1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 #include <sys/types.h> 31 #include <sys/stream.h> 32 #include <sys/dlpi.h> 33 #include <sys/stropts.h> 34 #include <sys/sysmacros.h> 35 #include <sys/strsubr.h> 36 #include <sys/strlog.h> 37 #include <sys/strsun.h> 38 #include <sys/zone.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/xti_inet.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/cmn_err.h> 45 #include <sys/debug.h> 46 #include <sys/kobj.h> 47 #include <sys/modctl.h> 48 #include <sys/atomic.h> 49 #include <sys/policy.h> 50 #include <sys/priv.h> 51 52 #include <sys/systm.h> 53 #include <sys/param.h> 54 #include <sys/kmem.h> 55 #include <sys/sdt.h> 56 #include <sys/socket.h> 57 #include <sys/vtrace.h> 58 #include <sys/isa_defs.h> 59 #include <sys/mac.h> 60 #include <net/if.h> 61 #include <net/if_arp.h> 62 #include <net/route.h> 63 #include <sys/sockio.h> 64 #include <netinet/in.h> 65 #include <net/if_dl.h> 66 67 #include <inet/common.h> 68 #include <inet/mi.h> 69 #include <inet/mib2.h> 70 #include <inet/nd.h> 71 #include <inet/arp.h> 72 #include <inet/snmpcom.h> 73 #include <inet/optcom.h> 74 #include <inet/kstatcom.h> 75 76 #include <netinet/igmp_var.h> 77 #include <netinet/ip6.h> 78 #include <netinet/icmp6.h> 79 #include <netinet/sctp.h> 80 81 #include <inet/ip.h> 82 #include <inet/ip_impl.h> 83 #include <inet/ip6.h> 84 #include <inet/ip6_asp.h> 85 #include <inet/tcp.h> 86 #include <inet/tcp_impl.h> 87 #include <inet/ip_multi.h> 88 #include <inet/ip_if.h> 89 #include <inet/ip_ire.h> 90 #include <inet/ip_ftable.h> 91 #include <inet/ip_rts.h> 92 #include <inet/ip_ndp.h> 93 #include <inet/ip_listutils.h> 94 #include <netinet/igmp.h> 95 #include <netinet/ip_mroute.h> 96 #include <inet/ipp_common.h> 97 98 #include <net/pfkeyv2.h> 99 #include <inet/ipsec_info.h> 100 #include <inet/sadb.h> 101 #include <inet/ipsec_impl.h> 102 #include <sys/iphada.h> 103 #include <inet/tun.h> 104 #include <inet/ipdrop.h> 105 #include <inet/ip_netinfo.h> 106 107 #include <sys/ethernet.h> 108 #include <net/if_types.h> 109 #include <sys/cpuvar.h> 110 111 #include <ipp/ipp.h> 112 #include <ipp/ipp_impl.h> 113 #include <ipp/ipgpc/ipgpc.h> 114 115 #include <sys/multidata.h> 116 #include <sys/pattr.h> 117 118 #include <inet/ipclassifier.h> 119 #include <inet/sctp_ip.h> 120 #include <inet/sctp/sctp_impl.h> 121 #include <inet/udp_impl.h> 122 #include <inet/rawip_impl.h> 123 #include <inet/rts_impl.h> 124 #include <sys/sunddi.h> 125 126 #include <sys/tsol/label.h> 127 #include <sys/tsol/tnet.h> 128 129 #include <rpc/pmap_prot.h> 130 131 /* 132 * Values for squeue switch: 133 * IP_SQUEUE_ENTER_NODRAIN: squeue_enter_nodrain 134 * IP_SQUEUE_ENTER: squeue_enter 135 * IP_SQUEUE_FILL: squeue_fill 136 */ 137 int ip_squeue_enter = 2; /* Setable in /etc/system */ 138 139 squeue_func_t ip_input_proc; 140 #define SET_BPREV_FLAG(x) ((mblk_t *)(uintptr_t)(x)) 141 142 /* 143 * Setable in /etc/system 144 */ 145 int ip_poll_normal_ms = 100; 146 int ip_poll_normal_ticks = 0; 147 int ip_modclose_ackwait_ms = 3000; 148 149 /* 150 * It would be nice to have these present only in DEBUG systems, but the 151 * current design of the global symbol checking logic requires them to be 152 * unconditionally present. 153 */ 154 uint_t ip_thread_data; /* TSD key for debug support */ 155 krwlock_t ip_thread_rwlock; 156 list_t ip_thread_list; 157 158 /* 159 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 160 */ 161 162 struct listptr_s { 163 mblk_t *lp_head; /* pointer to the head of the list */ 164 mblk_t *lp_tail; /* pointer to the tail of the list */ 165 }; 166 167 typedef struct listptr_s listptr_t; 168 169 /* 170 * This is used by ip_snmp_get_mib2_ip_route_media and 171 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 172 */ 173 typedef struct iproutedata_s { 174 uint_t ird_idx; 175 listptr_t ird_route; /* ipRouteEntryTable */ 176 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 177 listptr_t ird_attrs; /* ipRouteAttributeTable */ 178 } iproutedata_t; 179 180 /* 181 * Cluster specific hooks. These should be NULL when booted as a non-cluster 182 */ 183 184 /* 185 * Hook functions to enable cluster networking 186 * On non-clustered systems these vectors must always be NULL. 187 * 188 * Hook function to Check ip specified ip address is a shared ip address 189 * in the cluster 190 * 191 */ 192 int (*cl_inet_isclusterwide)(uint8_t protocol, 193 sa_family_t addr_family, uint8_t *laddrp) = NULL; 194 195 /* 196 * Hook function to generate cluster wide ip fragment identifier 197 */ 198 uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 199 uint8_t *laddrp, uint8_t *faddrp) = NULL; 200 201 /* 202 * Synchronization notes: 203 * 204 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 205 * MT level protection given by STREAMS. IP uses a combination of its own 206 * internal serialization mechanism and standard Solaris locking techniques. 207 * The internal serialization is per phyint (no IPMP) or per IPMP group. 208 * This is used to serialize plumbing operations, IPMP operations, certain 209 * multicast operations, most set ioctls, igmp/mld timers etc. 210 * 211 * Plumbing is a long sequence of operations involving message 212 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 213 * involved in plumbing operations. A natural model is to serialize these 214 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 215 * parallel without any interference. But various set ioctls on hme0 are best 216 * serialized. However if the system uses IPMP, the operations are easier if 217 * they are serialized on a per IPMP group basis since IPMP operations 218 * happen across ill's of a group. Thus the lowest common denominator is to 219 * serialize most set ioctls, multicast join/leave operations, IPMP operations 220 * igmp/mld timer operations, and processing of DLPI control messages received 221 * from drivers on a per IPMP group basis. If the system does not employ 222 * IPMP the serialization is on a per phyint basis. This serialization is 223 * provided by the ipsq_t and primitives operating on this. Details can 224 * be found in ip_if.c above the core primitives operating on ipsq_t. 225 * 226 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 227 * Simiarly lookup of an ire by a thread also returns a refheld ire. 228 * In addition ipif's and ill's referenced by the ire are also indirectly 229 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 230 * the ipif's address or netmask change as long as an ipif is refheld 231 * directly or indirectly. For example an SIOCLIFADDR ioctl that changes the 232 * address of an ipif has to go through the ipsq_t. This ensures that only 233 * 1 such exclusive operation proceeds at any time on the ipif. It then 234 * deletes all ires associated with this ipif, and waits for all refcnts 235 * associated with this ipif to come down to zero. The address is changed 236 * only after the ipif has been quiesced. Then the ipif is brought up again. 237 * More details are described above the comment in ip_sioctl_flags. 238 * 239 * Packet processing is based mostly on IREs and are fully multi-threaded 240 * using standard Solaris MT techniques. 241 * 242 * There are explicit locks in IP to handle: 243 * - The ip_g_head list maintained by mi_open_link() and friends. 244 * 245 * - The reassembly data structures (one lock per hash bucket) 246 * 247 * - conn_lock is meant to protect conn_t fields. The fields actually 248 * protected by conn_lock are documented in the conn_t definition. 249 * 250 * - ire_lock to protect some of the fields of the ire, IRE tables 251 * (one lock per hash bucket). Refer to ip_ire.c for details. 252 * 253 * - ndp_g_lock and nce_lock for protecting NCEs. 254 * 255 * - ill_lock protects fields of the ill and ipif. Details in ip.h 256 * 257 * - ill_g_lock: This is a global reader/writer lock. Protects the following 258 * * The AVL tree based global multi list of all ills. 259 * * The linked list of all ipifs of an ill 260 * * The <ill-ipsq> mapping 261 * * The ipsq->ipsq_phyint_list threaded by phyint_ipsq_next 262 * * The illgroup list threaded by ill_group_next. 263 * * <ill-phyint> association 264 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 265 * into an ill, changing the <ill-ipsq> mapping of an ill, insertion/deletion 266 * of an ill into the illgrp list, changing the <ill-phyint> assoc of an ill 267 * will all have to hold the ill_g_lock as writer for the actual duration 268 * of the insertion/deletion/change. More details about the <ill-ipsq> mapping 269 * may be found in the IPMP section. 270 * 271 * - ill_lock: This is a per ill mutex. 272 * It protects some members of the ill and is documented below. 273 * It also protects the <ill-ipsq> mapping 274 * It also protects the illgroup list threaded by ill_group_next. 275 * It also protects the <ill-phyint> assoc. 276 * It also protects the list of ipifs hanging off the ill. 277 * 278 * - ipsq_lock: This is a per ipsq_t mutex lock. 279 * This protects all the other members of the ipsq struct except 280 * ipsq_refs and ipsq_phyint_list which are protected by ill_g_lock 281 * 282 * - illgrp_lock: This is a per ill_group mutex lock. 283 * The only thing it protects is the illgrp_ill_schednext member of ill_group 284 * which dictates which is the next ill in an ill_group that is to be chosen 285 * for sending outgoing packets, through creation of an IRE_CACHE that 286 * references this ill. 287 * 288 * - phyint_lock: This is a per phyint mutex lock. Protects just the 289 * phyint_flags 290 * 291 * - ip_g_nd_lock: This is a global reader/writer lock. 292 * Any call to nd_load to load a new parameter to the ND table must hold the 293 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 294 * as reader. 295 * 296 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 297 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 298 * uniqueness check also done atomically. 299 * 300 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 301 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 302 * as a writer when adding or deleting elements from these lists, and 303 * as a reader when walking these lists to send a SADB update to the 304 * IPsec capable ills. 305 * 306 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 307 * group list linked by ill_usesrc_grp_next. It also protects the 308 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 309 * group is being added or deleted. This lock is taken as a reader when 310 * walking the list/group(eg: to get the number of members in a usesrc group). 311 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 312 * field is changing state i.e from NULL to non-NULL or vice-versa. For 313 * example, it is not necessary to take this lock in the initial portion 314 * of ip_sioctl_slifusesrc or at all in ip_sioctl_groupname and 315 * ip_sioctl_flags since the these operations are executed exclusively and 316 * that ensures that the "usesrc group state" cannot change. The "usesrc 317 * group state" change can happen only in the latter part of 318 * ip_sioctl_slifusesrc and in ill_delete. 319 * 320 * Changing <ill-phyint>, <ill-ipsq>, <ill-illgroup> assocications. 321 * 322 * To change the <ill-phyint> association, the ill_g_lock must be held 323 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 324 * must be held. 325 * 326 * To change the <ill-ipsq> association the ill_g_lock must be held as writer 327 * and the ill_lock of the ill in question must be held. 328 * 329 * To change the <ill-illgroup> association the ill_g_lock must be held as 330 * writer and the ill_lock of the ill in question must be held. 331 * 332 * To add or delete an ipif from the list of ipifs hanging off the ill, 333 * ill_g_lock (writer) and ill_lock must be held and the thread must be 334 * a writer on the associated ipsq,. 335 * 336 * To add or delete an ill to the system, the ill_g_lock must be held as 337 * writer and the thread must be a writer on the associated ipsq. 338 * 339 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 340 * must be a writer on the associated ipsq. 341 * 342 * Lock hierarchy 343 * 344 * Some lock hierarchy scenarios are listed below. 345 * 346 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 347 * ill_g_lock -> illgrp_lock -> ill_lock 348 * ill_g_lock -> ill_lock(s) -> phyint_lock 349 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 350 * ill_g_lock -> ip_addr_avail_lock 351 * conn_lock -> irb_lock -> ill_lock -> ire_lock 352 * ill_g_lock -> ip_g_nd_lock 353 * 354 * When more than 1 ill lock is needed to be held, all ill lock addresses 355 * are sorted on address and locked starting from highest addressed lock 356 * downward. 357 * 358 * IPsec scenarios 359 * 360 * ipsa_lock -> ill_g_lock -> ill_lock 361 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 362 * ipsec_capab_ills_lock -> ipsa_lock 363 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 364 * 365 * Trusted Solaris scenarios 366 * 367 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 368 * igsa_lock -> gcdb_lock 369 * gcgrp_rwlock -> ire_lock 370 * gcgrp_rwlock -> gcdb_lock 371 * 372 * 373 * Routing/forwarding table locking notes: 374 * 375 * Lock acquisition order: Radix tree lock, irb_lock. 376 * Requirements: 377 * i. Walker must not hold any locks during the walker callback. 378 * ii Walker must not see a truncated tree during the walk because of any node 379 * deletion. 380 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 381 * in many places in the code to walk the irb list. Thus even if all the 382 * ires in a bucket have been deleted, we still can't free the radix node 383 * until the ires have actually been inactive'd (freed). 384 * 385 * Tree traversal - Need to hold the global tree lock in read mode. 386 * Before dropping the global tree lock, need to either increment the ire_refcnt 387 * to ensure that the radix node can't be deleted. 388 * 389 * Tree add - Need to hold the global tree lock in write mode to add a 390 * radix node. To prevent the node from being deleted, increment the 391 * irb_refcnt, after the node is added to the tree. The ire itself is 392 * added later while holding the irb_lock, but not the tree lock. 393 * 394 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 395 * All associated ires must be inactive (i.e. freed), and irb_refcnt 396 * must be zero. 397 * 398 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 399 * global tree lock (read mode) for traversal. 400 * 401 * IPsec notes : 402 * 403 * IP interacts with the IPsec code (AH/ESP) by tagging a M_CTL message 404 * in front of the actual packet. For outbound datagrams, the M_CTL 405 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 406 * information used by the IPsec code for applying the right level of 407 * protection. The information initialized by IP in the ipsec_out_t 408 * is determined by the per-socket policy or global policy in the system. 409 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 410 * ipsec_info.h) which starts out with nothing in it. It gets filled 411 * with the right information if it goes through the AH/ESP code, which 412 * happens if the incoming packet is secure. The information initialized 413 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 414 * the policy requirements needed by per-socket policy or global policy 415 * is met or not. 416 * 417 * If there is both per-socket policy (set using setsockopt) and there 418 * is also global policy match for the 5 tuples of the socket, 419 * ipsec_override_policy() makes the decision of which one to use. 420 * 421 * For fully connected sockets i.e dst, src [addr, port] is known, 422 * conn_policy_cached is set indicating that policy has been cached. 423 * conn_in_enforce_policy may or may not be set depending on whether 424 * there is a global policy match or per-socket policy match. 425 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 426 * Once the right policy is set on the conn_t, policy cannot change for 427 * this socket. This makes life simpler for TCP (UDP ?) where 428 * re-transmissions go out with the same policy. For symmetry, policy 429 * is cached for fully connected UDP sockets also. Thus if policy is cached, 430 * it also implies that policy is latched i.e policy cannot change 431 * on these sockets. As we have the right policy on the conn, we don't 432 * have to lookup global policy for every outbound and inbound datagram 433 * and thus serving as an optimization. Note that a global policy change 434 * does not affect fully connected sockets if they have policy. If fully 435 * connected sockets did not have any policy associated with it, global 436 * policy change may affect them. 437 * 438 * IP Flow control notes: 439 * 440 * Non-TCP streams are flow controlled by IP. On the send side, if the packet 441 * cannot be sent down to the driver by IP, because of a canput failure, IP 442 * does a putq on the conn_wq. This will cause ip_wsrv to run on the conn_wq. 443 * ip_wsrv in turn, inserts the conn in a list of conn's that need to be drained 444 * when the flowcontrol condition subsides. Ultimately STREAMS backenables the 445 * ip_wsrv on the IP module, which in turn does a qenable of the conn_wq of the 446 * first conn in the list of conn's to be drained. ip_wsrv on this conn drains 447 * the queued messages, and removes the conn from the drain list, if all 448 * messages were drained. It also qenables the next conn in the drain list to 449 * continue the drain process. 450 * 451 * In reality the drain list is not a single list, but a configurable number 452 * of lists. The ip_wsrv on the IP module, qenables the first conn in each 453 * list. If the ip_wsrv of the next qenabled conn does not run, because the 454 * stream closes, ip_close takes responsibility to qenable the next conn in 455 * the drain list. The directly called ip_wput path always does a putq, if 456 * it cannot putnext. Thus synchronization problems are handled between 457 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 458 * functions that manipulate this drain list. Furthermore conn_drain_insert 459 * is called only from ip_wsrv, and there can be only 1 instance of ip_wsrv 460 * running on a queue at any time. conn_drain_tail can be simultaneously called 461 * from both ip_wsrv and ip_close. 462 * 463 * IPQOS notes: 464 * 465 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 466 * and IPQoS modules. IPPF includes hooks in IP at different control points 467 * (callout positions) which direct packets to IPQoS modules for policy 468 * processing. Policies, if present, are global. 469 * 470 * The callout positions are located in the following paths: 471 * o local_in (packets destined for this host) 472 * o local_out (packets orginating from this host ) 473 * o fwd_in (packets forwarded by this m/c - inbound) 474 * o fwd_out (packets forwarded by this m/c - outbound) 475 * Hooks at these callout points can be enabled/disabled using the ndd variable 476 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 477 * By default all the callout positions are enabled. 478 * 479 * Outbound (local_out) 480 * Hooks are placed in ip_wput_ire and ipsec_out_process. 481 * 482 * Inbound (local_in) 483 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 484 * TCP and UDP fanout routines. 485 * 486 * Forwarding (in and out) 487 * Hooks are placed in ip_rput_forward. 488 * 489 * IP Policy Framework processing (IPPF processing) 490 * Policy processing for a packet is initiated by ip_process, which ascertains 491 * that the classifier (ipgpc) is loaded and configured, failing which the 492 * packet resumes normal processing in IP. If the clasifier is present, the 493 * packet is acted upon by one or more IPQoS modules (action instances), per 494 * filters configured in ipgpc and resumes normal IP processing thereafter. 495 * An action instance can drop a packet in course of its processing. 496 * 497 * A boolean variable, ip_policy, is used in all the fanout routines that can 498 * invoke ip_process for a packet. This variable indicates if the packet should 499 * to be sent for policy processing. The variable is set to B_TRUE by default, 500 * i.e. when the routines are invoked in the normal ip procesing path for a 501 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 502 * ip_policy is set to B_FALSE for all the routines called in these two 503 * functions because, in the former case, we don't process loopback traffic 504 * currently while in the latter, the packets have already been processed in 505 * icmp_inbound. 506 * 507 * Zones notes: 508 * 509 * The partitioning rules for networking are as follows: 510 * 1) Packets coming from a zone must have a source address belonging to that 511 * zone. 512 * 2) Packets coming from a zone can only be sent on a physical interface on 513 * which the zone has an IP address. 514 * 3) Between two zones on the same machine, packet delivery is only allowed if 515 * there's a matching route for the destination and zone in the forwarding 516 * table. 517 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 518 * different zones can bind to the same port with the wildcard address 519 * (INADDR_ANY). 520 * 521 * The granularity of interface partitioning is at the logical interface level. 522 * Therefore, every zone has its own IP addresses, and incoming packets can be 523 * attributed to a zone unambiguously. A logical interface is placed into a zone 524 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 525 * structure. Rule (1) is implemented by modifying the source address selection 526 * algorithm so that the list of eligible addresses is filtered based on the 527 * sending process zone. 528 * 529 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 530 * across all zones, depending on their type. Here is the break-up: 531 * 532 * IRE type Shared/exclusive 533 * -------- ---------------- 534 * IRE_BROADCAST Exclusive 535 * IRE_DEFAULT (default routes) Shared (*) 536 * IRE_LOCAL Exclusive (x) 537 * IRE_LOOPBACK Exclusive 538 * IRE_PREFIX (net routes) Shared (*) 539 * IRE_CACHE Exclusive 540 * IRE_IF_NORESOLVER (interface routes) Exclusive 541 * IRE_IF_RESOLVER (interface routes) Exclusive 542 * IRE_HOST (host routes) Shared (*) 543 * 544 * (*) A zone can only use a default or off-subnet route if the gateway is 545 * directly reachable from the zone, that is, if the gateway's address matches 546 * one of the zone's logical interfaces. 547 * 548 * (x) IRE_LOCAL are handled a bit differently, since for all other entries 549 * in ire_ctable and IRE_INTERFACE, ire_src_addr is what can be used as source 550 * when sending packets using the IRE. For IRE_LOCAL ire_src_addr is the IP 551 * address of the zone itself (the destination). Since IRE_LOCAL is used 552 * for communication between zones, ip_wput_ire has special logic to set 553 * the right source address when sending using an IRE_LOCAL. 554 * 555 * Furthermore, when ip_restrict_interzone_loopback is set (the default), 556 * ire_cache_lookup restricts loopback using an IRE_LOCAL 557 * between zone to the case when L2 would have conceptually looped the packet 558 * back, i.e. the loopback which is required since neither Ethernet drivers 559 * nor Ethernet hardware loops them back. This is the case when the normal 560 * routes (ignoring IREs with different zoneids) would send out the packet on 561 * the same ill (or ill group) as the ill with which is IRE_LOCAL is 562 * associated. 563 * 564 * Multiple zones can share a common broadcast address; typically all zones 565 * share the 255.255.255.255 address. Incoming as well as locally originated 566 * broadcast packets must be dispatched to all the zones on the broadcast 567 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 568 * since some zones may not be on the 10.16.72/24 network. To handle this, each 569 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 570 * sent to every zone that has an IRE_BROADCAST entry for the destination 571 * address on the input ill, see conn_wantpacket(). 572 * 573 * Applications in different zones can join the same multicast group address. 574 * For IPv4, group memberships are per-logical interface, so they're already 575 * inherently part of a zone. For IPv6, group memberships are per-physical 576 * interface, so we distinguish IPv6 group memberships based on group address, 577 * interface and zoneid. In both cases, received multicast packets are sent to 578 * every zone for which a group membership entry exists. On IPv6 we need to 579 * check that the target zone still has an address on the receiving physical 580 * interface; it could have been removed since the application issued the 581 * IPV6_JOIN_GROUP. 582 */ 583 584 /* 585 * Squeue Fanout flags: 586 * 0: No fanout. 587 * 1: Fanout across all squeues 588 */ 589 boolean_t ip_squeue_fanout = 0; 590 591 /* 592 * Maximum dups allowed per packet. 593 */ 594 uint_t ip_max_frag_dups = 10; 595 596 #define IS_SIMPLE_IPH(ipha) \ 597 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 598 599 /* RFC1122 Conformance */ 600 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 601 602 #define ILL_MAX_NAMELEN LIFNAMSIZ 603 604 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 605 606 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag, 607 cred_t *credp, boolean_t isv6); 608 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t); 609 610 static void icmp_frag_needed(queue_t *, mblk_t *, int, zoneid_t, 611 ip_stack_t *); 612 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 613 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 614 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 615 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 616 mblk_t *, int, ip_stack_t *); 617 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 618 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 619 ill_t *, zoneid_t); 620 static void icmp_options_update(ipha_t *); 621 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t, zoneid_t, 622 ip_stack_t *); 623 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t, 624 zoneid_t zoneid, ip_stack_t *); 625 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_stack_t *); 626 static void icmp_redirect(ill_t *, mblk_t *); 627 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t, 628 ip_stack_t *); 629 630 static void ip_arp_news(queue_t *, mblk_t *); 631 static boolean_t ip_bind_insert_ire(mblk_t *, ire_t *, iulp_t *, 632 ip_stack_t *); 633 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 634 char *ip_dot_addr(ipaddr_t, char *); 635 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 636 int ip_close(queue_t *, int); 637 static char *ip_dot_saddr(uchar_t *, char *); 638 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 639 boolean_t, boolean_t, ill_t *, zoneid_t); 640 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 641 boolean_t, boolean_t, zoneid_t); 642 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 643 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 644 static void ip_lrput(queue_t *, mblk_t *); 645 ipaddr_t ip_net_mask(ipaddr_t); 646 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, conn_t *, zoneid_t, 647 ip_stack_t *); 648 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 649 conn_t *, uint32_t, zoneid_t, ip_opt_info_t *); 650 char *ip_nv_lookup(nv_t *, int); 651 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 652 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 653 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 654 static boolean_t ip_param_register(IDP *ndp, ipparam_t *, size_t, 655 ipndp_t *, size_t); 656 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 657 void ip_rput(queue_t *, mblk_t *); 658 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 659 void *dummy_arg); 660 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 661 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *, 662 ip_stack_t *); 663 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 664 ire_t *, ip_stack_t *); 665 static boolean_t ip_rput_multimblk_ipoptions(queue_t *, ill_t *, 666 mblk_t *, ipha_t **, ipaddr_t *, ip_stack_t *); 667 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *, 668 ip_stack_t *); 669 static boolean_t ip_rput_fragment(queue_t *, mblk_t **, ipha_t *, uint32_t *, 670 uint16_t *); 671 int ip_snmp_get(queue_t *, mblk_t *, int); 672 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 673 mib2_ipIfStatsEntry_t *, ip_stack_t *); 674 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 675 ip_stack_t *); 676 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *); 677 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 678 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 679 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 680 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 681 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 682 ip_stack_t *ipst); 683 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 684 ip_stack_t *ipst); 685 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 686 ip_stack_t *ipst); 687 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 688 ip_stack_t *ipst); 689 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 690 ip_stack_t *ipst); 691 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 692 ip_stack_t *ipst); 693 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 694 ip_stack_t *ipst); 695 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 696 ip_stack_t *ipst); 697 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, 698 ip_stack_t *ipst); 699 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, 700 ip_stack_t *ipst); 701 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 702 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 703 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 704 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 705 static boolean_t ip_source_routed(ipha_t *, ip_stack_t *); 706 static boolean_t ip_source_route_included(ipha_t *); 707 static void ip_trash_ire_reclaim_stack(ip_stack_t *); 708 709 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t, 710 zoneid_t, ip_stack_t *); 711 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int, ip_stack_t *); 712 static void ip_wput_local_options(ipha_t *, ip_stack_t *); 713 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 714 zoneid_t, ip_stack_t *); 715 716 static void conn_drain_init(ip_stack_t *); 717 static void conn_drain_fini(ip_stack_t *); 718 static void conn_drain_tail(conn_t *connp, boolean_t closing); 719 720 static void conn_walk_drain(ip_stack_t *); 721 static void conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *, 722 zoneid_t); 723 724 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 725 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 726 static void ip_stack_fini(netstackid_t stackid, void *arg); 727 728 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 729 zoneid_t); 730 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 731 void *dummy_arg); 732 733 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 734 735 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 736 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 737 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 738 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 739 740 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 741 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 742 caddr_t, cred_t *); 743 extern int ip_squeue_bind_set(queue_t *q, mblk_t *mp, char *value, 744 caddr_t cp, cred_t *cr); 745 extern int ip_squeue_profile_set(queue_t *, mblk_t *, char *, caddr_t, 746 cred_t *); 747 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 748 caddr_t cp, cred_t *cr); 749 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 750 cred_t *); 751 static int ipmp_hook_emulation_set(queue_t *, mblk_t *, char *, caddr_t, 752 cred_t *); 753 static squeue_func_t ip_squeue_switch(int); 754 755 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 756 static void ip_kstat_fini(netstackid_t, kstat_t *); 757 static int ip_kstat_update(kstat_t *kp, int rw); 758 static void *icmp_kstat_init(netstackid_t); 759 static void icmp_kstat_fini(netstackid_t, kstat_t *); 760 static int icmp_kstat_update(kstat_t *kp, int rw); 761 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 762 static void ip_kstat2_fini(netstackid_t, kstat_t *); 763 764 static int ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *); 765 766 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 767 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 768 769 static void ip_rput_process_forward(queue_t *, mblk_t *, ire_t *, 770 ipha_t *, ill_t *, boolean_t); 771 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 772 773 /* How long, in seconds, we allow frags to hang around. */ 774 #define IP_FRAG_TIMEOUT 60 775 776 /* 777 * Threshold which determines whether MDT should be used when 778 * generating IP fragments; payload size must be greater than 779 * this threshold for MDT to take place. 780 */ 781 #define IP_WPUT_FRAG_MDT_MIN 32768 782 783 /* Setable in /etc/system only */ 784 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 785 786 static long ip_rput_pullups; 787 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 788 789 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */ 790 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */ 791 792 int ip_debug; 793 794 #ifdef DEBUG 795 uint32_t ipsechw_debug = 0; 796 #endif 797 798 /* 799 * Multirouting/CGTP stuff 800 */ 801 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 802 803 /* 804 * XXX following really should only be in a header. Would need more 805 * header and .c clean up first. 806 */ 807 extern optdb_obj_t ip_opt_obj; 808 809 ulong_t ip_squeue_enter_unbound = 0; 810 811 /* 812 * Named Dispatch Parameter Table. 813 * All of these are alterable, within the min/max values given, at run time. 814 */ 815 static ipparam_t lcl_param_arr[] = { 816 /* min max value name */ 817 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 818 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 819 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 820 { 0, 1, 0, "ip_respond_to_timestamp"}, 821 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 822 { 0, 1, 1, "ip_send_redirects"}, 823 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 824 { 0, 10, 0, "ip_mrtdebug"}, 825 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 826 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 827 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 828 { 1, 255, 255, "ip_def_ttl" }, 829 { 0, 1, 0, "ip_forward_src_routed"}, 830 { 0, 256, 32, "ip_wroff_extra" }, 831 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 832 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 833 { 0, 1, 1, "ip_path_mtu_discovery" }, 834 { 0, 240, 30, "ip_ignore_delete_time" }, 835 { 0, 1, 0, "ip_ignore_redirect" }, 836 { 0, 1, 1, "ip_output_queue" }, 837 { 1, 254, 1, "ip_broadcast_ttl" }, 838 { 0, 99999, 100, "ip_icmp_err_interval" }, 839 { 1, 99999, 10, "ip_icmp_err_burst" }, 840 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 841 { 0, 1, 0, "ip_strict_dst_multihoming" }, 842 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 843 { 0, 1, 0, "ipsec_override_persocket_policy" }, 844 { 0, 1, 1, "icmp_accept_clear_messages" }, 845 { 0, 1, 1, "igmp_accept_clear_messages" }, 846 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 847 "ip_ndp_delay_first_probe_time"}, 848 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 849 "ip_ndp_max_unicast_solicit"}, 850 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 851 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 852 { 0, 1, 0, "ip6_forward_src_routed"}, 853 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 854 { 0, 1, 1, "ip6_send_redirects"}, 855 { 0, 1, 0, "ip6_ignore_redirect" }, 856 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 857 858 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 859 860 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 861 862 { 0, 1, 1, "pim_accept_clear_messages" }, 863 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 864 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 865 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 866 { 0, 15, 0, "ip_policy_mask" }, 867 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 868 { 0, 255, 1, "ip_multirt_ttl" }, 869 { 0, 1, 1, "ip_multidata_outbound" }, 870 { 0, 3600000, 300000, "ip_ndp_defense_interval" }, 871 { 0, 999999, 60*60*24, "ip_max_temp_idle" }, 872 { 0, 1000, 1, "ip_max_temp_defend" }, 873 { 0, 1000, 3, "ip_max_defend" }, 874 { 0, 999999, 30, "ip_defend_interval" }, 875 { 0, 3600000, 300000, "ip_dup_recovery" }, 876 { 0, 1, 1, "ip_restrict_interzone_loopback" }, 877 { 0, 1, 1, "ip_lso_outbound" }, 878 { IGMP_V1_ROUTER, IGMP_V3_ROUTER, IGMP_V3_ROUTER, "igmp_max_version" }, 879 { MLD_V1_ROUTER, MLD_V2_ROUTER, MLD_V2_ROUTER, "mld_max_version" }, 880 #ifdef DEBUG 881 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 882 #else 883 { 0, 0, 0, "" }, 884 #endif 885 }; 886 887 /* 888 * Extended NDP table 889 * The addresses for the first two are filled in to be ips_ip_g_forward 890 * and ips_ipv6_forward at init time. 891 */ 892 static ipndp_t lcl_ndp_arr[] = { 893 /* getf setf data name */ 894 #define IPNDP_IP_FORWARDING_OFFSET 0 895 { ip_param_generic_get, ip_forward_set, NULL, 896 "ip_forwarding" }, 897 #define IPNDP_IP6_FORWARDING_OFFSET 1 898 { ip_param_generic_get, ip_forward_set, NULL, 899 "ip6_forwarding" }, 900 { ip_ill_report, NULL, NULL, 901 "ip_ill_status" }, 902 { ip_ipif_report, NULL, NULL, 903 "ip_ipif_status" }, 904 { ip_conn_report, NULL, NULL, 905 "ip_conn_status" }, 906 { nd_get_long, nd_set_long, (caddr_t)&ip_rput_pullups, 907 "ip_rput_pullups" }, 908 { ip_srcid_report, NULL, NULL, 909 "ip_srcid_status" }, 910 { ip_param_generic_get, ip_squeue_profile_set, 911 (caddr_t)&ip_squeue_profile, "ip_squeue_profile" }, 912 { ip_param_generic_get, ip_squeue_bind_set, 913 (caddr_t)&ip_squeue_bind, "ip_squeue_bind" }, 914 { ip_param_generic_get, ip_input_proc_set, 915 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 916 { ip_param_generic_get, ip_int_set, 917 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 918 #define IPNDP_CGTP_FILTER_OFFSET 11 919 { ip_cgtp_filter_get, ip_cgtp_filter_set, NULL, 920 "ip_cgtp_filter" }, 921 { ip_param_generic_get, ip_int_set, 922 (caddr_t)&ip_soft_rings_cnt, "ip_soft_rings_cnt" }, 923 #define IPNDP_IPMP_HOOK_OFFSET 13 924 { ip_param_generic_get, ipmp_hook_emulation_set, NULL, 925 "ipmp_hook_emulation" }, 926 { ip_param_generic_get, ip_int_set, (caddr_t)&ip_debug, 927 "ip_debug" }, 928 }; 929 930 /* 931 * Table of IP ioctls encoding the various properties of the ioctl and 932 * indexed based on the last byte of the ioctl command. Occasionally there 933 * is a clash, and there is more than 1 ioctl with the same last byte. 934 * In such a case 1 ioctl is encoded in the ndx table and the remaining 935 * ioctls are encoded in the misc table. An entry in the ndx table is 936 * retrieved by indexing on the last byte of the ioctl command and comparing 937 * the ioctl command with the value in the ndx table. In the event of a 938 * mismatch the misc table is then searched sequentially for the desired 939 * ioctl command. 940 * 941 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 942 */ 943 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 944 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 945 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 946 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 947 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 948 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 949 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 950 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 951 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 952 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 953 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 954 955 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 956 MISC_CMD, ip_siocaddrt, NULL }, 957 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 958 MISC_CMD, ip_siocdelrt, NULL }, 959 960 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 961 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 962 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 963 IF_CMD, ip_sioctl_get_addr, NULL }, 964 965 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 966 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 967 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 968 IPI_GET_CMD | IPI_REPL, 969 IF_CMD, ip_sioctl_get_dstaddr, NULL }, 970 971 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 972 IPI_PRIV | IPI_WR | IPI_REPL, 973 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 974 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 975 IPI_MODOK | IPI_GET_CMD | IPI_REPL, 976 IF_CMD, ip_sioctl_get_flags, NULL }, 977 978 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 979 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 980 981 /* copyin size cannot be coded for SIOCGIFCONF */ 982 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD, 983 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 984 985 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 986 IF_CMD, ip_sioctl_mtu, NULL }, 987 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 988 IF_CMD, ip_sioctl_get_mtu, NULL }, 989 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 990 IPI_GET_CMD | IPI_REPL, 991 IF_CMD, ip_sioctl_get_brdaddr, NULL }, 992 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 993 IF_CMD, ip_sioctl_brdaddr, NULL }, 994 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 995 IPI_GET_CMD | IPI_REPL, 996 IF_CMD, ip_sioctl_get_netmask, NULL }, 997 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 998 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 999 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1000 IPI_GET_CMD | IPI_REPL, 1001 IF_CMD, ip_sioctl_get_metric, NULL }, 1002 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1003 IF_CMD, ip_sioctl_metric, NULL }, 1004 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1005 1006 /* See 166-168 below for extended SIOC*XARP ioctls */ 1007 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV, 1008 ARP_CMD, ip_sioctl_arp, NULL }, 1009 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD | IPI_REPL, 1010 ARP_CMD, ip_sioctl_arp, NULL }, 1011 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV, 1012 ARP_CMD, ip_sioctl_arp, NULL }, 1013 1014 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1015 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1016 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1017 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1018 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1019 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1020 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1021 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1022 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1023 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1024 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1025 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1026 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1027 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1028 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1029 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1030 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1031 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1032 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1033 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1034 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1035 1036 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1037 MISC_CMD, if_unitsel, if_unitsel_restart }, 1038 1039 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1040 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1041 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1042 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1043 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1044 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1045 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1046 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1047 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1048 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1049 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1050 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1051 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1052 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1053 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1054 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1055 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1056 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1057 1058 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1059 IPI_PRIV | IPI_WR | IPI_MODOK, 1060 IF_CMD, ip_sioctl_sifname, NULL }, 1061 1062 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1063 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1064 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1065 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1066 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1067 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1068 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1069 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1070 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1071 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1072 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1073 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1074 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1075 1076 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD | IPI_REPL, 1077 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1078 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1079 IF_CMD, ip_sioctl_get_muxid, NULL }, 1080 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1081 IPI_PRIV | IPI_WR | IPI_REPL, 1082 IF_CMD, ip_sioctl_muxid, NULL }, 1083 1084 /* Both if and lif variants share same func */ 1085 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1086 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1087 /* Both if and lif variants share same func */ 1088 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1089 IPI_PRIV | IPI_WR | IPI_REPL, 1090 IF_CMD, ip_sioctl_slifindex, NULL }, 1091 1092 /* copyin size cannot be coded for SIOCGIFCONF */ 1093 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD, 1094 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1095 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1096 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1097 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1098 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1099 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1100 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1101 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1102 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1103 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1104 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1105 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1106 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1107 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1108 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1109 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1110 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1111 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1112 1113 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1114 IPI_PRIV | IPI_WR | IPI_REPL, 1115 LIF_CMD, ip_sioctl_removeif, 1116 ip_sioctl_removeif_restart }, 1117 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1118 IPI_GET_CMD | IPI_PRIV | IPI_WR | IPI_REPL, 1119 LIF_CMD, ip_sioctl_addif, NULL }, 1120 #define SIOCLIFADDR_NDX 112 1121 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1122 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1123 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1124 IPI_GET_CMD | IPI_REPL, 1125 LIF_CMD, ip_sioctl_get_addr, NULL }, 1126 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1127 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1128 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1129 IPI_GET_CMD | IPI_REPL, 1130 LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1131 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1132 IPI_PRIV | IPI_WR | IPI_REPL, 1133 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1134 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1135 IPI_GET_CMD | IPI_MODOK | IPI_REPL, 1136 LIF_CMD, ip_sioctl_get_flags, NULL }, 1137 1138 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1139 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1140 1141 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1142 ip_sioctl_get_lifconf, NULL }, 1143 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1144 LIF_CMD, ip_sioctl_mtu, NULL }, 1145 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD | IPI_REPL, 1146 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1147 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1148 IPI_GET_CMD | IPI_REPL, 1149 LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1150 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1151 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1152 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1153 IPI_GET_CMD | IPI_REPL, 1154 LIF_CMD, ip_sioctl_get_netmask, NULL }, 1155 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1156 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1157 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1158 IPI_GET_CMD | IPI_REPL, 1159 LIF_CMD, ip_sioctl_get_metric, NULL }, 1160 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1161 LIF_CMD, ip_sioctl_metric, NULL }, 1162 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1163 IPI_PRIV | IPI_WR | IPI_MODOK | IPI_REPL, 1164 LIF_CMD, ip_sioctl_slifname, 1165 ip_sioctl_slifname_restart }, 1166 1167 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD | IPI_REPL, 1168 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1169 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1170 IPI_GET_CMD | IPI_REPL, 1171 LIF_CMD, ip_sioctl_get_muxid, NULL }, 1172 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1173 IPI_PRIV | IPI_WR | IPI_REPL, 1174 LIF_CMD, ip_sioctl_muxid, NULL }, 1175 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1176 IPI_GET_CMD | IPI_REPL, 1177 LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1178 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1179 IPI_PRIV | IPI_WR | IPI_REPL, 1180 LIF_CMD, ip_sioctl_slifindex, 0 }, 1181 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1182 LIF_CMD, ip_sioctl_token, NULL }, 1183 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1184 IPI_GET_CMD | IPI_REPL, 1185 LIF_CMD, ip_sioctl_get_token, NULL }, 1186 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1187 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1188 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1189 IPI_GET_CMD | IPI_REPL, 1190 LIF_CMD, ip_sioctl_get_subnet, NULL }, 1191 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1192 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1193 1194 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1195 IPI_GET_CMD | IPI_REPL, 1196 LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1197 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1198 LIF_CMD, ip_siocdelndp_v6, NULL }, 1199 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1200 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1201 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1202 LIF_CMD, ip_siocsetndp_v6, NULL }, 1203 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1204 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1205 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1206 MISC_CMD, ip_sioctl_tonlink, NULL }, 1207 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1208 MISC_CMD, ip_sioctl_tmysite, NULL }, 1209 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), IPI_REPL, 1210 TUN_CMD, ip_sioctl_tunparam, NULL }, 1211 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1212 IPI_PRIV | IPI_WR, 1213 TUN_CMD, ip_sioctl_tunparam, NULL }, 1214 1215 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1216 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1217 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1218 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1219 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1220 1221 /* 153 */ { SIOCLIFFAILOVER, sizeof (struct lifreq), 1222 IPI_PRIV | IPI_WR | IPI_REPL, 1223 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1224 /* 154 */ { SIOCLIFFAILBACK, sizeof (struct lifreq), 1225 IPI_PRIV | IPI_WR | IPI_REPL, 1226 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1227 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1228 IPI_PRIV | IPI_WR, 1229 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1230 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1231 IPI_GET_CMD | IPI_REPL, 1232 LIF_CMD, ip_sioctl_get_groupname, NULL }, 1233 /* 157 */ { SIOCGLIFOINDEX, sizeof (struct lifreq), 1234 IPI_GET_CMD | IPI_REPL, 1235 LIF_CMD, ip_sioctl_get_oindex, NULL }, 1236 1237 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1238 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1239 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1240 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1241 1242 /* 161 */ { SIOCSLIFOINDEX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1243 LIF_CMD, ip_sioctl_slifoindex, NULL }, 1244 1245 /* These are handled in ip_sioctl_copyin_setup itself */ 1246 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1247 MISC_CMD, NULL, NULL }, 1248 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1249 MISC_CMD, NULL, NULL }, 1250 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1251 1252 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1253 ip_sioctl_get_lifconf, NULL }, 1254 1255 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV, 1256 XARP_CMD, ip_sioctl_arp, NULL }, 1257 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD | IPI_REPL, 1258 XARP_CMD, ip_sioctl_arp, NULL }, 1259 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV, 1260 XARP_CMD, ip_sioctl_arp, NULL }, 1261 1262 /* SIOCPOPSOCKFS is not handled by IP */ 1263 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1264 1265 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1266 IPI_GET_CMD | IPI_REPL, 1267 LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1268 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1269 IPI_PRIV | IPI_WR | IPI_REPL, 1270 LIF_CMD, ip_sioctl_slifzone, 1271 ip_sioctl_slifzone_restart }, 1272 /* 172-174 are SCTP ioctls and not handled by IP */ 1273 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1274 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1275 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1276 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1277 IPI_GET_CMD, LIF_CMD, 1278 ip_sioctl_get_lifusesrc, 0 }, 1279 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1280 IPI_PRIV | IPI_WR, 1281 LIF_CMD, ip_sioctl_slifusesrc, 1282 NULL }, 1283 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1284 ip_sioctl_get_lifsrcof, NULL }, 1285 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1286 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1287 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1288 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1289 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1290 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1291 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1292 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1293 /* 182 */ { SIOCSIPMPFAILBACK, sizeof (int), IPI_PRIV, MISC_CMD, 1294 ip_sioctl_set_ipmpfailback, NULL }, 1295 /* SIOCSENABLESDP is handled by SDP */ 1296 /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL }, 1297 }; 1298 1299 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1300 1301 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1302 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1303 IPI_GET_CMD | IPI_REPL, TUN_CMD, ip_sioctl_tunparam, NULL }, 1304 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1305 TUN_CMD, ip_sioctl_tunparam, NULL }, 1306 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1307 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1308 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1309 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1310 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1311 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1312 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1313 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_REPL | IPI_GET_CMD, 1314 MISC_CMD, mrt_ioctl}, 1315 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_REPL | IPI_GET_CMD, 1316 MISC_CMD, mrt_ioctl}, 1317 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_REPL | IPI_GET_CMD, 1318 MISC_CMD, mrt_ioctl} 1319 }; 1320 1321 int ip_misc_ioctl_count = 1322 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1323 1324 int conn_drain_nthreads; /* Number of drainers reqd. */ 1325 /* Settable in /etc/system */ 1326 /* Defined in ip_ire.c */ 1327 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1328 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1329 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1330 1331 static nv_t ire_nv_arr[] = { 1332 { IRE_BROADCAST, "BROADCAST" }, 1333 { IRE_LOCAL, "LOCAL" }, 1334 { IRE_LOOPBACK, "LOOPBACK" }, 1335 { IRE_CACHE, "CACHE" }, 1336 { IRE_DEFAULT, "DEFAULT" }, 1337 { IRE_PREFIX, "PREFIX" }, 1338 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1339 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1340 { IRE_HOST, "HOST" }, 1341 { 0 } 1342 }; 1343 1344 nv_t *ire_nv_tbl = ire_nv_arr; 1345 1346 /* Simple ICMP IP Header Template */ 1347 static ipha_t icmp_ipha = { 1348 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1349 }; 1350 1351 struct module_info ip_mod_info = { 1352 IP_MOD_ID, IP_MOD_NAME, 1, INFPSZ, 65536, 1024 1353 }; 1354 1355 /* 1356 * Duplicate static symbols within a module confuses mdb; so we avoid the 1357 * problem by making the symbols here distinct from those in udp.c. 1358 */ 1359 1360 /* 1361 * Entry points for IP as a device and as a module. 1362 * FIXME: down the road we might want a separate module and driver qinit. 1363 * We have separate open functions for the /dev/ip and /dev/ip6 devices. 1364 */ 1365 static struct qinit iprinitv4 = { 1366 (pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL, 1367 &ip_mod_info 1368 }; 1369 1370 struct qinit iprinitv6 = { 1371 (pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL, 1372 &ip_mod_info 1373 }; 1374 1375 static struct qinit ipwinitv4 = { 1376 (pfi_t)ip_wput, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1377 &ip_mod_info 1378 }; 1379 1380 struct qinit ipwinitv6 = { 1381 (pfi_t)ip_wput_v6, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1382 &ip_mod_info 1383 }; 1384 1385 static struct qinit iplrinit = { 1386 (pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL, 1387 &ip_mod_info 1388 }; 1389 1390 static struct qinit iplwinit = { 1391 (pfi_t)ip_lwput, NULL, NULL, NULL, NULL, 1392 &ip_mod_info 1393 }; 1394 1395 /* For AF_INET aka /dev/ip */ 1396 struct streamtab ipinfov4 = { 1397 &iprinitv4, &ipwinitv4, &iplrinit, &iplwinit 1398 }; 1399 1400 /* For AF_INET6 aka /dev/ip6 */ 1401 struct streamtab ipinfov6 = { 1402 &iprinitv6, &ipwinitv6, &iplrinit, &iplwinit 1403 }; 1404 1405 #ifdef DEBUG 1406 static boolean_t skip_sctp_cksum = B_FALSE; 1407 #endif 1408 1409 /* 1410 * Prepend the zoneid using an ipsec_out_t for later use by functions like 1411 * ip_rput_v6(), ip_output(), etc. If the message 1412 * block already has a M_CTL at the front of it, then simply set the zoneid 1413 * appropriately. 1414 */ 1415 mblk_t * 1416 ip_prepend_zoneid(mblk_t *mp, zoneid_t zoneid, ip_stack_t *ipst) 1417 { 1418 mblk_t *first_mp; 1419 ipsec_out_t *io; 1420 1421 ASSERT(zoneid != ALL_ZONES); 1422 if (mp->b_datap->db_type == M_CTL) { 1423 io = (ipsec_out_t *)mp->b_rptr; 1424 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1425 io->ipsec_out_zoneid = zoneid; 1426 return (mp); 1427 } 1428 1429 first_mp = ipsec_alloc_ipsec_out(ipst->ips_netstack); 1430 if (first_mp == NULL) 1431 return (NULL); 1432 io = (ipsec_out_t *)first_mp->b_rptr; 1433 /* This is not a secure packet */ 1434 io->ipsec_out_secure = B_FALSE; 1435 io->ipsec_out_zoneid = zoneid; 1436 first_mp->b_cont = mp; 1437 return (first_mp); 1438 } 1439 1440 /* 1441 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1442 */ 1443 mblk_t * 1444 ip_copymsg(mblk_t *mp) 1445 { 1446 mblk_t *nmp; 1447 ipsec_info_t *in; 1448 1449 if (mp->b_datap->db_type != M_CTL) 1450 return (copymsg(mp)); 1451 1452 in = (ipsec_info_t *)mp->b_rptr; 1453 1454 /* 1455 * Note that M_CTL is also used for delivering ICMP error messages 1456 * upstream to transport layers. 1457 */ 1458 if (in->ipsec_info_type != IPSEC_OUT && 1459 in->ipsec_info_type != IPSEC_IN) 1460 return (copymsg(mp)); 1461 1462 nmp = copymsg(mp->b_cont); 1463 1464 if (in->ipsec_info_type == IPSEC_OUT) { 1465 return (ipsec_out_tag(mp, nmp, 1466 ((ipsec_out_t *)in)->ipsec_out_ns)); 1467 } else { 1468 return (ipsec_in_tag(mp, nmp, 1469 ((ipsec_in_t *)in)->ipsec_in_ns)); 1470 } 1471 } 1472 1473 /* Generate an ICMP fragmentation needed message. */ 1474 static void 1475 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu, zoneid_t zoneid, 1476 ip_stack_t *ipst) 1477 { 1478 icmph_t icmph; 1479 mblk_t *first_mp; 1480 boolean_t mctl_present; 1481 1482 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1483 1484 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 1485 if (mctl_present) 1486 freeb(first_mp); 1487 return; 1488 } 1489 1490 bzero(&icmph, sizeof (icmph_t)); 1491 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1492 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1493 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1494 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1495 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1496 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 1497 ipst); 1498 } 1499 1500 /* 1501 * icmp_inbound deals with ICMP messages in the following ways. 1502 * 1503 * 1) It needs to send a reply back and possibly delivering it 1504 * to the "interested" upper clients. 1505 * 2) It needs to send it to the upper clients only. 1506 * 3) It needs to change some values in IP only. 1507 * 4) It needs to change some values in IP and upper layers e.g TCP. 1508 * 1509 * We need to accomodate icmp messages coming in clear until we get 1510 * everything secure from the wire. If icmp_accept_clear_messages 1511 * is zero we check with the global policy and act accordingly. If 1512 * it is non-zero, we accept the message without any checks. But 1513 * *this does not mean* that this will be delivered to the upper 1514 * clients. By accepting we might send replies back, change our MTU 1515 * value etc. but delivery to the ULP/clients depends on their policy 1516 * dispositions. 1517 * 1518 * We handle the above 4 cases in the context of IPsec in the 1519 * following way : 1520 * 1521 * 1) Send the reply back in the same way as the request came in. 1522 * If it came in encrypted, it goes out encrypted. If it came in 1523 * clear, it goes out in clear. Thus, this will prevent chosen 1524 * plain text attack. 1525 * 2) The client may or may not expect things to come in secure. 1526 * If it comes in secure, the policy constraints are checked 1527 * before delivering it to the upper layers. If it comes in 1528 * clear, ipsec_inbound_accept_clear will decide whether to 1529 * accept this in clear or not. In both the cases, if the returned 1530 * message (IP header + 8 bytes) that caused the icmp message has 1531 * AH/ESP headers, it is sent up to AH/ESP for validation before 1532 * sending up. If there are only 8 bytes of returned message, then 1533 * upper client will not be notified. 1534 * 3) Check with global policy to see whether it matches the constaints. 1535 * But this will be done only if icmp_accept_messages_in_clear is 1536 * zero. 1537 * 4) If we need to change both in IP and ULP, then the decision taken 1538 * while affecting the values in IP and while delivering up to TCP 1539 * should be the same. 1540 * 1541 * There are two cases. 1542 * 1543 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1544 * failed), we will not deliver it to the ULP, even though they 1545 * are *willing* to accept in *clear*. This is fine as our global 1546 * disposition to icmp messages asks us reject the datagram. 1547 * 1548 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1549 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1550 * to deliver it to ULP (policy failed), it can lead to 1551 * consistency problems. The cases known at this time are 1552 * ICMP_DESTINATION_UNREACHABLE messages with following code 1553 * values : 1554 * 1555 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1556 * and Upper layer rejects. Then the communication will 1557 * come to a stop. This is solved by making similar decisions 1558 * at both levels. Currently, when we are unable to deliver 1559 * to the Upper Layer (due to policy failures) while IP has 1560 * adjusted ire_max_frag, the next outbound datagram would 1561 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1562 * will be with the right level of protection. Thus the right 1563 * value will be communicated even if we are not able to 1564 * communicate when we get from the wire initially. But this 1565 * assumes there would be at least one outbound datagram after 1566 * IP has adjusted its ire_max_frag value. To make things 1567 * simpler, we accept in clear after the validation of 1568 * AH/ESP headers. 1569 * 1570 * - Other ICMP ERRORS : We may not be able to deliver it to the 1571 * upper layer depending on the level of protection the upper 1572 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1573 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1574 * should be accepted in clear when the Upper layer expects secure. 1575 * Thus the communication may get aborted by some bad ICMP 1576 * packets. 1577 * 1578 * IPQoS Notes: 1579 * The only instance when a packet is sent for processing is when there 1580 * isn't an ICMP client and if we are interested in it. 1581 * If there is a client, IPPF processing will take place in the 1582 * ip_fanout_proto routine. 1583 * 1584 * Zones notes: 1585 * The packet is only processed in the context of the specified zone: typically 1586 * only this zone will reply to an echo request, and only interested clients in 1587 * this zone will receive a copy of the packet. This means that the caller must 1588 * call icmp_inbound() for each relevant zone. 1589 */ 1590 static void 1591 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1592 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1593 ill_t *recv_ill, zoneid_t zoneid) 1594 { 1595 icmph_t *icmph; 1596 ipha_t *ipha; 1597 int iph_hdr_length; 1598 int hdr_length; 1599 boolean_t interested; 1600 uint32_t ts; 1601 uchar_t *wptr; 1602 ipif_t *ipif; 1603 mblk_t *first_mp; 1604 ipsec_in_t *ii; 1605 ire_t *src_ire; 1606 boolean_t onlink; 1607 timestruc_t now; 1608 uint32_t ill_index; 1609 ip_stack_t *ipst; 1610 1611 ASSERT(ill != NULL); 1612 ipst = ill->ill_ipst; 1613 1614 first_mp = mp; 1615 if (mctl_present) { 1616 mp = first_mp->b_cont; 1617 ASSERT(mp != NULL); 1618 } 1619 1620 ipha = (ipha_t *)mp->b_rptr; 1621 if (ipst->ips_icmp_accept_clear_messages == 0) { 1622 first_mp = ipsec_check_global_policy(first_mp, NULL, 1623 ipha, NULL, mctl_present, ipst->ips_netstack); 1624 if (first_mp == NULL) 1625 return; 1626 } 1627 1628 /* 1629 * On a labeled system, we have to check whether the zone itself is 1630 * permitted to receive raw traffic. 1631 */ 1632 if (is_system_labeled()) { 1633 if (zoneid == ALL_ZONES) 1634 zoneid = tsol_packet_to_zoneid(mp); 1635 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1636 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1637 zoneid)); 1638 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1639 freemsg(first_mp); 1640 return; 1641 } 1642 } 1643 1644 /* 1645 * We have accepted the ICMP message. It means that we will 1646 * respond to the packet if needed. It may not be delivered 1647 * to the upper client depending on the policy constraints 1648 * and the disposition in ipsec_inbound_accept_clear. 1649 */ 1650 1651 ASSERT(ill != NULL); 1652 1653 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1654 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1655 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1656 /* Last chance to get real. */ 1657 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1658 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1659 freemsg(first_mp); 1660 return; 1661 } 1662 /* Refresh iph following the pullup. */ 1663 ipha = (ipha_t *)mp->b_rptr; 1664 } 1665 /* ICMP header checksum, including checksum field, should be zero. */ 1666 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1667 IP_CSUM(mp, iph_hdr_length, 0)) { 1668 BUMP_MIB(&ipst->ips_icmp_mib, icmpInCksumErrs); 1669 freemsg(first_mp); 1670 return; 1671 } 1672 /* The IP header will always be a multiple of four bytes */ 1673 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1674 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1675 icmph->icmph_code)); 1676 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1677 /* We will set "interested" to "true" if we want a copy */ 1678 interested = B_FALSE; 1679 switch (icmph->icmph_type) { 1680 case ICMP_ECHO_REPLY: 1681 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1682 break; 1683 case ICMP_DEST_UNREACHABLE: 1684 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1685 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1686 interested = B_TRUE; /* Pass up to transport */ 1687 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1688 break; 1689 case ICMP_SOURCE_QUENCH: 1690 interested = B_TRUE; /* Pass up to transport */ 1691 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1692 break; 1693 case ICMP_REDIRECT: 1694 if (!ipst->ips_ip_ignore_redirect) 1695 interested = B_TRUE; 1696 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1697 break; 1698 case ICMP_ECHO_REQUEST: 1699 /* 1700 * Whether to respond to echo requests that come in as IP 1701 * broadcasts or as IP multicast is subject to debate 1702 * (what isn't?). We aim to please, you pick it. 1703 * Default is do it. 1704 */ 1705 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1706 /* unicast: always respond */ 1707 interested = B_TRUE; 1708 } else if (CLASSD(ipha->ipha_dst)) { 1709 /* multicast: respond based on tunable */ 1710 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1711 } else if (broadcast) { 1712 /* broadcast: respond based on tunable */ 1713 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1714 } 1715 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1716 break; 1717 case ICMP_ROUTER_ADVERTISEMENT: 1718 case ICMP_ROUTER_SOLICITATION: 1719 break; 1720 case ICMP_TIME_EXCEEDED: 1721 interested = B_TRUE; /* Pass up to transport */ 1722 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1723 break; 1724 case ICMP_PARAM_PROBLEM: 1725 interested = B_TRUE; /* Pass up to transport */ 1726 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1727 break; 1728 case ICMP_TIME_STAMP_REQUEST: 1729 /* Response to Time Stamp Requests is local policy. */ 1730 if (ipst->ips_ip_g_resp_to_timestamp && 1731 /* So is whether to respond if it was an IP broadcast. */ 1732 (!broadcast || ipst->ips_ip_g_resp_to_timestamp_bcast)) { 1733 int tstamp_len = 3 * sizeof (uint32_t); 1734 1735 if (wptr + tstamp_len > mp->b_wptr) { 1736 if (!pullupmsg(mp, wptr + tstamp_len - 1737 mp->b_rptr)) { 1738 BUMP_MIB(ill->ill_ip_mib, 1739 ipIfStatsInDiscards); 1740 freemsg(first_mp); 1741 return; 1742 } 1743 /* Refresh ipha following the pullup. */ 1744 ipha = (ipha_t *)mp->b_rptr; 1745 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1746 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1747 } 1748 interested = B_TRUE; 1749 } 1750 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1751 break; 1752 case ICMP_TIME_STAMP_REPLY: 1753 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1754 break; 1755 case ICMP_INFO_REQUEST: 1756 /* Per RFC 1122 3.2.2.7, ignore this. */ 1757 case ICMP_INFO_REPLY: 1758 break; 1759 case ICMP_ADDRESS_MASK_REQUEST: 1760 if ((ipst->ips_ip_respond_to_address_mask_broadcast || 1761 !broadcast) && 1762 /* TODO m_pullup of complete header? */ 1763 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) { 1764 interested = B_TRUE; 1765 } 1766 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1767 break; 1768 case ICMP_ADDRESS_MASK_REPLY: 1769 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1770 break; 1771 default: 1772 interested = B_TRUE; /* Pass up to transport */ 1773 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1774 break; 1775 } 1776 /* See if there is an ICMP client. */ 1777 if (ipst->ips_ipcl_proto_fanout[IPPROTO_ICMP].connf_head != NULL) { 1778 /* If there is an ICMP client and we want one too, copy it. */ 1779 mblk_t *first_mp1; 1780 1781 if (!interested) { 1782 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1783 ip_policy, recv_ill, zoneid); 1784 return; 1785 } 1786 first_mp1 = ip_copymsg(first_mp); 1787 if (first_mp1 != NULL) { 1788 ip_fanout_proto(q, first_mp1, ill, ipha, 1789 0, mctl_present, ip_policy, recv_ill, zoneid); 1790 } 1791 } else if (!interested) { 1792 freemsg(first_mp); 1793 return; 1794 } else { 1795 /* 1796 * Initiate policy processing for this packet if ip_policy 1797 * is true. 1798 */ 1799 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 1800 ill_index = ill->ill_phyint->phyint_ifindex; 1801 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1802 if (mp == NULL) { 1803 if (mctl_present) { 1804 freeb(first_mp); 1805 } 1806 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1807 return; 1808 } 1809 } 1810 } 1811 /* We want to do something with it. */ 1812 /* Check db_ref to make sure we can modify the packet. */ 1813 if (mp->b_datap->db_ref > 1) { 1814 mblk_t *first_mp1; 1815 1816 first_mp1 = ip_copymsg(first_mp); 1817 freemsg(first_mp); 1818 if (!first_mp1) { 1819 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1820 return; 1821 } 1822 first_mp = first_mp1; 1823 if (mctl_present) { 1824 mp = first_mp->b_cont; 1825 ASSERT(mp != NULL); 1826 } else { 1827 mp = first_mp; 1828 } 1829 ipha = (ipha_t *)mp->b_rptr; 1830 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1831 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1832 } 1833 switch (icmph->icmph_type) { 1834 case ICMP_ADDRESS_MASK_REQUEST: 1835 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1836 if (ipif == NULL) { 1837 freemsg(first_mp); 1838 return; 1839 } 1840 /* 1841 * outging interface must be IPv4 1842 */ 1843 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1844 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1845 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1846 ipif_refrele(ipif); 1847 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1848 break; 1849 case ICMP_ECHO_REQUEST: 1850 icmph->icmph_type = ICMP_ECHO_REPLY; 1851 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1852 break; 1853 case ICMP_TIME_STAMP_REQUEST: { 1854 uint32_t *tsp; 1855 1856 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1857 tsp = (uint32_t *)wptr; 1858 tsp++; /* Skip past 'originate time' */ 1859 /* Compute # of milliseconds since midnight */ 1860 gethrestime(&now); 1861 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1862 now.tv_nsec / (NANOSEC / MILLISEC); 1863 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1864 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1865 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1866 break; 1867 } 1868 default: 1869 ipha = (ipha_t *)&icmph[1]; 1870 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1871 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1872 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1873 freemsg(first_mp); 1874 return; 1875 } 1876 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1877 ipha = (ipha_t *)&icmph[1]; 1878 } 1879 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1880 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1881 freemsg(first_mp); 1882 return; 1883 } 1884 hdr_length = IPH_HDR_LENGTH(ipha); 1885 if (hdr_length < sizeof (ipha_t)) { 1886 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1887 freemsg(first_mp); 1888 return; 1889 } 1890 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1891 if (!pullupmsg(mp, 1892 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1893 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1894 freemsg(first_mp); 1895 return; 1896 } 1897 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1898 ipha = (ipha_t *)&icmph[1]; 1899 } 1900 switch (icmph->icmph_type) { 1901 case ICMP_REDIRECT: 1902 /* 1903 * As there is no upper client to deliver, we don't 1904 * need the first_mp any more. 1905 */ 1906 if (mctl_present) { 1907 freeb(first_mp); 1908 } 1909 icmp_redirect(ill, mp); 1910 return; 1911 case ICMP_DEST_UNREACHABLE: 1912 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1913 if (!icmp_inbound_too_big(icmph, ipha, ill, 1914 zoneid, mp, iph_hdr_length, ipst)) { 1915 freemsg(first_mp); 1916 return; 1917 } 1918 /* 1919 * icmp_inbound_too_big() may alter mp. 1920 * Resynch ipha and icmph accordingly. 1921 */ 1922 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1923 ipha = (ipha_t *)&icmph[1]; 1924 } 1925 /* FALLTHRU */ 1926 default : 1927 /* 1928 * IPQoS notes: Since we have already done IPQoS 1929 * processing we don't want to do it again in 1930 * the fanout routines called by 1931 * icmp_inbound_error_fanout, hence the last 1932 * argument, ip_policy, is B_FALSE. 1933 */ 1934 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 1935 ipha, iph_hdr_length, hdr_length, mctl_present, 1936 B_FALSE, recv_ill, zoneid); 1937 } 1938 return; 1939 } 1940 /* Send out an ICMP packet */ 1941 icmph->icmph_checksum = 0; 1942 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 1943 if (broadcast || CLASSD(ipha->ipha_dst)) { 1944 ipif_t *ipif_chosen; 1945 /* 1946 * Make it look like it was directed to us, so we don't look 1947 * like a fool with a broadcast or multicast source address. 1948 */ 1949 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1950 /* 1951 * Make sure that we haven't grabbed an interface that's DOWN. 1952 */ 1953 if (ipif != NULL) { 1954 ipif_chosen = ipif_select_source(ipif->ipif_ill, 1955 ipha->ipha_src, zoneid); 1956 if (ipif_chosen != NULL) { 1957 ipif_refrele(ipif); 1958 ipif = ipif_chosen; 1959 } 1960 } 1961 if (ipif == NULL) { 1962 ip0dbg(("icmp_inbound: " 1963 "No source for broadcast/multicast:\n" 1964 "\tsrc 0x%x dst 0x%x ill %p " 1965 "ipif_lcl_addr 0x%x\n", 1966 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 1967 (void *)ill, 1968 ill->ill_ipif->ipif_lcl_addr)); 1969 freemsg(first_mp); 1970 return; 1971 } 1972 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1973 ipha->ipha_dst = ipif->ipif_src_addr; 1974 ipif_refrele(ipif); 1975 } 1976 /* Reset time to live. */ 1977 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 1978 { 1979 /* Swap source and destination addresses */ 1980 ipaddr_t tmp; 1981 1982 tmp = ipha->ipha_src; 1983 ipha->ipha_src = ipha->ipha_dst; 1984 ipha->ipha_dst = tmp; 1985 } 1986 ipha->ipha_ident = 0; 1987 if (!IS_SIMPLE_IPH(ipha)) 1988 icmp_options_update(ipha); 1989 1990 /* 1991 * ICMP echo replies should go out on the same interface 1992 * the request came on as probes used by in.mpathd for detecting 1993 * NIC failures are ECHO packets. We turn-off load spreading 1994 * by setting ipsec_in_attach_if to B_TRUE, which is copied 1995 * to ipsec_out_attach_if by ipsec_in_to_out called later in this 1996 * function. This is in turn handled by ip_wput and ip_newroute 1997 * to make sure that the packet goes out on the interface it came 1998 * in on. If we don't turnoff load spreading, the packets might get 1999 * dropped if there are no non-FAILED/INACTIVE interfaces for it 2000 * to go out and in.mpathd would wrongly detect a failure or 2001 * mis-detect a NIC failure for link failure. As load spreading 2002 * can happen only if ill_group is not NULL, we do only for 2003 * that case and this does not affect the normal case. 2004 * 2005 * We turn off load spreading only on echo packets that came from 2006 * on-link hosts. If the interface route has been deleted, this will 2007 * not be enforced as we can't do much. For off-link hosts, as the 2008 * default routes in IPv4 does not typically have an ire_ipif 2009 * pointer, we can't force MATCH_IRE_ILL in ip_wput/ip_newroute. 2010 * Moreover, expecting a default route through this interface may 2011 * not be correct. We use ipha_dst because of the swap above. 2012 */ 2013 onlink = B_FALSE; 2014 if (icmph->icmph_type == ICMP_ECHO_REPLY && ill->ill_group != NULL) { 2015 /* 2016 * First, we need to make sure that it is not one of our 2017 * local addresses. If we set onlink when it is one of 2018 * our local addresses, we will end up creating IRE_CACHES 2019 * for one of our local addresses. Then, we will never 2020 * accept packets for them afterwards. 2021 */ 2022 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_LOCAL, 2023 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2024 if (src_ire == NULL) { 2025 ipif = ipif_get_next_ipif(NULL, ill); 2026 if (ipif == NULL) { 2027 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2028 freemsg(mp); 2029 return; 2030 } 2031 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 2032 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 2033 NULL, MATCH_IRE_ILL | MATCH_IRE_TYPE, ipst); 2034 ipif_refrele(ipif); 2035 if (src_ire != NULL) { 2036 onlink = B_TRUE; 2037 ire_refrele(src_ire); 2038 } 2039 } else { 2040 ire_refrele(src_ire); 2041 } 2042 } 2043 if (!mctl_present) { 2044 /* 2045 * This packet should go out the same way as it 2046 * came in i.e in clear. To make sure that global 2047 * policy will not be applied to this in ip_wput_ire, 2048 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2049 */ 2050 ASSERT(first_mp == mp); 2051 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2052 if (first_mp == NULL) { 2053 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2054 freemsg(mp); 2055 return; 2056 } 2057 ii = (ipsec_in_t *)first_mp->b_rptr; 2058 2059 /* This is not a secure packet */ 2060 ii->ipsec_in_secure = B_FALSE; 2061 if (onlink) { 2062 ii->ipsec_in_attach_if = B_TRUE; 2063 ii->ipsec_in_ill_index = 2064 ill->ill_phyint->phyint_ifindex; 2065 ii->ipsec_in_rill_index = 2066 recv_ill->ill_phyint->phyint_ifindex; 2067 } 2068 first_mp->b_cont = mp; 2069 } else if (onlink) { 2070 ii = (ipsec_in_t *)first_mp->b_rptr; 2071 ii->ipsec_in_attach_if = B_TRUE; 2072 ii->ipsec_in_ill_index = ill->ill_phyint->phyint_ifindex; 2073 ii->ipsec_in_rill_index = recv_ill->ill_phyint->phyint_ifindex; 2074 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2075 } else { 2076 ii = (ipsec_in_t *)first_mp->b_rptr; 2077 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2078 } 2079 ii->ipsec_in_zoneid = zoneid; 2080 ASSERT(zoneid != ALL_ZONES); 2081 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2082 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2083 return; 2084 } 2085 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2086 put(WR(q), first_mp); 2087 } 2088 2089 static ipaddr_t 2090 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2091 { 2092 conn_t *connp; 2093 connf_t *connfp; 2094 ipaddr_t nexthop_addr = INADDR_ANY; 2095 int hdr_length = IPH_HDR_LENGTH(ipha); 2096 uint16_t *up; 2097 uint32_t ports; 2098 ip_stack_t *ipst = ill->ill_ipst; 2099 2100 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2101 switch (ipha->ipha_protocol) { 2102 case IPPROTO_TCP: 2103 { 2104 tcph_t *tcph; 2105 2106 /* do a reverse lookup */ 2107 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2108 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2109 TCPS_LISTEN, ipst); 2110 break; 2111 } 2112 case IPPROTO_UDP: 2113 { 2114 uint32_t dstport, srcport; 2115 2116 ((uint16_t *)&ports)[0] = up[1]; 2117 ((uint16_t *)&ports)[1] = up[0]; 2118 2119 /* Extract ports in net byte order */ 2120 dstport = htons(ntohl(ports) & 0xFFFF); 2121 srcport = htons(ntohl(ports) >> 16); 2122 2123 connfp = &ipst->ips_ipcl_udp_fanout[ 2124 IPCL_UDP_HASH(dstport, ipst)]; 2125 mutex_enter(&connfp->connf_lock); 2126 connp = connfp->connf_head; 2127 2128 /* do a reverse lookup */ 2129 while ((connp != NULL) && 2130 (!IPCL_UDP_MATCH(connp, dstport, 2131 ipha->ipha_src, srcport, ipha->ipha_dst) || 2132 !IPCL_ZONE_MATCH(connp, zoneid))) { 2133 connp = connp->conn_next; 2134 } 2135 if (connp != NULL) 2136 CONN_INC_REF(connp); 2137 mutex_exit(&connfp->connf_lock); 2138 break; 2139 } 2140 case IPPROTO_SCTP: 2141 { 2142 in6_addr_t map_src, map_dst; 2143 2144 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2145 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2146 ((uint16_t *)&ports)[0] = up[1]; 2147 ((uint16_t *)&ports)[1] = up[0]; 2148 2149 connp = sctp_find_conn(&map_src, &map_dst, ports, 2150 zoneid, ipst->ips_netstack->netstack_sctp); 2151 if (connp == NULL) { 2152 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2153 zoneid, ports, ipha, ipst); 2154 } else { 2155 CONN_INC_REF(connp); 2156 SCTP_REFRELE(CONN2SCTP(connp)); 2157 } 2158 break; 2159 } 2160 default: 2161 { 2162 ipha_t ripha; 2163 2164 ripha.ipha_src = ipha->ipha_dst; 2165 ripha.ipha_dst = ipha->ipha_src; 2166 ripha.ipha_protocol = ipha->ipha_protocol; 2167 2168 connfp = &ipst->ips_ipcl_proto_fanout[ 2169 ipha->ipha_protocol]; 2170 mutex_enter(&connfp->connf_lock); 2171 connp = connfp->connf_head; 2172 for (connp = connfp->connf_head; connp != NULL; 2173 connp = connp->conn_next) { 2174 if (IPCL_PROTO_MATCH(connp, 2175 ipha->ipha_protocol, &ripha, ill, 2176 0, zoneid)) { 2177 CONN_INC_REF(connp); 2178 break; 2179 } 2180 } 2181 mutex_exit(&connfp->connf_lock); 2182 } 2183 } 2184 if (connp != NULL) { 2185 if (connp->conn_nexthop_set) 2186 nexthop_addr = connp->conn_nexthop_v4; 2187 CONN_DEC_REF(connp); 2188 } 2189 return (nexthop_addr); 2190 } 2191 2192 /* Table from RFC 1191 */ 2193 static int icmp_frag_size_table[] = 2194 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2195 2196 /* 2197 * Process received ICMP Packet too big. 2198 * After updating any IRE it does the fanout to any matching transport streams. 2199 * Assumes the message has been pulled up till the IP header that caused 2200 * the error. 2201 * 2202 * Returns B_FALSE on failure and B_TRUE on success. 2203 */ 2204 static boolean_t 2205 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2206 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length, 2207 ip_stack_t *ipst) 2208 { 2209 ire_t *ire, *first_ire; 2210 int mtu; 2211 int hdr_length; 2212 ipaddr_t nexthop_addr; 2213 2214 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2215 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2216 ASSERT(ill != NULL); 2217 2218 hdr_length = IPH_HDR_LENGTH(ipha); 2219 2220 /* Drop if the original packet contained a source route */ 2221 if (ip_source_route_included(ipha)) { 2222 return (B_FALSE); 2223 } 2224 /* 2225 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport 2226 * header. 2227 */ 2228 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2229 mp->b_wptr) { 2230 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2231 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2232 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2233 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2234 return (B_FALSE); 2235 } 2236 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2237 ipha = (ipha_t *)&icmph[1]; 2238 } 2239 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2240 if (nexthop_addr != INADDR_ANY) { 2241 /* nexthop set */ 2242 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2243 nexthop_addr, 0, NULL, ALL_ZONES, MBLK_GETLABEL(mp), 2244 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, ipst); 2245 } else { 2246 /* nexthop not set */ 2247 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2248 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2249 } 2250 2251 if (!first_ire) { 2252 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2253 ntohl(ipha->ipha_dst))); 2254 return (B_FALSE); 2255 } 2256 /* Check for MTU discovery advice as described in RFC 1191 */ 2257 mtu = ntohs(icmph->icmph_du_mtu); 2258 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2259 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2260 ire = ire->ire_next) { 2261 /* 2262 * Look for the connection to which this ICMP message is 2263 * directed. If it has the IP_NEXTHOP option set, then the 2264 * search is limited to IREs with the MATCH_IRE_PRIVATE 2265 * option. Else the search is limited to regular IREs. 2266 */ 2267 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2268 (nexthop_addr != ire->ire_gateway_addr)) || 2269 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2270 (nexthop_addr != INADDR_ANY))) 2271 continue; 2272 2273 mutex_enter(&ire->ire_lock); 2274 if (icmph->icmph_du_zero == 0 && mtu > 68) { 2275 /* Reduce the IRE max frag value as advised. */ 2276 ip1dbg(("Received mtu from router: %d (was %d)\n", 2277 mtu, ire->ire_max_frag)); 2278 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2279 } else { 2280 uint32_t length; 2281 int i; 2282 2283 /* 2284 * Use the table from RFC 1191 to figure out 2285 * the next "plateau" based on the length in 2286 * the original IP packet. 2287 */ 2288 length = ntohs(ipha->ipha_length); 2289 if (ire->ire_max_frag <= length && 2290 ire->ire_max_frag >= length - hdr_length) { 2291 /* 2292 * Handle broken BSD 4.2 systems that 2293 * return the wrong iph_length in ICMP 2294 * errors. 2295 */ 2296 ip1dbg(("Wrong mtu: sent %d, ire %d\n", 2297 length, ire->ire_max_frag)); 2298 length -= hdr_length; 2299 } 2300 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2301 if (length > icmp_frag_size_table[i]) 2302 break; 2303 } 2304 if (i == A_CNT(icmp_frag_size_table)) { 2305 /* Smaller than 68! */ 2306 ip1dbg(("Too big for packet size %d\n", 2307 length)); 2308 ire->ire_max_frag = MIN(ire->ire_max_frag, 576); 2309 ire->ire_frag_flag = 0; 2310 } else { 2311 mtu = icmp_frag_size_table[i]; 2312 ip1dbg(("Calculated mtu %d, packet size %d, " 2313 "before %d", mtu, length, 2314 ire->ire_max_frag)); 2315 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2316 ip1dbg((", after %d\n", ire->ire_max_frag)); 2317 } 2318 /* Record the new max frag size for the ULP. */ 2319 icmph->icmph_du_zero = 0; 2320 icmph->icmph_du_mtu = 2321 htons((uint16_t)ire->ire_max_frag); 2322 } 2323 mutex_exit(&ire->ire_lock); 2324 } 2325 rw_exit(&first_ire->ire_bucket->irb_lock); 2326 ire_refrele(first_ire); 2327 return (B_TRUE); 2328 } 2329 2330 /* 2331 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2332 * calls this function. 2333 */ 2334 static mblk_t * 2335 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2336 { 2337 ipha_t *ipha; 2338 icmph_t *icmph; 2339 ipha_t *in_ipha; 2340 int length; 2341 2342 ASSERT(mp->b_datap->db_type == M_DATA); 2343 2344 /* 2345 * For Self-encapsulated packets, we added an extra IP header 2346 * without the options. Inner IP header is the one from which 2347 * the outer IP header was formed. Thus, we need to remove the 2348 * outer IP header. To do this, we pullup the whole message 2349 * and overlay whatever follows the outer IP header over the 2350 * outer IP header. 2351 */ 2352 2353 if (!pullupmsg(mp, -1)) 2354 return (NULL); 2355 2356 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2357 ipha = (ipha_t *)&icmph[1]; 2358 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2359 2360 /* 2361 * The length that we want to overlay is following the inner 2362 * IP header. Subtracting the IP header + icmp header + outer 2363 * IP header's length should give us the length that we want to 2364 * overlay. 2365 */ 2366 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2367 hdr_length; 2368 /* 2369 * Overlay whatever follows the inner header over the 2370 * outer header. 2371 */ 2372 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2373 2374 /* Set the wptr to account for the outer header */ 2375 mp->b_wptr -= hdr_length; 2376 return (mp); 2377 } 2378 2379 /* 2380 * Try to pass the ICMP message upstream in case the ULP cares. 2381 * 2382 * If the packet that caused the ICMP error is secure, we send 2383 * it to AH/ESP to make sure that the attached packet has a 2384 * valid association. ipha in the code below points to the 2385 * IP header of the packet that caused the error. 2386 * 2387 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2388 * in the context of IPsec. Normally we tell the upper layer 2389 * whenever we send the ire (including ip_bind), the IPsec header 2390 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2391 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2392 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2393 * same thing. As TCP has the IPsec options size that needs to be 2394 * adjusted, we just pass the MTU unchanged. 2395 * 2396 * IFN could have been generated locally or by some router. 2397 * 2398 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2399 * This happens because IP adjusted its value of MTU on an 2400 * earlier IFN message and could not tell the upper layer, 2401 * the new adjusted value of MTU e.g. Packet was encrypted 2402 * or there was not enough information to fanout to upper 2403 * layers. Thus on the next outbound datagram, ip_wput_ire 2404 * generates the IFN, where IPsec processing has *not* been 2405 * done. 2406 * 2407 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2408 * could have generated this. This happens because ire_max_frag 2409 * value in IP was set to a new value, while the IPsec processing 2410 * was being done and after we made the fragmentation check in 2411 * ip_wput_ire. Thus on return from IPsec processing, 2412 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2413 * and generates the IFN. As IPsec processing is over, we fanout 2414 * to AH/ESP to remove the header. 2415 * 2416 * In both these cases, ipsec_in_loopback will be set indicating 2417 * that IFN was generated locally. 2418 * 2419 * ROUTER : IFN could be secure or non-secure. 2420 * 2421 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2422 * packet in error has AH/ESP headers to validate the AH/ESP 2423 * headers. AH/ESP will verify whether there is a valid SA or 2424 * not and send it back. We will fanout again if we have more 2425 * data in the packet. 2426 * 2427 * If the packet in error does not have AH/ESP, we handle it 2428 * like any other case. 2429 * 2430 * * NON_SECURE : If the packet in error has AH/ESP headers, 2431 * we attach a dummy ipsec_in and send it up to AH/ESP 2432 * for validation. AH/ESP will verify whether there is a 2433 * valid SA or not and send it back. We will fanout again if 2434 * we have more data in the packet. 2435 * 2436 * If the packet in error does not have AH/ESP, we handle it 2437 * like any other case. 2438 */ 2439 static void 2440 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2441 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2442 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2443 zoneid_t zoneid) 2444 { 2445 uint16_t *up; /* Pointer to ports in ULP header */ 2446 uint32_t ports; /* reversed ports for fanout */ 2447 ipha_t ripha; /* With reversed addresses */ 2448 mblk_t *first_mp; 2449 ipsec_in_t *ii; 2450 tcph_t *tcph; 2451 conn_t *connp; 2452 ip_stack_t *ipst; 2453 2454 ASSERT(ill != NULL); 2455 2456 ASSERT(recv_ill != NULL); 2457 ipst = recv_ill->ill_ipst; 2458 2459 first_mp = mp; 2460 if (mctl_present) { 2461 mp = first_mp->b_cont; 2462 ASSERT(mp != NULL); 2463 2464 ii = (ipsec_in_t *)first_mp->b_rptr; 2465 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2466 } else { 2467 ii = NULL; 2468 } 2469 2470 switch (ipha->ipha_protocol) { 2471 case IPPROTO_UDP: 2472 /* 2473 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2474 * transport header. 2475 */ 2476 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2477 mp->b_wptr) { 2478 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2479 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2480 goto discard_pkt; 2481 } 2482 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2483 ipha = (ipha_t *)&icmph[1]; 2484 } 2485 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2486 2487 /* 2488 * Attempt to find a client stream based on port. 2489 * Note that we do a reverse lookup since the header is 2490 * in the form we sent it out. 2491 * The ripha header is only used for the IP_UDP_MATCH and we 2492 * only set the src and dst addresses and protocol. 2493 */ 2494 ripha.ipha_src = ipha->ipha_dst; 2495 ripha.ipha_dst = ipha->ipha_src; 2496 ripha.ipha_protocol = ipha->ipha_protocol; 2497 ((uint16_t *)&ports)[0] = up[1]; 2498 ((uint16_t *)&ports)[1] = up[0]; 2499 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2500 ntohl(ipha->ipha_src), ntohs(up[0]), 2501 ntohl(ipha->ipha_dst), ntohs(up[1]), 2502 icmph->icmph_type, icmph->icmph_code)); 2503 2504 /* Have to change db_type after any pullupmsg */ 2505 DB_TYPE(mp) = M_CTL; 2506 2507 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2508 mctl_present, ip_policy, recv_ill, zoneid); 2509 return; 2510 2511 case IPPROTO_TCP: 2512 /* 2513 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2514 * transport header. 2515 */ 2516 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2517 mp->b_wptr) { 2518 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2519 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2520 goto discard_pkt; 2521 } 2522 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2523 ipha = (ipha_t *)&icmph[1]; 2524 } 2525 /* 2526 * Find a TCP client stream for this packet. 2527 * Note that we do a reverse lookup since the header is 2528 * in the form we sent it out. 2529 */ 2530 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2531 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN, 2532 ipst); 2533 if (connp == NULL) 2534 goto discard_pkt; 2535 2536 /* Have to change db_type after any pullupmsg */ 2537 DB_TYPE(mp) = M_CTL; 2538 squeue_fill(connp->conn_sqp, first_mp, tcp_input, 2539 connp, SQTAG_TCP_INPUT_ICMP_ERR); 2540 return; 2541 2542 case IPPROTO_SCTP: 2543 /* 2544 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2545 * transport header. 2546 */ 2547 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2548 mp->b_wptr) { 2549 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2550 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2551 goto discard_pkt; 2552 } 2553 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2554 ipha = (ipha_t *)&icmph[1]; 2555 } 2556 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2557 /* 2558 * Find a SCTP client stream for this packet. 2559 * Note that we do a reverse lookup since the header is 2560 * in the form we sent it out. 2561 * The ripha header is only used for the matching and we 2562 * only set the src and dst addresses, protocol, and version. 2563 */ 2564 ripha.ipha_src = ipha->ipha_dst; 2565 ripha.ipha_dst = ipha->ipha_src; 2566 ripha.ipha_protocol = ipha->ipha_protocol; 2567 ripha.ipha_version_and_hdr_length = 2568 ipha->ipha_version_and_hdr_length; 2569 ((uint16_t *)&ports)[0] = up[1]; 2570 ((uint16_t *)&ports)[1] = up[0]; 2571 2572 /* Have to change db_type after any pullupmsg */ 2573 DB_TYPE(mp) = M_CTL; 2574 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2575 mctl_present, ip_policy, zoneid); 2576 return; 2577 2578 case IPPROTO_ESP: 2579 case IPPROTO_AH: { 2580 int ipsec_rc; 2581 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2582 2583 /* 2584 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2585 * We will re-use the IPSEC_IN if it is already present as 2586 * AH/ESP will not affect any fields in the IPSEC_IN for 2587 * ICMP errors. If there is no IPSEC_IN, allocate a new 2588 * one and attach it in the front. 2589 */ 2590 if (ii != NULL) { 2591 /* 2592 * ip_fanout_proto_again converts the ICMP errors 2593 * that come back from AH/ESP to M_DATA so that 2594 * if it is non-AH/ESP and we do a pullupmsg in 2595 * this function, it would work. Convert it back 2596 * to M_CTL before we send up as this is a ICMP 2597 * error. This could have been generated locally or 2598 * by some router. Validate the inner IPsec 2599 * headers. 2600 * 2601 * NOTE : ill_index is used by ip_fanout_proto_again 2602 * to locate the ill. 2603 */ 2604 ASSERT(ill != NULL); 2605 ii->ipsec_in_ill_index = 2606 ill->ill_phyint->phyint_ifindex; 2607 ii->ipsec_in_rill_index = 2608 recv_ill->ill_phyint->phyint_ifindex; 2609 DB_TYPE(first_mp->b_cont) = M_CTL; 2610 } else { 2611 /* 2612 * IPSEC_IN is not present. We attach a ipsec_in 2613 * message and send up to IPsec for validating 2614 * and removing the IPsec headers. Clear 2615 * ipsec_in_secure so that when we return 2616 * from IPsec, we don't mistakenly think that this 2617 * is a secure packet came from the network. 2618 * 2619 * NOTE : ill_index is used by ip_fanout_proto_again 2620 * to locate the ill. 2621 */ 2622 ASSERT(first_mp == mp); 2623 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2624 if (first_mp == NULL) { 2625 freemsg(mp); 2626 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2627 return; 2628 } 2629 ii = (ipsec_in_t *)first_mp->b_rptr; 2630 2631 /* This is not a secure packet */ 2632 ii->ipsec_in_secure = B_FALSE; 2633 first_mp->b_cont = mp; 2634 DB_TYPE(mp) = M_CTL; 2635 ASSERT(ill != NULL); 2636 ii->ipsec_in_ill_index = 2637 ill->ill_phyint->phyint_ifindex; 2638 ii->ipsec_in_rill_index = 2639 recv_ill->ill_phyint->phyint_ifindex; 2640 } 2641 ip2dbg(("icmp_inbound_error: ipsec\n")); 2642 2643 if (!ipsec_loaded(ipss)) { 2644 ip_proto_not_sup(q, first_mp, 0, zoneid, ipst); 2645 return; 2646 } 2647 2648 if (ipha->ipha_protocol == IPPROTO_ESP) 2649 ipsec_rc = ipsecesp_icmp_error(first_mp); 2650 else 2651 ipsec_rc = ipsecah_icmp_error(first_mp); 2652 if (ipsec_rc == IPSEC_STATUS_FAILED) 2653 return; 2654 2655 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2656 return; 2657 } 2658 default: 2659 /* 2660 * The ripha header is only used for the lookup and we 2661 * only set the src and dst addresses and protocol. 2662 */ 2663 ripha.ipha_src = ipha->ipha_dst; 2664 ripha.ipha_dst = ipha->ipha_src; 2665 ripha.ipha_protocol = ipha->ipha_protocol; 2666 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2667 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2668 ntohl(ipha->ipha_dst), 2669 icmph->icmph_type, icmph->icmph_code)); 2670 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2671 ipha_t *in_ipha; 2672 2673 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2674 mp->b_wptr) { 2675 if (!pullupmsg(mp, (uchar_t *)ipha + 2676 hdr_length + sizeof (ipha_t) - 2677 mp->b_rptr)) { 2678 goto discard_pkt; 2679 } 2680 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2681 ipha = (ipha_t *)&icmph[1]; 2682 } 2683 /* 2684 * Caller has verified that length has to be 2685 * at least the size of IP header. 2686 */ 2687 ASSERT(hdr_length >= sizeof (ipha_t)); 2688 /* 2689 * Check the sanity of the inner IP header like 2690 * we did for the outer header. 2691 */ 2692 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2693 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2694 goto discard_pkt; 2695 } 2696 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2697 goto discard_pkt; 2698 } 2699 /* Check for Self-encapsulated tunnels */ 2700 if (in_ipha->ipha_src == ipha->ipha_src && 2701 in_ipha->ipha_dst == ipha->ipha_dst) { 2702 2703 mp = icmp_inbound_self_encap_error(mp, 2704 iph_hdr_length, hdr_length); 2705 if (mp == NULL) 2706 goto discard_pkt; 2707 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2708 ipha = (ipha_t *)&icmph[1]; 2709 hdr_length = IPH_HDR_LENGTH(ipha); 2710 /* 2711 * The packet in error is self-encapsualted. 2712 * And we are finding it further encapsulated 2713 * which we could not have possibly generated. 2714 */ 2715 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2716 goto discard_pkt; 2717 } 2718 icmp_inbound_error_fanout(q, ill, first_mp, 2719 icmph, ipha, iph_hdr_length, hdr_length, 2720 mctl_present, ip_policy, recv_ill, zoneid); 2721 return; 2722 } 2723 } 2724 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2725 ipha->ipha_protocol == IPPROTO_IPV6) && 2726 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2727 ii != NULL && 2728 ii->ipsec_in_loopback && 2729 ii->ipsec_in_secure) { 2730 /* 2731 * For IP tunnels that get a looped-back 2732 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2733 * reported new MTU to take into account the IPsec 2734 * headers protecting this configured tunnel. 2735 * 2736 * This allows the tunnel module (tun.c) to blindly 2737 * accept the MTU reported in an ICMP "too big" 2738 * message. 2739 * 2740 * Non-looped back ICMP messages will just be 2741 * handled by the security protocols (if needed), 2742 * and the first subsequent packet will hit this 2743 * path. 2744 */ 2745 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2746 ipsec_in_extra_length(first_mp)); 2747 } 2748 /* Have to change db_type after any pullupmsg */ 2749 DB_TYPE(mp) = M_CTL; 2750 2751 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2752 ip_policy, recv_ill, zoneid); 2753 return; 2754 } 2755 /* NOTREACHED */ 2756 discard_pkt: 2757 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2758 drop_pkt:; 2759 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2760 freemsg(first_mp); 2761 } 2762 2763 /* 2764 * Common IP options parser. 2765 * 2766 * Setup routine: fill in *optp with options-parsing state, then 2767 * tail-call ipoptp_next to return the first option. 2768 */ 2769 uint8_t 2770 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2771 { 2772 uint32_t totallen; /* total length of all options */ 2773 2774 totallen = ipha->ipha_version_and_hdr_length - 2775 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2776 totallen <<= 2; 2777 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2778 optp->ipoptp_end = optp->ipoptp_next + totallen; 2779 optp->ipoptp_flags = 0; 2780 return (ipoptp_next(optp)); 2781 } 2782 2783 /* 2784 * Common IP options parser: extract next option. 2785 */ 2786 uint8_t 2787 ipoptp_next(ipoptp_t *optp) 2788 { 2789 uint8_t *end = optp->ipoptp_end; 2790 uint8_t *cur = optp->ipoptp_next; 2791 uint8_t opt, len, pointer; 2792 2793 /* 2794 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2795 * has been corrupted. 2796 */ 2797 ASSERT(cur <= end); 2798 2799 if (cur == end) 2800 return (IPOPT_EOL); 2801 2802 opt = cur[IPOPT_OPTVAL]; 2803 2804 /* 2805 * Skip any NOP options. 2806 */ 2807 while (opt == IPOPT_NOP) { 2808 cur++; 2809 if (cur == end) 2810 return (IPOPT_EOL); 2811 opt = cur[IPOPT_OPTVAL]; 2812 } 2813 2814 if (opt == IPOPT_EOL) 2815 return (IPOPT_EOL); 2816 2817 /* 2818 * Option requiring a length. 2819 */ 2820 if ((cur + 1) >= end) { 2821 optp->ipoptp_flags |= IPOPTP_ERROR; 2822 return (IPOPT_EOL); 2823 } 2824 len = cur[IPOPT_OLEN]; 2825 if (len < 2) { 2826 optp->ipoptp_flags |= IPOPTP_ERROR; 2827 return (IPOPT_EOL); 2828 } 2829 optp->ipoptp_cur = cur; 2830 optp->ipoptp_len = len; 2831 optp->ipoptp_next = cur + len; 2832 if (cur + len > end) { 2833 optp->ipoptp_flags |= IPOPTP_ERROR; 2834 return (IPOPT_EOL); 2835 } 2836 2837 /* 2838 * For the options which require a pointer field, make sure 2839 * its there, and make sure it points to either something 2840 * inside this option, or the end of the option. 2841 */ 2842 switch (opt) { 2843 case IPOPT_RR: 2844 case IPOPT_TS: 2845 case IPOPT_LSRR: 2846 case IPOPT_SSRR: 2847 if (len <= IPOPT_OFFSET) { 2848 optp->ipoptp_flags |= IPOPTP_ERROR; 2849 return (opt); 2850 } 2851 pointer = cur[IPOPT_OFFSET]; 2852 if (pointer - 1 > len) { 2853 optp->ipoptp_flags |= IPOPTP_ERROR; 2854 return (opt); 2855 } 2856 break; 2857 } 2858 2859 /* 2860 * Sanity check the pointer field based on the type of the 2861 * option. 2862 */ 2863 switch (opt) { 2864 case IPOPT_RR: 2865 case IPOPT_SSRR: 2866 case IPOPT_LSRR: 2867 if (pointer < IPOPT_MINOFF_SR) 2868 optp->ipoptp_flags |= IPOPTP_ERROR; 2869 break; 2870 case IPOPT_TS: 2871 if (pointer < IPOPT_MINOFF_IT) 2872 optp->ipoptp_flags |= IPOPTP_ERROR; 2873 /* 2874 * Note that the Internet Timestamp option also 2875 * contains two four bit fields (the Overflow field, 2876 * and the Flag field), which follow the pointer 2877 * field. We don't need to check that these fields 2878 * fall within the length of the option because this 2879 * was implicitely done above. We've checked that the 2880 * pointer value is at least IPOPT_MINOFF_IT, and that 2881 * it falls within the option. Since IPOPT_MINOFF_IT > 2882 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2883 */ 2884 ASSERT(len > IPOPT_POS_OV_FLG); 2885 break; 2886 } 2887 2888 return (opt); 2889 } 2890 2891 /* 2892 * Use the outgoing IP header to create an IP_OPTIONS option the way 2893 * it was passed down from the application. 2894 */ 2895 int 2896 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2897 { 2898 ipoptp_t opts; 2899 const uchar_t *opt; 2900 uint8_t optval; 2901 uint8_t optlen; 2902 uint32_t len = 0; 2903 uchar_t *buf1 = buf; 2904 2905 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2906 len += IP_ADDR_LEN; 2907 bzero(buf1, IP_ADDR_LEN); 2908 2909 /* 2910 * OK to cast away const here, as we don't store through the returned 2911 * opts.ipoptp_cur pointer. 2912 */ 2913 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 2914 optval != IPOPT_EOL; 2915 optval = ipoptp_next(&opts)) { 2916 int off; 2917 2918 opt = opts.ipoptp_cur; 2919 optlen = opts.ipoptp_len; 2920 switch (optval) { 2921 case IPOPT_SSRR: 2922 case IPOPT_LSRR: 2923 2924 /* 2925 * Insert ipha_dst as the first entry in the source 2926 * route and move down the entries on step. 2927 * The last entry gets placed at buf1. 2928 */ 2929 buf[IPOPT_OPTVAL] = optval; 2930 buf[IPOPT_OLEN] = optlen; 2931 buf[IPOPT_OFFSET] = optlen; 2932 2933 off = optlen - IP_ADDR_LEN; 2934 if (off < 0) { 2935 /* No entries in source route */ 2936 break; 2937 } 2938 /* Last entry in source route */ 2939 bcopy(opt + off, buf1, IP_ADDR_LEN); 2940 off -= IP_ADDR_LEN; 2941 2942 while (off > 0) { 2943 bcopy(opt + off, 2944 buf + off + IP_ADDR_LEN, 2945 IP_ADDR_LEN); 2946 off -= IP_ADDR_LEN; 2947 } 2948 /* ipha_dst into first slot */ 2949 bcopy(&ipha->ipha_dst, 2950 buf + off + IP_ADDR_LEN, 2951 IP_ADDR_LEN); 2952 buf += optlen; 2953 len += optlen; 2954 break; 2955 2956 case IPOPT_COMSEC: 2957 case IPOPT_SECURITY: 2958 /* if passing up a label is not ok, then remove */ 2959 if (is_system_labeled()) 2960 break; 2961 /* FALLTHROUGH */ 2962 default: 2963 bcopy(opt, buf, optlen); 2964 buf += optlen; 2965 len += optlen; 2966 break; 2967 } 2968 } 2969 done: 2970 /* Pad the resulting options */ 2971 while (len & 0x3) { 2972 *buf++ = IPOPT_EOL; 2973 len++; 2974 } 2975 return (len); 2976 } 2977 2978 /* 2979 * Update any record route or timestamp options to include this host. 2980 * Reverse any source route option. 2981 * This routine assumes that the options are well formed i.e. that they 2982 * have already been checked. 2983 */ 2984 static void 2985 icmp_options_update(ipha_t *ipha) 2986 { 2987 ipoptp_t opts; 2988 uchar_t *opt; 2989 uint8_t optval; 2990 ipaddr_t src; /* Our local address */ 2991 ipaddr_t dst; 2992 2993 ip2dbg(("icmp_options_update\n")); 2994 src = ipha->ipha_src; 2995 dst = ipha->ipha_dst; 2996 2997 for (optval = ipoptp_first(&opts, ipha); 2998 optval != IPOPT_EOL; 2999 optval = ipoptp_next(&opts)) { 3000 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 3001 opt = opts.ipoptp_cur; 3002 ip2dbg(("icmp_options_update: opt %d, len %d\n", 3003 optval, opts.ipoptp_len)); 3004 switch (optval) { 3005 int off1, off2; 3006 case IPOPT_SSRR: 3007 case IPOPT_LSRR: 3008 /* 3009 * Reverse the source route. The first entry 3010 * should be the next to last one in the current 3011 * source route (the last entry is our address). 3012 * The last entry should be the final destination. 3013 */ 3014 off1 = IPOPT_MINOFF_SR - 1; 3015 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 3016 if (off2 < 0) { 3017 /* No entries in source route */ 3018 ip1dbg(( 3019 "icmp_options_update: bad src route\n")); 3020 break; 3021 } 3022 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 3023 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 3024 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 3025 off2 -= IP_ADDR_LEN; 3026 3027 while (off1 < off2) { 3028 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 3029 bcopy((char *)opt + off2, (char *)opt + off1, 3030 IP_ADDR_LEN); 3031 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 3032 off1 += IP_ADDR_LEN; 3033 off2 -= IP_ADDR_LEN; 3034 } 3035 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 3036 break; 3037 } 3038 } 3039 } 3040 3041 /* 3042 * Process received ICMP Redirect messages. 3043 */ 3044 static void 3045 icmp_redirect(ill_t *ill, mblk_t *mp) 3046 { 3047 ipha_t *ipha; 3048 int iph_hdr_length; 3049 icmph_t *icmph; 3050 ipha_t *ipha_err; 3051 ire_t *ire; 3052 ire_t *prev_ire; 3053 ire_t *save_ire; 3054 ipaddr_t src, dst, gateway; 3055 iulp_t ulp_info = { 0 }; 3056 int error; 3057 ip_stack_t *ipst; 3058 3059 ASSERT(ill != NULL); 3060 ipst = ill->ill_ipst; 3061 3062 ipha = (ipha_t *)mp->b_rptr; 3063 iph_hdr_length = IPH_HDR_LENGTH(ipha); 3064 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 3065 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 3066 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3067 freemsg(mp); 3068 return; 3069 } 3070 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 3071 ipha_err = (ipha_t *)&icmph[1]; 3072 src = ipha->ipha_src; 3073 dst = ipha_err->ipha_dst; 3074 gateway = icmph->icmph_rd_gateway; 3075 /* Make sure the new gateway is reachable somehow. */ 3076 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 3077 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3078 /* 3079 * Make sure we had a route for the dest in question and that 3080 * that route was pointing to the old gateway (the source of the 3081 * redirect packet.) 3082 */ 3083 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 3084 NULL, MATCH_IRE_GW, ipst); 3085 /* 3086 * Check that 3087 * the redirect was not from ourselves 3088 * the new gateway and the old gateway are directly reachable 3089 */ 3090 if (!prev_ire || 3091 !ire || 3092 ire->ire_type == IRE_LOCAL) { 3093 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3094 freemsg(mp); 3095 if (ire != NULL) 3096 ire_refrele(ire); 3097 if (prev_ire != NULL) 3098 ire_refrele(prev_ire); 3099 return; 3100 } 3101 3102 /* 3103 * Should we use the old ULP info to create the new gateway? From 3104 * a user's perspective, we should inherit the info so that it 3105 * is a "smooth" transition. If we do not do that, then new 3106 * connections going thru the new gateway will have no route metrics, 3107 * which is counter-intuitive to user. From a network point of 3108 * view, this may or may not make sense even though the new gateway 3109 * is still directly connected to us so the route metrics should not 3110 * change much. 3111 * 3112 * But if the old ire_uinfo is not initialized, we do another 3113 * recursive lookup on the dest using the new gateway. There may 3114 * be a route to that. If so, use it to initialize the redirect 3115 * route. 3116 */ 3117 if (prev_ire->ire_uinfo.iulp_set) { 3118 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3119 } else { 3120 ire_t *tmp_ire; 3121 ire_t *sire; 3122 3123 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3124 ALL_ZONES, 0, NULL, 3125 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT), 3126 ipst); 3127 if (sire != NULL) { 3128 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3129 /* 3130 * If sire != NULL, ire_ftable_lookup() should not 3131 * return a NULL value. 3132 */ 3133 ASSERT(tmp_ire != NULL); 3134 ire_refrele(tmp_ire); 3135 ire_refrele(sire); 3136 } else if (tmp_ire != NULL) { 3137 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3138 sizeof (iulp_t)); 3139 ire_refrele(tmp_ire); 3140 } 3141 } 3142 if (prev_ire->ire_type == IRE_CACHE) 3143 ire_delete(prev_ire); 3144 ire_refrele(prev_ire); 3145 /* 3146 * TODO: more precise handling for cases 0, 2, 3, the latter two 3147 * require TOS routing 3148 */ 3149 switch (icmph->icmph_code) { 3150 case 0: 3151 case 1: 3152 /* TODO: TOS specificity for cases 2 and 3 */ 3153 case 2: 3154 case 3: 3155 break; 3156 default: 3157 freemsg(mp); 3158 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3159 ire_refrele(ire); 3160 return; 3161 } 3162 /* 3163 * Create a Route Association. This will allow us to remember that 3164 * someone we believe told us to use the particular gateway. 3165 */ 3166 save_ire = ire; 3167 ire = ire_create( 3168 (uchar_t *)&dst, /* dest addr */ 3169 (uchar_t *)&ip_g_all_ones, /* mask */ 3170 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3171 (uchar_t *)&gateway, /* gateway addr */ 3172 &save_ire->ire_max_frag, /* max frag */ 3173 NULL, /* no src nce */ 3174 NULL, /* no rfq */ 3175 NULL, /* no stq */ 3176 IRE_HOST, 3177 NULL, /* ipif */ 3178 0, /* cmask */ 3179 0, /* phandle */ 3180 0, /* ihandle */ 3181 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3182 &ulp_info, 3183 NULL, /* tsol_gc_t */ 3184 NULL, /* gcgrp */ 3185 ipst); 3186 3187 if (ire == NULL) { 3188 freemsg(mp); 3189 ire_refrele(save_ire); 3190 return; 3191 } 3192 error = ire_add(&ire, NULL, NULL, NULL, B_FALSE); 3193 ire_refrele(save_ire); 3194 atomic_inc_32(&ipst->ips_ip_redirect_cnt); 3195 3196 if (error == 0) { 3197 ire_refrele(ire); /* Held in ire_add_v4 */ 3198 /* tell routing sockets that we received a redirect */ 3199 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3200 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3201 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 3202 } 3203 3204 /* 3205 * Delete any existing IRE_HOST type redirect ires for this destination. 3206 * This together with the added IRE has the effect of 3207 * modifying an existing redirect. 3208 */ 3209 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST, NULL, NULL, 3210 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), ipst); 3211 if (prev_ire != NULL) { 3212 if (prev_ire ->ire_flags & RTF_DYNAMIC) 3213 ire_delete(prev_ire); 3214 ire_refrele(prev_ire); 3215 } 3216 3217 freemsg(mp); 3218 } 3219 3220 /* 3221 * Generate an ICMP parameter problem message. 3222 */ 3223 static void 3224 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr, zoneid_t zoneid, 3225 ip_stack_t *ipst) 3226 { 3227 icmph_t icmph; 3228 boolean_t mctl_present; 3229 mblk_t *first_mp; 3230 3231 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3232 3233 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3234 if (mctl_present) 3235 freeb(first_mp); 3236 return; 3237 } 3238 3239 bzero(&icmph, sizeof (icmph_t)); 3240 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3241 icmph.icmph_pp_ptr = ptr; 3242 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 3243 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3244 ipst); 3245 } 3246 3247 /* 3248 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3249 * the ICMP header pointed to by "stuff". (May be called as writer.) 3250 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3251 * an icmp error packet can be sent. 3252 * Assigns an appropriate source address to the packet. If ipha_dst is 3253 * one of our addresses use it for source. Otherwise pick a source based 3254 * on a route lookup back to ipha_src. 3255 * Note that ipha_src must be set here since the 3256 * packet is likely to arrive on an ill queue in ip_wput() which will 3257 * not set a source address. 