!ip_assign_ifindex( 29703 &phyi->phyint_group_ifindex, ipst)) 29704 cmn_err(CE_PANIC, 29705 "ip_assign_ifindex() failed"); 29706 new_group = B_TRUE; 29707 } 29708 } else { 29709 phyi->phyint_group_ifindex = 0; 29710 } 29711 if (ipst->ips_ipmp_hook_emulation) 29712 phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex; 29713 else 29714 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 29715 29716 /* 29717 * For IP Filter to find out the relationship between 29718 * names and interface indicies, we need to generate 29719 * a NE_PLUMB event when a new group can appear. 29720 * We always generate events when a new interface appears 29721 * (even when ipmp_hook_emulation is set) so there 29722 * is no need to generate NE_PLUMB events when 29723 * ipmp_hook_emulation is turned off. 29724 * And since it isn't critical for IP Filter to get 29725 * the NE_UNPLUMB events we skip those here. 29726 */ 29727 if (new_group) { 29728 /* 29729 * First phyint in group - generate group PLUMB event. 29730 * Since we are not running inside the ipsq we do 29731 * the dispatch immediately. 29732 */ 29733 if (phyi->phyint_illv4 != NULL) 29734 ill = phyi->phyint_illv4; 29735 else 29736 ill = phyi->phyint_illv6; 29737 29738 if (ill != NULL) 29739 ill_nic_event_plumb(ill, B_TRUE); 29740 } 29741 } 29742 rw_exit(&ipst->ips_ill_g_lock); 29743 } 29744 29745 /* ARGSUSED */ 29746 static int 29747 ipmp_hook_emulation_set(queue_t *q, mblk_t *mp, char *value, 29748 caddr_t addr, cred_t *cr) 29749 { 29750 int *v = (int *)addr; 29751 long new_value; 29752 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29753 29754 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29755 return (EINVAL); 29756 29757 if (*v != new_value) { 29758 *v = new_value; 29759 ipmp_hook_emulation_changed(ipst); 29760 } 29761 return (0); 29762 } 29763 29764 static void * 29765 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 29766 { 29767 kstat_t *ksp; 29768 29769 ip_stat_t template = { 29770 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 29771 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 29772 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 29773 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 29774 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 29775 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 29776 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 29777 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 29778 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 29779 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 29780 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 29781 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 29782 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 29783 { "ip_db_ref", KSTAT_DATA_UINT64 }, 29784 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 29785 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 29786 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 29787 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 29788 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 29789 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 29790 { "ip_opt", KSTAT_DATA_UINT64 }, 29791 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 29792 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 29793 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 29794 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 29795 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 29796 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 29797 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 29798 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 29799 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 29800 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 29801 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 29802 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 29803 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29804 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29805 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29806 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29807 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29808 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29809 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29810 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29811 