1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 #include <sys/types.h> 31 #include <sys/stream.h> 32 #include <sys/dlpi.h> 33 #include <sys/stropts.h> 34 #include <sys/sysmacros.h> 35 #include <sys/strsubr.h> 36 #include <sys/strlog.h> 37 #include <sys/strsun.h> 38 #include <sys/zone.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/xti_inet.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/cmn_err.h> 45 #include <sys/debug.h> 46 #include <sys/kobj.h> 47 #include <sys/modctl.h> 48 #include <sys/atomic.h> 49 #include <sys/policy.h> 50 #include <sys/priv.h> 51 52 #include <sys/systm.h> 53 #include <sys/param.h> 54 #include <sys/kmem.h> 55 #include <sys/sdt.h> 56 #include <sys/socket.h> 57 #include <sys/vtrace.h> 58 #include <sys/isa_defs.h> 59 #include <net/if.h> 60 #include <net/if_arp.h> 61 #include <net/route.h> 62 #include <sys/sockio.h> 63 #include <netinet/in.h> 64 #include <net/if_dl.h> 65 66 #include <inet/common.h> 67 #include <inet/mi.h> 68 #include <inet/mib2.h> 69 #include <inet/nd.h> 70 #include <inet/arp.h> 71 #include <inet/snmpcom.h> 72 #include <inet/kstatcom.h> 73 74 #include <netinet/igmp_var.h> 75 #include <netinet/ip6.h> 76 #include <netinet/icmp6.h> 77 #include <netinet/sctp.h> 78 79 #include <inet/ip.h> 80 #include <inet/ip_impl.h> 81 #include <inet/ip6.h> 82 #include <inet/ip6_asp.h> 83 #include <inet/tcp.h> 84 #include <inet/tcp_impl.h> 85 #include <inet/ip_multi.h> 86 #include <inet/ip_if.h> 87 #include <inet/ip_ire.h> 88 #include <inet/ip_ftable.h> 89 #include <inet/ip_rts.h> 90 #include <inet/optcom.h> 91 #include <inet/ip_ndp.h> 92 #include <inet/ip_listutils.h> 93 #include <netinet/igmp.h> 94 #include <netinet/ip_mroute.h> 95 #include <inet/ipp_common.h> 96 97 #include <net/pfkeyv2.h> 98 #include <inet/ipsec_info.h> 99 #include <inet/sadb.h> 100 #include <inet/ipsec_impl.h> 101 #include <sys/iphada.h> 102 #include <inet/tun.h> 103 #include <inet/ipdrop.h> 104 #include <inet/ip_netinfo.h> 105 106 #include <sys/ethernet.h> 107 #include <net/if_types.h> 108 #include <sys/cpuvar.h> 109 110 #include <ipp/ipp.h> 111 #include <ipp/ipp_impl.h> 112 #include <ipp/ipgpc/ipgpc.h> 113 114 #include <sys/multidata.h> 115 #include <sys/pattr.h> 116 117 #include <inet/ipclassifier.h> 118 #include <inet/sctp_ip.h> 119 #include <inet/sctp/sctp_impl.h> 120 #include <inet/udp_impl.h> 121 #include <sys/sunddi.h> 122 123 #include <sys/tsol/label.h> 124 #include <sys/tsol/tnet.h> 125 126 #include <rpc/pmap_prot.h> 127 128 /* 129 * Values for squeue switch: 130 * IP_SQUEUE_ENTER_NODRAIN: squeue_enter_nodrain 131 * IP_SQUEUE_ENTER: squeue_enter 132 * IP_SQUEUE_FILL: squeue_fill 133 */ 134 int ip_squeue_enter = 2; /* Setable in /etc/system */ 135 136 squeue_func_t ip_input_proc; 137 #define SET_BPREV_FLAG(x) ((mblk_t *)(uintptr_t)(x)) 138 139 #define TCP6 "tcp6" 140 #define TCP "tcp" 141 #define SCTP "sctp" 142 #define SCTP6 "sctp6" 143 144 major_t TCP6_MAJ; 145 major_t TCP_MAJ; 146 major_t SCTP_MAJ; 147 major_t SCTP6_MAJ; 148 149 /* 150 * Setable in /etc/system 151 */ 152 int ip_poll_normal_ms = 100; 153 int ip_poll_normal_ticks = 0; 154 int ip_modclose_ackwait_ms = 3000; 155 156 /* 157 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 158 */ 159 160 struct listptr_s { 161 mblk_t *lp_head; /* pointer to the head of the list */ 162 mblk_t *lp_tail; /* pointer to the tail of the list */ 163 }; 164 165 typedef struct listptr_s listptr_t; 166 167 /* 168 * This is used by ip_snmp_get_mib2_ip_route_media and 169 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 170 */ 171 typedef struct iproutedata_s { 172 uint_t ird_idx; 173 listptr_t ird_route; /* ipRouteEntryTable */ 174 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 175 listptr_t ird_attrs; /* ipRouteAttributeTable */ 176 } iproutedata_t; 177 178 /* 179 * Cluster specific hooks. These should be NULL when booted as a non-cluster 180 */ 181 182 /* 183 * Hook functions to enable cluster networking 184 * On non-clustered systems these vectors must always be NULL. 185 * 186 * Hook function to Check ip specified ip address is a shared ip address 187 * in the cluster 188 * 189 */ 190 int (*cl_inet_isclusterwide)(uint8_t protocol, 191 sa_family_t addr_family, uint8_t *laddrp) = NULL; 192 193 /* 194 * Hook function to generate cluster wide ip fragment identifier 195 */ 196 uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 197 uint8_t *laddrp, uint8_t *faddrp) = NULL; 198 199 /* 200 * Synchronization notes: 201 * 202 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 203 * MT level protection given by STREAMS. IP uses a combination of its own 204 * internal serialization mechanism and standard Solaris locking techniques. 205 * The internal serialization is per phyint (no IPMP) or per IPMP group. 206 * This is used to serialize plumbing operations, IPMP operations, certain 207 * multicast operations, most set ioctls, igmp/mld timers etc. 208 * 209 * Plumbing is a long sequence of operations involving message 210 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 211 * involved in plumbing operations. A natural model is to serialize these 212 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 213 * parallel without any interference. But various set ioctls on hme0 are best 214 * serialized. However if the system uses IPMP, the operations are easier if 215 * they are serialized on a per IPMP group basis since IPMP operations 216 * happen across ill's of a group. Thus the lowest common denominator is to 217 * serialize most set ioctls, multicast join/leave operations, IPMP operations 218 * igmp/mld timer operations, and processing of DLPI control messages received 219 * from drivers on a per IPMP group basis. If the system does not employ 220 * IPMP the serialization is on a per phyint basis. This serialization is 221 * provided by the ipsq_t and primitives operating on this. Details can 222 * be found in ip_if.c above the core primitives operating on ipsq_t. 223 * 224 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 225 * Simiarly lookup of an ire by a thread also returns a refheld ire. 226 * In addition ipif's and ill's referenced by the ire are also indirectly 227 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 228 * the ipif's address or netmask change as long as an ipif is refheld 229 * directly or indirectly. For example an SIOCLIFADDR ioctl that changes the 230 * address of an ipif has to go through the ipsq_t. This ensures that only 231 * 1 such exclusive operation proceeds at any time on the ipif. It then 232 * deletes all ires associated with this ipif, and waits for all refcnts 233 * associated with this ipif to come down to zero. The address is changed 234 * only after the ipif has been quiesced. Then the ipif is brought up again. 235 * More details are described above the comment in ip_sioctl_flags. 236 * 237 * Packet processing is based mostly on IREs and are fully multi-threaded 238 * using standard Solaris MT techniques. 239 * 240 * There are explicit locks in IP to handle: 241 * - The ip_g_head list maintained by mi_open_link() and friends. 242 * 243 * - The reassembly data structures (one lock per hash bucket) 244 * 245 * - conn_lock is meant to protect conn_t fields. The fields actually 246 * protected by conn_lock are documented in the conn_t definition. 247 * 248 * - ire_lock to protect some of the fields of the ire, IRE tables 249 * (one lock per hash bucket). Refer to ip_ire.c for details. 250 * 251 * - ndp_g_lock and nce_lock for protecting NCEs. 252 * 253 * - ill_lock protects fields of the ill and ipif. Details in ip.h 254 * 255 * - ill_g_lock: This is a global reader/writer lock. Protects the following 256 * * The AVL tree based global multi list of all ills. 257 * * The linked list of all ipifs of an ill 258 * * The <ill-ipsq> mapping 259 * * The ipsq->ipsq_phyint_list threaded by phyint_ipsq_next 260 * * The illgroup list threaded by ill_group_next. 261 * * <ill-phyint> association 262 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 263 * into an ill, changing the <ill-ipsq> mapping of an ill, insertion/deletion 264 * of an ill into the illgrp list, changing the <ill-phyint> assoc of an ill 265 * will all have to hold the ill_g_lock as writer for the actual duration 266 * of the insertion/deletion/change. More details about the <ill-ipsq> mapping 267 * may be found in the IPMP section. 268 * 269 * - ill_lock: This is a per ill mutex. 270 * It protects some members of the ill and is documented below. 271 * It also protects the <ill-ipsq> mapping 272 * It also protects the illgroup list threaded by ill_group_next. 273 * It also protects the <ill-phyint> assoc. 274 * It also protects the list of ipifs hanging off the ill. 275 * 276 * - ipsq_lock: This is a per ipsq_t mutex lock. 277 * This protects all the other members of the ipsq struct except 278 * ipsq_refs and ipsq_phyint_list which are protected by ill_g_lock 279 * 280 * - illgrp_lock: This is a per ill_group mutex lock. 281 * The only thing it protects is the illgrp_ill_schednext member of ill_group 282 * which dictates which is the next ill in an ill_group that is to be chosen 283 * for sending outgoing packets, through creation of an IRE_CACHE that 284 * references this ill. 285 * 286 * - phyint_lock: This is a per phyint mutex lock. Protects just the 287 * phyint_flags 288 * 289 * - ip_g_nd_lock: This is a global reader/writer lock. 290 * Any call to nd_load to load a new parameter to the ND table must hold the 291 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 292 * as reader. 293 * 294 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 295 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 296 * uniqueness check also done atomically. 297 * 298 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 299 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 300 * as a writer when adding or deleting elements from these lists, and 301 * as a reader when walking these lists to send a SADB update to the 302 * IPsec capable ills. 303 * 304 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 305 * group list linked by ill_usesrc_grp_next. It also protects the 306 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 307 * group is being added or deleted. This lock is taken as a reader when 308 * walking the list/group(eg: to get the number of members in a usesrc group). 309 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 310 * field is changing state i.e from NULL to non-NULL or vice-versa. For 311 * example, it is not necessary to take this lock in the initial portion 312 * of ip_sioctl_slifusesrc or at all in ip_sioctl_groupname and 313 * ip_sioctl_flags since the these operations are executed exclusively and 314 * that ensures that the "usesrc group state" cannot change. The "usesrc 315 * group state" change can happen only in the latter part of 316 * ip_sioctl_slifusesrc and in ill_delete. 317 * 318 * Changing <ill-phyint>, <ill-ipsq>, <ill-illgroup> assocications. 319 * 320 * To change the <ill-phyint> association, the ill_g_lock must be held 321 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 322 * must be held. 323 * 324 * To change the <ill-ipsq> association the ill_g_lock must be held as writer 325 * and the ill_lock of the ill in question must be held. 326 * 327 * To change the <ill-illgroup> association the ill_g_lock must be held as 328 * writer and the ill_lock of the ill in question must be held. 329 * 330 * To add or delete an ipif from the list of ipifs hanging off the ill, 331 * ill_g_lock (writer) and ill_lock must be held and the thread must be 332 * a writer on the associated ipsq,. 333 * 334 * To add or delete an ill to the system, the ill_g_lock must be held as 335 * writer and the thread must be a writer on the associated ipsq. 336 * 337 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 338 * must be a writer on the associated ipsq. 339 * 340 * Lock hierarchy 341 * 342 * Some lock hierarchy scenarios are listed below. 343 * 344 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 345 * ill_g_lock -> illgrp_lock -> ill_lock 346 * ill_g_lock -> ill_lock(s) -> phyint_lock 347 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 348 * ill_g_lock -> ip_addr_avail_lock 349 * conn_lock -> irb_lock -> ill_lock -> ire_lock 350 * ill_g_lock -> ip_g_nd_lock 351 * 352 * When more than 1 ill lock is needed to be held, all ill lock addresses 353 * are sorted on address and locked starting from highest addressed lock 354 * downward. 355 * 356 * Mobile-IP scenarios 357 * 358 * irb_lock -> ill_lock -> ire_mrtun_lock 359 * irb_lock -> ill_lock -> ire_srcif_table_lock 360 * 361 * IPsec scenarios 362 * 363 * ipsa_lock -> ill_g_lock -> ill_lock 364 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 365 * ipsec_capab_ills_lock -> ipsa_lock 366 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 367 * 368 * Trusted Solaris scenarios 369 * 370 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 371 * igsa_lock -> gcdb_lock 372 * gcgrp_rwlock -> ire_lock 373 * gcgrp_rwlock -> gcdb_lock 374 * 375 * 376 * Routing/forwarding table locking notes: 377 * 378 * Lock acquisition order: Radix tree lock, irb_lock. 379 * Requirements: 380 * i. Walker must not hold any locks during the walker callback. 381 * ii Walker must not see a truncated tree during the walk because of any node 382 * deletion. 383 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 384 * in many places in the code to walk the irb list. Thus even if all the 385 * ires in a bucket have been deleted, we still can't free the radix node 386 * until the ires have actually been inactive'd (freed). 387 * 388 * Tree traversal - Need to hold the global tree lock in read mode. 389 * Before dropping the global tree lock, need to either increment the ire_refcnt 390 * to ensure that the radix node can't be deleted. 391 * 392 * Tree add - Need to hold the global tree lock in write mode to add a 393 * radix node. To prevent the node from being deleted, increment the 394 * irb_refcnt, after the node is added to the tree. The ire itself is 395 * added later while holding the irb_lock, but not the tree lock. 396 * 397 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 398 * All associated ires must be inactive (i.e. freed), and irb_refcnt 399 * must be zero. 400 * 401 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 402 * global tree lock (read mode) for traversal. 403 * 404 * IPSEC notes : 405 * 406 * IP interacts with the IPSEC code (AH/ESP) by tagging a M_CTL message 407 * in front of the actual packet. For outbound datagrams, the M_CTL 408 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 409 * information used by the IPSEC code for applying the right level of 410 * protection. The information initialized by IP in the ipsec_out_t 411 * is determined by the per-socket policy or global policy in the system. 412 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 413 * ipsec_info.h) which starts out with nothing in it. It gets filled 414 * with the right information if it goes through the AH/ESP code, which 415 * happens if the incoming packet is secure. The information initialized 416 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 417 * the policy requirements needed by per-socket policy or global policy 418 * is met or not. 419 * 420 * If there is both per-socket policy (set using setsockopt) and there 421 * is also global policy match for the 5 tuples of the socket, 422 * ipsec_override_policy() makes the decision of which one to use. 423 * 424 * For fully connected sockets i.e dst, src [addr, port] is known, 425 * conn_policy_cached is set indicating that policy has been cached. 426 * conn_in_enforce_policy may or may not be set depending on whether 427 * there is a global policy match or per-socket policy match. 428 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 429 * Once the right policy is set on the conn_t, policy cannot change for 430 * this socket. This makes life simpler for TCP (UDP ?) where 431 * re-transmissions go out with the same policy. For symmetry, policy 432 * is cached for fully connected UDP sockets also. Thus if policy is cached, 433 * it also implies that policy is latched i.e policy cannot change 434 * on these sockets. As we have the right policy on the conn, we don't 435 * have to lookup global policy for every outbound and inbound datagram 436 * and thus serving as an optimization. Note that a global policy change 437 * does not affect fully connected sockets if they have policy. If fully 438 * connected sockets did not have any policy associated with it, global 439 * policy change may affect them. 440 * 441 * IP Flow control notes: 442 * 443 * Non-TCP streams are flow controlled by IP. On the send side, if the packet 444 * cannot be sent down to the driver by IP, because of a canput failure, IP 445 * does a putq on the conn_wq. This will cause ip_wsrv to run on the conn_wq. 446 * ip_wsrv in turn, inserts the conn in a list of conn's that need to be drained 447 * when the flowcontrol condition subsides. Ultimately STREAMS backenables the 448 * ip_wsrv on the IP module, which in turn does a qenable of the conn_wq of the 449 * first conn in the list of conn's to be drained. ip_wsrv on this conn drains 450 * the queued messages, and removes the conn from the drain list, if all 451 * messages were drained. It also qenables the next conn in the drain list to 452 * continue the drain process. 453 * 454 * In reality the drain list is not a single list, but a configurable number 455 * of lists. The ip_wsrv on the IP module, qenables the first conn in each 456 * list. If the ip_wsrv of the next qenabled conn does not run, because the 457 * stream closes, ip_close takes responsibility to qenable the next conn in 458 * the drain list. The directly called ip_wput path always does a putq, if 459 * it cannot putnext. Thus synchronization problems are handled between 460 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 461 * functions that manipulate this drain list. Furthermore conn_drain_insert 462 * is called only from ip_wsrv, and there can be only 1 instance of ip_wsrv 463 * running on a queue at any time. conn_drain_tail can be simultaneously called 464 * from both ip_wsrv and ip_close. 465 * 466 * IPQOS notes: 467 * 468 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 469 * and IPQoS modules. IPPF includes hooks in IP at different control points 470 * (callout positions) which direct packets to IPQoS modules for policy 471 * processing. Policies, if present, are global. 472 * 473 * The callout positions are located in the following paths: 474 * o local_in (packets destined for this host) 475 * o local_out (packets orginating from this host ) 476 * o fwd_in (packets forwarded by this m/c - inbound) 477 * o fwd_out (packets forwarded by this m/c - outbound) 478 * Hooks at these callout points can be enabled/disabled using the ndd variable 479 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 480 * By default all the callout positions are enabled. 481 * 482 * Outbound (local_out) 483 * Hooks are placed in ip_wput_ire and ipsec_out_process. 484 * 485 * Inbound (local_in) 486 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 487 * TCP and UDP fanout routines. 488 * 489 * Forwarding (in and out) 490 * Hooks are placed in ip_rput_forward and ip_mrtun_forward. 491 * 492 * IP Policy Framework processing (IPPF processing) 493 * Policy processing for a packet is initiated by ip_process, which ascertains 494 * that the classifier (ipgpc) is loaded and configured, failing which the 495 * packet resumes normal processing in IP. If the clasifier is present, the 496 * packet is acted upon by one or more IPQoS modules (action instances), per 497 * filters configured in ipgpc and resumes normal IP processing thereafter. 498 * An action instance can drop a packet in course of its processing. 499 * 500 * A boolean variable, ip_policy, is used in all the fanout routines that can 501 * invoke ip_process for a packet. This variable indicates if the packet should 502 * to be sent for policy processing. The variable is set to B_TRUE by default, 503 * i.e. when the routines are invoked in the normal ip procesing path for a 504 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 505 * ip_policy is set to B_FALSE for all the routines called in these two 506 * functions because, in the former case, we don't process loopback traffic 507 * currently while in the latter, the packets have already been processed in 508 * icmp_inbound. 509 * 510 * Zones notes: 511 * 512 * The partitioning rules for networking are as follows: 513 * 1) Packets coming from a zone must have a source address belonging to that 514 * zone. 515 * 2) Packets coming from a zone can only be sent on a physical interface on 516 * which the zone has an IP address. 517 * 3) Between two zones on the same machine, packet delivery is only allowed if 518 * there's a matching route for the destination and zone in the forwarding 519 * table. 520 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 521 * different zones can bind to the same port with the wildcard address 522 * (INADDR_ANY). 523 * 524 * The granularity of interface partitioning is at the logical interface level. 525 * Therefore, every zone has its own IP addresses, and incoming packets can be 526 * attributed to a zone unambiguously. A logical interface is placed into a zone 527 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 528 * structure. Rule (1) is implemented by modifying the source address selection 529 * algorithm so that the list of eligible addresses is filtered based on the 530 * sending process zone. 531 * 532 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 533 * across all zones, depending on their type. Here is the break-up: 534 * 535 * IRE type Shared/exclusive 536 * -------- ---------------- 537 * IRE_BROADCAST Exclusive 538 * IRE_DEFAULT (default routes) Shared (*) 539 * IRE_LOCAL Exclusive (x) 540 * IRE_LOOPBACK Exclusive 541 * IRE_PREFIX (net routes) Shared (*) 542 * IRE_CACHE Exclusive 543 * IRE_IF_NORESOLVER (interface routes) Exclusive 544 * IRE_IF_RESOLVER (interface routes) Exclusive 545 * IRE_HOST (host routes) Shared (*) 546 * 547 * (*) A zone can only use a default or off-subnet route if the gateway is 548 * directly reachable from the zone, that is, if the gateway's address matches 549 * one of the zone's logical interfaces. 550 * 551 * (x) IRE_LOCAL are handled a bit differently, since for all other entries 552 * in ire_ctable and IRE_INTERFACE, ire_src_addr is what can be used as source 553 * when sending packets using the IRE. For IRE_LOCAL ire_src_addr is the IP 554 * address of the zone itself (the destination). Since IRE_LOCAL is used 555 * for communication between zones, ip_wput_ire has special logic to set 556 * the right source address when sending using an IRE_LOCAL. 557 * 558 * Furthermore, when ip_restrict_interzone_loopback is set (the default), 559 * ire_cache_lookup restricts loopback using an IRE_LOCAL 560 * between zone to the case when L2 would have conceptually looped the packet 561 * back, i.e. the loopback which is required since neither Ethernet drivers 562 * nor Ethernet hardware loops them back. This is the case when the normal 563 * routes (ignoring IREs with different zoneids) would send out the packet on 564 * the same ill (or ill group) as the ill with which is IRE_LOCAL is 565 * associated. 566 * 567 * Multiple zones can share a common broadcast address; typically all zones 568 * share the 255.255.255.255 address. Incoming as well as locally originated 569 * broadcast packets must be dispatched to all the zones on the broadcast 570 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 571 * since some zones may not be on the 10.16.72/24 network. To handle this, each 572 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 573 * sent to every zone that has an IRE_BROADCAST entry for the destination 574 * address on the input ill, see conn_wantpacket(). 575 * 576 * Applications in different zones can join the same multicast group address. 577 * For IPv4, group memberships are per-logical interface, so they're already 578 * inherently part of a zone. For IPv6, group memberships are per-physical 579 * interface, so we distinguish IPv6 group memberships based on group address, 580 * interface and zoneid. In both cases, received multicast packets are sent to 581 * every zone for which a group membership entry exists. On IPv6 we need to 582 * check that the target zone still has an address on the receiving physical 583 * interface; it could have been removed since the application issued the 584 * IPV6_JOIN_GROUP. 585 */ 586 587 /* 588 * Squeue Fanout flags: 589 * 0: No fanout. 590 * 1: Fanout across all squeues 591 */ 592 boolean_t ip_squeue_fanout = 0; 593 594 /* 595 * Maximum dups allowed per packet. 596 */ 597 uint_t ip_max_frag_dups = 10; 598 599 #define IS_SIMPLE_IPH(ipha) \ 600 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 601 602 /* RFC1122 Conformance */ 603 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 604 605 #define ILL_MAX_NAMELEN LIFNAMSIZ 606 607 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 608 609 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t); 610 static void ip_ipsec_out_prepend(mblk_t *, mblk_t *, ill_t *); 611 612 static void icmp_frag_needed(queue_t *, mblk_t *, int, zoneid_t, 613 ip_stack_t *); 614 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 615 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 616 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 617 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 618 mblk_t *, int, ip_stack_t *); 619 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 620 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 621 ill_t *, zoneid_t); 622 static void icmp_options_update(ipha_t *); 623 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t, zoneid_t, 624 ip_stack_t *); 625 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t, 626 zoneid_t zoneid, ip_stack_t *); 627 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_stack_t *); 628 static void icmp_redirect(ill_t *, mblk_t *); 629 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t, 630 ip_stack_t *); 631 632 static void ip_arp_news(queue_t *, mblk_t *); 633 static boolean_t ip_bind_insert_ire(mblk_t *, ire_t *, iulp_t *, 634 ip_stack_t *); 635 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 636 char *ip_dot_addr(ipaddr_t, char *); 637 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 638 int ip_close(queue_t *, int); 639 static char *ip_dot_saddr(uchar_t *, char *); 640 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 641 boolean_t, boolean_t, ill_t *, zoneid_t); 642 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 643 boolean_t, boolean_t, zoneid_t); 644 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 645 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 646 static void ip_lrput(queue_t *, mblk_t *); 647 static void ip_mrtun_forward(ire_t *, ill_t *, mblk_t *); 648 ipaddr_t ip_net_mask(ipaddr_t); 649 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, ill_t *, conn_t *, 650 zoneid_t, ip_stack_t *); 651 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 652 conn_t *, uint32_t, zoneid_t, ip_opt_info_t *); 653 char *ip_nv_lookup(nv_t *, int); 654 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 655 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 656 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 657 static boolean_t ip_param_register(IDP *ndp, ipparam_t *, size_t, 658 ipndp_t *, size_t); 659 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 660 void ip_rput(queue_t *, mblk_t *); 661 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 662 void *dummy_arg); 663 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 664 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *, 665 ip_stack_t *); 666 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 667 ire_t *, ip_stack_t *); 668 static boolean_t ip_rput_multimblk_ipoptions(queue_t *, ill_t *, 669 mblk_t *, ipha_t **, ipaddr_t *, ip_stack_t *); 670 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *, 671 ip_stack_t *); 672 static boolean_t ip_rput_fragment(queue_t *, mblk_t **, ipha_t *, uint32_t *, 673 uint16_t *); 674 int ip_snmp_get(queue_t *, mblk_t *); 675 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 676 mib2_ipIfStatsEntry_t *, ip_stack_t *); 677 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 678 ip_stack_t *); 679 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *); 680 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 681 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 682 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 683 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 684 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 685 ip_stack_t *ipst); 686 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 687 ip_stack_t *ipst); 688 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 689 ip_stack_t *ipst); 690 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 691 ip_stack_t *ipst); 692 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 693 ip_stack_t *ipst); 694 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 695 ip_stack_t *ipst); 696 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 697 ip_stack_t *ipst); 698 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 699 ip_stack_t *ipst); 700 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, 701 ip_stack_t *ipst); 702 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, 703 ip_stack_t *ipst); 704 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 705 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 706 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 707 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 708 static boolean_t ip_source_routed(ipha_t *, ip_stack_t *); 709 static boolean_t ip_source_route_included(ipha_t *); 710 static void ip_trash_ire_reclaim_stack(ip_stack_t *); 711 712 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t, 713 zoneid_t, ip_stack_t *); 714 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int, ip_stack_t *); 715 static void ip_wput_local_options(ipha_t *, ip_stack_t *); 716 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 717 zoneid_t, ip_stack_t *); 718 719 static void conn_drain_init(ip_stack_t *); 720 static void conn_drain_fini(ip_stack_t *); 721 static void conn_drain_tail(conn_t *connp, boolean_t closing); 722 723 static void conn_walk_drain(ip_stack_t *); 724 static void conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *, 725 zoneid_t); 726 727 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 728 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 729 static void ip_stack_fini(netstackid_t stackid, void *arg); 730 731 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 732 zoneid_t); 733 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 734 void *dummy_arg); 735 736 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 737 738 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 739 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 740 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 741 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 742 743 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 744 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 745 caddr_t, cred_t *); 746 extern int ip_squeue_bind_set(queue_t *q, mblk_t *mp, char *value, 747 caddr_t cp, cred_t *cr); 748 extern int ip_squeue_profile_set(queue_t *, mblk_t *, char *, caddr_t, 749 cred_t *); 750 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 751 caddr_t cp, cred_t *cr); 752 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 753 cred_t *); 754 static int ipmp_hook_emulation_set(queue_t *, mblk_t *, char *, caddr_t, 755 cred_t *); 756 static squeue_func_t ip_squeue_switch(int); 757 758 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 759 static void ip_kstat_fini(netstackid_t, kstat_t *); 760 static int ip_kstat_update(kstat_t *kp, int rw); 761 static void *icmp_kstat_init(netstackid_t); 762 static void icmp_kstat_fini(netstackid_t, kstat_t *); 763 static int icmp_kstat_update(kstat_t *kp, int rw); 764 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 765 static void ip_kstat2_fini(netstackid_t, kstat_t *); 766 767 static int ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *); 768 769 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 770 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 771 772 static void ip_rput_process_forward(queue_t *, mblk_t *, ire_t *, 773 ipha_t *, ill_t *, boolean_t); 774 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 775 776 /* How long, in seconds, we allow frags to hang around. */ 777 #define IP_FRAG_TIMEOUT 60 778 779 /* 780 * Threshold which determines whether MDT should be used when 781 * generating IP fragments; payload size must be greater than 782 * this threshold for MDT to take place. 783 */ 784 #define IP_WPUT_FRAG_MDT_MIN 32768 785 786 /* Setable in /etc/system only */ 787 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 788 789 static long ip_rput_pullups; 790 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 791 792 vmem_t *ip_minor_arena; 793 794 int ip_debug; 795 796 #ifdef DEBUG 797 uint32_t ipsechw_debug = 0; 798 #endif 799 800 /* 801 * Multirouting/CGTP stuff 802 */ 803 cgtp_filter_ops_t *ip_cgtp_filter_ops; /* CGTP hooks */ 804 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 805 boolean_t ip_cgtp_filter; /* Enable/disable CGTP hooks */ 806 807 /* 808 * XXX following really should only be in a header. Would need more 809 * header and .c clean up first. 810 */ 811 extern optdb_obj_t ip_opt_obj; 812 813 ulong_t ip_squeue_enter_unbound = 0; 814 815 /* 816 * Named Dispatch Parameter Table. 817 * All of these are alterable, within the min/max values given, at run time. 818 */ 819 static ipparam_t lcl_param_arr[] = { 820 /* min max value name */ 821 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 822 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 823 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 824 { 0, 1, 0, "ip_respond_to_timestamp"}, 825 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 826 { 0, 1, 1, "ip_send_redirects"}, 827 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 828 { 0, 10, 0, "ip_debug"}, 829 { 0, 10, 0, "ip_mrtdebug"}, 830 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 831 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 832 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 833 { 1, 255, 255, "ip_def_ttl" }, 834 { 0, 1, 0, "ip_forward_src_routed"}, 835 { 0, 256, 32, "ip_wroff_extra" }, 836 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 837 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 838 { 0, 1, 1, "ip_path_mtu_discovery" }, 839 { 0, 240, 30, "ip_ignore_delete_time" }, 840 { 0, 1, 0, "ip_ignore_redirect" }, 841 { 0, 1, 1, "ip_output_queue" }, 842 { 1, 254, 1, "ip_broadcast_ttl" }, 843 { 0, 99999, 100, "ip_icmp_err_interval" }, 844 { 1, 99999, 10, "ip_icmp_err_burst" }, 845 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 846 { 0, 1, 0, "ip_strict_dst_multihoming" }, 847 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 848 { 0, 1, 0, "ipsec_override_persocket_policy" }, 849 { 0, 1, 1, "icmp_accept_clear_messages" }, 850 { 0, 1, 1, "igmp_accept_clear_messages" }, 851 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 852 "ip_ndp_delay_first_probe_time"}, 853 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 854 "ip_ndp_max_unicast_solicit"}, 855 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 856 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 857 { 0, 1, 0, "ip6_forward_src_routed"}, 858 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 859 { 0, 1, 1, "ip6_send_redirects"}, 860 { 0, 1, 0, "ip6_ignore_redirect" }, 861 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 862 863 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 864 865 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 866 867 { 0, 1, 1, "pim_accept_clear_messages" }, 868 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 869 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 870 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 871 { 0, 15, 0, "ip_policy_mask" }, 872 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 873 { 0, 255, 1, "ip_multirt_ttl" }, 874 { 0, 1, 1, "ip_multidata_outbound" }, 875 { 0, 3600000, 300000, "ip_ndp_defense_interval" }, 876 { 0, 999999, 60*60*24, "ip_max_temp_idle" }, 877 { 0, 1000, 1, "ip_max_temp_defend" }, 878 { 0, 1000, 3, "ip_max_defend" }, 879 { 0, 999999, 30, "ip_defend_interval" }, 880 { 0, 3600000, 300000, "ip_dup_recovery" }, 881 { 0, 1, 1, "ip_restrict_interzone_loopback" }, 882 { 0, 1, 1, "ip_lso_outbound" }, 883 #ifdef DEBUG 884 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 885 #else 886 { 0, 0, 0, "" }, 887 #endif 888 }; 889 890 /* 891 * Extended NDP table 892 * The addresses for the first two are filled in to be ips_ip_g_forward 893 * and ips_ipv6_forward at init time. 894 */ 895 static ipndp_t lcl_ndp_arr[] = { 896 /* getf setf data name */ 897 #define IPNDP_IP_FORWARDING_OFFSET 0 898 { ip_param_generic_get, ip_forward_set, NULL, 899 "ip_forwarding" }, 900 #define IPNDP_IP6_FORWARDING_OFFSET 1 901 { ip_param_generic_get, ip_forward_set, NULL, 902 "ip6_forwarding" }, 903 { ip_ill_report, NULL, NULL, 904 "ip_ill_status" }, 905 { ip_ipif_report, NULL, NULL, 906 "ip_ipif_status" }, 907 { ip_ire_report, NULL, NULL, 908 "ipv4_ire_status" }, 909 { ip_ire_report_mrtun, NULL, NULL, 910 "ipv4_mrtun_ire_status" }, 911 { ip_ire_report_srcif, NULL, NULL, 912 "ipv4_srcif_ire_status" }, 913 { ip_ire_report_v6, NULL, NULL, 914 "ipv6_ire_status" }, 915 { ip_conn_report, NULL, NULL, 916 "ip_conn_status" }, 917 { nd_get_long, nd_set_long, (caddr_t)&ip_rput_pullups, 918 "ip_rput_pullups" }, 919 { ndp_report, NULL, NULL, 920 "ip_ndp_cache_report" }, 921 { ip_srcid_report, NULL, NULL, 922 "ip_srcid_status" }, 923 { ip_param_generic_get, ip_squeue_profile_set, 924 (caddr_t)&ip_squeue_profile, "ip_squeue_profile" }, 925 { ip_param_generic_get, ip_squeue_bind_set, 926 (caddr_t)&ip_squeue_bind, "ip_squeue_bind" }, 927 { ip_param_generic_get, ip_input_proc_set, 928 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 929 { ip_param_generic_get, ip_int_set, 930 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 931 #define IPNDP_CGTP_FILTER_OFFSET 16 932 { ip_cgtp_filter_get, ip_cgtp_filter_set, NULL, 933 "ip_cgtp_filter" }, 934 { ip_param_generic_get, ip_int_set, 935 (caddr_t)&ip_soft_rings_cnt, "ip_soft_rings_cnt" }, 936 #define IPNDP_IPMP_HOOK_OFFSET 18 937 { ip_param_generic_get, ipmp_hook_emulation_set, NULL, 938 "ipmp_hook_emulation" }, 939 }; 940 941 /* 942 * Table of IP ioctls encoding the various properties of the ioctl and 943 * indexed based on the last byte of the ioctl command. Occasionally there 944 * is a clash, and there is more than 1 ioctl with the same last byte. 945 * In such a case 1 ioctl is encoded in the ndx table and the remaining 946 * ioctls are encoded in the misc table. An entry in the ndx table is 947 * retrieved by indexing on the last byte of the ioctl command and comparing 948 * the ioctl command with the value in the ndx table. In the event of a 949 * mismatch the misc table is then searched sequentially for the desired 950 * ioctl command. 951 * 952 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 953 */ 954 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 955 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 956 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 957 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 958 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 959 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 960 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 961 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 962 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 963 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 964 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 965 966 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 967 MISC_CMD, ip_siocaddrt, NULL }, 968 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 969 MISC_CMD, ip_siocdelrt, NULL }, 970 971 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 972 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 973 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 974 IF_CMD, ip_sioctl_get_addr, NULL }, 975 976 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 977 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 978 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 979 IPI_GET_CMD | IPI_REPL, 980 IF_CMD, ip_sioctl_get_dstaddr, NULL }, 981 982 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 983 IPI_PRIV | IPI_WR | IPI_REPL, 984 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 985 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 986 IPI_MODOK | IPI_GET_CMD | IPI_REPL, 987 IF_CMD, ip_sioctl_get_flags, NULL }, 988 989 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 990 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 991 992 /* copyin size cannot be coded for SIOCGIFCONF */ 993 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 994 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 995 996 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 997 IF_CMD, ip_sioctl_mtu, NULL }, 998 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 999 IF_CMD, ip_sioctl_get_mtu, NULL }, 1000 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 1001 IPI_GET_CMD | IPI_REPL, 1002 IF_CMD, ip_sioctl_get_brdaddr, NULL }, 1003 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1004 IF_CMD, ip_sioctl_brdaddr, NULL }, 1005 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 1006 IPI_GET_CMD | IPI_REPL, 1007 IF_CMD, ip_sioctl_get_netmask, NULL }, 1008 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1009 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1010 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1011 IPI_GET_CMD | IPI_REPL, 1012 IF_CMD, ip_sioctl_get_metric, NULL }, 1013 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1014 IF_CMD, ip_sioctl_metric, NULL }, 1015 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1016 1017 /* See 166-168 below for extended SIOC*XARP ioctls */ 1018 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV, 1019 MISC_CMD, ip_sioctl_arp, NULL }, 1020 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD | IPI_REPL, 1021 MISC_CMD, ip_sioctl_arp, NULL }, 1022 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV, 1023 MISC_CMD, ip_sioctl_arp, NULL }, 1024 1025 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1026 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1027 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1028 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1029 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1030 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1031 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1032 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1033 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1034 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1035 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1036 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1037 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1038 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1039 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1040 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1041 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1042 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1043 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1044 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1045 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1046 1047 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1048 MISC_CMD, if_unitsel, if_unitsel_restart }, 1049 1050 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1051 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1052 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1053 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1054 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1055 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1056 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1057 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1058 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1059 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1060 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1061 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1062 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1063 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1064 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1065 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1066 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1067 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1068 1069 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1070 IPI_PRIV | IPI_WR | IPI_MODOK, 1071 IF_CMD, ip_sioctl_sifname, NULL }, 1072 1073 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1074 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1075 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1076 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1077 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1078 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1079 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1080 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1081 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1082 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1083 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1084 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1085 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1086 1087 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD | IPI_REPL, 1088 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1089 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1090 IF_CMD, ip_sioctl_get_muxid, NULL }, 1091 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1092 IPI_PRIV | IPI_WR | IPI_REPL, 1093 IF_CMD, ip_sioctl_muxid, NULL }, 1094 1095 /* Both if and lif variants share same func */ 1096 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1097 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1098 /* Both if and lif variants share same func */ 1099 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1100 IPI_PRIV | IPI_WR | IPI_REPL, 1101 IF_CMD, ip_sioctl_slifindex, NULL }, 1102 1103 /* copyin size cannot be coded for SIOCGIFCONF */ 1104 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 1105 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1106 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1107 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1108 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1109 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1110 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1111 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1112 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1113 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1114 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1115 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1116 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1117 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1118 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1119 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1120 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1121 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1122 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1123 1124 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1125 IPI_PRIV | IPI_WR | IPI_REPL, 1126 LIF_CMD, ip_sioctl_removeif, 1127 ip_sioctl_removeif_restart }, 1128 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1129 IPI_GET_CMD | IPI_PRIV | IPI_WR | IPI_REPL, 1130 LIF_CMD, ip_sioctl_addif, NULL }, 1131 #define SIOCLIFADDR_NDX 112 1132 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1133 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1134 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1135 IPI_GET_CMD | IPI_REPL, 1136 LIF_CMD, ip_sioctl_get_addr, NULL }, 1137 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1138 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1139 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1140 IPI_GET_CMD | IPI_REPL, 1141 LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1142 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1143 IPI_PRIV | IPI_WR | IPI_REPL, 1144 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1145 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1146 IPI_GET_CMD | IPI_MODOK | IPI_REPL, 1147 LIF_CMD, ip_sioctl_get_flags, NULL }, 1148 1149 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1150 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1151 1152 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1153 ip_sioctl_get_lifconf, NULL }, 1154 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1155 LIF_CMD, ip_sioctl_mtu, NULL }, 1156 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD | IPI_REPL, 1157 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1158 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1159 IPI_GET_CMD | IPI_REPL, 1160 LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1161 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1162 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1163 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1164 IPI_GET_CMD | IPI_REPL, 1165 LIF_CMD, ip_sioctl_get_netmask, NULL }, 1166 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1167 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1168 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1169 IPI_GET_CMD | IPI_REPL, 1170 LIF_CMD, ip_sioctl_get_metric, NULL }, 1171 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1172 LIF_CMD, ip_sioctl_metric, NULL }, 1173 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1174 IPI_PRIV | IPI_WR | IPI_MODOK | IPI_REPL, 1175 LIF_CMD, ip_sioctl_slifname, 1176 ip_sioctl_slifname_restart }, 1177 1178 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD | IPI_REPL, 1179 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1180 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1181 IPI_GET_CMD | IPI_REPL, 1182 LIF_CMD, ip_sioctl_get_muxid, NULL }, 1183 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1184 IPI_PRIV | IPI_WR | IPI_REPL, 1185 LIF_CMD, ip_sioctl_muxid, NULL }, 1186 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1187 IPI_GET_CMD | IPI_REPL, 1188 LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1189 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1190 IPI_PRIV | IPI_WR | IPI_REPL, 1191 LIF_CMD, ip_sioctl_slifindex, 0 }, 1192 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1193 LIF_CMD, ip_sioctl_token, NULL }, 1194 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1195 IPI_GET_CMD | IPI_REPL, 1196 LIF_CMD, ip_sioctl_get_token, NULL }, 1197 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1198 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1199 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1200 IPI_GET_CMD | IPI_REPL, 1201 LIF_CMD, ip_sioctl_get_subnet, NULL }, 1202 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1203 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1204 1205 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1206 IPI_GET_CMD | IPI_REPL, 1207 LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1208 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1209 LIF_CMD, ip_siocdelndp_v6, NULL }, 1210 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1211 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1212 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1213 LIF_CMD, ip_siocsetndp_v6, NULL }, 1214 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1215 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1216 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1217 MISC_CMD, ip_sioctl_tonlink, NULL }, 1218 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1219 MISC_CMD, ip_sioctl_tmysite, NULL }, 1220 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), IPI_REPL, 1221 TUN_CMD, ip_sioctl_tunparam, NULL }, 1222 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1223 IPI_PRIV | IPI_WR, 1224 TUN_CMD, ip_sioctl_tunparam, NULL }, 1225 1226 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1227 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1228 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1229 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1230 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1231 1232 /* 153 */ { SIOCLIFFAILOVER, sizeof (struct lifreq), 1233 IPI_PRIV | IPI_WR | IPI_REPL, 1234 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1235 /* 154 */ { SIOCLIFFAILBACK, sizeof (struct lifreq), 1236 IPI_PRIV | IPI_WR | IPI_REPL, 1237 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1238 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1239 IPI_PRIV | IPI_WR, 1240 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1241 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1242 IPI_GET_CMD | IPI_REPL, 1243 LIF_CMD, ip_sioctl_get_groupname, NULL }, 1244 /* 157 */ { SIOCGLIFOINDEX, sizeof (struct lifreq), 1245 IPI_GET_CMD | IPI_REPL, 1246 LIF_CMD, ip_sioctl_get_oindex, NULL }, 1247 1248 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1249 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1250 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1251 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1252 1253 /* 161 */ { SIOCSLIFOINDEX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1254 LIF_CMD, ip_sioctl_slifoindex, NULL }, 1255 1256 /* These are handled in ip_sioctl_copyin_setup itself */ 1257 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1258 MISC_CMD, NULL, NULL }, 1259 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1260 MISC_CMD, NULL, NULL }, 1261 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1262 1263 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1264 ip_sioctl_get_lifconf, NULL }, 1265 1266 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV, 1267 MISC_CMD, ip_sioctl_xarp, NULL }, 1268 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD | IPI_REPL, 1269 MISC_CMD, ip_sioctl_xarp, NULL }, 1270 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV, 1271 MISC_CMD, ip_sioctl_xarp, NULL }, 1272 1273 /* SIOCPOPSOCKFS is not handled by IP */ 1274 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1275 1276 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1277 IPI_GET_CMD | IPI_REPL, 1278 LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1279 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1280 IPI_PRIV | IPI_WR | IPI_REPL, 1281 LIF_CMD, ip_sioctl_slifzone, 1282 ip_sioctl_slifzone_restart }, 1283 /* 172-174 are SCTP ioctls and not handled by IP */ 1284 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1285 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1286 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1287 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1288 IPI_GET_CMD, LIF_CMD, 1289 ip_sioctl_get_lifusesrc, 0 }, 1290 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1291 IPI_PRIV | IPI_WR, 1292 LIF_CMD, ip_sioctl_slifusesrc, 1293 NULL }, 1294 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1295 ip_sioctl_get_lifsrcof, NULL }, 1296 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1297 MISC_CMD, ip_sioctl_msfilter, NULL }, 1298 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1299 MISC_CMD, ip_sioctl_msfilter, NULL }, 1300 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1301 MISC_CMD, ip_sioctl_msfilter, NULL }, 1302 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1303 MISC_CMD, ip_sioctl_msfilter, NULL }, 1304 /* 182 */ { SIOCSIPMPFAILBACK, sizeof (int), IPI_PRIV, MISC_CMD, 1305 ip_sioctl_set_ipmpfailback, NULL } 1306 }; 1307 1308 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1309 1310 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1311 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1312 IPI_GET_CMD | IPI_REPL, TUN_CMD, ip_sioctl_tunparam, NULL }, 1313 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1314 TUN_CMD, ip_sioctl_tunparam, NULL }, 1315 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1316 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1317 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1318 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1319 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1320 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1321 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1322 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_REPL | IPI_GET_CMD, 1323 MISC_CMD, mrt_ioctl}, 1324 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_REPL | IPI_GET_CMD, 1325 MISC_CMD, mrt_ioctl}, 1326 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_REPL | IPI_GET_CMD, 1327 MISC_CMD, mrt_ioctl} 1328 }; 1329 1330 int ip_misc_ioctl_count = 1331 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1332 1333 int conn_drain_nthreads; /* Number of drainers reqd. */ 1334 /* Settable in /etc/system */ 1335 /* Defined in ip_ire.c */ 1336 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1337 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1338 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1339 1340 static nv_t ire_nv_arr[] = { 1341 { IRE_BROADCAST, "BROADCAST" }, 1342 { IRE_LOCAL, "LOCAL" }, 1343 { IRE_LOOPBACK, "LOOPBACK" }, 1344 { IRE_CACHE, "CACHE" }, 1345 { IRE_DEFAULT, "DEFAULT" }, 1346 { IRE_PREFIX, "PREFIX" }, 1347 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1348 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1349 { IRE_HOST, "HOST" }, 1350 { 0 } 1351 }; 1352 1353 nv_t *ire_nv_tbl = ire_nv_arr; 1354 1355 /* Defined in ip_netinfo.c */ 1356 extern ddi_taskq_t *eventq_queue_nic; 1357 1358 /* Simple ICMP IP Header Template */ 1359 static ipha_t icmp_ipha = { 1360 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1361 }; 1362 1363 struct module_info ip_mod_info = { 1364 IP_MOD_ID, IP_MOD_NAME, 1, INFPSZ, 65536, 1024 1365 }; 1366 1367 /* 1368 * Duplicate static symbols within a module confuses mdb; so we avoid the 1369 * problem by making the symbols here distinct from those in udp.c. 1370 */ 1371 1372 static struct qinit iprinit = { 1373 (pfi_t)ip_rput, NULL, ip_open, ip_close, NULL, 1374 &ip_mod_info 1375 }; 1376 1377 static struct qinit ipwinit = { 1378 (pfi_t)ip_wput, (pfi_t)ip_wsrv, ip_open, ip_close, NULL, 1379 &ip_mod_info 1380 }; 1381 1382 static struct qinit iplrinit = { 1383 (pfi_t)ip_lrput, NULL, ip_open, ip_close, NULL, 1384 &ip_mod_info 1385 }; 1386 1387 static struct qinit iplwinit = { 1388 (pfi_t)ip_lwput, NULL, ip_open, ip_close, NULL, 1389 &ip_mod_info 1390 }; 1391 1392 struct streamtab ipinfo = { 1393 &iprinit, &ipwinit, &iplrinit, &iplwinit 1394 }; 1395 1396 #ifdef DEBUG 1397 static boolean_t skip_sctp_cksum = B_FALSE; 1398 #endif 1399 1400 /* 1401 * Prepend the zoneid using an ipsec_out_t for later use by functions like 1402 * ip_rput_v6(), ip_output(), etc. If the message 1403 * block already has a M_CTL at the front of it, then simply set the zoneid 1404 * appropriately. 1405 */ 1406 mblk_t * 1407 ip_prepend_zoneid(mblk_t *mp, zoneid_t zoneid, ip_stack_t *ipst) 1408 { 1409 mblk_t *first_mp; 1410 ipsec_out_t *io; 1411 1412 ASSERT(zoneid != ALL_ZONES); 1413 if (mp->b_datap->db_type == M_CTL) { 1414 io = (ipsec_out_t *)mp->b_rptr; 1415 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1416 io->ipsec_out_zoneid = zoneid; 1417 return (mp); 1418 } 1419 1420 first_mp = ipsec_alloc_ipsec_out(ipst->ips_netstack); 1421 if (first_mp == NULL) 1422 return (NULL); 1423 io = (ipsec_out_t *)first_mp->b_rptr; 1424 /* This is not a secure packet */ 1425 io->ipsec_out_secure = B_FALSE; 1426 io->ipsec_out_zoneid = zoneid; 1427 first_mp->b_cont = mp; 1428 return (first_mp); 1429 } 1430 1431 /* 1432 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1433 */ 1434 mblk_t * 1435 ip_copymsg(mblk_t *mp) 1436 { 1437 mblk_t *nmp; 1438 ipsec_info_t *in; 1439 1440 if (mp->b_datap->db_type != M_CTL) 1441 return (copymsg(mp)); 1442 1443 in = (ipsec_info_t *)mp->b_rptr; 1444 1445 /* 1446 * Note that M_CTL is also used for delivering ICMP error messages 1447 * upstream to transport layers. 1448 */ 1449 if (in->ipsec_info_type != IPSEC_OUT && 1450 in->ipsec_info_type != IPSEC_IN) 1451 return (copymsg(mp)); 1452 1453 nmp = copymsg(mp->b_cont); 1454 1455 if (in->ipsec_info_type == IPSEC_OUT) { 1456 return (ipsec_out_tag(mp, nmp, 1457 ((ipsec_out_t *)in)->ipsec_out_ns)); 1458 } else { 1459 return (ipsec_in_tag(mp, nmp, 1460 ((ipsec_in_t *)in)->ipsec_in_ns)); 1461 } 1462 } 1463 1464 /* Generate an ICMP fragmentation needed message. */ 1465 static void 1466 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu, zoneid_t zoneid, 1467 ip_stack_t *ipst) 1468 { 1469 icmph_t icmph; 1470 mblk_t *first_mp; 1471 boolean_t mctl_present; 1472 1473 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1474 1475 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 1476 if (mctl_present) 1477 freeb(first_mp); 1478 return; 1479 } 1480 1481 bzero(&icmph, sizeof (icmph_t)); 1482 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1483 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1484 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1485 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1486 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1487 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 1488 ipst); 1489 } 1490 1491 /* 1492 * icmp_inbound deals with ICMP messages in the following ways. 1493 * 1494 * 1) It needs to send a reply back and possibly delivering it 1495 * to the "interested" upper clients. 1496 * 2) It needs to send it to the upper clients only. 1497 * 3) It needs to change some values in IP only. 1498 * 4) It needs to change some values in IP and upper layers e.g TCP. 1499 * 1500 * We need to accomodate icmp messages coming in clear until we get 1501 * everything secure from the wire. If icmp_accept_clear_messages 1502 * is zero we check with the global policy and act accordingly. If 1503 * it is non-zero, we accept the message without any checks. But 1504 * *this does not mean* that this will be delivered to the upper 1505 * clients. By accepting we might send replies back, change our MTU 1506 * value etc. but delivery to the ULP/clients depends on their policy 1507 * dispositions. 1508 * 1509 * We handle the above 4 cases in the context of IPSEC in the 1510 * following way : 1511 * 1512 * 1) Send the reply back in the same way as the request came in. 1513 * If it came in encrypted, it goes out encrypted. If it came in 1514 * clear, it goes out in clear. Thus, this will prevent chosen 1515 * plain text attack. 1516 * 2) The client may or may not expect things to come in secure. 1517 * If it comes in secure, the policy constraints are checked 1518 * before delivering it to the upper layers. If it comes in 1519 * clear, ipsec_inbound_accept_clear will decide whether to 1520 * accept this in clear or not. In both the cases, if the returned 1521 * message (IP header + 8 bytes) that caused the icmp message has 1522 * AH/ESP headers, it is sent up to AH/ESP for validation before 1523 * sending up. If there are only 8 bytes of returned message, then 1524 * upper client will not be notified. 1525 * 3) Check with global policy to see whether it matches the constaints. 1526 * But this will be done only if icmp_accept_messages_in_clear is 1527 * zero. 1528 * 4) If we need to change both in IP and ULP, then the decision taken 1529 * while affecting the values in IP and while delivering up to TCP 1530 * should be the same. 1531 * 1532 * There are two cases. 1533 * 1534 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1535 * failed), we will not deliver it to the ULP, even though they 1536 * are *willing* to accept in *clear*. This is fine as our global 1537 * disposition to icmp messages asks us reject the datagram. 1538 * 1539 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1540 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1541 * to deliver it to ULP (policy failed), it can lead to 1542 * consistency problems. The cases known at this time are 1543 * ICMP_DESTINATION_UNREACHABLE messages with following code 1544 * values : 1545 * 1546 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1547 * and Upper layer rejects. Then the communication will 1548 * come to a stop. This is solved by making similar decisions 1549 * at both levels. Currently, when we are unable to deliver 1550 * to the Upper Layer (due to policy failures) while IP has 1551 * adjusted ire_max_frag, the next outbound datagram would 1552 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1553 * will be with the right level of protection. Thus the right 1554 * value will be communicated even if we are not able to 1555 * communicate when we get from the wire initially. But this 1556 * assumes there would be at least one outbound datagram after 1557 * IP has adjusted its ire_max_frag value. To make things 1558 * simpler, we accept in clear after the validation of 1559 * AH/ESP headers. 1560 * 1561 * - Other ICMP ERRORS : We may not be able to deliver it to the 1562 * upper layer depending on the level of protection the upper 1563 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1564 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1565 * should be accepted in clear when the Upper layer expects secure. 1566 * Thus the communication may get aborted by some bad ICMP 1567 * packets. 1568 * 1569 * IPQoS Notes: 1570 * The only instance when a packet is sent for processing is when there 1571 * isn't an ICMP client and if we are interested in it. 1572 * If there is a client, IPPF processing will take place in the 1573 * ip_fanout_proto routine. 1574 * 1575 * Zones notes: 1576 * The packet is only processed in the context of the specified zone: typically 1577 * only this zone will reply to an echo request, and only interested clients in 1578 * this zone will receive a copy of the packet. This means that the caller must 1579 * call icmp_inbound() for each relevant zone. 1580 */ 1581 static void 1582 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1583 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1584 ill_t *recv_ill, zoneid_t zoneid) 1585 { 1586 icmph_t *icmph; 1587 ipha_t *ipha; 1588 int iph_hdr_length; 1589 int hdr_length; 1590 boolean_t interested; 1591 uint32_t ts; 1592 uchar_t *wptr; 1593 ipif_t *ipif; 1594 mblk_t *first_mp; 1595 ipsec_in_t *ii; 1596 ire_t *src_ire; 1597 boolean_t onlink; 1598 timestruc_t now; 1599 uint32_t ill_index; 1600 ip_stack_t *ipst; 1601 1602 ASSERT(ill != NULL); 1603 ipst = ill->ill_ipst; 1604 1605 first_mp = mp; 1606 if (mctl_present) { 1607 mp = first_mp->b_cont; 1608 ASSERT(mp != NULL); 1609 } 1610 1611 ipha = (ipha_t *)mp->b_rptr; 1612 if (ipst->ips_icmp_accept_clear_messages == 0) { 1613 first_mp = ipsec_check_global_policy(first_mp, NULL, 1614 ipha, NULL, mctl_present, ipst->ips_netstack); 1615 if (first_mp == NULL) 1616 return; 1617 } 1618 1619 /* 1620 * On a labeled system, we have to check whether the zone itself is 1621 * permitted to receive raw traffic. 1622 */ 1623 if (is_system_labeled()) { 1624 if (zoneid == ALL_ZONES) 1625 zoneid = tsol_packet_to_zoneid(mp); 1626 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1627 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1628 zoneid)); 1629 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1630 freemsg(first_mp); 1631 return; 1632 } 1633 } 1634 1635 /* 1636 * We have accepted the ICMP message. It means that we will 1637 * respond to the packet if needed. It may not be delivered 1638 * to the upper client depending on the policy constraints 1639 * and the disposition in ipsec_inbound_accept_clear. 1640 */ 1641 1642 ASSERT(ill != NULL); 1643 1644 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1645 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1646 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1647 /* Last chance to get real. */ 1648 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1649 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1650 freemsg(first_mp); 1651 return; 1652 } 1653 /* Refresh iph following the pullup. */ 1654 ipha = (ipha_t *)mp->b_rptr; 1655 } 1656 /* ICMP header checksum, including checksum field, should be zero. */ 1657 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1658 IP_CSUM(mp, iph_hdr_length, 0)) { 1659 BUMP_MIB(&ipst->ips_icmp_mib, icmpInCksumErrs); 1660 freemsg(first_mp); 1661 return; 1662 } 1663 /* The IP header will always be a multiple of four bytes */ 1664 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1665 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1666 icmph->icmph_code)); 1667 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1668 /* We will set "interested" to "true" if we want a copy */ 1669 interested = B_FALSE; 1670 switch (icmph->icmph_type) { 1671 case ICMP_ECHO_REPLY: 1672 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1673 break; 1674 case ICMP_DEST_UNREACHABLE: 1675 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1676 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1677 interested = B_TRUE; /* Pass up to transport */ 1678 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1679 break; 1680 case ICMP_SOURCE_QUENCH: 1681 interested = B_TRUE; /* Pass up to transport */ 1682 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1683 break; 1684 case ICMP_REDIRECT: 1685 if (!ipst->ips_ip_ignore_redirect) 1686 interested = B_TRUE; 1687 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1688 break; 1689 case ICMP_ECHO_REQUEST: 1690 /* 1691 * Whether to respond to echo requests that come in as IP 1692 * broadcasts or as IP multicast is subject to debate 1693 * (what isn't?). We aim to please, you pick it. 1694 * Default is do it. 1695 */ 1696 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1697 /* unicast: always respond */ 1698 interested = B_TRUE; 1699 } else if (CLASSD(ipha->ipha_dst)) { 1700 /* multicast: respond based on tunable */ 1701 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1702 } else if (broadcast) { 1703 /* broadcast: respond based on tunable */ 1704 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1705 } 1706 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1707 break; 1708 case ICMP_ROUTER_ADVERTISEMENT: 1709 case ICMP_ROUTER_SOLICITATION: 1710 break; 1711 case ICMP_TIME_EXCEEDED: 1712 interested = B_TRUE; /* Pass up to transport */ 1713 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1714 break; 1715 case ICMP_PARAM_PROBLEM: 1716 interested = B_TRUE; /* Pass up to transport */ 1717 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1718 break; 1719 case ICMP_TIME_STAMP_REQUEST: 1720 /* Response to Time Stamp Requests is local policy. */ 1721 if (ipst->ips_ip_g_resp_to_timestamp && 1722 /* So is whether to respond if it was an IP broadcast. */ 1723 (!broadcast || ipst->ips_ip_g_resp_to_timestamp_bcast)) { 1724 int tstamp_len = 3 * sizeof (uint32_t); 1725 1726 if (wptr + tstamp_len > mp->b_wptr) { 1727 if (!pullupmsg(mp, wptr + tstamp_len - 1728 mp->b_rptr)) { 1729 BUMP_MIB(ill->ill_ip_mib, 1730 ipIfStatsInDiscards); 1731 freemsg(first_mp); 1732 return; 1733 } 1734 /* Refresh ipha following the pullup. */ 1735 ipha = (ipha_t *)mp->b_rptr; 1736 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1737 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1738 } 1739 interested = B_TRUE; 1740 } 1741 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1742 break; 1743 case ICMP_TIME_STAMP_REPLY: 1744 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1745 break; 1746 case ICMP_INFO_REQUEST: 1747 /* Per RFC 1122 3.2.2.7, ignore this. */ 1748 case ICMP_INFO_REPLY: 1749 break; 1750 case ICMP_ADDRESS_MASK_REQUEST: 1751 if ((ipst->ips_ip_respond_to_address_mask_broadcast || 1752 !broadcast) && 1753 /* TODO m_pullup of complete header? */ 1754 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) { 1755 interested = B_TRUE; 1756 } 1757 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1758 break; 1759 case ICMP_ADDRESS_MASK_REPLY: 1760 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1761 break; 1762 default: 1763 interested = B_TRUE; /* Pass up to transport */ 1764 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1765 break; 1766 } 1767 /* See if there is an ICMP client. */ 1768 if (ipst->ips_ipcl_proto_fanout[IPPROTO_ICMP].connf_head != NULL) { 1769 /* If there is an ICMP client and we want one too, copy it. */ 1770 mblk_t *first_mp1; 1771 1772 if (!interested) { 1773 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1774 ip_policy, recv_ill, zoneid); 1775 return; 1776 } 1777 first_mp1 = ip_copymsg(first_mp); 1778 if (first_mp1 != NULL) { 1779 ip_fanout_proto(q, first_mp1, ill, ipha, 1780 0, mctl_present, ip_policy, recv_ill, zoneid); 1781 } 1782 } else if (!interested) { 1783 freemsg(first_mp); 1784 return; 1785 } else { 1786 /* 1787 * Initiate policy processing for this packet if ip_policy 1788 * is true. 1789 */ 1790 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 1791 ill_index = ill->ill_phyint->phyint_ifindex; 1792 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1793 if (mp == NULL) { 1794 if (mctl_present) { 1795 freeb(first_mp); 1796 } 1797 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1798 return; 1799 } 1800 } 1801 } 1802 /* We want to do something with it. */ 1803 /* Check db_ref to make sure we can modify the packet. */ 1804 if (mp->b_datap->db_ref > 1) { 1805 mblk_t *first_mp1; 1806 1807 first_mp1 = ip_copymsg(first_mp); 1808 freemsg(first_mp); 1809 if (!first_mp1) { 1810 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1811 return; 1812 } 1813 first_mp = first_mp1; 1814 if (mctl_present) { 1815 mp = first_mp->b_cont; 1816 ASSERT(mp != NULL); 1817 } else { 1818 mp = first_mp; 1819 } 1820 ipha = (ipha_t *)mp->b_rptr; 1821 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1822 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1823 } 1824 switch (icmph->icmph_type) { 1825 case ICMP_ADDRESS_MASK_REQUEST: 1826 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1827 if (ipif == NULL) { 1828 freemsg(first_mp); 1829 return; 1830 } 1831 /* 1832 * outging interface must be IPv4 1833 */ 1834 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1835 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1836 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1837 ipif_refrele(ipif); 1838 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1839 break; 1840 case ICMP_ECHO_REQUEST: 1841 icmph->icmph_type = ICMP_ECHO_REPLY; 1842 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1843 break; 1844 case ICMP_TIME_STAMP_REQUEST: { 1845 uint32_t *tsp; 1846 1847 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1848 tsp = (uint32_t *)wptr; 1849 tsp++; /* Skip past 'originate time' */ 1850 /* Compute # of milliseconds since midnight */ 1851 gethrestime(&now); 1852 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1853 now.tv_nsec / (NANOSEC / MILLISEC); 1854 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1855 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1856 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1857 break; 1858 } 1859 default: 1860 ipha = (ipha_t *)&icmph[1]; 1861 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1862 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1863 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1864 freemsg(first_mp); 1865 return; 1866 } 1867 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1868 ipha = (ipha_t *)&icmph[1]; 1869 } 1870 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1871 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1872 freemsg(first_mp); 1873 return; 1874 } 1875 hdr_length = IPH_HDR_LENGTH(ipha); 1876 if (hdr_length < sizeof (ipha_t)) { 1877 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1878 freemsg(first_mp); 1879 return; 1880 } 1881 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1882 if (!pullupmsg(mp, 1883 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1884 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1885 freemsg(first_mp); 1886 return; 1887 } 1888 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1889 ipha = (ipha_t *)&icmph[1]; 1890 } 1891 switch (icmph->icmph_type) { 1892 case ICMP_REDIRECT: 1893 /* 1894 * As there is no upper client to deliver, we don't 1895 * need the first_mp any more. 1896 */ 1897 if (mctl_present) { 1898 freeb(first_mp); 1899 } 1900 icmp_redirect(ill, mp); 1901 return; 1902 case ICMP_DEST_UNREACHABLE: 1903 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1904 if (!icmp_inbound_too_big(icmph, ipha, ill, 1905 zoneid, mp, iph_hdr_length, ipst)) { 1906 freemsg(first_mp); 1907 return; 1908 } 1909 /* 1910 * icmp_inbound_too_big() may alter mp. 1911 * Resynch ipha and icmph accordingly. 1912 */ 1913 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1914 ipha = (ipha_t *)&icmph[1]; 1915 } 1916 /* FALLTHRU */ 1917 default : 1918 /* 1919 * IPQoS notes: Since we have already done IPQoS 1920 * processing we don't want to do it again in 1921 * the fanout routines called by 1922 * icmp_inbound_error_fanout, hence the last 1923 * argument, ip_policy, is B_FALSE. 1924 */ 1925 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 1926 ipha, iph_hdr_length, hdr_length, mctl_present, 1927 B_FALSE, recv_ill, zoneid); 1928 } 1929 return; 1930 } 1931 /* Send out an ICMP packet */ 1932 icmph->icmph_checksum = 0; 1933 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 1934 if (broadcast || CLASSD(ipha->ipha_dst)) { 1935 ipif_t *ipif_chosen; 1936 /* 1937 * Make it look like it was directed to us, so we don't look 1938 * like a fool with a broadcast or multicast source address. 1939 */ 1940 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1941 /* 1942 * Make sure that we haven't grabbed an interface that's DOWN. 1943 */ 1944 if (ipif != NULL) { 1945 ipif_chosen = ipif_select_source(ipif->ipif_ill, 1946 ipha->ipha_src, zoneid); 1947 if (ipif_chosen != NULL) { 1948 ipif_refrele(ipif); 1949 ipif = ipif_chosen; 1950 } 1951 } 1952 if (ipif == NULL) { 1953 ip0dbg(("icmp_inbound: " 1954 "No source for broadcast/multicast:\n" 1955 "\tsrc 0x%x dst 0x%x ill %p " 1956 "ipif_lcl_addr 0x%x\n", 1957 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 1958 (void *)ill, 1959 ill->ill_ipif->ipif_lcl_addr)); 1960 freemsg(first_mp); 1961 return; 1962 } 1963 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1964 ipha->ipha_dst = ipif->ipif_src_addr; 1965 ipif_refrele(ipif); 1966 } 1967 /* Reset time to live. */ 1968 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 1969 { 1970 /* Swap source and destination addresses */ 1971 ipaddr_t tmp; 1972 1973 tmp = ipha->ipha_src; 1974 ipha->ipha_src = ipha->ipha_dst; 1975 ipha->ipha_dst = tmp; 1976 } 1977 ipha->ipha_ident = 0; 1978 if (!IS_SIMPLE_IPH(ipha)) 1979 icmp_options_update(ipha); 1980 1981 /* 1982 * ICMP echo replies should go out on the same interface 1983 * the request came on as probes used by in.mpathd for detecting 1984 * NIC failures are ECHO packets. We turn-off load spreading 1985 * by setting ipsec_in_attach_if to B_TRUE, which is copied 1986 * to ipsec_out_attach_if by ipsec_in_to_out called later in this 1987 * function. This is in turn handled by ip_wput and ip_newroute 1988 * to make sure that the packet goes out on the interface it came 1989 * in on. If we don't turnoff load spreading, the packets might get 1990 * dropped if there are no non-FAILED/INACTIVE interfaces for it 1991 * to go out and in.mpathd would wrongly detect a failure or 1992 * mis-detect a NIC failure for link failure. As load spreading 1993 * can happen only if ill_group is not NULL, we do only for 1994 * that case and this does not affect the normal case. 1995 * 1996 * We turn off load spreading only on echo packets that came from 1997 * on-link hosts. If the interface route has been deleted, this will 1998 * not be enforced as we can't do much. For off-link hosts, as the 1999 * default routes in IPv4 does not typically have an ire_ipif 2000 * pointer, we can't force MATCH_IRE_ILL in ip_wput/ip_newroute. 2001 * Moreover, expecting a default route through this interface may 2002 * not be correct. We use ipha_dst because of the swap above. 2003 */ 2004 onlink = B_FALSE; 2005 if (icmph->icmph_type == ICMP_ECHO_REPLY && ill->ill_group != NULL) { 2006 /* 2007 * First, we need to make sure that it is not one of our 2008 * local addresses. If we set onlink when it is one of 2009 * our local addresses, we will end up creating IRE_CACHES 2010 * for one of our local addresses. Then, we will never 2011 * accept packets for them afterwards. 2012 */ 2013 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_LOCAL, 2014 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2015 if (src_ire == NULL) { 2016 ipif = ipif_get_next_ipif(NULL, ill); 2017 if (ipif == NULL) { 2018 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2019 freemsg(mp); 2020 return; 2021 } 2022 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 2023 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 2024 NULL, MATCH_IRE_ILL | MATCH_IRE_TYPE, ipst); 2025 ipif_refrele(ipif); 2026 if (src_ire != NULL) { 2027 onlink = B_TRUE; 2028 ire_refrele(src_ire); 2029 } 2030 } else { 2031 ire_refrele(src_ire); 2032 } 2033 } 2034 if (!mctl_present) { 2035 /* 2036 * This packet should go out the same way as it 2037 * came in i.e in clear. To make sure that global 2038 * policy will not be applied to this in ip_wput_ire, 2039 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2040 */ 2041 ASSERT(first_mp == mp); 2042 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2043 if (first_mp == NULL) { 2044 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2045 freemsg(mp); 2046 return; 2047 } 2048 ii = (ipsec_in_t *)first_mp->b_rptr; 2049 2050 /* This is not a secure packet */ 2051 ii->ipsec_in_secure = B_FALSE; 2052 if (onlink) { 2053 ii->ipsec_in_attach_if = B_TRUE; 2054 ii->ipsec_in_ill_index = 2055 ill->ill_phyint->phyint_ifindex; 2056 ii->ipsec_in_rill_index = 2057 recv_ill->ill_phyint->phyint_ifindex; 2058 } 2059 first_mp->b_cont = mp; 2060 } else if (onlink) { 2061 ii = (ipsec_in_t *)first_mp->b_rptr; 2062 ii->ipsec_in_attach_if = B_TRUE; 2063 ii->ipsec_in_ill_index = ill->ill_phyint->phyint_ifindex; 2064 ii->ipsec_in_rill_index = recv_ill->ill_phyint->phyint_ifindex; 2065 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2066 } else { 2067 ii = (ipsec_in_t *)first_mp->b_rptr; 2068 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2069 } 2070 ii->ipsec_in_zoneid = zoneid; 2071 ASSERT(zoneid != ALL_ZONES); 2072 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2073 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2074 return; 2075 } 2076 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2077 put(WR(q), first_mp); 2078 } 2079 2080 static ipaddr_t 2081 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2082 { 2083 conn_t *connp; 2084 connf_t *connfp; 2085 ipaddr_t nexthop_addr = INADDR_ANY; 2086 int hdr_length = IPH_HDR_LENGTH(ipha); 2087 uint16_t *up; 2088 uint32_t ports; 2089 ip_stack_t *ipst = ill->ill_ipst; 2090 2091 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2092 switch (ipha->ipha_protocol) { 2093 case IPPROTO_TCP: 2094 { 2095 tcph_t *tcph; 2096 2097 /* do a reverse lookup */ 2098 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2099 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2100 TCPS_LISTEN, ipst); 2101 break; 2102 } 2103 case IPPROTO_UDP: 2104 { 2105 uint32_t dstport, srcport; 2106 2107 ((uint16_t *)&ports)[0] = up[1]; 2108 ((uint16_t *)&ports)[1] = up[0]; 2109 2110 /* Extract ports in net byte order */ 2111 dstport = htons(ntohl(ports) & 0xFFFF); 2112 srcport = htons(ntohl(ports) >> 16); 2113 2114 connfp = &ipst->ips_ipcl_udp_fanout[ 2115 IPCL_UDP_HASH(dstport, ipst)]; 2116 mutex_enter(&connfp->connf_lock); 2117 connp = connfp->connf_head; 2118 2119 /* do a reverse lookup */ 2120 while ((connp != NULL) && 2121 (!IPCL_UDP_MATCH(connp, dstport, 2122 ipha->ipha_src, srcport, ipha->ipha_dst) || 2123 !IPCL_ZONE_MATCH(connp, zoneid))) { 2124 connp = connp->conn_next; 2125 } 2126 if (connp != NULL) 2127 CONN_INC_REF(connp); 2128 mutex_exit(&connfp->connf_lock); 2129 break; 2130 } 2131 case IPPROTO_SCTP: 2132 { 2133 in6_addr_t map_src, map_dst; 2134 2135 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2136 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2137 ((uint16_t *)&ports)[0] = up[1]; 2138 ((uint16_t *)&ports)[1] = up[0]; 2139 2140 connp = sctp_find_conn(&map_src, &map_dst, ports, 2141 zoneid, ipst->ips_netstack->netstack_sctp); 2142 if (connp == NULL) { 2143 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2144 zoneid, ports, ipha, ipst); 2145 } else { 2146 CONN_INC_REF(connp); 2147 SCTP_REFRELE(CONN2SCTP(connp)); 2148 } 2149 break; 2150 } 2151 default: 2152 { 2153 ipha_t ripha; 2154 2155 ripha.ipha_src = ipha->ipha_dst; 2156 ripha.ipha_dst = ipha->ipha_src; 2157 ripha.ipha_protocol = ipha->ipha_protocol; 2158 2159 connfp = &ipst->ips_ipcl_proto_fanout[ 2160 ipha->ipha_protocol]; 2161 mutex_enter(&connfp->connf_lock); 2162 connp = connfp->connf_head; 2163 for (connp = connfp->connf_head; connp != NULL; 2164 connp = connp->conn_next) { 2165 if (IPCL_PROTO_MATCH(connp, 2166 ipha->ipha_protocol, &ripha, ill, 2167 0, zoneid)) { 2168 CONN_INC_REF(connp); 2169 break; 2170 } 2171 } 2172 mutex_exit(&connfp->connf_lock); 2173 } 2174 } 2175 if (connp != NULL) { 2176 if (connp->conn_nexthop_set) 2177 nexthop_addr = connp->conn_nexthop_v4; 2178 CONN_DEC_REF(connp); 2179 } 2180 return (nexthop_addr); 2181 } 2182 2183 /* Table from RFC 1191 */ 2184 static int icmp_frag_size_table[] = 2185 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2186 2187 /* 2188 * Process received ICMP Packet too big. 2189 * After updating any IRE it does the fanout to any matching transport streams. 2190 * Assumes the message has been pulled up till the IP header that caused 2191 * the error. 2192 * 2193 * Returns B_FALSE on failure and B_TRUE on success. 2194 */ 2195 static boolean_t 2196 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2197 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length, 2198 ip_stack_t *ipst) 2199 { 2200 ire_t *ire, *first_ire; 2201 int mtu; 2202 int hdr_length; 2203 ipaddr_t nexthop_addr; 2204 2205 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2206 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2207 ASSERT(ill != NULL); 2208 2209 hdr_length = IPH_HDR_LENGTH(ipha); 2210 2211 /* Drop if the original packet contained a source route */ 2212 if (ip_source_route_included(ipha)) { 2213 return (B_FALSE); 2214 } 2215 /* 2216 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport 2217 * header. 2218 */ 2219 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2220 mp->b_wptr) { 2221 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2222 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2223 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2224 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2225 return (B_FALSE); 2226 } 2227 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2228 ipha = (ipha_t *)&icmph[1]; 2229 } 2230 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2231 if (nexthop_addr != INADDR_ANY) { 2232 /* nexthop set */ 2233 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2234 nexthop_addr, 0, NULL, ALL_ZONES, MBLK_GETLABEL(mp), 2235 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, ipst); 2236 } else { 2237 /* nexthop not set */ 2238 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2239 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2240 } 2241 2242 if (!first_ire) { 2243 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2244 ntohl(ipha->ipha_dst))); 2245 return (B_FALSE); 2246 } 2247 /* Check for MTU discovery advice as described in RFC 1191 */ 2248 mtu = ntohs(icmph->icmph_du_mtu); 2249 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2250 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2251 ire = ire->ire_next) { 2252 /* 2253 * Look for the connection to which this ICMP message is 2254 * directed. If it has the IP_NEXTHOP option set, then the 2255 * search is limited to IREs with the MATCH_IRE_PRIVATE 2256 * option. Else the search is limited to regular IREs. 2257 */ 2258 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2259 (nexthop_addr != ire->ire_gateway_addr)) || 2260 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2261 (nexthop_addr != INADDR_ANY))) 2262 continue; 2263 2264 mutex_enter(&ire->ire_lock); 2265 if (icmph->icmph_du_zero == 0 && mtu > 68) { 2266 /* Reduce the IRE max frag value as advised. */ 2267 ip1dbg(("Received mtu from router: %d (was %d)\n", 2268 mtu, ire->ire_max_frag)); 2269 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2270 } else { 2271 uint32_t length; 2272 int i; 2273 2274 /* 2275 * Use the table from RFC 1191 to figure out 2276 * the next "plateau" based on the length in 2277 * the original IP packet. 2278 */ 2279 length = ntohs(ipha->ipha_length); 2280 if (ire->ire_max_frag <= length && 2281 ire->ire_max_frag >= length - hdr_length) { 2282 /* 2283 * Handle broken BSD 4.2 systems that 2284 * return the wrong iph_length in ICMP 2285 * errors. 2286 */ 2287 ip1dbg(("Wrong mtu: sent %d, ire %d\n", 2288 length, ire->ire_max_frag)); 2289 length -= hdr_length; 2290 } 2291 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2292 if (length > icmp_frag_size_table[i]) 2293 break; 2294 } 2295 if (i == A_CNT(icmp_frag_size_table)) { 2296 /* Smaller than 68! */ 2297 ip1dbg(("Too big for packet size %d\n", 2298 length)); 2299 ire->ire_max_frag = MIN(ire->ire_max_frag, 576); 2300 ire->ire_frag_flag = 0; 2301 } else { 2302 mtu = icmp_frag_size_table[i]; 2303 ip1dbg(("Calculated mtu %d, packet size %d, " 2304 "before %d", mtu, length, 2305 ire->ire_max_frag)); 2306 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2307 ip1dbg((", after %d\n", ire->ire_max_frag)); 2308 } 2309 /* Record the new max frag size for the ULP. */ 2310 icmph->icmph_du_zero = 0; 2311 icmph->icmph_du_mtu = 2312 htons((uint16_t)ire->ire_max_frag); 2313 } 2314 mutex_exit(&ire->ire_lock); 2315 } 2316 rw_exit(&first_ire->ire_bucket->irb_lock); 2317 ire_refrele(first_ire); 2318 return (B_TRUE); 2319 } 2320 2321 /* 2322 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2323 * calls this function. 2324 */ 2325 static mblk_t * 2326 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2327 { 2328 ipha_t *ipha; 2329 icmph_t *icmph; 2330 ipha_t *in_ipha; 2331 int length; 2332 2333 ASSERT(mp->b_datap->db_type == M_DATA); 2334 2335 /* 2336 * For Self-encapsulated packets, we added an extra IP header 2337 * without the options. Inner IP header is the one from which 2338 * the outer IP header was formed. Thus, we need to remove the 2339 * outer IP header. To do this, we pullup the whole message 2340 * and overlay whatever follows the outer IP header over the 2341 * outer IP header. 2342 */ 2343 2344 if (!pullupmsg(mp, -1)) 2345 return (NULL); 2346 2347 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2348 ipha = (ipha_t *)&icmph[1]; 2349 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2350 2351 /* 2352 * The length that we want to overlay is following the inner 2353 * IP header. Subtracting the IP header + icmp header + outer 2354 * IP header's length should give us the length that we want to 2355 * overlay. 2356 */ 2357 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2358 hdr_length; 2359 /* 2360 * Overlay whatever follows the inner header over the 2361 * outer header. 2362 */ 2363 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2364 2365 /* Set the wptr to account for the outer header */ 2366 mp->b_wptr -= hdr_length; 2367 return (mp); 2368 } 2369 2370 /* 2371 * Try to pass the ICMP message upstream in case the ULP cares. 2372 * 2373 * If the packet that caused the ICMP error is secure, we send 2374 * it to AH/ESP to make sure that the attached packet has a 2375 * valid association. ipha in the code below points to the 2376 * IP header of the packet that caused the error. 2377 * 2378 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2379 * in the context of IPSEC. Normally we tell the upper layer 2380 * whenever we send the ire (including ip_bind), the IPSEC header 2381 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2382 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2383 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2384 * same thing. As TCP has the IPSEC options size that needs to be 2385 * adjusted, we just pass the MTU unchanged. 2386 * 2387 * IFN could have been generated locally or by some router. 2388 * 2389 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2390 * This happens because IP adjusted its value of MTU on an 2391 * earlier IFN message and could not tell the upper layer, 2392 * the new adjusted value of MTU e.g. Packet was encrypted 2393 * or there was not enough information to fanout to upper 2394 * layers. Thus on the next outbound datagram, ip_wput_ire 2395 * generates the IFN, where IPSEC processing has *not* been 2396 * done. 2397 * 2398 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2399 * could have generated this. This happens because ire_max_frag 2400 * value in IP was set to a new value, while the IPSEC processing 2401 * was being done and after we made the fragmentation check in 2402 * ip_wput_ire. Thus on return from IPSEC processing, 2403 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2404 * and generates the IFN. As IPSEC processing is over, we fanout 2405 * to AH/ESP to remove the header. 2406 * 2407 * In both these cases, ipsec_in_loopback will be set indicating 2408 * that IFN was generated locally. 2409 * 2410 * ROUTER : IFN could be secure or non-secure. 2411 * 2412 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2413 * packet in error has AH/ESP headers to validate the AH/ESP 2414 * headers. AH/ESP will verify whether there is a valid SA or 2415 * not and send it back. We will fanout again if we have more 2416 * data in the packet. 2417 * 2418 * If the packet in error does not have AH/ESP, we handle it 2419 * like any other case. 2420 * 2421 * * NON_SECURE : If the packet in error has AH/ESP headers, 2422 * we attach a dummy ipsec_in and send it up to AH/ESP 2423 * for validation. AH/ESP will verify whether there is a 2424 * valid SA or not and send it back. We will fanout again if 2425 * we have more data in the packet. 2426 * 2427 * If the packet in error does not have AH/ESP, we handle it 2428 * like any other case. 2429 */ 2430 static void 2431 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2432 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2433 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2434 zoneid_t zoneid) 2435 { 2436 uint16_t *up; /* Pointer to ports in ULP header */ 2437 uint32_t ports; /* reversed ports for fanout */ 2438 ipha_t ripha; /* With reversed addresses */ 2439 mblk_t *first_mp; 2440 ipsec_in_t *ii; 2441 tcph_t *tcph; 2442 conn_t *connp; 2443 ip_stack_t *ipst; 2444 2445 ASSERT(ill != NULL); 2446 2447 ASSERT(recv_ill != NULL); 2448 ipst = recv_ill->ill_ipst; 2449 2450 first_mp = mp; 2451 if (mctl_present) { 2452 mp = first_mp->b_cont; 2453 ASSERT(mp != NULL); 2454 2455 ii = (ipsec_in_t *)first_mp->b_rptr; 2456 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2457 } else { 2458 ii = NULL; 2459 } 2460 2461 switch (ipha->ipha_protocol) { 2462 case IPPROTO_UDP: 2463 /* 2464 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2465 * transport header. 2466 */ 2467 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2468 mp->b_wptr) { 2469 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2470 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2471 goto discard_pkt; 2472 } 2473 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2474 ipha = (ipha_t *)&icmph[1]; 2475 } 2476 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2477 2478 /* 2479 * Attempt to find a client stream based on port. 2480 * Note that we do a reverse lookup since the header is 2481 * in the form we sent it out. 2482 * The ripha header is only used for the IP_UDP_MATCH and we 2483 * only set the src and dst addresses and protocol. 2484 */ 2485 ripha.ipha_src = ipha->ipha_dst; 2486 ripha.ipha_dst = ipha->ipha_src; 2487 ripha.ipha_protocol = ipha->ipha_protocol; 2488 ((uint16_t *)&ports)[0] = up[1]; 2489 ((uint16_t *)&ports)[1] = up[0]; 2490 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2491 ntohl(ipha->ipha_src), ntohs(up[0]), 2492 ntohl(ipha->ipha_dst), ntohs(up[1]), 2493 icmph->icmph_type, icmph->icmph_code)); 2494 2495 /* Have to change db_type after any pullupmsg */ 2496 DB_TYPE(mp) = M_CTL; 2497 2498 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2499 mctl_present, ip_policy, recv_ill, zoneid); 2500 return; 2501 2502 case IPPROTO_TCP: 2503 /* 2504 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2505 * transport header. 2506 */ 2507 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2508 mp->b_wptr) { 2509 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2510 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2511 goto discard_pkt; 2512 } 2513 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2514 ipha = (ipha_t *)&icmph[1]; 2515 } 2516 /* 2517 * Find a TCP client stream for this packet. 2518 * Note that we do a reverse lookup since the header is 2519 * in the form we sent it out. 2520 */ 2521 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2522 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN, 2523 ipst); 2524 if (connp == NULL) 2525 goto discard_pkt; 2526 2527 /* Have to change db_type after any pullupmsg */ 2528 DB_TYPE(mp) = M_CTL; 2529 squeue_fill(connp->conn_sqp, first_mp, tcp_input, 2530 connp, SQTAG_TCP_INPUT_ICMP_ERR); 2531 return; 2532 2533 case IPPROTO_SCTP: 2534 /* 2535 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2536 * transport header. 2537 */ 2538 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2539 mp->b_wptr) { 2540 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2541 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2542 goto discard_pkt; 2543 } 2544 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2545 ipha = (ipha_t *)&icmph[1]; 2546 } 2547 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2548 /* 2549 * Find a SCTP client stream for this packet. 2550 * Note that we do a reverse lookup since the header is 2551 * in the form we sent it out. 2552 * The ripha header is only used for the matching and we 2553 * only set the src and dst addresses, protocol, and version. 2554 */ 2555 ripha.ipha_src = ipha->ipha_dst; 2556 ripha.ipha_dst = ipha->ipha_src; 2557 ripha.ipha_protocol = ipha->ipha_protocol; 2558 ripha.ipha_version_and_hdr_length = 2559 ipha->ipha_version_and_hdr_length; 2560 ((uint16_t *)&ports)[0] = up[1]; 2561 ((uint16_t *)&ports)[1] = up[0]; 2562 2563 /* Have to change db_type after any pullupmsg */ 2564 DB_TYPE(mp) = M_CTL; 2565 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2566 mctl_present, ip_policy, zoneid); 2567 return; 2568 2569 case IPPROTO_ESP: 2570 case IPPROTO_AH: { 2571 int ipsec_rc; 2572 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2573 2574 /* 2575 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2576 * We will re-use the IPSEC_IN if it is already present as 2577 * AH/ESP will not affect any fields in the IPSEC_IN for 2578 * ICMP errors. If there is no IPSEC_IN, allocate a new 2579 * one and attach it in the front. 2580 */ 2581 if (ii != NULL) { 2582 /* 2583 * ip_fanout_proto_again converts the ICMP errors 2584 * that come back from AH/ESP to M_DATA so that 2585 * if it is non-AH/ESP and we do a pullupmsg in 2586 * this function, it would work. Convert it back 2587 * to M_CTL before we send up as this is a ICMP 2588 * error. This could have been generated locally or 2589 * by some router. Validate the inner IPSEC 2590 * headers. 2591 * 2592 * NOTE : ill_index is used by ip_fanout_proto_again 2593 * to locate the ill. 2594 */ 2595 ASSERT(ill != NULL); 2596 ii->ipsec_in_ill_index = 2597 ill->ill_phyint->phyint_ifindex; 2598 ii->ipsec_in_rill_index = 2599 recv_ill->ill_phyint->phyint_ifindex; 2600 DB_TYPE(first_mp->b_cont) = M_CTL; 2601 } else { 2602 /* 2603 * IPSEC_IN is not present. We attach a ipsec_in 2604 * message and send up to IPSEC for validating 2605 * and removing the IPSEC headers. Clear 2606 * ipsec_in_secure so that when we return 2607 * from IPSEC, we don't mistakenly think that this 2608 * is a secure packet came from the network. 2609 * 2610 * NOTE : ill_index is used by ip_fanout_proto_again 2611 * to locate the ill. 2612 */ 2613 ASSERT(first_mp == mp); 2614 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2615 if (first_mp == NULL) { 2616 freemsg(mp); 2617 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2618 return; 2619 } 2620 ii = (ipsec_in_t *)first_mp->b_rptr; 2621 2622 /* This is not a secure packet */ 2623 ii->ipsec_in_secure = B_FALSE; 2624 first_mp->b_cont = mp; 2625 DB_TYPE(mp) = M_CTL; 2626 ASSERT(ill != NULL); 2627 ii->ipsec_in_ill_index = 2628 ill->ill_phyint->phyint_ifindex; 2629 ii->ipsec_in_rill_index = 2630 recv_ill->ill_phyint->phyint_ifindex; 2631 } 2632 ip2dbg(("icmp_inbound_error: ipsec\n")); 2633 2634 if (!ipsec_loaded(ipss)) { 2635 ip_proto_not_sup(q, first_mp, 0, zoneid, ipst); 2636 return; 2637 } 2638 2639 if (ipha->ipha_protocol == IPPROTO_ESP) 2640 ipsec_rc = ipsecesp_icmp_error(first_mp); 2641 else 2642 ipsec_rc = ipsecah_icmp_error(first_mp); 2643 if (ipsec_rc == IPSEC_STATUS_FAILED) 2644 return; 2645 2646 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2647 return; 2648 } 2649 default: 2650 /* 2651 * The ripha header is only used for the lookup and we 2652 * only set the src and dst addresses and protocol. 2653 */ 2654 ripha.ipha_src = ipha->ipha_dst; 2655 ripha.ipha_dst = ipha->ipha_src; 2656 ripha.ipha_protocol = ipha->ipha_protocol; 2657 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2658 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2659 ntohl(ipha->ipha_dst), 2660 icmph->icmph_type, icmph->icmph_code)); 2661 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2662 ipha_t *in_ipha; 2663 2664 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2665 mp->b_wptr) { 2666 if (!pullupmsg(mp, (uchar_t *)ipha + 2667 hdr_length + sizeof (ipha_t) - 2668 mp->b_rptr)) { 2669 goto discard_pkt; 2670 } 2671 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2672 ipha = (ipha_t *)&icmph[1]; 2673 } 2674 /* 2675 * Caller has verified that length has to be 2676 * at least the size of IP header. 2677 */ 2678 ASSERT(hdr_length >= sizeof (ipha_t)); 2679 /* 2680 * Check the sanity of the inner IP header like 2681 * we did for the outer header. 2682 */ 2683 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2684 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2685 goto discard_pkt; 2686 } 2687 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2688 goto discard_pkt; 2689 } 2690 /* Check for Self-encapsulated tunnels */ 2691 if (in_ipha->ipha_src == ipha->ipha_src && 2692 in_ipha->ipha_dst == ipha->ipha_dst) { 2693 2694 mp = icmp_inbound_self_encap_error(mp, 2695 iph_hdr_length, hdr_length); 2696 if (mp == NULL) 2697 goto discard_pkt; 2698 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2699 ipha = (ipha_t *)&icmph[1]; 2700 hdr_length = IPH_HDR_LENGTH(ipha); 2701 /* 2702 * The packet in error is self-encapsualted. 2703 * And we are finding it further encapsulated 2704 * which we could not have possibly generated. 2705 */ 2706 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2707 goto discard_pkt; 2708 } 2709 icmp_inbound_error_fanout(q, ill, first_mp, 2710 icmph, ipha, iph_hdr_length, hdr_length, 2711 mctl_present, ip_policy, recv_ill, zoneid); 2712 return; 2713 } 2714 } 2715 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2716 ipha->ipha_protocol == IPPROTO_IPV6) && 2717 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2718 ii != NULL && 2719 ii->ipsec_in_loopback && 2720 ii->ipsec_in_secure) { 2721 /* 2722 * For IP tunnels that get a looped-back 2723 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2724 * reported new MTU to take into account the IPsec 2725 * headers protecting this configured tunnel. 2726 * 2727 * This allows the tunnel module (tun.c) to blindly 2728 * accept the MTU reported in an ICMP "too big" 2729 * message. 2730 * 2731 * Non-looped back ICMP messages will just be 2732 * handled by the security protocols (if needed), 2733 * and the first subsequent packet will hit this 2734 * path. 2735 */ 2736 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2737 ipsec_in_extra_length(first_mp)); 2738 } 2739 /* Have to change db_type after any pullupmsg */ 2740 DB_TYPE(mp) = M_CTL; 2741 2742 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2743 ip_policy, recv_ill, zoneid); 2744 return; 2745 } 2746 /* NOTREACHED */ 2747 discard_pkt: 2748 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2749 drop_pkt:; 2750 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2751 freemsg(first_mp); 2752 } 2753 2754 /* 2755 * Common IP options parser. 2756 * 2757 * Setup routine: fill in *optp with options-parsing state, then 2758 * tail-call ipoptp_next to return the first option. 2759 */ 2760 uint8_t 2761 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2762 { 2763 uint32_t totallen; /* total length of all options */ 2764 2765 totallen = ipha->ipha_version_and_hdr_length - 2766 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2767 totallen <<= 2; 2768 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2769 optp->ipoptp_end = optp->ipoptp_next + totallen; 2770 optp->ipoptp_flags = 0; 2771 return (ipoptp_next(optp)); 2772 } 2773 2774 /* 2775 * Common IP options parser: extract next option. 2776 */ 2777 uint8_t 2778 ipoptp_next(ipoptp_t *optp) 2779 { 2780 uint8_t *end = optp->ipoptp_end; 2781 uint8_t *cur = optp->ipoptp_next; 2782 uint8_t opt, len, pointer; 2783 2784 /* 2785 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2786 * has been corrupted. 2787 */ 2788 ASSERT(cur <= end); 2789 2790 if (cur == end) 2791 return (IPOPT_EOL); 2792 2793 opt = cur[IPOPT_OPTVAL]; 2794 2795 /* 2796 * Skip any NOP options. 2797 */ 2798 while (opt == IPOPT_NOP) { 2799 cur++; 2800 if (cur == end) 2801 return (IPOPT_EOL); 2802 opt = cur[IPOPT_OPTVAL]; 2803 } 2804 2805 if (opt == IPOPT_EOL) 2806 return (IPOPT_EOL); 2807 2808 /* 2809 * Option requiring a length. 2810 */ 2811 if ((cur + 1) >= end) { 2812 optp->ipoptp_flags |= IPOPTP_ERROR; 2813 return (IPOPT_EOL); 2814 } 2815 len = cur[IPOPT_OLEN]; 2816 if (len < 2) { 2817 optp->ipoptp_flags |= IPOPTP_ERROR; 2818 return (IPOPT_EOL); 2819 } 2820 optp->ipoptp_cur = cur; 2821 optp->ipoptp_len = len; 2822 optp->ipoptp_next = cur + len; 2823 if (cur + len > end) { 2824 optp->ipoptp_flags |= IPOPTP_ERROR; 2825 return (IPOPT_EOL); 2826 } 2827 2828 /* 2829 * For the options which require a pointer field, make sure 2830 * its there, and make sure it points to either something 2831 * inside this option, or the end of the option. 2832 */ 2833 switch (opt) { 2834 case IPOPT_RR: 2835 case IPOPT_TS: 2836 case IPOPT_LSRR: 2837 case IPOPT_SSRR: 2838 if (len <= IPOPT_OFFSET) { 2839 optp->ipoptp_flags |= IPOPTP_ERROR; 2840 return (opt); 2841 } 2842 pointer = cur[IPOPT_OFFSET]; 2843 if (pointer - 1 > len) { 2844 optp->ipoptp_flags |= IPOPTP_ERROR; 2845 return (opt); 2846 } 2847 break; 2848 } 2849 2850 /* 2851 * Sanity check the pointer field based on the type of the 2852 * option. 2853 */ 2854 switch (opt) { 2855 case IPOPT_RR: 2856 case IPOPT_SSRR: 2857 case IPOPT_LSRR: 2858 if (pointer < IPOPT_MINOFF_SR) 2859 optp->ipoptp_flags |= IPOPTP_ERROR; 2860 break; 2861 case IPOPT_TS: 2862 if (pointer < IPOPT_MINOFF_IT) 2863 optp->ipoptp_flags |= IPOPTP_ERROR; 2864 /* 2865 * Note that the Internet Timestamp option also 2866 * contains two four bit fields (the Overflow field, 2867 * and the Flag field), which follow the pointer 2868 * field. We don't need to check that these fields 2869 * fall within the length of the option because this 2870 * was implicitely done above. We've checked that the 2871 * pointer value is at least IPOPT_MINOFF_IT, and that 2872 * it falls within the option. Since IPOPT_MINOFF_IT > 2873 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2874 */ 2875 ASSERT(len > IPOPT_POS_OV_FLG); 2876 break; 2877 } 2878 2879 return (opt); 2880 } 2881 2882 /* 2883 * Use the outgoing IP header to create an IP_OPTIONS option the way 2884 * it was passed down from the application. 2885 */ 2886 int 2887 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2888 { 2889 ipoptp_t opts; 2890 const uchar_t *opt; 2891 uint8_t optval; 2892 uint8_t optlen; 2893 uint32_t len = 0; 2894 uchar_t *buf1 = buf; 2895 2896 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2897 len += IP_ADDR_LEN; 2898 bzero(buf1, IP_ADDR_LEN); 2899 2900 /* 2901 * OK to cast away const here, as we don't store through the returned 2902 * opts.ipoptp_cur pointer. 2903 */ 2904 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 2905 optval != IPOPT_EOL; 2906 optval = ipoptp_next(&opts)) { 2907 int off; 2908 2909 opt = opts.ipoptp_cur; 2910 optlen = opts.ipoptp_len; 2911 switch (optval) { 2912 case IPOPT_SSRR: 2913 case IPOPT_LSRR: 2914 2915 /* 2916 * Insert ipha_dst as the first entry in the source 2917 * route and move down the entries on step. 2918 * The last entry gets placed at buf1. 2919 */ 2920 buf[IPOPT_OPTVAL] = optval; 2921 buf[IPOPT_OLEN] = optlen; 2922 buf[IPOPT_OFFSET] = optlen; 2923 2924 off = optlen - IP_ADDR_LEN; 2925 if (off < 0) { 2926 /* No entries in source route */ 2927 break; 2928 } 2929 /* Last entry in source route */ 2930 bcopy(opt + off, buf1, IP_ADDR_LEN); 2931 off -= IP_ADDR_LEN; 2932 2933 while (off > 0) { 2934 bcopy(opt + off, 2935 buf + off + IP_ADDR_LEN, 2936 IP_ADDR_LEN); 2937 off -= IP_ADDR_LEN; 2938 } 2939 /* ipha_dst into first slot */ 2940 bcopy(&ipha->ipha_dst, 2941 buf + off + IP_ADDR_LEN, 2942 IP_ADDR_LEN); 2943 buf += optlen; 2944 len += optlen; 2945 break; 2946 2947 case IPOPT_COMSEC: 2948 case IPOPT_SECURITY: 2949 /* if passing up a label is not ok, then remove */ 2950 if (is_system_labeled()) 2951 break; 2952 /* FALLTHROUGH */ 2953 default: 2954 bcopy(opt, buf, optlen); 2955 buf += optlen; 2956 len += optlen; 2957 break; 2958 } 2959 } 2960 done: 2961 /* Pad the resulting options */ 2962 while (len & 0x3) { 2963 *buf++ = IPOPT_EOL; 2964 len++; 2965 } 2966 return (len); 2967 } 2968 2969 /* 2970 * Update any record route or timestamp options to include this host. 2971 * Reverse any source route option. 