3258 */ 3259 static void 3260 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3261 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 3262 { 3263 ipaddr_t dst; 3264 icmph_t *icmph; 3265 ipha_t *ipha; 3266 uint_t len_needed; 3267 size_t msg_len; 3268 mblk_t *mp1; 3269 ipaddr_t src; 3270 ire_t *ire; 3271 mblk_t *ipsec_mp; 3272 ipsec_out_t *io = NULL; 3273 3274 if (mctl_present) { 3275 /* 3276 * If it is : 3277 * 3278 * 1) a IPSEC_OUT, then this is caused by outbound 3279 * datagram originating on this host. IPsec processing 3280 * may or may not have been done. Refer to comments above 3281 * icmp_inbound_error_fanout for details. 3282 * 3283 * 2) a IPSEC_IN if we are generating a icmp_message 3284 * for an incoming datagram destined for us i.e called 3285 * from ip_fanout_send_icmp. 3286 */ 3287 ipsec_info_t *in; 3288 ipsec_mp = mp; 3289 mp = ipsec_mp->b_cont; 3290 3291 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3292 ipha = (ipha_t *)mp->b_rptr; 3293 3294 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3295 in->ipsec_info_type == IPSEC_IN); 3296 3297 if (in->ipsec_info_type == IPSEC_IN) { 3298 /* 3299 * Convert the IPSEC_IN to IPSEC_OUT. 3300 */ 3301 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3302 BUMP_MIB(&ipst->ips_ip_mib, 3303 ipIfStatsOutDiscards); 3304 return; 3305 } 3306 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3307 } else { 3308 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3309 io = (ipsec_out_t *)in; 3310 /* 3311 * Clear out ipsec_out_proc_begin, so we do a fresh 3312 * ire lookup. 3313 */ 3314 io->ipsec_out_proc_begin = B_FALSE; 3315 } 3316 ASSERT(zoneid == io->ipsec_out_zoneid); 3317 ASSERT(zoneid != ALL_ZONES); 3318 } else { 3319 /* 3320 * This is in clear. The icmp message we are building 3321 * here should go out in clear. 3322 * 3323 * Pardon the convolution of it all, but it's easier to 3324 * allocate a "use cleartext" IPSEC_IN message and convert 3325 * it than it is to allocate a new one. 3326 */ 3327 ipsec_in_t *ii; 3328 ASSERT(DB_TYPE(mp) == M_DATA); 3329 ipsec_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 3330 if (ipsec_mp == NULL) { 3331 freemsg(mp); 3332 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3333 return; 3334 } 3335 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3336 3337 /* This is not a secure packet */ 3338 ii->ipsec_in_secure = B_FALSE; 3339 /* 3340 * For trusted extensions using a shared IP address we can 3341 * send using any zoneid. 3342 */ 3343 if (zoneid == ALL_ZONES) 3344 ii->ipsec_in_zoneid = GLOBAL_ZONEID; 3345 else 3346 ii->ipsec_in_zoneid = zoneid; 3347 ipsec_mp->b_cont = mp; 3348 ipha = (ipha_t *)mp->b_rptr; 3349 /* 3350 * Convert the IPSEC_IN to IPSEC_OUT. 3351 */ 3352 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3353 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3354 return; 3355 } 3356 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3357 } 3358 3359 /* Remember our eventual destination */ 3360 dst = ipha->ipha_src; 3361 3362 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3363 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE, ipst); 3364 if (ire != NULL && 3365 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3366 src = ipha->ipha_dst; 3367 } else { 3368 if (ire != NULL) 3369 ire_refrele(ire); 3370 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3371 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY), 3372 ipst); 3373 if (ire == NULL) { 3374 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3375 freemsg(ipsec_mp); 3376 return; 3377 } 3378 src = ire->ire_src_addr; 3379 } 3380 3381 if (ire != NULL) 3382 ire_refrele(ire); 3383 3384 /* 3385 * Check if we can send back more then 8 bytes in addition to 3386 * the IP header. We try to send 64 bytes of data and the internal 3387 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 3388 */ 3389 len_needed = IPH_HDR_LENGTH(ipha); 3390 if (ipha->ipha_protocol == IPPROTO_ENCAP || 3391 ipha->ipha_protocol == IPPROTO_IPV6) { 3392 3393 if (!pullupmsg(mp, -1)) { 3394 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3395 freemsg(ipsec_mp); 3396 return; 3397 } 3398 ipha = (ipha_t *)mp->b_rptr; 3399 3400 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 3401 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 3402 len_needed)); 3403 } else { 3404 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 3405 3406 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 3407 len_needed += ip_hdr_length_v6(mp, ip6h); 3408 } 3409 } 3410 len_needed += ipst->ips_ip_icmp_return; 3411 msg_len = msgdsize(mp); 3412 if (msg_len > len_needed) { 3413 (void) adjmsg(mp, len_needed - msg_len); 3414 msg_len = len_needed; 3415 } 3416 mp1 = allocb_tmpl(sizeof (icmp_ipha) + len, mp); 3417 if (mp1 == NULL) { 3418 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 3419 freemsg(ipsec_mp); 3420 return; 3421 } 3422 mp1->b_cont = mp; 3423 mp = mp1; 3424 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3425 ipsec_mp->b_rptr == (uint8_t *)io && 3426 io->ipsec_out_type == IPSEC_OUT); 3427 ipsec_mp->b_cont = mp; 3428 3429 /* 3430 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3431 * node generates be accepted in peace by all on-host destinations. 3432 * If we do NOT assume that all on-host destinations trust 3433 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3434 * (Look for ipsec_out_icmp_loopback). 3435 */ 3436 io->ipsec_out_icmp_loopback = B_TRUE; 3437 3438 ipha = (ipha_t *)mp->b_rptr; 3439 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3440 *ipha = icmp_ipha; 3441 ipha->ipha_src = src; 3442 ipha->ipha_dst = dst; 3443 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 3444 msg_len += sizeof (icmp_ipha) + len; 3445 if (msg_len > IP_MAXPACKET) { 3446 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3447 msg_len = IP_MAXPACKET; 3448 } 3449 ipha->ipha_length = htons((uint16_t)msg_len); 3450 icmph = (icmph_t *)&ipha[1]; 3451 bcopy(stuff, icmph, len); 3452 icmph->icmph_checksum = 0; 3453 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3454 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 3455 put(q, ipsec_mp); 3456 } 3457 3458 /* 3459 * Determine if an ICMP error packet can be sent given the rate limit. 3460 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3461 * in milliseconds) and a burst size. Burst size number of packets can 3462 * be sent arbitrarely closely spaced. 3463 * The state is tracked using two variables to implement an approximate 3464 * token bucket filter: 3465 * icmp_pkt_err_last - lbolt value when the last burst started 3466 * icmp_pkt_err_sent - number of packets sent in current burst 3467 */ 3468 boolean_t 3469 icmp_err_rate_limit(ip_stack_t *ipst) 3470 { 3471 clock_t now = TICK_TO_MSEC(lbolt); 3472 uint_t refilled; /* Number of packets refilled in tbf since last */ 3473 /* Guard against changes by loading into local variable */ 3474 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 3475 3476 if (err_interval == 0) 3477 return (B_FALSE); 3478 3479 if (ipst->ips_icmp_pkt_err_last > now) { 3480 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3481 ipst->ips_icmp_pkt_err_last = 0; 3482 ipst->ips_icmp_pkt_err_sent = 0; 3483 } 3484 /* 3485 * If we are in a burst update the token bucket filter. 3486 * Update the "last" time to be close to "now" but make sure 3487 * we don't loose precision. 3488 */ 3489 if (ipst->ips_icmp_pkt_err_sent != 0) { 3490 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 3491 if (refilled > ipst->ips_icmp_pkt_err_sent) { 3492 ipst->ips_icmp_pkt_err_sent = 0; 3493 } else { 3494 ipst->ips_icmp_pkt_err_sent -= refilled; 3495 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 3496 } 3497 } 3498 if (ipst->ips_icmp_pkt_err_sent == 0) { 3499 /* Start of new burst */ 3500 ipst->ips_icmp_pkt_err_last = now; 3501 } 3502 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 3503 ipst->ips_icmp_pkt_err_sent++; 3504 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3505 ipst->ips_icmp_pkt_err_sent)); 3506 return (B_FALSE); 3507 } 3508 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3509 return (B_TRUE); 3510 } 3511 3512 /* 3513 * Check if it is ok to send an IPv4 ICMP error packet in 3514 * response to the IPv4 packet in mp. 3515 * Free the message and return null if no 3516 * ICMP error packet should be sent. 3517 */ 3518 static mblk_t * 3519 icmp_pkt_err_ok(mblk_t *mp, ip_stack_t *ipst) 3520 { 3521 icmph_t *icmph; 3522 ipha_t *ipha; 3523 uint_t len_needed; 3524 ire_t *src_ire; 3525 ire_t *dst_ire; 3526 3527 if (!mp) 3528 return (NULL); 3529 ipha = (ipha_t *)mp->b_rptr; 3530 if (ip_csum_hdr(ipha)) { 3531 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 3532 freemsg(mp); 3533 return (NULL); 3534 } 3535 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3536 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3537 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3538 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3539 if (src_ire != NULL || dst_ire != NULL || 3540 CLASSD(ipha->ipha_dst) || 3541 CLASSD(ipha->ipha_src) || 3542 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3543 /* Note: only errors to the fragment with offset 0 */ 3544 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3545 freemsg(mp); 3546 if (src_ire != NULL) 3547 ire_refrele(src_ire); 3548 if (dst_ire != NULL) 3549 ire_refrele(dst_ire); 3550 return (NULL); 3551 } 3552 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3553 /* 3554 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3555 * errors in response to any ICMP errors. 3556 */ 3557 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3558 if (mp->b_wptr - mp->b_rptr < len_needed) { 3559 if (!pullupmsg(mp, len_needed)) { 3560 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3561 freemsg(mp); 3562 return (NULL); 3563 } 3564 ipha = (ipha_t *)mp->b_rptr; 3565 } 3566 icmph = (icmph_t *) 3567 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3568 switch (icmph->icmph_type) { 3569 case ICMP_DEST_UNREACHABLE: 3570 case ICMP_SOURCE_QUENCH: 3571 case ICMP_TIME_EXCEEDED: 3572 case ICMP_PARAM_PROBLEM: 3573 case ICMP_REDIRECT: 3574 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3575 freemsg(mp); 3576 return (NULL); 3577 default: 3578 break; 3579 } 3580 } 3581 /* 3582 * If this is a labeled system, then check to see if we're allowed to 3583 * send a response to this particular sender. If not, then just drop. 3584 */ 3585 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3586 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3587 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3588 freemsg(mp); 3589 return (NULL); 3590 } 3591 if (icmp_err_rate_limit(ipst)) { 3592 /* 3593 * Only send ICMP error packets every so often. 3594 * This should be done on a per port/source basis, 3595 * but for now this will suffice. 3596 */ 3597 freemsg(mp); 3598 return (NULL); 3599 } 3600 return (mp); 3601 } 3602 3603 /* 3604 * Generate an ICMP redirect message. 3605 */ 3606 static void 3607 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway, ip_stack_t *ipst) 3608 { 3609 icmph_t icmph; 3610 3611 /* 3612 * We are called from ip_rput where we could 3613 * not have attached an IPSEC_IN. 3614 */ 3615 ASSERT(mp->b_datap->db_type == M_DATA); 3616 3617 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3618 return; 3619 } 3620 3621 bzero(&icmph, sizeof (icmph_t)); 3622 icmph.icmph_type = ICMP_REDIRECT; 3623 icmph.icmph_code = 1; 3624 icmph.icmph_rd_gateway = gateway; 3625 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3626 /* Redirects sent by router, and router is global zone */ 3627 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE, GLOBAL_ZONEID, ipst); 3628 } 3629 3630 /* 3631 * Generate an ICMP time exceeded message. 3632 */ 3633 void 3634 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3635 ip_stack_t *ipst) 3636 { 3637 icmph_t icmph; 3638 boolean_t mctl_present; 3639 mblk_t *first_mp; 3640 3641 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3642 3643 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3644 if (mctl_present) 3645 freeb(first_mp); 3646 return; 3647 } 3648 3649 bzero(&icmph, sizeof (icmph_t)); 3650 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3651 icmph.icmph_code = code; 3652 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3653 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3654 ipst); 3655 } 3656 3657 /* 3658 * Generate an ICMP unreachable message. 3659 */ 3660 void 3661 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3662 ip_stack_t *ipst) 3663 { 3664 icmph_t icmph; 3665 mblk_t *first_mp; 3666 boolean_t mctl_present; 3667 3668 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3669 3670 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3671 if (mctl_present) 3672 freeb(first_mp); 3673 return; 3674 } 3675 3676 bzero(&icmph, sizeof (icmph_t)); 3677 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3678 icmph.icmph_code = code; 3679 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3680 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3681 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present, 3682 zoneid, ipst); 3683 } 3684 3685 /* 3686 * Attempt to start recovery of an IPv4 interface that's been shut down as a 3687 * duplicate. As long as someone else holds the address, the interface will 3688 * stay down. When that conflict goes away, the interface is brought back up. 3689 * This is done so that accidental shutdowns of addresses aren't made 3690 * permanent. Your server will recover from a failure. 3691 * 3692 * For DHCP, recovery is not done in the kernel. Instead, it's handled by a 3693 * user space process (dhcpagent). 3694 * 3695 * Recovery completes if ARP reports that the address is now ours (via 3696 * AR_CN_READY). In that case, we go to ip_arp_excl to finish the operation. 3697 * 3698 * This function is entered on a timer expiry; the ID is in ipif_recovery_id. 3699 */ 3700 static void 3701 ipif_dup_recovery(void *arg) 3702 { 3703 ipif_t *ipif = arg; 3704 ill_t *ill = ipif->ipif_ill; 3705 mblk_t *arp_add_mp; 3706 mblk_t *arp_del_mp; 3707 area_t *area; 3708 ip_stack_t *ipst = ill->ill_ipst; 3709 3710 ipif->ipif_recovery_id = 0; 3711 3712 /* 3713 * No lock needed for moving or condemned check, as this is just an 3714 * optimization. 3715 */ 3716 if (ill->ill_arp_closing || !(ipif->ipif_flags & IPIF_DUPLICATE) || 3717 (ipif->ipif_flags & IPIF_POINTOPOINT) || 3718 (ipif->ipif_state_flags & (IPIF_MOVING | IPIF_CONDEMNED))) { 3719 /* No reason to try to bring this address back. */ 3720 return; 3721 } 3722 3723 if ((arp_add_mp = ipif_area_alloc(ipif)) == NULL) 3724 goto alloc_fail; 3725 3726 if (ipif->ipif_arp_del_mp == NULL) { 3727 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 3728 goto alloc_fail; 3729 ipif->ipif_arp_del_mp = arp_del_mp; 3730 } 3731 3732 /* Setting the 'unverified' flag restarts DAD */ 3733 area = (area_t *)arp_add_mp->b_rptr; 3734 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 3735 ACE_F_UNVERIFIED; 3736 putnext(ill->ill_rq, arp_add_mp); 3737 return; 3738 3739 alloc_fail: 3740 /* 3741 * On allocation failure, just restart the timer. Note that the ipif 3742 * is down here, so no other thread could be trying to start a recovery 3743 * timer. The ill_lock protects the condemned flag and the recovery 3744 * timer ID. 3745 */ 3746 freemsg(arp_add_mp); 3747 mutex_enter(&ill->ill_lock); 3748 if (ipst->ips_ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0 && 3749 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 3750 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, ipif, 3751 MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3752 } 3753 mutex_exit(&ill->ill_lock); 3754 } 3755 3756 /* 3757 * This is for exclusive changes due to ARP. Either tear down an interface due 3758 * to AR_CN_FAILED and AR_CN_BOGON, or bring one up for successful recovery. 3759 */ 3760 /* ARGSUSED */ 3761 static void 3762 ip_arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3763 { 3764 ill_t *ill = rq->q_ptr; 3765 arh_t *arh; 3766 ipaddr_t src; 3767 ipif_t *ipif; 3768 char ibuf[LIFNAMSIZ + 10]; /* 10 digits for logical i/f number */ 3769 char hbuf[MAC_STR_LEN]; 3770 char sbuf[INET_ADDRSTRLEN]; 3771 const char *failtype; 3772 boolean_t bring_up; 3773 ip_stack_t *ipst = ill->ill_ipst; 3774 3775 switch (((arcn_t *)mp->b_rptr)->arcn_code) { 3776 case AR_CN_READY: 3777 failtype = NULL; 3778 bring_up = B_TRUE; 3779 break; 3780 case AR_CN_FAILED: 3781 failtype = "in use"; 3782 bring_up = B_FALSE; 3783 break; 3784 default: 3785 failtype = "claimed"; 3786 bring_up = B_FALSE; 3787 break; 3788 } 3789 3790 arh = (arh_t *)mp->b_cont->b_rptr; 3791 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3792 3793 /* Handle failures due to probes */ 3794 if (src == 0) { 3795 bcopy((char *)&arh[1] + 2 * arh->arh_hlen + IP_ADDR_LEN, &src, 3796 IP_ADDR_LEN); 3797 } 3798 3799 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, hbuf, 3800 sizeof (hbuf)); 3801 (void) ip_dot_addr(src, sbuf); 3802 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3803 3804 if ((ipif->ipif_flags & IPIF_POINTOPOINT) || 3805 ipif->ipif_lcl_addr != src) { 3806 continue; 3807 } 3808 3809 /* 3810 * If we failed on a recovery probe, then restart the timer to 3811 * try again later. 3812 */ 3813 if (!bring_up && (ipif->ipif_flags & IPIF_DUPLICATE) && 3814 !(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3815 ill->ill_net_type == IRE_IF_RESOLVER && 3816 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3817 ipst->ips_ip_dup_recovery > 0 && 3818 ipif->ipif_recovery_id == 0) { 3819 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3820 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3821 continue; 3822 } 3823 3824 /* 3825 * If what we're trying to do has already been done, then do 3826 * nothing. 3827 */ 3828 if (bring_up == ((ipif->ipif_flags & IPIF_UP) != 0)) 3829 continue; 3830 3831 ipif_get_name(ipif, ibuf, sizeof (ibuf)); 3832 3833 if (failtype == NULL) { 3834 cmn_err(CE_NOTE, "recovered address %s on %s", sbuf, 3835 ibuf); 3836 } else { 3837 cmn_err(CE_WARN, "%s has duplicate address %s (%s " 3838 "by %s); disabled", ibuf, sbuf, failtype, hbuf); 3839 } 3840 3841 if (bring_up) { 3842 ASSERT(ill->ill_dl_up); 3843 /* 3844 * Free up the ARP delete message so we can allocate 3845 * a fresh one through the normal path. 3846 */ 3847 freemsg(ipif->ipif_arp_del_mp); 3848 ipif->ipif_arp_del_mp = NULL; 3849 if (ipif_resolver_up(ipif, Res_act_initial) != 3850 EINPROGRESS) { 3851 ipif->ipif_addr_ready = 1; 3852 (void) ipif_up_done(ipif); 3853 } 3854 continue; 3855 } 3856 3857 mutex_enter(&ill->ill_lock); 3858 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 3859 ipif->ipif_flags |= IPIF_DUPLICATE; 3860 ill->ill_ipif_dup_count++; 3861 mutex_exit(&ill->ill_lock); 3862 /* 3863 * Already exclusive on the ill; no need to handle deferred 3864 * processing here. 3865 */ 3866 (void) ipif_down(ipif, NULL, NULL); 3867 ipif_down_tail(ipif); 3868 mutex_enter(&ill->ill_lock); 3869 if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3870 ill->ill_net_type == IRE_IF_RESOLVER && 3871 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3872 ipst->ips_ip_dup_recovery > 0) { 3873 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3874 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3875 } 3876 mutex_exit(&ill->ill_lock); 3877 } 3878 freemsg(mp); 3879 } 3880 3881 /* ARGSUSED */ 3882 static void 3883 ip_arp_defend(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3884 { 3885 ill_t *ill = rq->q_ptr; 3886 arh_t *arh; 3887 ipaddr_t src; 3888 ipif_t *ipif; 3889 3890 arh = (arh_t *)mp->b_cont->b_rptr; 3891 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3892 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3893 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_lcl_addr == src) 3894 (void) ipif_resolver_up(ipif, Res_act_defend); 3895 } 3896 freemsg(mp); 3897 } 3898 3899 /* 3900 * News from ARP. ARP sends notification of interesting events down 3901 * to its clients using M_CTL messages with the interesting ARP packet 3902 * attached via b_cont. 3903 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3904 * queue as opposed to ARP sending the message to all the clients, i.e. all 3905 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3906 * table if a cache IRE is found to delete all the entries for the address in 3907 * the packet. 3908 */ 3909 static void 3910 ip_arp_news(queue_t *q, mblk_t *mp) 3911 { 3912 arcn_t *arcn; 3913 arh_t *arh; 3914 ire_t *ire = NULL; 3915 char hbuf[MAC_STR_LEN]; 3916 char sbuf[INET_ADDRSTRLEN]; 3917 ipaddr_t src; 3918 in6_addr_t v6src; 3919 boolean_t isv6 = B_FALSE; 3920 ipif_t *ipif; 3921 ill_t *ill; 3922 ip_stack_t *ipst; 3923 3924 if (CONN_Q(q)) { 3925 conn_t *connp = Q_TO_CONN(q); 3926 3927 ipst = connp->conn_netstack->netstack_ip; 3928 } else { 3929 ill_t *ill = (ill_t *)q->q_ptr; 3930 3931 ipst = ill->ill_ipst; 3932 } 3933 3934 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 3935 if (q->q_next) { 3936 putnext(q, mp); 3937 } else 3938 freemsg(mp); 3939 return; 3940 } 3941 arh = (arh_t *)mp->b_cont->b_rptr; 3942 /* Is it one we are interested in? */ 3943 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 3944 isv6 = B_TRUE; 3945 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 3946 IPV6_ADDR_LEN); 3947 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 3948 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 3949 IP_ADDR_LEN); 3950 } else { 3951 freemsg(mp); 3952 return; 3953 } 3954 3955 ill = q->q_ptr; 3956 3957 arcn = (arcn_t *)mp->b_rptr; 3958 switch (arcn->arcn_code) { 3959 case AR_CN_BOGON: 3960 /* 3961 * Someone is sending ARP packets with a source protocol 3962 * address that we have published and for which we believe our 3963 * entry is authoritative and (when ill_arp_extend is set) 3964 * verified to be unique on the network. 3965 * 3966 * The ARP module internally handles the cases where the sender 3967 * is just probing (for DAD) and where the hardware address of 3968 * a non-authoritative entry has changed. Thus, these are the 3969 * real conflicts, and we have to do resolution. 3970 * 3971 * We back away quickly from the address if it's from DHCP or 3972 * otherwise temporary and hasn't been used recently (or at 3973 * all). We'd like to include "deprecated" addresses here as 3974 * well (as there's no real reason to defend something we're 3975 * discarding), but IPMP "reuses" this flag to mean something 3976 * other than the standard meaning. 3977 * 3978 * If the ARP module above is not extended (meaning that it 3979 * doesn't know how to defend the address), then we just log 3980 * the problem as we always did and continue on. It's not 3981 * right, but there's little else we can do, and those old ATM 3982 * users are going away anyway. 3983 */ 3984 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, 3985 hbuf, sizeof (hbuf)); 3986 (void) ip_dot_addr(src, sbuf); 3987 if (isv6) { 3988 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL, 3989 ipst); 3990 } else { 3991 ire = ire_cache_lookup(src, ALL_ZONES, NULL, ipst); 3992 } 3993 if (ire != NULL && IRE_IS_LOCAL(ire)) { 3994 uint32_t now; 3995 uint32_t maxage; 3996 clock_t lused; 3997 uint_t maxdefense; 3998 uint_t defs; 3999 4000 /* 4001 * First, figure out if this address hasn't been used 4002 * in a while. If it hasn't, then it's a better 4003 * candidate for abandoning. 4004 */ 4005 ipif = ire->ire_ipif; 4006 ASSERT(ipif != NULL); 4007 now = gethrestime_sec(); 4008 maxage = now - ire->ire_create_time; 4009 if (maxage > ipst->ips_ip_max_temp_idle) 4010 maxage = ipst->ips_ip_max_temp_idle; 4011 lused = drv_hztousec(ddi_get_lbolt() - 4012 ire->ire_last_used_time) / MICROSEC + 1; 4013 if (lused >= maxage && (ipif->ipif_flags & 4014 (IPIF_DHCPRUNNING | IPIF_TEMPORARY))) 4015 maxdefense = ipst->ips_ip_max_temp_defend; 4016 else 4017 maxdefense = ipst->ips_ip_max_defend; 4018 4019 /* 4020 * Now figure out how many times we've defended 4021 * ourselves. Ignore defenses that happened long in 4022 * the past. 4023 */ 4024 mutex_enter(&ire->ire_lock); 4025 if ((defs = ire->ire_defense_count) > 0 && 4026 now - ire->ire_defense_time > 4027 ipst->ips_ip_defend_interval) { 4028 ire->ire_defense_count = defs = 0; 4029 } 4030 ire->ire_defense_count++; 4031 ire->ire_defense_time = now; 4032 mutex_exit(&ire->ire_lock); 4033 ill_refhold(ill); 4034 ire_refrele(ire); 4035 4036 /* 4037 * If we've defended ourselves too many times already, 4038 * then give up and tear down the interface(s) using 4039 * this address. Otherwise, defend by sending out a 4040 * gratuitous ARP. 4041 */ 4042 if (defs >= maxdefense && ill->ill_arp_extend) { 4043 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4044 B_FALSE); 4045 } else { 4046 cmn_err(CE_WARN, 4047 "node %s is using our IP address %s on %s", 4048 hbuf, sbuf, ill->ill_name); 4049 /* 4050 * If this is an old (ATM) ARP module, then 4051 * don't try to defend the address. Remain 4052 * compatible with the old behavior. Defend 4053 * only with new ARP. 4054 */ 4055 if (ill->ill_arp_extend) { 4056 qwriter_ip(ill, q, mp, ip_arp_defend, 4057 NEW_OP, B_FALSE); 4058 } else { 4059 ill_refrele(ill); 4060 } 4061 } 4062 return; 4063 } 4064 cmn_err(CE_WARN, 4065 "proxy ARP problem? Node '%s' is using %s on %s", 4066 hbuf, sbuf, ill->ill_name); 4067 if (ire != NULL) 4068 ire_refrele(ire); 4069 break; 4070 case AR_CN_ANNOUNCE: 4071 if (isv6) { 4072 /* 4073 * For XRESOLV interfaces. 4074 * Delete the IRE cache entry and NCE for this 4075 * v6 address 4076 */ 4077 ip_ire_clookup_and_delete_v6(&v6src, ipst); 4078 /* 4079 * If v6src is a non-zero, it's a router address 4080 * as below. Do the same sort of thing to clean 4081 * out off-net IRE_CACHE entries that go through 4082 * the router. 4083 */ 4084 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 4085 ire_walk_v6(ire_delete_cache_gw_v6, 4086 (char *)&v6src, ALL_ZONES, ipst); 4087 } 4088 } else { 4089 nce_hw_map_t hwm; 4090 4091 /* 4092 * ARP gives us a copy of any packet where it thinks 4093 * the address has changed, so that we can update our 4094 * caches. We're responsible for caching known answers 4095 * in the current design. We check whether the 4096 * hardware address really has changed in all of our 4097 * entries that have cached this mapping, and if so, we 4098 * blow them away. This way we will immediately pick 4099 * up the rare case of a host changing hardware 4100 * address. 4101 */ 4102 if (src == 0) 4103 break; 4104 hwm.hwm_addr = src; 4105 hwm.hwm_hwlen = arh->arh_hlen; 4106 hwm.hwm_hwaddr = (uchar_t *)(arh + 1); 4107 NDP_HW_CHANGE_INCR(ipst->ips_ndp4); 4108 ndp_walk_common(ipst->ips_ndp4, NULL, 4109 (pfi_t)nce_delete_hw_changed, &hwm, ALL_ZONES); 4110 NDP_HW_CHANGE_DECR(ipst->ips_ndp4); 4111 } 4112 break; 4113 case AR_CN_READY: 4114 /* No external v6 resolver has a contract to use this */ 4115 if (isv6) 4116 break; 4117 /* If the link is down, we'll retry this later */ 4118 if (!(ill->ill_phyint->phyint_flags & PHYI_RUNNING)) 4119 break; 4120 ipif = ipif_lookup_addr(src, ill, ALL_ZONES, NULL, NULL, 4121 NULL, NULL, ipst); 4122 if (ipif != NULL) { 4123 /* 4124 * If this is a duplicate recovery, then we now need to 4125 * go exclusive to bring this thing back up. 4126 */ 4127 if ((ipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)) == 4128 IPIF_DUPLICATE) { 4129 ipif_refrele(ipif); 4130 ill_refhold(ill); 4131 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4132 B_FALSE); 4133 return; 4134 } 4135 /* 4136 * If this is the first notice that this address is 4137 * ready, then let the user know now. 4138 */ 4139 if ((ipif->ipif_flags & IPIF_UP) && 4140 !ipif->ipif_addr_ready) { 4141 ipif_mask_reply(ipif); 4142 ip_rts_ifmsg(ipif); 4143 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 4144 sctp_update_ipif(ipif, SCTP_IPIF_UP); 4145 } 4146 ipif->ipif_addr_ready = 1; 4147 ipif_refrele(ipif); 4148 } 4149 ire = ire_cache_lookup(src, ALL_ZONES, MBLK_GETLABEL(mp), ipst); 4150 if (ire != NULL) { 4151 ire->ire_defense_count = 0; 4152 ire_refrele(ire); 4153 } 4154 break; 4155 case AR_CN_FAILED: 4156 /* No external v6 resolver has a contract to use this */ 4157 if (isv6) 4158 break; 4159 ill_refhold(ill); 4160 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, B_FALSE); 4161 return; 4162 } 4163 freemsg(mp); 4164 } 4165 4166 /* 4167 * Create a mblk suitable for carrying the interface index and/or source link 4168 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 4169 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 4170 * application. 4171 */ 4172 mblk_t * 4173 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags, zoneid_t zoneid, 4174 ip_stack_t *ipst) 4175 { 4176 mblk_t *mp; 4177 ip_pktinfo_t *pinfo; 4178 ipha_t *ipha; 4179 struct ether_header *pether; 4180 4181 mp = allocb(sizeof (ip_pktinfo_t), BPRI_MED); 4182 if (mp == NULL) { 4183 ip1dbg(("ip_add_info: allocation failure.\n")); 4184 return (data_mp); 4185 } 4186 4187 ipha = (ipha_t *)data_mp->b_rptr; 4188 pinfo = (ip_pktinfo_t *)mp->b_rptr; 4189 bzero(pinfo, sizeof (ip_pktinfo_t)); 4190 pinfo->ip_pkt_flags = (uchar_t)flags; 4191 pinfo->ip_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 4192 4193 if (flags & (IPF_RECVIF | IPF_RECVADDR)) 4194 pinfo->ip_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 4195 if (flags & IPF_RECVADDR) { 4196 ipif_t *ipif; 4197 ire_t *ire; 4198 4199 /* 4200 * Only valid for V4 4201 */ 4202 ASSERT((ipha->ipha_version_and_hdr_length & 0xf0) == 4203 (IPV4_VERSION << 4)); 4204 4205 ipif = ipif_get_next_ipif(NULL, ill); 4206 if (ipif != NULL) { 4207 /* 4208 * Since a decision has already been made to deliver the 4209 * packet, there is no need to test for SECATTR and 4210 * ZONEONLY. 4211 * When a multicast packet is transmitted 4212 * a cache entry is created for the multicast address. 4213 * When delivering a copy of the packet or when new 4214 * packets are received we do not want to match on the 4215 * cached entry so explicitly match on 4216 * IRE_LOCAL and IRE_LOOPBACK 4217 */ 4218 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4219 IRE_LOCAL | IRE_LOOPBACK, 4220 ipif, zoneid, NULL, 4221 MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP, ipst); 4222 if (ire == NULL) { 4223 /* 4224 * packet must have come on a different 4225 * interface. 4226 * Since a decision has already been made to 4227 * deliver the packet, there is no need to test 4228 * for SECATTR and ZONEONLY. 4229 * Only match on local and broadcast ire's. 4230 * See detailed comment above. 4231 */ 4232 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4233 IRE_LOCAL | IRE_LOOPBACK, ipif, zoneid, 4234 NULL, MATCH_IRE_TYPE, ipst); 4235 } 4236 4237 if (ire == NULL) { 4238 /* 4239 * This is either a multicast packet or 4240 * the address has been removed since 4241 * the packet was received. 4242 * Return INADDR_ANY so that normal source 4243 * selection occurs for the response. 4244 */ 4245 4246 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4247 } else { 4248 pinfo->ip_pkt_match_addr.s_addr = 4249 ire->ire_src_addr; 4250 ire_refrele(ire); 4251 } 4252 ipif_refrele(ipif); 4253 } else { 4254 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4255 } 4256 } 4257 4258 pether = (struct ether_header *)((char *)ipha 4259 - sizeof (struct ether_header)); 4260 /* 4261 * Make sure the interface is an ethernet type, since this option 4262 * is currently supported only on this type of interface. Also make 4263 * sure we are pointing correctly above db_base. 4264 */ 4265 4266 if ((flags & IPF_RECVSLLA) && 4267 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 4268 (ill->ill_type == IFT_ETHER) && 4269 (ill->ill_net_type == IRE_IF_RESOLVER)) { 4270 4271 pinfo->ip_pkt_slla.sdl_type = IFT_ETHER; 4272 bcopy((uchar_t *)pether->ether_shost.ether_addr_octet, 4273 (uchar_t *)pinfo->ip_pkt_slla.sdl_data, ETHERADDRL); 4274 } else { 4275 /* 4276 * Clear the bit. Indicate to upper layer that IP is not 4277 * sending this ancillary info. 4278 */ 4279 pinfo->ip_pkt_flags = pinfo->ip_pkt_flags & ~IPF_RECVSLLA; 4280 } 4281 4282 mp->b_datap->db_type = M_CTL; 4283 mp->b_wptr += sizeof (ip_pktinfo_t); 4284 mp->b_cont = data_mp; 4285 4286 return (mp); 4287 } 4288 4289 /* 4290 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 4291 * part of the bind request. 4292 */ 4293 4294 boolean_t 4295 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 4296 { 4297 ipsec_in_t *ii; 4298 4299 ASSERT(policy_mp != NULL); 4300 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 4301 4302 ii = (ipsec_in_t *)policy_mp->b_rptr; 4303 ASSERT(ii->ipsec_in_type == IPSEC_IN); 4304 4305 connp->conn_policy = ii->ipsec_in_policy; 4306 ii->ipsec_in_policy = NULL; 4307 4308 if (ii->ipsec_in_action != NULL) { 4309 if (connp->conn_latch == NULL) { 4310 connp->conn_latch = iplatch_create(); 4311 if (connp->conn_latch == NULL) 4312 return (B_FALSE); 4313 } 4314 ipsec_latch_inbound(connp->conn_latch, ii); 4315 } 4316 return (B_TRUE); 4317 } 4318 4319 /* 4320 * Upper level protocols (ULP) pass through bind requests to IP for inspection 4321 * and to arrange for power-fanout assist. The ULP is identified by 4322 * adding a single byte at the end of the original bind message. 4323 * A ULP other than UDP or TCP that wishes to be recognized passes 4324 * down a bind with a zero length address. 4325 * 4326 * The binding works as follows: 4327 * - A zero byte address means just bind to the protocol. 4328 * - A four byte address is treated as a request to validate 4329 * that the address is a valid local address, appropriate for 4330 * an application to bind to. This does not affect any fanout 4331 * information in IP. 4332 * - A sizeof sin_t byte address is used to bind to only the local address 4333 * and port. 4334 * - A sizeof ipa_conn_t byte address contains complete fanout information 4335 * consisting of local and remote addresses and ports. In 4336 * this case, the addresses are both validated as appropriate 4337 * for this operation, and, if so, the information is retained 4338 * for use in the inbound fanout. 4339 * 4340 * The ULP (except in the zero-length bind) can append an 4341 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4342 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4343 * a copy of the source or destination IRE (source for local bind; 4344 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4345 * policy information contained should be copied on to the conn. 4346 * 4347 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4348 */ 4349 mblk_t * 4350 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4351 { 4352 ssize_t len; 4353 struct T_bind_req *tbr; 4354 sin_t *sin; 4355 ipa_conn_t *ac; 4356 uchar_t *ucp; 4357 mblk_t *mp1; 4358 boolean_t ire_requested; 4359 boolean_t ipsec_policy_set = B_FALSE; 4360 int error = 0; 4361 int protocol; 4362 ipa_conn_x_t *acx; 4363 4364 ASSERT(!connp->conn_af_isv6); 4365 connp->conn_pkt_isv6 = B_FALSE; 4366 4367 len = MBLKL(mp); 4368 if (len < (sizeof (*tbr) + 1)) { 4369 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4370 "ip_bind: bogus msg, len %ld", len); 4371 /* XXX: Need to return something better */ 4372 goto bad_addr; 4373 } 4374 /* Back up and extract the protocol identifier. */ 4375 mp->b_wptr--; 4376 protocol = *mp->b_wptr & 0xFF; 4377 tbr = (struct T_bind_req *)mp->b_rptr; 4378 /* Reset the message type in preparation for shipping it back. */ 4379 DB_TYPE(mp) = M_PCPROTO; 4380 4381 connp->conn_ulp = (uint8_t)protocol; 4382 4383 /* 4384 * Check for a zero length address. This is from a protocol that 4385 * wants to register to receive all packets of its type. 4386 */ 4387 if (tbr->ADDR_length == 0) { 4388 /* 4389 * These protocols are now intercepted in ip_bind_v6(). 4390 * Reject protocol-level binds here for now. 4391 * 4392 * For SCTP raw socket, ICMP sends down a bind with sin_t 4393 * so that the protocol type cannot be SCTP. 4394 */ 4395 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4396 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4397 goto bad_addr; 4398 } 4399 4400 /* 4401 * 4402 * The udp module never sends down a zero-length address, 4403 * and allowing this on a labeled system will break MLP 4404 * functionality. 4405 */ 4406 if (is_system_labeled() && protocol == IPPROTO_UDP) 4407 goto bad_addr; 4408 4409 if (connp->conn_mac_exempt) 4410 goto bad_addr; 4411 4412 /* No hash here really. The table is big enough. */ 4413 connp->conn_srcv6 = ipv6_all_zeros; 4414 4415 ipcl_proto_insert(connp, protocol); 4416 4417 tbr->PRIM_type = T_BIND_ACK; 4418 return (mp); 4419 } 4420 4421 /* Extract the address pointer from the message. */ 4422 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4423 tbr->ADDR_length); 4424 if (ucp == NULL) { 4425 ip1dbg(("ip_bind: no address\n")); 4426 goto bad_addr; 4427 } 4428 if (!OK_32PTR(ucp)) { 4429 ip1dbg(("ip_bind: unaligned address\n")); 4430 goto bad_addr; 4431 } 4432 /* 4433 * Check for trailing mps. 4434 */ 4435 4436 mp1 = mp->b_cont; 4437 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 4438 ipsec_policy_set = (mp1 != NULL && DB_TYPE(mp1) == IPSEC_POLICY_SET); 4439 4440 switch (tbr->ADDR_length) { 4441 default: 4442 ip1dbg(("ip_bind: bad address length %d\n", 4443 (int)tbr->ADDR_length)); 4444 goto bad_addr; 4445 4446 case IP_ADDR_LEN: 4447 /* Verification of local address only */ 4448 error = ip_bind_laddr(connp, mp, *(ipaddr_t *)ucp, 0, 4449 ire_requested, ipsec_policy_set, B_FALSE); 4450 break; 4451 4452 case sizeof (sin_t): 4453 sin = (sin_t *)ucp; 4454 error = ip_bind_laddr(connp, mp, sin->sin_addr.s_addr, 4455 sin->sin_port, ire_requested, ipsec_policy_set, B_TRUE); 4456 break; 4457 4458 case sizeof (ipa_conn_t): 4459 ac = (ipa_conn_t *)ucp; 4460 /* For raw socket, the local port is not set. */ 4461 if (ac->ac_lport == 0) 4462 ac->ac_lport = connp->conn_lport; 4463 /* Always verify destination reachability. */ 4464 error = ip_bind_connected(connp, mp, &ac->ac_laddr, 4465 ac->ac_lport, ac->ac_faddr, ac->ac_fport, ire_requested, 4466 ipsec_policy_set, B_TRUE, B_TRUE); 4467 break; 4468 4469 case sizeof (ipa_conn_x_t): 4470 acx = (ipa_conn_x_t *)ucp; 4471 /* 4472 * Whether or not to verify destination reachability depends 4473 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4474 */ 4475 error = ip_bind_connected(connp, mp, &acx->acx_conn.ac_laddr, 4476 acx->acx_conn.ac_lport, acx->acx_conn.ac_faddr, 4477 acx->acx_conn.ac_fport, ire_requested, ipsec_policy_set, 4478 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0); 4479 break; 4480 } 4481 if (error == EINPROGRESS) 4482 return (NULL); 4483 else if (error != 0) 4484 goto bad_addr; 4485 /* 4486 * Pass the IPsec headers size in ire_ipsec_overhead. 4487 * We can't do this in ip_bind_insert_ire because the policy 4488 * may not have been inherited at that point in time and hence 4489 * conn_out_enforce_policy may not be set. 4490 */ 4491 mp1 = mp->b_cont; 4492 if (ire_requested && connp->conn_out_enforce_policy && 4493 mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE) { 4494 ire_t *ire = (ire_t *)mp1->b_rptr; 4495 ASSERT(MBLKL(mp1) >= sizeof (ire_t)); 4496 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 4497 } 4498 4499 /* Send it home. */ 4500 mp->b_datap->db_type = M_PCPROTO; 4501 tbr->PRIM_type = T_BIND_ACK; 4502 return (mp); 4503 4504 bad_addr: 4505 /* 4506 * If error = -1 then we generate a TBADADDR - otherwise error is 4507 * a unix errno. 4508 */ 4509 if (error > 0) 4510 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4511 else 4512 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4513 return (mp); 4514 } 4515 4516 /* 4517 * Here address is verified to be a valid local address. 4518 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4519 * address is also considered a valid local address. 4520 * In the case of a broadcast/multicast address, however, the 4521 * upper protocol is expected to reset the src address 4522 * to 0 if it sees a IRE_BROADCAST type returned so that 4523 * no packets are emitted with broadcast/multicast address as 4524 * source address (that violates hosts requirements RFC1122) 4525 * The addresses valid for bind are: 4526 * (1) - INADDR_ANY (0) 4527 * (2) - IP address of an UP interface 4528 * (3) - IP address of a DOWN interface 4529 * (4) - valid local IP broadcast addresses. In this case 4530 * the conn will only receive packets destined to 4531 * the specified broadcast address. 4532 * (5) - a multicast address. In this case 4533 * the conn will only receive packets destined to 4534 * the specified multicast address. Note: the 4535 * application still has to issue an 4536 * IP_ADD_MEMBERSHIP socket option. 4537 * 4538 * On error, return -1 for TBADADDR otherwise pass the 4539 * errno with TSYSERR reply. 4540 * 4541 * In all the above cases, the bound address must be valid in the current zone. 4542 * When the address is loopback, multicast or broadcast, there might be many 4543 * matching IREs so bind has to look up based on the zone. 4544 * 4545 * Note: lport is in network byte order. 4546 */ 4547 int 4548 ip_bind_laddr(conn_t *connp, mblk_t *mp, ipaddr_t src_addr, uint16_t lport, 4549 boolean_t ire_requested, boolean_t ipsec_policy_set, 4550 boolean_t fanout_insert) 4551 { 4552 int error = 0; 4553 ire_t *src_ire; 4554 mblk_t *policy_mp; 4555 ipif_t *ipif; 4556 zoneid_t zoneid; 4557 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4558 4559 if (ipsec_policy_set) { 4560 policy_mp = mp->b_cont; 4561 } 4562 4563 /* 4564 * If it was previously connected, conn_fully_bound would have 4565 * been set. 4566 */ 4567 connp->conn_fully_bound = B_FALSE; 4568 4569 src_ire = NULL; 4570 ipif = NULL; 4571 4572 zoneid = IPCL_ZONEID(connp); 4573 4574 if (src_addr) { 4575 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4576 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 4577 /* 4578 * If an address other than 0.0.0.0 is requested, 4579 * we verify that it is a valid address for bind 4580 * Note: Following code is in if-else-if form for 4581 * readability compared to a condition check. 4582 */ 4583 /* LINTED - statement has no consequent */ 4584 if (IRE_IS_LOCAL(src_ire)) { 4585 /* 4586 * (2) Bind to address of local UP interface 4587 */ 4588 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4589 /* 4590 * (4) Bind to broadcast address 4591 * Note: permitted only from transports that 4592 * request IRE 4593 */ 4594 if (!ire_requested) 4595 error = EADDRNOTAVAIL; 4596 } else { 4597 /* 4598 * (3) Bind to address of local DOWN interface 4599 * (ipif_lookup_addr() looks up all interfaces 4600 * but we do not get here for UP interfaces 4601 * - case (2) above) 4602 * We put the protocol byte back into the mblk 4603 * since we may come back via ip_wput_nondata() 4604 * later with this mblk if ipif_lookup_addr chooses 4605 * to defer processing. 4606 */ 4607 *mp->b_wptr++ = (char)connp->conn_ulp; 4608 if ((ipif = ipif_lookup_addr(src_addr, NULL, zoneid, 4609 CONNP_TO_WQ(connp), mp, ip_wput_nondata, 4610 &error, ipst)) != NULL) { 4611 ipif_refrele(ipif); 4612 } else if (error == EINPROGRESS) { 4613 if (src_ire != NULL) 4614 ire_refrele(src_ire); 4615 return (EINPROGRESS); 4616 } else if (CLASSD(src_addr)) { 4617 error = 0; 4618 if (src_ire != NULL) 4619 ire_refrele(src_ire); 4620 /* 4621 * (5) bind to multicast address. 4622 * Fake out the IRE returned to upper 4623 * layer to be a broadcast IRE. 4624 */ 4625 src_ire = ire_ctable_lookup( 4626 INADDR_BROADCAST, INADDR_ANY, 4627 IRE_BROADCAST, NULL, zoneid, NULL, 4628 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY), 4629 ipst); 4630 if (src_ire == NULL || !ire_requested) 4631 error = EADDRNOTAVAIL; 4632 } else { 4633 /* 4634 * Not a valid address for bind 4635 */ 4636 error = EADDRNOTAVAIL; 4637 } 4638 /* 4639 * Just to keep it consistent with the processing in 4640 * ip_bind_v4() 4641 */ 4642 mp->b_wptr--; 4643 } 4644 if (error) { 4645 /* Red Alert! Attempting to be a bogon! */ 4646 ip1dbg(("ip_bind: bad src address 0x%x\n", 4647 ntohl(src_addr))); 4648 goto bad_addr; 4649 } 4650 } 4651 4652 /* 4653 * Allow setting new policies. For example, disconnects come 4654 * down as ipa_t bind. As we would have set conn_policy_cached 4655 * to B_TRUE before, we should set it to B_FALSE, so that policy 4656 * can change after the disconnect. 4657 */ 4658 connp->conn_policy_cached = B_FALSE; 4659 4660 /* 4661 * If not fanout_insert this was just an address verification 4662 */ 4663 if (fanout_insert) { 4664 /* 4665 * The addresses have been verified. Time to insert in 4666 * the correct fanout list. 4667 */ 4668 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4669 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4670 connp->conn_lport = lport; 4671 connp->conn_fport = 0; 4672 /* 4673 * Do we need to add a check to reject Multicast packets 4674 */ 4675 error = ipcl_bind_insert(connp, *mp->b_wptr, src_addr, lport); 4676 } 4677 4678 if (error == 0) { 4679 if (ire_requested) { 4680 if (!ip_bind_insert_ire(mp, src_ire, NULL, ipst)) { 4681 error = -1; 4682 /* Falls through to bad_addr */ 4683 } 4684 } else if (ipsec_policy_set) { 4685 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4686 error = -1; 4687 /* Falls through to bad_addr */ 4688 } 4689 } 4690 } 4691 bad_addr: 4692 if (error != 0) { 4693 if (connp->conn_anon_port) { 4694 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4695 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4696 B_FALSE); 4697 } 4698 connp->conn_mlp_type = mlptSingle; 4699 } 4700 if (src_ire != NULL) 4701 IRE_REFRELE(src_ire); 4702 if (ipsec_policy_set) { 4703 ASSERT(policy_mp == mp->b_cont); 4704 ASSERT(policy_mp != NULL); 4705 freeb(policy_mp); 4706 /* 4707 * As of now assume that nothing else accompanies 4708 * IPSEC_POLICY_SET. 4709 */ 4710 mp->b_cont = NULL; 4711 } 4712 return (error); 4713 } 4714 4715 /* 4716 * Verify that both the source and destination addresses 4717 * are valid. If verify_dst is false, then the destination address may be 4718 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4719 * destination reachability, while tunnels do not. 4720 * Note that we allow connect to broadcast and multicast 4721 * addresses when ire_requested is set. Thus the ULP 4722 * has to check for IRE_BROADCAST and multicast. 4723 * 4724 * Returns zero if ok. 4725 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4726 * (for use with TSYSERR reply). 4727 * 4728 * Note: lport and fport are in network byte order. 4729 */ 4730 int 4731 ip_bind_connected(conn_t *connp, mblk_t *mp, ipaddr_t *src_addrp, 4732 uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4733 boolean_t ire_requested, boolean_t ipsec_policy_set, 4734 boolean_t fanout_insert, boolean_t verify_dst) 4735 { 4736 ire_t *src_ire; 4737 ire_t *dst_ire; 4738 int error = 0; 4739 int protocol; 4740 mblk_t *policy_mp; 4741 ire_t *sire = NULL; 4742 ire_t *md_dst_ire = NULL; 4743 ire_t *lso_dst_ire = NULL; 4744 ill_t *ill = NULL; 4745 zoneid_t zoneid; 4746 ipaddr_t src_addr = *src_addrp; 4747 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4748 4749 src_ire = dst_ire = NULL; 4750 protocol = *mp->b_wptr & 0xFF; 4751 4752 /* 4753 * If we never got a disconnect before, clear it now. 4754 */ 4755 connp->conn_fully_bound = B_FALSE; 4756 4757 if (ipsec_policy_set) { 4758 policy_mp = mp->b_cont; 4759 } 4760 4761 zoneid = IPCL_ZONEID(connp); 4762 4763 if (CLASSD(dst_addr)) { 4764 /* Pick up an IRE_BROADCAST */ 4765 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4766 NULL, zoneid, MBLK_GETLABEL(mp), 4767 (MATCH_IRE_RECURSIVE | 4768 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4769 MATCH_IRE_SECATTR), ipst); 4770 } else { 4771 /* 4772 * If conn_dontroute is set or if conn_nexthop_set is set, 4773 * and onlink ipif is not found set ENETUNREACH error. 4774 */ 4775 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4776 ipif_t *ipif; 4777 4778 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4779 dst_addr : connp->conn_nexthop_v4, zoneid, ipst); 4780 if (ipif == NULL) { 4781 error = ENETUNREACH; 4782 goto bad_addr; 4783 } 4784 ipif_refrele(ipif); 4785 } 4786 4787 if (connp->conn_nexthop_set) { 4788 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4789 0, 0, NULL, NULL, zoneid, MBLK_GETLABEL(mp), 4790 MATCH_IRE_SECATTR, ipst); 4791 } else { 4792 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4793 &sire, zoneid, MBLK_GETLABEL(mp), 4794 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4795 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4796 MATCH_IRE_SECATTR), ipst); 4797 } 4798 } 4799 /* 4800 * dst_ire can't be a broadcast when not ire_requested. 4801 * We also prevent ire's with src address INADDR_ANY to 4802 * be used, which are created temporarily for 4803 * sending out packets from endpoints that have 4804 * conn_unspec_src set. If verify_dst is true, the destination must be 4805 * reachable. If verify_dst is false, the destination needn't be 4806 * reachable. 4807 * 4808 * If we match on a reject or black hole, then we've got a 4809 * local failure. May as well fail out the connect() attempt, 4810 * since it's never going to succeed. 4811 */ 4812 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4813 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4814 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4815 /* 4816 * If we're verifying destination reachability, we always want 4817 * to complain here. 4818 * 4819 * If we're not verifying destination reachability but the 4820 * destination has a route, we still want to fail on the 4821 * temporary address and broadcast address tests. 4822 */ 4823 if (verify_dst || (dst_ire != NULL)) { 4824 if (ip_debug > 2) { 4825 pr_addr_dbg("ip_bind_connected: bad connected " 4826 "dst %s\n", AF_INET, &dst_addr); 4827 } 4828 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4829 error = ENETUNREACH; 4830 else 4831 error = EHOSTUNREACH; 4832 goto bad_addr; 4833 } 4834 } 4835 4836 /* 4837 * We now know that routing will allow us to reach the destination. 4838 * Check whether Trusted Solaris policy allows communication with this 4839 * host, and pretend that the destination is unreachable if not. 4840 * 4841 * This is never a problem for TCP, since that transport is known to 4842 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4843 * handling. If the remote is unreachable, it will be detected at that 4844 * point, so there's no reason to check it here. 4845 * 4846 * Note that for sendto (and other datagram-oriented friends), this 4847 * check is done as part of the data path label computation instead. 4848 * The check here is just to make non-TCP connect() report the right 4849 * error. 4850 */ 4851 if (dst_ire != NULL && is_system_labeled() && 4852 !IPCL_IS_TCP(connp) && 4853 tsol_compute_label(DB_CREDDEF(mp, connp->conn_cred), dst_addr, NULL, 4854 connp->conn_mac_exempt, ipst) != 0) { 4855 error = EHOSTUNREACH; 4856 if (ip_debug > 2) { 4857 pr_addr_dbg("ip_bind_connected: no label for dst %s\n", 4858 AF_INET, &dst_addr); 4859 } 4860 goto bad_addr; 4861 } 4862 4863 /* 4864 * If the app does a connect(), it means that it will most likely 4865 * send more than 1 packet to the destination. It makes sense 4866 * to clear the temporary flag. 4867 */ 4868 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4869 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4870 irb_t *irb = dst_ire->ire_bucket; 4871 4872 rw_enter(&irb->irb_lock, RW_WRITER); 4873 /* 4874 * We need to recheck for IRE_MARK_TEMPORARY after acquiring 4875 * the lock to guarantee irb_tmp_ire_cnt. 4876 */ 4877 if (dst_ire->ire_marks & IRE_MARK_TEMPORARY) { 4878 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4879 irb->irb_tmp_ire_cnt--; 4880 } 4881 rw_exit(&irb->irb_lock); 4882 } 4883 4884 /* 4885 * See if we should notify ULP about LSO/MDT; we do this whether or not 4886 * ire_requested is TRUE, in order to handle active connects; LSO/MDT 4887 * eligibility tests for passive connects are handled separately 4888 * through tcp_adapt_ire(). We do this before the source address 4889 * selection, because dst_ire may change after a call to 4890 * ipif_select_source(). This is a best-effort check, as the 4891 * packet for this connection may not actually go through 4892 * dst_ire->ire_stq, and the exact IRE can only be known after 4893 * calling ip_newroute(). This is why we further check on the 4894 * IRE during LSO/Multidata packet transmission in 4895 * tcp_lsosend()/tcp_multisend(). 4896 */ 4897 if (!ipsec_policy_set && dst_ire != NULL && 4898 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4899 (ill = ire_to_ill(dst_ire), ill != NULL)) { 4900 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 4901 lso_dst_ire = dst_ire; 4902 IRE_REFHOLD(lso_dst_ire); 4903 } else if (ipst->ips_ip_multidata_outbound && 4904 ILL_MDT_CAPABLE(ill)) { 4905 md_dst_ire = dst_ire; 4906 IRE_REFHOLD(md_dst_ire); 4907 } 4908 } 4909 4910 if (dst_ire != NULL && 4911 dst_ire->ire_type == IRE_LOCAL && 4912 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4913 /* 4914 * If the IRE belongs to a different zone, look for a matching 4915 * route in the forwarding table and use the source address from 4916 * that route. 4917 */ 4918 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4919 zoneid, 0, NULL, 4920 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4921 MATCH_IRE_RJ_BHOLE, ipst); 4922 if (src_ire == NULL) { 4923 error = EHOSTUNREACH; 4924 goto bad_addr; 4925 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4926 if (!(src_ire->ire_type & IRE_HOST)) 4927 error = ENETUNREACH; 4928 else 4929 error = EHOSTUNREACH; 4930 goto bad_addr; 4931 } 4932 if (src_addr == INADDR_ANY) 4933 src_addr = src_ire->ire_src_addr; 4934 ire_refrele(src_ire); 4935 src_ire = NULL; 4936 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4937 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4938 src_addr = sire->ire_src_addr; 4939 ire_refrele(dst_ire); 4940 dst_ire = sire; 4941 sire = NULL; 4942 } else { 4943 /* 4944 * Pick a source address so that a proper inbound 4945 * load spreading would happen. 4946 */ 4947 ill_t *dst_ill = dst_ire->ire_ipif->ipif_ill; 4948 ipif_t *src_ipif = NULL; 4949 ire_t *ipif_ire; 4950 4951 /* 4952 * Supply a local source address such that inbound 4953 * load spreading happens. 4954 * 4955 * Determine the best source address on this ill for 4956 * the destination. 4957 * 4958 * 1) For broadcast, we should return a broadcast ire 4959 * found above so that upper layers know that the 4960 * destination address is a broadcast address. 4961 * 4962 * 2) If this is part of a group, select a better 4963 * source address so that better inbound load 4964 * balancing happens. Do the same if the ipif 4965 * is DEPRECATED. 4966 * 4967 * 3) If the outgoing interface is part of a usesrc 4968 * group, then try selecting a source address from 4969 * the usesrc ILL. 4970 */ 4971 if ((dst_ire->ire_zoneid != zoneid && 4972 dst_ire->ire_zoneid != ALL_ZONES) || 4973 (!(dst_ire->ire_type & IRE_BROADCAST) && 4974 ((dst_ill->ill_group != NULL) || 4975 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 4976 (dst_ill->ill_usesrc_ifindex != 0)))) { 4977 /* 4978 * If the destination is reachable via a 4979 * given gateway, the selected source address 4980 * should be in the same subnet as the gateway. 4981 * Otherwise, the destination is not reachable. 4982 * 4983 * If there are no interfaces on the same subnet 4984 * as the destination, ipif_select_source gives 4985 * first non-deprecated interface which might be 4986 * on a different subnet than the gateway. 4987 * This is not desirable. Hence pass the dst_ire 4988 * source address to ipif_select_source. 4989 * It is sure that the destination is reachable 4990 * with the dst_ire source address subnet. 4991 * So passing dst_ire source address to 4992 * ipif_select_source will make sure that the 4993 * selected source will be on the same subnet 4994 * as dst_ire source address. 4995 */ 4996 ipaddr_t saddr = 4997 dst_ire->ire_ipif->ipif_src_addr; 4998 src_ipif = ipif_select_source(dst_ill, 4999 saddr, zoneid); 5000 if (src_ipif != NULL) { 5001 if (IS_VNI(src_ipif->ipif_ill)) { 5002 /* 5003 * For VNI there is no 5004 * interface route 5005 */ 5006 src_addr = 5007 src_ipif->ipif_src_addr; 5008 } else { 5009 ipif_ire = 5010 ipif_to_ire(src_ipif); 5011 if (ipif_ire != NULL) { 5012 IRE_REFRELE(dst_ire); 5013 dst_ire = ipif_ire; 5014 } 5015 src_addr = 5016 dst_ire->ire_src_addr; 5017 } 5018 ipif_refrele(src_ipif); 5019 } else { 5020 src_addr = dst_ire->ire_src_addr; 5021 } 5022 } else { 5023 src_addr = dst_ire->ire_src_addr; 5024 } 5025 } 5026 } 5027 5028 /* 5029 * We do ire_route_lookup() here (and not 5030 * interface lookup as we assert that 5031 * src_addr should only come from an 5032 * UP interface for hard binding. 5033 */ 5034 ASSERT(src_ire == NULL); 5035 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 5036 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 5037 /* src_ire must be a local|loopback */ 5038 if (!IRE_IS_LOCAL(src_ire)) { 5039 if (ip_debug > 2) { 5040 pr_addr_dbg("ip_bind_connected: bad connected " 5041 "src %s\n", AF_INET, &src_addr); 5042 } 5043 error = EADDRNOTAVAIL; 5044 goto bad_addr; 5045 } 5046 5047 /* 5048 * If the source address is a loopback address, the 5049 * destination had best be local or multicast. 5050 * The transports that can't handle multicast will reject 5051 * those addresses. 5052 */ 5053 if (src_ire->ire_type == IRE_LOOPBACK && 5054 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 5055 ip1dbg(("ip_bind_connected: bad connected loopback\n")); 5056 error = -1; 5057 goto bad_addr; 5058 } 5059 5060 /* 5061 * Allow setting new policies. For example, disconnects come 5062 * down as ipa_t bind. As we would have set conn_policy_cached 5063 * to B_TRUE before, we should set it to B_FALSE, so that policy 5064 * can change after the disconnect. 5065 */ 5066 connp->conn_policy_cached = B_FALSE; 5067 5068 /* 5069 * Set the conn addresses/ports immediately, so the IPsec policy calls 5070 * can handle their passed-in conn's. 5071 */ 5072 5073 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 5074 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 5075 connp->conn_lport = lport; 5076 connp->conn_fport = fport; 5077 *src_addrp = src_addr; 5078 5079 ASSERT(!(ipsec_policy_set && ire_requested)); 5080 if (ire_requested) { 5081 iulp_t *ulp_info = NULL; 5082 5083 /* 5084 * Note that sire will not be NULL if this is an off-link 5085 * connection and there is not cache for that dest yet. 5086 * 5087 * XXX Because of an existing bug, if there are multiple 5088 * default routes, the IRE returned now may not be the actual 5089 * default route used (default routes are chosen in a 5090 * round robin fashion). So if the metrics for different 5091 * default routes are different, we may return the wrong 5092 * metrics. This will not be a problem if the existing 5093 * bug is fixed. 5094 */ 5095 if (sire != NULL) { 5096 ulp_info = &(sire->ire_uinfo); 5097 } 5098 if (!ip_bind_insert_ire(mp, dst_ire, ulp_info, ipst)) { 5099 error = -1; 5100 goto bad_addr; 5101 } 5102 } else if (ipsec_policy_set) { 5103 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 5104 error = -1; 5105 goto bad_addr; 5106 } 5107 } 5108 5109 /* 5110 * Cache IPsec policy in this conn. If we have per-socket policy, 5111 * we'll cache that. If we don't, we'll inherit global policy. 5112 * 5113 * We can't insert until the conn reflects the policy. Note that 5114 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 5115 * connections where we don't have a policy. This is to prevent 5116 * global policy lookups in the inbound path. 5117 * 5118 * If we insert before we set conn_policy_cached, 5119 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 5120 * because global policy cound be non-empty. We normally call 5121 * ipsec_check_policy() for conn_policy_cached connections only if 5122 * ipc_in_enforce_policy is set. But in this case, 5123 * conn_policy_cached can get set anytime since we made the 5124 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 5125 * called, which will make the above assumption false. Thus, we 5126 * need to insert after we set conn_policy_cached. 5127 */ 5128 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 5129 goto bad_addr; 5130 5131 if (fanout_insert) { 5132 /* 5133 * The addresses have been verified. Time to insert in 5134 * the correct fanout list. 5135 */ 5136 error = ipcl_conn_insert(connp, protocol, src_addr, 5137 dst_addr, connp->conn_ports); 5138 } 5139 5140 if (error == 0) { 5141 connp->conn_fully_bound = B_TRUE; 5142 /* 5143 * Our initial checks for LSO/MDT have passed; the IRE is not 5144 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 5145 * be supporting LSO/MDT. Pass the IRE, IPC and ILL into 5146 * ip_xxinfo_return(), which performs further checks 5147 * against them and upon success, returns the LSO/MDT info 5148 * mblk which we will attach to the bind acknowledgment. 5149 */ 5150 if (lso_dst_ire != NULL) { 5151 mblk_t *lsoinfo_mp; 5152 5153 ASSERT(ill->ill_lso_capab != NULL); 5154 if ((lsoinfo_mp = ip_lsoinfo_return(lso_dst_ire, connp, 5155 ill->ill_name, ill->ill_lso_capab)) != NULL) 5156 linkb(mp, lsoinfo_mp); 5157 } else if (md_dst_ire != NULL) { 5158 mblk_t *mdinfo_mp; 5159 5160 ASSERT(ill->ill_mdt_capab != NULL); 5161 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 5162 ill->ill_name, ill->ill_mdt_capab)) != NULL) 5163 linkb(mp, mdinfo_mp); 5164 } 5165 } 5166 bad_addr: 5167 if (ipsec_policy_set) { 5168 ASSERT(policy_mp == mp->b_cont); 5169 ASSERT(policy_mp != NULL); 5170 freeb(policy_mp); 5171 /* 5172 * As of now assume that nothing else accompanies 5173 * IPSEC_POLICY_SET. 5174 */ 5175 mp->b_cont = NULL; 5176 } 5177 if (src_ire != NULL) 5178 IRE_REFRELE(src_ire); 5179 if (dst_ire != NULL) 5180 IRE_REFRELE(dst_ire); 5181 if (sire != NULL) 5182 IRE_REFRELE(sire); 5183 if (md_dst_ire != NULL) 5184 IRE_REFRELE(md_dst_ire); 5185 if (lso_dst_ire != NULL) 5186 IRE_REFRELE(lso_dst_ire); 5187 return (error); 5188 } 5189 5190 /* 5191 * Insert the ire in b_cont. Returns false if it fails (due to lack of space). 5192 * Prefers dst_ire over src_ire. 5193 */ 5194 static boolean_t 5195 ip_bind_insert_ire(mblk_t *mp, ire_t *ire, iulp_t *ulp_info, ip_stack_t *ipst) 5196 { 5197 mblk_t *mp1; 5198 ire_t *ret_ire = NULL; 5199 5200 mp1 = mp->b_cont; 5201 ASSERT(mp1 != NULL); 5202 5203 if (ire != NULL) { 5204 /* 5205 * mp1 initialized above to IRE_DB_REQ_TYPE 5206 * appended mblk. Its <upper protocol>'s 5207 * job to make sure there is room. 5208 */ 5209 if ((mp1->b_datap->db_lim - mp1->b_rptr) < sizeof (ire_t)) 5210 return (0); 5211 5212 mp1->b_datap->db_type = IRE_DB_TYPE; 5213 mp1->b_wptr = mp1->b_rptr + sizeof (ire_t); 5214 bcopy(ire, mp1->b_rptr, sizeof (ire_t)); 5215 ret_ire = (ire_t *)mp1->b_rptr; 5216 /* 5217 * Pass the latest setting of the ip_path_mtu_discovery and 5218 * copy the ulp info if any. 5219 */ 5220 ret_ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? 5221 IPH_DF : 0; 5222 if (ulp_info != NULL) { 5223 bcopy(ulp_info, &(ret_ire->ire_uinfo), 5224 sizeof (iulp_t)); 5225 } 5226 ret_ire->ire_mp = mp1; 5227 } else { 5228 /* 5229 * No IRE was found. Remove IRE mblk. 5230 */ 5231 mp->b_cont = mp1->b_cont; 5232 freeb(mp1); 5233 } 5234 5235 return (1); 5236 } 5237 5238 /* 5239 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 5240 * the final piece where we don't. Return a pointer to the first mblk in the 5241 * result, and update the pointer to the next mblk to chew on. If anything 5242 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 5243 * NULL pointer. 5244 */ 5245 mblk_t * 5246 ip_carve_mp(mblk_t **mpp, ssize_t len) 5247 { 5248 mblk_t *mp0; 5249 mblk_t *mp1; 5250 mblk_t *mp2; 5251 5252 if (!len || !mpp || !(mp0 = *mpp)) 5253 return (NULL); 5254 /* If we aren't going to consume the first mblk, we need a dup. */ 5255 if (mp0->b_wptr - mp0->b_rptr > len) { 5256 mp1 = dupb(mp0); 5257 if (mp1) { 5258 /* Partition the data between the two mblks. */ 5259 mp1->b_wptr = mp1->b_rptr + len; 5260 mp0->b_rptr = mp1->b_wptr; 5261 /* 5262 * after adjustments if mblk not consumed is now 5263 * unaligned, try to align it. If this fails free 5264 * all messages and let upper layer recover. 5265 */ 5266 if (!OK_32PTR(mp0->b_rptr)) { 5267 if (!pullupmsg(mp0, -1)) { 5268 freemsg(mp0); 5269 freemsg(mp1); 5270 *mpp = NULL; 5271 return (NULL); 5272 } 5273 } 5274 } 5275 return (mp1); 5276 } 5277 /* Eat through as many mblks as we need to get len bytes. */ 5278 len -= mp0->b_wptr - mp0->b_rptr; 5279 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 5280 if (mp2->b_wptr - mp2->b_rptr > len) { 5281 /* 5282 * We won't consume the entire last mblk. Like 5283 * above, dup and partition it. 5284 */ 5285 mp1->b_cont = dupb(mp2); 5286 mp1 = mp1->b_cont; 5287 if (!mp1) { 5288 /* 5289 * Trouble. Rather than go to a lot of 5290 * trouble to clean up, we free the messages. 5291 * This won't be any worse than losing it on 5292 * the wire. 5293 */ 5294 freemsg(mp0); 5295 freemsg(mp2); 5296 *mpp = NULL; 5297 return (NULL); 5298 } 5299 mp1->b_wptr = mp1->b_rptr + len; 5300 mp2->b_rptr = mp1->b_wptr; 5301 /* 5302 * after adjustments if mblk not consumed is now 5303 * unaligned, try to align it. If this fails free 5304 * all messages and let upper layer recover. 5305 */ 5306 if (!OK_32PTR(mp2->b_rptr)) { 5307 if (!pullupmsg(mp2, -1)) { 5308 freemsg(mp0); 5309 freemsg(mp2); 5310 *mpp = NULL; 5311 return (NULL); 5312 } 5313 } 5314 *mpp = mp2; 5315 return (mp0); 5316 } 5317 /* Decrement len by the amount we just got. */ 5318 len -= mp2->b_wptr - mp2->b_rptr; 5319 } 5320 /* 5321 * len should be reduced to zero now. If not our caller has 5322 * screwed up. 5323 */ 5324 if (len) { 5325 /* Shouldn't happen! */ 5326 freemsg(mp0); 5327 *mpp = NULL; 5328 return (NULL); 5329 } 5330 /* 5331 * We consumed up to exactly the end of an mblk. Detach the part 5332 * we are returning from the rest of the chain. 5333 */ 5334 mp1->b_cont = NULL; 5335 *mpp = mp2; 5336 return (mp0); 5337 } 5338 5339 /* The ill stream is being unplumbed. Called from ip_close */ 5340 int 5341 ip_modclose(ill_t *ill) 5342 { 5343 boolean_t success; 5344 ipsq_t *ipsq; 5345 ipif_t *ipif; 5346 queue_t *q = ill->ill_rq; 5347 ip_stack_t *ipst = ill->ill_ipst; 5348 clock_t timeout; 5349 5350 /* 5351 * Wait for the ACKs of all deferred control messages to be processed. 5352 * In particular, we wait for a potential capability reset initiated 5353 * in ip_sioctl_plink() to complete before proceeding. 5354 * 5355 * Note: we wait for at most ip_modclose_ackwait_ms (by default 3000 ms) 5356 * in case the driver never replies. 5357 */ 5358 timeout = lbolt + MSEC_TO_TICK(ip_modclose_ackwait_ms); 5359 mutex_enter(&ill->ill_lock); 5360 while (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 5361 if (cv_timedwait(&ill->ill_cv, &ill->ill_lock, timeout) < 0) { 5362 /* Timeout */ 5363 break; 5364 } 5365 } 5366 mutex_exit(&ill->ill_lock); 5367 5368 /* 5369 * Forcibly enter the ipsq after some delay. This is to take 5370 * care of the case when some ioctl does not complete because 5371 * we sent a control message to the driver and it did not 5372 * send us a reply. We want to be able to at least unplumb 5373 * and replumb rather than force the user to reboot the system. 5374 */ 5375 success = ipsq_enter(ill, B_FALSE); 5376 5377 /* 5378 * Open/close/push/pop is guaranteed to be single threaded 5379 * per stream by STREAMS. FS guarantees that all references 5380 * from top are gone before close is called. So there can't 5381 * be another close thread that has set CONDEMNED on this ill. 5382 * and cause ipsq_enter to return failure. 5383 */ 5384 ASSERT(success); 5385 ipsq = ill->ill_phyint->phyint_ipsq; 5386 5387 /* 5388 * Mark it condemned. No new reference will be made to this ill. 5389 * Lookup functions will return an error. Threads that try to 5390 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5391 * that the refcnt will drop down to zero. 5392 */ 5393 mutex_enter(&ill->ill_lock); 5394 ill->ill_state_flags |= ILL_CONDEMNED; 5395 for (ipif = ill->ill_ipif; ipif != NULL; 5396 ipif = ipif->ipif_next) { 5397 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5398 } 5399 /* 5400 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5401 * returns error if ILL_CONDEMNED is set 5402 */ 5403 cv_broadcast(&ill->ill_cv); 5404 mutex_exit(&ill->ill_lock); 5405 5406 /* 5407 * Send all the deferred DLPI messages downstream which came in 5408 * during the small window right before ipsq_enter(). We do this 5409 * without waiting for the ACKs because all the ACKs for M_PROTO 5410 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 5411 */ 5412 ill_dlpi_send_deferred(ill); 5413 5414 /* 5415 * Shut down fragmentation reassembly. 5416 * ill_frag_timer won't start a timer again. 5417 * Now cancel any existing timer 5418 */ 5419 (void) untimeout(ill->ill_frag_timer_id); 5420 (void) ill_frag_timeout(ill, 0); 5421 5422 /* 5423 * If MOVE was in progress, clear the 5424 * move_in_progress fields also. 5425 */ 5426 if (ill->ill_move_in_progress) { 5427 ILL_CLEAR_MOVE(ill); 5428 } 5429 5430 /* 5431 * Call ill_delete to bring down the ipifs, ilms and ill on 5432 * this ill. Then wait for the refcnts to drop to zero. 5433 * ill_is_quiescent checks whether the ill is really quiescent. 5434 * Then make sure that threads that are waiting to enter the 5435 * ipsq have seen the error returned by ipsq_enter and have 5436 * gone away. Then we call ill_delete_tail which does the 5437 * DL_UNBIND_REQ with the driver and then qprocsoff. 5438 */ 5439 ill_delete(ill); 5440 mutex_enter(&ill->ill_lock); 5441 while (!ill_is_quiescent(ill)) 5442 cv_wait(&ill->ill_cv, &ill->ill_lock); 5443 while (ill->ill_waiters) 5444 cv_wait(&ill->ill_cv, &ill->ill_lock); 5445 5446 mutex_exit(&ill->ill_lock); 5447 5448 /* 5449 * ill_delete_tail drops reference on ill_ipst, but we need to keep 5450 * it held until the end of the function since the cleanup 5451 * below needs to be able to use the ip_stack_t. 5452 */ 5453 netstack_hold(ipst->ips_netstack); 5454 5455 /* qprocsoff is called in ill_delete_tail */ 5456 ill_delete_tail(ill); 5457 ASSERT(ill->ill_ipst == NULL); 5458 5459 /* 5460 * Walk through all upper (conn) streams and qenable 5461 * those that have queued data. 5462 * close synchronization needs this to 5463 * be done to ensure that all upper layers blocked 5464 * due to flow control to the closing device 5465 * get unblocked. 5466 */ 5467 ip1dbg(("ip_wsrv: walking\n")); 5468 conn_walk_drain(ipst); 5469 5470 mutex_enter(&ipst->ips_ip_mi_lock); 5471 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 5472 mutex_exit(&ipst->ips_ip_mi_lock); 5473 5474 /* 5475 * credp could be null if the open didn't succeed and ip_modopen 5476 * itself calls ip_close. 5477 */ 5478 if (ill->ill_credp != NULL) 5479 crfree(ill->ill_credp); 5480 5481 mutex_enter(&ill->ill_lock); 5482 ill_nic_info_dispatch(ill); 5483 mutex_exit(&ill->ill_lock); 5484 5485 /* 5486 * Now we are done with the module close pieces that 5487 * need the netstack_t. 5488 */ 5489 netstack_rele(ipst->ips_netstack); 5490 5491 mi_close_free((IDP)ill); 5492 q->q_ptr = WR(q)->q_ptr = NULL; 5493 5494 ipsq_exit(ipsq, B_TRUE, B_TRUE); 5495 5496 return (0); 5497 } 5498 5499 /* 5500 * This is called as part of close() for IP, UDP, ICMP, and RTS 5501 * in order to quiesce the conn. 5502 */ 5503 void 5504 ip_quiesce_conn(conn_t *connp) 5505 { 5506 boolean_t drain_cleanup_reqd = B_FALSE; 5507 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5508 boolean_t ilg_cleanup_reqd = B_FALSE; 5509 ip_stack_t *ipst; 5510 5511 ASSERT(!IPCL_IS_TCP(connp)); 5512 ipst = connp->conn_netstack->netstack_ip; 5513 5514 /* 5515 * Mark the conn as closing, and this conn must not be 5516 * inserted in future into any list. Eg. conn_drain_insert(), 5517 * won't insert this conn into the conn_drain_list. 5518 * Similarly ill_pending_mp_add() will not add any mp to 5519 * the pending mp list, after this conn has started closing. 5520 * 5521 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5522 * cannot get set henceforth. 5523 */ 5524 mutex_enter(&connp->conn_lock); 5525 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5526 connp->conn_state_flags |= CONN_CLOSING; 5527 if (connp->conn_idl != NULL) 5528 drain_cleanup_reqd = B_TRUE; 5529 if (connp->conn_oper_pending_ill != NULL) 5530 conn_ioctl_cleanup_reqd = B_TRUE; 5531 if (connp->conn_dhcpinit_ill != NULL) { 5532 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0); 5533 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit); 5534 connp->conn_dhcpinit_ill = NULL; 5535 } 5536 if (connp->conn_ilg_inuse != 0) 5537 ilg_cleanup_reqd = B_TRUE; 5538 mutex_exit(&connp->conn_lock); 5539 5540 if (conn_ioctl_cleanup_reqd) 5541 conn_ioctl_cleanup(connp); 5542 5543 if (is_system_labeled() && connp->conn_anon_port) { 5544 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5545 connp->conn_mlp_type, connp->conn_ulp, 5546 ntohs(connp->conn_lport), B_FALSE); 5547 connp->conn_anon_port = 0; 5548 } 5549 connp->conn_mlp_type = mlptSingle; 5550 5551 /* 5552 * Remove this conn from any fanout list it is on. 5553 * and then wait for any threads currently operating 5554 * on this endpoint to finish 5555 */ 5556 ipcl_hash_remove(connp); 5557 5558 /* 5559 * Remove this conn from the drain list, and do 5560 * any other cleanup that may be required. 5561 * (Only non-tcp streams may have a non-null conn_idl. 5562 * TCP streams are never flow controlled, and 5563 * conn_idl will be null) 5564 */ 5565 if (drain_cleanup_reqd) 5566 conn_drain_tail(connp, B_TRUE); 5567 5568 if (connp == ipst->ips_ip_g_mrouter) 5569 (void) ip_mrouter_done(NULL, ipst); 5570 5571 if (ilg_cleanup_reqd) 5572 ilg_delete_all(connp); 5573 5574 conn_delete_ire(connp, NULL); 5575 5576 /* 5577 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5578 * callers from write side can't be there now because close 5579 * is in progress. The only other caller is ipcl_walk 5580 * which checks for the condemned flag. 5581 */ 5582 mutex_enter(&connp->conn_lock); 5583 connp->conn_state_flags |= CONN_CONDEMNED; 5584 while (connp->conn_ref != 1) 5585 cv_wait(&connp->conn_cv, &connp->conn_lock); 5586 connp->conn_state_flags |= CONN_QUIESCED; 5587 mutex_exit(&connp->conn_lock); 5588 } 5589 5590 /* ARGSUSED */ 5591 int 5592 ip_close(queue_t *q, int flags) 5593 { 5594 conn_t *connp; 5595 5596 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5597 5598 /* 5599 * Call the appropriate delete routine depending on whether this is 5600 * a module or device. 5601 */ 5602 if (WR(q)->q_next != NULL) { 5603 /* This is a module close */ 5604 return (ip_modclose((ill_t *)q->q_ptr)); 5605 } 5606 5607 connp = q->q_ptr; 5608 ip_quiesce_conn(connp); 5609 5610 qprocsoff(q); 5611 5612 /* 5613 * Now we are truly single threaded on this stream, and can 5614 * delete the things hanging off the connp, and finally the connp. 5615 * We removed this connp from the fanout list, it cannot be 5616 * accessed thru the fanouts, and we already waited for the 5617 * conn_ref to drop to 0. We are already in close, so 5618 * there cannot be any other thread from the top. qprocsoff 5619 * has completed, and service has completed or won't run in 5620 * future. 5621 */ 5622 ASSERT(connp->conn_ref == 1); 5623 5624 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 5625 5626 connp->conn_ref--; 5627 ipcl_conn_destroy(connp); 5628 5629 q->q_ptr = WR(q)->q_ptr = NULL; 5630 return (0); 5631 } 5632 5633 /* 5634 * Wapper around putnext() so that ip_rts_request can merely use 5635 * conn_recv. 5636 */ 5637 /*ARGSUSED2*/ 5638 static void 5639 ip_conn_input(void *arg1, mblk_t *mp, void *arg2) 5640 { 5641 conn_t *connp = (conn_t *)arg1; 5642 5643 putnext(connp->conn_rq, mp); 5644 } 5645 5646 /* Return the IP checksum for the IP header at "iph". */ 5647 uint16_t 5648 ip_csum_hdr(ipha_t *ipha) 5649 { 5650 uint16_t *uph; 5651 uint32_t sum; 5652 int opt_len; 5653 5654 opt_len = (ipha->ipha_version_and_hdr_length & 0xF) - 5655 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 5656 uph = (uint16_t *)ipha; 5657 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 5658 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 5659 if (opt_len > 0) { 5660 do { 5661 sum += uph[10]; 5662 sum += uph[11]; 5663 uph += 2; 5664 } while (--opt_len); 5665 } 5666 sum = (sum & 0xFFFF) + (sum >> 16); 5667 sum = ~(sum + (sum >> 16)) & 0xFFFF; 5668 if (sum == 0xffff) 5669 sum = 0; 5670 return ((uint16_t)sum); 5671 } 5672 5673 /* 5674 * Called when the module is about to be unloaded 5675 */ 5676 void 5677 ip_ddi_destroy(void) 5678 { 5679 tnet_fini(); 5680 5681 icmp_ddi_destroy(); 5682 rts_ddi_destroy(); 5683 udp_ddi_destroy(); 5684 sctp_ddi_g_destroy(); 5685 tcp_ddi_g_destroy(); 5686 ipsec_policy_g_destroy(); 5687 ipcl_g_destroy(); 5688 ip_net_g_destroy(); 5689 ip_ire_g_fini(); 5690 inet_minor_destroy(ip_minor_arena_sa); 5691 #if defined(_LP64) 5692 inet_minor_destroy(ip_minor_arena_la); 5693 #endif 5694 5695 #ifdef DEBUG 5696 list_destroy(&ip_thread_list); 5697 rw_destroy(&ip_thread_rwlock); 5698 tsd_destroy(&ip_thread_data); 5699 #endif 5700 5701 netstack_unregister(NS_IP); 5702 } 5703 5704 /* 5705 * First step in cleanup. 5706 */ 5707 /* ARGSUSED */ 5708 static void 5709 ip_stack_shutdown(netstackid_t stackid, void *arg) 5710 { 5711 ip_stack_t *ipst = (ip_stack_t *)arg; 5712 5713 #ifdef NS_DEBUG 5714 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 5715 #endif 5716 5717 /* Get rid of loopback interfaces and their IREs */ 5718 ip_loopback_cleanup(ipst); 5719 } 5720 5721 /* 5722 * Free the IP stack instance. 5723 */ 5724 static void 5725 ip_stack_fini(netstackid_t stackid, void *arg) 5726 { 5727 ip_stack_t *ipst = (ip_stack_t *)arg; 5728 int ret; 5729 5730 #ifdef NS_DEBUG 5731 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 5732 #endif 5733 ipv4_hook_destroy(ipst); 5734 ipv6_hook_destroy(ipst); 5735 ip_net_destroy(ipst); 5736 5737 rw_destroy(&ipst->ips_srcid_lock); 5738 5739 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 5740 ipst->ips_ip_mibkp = NULL; 5741 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 5742 ipst->ips_icmp_mibkp = NULL; 5743 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 5744 ipst->ips_ip_kstat = NULL; 5745 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 5746 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 5747 ipst->ips_ip6_kstat = NULL; 5748 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 5749 5750 nd_free(&ipst->ips_ip_g_nd); 5751 kmem_free(ipst->ips_param_arr, sizeof (lcl_param_arr)); 5752 ipst->ips_param_arr = NULL; 5753 kmem_free(ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5754 ipst->ips_ndp_arr = NULL; 5755 5756 ip_mrouter_stack_destroy(ipst); 5757 5758 mutex_destroy(&ipst->ips_ip_mi_lock); 5759 rw_destroy(&ipst->ips_ipsec_capab_ills_lock); 5760 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 5761 rw_destroy(&ipst->ips_ip_g_nd_lock); 5762 5763 ret = untimeout(ipst->ips_igmp_timeout_id); 5764 if (ret == -1) { 5765 ASSERT(ipst->ips_igmp_timeout_id == 0); 5766 } else { 5767 ASSERT(ipst->ips_igmp_timeout_id != 0); 5768 ipst->ips_igmp_timeout_id = 0; 5769 } 5770 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 5771 if (ret == -1) { 5772 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 5773 } else { 5774 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 5775 ipst->ips_igmp_slowtimeout_id = 0; 5776 } 5777 ret = untimeout(ipst->ips_mld_timeout_id); 5778 if (ret == -1) { 5779 ASSERT(ipst->ips_mld_timeout_id == 0); 5780 } else { 5781 ASSERT(ipst->ips_mld_timeout_id != 0); 5782 ipst->ips_mld_timeout_id = 0; 5783 } 5784 ret = untimeout(ipst->ips_mld_slowtimeout_id); 5785 if (ret == -1) { 5786 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 5787 } else { 5788 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 5789 ipst->ips_mld_slowtimeout_id = 0; 5790 } 5791 ret = untimeout(ipst->ips_ip_ire_expire_id); 5792 if (ret == -1) { 5793 ASSERT(ipst->ips_ip_ire_expire_id == 0); 5794 } else { 5795 ASSERT(ipst->ips_ip_ire_expire_id != 0); 5796 ipst->ips_ip_ire_expire_id = 0; 5797 } 5798 5799 mutex_destroy(&ipst->ips_igmp_timer_lock); 5800 mutex_destroy(&ipst->ips_mld_timer_lock); 5801 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 5802 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 5803 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 5804 rw_destroy(&ipst->ips_ill_g_lock); 5805 5806 ip_ire_fini(ipst); 5807 ip6_asp_free(ipst); 5808 conn_drain_fini(ipst); 5809 ipcl_destroy(ipst); 5810 5811 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 5812 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 5813 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 5814 ipst->ips_ndp4 = NULL; 5815 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 5816 ipst->ips_ndp6 = NULL; 5817 5818 if (ipst->ips_loopback_ksp != NULL) { 5819 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 5820 ipst->ips_loopback_ksp = NULL; 5821 } 5822 5823 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 5824 ipst->ips_phyint_g_list = NULL; 5825 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 5826 ipst->ips_ill_g_heads = NULL; 5827 5828 kmem_free(ipst, sizeof (*ipst)); 5829 } 5830 5831 /* 5832 * This function is called from the TSD destructor, and is used to debug 5833 * reference count issues in IP. See block comment in <inet/ip_if.h> for 5834 * details. 5835 */ 5836 static void 5837 ip_thread_exit(void *phash) 5838 { 5839 th_hash_t *thh = phash; 5840 5841 rw_enter(&ip_thread_rwlock, RW_WRITER); 5842 list_remove(&ip_thread_list, thh); 5843 rw_exit(&ip_thread_rwlock); 5844 mod_hash_destroy_hash(thh->thh_hash); 5845 kmem_free(thh, sizeof (*thh)); 5846 } 5847 5848 /* 5849 * Called when the IP kernel module is loaded into the kernel 5850 */ 5851 void 5852 ip_ddi_init(void) 5853 { 5854 ip_input_proc = ip_squeue_switch(ip_squeue_enter); 5855 5856 /* 5857 * For IP and TCP the minor numbers should start from 2 since we have 4 5858 * initial devices: ip, ip6, tcp, tcp6. 5859 */ 5860 /* 5861 * If this is a 64-bit kernel, then create two separate arenas - 5862 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the 5863 * other for socket apps in the range 2^^18 through 2^^32-1. 5864 */ 5865 ip_minor_arena_la = NULL; 5866 ip_minor_arena_sa = NULL; 5867 #if defined(_LP64) 5868 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 5869 INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) { 5870 cmn_err(CE_PANIC, 5871 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 5872 } 5873 if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la", 5874 MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) { 5875 cmn_err(CE_PANIC, 5876 "ip_ddi_init: ip_minor_arena_la creation failed\n"); 5877 } 5878 #else 5879 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 5880 INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) { 5881 cmn_err(CE_PANIC, 5882 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 5883 } 5884 #endif 5885 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5886 5887 ipcl_g_init(); 5888 ip_ire_g_init(); 5889 ip_net_g_init(); 5890 5891 #ifdef DEBUG 5892 tsd_create(&ip_thread_data, ip_thread_exit); 5893 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL); 5894 list_create(&ip_thread_list, sizeof (th_hash_t), 5895 offsetof(th_hash_t, thh_link)); 5896 #endif 5897 5898 /* 5899 * We want to be informed each time a stack is created or 5900 * destroyed in the kernel, so we can maintain the 5901 * set of udp_stack_t's. 5902 */ 5903 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 5904 ip_stack_fini); 5905 5906 ipsec_policy_g_init(); 5907 tcp_ddi_g_init(); 5908 sctp_ddi_g_init(); 5909 5910 tnet_init(); 5911 5912 udp_ddi_init(); 5913 rts_ddi_init(); 5914 icmp_ddi_init(); 5915 } 5916 5917 /* 5918 * Initialize the IP stack instance. 5919 */ 5920 static void * 5921 ip_stack_init(netstackid_t stackid, netstack_t *ns) 5922 { 5923 ip_stack_t *ipst; 5924 ipparam_t *pa; 5925 ipndp_t *na; 5926 5927 #ifdef NS_DEBUG 5928 printf("ip_stack_init(stack %d)\n", stackid); 5929 #endif 5930 5931 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 5932 ipst->ips_netstack = ns; 5933 5934 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 5935 KM_SLEEP); 5936 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 5937 KM_SLEEP); 5938 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5939 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5940 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5941 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5942 5943 rw_init(&ipst->ips_ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 5944 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5945 ipst->ips_igmp_deferred_next = INFINITY; 5946 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5947 ipst->ips_mld_deferred_next = INFINITY; 5948 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5949 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5950 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 5951 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 5952 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 5953 rw_init(&ipst->ips_ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 5954 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 5955 5956 ipcl_init(ipst); 5957 ip_ire_init(ipst); 5958 ip6_asp_init(ipst); 5959 ipif_init(ipst); 5960 conn_drain_init(ipst); 5961 ip_mrouter_stack_init(ipst); 5962 5963 ipst->ips_ip_g_frag_timeout = IP_FRAG_TIMEOUT; 5964 ipst->ips_ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 5965 5966 ipst->ips_ip_multirt_log_interval = 1000; 5967 5968 ipst->ips_ip_g_forward = IP_FORWARD_DEFAULT; 5969 ipst->ips_ipv6_forward = IP_FORWARD_DEFAULT; 5970 ipst->ips_ill_index = 1; 5971 5972 ipst->ips_saved_ip_g_forward = -1; 5973 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 5974 5975 pa = (ipparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP); 5976 ipst->ips_param_arr = pa; 5977 bcopy(lcl_param_arr, ipst->ips_param_arr, sizeof (lcl_param_arr)); 5978 5979 na = (ipndp_t *)kmem_alloc(sizeof (lcl_ndp_arr), KM_SLEEP); 5980 ipst->ips_ndp_arr = na; 5981 bcopy(lcl_ndp_arr, ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5982 ipst->ips_ndp_arr[IPNDP_IP_FORWARDING_OFFSET].ip_ndp_data = 5983 (caddr_t)&ipst->ips_ip_g_forward; 5984 ipst->ips_ndp_arr[IPNDP_IP6_FORWARDING_OFFSET].ip_ndp_data = 5985 (caddr_t)&ipst->ips_ipv6_forward; 5986 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_name, 5987 "ip_cgtp_filter") == 0); 5988 ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_data = 5989 (caddr_t)&ipst->ips_ip_cgtp_filter; 5990 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_name, 5991 "ipmp_hook_emulation") == 0); 5992 ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_data = 5993 (caddr_t)&ipst->ips_ipmp_hook_emulation; 5994 5995 (void) ip_param_register(&ipst->ips_ip_g_nd, 5996 ipst->ips_param_arr, A_CNT(lcl_param_arr), 5997 ipst->ips_ndp_arr, A_CNT(lcl_ndp_arr)); 5998 5999 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 6000 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 6001 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 6002 ipst->ips_ip6_kstat = 6003 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 6004 6005 ipst->ips_ipmp_enable_failback = B_TRUE; 6006 6007 ipst->ips_ip_src_id = 1; 6008 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 6009 6010 ip_net_init(ipst, ns); 6011 ipv4_hook_init(ipst); 6012 ipv6_hook_init(ipst); 6013 6014 return (ipst); 6015 } 6016 6017 /* 6018 * Allocate and initialize a DLPI template of the specified length. (May be 6019 * called as writer.) 6020 */ 6021 mblk_t * 6022 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 6023 { 6024 mblk_t *mp; 6025 6026 mp = allocb(len, BPRI_MED); 6027 if (!mp) 6028 return (NULL); 6029 6030 /* 6031 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 6032 * of which we don't seem to use) are sent with M_PCPROTO, and 6033 * that other DLPI are M_PROTO. 6034 */ 6035 if (prim == DL_INFO_REQ) { 6036 mp->b_datap->db_type = M_PCPROTO; 6037 } else { 6038 mp->b_datap->db_type = M_PROTO; 6039 } 6040 6041 mp->b_wptr = mp->b_rptr + len; 6042 bzero(mp->b_rptr, len); 6043 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 6044 return (mp); 6045 } 6046 6047 /* 6048 * Debug formatting routine. Returns a character string representation of the 6049 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 6050 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 6051 * 6052 * Once the ndd table-printing interfaces are removed, this can be changed to 6053 * standard dotted-decimal form. 6054 */ 6055 char * 6056 ip_dot_addr(ipaddr_t addr, char *buf) 6057 { 6058 uint8_t *ap = (uint8_t *)&addr; 6059 6060 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 6061 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 6062 return (buf); 6063 } 6064 6065 /* 6066 * Write the given MAC address as a printable string in the usual colon- 6067 * separated format. 6068 */ 6069 const char * 6070 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 6071 { 6072 char *bp; 6073 6074 if (alen == 0 || buflen < 4) 6075 return ("?"); 6076 bp = buf; 6077 for (;;) { 6078 /* 6079 * If there are more MAC address bytes available, but we won't 6080 * have any room to print them, then add "..." to the string 6081 * instead. See below for the 'magic number' explanation. 6082 */ 6083 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 6084 (void) strcpy(bp, "..."); 6085 break; 6086 } 6087 (void) sprintf(bp, "%02x", *addr++); 6088 bp += 2; 6089 if (--alen == 0) 6090 break; 6091 *bp++ = ':'; 6092 buflen -= 3; 6093 /* 6094 * At this point, based on the first 'if' statement above, 6095 * either alen == 1 and buflen >= 3, or alen > 1 and 6096 * buflen >= 4. The first case leaves room for the final "xx" 6097 * number and trailing NUL byte. The second leaves room for at 6098 * least "...". Thus the apparently 'magic' numbers chosen for 6099 * that statement. 6100 */ 6101 } 6102 return (buf); 6103 } 6104 6105 /* 6106 * Send an ICMP error after patching up the packet appropriately. Returns 6107 * non-zero if the appropriate MIB should be bumped; zero otherwise. 6108 */ 6109 static boolean_t 6110 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 6111 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, 6112 zoneid_t zoneid, ip_stack_t *ipst) 6113 { 6114 ipha_t *ipha; 6115 mblk_t *first_mp; 6116 boolean_t secure; 6117 unsigned char db_type; 6118 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6119 6120 first_mp = mp; 6121 if (mctl_present) { 6122 mp = mp->b_cont; 6123 secure = ipsec_in_is_secure(first_mp); 6124 ASSERT(mp != NULL); 6125 } else { 6126 /* 6127 * If this is an ICMP error being reported - which goes 6128 * up as M_CTLs, we need to convert them to M_DATA till 6129 * we finish checking with global policy because 6130 * ipsec_check_global_policy() assumes M_DATA as clear 6131 * and M_CTL as secure. 6132 */ 6133 db_type = DB_TYPE(mp); 6134 DB_TYPE(mp) = M_DATA; 6135 secure = B_FALSE; 6136 } 6137 /* 6138 * We are generating an icmp error for some inbound packet. 6139 * Called from all ip_fanout_(udp, tcp, proto) functions. 6140 * Before we generate an error, check with global policy 6141 * to see whether this is allowed to enter the system. As 6142 * there is no "conn", we are checking with global policy. 6143 */ 6144 ipha = (ipha_t *)mp->b_rptr; 6145 if (secure || ipss->ipsec_inbound_v4_policy_present) { 6146 first_mp = ipsec_check_global_policy(first_mp, NULL, 6147 ipha, NULL, mctl_present, ipst->ips_netstack); 6148 if (first_mp == NULL) 6149 return (B_FALSE); 6150 } 6151 6152 if (!mctl_present) 6153 DB_TYPE(mp) = db_type; 6154 6155 if (flags & IP_FF_SEND_ICMP) { 6156 if (flags & IP_FF_HDR_COMPLETE) { 6157 if (ip_hdr_complete(ipha, zoneid, ipst)) { 6158 freemsg(first_mp); 6159 return (B_TRUE); 6160 } 6161 } 6162 if (flags & IP_FF_CKSUM) { 6163 /* 6164 * Have to correct checksum since 6165 * the packet might have been 6166 * fragmented and the reassembly code in ip_rput 6167 * does not restore the IP checksum. 6168 */ 6169 ipha->ipha_hdr_checksum = 0; 6170 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6171 } 6172 switch (icmp_type) { 6173 case ICMP_DEST_UNREACHABLE: 6174 icmp_unreachable(WR(q), first_mp, icmp_code, zoneid, 6175 ipst); 6176 break; 6177 default: 6178 freemsg(first_mp); 6179 break; 6180 } 6181 } else { 6182 freemsg(first_mp); 6183 return (B_FALSE); 6184 } 6185 6186 return (B_TRUE); 6187 } 6188 6189 /* 6190 * Used to send an ICMP error message when a packet is received for 6191 * a protocol that is not supported. The mblk passed as argument 6192 * is consumed by this function. 6193 */ 6194 void 6195 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid, 6196 ip_stack_t *ipst) 6197 { 6198 mblk_t *mp; 6199 ipha_t *ipha; 6200 ill_t *ill; 6201 ipsec_in_t *ii; 6202 6203 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6204 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6205 6206 mp = ipsec_mp->b_cont; 6207 ipsec_mp->b_cont = NULL; 6208 ipha = (ipha_t *)mp->b_rptr; 6209 /* Get ill from index in ipsec_in_t. */ 6210 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 6211 (IPH_HDR_VERSION(ipha) == IPV6_VERSION), NULL, NULL, NULL, NULL, 6212 ipst); 6213 if (ill != NULL) { 6214 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 6215 if (ip_fanout_send_icmp(q, mp, flags, 6216 ICMP_DEST_UNREACHABLE, 6217 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid, ipst)) { 6218 BUMP_MIB(ill->ill_ip_mib, 6219 ipIfStatsInUnknownProtos); 6220 } 6221 } else { 6222 if (ip_fanout_send_icmp_v6(q, mp, flags, 6223 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 6224 0, B_FALSE, zoneid, ipst)) { 6225 BUMP_MIB(ill->ill_ip_mib, 6226 ipIfStatsInUnknownProtos); 6227 } 6228 } 6229 ill_refrele(ill); 6230 } else { /* re-link for the freemsg() below. */ 6231 ipsec_mp->b_cont = mp; 6232 } 6233 6234 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 6235 freemsg(ipsec_mp); 6236 } 6237 6238 /* 6239 * See if the inbound datagram has had IPsec processing applied to it. 6240 */ 6241 boolean_t 6242 ipsec_in_is_secure(mblk_t *ipsec_mp) 6243 { 6244 ipsec_in_t *ii; 6245 6246 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6247 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6248 6249 if (ii->ipsec_in_loopback) { 6250 return (ii->ipsec_in_secure); 6251 } else { 6252 return (ii->ipsec_in_ah_sa != NULL || 6253 ii->ipsec_in_esp_sa != NULL || 6254 ii->ipsec_in_decaps); 6255 } 6256 } 6257 6258 /* 6259 * Handle protocols with which IP is less intimate. There 6260 * can be more than one stream bound to a particular 6261 * protocol. When this is the case, normally each one gets a copy 6262 * of any incoming packets. 6263 * 6264 * IPsec NOTE : 6265 * 6266 * Don't allow a secure packet going up a non-secure connection. 6267 * We don't allow this because 6268 * 6269 * 1) Reply might go out in clear which will be dropped at 6270 * the sending side. 6271 * 2) If the reply goes out in clear it will give the 6272 * adversary enough information for getting the key in 6273 * most of the cases. 6274 * 6275 * Moreover getting a secure packet when we expect clear 6276 * implies that SA's were added without checking for 6277 * policy on both ends. This should not happen once ISAKMP 6278 * is used to negotiate SAs as SAs will be added only after 6279 * verifying the policy. 6280 * 6281 * NOTE : If the packet was tunneled and not multicast we only send 6282 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 6283 * back to delivering packets to AF_INET6 raw sockets. 6284 * 6285 * IPQoS Notes: 6286 * Once we have determined the client, invoke IPPF processing. 6287 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6288 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6289 * ip_policy will be false. 6290 * 6291 * Zones notes: 6292 * Currently only applications in the global zone can create raw sockets for 6293 * protocols other than ICMP. So unlike the broadcast / multicast case of 6294 * ip_fanout_udp(), we only send a copy of the packet to streams in the 6295 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 6296 */ 6297 static void 6298 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 6299 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 6300 zoneid_t zoneid) 6301 { 6302 queue_t *rq; 6303 mblk_t *mp1, *first_mp1; 6304 uint_t protocol = ipha->ipha_protocol; 6305 ipaddr_t dst; 6306 boolean_t one_only; 6307 mblk_t *first_mp = mp; 6308 boolean_t secure; 6309 uint32_t ill_index; 6310 conn_t *connp, *first_connp, *next_connp; 6311 connf_t *connfp; 6312 boolean_t shared_addr; 6313 mib2_ipIfStatsEntry_t *mibptr; 6314 ip_stack_t *ipst = recv_ill->ill_ipst; 6315 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6316 6317 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 6318 if (mctl_present) { 6319 mp = first_mp->b_cont; 6320 secure = ipsec_in_is_secure(first_mp); 6321 ASSERT(mp != NULL); 6322 } else { 6323 secure = B_FALSE; 6324 } 6325 dst = ipha->ipha_dst; 6326 /* 6327 * If the packet was tunneled and not multicast we only send to it 6328 * the first match. 6329 */ 6330 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 6331 !CLASSD(dst)); 6332 6333 shared_addr = (zoneid == ALL_ZONES); 6334 if (shared_addr) { 6335 /* 6336 * We don't allow multilevel ports for raw IP, so no need to 6337 * check for that here. 6338 */ 6339 zoneid = tsol_packet_to_zoneid(mp); 6340 } 6341 6342 connfp = &ipst->ips_ipcl_proto_fanout[protocol]; 6343 mutex_enter(&connfp->connf_lock); 6344 connp = connfp->connf_head; 6345 for (connp = connfp->connf_head; connp != NULL; 6346 connp = connp->conn_next) { 6347 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 6348 zoneid) && 6349 (!is_system_labeled() || 6350 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6351 connp))) { 6352 break; 6353 } 6354 } 6355 6356 if (connp == NULL || connp->conn_upq == NULL) { 6357 /* 6358 * No one bound to these addresses. Is 6359 * there a client that wants all 6360 * unclaimed datagrams? 6361 */ 6362 mutex_exit(&connfp->connf_lock); 6363 /* 6364 * Check for IPPROTO_ENCAP... 6365 */ 6366 if (protocol == IPPROTO_ENCAP && ipst->ips_ip_g_mrouter) { 6367 /* 6368 * If an IPsec mblk is here on a multicast 6369 * tunnel (using ip_mroute stuff), check policy here, 6370 * THEN ship off to ip_mroute_decap(). 6371 * 6372 * BTW, If I match a configured IP-in-IP 6373 * tunnel, this path will not be reached, and 6374 * ip_mroute_decap will never be called. 6375 */ 6376 first_mp = ipsec_check_global_policy(first_mp, connp, 6377 ipha, NULL, mctl_present, ipst->ips_netstack); 6378 if (first_mp != NULL) { 6379 if (mctl_present) 6380 freeb(first_mp); 6381 ip_mroute_decap(q, mp, ill); 6382 } /* Else we already freed everything! */ 6383 } else { 6384 /* 6385 * Otherwise send an ICMP protocol unreachable. 6386 */ 6387 if (ip_fanout_send_icmp(q, first_mp, flags, 6388 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 6389 mctl_present, zoneid, ipst)) { 6390 BUMP_MIB(mibptr, ipIfStatsInUnknownProtos); 6391 } 6392 } 6393 return; 6394 } 6395 CONN_INC_REF(connp); 6396 first_connp = connp; 6397 6398 /* 6399 * Only send message to one tunnel driver by immediately 6400 * terminating the loop. 6401 */ 6402 connp = one_only ? NULL : connp->conn_next; 6403 6404 for (;;) { 6405 while (connp != NULL) { 6406 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 6407 flags, zoneid) && 6408 (!is_system_labeled() || 6409 tsol_receive_local(mp, &dst, IPV4_VERSION, 6410 shared_addr, connp))) 6411 break; 6412 connp = connp->conn_next; 6413 } 6414 6415 /* 6416 * Copy the packet. 6417 */ 6418 if (connp == NULL || connp->conn_upq == NULL || 6419 (((first_mp1 = dupmsg(first_mp)) == NULL) && 6420 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 6421 /* 6422 * No more interested clients or memory 6423 * allocation failed 6424 */ 6425 connp = first_connp; 6426 break; 6427 } 6428 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 6429 CONN_INC_REF(connp); 6430 mutex_exit(&connfp->connf_lock); 6431 rq = connp->conn_rq; 6432 if (!canputnext(rq)) { 6433 if (flags & IP_FF_RAWIP) { 6434 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6435 } else { 6436 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6437 } 6438 6439 freemsg(first_mp1); 6440 } else { 6441 /* 6442 * Don't enforce here if we're an actual tunnel - 6443 * let "tun" do it instead. 6444 */ 6445 if (!IPCL_IS_IPTUN(connp) && 6446 (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 6447 secure)) { 6448 first_mp1 = ipsec_check_inbound_policy 6449 (first_mp1, connp, ipha, NULL, 6450 mctl_present); 6451 } 6452 if (first_mp1 != NULL) { 6453 int in_flags = 0; 6454 /* 6455 * ip_fanout_proto also gets called from 6456 * icmp_inbound_error_fanout, in which case 6457 * the msg type is M_CTL. Don't add info 6458 * in this case for the time being. In future 6459 * when there is a need for knowing the 6460 * inbound iface index for ICMP error msgs, 6461 * then this can be changed. 6462 */ 6463 if (connp->conn_recvif) 6464 in_flags = IPF_RECVIF; 6465 /* 6466 * The ULP may support IP_RECVPKTINFO for both 6467 * IP v4 and v6 so pass the appropriate argument 6468 * based on conn IP version. 6469 */ 6470 if (connp->conn_ip_recvpktinfo) { 6471 if (connp->conn_af_isv6) { 6472 /* 6473 * V6 only needs index 6474 */ 6475 in_flags |= IPF_RECVIF; 6476 } else { 6477 /* 6478 * V4 needs index + 6479 * matching address. 6480 */ 6481 in_flags |= IPF_RECVADDR; 6482 } 6483 } 6484 if ((in_flags != 0) && 6485 (mp->b_datap->db_type != M_CTL)) { 6486 /* 6487 * the actual data will be 6488 * contained in b_cont upon 6489 * successful return of the 6490 * following call else 6491 * original mblk is returned 6492 */ 6493 ASSERT(recv_ill != NULL); 6494 mp1 = ip_add_info(mp1, recv_ill, 6495 in_flags, IPCL_ZONEID(connp), ipst); 6496 } 6497 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6498 if (mctl_present) 6499 freeb(first_mp1); 6500 (connp->conn_recv)(connp, mp1, NULL); 6501 } 6502 } 6503 mutex_enter(&connfp->connf_lock); 6504 /* Follow the next pointer before releasing the conn. */ 6505 next_connp = connp->conn_next; 6506 CONN_DEC_REF(connp); 6507 connp = next_connp; 6508 } 6509 6510 /* Last one. Send it upstream. */ 6511 mutex_exit(&connfp->connf_lock); 6512 6513 /* 6514 * If this packet is coming from icmp_inbound_error_fanout ip_policy 6515 * will be set to false. 6516 */ 6517 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6518 ill_index = ill->ill_phyint->phyint_ifindex; 6519 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6520 if (mp == NULL) { 6521 CONN_DEC_REF(connp); 6522 if (mctl_present) { 6523 freeb(first_mp); 6524 } 6525 return; 6526 } 6527 } 6528 6529 rq = connp->conn_rq; 6530 if (!canputnext(rq)) { 6531 if (flags & IP_FF_RAWIP) { 6532 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6533 } else { 6534 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6535 } 6536 6537 freemsg(first_mp); 6538 } else { 6539 if (IPCL_IS_IPTUN(connp)) { 6540 /* 6541 * Tunneled packet. We enforce policy in the tunnel 6542 * module itself. 6543 * 6544 * Send the WHOLE packet up (incl. IPSEC_IN) without 6545 * a policy check. 6546 * FIXME to use conn_recv for tun later. 6547 */ 6548 putnext(rq, first_mp); 6549 CONN_DEC_REF(connp); 6550 return; 6551 } 6552 6553 if ((CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure)) { 6554 first_mp = ipsec_check_inbound_policy(first_mp, connp, 6555 ipha, NULL, mctl_present); 6556 } 6557 6558 if (first_mp != NULL) { 6559 int in_flags = 0; 6560 6561 /* 6562 * ip_fanout_proto also gets called 6563 * from icmp_inbound_error_fanout, in 6564 * which case the msg type is M_CTL. 6565 * Don't add info in this case for time 6566 * being. In future when there is a 6567 * need for knowing the inbound iface 6568 * index for ICMP error msgs, then this 6569 * can be changed 6570 */ 6571 if (connp->conn_recvif) 6572 in_flags = IPF_RECVIF; 6573 if (connp->conn_ip_recvpktinfo) { 6574 if (connp->conn_af_isv6) { 6575 /* 6576 * V6 only needs index 6577 */ 6578 in_flags |= IPF_RECVIF; 6579 } else { 6580 /* 6581 * V4 needs index + 6582 * matching address. 6583 */ 6584 in_flags |= IPF_RECVADDR; 6585 } 6586 } 6587 if ((in_flags != 0) && 6588 (mp->b_datap->db_type != M_CTL)) { 6589 6590 /* 6591 * the actual data will be contained in 6592 * b_cont upon successful return 6593 * of the following call else original 6594 * mblk is returned 6595 */ 6596 ASSERT(recv_ill != NULL); 6597 mp = ip_add_info(mp, recv_ill, 6598 in_flags, IPCL_ZONEID(connp), ipst); 6599 } 6600 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6601 (connp->conn_recv)(connp, mp, NULL); 6602 if (mctl_present) 6603 freeb(first_mp); 6604 } 6605 } 6606 CONN_DEC_REF(connp); 6607 } 6608 6609 /* 6610 * Fanout for TCP packets 6611 * The caller puts <fport, lport> in the ports parameter. 6612 * 6613 * IPQoS Notes 6614 * Before sending it to the client, invoke IPPF processing. 6615 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6616 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6617 * ip_policy is false. 6618 */ 6619 static void 6620 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6621 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6622 { 6623 mblk_t *first_mp; 6624 boolean_t secure; 6625 uint32_t ill_index; 6626 int ip_hdr_len; 6627 tcph_t *tcph; 6628 boolean_t syn_present = B_FALSE; 6629 conn_t *connp; 6630 ip_stack_t *ipst = recv_ill->ill_ipst; 6631 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6632 6633 ASSERT(recv_ill != NULL); 6634 6635 first_mp = mp; 6636 if (mctl_present) { 6637 ASSERT(first_mp->b_datap->db_type == M_CTL); 6638 mp = first_mp->b_cont; 6639 secure = ipsec_in_is_secure(first_mp); 6640 ASSERT(mp != NULL); 6641 } else { 6642 secure = B_FALSE; 6643 } 6644 6645 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6646 6647 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 6648 zoneid, ipst)) == NULL) { 6649 /* 6650 * No connected connection or listener. Send a 6651 * TH_RST via tcp_xmit_listeners_reset. 6652 */ 6653 6654 /* Initiate IPPf processing, if needed. */ 6655 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 6656 uint32_t ill_index; 6657 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6658 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6659 if (first_mp == NULL) 6660 return; 6661 } 6662 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6663 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6664 zoneid)); 6665 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6666 ipst->ips_netstack->netstack_tcp, NULL); 6667 return; 6668 } 6669 6670 /* 6671 * Allocate the SYN for the TCP connection here itself 6672 */ 6673 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6674 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6675 if (IPCL_IS_TCP(connp)) { 6676 squeue_t *sqp; 6677 6678 /* 6679 * For fused tcp loopback, assign the eager's 6680 * squeue to be that of the active connect's. 6681 * Note that we don't check for IP_FF_LOOPBACK 6682 * here since this routine gets called only 6683 * for loopback (unlike the IPv6 counterpart). 6684 */ 6685 ASSERT(Q_TO_CONN(q) != NULL); 6686 if (do_tcp_fusion && 6687 !CONN_INBOUND_POLICY_PRESENT(connp, ipss) && 6688 !secure && 6689 !IPP_ENABLED(IPP_LOCAL_IN, ipst) && !ip_policy && 6690 IPCL_IS_TCP(Q_TO_CONN(q))) { 6691 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6692 sqp = Q_TO_CONN(q)->conn_sqp; 6693 } else { 6694 sqp = IP_SQUEUE_GET(lbolt); 6695 } 6696 6697 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6698 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6699 syn_present = B_TRUE; 6700 } 6701 } 6702 6703 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6704 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6705 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6706 if ((flags & TH_RST) || (flags & TH_URG)) { 6707 CONN_DEC_REF(connp); 6708 freemsg(first_mp); 6709 return; 6710 } 6711 if (flags & TH_ACK) { 6712 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6713 ipst->ips_netstack->netstack_tcp, connp); 6714 CONN_DEC_REF(connp); 6715 return; 6716 } 6717 6718 CONN_DEC_REF(connp); 6719 freemsg(first_mp); 6720 return; 6721 } 6722 6723 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6724 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6725 NULL, mctl_present); 6726 if (first_mp == NULL) { 6727 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6728 CONN_DEC_REF(connp); 6729 return; 6730 } 6731 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6732 ASSERT(syn_present); 6733 if (mctl_present) { 6734 ASSERT(first_mp != mp); 6735 first_mp->b_datap->db_struioflag |= 6736 STRUIO_POLICY; 6737 } else { 6738 ASSERT(first_mp == mp); 6739 mp->b_datap->db_struioflag &= 6740 ~STRUIO_EAGER; 6741 mp->b_datap->db_struioflag |= 6742 STRUIO_POLICY; 6743 } 6744 } else { 6745 /* 6746 * Discard first_mp early since we're dealing with a 6747 * fully-connected conn_t and tcp doesn't do policy in 6748 * this case. 6749 */ 6750 if (mctl_present) { 6751 freeb(first_mp); 6752 mctl_present = B_FALSE; 6753 } 6754 first_mp = mp; 6755 } 6756 } 6757 6758 /* 6759 * Initiate policy processing here if needed. If we get here from 6760 * icmp_inbound_error_fanout, ip_policy is false. 6761 */ 6762 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6763 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6764 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6765 if (mp == NULL) { 6766 CONN_DEC_REF(connp); 6767 if (mctl_present) 6768 freeb(first_mp); 6769 return; 6770 } else if (mctl_present) { 6771 ASSERT(first_mp != mp); 6772 first_mp->b_cont = mp; 6773 } else { 6774 first_mp = mp; 6775 } 6776 } 6777 6778 6779 6780 /* Handle socket options. */ 6781 if (!syn_present && 6782 connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 6783 /* Add header */ 6784 ASSERT(recv_ill != NULL); 6785 /* 6786 * Since tcp does not support IP_RECVPKTINFO for V4, only pass 6787 * IPF_RECVIF. 6788 */ 6789 mp = ip_add_info(mp, recv_ill, IPF_RECVIF, IPCL_ZONEID(connp), 6790 ipst); 6791 if (mp == NULL) { 6792 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6793 CONN_DEC_REF(connp); 6794 if (mctl_present) 6795 freeb(first_mp); 6796 return; 6797 } else if (mctl_present) { 6798 /* 6799 * ip_add_info might return a new mp. 6800 */ 6801 ASSERT(first_mp != mp); 6802 first_mp->b_cont = mp; 6803 } else { 6804 first_mp = mp; 6805 } 6806 } 6807 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6808 if (IPCL_IS_TCP(connp)) { 6809 /* do not drain, certain use cases can blow the stack */ 6810 squeue_enter_nodrain(connp->conn_sqp, first_mp, 6811 connp->conn_recv, connp, SQTAG_IP_FANOUT_TCP); 6812 } else { 6813 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 6814 (connp->conn_recv)(connp, first_mp, NULL); 6815 CONN_DEC_REF(connp); 6816 } 6817 } 6818 6819 /* 6820 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or 6821 * pass it along to ESP if the SPI is non-zero. Returns TRUE if the mblk 6822 * is not consumed. 6823 * 6824 * One of four things can happen, all of which affect the passed-in mblk: 6825 * 6826 * 1.) ICMP messages that go through here just get returned TRUE. 6827 * 6828 * 2.) The packet is stock UDP and gets its zero-SPI stripped. Return TRUE. 6829 * 6830 * 3.) The packet is ESP-in-UDP, gets transformed into an equivalent 6831 * ESP packet, and is passed along to ESP for consumption. Return FALSE. 6832 * 6833 * 4.) The packet is an ESP-in-UDP Keepalive. Drop it and return FALSE. 6834 */ 6835 static boolean_t 6836 zero_spi_check(queue_t *q, mblk_t *mp, ire_t *ire, ill_t *recv_ill, 6837 ipsec_stack_t *ipss) 6838 { 6839 int shift, plen, iph_len; 6840 ipha_t *ipha; 6841 udpha_t *udpha; 6842 uint32_t *spi; 6843 uint8_t *orptr; 6844 boolean_t udp_pkt, free_ire; 6845 6846 if (DB_TYPE(mp) == M_CTL) { 6847 /* 6848 * ICMP message with UDP inside. Don't bother stripping, just 6849 * send it up. 6850 * 6851 * NOTE: Any app with UDP_NAT_T_ENDPOINT set is probably going 6852 * to ignore errors set by ICMP anyway ('cause they might be 6853 * forged), but that's the app's decision, not ours. 6854 */ 6855 6856 /* Bunch of reality checks for DEBUG kernels... */ 6857 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION); 6858 ASSERT(((ipha_t *)mp->b_rptr)->ipha_protocol == IPPROTO_ICMP); 6859 6860 return (B_TRUE); 6861 } 6862 6863 ipha = (ipha_t *)mp->b_rptr; 6864 iph_len = IPH_HDR_LENGTH(ipha); 6865 plen = ntohs(ipha->ipha_length); 6866 6867 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) { 6868 /* 6869 * Most likely a keepalive for the benefit of an intervening 6870 * NAT. These aren't for us, per se, so drop it. 6871 * 6872 * RFC 3947/8 doesn't say for sure what to do for 2-3 6873 * byte packets (keepalives are 1-byte), but we'll drop them 6874 * also. 6875 */ 6876 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 6877 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper); 6878 return (B_FALSE); 6879 } 6880 6881 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) { 6882 /* might as well pull it all up - it might be ESP. */ 6883 if (!pullupmsg(mp, -1)) { 6884 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 6885 DROPPER(ipss, ipds_esp_nomem), 6886 &ipss->ipsec_dropper); 6887 return (B_FALSE); 6888 } 6889 6890 ipha = (ipha_t *)mp->b_rptr; 6891 } 6892 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t)); 6893 if (*spi == 0) { 6894 /* UDP packet - remove 0-spi. */ 6895 shift = sizeof (uint32_t); 6896 } else { 6897 /* ESP-in-UDP packet - reduce to ESP. */ 6898 ipha->ipha_protocol = IPPROTO_ESP; 6899 shift = sizeof (udpha_t); 6900 } 6901 6902 /* Fix IP header */ 6903 ipha->ipha_length = htons(plen - shift); 6904 ipha->ipha_hdr_checksum = 0; 6905 6906 orptr = mp->b_rptr; 6907 mp->b_rptr += shift; 6908 6909 if (*spi == 0) { 6910 ASSERT((uint8_t *)ipha == orptr); 6911 udpha = (udpha_t *)(orptr + iph_len); 6912 udpha->uha_length = htons(plen - shift - iph_len); 6913 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */ 6914 udp_pkt = B_TRUE; 6915 } else { 6916 udp_pkt = B_FALSE; 6917 } 6918 ovbcopy(orptr, orptr + shift, iph_len); 6919 if (!udp_pkt) /* Punt up for ESP processing. */ { 6920 ipha = (ipha_t *)(orptr + shift); 6921 6922 free_ire = (ire == NULL); 6923 if (free_ire) { 6924 /* Re-acquire ire. */ 6925 ire = ire_cache_lookup(ipha->ipha_dst, ALL_ZONES, NULL, 6926 ipss->ipsec_netstack->netstack_ip); 6927 if (ire == NULL || !(ire->ire_type & IRE_LOCAL)) { 6928 if (ire != NULL) 6929 ire_refrele(ire); 6930 /* 6931 * Do a regular freemsg(), as this is an IP 6932 * error (no local route) not an IPsec one. 6933 */ 6934 freemsg(mp); 6935 } 6936 } 6937 6938 ip_proto_input(q, mp, ipha, ire, recv_ill, B_TRUE); 6939 if (free_ire) 6940 ire_refrele(ire); 6941 } 6942 6943 return (udp_pkt); 6944 } 6945 6946 /* 6947 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 6948 * We are responsible for disposing of mp, such as by freemsg() or putnext() 6949 * Caller is responsible for dropping references to the conn, and freeing 6950 * first_mp. 6951 * 6952 * IPQoS Notes 6953 * Before sending it to the client, invoke IPPF processing. Policy processing 6954 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 6955 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 6956 * ip_wput_local, ip_policy is false. 6957 */ 6958 static void 6959 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 6960 boolean_t secure, ill_t *ill, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 6961 boolean_t ip_policy) 6962 { 6963 boolean_t mctl_present = (first_mp != NULL); 6964 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 6965 uint32_t ill_index; 6966 ip_stack_t *ipst = recv_ill->ill_ipst; 6967 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6968 6969 ASSERT(ill != NULL); 6970 6971 if (mctl_present) 6972 first_mp->b_cont = mp; 6973 else 6974 first_mp = mp; 6975 6976 if (CONN_UDP_FLOWCTLD(connp)) { 6977 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 6978 freemsg(first_mp); 6979 return; 6980 } 6981 6982 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6983 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6984 NULL, mctl_present); 6985 if (first_mp == NULL) { 6986 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 6987 return; /* Freed by ipsec_check_inbound_policy(). */ 6988 } 6989 } 6990 if (mctl_present) 6991 freeb(first_mp); 6992 6993 /* Let's hope the compilers utter "branch, predict-not-taken..." ;) */ 6994 if (connp->conn_udp->udp_nat_t_endpoint) { 6995 if (mctl_present) { 6996 /* mctl_present *shouldn't* happen. */ 6997 ip_drop_packet(mp, B_TRUE, NULL, NULL, 6998 DROPPER(ipss, ipds_esp_nat_t_ipsec), 6999 &ipss->ipsec_dropper); 7000 return; 7001 } 7002 7003 if (!zero_spi_check(ill->ill_rq, mp, NULL, recv_ill, ipss)) 7004 return; 7005 } 7006 7007 /* Handle options. */ 7008 if (connp->conn_recvif) 7009 in_flags = IPF_RECVIF; 7010 /* 7011 * UDP supports IP_RECVPKTINFO option for both v4 and v6 so the flag 7012 * passed to ip_add_info is based on IP version of connp. 7013 */ 7014 if (connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 7015 if (connp->conn_af_isv6) { 7016 /* 7017 * V6 only needs index 7018 */ 7019 in_flags |= IPF_RECVIF; 7020 } else { 7021 /* 7022 * V4 needs index + matching address. 7023 */ 7024 in_flags |= IPF_RECVADDR; 7025 } 7026 } 7027 7028 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 7029 in_flags |= IPF_RECVSLLA; 7030 7031 /* 7032 * Initiate IPPF processing here, if needed. Note first_mp won't be 7033 * freed if the packet is dropped. The caller will do so. 7034 */ 7035 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 7036 ill_index = recv_ill->ill_phyint->phyint_ifindex; 7037 ip_process(IPP_LOCAL_IN, &mp, ill_index); 7038 if (mp == NULL) { 7039 return; 7040 } 7041 } 7042 if ((in_flags != 0) && 7043 (mp->b_datap->db_type != M_CTL)) { 7044 /* 7045 * The actual data will be contained in b_cont 7046 * upon successful return of the following call 7047 * else original mblk is returned 7048 */ 7049 ASSERT(recv_ill != NULL); 7050 mp = ip_add_info(mp, recv_ill, in_flags, IPCL_ZONEID(connp), 7051 ipst); 7052 } 7053 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 7054 /* Send it upstream */ 7055 (connp->conn_recv)(connp, mp, NULL); 7056 } 7057 7058 /* 7059 * Fanout for UDP packets. 7060 * The caller puts <fport, lport> in the ports parameter. 7061 * 7062 * If SO_REUSEADDR is set all multicast and broadcast packets 7063 * will be delivered to all streams bound to the same port. 7064 * 7065 * Zones notes: 7066 * Multicast and broadcast packets will be distributed to streams in all zones. 7067 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 7068 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 7069 * packets. To maintain this behavior with multiple zones, the conns are grouped 7070 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 7071 * each zone. If unset, all the following conns in the same zone are skipped. 7072 */ 7073 static void 7074 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 7075 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 7076 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 7077 { 7078 uint32_t dstport, srcport; 7079 ipaddr_t dst; 7080 mblk_t *first_mp; 7081 boolean_t secure; 7082 in6_addr_t v6src; 7083 conn_t *connp; 7084 connf_t *connfp; 7085 conn_t *first_connp; 7086 conn_t *next_connp; 7087 mblk_t *mp1, *first_mp1; 7088 ipaddr_t src; 7089 zoneid_t last_zoneid; 7090 boolean_t reuseaddr; 7091 boolean_t shared_addr; 7092 ip_stack_t *ipst; 7093 7094 ASSERT(recv_ill != NULL); 7095 ipst = recv_ill->ill_ipst; 7096 7097 first_mp = mp; 7098 if (mctl_present) { 7099 mp = first_mp->b_cont; 7100 first_mp->b_cont = NULL; 7101 secure = ipsec_in_is_secure(first_mp); 7102 ASSERT(mp != NULL); 7103 } else { 7104 first_mp = NULL; 7105 secure = B_FALSE; 7106 } 7107 7108 /* Extract ports in net byte order */ 7109 dstport = htons(ntohl(ports) & 0xFFFF); 7110 srcport = htons(ntohl(ports) >> 16); 7111 dst = ipha->ipha_dst; 7112 src = ipha->ipha_src; 7113 7114 shared_addr = (zoneid == ALL_ZONES); 7115 if (shared_addr) { 7116 /* 7117 * No need to handle exclusive-stack zones since ALL_ZONES 7118 * only applies to the shared stack. 7119 */ 7120 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 7121 if (zoneid == ALL_ZONES) 7122 zoneid = tsol_packet_to_zoneid(mp); 7123 } 7124 7125 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7126 mutex_enter(&connfp->connf_lock); 7127 connp = connfp->connf_head; 7128 if (!broadcast && !CLASSD(dst)) { 7129 /* 7130 * Not broadcast or multicast. Send to the one (first) 7131 * client we find. No need to check conn_wantpacket() 7132 * since IP_BOUND_IF/conn_incoming_ill does not apply to 7133 * IPv4 unicast packets. 7134 */ 7135 while ((connp != NULL) && 7136 (!IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) || 7137 !IPCL_ZONE_MATCH(connp, zoneid))) { 7138 connp = connp->conn_next; 7139 } 7140 7141 if (connp == NULL || connp->conn_upq == NULL) 7142 goto notfound; 7143 7144 if (is_system_labeled() && 7145 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7146 connp)) 7147 goto notfound; 7148 7149 CONN_INC_REF(connp); 7150 mutex_exit(&connfp->connf_lock); 7151 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7152 flags, recv_ill, ip_policy); 7153 IP_STAT(ipst, ip_udp_fannorm); 7154 CONN_DEC_REF(connp); 7155 return; 7156 } 7157 7158 /* 7159 * Broadcast and multicast case 7160 * 7161 * Need to check conn_wantpacket(). 