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 29812 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 29813 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 29814 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 29815 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 29816 }; 29817 29818 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 29819 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 29820 KSTAT_FLAG_VIRTUAL, stackid); 29821 29822 if (ksp == NULL) 29823 return (NULL); 29824 29825 bcopy(&template, ip_statisticsp, sizeof (template)); 29826 ksp->ks_data = (void *)ip_statisticsp; 29827 ksp->ks_private = (void *)(uintptr_t)stackid; 29828 29829 kstat_install(ksp); 29830 return (ksp); 29831 } 29832 29833 static void 29834 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 29835 { 29836 if (ksp != NULL) { 29837 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29838 kstat_delete_netstack(ksp, stackid); 29839 } 29840 } 29841 29842 static void * 29843 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 29844 { 29845 kstat_t *ksp; 29846 29847 ip_named_kstat_t template = { 29848 { "forwarding", KSTAT_DATA_UINT32, 0 }, 29849 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 29850 { "inReceives", KSTAT_DATA_UINT64, 0 }, 29851 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 29852 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 29853 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 29854 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 29855 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 29856 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 29857 { "outRequests", KSTAT_DATA_UINT64, 0 }, 29858 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 29859 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 29860 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 29861 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 29862 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 29863 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 29864 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 29865 { "fragFails", KSTAT_DATA_UINT32, 0 }, 29866 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 29867 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 29868 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 29869 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 29870 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 29871 { "inErrs", KSTAT_DATA_UINT32, 0 }, 29872 { "noPorts", KSTAT_DATA_UINT32, 0 }, 29873 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 29874 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 29875 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 29876 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 29877 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 29878 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 29879 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 29880 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 29881 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 29882 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 29883 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 29884 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 29885 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 29886 }; 29887 29888 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 29889 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 29890 if (ksp == NULL || ksp->ks_data == NULL) 29891 return (NULL); 29892 29893 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 29894 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 29895 template.reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29896 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 29897 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 29898 29899 template.netToMediaEntrySize.value.i32 = 29900 sizeof (mib2_ipNetToMediaEntry_t); 29901 29902 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 29903 29904 bcopy(&template, ksp->ks_data, sizeof (template)); 29905 ksp->ks_update = ip_kstat_update; 29906 ksp->ks_private = (void *)(uintptr_t)stackid; 29907 29908 kstat_install(ksp); 29909 return (ksp); 29910 } 29911 29912 static void 29913 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29914 { 29915 if (ksp != NULL) { 29916 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29917 kstat_delete_netstack(ksp, stackid); 