2972 * This routine assumes that the options are well formed i.e. that they 2973 * have already been checked. 2974 */ 2975 static void 2976 icmp_options_update(ipha_t *ipha) 2977 { 2978 ipoptp_t opts; 2979 uchar_t *opt; 2980 uint8_t optval; 2981 ipaddr_t src; /* Our local address */ 2982 ipaddr_t dst; 2983 2984 ip2dbg(("icmp_options_update\n")); 2985 src = ipha->ipha_src; 2986 dst = ipha->ipha_dst; 2987 2988 for (optval = ipoptp_first(&opts, ipha); 2989 optval != IPOPT_EOL; 2990 optval = ipoptp_next(&opts)) { 2991 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 2992 opt = opts.ipoptp_cur; 2993 ip2dbg(("icmp_options_update: opt %d, len %d\n", 2994 optval, opts.ipoptp_len)); 2995 switch (optval) { 2996 int off1, off2; 2997 case IPOPT_SSRR: 2998 case IPOPT_LSRR: 2999 /* 3000 * Reverse the source route. The first entry 3001 * should be the next to last one in the current 3002 * source route (the last entry is our address). 3003 * The last entry should be the final destination. 3004 */ 3005 off1 = IPOPT_MINOFF_SR - 1; 3006 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 3007 if (off2 < 0) { 3008 /* No entries in source route */ 3009 ip1dbg(( 3010 "icmp_options_update: bad src route\n")); 3011 break; 3012 } 3013 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 3014 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 3015 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 3016 off2 -= IP_ADDR_LEN; 3017 3018 while (off1 < off2) { 3019 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 3020 bcopy((char *)opt + off2, (char *)opt + off1, 3021 IP_ADDR_LEN); 3022 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 3023 off1 += IP_ADDR_LEN; 3024 off2 -= IP_ADDR_LEN; 3025 } 3026 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 3027 break; 3028 } 3029 } 3030 } 3031 3032 /* 3033 * Process received ICMP Redirect messages. 3034 */ 3035 static void 3036 icmp_redirect(ill_t *ill, mblk_t *mp) 3037 { 3038 ipha_t *ipha; 3039 int iph_hdr_length; 3040 icmph_t *icmph; 3041 ipha_t *ipha_err; 3042 ire_t *ire; 3043 ire_t *prev_ire; 3044 ire_t *save_ire; 3045 ipaddr_t src, dst, gateway; 3046 iulp_t ulp_info = { 0 }; 3047 int error; 3048 ip_stack_t *ipst; 3049 3050 ASSERT(ill != NULL); 3051 ipst = ill->ill_ipst; 3052 3053 ipha = (ipha_t *)mp->b_rptr; 3054 iph_hdr_length = IPH_HDR_LENGTH(ipha); 3055 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 3056 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 3057 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3058 freemsg(mp); 3059 return; 3060 } 3061 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 3062 ipha_err = (ipha_t *)&icmph[1]; 3063 src = ipha->ipha_src; 3064 dst = ipha_err->ipha_dst; 3065 gateway = icmph->icmph_rd_gateway; 3066 /* Make sure the new gateway is reachable somehow. */ 3067 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 3068 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3069 /* 3070 * Make sure we had a route for the dest in question and that 3071 * that route was pointing to the old gateway (the source of the 3072 * redirect packet.) 3073 */ 3074 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 3075 NULL, MATCH_IRE_GW, ipst); 3076 /* 3077 * Check that 3078 * the redirect was not from ourselves 3079 * the new gateway and the old gateway are directly reachable 3080 */ 3081 if (!prev_ire || 3082 !ire || 3083 ire->ire_type == IRE_LOCAL) { 3084 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3085 freemsg(mp); 3086 if (ire != NULL) 3087 ire_refrele(ire); 3088 if (prev_ire != NULL) 3089 ire_refrele(prev_ire); 3090 return; 3091 } 3092 3093 /* 3094 * Should we use the old ULP info to create the new gateway? From 3095 * a user's perspective, we should inherit the info so that it 3096 * is a "smooth" transition. If we do not do that, then new 3097 * connections going thru the new gateway will have no route metrics, 3098 * which is counter-intuitive to user. From a network point of 3099 * view, this may or may not make sense even though the new gateway 3100 * is still directly connected to us so the route metrics should not 3101 * change much. 3102 * 3103 * But if the old ire_uinfo is not initialized, we do another 3104 * recursive lookup on the dest using the new gateway. There may 3105 * be a route to that. If so, use it to initialize the redirect 3106 * route. 3107 */ 3108 if (prev_ire->ire_uinfo.iulp_set) { 3109 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3110 } else { 3111 ire_t *tmp_ire; 3112 ire_t *sire; 3113 3114 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3115 ALL_ZONES, 0, NULL, 3116 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT), 3117 ipst); 3118 if (sire != NULL) { 3119 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3120 /* 3121 * If sire != NULL, ire_ftable_lookup() should not 3122 * return a NULL value. 3123 */ 3124 ASSERT(tmp_ire != NULL); 3125 ire_refrele(tmp_ire); 3126 ire_refrele(sire); 3127 } else if (tmp_ire != NULL) { 3128 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3129 sizeof (iulp_t)); 3130 ire_refrele(tmp_ire); 3131 } 3132 } 3133 if (prev_ire->ire_type == IRE_CACHE) 3134 ire_delete(prev_ire); 3135 ire_refrele(prev_ire); 3136 /* 3137 * TODO: more precise handling for cases 0, 2, 3, the latter two 3138 * require TOS routing 3139 */ 3140 switch (icmph->icmph_code) { 3141 case 0: 3142 case 1: 3143 /* TODO: TOS specificity for cases 2 and 3 */ 3144 case 2: 3145 case 3: 3146 break; 3147 default: 3148 freemsg(mp); 3149 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3150 ire_refrele(ire); 3151 return; 3152 } 3153 /* 3154 * Create a Route Association. This will allow us to remember that 3155 * someone we believe told us to use the particular gateway. 3156 */ 3157 save_ire = ire; 3158 ire = ire_create( 3159 (uchar_t *)&dst, /* dest addr */ 3160 (uchar_t *)&ip_g_all_ones, /* mask */ 3161 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3162 (uchar_t *)&gateway, /* gateway addr */ 3163 NULL, /* no in_srcaddr */ 3164 &save_ire->ire_max_frag, /* max frag */ 3165 NULL, /* Fast Path header */ 3166 NULL, /* no rfq */ 3167 NULL, /* no stq */ 3168 IRE_HOST, 3169 NULL, 3170 NULL, 3171 NULL, 3172 0, 3173 0, 3174 0, 3175 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3176 &ulp_info, 3177 NULL, 3178 NULL, 3179 ipst); 3180 3181 if (ire == NULL) { 3182 freemsg(mp); 3183 ire_refrele(save_ire); 3184 return; 3185 } 3186 error = ire_add(&ire, NULL, NULL, NULL, B_FALSE); 3187 ire_refrele(save_ire); 3188 atomic_inc_32(&ipst->ips_ip_redirect_cnt); 3189 3190 if (error == 0) { 3191 ire_refrele(ire); /* Held in ire_add_v4 */ 3192 /* tell routing sockets that we received a redirect */ 3193 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3194 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3195 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 3196 } 3197 3198 /* 3199 * Delete any existing IRE_HOST type redirect ires for this destination. 3200 * This together with the added IRE has the effect of 3201 * modifying an existing redirect. 3202 */ 3203 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST, NULL, NULL, 3204 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), ipst); 3205 if (prev_ire != NULL) { 3206 if (prev_ire ->ire_flags & RTF_DYNAMIC) 3207 ire_delete(prev_ire); 3208 ire_refrele(prev_ire); 3209 } 3210 3211 freemsg(mp); 3212 } 3213 3214 /* 3215 * Generate an ICMP parameter problem message. 3216 */ 3217 static void 3218 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr, zoneid_t zoneid, 3219 ip_stack_t *ipst) 3220 { 3221 icmph_t icmph; 3222 boolean_t mctl_present; 3223 mblk_t *first_mp; 3224 3225 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3226 3227 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3228 if (mctl_present) 3229 freeb(first_mp); 3230 return; 3231 } 3232 3233 bzero(&icmph, sizeof (icmph_t)); 3234 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3235 icmph.icmph_pp_ptr = ptr; 3236 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 3237 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3238 ipst); 3239 } 3240 3241 /* 3242 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3243 * the ICMP header pointed to by "stuff". (May be called as writer.) 3244 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3245 * an icmp error packet can be sent. 3246 * Assigns an appropriate source address to the packet. If ipha_dst is 3247 * one of our addresses use it for source. Otherwise pick a source based 3248 * on a route lookup back to ipha_src. 3249 * Note that ipha_src must be set here since the 3250 * packet is likely to arrive on an ill queue in ip_wput() which will 3251 * not set a source address. 3252 */ 3253 static void 3254 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3255 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 3256 { 3257 ipaddr_t dst; 3258 icmph_t *icmph; 3259 ipha_t *ipha; 3260 uint_t len_needed; 3261 size_t msg_len; 3262 mblk_t *mp1; 3263 ipaddr_t src; 3264 ire_t *ire; 3265 mblk_t *ipsec_mp; 3266 ipsec_out_t *io = NULL; 3267 boolean_t xmit_if_on = B_FALSE; 3268 3269 if (mctl_present) { 3270 /* 3271 * If it is : 3272 * 3273 * 1) a IPSEC_OUT, then this is caused by outbound 3274 * datagram originating on this host. IPSEC processing 3275 * may or may not have been done. Refer to comments above 3276 * icmp_inbound_error_fanout for details. 3277 * 3278 * 2) a IPSEC_IN if we are generating a icmp_message 3279 * for an incoming datagram destined for us i.e called 3280 * from ip_fanout_send_icmp. 3281 */ 3282 ipsec_info_t *in; 3283 ipsec_mp = mp; 3284 mp = ipsec_mp->b_cont; 3285 3286 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3287 ipha = (ipha_t *)mp->b_rptr; 3288 3289 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3290 in->ipsec_info_type == IPSEC_IN); 3291 3292 if (in->ipsec_info_type == IPSEC_IN) { 3293 /* 3294 * Convert the IPSEC_IN to IPSEC_OUT. 3295 */ 3296 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3297 BUMP_MIB(&ipst->ips_ip_mib, 3298 ipIfStatsOutDiscards); 3299 return; 3300 } 3301 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3302 } else { 3303 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3304 io = (ipsec_out_t *)in; 3305 if (io->ipsec_out_xmit_if) 3306 xmit_if_on = B_TRUE; 3307 /* 3308 * Clear out ipsec_out_proc_begin, so we do a fresh 3309 * ire lookup. 3310 */ 3311 io->ipsec_out_proc_begin = B_FALSE; 3312 } 3313 ASSERT(zoneid == io->ipsec_out_zoneid); 3314 ASSERT(zoneid != ALL_ZONES); 3315 } else { 3316 /* 3317 * This is in clear. The icmp message we are building 3318 * here should go out in clear. 3319 * 3320 * Pardon the convolution of it all, but it's easier to 3321 * allocate a "use cleartext" IPSEC_IN message and convert 3322 * it than it is to allocate a new one. 3323 */ 3324 ipsec_in_t *ii; 3325 ASSERT(DB_TYPE(mp) == M_DATA); 3326 ipsec_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 3327 if (ipsec_mp == NULL) { 3328 freemsg(mp); 3329 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3330 return; 3331 } 3332 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3333 3334 /* This is not a secure packet */ 3335 ii->ipsec_in_secure = B_FALSE; 3336 /* 3337 * For trusted extensions using a shared IP address we can 3338 * send using any zoneid. 3339 */ 3340 if (zoneid == ALL_ZONES) 3341 ii->ipsec_in_zoneid = GLOBAL_ZONEID; 3342 else 3343 ii->ipsec_in_zoneid = zoneid; 3344 ipsec_mp->b_cont = mp; 3345 ipha = (ipha_t *)mp->b_rptr; 3346 /* 3347 * Convert the IPSEC_IN to IPSEC_OUT. 3348 */ 3349 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3350 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3351 return; 3352 } 3353 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3354 } 3355 3356 /* Remember our eventual destination */ 3357 dst = ipha->ipha_src; 3358 3359 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3360 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE, ipst); 3361 if (ire != NULL && 3362 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3363 src = ipha->ipha_dst; 3364 } else if (!xmit_if_on) { 3365 if (ire != NULL) 3366 ire_refrele(ire); 3367 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3368 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY), 3369 ipst); 3370 if (ire == NULL) { 3371 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3372 freemsg(ipsec_mp); 3373 return; 3374 } 3375 src = ire->ire_src_addr; 3376 } else { 3377 ipif_t *ipif = NULL; 3378 ill_t *ill; 3379 /* 3380 * This must be an ICMP error coming from 3381 * ip_mrtun_forward(). The src addr should 3382 * be equal to the IP-addr of the outgoing 3383 * interface. 3384 */ 3385 if (io == NULL) { 3386 /* This is not a IPSEC_OUT type control msg */ 3387 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3388 freemsg(ipsec_mp); 3389 return; 3390 } 3391 ill = ill_lookup_on_ifindex(io->ipsec_out_ill_index, B_FALSE, 3392 NULL, NULL, NULL, NULL, ipst); 3393 if (ill != NULL) { 3394 ipif = ipif_get_next_ipif(NULL, ill); 3395 ill_refrele(ill); 3396 } 3397 if (ipif == NULL) { 3398 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3399 freemsg(ipsec_mp); 3400 return; 3401 } 3402 src = ipif->ipif_src_addr; 3403 ipif_refrele(ipif); 3404 } 3405 3406 if (ire != NULL) 3407 ire_refrele(ire); 3408 3409 /* 3410 * Check if we can send back more then 8 bytes in addition 3411 * to the IP header. We will include as much as 64 bytes. 3412 */ 3413 len_needed = IPH_HDR_LENGTH(ipha); 3414 if (ipha->ipha_protocol == IPPROTO_ENCAP && 3415 (uchar_t *)ipha + len_needed + 1 <= mp->b_wptr) { 3416 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + len_needed)); 3417 } 3418 len_needed += ipst->ips_ip_icmp_return; 3419 msg_len = msgdsize(mp); 3420 if (msg_len > len_needed) { 3421 (void) adjmsg(mp, len_needed - msg_len); 3422 msg_len = len_needed; 3423 } 3424 mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_HI); 3425 if (mp1 == NULL) { 3426 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 3427 freemsg(ipsec_mp); 3428 return; 3429 } 3430 /* 3431 * On an unlabeled system, dblks don't necessarily have creds. 3432 */ 3433 ASSERT(!is_system_labeled() || DB_CRED(mp) != NULL); 3434 if (DB_CRED(mp) != NULL) 3435 mblk_setcred(mp1, DB_CRED(mp)); 3436 mp1->b_cont = mp; 3437 mp = mp1; 3438 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3439 ipsec_mp->b_rptr == (uint8_t *)io && 3440 io->ipsec_out_type == IPSEC_OUT); 3441 ipsec_mp->b_cont = mp; 3442 3443 /* 3444 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3445 * node generates be accepted in peace by all on-host destinations. 3446 * If we do NOT assume that all on-host destinations trust 3447 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3448 * (Look for ipsec_out_icmp_loopback). 3449 */ 3450 io->ipsec_out_icmp_loopback = B_TRUE; 3451 3452 ipha = (ipha_t *)mp->b_rptr; 3453 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3454 *ipha = icmp_ipha; 3455 ipha->ipha_src = src; 3456 ipha->ipha_dst = dst; 3457 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 3458 msg_len += sizeof (icmp_ipha) + len; 3459 if (msg_len > IP_MAXPACKET) { 3460 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3461 msg_len = IP_MAXPACKET; 3462 } 3463 ipha->ipha_length = htons((uint16_t)msg_len); 3464 icmph = (icmph_t *)&ipha[1]; 3465 bcopy(stuff, icmph, len); 3466 icmph->icmph_checksum = 0; 3467 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3468 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 3469 put(q, ipsec_mp); 3470 } 3471 3472 /* 3473 * Determine if an ICMP error packet can be sent given the rate limit. 3474 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3475 * in milliseconds) and a burst size. Burst size number of packets can 3476 * be sent arbitrarely closely spaced. 3477 * The state is tracked using two variables to implement an approximate 3478 * token bucket filter: 3479 * icmp_pkt_err_last - lbolt value when the last burst started 3480 * icmp_pkt_err_sent - number of packets sent in current burst 3481 */ 3482 boolean_t 3483 icmp_err_rate_limit(ip_stack_t *ipst) 3484 { 3485 clock_t now = TICK_TO_MSEC(lbolt); 3486 uint_t refilled; /* Number of packets refilled in tbf since last */ 3487 /* Guard against changes by loading into local variable */ 3488 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 3489 3490 if (err_interval == 0) 3491 return (B_FALSE); 3492 3493 if (ipst->ips_icmp_pkt_err_last > now) { 3494 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3495 ipst->ips_icmp_pkt_err_last = 0; 3496 ipst->ips_icmp_pkt_err_sent = 0; 3497 } 3498 /* 3499 * If we are in a burst update the token bucket filter. 3500 * Update the "last" time to be close to "now" but make sure 3501 * we don't loose precision. 3502 */ 3503 if (ipst->ips_icmp_pkt_err_sent != 0) { 3504 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 3505 if (refilled > ipst->ips_icmp_pkt_err_sent) { 3506 ipst->ips_icmp_pkt_err_sent = 0; 3507 } else { 3508 ipst->ips_icmp_pkt_err_sent -= refilled; 3509 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 3510 } 3511 } 3512 if (ipst->ips_icmp_pkt_err_sent == 0) { 3513 /* Start of new burst */ 3514 ipst->ips_icmp_pkt_err_last = now; 3515 } 3516 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 3517 ipst->ips_icmp_pkt_err_sent++; 3518 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3519 ipst->ips_icmp_pkt_err_sent)); 3520 return (B_FALSE); 3521 } 3522 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3523 return (B_TRUE); 3524 } 3525 3526 /* 3527 * Check if it is ok to send an IPv4 ICMP error packet in 3528 * response to the IPv4 packet in mp. 3529 * Free the message and return null if no 3530 * ICMP error packet should be sent. 3531 */ 3532 static mblk_t * 3533 icmp_pkt_err_ok(mblk_t *mp, ip_stack_t *ipst) 3534 { 3535 icmph_t *icmph; 3536 ipha_t *ipha; 3537 uint_t len_needed; 3538 ire_t *src_ire; 3539 ire_t *dst_ire; 3540 3541 if (!mp) 3542 return (NULL); 3543 ipha = (ipha_t *)mp->b_rptr; 3544 if (ip_csum_hdr(ipha)) { 3545 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 3546 freemsg(mp); 3547 return (NULL); 3548 } 3549 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3550 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3551 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3552 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3553 if (src_ire != NULL || dst_ire != NULL || 3554 CLASSD(ipha->ipha_dst) || 3555 CLASSD(ipha->ipha_src) || 3556 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3557 /* Note: only errors to the fragment with offset 0 */ 3558 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3559 freemsg(mp); 3560 if (src_ire != NULL) 3561 ire_refrele(src_ire); 3562 if (dst_ire != NULL) 3563 ire_refrele(dst_ire); 3564 return (NULL); 3565 } 3566 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3567 /* 3568 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3569 * errors in response to any ICMP errors. 3570 */ 3571 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3572 if (mp->b_wptr - mp->b_rptr < len_needed) { 3573 if (!pullupmsg(mp, len_needed)) { 3574 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3575 freemsg(mp); 3576 return (NULL); 3577 } 3578 ipha = (ipha_t *)mp->b_rptr; 3579 } 3580 icmph = (icmph_t *) 3581 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3582 switch (icmph->icmph_type) { 3583 case ICMP_DEST_UNREACHABLE: 3584 case ICMP_SOURCE_QUENCH: 3585 case ICMP_TIME_EXCEEDED: 3586 case ICMP_PARAM_PROBLEM: 3587 case ICMP_REDIRECT: 3588 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3589 freemsg(mp); 3590 return (NULL); 3591 default: 3592 break; 3593 } 3594 } 3595 /* 3596 * If this is a labeled system, then check to see if we're allowed to 3597 * send a response to this particular sender. If not, then just drop. 3598 */ 3599 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3600 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3601 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3602 freemsg(mp); 3603 return (NULL); 3604 } 3605 if (icmp_err_rate_limit(ipst)) { 3606 /* 3607 * Only send ICMP error packets every so often. 3608 * This should be done on a per port/source basis, 3609 * but for now this will suffice. 3610 */ 3611 freemsg(mp); 3612 return (NULL); 3613 } 3614 return (mp); 3615 } 3616 3617 /* 3618 * Generate an ICMP redirect message. 3619 */ 3620 static void 3621 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway, ip_stack_t *ipst) 3622 { 3623 icmph_t icmph; 3624 3625 /* 3626 * We are called from ip_rput where we could 3627 * not have attached an IPSEC_IN. 3628 */ 3629 ASSERT(mp->b_datap->db_type == M_DATA); 3630 3631 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3632 return; 3633 } 3634 3635 bzero(&icmph, sizeof (icmph_t)); 3636 icmph.icmph_type = ICMP_REDIRECT; 3637 icmph.icmph_code = 1; 3638 icmph.icmph_rd_gateway = gateway; 3639 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3640 /* Redirects sent by router, and router is global zone */ 3641 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE, GLOBAL_ZONEID, ipst); 3642 } 3643 3644 /* 3645 * Generate an ICMP time exceeded message. 3646 */ 3647 void 3648 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3649 ip_stack_t *ipst) 3650 { 3651 icmph_t icmph; 3652 boolean_t mctl_present; 3653 mblk_t *first_mp; 3654 3655 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3656 3657 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3658 if (mctl_present) 3659 freeb(first_mp); 3660 return; 3661 } 3662 3663 bzero(&icmph, sizeof (icmph_t)); 3664 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3665 icmph.icmph_code = code; 3666 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3667 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3668 ipst); 3669 } 3670 3671 /* 3672 * Generate an ICMP unreachable message. 3673 */ 3674 void 3675 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3676 ip_stack_t *ipst) 3677 { 3678 icmph_t icmph; 3679 mblk_t *first_mp; 3680 boolean_t mctl_present; 3681 3682 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3683 3684 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3685 if (mctl_present) 3686 freeb(first_mp); 3687 return; 3688 } 3689 3690 bzero(&icmph, sizeof (icmph_t)); 3691 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3692 icmph.icmph_code = code; 3693 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3694 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3695 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present, 3696 zoneid, ipst); 3697 } 3698 3699 /* 3700 * Attempt to start recovery of an IPv4 interface that's been shut down as a 3701 * duplicate. As long as someone else holds the address, the interface will 3702 * stay down. When that conflict goes away, the interface is brought back up. 3703 * This is done so that accidental shutdowns of addresses aren't made 3704 * permanent. Your server will recover from a failure. 3705 * 3706 * For DHCP, recovery is not done in the kernel. Instead, it's handled by a 3707 * user space process (dhcpagent). 3708 * 3709 * Recovery completes if ARP reports that the address is now ours (via 3710 * AR_CN_READY). In that case, we go to ip_arp_excl to finish the operation. 3711 * 3712 * This function is entered on a timer expiry; the ID is in ipif_recovery_id. 3713 */ 3714 static void 3715 ipif_dup_recovery(void *arg) 3716 { 3717 ipif_t *ipif = arg; 3718 ill_t *ill = ipif->ipif_ill; 3719 mblk_t *arp_add_mp; 3720 mblk_t *arp_del_mp; 3721 area_t *area; 3722 ip_stack_t *ipst = ill->ill_ipst; 3723 3724 ipif->ipif_recovery_id = 0; 3725 3726 /* 3727 * No lock needed for moving or condemned check, as this is just an 3728 * optimization. 3729 */ 3730 if (ill->ill_arp_closing || !(ipif->ipif_flags & IPIF_DUPLICATE) || 3731 (ipif->ipif_flags & IPIF_POINTOPOINT) || 3732 (ipif->ipif_state_flags & (IPIF_MOVING | IPIF_CONDEMNED))) { 3733 /* No reason to try to bring this address back. */ 3734 return; 3735 } 3736 3737 if ((arp_add_mp = ipif_area_alloc(ipif)) == NULL) 3738 goto alloc_fail; 3739 3740 if (ipif->ipif_arp_del_mp == NULL) { 3741 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 3742 goto alloc_fail; 3743 ipif->ipif_arp_del_mp = arp_del_mp; 3744 } 3745 3746 /* Setting the 'unverified' flag restarts DAD */ 3747 area = (area_t *)arp_add_mp->b_rptr; 3748 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 3749 ACE_F_UNVERIFIED; 3750 putnext(ill->ill_rq, arp_add_mp); 3751 return; 3752 3753 alloc_fail: 3754 /* 3755 * On allocation failure, just restart the timer. Note that the ipif 3756 * is down here, so no other thread could be trying to start a recovery 3757 * timer. The ill_lock protects the condemned flag and the recovery 3758 * timer ID. 3759 */ 3760 freemsg(arp_add_mp); 3761 mutex_enter(&ill->ill_lock); 3762 if (ipst->ips_ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0 && 3763 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 3764 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, ipif, 3765 MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3766 } 3767 mutex_exit(&ill->ill_lock); 3768 } 3769 3770 /* 3771 * This is for exclusive changes due to ARP. Either tear down an interface due 3772 * to AR_CN_FAILED and AR_CN_BOGON, or bring one up for successful recovery. 3773 */ 3774 /* ARGSUSED */ 3775 static void 3776 ip_arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3777 { 3778 ill_t *ill = rq->q_ptr; 3779 arh_t *arh; 3780 ipaddr_t src; 3781 ipif_t *ipif; 3782 char ibuf[LIFNAMSIZ + 10]; /* 10 digits for logical i/f number */ 3783 char hbuf[MAC_STR_LEN]; 3784 char sbuf[INET_ADDRSTRLEN]; 3785 const char *failtype; 3786 boolean_t bring_up; 3787 ip_stack_t *ipst = ill->ill_ipst; 3788 3789 switch (((arcn_t *)mp->b_rptr)->arcn_code) { 3790 case AR_CN_READY: 3791 failtype = NULL; 3792 bring_up = B_TRUE; 3793 break; 3794 case AR_CN_FAILED: 3795 failtype = "in use"; 3796 bring_up = B_FALSE; 3797 break; 3798 default: 3799 failtype = "claimed"; 3800 bring_up = B_FALSE; 3801 break; 3802 } 3803 3804 arh = (arh_t *)mp->b_cont->b_rptr; 3805 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3806 3807 /* Handle failures due to probes */ 3808 if (src == 0) { 3809 bcopy((char *)&arh[1] + 2 * arh->arh_hlen + IP_ADDR_LEN, &src, 3810 IP_ADDR_LEN); 3811 } 3812 3813 (void) strlcpy(ibuf, ill->ill_name, sizeof (ibuf)); 3814 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, hbuf, 3815 sizeof (hbuf)); 3816 (void) ip_dot_addr(src, sbuf); 3817 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3818 3819 if ((ipif->ipif_flags & IPIF_POINTOPOINT) || 3820 ipif->ipif_lcl_addr != src) { 3821 continue; 3822 } 3823 3824 /* 3825 * If we failed on a recovery probe, then restart the timer to 3826 * try again later. 3827 */ 3828 if (!bring_up && (ipif->ipif_flags & IPIF_DUPLICATE) && 3829 !(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3830 ill->ill_net_type == IRE_IF_RESOLVER && 3831 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3832 ipst->ips_ip_dup_recovery > 0 && 3833 ipif->ipif_recovery_id == 0) { 3834 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3835 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3836 continue; 3837 } 3838 3839 /* 3840 * If what we're trying to do has already been done, then do 3841 * nothing. 3842 */ 3843 if (bring_up == ((ipif->ipif_flags & IPIF_UP) != 0)) 3844 continue; 3845 3846 if (ipif->ipif_id != 0) { 3847 (void) snprintf(ibuf + ill->ill_name_length - 1, 3848 sizeof (ibuf) - ill->ill_name_length + 1, ":%d", 3849 ipif->ipif_id); 3850 } 3851 if (failtype == NULL) { 3852 cmn_err(CE_NOTE, "recovered address %s on %s", sbuf, 3853 ibuf); 3854 } else { 3855 cmn_err(CE_WARN, "%s has duplicate address %s (%s " 3856 "by %s); disabled", ibuf, sbuf, failtype, hbuf); 3857 } 3858 3859 if (bring_up) { 3860 ASSERT(ill->ill_dl_up); 3861 /* 3862 * Free up the ARP delete message so we can allocate 3863 * a fresh one through the normal path. 3864 */ 3865 freemsg(ipif->ipif_arp_del_mp); 3866 ipif->ipif_arp_del_mp = NULL; 3867 if (ipif_resolver_up(ipif, Res_act_initial) != 3868 EINPROGRESS) { 3869 ipif->ipif_addr_ready = 1; 3870 (void) ipif_up_done(ipif); 3871 } 3872 continue; 3873 } 3874 3875 mutex_enter(&ill->ill_lock); 3876 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 3877 ipif->ipif_flags |= IPIF_DUPLICATE; 3878 ill->ill_ipif_dup_count++; 3879 mutex_exit(&ill->ill_lock); 3880 /* 3881 * Already exclusive on the ill; no need to handle deferred 3882 * processing here. 3883 */ 3884 (void) ipif_down(ipif, NULL, NULL); 3885 ipif_down_tail(ipif); 3886 mutex_enter(&ill->ill_lock); 3887 if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3888 ill->ill_net_type == IRE_IF_RESOLVER && 3889 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3890 ipst->ips_ip_dup_recovery > 0) { 3891 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3892 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3893 } 3894 mutex_exit(&ill->ill_lock); 3895 } 3896 freemsg(mp); 3897 } 3898 3899 /* ARGSUSED */ 3900 static void 3901 ip_arp_defend(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3902 { 3903 ill_t *ill = rq->q_ptr; 3904 arh_t *arh; 3905 ipaddr_t src; 3906 ipif_t *ipif; 3907 3908 arh = (arh_t *)mp->b_cont->b_rptr; 3909 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3910 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3911 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_lcl_addr == src) 3912 (void) ipif_resolver_up(ipif, Res_act_defend); 3913 } 3914 freemsg(mp); 3915 } 3916 3917 /* 3918 * News from ARP. ARP sends notification of interesting events down 3919 * to its clients using M_CTL messages with the interesting ARP packet 3920 * attached via b_cont. 3921 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3922 * queue as opposed to ARP sending the message to all the clients, i.e. all 3923 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3924 * table if a cache IRE is found to delete all the entries for the address in 3925 * the packet. 3926 */ 3927 static void 3928 ip_arp_news(queue_t *q, mblk_t *mp) 3929 { 3930 arcn_t *arcn; 3931 arh_t *arh; 3932 ire_t *ire = NULL; 3933 char hbuf[MAC_STR_LEN]; 3934 char sbuf[INET_ADDRSTRLEN]; 3935 ipaddr_t src; 3936 in6_addr_t v6src; 3937 boolean_t isv6 = B_FALSE; 3938 ipif_t *ipif; 3939 ill_t *ill; 3940 ip_stack_t *ipst; 3941 3942 if (CONN_Q(q)) { 3943 conn_t *connp = Q_TO_CONN(q); 3944 3945 ipst = connp->conn_netstack->netstack_ip; 3946 } else { 3947 ill_t *ill = (ill_t *)q->q_ptr; 3948 3949 ipst = ill->ill_ipst; 3950 } 3951 3952 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 3953 if (q->q_next) { 3954 putnext(q, mp); 3955 } else 3956 freemsg(mp); 3957 return; 3958 } 3959 arh = (arh_t *)mp->b_cont->b_rptr; 3960 /* Is it one we are interested in? */ 3961 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 3962 isv6 = B_TRUE; 3963 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 3964 IPV6_ADDR_LEN); 3965 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 3966 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 3967 IP_ADDR_LEN); 3968 } else { 3969 freemsg(mp); 3970 return; 3971 } 3972 3973 ill = q->q_ptr; 3974 3975 arcn = (arcn_t *)mp->b_rptr; 3976 switch (arcn->arcn_code) { 3977 case AR_CN_BOGON: 3978 /* 3979 * Someone is sending ARP packets with a source protocol 3980 * address that we have published and for which we believe our 3981 * entry is authoritative and (when ill_arp_extend is set) 3982 * verified to be unique on the network. 3983 * 3984 * The ARP module internally handles the cases where the sender 3985 * is just probing (for DAD) and where the hardware address of 3986 * a non-authoritative entry has changed. Thus, these are the 3987 * real conflicts, and we have to do resolution. 3988 * 3989 * We back away quickly from the address if it's from DHCP or 3990 * otherwise temporary and hasn't been used recently (or at 3991 * all). We'd like to include "deprecated" addresses here as 3992 * well (as there's no real reason to defend something we're 3993 * discarding), but IPMP "reuses" this flag to mean something 3994 * other than the standard meaning. 3995 * 3996 * If the ARP module above is not extended (meaning that it 3997 * doesn't know how to defend the address), then we just log 3998 * the problem as we always did and continue on. It's not 3999 * right, but there's little else we can do, and those old ATM 4000 * users are going away anyway. 4001 */ 4002 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, 4003 hbuf, sizeof (hbuf)); 4004 (void) ip_dot_addr(src, sbuf); 4005 if (isv6) { 4006 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL, 4007 ipst); 4008 } else { 4009 ire = ire_cache_lookup(src, ALL_ZONES, NULL, ipst); 4010 } 4011 if (ire != NULL && IRE_IS_LOCAL(ire)) { 4012 uint32_t now; 4013 uint32_t maxage; 4014 clock_t lused; 4015 uint_t maxdefense; 4016 uint_t defs; 4017 4018 /* 4019 * First, figure out if this address hasn't been used 4020 * in a while. If it hasn't, then it's a better 4021 * candidate for abandoning. 4022 */ 4023 ipif = ire->ire_ipif; 4024 ASSERT(ipif != NULL); 4025 now = gethrestime_sec(); 4026 maxage = now - ire->ire_create_time; 4027 if (maxage > ipst->ips_ip_max_temp_idle) 4028 maxage = ipst->ips_ip_max_temp_idle; 4029 lused = drv_hztousec(ddi_get_lbolt() - 4030 ire->ire_last_used_time) / MICROSEC + 1; 4031 if (lused >= maxage && (ipif->ipif_flags & 4032 (IPIF_DHCPRUNNING | IPIF_TEMPORARY))) 4033 maxdefense = ipst->ips_ip_max_temp_defend; 4034 else 4035 maxdefense = ipst->ips_ip_max_defend; 4036 4037 /* 4038 * Now figure out how many times we've defended 4039 * ourselves. Ignore defenses that happened long in 4040 * the past. 4041 */ 4042 mutex_enter(&ire->ire_lock); 4043 if ((defs = ire->ire_defense_count) > 0 && 4044 now - ire->ire_defense_time > 4045 ipst->ips_ip_defend_interval) { 4046 ire->ire_defense_count = defs = 0; 4047 } 4048 ire->ire_defense_count++; 4049 ire->ire_defense_time = now; 4050 mutex_exit(&ire->ire_lock); 4051 ill_refhold(ill); 4052 ire_refrele(ire); 4053 4054 /* 4055 * If we've defended ourselves too many times already, 4056 * then give up and tear down the interface(s) using 4057 * this address. Otherwise, defend by sending out a 4058 * gratuitous ARP. 4059 */ 4060 if (defs >= maxdefense && ill->ill_arp_extend) { 4061 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4062 B_FALSE); 4063 } else { 4064 cmn_err(CE_WARN, 4065 "node %s is using our IP address %s on %s", 4066 hbuf, sbuf, ill->ill_name); 4067 /* 4068 * If this is an old (ATM) ARP module, then 4069 * don't try to defend the address. Remain 4070 * compatible with the old behavior. Defend 4071 * only with new ARP. 4072 */ 4073 if (ill->ill_arp_extend) { 4074 qwriter_ip(ill, q, mp, ip_arp_defend, 4075 NEW_OP, B_FALSE); 4076 } else { 4077 ill_refrele(ill); 4078 } 4079 } 4080 return; 4081 } 4082 cmn_err(CE_WARN, 4083 "proxy ARP problem? Node '%s' is using %s on %s", 4084 hbuf, sbuf, ill->ill_name); 4085 if (ire != NULL) 4086 ire_refrele(ire); 4087 break; 4088 case AR_CN_ANNOUNCE: 4089 if (isv6) { 4090 /* 4091 * For XRESOLV interfaces. 4092 * Delete the IRE cache entry and NCE for this 4093 * v6 address 4094 */ 4095 ip_ire_clookup_and_delete_v6(&v6src, ipst); 4096 /* 4097 * If v6src is a non-zero, it's a router address 4098 * as below. Do the same sort of thing to clean 4099 * out off-net IRE_CACHE entries that go through 4100 * the router. 4101 */ 4102 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 4103 ire_walk_v6(ire_delete_cache_gw_v6, 4104 (char *)&v6src, ALL_ZONES, ipst); 4105 } 4106 } else { 4107 nce_hw_map_t hwm; 4108 4109 /* 4110 * ARP gives us a copy of any packet where it thinks 4111 * the address has changed, so that we can update our 4112 * caches. We're responsible for caching known answers 4113 * in the current design. We check whether the 4114 * hardware address really has changed in all of our 4115 * entries that have cached this mapping, and if so, we 4116 * blow them away. This way we will immediately pick 4117 * up the rare case of a host changing hardware 4118 * address. 4119 */ 4120 if (src == 0) 4121 break; 4122 hwm.hwm_addr = src; 4123 hwm.hwm_hwlen = arh->arh_hlen; 4124 hwm.hwm_hwaddr = (uchar_t *)(arh + 1); 4125 ndp_walk_common(ipst->ips_ndp4, NULL, 4126 (pfi_t)nce_delete_hw_changed, &hwm, ALL_ZONES); 4127 } 4128 break; 4129 case AR_CN_READY: 4130 /* No external v6 resolver has a contract to use this */ 4131 if (isv6) 4132 break; 4133 /* If the link is down, we'll retry this later */ 4134 if (!(ill->ill_phyint->phyint_flags & PHYI_RUNNING)) 4135 break; 4136 ipif = ipif_lookup_addr(src, ill, ALL_ZONES, NULL, NULL, 4137 NULL, NULL, ipst); 4138 if (ipif != NULL) { 4139 /* 4140 * If this is a duplicate recovery, then we now need to 4141 * go exclusive to bring this thing back up. 4142 */ 4143 if ((ipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)) == 4144 IPIF_DUPLICATE) { 4145 ipif_refrele(ipif); 4146 ill_refhold(ill); 4147 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4148 B_FALSE); 4149 return; 4150 } 4151 /* 4152 * If this is the first notice that this address is 4153 * ready, then let the user know now. 4154 */ 4155 if ((ipif->ipif_flags & IPIF_UP) && 4156 !ipif->ipif_addr_ready) { 4157 ipif_mask_reply(ipif); 4158 ip_rts_ifmsg(ipif); 4159 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 4160 sctp_update_ipif(ipif, SCTP_IPIF_UP); 4161 } 4162 ipif->ipif_addr_ready = 1; 4163 ipif_refrele(ipif); 4164 } 4165 ire = ire_cache_lookup(src, ALL_ZONES, MBLK_GETLABEL(mp), ipst); 4166 if (ire != NULL) { 4167 ire->ire_defense_count = 0; 4168 ire_refrele(ire); 4169 } 4170 break; 4171 case AR_CN_FAILED: 4172 /* No external v6 resolver has a contract to use this */ 4173 if (isv6) 4174 break; 4175 ill_refhold(ill); 4176 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, B_FALSE); 4177 return; 4178 } 4179 freemsg(mp); 4180 } 4181 4182 /* 4183 * Create a mblk suitable for carrying the interface index and/or source link 4184 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 4185 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 4186 * application. 4187 */ 4188 mblk_t * 4189 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags, zoneid_t zoneid, 4190 ip_stack_t *ipst) 4191 { 4192 mblk_t *mp; 4193 ip_pktinfo_t *pinfo; 4194 ipha_t *ipha; 4195 struct ether_header *pether; 4196 4197 mp = allocb(sizeof (ip_pktinfo_t), BPRI_MED); 4198 if (mp == NULL) { 4199 ip1dbg(("ip_add_info: allocation failure.\n")); 4200 return (data_mp); 4201 } 4202 4203 ipha = (ipha_t *)data_mp->b_rptr; 4204 pinfo = (ip_pktinfo_t *)mp->b_rptr; 4205 bzero(pinfo, sizeof (ip_pktinfo_t)); 4206 pinfo->ip_pkt_flags = (uchar_t)flags; 4207 pinfo->ip_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 4208 4209 if (flags & (IPF_RECVIF | IPF_RECVADDR)) 4210 pinfo->ip_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 4211 if (flags & IPF_RECVADDR) { 4212 ipif_t *ipif; 4213 ire_t *ire; 4214 4215 /* 4216 * Only valid for V4 4217 */ 4218 ASSERT((ipha->ipha_version_and_hdr_length & 0xf0) == 4219 (IPV4_VERSION << 4)); 4220 4221 ipif = ipif_get_next_ipif(NULL, ill); 4222 if (ipif != NULL) { 4223 /* 4224 * Since a decision has already been made to deliver the 4225 * packet, there is no need to test for SECATTR and 4226 * ZONEONLY. 4227 * When a multicast packet is transmitted 4228 * a cache entry is created for the multicast address. 4229 * When delivering a copy of the packet or when new 4230 * packets are received we do not want to match on the 4231 * cached entry so explicitly match on 4232 * IRE_LOCAL and IRE_LOOPBACK 4233 */ 4234 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4235 IRE_LOCAL | IRE_LOOPBACK, 4236 ipif, zoneid, NULL, 4237 MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP, ipst); 4238 if (ire == NULL) { 4239 /* 4240 * packet must have come on a different 4241 * interface. 4242 * Since a decision has already been made to 4243 * deliver the packet, there is no need to test 4244 * for SECATTR and ZONEONLY. 4245 * Only match on local and broadcast ire's. 4246 * See detailed comment above. 4247 */ 4248 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4249 IRE_LOCAL | IRE_LOOPBACK, ipif, zoneid, 4250 NULL, MATCH_IRE_TYPE, ipst); 4251 } 4252 4253 if (ire == NULL) { 4254 /* 4255 * This is either a multicast packet or 4256 * the address has been removed since 4257 * the packet was received. 4258 * Return INADDR_ANY so that normal source 4259 * selection occurs for the response. 4260 */ 4261 4262 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4263 } else { 4264 pinfo->ip_pkt_match_addr.s_addr = 4265 ire->ire_src_addr; 4266 ire_refrele(ire); 4267 } 4268 ipif_refrele(ipif); 4269 } else { 4270 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4271 } 4272 } 4273 4274 pether = (struct ether_header *)((char *)ipha 4275 - sizeof (struct ether_header)); 4276 /* 4277 * Make sure the interface is an ethernet type, since this option 4278 * is currently supported only on this type of interface. Also make 4279 * sure we are pointing correctly above db_base. 4280 */ 4281 4282 if ((flags & IPF_RECVSLLA) && 4283 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 4284 (ill->ill_type == IFT_ETHER) && 4285 (ill->ill_net_type == IRE_IF_RESOLVER)) { 4286 4287 pinfo->ip_pkt_slla.sdl_type = IFT_ETHER; 4288 bcopy((uchar_t *)pether->ether_shost.ether_addr_octet, 4289 (uchar_t *)pinfo->ip_pkt_slla.sdl_data, ETHERADDRL); 4290 } else { 4291 /* 4292 * Clear the bit. Indicate to upper layer that IP is not 4293 * sending this ancillary info. 4294 */ 4295 pinfo->ip_pkt_flags = pinfo->ip_pkt_flags & ~IPF_RECVSLLA; 4296 } 4297 4298 mp->b_datap->db_type = M_CTL; 4299 mp->b_wptr += sizeof (ip_pktinfo_t); 4300 mp->b_cont = data_mp; 4301 4302 return (mp); 4303 } 4304 4305 /* 4306 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 4307 * part of the bind request. 4308 */ 4309 4310 boolean_t 4311 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 4312 { 4313 ipsec_in_t *ii; 4314 4315 ASSERT(policy_mp != NULL); 4316 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 4317 4318 ii = (ipsec_in_t *)policy_mp->b_rptr; 4319 ASSERT(ii->ipsec_in_type == IPSEC_IN); 4320 4321 connp->conn_policy = ii->ipsec_in_policy; 4322 ii->ipsec_in_policy = NULL; 4323 4324 if (ii->ipsec_in_action != NULL) { 4325 if (connp->conn_latch == NULL) { 4326 connp->conn_latch = iplatch_create(); 4327 if (connp->conn_latch == NULL) 4328 return (B_FALSE); 4329 } 4330 ipsec_latch_inbound(connp->conn_latch, ii); 4331 } 4332 return (B_TRUE); 4333 } 4334 4335 /* 4336 * Upper level protocols (ULP) pass through bind requests to IP for inspection 4337 * and to arrange for power-fanout assist. The ULP is identified by 4338 * adding a single byte at the end of the original bind message. 4339 * A ULP other than UDP or TCP that wishes to be recognized passes 4340 * down a bind with a zero length address. 4341 * 4342 * The binding works as follows: 4343 * - A zero byte address means just bind to the protocol. 4344 * - A four byte address is treated as a request to validate 4345 * that the address is a valid local address, appropriate for 4346 * an application to bind to. This does not affect any fanout 4347 * information in IP. 4348 * - A sizeof sin_t byte address is used to bind to only the local address 4349 * and port. 4350 * - A sizeof ipa_conn_t byte address contains complete fanout information 4351 * consisting of local and remote addresses and ports. In 4352 * this case, the addresses are both validated as appropriate 4353 * for this operation, and, if so, the information is retained 4354 * for use in the inbound fanout. 4355 * 4356 * The ULP (except in the zero-length bind) can append an 4357 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4358 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4359 * a copy of the source or destination IRE (source for local bind; 4360 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4361 * policy information contained should be copied on to the conn. 4362 * 4363 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4364 */ 4365 mblk_t * 4366 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4367 { 4368 ssize_t len; 4369 struct T_bind_req *tbr; 4370 sin_t *sin; 4371 ipa_conn_t *ac; 4372 uchar_t *ucp; 4373 mblk_t *mp1; 4374 boolean_t ire_requested; 4375 boolean_t ipsec_policy_set = B_FALSE; 4376 int error = 0; 4377 int protocol; 4378 ipa_conn_x_t *acx; 4379 4380 ASSERT(!connp->conn_af_isv6); 4381 connp->conn_pkt_isv6 = B_FALSE; 4382 4383 len = MBLKL(mp); 4384 if (len < (sizeof (*tbr) + 1)) { 4385 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4386 "ip_bind: bogus msg, len %ld", len); 4387 /* XXX: Need to return something better */ 4388 goto bad_addr; 4389 } 4390 /* Back up and extract the protocol identifier. */ 4391 mp->b_wptr--; 4392 protocol = *mp->b_wptr & 0xFF; 4393 tbr = (struct T_bind_req *)mp->b_rptr; 4394 /* Reset the message type in preparation for shipping it back. */ 4395 DB_TYPE(mp) = M_PCPROTO; 4396 4397 connp->conn_ulp = (uint8_t)protocol; 4398 4399 /* 4400 * Check for a zero length address. This is from a protocol that 4401 * wants to register to receive all packets of its type. 4402 */ 4403 if (tbr->ADDR_length == 0) { 4404 /* 4405 * These protocols are now intercepted in ip_bind_v6(). 4406 * Reject protocol-level binds here for now. 4407 * 4408 * For SCTP raw socket, ICMP sends down a bind with sin_t 4409 * so that the protocol type cannot be SCTP. 4410 */ 4411 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4412 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4413 goto bad_addr; 4414 } 4415 4416 /* 4417 * 4418 * The udp module never sends down a zero-length address, 4419 * and allowing this on a labeled system will break MLP 4420 * functionality. 4421 */ 4422 if (is_system_labeled() && protocol == IPPROTO_UDP) 4423 goto bad_addr; 4424 4425 if (connp->conn_mac_exempt) 4426 goto bad_addr; 4427 4428 /* No hash here really. The table is big enough. */ 4429 connp->conn_srcv6 = ipv6_all_zeros; 4430 4431 ipcl_proto_insert(connp, protocol); 4432 4433 tbr->PRIM_type = T_BIND_ACK; 4434 return (mp); 4435 } 4436 4437 /* Extract the address pointer from the message. */ 4438 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4439 tbr->ADDR_length); 4440 if (ucp == NULL) { 4441 ip1dbg(("ip_bind: no address\n")); 4442 goto bad_addr; 4443 } 4444 if (!OK_32PTR(ucp)) { 4445 ip1dbg(("ip_bind: unaligned address\n")); 4446 goto bad_addr; 4447 } 4448 /* 4449 * Check for trailing mps. 4450 */ 4451 4452 mp1 = mp->b_cont; 4453 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 4454 ipsec_policy_set = (mp1 != NULL && DB_TYPE(mp1) == IPSEC_POLICY_SET); 4455 4456 switch (tbr->ADDR_length) { 4457 default: 4458 ip1dbg(("ip_bind: bad address length %d\n", 4459 (int)tbr->ADDR_length)); 4460 goto bad_addr; 4461 4462 case IP_ADDR_LEN: 4463 /* Verification of local address only */ 4464 error = ip_bind_laddr(connp, mp, *(ipaddr_t *)ucp, 0, 4465 ire_requested, ipsec_policy_set, B_FALSE); 4466 break; 4467 4468 case sizeof (sin_t): 4469 sin = (sin_t *)ucp; 4470 error = ip_bind_laddr(connp, mp, sin->sin_addr.s_addr, 4471 sin->sin_port, ire_requested, ipsec_policy_set, B_TRUE); 4472 break; 4473 4474 case sizeof (ipa_conn_t): 4475 ac = (ipa_conn_t *)ucp; 4476 /* For raw socket, the local port is not set. */ 4477 if (ac->ac_lport == 0) 4478 ac->ac_lport = connp->conn_lport; 4479 /* Always verify destination reachability. */ 4480 error = ip_bind_connected(connp, mp, &ac->ac_laddr, 4481 ac->ac_lport, ac->ac_faddr, ac->ac_fport, ire_requested, 4482 ipsec_policy_set, B_TRUE, B_TRUE); 4483 break; 4484 4485 case sizeof (ipa_conn_x_t): 4486 acx = (ipa_conn_x_t *)ucp; 4487 /* 4488 * Whether or not to verify destination reachability depends 4489 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4490 */ 4491 error = ip_bind_connected(connp, mp, &acx->acx_conn.ac_laddr, 4492 acx->acx_conn.ac_lport, acx->acx_conn.ac_faddr, 4493 acx->acx_conn.ac_fport, ire_requested, ipsec_policy_set, 4494 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0); 4495 break; 4496 } 4497 if (error == EINPROGRESS) 4498 return (NULL); 4499 else if (error != 0) 4500 goto bad_addr; 4501 /* 4502 * Pass the IPSEC headers size in ire_ipsec_overhead. 4503 * We can't do this in ip_bind_insert_ire because the policy 4504 * may not have been inherited at that point in time and hence 4505 * conn_out_enforce_policy may not be set. 4506 */ 4507 mp1 = mp->b_cont; 4508 if (ire_requested && connp->conn_out_enforce_policy && 4509 mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE) { 4510 ire_t *ire = (ire_t *)mp1->b_rptr; 4511 ASSERT(MBLKL(mp1) >= sizeof (ire_t)); 4512 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 4513 } 4514 4515 /* Send it home. */ 4516 mp->b_datap->db_type = M_PCPROTO; 4517 tbr->PRIM_type = T_BIND_ACK; 4518 return (mp); 4519 4520 bad_addr: 4521 /* 4522 * If error = -1 then we generate a TBADADDR - otherwise error is 4523 * a unix errno. 4524 */ 4525 if (error > 0) 4526 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4527 else 4528 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4529 return (mp); 4530 } 4531 4532 /* 4533 * Here address is verified to be a valid local address. 4534 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4535 * address is also considered a valid local address. 4536 * In the case of a broadcast/multicast address, however, the 4537 * upper protocol is expected to reset the src address 4538 * to 0 if it sees a IRE_BROADCAST type returned so that 4539 * no packets are emitted with broadcast/multicast address as 4540 * source address (that violates hosts requirements RFC1122) 4541 * The addresses valid for bind are: 4542 * (1) - INADDR_ANY (0) 4543 * (2) - IP address of an UP interface 4544 * (3) - IP address of a DOWN interface 4545 * (4) - valid local IP broadcast addresses. In this case 4546 * the conn will only receive packets destined to 4547 * the specified broadcast address. 4548 * (5) - a multicast address. In this case 4549 * the conn will only receive packets destined to 4550 * the specified multicast address. Note: the 4551 * application still has to issue an 4552 * IP_ADD_MEMBERSHIP socket option. 4553 * 4554 * On error, return -1 for TBADADDR otherwise pass the 4555 * errno with TSYSERR reply. 4556 * 4557 * In all the above cases, the bound address must be valid in the current zone. 4558 * When the address is loopback, multicast or broadcast, there might be many 4559 * matching IREs so bind has to look up based on the zone. 4560 * 4561 * Note: lport is in network byte order. 4562 */ 4563 int 4564 ip_bind_laddr(conn_t *connp, mblk_t *mp, ipaddr_t src_addr, uint16_t lport, 4565 boolean_t ire_requested, boolean_t ipsec_policy_set, 4566 boolean_t fanout_insert) 4567 { 4568 int error = 0; 4569 ire_t *src_ire; 4570 mblk_t *policy_mp; 4571 ipif_t *ipif; 4572 zoneid_t zoneid; 4573 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4574 4575 if (ipsec_policy_set) { 4576 policy_mp = mp->b_cont; 4577 } 4578 4579 /* 4580 * If it was previously connected, conn_fully_bound would have 4581 * been set. 4582 */ 4583 connp->conn_fully_bound = B_FALSE; 4584 4585 src_ire = NULL; 4586 ipif = NULL; 4587 4588 zoneid = IPCL_ZONEID(connp); 4589 4590 if (src_addr) { 4591 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4592 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 4593 /* 4594 * If an address other than 0.0.0.0 is requested, 4595 * we verify that it is a valid address for bind 4596 * Note: Following code is in if-else-if form for 4597 * readability compared to a condition check. 4598 */ 4599 /* LINTED - statement has no consequent */ 4600 if (IRE_IS_LOCAL(src_ire)) { 4601 /* 4602 * (2) Bind to address of local UP interface 4603 */ 4604 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4605 /* 4606 * (4) Bind to broadcast address 4607 * Note: permitted only from transports that 4608 * request IRE 4609 */ 4610 if (!ire_requested) 4611 error = EADDRNOTAVAIL; 4612 } else { 4613 /* 4614 * (3) Bind to address of local DOWN interface 4615 * (ipif_lookup_addr() looks up all interfaces 4616 * but we do not get here for UP interfaces 4617 * - case (2) above) 4618 * We put the protocol byte back into the mblk 4619 * since we may come back via ip_wput_nondata() 4620 * later with this mblk if ipif_lookup_addr chooses 4621 * to defer processing. 4622 */ 4623 *mp->b_wptr++ = (char)connp->conn_ulp; 4624 if ((ipif = ipif_lookup_addr(src_addr, NULL, zoneid, 4625 CONNP_TO_WQ(connp), mp, ip_wput_nondata, 4626 &error, ipst)) != NULL) { 4627 ipif_refrele(ipif); 4628 } else if (error == EINPROGRESS) { 4629 if (src_ire != NULL) 4630 ire_refrele(src_ire); 4631 return (EINPROGRESS); 4632 } else if (CLASSD(src_addr)) { 4633 error = 0; 4634 if (src_ire != NULL) 4635 ire_refrele(src_ire); 4636 /* 4637 * (5) bind to multicast address. 4638 * Fake out the IRE returned to upper 4639 * layer to be a broadcast IRE. 4640 */ 4641 src_ire = ire_ctable_lookup( 4642 INADDR_BROADCAST, INADDR_ANY, 4643 IRE_BROADCAST, NULL, zoneid, NULL, 4644 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY), 4645 ipst); 4646 if (src_ire == NULL || !ire_requested) 4647 error = EADDRNOTAVAIL; 4648 } else { 4649 /* 4650 * Not a valid address for bind 4651 */ 4652 error = EADDRNOTAVAIL; 4653 } 4654 /* 4655 * Just to keep it consistent with the processing in 4656 * ip_bind_v4() 4657 */ 4658 mp->b_wptr--; 4659 } 4660 if (error) { 4661 /* Red Alert! Attempting to be a bogon! */ 4662 ip1dbg(("ip_bind: bad src address 0x%x\n", 4663 ntohl(src_addr))); 4664 goto bad_addr; 4665 } 4666 } 4667 4668 /* 4669 * Allow setting new policies. For example, disconnects come 4670 * down as ipa_t bind. As we would have set conn_policy_cached 4671 * to B_TRUE before, we should set it to B_FALSE, so that policy 4672 * can change after the disconnect. 4673 */ 4674 connp->conn_policy_cached = B_FALSE; 4675 4676 /* 4677 * If not fanout_insert this was just an address verification 4678 */ 4679 if (fanout_insert) { 4680 /* 4681 * The addresses have been verified. Time to insert in 4682 * the correct fanout list. 4683 */ 4684 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4685 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4686 connp->conn_lport = lport; 4687 connp->conn_fport = 0; 4688 /* 4689 * Do we need to add a check to reject Multicast packets 4690 * 4691 * We need to make sure that the conn_recv is set to a non-null 4692 * value before we insert the conn into the classifier table. 4693 * This is to avoid a race with an incoming packet which does an 4694 * ipcl_classify(). 4695 */ 4696 if (*mp->b_wptr == IPPROTO_TCP) 4697 connp->conn_recv = tcp_conn_request; 4698 error = ipcl_bind_insert(connp, *mp->b_wptr, src_addr, lport); 4699 } 4700 4701 if (error == 0) { 4702 if (ire_requested) { 4703 if (!ip_bind_insert_ire(mp, src_ire, NULL, ipst)) { 4704 error = -1; 4705 /* Falls through to bad_addr */ 4706 } 4707 } else if (ipsec_policy_set) { 4708 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4709 error = -1; 4710 /* Falls through to bad_addr */ 4711 } 4712 } 4713 } else if (connp->conn_ulp == IPPROTO_TCP) { 4714 connp->conn_recv = tcp_input; 4715 } 4716 bad_addr: 4717 if (error != 0) { 4718 if (connp->conn_anon_port) { 4719 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4720 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4721 B_FALSE); 4722 } 4723 connp->conn_mlp_type = mlptSingle; 4724 } 4725 if (src_ire != NULL) 4726 IRE_REFRELE(src_ire); 4727 if (ipsec_policy_set) { 4728 ASSERT(policy_mp == mp->b_cont); 4729 ASSERT(policy_mp != NULL); 4730 freeb(policy_mp); 4731 /* 4732 * As of now assume that nothing else accompanies 4733 * IPSEC_POLICY_SET. 4734 */ 4735 mp->b_cont = NULL; 4736 } 4737 return (error); 4738 } 4739 4740 /* 4741 * Verify that both the source and destination addresses 4742 * are valid. If verify_dst is false, then the destination address may be 4743 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4744 * destination reachability, while tunnels do not. 4745 * Note that we allow connect to broadcast and multicast 4746 * addresses when ire_requested is set. Thus the ULP 4747 * has to check for IRE_BROADCAST and multicast. 4748 * 4749 * Returns zero if ok. 4750 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4751 * (for use with TSYSERR reply). 4752 * 4753 * Note: lport and fport are in network byte order. 4754 */ 4755 int 4756 ip_bind_connected(conn_t *connp, mblk_t *mp, ipaddr_t *src_addrp, 4757 uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4758 boolean_t ire_requested, boolean_t ipsec_policy_set, 4759 boolean_t fanout_insert, boolean_t verify_dst) 4760 { 4761 ire_t *src_ire; 4762 ire_t *dst_ire; 4763 int error = 0; 4764 int protocol; 4765 mblk_t *policy_mp; 4766 ire_t *sire = NULL; 4767 ire_t *md_dst_ire = NULL; 4768 ire_t *lso_dst_ire = NULL; 4769 ill_t *ill = NULL; 4770 zoneid_t zoneid; 4771 ipaddr_t src_addr = *src_addrp; 4772 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4773 4774 src_ire = dst_ire = NULL; 4775 protocol = *mp->b_wptr & 0xFF; 4776 4777 /* 4778 * If we never got a disconnect before, clear it now. 4779 */ 4780 connp->conn_fully_bound = B_FALSE; 4781 4782 if (ipsec_policy_set) { 4783 policy_mp = mp->b_cont; 4784 } 4785 4786 zoneid = IPCL_ZONEID(connp); 4787 4788 if (CLASSD(dst_addr)) { 4789 /* Pick up an IRE_BROADCAST */ 4790 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4791 NULL, zoneid, MBLK_GETLABEL(mp), 4792 (MATCH_IRE_RECURSIVE | 4793 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4794 MATCH_IRE_SECATTR), ipst); 4795 } else { 4796 /* 4797 * If conn_dontroute is set or if conn_nexthop_set is set, 4798 * and onlink ipif is not found set ENETUNREACH error. 4799 */ 4800 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4801 ipif_t *ipif; 4802 4803 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4804 dst_addr : connp->conn_nexthop_v4, zoneid, ipst); 4805 if (ipif == NULL) { 4806 error = ENETUNREACH; 4807 goto bad_addr; 4808 } 4809 ipif_refrele(ipif); 4810 } 4811 4812 if (connp->conn_nexthop_set) { 4813 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4814 0, 0, NULL, NULL, zoneid, MBLK_GETLABEL(mp), 4815 MATCH_IRE_SECATTR, ipst); 4816 } else { 4817 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4818 &sire, zoneid, MBLK_GETLABEL(mp), 4819 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4820 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4821 MATCH_IRE_SECATTR), ipst); 4822 } 4823 } 4824 /* 4825 * dst_ire can't be a broadcast when not ire_requested. 4826 * We also prevent ire's with src address INADDR_ANY to 4827 * be used, which are created temporarily for 4828 * sending out packets from endpoints that have 4829 * conn_unspec_src set. If verify_dst is true, the destination must be 4830 * reachable. If verify_dst is false, the destination needn't be 4831 * reachable. 4832 * 4833 * If we match on a reject or black hole, then we've got a 4834 * local failure. May as well fail out the connect() attempt, 4835 * since it's never going to succeed. 4836 */ 4837 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4838 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4839 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4840 /* 4841 * If we're verifying destination reachability, we always want 4842 * to complain here. 4843 * 4844 * If we're not verifying destination reachability but the 4845 * destination has a route, we still want to fail on the 4846 * temporary address and broadcast address tests. 4847 */ 4848 if (verify_dst || (dst_ire != NULL)) { 4849 if (ip_debug > 2) { 4850 pr_addr_dbg("ip_bind_connected: bad connected " 4851 "dst %s\n", AF_INET, &dst_addr); 4852 } 4853 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4854 error = ENETUNREACH; 4855 else 4856 error = EHOSTUNREACH; 4857 goto bad_addr; 4858 } 4859 } 4860 4861 /* 4862 * We now know that routing will allow us to reach the destination. 4863 * Check whether Trusted Solaris policy allows communication with this 4864 * host, and pretend that the destination is unreachable if not. 4865 * 4866 * This is never a problem for TCP, since that transport is known to 4867 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4868 * handling. If the remote is unreachable, it will be detected at that 4869 * point, so there's no reason to check it here. 4870 * 4871 * Note that for sendto (and other datagram-oriented friends), this 4872 * check is done as part of the data path label computation instead. 4873 * The check here is just to make non-TCP connect() report the right 4874 * error. 4875 */ 4876 if (dst_ire != NULL && is_system_labeled() && 4877 !IPCL_IS_TCP(connp) && 4878 tsol_compute_label(DB_CREDDEF(mp, connp->conn_cred), dst_addr, NULL, 4879 connp->conn_mac_exempt, ipst) != 0) { 4880 error = EHOSTUNREACH; 4881 if (ip_debug > 2) { 4882 pr_addr_dbg("ip_bind_connected: no label for dst %s\n", 4883 AF_INET, &dst_addr); 4884 } 4885 goto bad_addr; 4886 } 4887 4888 /* 4889 * If the app does a connect(), it means that it will most likely 4890 * send more than 1 packet to the destination. It makes sense 4891 * to clear the temporary flag. 4892 */ 4893 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4894 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4895 irb_t *irb = dst_ire->ire_bucket; 4896 4897 rw_enter(&irb->irb_lock, RW_WRITER); 4898 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4899 irb->irb_tmp_ire_cnt--; 4900 rw_exit(&irb->irb_lock); 4901 } 4902 4903 /* 4904 * See if we should notify ULP about LSO/MDT; we do this whether or not 4905 * ire_requested is TRUE, in order to handle active connects; LSO/MDT 4906 * eligibility tests for passive connects are handled separately 4907 * through tcp_adapt_ire(). We do this before the source address 4908 * selection, because dst_ire may change after a call to 4909 * ipif_select_source(). This is a best-effort check, as the 4910 * packet for this connection may not actually go through 4911 * dst_ire->ire_stq, and the exact IRE can only be known after 4912 * calling ip_newroute(). This is why we further check on the 4913 * IRE during LSO/Multidata packet transmission in 4914 * tcp_lsosend()/tcp_multisend(). 4915 */ 4916 if (!ipsec_policy_set && dst_ire != NULL && 4917 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4918 (ill = ire_to_ill(dst_ire), ill != NULL)) { 4919 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 4920 lso_dst_ire = dst_ire; 4921 IRE_REFHOLD(lso_dst_ire); 4922 } else if (ipst->ips_ip_multidata_outbound && 4923 ILL_MDT_CAPABLE(ill)) { 4924 md_dst_ire = dst_ire; 4925 IRE_REFHOLD(md_dst_ire); 4926 } 4927 } 4928 4929 if (dst_ire != NULL && 4930 dst_ire->ire_type == IRE_LOCAL && 4931 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4932 /* 4933 * If the IRE belongs to a different zone, look for a matching 4934 * route in the forwarding table and use the source address from 4935 * that route. 4936 */ 4937 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4938 zoneid, 0, NULL, 4939 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4940 MATCH_IRE_RJ_BHOLE, ipst); 4941 if (src_ire == NULL) { 4942 error = EHOSTUNREACH; 4943 goto bad_addr; 4944 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4945 if (!(src_ire->ire_type & IRE_HOST)) 4946 error = ENETUNREACH; 4947 else 4948 error = EHOSTUNREACH; 4949 goto bad_addr; 4950 } 4951 if (src_addr == INADDR_ANY) 4952 src_addr = src_ire->ire_src_addr; 4953 ire_refrele(src_ire); 4954 src_ire = NULL; 4955 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4956 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4957 src_addr = sire->ire_src_addr; 4958 ire_refrele(dst_ire); 4959 dst_ire = sire; 4960 sire = NULL; 4961 } else { 4962 /* 4963 * Pick a source address so that a proper inbound 4964 * load spreading would happen. 4965 */ 4966 ill_t *dst_ill = dst_ire->ire_ipif->ipif_ill; 4967 ipif_t *src_ipif = NULL; 4968 ire_t *ipif_ire; 4969 4970 /* 4971 * Supply a local source address such that inbound 4972 * load spreading happens. 4973 * 4974 * Determine the best source address on this ill for 4975 * the destination. 4976 * 4977 * 1) For broadcast, we should return a broadcast ire 4978 * found above so that upper layers know that the 4979 * destination address is a broadcast address. 4980 * 4981 * 2) If this is part of a group, select a better 4982 * source address so that better inbound load 4983 * balancing happens. Do the same if the ipif 4984 * is DEPRECATED. 4985 * 4986 * 3) If the outgoing interface is part of a usesrc 4987 * group, then try selecting a source address from 4988 * the usesrc ILL. 4989 */ 4990 if ((dst_ire->ire_zoneid != zoneid && 4991 dst_ire->ire_zoneid != ALL_ZONES) || 4992 (!(dst_ire->ire_type & IRE_BROADCAST) && 4993 ((dst_ill->ill_group != NULL) || 4994 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 4995 (dst_ill->ill_usesrc_ifindex != 0)))) { 4996 /* 4997 * If the destination is reachable via a 4998 * given gateway, the selected source address 4999 * should be in the same subnet as the gateway. 5000 * Otherwise, the destination is not reachable. 5001 * 5002 * If there are no interfaces on the same subnet 5003 * as the destination, ipif_select_source gives 5004 * first non-deprecated interface which might be 5005 * on a different subnet than the gateway. 5006 * This is not desirable. Hence pass the dst_ire 5007 * source address to ipif_select_source. 5008 * It is sure that the destination is reachable 5009 * with the dst_ire source address subnet. 5010 * So passing dst_ire source address to 5011 * ipif_select_source will make sure that the 5012 * selected source will be on the same subnet 5013 * as dst_ire source address. 5014 */ 5015 ipaddr_t saddr = 5016 dst_ire->ire_ipif->ipif_src_addr; 5017 src_ipif = ipif_select_source(dst_ill, 5018 saddr, zoneid); 5019 if (src_ipif != NULL) { 5020 if (IS_VNI(src_ipif->ipif_ill)) { 5021 /* 5022 * For VNI there is no 5023 * interface route 5024 */ 5025 src_addr = 5026 src_ipif->ipif_src_addr; 5027 } else { 5028 ipif_ire = 5029 ipif_to_ire(src_ipif); 5030 if (ipif_ire != NULL) { 5031 IRE_REFRELE(dst_ire); 5032 dst_ire = ipif_ire; 5033 } 5034 src_addr = 5035 dst_ire->ire_src_addr; 5036 } 5037 ipif_refrele(src_ipif); 5038 } else { 5039 src_addr = dst_ire->ire_src_addr; 5040 } 5041 } else { 5042 src_addr = dst_ire->ire_src_addr; 5043 } 5044 } 5045 } 5046 5047 /* 5048 * We do ire_route_lookup() here (and not 5049 * interface lookup as we assert that 5050 * src_addr should only come from an 5051 * UP interface for hard binding. 5052 */ 5053 ASSERT(src_ire == NULL); 5054 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 5055 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 5056 /* src_ire must be a local|loopback */ 5057 if (!IRE_IS_LOCAL(src_ire)) { 5058 if (ip_debug > 2) { 5059 pr_addr_dbg("ip_bind_connected: bad connected " 5060 "src %s\n", AF_INET, &src_addr); 5061 } 5062 error = EADDRNOTAVAIL; 5063 goto bad_addr; 5064 } 5065 5066 /* 5067 * If the source address is a loopback address, the 5068 * destination had best be local or multicast. 5069 * The transports that can't handle multicast will reject 5070 * those addresses. 5071 */ 5072 if (src_ire->ire_type == IRE_LOOPBACK && 5073 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 5074 ip1dbg(("ip_bind_connected: bad connected loopback\n")); 5075 error = -1; 5076 goto bad_addr; 5077 } 5078 5079 /* 5080 * Allow setting new policies. For example, disconnects come 5081 * down as ipa_t bind. As we would have set conn_policy_cached 5082 * to B_TRUE before, we should set it to B_FALSE, so that policy 5083 * can change after the disconnect. 5084 */ 5085 connp->conn_policy_cached = B_FALSE; 5086 5087 /* 5088 * Set the conn addresses/ports immediately, so the IPsec policy calls 5089 * can handle their passed-in conn's. 5090 */ 5091 5092 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 5093 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 5094 connp->conn_lport = lport; 5095 connp->conn_fport = fport; 5096 *src_addrp = src_addr; 5097 5098 ASSERT(!(ipsec_policy_set && ire_requested)); 5099 if (ire_requested) { 5100 iulp_t *ulp_info = NULL; 5101 5102 /* 5103 * Note that sire will not be NULL if this is an off-link 5104 * connection and there is not cache for that dest yet. 5105 * 5106 * XXX Because of an existing bug, if there are multiple 5107 * default routes, the IRE returned now may not be the actual 5108 * default route used (default routes are chosen in a 5109 * round robin fashion). So if the metrics for different 5110 * default routes are different, we may return the wrong 5111 * metrics. This will not be a problem if the existing 5112 * bug is fixed. 5113 */ 5114 if (sire != NULL) { 5115 ulp_info = &(sire->ire_uinfo); 5116 } 5117 if (!ip_bind_insert_ire(mp, dst_ire, ulp_info, ipst)) { 5118 error = -1; 5119 goto bad_addr; 5120 } 5121 } else if (ipsec_policy_set) { 5122 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 5123 error = -1; 5124 goto bad_addr; 5125 } 5126 } 5127 5128 /* 5129 * Cache IPsec policy in this conn. If we have per-socket policy, 5130 * we'll cache that. If we don't, we'll inherit global policy. 5131 * 5132 * We can't insert until the conn reflects the policy. Note that 5133 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 5134 * connections where we don't have a policy. This is to prevent 5135 * global policy lookups in the inbound path. 5136 * 5137 * If we insert before we set conn_policy_cached, 5138 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 5139 * because global policy cound be non-empty. We normally call 5140 * ipsec_check_policy() for conn_policy_cached connections only if 5141 * ipc_in_enforce_policy is set. But in this case, 5142 * conn_policy_cached can get set anytime since we made the 5143 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 5144 * called, which will make the above assumption false. Thus, we 5145 * need to insert after we set conn_policy_cached. 5146 */ 5147 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 5148 goto bad_addr; 5149 5150 if (fanout_insert) { 5151 /* 5152 * The addresses have been verified. Time to insert in 5153 * the correct fanout list. 5154 * We need to make sure that the conn_recv is set to a non-null 5155 * value before we insert into the classifier table to avoid a 5156 * race with an incoming packet which does an ipcl_classify(). 5157 */ 5158 if (protocol == IPPROTO_TCP) 5159 connp->conn_recv = tcp_input; 5160 error = ipcl_conn_insert(connp, protocol, src_addr, 5161 dst_addr, connp->conn_ports); 5162 } 5163 5164 if (error == 0) { 5165 connp->conn_fully_bound = B_TRUE; 5166 /* 5167 * Our initial checks for LSO/MDT have passed; the IRE is not 5168 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 5169 * be supporting LSO/MDT. Pass the IRE, IPC and ILL into 5170 * ip_xxinfo_return(), which performs further checks 5171 * against them and upon success, returns the LSO/MDT info 5172 * mblk which we will attach to the bind acknowledgment. 5173 */ 5174 if (lso_dst_ire != NULL) { 5175 mblk_t *lsoinfo_mp; 5176 5177 ASSERT(ill->ill_lso_capab != NULL); 5178 if ((lsoinfo_mp = ip_lsoinfo_return(lso_dst_ire, connp, 5179 ill->ill_name, ill->ill_lso_capab)) != NULL) 5180 linkb(mp, lsoinfo_mp); 5181 } else if (md_dst_ire != NULL) { 5182 mblk_t *mdinfo_mp; 5183 5184 ASSERT(ill->ill_mdt_capab != NULL); 5185 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 5186 ill->ill_name, ill->ill_mdt_capab)) != NULL) 5187 linkb(mp, mdinfo_mp); 5188 } 5189 } 5190 bad_addr: 5191 if (ipsec_policy_set) { 5192 ASSERT(policy_mp == mp->b_cont); 5193 ASSERT(policy_mp != NULL); 5194 freeb(policy_mp); 5195 /* 5196 * As of now assume that nothing else accompanies 5197 * IPSEC_POLICY_SET. 5198 */ 5199 mp->b_cont = NULL; 5200 } 5201 if (src_ire != NULL) 5202 IRE_REFRELE(src_ire); 5203 if (dst_ire != NULL) 5204 IRE_REFRELE(dst_ire); 5205 if (sire != NULL) 5206 IRE_REFRELE(sire); 5207 if (md_dst_ire != NULL) 5208 IRE_REFRELE(md_dst_ire); 5209 if (lso_dst_ire != NULL) 5210 IRE_REFRELE(lso_dst_ire); 5211 return (error); 5212 } 5213 5214 /* 5215 * Insert the ire in b_cont. Returns false if it fails (due to lack of space). 5216 * Prefers dst_ire over src_ire. 5217 */ 5218 static boolean_t 5219 ip_bind_insert_ire(mblk_t *mp, ire_t *ire, iulp_t *ulp_info, ip_stack_t *ipst) 5220 { 5221 mblk_t *mp1; 5222 ire_t *ret_ire = NULL; 5223 5224 mp1 = mp->b_cont; 5225 ASSERT(mp1 != NULL); 5226 5227 if (ire != NULL) { 5228 /* 5229 * mp1 initialized above to IRE_DB_REQ_TYPE 5230 * appended mblk. Its <upper protocol>'s 5231 * job to make sure there is room. 5232 */ 5233 if ((mp1->b_datap->db_lim - mp1->b_rptr) < sizeof (ire_t)) 5234 return (0); 5235 5236 mp1->b_datap->db_type = IRE_DB_TYPE; 5237 mp1->b_wptr = mp1->b_rptr + sizeof (ire_t); 5238 bcopy(ire, mp1->b_rptr, sizeof (ire_t)); 5239 ret_ire = (ire_t *)mp1->b_rptr; 5240 /* 5241 * Pass the latest setting of the ip_path_mtu_discovery and 5242 * copy the ulp info if any. 5243 */ 5244 ret_ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? 5245 IPH_DF : 0; 5246 if (ulp_info != NULL) { 5247 bcopy(ulp_info, &(ret_ire->ire_uinfo), 5248 sizeof (iulp_t)); 5249 } 5250 ret_ire->ire_mp = mp1; 5251 } else { 5252 /* 5253 * No IRE was found. Remove IRE mblk. 5254 */ 5255 mp->b_cont = mp1->b_cont; 5256 freeb(mp1); 5257 } 5258 5259 return (1); 5260 } 5261 5262 /* 5263 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 5264 * the final piece where we don't. Return a pointer to the first mblk in the 5265 * result, and update the pointer to the next mblk to chew on. If anything 5266 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 5267 * NULL pointer. 5268 */ 5269 mblk_t * 5270 ip_carve_mp(mblk_t **mpp, ssize_t len) 5271 { 5272 mblk_t *mp0; 5273 mblk_t *mp1; 5274 mblk_t *mp2; 5275 5276 if (!len || !mpp || !(mp0 = *mpp)) 5277 return (NULL); 5278 /* If we aren't going to consume the first mblk, we need a dup. */ 5279 if (mp0->b_wptr - mp0->b_rptr > len) { 5280 mp1 = dupb(mp0); 5281 if (mp1) { 5282 /* Partition the data between the two mblks. */ 5283 mp1->b_wptr = mp1->b_rptr + len; 5284 mp0->b_rptr = mp1->b_wptr; 5285 /* 5286 * after adjustments if mblk not consumed is now 5287 * unaligned, try to align it. If this fails free 5288 * all messages and let upper layer recover. 5289 */ 5290 if (!OK_32PTR(mp0->b_rptr)) { 5291 if (!pullupmsg(mp0, -1)) { 5292 freemsg(mp0); 5293 freemsg(mp1); 5294 *mpp = NULL; 5295 return (NULL); 5296 } 5297 } 5298 } 5299 return (mp1); 5300 } 5301 /* Eat through as many mblks as we need to get len bytes. */ 5302 len -= mp0->b_wptr - mp0->b_rptr; 5303 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 5304 if (mp2->b_wptr - mp2->b_rptr > len) { 5305 /* 5306 * We won't consume the entire last mblk. Like 5307 * above, dup and partition it. 5308 */ 5309 mp1->b_cont = dupb(mp2); 5310 mp1 = mp1->b_cont; 5311 if (!mp1) { 5312 /* 5313 * Trouble. Rather than go to a lot of 5314 * trouble to clean up, we free the messages. 5315 * This won't be any worse than losing it on 5316 * the wire. 5317 */ 5318 freemsg(mp0); 5319 freemsg(mp2); 5320 *mpp = NULL; 5321 return (NULL); 5322 } 5323 mp1->b_wptr = mp1->b_rptr + len; 5324 mp2->b_rptr = mp1->b_wptr; 5325 /* 5326 * after adjustments if mblk not consumed is now 5327 * unaligned, try to align it. If this fails free 5328 * all messages and let upper layer recover. 5329 */ 5330 if (!OK_32PTR(mp2->b_rptr)) { 5331 if (!pullupmsg(mp2, -1)) { 5332 freemsg(mp0); 5333 freemsg(mp2); 5334 *mpp = NULL; 5335 return (NULL); 5336 } 5337 } 5338 *mpp = mp2; 5339 return (mp0); 5340 } 5341 /* Decrement len by the amount we just got. */ 5342 len -= mp2->b_wptr - mp2->b_rptr; 5343 } 5344 /* 5345 * len should be reduced to zero now. If not our caller has 5346 * screwed up. 5347 */ 5348 if (len) { 5349 /* Shouldn't happen! */ 5350 freemsg(mp0); 5351 *mpp = NULL; 5352 return (NULL); 5353 } 5354 /* 5355 * We consumed up to exactly the end of an mblk. Detach the part 5356 * we are returning from the rest of the chain. 5357 */ 5358 mp1->b_cont = NULL; 5359 *mpp = mp2; 5360 return (mp0); 5361 } 5362 5363 /* The ill stream is being unplumbed. Called from ip_close */ 5364 int 5365 ip_modclose(ill_t *ill) 5366 { 5367 boolean_t success; 5368 ipsq_t *ipsq; 5369 ipif_t *ipif; 5370 queue_t *q = ill->ill_rq; 5371 ip_stack_t *ipst = ill->ill_ipst; 5372 clock_t timeout; 5373 5374 /* 5375 * Wait for the ACKs of all deferred control messages to be processed. 5376 * In particular, we wait for a potential capability reset initiated 5377 * in ip_sioctl_plink() to complete before proceeding. 5378 * 5379 * Note: we wait for at most ip_modclose_ackwait_ms (by default 3000 ms) 5380 * in case the driver never replies. 5381 */ 5382 timeout = lbolt + MSEC_TO_TICK(ip_modclose_ackwait_ms); 5383 mutex_enter(&ill->ill_lock); 5384 while (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 5385 if (cv_timedwait(&ill->ill_cv, &ill->ill_lock, timeout) < 0) { 5386 /* Timeout */ 5387 break; 5388 } 5389 } 5390 mutex_exit(&ill->ill_lock); 5391 5392 /* 5393 * Forcibly enter the ipsq after some delay. This is to take 5394 * care of the case when some ioctl does not complete because 5395 * we sent a control message to the driver and it did not 5396 * send us a reply. We want to be able to at least unplumb 5397 * and replumb rather than force the user to reboot the system. 5398 */ 5399 success = ipsq_enter(ill, B_FALSE); 5400 5401 /* 5402 * Open/close/push/pop is guaranteed to be single threaded 5403 * per stream by STREAMS. FS guarantees that all references 5404 * from top are gone before close is called. So there can't 5405 * be another close thread that has set CONDEMNED on this ill. 5406 * and cause ipsq_enter to return failure. 5407 */ 5408 ASSERT(success); 5409 ipsq = ill->ill_phyint->phyint_ipsq; 5410 5411 /* 5412 * Mark it condemned. No new reference will be made to this ill. 5413 * Lookup functions will return an error. Threads that try to 5414 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5415 * that the refcnt will drop down to zero. 5416 */ 5417 mutex_enter(&ill->ill_lock); 5418 ill->ill_state_flags |= ILL_CONDEMNED; 5419 for (ipif = ill->ill_ipif; ipif != NULL; 5420 ipif = ipif->ipif_next) { 5421 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5422 } 5423 /* 5424 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5425 * returns error if ILL_CONDEMNED is set 5426 */ 5427 cv_broadcast(&ill->ill_cv); 5428 mutex_exit(&ill->ill_lock); 5429 5430 /* 5431 * Send all the deferred DLPI messages downstream which came in 5432 * during the small window right before ipsq_enter(). We do this 5433 * without waiting for the ACKs because all the ACKs for M_PROTO 5434 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 5435 */ 5436 ill_dlpi_send_deferred(ill); 5437 5438 /* 5439 * Shut down fragmentation reassembly. 5440 * ill_frag_timer won't start a timer again. 5441 * Now cancel any existing timer 5442 */ 5443 (void) untimeout(ill->ill_frag_timer_id); 5444 (void) ill_frag_timeout(ill, 0); 5445 5446 /* 5447 * If MOVE was in progress, clear the 5448 * move_in_progress fields also. 5449 */ 5450 if (ill->ill_move_in_progress) { 5451 ILL_CLEAR_MOVE(ill); 5452 } 5453 5454 /* 5455 * Call ill_delete to bring down the ipifs, ilms and ill on 5456 * this ill. Then wait for the refcnts to drop to zero. 5457 * ill_is_quiescent checks whether the ill is really quiescent. 5458 * Then make sure that threads that are waiting to enter the 5459 * ipsq have seen the error returned by ipsq_enter and have 5460 * gone away. Then we call ill_delete_tail which does the 5461 * DL_UNBIND_REQ with the driver and then qprocsoff. 5462 */ 5463 ill_delete(ill); 5464 mutex_enter(&ill->ill_lock); 5465 while (!ill_is_quiescent(ill)) 5466 cv_wait(&ill->ill_cv, &ill->ill_lock); 5467 while (ill->ill_waiters) 5468 cv_wait(&ill->ill_cv, &ill->ill_lock); 5469 5470 mutex_exit(&ill->ill_lock); 5471 5472 /* 5473 * ill_delete_tail drops reference on ill_ipst, but we need to keep 5474 * it held until the end of the function since the cleanup 5475 * below needs to be able to use the ip_stack_t. 5476 */ 5477 netstack_hold(ipst->ips_netstack); 5478 5479 /* qprocsoff is called in ill_delete_tail */ 5480 ill_delete_tail(ill); 5481 ASSERT(ill->ill_ipst == NULL); 5482 5483 /* 5484 * Walk through all upper (conn) streams and qenable 5485 * those that have queued data. 5486 * close synchronization needs this to 5487 * be done to ensure that all upper layers blocked 5488 * due to flow control to the closing device 5489 * get unblocked. 5490 */ 5491 ip1dbg(("ip_wsrv: walking\n")); 5492 conn_walk_drain(ipst); 5493 5494 mutex_enter(&ipst->ips_ip_mi_lock); 5495 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 5496 mutex_exit(&ipst->ips_ip_mi_lock); 5497 5498 /* 5499 * credp could be null if the open didn't succeed and ip_modopen 5500 * itself calls ip_close. 5501 */ 5502 if (ill->ill_credp != NULL) 5503 crfree(ill->ill_credp); 5504 5505 mutex_enter(&ill->ill_lock); 5506 ill_nic_info_dispatch(ill); 5507 mutex_exit(&ill->ill_lock); 5508 5509 /* 5510 * Now we are done with the module close pieces that 5511 * need the netstack_t. 5512 */ 5513 netstack_rele(ipst->ips_netstack); 5514 5515 mi_close_free((IDP)ill); 5516 q->q_ptr = WR(q)->q_ptr = NULL; 5517 5518 ipsq_exit(ipsq, B_TRUE, B_TRUE); 5519 5520 return (0); 5521 } 5522 5523 /* 5524 * This is called as part of close() for both IP and UDP 5525 * in order to quiesce the conn. 5526 */ 5527 void 5528 ip_quiesce_conn(conn_t *connp) 5529 { 5530 boolean_t drain_cleanup_reqd = B_FALSE; 5531 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5532 boolean_t ilg_cleanup_reqd = B_FALSE; 5533 ip_stack_t *ipst; 5534 5535 ASSERT(!IPCL_IS_TCP(connp)); 5536 ipst = connp->conn_netstack->netstack_ip; 5537 5538 /* 5539 * Mark the conn as closing, and this conn must not be 5540 * inserted in future into any list. Eg. conn_drain_insert(), 5541 * won't insert this conn into the conn_drain_list. 5542 * Similarly ill_pending_mp_add() will not add any mp to 5543 * the pending mp list, after this conn has started closing. 5544 * 5545 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5546 * cannot get set henceforth. 5547 */ 5548 mutex_enter(&connp->conn_lock); 5549 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5550 connp->conn_state_flags |= CONN_CLOSING; 5551 if (connp->conn_idl != NULL) 5552 drain_cleanup_reqd = B_TRUE; 5553 if (connp->conn_oper_pending_ill != NULL) 5554 conn_ioctl_cleanup_reqd = B_TRUE; 5555 if (connp->conn_ilg_inuse != 0) 5556 ilg_cleanup_reqd = B_TRUE; 5557 mutex_exit(&connp->conn_lock); 5558 5559 if (IPCL_IS_UDP(connp)) 5560 udp_quiesce_conn(connp); 5561 5562 if (conn_ioctl_cleanup_reqd) 5563 conn_ioctl_cleanup(connp); 5564 5565 if (is_system_labeled() && connp->conn_anon_port) { 5566 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5567 connp->conn_mlp_type, connp->conn_ulp, 5568 ntohs(connp->conn_lport), B_FALSE); 5569 connp->conn_anon_port = 0; 5570 } 5571 connp->conn_mlp_type = mlptSingle; 5572 5573 /* 5574 * Remove this conn from any fanout list it is on. 5575 * and then wait for any threads currently operating 5576 * on this endpoint to finish 5577 */ 5578 ipcl_hash_remove(connp); 5579 5580 /* 5581 * Remove this conn from the drain list, and do 5582 * any other cleanup that may be required. 5583 * (Only non-tcp streams may have a non-null conn_idl. 5584 * TCP streams are never flow controlled, and 5585 * conn_idl will be null) 5586 */ 5587 if (drain_cleanup_reqd) 5588 conn_drain_tail(connp, B_TRUE); 5589 5590 if (connp->conn_rq == ipst->ips_ip_g_mrouter || 5591 connp->conn_wq == ipst->ips_ip_g_mrouter) 5592 (void) ip_mrouter_done(NULL, ipst); 5593 5594 if (ilg_cleanup_reqd) 5595 ilg_delete_all(connp); 5596 5597 conn_delete_ire(connp, NULL); 5598 5599 /* 5600 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5601 * callers from write side can't be there now because close 5602 * is in progress. The only other caller is ipcl_walk 5603 * which checks for the condemned flag. 5604 */ 5605 mutex_enter(&connp->conn_lock); 5606 connp->conn_state_flags |= CONN_CONDEMNED; 5607 while (connp->conn_ref != 1) 5608 cv_wait(&connp->conn_cv, &connp->conn_lock); 5609 connp->conn_state_flags |= CONN_QUIESCED; 5610 mutex_exit(&connp->conn_lock); 5611 } 5612 5613 /* ARGSUSED */ 5614 int 5615 ip_close(queue_t *q, int flags) 5616 { 5617 conn_t *connp; 5618 5619 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5620 5621 /* 5622 * Call the appropriate delete routine depending on whether this is 5623 * a module or device. 5624 */ 5625 if (WR(q)->q_next != NULL) { 5626 /* This is a module close */ 5627 return (ip_modclose((ill_t *)q->q_ptr)); 5628 } 5629 5630 connp = q->q_ptr; 5631 ip_quiesce_conn(connp); 5632 5633 qprocsoff(q); 5634 5635 /* 5636 * Now we are truly single threaded on this stream, and can 5637 * delete the things hanging off the connp, and finally the connp. 5638 * We removed this connp from the fanout list, it cannot be 5639 * accessed thru the fanouts, and we already waited for the 5640 * conn_ref to drop to 0. We are already in close, so 5641 * there cannot be any other thread from the top. qprocsoff 5642 * has completed, and service has completed or won't run in 5643 * future. 5644 */ 5645 ASSERT(connp->conn_ref == 1); 5646 5647 /* 5648 * A conn which was previously marked as IPCL_UDP cannot 5649 * retain the flag because it would have been cleared by 5650 * udp_close(). 5651 */ 5652 ASSERT(!IPCL_IS_UDP(connp)); 5653 5654 if (connp->conn_latch != NULL) { 5655 IPLATCH_REFRELE(connp->conn_latch, connp->conn_netstack); 5656 connp->conn_latch = NULL; 5657 } 5658 if (connp->conn_policy != NULL) { 5659 IPPH_REFRELE(connp->conn_policy, connp->conn_netstack); 5660 connp->conn_policy = NULL; 5661 } 5662 if (connp->conn_ipsec_opt_mp != NULL) { 5663 freemsg(connp->conn_ipsec_opt_mp); 5664 connp->conn_ipsec_opt_mp = NULL; 5665 } 5666 5667 inet_minor_free(ip_minor_arena, connp->conn_dev); 5668 5669 connp->conn_ref--; 5670 ipcl_conn_destroy(connp); 5671 5672 q->q_ptr = WR(q)->q_ptr = NULL; 5673 return (0); 5674 } 5675 5676 int 5677 ip_snmpmod_close(queue_t *q) 5678 { 5679 conn_t *connp = Q_TO_CONN(q); 5680 ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD)); 5681 5682 qprocsoff(q); 5683 5684 if (connp->conn_flags & IPCL_UDPMOD) 5685 udp_close_free(connp); 5686 5687 if (connp->conn_cred != NULL) { 5688 crfree(connp->conn_cred); 5689 connp->conn_cred = NULL; 5690 } 5691 CONN_DEC_REF(connp); 5692 q->q_ptr = WR(q)->q_ptr = NULL; 5693 return (0); 5694 } 5695 5696 /* 5697 * Write side put procedure for TCP module or UDP module instance. TCP/UDP 5698 * as a module is only used for MIB browsers that push TCP/UDP over IP or ARP. 5699 * The only supported primitives are T_SVR4_OPTMGMT_REQ and T_OPTMGMT_REQ. 5700 * M_FLUSH messages and ioctls are only passed downstream; we don't flush our 5701 * queues as we never enqueue messages there and we don't handle any ioctls. 5702 * Everything else is freed. 5703 */ 5704 void 5705 ip_snmpmod_wput(queue_t *q, mblk_t *mp) 5706 { 5707 conn_t *connp = q->q_ptr; 5708 pfi_t setfn; 5709 pfi_t getfn; 5710 5711 ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD)); 5712 5713 switch (DB_TYPE(mp)) { 5714 case M_PROTO: 5715 case M_PCPROTO: 5716 if ((MBLKL(mp) >= sizeof (t_scalar_t)) && 5717 ((((union T_primitives *)mp->b_rptr)->type == 5718 T_SVR4_OPTMGMT_REQ) || 5719 (((union T_primitives *)mp->b_rptr)->type == 5720 T_OPTMGMT_REQ))) { 5721 /* 5722 * This is the only TPI primitive supported. Its 5723 * handling does not require tcp_t, but it does require 5724 * conn_t to check permissions. 5725 */ 5726 cred_t *cr = DB_CREDDEF(mp, connp->conn_cred); 5727 5728 if (connp->conn_flags & IPCL_TCPMOD) { 5729 setfn = tcp_snmp_set; 5730 getfn = tcp_snmp_get; 5731 } else { 5732 setfn = udp_snmp_set; 5733 getfn = udp_snmp_get; 5734 } 5735 if (!snmpcom_req(q, mp, setfn, getfn, cr)) { 5736 freemsg(mp); 5737 return; 5738 } 5739 } else if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, ENOTSUP)) 5740 != NULL) 5741 qreply(q, mp); 5742 break; 5743 case M_FLUSH: 5744 case M_IOCTL: 5745 putnext(q, mp); 5746 break; 5747 default: 5748 freemsg(mp); 5749 break; 5750 } 5751 } 5752 5753 /* Return the IP checksum for the IP header at "iph". */ 5754 uint16_t 5755 ip_csum_hdr(ipha_t *ipha) 5756 { 5757 uint16_t *uph; 5758 uint32_t sum; 5759 int opt_len; 5760 5761 opt_len = (ipha->ipha_version_and_hdr_length & 0xF) - 5762 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 5763 uph = (uint16_t *)ipha; 5764 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 5765 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 5766 if (opt_len > 0) { 5767 do { 5768 sum += uph[10]; 5769 sum += uph[11]; 5770 uph += 2; 5771 } while (--opt_len); 5772 } 5773 sum = (sum & 0xFFFF) + (sum >> 16); 5774 sum = ~(sum + (sum >> 16)) & 0xFFFF; 5775 if (sum == 0xffff) 5776 sum = 0; 5777 return ((uint16_t)sum); 5778 } 5779 5780 /* 5781 * Called when the module is about to be unloaded 5782 */ 5783 void 5784 ip_ddi_destroy(void) 5785 { 5786 tnet_fini(); 5787 5788 sctp_ddi_g_destroy(); 5789 tcp_ddi_g_destroy(); 5790 ipsec_policy_g_destroy(); 5791 ipcl_g_destroy(); 5792 ip_net_g_destroy(); 5793 ip_ire_g_fini(); 5794 inet_minor_destroy(ip_minor_arena); 5795 5796 netstack_unregister(NS_IP); 5797 } 5798 5799 /* 5800 * First step in cleanup. 5801 */ 5802 /* ARGSUSED */ 5803 static void 5804 ip_stack_shutdown(netstackid_t stackid, void *arg) 5805 { 5806 ip_stack_t *ipst = (ip_stack_t *)arg; 5807 5808 #ifdef NS_DEBUG 5809 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 5810 #endif 5811 5812 /* Get rid of loopback interfaces and their IREs */ 5813 ip_loopback_cleanup(ipst); 5814 } 5815 5816 /* 5817 * Free the IP stack instance. 5818 */ 5819 static void 5820 ip_stack_fini(netstackid_t stackid, void *arg) 5821 { 5822 ip_stack_t *ipst = (ip_stack_t *)arg; 5823 int ret; 5824 5825 #ifdef NS_DEBUG 5826 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 5827 #endif 5828 ipv4_hook_destroy(ipst); 5829 ipv6_hook_destroy(ipst); 5830 ip_net_destroy(ipst); 5831 5832 rw_destroy(&ipst->ips_srcid_lock); 5833 5834 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 5835 ipst->ips_ip_mibkp = NULL; 5836 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 5837 ipst->ips_icmp_mibkp = NULL; 5838 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 5839 ipst->ips_ip_kstat = NULL; 5840 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 5841 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 5842 ipst->ips_ip6_kstat = NULL; 5843 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 5844 5845 nd_free(&ipst->ips_ip_g_nd); 5846 kmem_free(ipst->ips_param_arr, sizeof (lcl_param_arr)); 5847 ipst->ips_param_arr = NULL; 5848 kmem_free(ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5849 ipst->ips_ndp_arr = NULL; 5850 5851 ip_mrouter_stack_destroy(ipst); 5852 5853 mutex_destroy(&ipst->ips_ip_mi_lock); 5854 rw_destroy(&ipst->ips_ipsec_capab_ills_lock); 5855 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 5856 rw_destroy(&ipst->ips_ip_g_nd_lock); 5857 5858 ret = untimeout(ipst->ips_igmp_timeout_id); 5859 if (ret == -1) { 5860 ASSERT(ipst->ips_igmp_timeout_id == 0); 5861 } else { 5862 ASSERT(ipst->ips_igmp_timeout_id != 0); 5863 ipst->ips_igmp_timeout_id = 0; 5864 } 5865 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 5866 if (ret == -1) { 5867 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 5868 } else { 5869 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 5870 ipst->ips_igmp_slowtimeout_id = 0; 5871 } 5872 ret = untimeout(ipst->ips_mld_timeout_id); 5873 if (ret == -1) { 5874 ASSERT(ipst->ips_mld_timeout_id == 0); 5875 } else { 5876 ASSERT(ipst->ips_mld_timeout_id != 0); 5877 ipst->ips_mld_timeout_id = 0; 5878 } 5879 ret = untimeout(ipst->ips_mld_slowtimeout_id); 5880 if (ret == -1) { 5881 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 5882 } else { 5883 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 5884 ipst->ips_mld_slowtimeout_id = 0; 5885 } 5886 ret = untimeout(ipst->ips_ip_ire_expire_id); 5887 if (ret == -1) { 5888 ASSERT(ipst->ips_ip_ire_expire_id == 0); 5889 } else { 5890 ASSERT(ipst->ips_ip_ire_expire_id != 0); 5891 ipst->ips_ip_ire_expire_id = 0; 5892 } 5893 5894 mutex_destroy(&ipst->ips_igmp_timer_lock); 5895 mutex_destroy(&ipst->ips_mld_timer_lock); 5896 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 5897 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 5898 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 5899 rw_destroy(&ipst->ips_ill_g_lock); 5900 5901 ip_ire_fini(ipst); 5902 ip6_asp_free(ipst); 5903 conn_drain_fini(ipst); 5904 ipcl_destroy(ipst); 5905 5906 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 5907 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 5908 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 5909 ipst->ips_ndp4 = NULL; 5910 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 5911 ipst->ips_ndp6 = NULL; 5912 5913 if (ipst->ips_loopback_ksp != NULL) { 5914 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 5915 ipst->ips_loopback_ksp = NULL; 5916 } 5917 5918 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 5919 ipst->ips_phyint_g_list = NULL; 5920 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 5921 ipst->ips_ill_g_heads = NULL; 5922 5923 kmem_free(ipst, sizeof (*ipst)); 5924 } 5925 5926 /* 5927 * Called when the IP kernel module is loaded into the kernel 5928 */ 5929 void 5930 ip_ddi_init(void) 5931 { 5932 TCP6_MAJ = ddi_name_to_major(TCP6); 5933 TCP_MAJ = ddi_name_to_major(TCP); 5934 SCTP_MAJ = ddi_name_to_major(SCTP); 5935 SCTP6_MAJ = ddi_name_to_major(SCTP6); 5936 5937 ip_input_proc = ip_squeue_switch(ip_squeue_enter); 5938 5939 /* 5940 * For IP and TCP the minor numbers should start from 2 since we have 4 5941 * initial devices: ip, ip6, tcp, tcp6. 5942 */ 5943 if ((ip_minor_arena = inet_minor_create("ip_minor_arena", 5944 INET_MIN_DEV + 2, KM_SLEEP)) == NULL) { 5945 cmn_err(CE_PANIC, 5946 "ip_ddi_init: ip_minor_arena creation failed\n"); 5947 } 5948 5949 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5950 5951 ipcl_g_init(); 5952 ip_ire_g_init(); 5953 ip_net_g_init(); 5954 5955 #ifdef ILL_DEBUG 5956 /* Default cleanup function */ 5957 ip_cleanup_func = ip_thread_exit; 5958 #endif 5959 5960 /* 5961 * We want to be informed each time a stack is created or 5962 * destroyed in the kernel, so we can maintain the 5963 * set of udp_stack_t's. 5964 */ 5965 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 5966 ip_stack_fini); 5967 5968 ipsec_policy_g_init(); 5969 tcp_ddi_g_init(); 5970 sctp_ddi_g_init(); 5971 5972 tnet_init(); 5973 } 5974 5975 /* 5976 * Initialize the IP stack instance. 5977 */ 5978 static void * 5979 ip_stack_init(netstackid_t stackid, netstack_t *ns) 5980 { 5981 ip_stack_t *ipst; 5982 ipparam_t *pa; 5983 ipndp_t *na; 5984 5985 #ifdef NS_DEBUG 5986 printf("ip_stack_init(stack %d)\n", stackid); 5987 #endif 5988 5989 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 5990 ipst->ips_netstack = ns; 5991 5992 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 5993 KM_SLEEP); 5994 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 5995 KM_SLEEP); 5996 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5997 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5998 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5999 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 6000 6001 rw_init(&ipst->ips_ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 6002 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 6003 ipst->ips_igmp_deferred_next = INFINITY; 6004 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 6005 ipst->ips_mld_deferred_next = INFINITY; 6006 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 6007 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 6008 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 6009 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 6010 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 6011 rw_init(&ipst->ips_ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 6012 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 6013 6014 ipcl_init(ipst); 6015 ip_ire_init(ipst); 6016 ip6_asp_init(ipst); 6017 ipif_init(ipst); 6018 conn_drain_init(ipst); 6019 ip_mrouter_stack_init(ipst); 6020 6021 ipst->ips_ip_g_frag_timeout = IP_FRAG_TIMEOUT; 6022 ipst->ips_ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 6023 6024 ipst->ips_ip_multirt_log_interval = 1000; 6025 6026 ipst->ips_ip_g_forward = IP_FORWARD_DEFAULT; 6027 ipst->ips_ipv6_forward = IP_FORWARD_DEFAULT; 6028 ipst->ips_ill_index = 1; 6029 6030 ipst->ips_saved_ip_g_forward = -1; 6031 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 6032 6033 pa = (ipparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP); 6034 ipst->ips_param_arr = pa; 6035 bcopy(lcl_param_arr, ipst->ips_param_arr, sizeof (lcl_param_arr)); 6036 6037 na = (ipndp_t *)kmem_alloc(sizeof (lcl_ndp_arr), KM_SLEEP); 6038 ipst->ips_ndp_arr = na; 6039 bcopy(lcl_ndp_arr, ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 6040 ipst->ips_ndp_arr[IPNDP_IP_FORWARDING_OFFSET].ip_ndp_data = 6041 (caddr_t)&ipst->ips_ip_g_forward; 6042 ipst->ips_ndp_arr[IPNDP_IP6_FORWARDING_OFFSET].ip_ndp_data = 6043 (caddr_t)&ipst->ips_ipv6_forward; 6044 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_name, 6045 "ip_cgtp_filter") == 0); 6046 ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_data = 6047 (caddr_t)&ip_cgtp_filter; 6048 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_name, 6049 "ipmp_hook_emulation") == 0); 6050 ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_data = 6051 (caddr_t)&ipst->ips_ipmp_hook_emulation; 6052 6053 (void) ip_param_register(&ipst->ips_ip_g_nd, 6054 ipst->ips_param_arr, A_CNT(lcl_param_arr), 6055 ipst->ips_ndp_arr, A_CNT(lcl_ndp_arr)); 6056 6057 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 6058 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 6059 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 6060 ipst->ips_ip6_kstat = 6061 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 6062 6063 ipst->ips_ipmp_enable_failback = B_TRUE; 6064 6065 ipst->ips_ip_src_id = 1; 6066 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 6067 6068 ip_net_init(ipst, ns); 6069 ipv4_hook_init(ipst); 6070 ipv6_hook_init(ipst); 6071 6072 return (ipst); 6073 } 6074 6075 /* 6076 * Allocate and initialize a DLPI template of the specified length. (May be 6077 * called as writer.) 6078 */ 6079 mblk_t * 6080 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 6081 { 6082 mblk_t *mp; 6083 6084 mp = allocb(len, BPRI_MED); 6085 if (!mp) 6086 return (NULL); 6087 6088 /* 6089 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 6090 * of which we don't seem to use) are sent with M_PCPROTO, and 6091 * that other DLPI are M_PROTO. 6092 */ 6093 if (prim == DL_INFO_REQ) { 6094 mp->b_datap->db_type = M_PCPROTO; 6095 } else { 6096 mp->b_datap->db_type = M_PROTO; 6097 } 6098 6099 mp->b_wptr = mp->b_rptr + len; 6100 bzero(mp->b_rptr, len); 6101 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 6102 return (mp); 6103 } 6104 6105 const char * 6106 dlpi_prim_str(int prim) 6107 { 6108 switch (prim) { 6109 case DL_INFO_REQ: return ("DL_INFO_REQ"); 6110 case DL_INFO_ACK: return ("DL_INFO_ACK"); 6111 case DL_ATTACH_REQ: return ("DL_ATTACH_REQ"); 6112 case DL_DETACH_REQ: return ("DL_DETACH_REQ"); 6113 case DL_BIND_REQ: return ("DL_BIND_REQ"); 6114 case DL_BIND_ACK: return ("DL_BIND_ACK"); 6115 case DL_UNBIND_REQ: return ("DL_UNBIND_REQ"); 6116 case DL_OK_ACK: return ("DL_OK_ACK"); 6117 case DL_ERROR_ACK: return ("DL_ERROR_ACK"); 6118 case DL_ENABMULTI_REQ: return ("DL_ENABMULTI_REQ"); 6119 case DL_DISABMULTI_REQ: return ("DL_DISABMULTI_REQ"); 6120 case DL_PROMISCON_REQ: return ("DL_PROMISCON_REQ"); 6121 case DL_PROMISCOFF_REQ: return ("DL_PROMISCOFF_REQ"); 6122 case DL_UNITDATA_REQ: return ("DL_UNITDATA_REQ"); 6123 case DL_UNITDATA_IND: return ("DL_UNITDATA_IND"); 6124 case DL_UDERROR_IND: return ("DL_UDERROR_IND"); 6125 case DL_PHYS_ADDR_REQ: return ("DL_PHYS_ADDR_REQ"); 6126 case DL_PHYS_ADDR_ACK: return ("DL_PHYS_ADDR_ACK"); 6127 case DL_SET_PHYS_ADDR_REQ: return ("DL_SET_PHYS_ADDR_REQ"); 6128 case DL_NOTIFY_REQ: return ("DL_NOTIFY_REQ"); 6129 case DL_NOTIFY_ACK: return ("DL_NOTIFY_ACK"); 6130 case DL_NOTIFY_IND: return ("DL_NOTIFY_IND"); 6131 case DL_CAPABILITY_REQ: return ("DL_CAPABILITY_REQ"); 6132 case DL_CAPABILITY_ACK: return ("DL_CAPABILITY_ACK"); 6133 case DL_CONTROL_REQ: return ("DL_CONTROL_REQ"); 6134 case DL_CONTROL_ACK: return ("DL_CONTROL_ACK"); 6135 default: return ("<unknown primitive>"); 6136 } 6137 } 6138 6139 const char * 6140 dlpi_err_str(int err) 6141 { 6142 switch (err) { 6143 case DL_ACCESS: return ("DL_ACCESS"); 6144 case DL_BADADDR: return ("DL_BADADDR"); 6145 case DL_BADCORR: return ("DL_BADCORR"); 6146 case DL_BADDATA: return ("DL_BADDATA"); 6147 case DL_BADPPA: return ("DL_BADPPA"); 6148 case DL_BADPRIM: return ("DL_BADPRIM"); 6149 case DL_BADQOSPARAM: return ("DL_BADQOSPARAM"); 6150 case DL_BADQOSTYPE: return ("DL_BADQOSTYPE"); 6151 case DL_BADSAP: return ("DL_BADSAP"); 6152 case DL_BADTOKEN: return ("DL_BADTOKEN"); 6153 case DL_BOUND: return ("DL_BOUND"); 6154 case DL_INITFAILED: return ("DL_INITFAILED"); 6155 case DL_NOADDR: return ("DL_NOADDR"); 6156 case DL_NOTINIT: return ("DL_NOTINIT"); 6157 case DL_OUTSTATE: return ("DL_OUTSTATE"); 6158 case DL_SYSERR: return ("DL_SYSERR"); 6159 case DL_UNSUPPORTED: return ("DL_UNSUPPORTED"); 6160 case DL_UNDELIVERABLE: return ("DL_UNDELIVERABLE"); 6161 case DL_NOTSUPPORTED : return ("DL_NOTSUPPORTED "); 6162 case DL_TOOMANY: return ("DL_TOOMANY"); 6163 case DL_NOTENAB: return ("DL_NOTENAB"); 6164 case DL_BUSY: return ("DL_BUSY"); 6165 case DL_NOAUTO: return ("DL_NOAUTO"); 6166 case DL_NOXIDAUTO: return ("DL_NOXIDAUTO"); 6167 case DL_NOTESTAUTO: return ("DL_NOTESTAUTO"); 6168 case DL_XIDAUTO: return ("DL_XIDAUTO"); 6169 case DL_TESTAUTO: return ("DL_TESTAUTO"); 6170 case DL_PENDING: return ("DL_PENDING"); 6171 default: return ("<unknown error>"); 6172 } 6173 } 6174 6175 /* 6176 * Debug formatting routine. Returns a character string representation of the 6177 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 6178 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 6179 * 6180 * Once the ndd table-printing interfaces are removed, this can be changed to 6181 * standard dotted-decimal form. 6182 */ 6183 char * 6184 ip_dot_addr(ipaddr_t addr, char *buf) 6185 { 6186 uint8_t *ap = (uint8_t *)&addr; 6187 6188 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 6189 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 6190 return (buf); 6191 } 6192 6193 /* 6194 * Write the given MAC address as a printable string in the usual colon- 6195 * separated format. 6196 */ 6197 const char * 6198 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 6199 { 6200 char *bp; 6201 6202 if (alen == 0 || buflen < 4) 6203 return ("?"); 6204 bp = buf; 6205 for (;;) { 6206 /* 6207 * If there are more MAC address bytes available, but we won't 6208 * have any room to print them, then add "..." to the string 6209 * instead. See below for the 'magic number' explanation. 6210 */ 6211 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 6212 (void) strcpy(bp, "..."); 6213 break; 6214 } 6215 (void) sprintf(bp, "%02x", *addr++); 6216 bp += 2; 6217 if (--alen == 0) 6218 break; 6219 *bp++ = ':'; 6220 buflen -= 3; 6221 /* 6222 * At this point, based on the first 'if' statement above, 6223 * either alen == 1 and buflen >= 3, or alen > 1 and 6224 * buflen >= 4. The first case leaves room for the final "xx" 6225 * number and trailing NUL byte. The second leaves room for at 6226 * least "...". Thus the apparently 'magic' numbers chosen for 6227 * that statement. 6228 */ 6229 } 6230 return (buf); 6231 } 6232 6233 /* 6234 * Send an ICMP error after patching up the packet appropriately. Returns 6235 * non-zero if the appropriate MIB should be bumped; zero otherwise. 6236 */ 6237 static boolean_t 6238 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 6239 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, 6240 zoneid_t zoneid, ip_stack_t *ipst) 6241 { 6242 ipha_t *ipha; 6243 mblk_t *first_mp; 6244 boolean_t secure; 6245 unsigned char db_type; 6246 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6247 6248 first_mp = mp; 6249 if (mctl_present) { 6250 mp = mp->b_cont; 6251 secure = ipsec_in_is_secure(first_mp); 6252 ASSERT(mp != NULL); 6253 } else { 6254 /* 6255 * If this is an ICMP error being reported - which goes 6256 * up as M_CTLs, we need to convert them to M_DATA till 6257 * we finish checking with global policy because 6258 * ipsec_check_global_policy() assumes M_DATA as clear 6259 * and M_CTL as secure. 6260 */ 6261 db_type = DB_TYPE(mp); 6262 DB_TYPE(mp) = M_DATA; 6263 secure = B_FALSE; 6264 } 6265 /* 6266 * We are generating an icmp error for some inbound packet. 6267 * Called from all ip_fanout_(udp, tcp, proto) functions. 6268 * Before we generate an error, check with global policy 6269 * to see whether this is allowed to enter the system. As 6270 * there is no "conn", we are checking with global policy. 6271 */ 6272 ipha = (ipha_t *)mp->b_rptr; 6273 if (secure || ipss->ipsec_inbound_v4_policy_present) { 6274 first_mp = ipsec_check_global_policy(first_mp, NULL, 6275 ipha, NULL, mctl_present, ipst->ips_netstack); 6276 if (first_mp == NULL) 6277 return (B_FALSE); 6278 } 6279 6280 if (!mctl_present) 6281 DB_TYPE(mp) = db_type; 6282 6283 if (flags & IP_FF_SEND_ICMP) { 6284 if (flags & IP_FF_HDR_COMPLETE) { 6285 if (ip_hdr_complete(ipha, zoneid, ipst)) { 6286 freemsg(first_mp); 6287 return (B_TRUE); 6288 } 6289 } 6290 if (flags & IP_FF_CKSUM) { 6291 /* 6292 * Have to correct checksum since 6293 * the packet might have been 6294 * fragmented and the reassembly code in ip_rput 6295 * does not restore the IP checksum. 6296 */ 6297 ipha->ipha_hdr_checksum = 0; 6298 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6299 } 6300 switch (icmp_type) { 6301 case ICMP_DEST_UNREACHABLE: 6302 icmp_unreachable(WR(q), first_mp, icmp_code, zoneid, 6303 ipst); 6304 break; 6305 default: 6306 freemsg(first_mp); 6307 break; 6308 } 6309 } else { 6310 freemsg(first_mp); 6311 return (B_FALSE); 6312 } 6313 6314 return (B_TRUE); 6315 } 6316 6317 /* 6318 * Used to send an ICMP error message when a packet is received for 6319 * a protocol that is not supported. The mblk passed as argument 6320 * is consumed by this function. 6321 */ 6322 void 6323 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid, 6324 ip_stack_t *ipst) 6325 { 6326 mblk_t *mp; 6327 ipha_t *ipha; 6328 ill_t *ill; 6329 ipsec_in_t *ii; 6330 6331 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6332 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6333 6334 mp = ipsec_mp->b_cont; 6335 ipsec_mp->b_cont = NULL; 6336 ipha = (ipha_t *)mp->b_rptr; 6337 /* Get ill from index in ipsec_in_t. */ 6338 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 6339 (IPH_HDR_VERSION(ipha) == IPV6_VERSION), NULL, NULL, NULL, NULL, 6340 ipst); 6341 if (ill != NULL) { 6342 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 6343 if (ip_fanout_send_icmp(q, mp, flags, 6344 ICMP_DEST_UNREACHABLE, 6345 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid, ipst)) { 6346 BUMP_MIB(ill->ill_ip_mib, 6347 ipIfStatsInUnknownProtos); 6348 } 6349 } else { 6350 if (ip_fanout_send_icmp_v6(q, mp, flags, 6351 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 6352 0, B_FALSE, zoneid, ipst)) { 6353 BUMP_MIB(ill->ill_ip_mib, 6354 ipIfStatsInUnknownProtos); 6355 } 6356 } 6357 ill_refrele(ill); 6358 } else { /* re-link for the freemsg() below. */ 6359 ipsec_mp->b_cont = mp; 6360 } 6361 6362 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 6363 freemsg(ipsec_mp); 6364 } 6365 6366 /* 6367 * See if the inbound datagram has had IPsec processing applied to it. 6368 */ 6369 boolean_t 6370 ipsec_in_is_secure(mblk_t *ipsec_mp) 6371 { 6372 ipsec_in_t *ii; 6373 6374 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6375 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6376 6377 if (ii->ipsec_in_loopback) { 6378 return (ii->ipsec_in_secure); 6379 } else { 6380 return (ii->ipsec_in_ah_sa != NULL || 6381 ii->ipsec_in_esp_sa != NULL || 6382 ii->ipsec_in_decaps); 6383 } 6384 } 6385 6386 /* 6387 * Handle protocols with which IP is less intimate. There 6388 * can be more than one stream bound to a particular 6389 * protocol. When this is the case, normally each one gets a copy 6390 * of any incoming packets. 6391 * 6392 * IPSEC NOTE : 6393 * 6394 * Don't allow a secure packet going up a non-secure connection. 6395 * We don't allow this because 6396 * 6397 * 1) Reply might go out in clear which will be dropped at 6398 * the sending side. 6399 * 2) If the reply goes out in clear it will give the 6400 * adversary enough information for getting the key in 6401 * most of the cases. 6402 * 6403 * Moreover getting a secure packet when we expect clear 6404 * implies that SA's were added without checking for 6405 * policy on both ends. This should not happen once ISAKMP 6406 * is used to negotiate SAs as SAs will be added only after 6407 * verifying the policy. 6408 * 6409 * NOTE : If the packet was tunneled and not multicast we only send 6410 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 6411 * back to delivering packets to AF_INET6 raw sockets. 6412 * 6413 * IPQoS Notes: 6414 * Once we have determined the client, invoke IPPF processing. 6415 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6416 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6417 * ip_policy will be false. 6418 * 6419 * Zones notes: 6420 * Currently only applications in the global zone can create raw sockets for 6421 * protocols other than ICMP. So unlike the broadcast / multicast case of 6422 * ip_fanout_udp(), we only send a copy of the packet to streams in the 6423 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 6424 */ 6425 static void 6426 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 6427 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 6428 zoneid_t zoneid) 6429 { 6430 queue_t *rq; 6431 mblk_t *mp1, *first_mp1; 6432 uint_t protocol = ipha->ipha_protocol; 6433 ipaddr_t dst; 6434 boolean_t one_only; 6435 mblk_t *first_mp = mp; 6436 boolean_t secure; 6437 uint32_t ill_index; 6438 conn_t *connp, *first_connp, *next_connp; 6439 connf_t *connfp; 6440 boolean_t shared_addr; 6441 mib2_ipIfStatsEntry_t *mibptr; 6442 ip_stack_t *ipst = recv_ill->ill_ipst; 6443 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6444 6445 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 6446 if (mctl_present) { 6447 mp = first_mp->b_cont; 6448 secure = ipsec_in_is_secure(first_mp); 6449 ASSERT(mp != NULL); 6450 } else { 6451 secure = B_FALSE; 6452 } 6453 dst = ipha->ipha_dst; 6454 /* 6455 * If the packet was tunneled and not multicast we only send to it 6456 * the first match. 