7162 * If SO_REUSEADDR has been set on the first we send the 7163 * packet to all clients that have joined the group and 7164 * match the port. 7165 */ 7166 7167 while (connp != NULL) { 7168 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 7169 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7170 (!is_system_labeled() || 7171 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7172 connp))) 7173 break; 7174 connp = connp->conn_next; 7175 } 7176 7177 if (connp == NULL || connp->conn_upq == NULL) 7178 goto notfound; 7179 7180 first_connp = connp; 7181 /* 7182 * When SO_REUSEADDR is not set, send the packet only to the first 7183 * matching connection in its zone by keeping track of the zoneid. 7184 */ 7185 reuseaddr = first_connp->conn_reuseaddr; 7186 last_zoneid = first_connp->conn_zoneid; 7187 7188 CONN_INC_REF(connp); 7189 connp = connp->conn_next; 7190 for (;;) { 7191 while (connp != NULL) { 7192 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 7193 (reuseaddr || connp->conn_zoneid != last_zoneid) && 7194 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7195 (!is_system_labeled() || 7196 tsol_receive_local(mp, &dst, IPV4_VERSION, 7197 shared_addr, connp))) 7198 break; 7199 connp = connp->conn_next; 7200 } 7201 /* 7202 * Just copy the data part alone. The mctl part is 7203 * needed just for verifying policy and it is never 7204 * sent up. 7205 */ 7206 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7207 ((mp1 = copymsg(mp)) == NULL))) { 7208 /* 7209 * No more interested clients or memory 7210 * allocation failed 7211 */ 7212 connp = first_connp; 7213 break; 7214 } 7215 if (connp->conn_zoneid != last_zoneid) { 7216 /* 7217 * Update the zoneid so that the packet isn't sent to 7218 * any more conns in the same zone unless SO_REUSEADDR 7219 * is set. 7220 */ 7221 reuseaddr = connp->conn_reuseaddr; 7222 last_zoneid = connp->conn_zoneid; 7223 } 7224 if (first_mp != NULL) { 7225 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7226 ipsec_info_type == IPSEC_IN); 7227 first_mp1 = ipsec_in_tag(first_mp, NULL, 7228 ipst->ips_netstack); 7229 if (first_mp1 == NULL) { 7230 freemsg(mp1); 7231 connp = first_connp; 7232 break; 7233 } 7234 } else { 7235 first_mp1 = NULL; 7236 } 7237 CONN_INC_REF(connp); 7238 mutex_exit(&connfp->connf_lock); 7239 /* 7240 * IPQoS notes: We don't send the packet for policy 7241 * processing here, will do it for the last one (below). 7242 * i.e. we do it per-packet now, but if we do policy 7243 * processing per-conn, then we would need to do it 7244 * here too. 7245 */ 7246 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7247 ipha, flags, recv_ill, B_FALSE); 7248 mutex_enter(&connfp->connf_lock); 7249 /* Follow the next pointer before releasing the conn. */ 7250 next_connp = connp->conn_next; 7251 IP_STAT(ipst, ip_udp_fanmb); 7252 CONN_DEC_REF(connp); 7253 connp = next_connp; 7254 } 7255 7256 /* Last one. Send it upstream. */ 7257 mutex_exit(&connfp->connf_lock); 7258 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7259 recv_ill, ip_policy); 7260 IP_STAT(ipst, ip_udp_fanmb); 7261 CONN_DEC_REF(connp); 7262 return; 7263 7264 notfound: 7265 7266 mutex_exit(&connfp->connf_lock); 7267 IP_STAT(ipst, ip_udp_fanothers); 7268 /* 7269 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 7270 * have already been matched above, since they live in the IPv4 7271 * fanout tables. This implies we only need to 7272 * check for IPv6 in6addr_any endpoints here. 7273 * Thus we compare using ipv6_all_zeros instead of the destination 7274 * address, except for the multicast group membership lookup which 7275 * uses the IPv4 destination. 7276 */ 7277 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 7278 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7279 mutex_enter(&connfp->connf_lock); 7280 connp = connfp->connf_head; 7281 if (!broadcast && !CLASSD(dst)) { 7282 while (connp != NULL) { 7283 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7284 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 7285 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7286 !connp->conn_ipv6_v6only) 7287 break; 7288 connp = connp->conn_next; 7289 } 7290 7291 if (connp != NULL && is_system_labeled() && 7292 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7293 connp)) 7294 connp = NULL; 7295 7296 if (connp == NULL || connp->conn_upq == NULL) { 7297 /* 7298 * No one bound to this port. Is 7299 * there a client that wants all 7300 * unclaimed datagrams? 7301 */ 7302 mutex_exit(&connfp->connf_lock); 7303 7304 if (mctl_present) 7305 first_mp->b_cont = mp; 7306 else 7307 first_mp = mp; 7308 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP]. 7309 connf_head != NULL) { 7310 ip_fanout_proto(q, first_mp, ill, ipha, 7311 flags | IP_FF_RAWIP, mctl_present, 7312 ip_policy, recv_ill, zoneid); 7313 } else { 7314 if (ip_fanout_send_icmp(q, first_mp, flags, 7315 ICMP_DEST_UNREACHABLE, 7316 ICMP_PORT_UNREACHABLE, 7317 mctl_present, zoneid, ipst)) { 7318 BUMP_MIB(ill->ill_ip_mib, 7319 udpIfStatsNoPorts); 7320 } 7321 } 7322 return; 7323 } 7324 7325 CONN_INC_REF(connp); 7326 mutex_exit(&connfp->connf_lock); 7327 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7328 flags, recv_ill, ip_policy); 7329 CONN_DEC_REF(connp); 7330 return; 7331 } 7332 /* 7333 * IPv4 multicast packet being delivered to an AF_INET6 7334 * in6addr_any endpoint. 7335 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 7336 * and not conn_wantpacket_v6() since any multicast membership is 7337 * for an IPv4-mapped multicast address. 7338 * The packet is sent to all clients in all zones that have joined the 7339 * group and match the port. 7340 */ 7341 while (connp != NULL) { 7342 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7343 srcport, v6src) && 7344 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7345 (!is_system_labeled() || 7346 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7347 connp))) 7348 break; 7349 connp = connp->conn_next; 7350 } 7351 7352 if (connp == NULL || connp->conn_upq == NULL) { 7353 /* 7354 * No one bound to this port. Is 7355 * there a client that wants all 7356 * unclaimed datagrams? 7357 */ 7358 mutex_exit(&connfp->connf_lock); 7359 7360 if (mctl_present) 7361 first_mp->b_cont = mp; 7362 else 7363 first_mp = mp; 7364 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP].connf_head != 7365 NULL) { 7366 ip_fanout_proto(q, first_mp, ill, ipha, 7367 flags | IP_FF_RAWIP, mctl_present, ip_policy, 7368 recv_ill, zoneid); 7369 } else { 7370 /* 7371 * We used to attempt to send an icmp error here, but 7372 * since this is known to be a multicast packet 7373 * and we don't send icmp errors in response to 7374 * multicast, just drop the packet and give up sooner. 7375 */ 7376 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 7377 freemsg(first_mp); 7378 } 7379 return; 7380 } 7381 7382 first_connp = connp; 7383 7384 CONN_INC_REF(connp); 7385 connp = connp->conn_next; 7386 for (;;) { 7387 while (connp != NULL) { 7388 if (IPCL_UDP_MATCH_V6(connp, dstport, 7389 ipv6_all_zeros, srcport, v6src) && 7390 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7391 (!is_system_labeled() || 7392 tsol_receive_local(mp, &dst, IPV4_VERSION, 7393 shared_addr, connp))) 7394 break; 7395 connp = connp->conn_next; 7396 } 7397 /* 7398 * Just copy the data part alone. The mctl part is 7399 * needed just for verifying policy and it is never 7400 * sent up. 7401 */ 7402 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7403 ((mp1 = copymsg(mp)) == NULL))) { 7404 /* 7405 * No more intested clients or memory 7406 * allocation failed 7407 */ 7408 connp = first_connp; 7409 break; 7410 } 7411 if (first_mp != NULL) { 7412 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7413 ipsec_info_type == IPSEC_IN); 7414 first_mp1 = ipsec_in_tag(first_mp, NULL, 7415 ipst->ips_netstack); 7416 if (first_mp1 == NULL) { 7417 freemsg(mp1); 7418 connp = first_connp; 7419 break; 7420 } 7421 } else { 7422 first_mp1 = NULL; 7423 } 7424 CONN_INC_REF(connp); 7425 mutex_exit(&connfp->connf_lock); 7426 /* 7427 * IPQoS notes: We don't send the packet for policy 7428 * processing here, will do it for the last one (below). 7429 * i.e. we do it per-packet now, but if we do policy 7430 * processing per-conn, then we would need to do it 7431 * here too. 7432 */ 7433 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7434 ipha, flags, recv_ill, B_FALSE); 7435 mutex_enter(&connfp->connf_lock); 7436 /* Follow the next pointer before releasing the conn. */ 7437 next_connp = connp->conn_next; 7438 CONN_DEC_REF(connp); 7439 connp = next_connp; 7440 } 7441 7442 /* Last one. Send it upstream. */ 7443 mutex_exit(&connfp->connf_lock); 7444 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7445 recv_ill, ip_policy); 7446 CONN_DEC_REF(connp); 7447 } 7448 7449 /* 7450 * Complete the ip_wput header so that it 7451 * is possible to generate ICMP 7452 * errors. 7453 */ 7454 int 7455 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid, ip_stack_t *ipst) 7456 { 7457 ire_t *ire; 7458 7459 if (ipha->ipha_src == INADDR_ANY) { 7460 ire = ire_lookup_local(zoneid, ipst); 7461 if (ire == NULL) { 7462 ip1dbg(("ip_hdr_complete: no source IRE\n")); 7463 return (1); 7464 } 7465 ipha->ipha_src = ire->ire_addr; 7466 ire_refrele(ire); 7467 } 7468 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 7469 ipha->ipha_hdr_checksum = 0; 7470 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 7471 return (0); 7472 } 7473 7474 /* 7475 * Nobody should be sending 7476 * packets up this stream 7477 */ 7478 static void 7479 ip_lrput(queue_t *q, mblk_t *mp) 7480 { 7481 mblk_t *mp1; 7482 7483 switch (mp->b_datap->db_type) { 7484 case M_FLUSH: 7485 /* Turn around */ 7486 if (*mp->b_rptr & FLUSHW) { 7487 *mp->b_rptr &= ~FLUSHR; 7488 qreply(q, mp); 7489 return; 7490 } 7491 break; 7492 } 7493 /* Could receive messages that passed through ar_rput */ 7494 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 7495 mp1->b_prev = mp1->b_next = NULL; 7496 freemsg(mp); 7497 } 7498 7499 /* Nobody should be sending packets down this stream */ 7500 /* ARGSUSED */ 7501 void 7502 ip_lwput(queue_t *q, mblk_t *mp) 7503 { 7504 freemsg(mp); 7505 } 7506 7507 /* 7508 * Move the first hop in any source route to ipha_dst and remove that part of 7509 * the source route. Called by other protocols. Errors in option formatting 7510 * are ignored - will be handled by ip_wput_options Return the final 7511 * destination (either ipha_dst or the last entry in a source route.) 7512 */ 7513 ipaddr_t 7514 ip_massage_options(ipha_t *ipha, netstack_t *ns) 7515 { 7516 ipoptp_t opts; 7517 uchar_t *opt; 7518 uint8_t optval; 7519 uint8_t optlen; 7520 ipaddr_t dst; 7521 int i; 7522 ire_t *ire; 7523 ip_stack_t *ipst = ns->netstack_ip; 7524 7525 ip2dbg(("ip_massage_options\n")); 7526 dst = ipha->ipha_dst; 7527 for (optval = ipoptp_first(&opts, ipha); 7528 optval != IPOPT_EOL; 7529 optval = ipoptp_next(&opts)) { 7530 opt = opts.ipoptp_cur; 7531 switch (optval) { 7532 uint8_t off; 7533 case IPOPT_SSRR: 7534 case IPOPT_LSRR: 7535 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 7536 ip1dbg(("ip_massage_options: bad src route\n")); 7537 break; 7538 } 7539 optlen = opts.ipoptp_len; 7540 off = opt[IPOPT_OFFSET]; 7541 off--; 7542 redo_srr: 7543 if (optlen < IP_ADDR_LEN || 7544 off > optlen - IP_ADDR_LEN) { 7545 /* End of source route */ 7546 ip1dbg(("ip_massage_options: end of SR\n")); 7547 break; 7548 } 7549 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 7550 ip1dbg(("ip_massage_options: next hop 0x%x\n", 7551 ntohl(dst))); 7552 /* 7553 * Check if our address is present more than 7554 * once as consecutive hops in source route. 7555 * XXX verify per-interface ip_forwarding 7556 * for source route? 7557 */ 7558 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 7559 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7560 if (ire != NULL) { 7561 ire_refrele(ire); 7562 off += IP_ADDR_LEN; 7563 goto redo_srr; 7564 } 7565 if (dst == htonl(INADDR_LOOPBACK)) { 7566 ip1dbg(("ip_massage_options: loopback addr in " 7567 "source route!\n")); 7568 break; 7569 } 7570 /* 7571 * Update ipha_dst to be the first hop and remove the 7572 * first hop from the source route (by overwriting 7573 * part of the option with NOP options). 7574 */ 7575 ipha->ipha_dst = dst; 7576 /* Put the last entry in dst */ 7577 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 7578 3; 7579 bcopy(&opt[off], &dst, IP_ADDR_LEN); 7580 7581 ip1dbg(("ip_massage_options: last hop 0x%x\n", 7582 ntohl(dst))); 7583 /* Move down and overwrite */ 7584 opt[IP_ADDR_LEN] = opt[0]; 7585 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 7586 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 7587 for (i = 0; i < IP_ADDR_LEN; i++) 7588 opt[i] = IPOPT_NOP; 7589 break; 7590 } 7591 } 7592 return (dst); 7593 } 7594 7595 /* 7596 * Return the network mask 7597 * associated with the specified address. 7598 */ 7599 ipaddr_t 7600 ip_net_mask(ipaddr_t addr) 7601 { 7602 uchar_t *up = (uchar_t *)&addr; 7603 ipaddr_t mask = 0; 7604 uchar_t *maskp = (uchar_t *)&mask; 7605 7606 #if defined(__i386) || defined(__amd64) 7607 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7608 #endif 7609 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7610 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7611 #endif 7612 if (CLASSD(addr)) { 7613 maskp[0] = 0xF0; 7614 return (mask); 7615 } 7616 7617 /* We assume Class E default netmask to be 32 */ 7618 if (CLASSE(addr)) 7619 return (0xffffffffU); 7620 7621 if (addr == 0) 7622 return (0); 7623 maskp[0] = 0xFF; 7624 if ((up[0] & 0x80) == 0) 7625 return (mask); 7626 7627 maskp[1] = 0xFF; 7628 if ((up[0] & 0xC0) == 0x80) 7629 return (mask); 7630 7631 maskp[2] = 0xFF; 7632 if ((up[0] & 0xE0) == 0xC0) 7633 return (mask); 7634 7635 /* Otherwise return no mask */ 7636 return ((ipaddr_t)0); 7637 } 7638 7639 /* 7640 * Select an ill for the packet by considering load spreading across 7641 * a different ill in the group if dst_ill is part of some group. 7642 */ 7643 ill_t * 7644 ip_newroute_get_dst_ill(ill_t *dst_ill) 7645 { 7646 ill_t *ill; 7647 7648 /* 7649 * We schedule irrespective of whether the source address is 7650 * INADDR_ANY or not. illgrp_scheduler returns a held ill. 7651 */ 7652 ill = illgrp_scheduler(dst_ill); 7653 if (ill == NULL) 7654 return (NULL); 7655 7656 /* 7657 * For groups with names ip_sioctl_groupname ensures that all 7658 * ills are of same type. For groups without names, ifgrp_insert 7659 * ensures this. 7660 */ 7661 ASSERT(dst_ill->ill_type == ill->ill_type); 7662 7663 return (ill); 7664 } 7665 7666 /* 7667 * Helper function for the IPIF_NOFAILOVER/ATTACH_IF interface attachment case. 7668 */ 7669 ill_t * 7670 ip_grab_attach_ill(ill_t *ill, mblk_t *first_mp, int ifindex, boolean_t isv6, 7671 ip_stack_t *ipst) 7672 { 7673 ill_t *ret_ill; 7674 7675 ASSERT(ifindex != 0); 7676 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 7677 ipst); 7678 if (ret_ill == NULL || 7679 (ret_ill->ill_phyint->phyint_flags & PHYI_OFFLINE)) { 7680 if (isv6) { 7681 if (ill != NULL) { 7682 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7683 } else { 7684 BUMP_MIB(&ipst->ips_ip6_mib, 7685 ipIfStatsOutDiscards); 7686 } 7687 ip1dbg(("ip_grab_attach_ill (IPv6): " 7688 "bad ifindex %d.\n", ifindex)); 7689 } else { 7690 if (ill != NULL) { 7691 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7692 } else { 7693 BUMP_MIB(&ipst->ips_ip_mib, 7694 ipIfStatsOutDiscards); 7695 } 7696 ip1dbg(("ip_grab_attach_ill (IPv4): " 7697 "bad ifindex %d.\n", ifindex)); 7698 } 7699 if (ret_ill != NULL) 7700 ill_refrele(ret_ill); 7701 freemsg(first_mp); 7702 return (NULL); 7703 } 7704 7705 return (ret_ill); 7706 } 7707 7708 /* 7709 * IPv4 - 7710 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7711 * out a packet to a destination address for which we do not have specific 7712 * (or sufficient) routing information. 7713 * 7714 * NOTE : These are the scopes of some of the variables that point at IRE, 7715 * which needs to be followed while making any future modifications 7716 * to avoid memory leaks. 7717 * 7718 * - ire and sire are the entries looked up initially by 7719 * ire_ftable_lookup. 7720 * - ipif_ire is used to hold the interface ire associated with 7721 * the new cache ire. But it's scope is limited, so we always REFRELE 7722 * it before branching out to error paths. 7723 * - save_ire is initialized before ire_create, so that ire returned 7724 * by ire_create will not over-write the ire. We REFRELE save_ire 7725 * before breaking out of the switch. 7726 * 7727 * Thus on failures, we have to REFRELE only ire and sire, if they 7728 * are not NULL. 7729 */ 7730 void 7731 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, conn_t *connp, 7732 zoneid_t zoneid, ip_stack_t *ipst) 7733 { 7734 areq_t *areq; 7735 ipaddr_t gw = 0; 7736 ire_t *ire = NULL; 7737 mblk_t *res_mp; 7738 ipaddr_t *addrp; 7739 ipaddr_t nexthop_addr; 7740 ipif_t *src_ipif = NULL; 7741 ill_t *dst_ill = NULL; 7742 ipha_t *ipha; 7743 ire_t *sire = NULL; 7744 mblk_t *first_mp; 7745 ire_t *save_ire; 7746 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER address */ 7747 ushort_t ire_marks = 0; 7748 boolean_t mctl_present; 7749 ipsec_out_t *io; 7750 mblk_t *saved_mp; 7751 ire_t *first_sire = NULL; 7752 mblk_t *copy_mp = NULL; 7753 mblk_t *xmit_mp = NULL; 7754 ipaddr_t save_dst; 7755 uint32_t multirt_flags = 7756 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7757 boolean_t multirt_is_resolvable; 7758 boolean_t multirt_resolve_next; 7759 boolean_t unspec_src; 7760 boolean_t do_attach_ill = B_FALSE; 7761 boolean_t ip_nexthop = B_FALSE; 7762 tsol_ire_gw_secattr_t *attrp = NULL; 7763 tsol_gcgrp_t *gcgrp = NULL; 7764 tsol_gcgrp_addr_t ga; 7765 7766 if (ip_debug > 2) { 7767 /* ip1dbg */ 7768 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7769 } 7770 7771 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7772 if (mctl_present) { 7773 io = (ipsec_out_t *)first_mp->b_rptr; 7774 ASSERT(io->ipsec_out_type == IPSEC_OUT); 7775 ASSERT(zoneid == io->ipsec_out_zoneid); 7776 ASSERT(zoneid != ALL_ZONES); 7777 } 7778 7779 ipha = (ipha_t *)mp->b_rptr; 7780 7781 /* All multicast lookups come through ip_newroute_ipif() */ 7782 if (CLASSD(dst)) { 7783 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7784 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7785 freemsg(first_mp); 7786 return; 7787 } 7788 7789 if (mctl_present && io->ipsec_out_attach_if) { 7790 /* ip_grab_attach_ill returns a held ill */ 7791 attach_ill = ip_grab_attach_ill(NULL, first_mp, 7792 io->ipsec_out_ill_index, B_FALSE, ipst); 7793 7794 /* Failure case frees things for us. */ 7795 if (attach_ill == NULL) 7796 return; 7797 7798 /* 7799 * Check if we need an ire that will not be 7800 * looked up by anybody else i.e. HIDDEN. 7801 */ 7802 if (ill_is_probeonly(attach_ill)) 7803 ire_marks = IRE_MARK_HIDDEN; 7804 } 7805 if (mctl_present && io->ipsec_out_ip_nexthop) { 7806 ip_nexthop = B_TRUE; 7807 nexthop_addr = io->ipsec_out_nexthop_addr; 7808 } 7809 /* 7810 * If this IRE is created for forwarding or it is not for 7811 * traffic for congestion controlled protocols, mark it as temporary. 7812 */ 7813 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 7814 ire_marks |= IRE_MARK_TEMPORARY; 7815 7816 /* 7817 * Get what we can from ire_ftable_lookup which will follow an IRE 7818 * chain until it gets the most specific information available. 7819 * For example, we know that there is no IRE_CACHE for this dest, 7820 * but there may be an IRE_OFFSUBNET which specifies a gateway. 7821 * ire_ftable_lookup will look up the gateway, etc. 7822 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 7823 * to the destination, of equal netmask length in the forward table, 7824 * will be recursively explored. If no information is available 7825 * for the final gateway of that route, we force the returned ire 7826 * to be equal to sire using MATCH_IRE_PARENT. 7827 * At least, in this case we have a starting point (in the buckets) 7828 * to look for other routes to the destination in the forward table. 7829 * This is actually used only for multirouting, where a list 7830 * of routes has to be processed in sequence. 7831 * 7832 * In the process of coming up with the most specific information, 7833 * ire_ftable_lookup may end up with an incomplete IRE_CACHE entry 7834 * for the gateway (i.e., one for which the ire_nce->nce_state is 7835 * not yet ND_REACHABLE, and is in the middle of arp resolution). 7836 * Two caveats when handling incomplete ire's in ip_newroute: 7837 * - we should be careful when accessing its ire_nce (specifically 7838 * the nce_res_mp) ast it might change underneath our feet, and, 7839 * - not all legacy code path callers are prepared to handle 7840 * incomplete ire's, so we should not create/add incomplete 7841 * ire_cache entries here. (See discussion about temporary solution 7842 * further below). 7843 * 7844 * In order to minimize packet dropping, and to preserve existing 7845 * behavior, we treat this case as if there were no IRE_CACHE for the 7846 * gateway, and instead use the IF_RESOLVER ire to send out 7847 * another request to ARP (this is achieved by passing the 7848 * MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the 7849 * arp response comes back in ip_wput_nondata, we will create 7850 * a per-dst ire_cache that has an ND_COMPLETE ire. 7851 * 7852 * Note that this is a temporary solution; the correct solution is 7853 * to create an incomplete per-dst ire_cache entry, and send the 7854 * packet out when the gw's nce is resolved. In order to achieve this, 7855 * all packet processing must have been completed prior to calling 7856 * ire_add_then_send. Some legacy code paths (e.g. cgtp) would need 7857 * to be modified to accomodate this solution. 7858 */ 7859 if (ip_nexthop) { 7860 /* 7861 * The first time we come here, we look for an IRE_INTERFACE 7862 * entry for the specified nexthop, set the dst to be the 7863 * nexthop address and create an IRE_CACHE entry for the 7864 * nexthop. The next time around, we are able to find an 7865 * IRE_CACHE entry for the nexthop, set the gateway to be the 7866 * nexthop address and create an IRE_CACHE entry for the 7867 * destination address via the specified nexthop. 7868 */ 7869 ire = ire_cache_lookup(nexthop_addr, zoneid, 7870 MBLK_GETLABEL(mp), ipst); 7871 if (ire != NULL) { 7872 gw = nexthop_addr; 7873 ire_marks |= IRE_MARK_PRIVATE_ADDR; 7874 } else { 7875 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 7876 IRE_INTERFACE, NULL, NULL, zoneid, 0, 7877 MBLK_GETLABEL(mp), 7878 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 7879 ipst); 7880 if (ire != NULL) { 7881 dst = nexthop_addr; 7882 } 7883 } 7884 } else if (attach_ill == NULL) { 7885 ire = ire_ftable_lookup(dst, 0, 0, 0, 7886 NULL, &sire, zoneid, 0, MBLK_GETLABEL(mp), 7887 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 7888 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 7889 MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE, 7890 ipst); 7891 } else { 7892 /* 7893 * attach_ill is set only for communicating with 7894 * on-link hosts. So, don't look for DEFAULT. 7895 */ 7896 ipif_t *attach_ipif; 7897 7898 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 7899 if (attach_ipif == NULL) { 7900 ill_refrele(attach_ill); 7901 goto icmp_err_ret; 7902 } 7903 ire = ire_ftable_lookup(dst, 0, 0, 0, attach_ipif, 7904 &sire, zoneid, 0, MBLK_GETLABEL(mp), 7905 MATCH_IRE_RJ_BHOLE | MATCH_IRE_ILL | 7906 MATCH_IRE_SECATTR, ipst); 7907 ipif_refrele(attach_ipif); 7908 } 7909 ip3dbg(("ip_newroute: ire_ftable_lookup() " 7910 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 7911 7912 /* 7913 * This loop is run only once in most cases. 7914 * We loop to resolve further routes only when the destination 7915 * can be reached through multiple RTF_MULTIRT-flagged ires. 7916 */ 7917 do { 7918 /* Clear the previous iteration's values */ 7919 if (src_ipif != NULL) { 7920 ipif_refrele(src_ipif); 7921 src_ipif = NULL; 7922 } 7923 if (dst_ill != NULL) { 7924 ill_refrele(dst_ill); 7925 dst_ill = NULL; 7926 } 7927 7928 multirt_resolve_next = B_FALSE; 7929 /* 7930 * We check if packets have to be multirouted. 7931 * In this case, given the current <ire, sire> couple, 7932 * we look for the next suitable <ire, sire>. 7933 * This check is done in ire_multirt_lookup(), 7934 * which applies various criteria to find the next route 7935 * to resolve. ire_multirt_lookup() leaves <ire, sire> 7936 * unchanged if it detects it has not been tried yet. 7937 */ 7938 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7939 ip3dbg(("ip_newroute: starting next_resolution " 7940 "with first_mp %p, tag %d\n", 7941 (void *)first_mp, 7942 MULTIRT_DEBUG_TAGGED(first_mp))); 7943 7944 ASSERT(sire != NULL); 7945 multirt_is_resolvable = 7946 ire_multirt_lookup(&ire, &sire, multirt_flags, 7947 MBLK_GETLABEL(mp), ipst); 7948 7949 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 7950 "ire %p, sire %p\n", 7951 multirt_is_resolvable, 7952 (void *)ire, (void *)sire)); 7953 7954 if (!multirt_is_resolvable) { 7955 /* 7956 * No more multirt route to resolve; give up 7957 * (all routes resolved or no more 7958 * resolvable routes). 7959 */ 7960 if (ire != NULL) { 7961 ire_refrele(ire); 7962 ire = NULL; 7963 } 7964 } else { 7965 ASSERT(sire != NULL); 7966 ASSERT(ire != NULL); 7967 /* 7968 * We simply use first_sire as a flag that 7969 * indicates if a resolvable multirt route 7970 * has already been found. 7971 * If it is not the case, we may have to send 7972 * an ICMP error to report that the 7973 * destination is unreachable. 7974 * We do not IRE_REFHOLD first_sire. 7975 */ 7976 if (first_sire == NULL) { 7977 first_sire = sire; 7978 } 7979 } 7980 } 7981 if (ire == NULL) { 7982 if (ip_debug > 3) { 7983 /* ip2dbg */ 7984 pr_addr_dbg("ip_newroute: " 7985 "can't resolve %s\n", AF_INET, &dst); 7986 } 7987 ip3dbg(("ip_newroute: " 7988 "ire %p, sire %p, first_sire %p\n", 7989 (void *)ire, (void *)sire, (void *)first_sire)); 7990 7991 if (sire != NULL) { 7992 ire_refrele(sire); 7993 sire = NULL; 7994 } 7995 7996 if (first_sire != NULL) { 7997 /* 7998 * At least one multirt route has been found 7999 * in the same call to ip_newroute(); 8000 * there is no need to report an ICMP error. 8001 * first_sire was not IRE_REFHOLDed. 8002 */ 8003 MULTIRT_DEBUG_UNTAG(first_mp); 8004 freemsg(first_mp); 8005 return; 8006 } 8007 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 8008 RTA_DST, ipst); 8009 if (attach_ill != NULL) 8010 ill_refrele(attach_ill); 8011 goto icmp_err_ret; 8012 } 8013 8014 /* 8015 * Verify that the returned IRE does not have either 8016 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 8017 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 8018 */ 8019 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 8020 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 8021 if (attach_ill != NULL) 8022 ill_refrele(attach_ill); 8023 goto icmp_err_ret; 8024 } 8025 /* 8026 * Increment the ire_ob_pkt_count field for ire if it is an 8027 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 8028 * increment the same for the parent IRE, sire, if it is some 8029 * sort of prefix IRE (which includes DEFAULT, PREFIX, and HOST) 8030 */ 8031 if ((ire->ire_type & IRE_INTERFACE) != 0) { 8032 UPDATE_OB_PKT_COUNT(ire); 8033 ire->ire_last_used_time = lbolt; 8034 } 8035 8036 if (sire != NULL) { 8037 gw = sire->ire_gateway_addr; 8038 ASSERT((sire->ire_type & (IRE_CACHETABLE | 8039 IRE_INTERFACE)) == 0); 8040 UPDATE_OB_PKT_COUNT(sire); 8041 sire->ire_last_used_time = lbolt; 8042 } 8043 /* 8044 * We have a route to reach the destination. 8045 * 8046 * 1) If the interface is part of ill group, try to get a new 8047 * ill taking load spreading into account. 8048 * 8049 * 2) After selecting the ill, get a source address that 8050 * might create good inbound load spreading. 8051 * ipif_select_source does this for us. 8052 * 8053 * If the application specified the ill (ifindex), we still 8054 * load spread. Only if the packets needs to go out 8055 * specifically on a given ill e.g. binding to 8056 * IPIF_NOFAILOVER address, then we don't try to use a 8057 * different ill for load spreading. 8058 */ 8059 if (attach_ill == NULL) { 8060 /* 8061 * Don't perform outbound load spreading in the 8062 * case of an RTF_MULTIRT route, as we actually 8063 * typically want to replicate outgoing packets 8064 * through particular interfaces. 8065 */ 8066 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8067 dst_ill = ire->ire_ipif->ipif_ill; 8068 /* for uniformity */ 8069 ill_refhold(dst_ill); 8070 } else { 8071 /* 8072 * If we are here trying to create an IRE_CACHE 8073 * for an offlink destination and have the 8074 * IRE_CACHE for the next hop and the latter is 8075 * using virtual IP source address selection i.e 8076 * it's ire->ire_ipif is pointing to a virtual 8077 * network interface (vni) then 8078 * ip_newroute_get_dst_ll() will return the vni 8079 * interface as the dst_ill. Since the vni is 8080 * virtual i.e not associated with any physical 8081 * interface, it cannot be the dst_ill, hence 8082 * in such a case call ip_newroute_get_dst_ll() 8083 * with the stq_ill instead of the ire_ipif ILL. 8084 * The function returns a refheld ill. 8085 */ 8086 if ((ire->ire_type == IRE_CACHE) && 8087 IS_VNI(ire->ire_ipif->ipif_ill)) 8088 dst_ill = ip_newroute_get_dst_ill( 8089 ire->ire_stq->q_ptr); 8090 else 8091 dst_ill = ip_newroute_get_dst_ill( 8092 ire->ire_ipif->ipif_ill); 8093 } 8094 if (dst_ill == NULL) { 8095 if (ip_debug > 2) { 8096 pr_addr_dbg("ip_newroute: " 8097 "no dst ill for dst" 8098 " %s\n", AF_INET, &dst); 8099 } 8100 goto icmp_err_ret; 8101 } 8102 } else { 8103 dst_ill = ire->ire_ipif->ipif_ill; 8104 /* for uniformity */ 8105 ill_refhold(dst_ill); 8106 /* 8107 * We should have found a route matching ill as we 8108 * called ire_ftable_lookup with MATCH_IRE_ILL. 8109 * Rather than asserting, when there is a mismatch, 8110 * we just drop the packet. 8111 */ 8112 if (dst_ill != attach_ill) { 8113 ip0dbg(("ip_newroute: Packet dropped as " 8114 "IPIF_NOFAILOVER ill is %s, " 8115 "ire->ire_ipif->ipif_ill is %s\n", 8116 attach_ill->ill_name, 8117 dst_ill->ill_name)); 8118 ill_refrele(attach_ill); 8119 goto icmp_err_ret; 8120 } 8121 } 8122 /* attach_ill can't go in loop. IPMP and CGTP are disjoint */ 8123 if (attach_ill != NULL) { 8124 ill_refrele(attach_ill); 8125 attach_ill = NULL; 8126 do_attach_ill = B_TRUE; 8127 } 8128 ASSERT(dst_ill != NULL); 8129 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 8130 8131 /* 8132 * Pick the best source address from dst_ill. 8133 * 8134 * 1) If it is part of a multipathing group, we would 8135 * like to spread the inbound packets across different 8136 * interfaces. ipif_select_source picks a random source 8137 * across the different ills in the group. 8138 * 8139 * 2) If it is not part of a multipathing group, we try 8140 * to pick the source address from the destination 8141 * route. Clustering assumes that when we have multiple 8142 * prefixes hosted on an interface, the prefix of the 8143 * source address matches the prefix of the destination 8144 * route. We do this only if the address is not 8145 * DEPRECATED. 8146 * 8147 * 3) If the conn is in a different zone than the ire, we 8148 * need to pick a source address from the right zone. 8149 * 8150 * NOTE : If we hit case (1) above, the prefix of the source 8151 * address picked may not match the prefix of the 8152 * destination routes prefix as ipif_select_source 8153 * does not look at "dst" while picking a source 8154 * address. 8155 * If we want the same behavior as (2), we will need 8156 * to change the behavior of ipif_select_source. 8157 */ 8158 ASSERT(src_ipif == NULL); 8159 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 8160 /* 8161 * The RTF_SETSRC flag is set in the parent ire (sire). 8162 * Check that the ipif matching the requested source 8163 * address still exists. 8164 */ 8165 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 8166 zoneid, NULL, NULL, NULL, NULL, ipst); 8167 } 8168 8169 unspec_src = (connp != NULL && connp->conn_unspec_src); 8170 8171 if (src_ipif == NULL && 8172 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 8173 ire_marks |= IRE_MARK_USESRC_CHECK; 8174 if ((dst_ill->ill_group != NULL) || 8175 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 8176 (connp != NULL && ire->ire_zoneid != zoneid && 8177 ire->ire_zoneid != ALL_ZONES) || 8178 (dst_ill->ill_usesrc_ifindex != 0)) { 8179 /* 8180 * If the destination is reachable via a 8181 * given gateway, the selected source address 8182 * should be in the same subnet as the gateway. 8183 * Otherwise, the destination is not reachable. 8184 * 8185 * If there are no interfaces on the same subnet 8186 * as the destination, ipif_select_source gives 8187 * first non-deprecated interface which might be 8188 * on a different subnet than the gateway. 8189 * This is not desirable. Hence pass the dst_ire 8190 * source address to ipif_select_source. 8191 * It is sure that the destination is reachable 8192 * with the dst_ire source address subnet. 8193 * So passing dst_ire source address to 8194 * ipif_select_source will make sure that the 8195 * selected source will be on the same subnet 8196 * as dst_ire source address. 8197 */ 8198 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 8199 src_ipif = ipif_select_source(dst_ill, saddr, 8200 zoneid); 8201 if (src_ipif == NULL) { 8202 if (ip_debug > 2) { 8203 pr_addr_dbg("ip_newroute: " 8204 "no src for dst %s ", 8205 AF_INET, &dst); 8206 printf("through interface %s\n", 8207 dst_ill->ill_name); 8208 } 8209 goto icmp_err_ret; 8210 } 8211 } else { 8212 src_ipif = ire->ire_ipif; 8213 ASSERT(src_ipif != NULL); 8214 /* hold src_ipif for uniformity */ 8215 ipif_refhold(src_ipif); 8216 } 8217 } 8218 8219 /* 8220 * Assign a source address while we have the conn. 8221 * We can't have ip_wput_ire pick a source address when the 8222 * packet returns from arp since we need to look at 8223 * conn_unspec_src and conn_zoneid, and we lose the conn when 8224 * going through arp. 8225 * 8226 * NOTE : ip_newroute_v6 does not have this piece of code as 8227 * it uses ip6i to store this information. 8228 */ 8229 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 8230 ipha->ipha_src = src_ipif->ipif_src_addr; 8231 8232 if (ip_debug > 3) { 8233 /* ip2dbg */ 8234 pr_addr_dbg("ip_newroute: first hop %s\n", 8235 AF_INET, &gw); 8236 } 8237 ip2dbg(("\tire type %s (%d)\n", 8238 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 8239 8240 /* 8241 * The TTL of multirouted packets is bounded by the 8242 * ip_multirt_ttl ndd variable. 8243 */ 8244 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8245 /* Force TTL of multirouted packets */ 8246 if ((ipst->ips_ip_multirt_ttl > 0) && 8247 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 8248 ip2dbg(("ip_newroute: forcing multirt TTL " 8249 "to %d (was %d), dst 0x%08x\n", 8250 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 8251 ntohl(sire->ire_addr))); 8252 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 8253 } 8254 } 8255 /* 8256 * At this point in ip_newroute(), ire is either the 8257 * IRE_CACHE of the next-hop gateway for an off-subnet 8258 * destination or an IRE_INTERFACE type that should be used 8259 * to resolve an on-subnet destination or an on-subnet 8260 * next-hop gateway. 8261 * 8262 * In the IRE_CACHE case, we have the following : 8263 * 8264 * 1) src_ipif - used for getting a source address. 8265 * 8266 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8267 * means packets using this IRE_CACHE will go out on 8268 * dst_ill. 8269 * 8270 * 3) The IRE sire will point to the prefix that is the 8271 * longest matching route for the destination. These 8272 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST. 8273 * 8274 * The newly created IRE_CACHE entry for the off-subnet 8275 * destination is tied to both the prefix route and the 8276 * interface route used to resolve the next-hop gateway 8277 * via the ire_phandle and ire_ihandle fields, 8278 * respectively. 8279 * 8280 * In the IRE_INTERFACE case, we have the following : 8281 * 8282 * 1) src_ipif - used for getting a source address. 8283 * 8284 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8285 * means packets using the IRE_CACHE that we will build 8286 * here will go out on dst_ill. 8287 * 8288 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 8289 * to be created will only be tied to the IRE_INTERFACE 8290 * that was derived from the ire_ihandle field. 8291 * 8292 * If sire is non-NULL, it means the destination is 8293 * off-link and we will first create the IRE_CACHE for the 8294 * gateway. Next time through ip_newroute, we will create 8295 * the IRE_CACHE for the final destination as described 8296 * above. 8297 * 8298 * In both cases, after the current resolution has been 8299 * completed (or possibly initialised, in the IRE_INTERFACE 8300 * case), the loop may be re-entered to attempt the resolution 8301 * of another RTF_MULTIRT route. 8302 * 8303 * When an IRE_CACHE entry for the off-subnet destination is 8304 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 8305 * for further processing in emission loops. 8306 */ 8307 save_ire = ire; 8308 switch (ire->ire_type) { 8309 case IRE_CACHE: { 8310 ire_t *ipif_ire; 8311 8312 ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE); 8313 if (gw == 0) 8314 gw = ire->ire_gateway_addr; 8315 /* 8316 * We need 3 ire's to create a new cache ire for an 8317 * off-link destination from the cache ire of the 8318 * gateway. 8319 * 8320 * 1. The prefix ire 'sire' (Note that this does 8321 * not apply to the conn_nexthop_set case) 8322 * 2. The cache ire of the gateway 'ire' 8323 * 3. The interface ire 'ipif_ire' 8324 * 8325 * We have (1) and (2). We lookup (3) below. 8326 * 8327 * If there is no interface route to the gateway, 8328 * it is a race condition, where we found the cache 8329 * but the interface route has been deleted. 8330 */ 8331 if (ip_nexthop) { 8332 ipif_ire = ire_ihandle_lookup_onlink(ire); 8333 } else { 8334 ipif_ire = 8335 ire_ihandle_lookup_offlink(ire, sire); 8336 } 8337 if (ipif_ire == NULL) { 8338 ip1dbg(("ip_newroute: " 8339 "ire_ihandle_lookup_offlink failed\n")); 8340 goto icmp_err_ret; 8341 } 8342 8343 /* 8344 * Check cached gateway IRE for any security 8345 * attributes; if found, associate the gateway 8346 * credentials group to the destination IRE. 8347 */ 8348 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 8349 mutex_enter(&attrp->igsa_lock); 8350 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 8351 GCGRP_REFHOLD(gcgrp); 8352 mutex_exit(&attrp->igsa_lock); 8353 } 8354 8355 /* 8356 * XXX For the source of the resolver mp, 8357 * we are using the same DL_UNITDATA_REQ 8358 * (from save_ire->ire_nce->nce_res_mp) 8359 * though the save_ire is not pointing at the same ill. 8360 * This is incorrect. We need to send it up to the 8361 * resolver to get the right res_mp. For ethernets 8362 * this may be okay (ill_type == DL_ETHER). 8363 */ 8364 8365 ire = ire_create( 8366 (uchar_t *)&dst, /* dest address */ 8367 (uchar_t *)&ip_g_all_ones, /* mask */ 8368 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8369 (uchar_t *)&gw, /* gateway address */ 8370 &save_ire->ire_max_frag, 8371 save_ire->ire_nce, /* src nce */ 8372 dst_ill->ill_rq, /* recv-from queue */ 8373 dst_ill->ill_wq, /* send-to queue */ 8374 IRE_CACHE, /* IRE type */ 8375 src_ipif, 8376 (sire != NULL) ? 8377 sire->ire_mask : 0, /* Parent mask */ 8378 (sire != NULL) ? 8379 sire->ire_phandle : 0, /* Parent handle */ 8380 ipif_ire->ire_ihandle, /* Interface handle */ 8381 (sire != NULL) ? (sire->ire_flags & 8382 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 8383 (sire != NULL) ? 8384 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 8385 NULL, 8386 gcgrp, 8387 ipst); 8388 8389 if (ire == NULL) { 8390 if (gcgrp != NULL) { 8391 GCGRP_REFRELE(gcgrp); 8392 gcgrp = NULL; 8393 } 8394 ire_refrele(ipif_ire); 8395 ire_refrele(save_ire); 8396 break; 8397 } 8398 8399 /* reference now held by IRE */ 8400 gcgrp = NULL; 8401 8402 ire->ire_marks |= ire_marks; 8403 8404 /* 8405 * Prevent sire and ipif_ire from getting deleted. 8406 * The newly created ire is tied to both of them via 8407 * the phandle and ihandle respectively. 8408 */ 8409 if (sire != NULL) { 8410 IRB_REFHOLD(sire->ire_bucket); 8411 /* Has it been removed already ? */ 8412 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 8413 IRB_REFRELE(sire->ire_bucket); 8414 ire_refrele(ipif_ire); 8415 ire_refrele(save_ire); 8416 break; 8417 } 8418 } 8419 8420 IRB_REFHOLD(ipif_ire->ire_bucket); 8421 /* Has it been removed already ? */ 8422 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 8423 IRB_REFRELE(ipif_ire->ire_bucket); 8424 if (sire != NULL) 8425 IRB_REFRELE(sire->ire_bucket); 8426 ire_refrele(ipif_ire); 8427 ire_refrele(save_ire); 8428 break; 8429 } 8430 8431 xmit_mp = first_mp; 8432 /* 8433 * In the case of multirouting, a copy 8434 * of the packet is done before its sending. 8435 * The copy is used to attempt another 8436 * route resolution, in a next loop. 8437 */ 8438 if (ire->ire_flags & RTF_MULTIRT) { 8439 copy_mp = copymsg(first_mp); 8440 if (copy_mp != NULL) { 8441 xmit_mp = copy_mp; 8442 MULTIRT_DEBUG_TAG(first_mp); 8443 } 8444 } 8445 ire_add_then_send(q, ire, xmit_mp); 8446 ire_refrele(save_ire); 8447 8448 /* Assert that sire is not deleted yet. */ 8449 if (sire != NULL) { 8450 ASSERT(sire->ire_ptpn != NULL); 8451 IRB_REFRELE(sire->ire_bucket); 8452 } 8453 8454 /* Assert that ipif_ire is not deleted yet. */ 8455 ASSERT(ipif_ire->ire_ptpn != NULL); 8456 IRB_REFRELE(ipif_ire->ire_bucket); 8457 ire_refrele(ipif_ire); 8458 8459 /* 8460 * If copy_mp is not NULL, multirouting was 8461 * requested. We loop to initiate a next 8462 * route resolution attempt, starting from sire. 8463 */ 8464 if (copy_mp != NULL) { 8465 /* 8466 * Search for the next unresolved 8467 * multirt route. 8468 */ 8469 copy_mp = NULL; 8470 ipif_ire = NULL; 8471 ire = NULL; 8472 multirt_resolve_next = B_TRUE; 8473 continue; 8474 } 8475 if (sire != NULL) 8476 ire_refrele(sire); 8477 ipif_refrele(src_ipif); 8478 ill_refrele(dst_ill); 8479 return; 8480 } 8481 case IRE_IF_NORESOLVER: { 8482 8483 if (dst_ill->ill_phys_addr_length != IP_ADDR_LEN && 8484 dst_ill->ill_resolver_mp == NULL) { 8485 ip1dbg(("ip_newroute: dst_ill %p " 8486 "for IRE_IF_NORESOLVER ire %p has " 8487 "no ill_resolver_mp\n", 8488 (void *)dst_ill, (void *)ire)); 8489 break; 8490 } 8491 8492 /* 8493 * TSol note: We are creating the ire cache for the 8494 * destination 'dst'. If 'dst' is offlink, going 8495 * through the first hop 'gw', the security attributes 8496 * of 'dst' must be set to point to the gateway 8497 * credentials of gateway 'gw'. If 'dst' is onlink, it 8498 * is possible that 'dst' is a potential gateway that is 8499 * referenced by some route that has some security 8500 * attributes. Thus in the former case, we need to do a 8501 * gcgrp_lookup of 'gw' while in the latter case we 8502 * need to do gcgrp_lookup of 'dst' itself. 8503 */ 8504 ga.ga_af = AF_INET; 8505 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 8506 &ga.ga_addr); 8507 gcgrp = gcgrp_lookup(&ga, B_FALSE); 8508 8509 ire = ire_create( 8510 (uchar_t *)&dst, /* dest address */ 8511 (uchar_t *)&ip_g_all_ones, /* mask */ 8512 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8513 (uchar_t *)&gw, /* gateway address */ 8514 &save_ire->ire_max_frag, 8515 NULL, /* no src nce */ 8516 dst_ill->ill_rq, /* recv-from queue */ 8517 dst_ill->ill_wq, /* send-to queue */ 8518 IRE_CACHE, 8519 src_ipif, 8520 save_ire->ire_mask, /* Parent mask */ 8521 (sire != NULL) ? /* Parent handle */ 8522 sire->ire_phandle : 0, 8523 save_ire->ire_ihandle, /* Interface handle */ 8524 (sire != NULL) ? sire->ire_flags & 8525 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 8526 &(save_ire->ire_uinfo), 8527 NULL, 8528 gcgrp, 8529 ipst); 8530 8531 if (ire == NULL) { 8532 if (gcgrp != NULL) { 8533 GCGRP_REFRELE(gcgrp); 8534 gcgrp = NULL; 8535 } 8536 ire_refrele(save_ire); 8537 break; 8538 } 8539 8540 /* reference now held by IRE */ 8541 gcgrp = NULL; 8542 8543 ire->ire_marks |= ire_marks; 8544 8545 /* Prevent save_ire from getting deleted */ 8546 IRB_REFHOLD(save_ire->ire_bucket); 8547 /* Has it been removed already ? */ 8548 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8549 IRB_REFRELE(save_ire->ire_bucket); 8550 ire_refrele(save_ire); 8551 break; 8552 } 8553 8554 /* 8555 * In the case of multirouting, a copy 8556 * of the packet is made before it is sent. 8557 * The copy is used in the next 8558 * loop to attempt another resolution. 8559 */ 8560 xmit_mp = first_mp; 8561 if ((sire != NULL) && 8562 (sire->ire_flags & RTF_MULTIRT)) { 8563 copy_mp = copymsg(first_mp); 8564 if (copy_mp != NULL) { 8565 xmit_mp = copy_mp; 8566 MULTIRT_DEBUG_TAG(first_mp); 8567 } 8568 } 8569 ire_add_then_send(q, ire, xmit_mp); 8570 8571 /* Assert that it is not deleted yet. */ 8572 ASSERT(save_ire->ire_ptpn != NULL); 8573 IRB_REFRELE(save_ire->ire_bucket); 8574 ire_refrele(save_ire); 8575 8576 if (copy_mp != NULL) { 8577 /* 8578 * If we found a (no)resolver, we ignore any 8579 * trailing top priority IRE_CACHE in further 8580 * loops. This ensures that we do not omit any 8581 * (no)resolver. 8582 * This IRE_CACHE, if any, will be processed 8583 * by another thread entering ip_newroute(). 8584 * IRE_CACHE entries, if any, will be processed 8585 * by another thread entering ip_newroute(), 8586 * (upon resolver response, for instance). 8587 * This aims to force parallel multirt 8588 * resolutions as soon as a packet must be sent. 8589 * In the best case, after the tx of only one 8590 * packet, all reachable routes are resolved. 8591 * Otherwise, the resolution of all RTF_MULTIRT 8592 * routes would require several emissions. 8593 */ 8594 multirt_flags &= ~MULTIRT_CACHEGW; 8595 8596 /* 8597 * Search for the next unresolved multirt 8598 * route. 8599 */ 8600 copy_mp = NULL; 8601 save_ire = NULL; 8602 ire = NULL; 8603 multirt_resolve_next = B_TRUE; 8604 continue; 8605 } 8606 8607 /* 8608 * Don't need sire anymore 8609 */ 8610 if (sire != NULL) 8611 ire_refrele(sire); 8612 8613 ipif_refrele(src_ipif); 8614 ill_refrele(dst_ill); 8615 return; 8616 } 8617 case IRE_IF_RESOLVER: 8618 /* 8619 * We can't build an IRE_CACHE yet, but at least we 8620 * found a resolver that can help. 8621 */ 8622 res_mp = dst_ill->ill_resolver_mp; 8623 if (!OK_RESOLVER_MP(res_mp)) 8624 break; 8625 8626 /* 8627 * To be at this point in the code with a non-zero gw 8628 * means that dst is reachable through a gateway that 8629 * we have never resolved. By changing dst to the gw 8630 * addr we resolve the gateway first. 8631 * When ire_add_then_send() tries to put the IP dg 8632 * to dst, it will reenter ip_newroute() at which 8633 * time we will find the IRE_CACHE for the gw and 8634 * create another IRE_CACHE in case IRE_CACHE above. 8635 */ 8636 if (gw != INADDR_ANY) { 8637 /* 8638 * The source ipif that was determined above was 8639 * relative to the destination address, not the 8640 * gateway's. If src_ipif was not taken out of 8641 * the IRE_IF_RESOLVER entry, we'll need to call 8642 * ipif_select_source() again. 8643 */ 8644 if (src_ipif != ire->ire_ipif) { 8645 ipif_refrele(src_ipif); 8646 src_ipif = ipif_select_source(dst_ill, 8647 gw, zoneid); 8648 if (src_ipif == NULL) { 8649 if (ip_debug > 2) { 8650 pr_addr_dbg( 8651 "ip_newroute: no " 8652 "src for gw %s ", 8653 AF_INET, &gw); 8654 printf("through " 8655 "interface %s\n", 8656 dst_ill->ill_name); 8657 } 8658 goto icmp_err_ret; 8659 } 8660 } 8661 save_dst = dst; 8662 dst = gw; 8663 gw = INADDR_ANY; 8664 } 8665 8666 /* 8667 * We obtain a partial IRE_CACHE which we will pass 8668 * along with the resolver query. When the response 8669 * comes back it will be there ready for us to add. 8670 * The ire_max_frag is atomically set under the 8671 * irebucket lock in ire_add_v[46]. 8672 */ 8673 8674 ire = ire_create_mp( 8675 (uchar_t *)&dst, /* dest address */ 8676 (uchar_t *)&ip_g_all_ones, /* mask */ 8677 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8678 (uchar_t *)&gw, /* gateway address */ 8679 NULL, /* ire_max_frag */ 8680 NULL, /* no src nce */ 8681 dst_ill->ill_rq, /* recv-from queue */ 8682 dst_ill->ill_wq, /* send-to queue */ 8683 IRE_CACHE, 8684 src_ipif, /* Interface ipif */ 8685 save_ire->ire_mask, /* Parent mask */ 8686 0, 8687 save_ire->ire_ihandle, /* Interface handle */ 8688 0, /* flags if any */ 8689 &(save_ire->ire_uinfo), 8690 NULL, 8691 NULL, 8692 ipst); 8693 8694 if (ire == NULL) { 8695 ire_refrele(save_ire); 8696 break; 8697 } 8698 8699 if ((sire != NULL) && 8700 (sire->ire_flags & RTF_MULTIRT)) { 8701 copy_mp = copymsg(first_mp); 8702 if (copy_mp != NULL) 8703 MULTIRT_DEBUG_TAG(copy_mp); 8704 } 8705 8706 ire->ire_marks |= ire_marks; 8707 8708 /* 8709 * Construct message chain for the resolver 8710 * of the form: 8711 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8712 * Packet could contain a IPSEC_OUT mp. 8713 * 8714 * NOTE : ire will be added later when the response 8715 * comes back from ARP. If the response does not 8716 * come back, ARP frees the packet. For this reason, 8717 * we can't REFHOLD the bucket of save_ire to prevent 8718 * deletions. We may not be able to REFRELE the bucket 8719 * if the response never comes back. Thus, before 8720 * adding the ire, ire_add_v4 will make sure that the 8721 * interface route does not get deleted. This is the 8722 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8723 * where we can always prevent deletions because of 8724 * the synchronous nature of adding IRES i.e 8725 * ire_add_then_send is called after creating the IRE. 8726 */ 8727 ASSERT(ire->ire_mp != NULL); 8728 ire->ire_mp->b_cont = first_mp; 8729 /* Have saved_mp handy, for cleanup if canput fails */ 8730 saved_mp = mp; 8731 mp = copyb(res_mp); 8732 if (mp == NULL) { 8733 /* Prepare for cleanup */ 8734 mp = saved_mp; /* pkt */ 8735 ire_delete(ire); /* ire_mp */ 8736 ire = NULL; 8737 ire_refrele(save_ire); 8738 if (copy_mp != NULL) { 8739 MULTIRT_DEBUG_UNTAG(copy_mp); 8740 freemsg(copy_mp); 8741 copy_mp = NULL; 8742 } 8743 break; 8744 } 8745 linkb(mp, ire->ire_mp); 8746 8747 /* 8748 * Fill in the source and dest addrs for the resolver. 8749 * NOTE: this depends on memory layouts imposed by 8750 * ill_init(). 8751 */ 8752 areq = (areq_t *)mp->b_rptr; 8753 addrp = (ipaddr_t *)((char *)areq + 8754 areq->areq_sender_addr_offset); 8755 if (do_attach_ill) { 8756 /* 8757 * This is bind to no failover case. 8758 * arp packet also must go out on attach_ill. 8759 */ 8760 ASSERT(ipha->ipha_src != NULL); 8761 *addrp = ipha->ipha_src; 8762 } else { 8763 *addrp = save_ire->ire_src_addr; 8764 } 8765 8766 ire_refrele(save_ire); 8767 addrp = (ipaddr_t *)((char *)areq + 8768 areq->areq_target_addr_offset); 8769 *addrp = dst; 8770 /* Up to the resolver. */ 8771 if (canputnext(dst_ill->ill_rq) && 8772 !(dst_ill->ill_arp_closing)) { 8773 putnext(dst_ill->ill_rq, mp); 8774 ire = NULL; 8775 if (copy_mp != NULL) { 8776 /* 8777 * If we found a resolver, we ignore 8778 * any trailing top priority IRE_CACHE 8779 * in the further loops. This ensures 8780 * that we do not omit any resolver. 8781 * IRE_CACHE entries, if any, will be 8782 * processed next time we enter 8783 * ip_newroute(). 8784 */ 8785 multirt_flags &= ~MULTIRT_CACHEGW; 8786 /* 8787 * Search for the next unresolved 8788 * multirt route. 8789 */ 8790 first_mp = copy_mp; 8791 copy_mp = NULL; 8792 /* Prepare the next resolution loop. */ 8793 mp = first_mp; 8794 EXTRACT_PKT_MP(mp, first_mp, 8795 mctl_present); 8796 if (mctl_present) 8797 io = (ipsec_out_t *) 8798 first_mp->b_rptr; 8799 ipha = (ipha_t *)mp->b_rptr; 8800 8801 ASSERT(sire != NULL); 8802 8803 dst = save_dst; 8804 multirt_resolve_next = B_TRUE; 8805 continue; 8806 } 8807 8808 if (sire != NULL) 8809 ire_refrele(sire); 8810 8811 /* 8812 * The response will come back in ip_wput 8813 * with db_type IRE_DB_TYPE. 8814 */ 8815 ipif_refrele(src_ipif); 8816 ill_refrele(dst_ill); 8817 return; 8818 } else { 8819 /* Prepare for cleanup */ 8820 DTRACE_PROBE1(ip__newroute__drop, mblk_t *, 8821 mp); 8822 mp->b_cont = NULL; 8823 freeb(mp); /* areq */ 8824 /* 8825 * this is an ire that is not added to the 8826 * cache. ire_freemblk will handle the release 8827 * of any resources associated with the ire. 8828 */ 8829 ire_delete(ire); /* ire_mp */ 8830 mp = saved_mp; /* pkt */ 8831 ire = NULL; 8832 if (copy_mp != NULL) { 8833 MULTIRT_DEBUG_UNTAG(copy_mp); 8834 freemsg(copy_mp); 8835 copy_mp = NULL; 8836 } 8837 break; 8838 } 8839 default: 8840 break; 8841 } 8842 } while (multirt_resolve_next); 8843 8844 ip1dbg(("ip_newroute: dropped\n")); 8845 /* Did this packet originate externally? */ 8846 if (mp->b_prev) { 8847 mp->b_next = NULL; 8848 mp->b_prev = NULL; 8849 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 8850 } else { 8851 if (dst_ill != NULL) { 8852 BUMP_MIB(dst_ill->ill_ip_mib, ipIfStatsOutDiscards); 8853 } else { 8854 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 8855 } 8856 } 8857 ASSERT(copy_mp == NULL); 8858 MULTIRT_DEBUG_UNTAG(first_mp); 8859 freemsg(first_mp); 8860 if (ire != NULL) 8861 ire_refrele(ire); 8862 if (sire != NULL) 8863 ire_refrele(sire); 8864 if (src_ipif != NULL) 8865 ipif_refrele(src_ipif); 8866 if (dst_ill != NULL) 8867 ill_refrele(dst_ill); 8868 return; 8869 8870 icmp_err_ret: 8871 ip1dbg(("ip_newroute: no route\n")); 8872 if (src_ipif != NULL) 8873 ipif_refrele(src_ipif); 8874 if (dst_ill != NULL) 8875 ill_refrele(dst_ill); 8876 if (sire != NULL) 8877 ire_refrele(sire); 8878 /* Did this packet originate externally? */ 8879 if (mp->b_prev) { 8880 mp->b_next = NULL; 8881 mp->b_prev = NULL; 8882 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInNoRoutes); 8883 q = WR(q); 8884 } else { 8885 /* 8886 * There is no outgoing ill, so just increment the 8887 * system MIB. 8888 */ 8889 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 8890 /* 8891 * Since ip_wput() isn't close to finished, we fill 8892 * in enough of the header for credible error reporting. 8893 */ 8894 if (ip_hdr_complete(ipha, zoneid, ipst)) { 8895 /* Failed */ 8896 MULTIRT_DEBUG_UNTAG(first_mp); 8897 freemsg(first_mp); 8898 if (ire != NULL) 8899 ire_refrele(ire); 8900 return; 8901 } 8902 } 8903 8904 /* 8905 * At this point we will have ire only if RTF_BLACKHOLE 8906 * or RTF_REJECT flags are set on the IRE. It will not 8907 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 8908 */ 8909 if (ire != NULL) { 8910 if (ire->ire_flags & RTF_BLACKHOLE) { 8911 ire_refrele(ire); 8912 MULTIRT_DEBUG_UNTAG(first_mp); 8913 freemsg(first_mp); 8914 return; 8915 } 8916 ire_refrele(ire); 8917 } 8918 if (ip_source_routed(ipha, ipst)) { 8919 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED, 8920 zoneid, ipst); 8921 return; 8922 } 8923 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 8924 } 8925 8926 ip_opt_info_t zero_info; 8927 8928 /* 8929 * IPv4 - 8930 * ip_newroute_ipif is called by ip_wput_multicast and 8931 * ip_rput_forward_multicast whenever we need to send 8932 * out a packet to a destination address for which we do not have specific 8933 * routing information. It is used when the packet will be sent out 8934 * on a specific interface. It is also called by ip_wput() when IP_BOUND_IF 8935 * socket option is set or icmp error message wants to go out on a particular 8936 * interface for a unicast packet. 8937 * 8938 * In most cases, the destination address is resolved thanks to the ipif 8939 * intrinsic resolver. However, there are some cases where the call to 8940 * ip_newroute_ipif must take into account the potential presence of 8941 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 8942 * that uses the interface. This is specified through flags, 8943 * which can be a combination of: 8944 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 8945 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 8946 * and flags. Additionally, the packet source address has to be set to 8947 * the specified address. The caller is thus expected to set this flag 8948 * if the packet has no specific source address yet. 8949 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 8950 * flag, the resulting ire will inherit the flag. All unresolved routes 8951 * to the destination must be explored in the same call to 8952 * ip_newroute_ipif(). 8953 */ 8954 static void 8955 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 8956 conn_t *connp, uint32_t flags, zoneid_t zoneid, ip_opt_info_t *infop) 8957 { 8958 areq_t *areq; 8959 ire_t *ire = NULL; 8960 mblk_t *res_mp; 8961 ipaddr_t *addrp; 8962 mblk_t *first_mp; 8963 ire_t *save_ire = NULL; 8964 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER */ 8965 ipif_t *src_ipif = NULL; 8966 ushort_t ire_marks = 0; 8967 ill_t *dst_ill = NULL; 8968 boolean_t mctl_present; 8969 ipsec_out_t *io; 8970 ipha_t *ipha; 8971 int ihandle = 0; 8972 mblk_t *saved_mp; 8973 ire_t *fire = NULL; 8974 mblk_t *copy_mp = NULL; 8975 boolean_t multirt_resolve_next; 8976 boolean_t unspec_src; 8977 ipaddr_t ipha_dst; 8978 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 8979 8980 /* 8981 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 8982 * here for uniformity 8983 */ 8984 ipif_refhold(ipif); 8985 8986 /* 8987 * This loop is run only once in most cases. 8988 * We loop to resolve further routes only when the destination 8989 * can be reached through multiple RTF_MULTIRT-flagged ires. 8990 */ 8991 do { 8992 if (dst_ill != NULL) { 8993 ill_refrele(dst_ill); 8994 dst_ill = NULL; 8995 } 8996 if (src_ipif != NULL) { 8997 ipif_refrele(src_ipif); 8998 src_ipif = NULL; 8999 } 9000 multirt_resolve_next = B_FALSE; 9001 9002 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 9003 ipif->ipif_ill->ill_name)); 9004 9005 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 9006 if (mctl_present) 9007 io = (ipsec_out_t *)first_mp->b_rptr; 9008 9009 ipha = (ipha_t *)mp->b_rptr; 9010 9011 /* 9012 * Save the packet destination address, we may need it after 9013 * the packet has been consumed. 9014 */ 9015 ipha_dst = ipha->ipha_dst; 9016 9017 /* 9018 * If the interface is a pt-pt interface we look for an 9019 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 9020 * local_address and the pt-pt destination address. Otherwise 9021 * we just match the local address. 9022 * NOTE: dst could be different than ipha->ipha_dst in case 9023 * of sending igmp multicast packets over a point-to-point 9024 * connection. 9025 * Thus we must be careful enough to check ipha_dst to be a 9026 * multicast address, otherwise it will take xmit_if path for 9027 * multicast packets resulting into kernel stack overflow by 9028 * repeated calls to ip_newroute_ipif from ire_send(). 9029 */ 9030 if (CLASSD(ipha_dst) && 9031 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 9032 goto err_ret; 9033 } 9034 9035 /* 9036 * We check if an IRE_OFFSUBNET for the addr that goes through 9037 * ipif exists. We need it to determine if the RTF_SETSRC and/or 9038 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 9039 * propagate its flags to the new ire. 9040 */ 9041 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 9042 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 9043 ip2dbg(("ip_newroute_ipif: " 9044 "ipif_lookup_multi_ire(" 9045 "ipif %p, dst %08x) = fire %p\n", 9046 (void *)ipif, ntohl(dst), (void *)fire)); 9047 } 9048 9049 if (mctl_present && io->ipsec_out_attach_if) { 9050 attach_ill = ip_grab_attach_ill(NULL, first_mp, 9051 io->ipsec_out_ill_index, B_FALSE, ipst); 9052 9053 /* Failure case frees things for us. */ 9054 if (attach_ill == NULL) { 9055 ipif_refrele(ipif); 9056 if (fire != NULL) 9057 ire_refrele(fire); 9058 return; 9059 } 9060 9061 /* 9062 * Check if we need an ire that will not be 9063 * looked up by anybody else i.e. HIDDEN. 9064 */ 9065 if (ill_is_probeonly(attach_ill)) { 9066 ire_marks = IRE_MARK_HIDDEN; 9067 } 9068 /* 9069 * ip_wput passes the right ipif for IPIF_NOFAILOVER 9070 * case. 9071 */ 9072 dst_ill = ipif->ipif_ill; 9073 /* attach_ill has been refheld by ip_grab_attach_ill */ 9074 ASSERT(dst_ill == attach_ill); 9075 } else { 9076 /* 9077 * If the interface belongs to an interface group, 9078 * make sure the next possible interface in the group 9079 * is used. This encourages load spreading among 9080 * peers in an interface group. 9081 * Note: load spreading is disabled for RTF_MULTIRT 9082 * routes. 9083 */ 9084 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9085 (fire->ire_flags & RTF_MULTIRT)) { 9086 /* 9087 * Don't perform outbound load spreading 9088 * in the case of an RTF_MULTIRT issued route, 9089 * we actually typically want to replicate 9090 * outgoing packets through particular 9091 * interfaces. 9092 */ 9093 dst_ill = ipif->ipif_ill; 9094 ill_refhold(dst_ill); 9095 } else { 9096 dst_ill = ip_newroute_get_dst_ill( 9097 ipif->ipif_ill); 9098 } 9099 if (dst_ill == NULL) { 9100 if (ip_debug > 2) { 9101 pr_addr_dbg("ip_newroute_ipif: " 9102 "no dst ill for dst %s\n", 9103 AF_INET, &dst); 9104 } 9105 goto err_ret; 9106 } 9107 } 9108 9109 /* 9110 * Pick a source address preferring non-deprecated ones. 9111 * Unlike ip_newroute, we don't do any source address 9112 * selection here since for multicast it really does not help 9113 * in inbound load spreading as in the unicast case. 9114 */ 9115 if ((flags & RTF_SETSRC) && (fire != NULL) && 9116 (fire->ire_flags & RTF_SETSRC)) { 9117 /* 9118 * As requested by flags, an IRE_OFFSUBNET was looked up 9119 * on that interface. This ire has RTF_SETSRC flag, so 9120 * the source address of the packet must be changed. 9121 * Check that the ipif matching the requested source 9122 * address still exists. 9123 */ 9124 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 9125 zoneid, NULL, NULL, NULL, NULL, ipst); 9126 } 9127 9128 unspec_src = (connp != NULL && connp->conn_unspec_src); 9129 9130 if (((!ipif->ipif_isv6 && ipif->ipif_lcl_addr == INADDR_ANY) || 9131 (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_UP)) != IPIF_UP || 9132 (connp != NULL && ipif->ipif_zoneid != zoneid && 9133 ipif->ipif_zoneid != ALL_ZONES)) && 9134 (src_ipif == NULL) && 9135 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 9136 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 9137 if (src_ipif == NULL) { 9138 if (ip_debug > 2) { 9139 /* ip1dbg */ 9140 pr_addr_dbg("ip_newroute_ipif: " 9141 "no src for dst %s", 9142 AF_INET, &dst); 9143 } 9144 ip1dbg((" through interface %s\n", 9145 dst_ill->ill_name)); 9146 goto err_ret; 9147 } 9148 ipif_refrele(ipif); 9149 ipif = src_ipif; 9150 ipif_refhold(ipif); 9151 } 9152 if (src_ipif == NULL) { 9153 src_ipif = ipif; 9154 ipif_refhold(src_ipif); 9155 } 9156 9157 /* 9158 * Assign a source address while we have the conn. 9159 * We can't have ip_wput_ire pick a source address when the 9160 * packet returns from arp since conn_unspec_src might be set 9161 * and we lose the conn when going through arp. 9162 */ 9163 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 9164 ipha->ipha_src = src_ipif->ipif_src_addr; 9165 9166 /* 9167 * In the case of IP_BOUND_IF and IP_PKTINFO, it is possible 9168 * that the outgoing interface does not have an interface ire. 9169 */ 9170 if (CLASSD(ipha_dst) && (connp == NULL || 9171 connp->conn_outgoing_ill == NULL) && 9172 infop->ip_opt_ill_index == 0) { 9173 /* ipif_to_ire returns an held ire */ 9174 ire = ipif_to_ire(ipif); 9175 if (ire == NULL) 9176 goto err_ret; 9177 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 9178 goto err_ret; 9179 /* 9180 * ihandle is needed when the ire is added to 9181 * cache table. 9182 */ 9183 save_ire = ire; 9184 ihandle = save_ire->ire_ihandle; 9185 9186 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 9187 "flags %04x\n", 9188 (void *)ire, (void *)ipif, flags)); 9189 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9190 (fire->ire_flags & RTF_MULTIRT)) { 9191 /* 9192 * As requested by flags, an IRE_OFFSUBNET was 9193 * looked up on that interface. This ire has 9194 * RTF_MULTIRT flag, so the resolution loop will 9195 * be re-entered to resolve additional routes on 9196 * other interfaces. For that purpose, a copy of 9197 * the packet is performed at this point. 9198 */ 9199 fire->ire_last_used_time = lbolt; 9200 copy_mp = copymsg(first_mp); 9201 if (copy_mp) { 9202 MULTIRT_DEBUG_TAG(copy_mp); 9203 } 9204 } 9205 if ((flags & RTF_SETSRC) && (fire != NULL) && 9206 (fire->ire_flags & RTF_SETSRC)) { 9207 /* 9208 * As requested by flags, an IRE_OFFSUBET was 9209 * looked up on that interface. This ire has 9210 * RTF_SETSRC flag, so the source address of the 9211 * packet must be changed. 9212 */ 9213 ipha->ipha_src = fire->ire_src_addr; 9214 } 9215 } else { 9216 ASSERT((connp == NULL) || 9217 (connp->conn_outgoing_ill != NULL) || 9218 (connp->conn_dontroute) || 9219 infop->ip_opt_ill_index != 0); 9220 /* 9221 * The only ways we can come here are: 9222 * 1) IP_BOUND_IF socket option is set 9223 * 2) SO_DONTROUTE socket option is set 9224 * 3) IP_PKTINFO option is passed in as ancillary data. 9225 * In all cases, the new ire will not be added 9226 * into cache table. 9227 */ 9228 ire_marks |= IRE_MARK_NOADD; 9229 } 9230 9231 switch (ipif->ipif_net_type) { 9232 case IRE_IF_NORESOLVER: { 9233 /* We have what we need to build an IRE_CACHE. */ 9234 9235 if ((dst_ill->ill_phys_addr_length != IP_ADDR_LEN) && 9236 (dst_ill->ill_resolver_mp == NULL)) { 9237 ip1dbg(("ip_newroute_ipif: dst_ill %p " 9238 "for IRE_IF_NORESOLVER ire %p has " 9239 "no ill_resolver_mp\n", 9240 (void *)dst_ill, (void *)ire)); 9241 break; 9242 } 9243 9244 /* 9245 * The new ire inherits the IRE_OFFSUBNET flags 9246 * and source address, if this was requested. 9247 */ 9248 ire = ire_create( 9249 (uchar_t *)&dst, /* dest address */ 9250 (uchar_t *)&ip_g_all_ones, /* mask */ 9251 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9252 NULL, /* gateway address */ 9253 &ipif->ipif_mtu, 9254 NULL, /* no src nce */ 9255 dst_ill->ill_rq, /* recv-from queue */ 9256 dst_ill->ill_wq, /* send-to queue */ 9257 IRE_CACHE, 9258 src_ipif, 9259 (save_ire != NULL ? save_ire->ire_mask : 0), 9260 (fire != NULL) ? /* Parent handle */ 9261 fire->ire_phandle : 0, 9262 ihandle, /* Interface handle */ 9263 (fire != NULL) ? 9264 (fire->ire_flags & 9265 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9266 (save_ire == NULL ? &ire_uinfo_null : 9267 &save_ire->ire_uinfo), 9268 NULL, 9269 NULL, 9270 ipst); 9271 9272 if (ire == NULL) { 9273 if (save_ire != NULL) 9274 ire_refrele(save_ire); 9275 break; 9276 } 9277 9278 ire->ire_marks |= ire_marks; 9279 9280 /* 9281 * If IRE_MARK_NOADD is set then we need to convert 9282 * the max_fragp to a useable value now. This is 9283 * normally done in ire_add_v[46]. We also need to 9284 * associate the ire with an nce (normally would be 9285 * done in ip_wput_nondata()). 9286 * 9287 * Note that IRE_MARK_NOADD packets created here 9288 * do not have a non-null ire_mp pointer. The null 9289 * value of ire_bucket indicates that they were 9290 * never added. 9291 */ 9292 if (ire->ire_marks & IRE_MARK_NOADD) { 9293 uint_t max_frag; 9294 9295 max_frag = *ire->ire_max_fragp; 9296 ire->ire_max_fragp = NULL; 9297 ire->ire_max_frag = max_frag; 9298 9299 if ((ire->ire_nce = ndp_lookup_v4( 9300 ire_to_ill(ire), 9301 (ire->ire_gateway_addr != INADDR_ANY ? 9302 &ire->ire_gateway_addr : &ire->ire_addr), 9303 B_FALSE)) == NULL) { 9304 if (save_ire != NULL) 9305 ire_refrele(save_ire); 9306 break; 9307 } 9308 ASSERT(ire->ire_nce->nce_state == 9309 ND_REACHABLE); 9310 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 9311 } 9312 9313 /* Prevent save_ire from getting deleted */ 9314 if (save_ire != NULL) { 9315 IRB_REFHOLD(save_ire->ire_bucket); 9316 /* Has it been removed already ? */ 9317 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 9318 IRB_REFRELE(save_ire->ire_bucket); 9319 ire_refrele(save_ire); 9320 break; 9321 } 9322 } 9323 9324 ire_add_then_send(q, ire, first_mp); 9325 9326 /* Assert that save_ire is not deleted yet. */ 9327 if (save_ire != NULL) { 9328 ASSERT(save_ire->ire_ptpn != NULL); 9329 IRB_REFRELE(save_ire->ire_bucket); 9330 ire_refrele(save_ire); 9331 save_ire = NULL; 9332 } 9333 if (fire != NULL) { 9334 ire_refrele(fire); 9335 fire = NULL; 9336 } 9337 9338 /* 9339 * the resolution loop is re-entered if this 9340 * was requested through flags and if we 9341 * actually are in a multirouting case. 9342 */ 9343 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9344 boolean_t need_resolve = 9345 ire_multirt_need_resolve(ipha_dst, 9346 MBLK_GETLABEL(copy_mp), ipst); 9347 if (!need_resolve) { 9348 MULTIRT_DEBUG_UNTAG(copy_mp); 9349 freemsg(copy_mp); 9350 copy_mp = NULL; 9351 } else { 9352 /* 9353 * ipif_lookup_group() calls 9354 * ire_lookup_multi() that uses 9355 * ire_ftable_lookup() to find 9356 * an IRE_INTERFACE for the group. 9357 * In the multirt case, 9358 * ire_lookup_multi() then invokes 9359 * ire_multirt_lookup() to find 9360 * the next resolvable ire. 9361 * As a result, we obtain an new 9362 * interface, derived from the 9363 * next ire. 9364 */ 9365 ipif_refrele(ipif); 9366 ipif = ipif_lookup_group(ipha_dst, 9367 zoneid, ipst); 9368 ip2dbg(("ip_newroute_ipif: " 9369 "multirt dst %08x, ipif %p\n", 9370 htonl(dst), (void *)ipif)); 9371 if (ipif != NULL) { 9372 mp = copy_mp; 9373 copy_mp = NULL; 9374 multirt_resolve_next = B_TRUE; 9375 continue; 9376 } else { 9377 freemsg(copy_mp); 9378 } 9379 } 9380 } 9381 if (ipif != NULL) 9382 ipif_refrele(ipif); 9383 ill_refrele(dst_ill); 9384 ipif_refrele(src_ipif); 9385 return; 9386 } 9387 case IRE_IF_RESOLVER: 9388 /* 9389 * We can't build an IRE_CACHE yet, but at least 9390 * we found a resolver that can help. 9391 */ 9392 res_mp = dst_ill->ill_resolver_mp; 9393 if (!OK_RESOLVER_MP(res_mp)) 9394 break; 9395 9396 /* 9397 * We obtain a partial IRE_CACHE which we will pass 9398 * along with the resolver query. When the response 9399 * comes back it will be there ready for us to add. 9400 * The new ire inherits the IRE_OFFSUBNET flags 9401 * and source address, if this was requested. 9402 * The ire_max_frag is atomically set under the 9403 * irebucket lock in ire_add_v[46]. Only in the 9404 * case of IRE_MARK_NOADD, we set it here itself. 9405 */ 9406 ire = ire_create_mp( 9407 (uchar_t *)&dst, /* dest address */ 9408 (uchar_t *)&ip_g_all_ones, /* mask */ 9409 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9410 NULL, /* gateway address */ 9411 (ire_marks & IRE_MARK_NOADD) ? 9412 ipif->ipif_mtu : 0, /* max_frag */ 9413 NULL, /* no src nce */ 9414 dst_ill->ill_rq, /* recv-from queue */ 9415 dst_ill->ill_wq, /* send-to queue */ 9416 IRE_CACHE, 9417 src_ipif, 9418 (save_ire != NULL ? save_ire->ire_mask : 0), 9419 (fire != NULL) ? /* Parent handle */ 9420 fire->ire_phandle : 0, 9421 ihandle, /* Interface handle */ 9422 (fire != NULL) ? /* flags if any */ 9423 (fire->ire_flags & 9424 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9425 (save_ire == NULL ? &ire_uinfo_null : 9426 &save_ire->ire_uinfo), 9427 NULL, 9428 NULL, 9429 ipst); 9430 9431 if (save_ire != NULL) { 9432 ire_refrele(save_ire); 9433 save_ire = NULL; 9434 } 9435 if (ire == NULL) 9436 break; 9437 9438 ire->ire_marks |= ire_marks; 9439 /* 9440 * Construct message chain for the resolver of the 9441 * form: 9442 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 9443 * 9444 * NOTE : ire will be added later when the response 9445 * comes back from ARP. If the response does not 9446 * come back, ARP frees the packet. For this reason, 9447 * we can't REFHOLD the bucket of save_ire to prevent 9448 * deletions. We may not be able to REFRELE the 9449 * bucket if the response never comes back. 9450 * Thus, before adding the ire, ire_add_v4 will make 9451 * sure that the interface route does not get deleted. 9452 * This is the only case unlike ip_newroute_v6, 9453 * ip_newroute_ipif_v6 where we can always prevent 9454 * deletions because ire_add_then_send is called after 9455 * creating the IRE. 9456 * If IRE_MARK_NOADD is set, then ire_add_then_send 9457 * does not add this IRE into the IRE CACHE. 9458 */ 9459 ASSERT(ire->ire_mp != NULL); 9460 ire->ire_mp->b_cont = first_mp; 9461 /* Have saved_mp handy, for cleanup if canput fails */ 9462 saved_mp = mp; 9463 mp = copyb(res_mp); 9464 if (mp == NULL) { 9465 /* Prepare for cleanup */ 9466 mp = saved_mp; /* pkt */ 9467 ire_delete(ire); /* ire_mp */ 9468 ire = NULL; 9469 if (copy_mp != NULL) { 9470 MULTIRT_DEBUG_UNTAG(copy_mp); 9471 freemsg(copy_mp); 9472 copy_mp = NULL; 9473 } 9474 break; 9475 } 9476 linkb(mp, ire->ire_mp); 9477 9478 /* 9479 * Fill in the source and dest addrs for the resolver. 9480 * NOTE: this depends on memory layouts imposed by 9481 * ill_init(). 9482 */ 9483 areq = (areq_t *)mp->b_rptr; 9484 addrp = (ipaddr_t *)((char *)areq + 9485 areq->areq_sender_addr_offset); 9486 *addrp = ire->ire_src_addr; 9487 addrp = (ipaddr_t *)((char *)areq + 9488 areq->areq_target_addr_offset); 9489 *addrp = dst; 9490 /* Up to the resolver. */ 9491 if (canputnext(dst_ill->ill_rq) && 9492 !(dst_ill->ill_arp_closing)) { 9493 putnext(dst_ill->ill_rq, mp); 9494 /* 9495 * The response will come back in ip_wput 9496 * with db_type IRE_DB_TYPE. 9497 */ 9498 } else { 9499 mp->b_cont = NULL; 9500 freeb(mp); /* areq */ 9501 ire_delete(ire); /* ire_mp */ 9502 saved_mp->b_next = NULL; 9503 saved_mp->b_prev = NULL; 9504 freemsg(first_mp); /* pkt */ 9505 ip2dbg(("ip_newroute_ipif: dropped\n")); 9506 } 9507 9508 if (fire != NULL) { 9509 ire_refrele(fire); 9510 fire = NULL; 9511 } 9512 9513 9514 /* 9515 * The resolution loop is re-entered if this was 9516 * requested through flags and we actually are 9517 * in a multirouting case. 9518 */ 9519 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9520 boolean_t need_resolve = 9521 ire_multirt_need_resolve(ipha_dst, 9522 MBLK_GETLABEL(copy_mp), ipst); 9523 if (!need_resolve) { 9524 MULTIRT_DEBUG_UNTAG(copy_mp); 9525 freemsg(copy_mp); 9526 copy_mp = NULL; 9527 } else { 9528 /* 9529 * ipif_lookup_group() calls 9530 * ire_lookup_multi() that uses 9531 * ire_ftable_lookup() to find 9532 * an IRE_INTERFACE for the group. 9533 * In the multirt case, 9534 * ire_lookup_multi() then invokes 9535 * ire_multirt_lookup() to find 9536 * the next resolvable ire. 9537 * As a result, we obtain an new 9538 * interface, derived from the 9539 * next ire. 9540 */ 9541 ipif_refrele(ipif); 9542 ipif = ipif_lookup_group(ipha_dst, 9543 zoneid, ipst); 9544 if (ipif != NULL) { 9545 mp = copy_mp; 9546 copy_mp = NULL; 9547 multirt_resolve_next = B_TRUE; 9548 continue; 9549 } else { 9550 freemsg(copy_mp); 9551 } 9552 } 9553 } 9554 if (ipif != NULL) 9555 ipif_refrele(ipif); 9556 ill_refrele(dst_ill); 9557 ipif_refrele(src_ipif); 9558 return; 9559 default: 9560 break; 9561 } 9562 } while (multirt_resolve_next); 9563 9564 err_ret: 9565 ip2dbg(("ip_newroute_ipif: dropped\n")); 9566 if (fire != NULL) 9567 ire_refrele(fire); 9568 ipif_refrele(ipif); 9569 /* Did this packet originate externally? */ 9570 if (dst_ill != NULL) 9571 ill_refrele(dst_ill); 9572 if (src_ipif != NULL) 9573 ipif_refrele(src_ipif); 9574 if (mp->b_prev || mp->b_next) { 9575 mp->b_next = NULL; 9576 mp->b_prev = NULL; 9577 } else { 9578 /* 9579 * Since ip_wput() isn't close to finished, we fill 9580 * in enough of the header for credible error reporting. 9581 */ 9582 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 9583 /* Failed */ 9584 freemsg(first_mp); 9585 if (ire != NULL) 9586 ire_refrele(ire); 9587 return; 9588 } 9589 } 9590 /* 9591 * At this point we will have ire only if RTF_BLACKHOLE 9592 * or RTF_REJECT flags are set on the IRE. It will not 9593 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9594 */ 9595 if (ire != NULL) { 9596 if (ire->ire_flags & RTF_BLACKHOLE) { 9597 ire_refrele(ire); 9598 freemsg(first_mp); 9599 return; 9600 } 9601 ire_refrele(ire); 9602 } 9603 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9604 } 9605 9606 /* Name/Value Table Lookup Routine */ 9607 char * 9608 ip_nv_lookup(nv_t *nv, int value) 9609 { 9610 if (!nv) 9611 return (NULL); 9612 for (; nv->nv_name; nv++) { 9613 if (nv->nv_value == value) 9614 return (nv->nv_name); 9615 } 9616 return ("unknown"); 9617 } 9618 9619 /* 9620 * This is a module open, i.e. this is a control stream for access 9621 * to a DLPI device. We allocate an ill_t as the instance data in 9622 * this case. 9623 */ 9624 int 9625 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9626 { 9627 ill_t *ill; 9628 int err; 9629 zoneid_t zoneid; 9630 netstack_t *ns; 9631 ip_stack_t *ipst; 9632 9633 /* 9634 * Prevent unprivileged processes from pushing IP so that 9635 * they can't send raw IP. 9636 */ 9637 if (secpolicy_net_rawaccess(credp) != 0) 9638 return (EPERM); 9639 9640 ns = netstack_find_by_cred(credp); 9641 ASSERT(ns != NULL); 9642 ipst = ns->netstack_ip; 9643 ASSERT(ipst != NULL); 9644 9645 /* 9646 * For exclusive stacks we set the zoneid to zero 9647 * to make IP operate as if in the global zone. 9648 */ 9649 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9650 zoneid = GLOBAL_ZONEID; 9651 else 9652 zoneid = crgetzoneid(credp); 9653 9654 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9655 q->q_ptr = WR(q)->q_ptr = ill; 9656 ill->ill_ipst = ipst; 9657 ill->ill_zoneid = zoneid; 9658 9659 /* 9660 * ill_init initializes the ill fields and then sends down 9661 * down a DL_INFO_REQ after calling qprocson. 9662 */ 9663 err = ill_init(q, ill); 9664 if (err != 0) { 9665 mi_free(ill); 9666 netstack_rele(ipst->ips_netstack); 9667 q->q_ptr = NULL; 9668 WR(q)->q_ptr = NULL; 9669 return (err); 9670 } 9671 9672 /* ill_init initializes the ipsq marking this thread as writer */ 9673 ipsq_exit(ill->ill_phyint->phyint_ipsq, B_TRUE, B_TRUE); 9674 /* Wait for the DL_INFO_ACK */ 9675 mutex_enter(&ill->ill_lock); 9676 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9677 /* 9678 * Return value of 0 indicates a pending signal. 9679 */ 9680 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9681 if (err == 0) { 9682 mutex_exit(&ill->ill_lock); 9683 (void) ip_close(q, 0); 9684 return (EINTR); 9685 } 9686 } 9687 mutex_exit(&ill->ill_lock); 9688 9689 /* 9690 * ip_rput_other could have set an error in ill_error on 9691 * receipt of M_ERROR. 9692 */ 9693 9694 err = ill->ill_error; 9695 if (err != 0) { 9696 (void) ip_close(q, 0); 9697 return (err); 9698 } 9699 9700 ill->ill_credp = credp; 9701 crhold(credp); 9702 9703 mutex_enter(&ipst->ips_ip_mi_lock); 9704 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)ill, devp, flag, sflag, 9705 credp); 9706 mutex_exit(&ipst->ips_ip_mi_lock); 9707 if (err) { 9708 (void) ip_close(q, 0); 9709 return (err); 9710 } 9711 return (0); 9712 } 9713 9714 /* For /dev/ip aka AF_INET open */ 9715 int 9716 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9717 { 9718 return (ip_open(q, devp, flag, sflag, credp, B_FALSE)); 9719 } 9720 9721 /* For /dev/ip6 aka AF_INET6 open */ 9722 int 9723 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9724 { 9725 return (ip_open(q, devp, flag, sflag, credp, B_TRUE)); 9726 } 9727 9728 /* IP open routine. */ 9729 int 9730 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 9731 boolean_t isv6) 9732 { 9733 conn_t *connp; 9734 major_t maj; 9735 zoneid_t zoneid; 9736 netstack_t *ns; 9737 ip_stack_t *ipst; 9738 9739 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 9740 9741 /* Allow reopen. */ 9742 if (q->q_ptr != NULL) 9743 return (0); 9744 9745 if (sflag & MODOPEN) { 9746 /* This is a module open */ 9747 return (ip_modopen(q, devp, flag, sflag, credp)); 9748 } 9749 9750 ns = netstack_find_by_cred(credp); 9751 ASSERT(ns != NULL); 9752 ipst = ns->netstack_ip; 9753 ASSERT(ipst != NULL); 9754 9755 /* 9756 * For exclusive stacks we set the zoneid to zero 9757 * to make IP operate as if in the global zone. 9758 */ 9759 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9760 zoneid = GLOBAL_ZONEID; 9761 else 9762 zoneid = crgetzoneid(credp); 9763 9764 /* 9765 * We are opening as a device. This is an IP client stream, and we 9766 * allocate an conn_t as the instance data. 9767 */ 9768 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 9769 9770 /* 9771 * ipcl_conn_create did a netstack_hold. Undo the hold that was 9772 * done by netstack_find_by_cred() 9773 */ 9774 netstack_rele(ipst->ips_netstack); 9775 9776 connp->conn_zoneid = zoneid; 9777 9778 connp->conn_upq = q; 9779 q->q_ptr = WR(q)->q_ptr = connp; 9780 9781 if (flag & SO_SOCKSTR) 9782 connp->conn_flags |= IPCL_SOCKET; 9783 9784 /* Minor tells us which /dev entry was opened */ 9785 if (isv6) { 9786 connp->conn_flags |= IPCL_ISV6; 9787 connp->conn_af_isv6 = B_TRUE; 9788 ip_setpktversion(connp, isv6, B_FALSE, ipst); 9789 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9790 } else { 9791 connp->conn_af_isv6 = B_FALSE; 9792 connp->conn_pkt_isv6 = B_FALSE; 9793 } 9794 9795 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 9796 ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 9797 connp->conn_minor_arena = ip_minor_arena_la; 9798 } else { 9799 /* 9800 * Either minor numbers in the large arena were exhausted 9801 * or a non socket application is doing the open. 9802 * Try to allocate from the small arena. 9803 */ 9804 if ((connp->conn_dev = 9805 inet_minor_alloc(ip_minor_arena_sa)) == 0) { 9806 /* CONN_DEC_REF takes care of netstack_rele() */ 9807 q->q_ptr = WR(q)->q_ptr = NULL; 9808 CONN_DEC_REF(connp); 9809 return (EBUSY); 9810 } 9811 connp->conn_minor_arena = ip_minor_arena_sa; 9812 } 9813 9814 maj = getemajor(*devp); 9815 *devp = makedevice(maj, (minor_t)connp->conn_dev); 9816 9817 /* 9818 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 9819 */ 9820 connp->conn_cred = credp; 9821 9822 /* 9823 * Handle IP_RTS_REQUEST and other ioctls which use conn_recv 9824 */ 9825 connp->conn_recv = ip_conn_input; 9826 9827 crhold(connp->conn_cred); 9828 9829 /* 9830 * If the caller has the process-wide flag set, then default to MAC 9831 * exempt mode. This allows read-down to unlabeled hosts. 9832 */ 9833 if (getpflags(NET_MAC_AWARE, credp) != 0) 9834 connp->conn_mac_exempt = B_TRUE; 9835 9836 connp->conn_rq = q; 9837 connp->conn_wq = WR(q); 9838 9839 /* Non-zero default values */ 9840 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9841 9842 /* 9843 * Make the conn globally visible to walkers 9844 */ 9845 ASSERT(connp->conn_ref == 1); 9846 mutex_enter(&connp->conn_lock); 9847 connp->conn_state_flags &= ~CONN_INCIPIENT; 9848 mutex_exit(&connp->conn_lock); 9849 9850 qprocson(q); 9851 9852 return (0); 9853 } 9854 9855 /* 9856 * Change the output format (IPv4 vs. IPv6) for a conn_t. 9857 * Note that there is no race since either ip_output function works - it 9858 * is just an optimization to enter the best ip_output routine directly. 9859 */ 9860 void 9861 ip_setpktversion(conn_t *connp, boolean_t isv6, boolean_t bump_mib, 9862 ip_stack_t *ipst) 9863 { 9864 if (isv6) { 9865 if (bump_mib) { 9866 BUMP_MIB(&ipst->ips_ip6_mib, 9867 ipIfStatsOutSwitchIPVersion); 9868 } 9869 connp->conn_send = ip_output_v6; 9870 connp->conn_pkt_isv6 = B_TRUE; 9871 } else { 9872 if (bump_mib) { 9873 BUMP_MIB(&ipst->ips_ip_mib, 9874 ipIfStatsOutSwitchIPVersion); 9875 } 9876 connp->conn_send = ip_output; 9877 connp->conn_pkt_isv6 = B_FALSE; 9878 } 9879 9880 } 9881 9882 /* 9883 * See if IPsec needs loading because of the options in mp. 9884 */ 9885 static boolean_t 9886 ipsec_opt_present(mblk_t *mp) 9887 { 9888 uint8_t *optcp, *next_optcp, *opt_endcp; 9889 struct opthdr *opt; 9890 struct T_opthdr *topt; 9891 int opthdr_len; 9892 t_uscalar_t optname, optlevel; 9893 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 9894 ipsec_req_t *ipsr; 9895 9896 /* 9897 * Walk through the mess, and find IP_SEC_OPT. If it's there, 9898 * return TRUE. 9899 */ 9900 9901 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 9902 opt_endcp = optcp + tor->OPT_length; 9903 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9904 opthdr_len = sizeof (struct T_opthdr); 9905 } else { /* O_OPTMGMT_REQ */ 9906 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 9907 opthdr_len = sizeof (struct opthdr); 9908 } 9909 for (; optcp < opt_endcp; optcp = next_optcp) { 9910 if (optcp + opthdr_len > opt_endcp) 9911 return (B_FALSE); /* Not enough option header. */ 9912 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9913 topt = (struct T_opthdr *)optcp; 9914 optlevel = topt->level; 9915 optname = topt->name; 9916 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 9917 } else { 9918 opt = (struct opthdr *)optcp; 9919 optlevel = opt->level; 9920 optname = opt->name; 9921 next_optcp = optcp + opthdr_len + 9922 _TPI_ALIGN_OPT(opt->len); 9923 } 9924 if ((next_optcp < optcp) || /* wraparound pointer space */ 9925 ((next_optcp >= opt_endcp) && /* last option bad len */ 9926 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 9927 return (B_FALSE); /* bad option buffer */ 9928 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 9929 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 9930 /* 9931 * Check to see if it's an all-bypass or all-zeroes 9932 * IPsec request. Don't bother loading IPsec if 9933 * the socket doesn't want to use it. (A good example 9934 * is a bypass request.) 9935 * 9936 * Basically, if any of the non-NEVER bits are set, 9937 * load IPsec. 9938 */ 9939 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 9940 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 9941 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 9942 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 9943 != 0) 9944 return (B_TRUE); 9945 } 9946 } 9947 return (B_FALSE); 9948 } 9949 9950 /* 9951 * If conn is is waiting for ipsec to finish loading, kick it. 9952 */ 9953 /* ARGSUSED */ 9954 static void 9955 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 9956 { 9957 t_scalar_t optreq_prim; 9958 mblk_t *mp; 9959 cred_t *cr; 9960 int err = 0; 9961 9962 /* 9963 * This function is called, after ipsec loading is complete. 9964 * Since IP checks exclusively and atomically (i.e it prevents 9965 * ipsec load from completing until ip_optcom_req completes) 9966 * whether ipsec load is complete, there cannot be a race with IP 9967 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 9968 */ 9969 mutex_enter(&connp->conn_lock); 9970 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 9971 ASSERT(connp->conn_ipsec_opt_mp != NULL); 9972 mp = connp->conn_ipsec_opt_mp; 9973 connp->conn_ipsec_opt_mp = NULL; 9974 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 9975 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(CONNP_TO_WQ(connp))); 9976 mutex_exit(&connp->conn_lock); 9977 9978 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 9979 9980 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 9981 if (optreq_prim == T_OPTMGMT_REQ) { 9982 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 9983 &ip_opt_obj, B_FALSE); 9984 } else { 9985 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 9986 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 9987 &ip_opt_obj, B_FALSE); 9988 } 9989 if (err != EINPROGRESS) 9990 CONN_OPER_PENDING_DONE(connp); 9991 return; 9992 } 9993 mutex_exit(&connp->conn_lock); 9994 } 9995 9996 /* 9997 * Called from the ipsec_loader thread, outside any perimeter, to tell 9998 * ip qenable any of the queues waiting for the ipsec loader to 9999 * complete. 10000 */ 10001 void 10002 ip_ipsec_load_complete(ipsec_stack_t *ipss) 10003 { 10004 netstack_t *ns = ipss->ipsec_netstack; 10005 10006 ipcl_walk(conn_restart_ipsec_waiter, NULL, ns->netstack_ip); 10007 } 10008 10009 /* 10010 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 10011 * determines the grp on which it has to become exclusive, queues the mp 10012 * and sq draining restarts the optmgmt 10013 */ 10014 static boolean_t 10015 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 10016 { 10017 conn_t *connp = Q_TO_CONN(q); 10018 ipsec_stack_t *ipss = connp->conn_netstack->netstack_ipsec; 10019 10020 /* 10021 * Take IPsec requests and treat them special. 10022 */ 10023 if (ipsec_opt_present(mp)) { 10024 /* First check if IPsec is loaded. */ 10025 mutex_enter(&ipss->ipsec_loader_lock); 10026 if (ipss->ipsec_loader_state != IPSEC_LOADER_WAIT) { 10027 mutex_exit(&ipss->ipsec_loader_lock); 10028 return (B_FALSE); 10029 } 10030 mutex_enter(&connp->conn_lock); 10031 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 10032 10033 ASSERT(connp->conn_ipsec_opt_mp == NULL); 10034 connp->conn_ipsec_opt_mp = mp; 10035 mutex_exit(&connp->conn_lock); 10036 mutex_exit(&ipss->ipsec_loader_lock); 10037 10038 ipsec_loader_loadnow(ipss); 10039 return (B_TRUE); 10040 } 10041 return (B_FALSE); 10042 } 10043 10044 /* 10045 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 10046 * all of them are copied to the conn_t. If the req is "zero", the policy is 10047 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 10048 * fields. 10049 * We keep only the latest setting of the policy and thus policy setting 10050 * is not incremental/cumulative. 10051 * 10052 * Requests to set policies with multiple alternative actions will 10053 * go through a different API. 10054 */ 10055 int 10056 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 10057 { 10058 uint_t ah_req = 0; 10059 uint_t esp_req = 0; 10060 uint_t se_req = 0; 10061 ipsec_selkey_t sel; 10062 ipsec_act_t *actp = NULL; 10063 uint_t nact; 10064 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 10065 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 10066 ipsec_policy_root_t *pr; 10067 ipsec_policy_head_t *ph; 10068 int fam; 10069 boolean_t is_pol_reset; 10070 int error = 0; 10071 netstack_t *ns = connp->conn_netstack; 10072 ip_stack_t *ipst = ns->netstack_ip; 10073 ipsec_stack_t *ipss = ns->netstack_ipsec; 10074 10075 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 10076 10077 /* 10078 * The IP_SEC_OPT option does not allow variable length parameters, 10079 * hence a request cannot be NULL. 10080 */ 10081 if (req == NULL) 10082 return (EINVAL); 10083 10084 ah_req = req->ipsr_ah_req; 10085 esp_req = req->ipsr_esp_req; 10086 se_req = req->ipsr_self_encap_req; 10087 10088 /* 10089 * Are we dealing with a request to reset the policy (i.e. 10090 * zero requests). 10091 */ 10092 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 10093 (esp_req & REQ_MASK) == 0 && 10094 (se_req & REQ_MASK) == 0); 10095 10096 if (!is_pol_reset) { 10097 /* 10098 * If we couldn't load IPsec, fail with "protocol 10099 * not supported". 10100 * IPsec may not have been loaded for a request with zero 10101 * policies, so we don't fail in this case. 10102 */ 10103 mutex_enter(&ipss->ipsec_loader_lock); 10104 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 10105 mutex_exit(&ipss->ipsec_loader_lock); 10106 return (EPROTONOSUPPORT); 10107 } 10108 mutex_exit(&ipss->ipsec_loader_lock); 10109 10110 /* 10111 * Test for valid requests. Invalid algorithms 10112 * need to be tested by IPsec code because new 10113 * algorithms can be added dynamically. 10114 */ 10115 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10116 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10117 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 10118 return (EINVAL); 10119 } 10120 10121 /* 10122 * Only privileged users can issue these 10123 * requests. 10124 */ 10125 if (((ah_req & IPSEC_PREF_NEVER) || 10126 (esp_req & IPSEC_PREF_NEVER) || 10127 (se_req & IPSEC_PREF_NEVER)) && 10128 secpolicy_ip_config(cr, B_FALSE) != 0) { 10129 return (EPERM); 10130 } 10131 10132 /* 10133 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 10134 * are mutually exclusive. 10135 */ 10136 if (((ah_req & REQ_MASK) == REQ_MASK) || 10137 ((esp_req & REQ_MASK) == REQ_MASK) || 10138 ((se_req & REQ_MASK) == REQ_MASK)) { 10139 /* Both of them are set */ 10140 return (EINVAL); 10141 } 10142 } 10143 10144 mutex_enter(&connp->conn_lock); 10145 10146 /* 10147 * If we have already cached policies in ip_bind_connected*(), don't 10148 * let them change now. We cache policies for connections 10149 * whose src,dst [addr, port] is known. 10150 */ 10151 if (connp->conn_policy_cached) { 10152 mutex_exit(&connp->conn_lock); 10153 return (EINVAL); 10154 } 10155 10156 /* 10157 * We have a zero policies, reset the connection policy if already 10158 * set. This will cause the connection to inherit the 10159 * global policy, if any. 10160 */ 10161 if (is_pol_reset) { 10162 if (connp->conn_policy != NULL) { 10163 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 10164 connp->conn_policy = NULL; 10165 } 10166 connp->conn_flags &= ~IPCL_CHECK_POLICY; 10167 connp->conn_in_enforce_policy = B_FALSE; 10168 connp->conn_out_enforce_policy = B_FALSE; 10169 mutex_exit(&connp->conn_lock); 10170 return (0); 10171 } 10172 10173 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 10174 ipst->ips_netstack); 10175 if (ph == NULL) 10176 goto enomem; 10177 10178 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 10179 if (actp == NULL) 10180 goto enomem; 10181 10182 /* 10183 * Always allocate IPv4 policy entries, since they can also 10184 * apply to ipv6 sockets being used in ipv4-compat mode. 10185 */ 10186 bzero(&sel, sizeof (sel)); 10187 sel.ipsl_valid = IPSL_IPV4; 10188 10189 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10190 ipst->ips_netstack); 10191 if (pin4 == NULL) 10192 goto enomem; 10193 10194 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10195 ipst->ips_netstack); 10196 if (pout4 == NULL) 10197 goto enomem; 10198 10199 if (connp->conn_af_isv6) { 10200 /* 10201 * We're looking at a v6 socket, also allocate the 10202 * v6-specific entries... 10203 */ 10204 sel.ipsl_valid = IPSL_IPV6; 10205 pin6 = ipsec_policy_create(&sel, actp, nact, 10206 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10207 if (pin6 == NULL) 10208 goto enomem; 10209 10210 pout6 = ipsec_policy_create(&sel, actp, nact, 10211 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10212 if (pout6 == NULL) 10213 goto enomem; 10214 10215 /* 10216 * .. and file them away in the right place. 10217 */ 10218 fam = IPSEC_AF_V6; 10219 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10220 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 10221 ipsec_insert_always(&ph->iph_rulebyid, pin6); 10222 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10223 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 10224 ipsec_insert_always(&ph->iph_rulebyid, pout6); 10225 } 10226 10227 ipsec_actvec_free(actp, nact); 10228 10229 /* 10230 * File the v4 policies. 10231 */ 10232 fam = IPSEC_AF_V4; 10233 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10234 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 10235 ipsec_insert_always(&ph->iph_rulebyid, pin4); 10236 10237 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10238 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 10239 ipsec_insert_always(&ph->iph_rulebyid, pout4); 10240 10241 /* 10242 * If the requests need security, set enforce_policy. 10243 * If the requests are IPSEC_PREF_NEVER, one should 10244 * still set conn_out_enforce_policy so that an ipsec_out 10245 * gets attached in ip_wput. This is needed so that 10246 * for connections that we don't cache policy in ip_bind, 10247 * if global policy matches in ip_wput_attach_policy, we 10248 * don't wrongly inherit global policy. Similarly, we need 10249 * to set conn_in_enforce_policy also so that we don't verify 10250 * policy wrongly. 10251 */ 10252 if ((ah_req & REQ_MASK) != 0 || 10253 (esp_req & REQ_MASK) != 0 || 10254 (se_req & REQ_MASK) != 0) { 10255 connp->conn_in_enforce_policy = B_TRUE; 10256 connp->conn_out_enforce_policy = B_TRUE; 10257 connp->conn_flags |= IPCL_CHECK_POLICY; 10258 } 10259 10260 mutex_exit(&connp->conn_lock); 10261 return (error); 10262 #undef REQ_MASK 10263 10264 /* 10265 * Common memory-allocation-failure exit path. 10266 */ 10267 enomem: 10268 mutex_exit(&connp->conn_lock); 10269 if (actp != NULL) 10270 ipsec_actvec_free(actp, nact); 10271 if (pin4 != NULL) 10272 IPPOL_REFRELE(pin4, ipst->ips_netstack); 10273 if (pout4 != NULL) 10274 IPPOL_REFRELE(pout4, ipst->ips_netstack); 10275 if (pin6 != NULL) 10276 IPPOL_REFRELE(pin6, ipst->ips_netstack); 10277 if (pout6 != NULL) 10278 IPPOL_REFRELE(pout6, ipst->ips_netstack); 10279 return (ENOMEM); 10280 } 10281 10282 /* 10283 * Only for options that pass in an IP addr. Currently only V4 options 10284 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 10285 * So this function assumes level is IPPROTO_IP 10286 */ 10287 int 10288 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 10289 mblk_t *first_mp) 10290 { 10291 ipif_t *ipif = NULL; 10292 int error; 10293 ill_t *ill; 10294 int zoneid; 10295 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10296 10297 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 10298 10299 if (addr != INADDR_ANY || checkonly) { 10300 ASSERT(connp != NULL); 10301 zoneid = IPCL_ZONEID(connp); 10302 if (option == IP_NEXTHOP) { 10303 ipif = ipif_lookup_onlink_addr(addr, 10304 connp->conn_zoneid, ipst); 10305 } else { 10306 ipif = ipif_lookup_addr(addr, NULL, zoneid, 10307 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 10308 &error, ipst); 10309 } 10310 if (ipif == NULL) { 10311 if (error == EINPROGRESS) 10312 return (error); 10313 else if ((option == IP_MULTICAST_IF) || 10314 (option == IP_NEXTHOP)) 10315 return (EHOSTUNREACH); 10316 else 10317 return (EINVAL); 10318 } else if (checkonly) { 10319 if (option == IP_MULTICAST_IF) { 10320 ill = ipif->ipif_ill; 10321 /* not supported by the virtual network iface */ 10322 if (IS_VNI(ill)) { 10323 ipif_refrele(ipif); 10324 return (EINVAL); 10325 } 10326 } 10327 ipif_refrele(ipif); 10328 return (0); 10329 } 10330 ill = ipif->ipif_ill; 10331 mutex_enter(&connp->conn_lock); 10332 mutex_enter(&ill->ill_lock); 10333 if ((ill->ill_state_flags & ILL_CONDEMNED) || 10334 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 10335 mutex_exit(&ill->ill_lock); 10336 mutex_exit(&connp->conn_lock); 10337 ipif_refrele(ipif); 10338 return (option == IP_MULTICAST_IF ? 10339 EHOSTUNREACH : EINVAL); 10340 } 10341 } else { 10342 mutex_enter(&connp->conn_lock); 10343 } 10344 10345 /* None of the options below are supported on the VNI */ 10346 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 10347 mutex_exit(&ill->ill_lock); 10348 mutex_exit(&connp->conn_lock); 10349 ipif_refrele(ipif); 10350 return (EINVAL); 10351 } 10352 10353 switch (option) { 10354 case IP_DONTFAILOVER_IF: 10355 /* 10356 * This option is used by in.mpathd to ensure 10357 * that IPMP probe packets only go out on the 10358 * test interfaces. in.mpathd sets this option 10359 * on the non-failover interfaces. 10360 * For backward compatibility, this option 10361 * implicitly sets IP_MULTICAST_IF, as used 10362 * be done in bind(), so that ip_wput gets 10363 * this ipif to send mcast packets. 10364 */ 10365 if (ipif != NULL) { 10366 ASSERT(addr != INADDR_ANY); 10367 connp->conn_nofailover_ill = ipif->ipif_ill; 10368 connp->conn_multicast_ipif = ipif; 10369 } else { 10370 ASSERT(addr == INADDR_ANY); 10371 connp->conn_nofailover_ill = NULL; 10372 connp->conn_multicast_ipif = NULL; 10373 } 10374 break; 10375 10376 case IP_MULTICAST_IF: 10377 connp->conn_multicast_ipif = ipif; 10378 break; 10379 case IP_NEXTHOP: 10380 connp->conn_nexthop_v4 = addr; 10381 connp->conn_nexthop_set = B_TRUE; 10382 break; 10383 } 10384 10385 if (ipif != NULL) { 10386 mutex_exit(&ill->ill_lock); 10387 mutex_exit(&connp->conn_lock); 10388 ipif_refrele(ipif); 10389 return (0); 10390 } 10391 mutex_exit(&connp->conn_lock); 10392 /* We succeded in cleared the option */ 10393 return (0); 10394 } 10395 10396 /* 10397 * For options that pass in an ifindex specifying the ill. V6 options always 10398 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 10399 */ 10400 int 10401 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 10402 int level, int option, mblk_t *first_mp) 10403 { 10404 ill_t *ill = NULL; 10405 int error = 0; 10406 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10407 10408 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 10409 if (ifindex != 0) { 10410 ASSERT(connp != NULL); 10411 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 10412 first_mp, ip_restart_optmgmt, &error, ipst); 10413 if (ill != NULL) { 10414 if (checkonly) { 10415 /* not supported by the virtual network iface */ 10416 if (IS_VNI(ill)) { 10417 ill_refrele(ill); 10418 return (EINVAL); 10419 } 10420 ill_refrele(ill); 10421 return (0); 10422 } 10423 if (!ipif_lookup_zoneid_group(ill, connp->conn_zoneid, 10424 0, NULL)) { 10425 ill_refrele(ill); 10426 ill = NULL; 10427 mutex_enter(&connp->conn_lock); 10428 goto setit; 10429 } 10430 mutex_enter(&connp->conn_lock); 10431 mutex_enter(&ill->ill_lock); 10432 if (ill->ill_state_flags & ILL_CONDEMNED) { 10433 mutex_exit(&ill->ill_lock); 10434 mutex_exit(&connp->conn_lock); 10435 ill_refrele(ill); 10436 ill = NULL; 10437 mutex_enter(&connp->conn_lock); 10438 } 10439 goto setit; 10440 } else if (error == EINPROGRESS) { 10441 return (error); 10442 } else { 10443 error = 0; 10444 } 10445 } 10446 mutex_enter(&connp->conn_lock); 10447 setit: 10448 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 10449 10450 /* 10451 * The options below assume that the ILL (if any) transmits and/or 10452 * receives traffic. Neither of which is true for the virtual network 10453 * interface, so fail setting these on a VNI. 10454 */ 10455 if (IS_VNI(ill)) { 10456 ASSERT(ill != NULL); 10457 mutex_exit(&ill->ill_lock); 10458 mutex_exit(&connp->conn_lock); 10459 ill_refrele(ill); 10460 return (EINVAL); 10461 } 10462 10463 if (level == IPPROTO_IP) { 10464 switch (option) { 10465 case IP_BOUND_IF: 10466 connp->conn_incoming_ill = ill; 10467 connp->conn_outgoing_ill = ill; 10468 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10469 0 : ifindex; 10470 break; 10471 10472 case IP_MULTICAST_IF: 10473 /* 10474 * This option is an internal special. The socket 10475 * level IP_MULTICAST_IF specifies an 'ipaddr' and 10476 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 10477 * specifies an ifindex and we try first on V6 ill's. 10478 * If we don't find one, we they try using on v4 ill's 10479 * intenally and we come here. 10480 */ 10481 if (!checkonly && ill != NULL) { 10482 ipif_t *ipif; 10483 ipif = ill->ill_ipif; 10484 10485 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 10486 mutex_exit(&ill->ill_lock); 10487 mutex_exit(&connp->conn_lock); 10488 ill_refrele(ill); 10489 ill = NULL; 10490 mutex_enter(&connp->conn_lock); 10491 } else { 10492 connp->conn_multicast_ipif = ipif; 10493 } 10494 } 10495 break; 10496 10497 case IP_DHCPINIT_IF: 10498 if (connp->conn_dhcpinit_ill != NULL) { 10499 /* 10500 * We've locked the conn so conn_cleanup_ill() 10501 * cannot clear conn_dhcpinit_ill -- so it's 10502 * safe to access the ill. 10503 */ 10504 ill_t *oill = connp->conn_dhcpinit_ill; 10505 10506 ASSERT(oill->ill_dhcpinit != 0); 10507 atomic_dec_32(&oill->ill_dhcpinit); 10508 connp->conn_dhcpinit_ill = NULL; 10509 } 10510 10511 if (ill != NULL) { 10512 connp->conn_dhcpinit_ill = ill; 10513 atomic_inc_32(&ill->ill_dhcpinit); 10514 } 10515 break; 10516 } 10517 } else { 10518 switch (option) { 10519 case IPV6_BOUND_IF: 10520 connp->conn_incoming_ill = ill; 10521 connp->conn_outgoing_ill = ill; 10522 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10523 0 : ifindex; 10524 break; 10525 10526 case IPV6_BOUND_PIF: 10527 /* 10528 * Limit all transmit to this ill. 10529 * Unlike IPV6_BOUND_IF, using this option 10530 * prevents load spreading and failover from 10531 * happening when the interface is part of the 10532 * group. That's why we don't need to remember 10533 * the ifindex in orig_bound_ifindex as in 10534 * IPV6_BOUND_IF. 10535 */ 10536 connp->conn_outgoing_pill = ill; 10537 break; 10538 10539 case IPV6_DONTFAILOVER_IF: 10540 /* 10541 * This option is used by in.mpathd to ensure 10542 * that IPMP probe packets only go out on the 10543 * test interfaces. in.mpathd sets this option 10544 * on the non-failover interfaces. 10545 */ 10546 connp->conn_nofailover_ill = ill; 10547 /* 10548 * For backward compatibility, this option 10549 * implicitly sets ip_multicast_ill as used in 10550 * IPV6_MULTICAST_IF so that ip_wput gets 10551 * this ill to send mcast packets. 10552 */ 10553 connp->conn_multicast_ill = ill; 10554 connp->conn_orig_multicast_ifindex = (ill == NULL) ? 10555 0 : ifindex; 10556 break; 10557 10558 case IPV6_MULTICAST_IF: 10559 /* 10560 * Set conn_multicast_ill to be the IPv6 ill. 10561 * Set conn_multicast_ipif to be an IPv4 ipif 10562 * for ifindex to make IPv4 mapped addresses 10563 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 10564 * Even if no IPv6 ill exists for the ifindex 10565 * we need to check for an IPv4 ifindex in order 10566 * for this to work with mapped addresses. In that 10567 * case only set conn_multicast_ipif. 10568 */ 10569 if (!checkonly) { 10570 if (ifindex == 0) { 10571 connp->conn_multicast_ill = NULL; 10572 connp->conn_orig_multicast_ifindex = 0; 10573 connp->conn_multicast_ipif = NULL; 10574 } else if (ill != NULL) { 10575 connp->conn_multicast_ill = ill; 10576 connp->conn_orig_multicast_ifindex = 10577 ifindex; 10578 } 10579 } 10580 break; 10581 } 10582 } 10583 10584 if (ill != NULL) { 10585 mutex_exit(&ill->ill_lock); 10586 mutex_exit(&connp->conn_lock); 10587 ill_refrele(ill); 10588 return (0); 10589 } 10590 mutex_exit(&connp->conn_lock); 10591 /* 10592 * We succeeded in clearing the option (ifindex == 0) or failed to 10593 * locate the ill and could not set the option (ifindex != 0) 10594 */ 10595 return (ifindex == 0 ? 0 : EINVAL); 10596 } 10597 10598 /* This routine sets socket options. */ 10599 /* ARGSUSED */ 10600 int 10601 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10602 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10603 void *dummy, cred_t *cr, mblk_t *first_mp) 10604 { 10605 int *i1 = (int *)invalp; 10606 conn_t *connp = Q_TO_CONN(q); 10607 int error = 0; 10608 boolean_t checkonly; 10609 ire_t *ire; 10610 boolean_t found; 10611 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10612 10613 switch (optset_context) { 10614 10615 case SETFN_OPTCOM_CHECKONLY: 10616 checkonly = B_TRUE; 10617 /* 10618 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10619 * inlen != 0 implies value supplied and 10620 * we have to "pretend" to set it. 10621 * inlen == 0 implies that there is no 10622 * value part in T_CHECK request and just validation 10623 * done elsewhere should be enough, we just return here. 10624 */ 10625 if (inlen == 0) { 10626 *outlenp = 0; 10627 return (0); 10628 } 10629 break; 10630 case SETFN_OPTCOM_NEGOTIATE: 10631 case SETFN_UD_NEGOTIATE: 10632 case SETFN_CONN_NEGOTIATE: 10633 checkonly = B_FALSE; 10634 break; 10635 default: 10636 /* 10637 * We should never get here 10638 */ 10639 *outlenp = 0; 10640 return (EINVAL); 10641 } 10642 10643 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10644 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10645 10646 /* 10647 * For fixed length options, no sanity check 10648 * of passed in length is done. It is assumed *_optcom_req() 10649 * routines do the right thing. 10650 */ 10651 10652 switch (level) { 10653 case SOL_SOCKET: 10654 /* 10655 * conn_lock protects the bitfields, and is used to 10656 * set the fields atomically. 10657 */ 10658 switch (name) { 10659 case SO_BROADCAST: 10660 if (!checkonly) { 10661 /* TODO: use value someplace? */ 10662 mutex_enter(&connp->conn_lock); 10663 connp->conn_broadcast = *i1 ? 1 : 0; 10664 mutex_exit(&connp->conn_lock); 10665 } 10666 break; /* goto sizeof (int) option return */ 10667 case SO_USELOOPBACK: 10668 if (!checkonly) { 10669 /* TODO: use value someplace? */ 10670 mutex_enter(&connp->conn_lock); 10671 connp->conn_loopback = *i1 ? 1 : 0; 10672 mutex_exit(&connp->conn_lock); 10673 } 10674 break; /* goto sizeof (int) option return */ 10675 case SO_DONTROUTE: 10676 if (!checkonly) { 10677 mutex_enter(&connp->conn_lock); 10678 connp->conn_dontroute = *i1 ? 1 : 0; 10679 mutex_exit(&connp->conn_lock); 10680 } 10681 break; /* goto sizeof (int) option return */ 10682 case SO_REUSEADDR: 10683 if (!checkonly) { 10684 mutex_enter(&connp->conn_lock); 10685 connp->conn_reuseaddr = *i1 ? 1 : 0; 10686 mutex_exit(&connp->conn_lock); 10687 } 10688 break; /* goto sizeof (int) option return */ 10689 case SO_PROTOTYPE: 10690 if (!checkonly) { 10691 mutex_enter(&connp->conn_lock); 10692 connp->conn_proto = *i1; 10693 mutex_exit(&connp->conn_lock); 10694 } 10695 break; /* goto sizeof (int) option return */ 10696 case SO_ALLZONES: 10697 if (!checkonly) { 10698 mutex_enter(&connp->conn_lock); 10699 if (IPCL_IS_BOUND(connp)) { 10700 mutex_exit(&connp->conn_lock); 10701 return (EINVAL); 10702 } 10703 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10704 mutex_exit(&connp->conn_lock); 10705 } 10706 break; /* goto sizeof (int) option return */ 10707 case SO_ANON_MLP: 10708 if (!checkonly) { 10709 mutex_enter(&connp->conn_lock); 10710 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10711 mutex_exit(&connp->conn_lock); 10712 } 10713 break; /* goto sizeof (int) option return */ 10714 case SO_MAC_EXEMPT: 10715 if (secpolicy_net_mac_aware(cr) != 0 || 10716 IPCL_IS_BOUND(connp)) 10717 return (EACCES); 10718 if (!checkonly) { 10719 mutex_enter(&connp->conn_lock); 10720 connp->conn_mac_exempt = *i1 != 0 ? 1 : 0; 10721 mutex_exit(&connp->conn_lock); 10722 } 10723 break; /* goto sizeof (int) option return */ 10724 default: 10725 /* 10726 * "soft" error (negative) 10727 * option not handled at this level 10728 * Note: Do not modify *outlenp 10729 */ 10730 return (-EINVAL); 10731 } 10732 break; 10733 case IPPROTO_IP: 10734 switch (name) { 10735 case IP_NEXTHOP: 10736 if (secpolicy_ip_config(cr, B_FALSE) != 0) 10737 return (EPERM); 10738 /* FALLTHRU */ 10739 case IP_MULTICAST_IF: 10740 case IP_DONTFAILOVER_IF: { 10741 ipaddr_t addr = *i1; 10742 10743 error = ip_opt_set_ipif(connp, addr, checkonly, name, 10744 first_mp); 10745 if (error != 0) 10746 return (error); 10747 break; /* goto sizeof (int) option return */ 10748 } 10749 10750 case IP_MULTICAST_TTL: 10751 /* Recorded in transport above IP */ 10752 *outvalp = *invalp; 10753 *outlenp = sizeof (uchar_t); 10754 return (0); 10755 case IP_MULTICAST_LOOP: 10756 if (!checkonly) { 10757 mutex_enter(&connp->conn_lock); 10758 connp->conn_multicast_loop = *invalp ? 1 : 0; 10759 mutex_exit(&connp->conn_lock); 10760 } 10761 *outvalp = *invalp; 10762 *outlenp = sizeof (uchar_t); 10763 return (0); 10764 case IP_ADD_MEMBERSHIP: 10765 case MCAST_JOIN_GROUP: 10766 case IP_DROP_MEMBERSHIP: 10767 case MCAST_LEAVE_GROUP: { 10768 struct ip_mreq *mreqp; 10769 struct group_req *greqp; 10770 ire_t *ire; 10771 boolean_t done = B_FALSE; 10772 ipaddr_t group, ifaddr; 10773 struct sockaddr_in *sin; 10774 uint32_t *ifindexp; 10775 boolean_t mcast_opt = B_TRUE; 10776 mcast_record_t fmode; 10777 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10778 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10779 10780 switch (name) { 10781 case IP_ADD_MEMBERSHIP: 10782 mcast_opt = B_FALSE; 10783 /* FALLTHRU */ 10784 case MCAST_JOIN_GROUP: 10785 fmode = MODE_IS_EXCLUDE; 10786 optfn = ip_opt_add_group; 10787 break; 10788 10789 case IP_DROP_MEMBERSHIP: 10790 mcast_opt = B_FALSE; 10791 /* FALLTHRU */ 10792 case MCAST_LEAVE_GROUP: 10793 fmode = MODE_IS_INCLUDE; 10794 optfn = ip_opt_delete_group; 10795 break; 10796 } 10797 10798 if (mcast_opt) { 10799 greqp = (struct group_req *)i1; 10800 sin = (struct sockaddr_in *)&greqp->gr_group; 10801 if (sin->sin_family != AF_INET) { 10802 *outlenp = 0; 10803 return (ENOPROTOOPT); 10804 } 10805 group = (ipaddr_t)sin->sin_addr.s_addr; 10806 ifaddr = INADDR_ANY; 10807 ifindexp = &greqp->gr_interface; 10808 } else { 10809 mreqp = (struct ip_mreq *)i1; 10810 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 10811 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 10812 ifindexp = NULL; 10813 } 10814 10815 /* 10816 * In the multirouting case, we need to replicate 10817 * the request on all interfaces that will take part 10818 * in replication. We do so because multirouting is 10819 * reflective, thus we will probably receive multi- 10820 * casts on those interfaces. 10821 * The ip_multirt_apply_membership() succeeds if the 10822 * operation succeeds on at least one interface. 10823 */ 10824 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 10825 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10826 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10827 if (ire != NULL) { 10828 if (ire->ire_flags & RTF_MULTIRT) { 10829 error = ip_multirt_apply_membership( 10830 optfn, ire, connp, checkonly, group, 10831 fmode, INADDR_ANY, first_mp); 10832 done = B_TRUE; 10833 } 10834 ire_refrele(ire); 10835 } 10836 if (!done) { 10837 error = optfn(connp, checkonly, group, ifaddr, 10838 ifindexp, fmode, INADDR_ANY, first_mp); 10839 } 10840 if (error) { 10841 /* 10842 * EINPROGRESS is a soft error, needs retry 10843 * so don't make *outlenp zero. 10844 */ 10845 if (error != EINPROGRESS) 10846 *outlenp = 0; 10847 return (error); 10848 } 10849 /* OK return - copy input buffer into output buffer */ 10850 if (invalp != outvalp) { 10851 /* don't trust bcopy for identical src/dst */ 10852 bcopy(invalp, outvalp, inlen); 10853 } 10854 *outlenp = inlen; 10855 return (0); 10856 } 10857 case IP_BLOCK_SOURCE: 10858 case IP_UNBLOCK_SOURCE: 10859 case IP_ADD_SOURCE_MEMBERSHIP: 10860 case IP_DROP_SOURCE_MEMBERSHIP: 10861 case MCAST_BLOCK_SOURCE: 10862 case MCAST_UNBLOCK_SOURCE: 10863 case MCAST_JOIN_SOURCE_GROUP: 10864 case MCAST_LEAVE_SOURCE_GROUP: { 10865 struct ip_mreq_source *imreqp; 10866 struct group_source_req *gsreqp; 10867 in_addr_t grp, src, ifaddr = INADDR_ANY; 10868 uint32_t ifindex = 0; 10869 mcast_record_t fmode; 10870 struct sockaddr_in *sin; 10871 ire_t *ire; 10872 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 10873 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10874 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10875 10876 switch (name) { 10877 case IP_BLOCK_SOURCE: 10878 mcast_opt = B_FALSE; 10879 /* FALLTHRU */ 10880 case MCAST_BLOCK_SOURCE: 10881 fmode = MODE_IS_EXCLUDE; 10882 optfn = ip_opt_add_group; 10883 break; 10884 10885 case IP_UNBLOCK_SOURCE: 10886 mcast_opt = B_FALSE; 10887 /* FALLTHRU */ 10888 case MCAST_UNBLOCK_SOURCE: 10889 fmode = MODE_IS_EXCLUDE; 10890 optfn = ip_opt_delete_group; 10891 break; 10892 10893 case IP_ADD_SOURCE_MEMBERSHIP: 10894 mcast_opt = B_FALSE; 10895 /* FALLTHRU */ 10896 case MCAST_JOIN_SOURCE_GROUP: 10897 fmode = MODE_IS_INCLUDE; 10898 optfn = ip_opt_add_group; 10899 break; 10900 10901 case IP_DROP_SOURCE_MEMBERSHIP: 10902 mcast_opt = B_FALSE; 10903 /* FALLTHRU */ 10904 case MCAST_LEAVE_SOURCE_GROUP: 10905 fmode = MODE_IS_INCLUDE; 10906 optfn = ip_opt_delete_group; 10907 break; 10908 } 10909 10910 if (mcast_opt) { 10911 gsreqp = (struct group_source_req *)i1; 10912 if (gsreqp->gsr_group.ss_family != AF_INET) { 10913 *outlenp = 0; 10914 return (ENOPROTOOPT); 10915 } 10916 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 10917 grp = (ipaddr_t)sin->sin_addr.s_addr; 10918 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 10919 src = (ipaddr_t)sin->sin_addr.s_addr; 10920 ifindex = gsreqp->gsr_interface; 10921 } else { 10922 imreqp = (struct ip_mreq_source *)i1; 10923 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 10924 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 10925 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 10926 } 10927 10928 /* 10929 * In the multirouting case, we need to replicate 10930 * the request as noted in the mcast cases above. 10931 */ 10932 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 10933 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10934 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10935 if (ire != NULL) { 10936 if (ire->ire_flags & RTF_MULTIRT) { 10937 error = ip_multirt_apply_membership( 10938 optfn, ire, connp, checkonly, grp, 10939 fmode, src, first_mp); 10940 done = B_TRUE; 10941 } 10942 ire_refrele(ire); 10943 } 10944 if (!done) { 10945 error = optfn(connp, checkonly, grp, ifaddr, 10946 &ifindex, fmode, src, first_mp); 10947 } 10948 if (error != 0) { 10949 /* 10950 * EINPROGRESS is a soft error, needs retry 10951 * so don't make *outlenp zero. 10952 */ 10953 if (error != EINPROGRESS) 10954 *outlenp = 0; 10955 return (error); 10956 } 10957 /* OK return - copy input buffer into output buffer */ 10958 if (invalp != outvalp) { 10959 bcopy(invalp, outvalp, inlen); 10960 } 10961 *outlenp = inlen; 10962 return (0); 10963 } 10964 case IP_SEC_OPT: 10965 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 10966 if (error != 0) { 10967 *outlenp = 0; 10968 return (error); 10969 } 10970 break; 10971 case IP_HDRINCL: 10972 case IP_OPTIONS: 10973 case T_IP_OPTIONS: 10974 case IP_TOS: 10975 case T_IP_TOS: 10976 case IP_TTL: 10977 case IP_RECVDSTADDR: 10978 case IP_RECVOPTS: 10979 /* OK return - copy input buffer into output buffer */ 10980 if (invalp != outvalp) { 10981 /* don't trust bcopy for identical src/dst */ 10982 bcopy(invalp, outvalp, inlen); 10983 } 10984 *outlenp = inlen; 10985 return (0); 10986 case IP_RECVIF: 10987 /* Retrieve the inbound interface index */ 10988 if (!checkonly) { 10989 mutex_enter(&connp->conn_lock); 10990 connp->conn_recvif = *i1 ? 1 : 0; 10991 mutex_exit(&connp->conn_lock); 10992 } 10993 break; /* goto sizeof (int) option return */ 10994 case IP_RECVPKTINFO: 10995 if (!checkonly) { 10996 mutex_enter(&connp->conn_lock); 10997 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 10998 mutex_exit(&connp->conn_lock); 10999 } 11000 break; /* goto sizeof (int) option return */ 11001 case IP_RECVSLLA: 11002 /* Retrieve the source link layer address */ 11003 if (!checkonly) { 11004 mutex_enter(&connp->conn_lock); 11005 connp->conn_recvslla = *i1 ? 1 : 0; 11006 mutex_exit(&connp->conn_lock); 11007 } 11008 break; /* goto sizeof (int) option return */ 11009 case MRT_INIT: 11010 case MRT_DONE: 11011 case MRT_ADD_VIF: 11012 case MRT_DEL_VIF: 11013 case MRT_ADD_MFC: 11014 case MRT_DEL_MFC: 11015 case MRT_ASSERT: 11016 if ((error = secpolicy_ip_config(cr, B_FALSE)) != 0) { 11017 *outlenp = 0; 11018 return (error); 11019 } 11020 error = ip_mrouter_set((int)name, q, checkonly, 11021 (uchar_t *)invalp, inlen, first_mp); 11022 if (error) { 11023 *outlenp = 0; 11024 return (error); 11025 } 11026 /* OK return - copy input buffer into output buffer */ 11027 if (invalp != outvalp) { 11028 /* don't trust bcopy for identical src/dst */ 11029 bcopy(invalp, outvalp, inlen); 11030 } 11031 *outlenp = inlen; 11032 return (0); 11033 case IP_BOUND_IF: 11034 case IP_DHCPINIT_IF: 11035 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11036 level, name, first_mp); 11037 if (error != 0) 11038 return (error); 11039 break; /* goto sizeof (int) option return */ 11040 11041 case IP_UNSPEC_SRC: 11042 /* Allow sending with a zero source address */ 11043 if (!checkonly) { 11044 mutex_enter(&connp->conn_lock); 11045 connp->conn_unspec_src = *i1 ? 1 : 0; 11046 mutex_exit(&connp->conn_lock); 11047 } 11048 break; /* goto sizeof (int) option return */ 11049 default: 11050 /* 11051 * "soft" error (negative) 11052 * option not handled at this level 11053 * Note: Do not modify *outlenp 11054 */ 11055 return (-EINVAL); 11056 } 11057 break; 11058 case IPPROTO_IPV6: 11059 switch (name) { 11060 case IPV6_BOUND_IF: 11061 case IPV6_BOUND_PIF: 11062 case IPV6_DONTFAILOVER_IF: 11063 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11064 level, name, first_mp); 11065 if (error != 0) 11066 return (error); 11067 break; /* goto sizeof (int) option return */ 11068 11069 case IPV6_MULTICAST_IF: 11070 /* 11071 * The only possible errors are EINPROGRESS and 11072 * EINVAL. EINPROGRESS will be restarted and is not 11073 * a hard error. We call this option on both V4 and V6 11074 * If both return EINVAL, then this call returns 11075 * EINVAL. If at least one of them succeeds we 11076 * return success. 