29918 } 29919 } 29920 29921 static int 29922 ip_kstat_update(kstat_t *kp, int rw) 29923 { 29924 ip_named_kstat_t *ipkp; 29925 mib2_ipIfStatsEntry_t ipmib; 29926 ill_walk_context_t ctx; 29927 ill_t *ill; 29928 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29929 netstack_t *ns; 29930 ip_stack_t *ipst; 29931 29932 if (kp == NULL || kp->ks_data == NULL) 29933 return (EIO); 29934 29935 if (rw == KSTAT_WRITE) 29936 return (EACCES); 29937 29938 ns = netstack_find_by_stackid(stackid); 29939 if (ns == NULL) 29940 return (-1); 29941 ipst = ns->netstack_ip; 29942 if (ipst == NULL) { 29943 netstack_rele(ns); 29944 return (-1); 29945 } 29946 ipkp = (ip_named_kstat_t *)kp->ks_data; 29947 29948 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 29949 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29950 ill = ILL_START_WALK_V4(&ctx, ipst); 29951 for (; ill != NULL; ill = ill_next(&ctx, ill)) 29952 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 29953 rw_exit(&ipst->ips_ill_g_lock); 29954 29955 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 29956 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 29957 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 29958 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 29959 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 29960 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 29961 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 29962 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 29963 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 29964 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 29965 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 29966 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 29967 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29968 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 29969 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 29970 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 29971 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 29972 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 29973 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 29974 29975 ipkp->routingDiscards.value.ui32 = 0; 29976 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 29977 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 29978 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 29979 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 29980 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 29981 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 29982 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 29983 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 29984 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 29985 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 29986 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 29987 29988 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 29989 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 29990 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 29991 29992 netstack_rele(ns); 29993 29994 return (0); 29995 } 29996 29997 static void * 29998 icmp_kstat_init(netstackid_t stackid) 29999 { 30000 kstat_t *ksp; 30001 30002 icmp_named_kstat_t template = { 30003 { "inMsgs", KSTAT_DATA_UINT32 }, 30004 { "inErrors", KSTAT_DATA_UINT32 }, 30005 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 30006 { "inTimeExcds", KSTAT_DATA_UINT32 }, 30007 { "inParmProbs", KSTAT_DATA_UINT32 }, 30008 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 30009 { "inRedirects", KSTAT_DATA_UINT32 }, 30010 { "inEchos", KSTAT_DATA_UINT32 }, 30011 { "inEchoReps", KSTAT_DATA_UINT32 }, 30012 { "inTimestamps", KSTAT_DATA_UINT32 }, 30013 { "inTimestampReps", KSTAT_DATA_UINT32 }, 30014 { "inAddrMasks", KSTAT_DATA_UINT32 }, 30015 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 30016 { "outMsgs", KSTAT_DATA_UINT32 }, 30017 { "outErrors", KSTAT_DATA_UINT32 }, 30018 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 30019 { "outTimeExcds", KSTAT_DATA_UINT32 }, 30020 { "outParmProbs", KSTAT_DATA_UINT32 }, 30021 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 30022 { "outRedirects", KSTAT_DATA_UINT32 }, 30023 { "outEchos", KSTAT_DATA_UINT32 }, 30024 { "outEchoReps", KSTAT_DATA_UINT32 }, 30025 { "outTimestamps", KSTAT_DATA_UINT32 }, 30026 { "outTimestampReps", KSTAT_DATA_UINT32 }, 30027 { "outAddrMasks", KSTAT_DATA_UINT32 }, 30028 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 30029 { "inChksumErrs", KSTAT_DATA_UINT32 }, 30030 { "inUnknowns", KSTAT_DATA_UINT32 }, 30031 { "inFragNeeded", KSTAT_DATA_UINT32 }, 30032 { "outFragNeeded", KSTAT_DATA_UINT32 }, 30033 { "outDrops", KSTAT_DATA_UINT32 }, 30034 { "inOverFlows", KSTAT_DATA_UINT32 }, 30035 { "inBadRedirects", KSTAT_DATA_UINT32 }, 30036 }; 30037 30038 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 30039 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 30040 if (ksp == NULL || ksp->ks_data == NULL) 30041 return (NULL); 30042 30043 bcopy(&template, ksp->ks_data, sizeof (template)); 30044 30045 ksp->ks_update = icmp_kstat_update; 30046 ksp->ks_private = (void *)(uintptr_t)stackid; 30047 30048 kstat_install(ksp); 30049 return (ksp); 30050 } 30051 30052 static void 30053 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 30054 { 30055 if (ksp != NULL) { 30056 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 30057 kstat_delete_netstack(ksp, stackid); 30058 } 30059 } 30060 30061 static int 30062 icmp_kstat_update(kstat_t *kp, int rw) 30063 { 30064 icmp_named_kstat_t *icmpkp; 30065 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 30066 netstack_t *ns; 30067 ip_stack_t *ipst; 30068 30069 if ((kp == NULL) || (kp->ks_data == NULL)) 30070 return (EIO); 30071 30072 if (rw == KSTAT_WRITE) 30073 return (EACCES); 30074 30075 ns = netstack_find_by_stackid(stackid); 30076 if (ns == NULL) 30077 return (-1); 30078 ipst = ns->netstack_ip; 30079 if (ipst == NULL) { 30080 netstack_rele(ns); 30081 return (-1); 30082 } 30083 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 30084 30085 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 30086 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 30087 icmpkp->inDestUnreachs.value.ui32 = 30088 ipst->ips_icmp_mib.icmpInDestUnreachs; 30089 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 30090 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 30091 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 30092 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 30093 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 30094 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 30095 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 30096 icmpkp->inTimestampReps.value.ui32 = 30097 ipst->ips_icmp_mib.icmpInTimestampReps; 30098 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 30099 icmpkp->inAddrMaskReps.value.ui32 = 30100 ipst->ips_icmp_mib.icmpInAddrMaskReps; 30101 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 30102 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 30103 icmpkp->outDestUnreachs.value.ui32 = 30104 ipst->ips_icmp_mib.icmpOutDestUnreachs; 30105 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 30106 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 30107 icmpkp->outSrcQuenchs.value.ui32 = 30108 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 30109 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 30110 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 30111 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 30112 icmpkp->outTimestamps.value.ui32 = 30113 ipst->ips_icmp_mib.icmpOutTimestamps; 30114 icmpkp->outTimestampReps.value.ui32 = 30115 ipst->ips_icmp_mib.icmpOutTimestampReps; 30116 icmpkp->outAddrMasks.value.ui32 = 30117 ipst->ips_icmp_mib.icmpOutAddrMasks; 30118 icmpkp->outAddrMaskReps.value.ui32 = 30119 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 30120 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 30121 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 30122 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 30123 icmpkp->outFragNeeded.value.ui32 = 30124 ipst->ips_icmp_mib.icmpOutFragNeeded; 30125 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 30126 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 30127 icmpkp->inBadRedirects.value.ui32 = 30128 ipst->ips_icmp_mib.icmpInBadRedirects; 30129 30130 netstack_rele(ns); 30131 return (0); 30132 } 30133 30134 /* 30135 * This is the fanout function for raw socket opened for SCTP. Note 30136 * that it is called after SCTP checks that there is no socket which 30137 * wants a packet. Then before SCTP handles this out of the blue packet, 30138 * this function is called to see if there is any raw socket for SCTP. 30139 * If there is and it is bound to the correct