6457 */ 6458 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 6459 !CLASSD(dst)); 6460 6461 shared_addr = (zoneid == ALL_ZONES); 6462 if (shared_addr) { 6463 /* 6464 * We don't allow multilevel ports for raw IP, so no need to 6465 * check for that here. 6466 */ 6467 zoneid = tsol_packet_to_zoneid(mp); 6468 } 6469 6470 connfp = &ipst->ips_ipcl_proto_fanout[protocol]; 6471 mutex_enter(&connfp->connf_lock); 6472 connp = connfp->connf_head; 6473 for (connp = connfp->connf_head; connp != NULL; 6474 connp = connp->conn_next) { 6475 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 6476 zoneid) && 6477 (!is_system_labeled() || 6478 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6479 connp))) { 6480 break; 6481 } 6482 } 6483 6484 if (connp == NULL || connp->conn_upq == NULL) { 6485 /* 6486 * No one bound to these addresses. Is 6487 * there a client that wants all 6488 * unclaimed datagrams? 6489 */ 6490 mutex_exit(&connfp->connf_lock); 6491 /* 6492 * Check for IPPROTO_ENCAP... 6493 */ 6494 if (protocol == IPPROTO_ENCAP && ipst->ips_ip_g_mrouter) { 6495 /* 6496 * If an IPsec mblk is here on a multicast 6497 * tunnel (using ip_mroute stuff), check policy here, 6498 * THEN ship off to ip_mroute_decap(). 6499 * 6500 * BTW, If I match a configured IP-in-IP 6501 * tunnel, this path will not be reached, and 6502 * ip_mroute_decap will never be called. 6503 */ 6504 first_mp = ipsec_check_global_policy(first_mp, connp, 6505 ipha, NULL, mctl_present, ipst->ips_netstack); 6506 if (first_mp != NULL) { 6507 if (mctl_present) 6508 freeb(first_mp); 6509 ip_mroute_decap(q, mp, ill); 6510 } /* Else we already freed everything! */ 6511 } else { 6512 /* 6513 * Otherwise send an ICMP protocol unreachable. 6514 */ 6515 if (ip_fanout_send_icmp(q, first_mp, flags, 6516 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 6517 mctl_present, zoneid, ipst)) { 6518 BUMP_MIB(mibptr, ipIfStatsInUnknownProtos); 6519 } 6520 } 6521 return; 6522 } 6523 CONN_INC_REF(connp); 6524 first_connp = connp; 6525 6526 /* 6527 * Only send message to one tunnel driver by immediately 6528 * terminating the loop. 6529 */ 6530 connp = one_only ? NULL : connp->conn_next; 6531 6532 for (;;) { 6533 while (connp != NULL) { 6534 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 6535 flags, zoneid) && 6536 (!is_system_labeled() || 6537 tsol_receive_local(mp, &dst, IPV4_VERSION, 6538 shared_addr, connp))) 6539 break; 6540 connp = connp->conn_next; 6541 } 6542 6543 /* 6544 * Copy the packet. 6545 */ 6546 if (connp == NULL || connp->conn_upq == NULL || 6547 (((first_mp1 = dupmsg(first_mp)) == NULL) && 6548 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 6549 /* 6550 * No more interested clients or memory 6551 * allocation failed 6552 */ 6553 connp = first_connp; 6554 break; 6555 } 6556 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 6557 CONN_INC_REF(connp); 6558 mutex_exit(&connfp->connf_lock); 6559 rq = connp->conn_rq; 6560 if (!canputnext(rq)) { 6561 if (flags & IP_FF_RAWIP) { 6562 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6563 } else { 6564 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6565 } 6566 6567 freemsg(first_mp1); 6568 } else { 6569 /* 6570 * Don't enforce here if we're an actual tunnel - 6571 * let "tun" do it instead. 6572 */ 6573 if (!IPCL_IS_IPTUN(connp) && 6574 (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 6575 secure)) { 6576 first_mp1 = ipsec_check_inbound_policy 6577 (first_mp1, connp, ipha, NULL, 6578 mctl_present); 6579 } 6580 if (first_mp1 != NULL) { 6581 int in_flags = 0; 6582 /* 6583 * ip_fanout_proto also gets called from 6584 * icmp_inbound_error_fanout, in which case 6585 * the msg type is M_CTL. Don't add info 6586 * in this case for the time being. In future 6587 * when there is a need for knowing the 6588 * inbound iface index for ICMP error msgs, 6589 * then this can be changed. 6590 */ 6591 if (connp->conn_recvif) 6592 in_flags = IPF_RECVIF; 6593 /* 6594 * The ULP may support IP_RECVPKTINFO for both 6595 * IP v4 and v6 so pass the appropriate argument 6596 * based on conn IP version. 6597 */ 6598 if (connp->conn_ip_recvpktinfo) { 6599 if (connp->conn_af_isv6) { 6600 /* 6601 * V6 only needs index 6602 */ 6603 in_flags |= IPF_RECVIF; 6604 } else { 6605 /* 6606 * V4 needs index + 6607 * matching address. 6608 */ 6609 in_flags |= IPF_RECVADDR; 6610 } 6611 } 6612 if ((in_flags != 0) && 6613 (mp->b_datap->db_type != M_CTL)) { 6614 /* 6615 * the actual data will be 6616 * contained in b_cont upon 6617 * successful return of the 6618 * following call else 6619 * original mblk is returned 6620 */ 6621 ASSERT(recv_ill != NULL); 6622 mp1 = ip_add_info(mp1, recv_ill, 6623 in_flags, IPCL_ZONEID(connp), ipst); 6624 } 6625 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6626 if (mctl_present) 6627 freeb(first_mp1); 6628 putnext(rq, mp1); 6629 } 6630 } 6631 mutex_enter(&connfp->connf_lock); 6632 /* Follow the next pointer before releasing the conn. */ 6633 next_connp = connp->conn_next; 6634 CONN_DEC_REF(connp); 6635 connp = next_connp; 6636 } 6637 6638 /* Last one. Send it upstream. */ 6639 mutex_exit(&connfp->connf_lock); 6640 6641 /* 6642 * If this packet is coming from icmp_inbound_error_fanout ip_policy 6643 * will be set to false. 6644 */ 6645 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6646 ill_index = ill->ill_phyint->phyint_ifindex; 6647 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6648 if (mp == NULL) { 6649 CONN_DEC_REF(connp); 6650 if (mctl_present) { 6651 freeb(first_mp); 6652 } 6653 return; 6654 } 6655 } 6656 6657 rq = connp->conn_rq; 6658 if (!canputnext(rq)) { 6659 if (flags & IP_FF_RAWIP) { 6660 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6661 } else { 6662 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6663 } 6664 6665 freemsg(first_mp); 6666 } else { 6667 if (IPCL_IS_IPTUN(connp)) { 6668 /* 6669 * Tunneled packet. We enforce policy in the tunnel 6670 * module itself. 6671 * 6672 * Send the WHOLE packet up (incl. IPSEC_IN) without 6673 * a policy check. 6674 */ 6675 putnext(rq, first_mp); 6676 CONN_DEC_REF(connp); 6677 return; 6678 } 6679 6680 if ((CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure)) { 6681 first_mp = ipsec_check_inbound_policy(first_mp, connp, 6682 ipha, NULL, mctl_present); 6683 } 6684 6685 if (first_mp != NULL) { 6686 int in_flags = 0; 6687 6688 /* 6689 * ip_fanout_proto also gets called 6690 * from icmp_inbound_error_fanout, in 6691 * which case the msg type is M_CTL. 6692 * Don't add info in this case for time 6693 * being. In future when there is a 6694 * need for knowing the inbound iface 6695 * index for ICMP error msgs, then this 6696 * can be changed 6697 */ 6698 if (connp->conn_recvif) 6699 in_flags = IPF_RECVIF; 6700 if (connp->conn_ip_recvpktinfo) { 6701 if (connp->conn_af_isv6) { 6702 /* 6703 * V6 only needs index 6704 */ 6705 in_flags |= IPF_RECVIF; 6706 } else { 6707 /* 6708 * V4 needs index + 6709 * matching address. 6710 */ 6711 in_flags |= IPF_RECVADDR; 6712 } 6713 } 6714 if ((in_flags != 0) && 6715 (mp->b_datap->db_type != M_CTL)) { 6716 6717 /* 6718 * the actual data will be contained in 6719 * b_cont upon successful return 6720 * of the following call else original 6721 * mblk is returned 6722 */ 6723 ASSERT(recv_ill != NULL); 6724 mp = ip_add_info(mp, recv_ill, 6725 in_flags, IPCL_ZONEID(connp), ipst); 6726 } 6727 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6728 putnext(rq, mp); 6729 if (mctl_present) 6730 freeb(first_mp); 6731 } 6732 } 6733 CONN_DEC_REF(connp); 6734 } 6735 6736 /* 6737 * Fanout for TCP packets 6738 * The caller puts <fport, lport> in the ports parameter. 6739 * 6740 * IPQoS Notes 6741 * Before sending it to the client, invoke IPPF processing. 6742 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6743 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6744 * ip_policy is false. 6745 */ 6746 static void 6747 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6748 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6749 { 6750 mblk_t *first_mp; 6751 boolean_t secure; 6752 uint32_t ill_index; 6753 int ip_hdr_len; 6754 tcph_t *tcph; 6755 boolean_t syn_present = B_FALSE; 6756 conn_t *connp; 6757 ip_stack_t *ipst = recv_ill->ill_ipst; 6758 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6759 6760 ASSERT(recv_ill != NULL); 6761 6762 first_mp = mp; 6763 if (mctl_present) { 6764 ASSERT(first_mp->b_datap->db_type == M_CTL); 6765 mp = first_mp->b_cont; 6766 secure = ipsec_in_is_secure(first_mp); 6767 ASSERT(mp != NULL); 6768 } else { 6769 secure = B_FALSE; 6770 } 6771 6772 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6773 6774 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 6775 zoneid, ipst)) == NULL) { 6776 /* 6777 * No connected connection or listener. Send a 6778 * TH_RST via tcp_xmit_listeners_reset. 6779 */ 6780 6781 /* Initiate IPPf processing, if needed. */ 6782 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 6783 uint32_t ill_index; 6784 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6785 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6786 if (first_mp == NULL) 6787 return; 6788 } 6789 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6790 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6791 zoneid)); 6792 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6793 ipst->ips_netstack->netstack_tcp); 6794 return; 6795 } 6796 6797 /* 6798 * Allocate the SYN for the TCP connection here itself 6799 */ 6800 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6801 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6802 if (IPCL_IS_TCP(connp)) { 6803 squeue_t *sqp; 6804 6805 /* 6806 * For fused tcp loopback, assign the eager's 6807 * squeue to be that of the active connect's. 6808 * Note that we don't check for IP_FF_LOOPBACK 6809 * here since this routine gets called only 6810 * for loopback (unlike the IPv6 counterpart). 6811 */ 6812 ASSERT(Q_TO_CONN(q) != NULL); 6813 if (do_tcp_fusion && 6814 !CONN_INBOUND_POLICY_PRESENT(connp, ipss) && 6815 !secure && 6816 !IPP_ENABLED(IPP_LOCAL_IN, ipst) && !ip_policy && 6817 IPCL_IS_TCP(Q_TO_CONN(q))) { 6818 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6819 sqp = Q_TO_CONN(q)->conn_sqp; 6820 } else { 6821 sqp = IP_SQUEUE_GET(lbolt); 6822 } 6823 6824 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6825 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6826 syn_present = B_TRUE; 6827 } 6828 } 6829 6830 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6831 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6832 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6833 if ((flags & TH_RST) || (flags & TH_URG)) { 6834 CONN_DEC_REF(connp); 6835 freemsg(first_mp); 6836 return; 6837 } 6838 if (flags & TH_ACK) { 6839 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6840 ipst->ips_netstack->netstack_tcp); 6841 CONN_DEC_REF(connp); 6842 return; 6843 } 6844 6845 CONN_DEC_REF(connp); 6846 freemsg(first_mp); 6847 return; 6848 } 6849 6850 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6851 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6852 NULL, mctl_present); 6853 if (first_mp == NULL) { 6854 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6855 CONN_DEC_REF(connp); 6856 return; 6857 } 6858 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6859 ASSERT(syn_present); 6860 if (mctl_present) { 6861 ASSERT(first_mp != mp); 6862 first_mp->b_datap->db_struioflag |= 6863 STRUIO_POLICY; 6864 } else { 6865 ASSERT(first_mp == mp); 6866 mp->b_datap->db_struioflag &= 6867 ~STRUIO_EAGER; 6868 mp->b_datap->db_struioflag |= 6869 STRUIO_POLICY; 6870 } 6871 } else { 6872 /* 6873 * Discard first_mp early since we're dealing with a 6874 * fully-connected conn_t and tcp doesn't do policy in 6875 * this case. 6876 */ 6877 if (mctl_present) { 6878 freeb(first_mp); 6879 mctl_present = B_FALSE; 6880 } 6881 first_mp = mp; 6882 } 6883 } 6884 6885 /* 6886 * Initiate policy processing here if needed. If we get here from 6887 * icmp_inbound_error_fanout, ip_policy is false. 6888 */ 6889 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6890 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6891 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6892 if (mp == NULL) { 6893 CONN_DEC_REF(connp); 6894 if (mctl_present) 6895 freeb(first_mp); 6896 return; 6897 } else if (mctl_present) { 6898 ASSERT(first_mp != mp); 6899 first_mp->b_cont = mp; 6900 } else { 6901 first_mp = mp; 6902 } 6903 } 6904 6905 6906 6907 /* Handle socket options. */ 6908 if (!syn_present && 6909 connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 6910 /* Add header */ 6911 ASSERT(recv_ill != NULL); 6912 /* 6913 * Since tcp does not support IP_RECVPKTINFO for V4, only pass 6914 * IPF_RECVIF. 6915 */ 6916 mp = ip_add_info(mp, recv_ill, IPF_RECVIF, IPCL_ZONEID(connp), 6917 ipst); 6918 if (mp == NULL) { 6919 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6920 CONN_DEC_REF(connp); 6921 if (mctl_present) 6922 freeb(first_mp); 6923 return; 6924 } else if (mctl_present) { 6925 /* 6926 * ip_add_info might return a new mp. 6927 */ 6928 ASSERT(first_mp != mp); 6929 first_mp->b_cont = mp; 6930 } else { 6931 first_mp = mp; 6932 } 6933 } 6934 6935 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6936 if (IPCL_IS_TCP(connp)) { 6937 (*ip_input_proc)(connp->conn_sqp, first_mp, 6938 connp->conn_recv, connp, SQTAG_IP_FANOUT_TCP); 6939 } else { 6940 putnext(connp->conn_rq, first_mp); 6941 CONN_DEC_REF(connp); 6942 } 6943 } 6944 6945 /* 6946 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 6947 * We are responsible for disposing of mp, such as by freemsg() or putnext() 6948 * Caller is responsible for dropping references to the conn, and freeing 6949 * first_mp. 6950 * 6951 * IPQoS Notes 6952 * Before sending it to the client, invoke IPPF processing. Policy processing 6953 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 6954 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 6955 * ip_wput_local, ip_policy is false. 6956 */ 6957 static void 6958 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 6959 boolean_t secure, ill_t *ill, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 6960 boolean_t ip_policy) 6961 { 6962 boolean_t mctl_present = (first_mp != NULL); 6963 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 6964 uint32_t ill_index; 6965 ip_stack_t *ipst = recv_ill->ill_ipst; 6966 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6967 6968 ASSERT(ill != NULL); 6969 6970 if (mctl_present) 6971 first_mp->b_cont = mp; 6972 else 6973 first_mp = mp; 6974 6975 if (CONN_UDP_FLOWCTLD(connp)) { 6976 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 6977 freemsg(first_mp); 6978 return; 6979 } 6980 6981 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6982 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6983 NULL, mctl_present); 6984 if (first_mp == NULL) { 6985 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 6986 return; /* Freed by ipsec_check_inbound_policy(). */ 6987 } 6988 } 6989 if (mctl_present) 6990 freeb(first_mp); 6991 6992 /* Handle options. */ 6993 if (connp->conn_recvif) 6994 in_flags = IPF_RECVIF; 6995 /* 6996 * UDP supports IP_RECVPKTINFO option for both v4 and v6 so the flag 6997 * passed to ip_add_info is based on IP version of connp. 6998 */ 6999 if (connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 7000 if (connp->conn_af_isv6) { 7001 /* 7002 * V6 only needs index 7003 */ 7004 in_flags |= IPF_RECVIF; 7005 } else { 7006 /* 7007 * V4 needs index + matching address. 7008 */ 7009 in_flags |= IPF_RECVADDR; 7010 } 7011 } 7012 7013 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 7014 in_flags |= IPF_RECVSLLA; 7015 7016 /* 7017 * Initiate IPPF processing here, if needed. Note first_mp won't be 7018 * freed if the packet is dropped. The caller will do so. 7019 */ 7020 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 7021 ill_index = recv_ill->ill_phyint->phyint_ifindex; 7022 ip_process(IPP_LOCAL_IN, &mp, ill_index); 7023 if (mp == NULL) { 7024 return; 7025 } 7026 } 7027 if ((in_flags != 0) && 7028 (mp->b_datap->db_type != M_CTL)) { 7029 /* 7030 * The actual data will be contained in b_cont 7031 * upon successful return of the following call 7032 * else original mblk is returned 7033 */ 7034 ASSERT(recv_ill != NULL); 7035 mp = ip_add_info(mp, recv_ill, in_flags, IPCL_ZONEID(connp), 7036 ipst); 7037 } 7038 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 7039 /* Send it upstream */ 7040 CONN_UDP_RECV(connp, mp); 7041 } 7042 7043 /* 7044 * Fanout for UDP packets. 7045 * The caller puts <fport, lport> in the ports parameter. 7046 * 7047 * If SO_REUSEADDR is set all multicast and broadcast packets 7048 * will be delivered to all streams bound to the same port. 7049 * 7050 * Zones notes: 7051 * Multicast and broadcast packets will be distributed to streams in all zones. 7052 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 7053 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 7054 * packets. To maintain this behavior with multiple zones, the conns are grouped 7055 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 7056 * each zone. If unset, all the following conns in the same zone are skipped. 7057 */ 7058 static void 7059 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 7060 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 7061 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 7062 { 7063 uint32_t dstport, srcport; 7064 ipaddr_t dst; 7065 mblk_t *first_mp; 7066 boolean_t secure; 7067 in6_addr_t v6src; 7068 conn_t *connp; 7069 connf_t *connfp; 7070 conn_t *first_connp; 7071 conn_t *next_connp; 7072 mblk_t *mp1, *first_mp1; 7073 ipaddr_t src; 7074 zoneid_t last_zoneid; 7075 boolean_t reuseaddr; 7076 boolean_t shared_addr; 7077 ip_stack_t *ipst; 7078 7079 ASSERT(recv_ill != NULL); 7080 ipst = recv_ill->ill_ipst; 7081 7082 first_mp = mp; 7083 if (mctl_present) { 7084 mp = first_mp->b_cont; 7085 first_mp->b_cont = NULL; 7086 secure = ipsec_in_is_secure(first_mp); 7087 ASSERT(mp != NULL); 7088 } else { 7089 first_mp = NULL; 7090 secure = B_FALSE; 7091 } 7092 7093 /* Extract ports in net byte order */ 7094 dstport = htons(ntohl(ports) & 0xFFFF); 7095 srcport = htons(ntohl(ports) >> 16); 7096 dst = ipha->ipha_dst; 7097 src = ipha->ipha_src; 7098 7099 shared_addr = (zoneid == ALL_ZONES); 7100 if (shared_addr) { 7101 /* 7102 * No need to handle exclusive-stack zones since ALL_ZONES 7103 * only applies to the shared stack. 7104 */ 7105 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 7106 if (zoneid == ALL_ZONES) 7107 zoneid = tsol_packet_to_zoneid(mp); 7108 } 7109 7110 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7111 mutex_enter(&connfp->connf_lock); 7112 connp = connfp->connf_head; 7113 if (!broadcast && !CLASSD(dst)) { 7114 /* 7115 * Not broadcast or multicast. Send to the one (first) 7116 * client we find. No need to check conn_wantpacket() 7117 * since IP_BOUND_IF/conn_incoming_ill does not apply to 7118 * IPv4 unicast packets. 7119 */ 7120 while ((connp != NULL) && 7121 (!IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) || 7122 !IPCL_ZONE_MATCH(connp, zoneid))) { 7123 connp = connp->conn_next; 7124 } 7125 7126 if (connp == NULL || connp->conn_upq == NULL) 7127 goto notfound; 7128 7129 if (is_system_labeled() && 7130 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7131 connp)) 7132 goto notfound; 7133 7134 CONN_INC_REF(connp); 7135 mutex_exit(&connfp->connf_lock); 7136 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7137 flags, recv_ill, ip_policy); 7138 IP_STAT(ipst, ip_udp_fannorm); 7139 CONN_DEC_REF(connp); 7140 return; 7141 } 7142 7143 /* 7144 * Broadcast and multicast case 7145 * 7146 * Need to check conn_wantpacket(). 7147 * If SO_REUSEADDR has been set on the first we send the 7148 * packet to all clients that have joined the group and 7149 * match the port. 7150 */ 7151 7152 while (connp != NULL) { 7153 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 7154 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7155 (!is_system_labeled() || 7156 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7157 connp))) 7158 break; 7159 connp = connp->conn_next; 7160 } 7161 7162 if (connp == NULL || connp->conn_upq == NULL) 7163 goto notfound; 7164 7165 first_connp = connp; 7166 /* 7167 * When SO_REUSEADDR is not set, send the packet only to the first 7168 * matching connection in its zone by keeping track of the zoneid. 7169 */ 7170 reuseaddr = first_connp->conn_reuseaddr; 7171 last_zoneid = first_connp->conn_zoneid; 7172 7173 CONN_INC_REF(connp); 7174 connp = connp->conn_next; 7175 for (;;) { 7176 while (connp != NULL) { 7177 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 7178 (reuseaddr || connp->conn_zoneid != last_zoneid) && 7179 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7180 (!is_system_labeled() || 7181 tsol_receive_local(mp, &dst, IPV4_VERSION, 7182 shared_addr, connp))) 7183 break; 7184 connp = connp->conn_next; 7185 } 7186 /* 7187 * Just copy the data part alone. The mctl part is 7188 * needed just for verifying policy and it is never 7189 * sent up. 7190 */ 7191 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7192 ((mp1 = copymsg(mp)) == NULL))) { 7193 /* 7194 * No more interested clients or memory 7195 * allocation failed 7196 */ 7197 connp = first_connp; 7198 break; 7199 } 7200 if (connp->conn_zoneid != last_zoneid) { 7201 /* 7202 * Update the zoneid so that the packet isn't sent to 7203 * any more conns in the same zone unless SO_REUSEADDR 7204 * is set. 7205 */ 7206 reuseaddr = connp->conn_reuseaddr; 7207 last_zoneid = connp->conn_zoneid; 7208 } 7209 if (first_mp != NULL) { 7210 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7211 ipsec_info_type == IPSEC_IN); 7212 first_mp1 = ipsec_in_tag(first_mp, NULL, 7213 ipst->ips_netstack); 7214 if (first_mp1 == NULL) { 7215 freemsg(mp1); 7216 connp = first_connp; 7217 break; 7218 } 7219 } else { 7220 first_mp1 = NULL; 7221 } 7222 CONN_INC_REF(connp); 7223 mutex_exit(&connfp->connf_lock); 7224 /* 7225 * IPQoS notes: We don't send the packet for policy 7226 * processing here, will do it for the last one (below). 7227 * i.e. we do it per-packet now, but if we do policy 7228 * processing per-conn, then we would need to do it 7229 * here too. 7230 */ 7231 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7232 ipha, flags, recv_ill, B_FALSE); 7233 mutex_enter(&connfp->connf_lock); 7234 /* Follow the next pointer before releasing the conn. */ 7235 next_connp = connp->conn_next; 7236 IP_STAT(ipst, ip_udp_fanmb); 7237 CONN_DEC_REF(connp); 7238 connp = next_connp; 7239 } 7240 7241 /* Last one. Send it upstream. */ 7242 mutex_exit(&connfp->connf_lock); 7243 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7244 recv_ill, ip_policy); 7245 IP_STAT(ipst, ip_udp_fanmb); 7246 CONN_DEC_REF(connp); 7247 return; 7248 7249 notfound: 7250 7251 mutex_exit(&connfp->connf_lock); 7252 IP_STAT(ipst, ip_udp_fanothers); 7253 /* 7254 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 7255 * have already been matched above, since they live in the IPv4 7256 * fanout tables. This implies we only need to 7257 * check for IPv6 in6addr_any endpoints here. 7258 * Thus we compare using ipv6_all_zeros instead of the destination 7259 * address, except for the multicast group membership lookup which 7260 * uses the IPv4 destination. 7261 */ 7262 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 7263 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7264 mutex_enter(&connfp->connf_lock); 7265 connp = connfp->connf_head; 7266 if (!broadcast && !CLASSD(dst)) { 7267 while (connp != NULL) { 7268 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7269 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 7270 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7271 !connp->conn_ipv6_v6only) 7272 break; 7273 connp = connp->conn_next; 7274 } 7275 7276 if (connp != NULL && is_system_labeled() && 7277 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7278 connp)) 7279 connp = NULL; 7280 7281 if (connp == NULL || connp->conn_upq == NULL) { 7282 /* 7283 * No one bound to this port. Is 7284 * there a client that wants all 7285 * unclaimed datagrams? 7286 */ 7287 mutex_exit(&connfp->connf_lock); 7288 7289 if (mctl_present) 7290 first_mp->b_cont = mp; 7291 else 7292 first_mp = mp; 7293 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP]. 7294 connf_head != NULL) { 7295 ip_fanout_proto(q, first_mp, ill, ipha, 7296 flags | IP_FF_RAWIP, mctl_present, 7297 ip_policy, recv_ill, zoneid); 7298 } else { 7299 if (ip_fanout_send_icmp(q, first_mp, flags, 7300 ICMP_DEST_UNREACHABLE, 7301 ICMP_PORT_UNREACHABLE, 7302 mctl_present, zoneid, ipst)) { 7303 BUMP_MIB(ill->ill_ip_mib, 7304 udpIfStatsNoPorts); 7305 } 7306 } 7307 return; 7308 } 7309 7310 CONN_INC_REF(connp); 7311 mutex_exit(&connfp->connf_lock); 7312 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7313 flags, recv_ill, ip_policy); 7314 CONN_DEC_REF(connp); 7315 return; 7316 } 7317 /* 7318 * IPv4 multicast packet being delivered to an AF_INET6 7319 * in6addr_any endpoint. 7320 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 7321 * and not conn_wantpacket_v6() since any multicast membership is 7322 * for an IPv4-mapped multicast address. 7323 * The packet is sent to all clients in all zones that have joined the 7324 * group and match the port. 7325 */ 7326 while (connp != NULL) { 7327 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7328 srcport, v6src) && 7329 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7330 (!is_system_labeled() || 7331 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7332 connp))) 7333 break; 7334 connp = connp->conn_next; 7335 } 7336 7337 if (connp == NULL || connp->conn_upq == NULL) { 7338 /* 7339 * No one bound to this port. Is 7340 * there a client that wants all 7341 * unclaimed datagrams? 7342 */ 7343 mutex_exit(&connfp->connf_lock); 7344 7345 if (mctl_present) 7346 first_mp->b_cont = mp; 7347 else 7348 first_mp = mp; 7349 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP].connf_head != 7350 NULL) { 7351 ip_fanout_proto(q, first_mp, ill, ipha, 7352 flags | IP_FF_RAWIP, mctl_present, ip_policy, 7353 recv_ill, zoneid); 7354 } else { 7355 /* 7356 * We used to attempt to send an icmp error here, but 7357 * since this is known to be a multicast packet 7358 * and we don't send icmp errors in response to 7359 * multicast, just drop the packet and give up sooner. 7360 */ 7361 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 7362 freemsg(first_mp); 7363 } 7364 return; 7365 } 7366 7367 first_connp = connp; 7368 7369 CONN_INC_REF(connp); 7370 connp = connp->conn_next; 7371 for (;;) { 7372 while (connp != NULL) { 7373 if (IPCL_UDP_MATCH_V6(connp, dstport, 7374 ipv6_all_zeros, srcport, v6src) && 7375 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7376 (!is_system_labeled() || 7377 tsol_receive_local(mp, &dst, IPV4_VERSION, 7378 shared_addr, connp))) 7379 break; 7380 connp = connp->conn_next; 7381 } 7382 /* 7383 * Just copy the data part alone. The mctl part is 7384 * needed just for verifying policy and it is never 7385 * sent up. 7386 */ 7387 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7388 ((mp1 = copymsg(mp)) == NULL))) { 7389 /* 7390 * No more intested clients or memory 7391 * allocation failed 7392 */ 7393 connp = first_connp; 7394 break; 7395 } 7396 if (first_mp != NULL) { 7397 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7398 ipsec_info_type == IPSEC_IN); 7399 first_mp1 = ipsec_in_tag(first_mp, NULL, 7400 ipst->ips_netstack); 7401 if (first_mp1 == NULL) { 7402 freemsg(mp1); 7403 connp = first_connp; 7404 break; 7405 } 7406 } else { 7407 first_mp1 = NULL; 7408 } 7409 CONN_INC_REF(connp); 7410 mutex_exit(&connfp->connf_lock); 7411 /* 7412 * IPQoS notes: We don't send the packet for policy 7413 * processing here, will do it for the last one (below). 7414 * i.e. we do it per-packet now, but if we do policy 7415 * processing per-conn, then we would need to do it 7416 * here too. 7417 */ 7418 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7419 ipha, flags, recv_ill, B_FALSE); 7420 mutex_enter(&connfp->connf_lock); 7421 /* Follow the next pointer before releasing the conn. */ 7422 next_connp = connp->conn_next; 7423 CONN_DEC_REF(connp); 7424 connp = next_connp; 7425 } 7426 7427 /* Last one. Send it upstream. */ 7428 mutex_exit(&connfp->connf_lock); 7429 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7430 recv_ill, ip_policy); 7431 CONN_DEC_REF(connp); 7432 } 7433 7434 /* 7435 * Complete the ip_wput header so that it 7436 * is possible to generate ICMP 7437 * errors. 7438 */ 7439 int 7440 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid, ip_stack_t *ipst) 7441 { 7442 ire_t *ire; 7443 7444 if (ipha->ipha_src == INADDR_ANY) { 7445 ire = ire_lookup_local(zoneid, ipst); 7446 if (ire == NULL) { 7447 ip1dbg(("ip_hdr_complete: no source IRE\n")); 7448 return (1); 7449 } 7450 ipha->ipha_src = ire->ire_addr; 7451 ire_refrele(ire); 7452 } 7453 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 7454 ipha->ipha_hdr_checksum = 0; 7455 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 7456 return (0); 7457 } 7458 7459 /* 7460 * Nobody should be sending 7461 * packets up this stream 7462 */ 7463 static void 7464 ip_lrput(queue_t *q, mblk_t *mp) 7465 { 7466 mblk_t *mp1; 7467 7468 switch (mp->b_datap->db_type) { 7469 case M_FLUSH: 7470 /* Turn around */ 7471 if (*mp->b_rptr & FLUSHW) { 7472 *mp->b_rptr &= ~FLUSHR; 7473 qreply(q, mp); 7474 return; 7475 } 7476 break; 7477 } 7478 /* Could receive messages that passed through ar_rput */ 7479 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 7480 mp1->b_prev = mp1->b_next = NULL; 7481 freemsg(mp); 7482 } 7483 7484 /* Nobody should be sending packets down this stream */ 7485 /* ARGSUSED */ 7486 void 7487 ip_lwput(queue_t *q, mblk_t *mp) 7488 { 7489 freemsg(mp); 7490 } 7491 7492 /* 7493 * Move the first hop in any source route to ipha_dst and remove that part of 7494 * the source route. Called by other protocols. Errors in option formatting 7495 * are ignored - will be handled by ip_wput_options Return the final 7496 * destination (either ipha_dst or the last entry in a source route.) 7497 */ 7498 ipaddr_t 7499 ip_massage_options(ipha_t *ipha, netstack_t *ns) 7500 { 7501 ipoptp_t opts; 7502 uchar_t *opt; 7503 uint8_t optval; 7504 uint8_t optlen; 7505 ipaddr_t dst; 7506 int i; 7507 ire_t *ire; 7508 ip_stack_t *ipst = ns->netstack_ip; 7509 7510 ip2dbg(("ip_massage_options\n")); 7511 dst = ipha->ipha_dst; 7512 for (optval = ipoptp_first(&opts, ipha); 7513 optval != IPOPT_EOL; 7514 optval = ipoptp_next(&opts)) { 7515 opt = opts.ipoptp_cur; 7516 switch (optval) { 7517 uint8_t off; 7518 case IPOPT_SSRR: 7519 case IPOPT_LSRR: 7520 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 7521 ip1dbg(("ip_massage_options: bad src route\n")); 7522 break; 7523 } 7524 optlen = opts.ipoptp_len; 7525 off = opt[IPOPT_OFFSET]; 7526 off--; 7527 redo_srr: 7528 if (optlen < IP_ADDR_LEN || 7529 off > optlen - IP_ADDR_LEN) { 7530 /* End of source route */ 7531 ip1dbg(("ip_massage_options: end of SR\n")); 7532 break; 7533 } 7534 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 7535 ip1dbg(("ip_massage_options: next hop 0x%x\n", 7536 ntohl(dst))); 7537 /* 7538 * Check if our address is present more than 7539 * once as consecutive hops in source route. 7540 * XXX verify per-interface ip_forwarding 7541 * for source route? 7542 */ 7543 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 7544 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7545 if (ire != NULL) { 7546 ire_refrele(ire); 7547 off += IP_ADDR_LEN; 7548 goto redo_srr; 7549 } 7550 if (dst == htonl(INADDR_LOOPBACK)) { 7551 ip1dbg(("ip_massage_options: loopback addr in " 7552 "source route!\n")); 7553 break; 7554 } 7555 /* 7556 * Update ipha_dst to be the first hop and remove the 7557 * first hop from the source route (by overwriting 7558 * part of the option with NOP options). 7559 */ 7560 ipha->ipha_dst = dst; 7561 /* Put the last entry in dst */ 7562 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 7563 3; 7564 bcopy(&opt[off], &dst, IP_ADDR_LEN); 7565 7566 ip1dbg(("ip_massage_options: last hop 0x%x\n", 7567 ntohl(dst))); 7568 /* Move down and overwrite */ 7569 opt[IP_ADDR_LEN] = opt[0]; 7570 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 7571 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 7572 for (i = 0; i < IP_ADDR_LEN; i++) 7573 opt[i] = IPOPT_NOP; 7574 break; 7575 } 7576 } 7577 return (dst); 7578 } 7579 7580 /* 7581 * This function's job is to forward data to the reverse tunnel (FA->HA) 7582 * after doing a few checks. It is assumed that the incoming interface 7583 * of the packet is always different than the outgoing interface and the 7584 * ire_type of the found ire has to be a non-resolver type. 7585 * 7586 * IPQoS notes 7587 * IP policy is invoked twice for a forwarded packet, once on the read side 7588 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 7589 * enabled. 7590 */ 7591 static void 7592 ip_mrtun_forward(ire_t *ire, ill_t *in_ill, mblk_t *mp) 7593 { 7594 ipha_t *ipha; 7595 queue_t *q; 7596 uint32_t pkt_len; 7597 #define rptr ((uchar_t *)ipha) 7598 uint32_t sum; 7599 uint32_t max_frag; 7600 mblk_t *first_mp; 7601 uint32_t ill_index; 7602 ipxmit_state_t pktxmit_state; 7603 ill_t *out_ill; 7604 ip_stack_t *ipst = in_ill->ill_ipst; 7605 7606 ASSERT(ire != NULL); 7607 ASSERT(ire->ire_ipif->ipif_net_type == IRE_IF_NORESOLVER); 7608 ASSERT(ire->ire_stq != NULL); 7609 7610 /* Initiate read side IPPF processing */ 7611 if (IPP_ENABLED(IPP_FWD_IN, ipst)) { 7612 ill_index = in_ill->ill_phyint->phyint_ifindex; 7613 ip_process(IPP_FWD_IN, &mp, ill_index); 7614 if (mp == NULL) { 7615 ip2dbg(("ip_mrtun_forward: inbound pkt " 7616 "dropped during IPPF processing\n")); 7617 return; 7618 } 7619 } 7620 7621 if (((in_ill->ill_flags & ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 7622 ILLF_ROUTER) == 0) || 7623 (in_ill == (ill_t *)ire->ire_stq->q_ptr)) { 7624 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsForwProhibits); 7625 ip0dbg(("ip_mrtun_forward: Can't forward :" 7626 "forwarding is not turned on\n")); 7627 goto drop_pkt; 7628 } 7629 7630 /* 7631 * Don't forward if the interface is down 7632 */ 7633 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 7634 goto discard_pkt; 7635 } 7636 7637 ipha = (ipha_t *)mp->b_rptr; 7638 pkt_len = ntohs(ipha->ipha_length); 7639 /* Adjust the checksum to reflect the ttl decrement. */ 7640 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 7641 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 7642 if (ipha->ipha_ttl-- <= 1) { 7643 if (ip_csum_hdr(ipha)) { 7644 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsInCksumErrs); 7645 goto drop_pkt; 7646 } 7647 q = ire->ire_stq; 7648 if ((first_mp = allocb(sizeof (ipsec_info_t), 7649 BPRI_HI)) == NULL) { 7650 goto discard_pkt; 7651 } 7652 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsForwProhibits); 7653 ip_ipsec_out_prepend(first_mp, mp, in_ill); 7654 /* Sent by forwarding path, and router is global zone */ 7655 icmp_time_exceeded(q, first_mp, ICMP_TTL_EXCEEDED, 7656 GLOBAL_ZONEID, ipst); 7657 return; 7658 } 7659 7660 /* Get the ill_index of the ILL */ 7661 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 7662 7663 /* 7664 * This location is chosen for the placement of the forwarding hook 7665 * because at this point we know that we have a path out for the 7666 * packet but haven't yet applied any logic (such as fragmenting) 7667 * that happen as part of transmitting the packet out. 7668 */ 7669 out_ill = ire->ire_ipif->ipif_ill; 7670 7671 DTRACE_PROBE4(ip4__forwarding__start, 7672 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 7673 7674 FW_HOOKS(ipst->ips_ip4_forwarding_event, 7675 ipst->ips_ipv4firewall_forwarding, 7676 in_ill, out_ill, ipha, mp, mp, ipst); 7677 7678 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 7679 7680 if (mp == NULL) 7681 return; 7682 pkt_len = ntohs(ipha->ipha_length); 7683 7684 /* 7685 * ip_mrtun_forward is only used by foreign agent to reverse 7686 * tunnel the incoming packet. So it does not do any option 7687 * processing for source routing. 7688 */ 7689 max_frag = ire->ire_max_frag; 7690 if (pkt_len > max_frag) { 7691 /* 7692 * It needs fragging on its way out. We haven't 7693 * verified the header checksum yet. Since we 7694 * are going to put a surely good checksum in the 7695 * outgoing header, we have to make sure that it 7696 * was good coming in. 7697 */ 7698 if (ip_csum_hdr(ipha)) { 7699 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsInCksumErrs); 7700 goto drop_pkt; 7701 } 7702 7703 /* Initiate write side IPPF processing */ 7704 if (IPP_ENABLED(IPP_FWD_OUT, ipst)) { 7705 ip_process(IPP_FWD_OUT, &mp, ill_index); 7706 if (mp == NULL) { 7707 ip2dbg(("ip_mrtun_forward: outbound pkt "\ 7708 "dropped/deferred during ip policy "\ 7709 "processing\n")); 7710 return; 7711 } 7712 } 7713 if ((first_mp = allocb(sizeof (ipsec_info_t), 7714 BPRI_HI)) == NULL) { 7715 goto discard_pkt; 7716 } 7717 ip_ipsec_out_prepend(first_mp, mp, in_ill); 7718 mp = first_mp; 7719 7720 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID, ipst); 7721 return; 7722 } 7723 7724 ip2dbg(("ip_mrtun_forward: ire type (%d)\n", ire->ire_type)); 7725 7726 ASSERT(ire->ire_ipif != NULL); 7727 7728 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 7729 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 7730 FW_HOOKS(ipst->ips_ip4_physical_out_event, 7731 ipst->ips_ipv4firewall_physical_out, 7732 NULL, out_ill, ipha, mp, mp, ipst); 7733 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 7734 if (mp == NULL) 7735 return; 7736 7737 /* Now send the packet to the tunnel interface */ 7738 mp->b_prev = SET_BPREV_FLAG(IPP_FWD_OUT); 7739 q = ire->ire_stq; 7740 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_FALSE); 7741 if ((pktxmit_state == SEND_FAILED) || 7742 (pktxmit_state == LLHDR_RESLV_FAILED)) { 7743 ip2dbg(("ip_mrtun_forward: failed to send packet to ill %p\n", 7744 q->q_ptr)); 7745 } 7746 7747 return; 7748 discard_pkt: 7749 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsInDiscards); 7750 drop_pkt:; 7751 ip2dbg(("ip_mrtun_forward: dropping pkt\n")); 7752 freemsg(mp); 7753 #undef rptr 7754 } 7755 7756 /* 7757 * Fills the ipsec_out_t data structure with appropriate fields and 7758 * prepends it to mp which contains the IP hdr + data that was meant 7759 * to be forwarded. Please note that ipsec_out_info data structure 7760 * is used here to communicate the outgoing ill path at ip_wput() 7761 * for the ICMP error packet. This has nothing to do with ipsec IP 7762 * security. ipsec_out_t is really used to pass the info to the module 7763 * IP where this information cannot be extracted from conn. 7764 * This functions is called by ip_mrtun_forward(). 7765 */ 7766 void 7767 ip_ipsec_out_prepend(mblk_t *first_mp, mblk_t *mp, ill_t *xmit_ill) 7768 { 7769 ipsec_out_t *io; 7770 7771 ASSERT(xmit_ill != NULL); 7772 first_mp->b_datap->db_type = M_CTL; 7773 first_mp->b_wptr += sizeof (ipsec_info_t); 7774 /* 7775 * This is to pass info to ip_wput in absence of conn. 7776 * ipsec_out_secure will be B_FALSE because of this. 7777 * Thus ipsec_out_secure being B_FALSE indicates that 7778 * this is not IPSEC security related information. 7779 */ 7780 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 7781 io = (ipsec_out_t *)first_mp->b_rptr; 7782 io->ipsec_out_type = IPSEC_OUT; 7783 io->ipsec_out_len = sizeof (ipsec_out_t); 7784 first_mp->b_cont = mp; 7785 io->ipsec_out_ill_index = 7786 xmit_ill->ill_phyint->phyint_ifindex; 7787 io->ipsec_out_xmit_if = B_TRUE; 7788 io->ipsec_out_ns = xmit_ill->ill_ipst->ips_netstack; 7789 } 7790 7791 /* 7792 * Return the network mask 7793 * associated with the specified address. 7794 */ 7795 ipaddr_t 7796 ip_net_mask(ipaddr_t addr) 7797 { 7798 uchar_t *up = (uchar_t *)&addr; 7799 ipaddr_t mask = 0; 7800 uchar_t *maskp = (uchar_t *)&mask; 7801 7802 #if defined(__i386) || defined(__amd64) 7803 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7804 #endif 7805 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7806 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7807 #endif 7808 if (CLASSD(addr)) { 7809 maskp[0] = 0xF0; 7810 return (mask); 7811 } 7812 if (addr == 0) 7813 return (0); 7814 maskp[0] = 0xFF; 7815 if ((up[0] & 0x80) == 0) 7816 return (mask); 7817 7818 maskp[1] = 0xFF; 7819 if ((up[0] & 0xC0) == 0x80) 7820 return (mask); 7821 7822 maskp[2] = 0xFF; 7823 if ((up[0] & 0xE0) == 0xC0) 7824 return (mask); 7825 7826 /* Must be experimental or multicast, indicate as much */ 7827 return ((ipaddr_t)0); 7828 } 7829 7830 /* 7831 * Select an ill for the packet by considering load spreading across 7832 * a different ill in the group if dst_ill is part of some group. 7833 */ 7834 ill_t * 7835 ip_newroute_get_dst_ill(ill_t *dst_ill) 7836 { 7837 ill_t *ill; 7838 7839 /* 7840 * We schedule irrespective of whether the source address is 7841 * INADDR_ANY or not. illgrp_scheduler returns a held ill. 7842 */ 7843 ill = illgrp_scheduler(dst_ill); 7844 if (ill == NULL) 7845 return (NULL); 7846 7847 /* 7848 * For groups with names ip_sioctl_groupname ensures that all 7849 * ills are of same type. For groups without names, ifgrp_insert 7850 * ensures this. 7851 */ 7852 ASSERT(dst_ill->ill_type == ill->ill_type); 7853 7854 return (ill); 7855 } 7856 7857 /* 7858 * Helper function for the IPIF_NOFAILOVER/ATTACH_IF interface attachment case. 7859 */ 7860 ill_t * 7861 ip_grab_attach_ill(ill_t *ill, mblk_t *first_mp, int ifindex, boolean_t isv6, 7862 ip_stack_t *ipst) 7863 { 7864 ill_t *ret_ill; 7865 7866 ASSERT(ifindex != 0); 7867 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 7868 ipst); 7869 if (ret_ill == NULL || 7870 (ret_ill->ill_phyint->phyint_flags & PHYI_OFFLINE)) { 7871 if (isv6) { 7872 if (ill != NULL) { 7873 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7874 } else { 7875 BUMP_MIB(&ipst->ips_ip6_mib, 7876 ipIfStatsOutDiscards); 7877 } 7878 ip1dbg(("ip_grab_attach_ill (IPv6): " 7879 "bad ifindex %d.\n", ifindex)); 7880 } else { 7881 if (ill != NULL) { 7882 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7883 } else { 7884 BUMP_MIB(&ipst->ips_ip_mib, 7885 ipIfStatsOutDiscards); 7886 } 7887 ip1dbg(("ip_grab_attach_ill (IPv4): " 7888 "bad ifindex %d.\n", ifindex)); 7889 } 7890 if (ret_ill != NULL) 7891 ill_refrele(ret_ill); 7892 freemsg(first_mp); 7893 return (NULL); 7894 } 7895 7896 return (ret_ill); 7897 } 7898 7899 /* 7900 * IPv4 - 7901 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7902 * out a packet to a destination address for which we do not have specific 7903 * (or sufficient) routing information. 7904 * 7905 * NOTE : These are the scopes of some of the variables that point at IRE, 7906 * which needs to be followed while making any future modifications 7907 * to avoid memory leaks. 7908 * 7909 * - ire and sire are the entries looked up initially by 7910 * ire_ftable_lookup. 7911 * - ipif_ire is used to hold the interface ire associated with 7912 * the new cache ire. But it's scope is limited, so we always REFRELE 7913 * it before branching out to error paths. 7914 * - save_ire is initialized before ire_create, so that ire returned 7915 * by ire_create will not over-write the ire. We REFRELE save_ire 7916 * before breaking out of the switch. 7917 * 7918 * Thus on failures, we have to REFRELE only ire and sire, if they 7919 * are not NULL. 7920 */ 7921 void 7922 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, ill_t *in_ill, conn_t *connp, 7923 zoneid_t zoneid, ip_stack_t *ipst) 7924 { 7925 areq_t *areq; 7926 ipaddr_t gw = 0; 7927 ire_t *ire = NULL; 7928 mblk_t *res_mp; 7929 ipaddr_t *addrp; 7930 ipaddr_t nexthop_addr; 7931 ipif_t *src_ipif = NULL; 7932 ill_t *dst_ill = NULL; 7933 ipha_t *ipha; 7934 ire_t *sire = NULL; 7935 mblk_t *first_mp; 7936 ire_t *save_ire; 7937 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER address */ 7938 ushort_t ire_marks = 0; 7939 boolean_t mctl_present; 7940 ipsec_out_t *io; 7941 mblk_t *saved_mp; 7942 ire_t *first_sire = NULL; 7943 mblk_t *copy_mp = NULL; 7944 mblk_t *xmit_mp = NULL; 7945 ipaddr_t save_dst; 7946 uint32_t multirt_flags = 7947 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7948 boolean_t multirt_is_resolvable; 7949 boolean_t multirt_resolve_next; 7950 boolean_t do_attach_ill = B_FALSE; 7951 boolean_t ip_nexthop = B_FALSE; 7952 tsol_ire_gw_secattr_t *attrp = NULL; 7953 tsol_gcgrp_t *gcgrp = NULL; 7954 tsol_gcgrp_addr_t ga; 7955 7956 if (ip_debug > 2) { 7957 /* ip1dbg */ 7958 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7959 } 7960 7961 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7962 if (mctl_present) { 7963 io = (ipsec_out_t *)first_mp->b_rptr; 7964 ASSERT(io->ipsec_out_type == IPSEC_OUT); 7965 ASSERT(zoneid == io->ipsec_out_zoneid); 7966 ASSERT(zoneid != ALL_ZONES); 7967 } 7968 7969 ipha = (ipha_t *)mp->b_rptr; 7970 7971 /* All multicast lookups come through ip_newroute_ipif() */ 7972 if (CLASSD(dst)) { 7973 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7974 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7975 freemsg(first_mp); 7976 return; 7977 } 7978 7979 if (mctl_present && io->ipsec_out_attach_if) { 7980 /* ip_grab_attach_ill returns a held ill */ 7981 attach_ill = ip_grab_attach_ill(NULL, first_mp, 7982 io->ipsec_out_ill_index, B_FALSE, ipst); 7983 7984 /* Failure case frees things for us. */ 7985 if (attach_ill == NULL) 7986 return; 7987 7988 /* 7989 * Check if we need an ire that will not be 7990 * looked up by anybody else i.e. HIDDEN. 7991 */ 7992 if (ill_is_probeonly(attach_ill)) 7993 ire_marks = IRE_MARK_HIDDEN; 7994 } 7995 if (mctl_present && io->ipsec_out_ip_nexthop) { 7996 ip_nexthop = B_TRUE; 7997 nexthop_addr = io->ipsec_out_nexthop_addr; 7998 } 7999 /* 8000 * If this IRE is created for forwarding or it is not for 8001 * traffic for congestion controlled protocols, mark it as temporary. 8002 */ 8003 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 8004 ire_marks |= IRE_MARK_TEMPORARY; 8005 8006 /* 8007 * Get what we can from ire_ftable_lookup which will follow an IRE 8008 * chain until it gets the most specific information available. 8009 * For example, we know that there is no IRE_CACHE for this dest, 8010 * but there may be an IRE_OFFSUBNET which specifies a gateway. 8011 * ire_ftable_lookup will look up the gateway, etc. 8012 * Check if in_ill != NULL. If it is true, the packet must be 8013 * from an incoming interface where RTA_SRCIFP is set. 8014 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 8015 * to the destination, of equal netmask length in the forward table, 8016 * will be recursively explored. If no information is available 8017 * for the final gateway of that route, we force the returned ire 8018 * to be equal to sire using MATCH_IRE_PARENT. 8019 * At least, in this case we have a starting point (in the buckets) 8020 * to look for other routes to the destination in the forward table. 8021 * This is actually used only for multirouting, where a list 8022 * of routes has to be processed in sequence. 8023 * 8024 * In the process of coming up with the most specific information, 8025 * ire_ftable_lookup may end up with an incomplete IRE_CACHE entry 8026 * for the gateway (i.e., one for which the ire_nce->nce_state is 8027 * not yet ND_REACHABLE, and is in the middle of arp resolution). 8028 * Two caveats when handling incomplete ire's in ip_newroute: 8029 * - we should be careful when accessing its ire_nce (specifically 8030 * the nce_res_mp) ast it might change underneath our feet, and, 8031 * - not all legacy code path callers are prepared to handle 8032 * incomplete ire's, so we should not create/add incomplete 8033 * ire_cache entries here. (See discussion about temporary solution 8034 * further below). 8035 * 8036 * In order to minimize packet dropping, and to preserve existing 8037 * behavior, we treat this case as if there were no IRE_CACHE for the 8038 * gateway, and instead use the IF_RESOLVER ire to send out 8039 * another request to ARP (this is achieved by passing the 8040 * MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the 8041 * arp response comes back in ip_wput_nondata, we will create 8042 * a per-dst ire_cache that has an ND_COMPLETE ire. 8043 * 8044 * Note that this is a temporary solution; the correct solution is 8045 * to create an incomplete per-dst ire_cache entry, and send the 8046 * packet out when the gw's nce is resolved. In order to achieve this, 8047 * all packet processing must have been completed prior to calling 8048 * ire_add_then_send. Some legacy code paths (e.g. cgtp) would need 8049 * to be modified to accomodate this solution. 8050 */ 8051 if (in_ill != NULL) { 8052 ire = ire_srcif_table_lookup(dst, IRE_IF_RESOLVER, NULL, 8053 in_ill, MATCH_IRE_TYPE); 8054 } else if (ip_nexthop) { 8055 /* 8056 * The first time we come here, we look for an IRE_INTERFACE 8057 * entry for the specified nexthop, set the dst to be the 8058 * nexthop address and create an IRE_CACHE entry for the 8059 * nexthop. The next time around, we are able to find an 8060 * IRE_CACHE entry for the nexthop, set the gateway to be the 8061 * nexthop address and create an IRE_CACHE entry for the 8062 * destination address via the specified nexthop. 8063 */ 8064 ire = ire_cache_lookup(nexthop_addr, zoneid, 8065 MBLK_GETLABEL(mp), ipst); 8066 if (ire != NULL) { 8067 gw = nexthop_addr; 8068 ire_marks |= IRE_MARK_PRIVATE_ADDR; 8069 } else { 8070 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 8071 IRE_INTERFACE, NULL, NULL, zoneid, 0, 8072 MBLK_GETLABEL(mp), 8073 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 8074 ipst); 8075 if (ire != NULL) { 8076 dst = nexthop_addr; 8077 } 8078 } 8079 } else if (attach_ill == NULL) { 8080 ire = ire_ftable_lookup(dst, 0, 0, 0, 8081 NULL, &sire, zoneid, 0, MBLK_GETLABEL(mp), 8082 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 8083 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 8084 MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE, 8085 ipst); 8086 } else { 8087 /* 8088 * attach_ill is set only for communicating with 8089 * on-link hosts. So, don't look for DEFAULT. 8090 */ 8091 ipif_t *attach_ipif; 8092 8093 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 8094 if (attach_ipif == NULL) { 8095 ill_refrele(attach_ill); 8096 goto icmp_err_ret; 8097 } 8098 ire = ire_ftable_lookup(dst, 0, 0, 0, attach_ipif, 8099 &sire, zoneid, 0, MBLK_GETLABEL(mp), 8100 MATCH_IRE_RJ_BHOLE | MATCH_IRE_ILL | 8101 MATCH_IRE_SECATTR, ipst); 8102 ipif_refrele(attach_ipif); 8103 } 8104 ip3dbg(("ip_newroute: ire_ftable_lookup() " 8105 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 8106 8107 /* 8108 * This loop is run only once in most cases. 8109 * We loop to resolve further routes only when the destination 8110 * can be reached through multiple RTF_MULTIRT-flagged ires. 8111 */ 8112 do { 8113 /* Clear the previous iteration's values */ 8114 if (src_ipif != NULL) { 8115 ipif_refrele(src_ipif); 8116 src_ipif = NULL; 8117 } 8118 if (dst_ill != NULL) { 8119 ill_refrele(dst_ill); 8120 dst_ill = NULL; 8121 } 8122 8123 multirt_resolve_next = B_FALSE; 8124 /* 8125 * We check if packets have to be multirouted. 8126 * In this case, given the current <ire, sire> couple, 8127 * we look for the next suitable <ire, sire>. 8128 * This check is done in ire_multirt_lookup(), 8129 * which applies various criteria to find the next route 8130 * to resolve. ire_multirt_lookup() leaves <ire, sire> 8131 * unchanged if it detects it has not been tried yet. 8132 */ 8133 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8134 ip3dbg(("ip_newroute: starting next_resolution " 8135 "with first_mp %p, tag %d\n", 8136 (void *)first_mp, 8137 MULTIRT_DEBUG_TAGGED(first_mp))); 8138 8139 ASSERT(sire != NULL); 8140 multirt_is_resolvable = 8141 ire_multirt_lookup(&ire, &sire, multirt_flags, 8142 MBLK_GETLABEL(mp), ipst); 8143 8144 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 8145 "ire %p, sire %p\n", 8146 multirt_is_resolvable, 8147 (void *)ire, (void *)sire)); 8148 8149 if (!multirt_is_resolvable) { 8150 /* 8151 * No more multirt route to resolve; give up 8152 * (all routes resolved or no more 8153 * resolvable routes). 8154 */ 8155 if (ire != NULL) { 8156 ire_refrele(ire); 8157 ire = NULL; 8158 } 8159 } else { 8160 ASSERT(sire != NULL); 8161 ASSERT(ire != NULL); 8162 /* 8163 * We simply use first_sire as a flag that 8164 * indicates if a resolvable multirt route 8165 * has already been found. 8166 * If it is not the case, we may have to send 8167 * an ICMP error to report that the 8168 * destination is unreachable. 8169 * We do not IRE_REFHOLD first_sire. 8170 */ 8171 if (first_sire == NULL) { 8172 first_sire = sire; 8173 } 8174 } 8175 } 8176 if (ire == NULL) { 8177 if (ip_debug > 3) { 8178 /* ip2dbg */ 8179 pr_addr_dbg("ip_newroute: " 8180 "can't resolve %s\n", AF_INET, &dst); 8181 } 8182 ip3dbg(("ip_newroute: " 8183 "ire %p, sire %p, first_sire %p\n", 8184 (void *)ire, (void *)sire, (void *)first_sire)); 8185 8186 if (sire != NULL) { 8187 ire_refrele(sire); 8188 sire = NULL; 8189 } 8190 8191 if (first_sire != NULL) { 8192 /* 8193 * At least one multirt route has been found 8194 * in the same call to ip_newroute(); 8195 * there is no need to report an ICMP error. 8196 * first_sire was not IRE_REFHOLDed. 8197 */ 8198 MULTIRT_DEBUG_UNTAG(first_mp); 8199 freemsg(first_mp); 8200 return; 8201 } 8202 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 8203 RTA_DST, ipst); 8204 if (attach_ill != NULL) 8205 ill_refrele(attach_ill); 8206 goto icmp_err_ret; 8207 } 8208 8209 /* 8210 * When RTA_SRCIFP is used to add a route, then an interface 8211 * route is added in the source interface's routing table. 8212 * If the outgoing interface of this route is of type 8213 * IRE_IF_RESOLVER, then upon creation of the ire, 8214 * ire_nce->nce_res_mp is set to NULL. 8215 * Later, when this route is first used for forwarding 8216 * a packet, ip_newroute() is called 8217 * to resolve the hardware address of the outgoing ipif. 8218 * We do not come here for IRE_IF_NORESOLVER entries in the 8219 * source interface based table. We only come here if the 8220 * outgoing interface is a resolver interface and we don't 8221 * have the ire_nce->nce_res_mp information yet. 8222 * If in_ill is not null that means it is called from 8223 * ip_rput. 8224 */ 8225 8226 ASSERT(ire->ire_in_ill == NULL || 8227 (ire->ire_type == IRE_IF_RESOLVER && 8228 ire->ire_nce != NULL && ire->ire_nce->nce_res_mp == NULL)); 8229 8230 /* 8231 * Verify that the returned IRE does not have either 8232 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 8233 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 8234 */ 8235 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 8236 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 8237 if (attach_ill != NULL) 8238 ill_refrele(attach_ill); 8239 goto icmp_err_ret; 8240 } 8241 /* 8242 * Increment the ire_ob_pkt_count field for ire if it is an 8243 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 8244 * increment the same for the parent IRE, sire, if it is some 8245 * sort of prefix IRE (which includes DEFAULT, PREFIX, and HOST) 8246 */ 8247 if ((ire->ire_type & IRE_INTERFACE) != 0) { 8248 UPDATE_OB_PKT_COUNT(ire); 8249 ire->ire_last_used_time = lbolt; 8250 } 8251 8252 if (sire != NULL) { 8253 gw = sire->ire_gateway_addr; 8254 ASSERT((sire->ire_type & (IRE_CACHETABLE | 8255 IRE_INTERFACE)) == 0); 8256 UPDATE_OB_PKT_COUNT(sire); 8257 sire->ire_last_used_time = lbolt; 8258 } 8259 /* 8260 * We have a route to reach the destination. 8261 * 8262 * 1) If the interface is part of ill group, try to get a new 8263 * ill taking load spreading into account. 8264 * 8265 * 2) After selecting the ill, get a source address that 8266 * might create good inbound load spreading. 8267 * ipif_select_source does this for us. 8268 * 8269 * If the application specified the ill (ifindex), we still 8270 * load spread. Only if the packets needs to go out 8271 * specifically on a given ill e.g. binding to 8272 * IPIF_NOFAILOVER address, then we don't try to use a 8273 * different ill for load spreading. 8274 */ 8275 if (attach_ill == NULL) { 8276 /* 8277 * Don't perform outbound load spreading in the 8278 * case of an RTF_MULTIRT route, as we actually 8279 * typically want to replicate outgoing packets 8280 * through particular interfaces. 8281 */ 8282 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8283 dst_ill = ire->ire_ipif->ipif_ill; 8284 /* for uniformity */ 8285 ill_refhold(dst_ill); 8286 } else { 8287 /* 8288 * If we are here trying to create an IRE_CACHE 8289 * for an offlink destination and have the 8290 * IRE_CACHE for the next hop and the latter is 8291 * using virtual IP source address selection i.e 8292 * it's ire->ire_ipif is pointing to a virtual 8293 * network interface (vni) then 8294 * ip_newroute_get_dst_ll() will return the vni 8295 * interface as the dst_ill. Since the vni is 8296 * virtual i.e not associated with any physical 8297 * interface, it cannot be the dst_ill, hence 8298 * in such a case call ip_newroute_get_dst_ll() 8299 * with the stq_ill instead of the ire_ipif ILL. 8300 * The function returns a refheld ill. 8301 */ 8302 if ((ire->ire_type == IRE_CACHE) && 8303 IS_VNI(ire->ire_ipif->ipif_ill)) 8304 dst_ill = ip_newroute_get_dst_ill( 8305 ire->ire_stq->q_ptr); 8306 else 8307 dst_ill = ip_newroute_get_dst_ill( 8308 ire->ire_ipif->ipif_ill); 8309 } 8310 if (dst_ill == NULL) { 8311 if (ip_debug > 2) { 8312 pr_addr_dbg("ip_newroute: " 8313 "no dst ill for dst" 8314 " %s\n", AF_INET, &dst); 8315 } 8316 goto icmp_err_ret; 8317 } 8318 } else { 8319 dst_ill = ire->ire_ipif->ipif_ill; 8320 /* for uniformity */ 8321 ill_refhold(dst_ill); 8322 /* 8323 * We should have found a route matching ill as we 8324 * called ire_ftable_lookup with MATCH_IRE_ILL. 8325 * Rather than asserting, when there is a mismatch, 8326 * we just drop the packet. 8327 */ 8328 if (dst_ill != attach_ill) { 8329 ip0dbg(("ip_newroute: Packet dropped as " 8330 "IPIF_NOFAILOVER ill is %s, " 8331 "ire->ire_ipif->ipif_ill is %s\n", 8332 attach_ill->ill_name, 8333 dst_ill->ill_name)); 8334 ill_refrele(attach_ill); 8335 goto icmp_err_ret; 8336 } 8337 } 8338 /* attach_ill can't go in loop. IPMP and CGTP are disjoint */ 8339 if (attach_ill != NULL) { 8340 ill_refrele(attach_ill); 8341 attach_ill = NULL; 8342 do_attach_ill = B_TRUE; 8343 } 8344 ASSERT(dst_ill != NULL); 8345 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 8346 8347 /* 8348 * Pick the best source address from dst_ill. 8349 * 8350 * 1) If it is part of a multipathing group, we would 8351 * like to spread the inbound packets across different 8352 * interfaces. ipif_select_source picks a random source 8353 * across the different ills in the group. 8354 * 8355 * 2) If it is not part of a multipathing group, we try 8356 * to pick the source address from the destination 8357 * route. Clustering assumes that when we have multiple 8358 * prefixes hosted on an interface, the prefix of the 8359 * source address matches the prefix of the destination 8360 * route. We do this only if the address is not 8361 * DEPRECATED. 8362 * 8363 * 3) If the conn is in a different zone than the ire, we 8364 * need to pick a source address from the right zone. 8365 * 8366 * NOTE : If we hit case (1) above, the prefix of the source 8367 * address picked may not match the prefix of the 8368 * destination routes prefix as ipif_select_source 8369 * does not look at "dst" while picking a source 8370 * address. 8371 * If we want the same behavior as (2), we will need 8372 * to change the behavior of ipif_select_source. 8373 */ 8374 ASSERT(src_ipif == NULL); 8375 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 8376 /* 8377 * The RTF_SETSRC flag is set in the parent ire (sire). 8378 * Check that the ipif matching the requested source 8379 * address still exists. 8380 */ 8381 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 8382 zoneid, NULL, NULL, NULL, NULL, ipst); 8383 } 8384 if (src_ipif == NULL) { 8385 ire_marks |= IRE_MARK_USESRC_CHECK; 8386 if ((dst_ill->ill_group != NULL) || 8387 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 8388 (connp != NULL && ire->ire_zoneid != zoneid && 8389 ire->ire_zoneid != ALL_ZONES) || 8390 (dst_ill->ill_usesrc_ifindex != 0)) { 8391 /* 8392 * If the destination is reachable via a 8393 * given gateway, the selected source address 8394 * should be in the same subnet as the gateway. 8395 * Otherwise, the destination is not reachable. 8396 * 8397 * If there are no interfaces on the same subnet 8398 * as the destination, ipif_select_source gives 8399 * first non-deprecated interface which might be 8400 * on a different subnet than the gateway. 8401 * This is not desirable. Hence pass the dst_ire 8402 * source address to ipif_select_source. 8403 * It is sure that the destination is reachable 8404 * with the dst_ire source address subnet. 8405 * So passing dst_ire source address to 8406 * ipif_select_source will make sure that the 8407 * selected source will be on the same subnet 8408 * as dst_ire source address. 8409 */ 8410 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 8411 src_ipif = ipif_select_source(dst_ill, saddr, 8412 zoneid); 8413 if (src_ipif == NULL) { 8414 if (ip_debug > 2) { 8415 pr_addr_dbg("ip_newroute: " 8416 "no src for dst %s ", 8417 AF_INET, &dst); 8418 printf("through interface %s\n", 8419 dst_ill->ill_name); 8420 } 8421 goto icmp_err_ret; 8422 } 8423 } else { 8424 src_ipif = ire->ire_ipif; 8425 ASSERT(src_ipif != NULL); 8426 /* hold src_ipif for uniformity */ 8427 ipif_refhold(src_ipif); 8428 } 8429 } 8430 8431 /* 8432 * Assign a source address while we have the conn. 8433 * We can't have ip_wput_ire pick a source address when the 8434 * packet returns from arp since we need to look at 8435 * conn_unspec_src and conn_zoneid, and we lose the conn when 8436 * going through arp. 8437 * 8438 * NOTE : ip_newroute_v6 does not have this piece of code as 8439 * it uses ip6i to store this information. 8440 */ 8441 if (ipha->ipha_src == INADDR_ANY && 8442 (connp == NULL || !connp->conn_unspec_src)) { 8443 ipha->ipha_src = src_ipif->ipif_src_addr; 8444 } 8445 if (ip_debug > 3) { 8446 /* ip2dbg */ 8447 pr_addr_dbg("ip_newroute: first hop %s\n", 8448 AF_INET, &gw); 8449 } 8450 ip2dbg(("\tire type %s (%d)\n", 8451 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 8452 8453 /* 8454 * The TTL of multirouted packets is bounded by the 8455 * ip_multirt_ttl ndd variable. 8456 */ 8457 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8458 /* Force TTL of multirouted packets */ 8459 if ((ipst->ips_ip_multirt_ttl > 0) && 8460 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 8461 ip2dbg(("ip_newroute: forcing multirt TTL " 8462 "to %d (was %d), dst 0x%08x\n", 8463 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 8464 ntohl(sire->ire_addr))); 8465 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 8466 } 8467 } 8468 /* 8469 * At this point in ip_newroute(), ire is either the 8470 * IRE_CACHE of the next-hop gateway for an off-subnet 8471 * destination or an IRE_INTERFACE type that should be used 8472 * to resolve an on-subnet destination or an on-subnet 8473 * next-hop gateway. 8474 * 8475 * In the IRE_CACHE case, we have the following : 8476 * 8477 * 1) src_ipif - used for getting a source address. 8478 * 8479 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8480 * means packets using this IRE_CACHE will go out on 8481 * dst_ill. 8482 * 8483 * 3) The IRE sire will point to the prefix that is the 8484 * longest matching route for the destination. These 8485 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST. 8486 * 8487 * The newly created IRE_CACHE entry for the off-subnet 8488 * destination is tied to both the prefix route and the 8489 * interface route used to resolve the next-hop gateway 8490 * via the ire_phandle and ire_ihandle fields, 8491 * respectively. 8492 * 8493 * In the IRE_INTERFACE case, we have the following : 8494 * 8495 * 1) src_ipif - used for getting a source address. 8496 * 8497 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8498 * means packets using the IRE_CACHE that we will build 8499 * here will go out on dst_ill. 8500 * 8501 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 8502 * to be created will only be tied to the IRE_INTERFACE 8503 * that was derived from the ire_ihandle field. 8504 * 8505 * If sire is non-NULL, it means the destination is 8506 * off-link and we will first create the IRE_CACHE for the 8507 * gateway. Next time through ip_newroute, we will create 8508 * the IRE_CACHE for the final destination as described 8509 * above. 8510 * 8511 * In both cases, after the current resolution has been 8512 * completed (or possibly initialised, in the IRE_INTERFACE 8513 * case), the loop may be re-entered to attempt the resolution 8514 * of another RTF_MULTIRT route. 8515 * 8516 * When an IRE_CACHE entry for the off-subnet destination is 8517 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 8518 * for further processing in emission loops. 8519 */ 8520 save_ire = ire; 8521 switch (ire->ire_type) { 8522 case IRE_CACHE: { 8523 ire_t *ipif_ire; 8524 mblk_t *ire_fp_mp; 8525 8526 ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE); 8527 if (gw == 0) 8528 gw = ire->ire_gateway_addr; 8529 /* 8530 * We need 3 ire's to create a new cache ire for an 8531 * off-link destination from the cache ire of the 8532 * gateway. 8533 * 8534 * 1. The prefix ire 'sire' (Note that this does 8535 * not apply to the conn_nexthop_set case) 8536 * 2. The cache ire of the gateway 'ire' 8537 * 3. The interface ire 'ipif_ire' 8538 * 8539 * We have (1) and (2). We lookup (3) below. 8540 * 8541 * If there is no interface route to the gateway, 8542 * it is a race condition, where we found the cache 8543 * but the interface route has been deleted. 8544 */ 8545 if (ip_nexthop) { 8546 ipif_ire = ire_ihandle_lookup_onlink(ire); 8547 } else { 8548 ipif_ire = 8549 ire_ihandle_lookup_offlink(ire, sire); 8550 } 8551 if (ipif_ire == NULL) { 8552 ip1dbg(("ip_newroute: " 8553 "ire_ihandle_lookup_offlink failed\n")); 8554 goto icmp_err_ret; 8555 } 8556 /* 8557 * XXX We are using the same res_mp 8558 * (DL_UNITDATA_REQ) though the save_ire is not 8559 * pointing at the same ill. 8560 * This is incorrect. We need to send it up to the 8561 * resolver to get the right res_mp. For ethernets 8562 * this may be okay (ill_type == DL_ETHER). 8563 */ 8564 res_mp = save_ire->ire_nce->nce_res_mp; 8565 ire_fp_mp = NULL; 8566 8567 /* 8568 * Check cached gateway IRE for any security 8569 * attributes; if found, associate the gateway 8570 * credentials group to the destination IRE. 8571 */ 8572 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 8573 mutex_enter(&attrp->igsa_lock); 8574 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 8575 GCGRP_REFHOLD(gcgrp); 8576 mutex_exit(&attrp->igsa_lock); 8577 } 8578 8579 ire = ire_create( 8580 (uchar_t *)&dst, /* dest address */ 8581 (uchar_t *)&ip_g_all_ones, /* mask */ 8582 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8583 (uchar_t *)&gw, /* gateway address */ 8584 NULL, 8585 &save_ire->ire_max_frag, 8586 ire_fp_mp, /* Fast Path header */ 8587 dst_ill->ill_rq, /* recv-from queue */ 8588 dst_ill->ill_wq, /* send-to queue */ 8589 IRE_CACHE, /* IRE type */ 8590 res_mp, 8591 src_ipif, 8592 in_ill, /* incoming ill */ 8593 (sire != NULL) ? 8594 sire->ire_mask : 0, /* Parent mask */ 8595 (sire != NULL) ? 8596 sire->ire_phandle : 0, /* Parent handle */ 8597 ipif_ire->ire_ihandle, /* Interface handle */ 8598 (sire != NULL) ? (sire->ire_flags & 8599 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 8600 (sire != NULL) ? 8601 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 8602 NULL, 8603 gcgrp, 8604 ipst); 8605 8606 if (ire == NULL) { 8607 if (gcgrp != NULL) { 8608 GCGRP_REFRELE(gcgrp); 8609 gcgrp = NULL; 8610 } 8611 ire_refrele(ipif_ire); 8612 ire_refrele(save_ire); 8613 break; 8614 } 8615 8616 /* reference now held by IRE */ 8617 gcgrp = NULL; 8618 8619 ire->ire_marks |= ire_marks; 8620 8621 /* 8622 * Prevent sire and ipif_ire from getting deleted. 8623 * The newly created ire is tied to both of them via 8624 * the phandle and ihandle respectively. 8625 */ 8626 if (sire != NULL) { 8627 IRB_REFHOLD(sire->ire_bucket); 8628 /* Has it been removed already ? */ 8629 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 8630 IRB_REFRELE(sire->ire_bucket); 8631 ire_refrele(ipif_ire); 8632 ire_refrele(save_ire); 8633 break; 8634 } 8635 } 8636 8637 IRB_REFHOLD(ipif_ire->ire_bucket); 8638 /* Has it been removed already ? */ 8639 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 8640 IRB_REFRELE(ipif_ire->ire_bucket); 8641 if (sire != NULL) 8642 IRB_REFRELE(sire->ire_bucket); 8643 ire_refrele(ipif_ire); 8644 ire_refrele(save_ire); 8645 break; 8646 } 8647 8648 xmit_mp = first_mp; 8649 /* 8650 * In the case of multirouting, a copy 8651 * of the packet is done before its sending. 8652 * The copy is used to attempt another 8653 * route resolution, in a next loop. 8654 */ 8655 if (ire->ire_flags & RTF_MULTIRT) { 8656 copy_mp = copymsg(first_mp); 8657 if (copy_mp != NULL) { 8658 xmit_mp = copy_mp; 8659 MULTIRT_DEBUG_TAG(first_mp); 8660 } 8661 } 8662 ire_add_then_send(q, ire, xmit_mp); 8663 ire_refrele(save_ire); 8664 8665 /* Assert that sire is not deleted yet. */ 8666 if (sire != NULL) { 8667 ASSERT(sire->ire_ptpn != NULL); 8668 IRB_REFRELE(sire->ire_bucket); 8669 } 8670 8671 /* Assert that ipif_ire is not deleted yet. */ 8672 ASSERT(ipif_ire->ire_ptpn != NULL); 8673 IRB_REFRELE(ipif_ire->ire_bucket); 8674 ire_refrele(ipif_ire); 8675 8676 /* 8677 * If copy_mp is not NULL, multirouting was 8678 * requested. We loop to initiate a next 8679 * route resolution attempt, starting from sire. 8680 */ 8681 if (copy_mp != NULL) { 8682 /* 8683 * Search for the next unresolved 8684 * multirt route. 8685 */ 8686 copy_mp = NULL; 8687 ipif_ire = NULL; 8688 ire = NULL; 8689 multirt_resolve_next = B_TRUE; 8690 continue; 8691 } 8692 if (sire != NULL) 8693 ire_refrele(sire); 8694 ipif_refrele(src_ipif); 8695 ill_refrele(dst_ill); 8696 return; 8697 } 8698 case IRE_IF_NORESOLVER: { 8699 /* 8700 * We have what we need to build an IRE_CACHE. 8701 * 8702 * Create a new res_mp with the IP gateway address 8703 * in destination address in the DLPI hdr if the 8704 * physical length is exactly 4 bytes. 8705 */ 8706 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) { 8707 uchar_t *addr; 8708 8709 if (gw) 8710 addr = (uchar_t *)&gw; 8711 else 8712 addr = (uchar_t *)&dst; 8713 8714 res_mp = ill_dlur_gen(addr, 8715 dst_ill->ill_phys_addr_length, 8716 dst_ill->ill_sap, 8717 dst_ill->ill_sap_length); 8718 8719 if (res_mp == NULL) { 8720 ip1dbg(("ip_newroute: res_mp NULL\n")); 8721 break; 8722 } 8723 } else if (dst_ill->ill_resolver_mp == NULL) { 8724 ip1dbg(("ip_newroute: dst_ill %p " 8725 "for IF_NORESOLV ire %p has " 8726 "no ill_resolver_mp\n", 8727 (void *)dst_ill, (void *)ire)); 8728 break; 8729 } else { 8730 res_mp = NULL; 8731 } 8732 8733 /* 8734 * TSol note: We are creating the ire cache for the 8735 * destination 'dst'. If 'dst' is offlink, going 8736 * through the first hop 'gw', the security attributes 8737 * of 'dst' must be set to point to the gateway 8738 * credentials of gateway 'gw'. If 'dst' is onlink, it 8739 * is possible that 'dst' is a potential gateway that is 8740 * referenced by some route that has some security 8741 * attributes. Thus in the former case, we need to do a 8742 * gcgrp_lookup of 'gw' while in the latter case we 8743 * need to do gcgrp_lookup of 'dst' itself. 8744 */ 8745 ga.ga_af = AF_INET; 8746 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 8747 &ga.ga_addr); 8748 gcgrp = gcgrp_lookup(&ga, B_FALSE); 8749 8750 ire = ire_create( 8751 (uchar_t *)&dst, /* dest address */ 8752 (uchar_t *)&ip_g_all_ones, /* mask */ 8753 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8754 (uchar_t *)&gw, /* gateway address */ 8755 NULL, 8756 &save_ire->ire_max_frag, 8757 NULL, /* Fast Path header */ 8758 dst_ill->ill_rq, /* recv-from queue */ 8759 dst_ill->ill_wq, /* send-to queue */ 8760 IRE_CACHE, 8761 res_mp, 8762 src_ipif, 8763 in_ill, /* Incoming ill */ 8764 save_ire->ire_mask, /* Parent mask */ 8765 (sire != NULL) ? /* Parent handle */ 8766 sire->ire_phandle : 0, 8767 save_ire->ire_ihandle, /* Interface handle */ 8768 (sire != NULL) ? sire->ire_flags & 8769 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 8770 &(save_ire->ire_uinfo), 8771 NULL, 8772 gcgrp, 8773 ipst); 8774 8775 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) 8776 freeb(res_mp); 8777 8778 if (ire == NULL) { 8779 if (gcgrp != NULL) { 8780 GCGRP_REFRELE(gcgrp); 8781 gcgrp = NULL; 8782 } 8783 ire_refrele(save_ire); 8784 break; 8785 } 8786 8787 /* reference now held by IRE */ 8788 gcgrp = NULL; 8789 8790 ire->ire_marks |= ire_marks; 8791 8792 /* Prevent save_ire from getting deleted */ 8793 IRB_REFHOLD(save_ire->ire_bucket); 8794 /* Has it been removed already ? */ 8795 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8796 IRB_REFRELE(save_ire->ire_bucket); 8797 ire_refrele(save_ire); 8798 break; 8799 } 8800 8801 /* 8802 * In the case of multirouting, a copy 8803 * of the packet is made before it is sent. 8804 * The copy is used in the next 8805 * loop to attempt another resolution. 8806 */ 8807 xmit_mp = first_mp; 8808 if ((sire != NULL) && 8809 (sire->ire_flags & RTF_MULTIRT)) { 8810 copy_mp = copymsg(first_mp); 8811 if (copy_mp != NULL) { 8812 xmit_mp = copy_mp; 8813 MULTIRT_DEBUG_TAG(first_mp); 8814 } 8815 } 8816 ire_add_then_send(q, ire, xmit_mp); 8817 8818 /* Assert that it is not deleted yet. */ 8819 ASSERT(save_ire->ire_ptpn != NULL); 8820 IRB_REFRELE(save_ire->ire_bucket); 8821 ire_refrele(save_ire); 8822 8823 if (copy_mp != NULL) { 8824 /* 8825 * If we found a (no)resolver, we ignore any 8826 * trailing top priority IRE_CACHE in further 8827 * loops. This ensures that we do not omit any 8828 * (no)resolver. 8829 * This IRE_CACHE, if any, will be processed 8830 * by another thread entering ip_newroute(). 8831 * IRE_CACHE entries, if any, will be processed 8832 * by another thread entering ip_newroute(), 8833 * (upon resolver response, for instance). 8834 * This aims to force parallel multirt 8835 * resolutions as soon as a packet must be sent. 8836 * In the best case, after the tx of only one 8837 * packet, all reachable routes are resolved. 8838 * Otherwise, the resolution of all RTF_MULTIRT 8839 * routes would require several emissions. 8840 */ 8841 multirt_flags &= ~MULTIRT_CACHEGW; 8842 8843 /* 8844 * Search for the next unresolved multirt 8845 * route. 8846 */ 8847 copy_mp = NULL; 8848 save_ire = NULL; 8849 ire = NULL; 8850 multirt_resolve_next = B_TRUE; 8851 continue; 8852 } 8853 8854 /* 8855 * Don't need sire anymore 8856 */ 8857 if (sire != NULL) 8858 ire_refrele(sire); 8859 8860 ipif_refrele(src_ipif); 8861 ill_refrele(dst_ill); 8862 return; 8863 } 8864 case IRE_IF_RESOLVER: 8865 /* 8866 * We can't build an IRE_CACHE yet, but at least we 8867 * found a resolver that can help. 8868 */ 8869 res_mp = dst_ill->ill_resolver_mp; 8870 if (!OK_RESOLVER_MP(res_mp)) 8871 break; 8872 8873 /* 8874 * To be at this point in the code with a non-zero gw 8875 * means that dst is reachable through a gateway that 8876 * we have never resolved. By changing dst to the gw 8877 * addr we resolve the gateway first. 8878 * When ire_add_then_send() tries to put the IP dg 8879 * to dst, it will reenter ip_newroute() at which 8880 * time we will find the IRE_CACHE for the gw and 8881 * create another IRE_CACHE in case IRE_CACHE above. 8882 */ 8883 if (gw != INADDR_ANY) { 8884 /* 8885 * The source ipif that was determined above was 8886 * relative to the destination address, not the 8887 * gateway's. If src_ipif was not taken out of 8888 * the IRE_IF_RESOLVER entry, we'll need to call 8889 * ipif_select_source() again. 8890 */ 8891 if (src_ipif != ire->ire_ipif) { 8892 ipif_refrele(src_ipif); 8893 src_ipif = ipif_select_source(dst_ill, 8894 gw, zoneid); 8895 if (src_ipif == NULL) { 8896 if (ip_debug > 2) { 8897 pr_addr_dbg( 8898 "ip_newroute: no " 8899 "src for gw %s ", 8900 AF_INET, &gw); 8901 printf("through " 8902 "interface %s\n", 8903 dst_ill->ill_name); 8904 } 8905 goto icmp_err_ret; 8906 } 8907 } 8908 save_dst = dst; 8909 dst = gw; 8910 gw = INADDR_ANY; 8911 } 8912 8913 /* 8914 * We obtain a partial IRE_CACHE which we will pass 8915 * along with the resolver query. When the response 8916 * comes back it will be there ready for us to add. 8917 * The ire_max_frag is atomically set under the 8918 * irebucket lock in ire_add_v[46]. 8919 */ 8920 8921 ire = ire_create_mp( 8922 (uchar_t *)&dst, /* dest address */ 8923 (uchar_t *)&ip_g_all_ones, /* mask */ 8924 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8925 (uchar_t *)&gw, /* gateway address */ 8926 NULL, /* no in_src_addr */ 8927 NULL, /* ire_max_frag */ 8928 NULL, /* Fast Path header */ 8929 dst_ill->ill_rq, /* recv-from queue */ 8930 dst_ill->ill_wq, /* send-to queue */ 8931 IRE_CACHE, 8932 NULL, 8933 src_ipif, /* Interface ipif */ 8934 in_ill, /* Incoming ILL */ 8935 save_ire->ire_mask, /* Parent mask */ 8936 0, 8937 save_ire->ire_ihandle, /* Interface handle */ 8938 0, /* flags if any */ 8939 &(save_ire->ire_uinfo), 8940 NULL, 8941 NULL, 8942 ipst); 8943 8944 if (ire == NULL) { 8945 ire_refrele(save_ire); 8946 break; 8947 } 8948 8949 if ((sire != NULL) && 8950 (sire->ire_flags & RTF_MULTIRT)) { 8951 copy_mp = copymsg(first_mp); 8952 if (copy_mp != NULL) 8953 MULTIRT_DEBUG_TAG(copy_mp); 8954 } 8955 8956 ire->ire_marks |= ire_marks; 8957 8958 /* 8959 * Construct message chain for the resolver 8960 * of the form: 8961 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8962 * Packet could contain a IPSEC_OUT mp. 8963 * 8964 * NOTE : ire will be added later when the response 8965 * comes back from ARP. If the response does not 8966 * come back, ARP frees the packet. For this reason, 8967 * we can't REFHOLD the bucket of save_ire to prevent 8968 * deletions. We may not be able to REFRELE the bucket 8969 * if the response never comes back. Thus, before 8970 * adding the ire, ire_add_v4 will make sure that the 8971 * interface route does not get deleted. This is the 8972 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8973 * where we can always prevent deletions because of 8974 * the synchronous nature of adding IRES i.e 8975 * ire_add_then_send is called after creating the IRE. 8976 */ 8977 ASSERT(ire->ire_mp != NULL); 8978 ire->ire_mp->b_cont = first_mp; 8979 /* Have saved_mp handy, for cleanup if canput fails */ 8980 saved_mp = mp; 8981 mp = copyb(res_mp); 8982 if (mp == NULL) { 8983 /* Prepare for cleanup */ 8984 mp = saved_mp; /* pkt */ 8985 ire_delete(ire); /* ire_mp */ 8986 ire = NULL; 8987 ire_refrele(save_ire); 8988 if (copy_mp != NULL) { 8989 MULTIRT_DEBUG_UNTAG(copy_mp); 8990 freemsg(copy_mp); 8991 copy_mp = NULL; 8992 } 8993 break; 8994 } 8995 linkb(mp, ire->ire_mp); 8996 8997 /* 8998 * Fill in the source and dest addrs for the resolver. 8999 * NOTE: this depends on memory layouts imposed by 9000 * ill_init(). 9001 */ 9002 areq = (areq_t *)mp->b_rptr; 9003 addrp = (ipaddr_t *)((char *)areq + 9004 areq->areq_sender_addr_offset); 9005 if (do_attach_ill) { 9006 /* 9007 * This is bind to no failover case. 9008 * arp packet also must go out on attach_ill. 9009 */ 9010 ASSERT(ipha->ipha_src != NULL); 9011 *addrp = ipha->ipha_src; 9012 } else { 9013 *addrp = save_ire->ire_src_addr; 9014 } 9015 9016 ire_refrele(save_ire); 9017 addrp = (ipaddr_t *)((char *)areq + 9018 areq->areq_target_addr_offset); 9019 *addrp = dst; 9020 /* Up to the resolver. */ 9021 if (canputnext(dst_ill->ill_rq) && 9022 !(dst_ill->ill_arp_closing)) { 9023 putnext(dst_ill->ill_rq, mp); 9024 ire = NULL; 9025 if (copy_mp != NULL) { 9026 /* 9027 * If we found a resolver, we ignore 9028 * any trailing top priority IRE_CACHE 9029 * in the further loops. This ensures 9030 * that we do not omit any resolver. 9031 * IRE_CACHE entries, if any, will be 9032 * processed next time we enter 9033 * ip_newroute(). 9034 */ 9035 multirt_flags &= ~MULTIRT_CACHEGW; 9036 /* 9037 * Search for the next unresolved 9038 * multirt route. 9039 */ 9040 first_mp = copy_mp; 9041 copy_mp = NULL; 9042 /* Prepare the next resolution loop. */ 9043 mp = first_mp; 9044 EXTRACT_PKT_MP(mp, first_mp, 9045 mctl_present); 9046 if (mctl_present) 9047 io = (ipsec_out_t *) 9048 first_mp->b_rptr; 9049 ipha = (ipha_t *)mp->b_rptr; 9050 9051 ASSERT(sire != NULL); 9052 9053 dst = save_dst; 9054 multirt_resolve_next = B_TRUE; 9055 continue; 9056 } 9057 9058 if (sire != NULL) 9059 ire_refrele(sire); 9060 9061 /* 9062 * The response will come back in ip_wput 9063 * with db_type IRE_DB_TYPE. 9064 */ 9065 ipif_refrele(src_ipif); 9066 ill_refrele(dst_ill); 9067 return; 9068 } else { 9069 /* Prepare for cleanup */ 9070 DTRACE_PROBE1(ip__newroute__drop, mblk_t *, 9071 mp); 9072 mp->b_cont = NULL; 9073 freeb(mp); /* areq */ 9074 /* 9075 * this is an ire that is not added to the 9076 * cache. ire_freemblk will handle the release 9077 * of any resources associated with the ire. 9078 */ 9079 ire_delete(ire); /* ire_mp */ 9080 mp = saved_mp; /* pkt */ 9081 ire = NULL; 9082 if (copy_mp != NULL) { 9083 MULTIRT_DEBUG_UNTAG(copy_mp); 9084 freemsg(copy_mp); 9085 copy_mp = NULL; 9086 } 9087 break; 9088 } 9089 default: 9090 break; 9091 } 9092 } while (multirt_resolve_next); 9093 9094 ip1dbg(("ip_newroute: dropped\n")); 9095 /* Did this packet originate externally? */ 9096 if (mp->b_prev) { 9097 mp->b_next = NULL; 9098 mp->b_prev = NULL; 9099 if (in_ill != NULL) { 9100 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsInDiscards); 9101 } else { 9102 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 9103 } 9104 } else { 9105 if (dst_ill != NULL) { 9106 BUMP_MIB(dst_ill->ill_ip_mib, ipIfStatsOutDiscards); 9107 } else { 9108 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 9109 } 9110 } 9111 ASSERT(copy_mp == NULL); 9112 MULTIRT_DEBUG_UNTAG(first_mp); 9113 freemsg(first_mp); 9114 if (ire != NULL) 9115 ire_refrele(ire); 9116 if (sire != NULL) 9117 ire_refrele(sire); 9118 if (src_ipif != NULL) 9119 ipif_refrele(src_ipif); 9120 if (dst_ill != NULL) 9121 ill_refrele(dst_ill); 9122 return; 9123 9124 icmp_err_ret: 9125 ip1dbg(("ip_newroute: no route\n")); 9126 if (src_ipif != NULL) 9127 ipif_refrele(src_ipif); 9128 if (dst_ill != NULL) 9129 ill_refrele(dst_ill); 9130 if (sire != NULL) 9131 ire_refrele(sire); 9132 /* Did this packet originate externally? */ 9133 if (mp->b_prev) { 9134 mp->b_next = NULL; 9135 mp->b_prev = NULL; 9136 if (in_ill != NULL) { 9137 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsInNoRoutes); 9138 } else { 9139 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInNoRoutes); 9140 } 9141 q = WR(q); 9142 } else { 9143 /* 9144 * There is no outgoing ill, so just increment the 9145 * system MIB. 9146 */ 9147 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 9148 /* 9149 * Since ip_wput() isn't close to finished, we fill 9150 * in enough of the header for credible error reporting. 9151 */ 9152 if (ip_hdr_complete(ipha, zoneid, ipst)) { 9153 /* Failed */ 9154 MULTIRT_DEBUG_UNTAG(first_mp); 9155 freemsg(first_mp); 9156 if (ire != NULL) 9157 ire_refrele(ire); 9158 return; 9159 } 9160 } 9161 9162 /* 9163 * At this point we will have ire only if RTF_BLACKHOLE 9164 * or RTF_REJECT flags are set on the IRE. It will not 9165 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9166 */ 9167 if (ire != NULL) { 9168 if (ire->ire_flags & RTF_BLACKHOLE) { 9169 ire_refrele(ire); 9170 MULTIRT_DEBUG_UNTAG(first_mp); 9171 freemsg(first_mp); 9172 return; 9173 } 9174 ire_refrele(ire); 9175 } 9176 if (ip_source_routed(ipha, ipst)) { 9177 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED, 9178 zoneid, ipst); 9179 return; 9180 } 9181 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9182 } 9183 9184 ip_opt_info_t zero_info; 9185 9186 /* 9187 * IPv4 - 9188 * ip_newroute_ipif is called by ip_wput_multicast and 9189 * ip_rput_forward_multicast whenever we need to send 9190 * out a packet to a destination address for which we do not have specific 9191 * routing information. It is used when the packet will be sent out 9192 * on a specific interface. It is also called by ip_wput() when IP_XMIT_IF 9193 * socket option is set or icmp error message wants to go out on a particular 9194 * interface for a unicast packet. 9195 * 9196 * In most cases, the destination address is resolved thanks to the ipif 9197 * intrinsic resolver. However, there are some cases where the call to 9198 * ip_newroute_ipif must take into account the potential presence of 9199 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 9200 * that uses the interface. This is specified through flags, 9201 * which can be a combination of: 9202 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 9203 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 9204 * and flags. Additionally, the packet source address has to be set to 9205 * the specified address. The caller is thus expected to set this flag 9206 * if the packet has no specific source address yet. 9207 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 9208 * flag, the resulting ire will inherit the flag. All unresolved routes 9209 * to the destination must be explored in the same call to 9210 * ip_newroute_ipif(). 9211 */ 9212 static void 9213 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 9214 conn_t *connp, uint32_t flags, zoneid_t zoneid, ip_opt_info_t *infop) 9215 { 9216 areq_t *areq; 9217 ire_t *ire = NULL; 9218 mblk_t *res_mp; 9219 ipaddr_t *addrp; 9220 mblk_t *first_mp; 9221 ire_t *save_ire = NULL; 9222 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER */ 9223 ipif_t *src_ipif = NULL; 9224 ushort_t ire_marks = 0; 9225 ill_t *dst_ill = NULL; 9226 boolean_t mctl_present; 9227 ipsec_out_t *io; 9228 ipha_t *ipha; 9229 int ihandle = 0; 9230 mblk_t *saved_mp; 9231 ire_t *fire = NULL; 9232 mblk_t *copy_mp = NULL; 9233 boolean_t multirt_resolve_next; 9234 ipaddr_t ipha_dst; 9235 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 9236 9237 /* 9238 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 9239 * here for uniformity 9240 */ 9241 ipif_refhold(ipif); 9242 9243 /* 9244 * This loop is run only once in most cases. 9245 * We loop to resolve further routes only when the destination 9246 * can be reached through multiple RTF_MULTIRT-flagged ires. 9247 */ 9248 do { 9249 if (dst_ill != NULL) { 9250 ill_refrele(dst_ill); 9251 dst_ill = NULL; 9252 } 9253 if (src_ipif != NULL) { 9254 ipif_refrele(src_ipif); 9255 src_ipif = NULL; 9256 } 9257 multirt_resolve_next = B_FALSE; 9258 9259 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 9260 ipif->ipif_ill->ill_name)); 9261 9262 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 9263 if (mctl_present) 9264 io = (ipsec_out_t *)first_mp->b_rptr; 9265 9266 ipha = (ipha_t *)mp->b_rptr; 9267 9268 /* 9269 * Save the packet destination address, we may need it after 9270 * the packet has been consumed. 9271 */ 9272 ipha_dst = ipha->ipha_dst; 9273 9274 /* 9275 * If the interface is a pt-pt interface we look for an 9276 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 9277 * local_address and the pt-pt destination address. Otherwise 9278 * we just match the local address. 9279 * NOTE: dst could be different than ipha->ipha_dst in case 9280 * of sending igmp multicast packets over a point-to-point 9281 * connection. 9282 * Thus we must be careful enough to check ipha_dst to be a 9283 * multicast address, otherwise it will take xmit_if path for 9284 * multicast packets resulting into kernel stack overflow by 9285 * repeated calls to ip_newroute_ipif from ire_send(). 9286 */ 9287 if (CLASSD(ipha_dst) && 9288 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 9289 goto err_ret; 9290 } 9291 9292 /* 9293 * We check if an IRE_OFFSUBNET for the addr that goes through 9294 * ipif exists. We need it to determine if the RTF_SETSRC and/or 9295 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 9296 * propagate its flags to the new ire. 9297 */ 9298 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 9299 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 9300 ip2dbg(("ip_newroute_ipif: " 9301 "ipif_lookup_multi_ire(" 9302 "ipif %p, dst %08x) = fire %p\n", 9303 (void *)ipif, ntohl(dst), (void *)fire)); 9304 } 9305 9306 if (mctl_present && io->ipsec_out_attach_if) { 9307 attach_ill = ip_grab_attach_ill(NULL, first_mp, 9308 io->ipsec_out_ill_index, B_FALSE, ipst); 9309 9310 /* Failure case frees things for us. */ 9311 if (attach_ill == NULL) { 9312 ipif_refrele(ipif); 9313 if (fire != NULL) 9314 ire_refrele(fire); 9315 return; 9316 } 9317 9318 /* 9319 * Check if we need an ire that will not be 9320 * looked up by anybody else i.e. HIDDEN. 9321 */ 9322 if (ill_is_probeonly(attach_ill)) { 9323 ire_marks = IRE_MARK_HIDDEN; 9324 } 9325 /* 9326 * ip_wput passes the right ipif for IPIF_NOFAILOVER 9327 * case. 9328 */ 9329 dst_ill = ipif->ipif_ill; 9330 /* attach_ill has been refheld by ip_grab_attach_ill */ 9331 ASSERT(dst_ill == attach_ill); 9332 } else { 9333 /* 9334 * If this is set by IP_XMIT_IF, then make sure that 9335 * ipif is pointing to the same ill as the IP_XMIT_IF 9336 * specified ill. 9337 */ 9338 ASSERT((connp == NULL) || 9339 (connp->conn_xmit_if_ill == NULL) || 9340 (connp->conn_xmit_if_ill == ipif->ipif_ill)); 9341 /* 9342 * If the interface belongs to an interface group, 9343 * make sure the next possible interface in the group 9344 * is used. This encourages load spreading among 9345 * peers in an interface group. 9346 * Note: load spreading is disabled for RTF_MULTIRT 9347 * routes. 9348 */ 9349 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9350 (fire->ire_flags & RTF_MULTIRT)) { 9351 /* 9352 * Don't perform outbound load spreading 9353 * in the case of an RTF_MULTIRT issued route, 9354 * we actually typically want to replicate 9355 * outgoing packets through particular 9356 * interfaces. 9357 */ 9358 dst_ill = ipif->ipif_ill; 9359 ill_refhold(dst_ill); 9360 } else { 9361 dst_ill = ip_newroute_get_dst_ill( 9362 ipif->ipif_ill); 9363 } 9364 if (dst_ill == NULL) { 9365 if (ip_debug > 2) { 9366 pr_addr_dbg("ip_newroute_ipif: " 9367 "no dst ill for dst %s\n", 9368 AF_INET, &dst); 9369 } 9370 goto err_ret; 9371 } 9372 } 9373 9374 /* 9375 * Pick a source address preferring non-deprecated ones. 9376 * Unlike ip_newroute, we don't do any source address 9377 * selection here since for multicast it really does not help 9378 * in inbound load spreading as in the unicast case. 9379 */ 9380 if ((flags & RTF_SETSRC) && (fire != NULL) && 9381 (fire->ire_flags & RTF_SETSRC)) { 9382 /* 9383 * As requested by flags, an IRE_OFFSUBNET was looked up 9384 * on that interface. This ire has RTF_SETSRC flag, so 9385 * the source address of the packet must be changed. 9386 * Check that the ipif matching the requested source 9387 * address still exists. 9388 */ 9389 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 9390 zoneid, NULL, NULL, NULL, NULL, ipst); 9391 } 9392 if (((ipif->ipif_flags & IPIF_DEPRECATED) || 9393 (connp != NULL && ipif->ipif_zoneid != zoneid && 9394 ipif->ipif_zoneid != ALL_ZONES)) && 9395 (src_ipif == NULL)) { 9396 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 9397 if (src_ipif == NULL) { 9398 if (ip_debug > 2) { 9399 /* ip1dbg */ 9400 pr_addr_dbg("ip_newroute_ipif: " 9401 "no src for dst %s", 9402 AF_INET, &dst); 9403 } 9404 ip1dbg((" through interface %s\n", 9405 dst_ill->ill_name)); 9406 goto err_ret; 9407 } 9408 ipif_refrele(ipif); 9409 ipif = src_ipif; 9410 ipif_refhold(ipif); 9411 } 9412 if (src_ipif == NULL) { 9413 src_ipif = ipif; 9414 ipif_refhold(src_ipif); 9415 } 9416 9417 /* 9418 * Assign a source address while we have the conn. 9419 * We can't have ip_wput_ire pick a source address when the 9420 * packet returns from arp since conn_unspec_src might be set 9421 * and we loose the conn when going through arp. 9422 */ 9423 if (ipha->ipha_src == INADDR_ANY && 9424 (connp == NULL || !connp->conn_unspec_src)) { 9425 ipha->ipha_src = src_ipif->ipif_src_addr; 9426 } 9427 9428 /* 9429 * In case of IP_XMIT_IF, it is possible that the outgoing 9430 * interface does not have an interface ire. 9431 * Example: Thousands of mobileip PPP interfaces to mobile 9432 * nodes. We don't want to create interface ires because 9433 * packets from other mobile nodes must not take the route 9434 * via interface ires to the visiting mobile node without 9435 * going through the home agent, in absence of mobileip 9436 * route optimization. 9437 */ 9438 if (CLASSD(ipha_dst) && (connp == NULL || 9439 connp->conn_xmit_if_ill == NULL) && 9440 infop->ip_opt_ill_index == 0) { 9441 /* ipif_to_ire returns an held ire */ 9442 ire = ipif_to_ire(ipif); 9443 if (ire == NULL) 9444 goto err_ret; 9445 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 9446 goto err_ret; 9447 /* 9448 * ihandle is needed when the ire is added to 9449 * cache table. 9450 */ 9451 save_ire = ire; 9452 ihandle = save_ire->ire_ihandle; 9453 9454 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 9455 "flags %04x\n", 9456 (void *)ire, (void *)ipif, flags)); 9457 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9458 (fire->ire_flags & RTF_MULTIRT)) { 9459 /* 9460 * As requested by flags, an IRE_OFFSUBNET was 9461 * looked up on that interface. This ire has 9462 * RTF_MULTIRT flag, so the resolution loop will 9463 * be re-entered to resolve additional routes on 9464 * other interfaces. For that purpose, a copy of 9465 * the packet is performed at this point. 9466 */ 9467 fire->ire_last_used_time = lbolt; 9468 copy_mp = copymsg(first_mp); 9469 if (copy_mp) { 9470 MULTIRT_DEBUG_TAG(copy_mp); 9471 } 9472 } 9473 if ((flags & RTF_SETSRC) && (fire != NULL) && 9474 (fire->ire_flags & RTF_SETSRC)) { 9475 /* 9476 * As requested by flags, an IRE_OFFSUBET was 9477 * looked up on that interface. This ire has 9478 * RTF_SETSRC flag, so the source address of the 9479 * packet must be changed. 9480 */ 9481 ipha->ipha_src = fire->ire_src_addr; 9482 } 9483 } else { 9484 ASSERT((connp == NULL) || 9485 (connp->conn_xmit_if_ill != NULL) || 9486 (connp->conn_dontroute) || 9487 infop->ip_opt_ill_index != 0); 9488 /* 9489 * The only ways we can come here are: 9490 * 1) IP_XMIT_IF socket option is set 9491 * 2) ICMP error message generated from 9492 * ip_mrtun_forward() routine and it needs 9493 * to go through the specified ill. 9494 * 3) SO_DONTROUTE socket option is set 9495 * 4) IP_PKTINFO option is passed in as ancillary data. 9496 * In all cases, the new ire will not be added 9497 * into cache table. 9498 */ 9499 ire_marks |= IRE_MARK_NOADD; 9500 } 9501 9502 switch (ipif->ipif_net_type) { 9503 case IRE_IF_NORESOLVER: { 9504 /* We have what we need to build an IRE_CACHE. */ 9505 mblk_t *res_mp; 9506 9507 /* 9508 * Create a new res_mp with the 9509 * IP gateway address as destination address in the 9510 * DLPI hdr if the physical length is exactly 4 bytes. 9511 */ 9512 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) { 9513 res_mp = ill_dlur_gen((uchar_t *)&dst, 9514 dst_ill->ill_phys_addr_length, 9515 dst_ill->ill_sap, 9516 dst_ill->ill_sap_length); 9517 } else if (dst_ill->ill_resolver_mp == NULL) { 9518 ip1dbg(("ip_newroute: dst_ill %p " 9519 "for IF_NORESOLV ire %p has " 9520 "no ill_resolver_mp\n", 9521 (void *)dst_ill, (void *)ire)); 9522 break; 9523 } else { 9524 /* use the value set in ip_ll_subnet_defaults */ 9525 res_mp = ill_dlur_gen(NULL, 9526 dst_ill->ill_phys_addr_length, 9527 dst_ill->ill_sap, 9528 dst_ill->ill_sap_length); 9529 } 9530 9531 if (res_mp == NULL) 9532 break; 9533 /* 9534 * The new ire inherits the IRE_OFFSUBNET flags 9535 * and source address, if this was requested. 9536 */ 9537 ire = ire_create( 9538 (uchar_t *)&dst, /* dest address */ 9539 (uchar_t *)&ip_g_all_ones, /* mask */ 9540 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9541 NULL, /* gateway address */ 9542 NULL, 9543 &ipif->ipif_mtu, 9544 NULL, /* Fast Path header */ 9545 dst_ill->ill_rq, /* recv-from queue */ 9546 dst_ill->ill_wq, /* send-to queue */ 9547 IRE_CACHE, 9548 res_mp, 9549 src_ipif, 9550 NULL, 9551 (save_ire != NULL ? save_ire->ire_mask : 0), 9552 (fire != NULL) ? /* Parent handle */ 9553 fire->ire_phandle : 0, 9554 ihandle, /* Interface handle */ 9555 (fire != NULL) ? 9556 (fire->ire_flags & 9557 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9558 (save_ire == NULL ? &ire_uinfo_null : 9559 &save_ire->ire_uinfo), 9560 NULL, 9561 NULL, 9562 ipst); 9563 9564 freeb(res_mp); 9565 9566 if (ire == NULL) { 9567 if (save_ire != NULL) 9568 ire_refrele(save_ire); 9569 break; 9570 } 9571 9572 ire->ire_marks |= ire_marks; 9573 9574 /* 9575 * If IRE_MARK_NOADD is set then we need to convert 9576 * the max_fragp to a useable value now. This is 9577 * normally done in ire_add_v[46]. We also need to 9578 * associate the ire with an nce (normally would be 9579 * done in ip_wput_nondata()). 9580 * 9581 * Note that IRE_MARK_NOADD packets created here 9582 * do not have a non-null ire_mp pointer. The null 9583 * value of ire_bucket indicates that they were 9584 * never added. 9585 */ 9586 if (ire->ire_marks & IRE_MARK_NOADD) { 9587 uint_t max_frag; 9588 9589 max_frag = *ire->ire_max_fragp; 9590 ire->ire_max_fragp = NULL; 9591 ire->ire_max_frag = max_frag; 9592 9593 if ((ire->ire_nce = ndp_lookup_v4( 9594 ire_to_ill(ire), 9595 (ire->ire_gateway_addr != INADDR_ANY ? 9596 &ire->ire_gateway_addr : &ire->ire_addr), 9597 B_FALSE)) == NULL) { 9598 if (save_ire != NULL) 9599 ire_refrele(save_ire); 9600 break; 9601 } 9602 ASSERT(ire->ire_nce->nce_state == 9603 ND_REACHABLE); 9604 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 9605 } 9606 9607 /* Prevent save_ire from getting deleted */ 9608 if (save_ire != NULL) { 9609 IRB_REFHOLD(save_ire->ire_bucket); 9610 /* Has it been removed already ? */ 9611 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 9612 IRB_REFRELE(save_ire->ire_bucket); 9613 ire_refrele(save_ire); 9614 break; 9615 } 9616 } 9617 9618 ire_add_then_send(q, ire, first_mp); 9619 9620 /* Assert that save_ire is not deleted yet. */ 9621 if (save_ire != NULL) { 9622 ASSERT(save_ire->ire_ptpn != NULL); 9623 IRB_REFRELE(save_ire->ire_bucket); 9624 ire_refrele(save_ire); 9625 save_ire = NULL; 9626 } 9627 if (fire != NULL) { 9628 ire_refrele(fire); 9629 fire = NULL; 9630 } 9631 9632 /* 9633 * the resolution loop is re-entered if this 9634 * was requested through flags and if we 9635 * actually are in a multirouting case. 9636 */ 9637 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9638 boolean_t need_resolve = 9639 ire_multirt_need_resolve(ipha_dst, 9640 MBLK_GETLABEL(copy_mp), ipst); 9641 if (!need_resolve) { 9642 MULTIRT_DEBUG_UNTAG(copy_mp); 9643 freemsg(copy_mp); 9644 copy_mp = NULL; 9645 } else { 9646 /* 9647 * ipif_lookup_group() calls 9648 * ire_lookup_multi() that uses 9649 * ire_ftable_lookup() to find 9650 * an IRE_INTERFACE for the group. 9651 * In the multirt case, 9652 * ire_lookup_multi() then invokes 9653 * ire_multirt_lookup() to find 9654 * the next resolvable ire. 9655 * As a result, we obtain an new 9656 * interface, derived from the 9657 * next ire. 9658 */ 9659 ipif_refrele(ipif); 9660 ipif = ipif_lookup_group(ipha_dst, 9661 zoneid, ipst); 9662 ip2dbg(("ip_newroute_ipif: " 9663 "multirt dst %08x, ipif %p\n", 9664 htonl(dst), (void *)ipif)); 9665 if (ipif != NULL) { 9666 mp = copy_mp; 9667 copy_mp = NULL; 9668 multirt_resolve_next = B_TRUE; 9669 continue; 9670 } else { 9671 freemsg(copy_mp); 9672 } 9673 } 9674 } 9675 if (ipif != NULL) 9676 ipif_refrele(ipif); 9677 ill_refrele(dst_ill); 9678 ipif_refrele(src_ipif); 9679 return; 9680 } 9681 case IRE_IF_RESOLVER: 9682 /* 9683 * We can't build an IRE_CACHE yet, but at least 9684 * we found a resolver that can help. 9685 */ 9686 res_mp = dst_ill->ill_resolver_mp; 9687 if (!OK_RESOLVER_MP(res_mp)) 9688 break; 9689 9690 /* 9691 * We obtain a partial IRE_CACHE which we will pass 9692 * along with the resolver query. When the response 9693 * comes back it will be there ready for us to add. 9694 * The new ire inherits the IRE_OFFSUBNET flags 9695 * and source address, if this was requested. 9696 * The ire_max_frag is atomically set under the 9697 * irebucket lock in ire_add_v[46]. Only in the 9698 * case of IRE_MARK_NOADD, we set it here itself. 9699 */ 9700 ire = ire_create_mp( 9701 (uchar_t *)&dst, /* dest address */ 9702 (uchar_t *)&ip_g_all_ones, /* mask */ 9703 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9704 NULL, /* gateway address */ 9705 NULL, /* no in_src_addr */ 9706 (ire_marks & IRE_MARK_NOADD) ? 9707 ipif->ipif_mtu : 0, /* max_frag */ 9708 NULL, /* Fast path header */ 9709 dst_ill->ill_rq, /* recv-from queue */ 9710 dst_ill->ill_wq, /* send-to queue */ 9711 IRE_CACHE, 9712 NULL, /* let ire_nce_init figure res_mp out */ 9713 src_ipif, 9714 NULL, 9715 (save_ire != NULL ? save_ire->ire_mask : 0), 9716 (fire != NULL) ? /* Parent handle */ 9717 fire->ire_phandle : 0, 9718 ihandle, /* Interface handle */ 9719 (fire != NULL) ? /* flags if any */ 9720 (fire->ire_flags & 9721 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9722 (save_ire == NULL ? &ire_uinfo_null : 9723 &save_ire->ire_uinfo), 9724 NULL, 9725 NULL, 9726 ipst); 9727 9728 if (save_ire != NULL) { 9729 ire_refrele(save_ire); 9730 save_ire = NULL; 9731 } 9732 if (ire == NULL) 9733 break; 9734 9735 ire->ire_marks |= ire_marks; 9736 /* 9737 * Construct message chain for the resolver of the 9738 * form: 9739 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 9740 * 9741 * NOTE : ire will be added later when the response 9742 * comes back from ARP. If the response does not 9743 * come back, ARP frees the packet. For this reason, 9744 * we can't REFHOLD the bucket of save_ire to prevent 9745 * deletions. We may not be able to REFRELE the 9746 * bucket if the response never comes back. 9747 * Thus, before adding the ire, ire_add_v4 will make 9748 * sure that the interface route does not get deleted. 9749 * This is the only case unlike ip_newroute_v6, 9750 * ip_newroute_ipif_v6 where we can always prevent 9751 * deletions because ire_add_then_send is called after 9752 * creating the IRE. 9753 * If IRE_MARK_NOADD is set, then ire_add_then_send 9754 * does not add this IRE into the IRE CACHE. 9755 */ 9756 ASSERT(ire->ire_mp != NULL); 9757 ire->ire_mp->b_cont = first_mp; 9758 /* Have saved_mp handy, for cleanup if canput fails */ 9759 saved_mp = mp; 9760 mp = copyb(res_mp); 9761 if (mp == NULL) { 9762 /* Prepare for cleanup */ 9763 mp = saved_mp; /* pkt */ 9764 ire_delete(ire); /* ire_mp */ 9765 ire = NULL; 9766 if (copy_mp != NULL) { 9767 MULTIRT_DEBUG_UNTAG(copy_mp); 9768 freemsg(copy_mp); 9769 copy_mp = NULL; 9770 } 9771 break; 9772 } 9773 linkb(mp, ire->ire_mp); 9774 9775 /* 9776 * Fill in the source and dest addrs for the resolver. 9777 * NOTE: this depends on memory layouts imposed by 9778 * ill_init(). 9779 */ 9780 areq = (areq_t *)mp->b_rptr; 9781 addrp = (ipaddr_t *)((char *)areq + 9782 areq->areq_sender_addr_offset); 9783 *addrp = ire->ire_src_addr; 9784 addrp = (ipaddr_t *)((char *)areq + 9785 areq->areq_target_addr_offset); 9786 *addrp = dst; 9787 /* Up to the resolver. */ 9788 if (canputnext(dst_ill->ill_rq) && 9789 !(dst_ill->ill_arp_closing)) { 9790 putnext(dst_ill->ill_rq, mp); 9791 /* 9792 * The response will come back in ip_wput 9793 * with db_type IRE_DB_TYPE. 9794 */ 9795 } else { 9796 mp->b_cont = NULL; 9797 freeb(mp); /* areq */ 9798 ire_delete(ire); /* ire_mp */ 9799 saved_mp->b_next = NULL; 9800 saved_mp->b_prev = NULL; 9801 freemsg(first_mp); /* pkt */ 9802 ip2dbg(("ip_newroute_ipif: dropped\n")); 9803 } 9804 9805 if (fire != NULL) { 9806 ire_refrele(fire); 9807 fire = NULL; 9808 } 9809 9810 9811 /* 9812 * The resolution loop is re-entered if this was 9813 * requested through flags and we actually are 9814 * in a multirouting case. 9815 */ 9816 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9817 boolean_t need_resolve = 9818 ire_multirt_need_resolve(ipha_dst, 9819 MBLK_GETLABEL(copy_mp), ipst); 9820 if (!need_resolve) { 9821 MULTIRT_DEBUG_UNTAG(copy_mp); 9822 freemsg(copy_mp); 9823 copy_mp = NULL; 9824 } else { 9825 /* 9826 * ipif_lookup_group() calls 9827 * ire_lookup_multi() that uses 9828 * ire_ftable_lookup() to find 9829 * an IRE_INTERFACE for the group. 9830 * In the multirt case, 9831 * ire_lookup_multi() then invokes 9832 * ire_multirt_lookup() to find 9833 * the next resolvable ire. 9834 * As a result, we obtain an new 9835 * interface, derived from the 9836 * next ire. 9837 */ 9838 ipif_refrele(ipif); 9839 ipif = ipif_lookup_group(ipha_dst, 9840 zoneid, ipst); 9841 if (ipif != NULL) { 9842 mp = copy_mp; 9843 copy_mp = NULL; 9844 multirt_resolve_next = B_TRUE; 9845 continue; 9846 } else { 9847 freemsg(copy_mp); 9848 } 9849 } 9850 } 9851 if (ipif != NULL) 9852 ipif_refrele(ipif); 9853 ill_refrele(dst_ill); 9854 ipif_refrele(src_ipif); 9855 return; 9856 default: 9857 break; 9858 } 9859 } while (multirt_resolve_next); 9860 9861 err_ret: 9862 ip2dbg(("ip_newroute_ipif: dropped\n")); 9863 if (fire != NULL) 9864 ire_refrele(fire); 9865 ipif_refrele(ipif); 9866 /* Did this packet originate externally? */ 9867 if (dst_ill != NULL) 9868 ill_refrele(dst_ill); 9869 if (src_ipif != NULL) 9870 ipif_refrele(src_ipif); 9871 if (mp->b_prev || mp->b_next) { 9872 mp->b_next = NULL; 9873 mp->b_prev = NULL; 9874 } else { 9875 /* 9876 * Since ip_wput() isn't close to finished, we fill 9877 * in enough of the header for credible error reporting. 9878 */ 9879 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 9880 /* Failed */ 9881 freemsg(first_mp); 9882 if (ire != NULL) 9883 ire_refrele(ire); 9884 return; 9885 } 9886 } 9887 /* 9888 * At this point we will have ire only if RTF_BLACKHOLE 9889 * or RTF_REJECT flags are set on the IRE. It will not 9890 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9891 */ 9892 if (ire != NULL) { 9893 if (ire->ire_flags & RTF_BLACKHOLE) { 9894 ire_refrele(ire); 9895 freemsg(first_mp); 9896 return; 9897 } 9898 ire_refrele(ire); 9899 } 9900 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9901 } 9902 9903 /* Name/Value Table Lookup Routine */ 9904 char * 9905 ip_nv_lookup(nv_t *nv, int value) 9906 { 9907 if (!nv) 9908 return (NULL); 9909 for (; nv->nv_name; nv++) { 9910 if (nv->nv_value == value) 9911 return (nv->nv_name); 9912 } 9913 return ("unknown"); 9914 } 9915 9916 /* 9917 * This is a module open, i.e. this is a control stream for access 9918 * to a DLPI device. We allocate an ill_t as the instance data in 9919 * this case. 9920 */ 9921 int 9922 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9923 { 9924 ill_t *ill; 9925 int err; 9926 zoneid_t zoneid; 9927 netstack_t *ns; 9928 ip_stack_t *ipst; 9929 9930 /* 9931 * Prevent unprivileged processes from pushing IP so that 9932 * they can't send raw IP. 9933 */ 9934 if (secpolicy_net_rawaccess(credp) != 0) 9935 return (EPERM); 9936 9937 ns = netstack_find_by_cred(credp); 9938 ASSERT(ns != NULL); 9939 ipst = ns->netstack_ip; 9940 ASSERT(ipst != NULL); 9941 9942 /* 9943 * For exclusive stacks we set the zoneid to zero 9944 * to make IP operate as if in the global zone. 9945 */ 9946 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9947 zoneid = GLOBAL_ZONEID; 9948 else 9949 zoneid = crgetzoneid(credp); 9950 9951 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9952 q->q_ptr = WR(q)->q_ptr = ill; 9953 ill->ill_ipst = ipst; 9954 ill->ill_zoneid = zoneid; 9955 9956 /* 9957 * ill_init initializes the ill fields and then sends down 9958 * down a DL_INFO_REQ after calling qprocson. 9959 */ 9960 err = ill_init(q, ill); 9961 if (err != 0) { 9962 mi_free(ill); 9963 netstack_rele(ipst->ips_netstack); 9964 q->q_ptr = NULL; 9965 WR(q)->q_ptr = NULL; 9966 return (err); 9967 } 9968 9969 /* ill_init initializes the ipsq marking this thread as writer */ 9970 ipsq_exit(ill->ill_phyint->phyint_ipsq, B_TRUE, B_TRUE); 9971 /* Wait for the DL_INFO_ACK */ 9972 mutex_enter(&ill->ill_lock); 9973 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9974 /* 9975 * Return value of 0 indicates a pending signal. 9976 */ 9977 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9978 if (err == 0) { 9979 mutex_exit(&ill->ill_lock); 9980 (void) ip_close(q, 0); 9981 return (EINTR); 9982 } 9983 } 9984 mutex_exit(&ill->ill_lock); 9985 9986 /* 9987 * ip_rput_other could have set an error in ill_error on 9988 * receipt of M_ERROR. 9989 */ 9990 9991 err = ill->ill_error; 9992 if (err != 0) { 9993 (void) ip_close(q, 0); 9994 return (err); 9995 } 9996 9997 ill->ill_credp = credp; 9998 crhold(credp); 9999 10000 mutex_enter(&ipst->ips_ip_mi_lock); 10001 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)ill, devp, flag, sflag, 10002 credp); 10003 mutex_exit(&ipst->ips_ip_mi_lock); 10004 if (err) { 10005 (void) ip_close(q, 0); 10006 return (err); 10007 } 10008 return (0); 10009 } 10010 10011 /* IP open routine. */ 10012 int 10013 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 10014 { 10015 conn_t *connp; 10016 major_t maj; 10017 zoneid_t zoneid; 10018 netstack_t *ns; 10019 ip_stack_t *ipst; 10020 10021 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 10022 10023 /* Allow reopen. */ 10024 if (q->q_ptr != NULL) 10025 return (0); 10026 10027 if (sflag & MODOPEN) { 10028 /* This is a module open */ 10029 return (ip_modopen(q, devp, flag, sflag, credp)); 10030 } 10031 10032 ns = netstack_find_by_cred(credp); 10033 ASSERT(ns != NULL); 10034 ipst = ns->netstack_ip; 10035 ASSERT(ipst != NULL); 10036 10037 /* 10038 * For exclusive stacks we set the zoneid to zero 10039 * to make IP operate as if in the global zone. 10040 */ 10041 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 10042 zoneid = GLOBAL_ZONEID; 10043 else 10044 zoneid = crgetzoneid(credp); 10045 10046 /* 10047 * We are opening as a device. This is an IP client stream, and we 10048 * allocate an conn_t as the instance data. 10049 */ 10050 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 10051 10052 /* 10053 * ipcl_conn_create did a netstack_hold. Undo the hold that was 10054 * done by netstack_find_by_cred() 10055 */ 10056 netstack_rele(ipst->ips_netstack); 10057 10058 connp->conn_zoneid = zoneid; 10059 10060 connp->conn_upq = q; 10061 q->q_ptr = WR(q)->q_ptr = connp; 10062 10063 if (flag & SO_SOCKSTR) 10064 connp->conn_flags |= IPCL_SOCKET; 10065 10066 /* Minor tells us which /dev entry was opened */ 10067 if (geteminor(*devp) == IPV6_MINOR) { 10068 connp->conn_flags |= IPCL_ISV6; 10069 connp->conn_af_isv6 = B_TRUE; 10070 ip_setqinfo(q, geteminor(*devp), B_FALSE, ipst); 10071 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 10072 } else { 10073 connp->conn_af_isv6 = B_FALSE; 10074 connp->conn_pkt_isv6 = B_FALSE; 10075 } 10076 10077 if ((connp->conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) { 10078 /* CONN_DEC_REF takes care of netstack_rele() */ 10079 q->q_ptr = WR(q)->q_ptr = NULL; 10080 CONN_DEC_REF(connp); 10081 return (EBUSY); 10082 } 10083 10084 maj = getemajor(*devp); 10085 *devp = makedevice(maj, (minor_t)connp->conn_dev); 10086 10087 /* 10088 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 10089 */ 10090 connp->conn_cred = credp; 10091 crhold(connp->conn_cred); 10092 10093 /* 10094 * If the caller has the process-wide flag set, then default to MAC 10095 * exempt mode. This allows read-down to unlabeled hosts. 