11077 */ 11078 found = B_FALSE; 11079 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11080 level, name, first_mp); 11081 if (error == EINPROGRESS) 11082 return (error); 11083 if (error == 0) 11084 found = B_TRUE; 11085 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11086 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 11087 if (error == 0) 11088 found = B_TRUE; 11089 if (!found) 11090 return (error); 11091 break; /* goto sizeof (int) option return */ 11092 11093 case IPV6_MULTICAST_HOPS: 11094 /* Recorded in transport above IP */ 11095 break; /* goto sizeof (int) option return */ 11096 case IPV6_MULTICAST_LOOP: 11097 if (!checkonly) { 11098 mutex_enter(&connp->conn_lock); 11099 connp->conn_multicast_loop = *i1; 11100 mutex_exit(&connp->conn_lock); 11101 } 11102 break; /* goto sizeof (int) option return */ 11103 case IPV6_JOIN_GROUP: 11104 case MCAST_JOIN_GROUP: 11105 case IPV6_LEAVE_GROUP: 11106 case MCAST_LEAVE_GROUP: { 11107 struct ipv6_mreq *ip_mreqp; 11108 struct group_req *greqp; 11109 ire_t *ire; 11110 boolean_t done = B_FALSE; 11111 in6_addr_t groupv6; 11112 uint32_t ifindex; 11113 boolean_t mcast_opt = B_TRUE; 11114 mcast_record_t fmode; 11115 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11116 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11117 11118 switch (name) { 11119 case IPV6_JOIN_GROUP: 11120 mcast_opt = B_FALSE; 11121 /* FALLTHRU */ 11122 case MCAST_JOIN_GROUP: 11123 fmode = MODE_IS_EXCLUDE; 11124 optfn = ip_opt_add_group_v6; 11125 break; 11126 11127 case IPV6_LEAVE_GROUP: 11128 mcast_opt = B_FALSE; 11129 /* FALLTHRU */ 11130 case MCAST_LEAVE_GROUP: 11131 fmode = MODE_IS_INCLUDE; 11132 optfn = ip_opt_delete_group_v6; 11133 break; 11134 } 11135 11136 if (mcast_opt) { 11137 struct sockaddr_in *sin; 11138 struct sockaddr_in6 *sin6; 11139 greqp = (struct group_req *)i1; 11140 if (greqp->gr_group.ss_family == AF_INET) { 11141 sin = (struct sockaddr_in *) 11142 &(greqp->gr_group); 11143 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 11144 &groupv6); 11145 } else { 11146 sin6 = (struct sockaddr_in6 *) 11147 &(greqp->gr_group); 11148 groupv6 = sin6->sin6_addr; 11149 } 11150 ifindex = greqp->gr_interface; 11151 } else { 11152 ip_mreqp = (struct ipv6_mreq *)i1; 11153 groupv6 = ip_mreqp->ipv6mr_multiaddr; 11154 ifindex = ip_mreqp->ipv6mr_interface; 11155 } 11156 /* 11157 * In the multirouting case, we need to replicate 11158 * the request on all interfaces that will take part 11159 * in replication. We do so because multirouting is 11160 * reflective, thus we will probably receive multi- 11161 * casts on those interfaces. 11162 * The ip_multirt_apply_membership_v6() succeeds if 11163 * the operation succeeds on at least one interface. 11164 */ 11165 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 11166 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11167 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11168 if (ire != NULL) { 11169 if (ire->ire_flags & RTF_MULTIRT) { 11170 error = ip_multirt_apply_membership_v6( 11171 optfn, ire, connp, checkonly, 11172 &groupv6, fmode, &ipv6_all_zeros, 11173 first_mp); 11174 done = B_TRUE; 11175 } 11176 ire_refrele(ire); 11177 } 11178 if (!done) { 11179 error = optfn(connp, checkonly, &groupv6, 11180 ifindex, fmode, &ipv6_all_zeros, first_mp); 11181 } 11182 if (error) { 11183 /* 11184 * EINPROGRESS is a soft error, needs retry 11185 * so don't make *outlenp zero. 11186 */ 11187 if (error != EINPROGRESS) 11188 *outlenp = 0; 11189 return (error); 11190 } 11191 /* OK return - copy input buffer into output buffer */ 11192 if (invalp != outvalp) { 11193 /* don't trust bcopy for identical src/dst */ 11194 bcopy(invalp, outvalp, inlen); 11195 } 11196 *outlenp = inlen; 11197 return (0); 11198 } 11199 case MCAST_BLOCK_SOURCE: 11200 case MCAST_UNBLOCK_SOURCE: 11201 case MCAST_JOIN_SOURCE_GROUP: 11202 case MCAST_LEAVE_SOURCE_GROUP: { 11203 struct group_source_req *gsreqp; 11204 in6_addr_t v6grp, v6src; 11205 uint32_t ifindex; 11206 mcast_record_t fmode; 11207 ire_t *ire; 11208 boolean_t done = B_FALSE; 11209 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11210 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11211 11212 switch (name) { 11213 case MCAST_BLOCK_SOURCE: 11214 fmode = MODE_IS_EXCLUDE; 11215 optfn = ip_opt_add_group_v6; 11216 break; 11217 case MCAST_UNBLOCK_SOURCE: 11218 fmode = MODE_IS_EXCLUDE; 11219 optfn = ip_opt_delete_group_v6; 11220 break; 11221 case MCAST_JOIN_SOURCE_GROUP: 11222 fmode = MODE_IS_INCLUDE; 11223 optfn = ip_opt_add_group_v6; 11224 break; 11225 case MCAST_LEAVE_SOURCE_GROUP: 11226 fmode = MODE_IS_INCLUDE; 11227 optfn = ip_opt_delete_group_v6; 11228 break; 11229 } 11230 11231 gsreqp = (struct group_source_req *)i1; 11232 ifindex = gsreqp->gsr_interface; 11233 if (gsreqp->gsr_group.ss_family == AF_INET) { 11234 struct sockaddr_in *s; 11235 s = (struct sockaddr_in *)&gsreqp->gsr_group; 11236 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 11237 s = (struct sockaddr_in *)&gsreqp->gsr_source; 11238 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 11239 } else { 11240 struct sockaddr_in6 *s6; 11241 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 11242 v6grp = s6->sin6_addr; 11243 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 11244 v6src = s6->sin6_addr; 11245 } 11246 11247 /* 11248 * In the multirouting case, we need to replicate 11249 * the request as noted in the mcast cases above. 11250 */ 11251 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 11252 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11253 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11254 if (ire != NULL) { 11255 if (ire->ire_flags & RTF_MULTIRT) { 11256 error = ip_multirt_apply_membership_v6( 11257 optfn, ire, connp, checkonly, 11258 &v6grp, fmode, &v6src, first_mp); 11259 done = B_TRUE; 11260 } 11261 ire_refrele(ire); 11262 } 11263 if (!done) { 11264 error = optfn(connp, checkonly, &v6grp, 11265 ifindex, fmode, &v6src, first_mp); 11266 } 11267 if (error != 0) { 11268 /* 11269 * EINPROGRESS is a soft error, needs retry 11270 * so don't make *outlenp zero. 11271 */ 11272 if (error != EINPROGRESS) 11273 *outlenp = 0; 11274 return (error); 11275 } 11276 /* OK return - copy input buffer into output buffer */ 11277 if (invalp != outvalp) { 11278 bcopy(invalp, outvalp, inlen); 11279 } 11280 *outlenp = inlen; 11281 return (0); 11282 } 11283 case IPV6_UNICAST_HOPS: 11284 /* Recorded in transport above IP */ 11285 break; /* goto sizeof (int) option return */ 11286 case IPV6_UNSPEC_SRC: 11287 /* Allow sending with a zero source address */ 11288 if (!checkonly) { 11289 mutex_enter(&connp->conn_lock); 11290 connp->conn_unspec_src = *i1 ? 1 : 0; 11291 mutex_exit(&connp->conn_lock); 11292 } 11293 break; /* goto sizeof (int) option return */ 11294 case IPV6_RECVPKTINFO: 11295 if (!checkonly) { 11296 mutex_enter(&connp->conn_lock); 11297 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11298 mutex_exit(&connp->conn_lock); 11299 } 11300 break; /* goto sizeof (int) option return */ 11301 case IPV6_RECVTCLASS: 11302 if (!checkonly) { 11303 if (*i1 < 0 || *i1 > 1) { 11304 return (EINVAL); 11305 } 11306 mutex_enter(&connp->conn_lock); 11307 connp->conn_ipv6_recvtclass = *i1; 11308 mutex_exit(&connp->conn_lock); 11309 } 11310 break; 11311 case IPV6_RECVPATHMTU: 11312 if (!checkonly) { 11313 if (*i1 < 0 || *i1 > 1) { 11314 return (EINVAL); 11315 } 11316 mutex_enter(&connp->conn_lock); 11317 connp->conn_ipv6_recvpathmtu = *i1; 11318 mutex_exit(&connp->conn_lock); 11319 } 11320 break; 11321 case IPV6_RECVHOPLIMIT: 11322 if (!checkonly) { 11323 mutex_enter(&connp->conn_lock); 11324 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 11325 mutex_exit(&connp->conn_lock); 11326 } 11327 break; /* goto sizeof (int) option return */ 11328 case IPV6_RECVHOPOPTS: 11329 if (!checkonly) { 11330 mutex_enter(&connp->conn_lock); 11331 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 11332 mutex_exit(&connp->conn_lock); 11333 } 11334 break; /* goto sizeof (int) option return */ 11335 case IPV6_RECVDSTOPTS: 11336 if (!checkonly) { 11337 mutex_enter(&connp->conn_lock); 11338 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 11339 mutex_exit(&connp->conn_lock); 11340 } 11341 break; /* goto sizeof (int) option return */ 11342 case IPV6_RECVRTHDR: 11343 if (!checkonly) { 11344 mutex_enter(&connp->conn_lock); 11345 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 11346 mutex_exit(&connp->conn_lock); 11347 } 11348 break; /* goto sizeof (int) option return */ 11349 case IPV6_RECVRTHDRDSTOPTS: 11350 if (!checkonly) { 11351 mutex_enter(&connp->conn_lock); 11352 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 11353 mutex_exit(&connp->conn_lock); 11354 } 11355 break; /* goto sizeof (int) option return */ 11356 case IPV6_PKTINFO: 11357 if (inlen == 0) 11358 return (-EINVAL); /* clearing option */ 11359 error = ip6_set_pktinfo(cr, connp, 11360 (struct in6_pktinfo *)invalp, first_mp); 11361 if (error != 0) 11362 *outlenp = 0; 11363 else 11364 *outlenp = inlen; 11365 return (error); 11366 case IPV6_NEXTHOP: { 11367 struct sockaddr_in6 *sin6; 11368 11369 /* Verify that the nexthop is reachable */ 11370 if (inlen == 0) 11371 return (-EINVAL); /* clearing option */ 11372 11373 sin6 = (struct sockaddr_in6 *)invalp; 11374 ire = ire_route_lookup_v6(&sin6->sin6_addr, 11375 0, 0, 0, NULL, NULL, connp->conn_zoneid, 11376 NULL, MATCH_IRE_DEFAULT, ipst); 11377 11378 if (ire == NULL) { 11379 *outlenp = 0; 11380 return (EHOSTUNREACH); 11381 } 11382 ire_refrele(ire); 11383 return (-EINVAL); 11384 } 11385 case IPV6_SEC_OPT: 11386 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11387 if (error != 0) { 11388 *outlenp = 0; 11389 return (error); 11390 } 11391 break; 11392 case IPV6_SRC_PREFERENCES: { 11393 /* 11394 * This is implemented strictly in the ip module 11395 * (here and in tcp_opt_*() to accomodate tcp 11396 * sockets). Modules above ip pass this option 11397 * down here since ip is the only one that needs to 11398 * be aware of source address preferences. 11399 * 11400 * This socket option only affects connected 11401 * sockets that haven't already bound to a specific 11402 * IPv6 address. In other words, sockets that 11403 * don't call bind() with an address other than the 11404 * unspecified address and that call connect(). 11405 * ip_bind_connected_v6() passes these preferences 11406 * to the ipif_select_source_v6() function. 11407 */ 11408 if (inlen != sizeof (uint32_t)) 11409 return (EINVAL); 11410 error = ip6_set_src_preferences(connp, 11411 *(uint32_t *)invalp); 11412 if (error != 0) { 11413 *outlenp = 0; 11414 return (error); 11415 } else { 11416 *outlenp = sizeof (uint32_t); 11417 } 11418 break; 11419 } 11420 case IPV6_V6ONLY: 11421 if (*i1 < 0 || *i1 > 1) { 11422 return (EINVAL); 11423 } 11424 mutex_enter(&connp->conn_lock); 11425 connp->conn_ipv6_v6only = *i1; 11426 mutex_exit(&connp->conn_lock); 11427 break; 11428 default: 11429 return (-EINVAL); 11430 } 11431 break; 11432 default: 11433 /* 11434 * "soft" error (negative) 11435 * option not handled at this level 11436 * Note: Do not modify *outlenp 11437 */ 11438 return (-EINVAL); 11439 } 11440 /* 11441 * Common case of return from an option that is sizeof (int) 11442 */ 11443 *(int *)outvalp = *i1; 11444 *outlenp = sizeof (int); 11445 return (0); 11446 } 11447 11448 /* 11449 * This routine gets default values of certain options whose default 11450 * values are maintained by protocol specific code 11451 */ 11452 /* ARGSUSED */ 11453 int 11454 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 11455 { 11456 int *i1 = (int *)ptr; 11457 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11458 11459 switch (level) { 11460 case IPPROTO_IP: 11461 switch (name) { 11462 case IP_MULTICAST_TTL: 11463 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 11464 return (sizeof (uchar_t)); 11465 case IP_MULTICAST_LOOP: 11466 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 11467 return (sizeof (uchar_t)); 11468 default: 11469 return (-1); 11470 } 11471 case IPPROTO_IPV6: 11472 switch (name) { 11473 case IPV6_UNICAST_HOPS: 11474 *i1 = ipst->ips_ipv6_def_hops; 11475 return (sizeof (int)); 11476 case IPV6_MULTICAST_HOPS: 11477 *i1 = IP_DEFAULT_MULTICAST_TTL; 11478 return (sizeof (int)); 11479 case IPV6_MULTICAST_LOOP: 11480 *i1 = IP_DEFAULT_MULTICAST_LOOP; 11481 return (sizeof (int)); 11482 case IPV6_V6ONLY: 11483 *i1 = 1; 11484 return (sizeof (int)); 11485 default: 11486 return (-1); 11487 } 11488 default: 11489 return (-1); 11490 } 11491 /* NOTREACHED */ 11492 } 11493 11494 /* 11495 * Given a destination address and a pointer to where to put the information 11496 * this routine fills in the mtuinfo. 11497 */ 11498 int 11499 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 11500 struct ip6_mtuinfo *mtuinfo, netstack_t *ns) 11501 { 11502 ire_t *ire; 11503 ip_stack_t *ipst = ns->netstack_ip; 11504 11505 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 11506 return (-1); 11507 11508 bzero(mtuinfo, sizeof (*mtuinfo)); 11509 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 11510 mtuinfo->ip6m_addr.sin6_port = port; 11511 mtuinfo->ip6m_addr.sin6_addr = *in6; 11512 11513 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL, ipst); 11514 if (ire != NULL) { 11515 mtuinfo->ip6m_mtu = ire->ire_max_frag; 11516 ire_refrele(ire); 11517 } else { 11518 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 11519 } 11520 return (sizeof (struct ip6_mtuinfo)); 11521 } 11522 11523 /* 11524 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 11525 * checking of GET_QUEUE_CRED(q) and that ip_g_mrouter is set should be done and 11526 * isn't. This doesn't matter as the error checking is done properly for the 11527 * other MRT options coming in through ip_opt_set. 11528 */ 11529 int 11530 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 11531 { 11532 conn_t *connp = Q_TO_CONN(q); 11533 ipsec_req_t *req = (ipsec_req_t *)ptr; 11534 11535 switch (level) { 11536 case IPPROTO_IP: 11537 switch (name) { 11538 case MRT_VERSION: 11539 case MRT_ASSERT: 11540 (void) ip_mrouter_get(name, q, ptr); 11541 return (sizeof (int)); 11542 case IP_SEC_OPT: 11543 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 11544 case IP_NEXTHOP: 11545 if (connp->conn_nexthop_set) { 11546 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 11547 return (sizeof (ipaddr_t)); 11548 } else 11549 return (0); 11550 case IP_RECVPKTINFO: 11551 *(int *)ptr = connp->conn_ip_recvpktinfo ? 1: 0; 11552 return (sizeof (int)); 11553 default: 11554 break; 11555 } 11556 break; 11557 case IPPROTO_IPV6: 11558 switch (name) { 11559 case IPV6_SEC_OPT: 11560 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 11561 case IPV6_SRC_PREFERENCES: { 11562 return (ip6_get_src_preferences(connp, 11563 (uint32_t *)ptr)); 11564 } 11565 case IPV6_V6ONLY: 11566 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 11567 return (sizeof (int)); 11568 case IPV6_PATHMTU: 11569 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 11570 (struct ip6_mtuinfo *)ptr, connp->conn_netstack)); 11571 default: 11572 break; 11573 } 11574 break; 11575 default: 11576 break; 11577 } 11578 return (-1); 11579 } 11580 11581 /* Named Dispatch routine to get a current value out of our parameter table. */ 11582 /* ARGSUSED */ 11583 static int 11584 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11585 { 11586 ipparam_t *ippa = (ipparam_t *)cp; 11587 11588 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 11589 return (0); 11590 } 11591 11592 /* ARGSUSED */ 11593 static int 11594 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11595 { 11596 11597 (void) mi_mpprintf(mp, "%d", *(int *)cp); 11598 return (0); 11599 } 11600 11601 /* 11602 * Set ip{,6}_forwarding values. This means walking through all of the 11603 * ill's and toggling their forwarding values. 11604 */ 11605 /* ARGSUSED */ 11606 static int 11607 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11608 { 11609 long new_value; 11610 int *forwarding_value = (int *)cp; 11611 ill_t *ill; 11612 boolean_t isv6; 11613 ill_walk_context_t ctx; 11614 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11615 11616 isv6 = (forwarding_value == &ipst->ips_ipv6_forward); 11617 11618 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11619 new_value < 0 || new_value > 1) { 11620 return (EINVAL); 11621 } 11622 11623 *forwarding_value = new_value; 11624 11625 /* 11626 * Regardless of the current value of ip_forwarding, set all per-ill 11627 * values of ip_forwarding to the value being set. 11628 * 11629 * Bring all the ill's up to date with the new global value. 11630 */ 11631 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11632 11633 if (isv6) 11634 ill = ILL_START_WALK_V6(&ctx, ipst); 11635 else 11636 ill = ILL_START_WALK_V4(&ctx, ipst); 11637 11638 for (; ill != NULL; ill = ill_next(&ctx, ill)) 11639 (void) ill_forward_set(ill, new_value != 0); 11640 11641 rw_exit(&ipst->ips_ill_g_lock); 11642 return (0); 11643 } 11644 11645 /* 11646 * Walk through the param array specified registering each element with the 11647 * Named Dispatch handler. This is called only during init. So it is ok 11648 * not to acquire any locks 11649 */ 11650 static boolean_t 11651 ip_param_register(IDP *ndp, ipparam_t *ippa, size_t ippa_cnt, 11652 ipndp_t *ipnd, size_t ipnd_cnt) 11653 { 11654 for (; ippa_cnt-- > 0; ippa++) { 11655 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 11656 if (!nd_load(ndp, ippa->ip_param_name, 11657 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11658 nd_free(ndp); 11659 return (B_FALSE); 11660 } 11661 } 11662 } 11663 11664 for (; ipnd_cnt-- > 0; ipnd++) { 11665 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11666 if (!nd_load(ndp, ipnd->ip_ndp_name, 11667 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11668 ipnd->ip_ndp_data)) { 11669 nd_free(ndp); 11670 return (B_FALSE); 11671 } 11672 } 11673 } 11674 11675 return (B_TRUE); 11676 } 11677 11678 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11679 /* ARGSUSED */ 11680 static int 11681 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11682 { 11683 long new_value; 11684 ipparam_t *ippa = (ipparam_t *)cp; 11685 11686 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11687 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11688 return (EINVAL); 11689 } 11690 ippa->ip_param_value = new_value; 11691 return (0); 11692 } 11693 11694 /* 11695 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11696 * When an ipf is passed here for the first time, if 11697 * we already have in-order fragments on the queue, we convert from the fast- 11698 * path reassembly scheme to the hard-case scheme. From then on, additional 11699 * fragments are reassembled here. We keep track of the start and end offsets 11700 * of each piece, and the number of holes in the chain. When the hole count 11701 * goes to zero, we are done! 11702 * 11703 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11704 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11705 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11706 * after the call to ip_reassemble(). 11707 */ 11708 int 11709 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11710 size_t msg_len) 11711 { 11712 uint_t end; 11713 mblk_t *next_mp; 11714 mblk_t *mp1; 11715 uint_t offset; 11716 boolean_t incr_dups = B_TRUE; 11717 boolean_t offset_zero_seen = B_FALSE; 11718 boolean_t pkt_boundary_checked = B_FALSE; 11719 11720 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11721 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11722 11723 /* Add in byte count */ 11724 ipf->ipf_count += msg_len; 11725 if (ipf->ipf_end) { 11726 /* 11727 * We were part way through in-order reassembly, but now there 11728 * is a hole. We walk through messages already queued, and 11729 * mark them for hard case reassembly. We know that up till 11730 * now they were in order starting from offset zero. 11731 */ 11732 offset = 0; 11733 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11734 IP_REASS_SET_START(mp1, offset); 11735 if (offset == 0) { 11736 ASSERT(ipf->ipf_nf_hdr_len != 0); 11737 offset = -ipf->ipf_nf_hdr_len; 11738 } 11739 offset += mp1->b_wptr - mp1->b_rptr; 11740 IP_REASS_SET_END(mp1, offset); 11741 } 11742 /* One hole at the end. */ 11743 ipf->ipf_hole_cnt = 1; 11744 /* Brand it as a hard case, forever. */ 11745 ipf->ipf_end = 0; 11746 } 11747 /* Walk through all the new pieces. */ 11748 do { 11749 end = start + (mp->b_wptr - mp->b_rptr); 11750 /* 11751 * If start is 0, decrease 'end' only for the first mblk of 11752 * the fragment. Otherwise 'end' can get wrong value in the 11753 * second pass of the loop if first mblk is exactly the 11754 * size of ipf_nf_hdr_len. 11755 */ 11756 if (start == 0 && !offset_zero_seen) { 11757 /* First segment */ 11758 ASSERT(ipf->ipf_nf_hdr_len != 0); 11759 end -= ipf->ipf_nf_hdr_len; 11760 offset_zero_seen = B_TRUE; 11761 } 11762 next_mp = mp->b_cont; 11763 /* 11764 * We are checking to see if there is any interesing data 11765 * to process. If there isn't and the mblk isn't the 11766 * one which carries the unfragmentable header then we 11767 * drop it. It's possible to have just the unfragmentable 11768 * header come through without any data. That needs to be 11769 * saved. 11770 * 11771 * If the assert at the top of this function holds then the 11772 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 11773 * is infrequently traveled enough that the test is left in 11774 * to protect against future code changes which break that 11775 * invariant. 11776 */ 11777 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 11778 /* Empty. Blast it. */ 11779 IP_REASS_SET_START(mp, 0); 11780 IP_REASS_SET_END(mp, 0); 11781 /* 11782 * If the ipf points to the mblk we are about to free, 11783 * update ipf to point to the next mblk (or NULL 11784 * if none). 11785 */ 11786 if (ipf->ipf_mp->b_cont == mp) 11787 ipf->ipf_mp->b_cont = next_mp; 11788 freeb(mp); 11789 continue; 11790 } 11791 mp->b_cont = NULL; 11792 IP_REASS_SET_START(mp, start); 11793 IP_REASS_SET_END(mp, end); 11794 if (!ipf->ipf_tail_mp) { 11795 ipf->ipf_tail_mp = mp; 11796 ipf->ipf_mp->b_cont = mp; 11797 if (start == 0 || !more) { 11798 ipf->ipf_hole_cnt = 1; 11799 /* 11800 * if the first fragment comes in more than one 11801 * mblk, this loop will be executed for each 11802 * mblk. Need to adjust hole count so exiting 11803 * this routine will leave hole count at 1. 11804 */ 11805 if (next_mp) 11806 ipf->ipf_hole_cnt++; 11807 } else 11808 ipf->ipf_hole_cnt = 2; 11809 continue; 11810 } else if (ipf->ipf_last_frag_seen && !more && 11811 !pkt_boundary_checked) { 11812 /* 11813 * We check datagram boundary only if this fragment 11814 * claims to be the last fragment and we have seen a 11815 * last fragment in the past too. We do this only 11816 * once for a given fragment. 11817 * 11818 * start cannot be 0 here as fragments with start=0 11819 * and MF=0 gets handled as a complete packet. These 11820 * fragments should not reach here. 11821 */ 11822 11823 if (start + msgdsize(mp) != 11824 IP_REASS_END(ipf->ipf_tail_mp)) { 11825 /* 11826 * We have two fragments both of which claim 11827 * to be the last fragment but gives conflicting 11828 * information about the whole datagram size. 11829 * Something fishy is going on. Drop the 11830 * fragment and free up the reassembly list. 11831 */ 11832 return (IP_REASS_FAILED); 11833 } 11834 11835 /* 11836 * We shouldn't come to this code block again for this 11837 * particular fragment. 11838 */ 11839 pkt_boundary_checked = B_TRUE; 11840 } 11841 11842 /* New stuff at or beyond tail? */ 11843 offset = IP_REASS_END(ipf->ipf_tail_mp); 11844 if (start >= offset) { 11845 if (ipf->ipf_last_frag_seen) { 11846 /* current fragment is beyond last fragment */ 11847 return (IP_REASS_FAILED); 11848 } 11849 /* Link it on end. */ 11850 ipf->ipf_tail_mp->b_cont = mp; 11851 ipf->ipf_tail_mp = mp; 11852 if (more) { 11853 if (start != offset) 11854 ipf->ipf_hole_cnt++; 11855 } else if (start == offset && next_mp == NULL) 11856 ipf->ipf_hole_cnt--; 11857 continue; 11858 } 11859 mp1 = ipf->ipf_mp->b_cont; 11860 offset = IP_REASS_START(mp1); 11861 /* New stuff at the front? */ 11862 if (start < offset) { 11863 if (start == 0) { 11864 if (end >= offset) { 11865 /* Nailed the hole at the begining. */ 11866 ipf->ipf_hole_cnt--; 11867 } 11868 } else if (end < offset) { 11869 /* 11870 * A hole, stuff, and a hole where there used 11871 * to be just a hole. 11872 */ 11873 ipf->ipf_hole_cnt++; 11874 } 11875 mp->b_cont = mp1; 11876 /* Check for overlap. */ 11877 while (end > offset) { 11878 if (end < IP_REASS_END(mp1)) { 11879 mp->b_wptr -= end - offset; 11880 IP_REASS_SET_END(mp, offset); 11881 BUMP_MIB(ill->ill_ip_mib, 11882 ipIfStatsReasmPartDups); 11883 break; 11884 } 11885 /* Did we cover another hole? */ 11886 if ((mp1->b_cont && 11887 IP_REASS_END(mp1) != 11888 IP_REASS_START(mp1->b_cont) && 11889 end >= IP_REASS_START(mp1->b_cont)) || 11890 (!ipf->ipf_last_frag_seen && !more)) { 11891 ipf->ipf_hole_cnt--; 11892 } 11893 /* Clip out mp1. */ 11894 if ((mp->b_cont = mp1->b_cont) == NULL) { 11895 /* 11896 * After clipping out mp1, this guy 11897 * is now hanging off the end. 11898 */ 11899 ipf->ipf_tail_mp = mp; 11900 } 11901 IP_REASS_SET_START(mp1, 0); 11902 IP_REASS_SET_END(mp1, 0); 11903 /* Subtract byte count */ 11904 ipf->ipf_count -= mp1->b_datap->db_lim - 11905 mp1->b_datap->db_base; 11906 freeb(mp1); 11907 BUMP_MIB(ill->ill_ip_mib, 11908 ipIfStatsReasmPartDups); 11909 mp1 = mp->b_cont; 11910 if (!mp1) 11911 break; 11912 offset = IP_REASS_START(mp1); 11913 } 11914 ipf->ipf_mp->b_cont = mp; 11915 continue; 11916 } 11917 /* 11918 * The new piece starts somewhere between the start of the head 11919 * and before the end of the tail. 11920 */ 11921 for (; mp1; mp1 = mp1->b_cont) { 11922 offset = IP_REASS_END(mp1); 11923 if (start < offset) { 11924 if (end <= offset) { 11925 /* Nothing new. */ 11926 IP_REASS_SET_START(mp, 0); 11927 IP_REASS_SET_END(mp, 0); 11928 /* Subtract byte count */ 11929 ipf->ipf_count -= mp->b_datap->db_lim - 11930 mp->b_datap->db_base; 11931 if (incr_dups) { 11932 ipf->ipf_num_dups++; 11933 incr_dups = B_FALSE; 11934 } 11935 freeb(mp); 11936 BUMP_MIB(ill->ill_ip_mib, 11937 ipIfStatsReasmDuplicates); 11938 break; 11939 } 11940 /* 11941 * Trim redundant stuff off beginning of new 11942 * piece. 11943 */ 11944 IP_REASS_SET_START(mp, offset); 11945 mp->b_rptr += offset - start; 11946 BUMP_MIB(ill->ill_ip_mib, 11947 ipIfStatsReasmPartDups); 11948 start = offset; 11949 if (!mp1->b_cont) { 11950 /* 11951 * After trimming, this guy is now 11952 * hanging off the end. 11953 */ 11954 mp1->b_cont = mp; 11955 ipf->ipf_tail_mp = mp; 11956 if (!more) { 11957 ipf->ipf_hole_cnt--; 11958 } 11959 break; 11960 } 11961 } 11962 if (start >= IP_REASS_START(mp1->b_cont)) 11963 continue; 11964 /* Fill a hole */ 11965 if (start > offset) 11966 ipf->ipf_hole_cnt++; 11967 mp->b_cont = mp1->b_cont; 11968 mp1->b_cont = mp; 11969 mp1 = mp->b_cont; 11970 offset = IP_REASS_START(mp1); 11971 if (end >= offset) { 11972 ipf->ipf_hole_cnt--; 11973 /* Check for overlap. */ 11974 while (end > offset) { 11975 if (end < IP_REASS_END(mp1)) { 11976 mp->b_wptr -= end - offset; 11977 IP_REASS_SET_END(mp, offset); 11978 /* 11979 * TODO we might bump 11980 * this up twice if there is 11981 * overlap at both ends. 11982 */ 11983 BUMP_MIB(ill->ill_ip_mib, 11984 ipIfStatsReasmPartDups); 11985 break; 11986 } 11987 /* Did we cover another hole? */ 11988 if ((mp1->b_cont && 11989 IP_REASS_END(mp1) 11990 != IP_REASS_START(mp1->b_cont) && 11991 end >= 11992 IP_REASS_START(mp1->b_cont)) || 11993 (!ipf->ipf_last_frag_seen && 11994 !more)) { 11995 ipf->ipf_hole_cnt--; 11996 } 11997 /* Clip out mp1. */ 11998 if ((mp->b_cont = mp1->b_cont) == 11999 NULL) { 12000 /* 12001 * After clipping out mp1, 12002 * this guy is now hanging 12003 * off the end. 12004 */ 12005 ipf->ipf_tail_mp = mp; 12006 } 12007 IP_REASS_SET_START(mp1, 0); 12008 IP_REASS_SET_END(mp1, 0); 12009 /* Subtract byte count */ 12010 ipf->ipf_count -= 12011 mp1->b_datap->db_lim - 12012 mp1->b_datap->db_base; 12013 freeb(mp1); 12014 BUMP_MIB(ill->ill_ip_mib, 12015 ipIfStatsReasmPartDups); 12016 mp1 = mp->b_cont; 12017 if (!mp1) 12018 break; 12019 offset = IP_REASS_START(mp1); 12020 } 12021 } 12022 break; 12023 } 12024 } while (start = end, mp = next_mp); 12025 12026 /* Fragment just processed could be the last one. Remember this fact */ 12027 if (!more) 12028 ipf->ipf_last_frag_seen = B_TRUE; 12029 12030 /* Still got holes? */ 12031 if (ipf->ipf_hole_cnt) 12032 return (IP_REASS_PARTIAL); 12033 /* Clean up overloaded fields to avoid upstream disasters. */ 12034 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 12035 IP_REASS_SET_START(mp1, 0); 12036 IP_REASS_SET_END(mp1, 0); 12037 } 12038 return (IP_REASS_COMPLETE); 12039 } 12040 12041 /* 12042 * ipsec processing for the fast path, used for input UDP Packets 12043 * Returns true if ready for passup to UDP. 12044 * Return false if packet is not passable to UDP (e.g. it failed IPsec policy, 12045 * was an ESP-in-UDP packet, etc.). 12046 */ 12047 static boolean_t 12048 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 12049 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present, ire_t *ire) 12050 { 12051 uint32_t ill_index; 12052 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 12053 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 12054 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12055 udp_t *udp = connp->conn_udp; 12056 12057 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12058 /* The ill_index of the incoming ILL */ 12059 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 12060 12061 /* pass packet up to the transport */ 12062 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 12063 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 12064 NULL, mctl_present); 12065 if (*first_mpp == NULL) { 12066 return (B_FALSE); 12067 } 12068 } 12069 12070 /* Initiate IPPF processing for fastpath UDP */ 12071 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 12072 ip_process(IPP_LOCAL_IN, mpp, ill_index); 12073 if (*mpp == NULL) { 12074 ip2dbg(("ip_input_ipsec_process: UDP pkt " 12075 "deferred/dropped during IPPF processing\n")); 12076 return (B_FALSE); 12077 } 12078 } 12079 /* 12080 * Remove 0-spi if it's 0, or move everything behind 12081 * the UDP header over it and forward to ESP via 12082 * ip_proto_input(). 12083 */ 12084 if (udp->udp_nat_t_endpoint) { 12085 if (mctl_present) { 12086 /* mctl_present *shouldn't* happen. */ 12087 ip_drop_packet(*first_mpp, B_TRUE, NULL, 12088 NULL, DROPPER(ipss, ipds_esp_nat_t_ipsec), 12089 &ipss->ipsec_dropper); 12090 *first_mpp = NULL; 12091 return (B_FALSE); 12092 } 12093 12094 /* "ill" is "recv_ill" in actuality. */ 12095 if (!zero_spi_check(q, *mpp, ire, ill, ipss)) 12096 return (B_FALSE); 12097 12098 /* Else continue like a normal UDP packet. */ 12099 } 12100 12101 /* 12102 * We make the checks as below since we are in the fast path 12103 * and want to minimize the number of checks if the IP_RECVIF and/or 12104 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 12105 */ 12106 if (connp->conn_recvif || connp->conn_recvslla || 12107 connp->conn_ip_recvpktinfo) { 12108 if (connp->conn_recvif) { 12109 in_flags = IPF_RECVIF; 12110 } 12111 /* 12112 * UDP supports IP_RECVPKTINFO option for both v4 and v6 12113 * so the flag passed to ip_add_info is based on IP version 12114 * of connp. 12115 */ 12116 if (connp->conn_ip_recvpktinfo) { 12117 if (connp->conn_af_isv6) { 12118 /* 12119 * V6 only needs index 12120 */ 12121 in_flags |= IPF_RECVIF; 12122 } else { 12123 /* 12124 * V4 needs index + matching address. 12125 */ 12126 in_flags |= IPF_RECVADDR; 12127 } 12128 } 12129 if (connp->conn_recvslla) { 12130 in_flags |= IPF_RECVSLLA; 12131 } 12132 /* 12133 * since in_flags are being set ill will be 12134 * referenced in ip_add_info, so it better not 12135 * be NULL. 12136 */ 12137 /* 12138 * the actual data will be contained in b_cont 12139 * upon successful return of the following call. 12140 * If the call fails then the original mblk is 12141 * returned. 12142 */ 12143 *mpp = ip_add_info(*mpp, ill, in_flags, IPCL_ZONEID(connp), 12144 ipst); 12145 } 12146 12147 return (B_TRUE); 12148 } 12149 12150 /* 12151 * Fragmentation reassembly. Each ILL has a hash table for 12152 * queuing packets undergoing reassembly for all IPIFs 12153 * associated with the ILL. The hash is based on the packet 12154 * IP ident field. The ILL frag hash table was allocated 12155 * as a timer block at the time the ILL was created. Whenever 12156 * there is anything on the reassembly queue, the timer will 12157 * be running. Returns B_TRUE if successful else B_FALSE; 12158 * frees mp on failure. 12159 */ 12160 static boolean_t 12161 ip_rput_fragment(queue_t *q, mblk_t **mpp, ipha_t *ipha, 12162 uint32_t *cksum_val, uint16_t *cksum_flags) 12163 { 12164 uint32_t frag_offset_flags; 12165 ill_t *ill = (ill_t *)q->q_ptr; 12166 mblk_t *mp = *mpp; 12167 mblk_t *t_mp; 12168 ipaddr_t dst; 12169 uint8_t proto = ipha->ipha_protocol; 12170 uint32_t sum_val; 12171 uint16_t sum_flags; 12172 ipf_t *ipf; 12173 ipf_t **ipfp; 12174 ipfb_t *ipfb; 12175 uint16_t ident; 12176 uint32_t offset; 12177 ipaddr_t src; 12178 uint_t hdr_length; 12179 uint32_t end; 12180 mblk_t *mp1; 12181 mblk_t *tail_mp; 12182 size_t count; 12183 size_t msg_len; 12184 uint8_t ecn_info = 0; 12185 uint32_t packet_size; 12186 boolean_t pruned = B_FALSE; 12187 ip_stack_t *ipst = ill->ill_ipst; 12188 12189 if (cksum_val != NULL) 12190 *cksum_val = 0; 12191 if (cksum_flags != NULL) 12192 *cksum_flags = 0; 12193 12194 /* 12195 * Drop the fragmented as early as possible, if 12196 * we don't have resource(s) to re-assemble. 12197 */ 12198 if (ipst->ips_ip_reass_queue_bytes == 0) { 12199 freemsg(mp); 12200 return (B_FALSE); 12201 } 12202 12203 /* Check for fragmentation offset; return if there's none */ 12204 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 12205 (IPH_MF | IPH_OFFSET)) == 0) 12206 return (B_TRUE); 12207 12208 /* 12209 * We utilize hardware computed checksum info only for UDP since 12210 * IP fragmentation is a normal occurence for the protocol. In 12211 * addition, checksum offload support for IP fragments carrying 12212 * UDP payload is commonly implemented across network adapters. 12213 */ 12214 ASSERT(ill != NULL); 12215 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(ill) && 12216 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 12217 mblk_t *mp1 = mp->b_cont; 12218 int32_t len; 12219 12220 /* Record checksum information from the packet */ 12221 sum_val = (uint32_t)DB_CKSUM16(mp); 12222 sum_flags = DB_CKSUMFLAGS(mp); 12223 12224 /* IP payload offset from beginning of mblk */ 12225 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 12226 12227 if ((sum_flags & HCK_PARTIALCKSUM) && 12228 (mp1 == NULL || mp1->b_cont == NULL) && 12229 offset >= DB_CKSUMSTART(mp) && 12230 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 12231 uint32_t adj; 12232 /* 12233 * Partial checksum has been calculated by hardware 12234 * and attached to the packet; in addition, any 12235 * prepended extraneous data is even byte aligned. 12236 * If any such data exists, we adjust the checksum; 12237 * this would also handle any postpended data. 12238 */ 12239 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 12240 mp, mp1, len, adj); 12241 12242 /* One's complement subtract extraneous checksum */ 12243 if (adj >= sum_val) 12244 sum_val = ~(adj - sum_val) & 0xFFFF; 12245 else 12246 sum_val -= adj; 12247 } 12248 } else { 12249 sum_val = 0; 12250 sum_flags = 0; 12251 } 12252 12253 /* Clear hardware checksumming flag */ 12254 DB_CKSUMFLAGS(mp) = 0; 12255 12256 ident = ipha->ipha_ident; 12257 offset = (frag_offset_flags << 3) & 0xFFFF; 12258 src = ipha->ipha_src; 12259 dst = ipha->ipha_dst; 12260 hdr_length = IPH_HDR_LENGTH(ipha); 12261 end = ntohs(ipha->ipha_length) - hdr_length; 12262 12263 /* If end == 0 then we have a packet with no data, so just free it */ 12264 if (end == 0) { 12265 freemsg(mp); 12266 return (B_FALSE); 12267 } 12268 12269 /* Record the ECN field info. */ 12270 ecn_info = (ipha->ipha_type_of_service & 0x3); 12271 if (offset != 0) { 12272 /* 12273 * If this isn't the first piece, strip the header, and 12274 * add the offset to the end value. 12275 */ 12276 mp->b_rptr += hdr_length; 12277 end += offset; 12278 } 12279 12280 msg_len = MBLKSIZE(mp); 12281 tail_mp = mp; 12282 while (tail_mp->b_cont != NULL) { 12283 tail_mp = tail_mp->b_cont; 12284 msg_len += MBLKSIZE(tail_mp); 12285 } 12286 12287 /* If the reassembly list for this ILL will get too big, prune it */ 12288 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 12289 ipst->ips_ip_reass_queue_bytes) { 12290 ill_frag_prune(ill, 12291 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 12292 (ipst->ips_ip_reass_queue_bytes - msg_len)); 12293 pruned = B_TRUE; 12294 } 12295 12296 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 12297 mutex_enter(&ipfb->ipfb_lock); 12298 12299 ipfp = &ipfb->ipfb_ipf; 12300 /* Try to find an existing fragment queue for this packet. */ 12301 for (;;) { 12302 ipf = ipfp[0]; 12303 if (ipf != NULL) { 12304 /* 12305 * It has to match on ident and src/dst address. 12306 */ 12307 if (ipf->ipf_ident == ident && 12308 ipf->ipf_src == src && 12309 ipf->ipf_dst == dst && 12310 ipf->ipf_protocol == proto) { 12311 /* 12312 * If we have received too many 12313 * duplicate fragments for this packet 12314 * free it. 12315 */ 12316 if (ipf->ipf_num_dups > ip_max_frag_dups) { 12317 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12318 freemsg(mp); 12319 mutex_exit(&ipfb->ipfb_lock); 12320 return (B_FALSE); 12321 } 12322 /* Found it. */ 12323 break; 12324 } 12325 ipfp = &ipf->ipf_hash_next; 12326 continue; 12327 } 12328 12329 /* 12330 * If we pruned the list, do we want to store this new 12331 * fragment?. We apply an optimization here based on the 12332 * fact that most fragments will be received in order. 12333 * So if the offset of this incoming fragment is zero, 12334 * it is the first fragment of a new packet. We will 12335 * keep it. Otherwise drop the fragment, as we have 12336 * probably pruned the packet already (since the 12337 * packet cannot be found). 12338 */ 12339 if (pruned && offset != 0) { 12340 mutex_exit(&ipfb->ipfb_lock); 12341 freemsg(mp); 12342 return (B_FALSE); 12343 } 12344 12345 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 12346 /* 12347 * Too many fragmented packets in this hash 12348 * bucket. Free the oldest. 12349 */ 12350 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 12351 } 12352 12353 /* New guy. Allocate a frag message. */ 12354 mp1 = allocb(sizeof (*ipf), BPRI_MED); 12355 if (mp1 == NULL) { 12356 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12357 freemsg(mp); 12358 reass_done: 12359 mutex_exit(&ipfb->ipfb_lock); 12360 return (B_FALSE); 12361 } 12362 12363 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 12364 mp1->b_cont = mp; 12365 12366 /* Initialize the fragment header. */ 12367 ipf = (ipf_t *)mp1->b_rptr; 12368 ipf->ipf_mp = mp1; 12369 ipf->ipf_ptphn = ipfp; 12370 ipfp[0] = ipf; 12371 ipf->ipf_hash_next = NULL; 12372 ipf->ipf_ident = ident; 12373 ipf->ipf_protocol = proto; 12374 ipf->ipf_src = src; 12375 ipf->ipf_dst = dst; 12376 ipf->ipf_nf_hdr_len = 0; 12377 /* Record reassembly start time. */ 12378 ipf->ipf_timestamp = gethrestime_sec(); 12379 /* Record ipf generation and account for frag header */ 12380 ipf->ipf_gen = ill->ill_ipf_gen++; 12381 ipf->ipf_count = MBLKSIZE(mp1); 12382 ipf->ipf_last_frag_seen = B_FALSE; 12383 ipf->ipf_ecn = ecn_info; 12384 ipf->ipf_num_dups = 0; 12385 ipfb->ipfb_frag_pkts++; 12386 ipf->ipf_checksum = 0; 12387 ipf->ipf_checksum_flags = 0; 12388 12389 /* Store checksum value in fragment header */ 12390 if (sum_flags != 0) { 12391 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12392 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12393 ipf->ipf_checksum = sum_val; 12394 ipf->ipf_checksum_flags = sum_flags; 12395 } 12396 12397 /* 12398 * We handle reassembly two ways. In the easy case, 12399 * where all the fragments show up in order, we do 12400 * minimal bookkeeping, and just clip new pieces on 12401 * the end. If we ever see a hole, then we go off 12402 * to ip_reassemble which has to mark the pieces and 12403 * keep track of the number of holes, etc. Obviously, 12404 * the point of having both mechanisms is so we can 12405 * handle the easy case as efficiently as possible. 12406 */ 12407 if (offset == 0) { 12408 /* Easy case, in-order reassembly so far. */ 12409 ipf->ipf_count += msg_len; 12410 ipf->ipf_tail_mp = tail_mp; 12411 /* 12412 * Keep track of next expected offset in 12413 * ipf_end. 12414 */ 12415 ipf->ipf_end = end; 12416 ipf->ipf_nf_hdr_len = hdr_length; 12417 } else { 12418 /* Hard case, hole at the beginning. */ 12419 ipf->ipf_tail_mp = NULL; 12420 /* 12421 * ipf_end == 0 means that we have given up 12422 * on easy reassembly. 12423 */ 12424 ipf->ipf_end = 0; 12425 12426 /* Forget checksum offload from now on */ 12427 ipf->ipf_checksum_flags = 0; 12428 12429 /* 12430 * ipf_hole_cnt is set by ip_reassemble. 12431 * ipf_count is updated by ip_reassemble. 12432 * No need to check for return value here 12433 * as we don't expect reassembly to complete 12434 * or fail for the first fragment itself. 12435 */ 12436 (void) ip_reassemble(mp, ipf, 12437 (frag_offset_flags & IPH_OFFSET) << 3, 12438 (frag_offset_flags & IPH_MF), ill, msg_len); 12439 } 12440 /* Update per ipfb and ill byte counts */ 12441 ipfb->ipfb_count += ipf->ipf_count; 12442 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12443 ill->ill_frag_count += ipf->ipf_count; 12444 /* If the frag timer wasn't already going, start it. */ 12445 mutex_enter(&ill->ill_lock); 12446 ill_frag_timer_start(ill); 12447 mutex_exit(&ill->ill_lock); 12448 goto reass_done; 12449 } 12450 12451 /* 12452 * If the packet's flag has changed (it could be coming up 12453 * from an interface different than the previous, therefore 12454 * possibly different checksum capability), then forget about 12455 * any stored checksum states. Otherwise add the value to 12456 * the existing one stored in the fragment header. 12457 */ 12458 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 12459 sum_val += ipf->ipf_checksum; 12460 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12461 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12462 ipf->ipf_checksum = sum_val; 12463 } else if (ipf->ipf_checksum_flags != 0) { 12464 /* Forget checksum offload from now on */ 12465 ipf->ipf_checksum_flags = 0; 12466 } 12467 12468 /* 12469 * We have a new piece of a datagram which is already being 12470 * reassembled. Update the ECN info if all IP fragments 12471 * are ECN capable. If there is one which is not, clear 12472 * all the info. If there is at least one which has CE 12473 * code point, IP needs to report that up to transport. 12474 */ 12475 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 12476 if (ecn_info == IPH_ECN_CE) 12477 ipf->ipf_ecn = IPH_ECN_CE; 12478 } else { 12479 ipf->ipf_ecn = IPH_ECN_NECT; 12480 } 12481 if (offset && ipf->ipf_end == offset) { 12482 /* The new fragment fits at the end */ 12483 ipf->ipf_tail_mp->b_cont = mp; 12484 /* Update the byte count */ 12485 ipf->ipf_count += msg_len; 12486 /* Update per ipfb and ill byte counts */ 12487 ipfb->ipfb_count += msg_len; 12488 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12489 ill->ill_frag_count += msg_len; 12490 if (frag_offset_flags & IPH_MF) { 12491 /* More to come. */ 12492 ipf->ipf_end = end; 12493 ipf->ipf_tail_mp = tail_mp; 12494 goto reass_done; 12495 } 12496 } else { 12497 /* Go do the hard cases. */ 12498 int ret; 12499 12500 if (offset == 0) 12501 ipf->ipf_nf_hdr_len = hdr_length; 12502 12503 /* Save current byte count */ 12504 count = ipf->ipf_count; 12505 ret = ip_reassemble(mp, ipf, 12506 (frag_offset_flags & IPH_OFFSET) << 3, 12507 (frag_offset_flags & IPH_MF), ill, msg_len); 12508 /* Count of bytes added and subtracted (freeb()ed) */ 12509 count = ipf->ipf_count - count; 12510 if (count) { 12511 /* Update per ipfb and ill byte counts */ 12512 ipfb->ipfb_count += count; 12513 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12514 ill->ill_frag_count += count; 12515 } 12516 if (ret == IP_REASS_PARTIAL) { 12517 goto reass_done; 12518 } else if (ret == IP_REASS_FAILED) { 12519 /* Reassembly failed. Free up all resources */ 12520 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12521 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 12522 IP_REASS_SET_START(t_mp, 0); 12523 IP_REASS_SET_END(t_mp, 0); 12524 } 12525 freemsg(mp); 12526 goto reass_done; 12527 } 12528 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 12529 } 12530 /* 12531 * We have completed reassembly. Unhook the frag header from 12532 * the reassembly list. 12533 * 12534 * Before we free the frag header, record the ECN info 12535 * to report back to the transport. 12536 */ 12537 ecn_info = ipf->ipf_ecn; 12538 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 12539 ipfp = ipf->ipf_ptphn; 12540 12541 /* We need to supply these to caller */ 12542 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 12543 sum_val = ipf->ipf_checksum; 12544 else 12545 sum_val = 0; 12546 12547 mp1 = ipf->ipf_mp; 12548 count = ipf->ipf_count; 12549 ipf = ipf->ipf_hash_next; 12550 if (ipf != NULL) 12551 ipf->ipf_ptphn = ipfp; 12552 ipfp[0] = ipf; 12553 ill->ill_frag_count -= count; 12554 ASSERT(ipfb->ipfb_count >= count); 12555 ipfb->ipfb_count -= count; 12556 ipfb->ipfb_frag_pkts--; 12557 mutex_exit(&ipfb->ipfb_lock); 12558 /* Ditch the frag header. */ 12559 mp = mp1->b_cont; 12560 12561 freeb(mp1); 12562 12563 /* Restore original IP length in header. */ 12564 packet_size = (uint32_t)msgdsize(mp); 12565 if (packet_size > IP_MAXPACKET) { 12566 freemsg(mp); 12567 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 12568 return (B_FALSE); 12569 } 12570 12571 if (DB_REF(mp) > 1) { 12572 mblk_t *mp2 = copymsg(mp); 12573 12574 freemsg(mp); 12575 if (mp2 == NULL) { 12576 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12577 return (B_FALSE); 12578 } 12579 mp = mp2; 12580 } 12581 ipha = (ipha_t *)mp->b_rptr; 12582 12583 ipha->ipha_length = htons((uint16_t)packet_size); 12584 /* We're now complete, zip the frag state */ 12585 ipha->ipha_fragment_offset_and_flags = 0; 12586 /* Record the ECN info. */ 12587 ipha->ipha_type_of_service &= 0xFC; 12588 ipha->ipha_type_of_service |= ecn_info; 12589 *mpp = mp; 12590 12591 /* Reassembly is successful; return checksum information if needed */ 12592 if (cksum_val != NULL) 12593 *cksum_val = sum_val; 12594 if (cksum_flags != NULL) 12595 *cksum_flags = sum_flags; 12596 12597 return (B_TRUE); 12598 } 12599 12600 /* 12601 * Perform ip header check sum update local options. 12602 * return B_TRUE if all is well, else return B_FALSE and release 12603 * the mp. caller is responsible for decrementing ire ref cnt. 12604 */ 12605 static boolean_t 12606 ip_options_cksum(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12607 ip_stack_t *ipst) 12608 { 12609 mblk_t *first_mp; 12610 boolean_t mctl_present; 12611 uint16_t sum; 12612 12613 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12614 /* 12615 * Don't do the checksum if it has gone through AH/ESP 12616 * processing. 12617 */ 12618 if (!mctl_present) { 12619 sum = ip_csum_hdr(ipha); 12620 if (sum != 0) { 12621 if (ill != NULL) { 12622 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12623 } else { 12624 BUMP_MIB(&ipst->ips_ip_mib, 12625 ipIfStatsInCksumErrs); 12626 } 12627 freemsg(first_mp); 12628 return (B_FALSE); 12629 } 12630 } 12631 12632 if (!ip_rput_local_options(q, mp, ipha, ire, ipst)) { 12633 if (mctl_present) 12634 freeb(first_mp); 12635 return (B_FALSE); 12636 } 12637 12638 return (B_TRUE); 12639 } 12640 12641 /* 12642 * All udp packet are delivered to the local host via this routine. 12643 */ 12644 void 12645 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12646 ill_t *recv_ill) 12647 { 12648 uint32_t sum; 12649 uint32_t u1; 12650 boolean_t mctl_present; 12651 conn_t *connp; 12652 mblk_t *first_mp; 12653 uint16_t *up; 12654 ill_t *ill = (ill_t *)q->q_ptr; 12655 uint16_t reass_hck_flags = 0; 12656 ip_stack_t *ipst; 12657 12658 ASSERT(recv_ill != NULL); 12659 ipst = recv_ill->ill_ipst; 12660 12661 #define rptr ((uchar_t *)ipha) 12662 12663 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12664 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 12665 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12666 ASSERT(ill != NULL); 12667 12668 /* 12669 * FAST PATH for udp packets 12670 */ 12671 12672 /* u1 is # words of IP options */ 12673 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 12674 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12675 12676 /* IP options present */ 12677 if (u1 != 0) 12678 goto ipoptions; 12679 12680 /* Check the IP header checksum. */ 12681 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12682 /* Clear the IP header h/w cksum flag */ 12683 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12684 } else if (!mctl_present) { 12685 /* 12686 * Don't verify header checksum if this packet is coming 12687 * back from AH/ESP as we already did it. 12688 */ 12689 #define uph ((uint16_t *)ipha) 12690 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12691 uph[6] + uph[7] + uph[8] + uph[9]; 12692 #undef uph 12693 /* finish doing IP checksum */ 12694 sum = (sum & 0xFFFF) + (sum >> 16); 12695 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12696 if (sum != 0 && sum != 0xFFFF) { 12697 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12698 freemsg(first_mp); 12699 return; 12700 } 12701 } 12702 12703 /* 12704 * Count for SNMP of inbound packets for ire. 12705 * if mctl is present this might be a secure packet and 12706 * has already been counted for in ip_proto_input(). 12707 */ 12708 if (!mctl_present) { 12709 UPDATE_IB_PKT_COUNT(ire); 12710 ire->ire_last_used_time = lbolt; 12711 } 12712 12713 /* packet part of fragmented IP packet? */ 12714 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12715 if (u1 & (IPH_MF | IPH_OFFSET)) { 12716 goto fragmented; 12717 } 12718 12719 /* u1 = IP header length (20 bytes) */ 12720 u1 = IP_SIMPLE_HDR_LENGTH; 12721 12722 /* packet does not contain complete IP & UDP headers */ 12723 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12724 goto udppullup; 12725 12726 /* up points to UDP header */ 12727 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12728 #define iphs ((uint16_t *)ipha) 12729 12730 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12731 if (up[3] != 0) { 12732 mblk_t *mp1 = mp->b_cont; 12733 boolean_t cksum_err; 12734 uint16_t hck_flags = 0; 12735 12736 /* Pseudo-header checksum */ 12737 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12738 iphs[9] + up[2]; 12739 12740 /* 12741 * Revert to software checksum calculation if the interface 12742 * isn't capable of checksum offload or if IPsec is present. 12743 */ 12744 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12745 hck_flags = DB_CKSUMFLAGS(mp); 12746 12747 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12748 IP_STAT(ipst, ip_in_sw_cksum); 12749 12750 IP_CKSUM_RECV(hck_flags, u1, 12751 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12752 (int32_t)((uchar_t *)up - rptr), 12753 mp, mp1, cksum_err); 12754 12755 if (cksum_err) { 12756 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12757 if (hck_flags & HCK_FULLCKSUM) 12758 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12759 else if (hck_flags & HCK_PARTIALCKSUM) 12760 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12761 else 12762 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12763 12764 freemsg(first_mp); 12765 return; 12766 } 12767 } 12768 12769 /* Non-fragmented broadcast or multicast packet? */ 12770 if (ire->ire_type == IRE_BROADCAST) 12771 goto udpslowpath; 12772 12773 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 12774 ire->ire_zoneid, ipst)) != NULL) { 12775 ASSERT(connp->conn_upq != NULL); 12776 IP_STAT(ipst, ip_udp_fast_path); 12777 12778 if (CONN_UDP_FLOWCTLD(connp)) { 12779 freemsg(mp); 12780 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 12781 } else { 12782 if (!mctl_present) { 12783 BUMP_MIB(ill->ill_ip_mib, 12784 ipIfStatsHCInDelivers); 12785 } 12786 /* 12787 * mp and first_mp can change. 12788 */ 12789 if (ip_udp_check(q, connp, recv_ill, 12790 ipha, &mp, &first_mp, mctl_present, ire)) { 12791 /* Send it upstream */ 12792 (connp->conn_recv)(connp, mp, NULL); 12793 } 12794 } 12795 /* 12796 * freeb() cannot deal with null mblk being passed 12797 * in and first_mp can be set to null in the call 12798 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 12799 */ 12800 if (mctl_present && first_mp != NULL) { 12801 freeb(first_mp); 12802 } 12803 CONN_DEC_REF(connp); 12804 return; 12805 } 12806 12807 /* 12808 * if we got here we know the packet is not fragmented and 12809 * has no options. The classifier could not find a conn_t and 12810 * most likely its an icmp packet so send it through slow path. 12811 */ 12812 12813 goto udpslowpath; 12814 12815 ipoptions: 12816 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 12817 goto slow_done; 12818 } 12819 12820 UPDATE_IB_PKT_COUNT(ire); 12821 ire->ire_last_used_time = lbolt; 12822 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12823 if (u1 & (IPH_MF | IPH_OFFSET)) { 12824 fragmented: 12825 /* 12826 * "sum" and "reass_hck_flags" are non-zero if the 12827 * reassembled packet has a valid hardware computed 12828 * checksum information associated with it. 12829 */ 12830 if (!ip_rput_fragment(q, &mp, ipha, &sum, &reass_hck_flags)) 12831 goto slow_done; 12832 /* 12833 * Make sure that first_mp points back to mp as 12834 * the mp we came in with could have changed in 12835 * ip_rput_fragment(). 12836 */ 12837 ASSERT(!mctl_present); 12838 ipha = (ipha_t *)mp->b_rptr; 12839 first_mp = mp; 12840 } 12841 12842 /* Now we have a complete datagram, destined for this machine. */ 12843 u1 = IPH_HDR_LENGTH(ipha); 12844 /* Pull up the UDP header, if necessary. */ 12845 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 12846 udppullup: 12847 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 12848 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12849 freemsg(first_mp); 12850 goto slow_done; 12851 } 12852 ipha = (ipha_t *)mp->b_rptr; 12853 } 12854 12855 /* 12856 * Validate the checksum for the reassembled packet; for the 12857 * pullup case we calculate the payload checksum in software. 12858 */ 12859 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 12860 if (up[3] != 0) { 12861 boolean_t cksum_err; 12862 12863 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12864 IP_STAT(ipst, ip_in_sw_cksum); 12865 12866 IP_CKSUM_RECV_REASS(reass_hck_flags, 12867 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 12868 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12869 iphs[9] + up[2], sum, cksum_err); 12870 12871 if (cksum_err) { 12872 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12873 12874 if (reass_hck_flags & HCK_FULLCKSUM) 12875 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12876 else if (reass_hck_flags & HCK_PARTIALCKSUM) 12877 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12878 else 12879 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12880 12881 freemsg(first_mp); 12882 goto slow_done; 12883 } 12884 } 12885 udpslowpath: 12886 12887 /* Clear hardware checksum flag to be safe */ 12888 DB_CKSUMFLAGS(mp) = 0; 12889 12890 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 12891 (ire->ire_type == IRE_BROADCAST), 12892 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IPINFO, 12893 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 12894 12895 slow_done: 12896 IP_STAT(ipst, ip_udp_slow_path); 12897 return; 12898 12899 #undef iphs 12900 #undef rptr 12901 } 12902 12903 /* ARGSUSED */ 12904 static mblk_t * 12905 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 12906 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 12907 ill_rx_ring_t *ill_ring) 12908 { 12909 conn_t *connp; 12910 uint32_t sum; 12911 uint32_t u1; 12912 uint16_t *up; 12913 int offset; 12914 ssize_t len; 12915 mblk_t *mp1; 12916 boolean_t syn_present = B_FALSE; 12917 tcph_t *tcph; 12918 uint_t ip_hdr_len; 12919 ill_t *ill = (ill_t *)q->q_ptr; 12920 zoneid_t zoneid = ire->ire_zoneid; 12921 boolean_t cksum_err; 12922 uint16_t hck_flags = 0; 12923 ip_stack_t *ipst = recv_ill->ill_ipst; 12924 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12925 12926 #define rptr ((uchar_t *)ipha) 12927 12928 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 12929 ASSERT(ill != NULL); 12930 12931 /* 12932 * FAST PATH for tcp packets 12933 */ 12934 12935 /* u1 is # words of IP options */ 12936 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 12937 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12938 12939 /* IP options present */ 12940 if (u1) { 12941 goto ipoptions; 12942 } else if (!mctl_present) { 12943 /* Check the IP header checksum. */ 12944 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12945 /* Clear the IP header h/w cksum flag */ 12946 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12947 } else if (!mctl_present) { 12948 /* 12949 * Don't verify header checksum if this packet 12950 * is coming back from AH/ESP as we already did it. 12951 */ 12952 #define uph ((uint16_t *)ipha) 12953 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 12954 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 12955 #undef uph 12956 /* finish doing IP checksum */ 12957 sum = (sum & 0xFFFF) + (sum >> 16); 12958 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12959 if (sum != 0 && sum != 0xFFFF) { 12960 BUMP_MIB(ill->ill_ip_mib, 12961 ipIfStatsInCksumErrs); 12962 goto error; 12963 } 12964 } 12965 } 12966 12967 if (!mctl_present) { 12968 UPDATE_IB_PKT_COUNT(ire); 12969 ire->ire_last_used_time = lbolt; 12970 } 12971 12972 /* packet part of fragmented IP packet? */ 12973 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12974 if (u1 & (IPH_MF | IPH_OFFSET)) { 12975 goto fragmented; 12976 } 12977 12978 /* u1 = IP header length (20 bytes) */ 12979 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 12980 12981 /* does packet contain IP+TCP headers? */ 12982 len = mp->b_wptr - rptr; 12983 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 12984 IP_STAT(ipst, ip_tcppullup); 12985 goto tcppullup; 12986 } 12987 12988 /* TCP options present? */ 12989 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 12990 12991 /* 12992 * If options need to be pulled up, then goto tcpoptions. 12993 * otherwise we are still in the fast path 12994 */ 12995 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 12996 IP_STAT(ipst, ip_tcpoptions); 12997 goto tcpoptions; 12998 } 12999 13000 /* multiple mblks of tcp data? */ 13001 if ((mp1 = mp->b_cont) != NULL) { 13002 /* more then two? */ 13003 if (mp1->b_cont != NULL) { 13004 IP_STAT(ipst, ip_multipkttcp); 13005 goto multipkttcp; 13006 } 13007 len += mp1->b_wptr - mp1->b_rptr; 13008 } 13009 13010 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 13011 13012 /* part of pseudo checksum */ 13013 13014 /* TCP datagram length */ 13015 u1 = len - IP_SIMPLE_HDR_LENGTH; 13016 13017 #define iphs ((uint16_t *)ipha) 13018 13019 #ifdef _BIG_ENDIAN 13020 u1 += IPPROTO_TCP; 13021 #else 13022 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13023 #endif 13024 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13025 13026 /* 13027 * Revert to software checksum calculation if the interface 13028 * isn't capable of checksum offload or if IPsec is present. 13029 */ 13030 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 13031 hck_flags = DB_CKSUMFLAGS(mp); 13032 13033 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 13034 IP_STAT(ipst, ip_in_sw_cksum); 13035 13036 IP_CKSUM_RECV(hck_flags, u1, 13037 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 13038 (int32_t)((uchar_t *)up - rptr), 13039 mp, mp1, cksum_err); 13040 13041 if (cksum_err) { 13042 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13043 13044 if (hck_flags & HCK_FULLCKSUM) 13045 IP_STAT(ipst, ip_tcp_in_full_hw_cksum_err); 13046 else if (hck_flags & HCK_PARTIALCKSUM) 13047 IP_STAT(ipst, ip_tcp_in_part_hw_cksum_err); 13048 else 13049 IP_STAT(ipst, ip_tcp_in_sw_cksum_err); 13050 13051 goto error; 13052 } 13053 13054 try_again: 13055 13056 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 13057 zoneid, ipst)) == NULL) { 13058 /* Send the TH_RST */ 13059 goto no_conn; 13060 } 13061 13062 /* 13063 * TCP FAST PATH for AF_INET socket. 13064 * 13065 * TCP fast path to avoid extra work. An AF_INET socket type 13066 * does not have facility to receive extra information via 13067 * ip_process or ip_add_info. Also, when the connection was 13068 * established, we made a check if this connection is impacted 13069 * by any global IPsec policy or per connection policy (a 13070 * policy that comes in effect later will not apply to this 13071 * connection). Since all this can be determined at the 13072 * connection establishment time, a quick check of flags 13073 * can avoid extra work. 13074 */ 13075 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 13076 !IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13077 ASSERT(first_mp == mp); 13078 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13079 SET_SQUEUE(mp, tcp_rput_data, connp); 13080 return (mp); 13081 } 13082 13083 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 13084 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 13085 if (IPCL_IS_TCP(connp)) { 13086 mp->b_datap->db_struioflag |= STRUIO_EAGER; 13087 DB_CKSUMSTART(mp) = 13088 (intptr_t)ip_squeue_get(ill_ring); 13089 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 13090 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13091 BUMP_MIB(ill->ill_ip_mib, 13092 ipIfStatsHCInDelivers); 13093 SET_SQUEUE(mp, connp->conn_recv, connp); 13094 return (mp); 13095 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 13096 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13097 BUMP_MIB(ill->ill_ip_mib, 13098 ipIfStatsHCInDelivers); 13099 ip_squeue_enter_unbound++; 13100 SET_SQUEUE(mp, tcp_conn_request_unbound, 13101 connp); 13102 return (mp); 13103 } 13104 syn_present = B_TRUE; 13105 } 13106 13107 } 13108 13109 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 13110 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 13111 13112 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13113 /* No need to send this packet to TCP */ 13114 if ((flags & TH_RST) || (flags & TH_URG)) { 13115 CONN_DEC_REF(connp); 13116 freemsg(first_mp); 13117 return (NULL); 13118 } 13119 if (flags & TH_ACK) { 13120 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 13121 ipst->ips_netstack->netstack_tcp, connp); 13122 CONN_DEC_REF(connp); 13123 return (NULL); 13124 } 13125 13126 CONN_DEC_REF(connp); 13127 freemsg(first_mp); 13128 return (NULL); 13129 } 13130 13131 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 13132 first_mp = ipsec_check_inbound_policy(first_mp, connp, 13133 ipha, NULL, mctl_present); 13134 if (first_mp == NULL) { 13135 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13136 CONN_DEC_REF(connp); 13137 return (NULL); 13138 } 13139 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 13140 ASSERT(syn_present); 13141 if (mctl_present) { 13142 ASSERT(first_mp != mp); 13143 first_mp->b_datap->db_struioflag |= 13144 STRUIO_POLICY; 13145 } else { 13146 ASSERT(first_mp == mp); 13147 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 13148 mp->b_datap->db_struioflag |= STRUIO_POLICY; 13149 } 13150 } else { 13151 /* 13152 * Discard first_mp early since we're dealing with a 13153 * fully-connected conn_t and tcp doesn't do policy in 13154 * this case. 13155 */ 13156 if (mctl_present) { 13157 freeb(first_mp); 13158 mctl_present = B_FALSE; 13159 } 13160 first_mp = mp; 13161 } 13162 } 13163 13164 /* Initiate IPPF processing for fastpath */ 13165 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13166 uint32_t ill_index; 13167 13168 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13169 ip_process(IPP_LOCAL_IN, &mp, ill_index); 13170 if (mp == NULL) { 13171 ip2dbg(("ip_input_ipsec_process: TCP pkt " 13172 "deferred/dropped during IPPF processing\n")); 13173 CONN_DEC_REF(connp); 13174 if (mctl_present) 13175 freeb(first_mp); 13176 return (NULL); 13177 } else if (mctl_present) { 13178 /* 13179 * ip_process might return a new mp. 13180 */ 13181 ASSERT(first_mp != mp); 13182 first_mp->b_cont = mp; 13183 } else { 13184 first_mp = mp; 13185 } 13186 13187 } 13188 13189 if (!syn_present && connp->conn_ip_recvpktinfo) { 13190 /* 13191 * TCP does not support IP_RECVPKTINFO for v4 so lets 13192 * make sure IPF_RECVIF is passed to ip_add_info. 13193 */ 13194 mp = ip_add_info(mp, recv_ill, flags|IPF_RECVIF, 13195 IPCL_ZONEID(connp), ipst); 13196 if (mp == NULL) { 13197 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13198 CONN_DEC_REF(connp); 13199 if (mctl_present) 13200 freeb(first_mp); 13201 return (NULL); 13202 } else if (mctl_present) { 13203 /* 13204 * ip_add_info might return a new mp. 13205 */ 13206 ASSERT(first_mp != mp); 13207 first_mp->b_cont = mp; 13208 } else { 13209 first_mp = mp; 13210 } 13211 } 13212 13213 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13214 if (IPCL_IS_TCP(connp)) { 13215 SET_SQUEUE(first_mp, connp->conn_recv, connp); 13216 return (first_mp); 13217 } else { 13218 /* SOCK_RAW, IPPROTO_TCP case */ 13219 (connp->conn_recv)(connp, first_mp, NULL); 13220 CONN_DEC_REF(connp); 13221 return (NULL); 13222 } 13223 13224 no_conn: 13225 /* Initiate IPPf processing, if needed. */ 13226 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13227 uint32_t ill_index; 13228 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13229 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 13230 if (first_mp == NULL) { 13231 return (NULL); 13232 } 13233 } 13234 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13235 13236 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr), zoneid, 13237 ipst->ips_netstack->netstack_tcp, NULL); 13238 return (NULL); 13239 ipoptions: 13240 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) { 13241 goto slow_done; 13242 } 13243 13244 UPDATE_IB_PKT_COUNT(ire); 13245 ire->ire_last_used_time = lbolt; 13246 13247 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13248 if (u1 & (IPH_MF | IPH_OFFSET)) { 13249 fragmented: 13250 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 13251 if (mctl_present) 13252 freeb(first_mp); 13253 goto slow_done; 13254 } 13255 /* 13256 * Make sure that first_mp points back to mp as 13257 * the mp we came in with could have changed in 13258 * ip_rput_fragment(). 13259 */ 13260 ASSERT(!mctl_present); 13261 ipha = (ipha_t *)mp->b_rptr; 13262 first_mp = mp; 13263 } 13264 13265 /* Now we have a complete datagram, destined for this machine. */ 13266 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 13267 13268 len = mp->b_wptr - mp->b_rptr; 13269 /* Pull up a minimal TCP header, if necessary. */ 13270 if (len < (u1 + 20)) { 13271 tcppullup: 13272 if (!pullupmsg(mp, u1 + 20)) { 13273 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13274 goto error; 13275 } 13276 ipha = (ipha_t *)mp->b_rptr; 13277 len = mp->b_wptr - mp->b_rptr; 13278 } 13279 13280 /* 13281 * Extract the offset field from the TCP header. As usual, we 13282 * try to help the compiler more than the reader. 13283 */ 13284 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 13285 if (offset != 5) { 13286 tcpoptions: 13287 if (offset < 5) { 13288 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13289 goto error; 13290 } 13291 /* 13292 * There must be TCP options. 13293 * Make sure we can grab them. 13294 */ 13295 offset <<= 2; 13296 offset += u1; 13297 if (len < offset) { 13298 if (!pullupmsg(mp, offset)) { 13299 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13300 goto error; 13301 } 13302 ipha = (ipha_t *)mp->b_rptr; 13303 len = mp->b_wptr - rptr; 13304 } 13305 } 13306 13307 /* Get the total packet length in len, including headers. */ 13308 if (mp->b_cont) { 13309 multipkttcp: 13310 len = msgdsize(mp); 13311 } 13312 13313 /* 13314 * Check the TCP checksum by pulling together the pseudo- 13315 * header checksum, and passing it to ip_csum to be added in 13316 * with the TCP datagram. 13317 * 13318 * Since we are not using the hwcksum if available we must 13319 * clear the flag. We may come here via tcppullup or tcpoptions. 13320 * If either of these fails along the way the mblk is freed. 13321 * If this logic ever changes and mblk is reused to say send 13322 * ICMP's back, then this flag may need to be cleared in 13323 * other places as well. 13324 */ 13325 DB_CKSUMFLAGS(mp) = 0; 13326 13327 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 13328 13329 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 13330 #ifdef _BIG_ENDIAN 13331 u1 += IPPROTO_TCP; 13332 #else 13333 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13334 #endif 13335 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13336 /* 13337 * Not M_DATA mblk or its a dup, so do the checksum now. 13338 */ 13339 IP_STAT(ipst, ip_in_sw_cksum); 13340 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 13341 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13342 goto error; 13343 } 13344 13345 IP_STAT(ipst, ip_tcp_slow_path); 13346 goto try_again; 13347 #undef iphs 13348 #undef rptr 13349 13350 error: 13351 freemsg(first_mp); 13352 slow_done: 13353 return (NULL); 13354 } 13355 13356 /* ARGSUSED */ 13357 static void 13358 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13359 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 13360 { 13361 conn_t *connp; 13362 uint32_t sum; 13363 uint32_t u1; 13364 ssize_t len; 13365 sctp_hdr_t *sctph; 13366 zoneid_t zoneid = ire->ire_zoneid; 13367 uint32_t pktsum; 13368 uint32_t calcsum; 13369 uint32_t ports; 13370 in6_addr_t map_src, map_dst; 13371 ill_t *ill = (ill_t *)q->q_ptr; 13372 ip_stack_t *ipst; 13373 sctp_stack_t *sctps; 13374 boolean_t sctp_csum_err = B_FALSE; 13375 13376 ASSERT(recv_ill != NULL); 13377 ipst = recv_ill->ill_ipst; 13378 sctps = ipst->ips_netstack->netstack_sctp; 13379 13380 #define rptr ((uchar_t *)ipha) 13381 13382 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 13383 ASSERT(ill != NULL); 13384 13385 /* u1 is # words of IP options */ 13386 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13387 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13388 13389 /* IP options present */ 13390 if (u1 > 0) { 13391 goto ipoptions; 13392 } else { 13393 /* Check the IP header checksum. */ 13394 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, ill) && 13395 !mctl_present) { 13396 #define uph ((uint16_t *)ipha) 13397 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13398 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13399 #undef uph 13400 /* finish doing IP checksum */ 13401 sum = (sum & 0xFFFF) + (sum >> 16); 13402 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13403 /* 13404 * Don't verify header checksum if this packet 13405 * is coming back from AH/ESP as we already did it. 13406 */ 13407 if (sum != 0 && sum != 0xFFFF) { 13408 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 13409 goto error; 13410 } 13411 } 13412 /* 13413 * Since there is no SCTP h/w cksum support yet, just 13414 * clear the flag. 13415 */ 13416 DB_CKSUMFLAGS(mp) = 0; 13417 } 13418 13419 /* 13420 * Don't verify header checksum if this packet is coming 13421 * back from AH/ESP as we already did it. 13422 */ 13423 if (!mctl_present) { 13424 UPDATE_IB_PKT_COUNT(ire); 13425 ire->ire_last_used_time = lbolt; 13426 } 13427 13428 /* packet part of fragmented IP packet? */ 13429 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13430 if (u1 & (IPH_MF | IPH_OFFSET)) 13431 goto fragmented; 13432 13433 /* u1 = IP header length (20 bytes) */ 13434 u1 = IP_SIMPLE_HDR_LENGTH; 13435 13436 find_sctp_client: 13437 /* Pullup if we don't have the sctp common header. */ 13438 len = MBLKL(mp); 13439 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 13440 if (mp->b_cont == NULL || 13441 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 13442 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13443 goto error; 13444 } 13445 ipha = (ipha_t *)mp->b_rptr; 13446 len = MBLKL(mp); 13447 } 13448 13449 sctph = (sctp_hdr_t *)(rptr + u1); 13450 #ifdef DEBUG 13451 if (!skip_sctp_cksum) { 13452 #endif 13453 pktsum = sctph->sh_chksum; 13454 sctph->sh_chksum = 0; 13455 calcsum = sctp_cksum(mp, u1); 13456 sctph->sh_chksum = pktsum; 13457 if (calcsum != pktsum) 13458 sctp_csum_err = B_TRUE; 13459 #ifdef DEBUG /* skip_sctp_cksum */ 13460 } 13461 #endif 13462 /* get the ports */ 13463 ports = *(uint32_t *)&sctph->sh_sport; 13464 13465 IRE_REFRELE(ire); 13466 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 13467 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 13468 if (sctp_csum_err) { 13469 /* 13470 * No potential sctp checksum errors go to the Sun 13471 * sctp stack however they might be Adler-32 summed 13472 * packets a userland stack bound to a raw IP socket 13473 * could reasonably use. Note though that Adler-32 is 13474 * a long deprecated algorithm and customer sctp 13475 * networks should eventually migrate to CRC-32 at 13476 * which time this facility should be removed. 13477 */ 13478 flags |= IP_FF_SCTP_CSUM_ERR; 13479 goto no_conn; 13480 } 13481 if ((connp = sctp_fanout(&map_src, &map_dst, ports, zoneid, mp, 13482 sctps)) == NULL) { 13483 /* Check for raw socket or OOTB handling */ 13484 goto no_conn; 13485 } 13486 13487 /* Found a client; up it goes */ 13488 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13489 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 13490 return; 13491 13492 no_conn: 13493 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 13494 ports, mctl_present, flags, B_TRUE, zoneid); 13495 return; 13496 13497 ipoptions: 13498 DB_CKSUMFLAGS(mp) = 0; 13499 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) 13500 goto slow_done; 13501 13502 UPDATE_IB_PKT_COUNT(ire); 13503 ire->ire_last_used_time = lbolt; 13504 13505 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13506 if (u1 & (IPH_MF | IPH_OFFSET)) { 13507 fragmented: 13508 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) 13509 goto slow_done; 13510 /* 13511 * Make sure that first_mp points back to mp as 13512 * the mp we came in with could have changed in 13513 * ip_rput_fragment(). 13514 */ 13515 ASSERT(!mctl_present); 13516 ipha = (ipha_t *)mp->b_rptr; 13517 first_mp = mp; 13518 } 13519 13520 /* Now we have a complete datagram, destined for this machine. */ 13521 u1 = IPH_HDR_LENGTH(ipha); 13522 goto find_sctp_client; 13523 #undef iphs 13524 #undef rptr 13525 13526 error: 13527 freemsg(first_mp); 13528 slow_done: 13529 IRE_REFRELE(ire); 13530 } 13531 13532 #define VER_BITS 0xF0 13533 #define VERSION_6 0x60 13534 13535 static boolean_t 13536 ip_rput_multimblk_ipoptions(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t **iphapp, 13537 ipaddr_t *dstp, ip_stack_t *ipst) 13538 { 13539 uint_t opt_len; 13540 ipha_t *ipha; 13541 ssize_t len; 13542 uint_t pkt_len; 13543 13544 ASSERT(ill != NULL); 13545 IP_STAT(ipst, ip_ipoptions); 13546 ipha = *iphapp; 13547 13548 #define rptr ((uchar_t *)ipha) 13549 /* Assume no IPv6 packets arrive over the IPv4 queue */ 13550 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 13551 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 13552 freemsg(mp); 13553 return (B_FALSE); 13554 } 13555 13556 /* multiple mblk or too short */ 13557 pkt_len = ntohs(ipha->ipha_length); 13558 13559 /* Get the number of words of IP options in the IP header. */ 13560 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 13561 if (opt_len) { 13562 /* IP Options present! Validate and process. */ 13563 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 13564 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13565 goto done; 13566 } 13567 /* 13568 * Recompute complete header length and make sure we 13569 * have access to all of it. 13570 */ 13571 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 13572 if (len > (mp->b_wptr - rptr)) { 13573 if (len > pkt_len) { 13574 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13575 goto done; 13576 } 13577 if (!pullupmsg(mp, len)) { 13578 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13579 goto done; 13580 } 13581 ipha = (ipha_t *)mp->b_rptr; 13582 } 13583 /* 13584 * Go off to ip_rput_options which returns the next hop 13585 * destination address, which may have been affected 13586 * by source routing. 13587 */ 13588 IP_STAT(ipst, ip_opt); 13589 if (ip_rput_options(q, mp, ipha, dstp, ipst) == -1) { 13590 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13591 return (B_FALSE); 13592 } 13593 } 13594 *iphapp = ipha; 13595 return (B_TRUE); 13596 done: 13597 /* clear b_prev - used by ip_mroute_decap */ 13598 mp->b_prev = NULL; 13599 freemsg(mp); 13600 return (B_FALSE); 13601 #undef rptr 13602 } 13603 13604 /* 13605 * Deal with the fact that there is no ire for the destination. 13606 */ 13607 static ire_t * 13608 ip_rput_noire(queue_t *q, mblk_t *mp, int ll_multicast, ipaddr_t dst) 13609 { 13610 ipha_t *ipha; 13611 ill_t *ill; 13612 ire_t *ire; 13613 ip_stack_t *ipst; 13614 enum ire_forward_action ret_action; 13615 13616 ipha = (ipha_t *)mp->b_rptr; 13617 ill = (ill_t *)q->q_ptr; 13618 13619 ASSERT(ill != NULL); 13620 ipst = ill->ill_ipst; 13621 13622 /* 13623 * No IRE for this destination, so it can't be for us. 13624 * Unless we are forwarding, drop the packet. 13625 * We have to let source routed packets through 13626 * since we don't yet know if they are 'ping -l' 13627 * packets i.e. if they will go out over the 13628 * same interface as they came in on. 13629 */ 13630 if (ll_multicast) { 13631 freemsg(mp); 13632 return (NULL); 13633 } 13634 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha, ipst)) { 13635 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13636 freemsg(mp); 13637 return (NULL); 13638 } 13639 13640 /* 13641 * Mark this packet as having originated externally. 13642 * 13643 * For non-forwarding code path, ire_send later double 13644 * checks this interface to see if it is still exists 13645 * post-ARP resolution. 13646 * 13647 * Also, IPQOS uses this to differentiate between 13648 * IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP 13649 * QOS packet processing in ip_wput_attach_llhdr(). 13650 * The QoS module can mark the b_band for a fastpath message 13651 * or the dl_priority field in a unitdata_req header for 13652 * CoS marking. This info can only be found in 13653 * ip_wput_attach_llhdr(). 13654 */ 13655 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 13656 /* 13657 * Clear the indication that this may have a hardware checksum 13658 * as we are not using it 13659 */ 13660 DB_CKSUMFLAGS(mp) = 0; 13661 13662 ire = ire_forward(dst, &ret_action, NULL, NULL, 13663 MBLK_GETLABEL(mp), ipst); 13664 13665 if (ire == NULL && ret_action == Forward_check_multirt) { 13666 /* Let ip_newroute handle CGTP */ 13667 ip_newroute(q, mp, dst, NULL, GLOBAL_ZONEID, ipst); 13668 return (NULL); 13669 } 13670 13671 if (ire != NULL) 13672 return (ire); 13673 13674 mp->b_prev = mp->b_next = 0; 13675 13676 if (ret_action == Forward_blackhole) { 13677 freemsg(mp); 13678 return (NULL); 13679 } 13680 /* send icmp unreachable */ 13681 q = WR(q); 13682 /* Sent by forwarding path, and router is global zone */ 13683 if (ip_source_routed(ipha, ipst)) { 13684 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, 13685 GLOBAL_ZONEID, ipst); 13686 } else { 13687 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 13688 ipst); 13689 } 13690 13691 return (NULL); 13692 13693 } 13694 13695 /* 13696 * check ip header length and align it. 13697 */ 13698 static boolean_t 13699 ip_check_and_align_header(queue_t *q, mblk_t *mp, ip_stack_t *ipst) 13700 { 13701 ssize_t len; 13702 ill_t *ill; 13703 ipha_t *ipha; 13704 13705 len = MBLKL(mp); 13706 13707 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13708 ill = (ill_t *)q->q_ptr; 13709 13710 if (!OK_32PTR(mp->b_rptr)) 13711 IP_STAT(ipst, ip_notaligned1); 13712 else 13713 IP_STAT(ipst, ip_notaligned2); 13714 /* Guard against bogus device drivers */ 13715 if (len < 0) { 13716 /* clear b_prev - used by ip_mroute_decap */ 13717 mp->b_prev = NULL; 13718 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13719 freemsg(mp); 13720 return (B_FALSE); 13721 } 13722 13723 if (ip_rput_pullups++ == 0) { 13724 ipha = (ipha_t *)mp->b_rptr; 13725 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 13726 "ip_check_and_align_header: %s forced us to " 13727 " pullup pkt, hdr len %ld, hdr addr %p", 13728 ill->ill_name, len, ipha); 13729 } 13730 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 13731 /* clear b_prev - used by ip_mroute_decap */ 13732 mp->b_prev = NULL; 13733 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13734 freemsg(mp); 13735 return (B_FALSE); 13736 } 13737 } 13738 return (B_TRUE); 13739 } 13740 13741 ire_t * 13742 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 13743 { 13744 ire_t *new_ire; 13745 ill_t *ire_ill; 13746 uint_t ifindex; 13747 ip_stack_t *ipst = ill->ill_ipst; 13748 boolean_t strict_check = B_FALSE; 13749 13750 /* 13751 * This packet came in on an interface other than the one associated 13752 * with the first ire we found for the destination address. We do 13753 * another ire lookup here, using the ingress ill, to see if the 13754 * interface is in an interface group. 13755 * As long as the ills belong to the same group, we don't consider 13756 * them to be arriving on the wrong interface. Thus, if the switch 13757 * is doing inbound load spreading, we won't drop packets when the 13758 * ip*_strict_dst_multihoming switch is on. Note, the same holds true 13759 * for 'usesrc groups' where the destination address may belong to 13760 * another interface to allow multipathing to happen. 13761 * We also need to check for IPIF_UNNUMBERED point2point interfaces 13762 * where the local address may not be unique. In this case we were 13763 * at the mercy of the initial ire cache lookup and the IRE_LOCAL it 13764 * actually returned. The new lookup, which is more specific, should 13765 * only find the IRE_LOCAL associated with the ingress ill if one 13766 * exists. 13767 */ 13768 13769 if (ire->ire_ipversion == IPV4_VERSION) { 13770 if (ipst->ips_ip_strict_dst_multihoming) 13771 strict_check = B_TRUE; 13772 new_ire = ire_ctable_lookup(*((ipaddr_t *)addr), 0, IRE_LOCAL, 13773 ill->ill_ipif, ALL_ZONES, NULL, 13774 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 13775 } else { 13776 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 13777 if (ipst->ips_ipv6_strict_dst_multihoming) 13778 strict_check = B_TRUE; 13779 new_ire = ire_ctable_lookup_v6((in6_addr_t *)addr, NULL, 13780 IRE_LOCAL, ill->ill_ipif, ALL_ZONES, NULL, 13781 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 13782 } 13783 /* 13784 * If the same ire that was returned in ip_input() is found then this 13785 * is an indication that interface groups are in use. The packet 13786 * arrived on a different ill in the group than the one associated with 13787 * the destination address. If a different ire was found then the same 13788 * IP address must be hosted on multiple ills. This is possible with 13789 * unnumbered point2point interfaces. We switch to use this new ire in 13790 * order to have accurate interface statistics. 13791 */ 13792 if (new_ire != NULL) { 13793 if ((new_ire != ire) && (new_ire->ire_rfq != NULL)) { 13794 ire_refrele(ire); 13795 ire = new_ire; 13796 } else { 13797 ire_refrele(new_ire); 13798 } 13799 return (ire); 13800 } else if ((ire->ire_rfq == NULL) && 13801 (ire->ire_ipversion == IPV4_VERSION)) { 13802 /* 13803 * The best match could have been the original ire which 13804 * was created against an IRE_LOCAL on lo0. In the IPv4 case 13805 * the strict multihoming checks are irrelevant as we consider 13806 * local addresses hosted on lo0 to be interface agnostic. We 13807 * only expect a null ire_rfq on IREs which are associated with 13808 * lo0 hence we can return now. 13809 */ 13810 return (ire); 13811 } 13812 13813 /* 13814 * Chase pointers once and store locally. 13815 */ 13816 ire_ill = (ire->ire_rfq == NULL) ? NULL : 13817 (ill_t *)(ire->ire_rfq->q_ptr); 13818 ifindex = ill->ill_usesrc_ifindex; 13819 13820 /* 13821 * Check if it's a legal address on the 'usesrc' interface. 13822 */ 13823 if ((ifindex != 0) && (ire_ill != NULL) && 13824 (ifindex == ire_ill->ill_phyint->phyint_ifindex)) { 13825 return (ire); 13826 } 13827 13828 /* 13829 * If the ip*_strict_dst_multihoming switch is on then we can 13830 * only accept this packet if the interface is marked as routing. 13831 */ 13832 if (!(strict_check)) 13833 return (ire); 13834 13835 if ((ill->ill_flags & ire->ire_ipif->ipif_ill->ill_flags & 13836 ILLF_ROUTER) != 0) { 13837 return (ire); 13838 } 13839 13840 ire_refrele(ire); 13841 return (NULL); 13842 } 13843 13844 ire_t * 13845 ip_fast_forward(ire_t *ire, ipaddr_t dst, ill_t *ill, mblk_t *mp) 13846 { 13847 ipha_t *ipha; 13848 ire_t *src_ire; 13849 ill_t *stq_ill; 13850 uint_t hlen; 13851 uint_t pkt_len; 13852 uint32_t sum; 13853 queue_t *dev_q; 13854 ip_stack_t *ipst = ill->ill_ipst; 13855 mblk_t *fpmp; 13856 enum ire_forward_action ret_action; 13857 13858 ipha = (ipha_t *)mp->b_rptr; 13859 13860 /* 13861 * Martian Address Filtering [RFC 1812, Section 5.3.7] 13862 * The loopback address check for both src and dst has already 13863 * been checked in ip_input 13864 */ 13865 13866 if (dst == INADDR_ANY || CLASSD(ipha->ipha_src)) { 13867 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13868 goto drop; 13869 } 13870 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13871 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 13872 13873 if (src_ire != NULL) { 13874 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13875 ire_refrele(src_ire); 13876 goto drop; 13877 } 13878 13879 13880 /* No ire cache of nexthop. So first create one */ 13881 if (ire == NULL) { 13882 13883 ire = ire_forward(dst, &ret_action, NULL, NULL, 13884 NULL, ipst); 13885 /* 13886 * We only come to ip_fast_forward if ip_cgtp_filter 13887 * is not set. So ire_forward() should not return with 13888 * Forward_check_multirt as the next action. 13889 */ 13890 ASSERT(ret_action != Forward_check_multirt); 13891 if (ire == NULL) { 13892 /* An attempt was made to forward the packet */ 13893 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13894 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13895 mp->b_prev = mp->b_next = 0; 13896 /* send icmp unreachable */ 13897 /* Sent by forwarding path, and router is global zone */ 13898 if (ret_action == Forward_ret_icmp_err) { 13899 if (ip_source_routed(ipha, ipst)) { 13900 icmp_unreachable(ill->ill_wq, mp, 13901 ICMP_SOURCE_ROUTE_FAILED, 13902 GLOBAL_ZONEID, ipst); 13903 } else { 13904 icmp_unreachable(ill->ill_wq, mp, 13905 ICMP_HOST_UNREACHABLE, 13906 GLOBAL_ZONEID, ipst); 13907 } 13908 } else { 13909 freemsg(mp); 13910 } 13911 return (NULL); 13912 } 13913 } 13914 13915 /* 13916 * Forwarding fastpath exception case: 13917 * If either of the follwoing case is true, we take 13918 * the slowpath 13919 * o forwarding is not enabled 13920 * o incoming and outgoing interface are the same, or the same 13921 * IPMP group 13922 * o corresponding ire is in incomplete state 13923 * o packet needs fragmentation 13924 * o ARP cache is not resolved 13925 * 13926 * The codeflow from here on is thus: 13927 * ip_rput_process_forward->ip_rput_forward->ip_xmit_v4 13928 */ 13929 pkt_len = ntohs(ipha->ipha_length); 13930 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 13931 if (!(stq_ill->ill_flags & ILLF_ROUTER) || 13932 !(ill->ill_flags & ILLF_ROUTER) || 13933 (ill == stq_ill) || 13934 (ill->ill_group != NULL && ill->ill_group == stq_ill->ill_group) || 13935 (ire->ire_nce == NULL) || 13936 (pkt_len > ire->ire_max_frag) || 13937 ((fpmp = ire->ire_nce->nce_fp_mp) == NULL) || 13938 ((hlen = MBLKL(fpmp)) > MBLKHEAD(mp)) || 13939 ipha->ipha_ttl <= 1) { 13940 ip_rput_process_forward(ill->ill_rq, mp, ire, 13941 ipha, ill, B_FALSE); 13942 return (ire); 13943 } 13944 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13945 13946 DTRACE_PROBE4(ip4__forwarding__start, 13947 ill_t *, ill, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 13948 13949 FW_HOOKS(ipst->ips_ip4_forwarding_event, 13950 ipst->ips_ipv4firewall_forwarding, 13951 ill, stq_ill, ipha, mp, mp, 0, ipst); 13952 13953 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 13954 13955 if (mp == NULL) 13956 goto drop; 13957 13958 mp->b_datap->db_struioun.cksum.flags = 0; 13959 /* Adjust the checksum to reflect the ttl decrement. */ 13960 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 13961 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 13962 ipha->ipha_ttl--; 13963 13964 /* 13965 * Write the link layer header. We can do this safely here, 13966 * because we have already tested to make sure that the IP 13967 * policy is not set, and that we have a fast path destination 13968 * header. 13969 */ 13970 mp->b_rptr -= hlen; 13971 bcopy(fpmp->b_rptr, mp->b_rptr, hlen); 13972 13973 UPDATE_IB_PKT_COUNT(ire); 13974 ire->ire_last_used_time = lbolt; 13975 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 13976 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 13977 UPDATE_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutOctets, pkt_len); 13978 13979 dev_q = ire->ire_stq->q_next; 13980 if ((dev_q->q_next != NULL || dev_q->q_first != NULL) && 13981 !canputnext(ire->ire_stq)) { 13982 goto indiscard; 13983 } 13984 if (ILL_DLS_CAPABLE(stq_ill)) { 13985 /* 13986 * Send the packet directly to DLD, where it 13987 * may be queued depending on the availability 13988 * of transmit resources at the media layer. 13989 */ 13990 IP_DLS_ILL_TX(stq_ill, ipha, mp, ipst); 13991 } else { 13992 DTRACE_PROBE4(ip4__physical__out__start, 13993 ill_t *, NULL, ill_t *, stq_ill, 13994 ipha_t *, ipha, mblk_t *, mp); 13995 FW_HOOKS(ipst->ips_ip4_physical_out_event, 13996 ipst->ips_ipv4firewall_physical_out, 13997 NULL, stq_ill, ipha, mp, mp, 0, ipst); 13998 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 13999 if (mp == NULL) 14000 goto drop; 14001 putnext(ire->ire_stq, mp); 14002 } 14003 return (ire); 14004 14005 indiscard: 14006 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14007 drop: 14008 if (mp != NULL) 14009 freemsg(mp); 14010 return (ire); 14011 14012 } 14013 14014 /* 14015 * This function is called in the forwarding slowpath, when 14016 * either the ire lacks the link-layer address, or the packet needs 14017 * further processing(eg. fragmentation), before transmission. 14018 */ 14019 14020 static void 14021 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14022 ill_t *ill, boolean_t ll_multicast) 14023 { 14024 ill_group_t *ill_group; 14025 ill_group_t *ire_group; 14026 queue_t *dev_q; 14027 ire_t *src_ire; 14028 ip_stack_t *ipst = ill->ill_ipst; 14029 14030 ASSERT(ire->ire_stq != NULL); 14031 14032 mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */ 14033 mp->b_next = NULL; /* ip_rput_noire sets dst here */ 14034 14035 if (ll_multicast != 0) { 14036 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14037 goto drop_pkt; 14038 } 14039 14040 /* 14041 * check if ipha_src is a broadcast address. Note that this 14042 * check is redundant when we get here from ip_fast_forward() 14043 * which has already done this check. However, since we can 14044 * also get here from ip_rput_process_broadcast() or, for 14045 * for the slow path through ip_fast_forward(), we perform 14046 * the check again for code-reusability 14047 */ 14048 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 14049 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 14050 if (src_ire != NULL || ipha->ipha_dst == INADDR_ANY) { 14051 if (src_ire != NULL) 14052 ire_refrele(src_ire); 14053 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14054 ip2dbg(("ip_rput_process_forward: Received packet with" 14055 " bad src/dst address on %s\n", ill->ill_name)); 14056 goto drop_pkt; 14057 } 14058 14059 ill_group = ill->ill_group; 14060 ire_group = ((ill_t *)(ire->ire_rfq)->q_ptr)->ill_group; 14061 /* 14062 * Check if we want to forward this one at this time. 14063 * We allow source routed packets on a host provided that 14064 * they go out the same interface or same interface group 14065 * as they came in on. 14066 * 14067 * XXX To be quicker, we may wish to not chase pointers to 14068 * get the ILLF_ROUTER flag and instead store the 14069 * forwarding policy in the ire. An unfortunate 14070 * side-effect of that would be requiring an ire flush 14071 * whenever the ILLF_ROUTER flag changes. 14072 */ 14073 if (((ill->ill_flags & 14074 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 14075 ILLF_ROUTER) == 0) && 14076 !(ip_source_routed(ipha, ipst) && (ire->ire_rfq == q || 14077 (ill_group != NULL && ill_group == ire_group)))) { 14078 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14079 if (ip_source_routed(ipha, ipst)) { 14080 q = WR(q); 14081 /* 14082 * Clear the indication that this may have 14083 * hardware checksum as we are not using it. 14084 */ 14085 DB_CKSUMFLAGS(mp) = 0; 14086 /* Sent by forwarding path, and router is global zone */ 14087 icmp_unreachable(q, mp, 14088 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, ipst); 14089 return; 14090 } 14091 goto drop_pkt; 14092 } 14093 14094 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14095 14096 /* Packet is being forwarded. Turning off hwcksum flag. */ 14097 DB_CKSUMFLAGS(mp) = 0; 14098 if (ipst->ips_ip_g_send_redirects) { 14099 /* 14100 * Check whether the incoming interface and outgoing 14101 * interface is part of the same group. If so, 14102 * send redirects. 14103 * 14104 * Check the source address to see if it originated 14105 * on the same logical subnet it is going back out on. 14106 * If so, we should be able to send it a redirect. 14107 * Avoid sending a redirect if the destination 14108 * is directly connected (i.e., ipha_dst is the same 14109 * as ire_gateway_addr or the ire_addr of the 14110 * nexthop IRE_CACHE ), or if the packet was source 14111 * routed out this interface. 14112 */ 14113 ipaddr_t src, nhop; 14114 mblk_t *mp1; 14115 ire_t *nhop_ire = NULL; 14116 14117 /* 14118 * Check whether ire_rfq and q are from the same ill 14119 * or if they are not same, they at least belong 14120 * to the same group. If so, send redirects. 14121 */ 14122 if ((ire->ire_rfq == q || 14123 (ill_group != NULL && ill_group == ire_group)) && 14124 !ip_source_routed(ipha, ipst)) { 14125 14126 nhop = (ire->ire_gateway_addr != 0 ? 14127 ire->ire_gateway_addr : ire->ire_addr); 14128 14129 if (ipha->ipha_dst == nhop) { 14130 /* 14131 * We avoid sending a redirect if the 14132 * destination is directly connected 14133 * because it is possible that multiple 14134 * IP subnets may have been configured on 14135 * the link, and the source may not 14136 * be on the same subnet as ip destination, 14137 * even though they are on the same 14138 * physical link. 14139 */ 14140 goto sendit; 14141 } 14142 14143 src = ipha->ipha_src; 14144 14145 /* 14146 * We look up the interface ire for the nexthop, 14147 * to see if ipha_src is in the same subnet 14148 * as the nexthop. 14149 * 14150 * Note that, if, in the future, IRE_CACHE entries 14151 * are obsoleted, this lookup will not be needed, 14152 * as the ire passed to this function will be the 14153 * same as the nhop_ire computed below. 14154 */ 14155 nhop_ire = ire_ftable_lookup(nhop, 0, 0, 14156 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 14157 0, NULL, MATCH_IRE_TYPE, ipst); 14158 14159 if (nhop_ire != NULL) { 14160 if ((src & nhop_ire->ire_mask) == 14161 (nhop & nhop_ire->ire_mask)) { 14162 /* 14163 * The source is directly connected. 14164 * Just copy the ip header (which is 14165 * in the first mblk) 14166 */ 14167 mp1 = copyb(mp); 14168 if (mp1 != NULL) { 14169 icmp_send_redirect(WR(q), mp1, 14170 nhop, ipst); 14171 } 14172 } 14173 ire_refrele(nhop_ire); 14174 } 14175 } 14176 } 14177 sendit: 14178 dev_q = ire->ire_stq->q_next; 14179 if ((dev_q->q_next || dev_q->q_first) && !canput(dev_q)) { 14180 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14181 freemsg(mp); 14182 return; 14183 } 14184 14185 ip_rput_forward(ire, ipha, mp, ill); 14186 return; 14187 14188 drop_pkt: 14189 ip2dbg(("ip_rput_process_forward: drop pkt\n")); 14190 freemsg(mp); 14191 } 14192 14193 ire_t * 14194 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14195 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 14196 { 14197 queue_t *q; 14198 uint16_t hcksumflags; 14199 ip_stack_t *ipst = ill->ill_ipst; 14200 14201 q = *qp; 14202 14203 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInBcastPkts); 14204 14205 /* 14206 * Clear the indication that this may have hardware 14207 * checksum as we are not using it for forwarding. 14208 */ 14209 hcksumflags = DB_CKSUMFLAGS(mp); 14210 DB_CKSUMFLAGS(mp) = 0; 14211 14212 /* 14213 * Directed broadcast forwarding: if the packet came in over a 14214 * different interface then it is routed out over we can forward it. 14215 */ 14216 if (ipha->ipha_protocol == IPPROTO_TCP) { 14217 ire_refrele(ire); 14218 freemsg(mp); 14219 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14220 return (NULL); 14221 } 14222 /* 14223 * For multicast we have set dst to be INADDR_BROADCAST 14224 * for delivering to all STREAMS. IRE_MARK_NORECV is really 14225 * only for broadcast packets. 14226 */ 14227 if (!CLASSD(ipha->ipha_dst)) { 14228 ire_t *new_ire; 14229 ipif_t *ipif; 14230 /* 14231 * For ill groups, as the switch duplicates broadcasts 14232 * across all the ports, we need to filter out and 14233 * send up only one copy. There is one copy for every 14234 * broadcast address on each ill. Thus, we look for a 14235 * specific IRE on this ill and look at IRE_MARK_NORECV 14236 * later to see whether this ill is eligible to receive 14237 * them or not. ill_nominate_bcast_rcv() nominates only 14238 * one set of IREs for receiving. 14239 */ 14240 14241 ipif = ipif_get_next_ipif(NULL, ill); 14242 if (ipif == NULL) { 14243 ire_refrele(ire); 14244 freemsg(mp); 14245 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14246 return (NULL); 14247 } 14248 new_ire = ire_ctable_lookup(dst, 0, 0, 14249 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL, ipst); 14250 ipif_refrele(ipif); 14251 14252 if (new_ire != NULL) { 14253 if (new_ire->ire_marks & IRE_MARK_NORECV) { 14254 ire_refrele(ire); 14255 ire_refrele(new_ire); 14256 freemsg(mp); 14257 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14258 return (NULL); 14259 } 14260 /* 14261 * In the special case of multirouted broadcast 14262 * packets, we unconditionally need to "gateway" 14263 * them to the appropriate interface here. 14264 * In the normal case, this cannot happen, because 14265 * there is no broadcast IRE tagged with the 14266 * RTF_MULTIRT flag. 14267 */ 14268 if (new_ire->ire_flags & RTF_MULTIRT) { 14269 ire_refrele(new_ire); 14270 if (ire->ire_rfq != NULL) { 14271 q = ire->ire_rfq; 14272 *qp = q; 14273 } 14274 } else { 14275 ire_refrele(ire); 14276 ire = new_ire; 14277 } 14278 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 14279 if (!ipst->ips_ip_g_forward_directed_bcast) { 14280 /* 14281 * Free the message if 14282 * ip_g_forward_directed_bcast is turned 14283 * off for non-local broadcast. 14284 */ 14285 ire_refrele(ire); 14286 freemsg(mp); 14287 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14288 return (NULL); 14289 } 14290 } else { 14291 /* 14292 * This CGTP packet successfully passed the 14293 * CGTP filter, but the related CGTP 14294 * broadcast IRE has not been found, 14295 * meaning that the redundant ipif is 14296 * probably down. However, if we discarded 14297 * this packet, its duplicate would be 14298 * filtered out by the CGTP filter so none 14299 * of them would get through. So we keep 14300 * going with this one. 14301 */ 14302 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 14303 if (ire->ire_rfq != NULL) { 14304 q = ire->ire_rfq; 14305 *qp = q; 14306 } 14307 } 14308 } 14309 if (ipst->ips_ip_g_forward_directed_bcast && ll_multicast == 0) { 14310 /* 14311 * Verify that there are not more then one 14312 * IRE_BROADCAST with this broadcast address which 14313 * has ire_stq set. 14314 * TODO: simplify, loop over all IRE's 14315 */ 14316 ire_t *ire1; 14317 int num_stq = 0; 14318 mblk_t *mp1; 14319 14320 /* Find the first one with ire_stq set */ 14321 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 14322 for (ire1 = ire; ire1 && 14323 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 14324 ire1 = ire1->ire_next) 14325 ; 14326 if (ire1) { 14327 ire_refrele(ire); 14328 ire = ire1; 14329 IRE_REFHOLD(ire); 14330 } 14331 14332 /* Check if there are additional ones with stq set */ 14333 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 14334 if (ire->ire_addr != ire1->ire_addr) 14335 break; 14336 if (ire1->ire_stq) { 14337 num_stq++; 14338 break; 14339 } 14340 } 14341 rw_exit(&ire->ire_bucket->irb_lock); 14342 if (num_stq == 1 && ire->ire_stq != NULL) { 14343 ip1dbg(("ip_rput_process_broadcast: directed " 14344 "broadcast to 0x%x\n", 14345 ntohl(ire->ire_addr))); 14346 mp1 = copymsg(mp); 14347 if (mp1) { 14348 switch (ipha->ipha_protocol) { 14349 case IPPROTO_UDP: 14350 ip_udp_input(q, mp1, ipha, ire, ill); 14351 break; 14352 default: 14353 ip_proto_input(q, mp1, ipha, ire, ill, 14354 B_FALSE); 14355 break; 14356 } 14357 } 14358 /* 14359 * Adjust ttl to 2 (1+1 - the forward engine 14360 * will decrement it by one. 14361 */ 14362 if (ip_csum_hdr(ipha)) { 14363 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 14364 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 14365 freemsg(mp); 14366 ire_refrele(ire); 14367 return (NULL); 14368 } 14369 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl + 1; 14370 ipha->ipha_hdr_checksum = 0; 14371 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14372 ip_rput_process_forward(q, mp, ire, ipha, 14373 ill, ll_multicast); 14374 ire_refrele(ire); 14375 return (NULL); 14376 } 14377 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 14378 ntohl(ire->ire_addr))); 14379 } 14380 14381 14382 /* Restore any hardware checksum flags */ 14383 DB_CKSUMFLAGS(mp) = hcksumflags; 14384 return (ire); 14385 } 14386 14387 /* ARGSUSED */ 14388 static boolean_t 14389 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 14390 int *ll_multicast, ipaddr_t *dstp) 14391 { 14392 ip_stack_t *ipst = ill->ill_ipst; 14393 14394 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastPkts); 14395 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastOctets, 14396 ntohs(ipha->ipha_length)); 14397 14398 /* 14399 * Forward packets only if we have joined the allmulti 14400 * group on this interface. 14401 */ 14402 if (ipst->ips_ip_g_mrouter && ill->ill_join_allmulti) { 14403 int retval; 14404 14405 /* 14406 * Clear the indication that this may have hardware 14407 * checksum as we are not using it. 14408 */ 14409 DB_CKSUMFLAGS(mp) = 0; 14410 retval = ip_mforward(ill, ipha, mp); 14411 /* ip_mforward updates mib variables if needed */ 14412 /* clear b_prev - used by ip_mroute_decap */ 14413 mp->b_prev = NULL; 14414 14415 switch (retval) { 14416 case 0: 14417 /* 14418 * pkt is okay and arrived on phyint. 14419 * 14420 * If we are running as a multicast router 14421 * we need to see all IGMP and/or PIM packets. 14422 */ 14423 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 14424 (ipha->ipha_protocol == IPPROTO_PIM)) { 14425 goto done; 14426 } 14427 break; 14428 case -1: 14429 /* pkt is mal-formed, toss it */ 14430 goto drop_pkt; 14431 case 1: 14432 /* pkt is okay and arrived on a tunnel */ 14433 /* 14434 * If we are running a multicast router 14435 * we need to see all igmp packets. 14436 */ 14437 if (ipha->ipha_protocol == IPPROTO_IGMP) { 14438 *dstp = INADDR_BROADCAST; 14439 *ll_multicast = 1; 14440 return (B_FALSE); 14441 } 14442 14443 goto drop_pkt; 14444 } 14445 } 14446 14447 ILM_WALKER_HOLD(ill); 14448 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 14449 /* 14450 * This might just be caused by the fact that 14451 * multiple IP Multicast addresses map to the same 14452 * link layer multicast - no need to increment counter! 14453 */ 14454 ILM_WALKER_RELE(ill); 14455 freemsg(mp); 14456 return (B_TRUE); 14457 } 14458 ILM_WALKER_RELE(ill); 14459 done: 14460 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 14461 /* 14462 * This assumes the we deliver to all streams for multicast 14463 * and broadcast packets. 14464 */ 14465 *dstp = INADDR_BROADCAST; 14466 *ll_multicast = 1; 14467 return (B_FALSE); 14468 drop_pkt: 14469 ip2dbg(("ip_rput: drop pkt\n")); 14470 freemsg(mp); 14471 return (B_TRUE); 14472 } 14473 14474 /* 14475 * This function is used to both return an indication of whether or not 14476 * the packet received is a non-unicast packet (by way of the DL_UNITDATA_IND) 14477 * and in doing so, determine whether or not it is broadcast vs multicast. 14478 * For it to be a broadcast packet, we must have the appropriate mblk_t 14479 * hanging off the ill_t. If this is either not present or doesn't match 14480 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 14481 * to be multicast. Thus NICs that have no broadcast address (or no 14482 * capability for one, such as point to point links) cannot return as 14483 * the packet being broadcast. The use of HPE_BROADCAST/HPE_MULTICAST as 14484 * the return values simplifies the current use of the return value of this 14485 * function, which is to pass through the multicast/broadcast characteristic 14486 * to consumers of the netinfo/pfhooks API. While this is not cast in stone, 14487 * changing the return value to some other symbol demands the appropriate 14488 * "translation" when hpe_flags is set prior to calling hook_run() for 14489 * packet events. 14490 */ 14491 int 14492 ip_get_dlpi_mbcast(ill_t *ill, mblk_t *mb) 14493 { 14494 dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr; 14495 mblk_t *bmp; 14496 14497 if (ind->dl_group_address) { 14498 if (ind->dl_dest_addr_offset > sizeof (*ind) && 14499 ind->dl_dest_addr_offset + ind->dl_dest_addr_length < 14500 MBLKL(mb) && 14501 (bmp = ill->ill_bcast_mp) != NULL) { 14502 dl_unitdata_req_t *dlur; 14503 uint8_t *bphys_addr; 14504 14505 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 14506 if (ill->ill_sap_length < 0) 14507 bphys_addr = (uchar_t *)dlur + 14508 dlur->dl_dest_addr_offset; 14509 else 14510 bphys_addr = (uchar_t *)dlur + 14511 dlur->dl_dest_addr_offset + 14512 ill->ill_sap_length; 14513 14514 if (bcmp(mb->b_rptr + ind->dl_dest_addr_offset, 14515 bphys_addr, ind->dl_dest_addr_length) == 0) { 14516 return (HPE_BROADCAST); 14517 } 14518 return (HPE_MULTICAST); 14519 } 14520 return (HPE_MULTICAST); 14521 } 14522 return (0); 14523 } 14524 14525 static boolean_t 14526 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 14527 int *ll_multicast, mblk_t **mpp) 14528 { 14529 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 14530 boolean_t must_copy = B_FALSE; 14531 struct iocblk *iocp; 14532 ipha_t *ipha; 14533 ip_stack_t *ipst = ill->ill_ipst; 14534 14535 #define rptr ((uchar_t *)ipha) 14536 14537 first_mp = *first_mpp; 14538 mp = *mpp; 14539 14540 ASSERT(first_mp == mp); 14541 14542 /* 14543 * if db_ref > 1 then copymsg and free original. Packet may be 14544 * changed and do not want other entity who has a reference to this 14545 * message to trip over the changes. This is a blind change because 14546 * trying to catch all places that might change packet is too 14547 * difficult (since it may be a module above this one) 14548 * 14549 * This corresponds to the non-fast path case. We walk down the full 14550 * chain in this case, and check the db_ref count of all the dblks, 14551 * and do a copymsg if required. It is possible that the db_ref counts 14552 * of the data blocks in the mblk chain can be different. 14553 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 14554 * count of 1, followed by a M_DATA block with a ref count of 2, if 14555 * 'snoop' is running. 14556 */ 14557 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 14558 if (mp1->b_datap->db_ref > 1) { 14559 must_copy = B_TRUE; 14560 break; 14561 } 14562 } 14563 14564 if (must_copy) { 14565 mp1 = copymsg(mp); 14566 if (mp1 == NULL) { 14567 for (mp1 = mp; mp1 != NULL; 14568 mp1 = mp1->b_cont) { 14569 mp1->b_next = NULL; 14570 mp1->b_prev = NULL; 14571 } 14572 freemsg(mp); 14573 if (ill != NULL) { 14574 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14575 } else { 14576 BUMP_MIB(&ipst->ips_ip_mib, 14577 ipIfStatsInDiscards); 14578 } 14579 return (B_TRUE); 14580 } 14581 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 14582 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 14583 /* Copy b_prev - used by ip_mroute_decap */ 14584 to_mp->b_prev = from_mp->b_prev; 14585 from_mp->b_prev = NULL; 14586 } 14587 *first_mpp = first_mp = mp1; 14588 freemsg(mp); 14589 mp = mp1; 14590 *mpp = mp1; 14591 } 14592 14593 ipha = (ipha_t *)mp->b_rptr; 14594 14595 /* 14596 * previous code has a case for M_DATA. 14597 * We want to check how that happens. 14598 */ 14599 ASSERT(first_mp->b_datap->db_type != M_DATA); 14600 switch (first_mp->b_datap->db_type) { 14601 case M_PROTO: 14602 case M_PCPROTO: 14603 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 14604 DL_UNITDATA_IND) { 14605 /* Go handle anything other than data elsewhere. */ 14606 ip_rput_dlpi(q, mp); 14607 return (B_TRUE); 14608 } 14609 14610 *ll_multicast = ip_get_dlpi_mbcast(ill, mp); 14611 /* Ditch the DLPI header. */ 14612 mp1 = mp->b_cont; 14613 ASSERT(first_mp == mp); 14614 *first_mpp = mp1; 14615 freeb(mp); 14616 *mpp = mp1; 14617 return (B_FALSE); 14618 case M_IOCACK: 14619 ip1dbg(("got iocack ")); 14620 iocp = (struct iocblk *)mp->b_rptr; 14621 switch (iocp->ioc_cmd) { 14622 case DL_IOC_HDR_INFO: 14623 ill = (ill_t *)q->q_ptr; 14624 ill_fastpath_ack(ill, mp); 14625 return (B_TRUE); 14626 case SIOCSTUNPARAM: 14627 case OSIOCSTUNPARAM: 14628 /* Go through qwriter_ip */ 14629 break; 14630 case SIOCGTUNPARAM: 14631 case OSIOCGTUNPARAM: 14632 ip_rput_other(NULL, q, mp, NULL); 14633 return (B_TRUE); 14634 default: 14635 putnext(q, mp); 14636 return (B_TRUE); 14637 } 14638 /* FALLTHRU */ 14639 case M_ERROR: 14640 case M_HANGUP: 14641 /* 14642 * Since this is on the ill stream we unconditionally 14643 * bump up the refcount 14644 */ 14645 ill_refhold(ill); 14646 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14647 return (B_TRUE); 14648 case M_CTL: 14649 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 14650 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 14651 IPHADA_M_CTL)) { 14652 /* 14653 * It's an IPsec accelerated packet. 14654 * Make sure that the ill from which we received the 14655 * packet has enabled IPsec hardware acceleration. 14656 */ 14657 if (!(ill->ill_capabilities & 14658 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 14659 /* IPsec kstats: bean counter */ 14660 freemsg(mp); 14661 return (B_TRUE); 14662 } 14663 14664 /* 14665 * Make mp point to the mblk following the M_CTL, 14666 * then process according to type of mp. 14667 * After this processing, first_mp will point to 14668 * the data-attributes and mp to the pkt following 14669 * the M_CTL. 14670 */ 14671 mp = first_mp->b_cont; 14672 if (mp == NULL) { 14673 freemsg(first_mp); 14674 return (B_TRUE); 14675 } 14676 /* 14677 * A Hardware Accelerated packet can only be M_DATA 14678 * ESP or AH packet. 14679 */ 14680 if (mp->b_datap->db_type != M_DATA) { 14681 /* non-M_DATA IPsec accelerated packet */ 14682 IPSECHW_DEBUG(IPSECHW_PKT, 14683 ("non-M_DATA IPsec accelerated pkt\n")); 14684 freemsg(first_mp); 14685 return (B_TRUE); 14686 } 14687 ipha = (ipha_t *)mp->b_rptr; 14688 if (ipha->ipha_protocol != IPPROTO_AH && 14689 ipha->ipha_protocol != IPPROTO_ESP) { 14690 IPSECHW_DEBUG(IPSECHW_PKT, 14691 ("non-M_DATA IPsec accelerated pkt\n")); 14692 freemsg(first_mp); 14693 return (B_TRUE); 14694 } 14695 *mpp = mp; 14696 return (B_FALSE); 14697 } 14698 putnext(q, mp); 14699 return (B_TRUE); 14700 case M_IOCNAK: 14701 ip1dbg(("got iocnak ")); 14702 iocp = (struct iocblk *)mp->b_rptr; 14703 switch (iocp->ioc_cmd) { 14704 case SIOCSTUNPARAM: 14705 case OSIOCSTUNPARAM: 14706 /* 14707 * Since this is on the ill stream we unconditionally 14708 * bump up the refcount 14709 */ 14710 ill_refhold(ill); 14711 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14712 return (B_TRUE); 14713 case DL_IOC_HDR_INFO: 14714 case SIOCGTUNPARAM: 14715 case OSIOCGTUNPARAM: 14716 ip_rput_other(NULL, q, mp, NULL); 14717 return (B_TRUE); 14718 default: 14719 break; 14720 } 14721 /* FALLTHRU */ 14722 default: 14723 putnext(q, mp); 14724 return (B_TRUE); 14725 } 14726 } 14727 14728 /* Read side put procedure. Packets coming from the wire arrive here. */ 14729 void 14730 ip_rput(queue_t *q, mblk_t *mp) 14731 { 14732 ill_t *ill; 14733 union DL_primitives *dl; 14734 14735 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 14736 14737 ill = (ill_t *)q->q_ptr; 14738 14739 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 14740 /* 14741 * If things are opening or closing, only accept high-priority 14742 * DLPI messages. (On open ill->ill_ipif has not yet been 14743 * created; on close, things hanging off the ill may have been 14744 * freed already.) 14745 */ 14746 dl = (union DL_primitives *)mp->b_rptr; 14747 if (DB_TYPE(mp) != M_PCPROTO || 14748 dl->dl_primitive == DL_UNITDATA_IND) { 14749 /* 14750 * SIOC[GS]TUNPARAM ioctls can come here. 14751 */ 14752 inet_freemsg(mp); 14753 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14754 "ip_rput_end: q %p (%S)", q, "uninit"); 14755 return; 14756 } 14757 } 14758 14759 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14760 "ip_rput_end: q %p (%S)", q, "end"); 14761 14762 ip_input(ill, NULL, mp, NULL); 14763 } 14764 14765 static mblk_t * 14766 ip_fix_dbref(ill_t *ill, mblk_t *mp) 14767 { 14768 mblk_t *mp1; 14769 boolean_t adjusted = B_FALSE; 14770 ip_stack_t *ipst = ill->ill_ipst; 14771 14772 IP_STAT(ipst, ip_db_ref); 14773 /* 14774 * The IP_RECVSLLA option depends on having the 14775 * link layer header. First check that: 14776 * a> the underlying device is of type ether, 14777 * since this option is currently supported only 14778 * over ethernet. 14779 * b> there is enough room to copy over the link 14780 * layer header. 14781 * 14782 * Once the checks are done, adjust rptr so that 14783 * the link layer header will be copied via 14784 * copymsg. Note that, IFT_ETHER may be returned 14785 * by some non-ethernet drivers but in this case 14786 * the second check will fail. 14787 */ 14788 if (ill->ill_type == IFT_ETHER && 14789 (mp->b_rptr - mp->b_datap->db_base) >= 14790 sizeof (struct ether_header)) { 14791 mp->b_rptr -= sizeof (struct ether_header); 14792 adjusted = B_TRUE; 14793 } 14794 mp1 = copymsg(mp); 14795 14796 if (mp1 == NULL) { 14797 mp->b_next = NULL; 14798 /* clear b_prev - used by ip_mroute_decap */ 14799 mp->b_prev = NULL; 14800 freemsg(mp); 14801 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14802 return (NULL); 14803 } 14804 14805 if (adjusted) { 14806 /* 14807 * Copy is done. Restore the pointer in 14808 * the _new_ mblk 14809 */ 14810 mp1->b_rptr += sizeof (struct ether_header); 14811 } 14812 14813 /* Copy b_prev - used by ip_mroute_decap */ 14814 mp1->b_prev = mp->b_prev; 14815 mp->b_prev = NULL; 14816 14817 /* preserve the hardware checksum flags and data, if present */ 14818 if (DB_CKSUMFLAGS(mp) != 0) { 14819 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 14820 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 14821 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 14822 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 14823 DB_CKSUM16(mp1) = DB_CKSUM16(mp); 14824 } 14825 14826 freemsg(mp); 14827 return (mp1); 14828 } 14829 14830 /* 14831 * Direct read side procedure capable of dealing with chains. GLDv3 based 14832 * drivers call this function directly with mblk chains while STREAMS 14833 * read side procedure ip_rput() calls this for single packet with ip_ring 14834 * set to NULL to process one packet at a time. 14835 * 14836 * The ill will always be valid if this function is called directly from 14837 * the driver. 14838 * 14839 * If ip_input() is called from GLDv3: 14840 * 14841 * - This must be a non-VLAN IP stream. 14842 * - 'mp' is either an untagged or a special priority-tagged packet. 14843 * - Any VLAN tag that was in the MAC header has been stripped. 14844 * 14845 * If the IP header in packet is not 32-bit aligned, every message in the 14846 * chain will be aligned before further operations. This is required on SPARC 14847 * platform. 14848 */ 14849 /* ARGSUSED */ 14850 void 14851 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, 14852 struct mac_header_info_s *mhip) 14853 { 14854 ipaddr_t dst = NULL; 14855 ipaddr_t prev_dst; 14856 ire_t *ire = NULL; 14857 ipha_t *ipha; 14858 uint_t pkt_len; 14859 ssize_t len; 14860 uint_t opt_len; 14861 int ll_multicast; 14862 int cgtp_flt_pkt; 14863 queue_t *q = ill->ill_rq; 14864 squeue_t *curr_sqp = NULL; 14865 mblk_t *head = NULL; 14866 mblk_t *tail = NULL; 14867 mblk_t *first_mp; 14868 mblk_t *mp; 14869 mblk_t *dmp; 14870 int cnt = 0; 14871 ip_stack_t *ipst = ill->ill_ipst; 14872 14873 ASSERT(mp_chain != NULL); 14874 ASSERT(ill != NULL); 14875 14876 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 14877 14878 #define rptr ((uchar_t *)ipha) 14879 14880 while (mp_chain != NULL) { 14881 first_mp = mp = mp_chain; 14882 mp_chain = mp_chain->b_next; 14883 mp->b_next = NULL; 14884 ll_multicast = 0; 14885 14886 /* 14887 * We do ire caching from one iteration to 14888 * another. In the event the packet chain contains 14889 * all packets from the same dst, this caching saves 14890 * an ire_cache_lookup for each of the succeeding 14891 * packets in a packet chain. 14892 */ 14893 prev_dst = dst; 14894 14895 /* 14896 * if db_ref > 1 then copymsg and free original. Packet 14897 * may be changed and we do not want the other entity 14898 * who has a reference to this message to trip over the 14899 * changes. This is a blind change because trying to 14900 * catch all places that might change the packet is too 14901 * difficult. 14902 * 14903 * This corresponds to the fast path case, where we have 14904 * a chain of M_DATA mblks. We check the db_ref count 14905 * of only the 1st data block in the mblk chain. There 14906 * doesn't seem to be a reason why a device driver would 14907 * send up data with varying db_ref counts in the mblk 14908 * chain. In any case the Fast path is a private 14909 * interface, and our drivers don't do such a thing. 14910 * Given the above assumption, there is no need to walk 14911 * down the entire mblk chain (which could have a 14912 * potential performance problem) 14913 */ 14914 14915 if (DB_REF(mp) > 1) { 14916 if ((mp = ip_fix_dbref(ill, mp)) == NULL) 14917 continue; 14918 } 14919 14920 /* 14921 * Check and align the IP header. 14922 */ 14923 first_mp = mp; 14924 if (DB_TYPE(mp) == M_DATA) { 14925 dmp = mp; 14926 } else if (DB_TYPE(mp) == M_PROTO && 14927 *(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) { 14928 dmp = mp->b_cont; 14929 } else { 14930 dmp = NULL; 14931 } 14932 if (dmp != NULL) { 14933 /* 14934 * IP header ptr not aligned? 14935 * OR IP header not complete in first mblk 14936 */ 14937 if (!OK_32PTR(dmp->b_rptr) || 14938 MBLKL(dmp) < IP_SIMPLE_HDR_LENGTH) { 14939 if (!ip_check_and_align_header(q, dmp, ipst)) 14940 continue; 14941 } 14942 } 14943 14944 /* 14945 * ip_input fast path 14946 */ 14947 14948 /* mblk type is not M_DATA */ 14949 if (DB_TYPE(mp) != M_DATA) { 14950 if (ip_rput_process_notdata(q, &first_mp, ill, 14951 &ll_multicast, &mp)) 14952 continue; 14953 14954 /* 14955 * The only way we can get here is if we had a 14956 * packet that was either a DL_UNITDATA_IND or 14957 * an M_CTL for an IPsec accelerated packet. 14958 * 14959 * In either case, the first_mp will point to 14960 * the leading M_PROTO or M_CTL. 14961 */ 14962 ASSERT(first_mp != NULL); 14963 } else if (mhip != NULL) { 14964 /* 14965 * ll_multicast is set here so that it is ready 14966 * for easy use with FW_HOOKS(). ip_get_dlpi_mbcast 14967 * manipulates ll_multicast in the same fashion when 14968 * called from ip_rput_process_notdata. 14969 */ 14970 switch (mhip->mhi_dsttype) { 14971 case MAC_ADDRTYPE_MULTICAST : 14972 ll_multicast = HPE_MULTICAST; 14973 break; 14974 case MAC_ADDRTYPE_BROADCAST : 14975 ll_multicast = HPE_BROADCAST; 14976 break; 14977 default : 14978 break; 14979 } 14980 } 14981 14982 /* Make sure its an M_DATA and that its aligned */ 14983 ASSERT(DB_TYPE(mp) == M_DATA); 14984 ASSERT(DB_REF(mp) == 1 && OK_32PTR(mp->b_rptr)); 14985 14986 ipha = (ipha_t *)mp->b_rptr; 14987 len = mp->b_wptr - rptr; 14988 pkt_len = ntohs(ipha->ipha_length); 14989 14990 /* 14991 * We must count all incoming packets, even if they end 14992 * up being dropped later on. 14993 */ 14994 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 14995 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 14996 14997 /* multiple mblk or too short */ 14998 len -= pkt_len; 14999 if (len != 0) { 15000 /* 15001 * Make sure we have data length consistent 15002 * with the IP header. 