address, the packet will 30140 * be sent to that socket. Note that only one raw socket can be bound to 30141 * a port. This is assured in ipcl_sctp_hash_insert(); 30142 */ 30143 void 30144 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 30145 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 30146 zoneid_t zoneid) 30147 { 30148 conn_t *connp; 30149 queue_t *rq; 30150 mblk_t *first_mp; 30151 boolean_t secure; 30152 ip6_t *ip6h; 30153 ip_stack_t *ipst = recv_ill->ill_ipst; 30154 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 30155 sctp_stack_t *sctps = ipst->ips_netstack->netstack_sctp; 30156 boolean_t sctp_csum_err = B_FALSE; 30157 30158 if (flags & IP_FF_SCTP_CSUM_ERR) { 30159 sctp_csum_err = B_TRUE; 30160 flags &= ~IP_FF_SCTP_CSUM_ERR; 30161 } 30162 30163 first_mp = mp; 30164 if (mctl_present) { 30165 mp = first_mp->b_cont; 30166 secure = ipsec_in_is_secure(first_mp); 30167 ASSERT(mp != NULL); 30168 } else { 30169 secure = B_FALSE; 30170 } 30171 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 30172 30173 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha, ipst); 30174 if (connp == NULL) { 30175 /* 30176 * Although raw sctp is not summed, OOB chunks must be. 30177 * Drop the packet here if the sctp checksum failed. 30178 */ 30179 if (sctp_csum_err) { 30180 BUMP_MIB(&sctps->sctps_mib, sctpChecksumError); 30181 freemsg(first_mp); 30182 return; 30183 } 30184 sctp_ootb_input(first_mp, recv_ill, zoneid, mctl_present); 30185 return; 30186 } 30187 rq = connp->conn_rq; 30188 if (!canputnext(rq)) { 30189 CONN_DEC_REF(connp); 30190 BUMP_MIB(recv_ill->ill_ip_mib, rawipIfStatsInOverflows); 30191 freemsg(first_mp); 30192 return; 30193 } 30194 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 30195 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || secure) { 30196 first_mp = ipsec_check_inbound_policy(first_mp, connp, 30197 (isv4 ? ipha : NULL), ip6h, mctl_present); 30198 if (first_mp == NULL) { 30199 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 30200 CONN_DEC_REF(connp); 30201 return; 30202 } 30203 } 30204 /* 30205 * We probably should not send M_CTL message up to 30206 * raw socket. 30207 */ 30208 if (mctl_present) 30209 freeb(first_mp); 30210 30211 /* Initiate IPPF processing here if needed. */ 30212 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) || 30213 (!isv4 && IP6_IN_IPP(flags, ipst))) { 30214 ip_process(IPP_LOCAL_IN, &mp, 30215 recv_ill->ill_phyint->phyint_ifindex); 30216 if (mp == NULL) { 30217 CONN_DEC_REF(connp); 30218 return; 30219 } 30220 } 30221 30222 if (connp->conn_recvif || connp->conn_recvslla || 30223 ((connp->conn_ip_recvpktinfo || 30224 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 30225 (flags & IP_FF_IPINFO))) { 30226 int in_flags = 0; 30227 30228 /* 30229 * Since sctp does not support IP_RECVPKTINFO for v4, only pass 30230 * IPF_RECVIF. 30231 */ 30232 if (connp->conn_recvif || connp->conn_ip_recvpktinfo) { 30233 in_flags = IPF_RECVIF; 30234 } 30235 if (connp->conn_recvslla) { 30236 in_flags |= IPF_RECVSLLA; 30237 } 30238 if (isv4) { 30239 mp = ip_add_info(mp, recv_ill, in_flags, 30240 IPCL_ZONEID(connp), ipst); 30241 } else { 30242 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 30243 if (mp == NULL) { 30244 BUMP_MIB(recv_ill->ill_ip_mib, 30245 ipIfStatsInDiscards); 30246 CONN_DEC_REF(connp); 30247 return; 30248 } 30249 } 30250 } 30251 30252 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 30253 /* 30254 * We are sending the IPSEC_IN message also up. Refer 30255 * to comments above this function. 30256 * This is the SOCK_RAW, IPPROTO_SCTP case. 30257 */ 30258 (connp->conn_recv)(connp, mp, NULL); 30259 CONN_DEC_REF(connp); 30260 } 30261 30262 #define UPDATE_IP_MIB_OB_COUNTERS(ill, len) \ 30263 { \ 30264 BUMP_MIB((ill)->ill_ip_mib, ipIfStatsHCOutTransmits); \ 30265 UPDATE_MIB((ill)->ill_ip_mib, ipIfStatsHCOutOctets, (len)); \ 30266 } 30267 /* 30268 * This function should be called only if all packet processing 30269 * including fragmentation is complete. Callers of this function 30270 * must set mp->b_prev to one of these values: 30271 * {0, IPP_FWD_OUT, IPP_LOCAL_OUT} 30272 * prior to handing over the mp as first argument to this function. 30273 * 30274 * If the ire passed by caller is incomplete, this function 30275 * queues the packet and if necessary, sends ARP request and bails. 