10096 */ 10097 if (getpflags(NET_MAC_AWARE, credp) != 0) 10098 connp->conn_mac_exempt = B_TRUE; 10099 10100 /* 10101 * This should only happen for ndd, netstat, raw socket or other SCTP 10102 * administrative ops. In these cases, we just need a normal conn_t 10103 * with ulp set to IPPROTO_SCTP. All other ops are trapped and 10104 * an error will be returned. 10105 */ 10106 if (maj != SCTP_MAJ && maj != SCTP6_MAJ) { 10107 connp->conn_rq = q; 10108 connp->conn_wq = WR(q); 10109 } else { 10110 connp->conn_ulp = IPPROTO_SCTP; 10111 connp->conn_rq = connp->conn_wq = NULL; 10112 } 10113 /* Non-zero default values */ 10114 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 10115 10116 /* 10117 * Make the conn globally visible to walkers 10118 */ 10119 mutex_enter(&connp->conn_lock); 10120 connp->conn_state_flags &= ~CONN_INCIPIENT; 10121 mutex_exit(&connp->conn_lock); 10122 ASSERT(connp->conn_ref == 1); 10123 10124 qprocson(q); 10125 10126 return (0); 10127 } 10128 10129 /* 10130 * Change q_qinfo based on the value of isv6. 10131 * This can not called on an ill queue. 10132 * Note that there is no race since either q_qinfo works for conn queues - it 10133 * is just an optimization to enter the best wput routine directly. 10134 */ 10135 void 10136 ip_setqinfo(queue_t *q, minor_t minor, boolean_t bump_mib, ip_stack_t *ipst) 10137 { 10138 ASSERT(q->q_flag & QREADR); 10139 ASSERT(WR(q)->q_next == NULL); 10140 ASSERT(q->q_ptr != NULL); 10141 10142 if (minor == IPV6_MINOR) { 10143 if (bump_mib) { 10144 BUMP_MIB(&ipst->ips_ip6_mib, 10145 ipIfStatsOutSwitchIPVersion); 10146 } 10147 q->q_qinfo = &rinit_ipv6; 10148 WR(q)->q_qinfo = &winit_ipv6; 10149 (Q_TO_CONN(q))->conn_pkt_isv6 = B_TRUE; 10150 } else { 10151 if (bump_mib) { 10152 BUMP_MIB(&ipst->ips_ip_mib, 10153 ipIfStatsOutSwitchIPVersion); 10154 } 10155 q->q_qinfo = &iprinit; 10156 WR(q)->q_qinfo = &ipwinit; 10157 (Q_TO_CONN(q))->conn_pkt_isv6 = B_FALSE; 10158 } 10159 10160 } 10161 10162 /* 10163 * See if IPsec needs loading because of the options in mp. 10164 */ 10165 static boolean_t 10166 ipsec_opt_present(mblk_t *mp) 10167 { 10168 uint8_t *optcp, *next_optcp, *opt_endcp; 10169 struct opthdr *opt; 10170 struct T_opthdr *topt; 10171 int opthdr_len; 10172 t_uscalar_t optname, optlevel; 10173 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 10174 ipsec_req_t *ipsr; 10175 10176 /* 10177 * Walk through the mess, and find IP_SEC_OPT. If it's there, 10178 * return TRUE. 10179 */ 10180 10181 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 10182 opt_endcp = optcp + tor->OPT_length; 10183 if (tor->PRIM_type == T_OPTMGMT_REQ) { 10184 opthdr_len = sizeof (struct T_opthdr); 10185 } else { /* O_OPTMGMT_REQ */ 10186 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 10187 opthdr_len = sizeof (struct opthdr); 10188 } 10189 for (; optcp < opt_endcp; optcp = next_optcp) { 10190 if (optcp + opthdr_len > opt_endcp) 10191 return (B_FALSE); /* Not enough option header. */ 10192 if (tor->PRIM_type == T_OPTMGMT_REQ) { 10193 topt = (struct T_opthdr *)optcp; 10194 optlevel = topt->level; 10195 optname = topt->name; 10196 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 10197 } else { 10198 opt = (struct opthdr *)optcp; 10199 optlevel = opt->level; 10200 optname = opt->name; 10201 next_optcp = optcp + opthdr_len + 10202 _TPI_ALIGN_OPT(opt->len); 10203 } 10204 if ((next_optcp < optcp) || /* wraparound pointer space */ 10205 ((next_optcp >= opt_endcp) && /* last option bad len */ 10206 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 10207 return (B_FALSE); /* bad option buffer */ 10208 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 10209 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 10210 /* 10211 * Check to see if it's an all-bypass or all-zeroes 10212 * IPsec request. Don't bother loading IPsec if 10213 * the socket doesn't want to use it. (A good example 10214 * is a bypass request.) 10215 * 10216 * Basically, if any of the non-NEVER bits are set, 10217 * load IPsec. 10218 */ 10219 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 10220 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 10221 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 10222 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 10223 != 0) 10224 return (B_TRUE); 10225 } 10226 } 10227 return (B_FALSE); 10228 } 10229 10230 /* 10231 * If conn is is waiting for ipsec to finish loading, kick it. 10232 */ 10233 /* ARGSUSED */ 10234 static void 10235 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 10236 { 10237 t_scalar_t optreq_prim; 10238 mblk_t *mp; 10239 cred_t *cr; 10240 int err = 0; 10241 10242 /* 10243 * This function is called, after ipsec loading is complete. 10244 * Since IP checks exclusively and atomically (i.e it prevents 10245 * ipsec load from completing until ip_optcom_req completes) 10246 * whether ipsec load is complete, there cannot be a race with IP 10247 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 10248 */ 10249 mutex_enter(&connp->conn_lock); 10250 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 10251 ASSERT(connp->conn_ipsec_opt_mp != NULL); 10252 mp = connp->conn_ipsec_opt_mp; 10253 connp->conn_ipsec_opt_mp = NULL; 10254 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 10255 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(CONNP_TO_WQ(connp))); 10256 mutex_exit(&connp->conn_lock); 10257 10258 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 10259 10260 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 10261 if (optreq_prim == T_OPTMGMT_REQ) { 10262 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10263 &ip_opt_obj); 10264 } else { 10265 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 10266 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10267 &ip_opt_obj); 10268 } 10269 if (err != EINPROGRESS) 10270 CONN_OPER_PENDING_DONE(connp); 10271 return; 10272 } 10273 mutex_exit(&connp->conn_lock); 10274 } 10275 10276 /* 10277 * Called from the ipsec_loader thread, outside any perimeter, to tell 10278 * ip qenable any of the queues waiting for the ipsec loader to 10279 * complete. 10280 */ 10281 void 10282 ip_ipsec_load_complete(ipsec_stack_t *ipss) 10283 { 10284 netstack_t *ns = ipss->ipsec_netstack; 10285 10286 ipcl_walk(conn_restart_ipsec_waiter, NULL, ns->netstack_ip); 10287 } 10288 10289 /* 10290 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 10291 * determines the grp on which it has to become exclusive, queues the mp 10292 * and sq draining restarts the optmgmt 10293 */ 10294 static boolean_t 10295 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 10296 { 10297 conn_t *connp = Q_TO_CONN(q); 10298 ipsec_stack_t *ipss = connp->conn_netstack->netstack_ipsec; 10299 10300 /* 10301 * Take IPsec requests and treat them special. 10302 */ 10303 if (ipsec_opt_present(mp)) { 10304 /* First check if IPsec is loaded. */ 10305 mutex_enter(&ipss->ipsec_loader_lock); 10306 if (ipss->ipsec_loader_state != IPSEC_LOADER_WAIT) { 10307 mutex_exit(&ipss->ipsec_loader_lock); 10308 return (B_FALSE); 10309 } 10310 mutex_enter(&connp->conn_lock); 10311 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 10312 10313 ASSERT(connp->conn_ipsec_opt_mp == NULL); 10314 connp->conn_ipsec_opt_mp = mp; 10315 mutex_exit(&connp->conn_lock); 10316 mutex_exit(&ipss->ipsec_loader_lock); 10317 10318 ipsec_loader_loadnow(ipss); 10319 return (B_TRUE); 10320 } 10321 return (B_FALSE); 10322 } 10323 10324 /* 10325 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 10326 * all of them are copied to the conn_t. If the req is "zero", the policy is 10327 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 10328 * fields. 10329 * We keep only the latest setting of the policy and thus policy setting 10330 * is not incremental/cumulative. 10331 * 10332 * Requests to set policies with multiple alternative actions will 10333 * go through a different API. 10334 */ 10335 int 10336 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 10337 { 10338 uint_t ah_req = 0; 10339 uint_t esp_req = 0; 10340 uint_t se_req = 0; 10341 ipsec_selkey_t sel; 10342 ipsec_act_t *actp = NULL; 10343 uint_t nact; 10344 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 10345 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 10346 ipsec_policy_root_t *pr; 10347 ipsec_policy_head_t *ph; 10348 int fam; 10349 boolean_t is_pol_reset; 10350 int error = 0; 10351 netstack_t *ns = connp->conn_netstack; 10352 ip_stack_t *ipst = ns->netstack_ip; 10353 ipsec_stack_t *ipss = ns->netstack_ipsec; 10354 10355 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 10356 10357 /* 10358 * The IP_SEC_OPT option does not allow variable length parameters, 10359 * hence a request cannot be NULL. 10360 */ 10361 if (req == NULL) 10362 return (EINVAL); 10363 10364 ah_req = req->ipsr_ah_req; 10365 esp_req = req->ipsr_esp_req; 10366 se_req = req->ipsr_self_encap_req; 10367 10368 /* 10369 * Are we dealing with a request to reset the policy (i.e. 10370 * zero requests). 10371 */ 10372 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 10373 (esp_req & REQ_MASK) == 0 && 10374 (se_req & REQ_MASK) == 0); 10375 10376 if (!is_pol_reset) { 10377 /* 10378 * If we couldn't load IPsec, fail with "protocol 10379 * not supported". 10380 * IPsec may not have been loaded for a request with zero 10381 * policies, so we don't fail in this case. 10382 */ 10383 mutex_enter(&ipss->ipsec_loader_lock); 10384 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 10385 mutex_exit(&ipss->ipsec_loader_lock); 10386 return (EPROTONOSUPPORT); 10387 } 10388 mutex_exit(&ipss->ipsec_loader_lock); 10389 10390 /* 10391 * Test for valid requests. Invalid algorithms 10392 * need to be tested by IPSEC code because new 10393 * algorithms can be added dynamically. 10394 */ 10395 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10396 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10397 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 10398 return (EINVAL); 10399 } 10400 10401 /* 10402 * Only privileged users can issue these 10403 * requests. 10404 */ 10405 if (((ah_req & IPSEC_PREF_NEVER) || 10406 (esp_req & IPSEC_PREF_NEVER) || 10407 (se_req & IPSEC_PREF_NEVER)) && 10408 secpolicy_ip_config(cr, B_FALSE) != 0) { 10409 return (EPERM); 10410 } 10411 10412 /* 10413 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 10414 * are mutually exclusive. 10415 */ 10416 if (((ah_req & REQ_MASK) == REQ_MASK) || 10417 ((esp_req & REQ_MASK) == REQ_MASK) || 10418 ((se_req & REQ_MASK) == REQ_MASK)) { 10419 /* Both of them are set */ 10420 return (EINVAL); 10421 } 10422 } 10423 10424 mutex_enter(&connp->conn_lock); 10425 10426 /* 10427 * If we have already cached policies in ip_bind_connected*(), don't 10428 * let them change now. We cache policies for connections 10429 * whose src,dst [addr, port] is known. 10430 */ 10431 if (connp->conn_policy_cached) { 10432 mutex_exit(&connp->conn_lock); 10433 return (EINVAL); 10434 } 10435 10436 /* 10437 * We have a zero policies, reset the connection policy if already 10438 * set. This will cause the connection to inherit the 10439 * global policy, if any. 10440 */ 10441 if (is_pol_reset) { 10442 if (connp->conn_policy != NULL) { 10443 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 10444 connp->conn_policy = NULL; 10445 } 10446 connp->conn_flags &= ~IPCL_CHECK_POLICY; 10447 connp->conn_in_enforce_policy = B_FALSE; 10448 connp->conn_out_enforce_policy = B_FALSE; 10449 mutex_exit(&connp->conn_lock); 10450 return (0); 10451 } 10452 10453 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 10454 ipst->ips_netstack); 10455 if (ph == NULL) 10456 goto enomem; 10457 10458 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 10459 if (actp == NULL) 10460 goto enomem; 10461 10462 /* 10463 * Always allocate IPv4 policy entries, since they can also 10464 * apply to ipv6 sockets being used in ipv4-compat mode. 10465 */ 10466 bzero(&sel, sizeof (sel)); 10467 sel.ipsl_valid = IPSL_IPV4; 10468 10469 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10470 ipst->ips_netstack); 10471 if (pin4 == NULL) 10472 goto enomem; 10473 10474 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10475 ipst->ips_netstack); 10476 if (pout4 == NULL) 10477 goto enomem; 10478 10479 if (connp->conn_pkt_isv6) { 10480 /* 10481 * We're looking at a v6 socket, also allocate the 10482 * v6-specific entries... 10483 */ 10484 sel.ipsl_valid = IPSL_IPV6; 10485 pin6 = ipsec_policy_create(&sel, actp, nact, 10486 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10487 if (pin6 == NULL) 10488 goto enomem; 10489 10490 pout6 = ipsec_policy_create(&sel, actp, nact, 10491 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10492 if (pout6 == NULL) 10493 goto enomem; 10494 10495 /* 10496 * .. and file them away in the right place. 10497 */ 10498 fam = IPSEC_AF_V6; 10499 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10500 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 10501 ipsec_insert_always(&ph->iph_rulebyid, pin6); 10502 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10503 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 10504 ipsec_insert_always(&ph->iph_rulebyid, pout6); 10505 } 10506 10507 ipsec_actvec_free(actp, nact); 10508 10509 /* 10510 * File the v4 policies. 10511 */ 10512 fam = IPSEC_AF_V4; 10513 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10514 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 10515 ipsec_insert_always(&ph->iph_rulebyid, pin4); 10516 10517 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10518 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 10519 ipsec_insert_always(&ph->iph_rulebyid, pout4); 10520 10521 /* 10522 * If the requests need security, set enforce_policy. 10523 * If the requests are IPSEC_PREF_NEVER, one should 10524 * still set conn_out_enforce_policy so that an ipsec_out 10525 * gets attached in ip_wput. This is needed so that 10526 * for connections that we don't cache policy in ip_bind, 10527 * if global policy matches in ip_wput_attach_policy, we 10528 * don't wrongly inherit global policy. Similarly, we need 10529 * to set conn_in_enforce_policy also so that we don't verify 10530 * policy wrongly. 10531 */ 10532 if ((ah_req & REQ_MASK) != 0 || 10533 (esp_req & REQ_MASK) != 0 || 10534 (se_req & REQ_MASK) != 0) { 10535 connp->conn_in_enforce_policy = B_TRUE; 10536 connp->conn_out_enforce_policy = B_TRUE; 10537 connp->conn_flags |= IPCL_CHECK_POLICY; 10538 } 10539 10540 mutex_exit(&connp->conn_lock); 10541 return (error); 10542 #undef REQ_MASK 10543 10544 /* 10545 * Common memory-allocation-failure exit path. 10546 */ 10547 enomem: 10548 mutex_exit(&connp->conn_lock); 10549 if (actp != NULL) 10550 ipsec_actvec_free(actp, nact); 10551 if (pin4 != NULL) 10552 IPPOL_REFRELE(pin4, ipst->ips_netstack); 10553 if (pout4 != NULL) 10554 IPPOL_REFRELE(pout4, ipst->ips_netstack); 10555 if (pin6 != NULL) 10556 IPPOL_REFRELE(pin6, ipst->ips_netstack); 10557 if (pout6 != NULL) 10558 IPPOL_REFRELE(pout6, ipst->ips_netstack); 10559 return (ENOMEM); 10560 } 10561 10562 /* 10563 * Only for options that pass in an IP addr. Currently only V4 options 10564 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 10565 * So this function assumes level is IPPROTO_IP 10566 */ 10567 int 10568 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 10569 mblk_t *first_mp) 10570 { 10571 ipif_t *ipif = NULL; 10572 int error; 10573 ill_t *ill; 10574 int zoneid; 10575 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10576 10577 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 10578 10579 if (addr != INADDR_ANY || checkonly) { 10580 ASSERT(connp != NULL); 10581 zoneid = IPCL_ZONEID(connp); 10582 if (option == IP_NEXTHOP) { 10583 ipif = ipif_lookup_onlink_addr(addr, 10584 connp->conn_zoneid, ipst); 10585 } else { 10586 ipif = ipif_lookup_addr(addr, NULL, zoneid, 10587 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 10588 &error, ipst); 10589 } 10590 if (ipif == NULL) { 10591 if (error == EINPROGRESS) 10592 return (error); 10593 else if ((option == IP_MULTICAST_IF) || 10594 (option == IP_NEXTHOP)) 10595 return (EHOSTUNREACH); 10596 else 10597 return (EINVAL); 10598 } else if (checkonly) { 10599 if (option == IP_MULTICAST_IF) { 10600 ill = ipif->ipif_ill; 10601 /* not supported by the virtual network iface */ 10602 if (IS_VNI(ill)) { 10603 ipif_refrele(ipif); 10604 return (EINVAL); 10605 } 10606 } 10607 ipif_refrele(ipif); 10608 return (0); 10609 } 10610 ill = ipif->ipif_ill; 10611 mutex_enter(&connp->conn_lock); 10612 mutex_enter(&ill->ill_lock); 10613 if ((ill->ill_state_flags & ILL_CONDEMNED) || 10614 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 10615 mutex_exit(&ill->ill_lock); 10616 mutex_exit(&connp->conn_lock); 10617 ipif_refrele(ipif); 10618 return (option == IP_MULTICAST_IF ? 10619 EHOSTUNREACH : EINVAL); 10620 } 10621 } else { 10622 mutex_enter(&connp->conn_lock); 10623 } 10624 10625 /* None of the options below are supported on the VNI */ 10626 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 10627 mutex_exit(&ill->ill_lock); 10628 mutex_exit(&connp->conn_lock); 10629 ipif_refrele(ipif); 10630 return (EINVAL); 10631 } 10632 10633 switch (option) { 10634 case IP_DONTFAILOVER_IF: 10635 /* 10636 * This option is used by in.mpathd to ensure 10637 * that IPMP probe packets only go out on the 10638 * test interfaces. in.mpathd sets this option 10639 * on the non-failover interfaces. 10640 * For backward compatibility, this option 10641 * implicitly sets IP_MULTICAST_IF, as used 10642 * be done in bind(), so that ip_wput gets 10643 * this ipif to send mcast packets. 10644 */ 10645 if (ipif != NULL) { 10646 ASSERT(addr != INADDR_ANY); 10647 connp->conn_nofailover_ill = ipif->ipif_ill; 10648 connp->conn_multicast_ipif = ipif; 10649 } else { 10650 ASSERT(addr == INADDR_ANY); 10651 connp->conn_nofailover_ill = NULL; 10652 connp->conn_multicast_ipif = NULL; 10653 } 10654 break; 10655 10656 case IP_MULTICAST_IF: 10657 connp->conn_multicast_ipif = ipif; 10658 break; 10659 case IP_NEXTHOP: 10660 connp->conn_nexthop_v4 = addr; 10661 connp->conn_nexthop_set = B_TRUE; 10662 break; 10663 } 10664 10665 if (ipif != NULL) { 10666 mutex_exit(&ill->ill_lock); 10667 mutex_exit(&connp->conn_lock); 10668 ipif_refrele(ipif); 10669 return (0); 10670 } 10671 mutex_exit(&connp->conn_lock); 10672 /* We succeded in cleared the option */ 10673 return (0); 10674 } 10675 10676 /* 10677 * For options that pass in an ifindex specifying the ill. V6 options always 10678 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 10679 */ 10680 int 10681 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 10682 int level, int option, mblk_t *first_mp) 10683 { 10684 ill_t *ill = NULL; 10685 int error = 0; 10686 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10687 10688 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 10689 if (ifindex != 0) { 10690 ASSERT(connp != NULL); 10691 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 10692 first_mp, ip_restart_optmgmt, &error, ipst); 10693 if (ill != NULL) { 10694 if (checkonly) { 10695 /* not supported by the virtual network iface */ 10696 if (IS_VNI(ill)) { 10697 ill_refrele(ill); 10698 return (EINVAL); 10699 } 10700 ill_refrele(ill); 10701 return (0); 10702 } 10703 if (!ipif_lookup_zoneid_group(ill, connp->conn_zoneid, 10704 0, NULL)) { 10705 ill_refrele(ill); 10706 ill = NULL; 10707 mutex_enter(&connp->conn_lock); 10708 goto setit; 10709 } 10710 mutex_enter(&connp->conn_lock); 10711 mutex_enter(&ill->ill_lock); 10712 if (ill->ill_state_flags & ILL_CONDEMNED) { 10713 mutex_exit(&ill->ill_lock); 10714 mutex_exit(&connp->conn_lock); 10715 ill_refrele(ill); 10716 ill = NULL; 10717 mutex_enter(&connp->conn_lock); 10718 } 10719 goto setit; 10720 } else if (error == EINPROGRESS) { 10721 return (error); 10722 } else { 10723 error = 0; 10724 } 10725 } 10726 mutex_enter(&connp->conn_lock); 10727 setit: 10728 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 10729 10730 /* 10731 * The options below assume that the ILL (if any) transmits and/or 10732 * receives traffic. Neither of which is true for the virtual network 10733 * interface, so fail setting these on a VNI. 10734 */ 10735 if (IS_VNI(ill)) { 10736 ASSERT(ill != NULL); 10737 mutex_exit(&ill->ill_lock); 10738 mutex_exit(&connp->conn_lock); 10739 ill_refrele(ill); 10740 return (EINVAL); 10741 } 10742 10743 if (level == IPPROTO_IP) { 10744 switch (option) { 10745 case IP_BOUND_IF: 10746 connp->conn_incoming_ill = ill; 10747 connp->conn_outgoing_ill = ill; 10748 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10749 0 : ifindex; 10750 break; 10751 10752 case IP_XMIT_IF: 10753 /* 10754 * Similar to IP_BOUND_IF, but this only 10755 * determines the outgoing interface for 10756 * unicast packets. Also no IRE_CACHE entry 10757 * is added for the destination of the 10758 * outgoing packets. This feature is needed 10759 * for mobile IP. 10760 */ 10761 connp->conn_xmit_if_ill = ill; 10762 connp->conn_orig_xmit_ifindex = (ill == NULL) ? 10763 0 : ifindex; 10764 break; 10765 10766 case IP_MULTICAST_IF: 10767 /* 10768 * This option is an internal special. The socket 10769 * level IP_MULTICAST_IF specifies an 'ipaddr' and 10770 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 10771 * specifies an ifindex and we try first on V6 ill's. 10772 * If we don't find one, we they try using on v4 ill's 10773 * intenally and we come here. 10774 */ 10775 if (!checkonly && ill != NULL) { 10776 ipif_t *ipif; 10777 ipif = ill->ill_ipif; 10778 10779 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 10780 mutex_exit(&ill->ill_lock); 10781 mutex_exit(&connp->conn_lock); 10782 ill_refrele(ill); 10783 ill = NULL; 10784 mutex_enter(&connp->conn_lock); 10785 } else { 10786 connp->conn_multicast_ipif = ipif; 10787 } 10788 } 10789 break; 10790 } 10791 } else { 10792 switch (option) { 10793 case IPV6_BOUND_IF: 10794 connp->conn_incoming_ill = ill; 10795 connp->conn_outgoing_ill = ill; 10796 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10797 0 : ifindex; 10798 break; 10799 10800 case IPV6_BOUND_PIF: 10801 /* 10802 * Limit all transmit to this ill. 10803 * Unlike IPV6_BOUND_IF, using this option 10804 * prevents load spreading and failover from 10805 * happening when the interface is part of the 10806 * group. That's why we don't need to remember 10807 * the ifindex in orig_bound_ifindex as in 10808 * IPV6_BOUND_IF. 10809 */ 10810 connp->conn_outgoing_pill = ill; 10811 break; 10812 10813 case IPV6_DONTFAILOVER_IF: 10814 /* 10815 * This option is used by in.mpathd to ensure 10816 * that IPMP probe packets only go out on the 10817 * test interfaces. in.mpathd sets this option 10818 * on the non-failover interfaces. 10819 */ 10820 connp->conn_nofailover_ill = ill; 10821 /* 10822 * For backward compatibility, this option 10823 * implicitly sets ip_multicast_ill as used in 10824 * IP_MULTICAST_IF so that ip_wput gets 10825 * this ipif to send mcast packets. 10826 */ 10827 connp->conn_multicast_ill = ill; 10828 connp->conn_orig_multicast_ifindex = (ill == NULL) ? 10829 0 : ifindex; 10830 break; 10831 10832 case IPV6_MULTICAST_IF: 10833 /* 10834 * Set conn_multicast_ill to be the IPv6 ill. 10835 * Set conn_multicast_ipif to be an IPv4 ipif 10836 * for ifindex to make IPv4 mapped addresses 10837 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 10838 * Even if no IPv6 ill exists for the ifindex 10839 * we need to check for an IPv4 ifindex in order 10840 * for this to work with mapped addresses. In that 10841 * case only set conn_multicast_ipif. 10842 */ 10843 if (!checkonly) { 10844 if (ifindex == 0) { 10845 connp->conn_multicast_ill = NULL; 10846 connp->conn_orig_multicast_ifindex = 0; 10847 connp->conn_multicast_ipif = NULL; 10848 } else if (ill != NULL) { 10849 connp->conn_multicast_ill = ill; 10850 connp->conn_orig_multicast_ifindex = 10851 ifindex; 10852 } 10853 } 10854 break; 10855 } 10856 } 10857 10858 if (ill != NULL) { 10859 mutex_exit(&ill->ill_lock); 10860 mutex_exit(&connp->conn_lock); 10861 ill_refrele(ill); 10862 return (0); 10863 } 10864 mutex_exit(&connp->conn_lock); 10865 /* 10866 * We succeeded in clearing the option (ifindex == 0) or failed to 10867 * locate the ill and could not set the option (ifindex != 0) 10868 */ 10869 return (ifindex == 0 ? 0 : EINVAL); 10870 } 10871 10872 /* This routine sets socket options. */ 10873 /* ARGSUSED */ 10874 int 10875 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10876 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10877 void *dummy, cred_t *cr, mblk_t *first_mp) 10878 { 10879 int *i1 = (int *)invalp; 10880 conn_t *connp = Q_TO_CONN(q); 10881 int error = 0; 10882 boolean_t checkonly; 10883 ire_t *ire; 10884 boolean_t found; 10885 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10886 10887 switch (optset_context) { 10888 10889 case SETFN_OPTCOM_CHECKONLY: 10890 checkonly = B_TRUE; 10891 /* 10892 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10893 * inlen != 0 implies value supplied and 10894 * we have to "pretend" to set it. 10895 * inlen == 0 implies that there is no 10896 * value part in T_CHECK request and just validation 10897 * done elsewhere should be enough, we just return here. 10898 */ 10899 if (inlen == 0) { 10900 *outlenp = 0; 10901 return (0); 10902 } 10903 break; 10904 case SETFN_OPTCOM_NEGOTIATE: 10905 case SETFN_UD_NEGOTIATE: 10906 case SETFN_CONN_NEGOTIATE: 10907 checkonly = B_FALSE; 10908 break; 10909 default: 10910 /* 10911 * We should never get here 10912 */ 10913 *outlenp = 0; 10914 return (EINVAL); 10915 } 10916 10917 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10918 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10919 10920 /* 10921 * For fixed length options, no sanity check 10922 * of passed in length is done. It is assumed *_optcom_req() 10923 * routines do the right thing. 10924 */ 10925 10926 switch (level) { 10927 case SOL_SOCKET: 10928 /* 10929 * conn_lock protects the bitfields, and is used to 10930 * set the fields atomically. 10931 */ 10932 switch (name) { 10933 case SO_BROADCAST: 10934 if (!checkonly) { 10935 /* TODO: use value someplace? */ 10936 mutex_enter(&connp->conn_lock); 10937 connp->conn_broadcast = *i1 ? 1 : 0; 10938 mutex_exit(&connp->conn_lock); 10939 } 10940 break; /* goto sizeof (int) option return */ 10941 case SO_USELOOPBACK: 10942 if (!checkonly) { 10943 /* TODO: use value someplace? */ 10944 mutex_enter(&connp->conn_lock); 10945 connp->conn_loopback = *i1 ? 1 : 0; 10946 mutex_exit(&connp->conn_lock); 10947 } 10948 break; /* goto sizeof (int) option return */ 10949 case SO_DONTROUTE: 10950 if (!checkonly) { 10951 mutex_enter(&connp->conn_lock); 10952 connp->conn_dontroute = *i1 ? 1 : 0; 10953 mutex_exit(&connp->conn_lock); 10954 } 10955 break; /* goto sizeof (int) option return */ 10956 case SO_REUSEADDR: 10957 if (!checkonly) { 10958 mutex_enter(&connp->conn_lock); 10959 connp->conn_reuseaddr = *i1 ? 1 : 0; 10960 mutex_exit(&connp->conn_lock); 10961 } 10962 break; /* goto sizeof (int) option return */ 10963 case SO_PROTOTYPE: 10964 if (!checkonly) { 10965 mutex_enter(&connp->conn_lock); 10966 connp->conn_proto = *i1; 10967 mutex_exit(&connp->conn_lock); 10968 } 10969 break; /* goto sizeof (int) option return */ 10970 case SO_ALLZONES: 10971 if (!checkonly) { 10972 mutex_enter(&connp->conn_lock); 10973 if (IPCL_IS_BOUND(connp)) { 10974 mutex_exit(&connp->conn_lock); 10975 return (EINVAL); 10976 } 10977 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10978 mutex_exit(&connp->conn_lock); 10979 } 10980 break; /* goto sizeof (int) option return */ 10981 case SO_ANON_MLP: 10982 if (!checkonly) { 10983 mutex_enter(&connp->conn_lock); 10984 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10985 mutex_exit(&connp->conn_lock); 10986 } 10987 break; /* goto sizeof (int) option return */ 10988 case SO_MAC_EXEMPT: 10989 if (secpolicy_net_mac_aware(cr) != 0 || 10990 IPCL_IS_BOUND(connp)) 10991 return (EACCES); 10992 if (!checkonly) { 10993 mutex_enter(&connp->conn_lock); 10994 connp->conn_mac_exempt = *i1 != 0 ? 1 : 0; 10995 mutex_exit(&connp->conn_lock); 10996 } 10997 break; /* goto sizeof (int) option return */ 10998 default: 10999 /* 11000 * "soft" error (negative) 11001 * option not handled at this level 11002 * Note: Do not modify *outlenp 11003 */ 11004 return (-EINVAL); 11005 } 11006 break; 11007 case IPPROTO_IP: 11008 switch (name) { 11009 case IP_NEXTHOP: 11010 if (secpolicy_ip_config(cr, B_FALSE) != 0) 11011 return (EPERM); 11012 /* FALLTHRU */ 11013 case IP_MULTICAST_IF: 11014 case IP_DONTFAILOVER_IF: { 11015 ipaddr_t addr = *i1; 11016 11017 error = ip_opt_set_ipif(connp, addr, checkonly, name, 11018 first_mp); 11019 if (error != 0) 11020 return (error); 11021 break; /* goto sizeof (int) option return */ 11022 } 11023 11024 case IP_MULTICAST_TTL: 11025 /* Recorded in transport above IP */ 11026 *outvalp = *invalp; 11027 *outlenp = sizeof (uchar_t); 11028 return (0); 11029 case IP_MULTICAST_LOOP: 11030 if (!checkonly) { 11031 mutex_enter(&connp->conn_lock); 11032 connp->conn_multicast_loop = *invalp ? 1 : 0; 11033 mutex_exit(&connp->conn_lock); 11034 } 11035 *outvalp = *invalp; 11036 *outlenp = sizeof (uchar_t); 11037 return (0); 11038 case IP_ADD_MEMBERSHIP: 11039 case MCAST_JOIN_GROUP: 11040 case IP_DROP_MEMBERSHIP: 11041 case MCAST_LEAVE_GROUP: { 11042 struct ip_mreq *mreqp; 11043 struct group_req *greqp; 11044 ire_t *ire; 11045 boolean_t done = B_FALSE; 11046 ipaddr_t group, ifaddr; 11047 struct sockaddr_in *sin; 11048 uint32_t *ifindexp; 11049 boolean_t mcast_opt = B_TRUE; 11050 mcast_record_t fmode; 11051 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 11052 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 11053 11054 switch (name) { 11055 case IP_ADD_MEMBERSHIP: 11056 mcast_opt = B_FALSE; 11057 /* FALLTHRU */ 11058 case MCAST_JOIN_GROUP: 11059 fmode = MODE_IS_EXCLUDE; 11060 optfn = ip_opt_add_group; 11061 break; 11062 11063 case IP_DROP_MEMBERSHIP: 11064 mcast_opt = B_FALSE; 11065 /* FALLTHRU */ 11066 case MCAST_LEAVE_GROUP: 11067 fmode = MODE_IS_INCLUDE; 11068 optfn = ip_opt_delete_group; 11069 break; 11070 } 11071 11072 if (mcast_opt) { 11073 greqp = (struct group_req *)i1; 11074 sin = (struct sockaddr_in *)&greqp->gr_group; 11075 if (sin->sin_family != AF_INET) { 11076 *outlenp = 0; 11077 return (ENOPROTOOPT); 11078 } 11079 group = (ipaddr_t)sin->sin_addr.s_addr; 11080 ifaddr = INADDR_ANY; 11081 ifindexp = &greqp->gr_interface; 11082 } else { 11083 mreqp = (struct ip_mreq *)i1; 11084 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 11085 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 11086 ifindexp = NULL; 11087 } 11088 11089 /* 11090 * In the multirouting case, we need to replicate 11091 * the request on all interfaces that will take part 11092 * in replication. We do so because multirouting is 11093 * reflective, thus we will probably receive multi- 11094 * casts on those interfaces. 11095 * The ip_multirt_apply_membership() succeeds if the 11096 * operation succeeds on at least one interface. 11097 */ 11098 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 11099 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11100 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11101 if (ire != NULL) { 11102 if (ire->ire_flags & RTF_MULTIRT) { 11103 error = ip_multirt_apply_membership( 11104 optfn, ire, connp, checkonly, group, 11105 fmode, INADDR_ANY, first_mp); 11106 done = B_TRUE; 11107 } 11108 ire_refrele(ire); 11109 } 11110 if (!done) { 11111 error = optfn(connp, checkonly, group, ifaddr, 11112 ifindexp, fmode, INADDR_ANY, first_mp); 11113 } 11114 if (error) { 11115 /* 11116 * EINPROGRESS is a soft error, needs retry 11117 * so don't make *outlenp zero. 11118 */ 11119 if (error != EINPROGRESS) 11120 *outlenp = 0; 11121 return (error); 11122 } 11123 /* OK return - copy input buffer into output buffer */ 11124 if (invalp != outvalp) { 11125 /* don't trust bcopy for identical src/dst */ 11126 bcopy(invalp, outvalp, inlen); 11127 } 11128 *outlenp = inlen; 11129 return (0); 11130 } 11131 case IP_BLOCK_SOURCE: 11132 case IP_UNBLOCK_SOURCE: 11133 case IP_ADD_SOURCE_MEMBERSHIP: 11134 case IP_DROP_SOURCE_MEMBERSHIP: 11135 case MCAST_BLOCK_SOURCE: 11136 case MCAST_UNBLOCK_SOURCE: 11137 case MCAST_JOIN_SOURCE_GROUP: 11138 case MCAST_LEAVE_SOURCE_GROUP: { 11139 struct ip_mreq_source *imreqp; 11140 struct group_source_req *gsreqp; 11141 in_addr_t grp, src, ifaddr = INADDR_ANY; 11142 uint32_t ifindex = 0; 11143 mcast_record_t fmode; 11144 struct sockaddr_in *sin; 11145 ire_t *ire; 11146 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 11147 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 11148 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 11149 11150 switch (name) { 11151 case IP_BLOCK_SOURCE: 11152 mcast_opt = B_FALSE; 11153 /* FALLTHRU */ 11154 case MCAST_BLOCK_SOURCE: 11155 fmode = MODE_IS_EXCLUDE; 11156 optfn = ip_opt_add_group; 11157 break; 11158 11159 case IP_UNBLOCK_SOURCE: 11160 mcast_opt = B_FALSE; 11161 /* FALLTHRU */ 11162 case MCAST_UNBLOCK_SOURCE: 11163 fmode = MODE_IS_EXCLUDE; 11164 optfn = ip_opt_delete_group; 11165 break; 11166 11167 case IP_ADD_SOURCE_MEMBERSHIP: 11168 mcast_opt = B_FALSE; 11169 /* FALLTHRU */ 11170 case MCAST_JOIN_SOURCE_GROUP: 11171 fmode = MODE_IS_INCLUDE; 11172 optfn = ip_opt_add_group; 11173 break; 11174 11175 case IP_DROP_SOURCE_MEMBERSHIP: 11176 mcast_opt = B_FALSE; 11177 /* FALLTHRU */ 11178 case MCAST_LEAVE_SOURCE_GROUP: 11179 fmode = MODE_IS_INCLUDE; 11180 optfn = ip_opt_delete_group; 11181 break; 11182 } 11183 11184 if (mcast_opt) { 11185 gsreqp = (struct group_source_req *)i1; 11186 if (gsreqp->gsr_group.ss_family != AF_INET) { 11187 *outlenp = 0; 11188 return (ENOPROTOOPT); 11189 } 11190 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 11191 grp = (ipaddr_t)sin->sin_addr.s_addr; 11192 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 11193 src = (ipaddr_t)sin->sin_addr.s_addr; 11194 ifindex = gsreqp->gsr_interface; 11195 } else { 11196 imreqp = (struct ip_mreq_source *)i1; 11197 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 11198 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 11199 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 11200 } 11201 11202 /* 11203 * In the multirouting case, we need to replicate 11204 * the request as noted in the mcast cases above. 11205 */ 11206 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 11207 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11208 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11209 if (ire != NULL) { 11210 if (ire->ire_flags & RTF_MULTIRT) { 11211 error = ip_multirt_apply_membership( 11212 optfn, ire, connp, checkonly, grp, 11213 fmode, src, first_mp); 11214 done = B_TRUE; 11215 } 11216 ire_refrele(ire); 11217 } 11218 if (!done) { 11219 error = optfn(connp, checkonly, grp, ifaddr, 11220 &ifindex, fmode, src, first_mp); 11221 } 11222 if (error != 0) { 11223 /* 11224 * EINPROGRESS is a soft error, needs retry 11225 * so don't make *outlenp zero. 11226 */ 11227 if (error != EINPROGRESS) 11228 *outlenp = 0; 11229 return (error); 11230 } 11231 /* OK return - copy input buffer into output buffer */ 11232 if (invalp != outvalp) { 11233 bcopy(invalp, outvalp, inlen); 11234 } 11235 *outlenp = inlen; 11236 return (0); 11237 } 11238 case IP_SEC_OPT: 11239 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11240 if (error != 0) { 11241 *outlenp = 0; 11242 return (error); 11243 } 11244 break; 11245 case IP_HDRINCL: 11246 case IP_OPTIONS: 11247 case T_IP_OPTIONS: 11248 case IP_TOS: 11249 case T_IP_TOS: 11250 case IP_TTL: 11251 case IP_RECVDSTADDR: 11252 case IP_RECVOPTS: 11253 /* OK return - copy input buffer into output buffer */ 11254 if (invalp != outvalp) { 11255 /* don't trust bcopy for identical src/dst */ 11256 bcopy(invalp, outvalp, inlen); 11257 } 11258 *outlenp = inlen; 11259 return (0); 11260 case IP_RECVIF: 11261 /* Retrieve the inbound interface index */ 11262 if (!checkonly) { 11263 mutex_enter(&connp->conn_lock); 11264 connp->conn_recvif = *i1 ? 1 : 0; 11265 mutex_exit(&connp->conn_lock); 11266 } 11267 break; /* goto sizeof (int) option return */ 11268 case IP_RECVPKTINFO: 11269 if (!checkonly) { 11270 mutex_enter(&connp->conn_lock); 11271 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11272 mutex_exit(&connp->conn_lock); 11273 } 11274 break; /* goto sizeof (int) option return */ 11275 case IP_RECVSLLA: 11276 /* Retrieve the source link layer address */ 11277 if (!checkonly) { 11278 mutex_enter(&connp->conn_lock); 11279 connp->conn_recvslla = *i1 ? 1 : 0; 11280 mutex_exit(&connp->conn_lock); 11281 } 11282 break; /* goto sizeof (int) option return */ 11283 case MRT_INIT: 11284 case MRT_DONE: 11285 case MRT_ADD_VIF: 11286 case MRT_DEL_VIF: 11287 case MRT_ADD_MFC: 11288 case MRT_DEL_MFC: 11289 case MRT_ASSERT: 11290 if ((error = secpolicy_ip_config(cr, B_FALSE)) != 0) { 11291 *outlenp = 0; 11292 return (error); 11293 } 11294 error = ip_mrouter_set((int)name, q, checkonly, 11295 (uchar_t *)invalp, inlen, first_mp); 11296 if (error) { 11297 *outlenp = 0; 11298 return (error); 11299 } 11300 /* OK return - copy input buffer into output buffer */ 11301 if (invalp != outvalp) { 11302 /* don't trust bcopy for identical src/dst */ 11303 bcopy(invalp, outvalp, inlen); 11304 } 11305 *outlenp = inlen; 11306 return (0); 11307 case IP_BOUND_IF: 11308 case IP_XMIT_IF: 11309 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11310 level, name, first_mp); 11311 if (error != 0) 11312 return (error); 11313 break; /* goto sizeof (int) option return */ 11314 11315 case IP_UNSPEC_SRC: 11316 /* Allow sending with a zero source address */ 11317 if (!checkonly) { 11318 mutex_enter(&connp->conn_lock); 11319 connp->conn_unspec_src = *i1 ? 1 : 0; 11320 mutex_exit(&connp->conn_lock); 11321 } 11322 break; /* goto sizeof (int) option return */ 11323 default: 11324 /* 11325 * "soft" error (negative) 11326 * option not handled at this level 11327 * Note: Do not modify *outlenp 11328 */ 11329 return (-EINVAL); 11330 } 11331 break; 11332 case IPPROTO_IPV6: 11333 switch (name) { 11334 case IPV6_BOUND_IF: 11335 case IPV6_BOUND_PIF: 11336 case IPV6_DONTFAILOVER_IF: 11337 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11338 level, name, first_mp); 11339 if (error != 0) 11340 return (error); 11341 break; /* goto sizeof (int) option return */ 11342 11343 case IPV6_MULTICAST_IF: 11344 /* 11345 * The only possible errors are EINPROGRESS and 11346 * EINVAL. EINPROGRESS will be restarted and is not 11347 * a hard error. We call this option on both V4 and V6 11348 * If both return EINVAL, then this call returns 11349 * EINVAL. If at least one of them succeeds we 11350 * return success. 11351 */ 11352 found = B_FALSE; 11353 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11354 level, name, first_mp); 11355 if (error == EINPROGRESS) 11356 return (error); 11357 if (error == 0) 11358 found = B_TRUE; 11359 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11360 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 11361 if (error == 0) 11362 found = B_TRUE; 11363 if (!found) 11364 return (error); 11365 break; /* goto sizeof (int) option return */ 11366 11367 case IPV6_MULTICAST_HOPS: 11368 /* Recorded in transport above IP */ 11369 break; /* goto sizeof (int) option return */ 11370 case IPV6_MULTICAST_LOOP: 11371 if (!checkonly) { 11372 mutex_enter(&connp->conn_lock); 11373 connp->conn_multicast_loop = *i1; 11374 mutex_exit(&connp->conn_lock); 11375 } 11376 break; /* goto sizeof (int) option return */ 11377 case IPV6_JOIN_GROUP: 11378 case MCAST_JOIN_GROUP: 11379 case IPV6_LEAVE_GROUP: 11380 case MCAST_LEAVE_GROUP: { 11381 struct ipv6_mreq *ip_mreqp; 11382 struct group_req *greqp; 11383 ire_t *ire; 11384 boolean_t done = B_FALSE; 11385 in6_addr_t groupv6; 11386 uint32_t ifindex; 11387 boolean_t mcast_opt = B_TRUE; 11388 mcast_record_t fmode; 11389 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11390 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11391 11392 switch (name) { 11393 case IPV6_JOIN_GROUP: 11394 mcast_opt = B_FALSE; 11395 /* FALLTHRU */ 11396 case MCAST_JOIN_GROUP: 11397 fmode = MODE_IS_EXCLUDE; 11398 optfn = ip_opt_add_group_v6; 11399 break; 11400 11401 case IPV6_LEAVE_GROUP: 11402 mcast_opt = B_FALSE; 11403 /* FALLTHRU */ 11404 case MCAST_LEAVE_GROUP: 11405 fmode = MODE_IS_INCLUDE; 11406 optfn = ip_opt_delete_group_v6; 11407 break; 11408 } 11409 11410 if (mcast_opt) { 11411 struct sockaddr_in *sin; 11412 struct sockaddr_in6 *sin6; 11413 greqp = (struct group_req *)i1; 11414 if (greqp->gr_group.ss_family == AF_INET) { 11415 sin = (struct sockaddr_in *) 11416 &(greqp->gr_group); 11417 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 11418 &groupv6); 11419 } else { 11420 sin6 = (struct sockaddr_in6 *) 11421 &(greqp->gr_group); 11422 groupv6 = sin6->sin6_addr; 11423 } 11424 ifindex = greqp->gr_interface; 11425 } else { 11426 ip_mreqp = (struct ipv6_mreq *)i1; 11427 groupv6 = ip_mreqp->ipv6mr_multiaddr; 11428 ifindex = ip_mreqp->ipv6mr_interface; 11429 } 11430 /* 11431 * In the multirouting case, we need to replicate 11432 * the request on all interfaces that will take part 11433 * in replication. We do so because multirouting is 11434 * reflective, thus we will probably receive multi- 11435 * casts on those interfaces. 11436 * The ip_multirt_apply_membership_v6() succeeds if 11437 * the operation succeeds on at least one interface. 11438 */ 11439 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 11440 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11441 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11442 if (ire != NULL) { 11443 if (ire->ire_flags & RTF_MULTIRT) { 11444 error = ip_multirt_apply_membership_v6( 11445 optfn, ire, connp, checkonly, 11446 &groupv6, fmode, &ipv6_all_zeros, 11447 first_mp); 11448 done = B_TRUE; 11449 } 11450 ire_refrele(ire); 11451 } 11452 if (!done) { 11453 error = optfn(connp, checkonly, &groupv6, 11454 ifindex, fmode, &ipv6_all_zeros, first_mp); 11455 } 11456 if (error) { 11457 /* 11458 * EINPROGRESS is a soft error, needs retry 11459 * so don't make *outlenp zero. 11460 */ 11461 if (error != EINPROGRESS) 11462 *outlenp = 0; 11463 return (error); 11464 } 11465 /* OK return - copy input buffer into output buffer */ 11466 if (invalp != outvalp) { 11467 /* don't trust bcopy for identical src/dst */ 11468 bcopy(invalp, outvalp, inlen); 11469 } 11470 *outlenp = inlen; 11471 return (0); 11472 } 11473 case MCAST_BLOCK_SOURCE: 11474 case MCAST_UNBLOCK_SOURCE: 11475 case MCAST_JOIN_SOURCE_GROUP: 11476 case MCAST_LEAVE_SOURCE_GROUP: { 11477 struct group_source_req *gsreqp; 11478 in6_addr_t v6grp, v6src; 11479 uint32_t ifindex; 11480 mcast_record_t fmode; 11481 ire_t *ire; 11482 boolean_t done = B_FALSE; 11483 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11484 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11485 11486 switch (name) { 11487 case MCAST_BLOCK_SOURCE: 11488 fmode = MODE_IS_EXCLUDE; 11489 optfn = ip_opt_add_group_v6; 11490 break; 11491 case MCAST_UNBLOCK_SOURCE: 11492 fmode = MODE_IS_EXCLUDE; 11493 optfn = ip_opt_delete_group_v6; 11494 break; 11495 case MCAST_JOIN_SOURCE_GROUP: 11496 fmode = MODE_IS_INCLUDE; 11497 optfn = ip_opt_add_group_v6; 11498 break; 11499 case MCAST_LEAVE_SOURCE_GROUP: 11500 fmode = MODE_IS_INCLUDE; 11501 optfn = ip_opt_delete_group_v6; 11502 break; 11503 } 11504 11505 gsreqp = (struct group_source_req *)i1; 11506 ifindex = gsreqp->gsr_interface; 11507 if (gsreqp->gsr_group.ss_family == AF_INET) { 11508 struct sockaddr_in *s; 11509 s = (struct sockaddr_in *)&gsreqp->gsr_group; 11510 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 11511 s = (struct sockaddr_in *)&gsreqp->gsr_source; 11512 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 11513 } else { 11514 struct sockaddr_in6 *s6; 11515 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 11516 v6grp = s6->sin6_addr; 11517 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 11518 v6src = s6->sin6_addr; 11519 } 11520 11521 /* 11522 * In the multirouting case, we need to replicate 11523 * the request as noted in the mcast cases above. 11524 */ 11525 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 11526 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11527 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11528 if (ire != NULL) { 11529 if (ire->ire_flags & RTF_MULTIRT) { 11530 error = ip_multirt_apply_membership_v6( 11531 optfn, ire, connp, checkonly, 11532 &v6grp, fmode, &v6src, first_mp); 11533 done = B_TRUE; 11534 } 11535 ire_refrele(ire); 11536 } 11537 if (!done) { 11538 error = optfn(connp, checkonly, &v6grp, 11539 ifindex, fmode, &v6src, first_mp); 11540 } 11541 if (error != 0) { 11542 /* 11543 * EINPROGRESS is a soft error, needs retry 11544 * so don't make *outlenp zero. 11545 */ 11546 if (error != EINPROGRESS) 11547 *outlenp = 0; 11548 return (error); 11549 } 11550 /* OK return - copy input buffer into output buffer */ 11551 if (invalp != outvalp) { 11552 bcopy(invalp, outvalp, inlen); 11553 } 11554 *outlenp = inlen; 11555 return (0); 11556 } 11557 case IPV6_UNICAST_HOPS: 11558 /* Recorded in transport above IP */ 11559 break; /* goto sizeof (int) option return */ 11560 case IPV6_UNSPEC_SRC: 11561 /* Allow sending with a zero source address */ 11562 if (!checkonly) { 11563 mutex_enter(&connp->conn_lock); 11564 connp->conn_unspec_src = *i1 ? 1 : 0; 11565 mutex_exit(&connp->conn_lock); 11566 } 11567 break; /* goto sizeof (int) option return */ 11568 case IPV6_RECVPKTINFO: 11569 if (!checkonly) { 11570 mutex_enter(&connp->conn_lock); 11571 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11572 mutex_exit(&connp->conn_lock); 11573 } 11574 break; /* goto sizeof (int) option return */ 11575 case IPV6_RECVTCLASS: 11576 if (!checkonly) { 11577 if (*i1 < 0 || *i1 > 1) { 11578 return (EINVAL); 11579 } 11580 mutex_enter(&connp->conn_lock); 11581 connp->conn_ipv6_recvtclass = *i1; 11582 mutex_exit(&connp->conn_lock); 11583 } 11584 break; 11585 case IPV6_RECVPATHMTU: 11586 if (!checkonly) { 11587 if (*i1 < 0 || *i1 > 1) { 11588 return (EINVAL); 11589 } 11590 mutex_enter(&connp->conn_lock); 11591 connp->conn_ipv6_recvpathmtu = *i1; 11592 mutex_exit(&connp->conn_lock); 11593 } 11594 break; 11595 case IPV6_RECVHOPLIMIT: 11596 if (!checkonly) { 11597 mutex_enter(&connp->conn_lock); 11598 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 11599 mutex_exit(&connp->conn_lock); 11600 } 11601 break; /* goto sizeof (int) option return */ 11602 case IPV6_RECVHOPOPTS: 11603 if (!checkonly) { 11604 mutex_enter(&connp->conn_lock); 11605 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 11606 mutex_exit(&connp->conn_lock); 11607 } 11608 break; /* goto sizeof (int) option return */ 11609 case IPV6_RECVDSTOPTS: 11610 if (!checkonly) { 11611 mutex_enter(&connp->conn_lock); 11612 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 11613 mutex_exit(&connp->conn_lock); 11614 } 11615 break; /* goto sizeof (int) option return */ 11616 case IPV6_RECVRTHDR: 11617 if (!checkonly) { 11618 mutex_enter(&connp->conn_lock); 11619 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 11620 mutex_exit(&connp->conn_lock); 11621 } 11622 break; /* goto sizeof (int) option return */ 11623 case IPV6_RECVRTHDRDSTOPTS: 11624 if (!checkonly) { 11625 mutex_enter(&connp->conn_lock); 11626 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 11627 mutex_exit(&connp->conn_lock); 11628 } 11629 break; /* goto sizeof (int) option return */ 11630 case IPV6_PKTINFO: 11631 if (inlen == 0) 11632 return (-EINVAL); /* clearing option */ 11633 error = ip6_set_pktinfo(cr, connp, 11634 (struct in6_pktinfo *)invalp, first_mp); 11635 if (error != 0) 11636 *outlenp = 0; 11637 else 11638 *outlenp = inlen; 11639 return (error); 11640 case IPV6_NEXTHOP: { 11641 struct sockaddr_in6 *sin6; 11642 11643 /* Verify that the nexthop is reachable */ 11644 if (inlen == 0) 11645 return (-EINVAL); /* clearing option */ 11646 11647 sin6 = (struct sockaddr_in6 *)invalp; 11648 ire = ire_route_lookup_v6(&sin6->sin6_addr, 11649 0, 0, 0, NULL, NULL, connp->conn_zoneid, 11650 NULL, MATCH_IRE_DEFAULT, ipst); 11651 11652 if (ire == NULL) { 11653 *outlenp = 0; 11654 return (EHOSTUNREACH); 11655 } 11656 ire_refrele(ire); 11657 return (-EINVAL); 11658 } 11659 case IPV6_SEC_OPT: 11660 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11661 if (error != 0) { 11662 *outlenp = 0; 11663 return (error); 11664 } 11665 break; 11666 case IPV6_SRC_PREFERENCES: { 11667 /* 11668 * This is implemented strictly in the ip module 11669 * (here and in tcp_opt_*() to accomodate tcp 11670 * sockets). Modules above ip pass this option 11671 * down here since ip is the only one that needs to 11672 * be aware of source address preferences. 11673 * 11674 * This socket option only affects connected 11675 * sockets that haven't already bound to a specific 11676 * IPv6 address. In other words, sockets that 11677 * don't call bind() with an address other than the 11678 * unspecified address and that call connect(). 11679 * ip_bind_connected_v6() passes these preferences 11680 * to the ipif_select_source_v6() function. 11681 */ 11682 if (inlen != sizeof (uint32_t)) 11683 return (EINVAL); 11684 error = ip6_set_src_preferences(connp, 11685 *(uint32_t *)invalp); 11686 if (error != 0) { 11687 *outlenp = 0; 11688 return (error); 11689 } else { 11690 *outlenp = sizeof (uint32_t); 11691 } 11692 break; 11693 } 11694 case IPV6_V6ONLY: 11695 if (*i1 < 0 || *i1 > 1) { 11696 return (EINVAL); 11697 } 11698 mutex_enter(&connp->conn_lock); 11699 connp->conn_ipv6_v6only = *i1; 11700 mutex_exit(&connp->conn_lock); 11701 break; 11702 default: 11703 return (-EINVAL); 11704 } 11705 break; 11706 default: 11707 /* 11708 * "soft" error (negative) 11709 * option not handled at this level 11710 * Note: Do not modify *outlenp 11711 */ 11712 return (-EINVAL); 11713 } 11714 /* 11715 * Common case of return from an option that is sizeof (int) 11716 */ 11717 *(int *)outvalp = *i1; 11718 *outlenp = sizeof (int); 11719 return (0); 11720 } 11721 11722 /* 11723 * This routine gets default values of certain options whose default 11724 * values are maintained by protocol specific code 11725 */ 11726 /* ARGSUSED */ 11727 int 11728 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 11729 { 11730 int *i1 = (int *)ptr; 11731 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11732 11733 switch (level) { 11734 case IPPROTO_IP: 11735 switch (name) { 11736 case IP_MULTICAST_TTL: 11737 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 11738 return (sizeof (uchar_t)); 11739 case IP_MULTICAST_LOOP: 11740 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 11741 return (sizeof (uchar_t)); 11742 default: 11743 return (-1); 11744 } 11745 case IPPROTO_IPV6: 11746 switch (name) { 11747 case IPV6_UNICAST_HOPS: 11748 *i1 = ipst->ips_ipv6_def_hops; 11749 return (sizeof (int)); 11750 case IPV6_MULTICAST_HOPS: 11751 *i1 = IP_DEFAULT_MULTICAST_TTL; 11752 return (sizeof (int)); 11753 case IPV6_MULTICAST_LOOP: 11754 *i1 = IP_DEFAULT_MULTICAST_LOOP; 11755 return (sizeof (int)); 11756 case IPV6_V6ONLY: 11757 *i1 = 1; 11758 return (sizeof (int)); 11759 default: 11760 return (-1); 11761 } 11762 default: 11763 return (-1); 11764 } 11765 /* NOTREACHED */ 11766 } 11767 11768 /* 11769 * Given a destination address and a pointer to where to put the information 11770 * this routine fills in the mtuinfo. 11771 */ 11772 int 11773 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 11774 struct ip6_mtuinfo *mtuinfo, netstack_t *ns) 11775 { 11776 ire_t *ire; 11777 ip_stack_t *ipst = ns->netstack_ip; 11778 11779 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 11780 return (-1); 11781 11782 bzero(mtuinfo, sizeof (*mtuinfo)); 11783 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 11784 mtuinfo->ip6m_addr.sin6_port = port; 11785 mtuinfo->ip6m_addr.sin6_addr = *in6; 11786 11787 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL, ipst); 11788 if (ire != NULL) { 11789 mtuinfo->ip6m_mtu = ire->ire_max_frag; 11790 ire_refrele(ire); 11791 } else { 11792 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 11793 } 11794 return (sizeof (struct ip6_mtuinfo)); 11795 } 11796 11797 /* 11798 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 11799 * checking of GET_QUEUE_CRED(q) and that ip_g_mrouter is set should be done and 11800 * isn't. This doesn't matter as the error checking is done properly for the 11801 * other MRT options coming in through ip_opt_set. 11802 */ 11803 int 11804 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 11805 { 11806 conn_t *connp = Q_TO_CONN(q); 11807 ipsec_req_t *req = (ipsec_req_t *)ptr; 11808 11809 switch (level) { 11810 case IPPROTO_IP: 11811 switch (name) { 11812 case MRT_VERSION: 11813 case MRT_ASSERT: 11814 (void) ip_mrouter_get(name, q, ptr); 11815 return (sizeof (int)); 11816 case IP_SEC_OPT: 11817 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 11818 case IP_NEXTHOP: 11819 if (connp->conn_nexthop_set) { 11820 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 11821 return (sizeof (ipaddr_t)); 11822 } else 11823 return (0); 11824 case IP_RECVPKTINFO: 11825 *(int *)ptr = connp->conn_ip_recvpktinfo ? 1: 0; 11826 return (sizeof (int)); 11827 default: 11828 break; 11829 } 11830 break; 11831 case IPPROTO_IPV6: 11832 switch (name) { 11833 case IPV6_SEC_OPT: 11834 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 11835 case IPV6_SRC_PREFERENCES: { 11836 return (ip6_get_src_preferences(connp, 11837 (uint32_t *)ptr)); 11838 } 11839 case IPV6_V6ONLY: 11840 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 11841 return (sizeof (int)); 11842 case IPV6_PATHMTU: 11843 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 11844 (struct ip6_mtuinfo *)ptr, connp->conn_netstack)); 11845 default: 11846 break; 11847 } 11848 break; 11849 default: 11850 break; 11851 } 11852 return (-1); 11853 } 11854 11855 /* Named Dispatch routine to get a current value out of our parameter table. */ 11856 /* ARGSUSED */ 11857 static int 11858 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11859 { 11860 ipparam_t *ippa = (ipparam_t *)cp; 11861 11862 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 11863 return (0); 11864 } 11865 11866 /* ARGSUSED */ 11867 static int 11868 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11869 { 11870 11871 (void) mi_mpprintf(mp, "%d", *(int *)cp); 11872 return (0); 11873 } 11874 11875 /* 11876 * Set ip{,6}_forwarding values. This means walking through all of the 11877 * ill's and toggling their forwarding values. 11878 */ 11879 /* ARGSUSED */ 11880 static int 11881 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11882 { 11883 long new_value; 11884 int *forwarding_value = (int *)cp; 11885 ill_t *ill; 11886 boolean_t isv6; 11887 ill_walk_context_t ctx; 11888 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11889 11890 isv6 = (forwarding_value == &ipst->ips_ipv6_forward); 11891 11892 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11893 new_value < 0 || new_value > 1) { 11894 return (EINVAL); 11895 } 11896 11897 *forwarding_value = new_value; 11898 11899 /* 11900 * Regardless of the current value of ip_forwarding, set all per-ill 11901 * values of ip_forwarding to the value being set. 11902 * 11903 * Bring all the ill's up to date with the new global value. 11904 */ 11905 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11906 11907 if (isv6) 11908 ill = ILL_START_WALK_V6(&ctx, ipst); 11909 else 11910 ill = ILL_START_WALK_V4(&ctx, ipst); 11911 11912 for (; ill != NULL; ill = ill_next(&ctx, ill)) 11913 (void) ill_forward_set(ill, new_value != 0); 11914 11915 rw_exit(&ipst->ips_ill_g_lock); 11916 return (0); 11917 } 11918 11919 /* 11920 * Walk through the param array specified registering each element with the 11921 * Named Dispatch handler. This is called only during init. So it is ok 11922 * not to acquire any locks 11923 */ 11924 static boolean_t 11925 ip_param_register(IDP *ndp, ipparam_t *ippa, size_t ippa_cnt, 11926 ipndp_t *ipnd, size_t ipnd_cnt) 11927 { 11928 for (; ippa_cnt-- > 0; ippa++) { 11929 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 11930 if (!nd_load(ndp, ippa->ip_param_name, 11931 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11932 nd_free(ndp); 11933 return (B_FALSE); 11934 } 11935 } 11936 } 11937 11938 for (; ipnd_cnt-- > 0; ipnd++) { 11939 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11940 if (!nd_load(ndp, ipnd->ip_ndp_name, 11941 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11942 ipnd->ip_ndp_data)) { 11943 nd_free(ndp); 11944 return (B_FALSE); 11945 } 11946 } 11947 } 11948 11949 return (B_TRUE); 11950 } 11951 11952 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11953 /* ARGSUSED */ 11954 static int 11955 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11956 { 11957 long new_value; 11958 ipparam_t *ippa = (ipparam_t *)cp; 11959 11960 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11961 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11962 return (EINVAL); 11963 } 11964 ippa->ip_param_value = new_value; 11965 return (0); 11966 } 11967 11968 /* 11969 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11970 * When an ipf is passed here for the first time, if 11971 * we already have in-order fragments on the queue, we convert from the fast- 11972 * path reassembly scheme to the hard-case scheme. From then on, additional 11973 * fragments are reassembled here. We keep track of the start and end offsets 11974 * of each piece, and the number of holes in the chain. When the hole count 11975 * goes to zero, we are done! 11976 * 11977 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11978 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11979 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11980 * after the call to ip_reassemble(). 11981 */ 11982 int 11983 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11984 size_t msg_len) 11985 { 11986 uint_t end; 11987 mblk_t *next_mp; 11988 mblk_t *mp1; 11989 uint_t offset; 11990 boolean_t incr_dups = B_TRUE; 11991 boolean_t offset_zero_seen = B_FALSE; 11992 boolean_t pkt_boundary_checked = B_FALSE; 11993 11994 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11995 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11996 11997 /* Add in byte count */ 11998 ipf->ipf_count += msg_len; 11999 if (ipf->ipf_end) { 12000 /* 12001 * We were part way through in-order reassembly, but now there 12002 * is a hole. We walk through messages already queued, and 12003 * mark them for hard case reassembly. We know that up till 12004 * now they were in order starting from offset zero. 12005 */ 12006 offset = 0; 12007 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 12008 IP_REASS_SET_START(mp1, offset); 12009 if (offset == 0) { 12010 ASSERT(ipf->ipf_nf_hdr_len != 0); 12011 offset = -ipf->ipf_nf_hdr_len; 12012 } 12013 offset += mp1->b_wptr - mp1->b_rptr; 12014 IP_REASS_SET_END(mp1, offset); 12015 } 12016 /* One hole at the end. */ 12017 ipf->ipf_hole_cnt = 1; 12018 /* Brand it as a hard case, forever. */ 12019 ipf->ipf_end = 0; 12020 } 12021 /* Walk through all the new pieces. */ 12022 do { 12023 end = start + (mp->b_wptr - mp->b_rptr); 12024 /* 12025 * If start is 0, decrease 'end' only for the first mblk of 12026 * the fragment. Otherwise 'end' can get wrong value in the 12027 * second pass of the loop if first mblk is exactly the 12028 * size of ipf_nf_hdr_len. 12029 */ 12030 if (start == 0 && !offset_zero_seen) { 12031 /* First segment */ 12032 ASSERT(ipf->ipf_nf_hdr_len != 0); 12033 end -= ipf->ipf_nf_hdr_len; 12034 offset_zero_seen = B_TRUE; 12035 } 12036 next_mp = mp->b_cont; 12037 /* 12038 * We are checking to see if there is any interesing data 12039 * to process. If there isn't and the mblk isn't the 12040 * one which carries the unfragmentable header then we 12041 * drop it. It's possible to have just the unfragmentable 12042 * header come through without any data. That needs to be 12043 * saved. 12044 * 12045 * If the assert at the top of this function holds then the 12046 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 12047 * is infrequently traveled enough that the test is left in 12048 * to protect against future code changes which break that 12049 * invariant. 12050 */ 12051 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 12052 /* Empty. Blast it. */ 12053 IP_REASS_SET_START(mp, 0); 12054 IP_REASS_SET_END(mp, 0); 12055 /* 12056 * If the ipf points to the mblk we are about to free, 12057 * update ipf to point to the next mblk (or NULL 12058 * if none). 12059 */ 12060 if (ipf->ipf_mp->b_cont == mp) 12061 ipf->ipf_mp->b_cont = next_mp; 12062 freeb(mp); 12063 continue; 12064 } 12065 mp->b_cont = NULL; 12066 IP_REASS_SET_START(mp, start); 12067 IP_REASS_SET_END(mp, end); 12068 if (!ipf->ipf_tail_mp) { 12069 ipf->ipf_tail_mp = mp; 12070 ipf->ipf_mp->b_cont = mp; 12071 if (start == 0 || !more) { 12072 ipf->ipf_hole_cnt = 1; 12073 /* 12074 * if the first fragment comes in more than one 12075 * mblk, this loop will be executed for each 12076 * mblk. Need to adjust hole count so exiting 12077 * this routine will leave hole count at 1. 12078 */ 12079 if (next_mp) 12080 ipf->ipf_hole_cnt++; 12081 } else 12082 ipf->ipf_hole_cnt = 2; 12083 continue; 12084 } else if (ipf->ipf_last_frag_seen && !more && 12085 !pkt_boundary_checked) { 12086 /* 12087 * We check datagram boundary only if this fragment 12088 * claims to be the last fragment and we have seen a 12089 * last fragment in the past too. We do this only 12090 * once for a given fragment. 12091 * 12092 * start cannot be 0 here as fragments with start=0 12093 * and MF=0 gets handled as a complete packet. These 12094 * fragments should not reach here. 12095 */ 12096 12097 if (start + msgdsize(mp) != 12098 IP_REASS_END(ipf->ipf_tail_mp)) { 12099 /* 12100 * We have two fragments both of which claim 12101 * to be the last fragment but gives conflicting 12102 * information about the whole datagram size. 12103 * Something fishy is going on. Drop the 12104 * fragment and free up the reassembly list. 12105 */ 12106 return (IP_REASS_FAILED); 12107 } 12108 12109 /* 12110 * We shouldn't come to this code block again for this 12111 * particular fragment. 12112 */ 12113 pkt_boundary_checked = B_TRUE; 12114 } 12115 12116 /* New stuff at or beyond tail? */ 12117 offset = IP_REASS_END(ipf->ipf_tail_mp); 12118 if (start >= offset) { 12119 if (ipf->ipf_last_frag_seen) { 12120 /* current fragment is beyond last fragment */ 12121 return (IP_REASS_FAILED); 12122 } 12123 /* Link it on end. */ 12124 ipf->ipf_tail_mp->b_cont = mp; 12125 ipf->ipf_tail_mp = mp; 12126 if (more) { 12127 if (start != offset) 12128 ipf->ipf_hole_cnt++; 12129 } else if (start == offset && next_mp == NULL) 12130 ipf->ipf_hole_cnt--; 12131 continue; 12132 } 12133 mp1 = ipf->ipf_mp->b_cont; 12134 offset = IP_REASS_START(mp1); 12135 /* New stuff at the front? */ 12136 if (start < offset) { 12137 if (start == 0) { 12138 if (end >= offset) { 12139 /* Nailed the hole at the begining. */ 12140 ipf->ipf_hole_cnt--; 12141 } 12142 } else if (end < offset) { 12143 /* 12144 * A hole, stuff, and a hole where there used 12145 * to be just a hole. 12146 */ 12147 ipf->ipf_hole_cnt++; 12148 } 12149 mp->b_cont = mp1; 12150 /* Check for overlap. */ 12151 while (end > offset) { 12152 if (end < IP_REASS_END(mp1)) { 12153 mp->b_wptr -= end - offset; 12154 IP_REASS_SET_END(mp, offset); 12155 BUMP_MIB(ill->ill_ip_mib, 12156 ipIfStatsReasmPartDups); 12157 break; 12158 } 12159 /* Did we cover another hole? */ 12160 if ((mp1->b_cont && 12161 IP_REASS_END(mp1) != 12162 IP_REASS_START(mp1->b_cont) && 12163 end >= IP_REASS_START(mp1->b_cont)) || 12164 (!ipf->ipf_last_frag_seen && !more)) { 12165 ipf->ipf_hole_cnt--; 12166 } 12167 /* Clip out mp1. */ 12168 if ((mp->b_cont = mp1->b_cont) == NULL) { 12169 /* 12170 * After clipping out mp1, this guy 12171 * is now hanging off the end. 12172 */ 12173 ipf->ipf_tail_mp = mp; 12174 } 12175 IP_REASS_SET_START(mp1, 0); 12176 IP_REASS_SET_END(mp1, 0); 12177 /* Subtract byte count */ 12178 ipf->ipf_count -= mp1->b_datap->db_lim - 12179 mp1->b_datap->db_base; 12180 freeb(mp1); 12181 BUMP_MIB(ill->ill_ip_mib, 12182 ipIfStatsReasmPartDups); 12183 mp1 = mp->b_cont; 12184 if (!mp1) 12185 break; 12186 offset = IP_REASS_START(mp1); 12187 } 12188 ipf->ipf_mp->b_cont = mp; 12189 continue; 12190 } 12191 /* 12192 * The new piece starts somewhere between the start of the head 12193 * and before the end of the tail. 12194 */ 12195 for (; mp1; mp1 = mp1->b_cont) { 12196 offset = IP_REASS_END(mp1); 12197 if (start < offset) { 12198 if (end <= offset) { 12199 /* Nothing new. */ 12200 IP_REASS_SET_START(mp, 0); 12201 IP_REASS_SET_END(mp, 0); 12202 /* Subtract byte count */ 12203 ipf->ipf_count -= mp->b_datap->db_lim - 12204 mp->b_datap->db_base; 12205 if (incr_dups) { 12206 ipf->ipf_num_dups++; 12207 incr_dups = B_FALSE; 12208 } 12209 freeb(mp); 12210 BUMP_MIB(ill->ill_ip_mib, 12211 ipIfStatsReasmDuplicates); 12212 break; 12213 } 12214 /* 12215 * Trim redundant stuff off beginning of new 12216 * piece. 12217 */ 12218 IP_REASS_SET_START(mp, offset); 12219 mp->b_rptr += offset - start; 12220 BUMP_MIB(ill->ill_ip_mib, 12221 ipIfStatsReasmPartDups); 12222 start = offset; 12223 if (!mp1->b_cont) { 12224 /* 12225 * After trimming, this guy is now 12226 * hanging off the end. 12227 */ 12228 mp1->b_cont = mp; 12229 ipf->ipf_tail_mp = mp; 12230 if (!more) { 12231 ipf->ipf_hole_cnt--; 12232 } 12233 break; 12234 } 12235 } 12236 if (start >= IP_REASS_START(mp1->b_cont)) 12237 continue; 12238 /* Fill a hole */ 12239 if (start > offset) 12240 ipf->ipf_hole_cnt++; 12241 mp->b_cont = mp1->b_cont; 12242 mp1->b_cont = mp; 12243 mp1 = mp->b_cont; 12244 offset = IP_REASS_START(mp1); 12245 if (end >= offset) { 12246 ipf->ipf_hole_cnt--; 12247 /* Check for overlap. */ 12248 while (end > offset) { 12249 if (end < IP_REASS_END(mp1)) { 12250 mp->b_wptr -= end - offset; 12251 IP_REASS_SET_END(mp, offset); 12252 /* 12253 * TODO we might bump 12254 * this up twice if there is 12255 * overlap at both ends. 12256 */ 12257 BUMP_MIB(ill->ill_ip_mib, 12258 ipIfStatsReasmPartDups); 12259 break; 12260 } 12261 /* Did we cover another hole? */ 12262 if ((mp1->b_cont && 12263 IP_REASS_END(mp1) 12264 != IP_REASS_START(mp1->b_cont) && 12265 end >= 12266 IP_REASS_START(mp1->b_cont)) || 12267 (!ipf->ipf_last_frag_seen && 12268 !more)) { 12269 ipf->ipf_hole_cnt--; 12270 } 12271 /* Clip out mp1. */ 12272 if ((mp->b_cont = mp1->b_cont) == 12273 NULL) { 12274 /* 12275 * After clipping out mp1, 12276 * this guy is now hanging 12277 * off the end. 12278 */ 12279 ipf->ipf_tail_mp = mp; 12280 } 12281 IP_REASS_SET_START(mp1, 0); 12282 IP_REASS_SET_END(mp1, 0); 12283 /* Subtract byte count */ 12284 ipf->ipf_count -= 12285 mp1->b_datap->db_lim - 12286 mp1->b_datap->db_base; 12287 freeb(mp1); 12288 BUMP_MIB(ill->ill_ip_mib, 12289 ipIfStatsReasmPartDups); 12290 mp1 = mp->b_cont; 12291 if (!mp1) 12292 break; 12293 offset = IP_REASS_START(mp1); 12294 } 12295 } 12296 break; 12297 } 12298 } while (start = end, mp = next_mp); 12299 12300 /* Fragment just processed could be the last one. Remember this fact */ 12301 if (!more) 12302 ipf->ipf_last_frag_seen = B_TRUE; 12303 12304 /* Still got holes? */ 12305 if (ipf->ipf_hole_cnt) 12306 return (IP_REASS_PARTIAL); 12307 /* Clean up overloaded fields to avoid upstream disasters. */ 12308 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 12309 IP_REASS_SET_START(mp1, 0); 12310 IP_REASS_SET_END(mp1, 0); 12311 } 12312 return (IP_REASS_COMPLETE); 12313 } 12314 12315 /* 12316 * ipsec processing for the fast path, used for input UDP Packets 12317 */ 12318 static boolean_t 12319 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 12320 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present) 12321 { 12322 uint32_t ill_index; 12323 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 12324 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 12325 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12326 12327 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12328 /* The ill_index of the incoming ILL */ 12329 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 12330 12331 /* pass packet up to the transport */ 12332 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 12333 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 12334 NULL, mctl_present); 12335 if (*first_mpp == NULL) { 12336 return (B_FALSE); 12337 } 12338 } 12339 12340 /* Initiate IPPF processing for fastpath UDP */ 12341 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 12342 ip_process(IPP_LOCAL_IN, mpp, ill_index); 12343 if (*mpp == NULL) { 12344 ip2dbg(("ip_input_ipsec_process: UDP pkt " 12345 "deferred/dropped during IPPF processing\n")); 12346 return (B_FALSE); 12347 } 12348 } 12349 /* 12350 * We make the checks as below since we are in the fast path 12351 * and want to minimize the number of checks if the IP_RECVIF and/or 12352 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 12353 */ 12354 if (connp->conn_recvif || connp->conn_recvslla || 12355 connp->conn_ip_recvpktinfo) { 12356 if (connp->conn_recvif) { 12357 in_flags = IPF_RECVIF; 12358 } 12359 /* 12360 * UDP supports IP_RECVPKTINFO option for both v4 and v6 12361 * so the flag passed to ip_add_info is based on IP version 12362 * of connp. 12363 */ 12364 if (connp->conn_ip_recvpktinfo) { 12365 if (connp->conn_af_isv6) { 12366 /* 12367 * V6 only needs index 12368 */ 12369 in_flags |= IPF_RECVIF; 12370 } else { 12371 /* 12372 * V4 needs index + matching address. 12373 */ 12374 in_flags |= IPF_RECVADDR; 12375 } 12376 } 12377 if (connp->conn_recvslla) { 12378 in_flags |= IPF_RECVSLLA; 12379 } 12380 /* 12381 * since in_flags are being set ill will be 12382 * referenced in ip_add_info, so it better not 12383 * be NULL. 12384 */ 12385 /* 12386 * the actual data will be contained in b_cont 12387 * upon successful return of the following call. 12388 * If the call fails then the original mblk is 12389 * returned. 12390 */ 12391 *mpp = ip_add_info(*mpp, ill, in_flags, IPCL_ZONEID(connp), 12392 ipst); 12393 } 12394 12395 return (B_TRUE); 12396 } 12397 12398 /* 12399 * Fragmentation reassembly. Each ILL has a hash table for 12400 * queuing packets undergoing reassembly for all IPIFs 12401 * associated with the ILL. The hash is based on the packet 12402 * IP ident field. The ILL frag hash table was allocated 12403 * as a timer block at the time the ILL was created. Whenever 12404 * there is anything on the reassembly queue, the timer will 12405 * be running. Returns B_TRUE if successful else B_FALSE; 12406 * frees mp on failure. 12407 */ 12408 static boolean_t 12409 ip_rput_fragment(queue_t *q, mblk_t **mpp, ipha_t *ipha, 12410 uint32_t *cksum_val, uint16_t *cksum_flags) 12411 { 12412 uint32_t frag_offset_flags; 12413 ill_t *ill = (ill_t *)q->q_ptr; 12414 mblk_t *mp = *mpp; 12415 mblk_t *t_mp; 12416 ipaddr_t dst; 12417 uint8_t proto = ipha->ipha_protocol; 12418 uint32_t sum_val; 12419 uint16_t sum_flags; 12420 ipf_t *ipf; 12421 ipf_t **ipfp; 12422 ipfb_t *ipfb; 12423 uint16_t ident; 12424 uint32_t offset; 12425 ipaddr_t src; 12426 uint_t hdr_length; 12427 uint32_t end; 12428 mblk_t *mp1; 12429 mblk_t *tail_mp; 12430 size_t count; 12431 size_t msg_len; 12432 uint8_t ecn_info = 0; 12433 uint32_t packet_size; 12434 boolean_t pruned = B_FALSE; 12435 ip_stack_t *ipst = ill->ill_ipst; 12436 12437 if (cksum_val != NULL) 12438 *cksum_val = 0; 12439 if (cksum_flags != NULL) 12440 *cksum_flags = 0; 12441 12442 /* 12443 * Drop the fragmented as early as possible, if 12444 * we don't have resource(s) to re-assemble. 12445 */ 12446 if (ipst->ips_ip_reass_queue_bytes == 0) { 12447 freemsg(mp); 12448 return (B_FALSE); 12449 } 12450 12451 /* Check for fragmentation offset; return if there's none */ 12452 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 12453 (IPH_MF | IPH_OFFSET)) == 0) 12454 return (B_TRUE); 12455 12456 /* 12457 * We utilize hardware computed checksum info only for UDP since 12458 * IP fragmentation is a normal occurence for the protocol. In 12459 * addition, checksum offload support for IP fragments carrying 12460 * UDP payload is commonly implemented across network adapters. 12461 */ 12462 ASSERT(ill != NULL); 12463 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(ill) && 12464 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 12465 mblk_t *mp1 = mp->b_cont; 12466 int32_t len; 12467 12468 /* Record checksum information from the packet */ 12469 sum_val = (uint32_t)DB_CKSUM16(mp); 12470 sum_flags = DB_CKSUMFLAGS(mp); 12471 12472 /* IP payload offset from beginning of mblk */ 12473 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 12474 12475 if ((sum_flags & HCK_PARTIALCKSUM) && 12476 (mp1 == NULL || mp1->b_cont == NULL) && 12477 offset >= DB_CKSUMSTART(mp) && 12478 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 12479 uint32_t adj; 12480 /* 12481 * Partial checksum has been calculated by hardware 12482 * and attached to the packet; in addition, any 12483 * prepended extraneous data is even byte aligned. 12484 * If any such data exists, we adjust the checksum; 12485 * this would also handle any postpended data. 12486 */ 12487 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 12488 mp, mp1, len, adj); 12489 12490 /* One's complement subtract extraneous checksum */ 12491 if (adj >= sum_val) 12492 sum_val = ~(adj - sum_val) & 0xFFFF; 12493 else 12494 sum_val -= adj; 12495 } 12496 } else { 12497 sum_val = 0; 12498 sum_flags = 0; 12499 } 12500 12501 /* Clear hardware checksumming flag */ 12502 DB_CKSUMFLAGS(mp) = 0; 12503 12504 ident = ipha->ipha_ident; 12505 offset = (frag_offset_flags << 3) & 0xFFFF; 12506 src = ipha->ipha_src; 12507 dst = ipha->ipha_dst; 12508 hdr_length = IPH_HDR_LENGTH(ipha); 12509 end = ntohs(ipha->ipha_length) - hdr_length; 12510 12511 /* If end == 0 then we have a packet with no data, so just free it */ 12512 if (end == 0) { 12513 freemsg(mp); 12514 return (B_FALSE); 12515 } 12516 12517 /* Record the ECN field info. */ 12518 ecn_info = (ipha->ipha_type_of_service & 0x3); 12519 if (offset != 0) { 12520 /* 12521 * If this isn't the first piece, strip the header, and 12522 * add the offset to the end value. 12523 */ 12524 mp->b_rptr += hdr_length; 12525 end += offset; 12526 } 12527 12528 msg_len = MBLKSIZE(mp); 12529 tail_mp = mp; 12530 while (tail_mp->b_cont != NULL) { 12531 tail_mp = tail_mp->b_cont; 12532 msg_len += MBLKSIZE(tail_mp); 12533 } 12534 12535 /* If the reassembly list for this ILL will get too big, prune it */ 12536 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 12537 ipst->ips_ip_reass_queue_bytes) { 12538 ill_frag_prune(ill, 12539 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 12540 (ipst->ips_ip_reass_queue_bytes - msg_len)); 12541 pruned = B_TRUE; 12542 } 12543 12544 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 12545 mutex_enter(&ipfb->ipfb_lock); 12546 12547 ipfp = &ipfb->ipfb_ipf; 12548 /* Try to find an existing fragment queue for this packet. */ 12549 for (;;) { 12550 ipf = ipfp[0]; 12551 if (ipf != NULL) { 12552 /* 12553 * It has to match on ident and src/dst address. 12554 */ 12555 if (ipf->ipf_ident == ident && 12556 ipf->ipf_src == src && 12557 ipf->ipf_dst == dst && 12558 ipf->ipf_protocol == proto) { 12559 /* 12560 * If we have received too many 12561 * duplicate fragments for this packet 12562 * free it. 12563 */ 12564 if (ipf->ipf_num_dups > ip_max_frag_dups) { 12565 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12566 freemsg(mp); 12567 mutex_exit(&ipfb->ipfb_lock); 12568 return (B_FALSE); 12569 } 12570 /* Found it. */ 12571 break; 12572 } 12573 ipfp = &ipf->ipf_hash_next; 12574 continue; 12575 } 12576 12577 /* 12578 * If we pruned the list, do we want to store this new 12579 * fragment?. We apply an optimization here based on the 12580 * fact that most fragments will be received in order. 12581 * So if the offset of this incoming fragment is zero, 12582 * it is the first fragment of a new packet. We will 12583 * keep it. Otherwise drop the fragment, as we have 12584 * probably pruned the packet already (since the 12585 * packet cannot be found). 12586 */ 12587 if (pruned && offset != 0) { 12588 mutex_exit(&ipfb->ipfb_lock); 12589 freemsg(mp); 12590 return (B_FALSE); 12591 } 12592 12593 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 12594 /* 12595 * Too many fragmented packets in this hash 12596 * bucket. Free the oldest. 12597 */ 12598 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 12599 } 12600 12601 /* New guy. Allocate a frag message. */ 12602 mp1 = allocb(sizeof (*ipf), BPRI_MED); 12603 if (mp1 == NULL) { 12604 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12605 freemsg(mp); 12606 reass_done: 12607 mutex_exit(&ipfb->ipfb_lock); 12608 return (B_FALSE); 12609 } 12610 12611 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 12612 mp1->b_cont = mp; 12613 12614 /* Initialize the fragment header. */ 12615 ipf = (ipf_t *)mp1->b_rptr; 12616 ipf->ipf_mp = mp1; 12617 ipf->ipf_ptphn = ipfp; 12618 ipfp[0] = ipf; 12619 ipf->ipf_hash_next = NULL; 12620 ipf->ipf_ident = ident; 12621 ipf->ipf_protocol = proto; 12622 ipf->ipf_src = src; 12623 ipf->ipf_dst = dst; 12624 ipf->ipf_nf_hdr_len = 0; 12625 /* Record reassembly start time. */ 12626 ipf->ipf_timestamp = gethrestime_sec(); 12627 /* Record ipf generation and account for frag header */ 12628 ipf->ipf_gen = ill->ill_ipf_gen++; 12629 ipf->ipf_count = MBLKSIZE(mp1); 12630 ipf->ipf_last_frag_seen = B_FALSE; 12631 ipf->ipf_ecn = ecn_info; 12632 ipf->ipf_num_dups = 0; 12633 ipfb->ipfb_frag_pkts++; 12634 ipf->ipf_checksum = 0; 12635 ipf->ipf_checksum_flags = 0; 12636 12637 /* Store checksum value in fragment header */ 12638 if (sum_flags != 0) { 12639 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12640 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12641 ipf->ipf_checksum = sum_val; 12642 ipf->ipf_checksum_flags = sum_flags; 12643 } 12644 12645 /* 12646 * We handle reassembly two ways. In the easy case, 12647 * where all the fragments show up in order, we do 12648 * minimal bookkeeping, and just clip new pieces on 12649 * the end. If we ever see a hole, then we go off 12650 * to ip_reassemble which has to mark the pieces and 12651 * keep track of the number of holes, etc. Obviously, 12652 * the point of having both mechanisms is so we can 12653 * handle the easy case as efficiently as possible. 12654 */ 12655 if (offset == 0) { 12656 /* Easy case, in-order reassembly so far. */ 12657 ipf->ipf_count += msg_len; 12658 ipf->ipf_tail_mp = tail_mp; 12659 /* 12660 * Keep track of next expected offset in 12661 * ipf_end. 12662 */ 12663 ipf->ipf_end = end; 12664 ipf->ipf_nf_hdr_len = hdr_length; 12665 } else { 12666 /* Hard case, hole at the beginning. */ 12667 ipf->ipf_tail_mp = NULL; 12668 /* 12669 * ipf_end == 0 means that we have given up 12670 * on easy reassembly. 12671 */ 12672 ipf->ipf_end = 0; 12673 12674 /* Forget checksum offload from now on */ 12675 ipf->ipf_checksum_flags = 0; 12676 12677 /* 12678 * ipf_hole_cnt is set by ip_reassemble. 12679 * ipf_count is updated by ip_reassemble. 12680 * No need to check for return value here 12681 * as we don't expect reassembly to complete 12682 * or fail for the first fragment itself. 12683 */ 12684 (void) ip_reassemble(mp, ipf, 12685 (frag_offset_flags & IPH_OFFSET) << 3, 12686 (frag_offset_flags & IPH_MF), ill, msg_len); 12687 } 12688 /* Update per ipfb and ill byte counts */ 12689 ipfb->ipfb_count += ipf->ipf_count; 12690 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12691 ill->ill_frag_count += ipf->ipf_count; 12692 /* If the frag timer wasn't already going, start it. */ 12693 mutex_enter(&ill->ill_lock); 12694 ill_frag_timer_start(ill); 12695 mutex_exit(&ill->ill_lock); 12696 goto reass_done; 12697 } 12698 12699 /* 12700 * If the packet's flag has changed (it could be coming up 12701 * from an interface different than the previous, therefore 12702 * possibly different checksum capability), then forget about 12703 * any stored checksum states. Otherwise add the value to 12704 * the existing one stored in the fragment header. 12705 */ 12706 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 12707 sum_val += ipf->ipf_checksum; 12708 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12709 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12710 ipf->ipf_checksum = sum_val; 12711 } else if (ipf->ipf_checksum_flags != 0) { 12712 /* Forget checksum offload from now on */ 12713 ipf->ipf_checksum_flags = 0; 12714 } 12715 12716 /* 12717 * We have a new piece of a datagram which is already being 12718 * reassembled. Update the ECN info if all IP fragments 12719 * are ECN capable. If there is one which is not, clear 12720 * all the info. If there is at least one which has CE 12721 * code point, IP needs to report that up to transport. 12722 */ 12723 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 12724 if (ecn_info == IPH_ECN_CE) 12725 ipf->ipf_ecn = IPH_ECN_CE; 12726 } else { 12727 ipf->ipf_ecn = IPH_ECN_NECT; 12728 } 12729 if (offset && ipf->ipf_end == offset) { 12730 /* The new fragment fits at the end */ 12731 ipf->ipf_tail_mp->b_cont = mp; 12732 /* Update the byte count */ 12733 ipf->ipf_count += msg_len; 12734 /* Update per ipfb and ill byte counts */ 12735 ipfb->ipfb_count += msg_len; 12736 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12737 ill->ill_frag_count += msg_len; 12738 if (frag_offset_flags & IPH_MF) { 12739 /* More to come. */ 12740 ipf->ipf_end = end; 12741 ipf->ipf_tail_mp = tail_mp; 12742 goto reass_done; 12743 } 12744 } else { 12745 /* Go do the hard cases. */ 12746 int ret; 12747 12748 if (offset == 0) 12749 ipf->ipf_nf_hdr_len = hdr_length; 12750 12751 /* Save current byte count */ 12752 count = ipf->ipf_count; 12753 ret = ip_reassemble(mp, ipf, 12754 (frag_offset_flags & IPH_OFFSET) << 3, 12755 (frag_offset_flags & IPH_MF), ill, msg_len); 12756 /* Count of bytes added and subtracted (freeb()ed) */ 12757 count = ipf->ipf_count - count; 12758 if (count) { 12759 /* Update per ipfb and ill byte counts */ 12760 ipfb->ipfb_count += count; 12761 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12762 ill->ill_frag_count += count; 12763 } 12764 if (ret == IP_REASS_PARTIAL) { 12765 goto reass_done; 12766 } else if (ret == IP_REASS_FAILED) { 12767 /* Reassembly failed. Free up all resources */ 12768 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12769 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 12770 IP_REASS_SET_START(t_mp, 0); 12771 IP_REASS_SET_END(t_mp, 0); 12772 } 12773 freemsg(mp); 12774 goto reass_done; 12775 } 12776 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 12777 } 12778 /* 12779 * We have completed reassembly. Unhook the frag header from 12780 * the reassembly list. 12781 * 12782 * Before we free the frag header, record the ECN info 12783 * to report back to the transport. 12784 */ 12785 ecn_info = ipf->ipf_ecn; 12786 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 12787 ipfp = ipf->ipf_ptphn; 12788 12789 /* We need to supply these to caller */ 12790 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 12791 sum_val = ipf->ipf_checksum; 12792 else 12793 sum_val = 0; 12794 12795 mp1 = ipf->ipf_mp; 12796 count = ipf->ipf_count; 12797 ipf = ipf->ipf_hash_next; 12798 if (ipf != NULL) 12799 ipf->ipf_ptphn = ipfp; 12800 ipfp[0] = ipf; 12801 ill->ill_frag_count -= count; 12802 ASSERT(ipfb->ipfb_count >= count); 12803 ipfb->ipfb_count -= count; 12804 ipfb->ipfb_frag_pkts--; 12805 mutex_exit(&ipfb->ipfb_lock); 12806 /* Ditch the frag header. */ 12807 mp = mp1->b_cont; 12808 12809 freeb(mp1); 12810 12811 /* Restore original IP length in header. */ 12812 packet_size = (uint32_t)msgdsize(mp); 12813 if (packet_size > IP_MAXPACKET) { 12814 freemsg(mp); 12815 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 12816 return (B_FALSE); 12817 } 12818 12819 if (DB_REF(mp) > 1) { 12820 mblk_t *mp2 = copymsg(mp); 12821 12822 freemsg(mp); 12823 if (mp2 == NULL) { 12824 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12825 return (B_FALSE); 12826 } 12827 mp = mp2; 12828 } 12829 ipha = (ipha_t *)mp->b_rptr; 12830 12831 ipha->ipha_length = htons((uint16_t)packet_size); 12832 /* We're now complete, zip the frag state */ 12833 ipha->ipha_fragment_offset_and_flags = 0; 12834 /* Record the ECN info. */ 12835 ipha->ipha_type_of_service &= 0xFC; 12836 ipha->ipha_type_of_service |= ecn_info; 12837 *mpp = mp; 12838 12839 /* Reassembly is successful; return checksum information if needed */ 12840 if (cksum_val != NULL) 12841 *cksum_val = sum_val; 12842 if (cksum_flags != NULL) 12843 *cksum_flags = sum_flags; 12844 12845 return (B_TRUE); 12846 } 12847 12848 /* 12849 * Perform ip header check sum update local options. 12850 * return B_TRUE if all is well, else return B_FALSE and release 12851 * the mp. caller is responsible for decrementing ire ref cnt. 12852 */ 12853 static boolean_t 12854 ip_options_cksum(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12855 ip_stack_t *ipst) 12856 { 12857 mblk_t *first_mp; 12858 boolean_t mctl_present; 12859 uint16_t sum; 12860 12861 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12862 /* 12863 * Don't do the checksum if it has gone through AH/ESP 12864 * processing. 12865 */ 12866 if (!mctl_present) { 12867 sum = ip_csum_hdr(ipha); 12868 if (sum != 0) { 12869 if (ill != NULL) { 12870 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12871 } else { 12872 BUMP_MIB(&ipst->ips_ip_mib, 12873 ipIfStatsInCksumErrs); 12874 } 12875 freemsg(first_mp); 12876 return (B_FALSE); 12877 } 12878 } 12879 12880 if (!ip_rput_local_options(q, mp, ipha, ire, ipst)) { 12881 if (mctl_present) 12882 freeb(first_mp); 12883 return (B_FALSE); 12884 } 12885 12886 return (B_TRUE); 12887 } 12888 12889 /* 12890 * All udp packet are delivered to the local host via this routine. 12891 */ 12892 void 12893 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12894 ill_t *recv_ill) 12895 { 12896 uint32_t sum; 12897 uint32_t u1; 12898 boolean_t mctl_present; 12899 conn_t *connp; 12900 mblk_t *first_mp; 12901 uint16_t *up; 12902 ill_t *ill = (ill_t *)q->q_ptr; 12903 uint16_t reass_hck_flags = 0; 12904 ip_stack_t *ipst; 12905 12906 ASSERT(recv_ill != NULL); 12907 ipst = recv_ill->ill_ipst; 12908 12909 #define rptr ((uchar_t *)ipha) 12910 12911 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12912 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 12913 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12914 ASSERT(ill != NULL); 12915 12916 /* 12917 * FAST PATH for udp packets 12918 */ 12919 12920 /* u1 is # words of IP options */ 12921 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 12922 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12923 12924 /* IP options present */ 12925 if (u1 != 0) 12926 goto ipoptions; 12927 12928 /* Check the IP header checksum. */ 12929 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12930 /* Clear the IP header h/w cksum flag */ 12931 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12932 } else { 12933 #define uph ((uint16_t *)ipha) 12934 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12935 uph[6] + uph[7] + uph[8] + uph[9]; 12936 #undef uph 12937 /* finish doing IP checksum */ 12938 sum = (sum & 0xFFFF) + (sum >> 16); 12939 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12940 /* 12941 * Don't verify header checksum if this packet is coming 12942 * back from AH/ESP as we already did it. 12943 */ 12944 if (!mctl_present && sum != 0 && sum != 0xFFFF) { 12945 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12946 freemsg(first_mp); 12947 return; 12948 } 12949 } 12950 12951 /* 12952 * Count for SNMP of inbound packets for ire. 12953 * if mctl is present this might be a secure packet and 12954 * has already been counted for in ip_proto_input(). 12955 */ 12956 if (!mctl_present) { 12957 UPDATE_IB_PKT_COUNT(ire); 12958 ire->ire_last_used_time = lbolt; 12959 } 12960 12961 /* packet part of fragmented IP packet? */ 12962 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12963 if (u1 & (IPH_MF | IPH_OFFSET)) { 12964 goto fragmented; 12965 } 12966 12967 /* u1 = IP header length (20 bytes) */ 12968 u1 = IP_SIMPLE_HDR_LENGTH; 12969 12970 /* packet does not contain complete IP & UDP headers */ 12971 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12972 goto udppullup; 12973 12974 /* up points to UDP header */ 12975 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12976 #define iphs ((uint16_t *)ipha) 12977 12978 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12979 if (up[3] != 0) { 12980 mblk_t *mp1 = mp->b_cont; 12981 boolean_t cksum_err; 12982 uint16_t hck_flags = 0; 12983 12984 /* Pseudo-header checksum */ 12985 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12986 iphs[9] + up[2]; 12987 12988 /* 12989 * Revert to software checksum calculation if the interface 12990 * isn't capable of checksum offload or if IPsec is present. 12991 */ 12992 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12993 hck_flags = DB_CKSUMFLAGS(mp); 12994 12995 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12996 IP_STAT(ipst, ip_in_sw_cksum); 12997 12998 IP_CKSUM_RECV(hck_flags, u1, 12999 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 13000 (int32_t)((uchar_t *)up - rptr), 13001 mp, mp1, cksum_err); 13002 13003 if (cksum_err) { 13004 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 13005 if (hck_flags & HCK_FULLCKSUM) 13006 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 13007 else if (hck_flags & HCK_PARTIALCKSUM) 13008 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 13009 else 13010 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 13011 13012 freemsg(first_mp); 13013 return; 13014 } 13015 } 13016 13017 /* Non-fragmented broadcast or multicast packet? */ 13018 if (ire->ire_type == IRE_BROADCAST) 13019 goto udpslowpath; 13020 13021 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 13022 ire->ire_zoneid, ipst)) != NULL) { 13023 ASSERT(connp->conn_upq != NULL); 13024 IP_STAT(ipst, ip_udp_fast_path); 13025 13026 if (CONN_UDP_FLOWCTLD(connp)) { 13027 freemsg(mp); 13028 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 13029 } else { 13030 if (!mctl_present) { 13031 BUMP_MIB(ill->ill_ip_mib, 13032 ipIfStatsHCInDelivers); 13033 } 13034 /* 13035 * mp and first_mp can change. 13036 */ 13037 if (ip_udp_check(q, connp, recv_ill, 13038 ipha, &mp, &first_mp, mctl_present)) { 13039 /* Send it upstream */ 13040 CONN_UDP_RECV(connp, mp); 13041 } 13042 } 13043 /* 13044 * freeb() cannot deal with null mblk being passed 13045 * in and first_mp can be set to null in the call 13046 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 13047 */ 13048 if (mctl_present && first_mp != NULL) { 13049 freeb(first_mp); 13050 } 13051 CONN_DEC_REF(connp); 13052 return; 13053 } 13054 13055 /* 13056 * if we got here we know the packet is not fragmented and 13057 * has no options. The classifier could not find a conn_t and 13058 * most likely its an icmp packet so send it through slow path. 13059 */ 13060 13061 goto udpslowpath; 13062 13063 ipoptions: 13064 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 13065 goto slow_done; 13066 } 13067 13068 UPDATE_IB_PKT_COUNT(ire); 13069 ire->ire_last_used_time = lbolt; 13070 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13071 if (u1 & (IPH_MF | IPH_OFFSET)) { 13072 fragmented: 13073 /* 13074 * "sum" and "reass_hck_flags" are non-zero if the 13075 * reassembled packet has a valid hardware computed 13076 * checksum information associated with it. 13077 */ 13078 if (!ip_rput_fragment(q, &mp, ipha, &sum, &reass_hck_flags)) 13079 goto slow_done; 13080 /* 13081 * Make sure that first_mp points back to mp as 13082 * the mp we came in with could have changed in 13083 * ip_rput_fragment(). 13084 */ 13085 ASSERT(!mctl_present); 13086 ipha = (ipha_t *)mp->b_rptr; 13087 first_mp = mp; 13088 } 13089 13090 /* Now we have a complete datagram, destined for this machine. */ 13091 u1 = IPH_HDR_LENGTH(ipha); 13092 /* Pull up the UDP header, if necessary. */ 13093 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 13094 udppullup: 13095 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 13096 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13097 freemsg(first_mp); 13098 goto slow_done; 13099 } 13100 ipha = (ipha_t *)mp->b_rptr; 13101 } 13102 13103 /* 13104 * Validate the checksum for the reassembled packet; for the 13105 * pullup case we calculate the payload checksum in software. 13106 */ 13107 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 13108 if (up[3] != 0) { 13109 boolean_t cksum_err; 13110 13111 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 13112 IP_STAT(ipst, ip_in_sw_cksum); 13113 13114 IP_CKSUM_RECV_REASS(reass_hck_flags, 13115 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 13116 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 13117 iphs[9] + up[2], sum, cksum_err); 13118 13119 if (cksum_err) { 13120 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 13121 13122 if (reass_hck_flags & HCK_FULLCKSUM) 13123 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 13124 else if (reass_hck_flags & HCK_PARTIALCKSUM) 13125 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 13126 else 13127 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 13128 13129 freemsg(first_mp); 13130 goto slow_done; 13131 } 13132 } 13133 udpslowpath: 13134 13135 /* Clear hardware checksum flag to be safe */ 13136 DB_CKSUMFLAGS(mp) = 0; 13137 13138 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 13139 (ire->ire_type == IRE_BROADCAST), 13140 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IPINFO, 13141 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 13142 13143 slow_done: 13144 IP_STAT(ipst, ip_udp_slow_path); 13145 return; 13146 13147 #undef iphs 13148 #undef rptr 13149 } 13150 13151 /* ARGSUSED */ 13152 static mblk_t * 13153 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13154 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 13155 ill_rx_ring_t *ill_ring) 13156 { 13157 conn_t *connp; 13158 uint32_t sum; 13159 uint32_t u1; 13160 uint16_t *up; 13161 int offset; 13162 ssize_t len; 13163 mblk_t *mp1; 13164 boolean_t syn_present = B_FALSE; 13165 tcph_t *tcph; 13166 uint_t ip_hdr_len; 13167 ill_t *ill = (ill_t *)q->q_ptr; 13168 zoneid_t zoneid = ire->ire_zoneid; 13169 boolean_t cksum_err; 13170 uint16_t hck_flags = 0; 13171 ip_stack_t *ipst = recv_ill->ill_ipst; 13172 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 13173 13174 #define rptr ((uchar_t *)ipha) 13175 13176 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 13177 ASSERT(ill != NULL); 13178 13179 /* 13180 * FAST PATH for tcp packets 13181 */ 13182 13183 /* u1 is # words of IP options */ 13184 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13185 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13186 13187 /* IP options present */ 13188 if (u1) { 13189 goto ipoptions; 13190 } else { 13191 /* Check the IP header checksum. */ 13192 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 13193 /* Clear the IP header h/w cksum flag */ 13194 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 13195 } else { 13196 #define uph ((uint16_t *)ipha) 13197 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13198 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13199 #undef uph 13200 /* finish doing IP checksum */ 13201 sum = (sum & 0xFFFF) + (sum >> 16); 13202 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13203 /* 13204 * Don't verify header checksum if this packet 13205 * is coming back from AH/ESP as we already did it. 13206 */ 13207 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 13208 BUMP_MIB(ill->ill_ip_mib, 13209 ipIfStatsInCksumErrs); 13210 goto error; 13211 } 13212 } 13213 } 13214 13215 if (!mctl_present) { 13216 UPDATE_IB_PKT_COUNT(ire); 13217 ire->ire_last_used_time = lbolt; 13218 } 13219 13220 /* packet part of fragmented IP packet? */ 13221 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13222 if (u1 & (IPH_MF | IPH_OFFSET)) { 13223 goto fragmented; 13224 } 13225 13226 /* u1 = IP header length (20 bytes) */ 13227 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 13228 13229 /* does packet contain IP+TCP headers? */ 13230 len = mp->b_wptr - rptr; 13231 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 13232 IP_STAT(ipst, ip_tcppullup); 13233 goto tcppullup; 13234 } 13235 13236 /* TCP options present? */ 13237 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 13238 13239 /* 13240 * If options need to be pulled up, then goto tcpoptions. 13241 * otherwise we are still in the fast path 13242 */ 13243 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 13244 IP_STAT(ipst, ip_tcpoptions); 13245 goto tcpoptions; 13246 } 13247 13248 /* multiple mblks of tcp data? */ 13249 if ((mp1 = mp->b_cont) != NULL) { 13250 /* more then two? */ 13251 if (mp1->b_cont != NULL) { 13252 IP_STAT(ipst, ip_multipkttcp); 13253 goto multipkttcp; 13254 } 13255 len += mp1->b_wptr - mp1->b_rptr; 13256 } 13257 13258 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 13259 13260 /* part of pseudo checksum */ 13261 13262 /* TCP datagram length */ 13263 u1 = len - IP_SIMPLE_HDR_LENGTH; 13264 13265 #define iphs ((uint16_t *)ipha) 13266 13267 #ifdef _BIG_ENDIAN 13268 u1 += IPPROTO_TCP; 13269 #else 13270 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13271 #endif 13272 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13273 13274 /* 13275 * Revert to software checksum calculation if the interface 13276 * isn't capable of checksum offload or if IPsec is present. 13277 */ 13278 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 13279 hck_flags = DB_CKSUMFLAGS(mp); 13280 13281 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 13282 IP_STAT(ipst, ip_in_sw_cksum); 13283 13284 IP_CKSUM_RECV(hck_flags, u1, 13285 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 13286 (int32_t)((uchar_t *)up - rptr), 13287 mp, mp1, cksum_err); 13288 13289 if (cksum_err) { 13290 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13291 13292 if (hck_flags & HCK_FULLCKSUM) 13293 IP_STAT(ipst, ip_tcp_in_full_hw_cksum_err); 13294 else if (hck_flags & HCK_PARTIALCKSUM) 13295 IP_STAT(ipst, ip_tcp_in_part_hw_cksum_err); 13296 else 13297 IP_STAT(ipst, ip_tcp_in_sw_cksum_err); 13298 13299 goto error; 13300 } 13301 13302 try_again: 13303 13304 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 13305 zoneid, ipst)) == NULL) { 13306 /* Send the TH_RST */ 13307 goto no_conn; 13308 } 13309 13310 /* 13311 * TCP FAST PATH for AF_INET socket. 13312 * 13313 * TCP fast path to avoid extra work. An AF_INET socket type 13314 * does not have facility to receive extra information via 13315 * ip_process or ip_add_info. Also, when the connection was 13316 * established, we made a check if this connection is impacted 13317 * by any global IPSec policy or per connection policy (a 13318 * policy that comes in effect later will not apply to this 13319 * connection). Since all this can be determined at the 13320 * connection establishment time, a quick check of flags 13321 * can avoid extra work. 13322 */ 13323 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 13324 !IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13325 ASSERT(first_mp == mp); 13326 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13327 SET_SQUEUE(mp, tcp_rput_data, connp); 13328 return (mp); 13329 } 13330 13331 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 13332 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 13333 if (IPCL_IS_TCP(connp)) { 13334 mp->b_datap->db_struioflag |= STRUIO_EAGER; 13335 DB_CKSUMSTART(mp) = 13336 (intptr_t)ip_squeue_get(ill_ring); 13337 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 13338 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13339 BUMP_MIB(ill->ill_ip_mib, 13340 ipIfStatsHCInDelivers); 13341 SET_SQUEUE(mp, connp->conn_recv, connp); 13342 return (mp); 13343 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 13344 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13345 BUMP_MIB(ill->ill_ip_mib, 13346 ipIfStatsHCInDelivers); 13347 ip_squeue_enter_unbound++; 13348 SET_SQUEUE(mp, tcp_conn_request_unbound, 13349 connp); 13350 return (mp); 13351 } 13352 syn_present = B_TRUE; 13353 } 13354 13355 } 13356 13357 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 13358 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 13359 13360 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13361 /* No need to send this packet to TCP */ 13362 if ((flags & TH_RST) || (flags & TH_URG)) { 13363 CONN_DEC_REF(connp); 13364 freemsg(first_mp); 13365 return (NULL); 13366 } 13367 if (flags & TH_ACK) { 13368 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 13369 ipst->ips_netstack->netstack_tcp); 13370 CONN_DEC_REF(connp); 13371 return (NULL); 13372 } 13373 13374 CONN_DEC_REF(connp); 13375 freemsg(first_mp); 13376 return (NULL); 13377 } 13378 13379 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 13380 first_mp = ipsec_check_inbound_policy(first_mp, connp, 13381 ipha, NULL, mctl_present); 13382 if (first_mp == NULL) { 13383 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13384 CONN_DEC_REF(connp); 13385 return (NULL); 13386 } 13387 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 13388 ASSERT(syn_present); 13389 if (mctl_present) { 13390 ASSERT(first_mp != mp); 13391 first_mp->b_datap->db_struioflag |= 13392 STRUIO_POLICY; 13393 } else { 13394 ASSERT(first_mp == mp); 13395 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 13396 mp->b_datap->db_struioflag |= STRUIO_POLICY; 13397 } 13398 } else { 13399 /* 13400 * Discard first_mp early since we're dealing with a 13401 * fully-connected conn_t and tcp doesn't do policy in 13402 * this case. 13403 */ 13404 if (mctl_present) { 13405 freeb(first_mp); 13406 mctl_present = B_FALSE; 13407 } 13408 first_mp = mp; 13409 } 13410 } 13411 13412 /* Initiate IPPF processing for fastpath */ 13413 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13414 uint32_t ill_index; 13415 13416 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13417 ip_process(IPP_LOCAL_IN, &mp, ill_index); 13418 if (mp == NULL) { 13419 ip2dbg(("ip_input_ipsec_process: TCP pkt " 13420 "deferred/dropped during IPPF processing\n")); 13421 CONN_DEC_REF(connp); 13422 if (mctl_present) 13423 freeb(first_mp); 13424 return (NULL); 13425 } else if (mctl_present) { 13426 /* 13427 * ip_process might return a new mp. 13428 */ 13429 ASSERT(first_mp != mp); 13430 first_mp->b_cont = mp; 13431 } else { 13432 first_mp = mp; 13433 } 13434 13435 } 13436 13437 if (!syn_present && connp->conn_ip_recvpktinfo) { 13438 /* 13439 * TCP does not support IP_RECVPKTINFO for v4 so lets 13440 * make sure IPF_RECVIF is passed to ip_add_info. 13441 */ 13442 mp = ip_add_info(mp, recv_ill, flags|IPF_RECVIF, 13443 IPCL_ZONEID(connp), ipst); 13444 if (mp == NULL) { 13445 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13446 CONN_DEC_REF(connp); 13447 if (mctl_present) 13448 freeb(first_mp); 13449 return (NULL); 13450 } else if (mctl_present) { 13451 /* 13452 * ip_add_info might return a new mp. 13453 */ 13454 ASSERT(first_mp != mp); 13455 first_mp->b_cont = mp; 13456 } else { 13457 first_mp = mp; 13458 } 13459 } 13460 13461 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13462 if (IPCL_IS_TCP(connp)) { 13463 SET_SQUEUE(first_mp, connp->conn_recv, connp); 13464 return (first_mp); 13465 } else { 13466 putnext(connp->conn_rq, first_mp); 13467 CONN_DEC_REF(connp); 13468 return (NULL); 13469 } 13470 13471 no_conn: 13472 /* Initiate IPPf processing, if needed. */ 13473 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13474 uint32_t ill_index; 13475 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13476 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 13477 if (first_mp == NULL) { 13478 return (NULL); 13479 } 13480 } 13481 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13482 13483 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr), zoneid, 13484 ipst->ips_netstack->netstack_tcp); 13485 return (NULL); 13486 ipoptions: 13487 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) { 13488 goto slow_done; 13489 } 13490 13491 UPDATE_IB_PKT_COUNT(ire); 13492 ire->ire_last_used_time = lbolt; 13493 13494 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13495 if (u1 & (IPH_MF | IPH_OFFSET)) { 13496 fragmented: 13497 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 13498 if (mctl_present) 13499 freeb(first_mp); 13500 goto slow_done; 13501 } 13502 /* 13503 * Make sure that first_mp points back to mp as 13504 * the mp we came in with could have changed in 13505 * ip_rput_fragment(). 13506 */ 13507 ASSERT(!mctl_present); 13508 ipha = (ipha_t *)mp->b_rptr; 13509 first_mp = mp; 13510 } 13511 13512 /* Now we have a complete datagram, destined for this machine. */ 13513 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 13514 13515 len = mp->b_wptr - mp->b_rptr; 13516 /* Pull up a minimal TCP header, if necessary. */ 13517 if (len < (u1 + 20)) { 13518 tcppullup: 13519 if (!pullupmsg(mp, u1 + 20)) { 13520 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13521 goto error; 13522 } 13523 ipha = (ipha_t *)mp->b_rptr; 13524 len = mp->b_wptr - mp->b_rptr; 13525 } 13526 13527 /* 13528 * Extract the offset field from the TCP header. As usual, we 13529 * try to help the compiler more than the reader. 13530 */ 13531 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 13532 if (offset != 5) { 13533 tcpoptions: 13534 if (offset < 5) { 13535 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13536 goto error; 13537 } 13538 /* 13539 * There must be TCP options. 13540 * Make sure we can grab them. 13541 */ 13542 offset <<= 2; 13543 offset += u1; 13544 if (len < offset) { 13545 if (!pullupmsg(mp, offset)) { 13546 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13547 goto error; 13548 } 13549 ipha = (ipha_t *)mp->b_rptr; 13550 len = mp->b_wptr - rptr; 13551 } 13552 } 13553 13554 /* Get the total packet length in len, including headers. */ 13555 if (mp->b_cont) { 13556 multipkttcp: 13557 len = msgdsize(mp); 13558 } 13559 13560 /* 13561 * Check the TCP checksum by pulling together the pseudo- 13562 * header checksum, and passing it to ip_csum to be added in 13563 * with the TCP datagram. 13564 * 13565 * Since we are not using the hwcksum if available we must 13566 * clear the flag. We may come here via tcppullup or tcpoptions. 13567 * If either of these fails along the way the mblk is freed. 13568 * If this logic ever changes and mblk is reused to say send 13569 * ICMP's back, then this flag may need to be cleared in 13570 * other places as well. 13571 */ 13572 DB_CKSUMFLAGS(mp) = 0; 13573 13574 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 13575 13576 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 13577 #ifdef _BIG_ENDIAN 13578 u1 += IPPROTO_TCP; 13579 #else 13580 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13581 #endif 13582 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13583 /* 13584 * Not M_DATA mblk or its a dup, so do the checksum now. 13585 */ 13586 IP_STAT(ipst, ip_in_sw_cksum); 13587 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 13588 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13589 goto error; 13590 } 13591 13592 IP_STAT(ipst, ip_tcp_slow_path); 13593 goto try_again; 13594 #undef iphs 13595 #undef rptr 13596 13597 error: 13598 freemsg(first_mp); 13599 slow_done: 13600 return (NULL); 13601 } 13602 13603 /* ARGSUSED */ 13604 static void 13605 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13606 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 13607 { 13608 conn_t *connp; 13609 uint32_t sum; 13610 uint32_t u1; 13611 ssize_t len; 13612 sctp_hdr_t *sctph; 13613 zoneid_t zoneid = ire->ire_zoneid; 13614 uint32_t pktsum; 13615 uint32_t calcsum; 13616 uint32_t ports; 13617 in6_addr_t map_src, map_dst; 13618 ill_t *ill = (ill_t *)q->q_ptr; 13619 ip_stack_t *ipst; 13620 sctp_stack_t *sctps; 13621 13622 ASSERT(recv_ill != NULL); 13623 ipst = recv_ill->ill_ipst; 13624 sctps = ipst->ips_netstack->netstack_sctp; 13625 13626 #define rptr ((uchar_t *)ipha) 13627 13628 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 13629 ASSERT(ill != NULL); 13630 13631 /* u1 is # words of IP options */ 13632 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13633 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13634 13635 /* IP options present */ 13636 if (u1 > 0) { 13637 goto ipoptions; 13638 } else { 13639 /* Check the IP header checksum. */ 13640 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 13641 #define uph ((uint16_t *)ipha) 13642 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13643 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13644 #undef uph 13645 /* finish doing IP checksum */ 13646 sum = (sum & 0xFFFF) + (sum >> 16); 13647 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13648 /* 13649 * Don't verify header checksum if this packet 13650 * is coming back from AH/ESP as we already did it. 13651 */ 13652 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 13653 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 13654 goto error; 13655 } 13656 } 13657 /* 13658 * Since there is no SCTP h/w cksum support yet, just 13659 * clear the flag. 13660 */ 13661 DB_CKSUMFLAGS(mp) = 0; 13662 } 13663 13664 /* 13665 * Don't verify header checksum if this packet is coming 13666 * back from AH/ESP as we already did it. 13667 */ 13668 if (!mctl_present) { 13669 UPDATE_IB_PKT_COUNT(ire); 13670 ire->ire_last_used_time = lbolt; 13671 } 13672 13673 /* packet part of fragmented IP packet? */ 13674 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13675 if (u1 & (IPH_MF | IPH_OFFSET)) 13676 goto fragmented; 13677 13678 /* u1 = IP header length (20 bytes) */ 13679 u1 = IP_SIMPLE_HDR_LENGTH; 13680 13681 find_sctp_client: 13682 /* Pullup if we don't have the sctp common header. */ 13683 len = MBLKL(mp); 13684 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 13685 if (mp->b_cont == NULL || 13686 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 13687 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13688 goto error; 13689 } 13690 ipha = (ipha_t *)mp->b_rptr; 13691 len = MBLKL(mp); 13692 } 13693 13694 sctph = (sctp_hdr_t *)(rptr + u1); 13695 #ifdef DEBUG 13696 if (!skip_sctp_cksum) { 13697 #endif 13698 pktsum = sctph->sh_chksum; 13699 sctph->sh_chksum = 0; 13700 calcsum = sctp_cksum(mp, u1); 13701 if (calcsum != pktsum) { 13702 BUMP_MIB(&sctps->sctps_mib, sctpChecksumError); 13703 goto error; 13704 } 13705 sctph->sh_chksum = pktsum; 13706 #ifdef DEBUG /* skip_sctp_cksum */ 13707 } 13708 #endif 13709 /* get the ports */ 13710 ports = *(uint32_t *)&sctph->sh_sport; 13711 13712 IRE_REFRELE(ire); 13713 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 13714 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 13715 if ((connp = sctp_fanout(&map_src, &map_dst, ports, zoneid, mp, 13716 sctps)) == NULL) { 13717 /* Check for raw socket or OOTB handling */ 13718 goto no_conn; 13719 } 13720 13721 /* Found a client; up it goes */ 13722 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13723 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 13724 return; 13725 13726 no_conn: 13727 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 13728 ports, mctl_present, flags, B_TRUE, zoneid); 13729 return; 13730 13731 ipoptions: 13732 DB_CKSUMFLAGS(mp) = 0; 13733 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) 13734 goto slow_done; 13735 13736 UPDATE_IB_PKT_COUNT(ire); 13737 ire->ire_last_used_time = lbolt; 13738 13739 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13740 if (u1 & (IPH_MF | IPH_OFFSET)) { 13741 fragmented: 13742 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) 13743 goto slow_done; 13744 /* 13745 * Make sure that first_mp points back to mp as 13746 * the mp we came in with could have changed in 13747 * ip_rput_fragment(). 