15003 */ 15004 if (mp->b_cont == NULL) { 15005 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15006 BUMP_MIB(ill->ill_ip_mib, 15007 ipIfStatsInHdrErrors); 15008 ip2dbg(("ip_input: drop pkt\n")); 15009 freemsg(mp); 15010 continue; 15011 } 15012 mp->b_wptr = rptr + pkt_len; 15013 } else if ((len += msgdsize(mp->b_cont)) != 0) { 15014 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15015 BUMP_MIB(ill->ill_ip_mib, 15016 ipIfStatsInHdrErrors); 15017 ip2dbg(("ip_input: drop pkt\n")); 15018 freemsg(mp); 15019 continue; 15020 } 15021 (void) adjmsg(mp, -len); 15022 IP_STAT(ipst, ip_multimblk3); 15023 } 15024 } 15025 15026 /* Obtain the dst of the current packet */ 15027 dst = ipha->ipha_dst; 15028 15029 /* 15030 * The following test for loopback is faster than 15031 * IP_LOOPBACK_ADDR(), because it avoids any bitwise 15032 * operations. 15033 * Note that these addresses are always in network byte order 15034 */ 15035 if (((*(uchar_t *)&ipha->ipha_dst) == 127) || 15036 ((*(uchar_t *)&ipha->ipha_src) == 127)) { 15037 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInAddrErrors); 15038 freemsg(mp); 15039 continue; 15040 } 15041 15042 /* 15043 * The event for packets being received from a 'physical' 15044 * interface is placed after validation of the source and/or 15045 * destination address as being local so that packets can be 15046 * redirected to loopback addresses using ipnat. 15047 */ 15048 DTRACE_PROBE4(ip4__physical__in__start, 15049 ill_t *, ill, ill_t *, NULL, 15050 ipha_t *, ipha, mblk_t *, first_mp); 15051 15052 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15053 ipst->ips_ipv4firewall_physical_in, 15054 ill, NULL, ipha, first_mp, mp, ll_multicast, ipst); 15055 15056 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, first_mp); 15057 15058 if (first_mp == NULL) { 15059 continue; 15060 } 15061 dst = ipha->ipha_dst; 15062 15063 /* 15064 * Attach any necessary label information to 15065 * this packet 15066 */ 15067 if (is_system_labeled() && 15068 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 15069 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 15070 freemsg(mp); 15071 continue; 15072 } 15073 15074 /* 15075 * Reuse the cached ire only if the ipha_dst of the previous 15076 * packet is the same as the current packet AND it is not 15077 * INADDR_ANY. 15078 */ 15079 if (!(dst == prev_dst && dst != INADDR_ANY) && 15080 (ire != NULL)) { 15081 ire_refrele(ire); 15082 ire = NULL; 15083 } 15084 opt_len = ipha->ipha_version_and_hdr_length - 15085 IP_SIMPLE_HDR_VERSION; 15086 15087 /* 15088 * Check to see if we can take the fastpath. 15089 * That is possible if the following conditions are met 15090 * o Tsol disabled 15091 * o CGTP disabled 15092 * o ipp_action_count is 0 15093 * o no options in the packet 15094 * o not a RSVP packet 15095 * o not a multicast packet 15096 * o ill not in IP_DHCPINIT_IF mode 15097 */ 15098 if (!is_system_labeled() && 15099 !ipst->ips_ip_cgtp_filter && ipp_action_count == 0 && 15100 opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP && 15101 !ll_multicast && !CLASSD(dst) && ill->ill_dhcpinit == 0) { 15102 if (ire == NULL) 15103 ire = ire_cache_lookup(dst, ALL_ZONES, NULL, 15104 ipst); 15105 15106 /* incoming packet is for forwarding */ 15107 if (ire == NULL || (ire->ire_type & IRE_CACHE)) { 15108 ire = ip_fast_forward(ire, dst, ill, mp); 15109 continue; 15110 } 15111 /* incoming packet is for local consumption */ 15112 if (ire->ire_type & IRE_LOCAL) 15113 goto local; 15114 } 15115 15116 /* 15117 * Disable ire caching for anything more complex 15118 * than the simple fast path case we checked for above. 15119 */ 15120 if (ire != NULL) { 15121 ire_refrele(ire); 15122 ire = NULL; 15123 } 15124 15125 /* 15126 * Brutal hack for DHCPv4 unicast: RFC2131 allows a DHCP 15127 * server to unicast DHCP packets to a DHCP client using the 15128 * IP address it is offering to the client. This can be 15129 * disabled through the "broadcast bit", but not all DHCP 15130 * servers honor that bit. Therefore, to interoperate with as 15131 * many DHCP servers as possible, the DHCP client allows the 15132 * server to unicast, but we treat those packets as broadcast 15133 * here. Note that we don't rewrite the packet itself since 15134 * (a) that would mess up the checksums and (b) the DHCP 15135 * client conn is bound to INADDR_ANY so ip_fanout_udp() will 15136 * hand it the packet regardless. 15137 */ 15138 if (ill->ill_dhcpinit != 0 && 15139 IS_SIMPLE_IPH(ipha) && ipha->ipha_protocol == IPPROTO_UDP && 15140 pullupmsg(mp, sizeof (ipha_t) + sizeof (udpha_t)) == 1) { 15141 udpha_t *udpha; 15142 15143 /* 15144 * Reload ipha since pullupmsg() can change b_rptr. 15145 */ 15146 ipha = (ipha_t *)mp->b_rptr; 15147 udpha = (udpha_t *)&ipha[1]; 15148 15149 if (ntohs(udpha->uha_dst_port) == IPPORT_BOOTPC) { 15150 DTRACE_PROBE2(ip4__dhcpinit__pkt, ill_t *, ill, 15151 mblk_t *, mp); 15152 dst = INADDR_BROADCAST; 15153 } 15154 } 15155 15156 /* Full-blown slow path */ 15157 if (opt_len != 0) { 15158 if (len != 0) 15159 IP_STAT(ipst, ip_multimblk4); 15160 else 15161 IP_STAT(ipst, ip_ipoptions); 15162 if (!ip_rput_multimblk_ipoptions(q, ill, mp, &ipha, 15163 &dst, ipst)) 15164 continue; 15165 } 15166 15167 /* 15168 * Invoke the CGTP (multirouting) filtering module to process 15169 * the incoming packet. Packets identified as duplicates 15170 * must be discarded. Filtering is active only if the 15171 * the ip_cgtp_filter ndd variable is non-zero. 15172 */ 15173 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 15174 if (ipst->ips_ip_cgtp_filter && 15175 ipst->ips_ip_cgtp_filter_ops != NULL) { 15176 netstackid_t stackid; 15177 15178 stackid = ipst->ips_netstack->netstack_stackid; 15179 cgtp_flt_pkt = 15180 ipst->ips_ip_cgtp_filter_ops->cfo_filter(stackid, 15181 ill->ill_phyint->phyint_ifindex, mp); 15182 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 15183 freemsg(first_mp); 15184 continue; 15185 } 15186 } 15187 15188 /* 15189 * If rsvpd is running, let RSVP daemon handle its processing 15190 * and forwarding of RSVP multicast/unicast packets. 15191 * If rsvpd is not running but mrouted is running, RSVP 15192 * multicast packets are forwarded as multicast traffic 15193 * and RSVP unicast packets are forwarded by unicast router. 15194 * If neither rsvpd nor mrouted is running, RSVP multicast 15195 * packets are not forwarded, but the unicast packets are 15196 * forwarded like unicast traffic. 15197 */ 15198 if (ipha->ipha_protocol == IPPROTO_RSVP && 15199 ipst->ips_ipcl_proto_fanout[IPPROTO_RSVP].connf_head != 15200 NULL) { 15201 /* RSVP packet and rsvpd running. Treat as ours */ 15202 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 15203 /* 15204 * This assumes that we deliver to all streams for 15205 * multicast and broadcast packets. 15206 * We have to force ll_multicast to 1 to handle the 15207 * M_DATA messages passed in from ip_mroute_decap. 15208 */ 15209 dst = INADDR_BROADCAST; 15210 ll_multicast = 1; 15211 } else if (CLASSD(dst)) { 15212 /* packet is multicast */ 15213 mp->b_next = NULL; 15214 if (ip_rput_process_multicast(q, mp, ill, ipha, 15215 &ll_multicast, &dst)) 15216 continue; 15217 } 15218 15219 if (ire == NULL) { 15220 ire = ire_cache_lookup(dst, ALL_ZONES, 15221 MBLK_GETLABEL(mp), ipst); 15222 } 15223 15224 if (ire == NULL) { 15225 /* 15226 * No IRE for this destination, so it can't be for us. 15227 * Unless we are forwarding, drop the packet. 15228 * We have to let source routed packets through 15229 * since we don't yet know if they are 'ping -l' 15230 * packets i.e. if they will go out over the 15231 * same interface as they came in on. 15232 */ 15233 ire = ip_rput_noire(q, mp, ll_multicast, dst); 15234 if (ire == NULL) 15235 continue; 15236 } 15237 15238 /* 15239 * Broadcast IRE may indicate either broadcast or 15240 * multicast packet 15241 */ 15242 if (ire->ire_type == IRE_BROADCAST) { 15243 /* 15244 * Skip broadcast checks if packet is UDP multicast; 15245 * we'd rather not enter ip_rput_process_broadcast() 15246 * unless the packet is broadcast for real, since 15247 * that routine is a no-op for multicast. 15248 */ 15249 if (ipha->ipha_protocol != IPPROTO_UDP || 15250 !CLASSD(ipha->ipha_dst)) { 15251 ire = ip_rput_process_broadcast(&q, mp, 15252 ire, ipha, ill, dst, cgtp_flt_pkt, 15253 ll_multicast); 15254 if (ire == NULL) 15255 continue; 15256 } 15257 } else if (ire->ire_stq != NULL) { 15258 /* fowarding? */ 15259 ip_rput_process_forward(q, mp, ire, ipha, ill, 15260 ll_multicast); 15261 /* ip_rput_process_forward consumed the packet */ 15262 continue; 15263 } 15264 15265 local: 15266 /* 15267 * If the queue in the ire is different to the ingress queue 15268 * then we need to check to see if we can accept the packet. 15269 * Note that for multicast packets and broadcast packets sent 15270 * to a broadcast address which is shared between multiple 15271 * interfaces we should not do this since we just got a random 15272 * broadcast ire. 15273 */ 15274 if ((ire->ire_rfq != q) && (ire->ire_type != IRE_BROADCAST)) { 15275 if ((ire = ip_check_multihome(&ipha->ipha_dst, ire, 15276 ill)) == NULL) { 15277 /* Drop packet */ 15278 BUMP_MIB(ill->ill_ip_mib, 15279 ipIfStatsForwProhibits); 15280 freemsg(mp); 15281 continue; 15282 } 15283 if (ire->ire_rfq != NULL) 15284 q = ire->ire_rfq; 15285 } 15286 15287 switch (ipha->ipha_protocol) { 15288 case IPPROTO_TCP: 15289 ASSERT(first_mp == mp); 15290 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 15291 mp, 0, q, ip_ring)) != NULL) { 15292 if (curr_sqp == NULL) { 15293 curr_sqp = GET_SQUEUE(mp); 15294 ASSERT(cnt == 0); 15295 cnt++; 15296 head = tail = mp; 15297 } else if (curr_sqp == GET_SQUEUE(mp)) { 15298 ASSERT(tail != NULL); 15299 cnt++; 15300 tail->b_next = mp; 15301 tail = mp; 15302 } else { 15303 /* 15304 * A different squeue. Send the 15305 * chain for the previous squeue on 15306 * its way. This shouldn't happen 15307 * often unless interrupt binding 15308 * changes. 15309 */ 15310 IP_STAT(ipst, ip_input_multi_squeue); 15311 squeue_enter_chain(curr_sqp, head, 15312 tail, cnt, SQTAG_IP_INPUT); 15313 curr_sqp = GET_SQUEUE(mp); 15314 head = mp; 15315 tail = mp; 15316 cnt = 1; 15317 } 15318 } 15319 continue; 15320 case IPPROTO_UDP: 15321 ASSERT(first_mp == mp); 15322 ip_udp_input(q, mp, ipha, ire, ill); 15323 continue; 15324 case IPPROTO_SCTP: 15325 ASSERT(first_mp == mp); 15326 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 15327 q, dst); 15328 /* ire has been released by ip_sctp_input */ 15329 ire = NULL; 15330 continue; 15331 default: 15332 ip_proto_input(q, first_mp, ipha, ire, ill, B_FALSE); 15333 continue; 15334 } 15335 } 15336 15337 if (ire != NULL) 15338 ire_refrele(ire); 15339 15340 if (head != NULL) 15341 squeue_enter_chain(curr_sqp, head, tail, cnt, SQTAG_IP_INPUT); 15342 15343 /* 15344 * This code is there just to make netperf/ttcp look good. 15345 * 15346 * Its possible that after being in polling mode (and having cleared 15347 * the backlog), squeues have turned the interrupt frequency higher 15348 * to improve latency at the expense of more CPU utilization (less 15349 * packets per interrupts or more number of interrupts). Workloads 15350 * like ttcp/netperf do manage to tickle polling once in a while 15351 * but for the remaining time, stay in higher interrupt mode since 15352 * their packet arrival rate is pretty uniform and this shows up 15353 * as higher CPU utilization. Since people care about CPU utilization 15354 * while running netperf/ttcp, turn the interrupt frequency back to 15355 * normal/default if polling has not been used in ip_poll_normal_ticks. 15356 */ 15357 if (ip_ring != NULL && (ip_ring->rr_poll_state & ILL_POLLING)) { 15358 if (lbolt >= (ip_ring->rr_poll_time + ip_poll_normal_ticks)) { 15359 ip_ring->rr_poll_state &= ~ILL_POLLING; 15360 ip_ring->rr_blank(ip_ring->rr_handle, 15361 ip_ring->rr_normal_blank_time, 15362 ip_ring->rr_normal_pkt_cnt); 15363 } 15364 } 15365 15366 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15367 "ip_input_end: q %p (%S)", q, "end"); 15368 #undef rptr 15369 } 15370 15371 static void 15372 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 15373 t_uscalar_t err) 15374 { 15375 if (dl_err == DL_SYSERR) { 15376 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15377 "%s: %s failed: DL_SYSERR (errno %u)\n", 15378 ill->ill_name, dl_primstr(prim), err); 15379 return; 15380 } 15381 15382 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15383 "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim), 15384 dl_errstr(dl_err)); 15385 } 15386 15387 /* 15388 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 15389 * than DL_UNITDATA_IND messages. If we need to process this message 15390 * exclusively, we call qwriter_ip, in which case we also need to call 15391 * ill_refhold before that, since qwriter_ip does an ill_refrele. 15392 */ 15393 void 15394 ip_rput_dlpi(queue_t *q, mblk_t *mp) 15395 { 15396 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15397 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15398 ill_t *ill = (ill_t *)q->q_ptr; 15399 boolean_t pending; 15400 15401 ip1dbg(("ip_rput_dlpi")); 15402 if (dloa->dl_primitive == DL_ERROR_ACK) { 15403 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK %s (0x%x): " 15404 "%s (0x%x), unix %u\n", ill->ill_name, 15405 dl_primstr(dlea->dl_error_primitive), 15406 dlea->dl_error_primitive, 15407 dl_errstr(dlea->dl_errno), 15408 dlea->dl_errno, 15409 dlea->dl_unix_errno)); 15410 } 15411 15412 /* 15413 * If we received an ACK but didn't send a request for it, then it 15414 * can't be part of any pending operation; discard up-front. 15415 */ 15416 switch (dloa->dl_primitive) { 15417 case DL_NOTIFY_IND: 15418 pending = B_TRUE; 15419 break; 15420 case DL_ERROR_ACK: 15421 pending = ill_dlpi_pending(ill, dlea->dl_error_primitive); 15422 break; 15423 case DL_OK_ACK: 15424 pending = ill_dlpi_pending(ill, dloa->dl_correct_primitive); 15425 break; 15426 case DL_INFO_ACK: 15427 pending = ill_dlpi_pending(ill, DL_INFO_REQ); 15428 break; 15429 case DL_BIND_ACK: 15430 pending = ill_dlpi_pending(ill, DL_BIND_REQ); 15431 break; 15432 case DL_PHYS_ADDR_ACK: 15433 pending = ill_dlpi_pending(ill, DL_PHYS_ADDR_REQ); 15434 break; 15435 case DL_NOTIFY_ACK: 15436 pending = ill_dlpi_pending(ill, DL_NOTIFY_REQ); 15437 break; 15438 case DL_CONTROL_ACK: 15439 pending = ill_dlpi_pending(ill, DL_CONTROL_REQ); 15440 break; 15441 case DL_CAPABILITY_ACK: 15442 pending = ill_dlpi_pending(ill, DL_CAPABILITY_REQ); 15443 break; 15444 default: 15445 /* Not a DLPI message we support or were expecting */ 15446 freemsg(mp); 15447 return; 15448 } 15449 15450 if (!pending) { 15451 freemsg(mp); 15452 return; 15453 } 15454 15455 switch (dloa->dl_primitive) { 15456 case DL_ERROR_ACK: 15457 if (dlea->dl_error_primitive == DL_UNBIND_REQ) { 15458 mutex_enter(&ill->ill_lock); 15459 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15460 cv_signal(&ill->ill_cv); 15461 mutex_exit(&ill->ill_lock); 15462 } 15463 break; 15464 15465 case DL_OK_ACK: 15466 ip1dbg(("ip_rput: DL_OK_ACK for %s\n", 15467 dl_primstr((int)dloa->dl_correct_primitive))); 15468 switch (dloa->dl_correct_primitive) { 15469 case DL_UNBIND_REQ: 15470 mutex_enter(&ill->ill_lock); 15471 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15472 cv_signal(&ill->ill_cv); 15473 mutex_exit(&ill->ill_lock); 15474 break; 15475 15476 case DL_ENABMULTI_REQ: 15477 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15478 ill->ill_dlpi_multicast_state = IDS_OK; 15479 break; 15480 } 15481 break; 15482 default: 15483 break; 15484 } 15485 15486 /* 15487 * We know the message is one we're waiting for (or DL_NOTIFY_IND), 15488 * and we need to become writer to continue to process it. If it's not 15489 * a DL_NOTIFY_IND, we assume we're in the middle of an exclusive 15490 * operation and pass CUR_OP. If this isn't true, we'll end up doing 15491 * some work as part of the current exclusive operation that actually 15492 * is not part of it -- which is wrong, but better than the 15493 * alternative of deadlock (if NEW_OP is always used). Someday, we 15494 * should track which DLPI requests have ACKs that we wait on 15495 * synchronously so we can know whether to use CUR_OP or NEW_OP. 15496 * 15497 * As required by qwriter_ip(), we refhold the ill; it will refrele. 15498 * Since this is on the ill stream we unconditionally bump up the 15499 * refcount without doing ILL_CAN_LOOKUP(). 15500 */ 15501 ill_refhold(ill); 15502 if (dloa->dl_primitive == DL_NOTIFY_IND) 15503 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 15504 else 15505 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 15506 } 15507 15508 /* 15509 * Handling of DLPI messages that require exclusive access to the ipsq. 15510 * 15511 * Need to do ill_pending_mp_release on ioctl completion, which could 15512 * happen here. (along with mi_copy_done) 15513 */ 15514 /* ARGSUSED */ 15515 static void 15516 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15517 { 15518 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15519 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15520 int err = 0; 15521 ill_t *ill; 15522 ipif_t *ipif = NULL; 15523 mblk_t *mp1 = NULL; 15524 conn_t *connp = NULL; 15525 t_uscalar_t paddrreq; 15526 mblk_t *mp_hw; 15527 boolean_t success; 15528 boolean_t ioctl_aborted = B_FALSE; 15529 boolean_t log = B_TRUE; 15530 ip_stack_t *ipst; 15531 15532 ip1dbg(("ip_rput_dlpi_writer ..")); 15533 ill = (ill_t *)q->q_ptr; 15534 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 15535 15536 ASSERT(IAM_WRITER_ILL(ill)); 15537 15538 ipst = ill->ill_ipst; 15539 15540 /* 15541 * ipsq_pending_mp and ipsq_pending_ipif track each other. i.e. 15542 * both are null or non-null. However we can assert that only 15543 * after grabbing the ipsq_lock. So we don't make any assertion 15544 * here and in other places in the code. 15545 */ 15546 ipif = ipsq->ipsq_pending_ipif; 15547 /* 15548 * The current ioctl could have been aborted by the user and a new 15549 * ioctl to bring up another ill could have started. We could still 15550 * get a response from the driver later. 15551 */ 15552 if (ipif != NULL && ipif->ipif_ill != ill) 15553 ioctl_aborted = B_TRUE; 15554 15555 switch (dloa->dl_primitive) { 15556 case DL_ERROR_ACK: 15557 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 15558 dl_primstr(dlea->dl_error_primitive))); 15559 15560 switch (dlea->dl_error_primitive) { 15561 case DL_PROMISCON_REQ: 15562 case DL_PROMISCOFF_REQ: 15563 case DL_DISABMULTI_REQ: 15564 case DL_UNBIND_REQ: 15565 case DL_ATTACH_REQ: 15566 case DL_INFO_REQ: 15567 ill_dlpi_done(ill, dlea->dl_error_primitive); 15568 break; 15569 case DL_NOTIFY_REQ: 15570 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15571 log = B_FALSE; 15572 break; 15573 case DL_PHYS_ADDR_REQ: 15574 /* 15575 * For IPv6 only, there are two additional 15576 * phys_addr_req's sent to the driver to get the 15577 * IPv6 token and lla. This allows IP to acquire 15578 * the hardware address format for a given interface 15579 * without having built in knowledge of the hardware 15580 * address. ill_phys_addr_pend keeps track of the last 15581 * DL_PAR sent so we know which response we are 15582 * dealing with. ill_dlpi_done will update 15583 * ill_phys_addr_pend when it sends the next req. 15584 * We don't complete the IOCTL until all three DL_PARs 15585 * have been attempted, so set *_len to 0 and break. 15586 */ 15587 paddrreq = ill->ill_phys_addr_pend; 15588 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15589 if (paddrreq == DL_IPV6_TOKEN) { 15590 ill->ill_token_length = 0; 15591 log = B_FALSE; 15592 break; 15593 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 15594 ill->ill_nd_lla_len = 0; 15595 log = B_FALSE; 15596 break; 15597 } 15598 /* 15599 * Something went wrong with the DL_PHYS_ADDR_REQ. 15600 * We presumably have an IOCTL hanging out waiting 15601 * for completion. Find it and complete the IOCTL 15602 * with the error noted. 15603 * However, ill_dl_phys was called on an ill queue 15604 * (from SIOCSLIFNAME), thus conn_pending_ill is not 15605 * set. But the ioctl is known to be pending on ill_wq. 15606 */ 15607 if (!ill->ill_ifname_pending) 15608 break; 15609 ill->ill_ifname_pending = 0; 15610 if (!ioctl_aborted) 15611 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15612 if (mp1 != NULL) { 15613 /* 15614 * This operation (SIOCSLIFNAME) must have 15615 * happened on the ill. Assert there is no conn 15616 */ 15617 ASSERT(connp == NULL); 15618 q = ill->ill_wq; 15619 } 15620 break; 15621 case DL_BIND_REQ: 15622 ill_dlpi_done(ill, DL_BIND_REQ); 15623 if (ill->ill_ifname_pending) 15624 break; 15625 /* 15626 * Something went wrong with the bind. We presumably 15627 * have an IOCTL hanging out waiting for completion. 15628 * Find it, take down the interface that was coming 15629 * up, and complete the IOCTL with the error noted. 15630 */ 15631 if (!ioctl_aborted) 15632 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15633 if (mp1 != NULL) { 15634 /* 15635 * This operation (SIOCSLIFFLAGS) must have 15636 * happened from a conn. 15637 */ 15638 ASSERT(connp != NULL); 15639 q = CONNP_TO_WQ(connp); 15640 if (ill->ill_move_in_progress) { 15641 ILL_CLEAR_MOVE(ill); 15642 } 15643 (void) ipif_down(ipif, NULL, NULL); 15644 /* error is set below the switch */ 15645 } 15646 break; 15647 case DL_ENABMULTI_REQ: 15648 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 15649 15650 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15651 ill->ill_dlpi_multicast_state = IDS_FAILED; 15652 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 15653 ipif_t *ipif; 15654 15655 printf("ip: joining multicasts failed (%d)" 15656 " on %s - will use link layer " 15657 "broadcasts for multicast\n", 15658 dlea->dl_errno, ill->ill_name); 15659 15660 /* 15661 * Set up the multicast mapping alone. 15662 * writer, so ok to access ill->ill_ipif 15663 * without any lock. 15664 */ 15665 ipif = ill->ill_ipif; 15666 mutex_enter(&ill->ill_phyint->phyint_lock); 15667 ill->ill_phyint->phyint_flags |= 15668 PHYI_MULTI_BCAST; 15669 mutex_exit(&ill->ill_phyint->phyint_lock); 15670 15671 if (!ill->ill_isv6) { 15672 (void) ipif_arp_setup_multicast(ipif, 15673 NULL); 15674 } else { 15675 (void) ipif_ndp_setup_multicast(ipif, 15676 NULL); 15677 } 15678 } 15679 freemsg(mp); /* Don't want to pass this up */ 15680 return; 15681 15682 case DL_CAPABILITY_REQ: 15683 case DL_CONTROL_REQ: 15684 ill_dlpi_done(ill, dlea->dl_error_primitive); 15685 ill->ill_dlpi_capab_state = IDS_FAILED; 15686 freemsg(mp); 15687 return; 15688 } 15689 /* 15690 * Note the error for IOCTL completion (mp1 is set when 15691 * ready to complete ioctl). If ill_ifname_pending_err is 15692 * set, an error occured during plumbing (ill_ifname_pending), 15693 * so we want to report that error. 15694 * 15695 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 15696 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 15697 * expected to get errack'd if the driver doesn't support 15698 * these flags (e.g. ethernet). log will be set to B_FALSE 15699 * if these error conditions are encountered. 15700 */ 15701 if (mp1 != NULL) { 15702 if (ill->ill_ifname_pending_err != 0) { 15703 err = ill->ill_ifname_pending_err; 15704 ill->ill_ifname_pending_err = 0; 15705 } else { 15706 err = dlea->dl_unix_errno ? 15707 dlea->dl_unix_errno : ENXIO; 15708 } 15709 /* 15710 * If we're plumbing an interface and an error hasn't already 15711 * been saved, set ill_ifname_pending_err to the error passed 15712 * up. Ignore the error if log is B_FALSE (see comment above). 15713 */ 15714 } else if (log && ill->ill_ifname_pending && 15715 ill->ill_ifname_pending_err == 0) { 15716 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 15717 dlea->dl_unix_errno : ENXIO; 15718 } 15719 15720 if (log) 15721 ip_dlpi_error(ill, dlea->dl_error_primitive, 15722 dlea->dl_errno, dlea->dl_unix_errno); 15723 break; 15724 case DL_CAPABILITY_ACK: 15725 /* Call a routine to handle this one. */ 15726 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 15727 ill_capability_ack(ill, mp); 15728 15729 /* 15730 * If the ack is due to renegotiation, we will need to send 15731 * a new CAPABILITY_REQ to start the renegotiation. 15732 */ 15733 if (ill->ill_capab_reneg) { 15734 ill->ill_capab_reneg = B_FALSE; 15735 ill_capability_probe(ill); 15736 } 15737 break; 15738 case DL_CONTROL_ACK: 15739 /* We treat all of these as "fire and forget" */ 15740 ill_dlpi_done(ill, DL_CONTROL_REQ); 15741 break; 15742 case DL_INFO_ACK: 15743 /* Call a routine to handle this one. */ 15744 ill_dlpi_done(ill, DL_INFO_REQ); 15745 ip_ll_subnet_defaults(ill, mp); 15746 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 15747 return; 15748 case DL_BIND_ACK: 15749 /* 15750 * We should have an IOCTL waiting on this unless 15751 * sent by ill_dl_phys, in which case just return 15752 */ 15753 ill_dlpi_done(ill, DL_BIND_REQ); 15754 if (ill->ill_ifname_pending) 15755 break; 15756 15757 if (!ioctl_aborted) 15758 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15759 if (mp1 == NULL) 15760 break; 15761 /* 15762 * Because mp1 was added by ill_dl_up(), and it always 15763 * passes a valid connp, connp must be valid here. 15764 */ 15765 ASSERT(connp != NULL); 15766 q = CONNP_TO_WQ(connp); 15767 15768 /* 15769 * We are exclusive. So nothing can change even after 15770 * we get the pending mp. If need be we can put it back 15771 * and restart, as in calling ipif_arp_up() below. 15772 */ 15773 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 15774 15775 mutex_enter(&ill->ill_lock); 15776 ill->ill_dl_up = 1; 15777 (void) ill_hook_event_create(ill, 0, NE_UP, NULL, 0); 15778 mutex_exit(&ill->ill_lock); 15779 15780 /* 15781 * Now bring up the resolver; when that is complete, we'll 15782 * create IREs. Note that we intentionally mirror what 15783 * ipif_up() would have done, because we got here by way of 15784 * ill_dl_up(), which stopped ipif_up()'s processing. 15785 */ 15786 if (ill->ill_isv6) { 15787 /* 15788 * v6 interfaces. 15789 * Unlike ARP which has to do another bind 15790 * and attach, once we get here we are 15791 * done with NDP. Except in the case of 15792 * ILLF_XRESOLV, in which case we send an 15793 * AR_INTERFACE_UP to the external resolver. 15794 * If all goes well, the ioctl will complete 15795 * in ip_rput(). If there's an error, we 15796 * complete it here. 15797 */ 15798 if ((err = ipif_ndp_up(ipif)) == 0) { 15799 if (ill->ill_flags & ILLF_XRESOLV) { 15800 mutex_enter(&connp->conn_lock); 15801 mutex_enter(&ill->ill_lock); 15802 success = ipsq_pending_mp_add( 15803 connp, ipif, q, mp1, 0); 15804 mutex_exit(&ill->ill_lock); 15805 mutex_exit(&connp->conn_lock); 15806 if (success) { 15807 err = ipif_resolver_up(ipif, 15808 Res_act_initial); 15809 if (err == EINPROGRESS) { 15810 freemsg(mp); 15811 return; 15812 } 15813 ASSERT(err != 0); 15814 mp1 = ipsq_pending_mp_get(ipsq, 15815 &connp); 15816 ASSERT(mp1 != NULL); 15817 } else { 15818 /* conn has started closing */ 15819 err = EINTR; 15820 } 15821 } else { /* Non XRESOLV interface */ 15822 (void) ipif_resolver_up(ipif, 15823 Res_act_initial); 15824 err = ipif_up_done_v6(ipif); 15825 } 15826 } 15827 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 15828 /* 15829 * ARP and other v4 external resolvers. 15830 * Leave the pending mblk intact so that 15831 * the ioctl completes in ip_rput(). 15832 */ 15833 mutex_enter(&connp->conn_lock); 15834 mutex_enter(&ill->ill_lock); 15835 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 15836 mutex_exit(&ill->ill_lock); 15837 mutex_exit(&connp->conn_lock); 15838 if (success) { 15839 err = ipif_resolver_up(ipif, Res_act_initial); 15840 if (err == EINPROGRESS) { 15841 freemsg(mp); 15842 return; 15843 } 15844 ASSERT(err != 0); 15845 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15846 } else { 15847 /* The conn has started closing */ 15848 err = EINTR; 15849 } 15850 } else { 15851 /* 15852 * This one is complete. Reply to pending ioctl. 15853 */ 15854 (void) ipif_resolver_up(ipif, Res_act_initial); 15855 err = ipif_up_done(ipif); 15856 } 15857 15858 if ((err == 0) && (ill->ill_up_ipifs)) { 15859 err = ill_up_ipifs(ill, q, mp1); 15860 if (err == EINPROGRESS) { 15861 freemsg(mp); 15862 return; 15863 } 15864 } 15865 15866 if (ill->ill_up_ipifs) { 15867 ill_group_cleanup(ill); 15868 } 15869 15870 break; 15871 case DL_NOTIFY_IND: { 15872 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 15873 ire_t *ire; 15874 boolean_t need_ire_walk_v4 = B_FALSE; 15875 boolean_t need_ire_walk_v6 = B_FALSE; 15876 15877 switch (notify->dl_notification) { 15878 case DL_NOTE_PHYS_ADDR: 15879 err = ill_set_phys_addr(ill, mp); 15880 break; 15881 15882 case DL_NOTE_FASTPATH_FLUSH: 15883 ill_fastpath_flush(ill); 15884 break; 15885 15886 case DL_NOTE_SDU_SIZE: 15887 /* 15888 * Change the MTU size of the interface, of all 15889 * attached ipif's, and of all relevant ire's. The 15890 * new value's a uint32_t at notify->dl_data. 15891 * Mtu change Vs. new ire creation - protocol below. 15892 * 15893 * a Mark the ipif as IPIF_CHANGING. 15894 * b Set the new mtu in the ipif. 15895 * c Change the ire_max_frag on all affected ires 15896 * d Unmark the IPIF_CHANGING 15897 * 15898 * To see how the protocol works, assume an interface 15899 * route is also being added simultaneously by 15900 * ip_rt_add and let 'ipif' be the ipif referenced by 15901 * the ire. If the ire is created before step a, 15902 * it will be cleaned up by step c. If the ire is 15903 * created after step d, it will see the new value of 15904 * ipif_mtu. Any attempt to create the ire between 15905 * steps a to d will fail because of the IPIF_CHANGING 15906 * flag. Note that ire_create() is passed a pointer to 15907 * the ipif_mtu, and not the value. During ire_add 15908 * under the bucket lock, the ire_max_frag of the 15909 * new ire being created is set from the ipif/ire from 15910 * which it is being derived. 15911 */ 15912 mutex_enter(&ill->ill_lock); 15913 ill->ill_max_frag = (uint_t)notify->dl_data; 15914 15915 /* 15916 * If an SIOCSLIFLNKINFO has changed the ill_max_mtu 15917 * leave it alone 15918 */ 15919 if (ill->ill_mtu_userspecified) { 15920 mutex_exit(&ill->ill_lock); 15921 break; 15922 } 15923 ill->ill_max_mtu = ill->ill_max_frag; 15924 if (ill->ill_isv6) { 15925 if (ill->ill_max_mtu < IPV6_MIN_MTU) 15926 ill->ill_max_mtu = IPV6_MIN_MTU; 15927 } else { 15928 if (ill->ill_max_mtu < IP_MIN_MTU) 15929 ill->ill_max_mtu = IP_MIN_MTU; 15930 } 15931 for (ipif = ill->ill_ipif; ipif != NULL; 15932 ipif = ipif->ipif_next) { 15933 /* 15934 * Don't override the mtu if the user 15935 * has explicitly set it. 15936 */ 15937 if (ipif->ipif_flags & IPIF_FIXEDMTU) 15938 continue; 15939 ipif->ipif_mtu = (uint_t)notify->dl_data; 15940 if (ipif->ipif_isv6) 15941 ire = ipif_to_ire_v6(ipif); 15942 else 15943 ire = ipif_to_ire(ipif); 15944 if (ire != NULL) { 15945 ire->ire_max_frag = ipif->ipif_mtu; 15946 ire_refrele(ire); 15947 } 15948 if (ipif->ipif_flags & IPIF_UP) { 15949 if (ill->ill_isv6) 15950 need_ire_walk_v6 = B_TRUE; 15951 else 15952 need_ire_walk_v4 = B_TRUE; 15953 } 15954 } 15955 mutex_exit(&ill->ill_lock); 15956 if (need_ire_walk_v4) 15957 ire_walk_v4(ill_mtu_change, (char *)ill, 15958 ALL_ZONES, ipst); 15959 if (need_ire_walk_v6) 15960 ire_walk_v6(ill_mtu_change, (char *)ill, 15961 ALL_ZONES, ipst); 15962 break; 15963 case DL_NOTE_LINK_UP: 15964 case DL_NOTE_LINK_DOWN: { 15965 /* 15966 * We are writer. ill / phyint / ipsq assocs stable. 15967 * The RUNNING flag reflects the state of the link. 15968 */ 15969 phyint_t *phyint = ill->ill_phyint; 15970 uint64_t new_phyint_flags; 15971 boolean_t changed = B_FALSE; 15972 boolean_t went_up; 15973 15974 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 15975 mutex_enter(&phyint->phyint_lock); 15976 new_phyint_flags = went_up ? 15977 phyint->phyint_flags | PHYI_RUNNING : 15978 phyint->phyint_flags & ~PHYI_RUNNING; 15979 if (new_phyint_flags != phyint->phyint_flags) { 15980 phyint->phyint_flags = new_phyint_flags; 15981 changed = B_TRUE; 15982 } 15983 mutex_exit(&phyint->phyint_lock); 15984 /* 15985 * ill_restart_dad handles the DAD restart and routing 15986 * socket notification logic. 15987 */ 15988 if (changed) { 15989 ill_restart_dad(phyint->phyint_illv4, went_up); 15990 ill_restart_dad(phyint->phyint_illv6, went_up); 15991 } 15992 break; 15993 } 15994 case DL_NOTE_PROMISC_ON_PHYS: 15995 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 15996 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 15997 mutex_enter(&ill->ill_lock); 15998 ill->ill_promisc_on_phys = B_TRUE; 15999 mutex_exit(&ill->ill_lock); 16000 break; 16001 case DL_NOTE_PROMISC_OFF_PHYS: 16002 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16003 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 16004 mutex_enter(&ill->ill_lock); 16005 ill->ill_promisc_on_phys = B_FALSE; 16006 mutex_exit(&ill->ill_lock); 16007 break; 16008 case DL_NOTE_CAPAB_RENEG: 16009 /* 16010 * Something changed on the driver side. 16011 * It wants us to renegotiate the capabilities 16012 * on this ill. One possible cause is the aggregation 16013 * interface under us where a port got added or 16014 * went away. 16015 * 16016 * If the capability negotiation is already done 16017 * or is in progress, reset the capabilities and 16018 * mark the ill's ill_capab_reneg to be B_TRUE, 16019 * so that when the ack comes back, we can start 16020 * the renegotiation process. 16021 * 16022 * Note that if ill_capab_reneg is already B_TRUE 16023 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case), 16024 * the capability resetting request has been sent 16025 * and the renegotiation has not been started yet; 16026 * nothing needs to be done in this case. 16027 */ 16028 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN) { 16029 ill_capability_reset(ill); 16030 ill->ill_capab_reneg = B_TRUE; 16031 } 16032 break; 16033 default: 16034 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 16035 "type 0x%x for DL_NOTIFY_IND\n", 16036 notify->dl_notification)); 16037 break; 16038 } 16039 16040 /* 16041 * As this is an asynchronous operation, we 16042 * should not call ill_dlpi_done 16043 */ 16044 break; 16045 } 16046 case DL_NOTIFY_ACK: { 16047 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 16048 16049 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 16050 ill->ill_note_link = 1; 16051 ill_dlpi_done(ill, DL_NOTIFY_REQ); 16052 break; 16053 } 16054 case DL_PHYS_ADDR_ACK: { 16055 /* 16056 * As part of plumbing the interface via SIOCSLIFNAME, 16057 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 16058 * whose answers we receive here. As each answer is received, 16059 * we call ill_dlpi_done() to dispatch the next request as 16060 * we're processing the current one. Once all answers have 16061 * been received, we use ipsq_pending_mp_get() to dequeue the 16062 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 16063 * is invoked from an ill queue, conn_oper_pending_ill is not 16064 * available, but we know the ioctl is pending on ill_wq.) 16065 */ 16066 uint_t paddrlen, paddroff; 16067 16068 paddrreq = ill->ill_phys_addr_pend; 16069 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 16070 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 16071 16072 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 16073 if (paddrreq == DL_IPV6_TOKEN) { 16074 /* 16075 * bcopy to low-order bits of ill_token 16076 * 16077 * XXX Temporary hack - currently, all known tokens 16078 * are 64 bits, so I'll cheat for the moment. 16079 */ 16080 bcopy(mp->b_rptr + paddroff, 16081 &ill->ill_token.s6_addr32[2], paddrlen); 16082 ill->ill_token_length = paddrlen; 16083 break; 16084 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 16085 ASSERT(ill->ill_nd_lla_mp == NULL); 16086 ill_set_ndmp(ill, mp, paddroff, paddrlen); 16087 mp = NULL; 16088 break; 16089 } 16090 16091 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 16092 ASSERT(ill->ill_phys_addr_mp == NULL); 16093 if (!ill->ill_ifname_pending) 16094 break; 16095 ill->ill_ifname_pending = 0; 16096 if (!ioctl_aborted) 16097 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16098 if (mp1 != NULL) { 16099 ASSERT(connp == NULL); 16100 q = ill->ill_wq; 16101 } 16102 /* 16103 * If any error acks received during the plumbing sequence, 16104 * ill_ifname_pending_err will be set. Break out and send up 16105 * the error to the pending ioctl. 16106 */ 16107 if (ill->ill_ifname_pending_err != 0) { 16108 err = ill->ill_ifname_pending_err; 16109 ill->ill_ifname_pending_err = 0; 16110 break; 16111 } 16112 16113 ill->ill_phys_addr_mp = mp; 16114 ill->ill_phys_addr = mp->b_rptr + paddroff; 16115 mp = NULL; 16116 16117 /* 16118 * If paddrlen is zero, the DLPI provider doesn't support 16119 * physical addresses. The other two tests were historical 16120 * workarounds for bugs in our former PPP implementation, but 16121 * now other things have grown dependencies on them -- e.g., 16122 * the tun module specifies a dl_addr_length of zero in its 16123 * DL_BIND_ACK, but then specifies an incorrect value in its 16124 * DL_PHYS_ADDR_ACK. These bogus checks need to be removed, 16125 * but only after careful testing ensures that all dependent 16126 * broken DLPI providers have been fixed. 16127 */ 16128 if (paddrlen == 0 || ill->ill_phys_addr_length == 0 || 16129 ill->ill_phys_addr_length == IP_ADDR_LEN) { 16130 ill->ill_phys_addr = NULL; 16131 } else if (paddrlen != ill->ill_phys_addr_length) { 16132 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 16133 paddrlen, ill->ill_phys_addr_length)); 16134 err = EINVAL; 16135 break; 16136 } 16137 16138 if (ill->ill_nd_lla_mp == NULL) { 16139 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 16140 err = ENOMEM; 16141 break; 16142 } 16143 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 16144 } 16145 16146 /* 16147 * Set the interface token. If the zeroth interface address 16148 * is unspecified, then set it to the link local address. 16149 */ 16150 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 16151 (void) ill_setdefaulttoken(ill); 16152 16153 ASSERT(ill->ill_ipif->ipif_id == 0); 16154 if (ipif != NULL && 16155 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 16156 (void) ipif_setlinklocal(ipif); 16157 } 16158 break; 16159 } 16160 case DL_OK_ACK: 16161 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 16162 dl_primstr((int)dloa->dl_correct_primitive), 16163 dloa->dl_correct_primitive)); 16164 switch (dloa->dl_correct_primitive) { 16165 case DL_PROMISCON_REQ: 16166 case DL_PROMISCOFF_REQ: 16167 case DL_ENABMULTI_REQ: 16168 case DL_DISABMULTI_REQ: 16169 case DL_UNBIND_REQ: 16170 case DL_ATTACH_REQ: 16171 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16172 break; 16173 } 16174 break; 16175 default: 16176 break; 16177 } 16178 16179 freemsg(mp); 16180 if (mp1 != NULL) { 16181 /* 16182 * The operation must complete without EINPROGRESS 16183 * since ipsq_pending_mp_get() has removed the mblk 16184 * from ipsq_pending_mp. Otherwise, the operation 16185 * will be stuck forever in the ipsq. 16186 */ 16187 ASSERT(err != EINPROGRESS); 16188 16189 switch (ipsq->ipsq_current_ioctl) { 16190 case 0: 16191 ipsq_current_finish(ipsq); 16192 break; 16193 16194 case SIOCLIFADDIF: 16195 case SIOCSLIFNAME: 16196 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16197 break; 16198 16199 default: 16200 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16201 break; 16202 } 16203 } 16204 } 16205 16206 /* 16207 * ip_rput_other is called by ip_rput to handle messages modifying the global 16208 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 16209 */ 16210 /* ARGSUSED */ 16211 void 16212 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 16213 { 16214 ill_t *ill; 16215 struct iocblk *iocp; 16216 mblk_t *mp1; 16217 conn_t *connp = NULL; 16218 16219 ip1dbg(("ip_rput_other ")); 16220 ill = (ill_t *)q->q_ptr; 16221 /* 16222 * This routine is not a writer in the case of SIOCGTUNPARAM 16223 * in which case ipsq is NULL. 16224 */ 16225 if (ipsq != NULL) { 16226 ASSERT(IAM_WRITER_IPSQ(ipsq)); 16227 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 16228 } 16229 16230 switch (mp->b_datap->db_type) { 16231 case M_ERROR: 16232 case M_HANGUP: 16233 /* 16234 * The device has a problem. We force the ILL down. It can 16235 * be brought up again manually using SIOCSIFFLAGS (via 16236 * ifconfig or equivalent). 16237 */ 16238 ASSERT(ipsq != NULL); 16239 if (mp->b_rptr < mp->b_wptr) 16240 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 16241 if (ill->ill_error == 0) 16242 ill->ill_error = ENXIO; 16243 if (!ill_down_start(q, mp)) 16244 return; 16245 ipif_all_down_tail(ipsq, q, mp, NULL); 16246 break; 16247 case M_IOCACK: 16248 iocp = (struct iocblk *)mp->b_rptr; 16249 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 16250 switch (iocp->ioc_cmd) { 16251 case SIOCSTUNPARAM: 16252 case OSIOCSTUNPARAM: 16253 ASSERT(ipsq != NULL); 16254 /* 16255 * Finish socket ioctl passed through to tun. 16256 * We should have an IOCTL waiting on this. 16257 */ 16258 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16259 if (ill->ill_isv6) { 16260 struct iftun_req *ta; 16261 16262 /* 16263 * if a source or destination is 16264 * being set, try and set the link 16265 * local address for the tunnel 16266 */ 16267 ta = (struct iftun_req *)mp->b_cont-> 16268 b_cont->b_rptr; 16269 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 16270 ipif_set_tun_llink(ill, ta); 16271 } 16272 16273 } 16274 if (mp1 != NULL) { 16275 /* 16276 * Now copy back the b_next/b_prev used by 16277 * mi code for the mi_copy* functions. 16278 * See ip_sioctl_tunparam() for the reason. 16279 * Also protect against missing b_cont. 16280 */ 16281 if (mp->b_cont != NULL) { 16282 mp->b_cont->b_next = 16283 mp1->b_cont->b_next; 16284 mp->b_cont->b_prev = 16285 mp1->b_cont->b_prev; 16286 } 16287 inet_freemsg(mp1); 16288 ASSERT(connp != NULL); 16289 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16290 iocp->ioc_error, NO_COPYOUT, ipsq); 16291 } else { 16292 ASSERT(connp == NULL); 16293 putnext(q, mp); 16294 } 16295 break; 16296 case SIOCGTUNPARAM: 16297 case OSIOCGTUNPARAM: 16298 /* 16299 * This is really M_IOCDATA from the tunnel driver. 16300 * convert back and complete the ioctl. 16301 * We should have an IOCTL waiting on this. 16302 */ 16303 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 16304 if (mp1) { 16305 /* 16306 * Now copy back the b_next/b_prev used by 16307 * mi code for the mi_copy* functions. 16308 * See ip_sioctl_tunparam() for the reason. 16309 * Also protect against missing b_cont. 16310 */ 16311 if (mp->b_cont != NULL) { 16312 mp->b_cont->b_next = 16313 mp1->b_cont->b_next; 16314 mp->b_cont->b_prev = 16315 mp1->b_cont->b_prev; 16316 } 16317 inet_freemsg(mp1); 16318 if (iocp->ioc_error == 0) 16319 mp->b_datap->db_type = M_IOCDATA; 16320 ASSERT(connp != NULL); 16321 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16322 iocp->ioc_error, COPYOUT, NULL); 16323 } else { 16324 ASSERT(connp == NULL); 16325 putnext(q, mp); 16326 } 16327 break; 16328 default: 16329 break; 16330 } 16331 break; 16332 case M_IOCNAK: 16333 iocp = (struct iocblk *)mp->b_rptr; 16334 16335 switch (iocp->ioc_cmd) { 16336 int mode; 16337 16338 case DL_IOC_HDR_INFO: 16339 /* 16340 * If this was the first attempt turn of the 16341 * fastpath probing. 16342 */ 16343 mutex_enter(&ill->ill_lock); 16344 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 16345 ill->ill_dlpi_fastpath_state = IDS_FAILED; 16346 mutex_exit(&ill->ill_lock); 16347 ill_fastpath_nack(ill); 16348 ip1dbg(("ip_rput: DLPI fastpath off on " 16349 "interface %s\n", 16350 ill->ill_name)); 16351 } else { 16352 mutex_exit(&ill->ill_lock); 16353 } 16354 freemsg(mp); 16355 break; 16356 case SIOCSTUNPARAM: 16357 case OSIOCSTUNPARAM: 16358 ASSERT(ipsq != NULL); 16359 /* 16360 * Finish socket ioctl passed through to tun 16361 * We should have an IOCTL waiting on this. 16362 */ 16363 /* FALLTHRU */ 16364 case SIOCGTUNPARAM: 16365 case OSIOCGTUNPARAM: 16366 /* 16367 * This is really M_IOCDATA from the tunnel driver. 16368 * convert back and complete the ioctl. 16369 * We should have an IOCTL waiting on this. 16370 */ 16371 if (iocp->ioc_cmd == SIOCGTUNPARAM || 16372 iocp->ioc_cmd == OSIOCGTUNPARAM) { 16373 mp1 = ill_pending_mp_get(ill, &connp, 16374 iocp->ioc_id); 16375 mode = COPYOUT; 16376 ipsq = NULL; 16377 } else { 16378 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16379 mode = NO_COPYOUT; 16380 } 16381 if (mp1 != NULL) { 16382 /* 16383 * Now copy back the b_next/b_prev used by 16384 * mi code for the mi_copy* functions. 16385 * See ip_sioctl_tunparam() for the reason. 16386 * Also protect against missing b_cont. 16387 */ 16388 if (mp->b_cont != NULL) { 16389 mp->b_cont->b_next = 16390 mp1->b_cont->b_next; 16391 mp->b_cont->b_prev = 16392 mp1->b_cont->b_prev; 16393 } 16394 inet_freemsg(mp1); 16395 if (iocp->ioc_error == 0) 16396 iocp->ioc_error = EINVAL; 16397 ASSERT(connp != NULL); 16398 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16399 iocp->ioc_error, mode, ipsq); 16400 } else { 16401 ASSERT(connp == NULL); 16402 putnext(q, mp); 16403 } 16404 break; 16405 default: 16406 break; 16407 } 16408 default: 16409 break; 16410 } 16411 } 16412 16413 /* 16414 * NOTE : This function does not ire_refrele the ire argument passed in. 16415 * 16416 * IPQoS notes 16417 * IP policy is invoked twice for a forwarded packet, once on the read side 16418 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 16419 * enabled. An additional parameter, in_ill, has been added for this purpose. 16420 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 16421 * because ip_mroute drops this information. 16422 * 16423 */ 16424 void 16425 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 16426 { 16427 uint32_t old_pkt_len; 16428 uint32_t pkt_len; 16429 queue_t *q; 16430 uint32_t sum; 16431 #define rptr ((uchar_t *)ipha) 16432 uint32_t max_frag; 16433 uint32_t ill_index; 16434 ill_t *out_ill; 16435 mib2_ipIfStatsEntry_t *mibptr; 16436 ip_stack_t *ipst = ((ill_t *)(ire->ire_stq->q_ptr))->ill_ipst; 16437 16438 /* Get the ill_index of the incoming ILL */ 16439 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 16440 mibptr = (in_ill != NULL) ? in_ill->ill_ip_mib : &ipst->ips_ip_mib; 16441 16442 /* Initiate Read side IPPF processing */ 16443 if (IPP_ENABLED(IPP_FWD_IN, ipst)) { 16444 ip_process(IPP_FWD_IN, &mp, ill_index); 16445 if (mp == NULL) { 16446 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 16447 "during IPPF processing\n")); 16448 return; 16449 } 16450 } 16451 16452 /* Adjust the checksum to reflect the ttl decrement. */ 16453 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 16454 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 16455 16456 if (ipha->ipha_ttl-- <= 1) { 16457 if (ip_csum_hdr(ipha)) { 16458 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16459 goto drop_pkt; 16460 } 16461 /* 16462 * Note: ire_stq this will be NULL for multicast 16463 * datagrams using the long path through arp (the IRE 16464 * is not an IRE_CACHE). This should not cause 16465 * problems since we don't generate ICMP errors for 16466 * multicast packets. 16467 */ 16468 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16469 q = ire->ire_stq; 16470 if (q != NULL) { 16471 /* Sent by forwarding path, and router is global zone */ 16472 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED, 16473 GLOBAL_ZONEID, ipst); 16474 } else 16475 freemsg(mp); 16476 return; 16477 } 16478 16479 /* 16480 * Don't forward if the interface is down 16481 */ 16482 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 16483 BUMP_MIB(mibptr, ipIfStatsInDiscards); 16484 ip2dbg(("ip_rput_forward:interface is down\n")); 16485 goto drop_pkt; 16486 } 16487 16488 /* Get the ill_index of the outgoing ILL */ 16489 out_ill = ire_to_ill(ire); 16490 ill_index = out_ill->ill_phyint->phyint_ifindex; 16491 16492 DTRACE_PROBE4(ip4__forwarding__start, 16493 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16494 16495 FW_HOOKS(ipst->ips_ip4_forwarding_event, 16496 ipst->ips_ipv4firewall_forwarding, 16497 in_ill, out_ill, ipha, mp, mp, 0, ipst); 16498 16499 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 16500 16501 if (mp == NULL) 16502 return; 16503 old_pkt_len = pkt_len = ntohs(ipha->ipha_length); 16504 16505 if (is_system_labeled()) { 16506 mblk_t *mp1; 16507 16508 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 16509 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16510 goto drop_pkt; 16511 } 16512 /* Size may have changed */ 16513 mp = mp1; 16514 ipha = (ipha_t *)mp->b_rptr; 16515 pkt_len = ntohs(ipha->ipha_length); 16516 } 16517 16518 /* Check if there are options to update */ 16519 if (!IS_SIMPLE_IPH(ipha)) { 16520 if (ip_csum_hdr(ipha)) { 16521 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16522 goto drop_pkt; 16523 } 16524 if (ip_rput_forward_options(mp, ipha, ire, ipst)) { 16525 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16526 return; 16527 } 16528 16529 ipha->ipha_hdr_checksum = 0; 16530 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 16531 } 16532 max_frag = ire->ire_max_frag; 16533 if (pkt_len > max_frag) { 16534 /* 16535 * It needs fragging on its way out. We haven't 16536 * verified the header checksum yet. Since we 16537 * are going to put a surely good checksum in the 16538 * outgoing header, we have to make sure that it 16539 * was good coming in. 16540 */ 16541 if (ip_csum_hdr(ipha)) { 16542 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16543 goto drop_pkt; 16544 } 16545 /* Initiate Write side IPPF processing */ 16546 if (IPP_ENABLED(IPP_FWD_OUT, ipst)) { 16547 ip_process(IPP_FWD_OUT, &mp, ill_index); 16548 if (mp == NULL) { 16549 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 16550 " during IPPF processing\n")); 16551 return; 16552 } 16553 } 16554 /* 16555 * Handle labeled packet resizing. 16556 * 16557 * If we have added a label, inform ip_wput_frag() of its 16558 * effect on the MTU for ICMP messages. 16559 */ 16560 if (pkt_len > old_pkt_len) { 16561 uint32_t secopt_size; 16562 16563 secopt_size = pkt_len - old_pkt_len; 16564 if (secopt_size < max_frag) 16565 max_frag -= secopt_size; 16566 } 16567 16568 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID, ipst); 16569 ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n")); 16570 return; 16571 } 16572 16573 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 16574 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16575 FW_HOOKS(ipst->ips_ip4_physical_out_event, 16576 ipst->ips_ipv4firewall_physical_out, 16577 NULL, out_ill, ipha, mp, mp, 0, ipst); 16578 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 16579 if (mp == NULL) 16580 return; 16581 16582 mp->b_prev = (mblk_t *)IPP_FWD_OUT; 16583 ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n")); 16584 (void) ip_xmit_v4(mp, ire, NULL, B_FALSE); 16585 /* ip_xmit_v4 always consumes the packet */ 16586 return; 16587 16588 drop_pkt:; 16589 ip1dbg(("ip_rput_forward: drop pkt\n")); 16590 freemsg(mp); 16591 #undef rptr 16592 } 16593 16594 void 16595 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 16596 { 16597 ire_t *ire; 16598 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16599 16600 ASSERT(!ipif->ipif_isv6); 16601 /* 16602 * Find an IRE which matches the destination and the outgoing 16603 * queue in the cache table. All we need is an IRE_CACHE which 16604 * is pointing at ipif->ipif_ill. If it is part of some ill group, 16605 * then it is enough to have some IRE_CACHE in the group. 16606 */ 16607 if (ipif->ipif_flags & IPIF_POINTOPOINT) 16608 dst = ipif->ipif_pp_dst_addr; 16609 16610 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, MBLK_GETLABEL(mp), 16611 MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR, ipst); 16612 if (ire == NULL) { 16613 /* 16614 * Mark this packet to make it be delivered to 16615 * ip_rput_forward after the new ire has been 16616 * created. 16617 */ 16618 mp->b_prev = NULL; 16619 mp->b_next = mp; 16620 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 16621 NULL, 0, GLOBAL_ZONEID, &zero_info); 16622 } else { 16623 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 16624 IRE_REFRELE(ire); 16625 } 16626 } 16627 16628 /* Update any source route, record route or timestamp options */ 16629 static int 16630 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire, ip_stack_t *ipst) 16631 { 16632 ipoptp_t opts; 16633 uchar_t *opt; 16634 uint8_t optval; 16635 uint8_t optlen; 16636 ipaddr_t dst; 16637 uint32_t ts; 16638 ire_t *dst_ire = NULL; 16639 ire_t *tmp_ire = NULL; 16640 timestruc_t now; 16641 16642 ip2dbg(("ip_rput_forward_options\n")); 16643 dst = ipha->ipha_dst; 16644 for (optval = ipoptp_first(&opts, ipha); 16645 optval != IPOPT_EOL; 16646 optval = ipoptp_next(&opts)) { 16647 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 16648 opt = opts.ipoptp_cur; 16649 optlen = opts.ipoptp_len; 16650 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 16651 optval, opts.ipoptp_len)); 16652 switch (optval) { 16653 uint32_t off; 16654 case IPOPT_SSRR: 16655 case IPOPT_LSRR: 16656 /* Check if adminstratively disabled */ 16657 if (!ipst->ips_ip_forward_src_routed) { 16658 if (ire->ire_stq != NULL) { 16659 /* 16660 * Sent by forwarding path, and router 16661 * is global zone 16662 */ 16663 icmp_unreachable(ire->ire_stq, mp, 16664 ICMP_SOURCE_ROUTE_FAILED, 16665 GLOBAL_ZONEID, ipst); 16666 } else { 16667 ip0dbg(("ip_rput_forward_options: " 16668 "unable to send unreach\n")); 16669 freemsg(mp); 16670 } 16671 return (-1); 16672 } 16673 16674 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16675 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16676 if (dst_ire == NULL) { 16677 /* 16678 * Must be partial since ip_rput_options 16679 * checked for strict. 16680 */ 16681 break; 16682 } 16683 off = opt[IPOPT_OFFSET]; 16684 off--; 16685 redo_srr: 16686 if (optlen < IP_ADDR_LEN || 16687 off > optlen - IP_ADDR_LEN) { 16688 /* End of source route */ 16689 ip1dbg(( 16690 "ip_rput_forward_options: end of SR\n")); 16691 ire_refrele(dst_ire); 16692 break; 16693 } 16694 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16695 bcopy(&ire->ire_src_addr, (char *)opt + off, 16696 IP_ADDR_LEN); 16697 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 16698 ntohl(dst))); 16699 16700 /* 16701 * Check if our address is present more than 16702 * once as consecutive hops in source route. 16703 */ 16704 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16705 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16706 if (tmp_ire != NULL) { 16707 ire_refrele(tmp_ire); 16708 off += IP_ADDR_LEN; 16709 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16710 goto redo_srr; 16711 } 16712 ipha->ipha_dst = dst; 16713 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16714 ire_refrele(dst_ire); 16715 break; 16716 case IPOPT_RR: 16717 off = opt[IPOPT_OFFSET]; 16718 off--; 16719 if (optlen < IP_ADDR_LEN || 16720 off > optlen - IP_ADDR_LEN) { 16721 /* No more room - ignore */ 16722 ip1dbg(( 16723 "ip_rput_forward_options: end of RR\n")); 16724 break; 16725 } 16726 bcopy(&ire->ire_src_addr, (char *)opt + off, 16727 IP_ADDR_LEN); 16728 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16729 break; 16730 case IPOPT_TS: 16731 /* Insert timestamp if there is room */ 16732 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16733 case IPOPT_TS_TSONLY: 16734 off = IPOPT_TS_TIMELEN; 16735 break; 16736 case IPOPT_TS_PRESPEC: 16737 case IPOPT_TS_PRESPEC_RFC791: 16738 /* Verify that the address matched */ 16739 off = opt[IPOPT_OFFSET] - 1; 16740 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16741 dst_ire = ire_ctable_lookup(dst, 0, 16742 IRE_LOCAL, NULL, ALL_ZONES, NULL, 16743 MATCH_IRE_TYPE, ipst); 16744 if (dst_ire == NULL) { 16745 /* Not for us */ 16746 break; 16747 } 16748 ire_refrele(dst_ire); 16749 /* FALLTHRU */ 16750 case IPOPT_TS_TSANDADDR: 16751 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16752 break; 16753 default: 16754 /* 16755 * ip_*put_options should have already 16756 * dropped this packet. 16757 */ 16758 cmn_err(CE_PANIC, "ip_rput_forward_options: " 16759 "unknown IT - bug in ip_rput_options?\n"); 16760 return (0); /* Keep "lint" happy */ 16761 } 16762 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 16763 /* Increase overflow counter */ 16764 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 16765 opt[IPOPT_POS_OV_FLG] = 16766 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 16767 (off << 4)); 16768 break; 16769 } 16770 off = opt[IPOPT_OFFSET] - 1; 16771 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16772 case IPOPT_TS_PRESPEC: 16773 case IPOPT_TS_PRESPEC_RFC791: 16774 case IPOPT_TS_TSANDADDR: 16775 bcopy(&ire->ire_src_addr, 16776 (char *)opt + off, IP_ADDR_LEN); 16777 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16778 /* FALLTHRU */ 16779 case IPOPT_TS_TSONLY: 16780 off = opt[IPOPT_OFFSET] - 1; 16781 /* Compute # of milliseconds since midnight */ 16782 gethrestime(&now); 16783 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 16784 now.tv_nsec / (NANOSEC / MILLISEC); 16785 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 16786 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 16787 break; 16788 } 16789 break; 16790 } 16791 } 16792 return (0); 16793 } 16794 16795 /* 16796 * This is called after processing at least one of AH/ESP headers. 16797 * 16798 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 16799 * the actual, physical interface on which the packet was received, 16800 * but, when ip_strict_dst_multihoming is set to 1, could be the 16801 * interface which had the ipha_dst configured when the packet went 16802 * through ip_rput. The ill_index corresponding to the recv_ill 16803 * is saved in ipsec_in_rill_index 16804 * 16805 * NOTE2: The "ire" argument is only used in IPv4 cases. This function 16806 * cannot assume "ire" points to valid data for any IPv6 cases. 16807 */ 16808 void 16809 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 16810 { 16811 mblk_t *mp; 16812 ipaddr_t dst; 16813 in6_addr_t *v6dstp; 16814 ipha_t *ipha; 16815 ip6_t *ip6h; 16816 ipsec_in_t *ii; 16817 boolean_t ill_need_rele = B_FALSE; 16818 boolean_t rill_need_rele = B_FALSE; 16819 boolean_t ire_need_rele = B_FALSE; 16820 netstack_t *ns; 16821 ip_stack_t *ipst; 16822 16823 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 16824 ASSERT(ii->ipsec_in_ill_index != 0); 16825 ns = ii->ipsec_in_ns; 16826 ASSERT(ii->ipsec_in_ns != NULL); 16827 ipst = ns->netstack_ip; 16828 16829 mp = ipsec_mp->b_cont; 16830 ASSERT(mp != NULL); 16831 16832 16833 if (ill == NULL) { 16834 ASSERT(recv_ill == NULL); 16835 /* 16836 * We need to get the original queue on which ip_rput_local 16837 * or ip_rput_data_v6 was called. 16838 */ 16839 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 16840 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL, ipst); 16841 ill_need_rele = B_TRUE; 16842 16843 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 16844 recv_ill = ill_lookup_on_ifindex( 16845 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 16846 NULL, NULL, NULL, NULL, ipst); 16847 rill_need_rele = B_TRUE; 16848 } else { 16849 recv_ill = ill; 16850 } 16851 16852 if ((ill == NULL) || (recv_ill == NULL)) { 16853 ip0dbg(("ip_fanout_proto_again: interface " 16854 "disappeared\n")); 16855 if (ill != NULL) 16856 ill_refrele(ill); 16857 if (recv_ill != NULL) 16858 ill_refrele(recv_ill); 16859 freemsg(ipsec_mp); 16860 return; 16861 } 16862 } 16863 16864 ASSERT(ill != NULL && recv_ill != NULL); 16865 16866 if (mp->b_datap->db_type == M_CTL) { 16867 /* 16868 * AH/ESP is returning the ICMP message after 16869 * removing their headers. Fanout again till 16870 * it gets to the right protocol. 16871 */ 16872 if (ii->ipsec_in_v4) { 16873 icmph_t *icmph; 16874 int iph_hdr_length; 16875 int hdr_length; 16876 16877 ipha = (ipha_t *)mp->b_rptr; 16878 iph_hdr_length = IPH_HDR_LENGTH(ipha); 16879 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 16880 ipha = (ipha_t *)&icmph[1]; 16881 hdr_length = IPH_HDR_LENGTH(ipha); 16882 /* 16883 * icmp_inbound_error_fanout may need to do pullupmsg. 16884 * Reset the type to M_DATA. 16885 */ 16886 mp->b_datap->db_type = M_DATA; 16887 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 16888 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 16889 B_FALSE, ill, ii->ipsec_in_zoneid); 16890 } else { 16891 icmp6_t *icmp6; 16892 int hdr_length; 16893 16894 ip6h = (ip6_t *)mp->b_rptr; 16895 /* Don't call hdr_length_v6() unless you have to. */ 16896 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 16897 hdr_length = ip_hdr_length_v6(mp, ip6h); 16898 else 16899 hdr_length = IPV6_HDR_LEN; 16900 16901 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 16902 /* 16903 * icmp_inbound_error_fanout_v6 may need to do 16904 * pullupmsg. Reset the type to M_DATA. 16905 */ 16906 mp->b_datap->db_type = M_DATA; 16907 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 16908 ip6h, icmp6, ill, B_TRUE, ii->ipsec_in_zoneid); 16909 } 16910 if (ill_need_rele) 16911 ill_refrele(ill); 16912 if (rill_need_rele) 16913 ill_refrele(recv_ill); 16914 return; 16915 } 16916 16917 if (ii->ipsec_in_v4) { 16918 ipha = (ipha_t *)mp->b_rptr; 16919 dst = ipha->ipha_dst; 16920 if (CLASSD(dst)) { 16921 /* 16922 * Multicast has to be delivered to all streams. 16923 */ 16924 dst = INADDR_BROADCAST; 16925 } 16926 16927 if (ire == NULL) { 16928 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 16929 MBLK_GETLABEL(mp), ipst); 16930 if (ire == NULL) { 16931 if (ill_need_rele) 16932 ill_refrele(ill); 16933 if (rill_need_rele) 16934 ill_refrele(recv_ill); 16935 ip1dbg(("ip_fanout_proto_again: " 16936 "IRE not found")); 16937 freemsg(ipsec_mp); 16938 return; 16939 } 16940 ire_need_rele = B_TRUE; 16941 } 16942 16943 switch (ipha->ipha_protocol) { 16944 case IPPROTO_UDP: 16945 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 16946 recv_ill); 16947 if (ire_need_rele) 16948 ire_refrele(ire); 16949 break; 16950 case IPPROTO_TCP: 16951 if (!ire_need_rele) 16952 IRE_REFHOLD(ire); 16953 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 16954 ire, ipsec_mp, 0, ill->ill_rq, NULL); 16955 IRE_REFRELE(ire); 16956 if (mp != NULL) 16957 squeue_enter_chain(GET_SQUEUE(mp), mp, 16958 mp, 1, SQTAG_IP_PROTO_AGAIN); 16959 break; 16960 case IPPROTO_SCTP: 16961 if (!ire_need_rele) 16962 IRE_REFHOLD(ire); 16963 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 16964 ipsec_mp, 0, ill->ill_rq, dst); 16965 break; 16966 default: 16967 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 16968 recv_ill, B_FALSE); 16969 if (ire_need_rele) 16970 ire_refrele(ire); 16971 break; 16972 } 16973 } else { 16974 uint32_t rput_flags = 0; 16975 16976 ip6h = (ip6_t *)mp->b_rptr; 16977 v6dstp = &ip6h->ip6_dst; 16978 /* 16979 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 16980 * address. 16981 * 16982 * Currently, we don't store that state in the IPSEC_IN 16983 * message, and we may need to. 16984 */ 16985 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 16986 IP6_IN_LLMCAST : 0); 16987 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 16988 NULL, NULL); 16989 } 16990 if (ill_need_rele) 16991 ill_refrele(ill); 16992 if (rill_need_rele) 16993 ill_refrele(recv_ill); 16994 } 16995 16996 /* 16997 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 16998 * returns 'true' if there are still fragments left on the queue, in 16999 * which case we restart the timer. 17000 */ 17001 void 17002 ill_frag_timer(void *arg) 17003 { 17004 ill_t *ill = (ill_t *)arg; 17005 boolean_t frag_pending; 17006 ip_stack_t *ipst = ill->ill_ipst; 17007 17008 mutex_enter(&ill->ill_lock); 17009 ASSERT(!ill->ill_fragtimer_executing); 17010 if (ill->ill_state_flags & ILL_CONDEMNED) { 17011 ill->ill_frag_timer_id = 0; 17012 mutex_exit(&ill->ill_lock); 17013 return; 17014 } 17015 ill->ill_fragtimer_executing = 1; 17016 mutex_exit(&ill->ill_lock); 17017 17018 frag_pending = ill_frag_timeout(ill, ipst->ips_ip_g_frag_timeout); 17019 17020 /* 17021 * Restart the timer, if we have fragments pending or if someone 17022 * wanted us to be scheduled again. 17023 */ 17024 mutex_enter(&ill->ill_lock); 17025 ill->ill_fragtimer_executing = 0; 17026 ill->ill_frag_timer_id = 0; 17027 if (frag_pending || ill->ill_fragtimer_needrestart) 17028 ill_frag_timer_start(ill); 17029 mutex_exit(&ill->ill_lock); 17030 } 17031 17032 void 17033 ill_frag_timer_start(ill_t *ill) 17034 { 17035 ip_stack_t *ipst = ill->ill_ipst; 17036 17037 ASSERT(MUTEX_HELD(&ill->ill_lock)); 17038 17039 /* If the ill is closing or opening don't proceed */ 17040 if (ill->ill_state_flags & ILL_CONDEMNED) 17041 return; 17042 17043 if (ill->ill_fragtimer_executing) { 17044 /* 17045 * ill_frag_timer is currently executing. Just record the 17046 * the fact that we want the timer to be restarted. 17047 * ill_frag_timer will post a timeout before it returns, 17048 * ensuring it will be called again. 17049 */ 17050 ill->ill_fragtimer_needrestart = 1; 17051 return; 17052 } 17053 17054 if (ill->ill_frag_timer_id == 0) { 17055 /* 17056 * The timer is neither running nor is the timeout handler 17057 * executing. Post a timeout so that ill_frag_timer will be 17058 * called 17059 */ 17060 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 17061 MSEC_TO_TICK(ipst->ips_ip_g_frag_timo_ms >> 1)); 17062 ill->ill_fragtimer_needrestart = 0; 17063 } 17064 } 17065 17066 /* 17067 * This routine is needed for loopback when forwarding multicasts. 17068 * 17069 * IPQoS Notes: 17070 * IPPF processing is done in fanout routines. 17071 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 17072 * processing for IPsec packets is done when it comes back in clear. 17073 * NOTE : The callers of this function need to do the ire_refrele for the 17074 * ire that is being passed in. 17075 */ 17076 void 17077 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17078 ill_t *recv_ill, boolean_t esp_in_udp_packet) 17079 { 17080 ill_t *ill = (ill_t *)q->q_ptr; 17081 uint32_t sum; 17082 uint32_t u1; 17083 uint32_t u2; 17084 int hdr_length; 17085 boolean_t mctl_present; 17086 mblk_t *first_mp = mp; 17087 mblk_t *hada_mp = NULL; 17088 ipha_t *inner_ipha; 17089 ip_stack_t *ipst; 17090 17091 ASSERT(recv_ill != NULL); 17092 ipst = recv_ill->ill_ipst; 17093 17094 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 17095 "ip_rput_locl_start: q %p", q); 17096 17097 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17098 ASSERT(ill != NULL); 17099 17100 17101 #define rptr ((uchar_t *)ipha) 17102 #define iphs ((uint16_t *)ipha) 17103 17104 /* 17105 * no UDP or TCP packet should come here anymore. 17106 */ 17107 ASSERT(ipha->ipha_protocol != IPPROTO_TCP && 17108 ipha->ipha_protocol != IPPROTO_UDP); 17109 17110 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 17111 if (mctl_present && 17112 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 17113 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 17114 17115 /* 17116 * It's an IPsec accelerated packet. 17117 * Keep a pointer to the data attributes around until 17118 * we allocate the ipsec_info_t. 17119 */ 17120 IPSECHW_DEBUG(IPSECHW_PKT, 17121 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 17122 hada_mp = first_mp; 17123 hada_mp->b_cont = NULL; 17124 /* 17125 * Since it is accelerated, it comes directly from 17126 * the ill and the data attributes is followed by 17127 * the packet data. 17128 */ 17129 ASSERT(mp->b_datap->db_type != M_CTL); 17130 first_mp = mp; 17131 mctl_present = B_FALSE; 17132 } 17133 17134 /* 17135 * IF M_CTL is not present, then ipsec_in_is_secure 17136 * should return B_TRUE. There is a case where loopback 17137 * packets has an M_CTL in the front with all the 17138 * IPsec options set to IPSEC_PREF_NEVER - which means 17139 * ipsec_in_is_secure will return B_FALSE. As loopback 17140 * packets never comes here, it is safe to ASSERT the 17141 * following. 17142 */ 17143 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 17144 17145 /* 17146 * Also, we should never have an mctl_present if this is an 17147 * ESP-in-UDP packet. 17148 */ 17149 ASSERT(!mctl_present || !esp_in_udp_packet); 17150 17151 17152 /* u1 is # words of IP options */ 17153 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 17154 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 17155 17156 if (u1 || (!esp_in_udp_packet && !mctl_present)) { 17157 if (u1) { 17158 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 17159 if (hada_mp != NULL) 17160 freemsg(hada_mp); 17161 return; 17162 } 17163 } else { 17164 /* Check the IP header checksum. */ 17165 #define uph ((uint16_t *)ipha) 17166 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 17167 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 17168 #undef uph 17169 /* finish doing IP checksum */ 17170 sum = (sum & 0xFFFF) + (sum >> 16); 17171 sum = ~(sum + (sum >> 16)) & 0xFFFF; 17172 if (sum && sum != 0xFFFF) { 17173 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 17174 goto drop_pkt; 17175 } 17176 } 17177 } 17178 17179 /* 17180 * Count for SNMP of inbound packets for ire. As ip_proto_input 17181 * might be called more than once for secure packets, count only 17182 * the first time. 17183 */ 17184 if (!mctl_present) { 17185 UPDATE_IB_PKT_COUNT(ire); 17186 ire->ire_last_used_time = lbolt; 17187 } 17188 17189 /* Check for fragmentation offset. */ 17190 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 17191 u1 = u2 & (IPH_MF | IPH_OFFSET); 17192 if (u1) { 17193 /* 17194 * We re-assemble fragments before we do the AH/ESP 17195 * processing. Thus, M_CTL should not be present 17196 * while we are re-assembling. 17197 */ 17198 ASSERT(!mctl_present); 17199 ASSERT(first_mp == mp); 17200 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 17201 return; 17202 } 17203 /* 17204 * Make sure that first_mp points back to mp as 17205 * the mp we came in with could have changed in 17206 * ip_rput_fragment(). 17207 */ 17208 ipha = (ipha_t *)mp->b_rptr; 17209 first_mp = mp; 17210 } 17211 17212 /* 17213 * Clear hardware checksumming flag as it is currently only 17214 * used by TCP and UDP. 17215 */ 17216 DB_CKSUMFLAGS(mp) = 0; 17217 17218 /* Now we have a complete datagram, destined for this machine. */ 17219 u1 = IPH_HDR_LENGTH(ipha); 17220 switch (ipha->ipha_protocol) { 17221 case IPPROTO_ICMP: { 17222 ire_t *ire_zone; 17223 ilm_t *ilm; 17224 mblk_t *mp1; 17225 zoneid_t last_zoneid; 17226 17227 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(recv_ill)) { 17228 ASSERT(ire->ire_type == IRE_BROADCAST); 17229 /* 17230 * In the multicast case, applications may have joined 17231 * the group from different zones, so we need to deliver 17232 * the packet to each of them. Loop through the 17233 * multicast memberships structures (ilm) on the receive 17234 * ill and send a copy of the packet up each matching 17235 * one. However, we don't do this for multicasts sent on 17236 * the loopback interface (PHYI_LOOPBACK flag set) as 17237 * they must stay in the sender's zone. 17238 * 17239 * ilm_add_v6() ensures that ilms in the same zone are 17240 * contiguous in the ill_ilm list. We use this property 17241 * to avoid sending duplicates needed when two 17242 * applications in the same zone join the same group on 17243 * different logical interfaces: we ignore the ilm if 17244 * its zoneid is the same as the last matching one. 17245 * In addition, the sending of the packet for 17246 * ire_zoneid is delayed until all of the other ilms 17247 * have been exhausted. 17248 */ 17249 last_zoneid = -1; 17250 ILM_WALKER_HOLD(recv_ill); 17251 for (ilm = recv_ill->ill_ilm; ilm != NULL; 17252 ilm = ilm->ilm_next) { 17253 if ((ilm->ilm_flags & ILM_DELETED) || 17254 ipha->ipha_dst != ilm->ilm_addr || 17255 ilm->ilm_zoneid == last_zoneid || 17256 ilm->ilm_zoneid == ire->ire_zoneid || 17257 ilm->ilm_zoneid == ALL_ZONES || 17258 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 17259 continue; 17260 mp1 = ip_copymsg(first_mp); 17261 if (mp1 == NULL) 17262 continue; 17263 icmp_inbound(q, mp1, B_TRUE, ill, 17264 0, sum, mctl_present, B_TRUE, 17265 recv_ill, ilm->ilm_zoneid); 17266 last_zoneid = ilm->ilm_zoneid; 17267 } 17268 ILM_WALKER_RELE(recv_ill); 17269 } else if (ire->ire_type == IRE_BROADCAST) { 17270 /* 17271 * In the broadcast case, there may be many zones 17272 * which need a copy of the packet delivered to them. 17273 * There is one IRE_BROADCAST per broadcast address 17274 * and per zone; we walk those using a helper function. 17275 * In addition, the sending of the packet for ire is 17276 * delayed until all of the other ires have been 17277 * processed. 17278 */ 17279 IRB_REFHOLD(ire->ire_bucket); 17280 ire_zone = NULL; 17281 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 17282 ire)) != NULL) { 17283 mp1 = ip_copymsg(first_mp); 17284 if (mp1 == NULL) 17285 continue; 17286 17287 UPDATE_IB_PKT_COUNT(ire_zone); 17288 ire_zone->ire_last_used_time = lbolt; 17289 icmp_inbound(q, mp1, B_TRUE, ill, 17290 0, sum, mctl_present, B_TRUE, 17291 recv_ill, ire_zone->ire_zoneid); 17292 } 17293 IRB_REFRELE(ire->ire_bucket); 17294 } 17295 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 17296 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 17297 ire->ire_zoneid); 17298 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17299 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 17300 return; 17301 } 17302 case IPPROTO_IGMP: 17303 /* 17304 * If we are not willing to accept IGMP packets in clear, 17305 * then check with global policy. 17306 */ 17307 if (ipst->ips_igmp_accept_clear_messages == 0) { 17308 first_mp = ipsec_check_global_policy(first_mp, NULL, 17309 ipha, NULL, mctl_present, ipst->ips_netstack); 17310 if (first_mp == NULL) 17311 return; 17312 } 17313 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17314 freemsg(first_mp); 17315 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 17316 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17317 return; 17318 } 17319 if ((mp = igmp_input(q, mp, ill)) == NULL) { 17320 /* Bad packet - discarded by igmp_input */ 17321 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17322 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 17323 if (mctl_present) 17324 freeb(first_mp); 17325 return; 17326 } 17327 /* 17328 * igmp_input() may have returned the pulled up message. 17329 * So first_mp and ipha need to be reinitialized. 17330 */ 17331 ipha = (ipha_t *)mp->b_rptr; 17332 if (mctl_present) 17333 first_mp->b_cont = mp; 17334 else 17335 first_mp = mp; 17336 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17337 connf_head != NULL) { 17338 /* No user-level listener for IGMP packets */ 17339 goto drop_pkt; 17340 } 17341 /* deliver to local raw users */ 17342 break; 17343 case IPPROTO_PIM: 17344 /* 17345 * If we are not willing to accept PIM packets in clear, 17346 * then check with global policy. 17347 */ 17348 if (ipst->ips_pim_accept_clear_messages == 0) { 17349 first_mp = ipsec_check_global_policy(first_mp, NULL, 17350 ipha, NULL, mctl_present, ipst->ips_netstack); 17351 if (first_mp == NULL) 17352 return; 17353 } 17354 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17355 freemsg(first_mp); 17356 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 17357 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17358 return; 17359 } 17360 if (pim_input(q, mp, ill) != 0) { 17361 /* Bad packet - discarded by pim_input */ 17362 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17363 "ip_rput_locl_end: q %p (%S)", q, "pim"); 17364 if (mctl_present) 17365 freeb(first_mp); 17366 return; 17367 } 17368 17369 /* 17370 * pim_input() may have pulled up the message so ipha needs to 17371 * be reinitialized. 17372 */ 17373 ipha = (ipha_t *)mp->b_rptr; 17374 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17375 connf_head != NULL) { 17376 /* No user-level listener for PIM packets */ 17377 goto drop_pkt; 17378 } 17379 /* deliver to local raw users */ 17380 break; 17381 case IPPROTO_ENCAP: 17382 /* 17383 * Handle self-encapsulated packets (IP-in-IP where 17384 * the inner addresses == the outer addresses). 17385 */ 17386 hdr_length = IPH_HDR_LENGTH(ipha); 17387 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 17388 mp->b_wptr) { 17389 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 17390 sizeof (ipha_t) - mp->b_rptr)) { 17391 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17392 freemsg(first_mp); 17393 return; 17394 } 17395 ipha = (ipha_t *)mp->b_rptr; 17396 } 17397 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 17398 /* 17399 * Check the sanity of the inner IP header. 17400 */ 17401 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 17402 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17403 freemsg(first_mp); 17404 return; 17405 } 17406 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 17407 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17408 freemsg(first_mp); 17409 return; 17410 } 17411 if (inner_ipha->ipha_src == ipha->ipha_src && 17412 inner_ipha->ipha_dst == ipha->ipha_dst) { 17413 ipsec_in_t *ii; 17414 17415 /* 17416 * Self-encapsulated tunnel packet. Remove 17417 * the outer IP header and fanout again. 17418 * We also need to make sure that the inner 17419 * header is pulled up until options. 17420 */ 17421 mp->b_rptr = (uchar_t *)inner_ipha; 17422 ipha = inner_ipha; 17423 hdr_length = IPH_HDR_LENGTH(ipha); 17424 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 17425 if (!pullupmsg(mp, (uchar_t *)ipha + 17426 + hdr_length - mp->b_rptr)) { 17427 freemsg(first_mp); 17428 return; 17429 } 17430 ipha = (ipha_t *)mp->b_rptr; 17431 } 17432 if (!mctl_present) { 17433 ASSERT(first_mp == mp); 17434 /* 17435 * This means that somebody is sending 17436 * Self-encapsualted packets without AH/ESP. 17437 * If AH/ESP was present, we would have already 17438 * allocated the first_mp. 17439 */ 17440 first_mp = ipsec_in_alloc(B_TRUE, 17441 ipst->ips_netstack); 17442 if (first_mp == NULL) { 17443 ip1dbg(("ip_proto_input: IPSEC_IN " 17444 "allocation failure.\n")); 17445 BUMP_MIB(ill->ill_ip_mib, 17446 ipIfStatsInDiscards); 17447 freemsg(mp); 17448 return; 17449 } 17450 first_mp->b_cont = mp; 17451 } 17452 /* 17453 * We generally store the ill_index if we need to 17454 * do IPsec processing as we lose the ill queue when 17455 * we come back. But in this case, we never should 17456 * have to store the ill_index here as it should have 17457 * been stored previously when we processed the 17458 * AH/ESP header in this routine or for non-ipsec 17459 * cases, we still have the queue. But for some bad 17460 * packets from the wire, we can get to IPsec after 17461 * this and we better store the index for that case. 17462 */ 17463 ill = (ill_t *)q->q_ptr; 17464 ii = (ipsec_in_t *)first_mp->b_rptr; 17465 ii->ipsec_in_ill_index = 17466 ill->ill_phyint->phyint_ifindex; 17467 ii->ipsec_in_rill_index = 17468 recv_ill->ill_phyint->phyint_ifindex; 17469 if (ii->ipsec_in_decaps) { 17470 /* 17471 * This packet is self-encapsulated multiple 17472 * times. We don't want to recurse infinitely. 17473 * To keep it simple, drop the packet. 17474 */ 17475 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17476 freemsg(first_mp); 17477 return; 17478 } 17479 ii->ipsec_in_decaps = B_TRUE; 17480 ip_fanout_proto_again(first_mp, recv_ill, recv_ill, 17481 ire); 17482 return; 17483 } 17484 break; 17485 case IPPROTO_AH: 17486 case IPPROTO_ESP: { 17487 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 17488 17489 /* 17490 * Fast path for AH/ESP. If this is the first time 17491 * we are sending a datagram to AH/ESP, allocate 17492 * a IPSEC_IN message and prepend it. Otherwise, 17493 * just fanout. 17494 */ 17495 17496 int ipsec_rc; 17497 ipsec_in_t *ii; 17498 netstack_t *ns = ipst->ips_netstack; 17499 17500 IP_STAT(ipst, ipsec_proto_ahesp); 17501 if (!mctl_present) { 17502 ASSERT(first_mp == mp); 17503 first_mp = ipsec_in_alloc(B_TRUE, ns); 17504 if (first_mp == NULL) { 17505 ip1dbg(("ip_proto_input: IPSEC_IN " 17506 "allocation failure.\n")); 17507 freemsg(hada_mp); /* okay ifnull */ 17508 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17509 freemsg(mp); 17510 return; 17511 } 17512 /* 17513 * Store the ill_index so that when we come back 17514 * from IPsec we ride on the same queue. 17515 */ 17516 ill = (ill_t *)q->q_ptr; 17517 ii = (ipsec_in_t *)first_mp->b_rptr; 17518 ii->ipsec_in_ill_index = 17519 ill->ill_phyint->phyint_ifindex; 17520 ii->ipsec_in_rill_index = 17521 recv_ill->ill_phyint->phyint_ifindex; 17522 first_mp->b_cont = mp; 17523 /* 17524 * Cache hardware acceleration info. 17525 */ 17526 if (hada_mp != NULL) { 17527 IPSECHW_DEBUG(IPSECHW_PKT, 17528 ("ip_rput_local: caching data attr.\n")); 17529 ii->ipsec_in_accelerated = B_TRUE; 17530 ii->ipsec_in_da = hada_mp; 17531 hada_mp = NULL; 17532 } 17533 } else { 17534 ii = (ipsec_in_t *)first_mp->b_rptr; 17535 } 17536 17537 if (!ipsec_loaded(ipss)) { 17538 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 17539 ire->ire_zoneid, ipst); 17540 return; 17541 } 17542 17543 ns = ipst->ips_netstack; 17544 /* select inbound SA and have IPsec process the pkt */ 17545 if (ipha->ipha_protocol == IPPROTO_ESP) { 17546 esph_t *esph = ipsec_inbound_esp_sa(first_mp, ns); 17547 boolean_t esp_in_udp_sa; 17548 if (esph == NULL) 17549 return; 17550 ASSERT(ii->ipsec_in_esp_sa != NULL); 17551 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 17552 esp_in_udp_sa = ((ii->ipsec_in_esp_sa->ipsa_flags & 17553 IPSA_F_NATT) != 0); 17554 /* 17555 * The following is a fancy, but quick, way of saying: 17556 * ESP-in-UDP SA and Raw ESP packet --> drop 17557 * OR 17558 * ESP SA and ESP-in-UDP packet --> drop 17559 */ 17560 if (esp_in_udp_sa != esp_in_udp_packet) { 17561 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17562 ip_drop_packet(first_mp, B_TRUE, ill, NULL, 17563 DROPPER(ns->netstack_ipsec, ipds_esp_no_sa), 17564 &ns->netstack_ipsec->ipsec_dropper); 17565 return; 17566 } 17567 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 17568 first_mp, esph); 17569 } else { 17570 ah_t *ah = ipsec_inbound_ah_sa(first_mp, ns); 17571 if (ah == NULL) 17572 return; 17573 ASSERT(ii->ipsec_in_ah_sa != NULL); 17574 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 17575 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 17576 first_mp, ah); 17577 } 17578 17579 switch (ipsec_rc) { 17580 case IPSEC_STATUS_SUCCESS: 17581 break; 17582 case IPSEC_STATUS_FAILED: 17583 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17584 /* FALLTHRU */ 17585 case IPSEC_STATUS_PENDING: 17586 return; 17587 } 17588 /* we're done with IPsec processing, send it up */ 17589 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 17590 return; 17591 } 17592 default: 17593 break; 17594 } 17595 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 17596 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 17597 ire->ire_zoneid)); 17598 goto drop_pkt; 17599 } 17600 /* 17601 * Handle protocols with which IP is less intimate. There 17602 * can be more than one stream bound to a particular 17603 * protocol. When this is the case, each one gets a copy 17604 * of any incoming packets. 17605 */ 17606 ip_fanout_proto(q, first_mp, ill, ipha, 17607 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 17608 B_TRUE, recv_ill, ire->ire_zoneid); 17609 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17610 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 17611 return; 17612 17613 drop_pkt: 17614 freemsg(first_mp); 17615 if (hada_mp != NULL) 17616 freeb(hada_mp); 17617 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17618 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 17619 #undef rptr 17620 #undef iphs 17621 17622 } 17623 17624 /* 17625 * Update any source route, record route or timestamp options. 17626 * Check that we are at end of strict source route. 17627 * The options have already been checked for sanity in ip_rput_options(). 17628 */ 17629 static boolean_t 17630 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17631 ip_stack_t *ipst) 17632 { 17633 ipoptp_t opts; 17634 uchar_t *opt; 17635 uint8_t optval; 17636 uint8_t optlen; 17637 ipaddr_t dst; 17638 uint32_t ts; 17639 ire_t *dst_ire; 17640 timestruc_t now; 17641 zoneid_t zoneid; 17642 ill_t *ill; 17643 17644 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17645 17646 ip2dbg(("ip_rput_local_options\n")); 17647 17648 for (optval = ipoptp_first(&opts, ipha); 17649 optval != IPOPT_EOL; 17650 optval = ipoptp_next(&opts)) { 17651 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17652 opt = opts.ipoptp_cur; 17653 optlen = opts.ipoptp_len; 17654 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 17655 optval, optlen)); 17656 switch (optval) { 17657 uint32_t off; 17658 case IPOPT_SSRR: 17659 case IPOPT_LSRR: 17660 off = opt[IPOPT_OFFSET]; 17661 off--; 17662 if (optlen < IP_ADDR_LEN || 17663 off > optlen - IP_ADDR_LEN) { 17664 /* End of source route */ 17665 ip1dbg(("ip_rput_local_options: end of SR\n")); 17666 break; 17667 } 17668 /* 17669 * This will only happen if two consecutive entries 17670 * in the source route contains our address or if 17671 * it is a packet with a loose source route which 17672 * reaches us before consuming the whole source route 17673 */ 17674 ip1dbg(("ip_rput_local_options: not end of SR\n")); 17675 if (optval == IPOPT_SSRR) { 17676 goto bad_src_route; 17677 } 17678 /* 17679 * Hack: instead of dropping the packet truncate the 17680 * source route to what has been used by filling the 17681 * rest with IPOPT_NOP. 17682 */ 17683 opt[IPOPT_OLEN] = (uint8_t)off; 17684 while (off < optlen) { 17685 opt[off++] = IPOPT_NOP; 17686 } 17687 break; 17688 case IPOPT_RR: 17689 off = opt[IPOPT_OFFSET]; 17690 off--; 17691 if (optlen < IP_ADDR_LEN || 17692 off > optlen - IP_ADDR_LEN) { 17693 /* No more room - ignore */ 17694 ip1dbg(( 17695 "ip_rput_local_options: end of RR\n")); 17696 break; 17697 } 17698 bcopy(&ire->ire_src_addr, (char *)opt + off, 17699 IP_ADDR_LEN); 17700 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17701 break; 17702 case IPOPT_TS: 17703 /* Insert timestamp if there is romm */ 17704 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17705 case IPOPT_TS_TSONLY: 17706 off = IPOPT_TS_TIMELEN; 17707 break; 17708 case IPOPT_TS_PRESPEC: 17709 case IPOPT_TS_PRESPEC_RFC791: 17710 /* Verify that the address matched */ 17711 off = opt[IPOPT_OFFSET] - 1; 17712 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17713 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17714 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 17715 ipst); 17716 if (dst_ire == NULL) { 17717 /* Not for us */ 17718 break; 17719 } 17720 ire_refrele(dst_ire); 17721 /* FALLTHRU */ 17722 case IPOPT_TS_TSANDADDR: 17723 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17724 break; 17725 default: 17726 /* 17727 * ip_*put_options should have already 17728 * dropped this packet. 17729 */ 17730 cmn_err(CE_PANIC, "ip_rput_local_options: " 17731 "unknown IT - bug in ip_rput_options?\n"); 17732 return (B_TRUE); /* Keep "lint" happy */ 17733 } 17734 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 17735 /* Increase overflow counter */ 17736 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 17737 opt[IPOPT_POS_OV_FLG] = 17738 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 17739 (off << 4)); 17740 break; 17741 } 17742 off = opt[IPOPT_OFFSET] - 1; 17743 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17744 case IPOPT_TS_PRESPEC: 17745 case IPOPT_TS_PRESPEC_RFC791: 17746 case IPOPT_TS_TSANDADDR: 17747 bcopy(&ire->ire_src_addr, (char *)opt + off, 17748 IP_ADDR_LEN); 17749 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17750 /* FALLTHRU */ 17751 case IPOPT_TS_TSONLY: 17752 off = opt[IPOPT_OFFSET] - 1; 17753 /* Compute # of milliseconds since midnight */ 17754 gethrestime(&now); 17755 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 17756 now.tv_nsec / (NANOSEC / MILLISEC); 17757 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 17758 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 17759 break; 17760 } 17761 break; 17762 } 17763 } 17764 return (B_TRUE); 17765 17766 bad_src_route: 17767 q = WR(q); 17768 if (q->q_next != NULL) 17769 ill = q->q_ptr; 17770 else 17771 ill = NULL; 17772 17773 /* make sure we clear any indication of a hardware checksum */ 17774 DB_CKSUMFLAGS(mp) = 0; 17775 zoneid = ipif_lookup_addr_zoneid(ipha->ipha_dst, ill, ipst); 17776 if (zoneid == ALL_ZONES) 17777 freemsg(mp); 17778 else 17779 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 17780 return (B_FALSE); 17781 17782 } 17783 17784 /* 17785 * Process IP options in an inbound packet. If an option affects the 17786 * effective destination address, return the next hop address via dstp. 17787 * Returns -1 if something fails in which case an ICMP error has been sent 17788 * and mp freed. 17789 */ 17790 static int 17791 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp, 17792 ip_stack_t *ipst) 17793 { 17794 ipoptp_t opts; 17795 uchar_t *opt; 17796 uint8_t optval; 17797 uint8_t optlen; 17798 ipaddr_t dst; 17799 intptr_t code = 0; 17800 ire_t *ire = NULL; 17801 zoneid_t zoneid; 17802 ill_t *ill; 17803 17804 ip2dbg(("ip_rput_options\n")); 17805 dst = ipha->ipha_dst; 17806 for (optval = ipoptp_first(&opts, ipha); 17807 optval != IPOPT_EOL; 17808 optval = ipoptp_next(&opts)) { 17809 opt = opts.ipoptp_cur; 17810 optlen = opts.ipoptp_len; 17811 ip2dbg(("ip_rput_options: opt %d, len %d\n", 17812 optval, optlen)); 17813 /* 17814 * Note: we need to verify the checksum before we 17815 * modify anything thus this routine only extracts the next 17816 * hop dst from any source route. 17817 */ 17818 switch (optval) { 17819 uint32_t off; 17820 case IPOPT_SSRR: 17821 case IPOPT_LSRR: 17822 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17823 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17824 if (ire == NULL) { 17825 if (optval == IPOPT_SSRR) { 17826 ip1dbg(("ip_rput_options: not next" 17827 " strict source route 0x%x\n", 17828 ntohl(dst))); 17829 code = (char *)&ipha->ipha_dst - 17830 (char *)ipha; 17831 goto param_prob; /* RouterReq's */ 17832 } 17833 ip2dbg(("ip_rput_options: " 17834 "not next source route 0x%x\n", 17835 ntohl(dst))); 17836 break; 17837 } 17838 ire_refrele(ire); 17839 17840 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17841 ip1dbg(( 17842 "ip_rput_options: bad option offset\n")); 17843 code = (char *)&opt[IPOPT_OLEN] - 17844 (char *)ipha; 17845 goto param_prob; 17846 } 17847 off = opt[IPOPT_OFFSET]; 17848 off--; 17849 redo_srr: 17850 if (optlen < IP_ADDR_LEN || 17851 off > optlen - IP_ADDR_LEN) { 17852 /* End of source route */ 17853 ip1dbg(("ip_rput_options: end of SR\n")); 17854 break; 17855 } 17856 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17857 ip1dbg(("ip_rput_options: next hop 0x%x\n", 17858 ntohl(dst))); 17859 17860 /* 17861 * Check if our address is present more than 17862 * once as consecutive hops in source route. 17863 * XXX verify per-interface ip_forwarding 17864 * for source route? 17865 */ 17866 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17867 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17868 17869 if (ire != NULL) { 17870 ire_refrele(ire); 17871 off += IP_ADDR_LEN; 17872 goto redo_srr; 17873 } 17874 17875 if (dst == htonl(INADDR_LOOPBACK)) { 17876 ip1dbg(("ip_rput_options: loopback addr in " 17877 "source route!\n")); 17878 goto bad_src_route; 17879 } 17880 /* 17881 * For strict: verify that dst is directly 17882 * reachable. 17883 */ 17884 if (optval == IPOPT_SSRR) { 17885 ire = ire_ftable_lookup(dst, 0, 0, 17886 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 17887 MBLK_GETLABEL(mp), 17888 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 17889 if (ire == NULL) { 17890 ip1dbg(("ip_rput_options: SSRR not " 17891 "directly reachable: 0x%x\n", 17892 ntohl(dst))); 17893 goto bad_src_route; 17894 } 17895 ire_refrele(ire); 17896 } 17897 /* 17898 * Defer update of the offset and the record route 17899 * until the packet is forwarded. 17900 */ 17901 break; 17902 case IPOPT_RR: 17903 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17904 ip1dbg(( 17905 "ip_rput_options: bad option offset\n")); 17906 code = (char *)&opt[IPOPT_OLEN] - 17907 (char *)ipha; 17908 goto param_prob; 17909 } 17910 break; 17911 case IPOPT_TS: 17912 /* 17913 * Verify that length >= 5 and that there is either 17914 * room for another timestamp or that the overflow 17915 * counter is not maxed out. 17916 */ 17917 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 17918 if (optlen < IPOPT_MINLEN_IT) { 17919 goto param_prob; 17920 } 17921 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17922 ip1dbg(( 17923 "ip_rput_options: bad option offset\n")); 17924 code = (char *)&opt[IPOPT_OFFSET] - 17925 (char *)ipha; 17926 goto param_prob; 17927 } 17928 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17929 case IPOPT_TS_TSONLY: 17930 off = IPOPT_TS_TIMELEN; 17931 break; 17932 case IPOPT_TS_TSANDADDR: 17933 case IPOPT_TS_PRESPEC: 17934 case IPOPT_TS_PRESPEC_RFC791: 17935 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17936 break; 17937 default: 17938 code = (char *)&opt[IPOPT_POS_OV_FLG] - 17939 (char *)ipha; 17940 goto param_prob; 17941 } 17942 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 17943 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 17944 /* 17945 * No room and the overflow counter is 15 17946 * already. 17947 */ 17948 goto param_prob; 17949 } 17950 break; 17951 } 17952 } 17953 17954 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 17955 *dstp = dst; 17956 return (0); 17957 } 17958 17959 ip1dbg(("ip_rput_options: error processing IP options.")); 17960 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 17961 17962 param_prob: 17963 q = WR(q); 17964 if (q->q_next != NULL) 17965 ill = q->q_ptr; 17966 else 17967 ill = NULL; 17968 17969 /* make sure we clear any indication of a hardware checksum */ 17970 DB_CKSUMFLAGS(mp) = 0; 17971 /* Don't know whether this is for non-global or global/forwarding */ 17972 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 17973 if (zoneid == ALL_ZONES) 17974 freemsg(mp); 17975 else 17976 icmp_param_problem(q, mp, (uint8_t)code, zoneid, ipst); 17977 return (-1); 17978 17979 bad_src_route: 17980 q = WR(q); 17981 if (q->q_next != NULL) 17982 ill = q->q_ptr; 17983 else 17984 ill = NULL; 17985 17986 /* make sure we clear any indication of a hardware checksum */ 17987 DB_CKSUMFLAGS(mp) = 0; 17988 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 17989 if (zoneid == ALL_ZONES) 17990 freemsg(mp); 17991 else 17992 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 17993 return (-1); 17994 } 17995 17996 /* 17997 * IP & ICMP info in >=14 msg's ... 17998 * - ip fixed part (mib2_ip_t) 17999 * - icmp fixed part (mib2_icmp_t) 18000 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 18001 * - ipRouteEntryTable (ip 21) all IPv4 IREs 18002 * - ipNetToMediaEntryTable (ip 22) [filled in by the arp module] 18003 * - ipRouteAttributeTable (ip 102) labeled routes 18004 * - ip multicast membership (ip_member_t) 18005 * - ip multicast source filtering (ip_grpsrc_t) 18006 * - igmp fixed part (struct igmpstat) 18007 * - multicast routing stats (struct mrtstat) 18008 * - multicast routing vifs (array of struct vifctl) 18009 * - multicast routing routes (array of struct mfcctl) 18010 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 18011 * One per ill plus one generic 18012 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 18013 * One per ill plus one generic 18014 * - ipv6RouteEntry all IPv6 IREs 18015 * - ipv6RouteAttributeTable (ip6 102) labeled routes 18016 * - ipv6NetToMediaEntry all Neighbor Cache entries 18017 * - ipv6AddrEntry all IPv6 ipifs 18018 * - ipv6 multicast membership (ipv6_member_t) 18019 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 18020 * 18021 * MIB2_IP_MEDIA is filled in by the arp module with ARP cache entries. 18022 * 18023 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 18024 * already filled in by the caller. 18025 * Return value of 0 indicates that no messages were sent and caller 18026 * should free mpctl. 18027 */ 18028 int 18029 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level) 18030 { 18031 ip_stack_t *ipst; 18032 sctp_stack_t *sctps; 18033 18034 if (q->q_next != NULL) { 18035 ipst = ILLQ_TO_IPST(q); 18036 } else { 18037 ipst = CONNQ_TO_IPST(q); 18038 } 18039 ASSERT(ipst != NULL); 18040 sctps = ipst->ips_netstack->netstack_sctp; 18041 18042 if (mpctl == NULL || mpctl->b_cont == NULL) { 18043 return (0); 18044 } 18045 18046 /* 18047 * For the purposes of the (broken) packet shell use 18048 * of the level we make sure MIB2_TCP/MIB2_UDP can be used 18049 * to make TCP and UDP appear first in the list of mib items. 18050 * TBD: We could expand this and use it in netstat so that 18051 * the kernel doesn't have to produce large tables (connections, 18052 * routes, etc) when netstat only wants the statistics or a particular 18053 * table. 18054 */ 18055 if (!(level == MIB2_TCP || level == MIB2_UDP)) { 18056 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) { 18057 return (1); 18058 } 18059 } 18060 18061 if (level != MIB2_TCP) { 18062 if ((mpctl = udp_snmp_get(q, mpctl)) == NULL) { 18063 return (1); 18064 } 18065 } 18066 18067 if (level != MIB2_UDP) { 18068 if ((mpctl = tcp_snmp_get(q, mpctl)) == NULL) { 18069 return (1); 18070 } 18071 } 18072 18073 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 18074 ipst)) == NULL) { 18075 return (1); 18076 } 18077 18078 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst)) == NULL) { 18079 return (1); 18080 } 18081 18082 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 18083 return (1); 18084 } 18085 18086 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 18087 return (1); 18088 } 18089 18090 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 18091 return (1); 18092 } 18093 18094 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 18095 return (1); 18096 } 18097 18098 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst)) == NULL) { 18099 return (1); 18100 } 18101 18102 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst)) == NULL) { 18103 return (1); 18104 } 18105 18106 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 18107 return (1); 18108 } 18109 18110 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 18111 return (1); 18112 } 18113 18114 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 18115 return (1); 18116 } 18117 18118 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 18119 return (1); 18120 } 18121 18122 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 18123 return (1); 18124 } 18125 18126 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 18127 return (1); 18128 } 18129 18130 if ((mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, ipst)) == NULL) { 18131 return (1); 18132 } 18133 18134 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, ipst); 18135 if (mpctl == NULL) { 18136 return (1); 18137 } 18138 18139 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 18140 return (1); 18141 } 18142 freemsg(mpctl); 18143 return (1); 18144 } 18145 18146 18147 /* Get global (legacy) IPv4 statistics */ 18148 static mblk_t * 18149 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 18150 ip_stack_t *ipst) 18151 { 18152 mib2_ip_t old_ip_mib; 18153 struct opthdr *optp; 18154 mblk_t *mp2ctl; 18155 18156 /* 18157 * make a copy of the original message 18158 */ 18159 mp2ctl = copymsg(mpctl); 18160 18161 /* fixed length IP structure... */ 18162 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18163 optp->level = MIB2_IP; 18164 optp->name = 0; 18165 SET_MIB(old_ip_mib.ipForwarding, 18166 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 18167 SET_MIB(old_ip_mib.ipDefaultTTL, 18168 (uint32_t)ipst->ips_ip_def_ttl); 18169 SET_MIB(old_ip_mib.ipReasmTimeout, 18170 ipst->ips_ip_g_frag_timeout); 18171 SET_MIB(old_ip_mib.ipAddrEntrySize, 18172 sizeof (mib2_ipAddrEntry_t)); 18173 SET_MIB(old_ip_mib.ipRouteEntrySize, 18174 sizeof (mib2_ipRouteEntry_t)); 18175 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 18176 sizeof (mib2_ipNetToMediaEntry_t)); 18177 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 18178 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 18179 SET_MIB(old_ip_mib.ipRouteAttributeSize, 18180 sizeof (mib2_ipAttributeEntry_t)); 18181 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 18182 18183 /* 18184 * Grab the statistics from the new IP MIB 18185 */ 18186 SET_MIB(old_ip_mib.ipInReceives, 18187 (uint32_t)ipmib->ipIfStatsHCInReceives); 18188 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 18189 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 18190 SET_MIB(old_ip_mib.ipForwDatagrams, 18191 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 18192 SET_MIB(old_ip_mib.ipInUnknownProtos, 18193 ipmib->ipIfStatsInUnknownProtos); 18194 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 18195 SET_MIB(old_ip_mib.ipInDelivers, 18196 (uint32_t)ipmib->ipIfStatsHCInDelivers); 18197 SET_MIB(old_ip_mib.ipOutRequests, 18198 (uint32_t)ipmib->ipIfStatsHCOutRequests); 18199 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 18200 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 18201 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 18202 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 18203 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 18204 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 18205 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 18206 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 18207 18208 /* ipRoutingDiscards is not being used */ 18209 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 18210 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 18211 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 18212 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 18213 SET_MIB(old_ip_mib.ipReasmDuplicates, 18214 ipmib->ipIfStatsReasmDuplicates); 18215 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 18216 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 18217 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 18218 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 18219 SET_MIB(old_ip_mib.rawipInOverflows, 18220 ipmib->rawipIfStatsInOverflows); 18221 18222 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 18223 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 18224 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 18225 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 18226 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 18227 ipmib->ipIfStatsOutSwitchIPVersion); 18228 18229 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 18230 (int)sizeof (old_ip_mib))) { 18231 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 18232 (uint_t)sizeof (old_ip_mib))); 18233 } 18234 18235 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18236 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 18237 (int)optp->level, (int)optp->name, (int)optp->len)); 18238 qreply(q, mpctl); 18239 return (mp2ctl); 18240 } 18241 18242 /* Per interface IPv4 statistics */ 18243 static mblk_t * 18244 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18245 { 18246 struct opthdr *optp; 18247 mblk_t *mp2ctl; 18248 ill_t *ill; 18249 ill_walk_context_t ctx; 18250 mblk_t *mp_tail = NULL; 18251 mib2_ipIfStatsEntry_t global_ip_mib; 18252 18253 /* 18254 * Make a copy of the original message 18255 */ 18256 mp2ctl = copymsg(mpctl); 18257 18258 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18259 optp->level = MIB2_IP; 18260 optp->name = MIB2_IP_TRAFFIC_STATS; 18261 /* Include "unknown interface" ip_mib */ 18262 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 18263 ipst->ips_ip_mib.ipIfStatsIfIndex = 18264 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 18265 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 18266 (ipst->ips_ip_g_forward ? 1 : 2)); 18267 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 18268 (uint32_t)ipst->ips_ip_def_ttl); 18269 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 18270 sizeof (mib2_ipIfStatsEntry_t)); 18271 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 18272 sizeof (mib2_ipAddrEntry_t)); 18273 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 18274 sizeof (mib2_ipRouteEntry_t)); 18275 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 18276 sizeof (mib2_ipNetToMediaEntry_t)); 18277 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 18278 sizeof (ip_member_t)); 18279 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 18280 sizeof (ip_grpsrc_t)); 18281 18282 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18283 (char *)&ipst->ips_ip_mib, (int)sizeof (ipst->ips_ip_mib))) { 18284 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18285 "failed to allocate %u bytes\n", 18286 (uint_t)sizeof (ipst->ips_ip_mib))); 18287 } 18288 18289 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 18290 18291 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18292 ill = ILL_START_WALK_V4(&ctx, ipst); 18293 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18294 ill->ill_ip_mib->ipIfStatsIfIndex = 18295 ill->ill_phyint->phyint_ifindex; 18296 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 18297 (ipst->ips_ip_g_forward ? 1 : 2)); 18298 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 18299 (uint32_t)ipst->ips_ip_def_ttl); 18300 18301 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 18302 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18303 (char *)ill->ill_ip_mib, 18304 (int)sizeof (*ill->ill_ip_mib))) { 18305 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18306 "failed to allocate %u bytes\n", 18307 (uint_t)sizeof (*ill->ill_ip_mib))); 18308 } 18309 } 18310 rw_exit(&ipst->ips_ill_g_lock); 18311 18312 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18313 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18314 "level %d, name %d, len %d\n", 18315 (int)optp->level, (int)optp->name, (int)optp->len)); 18316 qreply(q, mpctl); 18317 18318 if (mp2ctl == NULL) 18319 return (NULL); 18320 18321 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst)); 18322 } 18323 18324 /* Global IPv4 ICMP statistics */ 18325 static mblk_t * 18326 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18327 { 18328 struct opthdr *optp; 18329 mblk_t *mp2ctl; 18330 18331 /* 18332 * Make a copy of the original message 18333 */ 18334 mp2ctl = copymsg(mpctl); 18335 18336 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18337 optp->level = MIB2_ICMP; 18338 optp->name = 0; 18339 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 18340 (int)sizeof (ipst->ips_icmp_mib))) { 18341 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 18342 (uint_t)sizeof (ipst->ips_icmp_mib))); 18343 } 18344 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18345 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 18346 (int)optp->level, (int)optp->name, (int)optp->len)); 18347 qreply(q, mpctl); 18348 return (mp2ctl); 18349 } 18350 18351 /* Global IPv4 IGMP statistics */ 18352 static mblk_t * 18353 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18354 { 18355 struct opthdr *optp; 18356 mblk_t *mp2ctl; 18357 18358 /* 18359 * make a copy of the original message 18360 */ 18361 mp2ctl = copymsg(mpctl); 18362 18363 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18364 optp->level = EXPER_IGMP; 18365 optp->name = 0; 18366 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 18367 (int)sizeof (ipst->ips_igmpstat))) { 18368 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 18369 (uint_t)sizeof (ipst->ips_igmpstat))); 18370 } 18371 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18372 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 18373 (int)optp->level, (int)optp->name, (int)optp->len)); 18374 qreply(q, mpctl); 18375 return (mp2ctl); 18376 } 18377 18378 /* Global IPv4 Multicast Routing statistics */ 18379 static mblk_t * 18380 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18381 { 18382 struct opthdr *optp; 18383 mblk_t *mp2ctl; 18384 18385 /* 18386 * make a copy of the original message 18387 */ 18388 mp2ctl = copymsg(mpctl); 18389 18390 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18391 optp->level = EXPER_DVMRP; 18392 optp->name = 0; 18393 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 18394 ip0dbg(("ip_mroute_stats: failed\n")); 18395 } 18396 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18397 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 18398 (int)optp->level, (int)optp->name, (int)optp->len)); 18399 qreply(q, mpctl); 18400 return (mp2ctl); 18401 } 18402 18403 /* IPv4 address information */ 18404 static mblk_t * 18405 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18406 { 18407 struct opthdr *optp; 18408 mblk_t *mp2ctl; 18409 mblk_t *mp_tail = NULL; 18410 ill_t *ill; 18411 ipif_t *ipif; 18412 uint_t bitval; 18413 mib2_ipAddrEntry_t mae; 18414 zoneid_t zoneid; 18415 ill_walk_context_t ctx; 18416 18417 /* 18418 * make a copy of the original message 18419 */ 18420 mp2ctl = copymsg(mpctl); 18421 18422 /* ipAddrEntryTable */ 18423 18424 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18425 optp->level = MIB2_IP; 18426 optp->name = MIB2_IP_ADDR; 18427 zoneid = Q_TO_CONN(q)->conn_zoneid; 18428 18429 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18430 ill = ILL_START_WALK_V4(&ctx, ipst); 18431 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18432 for (ipif = ill->ill_ipif; ipif != NULL; 18433 ipif = ipif->ipif_next) { 18434 if (ipif->ipif_zoneid != zoneid && 18435 ipif->ipif_zoneid != ALL_ZONES) 18436 continue; 18437 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18438 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18439 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18440 18441 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes, 18442 OCTET_LENGTH); 18443 mae.ipAdEntIfIndex.o_length = 18444 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 18445 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 18446 mae.ipAdEntNetMask = ipif->ipif_net_mask; 18447 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 18448 mae.ipAdEntInfo.ae_subnet_len = 18449 ip_mask_to_plen(ipif->ipif_net_mask); 18450 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 18451 for (bitval = 1; 18452 bitval && 18453 !