30276 * If the ire passed is fully resolved, we simply prepend 30277 * the link-layer header to the packet, do ipsec hw acceleration 30278 * work if necessary, and send the packet out on the wire. 30279 * 30280 * NOTE: IPsec will only call this function with fully resolved 30281 * ires if hw acceleration is involved. 30282 * TODO list : 30283 * a Handle M_MULTIDATA so that 30284 * tcp_multisend->tcp_multisend_data can 30285 * call ip_xmit_v4 directly 30286 * b Handle post-ARP work for fragments so that 30287 * ip_wput_frag can call this function. 30288 */ 30289 ipxmit_state_t 30290 ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, 30291 boolean_t flow_ctl_enabled, conn_t *connp) 30292 { 30293 nce_t *arpce; 30294 ipha_t *ipha; 30295 queue_t *q; 30296 int ill_index; 30297 mblk_t *nxt_mp, *first_mp; 30298 boolean_t xmit_drop = B_FALSE; 30299 ip_proc_t proc; 30300 ill_t *out_ill; 30301 int pkt_len; 30302 30303 arpce = ire->ire_nce; 30304 ASSERT(arpce != NULL); 30305 30306 DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire, nce_t *, arpce); 30307 30308 mutex_enter(&arpce->nce_lock); 30309 switch (arpce->nce_state) { 30310 case ND_REACHABLE: 30311 /* If there are other queued packets, queue this packet */ 30312 if (arpce->nce_qd_mp != NULL) { 30313 if (mp != NULL) 30314 nce_queue_mp_common(arpce, mp, B_FALSE); 30315 mp = arpce->nce_qd_mp; 30316 } 30317 arpce->nce_qd_mp = NULL; 30318 mutex_exit(&arpce->nce_lock); 30319 30320 /* 30321 * Flush the queue. In the common case, where the 30322 * ARP is already resolved, it will go through the 30323 * while loop only once. 30324 */ 30325 while (mp != NULL) { 30326 30327 nxt_mp = mp->b_next; 30328 mp->b_next = NULL; 30329 ASSERT(mp->b_datap->db_type != M_CTL); 30330 pkt_len = ntohs(((ipha_t *)mp->b_rptr)->ipha_length); 30331 /* 30332 * This info is needed for IPQOS to do COS marking 30333 * in ip_wput_attach_llhdr->ip_process. 30334 */ 30335 proc = (ip_proc_t)(uintptr_t)mp->b_prev; 30336 mp->b_prev = NULL; 30337 30338 /* set up ill index for outbound qos processing */ 30339 out_ill = ire_to_ill(ire); 30340 ill_index = out_ill->ill_phyint->phyint_ifindex; 30341 first_mp = ip_wput_attach_llhdr(mp, ire, proc, 30342 ill_index, &ipha); 30343 if (first_mp == NULL) { 30344 xmit_drop = B_TRUE; 30345 BUMP_MIB(out_ill->ill_ip_mib, 30346 ipIfStatsOutDiscards); 30347 goto next_mp; 30348 } 30349 30350 /* non-ipsec hw accel case */ 30351 if (io == NULL || !io->ipsec_out_accelerated) { 30352 /* send it */ 30353 q = ire->ire_stq; 30354 if (proc == IPP_FWD_OUT) { 30355 UPDATE_IB_PKT_COUNT(ire); 30356 } else { 30357 UPDATE_OB_PKT_COUNT(ire); 30358 } 30359 ire->ire_last_used_time = lbolt; 30360 30361 if (flow_ctl_enabled || canputnext(q)) { 30362 if (proc == IPP_FWD_OUT) { 30363 30364 BUMP_MIB(out_ill->ill_ip_mib, 30365 ipIfStatsHCOutForwDatagrams); 30366 30367 } 30368 UPDATE_IP_MIB_OB_COUNTERS(out_ill, 30369 pkt_len); 30370 30371 DTRACE_IP7(send, mblk_t *, first_mp, 30372 conn_t *, NULL, void_ip_t *, ipha, 30373 __dtrace_ipsr_ill_t *, out_ill, 30374 ipha_t *, ipha, ip6_t *, NULL, int, 30375 0); 30376 30377 ILL_SEND_TX(out_ill, 30378 ire, connp, first_mp, 0); 30379 } else { 30380 BUMP_MIB(out_ill->ill_ip_mib, 30381 ipIfStatsOutDiscards); 30382 xmit_drop = B_TRUE; 30383 freemsg(first_mp); 30384 } 30385 } else { 30386 /* 30387 * Safety Pup says: make sure this 30388 * is going to the right interface! 30389 */ 30390 ill_t *ill1 = 30391 (ill_t *)ire->ire_stq->q_ptr; 30392 int ifindex = 30393 ill1->ill_phyint->phyint_ifindex; 30394 if (ifindex != 30395 io->ipsec_out_capab_ill_index) { 30396 xmit_drop = B_TRUE; 30397 freemsg(mp); 30398 } else { 30399 UPDATE_IP_MIB_OB_COUNTERS(ill1, 30400 pkt_len); 30401 30402 DTRACE_IP7(send, mblk_t *, first_mp, 30403 conn_t *, NULL, void_ip_t *, ipha, 30404 __dtrace_ipsr_ill_t *, ill1, 30405 ipha_t *, ipha, ip6_t *, NULL, 30406 int, 0); 30407 30408 ipsec_hw_putnext(ire->ire_stq, mp); 30409 } 30410 } 30411 next_mp: 30412 mp = nxt_mp; 30413 } /* while (mp != NULL) */ 30414 if (xmit_drop) 30415 return (SEND_FAILED); 30416 else 30417 return (SEND_PASSED); 30418 30419 case ND_INITIAL: 30420 case ND_INCOMPLETE: 30421 30422 /* 30423 * While we do send off packets to dests that 30424 * use fully-resolved CGTP routes, we do not 30425 * handle unresolved CGTP routes. 30426 */ 30427 ASSERT(!