13748 */ 13749 ASSERT(!mctl_present); 13750 ipha = (ipha_t *)mp->b_rptr; 13751 first_mp = mp; 13752 } 13753 13754 /* Now we have a complete datagram, destined for this machine. */ 13755 u1 = IPH_HDR_LENGTH(ipha); 13756 goto find_sctp_client; 13757 #undef iphs 13758 #undef rptr 13759 13760 error: 13761 freemsg(first_mp); 13762 slow_done: 13763 IRE_REFRELE(ire); 13764 } 13765 13766 #define VER_BITS 0xF0 13767 #define VERSION_6 0x60 13768 13769 static boolean_t 13770 ip_rput_multimblk_ipoptions(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t **iphapp, 13771 ipaddr_t *dstp, ip_stack_t *ipst) 13772 { 13773 uint_t opt_len; 13774 ipha_t *ipha; 13775 ssize_t len; 13776 uint_t pkt_len; 13777 13778 ASSERT(ill != NULL); 13779 IP_STAT(ipst, ip_ipoptions); 13780 ipha = *iphapp; 13781 13782 #define rptr ((uchar_t *)ipha) 13783 /* Assume no IPv6 packets arrive over the IPv4 queue */ 13784 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 13785 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 13786 freemsg(mp); 13787 return (B_FALSE); 13788 } 13789 13790 /* multiple mblk or too short */ 13791 pkt_len = ntohs(ipha->ipha_length); 13792 13793 /* Get the number of words of IP options in the IP header. */ 13794 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 13795 if (opt_len) { 13796 /* IP Options present! Validate and process. */ 13797 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 13798 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13799 goto done; 13800 } 13801 /* 13802 * Recompute complete header length and make sure we 13803 * have access to all of it. 13804 */ 13805 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 13806 if (len > (mp->b_wptr - rptr)) { 13807 if (len > pkt_len) { 13808 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13809 goto done; 13810 } 13811 if (!pullupmsg(mp, len)) { 13812 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13813 goto done; 13814 } 13815 ipha = (ipha_t *)mp->b_rptr; 13816 } 13817 /* 13818 * Go off to ip_rput_options which returns the next hop 13819 * destination address, which may have been affected 13820 * by source routing. 13821 */ 13822 IP_STAT(ipst, ip_opt); 13823 if (ip_rput_options(q, mp, ipha, dstp, ipst) == -1) { 13824 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13825 return (B_FALSE); 13826 } 13827 } 13828 *iphapp = ipha; 13829 return (B_TRUE); 13830 done: 13831 /* clear b_prev - used by ip_mroute_decap */ 13832 mp->b_prev = NULL; 13833 freemsg(mp); 13834 return (B_FALSE); 13835 #undef rptr 13836 } 13837 13838 /* 13839 * Deal with the fact that there is no ire for the destination. 13840 * The incoming ill (in_ill) is passed in to ip_newroute only 13841 * in the case of packets coming from mobile ip forward tunnel. 13842 * It must be null otherwise. 13843 */ 13844 static ire_t * 13845 ip_rput_noire(queue_t *q, ill_t *in_ill, mblk_t *mp, int ll_multicast, 13846 ipaddr_t dst) 13847 { 13848 ipha_t *ipha; 13849 ill_t *ill; 13850 ire_t *ire; 13851 boolean_t check_multirt = B_FALSE; 13852 ip_stack_t *ipst; 13853 13854 ipha = (ipha_t *)mp->b_rptr; 13855 ill = (ill_t *)q->q_ptr; 13856 13857 ASSERT(ill != NULL); 13858 ipst = ill->ill_ipst; 13859 13860 /* 13861 * No IRE for this destination, so it can't be for us. 13862 * Unless we are forwarding, drop the packet. 13863 * We have to let source routed packets through 13864 * since we don't yet know if they are 'ping -l' 13865 * packets i.e. if they will go out over the 13866 * same interface as they came in on. 13867 */ 13868 if (ll_multicast) { 13869 freemsg(mp); 13870 return (NULL); 13871 } 13872 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha, ipst)) { 13873 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13874 freemsg(mp); 13875 return (NULL); 13876 } 13877 13878 /* 13879 * Mark this packet as having originated externally. 13880 * 13881 * For non-forwarding code path, ire_send later double 13882 * checks this interface to see if it is still exists 13883 * post-ARP resolution. 13884 * 13885 * Also, IPQOS uses this to differentiate between 13886 * IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP 13887 * QOS packet processing in ip_wput_attach_llhdr(). 13888 * The QoS module can mark the b_band for a fastpath message 13889 * or the dl_priority field in a unitdata_req header for 13890 * CoS marking. This info can only be found in 13891 * ip_wput_attach_llhdr(). 13892 */ 13893 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 13894 /* 13895 * Clear the indication that this may have a hardware checksum 13896 * as we are not using it 13897 */ 13898 DB_CKSUMFLAGS(mp) = 0; 13899 13900 if (in_ill != NULL) { 13901 /* 13902 * Now hand the packet to ip_newroute. 13903 */ 13904 ip_newroute(q, mp, dst, in_ill, NULL, GLOBAL_ZONEID, ipst); 13905 return (NULL); 13906 } 13907 ire = ire_forward(dst, &check_multirt, NULL, NULL, 13908 MBLK_GETLABEL(mp), ipst); 13909 13910 if (ire == NULL && check_multirt) { 13911 /* Let ip_newroute handle CGTP */ 13912 ip_newroute(q, mp, dst, in_ill, NULL, GLOBAL_ZONEID, ipst); 13913 return (NULL); 13914 } 13915 13916 if (ire != NULL) 13917 return (ire); 13918 13919 mp->b_prev = mp->b_next = 0; 13920 /* send icmp unreachable */ 13921 q = WR(q); 13922 /* Sent by forwarding path, and router is global zone */ 13923 if (ip_source_routed(ipha, ipst)) { 13924 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, 13925 GLOBAL_ZONEID, ipst); 13926 } else { 13927 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 13928 ipst); 13929 } 13930 13931 return (NULL); 13932 13933 } 13934 13935 /* 13936 * check ip header length and align it. 13937 */ 13938 static boolean_t 13939 ip_check_and_align_header(queue_t *q, mblk_t *mp, ip_stack_t *ipst) 13940 { 13941 ssize_t len; 13942 ill_t *ill; 13943 ipha_t *ipha; 13944 13945 len = MBLKL(mp); 13946 13947 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13948 ill = (ill_t *)q->q_ptr; 13949 13950 if (!OK_32PTR(mp->b_rptr)) 13951 IP_STAT(ipst, ip_notaligned1); 13952 else 13953 IP_STAT(ipst, ip_notaligned2); 13954 /* Guard against bogus device drivers */ 13955 if (len < 0) { 13956 /* clear b_prev - used by ip_mroute_decap */ 13957 mp->b_prev = NULL; 13958 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13959 freemsg(mp); 13960 return (B_FALSE); 13961 } 13962 13963 if (ip_rput_pullups++ == 0) { 13964 ipha = (ipha_t *)mp->b_rptr; 13965 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 13966 "ip_check_and_align_header: %s forced us to " 13967 " pullup pkt, hdr len %ld, hdr addr %p", 13968 ill->ill_name, len, ipha); 13969 } 13970 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 13971 /* clear b_prev - used by ip_mroute_decap */ 13972 mp->b_prev = NULL; 13973 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13974 freemsg(mp); 13975 return (B_FALSE); 13976 } 13977 } 13978 return (B_TRUE); 13979 } 13980 13981 ire_t * 13982 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 13983 { 13984 ire_t *new_ire; 13985 ill_t *ire_ill; 13986 uint_t ifindex; 13987 ip_stack_t *ipst = ill->ill_ipst; 13988 boolean_t strict_check = B_FALSE; 13989 13990 /* 13991 * This packet came in on an interface other than the one associated 13992 * with the first ire we found for the destination address. We do 13993 * another ire lookup here, using the ingress ill, to see if the 13994 * interface is in an interface group. 13995 * As long as the ills belong to the same group, we don't consider 13996 * them to be arriving on the wrong interface. Thus, if the switch 13997 * is doing inbound load spreading, we won't drop packets when the 13998 * ip*_strict_dst_multihoming switch is on. Note, the same holds true 13999 * for 'usesrc groups' where the destination address may belong to 14000 * another interface to allow multipathing to happen. 14001 * We also need to check for IPIF_UNNUMBERED point2point interfaces 14002 * where the local address may not be unique. In this case we were 14003 * at the mercy of the initial ire cache lookup and the IRE_LOCAL it 14004 * actually returned. The new lookup, which is more specific, should 14005 * only find the IRE_LOCAL associated with the ingress ill if one 14006 * exists. 14007 */ 14008 14009 if (ire->ire_ipversion == IPV4_VERSION) { 14010 if (ipst->ips_ip_strict_dst_multihoming) 14011 strict_check = B_TRUE; 14012 new_ire = ire_ctable_lookup(*((ipaddr_t *)addr), 0, IRE_LOCAL, 14013 ill->ill_ipif, ALL_ZONES, NULL, 14014 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 14015 } else { 14016 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 14017 if (ipst->ips_ipv6_strict_dst_multihoming) 14018 strict_check = B_TRUE; 14019 new_ire = ire_ctable_lookup_v6((in6_addr_t *)addr, NULL, 14020 IRE_LOCAL, ill->ill_ipif, ALL_ZONES, NULL, 14021 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 14022 } 14023 /* 14024 * If the same ire that was returned in ip_input() is found then this 14025 * is an indication that interface groups are in use. The packet 14026 * arrived on a different ill in the group than the one associated with 14027 * the destination address. If a different ire was found then the same 14028 * IP address must be hosted on multiple ills. This is possible with 14029 * unnumbered point2point interfaces. We switch to use this new ire in 14030 * order to have accurate interface statistics. 14031 */ 14032 if (new_ire != NULL) { 14033 if ((new_ire != ire) && (new_ire->ire_rfq != NULL)) { 14034 ire_refrele(ire); 14035 ire = new_ire; 14036 } else { 14037 ire_refrele(new_ire); 14038 } 14039 return (ire); 14040 } else if ((ire->ire_rfq == NULL) && 14041 (ire->ire_ipversion == IPV4_VERSION)) { 14042 /* 14043 * The best match could have been the original ire which 14044 * was created against an IRE_LOCAL on lo0. In the IPv4 case 14045 * the strict multihoming checks are irrelevant as we consider 14046 * local addresses hosted on lo0 to be interface agnostic. We 14047 * only expect a null ire_rfq on IREs which are associated with 14048 * lo0 hence we can return now. 14049 */ 14050 return (ire); 14051 } 14052 14053 /* 14054 * Chase pointers once and store locally. 14055 */ 14056 ire_ill = (ire->ire_rfq == NULL) ? NULL : 14057 (ill_t *)(ire->ire_rfq->q_ptr); 14058 ifindex = ill->ill_usesrc_ifindex; 14059 14060 /* 14061 * Check if it's a legal address on the 'usesrc' interface. 14062 */ 14063 if ((ifindex != 0) && (ire_ill != NULL) && 14064 (ifindex == ire_ill->ill_phyint->phyint_ifindex)) { 14065 return (ire); 14066 } 14067 14068 /* 14069 * If the ip*_strict_dst_multihoming switch is on then we can 14070 * only accept this packet if the interface is marked as routing. 14071 */ 14072 if (!(strict_check)) 14073 return (ire); 14074 14075 if ((ill->ill_flags & ire->ire_ipif->ipif_ill->ill_flags & 14076 ILLF_ROUTER) != 0) { 14077 return (ire); 14078 } 14079 14080 ire_refrele(ire); 14081 return (NULL); 14082 } 14083 14084 ire_t * 14085 ip_fast_forward(ire_t *ire, ipaddr_t dst, ill_t *ill, mblk_t *mp) 14086 { 14087 ipha_t *ipha; 14088 ipaddr_t ip_dst, ip_src; 14089 ire_t *src_ire = NULL; 14090 ill_t *stq_ill; 14091 uint_t hlen; 14092 uint_t pkt_len; 14093 uint32_t sum; 14094 queue_t *dev_q; 14095 boolean_t check_multirt = B_FALSE; 14096 ip_stack_t *ipst = ill->ill_ipst; 14097 14098 ipha = (ipha_t *)mp->b_rptr; 14099 14100 /* 14101 * Martian Address Filtering [RFC 1812, Section 5.3.7] 14102 * The loopback address check for both src and dst has already 14103 * been checked in ip_input 14104 */ 14105 ip_dst = ntohl(dst); 14106 ip_src = ntohl(ipha->ipha_src); 14107 14108 if (ip_dst == INADDR_ANY || IN_BADCLASS(ip_dst) || 14109 IN_CLASSD(ip_src)) { 14110 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14111 goto drop; 14112 } 14113 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 14114 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 14115 14116 if (src_ire != NULL) { 14117 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14118 goto drop; 14119 } 14120 14121 14122 /* No ire cache of nexthop. So first create one */ 14123 if (ire == NULL) { 14124 ire = ire_forward(dst, &check_multirt, NULL, NULL, NULL, ipst); 14125 /* 14126 * We only come to ip_fast_forward if ip_cgtp_filter is 14127 * is not set. So upon return from ire_forward 14128 * check_multirt should remain as false. 14129 */ 14130 ASSERT(!check_multirt); 14131 if (ire == NULL) { 14132 /* An attempt was made to forward the packet */ 14133 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14134 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14135 mp->b_prev = mp->b_next = 0; 14136 /* send icmp unreachable */ 14137 /* Sent by forwarding path, and router is global zone */ 14138 if (ip_source_routed(ipha, ipst)) { 14139 icmp_unreachable(ill->ill_wq, mp, 14140 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, 14141 ipst); 14142 } else { 14143 icmp_unreachable(ill->ill_wq, mp, 14144 ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 14145 ipst); 14146 } 14147 return (ire); 14148 } 14149 } 14150 14151 /* 14152 * Forwarding fastpath exception case: 14153 * If either of the follwoing case is true, we take 14154 * the slowpath 14155 * o forwarding is not enabled 14156 * o incoming and outgoing interface are the same, or the same 14157 * IPMP group 14158 * o corresponding ire is in incomplete state 14159 * o packet needs fragmentation 14160 * 14161 * The codeflow from here on is thus: 14162 * ip_rput_process_forward->ip_rput_forward->ip_xmit_v4 14163 */ 14164 pkt_len = ntohs(ipha->ipha_length); 14165 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 14166 if (!(stq_ill->ill_flags & ILLF_ROUTER) || 14167 !(ill->ill_flags & ILLF_ROUTER) || 14168 (ill == stq_ill) || 14169 (ill->ill_group != NULL && ill->ill_group == stq_ill->ill_group) || 14170 (ire->ire_nce == NULL) || 14171 (ire->ire_nce->nce_state != ND_REACHABLE) || 14172 (pkt_len > ire->ire_max_frag) || 14173 ipha->ipha_ttl <= 1) { 14174 ip_rput_process_forward(ill->ill_rq, mp, ire, 14175 ipha, ill, B_FALSE); 14176 return (ire); 14177 } 14178 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14179 14180 DTRACE_PROBE4(ip4__forwarding__start, 14181 ill_t *, ill, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 14182 14183 FW_HOOKS(ipst->ips_ip4_forwarding_event, 14184 ipst->ips_ipv4firewall_forwarding, 14185 ill, stq_ill, ipha, mp, mp, ipst); 14186 14187 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 14188 14189 if (mp == NULL) 14190 goto drop; 14191 14192 mp->b_datap->db_struioun.cksum.flags = 0; 14193 /* Adjust the checksum to reflect the ttl decrement. */ 14194 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 14195 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 14196 ipha->ipha_ttl--; 14197 14198 dev_q = ire->ire_stq->q_next; 14199 if ((dev_q->q_next != NULL || 14200 dev_q->q_first != NULL) && !canput(dev_q)) { 14201 goto indiscard; 14202 } 14203 14204 hlen = ire->ire_nce->nce_fp_mp != NULL ? 14205 MBLKL(ire->ire_nce->nce_fp_mp) : 0; 14206 14207 if (hlen != 0 || ire->ire_nce->nce_res_mp != NULL) { 14208 mblk_t *mpip = mp; 14209 14210 mp = ip_wput_attach_llhdr(mpip, ire, 0, 0); 14211 if (mp != NULL) { 14212 DTRACE_PROBE4(ip4__physical__out__start, 14213 ill_t *, NULL, ill_t *, stq_ill, 14214 ipha_t *, ipha, mblk_t *, mp); 14215 FW_HOOKS(ipst->ips_ip4_physical_out_event, 14216 ipst->ips_ipv4firewall_physical_out, 14217 NULL, stq_ill, ipha, mp, mpip, ipst); 14218 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, 14219 mp); 14220 if (mp == NULL) 14221 goto drop; 14222 14223 UPDATE_IB_PKT_COUNT(ire); 14224 ire->ire_last_used_time = lbolt; 14225 BUMP_MIB(stq_ill->ill_ip_mib, 14226 ipIfStatsHCOutForwDatagrams); 14227 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14228 UPDATE_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutOctets, 14229 pkt_len); 14230 putnext(ire->ire_stq, mp); 14231 return (ire); 14232 } 14233 } 14234 14235 indiscard: 14236 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14237 drop: 14238 if (mp != NULL) 14239 freemsg(mp); 14240 if (src_ire != NULL) 14241 ire_refrele(src_ire); 14242 return (ire); 14243 14244 } 14245 14246 /* 14247 * This function is called in the forwarding slowpath, when 14248 * either the ire lacks the link-layer address, or the packet needs 14249 * further processing(eg. fragmentation), before transmission. 14250 */ 14251 14252 static void 14253 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14254 ill_t *ill, boolean_t ll_multicast) 14255 { 14256 ill_group_t *ill_group; 14257 ill_group_t *ire_group; 14258 queue_t *dev_q; 14259 ire_t *src_ire; 14260 ip_stack_t *ipst = ill->ill_ipst; 14261 14262 ASSERT(ire->ire_stq != NULL); 14263 14264 mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */ 14265 mp->b_next = NULL; /* ip_rput_noire sets dst here */ 14266 14267 if (ll_multicast != 0) { 14268 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14269 goto drop_pkt; 14270 } 14271 14272 /* 14273 * check if ipha_src is a broadcast address. Note that this 14274 * check is redundant when we get here from ip_fast_forward() 14275 * which has already done this check. However, since we can 14276 * also get here from ip_rput_process_broadcast() or, for 14277 * for the slow path through ip_fast_forward(), we perform 14278 * the check again for code-reusability 14279 */ 14280 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 14281 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 14282 if (src_ire != NULL || ntohl(ipha->ipha_dst) == INADDR_ANY || 14283 IN_BADCLASS(ntohl(ipha->ipha_dst))) { 14284 if (src_ire != NULL) 14285 ire_refrele(src_ire); 14286 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14287 ip2dbg(("ip_rput_process_forward: Received packet with" 14288 " bad src/dst address on %s\n", ill->ill_name)); 14289 goto drop_pkt; 14290 } 14291 14292 ill_group = ill->ill_group; 14293 ire_group = ((ill_t *)(ire->ire_rfq)->q_ptr)->ill_group; 14294 /* 14295 * Check if we want to forward this one at this time. 14296 * We allow source routed packets on a host provided that 14297 * they go out the same interface or same interface group 14298 * as they came in on. 14299 * 14300 * XXX To be quicker, we may wish to not chase pointers to 14301 * get the ILLF_ROUTER flag and instead store the 14302 * forwarding policy in the ire. An unfortunate 14303 * side-effect of that would be requiring an ire flush 14304 * whenever the ILLF_ROUTER flag changes. 14305 */ 14306 if (((ill->ill_flags & 14307 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 14308 ILLF_ROUTER) == 0) && 14309 !(ip_source_routed(ipha, ipst) && (ire->ire_rfq == q || 14310 (ill_group != NULL && ill_group == ire_group)))) { 14311 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14312 if (ip_source_routed(ipha, ipst)) { 14313 q = WR(q); 14314 /* 14315 * Clear the indication that this may have 14316 * hardware checksum as we are not using it. 14317 */ 14318 DB_CKSUMFLAGS(mp) = 0; 14319 /* Sent by forwarding path, and router is global zone */ 14320 icmp_unreachable(q, mp, 14321 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, ipst); 14322 return; 14323 } 14324 goto drop_pkt; 14325 } 14326 14327 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14328 14329 /* Packet is being forwarded. Turning off hwcksum flag. */ 14330 DB_CKSUMFLAGS(mp) = 0; 14331 if (ipst->ips_ip_g_send_redirects) { 14332 /* 14333 * Check whether the incoming interface and outgoing 14334 * interface is part of the same group. If so, 14335 * send redirects. 14336 * 14337 * Check the source address to see if it originated 14338 * on the same logical subnet it is going back out on. 14339 * If so, we should be able to send it a redirect. 14340 * Avoid sending a redirect if the destination 14341 * is directly connected (i.e., ipha_dst is the same 14342 * as ire_gateway_addr or the ire_addr of the 14343 * nexthop IRE_CACHE ), or if the packet was source 14344 * routed out this interface. 14345 */ 14346 ipaddr_t src, nhop; 14347 mblk_t *mp1; 14348 ire_t *nhop_ire = NULL; 14349 14350 /* 14351 * Check whether ire_rfq and q are from the same ill 14352 * or if they are not same, they at least belong 14353 * to the same group. If so, send redirects. 14354 */ 14355 if ((ire->ire_rfq == q || 14356 (ill_group != NULL && ill_group == ire_group)) && 14357 !ip_source_routed(ipha, ipst)) { 14358 14359 nhop = (ire->ire_gateway_addr != 0 ? 14360 ire->ire_gateway_addr : ire->ire_addr); 14361 14362 if (ipha->ipha_dst == nhop) { 14363 /* 14364 * We avoid sending a redirect if the 14365 * destination is directly connected 14366 * because it is possible that multiple 14367 * IP subnets may have been configured on 14368 * the link, and the source may not 14369 * be on the same subnet as ip destination, 14370 * even though they are on the same 14371 * physical link. 14372 */ 14373 goto sendit; 14374 } 14375 14376 src = ipha->ipha_src; 14377 14378 /* 14379 * We look up the interface ire for the nexthop, 14380 * to see if ipha_src is in the same subnet 14381 * as the nexthop. 14382 * 14383 * Note that, if, in the future, IRE_CACHE entries 14384 * are obsoleted, this lookup will not be needed, 14385 * as the ire passed to this function will be the 14386 * same as the nhop_ire computed below. 14387 */ 14388 nhop_ire = ire_ftable_lookup(nhop, 0, 0, 14389 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 14390 0, NULL, MATCH_IRE_TYPE, ipst); 14391 14392 if (nhop_ire != NULL) { 14393 if ((src & nhop_ire->ire_mask) == 14394 (nhop & nhop_ire->ire_mask)) { 14395 /* 14396 * The source is directly connected. 14397 * Just copy the ip header (which is 14398 * in the first mblk) 14399 */ 14400 mp1 = copyb(mp); 14401 if (mp1 != NULL) { 14402 icmp_send_redirect(WR(q), mp1, 14403 nhop, ipst); 14404 } 14405 } 14406 ire_refrele(nhop_ire); 14407 } 14408 } 14409 } 14410 sendit: 14411 dev_q = ire->ire_stq->q_next; 14412 if ((dev_q->q_next || dev_q->q_first) && !canput(dev_q)) { 14413 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14414 freemsg(mp); 14415 return; 14416 } 14417 14418 ip_rput_forward(ire, ipha, mp, ill); 14419 return; 14420 14421 drop_pkt: 14422 ip2dbg(("ip_rput_process_forward: drop pkt\n")); 14423 freemsg(mp); 14424 } 14425 14426 ire_t * 14427 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14428 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 14429 { 14430 queue_t *q; 14431 uint16_t hcksumflags; 14432 ip_stack_t *ipst = ill->ill_ipst; 14433 14434 q = *qp; 14435 14436 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInBcastPkts); 14437 14438 /* 14439 * Clear the indication that this may have hardware 14440 * checksum as we are not using it for forwarding. 14441 */ 14442 hcksumflags = DB_CKSUMFLAGS(mp); 14443 DB_CKSUMFLAGS(mp) = 0; 14444 14445 /* 14446 * Directed broadcast forwarding: if the packet came in over a 14447 * different interface then it is routed out over we can forward it. 14448 */ 14449 if (ipha->ipha_protocol == IPPROTO_TCP) { 14450 ire_refrele(ire); 14451 freemsg(mp); 14452 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14453 return (NULL); 14454 } 14455 /* 14456 * For multicast we have set dst to be INADDR_BROADCAST 14457 * for delivering to all STREAMS. IRE_MARK_NORECV is really 14458 * only for broadcast packets. 14459 */ 14460 if (!CLASSD(ipha->ipha_dst)) { 14461 ire_t *new_ire; 14462 ipif_t *ipif; 14463 /* 14464 * For ill groups, as the switch duplicates broadcasts 14465 * across all the ports, we need to filter out and 14466 * send up only one copy. There is one copy for every 14467 * broadcast address on each ill. Thus, we look for a 14468 * specific IRE on this ill and look at IRE_MARK_NORECV 14469 * later to see whether this ill is eligible to receive 14470 * them or not. ill_nominate_bcast_rcv() nominates only 14471 * one set of IREs for receiving. 14472 */ 14473 14474 ipif = ipif_get_next_ipif(NULL, ill); 14475 if (ipif == NULL) { 14476 ire_refrele(ire); 14477 freemsg(mp); 14478 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14479 return (NULL); 14480 } 14481 new_ire = ire_ctable_lookup(dst, 0, 0, 14482 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL, ipst); 14483 ipif_refrele(ipif); 14484 14485 if (new_ire != NULL) { 14486 if (new_ire->ire_marks & IRE_MARK_NORECV) { 14487 ire_refrele(ire); 14488 ire_refrele(new_ire); 14489 freemsg(mp); 14490 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14491 return (NULL); 14492 } 14493 /* 14494 * In the special case of multirouted broadcast 14495 * packets, we unconditionally need to "gateway" 14496 * them to the appropriate interface here. 14497 * In the normal case, this cannot happen, because 14498 * there is no broadcast IRE tagged with the 14499 * RTF_MULTIRT flag. 14500 */ 14501 if (new_ire->ire_flags & RTF_MULTIRT) { 14502 ire_refrele(new_ire); 14503 if (ire->ire_rfq != NULL) { 14504 q = ire->ire_rfq; 14505 *qp = q; 14506 } 14507 } else { 14508 ire_refrele(ire); 14509 ire = new_ire; 14510 } 14511 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 14512 if (!ipst->ips_ip_g_forward_directed_bcast) { 14513 /* 14514 * Free the message if 14515 * ip_g_forward_directed_bcast is turned 14516 * off for non-local broadcast. 14517 */ 14518 ire_refrele(ire); 14519 freemsg(mp); 14520 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14521 return (NULL); 14522 } 14523 } else { 14524 /* 14525 * This CGTP packet successfully passed the 14526 * CGTP filter, but the related CGTP 14527 * broadcast IRE has not been found, 14528 * meaning that the redundant ipif is 14529 * probably down. However, if we discarded 14530 * this packet, its duplicate would be 14531 * filtered out by the CGTP filter so none 14532 * of them would get through. So we keep 14533 * going with this one. 14534 */ 14535 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 14536 if (ire->ire_rfq != NULL) { 14537 q = ire->ire_rfq; 14538 *qp = q; 14539 } 14540 } 14541 } 14542 if (ipst->ips_ip_g_forward_directed_bcast && ll_multicast == 0) { 14543 /* 14544 * Verify that there are not more then one 14545 * IRE_BROADCAST with this broadcast address which 14546 * has ire_stq set. 14547 * TODO: simplify, loop over all IRE's 14548 */ 14549 ire_t *ire1; 14550 int num_stq = 0; 14551 mblk_t *mp1; 14552 14553 /* Find the first one with ire_stq set */ 14554 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 14555 for (ire1 = ire; ire1 && 14556 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 14557 ire1 = ire1->ire_next) 14558 ; 14559 if (ire1) { 14560 ire_refrele(ire); 14561 ire = ire1; 14562 IRE_REFHOLD(ire); 14563 } 14564 14565 /* Check if there are additional ones with stq set */ 14566 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 14567 if (ire->ire_addr != ire1->ire_addr) 14568 break; 14569 if (ire1->ire_stq) { 14570 num_stq++; 14571 break; 14572 } 14573 } 14574 rw_exit(&ire->ire_bucket->irb_lock); 14575 if (num_stq == 1 && ire->ire_stq != NULL) { 14576 ip1dbg(("ip_rput_process_broadcast: directed " 14577 "broadcast to 0x%x\n", 14578 ntohl(ire->ire_addr))); 14579 mp1 = copymsg(mp); 14580 if (mp1) { 14581 switch (ipha->ipha_protocol) { 14582 case IPPROTO_UDP: 14583 ip_udp_input(q, mp1, ipha, ire, ill); 14584 break; 14585 default: 14586 ip_proto_input(q, mp1, ipha, ire, ill); 14587 break; 14588 } 14589 } 14590 /* 14591 * Adjust ttl to 2 (1+1 - the forward engine 14592 * will decrement it by one. 14593 */ 14594 if (ip_csum_hdr(ipha)) { 14595 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 14596 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 14597 freemsg(mp); 14598 ire_refrele(ire); 14599 return (NULL); 14600 } 14601 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl + 1; 14602 ipha->ipha_hdr_checksum = 0; 14603 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14604 ip_rput_process_forward(q, mp, ire, ipha, 14605 ill, ll_multicast); 14606 ire_refrele(ire); 14607 return (NULL); 14608 } 14609 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 14610 ntohl(ire->ire_addr))); 14611 } 14612 14613 14614 /* Restore any hardware checksum flags */ 14615 DB_CKSUMFLAGS(mp) = hcksumflags; 14616 return (ire); 14617 } 14618 14619 /* ARGSUSED */ 14620 static boolean_t 14621 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 14622 int *ll_multicast, ipaddr_t *dstp) 14623 { 14624 ip_stack_t *ipst = ill->ill_ipst; 14625 14626 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastPkts); 14627 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastOctets, 14628 ntohs(ipha->ipha_length)); 14629 14630 /* 14631 * Forward packets only if we have joined the allmulti 14632 * group on this interface. 14633 */ 14634 if (ipst->ips_ip_g_mrouter && ill->ill_join_allmulti) { 14635 int retval; 14636 14637 /* 14638 * Clear the indication that this may have hardware 14639 * checksum as we are not using it. 14640 */ 14641 DB_CKSUMFLAGS(mp) = 0; 14642 retval = ip_mforward(ill, ipha, mp); 14643 /* ip_mforward updates mib variables if needed */ 14644 /* clear b_prev - used by ip_mroute_decap */ 14645 mp->b_prev = NULL; 14646 14647 switch (retval) { 14648 case 0: 14649 /* 14650 * pkt is okay and arrived on phyint. 14651 * 14652 * If we are running as a multicast router 14653 * we need to see all IGMP and/or PIM packets. 14654 */ 14655 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 14656 (ipha->ipha_protocol == IPPROTO_PIM)) { 14657 goto done; 14658 } 14659 break; 14660 case -1: 14661 /* pkt is mal-formed, toss it */ 14662 goto drop_pkt; 14663 case 1: 14664 /* pkt is okay and arrived on a tunnel */ 14665 /* 14666 * If we are running a multicast router 14667 * we need to see all igmp packets. 14668 */ 14669 if (ipha->ipha_protocol == IPPROTO_IGMP) { 14670 *dstp = INADDR_BROADCAST; 14671 *ll_multicast = 1; 14672 return (B_FALSE); 14673 } 14674 14675 goto drop_pkt; 14676 } 14677 } 14678 14679 ILM_WALKER_HOLD(ill); 14680 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 14681 /* 14682 * This might just be caused by the fact that 14683 * multiple IP Multicast addresses map to the same 14684 * link layer multicast - no need to increment counter! 14685 */ 14686 ILM_WALKER_RELE(ill); 14687 freemsg(mp); 14688 return (B_TRUE); 14689 } 14690 ILM_WALKER_RELE(ill); 14691 done: 14692 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 14693 /* 14694 * This assumes the we deliver to all streams for multicast 14695 * and broadcast packets. 14696 */ 14697 *dstp = INADDR_BROADCAST; 14698 *ll_multicast = 1; 14699 return (B_FALSE); 14700 drop_pkt: 14701 ip2dbg(("ip_rput: drop pkt\n")); 14702 freemsg(mp); 14703 return (B_TRUE); 14704 } 14705 14706 static boolean_t 14707 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 14708 int *ll_multicast, mblk_t **mpp) 14709 { 14710 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 14711 boolean_t must_copy = B_FALSE; 14712 struct iocblk *iocp; 14713 ipha_t *ipha; 14714 ip_stack_t *ipst = ill->ill_ipst; 14715 14716 #define rptr ((uchar_t *)ipha) 14717 14718 first_mp = *first_mpp; 14719 mp = *mpp; 14720 14721 ASSERT(first_mp == mp); 14722 14723 /* 14724 * if db_ref > 1 then copymsg and free original. Packet may be 14725 * changed and do not want other entity who has a reference to this 14726 * message to trip over the changes. This is a blind change because 14727 * trying to catch all places that might change packet is too 14728 * difficult (since it may be a module above this one) 14729 * 14730 * This corresponds to the non-fast path case. We walk down the full 14731 * chain in this case, and check the db_ref count of all the dblks, 14732 * and do a copymsg if required. It is possible that the db_ref counts 14733 * of the data blocks in the mblk chain can be different. 14734 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 14735 * count of 1, followed by a M_DATA block with a ref count of 2, if 14736 * 'snoop' is running. 14737 */ 14738 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 14739 if (mp1->b_datap->db_ref > 1) { 14740 must_copy = B_TRUE; 14741 break; 14742 } 14743 } 14744 14745 if (must_copy) { 14746 mp1 = copymsg(mp); 14747 if (mp1 == NULL) { 14748 for (mp1 = mp; mp1 != NULL; 14749 mp1 = mp1->b_cont) { 14750 mp1->b_next = NULL; 14751 mp1->b_prev = NULL; 14752 } 14753 freemsg(mp); 14754 if (ill != NULL) { 14755 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14756 } else { 14757 BUMP_MIB(&ipst->ips_ip_mib, 14758 ipIfStatsInDiscards); 14759 } 14760 return (B_TRUE); 14761 } 14762 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 14763 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 14764 /* Copy b_prev - used by ip_mroute_decap */ 14765 to_mp->b_prev = from_mp->b_prev; 14766 from_mp->b_prev = NULL; 14767 } 14768 *first_mpp = first_mp = mp1; 14769 freemsg(mp); 14770 mp = mp1; 14771 *mpp = mp1; 14772 } 14773 14774 ipha = (ipha_t *)mp->b_rptr; 14775 14776 /* 14777 * previous code has a case for M_DATA. 14778 * We want to check how that happens. 14779 */ 14780 ASSERT(first_mp->b_datap->db_type != M_DATA); 14781 switch (first_mp->b_datap->db_type) { 14782 case M_PROTO: 14783 case M_PCPROTO: 14784 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 14785 DL_UNITDATA_IND) { 14786 /* Go handle anything other than data elsewhere. */ 14787 ip_rput_dlpi(q, mp); 14788 return (B_TRUE); 14789 } 14790 *ll_multicast = ((dl_unitdata_ind_t *)rptr)->dl_group_address; 14791 /* Ditch the DLPI header. */ 14792 mp1 = mp->b_cont; 14793 ASSERT(first_mp == mp); 14794 *first_mpp = mp1; 14795 freeb(mp); 14796 *mpp = mp1; 14797 return (B_FALSE); 14798 case M_IOCACK: 14799 ip1dbg(("got iocack ")); 14800 iocp = (struct iocblk *)mp->b_rptr; 14801 switch (iocp->ioc_cmd) { 14802 case DL_IOC_HDR_INFO: 14803 ill = (ill_t *)q->q_ptr; 14804 ill_fastpath_ack(ill, mp); 14805 return (B_TRUE); 14806 case SIOCSTUNPARAM: 14807 case OSIOCSTUNPARAM: 14808 /* Go through qwriter_ip */ 14809 break; 14810 case SIOCGTUNPARAM: 14811 case OSIOCGTUNPARAM: 14812 ip_rput_other(NULL, q, mp, NULL); 14813 return (B_TRUE); 14814 default: 14815 putnext(q, mp); 14816 return (B_TRUE); 14817 } 14818 /* FALLTHRU */ 14819 case M_ERROR: 14820 case M_HANGUP: 14821 /* 14822 * Since this is on the ill stream we unconditionally 14823 * bump up the refcount 14824 */ 14825 ill_refhold(ill); 14826 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14827 return (B_TRUE); 14828 case M_CTL: 14829 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 14830 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 14831 IPHADA_M_CTL)) { 14832 /* 14833 * It's an IPsec accelerated packet. 14834 * Make sure that the ill from which we received the 14835 * packet has enabled IPsec hardware acceleration. 14836 */ 14837 if (!(ill->ill_capabilities & 14838 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 14839 /* IPsec kstats: bean counter */ 14840 freemsg(mp); 14841 return (B_TRUE); 14842 } 14843 14844 /* 14845 * Make mp point to the mblk following the M_CTL, 14846 * then process according to type of mp. 14847 * After this processing, first_mp will point to 14848 * the data-attributes and mp to the pkt following 14849 * the M_CTL. 14850 */ 14851 mp = first_mp->b_cont; 14852 if (mp == NULL) { 14853 freemsg(first_mp); 14854 return (B_TRUE); 14855 } 14856 /* 14857 * A Hardware Accelerated packet can only be M_DATA 14858 * ESP or AH packet. 14859 */ 14860 if (mp->b_datap->db_type != M_DATA) { 14861 /* non-M_DATA IPsec accelerated packet */ 14862 IPSECHW_DEBUG(IPSECHW_PKT, 14863 ("non-M_DATA IPsec accelerated pkt\n")); 14864 freemsg(first_mp); 14865 return (B_TRUE); 14866 } 14867 ipha = (ipha_t *)mp->b_rptr; 14868 if (ipha->ipha_protocol != IPPROTO_AH && 14869 ipha->ipha_protocol != IPPROTO_ESP) { 14870 IPSECHW_DEBUG(IPSECHW_PKT, 14871 ("non-M_DATA IPsec accelerated pkt\n")); 14872 freemsg(first_mp); 14873 return (B_TRUE); 14874 } 14875 *mpp = mp; 14876 return (B_FALSE); 14877 } 14878 putnext(q, mp); 14879 return (B_TRUE); 14880 case M_IOCNAK: 14881 ip1dbg(("got iocnak ")); 14882 iocp = (struct iocblk *)mp->b_rptr; 14883 switch (iocp->ioc_cmd) { 14884 case SIOCSTUNPARAM: 14885 case OSIOCSTUNPARAM: 14886 /* 14887 * Since this is on the ill stream we unconditionally 14888 * bump up the refcount 14889 */ 14890 ill_refhold(ill); 14891 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14892 return (B_TRUE); 14893 case DL_IOC_HDR_INFO: 14894 case SIOCGTUNPARAM: 14895 case OSIOCGTUNPARAM: 14896 ip_rput_other(NULL, q, mp, NULL); 14897 return (B_TRUE); 14898 default: 14899 break; 14900 } 14901 /* FALLTHRU */ 14902 default: 14903 putnext(q, mp); 14904 return (B_TRUE); 14905 } 14906 } 14907 14908 /* Read side put procedure. Packets coming from the wire arrive here. */ 14909 void 14910 ip_rput(queue_t *q, mblk_t *mp) 14911 { 14912 ill_t *ill = (ill_t *)q->q_ptr; 14913 ip_stack_t *ipst = ill->ill_ipst; 14914 union DL_primitives *dl; 14915 14916 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 14917 14918 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 14919 /* 14920 * If things are opening or closing, only accept high-priority 14921 * DLPI messages. (On open ill->ill_ipif has not yet been 14922 * created; on close, things hanging off the ill may have been 14923 * freed already.) 14924 */ 14925 dl = (union DL_primitives *)mp->b_rptr; 14926 if (DB_TYPE(mp) != M_PCPROTO || 14927 dl->dl_primitive == DL_UNITDATA_IND) { 14928 /* 14929 * SIOC[GS]TUNPARAM ioctls can come here. 14930 */ 14931 inet_freemsg(mp); 14932 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14933 "ip_rput_end: q %p (%S)", q, "uninit"); 14934 return; 14935 } 14936 } 14937 14938 /* 14939 * if db_ref > 1 then copymsg and free original. Packet may be 14940 * changed and we do not want the other entity who has a reference to 14941 * this message to trip over the changes. This is a blind change because 14942 * trying to catch all places that might change the packet is too 14943 * difficult. 14944 * 14945 * This corresponds to the fast path case, where we have a chain of 14946 * M_DATA mblks. We check the db_ref count of only the 1st data block 14947 * in the mblk chain. There doesn't seem to be a reason why a device 14948 * driver would send up data with varying db_ref counts in the mblk 14949 * chain. In any case the Fast path is a private interface, and our 14950 * drivers don't do such a thing. Given the above assumption, there is 14951 * no need to walk down the entire mblk chain (which could have a 14952 * potential performance problem) 14953 */ 14954 if (mp->b_datap->db_ref > 1) { 14955 mblk_t *mp1; 14956 boolean_t adjusted = B_FALSE; 14957 IP_STAT(ipst, ip_db_ref); 14958 14959 /* 14960 * The IP_RECVSLLA option depends on having the link layer 14961 * header. First check that: 14962 * a> the underlying device is of type ether, since this 14963 * option is currently supported only over ethernet. 14964 * b> there is enough room to copy over the link layer header. 14965 * 14966 * Once the checks are done, adjust rptr so that the link layer 14967 * header will be copied via copymsg. Note that, IFT_ETHER may 14968 * be returned by some non-ethernet drivers but in this case the 14969 * second check will fail. 14970 */ 14971 if (ill->ill_type == IFT_ETHER && 14972 (mp->b_rptr - mp->b_datap->db_base) >= 14973 sizeof (struct ether_header)) { 14974 mp->b_rptr -= sizeof (struct ether_header); 14975 adjusted = B_TRUE; 14976 } 14977 mp1 = copymsg(mp); 14978 if (mp1 == NULL) { 14979 mp->b_next = NULL; 14980 /* clear b_prev - used by ip_mroute_decap */ 14981 mp->b_prev = NULL; 14982 freemsg(mp); 14983 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14984 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14985 "ip_rput_end: q %p (%S)", q, "copymsg"); 14986 return; 14987 } 14988 if (adjusted) { 14989 /* 14990 * Copy is done. Restore the pointer in the _new_ mblk 14991 */ 14992 mp1->b_rptr += sizeof (struct ether_header); 14993 } 14994 /* Copy b_prev - used by ip_mroute_decap */ 14995 mp1->b_prev = mp->b_prev; 14996 mp->b_prev = NULL; 14997 freemsg(mp); 14998 mp = mp1; 14999 } 15000 15001 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15002 "ip_rput_end: q %p (%S)", q, "end"); 15003 15004 ip_input(ill, NULL, mp, NULL); 15005 } 15006 15007 /* 15008 * Direct read side procedure capable of dealing with chains. GLDv3 based 15009 * drivers call this function directly with mblk chains while STREAMS 15010 * read side procedure ip_rput() calls this for single packet with ip_ring 15011 * set to NULL to process one packet at a time. 15012 * 15013 * The ill will always be valid if this function is called directly from 15014 * the driver. 15015 * 15016 * If ip_input() is called from GLDv3: 15017 * 15018 * - This must be a non-VLAN IP stream. 15019 * - 'mp' is either an untagged or a special priority-tagged packet. 15020 * - Any VLAN tag that was in the MAC header has been stripped. 15021 * 15022 * If the IP header in packet is not 32-bit aligned, every message in the 15023 * chain will be aligned before further operations. This is required on SPARC 15024 * platform. 15025 */ 15026 /* ARGSUSED */ 15027 void 15028 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, 15029 struct mac_header_info_s *mhip) 15030 { 15031 ipaddr_t dst = NULL; 15032 ipaddr_t prev_dst; 15033 ire_t *ire = NULL; 15034 ipha_t *ipha; 15035 uint_t pkt_len; 15036 ssize_t len; 15037 uint_t opt_len; 15038 int ll_multicast; 15039 int cgtp_flt_pkt; 15040 queue_t *q = ill->ill_rq; 15041 squeue_t *curr_sqp = NULL; 15042 mblk_t *head = NULL; 15043 mblk_t *tail = NULL; 15044 mblk_t *first_mp; 15045 mblk_t *mp; 15046 mblk_t *dmp; 15047 int cnt = 0; 15048 ip_stack_t *ipst = ill->ill_ipst; 15049 15050 ASSERT(mp_chain != NULL); 15051 ASSERT(ill != NULL); 15052 15053 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 15054 15055 #define rptr ((uchar_t *)ipha) 15056 15057 while (mp_chain != NULL) { 15058 first_mp = mp = mp_chain; 15059 mp_chain = mp_chain->b_next; 15060 mp->b_next = NULL; 15061 ll_multicast = 0; 15062 15063 /* 15064 * We do ire caching from one iteration to 15065 * another. In the event the packet chain contains 15066 * all packets from the same dst, this caching saves 15067 * an ire_cache_lookup for each of the succeeding 15068 * packets in a packet chain. 15069 */ 15070 prev_dst = dst; 15071 15072 /* 15073 * Check and align the IP header. 15074 */ 15075 if (DB_TYPE(mp) == M_DATA) { 15076 dmp = mp; 15077 } else if (DB_TYPE(mp) == M_PROTO && 15078 *(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) { 15079 dmp = mp->b_cont; 15080 } else { 15081 dmp = NULL; 15082 } 15083 if (dmp != NULL) { 15084 /* 15085 * IP header ptr not aligned? 15086 * OR IP header not complete in first mblk 15087 */ 15088 if (!OK_32PTR(dmp->b_rptr) || 15089 MBLKL(dmp) < IP_SIMPLE_HDR_LENGTH) { 15090 if (!ip_check_and_align_header(q, dmp, ipst)) 15091 continue; 15092 } 15093 } 15094 15095 /* 15096 * ip_input fast path 15097 */ 15098 15099 /* mblk type is not M_DATA */ 15100 if (DB_TYPE(mp) != M_DATA) { 15101 if (ip_rput_process_notdata(q, &first_mp, ill, 15102 &ll_multicast, &mp)) 15103 continue; 15104 } 15105 15106 /* Make sure its an M_DATA and that its aligned */ 15107 ASSERT(DB_TYPE(mp) == M_DATA); 15108 ASSERT(DB_REF(mp) == 1 && OK_32PTR(mp->b_rptr)); 15109 15110 ipha = (ipha_t *)mp->b_rptr; 15111 len = mp->b_wptr - rptr; 15112 pkt_len = ntohs(ipha->ipha_length); 15113 15114 /* 15115 * We must count all incoming packets, even if they end 15116 * up being dropped later on. 15117 */ 15118 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15119 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 15120 15121 /* multiple mblk or too short */ 15122 len -= pkt_len; 15123 if (len != 0) { 15124 /* 15125 * Make sure we have data length consistent 15126 * with the IP header. 15127 */ 15128 if (mp->b_cont == NULL) { 15129 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15130 BUMP_MIB(ill->ill_ip_mib, 15131 ipIfStatsInHdrErrors); 15132 ip2dbg(("ip_input: drop pkt\n")); 15133 freemsg(mp); 15134 continue; 15135 } 15136 mp->b_wptr = rptr + pkt_len; 15137 } else if ((len += msgdsize(mp->b_cont)) != 0) { 15138 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15139 BUMP_MIB(ill->ill_ip_mib, 15140 ipIfStatsInHdrErrors); 15141 ip2dbg(("ip_input: drop pkt\n")); 15142 freemsg(mp); 15143 continue; 15144 } 15145 (void) adjmsg(mp, -len); 15146 IP_STAT(ipst, ip_multimblk3); 15147 } 15148 } 15149 15150 /* Obtain the dst of the current packet */ 15151 dst = ipha->ipha_dst; 15152 15153 if (IP_LOOPBACK_ADDR(dst) || 15154 IP_LOOPBACK_ADDR(ipha->ipha_src)) { 15155 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInAddrErrors); 15156 cmn_err(CE_CONT, "dst %X src %X\n", 15157 dst, ipha->ipha_src); 15158 freemsg(mp); 15159 continue; 15160 } 15161 15162 /* 15163 * The event for packets being received from a 'physical' 15164 * interface is placed after validation of the source and/or 15165 * destination address as being local so that packets can be 15166 * redirected to loopback addresses using ipnat. 15167 */ 15168 DTRACE_PROBE4(ip4__physical__in__start, 15169 ill_t *, ill, ill_t *, NULL, 15170 ipha_t *, ipha, mblk_t *, first_mp); 15171 15172 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15173 ipst->ips_ipv4firewall_physical_in, 15174 ill, NULL, ipha, first_mp, mp, ipst); 15175 15176 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, first_mp); 15177 15178 if (first_mp == NULL) { 15179 continue; 15180 } 15181 dst = ipha->ipha_dst; 15182 15183 /* 15184 * Attach any necessary label information to 15185 * this packet 15186 */ 15187 if (is_system_labeled() && 15188 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 15189 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 15190 freemsg(mp); 15191 continue; 15192 } 15193 15194 /* 15195 * Reuse the cached ire only if the ipha_dst of the previous 15196 * packet is the same as the current packet AND it is not 15197 * INADDR_ANY. 15198 */ 15199 if (!(dst == prev_dst && dst != INADDR_ANY) && 15200 (ire != NULL)) { 15201 ire_refrele(ire); 15202 ire = NULL; 15203 } 15204 opt_len = ipha->ipha_version_and_hdr_length - 15205 IP_SIMPLE_HDR_VERSION; 15206 15207 /* 15208 * Check to see if we can take the fastpath. 15209 * That is possible if the following conditions are met 15210 * o Tsol disabled 15211 * o CGTP disabled 15212 * o ipp_action_count is 0 15213 * o Mobile IP not running 15214 * o no options in the packet 15215 * o not a RSVP packet 15216 * o not a multicast packet 15217 */ 15218 if (!is_system_labeled() && 15219 !ip_cgtp_filter && ipp_action_count == 0 && 15220 ill->ill_mrtun_refcnt == 0 && ill->ill_srcif_refcnt == 0 && 15221 opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP && 15222 !ll_multicast && !CLASSD(dst)) { 15223 if (ire == NULL) 15224 ire = ire_cache_lookup(dst, ALL_ZONES, NULL, 15225 ipst); 15226 15227 /* incoming packet is for forwarding */ 15228 if (ire == NULL || (ire->ire_type & IRE_CACHE)) { 15229 ire = ip_fast_forward(ire, dst, ill, mp); 15230 continue; 15231 } 15232 /* incoming packet is for local consumption */ 15233 if (ire->ire_type & IRE_LOCAL) 15234 goto local; 15235 } 15236 15237 /* 15238 * Disable ire caching for anything more complex 15239 * than the simple fast path case we checked for above. 15240 */ 15241 if (ire != NULL) { 15242 ire_refrele(ire); 15243 ire = NULL; 15244 } 15245 15246 /* Full-blown slow path */ 15247 if (opt_len != 0) { 15248 if (len != 0) 15249 IP_STAT(ipst, ip_multimblk4); 15250 else 15251 IP_STAT(ipst, ip_ipoptions); 15252 if (!ip_rput_multimblk_ipoptions(q, ill, mp, &ipha, 15253 &dst, ipst)) 15254 continue; 15255 } 15256 15257 /* 15258 * Invoke the CGTP (multirouting) filtering module to process 15259 * the incoming packet. Packets identified as duplicates 15260 * must be discarded. Filtering is active only if the 15261 * the ip_cgtp_filter ndd variable is non-zero. 15262 * 15263 * Only applies to the shared stack since the filter_ops 15264 * do not carry an ip_stack_t or zoneid. 15265 */ 15266 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 15267 if (ip_cgtp_filter && (ip_cgtp_filter_ops != NULL) && 15268 ipst->ips_netstack->netstack_stackid == GLOBAL_NETSTACKID) { 15269 cgtp_flt_pkt = 15270 ip_cgtp_filter_ops->cfo_filter(q, mp); 15271 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 15272 freemsg(first_mp); 15273 continue; 15274 } 15275 } 15276 15277 /* 15278 * If rsvpd is running, let RSVP daemon handle its processing 15279 * and forwarding of RSVP multicast/unicast packets. 15280 * If rsvpd is not running but mrouted is running, RSVP 15281 * multicast packets are forwarded as multicast traffic 15282 * and RSVP unicast packets are forwarded by unicast router. 15283 * If neither rsvpd nor mrouted is running, RSVP multicast 15284 * packets are not forwarded, but the unicast packets are 15285 * forwarded like unicast traffic. 15286 */ 15287 if (ipha->ipha_protocol == IPPROTO_RSVP && 15288 ipst->ips_ipcl_proto_fanout[IPPROTO_RSVP].connf_head != 15289 NULL) { 15290 /* RSVP packet and rsvpd running. Treat as ours */ 15291 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 15292 /* 15293 * This assumes that we deliver to all streams for 15294 * multicast and broadcast packets. 15295 * We have to force ll_multicast to 1 to handle the 15296 * M_DATA messages passed in from ip_mroute_decap. 15297 */ 15298 dst = INADDR_BROADCAST; 15299 ll_multicast = 1; 15300 } else if (CLASSD(dst)) { 15301 /* packet is multicast */ 15302 mp->b_next = NULL; 15303 if (ip_rput_process_multicast(q, mp, ill, ipha, 15304 &ll_multicast, &dst)) 15305 continue; 15306 } 15307 15308 15309 /* 15310 * Check if the packet is coming from the Mobile IP 15311 * forward tunnel interface 15312 */ 15313 if (ill->ill_srcif_refcnt > 0) { 15314 ire = ire_srcif_table_lookup(dst, IRE_INTERFACE, 15315 NULL, ill, MATCH_IRE_TYPE); 15316 if (ire != NULL && ire->ire_nce->nce_res_mp == NULL && 15317 ire->ire_ipif->ipif_net_type == IRE_IF_RESOLVER) { 15318 15319 /* We need to resolve the link layer info */ 15320 ire_refrele(ire); 15321 ire = NULL; 15322 (void) ip_rput_noire(q, (ill_t *)q->q_ptr, mp, 15323 ll_multicast, dst); 15324 continue; 15325 } 15326 } 15327 15328 if (ire == NULL) { 15329 ire = ire_cache_lookup(dst, ALL_ZONES, 15330 MBLK_GETLABEL(mp), ipst); 15331 } 15332 15333 /* 15334 * If mipagent is running and reverse tunnel is created as per 15335 * mobile node request, then any packet coming through the 15336 * incoming interface from the mobile-node, should be reverse 15337 * tunneled to it's home agent except those that are destined 15338 * to foreign agent only. 15339 * This needs source address based ire lookup. The routing 15340 * entries for source address based lookup are only created by 15341 * mipagent program only when a reverse tunnel is created. 15342 * Reference : RFC2002, RFC2344 15343 */ 15344 if (ill->ill_mrtun_refcnt > 0) { 15345 ipaddr_t srcaddr; 15346 ire_t *tmp_ire; 15347 15348 tmp_ire = ire; /* Save, we might need it later */ 15349 if (ire == NULL || (ire->ire_type != IRE_LOCAL && 15350 ire->ire_type != IRE_BROADCAST)) { 15351 srcaddr = ipha->ipha_src; 15352 ire = ire_mrtun_lookup(srcaddr, ill); 15353 if (ire != NULL) { 15354 /* 15355 * Should not be getting iphada packet 15356 * here. we should only get those for 15357 * IRE_LOCAL traffic, excluded above. 15358 * Fail-safe (drop packet) in the event 15359 * hardware is misbehaving. 15360 */ 15361 if (first_mp != mp) { 15362 /* IPsec KSTATS: beancount me */ 15363 freemsg(first_mp); 15364 } else { 15365 /* 15366 * This packet must be forwarded 15367 * to Reverse Tunnel 15368 */ 15369 ip_mrtun_forward(ire, ill, mp); 15370 } 15371 ire_refrele(ire); 15372 ire = NULL; 15373 if (tmp_ire != NULL) { 15374 ire_refrele(tmp_ire); 15375 tmp_ire = NULL; 15376 } 15377 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15378 "ip_input_end: q %p (%S)", 15379 q, "uninit"); 15380 continue; 15381 } 15382 } 15383 /* 15384 * If this packet is from a non-mobilenode or a 15385 * mobile-node which does not request reverse 15386 * tunnel service 15387 */ 15388 ire = tmp_ire; 15389 } 15390 15391 15392 /* 15393 * If we reach here that means the incoming packet satisfies 15394 * one of the following conditions: 15395 * - packet is from a mobile node which does not request 15396 * reverse tunnel 15397 * - packet is from a non-mobile node, which is the most 15398 * common case 15399 * - packet is from a reverse tunnel enabled mobile node 15400 * and destined to foreign agent only 15401 */ 15402 15403 if (ire == NULL) { 15404 /* 15405 * No IRE for this destination, so it can't be for us. 15406 * Unless we are forwarding, drop the packet. 15407 * We have to let source routed packets through 15408 * since we don't yet know if they are 'ping -l' 15409 * packets i.e. if they will go out over the 15410 * same interface as they came in on. 15411 */ 15412 ire = ip_rput_noire(q, NULL, mp, ll_multicast, dst); 15413 if (ire == NULL) 15414 continue; 15415 } 15416 15417 /* 15418 * Broadcast IRE may indicate either broadcast or 15419 * multicast packet 15420 */ 15421 if (ire->ire_type == IRE_BROADCAST) { 15422 /* 15423 * Skip broadcast checks if packet is UDP multicast; 15424 * we'd rather not enter ip_rput_process_broadcast() 15425 * unless the packet is broadcast for real, since 15426 * that routine is a no-op for multicast. 15427 */ 15428 if (ipha->ipha_protocol != IPPROTO_UDP || 15429 !CLASSD(ipha->ipha_dst)) { 15430 ire = ip_rput_process_broadcast(&q, mp, 15431 ire, ipha, ill, dst, cgtp_flt_pkt, 15432 ll_multicast); 15433 if (ire == NULL) 15434 continue; 15435 } 15436 } else if (ire->ire_stq != NULL) { 15437 /* fowarding? */ 15438 ip_rput_process_forward(q, mp, ire, ipha, ill, 15439 ll_multicast); 15440 /* ip_rput_process_forward consumed the packet */ 15441 continue; 15442 } 15443 15444 local: 15445 /* 15446 * If the queue in the ire is different to the ingress queue 15447 * then we need to check to see if we can accept the packet. 15448 * Note that for multicast packets and broadcast packets sent 15449 * to a broadcast address which is shared between multiple 15450 * interfaces we should not do this since we just got a random 15451 * broadcast ire. 15452 */ 15453 if ((ire->ire_rfq != q) && (ire->ire_type != IRE_BROADCAST)) { 15454 if ((ire = ip_check_multihome(&ipha->ipha_dst, ire, 15455 ill)) == NULL) { 15456 /* Drop packet */ 15457 BUMP_MIB(ill->ill_ip_mib, 15458 ipIfStatsForwProhibits); 15459 freemsg(mp); 15460 continue; 15461 } 15462 if (ire->ire_rfq != NULL) 15463 q = ire->ire_rfq; 15464 } 15465 15466 switch (ipha->ipha_protocol) { 15467 case IPPROTO_TCP: 15468 ASSERT(first_mp == mp); 15469 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 15470 mp, 0, q, ip_ring)) != NULL) { 15471 if (curr_sqp == NULL) { 15472 curr_sqp = GET_SQUEUE(mp); 15473 ASSERT(cnt == 0); 15474 cnt++; 15475 head = tail = mp; 15476 } else if (curr_sqp == GET_SQUEUE(mp)) { 15477 ASSERT(tail != NULL); 15478 cnt++; 15479 tail->b_next = mp; 15480 tail = mp; 15481 } else { 15482 /* 15483 * A different squeue. Send the 15484 * chain for the previous squeue on 15485 * its way. This shouldn't happen 15486 * often unless interrupt binding 15487 * changes. 15488 */ 15489 IP_STAT(ipst, ip_input_multi_squeue); 15490 squeue_enter_chain(curr_sqp, head, 15491 tail, cnt, SQTAG_IP_INPUT); 15492 curr_sqp = GET_SQUEUE(mp); 15493 head = mp; 15494 tail = mp; 15495 cnt = 1; 15496 } 15497 } 15498 continue; 15499 case IPPROTO_UDP: 15500 ASSERT(first_mp == mp); 15501 ip_udp_input(q, mp, ipha, ire, ill); 15502 continue; 15503 case IPPROTO_SCTP: 15504 ASSERT(first_mp == mp); 15505 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 15506 q, dst); 15507 /* ire has been released by ip_sctp_input */ 15508 ire = NULL; 15509 continue; 15510 default: 15511 ip_proto_input(q, first_mp, ipha, ire, ill); 15512 continue; 15513 } 15514 } 15515 15516 if (ire != NULL) 15517 ire_refrele(ire); 15518 15519 if (head != NULL) 15520 squeue_enter_chain(curr_sqp, head, tail, cnt, SQTAG_IP_INPUT); 15521 15522 /* 15523 * This code is there just to make netperf/ttcp look good. 15524 * 15525 * Its possible that after being in polling mode (and having cleared 15526 * the backlog), squeues have turned the interrupt frequency higher 15527 * to improve latency at the expense of more CPU utilization (less 15528 * packets per interrupts or more number of interrupts). Workloads 15529 * like ttcp/netperf do manage to tickle polling once in a while 15530 * but for the remaining time, stay in higher interrupt mode since 15531 * their packet arrival rate is pretty uniform and this shows up 15532 * as higher CPU utilization. Since people care about CPU utilization 15533 * while running netperf/ttcp, turn the interrupt frequency back to 15534 * normal/default if polling has not been used in ip_poll_normal_ticks. 15535 */ 15536 if (ip_ring != NULL && (ip_ring->rr_poll_state & ILL_POLLING)) { 15537 if (lbolt >= (ip_ring->rr_poll_time + ip_poll_normal_ticks)) { 15538 ip_ring->rr_poll_state &= ~ILL_POLLING; 15539 ip_ring->rr_blank(ip_ring->rr_handle, 15540 ip_ring->rr_normal_blank_time, 15541 ip_ring->rr_normal_pkt_cnt); 15542 } 15543 } 15544 15545 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15546 "ip_input_end: q %p (%S)", q, "end"); 15547 #undef rptr 15548 } 15549 15550 static void 15551 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 15552 t_uscalar_t err) 15553 { 15554 if (dl_err == DL_SYSERR) { 15555 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15556 "%s: %s failed: DL_SYSERR (errno %u)\n", 15557 ill->ill_name, dlpi_prim_str(prim), err); 15558 return; 15559 } 15560 15561 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15562 "%s: %s failed: %s\n", ill->ill_name, dlpi_prim_str(prim), 15563 dlpi_err_str(dl_err)); 15564 } 15565 15566 /* 15567 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 15568 * than DL_UNITDATA_IND messages. If we need to process this message 15569 * exclusively, we call qwriter_ip, in which case we also need to call 15570 * ill_refhold before that, since qwriter_ip does an ill_refrele. 15571 */ 15572 void 15573 ip_rput_dlpi(queue_t *q, mblk_t *mp) 15574 { 15575 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15576 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15577 ill_t *ill = (ill_t *)q->q_ptr; 15578 boolean_t pending; 15579 15580 ip1dbg(("ip_rput_dlpi")); 15581 if (dloa->dl_primitive == DL_ERROR_ACK) { 15582 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK %s (0x%x): " 15583 "%s (0x%x), unix %u\n", ill->ill_name, 15584 dlpi_prim_str(dlea->dl_error_primitive), 15585 dlea->dl_error_primitive, 15586 dlpi_err_str(dlea->dl_errno), 15587 dlea->dl_errno, 15588 dlea->dl_unix_errno)); 15589 } 15590 15591 /* 15592 * If we received an ACK but didn't send a request for it, then it 15593 * can't be part of any pending operation; discard up-front. 15594 */ 15595 switch (dloa->dl_primitive) { 15596 case DL_NOTIFY_IND: 15597 pending = B_TRUE; 15598 break; 15599 case DL_ERROR_ACK: 15600 pending = ill_dlpi_pending(ill, dlea->dl_error_primitive); 15601 break; 15602 case DL_OK_ACK: 15603 pending = ill_dlpi_pending(ill, dloa->dl_correct_primitive); 15604 break; 15605 case DL_INFO_ACK: 15606 pending = ill_dlpi_pending(ill, DL_INFO_REQ); 15607 break; 15608 case DL_BIND_ACK: 15609 pending = ill_dlpi_pending(ill, DL_BIND_REQ); 15610 break; 15611 case DL_PHYS_ADDR_ACK: 15612 pending = ill_dlpi_pending(ill, DL_PHYS_ADDR_REQ); 15613 break; 15614 case DL_NOTIFY_ACK: 15615 pending = ill_dlpi_pending(ill, DL_NOTIFY_REQ); 15616 break; 15617 case DL_CONTROL_ACK: 15618 pending = ill_dlpi_pending(ill, DL_CONTROL_REQ); 15619 break; 15620 case DL_CAPABILITY_ACK: 15621 pending = ill_dlpi_pending(ill, DL_CAPABILITY_REQ); 15622 break; 15623 default: 15624 /* Not a DLPI message we support or were expecting */ 15625 freemsg(mp); 15626 return; 15627 } 15628 15629 if (!pending) { 15630 freemsg(mp); 15631 return; 15632 } 15633 15634 switch (dloa->dl_primitive) { 15635 case DL_ERROR_ACK: 15636 if (dlea->dl_error_primitive == DL_UNBIND_REQ) { 15637 mutex_enter(&ill->ill_lock); 15638 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15639 cv_signal(&ill->ill_cv); 15640 mutex_exit(&ill->ill_lock); 15641 } 15642 break; 15643 15644 case DL_OK_ACK: 15645 ip1dbg(("ip_rput: DL_OK_ACK for %s\n", 15646 dlpi_prim_str((int)dloa->dl_correct_primitive))); 15647 switch (dloa->dl_correct_primitive) { 15648 case DL_UNBIND_REQ: 15649 mutex_enter(&ill->ill_lock); 15650 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15651 cv_signal(&ill->ill_cv); 15652 mutex_exit(&ill->ill_lock); 15653 break; 15654 15655 case DL_ENABMULTI_REQ: 15656 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15657 ill->ill_dlpi_multicast_state = IDS_OK; 15658 break; 15659 } 15660 break; 15661 default: 15662 break; 15663 } 15664 15665 /* 15666 * We know the message is one we're waiting for (or DL_NOTIFY_IND), 15667 * and we need to become writer to continue to process it. If it's not 15668 * a DL_NOTIFY_IND, we assume we're in the middle of an exclusive 15669 * operation and pass CUR_OP. If this isn't true, we'll end up doing 15670 * some work as part of the current exclusive operation that actually 15671 * is not part of it -- which is wrong, but better than the 15672 * alternative of deadlock (if NEW_OP is always used). Someday, we 15673 * should track which DLPI requests have ACKs that we wait on 15674 * synchronously so we can know whether to use CUR_OP or NEW_OP. 15675 * 15676 * As required by qwriter_ip(), we refhold the ill; it will refrele. 15677 * Since this is on the ill stream we unconditionally bump up the 15678 * refcount without doing ILL_CAN_LOOKUP(). 15679 */ 15680 ill_refhold(ill); 15681 if (dloa->dl_primitive == DL_NOTIFY_IND) 15682 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 15683 else 15684 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 15685 } 15686 15687 /* 15688 * Handling of DLPI messages that require exclusive access to the ipsq. 15689 * 15690 * Need to do ill_pending_mp_release on ioctl completion, which could 15691 * happen here. (along with mi_copy_done) 15692 */ 15693 /* ARGSUSED */ 15694 static void 15695 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15696 { 15697 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15698 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15699 int err = 0; 15700 ill_t *ill; 15701 ipif_t *ipif = NULL; 15702 mblk_t *mp1 = NULL; 15703 conn_t *connp = NULL; 15704 t_uscalar_t paddrreq; 15705 mblk_t *mp_hw; 15706 boolean_t success; 15707 boolean_t ioctl_aborted = B_FALSE; 15708 boolean_t log = B_TRUE; 15709 hook_nic_event_t *info; 15710 ip_stack_t *ipst; 15711 15712 ip1dbg(("ip_rput_dlpi_writer ..")); 15713 ill = (ill_t *)q->q_ptr; 15714 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 15715 15716 ASSERT(IAM_WRITER_ILL(ill)); 15717 15718 ipst = ill->ill_ipst; 15719 15720 /* 15721 * ipsq_pending_mp and ipsq_pending_ipif track each other. i.e. 15722 * both are null or non-null. However we can assert that only 15723 * after grabbing the ipsq_lock. So we don't make any assertion 15724 * here and in other places in the code. 15725 */ 15726 ipif = ipsq->ipsq_pending_ipif; 15727 /* 15728 * The current ioctl could have been aborted by the user and a new 15729 * ioctl to bring up another ill could have started. We could still 15730 * get a response from the driver later. 15731 */ 15732 if (ipif != NULL && ipif->ipif_ill != ill) 15733 ioctl_aborted = B_TRUE; 15734 15735 switch (dloa->dl_primitive) { 15736 case DL_ERROR_ACK: 15737 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 15738 dlpi_prim_str(dlea->dl_error_primitive))); 15739 15740 switch (dlea->dl_error_primitive) { 15741 case DL_PROMISCON_REQ: 15742 case DL_PROMISCOFF_REQ: 15743 case DL_DISABMULTI_REQ: 15744 case DL_UNBIND_REQ: 15745 case DL_ATTACH_REQ: 15746 case DL_INFO_REQ: 15747 ill_dlpi_done(ill, dlea->dl_error_primitive); 15748 break; 15749 case DL_NOTIFY_REQ: 15750 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15751 log = B_FALSE; 15752 break; 15753 case DL_PHYS_ADDR_REQ: 15754 /* 15755 * For IPv6 only, there are two additional 15756 * phys_addr_req's sent to the driver to get the 15757 * IPv6 token and lla. This allows IP to acquire 15758 * the hardware address format for a given interface 15759 * without having built in knowledge of the hardware 15760 * address. ill_phys_addr_pend keeps track of the last 15761 * DL_PAR sent so we know which response we are 15762 * dealing with. ill_dlpi_done will update 15763 * ill_phys_addr_pend when it sends the next req. 15764 * We don't complete the IOCTL until all three DL_PARs 15765 * have been attempted, so set *_len to 0 and break. 15766 */ 15767 paddrreq = ill->ill_phys_addr_pend; 15768 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15769 if (paddrreq == DL_IPV6_TOKEN) { 15770 ill->ill_token_length = 0; 15771 log = B_FALSE; 15772 break; 15773 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 15774 ill->ill_nd_lla_len = 0; 15775 log = B_FALSE; 15776 break; 15777 } 15778 /* 15779 * Something went wrong with the DL_PHYS_ADDR_REQ. 15780 * We presumably have an IOCTL hanging out waiting 15781 * for completion. Find it and complete the IOCTL 15782 * with the error noted. 15783 * However, ill_dl_phys was called on an ill queue 15784 * (from SIOCSLIFNAME), thus conn_pending_ill is not 15785 * set. But the ioctl is known to be pending on ill_wq. 15786 */ 15787 if (!ill->ill_ifname_pending) 15788 break; 15789 ill->ill_ifname_pending = 0; 15790 if (!ioctl_aborted) 15791 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15792 if (mp1 != NULL) { 15793 /* 15794 * This operation (SIOCSLIFNAME) must have 15795 * happened on the ill. Assert there is no conn 15796 */ 15797 ASSERT(connp == NULL); 15798 q = ill->ill_wq; 15799 } 15800 break; 15801 case DL_BIND_REQ: 15802 ill_dlpi_done(ill, DL_BIND_REQ); 15803 if (ill->ill_ifname_pending) 15804 break; 15805 /* 15806 * Something went wrong with the bind. We presumably 15807 * have an IOCTL hanging out waiting for completion. 15808 * Find it, take down the interface that was coming 15809 * up, and complete the IOCTL with the error noted. 15810 */ 15811 if (!ioctl_aborted) 15812 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15813 if (mp1 != NULL) { 15814 /* 15815 * This operation (SIOCSLIFFLAGS) must have 15816 * happened from a conn. 15817 */ 15818 ASSERT(connp != NULL); 15819 q = CONNP_TO_WQ(connp); 15820 if (ill->ill_move_in_progress) { 15821 ILL_CLEAR_MOVE(ill); 15822 } 15823 (void) ipif_down(ipif, NULL, NULL); 15824 /* error is set below the switch */ 15825 } 15826 break; 15827 case DL_ENABMULTI_REQ: 15828 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 15829 15830 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15831 ill->ill_dlpi_multicast_state = IDS_FAILED; 15832 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 15833 ipif_t *ipif; 15834 15835 printf("ip: joining multicasts failed (%d)" 15836 " on %s - will use link layer " 15837 "broadcasts for multicast\n", 15838 dlea->dl_errno, ill->ill_name); 15839 15840 /* 15841 * Set up the multicast mapping alone. 15842 * writer, so ok to access ill->ill_ipif 15843 * without any lock. 15844 */ 15845 ipif = ill->ill_ipif; 15846 mutex_enter(&ill->ill_phyint->phyint_lock); 15847 ill->ill_phyint->phyint_flags |= 15848 PHYI_MULTI_BCAST; 15849 mutex_exit(&ill->ill_phyint->phyint_lock); 15850 15851 if (!ill->ill_isv6) { 15852 (void) ipif_arp_setup_multicast(ipif, 15853 NULL); 15854 } else { 15855 (void) ipif_ndp_setup_multicast(ipif, 15856 NULL); 15857 } 15858 } 15859 freemsg(mp); /* Don't want to pass this up */ 15860 return; 15861 15862 case DL_CAPABILITY_REQ: 15863 case DL_CONTROL_REQ: 15864 ill_dlpi_done(ill, dlea->dl_error_primitive); 15865 ill->ill_dlpi_capab_state = IDS_FAILED; 15866 freemsg(mp); 15867 return; 15868 } 15869 /* 15870 * Note the error for IOCTL completion (mp1 is set when 15871 * ready to complete ioctl). If ill_ifname_pending_err is 15872 * set, an error occured during plumbing (ill_ifname_pending), 15873 * so we want to report that error. 15874 * 15875 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 15876 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 15877 * expected to get errack'd if the driver doesn't support 15878 * these flags (e.g. ethernet). log will be set to B_FALSE 15879 * if these error conditions are encountered. 15880 */ 15881 if (mp1 != NULL) { 15882 if (ill->ill_ifname_pending_err != 0) { 15883 err = ill->ill_ifname_pending_err; 15884 ill->ill_ifname_pending_err = 0; 15885 } else { 15886 err = dlea->dl_unix_errno ? 15887 dlea->dl_unix_errno : ENXIO; 15888 } 15889 /* 15890 * If we're plumbing an interface and an error hasn't already 15891 * been saved, set ill_ifname_pending_err to the error passed 15892 * up. Ignore the error if log is B_FALSE (see comment above). 15893 */ 15894 } else if (log && ill->ill_ifname_pending && 15895 ill->ill_ifname_pending_err == 0) { 15896 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 15897 dlea->dl_unix_errno : ENXIO; 15898 } 15899 15900 if (log) 15901 ip_dlpi_error(ill, dlea->dl_error_primitive, 15902 dlea->dl_errno, dlea->dl_unix_errno); 15903 break; 15904 case DL_CAPABILITY_ACK: { 15905 boolean_t reneg_flag = B_FALSE; 15906 /* Call a routine to handle this one. */ 15907 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 15908 /* 15909 * Check if the ACK is due to renegotiation case since we 15910 * will need to send a new CAPABILITY_REQ later. 15911 */ 15912 if (ill->ill_dlpi_capab_state == IDS_RENEG) { 15913 /* This is the ack for a renogiation case */ 15914 reneg_flag = B_TRUE; 15915 ill->ill_dlpi_capab_state = IDS_UNKNOWN; 15916 } 15917 ill_capability_ack(ill, mp); 15918 if (reneg_flag) 15919 ill_capability_probe(ill); 15920 break; 15921 } 15922 case DL_CONTROL_ACK: 15923 /* We treat all of these as "fire and forget" */ 15924 ill_dlpi_done(ill, DL_CONTROL_REQ); 15925 break; 15926 case DL_INFO_ACK: 15927 /* Call a routine to handle this one. */ 15928 ill_dlpi_done(ill, DL_INFO_REQ); 15929 ip_ll_subnet_defaults(ill, mp); 15930 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 15931 return; 15932 case DL_BIND_ACK: 15933 /* 15934 * We should have an IOCTL waiting on this unless 15935 * sent by ill_dl_phys, in which case just return 15936 */ 15937 ill_dlpi_done(ill, DL_BIND_REQ); 15938 if (ill->ill_ifname_pending) 15939 break; 15940 15941 if (!ioctl_aborted) 15942 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15943 if (mp1 == NULL) 15944 break; 15945 /* 15946 * Because mp1 was added by ill_dl_up(), and it always 15947 * passes a valid connp, connp must be valid here. 15948 */ 15949 ASSERT(connp != NULL); 15950 q = CONNP_TO_WQ(connp); 15951 15952 /* 15953 * We are exclusive. So nothing can change even after 15954 * we get the pending mp. If need be we can put it back 15955 * and restart, as in calling ipif_arp_up() below. 15956 */ 15957 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 15958 15959 mutex_enter(&ill->ill_lock); 15960 15961 ill->ill_dl_up = 1; 15962 15963 if ((info = ill->ill_nic_event_info) != NULL) { 15964 ip2dbg(("ip_rput_dlpi_writer: unexpected nic event %d " 15965 "attached for %s\n", info->hne_event, 15966 ill->ill_name)); 15967 if (info->hne_data != NULL) 15968 kmem_free(info->hne_data, info->hne_datalen); 15969 kmem_free(info, sizeof (hook_nic_event_t)); 15970 } 15971 15972 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 15973 if (info != NULL) { 15974 info->hne_nic = ill->ill_phyint->phyint_hook_ifindex; 15975 info->hne_lif = 0; 15976 info->hne_event = NE_UP; 15977 info->hne_data = NULL; 15978 info->hne_datalen = 0; 15979 info->hne_family = ill->ill_isv6 ? 15980 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 15981 } else 15982 ip2dbg(("ip_rput_dlpi_writer: could not attach UP nic " 15983 "event information for %s (ENOMEM)\n", 15984 ill->ill_name)); 15985 15986 ill->ill_nic_event_info = info; 15987 15988 mutex_exit(&ill->ill_lock); 15989 15990 /* 15991 * Now bring up the resolver; when that is complete, we'll 15992 * create IREs. Note that we intentionally mirror what 15993 * ipif_up() would have done, because we got here by way of 15994 * ill_dl_up(), which stopped ipif_up()'s processing. 15995 */ 15996 if (ill->ill_isv6) { 15997 /* 15998 * v6 interfaces. 15999 * Unlike ARP which has to do another bind 16000 * and attach, once we get here we are 16001 * done with NDP. Except in the case of 16002 * ILLF_XRESOLV, in which case we send an 16003 * AR_INTERFACE_UP to the external resolver. 16004 * If all goes well, the ioctl will complete 16005 * in ip_rput(). If there's an error, we 16006 * complete it here. 16007 */ 16008 err = ipif_ndp_up(ipif, &ipif->ipif_v6lcl_addr); 16009 if (err == 0) { 16010 if (ill->ill_flags & ILLF_XRESOLV) { 16011 mutex_enter(&connp->conn_lock); 16012 mutex_enter(&ill->ill_lock); 16013 success = ipsq_pending_mp_add( 16014 connp, ipif, q, mp1, 0); 16015 mutex_exit(&ill->ill_lock); 16016 mutex_exit(&connp->conn_lock); 16017 if (success) { 16018 err = ipif_resolver_up(ipif, 16019 Res_act_initial); 16020 if (err == EINPROGRESS) { 16021 freemsg(mp); 16022 return; 16023 } 16024 ASSERT(err != 0); 16025 mp1 = ipsq_pending_mp_get(ipsq, 16026 &connp); 16027 ASSERT(mp1 != NULL); 16028 } else { 16029 /* conn has started closing */ 16030 err = EINTR; 16031 } 16032 } else { /* Non XRESOLV interface */ 16033 (void) ipif_resolver_up(ipif, 16034 Res_act_initial); 16035 err = ipif_up_done_v6(ipif); 16036 } 16037 } 16038 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 16039 /* 16040 * ARP and other v4 external resolvers. 16041 * Leave the pending mblk intact so that 16042 * the ioctl completes in ip_rput(). 16043 */ 16044 mutex_enter(&connp->conn_lock); 16045 mutex_enter(&ill->ill_lock); 16046 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 16047 mutex_exit(&ill->ill_lock); 16048 mutex_exit(&connp->conn_lock); 16049 if (success) { 16050 err = ipif_resolver_up(ipif, Res_act_initial); 16051 if (err == EINPROGRESS) { 16052 freemsg(mp); 16053 return; 16054 } 16055 ASSERT(err != 0); 16056 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16057 } else { 16058 /* The conn has started closing */ 16059 err = EINTR; 16060 } 16061 } else { 16062 /* 16063 * This one is complete. Reply to pending ioctl. 16064 */ 16065 (void) ipif_resolver_up(ipif, Res_act_initial); 16066 err = ipif_up_done(ipif); 16067 } 16068 16069 if ((err == 0) && (ill->ill_up_ipifs)) { 16070 err = ill_up_ipifs(ill, q, mp1); 16071 if (err == EINPROGRESS) { 16072 freemsg(mp); 16073 return; 16074 } 16075 } 16076 16077 if (ill->ill_up_ipifs) { 16078 ill_group_cleanup(ill); 16079 } 16080 16081 break; 16082 case DL_NOTIFY_IND: { 16083 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 16084 ire_t *ire; 16085 boolean_t need_ire_walk_v4 = B_FALSE; 16086 boolean_t need_ire_walk_v6 = B_FALSE; 16087 16088 switch (notify->dl_notification) { 16089 case DL_NOTE_PHYS_ADDR: 16090 err = ill_set_phys_addr(ill, mp); 16091 break; 16092 16093 case DL_NOTE_FASTPATH_FLUSH: 16094 ill_fastpath_flush(ill); 16095 break; 16096 16097 case DL_NOTE_SDU_SIZE: 16098 /* 16099 * Change the MTU size of the interface, of all 16100 * attached ipif's, and of all relevant ire's. The 16101 * new value's a uint32_t at notify->dl_data. 16102 * Mtu change Vs. new ire creation - protocol below. 16103 * 16104 * a Mark the ipif as IPIF_CHANGING. 16105 * b Set the new mtu in the ipif. 16106 * c Change the ire_max_frag on all affected ires 16107 * d Unmark the IPIF_CHANGING 16108 * 16109 * To see how the protocol works, assume an interface 16110 * route is also being added simultaneously by 16111 * ip_rt_add and let 'ipif' be the ipif referenced by 16112 * the ire. If the ire is created before step a, 16113 * it will be cleaned up by step c. If the ire is 16114 * created after step d, it will see the new value of 16115 * ipif_mtu. Any attempt to create the ire between 16116 * steps a to d will fail because of the IPIF_CHANGING 16117 * flag. Note that ire_create() is passed a pointer to 16118 * the ipif_mtu, and not the value. During ire_add 16119 * under the bucket lock, the ire_max_frag of the 16120 * new ire being created is set from the ipif/ire from 16121 * which it is being derived. 16122 */ 16123 mutex_enter(&ill->ill_lock); 16124 ill->ill_max_frag = (uint_t)notify->dl_data; 16125 16126 /* 16127 * If an SIOCSLIFLNKINFO has changed the ill_max_mtu 16128 * leave it alone 16129 */ 16130 if (ill->ill_mtu_userspecified) { 16131 mutex_exit(&ill->ill_lock); 16132 break; 16133 } 16134 ill->ill_max_mtu = ill->ill_max_frag; 16135 if (ill->ill_isv6) { 16136 if (ill->ill_max_mtu < IPV6_MIN_MTU) 16137 ill->ill_max_mtu = IPV6_MIN_MTU; 16138 } else { 16139 if (ill->ill_max_mtu < IP_MIN_MTU) 16140 ill->ill_max_mtu = IP_MIN_MTU; 16141 } 16142 for (ipif = ill->ill_ipif; ipif != NULL; 16143 ipif = ipif->ipif_next) { 16144 /* 16145 * Don't override the mtu if the user 16146 * has explicitly set it. 16147 */ 16148 if (ipif->ipif_flags & IPIF_FIXEDMTU) 16149 continue; 16150 ipif->ipif_mtu = (uint_t)notify->dl_data; 16151 if (ipif->ipif_isv6) 16152 ire = ipif_to_ire_v6(ipif); 16153 else 16154 ire = ipif_to_ire(ipif); 16155 if (ire != NULL) { 16156 ire->ire_max_frag = ipif->ipif_mtu; 16157 ire_refrele(ire); 16158 } 16159 if (ipif->ipif_flags & IPIF_UP) { 16160 if (ill->ill_isv6) 16161 need_ire_walk_v6 = B_TRUE; 16162 else 16163 need_ire_walk_v4 = B_TRUE; 16164 } 16165 } 16166 mutex_exit(&ill->ill_lock); 16167 if (need_ire_walk_v4) 16168 ire_walk_v4(ill_mtu_change, (char *)ill, 16169 ALL_ZONES, ipst); 16170 if (need_ire_walk_v6) 16171 ire_walk_v6(ill_mtu_change, (char *)ill, 16172 ALL_ZONES, ipst); 16173 break; 16174 case DL_NOTE_LINK_UP: 16175 case DL_NOTE_LINK_DOWN: { 16176 /* 16177 * We are writer. ill / phyint / ipsq assocs stable. 16178 * The RUNNING flag reflects the state of the link. 16179 */ 16180 phyint_t *phyint = ill->ill_phyint; 16181 uint64_t new_phyint_flags; 16182 boolean_t changed = B_FALSE; 16183 boolean_t went_up; 16184 16185 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 16186 mutex_enter(&phyint->phyint_lock); 16187 new_phyint_flags = went_up ? 16188 phyint->phyint_flags | PHYI_RUNNING : 16189 phyint->phyint_flags & ~PHYI_RUNNING; 16190 if (new_phyint_flags != phyint->phyint_flags) { 16191 phyint->phyint_flags = new_phyint_flags; 16192 changed = B_TRUE; 16193 } 16194 mutex_exit(&phyint->phyint_lock); 16195 /* 16196 * ill_restart_dad handles the DAD restart and routing 16197 * socket notification logic. 16198 */ 16199 if (changed) { 16200 ill_restart_dad(phyint->phyint_illv4, went_up); 16201 ill_restart_dad(phyint->phyint_illv6, went_up); 16202 } 16203 break; 16204 } 16205 case DL_NOTE_PROMISC_ON_PHYS: 16206 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16207 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 16208 mutex_enter(&ill->ill_lock); 16209 ill->ill_promisc_on_phys = B_TRUE; 16210 mutex_exit(&ill->ill_lock); 16211 break; 16212 case DL_NOTE_PROMISC_OFF_PHYS: 16213 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16214 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 16215 mutex_enter(&ill->ill_lock); 16216 ill->ill_promisc_on_phys = B_FALSE; 16217 mutex_exit(&ill->ill_lock); 16218 break; 16219 case DL_NOTE_CAPAB_RENEG: 16220 /* 16221 * Something changed on the driver side. 16222 * It wants us to renegotiate the capabilities 16223 * on this ill. The most likely cause is the 16224 * aggregation interface under us where a 16225 * port got added or went away. 16226 * 16227 * We reset the capabilities and set the 16228 * state to IDS_RENG so that when the ack 16229 * comes back, we can start the 16230 * renegotiation process. 16231 */ 16232 ill_capability_reset(ill); 16233 ill->ill_dlpi_capab_state = IDS_RENEG; 16234 break; 16235 default: 16236 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 16237 "type 0x%x for DL_NOTIFY_IND\n", 16238 notify->dl_notification)); 16239 break; 16240 } 16241 16242 /* 16243 * As this is an asynchronous operation, we 16244 * should not call ill_dlpi_done 16245 */ 16246 break; 16247 } 16248 case DL_NOTIFY_ACK: { 16249 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 16250 16251 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 16252 ill->ill_note_link = 1; 16253 ill_dlpi_done(ill, DL_NOTIFY_REQ); 16254 break; 16255 } 16256 case DL_PHYS_ADDR_ACK: { 16257 /* 16258 * As part of plumbing the interface via SIOCSLIFNAME, 16259 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 16260 * whose answers we receive here. As each answer is received, 16261 * we call ill_dlpi_done() to dispatch the next request as 16262 * we're processing the current one. Once all answers have 16263 * been received, we use ipsq_pending_mp_get() to dequeue the 16264 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 16265 * is invoked from an ill queue, conn_oper_pending_ill is not 16266 * available, but we know the ioctl is pending on ill_wq.) 16267 */ 16268 uint_t paddrlen, paddroff; 16269 16270 paddrreq = ill->ill_phys_addr_pend; 16271 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 16272 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 16273 16274 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 16275 if (paddrreq == DL_IPV6_TOKEN) { 16276 /* 16277 * bcopy to low-order bits of ill_token 16278 * 16279 * XXX Temporary hack - currently, all known tokens 16280 * are 64 bits, so I'll cheat for the moment. 16281 */ 16282 bcopy(mp->b_rptr + paddroff, 16283 &ill->ill_token.s6_addr32[2], paddrlen); 16284 ill->ill_token_length = paddrlen; 16285 break; 16286 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 16287 ASSERT(ill->ill_nd_lla_mp == NULL); 16288 ill_set_ndmp(ill, mp, paddroff, paddrlen); 16289 mp = NULL; 16290 break; 16291 } 16292 16293 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 16294 ASSERT(ill->ill_phys_addr_mp == NULL); 16295 if (!ill->ill_ifname_pending) 16296 break; 16297 ill->ill_ifname_pending = 0; 16298 if (!ioctl_aborted) 16299 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16300 if (mp1 != NULL) { 16301 ASSERT(connp == NULL); 16302 q = ill->ill_wq; 16303 } 16304 /* 16305 * If any error acks received during the plumbing sequence, 16306 * ill_ifname_pending_err will be set. Break out and send up 16307 * the error to the pending ioctl. 16308 */ 16309 if (ill->ill_ifname_pending_err != 0) { 16310 err = ill->ill_ifname_pending_err; 16311 ill->ill_ifname_pending_err = 0; 16312 break; 16313 } 16314 16315 ill->ill_phys_addr_mp = mp; 16316 ill->ill_phys_addr = mp->b_rptr + paddroff; 16317 mp = NULL; 16318 16319 /* 16320 * If paddrlen is zero, the DLPI provider doesn't support 16321 * physical addresses. The other two tests were historical 16322 * workarounds for bugs in our former PPP implementation, but 16323 * now other things have grown dependencies on them -- e.g., 16324 * the tun module specifies a dl_addr_length of zero in its 16325 * DL_BIND_ACK, but then specifies an incorrect value in its 16326 * DL_PHYS_ADDR_ACK. These bogus checks need to be removed, 16327 * but only after careful testing ensures that all dependent 16328 * broken DLPI providers have been fixed. 16329 */ 16330 if (paddrlen == 0 || ill->ill_phys_addr_length == 0 || 16331 ill->ill_phys_addr_length == IP_ADDR_LEN) { 16332 ill->ill_phys_addr = NULL; 16333 } else if (paddrlen != ill->ill_phys_addr_length) { 16334 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 16335 paddrlen, ill->ill_phys_addr_length)); 16336 err = EINVAL; 16337 break; 16338 } 16339 16340 if (ill->ill_nd_lla_mp == NULL) { 16341 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 16342 err = ENOMEM; 16343 break; 16344 } 16345 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 16346 } 16347 16348 /* 16349 * Set the interface token. If the zeroth interface address 16350 * is unspecified, then set it to the link local address. 16351 */ 16352 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 16353 (void) ill_setdefaulttoken(ill); 16354 16355 ASSERT(ill->ill_ipif->ipif_id == 0); 16356 if (ipif != NULL && 16357 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 16358 (void) ipif_setlinklocal(ipif); 16359 } 16360 break; 16361 } 16362 case DL_OK_ACK: 16363 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 16364 dlpi_prim_str((int)dloa->dl_correct_primitive), 16365 dloa->dl_correct_primitive)); 16366 switch (dloa->dl_correct_primitive) { 16367 case DL_PROMISCON_REQ: 16368 case DL_PROMISCOFF_REQ: 16369 case DL_ENABMULTI_REQ: 16370 case DL_DISABMULTI_REQ: 16371 case DL_UNBIND_REQ: 16372 case DL_ATTACH_REQ: 16373 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16374 break; 16375 } 16376 break; 16377 default: 16378 break; 16379 } 16380 16381 freemsg(mp); 16382 if (mp1 != NULL) { 16383 /* 16384 * The operation must complete without EINPROGRESS 16385 * since ipsq_pending_mp_get() has removed the mblk 16386 * from ipsq_pending_mp. Otherwise, the operation 16387 * will be stuck forever in the ipsq. 16388 */ 16389 ASSERT(err != EINPROGRESS); 16390 16391 switch (ipsq->ipsq_current_ioctl) { 16392 case 0: 16393 ipsq_current_finish(ipsq); 16394 break; 16395 16396 case SIOCLIFADDIF: 16397 case SIOCSLIFNAME: 16398 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16399 break; 16400 16401 default: 16402 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16403 break; 16404 } 16405 } 16406 } 16407 16408 /* 16409 * ip_rput_other is called by ip_rput to handle messages modifying the global 16410 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 16411 */ 16412 /* ARGSUSED */ 16413 void 16414 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 16415 { 16416 ill_t *ill; 16417 struct iocblk *iocp; 16418 mblk_t *mp1; 16419 conn_t *connp = NULL; 16420 16421 ip1dbg(("ip_rput_other ")); 16422 ill = (ill_t *)q->q_ptr; 16423 /* 16424 * This routine is not a writer in the case of SIOCGTUNPARAM 16425 * in which case ipsq is NULL. 16426 */ 16427 if (ipsq != NULL) { 16428 ASSERT(IAM_WRITER_IPSQ(ipsq)); 16429 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 16430 } 16431 16432 switch (mp->b_datap->db_type) { 16433 case M_ERROR: 16434 case M_HANGUP: 16435 /* 16436 * The device has a problem. We force the ILL down. It can 16437 * be brought up again manually using SIOCSIFFLAGS (via 16438 * ifconfig or equivalent). 16439 */ 16440 ASSERT(ipsq != NULL); 16441 if (mp->b_rptr < mp->b_wptr) 16442 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 16443 if (ill->ill_error == 0) 16444 ill->ill_error = ENXIO; 16445 if (!ill_down_start(q, mp)) 16446 return; 16447 ipif_all_down_tail(ipsq, q, mp, NULL); 16448 break; 16449 case M_IOCACK: 16450 iocp = (struct iocblk *)mp->b_rptr; 16451 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 16452 switch (iocp->ioc_cmd) { 16453 case SIOCSTUNPARAM: 16454 case OSIOCSTUNPARAM: 16455 ASSERT(ipsq != NULL); 16456 /* 16457 * Finish socket ioctl passed through to tun. 16458 * We should have an IOCTL waiting on this. 16459 */ 16460 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16461 if (ill->ill_isv6) { 16462 struct iftun_req *ta; 16463 16464 /* 16465 * if a source or destination is 16466 * being set, try and set the link 16467 * local address for the tunnel 16468 */ 16469 ta = (struct iftun_req *)mp->b_cont-> 16470 b_cont->b_rptr; 16471 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 16472 ipif_set_tun_llink(ill, ta); 16473 } 16474 16475 } 16476 if (mp1 != NULL) { 16477 /* 16478 * Now copy back the b_next/b_prev used by 16479 * mi code for the mi_copy* functions. 16480 * See ip_sioctl_tunparam() for the reason. 16481 * Also protect against missing b_cont. 16482 */ 16483 if (mp->b_cont != NULL) { 16484 mp->b_cont->b_next = 16485 mp1->b_cont->b_next; 16486 mp->b_cont->b_prev = 16487 mp1->b_cont->b_prev; 16488 } 16489 inet_freemsg(mp1); 16490 ASSERT(connp != NULL); 16491 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16492 iocp->ioc_error, NO_COPYOUT, ipsq); 16493 } else { 16494 ASSERT(connp == NULL); 16495 putnext(q, mp); 16496 } 16497 break; 16498 case SIOCGTUNPARAM: 16499 case OSIOCGTUNPARAM: 16500 /* 16501 * This is really M_IOCDATA from the tunnel driver. 16502 * convert back and complete the ioctl. 16503 * We should have an IOCTL waiting on this. 16504 */ 16505 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 16506 if (mp1) { 16507 /* 16508 * Now copy back the b_next/b_prev used by 16509 * mi code for the mi_copy* functions. 16510 * See ip_sioctl_tunparam() for the reason. 16511 * Also protect against missing b_cont. 16512 */ 16513 if (mp->b_cont != NULL) { 16514 mp->b_cont->b_next = 16515 mp1->b_cont->b_next; 16516 mp->b_cont->b_prev = 16517 mp1->b_cont->b_prev; 16518 } 16519 inet_freemsg(mp1); 16520 if (iocp->ioc_error == 0) 16521 mp->b_datap->db_type = M_IOCDATA; 16522 ASSERT(connp != NULL); 16523 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16524 iocp->ioc_error, COPYOUT, NULL); 16525 } else { 16526 ASSERT(connp == NULL); 16527 putnext(q, mp); 16528 } 16529 break; 16530 default: 16531 break; 16532 } 16533 break; 16534 case M_IOCNAK: 16535 iocp = (struct iocblk *)mp->b_rptr; 16536 16537 switch (iocp->ioc_cmd) { 16538 int mode; 16539 16540 case DL_IOC_HDR_INFO: 16541 /* 16542 * If this was the first attempt turn of the 16543 * fastpath probing. 16544 */ 16545 mutex_enter(&ill->ill_lock); 16546 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 16547 ill->ill_dlpi_fastpath_state = IDS_FAILED; 16548 mutex_exit(&ill->ill_lock); 16549 ill_fastpath_nack(ill); 16550 ip1dbg(("ip_rput: DLPI fastpath off on " 16551 "interface %s\n", 16552 ill->ill_name)); 16553 } else { 16554 mutex_exit(&ill->ill_lock); 16555 } 16556 freemsg(mp); 16557 break; 16558 case SIOCSTUNPARAM: 16559 case OSIOCSTUNPARAM: 16560 ASSERT(ipsq != NULL); 16561 /* 16562 * Finish socket ioctl passed through to tun 16563 * We should have an IOCTL waiting on this. 16564 */ 16565 /* FALLTHRU */ 16566 case SIOCGTUNPARAM: 16567 case OSIOCGTUNPARAM: 16568 /* 16569 * This is really M_IOCDATA from the tunnel driver. 16570 * convert back and complete the ioctl. 16571 * We should have an IOCTL waiting on this. 16572 */ 16573 if (iocp->ioc_cmd == SIOCGTUNPARAM || 16574 iocp->ioc_cmd == OSIOCGTUNPARAM) { 16575 mp1 = ill_pending_mp_get(ill, &connp, 16576 iocp->ioc_id); 16577 mode = COPYOUT; 16578 ipsq = NULL; 16579 } else { 16580 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16581 mode = NO_COPYOUT; 16582 } 16583 if (mp1 != NULL) { 16584 /* 16585 * Now copy back the b_next/b_prev used by 16586 * mi code for the mi_copy* functions. 16587 * See ip_sioctl_tunparam() for the reason. 16588 * Also protect against missing b_cont. 16589 */ 16590 if (mp->b_cont != NULL) { 16591 mp->b_cont->b_next = 16592 mp1->b_cont->b_next; 16593 mp->b_cont->b_prev = 16594 mp1->b_cont->b_prev; 16595 } 16596 inet_freemsg(mp1); 16597 if (iocp->ioc_error == 0) 16598 iocp->ioc_error = EINVAL; 16599 ASSERT(connp != NULL); 16600 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16601 iocp->ioc_error, mode, ipsq); 16602 } else { 16603 ASSERT(connp == NULL); 16604 putnext(q, mp); 16605 } 16606 break; 16607 default: 16608 break; 16609 } 16610 default: 16611 break; 16612 } 16613 } 16614 16615 /* 16616 * NOTE : This function does not ire_refrele the ire argument passed in. 16617 * 16618 * IPQoS notes 16619 * IP policy is invoked twice for a forwarded packet, once on the read side 16620 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 16621 * enabled. An additional parameter, in_ill, has been added for this purpose. 16622 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 16623 * because ip_mroute drops this information. 16624 * 16625 */ 16626 void 16627 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 16628 { 16629 uint32_t pkt_len; 16630 queue_t *q; 16631 uint32_t sum; 16632 #define rptr ((uchar_t *)ipha) 16633 uint32_t max_frag; 16634 uint32_t ill_index; 16635 ill_t *out_ill; 16636 mib2_ipIfStatsEntry_t *mibptr; 16637 ip_stack_t *ipst = in_ill->ill_ipst; 16638 16639 /* Get the ill_index of the incoming ILL */ 16640 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 16641 mibptr = (in_ill != NULL) ? in_ill->ill_ip_mib : &ipst->ips_ip_mib; 16642 16643 /* Initiate Read side IPPF processing */ 16644 if (IPP_ENABLED(IPP_FWD_IN, ipst)) { 16645 ip_process(IPP_FWD_IN, &mp, ill_index); 16646 if (mp == NULL) { 16647 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 16648 "during IPPF processing\n")); 16649 return; 16650 } 16651 } 16652 16653 pkt_len = ntohs(ipha->ipha_length); 16654 16655 /* Adjust the checksum to reflect the ttl decrement. */ 16656 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 16657 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 16658 16659 if (ipha->ipha_ttl-- <= 1) { 16660 if (ip_csum_hdr(ipha)) { 16661 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16662 goto drop_pkt; 16663 } 16664 /* 16665 * Note: ire_stq this will be NULL for multicast 16666 * datagrams using the long path through arp (the IRE 16667 * is not an IRE_CACHE). This should not cause 16668 * problems since we don't generate ICMP errors for 16669 * multicast packets. 16670 */ 16671 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16672 q = ire->ire_stq; 16673 if (q != NULL) { 16674 /* Sent by forwarding path, and router is global zone */ 16675 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED, 16676 GLOBAL_ZONEID, ipst); 16677 } else 16678 freemsg(mp); 16679 return; 16680 } 16681 16682 /* 16683 * Don't forward if the interface is down 16684 */ 16685 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 16686 BUMP_MIB(mibptr, ipIfStatsInDiscards); 16687 ip2dbg(("ip_rput_forward:interface is down\n")); 16688 goto drop_pkt; 16689 } 16690 16691 /* Get the ill_index of the outgoing ILL */ 16692 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 16693 16694 out_ill = ire->ire_ipif->ipif_ill; 16695 16696 DTRACE_PROBE4(ip4__forwarding__start, 16697 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16698 16699 FW_HOOKS(ipst->ips_ip4_forwarding_event, 16700 ipst->ips_ipv4firewall_forwarding, 16701 in_ill, out_ill, ipha, mp, mp, ipst); 16702 16703 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 16704 16705 if (mp == NULL) 16706 return; 16707 pkt_len = ntohs(ipha->ipha_length); 16708 16709 if (is_system_labeled()) { 16710 mblk_t *mp1; 16711 16712 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 16713 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16714 goto drop_pkt; 16715 } 16716 /* Size may have changed */ 16717 mp = mp1; 16718 ipha = (ipha_t *)mp->b_rptr; 16719 pkt_len = ntohs(ipha->ipha_length); 16720 } 16721 16722 /* Check if there are options to update */ 16723 if (!IS_SIMPLE_IPH(ipha)) { 16724 if (ip_csum_hdr(ipha)) { 16725 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16726 goto drop_pkt; 16727 } 16728 if (ip_rput_forward_options(mp, ipha, ire, ipst)) { 16729 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16730 return; 16731 } 16732 16733 ipha->ipha_hdr_checksum = 0; 16734 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 16735 } 16736 max_frag = ire->ire_max_frag; 16737 if (pkt_len > max_frag) { 16738 /* 16739 * It needs fragging on its way out. We haven't 16740 * verified the header checksum yet. Since we 16741 * are going to put a surely good checksum in the 16742 * outgoing header, we have to make sure that it 16743 * was good coming in. 16744 */ 16745 if (ip_csum_hdr(ipha)) { 16746 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16747 goto drop_pkt; 16748 } 16749 /* Initiate Write side IPPF processing */ 16750 if (IPP_ENABLED(IPP_FWD_OUT, ipst)) { 16751 ip_process(IPP_FWD_OUT, &mp, ill_index); 16752 if (mp == NULL) { 16753 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 16754 " during IPPF processing\n")); 16755 return; 16756 } 16757 } 16758 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID, ipst); 16759 ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n")); 16760 return; 16761 } 16762 16763 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 16764 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16765 FW_HOOKS(ipst->ips_ip4_physical_out_event, 16766 ipst->ips_ipv4firewall_physical_out, 16767 NULL, out_ill, ipha, mp, mp, ipst); 16768 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 16769 if (mp == NULL) 16770 return; 16771 16772 mp->b_prev = (mblk_t *)IPP_FWD_OUT; 16773 ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n")); 16774 (void) ip_xmit_v4(mp, ire, NULL, B_FALSE); 16775 /* ip_xmit_v4 always consumes the packet */ 16776 return; 16777 16778 drop_pkt:; 16779 ip1dbg(("ip_rput_forward: drop pkt\n")); 16780 freemsg(mp); 16781 #undef rptr 16782 } 16783 16784 void 16785 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 16786 { 16787 ire_t *ire; 16788 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16789 16790 ASSERT(!ipif->ipif_isv6); 16791 /* 16792 * Find an IRE which matches the destination and the outgoing 16793 * queue in the cache table. All we need is an IRE_CACHE which 16794 * is pointing at ipif->ipif_ill. If it is part of some ill group, 16795 * then it is enough to have some IRE_CACHE in the group. 16796 */ 16797 if (ipif->ipif_flags & IPIF_POINTOPOINT) 16798 dst = ipif->ipif_pp_dst_addr; 16799 16800 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, MBLK_GETLABEL(mp), 16801 MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR, ipst); 16802 if (ire == NULL) { 16803 /* 16804 * Mark this packet to make it be delivered to 16805 * ip_rput_forward after the new ire has been 16806 * created. 16807 */ 16808 mp->b_prev = NULL; 16809 mp->b_next = mp; 16810 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 16811 NULL, 0, GLOBAL_ZONEID, &zero_info); 16812 } else { 16813 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 16814 IRE_REFRELE(ire); 16815 } 16816 } 16817 16818 /* Update any source route, record route or timestamp options */ 16819 static int 16820 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire, ip_stack_t *ipst) 16821 { 16822 ipoptp_t opts; 16823 uchar_t *opt; 16824 uint8_t optval; 16825 uint8_t optlen; 16826 ipaddr_t dst; 16827 uint32_t ts; 16828 ire_t *dst_ire = NULL; 16829 ire_t *tmp_ire = NULL; 16830 timestruc_t now; 16831 16832 ip2dbg(("ip_rput_forward_options\n")); 16833 dst = ipha->ipha_dst; 16834 for (optval = ipoptp_first(&opts, ipha); 16835 optval != IPOPT_EOL; 16836 optval = ipoptp_next(&opts)) { 16837 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 16838 opt = opts.ipoptp_cur; 16839 optlen = opts.ipoptp_len; 16840 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 16841 optval, opts.ipoptp_len)); 16842 switch (optval) { 16843 uint32_t off; 16844 case IPOPT_SSRR: 16845 case IPOPT_LSRR: 16846 /* Check if adminstratively disabled */ 16847 if (!ipst->ips_ip_forward_src_routed) { 16848 if (ire->ire_stq != NULL) { 16849 /* 16850 * Sent by forwarding path, and router 16851 * is global zone 16852 */ 16853 icmp_unreachable(ire->ire_stq, mp, 16854 ICMP_SOURCE_ROUTE_FAILED, 16855 GLOBAL_ZONEID, ipst); 16856 } else { 16857 ip0dbg(("ip_rput_forward_options: " 16858 "unable to send unreach\n")); 16859 freemsg(mp); 16860 } 16861 return (-1); 16862 } 16863 16864 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16865 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16866 if (dst_ire == NULL) { 16867 /* 16868 * Must be partial since ip_rput_options 16869 * checked for strict. 16870 */ 16871 break; 16872 } 16873 off = opt[IPOPT_OFFSET]; 16874 off--; 16875 redo_srr: 16876 if (optlen < IP_ADDR_LEN || 16877 off > optlen - IP_ADDR_LEN) { 16878 /* End of source route */ 16879 ip1dbg(( 16880 "ip_rput_forward_options: end of SR\n")); 16881 ire_refrele(dst_ire); 16882 break; 16883 } 16884 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16885 bcopy(&ire->ire_src_addr, (char *)opt + off, 16886 IP_ADDR_LEN); 16887 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 16888 ntohl(dst))); 16889 16890 /* 16891 * Check if our address is present more than 16892 * once as consecutive hops in source route. 16893 */ 16894 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16895 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16896 if (tmp_ire != NULL) { 16897 ire_refrele(tmp_ire); 16898 off += IP_ADDR_LEN; 16899 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16900 goto redo_srr; 16901 } 16902 ipha->ipha_dst = dst; 16903 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16904 ire_refrele(dst_ire); 16905 break; 16906 case IPOPT_RR: 16907 off = opt[IPOPT_OFFSET]; 16908 off--; 16909 if (optlen < IP_ADDR_LEN || 16910 off > optlen - IP_ADDR_LEN) { 16911 /* No more room - ignore */ 16912 ip1dbg(( 16913 "ip_rput_forward_options: end of RR\n")); 16914 break; 16915 } 16916 bcopy(&ire->ire_src_addr, (char *)opt + off, 16917 IP_ADDR_LEN); 16918 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16919 break; 16920 case IPOPT_TS: 16921 /* Insert timestamp if there is room */ 16922 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16923 case IPOPT_TS_TSONLY: 16924 off = IPOPT_TS_TIMELEN; 16925 break; 16926 case IPOPT_TS_PRESPEC: 16927 case IPOPT_TS_PRESPEC_RFC791: 16928 /* Verify that the address matched */ 16929 off = opt[IPOPT_OFFSET] - 1; 16930 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16931 dst_ire = ire_ctable_lookup(dst, 0, 16932 IRE_LOCAL, NULL, ALL_ZONES, NULL, 16933 MATCH_IRE_TYPE, ipst); 16934 if (dst_ire == NULL) { 16935 /* Not for us */ 16936 break; 16937 } 16938 ire_refrele(dst_ire); 16939 /* FALLTHRU */ 16940 case IPOPT_TS_TSANDADDR: 16941 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16942 break; 16943 default: 16944 /* 16945 * ip_*put_options should have already 16946 * dropped this packet. 16947 */ 16948 cmn_err(CE_PANIC, "ip_rput_forward_options: " 16949 "unknown IT - bug in ip_rput_options?\n"); 16950 return (0); /* Keep "lint" happy */ 16951 } 16952 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 16953 /* Increase overflow counter */ 16954 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 16955 opt[IPOPT_POS_OV_FLG] = 16956 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 16957 (off << 4)); 16958 break; 16959 } 16960 off = opt[IPOPT_OFFSET] - 1; 16961 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16962 case IPOPT_TS_PRESPEC: 16963 case IPOPT_TS_PRESPEC_RFC791: 16964 case IPOPT_TS_TSANDADDR: 16965 bcopy(&ire->ire_src_addr, 16966 (char *)opt + off, IP_ADDR_LEN); 16967 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16968 /* FALLTHRU */ 16969 case IPOPT_TS_TSONLY: 16970 off = opt[IPOPT_OFFSET] - 1; 16971 /* Compute # of milliseconds since midnight */ 16972 gethrestime(&now); 16973 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 16974 now.tv_nsec / (NANOSEC / MILLISEC); 16975 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 16976 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 16977 break; 16978 } 16979 break; 16980 } 16981 } 16982 return (0); 16983 } 16984 16985 /* 16986 * This is called after processing at least one of AH/ESP headers. 16987 * 16988 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 16989 * the actual, physical interface on which the packet was received, 16990 * but, when ip_strict_dst_multihoming is set to 1, could be the 16991 * interface which had the ipha_dst configured when the packet went 16992 * through ip_rput. The ill_index corresponding to the recv_ill 16993 * is saved in ipsec_in_rill_index 16994 * 16995 * NOTE2: The "ire" argument is only used in IPv4 cases. This function 16996 * cannot assume "ire" points to valid data for any IPv6 cases. 16997 */ 16998 void 16999 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 17000 { 17001 mblk_t *mp; 17002 ipaddr_t dst; 17003 in6_addr_t *v6dstp; 17004 ipha_t *ipha; 17005 ip6_t *ip6h; 17006 ipsec_in_t *ii; 17007 boolean_t ill_need_rele = B_FALSE; 17008 boolean_t rill_need_rele = B_FALSE; 17009 boolean_t ire_need_rele = B_FALSE; 17010 netstack_t *ns; 17011 ip_stack_t *ipst; 17012 17013 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 17014 ASSERT(ii->ipsec_in_ill_index != 0); 17015 ns = ii->ipsec_in_ns; 17016 ASSERT(ii->ipsec_in_ns != NULL); 17017 ipst = ns->netstack_ip; 17018 17019 mp = ipsec_mp->b_cont; 17020 ASSERT(mp != NULL); 17021 17022 17023 if (ill == NULL) { 17024 ASSERT(recv_ill == NULL); 17025 /* 17026 * We need to get the original queue on which ip_rput_local 17027 * or ip_rput_data_v6 was called. 17028 */ 17029 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 17030 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL, ipst); 17031 ill_need_rele = B_TRUE; 17032 17033 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 17034 recv_ill = ill_lookup_on_ifindex( 17035 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 17036 NULL, NULL, NULL, NULL, ipst); 17037 rill_need_rele = B_TRUE; 17038 } else { 17039 recv_ill = ill; 17040 } 17041 17042 if ((ill == NULL) || (recv_ill == NULL)) { 17043 ip0dbg(("ip_fanout_proto_again: interface " 17044 "disappeared\n")); 17045 if (ill != NULL) 17046 ill_refrele(ill); 17047 if (recv_ill != NULL) 17048 ill_refrele(recv_ill); 17049 freemsg(ipsec_mp); 17050 return; 17051 } 17052 } 17053 17054 ASSERT(ill != NULL && recv_ill != NULL); 17055 17056 if (mp->b_datap->db_type == M_CTL) { 17057 /* 17058 * AH/ESP is returning the ICMP message after 17059 * removing their headers. Fanout again till 17060 * it gets to the right protocol. 17061 */ 17062 if (ii->ipsec_in_v4) { 17063 icmph_t *icmph; 17064 int iph_hdr_length; 17065 int hdr_length; 17066 17067 ipha = (ipha_t *)mp->b_rptr; 17068 iph_hdr_length = IPH_HDR_LENGTH(ipha); 17069 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 17070 ipha = (ipha_t *)&icmph[1]; 17071 hdr_length = IPH_HDR_LENGTH(ipha); 17072 /* 17073 * icmp_inbound_error_fanout may need to do pullupmsg. 17074 * Reset the type to M_DATA. 17075 */ 17076 mp->b_datap->db_type = M_DATA; 17077 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 17078 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 17079 B_FALSE, ill, ii->ipsec_in_zoneid); 17080 } else { 17081 icmp6_t *icmp6; 17082 int hdr_length; 17083 17084 ip6h = (ip6_t *)mp->b_rptr; 17085 /* Don't call hdr_length_v6() unless you have to. */ 17086 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 17087 hdr_length = ip_hdr_length_v6(mp, ip6h); 17088 else 17089 hdr_length = IPV6_HDR_LEN; 17090 17091 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 17092 /* 17093 * icmp_inbound_error_fanout_v6 may need to do 17094 * pullupmsg. Reset the type to M_DATA. 17095 */ 17096 mp->b_datap->db_type = M_DATA; 17097 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 17098 ip6h, icmp6, ill, B_TRUE, ii->ipsec_in_zoneid); 17099 } 17100 if (ill_need_rele) 17101 ill_refrele(ill); 17102 if (rill_need_rele) 17103 ill_refrele(recv_ill); 17104 return; 17105 } 17106 17107 if (ii->ipsec_in_v4) { 17108 ipha = (ipha_t *)mp->b_rptr; 17109 dst = ipha->ipha_dst; 17110 if (CLASSD(dst)) { 17111 /* 17112 * Multicast has to be delivered to all streams. 17113 */ 17114 dst = INADDR_BROADCAST; 17115 } 17116 17117 if (ire == NULL) { 17118 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 17119 MBLK_GETLABEL(mp), ipst); 17120 if (ire == NULL) { 17121 if (ill_need_rele) 17122 ill_refrele(ill); 17123 if (rill_need_rele) 17124 ill_refrele(recv_ill); 17125 ip1dbg(("ip_fanout_proto_again: " 17126 "IRE not found")); 17127 freemsg(ipsec_mp); 17128 return; 17129 } 17130 ire_need_rele = B_TRUE; 17131 } 17132 17133 switch (ipha->ipha_protocol) { 17134 case IPPROTO_UDP: 17135 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 17136 recv_ill); 17137 if (ire_need_rele) 17138 ire_refrele(ire); 17139 break; 17140 case IPPROTO_TCP: 17141 if (!ire_need_rele) 17142 IRE_REFHOLD(ire); 17143 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 17144 ire, ipsec_mp, 0, ill->ill_rq, NULL); 17145 IRE_REFRELE(ire); 17146 if (mp != NULL) 17147 squeue_enter_chain(GET_SQUEUE(mp), mp, 17148 mp, 1, SQTAG_IP_PROTO_AGAIN); 17149 break; 17150 case IPPROTO_SCTP: 17151 if (!ire_need_rele) 17152 IRE_REFHOLD(ire); 17153 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 17154 ipsec_mp, 0, ill->ill_rq, dst); 17155 break; 17156 default: 17157 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 17158 recv_ill); 17159 if (ire_need_rele) 17160 ire_refrele(ire); 17161 break; 17162 } 17163 } else { 17164 uint32_t rput_flags = 0; 17165 17166 ip6h = (ip6_t *)mp->b_rptr; 17167 v6dstp = &ip6h->ip6_dst; 17168 /* 17169 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 17170 * address. 