(bitval & ipif->ipif_brd_addr); 18454 bitval <<= 1) 18455 noop; 18456 mae.ipAdEntBcastAddr = bitval; 18457 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 18458 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 18459 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 18460 mae.ipAdEntInfo.ae_broadcast_addr = 18461 ipif->ipif_brd_addr; 18462 mae.ipAdEntInfo.ae_pp_dst_addr = 18463 ipif->ipif_pp_dst_addr; 18464 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 18465 ill->ill_flags | ill->ill_phyint->phyint_flags; 18466 mae.ipAdEntRetransmitTime = AR_EQ_DEFAULT_XMIT_INTERVAL; 18467 18468 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18469 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 18470 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 18471 "allocate %u bytes\n", 18472 (uint_t)sizeof (mib2_ipAddrEntry_t))); 18473 } 18474 } 18475 } 18476 rw_exit(&ipst->ips_ill_g_lock); 18477 18478 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18479 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 18480 (int)optp->level, (int)optp->name, (int)optp->len)); 18481 qreply(q, mpctl); 18482 return (mp2ctl); 18483 } 18484 18485 /* IPv6 address information */ 18486 static mblk_t * 18487 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18488 { 18489 struct opthdr *optp; 18490 mblk_t *mp2ctl; 18491 mblk_t *mp_tail = NULL; 18492 ill_t *ill; 18493 ipif_t *ipif; 18494 mib2_ipv6AddrEntry_t mae6; 18495 zoneid_t zoneid; 18496 ill_walk_context_t ctx; 18497 18498 /* 18499 * make a copy of the original message 18500 */ 18501 mp2ctl = copymsg(mpctl); 18502 18503 /* ipv6AddrEntryTable */ 18504 18505 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18506 optp->level = MIB2_IP6; 18507 optp->name = MIB2_IP6_ADDR; 18508 zoneid = Q_TO_CONN(q)->conn_zoneid; 18509 18510 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18511 ill = ILL_START_WALK_V6(&ctx, ipst); 18512 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18513 for (ipif = ill->ill_ipif; ipif != NULL; 18514 ipif = ipif->ipif_next) { 18515 if (ipif->ipif_zoneid != zoneid && 18516 ipif->ipif_zoneid != ALL_ZONES) 18517 continue; 18518 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18519 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18520 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18521 18522 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes, 18523 OCTET_LENGTH); 18524 mae6.ipv6AddrIfIndex.o_length = 18525 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 18526 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 18527 mae6.ipv6AddrPfxLength = 18528 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 18529 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 18530 mae6.ipv6AddrInfo.ae_subnet_len = 18531 mae6.ipv6AddrPfxLength; 18532 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 18533 18534 /* Type: stateless(1), stateful(2), unknown(3) */ 18535 if (ipif->ipif_flags & IPIF_ADDRCONF) 18536 mae6.ipv6AddrType = 1; 18537 else 18538 mae6.ipv6AddrType = 2; 18539 /* Anycast: true(1), false(2) */ 18540 if (ipif->ipif_flags & IPIF_ANYCAST) 18541 mae6.ipv6AddrAnycastFlag = 1; 18542 else 18543 mae6.ipv6AddrAnycastFlag = 2; 18544 18545 /* 18546 * Address status: preferred(1), deprecated(2), 18547 * invalid(3), inaccessible(4), unknown(5) 18548 */ 18549 if (ipif->ipif_flags & IPIF_NOLOCAL) 18550 mae6.ipv6AddrStatus = 3; 18551 else if (ipif->ipif_flags & IPIF_DEPRECATED) 18552 mae6.ipv6AddrStatus = 2; 18553 else 18554 mae6.ipv6AddrStatus = 1; 18555 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 18556 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 18557 mae6.ipv6AddrInfo.ae_pp_dst_addr = 18558 ipif->ipif_v6pp_dst_addr; 18559 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 18560 ill->ill_flags | ill->ill_phyint->phyint_flags; 18561 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 18562 mae6.ipv6AddrIdentifier = ill->ill_token; 18563 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 18564 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 18565 mae6.ipv6AddrRetransmitTime = 18566 ill->ill_reachable_retrans_time; 18567 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18568 (char *)&mae6, 18569 (int)sizeof (mib2_ipv6AddrEntry_t))) { 18570 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 18571 "allocate %u bytes\n", 18572 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 18573 } 18574 } 18575 } 18576 rw_exit(&ipst->ips_ill_g_lock); 18577 18578 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18579 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 18580 (int)optp->level, (int)optp->name, (int)optp->len)); 18581 qreply(q, mpctl); 18582 return (mp2ctl); 18583 } 18584 18585 /* IPv4 multicast group membership. */ 18586 static mblk_t * 18587 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18588 { 18589 struct opthdr *optp; 18590 mblk_t *mp2ctl; 18591 ill_t *ill; 18592 ipif_t *ipif; 18593 ilm_t *ilm; 18594 ip_member_t ipm; 18595 mblk_t *mp_tail = NULL; 18596 ill_walk_context_t ctx; 18597 zoneid_t zoneid; 18598 18599 /* 18600 * make a copy of the original message 18601 */ 18602 mp2ctl = copymsg(mpctl); 18603 zoneid = Q_TO_CONN(q)->conn_zoneid; 18604 18605 /* ipGroupMember table */ 18606 optp = (struct opthdr *)&mpctl->b_rptr[ 18607 sizeof (struct T_optmgmt_ack)]; 18608 optp->level = MIB2_IP; 18609 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 18610 18611 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18612 ill = ILL_START_WALK_V4(&ctx, ipst); 18613 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18614 ILM_WALKER_HOLD(ill); 18615 for (ipif = ill->ill_ipif; ipif != NULL; 18616 ipif = ipif->ipif_next) { 18617 if (ipif->ipif_zoneid != zoneid && 18618 ipif->ipif_zoneid != ALL_ZONES) 18619 continue; /* not this zone */ 18620 ipif_get_name(ipif, ipm.ipGroupMemberIfIndex.o_bytes, 18621 OCTET_LENGTH); 18622 ipm.ipGroupMemberIfIndex.o_length = 18623 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 18624 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18625 ASSERT(ilm->ilm_ipif != NULL); 18626 ASSERT(ilm->ilm_ill == NULL); 18627 if (ilm->ilm_ipif != ipif) 18628 continue; 18629 ipm.ipGroupMemberAddress = ilm->ilm_addr; 18630 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 18631 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 18632 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18633 (char *)&ipm, (int)sizeof (ipm))) { 18634 ip1dbg(("ip_snmp_get_mib2_ip_group: " 18635 "failed to allocate %u bytes\n", 18636 (uint_t)sizeof (ipm))); 18637 } 18638 } 18639 } 18640 ILM_WALKER_RELE(ill); 18641 } 18642 rw_exit(&ipst->ips_ill_g_lock); 18643 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18644 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18645 (int)optp->level, (int)optp->name, (int)optp->len)); 18646 qreply(q, mpctl); 18647 return (mp2ctl); 18648 } 18649 18650 /* IPv6 multicast group membership. */ 18651 static mblk_t * 18652 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18653 { 18654 struct opthdr *optp; 18655 mblk_t *mp2ctl; 18656 ill_t *ill; 18657 ilm_t *ilm; 18658 ipv6_member_t ipm6; 18659 mblk_t *mp_tail = NULL; 18660 ill_walk_context_t ctx; 18661 zoneid_t zoneid; 18662 18663 /* 18664 * make a copy of the original message 18665 */ 18666 mp2ctl = copymsg(mpctl); 18667 zoneid = Q_TO_CONN(q)->conn_zoneid; 18668 18669 /* ip6GroupMember table */ 18670 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18671 optp->level = MIB2_IP6; 18672 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 18673 18674 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18675 ill = ILL_START_WALK_V6(&ctx, ipst); 18676 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18677 ILM_WALKER_HOLD(ill); 18678 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 18679 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18680 ASSERT(ilm->ilm_ipif == NULL); 18681 ASSERT(ilm->ilm_ill != NULL); 18682 if (ilm->ilm_zoneid != zoneid) 18683 continue; /* not this zone */ 18684 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 18685 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 18686 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 18687 if (!snmp_append_data2(mpctl->b_cont, 18688 &mp_tail, 18689 (char *)&ipm6, (int)sizeof (ipm6))) { 18690 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 18691 "failed to allocate %u bytes\n", 18692 (uint_t)sizeof (ipm6))); 18693 } 18694 } 18695 ILM_WALKER_RELE(ill); 18696 } 18697 rw_exit(&ipst->ips_ill_g_lock); 18698 18699 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18700 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18701 (int)optp->level, (int)optp->name, (int)optp->len)); 18702 qreply(q, mpctl); 18703 return (mp2ctl); 18704 } 18705 18706 /* IP multicast filtered sources */ 18707 static mblk_t * 18708 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18709 { 18710 struct opthdr *optp; 18711 mblk_t *mp2ctl; 18712 ill_t *ill; 18713 ipif_t *ipif; 18714 ilm_t *ilm; 18715 ip_grpsrc_t ips; 18716 mblk_t *mp_tail = NULL; 18717 ill_walk_context_t ctx; 18718 zoneid_t zoneid; 18719 int i; 18720 slist_t *sl; 18721 18722 /* 18723 * make a copy of the original message 18724 */ 18725 mp2ctl = copymsg(mpctl); 18726 zoneid = Q_TO_CONN(q)->conn_zoneid; 18727 18728 /* ipGroupSource table */ 18729 optp = (struct opthdr *)&mpctl->b_rptr[ 18730 sizeof (struct T_optmgmt_ack)]; 18731 optp->level = MIB2_IP; 18732 optp->name = EXPER_IP_GROUP_SOURCES; 18733 18734 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18735 ill = ILL_START_WALK_V4(&ctx, ipst); 18736 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18737 ILM_WALKER_HOLD(ill); 18738 for (ipif = ill->ill_ipif; ipif != NULL; 18739 ipif = ipif->ipif_next) { 18740 if (ipif->ipif_zoneid != zoneid) 18741 continue; /* not this zone */ 18742 ipif_get_name(ipif, ips.ipGroupSourceIfIndex.o_bytes, 18743 OCTET_LENGTH); 18744 ips.ipGroupSourceIfIndex.o_length = 18745 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 18746 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18747 ASSERT(ilm->ilm_ipif != NULL); 18748 ASSERT(ilm->ilm_ill == NULL); 18749 sl = ilm->ilm_filter; 18750 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 18751 continue; 18752 ips.ipGroupSourceGroup = ilm->ilm_addr; 18753 for (i = 0; i < sl->sl_numsrc; i++) { 18754 if (!IN6_IS_ADDR_V4MAPPED( 18755 &sl->sl_addr[i])) 18756 continue; 18757 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 18758 ips.ipGroupSourceAddress); 18759 if (snmp_append_data2(mpctl->b_cont, 18760 &mp_tail, (char *)&ips, 18761 (int)sizeof (ips)) == 0) { 18762 ip1dbg(("ip_snmp_get_mib2_" 18763 "ip_group_src: failed to " 18764 "allocate %u bytes\n", 18765 (uint_t)sizeof (ips))); 18766 } 18767 } 18768 } 18769 } 18770 ILM_WALKER_RELE(ill); 18771 } 18772 rw_exit(&ipst->ips_ill_g_lock); 18773 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18774 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18775 (int)optp->level, (int)optp->name, (int)optp->len)); 18776 qreply(q, mpctl); 18777 return (mp2ctl); 18778 } 18779 18780 /* IPv6 multicast filtered sources. */ 18781 static mblk_t * 18782 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18783 { 18784 struct opthdr *optp; 18785 mblk_t *mp2ctl; 18786 ill_t *ill; 18787 ilm_t *ilm; 18788 ipv6_grpsrc_t ips6; 18789 mblk_t *mp_tail = NULL; 18790 ill_walk_context_t ctx; 18791 zoneid_t zoneid; 18792 int i; 18793 slist_t *sl; 18794 18795 /* 18796 * make a copy of the original message 18797 */ 18798 mp2ctl = copymsg(mpctl); 18799 zoneid = Q_TO_CONN(q)->conn_zoneid; 18800 18801 /* ip6GroupMember table */ 18802 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18803 optp->level = MIB2_IP6; 18804 optp->name = EXPER_IP6_GROUP_SOURCES; 18805 18806 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18807 ill = ILL_START_WALK_V6(&ctx, ipst); 18808 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18809 ILM_WALKER_HOLD(ill); 18810 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 18811 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18812 ASSERT(ilm->ilm_ipif == NULL); 18813 ASSERT(ilm->ilm_ill != NULL); 18814 sl = ilm->ilm_filter; 18815 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 18816 continue; 18817 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 18818 for (i = 0; i < sl->sl_numsrc; i++) { 18819 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 18820 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18821 (char *)&ips6, (int)sizeof (ips6))) { 18822 ip1dbg(("ip_snmp_get_mib2_ip6_" 18823 "group_src: failed to allocate " 18824 "%u bytes\n", 18825 (uint_t)sizeof (ips6))); 18826 } 18827 } 18828 } 18829 ILM_WALKER_RELE(ill); 18830 } 18831 rw_exit(&ipst->ips_ill_g_lock); 18832 18833 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18834 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18835 (int)optp->level, (int)optp->name, (int)optp->len)); 18836 qreply(q, mpctl); 18837 return (mp2ctl); 18838 } 18839 18840 /* Multicast routing virtual interface table. */ 18841 static mblk_t * 18842 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18843 { 18844 struct opthdr *optp; 18845 mblk_t *mp2ctl; 18846 18847 /* 18848 * make a copy of the original message 18849 */ 18850 mp2ctl = copymsg(mpctl); 18851 18852 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18853 optp->level = EXPER_DVMRP; 18854 optp->name = EXPER_DVMRP_VIF; 18855 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 18856 ip0dbg(("ip_mroute_vif: failed\n")); 18857 } 18858 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18859 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 18860 (int)optp->level, (int)optp->name, (int)optp->len)); 18861 qreply(q, mpctl); 18862 return (mp2ctl); 18863 } 18864 18865 /* Multicast routing table. */ 18866 static mblk_t * 18867 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18868 { 18869 struct opthdr *optp; 18870 mblk_t *mp2ctl; 18871 18872 /* 18873 * make a copy of the original message 18874 */ 18875 mp2ctl = copymsg(mpctl); 18876 18877 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18878 optp->level = EXPER_DVMRP; 18879 optp->name = EXPER_DVMRP_MRT; 18880 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 18881 ip0dbg(("ip_mroute_mrt: failed\n")); 18882 } 18883 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18884 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 18885 (int)optp->level, (int)optp->name, (int)optp->len)); 18886 qreply(q, mpctl); 18887 return (mp2ctl); 18888 } 18889 18890 /* 18891 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 18892 * in one IRE walk. 18893 */ 18894 static mblk_t * 18895 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18896 { 18897 struct opthdr *optp; 18898 mblk_t *mp2ctl; /* Returned */ 18899 mblk_t *mp3ctl; /* nettomedia */ 18900 mblk_t *mp4ctl; /* routeattrs */ 18901 iproutedata_t ird; 18902 zoneid_t zoneid; 18903 18904 /* 18905 * make copies of the original message 18906 * - mp2ctl is returned unchanged to the caller for his use 18907 * - mpctl is sent upstream as ipRouteEntryTable 18908 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 18909 * - mp4ctl is sent upstream as ipRouteAttributeTable 18910 */ 18911 mp2ctl = copymsg(mpctl); 18912 mp3ctl = copymsg(mpctl); 18913 mp4ctl = copymsg(mpctl); 18914 if (mp3ctl == NULL || mp4ctl == NULL) { 18915 freemsg(mp4ctl); 18916 freemsg(mp3ctl); 18917 freemsg(mp2ctl); 18918 freemsg(mpctl); 18919 return (NULL); 18920 } 18921 18922 bzero(&ird, sizeof (ird)); 18923 18924 ird.ird_route.lp_head = mpctl->b_cont; 18925 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 18926 ird.ird_attrs.lp_head = mp4ctl->b_cont; 18927 18928 zoneid = Q_TO_CONN(q)->conn_zoneid; 18929 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 18930 18931 /* ipRouteEntryTable in mpctl */ 18932 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18933 optp->level = MIB2_IP; 18934 optp->name = MIB2_IP_ROUTE; 18935 optp->len = msgdsize(ird.ird_route.lp_head); 18936 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18937 (int)optp->level, (int)optp->name, (int)optp->len)); 18938 qreply(q, mpctl); 18939 18940 /* ipNetToMediaEntryTable in mp3ctl */ 18941 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18942 optp->level = MIB2_IP; 18943 optp->name = MIB2_IP_MEDIA; 18944 optp->len = msgdsize(ird.ird_netmedia.lp_head); 18945 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18946 (int)optp->level, (int)optp->name, (int)optp->len)); 18947 qreply(q, mp3ctl); 18948 18949 /* ipRouteAttributeTable in mp4ctl */ 18950 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18951 optp->level = MIB2_IP; 18952 optp->name = EXPER_IP_RTATTR; 18953 optp->len = msgdsize(ird.ird_attrs.lp_head); 18954 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18955 (int)optp->level, (int)optp->name, (int)optp->len)); 18956 if (optp->len == 0) 18957 freemsg(mp4ctl); 18958 else 18959 qreply(q, mp4ctl); 18960 18961 return (mp2ctl); 18962 } 18963 18964 /* 18965 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 18966 * ipv6NetToMediaEntryTable in an NDP walk. 18967 */ 18968 static mblk_t * 18969 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18970 { 18971 struct opthdr *optp; 18972 mblk_t *mp2ctl; /* Returned */ 18973 mblk_t *mp3ctl; /* nettomedia */ 18974 mblk_t *mp4ctl; /* routeattrs */ 18975 iproutedata_t ird; 18976 zoneid_t zoneid; 18977 18978 /* 18979 * make copies of the original message 18980 * - mp2ctl is returned unchanged to the caller for his use 18981 * - mpctl is sent upstream as ipv6RouteEntryTable 18982 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 18983 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 18984 */ 18985 mp2ctl = copymsg(mpctl); 18986 mp3ctl = copymsg(mpctl); 18987 mp4ctl = copymsg(mpctl); 18988 if (mp3ctl == NULL || mp4ctl == NULL) { 18989 freemsg(mp4ctl); 18990 freemsg(mp3ctl); 18991 freemsg(mp2ctl); 18992 freemsg(mpctl); 18993 return (NULL); 18994 } 18995 18996 bzero(&ird, sizeof (ird)); 18997 18998 ird.ird_route.lp_head = mpctl->b_cont; 18999 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19000 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19001 19002 zoneid = Q_TO_CONN(q)->conn_zoneid; 19003 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 19004 19005 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19006 optp->level = MIB2_IP6; 19007 optp->name = MIB2_IP6_ROUTE; 19008 optp->len = msgdsize(ird.ird_route.lp_head); 19009 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19010 (int)optp->level, (int)optp->name, (int)optp->len)); 19011 qreply(q, mpctl); 19012 19013 /* ipv6NetToMediaEntryTable in mp3ctl */ 19014 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 19015 19016 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19017 optp->level = MIB2_IP6; 19018 optp->name = MIB2_IP6_MEDIA; 19019 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19020 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19021 (int)optp->level, (int)optp->name, (int)optp->len)); 19022 qreply(q, mp3ctl); 19023 19024 /* ipv6RouteAttributeTable in mp4ctl */ 19025 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19026 optp->level = MIB2_IP6; 19027 optp->name = EXPER_IP_RTATTR; 19028 optp->len = msgdsize(ird.ird_attrs.lp_head); 19029 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19030 (int)optp->level, (int)optp->name, (int)optp->len)); 19031 if (optp->len == 0) 19032 freemsg(mp4ctl); 19033 else 19034 qreply(q, mp4ctl); 19035 19036 return (mp2ctl); 19037 } 19038 19039 /* 19040 * IPv6 mib: One per ill 19041 */ 19042 static mblk_t * 19043 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19044 { 19045 struct opthdr *optp; 19046 mblk_t *mp2ctl; 19047 ill_t *ill; 19048 ill_walk_context_t ctx; 19049 mblk_t *mp_tail = NULL; 19050 19051 /* 19052 * Make a copy of the original message 19053 */ 19054 mp2ctl = copymsg(mpctl); 19055 19056 /* fixed length IPv6 structure ... */ 19057 19058 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19059 optp->level = MIB2_IP6; 19060 optp->name = 0; 19061 /* Include "unknown interface" ip6_mib */ 19062 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 19063 ipst->ips_ip6_mib.ipIfStatsIfIndex = 19064 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 19065 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 19066 ipst->ips_ipv6_forward ? 1 : 2); 19067 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 19068 ipst->ips_ipv6_def_hops); 19069 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 19070 sizeof (mib2_ipIfStatsEntry_t)); 19071 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 19072 sizeof (mib2_ipv6AddrEntry_t)); 19073 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 19074 sizeof (mib2_ipv6RouteEntry_t)); 19075 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 19076 sizeof (mib2_ipv6NetToMediaEntry_t)); 19077 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 19078 sizeof (ipv6_member_t)); 19079 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 19080 sizeof (ipv6_grpsrc_t)); 19081 19082 /* 19083 * Synchronize 64- and 32-bit counters 19084 */ 19085 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 19086 ipIfStatsHCInReceives); 19087 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 19088 ipIfStatsHCInDelivers); 19089 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 19090 ipIfStatsHCOutRequests); 19091 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 19092 ipIfStatsHCOutForwDatagrams); 19093 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 19094 ipIfStatsHCOutMcastPkts); 19095 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 19096 ipIfStatsHCInMcastPkts); 19097 19098 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19099 (char *)&ipst->ips_ip6_mib, (int)sizeof (ipst->ips_ip6_mib))) { 19100 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 19101 (uint_t)sizeof (ipst->ips_ip6_mib))); 19102 } 19103 19104 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19105 ill = ILL_START_WALK_V6(&ctx, ipst); 19106 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19107 ill->ill_ip_mib->ipIfStatsIfIndex = 19108 ill->ill_phyint->phyint_ifindex; 19109 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 19110 ipst->ips_ipv6_forward ? 1 : 2); 19111 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 19112 ill->ill_max_hops); 19113 19114 /* 19115 * Synchronize 64- and 32-bit counters 19116 */ 19117 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 19118 ipIfStatsHCInReceives); 19119 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 19120 ipIfStatsHCInDelivers); 19121 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 19122 ipIfStatsHCOutRequests); 19123 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 19124 ipIfStatsHCOutForwDatagrams); 19125 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 19126 ipIfStatsHCOutMcastPkts); 19127 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 19128 ipIfStatsHCInMcastPkts); 19129 19130 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19131 (char *)ill->ill_ip_mib, 19132 (int)sizeof (*ill->ill_ip_mib))) { 19133 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 19134 "%u bytes\n", (uint_t)sizeof (*ill->ill_ip_mib))); 19135 } 19136 } 19137 rw_exit(&ipst->ips_ill_g_lock); 19138 19139 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19140 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 19141 (int)optp->level, (int)optp->name, (int)optp->len)); 19142 qreply(q, mpctl); 19143 return (mp2ctl); 19144 } 19145 19146 /* 19147 * ICMPv6 mib: One per ill 19148 */ 19149 static mblk_t * 19150 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19151 { 19152 struct opthdr *optp; 19153 mblk_t *mp2ctl; 19154 ill_t *ill; 19155 ill_walk_context_t ctx; 19156 mblk_t *mp_tail = NULL; 19157 /* 19158 * Make a copy of the original message 19159 */ 19160 mp2ctl = copymsg(mpctl); 19161 19162 /* fixed length ICMPv6 structure ... */ 19163 19164 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19165 optp->level = MIB2_ICMP6; 19166 optp->name = 0; 19167 /* Include "unknown interface" icmp6_mib */ 19168 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 19169 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 19170 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 19171 sizeof (mib2_ipv6IfIcmpEntry_t); 19172 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19173 (char *)&ipst->ips_icmp6_mib, 19174 (int)sizeof (ipst->ips_icmp6_mib))) { 19175 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 19176 (uint_t)sizeof (ipst->ips_icmp6_mib))); 19177 } 19178 19179 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19180 ill = ILL_START_WALK_V6(&ctx, ipst); 19181 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19182 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 19183 ill->ill_phyint->phyint_ifindex; 19184 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19185 (char *)ill->ill_icmp6_mib, 19186 (int)sizeof (*ill->ill_icmp6_mib))) { 19187 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 19188 "%u bytes\n", 19189 (uint_t)sizeof (*ill->ill_icmp6_mib))); 19190 } 19191 } 19192 rw_exit(&ipst->ips_ill_g_lock); 19193 19194 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19195 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 19196 (int)optp->level, (int)optp->name, (int)optp->len)); 19197 qreply(q, mpctl); 19198 return (mp2ctl); 19199 } 19200 19201 /* 19202 * ire_walk routine to create both ipRouteEntryTable and 19203 * ipRouteAttributeTable in one IRE walk 19204 */ 19205 static void 19206 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 19207 { 19208 ill_t *ill; 19209 ipif_t *ipif; 19210 mib2_ipRouteEntry_t *re; 19211 mib2_ipAttributeEntry_t *iae, *iaeptr; 19212 ipaddr_t gw_addr; 19213 tsol_ire_gw_secattr_t *attrp; 19214 tsol_gc_t *gc = NULL; 19215 tsol_gcgrp_t *gcgrp = NULL; 19216 uint_t sacnt = 0; 19217 int i; 19218 19219 ASSERT(ire->ire_ipversion == IPV4_VERSION); 19220 19221 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19222 return; 19223 19224 if ((attrp = ire->ire_gw_secattr) != NULL) { 19225 mutex_enter(&attrp->igsa_lock); 19226 if ((gc = attrp->igsa_gc) != NULL) { 19227 gcgrp = gc->gc_grp; 19228 ASSERT(gcgrp != NULL); 19229 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19230 sacnt = 1; 19231 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19232 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19233 gc = gcgrp->gcgrp_head; 19234 sacnt = gcgrp->gcgrp_count; 19235 } 19236 mutex_exit(&attrp->igsa_lock); 19237 19238 /* do nothing if there's no gc to report */ 19239 if (gc == NULL) { 19240 ASSERT(sacnt == 0); 19241 if (gcgrp != NULL) { 19242 /* we might as well drop the lock now */ 19243 rw_exit(&gcgrp->gcgrp_rwlock); 19244 gcgrp = NULL; 19245 } 19246 attrp = NULL; 19247 } 19248 19249 ASSERT(gc == NULL || (gcgrp != NULL && 19250 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19251 } 19252 ASSERT(sacnt == 0 || gc != NULL); 19253 19254 if (sacnt != 0 && 19255 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19256 kmem_free(re, sizeof (*re)); 19257 rw_exit(&gcgrp->gcgrp_rwlock); 19258 return; 19259 } 19260 19261 /* 19262 * Return all IRE types for route table... let caller pick and choose 19263 */ 19264 re->ipRouteDest = ire->ire_addr; 19265 ipif = ire->ire_ipif; 19266 re->ipRouteIfIndex.o_length = 0; 19267 if (ire->ire_type == IRE_CACHE) { 19268 ill = (ill_t *)ire->ire_stq->q_ptr; 19269 re->ipRouteIfIndex.o_length = 19270 ill->ill_name_length == 0 ? 0 : 19271 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19272 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 19273 re->ipRouteIfIndex.o_length); 19274 } else if (ipif != NULL) { 19275 ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH); 19276 re->ipRouteIfIndex.o_length = 19277 mi_strlen(re->ipRouteIfIndex.o_bytes); 19278 } 19279 re->ipRouteMetric1 = -1; 19280 re->ipRouteMetric2 = -1; 19281 re->ipRouteMetric3 = -1; 19282 re->ipRouteMetric4 = -1; 19283 19284 gw_addr = ire->ire_gateway_addr; 19285 19286 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 19287 re->ipRouteNextHop = ire->ire_src_addr; 19288 else 19289 re->ipRouteNextHop = gw_addr; 19290 /* indirect(4), direct(3), or invalid(2) */ 19291 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19292 re->ipRouteType = 2; 19293 else 19294 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 19295 re->ipRouteProto = -1; 19296 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 19297 re->ipRouteMask = ire->ire_mask; 19298 re->ipRouteMetric5 = -1; 19299 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 19300 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 19301 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19302 re->ipRouteInfo.re_ref = ire->ire_refcnt; 19303 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 19304 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19305 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19306 re->ipRouteInfo.re_flags = ire->ire_flags; 19307 19308 if (ire->ire_flags & RTF_DYNAMIC) { 19309 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19310 } else { 19311 re->ipRouteInfo.re_ire_type = ire->ire_type; 19312 } 19313 19314 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19315 (char *)re, (int)sizeof (*re))) { 19316 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19317 (uint_t)sizeof (*re))); 19318 } 19319 19320 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19321 iaeptr->iae_routeidx = ird->ird_idx; 19322 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19323 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19324 } 19325 19326 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19327 (char *)iae, sacnt * sizeof (*iae))) { 19328 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19329 (unsigned)(sacnt * sizeof (*iae)))); 19330 } 19331 19332 /* bump route index for next pass */ 19333 ird->ird_idx++; 19334 19335 kmem_free(re, sizeof (*re)); 19336 if (sacnt != 0) 19337 kmem_free(iae, sacnt * sizeof (*iae)); 19338 19339 if (gcgrp != NULL) 19340 rw_exit(&gcgrp->gcgrp_rwlock); 19341 } 19342 19343 /* 19344 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 19345 */ 19346 static void 19347 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 19348 { 19349 ill_t *ill; 19350 ipif_t *ipif; 19351 mib2_ipv6RouteEntry_t *re; 19352 mib2_ipAttributeEntry_t *iae, *iaeptr; 19353 in6_addr_t gw_addr_v6; 19354 tsol_ire_gw_secattr_t *attrp; 19355 tsol_gc_t *gc = NULL; 19356 tsol_gcgrp_t *gcgrp = NULL; 19357 uint_t sacnt = 0; 19358 int i; 19359 19360 ASSERT(ire->ire_ipversion == IPV6_VERSION); 19361 19362 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19363 return; 19364 19365 if ((attrp = ire->ire_gw_secattr) != NULL) { 19366 mutex_enter(&attrp->igsa_lock); 19367 if ((gc = attrp->igsa_gc) != NULL) { 19368 gcgrp = gc->gc_grp; 19369 ASSERT(gcgrp != NULL); 19370 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19371 sacnt = 1; 19372 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19373 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19374 gc = gcgrp->gcgrp_head; 19375 sacnt = gcgrp->gcgrp_count; 19376 } 19377 mutex_exit(&attrp->igsa_lock); 19378 19379 /* do nothing if there's no gc to report */ 19380 if (gc == NULL) { 19381 ASSERT(sacnt == 0); 19382 if (gcgrp != NULL) { 19383 /* we might as well drop the lock now */ 19384 rw_exit(&gcgrp->gcgrp_rwlock); 19385 gcgrp = NULL; 19386 } 19387 attrp = NULL; 19388 } 19389 19390 ASSERT(gc == NULL || (gcgrp != NULL && 19391 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19392 } 19393 ASSERT(sacnt == 0 || gc != NULL); 19394 19395 if (sacnt != 0 && 19396 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19397 kmem_free(re, sizeof (*re)); 19398 rw_exit(&gcgrp->gcgrp_rwlock); 19399 return; 19400 } 19401 19402 /* 19403 * Return all IRE types for route table... let caller pick and choose 19404 */ 19405 re->ipv6RouteDest = ire->ire_addr_v6; 19406 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 19407 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 19408 re->ipv6RouteIfIndex.o_length = 0; 19409 ipif = ire->ire_ipif; 19410 if (ire->ire_type == IRE_CACHE) { 19411 ill = (ill_t *)ire->ire_stq->q_ptr; 19412 re->ipv6RouteIfIndex.o_length = 19413 ill->ill_name_length == 0 ? 0 : 19414 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19415 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 19416 re->ipv6RouteIfIndex.o_length); 19417 } else if (ipif != NULL) { 19418 ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH); 19419 re->ipv6RouteIfIndex.o_length = 19420 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 19421 } 19422 19423 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19424 19425 mutex_enter(&ire->ire_lock); 19426 gw_addr_v6 = ire->ire_gateway_addr_v6; 19427 mutex_exit(&ire->ire_lock); 19428 19429 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 19430 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 19431 else 19432 re->ipv6RouteNextHop = gw_addr_v6; 19433 19434 /* remote(4), local(3), or discard(2) */ 19435 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19436 re->ipv6RouteType = 2; 19437 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 19438 re->ipv6RouteType = 3; 19439 else 19440 re->ipv6RouteType = 4; 19441 19442 re->ipv6RouteProtocol = -1; 19443 re->ipv6RoutePolicy = 0; 19444 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 19445 re->ipv6RouteNextHopRDI = 0; 19446 re->ipv6RouteWeight = 0; 19447 re->ipv6RouteMetric = 0; 19448 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 19449 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 19450 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19451 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 19452 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19453 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19454 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 19455 re->ipv6RouteInfo.re_flags = ire->ire_flags; 19456 19457 if (ire->ire_flags & RTF_DYNAMIC) { 19458 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19459 } else { 19460 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 19461 } 19462 19463 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19464 (char *)re, (int)sizeof (*re))) { 19465 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19466 (uint_t)sizeof (*re))); 19467 } 19468 19469 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19470 iaeptr->iae_routeidx = ird->ird_idx; 19471 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19472 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19473 } 19474 19475 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19476 (char *)iae, sacnt * sizeof (*iae))) { 19477 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19478 (unsigned)(sacnt * sizeof (*iae)))); 19479 } 19480 19481 /* bump route index for next pass */ 19482 ird->ird_idx++; 19483 19484 kmem_free(re, sizeof (*re)); 19485 if (sacnt != 0) 19486 kmem_free(iae, sacnt * sizeof (*iae)); 19487 19488 if (gcgrp != NULL) 19489 rw_exit(&gcgrp->gcgrp_rwlock); 19490 } 19491 19492 /* 19493 * ndp_walk routine to create ipv6NetToMediaEntryTable 19494 */ 19495 static int 19496 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 19497 { 19498 ill_t *ill; 19499 mib2_ipv6NetToMediaEntry_t ntme; 19500 dl_unitdata_req_t *dl; 19501 19502 ill = nce->nce_ill; 19503 if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */ 19504 return (0); 19505 19506 /* 19507 * Neighbor cache entry attached to IRE with on-link 19508 * destination. 19509 */ 19510 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 19511 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 19512 if ((ill->ill_flags & ILLF_XRESOLV) && 19513 (nce->nce_res_mp != NULL)) { 19514 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 19515 ntme.ipv6NetToMediaPhysAddress.o_length = 19516 dl->dl_dest_addr_length; 19517 } else { 19518 ntme.ipv6NetToMediaPhysAddress.o_length = 19519 ill->ill_phys_addr_length; 19520 } 19521 if (nce->nce_res_mp != NULL) { 19522 bcopy((char *)nce->nce_res_mp->b_rptr + 19523 NCE_LL_ADDR_OFFSET(ill), 19524 ntme.ipv6NetToMediaPhysAddress.o_bytes, 19525 ntme.ipv6NetToMediaPhysAddress.o_length); 19526 } else { 19527 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 19528 ill->ill_phys_addr_length); 19529 } 19530 /* 19531 * Note: Returns ND_* states. Should be: 19532 * reachable(1), stale(2), delay(3), probe(4), 19533 * invalid(5), unknown(6) 19534 */ 19535 ntme.ipv6NetToMediaState = nce->nce_state; 19536 ntme.ipv6NetToMediaLastUpdated = 0; 19537 19538 /* other(1), dynamic(2), static(3), local(4) */ 19539 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 19540 ntme.ipv6NetToMediaType = 4; 19541 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 19542 ntme.ipv6NetToMediaType = 1; 19543 } else { 19544 ntme.ipv6NetToMediaType = 2; 19545 } 19546 19547 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 19548 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 19549 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 19550 (uint_t)sizeof (ntme))); 19551 } 19552 return (0); 19553 } 19554 19555 /* 19556 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 19557 */ 19558 /* ARGSUSED */ 19559 int 19560 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 19561 { 19562 switch (level) { 19563 case MIB2_IP: 19564 case MIB2_ICMP: 19565 switch (name) { 19566 default: 19567 break; 19568 } 19569 return (1); 19570 default: 19571 return (1); 19572 } 19573 } 19574 19575 /* 19576 * When there exists both a 64- and 32-bit counter of a particular type 19577 * (i.e., InReceives), only the 64-bit counters are added. 19578 */ 19579 void 19580 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 19581 { 19582 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 19583 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 19584 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 19585 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 19586 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 19587 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 19588 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 19589 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 19590 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 19591 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 19592 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 19593 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 19594 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 19595 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 19596 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 19597 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 19598 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 19599 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 19600 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 19601 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 19602 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 19603 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 19604 o2->ipIfStatsInWrongIPVersion); 19605 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 19606 o2->ipIfStatsInWrongIPVersion); 19607 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 19608 o2->ipIfStatsOutSwitchIPVersion); 19609 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 19610 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 19611 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 19612 o2->ipIfStatsHCInForwDatagrams); 19613 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 19614 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 19615 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 19616 o2->ipIfStatsHCOutForwDatagrams); 19617 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 19618 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 19619 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 19620 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 19621 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 19622 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 19623 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 19624 o2->ipIfStatsHCOutMcastOctets); 19625 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 19626 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 19627 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 19628 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 19629 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 19630 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 19631 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 19632 } 19633 19634 void 19635 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 19636 { 19637 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 19638 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 19639 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 19640 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 19641 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 19642 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 19643 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 19644 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 19645 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 19646 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 19647 o2->ipv6IfIcmpInRouterSolicits); 19648 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 19649 o2->ipv6IfIcmpInRouterAdvertisements); 19650 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 19651 o2->ipv6IfIcmpInNeighborSolicits); 19652 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 19653 o2->ipv6IfIcmpInNeighborAdvertisements); 19654 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 19655 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 19656 o2->ipv6IfIcmpInGroupMembQueries); 19657 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 19658 o2->ipv6IfIcmpInGroupMembResponses); 19659 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 19660 o2->ipv6IfIcmpInGroupMembReductions); 19661 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 19662 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 19663 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 19664 o2->ipv6IfIcmpOutDestUnreachs); 19665 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 19666 o2->ipv6IfIcmpOutAdminProhibs); 19667 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 19668 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 19669 o2->ipv6IfIcmpOutParmProblems); 19670 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 19671 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 19672 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 19673 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 19674 o2->ipv6IfIcmpOutRouterSolicits); 19675 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 19676 o2->ipv6IfIcmpOutRouterAdvertisements); 19677 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 19678 o2->ipv6IfIcmpOutNeighborSolicits); 19679 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 19680 o2->ipv6IfIcmpOutNeighborAdvertisements); 19681 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 19682 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 19683 o2->ipv6IfIcmpOutGroupMembQueries); 19684 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 19685 o2->ipv6IfIcmpOutGroupMembResponses); 19686 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 19687 o2->ipv6IfIcmpOutGroupMembReductions); 19688 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 19689 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 19690 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 19691 o2->ipv6IfIcmpInBadNeighborAdvertisements); 19692 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 19693 o2->ipv6IfIcmpInBadNeighborSolicitations); 19694 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 19695 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 19696 o2->ipv6IfIcmpInGroupMembTotal); 19697 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 19698 o2->ipv6IfIcmpInGroupMembBadQueries); 19699 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 19700 o2->ipv6IfIcmpInGroupMembBadReports); 19701 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 19702 o2->ipv6IfIcmpInGroupMembOurReports); 19703 } 19704 19705 /* 19706 * Called before the options are updated to check if this packet will 19707 * be source routed from here. 19708 * This routine assumes that the options are well formed i.e. that they 19709 * have already been checked. 19710 */ 19711 static boolean_t 19712 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 19713 { 19714 ipoptp_t opts; 19715 uchar_t *opt; 19716 uint8_t optval; 19717 uint8_t optlen; 19718 ipaddr_t dst; 19719 ire_t *ire; 19720 19721 if (IS_SIMPLE_IPH(ipha)) { 19722 ip2dbg(("not source routed\n")); 19723 return (B_FALSE); 19724 } 19725 dst = ipha->ipha_dst; 19726 for (optval = ipoptp_first(&opts, ipha); 19727 optval != IPOPT_EOL; 19728 optval = ipoptp_next(&opts)) { 19729 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 19730 opt = opts.ipoptp_cur; 19731 optlen = opts.ipoptp_len; 19732 ip2dbg(("ip_source_routed: opt %d, len %d\n", 19733 optval, optlen)); 19734 switch (optval) { 19735 uint32_t off; 19736 case IPOPT_SSRR: 19737 case IPOPT_LSRR: 19738 /* 19739 * If dst is one of our addresses and there are some 19740 * entries left in the source route return (true). 19741 */ 19742 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 19743 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 19744 if (ire == NULL) { 19745 ip2dbg(("ip_source_routed: not next" 19746 " source route 0x%x\n", 19747 ntohl(dst))); 19748 return (B_FALSE); 19749 } 19750 ire_refrele(ire); 19751 off = opt[IPOPT_OFFSET]; 19752 off--; 19753 if (optlen < IP_ADDR_LEN || 19754 off > optlen - IP_ADDR_LEN) { 19755 /* End of source route */ 19756 ip1dbg(("ip_source_routed: end of SR\n")); 19757 return (B_FALSE); 19758 } 19759 return (B_TRUE); 19760 } 19761 } 19762 ip2dbg(("not source routed\n")); 19763 return (B_FALSE); 19764 } 19765 19766 /* 19767 * Check if the packet contains any source route. 19768 */ 19769 static boolean_t 19770 ip_source_route_included(ipha_t *ipha) 19771 { 19772 ipoptp_t opts; 19773 uint8_t optval; 19774 19775 if (IS_SIMPLE_IPH(ipha)) 19776 return (B_FALSE); 19777 for (optval = ipoptp_first(&opts, ipha); 19778 optval != IPOPT_EOL; 19779 optval = ipoptp_next(&opts)) { 19780 switch (optval) { 19781 case IPOPT_SSRR: 19782 case IPOPT_LSRR: 19783 return (B_TRUE); 19784 } 19785 } 19786 return (B_FALSE); 19787 } 19788 19789 /* 19790 * Called when the IRE expiration timer fires. 19791 */ 19792 void 19793 ip_trash_timer_expire(void *args) 19794 { 19795 int flush_flag = 0; 19796 ire_expire_arg_t iea; 19797 ip_stack_t *ipst = (ip_stack_t *)args; 19798 19799 iea.iea_ipst = ipst; /* No netstack_hold */ 19800 19801 /* 19802 * ip_ire_expire_id is protected by ip_trash_timer_lock. 19803 * This lock makes sure that a new invocation of this function 19804 * that occurs due to an almost immediate timer firing will not 19805 * progress beyond this point until the current invocation is done 19806 */ 19807 mutex_enter(&ipst->ips_ip_trash_timer_lock); 19808 ipst->ips_ip_ire_expire_id = 0; 19809 mutex_exit(&ipst->ips_ip_trash_timer_lock); 19810 19811 /* Periodic timer */ 19812 if (ipst->ips_ip_ire_arp_time_elapsed >= 19813 ipst->ips_ip_ire_arp_interval) { 19814 /* 19815 * Remove all IRE_CACHE entries since they might 19816 * contain arp information. 19817 */ 19818 flush_flag |= FLUSH_ARP_TIME; 19819 ipst->ips_ip_ire_arp_time_elapsed = 0; 19820 IP_STAT(ipst, ip_ire_arp_timer_expired); 19821 } 19822 if (ipst->ips_ip_ire_rd_time_elapsed >= 19823 ipst->ips_ip_ire_redir_interval) { 19824 /* Remove all redirects */ 19825 flush_flag |= FLUSH_REDIRECT_TIME; 19826 ipst->ips_ip_ire_rd_time_elapsed = 0; 19827 IP_STAT(ipst, ip_ire_redirect_timer_expired); 19828 } 19829 if (ipst->ips_ip_ire_pmtu_time_elapsed >= 19830 ipst->ips_ip_ire_pathmtu_interval) { 19831 /* Increase path mtu */ 19832 flush_flag |= FLUSH_MTU_TIME; 19833 ipst->ips_ip_ire_pmtu_time_elapsed = 0; 19834 IP_STAT(ipst, ip_ire_pmtu_timer_expired); 19835 } 19836 19837 /* 19838 * Optimize for the case when there are no redirects in the 19839 * ftable, that is, no need to walk the ftable in that case. 19840 */ 19841 if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) { 19842 iea.iea_flush_flag = flush_flag; 19843 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire, 19844 (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 0, NULL, 19845 ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table, 19846 NULL, ALL_ZONES, ipst); 19847 } 19848 if ((flush_flag & FLUSH_REDIRECT_TIME) && 19849 ipst->ips_ip_redirect_cnt > 0) { 19850 iea.iea_flush_flag = flush_flag; 19851 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE, 19852 ire_expire, (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 19853 0, NULL, 0, NULL, NULL, ALL_ZONES, ipst); 19854 } 19855 if (flush_flag & FLUSH_MTU_TIME) { 19856 /* 19857 * Walk all IPv6 IRE's and update them 19858 * Note that ARP and redirect timers are not 19859 * needed since NUD handles stale entries. 19860 */ 19861 flush_flag = FLUSH_MTU_TIME; 19862 iea.iea_flush_flag = flush_flag; 19863 ire_walk_v6(ire_expire, (char *)(uintptr_t)&iea, 19864 ALL_ZONES, ipst); 19865 } 19866 19867 ipst->ips_ip_ire_arp_time_elapsed += ipst->ips_ip_timer_interval; 19868 ipst->ips_ip_ire_rd_time_elapsed += ipst->ips_ip_timer_interval; 19869 ipst->ips_ip_ire_pmtu_time_elapsed += ipst->ips_ip_timer_interval; 19870 19871 /* 19872 * Hold the lock to serialize timeout calls and prevent 19873 * stale values in ip_ire_expire_id. Otherwise it is possible 19874 * for the timer to fire and a new invocation of this function 19875 * to start before the return value of timeout has been stored 19876 * in ip_ire_expire_id by the current invocation. 19877 */ 19878 mutex_enter(&ipst->ips_ip_trash_timer_lock); 19879 ipst->ips_ip_ire_expire_id = timeout(ip_trash_timer_expire, 19880 (void *)ipst, MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 19881 mutex_exit(&ipst->ips_ip_trash_timer_lock); 19882 } 19883 19884 /* 19885 * Called by the memory allocator subsystem directly, when the system 19886 * is running low on memory. 19887 */ 19888 /* ARGSUSED */ 19889 void 19890 ip_trash_ire_reclaim(void *args) 19891 { 19892 netstack_handle_t nh; 19893 netstack_t *ns; 19894 19895 netstack_next_init(&nh); 19896 while ((ns = netstack_next(&nh)) != NULL) { 19897 ip_trash_ire_reclaim_stack(ns->netstack_ip); 19898 netstack_rele(ns); 19899 } 19900 netstack_next_fini(&nh); 19901 } 19902 19903 static void 19904 ip_trash_ire_reclaim_stack(ip_stack_t *ipst) 19905 { 19906 ire_cache_count_t icc; 19907 ire_cache_reclaim_t icr; 19908 ncc_cache_count_t ncc; 19909 nce_cache_reclaim_t ncr; 19910 uint_t delete_cnt; 19911 /* 19912 * Memory reclaim call back. 19913 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 19914 * Then, with a target of freeing 1/Nth of IRE_CACHE 19915 * entries, determine what fraction to free for 19916 * each category of IRE_CACHE entries giving absolute priority 19917 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 19918 * entry will be freed unless all offlink entries are freed). 19919 */ 19920 icc.icc_total = 0; 19921 icc.icc_unused = 0; 19922 icc.icc_offlink = 0; 19923 icc.icc_pmtu = 0; 19924 icc.icc_onlink = 0; 19925 ire_walk(ire_cache_count, (char *)&icc, ipst); 19926 19927 /* 19928 * Free NCEs for IPv6 like the onlink ires. 19929 */ 19930 ncc.ncc_total = 0; 19931 ncc.ncc_host = 0; 19932 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc, ipst); 19933 19934 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 19935 icc.icc_pmtu + icc.icc_onlink); 19936 delete_cnt = icc.icc_total/ipst->ips_ip_ire_reclaim_fraction; 19937 IP_STAT(ipst, ip_trash_ire_reclaim_calls); 19938 if (delete_cnt == 0) 19939 return; 19940 IP_STAT(ipst, ip_trash_ire_reclaim_success); 19941 /* Always delete all unused offlink entries */ 19942 icr.icr_ipst = ipst; 19943 icr.icr_unused = 1; 19944 if (delete_cnt <= icc.icc_unused) { 19945 /* 19946 * Only need to free unused entries. In other words, 19947 * there are enough unused entries to free to meet our 19948 * target number of freed ire cache entries. 19949 */ 19950 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 19951 ncr.ncr_host = 0; 19952 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 19953 /* 19954 * Only need to free unused entries, plus a fraction of offlink 19955 * entries. It follows from the first if statement that 19956 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 19957 */ 19958 delete_cnt -= icc.icc_unused; 19959 /* Round up # deleted by truncating fraction */ 19960 icr.icr_offlink = icc.icc_offlink / delete_cnt; 19961 icr.icr_pmtu = icr.icr_onlink = 0; 19962 ncr.ncr_host = 0; 19963 } else if (delete_cnt <= 19964 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 19965 /* 19966 * Free all unused and offlink entries, plus a fraction of 19967 * pmtu entries. It follows from the previous if statement 19968 * that icc_pmtu is non-zero, and that 19969 * delete_cnt != icc_unused + icc_offlink. 19970 */ 19971 icr.icr_offlink = 1; 19972 delete_cnt -= icc.icc_unused + icc.icc_offlink; 19973 /* Round up # deleted by truncating fraction */ 19974 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 19975 icr.icr_onlink = 0; 19976 ncr.ncr_host = 0; 19977 } else { 19978 /* 19979 * Free all unused, offlink, and pmtu entries, plus a fraction 19980 * of onlink entries. If we're here, then we know that 19981 * icc_onlink is non-zero, and that 19982 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 19983 */ 19984 icr.icr_offlink = icr.icr_pmtu = 1; 19985 delete_cnt -= icc.icc_unused + icc.icc_offlink + 19986 icc.icc_pmtu; 19987 /* Round up # deleted by truncating fraction */ 19988 icr.icr_onlink = icc.icc_onlink / delete_cnt; 19989 /* Using the same delete fraction as for onlink IREs */ 19990 ncr.ncr_host = ncc.ncc_host / delete_cnt; 19991 } 19992 #ifdef DEBUG 19993 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 19994 "fractions %d/%d/%d/%d\n", 19995 icc.icc_total/ipst->ips_ip_ire_reclaim_fraction, icc.icc_total, 19996 icc.icc_unused, icc.icc_offlink, 19997 icc.icc_pmtu, icc.icc_onlink, 19998 icr.icr_unused, icr.icr_offlink, 19999 icr.icr_pmtu, icr.icr_onlink)); 20000 #endif 20001 ire_walk(ire_cache_reclaim, (char *)&icr, ipst); 20002 if (ncr.ncr_host != 0) 20003 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 20004 (uchar_t *)&ncr, ipst); 20005 #ifdef DEBUG 20006 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 20007 icc.icc_pmtu = 0; icc.icc_onlink = 0; 20008 ire_walk(ire_cache_count, (char *)&icc, ipst); 20009 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 20010 icc.icc_total, icc.icc_unused, icc.icc_offlink, 20011 icc.icc_pmtu, icc.icc_onlink)); 20012 #endif 20013 } 20014 20015 /* 20016 * ip_unbind is called when a copy of an unbind request is received from the 20017 * upper level protocol. We remove this conn from any fanout hash list it is 20018 * on, and zero out the bind information. No reply is expected up above. 20019 */ 20020 mblk_t * 20021 ip_unbind(queue_t *q, mblk_t *mp) 20022 { 20023 conn_t *connp = Q_TO_CONN(q); 20024 20025 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 20026 20027 if (is_system_labeled() && connp->conn_anon_port) { 20028 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 20029 connp->conn_mlp_type, connp->conn_ulp, 20030 ntohs(connp->conn_lport), B_FALSE); 20031 connp->conn_anon_port = 0; 20032 } 20033 connp->conn_mlp_type = mlptSingle; 20034 20035 ipcl_hash_remove(connp); 20036 20037 ASSERT(mp->b_cont == NULL); 20038 /* 20039 * Convert mp into a T_OK_ACK 20040 */ 20041 mp = mi_tpi_ok_ack_alloc(mp); 20042 20043 /* 20044 * should not happen in practice... T_OK_ACK is smaller than the 20045 * original message. 20046 */ 20047 if (mp == NULL) 20048 return (NULL); 20049 20050 return (mp); 20051 } 20052 20053 /* 20054 * Write side put procedure. Outbound data, IOCTLs, responses from 20055 * resolvers, etc, come down through here. 20056 * 20057 * arg2 is always a queue_t *. 20058 * When that queue is an ill_t (i.e. q_next != NULL), then arg must be 20059 * the zoneid. 20060 * When that queue is not an ill_t, then arg must be a conn_t pointer. 20061 */ 20062 void 20063 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 20064 { 20065 ip_output_options(arg, mp, arg2, caller, &zero_info); 20066 } 20067 20068 void 20069 ip_output_options(void *arg, mblk_t *mp, void *arg2, int caller, 20070 ip_opt_info_t *infop) 20071 { 20072 conn_t *connp = NULL; 20073 queue_t *q = (queue_t *)arg2; 20074 ipha_t *ipha; 20075 #define rptr ((uchar_t *)ipha) 20076 ire_t *ire = NULL; 20077 ire_t *sctp_ire = NULL; 20078 uint32_t v_hlen_tos_len; 20079 ipaddr_t dst; 20080 mblk_t *first_mp = NULL; 20081 boolean_t mctl_present; 20082 ipsec_out_t *io; 20083 int match_flags; 20084 ill_t *attach_ill = NULL; 20085 /* Bind to IPIF_NOFAILOVER ill etc. */ 20086 ill_t *xmit_ill = NULL; /* IP_PKTINFO etc. */ 20087 ipif_t *dst_ipif; 20088 boolean_t multirt_need_resolve = B_FALSE; 20089 mblk_t *copy_mp = NULL; 20090 int err; 20091 zoneid_t zoneid; 20092 int adjust; 20093 uint16_t iplen; 20094 boolean_t need_decref = B_FALSE; 20095 boolean_t ignore_dontroute = B_FALSE; 20096 boolean_t ignore_nexthop = B_FALSE; 20097 boolean_t ip_nexthop = B_FALSE; 20098 ipaddr_t nexthop_addr; 20099 ip_stack_t *ipst; 20100 20101 #ifdef _BIG_ENDIAN 20102 #define V_HLEN (v_hlen_tos_len >> 24) 20103 #else 20104 #define V_HLEN (v_hlen_tos_len & 0xFF) 20105 #endif 20106 20107 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 20108 "ip_wput_start: q %p", q); 20109 20110 /* 20111 * ip_wput fast path 20112 */ 20113 20114 /* is packet from ARP ? */ 20115 if (q->q_next != NULL) { 20116 zoneid = (zoneid_t)(uintptr_t)arg; 20117 goto qnext; 20118 } 20119 20120 connp = (conn_t *)arg; 20121 ASSERT(connp != NULL); 20122 zoneid = connp->conn_zoneid; 20123 ipst = connp->conn_netstack->netstack_ip; 20124 20125 /* is queue flow controlled? */ 20126 if ((q->q_first != NULL || connp->conn_draining) && 20127 (caller == IP_WPUT)) { 20128 ASSERT(!need_decref); 20129 (void) putq(q, mp); 20130 return; 20131 } 20132 20133 /* Multidata transmit? */ 20134 if (DB_TYPE(mp) == M_MULTIDATA) { 20135 /* 20136 * We should never get here, since all Multidata messages 20137 * originating from tcp should have been directed over to 20138 * tcp_multisend() in the first place. 20139 */ 20140 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20141 freemsg(mp); 20142 return; 20143 } else if (DB_TYPE(mp) != M_DATA) 20144 goto notdata; 20145 20146 if (mp->b_flag & MSGHASREF) { 20147 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20148 mp->b_flag &= ~MSGHASREF; 20149 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 20150 need_decref = B_TRUE; 20151 } 20152 ipha = (ipha_t *)mp->b_rptr; 20153 20154 /* is IP header non-aligned or mblk smaller than basic IP header */ 20155 #ifndef SAFETY_BEFORE_SPEED 20156 if (!OK_32PTR(rptr) || 20157 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 20158 goto hdrtoosmall; 20159 #endif 20160 20161 ASSERT(OK_32PTR(ipha)); 20162 20163 /* 20164 * This function assumes that mp points to an IPv4 packet. If it's the 20165 * wrong version, we'll catch it again in ip_output_v6. 20166 * 20167 * Note that this is *only* locally-generated output here, and never 20168 * forwarded data, and that we need to deal only with transports that 20169 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 20170 * label.) 20171 */ 20172 if (is_system_labeled() && 20173 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 20174 !connp->conn_ulp_labeled) { 20175 err = tsol_check_label(BEST_CRED(mp, connp), &mp, &adjust, 20176 connp->conn_mac_exempt, ipst); 20177 ipha = (ipha_t *)mp->b_rptr; 20178 if (err != 0) { 20179 first_mp = mp; 20180 if (err == EINVAL) 20181 goto icmp_parameter_problem; 20182 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 20183 goto discard_pkt; 20184 } 20185 iplen = ntohs(ipha->ipha_length) + adjust; 20186 ipha->ipha_length = htons(iplen); 20187 } 20188 20189 ASSERT(infop != NULL); 20190 20191 if (infop->ip_opt_flags & IP_VERIFY_SRC) { 20192 /* 20193 * IP_PKTINFO ancillary option is present. 20194 * IPCL_ZONEID is used to honor IP_ALLZONES option which 20195 * allows using address of any zone as the source address. 20196 */ 20197 ire = ire_ctable_lookup(ipha->ipha_src, 0, 20198 (IRE_LOCAL|IRE_LOOPBACK), NULL, IPCL_ZONEID(connp), 20199 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 20200 if (ire == NULL) 20201 goto drop_pkt; 20202 ire_refrele(ire); 20203 ire = NULL; 20204 } 20205 20206 /* 20207 * IP_DONTFAILOVER_IF and IP_BOUND_IF have precedence over ill index 20208 * passed in IP_PKTINFO. 20209 */ 20210 if (infop->ip_opt_ill_index != 0 && 20211 connp->conn_outgoing_ill == NULL && 20212 connp->conn_nofailover_ill == NULL) { 20213 20214 xmit_ill = ill_lookup_on_ifindex( 20215 infop->ip_opt_ill_index, B_FALSE, NULL, NULL, NULL, NULL, 20216 ipst); 20217 20218 if (xmit_ill == NULL || IS_VNI(xmit_ill)) 20219 goto drop_pkt; 20220 /* 20221 * check that there is an ipif belonging 20222 * to our zone. IPCL_ZONEID is not used because 20223 * IP_ALLZONES option is valid only when the ill is 20224 * accessible from all zones i.e has a valid ipif in 20225 * all zones. 20226 */ 20227 if (!ipif_lookup_zoneid_group(xmit_ill, zoneid, 0, NULL)) { 20228 goto drop_pkt; 20229 } 20230 } 20231 20232 /* 20233 * If there is a policy, try to attach an ipsec_out in 20234 * the front. At the end, first_mp either points to a 20235 * M_DATA message or IPSEC_OUT message linked to a 20236 * M_DATA message. We have to do it now as we might 20237 * lose the "conn" if we go through ip_newroute. 20238 */ 20239 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 20240 if (((mp = ipsec_attach_ipsec_out(&mp, connp, NULL, 20241 ipha->ipha_protocol, ipst->ips_netstack)) == NULL)) { 20242 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20243 if (need_decref) 20244 CONN_DEC_REF(connp); 20245 return; 20246 } else { 20247 ASSERT(mp->b_datap->db_type == M_CTL); 20248 first_mp = mp; 20249 mp = mp->b_cont; 20250 mctl_present = B_TRUE; 20251 } 20252 } else { 20253 first_mp = mp; 20254 mctl_present = B_FALSE; 20255 } 20256 20257 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20258 20259 /* is wrong version or IP options present */ 20260 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 20261 goto version_hdrlen_check; 20262 dst = ipha->ipha_dst; 20263 20264 if (connp->conn_nofailover_ill != NULL) { 20265 attach_ill = conn_get_held_ill(connp, 20266 &connp->conn_nofailover_ill, &err); 20267 if (err == ILL_LOOKUP_FAILED) { 20268 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20269 if (need_decref) 20270 CONN_DEC_REF(connp); 20271 freemsg(first_mp); 20272 return; 20273 } 20274 } 20275 20276 /* If IP_BOUND_IF has been set, use that ill. */ 20277 if (connp->conn_outgoing_ill != NULL) { 20278 xmit_ill = conn_get_held_ill(connp, 20279 &connp->conn_outgoing_ill, &err); 20280 if (err == ILL_LOOKUP_FAILED) 20281 goto drop_pkt; 20282 20283 goto send_from_ill; 20284 } 20285 20286 /* is packet multicast? */ 20287 if (CLASSD(dst)) 20288 goto multicast; 20289 20290 /* 20291 * If xmit_ill is set above due to index passed in ip_pkt_info. It 20292 * takes precedence over conn_dontroute and conn_nexthop_set 20293 */ 20294 if (xmit_ill != NULL) 20295 goto send_from_ill; 20296 20297 if (connp->conn_dontroute || connp->conn_nexthop_set) { 20298 /* 20299 * If the destination is a broadcast, local, or loopback 20300 * address, SO_DONTROUTE and IP_NEXTHOP go through the 20301 * standard path. 20302 */ 20303 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20304 if ((ire == NULL) || (ire->ire_type & 20305 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK)) == 0) { 20306 if (ire != NULL) { 20307 ire_refrele(ire); 20308 /* No more access to ire */ 20309 ire = NULL; 20310 } 20311 /* 20312 * bypass routing checks and go directly to interface. 20313 */ 20314 if (connp->conn_dontroute) 20315 goto dontroute; 20316 20317 ASSERT(connp->conn_nexthop_set); 20318 ip_nexthop = B_TRUE; 20319 nexthop_addr = connp->conn_nexthop_v4; 20320 goto send_from_ill; 20321 } 20322 20323 /* Must be a broadcast, a loopback or a local ire */ 20324 ire_refrele(ire); 20325 /* No more access to ire */ 20326 ire = NULL; 20327 } 20328 20329 if (attach_ill != NULL) 20330 goto send_from_ill; 20331 20332 /* 20333 * We cache IRE_CACHEs to avoid lookups. We don't do 20334 * this for the tcp global queue and listen end point 20335 * as it does not really have a real destination to 20336 * talk to. This is also true for SCTP. 20337 */ 20338 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 20339 !connp->conn_fully_bound) { 20340 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20341 if (ire == NULL) 20342 goto noirefound; 20343 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20344 "ip_wput_end: q %p (%S)", q, "end"); 20345 20346 /* 20347 * Check if the ire has the RTF_MULTIRT flag, inherited 20348 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20349 */ 20350 if (ire->ire_flags & RTF_MULTIRT) { 20351 20352 /* 20353 * Force the TTL of multirouted packets if required. 20354 * The TTL of such packets is bounded by the 20355 * ip_multirt_ttl ndd variable. 20356 */ 20357 if ((ipst->ips_ip_multirt_ttl > 0) && 20358 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20359 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20360 "(was %d), dst 0x%08x\n", 20361 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20362 ntohl(ire->ire_addr))); 20363 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20364 } 20365 /* 20366 * We look at this point if there are pending 20367 * unresolved routes. ire_multirt_resolvable() 20368 * checks in O(n) that all IRE_OFFSUBNET ire 20369 * entries for the packet's destination and 20370 * flagged RTF_MULTIRT are currently resolved. 20371 * If some remain unresolved, we make a copy 20372 * of the current message. It will be used 20373 * to initiate additional route resolutions. 20374 */ 20375 multirt_need_resolve = 20376 ire_multirt_need_resolve(ire->ire_addr, 20377 MBLK_GETLABEL(first_mp), ipst); 20378 ip2dbg(("ip_wput[TCP]: ire %p, " 20379 "multirt_need_resolve %d, first_mp %p\n", 20380 (void *)ire, multirt_need_resolve, 20381 (void *)first_mp)); 20382 if (multirt_need_resolve) { 20383 copy_mp = copymsg(first_mp); 20384 if (copy_mp != NULL) { 20385 MULTIRT_DEBUG_TAG(copy_mp); 20386 } 20387 } 20388 } 20389 20390 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20391 20392 /* 20393 * Try to resolve another multiroute if 20394 * ire_multirt_need_resolve() deemed it necessary. 20395 */ 20396 if (copy_mp != NULL) 20397 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20398 if (need_decref) 20399 CONN_DEC_REF(connp); 20400 return; 20401 } 20402 20403 /* 20404 * Access to conn_ire_cache. (protected by conn_lock) 20405 * 20406 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 20407 * the ire bucket lock here to check for CONDEMNED as it is okay to 20408 * send a packet or two with the IRE_CACHE that is going away. 20409 * Access to the ire requires an ire refhold on the ire prior to 20410 * its use since an interface unplumb thread may delete the cached 20411 * ire and release the refhold at any time. 20412 * 20413 * Caching an ire in the conn_ire_cache 20414 * 20415 * o Caching an ire pointer in the conn requires a strict check for 20416 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 20417 * ires before cleaning up the conns. So the caching of an ire pointer 20418 * in the conn is done after making sure under the bucket lock that the 20419 * ire has not yet been marked CONDEMNED. Otherwise we will end up 20420 * caching an ire after the unplumb thread has cleaned up the conn. 20421 * If the conn does not send a packet subsequently the unplumb thread 20422 * will be hanging waiting for the ire count to drop to zero. 20423 * 20424 * o We also need to atomically test for a null conn_ire_cache and 20425 * set the conn_ire_cache under the the protection of the conn_lock 20426 * to avoid races among concurrent threads trying to simultaneously 20427 * cache an ire in the conn_ire_cache. 20428 */ 20429 mutex_enter(&connp->conn_lock); 20430 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 20431 20432 if (ire != NULL && ire->ire_addr == dst && 20433 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20434 20435 IRE_REFHOLD(ire); 20436 mutex_exit(&connp->conn_lock); 20437 20438 } else { 20439 boolean_t cached = B_FALSE; 20440 connp->conn_ire_cache = NULL; 20441 mutex_exit(&connp->conn_lock); 20442 /* Release the old ire */ 20443 if (ire != NULL && sctp_ire == NULL) 20444 IRE_REFRELE_NOTR(ire); 20445 20446 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20447 if (ire == NULL) 20448 goto noirefound; 20449 IRE_REFHOLD_NOTR(ire); 20450 20451 mutex_enter(&connp->conn_lock); 20452 if (CONN_CACHE_IRE(connp) && connp->conn_ire_cache == NULL) { 20453 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 20454 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20455 if (connp->conn_ulp == IPPROTO_TCP) 20456 TCP_CHECK_IREINFO(connp->conn_tcp, ire); 20457 connp->conn_ire_cache = ire; 20458 cached = B_TRUE; 20459 } 20460 rw_exit(&ire->ire_bucket->irb_lock); 20461 } 20462 mutex_exit(&connp->conn_lock); 20463 20464 /* 20465 * We can continue to use the ire but since it was 20466 * not cached, we should drop the extra reference. 20467 */ 20468 if (!cached) 20469 IRE_REFRELE_NOTR(ire); 20470 } 20471 20472 20473 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20474 "ip_wput_end: q %p (%S)", q, "end"); 20475 20476 /* 20477 * Check if the ire has the RTF_MULTIRT flag, inherited 20478 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20479 */ 20480 if (ire->ire_flags & RTF_MULTIRT) { 20481 20482 /* 20483 * Force the TTL of multirouted packets if required. 20484 * The TTL of such packets is bounded by the 20485 * ip_multirt_ttl ndd variable. 20486 */ 20487 if ((ipst->ips_ip_multirt_ttl > 0) && 20488 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20489 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20490 "(was %d), dst 0x%08x\n", 20491 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20492 ntohl(ire->ire_addr))); 20493 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20494 } 20495 20496 /* 20497 * At this point, we check to see if there are any pending 20498 * unresolved routes. ire_multirt_resolvable() 20499 * checks in O(n) that all IRE_OFFSUBNET ire 20500 * entries for the packet's destination and 20501 * flagged RTF_MULTIRT are currently resolved. 20502 * If some remain unresolved, we make a copy 20503 * of the current message. It will be used 20504 * to initiate additional route resolutions. 20505 */ 20506 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 20507 MBLK_GETLABEL(first_mp), ipst); 20508 ip2dbg(("ip_wput[not TCP]: ire %p, " 20509 "multirt_need_resolve %d, first_mp %p\n", 20510 (void *)ire, multirt_need_resolve, (void *)first_mp)); 20511 if (multirt_need_resolve) { 20512 copy_mp = copymsg(first_mp); 20513 if (copy_mp != NULL) { 20514 MULTIRT_DEBUG_TAG(copy_mp); 20515 } 20516 } 20517 } 20518 20519 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20520 20521 /* 20522 * Try to resolve another multiroute if 20523 * ire_multirt_resolvable() deemed it necessary 20524 */ 20525 if (copy_mp != NULL) 20526 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20527 if (need_decref) 20528 CONN_DEC_REF(connp); 20529 return; 20530 20531 qnext: 20532 /* 20533 * Upper Level Protocols pass down complete IP datagrams 20534 * as M_DATA messages. Everything else is a sideshow. 20535 * 20536 * 1) We could be re-entering ip_wput because of ip_neworute 20537 * in which case we could have a IPSEC_OUT message. We 20538 * need to pass through ip_wput like other datagrams and 20539 * hence cannot branch to ip_wput_nondata. 20540 * 20541 * 2) ARP, AH, ESP, and other clients who are on the module 20542 * instance of IP stream, give us something to deal with. 20543 * We will handle AH and ESP here and rest in ip_wput_nondata. 20544 * 20545 * 3) ICMP replies also could come here. 20546 */ 20547 ipst = ILLQ_TO_IPST(q); 20548 20549 if (DB_TYPE(mp) != M_DATA) { 20550 notdata: 20551 if (DB_TYPE(mp) == M_CTL) { 20552 /* 20553 * M_CTL messages are used by ARP, AH and ESP to 20554 * communicate with IP. We deal with IPSEC_IN and 20555 * IPSEC_OUT here. ip_wput_nondata handles other 20556 * cases. 20557 */ 20558 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 20559 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 20560 first_mp = mp->b_cont; 20561 first_mp->b_flag &= ~MSGHASREF; 20562 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20563 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 20564 CONN_DEC_REF(connp); 20565 connp = NULL; 20566 } 20567 if (ii->ipsec_info_type == IPSEC_IN) { 20568 /* 20569 * Either this message goes back to 20570 * IPsec for further processing or to 20571 * ULP after policy checks. 20572 */ 20573 ip_fanout_proto_again(mp, NULL, NULL, NULL); 20574 return; 20575 } else if (ii->ipsec_info_type == IPSEC_OUT) { 20576 io = (ipsec_out_t *)ii; 20577 if (io->ipsec_out_proc_begin) { 20578 /* 20579 * IPsec processing has already started. 20580 * Complete it. 20581 * IPQoS notes: We don't care what is 20582 * in ipsec_out_ill_index since this 20583 * won't be processed for IPQoS policies 20584 * in ipsec_out_process. 20585 */ 20586 ipsec_out_process(q, mp, NULL, 20587 io->ipsec_out_ill_index); 20588 return; 20589 } else { 20590 connp = (q->q_next != NULL) ? 20591 NULL : Q_TO_CONN(q); 20592 first_mp = mp; 20593 mp = mp->b_cont; 20594 mctl_present = B_TRUE; 20595 } 20596 zoneid = io->ipsec_out_zoneid; 20597 ASSERT(zoneid != ALL_ZONES); 20598 } else if (ii->ipsec_info_type == IPSEC_CTL) { 20599 /* 20600 * It's an IPsec control message requesting 20601 * an SADB update to be sent to the IPsec 20602 * hardware acceleration capable ills. 20603 */ 20604 ipsec_ctl_t *ipsec_ctl = 20605 (ipsec_ctl_t *)mp->b_rptr; 20606 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 20607 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 20608 mblk_t *cmp = mp->b_cont; 20609 20610 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 20611 ASSERT(cmp != NULL); 20612 20613 freeb(mp); 20614 ill_ipsec_capab_send_all(satype, cmp, sa, 20615 ipst->ips_netstack); 20616 return; 20617 } else { 20618 /* 20619 * This must be ARP or special TSOL signaling. 20620 */ 20621 ip_wput_nondata(NULL, q, mp, NULL); 20622 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20623 "ip_wput_end: q %p (%S)", q, "nondata"); 20624 return; 20625 } 20626 } else { 20627 /* 20628 * This must be non-(ARP/AH/ESP) messages. 20629 */ 20630 ASSERT(!need_decref); 20631 ip_wput_nondata(NULL, q, mp, NULL); 20632 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20633 "ip_wput_end: q %p (%S)", q, "nondata"); 20634 return; 20635 } 20636 } else { 20637 first_mp = mp; 20638 mctl_present = B_FALSE; 20639 } 20640 20641 ASSERT(first_mp != NULL); 20642 /* 20643 * ICMP echo replies attach an ipsec_out and set ipsec_out_attach_if 20644 * to make sure that this packet goes out on the same interface it 20645 * came in. We handle that here. 20646 */ 20647 if (mctl_present) { 20648 uint_t ifindex; 20649 20650 io = (ipsec_out_t *)first_mp->b_rptr; 20651 if (io->ipsec_out_attach_if || io->ipsec_out_ip_nexthop) { 20652 /* 20653 * We may have lost the conn context if we are 20654 * coming here from ip_newroute(). Copy the 20655 * nexthop information. 20656 */ 20657 if (io->ipsec_out_ip_nexthop) { 20658 ip_nexthop = B_TRUE; 20659 nexthop_addr = io->ipsec_out_nexthop_addr; 20660 20661 ipha = (ipha_t *)mp->b_rptr; 20662 dst = ipha->ipha_dst; 20663 goto send_from_ill; 20664 } else { 20665 ASSERT(io->ipsec_out_ill_index != 0); 20666 ifindex = io->ipsec_out_ill_index; 20667 attach_ill = ill_lookup_on_ifindex(ifindex, 20668 B_FALSE, NULL, NULL, NULL, NULL, ipst); 20669 if (attach_ill == NULL) { 20670 ASSERT(xmit_ill == NULL); 20671 ip1dbg(("ip_output: bad ifindex for " 20672 "(BIND TO IPIF_NOFAILOVER) %d\n", 20673 ifindex)); 20674 freemsg(first_mp); 20675 BUMP_MIB(&ipst->ips_ip_mib, 20676 ipIfStatsOutDiscards); 20677 ASSERT(!need_decref); 20678 return; 20679 } 20680 } 20681 } 20682 } 20683 20684 ASSERT(xmit_ill == NULL); 20685 20686 /* We have a complete IP datagram heading outbound. */ 20687 ipha = (ipha_t *)mp->b_rptr; 20688 20689 #ifndef SPEED_BEFORE_SAFETY 20690 /* 20691 * Make sure we have a full-word aligned message and that at least 20692 * a simple IP header is accessible in the first message. If not, 20693 * try a pullup. 20694 */ 20695 if (!OK_32PTR(rptr) || 20696 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) { 20697 hdrtoosmall: 20698 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 20699 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20700 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 20701 if (first_mp == NULL) 20702 first_mp = mp; 20703 goto discard_pkt; 20704 } 20705 20706 /* This function assumes that mp points to an IPv4 packet. */ 20707 if (is_system_labeled() && q->q_next == NULL && 20708 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 20709 !connp->conn_ulp_labeled) { 20710 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 20711 &adjust, connp->conn_mac_exempt, ipst); 20712 ipha = (ipha_t *)mp->b_rptr; 20713 if (first_mp != NULL) 20714 first_mp->b_cont = mp; 20715 if (err != 0) { 20716 if (first_mp == NULL) 20717 first_mp = mp; 20718 if (err == EINVAL) 20719 goto icmp_parameter_problem; 20720 ip2dbg(("ip_wput: label check failed (%d)\n", 20721 err)); 20722 goto discard_pkt; 20723 } 20724 iplen = ntohs(ipha->ipha_length) + adjust; 20725 ipha->ipha_length = htons(iplen); 20726 } 20727 20728 ipha = (ipha_t *)mp->b_rptr; 20729 if (first_mp == NULL) { 20730 ASSERT(attach_ill == NULL && xmit_ill == NULL); 20731 /* 20732 * If we got here because of "goto hdrtoosmall" 20733 * We need to attach a IPSEC_OUT. 20734 */ 20735 if (connp->conn_out_enforce_policy) { 20736 if (((mp = ipsec_attach_ipsec_out(&mp, connp, 20737 NULL, ipha->ipha_protocol, 20738 ipst->ips_netstack)) == NULL)) { 20739 BUMP_MIB(&ipst->ips_ip_mib, 20740 ipIfStatsOutDiscards); 20741 if (need_decref) 20742 CONN_DEC_REF(connp); 20743 return; 20744 } else { 20745 ASSERT(mp->b_datap->db_type == M_CTL); 20746 first_mp = mp; 20747 mp = mp->b_cont; 20748 mctl_present = B_TRUE; 20749 } 20750 } else { 20751 first_mp = mp; 20752 mctl_present = B_FALSE; 20753 } 20754 } 20755 } 20756 #endif 20757 20758 /* Most of the code below is written for speed, not readability */ 20759 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20760 20761 /* 20762 * If ip_newroute() fails, we're going to need a full 20763 * header for the icmp wraparound. 20764 */ 20765 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 20766 uint_t v_hlen; 20767 version_hdrlen_check: 20768 ASSERT(first_mp != NULL); 20769 v_hlen = V_HLEN; 20770 /* 20771 * siphon off IPv6 packets coming down from transport 20772 * layer modules here. 20773 * Note: high-order bit carries NUD reachability confirmation 20774 */ 20775 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 20776 /* 20777 * FIXME: assume that callers of ip_output* call 20778 * the right version? 20779 */ 20780 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutWrongIPVersion); 20781 ASSERT(xmit_ill == NULL); 20782 if (attach_ill != NULL) 20783 ill_refrele(attach_ill); 20784 if (need_decref) 20785 mp->b_flag |= MSGHASREF; 20786 (void) ip_output_v6(arg, first_mp, arg2, caller); 20787 return; 20788 } 20789 20790 if ((v_hlen >> 4) != IP_VERSION) { 20791 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20792 "ip_wput_end: q %p (%S)", q, "badvers"); 20793 goto discard_pkt; 20794 } 20795 /* 20796 * Is the header length at least 20 bytes? 20797 * 20798 * Are there enough bytes accessible in the header? If 20799 * not, try a pullup. 20800 */ 20801 v_hlen &= 0xF; 20802 v_hlen <<= 2; 20803 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 20804 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20805 "ip_wput_end: q %p (%S)", q, "badlen"); 20806 goto discard_pkt; 20807 } 20808 if (v_hlen > (mp->b_wptr - rptr)) { 20809 if (!pullupmsg(mp, v_hlen)) { 20810 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20811 "ip_wput_end: q %p (%S)", q, "badpullup2"); 20812 goto discard_pkt; 20813 } 20814 ipha = (ipha_t *)mp->b_rptr; 20815 } 20816 /* 20817 * Move first entry from any source route into ipha_dst and 20818 * verify the options 20819 */ 20820 if (ip_wput_options(q, first_mp, ipha, mctl_present, 20821 zoneid, ipst)) { 20822 ASSERT(xmit_ill == NULL); 20823 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20824 if (attach_ill != NULL) 20825 ill_refrele(attach_ill); 20826 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20827 "ip_wput_end: q %p (%S)", q, "badopts"); 20828 if (need_decref) 20829 CONN_DEC_REF(connp); 20830 return; 20831 } 20832 } 20833 dst = ipha->ipha_dst; 20834 20835 /* 20836 * Try to get an IRE_CACHE for the destination address. If we can't, 20837 * we have to run the packet through ip_newroute which will take 20838 * the appropriate action to arrange for an IRE_CACHE, such as querying 20839 * a resolver, or assigning a default gateway, etc. 20840 */ 20841 if (CLASSD(dst)) { 20842 ipif_t *ipif; 20843 uint32_t setsrc = 0; 20844 20845 multicast: 20846 ASSERT(first_mp != NULL); 20847 ip2dbg(("ip_wput: CLASSD\n")); 20848 if (connp == NULL) { 20849 /* 20850 * Use the first good ipif on the ill. 20851 * XXX Should this ever happen? (Appears 20852 * to show up with just ppp and no ethernet due 20853 * to in.rdisc.) 20854 * However, ire_send should be able to 20855 * call ip_wput_ire directly. 20856 * 20857 * XXX Also, this can happen for ICMP and other packets 20858 * with multicast source addresses. Perhaps we should 20859 * fix things so that we drop the packet in question, 20860 * but for now, just run with it. 20861 */ 20862 ill_t *ill = (ill_t *)q->q_ptr; 20863 20864 /* 20865 * Don't honor attach_if for this case. If ill 20866 * is part of the group, ipif could belong to 20867 * any ill and we cannot maintain attach_ill 20868 * and ipif_ill same anymore and the assert 20869 * below would fail. 20870 */ 20871 if (mctl_present && io->ipsec_out_attach_if) { 20872 io->ipsec_out_ill_index = 0; 20873 io->ipsec_out_attach_if = B_FALSE; 20874 ASSERT(attach_ill != NULL); 20875 ill_refrele(attach_ill); 20876 attach_ill = NULL; 20877 } 20878 20879 ASSERT(attach_ill == NULL); 20880 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 20881 if (ipif == NULL) { 20882 if (need_decref) 20883 CONN_DEC_REF(connp); 20884 freemsg(first_mp); 20885 return; 20886 } 20887 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 20888 ntohl(dst), ill->ill_name)); 20889 } else { 20890 /* 20891 * The order of precedence is IP_BOUND_IF, IP_PKTINFO 20892 * and IP_MULTICAST_IF. The block comment above this 20893 * function explains the locking mechanism used here. 20894 */ 20895 if (xmit_ill == NULL) { 20896 xmit_ill = conn_get_held_ill(connp, 20897 &connp->conn_outgoing_ill, &err); 20898 if (err == ILL_LOOKUP_FAILED) { 20899 ip1dbg(("ip_wput: No ill for " 20900 "IP_BOUND_IF\n")); 20901 BUMP_MIB(&ipst->ips_ip_mib, 20902 ipIfStatsOutNoRoutes); 20903 goto drop_pkt; 20904 } 20905 } 20906 20907 if (xmit_ill == NULL) { 20908 ipif = conn_get_held_ipif(connp, 20909 &connp->conn_multicast_ipif, &err); 20910 if (err == IPIF_LOOKUP_FAILED) { 20911 ip1dbg(("ip_wput: No ipif for " 20912 "multicast\n")); 20913 BUMP_MIB(&ipst->ips_ip_mib, 20914 ipIfStatsOutNoRoutes); 20915 goto drop_pkt; 20916 } 20917 } 20918 if (xmit_ill != NULL) { 20919 ipif = ipif_get_next_ipif(NULL, xmit_ill); 20920 if (ipif == NULL) { 20921 ip1dbg(("ip_wput: No ipif for " 20922 "xmit_ill\n")); 20923 BUMP_MIB(&ipst->ips_ip_mib, 20924 ipIfStatsOutNoRoutes); 20925 goto drop_pkt; 20926 } 20927 } else if (ipif == NULL || ipif->ipif_isv6) { 20928 /* 20929 * We must do this ipif determination here 20930 * else we could pass through ip_newroute 20931 * and come back here without the conn context. 20932 * 20933 * Note: we do late binding i.e. we bind to 20934 * the interface when the first packet is sent. 20935 * For performance reasons we do not rebind on 20936 * each packet but keep the binding until the 20937 * next IP_MULTICAST_IF option. 20938 * 20939 * conn_multicast_{ipif,ill} are shared between 20940 * IPv4 and IPv6 and AF_INET6 sockets can 20941 * send both IPv4 and IPv6 packets. Hence 20942 * we have to check that "isv6" matches above. 20943 */ 20944 if (ipif != NULL) 20945 ipif_refrele(ipif); 20946 ipif = ipif_lookup_group(dst, zoneid, ipst); 20947 if (ipif == NULL) { 20948 ip1dbg(("ip_wput: No ipif for " 20949 "multicast\n")); 20950 BUMP_MIB(&ipst->ips_ip_mib, 20951 ipIfStatsOutNoRoutes); 20952 goto drop_pkt; 20953 } 20954 err = conn_set_held_ipif(connp, 20955 &connp->conn_multicast_ipif, ipif); 20956 if (err == IPIF_LOOKUP_FAILED) { 20957 ipif_refrele(ipif); 20958 ip1dbg(("ip_wput: No ipif for " 20959 "multicast\n")); 20960 BUMP_MIB(&ipst->ips_ip_mib, 20961 ipIfStatsOutNoRoutes); 20962 goto drop_pkt; 20963 } 20964 } 20965 } 20966 ASSERT(!ipif->ipif_isv6); 20967 /* 20968 * As we may lose the conn by the time we reach ip_wput_ire, 20969 * we copy conn_multicast_loop and conn_dontroute on to an 20970 * ipsec_out. In case if this datagram goes out secure, 20971 * we need the ill_index also. Copy that also into the 20972 * ipsec_out. 20973 */ 20974 if (mctl_present) { 20975 io = (ipsec_out_t *)first_mp->b_rptr; 20976 ASSERT(first_mp->b_datap->db_type == M_CTL); 20977 ASSERT(io->ipsec_out_type == IPSEC_OUT); 20978 } else { 20979 ASSERT(mp == first_mp); 20980 if ((first_mp = allocb(sizeof (ipsec_info_t), 20981 BPRI_HI)) == NULL) { 20982 ipif_refrele(ipif); 20983 first_mp = mp; 20984 goto discard_pkt; 20985 } 20986 first_mp->b_datap->db_type = M_CTL; 20987 first_mp->b_wptr += sizeof (ipsec_info_t); 20988 /* ipsec_out_secure is B_FALSE now */ 20989 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 20990 io = (ipsec_out_t *)first_mp->b_rptr; 20991 io->ipsec_out_type = IPSEC_OUT; 20992 io->ipsec_out_len = sizeof (ipsec_out_t); 20993 io->ipsec_out_use_global_policy = B_TRUE; 20994 io->ipsec_out_ns = ipst->ips_netstack; 20995 first_mp->b_cont = mp; 20996 mctl_present = B_TRUE; 20997 } 20998 if (attach_ill != NULL) { 20999 ASSERT(attach_ill == ipif->ipif_ill); 21000 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21001 21002 /* 21003 * Check if we need an ire that will not be 21004 * looked up by anybody else i.e. HIDDEN. 21005 */ 21006 if (ill_is_probeonly(attach_ill)) { 21007 match_flags |= MATCH_IRE_MARK_HIDDEN; 21008 } 21009 io->ipsec_out_ill_index = 21010 attach_ill->ill_phyint->phyint_ifindex; 21011 io->ipsec_out_attach_if = B_TRUE; 21012 } else { 21013 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 21014 io->ipsec_out_ill_index = 21015 ipif->ipif_ill->ill_phyint->phyint_ifindex; 21016 } 21017 if (connp != NULL) { 21018 io->ipsec_out_multicast_loop = 21019 connp->conn_multicast_loop; 21020 io->ipsec_out_dontroute = connp->conn_dontroute; 21021 io->ipsec_out_zoneid = connp->conn_zoneid; 21022 } 21023 /* 21024 * If the application uses IP_MULTICAST_IF with 21025 * different logical addresses of the same ILL, we 21026 * need to make sure that the soruce address of 21027 * the packet matches the logical IP address used 21028 * in the option. We do it by initializing ipha_src 21029 * here. This should keep IPsec also happy as 21030 * when we return from IPsec processing, we don't 21031 * have to worry about getting the right address on 21032 * the packet. Thus it is sufficient to look for 21033 * IRE_CACHE using MATCH_IRE_ILL rathen than 21034 * MATCH_IRE_IPIF. 21035 * 21036 * NOTE : We need to do it for non-secure case also as 21037 * this might go out secure if there is a global policy 21038 * match in ip_wput_ire. For bind to IPIF_NOFAILOVER 21039 * address, the source should be initialized already and 21040 * hence we won't be initializing here. 21041 * 21042 * As we do not have the ire yet, it is possible that 21043 * we set the source address here and then later discover 21044 * that the ire implies the source address to be assigned 21045 * through the RTF_SETSRC flag. 21046 * In that case, the setsrc variable will remind us 21047 * that overwritting the source address by the one 21048 * of the RTF_SETSRC-flagged ire is allowed. 21049 */ 21050 if (ipha->ipha_src == INADDR_ANY && 21051 (connp == NULL || !connp->conn_unspec_src)) { 21052 ipha->ipha_src = ipif->ipif_src_addr; 21053 setsrc = RTF_SETSRC; 21054 } 21055 /* 21056 * Find an IRE which matches the destination and the outgoing 21057 * queue (i.e. the outgoing interface.) 21058 * For loopback use a unicast IP address for 21059 * the ire lookup. 21060 */ 21061 if (IS_LOOPBACK(ipif->ipif_ill)) 21062 dst = ipif->ipif_lcl_addr; 21063 21064 /* 21065 * If xmit_ill is set, we branch out to ip_newroute_ipif. 21066 * We don't need to lookup ire in ctable as the packet 21067 * needs to be sent to the destination through the specified 21068 * ill irrespective of ires in the cache table. 21069 */ 21070 ire = NULL; 21071 if (xmit_ill == NULL) { 21072 ire = ire_ctable_lookup(dst, 0, 0, ipif, 21073 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21074 } 21075 21076 /* 21077 * refrele attach_ill as its not needed anymore. 21078 */ 21079 if (attach_ill != NULL) { 21080 ill_refrele(attach_ill); 21081 attach_ill = NULL; 21082 } 21083 21084 if (ire == NULL) { 21085 /* 21086 * Multicast loopback and multicast forwarding is 21087 * done in ip_wput_ire. 21088 * 21089 * Mark this packet to make it be delivered to 21090 * ip_wput_ire after the new ire has been 21091 * created. 21092 * 21093 * The call to ip_newroute_ipif takes into account 21094 * the setsrc reminder. In any case, we take care 21095 * of the RTF_MULTIRT flag. 21096 */ 21097 mp->b_prev = mp->b_next = NULL; 21098 if (xmit_ill == NULL || 21099 xmit_ill->ill_ipif_up_count > 0) { 21100 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 21101 setsrc | RTF_MULTIRT, zoneid, infop); 21102 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21103 "ip_wput_end: q %p (%S)", q, "noire"); 21104 } else { 21105 freemsg(first_mp); 21106 } 21107 ipif_refrele(ipif); 21108 if (xmit_ill != NULL) 21109 ill_refrele(xmit_ill); 21110 if (need_decref) 21111 CONN_DEC_REF(connp); 21112 return; 21113 } 21114 21115 ipif_refrele(ipif); 21116 ipif = NULL; 21117 ASSERT(xmit_ill == NULL); 21118 21119 /* 21120 * Honor the RTF_SETSRC flag for multicast packets, 21121 * if allowed by the setsrc reminder. 21122 */ 21123 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 21124 ipha->ipha_src = ire->ire_src_addr; 21125 } 21126 21127 /* 21128 * Unconditionally force the TTL to 1 for 21129 * multirouted multicast packets: 21130 * multirouted multicast should not cross 21131 * multicast routers. 21132 */ 21133 if (ire->ire_flags & RTF_MULTIRT) { 21134 if (ipha->ipha_ttl > 1) { 21135 ip2dbg(("ip_wput: forcing multicast " 21136 "multirt TTL to 1 (was %d), dst 0x%08x\n", 21137 ipha->ipha_ttl, ntohl(ire->ire_addr))); 21138 ipha->ipha_ttl = 1; 21139 } 21140 } 21141 } else { 21142 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 21143 if ((ire != NULL) && (ire->ire_type & 21144 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 21145 ignore_dontroute = B_TRUE; 21146 ignore_nexthop = B_TRUE; 21147 } 21148 if (ire != NULL) { 21149 ire_refrele(ire); 21150 ire = NULL; 21151 } 21152 /* 21153 * Guard against coming in from arp in which case conn is NULL. 21154 * Also guard against non M_DATA with dontroute set but 21155 * destined to local, loopback or broadcast addresses. 21156 */ 21157 if (connp != NULL && connp->conn_dontroute && 21158 !ignore_dontroute) { 21159 dontroute: 21160 /* 21161 * Set TTL to 1 if SO_DONTROUTE is set to prevent 21162 * routing protocols from seeing false direct 21163 * connectivity. 21164 */ 21165 ipha->ipha_ttl = 1; 21166 21167 /* If suitable ipif not found, drop packet */ 21168 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid, ipst); 21169 if (dst_ipif == NULL) { 21170 noroute: 21171 ip1dbg(("ip_wput: no route for dst using" 21172 " SO_DONTROUTE\n")); 21173 BUMP_MIB(&ipst->ips_ip_mib, 21174 ipIfStatsOutNoRoutes); 21175 mp->b_prev = mp->b_next = NULL; 21176 if (first_mp == NULL) 21177 first_mp = mp; 21178 goto drop_pkt; 21179 } else { 21180 /* 21181 * If suitable ipif has been found, set 21182 * xmit_ill to the corresponding 21183 * ipif_ill because we'll be using the 21184 * send_from_ill logic below. 21185 */ 21186 ASSERT(xmit_ill == NULL); 21187 xmit_ill = dst_ipif->ipif_ill; 21188 mutex_enter(&xmit_ill->ill_lock); 21189 if (!ILL_CAN_LOOKUP(xmit_ill)) { 21190 mutex_exit(&xmit_ill->ill_lock); 21191 xmit_ill = NULL; 21192 ipif_refrele(dst_ipif); 21193 goto noroute; 21194 } 21195 ill_refhold_locked(xmit_ill); 21196 mutex_exit(&xmit_ill->ill_lock); 21197 ipif_refrele(dst_ipif); 21198 } 21199 } 21200 /* 21201 * If we are bound to IPIF_NOFAILOVER address, look for 21202 * an IRE_CACHE matching the ill. 21203 */ 21204 send_from_ill: 21205 if (attach_ill != NULL) { 21206 ipif_t *attach_ipif; 21207 21208 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21209 21210 /* 21211 * Check if we need an ire that will not be 21212 * looked up by anybody else i.e. HIDDEN. 21213 */ 21214 if (ill_is_probeonly(attach_ill)) { 21215 match_flags |= MATCH_IRE_MARK_HIDDEN; 21216 } 21217 21218 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 21219 if (attach_ipif == NULL) { 21220 ip1dbg(("ip_wput: No ipif for attach_ill\n")); 21221 goto discard_pkt; 21222 } 21223 ire = ire_ctable_lookup(dst, 0, 0, attach_ipif, 21224 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21225 ipif_refrele(attach_ipif); 21226 } else if (xmit_ill != NULL) { 21227 ipif_t *ipif; 21228 21229 /* 21230 * Mark this packet as originated locally 21231 */ 21232 mp->b_prev = mp->b_next = NULL; 21233 21234 /* 21235 * Could be SO_DONTROUTE case also. 21236 * Verify that at least one ipif is up on the ill. 21237 */ 21238 if (xmit_ill->ill_ipif_up_count == 0) { 21239 ip1dbg(("ip_output: xmit_ill %s is down\n", 21240 xmit_ill->ill_name)); 21241 goto drop_pkt; 21242 } 21243 21244 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21245 if (ipif == NULL) { 21246 ip1dbg(("ip_output: xmit_ill %s NULL ipif\n", 21247 xmit_ill->ill_name)); 21248 goto drop_pkt; 21249 } 21250 21251 /* 21252 * Look for a ire that is part of the group, 21253 * if found use it else call ip_newroute_ipif. 21254 * IPCL_ZONEID is not used for matching because 21255 * IP_ALLZONES option is valid only when the 21256 * ill is accessible from all zones i.e has a 21257 * valid ipif in all zones. 21258 */ 21259 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 21260 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 21261 MBLK_GETLABEL(mp), match_flags, ipst); 21262 /* 21263 * If an ire exists use it or else create 21264 * an ire but don't add it to the cache. 21265 * Adding an ire may cause issues with 21266 * asymmetric routing. 21267 * In case of multiroute always act as if 21268 * ire does not exist. 21269 */ 21270 if (ire == NULL || ire->ire_flags & RTF_MULTIRT) { 21271 if (ire != NULL) 21272 ire_refrele(ire); 21273 ip_newroute_ipif(q, first_mp, ipif, 21274 dst, connp, 0, zoneid, infop); 21275 ipif_refrele(ipif); 21276 ip1dbg(("ip_output: xmit_ill via %s\n", 21277 xmit_ill->ill_name)); 21278 ill_refrele(xmit_ill); 21279 if (need_decref) 21280 CONN_DEC_REF(connp); 21281 return; 21282 } 21283 ipif_refrele(ipif); 21284 } else if (ip_nexthop || (connp != NULL && 21285 (connp->conn_nexthop_set)) && !ignore_nexthop) { 21286 if (!ip_nexthop) { 21287 ip_nexthop = B_TRUE; 21288 nexthop_addr = connp->conn_nexthop_v4; 21289 } 21290 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 21291 MATCH_IRE_GW; 21292 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 21293 NULL, zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21294 } else { 21295 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), 21296 ipst); 21297 } 21298 if (!ire) { 21299 /* 21300 * Make sure we don't load spread if this 21301 * is IPIF_NOFAILOVER case. 21302 */ 21303 if ((attach_ill != NULL) || 21304 (ip_nexthop && !ignore_nexthop)) { 21305 if (mctl_present) { 21306 io = (ipsec_out_t *)first_mp->b_rptr; 21307 ASSERT(first_mp->b_datap->db_type == 21308 M_CTL); 21309 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21310 } else { 21311 ASSERT(mp == first_mp); 21312 first_mp = allocb( 21313 sizeof (ipsec_info_t), BPRI_HI); 21314 if (first_mp == NULL) { 21315 first_mp = mp; 21316 goto discard_pkt; 21317 } 21318 first_mp->b_datap->db_type = M_CTL; 21319 first_mp->b_wptr += 21320 sizeof (ipsec_info_t); 21321 /* ipsec_out_secure is B_FALSE now */ 21322 bzero(first_mp->b_rptr, 21323 sizeof (ipsec_info_t)); 21324 io = (ipsec_out_t *)first_mp->b_rptr; 21325 io->ipsec_out_type = IPSEC_OUT; 21326 io->ipsec_out_len = 21327 sizeof (ipsec_out_t); 21328 io->ipsec_out_use_global_policy = 21329 B_TRUE; 21330 io->ipsec_out_ns = ipst->ips_netstack; 21331 first_mp->b_cont = mp; 21332 mctl_present = B_TRUE; 21333 } 21334 if (attach_ill != NULL) { 21335 io->ipsec_out_ill_index = attach_ill-> 21336 ill_phyint->phyint_ifindex; 21337 io->ipsec_out_attach_if = B_TRUE; 21338 } else { 21339 io->ipsec_out_ip_nexthop = ip_nexthop; 21340 io->ipsec_out_nexthop_addr = 21341 nexthop_addr; 21342 } 21343 } 21344 noirefound: 21345 /* 21346 * Mark this packet as having originated on 21347 * this machine. This will be noted in 21348 * ire_add_then_send, which needs to know 21349 * whether to run it back through ip_wput or 21350 * ip_rput following successful resolution. 21351 */ 21352 mp->b_prev = NULL; 21353 mp->b_next = NULL; 21354 ip_newroute(q, first_mp, dst, connp, zoneid, ipst); 21355 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21356 "ip_wput_end: q %p (%S)", q, "newroute"); 21357 if (attach_ill != NULL) 21358 ill_refrele(attach_ill); 21359 if (xmit_ill != NULL) 21360 ill_refrele(xmit_ill); 21361 if (need_decref) 21362 CONN_DEC_REF(connp); 21363 return; 21364 } 21365 } 21366 21367 /* We now know where we are going with it. */ 21368 21369 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21370 "ip_wput_end: q %p (%S)", q, "end"); 21371 21372 /* 21373 * Check if the ire has the RTF_MULTIRT flag, inherited 21374 * from an IRE_OFFSUBNET ire entry in ip_newroute. 21375 */ 21376 if (ire->ire_flags & RTF_MULTIRT) { 21377 /* 21378 * Force the TTL of multirouted packets if required. 21379 * The TTL of such packets is bounded by the 21380 * ip_multirt_ttl ndd variable. 21381 */ 21382 if ((ipst->ips_ip_multirt_ttl > 0) && 21383 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 21384 ip2dbg(("ip_wput: forcing multirt TTL to %d " 21385 "(was %d), dst 0x%08x\n", 21386 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 21387 ntohl(ire->ire_addr))); 21388 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 21389 } 21390 /* 21391 * At this point, we check to see if there are any pending 21392 * unresolved routes. ire_multirt_resolvable() 21393 * checks in O(n) that all IRE_OFFSUBNET ire 21394 * entries for the packet's destination and 21395 * flagged RTF_MULTIRT are currently resolved. 21396 * If some remain unresolved, we make a copy 21397 * of the current message. It will be used 21398 * to initiate additional route resolutions. 21399 */ 21400 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 21401 MBLK_GETLABEL(first_mp), ipst); 21402 ip2dbg(("ip_wput[noirefound]: ire %p, " 21403 "multirt_need_resolve %d, first_mp %p\n", 21404 (void *)ire, multirt_need_resolve, (void *)first_mp)); 21405 if (multirt_need_resolve) { 21406 copy_mp = copymsg(first_mp); 21407 if (copy_mp != NULL) { 21408 MULTIRT_DEBUG_TAG(copy_mp); 21409 } 21410 } 21411 } 21412 21413 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 21414 /* 21415 * Try to resolve another multiroute if 21416 * ire_multirt_resolvable() deemed it necessary. 21417 * At this point, we need to distinguish 21418 * multicasts from other packets. For multicasts, 21419 * we call ip_newroute_ipif() and request that both 21420 * multirouting and setsrc flags are checked. 21421 */ 21422 if (copy_mp != NULL) { 21423 if (CLASSD(dst)) { 21424 ipif_t *ipif = ipif_lookup_group(dst, zoneid, ipst); 21425 if (ipif) { 21426 ASSERT(infop->ip_opt_ill_index == 0); 21427 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 21428 RTF_SETSRC | RTF_MULTIRT, zoneid, infop); 21429 ipif_refrele(ipif); 21430 } else { 21431 MULTIRT_DEBUG_UNTAG(copy_mp); 21432 freemsg(copy_mp); 21433 copy_mp = NULL; 21434 } 21435 } else { 21436 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 21437 } 21438 } 21439 if (attach_ill != NULL) 21440 ill_refrele(attach_ill); 21441 if (xmit_ill != NULL) 21442 ill_refrele(xmit_ill); 21443 if (need_decref) 21444 CONN_DEC_REF(connp); 21445 return; 21446 21447 icmp_parameter_problem: 21448 /* could not have originated externally */ 21449 ASSERT(mp->b_prev == NULL); 21450 if (ip_hdr_complete(ipha, zoneid, ipst) == 0) { 21451 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 21452 /* it's the IP header length that's in trouble */ 21453 icmp_param_problem(q, first_mp, 0, zoneid, ipst); 21454 first_mp = NULL; 21455 } 21456 21457 discard_pkt: 21458 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21459 drop_pkt: 21460 ip1dbg(("ip_wput: dropped packet\n")); 21461 if (ire != NULL) 21462 ire_refrele(ire); 21463 if (need_decref) 21464 CONN_DEC_REF(connp); 21465 freemsg(first_mp); 21466 if (attach_ill != NULL) 21467 ill_refrele(attach_ill); 21468 if (xmit_ill != NULL) 21469 ill_refrele(xmit_ill); 21470 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21471 "ip_wput_end: q %p (%S)", q, "droppkt"); 21472 } 21473 21474 /* 21475 * If this is a conn_t queue, then we pass in the conn. This includes the 21476 * zoneid. 21477 * Otherwise, this is a message coming back from ARP or for an ill_t queue, 21478 * in which case we use the global zoneid since those are all part of 21479 * the global zone. 21480 */ 21481 void 21482 ip_wput(queue_t *q, mblk_t *mp) 21483 { 21484 if (CONN_Q(q)) 21485 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 21486 else 21487 ip_output(GLOBAL_ZONEID, mp, q, IP_WPUT); 21488 } 21489 21490 /* 21491 * 21492 * The following rules must be observed when accessing any ipif or ill 21493 * that has been cached in the conn. Typically conn_nofailover_ill, 21494 * conn_outgoing_ill, conn_multicast_ipif and conn_multicast_ill. 21495 * 21496 * Access: The ipif or ill pointed to from the conn can be accessed under 21497 * the protection of the conn_lock or after it has been refheld under the 21498 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 21499 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 21500 * The reason for this is that a concurrent unplumb could actually be 21501 * cleaning up these cached pointers by walking the conns and might have 21502 * finished cleaning up the conn in question. The macros check that an 21503 * unplumb has not yet started on the ipif or ill. 21504 * 21505 * Caching: An ipif or ill pointer may be cached in the conn only after 21506 * making sure that an unplumb has not started. So the caching is done 21507 * while holding both the conn_lock and the ill_lock and after using the 21508 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 21509 * flag before starting the cleanup of conns. 21510 * 21511 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 21512 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 21513 * or a reference to the ipif or a reference to an ire that references the 21514 * ipif. An ipif does not change its ill except for failover/failback. Since 21515 * failover/failback happens only after bringing down the ipif and making sure 21516 * the ipif refcnt has gone to zero and holding the ill_g_lock and ill_lock 21517 * the above holds. 21518 */ 21519 ipif_t * 21520 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 21521 { 21522 ipif_t *ipif; 21523 ill_t *ill; 21524 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 21525 21526 *err = 0; 21527 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21528 mutex_enter(&connp->conn_lock); 21529 ipif = *ipifp; 21530 if (ipif != NULL) { 21531 ill = ipif->ipif_ill; 21532 mutex_enter(&ill->ill_lock); 21533 if (IPIF_CAN_LOOKUP(ipif)) { 21534 ipif_refhold_locked(ipif); 21535 mutex_exit(&ill->ill_lock); 21536 mutex_exit(&connp->conn_lock); 21537 rw_exit(&ipst->ips_ill_g_lock); 21538 return (ipif); 21539 } else { 21540 *err = IPIF_LOOKUP_FAILED; 21541 } 21542 mutex_exit(&ill->ill_lock); 21543 } 21544 mutex_exit(&connp->conn_lock); 21545 rw_exit(&ipst->ips_ill_g_lock); 21546 return (NULL); 21547 } 21548 21549 ill_t * 21550 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 21551 { 21552 ill_t *ill; 21553 21554 *err = 0; 21555 mutex_enter(&connp->conn_lock); 21556 ill = *illp; 21557 if (ill != NULL) { 21558 mutex_enter(&ill->ill_lock); 21559 if (ILL_CAN_LOOKUP(ill)) { 21560 ill_refhold_locked(ill); 21561 mutex_exit(&ill->ill_lock); 21562 mutex_exit(&connp->conn_lock); 21563 return (ill); 21564 } else { 21565 *err = ILL_LOOKUP_FAILED; 21566 } 21567 mutex_exit(&ill->ill_lock); 21568 } 21569 mutex_exit(&connp->conn_lock); 21570 return (NULL); 21571 } 21572 21573 static int 21574 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 21575 { 21576 ill_t *ill; 21577 21578 ill = ipif->ipif_ill; 21579 mutex_enter(&connp->conn_lock); 21580 mutex_enter(&ill->ill_lock); 21581 if (IPIF_CAN_LOOKUP(ipif)) { 21582 *ipifp = ipif; 21583 mutex_exit(&ill->ill_lock); 21584 mutex_exit(&connp->conn_lock); 21585 return (0); 21586 } 21587 mutex_exit(&ill->ill_lock); 21588 mutex_exit(&connp->conn_lock); 21589 return (IPIF_LOOKUP_FAILED); 21590 } 21591 21592 /* 21593 * This is called if the outbound datagram needs fragmentation. 21594 * 21595 * NOTE : This function does not ire_refrele the ire argument passed in. 21596 */ 21597 static void 21598 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire, zoneid_t zoneid, 21599 ip_stack_t *ipst) 21600 { 21601 ipha_t *ipha; 21602 mblk_t *mp; 21603 uint32_t v_hlen_tos_len; 21604 uint32_t max_frag; 21605 uint32_t frag_flag; 21606 boolean_t dont_use; 21607 21608 if (ipsec_mp->b_datap->db_type == M_CTL) { 21609 mp = ipsec_mp->b_cont; 21610 } else { 21611 mp = ipsec_mp; 21612 } 21613 21614 ipha = (ipha_t *)mp->b_rptr; 21615 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21616 21617 #ifdef _BIG_ENDIAN 21618 #define V_HLEN (v_hlen_tos_len >> 24) 21619 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21620 #else 21621 #define V_HLEN (v_hlen_tos_len & 0xFF) 21622 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21623 #endif 21624 21625 #ifndef SPEED_BEFORE_SAFETY 21626 /* 21627 * Check that ipha_length is consistent with 21628 * the mblk length 21629 */ 21630 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 21631 ip0dbg(("Packet length mismatch: %d, %ld\n", 21632 LENGTH, msgdsize(mp))); 21633 freemsg(ipsec_mp); 21634 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21635 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 21636 "packet length mismatch"); 21637 return; 21638 } 21639 #endif 21640 /* 21641 * Don't use frag_flag if pre-built packet or source 21642 * routed or if multicast (since multicast packets do not solicit 21643 * ICMP "packet too big" messages). Get the values of 21644 * max_frag and frag_flag atomically by acquiring the 21645 * ire_lock. 21646 */ 21647 mutex_enter(&ire->ire_lock); 21648 max_frag = ire->ire_max_frag; 21649 frag_flag = ire->ire_frag_flag; 21650 mutex_exit(&ire->ire_lock); 21651 21652 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 21653 (V_HLEN != IP_SIMPLE_HDR_VERSION && 21654 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 21655 21656 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 21657 (dont_use ? 0 : frag_flag), zoneid, ipst); 21658 } 21659 21660 /* 21661 * Used for deciding the MSS size for the upper layer. Thus 21662 * we need to check the outbound policy values in the conn. 21663 */ 21664 int 21665 conn_ipsec_length(conn_t *connp) 21666 { 21667 ipsec_latch_t *ipl; 21668 21669 ipl = connp->conn_latch; 21670 if (ipl == NULL) 21671 return (0); 21672 21673 if (ipl->ipl_out_policy == NULL) 21674 return (0); 21675 21676 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 21677 } 21678 21679 /* 21680 * Returns an estimate of the IPsec headers size. This is used if 21681 * we don't want to call into IPsec to get the exact size. 21682 */ 21683 int 21684 ipsec_out_extra_length(mblk_t *ipsec_mp) 21685 { 21686 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 21687 ipsec_action_t *a; 21688 21689 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21690 if (!io->ipsec_out_secure) 21691 return (0); 21692 21693 a = io->ipsec_out_act; 21694 21695 if (a == NULL) { 21696 ASSERT(io->ipsec_out_policy != NULL); 21697 a = io->ipsec_out_policy->ipsp_act; 21698 } 21699 ASSERT(a != NULL); 21700 21701 return (a->ipa_ovhd); 21702 } 21703 21704 /* 21705 * Returns an estimate of the IPsec headers size. This is used if 21706 * we don't want to call into IPsec to get the exact size. 21707 */ 21708 int 21709 ipsec_in_extra_length(mblk_t *ipsec_mp) 21710 { 21711 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21712 ipsec_action_t *a; 21713 21714 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21715 21716 a = ii->ipsec_in_action; 21717 return (a == NULL ? 0 : a->ipa_ovhd); 21718 } 21719 21720 /* 21721 * If there are any source route options, return the true final 21722 * destination. Otherwise, return the destination. 21723 */ 21724 ipaddr_t 21725 ip_get_dst(ipha_t *ipha) 21726 { 21727 ipoptp_t opts; 21728 uchar_t *opt; 21729 uint8_t optval; 21730 uint8_t optlen; 21731 ipaddr_t dst; 21732 uint32_t off; 21733 21734 dst = ipha->ipha_dst; 21735 21736 if (IS_SIMPLE_IPH(ipha)) 21737 return (dst); 21738 21739 for (optval = ipoptp_first(&opts, ipha); 21740 optval != IPOPT_EOL; 21741 optval = ipoptp_next(&opts)) { 21742 opt = opts.ipoptp_cur; 21743 optlen = opts.ipoptp_len; 21744 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 21745 switch (optval) { 21746 case IPOPT_SSRR: 21747 case IPOPT_LSRR: 21748 off = opt[IPOPT_OFFSET]; 21749 /* 21750 * If one of the conditions is true, it means 21751 * end of options and dst already has the right 21752 * value. 21753 */ 21754 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 21755 off = optlen - IP_ADDR_LEN; 21756 bcopy(&opt[off], &dst, IP_ADDR_LEN); 21757 } 21758 return (dst); 21759 default: 21760 break; 21761 } 21762 } 21763 21764 return (dst); 21765 } 21766 21767 mblk_t * 21768 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 21769 conn_t *connp, boolean_t unspec_src, zoneid_t zoneid) 21770 { 21771 ipsec_out_t *io; 21772 mblk_t *first_mp; 21773 boolean_t policy_present; 21774 ip_stack_t *ipst; 21775 ipsec_stack_t *ipss; 21776 21777 ASSERT(ire != NULL); 21778 ipst = ire->ire_ipst; 21779 ipss = ipst->ips_netstack->netstack_ipsec; 21780 21781 first_mp = mp; 21782 if (mp->b_datap->db_type == M_CTL) { 21783 io = (ipsec_out_t *)first_mp->b_rptr; 21784 /* 21785 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 21786 * 21787 * 1) There is per-socket policy (including cached global 21788 * policy) or a policy on the IP-in-IP tunnel. 21789 * 2) There is no per-socket policy, but it is 21790 * a multicast packet that needs to go out 21791 * on a specific interface. This is the case 21792 * where (ip_wput and ip_wput_multicast) attaches 21793 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 21794 * 21795 * In case (2) we check with global policy to 21796 * see if there is a match and set the ill_index 21797 * appropriately so that we can lookup the ire 21798 * properly in ip_wput_ipsec_out. 21799 */ 21800 21801 /* 21802 * ipsec_out_use_global_policy is set to B_FALSE 21803 * in ipsec_in_to_out(). Refer to that function for 21804 * details. 21805 */ 21806 if ((io->ipsec_out_latch == NULL) && 21807 (io->ipsec_out_use_global_policy)) { 21808 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 21809 ire, connp, unspec_src, zoneid)); 21810 } 21811 if (!io->ipsec_out_secure) { 21812 /* 21813 * If this is not a secure packet, drop 21814 * the IPSEC_OUT mp and treat it as a clear 21815 * packet. This happens when we are sending 21816 * a ICMP reply back to a clear packet. See 21817 * ipsec_in_to_out() for details. 21818 */ 21819 mp = first_mp->b_cont; 21820 freeb(first_mp); 21821 } 21822 return (mp); 21823 } 21824 /* 21825 * See whether we need to attach a global policy here. We 21826 * don't depend on the conn (as it could be null) for deciding 21827 * what policy this datagram should go through because it 21828 * should have happened in ip_wput if there was some 21829 * policy. This normally happens for connections which are not 21830 * fully bound preventing us from caching policies in 21831 * ip_bind. Packets coming from the TCP listener/global queue 21832 * - which are non-hard_bound - could also be affected by 21833 * applying policy here. 21834 * 21835 * If this packet is coming from tcp global queue or listener, 21836 * we will be applying policy here. This may not be *right* 21837 * if these packets are coming from the detached connection as 21838 * it could have gone in clear before. This happens only if a 21839 * TCP connection started when there is no policy and somebody 21840 * added policy before it became detached. Thus packets of the 21841 * detached connection could go out secure and the other end 21842 * would drop it because it will be expecting in clear. The 21843 * converse is not true i.e if somebody starts a TCP 21844 * connection and deletes the policy, all the packets will 21845 * still go out with the policy that existed before deleting 21846 * because ip_unbind sends up policy information which is used 21847 * by TCP on subsequent ip_wputs. The right solution is to fix 21848 * TCP to attach a dummy IPSEC_OUT and set 21849 * ipsec_out_use_global_policy to B_FALSE. As this might 21850 * affect performance for normal cases, we are not doing it. 21851 * Thus, set policy before starting any TCP connections. 21852 * 21853 * NOTE - We might apply policy even for a hard bound connection 21854 * - for which we cached policy in ip_bind - if somebody added 21855 * global policy after we inherited the policy in ip_bind. 21856 * This means that the packets that were going out in clear 21857 * previously would start going secure and hence get dropped 21858 * on the other side. To fix this, TCP attaches a dummy 21859 * ipsec_out and make sure that we don't apply global policy. 21860 */ 21861 if (ipha != NULL) 21862 policy_present = ipss->ipsec_outbound_v4_policy_present; 21863 else 21864 policy_present = ipss->ipsec_outbound_v6_policy_present; 21865 if (!policy_present) 21866 return (mp); 21867 21868 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src, 21869 zoneid)); 21870 } 21871 21872 ire_t * 21873 conn_set_outgoing_ill(conn_t *connp, ire_t *ire, ill_t **conn_outgoing_ill) 21874 { 21875 ipaddr_t addr; 21876 ire_t *save_ire; 21877 irb_t *irb; 21878 ill_group_t *illgrp; 21879 int err; 21880 21881 save_ire = ire; 21882 addr = ire->ire_addr; 21883 21884 ASSERT(ire->ire_type == IRE_BROADCAST); 21885 21886 illgrp = connp->conn_outgoing_ill->ill_group; 21887 if (illgrp == NULL) { 21888 *conn_outgoing_ill = conn_get_held_ill(connp, 21889 &connp->conn_outgoing_ill, &err); 21890 if (err == ILL_LOOKUP_FAILED) { 21891 ire_refrele(save_ire); 21892 return (NULL); 21893 } 21894 return (save_ire); 21895 } 21896 /* 21897 * If IP_BOUND_IF has been done, conn_outgoing_ill will be set. 21898 * If it is part of the group, we need to send on the ire 21899 * that has been cleared of IRE_MARK_NORECV and that belongs 21900 * to this group. This is okay as IP_BOUND_IF really means 21901 * any ill in the group. We depend on the fact that the 21902 * first ire in the group is always cleared of IRE_MARK_NORECV 21903 * if such an ire exists. This is possible only if you have 21904 * at least one ill in the group that has not failed. 21905 * 21906 * First get to the ire that matches the address and group. 21907 * 21908 * We don't look for an ire with a matching zoneid because a given zone 21909 * won't always have broadcast ires on all ills in the group. 21910 */ 21911 irb = ire->ire_bucket; 21912 rw_enter(&irb->irb_lock, RW_READER); 21913 if (ire->ire_marks & IRE_MARK_NORECV) { 21914 /* 21915 * If the current zone only has an ire broadcast for this 21916 * address marked NORECV, the ire we want is ahead in the 21917 * bucket, so we look it up deliberately ignoring the zoneid. 21918 */ 21919 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 21920 if (ire->ire_addr != addr) 21921 continue; 21922 /* skip over deleted ires */ 21923 if (ire->ire_marks & IRE_MARK_CONDEMNED) 21924 continue; 21925 } 21926 } 21927 while (ire != NULL) { 21928 /* 21929 * If a new interface is coming up, we could end up 21930 * seeing the loopback ire and the non-loopback ire 21931 * may not have been added yet. So check for ire_stq 21932 */ 21933 if (ire->ire_stq != NULL && (ire->ire_addr != addr || 21934 ire->ire_ipif->ipif_ill->ill_group == illgrp)) { 21935 break; 21936 } 21937 ire = ire->ire_next; 21938 } 21939 if (ire != NULL && ire->ire_addr == addr && 21940 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 21941 IRE_REFHOLD(ire); 21942 rw_exit(&irb->irb_lock); 21943 ire_refrele(save_ire); 21944 *conn_outgoing_ill = ire_to_ill(ire); 21945 /* 21946 * Refhold the ill to make the conn_outgoing_ill 21947 * independent of the ire. ip_wput_ire goes in a loop 21948 * and may refrele the ire. Since we have an ire at this 21949 * point we don't need to use ILL_CAN_LOOKUP on the ill. 21950 */ 21951 ill_refhold(*conn_outgoing_ill); 21952 return (ire); 21953 } 21954 rw_exit(&irb->irb_lock); 21955 ip1dbg(("conn_set_outgoing_ill: No matching ire\n")); 21956 /* 21957 * If we can't find a suitable ire, return the original ire. 21958 */ 21959 return (save_ire); 21960 } 21961 21962 /* 21963 * This function does the ire_refrele of the ire passed in as the 21964 * argument. As this function looks up more ires i.e broadcast ires, 21965 * it needs to REFRELE them. Currently, for simplicity we don't 21966 * differentiate the one passed in and looked up here. We always 21967 * REFRELE. 21968 * IPQoS Notes: 21969 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 21970 * IPsec packets are done in ipsec_out_process. 21971 * 21972 */ 21973 void 21974 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller, 21975 zoneid_t zoneid) 21976 { 21977 ipha_t *ipha; 21978 #define rptr ((uchar_t *)ipha) 21979 queue_t *stq; 21980 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 21981 uint32_t v_hlen_tos_len; 21982 uint32_t ttl_protocol; 21983 ipaddr_t src; 21984 ipaddr_t dst; 21985 uint32_t cksum; 21986 ipaddr_t orig_src; 21987 ire_t *ire1; 21988 mblk_t *next_mp; 21989 uint_t hlen; 21990 uint16_t *up; 21991 uint32_t max_frag = ire->ire_max_frag; 21992 ill_t *ill = ire_to_ill(ire); 21993 int clusterwide; 21994 uint16_t ip_hdr_included; /* IP header included by ULP? */ 21995 int ipsec_len; 21996 mblk_t *first_mp; 21997 ipsec_out_t *io; 21998 boolean_t conn_dontroute; /* conn value for multicast */ 21999 boolean_t conn_multicast_loop; /* conn value for multicast */ 22000 boolean_t multicast_forward; /* Should we forward ? */ 22001 boolean_t unspec_src; 22002 ill_t *conn_outgoing_ill = NULL; 22003 ill_t *ire_ill; 22004 ill_t *ire1_ill; 22005 ill_t *out_ill; 22006 uint32_t ill_index = 0; 22007 boolean_t multirt_send = B_FALSE; 22008 int err; 22009 ipxmit_state_t pktxmit_state; 22010 ip_stack_t *ipst = ire->ire_ipst; 22011 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 22012 22013 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 22014 "ip_wput_ire_start: q %p", q); 22015 22016 multicast_forward = B_FALSE; 22017 unspec_src = (connp != NULL && connp->conn_unspec_src); 22018 22019 if (ire->ire_flags & RTF_MULTIRT) { 22020 /* 22021 * Multirouting case. The bucket where ire is stored 22022 * probably holds other RTF_MULTIRT flagged ire 22023 * to the destination. In this call to ip_wput_ire, 22024 * we attempt to send the packet through all 22025 * those ires. Thus, we first ensure that ire is the 22026 * first RTF_MULTIRT ire in the bucket, 22027 * before walking the ire list. 22028 */ 22029 ire_t *first_ire; 22030 irb_t *irb = ire->ire_bucket; 22031 ASSERT(irb != NULL); 22032 22033 /* Make sure we do not omit any multiroute ire. */ 22034 IRB_REFHOLD(irb); 22035 for (first_ire = irb->irb_ire; 22036 first_ire != NULL; 22037 first_ire = first_ire->ire_next) { 22038 if ((first_ire->ire_flags & RTF_MULTIRT) && 22039 (first_ire->ire_addr == ire->ire_addr) && 22040 !(first_ire->ire_marks & 22041 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 22042 break; 22043 } 22044 } 22045 22046 if ((first_ire != NULL) && (first_ire != ire)) { 22047 IRE_REFHOLD(first_ire); 22048 ire_refrele(ire); 22049 ire = first_ire; 22050 ill = ire_to_ill(ire); 22051 } 22052 IRB_REFRELE(irb); 22053 } 22054 22055 /* 22056 * conn_outgoing_ill variable is used only in the broadcast loop. 22057 * for performance we don't grab the mutexs in the fastpath 22058 */ 22059 if ((connp != NULL) && 22060 (ire->ire_type == IRE_BROADCAST) && 22061 ((connp->conn_nofailover_ill != NULL) || 22062 (connp->conn_outgoing_ill != NULL))) { 22063 /* 22064 * Bind to IPIF_NOFAILOVER address overrides IP_BOUND_IF 22065 * option. So, see if this endpoint is bound to a 22066 * IPIF_NOFAILOVER address. If so, honor it. This implies 22067 * that if the interface is failed, we will still send 22068 * the packet on the same ill which is what we want. 22069 */ 22070 conn_outgoing_ill = conn_get_held_ill(connp, 22071 &connp->conn_nofailover_ill, &err); 22072 if (err == ILL_LOOKUP_FAILED) { 22073 ire_refrele(ire); 22074 freemsg(mp); 22075 return; 22076 } 22077 if (conn_outgoing_ill == NULL) { 22078 /* 22079 * Choose a good ill in the group to send the 22080 * packets on. 22081 */ 22082 ire = conn_set_outgoing_ill(connp, ire, 22083 &conn_outgoing_ill); 22084 if (ire == NULL) { 22085 freemsg(mp); 22086 return; 22087 } 22088 } 22089 } 22090 22091 if (mp->b_datap->db_type != M_CTL) { 22092 ipha = (ipha_t *)mp->b_rptr; 22093 } else { 22094 io = (ipsec_out_t *)mp->b_rptr; 22095 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22096 ASSERT(zoneid == io->ipsec_out_zoneid); 22097 ASSERT(zoneid != ALL_ZONES); 22098 ipha = (ipha_t *)mp->b_cont->b_rptr; 22099 dst = ipha->ipha_dst; 22100 /* 22101 * For the multicast case, ipsec_out carries conn_dontroute and 22102 * conn_multicast_loop as conn may not be available here. We 22103 * need this for multicast loopback and forwarding which is done 22104 * later in the code. 22105 */ 22106 if (CLASSD(dst)) { 22107 conn_dontroute = io->ipsec_out_dontroute; 22108 conn_multicast_loop = io->ipsec_out_multicast_loop; 22109 /* 22110 * If conn_dontroute is not set or conn_multicast_loop 22111 * is set, we need to do forwarding/loopback. For 22112 * datagrams from ip_wput_multicast, conn_dontroute is 22113 * set to B_TRUE and conn_multicast_loop is set to 22114 * B_FALSE so that we neither do forwarding nor 22115 * loopback. 22116 */ 22117 if (!conn_dontroute || conn_multicast_loop) 22118 multicast_forward = B_TRUE; 22119 } 22120 } 22121 22122 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 22123 ire->ire_zoneid != ALL_ZONES) { 22124 /* 22125 * When a zone sends a packet to another zone, we try to deliver 22126 * the packet under the same conditions as if the destination 22127 * was a real node on the network. To do so, we look for a 22128 * matching route in the forwarding table. 22129 * RTF_REJECT and RTF_BLACKHOLE are handled just like 22130 * ip_newroute() does. 22131 * Note that IRE_LOCAL are special, since they are used 22132 * when the zoneid doesn't match in some cases. This means that 22133 * we need to handle ipha_src differently since ire_src_addr 22134 * belongs to the receiving zone instead of the sending zone. 22135 * When ip_restrict_interzone_loopback is set, then 22136 * ire_cache_lookup() ensures that IRE_LOCAL are only used 22137 * for loopback between zones when the logical "Ethernet" would 22138 * have looped them back. 22139 */ 22140 ire_t *src_ire; 22141 22142 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 22143 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 22144 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE), ipst); 22145 if (src_ire != NULL && 22146 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) && 22147 (!ipst->ips_ip_restrict_interzone_loopback || 22148 ire_local_same_ill_group(ire, src_ire))) { 22149 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 22150 ipha->ipha_src = src_ire->ire_src_addr; 22151 ire_refrele(src_ire); 22152 } else { 22153 ire_refrele(ire); 22154 if (conn_outgoing_ill != NULL) 22155 ill_refrele(conn_outgoing_ill); 22156 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 22157 if (src_ire != NULL) { 22158 if (src_ire->ire_flags & RTF_BLACKHOLE) { 22159 ire_refrele(src_ire); 22160 freemsg(mp); 22161 return; 22162 } 22163 ire_refrele(src_ire); 22164 } 22165 if (ip_hdr_complete(ipha, zoneid, ipst)) { 22166 /* Failed */ 22167 freemsg(mp); 22168 return; 22169 } 22170 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, zoneid, 22171 ipst); 22172 return; 22173 } 22174 } 22175 22176 if (mp->b_datap->db_type == M_CTL || 22177 ipss->ipsec_outbound_v4_policy_present) { 22178 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 22179 unspec_src, zoneid); 22180 if (mp == NULL) { 22181 ire_refrele(ire); 22182 if (conn_outgoing_ill != NULL) 22183 ill_refrele(conn_outgoing_ill); 22184 return; 22185 } 22186 } 22187 22188 first_mp = mp; 22189 ipsec_len = 0; 22190 22191 if (first_mp->b_datap->db_type == M_CTL) { 22192 io = (ipsec_out_t *)first_mp->b_rptr; 22193 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22194 mp = first_mp->b_cont; 22195 ipsec_len = ipsec_out_extra_length(first_mp); 22196 ASSERT(ipsec_len >= 0); 22197 /* We already picked up the zoneid from the M_CTL above */ 22198 ASSERT(zoneid == io->ipsec_out_zoneid); 22199 ASSERT(zoneid != ALL_ZONES); 22200 22201 /* 22202 * Drop M_CTL here if IPsec processing is not needed. 22203 * (Non-IPsec use of M_CTL extracted any information it 22204 * needed above). 22205 */ 22206 if (ipsec_len == 0) { 22207 freeb(first_mp); 22208 first_mp = mp; 22209 } 22210 } 22211 22212 /* 22213 * Fast path for ip_wput_ire 22214 */ 22215 22216 ipha = (ipha_t *)mp->b_rptr; 22217 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 22218 dst = ipha->ipha_dst; 22219 22220 /* 22221 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 22222 * if the socket is a SOCK_RAW type. The transport checksum should 22223 * be provided in the pre-built packet, so we don't need to compute it. 22224 * Also, other application set flags, like DF, should not be altered. 22225 * Other transport MUST pass down zero. 22226 */ 22227 ip_hdr_included = ipha->ipha_ident; 22228 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 22229 22230 if (CLASSD(dst)) { 22231 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 22232 ntohl(dst), 22233 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 22234 ntohl(ire->ire_addr))); 22235 } 22236 22237 /* Macros to extract header fields from data already in registers */ 22238 #ifdef _BIG_ENDIAN 22239 #define V_HLEN (v_hlen_tos_len >> 24) 22240 #define LENGTH (v_hlen_tos_len & 0xFFFF) 22241 #define PROTO (ttl_protocol & 0xFF) 22242 #else 22243 #define V_HLEN (v_hlen_tos_len & 0xFF) 22244 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 22245 #define PROTO (ttl_protocol >> 8) 22246 #endif 22247 22248 22249 orig_src = src = ipha->ipha_src; 22250 /* (The loop back to "another" is explained down below.) */ 22251 another:; 22252 /* 22253 * Assign an ident value for this packet. We assign idents on 22254 * a per destination basis out of the IRE. There could be 22255 * other threads targeting the same destination, so we have to 22256 * arrange for a atomic increment. Note that we use a 32-bit 22257 * atomic add because it has better performance than its 22258 * 16-bit sibling. 22259 * 22260 * If running in cluster mode and if the source address 22261 * belongs to a replicated service then vector through 22262 * cl_inet_ipident vector to allocate ip identifier 22263 * NOTE: This is a contract private interface with the 22264 * clustering group. 22265 */ 22266 clusterwide = 0; 22267 if (cl_inet_ipident) { 22268 ASSERT(cl_inet_isclusterwide); 22269 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 22270 AF_INET, (uint8_t *)(uintptr_t)src)) { 22271 ipha->ipha_ident = (*cl_inet_ipident)(IPPROTO_IP, 22272 AF_INET, (uint8_t *)(uintptr_t)src, 22273 (uint8_t *)(uintptr_t)dst); 22274 clusterwide = 1; 22275 } 22276 } 22277 if (!clusterwide) { 22278 ipha->ipha_ident = 22279 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 22280 } 22281 22282 #ifndef _BIG_ENDIAN 22283 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 22284 #endif 22285 22286 /* 22287 * Set source address unless sent on an ill or conn_unspec_src is set. 22288 * This is needed to obey conn_unspec_src when packets go through 22289 * ip_newroute + arp. 22290 * Assumes ip_newroute{,_multi} sets the source address as well. 22291 */ 22292 if (src == INADDR_ANY && !unspec_src) { 22293 /* 22294 * Assign the appropriate source address from the IRE if none 22295 * was specified. 22296 */ 22297 ASSERT(ire->ire_ipversion == IPV4_VERSION); 22298 22299 /* 22300 * With IP multipathing, broadcast packets are sent on the ire 22301 * that has been cleared of IRE_MARK_NORECV and that belongs to 22302 * the group. However, this ire might not be in the same zone so 22303 * we can't always use its source address. We look for a 22304 * broadcast ire in the same group and in the right zone. 22305 */ 22306 if (ire->ire_type == IRE_BROADCAST && 22307 ire->ire_zoneid != zoneid) { 22308 ire_t *src_ire = ire_ctable_lookup(dst, 0, 22309 IRE_BROADCAST, ire->ire_ipif, zoneid, NULL, 22310 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 22311 if (src_ire != NULL) { 22312 src = src_ire->ire_src_addr; 22313 ire_refrele(src_ire); 22314 } else { 22315 ire_refrele(ire); 22316 if (conn_outgoing_ill != NULL) 22317 ill_refrele(conn_outgoing_ill); 22318 freemsg(first_mp); 22319 if (ill != NULL) { 22320 BUMP_MIB(ill->ill_ip_mib, 22321 ipIfStatsOutDiscards); 22322 } else { 22323 BUMP_MIB(&ipst->ips_ip_mib, 22324 ipIfStatsOutDiscards); 22325 } 22326 return; 22327 } 22328 } else { 22329 src = ire->ire_src_addr; 22330 } 22331 22332 if (connp == NULL) { 22333 ip1dbg(("ip_wput_ire: no connp and no src " 22334 "address for dst 0x%x, using src 0x%x\n", 22335 ntohl(dst), 22336 ntohl(src))); 22337 } 22338 ipha->ipha_src = src; 22339 } 22340 stq = ire->ire_stq; 22341 22342 /* 22343 * We only allow ire chains for broadcasts since there will 22344 * be multiple IRE_CACHE entries for the same multicast 22345 * address (one per ipif). 