(ire->ire_flags & RTF_MULTIRT)); 30428 ASSERT(io == NULL || !io->ipsec_out_accelerated); 30429 30430 if (mp != NULL) { 30431 /* queue the packet */ 30432 nce_queue_mp_common(arpce, mp, B_FALSE); 30433 } 30434 30435 if (arpce->nce_state == ND_INCOMPLETE) { 30436 mutex_exit(&arpce->nce_lock); 30437 DTRACE_PROBE3(ip__xmit__incomplete, 30438 (ire_t *), ire, (mblk_t *), mp, 30439 (ipsec_out_t *), io); 30440 return (LOOKUP_IN_PROGRESS); 30441 } 30442 30443 arpce->nce_state = ND_INCOMPLETE; 30444 mutex_exit(&arpce->nce_lock); 30445 /* 30446 * Note that ire_add() (called from ire_forward()) 30447 * holds a ref on the ire until ARP is completed. 30448 */ 30449 30450 ire_arpresolve(ire, ire_to_ill(ire)); 30451 return (LOOKUP_IN_PROGRESS); 30452 default: 30453 ASSERT(0); 30454 mutex_exit(&arpce->nce_lock); 30455 return (LLHDR_RESLV_FAILED); 30456 } 30457 } 30458 30459 #undef UPDATE_IP_MIB_OB_COUNTERS 30460 30461 /* 30462 * Return B_TRUE if the buffers differ in length or content. 30463 * This is used for comparing extension header buffers. 30464 * Note that an extension header would be declared different 30465 * even if all that changed was the next header value in that header i.e. 30466 * what really changed is the next extension header. 30467 */ 30468 boolean_t 30469 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 30470 uint_t blen) 30471 { 30472 if (!b_valid) 30473 blen = 0; 30474 30475 if (alen != blen) 30476 return (B_TRUE); 30477 if (alen == 0) 30478 return (B_FALSE); /* Both zero length */ 30479 return (bcmp(abuf, bbuf, alen)); 30480 } 30481 30482 /* 30483 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 30484 * Return B_FALSE if memory allocation fails - don't change any state! 30485 */ 30486 boolean_t 30487 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 30488 const void *src, uint_t srclen) 30489 { 30490 void *dst; 30491 30492 if (!src_valid) 30493 srclen = 0; 30494 30495 ASSERT(*dstlenp == 0); 30496 if (src != NULL && srclen != 0) { 30497 dst = mi_alloc(srclen, BPRI_MED); 30498 if (dst == NULL) 30499 return (B_FALSE); 30500 } else { 30501 dst = NULL; 30502 } 30503 if (*dstp != NULL) 30504 mi_free(*dstp); 30505 *dstp = dst; 30506 *dstlenp = dst == NULL ? 0 : srclen; 30507 return (B_TRUE); 30508 } 30509 30510 /* 30511 * Replace what is in *dst, *dstlen with the source. 30512 * Assumes ip_allocbuf has already been called. 30513 */ 30514 void 30515 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 30516 const void *src, uint_t srclen) 30517 { 30518 if (!src_valid) 30519 srclen = 0; 30520 30521 ASSERT(*dstlenp == srclen); 30522 if (src != NULL && srclen != 0) 30523 bcopy(src, *dstp, srclen); 30524 } 30525 30526 /* 30527 * Free the storage pointed to by the members of an ip6_pkt_t. 30528 */ 30529 void 30530 ip6_pkt_free(ip6_pkt_t *ipp) 30531 { 30532 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 30533 30534 if (ipp->ipp_fields & IPPF_HOPOPTS) { 30535 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 30536 ipp->ipp_hopopts = NULL; 30537 ipp->ipp_hopoptslen = 0; 30538 } 30539 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 30540 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 30541 ipp->ipp_rtdstopts = NULL; 30542 ipp->ipp_rtdstoptslen = 0; 30543 } 30544 if (ipp->ipp_fields & IPPF_DSTOPTS) { 30545 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 30546 ipp->ipp_dstopts = NULL; 30547 ipp->ipp_dstoptslen = 0; 30548 } 30549 if (ipp->ipp_fields & IPPF_RTHDR) { 30550 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 30551 ipp->ipp_rthdr = NULL; 30552 ipp->ipp_rthdrlen = 0; 30553 } 30554 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 30555 IPPF_RTHDR); 30556 } 30557 30558 zoneid_t 30559 ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_stack_t *ipst, 30560 zoneid_t lookup_zoneid) 30561 { 30562 ire_t *ire; 30563 int ire_flags = MATCH_IRE_TYPE; 30564 zoneid_t zoneid = ALL_ZONES; 30565 30566 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) 30567 return (ALL_ZONES); 30568 30569 if (lookup_zoneid != ALL_ZONES) 30570 ire_flags |= MATCH_IRE_ZONEONLY; 30571 ire = ire_ctable_lookup(addr, NULL, IRE_LOCAL | IRE_LOOPBACK, NULL, 30572 lookup_zoneid, NULL, ire_flags, ipst); 30573 if (ire != NULL) { 30574 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 30575 ire_refrele(ire); 30576 } 30577 return (zoneid); 30578 } 30579 30580 zoneid_t 30581 ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill, 30582 ip_stack_t *ipst, zoneid_t lookup_zoneid) 30583 { 30584 ire_t *ire; 30585 int ire_flags = MATCH_IRE_TYPE; 30586 zoneid_t zoneid = ALL_ZONES; 30587 ipif_t *ipif_arg = NULL; 30588 30589 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) 30590 return (ALL_ZONES); 30591 30592 if (IN6_IS_ADDR_LINKLOCAL(addr)) { 30593 ire_flags |= MATCH_IRE_ILL_GROUP; 30594 ipif_arg = ill->ill_ipif; 30595 } 30596 if (lookup_zoneid != ALL_ZONES) 30597 ire_flags |= MATCH_IRE_ZONEONLY; 30598 ire = ire_ctable_lookup_v6(addr, NULL, IRE_LOCAL | IRE_LOOPBACK, 30599 ipif_arg, lookup_zoneid, NULL, ire_flags, ipst); 30600 if (ire != NULL) { 30601 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 30602 ire_refrele(ire); 30603 } 30604 return (zoneid); 30605 } 30606 30607 /* 30608 * IP obserability hook support functions. 30609 */ 30610 30611 static void 30612 ipobs_init(ip_stack_t *ipst) 30613 { 30614 ipst->ips_ipobs_enabled = B_FALSE; 30615 list_create(&ipst->ips_ipobs_cb_list, sizeof (ipobs_cb_t), 30616 offsetof(ipobs_cb_t, ipobs_cbnext)); 30617 mutex_init(&ipst->ips_ipobs_cb_lock, NULL, MUTEX_DEFAULT, NULL); 30618 ipst->ips_ipobs_cb_nwalkers = 0; 30619 cv_init(&ipst->ips_ipobs_cb_cv, NULL, CV_DRIVER, NULL); 30620 } 30621 30622 static void 30623 ipobs_fini(ip_stack_t *ipst) 30624 { 30625 ipobs_cb_t *cb; 30626 30627 mutex_enter(&ipst->ips_ipobs_cb_lock); 30628 while (ipst->ips_ipobs_cb_nwalkers != 0) 30629 cv_wait(&ipst->ips_ipobs_cb_cv, &ipst->ips_ipobs_cb_lock); 30630 30631 while ((cb = list_head(&ipst->ips_ipobs_cb_list)) != NULL) { 30632 list_remove(&ipst->ips_ipobs_cb_list, cb); 30633 kmem_free(cb, sizeof (*cb)); 30634 } 30635 list_destroy(&ipst->ips_ipobs_cb_list); 30636 mutex_exit(&ipst->ips_ipobs_cb_lock); 30637 mutex_destroy(&ipst->ips_ipobs_cb_lock); 30638 cv_destroy(&ipst->ips_ipobs_cb_cv); 30639 } 30640 30641 void 30642 ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst, 30643 const ill_t *ill, int ipver, uint32_t hlen, ip_stack_t *ipst) 30644 { 30645 ipobs_cb_t *ipobs_cb; 30646 30647 ASSERT(DB_TYPE(mp) == M_DATA); 30648 30649 mutex_enter(&ipst->ips_ipobs_cb_lock); 30650 ipst->ips_ipobs_cb_nwalkers++; 30651 mutex_exit(&ipst->ips_ipobs_cb_lock); 30652 for (ipobs_cb = list_head(&ipst->ips_ipobs_cb_list); ipobs_cb != NULL; 30653 ipobs_cb = list_next(&ipst->ips_ipobs_cb_list, ipobs_cb)) { 30654 mblk_t *mp2 = allocb(sizeof (ipobs_hook_data_t), 30655 BPRI_HI); 30656 if (mp2 != NULL) { 30657 ipobs_hook_data_t *ihd = 30658 (ipobs_hook_data_t *)mp2->b_rptr; 30659 if (((ihd->ihd_mp = dupmsg(mp)) == NULL) && 30660 ((ihd->ihd_mp = copymsg(mp)) == NULL)) { 30661 freemsg(mp2); 30662 continue; 30663 } 30664 ihd->ihd_mp->b_rptr += hlen; 30665 ihd->ihd_htype = htype; 30666 ihd->ihd_ipver = ipver; 30667 ihd->ihd_zsrc = zsrc; 30668 ihd->ihd_zdst = zdst; 30669 ihd->ihd_ifindex = ill->ill_phyint->phyint_ifindex; 30670 ihd->ihd_stack = ipst->ips_netstack; 30671 mp2->b_wptr += sizeof (*ihd); 30672 ipobs_cb->ipobs_cbfunc(mp2); 30673 } 30674 } 30675 mutex_enter(&ipst->ips_ipobs_cb_lock); 30676 ipst->ips_ipobs_cb_nwalkers--; 30677 if (ipst->ips_ipobs_cb_nwalkers == 0) 30678 cv_broadcast(&ipst->ips_ipobs_cb_cv); 30679 mutex_exit(&ipst->ips_ipobs_cb_lock); 30680 } 30681 30682 void 30683 ipobs_register_hook(netstack_t *ns, pfv_t func) 30684 { 30685 ipobs_cb_t *cb; 30686 ip_stack_t *ipst = ns->netstack_ip; 30687 30688 cb = kmem_alloc(sizeof (*cb), KM_SLEEP); 30689 30690 mutex_enter(&ipst->ips_ipobs_cb_lock); 30691 while (ipst->ips_ipobs_cb_nwalkers != 0) 30692 cv_wait(&ipst->ips_ipobs_cb_cv, &ipst->ips_ipobs_cb_lock); 30693 ASSERT(ipst->ips_ipobs_cb_nwalkers == 0); 30694 30695 cb->ipobs_cbfunc = func; 30696 list_insert_head(&ipst->ips_ipobs_cb_list, cb); 30697 ipst->ips_ipobs_enabled = B_TRUE; 30698 mutex_exit(&ipst->ips_ipobs_cb_lock); 30699 } 30700 30701 void 30702 ipobs_unregister_hook(netstack_t *ns, pfv_t func) 30703 { 30704 ipobs_cb_t *curcb; 30705 ip_stack_t *ipst = ns->netstack_ip; 30706 30707 mutex_enter(&ipst->ips_ipobs_cb_lock); 30708 while (ipst->ips_ipobs_cb_nwalkers != 0) 30709 cv_wait(&ipst->ips_ipobs_cb_cv, &ipst->ips_ipobs_cb_lock); 30710 30711 for (curcb = list_head(&ipst->ips_ipobs_cb_list); curcb != NULL; 30712 curcb = list_next(&ipst->ips_ipobs_cb_list, curcb)) { 30713 if (func == curcb->ipobs_cbfunc) { 30714 list_remove(&ipst->ips_ipobs_cb_list, curcb); 30715 kmem_free(curcb, sizeof (*curcb)); 30716 break; 30717 } 30718 } 30719 if (list_is_empty(&ipst->ips_ipobs_cb_list)) 30720 ipst->ips_ipobs_enabled = B_FALSE; 30721 mutex_exit(&ipst->ips_ipobs_cb_lock); 30722 } 30723