17171 * 17172 * Currently, we don't store that state in the IPSEC_IN 17173 * message, and we may need to. 17174 */ 17175 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 17176 IP6_IN_LLMCAST : 0); 17177 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 17178 NULL, NULL); 17179 } 17180 if (ill_need_rele) 17181 ill_refrele(ill); 17182 if (rill_need_rele) 17183 ill_refrele(recv_ill); 17184 } 17185 17186 /* 17187 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 17188 * returns 'true' if there are still fragments left on the queue, in 17189 * which case we restart the timer. 17190 */ 17191 void 17192 ill_frag_timer(void *arg) 17193 { 17194 ill_t *ill = (ill_t *)arg; 17195 boolean_t frag_pending; 17196 ip_stack_t *ipst = ill->ill_ipst; 17197 17198 mutex_enter(&ill->ill_lock); 17199 ASSERT(!ill->ill_fragtimer_executing); 17200 if (ill->ill_state_flags & ILL_CONDEMNED) { 17201 ill->ill_frag_timer_id = 0; 17202 mutex_exit(&ill->ill_lock); 17203 return; 17204 } 17205 ill->ill_fragtimer_executing = 1; 17206 mutex_exit(&ill->ill_lock); 17207 17208 frag_pending = ill_frag_timeout(ill, ipst->ips_ip_g_frag_timeout); 17209 17210 /* 17211 * Restart the timer, if we have fragments pending or if someone 17212 * wanted us to be scheduled again. 17213 */ 17214 mutex_enter(&ill->ill_lock); 17215 ill->ill_fragtimer_executing = 0; 17216 ill->ill_frag_timer_id = 0; 17217 if (frag_pending || ill->ill_fragtimer_needrestart) 17218 ill_frag_timer_start(ill); 17219 mutex_exit(&ill->ill_lock); 17220 } 17221 17222 void 17223 ill_frag_timer_start(ill_t *ill) 17224 { 17225 ip_stack_t *ipst = ill->ill_ipst; 17226 17227 ASSERT(MUTEX_HELD(&ill->ill_lock)); 17228 17229 /* If the ill is closing or opening don't proceed */ 17230 if (ill->ill_state_flags & ILL_CONDEMNED) 17231 return; 17232 17233 if (ill->ill_fragtimer_executing) { 17234 /* 17235 * ill_frag_timer is currently executing. Just record the 17236 * the fact that we want the timer to be restarted. 17237 * ill_frag_timer will post a timeout before it returns, 17238 * ensuring it will be called again. 17239 */ 17240 ill->ill_fragtimer_needrestart = 1; 17241 return; 17242 } 17243 17244 if (ill->ill_frag_timer_id == 0) { 17245 /* 17246 * The timer is neither running nor is the timeout handler 17247 * executing. Post a timeout so that ill_frag_timer will be 17248 * called 17249 */ 17250 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 17251 MSEC_TO_TICK(ipst->ips_ip_g_frag_timo_ms >> 1)); 17252 ill->ill_fragtimer_needrestart = 0; 17253 } 17254 } 17255 17256 /* 17257 * This routine is needed for loopback when forwarding multicasts. 17258 * 17259 * IPQoS Notes: 17260 * IPPF processing is done in fanout routines. 17261 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 17262 * processing for IPSec packets is done when it comes back in clear. 17263 * NOTE : The callers of this function need to do the ire_refrele for the 17264 * ire that is being passed in. 17265 */ 17266 void 17267 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17268 ill_t *recv_ill) 17269 { 17270 ill_t *ill = (ill_t *)q->q_ptr; 17271 uint32_t sum; 17272 uint32_t u1; 17273 uint32_t u2; 17274 int hdr_length; 17275 boolean_t mctl_present; 17276 mblk_t *first_mp = mp; 17277 mblk_t *hada_mp = NULL; 17278 ipha_t *inner_ipha; 17279 ip_stack_t *ipst; 17280 17281 ASSERT(recv_ill != NULL); 17282 ipst = recv_ill->ill_ipst; 17283 17284 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 17285 "ip_rput_locl_start: q %p", q); 17286 17287 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17288 ASSERT(ill != NULL); 17289 17290 17291 #define rptr ((uchar_t *)ipha) 17292 #define iphs ((uint16_t *)ipha) 17293 17294 /* 17295 * no UDP or TCP packet should come here anymore. 17296 */ 17297 ASSERT((ipha->ipha_protocol != IPPROTO_TCP) && 17298 (ipha->ipha_protocol != IPPROTO_UDP)); 17299 17300 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 17301 if (mctl_present && 17302 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 17303 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 17304 17305 /* 17306 * It's an IPsec accelerated packet. 17307 * Keep a pointer to the data attributes around until 17308 * we allocate the ipsec_info_t. 17309 */ 17310 IPSECHW_DEBUG(IPSECHW_PKT, 17311 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 17312 hada_mp = first_mp; 17313 hada_mp->b_cont = NULL; 17314 /* 17315 * Since it is accelerated, it comes directly from 17316 * the ill and the data attributes is followed by 17317 * the packet data. 17318 */ 17319 ASSERT(mp->b_datap->db_type != M_CTL); 17320 first_mp = mp; 17321 mctl_present = B_FALSE; 17322 } 17323 17324 /* 17325 * IF M_CTL is not present, then ipsec_in_is_secure 17326 * should return B_TRUE. There is a case where loopback 17327 * packets has an M_CTL in the front with all the 17328 * IPSEC options set to IPSEC_PREF_NEVER - which means 17329 * ipsec_in_is_secure will return B_FALSE. As loopback 17330 * packets never comes here, it is safe to ASSERT the 17331 * following. 17332 */ 17333 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 17334 17335 17336 /* u1 is # words of IP options */ 17337 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 17338 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 17339 17340 if (u1) { 17341 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 17342 if (hada_mp != NULL) 17343 freemsg(hada_mp); 17344 return; 17345 } 17346 } else { 17347 /* Check the IP header checksum. */ 17348 #define uph ((uint16_t *)ipha) 17349 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 17350 uph[6] + uph[7] + uph[8] + uph[9]; 17351 #undef uph 17352 /* finish doing IP checksum */ 17353 sum = (sum & 0xFFFF) + (sum >> 16); 17354 sum = ~(sum + (sum >> 16)) & 0xFFFF; 17355 /* 17356 * Don't verify header checksum if this packet is coming 17357 * back from AH/ESP as we already did it. 17358 */ 17359 if (!mctl_present && (sum && sum != 0xFFFF)) { 17360 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 17361 goto drop_pkt; 17362 } 17363 } 17364 17365 /* 17366 * Count for SNMP of inbound packets for ire. As ip_proto_input 17367 * might be called more than once for secure packets, count only 17368 * the first time. 17369 */ 17370 if (!mctl_present) { 17371 UPDATE_IB_PKT_COUNT(ire); 17372 ire->ire_last_used_time = lbolt; 17373 } 17374 17375 /* Check for fragmentation offset. */ 17376 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 17377 u1 = u2 & (IPH_MF | IPH_OFFSET); 17378 if (u1) { 17379 /* 17380 * We re-assemble fragments before we do the AH/ESP 17381 * processing. Thus, M_CTL should not be present 17382 * while we are re-assembling. 17383 */ 17384 ASSERT(!mctl_present); 17385 ASSERT(first_mp == mp); 17386 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 17387 return; 17388 } 17389 /* 17390 * Make sure that first_mp points back to mp as 17391 * the mp we came in with could have changed in 17392 * ip_rput_fragment(). 17393 */ 17394 ipha = (ipha_t *)mp->b_rptr; 17395 first_mp = mp; 17396 } 17397 17398 /* 17399 * Clear hardware checksumming flag as it is currently only 17400 * used by TCP and UDP. 17401 */ 17402 DB_CKSUMFLAGS(mp) = 0; 17403 17404 /* Now we have a complete datagram, destined for this machine. */ 17405 u1 = IPH_HDR_LENGTH(ipha); 17406 switch (ipha->ipha_protocol) { 17407 case IPPROTO_ICMP: { 17408 ire_t *ire_zone; 17409 ilm_t *ilm; 17410 mblk_t *mp1; 17411 zoneid_t last_zoneid; 17412 17413 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(recv_ill)) { 17414 ASSERT(ire->ire_type == IRE_BROADCAST); 17415 /* 17416 * In the multicast case, applications may have joined 17417 * the group from different zones, so we need to deliver 17418 * the packet to each of them. Loop through the 17419 * multicast memberships structures (ilm) on the receive 17420 * ill and send a copy of the packet up each matching 17421 * one. However, we don't do this for multicasts sent on 17422 * the loopback interface (PHYI_LOOPBACK flag set) as 17423 * they must stay in the sender's zone. 17424 * 17425 * ilm_add_v6() ensures that ilms in the same zone are 17426 * contiguous in the ill_ilm list. We use this property 17427 * to avoid sending duplicates needed when two 17428 * applications in the same zone join the same group on 17429 * different logical interfaces: we ignore the ilm if 17430 * its zoneid is the same as the last matching one. 17431 * In addition, the sending of the packet for 17432 * ire_zoneid is delayed until all of the other ilms 17433 * have been exhausted. 17434 */ 17435 last_zoneid = -1; 17436 ILM_WALKER_HOLD(recv_ill); 17437 for (ilm = recv_ill->ill_ilm; ilm != NULL; 17438 ilm = ilm->ilm_next) { 17439 if ((ilm->ilm_flags & ILM_DELETED) || 17440 ipha->ipha_dst != ilm->ilm_addr || 17441 ilm->ilm_zoneid == last_zoneid || 17442 ilm->ilm_zoneid == ire->ire_zoneid || 17443 ilm->ilm_zoneid == ALL_ZONES || 17444 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 17445 continue; 17446 mp1 = ip_copymsg(first_mp); 17447 if (mp1 == NULL) 17448 continue; 17449 icmp_inbound(q, mp1, B_TRUE, ill, 17450 0, sum, mctl_present, B_TRUE, 17451 recv_ill, ilm->ilm_zoneid); 17452 last_zoneid = ilm->ilm_zoneid; 17453 } 17454 ILM_WALKER_RELE(recv_ill); 17455 } else if (ire->ire_type == IRE_BROADCAST) { 17456 /* 17457 * In the broadcast case, there may be many zones 17458 * which need a copy of the packet delivered to them. 17459 * There is one IRE_BROADCAST per broadcast address 17460 * and per zone; we walk those using a helper function. 17461 * In addition, the sending of the packet for ire is 17462 * delayed until all of the other ires have been 17463 * processed. 17464 */ 17465 IRB_REFHOLD(ire->ire_bucket); 17466 ire_zone = NULL; 17467 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 17468 ire)) != NULL) { 17469 mp1 = ip_copymsg(first_mp); 17470 if (mp1 == NULL) 17471 continue; 17472 17473 UPDATE_IB_PKT_COUNT(ire_zone); 17474 ire_zone->ire_last_used_time = lbolt; 17475 icmp_inbound(q, mp1, B_TRUE, ill, 17476 0, sum, mctl_present, B_TRUE, 17477 recv_ill, ire_zone->ire_zoneid); 17478 } 17479 IRB_REFRELE(ire->ire_bucket); 17480 } 17481 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 17482 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 17483 ire->ire_zoneid); 17484 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17485 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 17486 return; 17487 } 17488 case IPPROTO_IGMP: 17489 /* 17490 * If we are not willing to accept IGMP packets in clear, 17491 * then check with global policy. 17492 */ 17493 if (ipst->ips_igmp_accept_clear_messages == 0) { 17494 first_mp = ipsec_check_global_policy(first_mp, NULL, 17495 ipha, NULL, mctl_present, ipst->ips_netstack); 17496 if (first_mp == NULL) 17497 return; 17498 } 17499 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17500 freemsg(first_mp); 17501 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 17502 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17503 return; 17504 } 17505 if ((mp = igmp_input(q, mp, ill)) == NULL) { 17506 /* Bad packet - discarded by igmp_input */ 17507 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17508 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 17509 if (mctl_present) 17510 freeb(first_mp); 17511 return; 17512 } 17513 /* 17514 * igmp_input() may have returned the pulled up message. 17515 * So first_mp and ipha need to be reinitialized. 17516 */ 17517 ipha = (ipha_t *)mp->b_rptr; 17518 if (mctl_present) 17519 first_mp->b_cont = mp; 17520 else 17521 first_mp = mp; 17522 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17523 connf_head != NULL) { 17524 /* No user-level listener for IGMP packets */ 17525 goto drop_pkt; 17526 } 17527 /* deliver to local raw users */ 17528 break; 17529 case IPPROTO_PIM: 17530 /* 17531 * If we are not willing to accept PIM packets in clear, 17532 * then check with global policy. 17533 */ 17534 if (ipst->ips_pim_accept_clear_messages == 0) { 17535 first_mp = ipsec_check_global_policy(first_mp, NULL, 17536 ipha, NULL, mctl_present, ipst->ips_netstack); 17537 if (first_mp == NULL) 17538 return; 17539 } 17540 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17541 freemsg(first_mp); 17542 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 17543 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17544 return; 17545 } 17546 if (pim_input(q, mp, ill) != 0) { 17547 /* Bad packet - discarded by pim_input */ 17548 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17549 "ip_rput_locl_end: q %p (%S)", q, "pim"); 17550 if (mctl_present) 17551 freeb(first_mp); 17552 return; 17553 } 17554 17555 /* 17556 * pim_input() may have pulled up the message so ipha needs to 17557 * be reinitialized. 17558 */ 17559 ipha = (ipha_t *)mp->b_rptr; 17560 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17561 connf_head != NULL) { 17562 /* No user-level listener for PIM packets */ 17563 goto drop_pkt; 17564 } 17565 /* deliver to local raw users */ 17566 break; 17567 case IPPROTO_ENCAP: 17568 /* 17569 * Handle self-encapsulated packets (IP-in-IP where 17570 * the inner addresses == the outer addresses). 17571 */ 17572 hdr_length = IPH_HDR_LENGTH(ipha); 17573 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 17574 mp->b_wptr) { 17575 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 17576 sizeof (ipha_t) - mp->b_rptr)) { 17577 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17578 freemsg(first_mp); 17579 return; 17580 } 17581 ipha = (ipha_t *)mp->b_rptr; 17582 } 17583 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 17584 /* 17585 * Check the sanity of the inner IP header. 17586 */ 17587 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 17588 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17589 freemsg(first_mp); 17590 return; 17591 } 17592 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 17593 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17594 freemsg(first_mp); 17595 return; 17596 } 17597 if (inner_ipha->ipha_src == ipha->ipha_src && 17598 inner_ipha->ipha_dst == ipha->ipha_dst) { 17599 ipsec_in_t *ii; 17600 17601 /* 17602 * Self-encapsulated tunnel packet. Remove 17603 * the outer IP header and fanout again. 17604 * We also need to make sure that the inner 17605 * header is pulled up until options. 17606 */ 17607 mp->b_rptr = (uchar_t *)inner_ipha; 17608 ipha = inner_ipha; 17609 hdr_length = IPH_HDR_LENGTH(ipha); 17610 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 17611 if (!pullupmsg(mp, (uchar_t *)ipha + 17612 + hdr_length - mp->b_rptr)) { 17613 freemsg(first_mp); 17614 return; 17615 } 17616 ipha = (ipha_t *)mp->b_rptr; 17617 } 17618 if (!mctl_present) { 17619 ASSERT(first_mp == mp); 17620 /* 17621 * This means that somebody is sending 17622 * Self-encapsualted packets without AH/ESP. 17623 * If AH/ESP was present, we would have already 17624 * allocated the first_mp. 17625 */ 17626 first_mp = ipsec_in_alloc(B_TRUE, 17627 ipst->ips_netstack); 17628 if (first_mp == NULL) { 17629 ip1dbg(("ip_proto_input: IPSEC_IN " 17630 "allocation failure.\n")); 17631 BUMP_MIB(ill->ill_ip_mib, 17632 ipIfStatsInDiscards); 17633 freemsg(mp); 17634 return; 17635 } 17636 first_mp->b_cont = mp; 17637 } 17638 /* 17639 * We generally store the ill_index if we need to 17640 * do IPSEC processing as we lose the ill queue when 17641 * we come back. But in this case, we never should 17642 * have to store the ill_index here as it should have 17643 * been stored previously when we processed the 17644 * AH/ESP header in this routine or for non-ipsec 17645 * cases, we still have the queue. But for some bad 17646 * packets from the wire, we can get to IPSEC after 17647 * this and we better store the index for that case. 17648 */ 17649 ill = (ill_t *)q->q_ptr; 17650 ii = (ipsec_in_t *)first_mp->b_rptr; 17651 ii->ipsec_in_ill_index = 17652 ill->ill_phyint->phyint_ifindex; 17653 ii->ipsec_in_rill_index = 17654 recv_ill->ill_phyint->phyint_ifindex; 17655 if (ii->ipsec_in_decaps) { 17656 /* 17657 * This packet is self-encapsulated multiple 17658 * times. We don't want to recurse infinitely. 17659 * To keep it simple, drop the packet. 17660 */ 17661 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17662 freemsg(first_mp); 17663 return; 17664 } 17665 ii->ipsec_in_decaps = B_TRUE; 17666 ip_fanout_proto_again(first_mp, recv_ill, recv_ill, 17667 ire); 17668 return; 17669 } 17670 break; 17671 case IPPROTO_AH: 17672 case IPPROTO_ESP: { 17673 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 17674 17675 /* 17676 * Fast path for AH/ESP. If this is the first time 17677 * we are sending a datagram to AH/ESP, allocate 17678 * a IPSEC_IN message and prepend it. Otherwise, 17679 * just fanout. 17680 */ 17681 17682 int ipsec_rc; 17683 ipsec_in_t *ii; 17684 netstack_t *ns = ipst->ips_netstack; 17685 17686 IP_STAT(ipst, ipsec_proto_ahesp); 17687 if (!mctl_present) { 17688 ASSERT(first_mp == mp); 17689 first_mp = ipsec_in_alloc(B_TRUE, ns); 17690 if (first_mp == NULL) { 17691 ip1dbg(("ip_proto_input: IPSEC_IN " 17692 "allocation failure.\n")); 17693 freemsg(hada_mp); /* okay ifnull */ 17694 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17695 freemsg(mp); 17696 return; 17697 } 17698 /* 17699 * Store the ill_index so that when we come back 17700 * from IPSEC we ride on the same queue. 17701 */ 17702 ill = (ill_t *)q->q_ptr; 17703 ii = (ipsec_in_t *)first_mp->b_rptr; 17704 ii->ipsec_in_ill_index = 17705 ill->ill_phyint->phyint_ifindex; 17706 ii->ipsec_in_rill_index = 17707 recv_ill->ill_phyint->phyint_ifindex; 17708 first_mp->b_cont = mp; 17709 /* 17710 * Cache hardware acceleration info. 17711 */ 17712 if (hada_mp != NULL) { 17713 IPSECHW_DEBUG(IPSECHW_PKT, 17714 ("ip_rput_local: caching data attr.\n")); 17715 ii->ipsec_in_accelerated = B_TRUE; 17716 ii->ipsec_in_da = hada_mp; 17717 hada_mp = NULL; 17718 } 17719 } else { 17720 ii = (ipsec_in_t *)first_mp->b_rptr; 17721 } 17722 17723 if (!ipsec_loaded(ipss)) { 17724 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 17725 ire->ire_zoneid, ipst); 17726 return; 17727 } 17728 17729 ns = ipst->ips_netstack; 17730 /* select inbound SA and have IPsec process the pkt */ 17731 if (ipha->ipha_protocol == IPPROTO_ESP) { 17732 esph_t *esph = ipsec_inbound_esp_sa(first_mp, ns); 17733 if (esph == NULL) 17734 return; 17735 ASSERT(ii->ipsec_in_esp_sa != NULL); 17736 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 17737 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 17738 first_mp, esph); 17739 } else { 17740 ah_t *ah = ipsec_inbound_ah_sa(first_mp, ns); 17741 if (ah == NULL) 17742 return; 17743 ASSERT(ii->ipsec_in_ah_sa != NULL); 17744 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 17745 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 17746 first_mp, ah); 17747 } 17748 17749 switch (ipsec_rc) { 17750 case IPSEC_STATUS_SUCCESS: 17751 break; 17752 case IPSEC_STATUS_FAILED: 17753 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17754 /* FALLTHRU */ 17755 case IPSEC_STATUS_PENDING: 17756 return; 17757 } 17758 /* we're done with IPsec processing, send it up */ 17759 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 17760 return; 17761 } 17762 default: 17763 break; 17764 } 17765 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 17766 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 17767 ire->ire_zoneid)); 17768 goto drop_pkt; 17769 } 17770 /* 17771 * Handle protocols with which IP is less intimate. There 17772 * can be more than one stream bound to a particular 17773 * protocol. When this is the case, each one gets a copy 17774 * of any incoming packets. 17775 */ 17776 ip_fanout_proto(q, first_mp, ill, ipha, 17777 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 17778 B_TRUE, recv_ill, ire->ire_zoneid); 17779 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17780 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 17781 return; 17782 17783 drop_pkt: 17784 freemsg(first_mp); 17785 if (hada_mp != NULL) 17786 freeb(hada_mp); 17787 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17788 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 17789 #undef rptr 17790 #undef iphs 17791 17792 } 17793 17794 /* 17795 * Update any source route, record route or timestamp options. 17796 * Check that we are at end of strict source route. 17797 * The options have already been checked for sanity in ip_rput_options(). 17798 */ 17799 static boolean_t 17800 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17801 ip_stack_t *ipst) 17802 { 17803 ipoptp_t opts; 17804 uchar_t *opt; 17805 uint8_t optval; 17806 uint8_t optlen; 17807 ipaddr_t dst; 17808 uint32_t ts; 17809 ire_t *dst_ire; 17810 timestruc_t now; 17811 zoneid_t zoneid; 17812 ill_t *ill; 17813 17814 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17815 17816 ip2dbg(("ip_rput_local_options\n")); 17817 17818 for (optval = ipoptp_first(&opts, ipha); 17819 optval != IPOPT_EOL; 17820 optval = ipoptp_next(&opts)) { 17821 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17822 opt = opts.ipoptp_cur; 17823 optlen = opts.ipoptp_len; 17824 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 17825 optval, optlen)); 17826 switch (optval) { 17827 uint32_t off; 17828 case IPOPT_SSRR: 17829 case IPOPT_LSRR: 17830 off = opt[IPOPT_OFFSET]; 17831 off--; 17832 if (optlen < IP_ADDR_LEN || 17833 off > optlen - IP_ADDR_LEN) { 17834 /* End of source route */ 17835 ip1dbg(("ip_rput_local_options: end of SR\n")); 17836 break; 17837 } 17838 /* 17839 * This will only happen if two consecutive entries 17840 * in the source route contains our address or if 17841 * it is a packet with a loose source route which 17842 * reaches us before consuming the whole source route 17843 */ 17844 ip1dbg(("ip_rput_local_options: not end of SR\n")); 17845 if (optval == IPOPT_SSRR) { 17846 goto bad_src_route; 17847 } 17848 /* 17849 * Hack: instead of dropping the packet truncate the 17850 * source route to what has been used by filling the 17851 * rest with IPOPT_NOP. 17852 */ 17853 opt[IPOPT_OLEN] = (uint8_t)off; 17854 while (off < optlen) { 17855 opt[off++] = IPOPT_NOP; 17856 } 17857 break; 17858 case IPOPT_RR: 17859 off = opt[IPOPT_OFFSET]; 17860 off--; 17861 if (optlen < IP_ADDR_LEN || 17862 off > optlen - IP_ADDR_LEN) { 17863 /* No more room - ignore */ 17864 ip1dbg(( 17865 "ip_rput_local_options: end of RR\n")); 17866 break; 17867 } 17868 bcopy(&ire->ire_src_addr, (char *)opt + off, 17869 IP_ADDR_LEN); 17870 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17871 break; 17872 case IPOPT_TS: 17873 /* Insert timestamp if there is romm */ 17874 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17875 case IPOPT_TS_TSONLY: 17876 off = IPOPT_TS_TIMELEN; 17877 break; 17878 case IPOPT_TS_PRESPEC: 17879 case IPOPT_TS_PRESPEC_RFC791: 17880 /* Verify that the address matched */ 17881 off = opt[IPOPT_OFFSET] - 1; 17882 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17883 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17884 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 17885 ipst); 17886 if (dst_ire == NULL) { 17887 /* Not for us */ 17888 break; 17889 } 17890 ire_refrele(dst_ire); 17891 /* FALLTHRU */ 17892 case IPOPT_TS_TSANDADDR: 17893 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17894 break; 17895 default: 17896 /* 17897 * ip_*put_options should have already 17898 * dropped this packet. 17899 */ 17900 cmn_err(CE_PANIC, "ip_rput_local_options: " 17901 "unknown IT - bug in ip_rput_options?\n"); 17902 return (B_TRUE); /* Keep "lint" happy */ 17903 } 17904 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 17905 /* Increase overflow counter */ 17906 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 17907 opt[IPOPT_POS_OV_FLG] = 17908 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 17909 (off << 4)); 17910 break; 17911 } 17912 off = opt[IPOPT_OFFSET] - 1; 17913 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17914 case IPOPT_TS_PRESPEC: 17915 case IPOPT_TS_PRESPEC_RFC791: 17916 case IPOPT_TS_TSANDADDR: 17917 bcopy(&ire->ire_src_addr, (char *)opt + off, 17918 IP_ADDR_LEN); 17919 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17920 /* FALLTHRU */ 17921 case IPOPT_TS_TSONLY: 17922 off = opt[IPOPT_OFFSET] - 1; 17923 /* Compute # of milliseconds since midnight */ 17924 gethrestime(&now); 17925 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 17926 now.tv_nsec / (NANOSEC / MILLISEC); 17927 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 17928 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 17929 break; 17930 } 17931 break; 17932 } 17933 } 17934 return (B_TRUE); 17935 17936 bad_src_route: 17937 q = WR(q); 17938 if (q->q_next != NULL) 17939 ill = q->q_ptr; 17940 else 17941 ill = NULL; 17942 17943 /* make sure we clear any indication of a hardware checksum */ 17944 DB_CKSUMFLAGS(mp) = 0; 17945 zoneid = ipif_lookup_addr_zoneid(ipha->ipha_dst, ill, ipst); 17946 if (zoneid == ALL_ZONES) 17947 freemsg(mp); 17948 else 17949 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 17950 return (B_FALSE); 17951 17952 } 17953 17954 /* 17955 * Process IP options in an inbound packet. If an option affects the 17956 * effective destination address, return the next hop address via dstp. 17957 * Returns -1 if something fails in which case an ICMP error has been sent 17958 * and mp freed. 17959 */ 17960 static int 17961 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp, 17962 ip_stack_t *ipst) 17963 { 17964 ipoptp_t opts; 17965 uchar_t *opt; 17966 uint8_t optval; 17967 uint8_t optlen; 17968 ipaddr_t dst; 17969 intptr_t code = 0; 17970 ire_t *ire = NULL; 17971 zoneid_t zoneid; 17972 ill_t *ill; 17973 17974 ip2dbg(("ip_rput_options\n")); 17975 dst = ipha->ipha_dst; 17976 for (optval = ipoptp_first(&opts, ipha); 17977 optval != IPOPT_EOL; 17978 optval = ipoptp_next(&opts)) { 17979 opt = opts.ipoptp_cur; 17980 optlen = opts.ipoptp_len; 17981 ip2dbg(("ip_rput_options: opt %d, len %d\n", 17982 optval, optlen)); 17983 /* 17984 * Note: we need to verify the checksum before we 17985 * modify anything thus this routine only extracts the next 17986 * hop dst from any source route. 17987 */ 17988 switch (optval) { 17989 uint32_t off; 17990 case IPOPT_SSRR: 17991 case IPOPT_LSRR: 17992 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17993 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17994 if (ire == NULL) { 17995 if (optval == IPOPT_SSRR) { 17996 ip1dbg(("ip_rput_options: not next" 17997 " strict source route 0x%x\n", 17998 ntohl(dst))); 17999 code = (char *)&ipha->ipha_dst - 18000 (char *)ipha; 18001 goto param_prob; /* RouterReq's */ 18002 } 18003 ip2dbg(("ip_rput_options: " 18004 "not next source route 0x%x\n", 18005 ntohl(dst))); 18006 break; 18007 } 18008 ire_refrele(ire); 18009 18010 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18011 ip1dbg(( 18012 "ip_rput_options: bad option offset\n")); 18013 code = (char *)&opt[IPOPT_OLEN] - 18014 (char *)ipha; 18015 goto param_prob; 18016 } 18017 off = opt[IPOPT_OFFSET]; 18018 off--; 18019 redo_srr: 18020 if (optlen < IP_ADDR_LEN || 18021 off > optlen - IP_ADDR_LEN) { 18022 /* End of source route */ 18023 ip1dbg(("ip_rput_options: end of SR\n")); 18024 break; 18025 } 18026 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 18027 ip1dbg(("ip_rput_options: next hop 0x%x\n", 18028 ntohl(dst))); 18029 18030 /* 18031 * Check if our address is present more than 18032 * once as consecutive hops in source route. 18033 * XXX verify per-interface ip_forwarding 18034 * for source route? 18035 */ 18036 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 18037 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 18038 18039 if (ire != NULL) { 18040 ire_refrele(ire); 18041 off += IP_ADDR_LEN; 18042 goto redo_srr; 18043 } 18044 18045 if (dst == htonl(INADDR_LOOPBACK)) { 18046 ip1dbg(("ip_rput_options: loopback addr in " 18047 "source route!\n")); 18048 goto bad_src_route; 18049 } 18050 /* 18051 * For strict: verify that dst is directly 18052 * reachable. 18053 */ 18054 if (optval == IPOPT_SSRR) { 18055 ire = ire_ftable_lookup(dst, 0, 0, 18056 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 18057 MBLK_GETLABEL(mp), 18058 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 18059 if (ire == NULL) { 18060 ip1dbg(("ip_rput_options: SSRR not " 18061 "directly reachable: 0x%x\n", 18062 ntohl(dst))); 18063 goto bad_src_route; 18064 } 18065 ire_refrele(ire); 18066 } 18067 /* 18068 * Defer update of the offset and the record route 18069 * until the packet is forwarded. 18070 */ 18071 break; 18072 case IPOPT_RR: 18073 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18074 ip1dbg(( 18075 "ip_rput_options: bad option offset\n")); 18076 code = (char *)&opt[IPOPT_OLEN] - 18077 (char *)ipha; 18078 goto param_prob; 18079 } 18080 break; 18081 case IPOPT_TS: 18082 /* 18083 * Verify that length >= 5 and that there is either 18084 * room for another timestamp or that the overflow 18085 * counter is not maxed out. 18086 */ 18087 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 18088 if (optlen < IPOPT_MINLEN_IT) { 18089 goto param_prob; 18090 } 18091 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18092 ip1dbg(( 18093 "ip_rput_options: bad option offset\n")); 18094 code = (char *)&opt[IPOPT_OFFSET] - 18095 (char *)ipha; 18096 goto param_prob; 18097 } 18098 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 18099 case IPOPT_TS_TSONLY: 18100 off = IPOPT_TS_TIMELEN; 18101 break; 18102 case IPOPT_TS_TSANDADDR: 18103 case IPOPT_TS_PRESPEC: 18104 case IPOPT_TS_PRESPEC_RFC791: 18105 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 18106 break; 18107 default: 18108 code = (char *)&opt[IPOPT_POS_OV_FLG] - 18109 (char *)ipha; 18110 goto param_prob; 18111 } 18112 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 18113 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 18114 /* 18115 * No room and the overflow counter is 15 18116 * already. 18117 */ 18118 goto param_prob; 18119 } 18120 break; 18121 } 18122 } 18123 18124 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 18125 *dstp = dst; 18126 return (0); 18127 } 18128 18129 ip1dbg(("ip_rput_options: error processing IP options.")); 18130 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 18131 18132 param_prob: 18133 q = WR(q); 18134 if (q->q_next != NULL) 18135 ill = q->q_ptr; 18136 else 18137 ill = NULL; 18138 18139 /* make sure we clear any indication of a hardware checksum */ 18140 DB_CKSUMFLAGS(mp) = 0; 18141 /* Don't know whether this is for non-global or global/forwarding */ 18142 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18143 if (zoneid == ALL_ZONES) 18144 freemsg(mp); 18145 else 18146 icmp_param_problem(q, mp, (uint8_t)code, zoneid, ipst); 18147 return (-1); 18148 18149 bad_src_route: 18150 q = WR(q); 18151 if (q->q_next != NULL) 18152 ill = q->q_ptr; 18153 else 18154 ill = NULL; 18155 18156 /* make sure we clear any indication of a hardware checksum */ 18157 DB_CKSUMFLAGS(mp) = 0; 18158 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18159 if (zoneid == ALL_ZONES) 18160 freemsg(mp); 18161 else 18162 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 18163 return (-1); 18164 } 18165 18166 /* 18167 * IP & ICMP info in >=14 msg's ... 18168 * - ip fixed part (mib2_ip_t) 18169 * - icmp fixed part (mib2_icmp_t) 18170 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 18171 * - ipRouteEntryTable (ip 21) all IPv4 IREs 18172 * - ipNetToMediaEntryTable (ip 22) [filled in by the arp module] 18173 * - ipRouteAttributeTable (ip 102) labeled routes 18174 * - ip multicast membership (ip_member_t) 18175 * - ip multicast source filtering (ip_grpsrc_t) 18176 * - igmp fixed part (struct igmpstat) 18177 * - multicast routing stats (struct mrtstat) 18178 * - multicast routing vifs (array of struct vifctl) 18179 * - multicast routing routes (array of struct mfcctl) 18180 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 18181 * One per ill plus one generic 18182 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 18183 * One per ill plus one generic 18184 * - ipv6RouteEntry all IPv6 IREs 18185 * - ipv6RouteAttributeTable (ip6 102) labeled routes 18186 * - ipv6NetToMediaEntry all Neighbor Cache entries 18187 * - ipv6AddrEntry all IPv6 ipifs 18188 * - ipv6 multicast membership (ipv6_member_t) 18189 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 18190 * 18191 * MIB2_IP_MEDIA is filled in by the arp module with ARP cache entries. 18192 * 18193 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 18194 * already filled in by the caller. 18195 * Return value of 0 indicates that no messages were sent and caller 18196 * should free mpctl. 18197 */ 18198 int 18199 ip_snmp_get(queue_t *q, mblk_t *mpctl) 18200 { 18201 ip_stack_t *ipst; 18202 sctp_stack_t *sctps; 18203 18204 18205 if (q->q_next != NULL) { 18206 ipst = ILLQ_TO_IPST(q); 18207 } else { 18208 ipst = CONNQ_TO_IPST(q); 18209 } 18210 ASSERT(ipst != NULL); 18211 sctps = ipst->ips_netstack->netstack_sctp; 18212 18213 if (mpctl == NULL || mpctl->b_cont == NULL) { 18214 return (0); 18215 } 18216 18217 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 18218 ipst)) == NULL) { 18219 return (1); 18220 } 18221 18222 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst)) == NULL) { 18223 return (1); 18224 } 18225 18226 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 18227 return (1); 18228 } 18229 18230 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 18231 return (1); 18232 } 18233 18234 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 18235 return (1); 18236 } 18237 18238 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 18239 return (1); 18240 } 18241 18242 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst)) == NULL) { 18243 return (1); 18244 } 18245 18246 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst)) == NULL) { 18247 return (1); 18248 } 18249 18250 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 18251 return (1); 18252 } 18253 18254 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 18255 return (1); 18256 } 18257 18258 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 18259 return (1); 18260 } 18261 18262 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 18263 return (1); 18264 } 18265 18266 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 18267 return (1); 18268 } 18269 18270 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 18271 return (1); 18272 } 18273 18274 if ((mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, ipst)) == NULL) { 18275 return (1); 18276 } 18277 18278 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, ipst); 18279 if (mpctl == NULL) { 18280 return (1); 18281 } 18282 18283 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 18284 return (1); 18285 } 18286 freemsg(mpctl); 18287 return (1); 18288 } 18289 18290 18291 /* Get global (legacy) IPv4 statistics */ 18292 static mblk_t * 18293 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 18294 ip_stack_t *ipst) 18295 { 18296 mib2_ip_t old_ip_mib; 18297 struct opthdr *optp; 18298 mblk_t *mp2ctl; 18299 18300 /* 18301 * make a copy of the original message 18302 */ 18303 mp2ctl = copymsg(mpctl); 18304 18305 /* fixed length IP structure... */ 18306 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18307 optp->level = MIB2_IP; 18308 optp->name = 0; 18309 SET_MIB(old_ip_mib.ipForwarding, 18310 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 18311 SET_MIB(old_ip_mib.ipDefaultTTL, 18312 (uint32_t)ipst->ips_ip_def_ttl); 18313 SET_MIB(old_ip_mib.ipReasmTimeout, 18314 ipst->ips_ip_g_frag_timeout); 18315 SET_MIB(old_ip_mib.ipAddrEntrySize, 18316 sizeof (mib2_ipAddrEntry_t)); 18317 SET_MIB(old_ip_mib.ipRouteEntrySize, 18318 sizeof (mib2_ipRouteEntry_t)); 18319 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 18320 sizeof (mib2_ipNetToMediaEntry_t)); 18321 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 18322 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 18323 SET_MIB(old_ip_mib.ipRouteAttributeSize, 18324 sizeof (mib2_ipAttributeEntry_t)); 18325 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 18326 18327 /* 18328 * Grab the statistics from the new IP MIB 18329 */ 18330 SET_MIB(old_ip_mib.ipInReceives, 18331 (uint32_t)ipmib->ipIfStatsHCInReceives); 18332 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 18333 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 18334 SET_MIB(old_ip_mib.ipForwDatagrams, 18335 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 18336 SET_MIB(old_ip_mib.ipInUnknownProtos, 18337 ipmib->ipIfStatsInUnknownProtos); 18338 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 18339 SET_MIB(old_ip_mib.ipInDelivers, 18340 (uint32_t)ipmib->ipIfStatsHCInDelivers); 18341 SET_MIB(old_ip_mib.ipOutRequests, 18342 (uint32_t)ipmib->ipIfStatsHCOutRequests); 18343 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 18344 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 18345 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 18346 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 18347 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 18348 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 18349 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 18350 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 18351 18352 /* ipRoutingDiscards is not being used */ 18353 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 18354 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 18355 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 18356 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 18357 SET_MIB(old_ip_mib.ipReasmDuplicates, 18358 ipmib->ipIfStatsReasmDuplicates); 18359 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 18360 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 18361 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 18362 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 18363 SET_MIB(old_ip_mib.rawipInOverflows, 18364 ipmib->rawipIfStatsInOverflows); 18365 18366 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 18367 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 18368 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 18369 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 18370 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 18371 ipmib->ipIfStatsOutSwitchIPVersion); 18372 18373 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 18374 (int)sizeof (old_ip_mib))) { 18375 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 18376 (uint_t)sizeof (old_ip_mib))); 18377 } 18378 18379 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18380 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 18381 (int)optp->level, (int)optp->name, (int)optp->len)); 18382 qreply(q, mpctl); 18383 return (mp2ctl); 18384 } 18385 18386 /* Per interface IPv4 statistics */ 18387 static mblk_t * 18388 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18389 { 18390 struct opthdr *optp; 18391 mblk_t *mp2ctl; 18392 ill_t *ill; 18393 ill_walk_context_t ctx; 18394 mblk_t *mp_tail = NULL; 18395 mib2_ipIfStatsEntry_t global_ip_mib; 18396 18397 /* 18398 * Make a copy of the original message 18399 */ 18400 mp2ctl = copymsg(mpctl); 18401 18402 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18403 optp->level = MIB2_IP; 18404 optp->name = MIB2_IP_TRAFFIC_STATS; 18405 /* Include "unknown interface" ip_mib */ 18406 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 18407 ipst->ips_ip_mib.ipIfStatsIfIndex = 18408 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 18409 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 18410 (ipst->ips_ip_g_forward ? 1 : 2)); 18411 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 18412 (uint32_t)ipst->ips_ip_def_ttl); 18413 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 18414 sizeof (mib2_ipIfStatsEntry_t)); 18415 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 18416 sizeof (mib2_ipAddrEntry_t)); 18417 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 18418 sizeof (mib2_ipRouteEntry_t)); 18419 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 18420 sizeof (mib2_ipNetToMediaEntry_t)); 18421 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 18422 sizeof (ip_member_t)); 18423 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 18424 sizeof (ip_grpsrc_t)); 18425 18426 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18427 (char *)&ipst->ips_ip_mib, (int)sizeof (ipst->ips_ip_mib))) { 18428 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18429 "failed to allocate %u bytes\n", 18430 (uint_t)sizeof (ipst->ips_ip_mib))); 18431 } 18432 18433 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 18434 18435 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18436 ill = ILL_START_WALK_V4(&ctx, ipst); 18437 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18438 ill->ill_ip_mib->ipIfStatsIfIndex = 18439 ill->ill_phyint->phyint_ifindex; 18440 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 18441 (ipst->ips_ip_g_forward ? 1 : 2)); 18442 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 18443 (uint32_t)ipst->ips_ip_def_ttl); 18444 18445 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 18446 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18447 (char *)ill->ill_ip_mib, 18448 (int)sizeof (*ill->ill_ip_mib))) { 18449 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18450 "failed to allocate %u bytes\n", 18451 (uint_t)sizeof (*ill->ill_ip_mib))); 18452 } 18453 } 18454 rw_exit(&ipst->ips_ill_g_lock); 18455 18456 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18457 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18458 "level %d, name %d, len %d\n", 18459 (int)optp->level, (int)optp->name, (int)optp->len)); 18460 qreply(q, mpctl); 18461 18462 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst)); 18463 } 18464 18465 /* Global IPv4 ICMP statistics */ 18466 static mblk_t * 18467 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18468 { 18469 struct opthdr *optp; 18470 mblk_t *mp2ctl; 18471 18472 /* 18473 * Make a copy of the original message 18474 */ 18475 mp2ctl = copymsg(mpctl); 18476 18477 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18478 optp->level = MIB2_ICMP; 18479 optp->name = 0; 18480 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 18481 (int)sizeof (ipst->ips_icmp_mib))) { 18482 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 18483 (uint_t)sizeof (ipst->ips_icmp_mib))); 18484 } 18485 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18486 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 18487 (int)optp->level, (int)optp->name, (int)optp->len)); 18488 qreply(q, mpctl); 18489 return (mp2ctl); 18490 } 18491 18492 /* Global IPv4 IGMP statistics */ 18493 static mblk_t * 18494 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18495 { 18496 struct opthdr *optp; 18497 mblk_t *mp2ctl; 18498 18499 /* 18500 * make a copy of the original message 18501 */ 18502 mp2ctl = copymsg(mpctl); 18503 18504 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18505 optp->level = EXPER_IGMP; 18506 optp->name = 0; 18507 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 18508 (int)sizeof (ipst->ips_igmpstat))) { 18509 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 18510 (uint_t)sizeof (ipst->ips_igmpstat))); 18511 } 18512 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18513 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 18514 (int)optp->level, (int)optp->name, (int)optp->len)); 18515 qreply(q, mpctl); 18516 return (mp2ctl); 18517 } 18518 18519 /* Global IPv4 Multicast Routing statistics */ 18520 static mblk_t * 18521 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18522 { 18523 struct opthdr *optp; 18524 mblk_t *mp2ctl; 18525 18526 /* 18527 * make a copy of the original message 18528 */ 18529 mp2ctl = copymsg(mpctl); 18530 18531 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18532 optp->level = EXPER_DVMRP; 18533 optp->name = 0; 18534 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 18535 ip0dbg(("ip_mroute_stats: failed\n")); 18536 } 18537 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18538 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 18539 (int)optp->level, (int)optp->name, (int)optp->len)); 18540 qreply(q, mpctl); 18541 return (mp2ctl); 18542 } 18543 18544 /* IPv4 address information */ 18545 static mblk_t * 18546 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18547 { 18548 struct opthdr *optp; 18549 mblk_t *mp2ctl; 18550 mblk_t *mp_tail = NULL; 18551 ill_t *ill; 18552 ipif_t *ipif; 18553 uint_t bitval; 18554 mib2_ipAddrEntry_t mae; 18555 zoneid_t zoneid; 18556 ill_walk_context_t ctx; 18557 18558 /* 18559 * make a copy of the original message 18560 */ 18561 mp2ctl = copymsg(mpctl); 18562 18563 /* ipAddrEntryTable */ 18564 18565 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18566 optp->level = MIB2_IP; 18567 optp->name = MIB2_IP_ADDR; 18568 zoneid = Q_TO_CONN(q)->conn_zoneid; 18569 18570 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18571 ill = ILL_START_WALK_V4(&ctx, ipst); 18572 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18573 for (ipif = ill->ill_ipif; ipif != NULL; 18574 ipif = ipif->ipif_next) { 18575 if (ipif->ipif_zoneid != zoneid && 18576 ipif->ipif_zoneid != ALL_ZONES) 18577 continue; 18578 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18579 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18580 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18581 18582 (void) ipif_get_name(ipif, 18583 mae.ipAdEntIfIndex.o_bytes, 18584 OCTET_LENGTH); 18585 mae.ipAdEntIfIndex.o_length = 18586 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 18587 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 18588 mae.ipAdEntNetMask = ipif->ipif_net_mask; 18589 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 18590 mae.ipAdEntInfo.ae_subnet_len = 18591 ip_mask_to_plen(ipif->ipif_net_mask); 18592 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 18593 for (bitval = 1; 18594 bitval && 18595 !(bitval & ipif->ipif_brd_addr); 18596 bitval <<= 1) 18597 noop; 18598 mae.ipAdEntBcastAddr = bitval; 18599 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 18600 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 18601 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 18602 mae.ipAdEntInfo.ae_broadcast_addr = 18603 ipif->ipif_brd_addr; 18604 mae.ipAdEntInfo.ae_pp_dst_addr = 18605 ipif->ipif_pp_dst_addr; 18606 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 18607 ill->ill_flags | ill->ill_phyint->phyint_flags; 18608 mae.ipAdEntRetransmitTime = AR_EQ_DEFAULT_XMIT_INTERVAL; 18609 18610 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18611 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 18612 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 18613 "allocate %u bytes\n", 18614 (uint_t)sizeof (mib2_ipAddrEntry_t))); 18615 } 18616 } 18617 } 18618 rw_exit(&ipst->ips_ill_g_lock); 18619 18620 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18621 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 18622 (int)optp->level, (int)optp->name, (int)optp->len)); 18623 qreply(q, mpctl); 18624 return (mp2ctl); 18625 } 18626 18627 /* IPv6 address information */ 18628 static mblk_t * 18629 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18630 { 18631 struct opthdr *optp; 18632 mblk_t *mp2ctl; 18633 mblk_t *mp_tail = NULL; 18634 ill_t *ill; 18635 ipif_t *ipif; 18636 mib2_ipv6AddrEntry_t mae6; 18637 zoneid_t zoneid; 18638 ill_walk_context_t ctx; 18639 18640 /* 18641 * make a copy of the original message 18642 */ 18643 mp2ctl = copymsg(mpctl); 18644 18645 /* ipv6AddrEntryTable */ 18646 18647 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18648 optp->level = MIB2_IP6; 18649 optp->name = MIB2_IP6_ADDR; 18650 zoneid = Q_TO_CONN(q)->conn_zoneid; 18651 18652 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18653 ill = ILL_START_WALK_V6(&ctx, ipst); 18654 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18655 for (ipif = ill->ill_ipif; ipif != NULL; 18656 ipif = ipif->ipif_next) { 18657 if (ipif->ipif_zoneid != zoneid && 18658 ipif->ipif_zoneid != ALL_ZONES) 18659 continue; 18660 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18661 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18662 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18663 18664 (void) ipif_get_name(ipif, 18665 mae6.ipv6AddrIfIndex.o_bytes, 18666 OCTET_LENGTH); 18667 mae6.ipv6AddrIfIndex.o_length = 18668 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 18669 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 18670 mae6.ipv6AddrPfxLength = 18671 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 18672 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 18673 mae6.ipv6AddrInfo.ae_subnet_len = 18674 mae6.ipv6AddrPfxLength; 18675 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 18676 18677 /* Type: stateless(1), stateful(2), unknown(3) */ 18678 if (ipif->ipif_flags & IPIF_ADDRCONF) 18679 mae6.ipv6AddrType = 1; 18680 else 18681 mae6.ipv6AddrType = 2; 18682 /* Anycast: true(1), false(2) */ 18683 if (ipif->ipif_flags & IPIF_ANYCAST) 18684 mae6.ipv6AddrAnycastFlag = 1; 18685 else 18686 mae6.ipv6AddrAnycastFlag = 2; 18687 18688 /* 18689 * Address status: preferred(1), deprecated(2), 18690 * invalid(3), inaccessible(4), unknown(5) 18691 */ 18692 if (ipif->ipif_flags & IPIF_NOLOCAL) 18693 mae6.ipv6AddrStatus = 3; 18694 else if (ipif->ipif_flags & IPIF_DEPRECATED) 18695 mae6.ipv6AddrStatus = 2; 18696 else 18697 mae6.ipv6AddrStatus = 1; 18698 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 18699 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 18700 mae6.ipv6AddrInfo.ae_pp_dst_addr = 18701 ipif->ipif_v6pp_dst_addr; 18702 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 18703 ill->ill_flags | ill->ill_phyint->phyint_flags; 18704 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 18705 mae6.ipv6AddrIdentifier = ill->ill_token; 18706 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 18707 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 18708 mae6.ipv6AddrRetransmitTime = 18709 ill->ill_reachable_retrans_time; 18710 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18711 (char *)&mae6, 18712 (int)sizeof (mib2_ipv6AddrEntry_t))) { 18713 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 18714 "allocate %u bytes\n", 18715 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 18716 } 18717 } 18718 } 18719 rw_exit(&ipst->ips_ill_g_lock); 18720 18721 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18722 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 18723 (int)optp->level, (int)optp->name, (int)optp->len)); 18724 qreply(q, mpctl); 18725 return (mp2ctl); 18726 } 18727 18728 /* IPv4 multicast group membership. */ 18729 static mblk_t * 18730 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18731 { 18732 struct opthdr *optp; 18733 mblk_t *mp2ctl; 18734 ill_t *ill; 18735 ipif_t *ipif; 18736 ilm_t *ilm; 18737 ip_member_t ipm; 18738 mblk_t *mp_tail = NULL; 18739 ill_walk_context_t ctx; 18740 zoneid_t zoneid; 18741 18742 /* 18743 * make a copy of the original message 18744 */ 18745 mp2ctl = copymsg(mpctl); 18746 zoneid = Q_TO_CONN(q)->conn_zoneid; 18747 18748 /* ipGroupMember table */ 18749 optp = (struct opthdr *)&mpctl->b_rptr[ 18750 sizeof (struct T_optmgmt_ack)]; 18751 optp->level = MIB2_IP; 18752 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 18753 18754 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18755 ill = ILL_START_WALK_V4(&ctx, ipst); 18756 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18757 ILM_WALKER_HOLD(ill); 18758 for (ipif = ill->ill_ipif; ipif != NULL; 18759 ipif = ipif->ipif_next) { 18760 if (ipif->ipif_zoneid != zoneid && 18761 ipif->ipif_zoneid != ALL_ZONES) 18762 continue; /* not this zone */ 18763 (void) ipif_get_name(ipif, 18764 ipm.ipGroupMemberIfIndex.o_bytes, 18765 OCTET_LENGTH); 18766 ipm.ipGroupMemberIfIndex.o_length = 18767 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 18768 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18769 ASSERT(ilm->ilm_ipif != NULL); 18770 ASSERT(ilm->ilm_ill == NULL); 18771 if (ilm->ilm_ipif != ipif) 18772 continue; 18773 ipm.ipGroupMemberAddress = ilm->ilm_addr; 18774 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 18775 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 18776 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18777 (char *)&ipm, (int)sizeof (ipm))) { 18778 ip1dbg(("ip_snmp_get_mib2_ip_group: " 18779 "failed to allocate %u bytes\n", 18780 (uint_t)sizeof (ipm))); 18781 } 18782 } 18783 } 18784 ILM_WALKER_RELE(ill); 18785 } 18786 rw_exit(&ipst->ips_ill_g_lock); 18787 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18788 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18789 (int)optp->level, (int)optp->name, (int)optp->len)); 18790 qreply(q, mpctl); 18791 return (mp2ctl); 18792 } 18793 18794 /* IPv6 multicast group membership. */ 18795 static mblk_t * 18796 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18797 { 18798 struct opthdr *optp; 18799 mblk_t *mp2ctl; 18800 ill_t *ill; 18801 ilm_t *ilm; 18802 ipv6_member_t ipm6; 18803 mblk_t *mp_tail = NULL; 18804 ill_walk_context_t ctx; 18805 zoneid_t zoneid; 18806 18807 /* 18808 * make a copy of the original message 18809 */ 18810 mp2ctl = copymsg(mpctl); 18811 zoneid = Q_TO_CONN(q)->conn_zoneid; 18812 18813 /* ip6GroupMember table */ 18814 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18815 optp->level = MIB2_IP6; 18816 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 18817 18818 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18819 ill = ILL_START_WALK_V6(&ctx, ipst); 18820 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18821 ILM_WALKER_HOLD(ill); 18822 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 18823 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18824 ASSERT(ilm->ilm_ipif == NULL); 18825 ASSERT(ilm->ilm_ill != NULL); 18826 if (ilm->ilm_zoneid != zoneid) 18827 continue; /* not this zone */ 18828 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 18829 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 18830 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 18831 if (!snmp_append_data2(mpctl->b_cont, 18832 &mp_tail, 18833 (char *)&ipm6, (int)sizeof (ipm6))) { 18834 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 18835 "failed to allocate %u bytes\n", 18836 (uint_t)sizeof (ipm6))); 18837 } 18838 } 18839 ILM_WALKER_RELE(ill); 18840 } 18841 rw_exit(&ipst->ips_ill_g_lock); 18842 18843 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18844 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18845 (int)optp->level, (int)optp->name, (int)optp->len)); 18846 qreply(q, mpctl); 18847 return (mp2ctl); 18848 } 18849 18850 /* IP multicast filtered sources */ 18851 static mblk_t * 18852 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18853 { 18854 struct opthdr *optp; 18855 mblk_t *mp2ctl; 18856 ill_t *ill; 18857 ipif_t *ipif; 18858 ilm_t *ilm; 18859 ip_grpsrc_t ips; 18860 mblk_t *mp_tail = NULL; 18861 ill_walk_context_t ctx; 18862 zoneid_t zoneid; 18863 int i; 18864 slist_t *sl; 18865 18866 /* 18867 * make a copy of the original message 18868 */ 18869 mp2ctl = copymsg(mpctl); 18870 zoneid = Q_TO_CONN(q)->conn_zoneid; 18871 18872 /* ipGroupSource table */ 18873 optp = (struct opthdr *)&mpctl->b_rptr[ 18874 sizeof (struct T_optmgmt_ack)]; 18875 optp->level = MIB2_IP; 18876 optp->name = EXPER_IP_GROUP_SOURCES; 18877 18878 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18879 ill = ILL_START_WALK_V4(&ctx, ipst); 18880 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18881 ILM_WALKER_HOLD(ill); 18882 for (ipif = ill->ill_ipif; ipif != NULL; 18883 ipif = ipif->ipif_next) { 18884 if (ipif->ipif_zoneid != zoneid) 18885 continue; /* not this zone */ 18886 (void) ipif_get_name(ipif, 18887 ips.ipGroupSourceIfIndex.o_bytes, 18888 OCTET_LENGTH); 18889 ips.ipGroupSourceIfIndex.o_length = 18890 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 18891 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18892 ASSERT(ilm->ilm_ipif != NULL); 18893 ASSERT(ilm->ilm_ill == NULL); 18894 sl = ilm->ilm_filter; 18895 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 18896 continue; 18897 ips.ipGroupSourceGroup = ilm->ilm_addr; 18898 for (i = 0; i < sl->sl_numsrc; i++) { 18899 if (!IN6_IS_ADDR_V4MAPPED( 18900 &sl->sl_addr[i])) 18901 continue; 18902 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 18903 ips.ipGroupSourceAddress); 18904 if (snmp_append_data2(mpctl->b_cont, 18905 &mp_tail, (char *)&ips, 18906 (int)sizeof (ips)) == 0) { 18907 ip1dbg(("ip_snmp_get_mib2_" 18908 "ip_group_src: failed to " 18909 "allocate %u bytes\n", 18910 (uint_t)sizeof (ips))); 18911 } 18912 } 18913 } 18914 } 18915 ILM_WALKER_RELE(ill); 18916 } 18917 rw_exit(&ipst->ips_ill_g_lock); 18918 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18919 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18920 (int)optp->level, (int)optp->name, (int)optp->len)); 18921 qreply(q, mpctl); 18922 return (mp2ctl); 18923 } 18924 18925 /* IPv6 multicast filtered sources. */ 18926 static mblk_t * 18927 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18928 { 18929 struct opthdr *optp; 18930 mblk_t *mp2ctl; 18931 ill_t *ill; 18932 ilm_t *ilm; 18933 ipv6_grpsrc_t ips6; 18934 mblk_t *mp_tail = NULL; 18935 ill_walk_context_t ctx; 18936 zoneid_t zoneid; 18937 int i; 18938 slist_t *sl; 18939 18940 /* 18941 * make a copy of the original message 18942 */ 18943 mp2ctl = copymsg(mpctl); 18944 zoneid = Q_TO_CONN(q)->conn_zoneid; 18945 18946 /* ip6GroupMember table */ 18947 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18948 optp->level = MIB2_IP6; 18949 optp->name = EXPER_IP6_GROUP_SOURCES; 18950 18951 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18952 ill = ILL_START_WALK_V6(&ctx, ipst); 18953 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18954 ILM_WALKER_HOLD(ill); 18955 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 18956 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18957 ASSERT(ilm->ilm_ipif == NULL); 18958 ASSERT(ilm->ilm_ill != NULL); 18959 sl = ilm->ilm_filter; 18960 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 18961 continue; 18962 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 18963 for (i = 0; i < sl->sl_numsrc; i++) { 18964 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 18965 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18966 (char *)&ips6, (int)sizeof (ips6))) { 18967 ip1dbg(("ip_snmp_get_mib2_ip6_" 18968 "group_src: failed to allocate " 18969 "%u bytes\n", 18970 (uint_t)sizeof (ips6))); 18971 } 18972 } 18973 } 18974 ILM_WALKER_RELE(ill); 18975 } 18976 rw_exit(&ipst->ips_ill_g_lock); 18977 18978 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18979 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18980 (int)optp->level, (int)optp->name, (int)optp->len)); 18981 qreply(q, mpctl); 18982 return (mp2ctl); 18983 } 18984 18985 /* Multicast routing virtual interface table. */ 18986 static mblk_t * 18987 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18988 { 18989 struct opthdr *optp; 18990 mblk_t *mp2ctl; 18991 18992 /* 18993 * make a copy of the original message 18994 */ 18995 mp2ctl = copymsg(mpctl); 18996 18997 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18998 optp->level = EXPER_DVMRP; 18999 optp->name = EXPER_DVMRP_VIF; 19000 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 19001 ip0dbg(("ip_mroute_vif: failed\n")); 19002 } 19003 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19004 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 19005 (int)optp->level, (int)optp->name, (int)optp->len)); 19006 qreply(q, mpctl); 19007 return (mp2ctl); 19008 } 19009 19010 /* Multicast routing table. */ 19011 static mblk_t * 19012 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19013 { 19014 struct opthdr *optp; 19015 mblk_t *mp2ctl; 19016 19017 /* 19018 * make a copy of the original message 19019 */ 19020 mp2ctl = copymsg(mpctl); 19021 19022 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19023 optp->level = EXPER_DVMRP; 19024 optp->name = EXPER_DVMRP_MRT; 19025 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 19026 ip0dbg(("ip_mroute_mrt: failed\n")); 19027 } 19028 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19029 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 19030 (int)optp->level, (int)optp->name, (int)optp->len)); 19031 qreply(q, mpctl); 19032 return (mp2ctl); 19033 } 19034 19035 /* 19036 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 19037 * in one IRE walk. 19038 */ 19039 static mblk_t * 19040 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19041 { 19042 struct opthdr *optp; 19043 mblk_t *mp2ctl; /* Returned */ 19044 mblk_t *mp3ctl; /* nettomedia */ 19045 mblk_t *mp4ctl; /* routeattrs */ 19046 iproutedata_t ird; 19047 zoneid_t zoneid; 19048 19049 /* 19050 * make copies of the original message 19051 * - mp2ctl is returned unchanged to the caller for his use 19052 * - mpctl is sent upstream as ipRouteEntryTable 19053 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 19054 * - mp4ctl is sent upstream as ipRouteAttributeTable 19055 */ 19056 mp2ctl = copymsg(mpctl); 19057 mp3ctl = copymsg(mpctl); 19058 mp4ctl = copymsg(mpctl); 19059 if (mp3ctl == NULL || mp4ctl == NULL) { 19060 freemsg(mp4ctl); 19061 freemsg(mp3ctl); 19062 freemsg(mp2ctl); 19063 freemsg(mpctl); 19064 return (NULL); 19065 } 19066 19067 bzero(&ird, sizeof (ird)); 19068 19069 ird.ird_route.lp_head = mpctl->b_cont; 19070 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19071 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19072 19073 zoneid = Q_TO_CONN(q)->conn_zoneid; 19074 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 19075 if (zoneid == GLOBAL_ZONEID) { 19076 /* 19077 * Those IREs are used by Mobile-IP; since mipagent(1M) 19078 * requires the sys_net_config or sys_ip_config privilege, 19079 * it can only run in the global zone or an exclusive-IP zone, 19080 * and both those have a conn_zoneid == GLOBAL_ZONEID. 19081 */ 19082 ire_walk_srcif_table_v4(ip_snmp_get2_v4, &ird, ipst); 19083 ire_walk_ill_mrtun(0, 0, ip_snmp_get2_v4, &ird, NULL, ipst); 19084 } 19085 19086 /* ipRouteEntryTable in mpctl */ 19087 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19088 optp->level = MIB2_IP; 19089 optp->name = MIB2_IP_ROUTE; 19090 optp->len = msgdsize(ird.ird_route.lp_head); 19091 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19092 (int)optp->level, (int)optp->name, (int)optp->len)); 19093 qreply(q, mpctl); 19094 19095 /* ipNetToMediaEntryTable in mp3ctl */ 19096 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19097 optp->level = MIB2_IP; 19098 optp->name = MIB2_IP_MEDIA; 19099 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19100 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19101 (int)optp->level, (int)optp->name, (int)optp->len)); 19102 qreply(q, mp3ctl); 19103 19104 /* ipRouteAttributeTable in mp4ctl */ 19105 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19106 optp->level = MIB2_IP; 19107 optp->name = EXPER_IP_RTATTR; 19108 optp->len = msgdsize(ird.ird_attrs.lp_head); 19109 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19110 (int)optp->level, (int)optp->name, (int)optp->len)); 19111 if (optp->len == 0) 19112 freemsg(mp4ctl); 19113 else 19114 qreply(q, mp4ctl); 19115 19116 return (mp2ctl); 19117 } 19118 19119 /* 19120 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 19121 * ipv6NetToMediaEntryTable in an NDP walk. 19122 */ 19123 static mblk_t * 19124 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19125 { 19126 struct opthdr *optp; 19127 mblk_t *mp2ctl; /* Returned */ 19128 mblk_t *mp3ctl; /* nettomedia */ 19129 mblk_t *mp4ctl; /* routeattrs */ 19130 iproutedata_t ird; 19131 zoneid_t zoneid; 19132 19133 /* 19134 * make copies of the original message 19135 * - mp2ctl is returned unchanged to the caller for his use 19136 * - mpctl is sent upstream as ipv6RouteEntryTable 19137 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 19138 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 19139 */ 19140 mp2ctl = copymsg(mpctl); 19141 mp3ctl = copymsg(mpctl); 19142 mp4ctl = copymsg(mpctl); 19143 if (mp3ctl == NULL || mp4ctl == NULL) { 19144 freemsg(mp4ctl); 19145 freemsg(mp3ctl); 19146 freemsg(mp2ctl); 19147 freemsg(mpctl); 19148 return (NULL); 19149 } 19150 19151 bzero(&ird, sizeof (ird)); 19152 19153 ird.ird_route.lp_head = mpctl->b_cont; 19154 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19155 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19156 19157 zoneid = Q_TO_CONN(q)->conn_zoneid; 19158 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 19159 19160 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19161 optp->level = MIB2_IP6; 19162 optp->name = MIB2_IP6_ROUTE; 19163 optp->len = msgdsize(ird.ird_route.lp_head); 19164 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19165 (int)optp->level, (int)optp->name, (int)optp->len)); 19166 qreply(q, mpctl); 19167 19168 /* ipv6NetToMediaEntryTable in mp3ctl */ 19169 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 19170 19171 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19172 optp->level = MIB2_IP6; 19173 optp->name = MIB2_IP6_MEDIA; 19174 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19175 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19176 (int)optp->level, (int)optp->name, (int)optp->len)); 19177 qreply(q, mp3ctl); 19178 19179 /* ipv6RouteAttributeTable in mp4ctl */ 19180 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19181 optp->level = MIB2_IP6; 19182 optp->name = EXPER_IP_RTATTR; 19183 optp->len = msgdsize(ird.ird_attrs.lp_head); 19184 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19185 (int)optp->level, (int)optp->name, (int)optp->len)); 19186 if (optp->len == 0) 19187 freemsg(mp4ctl); 19188 else 19189 qreply(q, mp4ctl); 19190 19191 return (mp2ctl); 19192 } 19193 19194 /* 19195 * IPv6 mib: One per ill 19196 */ 19197 static mblk_t * 19198 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19199 { 19200 struct opthdr *optp; 19201 mblk_t *mp2ctl; 19202 ill_t *ill; 19203 ill_walk_context_t ctx; 19204 mblk_t *mp_tail = NULL; 19205 19206 /* 19207 * Make a copy of the original message 19208 */ 19209 mp2ctl = copymsg(mpctl); 19210 19211 /* fixed length IPv6 structure ... */ 19212 19213 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19214 optp->level = MIB2_IP6; 19215 optp->name = 0; 19216 /* Include "unknown interface" ip6_mib */ 19217 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 19218 ipst->ips_ip6_mib.ipIfStatsIfIndex = 19219 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 19220 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 19221 ipst->ips_ipv6_forward ? 1 : 2); 19222 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 19223 ipst->ips_ipv6_def_hops); 19224 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 19225 sizeof (mib2_ipIfStatsEntry_t)); 19226 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 19227 sizeof (mib2_ipv6AddrEntry_t)); 19228 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 19229 sizeof (mib2_ipv6RouteEntry_t)); 19230 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 19231 sizeof (mib2_ipv6NetToMediaEntry_t)); 19232 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 19233 sizeof (ipv6_member_t)); 19234 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 19235 sizeof (ipv6_grpsrc_t)); 19236 19237 /* 19238 * Synchronize 64- and 32-bit counters 19239 */ 19240 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 19241 ipIfStatsHCInReceives); 19242 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 19243 ipIfStatsHCInDelivers); 19244 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 19245 ipIfStatsHCOutRequests); 19246 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 19247 ipIfStatsHCOutForwDatagrams); 19248 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 19249 ipIfStatsHCOutMcastPkts); 19250 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 19251 ipIfStatsHCInMcastPkts); 19252 19253 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19254 (char *)&ipst->ips_ip6_mib, (int)sizeof (ipst->ips_ip6_mib))) { 19255 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 19256 (uint_t)sizeof (ipst->ips_ip6_mib))); 19257 } 19258 19259 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19260 ill = ILL_START_WALK_V6(&ctx, ipst); 19261 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19262 ill->ill_ip_mib->ipIfStatsIfIndex = 19263 ill->ill_phyint->phyint_ifindex; 19264 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 19265 ipst->ips_ipv6_forward ? 1 : 2); 19266 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 19267 ill->ill_max_hops); 19268 19269 /* 19270 * Synchronize 64- and 32-bit counters 19271 */ 19272 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 19273 ipIfStatsHCInReceives); 19274 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 19275 ipIfStatsHCInDelivers); 19276 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 19277 ipIfStatsHCOutRequests); 19278 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 19279 ipIfStatsHCOutForwDatagrams); 19280 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 19281 ipIfStatsHCOutMcastPkts); 19282 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 19283 ipIfStatsHCInMcastPkts); 19284 19285 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19286 (char *)ill->ill_ip_mib, 19287 (int)sizeof (*ill->ill_ip_mib))) { 19288 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 19289 "%u bytes\n", (uint_t)sizeof (*ill->ill_ip_mib))); 19290 } 19291 } 19292 rw_exit(&ipst->ips_ill_g_lock); 19293 19294 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19295 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 19296 (int)optp->level, (int)optp->name, (int)optp->len)); 19297 qreply(q, mpctl); 19298 return (mp2ctl); 19299 } 19300 19301 /* 19302 * ICMPv6 mib: One per ill 19303 */ 19304 static mblk_t * 19305 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19306 { 19307 struct opthdr *optp; 19308 mblk_t *mp2ctl; 19309 ill_t *ill; 19310 ill_walk_context_t ctx; 19311 mblk_t *mp_tail = NULL; 19312 /* 19313 * Make a copy of the original message 19314 */ 19315 mp2ctl = copymsg(mpctl); 19316 19317 /* fixed length ICMPv6 structure ... */ 19318 19319 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19320 optp->level = MIB2_ICMP6; 19321 optp->name = 0; 19322 /* Include "unknown interface" icmp6_mib */ 19323 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 19324 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 19325 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 19326 sizeof (mib2_ipv6IfIcmpEntry_t); 19327 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19328 (char *)&ipst->ips_icmp6_mib, 19329 (int)sizeof (ipst->ips_icmp6_mib))) { 19330 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 19331 (uint_t)sizeof (ipst->ips_icmp6_mib))); 19332 } 19333 19334 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19335 ill = ILL_START_WALK_V6(&ctx, ipst); 19336 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19337 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 19338 ill->ill_phyint->phyint_ifindex; 19339 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19340 (char *)ill->ill_icmp6_mib, 19341 (int)sizeof (*ill->ill_icmp6_mib))) { 19342 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 19343 "%u bytes\n", 19344 (uint_t)sizeof (*ill->ill_icmp6_mib))); 19345 } 19346 } 19347 rw_exit(&ipst->ips_ill_g_lock); 19348 19349 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19350 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 19351 (int)optp->level, (int)optp->name, (int)optp->len)); 19352 qreply(q, mpctl); 19353 return (mp2ctl); 19354 } 19355 19356 /* 19357 * ire_walk routine to create both ipRouteEntryTable and 19358 * ipRouteAttributeTable in one IRE walk 19359 */ 19360 static void 19361 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 19362 { 19363 ill_t *ill; 19364 ipif_t *ipif; 19365 mib2_ipRouteEntry_t *re; 19366 mib2_ipAttributeEntry_t *iae, *iaeptr; 19367 ipaddr_t gw_addr; 19368 tsol_ire_gw_secattr_t *attrp; 19369 tsol_gc_t *gc = NULL; 19370 tsol_gcgrp_t *gcgrp = NULL; 19371 uint_t sacnt = 0; 19372 int i; 19373 19374 ASSERT(ire->ire_ipversion == IPV4_VERSION); 19375 19376 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19377 return; 19378 19379 if ((attrp = ire->ire_gw_secattr) != NULL) { 19380 mutex_enter(&attrp->igsa_lock); 19381 if ((gc = attrp->igsa_gc) != NULL) { 19382 gcgrp = gc->gc_grp; 19383 ASSERT(gcgrp != NULL); 19384 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19385 sacnt = 1; 19386 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19387 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19388 gc = gcgrp->gcgrp_head; 19389 sacnt = gcgrp->gcgrp_count; 19390 } 19391 mutex_exit(&attrp->igsa_lock); 19392 19393 /* do nothing if there's no gc to report */ 19394 if (gc == NULL) { 19395 ASSERT(sacnt == 0); 19396 if (gcgrp != NULL) { 19397 /* we might as well drop the lock now */ 19398 rw_exit(&gcgrp->gcgrp_rwlock); 19399 gcgrp = NULL; 19400 } 19401 attrp = NULL; 19402 } 19403 19404 ASSERT(gc == NULL || (gcgrp != NULL && 19405 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19406 } 19407 ASSERT(sacnt == 0 || gc != NULL); 19408 19409 if (sacnt != 0 && 19410 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19411 kmem_free(re, sizeof (*re)); 19412 rw_exit(&gcgrp->gcgrp_rwlock); 19413 return; 19414 } 19415 19416 /* 19417 * Return all IRE types for route table... let caller pick and choose 19418 */ 19419 re->ipRouteDest = ire->ire_addr; 19420 ipif = ire->ire_ipif; 19421 re->ipRouteIfIndex.o_length = 0; 19422 if (ire->ire_type == IRE_CACHE) { 19423 ill = (ill_t *)ire->ire_stq->q_ptr; 19424 re->ipRouteIfIndex.o_length = 19425 ill->ill_name_length == 0 ? 0 : 19426 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19427 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 19428 re->ipRouteIfIndex.o_length); 19429 } else if (ipif != NULL) { 19430 (void) ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, 19431 OCTET_LENGTH); 19432 re->ipRouteIfIndex.o_length = 19433 mi_strlen(re->ipRouteIfIndex.o_bytes); 19434 } 19435 re->ipRouteMetric1 = -1; 19436 re->ipRouteMetric2 = -1; 19437 re->ipRouteMetric3 = -1; 19438 re->ipRouteMetric4 = -1; 19439 19440 gw_addr = ire->ire_gateway_addr; 19441 19442 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 19443 re->ipRouteNextHop = ire->ire_src_addr; 19444 else 19445 re->ipRouteNextHop = gw_addr; 19446 /* indirect(4), direct(3), or invalid(2) */ 19447 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19448 re->ipRouteType = 2; 19449 else 19450 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 19451 re->ipRouteProto = -1; 19452 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 19453 re->ipRouteMask = ire->ire_mask; 19454 re->ipRouteMetric5 = -1; 19455 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 19456 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 19457 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19458 re->ipRouteInfo.re_ref = ire->ire_refcnt; 19459 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 19460 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19461 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19462 re->ipRouteInfo.re_flags = ire->ire_flags; 19463 re->ipRouteInfo.re_in_ill.o_length = 0; 19464 19465 if (ire->ire_flags & RTF_DYNAMIC) { 19466 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19467 } else { 19468 re->ipRouteInfo.re_ire_type = ire->ire_type; 19469 } 19470 19471 if (ire->ire_in_ill != NULL) { 19472 re->ipRouteInfo.re_in_ill.o_length = 19473 ire->ire_in_ill->ill_name_length == 0 ? 0 : 19474 MIN(OCTET_LENGTH, ire->ire_in_ill->ill_name_length - 1); 19475 bcopy(ire->ire_in_ill->ill_name, 19476 re->ipRouteInfo.re_in_ill.o_bytes, 19477 re->ipRouteInfo.re_in_ill.o_length); 19478 } 19479 re->ipRouteInfo.re_in_src_addr = ire->ire_in_src_addr; 19480 19481 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19482 (char *)re, (int)sizeof (*re))) { 19483 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19484 (uint_t)sizeof (*re))); 19485 } 19486 19487 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19488 iaeptr->iae_routeidx = ird->ird_idx; 19489 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19490 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19491 } 19492 19493 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19494 (char *)iae, sacnt * sizeof (*iae))) { 19495 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19496 (unsigned)(sacnt * sizeof (*iae)))); 19497 } 19498 19499 /* bump route index for next pass */ 19500 ird->ird_idx++; 19501 19502 kmem_free(re, sizeof (*re)); 19503 if (sacnt != 0) 19504 kmem_free(iae, sacnt * sizeof (*iae)); 19505 19506 if (gcgrp != NULL) 19507 rw_exit(&gcgrp->gcgrp_rwlock); 19508 } 19509 19510 /* 19511 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 19512 */ 19513 static void 19514 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 19515 { 19516 ill_t *ill; 19517 ipif_t *ipif; 19518 mib2_ipv6RouteEntry_t *re; 19519 mib2_ipAttributeEntry_t *iae, *iaeptr; 19520 in6_addr_t gw_addr_v6; 19521 tsol_ire_gw_secattr_t *attrp; 19522 tsol_gc_t *gc = NULL; 19523 tsol_gcgrp_t *gcgrp = NULL; 19524 uint_t sacnt = 0; 19525 int i; 19526 19527 ASSERT(ire->ire_ipversion == IPV6_VERSION); 19528 19529 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19530 return; 19531 19532 if ((attrp = ire->ire_gw_secattr) != NULL) { 19533 mutex_enter(&attrp->igsa_lock); 19534 if ((gc = attrp->igsa_gc) != NULL) { 19535 gcgrp = gc->gc_grp; 19536 ASSERT(gcgrp != NULL); 19537 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19538 sacnt = 1; 19539 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19540 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19541 gc = gcgrp->gcgrp_head; 19542 sacnt = gcgrp->gcgrp_count; 19543 } 19544 mutex_exit(&attrp->igsa_lock); 19545 19546 /* do nothing if there's no gc to report */ 19547 if (gc == NULL) { 19548 ASSERT(sacnt == 0); 19549 if (gcgrp != NULL) { 19550 /* we might as well drop the lock now */ 19551 rw_exit(&gcgrp->gcgrp_rwlock); 19552 gcgrp = NULL; 19553 } 19554 attrp = NULL; 19555 } 19556 19557 ASSERT(gc == NULL || (gcgrp != NULL && 19558 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19559 } 19560 ASSERT(sacnt == 0 || gc != NULL); 19561 19562 if (sacnt != 0 && 19563 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19564 kmem_free(re, sizeof (*re)); 19565 rw_exit(&gcgrp->gcgrp_rwlock); 19566 return; 19567 } 19568 19569 /* 19570 * Return all IRE types for route table... let caller pick and choose 19571 */ 19572 re->ipv6RouteDest = ire->ire_addr_v6; 19573 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 19574 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 19575 re->ipv6RouteIfIndex.o_length = 0; 19576 ipif = ire->ire_ipif; 19577 if (ire->ire_type == IRE_CACHE) { 19578 ill = (ill_t *)ire->ire_stq->q_ptr; 19579 re->ipv6RouteIfIndex.o_length = 19580 ill->ill_name_length == 0 ? 0 : 19581 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19582 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 19583 re->ipv6RouteIfIndex.o_length); 19584 } else if (ipif != NULL) { 19585 (void) ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, 19586 OCTET_LENGTH); 19587 re->ipv6RouteIfIndex.o_length = 19588 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 19589 } 19590 19591 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19592 19593 mutex_enter(&ire->ire_lock); 19594 gw_addr_v6 = ire->ire_gateway_addr_v6; 19595 mutex_exit(&ire->ire_lock); 19596 19597 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 19598 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 19599 else 19600 re->ipv6RouteNextHop = gw_addr_v6; 19601 19602 /* remote(4), local(3), or discard(2) */ 19603 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19604 re->ipv6RouteType = 2; 19605 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 19606 re->ipv6RouteType = 3; 19607 else 19608 re->ipv6RouteType = 4; 19609 19610 re->ipv6RouteProtocol = -1; 19611 re->ipv6RoutePolicy = 0; 19612 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 19613 re->ipv6RouteNextHopRDI = 0; 19614 re->ipv6RouteWeight = 0; 19615 re->ipv6RouteMetric = 0; 19616 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 19617 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 19618 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19619 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 19620 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19621 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19622 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 19623 re->ipv6RouteInfo.re_flags = ire->ire_flags; 19624 19625 if (ire->ire_flags & RTF_DYNAMIC) { 19626 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19627 } else { 19628 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 19629 } 19630 19631 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19632 (char *)re, (int)sizeof (*re))) { 19633 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19634 (uint_t)sizeof (*re))); 19635 } 19636 19637 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19638 iaeptr->iae_routeidx = ird->ird_idx; 19639 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19640 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19641 } 19642 19643 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19644 (char *)iae, sacnt * sizeof (*iae))) { 19645 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19646 (unsigned)(sacnt * sizeof (*iae)))); 19647 } 19648 19649 /* bump route index for next pass */ 19650 ird->ird_idx++; 19651 19652 kmem_free(re, sizeof (*re)); 19653 if (sacnt != 0) 19654 kmem_free(iae, sacnt * sizeof (*iae)); 19655 19656 if (gcgrp != NULL) 19657 rw_exit(&gcgrp->gcgrp_rwlock); 19658 } 19659 19660 /* 19661 * ndp_walk routine to create ipv6NetToMediaEntryTable 19662 */ 19663 static int 19664 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 19665 { 19666 ill_t *ill; 19667 mib2_ipv6NetToMediaEntry_t ntme; 19668 dl_unitdata_req_t *dl; 19669 19670 ill = nce->nce_ill; 19671 if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */ 19672 return (0); 19673 19674 /* 19675 * Neighbor cache entry attached to IRE with on-link 19676 * destination. 19677 */ 19678 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 19679 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 19680 if ((ill->ill_flags & ILLF_XRESOLV) && 19681 (nce->nce_res_mp != NULL)) { 19682 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 19683 ntme.ipv6NetToMediaPhysAddress.o_length = 19684 dl->dl_dest_addr_length; 19685 } else { 19686 ntme.ipv6NetToMediaPhysAddress.o_length = 19687 ill->ill_phys_addr_length; 19688 } 19689 if (nce->nce_res_mp != NULL) { 19690 bcopy((char *)nce->nce_res_mp->b_rptr + 19691 NCE_LL_ADDR_OFFSET(ill), 19692 ntme.ipv6NetToMediaPhysAddress.o_bytes, 19693 ntme.ipv6NetToMediaPhysAddress.o_length); 19694 } else { 19695 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 19696 ill->ill_phys_addr_length); 19697 } 19698 /* 19699 * Note: Returns ND_* states. Should be: 19700 * reachable(1), stale(2), delay(3), probe(4), 19701 * invalid(5), unknown(6) 19702 */ 19703 ntme.ipv6NetToMediaState = nce->nce_state; 19704 ntme.ipv6NetToMediaLastUpdated = 0; 19705 19706 /* other(1), dynamic(2), static(3), local(4) */ 19707 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 19708 ntme.ipv6NetToMediaType = 4; 19709 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 19710 ntme.ipv6NetToMediaType = 1; 19711 } else { 19712 ntme.ipv6NetToMediaType = 2; 19713 } 19714 19715 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 19716 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 19717 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 19718 (uint_t)sizeof (ntme))); 19719 } 19720 return (0); 19721 } 19722 19723 /* 19724 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 19725 */ 19726 /* ARGSUSED */ 19727 int 19728 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 19729 { 19730 switch (level) { 19731 case MIB2_IP: 19732 case MIB2_ICMP: 19733 switch (name) { 19734 default: 19735 break; 19736 } 19737 return (1); 19738 default: 19739 return (1); 19740 } 19741 } 19742 19743 /* 19744 * When there exists both a 64- and 32-bit counter of a particular type 19745 * (i.e., InReceives), only the 64-bit counters are added. 19746 */ 19747 void 19748 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 19749 { 19750 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 19751 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 19752 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 19753 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 19754 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 19755 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 19756 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 19757 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 19758 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 19759 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 19760 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 19761 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 19762 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 19763 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 19764 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 19765 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 19766 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 19767 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 19768 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 19769 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 19770 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 19771 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 19772 o2->ipIfStatsInWrongIPVersion); 19773 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 19774 o2->ipIfStatsInWrongIPVersion); 19775 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 19776 o2->ipIfStatsOutSwitchIPVersion); 19777 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 19778 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 19779 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 19780 o2->ipIfStatsHCInForwDatagrams); 19781 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 19782 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 19783 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 19784 o2->ipIfStatsHCOutForwDatagrams); 19785 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 19786 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 19787 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 19788 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 19789 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 19790 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 19791 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 19792 o2->ipIfStatsHCOutMcastOctets); 19793 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 19794 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 19795 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 19796 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 19797 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 19798 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 19799 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 19800 } 19801 19802 void 19803 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 19804 { 19805 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 19806 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 19807 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 19808 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 19809 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 19810 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 19811 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 19812 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 19813 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 19814 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 19815 o2->ipv6IfIcmpInRouterSolicits); 19816 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 19817 o2->ipv6IfIcmpInRouterAdvertisements); 19818 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 19819 o2->ipv6IfIcmpInNeighborSolicits); 19820 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 19821 o2->ipv6IfIcmpInNeighborAdvertisements); 19822 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 19823 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 19824 o2->ipv6IfIcmpInGroupMembQueries); 19825 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 19826 o2->ipv6IfIcmpInGroupMembResponses); 19827 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 19828 o2->ipv6IfIcmpInGroupMembReductions); 19829 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 19830 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 19831 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 19832 o2->ipv6IfIcmpOutDestUnreachs); 19833 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 19834 o2->ipv6IfIcmpOutAdminProhibs); 19835 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 19836 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 19837 o2->ipv6IfIcmpOutParmProblems); 19838 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 19839 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 19840 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 19841 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 19842 o2->ipv6IfIcmpOutRouterSolicits); 19843 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 19844 o2->ipv6IfIcmpOutRouterAdvertisements); 19845 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 19846 o2->ipv6IfIcmpOutNeighborSolicits); 19847 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 19848 o2->ipv6IfIcmpOutNeighborAdvertisements); 19849 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 19850 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 19851 o2->ipv6IfIcmpOutGroupMembQueries); 19852 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 19853 o2->ipv6IfIcmpOutGroupMembResponses); 19854 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 19855 o2->ipv6IfIcmpOutGroupMembReductions); 19856 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 19857 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 19858 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 19859 o2->ipv6IfIcmpInBadNeighborAdvertisements); 19860 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 19861 o2->ipv6IfIcmpInBadNeighborSolicitations); 19862 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 19863 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 19864 o2->ipv6IfIcmpInGroupMembTotal); 19865 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 19866 o2->ipv6IfIcmpInGroupMembBadQueries); 19867 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 19868 o2->ipv6IfIcmpInGroupMembBadReports); 19869 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 19870 o2->ipv6IfIcmpInGroupMembOurReports); 19871 } 19872 19873 /* 19874 * Called before the options are updated to check if this packet will 19875 * be source routed from here. 19876 * This routine assumes that the options are well formed i.e. that they 19877 * have already been checked. 19878 */ 19879 static boolean_t 19880 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 19881 { 19882 ipoptp_t opts; 19883 uchar_t *opt; 19884 uint8_t optval; 19885 uint8_t optlen; 19886 ipaddr_t dst; 19887 ire_t *ire; 19888 19889 if (IS_SIMPLE_IPH(ipha)) { 19890 ip2dbg(("not source routed\n")); 19891 return (B_FALSE); 19892 } 19893 dst = ipha->ipha_dst; 19894 for (optval = ipoptp_first(&opts, ipha); 19895 optval != IPOPT_EOL; 19896 optval = ipoptp_next(&opts)) { 19897 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 19898 opt = opts.ipoptp_cur; 19899 optlen = opts.ipoptp_len; 19900 ip2dbg(("ip_source_routed: opt %d, len %d\n", 19901 optval, optlen)); 19902 switch (optval) { 19903 uint32_t off; 19904 case IPOPT_SSRR: 19905 case IPOPT_LSRR: 19906 /* 19907 * If dst is one of our addresses and there are some 19908 * entries left in the source route return (true). 19909 */ 19910 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 19911 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 19912 if (ire == NULL) { 19913 ip2dbg(("ip_source_routed: not next" 19914 " source route 0x%x\n", 19915 ntohl(dst))); 19916 return (B_FALSE); 19917 } 19918 ire_refrele(ire); 19919 off = opt[IPOPT_OFFSET]; 19920 off--; 19921 if (optlen < IP_ADDR_LEN || 19922 off > optlen - IP_ADDR_LEN) { 19923 /* End of source route */ 19924 ip1dbg(("ip_source_routed: end of SR\n")); 19925 return (B_FALSE); 19926 } 19927 return (B_TRUE); 19928 } 19929 } 19930 ip2dbg(("not source routed\n")); 19931 return (B_FALSE); 19932 } 19933 19934 /* 19935 * Check if the packet contains any source route. 19936 */ 19937 static boolean_t 19938 ip_source_route_included(ipha_t *ipha) 19939 { 19940 ipoptp_t opts; 19941 uint8_t optval; 19942 19943 if (IS_SIMPLE_IPH(ipha)) 19944 return (B_FALSE); 19945 for (optval = ipoptp_first(&opts, ipha); 19946 optval != IPOPT_EOL; 19947 optval = ipoptp_next(&opts)) { 19948 switch (optval) { 19949 case IPOPT_SSRR: 19950 case IPOPT_LSRR: 19951 return (B_TRUE); 19952 } 19953 } 19954 return (B_FALSE); 19955 } 19956 19957 /* 19958 * Called when the IRE expiration timer fires. 19959 */ 19960 void 19961 ip_trash_timer_expire(void *args) 19962 { 19963 int flush_flag = 0; 19964 ire_expire_arg_t iea; 19965 ip_stack_t *ipst = (ip_stack_t *)args; 19966 19967 iea.iea_ipst = ipst; /* No netstack_hold */ 19968 19969 /* 19970 * ip_ire_expire_id is protected by ip_trash_timer_lock. 19971 * This lock makes sure that a new invocation of this function 19972 * that occurs due to an almost immediate timer firing will not 19973 * progress beyond this point until the current invocation is done 19974 */ 19975 mutex_enter(&ipst->ips_ip_trash_timer_lock); 19976 ipst->ips_ip_ire_expire_id = 0; 19977 mutex_exit(&ipst->ips_ip_trash_timer_lock); 19978 19979 /* Periodic timer */ 19980 if (ipst->ips_ip_ire_arp_time_elapsed >= 19981 ipst->ips_ip_ire_arp_interval) { 19982 /* 19983 * Remove all IRE_CACHE entries since they might 19984 * contain arp information. 19985 */ 19986 flush_flag |= FLUSH_ARP_TIME; 19987 ipst->ips_ip_ire_arp_time_elapsed = 0; 19988 IP_STAT(ipst, ip_ire_arp_timer_expired); 19989 } 19990 if (ipst->ips_ip_ire_rd_time_elapsed >= 19991 ipst->ips_ip_ire_redir_interval) { 19992 /* Remove all redirects */ 19993 flush_flag |= FLUSH_REDIRECT_TIME; 19994 ipst->ips_ip_ire_rd_time_elapsed = 0; 19995 IP_STAT(ipst, ip_ire_redirect_timer_expired); 19996 } 19997 if (ipst->ips_ip_ire_pmtu_time_elapsed >= 19998 ipst->ips_ip_ire_pathmtu_interval) { 19999 /* Increase path mtu */ 20000 flush_flag |= FLUSH_MTU_TIME; 20001 ipst->ips_ip_ire_pmtu_time_elapsed = 0; 20002 IP_STAT(ipst, ip_ire_pmtu_timer_expired); 20003 } 20004 20005 /* 20006 * Optimize for the case when there are no redirects in the 20007 * ftable, that is, no need to walk the ftable in that case. 20008 */ 20009 if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) { 20010 iea.iea_flush_flag = flush_flag; 20011 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire, 20012 (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 0, NULL, 20013 ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table, 20014 NULL, ALL_ZONES, ipst); 20015 } 20016 if ((flush_flag & FLUSH_REDIRECT_TIME) && 20017 ipst->ips_ip_redirect_cnt > 0) { 20018 iea.iea_flush_flag = flush_flag; 20019 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE, 20020 ire_expire, (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 20021 0, NULL, 0, NULL, NULL, ALL_ZONES, ipst); 20022 } 20023 if (flush_flag & FLUSH_MTU_TIME) { 20024 /* 20025 * Walk all IPv6 IRE's and update them 20026 * Note that ARP and redirect timers are not 20027 * needed since NUD handles stale entries. 20028 */ 20029 flush_flag = FLUSH_MTU_TIME; 20030 iea.iea_flush_flag = flush_flag; 20031 ire_walk_v6(ire_expire, (char *)(uintptr_t)&iea, 20032 ALL_ZONES, ipst); 20033 } 20034 20035 ipst->ips_ip_ire_arp_time_elapsed += ipst->ips_ip_timer_interval; 20036 ipst->ips_ip_ire_rd_time_elapsed += ipst->ips_ip_timer_interval; 20037 ipst->ips_ip_ire_pmtu_time_elapsed += ipst->ips_ip_timer_interval; 20038 20039 /* 20040 * Hold the lock to serialize timeout calls and prevent 20041 * stale values in ip_ire_expire_id. Otherwise it is possible 20042 * for the timer to fire and a new invocation of this function 20043 * to start before the return value of timeout has been stored 20044 * in ip_ire_expire_id by the current invocation. 20045 */ 20046 mutex_enter(&ipst->ips_ip_trash_timer_lock); 20047 ipst->ips_ip_ire_expire_id = timeout(ip_trash_timer_expire, 20048 (void *)ipst, MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 20049 mutex_exit(&ipst->ips_ip_trash_timer_lock); 20050 } 20051 20052 /* 20053 * Called by the memory allocator subsystem directly, when the system 20054 * is running low on memory. 20055 */ 20056 /* ARGSUSED */ 20057 void 20058 ip_trash_ire_reclaim(void *args) 20059 { 20060 netstack_handle_t nh; 20061 netstack_t *ns; 20062 20063 netstack_next_init(&nh); 20064 while ((ns = netstack_next(&nh)) != NULL) { 20065 ip_trash_ire_reclaim_stack(ns->netstack_ip); 20066 netstack_rele(ns); 20067 } 20068 netstack_next_fini(&nh); 20069 } 20070 20071 static void 20072 ip_trash_ire_reclaim_stack(ip_stack_t *ipst) 20073 { 20074 ire_cache_count_t icc; 20075 ire_cache_reclaim_t icr; 20076 ncc_cache_count_t ncc; 20077 nce_cache_reclaim_t ncr; 20078 uint_t delete_cnt; 20079 /* 20080 * Memory reclaim call back. 20081 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 20082 * Then, with a target of freeing 1/Nth of IRE_CACHE 20083 * entries, determine what fraction to free for 20084 * each category of IRE_CACHE entries giving absolute priority 20085 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 20086 * entry will be freed unless all offlink entries are freed). 20087 */ 20088 icc.icc_total = 0; 20089 icc.icc_unused = 0; 20090 icc.icc_offlink = 0; 20091 icc.icc_pmtu = 0; 20092 icc.icc_onlink = 0; 20093 ire_walk(ire_cache_count, (char *)&icc, ipst); 20094 20095 /* 20096 * Free NCEs for IPv6 like the onlink ires. 20097 */ 20098 ncc.ncc_total = 0; 20099 ncc.ncc_host = 0; 20100 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc, ipst); 20101 20102 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 20103 icc.icc_pmtu + icc.icc_onlink); 20104 delete_cnt = icc.icc_total/ipst->ips_ip_ire_reclaim_fraction; 20105 IP_STAT(ipst, ip_trash_ire_reclaim_calls); 20106 if (delete_cnt == 0) 20107 return; 20108 IP_STAT(ipst, ip_trash_ire_reclaim_success); 20109 /* Always delete all unused offlink entries */ 20110 icr.icr_ipst = ipst; 20111 icr.icr_unused = 1; 20112 if (delete_cnt <= icc.icc_unused) { 20113 /* 20114 * Only need to free unused entries. In other words, 20115 * there are enough unused entries to free to meet our 20116 * target number of freed ire cache entries. 20117 */ 20118 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 20119 ncr.ncr_host = 0; 20120 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 20121 /* 20122 * Only need to free unused entries, plus a fraction of offlink 20123 * entries. It follows from the first if statement that 20124 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 20125 */ 20126 delete_cnt -= icc.icc_unused; 20127 /* Round up # deleted by truncating fraction */ 20128 icr.icr_offlink = icc.icc_offlink / delete_cnt; 20129 icr.icr_pmtu = icr.icr_onlink = 0; 20130 ncr.ncr_host = 0; 20131 } else if (delete_cnt <= 20132 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 20133 /* 20134 * Free all unused and offlink entries, plus a fraction of 20135 * pmtu entries. It follows from the previous if statement 20136 * that icc_pmtu is non-zero, and that 20137 * delete_cnt != icc_unused + icc_offlink. 20138 */ 20139 icr.icr_offlink = 1; 20140 delete_cnt -= icc.icc_unused + icc.icc_offlink; 20141 /* Round up # deleted by truncating fraction */ 20142 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 20143 icr.icr_onlink = 0; 20144 ncr.ncr_host = 0; 20145 } else { 20146 /* 20147 * Free all unused, offlink, and pmtu entries, plus a fraction 20148 * of onlink entries. If we're here, then we know that 20149 * icc_onlink is non-zero, and that 20150 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 20151 */ 20152 icr.icr_offlink = icr.icr_pmtu = 1; 20153 delete_cnt -= icc.icc_unused + icc.icc_offlink + 20154 icc.icc_pmtu; 20155 /* Round up # deleted by truncating fraction */ 20156 icr.icr_onlink = icc.icc_onlink / delete_cnt; 20157 /* Using the same delete fraction as for onlink IREs */ 20158 ncr.ncr_host = ncc.ncc_host / delete_cnt; 20159 } 20160 #ifdef DEBUG 20161 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 20162 "fractions %d/%d/%d/%d\n", 20163 icc.icc_total/ipst->ips_ip_ire_reclaim_fraction, icc.icc_total, 20164 icc.icc_unused, icc.icc_offlink, 20165 icc.icc_pmtu, icc.icc_onlink, 20166 icr.icr_unused, icr.icr_offlink, 20167 icr.icr_pmtu, icr.icr_onlink)); 20168 #endif 20169 ire_walk(ire_cache_reclaim, (char *)&icr, ipst); 20170 if (ncr.ncr_host != 0) 20171 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 20172 (uchar_t *)&ncr, ipst); 20173 #ifdef DEBUG 20174 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 20175 icc.icc_pmtu = 0; icc.icc_onlink = 0; 20176 ire_walk(ire_cache_count, (char *)&icc, ipst); 20177 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 20178 icc.icc_total, icc.icc_unused, icc.icc_offlink, 20179 icc.icc_pmtu, icc.icc_onlink)); 20180 #endif 20181 } 20182 20183 /* 20184 * ip_unbind is called when a copy of an unbind request is received from the 20185 * upper level protocol. We remove this conn from any fanout hash list it is 20186 * on, and zero out the bind information. No reply is expected up above. 20187 */ 20188 mblk_t * 20189 ip_unbind(queue_t *q, mblk_t *mp) 20190 { 20191 conn_t *connp = Q_TO_CONN(q); 20192 20193 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 20194 20195 if (is_system_labeled() && connp->conn_anon_port) { 20196 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 20197 connp->conn_mlp_type, connp->conn_ulp, 20198 ntohs(connp->conn_lport), B_FALSE); 20199 connp->conn_anon_port = 0; 20200 } 20201 connp->conn_mlp_type = mlptSingle; 20202 20203 ipcl_hash_remove(connp); 20204 20205 ASSERT(mp->b_cont == NULL); 20206 /* 20207 * Convert mp into a T_OK_ACK 20208 */ 20209 mp = mi_tpi_ok_ack_alloc(mp); 20210 20211 /* 20212 * should not happen in practice... T_OK_ACK is smaller than the 20213 * original message. 20214 */ 20215 if (mp == NULL) 20216 return (NULL); 20217 20218 /* 20219 * Don't bzero the ports if its TCP since TCP still needs the 20220 * lport to remove it from its own bind hash. TCP will do the 20221 * cleanup. 20222 */ 20223 if (!IPCL_IS_TCP(connp)) 20224 bzero(&connp->u_port, sizeof (connp->u_port)); 20225 20226 return (mp); 20227 } 20228 20229 /* 20230 * Write side put procedure. Outbound data, IOCTLs, responses from 20231 * resolvers, etc, come down through here. 20232 * 20233 * arg2 is always a queue_t *. 20234 * When that queue is an ill_t (i.e. q_next != NULL), then arg must be 20235 * the zoneid. 20236 * When that queue is not an ill_t, then arg must be a conn_t pointer. 20237 */ 20238 void 20239 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 20240 { 20241 ip_output_options(arg, mp, arg2, caller, &zero_info); 20242 } 20243 20244 void 20245 ip_output_options(void *arg, mblk_t *mp, void *arg2, int caller, 20246 ip_opt_info_t *infop) 20247 { 20248 conn_t *connp = NULL; 20249 queue_t *q = (queue_t *)arg2; 20250 ipha_t *ipha; 20251 #define rptr ((uchar_t *)ipha) 20252 ire_t *ire = NULL; 20253 ire_t *sctp_ire = NULL; 20254 uint32_t v_hlen_tos_len; 20255 ipaddr_t dst; 20256 mblk_t *first_mp = NULL; 20257 boolean_t mctl_present; 20258 ipsec_out_t *io; 20259 int match_flags; 20260 ill_t *attach_ill = NULL; 20261 /* Bind to IPIF_NOFAILOVER ill etc. */ 20262 ill_t *xmit_ill = NULL; /* IP_XMIT_IF etc. */ 20263 ipif_t *dst_ipif; 20264 boolean_t multirt_need_resolve = B_FALSE; 20265 mblk_t *copy_mp = NULL; 20266 int err; 20267 zoneid_t zoneid; 20268 int adjust; 20269 uint16_t iplen; 20270 boolean_t need_decref = B_FALSE; 20271 boolean_t ignore_dontroute = B_FALSE; 20272 boolean_t ignore_nexthop = B_FALSE; 20273 boolean_t ip_nexthop = B_FALSE; 20274 ipaddr_t nexthop_addr; 20275 ip_stack_t *ipst; 20276 20277 #ifdef _BIG_ENDIAN 20278 #define V_HLEN (v_hlen_tos_len >> 24) 20279 #else 20280 #define V_HLEN (v_hlen_tos_len & 0xFF) 20281 #endif 20282 20283 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 20284 "ip_wput_start: q %p", q); 20285 20286 /* 20287 * ip_wput fast path 20288 */ 20289 20290 /* is packet from ARP ? */ 20291 if (q->q_next != NULL) { 20292 zoneid = (zoneid_t)(uintptr_t)arg; 20293 goto qnext; 20294 } 20295 20296 connp = (conn_t *)arg; 20297 ASSERT(connp != NULL); 20298 zoneid = connp->conn_zoneid; 20299 ipst = connp->conn_netstack->netstack_ip; 20300 20301 /* is queue flow controlled? */ 20302 if ((q->q_first != NULL || connp->conn_draining) && 20303 (caller == IP_WPUT)) { 20304 ASSERT(!need_decref); 20305 (void) putq(q, mp); 20306 return; 20307 } 20308 20309 /* Multidata transmit? */ 20310 if (DB_TYPE(mp) == M_MULTIDATA) { 20311 /* 20312 * We should never get here, since all Multidata messages 20313 * originating from tcp should have been directed over to 20314 * tcp_multisend() in the first place. 20315 */ 20316 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20317 freemsg(mp); 20318 return; 20319 } else if (DB_TYPE(mp) != M_DATA) 20320 goto notdata; 20321 20322 if (mp->b_flag & MSGHASREF) { 20323 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20324 mp->b_flag &= ~MSGHASREF; 20325 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 20326 need_decref = B_TRUE; 20327 } 20328 ipha = (ipha_t *)mp->b_rptr; 20329 20330 /* is IP header non-aligned or mblk smaller than basic IP header */ 20331 #ifndef SAFETY_BEFORE_SPEED 20332 if (!OK_32PTR(rptr) || 20333 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 20334 goto hdrtoosmall; 20335 #endif 20336 20337 ASSERT(OK_32PTR(ipha)); 20338 20339 /* 20340 * This function assumes that mp points to an IPv4 packet. If it's the 20341 * wrong version, we'll catch it again in ip_output_v6. 20342 * 20343 * Note that this is *only* locally-generated output here, and never 20344 * forwarded data, and that we need to deal only with transports that 20345 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 20346 * label.) 20347 */ 20348 if (is_system_labeled() && 20349 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 20350 !connp->conn_ulp_labeled) { 20351 err = tsol_check_label(BEST_CRED(mp, connp), &mp, &adjust, 20352 connp->conn_mac_exempt, ipst); 20353 ipha = (ipha_t *)mp->b_rptr; 20354 if (err != 0) { 20355 first_mp = mp; 20356 if (err == EINVAL) 20357 goto icmp_parameter_problem; 20358 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 20359 goto discard_pkt; 20360 } 20361 iplen = ntohs(ipha->ipha_length) + adjust; 20362 ipha->ipha_length = htons(iplen); 20363 } 20364 20365 ASSERT(infop != NULL); 20366 20367 if (infop->ip_opt_flags & IP_VERIFY_SRC) { 20368 /* 20369 * IP_PKTINFO ancillary option is present. 20370 * IPCL_ZONEID is used to honor IP_ALLZONES option which 20371 * allows using address of any zone as the source address. 20372 */ 20373 ire = ire_ctable_lookup(ipha->ipha_src, 0, 20374 (IRE_LOCAL|IRE_LOOPBACK), NULL, IPCL_ZONEID(connp), 20375 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 20376 if (ire == NULL) 20377 goto drop_pkt; 20378 ire_refrele(ire); 20379 ire = NULL; 20380 } 20381 20382 /* 20383 * IP_DONTFAILOVER_IF and IP_XMIT_IF have precedence over 20384 * ill index passed in IP_PKTINFO. 20385 */ 20386 if (infop->ip_opt_ill_index != 0 && 20387 connp->conn_xmit_if_ill == NULL && 20388 connp->conn_nofailover_ill == NULL) { 20389 20390 xmit_ill = ill_lookup_on_ifindex( 20391 infop->ip_opt_ill_index, B_FALSE, NULL, NULL, NULL, NULL, 20392 ipst); 20393 20394 if (xmit_ill == NULL || IS_VNI(xmit_ill)) 20395 goto drop_pkt; 20396 /* 20397 * check that there is an ipif belonging 20398 * to our zone. IPCL_ZONEID is not used because 20399 * IP_ALLZONES option is valid only when the ill is 20400 * accessible from all zones i.e has a valid ipif in 20401 * all zones. 20402 */ 20403 if (!ipif_lookup_zoneid_group(xmit_ill, zoneid, 0, NULL)) { 20404 goto drop_pkt; 20405 } 20406 } 20407 20408 /* 20409 * If there is a policy, try to attach an ipsec_out in 20410 * the front. At the end, first_mp either points to a 20411 * M_DATA message or IPSEC_OUT message linked to a 20412 * M_DATA message. We have to do it now as we might 20413 * lose the "conn" if we go through ip_newroute. 20414 */ 20415 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 20416 if (((mp = ipsec_attach_ipsec_out(&mp, connp, NULL, 20417 ipha->ipha_protocol, ipst->ips_netstack)) == NULL)) { 20418 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20419 if (need_decref) 20420 CONN_DEC_REF(connp); 20421 return; 20422 } else { 20423 ASSERT(mp->b_datap->db_type == M_CTL); 20424 first_mp = mp; 20425 mp = mp->b_cont; 20426 mctl_present = B_TRUE; 20427 } 20428 } else { 20429 first_mp = mp; 20430 mctl_present = B_FALSE; 20431 } 20432 20433 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20434 20435 /* is wrong version or IP options present */ 20436 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 20437 goto version_hdrlen_check; 20438 dst = ipha->ipha_dst; 20439 20440 if (connp->conn_nofailover_ill != NULL) { 20441 attach_ill = conn_get_held_ill(connp, 20442 &connp->conn_nofailover_ill, &err); 20443 if (err == ILL_LOOKUP_FAILED) { 20444 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20445 if (need_decref) 20446 CONN_DEC_REF(connp); 20447 freemsg(first_mp); 20448 return; 20449 } 20450 } 20451 20452 20453 /* is packet multicast? */ 20454 if (CLASSD(dst)) 20455 goto multicast; 20456 20457 /* 20458 * If xmit_ill is set above due to index passed in ip_pkt_info. It 20459 * takes precedence over conn_dontroute and conn_nexthop_set 20460 */ 20461 if (xmit_ill != NULL) { 20462 goto send_from_ill; 20463 } 20464 20465 if ((connp->conn_dontroute) || (connp->conn_xmit_if_ill != NULL) || 20466 (connp->conn_nexthop_set)) { 20467 /* 20468 * If the destination is a broadcast or a loopback 20469 * address, SO_DONTROUTE, IP_XMIT_IF and IP_NEXTHOP go 20470 * through the standard path. But in the case of local 20471 * destination only SO_DONTROUTE and IP_NEXTHOP go through 20472 * the standard path not IP_XMIT_IF. 20473 */ 20474 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20475 if ((ire == NULL) || ((ire->ire_type != IRE_BROADCAST) && 20476 (ire->ire_type != IRE_LOOPBACK))) { 20477 if ((connp->conn_dontroute || 20478 connp->conn_nexthop_set) && (ire != NULL) && 20479 (ire->ire_type == IRE_LOCAL)) 20480 goto standard_path; 20481 20482 if (ire != NULL) { 20483 ire_refrele(ire); 20484 /* No more access to ire */ 20485 ire = NULL; 20486 } 20487 /* 20488 * bypass routing checks and go directly to 20489 * interface. 