22346 */ 22347 next_mp = NULL; 22348 22349 /* broadcast packet */ 22350 if (ire->ire_type == IRE_BROADCAST) 22351 goto broadcast; 22352 22353 /* loopback ? */ 22354 if (stq == NULL) 22355 goto nullstq; 22356 22357 /* The ill_index for outbound ILL */ 22358 ill_index = Q_TO_INDEX(stq); 22359 22360 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 22361 ttl_protocol = ((uint16_t *)ipha)[4]; 22362 22363 /* pseudo checksum (do it in parts for IP header checksum) */ 22364 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 22365 22366 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 22367 queue_t *dev_q = stq->q_next; 22368 22369 /* flow controlled */ 22370 if ((dev_q->q_next || dev_q->q_first) && 22371 !canput(dev_q)) 22372 goto blocked; 22373 if ((PROTO == IPPROTO_UDP) && 22374 (ip_hdr_included != IP_HDR_INCLUDED)) { 22375 hlen = (V_HLEN & 0xF) << 2; 22376 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22377 if (*up != 0) { 22378 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 22379 hlen, LENGTH, max_frag, ipsec_len, cksum); 22380 /* Software checksum? */ 22381 if (DB_CKSUMFLAGS(mp) == 0) { 22382 IP_STAT(ipst, ip_out_sw_cksum); 22383 IP_STAT_UPDATE(ipst, 22384 ip_udp_out_sw_cksum_bytes, 22385 LENGTH - hlen); 22386 } 22387 } 22388 } 22389 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 22390 hlen = (V_HLEN & 0xF) << 2; 22391 if (PROTO == IPPROTO_TCP) { 22392 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22393 /* 22394 * The packet header is processed once and for all, even 22395 * in the multirouting case. We disable hardware 22396 * checksum if the packet is multirouted, as it will be 22397 * replicated via several interfaces, and not all of 22398 * them may have this capability. 22399 */ 22400 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 22401 LENGTH, max_frag, ipsec_len, cksum); 22402 /* Software checksum? */ 22403 if (DB_CKSUMFLAGS(mp) == 0) { 22404 IP_STAT(ipst, ip_out_sw_cksum); 22405 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22406 LENGTH - hlen); 22407 } 22408 } else { 22409 sctp_hdr_t *sctph; 22410 22411 ASSERT(PROTO == IPPROTO_SCTP); 22412 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22413 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22414 /* 22415 * Zero out the checksum field to ensure proper 22416 * checksum calculation. 22417 */ 22418 sctph->sh_chksum = 0; 22419 #ifdef DEBUG 22420 if (!skip_sctp_cksum) 22421 #endif 22422 sctph->sh_chksum = sctp_cksum(mp, hlen); 22423 } 22424 } 22425 22426 /* 22427 * If this is a multicast packet and originated from ip_wput 22428 * we need to do loopback and forwarding checks. If it comes 22429 * from ip_wput_multicast, we SHOULD not do this. 22430 */ 22431 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 22432 22433 /* checksum */ 22434 cksum += ttl_protocol; 22435 22436 /* fragment the packet */ 22437 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 22438 goto fragmentit; 22439 /* 22440 * Don't use frag_flag if packet is pre-built or source 22441 * routed or if multicast (since multicast packets do 22442 * not solicit ICMP "packet too big" messages). 22443 */ 22444 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22445 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22446 !ip_source_route_included(ipha)) && 22447 !CLASSD(ipha->ipha_dst)) 22448 ipha->ipha_fragment_offset_and_flags |= 22449 htons(ire->ire_frag_flag); 22450 22451 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22452 /* calculate IP header checksum */ 22453 cksum += ipha->ipha_ident; 22454 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 22455 cksum += ipha->ipha_fragment_offset_and_flags; 22456 22457 /* IP options present */ 22458 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22459 if (hlen) 22460 goto checksumoptions; 22461 22462 /* calculate hdr checksum */ 22463 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22464 cksum = ~(cksum + (cksum >> 16)); 22465 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22466 } 22467 if (ipsec_len != 0) { 22468 /* 22469 * We will do the rest of the processing after 22470 * we come back from IPsec in ip_wput_ipsec_out(). 22471 */ 22472 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 22473 22474 io = (ipsec_out_t *)first_mp->b_rptr; 22475 io->ipsec_out_ill_index = ((ill_t *)stq->q_ptr)-> 22476 ill_phyint->phyint_ifindex; 22477 22478 ipsec_out_process(q, first_mp, ire, ill_index); 22479 ire_refrele(ire); 22480 if (conn_outgoing_ill != NULL) 22481 ill_refrele(conn_outgoing_ill); 22482 return; 22483 } 22484 22485 /* 22486 * In most cases, the emission loop below is entered only 22487 * once. Only in the case where the ire holds the 22488 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 22489 * flagged ires in the bucket, and send the packet 22490 * through all crossed RTF_MULTIRT routes. 22491 */ 22492 if (ire->ire_flags & RTF_MULTIRT) { 22493 multirt_send = B_TRUE; 22494 } 22495 do { 22496 if (multirt_send) { 22497 irb_t *irb; 22498 /* 22499 * We are in a multiple send case, need to get 22500 * the next ire and make a duplicate of the packet. 22501 * ire1 holds here the next ire to process in the 22502 * bucket. If multirouting is expected, 22503 * any non-RTF_MULTIRT ire that has the 22504 * right destination address is ignored. 22505 */ 22506 irb = ire->ire_bucket; 22507 ASSERT(irb != NULL); 22508 22509 IRB_REFHOLD(irb); 22510 for (ire1 = ire->ire_next; 22511 ire1 != NULL; 22512 ire1 = ire1->ire_next) { 22513 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 22514 continue; 22515 if (ire1->ire_addr != ire->ire_addr) 22516 continue; 22517 if (ire1->ire_marks & 22518 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 22519 continue; 22520 22521 /* Got one */ 22522 IRE_REFHOLD(ire1); 22523 break; 22524 } 22525 IRB_REFRELE(irb); 22526 22527 if (ire1 != NULL) { 22528 next_mp = copyb(mp); 22529 if ((next_mp == NULL) || 22530 ((mp->b_cont != NULL) && 22531 ((next_mp->b_cont = 22532 dupmsg(mp->b_cont)) == NULL))) { 22533 freemsg(next_mp); 22534 next_mp = NULL; 22535 ire_refrele(ire1); 22536 ire1 = NULL; 22537 } 22538 } 22539 22540 /* Last multiroute ire; don't loop anymore. */ 22541 if (ire1 == NULL) { 22542 multirt_send = B_FALSE; 22543 } 22544 } 22545 22546 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 22547 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha, 22548 mblk_t *, mp); 22549 FW_HOOKS(ipst->ips_ip4_physical_out_event, 22550 ipst->ips_ipv4firewall_physical_out, 22551 NULL, ire->ire_ipif->ipif_ill, ipha, mp, mp, 0, ipst); 22552 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 22553 if (mp == NULL) 22554 goto release_ire_and_ill; 22555 22556 mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT); 22557 DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire); 22558 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE); 22559 if ((pktxmit_state == SEND_FAILED) || 22560 (pktxmit_state == LLHDR_RESLV_FAILED)) { 22561 ip2dbg(("ip_wput_ire: ip_xmit_v4 failed" 22562 "- packet dropped\n")); 22563 release_ire_and_ill: 22564 ire_refrele(ire); 22565 if (next_mp != NULL) { 22566 freemsg(next_mp); 22567 ire_refrele(ire1); 22568 } 22569 if (conn_outgoing_ill != NULL) 22570 ill_refrele(conn_outgoing_ill); 22571 return; 22572 } 22573 22574 if (CLASSD(dst)) { 22575 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastPkts); 22576 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastOctets, 22577 LENGTH); 22578 } 22579 22580 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22581 "ip_wput_ire_end: q %p (%S)", 22582 q, "last copy out"); 22583 IRE_REFRELE(ire); 22584 22585 if (multirt_send) { 22586 ASSERT(ire1); 22587 /* 22588 * Proceed with the next RTF_MULTIRT ire, 22589 * Also set up the send-to queue accordingly. 22590 */ 22591 ire = ire1; 22592 ire1 = NULL; 22593 stq = ire->ire_stq; 22594 mp = next_mp; 22595 next_mp = NULL; 22596 ipha = (ipha_t *)mp->b_rptr; 22597 ill_index = Q_TO_INDEX(stq); 22598 ill = (ill_t *)stq->q_ptr; 22599 } 22600 } while (multirt_send); 22601 if (conn_outgoing_ill != NULL) 22602 ill_refrele(conn_outgoing_ill); 22603 return; 22604 22605 /* 22606 * ire->ire_type == IRE_BROADCAST (minimize diffs) 22607 */ 22608 broadcast: 22609 { 22610 /* 22611 * To avoid broadcast storms, we usually set the TTL to 1 for 22612 * broadcasts. However, if SO_DONTROUTE isn't set, this value 22613 * can be overridden stack-wide through the ip_broadcast_ttl 22614 * ndd tunable, or on a per-connection basis through the 22615 * IP_BROADCAST_TTL socket option. 22616 * 22617 * In the event that we are replying to incoming ICMP packets, 22618 * connp could be NULL. 22619 */ 22620 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 22621 if (connp != NULL) { 22622 if (connp->conn_dontroute) 22623 ipha->ipha_ttl = 1; 22624 else if (connp->conn_broadcast_ttl != 0) 22625 ipha->ipha_ttl = connp->conn_broadcast_ttl; 22626 } 22627 22628 /* 22629 * Note that we are not doing a IRB_REFHOLD here. 22630 * Actually we don't care if the list changes i.e 22631 * if somebody deletes an IRE from the list while 22632 * we drop the lock, the next time we come around 22633 * ire_next will be NULL and hence we won't send 22634 * out multiple copies which is fine. 22635 */ 22636 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 22637 ire1 = ire->ire_next; 22638 if (conn_outgoing_ill != NULL) { 22639 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 22640 ASSERT(ire1 == ire->ire_next); 22641 if (ire1 != NULL && ire1->ire_addr == dst) { 22642 ire_refrele(ire); 22643 ire = ire1; 22644 IRE_REFHOLD(ire); 22645 ire1 = ire->ire_next; 22646 continue; 22647 } 22648 rw_exit(&ire->ire_bucket->irb_lock); 22649 /* Did not find a matching ill */ 22650 ip1dbg(("ip_wput_ire: broadcast with no " 22651 "matching IP_BOUND_IF ill %s dst %x\n", 22652 conn_outgoing_ill->ill_name, dst)); 22653 freemsg(first_mp); 22654 if (ire != NULL) 22655 ire_refrele(ire); 22656 ill_refrele(conn_outgoing_ill); 22657 return; 22658 } 22659 } else if (ire1 != NULL && ire1->ire_addr == dst) { 22660 /* 22661 * If the next IRE has the same address and is not one 22662 * of the two copies that we need to send, try to see 22663 * whether this copy should be sent at all. This 22664 * assumes that we insert loopbacks first and then 22665 * non-loopbacks. This is acheived by inserting the 22666 * loopback always before non-loopback. 22667 * This is used to send a single copy of a broadcast 22668 * packet out all physical interfaces that have an 22669 * matching IRE_BROADCAST while also looping 22670 * back one copy (to ip_wput_local) for each 22671 * matching physical interface. However, we avoid 22672 * sending packets out different logical that match by 22673 * having ipif_up/ipif_down supress duplicate 22674 * IRE_BROADCASTS. 22675 * 22676 * This feature is currently used to get broadcasts 22677 * sent to multiple interfaces, when the broadcast 22678 * address being used applies to multiple interfaces. 22679 * For example, a whole net broadcast will be 22680 * replicated on every connected subnet of 22681 * the target net. 22682 * 22683 * Each zone has its own set of IRE_BROADCASTs, so that 22684 * we're able to distribute inbound packets to multiple 22685 * zones who share a broadcast address. We avoid looping 22686 * back outbound packets in different zones but on the 22687 * same ill, as the application would see duplicates. 22688 * 22689 * If the interfaces are part of the same group, 22690 * we would want to send only one copy out for 22691 * whole group. 22692 * 22693 * This logic assumes that ire_add_v4() groups the 22694 * IRE_BROADCAST entries so that those with the same 22695 * ire_addr and ill_group are kept together. 22696 */ 22697 ire_ill = ire->ire_ipif->ipif_ill; 22698 if (ire->ire_stq == NULL && ire1->ire_stq != NULL) { 22699 if (ire_ill->ill_group != NULL && 22700 (ire->ire_marks & IRE_MARK_NORECV)) { 22701 /* 22702 * If the current zone only has an ire 22703 * broadcast for this address marked 22704 * NORECV, the ire we want is ahead in 22705 * the bucket, so we look it up 22706 * deliberately ignoring the zoneid. 22707 */ 22708 for (ire1 = ire->ire_bucket->irb_ire; 22709 ire1 != NULL; 22710 ire1 = ire1->ire_next) { 22711 ire1_ill = 22712 ire1->ire_ipif->ipif_ill; 22713 if (ire1->ire_addr != dst) 22714 continue; 22715 /* skip over the current ire */ 22716 if (ire1 == ire) 22717 continue; 22718 /* skip over deleted ires */ 22719 if (ire1->ire_marks & 22720 IRE_MARK_CONDEMNED) 22721 continue; 22722 /* 22723 * non-loopback ire in our 22724 * group: use it for the next 22725 * pass in the loop 22726 */ 22727 if (ire1->ire_stq != NULL && 22728 ire1_ill->ill_group == 22729 ire_ill->ill_group) 22730 break; 22731 } 22732 } 22733 } else { 22734 while (ire1 != NULL && ire1->ire_addr == dst) { 22735 ire1_ill = ire1->ire_ipif->ipif_ill; 22736 /* 22737 * We can have two broadcast ires on the 22738 * same ill in different zones; here 22739 * we'll send a copy of the packet on 22740 * each ill and the fanout code will 22741 * call conn_wantpacket() to check that 22742 * the zone has the broadcast address 22743 * configured on the ill. If the two 22744 * ires are in the same group we only 22745 * send one copy up. 22746 */ 22747 if (ire1_ill != ire_ill && 22748 (ire1_ill->ill_group == NULL || 22749 ire_ill->ill_group == NULL || 22750 ire1_ill->ill_group != 22751 ire_ill->ill_group)) { 22752 break; 22753 } 22754 ire1 = ire1->ire_next; 22755 } 22756 } 22757 } 22758 ASSERT(multirt_send == B_FALSE); 22759 if (ire1 != NULL && ire1->ire_addr == dst) { 22760 if ((ire->ire_flags & RTF_MULTIRT) && 22761 (ire1->ire_flags & RTF_MULTIRT)) { 22762 /* 22763 * We are in the multirouting case. 22764 * The message must be sent at least 22765 * on both ires. These ires have been 22766 * inserted AFTER the standard ones 22767 * in ip_rt_add(). There are thus no 22768 * other ire entries for the destination 22769 * address in the rest of the bucket 22770 * that do not have the RTF_MULTIRT 22771 * flag. We don't process a copy 22772 * of the message here. This will be 22773 * done in the final sending loop. 22774 */ 22775 multirt_send = B_TRUE; 22776 } else { 22777 next_mp = ip_copymsg(first_mp); 22778 if (next_mp != NULL) 22779 IRE_REFHOLD(ire1); 22780 } 22781 } 22782 rw_exit(&ire->ire_bucket->irb_lock); 22783 } 22784 22785 if (stq) { 22786 /* 22787 * A non-NULL send-to queue means this packet is going 22788 * out of this machine. 22789 */ 22790 out_ill = (ill_t *)stq->q_ptr; 22791 22792 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutRequests); 22793 ttl_protocol = ((uint16_t *)ipha)[4]; 22794 /* 22795 * We accumulate the pseudo header checksum in cksum. 22796 * This is pretty hairy code, so watch close. One 22797 * thing to keep in mind is that UDP and TCP have 22798 * stored their respective datagram lengths in their 22799 * checksum fields. This lines things up real nice. 22800 */ 22801 cksum = (dst >> 16) + (dst & 0xFFFF) + 22802 (src >> 16) + (src & 0xFFFF); 22803 /* 22804 * We assume the udp checksum field contains the 22805 * length, so to compute the pseudo header checksum, 22806 * all we need is the protocol number and src/dst. 22807 */ 22808 /* Provide the checksums for UDP and TCP. */ 22809 if ((PROTO == IPPROTO_TCP) && 22810 (ip_hdr_included != IP_HDR_INCLUDED)) { 22811 /* hlen gets the number of uchar_ts in the IP header */ 22812 hlen = (V_HLEN & 0xF) << 2; 22813 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22814 IP_STAT(ipst, ip_out_sw_cksum); 22815 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22816 LENGTH - hlen); 22817 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 22818 } else if (PROTO == IPPROTO_SCTP && 22819 (ip_hdr_included != IP_HDR_INCLUDED)) { 22820 sctp_hdr_t *sctph; 22821 22822 hlen = (V_HLEN & 0xF) << 2; 22823 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22824 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22825 sctph->sh_chksum = 0; 22826 #ifdef DEBUG 22827 if (!skip_sctp_cksum) 22828 #endif 22829 sctph->sh_chksum = sctp_cksum(mp, hlen); 22830 } else { 22831 queue_t *dev_q = stq->q_next; 22832 22833 if ((dev_q->q_next || dev_q->q_first) && 22834 !canput(dev_q)) { 22835 blocked: 22836 ipha->ipha_ident = ip_hdr_included; 22837 /* 22838 * If we don't have a conn to apply 22839 * backpressure, free the message. 22840 * In the ire_send path, we don't know 22841 * the position to requeue the packet. Rather 22842 * than reorder packets, we just drop this 22843 * packet. 22844 */ 22845 if (ipst->ips_ip_output_queue && 22846 connp != NULL && 22847 caller != IRE_SEND) { 22848 if (caller == IP_WSRV) { 22849 connp->conn_did_putbq = 1; 22850 (void) putbq(connp->conn_wq, 22851 first_mp); 22852 conn_drain_insert(connp); 22853 /* 22854 * This is the service thread, 22855 * and the queue is already 22856 * noenabled. The check for 22857 * canput and the putbq is not 22858 * atomic. So we need to check 22859 * again. 22860 */ 22861 if (canput(stq->q_next)) 22862 connp->conn_did_putbq 22863 = 0; 22864 IP_STAT(ipst, ip_conn_flputbq); 22865 } else { 22866 /* 22867 * We are not the service proc. 22868 * ip_wsrv will be scheduled or 22869 * is already running. 22870 */ 22871 (void) putq(connp->conn_wq, 22872 first_mp); 22873 } 22874 } else { 22875 out_ill = (ill_t *)stq->q_ptr; 22876 BUMP_MIB(out_ill->ill_ip_mib, 22877 ipIfStatsOutDiscards); 22878 freemsg(first_mp); 22879 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22880 "ip_wput_ire_end: q %p (%S)", 22881 q, "discard"); 22882 } 22883 ire_refrele(ire); 22884 if (next_mp) { 22885 ire_refrele(ire1); 22886 freemsg(next_mp); 22887 } 22888 if (conn_outgoing_ill != NULL) 22889 ill_refrele(conn_outgoing_ill); 22890 return; 22891 } 22892 if ((PROTO == IPPROTO_UDP) && 22893 (ip_hdr_included != IP_HDR_INCLUDED)) { 22894 /* 22895 * hlen gets the number of uchar_ts in the 22896 * IP header 22897 */ 22898 hlen = (V_HLEN & 0xF) << 2; 22899 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22900 max_frag = ire->ire_max_frag; 22901 if (*up != 0) { 22902 IP_CKSUM_XMIT(out_ill, ire, mp, ipha, 22903 up, PROTO, hlen, LENGTH, max_frag, 22904 ipsec_len, cksum); 22905 /* Software checksum? */ 22906 if (DB_CKSUMFLAGS(mp) == 0) { 22907 IP_STAT(ipst, ip_out_sw_cksum); 22908 IP_STAT_UPDATE(ipst, 22909 ip_udp_out_sw_cksum_bytes, 22910 LENGTH - hlen); 22911 } 22912 } 22913 } 22914 } 22915 /* 22916 * Need to do this even when fragmenting. The local 22917 * loopback can be done without computing checksums 22918 * but forwarding out other interface must be done 22919 * after the IP checksum (and ULP checksums) have been 22920 * computed. 22921 * 22922 * NOTE : multicast_forward is set only if this packet 22923 * originated from ip_wput. For packets originating from 22924 * ip_wput_multicast, it is not set. 22925 */ 22926 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 22927 multi_loopback: 22928 ip2dbg(("ip_wput: multicast, loop %d\n", 22929 conn_multicast_loop)); 22930 22931 /* Forget header checksum offload */ 22932 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 22933 22934 /* 22935 * Local loopback of multicasts? Check the 22936 * ill. 22937 * 22938 * Note that the loopback function will not come 22939 * in through ip_rput - it will only do the 22940 * client fanout thus we need to do an mforward 22941 * as well. The is different from the BSD 22942 * logic. 22943 */ 22944 if (ill != NULL) { 22945 ilm_t *ilm; 22946 22947 ILM_WALKER_HOLD(ill); 22948 ilm = ilm_lookup_ill(ill, ipha->ipha_dst, 22949 ALL_ZONES); 22950 ILM_WALKER_RELE(ill); 22951 if (ilm != NULL) { 22952 /* 22953 * Pass along the virtual output q. 22954 * ip_wput_local() will distribute the 22955 * packet to all the matching zones, 22956 * except the sending zone when 22957 * IP_MULTICAST_LOOP is false. 22958 */ 22959 ip_multicast_loopback(q, ill, first_mp, 22960 conn_multicast_loop ? 0 : 22961 IP_FF_NO_MCAST_LOOP, zoneid); 22962 } 22963 } 22964 if (ipha->ipha_ttl == 0) { 22965 /* 22966 * 0 => only to this host i.e. we are 22967 * done. We are also done if this was the 22968 * loopback interface since it is sufficient 22969 * to loopback one copy of a multicast packet. 22970 */ 22971 freemsg(first_mp); 22972 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22973 "ip_wput_ire_end: q %p (%S)", 22974 q, "loopback"); 22975 ire_refrele(ire); 22976 if (conn_outgoing_ill != NULL) 22977 ill_refrele(conn_outgoing_ill); 22978 return; 22979 } 22980 /* 22981 * ILLF_MULTICAST is checked in ip_newroute 22982 * i.e. we don't need to check it here since 22983 * all IRE_CACHEs come from ip_newroute. 22984 * For multicast traffic, SO_DONTROUTE is interpreted 22985 * to mean only send the packet out the interface 22986 * (optionally specified with IP_MULTICAST_IF) 22987 * and do not forward it out additional interfaces. 22988 * RSVP and the rsvp daemon is an example of a 22989 * protocol and user level process that 22990 * handles it's own routing. Hence, it uses the 22991 * SO_DONTROUTE option to accomplish this. 22992 */ 22993 22994 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 22995 ill != NULL) { 22996 /* Unconditionally redo the checksum */ 22997 ipha->ipha_hdr_checksum = 0; 22998 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 22999 23000 /* 23001 * If this needs to go out secure, we need 23002 * to wait till we finish the IPsec 23003 * processing. 23004 */ 23005 if (ipsec_len == 0 && 23006 ip_mforward(ill, ipha, mp)) { 23007 freemsg(first_mp); 23008 ip1dbg(("ip_wput: mforward failed\n")); 23009 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23010 "ip_wput_ire_end: q %p (%S)", 23011 q, "mforward failed"); 23012 ire_refrele(ire); 23013 if (conn_outgoing_ill != NULL) 23014 ill_refrele(conn_outgoing_ill); 23015 return; 23016 } 23017 } 23018 } 23019 max_frag = ire->ire_max_frag; 23020 cksum += ttl_protocol; 23021 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 23022 /* No fragmentation required for this one. */ 23023 /* 23024 * Don't use frag_flag if packet is pre-built or source 23025 * routed or if multicast (since multicast packets do 23026 * not solicit ICMP "packet too big" messages). 23027 */ 23028 if ((ip_hdr_included != IP_HDR_INCLUDED) && 23029 (V_HLEN == IP_SIMPLE_HDR_VERSION || 23030 !ip_source_route_included(ipha)) && 23031 !CLASSD(ipha->ipha_dst)) 23032 ipha->ipha_fragment_offset_and_flags |= 23033 htons(ire->ire_frag_flag); 23034 23035 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 23036 /* Complete the IP header checksum. */ 23037 cksum += ipha->ipha_ident; 23038 cksum += (v_hlen_tos_len >> 16)+ 23039 (v_hlen_tos_len & 0xFFFF); 23040 cksum += ipha->ipha_fragment_offset_and_flags; 23041 hlen = (V_HLEN & 0xF) - 23042 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 23043 if (hlen) { 23044 checksumoptions: 23045 /* 23046 * Account for the IP Options in the IP 23047 * header checksum. 23048 */ 23049 up = (uint16_t *)(rptr+ 23050 IP_SIMPLE_HDR_LENGTH); 23051 do { 23052 cksum += up[0]; 23053 cksum += up[1]; 23054 up += 2; 23055 } while (--hlen); 23056 } 23057 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 23058 cksum = ~(cksum + (cksum >> 16)); 23059 ipha->ipha_hdr_checksum = (uint16_t)cksum; 23060 } 23061 if (ipsec_len != 0) { 23062 ipsec_out_process(q, first_mp, ire, ill_index); 23063 if (!next_mp) { 23064 ire_refrele(ire); 23065 if (conn_outgoing_ill != NULL) 23066 ill_refrele(conn_outgoing_ill); 23067 return; 23068 } 23069 goto next; 23070 } 23071 23072 /* 23073 * multirt_send has already been handled 23074 * for broadcast, but not yet for multicast 23075 * or IP options. 23076 */ 23077 if (next_mp == NULL) { 23078 if (ire->ire_flags & RTF_MULTIRT) { 23079 multirt_send = B_TRUE; 23080 } 23081 } 23082 23083 /* 23084 * In most cases, the emission loop below is 23085 * entered only once. Only in the case where 23086 * the ire holds the RTF_MULTIRT flag, do we loop 23087 * to process all RTF_MULTIRT ires in the bucket, 23088 * and send the packet through all crossed 23089 * RTF_MULTIRT routes. 23090 */ 23091 do { 23092 if (multirt_send) { 23093 irb_t *irb; 23094 23095 irb = ire->ire_bucket; 23096 ASSERT(irb != NULL); 23097 /* 23098 * We are in a multiple send case, 23099 * need to get the next IRE and make 23100 * a duplicate of the packet. 23101 */ 23102 IRB_REFHOLD(irb); 23103 for (ire1 = ire->ire_next; 23104 ire1 != NULL; 23105 ire1 = ire1->ire_next) { 23106 if (!(ire1->ire_flags & 23107 RTF_MULTIRT)) { 23108 continue; 23109 } 23110 if (ire1->ire_addr != 23111 ire->ire_addr) { 23112 continue; 23113 } 23114 if (ire1->ire_marks & 23115 (IRE_MARK_CONDEMNED| 23116 IRE_MARK_HIDDEN)) { 23117 continue; 23118 } 23119 23120 /* Got one */ 23121 IRE_REFHOLD(ire1); 23122 break; 23123 } 23124 IRB_REFRELE(irb); 23125 23126 if (ire1 != NULL) { 23127 next_mp = copyb(mp); 23128 if ((next_mp == NULL) || 23129 ((mp->b_cont != NULL) && 23130 ((next_mp->b_cont = 23131 dupmsg(mp->b_cont)) 23132 == NULL))) { 23133 freemsg(next_mp); 23134 next_mp = NULL; 23135 ire_refrele(ire1); 23136 ire1 = NULL; 23137 } 23138 } 23139 23140 /* 23141 * Last multiroute ire; don't loop 23142 * anymore. The emission is over 23143 * and next_mp is NULL. 23144 */ 23145 if (ire1 == NULL) { 23146 multirt_send = B_FALSE; 23147 } 23148 } 23149 23150 out_ill = ire_to_ill(ire); 23151 DTRACE_PROBE4(ip4__physical__out__start, 23152 ill_t *, NULL, 23153 ill_t *, out_ill, 23154 ipha_t *, ipha, mblk_t *, mp); 23155 FW_HOOKS(ipst->ips_ip4_physical_out_event, 23156 ipst->ips_ipv4firewall_physical_out, 23157 NULL, out_ill, ipha, mp, mp, 0, ipst); 23158 DTRACE_PROBE1(ip4__physical__out__end, 23159 mblk_t *, mp); 23160 if (mp == NULL) 23161 goto release_ire_and_ill_2; 23162 23163 ASSERT(ipsec_len == 0); 23164 mp->b_prev = 23165 SET_BPREV_FLAG(IPP_LOCAL_OUT); 23166 DTRACE_PROBE2(ip__xmit__2, 23167 mblk_t *, mp, ire_t *, ire); 23168 pktxmit_state = ip_xmit_v4(mp, ire, 23169 NULL, B_TRUE); 23170 if ((pktxmit_state == SEND_FAILED) || 23171 (pktxmit_state == LLHDR_RESLV_FAILED)) { 23172 release_ire_and_ill_2: 23173 if (next_mp) { 23174 freemsg(next_mp); 23175 ire_refrele(ire1); 23176 } 23177 ire_refrele(ire); 23178 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23179 "ip_wput_ire_end: q %p (%S)", 23180 q, "discard MDATA"); 23181 if (conn_outgoing_ill != NULL) 23182 ill_refrele(conn_outgoing_ill); 23183 return; 23184 } 23185 23186 if (CLASSD(dst)) { 23187 BUMP_MIB(out_ill->ill_ip_mib, 23188 ipIfStatsHCOutMcastPkts); 23189 UPDATE_MIB(out_ill->ill_ip_mib, 23190 ipIfStatsHCOutMcastOctets, 23191 LENGTH); 23192 } else if (ire->ire_type == IRE_BROADCAST) { 23193 BUMP_MIB(out_ill->ill_ip_mib, 23194 ipIfStatsHCOutBcastPkts); 23195 } 23196 23197 if (multirt_send) { 23198 /* 23199 * We are in a multiple send case, 23200 * need to re-enter the sending loop 23201 * using the next ire. 23202 */ 23203 ire_refrele(ire); 23204 ire = ire1; 23205 stq = ire->ire_stq; 23206 mp = next_mp; 23207 next_mp = NULL; 23208 ipha = (ipha_t *)mp->b_rptr; 23209 ill_index = Q_TO_INDEX(stq); 23210 } 23211 } while (multirt_send); 23212 23213 if (!next_mp) { 23214 /* 23215 * Last copy going out (the ultra-common 23216 * case). Note that we intentionally replicate 23217 * the putnext rather than calling it before 23218 * the next_mp check in hopes of a little 23219 * tail-call action out of the compiler. 23220 */ 23221 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23222 "ip_wput_ire_end: q %p (%S)", 23223 q, "last copy out(1)"); 23224 ire_refrele(ire); 23225 if (conn_outgoing_ill != NULL) 23226 ill_refrele(conn_outgoing_ill); 23227 return; 23228 } 23229 /* More copies going out below. */ 23230 } else { 23231 int offset; 23232 fragmentit: 23233 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 23234 /* 23235 * If this would generate a icmp_frag_needed message, 23236 * we need to handle it before we do the IPsec 23237 * processing. Otherwise, we need to strip the IPsec 23238 * headers before we send up the message to the ULPs 23239 * which becomes messy and difficult. 23240 */ 23241 if (ipsec_len != 0) { 23242 if ((max_frag < (unsigned int)(LENGTH + 23243 ipsec_len)) && (offset & IPH_DF)) { 23244 out_ill = (ill_t *)stq->q_ptr; 23245 BUMP_MIB(out_ill->ill_ip_mib, 23246 ipIfStatsOutFragFails); 23247 BUMP_MIB(out_ill->ill_ip_mib, 23248 ipIfStatsOutFragReqds); 23249 ipha->ipha_hdr_checksum = 0; 23250 ipha->ipha_hdr_checksum = 23251 (uint16_t)ip_csum_hdr(ipha); 23252 icmp_frag_needed(ire->ire_stq, first_mp, 23253 max_frag, zoneid, ipst); 23254 if (!next_mp) { 23255 ire_refrele(ire); 23256 if (conn_outgoing_ill != NULL) { 23257 ill_refrele( 23258 conn_outgoing_ill); 23259 } 23260 return; 23261 } 23262 } else { 23263 /* 23264 * This won't cause a icmp_frag_needed 23265 * message. to be generated. Send it on 23266 * the wire. Note that this could still 23267 * cause fragmentation and all we 23268 * do is the generation of the message 23269 * to the ULP if needed before IPsec. 23270 */ 23271 if (!next_mp) { 23272 ipsec_out_process(q, first_mp, 23273 ire, ill_index); 23274 TRACE_2(TR_FAC_IP, 23275 TR_IP_WPUT_IRE_END, 23276 "ip_wput_ire_end: q %p " 23277 "(%S)", q, 23278 "last ipsec_out_process"); 23279 ire_refrele(ire); 23280 if (conn_outgoing_ill != NULL) { 23281 ill_refrele( 23282 conn_outgoing_ill); 23283 } 23284 return; 23285 } 23286 ipsec_out_process(q, first_mp, 23287 ire, ill_index); 23288 } 23289 } else { 23290 /* 23291 * Initiate IPPF processing. For 23292 * fragmentable packets we finish 23293 * all QOS packet processing before 23294 * calling: 23295 * ip_wput_ire_fragmentit->ip_wput_frag 23296 */ 23297 23298 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23299 ip_process(IPP_LOCAL_OUT, &mp, 23300 ill_index); 23301 if (mp == NULL) { 23302 out_ill = (ill_t *)stq->q_ptr; 23303 BUMP_MIB(out_ill->ill_ip_mib, 23304 ipIfStatsOutDiscards); 23305 if (next_mp != NULL) { 23306 freemsg(next_mp); 23307 ire_refrele(ire1); 23308 } 23309 ire_refrele(ire); 23310 TRACE_2(TR_FAC_IP, 23311 TR_IP_WPUT_IRE_END, 23312 "ip_wput_ire: q %p (%S)", 23313 q, "discard MDATA"); 23314 if (conn_outgoing_ill != NULL) { 23315 ill_refrele( 23316 conn_outgoing_ill); 23317 } 23318 return; 23319 } 23320 } 23321 if (!next_mp) { 23322 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23323 "ip_wput_ire_end: q %p (%S)", 23324 q, "last fragmentation"); 23325 ip_wput_ire_fragmentit(mp, ire, 23326 zoneid, ipst); 23327 ire_refrele(ire); 23328 if (conn_outgoing_ill != NULL) 23329 ill_refrele(conn_outgoing_ill); 23330 return; 23331 } 23332 ip_wput_ire_fragmentit(mp, ire, zoneid, ipst); 23333 } 23334 } 23335 } else { 23336 nullstq: 23337 /* A NULL stq means the destination address is local. */ 23338 UPDATE_OB_PKT_COUNT(ire); 23339 ire->ire_last_used_time = lbolt; 23340 ASSERT(ire->ire_ipif != NULL); 23341 if (!next_mp) { 23342 /* 23343 * Is there an "in" and "out" for traffic local 23344 * to a host (loopback)? The code in Solaris doesn't 23345 * explicitly draw a line in its code for in vs out, 23346 * so we've had to draw a line in the sand: ip_wput_ire 23347 * is considered to be the "output" side and 23348 * ip_wput_local to be the "input" side. 23349 */ 23350 out_ill = ire_to_ill(ire); 23351 23352 DTRACE_PROBE4(ip4__loopback__out__start, 23353 ill_t *, NULL, ill_t *, out_ill, 23354 ipha_t *, ipha, mblk_t *, first_mp); 23355 23356 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23357 ipst->ips_ipv4firewall_loopback_out, 23358 NULL, out_ill, ipha, first_mp, mp, 0, ipst); 23359 23360 DTRACE_PROBE1(ip4__loopback__out_end, 23361 mblk_t *, first_mp); 23362 23363 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23364 "ip_wput_ire_end: q %p (%S)", 23365 q, "local address"); 23366 23367 if (first_mp != NULL) 23368 ip_wput_local(q, out_ill, ipha, 23369 first_mp, ire, 0, ire->ire_zoneid); 23370 ire_refrele(ire); 23371 if (conn_outgoing_ill != NULL) 23372 ill_refrele(conn_outgoing_ill); 23373 return; 23374 } 23375 23376 out_ill = ire_to_ill(ire); 23377 23378 DTRACE_PROBE4(ip4__loopback__out__start, 23379 ill_t *, NULL, ill_t *, out_ill, 23380 ipha_t *, ipha, mblk_t *, first_mp); 23381 23382 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23383 ipst->ips_ipv4firewall_loopback_out, 23384 NULL, out_ill, ipha, first_mp, mp, 0, ipst); 23385 23386 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, first_mp); 23387 23388 if (first_mp != NULL) 23389 ip_wput_local(q, out_ill, ipha, 23390 first_mp, ire, 0, ire->ire_zoneid); 23391 } 23392 next: 23393 /* 23394 * More copies going out to additional interfaces. 23395 * ire1 has already been held. We don't need the 23396 * "ire" anymore. 23397 */ 23398 ire_refrele(ire); 23399 ire = ire1; 23400 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 23401 mp = next_mp; 23402 ASSERT(ire->ire_ipversion == IPV4_VERSION); 23403 ill = ire_to_ill(ire); 23404 first_mp = mp; 23405 if (ipsec_len != 0) { 23406 ASSERT(first_mp->b_datap->db_type == M_CTL); 23407 mp = mp->b_cont; 23408 } 23409 dst = ire->ire_addr; 23410 ipha = (ipha_t *)mp->b_rptr; 23411 /* 23412 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 23413 * Restore ipha_ident "no checksum" flag. 23414 */ 23415 src = orig_src; 23416 ipha->ipha_ident = ip_hdr_included; 23417 goto another; 23418 23419 #undef rptr 23420 #undef Q_TO_INDEX 23421 } 23422 23423 /* 23424 * Routine to allocate a message that is used to notify the ULP about MDT. 23425 * The caller may provide a pointer to the link-layer MDT capabilities, 23426 * or NULL if MDT is to be disabled on the stream. 23427 */ 23428 mblk_t * 23429 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 23430 { 23431 mblk_t *mp; 23432 ip_mdt_info_t *mdti; 23433 ill_mdt_capab_t *idst; 23434 23435 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 23436 DB_TYPE(mp) = M_CTL; 23437 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 23438 mdti = (ip_mdt_info_t *)mp->b_rptr; 23439 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 23440 idst = &(mdti->mdt_capab); 23441 23442 /* 23443 * If the caller provides us with the capability, copy 23444 * it over into our notification message; otherwise 23445 * we zero out the capability portion. 23446 */ 23447 if (isrc != NULL) 23448 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23449 else 23450 bzero((caddr_t)idst, sizeof (*idst)); 23451 } 23452 return (mp); 23453 } 23454 23455 /* 23456 * Routine which determines whether MDT can be enabled on the destination 23457 * IRE and IPC combination, and if so, allocates and returns the MDT 23458 * notification mblk that may be used by ULP. We also check if we need to 23459 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 23460 * MDT usage in the past have been lifted. This gets called during IP 23461 * and ULP binding. 23462 */ 23463 mblk_t * 23464 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23465 ill_mdt_capab_t *mdt_cap) 23466 { 23467 mblk_t *mp; 23468 boolean_t rc = B_FALSE; 23469 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23470 23471 ASSERT(dst_ire != NULL); 23472 ASSERT(connp != NULL); 23473 ASSERT(mdt_cap != NULL); 23474 23475 /* 23476 * Currently, we only support simple TCP/{IPv4,IPv6} with 23477 * Multidata, which is handled in tcp_multisend(). This 23478 * is the reason why we do all these checks here, to ensure 23479 * that we don't enable Multidata for the cases which we 23480 * can't handle at the moment. 23481 */ 23482 do { 23483 /* Only do TCP at the moment */ 23484 if (connp->conn_ulp != IPPROTO_TCP) 23485 break; 23486 23487 /* 23488 * IPsec outbound policy present? Note that we get here 23489 * after calling ipsec_conn_cache_policy() where the global 23490 * policy checking is performed. conn_latch will be 23491 * non-NULL as long as there's a policy defined, 23492 * i.e. conn_out_enforce_policy may be NULL in such case 23493 * when the connection is non-secure, and hence we check 23494 * further if the latch refers to an outbound policy. 23495 */ 23496 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 23497 break; 23498 23499 /* CGTP (multiroute) is enabled? */ 23500 if (dst_ire->ire_flags & RTF_MULTIRT) 23501 break; 23502 23503 /* Outbound IPQoS enabled? */ 23504 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23505 /* 23506 * In this case, we disable MDT for this and all 23507 * future connections going over the interface. 23508 */ 23509 mdt_cap->ill_mdt_on = 0; 23510 break; 23511 } 23512 23513 /* socket option(s) present? */ 23514 if (!CONN_IS_LSO_MD_FASTPATH(connp)) 23515 break; 23516 23517 rc = B_TRUE; 23518 /* CONSTCOND */ 23519 } while (0); 23520 23521 /* Remember the result */ 23522 connp->conn_mdt_ok = rc; 23523 23524 if (!rc) 23525 return (NULL); 23526 else if (!mdt_cap->ill_mdt_on) { 23527 /* 23528 * If MDT has been previously turned off in the past, and we 23529 * currently can do MDT (due to IPQoS policy removal, etc.) 23530 * then enable it for this interface. 23531 */ 23532 mdt_cap->ill_mdt_on = 1; 23533 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 23534 "interface %s\n", ill_name)); 23535 } 23536 23537 /* Allocate the MDT info mblk */ 23538 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 23539 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 23540 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23541 return (NULL); 23542 } 23543 return (mp); 23544 } 23545 23546 /* 23547 * Routine to allocate a message that is used to notify the ULP about LSO. 23548 * The caller may provide a pointer to the link-layer LSO capabilities, 23549 * or NULL if LSO is to be disabled on the stream. 23550 */ 23551 mblk_t * 23552 ip_lsoinfo_alloc(ill_lso_capab_t *isrc) 23553 { 23554 mblk_t *mp; 23555 ip_lso_info_t *lsoi; 23556 ill_lso_capab_t *idst; 23557 23558 if ((mp = allocb(sizeof (*lsoi), BPRI_HI)) != NULL) { 23559 DB_TYPE(mp) = M_CTL; 23560 mp->b_wptr = mp->b_rptr + sizeof (*lsoi); 23561 lsoi = (ip_lso_info_t *)mp->b_rptr; 23562 lsoi->lso_info_id = LSO_IOC_INFO_UPDATE; 23563 idst = &(lsoi->lso_capab); 23564 23565 /* 23566 * If the caller provides us with the capability, copy 23567 * it over into our notification message; otherwise 23568 * we zero out the capability portion. 23569 */ 23570 if (isrc != NULL) 23571 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23572 else 23573 bzero((caddr_t)idst, sizeof (*idst)); 23574 } 23575 return (mp); 23576 } 23577 23578 /* 23579 * Routine which determines whether LSO can be enabled on the destination 23580 * IRE and IPC combination, and if so, allocates and returns the LSO 23581 * notification mblk that may be used by ULP. We also check if we need to 23582 * turn LSO back to 'on' when certain restrictions prohibiting us to allow 23583 * LSO usage in the past have been lifted. This gets called during IP 23584 * and ULP binding. 23585 */ 23586 mblk_t * 23587 ip_lsoinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23588 ill_lso_capab_t *lso_cap) 23589 { 23590 mblk_t *mp; 23591 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23592 23593 ASSERT(dst_ire != NULL); 23594 ASSERT(connp != NULL); 23595 ASSERT(lso_cap != NULL); 23596 23597 connp->conn_lso_ok = B_TRUE; 23598 23599 if ((connp->conn_ulp != IPPROTO_TCP) || 23600 CONN_IPSEC_OUT_ENCAPSULATED(connp) || 23601 (dst_ire->ire_flags & RTF_MULTIRT) || 23602 !CONN_IS_LSO_MD_FASTPATH(connp) || 23603 (IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 23604 connp->conn_lso_ok = B_FALSE; 23605 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23606 /* 23607 * Disable LSO for this and all future connections going 23608 * over the interface. 23609 */ 23610 lso_cap->ill_lso_on = 0; 23611 } 23612 } 23613 23614 if (!connp->conn_lso_ok) 23615 return (NULL); 23616 else if (!lso_cap->ill_lso_on) { 23617 /* 23618 * If LSO has been previously turned off in the past, and we 23619 * currently can do LSO (due to IPQoS policy removal, etc.) 23620 * then enable it for this interface. 23621 */ 23622 lso_cap->ill_lso_on = 1; 23623 ip1dbg(("ip_mdinfo_return: reenabling LSO for interface %s\n", 23624 ill_name)); 23625 } 23626 23627 /* Allocate the LSO info mblk */ 23628 if ((mp = ip_lsoinfo_alloc(lso_cap)) == NULL) 23629 ip0dbg(("ip_lsoinfo_return: can't enable LSO for " 23630 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23631 23632 return (mp); 23633 } 23634 23635 /* 23636 * Create destination address attribute, and fill it with the physical 23637 * destination address and SAP taken from the template DL_UNITDATA_REQ 23638 * message block. 23639 */ 23640 boolean_t 23641 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 23642 { 23643 dl_unitdata_req_t *dlurp; 23644 pattr_t *pa; 23645 pattrinfo_t pa_info; 23646 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 23647 uint_t das_len, das_off; 23648 23649 ASSERT(dlmp != NULL); 23650 23651 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 23652 das_len = dlurp->dl_dest_addr_length; 23653 das_off = dlurp->dl_dest_addr_offset; 23654 23655 pa_info.type = PATTR_DSTADDRSAP; 23656 pa_info.len = sizeof (**das) + das_len - 1; 23657 23658 /* create and associate the attribute */ 23659 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23660 if (pa != NULL) { 23661 ASSERT(*das != NULL); 23662 (*das)->addr_is_group = 0; 23663 (*das)->addr_len = (uint8_t)das_len; 23664 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 23665 } 23666 23667 return (pa != NULL); 23668 } 23669 23670 /* 23671 * Create hardware checksum attribute and fill it with the values passed. 23672 */ 23673 boolean_t 23674 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 23675 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 23676 { 23677 pattr_t *pa; 23678 pattrinfo_t pa_info; 23679 23680 ASSERT(mmd != NULL); 23681 23682 pa_info.type = PATTR_HCKSUM; 23683 pa_info.len = sizeof (pattr_hcksum_t); 23684 23685 /* create and associate the attribute */ 23686 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23687 if (pa != NULL) { 23688 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 23689 23690 hck->hcksum_start_offset = start_offset; 23691 hck->hcksum_stuff_offset = stuff_offset; 23692 hck->hcksum_end_offset = end_offset; 23693 hck->hcksum_flags = flags; 23694 } 23695 return (pa != NULL); 23696 } 23697 23698 /* 23699 * Create zerocopy attribute and fill it with the specified flags 23700 */ 23701 boolean_t 23702 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 23703 { 23704 pattr_t *pa; 23705 pattrinfo_t pa_info; 23706 23707 ASSERT(mmd != NULL); 23708 pa_info.type = PATTR_ZCOPY; 23709 pa_info.len = sizeof (pattr_zcopy_t); 23710 23711 /* create and associate the attribute */ 23712 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23713 if (pa != NULL) { 23714 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 23715 23716 zcopy->zcopy_flags = flags; 23717 } 23718 return (pa != NULL); 23719 } 23720 23721 /* 23722 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 23723 * block chain. We could rewrite to handle arbitrary message block chains but 23724 * that would make the code complicated and slow. Right now there three 23725 * restrictions: 23726 * 23727 * 1. The first message block must contain the complete IP header and 23728 * at least 1 byte of payload data. 23729 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 23730 * so that we can use a single Multidata message. 23731 * 3. No frag must be distributed over two or more message blocks so 23732 * that we don't need more than two packet descriptors per frag. 23733 * 23734 * The above restrictions allow us to support userland applications (which 23735 * will send down a single message block) and NFS over UDP (which will 23736 * send down a chain of at most three message blocks). 23737 * 23738 * We also don't use MDT for payloads with less than or equal to 23739 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 23740 */ 23741 boolean_t 23742 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 23743 { 23744 int blocks; 23745 ssize_t total, missing, size; 23746 23747 ASSERT(mp != NULL); 23748 ASSERT(hdr_len > 0); 23749 23750 size = MBLKL(mp) - hdr_len; 23751 if (size <= 0) 23752 return (B_FALSE); 23753 23754 /* The first mblk contains the header and some payload. */ 23755 blocks = 1; 23756 total = size; 23757 size %= len; 23758 missing = (size == 0) ? 0 : (len - size); 23759 mp = mp->b_cont; 23760 23761 while (mp != NULL) { 23762 /* 23763 * Give up if we encounter a zero length message block. 23764 * In practice, this should rarely happen and therefore 23765 * not worth the trouble of freeing and re-linking the 23766 * mblk from the chain to handle such case. 23767 */ 23768 if ((size = MBLKL(mp)) == 0) 23769 return (B_FALSE); 23770 23771 /* Too many payload buffers for a single Multidata message? */ 23772 if (++blocks > MULTIDATA_MAX_PBUFS) 23773 return (B_FALSE); 23774 23775 total += size; 23776 /* Is a frag distributed over two or more message blocks? */ 23777 if (missing > size) 23778 return (B_FALSE); 23779 size -= missing; 23780 23781 size %= len; 23782 missing = (size == 0) ? 0 : (len - size); 23783 23784 mp = mp->b_cont; 23785 } 23786 23787 return (total > ip_wput_frag_mdt_min); 23788 } 23789 23790 /* 23791 * Outbound IPv4 fragmentation routine using MDT. 23792 */ 23793 static void 23794 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 23795 uint32_t frag_flag, int offset) 23796 { 23797 ipha_t *ipha_orig; 23798 int i1, ip_data_end; 23799 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 23800 mblk_t *hdr_mp, *md_mp = NULL; 23801 unsigned char *hdr_ptr, *pld_ptr; 23802 multidata_t *mmd; 23803 ip_pdescinfo_t pdi; 23804 ill_t *ill; 23805 ip_stack_t *ipst = ire->ire_ipst; 23806 23807 ASSERT(DB_TYPE(mp) == M_DATA); 23808 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 23809 23810 ill = ire_to_ill(ire); 23811 ASSERT(ill != NULL); 23812 23813 ipha_orig = (ipha_t *)mp->b_rptr; 23814 mp->b_rptr += sizeof (ipha_t); 23815 23816 /* Calculate how many packets we will send out */ 23817 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 23818 pkts = (i1 + len - 1) / len; 23819 ASSERT(pkts > 1); 23820 23821 /* Allocate a message block which will hold all the IP Headers. */ 23822 wroff = ipst->ips_ip_wroff_extra; 23823 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 23824 23825 i1 = pkts * hdr_chunk_len; 23826 /* 23827 * Create the header buffer, Multidata and destination address 23828 * and SAP attribute that should be associated with it. 23829 */ 23830 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 23831 ((hdr_mp->b_wptr += i1), 23832 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 23833 !ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) { 23834 freemsg(mp); 23835 if (md_mp == NULL) { 23836 freemsg(hdr_mp); 23837 } else { 23838 free_mmd: IP_STAT(ipst, ip_frag_mdt_discarded); 23839 freemsg(md_mp); 23840 } 23841 IP_STAT(ipst, ip_frag_mdt_allocfail); 23842 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 23843 return; 23844 } 23845 IP_STAT(ipst, ip_frag_mdt_allocd); 23846 23847 /* 23848 * Add a payload buffer to the Multidata; this operation must not 23849 * fail, or otherwise our logic in this routine is broken. There 23850 * is no memory allocation done by the routine, so any returned 23851 * failure simply tells us that we've done something wrong. 23852 * 23853 * A failure tells us that either we're adding the same payload 23854 * buffer more than once, or we're trying to add more buffers than 23855 * allowed. None of the above cases should happen, and we panic 23856 * because either there's horrible heap corruption, and/or 23857 * programming mistake. 23858 */ 23859 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23860 goto pbuf_panic; 23861 23862 hdr_ptr = hdr_mp->b_rptr; 23863 pld_ptr = mp->b_rptr; 23864 23865 /* Establish the ending byte offset, based on the starting offset. */ 23866 offset <<= 3; 23867 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 23868 IP_SIMPLE_HDR_LENGTH; 23869 23870 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 23871 23872 while (pld_ptr < mp->b_wptr) { 23873 ipha_t *ipha; 23874 uint16_t offset_and_flags; 23875 uint16_t ip_len; 23876 int error; 23877 23878 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 23879 ipha = (ipha_t *)(hdr_ptr + wroff); 23880 ASSERT(OK_32PTR(ipha)); 23881 *ipha = *ipha_orig; 23882 23883 if (ip_data_end - offset > len) { 23884 offset_and_flags = IPH_MF; 23885 } else { 23886 /* 23887 * Last frag. Set len to the length of this last piece. 23888 */ 23889 len = ip_data_end - offset; 23890 /* A frag of a frag might have IPH_MF non-zero */ 23891 offset_and_flags = 23892 ntohs(ipha->ipha_fragment_offset_and_flags) & 23893 IPH_MF; 23894 } 23895 offset_and_flags |= (uint16_t)(offset >> 3); 23896 offset_and_flags |= (uint16_t)frag_flag; 23897 /* Store the offset and flags in the IP header. */ 23898 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 23899 23900 /* Store the length in the IP header. */ 23901 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 23902 ipha->ipha_length = htons(ip_len); 23903 23904 /* 23905 * Set the IP header checksum. Note that mp is just 23906 * the header, so this is easy to pass to ip_csum. 23907 */ 23908 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23909 23910 /* 23911 * Record offset and size of header and data of the next packet 23912 * in the multidata message. 23913 */ 23914 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 23915 PDESC_PLD_INIT(&pdi); 23916 i1 = MIN(mp->b_wptr - pld_ptr, len); 23917 ASSERT(i1 > 0); 23918 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 23919 if (i1 == len) { 23920 pld_ptr += len; 23921 } else { 23922 i1 = len - i1; 23923 mp = mp->b_cont; 23924 ASSERT(mp != NULL); 23925 ASSERT(MBLKL(mp) >= i1); 23926 /* 23927 * Attach the next payload message block to the 23928 * multidata message. 23929 */ 23930 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23931 goto pbuf_panic; 23932 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 23933 pld_ptr = mp->b_rptr + i1; 23934 } 23935 23936 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 23937 KM_NOSLEEP)) == NULL) { 23938 /* 23939 * Any failure other than ENOMEM indicates that we 23940 * have passed in invalid pdesc info or parameters 23941 * to mmd_addpdesc, which must not happen. 23942 * 23943 * EINVAL is a result of failure on boundary checks 23944 * against the pdesc info contents. It should not 23945 * happen, and we panic because either there's 23946 * horrible heap corruption, and/or programming 23947 * mistake. 23948 */ 23949 if (error != ENOMEM) { 23950 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 23951 "pdesc logic error detected for " 23952 "mmd %p pinfo %p (%d)\n", 23953 (void *)mmd, (void *)&pdi, error); 23954 /* NOTREACHED */ 23955 } 23956 IP_STAT(ipst, ip_frag_mdt_addpdescfail); 23957 /* Free unattached payload message blocks as well */ 23958 md_mp->b_cont = mp->b_cont; 23959 goto free_mmd; 23960 } 23961 23962 /* Advance fragment offset. */ 23963 offset += len; 23964 23965 /* Advance to location for next header in the buffer. */ 23966 hdr_ptr += hdr_chunk_len; 23967 23968 /* Did we reach the next payload message block? */ 23969 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 23970 mp = mp->b_cont; 23971 /* 23972 * Attach the next message block with payload 23973 * data to the multidata message. 23974 */ 23975 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23976 goto pbuf_panic; 23977 pld_ptr = mp->b_rptr; 23978 } 23979 } 23980 23981 ASSERT(hdr_mp->b_wptr == hdr_ptr); 23982 ASSERT(mp->b_wptr == pld_ptr); 23983 23984 /* Update IP statistics */ 23985 IP_STAT_UPDATE(ipst, ip_frag_mdt_pkt_out, pkts); 23986 23987 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates, pkts); 23988 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 23989 23990 len = ntohs(ipha_orig->ipha_length) + (pkts - 1) * IP_SIMPLE_HDR_LENGTH; 23991 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, pkts); 23992 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, len); 23993 23994 if (pkt_type == OB_PKT) { 23995 ire->ire_ob_pkt_count += pkts; 23996 if (ire->ire_ipif != NULL) 23997 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 23998 } else { 23999 /* The type is IB_PKT in the forwarding path. */ 24000 ire->ire_ib_pkt_count += pkts; 24001 ASSERT(!IRE_IS_LOCAL(ire)); 24002 if (ire->ire_type & IRE_BROADCAST) { 24003 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 24004 } else { 24005 UPDATE_MIB(ill->ill_ip_mib, 24006 ipIfStatsHCOutForwDatagrams, pkts); 24007 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 24008 } 24009 } 24010 ire->ire_last_used_time = lbolt; 24011 /* Send it down */ 24012 putnext(ire->ire_stq, md_mp); 24013 return; 24014 24015 pbuf_panic: 24016 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 24017 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 24018 pbuf_idx); 24019 /* NOTREACHED */ 24020 } 24021 24022 /* 24023 * Outbound IP fragmentation routine. 24024 * 24025 * NOTE : This routine does not ire_refrele the ire that is passed in 24026 * as the argument. 24027 */ 24028 static void 24029 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 24030 uint32_t frag_flag, zoneid_t zoneid, ip_stack_t *ipst) 24031 { 24032 int i1; 24033 mblk_t *ll_hdr_mp; 24034 int ll_hdr_len; 24035 int hdr_len; 24036 mblk_t *hdr_mp; 24037 ipha_t *ipha; 24038 int ip_data_end; 24039 int len; 24040 mblk_t *mp = mp_orig, *mp1; 24041 int offset; 24042 queue_t *q; 24043 uint32_t v_hlen_tos_len; 24044 mblk_t *first_mp; 24045 boolean_t mctl_present; 24046 ill_t *ill; 24047 ill_t *out_ill; 24048 mblk_t *xmit_mp; 24049 mblk_t *carve_mp; 24050 ire_t *ire1 = NULL; 24051 ire_t *save_ire = NULL; 24052 mblk_t *next_mp = NULL; 24053 boolean_t last_frag = B_FALSE; 24054 boolean_t multirt_send = B_FALSE; 24055 ire_t *first_ire = NULL; 24056 irb_t *irb = NULL; 24057 mib2_ipIfStatsEntry_t *mibptr = NULL; 24058 24059 ill = ire_to_ill(ire); 24060 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 24061 24062 BUMP_MIB(mibptr, ipIfStatsOutFragReqds); 24063 24064 if (max_frag == 0) { 24065 ip1dbg(("ip_wput_frag: ire frag size is 0" 24066 " - dropping packet\n")); 24067 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24068 freemsg(mp); 24069 return; 24070 } 24071 24072 /* 24073 * IPsec does not allow hw accelerated packets to be fragmented 24074 * This check is made in ip_wput_ipsec_out prior to coming here 24075 * via ip_wput_ire_fragmentit. 24076 * 24077 * If at this point we have an ire whose ARP request has not 24078 * been sent out, we call ip_xmit_v4->ire_arpresolve to trigger 24079 * sending of ARP query and change ire's state to ND_INCOMPLETE. 24080 * This packet and all fragmentable packets for this ire will 24081 * continue to get dropped while ire_nce->nce_state remains in 24082 * ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to 24083 * ND_REACHABLE, all subsquent large packets for this ire will 24084 * get fragemented and sent out by this function. 24085 */ 24086 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 24087 /* If nce_state is ND_INITIAL, trigger ARP query */ 24088 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 24089 ip1dbg(("ip_wput_frag: mac address for ire is unresolved" 24090 " - dropping packet\n")); 24091 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24092 freemsg(mp); 24093 return; 24094 } 24095 24096 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 24097 "ip_wput_frag_start:"); 24098 24099 if (mp->b_datap->db_type == M_CTL) { 24100 first_mp = mp; 24101 mp_orig = mp = mp->b_cont; 24102 mctl_present = B_TRUE; 24103 } else { 24104 first_mp = mp; 24105 mctl_present = B_FALSE; 24106 } 24107 24108 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 24109 ipha = (ipha_t *)mp->b_rptr; 24110 24111 /* 24112 * If the Don't Fragment flag is on, generate an ICMP destination 24113 * unreachable, fragmentation needed. 24114 */ 24115 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 24116 if (offset & IPH_DF) { 24117 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24118 if (is_system_labeled()) { 24119 max_frag = tsol_pmtu_adjust(mp, ire->ire_max_frag, 24120 ire->ire_max_frag - max_frag, AF_INET); 24121 } 24122 /* 24123 * Need to compute hdr checksum if called from ip_wput_ire. 24124 * Note that ip_rput_forward verifies the checksum before 24125 * calling this routine so in that case this is a noop. 24126 */ 24127 ipha->ipha_hdr_checksum = 0; 24128 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24129 icmp_frag_needed(ire->ire_stq, first_mp, max_frag, zoneid, 24130 ipst); 24131 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24132 "ip_wput_frag_end:(%S)", 24133 "don't fragment"); 24134 return; 24135 } 24136 /* 24137 * Labeled systems adjust max_frag if they add a label 24138 * to send the correct path mtu. We need the real mtu since we 24139 * are fragmenting the packet after label adjustment. 24140 */ 24141 if (is_system_labeled()) 24142 max_frag = ire->ire_max_frag; 24143 if (mctl_present) 24144 freeb(first_mp); 24145 /* 24146 * Establish the starting offset. May not be zero if we are fragging 24147 * a fragment that is being forwarded. 24148 */ 24149 offset = offset & IPH_OFFSET; 24150 24151 /* TODO why is this test needed? */ 24152 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 24153 if (((max_frag - LENGTH) & ~7) < 8) { 24154 /* TODO: notify ulp somehow */ 24155 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24156 freemsg(mp); 24157 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24158 "ip_wput_frag_end:(%S)", 24159 "len < 8"); 24160 return; 24161 } 24162 24163 hdr_len = (V_HLEN & 0xF) << 2; 24164 24165 ipha->ipha_hdr_checksum = 0; 24166 24167 /* 24168 * Establish the number of bytes maximum per frag, after putting 24169 * in the header. 24170 */ 24171 len = (max_frag - hdr_len) & ~7; 24172 24173 /* Check if we can use MDT to send out the frags. */ 24174 ASSERT(!IRE_IS_LOCAL(ire)); 24175 if (hdr_len == IP_SIMPLE_HDR_LENGTH && 24176 ipst->ips_ip_multidata_outbound && 24177 !(ire->ire_flags & RTF_MULTIRT) && 24178 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 24179 ill != NULL && ILL_MDT_CAPABLE(ill) && 24180 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 24181 ASSERT(ill->ill_mdt_capab != NULL); 24182 if (!ill->ill_mdt_capab->ill_mdt_on) { 24183 /* 24184 * If MDT has been previously turned off in the past, 24185 * and we currently can do MDT (due to IPQoS policy 24186 * removal, etc.) then enable it for this interface. 24187 */ 24188 ill->ill_mdt_capab->ill_mdt_on = 1; 24189 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 24190 ill->ill_name)); 24191 } 24192 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 24193 offset); 24194 return; 24195 } 24196 24197 /* Get a copy of the header for the trailing frags */ 24198 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst); 24199 if (!hdr_mp) { 24200 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24201 freemsg(mp); 24202 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24203 "ip_wput_frag_end:(%S)", 24204 "couldn't copy hdr"); 24205 return; 24206 } 24207 if (DB_CRED(mp) != NULL) 24208 mblk_setcred(hdr_mp, DB_CRED(mp)); 24209 24210 /* Store the starting offset, with the MoreFrags flag. */ 24211 i1 = offset | IPH_MF | frag_flag; 24212 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 24213 24214 /* Establish the ending byte offset, based on the starting offset. */ 24215 offset <<= 3; 24216 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 24217 24218 /* Store the length of the first fragment in the IP header. */ 24219 i1 = len + hdr_len; 24220 ASSERT(i1 <= IP_MAXPACKET); 24221 ipha->ipha_length = htons((uint16_t)i1); 24222 24223 /* 24224 * Compute the IP header checksum for the first frag. We have to 24225 * watch out that we stop at the end of the header. 24226 */ 24227 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24228 24229 /* 24230 * Now carve off the first frag. Note that this will include the 24231 * original IP header. 24232 */ 24233 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 24234 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24235 freeb(hdr_mp); 24236 freemsg(mp_orig); 24237 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24238 "ip_wput_frag_end:(%S)", 24239 "couldn't carve first"); 24240 return; 24241 } 24242 24243 /* 24244 * Multirouting case. Each fragment is replicated 24245 * via all non-condemned RTF_MULTIRT routes 24246 * currently resolved. 24247 * We ensure that first_ire is the first RTF_MULTIRT 24248 * ire in the bucket. 24249 */ 24250 if (ire->ire_flags & RTF_MULTIRT) { 24251 irb = ire->ire_bucket; 24252 ASSERT(irb != NULL); 24253 24254 multirt_send = B_TRUE; 24255 24256 /* Make sure we do not omit any multiroute ire. */ 24257 IRB_REFHOLD(irb); 24258 for (first_ire = irb->irb_ire; 24259 first_ire != NULL; 24260 first_ire = first_ire->ire_next) { 24261 if ((first_ire->ire_flags & RTF_MULTIRT) && 24262 (first_ire->ire_addr == ire->ire_addr) && 24263 !(first_ire->ire_marks & 24264 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 24265 break; 24266 } 24267 } 24268 24269 if (first_ire != NULL) { 24270 if (first_ire != ire) { 24271 IRE_REFHOLD(first_ire); 24272 /* 24273 * Do not release the ire passed in 24274 * as the argument. 24275 */ 24276 ire = first_ire; 24277 } else { 24278 first_ire = NULL; 24279 } 24280 } 24281 IRB_REFRELE(irb); 24282 24283 /* 24284 * Save the first ire; we will need to restore it 24285 * for the trailing frags. 24286 * We REFHOLD save_ire, as each iterated ire will be 24287 * REFRELEd. 24288 */ 24289 save_ire = ire; 24290 IRE_REFHOLD(save_ire); 24291 } 24292 24293 /* 24294 * First fragment emission loop. 24295 * In most cases, the emission loop below is entered only 24296 * once. Only in the case where the ire holds the RTF_MULTIRT 24297 * flag, do we loop to process all RTF_MULTIRT ires in the 24298 * bucket, and send the fragment through all crossed 24299 * RTF_MULTIRT routes. 24300 */ 24301 do { 24302 if (ire->ire_flags & RTF_MULTIRT) { 24303 /* 24304 * We are in a multiple send case, need to get 24305 * the next ire and make a copy of the packet. 24306 * ire1 holds here the next ire to process in the 24307 * bucket. If multirouting is expected, 24308 * any non-RTF_MULTIRT ire that has the 24309 * right destination address is ignored. 24310 * 24311 * We have to take into account the MTU of 24312 * each walked ire. max_frag is set by the 24313 * the caller and generally refers to 24314 * the primary ire entry. Here we ensure that 24315 * no route with a lower MTU will be used, as 24316 * fragments are carved once for all ires, 24317 * then replicated. 24318 */ 24319 ASSERT(irb != NULL); 24320 IRB_REFHOLD(irb); 24321 for (ire1 = ire->ire_next; 24322 ire1 != NULL; 24323 ire1 = ire1->ire_next) { 24324 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 24325 continue; 24326 if (ire1->ire_addr != ire->ire_addr) 24327 continue; 24328 if (ire1->ire_marks & 24329 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 24330 continue; 24331 /* 24332 * Ensure we do not exceed the MTU 24333 * of the next route. 24334 */ 24335 if (ire1->ire_max_frag < max_frag) { 24336 ip_multirt_bad_mtu(ire1, max_frag); 24337 continue; 24338 } 24339 24340 /* Got one. */ 24341 IRE_REFHOLD(ire1); 24342 break; 24343 } 24344 IRB_REFRELE(irb); 24345 24346 if (ire1 != NULL) { 24347 next_mp = copyb(mp); 24348 if ((next_mp == NULL) || 24349 ((mp->b_cont != NULL) && 24350 ((next_mp->b_cont = 24351 dupmsg(mp->b_cont)) == NULL))) { 24352 freemsg(next_mp); 24353 next_mp = NULL; 24354 ire_refrele(ire1); 24355 ire1 = NULL; 24356 } 24357 } 24358 24359 /* Last multiroute ire; don't loop anymore. */ 24360 if (ire1 == NULL) { 24361 multirt_send = B_FALSE; 24362 } 24363 } 24364 24365 ll_hdr_len = 0; 24366 LOCK_IRE_FP_MP(ire); 24367 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24368 if (ll_hdr_mp != NULL) { 24369 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24370 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 24371 } else { 24372 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24373 } 24374 24375 /* If there is a transmit header, get a copy for this frag. */ 24376 /* 24377 * TODO: should check db_ref before calling ip_carve_mp since 24378 * it might give us a dup. 24379 */ 24380 if (!ll_hdr_mp) { 24381 /* No xmit header. */ 24382 xmit_mp = mp; 24383 24384 /* We have a link-layer header that can fit in our mblk. */ 24385 } else if (mp->b_datap->db_ref == 1 && 24386 ll_hdr_len != 0 && 24387 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24388 /* M_DATA fastpath */ 24389 mp->b_rptr -= ll_hdr_len; 24390 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 24391 xmit_mp = mp; 24392 24393 /* Corner case if copyb has failed */ 24394 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 24395 UNLOCK_IRE_FP_MP(ire); 24396 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24397 freeb(hdr_mp); 24398 freemsg(mp); 24399 freemsg(mp_orig); 24400 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24401 "ip_wput_frag_end:(%S)", 24402 "discard"); 24403 24404 if (multirt_send) { 24405 ASSERT(ire1); 24406 ASSERT(next_mp); 24407 24408 freemsg(next_mp); 24409 ire_refrele(ire1); 24410 } 24411 if (save_ire != NULL) 24412 IRE_REFRELE(save_ire); 24413 24414 if (first_ire != NULL) 24415 ire_refrele(first_ire); 24416 return; 24417 24418 /* 24419 * Case of res_mp OR the fastpath mp can't fit 24420 * in the mblk 24421 */ 24422 } else { 24423 xmit_mp->b_cont = mp; 24424 if (DB_CRED(mp) != NULL) 24425 mblk_setcred(xmit_mp, DB_CRED(mp)); 24426 /* 24427 * Get priority marking, if any. 24428 * We propagate the CoS marking from the 24429 * original packet that went to QoS processing 24430 * in ip_wput_ire to the newly carved mp. 24431 */ 24432 if (DB_TYPE(xmit_mp) == M_DATA) 24433 xmit_mp->b_band = mp->b_band; 24434 } 24435 UNLOCK_IRE_FP_MP(ire); 24436 24437 q = ire->ire_stq; 24438 out_ill = (ill_t *)q->q_ptr; 24439 24440 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24441 24442 DTRACE_PROBE4(ip4__physical__out__start, 24443 ill_t *, NULL, ill_t *, out_ill, 24444 ipha_t *, ipha, mblk_t *, xmit_mp); 24445 24446 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24447 ipst->ips_ipv4firewall_physical_out, 24448 NULL, out_ill, ipha, xmit_mp, mp, 0, ipst); 24449 24450 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, xmit_mp); 24451 24452 if (xmit_mp != NULL) { 24453 putnext(q, xmit_mp); 24454 24455 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 24456 UPDATE_MIB(out_ill->ill_ip_mib, 24457 ipIfStatsHCOutOctets, i1); 24458 24459 if (pkt_type != OB_PKT) { 24460 /* 24461 * Update the packet count and MIB stats 24462 * of trailing RTF_MULTIRT ires. 24463 */ 24464 UPDATE_OB_PKT_COUNT(ire); 24465 BUMP_MIB(out_ill->ill_ip_mib, 24466 ipIfStatsOutFragReqds); 24467 } 24468 } 24469 24470 if (multirt_send) { 24471 /* 24472 * We are in a multiple send case; look for 24473 * the next ire and re-enter the loop. 24474 */ 24475 ASSERT(ire1); 24476 ASSERT(next_mp); 24477 /* REFRELE the current ire before looping */ 24478 ire_refrele(ire); 24479 ire = ire1; 24480 ire1 = NULL; 24481 mp = next_mp; 24482 next_mp = NULL; 24483 } 24484 } while (multirt_send); 24485 24486 ASSERT(ire1 == NULL); 24487 24488 /* Restore the original ire; we need it for the trailing frags */ 24489 if (save_ire != NULL) { 24490 /* REFRELE the last iterated ire */ 24491 ire_refrele(ire); 24492 /* save_ire has been REFHOLDed */ 24493 ire = save_ire; 24494 save_ire = NULL; 24495 q = ire->ire_stq; 24496 } 24497 24498 if (pkt_type == OB_PKT) { 24499 UPDATE_OB_PKT_COUNT(ire); 24500 } else { 24501 out_ill = (ill_t *)q->q_ptr; 24502 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 24503 UPDATE_IB_PKT_COUNT(ire); 24504 } 24505 24506 /* Advance the offset to the second frag starting point. */ 24507 offset += len; 24508 /* 24509 * Update hdr_len from the copied header - there might be less options 24510 * in the later fragments. 24511 */ 24512 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 24513 /* Loop until done. */ 24514 for (;;) { 24515 uint16_t offset_and_flags; 24516 uint16_t ip_len; 24517 24518 if (ip_data_end - offset > len) { 24519 /* 24520 * Carve off the appropriate amount from the original 24521 * datagram. 24522 */ 24523 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24524 mp = NULL; 24525 break; 24526 } 24527 /* 24528 * More frags after this one. Get another copy 24529 * of the header. 24530 */ 24531 if (carve_mp->b_datap->db_ref == 1 && 24532 hdr_mp->b_wptr - hdr_mp->b_rptr < 24533 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24534 /* Inline IP header */ 24535 carve_mp->b_rptr -= hdr_mp->b_wptr - 24536 hdr_mp->b_rptr; 24537 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24538 hdr_mp->b_wptr - hdr_mp->b_rptr); 24539 mp = carve_mp; 24540 } else { 24541 if (!(mp = copyb(hdr_mp))) { 24542 freemsg(carve_mp); 24543 break; 24544 } 24545 /* Get priority marking, if any. */ 24546 mp->b_band = carve_mp->b_band; 24547 mp->b_cont = carve_mp; 24548 } 24549 ipha = (ipha_t *)mp->b_rptr; 24550 offset_and_flags = IPH_MF; 24551 } else { 24552 /* 24553 * Last frag. Consume the header. Set len to 24554 * the length of this last piece. 24555 */ 24556 len = ip_data_end - offset; 24557 24558 /* 24559 * Carve off the appropriate amount from the original 24560 * datagram. 24561 */ 24562 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24563 mp = NULL; 24564 break; 24565 } 24566 if (carve_mp->b_datap->db_ref == 1 && 24567 hdr_mp->b_wptr - hdr_mp->b_rptr < 24568 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24569 /* Inline IP header */ 24570 carve_mp->b_rptr -= hdr_mp->b_wptr - 24571 hdr_mp->b_rptr; 24572 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24573 hdr_mp->b_wptr - hdr_mp->b_rptr); 24574 mp = carve_mp; 24575 freeb(hdr_mp); 24576 hdr_mp = mp; 24577 } else { 24578 mp = hdr_mp; 24579 /* Get priority marking, if any. */ 24580 mp->b_band = carve_mp->b_band; 24581 mp->b_cont = carve_mp; 24582 } 24583 ipha = (ipha_t *)mp->b_rptr; 24584 /* A frag of a frag might have IPH_MF non-zero */ 24585 offset_and_flags = 24586 ntohs(ipha->ipha_fragment_offset_and_flags) & 24587 IPH_MF; 24588 } 24589 offset_and_flags |= (uint16_t)(offset >> 3); 24590 offset_and_flags |= (uint16_t)frag_flag; 24591 /* Store the offset and flags in the IP header. */ 24592 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24593 24594 /* Store the length in the IP header. */ 24595 ip_len = (uint16_t)(len + hdr_len); 24596 ipha->ipha_length = htons(ip_len); 24597 24598 /* 24599 * Set the IP header checksum. Note that mp is just 24600 * the header, so this is easy to pass to ip_csum. 24601 */ 24602 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24603 24604 /* Attach a transmit header, if any, and ship it. */ 24605 if (pkt_type == OB_PKT) { 24606 UPDATE_OB_PKT_COUNT(ire); 24607 } else { 24608 out_ill = (ill_t *)q->q_ptr; 24609 BUMP_MIB(out_ill->ill_ip_mib, 24610 ipIfStatsHCOutForwDatagrams); 24611 UPDATE_IB_PKT_COUNT(ire); 24612 } 24613 24614 if (ire->ire_flags & RTF_MULTIRT) { 24615 irb = ire->ire_bucket; 24616 ASSERT(irb != NULL); 24617 24618 multirt_send = B_TRUE; 24619 24620 /* 24621 * Save the original ire; we will need to restore it 24622 * for the tailing frags. 24623 */ 24624 save_ire = ire; 24625 IRE_REFHOLD(save_ire); 24626 } 24627 /* 24628 * Emission loop for this fragment, similar 24629 * to what is done for the first fragment. 24630 */ 24631 do { 24632 if (multirt_send) { 24633 /* 24634 * We are in a multiple send case, need to get 24635 * the next ire and make a copy of the packet. 24636 */ 24637 ASSERT(irb != NULL); 24638 IRB_REFHOLD(irb); 24639 for (ire1 = ire->ire_next; 24640 ire1 != NULL; 24641 ire1 = ire1->ire_next) { 24642 if (!(ire1->ire_flags & RTF_MULTIRT)) 24643 continue; 24644 if (ire1->ire_addr != ire->ire_addr) 24645 continue; 24646 if (ire1->ire_marks & 24647 (IRE_MARK_CONDEMNED| 24648 IRE_MARK_HIDDEN)) { 24649 continue; 24650 } 24651 /* 24652 * Ensure we do not exceed the MTU 24653 * of the next route. 24654 */ 24655 if (ire1->ire_max_frag < max_frag) { 24656 ip_multirt_bad_mtu(ire1, 24657 max_frag); 24658 continue; 24659 } 24660 24661 /* Got one. */ 24662 IRE_REFHOLD(ire1); 24663 break; 24664 } 24665 IRB_REFRELE(irb); 24666 24667 if (ire1 != NULL) { 24668 next_mp = copyb(mp); 24669 if ((next_mp == NULL) || 24670 ((mp->b_cont != NULL) && 24671 ((next_mp->b_cont = 24672 dupmsg(mp->b_cont)) == NULL))) { 24673 freemsg(next_mp); 24674 next_mp = NULL; 24675 ire_refrele(ire1); 24676 ire1 = NULL; 24677 } 24678 } 24679 24680 /* Last multiroute ire; don't loop anymore. */ 24681 if (ire1 == NULL) { 24682 multirt_send = B_FALSE; 24683 } 24684 } 24685 24686 /* Update transmit header */ 24687 ll_hdr_len = 0; 24688 LOCK_IRE_FP_MP(ire); 24689 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24690 if (ll_hdr_mp != NULL) { 24691 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24692 ll_hdr_len = MBLKL(ll_hdr_mp); 24693 } else { 24694 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24695 } 24696 24697 if (!ll_hdr_mp) { 24698 xmit_mp = mp; 24699 24700 /* 24701 * We have link-layer header that can fit in 24702 * our mblk. 24703 */ 24704 } else if (mp->b_datap->db_ref == 1 && 24705 ll_hdr_len != 0 && 24706 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24707 /* M_DATA fastpath */ 24708 mp->b_rptr -= ll_hdr_len; 24709 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 24710 ll_hdr_len); 24711 xmit_mp = mp; 24712 24713 /* 24714 * Case of res_mp OR the fastpath mp can't fit 24715 * in the mblk 24716 */ 24717 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 24718 xmit_mp->b_cont = mp; 24719 if (DB_CRED(mp) != NULL) 24720 mblk_setcred(xmit_mp, DB_CRED(mp)); 24721 /* Get priority marking, if any. */ 24722 if (DB_TYPE(xmit_mp) == M_DATA) 24723 xmit_mp->b_band = mp->b_band; 24724 24725 /* Corner case if copyb failed */ 24726 } else { 24727 /* 24728 * Exit both the replication and 24729 * fragmentation loops. 24730 */ 24731 UNLOCK_IRE_FP_MP(ire); 24732 goto drop_pkt; 24733 } 24734 UNLOCK_IRE_FP_MP(ire); 24735 24736 mp1 = mp; 24737 out_ill = (ill_t *)q->q_ptr; 24738 24739 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24740 24741 DTRACE_PROBE4(ip4__physical__out__start, 24742 ill_t *, NULL, ill_t *, out_ill, 24743 ipha_t *, ipha, mblk_t *, xmit_mp); 24744 24745 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24746 ipst->ips_ipv4firewall_physical_out, 24747 NULL, out_ill, ipha, xmit_mp, mp, 0, ipst); 24748 24749 DTRACE_PROBE1(ip4__physical__out__end, 24750 mblk_t *, xmit_mp); 24751 24752 if (mp != mp1 && hdr_mp == mp1) 24753 hdr_mp = mp; 24754 if (mp != mp1 && mp_orig == mp1) 24755 mp_orig = mp; 24756 24757 if (xmit_mp != NULL) { 24758 putnext(q, xmit_mp); 24759 24760 BUMP_MIB(out_ill->ill_ip_mib, 24761 ipIfStatsHCOutTransmits); 24762 UPDATE_MIB(out_ill->ill_ip_mib, 24763 ipIfStatsHCOutOctets, ip_len); 24764 24765 if (pkt_type != OB_PKT) { 24766 /* 24767 * Update the packet count of trailing 24768 * RTF_MULTIRT ires. 24769 */ 24770 UPDATE_OB_PKT_COUNT(ire); 24771 } 24772 } 24773 24774 /* All done if we just consumed the hdr_mp. */ 24775 if (mp == hdr_mp) { 24776 last_frag = B_TRUE; 24777 BUMP_MIB(out_ill->ill_ip_mib, 24778 ipIfStatsOutFragOKs); 24779 } 24780 24781 if (multirt_send) { 24782 /* 24783 * We are in a multiple send case; look for 24784 * the next ire and re-enter the loop. 24785 */ 24786 ASSERT(ire1); 24787 ASSERT(next_mp); 24788 /* REFRELE the current ire before looping */ 24789 ire_refrele(ire); 24790 ire = ire1; 24791 ire1 = NULL; 24792 q = ire->ire_stq; 24793 mp = next_mp; 24794 next_mp = NULL; 24795 } 24796 } while (multirt_send); 24797 /* 24798 * Restore the original ire; we need it for the 24799 * trailing frags 24800 */ 24801 if (save_ire != NULL) { 24802 ASSERT(ire1 == NULL); 24803 /* REFRELE the last iterated ire */ 24804 ire_refrele(ire); 24805 /* save_ire has been REFHOLDed */ 24806 ire = save_ire; 24807 q = ire->ire_stq; 24808 save_ire = NULL; 24809 } 24810 24811 if (last_frag) { 24812 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24813 "ip_wput_frag_end:(%S)", 24814 "consumed hdr_mp"); 24815 24816 if (first_ire != NULL) 24817 ire_refrele(first_ire); 24818 return; 24819 } 24820 /* Otherwise, advance and loop. */ 24821 offset += len; 24822 } 24823 24824 drop_pkt: 24825 /* Clean up following allocation failure. */ 24826 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24827 freemsg(mp); 24828 if (mp != hdr_mp) 24829 freeb(hdr_mp); 24830 if (mp != mp_orig) 24831 freemsg(mp_orig); 24832 24833 if (save_ire != NULL) 24834 IRE_REFRELE(save_ire); 24835 if (first_ire != NULL) 24836 ire_refrele(first_ire); 24837 24838 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24839 "ip_wput_frag_end:(%S)", 24840 "end--alloc failure"); 24841 } 24842 24843 /* 24844 * Copy the header plus those options which have the copy bit set 24845 */ 24846 static mblk_t * 24847 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst) 24848 { 24849 mblk_t *mp; 24850 uchar_t *up; 24851 24852 /* 24853 * Quick check if we need to look for options without the copy bit 24854 * set 24855 */ 24856 mp = allocb(ipst->ips_ip_wroff_extra + hdr_len, BPRI_HI); 24857 if (!mp) 24858 return (mp); 24859 mp->b_rptr += ipst->ips_ip_wroff_extra; 24860 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 24861 bcopy(rptr, mp->b_rptr, hdr_len); 24862 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 24863 return (mp); 24864 } 24865 up = mp->b_rptr; 24866 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 24867 up += IP_SIMPLE_HDR_LENGTH; 24868 rptr += IP_SIMPLE_HDR_LENGTH; 24869 hdr_len -= IP_SIMPLE_HDR_LENGTH; 24870 while (hdr_len > 0) { 24871 uint32_t optval; 24872 uint32_t optlen; 24873 24874 optval = *rptr; 24875 if (optval == IPOPT_EOL) 24876 break; 24877 if (optval == IPOPT_NOP) 24878 optlen = 1; 24879 else 24880 optlen = rptr[1]; 24881 if (optval & IPOPT_COPY) { 24882 bcopy(rptr, up, optlen); 24883 up += optlen; 24884 } 24885 rptr += optlen; 24886 hdr_len -= optlen; 24887 } 24888 /* 24889 * Make sure that we drop an even number of words by filling 24890 * with EOL to the next word boundary. 24891 */ 24892 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 24893 hdr_len & 0x3; hdr_len++) 24894 *up++ = IPOPT_EOL; 24895 mp->b_wptr = up; 24896 /* Update header length */ 24897 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 24898 return (mp); 24899 } 24900 24901 /* 24902 * Delivery to local recipients including fanout to multiple recipients. 24903 * Does not do checksumming of UDP/TCP. 24904 * Note: q should be the read side queue for either the ill or conn. 24905 * Note: rq should be the read side q for the lower (ill) stream. 24906 * We don't send packets to IPPF processing, thus the last argument 24907 * to all the fanout calls are B_FALSE. 24908 */ 24909 void 24910 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 24911 int fanout_flags, zoneid_t zoneid) 24912 { 24913 uint32_t protocol; 24914 mblk_t *first_mp; 24915 boolean_t mctl_present; 24916 int ire_type; 24917 #define rptr ((uchar_t *)ipha) 24918 ip_stack_t *ipst = ill->ill_ipst; 24919 24920 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 24921 "ip_wput_local_start: q %p", q); 24922 24923 if (ire != NULL) { 24924 ire_type = ire->ire_type; 24925 } else { 24926 /* 24927 * Only ip_multicast_loopback() calls us with a NULL ire. If the 24928 * packet is not multicast, we can't tell the ire type. 24929 */ 24930 ASSERT(CLASSD(ipha->ipha_dst)); 24931 ire_type = IRE_BROADCAST; 24932 } 24933 24934 first_mp = mp; 24935 if (first_mp->b_datap->db_type == M_CTL) { 24936 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 24937 if (!io->ipsec_out_secure) { 24938 /* 24939 * This ipsec_out_t was allocated in ip_wput 24940 * for multicast packets to store the ill_index. 24941 * As this is being delivered locally, we don't 24942 * need this anymore. 24943 */ 24944 mp = first_mp->b_cont; 24945 freeb(first_mp); 24946 first_mp = mp; 24947 mctl_present = B_FALSE; 24948 } else { 24949 /* 24950 * Convert IPSEC_OUT to IPSEC_IN, preserving all 24951 * security properties for the looped-back packet. 24952 */ 24953 mctl_present = B_TRUE; 24954 mp = first_mp->b_cont; 24955 ASSERT(mp != NULL); 24956 ipsec_out_to_in(first_mp); 24957 } 24958 } else { 24959 mctl_present = B_FALSE; 24960 } 24961 24962 DTRACE_PROBE4(ip4__loopback__in__start, 24963 ill_t *, ill, ill_t *, NULL, 24964 ipha_t *, ipha, mblk_t *, first_mp); 24965 24966 FW_HOOKS(ipst->ips_ip4_loopback_in_event, 24967 ipst->ips_ipv4firewall_loopback_in, 24968 ill, NULL, ipha, first_mp, mp, 0, ipst); 24969 24970 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, first_mp); 24971 24972 if (first_mp == NULL) 24973 return; 24974 24975 ipst->ips_loopback_packets++; 24976 24977 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 24978 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 24979 if (!IS_SIMPLE_IPH(ipha)) { 24980 ip_wput_local_options(ipha, ipst); 24981 } 24982 24983 protocol = ipha->ipha_protocol; 24984 switch (protocol) { 24985 case IPPROTO_ICMP: { 24986 ire_t *ire_zone; 24987 ilm_t *ilm; 24988 mblk_t *mp1; 24989 zoneid_t last_zoneid; 24990 24991 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(ill)) { 24992 ASSERT(ire_type == IRE_BROADCAST); 24993 /* 24994 * In the multicast case, applications may have joined 24995 * the group from different zones, so we need to deliver 24996 * the packet to each of them. Loop through the 24997 * multicast memberships structures (ilm) on the receive 24998 * ill and send a copy of the packet up each matching 24999 * one. However, we don't do this for multicasts sent on 25000 * the loopback interface (PHYI_LOOPBACK flag set) as 25001 * they must stay in the sender's zone. 25002 * 25003 * ilm_add_v6() ensures that ilms in the same zone are 25004 * contiguous in the ill_ilm list. We use this property 25005 * to avoid sending duplicates needed when two 25006 * applications in the same zone join the same group on 25007 * different logical interfaces: we ignore the ilm if 25008 * it's zoneid is the same as the last matching one. 25009 * In addition, the sending of the packet for 25010 * ire_zoneid is delayed until all of the other ilms 25011 * have been exhausted. 25012 */ 25013 last_zoneid = -1; 25014 ILM_WALKER_HOLD(ill); 25015 for (ilm = ill->ill_ilm; ilm != NULL; 25016 ilm = ilm->ilm_next) { 25017 if ((ilm->ilm_flags & ILM_DELETED) || 25018 ipha->ipha_dst != ilm->ilm_addr || 25019 ilm->ilm_zoneid == last_zoneid || 25020 ilm->ilm_zoneid == zoneid || 25021 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 25022 continue; 25023 mp1 = ip_copymsg(first_mp); 25024 if (mp1 == NULL) 25025 continue; 25026 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25027 mctl_present, B_FALSE, ill, 25028 ilm->ilm_zoneid); 25029 last_zoneid = ilm->ilm_zoneid; 25030 } 25031 ILM_WALKER_RELE(ill); 25032 /* 25033 * Loopback case: the sending endpoint has 25034 * IP_MULTICAST_LOOP disabled, therefore we don't 25035 * dispatch the multicast packet to the sending zone. 25036 */ 25037 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 25038 freemsg(first_mp); 25039 return; 25040 } 25041 } else if (ire_type == IRE_BROADCAST) { 25042 /* 25043 * In the broadcast case, there may be many zones 25044 * which need a copy of the packet delivered to them. 25045 * There is one IRE_BROADCAST per broadcast address 25046 * and per zone; we walk those using a helper function. 25047 * In addition, the sending of the packet for zoneid is 25048 * delayed until all of the other ires have been 25049 * processed. 25050 */ 25051 IRB_REFHOLD(ire->ire_bucket); 25052 ire_zone = NULL; 25053 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 25054 ire)) != NULL) { 25055 mp1 = ip_copymsg(first_mp); 25056 if (mp1 == NULL) 25057 continue; 25058 25059 UPDATE_IB_PKT_COUNT(ire_zone); 25060 ire_zone->ire_last_used_time = lbolt; 25061 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25062 mctl_present, B_FALSE, ill, 25063 ire_zone->ire_zoneid); 25064 } 25065 IRB_REFRELE(ire->ire_bucket); 25066 } 25067 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 25068 0, mctl_present, B_FALSE, ill, zoneid); 25069 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25070 "ip_wput_local_end: q %p (%S)", 25071 q, "icmp"); 25072 return; 25073 } 25074 case IPPROTO_IGMP: 25075 if ((mp = igmp_input(q, mp, ill)) == NULL) { 25076 /* Bad packet - discarded by igmp_input */ 25077 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25078 "ip_wput_local_end: q %p (%S)", 25079 q, "igmp_input--bad packet"); 25080 if (mctl_present) 25081 freeb(first_mp); 25082 return; 25083 } 25084 /* 25085 * igmp_input() may have returned the pulled up message. 25086 * So first_mp and ipha need to be reinitialized. 25087 */ 25088 ipha = (ipha_t *)mp->b_rptr; 25089 if (mctl_present) 25090 first_mp->b_cont = mp; 25091 else 25092 first_mp = mp; 25093 /* deliver to local raw users */ 25094 break; 25095 case IPPROTO_ENCAP: 25096 /* 25097 * This case is covered by either ip_fanout_proto, or by 25098 * the above security processing for self-tunneled packets. 25099 */ 25100 break; 25101 case IPPROTO_UDP: { 25102 uint16_t *up; 25103 uint32_t ports; 25104 25105 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 25106 UDP_PORTS_OFFSET); 25107 /* Force a 'valid' checksum. */ 25108 up[3] = 0; 25109 25110 ports = *(uint32_t *)up; 25111 ip_fanout_udp(q, first_mp, ill, ipha, ports, 25112 (ire_type == IRE_BROADCAST), 25113 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25114 IP_FF_SEND_SLLA | IP_FF_IPINFO, mctl_present, B_FALSE, 25115 ill, zoneid); 25116 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25117 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 25118 return; 25119 } 25120 case IPPROTO_TCP: { 25121 25122 /* 25123 * For TCP, discard broadcast packets. 25124 */ 25125 if ((ushort_t)ire_type == IRE_BROADCAST) { 25126 freemsg(first_mp); 25127 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 25128 ip2dbg(("ip_wput_local: discard broadcast\n")); 25129 return; 25130 } 25131 25132 if (mp->b_datap->db_type == M_DATA) { 25133 /* 25134 * M_DATA mblk, so init mblk (chain) for no struio(). 25135 */ 25136 mblk_t *mp1 = mp; 25137 25138 do { 25139 mp1->b_datap->db_struioflag = 0; 25140 } while ((mp1 = mp1->b_cont) != NULL); 25141 } 25142 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 25143 <= mp->b_wptr); 25144 ip_fanout_tcp(q, first_mp, ill, ipha, 25145 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25146 IP_FF_SYN_ADDIRE | IP_FF_IPINFO, 25147 mctl_present, B_FALSE, zoneid); 25148 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25149 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 25150 return; 25151 } 25152 case IPPROTO_SCTP: 25153 { 25154 uint32_t ports; 25155 25156 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 25157 ip_fanout_sctp(first_mp, ill, ipha, ports, 25158 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25159 IP_FF_IPINFO, mctl_present, B_FALSE, zoneid); 25160 return; 25161 } 25162 25163 default: 25164 break; 25165 } 25166 /* 25167 * Find a client for some other protocol. We give 25168 * copies to multiple clients, if more than one is 25169 * bound. 25170 */ 25171 ip_fanout_proto(q, first_mp, ill, ipha, 25172 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 25173 mctl_present, B_FALSE, ill, zoneid); 25174 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25175 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 25176 #undef rptr 25177 } 25178 25179 /* 25180 * Update any source route, record route, or timestamp options. 25181 * Check that we are at end of strict source route. 25182 * The options have been sanity checked by ip_wput_options(). 25183 */ 25184 static void 25185 ip_wput_local_options(ipha_t *ipha, ip_stack_t *ipst) 25186 { 25187 ipoptp_t opts; 25188 uchar_t *opt; 25189 uint8_t optval; 25190 uint8_t optlen; 25191 ipaddr_t dst; 25192 uint32_t ts; 25193 ire_t *ire; 25194 timestruc_t now; 25195 25196 ip2dbg(("ip_wput_local_options\n")); 25197 for (optval = ipoptp_first(&opts, ipha); 25198 optval != IPOPT_EOL; 25199 optval = ipoptp_next(&opts)) { 25200 opt = opts.ipoptp_cur; 25201 optlen = opts.ipoptp_len; 25202 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 25203 switch (optval) { 25204 uint32_t off; 25205 case IPOPT_SSRR: 25206 case IPOPT_LSRR: 25207 off = opt[IPOPT_OFFSET]; 25208 off--; 25209 if (optlen < IP_ADDR_LEN || 25210 off > optlen - IP_ADDR_LEN) { 25211 /* End of source route */ 25212 break; 25213 } 25214 /* 25215 * This will only happen if two consecutive entries 25216 * in the source route contains our address or if 25217 * it is a packet with a loose source route which 25218 * reaches us before consuming the whole source route 25219 */ 25220 ip1dbg(("ip_wput_local_options: not end of SR\n")); 25221 if (optval == IPOPT_SSRR) { 25222 return; 25223 } 25224 /* 25225 * Hack: instead of dropping the packet truncate the 25226 * source route to what has been used by filling the 25227 * rest with IPOPT_NOP. 25228 */ 25229 opt[IPOPT_OLEN] = (uint8_t)off; 25230 while (off < optlen) { 25231 opt[off++] = IPOPT_NOP; 25232 } 25233 break; 25234 case IPOPT_RR: 25235 off = opt[IPOPT_OFFSET]; 25236 off--; 25237 if (optlen < IP_ADDR_LEN || 25238 off > optlen - IP_ADDR_LEN) { 25239 /* No more room - ignore */ 25240 ip1dbg(( 25241 "ip_wput_forward_options: end of RR\n")); 25242 break; 25243 } 25244 dst = htonl(INADDR_LOOPBACK); 25245 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25246 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25247 break; 25248 case IPOPT_TS: 25249 /* Insert timestamp if there is romm */ 25250 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25251 case IPOPT_TS_TSONLY: 25252 off = IPOPT_TS_TIMELEN; 25253 break; 25254 case IPOPT_TS_PRESPEC: 25255 case IPOPT_TS_PRESPEC_RFC791: 25256 /* Verify that the address matched */ 25257 off = opt[IPOPT_OFFSET] - 1; 25258 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 25259 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 25260 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 25261 ipst); 25262 if (ire == NULL) { 25263 /* Not for us */ 25264 break; 25265 } 25266 ire_refrele(ire); 25267 /* FALLTHRU */ 25268 case IPOPT_TS_TSANDADDR: 25269 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 25270 break; 25271 default: 25272 /* 25273 * ip_*put_options should have already 25274 * dropped this packet. 25275 */ 25276 cmn_err(CE_PANIC, "ip_wput_local_options: " 25277 "unknown IT - bug in ip_wput_options?\n"); 25278 return; /* Keep "lint" happy */ 25279 } 25280 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 25281 /* Increase overflow counter */ 25282 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 25283 opt[IPOPT_POS_OV_FLG] = (uint8_t) 25284 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 25285 (off << 4); 25286 break; 25287 } 25288 off = opt[IPOPT_OFFSET] - 1; 25289 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25290 case IPOPT_TS_PRESPEC: 25291 case IPOPT_TS_PRESPEC_RFC791: 25292 case IPOPT_TS_TSANDADDR: 25293 dst = htonl(INADDR_LOOPBACK); 25294 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25295 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25296 /* FALLTHRU */ 25297 case IPOPT_TS_TSONLY: 25298 off = opt[IPOPT_OFFSET] - 1; 25299 /* Compute # of milliseconds since midnight */ 25300 gethrestime(&now); 25301 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 25302 now.tv_nsec / (NANOSEC / MILLISEC); 25303 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 25304 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 25305 break; 25306 } 25307 break; 25308 } 25309 } 25310 } 25311 25312 /* 25313 * Send out a multicast packet on interface ipif. 25314 * The sender does not have an conn. 25315 * Caller verifies that this isn't a PHYI_LOOPBACK. 25316 */ 25317 void 25318 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif, zoneid_t zoneid) 25319 { 25320 ipha_t *ipha; 25321 ire_t *ire; 25322 ipaddr_t dst; 25323 mblk_t *first_mp; 25324 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 25325 25326 /* igmp_sendpkt always allocates a ipsec_out_t */ 25327 ASSERT(mp->b_datap->db_type == M_CTL); 25328 ASSERT(!ipif->ipif_isv6); 25329 ASSERT(!IS_LOOPBACK(ipif->ipif_ill)); 25330 25331 first_mp = mp; 25332 mp = first_mp->b_cont; 25333 ASSERT(mp->b_datap->db_type == M_DATA); 25334 ipha = (ipha_t *)mp->b_rptr; 25335 25336 /* 25337 * Find an IRE which matches the destination and the outgoing 25338 * queue (i.e. the outgoing interface.) 25339 */ 25340 if (ipif->ipif_flags & IPIF_POINTOPOINT) 25341 dst = ipif->ipif_pp_dst_addr; 25342 else 25343 dst = ipha->ipha_dst; 25344 /* 25345 * The source address has already been initialized by the 25346 * caller and hence matching on ILL (MATCH_IRE_ILL) would 25347 * be sufficient rather than MATCH_IRE_IPIF. 25348 * 25349 * This function is used for sending IGMP packets. We need 25350 * to make sure that we send the packet out of the interface 25351 * (ipif->ipif_ill) where we joined the group. This is to 25352 * prevent from switches doing IGMP snooping to send us multicast 25353 * packets for a given group on the interface we have joined. 25354 * If we can't find an ire, igmp_sendpkt has already initialized 25355 * ipsec_out_attach_if so that this will not be load spread in 25356 * ip_newroute_ipif. 25357 */ 25358 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, NULL, 25359 MATCH_IRE_ILL, ipst); 25360 if (!ire) { 25361 /* 25362 * Mark this packet to make it be delivered to 25363 * ip_wput_ire after the new ire has been 25364 * created. 25365 */ 25366 mp->b_prev = NULL; 25367 mp->b_next = NULL; 25368 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC, 25369 zoneid, &zero_info); 25370 return; 25371 } 25372 25373 /* 25374 * Honor the RTF_SETSRC flag; this is the only case 25375 * where we force this addr whatever the current src addr is, 25376 * because this address is set by igmp_sendpkt(), and 25377 * cannot be specified by any user. 25378 */ 25379 if (ire->ire_flags & RTF_SETSRC) { 25380 ipha->ipha_src = ire->ire_src_addr; 25381 } 25382 25383 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE, zoneid); 25384 } 25385 25386 /* 25387 * NOTE : This function does not ire_refrele the ire argument passed in. 25388 * 25389 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 25390 * failure. The nce_fp_mp can vanish any time in the case of 25391 * IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 25392 * the ire_lock to access the nce_fp_mp in this case. 25393 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 25394 * prepending a fastpath message IPQoS processing must precede it, we also set 25395 * the b_band of the fastpath message to that of the mblk returned by IPQoS 25396 * (IPQoS might have set the b_band for CoS marking). 25397 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 25398 * must follow it so that IPQoS can mark the dl_priority field for CoS 25399 * marking, if needed. 25400 */ 25401 static mblk_t * 25402 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, uint32_t ill_index) 25403 { 25404 uint_t hlen; 25405 ipha_t *ipha; 25406 mblk_t *mp1; 25407 boolean_t qos_done = B_FALSE; 25408 uchar_t *ll_hdr; 25409 ip_stack_t *ipst = ire->ire_ipst; 25410 25411 #define rptr ((uchar_t *)ipha) 25412 25413 ipha = (ipha_t *)mp->b_rptr; 25414 hlen = 0; 25415 LOCK_IRE_FP_MP(ire); 25416 if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) { 25417 ASSERT(DB_TYPE(mp1) == M_DATA); 25418 /* Initiate IPPF processing */ 25419 if ((proc != 0) && IPP_ENABLED(proc, ipst)) { 25420 UNLOCK_IRE_FP_MP(ire); 25421 ip_process(proc, &mp, ill_index); 25422 if (mp == NULL) 25423 return (NULL); 25424 25425 ipha = (ipha_t *)mp->b_rptr; 25426 LOCK_IRE_FP_MP(ire); 25427 if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) { 25428 qos_done = B_TRUE; 25429 goto no_fp_mp; 25430 } 25431 ASSERT(DB_TYPE(mp1) == M_DATA); 25432 } 25433 hlen = MBLKL(mp1); 25434 /* 25435 * Check if we have enough room to prepend fastpath 25436 * header 25437 */ 25438 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 25439 ll_hdr = rptr - hlen; 25440 bcopy(mp1->b_rptr, ll_hdr, hlen); 25441 /* 25442 * Set the b_rptr to the start of the link layer 25443 * header 25444 */ 25445 mp->b_rptr = ll_hdr; 25446 mp1 = mp; 25447 } else { 25448 mp1 = copyb(mp1); 25449 if (mp1 == NULL) 25450 goto unlock_err; 25451 mp1->b_band = mp->b_band; 25452 mp1->b_cont = mp; 25453 /* 25454 * certain system generated traffic may not 25455 * have cred/label in ip header block. This 25456 * is true even for a labeled system. But for 25457 * labeled traffic, inherit the label in the 25458 * new header. 25459 */ 25460 if (DB_CRED(mp) != NULL) 25461 mblk_setcred(mp1, DB_CRED(mp)); 25462 /* 25463 * XXX disable ICK_VALID and compute checksum 25464 * here; can happen if nce_fp_mp changes and 25465 * it can't be copied now due to insufficient 25466 * space. (unlikely, fp mp can change, but it 25467 * does not increase in length) 25468 */ 25469 } 25470 UNLOCK_IRE_FP_MP(ire); 25471 } else { 25472 no_fp_mp: 25473 mp1 = copyb(ire->ire_nce->nce_res_mp); 25474 if (mp1 == NULL) { 25475 unlock_err: 25476 UNLOCK_IRE_FP_MP(ire); 25477 freemsg(mp); 25478 return (NULL); 25479 } 25480 UNLOCK_IRE_FP_MP(ire); 25481 mp1->b_cont = mp; 25482 /* 25483 * certain system generated traffic may not 25484 * have cred/label in ip header block. This 25485 * is true even for a labeled system. But for 25486 * labeled traffic, inherit the label in the 25487 * new header. 25488 */ 25489 if (DB_CRED(mp) != NULL) 25490 mblk_setcred(mp1, DB_CRED(mp)); 25491 if (!qos_done && (proc != 0) && IPP_ENABLED(proc, ipst)) { 25492 ip_process(proc, &mp1, ill_index); 25493 if (mp1 == NULL) 25494 return (NULL); 25495 } 25496 } 25497 return (mp1); 25498 #undef rptr 25499 } 25500 25501 /* 25502 * Finish the outbound IPsec processing for an IPv6 packet. This function 25503 * is called from ipsec_out_process() if the IPsec packet was processed 25504 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25505 * asynchronously. 25506 */ 25507 void 25508 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 25509 ire_t *ire_arg) 25510 { 25511 in6_addr_t *v6dstp; 25512 ire_t *ire; 25513 mblk_t *mp; 25514 ip6_t *ip6h1; 25515 uint_t ill_index; 25516 ipsec_out_t *io; 25517 boolean_t attach_if, hwaccel; 25518 uint32_t flags = IP6_NO_IPPOLICY; 25519 int match_flags; 25520 zoneid_t zoneid; 25521 boolean_t ill_need_rele = B_FALSE; 25522 boolean_t ire_need_rele = B_FALSE; 25523 ip_stack_t *ipst; 25524 25525 mp = ipsec_mp->b_cont; 25526 ip6h1 = (ip6_t *)mp->b_rptr; 25527 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25528 ASSERT(io->ipsec_out_ns != NULL); 25529 ipst = io->ipsec_out_ns->netstack_ip; 25530 ill_index = io->ipsec_out_ill_index; 25531 if (io->ipsec_out_reachable) { 25532 flags |= IPV6_REACHABILITY_CONFIRMATION; 25533 } 25534 attach_if = io->ipsec_out_attach_if; 25535 hwaccel = io->ipsec_out_accelerated; 25536 zoneid = io->ipsec_out_zoneid; 25537 ASSERT(zoneid != ALL_ZONES); 25538 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 25539 /* Multicast addresses should have non-zero ill_index. */ 25540 v6dstp = &ip6h->ip6_dst; 25541 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 25542 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 25543 ASSERT(!attach_if || ill_index != 0); 25544 if (ill_index != 0) { 25545 if (ill == NULL) { 25546 ill = ip_grab_attach_ill(NULL, ipsec_mp, ill_index, 25547 B_TRUE, ipst); 25548 25549 /* Failure case frees things for us. */ 25550 if (ill == NULL) 25551 return; 25552 25553 ill_need_rele = B_TRUE; 25554 } 25555 /* 25556 * If this packet needs to go out on a particular interface 25557 * honor it. 25558 */ 25559 if (attach_if) { 25560 match_flags = MATCH_IRE_ILL; 25561 25562 /* 25563 * Check if we need an ire that will not be 25564 * looked up by anybody else i.e. HIDDEN. 25565 */ 25566 if (ill_is_probeonly(ill)) { 25567 match_flags |= MATCH_IRE_MARK_HIDDEN; 25568 } 25569 } 25570 } 25571 ASSERT(mp != NULL); 25572 25573 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 25574 boolean_t unspec_src; 25575 ipif_t *ipif; 25576 25577 /* 25578 * Use the ill_index to get the right ill. 25579 */ 25580 unspec_src = io->ipsec_out_unspec_src; 25581 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25582 if (ipif == NULL) { 25583 if (ill_need_rele) 25584 ill_refrele(ill); 25585 freemsg(ipsec_mp); 25586 return; 25587 } 25588 25589 if (ire_arg != NULL) { 25590 ire = ire_arg; 25591 } else { 25592 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25593 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25594 ire_need_rele = B_TRUE; 25595 } 25596 if (ire != NULL) { 25597 ipif_refrele(ipif); 25598 /* 25599 * XXX Do the multicast forwarding now, as the IPsec 25600 * processing has been done. 25601 */ 25602 goto send; 25603 } 25604 25605 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 25606 mp->b_prev = NULL; 25607 mp->b_next = NULL; 25608 25609 /* 25610 * If the IPsec packet was processed asynchronously, 25611 * drop it now. 25612 */ 25613 if (q == NULL) { 25614 if (ill_need_rele) 25615 ill_refrele(ill); 25616 freemsg(ipsec_mp); 25617 return; 25618 } 25619 25620 ip_newroute_ipif_v6(q, ipsec_mp, ipif, *v6dstp, 25621 unspec_src, zoneid); 25622 ipif_refrele(ipif); 25623 } else { 25624 if (attach_if) { 25625 ipif_t *ipif; 25626 25627 ipif = ipif_get_next_ipif(NULL, ill); 25628 if (ipif == NULL) { 25629 if (ill_need_rele) 25630 ill_refrele(ill); 25631 freemsg(ipsec_mp); 25632 return; 25633 } 25634 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25635 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25636 ire_need_rele = B_TRUE; 25637 ipif_refrele(ipif); 25638 } else { 25639 if (ire_arg != NULL) { 25640 ire = ire_arg; 25641 } else { 25642 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL, 25643 ipst); 25644 ire_need_rele = B_TRUE; 25645 } 25646 } 25647 if (ire != NULL) 25648 goto send; 25649 /* 25650 * ire disappeared underneath. 25651 * 25652 * What we need to do here is the ip_newroute 25653 * logic to get the ire without doing the IPsec 25654 * processing. Follow the same old path. But this 25655 * time, ip_wput or ire_add_then_send will call us 25656 * directly as all the IPsec operations are done. 25657 */ 25658 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 25659 mp->b_prev = NULL; 25660 mp->b_next = NULL; 25661 25662 /* 25663 * If the IPsec packet was processed asynchronously, 25664 * drop it now. 25665 */ 25666 if (q == NULL) { 25667 if (ill_need_rele) 25668 ill_refrele(ill); 25669 freemsg(ipsec_mp); 25670 return; 25671 } 25672 25673 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 25674 zoneid, ipst); 25675 } 25676 if (ill != NULL && ill_need_rele) 25677 ill_refrele(ill); 25678 return; 25679 send: 25680 if (ill != NULL && ill_need_rele) 25681 ill_refrele(ill); 25682 25683 /* Local delivery */ 25684 if (ire->ire_stq == NULL) { 25685 ill_t *out_ill; 25686 ASSERT(q != NULL); 25687 25688 /* PFHooks: LOOPBACK_OUT */ 25689 out_ill = ire_to_ill(ire); 25690 25691 DTRACE_PROBE4(ip6__loopback__out__start, 25692 ill_t *, NULL, ill_t *, out_ill, 25693 ip6_t *, ip6h1, mblk_t *, ipsec_mp); 25694 25695 FW_HOOKS6(ipst->ips_ip6_loopback_out_event, 25696 ipst->ips_ipv6firewall_loopback_out, 25697 NULL, out_ill, ip6h1, ipsec_mp, mp, 0, ipst); 25698 25699 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, ipsec_mp); 25700 25701 if (ipsec_mp != NULL) 25702 ip_wput_local_v6(RD(q), out_ill, 25703 ip6h, ipsec_mp, ire, 0); 25704 if (ire_need_rele) 25705 ire_refrele(ire); 25706 return; 25707 } 25708 /* 25709 * Everything is done. Send it out on the wire. 25710 * We force the insertion of a fragment header using the 25711 * IPH_FRAG_HDR flag in two cases: 25712 * - after reception of an ICMPv6 "packet too big" message 25713 * with a MTU < 1280 (cf. RFC 2460 section 5) 25714 * - for multirouted IPv6 packets, so that the receiver can 25715 * discard duplicates according to their fragment identifier 25716 */ 25717 /* XXX fix flow control problems. */ 25718 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 25719 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 25720 if (hwaccel) { 25721 /* 25722 * hardware acceleration does not handle these 25723 * "slow path" cases. 25724 */ 25725 /* IPsec KSTATS: should bump bean counter here. */ 25726 if (ire_need_rele) 25727 ire_refrele(ire); 25728 freemsg(ipsec_mp); 25729 return; 25730 } 25731 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 25732 (mp->b_cont ? msgdsize(mp) : 25733 mp->b_wptr - (uchar_t *)ip6h)) { 25734 /* IPsec KSTATS: should bump bean counter here. */ 25735 ip0dbg(("Packet length mismatch: %d, %ld\n", 25736 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 25737 msgdsize(mp))); 25738 if (ire_need_rele) 25739 ire_refrele(ire); 25740 freemsg(ipsec_mp); 25741 return; 25742 } 25743 ASSERT(mp->b_prev == NULL); 25744 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 25745 ntohs(ip6h->ip6_plen) + 25746 IPV6_HDR_LEN, ire->ire_max_frag)); 25747 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 25748 ire->ire_max_frag); 25749 } else { 25750 UPDATE_OB_PKT_COUNT(ire); 25751 ire->ire_last_used_time = lbolt; 25752 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 25753 } 25754 if (ire_need_rele) 25755 ire_refrele(ire); 25756 freeb(ipsec_mp); 25757 } 25758 25759 void 25760 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 25761 { 25762 mblk_t *hada_mp; /* attributes M_CTL mblk */ 25763 da_ipsec_t *hada; /* data attributes */ 25764 ill_t *ill = (ill_t *)q->q_ptr; 25765 25766 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 25767 25768 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 25769 /* IPsec KSTATS: Bump lose counter here! */ 25770 freemsg(mp); 25771 return; 25772 } 25773 25774 /* 25775 * It's an IPsec packet that must be 25776 * accelerated by the Provider, and the 25777 * outbound ill is IPsec acceleration capable. 25778 * Prepends the mblk with an IPHADA_M_CTL, and ship it 25779 * to the ill. 25780 * IPsec KSTATS: should bump packet counter here. 25781 */ 25782 25783 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 25784 if (hada_mp == NULL) { 25785 /* IPsec KSTATS: should bump packet counter here. */ 25786 freemsg(mp); 25787 return; 25788 } 25789 25790 hada_mp->b_datap->db_type = M_CTL; 25791 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 25792 hada_mp->b_cont = mp; 25793 25794 hada = (da_ipsec_t *)hada_mp->b_rptr; 25795 bzero(hada, sizeof (da_ipsec_t)); 25796 hada->da_type = IPHADA_M_CTL; 25797 25798 putnext(q, hada_mp); 25799 } 25800 25801 /* 25802 * Finish the outbound IPsec processing. This function is called from 25803 * ipsec_out_process() if the IPsec packet was processed 25804 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25805 * asynchronously. 25806 */ 25807 void 25808 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 25809 ire_t *ire_arg) 25810 { 25811 uint32_t v_hlen_tos_len; 25812 ipaddr_t dst; 25813 ipif_t *ipif = NULL; 25814 ire_t *ire; 25815 ire_t *ire1 = NULL; 25816 mblk_t *next_mp = NULL; 25817 uint32_t max_frag; 25818 boolean_t multirt_send = B_FALSE; 25819 mblk_t *mp; 25820 ipha_t *ipha1; 25821 uint_t ill_index; 25822 ipsec_out_t *io; 25823 boolean_t attach_if; 25824 int match_flags; 25825 irb_t *irb = NULL; 25826 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 25827 zoneid_t zoneid; 25828 ipxmit_state_t pktxmit_state; 25829 ip_stack_t *ipst; 25830 25831 #ifdef _BIG_ENDIAN 25832 #define LENGTH (v_hlen_tos_len & 0xFFFF) 25833 #else 25834 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 25835 #endif 25836 25837 mp = ipsec_mp->b_cont; 25838 ipha1 = (ipha_t *)mp->b_rptr; 25839 ASSERT(mp != NULL); 25840 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 25841 dst = ipha->ipha_dst; 25842 25843 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25844 ill_index = io->ipsec_out_ill_index; 25845 attach_if = io->ipsec_out_attach_if; 25846 zoneid = io->ipsec_out_zoneid; 25847 ASSERT(zoneid != ALL_ZONES); 25848 ipst = io->ipsec_out_ns->netstack_ip; 25849 ASSERT(io->ipsec_out_ns != NULL); 25850 25851 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 25852 if (ill_index != 0) { 25853 if (ill == NULL) { 25854 ill = ip_grab_attach_ill(NULL, ipsec_mp, 25855 ill_index, B_FALSE, ipst); 25856 25857 /* Failure case frees things for us. */ 25858 if (ill == NULL) 25859 return; 25860 25861 ill_need_rele = B_TRUE; 25862 } 25863 /* 25864 * If this packet needs to go out on a particular interface 25865 * honor it. 25866 */ 25867 if (attach_if) { 25868 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 25869 25870 /* 25871 * Check if we need an ire that will not be 25872 * looked up by anybody else i.e. HIDDEN. 25873 */ 25874 if (ill_is_probeonly(ill)) { 25875 match_flags |= MATCH_IRE_MARK_HIDDEN; 25876 } 25877 } 25878 } 25879 25880 if (CLASSD(dst)) { 25881 boolean_t conn_dontroute; 25882 /* 25883 * Use the ill_index to get the right ipif. 25884 */ 25885 conn_dontroute = io->ipsec_out_dontroute; 25886 if (ill_index == 0) 25887 ipif = ipif_lookup_group(dst, zoneid, ipst); 25888 else 25889 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25890 if (ipif == NULL) { 25891 ip1dbg(("ip_wput_ipsec_out: No ipif for" 25892 " multicast\n")); 25893 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 25894 freemsg(ipsec_mp); 25895 goto done; 25896 } 25897 /* 25898 * ipha_src has already been intialized with the 25899 * value of the ipif in ip_wput. All we need now is 25900 * an ire to send this downstream. 25901 */ 25902 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 25903 MBLK_GETLABEL(mp), match_flags, ipst); 25904 if (ire != NULL) { 25905 ill_t *ill1; 25906 /* 25907 * Do the multicast forwarding now, as the IPsec 25908 * processing has been done. 25909 */ 25910 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 25911 (ill1 = ire_to_ill(ire))) { 25912 if (ip_mforward(ill1, ipha, mp)) { 25913 freemsg(ipsec_mp); 25914 ip1dbg(("ip_wput_ipsec_out: mforward " 25915 "failed\n")); 25916 ire_refrele(ire); 25917 goto done; 25918 } 25919 } 25920 goto send; 25921 } 25922 25923 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 25924 mp->b_prev = NULL; 25925 mp->b_next = NULL; 25926 25927 /* 25928 * If the IPsec packet was processed asynchronously, 25929 * drop it now. 25930 */ 25931 if (q == NULL) { 25932 freemsg(ipsec_mp); 25933 goto done; 25934 } 25935 25936 /* 25937 * We may be using a wrong ipif to create the ire. 25938 * But it is okay as the source address is assigned 25939 * for the packet already. Next outbound packet would 25940 * create the IRE with the right IPIF in ip_wput. 25941 * 25942 * Also handle RTF_MULTIRT routes. 25943 */ 25944 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT, 25945 zoneid, &zero_info); 25946 } else { 25947 if (attach_if) { 25948 ire = ire_ctable_lookup(dst, 0, 0, ill->ill_ipif, 25949 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25950 } else { 25951 if (ire_arg != NULL) { 25952 ire = ire_arg; 25953 ire_need_rele = B_FALSE; 25954 } else { 25955 ire = ire_cache_lookup(dst, zoneid, 25956 MBLK_GETLABEL(mp), ipst); 25957 } 25958 } 25959 if (ire != NULL) { 25960 goto send; 25961 } 25962 25963 /* 25964 * ire disappeared underneath. 25965 * 25966 * What we need to do here is the ip_newroute 25967 * logic to get the ire without doing the IPsec 25968 * processing. Follow the same old path. But this 25969 * time, ip_wput or ire_add_then_put will call us 25970 * directly as all the IPsec operations are done. 25971 */ 25972 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 25973 mp->b_prev = NULL; 25974 mp->b_next = NULL; 25975 25976 /* 25977 * If the IPsec packet was processed asynchronously, 25978 * drop it now. 25979 */ 25980 if (q == NULL) { 25981 freemsg(ipsec_mp); 25982 goto done; 25983 } 25984 25985 /* 25986 * Since we're going through ip_newroute() again, we 25987 * need to make sure we don't: 25988 * 25989 * 1.) Trigger the ASSERT() with the ipha_ident 25990 * overloading. 25991 * 2.) Redo transport-layer checksumming, since we've 25992 * already done all that to get this far. 25993 * 25994 * The easiest way not do either of the above is to set 25995 * the ipha_ident field to IP_HDR_INCLUDED. 25996 */ 25997 ipha->ipha_ident = IP_HDR_INCLUDED; 25998 ip_newroute(q, ipsec_mp, dst, (CONN_Q(q) ? Q_TO_CONN(q) : NULL), 25999 zoneid, ipst); 26000 } 26001 goto done; 26002 send: 26003 if (ire->ire_stq == NULL) { 26004 ill_t *out_ill; 26005 /* 26006 * Loopbacks go through ip_wput_local except for one case. 26007 * We come here if we generate a icmp_frag_needed message 26008 * after IPsec processing is over. When this function calls 26009 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 26010 * icmp_frag_needed. The message generated comes back here 26011 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 26012 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 26013 * source address as it is usually set in ip_wput_ire. As 26014 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 26015 * and we end up here. We can't enter ip_wput_ire once the 26016 * IPsec processing is over and hence we need to do it here. 26017 */ 26018 ASSERT(q != NULL); 26019 UPDATE_OB_PKT_COUNT(ire); 26020 ire->ire_last_used_time = lbolt; 26021 if (ipha->ipha_src == 0) 26022 ipha->ipha_src = ire->ire_src_addr; 26023 26024 /* PFHooks: LOOPBACK_OUT */ 26025 out_ill = ire_to_ill(ire); 26026 26027 DTRACE_PROBE4(ip4__loopback__out__start, 26028 ill_t *, NULL, ill_t *, out_ill, 26029 ipha_t *, ipha1, mblk_t *, ipsec_mp); 26030 26031 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 26032 ipst->ips_ipv4firewall_loopback_out, 26033 NULL, out_ill, ipha1, ipsec_mp, mp, 0, ipst); 26034 26035 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, ipsec_mp); 26036 26037 if (ipsec_mp != NULL) 26038 ip_wput_local(RD(q), out_ill, 26039 ipha, ipsec_mp, ire, 0, zoneid); 26040 if (ire_need_rele) 26041 ire_refrele(ire); 26042 goto done; 26043 } 26044 26045 if (ire->ire_max_frag < (unsigned int)LENGTH) { 26046 /* 26047 * We are through with IPsec processing. 26048 * Fragment this and send it on the wire. 26049 */ 26050 if (io->ipsec_out_accelerated) { 26051 /* 26052 * The packet has been accelerated but must 26053 * be fragmented. This should not happen 26054 * since AH and ESP must not accelerate 26055 * packets that need fragmentation, however 26056 * the configuration could have changed 26057 * since the AH or ESP processing. 26058 * Drop packet. 26059 * IPsec KSTATS: bump bean counter here. 26060 */ 26061 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 26062 "fragmented accelerated packet!\n")); 26063 freemsg(ipsec_mp); 26064 } else { 26065 ip_wput_ire_fragmentit(ipsec_mp, ire, zoneid, ipst); 26066 } 26067 if (ire_need_rele) 26068 ire_refrele(ire); 26069 goto done; 26070 } 26071 26072 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 26073 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 26074 (void *)ire->ire_ipif, (void *)ipif)); 26075 26076 /* 26077 * Multiroute the secured packet, unless IPsec really 26078 * requires the packet to go out only through a particular 26079 * interface. 26080 */ 26081 if ((ire->ire_flags & RTF_MULTIRT) && !attach_if) { 26082 ire_t *first_ire; 26083 irb = ire->ire_bucket; 26084 ASSERT(irb != NULL); 26085 /* 26086 * This ire has been looked up as the one that 26087 * goes through the given ipif; 26088 * make sure we do not omit any other multiroute ire 26089 * that may be present in the bucket before this one. 26090 */ 26091 IRB_REFHOLD(irb); 26092 for (first_ire = irb->irb_ire; 26093 first_ire != NULL; 26094 first_ire = first_ire->ire_next) { 26095 if ((first_ire->ire_flags & RTF_MULTIRT) && 26096 (first_ire->ire_addr == ire->ire_addr) && 26097 !(first_ire->ire_marks & 26098 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 26099 break; 26100 } 26101 } 26102 26103 if ((first_ire != NULL) && (first_ire != ire)) { 26104 /* 26105 * Don't change the ire if the packet must 26106 * be fragmented if sent via this new one. 26107 */ 26108 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 26109 IRE_REFHOLD(first_ire); 26110 if (ire_need_rele) 26111 ire_refrele(ire); 26112 else 26113 ire_need_rele = B_TRUE; 26114 ire = first_ire; 26115 } 26116 } 26117 IRB_REFRELE(irb); 26118 26119 multirt_send = B_TRUE; 26120 max_frag = ire->ire_max_frag; 26121 } else { 26122 if ((ire->ire_flags & RTF_MULTIRT) && attach_if) { 26123 ip1dbg(("ip_wput_ipsec_out: ignoring multirouting " 26124 "flag, attach_if %d\n", attach_if)); 26125 } 26126 } 26127 26128 /* 26129 * In most cases, the emission loop below is entered only once. 26130 * Only in the case where the ire holds the RTF_MULTIRT 26131 * flag, we loop to process all RTF_MULTIRT ires in the 26132 * bucket, and send the packet through all crossed 26133 * RTF_MULTIRT routes. 26134 */ 26135 do { 26136 if (multirt_send) { 26137 /* 26138 * ire1 holds here the next ire to process in the 26139 * bucket. If multirouting is expected, 26140 * any non-RTF_MULTIRT ire that has the 26141 * right destination address is ignored. 26142 */ 26143 ASSERT(irb != NULL); 26144 IRB_REFHOLD(irb); 26145 for (ire1 = ire->ire_next; 26146 ire1 != NULL; 26147 ire1 = ire1->ire_next) { 26148 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 26149 continue; 26150 if (ire1->ire_addr != ire->ire_addr) 26151 continue; 26152 if (ire1->ire_marks & 26153 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 26154 continue; 26155 /* No loopback here */ 26156 if (ire1->ire_stq == NULL) 26157 continue; 26158 /* 26159 * Ensure we do not exceed the MTU 26160 * of the next route. 26161 */ 26162 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 26163 ip_multirt_bad_mtu(ire1, max_frag); 26164 continue; 26165 } 26166 26167 IRE_REFHOLD(ire1); 26168 break; 26169 } 26170 IRB_REFRELE(irb); 26171 if (ire1 != NULL) { 26172 /* 26173 * We are in a multiple send case, need to 26174 * make a copy of the packet. 26175 */ 26176 next_mp = copymsg(ipsec_mp); 26177 if (next_mp == NULL) { 26178 ire_refrele(ire1); 26179 ire1 = NULL; 26180 } 26181 } 26182 } 26183 /* 26184 * Everything is done. Send it out on the wire 26185 * 26186 * ip_xmit_v4 will call ip_wput_attach_llhdr and then 26187 * either send it on the wire or, in the case of 26188 * HW acceleration, call ipsec_hw_putnext. 26189 */ 26190 if (ire->ire_nce && 26191 ire->ire_nce->nce_state != ND_REACHABLE) { 26192 DTRACE_PROBE2(ip__wput__ipsec__bail, 26193 (ire_t *), ire, (mblk_t *), ipsec_mp); 26194 /* 26195 * If ire's link-layer is unresolved (this 26196 * would only happen if the incomplete ire 26197 * was added to cachetable via forwarding path) 26198 * don't bother going to ip_xmit_v4. Just drop the 26199 * packet. 26200 * There is a slight risk here, in that, if we 26201 * have the forwarding path create an incomplete 26202 * IRE, then until the IRE is completed, any 26203 * transmitted IPsec packets will be dropped 26204 * instead of being queued waiting for resolution. 26205 * 26206 * But the likelihood of a forwarding packet and a wput 26207 * packet sending to the same dst at the same time 26208 * and there not yet be an ARP entry for it is small. 26209 * Furthermore, if this actually happens, it might 26210 * be likely that wput would generate multiple 26211 * packets (and forwarding would also have a train 26212 * of packets) for that destination. If this is 26213 * the case, some of them would have been dropped 26214 * anyway, since ARP only queues a few packets while 26215 * waiting for resolution 26216 * 26217 * NOTE: We should really call ip_xmit_v4, 26218 * and let it queue the packet and send the 26219 * ARP query and have ARP come back thus: 26220 * <ARP> ip_wput->ip_output->ip-wput_nondata-> 26221 * ip_xmit_v4->ip_wput_attach_llhdr + ipsec 26222 * hw accel work. But it's too complex to get 26223 * the IPsec hw acceleration approach to fit 26224 * well with ip_xmit_v4 doing ARP without 26225 * doing IPsec simplification. For now, we just 26226 * poke ip_xmit_v4 to trigger the arp resolve, so 26227 * that we can continue with the send on the next 26228 * attempt. 26229 * 26230 * XXX THis should be revisited, when 26231 * the IPsec/IP interaction is cleaned up 26232 */ 26233 ip1dbg(("ip_wput_ipsec_out: ire is incomplete" 26234 " - dropping packet\n")); 26235 freemsg(ipsec_mp); 26236 /* 26237 * Call ip_xmit_v4() to trigger ARP query 26238 * in case the nce_state is ND_INITIAL 26239 */ 26240 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 26241 goto drop_pkt; 26242 } 26243 26244 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 26245 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha1, 26246 mblk_t *, ipsec_mp); 26247 FW_HOOKS(ipst->ips_ip4_physical_out_event, 26248 ipst->ips_ipv4firewall_physical_out, NULL, 26249 ire->ire_ipif->ipif_ill, ipha1, ipsec_mp, mp, 0, ipst); 26250 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, ipsec_mp); 26251 if (ipsec_mp == NULL) 26252 goto drop_pkt; 26253 26254 ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n")); 26255 pktxmit_state = ip_xmit_v4(mp, ire, 26256 (io->ipsec_out_accelerated ? io : NULL), B_FALSE); 26257 26258 if ((pktxmit_state == SEND_FAILED) || 26259 (pktxmit_state == LLHDR_RESLV_FAILED)) { 26260 26261 freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */ 26262 drop_pkt: 26263 BUMP_MIB(((ill_t *)ire->ire_stq->q_ptr)->ill_ip_mib, 26264 ipIfStatsOutDiscards); 26265 if (ire_need_rele) 26266 ire_refrele(ire); 26267 if (ire1 != NULL) { 26268 ire_refrele(ire1); 26269 freemsg(next_mp); 26270 } 26271 goto done; 26272 } 26273 26274 freeb(ipsec_mp); 26275 if (ire_need_rele) 26276 ire_refrele(ire); 26277 26278 if (ire1 != NULL) { 26279 ire = ire1; 26280 ire_need_rele = B_TRUE; 26281 ASSERT(next_mp); 26282 ipsec_mp = next_mp; 26283 mp = ipsec_mp->b_cont; 26284 ire1 = NULL; 26285 next_mp = NULL; 26286 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26287 } else { 26288 multirt_send = B_FALSE; 26289 } 26290 } while (multirt_send); 26291 done: 26292 if (ill != NULL && ill_need_rele) 26293 ill_refrele(ill); 26294 if (ipif != NULL) 26295 ipif_refrele(ipif); 26296 } 26297 26298 /* 26299 * Get the ill corresponding to the specified ire, and compare its 26300 * capabilities with the protocol and algorithms specified by the 26301 * the SA obtained from ipsec_out. If they match, annotate the 26302 * ipsec_out structure to indicate that the packet needs acceleration. 26303 * 26304 * 26305 * A packet is eligible for outbound hardware acceleration if the 26306 * following conditions are satisfied: 26307 * 26308 * 1. the packet will not be fragmented 26309 * 2. the provider supports the algorithm 26310 * 3. there is no pending control message being exchanged 26311 * 4. snoop is not attached 26312 * 5. the destination address is not a broadcast or multicast address. 26313 * 26314 * Rationale: 26315 * - Hardware drivers do not support fragmentation with 26316 * the current interface. 26317 * - snoop, multicast, and broadcast may result in exposure of 26318 * a cleartext datagram. 26319 * We check all five of these conditions here. 26320 * 26321 * XXX would like to nuke "ire_t *" parameter here; problem is that 26322 * IRE is only way to figure out if a v4 address is a broadcast and 26323 * thus ineligible for acceleration... 26324 */ 26325 static void 26326 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 26327 { 26328 ipsec_out_t *io; 26329 mblk_t *data_mp; 26330 uint_t plen, overhead; 26331 ip_stack_t *ipst; 26332 26333 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 26334 return; 26335 26336 if (ill == NULL) 26337 return; 26338 ipst = ill->ill_ipst; 26339 /* 26340 * Destination address is a broadcast or multicast. Punt. 26341 */ 26342 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 26343 IRE_LOCAL))) 26344 return; 26345 26346 data_mp = ipsec_mp->b_cont; 26347 26348 if (ill->ill_isv6) { 26349 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 26350 26351 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 26352 return; 26353 26354 plen = ip6h->ip6_plen; 26355 } else { 26356 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 26357 26358 if (CLASSD(ipha->ipha_dst)) 26359 return; 26360 26361 plen = ipha->ipha_length; 26362 } 26363 /* 26364 * Is there a pending DLPI control message being exchanged 26365 * between IP/IPsec and the DLS Provider? If there is, it 26366 * could be a SADB update, and the state of the DLS Provider 26367 * SADB might not be in sync with the SADB maintained by 26368 * IPsec. To avoid dropping packets or using the wrong keying 26369 * material, we do not accelerate this packet. 26370 */ 26371 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 26372 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26373 "ill_dlpi_pending! don't accelerate packet\n")); 26374 return; 26375 } 26376 26377 /* 26378 * Is the Provider in promiscous mode? If it does, we don't 26379 * accelerate the packet since it will bounce back up to the 26380 * listeners in the clear. 26381 */ 26382 if (ill->ill_promisc_on_phys) { 26383 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26384 "ill in promiscous mode, don't accelerate packet\n")); 26385 return; 26386 } 26387 26388 /* 26389 * Will the packet require fragmentation? 26390 */ 26391 26392 /* 26393 * IPsec ESP note: this is a pessimistic estimate, but the same 26394 * as is used elsewhere. 26395 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 26396 * + 2-byte trailer 26397 */ 26398 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 26399 IPSEC_BASE_ESP_HDR_SIZE(sa); 26400 26401 if ((plen + overhead) > ill->ill_max_mtu) 26402 return; 26403 26404 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26405 26406 /* 26407 * Can the ill accelerate this IPsec protocol and algorithm 26408 * specified by the SA? 26409 */ 26410 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 26411 ill->ill_isv6, sa, ipst->ips_netstack)) { 26412 return; 26413 } 26414 26415 /* 26416 * Tell AH or ESP that the outbound ill is capable of 26417 * accelerating this packet. 26418 */ 26419 io->ipsec_out_is_capab_ill = B_TRUE; 26420 } 26421 26422 /* 26423 * Select which AH & ESP SA's to use (if any) for the outbound packet. 26424 * 26425 * If this function returns B_TRUE, the requested SA's have been filled 26426 * into the ipsec_out_*_sa pointers. 26427 * 26428 * If the function returns B_FALSE, the packet has been "consumed", most 26429 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 26430 * 26431 * The SA references created by the protocol-specific "select" 26432 * function will be released when the ipsec_mp is freed, thanks to the 26433 * ipsec_out_free destructor -- see spd.c. 26434 */ 26435 static boolean_t 26436 ipsec_out_select_sa(mblk_t *ipsec_mp) 26437 { 26438 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 26439 ipsec_out_t *io; 26440 ipsec_policy_t *pp; 26441 ipsec_action_t *ap; 26442 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26443 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26444 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26445 26446 if (!io->ipsec_out_secure) { 26447 /* 26448 * We came here by mistake. 26449 * Don't bother with ipsec processing 26450 * We should "discourage" this path in the future. 26451 */ 26452 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26453 return (B_FALSE); 26454 } 26455 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26456 ASSERT((io->ipsec_out_policy != NULL) || 26457 (io->ipsec_out_act != NULL)); 26458 26459 ASSERT(io->ipsec_out_failed == B_FALSE); 26460 26461 /* 26462 * IPsec processing has started. 26463 */ 26464 io->ipsec_out_proc_begin = B_TRUE; 26465 ap = io->ipsec_out_act; 26466 if (ap == NULL) { 26467 pp = io->ipsec_out_policy; 26468 ASSERT(pp != NULL); 26469 ap = pp->ipsp_act; 26470 ASSERT(ap != NULL); 26471 } 26472 26473 /* 26474 * We have an action. now, let's select SA's. 26475 * (In the future, we can cache this in the conn_t..) 26476 */ 26477 if (ap->ipa_want_esp) { 26478 if (io->ipsec_out_esp_sa == NULL) { 26479 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 26480 IPPROTO_ESP); 26481 } 26482 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 26483 } 26484 26485 if (ap->ipa_want_ah) { 26486 if (io->ipsec_out_ah_sa == NULL) { 26487 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 26488 IPPROTO_AH); 26489 } 26490 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 26491 /* 26492 * The ESP and AH processing order needs to be preserved 26493 * when both protocols are required (ESP should be applied 26494 * before AH for an outbound packet). Force an ESP ACQUIRE 26495 * when both ESP and AH are required, and an AH ACQUIRE 26496 * is needed. 26497 */ 26498 if (ap->ipa_want_esp && need_ah_acquire) 26499 need_esp_acquire = B_TRUE; 26500 } 26501 26502 /* 26503 * Send an ACQUIRE (extended, regular, or both) if we need one. 26504 * Release SAs that got referenced, but will not be used until we 26505 * acquire _all_ of the SAs we need. 26506 */ 26507 if (need_ah_acquire || need_esp_acquire) { 26508 if (io->ipsec_out_ah_sa != NULL) { 26509 IPSA_REFRELE(io->ipsec_out_ah_sa); 26510 io->ipsec_out_ah_sa = NULL; 26511 } 26512 if (io->ipsec_out_esp_sa != NULL) { 26513 IPSA_REFRELE(io->ipsec_out_esp_sa); 26514 io->ipsec_out_esp_sa = NULL; 26515 } 26516 26517 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 26518 return (B_FALSE); 26519 } 26520 26521 return (B_TRUE); 26522 } 26523 26524 /* 26525 * Process an IPSEC_OUT message and see what you can 26526 * do with it. 26527 * IPQoS Notes: 26528 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 26529 * IPsec. 26530 * XXX would like to nuke ire_t. 26531 * XXX ill_index better be "real" 26532 */ 26533 void 26534 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 26535 { 26536 ipsec_out_t *io; 26537 ipsec_policy_t *pp; 26538 ipsec_action_t *ap; 26539 ipha_t *ipha; 26540 ip6_t *ip6h; 26541 mblk_t *mp; 26542 ill_t *ill; 26543 zoneid_t zoneid; 26544 ipsec_status_t ipsec_rc; 26545 boolean_t ill_need_rele = B_FALSE; 26546 ip_stack_t *ipst; 26547 ipsec_stack_t *ipss; 26548 26549 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26550 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26551 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26552 ipst = io->ipsec_out_ns->netstack_ip; 26553 mp = ipsec_mp->b_cont; 26554 26555 /* 26556 * Initiate IPPF processing. We do it here to account for packets 26557 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 26558 * We can check for ipsec_out_proc_begin even for such packets, as 26559 * they will always be false (asserted below). 26560 */ 26561 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst) && !io->ipsec_out_proc_begin) { 26562 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 26563 io->ipsec_out_ill_index : ill_index); 26564 if (mp == NULL) { 26565 ip2dbg(("ipsec_out_process: packet dropped "\ 26566 "during IPPF processing\n")); 26567 freeb(ipsec_mp); 26568 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26569 return; 26570 } 26571 } 26572 26573 if (!io->ipsec_out_secure) { 26574 /* 26575 * We came here by mistake. 26576 * Don't bother with ipsec processing 26577 * Should "discourage" this path in the future. 26578 */ 26579 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26580 goto done; 26581 } 26582 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26583 ASSERT((io->ipsec_out_policy != NULL) || 26584 (io->ipsec_out_act != NULL)); 26585 ASSERT(io->ipsec_out_failed == B_FALSE); 26586 26587 ipss = ipst->ips_netstack->netstack_ipsec; 26588 if (!ipsec_loaded(ipss)) { 26589 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 26590 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26591 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26592 } else { 26593 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 26594 } 26595 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 26596 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 26597 &ipss->ipsec_dropper); 26598 return; 26599 } 26600 26601 /* 26602 * IPsec processing has started. 26603 */ 26604 io->ipsec_out_proc_begin = B_TRUE; 26605 ap = io->ipsec_out_act; 26606 if (ap == NULL) { 26607 pp = io->ipsec_out_policy; 26608 ASSERT(pp != NULL); 26609 ap = pp->ipsp_act; 26610 ASSERT(ap != NULL); 26611 } 26612 26613 /* 26614 * Save the outbound ill index. When the packet comes back 26615 * from IPsec, we make sure the ill hasn't changed or disappeared 26616 * before sending it the accelerated packet. 26617 */ 26618 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 26619 int ifindex; 26620 ill = ire_to_ill(ire); 26621 ifindex = ill->ill_phyint->phyint_ifindex; 26622 io->ipsec_out_capab_ill_index = ifindex; 26623 } 26624 26625 /* 26626 * The order of processing is first insert a IP header if needed. 26627 * Then insert the ESP header and then the AH header. 26628 */ 26629 if ((io->ipsec_out_se_done == B_FALSE) && 26630 (ap->ipa_want_se)) { 26631 /* 26632 * First get the outer IP header before sending 26633 * it to ESP. 26634 */ 26635 ipha_t *oipha, *iipha; 26636 mblk_t *outer_mp, *inner_mp; 26637 26638 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 26639 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 26640 "ipsec_out_process: " 26641 "Self-Encapsulation failed: Out of memory\n"); 26642 freemsg(ipsec_mp); 26643 if (ill != NULL) { 26644 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26645 } else { 26646 BUMP_MIB(&ipst->ips_ip_mib, 26647 ipIfStatsOutDiscards); 26648 } 26649 return; 26650 } 26651 inner_mp = ipsec_mp->b_cont; 26652 ASSERT(inner_mp->b_datap->db_type == M_DATA); 26653 oipha = (ipha_t *)outer_mp->b_rptr; 26654 iipha = (ipha_t *)inner_mp->b_rptr; 26655 *oipha = *iipha; 26656 outer_mp->b_wptr += sizeof (ipha_t); 26657 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 26658 sizeof (ipha_t)); 26659 oipha->ipha_protocol = IPPROTO_ENCAP; 26660 oipha->ipha_version_and_hdr_length = 26661 IP_SIMPLE_HDR_VERSION; 26662 oipha->ipha_hdr_checksum = 0; 26663 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 26664 outer_mp->b_cont = inner_mp; 26665 ipsec_mp->b_cont = outer_mp; 26666 26667 io->ipsec_out_se_done = B_TRUE; 26668 io->ipsec_out_tunnel = B_TRUE; 26669 } 26670 26671 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 26672 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 26673 !ipsec_out_select_sa(ipsec_mp)) 26674 return; 26675 26676 /* 26677 * By now, we know what SA's to use. Toss over to ESP & AH 26678 * to do the heavy lifting. 26679 */ 26680 zoneid = io->ipsec_out_zoneid; 26681 ASSERT(zoneid != ALL_ZONES); 26682 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 26683 ASSERT(io->ipsec_out_esp_sa != NULL); 26684 io->ipsec_out_esp_done = B_TRUE; 26685 /* 26686 * Note that since hw accel can only apply one transform, 26687 * not two, we skip hw accel for ESP if we also have AH 26688 * This is an design limitation of the interface 26689 * which should be revisited. 26690 */ 26691 ASSERT(ire != NULL); 26692 if (io->ipsec_out_ah_sa == NULL) { 26693 ill = (ill_t *)ire->ire_stq->q_ptr; 26694 ipsec_out_is_accelerated(ipsec_mp, 26695 io->ipsec_out_esp_sa, ill, ire); 26696 } 26697 26698 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 26699 switch (ipsec_rc) { 26700 case IPSEC_STATUS_SUCCESS: 26701 break; 26702 case IPSEC_STATUS_FAILED: 26703 if (ill != NULL) { 26704 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26705 } else { 26706 BUMP_MIB(&ipst->ips_ip_mib, 26707 ipIfStatsOutDiscards); 26708 } 26709 /* FALLTHRU */ 26710 case IPSEC_STATUS_PENDING: 26711 return; 26712 } 26713 } 26714 26715 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 26716 ASSERT(io->ipsec_out_ah_sa != NULL); 26717 io->ipsec_out_ah_done = B_TRUE; 26718 if (ire == NULL) { 26719 int idx = io->ipsec_out_capab_ill_index; 26720 ill = ill_lookup_on_ifindex(idx, B_FALSE, 26721 NULL, NULL, NULL, NULL, ipst); 26722 ill_need_rele = B_TRUE; 26723 } else { 26724 ill = (ill_t *)ire->ire_stq->q_ptr; 26725 } 26726 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 26727 ire); 26728 26729 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 26730 switch (ipsec_rc) { 26731 case IPSEC_STATUS_SUCCESS: 26732 break; 26733 case IPSEC_STATUS_FAILED: 26734 if (ill != NULL) { 26735 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26736 } else { 26737 BUMP_MIB(&ipst->ips_ip_mib, 26738 ipIfStatsOutDiscards); 26739 } 26740 /* FALLTHRU */ 26741 case IPSEC_STATUS_PENDING: 26742 if (ill != NULL && ill_need_rele) 26743 ill_refrele(ill); 26744 return; 26745 } 26746 } 26747 /* 26748 * We are done with IPsec processing. Send it over 26749 * the wire. 26750 */ 26751 done: 26752 mp = ipsec_mp->b_cont; 26753 ipha = (ipha_t *)mp->b_rptr; 26754 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26755 ip_wput_ipsec_out(q, ipsec_mp, ipha, ill, ire); 26756 } else { 26757 ip6h = (ip6_t *)ipha; 26758 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ill, ire); 26759 } 26760 if (ill != NULL && ill_need_rele) 26761 ill_refrele(ill); 26762 } 26763 26764 /* ARGSUSED */ 26765 void 26766 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 26767 { 26768 opt_restart_t *or; 26769 int err; 26770 conn_t *connp; 26771 26772 ASSERT(CONN_Q(q)); 26773 connp = Q_TO_CONN(q); 26774 26775 ASSERT(first_mp->b_datap->db_type == M_CTL); 26776 or = (opt_restart_t *)first_mp->b_rptr; 26777 /* 26778 * We don't need to pass any credentials here since this is just 26779 * a restart. The credentials are passed in when svr4_optcom_req 26780 * is called the first time (from ip_wput_nondata). 26781 */ 26782 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 26783 err = svr4_optcom_req(q, first_mp, NULL, 26784 &ip_opt_obj, B_FALSE); 26785 } else { 26786 ASSERT(or->or_type == T_OPTMGMT_REQ); 26787 err = tpi_optcom_req(q, first_mp, NULL, 26788 &ip_opt_obj, B_FALSE); 26789 } 26790 if (err != EINPROGRESS) { 26791 /* operation is done */ 26792 CONN_OPER_PENDING_DONE(connp); 26793 } 26794 } 26795 26796 /* 26797 * ioctls that go through a down/up sequence may need to wait for the down 26798 * to complete. This involves waiting for the ire and ipif refcnts to go down 26799 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 26800 */ 26801 /* ARGSUSED */ 26802 void 26803 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 26804 { 26805 struct iocblk *iocp; 26806 mblk_t *mp1; 26807 ip_ioctl_cmd_t *ipip; 26808 int err; 26809 sin_t *sin; 26810 struct lifreq *lifr; 26811 struct ifreq *ifr; 26812 26813 iocp = (struct iocblk *)mp->b_rptr; 26814 ASSERT(ipsq != NULL); 26815 /* Existence of mp1 verified in ip_wput_nondata */ 26816 mp1 = mp->b_cont->b_cont; 26817 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26818 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 26819 /* 26820 * Special case where ipsq_current_ipif is not set: 26821 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 26822 * ill could also have become part of a ipmp group in the 26823 * process, we are here as were not able to complete the 26824 * operation in ipif_set_values because we could not become 26825 * exclusive on the new ipsq, In such a case ipsq_current_ipif 26826 * will not be set so we need to set it. 26827 */ 26828 ill_t *ill = q->q_ptr; 26829 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 26830 } 26831 ASSERT(ipsq->ipsq_current_ipif != NULL); 26832 26833 if (ipip->ipi_cmd_type == IF_CMD) { 26834 /* This a old style SIOC[GS]IF* command */ 26835 ifr = (struct ifreq *)mp1->b_rptr; 26836 sin = (sin_t *)&ifr->ifr_addr; 26837 } else if (ipip->ipi_cmd_type == LIF_CMD) { 26838 /* This a new style SIOC[GS]LIF* command */ 26839 lifr = (struct lifreq *)mp1->b_rptr; 26840 sin = (sin_t *)&lifr->lifr_addr; 26841 } else { 26842 sin = NULL; 26843 } 26844 26845 err = (*ipip->ipi_func_restart)(ipsq->ipsq_current_ipif, sin, q, mp, 26846 ipip, mp1->b_rptr); 26847 26848 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 26849 } 26850 26851 /* 26852 * ioctl processing 26853 * 26854 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up 26855 * the ioctl command in the ioctl tables, determines the copyin data size 26856 * from the ipi_copyin_size field, and does an mi_copyin() of that size. 26857 * 26858 * ioctl processing then continues when the M_IOCDATA makes its way down to 26859 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its 26860 * associated 'conn' is refheld till the end of the ioctl and the general 26861 * ioctl processing function ip_process_ioctl() is called to extract the 26862 * arguments and process the ioctl. To simplify extraction, ioctl commands 26863 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a 26864 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq()) 26865 * is used to extract the ioctl's arguments. 26866 * 26867 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 26868 * so goes thru the serialization primitive ipsq_try_enter. Then the 26869 * appropriate function to handle the ioctl is called based on the entry in 26870 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 26871 * which also refreleases the 'conn' that was refheld at the start of the 26872 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 26873 * 26874 * Many exclusive ioctls go thru an internal down up sequence as part of 26875 * the operation. For example an attempt to change the IP address of an 26876 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 26877 * does all the cleanup such as deleting all ires that use this address. 26878 * Then we need to wait till all references to the interface go away. 26879 */ 26880 void 26881 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 26882 { 26883 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 26884 ip_ioctl_cmd_t *ipip = arg; 26885 ip_extract_func_t *extract_funcp; 26886 cmd_info_t ci; 26887 int err; 26888 boolean_t entered_ipsq = B_FALSE; 26889 26890 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 26891 26892 if (ipip == NULL) 26893 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26894 26895 /* 26896 * SIOCLIFADDIF needs to go thru a special path since the 26897 * ill may not exist yet. This happens in the case of lo0 26898 * which is created using this ioctl. 26899 */ 26900 if (ipip->ipi_cmd == SIOCLIFADDIF) { 26901 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 26902 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26903 return; 26904 } 26905 26906 ci.ci_ipif = NULL; 26907 if (ipip->ipi_cmd_type == MISC_CMD) { 26908 /* 26909 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF. 26910 */ 26911 if (ipip->ipi_cmd == IF_UNITSEL) { 26912 /* ioctl comes down the ill */ 26913 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 26914 ipif_refhold(ci.ci_ipif); 26915 } 26916 err = 0; 26917 ci.ci_sin = NULL; 26918 ci.ci_sin6 = NULL; 26919 ci.ci_lifr = NULL; 26920 } else { 26921 switch (ipip->ipi_cmd_type) { 26922 case IF_CMD: 26923 case LIF_CMD: 26924 extract_funcp = ip_extract_lifreq; 26925 break; 26926 26927 case ARP_CMD: 26928 case XARP_CMD: 26929 extract_funcp = ip_extract_arpreq; 26930 break; 26931 26932 case TUN_CMD: 26933 extract_funcp = ip_extract_tunreq; 26934 break; 26935 26936 case MSFILT_CMD: 26937 extract_funcp = ip_extract_msfilter; 26938 break; 26939 26940 default: 26941 ASSERT(0); 26942 } 26943 26944 err = (*extract_funcp)(q, mp, ipip, &ci, ip_process_ioctl); 26945 if (err != 0) { 26946 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26947 return; 26948 } 26949 26950 /* 26951 * All of the extraction functions return a refheld ipif. 26952 */ 26953 ASSERT(ci.ci_ipif != NULL); 26954 } 26955 26956 /* 26957 * If ipsq is non-null, we are already being called exclusively 26958 */ 26959 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 26960 if (!(ipip->ipi_flags & IPI_WR)) { 26961 /* 26962 * A return value of EINPROGRESS means the ioctl is 26963 * either queued and waiting for some reason or has 26964 * already completed. 26965 */ 26966 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 26967 ci.ci_lifr); 26968 if (ci.ci_ipif != NULL) 26969 ipif_refrele(ci.ci_ipif); 26970 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26971 return; 26972 } 26973 26974 ASSERT(ci.ci_ipif != NULL); 26975 26976 if (ipsq == NULL) { 26977 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, 26978 ip_process_ioctl, NEW_OP, B_TRUE); 26979 entered_ipsq = B_TRUE; 26980 } 26981 /* 26982 * Release the ipif so that ipif_down and friends that wait for 26983 * references to go away are not misled about the current ipif_refcnt 26984 * values. We are writer so we can access the ipif even after releasing 26985 * the ipif. 26986 */ 26987 ipif_refrele(ci.ci_ipif); 26988 if (ipsq == NULL) 26989 return; 26990 26991 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 26992 26993 /* 26994 * For most set ioctls that come here, this serves as a single point 26995 * where we set the IPIF_CHANGING flag. This ensures that there won't 26996 * be any new references to the ipif. This helps functions that go 26997 * through this path and end up trying to wait for the refcnts 26998 * associated with the ipif to go down to zero. Some exceptions are 26999 * Failover, Failback, and Groupname commands that operate on more than 27000 * just the ci.ci_ipif. These commands internally determine the 27001 * set of ipif's they operate on and set and clear the IPIF_CHANGING 27002 * flags on that set. Another exception is the Removeif command that 27003 * sets the IPIF_CONDEMNED flag internally after identifying the right 27004 * ipif to operate on. 27005 */ 27006 mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock); 27007 if (ipip->ipi_cmd != SIOCLIFREMOVEIF && 27008 ipip->ipi_cmd != SIOCLIFFAILOVER && 27009 ipip->ipi_cmd != SIOCLIFFAILBACK && 27010 ipip->ipi_cmd != SIOCSLIFGROUPNAME) 27011 (ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING; 27012 mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock); 27013 27014 /* 27015 * A return value of EINPROGRESS means the ioctl is 27016 * either queued and waiting for some reason or has 27017 * already completed. 27018 */ 27019 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 27020 27021 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 27022 27023 if (entered_ipsq) 27024 ipsq_exit(ipsq, B_TRUE, B_TRUE); 27025 } 27026 27027 /* 27028 * Complete the ioctl. Typically ioctls use the mi package and need to 27029 * do mi_copyout/mi_copy_done. 27030 */ 27031 void 27032 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 27033 { 27034 conn_t *connp = NULL; 27035 27036 if (err == EINPROGRESS) 27037 return; 27038 27039 if (CONN_Q(q)) { 27040 connp = Q_TO_CONN(q); 27041 ASSERT(connp->conn_ref >= 2); 27042 } 27043 27044 switch (mode) { 27045 case COPYOUT: 27046 if (err == 0) 27047 mi_copyout(q, mp); 27048 else 27049 mi_copy_done(q, mp, err); 27050 break; 27051 27052 case NO_COPYOUT: 27053 mi_copy_done(q, mp, err); 27054 break; 27055 27056 default: 27057 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 27058 break; 27059 } 27060 27061 /* 27062 * The refhold placed at the start of the ioctl is released here. 27063 */ 27064 if (connp != NULL) 27065 CONN_OPER_PENDING_DONE(connp); 27066 27067 if (ipsq != NULL) 27068 ipsq_current_finish(ipsq); 27069 } 27070 27071 /* 27072 * This is called from ip_wput_nondata to resume a deferred TCP bind. 27073 */ 27074 /* ARGSUSED */ 27075 void 27076 ip_resume_tcp_bind(void *arg, mblk_t *mp, void *arg2) 27077 { 27078 conn_t *connp = arg; 27079 tcp_t *tcp; 27080 27081 ASSERT(connp != NULL && IPCL_IS_TCP(connp) && connp->conn_tcp != NULL); 27082 tcp = connp->conn_tcp; 27083 27084 if (connp->conn_tcp->tcp_state == TCPS_CLOSED) 27085 freemsg(mp); 27086 else 27087 tcp_rput_other(tcp, mp); 27088 CONN_OPER_PENDING_DONE(connp); 27089 } 27090 27091 /* Called from ip_wput for all non data messages */ 27092 /* ARGSUSED */ 27093 void 27094 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 27095 { 27096 mblk_t *mp1; 27097 ire_t *ire, *fake_ire; 27098 ill_t *ill; 27099 struct iocblk *iocp; 27100 ip_ioctl_cmd_t *ipip; 27101 cred_t *cr; 27102 conn_t *connp; 27103 int err; 27104 nce_t *nce; 27105 ipif_t *ipif; 27106 ip_stack_t *ipst; 27107 char *proto_str; 27108 27109 if (CONN_Q(q)) { 27110 connp = Q_TO_CONN(q); 27111 ipst = connp->conn_netstack->netstack_ip; 27112 } else { 27113 connp = NULL; 27114 ipst = ILLQ_TO_IPST(q); 27115 } 27116 27117 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(q)); 27118 27119 switch (DB_TYPE(mp)) { 27120 case M_IOCTL: 27121 /* 27122 * IOCTL processing begins in ip_sioctl_copyin_setup which 27123 * will arrange to copy in associated control structures. 27124 */ 27125 ip_sioctl_copyin_setup(q, mp); 27126 return; 27127 case M_IOCDATA: 27128 /* 27129 * Ensure that this is associated with one of our trans- 27130 * parent ioctls. If it's not ours, discard it if we're 27131 * running as a driver, or pass it on if we're a module. 27132 */ 27133 iocp = (struct iocblk *)mp->b_rptr; 27134 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27135 if (ipip == NULL) { 27136 if (q->q_next == NULL) { 27137 goto nak; 27138 } else { 27139 putnext(q, mp); 27140 } 27141 return; 27142 } 27143 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 27144 /* 27145 * the ioctl is one we recognise, but is not 27146 * consumed by IP as a module, pass M_IOCDATA 27147 * for processing downstream, but only for 27148 * common Streams ioctls. 27149 */ 27150 if (ipip->ipi_flags & IPI_PASS_DOWN) { 27151 putnext(q, mp); 27152 return; 27153 } else { 27154 goto nak; 27155 } 27156 } 27157 27158 /* IOCTL continuation following copyin or copyout. */ 27159 if (mi_copy_state(q, mp, NULL) == -1) { 27160 /* 27161 * The copy operation failed. mi_copy_state already 27162 * cleaned up, so we're out of here. 27163 */ 27164 return; 27165 } 27166 /* 27167 * If we just completed a copy in, we become writer and 27168 * continue processing in ip_sioctl_copyin_done. If it 27169 * was a copy out, we call mi_copyout again. If there is 27170 * nothing more to copy out, it will complete the IOCTL. 27171 */ 27172 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 27173 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 27174 mi_copy_done(q, mp, EPROTO); 27175 return; 27176 } 27177 /* 27178 * Check for cases that need more copying. A return 27179 * value of 0 means a second copyin has been started, 27180 * so we return; a return value of 1 means no more 27181 * copying is needed, so we continue. 27182 */ 27183 if (ipip->ipi_cmd_type == MSFILT_CMD && 27184 MI_COPY_COUNT(mp) == 1) { 27185 if (ip_copyin_msfilter(q, mp) == 0) 27186 return; 27187 } 27188 /* 27189 * Refhold the conn, till the ioctl completes. This is 27190 * needed in case the ioctl ends up in the pending mp 27191 * list. Every mp in the ill_pending_mp list and 27192 * the ipsq_pending_mp must have a refhold on the conn 27193 * to resume processing. The refhold is released when 27194 * the ioctl completes. (normally or abnormally) 27195 * In all cases ip_ioctl_finish is called to finish 27196 * the ioctl. 27197 */ 27198 if (connp != NULL) { 27199 /* This is not a reentry */ 27200 ASSERT(ipsq == NULL); 27201 CONN_INC_REF(connp); 27202 } else { 27203 if (!(ipip->ipi_flags & IPI_MODOK)) { 27204 mi_copy_done(q, mp, EINVAL); 27205 return; 27206 } 27207 } 27208 27209 ip_process_ioctl(ipsq, q, mp, ipip); 27210 27211 } else { 27212 mi_copyout(q, mp); 27213 } 27214 return; 27215 nak: 27216 iocp->ioc_error = EINVAL; 27217 mp->b_datap->db_type = M_IOCNAK; 27218 iocp->ioc_count = 0; 27219 qreply(q, mp); 27220 return; 27221 27222 case M_IOCNAK: 27223 /* 27224 * The only way we could get here is if a resolver didn't like 27225 * an IOCTL we sent it. This shouldn't happen. 27226 */ 27227 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 27228 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 27229 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 27230 freemsg(mp); 27231 return; 27232 case M_IOCACK: 27233 /* /dev/ip shouldn't see this */ 27234 if (CONN_Q(q)) 27235 goto nak; 27236 27237 /* Finish socket ioctls passed through to ARP. */ 27238 ip_sioctl_iocack(q, mp); 27239 return; 27240 case M_FLUSH: 27241 if (*mp->b_rptr & FLUSHW) 27242 flushq(q, FLUSHALL); 27243 if (q->q_next) { 27244 putnext(q, mp); 27245 return; 27246 } 27247 if (*mp->b_rptr & FLUSHR) { 27248 *mp->b_rptr &= ~FLUSHW; 27249 qreply(q, mp); 27250 return; 27251 } 27252 freemsg(mp); 27253 return; 27254 case IRE_DB_REQ_TYPE: 27255 if (connp == NULL) { 27256 proto_str = "IRE_DB_REQ_TYPE"; 27257 goto protonak; 27258 } 27259 /* An Upper Level Protocol wants a copy of an IRE. */ 27260 ip_ire_req(q, mp); 27261 return; 27262 case M_CTL: 27263 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 27264 break; 27265 27266 if (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == 27267 TUN_HELLO) { 27268 ASSERT(connp != NULL); 27269 connp->conn_flags |= IPCL_IPTUN; 27270 freeb(mp); 27271 return; 27272 } 27273 27274 /* M_CTL messages are used by ARP to tell us things. */ 27275 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 27276 break; 27277 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 27278 case AR_ENTRY_SQUERY: 27279 ip_wput_ctl(q, mp); 27280 return; 27281 case AR_CLIENT_NOTIFY: 27282 ip_arp_news(q, mp); 27283 return; 27284 case AR_DLPIOP_DONE: 27285 ASSERT(q->q_next != NULL); 27286 ill = (ill_t *)q->q_ptr; 27287 /* qwriter_ip releases the refhold */ 27288 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 27289 ill_refhold(ill); 27290 qwriter_ip(ill, q, mp, ip_arp_done, CUR_OP, B_FALSE); 27291 return; 27292 case AR_ARP_CLOSING: 27293 /* 27294 * ARP (above us) is closing. If no ARP bringup is 27295 * currently pending, ack the message so that ARP 27296 * can complete its close. Also mark ill_arp_closing 27297 * so that new ARP bringups will fail. If any 27298 * ARP bringup is currently in progress, we will 27299 * ack this when the current ARP bringup completes. 27300 */ 27301 ASSERT(q->q_next != NULL); 27302 ill = (ill_t *)q->q_ptr; 27303 mutex_enter(&ill->ill_lock); 27304 ill->ill_arp_closing = 1; 27305 if (!ill->ill_arp_bringup_pending) { 27306 mutex_exit(&ill->ill_lock); 27307 qreply(q, mp); 27308 } else { 27309 mutex_exit(&ill->ill_lock); 27310 freemsg(mp); 27311 } 27312 return; 27313 case AR_ARP_EXTEND: 27314 /* 27315 * The ARP module above us is capable of duplicate 27316 * address detection. Old ATM drivers will not send 27317 * this message. 27318 */ 27319 ASSERT(q->q_next != NULL); 27320 ill = (ill_t *)q->q_ptr; 27321 ill->ill_arp_extend = B_TRUE; 27322 freemsg(mp); 27323 return; 27324 default: 27325 break; 27326 } 27327 break; 27328 case M_PROTO: 27329 case M_PCPROTO: 27330 /* 27331 * The only PROTO messages we expect are ULP binds and 27332 * copies of option negotiation acknowledgements. 27333 */ 27334 switch (((union T_primitives *)mp->b_rptr)->type) { 27335 case O_T_BIND_REQ: 27336 case T_BIND_REQ: { 27337 /* Request can get queued in bind */ 27338 if (connp == NULL) { 27339 proto_str = "O_T_BIND_REQ/T_BIND_REQ"; 27340 goto protonak; 27341 } 27342 /* 27343 * The transports except SCTP call ip_bind_{v4,v6}() 27344 * directly instead of a a putnext. SCTP doesn't 27345 * generate any T_BIND_REQ since it has its own 27346 * fanout data structures. However, ESP and AH 27347 * come in for regular binds; all other cases are 27348 * bind retries. 27349 */ 27350 ASSERT(!IPCL_IS_SCTP(connp)); 27351 27352 /* Don't increment refcnt if this is a re-entry */ 27353 if (ipsq == NULL) 27354 CONN_INC_REF(connp); 27355 27356 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 27357 connp, NULL) : ip_bind_v4(q, mp, connp); 27358 if (mp == NULL) 27359 return; 27360 if (IPCL_IS_TCP(connp)) { 27361 /* 27362 * In the case of TCP endpoint we 27363 * come here only for bind retries 27364 */ 27365 ASSERT(ipsq != NULL); 27366 CONN_INC_REF(connp); 27367 squeue_fill(connp->conn_sqp, mp, 27368 ip_resume_tcp_bind, connp, 27369 SQTAG_BIND_RETRY); 27370 } else if (IPCL_IS_UDP(connp)) { 27371 /* 27372 * In the case of UDP endpoint we 27373 * come here only for bind retries 27374 */ 27375 ASSERT(ipsq != NULL); 27376 udp_resume_bind(connp, mp); 27377 } else if (IPCL_IS_RAWIP(connp)) { 27378 /* 27379 * In the case of RAWIP endpoint we 27380 * come here only for bind retries 27381 */ 27382 ASSERT(ipsq != NULL); 27383 rawip_resume_bind(connp, mp); 27384 } else { 27385 /* The case of AH and ESP */ 27386 qreply(q, mp); 27387 CONN_OPER_PENDING_DONE(connp); 27388 } 27389 return; 27390 } 27391 case T_SVR4_OPTMGMT_REQ: 27392 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 27393 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 27394 27395 if (connp == NULL) { 27396 proto_str = "T_SVR4_OPTMGMT_REQ"; 27397 goto protonak; 27398 } 27399 27400 if (!snmpcom_req(q, mp, ip_snmp_set, 27401 ip_snmp_get, cr)) { 27402 /* 27403 * Call svr4_optcom_req so that it can 27404 * generate the ack. We don't come here 27405 * if this operation is being restarted. 27406 * ip_restart_optmgmt will drop the conn ref. 27407 * In the case of ipsec option after the ipsec 27408 * load is complete conn_restart_ipsec_waiter 27409 * drops the conn ref. 27410 */ 27411 ASSERT(ipsq == NULL); 27412 CONN_INC_REF(connp); 27413 if (ip_check_for_ipsec_opt(q, mp)) 27414 return; 27415 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj, 27416 B_FALSE); 27417 if (err != EINPROGRESS) { 27418 /* Operation is done */ 27419 CONN_OPER_PENDING_DONE(connp); 27420 } 27421 } 27422 return; 27423 case T_OPTMGMT_REQ: 27424 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 27425 /* 27426 * Note: No snmpcom_req support through new 27427 * T_OPTMGMT_REQ. 27428 * Call tpi_optcom_req so that it can 27429 * generate the ack. 27430 */ 27431 if (connp == NULL) { 27432 proto_str = "T_OPTMGMT_REQ"; 27433 goto protonak; 27434 } 27435 27436 ASSERT(ipsq == NULL); 27437 /* 27438 * We don't come here for restart. ip_restart_optmgmt 27439 * will drop the conn ref. In the case of ipsec option 27440 * after the ipsec load is complete 27441 * conn_restart_ipsec_waiter drops the conn ref. 27442 */ 27443 CONN_INC_REF(connp); 27444 if (ip_check_for_ipsec_opt(q, mp)) 27445 return; 27446 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj, B_FALSE); 27447 if (err != EINPROGRESS) { 27448 /* Operation is done */ 27449 CONN_OPER_PENDING_DONE(connp); 27450 } 27451 return; 27452 case T_UNBIND_REQ: 27453 if (connp == NULL) { 27454 proto_str = "T_UNBIND_REQ"; 27455 goto protonak; 27456 } 27457 mp = ip_unbind(q, mp); 27458 qreply(q, mp); 27459 return; 27460 default: 27461 /* 27462 * Have to drop any DLPI messages coming down from 27463 * arp (such as an info_req which would cause ip 27464 * to receive an extra info_ack if it was passed 27465 * through. 27466 */ 27467 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 27468 (int)*(uint_t *)mp->b_rptr)); 27469 freemsg(mp); 27470 return; 27471 } 27472 /* NOTREACHED */ 27473 case IRE_DB_TYPE: { 27474 nce_t *nce; 27475 ill_t *ill; 27476 in6_addr_t gw_addr_v6; 27477 27478 27479 /* 27480 * This is a response back from a resolver. It 27481 * consists of a message chain containing: 27482 * IRE_MBLK-->LL_HDR_MBLK->pkt 27483 * The IRE_MBLK is the one we allocated in ip_newroute. 27484 * The LL_HDR_MBLK is the DLPI header to use to get 27485 * the attached packet, and subsequent ones for the 27486 * same destination, transmitted. 27487 */ 27488 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 27489 break; 27490 /* 27491 * First, check to make sure the resolution succeeded. 27492 * If it failed, the second mblk will be empty. 27493 * If it is, free the chain, dropping the packet. 27494 * (We must ire_delete the ire; that frees the ire mblk) 27495 * We're doing this now to support PVCs for ATM; it's 27496 * a partial xresolv implementation. When we fully implement 27497 * xresolv interfaces, instead of freeing everything here 27498 * we'll initiate neighbor discovery. 27499 * 27500 * For v4 (ARP and other external resolvers) the resolver 27501 * frees the message, so no check is needed. This check 27502 * is required, though, for a full xresolve implementation. 27503 * Including this code here now both shows how external 27504 * resolvers can NACK a resolution request using an 27505 * existing design that has no specific provisions for NACKs, 27506 * and also takes into account that the current non-ARP 27507 * external resolver has been coded to use this method of 27508 * NACKing for all IPv6 (xresolv) cases, 27509 * whether our xresolv implementation is complete or not. 27510 * 27511 */ 27512 ire = (ire_t *)mp->b_rptr; 27513 ill = ire_to_ill(ire); 27514 mp1 = mp->b_cont; /* dl_unitdata_req */ 27515 if (mp1->b_rptr == mp1->b_wptr) { 27516 if (ire->ire_ipversion == IPV6_VERSION) { 27517 /* 27518 * XRESOLV interface. 27519 */ 27520 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27521 mutex_enter(&ire->ire_lock); 27522 gw_addr_v6 = ire->ire_gateway_addr_v6; 27523 mutex_exit(&ire->ire_lock); 27524 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27525 nce = ndp_lookup_v6(ill, 27526 &ire->ire_addr_v6, B_FALSE); 27527 } else { 27528 nce = ndp_lookup_v6(ill, &gw_addr_v6, 27529 B_FALSE); 27530 } 27531 if (nce != NULL) { 27532 nce_resolv_failed(nce); 27533 ndp_delete(nce); 27534 NCE_REFRELE(nce); 27535 } 27536 } 27537 mp->b_cont = NULL; 27538 freemsg(mp1); /* frees the pkt as well */ 27539 ASSERT(ire->ire_nce == NULL); 27540 ire_delete((ire_t *)mp->b_rptr); 27541 return; 27542 } 27543 27544 /* 27545 * Split them into IRE_MBLK and pkt and feed it into 27546 * ire_add_then_send. Then in ire_add_then_send 27547 * the IRE will be added, and then the packet will be 27548 * run back through ip_wput. This time it will make 27549 * it to the wire. 27550 */ 27551 mp->b_cont = NULL; 27552 mp = mp1->b_cont; /* now, mp points to pkt */ 27553 mp1->b_cont = NULL; 27554 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 27555 if (ire->ire_ipversion == IPV6_VERSION) { 27556 /* 27557 * XRESOLV interface. Find the nce and put a copy 27558 * of the dl_unitdata_req in nce_res_mp 27559 */ 27560 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27561 mutex_enter(&ire->ire_lock); 27562 gw_addr_v6 = ire->ire_gateway_addr_v6; 27563 mutex_exit(&ire->ire_lock); 27564 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27565 nce = ndp_lookup_v6(ill, &ire->ire_addr_v6, 27566 B_FALSE); 27567 } else { 27568 nce = ndp_lookup_v6(ill, &gw_addr_v6, B_FALSE); 27569 } 27570 if (nce != NULL) { 27571 /* 27572 * We have to protect nce_res_mp here 27573 * from being accessed by other threads 27574 * while we change the mblk pointer. 27575 * Other functions will also lock the nce when 27576 * accessing nce_res_mp. 27577 * 27578 * The reason we change the mblk pointer 27579 * here rather than copying the resolved address 27580 * into the template is that, unlike with 27581 * ethernet, we have no guarantee that the 27582 * resolved address length will be 27583 * smaller than or equal to the lla length 27584 * with which the template was allocated, 27585 * (for ethernet, they're equal) 27586 * so we have to use the actual resolved 27587 * address mblk - which holds the real 27588 * dl_unitdata_req with the resolved address. 27589 * 27590 * Doing this is the same behavior as was 27591 * previously used in the v4 ARP case. 27592 */ 27593 mutex_enter(&nce->nce_lock); 27594 if (nce->nce_res_mp != NULL) 27595 freemsg(nce->nce_res_mp); 27596 nce->nce_res_mp = mp1; 27597 mutex_exit(&nce->nce_lock); 27598 /* 27599 * We do a fastpath probe here because 27600 * we have resolved the address without 27601 * using Neighbor Discovery. 27602 * In the non-XRESOLV v6 case, the fastpath 27603 * probe is done right after neighbor 27604 * discovery completes. 27605 */ 27606 if (nce->nce_res_mp != NULL) { 27607 int res; 27608 nce_fastpath_list_add(nce); 27609 res = ill_fastpath_probe(ill, 27610 nce->nce_res_mp); 27611 if (res != 0 && res != EAGAIN) 27612 nce_fastpath_list_delete(nce); 27613 } 27614 27615 ire_add_then_send(q, ire, mp); 27616 /* 27617 * Now we have to clean out any packets 27618 * that may have been queued on the nce 27619 * while it was waiting for address resolution 27620 * to complete. 27621 */ 27622 mutex_enter(&nce->nce_lock); 27623 mp1 = nce->nce_qd_mp; 27624 nce->nce_qd_mp = NULL; 27625 mutex_exit(&nce->nce_lock); 27626 while (mp1 != NULL) { 27627 mblk_t *nxt_mp; 27628 queue_t *fwdq = NULL; 27629 ill_t *inbound_ill; 27630 uint_t ifindex; 27631 27632 nxt_mp = mp1->b_next; 27633 mp1->b_next = NULL; 27634 /* 27635 * Retrieve ifindex stored in 27636 * ip_rput_data_v6() 27637 */ 27638 ifindex = 27639 (uint_t)(uintptr_t)mp1->b_prev; 27640 inbound_ill = 27641 ill_lookup_on_ifindex(ifindex, 27642 B_TRUE, NULL, NULL, NULL, 27643 NULL, ipst); 27644 mp1->b_prev = NULL; 27645 if (inbound_ill != NULL) 27646 fwdq = inbound_ill->ill_rq; 27647 27648 if (fwdq != NULL) { 27649 put(fwdq, mp1); 27650 ill_refrele(inbound_ill); 27651 } else 27652 put(WR(ill->ill_rq), mp1); 27653 mp1 = nxt_mp; 27654 } 27655 NCE_REFRELE(nce); 27656 } else { /* nce is NULL; clean up */ 27657 ire_delete(ire); 27658 freemsg(mp); 27659 freemsg(mp1); 27660 return; 27661 } 27662 } else { 27663 nce_t *arpce; 27664 /* 27665 * Link layer resolution succeeded. Recompute the 27666 * ire_nce. 27667 */ 27668 ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST)); 27669 if ((arpce = ndp_lookup_v4(ill, 27670 (ire->ire_gateway_addr != INADDR_ANY ? 27671 &ire->ire_gateway_addr : &ire->ire_addr), 27672 B_FALSE)) == NULL) { 27673 freeb(ire->ire_mp); 27674 freeb(mp1); 27675 freemsg(mp); 27676 return; 27677 } 27678 mutex_enter(&arpce->nce_lock); 27679 arpce->nce_last = TICK_TO_MSEC(lbolt64); 27680 if (arpce->nce_state == ND_REACHABLE) { 27681 /* 27682 * Someone resolved this before us; 27683 * cleanup the res_mp. Since ire has 27684 * not been added yet, the call to ire_add_v4 27685 * from ire_add_then_send (when a dup is 27686 * detected) will clean up the ire. 27687 */ 27688 freeb(mp1); 27689 } else { 27690 ASSERT(arpce->nce_res_mp == NULL); 27691 arpce->nce_res_mp = mp1; 27692 arpce->nce_state = ND_REACHABLE; 27693 } 27694 mutex_exit(&arpce->nce_lock); 27695 if (ire->ire_marks & IRE_MARK_NOADD) { 27696 /* 27697 * this ire will not be added to the ire 27698 * cache table, so we can set the ire_nce 27699 * here, as there are no atomicity constraints. 27700 */ 27701 ire->ire_nce = arpce; 27702 /* 27703 * We are associating this nce with the ire 27704 * so change the nce ref taken in 27705 * ndp_lookup_v4() from 27706 * NCE_REFHOLD to NCE_REFHOLD_NOTR 27707 */ 27708 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 27709 } else { 27710 NCE_REFRELE(arpce); 27711 } 27712 ire_add_then_send(q, ire, mp); 27713 } 27714 return; /* All is well, the packet has been sent. */ 27715 } 27716 case IRE_ARPRESOLVE_TYPE: { 27717 27718 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */ 27719 break; 27720 mp1 = mp->b_cont; /* dl_unitdata_req */ 27721 mp->b_cont = NULL; 27722 /* 27723 * First, check to make sure the resolution succeeded. 27724 * If it failed, the second mblk will be empty. 27725 */ 27726 if (mp1->b_rptr == mp1->b_wptr) { 27727 /* cleanup the incomplete ire, free queued packets */ 27728 freemsg(mp); /* fake ire */ 27729 freeb(mp1); /* dl_unitdata response */ 27730 return; 27731 } 27732 27733 /* 27734 * update any incomplete nce_t found. we lookup the ctable 27735 * and find the nce from the ire->ire_nce because we need 27736 * to pass the ire to ip_xmit_v4 later, and can find both 27737 * ire and nce in one lookup from the ctable. 27738 */ 27739 fake_ire = (ire_t *)mp->b_rptr; 27740 /* 27741 * By the time we come back here from ARP 27742 * the logical outgoing interface of the incomplete ire 27743 * we added in ire_forward could have disappeared, 27744 * causing the incomplete ire to also have 27745 * dissapeared. So we need to retreive the 27746 * proper ipif for the ire before looking 27747 * in ctable; do the ctablelookup based on ire_ipif_seqid 27748 */ 27749 ill = q->q_ptr; 27750 27751 /* Get the outgoing ipif */ 27752 mutex_enter(&ill->ill_lock); 27753 if (ill->ill_state_flags & ILL_CONDEMNED) { 27754 mutex_exit(&ill->ill_lock); 27755 freemsg(mp); /* fake ire */ 27756 freeb(mp1); /* dl_unitdata response */ 27757 return; 27758 } 27759 ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid); 27760 27761 if (ipif == NULL) { 27762 mutex_exit(&ill->ill_lock); 27763 ip1dbg(("logical intrf to incomplete ire vanished\n")); 27764 freemsg(mp); 27765 freeb(mp1); 27766 return; 27767 } 27768 ipif_refhold_locked(ipif); 27769 mutex_exit(&ill->ill_lock); 27770 ire = ire_ctable_lookup(fake_ire->ire_addr, 27771 fake_ire->ire_gateway_addr, IRE_CACHE, 27772 ipif, fake_ire->ire_zoneid, NULL, 27773 (MATCH_IRE_GW|MATCH_IRE_IPIF|MATCH_IRE_ZONEONLY), ipst); 27774 ipif_refrele(ipif); 27775 if (ire == NULL) { 27776 /* 27777 * no ire was found; check if there is an nce 27778 * for this lookup; if it has no ire's pointing at it 27779 * cleanup. 27780 */ 27781 if ((nce = ndp_lookup_v4(ill, 27782 (fake_ire->ire_gateway_addr != INADDR_ANY ? 27783 &fake_ire->ire_gateway_addr : &fake_ire->ire_addr), 27784 B_FALSE)) != NULL) { 27785 /* 27786 * cleanup: 27787 * We check for refcnt 2 (one for the nce 27788 * hash list + 1 for the ref taken by 27789 * ndp_lookup_v4) to check that there are 27790 * no ire's pointing at the nce. 27791 */ 27792 if (nce->nce_refcnt == 2) 27793 ndp_delete(nce); 27794 NCE_REFRELE(nce); 27795 } 27796 freeb(mp1); /* dl_unitdata response */ 27797 freemsg(mp); /* fake ire */ 27798 return; 27799 } 27800 nce = ire->ire_nce; 27801 DTRACE_PROBE2(ire__arpresolve__type, 27802 ire_t *, ire, nce_t *, nce); 27803 ASSERT(nce->nce_state != ND_INITIAL); 27804 mutex_enter(&nce->nce_lock); 27805 nce->nce_last = TICK_TO_MSEC(lbolt64); 27806 if (nce->nce_state == ND_REACHABLE) { 27807 /* 27808 * Someone resolved this before us; 27809 * our response is not needed any more. 27810 */ 27811 mutex_exit(&nce->nce_lock); 27812 freeb(mp1); /* dl_unitdata response */ 27813 } else { 27814 ASSERT(nce->nce_res_mp == NULL); 27815 nce->nce_res_mp = mp1; 27816 nce->nce_state = ND_REACHABLE; 27817 mutex_exit(&nce->nce_lock); 27818 nce_fastpath(nce); 27819 } 27820 /* 27821 * The cached nce_t has been updated to be reachable; 27822 * Clear the IRE_MARK_UNCACHED flag and free the fake_ire. 27823 */ 27824 fake_ire->ire_marks &= ~IRE_MARK_UNCACHED; 27825 freemsg(mp); 27826 /* 27827 * send out queued packets. 27828 */ 27829 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 27830 27831 IRE_REFRELE(ire); 27832 return; 27833 } 27834 default: 27835 break; 27836 } 27837 if (q->q_next) { 27838 putnext(q, mp); 27839 } else 27840 freemsg(mp); 27841 return; 27842 27843 protonak: 27844 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 27845 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 27846 qreply(q, mp); 27847 } 27848 27849 /* 27850 * Process IP options in an outbound packet. Modify the destination if there 27851 * is a source route option. 27852 * Returns non-zero if something fails in which case an ICMP error has been 27853 * sent and mp freed. 27854 */ 27855 static int 27856 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 27857 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 27858 { 27859 ipoptp_t opts; 27860 uchar_t *opt; 27861 uint8_t optval; 27862 uint8_t optlen; 27863 ipaddr_t dst; 27864 intptr_t code = 0; 27865 mblk_t *mp; 27866 ire_t *ire = NULL; 27867 27868 ip2dbg(("ip_wput_options\n")); 27869 mp = ipsec_mp; 27870 if (mctl_present) { 27871 mp = ipsec_mp->b_cont; 27872 } 27873 27874 dst = ipha->ipha_dst; 27875 for (optval = ipoptp_first(&opts, ipha); 27876 optval != IPOPT_EOL; 27877 optval = ipoptp_next(&opts)) { 27878 opt = opts.ipoptp_cur; 27879 optlen = opts.ipoptp_len; 27880 ip2dbg(("ip_wput_options: opt %d, len %d\n", 27881 optval, optlen)); 27882 switch (optval) { 27883 uint32_t off; 27884 case IPOPT_SSRR: 27885 case IPOPT_LSRR: 27886 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27887 ip1dbg(( 27888 "ip_wput_options: bad option offset\n")); 27889 code = (char *)&opt[IPOPT_OLEN] - 27890 (char *)ipha; 27891 goto param_prob; 27892 } 27893 off = opt[IPOPT_OFFSET]; 27894 ip1dbg(("ip_wput_options: next hop 0x%x\n", 27895 ntohl(dst))); 27896 /* 27897 * For strict: verify that dst is directly 27898 * reachable. 27899 */ 27900 if (optval == IPOPT_SSRR) { 27901 ire = ire_ftable_lookup(dst, 0, 0, 27902 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 27903 MBLK_GETLABEL(mp), 27904 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 27905 if (ire == NULL) { 27906 ip1dbg(("ip_wput_options: SSRR not" 27907 " directly reachable: 0x%x\n", 27908 ntohl(dst))); 27909 goto bad_src_route; 27910 } 27911 ire_refrele(ire); 27912 } 27913 break; 27914 case IPOPT_RR: 27915 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27916 ip1dbg(( 27917 "ip_wput_options: bad option offset\n")); 27918 code = (char *)&opt[IPOPT_OLEN] - 27919 (char *)ipha; 27920 goto param_prob; 27921 } 27922 break; 27923 case IPOPT_TS: 27924 /* 27925 * Verify that length >=5 and that there is either 27926 * room for another timestamp or that the overflow 27927 * counter is not maxed out. 27928 */ 27929 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 27930 if (optlen < IPOPT_MINLEN_IT) { 27931 goto param_prob; 27932 } 27933 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27934 ip1dbg(( 27935 "ip_wput_options: bad option offset\n")); 27936 code = (char *)&opt[IPOPT_OFFSET] - 27937 (char *)ipha; 27938 goto param_prob; 27939 } 27940 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 27941 case IPOPT_TS_TSONLY: 27942 off = IPOPT_TS_TIMELEN; 27943 break; 27944 case IPOPT_TS_TSANDADDR: 27945 case IPOPT_TS_PRESPEC: 27946 case IPOPT_TS_PRESPEC_RFC791: 27947 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 27948 break; 27949 default: 27950 code = (char *)&opt[IPOPT_POS_OV_FLG] - 27951 (char *)ipha; 27952 goto param_prob; 27953 } 27954 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 27955 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 27956 /* 27957 * No room and the overflow counter is 15 27958 * already. 27959 */ 27960 goto param_prob; 27961 } 27962 break; 27963 } 27964 } 27965 27966 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 27967 return (0); 27968 27969 ip1dbg(("ip_wput_options: error processing IP options.")); 27970 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 27971 27972 param_prob: 27973 /* 27974 * Since ip_wput() isn't close to finished, we fill 27975 * in enough of the header for credible error reporting. 27976 */ 27977 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 27978 /* Failed */ 27979 freemsg(ipsec_mp); 27980 return (-1); 27981 } 27982 icmp_param_problem(q, ipsec_mp, (uint8_t)code, zoneid, ipst); 27983 return (-1); 27984 27985 bad_src_route: 27986 /* 27987 * Since ip_wput() isn't close to finished, we fill 27988 * in enough of the header for credible error reporting. 27989 */ 27990 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 27991 /* Failed */ 27992 freemsg(ipsec_mp); 27993 return (-1); 27994 } 27995 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 27996 return (-1); 27997 } 27998 27999 /* 28000 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 28001 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 28002 * thru /etc/system. 28003 */ 28004 #define CONN_MAXDRAINCNT 64 28005 28006 static void 28007 conn_drain_init(ip_stack_t *ipst) 28008 { 28009 int i; 28010 28011 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 28012 28013 if ((ipst->ips_conn_drain_list_cnt == 0) || 28014 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 28015 /* 28016 * Default value of the number of drainers is the 28017 * number of cpus, subject to maximum of 8 drainers. 28018 */ 28019 if (boot_max_ncpus != -1) 28020 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 28021 else 28022 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 28023 } 28024 28025 ipst->ips_conn_drain_list = kmem_zalloc(ipst->ips_conn_drain_list_cnt * 28026 sizeof (idl_t), KM_SLEEP); 28027 28028 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28029 mutex_init(&ipst->ips_conn_drain_list[i].idl_lock, NULL, 28030 MUTEX_DEFAULT, NULL); 28031 } 28032 } 28033 28034 static void 28035 conn_drain_fini(ip_stack_t *ipst) 28036 { 28037 int i; 28038 28039 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) 28040 mutex_destroy(&ipst->ips_conn_drain_list[i].idl_lock); 28041 kmem_free(ipst->ips_conn_drain_list, 28042 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 28043 ipst->ips_conn_drain_list = NULL; 28044 } 28045 28046 /* 28047 * Note: For an overview of how flowcontrol is handled in IP please see the 28048 * IP Flowcontrol notes at the top of this file. 28049 * 28050 * Flow control has blocked us from proceeding. Insert the given conn in one 28051 * of the conn drain lists. These conn wq's will be qenabled later on when 28052 * STREAMS flow control does a backenable. conn_walk_drain will enable 28053 * the first conn in each of these drain lists. Each of these qenabled conns 28054 * in turn enables the next in the list, after it runs, or when it closes, 28055 * thus sustaining the drain process. 28056 * 28057 * The only possible calling sequence is ip_wsrv (on conn) -> ip_wput -> 28058 * conn_drain_insert. Thus there can be only 1 instance of conn_drain_insert 28059 * running at any time, on a given conn, since there can be only 1 service proc 28060 * running on a queue at any time. 28061 */ 28062 void 28063 conn_drain_insert(conn_t *connp) 28064 { 28065 idl_t *idl; 28066 uint_t index; 28067 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28068 28069 mutex_enter(&connp->conn_lock); 28070 if (connp->conn_state_flags & CONN_CLOSING) { 28071 /* 28072 * The conn is closing as a result of which CONN_CLOSING 28073 * is set. Return. 28074 */ 28075 mutex_exit(&connp->conn_lock); 28076 return; 28077 } else if (connp->conn_idl == NULL) { 28078 /* 28079 * Assign the next drain list round robin. We dont' use 28080 * a lock, and thus it may not be strictly round robin. 28081 * Atomicity of load/stores is enough to make sure that 28082 * conn_drain_list_index is always within bounds. 28083 */ 28084 index = ipst->ips_conn_drain_list_index; 28085 ASSERT(index < ipst->ips_conn_drain_list_cnt); 28086 connp->conn_idl = &ipst->ips_conn_drain_list[index]; 28087 index++; 28088 if (index == ipst->ips_conn_drain_list_cnt) 28089 index = 0; 28090 ipst->ips_conn_drain_list_index = index; 28091 } 28092 mutex_exit(&connp->conn_lock); 28093 28094 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28095 if ((connp->conn_drain_prev != NULL) || 28096 (connp->conn_state_flags & CONN_CLOSING)) { 28097 /* 28098 * The conn is already in the drain list, OR 28099 * the conn is closing. We need to check again for 28100 * the closing case again since close can happen 28101 * after we drop the conn_lock, and before we 28102 * acquire the CONN_DRAIN_LIST_LOCK. 28103 */ 28104 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28105 return; 28106 } else { 28107 idl = connp->conn_idl; 28108 } 28109 28110 /* 28111 * The conn is not in the drain list. Insert it at the 28112 * tail of the drain list. The drain list is circular 28113 * and doubly linked. idl_conn points to the 1st element 28114 * in the list. 28115 */ 28116 if (idl->idl_conn == NULL) { 28117 idl->idl_conn = connp; 28118 connp->conn_drain_next = connp; 28119 connp->conn_drain_prev = connp; 28120 } else { 28121 conn_t *head = idl->idl_conn; 28122 28123 connp->conn_drain_next = head; 28124 connp->conn_drain_prev = head->conn_drain_prev; 28125 head->conn_drain_prev->conn_drain_next = connp; 28126 head->conn_drain_prev = connp; 28127 } 28128 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28129 } 28130 28131 /* 28132 * This conn is closing, and we are called from ip_close. OR 28133 * This conn has been serviced by ip_wsrv, and we need to do the tail 28134 * processing. 28135 * If this conn is part of the drain list, we may need to sustain the drain 28136 * process by qenabling the next conn in the drain list. We may also need to 28137 * remove this conn from the list, if it is done. 28138 */ 28139 static void 28140 conn_drain_tail(conn_t *connp, boolean_t closing) 28141 { 28142 idl_t *idl; 28143 28144 /* 28145 * connp->conn_idl is stable at this point, and no lock is needed 28146 * to check it. If we are called from ip_close, close has already 28147 * set CONN_CLOSING, thus freezing the value of conn_idl, and 28148 * called us only because conn_idl is non-null. If we are called thru 28149 * service, conn_idl could be null, but it cannot change because 28150 * service is single-threaded per queue, and there cannot be another 28151 * instance of service trying to call conn_drain_insert on this conn 28152 * now. 28153 */ 28154 ASSERT(!closing || (connp->conn_idl != NULL)); 28155 28156 /* 28157 * If connp->conn_idl is null, the conn has not been inserted into any 28158 * drain list even once since creation of the conn. Just return. 28159 */ 28160 if (connp->conn_idl == NULL) 28161 return; 28162 28163 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28164 28165 if (connp->conn_drain_prev == NULL) { 28166 /* This conn is currently not in the drain list. */ 28167 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28168 return; 28169 } 28170 idl = connp->conn_idl; 28171 if (idl->idl_conn_draining == connp) { 28172 /* 28173 * This conn is the current drainer. If this is the last conn 28174 * in the drain list, we need to do more checks, in the 'if' 28175 * below. Otherwwise we need to just qenable the next conn, 28176 * to sustain the draining, and is handled in the 'else' 28177 * below. 28178 */ 28179 if (connp->conn_drain_next == idl->idl_conn) { 28180 /* 28181 * This conn is the last in this list. This round 28182 * of draining is complete. If idl_repeat is set, 28183 * it means another flow enabling has happened from 28184 * the driver/streams and we need to another round 28185 * of draining. 28186 * If there are more than 2 conns in the drain list, 28187 * do a left rotate by 1, so that all conns except the 28188 * conn at the head move towards the head by 1, and the 28189 * the conn at the head goes to the tail. This attempts 28190 * a more even share for all queues that are being 28191 * drained. 28192 */ 28193 if ((connp->conn_drain_next != connp) && 28194 (idl->idl_conn->conn_drain_next != connp)) { 28195 idl->idl_conn = idl->idl_conn->conn_drain_next; 28196 } 28197 if (idl->idl_repeat) { 28198 qenable(idl->idl_conn->conn_wq); 28199 idl->idl_conn_draining = idl->idl_conn; 28200 idl->idl_repeat = 0; 28201 } else { 28202 idl->idl_conn_draining = NULL; 28203 } 28204 } else { 28205 /* 28206 * If the next queue that we are now qenable'ing, 28207 * is closing, it will remove itself from this list 28208 * and qenable the subsequent queue in ip_close(). 28209 * Serialization is acheived thru idl_lock. 28210 */ 28211 qenable(connp->conn_drain_next->conn_wq); 28212 idl->idl_conn_draining = connp->conn_drain_next; 28213 } 28214 } 28215 if (!connp->conn_did_putbq || closing) { 28216 /* 28217 * Remove ourself from the drain list, if we did not do 28218 * a putbq, or if the conn is closing. 28219 * Note: It is possible that q->q_first is non-null. It means 28220 * that these messages landed after we did a enableok() in 28221 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 28222 * service them. 28223 */ 28224 if (connp->conn_drain_next == connp) { 28225 /* Singleton in the list */ 28226 ASSERT(connp->conn_drain_prev == connp); 28227 idl->idl_conn = NULL; 28228 idl->idl_conn_draining = NULL; 28229 } else { 28230 connp->conn_drain_prev->conn_drain_next = 28231 connp->conn_drain_next; 28232 connp->conn_drain_next->conn_drain_prev = 28233 connp->conn_drain_prev; 28234 if (idl->idl_conn == connp) 28235 idl->idl_conn = connp->conn_drain_next; 28236 ASSERT(idl->idl_conn_draining != connp); 28237 28238 } 28239 connp->conn_drain_next = NULL; 28240 connp->conn_drain_prev = NULL; 28241 } 28242 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28243 } 28244 28245 /* 28246 * Write service routine. Shared perimeter entry point. 28247 * ip_wsrv can be called in any of the following ways. 28248 * 1. The device queue's messages has fallen below the low water mark 28249 * and STREAMS has backenabled the ill_wq. We walk thru all the 28250 * the drain lists and backenable the first conn in each list. 28251 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 28252 * qenabled non-tcp upper layers. We start dequeing messages and call 28253 * ip_wput for each message. 28254 */ 28255 28256 void 28257 ip_wsrv(queue_t *q) 28258 { 28259 conn_t *connp; 28260 ill_t *ill; 28261 mblk_t *mp; 28262 28263 if (q->q_next) { 28264 ill = (ill_t *)q->q_ptr; 28265 if (ill->ill_state_flags == 0) { 28266 /* 28267 * The device flow control has opened up. 28268 * Walk through conn drain lists and qenable the 28269 * first conn in each list. This makes sense only 28270 * if the stream is fully plumbed and setup. 28271 * Hence the if check above. 28272 */ 28273 ip1dbg(("ip_wsrv: walking\n")); 28274 conn_walk_drain(ill->ill_ipst); 28275 } 28276 return; 28277 } 28278 28279 connp = Q_TO_CONN(q); 28280 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 28281 28282 /* 28283 * 1. Set conn_draining flag to signal that service is active. 28284 * 28285 * 2. ip_output determines whether it has been called from service, 28286 * based on the last parameter. If it is IP_WSRV it concludes it 28287 * has been called from service. 28288 * 28289 * 3. Message ordering is preserved by the following logic. 28290 * i. A directly called ip_output (i.e. not thru service) will queue 28291 * the message at the tail, if conn_draining is set (i.e. service 28292 * is running) or if q->q_first is non-null. 28293 * 28294 * ii. If ip_output is called from service, and if ip_output cannot 28295 * putnext due to flow control, it does a putbq. 28296 * 28297 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 28298 * (causing an infinite loop). 28299 */ 28300 ASSERT(!connp->conn_did_putbq); 28301 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 28302 connp->conn_draining = 1; 28303 noenable(q); 28304 while ((mp = getq(q)) != NULL) { 28305 ASSERT(CONN_Q(q)); 28306 28307 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 28308 if (connp->conn_did_putbq) { 28309 /* ip_wput did a putbq */ 28310 break; 28311 } 28312 } 28313 /* 28314 * At this point, a thread coming down from top, calling 28315 * ip_wput, may end up queueing the message. We have not yet 28316 * enabled the queue, so ip_wsrv won't be called again. 28317 * To avoid this race, check q->q_first again (in the loop) 28318 * If the other thread queued the message before we call 28319 * enableok(), we will catch it in the q->q_first check. 28320 * If the other thread queues the message after we call 28321 * enableok(), ip_wsrv will be called again by STREAMS. 28322 */ 28323 connp->conn_draining = 0; 28324 enableok(q); 28325 } 28326 28327 /* Enable the next conn for draining */ 28328 conn_drain_tail(connp, B_FALSE); 28329 28330 connp->conn_did_putbq = 0; 28331 } 28332 28333 /* 28334 * Walk the list of all conn's calling the function provided with the 28335 * specified argument for each. Note that this only walks conn's that 28336 * have been bound. 28337 * Applies to both IPv4 and IPv6. 28338 */ 28339 static void 28340 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 28341 { 28342 conn_walk_fanout_table(ipst->ips_ipcl_udp_fanout, 28343 ipst->ips_ipcl_udp_fanout_size, 28344 func, arg, zoneid); 28345 conn_walk_fanout_table(ipst->ips_ipcl_conn_fanout, 28346 ipst->ips_ipcl_conn_fanout_size, 28347 func, arg, zoneid); 28348 conn_walk_fanout_table(ipst->ips_ipcl_bind_fanout, 28349 ipst->ips_ipcl_bind_fanout_size, 28350 func, arg, zoneid); 28351 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout, 28352 IPPROTO_MAX, func, arg, zoneid); 28353 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout_v6, 28354 IPPROTO_MAX, func, arg, zoneid); 28355 } 28356 28357 /* 28358 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 28359 * of conns that need to be drained, check if drain is already in progress. 28360 * If so set the idl_repeat bit, indicating that the last conn in the list 28361 * needs to reinitiate the drain once again, for the list. If drain is not 28362 * in progress for the list, initiate the draining, by qenabling the 1st 28363 * conn in the list. The drain is self-sustaining, each qenabled conn will 28364 * in turn qenable the next conn, when it is done/blocked/closing. 28365 */ 28366 static void 28367 conn_walk_drain(ip_stack_t *ipst) 28368 { 28369 int i; 28370 idl_t *idl; 28371 28372 IP_STAT(ipst, ip_conn_walk_drain); 28373 28374 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28375 idl = &ipst->ips_conn_drain_list[i]; 28376 mutex_enter(&idl->idl_lock); 28377 if (idl->idl_conn == NULL) { 28378 mutex_exit(&idl->idl_lock); 28379 continue; 28380 } 28381 /* 28382 * If this list is not being drained currently by 28383 * an ip_wsrv thread, start the process. 28384 */ 28385 if (idl->idl_conn_draining == NULL) { 28386 ASSERT(idl->idl_repeat == 0); 28387 qenable(idl->idl_conn->conn_wq); 28388 idl->idl_conn_draining = idl->idl_conn; 28389 } else { 28390 idl->idl_repeat = 1; 28391 } 28392 mutex_exit(&idl->idl_lock); 28393 } 28394 } 28395 28396 /* 28397 * Walk an conn hash table of `count' buckets, calling func for each entry. 28398 */ 28399 static void 28400 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg, 28401 zoneid_t zoneid) 28402 { 28403 conn_t *connp; 28404 28405 while (count-- > 0) { 28406 mutex_enter(&connfp->connf_lock); 28407 for (connp = connfp->connf_head; connp != NULL; 28408 connp = connp->conn_next) { 28409 if (zoneid == GLOBAL_ZONEID || 28410 zoneid == connp->conn_zoneid) { 28411 CONN_INC_REF(connp); 28412 mutex_exit(&connfp->connf_lock); 28413 (*func)(connp, arg); 28414 mutex_enter(&connfp->connf_lock); 28415 CONN_DEC_REF(connp); 28416 } 28417 } 28418 mutex_exit(&connfp->connf_lock); 28419 connfp++; 28420 } 28421 } 28422 28423 /* conn_walk_fanout routine invoked for ip_conn_report for each conn. */ 28424 static void 28425 conn_report1(conn_t *connp, void *mp) 28426 { 28427 char buf1[INET6_ADDRSTRLEN]; 28428 char buf2[INET6_ADDRSTRLEN]; 28429 uint_t print_len, buf_len; 28430 28431 ASSERT(connp != NULL); 28432 28433 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 28434 if (buf_len <= 0) 28435 return; 28436 (void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)); 28437 (void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)); 28438 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 28439 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 28440 "%5d %s/%05d %s/%05d\n", 28441 (void *)connp, (void *)CONNP_TO_RQ(connp), 28442 (void *)CONNP_TO_WQ(connp), connp->conn_zoneid, 28443 buf1, connp->conn_lport, 28444 buf2, connp->conn_fport); 28445 if (print_len < buf_len) { 28446 ((mblk_t *)mp)->b_wptr += print_len; 28447 } else { 28448 ((mblk_t *)mp)->b_wptr += buf_len; 28449 } 28450 } 28451 28452 /* 28453 * Named Dispatch routine to produce a formatted report on all conns 28454 * that are listed in one of the fanout tables. 28455 * This report is accessed by using the ndd utility to "get" ND variable 28456 * "ip_conn_status". 28457 */ 28458 /* ARGSUSED */ 28459 static int 28460 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 28461 { 28462 conn_t *connp = Q_TO_CONN(q); 28463 28464 (void) mi_mpprintf(mp, 28465 "CONN " MI_COL_HDRPAD_STR 28466 "rfq " MI_COL_HDRPAD_STR 28467 "stq " MI_COL_HDRPAD_STR 28468 " zone local remote"); 28469 28470 /* 28471 * Because of the ndd constraint, at most we can have 64K buffer 28472 * to put in all conn info. So to be more efficient, just 28473 * allocate a 64K buffer here, assuming we need that large buffer. 28474 * This should be OK as only privileged processes can do ndd /dev/ip. 28475 */ 28476 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 28477 /* The following may work even if we cannot get a large buf. */ 28478 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 28479 return (0); 28480 } 28481 28482 conn_walk_fanout(conn_report1, mp->b_cont, connp->conn_zoneid, 28483 connp->conn_netstack->netstack_ip); 28484 return (0); 28485 } 28486 28487 /* 28488 * Determine if the ill and multicast aspects of that packets 28489 * "matches" the conn. 28490 */ 28491 boolean_t 28492 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 28493 zoneid_t zoneid) 28494 { 28495 ill_t *in_ill; 28496 boolean_t found; 28497 ipif_t *ipif; 28498 ire_t *ire; 28499 ipaddr_t dst, src; 28500 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28501 28502 dst = ipha->ipha_dst; 28503 src = ipha->ipha_src; 28504 28505 /* 28506 * conn_incoming_ill is set by IP_BOUND_IF which limits 28507 * unicast, broadcast and multicast reception to 28508 * conn_incoming_ill. conn_wantpacket itself is called 28509 * only for BROADCAST and multicast. 28510 * 28511 * 1) ip_rput supresses duplicate broadcasts if the ill 28512 * is part of a group. Hence, we should be receiving 28513 * just one copy of broadcast for the whole group. 28514 * Thus, if it is part of the group the packet could 28515 * come on any ill of the group and hence we need a 28516 * match on the group. Otherwise, match on ill should 28517 * be sufficient. 28518 * 28519 * 2) ip_rput does not suppress duplicate multicast packets. 28520 * If there are two interfaces in a ill group and we have 28521 * 2 applications (conns) joined a multicast group G on 28522 * both the interfaces, ilm_lookup_ill filter in ip_rput 28523 * will give us two packets because we join G on both the 28524 * interfaces rather than nominating just one interface 28525 * for receiving multicast like broadcast above. So, 28526 * we have to call ilg_lookup_ill to filter out duplicate 28527 * copies, if ill is part of a group. 28528 */ 28529 in_ill = connp->conn_incoming_ill; 28530 if (in_ill != NULL) { 28531 if (in_ill->ill_group == NULL) { 28532 if (in_ill != ill) 28533 return (B_FALSE); 28534 } else if (in_ill->ill_group != ill->ill_group) { 28535 return (B_FALSE); 28536 } 28537 } 28538 28539 if (!CLASSD(dst)) { 28540 if (IPCL_ZONE_MATCH(connp, zoneid)) 28541 return (B_TRUE); 28542 /* 28543 * The conn is in a different zone; we need to check that this 28544 * broadcast address is configured in the application's zone and 28545 * on one ill in the group. 28546 */ 28547 ipif = ipif_get_next_ipif(NULL, ill); 28548 if (ipif == NULL) 28549 return (B_FALSE); 28550 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 28551 connp->conn_zoneid, NULL, 28552 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 28553 ipif_refrele(ipif); 28554 if (ire != NULL) { 28555 ire_refrele(ire); 28556 return (B_TRUE); 28557 } else { 28558 return (B_FALSE); 28559 } 28560 } 28561 28562 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 28563 connp->conn_zoneid == zoneid) { 28564 /* 28565 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 28566 * disabled, therefore we don't dispatch the multicast packet to 28567 * the sending zone. 28568 */ 28569 return (B_FALSE); 28570 } 28571 28572 if (IS_LOOPBACK(ill) && connp->conn_zoneid != zoneid) { 28573 /* 28574 * Multicast packet on the loopback interface: we only match 28575 * conns who joined the group in the specified zone. 28576 */ 28577 return (B_FALSE); 28578 } 28579 28580 if (connp->conn_multi_router) { 28581 /* multicast packet and multicast router socket: send up */ 28582 return (B_TRUE); 28583 } 28584 28585 mutex_enter(&connp->conn_lock); 28586 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 28587 mutex_exit(&connp->conn_lock); 28588 return (found); 28589 } 28590 28591 /* 28592 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 28593 */ 28594 /* ARGSUSED */ 28595 static void 28596 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 28597 { 28598 ill_t *ill = (ill_t *)q->q_ptr; 28599 mblk_t *mp1, *mp2; 28600 ipif_t *ipif; 28601 int err = 0; 28602 conn_t *connp = NULL; 28603 ipsq_t *ipsq; 28604 arc_t *arc; 28605 28606 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 28607 28608 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 28609 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 28610 28611 ASSERT(IAM_WRITER_ILL(ill)); 28612 mp2 = mp->b_cont; 28613 mp->b_cont = NULL; 28614 28615 /* 28616 * We have now received the arp bringup completion message 28617 * from ARP. Mark the arp bringup as done. Also if the arp 28618 * stream has already started closing, send up the AR_ARP_CLOSING 28619 * ack now since ARP is waiting in close for this ack. 28620 */ 28621 mutex_enter(&ill->ill_lock); 28622 ill->ill_arp_bringup_pending = 0; 28623 if (ill->ill_arp_closing) { 28624 mutex_exit(&ill->ill_lock); 28625 /* Let's reuse the mp for sending the ack */ 28626 arc = (arc_t *)mp->b_rptr; 28627 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 28628 arc->arc_cmd = AR_ARP_CLOSING; 28629 qreply(q, mp); 28630 } else { 28631 mutex_exit(&ill->ill_lock); 28632 freeb(mp); 28633 } 28634 28635 ipsq = ill->ill_phyint->phyint_ipsq; 28636 ipif = ipsq->ipsq_pending_ipif; 28637 mp1 = ipsq_pending_mp_get(ipsq, &connp); 28638 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 28639 if (mp1 == NULL) { 28640 /* bringup was aborted by the user */ 28641 freemsg(mp2); 28642 return; 28643 } 28644 28645 /* 28646 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 28647 * must have an associated conn_t. Otherwise, we're bringing this 28648 * interface back up as part of handling an asynchronous event (e.g., 28649 * physical address change). 28650 */ 28651 if (ipsq->ipsq_current_ioctl != 0) { 28652 ASSERT(connp != NULL); 28653 q = CONNP_TO_WQ(connp); 28654 } else { 28655 ASSERT(connp == NULL); 28656 q = ill->ill_rq; 28657 } 28658 28659 /* 28660 * If the DL_BIND_REQ fails, it is noted 28661 * in arc_name_offset. 28662 */ 28663 err = *((int *)mp2->b_rptr); 28664 if (err == 0) { 28665 if (ipif->ipif_isv6) { 28666 if ((err = ipif_up_done_v6(ipif)) != 0) 28667 ip0dbg(("ip_arp_done: init failed\n")); 28668 } else { 28669 if ((err = ipif_up_done(ipif)) != 0) 28670 ip0dbg(("ip_arp_done: init failed\n")); 28671 } 28672 } else { 28673 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 28674 } 28675 28676 freemsg(mp2); 28677 28678 if ((err == 0) && (ill->ill_up_ipifs)) { 28679 err = ill_up_ipifs(ill, q, mp1); 28680 if (err == EINPROGRESS) 28681 return; 28682 } 28683 28684 if (ill->ill_up_ipifs) 28685 ill_group_cleanup(ill); 28686 28687 /* 28688 * The operation must complete without EINPROGRESS since 28689 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 28690 * Otherwise, the operation will be stuck forever in the ipsq. 28691 */ 28692 ASSERT(err != EINPROGRESS); 28693 if (ipsq->ipsq_current_ioctl != 0) 28694 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 28695 else 28696 ipsq_current_finish(ipsq); 28697 } 28698 28699 /* Allocate the private structure */ 28700 static int 28701 ip_priv_alloc(void **bufp) 28702 { 28703 void *buf; 28704 28705 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 28706 return (ENOMEM); 28707 28708 *bufp = buf; 28709 return (0); 28710 } 28711 28712 /* Function to delete the private structure */ 28713 void 28714 ip_priv_free(void *buf) 28715 { 28716 ASSERT(buf != NULL); 28717 kmem_free(buf, sizeof (ip_priv_t)); 28718 } 28719 28720 /* 28721 * The entry point for IPPF processing. 28722 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 28723 * routine just returns. 28724 * 28725 * When called, ip_process generates an ipp_packet_t structure 28726 * which holds the state information for this packet and invokes the 28727 * the classifier (via ipp_packet_process). The classification, depending on 28728 * configured filters, results in a list of actions for this packet. Invoking 28729 * an action may cause the packet to be dropped, in which case the resulting 28730 * mblk (*mpp) is NULL. proc indicates the callout position for 28731 * this packet and ill_index is the interface this packet on or will leave 28732 * on (inbound and outbound resp.). 28733 */ 28734 void 28735 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 28736 { 28737 mblk_t *mp; 28738 ip_priv_t *priv; 28739 ipp_action_id_t aid; 28740 int rc = 0; 28741 ipp_packet_t *pp; 28742 #define IP_CLASS "ip" 28743 28744 /* If the classifier is not loaded, return */ 28745 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 28746 return; 28747 } 28748 28749 mp = *mpp; 28750 ASSERT(mp != NULL); 28751 28752 /* Allocate the packet structure */ 28753 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 28754 if (rc != 0) { 28755 *mpp = NULL; 28756 freemsg(mp); 28757 return; 28758 } 28759 28760 /* Allocate the private structure */ 28761 rc = ip_priv_alloc((void **)&priv); 28762 if (rc != 0) { 28763 *mpp = NULL; 28764 freemsg(mp); 28765 ipp_packet_free(pp); 28766 return; 28767 } 28768 priv->proc = proc; 28769 priv->ill_index = ill_index; 28770 ipp_packet_set_private(pp, priv, ip_priv_free); 28771 ipp_packet_set_data(pp, mp); 28772 28773 /* Invoke the classifier */ 28774 rc = ipp_packet_process(&pp); 28775 if (pp != NULL) { 28776 mp = ipp_packet_get_data(pp); 28777 ipp_packet_free(pp); 28778 if (rc != 0) { 28779 freemsg(mp); 28780 *mpp = NULL; 28781 } 28782 } else { 28783 *mpp = NULL; 28784 } 28785 #undef IP_CLASS 28786 } 28787 28788 /* 28789 * Propagate a multicast group membership operation (add/drop) on 28790 * all the interfaces crossed by the related multirt routes. 28791 * The call is considered successful if the operation succeeds 28792 * on at least one interface. 28793 */ 28794 static int 28795 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 28796 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 28797 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 28798 mblk_t *first_mp) 28799 { 28800 ire_t *ire_gw; 28801 irb_t *irb; 28802 int error = 0; 28803 opt_restart_t *or; 28804 ip_stack_t *ipst = ire->ire_ipst; 28805 28806 irb = ire->ire_bucket; 28807 ASSERT(irb != NULL); 28808 28809 ASSERT(DB_TYPE(first_mp) == M_CTL); 28810 28811 or = (opt_restart_t *)first_mp->b_rptr; 28812 IRB_REFHOLD(irb); 28813 for (; ire != NULL; ire = ire->ire_next) { 28814 if ((ire->ire_flags & RTF_MULTIRT) == 0) 28815 continue; 28816 if (ire->ire_addr != group) 28817 continue; 28818 28819 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 28820 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 28821 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE, ipst); 28822 /* No resolver exists for the gateway; skip this ire. */ 28823 if (ire_gw == NULL) 28824 continue; 28825 28826 /* 28827 * This function can return EINPROGRESS. If so the operation 28828 * will be restarted from ip_restart_optmgmt which will 28829 * call ip_opt_set and option processing will restart for 28830 * this option. So we may end up calling 'fn' more than once. 28831 * This requires that 'fn' is idempotent except for the 28832 * return value. The operation is considered a success if 28833 * it succeeds at least once on any one interface. 28834 */ 28835 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 28836 NULL, fmode, src, first_mp); 28837 if (error == 0) 28838 or->or_private = CGTP_MCAST_SUCCESS; 28839 28840 if (ip_debug > 0) { 28841 ulong_t off; 28842 char *ksym; 28843 ksym = kobj_getsymname((uintptr_t)fn, &off); 28844 ip2dbg(("ip_multirt_apply_membership: " 28845 "called %s, multirt group 0x%08x via itf 0x%08x, " 28846 "error %d [success %u]\n", 28847 ksym ? ksym : "?", 28848 ntohl(group), ntohl(ire_gw->ire_src_addr), 28849 error, or->or_private)); 28850 } 28851 28852 ire_refrele(ire_gw); 28853 if (error == EINPROGRESS) { 28854 IRB_REFRELE(irb); 28855 return (error); 28856 } 28857 } 28858 IRB_REFRELE(irb); 28859 /* 28860 * Consider the call as successful if we succeeded on at least 28861 * one interface. Otherwise, return the last encountered error. 28862 */ 28863 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 28864 } 28865 28866 28867 /* 28868 * Issue a warning regarding a route crossing an interface with an 28869 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 28870 * amount of time is logged. 28871 */ 28872 static void 28873 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 28874 { 28875 hrtime_t current = gethrtime(); 28876 char buf[INET_ADDRSTRLEN]; 28877 ip_stack_t *ipst = ire->ire_ipst; 28878 28879 /* Convert interval in ms to hrtime in ns */ 28880 if (ipst->ips_multirt_bad_mtu_last_time + 28881 ((hrtime_t)ipst->ips_ip_multirt_log_interval * (hrtime_t)1000000) <= 28882 current) { 28883 cmn_err(CE_WARN, "ip: ignoring multiroute " 28884 "to %s, incorrect MTU %u (expected %u)\n", 28885 ip_dot_addr(ire->ire_addr, buf), 28886 ire->ire_max_frag, max_frag); 28887 28888 ipst->ips_multirt_bad_mtu_last_time = current; 28889 } 28890 } 28891 28892 28893 /* 28894 * Get the CGTP (multirouting) filtering status. 28895 * If 0, the CGTP hooks are transparent. 28896 */ 28897 /* ARGSUSED */ 28898 static int 28899 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 28900 { 28901 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28902 28903 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 28904 return (0); 28905 } 28906 28907 28908 /* 28909 * Set the CGTP (multirouting) filtering status. 28910 * If the status is changed from active to transparent 28911 * or from transparent to active, forward the new status 28912 * to the filtering module (if loaded). 28913 */ 28914 /* ARGSUSED */ 28915 static int 28916 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 28917 cred_t *ioc_cr) 28918 { 28919 long new_value; 28920 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28921 ip_stack_t *ipst = CONNQ_TO_IPST(q); 28922 28923 if (secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 28924 return (EPERM); 28925 28926 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 28927 new_value < 0 || new_value > 1) { 28928 return (EINVAL); 28929 } 28930 28931 if ((!*ip_cgtp_filter_value) && new_value) { 28932 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 28933 ipst->ips_ip_cgtp_filter_ops == NULL ? 28934 " (module not loaded)" : ""); 28935 } 28936 if (*ip_cgtp_filter_value && (!new_value)) { 28937 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 28938 ipst->ips_ip_cgtp_filter_ops == NULL ? 28939 " (module not loaded)" : ""); 28940 } 28941 28942 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 28943 int res; 28944 netstackid_t stackid; 28945 28946 stackid = ipst->ips_netstack->netstack_stackid; 28947 res = ipst->ips_ip_cgtp_filter_ops->cfo_change_state(stackid, 28948 new_value); 28949 if (res) 28950 return (res); 28951 } 28952 28953 *ip_cgtp_filter_value = (boolean_t)new_value; 28954 28955 return (0); 28956 } 28957 28958 28959 /* 28960 * Return the expected CGTP hooks version number. 28961 */ 28962 int 28963 ip_cgtp_filter_supported(void) 28964 { 28965 return (ip_cgtp_filter_rev); 28966 } 28967 28968 28969 /* 28970 * CGTP hooks can be registered by invoking this function. 28971 * Checks that the version number matches. 28972 */ 28973 int 28974 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops) 28975 { 28976 netstack_t *ns; 28977 ip_stack_t *ipst; 28978 28979 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 28980 return (ENOTSUP); 28981 28982 ns = netstack_find_by_stackid(stackid); 28983 if (ns == NULL) 28984 return (EINVAL); 28985 ipst = ns->netstack_ip; 28986 ASSERT(ipst != NULL); 28987 28988 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 28989 netstack_rele(ns); 28990 return (EALREADY); 28991 } 28992 28993 ipst->ips_ip_cgtp_filter_ops = ops; 28994 netstack_rele(ns); 28995 return (0); 28996 } 28997 28998 /* 28999 * CGTP hooks can be unregistered by invoking this function. 29000 * Returns ENXIO if there was no registration. 29001 * Returns EBUSY if the ndd variable has not been turned off. 29002 */ 29003 int 29004 ip_cgtp_filter_unregister(netstackid_t stackid) 29005 { 29006 netstack_t *ns; 29007 ip_stack_t *ipst; 29008 29009 ns = netstack_find_by_stackid(stackid); 29010 if (ns == NULL) 29011 return (EINVAL); 29012 ipst = ns->netstack_ip; 29013 ASSERT(ipst != NULL); 29014 29015 if (ipst->ips_ip_cgtp_filter) { 29016 netstack_rele(ns); 29017 return (EBUSY); 29018 } 29019 29020 if (ipst->ips_ip_cgtp_filter_ops == NULL) { 29021 netstack_rele(ns); 29022 return (ENXIO); 29023 } 29024 ipst->ips_ip_cgtp_filter_ops = NULL; 29025 netstack_rele(ns); 29026 return (0); 29027 } 29028 29029 /* 29030 * Check whether there is a CGTP filter registration. 29031 * Returns non-zero if there is a registration, otherwise returns zero. 29032 * Note: returns zero if bad stackid. 29033 */ 29034 int 29035 ip_cgtp_filter_is_registered(netstackid_t stackid) 29036 { 29037 netstack_t *ns; 29038 ip_stack_t *ipst; 29039 int ret; 29040 29041 ns = netstack_find_by_stackid(stackid); 29042 if (ns == NULL) 29043 return (0); 29044 ipst = ns->netstack_ip; 29045 ASSERT(ipst != NULL); 29046 29047 if (ipst->ips_ip_cgtp_filter_ops != NULL) 29048 ret = 1; 29049 else 29050 ret = 0; 29051 29052 netstack_rele(ns); 29053 return (ret); 29054 } 29055 29056 static squeue_func_t 29057 ip_squeue_switch(int val) 29058 { 29059 squeue_func_t rval = squeue_fill; 29060 29061 switch (val) { 29062 case IP_SQUEUE_ENTER_NODRAIN: 29063 rval = squeue_enter_nodrain; 29064 break; 29065 case IP_SQUEUE_ENTER: 29066 rval = squeue_enter; 29067 break; 29068 default: 29069 break; 29070 } 29071 return (rval); 29072 } 29073 29074 /* ARGSUSED */ 29075 static int 29076 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 29077 caddr_t addr, cred_t *cr) 29078 { 29079 int *v = (int *)addr; 29080 long new_value; 29081 29082 if (secpolicy_net_config(cr, B_FALSE) != 0) 29083 return (EPERM); 29084 29085 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29086 return (EINVAL); 29087 29088 ip_input_proc = ip_squeue_switch(new_value); 29089 *v = new_value; 29090 return (0); 29091 } 29092 29093 /* 29094 * Handle ndd set of variables which require PRIV_SYS_NET_CONFIG such as 29095 * ip_debug. 29096 */ 29097 /* ARGSUSED */ 29098 static int 29099 ip_int_set(queue_t *q, mblk_t *mp, char *value, 29100 caddr_t addr, cred_t *cr) 29101 { 29102 int *v = (int *)addr; 29103 long new_value; 29104 29105 if (secpolicy_net_config(cr, B_FALSE) != 0) 29106 return (EPERM); 29107 29108 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29109 return (EINVAL); 29110 29111 *v = new_value; 29112 return (0); 29113 } 29114 29115 /* 29116 * Handle changes to ipmp_hook_emulation ndd variable. 29117 * Need to update phyint_hook_ifindex. 29118 * Also generate a nic plumb event should a new ifidex be assigned to a group. 29119 */ 29120 static void 29121 ipmp_hook_emulation_changed(ip_stack_t *ipst) 29122 { 29123 phyint_t *phyi; 29124 phyint_t *phyi_tmp; 29125 char *groupname; 29126 int namelen; 29127 ill_t *ill; 29128 boolean_t new_group; 29129 29130 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29131 /* 29132 * Group indicies are stored in the phyint - a common structure 29133 * to both IPv4 and IPv6. 29134 */ 29135 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 29136 for (; phyi != NULL; 29137 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 29138 phyi, AVL_AFTER)) { 29139 /* Ignore the ones that do not have a group */ 29140 if (phyi->phyint_groupname_len == 0) 29141 continue; 29142 29143 /* 29144 * Look for other phyint in group. 29145 * Clear name/namelen so the lookup doesn't find ourselves. 29146 */ 29147 namelen = phyi->phyint_groupname_len; 29148 groupname = phyi->phyint_groupname; 29149 phyi->phyint_groupname_len = 0; 29150 phyi->phyint_groupname = NULL; 29151 29152 phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst); 29153 /* Restore */ 29154 phyi->phyint_groupname_len = namelen; 29155 phyi->phyint_groupname = groupname; 29156 29157 new_group = B_FALSE; 29158 if (ipst->ips_ipmp_hook_emulation) { 29159 /* 29160 * If the group already exists and has already 29161 * been assigned a group ifindex, we use the existing 29162 * group_ifindex, otherwise we pick a new group_ifindex 29163 * here. 29164 */ 29165 if (phyi_tmp != NULL && 29166 phyi_tmp->phyint_group_ifindex != 0) { 29167 phyi->phyint_group_ifindex = 29168 phyi_tmp->phyint_group_ifindex; 29169 } else { 29170 /* XXX We need a recovery strategy here. */ 29171 if (!ip_assign_ifindex( 29172 &phyi->phyint_group_ifindex, ipst)) 29173 cmn_err(CE_PANIC, 29174 "ip_assign_ifindex() failed"); 29175 new_group = B_TRUE; 29176 } 29177 } else { 29178 phyi->phyint_group_ifindex = 0; 29179 } 29180 if (ipst->ips_ipmp_hook_emulation) 29181 phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex; 29182 else 29183 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 29184 29185 /* 29186 * For IP Filter to find out the relationship between 29187 * names and interface indicies, we need to generate 29188 * a NE_PLUMB event when a new group can appear. 29189 * We always generate events when a new interface appears 29190 * (even when ipmp_hook_emulation is set) so there 29191 * is no need to generate NE_PLUMB events when 29192 * ipmp_hook_emulation is turned off. 29193 * And since it isn't critical for IP Filter to get 29194 * the NE_UNPLUMB events we skip those here. 29195 */ 29196 if (new_group) { 29197 /* 29198 * First phyint in group - generate group PLUMB event. 29199 * Since we are not running inside the ipsq we do 29200 * the dispatch immediately. 29201 */ 29202 if (phyi->phyint_illv4 != NULL) 29203 ill = phyi->phyint_illv4; 29204 else 29205 ill = phyi->phyint_illv6; 29206 29207 if (ill != NULL) { 29208 mutex_enter(&ill->ill_lock); 29209 ill_nic_info_plumb(ill, B_TRUE); 29210 ill_nic_info_dispatch(ill); 29211 mutex_exit(&ill->ill_lock); 29212 } 29213 } 29214 } 29215 rw_exit(&ipst->ips_ill_g_lock); 29216 } 29217 29218 /* ARGSUSED */ 29219 static int 29220 ipmp_hook_emulation_set(queue_t *q, mblk_t *mp, char *value, 29221 caddr_t addr, cred_t *cr) 29222 { 29223 int *v = (int *)addr; 29224 long new_value; 29225 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29226 29227 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29228 return (EINVAL); 29229 29230 if (*v != new_value) { 29231 *v = new_value; 29232 ipmp_hook_emulation_changed(ipst); 29233 } 29234 return (0); 29235 } 29236 29237 static void * 29238 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 29239 { 29240 kstat_t *ksp; 29241 29242 ip_stat_t template = { 29243 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 29244 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 29245 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 29246 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 29247 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 29248 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 29249 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 29250 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 29251 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 29252 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 29253 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 29254 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 29255 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 29256 { "ip_db_ref", KSTAT_DATA_UINT64 }, 29257 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 29258 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 29259 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 29260 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 29261 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 29262 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 29263 { "ip_opt", KSTAT_DATA_UINT64 }, 29264 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 29265 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 29266 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 29267 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 29268 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 29269 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 29270 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 29271 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 29272 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 29273 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 29274 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 29275 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 29276 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29277 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29278 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29279 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29280 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29281 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29282 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29283 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29284 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 29285 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 29286 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 29287 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 29288 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 29289 }; 29290 29291 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 29292 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 29293 KSTAT_FLAG_VIRTUAL, stackid); 29294 29295 if (ksp == NULL) 29296 return (NULL); 29297 29298 bcopy(&template, ip_statisticsp, sizeof (template)); 29299 ksp->ks_data = (void *)ip_statisticsp; 29300 ksp->ks_private = (void *)(uintptr_t)stackid; 29301 29302 kstat_install(ksp); 29303 return (ksp); 29304 } 29305 29306 static void 29307 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 29308 { 29309 if (ksp != NULL) { 29310 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29311 kstat_delete_netstack(ksp, stackid); 29312 } 29313 } 29314 29315 static void * 29316 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 29317 { 29318 kstat_t *ksp; 29319 29320 ip_named_kstat_t template = { 29321 { "forwarding", KSTAT_DATA_UINT32, 0 }, 29322 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 29323 { "inReceives", KSTAT_DATA_UINT64, 0 }, 29324 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 29325 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 29326 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 29327 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 29328 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 29329 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 29330 { "outRequests", KSTAT_DATA_UINT64, 0 }, 29331 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 29332 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 29333 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 29334 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 29335 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 29336 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 29337 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 29338 { "fragFails", KSTAT_DATA_UINT32, 0 }, 29339 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 29340 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 29341 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 29342 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 29343 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 29344 { "inErrs", KSTAT_DATA_UINT32, 0 }, 29345 { "noPorts", KSTAT_DATA_UINT32, 0 }, 29346 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 29347 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 29348 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 29349 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 29350 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 29351 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 29352 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 29353 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 29354 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 29355 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 29356 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 29357 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 29358 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 29359 }; 29360 29361 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 29362 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 29363 if (ksp == NULL || ksp->ks_data == NULL) 29364 return (NULL); 29365 29366 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 29367 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 29368 template.reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29369 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 29370 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 29371 29372 template.netToMediaEntrySize.value.i32 = 29373 sizeof (mib2_ipNetToMediaEntry_t); 29374 29375 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 29376 29377 bcopy(&template, ksp->ks_data, sizeof (template)); 29378 ksp->ks_update = ip_kstat_update; 29379 ksp->ks_private = (void *)(uintptr_t)stackid; 29380 29381 kstat_install(ksp); 29382 return (ksp); 29383 } 29384 29385 static void 29386 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29387 { 29388 if (ksp != NULL) { 29389 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29390 kstat_delete_netstack(ksp, stackid); 29391 } 29392 } 29393 29394 static int 29395 ip_kstat_update(kstat_t *kp, int rw) 29396 { 29397 ip_named_kstat_t *ipkp; 29398 mib2_ipIfStatsEntry_t ipmib; 29399 ill_walk_context_t ctx; 29400 ill_t *ill; 29401 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29402 netstack_t *ns; 29403 ip_stack_t *ipst; 29404 29405 if (kp == NULL || kp->ks_data == NULL) 29406 return (EIO); 29407 29408 if (rw == KSTAT_WRITE) 29409 return (EACCES); 29410 29411 ns = netstack_find_by_stackid(stackid); 29412 if (ns == NULL) 29413 return (-1); 29414 ipst = ns->netstack_ip; 29415 if (ipst == NULL) { 29416 netstack_rele(ns); 29417 return (-1); 29418 } 29419 ipkp = (ip_named_kstat_t *)kp->ks_data; 29420 29421 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 29422 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29423 ill = ILL_START_WALK_V4(&ctx, ipst); 29424 for (; ill != NULL; ill = ill_next(&ctx, ill)) 29425 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 29426 rw_exit(&ipst->ips_ill_g_lock); 29427 29428 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 29429 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 29430 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 29431 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 29432 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 29433 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 29434 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 29435 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 29436 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 29437 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 29438 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 29439 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 29440 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29441 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 29442 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 29443 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 29444 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 29445 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 29446 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 29447 29448 ipkp->routingDiscards.value.ui32 = 0; 29449 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 29450 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 29451 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 29452 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 29453 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 29454 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 29455 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 29456 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 29457 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 29458 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 29459 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 29460 29461 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 29462 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 29463 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 29464 29465 netstack_rele(ns); 29466 29467 return (0); 29468 } 29469 29470 static void * 29471 icmp_kstat_init(netstackid_t stackid) 29472 { 29473 kstat_t *ksp; 29474 29475 icmp_named_kstat_t template = { 29476 { "inMsgs", KSTAT_DATA_UINT32 }, 29477 { "inErrors", KSTAT_DATA_UINT32 }, 29478 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 29479 { "inTimeExcds", KSTAT_DATA_UINT32 }, 29480 { "inParmProbs", KSTAT_DATA_UINT32 }, 29481 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 29482 { "inRedirects", KSTAT_DATA_UINT32 }, 29483 { "inEchos", KSTAT_DATA_UINT32 }, 29484 { "inEchoReps", KSTAT_DATA_UINT32 }, 29485 { "inTimestamps", KSTAT_DATA_UINT32 }, 29486 { "inTimestampReps", KSTAT_DATA_UINT32 }, 29487 { "inAddrMasks", KSTAT_DATA_UINT32 }, 29488 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 29489 { "outMsgs", KSTAT_DATA_UINT32 }, 29490 { "outErrors", KSTAT_DATA_UINT32 }, 29491 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 29492 { "outTimeExcds", KSTAT_DATA_UINT32 }, 29493 { "outParmProbs", KSTAT_DATA_UINT32 }, 29494 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 29495 { "outRedirects", KSTAT_DATA_UINT32 }, 29496 { "outEchos", KSTAT_DATA_UINT32 }, 29497 { "outEchoReps", KSTAT_DATA_UINT32 }, 29498 { "outTimestamps", KSTAT_DATA_UINT32 }, 29499 { "outTimestampReps", KSTAT_DATA_UINT32 }, 29500 { "outAddrMasks", KSTAT_DATA_UINT32 }, 29501 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 29502 { "inChksumErrs", KSTAT_DATA_UINT32 }, 29503 { "inUnknowns", KSTAT_DATA_UINT32 }, 29504 { "inFragNeeded", KSTAT_DATA_UINT32 }, 29505 { "outFragNeeded", KSTAT_DATA_UINT32 }, 29506 { "outDrops", KSTAT_DATA_UINT32 }, 29507 { "inOverFlows", KSTAT_DATA_UINT32 }, 29508 { "inBadRedirects", KSTAT_DATA_UINT32 }, 29509 }; 29510 29511 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 29512 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 29513 if (ksp == NULL || ksp->ks_data == NULL) 29514 return (NULL); 29515 29516 bcopy(&template, ksp->ks_data, sizeof (template)); 29517 29518 ksp->ks_update = icmp_kstat_update; 29519 ksp->ks_private = (void *)(uintptr_t)stackid; 29520 29521 kstat_install(ksp); 29522 return (ksp); 29523 } 29524 29525 static void 29526 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29527 { 29528 if (ksp != NULL) { 29529 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29530 kstat_delete_netstack(ksp, stackid); 29531 } 29532 } 29533 29534 static int 29535 icmp_kstat_update(kstat_t *kp, int rw) 29536 { 29537 icmp_named_kstat_t *icmpkp; 29538 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29539 netstack_t *ns; 29540 ip_stack_t *ipst; 29541 29542 if ((kp == NULL) || (kp->ks_data == NULL)) 29543 return (EIO); 29544 29545 if (rw == KSTAT_WRITE) 29546 return (EACCES); 29547 29548 ns = netstack_find_by_stackid(stackid); 29549 if (ns == NULL) 29550 return (-1); 29551 ipst = ns->netstack_ip; 29552 if (ipst == NULL) { 29553 netstack_rele(ns); 29554 return (-1); 29555 } 29556 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 29557 29558 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 29559 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 29560 icmpkp->inDestUnreachs.value.ui32 = 29561 ipst->ips_icmp_mib.icmpInDestUnreachs; 29562 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 29563 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 29564 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 29565 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 29566 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 29567 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 29568 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 29569 icmpkp->inTimestampReps.value.ui32 = 29570 ipst->ips_icmp_mib.icmpInTimestampReps; 29571 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 29572 icmpkp->inAddrMaskReps.value.ui32 = 29573 ipst->ips_icmp_mib.icmpInAddrMaskReps; 29574 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 29575 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 29576 icmpkp->outDestUnreachs.value.ui32 = 29577 ipst->ips_icmp_mib.icmpOutDestUnreachs; 29578 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 29579 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 29580 icmpkp->outSrcQuenchs.value.ui32 = 29581 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 29582 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 29583 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 29584 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 29585 icmpkp->outTimestamps.value.ui32 = 29586 ipst->ips_icmp_mib.icmpOutTimestamps; 29587 icmpkp->outTimestampReps.value.ui32 = 29588 ipst->ips_icmp_mib.icmpOutTimestampReps; 29589 icmpkp->outAddrMasks.value.ui32 = 29590 ipst->ips_icmp_mib.icmpOutAddrMasks; 29591 icmpkp->outAddrMaskReps.value.ui32 = 29592 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 29593 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 29594 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 29595 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 29596 icmpkp->outFragNeeded.value.ui32 = 29597 ipst->ips_icmp_mib.icmpOutFragNeeded; 29598 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 29599 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 29600 icmpkp->inBadRedirects.value.ui32 = 29601 ipst->ips_icmp_mib.icmpInBadRedirects; 29602 29603 netstack_rele(ns); 29604 return (0); 29605 } 29606 29607 /* 29608 * This is the fanout function for raw socket opened for SCTP. Note 29609 * that it is called after SCTP checks that there is no socket which 29610 * wants a packet. Then before SCTP handles this out of the blue packet, 29611 * this function is called to see if there is any raw socket for SCTP. 29612 * If there is and it is bound to the correct address, the packet will 29613 * be sent to that socket. Note that only one raw socket can be bound to 29614 * a port. This is assured in ipcl_sctp_hash_insert(); 29615 */ 29616 void 29617 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 29618 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 29619 zoneid_t zoneid) 29620 { 29621 conn_t *connp; 29622 queue_t *rq; 29623 mblk_t *first_mp; 29624 boolean_t secure; 29625 ip6_t *ip6h; 29626 ip_stack_t *ipst = recv_ill->ill_ipst; 29627 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 29628 sctp_stack_t *sctps = ipst->ips_netstack->netstack_sctp; 29629 boolean_t sctp_csum_err = B_FALSE; 29630 29631 if (flags & IP_FF_SCTP_CSUM_ERR) { 29632 sctp_csum_err = B_TRUE; 29633 flags &= ~IP_FF_SCTP_CSUM_ERR; 29634 } 29635 29636 first_mp = mp; 29637 if (mctl_present) { 29638 mp = first_mp->b_cont; 29639 secure = ipsec_in_is_secure(first_mp); 29640 ASSERT(mp != NULL); 29641 } else { 29642 secure = B_FALSE; 29643 } 29644 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 29645 29646 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha, ipst); 29647 if (connp == NULL) { 29648 /* 29649 * Although raw sctp is not summed, OOB chunks must be. 29650 * Drop the packet here if the sctp checksum failed. 29651 */ 29652 if (sctp_csum_err) { 29653 BUMP_MIB(&sctps->sctps_mib, sctpChecksumError); 29654 freemsg(first_mp); 29655 return; 29656 } 29657 sctp_ootb_input(first_mp, recv_ill, zoneid, mctl_present); 29658 return; 29659 } 29660 rq = connp->conn_rq; 29661 if (!canputnext(rq)) { 29662 CONN_DEC_REF(connp); 29663 BUMP_MIB(recv_ill->ill_ip_mib, rawipIfStatsInOverflows); 29664 freemsg(first_mp); 29665 return; 29666 } 29667 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 29668 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || secure) { 29669 first_mp = ipsec_check_inbound_policy(first_mp, connp, 29670 (isv4 ? ipha : NULL), ip6h, mctl_present); 29671 if (first_mp == NULL) { 29672 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 29673 CONN_DEC_REF(connp); 29674 return; 29675 } 29676 } 29677 /* 29678 * We probably should not send M_CTL message up to 29679 * raw socket. 29680 */ 29681 if (mctl_present) 29682 freeb(first_mp); 29683 29684 /* Initiate IPPF processing here if needed. */ 29685 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) || 29686 (!isv4 && IP6_IN_IPP(flags, ipst))) { 29687 ip_process(IPP_LOCAL_IN, &mp, 29688 recv_ill->ill_phyint->phyint_ifindex); 29689 if (mp == NULL) { 29690 CONN_DEC_REF(connp); 29691 return; 29692 } 29693 } 29694 29695 if (connp->conn_recvif || connp->conn_recvslla || 29696 ((connp->conn_ip_recvpktinfo || 29697 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 29698 (flags & IP_FF_IPINFO))) { 29699 int in_flags = 0; 29700 29701 /* 29702 * Since sctp does not support IP_RECVPKTINFO for v4, only pass 29703 * IPF_RECVIF. 29704 */ 29705 if (connp->conn_recvif || connp->conn_ip_recvpktinfo) { 29706 in_flags = IPF_RECVIF; 29707 } 29708 if (connp->conn_recvslla) { 29709 in_flags |= IPF_RECVSLLA; 29710 } 29711 if (isv4) { 29712 mp = ip_add_info(mp, recv_ill, in_flags, 29713 IPCL_ZONEID(connp), ipst); 29714 } else { 29715 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 29716 if (mp == NULL) { 29717 BUMP_MIB(recv_ill->ill_ip_mib, 29718 ipIfStatsInDiscards); 29719 CONN_DEC_REF(connp); 29720 return; 29721 } 29722 } 29723 } 29724 29725 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 29726 /* 29727 * We are sending the IPSEC_IN message also up. Refer 29728 * to comments above this function. 29729 * This is the SOCK_RAW, IPPROTO_SCTP case. 29730 */ 29731 (connp->conn_recv)(connp, mp, NULL); 29732 CONN_DEC_REF(connp); 29733 } 29734 29735 #define UPDATE_IP_MIB_OB_COUNTERS(ill, len) \ 29736 { \ 29737 BUMP_MIB((ill)->ill_ip_mib, ipIfStatsHCOutTransmits); \ 29738 UPDATE_MIB((ill)->ill_ip_mib, ipIfStatsHCOutOctets, (len)); \ 29739 } 29740 /* 29741 * This function should be called only if all packet processing 29742 * including fragmentation is complete. Callers of this function 29743 * must set mp->b_prev to one of these values: 29744 * {0, IPP_FWD_OUT, IPP_LOCAL_OUT} 29745 * prior to handing over the mp as first argument to this function. 29746 * 29747 * If the ire passed by caller is incomplete, this function 29748 * queues the packet and if necessary, sends ARP request and bails. 29749 * If the ire passed is fully resolved, we simply prepend 29750 * the link-layer header to the packet, do ipsec hw acceleration 29751 * work if necessary, and send the packet out on the wire. 29752 * 29753 * NOTE: IPsec will only call this function with fully resolved 29754 * ires if hw acceleration is involved. 29755 * TODO list : 29756 * a Handle M_MULTIDATA so that 29757 * tcp_multisend->tcp_multisend_data can 29758 * call ip_xmit_v4 directly 29759 * b Handle post-ARP work for fragments so that 29760 * ip_wput_frag can call this function. 29761 */ 29762 ipxmit_state_t 29763 ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, boolean_t flow_ctl_enabled) 29764 { 29765 nce_t *arpce; 29766 queue_t *q; 29767 int ill_index; 29768 mblk_t *nxt_mp, *first_mp; 29769 boolean_t xmit_drop = B_FALSE; 29770 ip_proc_t proc; 29771 ill_t *out_ill; 29772 int pkt_len; 29773 29774 arpce = ire->ire_nce; 29775 ASSERT(arpce != NULL); 29776 29777 DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire, nce_t *, arpce); 29778 29779 mutex_enter(&arpce->nce_lock); 29780 switch (arpce->nce_state) { 29781 case ND_REACHABLE: 29782 /* If there are other queued packets, queue this packet */ 29783 if (arpce->nce_qd_mp != NULL) { 29784 if (mp != NULL) 29785 nce_queue_mp_common(arpce, mp, B_FALSE); 29786 mp = arpce->nce_qd_mp; 29787 } 29788 arpce->nce_qd_mp = NULL; 29789 mutex_exit(&arpce->nce_lock); 29790 29791 /* 29792 * Flush the queue. In the common case, where the 29793 * ARP is already resolved, it will go through the 29794 * while loop only once. 29795 */ 29796 while (mp != NULL) { 29797 29798 nxt_mp = mp->b_next; 29799 mp->b_next = NULL; 29800 ASSERT(mp->b_datap->db_type != M_CTL); 29801 pkt_len = ntohs(((ipha_t *)mp->b_rptr)->ipha_length); 29802 /* 29803 * This info is needed for IPQOS to do COS marking 29804 * in ip_wput_attach_llhdr->ip_process. 29805 */ 29806 proc = (ip_proc_t)(uintptr_t)mp->b_prev; 29807 mp->b_prev = NULL; 29808 29809 /* set up ill index for outbound qos processing */ 29810 out_ill = ire_to_ill(ire); 29811 ill_index = out_ill->ill_phyint->phyint_ifindex; 29812 first_mp = ip_wput_attach_llhdr(mp, ire, proc, 29813 ill_index); 29814 if (first_mp == NULL) { 29815 xmit_drop = B_TRUE; 29816 BUMP_MIB(out_ill->ill_ip_mib, 29817 ipIfStatsOutDiscards); 29818 goto next_mp; 29819 } 29820 /* non-ipsec hw accel case */ 29821 if (io == NULL || !io->ipsec_out_accelerated) { 29822 /* send it */ 29823 q = ire->ire_stq; 29824 if (proc == IPP_FWD_OUT) { 29825 UPDATE_IB_PKT_COUNT(ire); 29826 } else { 29827 UPDATE_OB_PKT_COUNT(ire); 29828 } 29829 ire->ire_last_used_time = lbolt; 29830 29831 if (flow_ctl_enabled || canputnext(q)) { 29832 if (proc == IPP_FWD_OUT) { 29833 29834 BUMP_MIB(out_ill->ill_ip_mib, 29835 ipIfStatsHCOutForwDatagrams); 29836 29837 } 29838 UPDATE_IP_MIB_OB_COUNTERS(out_ill, 29839 pkt_len); 29840 29841 putnext(q, first_mp); 29842 } else { 29843 BUMP_MIB(out_ill->ill_ip_mib, 29844 ipIfStatsOutDiscards); 29845 xmit_drop = B_TRUE; 29846 freemsg(first_mp); 29847 } 29848 } else { 29849 /* 29850 * Safety Pup says: make sure this 29851 * is going to the right interface! 29852 */ 29853 ill_t *ill1 = 29854 (ill_t *)ire->ire_stq->q_ptr; 29855 int ifindex = 29856 ill1->ill_phyint->phyint_ifindex; 29857 if (ifindex != 29858 io->ipsec_out_capab_ill_index) { 29859 xmit_drop = B_TRUE; 29860 freemsg(mp); 29861 } else { 29862 UPDATE_IP_MIB_OB_COUNTERS(ill1, 29863 pkt_len); 29864 ipsec_hw_putnext(ire->ire_stq, mp); 29865 } 29866 } 29867 next_mp: 29868 mp = nxt_mp; 29869 } /* while (mp != NULL) */ 29870 if (xmit_drop) 29871 return (SEND_FAILED); 29872 else 29873 return (SEND_PASSED); 29874 29875 case ND_INITIAL: 29876 case ND_INCOMPLETE: 29877 29878 /* 29879 * While we do send off packets to dests that 29880 * use fully-resolved CGTP routes, we do not 29881 * handle unresolved CGTP routes. 29882 */ 29883 ASSERT(!(ire->ire_flags & RTF_MULTIRT)); 29884 ASSERT(io == NULL || !io->ipsec_out_accelerated); 29885 29886 if (mp != NULL) { 29887 /* queue the packet */ 29888 nce_queue_mp_common(arpce, mp, B_FALSE); 29889 } 29890 29891 if (arpce->nce_state == ND_INCOMPLETE) { 29892 mutex_exit(&arpce->nce_lock); 29893 DTRACE_PROBE3(ip__xmit__incomplete, 29894 (ire_t *), ire, (mblk_t *), mp, 29895 (ipsec_out_t *), io); 29896 return (LOOKUP_IN_PROGRESS); 29897 } 29898 29899 arpce->nce_state = ND_INCOMPLETE; 29900 mutex_exit(&arpce->nce_lock); 29901 /* 29902 * Note that ire_add() (called from ire_forward()) 29903 * holds a ref on the ire until ARP is completed. 29904 */ 29905 29906 ire_arpresolve(ire, ire_to_ill(ire)); 29907 return (LOOKUP_IN_PROGRESS); 29908 default: 29909 ASSERT(0); 29910 mutex_exit(&arpce->nce_lock); 29911 return (LLHDR_RESLV_FAILED); 29912 } 29913 } 29914 29915 #undef UPDATE_IP_MIB_OB_COUNTERS 29916 29917 /* 29918 * Return B_TRUE if the buffers differ in length or content. 29919 * This is used for comparing extension header buffers. 29920 * Note that an extension header would be declared different 29921 * even if all that changed was the next header value in that header i.e. 29922 * what really changed is the next extension header. 29923 */ 29924 boolean_t 29925 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 29926 uint_t blen) 29927 { 29928 if (!b_valid) 29929 blen = 0; 29930 29931 if (alen != blen) 29932 return (B_TRUE); 29933 if (alen == 0) 29934 return (B_FALSE); /* Both zero length */ 29935 return (bcmp(abuf, bbuf, alen)); 29936 } 29937 29938 /* 29939 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 29940 * Return B_FALSE if memory allocation fails - don't change any state! 29941 */ 29942 boolean_t 29943 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 29944 const void *src, uint_t srclen) 29945 { 29946 void *dst; 29947 29948 if (!src_valid) 29949 srclen = 0; 29950 29951 ASSERT(*dstlenp == 0); 29952 if (src != NULL && srclen != 0) { 29953 dst = mi_alloc(srclen, BPRI_MED); 29954 if (dst == NULL) 29955 return (B_FALSE); 29956 } else { 29957 dst = NULL; 29958 } 29959 if (*dstp != NULL) 29960 mi_free(*dstp); 29961 *dstp = dst; 29962 *dstlenp = dst == NULL ? 0 : srclen; 29963 return (B_TRUE); 29964 } 29965 29966 /* 29967 * Replace what is in *dst, *dstlen with the source. 29968 * Assumes ip_allocbuf has already been called. 29969 */ 29970 void 29971 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 29972 const void *src, uint_t srclen) 29973 { 29974 if (!src_valid) 29975 srclen = 0; 29976 29977 ASSERT(*dstlenp == srclen); 29978 if (src != NULL && srclen != 0) 29979 bcopy(src, *dstp, srclen); 29980 } 29981 29982 /* 29983 * Free the storage pointed to by the members of an ip6_pkt_t. 29984 */ 29985 void 29986 ip6_pkt_free(ip6_pkt_t *ipp) 29987 { 29988 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 29989 29990 if (ipp->ipp_fields & IPPF_HOPOPTS) { 29991 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 29992 ipp->ipp_hopopts = NULL; 29993 ipp->ipp_hopoptslen = 0; 29994 } 29995 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 29996 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 29997 ipp->ipp_rtdstopts = NULL; 29998 ipp->ipp_rtdstoptslen = 0; 29999 } 30000 if (ipp->ipp_fields & IPPF_DSTOPTS) { 30001 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 30002 ipp->ipp_dstopts = NULL; 30003 ipp->ipp_dstoptslen = 0; 30004 } 30005 if (ipp->ipp_fields & IPPF_RTHDR) { 30006 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 30007 ipp->ipp_rthdr = NULL; 30008 ipp->ipp_rthdrlen = 0; 30009 } 30010 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 30011 IPPF_RTHDR); 30012 } 30013