20490 */ 20491 if (connp->conn_dontroute) { 20492 goto dontroute; 20493 } else if (connp->conn_nexthop_set) { 20494 ip_nexthop = B_TRUE; 20495 nexthop_addr = connp->conn_nexthop_v4; 20496 goto send_from_ill; 20497 } 20498 20499 /* 20500 * If IP_XMIT_IF socket option is set, 20501 * then we allow unicast and multicast 20502 * packets to go through the ill. It is 20503 * quite possible that the destination 20504 * is not in the ire cache table and we 20505 * do not want to go to ip_newroute() 20506 * instead we call ip_newroute_ipif. 20507 */ 20508 xmit_ill = conn_get_held_ill(connp, 20509 &connp->conn_xmit_if_ill, &err); 20510 if (err == ILL_LOOKUP_FAILED) { 20511 BUMP_MIB(&ipst->ips_ip_mib, 20512 ipIfStatsOutDiscards); 20513 if (attach_ill != NULL) 20514 ill_refrele(attach_ill); 20515 if (need_decref) 20516 CONN_DEC_REF(connp); 20517 freemsg(first_mp); 20518 return; 20519 } 20520 goto send_from_ill; 20521 } 20522 standard_path: 20523 /* Must be a broadcast, a loopback or a local ire */ 20524 if (ire != NULL) { 20525 ire_refrele(ire); 20526 /* No more access to ire */ 20527 ire = NULL; 20528 } 20529 } 20530 20531 if (attach_ill != NULL) 20532 goto send_from_ill; 20533 20534 /* 20535 * We cache IRE_CACHEs to avoid lookups. We don't do 20536 * this for the tcp global queue and listen end point 20537 * as it does not really have a real destination to 20538 * talk to. This is also true for SCTP. 20539 */ 20540 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 20541 !connp->conn_fully_bound) { 20542 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20543 if (ire == NULL) 20544 goto noirefound; 20545 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20546 "ip_wput_end: q %p (%S)", q, "end"); 20547 20548 /* 20549 * Check if the ire has the RTF_MULTIRT flag, inherited 20550 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20551 */ 20552 if (ire->ire_flags & RTF_MULTIRT) { 20553 20554 /* 20555 * Force the TTL of multirouted packets if required. 20556 * The TTL of such packets is bounded by the 20557 * ip_multirt_ttl ndd variable. 20558 */ 20559 if ((ipst->ips_ip_multirt_ttl > 0) && 20560 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20561 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20562 "(was %d), dst 0x%08x\n", 20563 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20564 ntohl(ire->ire_addr))); 20565 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20566 } 20567 /* 20568 * We look at this point if there are pending 20569 * unresolved routes. ire_multirt_resolvable() 20570 * checks in O(n) that all IRE_OFFSUBNET ire 20571 * entries for the packet's destination and 20572 * flagged RTF_MULTIRT are currently resolved. 20573 * If some remain unresolved, we make a copy 20574 * of the current message. It will be used 20575 * to initiate additional route resolutions. 20576 */ 20577 multirt_need_resolve = 20578 ire_multirt_need_resolve(ire->ire_addr, 20579 MBLK_GETLABEL(first_mp), ipst); 20580 ip2dbg(("ip_wput[TCP]: ire %p, " 20581 "multirt_need_resolve %d, first_mp %p\n", 20582 (void *)ire, multirt_need_resolve, 20583 (void *)first_mp)); 20584 if (multirt_need_resolve) { 20585 copy_mp = copymsg(first_mp); 20586 if (copy_mp != NULL) { 20587 MULTIRT_DEBUG_TAG(copy_mp); 20588 } 20589 } 20590 } 20591 20592 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20593 20594 /* 20595 * Try to resolve another multiroute if 20596 * ire_multirt_need_resolve() deemed it necessary. 20597 */ 20598 if (copy_mp != NULL) { 20599 ip_newroute(q, copy_mp, dst, NULL, connp, zoneid, ipst); 20600 } 20601 if (need_decref) 20602 CONN_DEC_REF(connp); 20603 return; 20604 } 20605 20606 /* 20607 * Access to conn_ire_cache. (protected by conn_lock) 20608 * 20609 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 20610 * the ire bucket lock here to check for CONDEMNED as it is okay to 20611 * send a packet or two with the IRE_CACHE that is going away. 20612 * Access to the ire requires an ire refhold on the ire prior to 20613 * its use since an interface unplumb thread may delete the cached 20614 * ire and release the refhold at any time. 20615 * 20616 * Caching an ire in the conn_ire_cache 20617 * 20618 * o Caching an ire pointer in the conn requires a strict check for 20619 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 20620 * ires before cleaning up the conns. So the caching of an ire pointer 20621 * in the conn is done after making sure under the bucket lock that the 20622 * ire has not yet been marked CONDEMNED. Otherwise we will end up 20623 * caching an ire after the unplumb thread has cleaned up the conn. 20624 * If the conn does not send a packet subsequently the unplumb thread 20625 * will be hanging waiting for the ire count to drop to zero. 20626 * 20627 * o We also need to atomically test for a null conn_ire_cache and 20628 * set the conn_ire_cache under the the protection of the conn_lock 20629 * to avoid races among concurrent threads trying to simultaneously 20630 * cache an ire in the conn_ire_cache. 20631 */ 20632 mutex_enter(&connp->conn_lock); 20633 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 20634 20635 if (ire != NULL && ire->ire_addr == dst && 20636 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20637 20638 IRE_REFHOLD(ire); 20639 mutex_exit(&connp->conn_lock); 20640 20641 } else { 20642 boolean_t cached = B_FALSE; 20643 connp->conn_ire_cache = NULL; 20644 mutex_exit(&connp->conn_lock); 20645 /* Release the old ire */ 20646 if (ire != NULL && sctp_ire == NULL) 20647 IRE_REFRELE_NOTR(ire); 20648 20649 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20650 if (ire == NULL) 20651 goto noirefound; 20652 IRE_REFHOLD_NOTR(ire); 20653 20654 mutex_enter(&connp->conn_lock); 20655 if (CONN_CACHE_IRE(connp) && connp->conn_ire_cache == NULL) { 20656 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 20657 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20658 if (connp->conn_ulp == IPPROTO_TCP) 20659 TCP_CHECK_IREINFO(connp->conn_tcp, ire); 20660 connp->conn_ire_cache = ire; 20661 cached = B_TRUE; 20662 } 20663 rw_exit(&ire->ire_bucket->irb_lock); 20664 } 20665 mutex_exit(&connp->conn_lock); 20666 20667 /* 20668 * We can continue to use the ire but since it was 20669 * not cached, we should drop the extra reference. 20670 */ 20671 if (!cached) 20672 IRE_REFRELE_NOTR(ire); 20673 } 20674 20675 20676 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20677 "ip_wput_end: q %p (%S)", q, "end"); 20678 20679 /* 20680 * Check if the ire has the RTF_MULTIRT flag, inherited 20681 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20682 */ 20683 if (ire->ire_flags & RTF_MULTIRT) { 20684 20685 /* 20686 * Force the TTL of multirouted packets if required. 20687 * The TTL of such packets is bounded by the 20688 * ip_multirt_ttl ndd variable. 20689 */ 20690 if ((ipst->ips_ip_multirt_ttl > 0) && 20691 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20692 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20693 "(was %d), dst 0x%08x\n", 20694 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20695 ntohl(ire->ire_addr))); 20696 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20697 } 20698 20699 /* 20700 * At this point, we check to see if there are any pending 20701 * unresolved routes. ire_multirt_resolvable() 20702 * checks in O(n) that all IRE_OFFSUBNET ire 20703 * entries for the packet's destination and 20704 * flagged RTF_MULTIRT are currently resolved. 20705 * If some remain unresolved, we make a copy 20706 * of the current message. It will be used 20707 * to initiate additional route resolutions. 20708 */ 20709 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 20710 MBLK_GETLABEL(first_mp), ipst); 20711 ip2dbg(("ip_wput[not TCP]: ire %p, " 20712 "multirt_need_resolve %d, first_mp %p\n", 20713 (void *)ire, multirt_need_resolve, (void *)first_mp)); 20714 if (multirt_need_resolve) { 20715 copy_mp = copymsg(first_mp); 20716 if (copy_mp != NULL) { 20717 MULTIRT_DEBUG_TAG(copy_mp); 20718 } 20719 } 20720 } 20721 20722 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20723 20724 /* 20725 * Try to resolve another multiroute if 20726 * ire_multirt_resolvable() deemed it necessary 20727 */ 20728 if (copy_mp != NULL) { 20729 ip_newroute(q, copy_mp, dst, NULL, connp, zoneid, ipst); 20730 } 20731 if (need_decref) 20732 CONN_DEC_REF(connp); 20733 return; 20734 20735 qnext: 20736 /* 20737 * Upper Level Protocols pass down complete IP datagrams 20738 * as M_DATA messages. Everything else is a sideshow. 20739 * 20740 * 1) We could be re-entering ip_wput because of ip_neworute 20741 * in which case we could have a IPSEC_OUT message. We 20742 * need to pass through ip_wput like other datagrams and 20743 * hence cannot branch to ip_wput_nondata. 20744 * 20745 * 2) ARP, AH, ESP, and other clients who are on the module 20746 * instance of IP stream, give us something to deal with. 20747 * We will handle AH and ESP here and rest in ip_wput_nondata. 20748 * 20749 * 3) ICMP replies also could come here. 20750 */ 20751 ipst = ILLQ_TO_IPST(q); 20752 20753 if (DB_TYPE(mp) != M_DATA) { 20754 notdata: 20755 if (DB_TYPE(mp) == M_CTL) { 20756 /* 20757 * M_CTL messages are used by ARP, AH and ESP to 20758 * communicate with IP. We deal with IPSEC_IN and 20759 * IPSEC_OUT here. ip_wput_nondata handles other 20760 * cases. 20761 */ 20762 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 20763 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 20764 first_mp = mp->b_cont; 20765 first_mp->b_flag &= ~MSGHASREF; 20766 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20767 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 20768 CONN_DEC_REF(connp); 20769 connp = NULL; 20770 } 20771 if (ii->ipsec_info_type == IPSEC_IN) { 20772 /* 20773 * Either this message goes back to 20774 * IPSEC for further processing or to 20775 * ULP after policy checks. 20776 */ 20777 ip_fanout_proto_again(mp, NULL, NULL, NULL); 20778 return; 20779 } else if (ii->ipsec_info_type == IPSEC_OUT) { 20780 io = (ipsec_out_t *)ii; 20781 if (io->ipsec_out_proc_begin) { 20782 /* 20783 * IPSEC processing has already started. 20784 * Complete it. 20785 * IPQoS notes: We don't care what is 20786 * in ipsec_out_ill_index since this 20787 * won't be processed for IPQoS policies 20788 * in ipsec_out_process. 20789 */ 20790 ipsec_out_process(q, mp, NULL, 20791 io->ipsec_out_ill_index); 20792 return; 20793 } else { 20794 connp = (q->q_next != NULL) ? 20795 NULL : Q_TO_CONN(q); 20796 first_mp = mp; 20797 mp = mp->b_cont; 20798 mctl_present = B_TRUE; 20799 } 20800 zoneid = io->ipsec_out_zoneid; 20801 ASSERT(zoneid != ALL_ZONES); 20802 } else if (ii->ipsec_info_type == IPSEC_CTL) { 20803 /* 20804 * It's an IPsec control message requesting 20805 * an SADB update to be sent to the IPsec 20806 * hardware acceleration capable ills. 20807 */ 20808 ipsec_ctl_t *ipsec_ctl = 20809 (ipsec_ctl_t *)mp->b_rptr; 20810 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 20811 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 20812 mblk_t *cmp = mp->b_cont; 20813 20814 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 20815 ASSERT(cmp != NULL); 20816 20817 freeb(mp); 20818 ill_ipsec_capab_send_all(satype, cmp, sa, 20819 ipst->ips_netstack); 20820 return; 20821 } else { 20822 /* 20823 * This must be ARP or special TSOL signaling. 20824 */ 20825 ip_wput_nondata(NULL, q, mp, NULL); 20826 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20827 "ip_wput_end: q %p (%S)", q, "nondata"); 20828 return; 20829 } 20830 } else { 20831 /* 20832 * This must be non-(ARP/AH/ESP) messages. 20833 */ 20834 ASSERT(!need_decref); 20835 ip_wput_nondata(NULL, q, mp, NULL); 20836 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20837 "ip_wput_end: q %p (%S)", q, "nondata"); 20838 return; 20839 } 20840 } else { 20841 first_mp = mp; 20842 mctl_present = B_FALSE; 20843 } 20844 20845 ASSERT(first_mp != NULL); 20846 /* 20847 * ICMP echo replies attach an ipsec_out and set ipsec_out_attach_if 20848 * to make sure that this packet goes out on the same interface it 20849 * came in. We handle that here. 20850 */ 20851 if (mctl_present) { 20852 uint_t ifindex; 20853 20854 io = (ipsec_out_t *)first_mp->b_rptr; 20855 if (io->ipsec_out_attach_if || 20856 io->ipsec_out_xmit_if || 20857 io->ipsec_out_ip_nexthop) { 20858 ill_t *ill; 20859 20860 /* 20861 * We may have lost the conn context if we are 20862 * coming here from ip_newroute(). Copy the 20863 * nexthop information. 20864 */ 20865 if (io->ipsec_out_ip_nexthop) { 20866 ip_nexthop = B_TRUE; 20867 nexthop_addr = io->ipsec_out_nexthop_addr; 20868 20869 ipha = (ipha_t *)mp->b_rptr; 20870 dst = ipha->ipha_dst; 20871 goto send_from_ill; 20872 } else { 20873 ASSERT(io->ipsec_out_ill_index != 0); 20874 ifindex = io->ipsec_out_ill_index; 20875 ill = ill_lookup_on_ifindex(ifindex, B_FALSE, 20876 NULL, NULL, NULL, NULL, ipst); 20877 /* 20878 * ipsec_out_xmit_if bit is used to tell 20879 * ip_wput to use the ill to send outgoing data 20880 * as we have no conn when data comes from ICMP 20881 * error msg routines. Currently this feature is 20882 * only used by ip_mrtun_forward routine. 20883 */ 20884 if (io->ipsec_out_xmit_if) { 20885 xmit_ill = ill; 20886 if (xmit_ill == NULL) { 20887 ip1dbg(("ip_output:bad ifindex " 20888 "for xmit_ill %d\n", 20889 ifindex)); 20890 freemsg(first_mp); 20891 BUMP_MIB(&ipst->ips_ip_mib, 20892 ipIfStatsOutDiscards); 20893 ASSERT(!need_decref); 20894 return; 20895 } 20896 /* Free up the ipsec_out_t mblk */ 20897 ASSERT(first_mp->b_cont == mp); 20898 first_mp->b_cont = NULL; 20899 freeb(first_mp); 20900 /* Just send the IP header+ICMP+data */ 20901 first_mp = mp; 20902 ipha = (ipha_t *)mp->b_rptr; 20903 dst = ipha->ipha_dst; 20904 goto send_from_ill; 20905 } else { 20906 attach_ill = ill; 20907 } 20908 20909 if (attach_ill == NULL) { 20910 ASSERT(xmit_ill == NULL); 20911 ip1dbg(("ip_output: bad ifindex for " 20912 "(BIND TO IPIF_NOFAILOVER) %d\n", 20913 ifindex)); 20914 freemsg(first_mp); 20915 BUMP_MIB(&ipst->ips_ip_mib, 20916 ipIfStatsOutDiscards); 20917 ASSERT(!need_decref); 20918 return; 20919 } 20920 } 20921 } 20922 } 20923 20924 ASSERT(xmit_ill == NULL); 20925 20926 /* We have a complete IP datagram heading outbound. */ 20927 ipha = (ipha_t *)mp->b_rptr; 20928 20929 #ifndef SPEED_BEFORE_SAFETY 20930 /* 20931 * Make sure we have a full-word aligned message and that at least 20932 * a simple IP header is accessible in the first message. If not, 20933 * try a pullup. 20934 */ 20935 if (!OK_32PTR(rptr) || 20936 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) { 20937 hdrtoosmall: 20938 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 20939 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20940 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 20941 if (first_mp == NULL) 20942 first_mp = mp; 20943 goto discard_pkt; 20944 } 20945 20946 /* This function assumes that mp points to an IPv4 packet. */ 20947 if (is_system_labeled() && q->q_next == NULL && 20948 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 20949 !connp->conn_ulp_labeled) { 20950 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 20951 &adjust, connp->conn_mac_exempt, ipst); 20952 ipha = (ipha_t *)mp->b_rptr; 20953 if (first_mp != NULL) 20954 first_mp->b_cont = mp; 20955 if (err != 0) { 20956 if (first_mp == NULL) 20957 first_mp = mp; 20958 if (err == EINVAL) 20959 goto icmp_parameter_problem; 20960 ip2dbg(("ip_wput: label check failed (%d)\n", 20961 err)); 20962 goto discard_pkt; 20963 } 20964 iplen = ntohs(ipha->ipha_length) + adjust; 20965 ipha->ipha_length = htons(iplen); 20966 } 20967 20968 ipha = (ipha_t *)mp->b_rptr; 20969 if (first_mp == NULL) { 20970 ASSERT(attach_ill == NULL && xmit_ill == NULL); 20971 /* 20972 * If we got here because of "goto hdrtoosmall" 20973 * We need to attach a IPSEC_OUT. 20974 */ 20975 if (connp->conn_out_enforce_policy) { 20976 if (((mp = ipsec_attach_ipsec_out(&mp, connp, 20977 NULL, ipha->ipha_protocol, 20978 ipst->ips_netstack)) == NULL)) { 20979 BUMP_MIB(&ipst->ips_ip_mib, 20980 ipIfStatsOutDiscards); 20981 if (need_decref) 20982 CONN_DEC_REF(connp); 20983 return; 20984 } else { 20985 ASSERT(mp->b_datap->db_type == M_CTL); 20986 first_mp = mp; 20987 mp = mp->b_cont; 20988 mctl_present = B_TRUE; 20989 } 20990 } else { 20991 first_mp = mp; 20992 mctl_present = B_FALSE; 20993 } 20994 } 20995 } 20996 #endif 20997 20998 /* Most of the code below is written for speed, not readability */ 20999 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21000 21001 /* 21002 * If ip_newroute() fails, we're going to need a full 21003 * header for the icmp wraparound. 21004 */ 21005 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 21006 uint_t v_hlen; 21007 version_hdrlen_check: 21008 ASSERT(first_mp != NULL); 21009 v_hlen = V_HLEN; 21010 /* 21011 * siphon off IPv6 packets coming down from transport 21012 * layer modules here. 21013 * Note: high-order bit carries NUD reachability confirmation 21014 */ 21015 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 21016 /* 21017 * XXX implement a IPv4 and IPv6 packet counter per 21018 * conn and switch when ratio exceeds e.g. 10:1 21019 */ 21020 #ifdef notyet 21021 if (q->q_next == NULL) /* Avoid ill queue */ 21022 ip_setqinfo(RD(q), B_TRUE, B_TRUE, ipst); 21023 #endif 21024 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutWrongIPVersion); 21025 ASSERT(xmit_ill == NULL); 21026 if (attach_ill != NULL) 21027 ill_refrele(attach_ill); 21028 if (need_decref) 21029 mp->b_flag |= MSGHASREF; 21030 (void) ip_output_v6(arg, first_mp, arg2, caller); 21031 return; 21032 } 21033 21034 if ((v_hlen >> 4) != IP_VERSION) { 21035 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21036 "ip_wput_end: q %p (%S)", q, "badvers"); 21037 goto discard_pkt; 21038 } 21039 /* 21040 * Is the header length at least 20 bytes? 21041 * 21042 * Are there enough bytes accessible in the header? If 21043 * not, try a pullup. 21044 */ 21045 v_hlen &= 0xF; 21046 v_hlen <<= 2; 21047 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 21048 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21049 "ip_wput_end: q %p (%S)", q, "badlen"); 21050 goto discard_pkt; 21051 } 21052 if (v_hlen > (mp->b_wptr - rptr)) { 21053 if (!pullupmsg(mp, v_hlen)) { 21054 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21055 "ip_wput_end: q %p (%S)", q, "badpullup2"); 21056 goto discard_pkt; 21057 } 21058 ipha = (ipha_t *)mp->b_rptr; 21059 } 21060 /* 21061 * Move first entry from any source route into ipha_dst and 21062 * verify the options 21063 */ 21064 if (ip_wput_options(q, first_mp, ipha, mctl_present, 21065 zoneid, ipst)) { 21066 ASSERT(xmit_ill == NULL); 21067 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21068 if (attach_ill != NULL) 21069 ill_refrele(attach_ill); 21070 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21071 "ip_wput_end: q %p (%S)", q, "badopts"); 21072 if (need_decref) 21073 CONN_DEC_REF(connp); 21074 return; 21075 } 21076 } 21077 dst = ipha->ipha_dst; 21078 21079 /* 21080 * Try to get an IRE_CACHE for the destination address. If we can't, 21081 * we have to run the packet through ip_newroute which will take 21082 * the appropriate action to arrange for an IRE_CACHE, such as querying 21083 * a resolver, or assigning a default gateway, etc. 21084 */ 21085 if (CLASSD(dst)) { 21086 ipif_t *ipif; 21087 uint32_t setsrc = 0; 21088 21089 multicast: 21090 ASSERT(first_mp != NULL); 21091 ip2dbg(("ip_wput: CLASSD\n")); 21092 if (connp == NULL) { 21093 /* 21094 * Use the first good ipif on the ill. 21095 * XXX Should this ever happen? (Appears 21096 * to show up with just ppp and no ethernet due 21097 * to in.rdisc.) 21098 * However, ire_send should be able to 21099 * call ip_wput_ire directly. 21100 * 21101 * XXX Also, this can happen for ICMP and other packets 21102 * with multicast source addresses. Perhaps we should 21103 * fix things so that we drop the packet in question, 21104 * but for now, just run with it. 21105 */ 21106 ill_t *ill = (ill_t *)q->q_ptr; 21107 21108 /* 21109 * Don't honor attach_if for this case. If ill 21110 * is part of the group, ipif could belong to 21111 * any ill and we cannot maintain attach_ill 21112 * and ipif_ill same anymore and the assert 21113 * below would fail. 21114 */ 21115 if (mctl_present && io->ipsec_out_attach_if) { 21116 io->ipsec_out_ill_index = 0; 21117 io->ipsec_out_attach_if = B_FALSE; 21118 ASSERT(attach_ill != NULL); 21119 ill_refrele(attach_ill); 21120 attach_ill = NULL; 21121 } 21122 21123 ASSERT(attach_ill == NULL); 21124 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 21125 if (ipif == NULL) { 21126 if (need_decref) 21127 CONN_DEC_REF(connp); 21128 freemsg(first_mp); 21129 return; 21130 } 21131 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 21132 ntohl(dst), ill->ill_name)); 21133 } else { 21134 /* 21135 * The order of precedence is IP_XMIT_IF, IP_PKTINFO 21136 * and IP_MULTICAST_IF. 21137 * Block comment above this function explains the 21138 * locking mechanism used here 21139 */ 21140 if (xmit_ill == NULL) { 21141 xmit_ill = conn_get_held_ill(connp, 21142 &connp->conn_xmit_if_ill, &err); 21143 if (err == ILL_LOOKUP_FAILED) { 21144 ip1dbg(("ip_wput: No ill for " 21145 "IP_XMIT_IF\n")); 21146 BUMP_MIB(&ipst->ips_ip_mib, 21147 ipIfStatsOutNoRoutes); 21148 goto drop_pkt; 21149 } 21150 } 21151 21152 if (xmit_ill == NULL) { 21153 ipif = conn_get_held_ipif(connp, 21154 &connp->conn_multicast_ipif, &err); 21155 if (err == IPIF_LOOKUP_FAILED) { 21156 ip1dbg(("ip_wput: No ipif for " 21157 "multicast\n")); 21158 BUMP_MIB(&ipst->ips_ip_mib, 21159 ipIfStatsOutNoRoutes); 21160 goto drop_pkt; 21161 } 21162 } 21163 if (xmit_ill != NULL) { 21164 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21165 if (ipif == NULL) { 21166 ip1dbg(("ip_wput: No ipif for " 21167 "IP_XMIT_IF\n")); 21168 BUMP_MIB(&ipst->ips_ip_mib, 21169 ipIfStatsOutNoRoutes); 21170 goto drop_pkt; 21171 } 21172 } else if (ipif == NULL || ipif->ipif_isv6) { 21173 /* 21174 * We must do this ipif determination here 21175 * else we could pass through ip_newroute 21176 * and come back here without the conn context. 21177 * 21178 * Note: we do late binding i.e. we bind to 21179 * the interface when the first packet is sent. 21180 * For performance reasons we do not rebind on 21181 * each packet but keep the binding until the 21182 * next IP_MULTICAST_IF option. 21183 * 21184 * conn_multicast_{ipif,ill} are shared between 21185 * IPv4 and IPv6 and AF_INET6 sockets can 21186 * send both IPv4 and IPv6 packets. Hence 21187 * we have to check that "isv6" matches above. 21188 */ 21189 if (ipif != NULL) 21190 ipif_refrele(ipif); 21191 ipif = ipif_lookup_group(dst, zoneid, ipst); 21192 if (ipif == NULL) { 21193 ip1dbg(("ip_wput: No ipif for " 21194 "multicast\n")); 21195 BUMP_MIB(&ipst->ips_ip_mib, 21196 ipIfStatsOutNoRoutes); 21197 goto drop_pkt; 21198 } 21199 err = conn_set_held_ipif(connp, 21200 &connp->conn_multicast_ipif, ipif); 21201 if (err == IPIF_LOOKUP_FAILED) { 21202 ipif_refrele(ipif); 21203 ip1dbg(("ip_wput: No ipif for " 21204 "multicast\n")); 21205 BUMP_MIB(&ipst->ips_ip_mib, 21206 ipIfStatsOutNoRoutes); 21207 goto drop_pkt; 21208 } 21209 } 21210 } 21211 ASSERT(!ipif->ipif_isv6); 21212 /* 21213 * As we may lose the conn by the time we reach ip_wput_ire, 21214 * we copy conn_multicast_loop and conn_dontroute on to an 21215 * ipsec_out. In case if this datagram goes out secure, 21216 * we need the ill_index also. Copy that also into the 21217 * ipsec_out. 21218 */ 21219 if (mctl_present) { 21220 io = (ipsec_out_t *)first_mp->b_rptr; 21221 ASSERT(first_mp->b_datap->db_type == M_CTL); 21222 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21223 } else { 21224 ASSERT(mp == first_mp); 21225 if ((first_mp = allocb(sizeof (ipsec_info_t), 21226 BPRI_HI)) == NULL) { 21227 ipif_refrele(ipif); 21228 first_mp = mp; 21229 goto discard_pkt; 21230 } 21231 first_mp->b_datap->db_type = M_CTL; 21232 first_mp->b_wptr += sizeof (ipsec_info_t); 21233 /* ipsec_out_secure is B_FALSE now */ 21234 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 21235 io = (ipsec_out_t *)first_mp->b_rptr; 21236 io->ipsec_out_type = IPSEC_OUT; 21237 io->ipsec_out_len = sizeof (ipsec_out_t); 21238 io->ipsec_out_use_global_policy = B_TRUE; 21239 io->ipsec_out_ns = ipst->ips_netstack; 21240 first_mp->b_cont = mp; 21241 mctl_present = B_TRUE; 21242 } 21243 if (attach_ill != NULL) { 21244 ASSERT(attach_ill == ipif->ipif_ill); 21245 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21246 21247 /* 21248 * Check if we need an ire that will not be 21249 * looked up by anybody else i.e. HIDDEN. 21250 */ 21251 if (ill_is_probeonly(attach_ill)) { 21252 match_flags |= MATCH_IRE_MARK_HIDDEN; 21253 } 21254 io->ipsec_out_ill_index = 21255 attach_ill->ill_phyint->phyint_ifindex; 21256 io->ipsec_out_attach_if = B_TRUE; 21257 } else { 21258 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 21259 io->ipsec_out_ill_index = 21260 ipif->ipif_ill->ill_phyint->phyint_ifindex; 21261 } 21262 if (connp != NULL) { 21263 io->ipsec_out_multicast_loop = 21264 connp->conn_multicast_loop; 21265 io->ipsec_out_dontroute = connp->conn_dontroute; 21266 io->ipsec_out_zoneid = connp->conn_zoneid; 21267 } 21268 /* 21269 * If the application uses IP_MULTICAST_IF with 21270 * different logical addresses of the same ILL, we 21271 * need to make sure that the soruce address of 21272 * the packet matches the logical IP address used 21273 * in the option. We do it by initializing ipha_src 21274 * here. This should keep IPSEC also happy as 21275 * when we return from IPSEC processing, we don't 21276 * have to worry about getting the right address on 21277 * the packet. Thus it is sufficient to look for 21278 * IRE_CACHE using MATCH_IRE_ILL rathen than 21279 * MATCH_IRE_IPIF. 21280 * 21281 * NOTE : We need to do it for non-secure case also as 21282 * this might go out secure if there is a global policy 21283 * match in ip_wput_ire. For bind to IPIF_NOFAILOVER 21284 * address, the source should be initialized already and 21285 * hence we won't be initializing here. 21286 * 21287 * As we do not have the ire yet, it is possible that 21288 * we set the source address here and then later discover 21289 * that the ire implies the source address to be assigned 21290 * through the RTF_SETSRC flag. 21291 * In that case, the setsrc variable will remind us 21292 * that overwritting the source address by the one 21293 * of the RTF_SETSRC-flagged ire is allowed. 21294 */ 21295 if (ipha->ipha_src == INADDR_ANY && 21296 (connp == NULL || !connp->conn_unspec_src)) { 21297 ipha->ipha_src = ipif->ipif_src_addr; 21298 setsrc = RTF_SETSRC; 21299 } 21300 /* 21301 * Find an IRE which matches the destination and the outgoing 21302 * queue (i.e. the outgoing interface.) 21303 * For loopback use a unicast IP address for 21304 * the ire lookup. 21305 */ 21306 if (IS_LOOPBACK(ipif->ipif_ill)) 21307 dst = ipif->ipif_lcl_addr; 21308 21309 /* 21310 * If IP_XMIT_IF is set, we branch out to ip_newroute_ipif. 21311 * We don't need to lookup ire in ctable as the packet 21312 * needs to be sent to the destination through the specified 21313 * ill irrespective of ires in the cache table. 21314 */ 21315 ire = NULL; 21316 if (xmit_ill == NULL) { 21317 ire = ire_ctable_lookup(dst, 0, 0, ipif, 21318 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21319 } 21320 21321 /* 21322 * refrele attach_ill as its not needed anymore. 21323 */ 21324 if (attach_ill != NULL) { 21325 ill_refrele(attach_ill); 21326 attach_ill = NULL; 21327 } 21328 21329 if (ire == NULL) { 21330 /* 21331 * Multicast loopback and multicast forwarding is 21332 * done in ip_wput_ire. 21333 * 21334 * Mark this packet to make it be delivered to 21335 * ip_wput_ire after the new ire has been 21336 * created. 21337 * 21338 * The call to ip_newroute_ipif takes into account 21339 * the setsrc reminder. In any case, we take care 21340 * of the RTF_MULTIRT flag. 21341 */ 21342 mp->b_prev = mp->b_next = NULL; 21343 if (xmit_ill == NULL || 21344 xmit_ill->ill_ipif_up_count > 0) { 21345 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 21346 setsrc | RTF_MULTIRT, zoneid, infop); 21347 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21348 "ip_wput_end: q %p (%S)", q, "noire"); 21349 } else { 21350 freemsg(first_mp); 21351 } 21352 ipif_refrele(ipif); 21353 if (xmit_ill != NULL) 21354 ill_refrele(xmit_ill); 21355 if (need_decref) 21356 CONN_DEC_REF(connp); 21357 return; 21358 } 21359 21360 ipif_refrele(ipif); 21361 ipif = NULL; 21362 ASSERT(xmit_ill == NULL); 21363 21364 /* 21365 * Honor the RTF_SETSRC flag for multicast packets, 21366 * if allowed by the setsrc reminder. 21367 */ 21368 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 21369 ipha->ipha_src = ire->ire_src_addr; 21370 } 21371 21372 /* 21373 * Unconditionally force the TTL to 1 for 21374 * multirouted multicast packets: 21375 * multirouted multicast should not cross 21376 * multicast routers. 21377 */ 21378 if (ire->ire_flags & RTF_MULTIRT) { 21379 if (ipha->ipha_ttl > 1) { 21380 ip2dbg(("ip_wput: forcing multicast " 21381 "multirt TTL to 1 (was %d), dst 0x%08x\n", 21382 ipha->ipha_ttl, ntohl(ire->ire_addr))); 21383 ipha->ipha_ttl = 1; 21384 } 21385 } 21386 } else { 21387 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 21388 if ((ire != NULL) && (ire->ire_type & 21389 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 21390 ignore_dontroute = B_TRUE; 21391 ignore_nexthop = B_TRUE; 21392 } 21393 if (ire != NULL) { 21394 ire_refrele(ire); 21395 ire = NULL; 21396 } 21397 /* 21398 * Guard against coming in from arp in which case conn is NULL. 21399 * Also guard against non M_DATA with dontroute set but 21400 * destined to local, loopback or broadcast addresses. 21401 */ 21402 if (connp != NULL && connp->conn_dontroute && 21403 !ignore_dontroute) { 21404 dontroute: 21405 /* 21406 * Set TTL to 1 if SO_DONTROUTE is set to prevent 21407 * routing protocols from seeing false direct 21408 * connectivity. 21409 */ 21410 ipha->ipha_ttl = 1; 21411 /* 21412 * If IP_XMIT_IF is also set (conn_xmit_if_ill != NULL) 21413 * along with SO_DONTROUTE, higher precedence is 21414 * given to IP_XMIT_IF and the IP_XMIT_IF ipif is used. 21415 */ 21416 if (connp->conn_xmit_if_ill == NULL) { 21417 /* If suitable ipif not found, drop packet */ 21418 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid, 21419 ipst); 21420 if (dst_ipif == NULL) { 21421 ip1dbg(("ip_wput: no route for " 21422 "dst using SO_DONTROUTE\n")); 21423 BUMP_MIB(&ipst->ips_ip_mib, 21424 ipIfStatsOutNoRoutes); 21425 mp->b_prev = mp->b_next = NULL; 21426 if (first_mp == NULL) 21427 first_mp = mp; 21428 goto drop_pkt; 21429 } else { 21430 /* 21431 * If suitable ipif has been found, set 21432 * xmit_ill to the corresponding 21433 * ipif_ill because we'll be following 21434 * the IP_XMIT_IF logic. 21435 */ 21436 ASSERT(xmit_ill == NULL); 21437 xmit_ill = dst_ipif->ipif_ill; 21438 mutex_enter(&xmit_ill->ill_lock); 21439 if (!ILL_CAN_LOOKUP(xmit_ill)) { 21440 mutex_exit(&xmit_ill->ill_lock); 21441 xmit_ill = NULL; 21442 ipif_refrele(dst_ipif); 21443 ip1dbg(("ip_wput: no route for" 21444 " dst using" 21445 " SO_DONTROUTE\n")); 21446 BUMP_MIB(&ipst->ips_ip_mib, 21447 ipIfStatsOutNoRoutes); 21448 mp->b_prev = mp->b_next = NULL; 21449 if (first_mp == NULL) 21450 first_mp = mp; 21451 goto drop_pkt; 21452 } 21453 ill_refhold_locked(xmit_ill); 21454 mutex_exit(&xmit_ill->ill_lock); 21455 ipif_refrele(dst_ipif); 21456 } 21457 } 21458 21459 } 21460 /* 21461 * If we are bound to IPIF_NOFAILOVER address, look for 21462 * an IRE_CACHE matching the ill. 21463 */ 21464 send_from_ill: 21465 if (attach_ill != NULL) { 21466 ipif_t *attach_ipif; 21467 21468 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21469 21470 /* 21471 * Check if we need an ire that will not be 21472 * looked up by anybody else i.e. HIDDEN. 21473 */ 21474 if (ill_is_probeonly(attach_ill)) { 21475 match_flags |= MATCH_IRE_MARK_HIDDEN; 21476 } 21477 21478 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 21479 if (attach_ipif == NULL) { 21480 ip1dbg(("ip_wput: No ipif for attach_ill\n")); 21481 goto discard_pkt; 21482 } 21483 ire = ire_ctable_lookup(dst, 0, 0, attach_ipif, 21484 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21485 ipif_refrele(attach_ipif); 21486 } else if (xmit_ill != NULL || (connp != NULL && 21487 connp->conn_xmit_if_ill != NULL)) { 21488 /* 21489 * Mark this packet as originated locally 21490 */ 21491 mp->b_prev = mp->b_next = NULL; 21492 /* 21493 * xmit_ill could be NULL if SO_DONTROUTE 21494 * is also set. 21495 */ 21496 if (xmit_ill == NULL) { 21497 xmit_ill = conn_get_held_ill(connp, 21498 &connp->conn_xmit_if_ill, &err); 21499 if (err == ILL_LOOKUP_FAILED) { 21500 BUMP_MIB(&ipst->ips_ip_mib, 21501 ipIfStatsOutDiscards); 21502 if (need_decref) 21503 CONN_DEC_REF(connp); 21504 freemsg(first_mp); 21505 return; 21506 } 21507 if (xmit_ill == NULL) { 21508 if (connp->conn_dontroute) 21509 goto dontroute; 21510 goto send_from_ill; 21511 } 21512 } 21513 /* 21514 * Could be SO_DONTROUTE case also. 21515 * check at least one interface is UP as 21516 * specified by this ILL 21517 */ 21518 if (xmit_ill->ill_ipif_up_count > 0) { 21519 ipif_t *ipif; 21520 21521 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21522 if (ipif == NULL) { 21523 ip1dbg(("ip_output: " 21524 "xmit_ill NULL ipif\n")); 21525 goto drop_pkt; 21526 } 21527 /* 21528 * Look for a ire that is part of the group, 21529 * if found use it else call ip_newroute_ipif. 21530 * IPCL_ZONEID is not used for matching because 21531 * IP_ALLZONES option is valid only when the 21532 * ill is accessible from all zones i.e has a 21533 * valid ipif in all zones. 21534 */ 21535 match_flags = MATCH_IRE_ILL_GROUP | 21536 MATCH_IRE_SECATTR; 21537 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 21538 MBLK_GETLABEL(mp), match_flags, ipst); 21539 /* 21540 * If an ire exists use it or else create 21541 * an ire but don't add it to the cache. 21542 * Adding an ire may cause issues with 21543 * asymmetric routing. 21544 * In case of multiroute always act as if 21545 * ire does not exist. 21546 */ 21547 if (ire == NULL || 21548 ire->ire_flags & RTF_MULTIRT) { 21549 if (ire != NULL) 21550 ire_refrele(ire); 21551 ip_newroute_ipif(q, first_mp, ipif, 21552 dst, connp, 0, zoneid, infop); 21553 ipif_refrele(ipif); 21554 ip1dbg(("ip_wput: ip_unicast_if\n")); 21555 ill_refrele(xmit_ill); 21556 if (need_decref) 21557 CONN_DEC_REF(connp); 21558 return; 21559 } 21560 ipif_refrele(ipif); 21561 } else { 21562 goto drop_pkt; 21563 } 21564 } else if (ip_nexthop || (connp != NULL && 21565 (connp->conn_nexthop_set)) && !ignore_nexthop) { 21566 if (!ip_nexthop) { 21567 ip_nexthop = B_TRUE; 21568 nexthop_addr = connp->conn_nexthop_v4; 21569 } 21570 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 21571 MATCH_IRE_GW; 21572 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 21573 NULL, zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21574 } else { 21575 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), 21576 ipst); 21577 } 21578 if (!ire) { 21579 /* 21580 * Make sure we don't load spread if this 21581 * is IPIF_NOFAILOVER case. 21582 */ 21583 if ((attach_ill != NULL) || 21584 (ip_nexthop && !ignore_nexthop)) { 21585 if (mctl_present) { 21586 io = (ipsec_out_t *)first_mp->b_rptr; 21587 ASSERT(first_mp->b_datap->db_type == 21588 M_CTL); 21589 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21590 } else { 21591 ASSERT(mp == first_mp); 21592 first_mp = allocb( 21593 sizeof (ipsec_info_t), BPRI_HI); 21594 if (first_mp == NULL) { 21595 first_mp = mp; 21596 goto discard_pkt; 21597 } 21598 first_mp->b_datap->db_type = M_CTL; 21599 first_mp->b_wptr += 21600 sizeof (ipsec_info_t); 21601 /* ipsec_out_secure is B_FALSE now */ 21602 bzero(first_mp->b_rptr, 21603 sizeof (ipsec_info_t)); 21604 io = (ipsec_out_t *)first_mp->b_rptr; 21605 io->ipsec_out_type = IPSEC_OUT; 21606 io->ipsec_out_len = 21607 sizeof (ipsec_out_t); 21608 io->ipsec_out_use_global_policy = 21609 B_TRUE; 21610 io->ipsec_out_ns = ipst->ips_netstack; 21611 first_mp->b_cont = mp; 21612 mctl_present = B_TRUE; 21613 } 21614 if (attach_ill != NULL) { 21615 io->ipsec_out_ill_index = attach_ill-> 21616 ill_phyint->phyint_ifindex; 21617 io->ipsec_out_attach_if = B_TRUE; 21618 } else { 21619 io->ipsec_out_ip_nexthop = ip_nexthop; 21620 io->ipsec_out_nexthop_addr = 21621 nexthop_addr; 21622 } 21623 } 21624 noirefound: 21625 /* 21626 * Mark this packet as having originated on 21627 * this machine. This will be noted in 21628 * ire_add_then_send, which needs to know 21629 * whether to run it back through ip_wput or 21630 * ip_rput following successful resolution. 21631 */ 21632 mp->b_prev = NULL; 21633 mp->b_next = NULL; 21634 ip_newroute(q, first_mp, dst, NULL, connp, zoneid, 21635 ipst); 21636 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21637 "ip_wput_end: q %p (%S)", q, "newroute"); 21638 if (attach_ill != NULL) 21639 ill_refrele(attach_ill); 21640 if (xmit_ill != NULL) 21641 ill_refrele(xmit_ill); 21642 if (need_decref) 21643 CONN_DEC_REF(connp); 21644 return; 21645 } 21646 } 21647 21648 /* We now know where we are going with it. */ 21649 21650 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21651 "ip_wput_end: q %p (%S)", q, "end"); 21652 21653 /* 21654 * Check if the ire has the RTF_MULTIRT flag, inherited 21655 * from an IRE_OFFSUBNET ire entry in ip_newroute. 21656 */ 21657 if (ire->ire_flags & RTF_MULTIRT) { 21658 /* 21659 * Force the TTL of multirouted packets if required. 21660 * The TTL of such packets is bounded by the 21661 * ip_multirt_ttl ndd variable. 21662 */ 21663 if ((ipst->ips_ip_multirt_ttl > 0) && 21664 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 21665 ip2dbg(("ip_wput: forcing multirt TTL to %d " 21666 "(was %d), dst 0x%08x\n", 21667 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 21668 ntohl(ire->ire_addr))); 21669 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 21670 } 21671 /* 21672 * At this point, we check to see if there are any pending 21673 * unresolved routes. ire_multirt_resolvable() 21674 * checks in O(n) that all IRE_OFFSUBNET ire 21675 * entries for the packet's destination and 21676 * flagged RTF_MULTIRT are currently resolved. 21677 * If some remain unresolved, we make a copy 21678 * of the current message. It will be used 21679 * to initiate additional route resolutions. 21680 */ 21681 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 21682 MBLK_GETLABEL(first_mp), ipst); 21683 ip2dbg(("ip_wput[noirefound]: ire %p, " 21684 "multirt_need_resolve %d, first_mp %p\n", 21685 (void *)ire, multirt_need_resolve, (void *)first_mp)); 21686 if (multirt_need_resolve) { 21687 copy_mp = copymsg(first_mp); 21688 if (copy_mp != NULL) { 21689 MULTIRT_DEBUG_TAG(copy_mp); 21690 } 21691 } 21692 } 21693 21694 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 21695 /* 21696 * Try to resolve another multiroute if 21697 * ire_multirt_resolvable() deemed it necessary. 21698 * At this point, we need to distinguish 21699 * multicasts from other packets. For multicasts, 21700 * we call ip_newroute_ipif() and request that both 21701 * multirouting and setsrc flags are checked. 21702 */ 21703 if (copy_mp != NULL) { 21704 if (CLASSD(dst)) { 21705 ipif_t *ipif = ipif_lookup_group(dst, zoneid, ipst); 21706 if (ipif) { 21707 ASSERT(infop->ip_opt_ill_index == 0); 21708 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 21709 RTF_SETSRC | RTF_MULTIRT, zoneid, infop); 21710 ipif_refrele(ipif); 21711 } else { 21712 MULTIRT_DEBUG_UNTAG(copy_mp); 21713 freemsg(copy_mp); 21714 copy_mp = NULL; 21715 } 21716 } else { 21717 ip_newroute(q, copy_mp, dst, NULL, connp, zoneid, ipst); 21718 } 21719 } 21720 if (attach_ill != NULL) 21721 ill_refrele(attach_ill); 21722 if (xmit_ill != NULL) 21723 ill_refrele(xmit_ill); 21724 if (need_decref) 21725 CONN_DEC_REF(connp); 21726 return; 21727 21728 icmp_parameter_problem: 21729 /* could not have originated externally */ 21730 ASSERT(mp->b_prev == NULL); 21731 if (ip_hdr_complete(ipha, zoneid, ipst) == 0) { 21732 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 21733 /* it's the IP header length that's in trouble */ 21734 icmp_param_problem(q, first_mp, 0, zoneid, ipst); 21735 first_mp = NULL; 21736 } 21737 21738 discard_pkt: 21739 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21740 drop_pkt: 21741 ip1dbg(("ip_wput: dropped packet\n")); 21742 if (ire != NULL) 21743 ire_refrele(ire); 21744 if (need_decref) 21745 CONN_DEC_REF(connp); 21746 freemsg(first_mp); 21747 if (attach_ill != NULL) 21748 ill_refrele(attach_ill); 21749 if (xmit_ill != NULL) 21750 ill_refrele(xmit_ill); 21751 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21752 "ip_wput_end: q %p (%S)", q, "droppkt"); 21753 } 21754 21755 /* 21756 * If this is a conn_t queue, then we pass in the conn. This includes the 21757 * zoneid. 21758 * Otherwise, this is a message coming back from ARP or for an ill_t queue, 21759 * in which case we use the global zoneid since those are all part of 21760 * the global zone. 21761 */ 21762 void 21763 ip_wput(queue_t *q, mblk_t *mp) 21764 { 21765 if (CONN_Q(q)) 21766 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 21767 else 21768 ip_output(GLOBAL_ZONEID, mp, q, IP_WPUT); 21769 } 21770 21771 /* 21772 * 21773 * The following rules must be observed when accessing any ipif or ill 21774 * that has been cached in the conn. Typically conn_nofailover_ill, 21775 * conn_xmit_if_ill, conn_multicast_ipif and conn_multicast_ill. 21776 * 21777 * Access: The ipif or ill pointed to from the conn can be accessed under 21778 * the protection of the conn_lock or after it has been refheld under the 21779 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 21780 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 21781 * The reason for this is that a concurrent unplumb could actually be 21782 * cleaning up these cached pointers by walking the conns and might have 21783 * finished cleaning up the conn in question. The macros check that an 21784 * unplumb has not yet started on the ipif or ill. 21785 * 21786 * Caching: An ipif or ill pointer may be cached in the conn only after 21787 * making sure that an unplumb has not started. So the caching is done 21788 * while holding both the conn_lock and the ill_lock and after using the 21789 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 21790 * flag before starting the cleanup of conns. 21791 * 21792 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 21793 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 21794 * or a reference to the ipif or a reference to an ire that references the 21795 * ipif. An ipif does not change its ill except for failover/failback. Since 21796 * failover/failback happens only after bringing down the ipif and making sure 21797 * the ipif refcnt has gone to zero and holding the ill_g_lock and ill_lock 21798 * the above holds. 21799 */ 21800 ipif_t * 21801 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 21802 { 21803 ipif_t *ipif; 21804 ill_t *ill; 21805 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 21806 21807 *err = 0; 21808 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21809 mutex_enter(&connp->conn_lock); 21810 ipif = *ipifp; 21811 if (ipif != NULL) { 21812 ill = ipif->ipif_ill; 21813 mutex_enter(&ill->ill_lock); 21814 if (IPIF_CAN_LOOKUP(ipif)) { 21815 ipif_refhold_locked(ipif); 21816 mutex_exit(&ill->ill_lock); 21817 mutex_exit(&connp->conn_lock); 21818 rw_exit(&ipst->ips_ill_g_lock); 21819 return (ipif); 21820 } else { 21821 *err = IPIF_LOOKUP_FAILED; 21822 } 21823 mutex_exit(&ill->ill_lock); 21824 } 21825 mutex_exit(&connp->conn_lock); 21826 rw_exit(&ipst->ips_ill_g_lock); 21827 return (NULL); 21828 } 21829 21830 ill_t * 21831 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 21832 { 21833 ill_t *ill; 21834 21835 *err = 0; 21836 mutex_enter(&connp->conn_lock); 21837 ill = *illp; 21838 if (ill != NULL) { 21839 mutex_enter(&ill->ill_lock); 21840 if (ILL_CAN_LOOKUP(ill)) { 21841 ill_refhold_locked(ill); 21842 mutex_exit(&ill->ill_lock); 21843 mutex_exit(&connp->conn_lock); 21844 return (ill); 21845 } else { 21846 *err = ILL_LOOKUP_FAILED; 21847 } 21848 mutex_exit(&ill->ill_lock); 21849 } 21850 mutex_exit(&connp->conn_lock); 21851 return (NULL); 21852 } 21853 21854 static int 21855 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 21856 { 21857 ill_t *ill; 21858 21859 ill = ipif->ipif_ill; 21860 mutex_enter(&connp->conn_lock); 21861 mutex_enter(&ill->ill_lock); 21862 if (IPIF_CAN_LOOKUP(ipif)) { 21863 *ipifp = ipif; 21864 mutex_exit(&ill->ill_lock); 21865 mutex_exit(&connp->conn_lock); 21866 return (0); 21867 } 21868 mutex_exit(&ill->ill_lock); 21869 mutex_exit(&connp->conn_lock); 21870 return (IPIF_LOOKUP_FAILED); 21871 } 21872 21873 /* 21874 * This is called if the outbound datagram needs fragmentation. 21875 * 21876 * NOTE : This function does not ire_refrele the ire argument passed in. 21877 */ 21878 static void 21879 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire, zoneid_t zoneid, 21880 ip_stack_t *ipst) 21881 { 21882 ipha_t *ipha; 21883 mblk_t *mp; 21884 uint32_t v_hlen_tos_len; 21885 uint32_t max_frag; 21886 uint32_t frag_flag; 21887 boolean_t dont_use; 21888 21889 if (ipsec_mp->b_datap->db_type == M_CTL) { 21890 mp = ipsec_mp->b_cont; 21891 } else { 21892 mp = ipsec_mp; 21893 } 21894 21895 ipha = (ipha_t *)mp->b_rptr; 21896 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21897 21898 #ifdef _BIG_ENDIAN 21899 #define V_HLEN (v_hlen_tos_len >> 24) 21900 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21901 #else 21902 #define V_HLEN (v_hlen_tos_len & 0xFF) 21903 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21904 #endif 21905 21906 #ifndef SPEED_BEFORE_SAFETY 21907 /* 21908 * Check that ipha_length is consistent with 21909 * the mblk length 21910 */ 21911 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 21912 ip0dbg(("Packet length mismatch: %d, %ld\n", 21913 LENGTH, msgdsize(mp))); 21914 freemsg(ipsec_mp); 21915 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21916 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 21917 "packet length mismatch"); 21918 return; 21919 } 21920 #endif 21921 /* 21922 * Don't use frag_flag if pre-built packet or source 21923 * routed or if multicast (since multicast packets do not solicit 21924 * ICMP "packet too big" messages). Get the values of 21925 * max_frag and frag_flag atomically by acquiring the 21926 * ire_lock. 21927 */ 21928 mutex_enter(&ire->ire_lock); 21929 max_frag = ire->ire_max_frag; 21930 frag_flag = ire->ire_frag_flag; 21931 mutex_exit(&ire->ire_lock); 21932 21933 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 21934 (V_HLEN != IP_SIMPLE_HDR_VERSION && 21935 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 21936 21937 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 21938 (dont_use ? 0 : frag_flag), zoneid, ipst); 21939 } 21940 21941 /* 21942 * Used for deciding the MSS size for the upper layer. Thus 21943 * we need to check the outbound policy values in the conn. 21944 */ 21945 int 21946 conn_ipsec_length(conn_t *connp) 21947 { 21948 ipsec_latch_t *ipl; 21949 21950 ipl = connp->conn_latch; 21951 if (ipl == NULL) 21952 return (0); 21953 21954 if (ipl->ipl_out_policy == NULL) 21955 return (0); 21956 21957 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 21958 } 21959 21960 /* 21961 * Returns an estimate of the IPSEC headers size. This is used if 21962 * we don't want to call into IPSEC to get the exact size. 21963 */ 21964 int 21965 ipsec_out_extra_length(mblk_t *ipsec_mp) 21966 { 21967 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 21968 ipsec_action_t *a; 21969 21970 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21971 if (!io->ipsec_out_secure) 21972 return (0); 21973 21974 a = io->ipsec_out_act; 21975 21976 if (a == NULL) { 21977 ASSERT(io->ipsec_out_policy != NULL); 21978 a = io->ipsec_out_policy->ipsp_act; 21979 } 21980 ASSERT(a != NULL); 21981 21982 return (a->ipa_ovhd); 21983 } 21984 21985 /* 21986 * Returns an estimate of the IPSEC headers size. This is used if 21987 * we don't want to call into IPSEC to get the exact size. 21988 */ 21989 int 21990 ipsec_in_extra_length(mblk_t *ipsec_mp) 21991 { 21992 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21993 ipsec_action_t *a; 21994 21995 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21996 21997 a = ii->ipsec_in_action; 21998 return (a == NULL ? 0 : a->ipa_ovhd); 21999 } 22000 22001 /* 22002 * If there are any source route options, return the true final 22003 * destination. Otherwise, return the destination. 22004 */ 22005 ipaddr_t 22006 ip_get_dst(ipha_t *ipha) 22007 { 22008 ipoptp_t opts; 22009 uchar_t *opt; 22010 uint8_t optval; 22011 uint8_t optlen; 22012 ipaddr_t dst; 22013 uint32_t off; 22014 22015 dst = ipha->ipha_dst; 22016 22017 if (IS_SIMPLE_IPH(ipha)) 22018 return (dst); 22019 22020 for (optval = ipoptp_first(&opts, ipha); 22021 optval != IPOPT_EOL; 22022 optval = ipoptp_next(&opts)) { 22023 opt = opts.ipoptp_cur; 22024 optlen = opts.ipoptp_len; 22025 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 22026 switch (optval) { 22027 case IPOPT_SSRR: 22028 case IPOPT_LSRR: 22029 off = opt[IPOPT_OFFSET]; 22030 /* 22031 * If one of the conditions is true, it means 22032 * end of options and dst already has the right 22033 * value. 22034 */ 22035 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 22036 off = optlen - IP_ADDR_LEN; 22037 bcopy(&opt[off], &dst, IP_ADDR_LEN); 22038 } 22039 return (dst); 22040 default: 22041 break; 22042 } 22043 } 22044 22045 return (dst); 22046 } 22047 22048 mblk_t * 22049 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 22050 conn_t *connp, boolean_t unspec_src, zoneid_t zoneid) 22051 { 22052 ipsec_out_t *io; 22053 mblk_t *first_mp; 22054 boolean_t policy_present; 22055 ip_stack_t *ipst; 22056 ipsec_stack_t *ipss; 22057 22058 ASSERT(ire != NULL); 22059 ipst = ire->ire_ipst; 22060 ipss = ipst->ips_netstack->netstack_ipsec; 22061 22062 first_mp = mp; 22063 if (mp->b_datap->db_type == M_CTL) { 22064 io = (ipsec_out_t *)first_mp->b_rptr; 22065 /* 22066 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 22067 * 22068 * 1) There is per-socket policy (including cached global 22069 * policy) or a policy on the IP-in-IP tunnel. 22070 * 2) There is no per-socket policy, but it is 22071 * a multicast packet that needs to go out 22072 * on a specific interface. This is the case 22073 * where (ip_wput and ip_wput_multicast) attaches 22074 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 22075 * 22076 * In case (2) we check with global policy to 22077 * see if there is a match and set the ill_index 22078 * appropriately so that we can lookup the ire 22079 * properly in ip_wput_ipsec_out. 22080 */ 22081 22082 /* 22083 * ipsec_out_use_global_policy is set to B_FALSE 22084 * in ipsec_in_to_out(). Refer to that function for 22085 * details. 22086 */ 22087 if ((io->ipsec_out_latch == NULL) && 22088 (io->ipsec_out_use_global_policy)) { 22089 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 22090 ire, connp, unspec_src, zoneid)); 22091 } 22092 if (!io->ipsec_out_secure) { 22093 /* 22094 * If this is not a secure packet, drop 22095 * the IPSEC_OUT mp and treat it as a clear 22096 * packet. This happens when we are sending 22097 * a ICMP reply back to a clear packet. See 22098 * ipsec_in_to_out() for details. 22099 */ 22100 mp = first_mp->b_cont; 22101 freeb(first_mp); 22102 } 22103 return (mp); 22104 } 22105 /* 22106 * See whether we need to attach a global policy here. We 22107 * don't depend on the conn (as it could be null) for deciding 22108 * what policy this datagram should go through because it 22109 * should have happened in ip_wput if there was some 22110 * policy. This normally happens for connections which are not 22111 * fully bound preventing us from caching policies in 22112 * ip_bind. Packets coming from the TCP listener/global queue 22113 * - which are non-hard_bound - could also be affected by 22114 * applying policy here. 22115 * 22116 * If this packet is coming from tcp global queue or listener, 22117 * we will be applying policy here. This may not be *right* 22118 * if these packets are coming from the detached connection as 22119 * it could have gone in clear before. This happens only if a 22120 * TCP connection started when there is no policy and somebody 22121 * added policy before it became detached. Thus packets of the 22122 * detached connection could go out secure and the other end 22123 * would drop it because it will be expecting in clear. The 22124 * converse is not true i.e if somebody starts a TCP 22125 * connection and deletes the policy, all the packets will 22126 * still go out with the policy that existed before deleting 22127 * because ip_unbind sends up policy information which is used 22128 * by TCP on subsequent ip_wputs. The right solution is to fix 22129 * TCP to attach a dummy IPSEC_OUT and set 22130 * ipsec_out_use_global_policy to B_FALSE. As this might 22131 * affect performance for normal cases, we are not doing it. 22132 * Thus, set policy before starting any TCP connections. 22133 * 22134 * NOTE - We might apply policy even for a hard bound connection 22135 * - for which we cached policy in ip_bind - if somebody added 22136 * global policy after we inherited the policy in ip_bind. 22137 * This means that the packets that were going out in clear 22138 * previously would start going secure and hence get dropped 22139 * on the other side. To fix this, TCP attaches a dummy 22140 * ipsec_out and make sure that we don't apply global policy. 22141 */ 22142 if (ipha != NULL) 22143 policy_present = ipss->ipsec_outbound_v4_policy_present; 22144 else 22145 policy_present = ipss->ipsec_outbound_v6_policy_present; 22146 if (!policy_present) 22147 return (mp); 22148 22149 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src, 22150 zoneid)); 22151 } 22152 22153 ire_t * 22154 conn_set_outgoing_ill(conn_t *connp, ire_t *ire, ill_t **conn_outgoing_ill) 22155 { 22156 ipaddr_t addr; 22157 ire_t *save_ire; 22158 irb_t *irb; 22159 ill_group_t *illgrp; 22160 int err; 22161 22162 save_ire = ire; 22163 addr = ire->ire_addr; 22164 22165 ASSERT(ire->ire_type == IRE_BROADCAST); 22166 22167 illgrp = connp->conn_outgoing_ill->ill_group; 22168 if (illgrp == NULL) { 22169 *conn_outgoing_ill = conn_get_held_ill(connp, 22170 &connp->conn_outgoing_ill, &err); 22171 if (err == ILL_LOOKUP_FAILED) { 22172 ire_refrele(save_ire); 22173 return (NULL); 22174 } 22175 return (save_ire); 22176 } 22177 /* 22178 * If IP_BOUND_IF has been done, conn_outgoing_ill will be set. 22179 * If it is part of the group, we need to send on the ire 22180 * that has been cleared of IRE_MARK_NORECV and that belongs 22181 * to this group. This is okay as IP_BOUND_IF really means 22182 * any ill in the group. We depend on the fact that the 22183 * first ire in the group is always cleared of IRE_MARK_NORECV 22184 * if such an ire exists. This is possible only if you have 22185 * at least one ill in the group that has not failed. 22186 * 22187 * First get to the ire that matches the address and group. 22188 * 22189 * We don't look for an ire with a matching zoneid because a given zone 22190 * won't always have broadcast ires on all ills in the group. 22191 */ 22192 irb = ire->ire_bucket; 22193 rw_enter(&irb->irb_lock, RW_READER); 22194 if (ire->ire_marks & IRE_MARK_NORECV) { 22195 /* 22196 * If the current zone only has an ire broadcast for this 22197 * address marked NORECV, the ire we want is ahead in the 22198 * bucket, so we look it up deliberately ignoring the zoneid. 22199 */ 22200 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 22201 if (ire->ire_addr != addr) 22202 continue; 22203 /* skip over deleted ires */ 22204 if (ire->ire_marks & IRE_MARK_CONDEMNED) 22205 continue; 22206 } 22207 } 22208 while (ire != NULL) { 22209 /* 22210 * If a new interface is coming up, we could end up 22211 * seeing the loopback ire and the non-loopback ire 22212 * may not have been added yet. So check for ire_stq 22213 */ 22214 if (ire->ire_stq != NULL && (ire->ire_addr != addr || 22215 ire->ire_ipif->ipif_ill->ill_group == illgrp)) { 22216 break; 22217 } 22218 ire = ire->ire_next; 22219 } 22220 if (ire != NULL && ire->ire_addr == addr && 22221 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 22222 IRE_REFHOLD(ire); 22223 rw_exit(&irb->irb_lock); 22224 ire_refrele(save_ire); 22225 *conn_outgoing_ill = ire_to_ill(ire); 22226 /* 22227 * Refhold the ill to make the conn_outgoing_ill 22228 * independent of the ire. ip_wput_ire goes in a loop 22229 * and may refrele the ire. Since we have an ire at this 22230 * point we don't need to use ILL_CAN_LOOKUP on the ill. 22231 */ 22232 ill_refhold(*conn_outgoing_ill); 22233 return (ire); 22234 } 22235 rw_exit(&irb->irb_lock); 22236 ip1dbg(("conn_set_outgoing_ill: No matching ire\n")); 22237 /* 22238 * If we can't find a suitable ire, return the original ire. 22239 */ 22240 return (save_ire); 22241 } 22242 22243 /* 22244 * This function does the ire_refrele of the ire passed in as the 22245 * argument. As this function looks up more ires i.e broadcast ires, 22246 * it needs to REFRELE them. Currently, for simplicity we don't 22247 * differentiate the one passed in and looked up here. We always 22248 * REFRELE. 22249 * IPQoS Notes: 22250 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 22251 * IPSec packets are done in ipsec_out_process. 22252 * 22253 */ 22254 void 22255 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller, 22256 zoneid_t zoneid) 22257 { 22258 ipha_t *ipha; 22259 #define rptr ((uchar_t *)ipha) 22260 queue_t *stq; 22261 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 22262 uint32_t v_hlen_tos_len; 22263 uint32_t ttl_protocol; 22264 ipaddr_t src; 22265 ipaddr_t dst; 22266 uint32_t cksum; 22267 ipaddr_t orig_src; 22268 ire_t *ire1; 22269 mblk_t *next_mp; 22270 uint_t hlen; 22271 uint16_t *up; 22272 uint32_t max_frag = ire->ire_max_frag; 22273 ill_t *ill = ire_to_ill(ire); 22274 int clusterwide; 22275 uint16_t ip_hdr_included; /* IP header included by ULP? */ 22276 int ipsec_len; 22277 mblk_t *first_mp; 22278 ipsec_out_t *io; 22279 boolean_t conn_dontroute; /* conn value for multicast */ 22280 boolean_t conn_multicast_loop; /* conn value for multicast */ 22281 boolean_t multicast_forward; /* Should we forward ? */ 22282 boolean_t unspec_src; 22283 ill_t *conn_outgoing_ill = NULL; 22284 ill_t *ire_ill; 22285 ill_t *ire1_ill; 22286 ill_t *out_ill; 22287 uint32_t ill_index = 0; 22288 boolean_t multirt_send = B_FALSE; 22289 int err; 22290 ipxmit_state_t pktxmit_state; 22291 ip_stack_t *ipst = ire->ire_ipst; 22292 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 22293 22294 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 22295 "ip_wput_ire_start: q %p", q); 22296 22297 multicast_forward = B_FALSE; 22298 unspec_src = (connp != NULL && connp->conn_unspec_src); 22299 22300 if (ire->ire_flags & RTF_MULTIRT) { 22301 /* 22302 * Multirouting case. The bucket where ire is stored 22303 * probably holds other RTF_MULTIRT flagged ire 22304 * to the destination. In this call to ip_wput_ire, 22305 * we attempt to send the packet through all 22306 * those ires. Thus, we first ensure that ire is the 22307 * first RTF_MULTIRT ire in the bucket, 22308 * before walking the ire list. 22309 */ 22310 ire_t *first_ire; 22311 irb_t *irb = ire->ire_bucket; 22312 ASSERT(irb != NULL); 22313 22314 /* Make sure we do not omit any multiroute ire. */ 22315 IRB_REFHOLD(irb); 22316 for (first_ire = irb->irb_ire; 22317 first_ire != NULL; 22318 first_ire = first_ire->ire_next) { 22319 if ((first_ire->ire_flags & RTF_MULTIRT) && 22320 (first_ire->ire_addr == ire->ire_addr) && 22321 !(first_ire->ire_marks & 22322 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 22323 break; 22324 } 22325 } 22326 22327 if ((first_ire != NULL) && (first_ire != ire)) { 22328 IRE_REFHOLD(first_ire); 22329 ire_refrele(ire); 22330 ire = first_ire; 22331 ill = ire_to_ill(ire); 22332 } 22333 IRB_REFRELE(irb); 22334 } 22335 22336 /* 22337 * conn_outgoing_ill is used only in the broadcast loop. 22338 * for performance we don't grab the mutexs in the fastpath 22339 */ 22340 if ((connp != NULL) && 22341 (connp->conn_xmit_if_ill == NULL) && 22342 (ire->ire_type == IRE_BROADCAST) && 22343 ((connp->conn_nofailover_ill != NULL) || 22344 (connp->conn_outgoing_ill != NULL))) { 22345 /* 22346 * Bind to IPIF_NOFAILOVER address overrides IP_BOUND_IF 22347 * option. So, see if this endpoint is bound to a 22348 * IPIF_NOFAILOVER address. If so, honor it. This implies 22349 * that if the interface is failed, we will still send 22350 * the packet on the same ill which is what we want. 22351 */ 22352 conn_outgoing_ill = conn_get_held_ill(connp, 22353 &connp->conn_nofailover_ill, &err); 22354 if (err == ILL_LOOKUP_FAILED) { 22355 ire_refrele(ire); 22356 freemsg(mp); 22357 return; 22358 } 22359 if (conn_outgoing_ill == NULL) { 22360 /* 22361 * Choose a good ill in the group to send the 22362 * packets on. 22363 */ 22364 ire = conn_set_outgoing_ill(connp, ire, 22365 &conn_outgoing_ill); 22366 if (ire == NULL) { 22367 freemsg(mp); 22368 return; 22369 } 22370 } 22371 } 22372 22373 if (mp->b_datap->db_type != M_CTL) { 22374 ipha = (ipha_t *)mp->b_rptr; 22375 } else { 22376 io = (ipsec_out_t *)mp->b_rptr; 22377 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22378 ASSERT(zoneid == io->ipsec_out_zoneid); 22379 ASSERT(zoneid != ALL_ZONES); 22380 ipha = (ipha_t *)mp->b_cont->b_rptr; 22381 dst = ipha->ipha_dst; 22382 /* 22383 * For the multicast case, ipsec_out carries conn_dontroute and 22384 * conn_multicast_loop as conn may not be available here. We 22385 * need this for multicast loopback and forwarding which is done 22386 * later in the code. 22387 */ 22388 if (CLASSD(dst)) { 22389 conn_dontroute = io->ipsec_out_dontroute; 22390 conn_multicast_loop = io->ipsec_out_multicast_loop; 22391 /* 22392 * If conn_dontroute is not set or conn_multicast_loop 22393 * is set, we need to do forwarding/loopback. For 22394 * datagrams from ip_wput_multicast, conn_dontroute is 22395 * set to B_TRUE and conn_multicast_loop is set to 22396 * B_FALSE so that we neither do forwarding nor 22397 * loopback. 22398 */ 22399 if (!conn_dontroute || conn_multicast_loop) 22400 multicast_forward = B_TRUE; 22401 } 22402 } 22403 22404 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 22405 ire->ire_zoneid != ALL_ZONES) { 22406 /* 22407 * When a zone sends a packet to another zone, we try to deliver 22408 * the packet under the same conditions as if the destination 22409 * was a real node on the network. To do so, we look for a 22410 * matching route in the forwarding table. 22411 * RTF_REJECT and RTF_BLACKHOLE are handled just like 22412 * ip_newroute() does. 22413 * Note that IRE_LOCAL are special, since they are used 22414 * when the zoneid doesn't match in some cases. This means that 22415 * we need to handle ipha_src differently since ire_src_addr 22416 * belongs to the receiving zone instead of the sending zone. 22417 * When ip_restrict_interzone_loopback is set, then 22418 * ire_cache_lookup() ensures that IRE_LOCAL are only used 22419 * for loopback between zones when the logical "Ethernet" would 22420 * have looped them back. 22421 */ 22422 ire_t *src_ire; 22423 22424 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 22425 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 22426 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE), ipst); 22427 if (src_ire != NULL && 22428 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) && 22429 (!ipst->ips_ip_restrict_interzone_loopback || 22430 ire_local_same_ill_group(ire, src_ire))) { 22431 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 22432 ipha->ipha_src = src_ire->ire_src_addr; 22433 ire_refrele(src_ire); 22434 } else { 22435 ire_refrele(ire); 22436 if (conn_outgoing_ill != NULL) 22437 ill_refrele(conn_outgoing_ill); 22438 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 22439 if (src_ire != NULL) { 22440 if (src_ire->ire_flags & RTF_BLACKHOLE) { 22441 ire_refrele(src_ire); 22442 freemsg(mp); 22443 return; 22444 } 22445 ire_refrele(src_ire); 22446 } 22447 if (ip_hdr_complete(ipha, zoneid, ipst)) { 22448 /* Failed */ 22449 freemsg(mp); 22450 return; 22451 } 22452 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, zoneid, 22453 ipst); 22454 return; 22455 } 22456 } 22457 22458 if (mp->b_datap->db_type == M_CTL || 22459 ipss->ipsec_outbound_v4_policy_present) { 22460 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 22461 unspec_src, zoneid); 22462 if (mp == NULL) { 22463 ire_refrele(ire); 22464 if (conn_outgoing_ill != NULL) 22465 ill_refrele(conn_outgoing_ill); 22466 return; 22467 } 22468 } 22469 22470 first_mp = mp; 22471 ipsec_len = 0; 22472 22473 if (first_mp->b_datap->db_type == M_CTL) { 22474 io = (ipsec_out_t *)first_mp->b_rptr; 22475 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22476 mp = first_mp->b_cont; 22477 ipsec_len = ipsec_out_extra_length(first_mp); 22478 ASSERT(ipsec_len >= 0); 22479 /* We already picked up the zoneid from the M_CTL above */ 22480 ASSERT(zoneid == io->ipsec_out_zoneid); 22481 ASSERT(zoneid != ALL_ZONES); 22482 22483 /* 22484 * Drop M_CTL here if IPsec processing is not needed. 22485 * (Non-IPsec use of M_CTL extracted any information it 22486 * needed above). 22487 */ 22488 if (ipsec_len == 0) { 22489 freeb(first_mp); 22490 first_mp = mp; 22491 } 22492 } 22493 22494 /* 22495 * Fast path for ip_wput_ire 22496 */ 22497 22498 ipha = (ipha_t *)mp->b_rptr; 22499 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 22500 dst = ipha->ipha_dst; 22501 22502 /* 22503 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 22504 * if the socket is a SOCK_RAW type. The transport checksum should 22505 * be provided in the pre-built packet, so we don't need to compute it. 22506 * Also, other application set flags, like DF, should not be altered. 22507 * Other transport MUST pass down zero. 22508 */ 22509 ip_hdr_included = ipha->ipha_ident; 22510 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 22511 22512 if (CLASSD(dst)) { 22513 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 22514 ntohl(dst), 22515 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 22516 ntohl(ire->ire_addr))); 22517 } 22518 22519 /* Macros to extract header fields from data already in registers */ 22520 #ifdef _BIG_ENDIAN 22521 #define V_HLEN (v_hlen_tos_len >> 24) 22522 #define LENGTH (v_hlen_tos_len & 0xFFFF) 22523 #define PROTO (ttl_protocol & 0xFF) 22524 #else 22525 #define V_HLEN (v_hlen_tos_len & 0xFF) 22526 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 22527 #define PROTO (ttl_protocol >> 8) 22528 #endif 22529 22530 22531 orig_src = src = ipha->ipha_src; 22532 /* (The loop back to "another" is explained down below.) */ 22533 another:; 22534 /* 22535 * Assign an ident value for this packet. We assign idents on 22536 * a per destination basis out of the IRE. There could be 22537 * other threads targeting the same destination, so we have to 22538 * arrange for a atomic increment. Note that we use a 32-bit 22539 * atomic add because it has better performance than its 22540 * 16-bit sibling. 22541 * 22542 * If running in cluster mode and if the source address 22543 * belongs to a replicated service then vector through 22544 * cl_inet_ipident vector to allocate ip identifier 22545 * NOTE: This is a contract private interface with the 22546 * clustering group. 22547 */ 22548 clusterwide = 0; 22549 if (cl_inet_ipident) { 22550 ASSERT(cl_inet_isclusterwide); 22551 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 22552 AF_INET, (uint8_t *)(uintptr_t)src)) { 22553 ipha->ipha_ident = (*cl_inet_ipident)(IPPROTO_IP, 22554 AF_INET, (uint8_t *)(uintptr_t)src, 22555 (uint8_t *)(uintptr_t)dst); 22556 clusterwide = 1; 22557 } 22558 } 22559 if (!clusterwide) { 22560 ipha->ipha_ident = 22561 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 22562 } 22563 22564 #ifndef _BIG_ENDIAN 22565 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 22566 #endif 22567 22568 /* 22569 * Set source address unless sent on an ill or conn_unspec_src is set. 22570 * This is needed to obey conn_unspec_src when packets go through 22571 * ip_newroute + arp. 22572 * Assumes ip_newroute{,_multi} sets the source address as well. 22573 */ 22574 if (src == INADDR_ANY && !unspec_src) { 22575 /* 22576 * Assign the appropriate source address from the IRE if none 22577 * was specified. 22578 */ 22579 ASSERT(ire->ire_ipversion == IPV4_VERSION); 22580 22581 /* 22582 * With IP multipathing, broadcast packets are sent on the ire 22583 * that has been cleared of IRE_MARK_NORECV and that belongs to 22584 * the group. However, this ire might not be in the same zone so 22585 * we can't always use its source address. We look for a 22586 * broadcast ire in the same group and in the right zone. 22587 */ 22588 if (ire->ire_type == IRE_BROADCAST && 22589 ire->ire_zoneid != zoneid) { 22590 ire_t *src_ire = ire_ctable_lookup(dst, 0, 22591 IRE_BROADCAST, ire->ire_ipif, zoneid, NULL, 22592 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 22593 if (src_ire != NULL) { 22594 src = src_ire->ire_src_addr; 22595 ire_refrele(src_ire); 22596 } else { 22597 ire_refrele(ire); 22598 if (conn_outgoing_ill != NULL) 22599 ill_refrele(conn_outgoing_ill); 22600 freemsg(first_mp); 22601 if (ill != NULL) { 22602 BUMP_MIB(ill->ill_ip_mib, 22603 ipIfStatsOutDiscards); 22604 } else { 22605 BUMP_MIB(&ipst->ips_ip_mib, 22606 ipIfStatsOutDiscards); 22607 } 22608 return; 22609 } 22610 } else { 22611 src = ire->ire_src_addr; 22612 } 22613 22614 if (connp == NULL) { 22615 ip1dbg(("ip_wput_ire: no connp and no src " 22616 "address for dst 0x%x, using src 0x%x\n", 22617 ntohl(dst), 22618 ntohl(src))); 22619 } 22620 ipha->ipha_src = src; 22621 } 22622 stq = ire->ire_stq; 22623 22624 /* 22625 * We only allow ire chains for broadcasts since there will 22626 * be multiple IRE_CACHE entries for the same multicast 22627 * address (one per ipif). 22628 */ 22629 next_mp = NULL; 22630 22631 /* broadcast packet */ 22632 if (ire->ire_type == IRE_BROADCAST) 22633 goto broadcast; 22634 22635 /* loopback ? */ 22636 if (stq == NULL) 22637 goto nullstq; 22638 22639 /* The ill_index for outbound ILL */ 22640 ill_index = Q_TO_INDEX(stq); 22641 22642 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 22643 ttl_protocol = ((uint16_t *)ipha)[4]; 22644 22645 /* pseudo checksum (do it in parts for IP header checksum) */ 22646 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 22647 22648 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 22649 queue_t *dev_q = stq->q_next; 22650 22651 /* flow controlled */ 22652 if ((dev_q->q_next || dev_q->q_first) && 22653 !canput(dev_q)) 22654 goto blocked; 22655 if ((PROTO == IPPROTO_UDP) && 22656 (ip_hdr_included != IP_HDR_INCLUDED)) { 22657 hlen = (V_HLEN & 0xF) << 2; 22658 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22659 if (*up != 0) { 22660 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 22661 hlen, LENGTH, max_frag, ipsec_len, cksum); 22662 /* Software checksum? */ 22663 if (DB_CKSUMFLAGS(mp) == 0) { 22664 IP_STAT(ipst, ip_out_sw_cksum); 22665 IP_STAT_UPDATE(ipst, 22666 ip_udp_out_sw_cksum_bytes, 22667 LENGTH - hlen); 22668 } 22669 } 22670 } 22671 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 22672 hlen = (V_HLEN & 0xF) << 2; 22673 if (PROTO == IPPROTO_TCP) { 22674 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22675 /* 22676 * The packet header is processed once and for all, even 22677 * in the multirouting case. We disable hardware 22678 * checksum if the packet is multirouted, as it will be 22679 * replicated via several interfaces, and not all of 22680 * them may have this capability. 22681 */ 22682 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 22683 LENGTH, max_frag, ipsec_len, cksum); 22684 /* Software checksum? */ 22685 if (DB_CKSUMFLAGS(mp) == 0) { 22686 IP_STAT(ipst, ip_out_sw_cksum); 22687 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22688 LENGTH - hlen); 22689 } 22690 } else { 22691 sctp_hdr_t *sctph; 22692 22693 ASSERT(PROTO == IPPROTO_SCTP); 22694 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22695 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22696 /* 22697 * Zero out the checksum field to ensure proper 22698 * checksum calculation. 22699 */ 22700 sctph->sh_chksum = 0; 22701 #ifdef DEBUG 22702 if (!skip_sctp_cksum) 22703 #endif 22704 sctph->sh_chksum = sctp_cksum(mp, hlen); 22705 } 22706 } 22707 22708 /* 22709 * If this is a multicast packet and originated from ip_wput 22710 * we need to do loopback and forwarding checks. If it comes 22711 * from ip_wput_multicast, we SHOULD not do this. 22712 */ 22713 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 22714 22715 /* checksum */ 22716 cksum += ttl_protocol; 22717 22718 /* fragment the packet */ 22719 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 22720 goto fragmentit; 22721 /* 22722 * Don't use frag_flag if packet is pre-built or source 22723 * routed or if multicast (since multicast packets do 22724 * not solicit ICMP "packet too big" messages). 22725 */ 22726 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22727 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22728 !ip_source_route_included(ipha)) && 22729 !CLASSD(ipha->ipha_dst)) 22730 ipha->ipha_fragment_offset_and_flags |= 22731 htons(ire->ire_frag_flag); 22732 22733 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22734 /* calculate IP header checksum */ 22735 cksum += ipha->ipha_ident; 22736 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 22737 cksum += ipha->ipha_fragment_offset_and_flags; 22738 22739 /* IP options present */ 22740 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22741 if (hlen) 22742 goto checksumoptions; 22743 22744 /* calculate hdr checksum */ 22745 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22746 cksum = ~(cksum + (cksum >> 16)); 22747 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22748 } 22749 if (ipsec_len != 0) { 22750 /* 22751 * We will do the rest of the processing after 22752 * we come back from IPSEC in ip_wput_ipsec_out(). 22753 */ 22754 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 22755 22756 io = (ipsec_out_t *)first_mp->b_rptr; 22757 io->ipsec_out_ill_index = ((ill_t *)stq->q_ptr)-> 22758 ill_phyint->phyint_ifindex; 22759 22760 ipsec_out_process(q, first_mp, ire, ill_index); 22761 ire_refrele(ire); 22762 if (conn_outgoing_ill != NULL) 22763 ill_refrele(conn_outgoing_ill); 22764 return; 22765 } 22766 22767 /* 22768 * In most cases, the emission loop below is entered only 22769 * once. Only in the case where the ire holds the 22770 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 22771 * flagged ires in the bucket, and send the packet 22772 * through all crossed RTF_MULTIRT routes. 22773 */ 22774 if (ire->ire_flags & RTF_MULTIRT) { 22775 multirt_send = B_TRUE; 22776 } 22777 do { 22778 if (multirt_send) { 22779 irb_t *irb; 22780 /* 22781 * We are in a multiple send case, need to get 22782 * the next ire and make a duplicate of the packet. 22783 * ire1 holds here the next ire to process in the 22784 * bucket. If multirouting is expected, 22785 * any non-RTF_MULTIRT ire that has the 22786 * right destination address is ignored. 22787 */ 22788 irb = ire->ire_bucket; 22789 ASSERT(irb != NULL); 22790 22791 IRB_REFHOLD(irb); 22792 for (ire1 = ire->ire_next; 22793 ire1 != NULL; 22794 ire1 = ire1->ire_next) { 22795 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 22796 continue; 22797 if (ire1->ire_addr != ire->ire_addr) 22798 continue; 22799 if (ire1->ire_marks & 22800 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 22801 continue; 22802 22803 /* Got one */ 22804 IRE_REFHOLD(ire1); 22805 break; 22806 } 22807 IRB_REFRELE(irb); 22808 22809 if (ire1 != NULL) { 22810 next_mp = copyb(mp); 22811 if ((next_mp == NULL) || 22812 ((mp->b_cont != NULL) && 22813 ((next_mp->b_cont = 22814 dupmsg(mp->b_cont)) == NULL))) { 22815 freemsg(next_mp); 22816 next_mp = NULL; 22817 ire_refrele(ire1); 22818 ire1 = NULL; 22819 } 22820 } 22821 22822 /* Last multiroute ire; don't loop anymore. */ 22823 if (ire1 == NULL) { 22824 multirt_send = B_FALSE; 22825 } 22826 } 22827 22828 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 22829 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha, 22830 mblk_t *, mp); 22831 FW_HOOKS(ipst->ips_ip4_physical_out_event, 22832 ipst->ips_ipv4firewall_physical_out, 22833 NULL, ire->ire_ipif->ipif_ill, ipha, mp, mp, ipst); 22834 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 22835 if (mp == NULL) 22836 goto release_ire_and_ill; 22837 22838 mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT); 22839 DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire); 22840 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE); 22841 if ((pktxmit_state == SEND_FAILED) || 22842 (pktxmit_state == LLHDR_RESLV_FAILED)) { 22843 ip2dbg(("ip_wput_ire: ip_xmit_v4 failed" 22844 "- packet dropped\n")); 22845 release_ire_and_ill: 22846 ire_refrele(ire); 22847 if (next_mp != NULL) { 22848 freemsg(next_mp); 22849 ire_refrele(ire1); 22850 } 22851 if (conn_outgoing_ill != NULL) 22852 ill_refrele(conn_outgoing_ill); 22853 return; 22854 } 22855 22856 if (CLASSD(dst)) { 22857 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastPkts); 22858 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastOctets, 22859 LENGTH); 22860 } 22861 22862 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22863 "ip_wput_ire_end: q %p (%S)", 22864 q, "last copy out"); 22865 IRE_REFRELE(ire); 22866 22867 if (multirt_send) { 22868 ASSERT(ire1); 22869 /* 22870 * Proceed with the next RTF_MULTIRT ire, 22871 * Also set up the send-to queue accordingly. 22872 */ 22873 ire = ire1; 22874 ire1 = NULL; 22875 stq = ire->ire_stq; 22876 mp = next_mp; 22877 next_mp = NULL; 22878 ipha = (ipha_t *)mp->b_rptr; 22879 ill_index = Q_TO_INDEX(stq); 22880 ill = (ill_t *)stq->q_ptr; 22881 } 22882 } while (multirt_send); 22883 if (conn_outgoing_ill != NULL) 22884 ill_refrele(conn_outgoing_ill); 22885 return; 22886 22887 /* 22888 * ire->ire_type == IRE_BROADCAST (minimize diffs) 22889 */ 22890 broadcast: 22891 { 22892 /* 22893 * Avoid broadcast storms by setting the ttl to 1 22894 * for broadcasts. This parameter can be set 22895 * via ndd, so make sure that for the SO_DONTROUTE 22896 * case that ipha_ttl is always set to 1. 22897 * In the event that we are replying to incoming 22898 * ICMP packets, conn could be NULL. 22899 */ 22900 if ((connp != NULL) && connp->conn_dontroute) 22901 ipha->ipha_ttl = 1; 22902 else 22903 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 22904 22905 /* 22906 * Note that we are not doing a IRB_REFHOLD here. 22907 * Actually we don't care if the list changes i.e 22908 * if somebody deletes an IRE from the list while 22909 * we drop the lock, the next time we come around 22910 * ire_next will be NULL and hence we won't send 22911 * out multiple copies which is fine. 22912 */ 22913 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 22914 ire1 = ire->ire_next; 22915 if (conn_outgoing_ill != NULL) { 22916 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 22917 ASSERT(ire1 == ire->ire_next); 22918 if (ire1 != NULL && ire1->ire_addr == dst) { 22919 ire_refrele(ire); 22920 ire = ire1; 22921 IRE_REFHOLD(ire); 22922 ire1 = ire->ire_next; 22923 continue; 22924 } 22925 rw_exit(&ire->ire_bucket->irb_lock); 22926 /* Did not find a matching ill */ 22927 ip1dbg(("ip_wput_ire: broadcast with no " 22928 "matching IP_BOUND_IF ill %s\n", 22929 conn_outgoing_ill->ill_name)); 22930 freemsg(first_mp); 22931 if (ire != NULL) 22932 ire_refrele(ire); 22933 ill_refrele(conn_outgoing_ill); 22934 return; 22935 } 22936 } else if (ire1 != NULL && ire1->ire_addr == dst) { 22937 /* 22938 * If the next IRE has the same address and is not one 22939 * of the two copies that we need to send, try to see 22940 * whether this copy should be sent at all. This 22941 * assumes that we insert loopbacks first and then 22942 * non-loopbacks. This is acheived by inserting the 22943 * loopback always before non-loopback. 22944 * This is used to send a single copy of a broadcast 22945 * packet out all physical interfaces that have an 22946 * matching IRE_BROADCAST while also looping 22947 * back one copy (to ip_wput_local) for each 22948 * matching physical interface. However, we avoid 22949 * sending packets out different logical that match by 22950 * having ipif_up/ipif_down supress duplicate 22951 * IRE_BROADCASTS. 22952 * 22953 * This feature is currently used to get broadcasts 22954 * sent to multiple interfaces, when the broadcast 22955 * address being used applies to multiple interfaces. 22956 * For example, a whole net broadcast will be 22957 * replicated on every connected subnet of 22958 * the target net. 22959 * 22960 * Each zone has its own set of IRE_BROADCASTs, so that 22961 * we're able to distribute inbound packets to multiple 22962 * zones who share a broadcast address. We avoid looping 22963 * back outbound packets in different zones but on the 22964 * same ill, as the application would see duplicates. 22965 * 22966 * If the interfaces are part of the same group, 22967 * we would want to send only one copy out for 22968 * whole group. 22969 * 22970 * This logic assumes that ire_add_v4() groups the 22971 * IRE_BROADCAST entries so that those with the same 22972 * ire_addr and ill_group are kept together. 22973 */ 22974 ire_ill = ire->ire_ipif->ipif_ill; 22975 if (ire->ire_stq == NULL && ire1->ire_stq != NULL) { 22976 if (ire_ill->ill_group != NULL && 22977 (ire->ire_marks & IRE_MARK_NORECV)) { 22978 /* 22979 * If the current zone only has an ire 22980 * broadcast for this address marked 22981 * NORECV, the ire we want is ahead in 22982 * the bucket, so we look it up 22983 * deliberately ignoring the zoneid. 22984 */ 22985 for (ire1 = ire->ire_bucket->irb_ire; 22986 ire1 != NULL; 22987 ire1 = ire1->ire_next) { 22988 ire1_ill = 22989 ire1->ire_ipif->ipif_ill; 22990 if (ire1->ire_addr != dst) 22991 continue; 22992 /* skip over the current ire */ 22993 if (ire1 == ire) 22994 continue; 22995 /* skip over deleted ires */ 22996 if (ire1->ire_marks & 22997 IRE_MARK_CONDEMNED) 22998 continue; 22999 /* 23000 * non-loopback ire in our 23001 * group: use it for the next 23002 * pass in the loop 23003 */ 23004 if (ire1->ire_stq != NULL && 23005 ire1_ill->ill_group == 23006 ire_ill->ill_group) 23007 break; 23008 } 23009 } 23010 } else { 23011 while (ire1 != NULL && ire1->ire_addr == dst) { 23012 ire1_ill = ire1->ire_ipif->ipif_ill; 23013 /* 23014 * We can have two broadcast ires on the 23015 * same ill in different zones; here 23016 * we'll send a copy of the packet on 23017 * each ill and the fanout code will 23018 * call conn_wantpacket() to check that 23019 * the zone has the broadcast address 23020 * configured on the ill. If the two 23021 * ires are in the same group we only 23022 * send one copy up. 23023 */ 23024 if (ire1_ill != ire_ill && 23025 (ire1_ill->ill_group == NULL || 23026 ire_ill->ill_group == NULL || 23027 ire1_ill->ill_group != 23028 ire_ill->ill_group)) { 23029 break; 23030 } 23031 ire1 = ire1->ire_next; 23032 } 23033 } 23034 } 23035 ASSERT(multirt_send == B_FALSE); 23036 if (ire1 != NULL && ire1->ire_addr == dst) { 23037 if ((ire->ire_flags & RTF_MULTIRT) && 23038 (ire1->ire_flags & RTF_MULTIRT)) { 23039 /* 23040 * We are in the multirouting case. 23041 * The message must be sent at least 23042 * on both ires. These ires have been 23043 * inserted AFTER the standard ones 23044 * in ip_rt_add(). There are thus no 23045 * other ire entries for the destination 23046 * address in the rest of the bucket 23047 * that do not have the RTF_MULTIRT 23048 * flag. We don't process a copy 23049 * of the message here. This will be 23050 * done in the final sending loop. 23051 */ 23052 multirt_send = B_TRUE; 23053 } else { 23054 next_mp = ip_copymsg(first_mp); 23055 if (next_mp != NULL) 23056 IRE_REFHOLD(ire1); 23057 } 23058 } 23059 rw_exit(&ire->ire_bucket->irb_lock); 23060 } 23061 23062 if (stq) { 23063 /* 23064 * A non-NULL send-to queue means this packet is going 23065 * out of this machine. 23066 */ 23067 out_ill = (ill_t *)stq->q_ptr; 23068 23069 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutRequests); 23070 ttl_protocol = ((uint16_t *)ipha)[4]; 23071 /* 23072 * We accumulate the pseudo header checksum in cksum. 23073 * This is pretty hairy code, so watch close. One 23074 * thing to keep in mind is that UDP and TCP have 23075 * stored their respective datagram lengths in their 23076 * checksum fields. This lines things up real nice. 23077 */ 23078 cksum = (dst >> 16) + (dst & 0xFFFF) + 23079 (src >> 16) + (src & 0xFFFF); 23080 /* 23081 * We assume the udp checksum field contains the 23082 * length, so to compute the pseudo header checksum, 23083 * all we need is the protocol number and src/dst. 23084 */ 23085 /* Provide the checksums for UDP and TCP. */ 23086 if ((PROTO == IPPROTO_TCP) && 23087 (ip_hdr_included != IP_HDR_INCLUDED)) { 23088 /* hlen gets the number of uchar_ts in the IP header */ 23089 hlen = (V_HLEN & 0xF) << 2; 23090 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 23091 IP_STAT(ipst, ip_out_sw_cksum); 23092 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 23093 LENGTH - hlen); 23094 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 23095 } else if (PROTO == IPPROTO_SCTP && 23096 (ip_hdr_included != IP_HDR_INCLUDED)) { 23097 sctp_hdr_t *sctph; 23098 23099 hlen = (V_HLEN & 0xF) << 2; 23100 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 23101 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 23102 sctph->sh_chksum = 0; 23103 #ifdef DEBUG 23104 if (!skip_sctp_cksum) 23105 #endif 23106 sctph->sh_chksum = sctp_cksum(mp, hlen); 23107 } else { 23108 queue_t *dev_q = stq->q_next; 23109 23110 if ((dev_q->q_next || dev_q->q_first) && 23111 !canput(dev_q)) { 23112 blocked: 23113 ipha->ipha_ident = ip_hdr_included; 23114 /* 23115 * If we don't have a conn to apply 23116 * backpressure, free the message. 23117 * In the ire_send path, we don't know 23118 * the position to requeue the packet. Rather 23119 * than reorder packets, we just drop this 23120 * packet. 23121 */ 23122 if (ipst->ips_ip_output_queue && 23123 connp != NULL && 23124 caller != IRE_SEND) { 23125 if (caller == IP_WSRV) { 23126 connp->conn_did_putbq = 1; 23127 (void) putbq(connp->conn_wq, 23128 first_mp); 23129 conn_drain_insert(connp); 23130 /* 23131 * This is the service thread, 23132 * and the queue is already 23133 * noenabled. The check for 23134 * canput and the putbq is not 23135 * atomic. So we need to check 23136 * again. 23137 */ 23138 if (canput(stq->q_next)) 23139 connp->conn_did_putbq 23140 = 0; 23141 IP_STAT(ipst, ip_conn_flputbq); 23142 } else { 23143 /* 23144 * We are not the service proc. 23145 * ip_wsrv will be scheduled or 23146 * is already running. 23147 */ 23148 (void) putq(connp->conn_wq, 23149 first_mp); 23150 } 23151 } else { 23152 out_ill = (ill_t *)stq->q_ptr; 23153 BUMP_MIB(out_ill->ill_ip_mib, 23154 ipIfStatsOutDiscards); 23155 freemsg(first_mp); 23156 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23157 "ip_wput_ire_end: q %p (%S)", 23158 q, "discard"); 23159 } 23160 ire_refrele(ire); 23161 if (next_mp) { 23162 ire_refrele(ire1); 23163 freemsg(next_mp); 23164 } 23165 if (conn_outgoing_ill != NULL) 23166 ill_refrele(conn_outgoing_ill); 23167 return; 23168 } 23169 if ((PROTO == IPPROTO_UDP) && 23170 (ip_hdr_included != IP_HDR_INCLUDED)) { 23171 /* 23172 * hlen gets the number of uchar_ts in the 23173 * IP header 23174 */ 23175 hlen = (V_HLEN & 0xF) << 2; 23176 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 23177 max_frag = ire->ire_max_frag; 23178 if (*up != 0) { 23179 IP_CKSUM_XMIT(ire_ill, ire, mp, ipha, 23180 up, PROTO, hlen, LENGTH, max_frag, 23181 ipsec_len, cksum); 23182 /* Software checksum? */ 23183 if (DB_CKSUMFLAGS(mp) == 0) { 23184 IP_STAT(ipst, ip_out_sw_cksum); 23185 IP_STAT_UPDATE(ipst, 23186 ip_udp_out_sw_cksum_bytes, 23187 LENGTH - hlen); 23188 } 23189 } 23190 } 23191 } 23192 /* 23193 * Need to do this even when fragmenting. The local 23194 * loopback can be done without computing checksums 23195 * but forwarding out other interface must be done 23196 * after the IP checksum (and ULP checksums) have been 23197 * computed. 23198 * 23199 * NOTE : multicast_forward is set only if this packet 23200 * originated from ip_wput. For packets originating from 23201 * ip_wput_multicast, it is not set. 23202 */ 23203 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 23204 multi_loopback: 23205 ip2dbg(("ip_wput: multicast, loop %d\n", 23206 conn_multicast_loop)); 23207 23208 /* Forget header checksum offload */ 23209 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 23210 23211 /* 23212 * Local loopback of multicasts? Check the 23213 * ill. 23214 * 23215 * Note that the loopback function will not come 23216 * in through ip_rput - it will only do the 23217 * client fanout thus we need to do an mforward 23218 * as well. The is different from the BSD 23219 * logic. 23220 */ 23221 if (ill != NULL) { 23222 ilm_t *ilm; 23223 23224 ILM_WALKER_HOLD(ill); 23225 ilm = ilm_lookup_ill(ill, ipha->ipha_dst, 23226 ALL_ZONES); 23227 ILM_WALKER_RELE(ill); 23228 if (ilm != NULL) { 23229 /* 23230 * Pass along the virtual output q. 23231 * ip_wput_local() will distribute the 23232 * packet to all the matching zones, 23233 * except the sending zone when 23234 * IP_MULTICAST_LOOP is false. 23235 */ 23236 ip_multicast_loopback(q, ill, first_mp, 23237 conn_multicast_loop ? 0 : 23238 IP_FF_NO_MCAST_LOOP, zoneid); 23239 } 23240 } 23241 if (ipha->ipha_ttl == 0) { 23242 /* 23243 * 0 => only to this host i.e. we are 23244 * done. We are also done if this was the 23245 * loopback interface since it is sufficient 23246 * to loopback one copy of a multicast packet. 23247 */ 23248 freemsg(first_mp); 23249 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23250 "ip_wput_ire_end: q %p (%S)", 23251 q, "loopback"); 23252 ire_refrele(ire); 23253 if (conn_outgoing_ill != NULL) 23254 ill_refrele(conn_outgoing_ill); 23255 return; 23256 } 23257 /* 23258 * ILLF_MULTICAST is checked in ip_newroute 23259 * i.e. we don't need to check it here since 23260 * all IRE_CACHEs come from ip_newroute. 23261 * For multicast traffic, SO_DONTROUTE is interpreted 23262 * to mean only send the packet out the interface 23263 * (optionally specified with IP_MULTICAST_IF) 23264 * and do not forward it out additional interfaces. 23265 * RSVP and the rsvp daemon is an example of a 23266 * protocol and user level process that 23267 * handles it's own routing. Hence, it uses the 23268 * SO_DONTROUTE option to accomplish this. 23269 */ 23270 23271 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 23272 ill != NULL) { 23273 /* Unconditionally redo the checksum */ 23274 ipha->ipha_hdr_checksum = 0; 23275 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23276 23277 /* 23278 * If this needs to go out secure, we need 23279 * to wait till we finish the IPSEC 23280 * processing. 23281 */ 23282 if (ipsec_len == 0 && 23283 ip_mforward(ill, ipha, mp)) { 23284 freemsg(first_mp); 23285 ip1dbg(("ip_wput: mforward failed\n")); 23286 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23287 "ip_wput_ire_end: q %p (%S)", 23288 q, "mforward failed"); 23289 ire_refrele(ire); 23290 if (conn_outgoing_ill != NULL) 23291 ill_refrele(conn_outgoing_ill); 23292 return; 23293 } 23294 } 23295 } 23296 max_frag = ire->ire_max_frag; 23297 cksum += ttl_protocol; 23298 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 23299 /* No fragmentation required for this one. */ 23300 /* 23301 * Don't use frag_flag if packet is pre-built or source 23302 * routed or if multicast (since multicast packets do 23303 * not solicit ICMP "packet too big" messages). 23304 */ 23305 if ((ip_hdr_included != IP_HDR_INCLUDED) && 23306 (V_HLEN == IP_SIMPLE_HDR_VERSION || 23307 !ip_source_route_included(ipha)) && 23308 !CLASSD(ipha->ipha_dst)) 23309 ipha->ipha_fragment_offset_and_flags |= 23310 htons(ire->ire_frag_flag); 23311 23312 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 23313 /* Complete the IP header checksum. */ 23314 cksum += ipha->ipha_ident; 23315 cksum += (v_hlen_tos_len >> 16)+ 23316 (v_hlen_tos_len & 0xFFFF); 23317 cksum += ipha->ipha_fragment_offset_and_flags; 23318 hlen = (V_HLEN & 0xF) - 23319 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 23320 if (hlen) { 23321 checksumoptions: 23322 /* 23323 * Account for the IP Options in the IP 23324 * header checksum. 23325 */ 23326 up = (uint16_t *)(rptr+ 23327 IP_SIMPLE_HDR_LENGTH); 23328 do { 23329 cksum += up[0]; 23330 cksum += up[1]; 23331 up += 2; 23332 } while (--hlen); 23333 } 23334 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 23335 cksum = ~(cksum + (cksum >> 16)); 23336 ipha->ipha_hdr_checksum = (uint16_t)cksum; 23337 } 23338 if (ipsec_len != 0) { 23339 ipsec_out_process(q, first_mp, ire, ill_index); 23340 if (!next_mp) { 23341 ire_refrele(ire); 23342 if (conn_outgoing_ill != NULL) 23343 ill_refrele(conn_outgoing_ill); 23344 return; 23345 } 23346 goto next; 23347 } 23348 23349 /* 23350 * multirt_send has already been handled 23351 * for broadcast, but not yet for multicast 23352 * or IP options. 23353 */ 23354 if (next_mp == NULL) { 23355 if (ire->ire_flags & RTF_MULTIRT) { 23356 multirt_send = B_TRUE; 23357 } 23358 } 23359 23360 /* 23361 * In most cases, the emission loop below is 23362 * entered only once. Only in the case where 23363 * the ire holds the RTF_MULTIRT flag, do we loop 23364 * to process all RTF_MULTIRT ires in the bucket, 23365 * and send the packet through all crossed 23366 * RTF_MULTIRT routes. 23367 */ 23368 do { 23369 if (multirt_send) { 23370 irb_t *irb; 23371 23372 irb = ire->ire_bucket; 23373 ASSERT(irb != NULL); 23374 /* 23375 * We are in a multiple send case, 23376 * need to get the next IRE and make 23377 * a duplicate of the packet. 23378 */ 23379 IRB_REFHOLD(irb); 23380 for (ire1 = ire->ire_next; 23381 ire1 != NULL; 23382 ire1 = ire1->ire_next) { 23383 if (!(ire1->ire_flags & 23384 RTF_MULTIRT)) { 23385 continue; 23386 } 23387 if (ire1->ire_addr != 23388 ire->ire_addr) { 23389 continue; 23390 } 23391 if (ire1->ire_marks & 23392 (IRE_MARK_CONDEMNED| 23393 IRE_MARK_HIDDEN)) { 23394 continue; 23395 } 23396 23397 /* Got one */ 23398 IRE_REFHOLD(ire1); 23399 break; 23400 } 23401 IRB_REFRELE(irb); 23402 23403 if (ire1 != NULL) { 23404 next_mp = copyb(mp); 23405 if ((next_mp == NULL) || 23406 ((mp->b_cont != NULL) && 23407 ((next_mp->b_cont = 23408 dupmsg(mp->b_cont)) 23409 == NULL))) { 23410 freemsg(next_mp); 23411 next_mp = NULL; 23412 ire_refrele(ire1); 23413 ire1 = NULL; 23414 } 23415 } 23416 23417 /* 23418 * Last multiroute ire; don't loop 23419 * anymore. The emission is over 23420 * and next_mp is NULL. 23421 */ 23422 if (ire1 == NULL) { 23423 multirt_send = B_FALSE; 23424 } 23425 } 23426 23427 out_ill = ire->ire_ipif->ipif_ill; 23428 DTRACE_PROBE4(ip4__physical__out__start, 23429 ill_t *, NULL, 23430 ill_t *, out_ill, 23431 ipha_t *, ipha, mblk_t *, mp); 23432 FW_HOOKS(ipst->ips_ip4_physical_out_event, 23433 ipst->ips_ipv4firewall_physical_out, 23434 NULL, out_ill, ipha, mp, mp, ipst); 23435 DTRACE_PROBE1(ip4__physical__out__end, 23436 mblk_t *, mp); 23437 if (mp == NULL) 23438 goto release_ire_and_ill_2; 23439 23440 ASSERT(ipsec_len == 0); 23441 mp->b_prev = 23442 SET_BPREV_FLAG(IPP_LOCAL_OUT); 23443 DTRACE_PROBE2(ip__xmit__2, 23444 mblk_t *, mp, ire_t *, ire); 23445 pktxmit_state = ip_xmit_v4(mp, ire, 23446 NULL, B_TRUE); 23447 if ((pktxmit_state == SEND_FAILED) || 23448 (pktxmit_state == LLHDR_RESLV_FAILED)) { 23449 release_ire_and_ill_2: 23450 if (next_mp) { 23451 freemsg(next_mp); 23452 ire_refrele(ire1); 23453 } 23454 ire_refrele(ire); 23455 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23456 "ip_wput_ire_end: q %p (%S)", 23457 q, "discard MDATA"); 23458 if (conn_outgoing_ill != NULL) 23459 ill_refrele(conn_outgoing_ill); 23460 return; 23461 } 23462 23463 if (CLASSD(dst)) { 23464 BUMP_MIB(out_ill->ill_ip_mib, 23465 ipIfStatsHCOutMcastPkts); 23466 UPDATE_MIB(out_ill->ill_ip_mib, 23467 ipIfStatsHCOutMcastOctets, 23468 LENGTH); 23469 } else if (ire->ire_type == IRE_BROADCAST) { 23470 BUMP_MIB(out_ill->ill_ip_mib, 23471 ipIfStatsHCOutBcastPkts); 23472 } 23473 23474 if (multirt_send) { 23475 /* 23476 * We are in a multiple send case, 23477 * need to re-enter the sending loop 23478 * using the next ire. 23479 */ 23480 ire_refrele(ire); 23481 ire = ire1; 23482 stq = ire->ire_stq; 23483 mp = next_mp; 23484 next_mp = NULL; 23485 ipha = (ipha_t *)mp->b_rptr; 23486 ill_index = Q_TO_INDEX(stq); 23487 } 23488 } while (multirt_send); 23489 23490 if (!next_mp) { 23491 /* 23492 * Last copy going out (the ultra-common 23493 * case). Note that we intentionally replicate 23494 * the putnext rather than calling it before 23495 * the next_mp check in hopes of a little 23496 * tail-call action out of the compiler. 23497 */ 23498 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23499 "ip_wput_ire_end: q %p (%S)", 23500 q, "last copy out(1)"); 23501 ire_refrele(ire); 23502 if (conn_outgoing_ill != NULL) 23503 ill_refrele(conn_outgoing_ill); 23504 return; 23505 } 23506 /* More copies going out below. */ 23507 } else { 23508 int offset; 23509 fragmentit: 23510 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 23511 /* 23512 * If this would generate a icmp_frag_needed message, 23513 * we need to handle it before we do the IPSEC 23514 * processing. Otherwise, we need to strip the IPSEC 23515 * headers before we send up the message to the ULPs 23516 * which becomes messy and difficult. 23517 */ 23518 if (ipsec_len != 0) { 23519 if ((max_frag < (unsigned int)(LENGTH + 23520 ipsec_len)) && (offset & IPH_DF)) { 23521 out_ill = (ill_t *)stq->q_ptr; 23522 BUMP_MIB(out_ill->ill_ip_mib, 23523 ipIfStatsOutFragFails); 23524 BUMP_MIB(out_ill->ill_ip_mib, 23525 ipIfStatsOutFragReqds); 23526 ipha->ipha_hdr_checksum = 0; 23527 ipha->ipha_hdr_checksum = 23528 (uint16_t)ip_csum_hdr(ipha); 23529 icmp_frag_needed(ire->ire_stq, first_mp, 23530 max_frag, zoneid, ipst); 23531 if (!next_mp) { 23532 ire_refrele(ire); 23533 if (conn_outgoing_ill != NULL) { 23534 ill_refrele( 23535 conn_outgoing_ill); 23536 } 23537 return; 23538 } 23539 } else { 23540 /* 23541 * This won't cause a icmp_frag_needed 23542 * message. to be generated. Send it on 23543 * the wire. Note that this could still 23544 * cause fragmentation and all we 23545 * do is the generation of the message 23546 * to the ULP if needed before IPSEC. 23547 */ 23548 if (!next_mp) { 23549 ipsec_out_process(q, first_mp, 23550 ire, ill_index); 23551 TRACE_2(TR_FAC_IP, 23552 TR_IP_WPUT_IRE_END, 23553 "ip_wput_ire_end: q %p " 23554 "(%S)", q, 23555 "last ipsec_out_process"); 23556 ire_refrele(ire); 23557 if (conn_outgoing_ill != NULL) { 23558 ill_refrele( 23559 conn_outgoing_ill); 23560 } 23561 return; 23562 } 23563 ipsec_out_process(q, first_mp, 23564 ire, ill_index); 23565 } 23566 } else { 23567 /* 23568 * Initiate IPPF processing. For 23569 * fragmentable packets we finish 23570 * all QOS packet processing before 23571 * calling: 23572 * ip_wput_ire_fragmentit->ip_wput_frag 23573 */ 23574 23575 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23576 ip_process(IPP_LOCAL_OUT, &mp, 23577 ill_index); 23578 if (mp == NULL) { 23579 out_ill = (ill_t *)stq->q_ptr; 23580 BUMP_MIB(out_ill->ill_ip_mib, 23581 ipIfStatsOutDiscards); 23582 if (next_mp != NULL) { 23583 freemsg(next_mp); 23584 ire_refrele(ire1); 23585 } 23586 ire_refrele(ire); 23587 TRACE_2(TR_FAC_IP, 23588 TR_IP_WPUT_IRE_END, 23589 "ip_wput_ire: q %p (%S)", 23590 q, "discard MDATA"); 23591 if (conn_outgoing_ill != NULL) { 23592 ill_refrele( 23593 conn_outgoing_ill); 23594 } 23595 return; 23596 } 23597 } 23598 if (!next_mp) { 23599 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23600 "ip_wput_ire_end: q %p (%S)", 23601 q, "last fragmentation"); 23602 ip_wput_ire_fragmentit(mp, ire, 23603 zoneid, ipst); 23604 ire_refrele(ire); 23605 if (conn_outgoing_ill != NULL) 23606 ill_refrele(conn_outgoing_ill); 23607 return; 23608 } 23609 ip_wput_ire_fragmentit(mp, ire, zoneid, ipst); 23610 } 23611 } 23612 } else { 23613 nullstq: 23614 /* A NULL stq means the destination address is local. */ 23615 UPDATE_OB_PKT_COUNT(ire); 23616 ire->ire_last_used_time = lbolt; 23617 ASSERT(ire->ire_ipif != NULL); 23618 if (!next_mp) { 23619 /* 23620 * Is there an "in" and "out" for traffic local 23621 * to a host (loopback)? The code in Solaris doesn't 23622 * explicitly draw a line in its code for in vs out, 23623 * so we've had to draw a line in the sand: ip_wput_ire 23624 * is considered to be the "output" side and 23625 * ip_wput_local to be the "input" side. 23626 */ 23627 out_ill = ire->ire_ipif->ipif_ill; 23628 23629 DTRACE_PROBE4(ip4__loopback__out__start, 23630 ill_t *, NULL, ill_t *, out_ill, 23631 ipha_t *, ipha, mblk_t *, first_mp); 23632 23633 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23634 ipst->ips_ipv4firewall_loopback_out, 23635 NULL, out_ill, ipha, first_mp, mp, ipst); 23636 23637 DTRACE_PROBE1(ip4__loopback__out_end, 23638 mblk_t *, first_mp); 23639 23640 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23641 "ip_wput_ire_end: q %p (%S)", 23642 q, "local address"); 23643 23644 if (first_mp != NULL) 23645 ip_wput_local(q, out_ill, ipha, 23646 first_mp, ire, 0, ire->ire_zoneid); 23647 ire_refrele(ire); 23648 if (conn_outgoing_ill != NULL) 23649 ill_refrele(conn_outgoing_ill); 23650 return; 23651 } 23652 23653 out_ill = ire->ire_ipif->ipif_ill; 23654 23655 DTRACE_PROBE4(ip4__loopback__out__start, 23656 ill_t *, NULL, ill_t *, out_ill, 23657 ipha_t *, ipha, mblk_t *, first_mp); 23658 23659 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23660 ipst->ips_ipv4firewall_loopback_out, 23661 NULL, out_ill, ipha, first_mp, mp, ipst); 23662 23663 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, first_mp); 23664 23665 if (first_mp != NULL) 23666 ip_wput_local(q, out_ill, ipha, 23667 first_mp, ire, 0, ire->ire_zoneid); 23668 } 23669 next: 23670 /* 23671 * More copies going out to additional interfaces. 23672 * ire1 has already been held. We don't need the 23673 * "ire" anymore. 23674 */ 23675 ire_refrele(ire); 23676 ire = ire1; 23677 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 23678 mp = next_mp; 23679 ASSERT(ire->ire_ipversion == IPV4_VERSION); 23680 ill = ire_to_ill(ire); 23681 first_mp = mp; 23682 if (ipsec_len != 0) { 23683 ASSERT(first_mp->b_datap->db_type == M_CTL); 23684 mp = mp->b_cont; 23685 } 23686 dst = ire->ire_addr; 23687 ipha = (ipha_t *)mp->b_rptr; 23688 /* 23689 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 23690 * Restore ipha_ident "no checksum" flag. 23691 */ 23692 src = orig_src; 23693 ipha->ipha_ident = ip_hdr_included; 23694 goto another; 23695 23696 #undef rptr 23697 #undef Q_TO_INDEX 23698 } 23699 23700 /* 23701 * Routine to allocate a message that is used to notify the ULP about MDT. 23702 * The caller may provide a pointer to the link-layer MDT capabilities, 23703 * or NULL if MDT is to be disabled on the stream. 23704 */ 23705 mblk_t * 23706 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 23707 { 23708 mblk_t *mp; 23709 ip_mdt_info_t *mdti; 23710 ill_mdt_capab_t *idst; 23711 23712 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 23713 DB_TYPE(mp) = M_CTL; 23714 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 23715 mdti = (ip_mdt_info_t *)mp->b_rptr; 23716 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 23717 idst = &(mdti->mdt_capab); 23718 23719 /* 23720 * If the caller provides us with the capability, copy 23721 * it over into our notification message; otherwise 23722 * we zero out the capability portion. 23723 */ 23724 if (isrc != NULL) 23725 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23726 else 23727 bzero((caddr_t)idst, sizeof (*idst)); 23728 } 23729 return (mp); 23730 } 23731 23732 /* 23733 * Routine which determines whether MDT can be enabled on the destination 23734 * IRE and IPC combination, and if so, allocates and returns the MDT 23735 * notification mblk that may be used by ULP. We also check if we need to 23736 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 23737 * MDT usage in the past have been lifted. This gets called during IP 23738 * and ULP binding. 23739 */ 23740 mblk_t * 23741 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23742 ill_mdt_capab_t *mdt_cap) 23743 { 23744 mblk_t *mp; 23745 boolean_t rc = B_FALSE; 23746 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23747 23748 ASSERT(dst_ire != NULL); 23749 ASSERT(connp != NULL); 23750 ASSERT(mdt_cap != NULL); 23751 23752 /* 23753 * Currently, we only support simple TCP/{IPv4,IPv6} with 23754 * Multidata, which is handled in tcp_multisend(). This 23755 * is the reason why we do all these checks here, to ensure 23756 * that we don't enable Multidata for the cases which we 23757 * can't handle at the moment. 23758 */ 23759 do { 23760 /* Only do TCP at the moment */ 23761 if (connp->conn_ulp != IPPROTO_TCP) 23762 break; 23763 23764 /* 23765 * IPSEC outbound policy present? Note that we get here 23766 * after calling ipsec_conn_cache_policy() where the global 23767 * policy checking is performed. conn_latch will be 23768 * non-NULL as long as there's a policy defined, 23769 * i.e. conn_out_enforce_policy may be NULL in such case 23770 * when the connection is non-secure, and hence we check 23771 * further if the latch refers to an outbound policy. 23772 */ 23773 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 23774 break; 23775 23776 /* CGTP (multiroute) is enabled? */ 23777 if (dst_ire->ire_flags & RTF_MULTIRT) 23778 break; 23779 23780 /* Outbound IPQoS enabled? */ 23781 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23782 /* 23783 * In this case, we disable MDT for this and all 23784 * future connections going over the interface. 23785 */ 23786 mdt_cap->ill_mdt_on = 0; 23787 break; 23788 } 23789 23790 /* socket option(s) present? */ 23791 if (!CONN_IS_LSO_MD_FASTPATH(connp)) 23792 break; 23793 23794 rc = B_TRUE; 23795 /* CONSTCOND */ 23796 } while (0); 23797 23798 /* Remember the result */ 23799 connp->conn_mdt_ok = rc; 23800 23801 if (!rc) 23802 return (NULL); 23803 else if (!mdt_cap->ill_mdt_on) { 23804 /* 23805 * If MDT has been previously turned off in the past, and we 23806 * currently can do MDT (due to IPQoS policy removal, etc.) 23807 * then enable it for this interface. 23808 */ 23809 mdt_cap->ill_mdt_on = 1; 23810 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 23811 "interface %s\n", ill_name)); 23812 } 23813 23814 /* Allocate the MDT info mblk */ 23815 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 23816 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 23817 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23818 return (NULL); 23819 } 23820 return (mp); 23821 } 23822 23823 /* 23824 * Routine to allocate a message that is used to notify the ULP about LSO. 23825 * The caller may provide a pointer to the link-layer LSO capabilities, 23826 * or NULL if LSO is to be disabled on the stream. 23827 */ 23828 mblk_t * 23829 ip_lsoinfo_alloc(ill_lso_capab_t *isrc) 23830 { 23831 mblk_t *mp; 23832 ip_lso_info_t *lsoi; 23833 ill_lso_capab_t *idst; 23834 23835 if ((mp = allocb(sizeof (*lsoi), BPRI_HI)) != NULL) { 23836 DB_TYPE(mp) = M_CTL; 23837 mp->b_wptr = mp->b_rptr + sizeof (*lsoi); 23838 lsoi = (ip_lso_info_t *)mp->b_rptr; 23839 lsoi->lso_info_id = LSO_IOC_INFO_UPDATE; 23840 idst = &(lsoi->lso_capab); 23841 23842 /* 23843 * If the caller provides us with the capability, copy 23844 * it over into our notification message; otherwise 23845 * we zero out the capability portion. 23846 */ 23847 if (isrc != NULL) 23848 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23849 else 23850 bzero((caddr_t)idst, sizeof (*idst)); 23851 } 23852 return (mp); 23853 } 23854 23855 /* 23856 * Routine which determines whether LSO can be enabled on the destination 23857 * IRE and IPC combination, and if so, allocates and returns the LSO 23858 * notification mblk that may be used by ULP. We also check if we need to 23859 * turn LSO back to 'on' when certain restrictions prohibiting us to allow 23860 * LSO usage in the past have been lifted. This gets called during IP 23861 * and ULP binding. 23862 */ 23863 mblk_t * 23864 ip_lsoinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23865 ill_lso_capab_t *lso_cap) 23866 { 23867 mblk_t *mp; 23868 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23869 23870 ASSERT(dst_ire != NULL); 23871 ASSERT(connp != NULL); 23872 ASSERT(lso_cap != NULL); 23873 23874 connp->conn_lso_ok = B_TRUE; 23875 23876 if ((connp->conn_ulp != IPPROTO_TCP) || 23877 CONN_IPSEC_OUT_ENCAPSULATED(connp) || 23878 (dst_ire->ire_flags & RTF_MULTIRT) || 23879 !CONN_IS_LSO_MD_FASTPATH(connp) || 23880 (IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 23881 connp->conn_lso_ok = B_FALSE; 23882 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23883 /* 23884 * Disable LSO for this and all future connections going 23885 * over the interface. 23886 */ 23887 lso_cap->ill_lso_on = 0; 23888 } 23889 } 23890 23891 if (!connp->conn_lso_ok) 23892 return (NULL); 23893 else if (!lso_cap->ill_lso_on) { 23894 /* 23895 * If LSO has been previously turned off in the past, and we 23896 * currently can do LSO (due to IPQoS policy removal, etc.) 23897 * then enable it for this interface. 23898 */ 23899 lso_cap->ill_lso_on = 1; 23900 ip1dbg(("ip_mdinfo_return: reenabling LSO for interface %s\n", 23901 ill_name)); 23902 } 23903 23904 /* Allocate the LSO info mblk */ 23905 if ((mp = ip_lsoinfo_alloc(lso_cap)) == NULL) 23906 ip0dbg(("ip_lsoinfo_return: can't enable LSO for " 23907 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23908 23909 return (mp); 23910 } 23911 23912 /* 23913 * Create destination address attribute, and fill it with the physical 23914 * destination address and SAP taken from the template DL_UNITDATA_REQ 23915 * message block. 23916 */ 23917 boolean_t 23918 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 23919 { 23920 dl_unitdata_req_t *dlurp; 23921 pattr_t *pa; 23922 pattrinfo_t pa_info; 23923 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 23924 uint_t das_len, das_off; 23925 23926 ASSERT(dlmp != NULL); 23927 23928 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 23929 das_len = dlurp->dl_dest_addr_length; 23930 das_off = dlurp->dl_dest_addr_offset; 23931 23932 pa_info.type = PATTR_DSTADDRSAP; 23933 pa_info.len = sizeof (**das) + das_len - 1; 23934 23935 /* create and associate the attribute */ 23936 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23937 if (pa != NULL) { 23938 ASSERT(*das != NULL); 23939 (*das)->addr_is_group = 0; 23940 (*das)->addr_len = (uint8_t)das_len; 23941 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 23942 } 23943 23944 return (pa != NULL); 23945 } 23946 23947 /* 23948 * Create hardware checksum attribute and fill it with the values passed. 23949 */ 23950 boolean_t 23951 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 23952 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 23953 { 23954 pattr_t *pa; 23955 pattrinfo_t pa_info; 23956 23957 ASSERT(mmd != NULL); 23958 23959 pa_info.type = PATTR_HCKSUM; 23960 pa_info.len = sizeof (pattr_hcksum_t); 23961 23962 /* create and associate the attribute */ 23963 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23964 if (pa != NULL) { 23965 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 23966 23967 hck->hcksum_start_offset = start_offset; 23968 hck->hcksum_stuff_offset = stuff_offset; 23969 hck->hcksum_end_offset = end_offset; 23970 hck->hcksum_flags = flags; 23971 } 23972 return (pa != NULL); 23973 } 23974 23975 /* 23976 * Create zerocopy attribute and fill it with the specified flags 23977 */ 23978 boolean_t 23979 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 23980 { 23981 pattr_t *pa; 23982 pattrinfo_t pa_info; 23983 23984 ASSERT(mmd != NULL); 23985 pa_info.type = PATTR_ZCOPY; 23986 pa_info.len = sizeof (pattr_zcopy_t); 23987 23988 /* create and associate the attribute */ 23989 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23990 if (pa != NULL) { 23991 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 23992 23993 zcopy->zcopy_flags = flags; 23994 } 23995 return (pa != NULL); 23996 } 23997 23998 /* 23999 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 24000 * block chain. We could rewrite to handle arbitrary message block chains but 24001 * that would make the code complicated and slow. Right now there three 24002 * restrictions: 24003 * 24004 * 1. The first message block must contain the complete IP header and 24005 * at least 1 byte of payload data. 24006 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 24007 * so that we can use a single Multidata message. 24008 * 3. No frag must be distributed over two or more message blocks so 24009 * that we don't need more than two packet descriptors per frag. 24010 * 24011 * The above restrictions allow us to support userland applications (which 24012 * will send down a single message block) and NFS over UDP (which will 24013 * send down a chain of at most three message blocks). 24014 * 24015 * We also don't use MDT for payloads with less than or equal to 24016 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 24017 */ 24018 boolean_t 24019 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 24020 { 24021 int blocks; 24022 ssize_t total, missing, size; 24023 24024 ASSERT(mp != NULL); 24025 ASSERT(hdr_len > 0); 24026 24027 size = MBLKL(mp) - hdr_len; 24028 if (size <= 0) 24029 return (B_FALSE); 24030 24031 /* The first mblk contains the header and some payload. */ 24032 blocks = 1; 24033 total = size; 24034 size %= len; 24035 missing = (size == 0) ? 0 : (len - size); 24036 mp = mp->b_cont; 24037 24038 while (mp != NULL) { 24039 /* 24040 * Give up if we encounter a zero length message block. 24041 * In practice, this should rarely happen and therefore 24042 * not worth the trouble of freeing and re-linking the 24043 * mblk from the chain to handle such case. 24044 */ 24045 if ((size = MBLKL(mp)) == 0) 24046 return (B_FALSE); 24047 24048 /* Too many payload buffers for a single Multidata message? */ 24049 if (++blocks > MULTIDATA_MAX_PBUFS) 24050 return (B_FALSE); 24051 24052 total += size; 24053 /* Is a frag distributed over two or more message blocks? */ 24054 if (missing > size) 24055 return (B_FALSE); 24056 size -= missing; 24057 24058 size %= len; 24059 missing = (size == 0) ? 0 : (len - size); 24060 24061 mp = mp->b_cont; 24062 } 24063 24064 return (total > ip_wput_frag_mdt_min); 24065 } 24066 24067 /* 24068 * Outbound IPv4 fragmentation routine using MDT. 24069 */ 24070 static void 24071 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 24072 uint32_t frag_flag, int offset) 24073 { 24074 ipha_t *ipha_orig; 24075 int i1, ip_data_end; 24076 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 24077 mblk_t *hdr_mp, *md_mp = NULL; 24078 unsigned char *hdr_ptr, *pld_ptr; 24079 multidata_t *mmd; 24080 ip_pdescinfo_t pdi; 24081 ill_t *ill; 24082 ip_stack_t *ipst = ire->ire_ipst; 24083 24084 ASSERT(DB_TYPE(mp) == M_DATA); 24085 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 24086 24087 ill = ire_to_ill(ire); 24088 ASSERT(ill != NULL); 24089 24090 ipha_orig = (ipha_t *)mp->b_rptr; 24091 mp->b_rptr += sizeof (ipha_t); 24092 24093 /* Calculate how many packets we will send out */ 24094 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 24095 pkts = (i1 + len - 1) / len; 24096 ASSERT(pkts > 1); 24097 24098 /* Allocate a message block which will hold all the IP Headers. */ 24099 wroff = ipst->ips_ip_wroff_extra; 24100 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 24101 24102 i1 = pkts * hdr_chunk_len; 24103 /* 24104 * Create the header buffer, Multidata and destination address 24105 * and SAP attribute that should be associated with it. 24106 */ 24107 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 24108 ((hdr_mp->b_wptr += i1), 24109 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 24110 !ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) { 24111 freemsg(mp); 24112 if (md_mp == NULL) { 24113 freemsg(hdr_mp); 24114 } else { 24115 free_mmd: IP_STAT(ipst, ip_frag_mdt_discarded); 24116 freemsg(md_mp); 24117 } 24118 IP_STAT(ipst, ip_frag_mdt_allocfail); 24119 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 24120 return; 24121 } 24122 IP_STAT(ipst, ip_frag_mdt_allocd); 24123 24124 /* 24125 * Add a payload buffer to the Multidata; this operation must not 24126 * fail, or otherwise our logic in this routine is broken. There 24127 * is no memory allocation done by the routine, so any returned 24128 * failure simply tells us that we've done something wrong. 24129 * 24130 * A failure tells us that either we're adding the same payload 24131 * buffer more than once, or we're trying to add more buffers than 24132 * allowed. None of the above cases should happen, and we panic 24133 * because either there's horrible heap corruption, and/or 24134 * programming mistake. 24135 */ 24136 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24137 goto pbuf_panic; 24138 24139 hdr_ptr = hdr_mp->b_rptr; 24140 pld_ptr = mp->b_rptr; 24141 24142 /* Establish the ending byte offset, based on the starting offset. */ 24143 offset <<= 3; 24144 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 24145 IP_SIMPLE_HDR_LENGTH; 24146 24147 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 24148 24149 while (pld_ptr < mp->b_wptr) { 24150 ipha_t *ipha; 24151 uint16_t offset_and_flags; 24152 uint16_t ip_len; 24153 int error; 24154 24155 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 24156 ipha = (ipha_t *)(hdr_ptr + wroff); 24157 ASSERT(OK_32PTR(ipha)); 24158 *ipha = *ipha_orig; 24159 24160 if (ip_data_end - offset > len) { 24161 offset_and_flags = IPH_MF; 24162 } else { 24163 /* 24164 * Last frag. Set len to the length of this last piece. 24165 */ 24166 len = ip_data_end - offset; 24167 /* A frag of a frag might have IPH_MF non-zero */ 24168 offset_and_flags = 24169 ntohs(ipha->ipha_fragment_offset_and_flags) & 24170 IPH_MF; 24171 } 24172 offset_and_flags |= (uint16_t)(offset >> 3); 24173 offset_and_flags |= (uint16_t)frag_flag; 24174 /* Store the offset and flags in the IP header. */ 24175 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24176 24177 /* Store the length in the IP header. */ 24178 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 24179 ipha->ipha_length = htons(ip_len); 24180 24181 /* 24182 * Set the IP header checksum. Note that mp is just 24183 * the header, so this is easy to pass to ip_csum. 24184 */ 24185 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24186 24187 /* 24188 * Record offset and size of header and data of the next packet 24189 * in the multidata message. 24190 */ 24191 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 24192 PDESC_PLD_INIT(&pdi); 24193 i1 = MIN(mp->b_wptr - pld_ptr, len); 24194 ASSERT(i1 > 0); 24195 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 24196 if (i1 == len) { 24197 pld_ptr += len; 24198 } else { 24199 i1 = len - i1; 24200 mp = mp->b_cont; 24201 ASSERT(mp != NULL); 24202 ASSERT(MBLKL(mp) >= i1); 24203 /* 24204 * Attach the next payload message block to the 24205 * multidata message. 24206 */ 24207 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24208 goto pbuf_panic; 24209 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 24210 pld_ptr = mp->b_rptr + i1; 24211 } 24212 24213 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 24214 KM_NOSLEEP)) == NULL) { 24215 /* 24216 * Any failure other than ENOMEM indicates that we 24217 * have passed in invalid pdesc info or parameters 24218 * to mmd_addpdesc, which must not happen. 24219 * 24220 * EINVAL is a result of failure on boundary checks 24221 * against the pdesc info contents. It should not 24222 * happen, and we panic because either there's 24223 * horrible heap corruption, and/or programming 24224 * mistake. 24225 */ 24226 if (error != ENOMEM) { 24227 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 24228 "pdesc logic error detected for " 24229 "mmd %p pinfo %p (%d)\n", 24230 (void *)mmd, (void *)&pdi, error); 24231 /* NOTREACHED */ 24232 } 24233 IP_STAT(ipst, ip_frag_mdt_addpdescfail); 24234 /* Free unattached payload message blocks as well */ 24235 md_mp->b_cont = mp->b_cont; 24236 goto free_mmd; 24237 } 24238 24239 /* Advance fragment offset. */ 24240 offset += len; 24241 24242 /* Advance to location for next header in the buffer. */ 24243 hdr_ptr += hdr_chunk_len; 24244 24245 /* Did we reach the next payload message block? */ 24246 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 24247 mp = mp->b_cont; 24248 /* 24249 * Attach the next message block with payload 24250 * data to the multidata message. 24251 */ 24252 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24253 goto pbuf_panic; 24254 pld_ptr = mp->b_rptr; 24255 } 24256 } 24257 24258 ASSERT(hdr_mp->b_wptr == hdr_ptr); 24259 ASSERT(mp->b_wptr == pld_ptr); 24260 24261 /* Update IP statistics */ 24262 IP_STAT_UPDATE(ipst, ip_frag_mdt_pkt_out, pkts); 24263 24264 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates, pkts); 24265 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 24266 24267 len = ntohs(ipha_orig->ipha_length) + (pkts - 1) * IP_SIMPLE_HDR_LENGTH; 24268 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, pkts); 24269 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, len); 24270 24271 if (pkt_type == OB_PKT) { 24272 ire->ire_ob_pkt_count += pkts; 24273 if (ire->ire_ipif != NULL) 24274 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 24275 } else { 24276 /* 24277 * The type is IB_PKT in the forwarding path and in 24278 * the mobile IP case when the packet is being reverse- 24279 * tunneled to the home agent. 24280 */ 24281 ire->ire_ib_pkt_count += pkts; 24282 ASSERT(!IRE_IS_LOCAL(ire)); 24283 if (ire->ire_type & IRE_BROADCAST) { 24284 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 24285 } else { 24286 UPDATE_MIB(ill->ill_ip_mib, 24287 ipIfStatsHCOutForwDatagrams, pkts); 24288 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 24289 } 24290 } 24291 ire->ire_last_used_time = lbolt; 24292 /* Send it down */ 24293 putnext(ire->ire_stq, md_mp); 24294 return; 24295 24296 pbuf_panic: 24297 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 24298 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 24299 pbuf_idx); 24300 /* NOTREACHED */ 24301 } 24302 24303 /* 24304 * Outbound IP fragmentation routine. 24305 * 24306 * NOTE : This routine does not ire_refrele the ire that is passed in 24307 * as the argument. 24308 */ 24309 static void 24310 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 24311 uint32_t frag_flag, zoneid_t zoneid, ip_stack_t *ipst) 24312 { 24313 int i1; 24314 mblk_t *ll_hdr_mp; 24315 int ll_hdr_len; 24316 int hdr_len; 24317 mblk_t *hdr_mp; 24318 ipha_t *ipha; 24319 int ip_data_end; 24320 int len; 24321 mblk_t *mp = mp_orig, *mp1; 24322 int offset; 24323 queue_t *q; 24324 uint32_t v_hlen_tos_len; 24325 mblk_t *first_mp; 24326 boolean_t mctl_present; 24327 ill_t *ill; 24328 ill_t *out_ill; 24329 mblk_t *xmit_mp; 24330 mblk_t *carve_mp; 24331 ire_t *ire1 = NULL; 24332 ire_t *save_ire = NULL; 24333 mblk_t *next_mp = NULL; 24334 boolean_t last_frag = B_FALSE; 24335 boolean_t multirt_send = B_FALSE; 24336 ire_t *first_ire = NULL; 24337 irb_t *irb = NULL; 24338 mib2_ipIfStatsEntry_t *mibptr = NULL; 24339 24340 ill = ire_to_ill(ire); 24341 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 24342 24343 BUMP_MIB(mibptr, ipIfStatsOutFragReqds); 24344 24345 if (max_frag == 0) { 24346 ip1dbg(("ip_wput_frag: ire frag size is 0" 24347 " - dropping packet\n")); 24348 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24349 freemsg(mp); 24350 return; 24351 } 24352 24353 /* 24354 * IPSEC does not allow hw accelerated packets to be fragmented 24355 * This check is made in ip_wput_ipsec_out prior to coming here 24356 * via ip_wput_ire_fragmentit. 24357 * 24358 * If at this point we have an ire whose ARP request has not 24359 * been sent out, we call ip_xmit_v4->ire_arpresolve to trigger 24360 * sending of ARP query and change ire's state to ND_INCOMPLETE. 24361 * This packet and all fragmentable packets for this ire will 24362 * continue to get dropped while ire_nce->nce_state remains in 24363 * ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to 24364 * ND_REACHABLE, all subsquent large packets for this ire will 24365 * get fragemented and sent out by this function. 24366 */ 24367 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 24368 /* If nce_state is ND_INITIAL, trigger ARP query */ 24369 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 24370 ip1dbg(("ip_wput_frag: mac address for ire is unresolved" 24371 " - dropping packet\n")); 24372 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24373 freemsg(mp); 24374 return; 24375 } 24376 24377 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 24378 "ip_wput_frag_start:"); 24379 24380 if (mp->b_datap->db_type == M_CTL) { 24381 first_mp = mp; 24382 mp_orig = mp = mp->b_cont; 24383 mctl_present = B_TRUE; 24384 } else { 24385 first_mp = mp; 24386 mctl_present = B_FALSE; 24387 } 24388 24389 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 24390 ipha = (ipha_t *)mp->b_rptr; 24391 24392 /* 24393 * If the Don't Fragment flag is on, generate an ICMP destination 24394 * unreachable, fragmentation needed. 24395 */ 24396 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 24397 if (offset & IPH_DF) { 24398 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24399 /* 24400 * Need to compute hdr checksum if called from ip_wput_ire. 24401 * Note that ip_rput_forward verifies the checksum before 24402 * calling this routine so in that case this is a noop. 24403 */ 24404 ipha->ipha_hdr_checksum = 0; 24405 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24406 icmp_frag_needed(ire->ire_stq, first_mp, max_frag, zoneid, 24407 ipst); 24408 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24409 "ip_wput_frag_end:(%S)", 24410 "don't fragment"); 24411 return; 24412 } 24413 if (mctl_present) 24414 freeb(first_mp); 24415 /* 24416 * Establish the starting offset. May not be zero if we are fragging 24417 * a fragment that is being forwarded. 24418 */ 24419 offset = offset & IPH_OFFSET; 24420 24421 /* TODO why is this test needed? */ 24422 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 24423 if (((max_frag - LENGTH) & ~7) < 8) { 24424 /* TODO: notify ulp somehow */ 24425 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24426 freemsg(mp); 24427 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24428 "ip_wput_frag_end:(%S)", 24429 "len < 8"); 24430 return; 24431 } 24432 24433 hdr_len = (V_HLEN & 0xF) << 2; 24434 24435 ipha->ipha_hdr_checksum = 0; 24436 24437 /* 24438 * Establish the number of bytes maximum per frag, after putting 24439 * in the header. 24440 */ 24441 len = (max_frag - hdr_len) & ~7; 24442 24443 /* Check if we can use MDT to send out the frags. */ 24444 ASSERT(!IRE_IS_LOCAL(ire)); 24445 if (hdr_len == IP_SIMPLE_HDR_LENGTH && 24446 ipst->ips_ip_multidata_outbound && 24447 !(ire->ire_flags & RTF_MULTIRT) && 24448 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 24449 ill != NULL && ILL_MDT_CAPABLE(ill) && 24450 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 24451 ASSERT(ill->ill_mdt_capab != NULL); 24452 if (!ill->ill_mdt_capab->ill_mdt_on) { 24453 /* 24454 * If MDT has been previously turned off in the past, 24455 * and we currently can do MDT (due to IPQoS policy 24456 * removal, etc.) then enable it for this interface. 24457 */ 24458 ill->ill_mdt_capab->ill_mdt_on = 1; 24459 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 24460 ill->ill_name)); 24461 } 24462 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 24463 offset); 24464 return; 24465 } 24466 24467 /* Get a copy of the header for the trailing frags */ 24468 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst); 24469 if (!hdr_mp) { 24470 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24471 freemsg(mp); 24472 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24473 "ip_wput_frag_end:(%S)", 24474 "couldn't copy hdr"); 24475 return; 24476 } 24477 if (DB_CRED(mp) != NULL) 24478 mblk_setcred(hdr_mp, DB_CRED(mp)); 24479 24480 /* Store the starting offset, with the MoreFrags flag. */ 24481 i1 = offset | IPH_MF | frag_flag; 24482 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 24483 24484 /* Establish the ending byte offset, based on the starting offset. */ 24485 offset <<= 3; 24486 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 24487 24488 /* Store the length of the first fragment in the IP header. */ 24489 i1 = len + hdr_len; 24490 ASSERT(i1 <= IP_MAXPACKET); 24491 ipha->ipha_length = htons((uint16_t)i1); 24492 24493 /* 24494 * Compute the IP header checksum for the first frag. We have to 24495 * watch out that we stop at the end of the header. 24496 */ 24497 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24498 24499 /* 24500 * Now carve off the first frag. Note that this will include the 24501 * original IP header. 24502 */ 24503 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 24504 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24505 freeb(hdr_mp); 24506 freemsg(mp_orig); 24507 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24508 "ip_wput_frag_end:(%S)", 24509 "couldn't carve first"); 24510 return; 24511 } 24512 24513 /* 24514 * Multirouting case. Each fragment is replicated 24515 * via all non-condemned RTF_MULTIRT routes 24516 * currently resolved. 24517 * We ensure that first_ire is the first RTF_MULTIRT 24518 * ire in the bucket. 24519 */ 24520 if (ire->ire_flags & RTF_MULTIRT) { 24521 irb = ire->ire_bucket; 24522 ASSERT(irb != NULL); 24523 24524 multirt_send = B_TRUE; 24525 24526 /* Make sure we do not omit any multiroute ire. */ 24527 IRB_REFHOLD(irb); 24528 for (first_ire = irb->irb_ire; 24529 first_ire != NULL; 24530 first_ire = first_ire->ire_next) { 24531 if ((first_ire->ire_flags & RTF_MULTIRT) && 24532 (first_ire->ire_addr == ire->ire_addr) && 24533 !(first_ire->ire_marks & 24534 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 24535 break; 24536 } 24537 } 24538 24539 if (first_ire != NULL) { 24540 if (first_ire != ire) { 24541 IRE_REFHOLD(first_ire); 24542 /* 24543 * Do not release the ire passed in 24544 * as the argument. 24545 */ 24546 ire = first_ire; 24547 } else { 24548 first_ire = NULL; 24549 } 24550 } 24551 IRB_REFRELE(irb); 24552 24553 /* 24554 * Save the first ire; we will need to restore it 24555 * for the trailing frags. 24556 * We REFHOLD save_ire, as each iterated ire will be 24557 * REFRELEd. 24558 */ 24559 save_ire = ire; 24560 IRE_REFHOLD(save_ire); 24561 } 24562 24563 /* 24564 * First fragment emission loop. 24565 * In most cases, the emission loop below is entered only 24566 * once. Only in the case where the ire holds the RTF_MULTIRT 24567 * flag, do we loop to process all RTF_MULTIRT ires in the 24568 * bucket, and send the fragment through all crossed 24569 * RTF_MULTIRT routes. 24570 */ 24571 do { 24572 if (ire->ire_flags & RTF_MULTIRT) { 24573 /* 24574 * We are in a multiple send case, need to get 24575 * the next ire and make a copy of the packet. 24576 * ire1 holds here the next ire to process in the 24577 * bucket. If multirouting is expected, 24578 * any non-RTF_MULTIRT ire that has the 24579 * right destination address is ignored. 24580 * 24581 * We have to take into account the MTU of 24582 * each walked ire. max_frag is set by the 24583 * the caller and generally refers to 24584 * the primary ire entry. Here we ensure that 24585 * no route with a lower MTU will be used, as 24586 * fragments are carved once for all ires, 24587 * then replicated. 24588 */ 24589 ASSERT(irb != NULL); 24590 IRB_REFHOLD(irb); 24591 for (ire1 = ire->ire_next; 24592 ire1 != NULL; 24593 ire1 = ire1->ire_next) { 24594 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 24595 continue; 24596 if (ire1->ire_addr != ire->ire_addr) 24597 continue; 24598 if (ire1->ire_marks & 24599 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 24600 continue; 24601 /* 24602 * Ensure we do not exceed the MTU 24603 * of the next route. 24604 */ 24605 if (ire1->ire_max_frag < max_frag) { 24606 ip_multirt_bad_mtu(ire1, max_frag); 24607 continue; 24608 } 24609 24610 /* Got one. */ 24611 IRE_REFHOLD(ire1); 24612 break; 24613 } 24614 IRB_REFRELE(irb); 24615 24616 if (ire1 != NULL) { 24617 next_mp = copyb(mp); 24618 if ((next_mp == NULL) || 24619 ((mp->b_cont != NULL) && 24620 ((next_mp->b_cont = 24621 dupmsg(mp->b_cont)) == NULL))) { 24622 freemsg(next_mp); 24623 next_mp = NULL; 24624 ire_refrele(ire1); 24625 ire1 = NULL; 24626 } 24627 } 24628 24629 /* Last multiroute ire; don't loop anymore. */ 24630 if (ire1 == NULL) { 24631 multirt_send = B_FALSE; 24632 } 24633 } 24634 24635 ll_hdr_len = 0; 24636 LOCK_IRE_FP_MP(ire); 24637 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24638 if (ll_hdr_mp != NULL) { 24639 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24640 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 24641 } else { 24642 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24643 } 24644 24645 /* If there is a transmit header, get a copy for this frag. */ 24646 /* 24647 * TODO: should check db_ref before calling ip_carve_mp since 24648 * it might give us a dup. 24649 */ 24650 if (!ll_hdr_mp) { 24651 /* No xmit header. */ 24652 xmit_mp = mp; 24653 24654 /* We have a link-layer header that can fit in our mblk. */ 24655 } else if (mp->b_datap->db_ref == 1 && 24656 ll_hdr_len != 0 && 24657 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24658 /* M_DATA fastpath */ 24659 mp->b_rptr -= ll_hdr_len; 24660 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 24661 xmit_mp = mp; 24662 24663 /* Corner case if copyb has failed */ 24664 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 24665 UNLOCK_IRE_FP_MP(ire); 24666 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24667 freeb(hdr_mp); 24668 freemsg(mp); 24669 freemsg(mp_orig); 24670 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24671 "ip_wput_frag_end:(%S)", 24672 "discard"); 24673 24674 if (multirt_send) { 24675 ASSERT(ire1); 24676 ASSERT(next_mp); 24677 24678 freemsg(next_mp); 24679 ire_refrele(ire1); 24680 } 24681 if (save_ire != NULL) 24682 IRE_REFRELE(save_ire); 24683 24684 if (first_ire != NULL) 24685 ire_refrele(first_ire); 24686 return; 24687 24688 /* 24689 * Case of res_mp OR the fastpath mp can't fit 24690 * in the mblk 24691 */ 24692 } else { 24693 xmit_mp->b_cont = mp; 24694 if (DB_CRED(mp) != NULL) 24695 mblk_setcred(xmit_mp, DB_CRED(mp)); 24696 /* 24697 * Get priority marking, if any. 24698 * We propagate the CoS marking from the 24699 * original packet that went to QoS processing 24700 * in ip_wput_ire to the newly carved mp. 24701 */ 24702 if (DB_TYPE(xmit_mp) == M_DATA) 24703 xmit_mp->b_band = mp->b_band; 24704 } 24705 UNLOCK_IRE_FP_MP(ire); 24706 24707 q = ire->ire_stq; 24708 out_ill = (ill_t *)q->q_ptr; 24709 24710 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24711 24712 DTRACE_PROBE4(ip4__physical__out__start, 24713 ill_t *, NULL, ill_t *, out_ill, 24714 ipha_t *, ipha, mblk_t *, xmit_mp); 24715 24716 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24717 ipst->ips_ipv4firewall_physical_out, 24718 NULL, out_ill, ipha, xmit_mp, mp, ipst); 24719 24720 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, xmit_mp); 24721 24722 if (xmit_mp != NULL) { 24723 putnext(q, xmit_mp); 24724 24725 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 24726 UPDATE_MIB(out_ill->ill_ip_mib, 24727 ipIfStatsHCOutOctets, i1); 24728 24729 if (pkt_type != OB_PKT) { 24730 /* 24731 * Update the packet count and MIB stats 24732 * of trailing RTF_MULTIRT ires. 24733 */ 24734 UPDATE_OB_PKT_COUNT(ire); 24735 BUMP_MIB(out_ill->ill_ip_mib, 24736 ipIfStatsOutFragReqds); 24737 } 24738 } 24739 24740 if (multirt_send) { 24741 /* 24742 * We are in a multiple send case; look for 24743 * the next ire and re-enter the loop. 24744 */ 24745 ASSERT(ire1); 24746 ASSERT(next_mp); 24747 /* REFRELE the current ire before looping */ 24748 ire_refrele(ire); 24749 ire = ire1; 24750 ire1 = NULL; 24751 mp = next_mp; 24752 next_mp = NULL; 24753 } 24754 } while (multirt_send); 24755 24756 ASSERT(ire1 == NULL); 24757 24758 /* Restore the original ire; we need it for the trailing frags */ 24759 if (save_ire != NULL) { 24760 /* REFRELE the last iterated ire */ 24761 ire_refrele(ire); 24762 /* save_ire has been REFHOLDed */ 24763 ire = save_ire; 24764 save_ire = NULL; 24765 q = ire->ire_stq; 24766 } 24767 24768 if (pkt_type == OB_PKT) { 24769 UPDATE_OB_PKT_COUNT(ire); 24770 } else { 24771 out_ill = (ill_t *)q->q_ptr; 24772 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 24773 UPDATE_IB_PKT_COUNT(ire); 24774 } 24775 24776 /* Advance the offset to the second frag starting point. */ 24777 offset += len; 24778 /* 24779 * Update hdr_len from the copied header - there might be less options 24780 * in the later fragments. 24781 */ 24782 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 24783 /* Loop until done. */ 24784 for (;;) { 24785 uint16_t offset_and_flags; 24786 uint16_t ip_len; 24787 24788 if (ip_data_end - offset > len) { 24789 /* 24790 * Carve off the appropriate amount from the original 24791 * datagram. 24792 */ 24793 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24794 mp = NULL; 24795 break; 24796 } 24797 /* 24798 * More frags after this one. Get another copy 24799 * of the header. 24800 */ 24801 if (carve_mp->b_datap->db_ref == 1 && 24802 hdr_mp->b_wptr - hdr_mp->b_rptr < 24803 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24804 /* Inline IP header */ 24805 carve_mp->b_rptr -= hdr_mp->b_wptr - 24806 hdr_mp->b_rptr; 24807 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24808 hdr_mp->b_wptr - hdr_mp->b_rptr); 24809 mp = carve_mp; 24810 } else { 24811 if (!(mp = copyb(hdr_mp))) { 24812 freemsg(carve_mp); 24813 break; 24814 } 24815 /* Get priority marking, if any. */ 24816 mp->b_band = carve_mp->b_band; 24817 mp->b_cont = carve_mp; 24818 } 24819 ipha = (ipha_t *)mp->b_rptr; 24820 offset_and_flags = IPH_MF; 24821 } else { 24822 /* 24823 * Last frag. Consume the header. Set len to 24824 * the length of this last piece. 24825 */ 24826 len = ip_data_end - offset; 24827 24828 /* 24829 * Carve off the appropriate amount from the original 24830 * datagram. 24831 */ 24832 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24833 mp = NULL; 24834 break; 24835 } 24836 if (carve_mp->b_datap->db_ref == 1 && 24837 hdr_mp->b_wptr - hdr_mp->b_rptr < 24838 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24839 /* Inline IP header */ 24840 carve_mp->b_rptr -= hdr_mp->b_wptr - 24841 hdr_mp->b_rptr; 24842 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24843 hdr_mp->b_wptr - hdr_mp->b_rptr); 24844 mp = carve_mp; 24845 freeb(hdr_mp); 24846 hdr_mp = mp; 24847 } else { 24848 mp = hdr_mp; 24849 /* Get priority marking, if any. */ 24850 mp->b_band = carve_mp->b_band; 24851 mp->b_cont = carve_mp; 24852 } 24853 ipha = (ipha_t *)mp->b_rptr; 24854 /* A frag of a frag might have IPH_MF non-zero */ 24855 offset_and_flags = 24856 ntohs(ipha->ipha_fragment_offset_and_flags) & 24857 IPH_MF; 24858 } 24859 offset_and_flags |= (uint16_t)(offset >> 3); 24860 offset_and_flags |= (uint16_t)frag_flag; 24861 /* Store the offset and flags in the IP header. */ 24862 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24863 24864 /* Store the length in the IP header. */ 24865 ip_len = (uint16_t)(len + hdr_len); 24866 ipha->ipha_length = htons(ip_len); 24867 24868 /* 24869 * Set the IP header checksum. Note that mp is just 24870 * the header, so this is easy to pass to ip_csum. 24871 */ 24872 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24873 24874 /* Attach a transmit header, if any, and ship it. */ 24875 if (pkt_type == OB_PKT) { 24876 UPDATE_OB_PKT_COUNT(ire); 24877 } else { 24878 out_ill = (ill_t *)q->q_ptr; 24879 BUMP_MIB(out_ill->ill_ip_mib, 24880 ipIfStatsHCOutForwDatagrams); 24881 UPDATE_IB_PKT_COUNT(ire); 24882 } 24883 24884 if (ire->ire_flags & RTF_MULTIRT) { 24885 irb = ire->ire_bucket; 24886 ASSERT(irb != NULL); 24887 24888 multirt_send = B_TRUE; 24889 24890 /* 24891 * Save the original ire; we will need to restore it 24892 * for the tailing frags. 24893 */ 24894 save_ire = ire; 24895 IRE_REFHOLD(save_ire); 24896 } 24897 /* 24898 * Emission loop for this fragment, similar 24899 * to what is done for the first fragment. 24900 */ 24901 do { 24902 if (multirt_send) { 24903 /* 24904 * We are in a multiple send case, need to get 24905 * the next ire and make a copy of the packet. 24906 */ 24907 ASSERT(irb != NULL); 24908 IRB_REFHOLD(irb); 24909 for (ire1 = ire->ire_next; 24910 ire1 != NULL; 24911 ire1 = ire1->ire_next) { 24912 if (!(ire1->ire_flags & RTF_MULTIRT)) 24913 continue; 24914 if (ire1->ire_addr != ire->ire_addr) 24915 continue; 24916 if (ire1->ire_marks & 24917 (IRE_MARK_CONDEMNED| 24918 IRE_MARK_HIDDEN)) { 24919 continue; 24920 } 24921 /* 24922 * Ensure we do not exceed the MTU 24923 * of the next route. 24924 */ 24925 if (ire1->ire_max_frag < max_frag) { 24926 ip_multirt_bad_mtu(ire1, 24927 max_frag); 24928 continue; 24929 } 24930 24931 /* Got one. */ 24932 IRE_REFHOLD(ire1); 24933 break; 24934 } 24935 IRB_REFRELE(irb); 24936 24937 if (ire1 != NULL) { 24938 next_mp = copyb(mp); 24939 if ((next_mp == NULL) || 24940 ((mp->b_cont != NULL) && 24941 ((next_mp->b_cont = 24942 dupmsg(mp->b_cont)) == NULL))) { 24943 freemsg(next_mp); 24944 next_mp = NULL; 24945 ire_refrele(ire1); 24946 ire1 = NULL; 24947 } 24948 } 24949 24950 /* Last multiroute ire; don't loop anymore. */ 24951 if (ire1 == NULL) { 24952 multirt_send = B_FALSE; 24953 } 24954 } 24955 24956 /* Update transmit header */ 24957 ll_hdr_len = 0; 24958 LOCK_IRE_FP_MP(ire); 24959 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24960 if (ll_hdr_mp != NULL) { 24961 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24962 ll_hdr_len = MBLKL(ll_hdr_mp); 24963 } else { 24964 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24965 } 24966 24967 if (!ll_hdr_mp) { 24968 xmit_mp = mp; 24969 24970 /* 24971 * We have link-layer header that can fit in 24972 * our mblk. 24973 */ 24974 } else if (mp->b_datap->db_ref == 1 && 24975 ll_hdr_len != 0 && 24976 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24977 /* M_DATA fastpath */ 24978 mp->b_rptr -= ll_hdr_len; 24979 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 24980 ll_hdr_len); 24981 xmit_mp = mp; 24982 24983 /* 24984 * Case of res_mp OR the fastpath mp can't fit 24985 * in the mblk 24986 */ 24987 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 24988 xmit_mp->b_cont = mp; 24989 if (DB_CRED(mp) != NULL) 24990 mblk_setcred(xmit_mp, DB_CRED(mp)); 24991 /* Get priority marking, if any. */ 24992 if (DB_TYPE(xmit_mp) == M_DATA) 24993 xmit_mp->b_band = mp->b_band; 24994 24995 /* Corner case if copyb failed */ 24996 } else { 24997 /* 24998 * Exit both the replication and 24999 * fragmentation loops. 25000 */ 25001 UNLOCK_IRE_FP_MP(ire); 25002 goto drop_pkt; 25003 } 25004 UNLOCK_IRE_FP_MP(ire); 25005 25006 mp1 = mp; 25007 out_ill = (ill_t *)q->q_ptr; 25008 25009 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 25010 25011 DTRACE_PROBE4(ip4__physical__out__start, 25012 ill_t *, NULL, ill_t *, out_ill, 25013 ipha_t *, ipha, mblk_t *, xmit_mp); 25014 25015 FW_HOOKS(ipst->ips_ip4_physical_out_event, 25016 ipst->ips_ipv4firewall_physical_out, 25017 NULL, out_ill, ipha, xmit_mp, mp, ipst); 25018 25019 DTRACE_PROBE1(ip4__physical__out__end, 25020 mblk_t *, xmit_mp); 25021 25022 if (mp != mp1 && hdr_mp == mp1) 25023 hdr_mp = mp; 25024 if (mp != mp1 && mp_orig == mp1) 25025 mp_orig = mp; 25026 25027 if (xmit_mp != NULL) { 25028 putnext(q, xmit_mp); 25029 25030 BUMP_MIB(out_ill->ill_ip_mib, 25031 ipIfStatsHCOutTransmits); 25032 UPDATE_MIB(out_ill->ill_ip_mib, 25033 ipIfStatsHCOutOctets, ip_len); 25034 25035 if (pkt_type != OB_PKT) { 25036 /* 25037 * Update the packet count of trailing 25038 * RTF_MULTIRT ires. 25039 */ 25040 UPDATE_OB_PKT_COUNT(ire); 25041 } 25042 } 25043 25044 /* All done if we just consumed the hdr_mp. */ 25045 if (mp == hdr_mp) { 25046 last_frag = B_TRUE; 25047 BUMP_MIB(out_ill->ill_ip_mib, 25048 ipIfStatsOutFragOKs); 25049 } 25050 25051 if (multirt_send) { 25052 /* 25053 * We are in a multiple send case; look for 25054 * the next ire and re-enter the loop. 25055 */ 25056 ASSERT(ire1); 25057 ASSERT(next_mp); 25058 /* REFRELE the current ire before looping */ 25059 ire_refrele(ire); 25060 ire = ire1; 25061 ire1 = NULL; 25062 q = ire->ire_stq; 25063 mp = next_mp; 25064 next_mp = NULL; 25065 } 25066 } while (multirt_send); 25067 /* 25068 * Restore the original ire; we need it for the 25069 * trailing frags 25070 */ 25071 if (save_ire != NULL) { 25072 ASSERT(ire1 == NULL); 25073 /* REFRELE the last iterated ire */ 25074 ire_refrele(ire); 25075 /* save_ire has been REFHOLDed */ 25076 ire = save_ire; 25077 q = ire->ire_stq; 25078 save_ire = NULL; 25079 } 25080 25081 if (last_frag) { 25082 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 25083 "ip_wput_frag_end:(%S)", 25084 "consumed hdr_mp"); 25085 25086 if (first_ire != NULL) 25087 ire_refrele(first_ire); 25088 return; 25089 } 25090 /* Otherwise, advance and loop. */ 25091 offset += len; 25092 } 25093 25094 drop_pkt: 25095 /* Clean up following allocation failure. */ 25096 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 25097 freemsg(mp); 25098 if (mp != hdr_mp) 25099 freeb(hdr_mp); 25100 if (mp != mp_orig) 25101 freemsg(mp_orig); 25102 25103 if (save_ire != NULL) 25104 IRE_REFRELE(save_ire); 25105 if (first_ire != NULL) 25106 ire_refrele(first_ire); 25107 25108 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 25109 "ip_wput_frag_end:(%S)", 25110 "end--alloc failure"); 25111 } 25112 25113 /* 25114 * Copy the header plus those options which have the copy bit set 25115 */ 25116 static mblk_t * 25117 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst) 25118 { 25119 mblk_t *mp; 25120 uchar_t *up; 25121 25122 /* 25123 * Quick check if we need to look for options without the copy bit 25124 * set 25125 */ 25126 mp = allocb(ipst->ips_ip_wroff_extra + hdr_len, BPRI_HI); 25127 if (!mp) 25128 return (mp); 25129 mp->b_rptr += ipst->ips_ip_wroff_extra; 25130 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 25131 bcopy(rptr, mp->b_rptr, hdr_len); 25132 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 25133 return (mp); 25134 } 25135 up = mp->b_rptr; 25136 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 25137 up += IP_SIMPLE_HDR_LENGTH; 25138 rptr += IP_SIMPLE_HDR_LENGTH; 25139 hdr_len -= IP_SIMPLE_HDR_LENGTH; 25140 while (hdr_len > 0) { 25141 uint32_t optval; 25142 uint32_t optlen; 25143 25144 optval = *rptr; 25145 if (optval == IPOPT_EOL) 25146 break; 25147 if (optval == IPOPT_NOP) 25148 optlen = 1; 25149 else 25150 optlen = rptr[1]; 25151 if (optval & IPOPT_COPY) { 25152 bcopy(rptr, up, optlen); 25153 up += optlen; 25154 } 25155 rptr += optlen; 25156 hdr_len -= optlen; 25157 } 25158 /* 25159 * Make sure that we drop an even number of words by filling 25160 * with EOL to the next word boundary. 25161 */ 25162 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 25163 hdr_len & 0x3; hdr_len++) 25164 *up++ = IPOPT_EOL; 25165 mp->b_wptr = up; 25166 /* Update header length */ 25167 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 25168 return (mp); 25169 } 25170 25171 /* 25172 * Delivery to local recipients including fanout to multiple recipients. 25173 * Does not do checksumming of UDP/TCP. 25174 * Note: q should be the read side queue for either the ill or conn. 25175 * Note: rq should be the read side q for the lower (ill) stream. 25176 * We don't send packets to IPPF processing, thus the last argument 25177 * to all the fanout calls are B_FALSE. 25178 */ 25179 void 25180 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 25181 int fanout_flags, zoneid_t zoneid) 25182 { 25183 uint32_t protocol; 25184 mblk_t *first_mp; 25185 boolean_t mctl_present; 25186 int ire_type; 25187 #define rptr ((uchar_t *)ipha) 25188 ip_stack_t *ipst = ill->ill_ipst; 25189 25190 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 25191 "ip_wput_local_start: q %p", q); 25192 25193 if (ire != NULL) { 25194 ire_type = ire->ire_type; 25195 } else { 25196 /* 25197 * Only ip_multicast_loopback() calls us with a NULL ire. If the 25198 * packet is not multicast, we can't tell the ire type. 25199 */ 25200 ASSERT(CLASSD(ipha->ipha_dst)); 25201 ire_type = IRE_BROADCAST; 25202 } 25203 25204 first_mp = mp; 25205 if (first_mp->b_datap->db_type == M_CTL) { 25206 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 25207 if (!io->ipsec_out_secure) { 25208 /* 25209 * This ipsec_out_t was allocated in ip_wput 25210 * for multicast packets to store the ill_index. 25211 * As this is being delivered locally, we don't 25212 * need this anymore. 25213 */ 25214 mp = first_mp->b_cont; 25215 freeb(first_mp); 25216 first_mp = mp; 25217 mctl_present = B_FALSE; 25218 } else { 25219 /* 25220 * Convert IPSEC_OUT to IPSEC_IN, preserving all 25221 * security properties for the looped-back packet. 25222 */ 25223 mctl_present = B_TRUE; 25224 mp = first_mp->b_cont; 25225 ASSERT(mp != NULL); 25226 ipsec_out_to_in(first_mp); 25227 } 25228 } else { 25229 mctl_present = B_FALSE; 25230 } 25231 25232 DTRACE_PROBE4(ip4__loopback__in__start, 25233 ill_t *, ill, ill_t *, NULL, 25234 ipha_t *, ipha, mblk_t *, first_mp); 25235 25236 FW_HOOKS(ipst->ips_ip4_loopback_in_event, 25237 ipst->ips_ipv4firewall_loopback_in, 25238 ill, NULL, ipha, first_mp, mp, ipst); 25239 25240 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, first_mp); 25241 25242 if (first_mp == NULL) 25243 return; 25244 25245 ipst->ips_loopback_packets++; 25246 25247 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 25248 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 25249 if (!IS_SIMPLE_IPH(ipha)) { 25250 ip_wput_local_options(ipha, ipst); 25251 } 25252 25253 protocol = ipha->ipha_protocol; 25254 switch (protocol) { 25255 case IPPROTO_ICMP: { 25256 ire_t *ire_zone; 25257 ilm_t *ilm; 25258 mblk_t *mp1; 25259 zoneid_t last_zoneid; 25260 25261 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(ill)) { 25262 ASSERT(ire_type == IRE_BROADCAST); 25263 /* 25264 * In the multicast case, applications may have joined 25265 * the group from different zones, so we need to deliver 25266 * the packet to each of them. Loop through the 25267 * multicast memberships structures (ilm) on the receive 25268 * ill and send a copy of the packet up each matching 25269 * one. However, we don't do this for multicasts sent on 25270 * the loopback interface (PHYI_LOOPBACK flag set) as 25271 * they must stay in the sender's zone. 25272 * 25273 * ilm_add_v6() ensures that ilms in the same zone are 25274 * contiguous in the ill_ilm list. We use this property 25275 * to avoid sending duplicates needed when two 25276 * applications in the same zone join the same group on 25277 * different logical interfaces: we ignore the ilm if 25278 * it's zoneid is the same as the last matching one. 25279 * In addition, the sending of the packet for 25280 * ire_zoneid is delayed until all of the other ilms 25281 * have been exhausted. 25282 */ 25283 last_zoneid = -1; 25284 ILM_WALKER_HOLD(ill); 25285 for (ilm = ill->ill_ilm; ilm != NULL; 25286 ilm = ilm->ilm_next) { 25287 if ((ilm->ilm_flags & ILM_DELETED) || 25288 ipha->ipha_dst != ilm->ilm_addr || 25289 ilm->ilm_zoneid == last_zoneid || 25290 ilm->ilm_zoneid == zoneid || 25291 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 25292 continue; 25293 mp1 = ip_copymsg(first_mp); 25294 if (mp1 == NULL) 25295 continue; 25296 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25297 mctl_present, B_FALSE, ill, 25298 ilm->ilm_zoneid); 25299 last_zoneid = ilm->ilm_zoneid; 25300 } 25301 ILM_WALKER_RELE(ill); 25302 /* 25303 * Loopback case: the sending endpoint has 25304 * IP_MULTICAST_LOOP disabled, therefore we don't 25305 * dispatch the multicast packet to the sending zone. 25306 */ 25307 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 25308 freemsg(first_mp); 25309 return; 25310 } 25311 } else if (ire_type == IRE_BROADCAST) { 25312 /* 25313 * In the broadcast case, there may be many zones 25314 * which need a copy of the packet delivered to them. 25315 * There is one IRE_BROADCAST per broadcast address 25316 * and per zone; we walk those using a helper function. 25317 * In addition, the sending of the packet for zoneid is 25318 * delayed until all of the other ires have been 25319 * processed. 25320 */ 25321 IRB_REFHOLD(ire->ire_bucket); 25322 ire_zone = NULL; 25323 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 25324 ire)) != NULL) { 25325 mp1 = ip_copymsg(first_mp); 25326 if (mp1 == NULL) 25327 continue; 25328 25329 UPDATE_IB_PKT_COUNT(ire_zone); 25330 ire_zone->ire_last_used_time = lbolt; 25331 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25332 mctl_present, B_FALSE, ill, 25333 ire_zone->ire_zoneid); 25334 } 25335 IRB_REFRELE(ire->ire_bucket); 25336 } 25337 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 25338 0, mctl_present, B_FALSE, ill, zoneid); 25339 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25340 "ip_wput_local_end: q %p (%S)", 25341 q, "icmp"); 25342 return; 25343 } 25344 case IPPROTO_IGMP: 25345 if ((mp = igmp_input(q, mp, ill)) == NULL) { 25346 /* Bad packet - discarded by igmp_input */ 25347 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25348 "ip_wput_local_end: q %p (%S)", 25349 q, "igmp_input--bad packet"); 25350 if (mctl_present) 25351 freeb(first_mp); 25352 return; 25353 } 25354 /* 25355 * igmp_input() may have returned the pulled up message. 25356 * So first_mp and ipha need to be reinitialized. 25357 */ 25358 ipha = (ipha_t *)mp->b_rptr; 25359 if (mctl_present) 25360 first_mp->b_cont = mp; 25361 else 25362 first_mp = mp; 25363 /* deliver to local raw users */ 25364 break; 25365 case IPPROTO_ENCAP: 25366 /* 25367 * This case is covered by either ip_fanout_proto, or by 25368 * the above security processing for self-tunneled packets. 25369 */ 25370 break; 25371 case IPPROTO_UDP: { 25372 uint16_t *up; 25373 uint32_t ports; 25374 25375 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 25376 UDP_PORTS_OFFSET); 25377 /* Force a 'valid' checksum. */ 25378 up[3] = 0; 25379 25380 ports = *(uint32_t *)up; 25381 ip_fanout_udp(q, first_mp, ill, ipha, ports, 25382 (ire_type == IRE_BROADCAST), 25383 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25384 IP_FF_SEND_SLLA | IP_FF_IPINFO, mctl_present, B_FALSE, 25385 ill, zoneid); 25386 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25387 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 25388 return; 25389 } 25390 case IPPROTO_TCP: { 25391 25392 /* 25393 * For TCP, discard broadcast packets. 25394 */ 25395 if ((ushort_t)ire_type == IRE_BROADCAST) { 25396 freemsg(first_mp); 25397 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 25398 ip2dbg(("ip_wput_local: discard broadcast\n")); 25399 return; 25400 } 25401 25402 if (mp->b_datap->db_type == M_DATA) { 25403 /* 25404 * M_DATA mblk, so init mblk (chain) for no struio(). 25405 */ 25406 mblk_t *mp1 = mp; 25407 25408 do { 25409 mp1->b_datap->db_struioflag = 0; 25410 } while ((mp1 = mp1->b_cont) != NULL); 25411 } 25412 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 25413 <= mp->b_wptr); 25414 ip_fanout_tcp(q, first_mp, ill, ipha, 25415 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25416 IP_FF_SYN_ADDIRE | IP_FF_IPINFO, 25417 mctl_present, B_FALSE, zoneid); 25418 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25419 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 25420 return; 25421 } 25422 case IPPROTO_SCTP: 25423 { 25424 uint32_t ports; 25425 25426 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 25427 ip_fanout_sctp(first_mp, ill, ipha, ports, 25428 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25429 IP_FF_IPINFO, mctl_present, B_FALSE, zoneid); 25430 return; 25431 } 25432 25433 default: 25434 break; 25435 } 25436 /* 25437 * Find a client for some other protocol. We give 25438 * copies to multiple clients, if more than one is 25439 * bound. 25440 */ 25441 ip_fanout_proto(q, first_mp, ill, ipha, 25442 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 25443 mctl_present, B_FALSE, ill, zoneid); 25444 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25445 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 25446 #undef rptr 25447 } 25448 25449 /* 25450 * Update any source route, record route, or timestamp options. 25451 * Check that we are at end of strict source route. 25452 * The options have been sanity checked by ip_wput_options(). 25453 */ 25454 static void 25455 ip_wput_local_options(ipha_t *ipha, ip_stack_t *ipst) 25456 { 25457 ipoptp_t opts; 25458 uchar_t *opt; 25459 uint8_t optval; 25460 uint8_t optlen; 25461 ipaddr_t dst; 25462 uint32_t ts; 25463 ire_t *ire; 25464 timestruc_t now; 25465 25466 ip2dbg(("ip_wput_local_options\n")); 25467 for (optval = ipoptp_first(&opts, ipha); 25468 optval != IPOPT_EOL; 25469 optval = ipoptp_next(&opts)) { 25470 opt = opts.ipoptp_cur; 25471 optlen = opts.ipoptp_len; 25472 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 25473 switch (optval) { 25474 uint32_t off; 25475 case IPOPT_SSRR: 25476 case IPOPT_LSRR: 25477 off = opt[IPOPT_OFFSET]; 25478 off--; 25479 if (optlen < IP_ADDR_LEN || 25480 off > optlen - IP_ADDR_LEN) { 25481 /* End of source route */ 25482 break; 25483 } 25484 /* 25485 * This will only happen if two consecutive entries 25486 * in the source route contains our address or if 25487 * it is a packet with a loose source route which 25488 * reaches us before consuming the whole source route 25489 */ 25490 ip1dbg(("ip_wput_local_options: not end of SR\n")); 25491 if (optval == IPOPT_SSRR) { 25492 return; 25493 } 25494 /* 25495 * Hack: instead of dropping the packet truncate the 25496 * source route to what has been used by filling the 25497 * rest with IPOPT_NOP. 25498 */ 25499 opt[IPOPT_OLEN] = (uint8_t)off; 25500 while (off < optlen) { 25501 opt[off++] = IPOPT_NOP; 25502 } 25503 break; 25504 case IPOPT_RR: 25505 off = opt[IPOPT_OFFSET]; 25506 off--; 25507 if (optlen < IP_ADDR_LEN || 25508 off > optlen - IP_ADDR_LEN) { 25509 /* No more room - ignore */ 25510 ip1dbg(( 25511 "ip_wput_forward_options: end of RR\n")); 25512 break; 25513 } 25514 dst = htonl(INADDR_LOOPBACK); 25515 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25516 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25517 break; 25518 case IPOPT_TS: 25519 /* Insert timestamp if there is romm */ 25520 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25521 case IPOPT_TS_TSONLY: 25522 off = IPOPT_TS_TIMELEN; 25523 break; 25524 case IPOPT_TS_PRESPEC: 25525 case IPOPT_TS_PRESPEC_RFC791: 25526 /* Verify that the address matched */ 25527 off = opt[IPOPT_OFFSET] - 1; 25528 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 25529 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 25530 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 25531 ipst); 25532 if (ire == NULL) { 25533 /* Not for us */ 25534 break; 25535 } 25536 ire_refrele(ire); 25537 /* FALLTHRU */ 25538 case IPOPT_TS_TSANDADDR: 25539 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 25540 break; 25541 default: 25542 /* 25543 * ip_*put_options should have already 25544 * dropped this packet. 25545 */ 25546 cmn_err(CE_PANIC, "ip_wput_local_options: " 25547 "unknown IT - bug in ip_wput_options?\n"); 25548 return; /* Keep "lint" happy */ 25549 } 25550 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 25551 /* Increase overflow counter */ 25552 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 25553 opt[IPOPT_POS_OV_FLG] = (uint8_t) 25554 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 25555 (off << 4); 25556 break; 25557 } 25558 off = opt[IPOPT_OFFSET] - 1; 25559 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25560 case IPOPT_TS_PRESPEC: 25561 case IPOPT_TS_PRESPEC_RFC791: 25562 case IPOPT_TS_TSANDADDR: 25563 dst = htonl(INADDR_LOOPBACK); 25564 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25565 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25566 /* FALLTHRU */ 25567 case IPOPT_TS_TSONLY: 25568 off = opt[IPOPT_OFFSET] - 1; 25569 /* Compute # of milliseconds since midnight */ 25570 gethrestime(&now); 25571 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 25572 now.tv_nsec / (NANOSEC / MILLISEC); 25573 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 25574 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 25575 break; 25576 } 25577 break; 25578 } 25579 } 25580 } 25581 25582 /* 25583 * Send out a multicast packet on interface ipif. 25584 * The sender does not have an conn. 25585 * Caller verifies that this isn't a PHYI_LOOPBACK. 25586 */ 25587 void 25588 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif, zoneid_t zoneid) 25589 { 25590 ipha_t *ipha; 25591 ire_t *ire; 25592 ipaddr_t dst; 25593 mblk_t *first_mp; 25594 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 25595 25596 /* igmp_sendpkt always allocates a ipsec_out_t */ 25597 ASSERT(mp->b_datap->db_type == M_CTL); 25598 ASSERT(!ipif->ipif_isv6); 25599 ASSERT(!IS_LOOPBACK(ipif->ipif_ill)); 25600 25601 first_mp = mp; 25602 mp = first_mp->b_cont; 25603 ASSERT(mp->b_datap->db_type == M_DATA); 25604 ipha = (ipha_t *)mp->b_rptr; 25605 25606 /* 25607 * Find an IRE which matches the destination and the outgoing 25608 * queue (i.e. the outgoing interface.) 25609 */ 25610 if (ipif->ipif_flags & IPIF_POINTOPOINT) 25611 dst = ipif->ipif_pp_dst_addr; 25612 else 25613 dst = ipha->ipha_dst; 25614 /* 25615 * The source address has already been initialized by the 25616 * caller and hence matching on ILL (MATCH_IRE_ILL) would 25617 * be sufficient rather than MATCH_IRE_IPIF. 25618 * 25619 * This function is used for sending IGMP packets. We need 25620 * to make sure that we send the packet out of the interface 25621 * (ipif->ipif_ill) where we joined the group. This is to 25622 * prevent from switches doing IGMP snooping to send us multicast 25623 * packets for a given group on the interface we have joined. 25624 * If we can't find an ire, igmp_sendpkt has already initialized 25625 * ipsec_out_attach_if so that this will not be load spread in 25626 * ip_newroute_ipif. 25627 */ 25628 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, NULL, 25629 MATCH_IRE_ILL, ipst); 25630 if (!ire) { 25631 /* 25632 * Mark this packet to make it be delivered to 25633 * ip_wput_ire after the new ire has been 25634 * created. 25635 */ 25636 mp->b_prev = NULL; 25637 mp->b_next = NULL; 25638 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC, 25639 zoneid, &zero_info); 25640 return; 25641 } 25642 25643 /* 25644 * Honor the RTF_SETSRC flag; this is the only case 25645 * where we force this addr whatever the current src addr is, 25646 * because this address is set by igmp_sendpkt(), and 25647 * cannot be specified by any user. 25648 */ 25649 if (ire->ire_flags & RTF_SETSRC) { 25650 ipha->ipha_src = ire->ire_src_addr; 25651 } 25652 25653 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE, zoneid); 25654 } 25655 25656 /* 25657 * NOTE : This function does not ire_refrele the ire argument passed in. 25658 * 25659 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 25660 * failure. The nce_fp_mp can vanish any time in the case of IRE_MIPRTUN 25661 * and IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 25662 * the ire_lock to access the nce_fp_mp in this case. 25663 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 25664 * prepending a fastpath message IPQoS processing must precede it, we also set 25665 * the b_band of the fastpath message to that of the mblk returned by IPQoS 25666 * (IPQoS might have set the b_band for CoS marking). 25667 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 25668 * must follow it so that IPQoS can mark the dl_priority field for CoS 25669 * marking, if needed. 25670 */ 25671 static mblk_t * 25672 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, uint32_t ill_index) 25673 { 25674 uint_t hlen; 25675 ipha_t *ipha; 25676 mblk_t *mp1; 25677 boolean_t qos_done = B_FALSE; 25678 uchar_t *ll_hdr; 25679 ip_stack_t *ipst = ire->ire_ipst; 25680 25681 #define rptr ((uchar_t *)ipha) 25682 25683 ipha = (ipha_t *)mp->b_rptr; 25684 hlen = 0; 25685 LOCK_IRE_FP_MP(ire); 25686 if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) { 25687 ASSERT(DB_TYPE(mp1) == M_DATA); 25688 /* Initiate IPPF processing */ 25689 if ((proc != 0) && IPP_ENABLED(proc, ipst)) { 25690 UNLOCK_IRE_FP_MP(ire); 25691 ip_process(proc, &mp, ill_index); 25692 if (mp == NULL) 25693 return (NULL); 25694 25695 ipha = (ipha_t *)mp->b_rptr; 25696 LOCK_IRE_FP_MP(ire); 25697 if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) { 25698 qos_done = B_TRUE; 25699 goto no_fp_mp; 25700 } 25701 ASSERT(DB_TYPE(mp1) == M_DATA); 25702 } 25703 hlen = MBLKL(mp1); 25704 /* 25705 * Check if we have enough room to prepend fastpath 25706 * header 25707 */ 25708 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 25709 ll_hdr = rptr - hlen; 25710 bcopy(mp1->b_rptr, ll_hdr, hlen); 25711 /* 25712 * Set the b_rptr to the start of the link layer 25713 * header 25714 */ 25715 mp->b_rptr = ll_hdr; 25716 mp1 = mp; 25717 } else { 25718 mp1 = copyb(mp1); 25719 if (mp1 == NULL) 25720 goto unlock_err; 25721 mp1->b_band = mp->b_band; 25722 mp1->b_cont = mp; 25723 /* 25724 * certain system generated traffic may not 25725 * have cred/label in ip header block. This 25726 * is true even for a labeled system. But for 25727 * labeled traffic, inherit the label in the 25728 * new header. 25729 */ 25730 if (DB_CRED(mp) != NULL) 25731 mblk_setcred(mp1, DB_CRED(mp)); 25732 /* 25733 * XXX disable ICK_VALID and compute checksum 25734 * here; can happen if nce_fp_mp changes and 25735 * it can't be copied now due to insufficient 25736 * space. (unlikely, fp mp can change, but it 25737 * does not increase in length) 25738 */ 25739 } 25740 UNLOCK_IRE_FP_MP(ire); 25741 } else { 25742 no_fp_mp: 25743 mp1 = copyb(ire->ire_nce->nce_res_mp); 25744 if (mp1 == NULL) { 25745 unlock_err: 25746 UNLOCK_IRE_FP_MP(ire); 25747 freemsg(mp); 25748 return (NULL); 25749 } 25750 UNLOCK_IRE_FP_MP(ire); 25751 mp1->b_cont = mp; 25752 /* 25753 * certain system generated traffic may not 25754 * have cred/label in ip header block. This 25755 * is true even for a labeled system. But for 25756 * labeled traffic, inherit the label in the 25757 * new header. 25758 */ 25759 if (DB_CRED(mp) != NULL) 25760 mblk_setcred(mp1, DB_CRED(mp)); 25761 if (!qos_done && (proc != 0) && IPP_ENABLED(proc, ipst)) { 25762 ip_process(proc, &mp1, ill_index); 25763 if (mp1 == NULL) 25764 return (NULL); 25765 } 25766 } 25767 return (mp1); 25768 #undef rptr 25769 } 25770 25771 /* 25772 * Finish the outbound IPsec processing for an IPv6 packet. This function 25773 * is called from ipsec_out_process() if the IPsec packet was processed 25774 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25775 * asynchronously. 25776 */ 25777 void 25778 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 25779 ire_t *ire_arg) 25780 { 25781 in6_addr_t *v6dstp; 25782 ire_t *ire; 25783 mblk_t *mp; 25784 ip6_t *ip6h1; 25785 uint_t ill_index; 25786 ipsec_out_t *io; 25787 boolean_t attach_if, hwaccel; 25788 uint32_t flags = IP6_NO_IPPOLICY; 25789 int match_flags; 25790 zoneid_t zoneid; 25791 boolean_t ill_need_rele = B_FALSE; 25792 boolean_t ire_need_rele = B_FALSE; 25793 ip_stack_t *ipst; 25794 25795 mp = ipsec_mp->b_cont; 25796 ip6h1 = (ip6_t *)mp->b_rptr; 25797 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25798 ASSERT(io->ipsec_out_ns != NULL); 25799 ipst = io->ipsec_out_ns->netstack_ip; 25800 ill_index = io->ipsec_out_ill_index; 25801 if (io->ipsec_out_reachable) { 25802 flags |= IPV6_REACHABILITY_CONFIRMATION; 25803 } 25804 attach_if = io->ipsec_out_attach_if; 25805 hwaccel = io->ipsec_out_accelerated; 25806 zoneid = io->ipsec_out_zoneid; 25807 ASSERT(zoneid != ALL_ZONES); 25808 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 25809 /* Multicast addresses should have non-zero ill_index. */ 25810 v6dstp = &ip6h->ip6_dst; 25811 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 25812 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 25813 ASSERT(!attach_if || ill_index != 0); 25814 if (ill_index != 0) { 25815 if (ill == NULL) { 25816 ill = ip_grab_attach_ill(NULL, ipsec_mp, ill_index, 25817 B_TRUE, ipst); 25818 25819 /* Failure case frees things for us. */ 25820 if (ill == NULL) 25821 return; 25822 25823 ill_need_rele = B_TRUE; 25824 } 25825 /* 25826 * If this packet needs to go out on a particular interface 25827 * honor it. 25828 */ 25829 if (attach_if) { 25830 match_flags = MATCH_IRE_ILL; 25831 25832 /* 25833 * Check if we need an ire that will not be 25834 * looked up by anybody else i.e. HIDDEN. 25835 */ 25836 if (ill_is_probeonly(ill)) { 25837 match_flags |= MATCH_IRE_MARK_HIDDEN; 25838 } 25839 } 25840 } 25841 ASSERT(mp != NULL); 25842 25843 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 25844 boolean_t unspec_src; 25845 ipif_t *ipif; 25846 25847 /* 25848 * Use the ill_index to get the right ill. 25849 */ 25850 unspec_src = io->ipsec_out_unspec_src; 25851 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25852 if (ipif == NULL) { 25853 if (ill_need_rele) 25854 ill_refrele(ill); 25855 freemsg(ipsec_mp); 25856 return; 25857 } 25858 25859 if (ire_arg != NULL) { 25860 ire = ire_arg; 25861 } else { 25862 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25863 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25864 ire_need_rele = B_TRUE; 25865 } 25866 if (ire != NULL) { 25867 ipif_refrele(ipif); 25868 /* 25869 * XXX Do the multicast forwarding now, as the IPSEC 25870 * processing has been done. 25871 */ 25872 goto send; 25873 } 25874 25875 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 25876 mp->b_prev = NULL; 25877 mp->b_next = NULL; 25878 25879 /* 25880 * If the IPsec packet was processed asynchronously, 25881 * drop it now. 25882 */ 25883 if (q == NULL) { 25884 if (ill_need_rele) 25885 ill_refrele(ill); 25886 freemsg(ipsec_mp); 25887 return; 25888 } 25889 25890 ip_newroute_ipif_v6(q, ipsec_mp, ipif, *v6dstp, 25891 unspec_src, zoneid); 25892 ipif_refrele(ipif); 25893 } else { 25894 if (attach_if) { 25895 ipif_t *ipif; 25896 25897 ipif = ipif_get_next_ipif(NULL, ill); 25898 if (ipif == NULL) { 25899 if (ill_need_rele) 25900 ill_refrele(ill); 25901 freemsg(ipsec_mp); 25902 return; 25903 } 25904 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25905 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25906 ire_need_rele = B_TRUE; 25907 ipif_refrele(ipif); 25908 } else { 25909 if (ire_arg != NULL) { 25910 ire = ire_arg; 25911 } else { 25912 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL, 25913 ipst); 25914 ire_need_rele = B_TRUE; 25915 } 25916 } 25917 if (ire != NULL) 25918 goto send; 25919 /* 25920 * ire disappeared underneath. 25921 * 25922 * What we need to do here is the ip_newroute 25923 * logic to get the ire without doing the IPSEC 25924 * processing. Follow the same old path. But this 25925 * time, ip_wput or ire_add_then_send will call us 25926 * directly as all the IPSEC operations are done. 25927 */ 25928 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 25929 mp->b_prev = NULL; 25930 mp->b_next = NULL; 25931 25932 /* 25933 * If the IPsec packet was processed asynchronously, 25934 * drop it now. 25935 */ 25936 if (q == NULL) { 25937 if (ill_need_rele) 25938 ill_refrele(ill); 25939 freemsg(ipsec_mp); 25940 return; 25941 } 25942 25943 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 25944 zoneid, ipst); 25945 } 25946 if (ill != NULL && ill_need_rele) 25947 ill_refrele(ill); 25948 return; 25949 send: 25950 if (ill != NULL && ill_need_rele) 25951 ill_refrele(ill); 25952 25953 /* Local delivery */ 25954 if (ire->ire_stq == NULL) { 25955 ill_t *out_ill; 25956 ASSERT(q != NULL); 25957 25958 /* PFHooks: LOOPBACK_OUT */ 25959 out_ill = ire->ire_ipif->ipif_ill; 25960 25961 DTRACE_PROBE4(ip6__loopback__out__start, 25962 ill_t *, NULL, ill_t *, out_ill, 25963 ip6_t *, ip6h1, mblk_t *, ipsec_mp); 25964 25965 FW_HOOKS6(ipst->ips_ip6_loopback_out_event, 25966 ipst->ips_ipv6firewall_loopback_out, 25967 NULL, out_ill, ip6h1, ipsec_mp, mp, ipst); 25968 25969 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, ipsec_mp); 25970 25971 if (ipsec_mp != NULL) 25972 ip_wput_local_v6(RD(q), out_ill, 25973 ip6h, ipsec_mp, ire, 0); 25974 if (ire_need_rele) 25975 ire_refrele(ire); 25976 return; 25977 } 25978 /* 25979 * Everything is done. Send it out on the wire. 25980 * We force the insertion of a fragment header using the 25981 * IPH_FRAG_HDR flag in two cases: 25982 * - after reception of an ICMPv6 "packet too big" message 25983 * with a MTU < 1280 (cf. RFC 2460 section 5) 25984 * - for multirouted IPv6 packets, so that the receiver can 25985 * discard duplicates according to their fragment identifier 25986 */ 25987 /* XXX fix flow control problems. */ 25988 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 25989 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 25990 if (hwaccel) { 25991 /* 25992 * hardware acceleration does not handle these 25993 * "slow path" cases. 25994 */ 25995 /* IPsec KSTATS: should bump bean counter here. */ 25996 if (ire_need_rele) 25997 ire_refrele(ire); 25998 freemsg(ipsec_mp); 25999 return; 26000 } 26001 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 26002 (mp->b_cont ? msgdsize(mp) : 26003 mp->b_wptr - (uchar_t *)ip6h)) { 26004 /* IPsec KSTATS: should bump bean counter here. */ 26005 ip0dbg(("Packet length mismatch: %d, %ld\n", 26006 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 26007 msgdsize(mp))); 26008 if (ire_need_rele) 26009 ire_refrele(ire); 26010 freemsg(ipsec_mp); 26011 return; 26012 } 26013 ASSERT(mp->b_prev == NULL); 26014 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 26015 ntohs(ip6h->ip6_plen) + 26016 IPV6_HDR_LEN, ire->ire_max_frag)); 26017 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 26018 ire->ire_max_frag); 26019 } else { 26020 UPDATE_OB_PKT_COUNT(ire); 26021 ire->ire_last_used_time = lbolt; 26022 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 26023 } 26024 if (ire_need_rele) 26025 ire_refrele(ire); 26026 freeb(ipsec_mp); 26027 } 26028 26029 void 26030 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 26031 { 26032 mblk_t *hada_mp; /* attributes M_CTL mblk */ 26033 da_ipsec_t *hada; /* data attributes */ 26034 ill_t *ill = (ill_t *)q->q_ptr; 26035 26036 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 26037 26038 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 26039 /* IPsec KSTATS: Bump lose counter here! */ 26040 freemsg(mp); 26041 return; 26042 } 26043 26044 /* 26045 * It's an IPsec packet that must be 26046 * accelerated by the Provider, and the 26047 * outbound ill is IPsec acceleration capable. 26048 * Prepends the mblk with an IPHADA_M_CTL, and ship it 26049 * to the ill. 26050 * IPsec KSTATS: should bump packet counter here. 26051 */ 26052 26053 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 26054 if (hada_mp == NULL) { 26055 /* IPsec KSTATS: should bump packet counter here. */ 26056 freemsg(mp); 26057 return; 26058 } 26059 26060 hada_mp->b_datap->db_type = M_CTL; 26061 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 26062 hada_mp->b_cont = mp; 26063 26064 hada = (da_ipsec_t *)hada_mp->b_rptr; 26065 bzero(hada, sizeof (da_ipsec_t)); 26066 hada->da_type = IPHADA_M_CTL; 26067 26068 putnext(q, hada_mp); 26069 } 26070 26071 /* 26072 * Finish the outbound IPsec processing. This function is called from 26073 * ipsec_out_process() if the IPsec packet was processed 26074 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 26075 * asynchronously. 26076 */ 26077 void 26078 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 26079 ire_t *ire_arg) 26080 { 26081 uint32_t v_hlen_tos_len; 26082 ipaddr_t dst; 26083 ipif_t *ipif = NULL; 26084 ire_t *ire; 26085 ire_t *ire1 = NULL; 26086 mblk_t *next_mp = NULL; 26087 uint32_t max_frag; 26088 boolean_t multirt_send = B_FALSE; 26089 mblk_t *mp; 26090 mblk_t *mp1; 26091 ipha_t *ipha1; 26092 uint_t ill_index; 26093 ipsec_out_t *io; 26094 boolean_t attach_if; 26095 int match_flags, offset; 26096 irb_t *irb = NULL; 26097 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 26098 zoneid_t zoneid; 26099 uint32_t cksum; 26100 uint16_t *up; 26101 ipxmit_state_t pktxmit_state; 26102 ip_stack_t *ipst; 26103 26104 #ifdef _BIG_ENDIAN 26105 #define LENGTH (v_hlen_tos_len & 0xFFFF) 26106 #else 26107 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 26108 #endif 26109 26110 mp = ipsec_mp->b_cont; 26111 ipha1 = (ipha_t *)mp->b_rptr; 26112 ASSERT(mp != NULL); 26113 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 26114 dst = ipha->ipha_dst; 26115 26116 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26117 ill_index = io->ipsec_out_ill_index; 26118 attach_if = io->ipsec_out_attach_if; 26119 zoneid = io->ipsec_out_zoneid; 26120 ASSERT(zoneid != ALL_ZONES); 26121 ipst = io->ipsec_out_ns->netstack_ip; 26122 ASSERT(io->ipsec_out_ns != NULL); 26123 26124 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 26125 if (ill_index != 0) { 26126 if (ill == NULL) { 26127 ill = ip_grab_attach_ill(NULL, ipsec_mp, 26128 ill_index, B_FALSE, ipst); 26129 26130 /* Failure case frees things for us. */ 26131 if (ill == NULL) 26132 return; 26133 26134 ill_need_rele = B_TRUE; 26135 } 26136 /* 26137 * If this packet needs to go out on a particular interface 26138 * honor it. 26139 */ 26140 if (attach_if) { 26141 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 26142 26143 /* 26144 * Check if we need an ire that will not be 26145 * looked up by anybody else i.e. HIDDEN. 26146 */ 26147 if (ill_is_probeonly(ill)) { 26148 match_flags |= MATCH_IRE_MARK_HIDDEN; 26149 } 26150 } 26151 } 26152 26153 if (CLASSD(dst)) { 26154 boolean_t conn_dontroute; 26155 /* 26156 * Use the ill_index to get the right ipif. 26157 */ 26158 conn_dontroute = io->ipsec_out_dontroute; 26159 if (ill_index == 0) 26160 ipif = ipif_lookup_group(dst, zoneid, ipst); 26161 else 26162 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 26163 if (ipif == NULL) { 26164 ip1dbg(("ip_wput_ipsec_out: No ipif for" 26165 " multicast\n")); 26166 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 26167 freemsg(ipsec_mp); 26168 goto done; 26169 } 26170 /* 26171 * ipha_src has already been intialized with the 26172 * value of the ipif in ip_wput. All we need now is 26173 * an ire to send this downstream. 26174 */ 26175 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 26176 MBLK_GETLABEL(mp), match_flags, ipst); 26177 if (ire != NULL) { 26178 ill_t *ill1; 26179 /* 26180 * Do the multicast forwarding now, as the IPSEC 26181 * processing has been done. 26182 */ 26183 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 26184 (ill1 = ire_to_ill(ire))) { 26185 if (ip_mforward(ill1, ipha, mp)) { 26186 freemsg(ipsec_mp); 26187 ip1dbg(("ip_wput_ipsec_out: mforward " 26188 "failed\n")); 26189 ire_refrele(ire); 26190 goto done; 26191 } 26192 } 26193 goto send; 26194 } 26195 26196 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 26197 mp->b_prev = NULL; 26198 mp->b_next = NULL; 26199 26200 /* 26201 * If the IPsec packet was processed asynchronously, 26202 * drop it now. 26203 */ 26204 if (q == NULL) { 26205 freemsg(ipsec_mp); 26206 goto done; 26207 } 26208 26209 /* 26210 * We may be using a wrong ipif to create the ire. 26211 * But it is okay as the source address is assigned 26212 * for the packet already. Next outbound packet would 26213 * create the IRE with the right IPIF in ip_wput. 26214 * 26215 * Also handle RTF_MULTIRT routes. 26216 */ 26217 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT, 26218 zoneid, &zero_info); 26219 } else { 26220 if (attach_if) { 26221 ire = ire_ctable_lookup(dst, 0, 0, ill->ill_ipif, 26222 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 26223 } else { 26224 if (ire_arg != NULL) { 26225 ire = ire_arg; 26226 ire_need_rele = B_FALSE; 26227 } else { 26228 ire = ire_cache_lookup(dst, zoneid, 26229 MBLK_GETLABEL(mp), ipst); 26230 } 26231 } 26232 if (ire != NULL) { 26233 goto send; 26234 } 26235 26236 /* 26237 * ire disappeared underneath. 26238 * 26239 * What we need to do here is the ip_newroute 26240 * logic to get the ire without doing the IPSEC 26241 * processing. Follow the same old path. But this 26242 * time, ip_wput or ire_add_then_put will call us 26243 * directly as all the IPSEC operations are done. 26244 */ 26245 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 26246 mp->b_prev = NULL; 26247 mp->b_next = NULL; 26248 26249 /* 26250 * If the IPsec packet was processed asynchronously, 26251 * drop it now. 26252 */ 26253 if (q == NULL) { 26254 freemsg(ipsec_mp); 26255 goto done; 26256 } 26257 26258 /* 26259 * Since we're going through ip_newroute() again, we 26260 * need to make sure we don't: 26261 * 26262 * 1.) Trigger the ASSERT() with the ipha_ident 26263 * overloading. 26264 * 2.) Redo transport-layer checksumming, since we've 26265 * already done all that to get this far. 26266 * 26267 * The easiest way not do either of the above is to set 26268 * the ipha_ident field to IP_HDR_INCLUDED. 26269 */ 26270 ipha->ipha_ident = IP_HDR_INCLUDED; 26271 ip_newroute(q, ipsec_mp, dst, NULL, 26272 (CONN_Q(q) ? Q_TO_CONN(q) : NULL), zoneid, ipst); 26273 } 26274 goto done; 26275 send: 26276 if (ipha->ipha_protocol == IPPROTO_UDP && 26277 udp_compute_checksum(ipst->ips_netstack)) { 26278 /* 26279 * ESP NAT-Traversal packet. 26280 * 26281 * Just do software checksum for now. 26282 */ 26283 26284 offset = IP_SIMPLE_HDR_LENGTH + UDP_CHECKSUM_OFFSET; 26285 IP_STAT(ipst, ip_out_sw_cksum); 26286 IP_STAT_UPDATE(ipst, ip_udp_out_sw_cksum_bytes, 26287 ntohs(htons(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH)); 26288 #define iphs ((uint16_t *)ipha) 26289 cksum = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 26290 iphs[9] + ntohs(htons(ipha->ipha_length) - 26291 IP_SIMPLE_HDR_LENGTH); 26292 #undef iphs 26293 cksum = IP_CSUM(mp, IP_SIMPLE_HDR_LENGTH, cksum); 26294 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) 26295 if (mp1->b_wptr - mp1->b_rptr >= 26296 offset + sizeof (uint16_t)) { 26297 up = (uint16_t *)(mp1->b_rptr + offset); 26298 *up = cksum; 26299 break; /* out of for loop */ 26300 } else { 26301 offset -= (mp->b_wptr - mp->b_rptr); 26302 } 26303 } /* Otherwise, just keep the all-zero checksum. */ 26304 26305 if (ire->ire_stq == NULL) { 26306 ill_t *out_ill; 26307 /* 26308 * Loopbacks go through ip_wput_local except for one case. 26309 * We come here if we generate a icmp_frag_needed message 26310 * after IPSEC processing is over. When this function calls 26311 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 26312 * icmp_frag_needed. The message generated comes back here 26313 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 26314 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 26315 * source address as it is usually set in ip_wput_ire. As 26316 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 26317 * and we end up here. We can't enter ip_wput_ire once the 26318 * IPSEC processing is over and hence we need to do it here. 26319 */ 26320 ASSERT(q != NULL); 26321 UPDATE_OB_PKT_COUNT(ire); 26322 ire->ire_last_used_time = lbolt; 26323 if (ipha->ipha_src == 0) 26324 ipha->ipha_src = ire->ire_src_addr; 26325 26326 /* PFHooks: LOOPBACK_OUT */ 26327 out_ill = ire->ire_ipif->ipif_ill; 26328 26329 DTRACE_PROBE4(ip4__loopback__out__start, 26330 ill_t *, NULL, ill_t *, out_ill, 26331 ipha_t *, ipha1, mblk_t *, ipsec_mp); 26332 26333 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 26334 ipst->ips_ipv4firewall_loopback_out, 26335 NULL, out_ill, ipha1, ipsec_mp, mp, ipst); 26336 26337 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, ipsec_mp); 26338 26339 if (ipsec_mp != NULL) 26340 ip_wput_local(RD(q), out_ill, 26341 ipha, ipsec_mp, ire, 0, zoneid); 26342 if (ire_need_rele) 26343 ire_refrele(ire); 26344 goto done; 26345 } 26346 26347 if (ire->ire_max_frag < (unsigned int)LENGTH) { 26348 /* 26349 * We are through with IPSEC processing. 26350 * Fragment this and send it on the wire. 26351 */ 26352 if (io->ipsec_out_accelerated) { 26353 /* 26354 * The packet has been accelerated but must 26355 * be fragmented. This should not happen 26356 * since AH and ESP must not accelerate 26357 * packets that need fragmentation, however 26358 * the configuration could have changed 26359 * since the AH or ESP processing. 26360 * Drop packet. 26361 * IPsec KSTATS: bump bean counter here. 26362 */ 26363 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 26364 "fragmented accelerated packet!\n")); 26365 freemsg(ipsec_mp); 26366 } else { 26367 ip_wput_ire_fragmentit(ipsec_mp, ire, zoneid, ipst); 26368 } 26369 if (ire_need_rele) 26370 ire_refrele(ire); 26371 goto done; 26372 } 26373 26374 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 26375 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 26376 (void *)ire->ire_ipif, (void *)ipif)); 26377 26378 /* 26379 * Multiroute the secured packet, unless IPsec really 26380 * requires the packet to go out only through a particular 26381 * interface. 26382 */ 26383 if ((ire->ire_flags & RTF_MULTIRT) && !attach_if) { 26384 ire_t *first_ire; 26385 irb = ire->ire_bucket; 26386 ASSERT(irb != NULL); 26387 /* 26388 * This ire has been looked up as the one that 26389 * goes through the given ipif; 26390 * make sure we do not omit any other multiroute ire 26391 * that may be present in the bucket before this one. 26392 */ 26393 IRB_REFHOLD(irb); 26394 for (first_ire = irb->irb_ire; 26395 first_ire != NULL; 26396 first_ire = first_ire->ire_next) { 26397 if ((first_ire->ire_flags & RTF_MULTIRT) && 26398 (first_ire->ire_addr == ire->ire_addr) && 26399 !(first_ire->ire_marks & 26400 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 26401 break; 26402 } 26403 } 26404 26405 if ((first_ire != NULL) && (first_ire != ire)) { 26406 /* 26407 * Don't change the ire if the packet must 26408 * be fragmented if sent via this new one. 26409 */ 26410 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 26411 IRE_REFHOLD(first_ire); 26412 if (ire_need_rele) 26413 ire_refrele(ire); 26414 else 26415 ire_need_rele = B_TRUE; 26416 ire = first_ire; 26417 } 26418 } 26419 IRB_REFRELE(irb); 26420 26421 multirt_send = B_TRUE; 26422 max_frag = ire->ire_max_frag; 26423 } else { 26424 if ((ire->ire_flags & RTF_MULTIRT) && attach_if) { 26425 ip1dbg(("ip_wput_ipsec_out: ignoring multirouting " 26426 "flag, attach_if %d\n", attach_if)); 26427 } 26428 } 26429 26430 /* 26431 * In most cases, the emission loop below is entered only once. 26432 * Only in the case where the ire holds the RTF_MULTIRT 26433 * flag, we loop to process all RTF_MULTIRT ires in the 26434 * bucket, and send the packet through all crossed 26435 * RTF_MULTIRT routes. 26436 */ 26437 do { 26438 if (multirt_send) { 26439 /* 26440 * ire1 holds here the next ire to process in the 26441 * bucket. If multirouting is expected, 26442 * any non-RTF_MULTIRT ire that has the 26443 * right destination address is ignored. 26444 */ 26445 ASSERT(irb != NULL); 26446 IRB_REFHOLD(irb); 26447 for (ire1 = ire->ire_next; 26448 ire1 != NULL; 26449 ire1 = ire1->ire_next) { 26450 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 26451 continue; 26452 if (ire1->ire_addr != ire->ire_addr) 26453 continue; 26454 if (ire1->ire_marks & 26455 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 26456 continue; 26457 /* No loopback here */ 26458 if (ire1->ire_stq == NULL) 26459 continue; 26460 /* 26461 * Ensure we do not exceed the MTU 26462 * of the next route. 26463 */ 26464 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 26465 ip_multirt_bad_mtu(ire1, max_frag); 26466 continue; 26467 } 26468 26469 IRE_REFHOLD(ire1); 26470 break; 26471 } 26472 IRB_REFRELE(irb); 26473 if (ire1 != NULL) { 26474 /* 26475 * We are in a multiple send case, need to 26476 * make a copy of the packet. 26477 */ 26478 next_mp = copymsg(ipsec_mp); 26479 if (next_mp == NULL) { 26480 ire_refrele(ire1); 26481 ire1 = NULL; 26482 } 26483 } 26484 } 26485 /* 26486 * Everything is done. Send it out on the wire 26487 * 26488 * ip_xmit_v4 will call ip_wput_attach_llhdr and then 26489 * either send it on the wire or, in the case of 26490 * HW acceleration, call ipsec_hw_putnext. 26491 */ 26492 if (ire->ire_nce && 26493 ire->ire_nce->nce_state != ND_REACHABLE) { 26494 DTRACE_PROBE2(ip__wput__ipsec__bail, 26495 (ire_t *), ire, (mblk_t *), ipsec_mp); 26496 /* 26497 * If ire's link-layer is unresolved (this 26498 * would only happen if the incomplete ire 26499 * was added to cachetable via forwarding path) 26500 * don't bother going to ip_xmit_v4. Just drop the 26501 * packet. 26502 * There is a slight risk here, in that, if we 26503 * have the forwarding path create an incomplete 26504 * IRE, then until the IRE is completed, any 26505 * transmitted IPSEC packets will be dropped 26506 * instead of being queued waiting for resolution. 26507 * 26508 * But the likelihood of a forwarding packet and a wput 26509 * packet sending to the same dst at the same time 26510 * and there not yet be an ARP entry for it is small. 26511 * Furthermore, if this actually happens, it might 26512 * be likely that wput would generate multiple 26513 * packets (and forwarding would also have a train 26514 * of packets) for that destination. If this is 26515 * the case, some of them would have been dropped 26516 * anyway, since ARP only queues a few packets while 26517 * waiting for resolution 26518 * 26519 * NOTE: We should really call ip_xmit_v4, 26520 * and let it queue the packet and send the 26521 * ARP query and have ARP come back thus: 26522 * <ARP> ip_wput->ip_output->ip-wput_nondata-> 26523 * ip_xmit_v4->ip_wput_attach_llhdr + ipsec 26524 * hw accel work. But it's too complex to get 26525 * the IPsec hw acceleration approach to fit 26526 * well with ip_xmit_v4 doing ARP without 26527 * doing IPSEC simplification. For now, we just 26528 * poke ip_xmit_v4 to trigger the arp resolve, so 26529 * that we can continue with the send on the next 26530 * attempt. 26531 * 26532 * XXX THis should be revisited, when 26533 * the IPsec/IP interaction is cleaned up 26534 */ 26535 ip1dbg(("ip_wput_ipsec_out: ire is incomplete" 26536 " - dropping packet\n")); 26537 freemsg(ipsec_mp); 26538 /* 26539 * Call ip_xmit_v4() to trigger ARP query 26540 * in case the nce_state is ND_INITIAL 26541 */ 26542 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 26543 goto drop_pkt; 26544 } 26545 26546 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 26547 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha1, 26548 mblk_t *, ipsec_mp); 26549 FW_HOOKS(ipst->ips_ip4_physical_out_event, 26550 ipst->ips_ipv4firewall_physical_out, 26551 NULL, ire->ire_ipif->ipif_ill, ipha1, ipsec_mp, mp, ipst); 26552 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, ipsec_mp); 26553 if (ipsec_mp == NULL) 26554 goto drop_pkt; 26555 26556 ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n")); 26557 pktxmit_state = ip_xmit_v4(mp, ire, 26558 (io->ipsec_out_accelerated ? io : NULL), B_FALSE); 26559 26560 if ((pktxmit_state == SEND_FAILED) || 26561 (pktxmit_state == LLHDR_RESLV_FAILED)) { 26562 26563 freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */ 26564 drop_pkt: 26565 BUMP_MIB(((ill_t *)ire->ire_stq->q_ptr)->ill_ip_mib, 26566 ipIfStatsOutDiscards); 26567 if (ire_need_rele) 26568 ire_refrele(ire); 26569 if (ire1 != NULL) { 26570 ire_refrele(ire1); 26571 freemsg(next_mp); 26572 } 26573 goto done; 26574 } 26575 26576 freeb(ipsec_mp); 26577 if (ire_need_rele) 26578 ire_refrele(ire); 26579 26580 if (ire1 != NULL) { 26581 ire = ire1; 26582 ire_need_rele = B_TRUE; 26583 ASSERT(next_mp); 26584 ipsec_mp = next_mp; 26585 mp = ipsec_mp->b_cont; 26586 ire1 = NULL; 26587 next_mp = NULL; 26588 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26589 } else { 26590 multirt_send = B_FALSE; 26591 } 26592 } while (multirt_send); 26593 done: 26594 if (ill != NULL && ill_need_rele) 26595 ill_refrele(ill); 26596 if (ipif != NULL) 26597 ipif_refrele(ipif); 26598 } 26599 26600 /* 26601 * Get the ill corresponding to the specified ire, and compare its 26602 * capabilities with the protocol and algorithms specified by the 26603 * the SA obtained from ipsec_out. If they match, annotate the 26604 * ipsec_out structure to indicate that the packet needs acceleration. 26605 * 26606 * 26607 * A packet is eligible for outbound hardware acceleration if the 26608 * following conditions are satisfied: 26609 * 26610 * 1. the packet will not be fragmented 26611 * 2. the provider supports the algorithm 26612 * 3. there is no pending control message being exchanged 26613 * 4. snoop is not attached 26614 * 5. the destination address is not a broadcast or multicast address. 26615 * 26616 * Rationale: 26617 * - Hardware drivers do not support fragmentation with 26618 * the current interface. 26619 * - snoop, multicast, and broadcast may result in exposure of 26620 * a cleartext datagram. 26621 * We check all five of these conditions here. 26622 * 26623 * XXX would like to nuke "ire_t *" parameter here; problem is that 26624 * IRE is only way to figure out if a v4 address is a broadcast and 26625 * thus ineligible for acceleration... 26626 */ 26627 static void 26628 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 26629 { 26630 ipsec_out_t *io; 26631 mblk_t *data_mp; 26632 uint_t plen, overhead; 26633 ip_stack_t *ipst; 26634 26635 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 26636 return; 26637 26638 if (ill == NULL) 26639 return; 26640 ipst = ill->ill_ipst; 26641 /* 26642 * Destination address is a broadcast or multicast. Punt. 26643 */ 26644 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 26645 IRE_LOCAL))) 26646 return; 26647 26648 data_mp = ipsec_mp->b_cont; 26649 26650 if (ill->ill_isv6) { 26651 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 26652 26653 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 26654 return; 26655 26656 plen = ip6h->ip6_plen; 26657 } else { 26658 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 26659 26660 if (CLASSD(ipha->ipha_dst)) 26661 return; 26662 26663 plen = ipha->ipha_length; 26664 } 26665 /* 26666 * Is there a pending DLPI control message being exchanged 26667 * between IP/IPsec and the DLS Provider? If there is, it 26668 * could be a SADB update, and the state of the DLS Provider 26669 * SADB might not be in sync with the SADB maintained by 26670 * IPsec. To avoid dropping packets or using the wrong keying 26671 * material, we do not accelerate this packet. 26672 */ 26673 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 26674 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26675 "ill_dlpi_pending! don't accelerate packet\n")); 26676 return; 26677 } 26678 26679 /* 26680 * Is the Provider in promiscous mode? If it does, we don't 26681 * accelerate the packet since it will bounce back up to the 26682 * listeners in the clear. 26683 */ 26684 if (ill->ill_promisc_on_phys) { 26685 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26686 "ill in promiscous mode, don't accelerate packet\n")); 26687 return; 26688 } 26689 26690 /* 26691 * Will the packet require fragmentation? 26692 */ 26693 26694 /* 26695 * IPsec ESP note: this is a pessimistic estimate, but the same 26696 * as is used elsewhere. 26697 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 26698 * + 2-byte trailer 26699 */ 26700 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 26701 IPSEC_BASE_ESP_HDR_SIZE(sa); 26702 26703 if ((plen + overhead) > ill->ill_max_mtu) 26704 return; 26705 26706 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26707 26708 /* 26709 * Can the ill accelerate this IPsec protocol and algorithm 26710 * specified by the SA? 26711 */ 26712 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 26713 ill->ill_isv6, sa, ipst->ips_netstack)) { 26714 return; 26715 } 26716 26717 /* 26718 * Tell AH or ESP that the outbound ill is capable of 26719 * accelerating this packet. 26720 */ 26721 io->ipsec_out_is_capab_ill = B_TRUE; 26722 } 26723 26724 /* 26725 * Select which AH & ESP SA's to use (if any) for the outbound packet. 26726 * 26727 * If this function returns B_TRUE, the requested SA's have been filled 26728 * into the ipsec_out_*_sa pointers. 26729 * 26730 * If the function returns B_FALSE, the packet has been "consumed", most 26731 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 26732 * 26733 * The SA references created by the protocol-specific "select" 26734 * function will be released when the ipsec_mp is freed, thanks to the 26735 * ipsec_out_free destructor -- see spd.c. 26736 */ 26737 static boolean_t 26738 ipsec_out_select_sa(mblk_t *ipsec_mp) 26739 { 26740 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 26741 ipsec_out_t *io; 26742 ipsec_policy_t *pp; 26743 ipsec_action_t *ap; 26744 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26745 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26746 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26747 26748 if (!io->ipsec_out_secure) { 26749 /* 26750 * We came here by mistake. 26751 * Don't bother with ipsec processing 26752 * We should "discourage" this path in the future. 26753 */ 26754 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26755 return (B_FALSE); 26756 } 26757 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26758 ASSERT((io->ipsec_out_policy != NULL) || 26759 (io->ipsec_out_act != NULL)); 26760 26761 ASSERT(io->ipsec_out_failed == B_FALSE); 26762 26763 /* 26764 * IPSEC processing has started. 26765 */ 26766 io->ipsec_out_proc_begin = B_TRUE; 26767 ap = io->ipsec_out_act; 26768 if (ap == NULL) { 26769 pp = io->ipsec_out_policy; 26770 ASSERT(pp != NULL); 26771 ap = pp->ipsp_act; 26772 ASSERT(ap != NULL); 26773 } 26774 26775 /* 26776 * We have an action. now, let's select SA's. 26777 * (In the future, we can cache this in the conn_t..) 26778 */ 26779 if (ap->ipa_want_esp) { 26780 if (io->ipsec_out_esp_sa == NULL) { 26781 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 26782 IPPROTO_ESP); 26783 } 26784 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 26785 } 26786 26787 if (ap->ipa_want_ah) { 26788 if (io->ipsec_out_ah_sa == NULL) { 26789 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 26790 IPPROTO_AH); 26791 } 26792 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 26793 /* 26794 * The ESP and AH processing order needs to be preserved 26795 * when both protocols are required (ESP should be applied 26796 * before AH for an outbound packet). Force an ESP ACQUIRE 26797 * when both ESP and AH are required, and an AH ACQUIRE 26798 * is needed. 26799 */ 26800 if (ap->ipa_want_esp && need_ah_acquire) 26801 need_esp_acquire = B_TRUE; 26802 } 26803 26804 /* 26805 * Send an ACQUIRE (extended, regular, or both) if we need one. 26806 * Release SAs that got referenced, but will not be used until we 26807 * acquire _all_ of the SAs we need. 26808 */ 26809 if (need_ah_acquire || need_esp_acquire) { 26810 if (io->ipsec_out_ah_sa != NULL) { 26811 IPSA_REFRELE(io->ipsec_out_ah_sa); 26812 io->ipsec_out_ah_sa = NULL; 26813 } 26814 if (io->ipsec_out_esp_sa != NULL) { 26815 IPSA_REFRELE(io->ipsec_out_esp_sa); 26816 io->ipsec_out_esp_sa = NULL; 26817 } 26818 26819 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 26820 return (B_FALSE); 26821 } 26822 26823 return (B_TRUE); 26824 } 26825 26826 /* 26827 * Process an IPSEC_OUT message and see what you can 26828 * do with it. 26829 * IPQoS Notes: 26830 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 26831 * IPSec. 26832 * XXX would like to nuke ire_t. 26833 * XXX ill_index better be "real" 26834 */ 26835 void 26836 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 26837 { 26838 ipsec_out_t *io; 26839 ipsec_policy_t *pp; 26840 ipsec_action_t *ap; 26841 ipha_t *ipha; 26842 ip6_t *ip6h; 26843 mblk_t *mp; 26844 ill_t *ill; 26845 zoneid_t zoneid; 26846 ipsec_status_t ipsec_rc; 26847 boolean_t ill_need_rele = B_FALSE; 26848 ip_stack_t *ipst; 26849 ipsec_stack_t *ipss; 26850 26851 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26852 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26853 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26854 ipst = io->ipsec_out_ns->netstack_ip; 26855 mp = ipsec_mp->b_cont; 26856 26857 /* 26858 * Initiate IPPF processing. We do it here to account for packets 26859 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 26860 * We can check for ipsec_out_proc_begin even for such packets, as 26861 * they will always be false (asserted below). 26862 */ 26863 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst) && !io->ipsec_out_proc_begin) { 26864 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 26865 io->ipsec_out_ill_index : ill_index); 26866 if (mp == NULL) { 26867 ip2dbg(("ipsec_out_process: packet dropped "\ 26868 "during IPPF processing\n")); 26869 freeb(ipsec_mp); 26870 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26871 return; 26872 } 26873 } 26874 26875 if (!io->ipsec_out_secure) { 26876 /* 26877 * We came here by mistake. 26878 * Don't bother with ipsec processing 26879 * Should "discourage" this path in the future. 26880 */ 26881 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26882 goto done; 26883 } 26884 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26885 ASSERT((io->ipsec_out_policy != NULL) || 26886 (io->ipsec_out_act != NULL)); 26887 ASSERT(io->ipsec_out_failed == B_FALSE); 26888 26889 ipss = ipst->ips_netstack->netstack_ipsec; 26890 if (!ipsec_loaded(ipss)) { 26891 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 26892 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26893 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26894 } else { 26895 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 26896 } 26897 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 26898 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 26899 &ipss->ipsec_dropper); 26900 return; 26901 } 26902 26903 /* 26904 * IPSEC processing has started. 26905 */ 26906 io->ipsec_out_proc_begin = B_TRUE; 26907 ap = io->ipsec_out_act; 26908 if (ap == NULL) { 26909 pp = io->ipsec_out_policy; 26910 ASSERT(pp != NULL); 26911 ap = pp->ipsp_act; 26912 ASSERT(ap != NULL); 26913 } 26914 26915 /* 26916 * Save the outbound ill index. When the packet comes back 26917 * from IPsec, we make sure the ill hasn't changed or disappeared 26918 * before sending it the accelerated packet. 26919 */ 26920 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 26921 int ifindex; 26922 ill = ire_to_ill(ire); 26923 ifindex = ill->ill_phyint->phyint_ifindex; 26924 io->ipsec_out_capab_ill_index = ifindex; 26925 } 26926 26927 /* 26928 * The order of processing is first insert a IP header if needed. 26929 * Then insert the ESP header and then the AH header. 26930 */ 26931 if ((io->ipsec_out_se_done == B_FALSE) && 26932 (ap->ipa_want_se)) { 26933 /* 26934 * First get the outer IP header before sending 26935 * it to ESP. 26936 */ 26937 ipha_t *oipha, *iipha; 26938 mblk_t *outer_mp, *inner_mp; 26939 26940 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 26941 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 26942 "ipsec_out_process: " 26943 "Self-Encapsulation failed: Out of memory\n"); 26944 freemsg(ipsec_mp); 26945 if (ill != NULL) { 26946 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26947 } else { 26948 BUMP_MIB(&ipst->ips_ip_mib, 26949 ipIfStatsOutDiscards); 26950 } 26951 return; 26952 } 26953 inner_mp = ipsec_mp->b_cont; 26954 ASSERT(inner_mp->b_datap->db_type == M_DATA); 26955 oipha = (ipha_t *)outer_mp->b_rptr; 26956 iipha = (ipha_t *)inner_mp->b_rptr; 26957 *oipha = *iipha; 26958 outer_mp->b_wptr += sizeof (ipha_t); 26959 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 26960 sizeof (ipha_t)); 26961 oipha->ipha_protocol = IPPROTO_ENCAP; 26962 oipha->ipha_version_and_hdr_length = 26963 IP_SIMPLE_HDR_VERSION; 26964 oipha->ipha_hdr_checksum = 0; 26965 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 26966 outer_mp->b_cont = inner_mp; 26967 ipsec_mp->b_cont = outer_mp; 26968 26969 io->ipsec_out_se_done = B_TRUE; 26970 io->ipsec_out_tunnel = B_TRUE; 26971 } 26972 26973 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 26974 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 26975 !ipsec_out_select_sa(ipsec_mp)) 26976 return; 26977 26978 /* 26979 * By now, we know what SA's to use. Toss over to ESP & AH 26980 * to do the heavy lifting. 26981 */ 26982 zoneid = io->ipsec_out_zoneid; 26983 ASSERT(zoneid != ALL_ZONES); 26984 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 26985 ASSERT(io->ipsec_out_esp_sa != NULL); 26986 io->ipsec_out_esp_done = B_TRUE; 26987 /* 26988 * Note that since hw accel can only apply one transform, 26989 * not two, we skip hw accel for ESP if we also have AH 26990 * This is an design limitation of the interface 26991 * which should be revisited. 26992 */ 26993 ASSERT(ire != NULL); 26994 if (io->ipsec_out_ah_sa == NULL) { 26995 ill = (ill_t *)ire->ire_stq->q_ptr; 26996 ipsec_out_is_accelerated(ipsec_mp, 26997 io->ipsec_out_esp_sa, ill, ire); 26998 } 26999 27000 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 27001 switch (ipsec_rc) { 27002 case IPSEC_STATUS_SUCCESS: 27003 break; 27004 case IPSEC_STATUS_FAILED: 27005 if (ill != NULL) { 27006 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 27007 } else { 27008 BUMP_MIB(&ipst->ips_ip_mib, 27009 ipIfStatsOutDiscards); 27010 } 27011 /* FALLTHRU */ 27012 case IPSEC_STATUS_PENDING: 27013 return; 27014 } 27015 } 27016 27017 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 27018 ASSERT(io->ipsec_out_ah_sa != NULL); 27019 io->ipsec_out_ah_done = B_TRUE; 27020 if (ire == NULL) { 27021 int idx = io->ipsec_out_capab_ill_index; 27022 ill = ill_lookup_on_ifindex(idx, B_FALSE, 27023 NULL, NULL, NULL, NULL, ipst); 27024 ill_need_rele = B_TRUE; 27025 } else { 27026 ill = (ill_t *)ire->ire_stq->q_ptr; 27027 } 27028 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 27029 ire); 27030 27031 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 27032 switch (ipsec_rc) { 27033 case IPSEC_STATUS_SUCCESS: 27034 break; 27035 case IPSEC_STATUS_FAILED: 27036 if (ill != NULL) { 27037 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 27038 } else { 27039 BUMP_MIB(&ipst->ips_ip_mib, 27040 ipIfStatsOutDiscards); 27041 } 27042 /* FALLTHRU */ 27043 case IPSEC_STATUS_PENDING: 27044 if (ill != NULL && ill_need_rele) 27045 ill_refrele(ill); 27046 return; 27047 } 27048 } 27049 /* 27050 * We are done with IPSEC processing. Send it over 27051 * the wire. 27052 */ 27053 done: 27054 mp = ipsec_mp->b_cont; 27055 ipha = (ipha_t *)mp->b_rptr; 27056 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 27057 ip_wput_ipsec_out(q, ipsec_mp, ipha, ill, ire); 27058 } else { 27059 ip6h = (ip6_t *)ipha; 27060 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ill, ire); 27061 } 27062 if (ill != NULL && ill_need_rele) 27063 ill_refrele(ill); 27064 } 27065 27066 /* ARGSUSED */ 27067 void 27068 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 27069 { 27070 opt_restart_t *or; 27071 int err; 27072 conn_t *connp; 27073 27074 ASSERT(CONN_Q(q)); 27075 connp = Q_TO_CONN(q); 27076 27077 ASSERT(first_mp->b_datap->db_type == M_CTL); 27078 or = (opt_restart_t *)first_mp->b_rptr; 27079 /* 27080 * We don't need to pass any credentials here since this is just 27081 * a restart. The credentials are passed in when svr4_optcom_req 27082 * is called the first time (from ip_wput_nondata). 27083 */ 27084 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 27085 err = svr4_optcom_req(q, first_mp, NULL, 27086 &ip_opt_obj); 27087 } else { 27088 ASSERT(or->or_type == T_OPTMGMT_REQ); 27089 err = tpi_optcom_req(q, first_mp, NULL, 27090 &ip_opt_obj); 27091 } 27092 if (err != EINPROGRESS) { 27093 /* operation is done */ 27094 CONN_OPER_PENDING_DONE(connp); 27095 } 27096 } 27097 27098 /* 27099 * ioctls that go through a down/up sequence may need to wait for the down 27100 * to complete. This involves waiting for the ire and ipif refcnts to go down 27101 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 27102 */ 27103 /* ARGSUSED */ 27104 void 27105 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 27106 { 27107 struct iocblk *iocp; 27108 mblk_t *mp1; 27109 ip_ioctl_cmd_t *ipip; 27110 int err; 27111 sin_t *sin; 27112 struct lifreq *lifr; 27113 struct ifreq *ifr; 27114 27115 iocp = (struct iocblk *)mp->b_rptr; 27116 ASSERT(ipsq != NULL); 27117 /* Existence of mp1 verified in ip_wput_nondata */ 27118 mp1 = mp->b_cont->b_cont; 27119 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27120 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 27121 /* 27122 * Special case where ipsq_current_ipif is not set: 27123 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 27124 * ill could also have become part of a ipmp group in the 27125 * process, we are here as were not able to complete the 27126 * operation in ipif_set_values because we could not become 27127 * exclusive on the new ipsq, In such a case ipsq_current_ipif 27128 * will not be set so we need to set it. 27129 */ 27130 ill_t *ill = q->q_ptr; 27131 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 27132 } 27133 ASSERT(ipsq->ipsq_current_ipif != NULL); 27134 27135 if (ipip->ipi_cmd_type == IF_CMD) { 27136 /* This a old style SIOC[GS]IF* command */ 27137 ifr = (struct ifreq *)mp1->b_rptr; 27138 sin = (sin_t *)&ifr->ifr_addr; 27139 } else if (ipip->ipi_cmd_type == LIF_CMD) { 27140 /* This a new style SIOC[GS]LIF* command */ 27141 lifr = (struct lifreq *)mp1->b_rptr; 27142 sin = (sin_t *)&lifr->lifr_addr; 27143 } else { 27144 sin = NULL; 27145 } 27146 27147 err = (*ipip->ipi_func_restart)(ipsq->ipsq_current_ipif, sin, q, mp, 27148 ipip, mp1->b_rptr); 27149 27150 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 27151 } 27152 27153 /* 27154 * ioctl processing 27155 * 27156 * ioctl processing starts with ip_sioctl_copyin_setup which looks up 27157 * the ioctl command in the ioctl tables and determines the copyin data size 27158 * from the ioctl property ipi_copyin_size, and does an mi_copyin() of that 27159 * size. 27160 * 27161 * ioctl processing then continues when the M_IOCDATA makes its way down. 27162 * Now the ioctl is looked up again in the ioctl table, and its properties are 27163 * extracted. The associated 'conn' is then refheld till the end of the ioctl 27164 * and the general ioctl processing function ip_process_ioctl is called. 27165 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 27166 * so goes thru the serialization primitive ipsq_try_enter. Then the 27167 * appropriate function to handle the ioctl is called based on the entry in 27168 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 27169 * which also refreleases the 'conn' that was refheld at the start of the 27170 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 27171 * ip_extract_lifreq_cmn extracts the interface name from the lifreq/ifreq 27172 * struct and looks up the ipif. ip_extract_tunreq handles the case of tunnel. 27173 * 27174 * Many exclusive ioctls go thru an internal down up sequence as part of 27175 * the operation. For example an attempt to change the IP address of an 27176 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 27177 * does all the cleanup such as deleting all ires that use this address. 27178 * Then we need to wait till all references to the interface go away. 27179 */ 27180 void 27181 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 27182 { 27183 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 27184 ip_ioctl_cmd_t *ipip = (ip_ioctl_cmd_t *)arg; 27185 cmd_info_t ci; 27186 int err; 27187 boolean_t entered_ipsq = B_FALSE; 27188 27189 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 27190 27191 if (ipip == NULL) 27192 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27193 27194 /* 27195 * SIOCLIFADDIF needs to go thru a special path since the 27196 * ill may not exist yet. This happens in the case of lo0 27197 * which is created using this ioctl. 27198 */ 27199 if (ipip->ipi_cmd == SIOCLIFADDIF) { 27200 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 27201 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27202 return; 27203 } 27204 27205 ci.ci_ipif = NULL; 27206 switch (ipip->ipi_cmd_type) { 27207 case IF_CMD: 27208 case LIF_CMD: 27209 /* 27210 * ioctls that pass in a [l]ifreq appear here. 27211 * ip_extract_lifreq_cmn returns a refheld ipif in 27212 * ci.ci_ipif 27213 */ 27214 err = ip_extract_lifreq_cmn(q, mp, ipip->ipi_cmd_type, 27215 ipip->ipi_flags, &ci, ip_process_ioctl); 27216 if (err != 0) { 27217 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27218 return; 27219 } 27220 ASSERT(ci.ci_ipif != NULL); 27221 break; 27222 27223 case TUN_CMD: 27224 /* 27225 * SIOC[GS]TUNPARAM appear here. ip_extract_tunreq returns 27226 * a refheld ipif in ci.ci_ipif 27227 */ 27228 err = ip_extract_tunreq(q, mp, &ci.ci_ipif, ip_process_ioctl); 27229 if (err != 0) { 27230 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27231 return; 27232 } 27233 ASSERT(ci.ci_ipif != NULL); 27234 break; 27235 27236 case MISC_CMD: 27237 /* 27238 * ioctls that neither pass in [l]ifreq or iftun_req come here 27239 * For eg. SIOCGLIFCONF will appear here. 27240 */ 27241 switch (ipip->ipi_cmd) { 27242 case IF_UNITSEL: 27243 /* ioctl comes down the ill */ 27244 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 27245 ipif_refhold(ci.ci_ipif); 27246 break; 27247 case SIOCGMSFILTER: 27248 case SIOCSMSFILTER: 27249 case SIOCGIPMSFILTER: 27250 case SIOCSIPMSFILTER: 27251 err = ip_extract_msfilter(q, mp, &ci.ci_ipif, 27252 ip_process_ioctl); 27253 if (err != 0) { 27254 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), 27255 NULL); 27256 } 27257 break; 27258 } 27259 err = 0; 27260 ci.ci_sin = NULL; 27261 ci.ci_sin6 = NULL; 27262 ci.ci_lifr = NULL; 27263 break; 27264 } 27265 27266 /* 27267 * If ipsq is non-null, we are already being called exclusively 27268 */ 27269 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 27270 if (!(ipip->ipi_flags & IPI_WR)) { 27271 /* 27272 * A return value of EINPROGRESS means the ioctl is 27273 * either queued and waiting for some reason or has 27274 * already completed. 27275 */ 27276 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 27277 ci.ci_lifr); 27278 if (ci.ci_ipif != NULL) 27279 ipif_refrele(ci.ci_ipif); 27280 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27281 return; 27282 } 27283 27284 ASSERT(ci.ci_ipif != NULL); 27285 27286 if (ipsq == NULL) { 27287 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, 27288 ip_process_ioctl, NEW_OP, B_TRUE); 27289 entered_ipsq = B_TRUE; 27290 } 27291 /* 27292 * Release the ipif so that ipif_down and friends that wait for 27293 * references to go away are not misled about the current ipif_refcnt 27294 * values. We are writer so we can access the ipif even after releasing 27295 * the ipif. 27296 */ 27297 ipif_refrele(ci.ci_ipif); 27298 if (ipsq == NULL) 27299 return; 27300 27301 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 27302 27303 /* 27304 * For most set ioctls that come here, this serves as a single point 27305 * where we set the IPIF_CHANGING flag. This ensures that there won't 27306 * be any new references to the ipif. This helps functions that go 27307 * through this path and end up trying to wait for the refcnts 27308 * associated with the ipif to go down to zero. Some exceptions are 27309 * Failover, Failback, and Groupname commands that operate on more than 27310 * just the ci.ci_ipif. These commands internally determine the 27311 * set of ipif's they operate on and set and clear the IPIF_CHANGING 27312 * flags on that set. Another exception is the Removeif command that 27313 * sets the IPIF_CONDEMNED flag internally after identifying the right 27314 * ipif to operate on. 27315 */ 27316 mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock); 27317 if (ipip->ipi_cmd != SIOCLIFREMOVEIF && 27318 ipip->ipi_cmd != SIOCLIFFAILOVER && 27319 ipip->ipi_cmd != SIOCLIFFAILBACK && 27320 ipip->ipi_cmd != SIOCSLIFGROUPNAME) 27321 (ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING; 27322 mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock); 27323 27324 /* 27325 * A return value of EINPROGRESS means the ioctl is 27326 * either queued and waiting for some reason or has 27327 * already completed. 27328 */ 27329 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 27330 27331 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 27332 27333 if (entered_ipsq) 27334 ipsq_exit(ipsq, B_TRUE, B_TRUE); 27335 } 27336 27337 /* 27338 * Complete the ioctl. Typically ioctls use the mi package and need to 27339 * do mi_copyout/mi_copy_done. 27340 */ 27341 void 27342 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 27343 { 27344 conn_t *connp = NULL; 27345 27346 if (err == EINPROGRESS) 27347 return; 27348 27349 if (CONN_Q(q)) { 27350 connp = Q_TO_CONN(q); 27351 ASSERT(connp->conn_ref >= 2); 27352 } 27353 27354 switch (mode) { 27355 case COPYOUT: 27356 if (err == 0) 27357 mi_copyout(q, mp); 27358 else 27359 mi_copy_done(q, mp, err); 27360 break; 27361 27362 case NO_COPYOUT: 27363 mi_copy_done(q, mp, err); 27364 break; 27365 27366 default: 27367 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 27368 break; 27369 } 27370 27371 /* 27372 * The refhold placed at the start of the ioctl is released here. 27373 */ 27374 if (connp != NULL) 27375 CONN_OPER_PENDING_DONE(connp); 27376 27377 if (ipsq != NULL) 27378 ipsq_current_finish(ipsq); 27379 } 27380 27381 /* 27382 * This is called from ip_wput_nondata to resume a deferred TCP bind. 27383 */ 27384 /* ARGSUSED */ 27385 void 27386 ip_resume_tcp_bind(void *arg, mblk_t *mp, void *arg2) 27387 { 27388 conn_t *connp = arg; 27389 tcp_t *tcp; 27390 27391 ASSERT(connp != NULL && IPCL_IS_TCP(connp) && connp->conn_tcp != NULL); 27392 tcp = connp->conn_tcp; 27393 27394 if (connp->conn_tcp->tcp_state == TCPS_CLOSED) 27395 freemsg(mp); 27396 else 27397 tcp_rput_other(tcp, mp); 27398 CONN_OPER_PENDING_DONE(connp); 27399 } 27400 27401 /* Called from ip_wput for all non data messages */ 27402 /* ARGSUSED */ 27403 void 27404 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 27405 { 27406 mblk_t *mp1; 27407 ire_t *ire, *fake_ire; 27408 ill_t *ill; 27409 struct iocblk *iocp; 27410 ip_ioctl_cmd_t *ipip; 27411 cred_t *cr; 27412 conn_t *connp; 27413 int cmd, err; 27414 nce_t *nce; 27415 ipif_t *ipif; 27416 ip_stack_t *ipst; 27417 char *proto_str; 27418 27419 if (CONN_Q(q)) { 27420 connp = Q_TO_CONN(q); 27421 ipst = connp->conn_netstack->netstack_ip; 27422 } else { 27423 connp = NULL; 27424 ipst = ILLQ_TO_IPST(q); 27425 } 27426 27427 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(q)); 27428 27429 /* Check if it is a queue to /dev/sctp. */ 27430 if (connp != NULL && connp->conn_ulp == IPPROTO_SCTP && 27431 connp->conn_rq == NULL) { 27432 sctp_wput(q, mp); 27433 return; 27434 } 27435 27436 switch (DB_TYPE(mp)) { 27437 case M_IOCTL: 27438 /* 27439 * IOCTL processing begins in ip_sioctl_copyin_setup which 27440 * will arrange to copy in associated control structures. 27441 */ 27442 ip_sioctl_copyin_setup(q, mp); 27443 return; 27444 case M_IOCDATA: 27445 /* 27446 * Ensure that this is associated with one of our trans- 27447 * parent ioctls. If it's not ours, discard it if we're 27448 * running as a driver, or pass it on if we're a module. 27449 */ 27450 iocp = (struct iocblk *)mp->b_rptr; 27451 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27452 if (ipip == NULL) { 27453 if (q->q_next == NULL) { 27454 goto nak; 27455 } else { 27456 putnext(q, mp); 27457 } 27458 return; 27459 } else if ((q->q_next != NULL) && 27460 !(ipip->ipi_flags & IPI_MODOK)) { 27461 /* 27462 * the ioctl is one we recognise, but is not 27463 * consumed by IP as a module, pass M_IOCDATA 27464 * for processing downstream, but only for 27465 * common Streams ioctls. 27466 */ 27467 if (ipip->ipi_flags & IPI_PASS_DOWN) { 27468 putnext(q, mp); 27469 return; 27470 } else { 27471 goto nak; 27472 } 27473 } 27474 27475 /* IOCTL continuation following copyin or copyout. */ 27476 if (mi_copy_state(q, mp, NULL) == -1) { 27477 /* 27478 * The copy operation failed. mi_copy_state already 27479 * cleaned up, so we're out of here. 27480 */ 27481 return; 27482 } 27483 /* 27484 * If we just completed a copy in, we become writer and 27485 * continue processing in ip_sioctl_copyin_done. If it 27486 * was a copy out, we call mi_copyout again. If there is 27487 * nothing more to copy out, it will complete the IOCTL. 27488 */ 27489 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 27490 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 27491 mi_copy_done(q, mp, EPROTO); 27492 return; 27493 } 27494 /* 27495 * Check for cases that need more copying. A return 27496 * value of 0 means a second copyin has been started, 27497 * so we return; a return value of 1 means no more 27498 * copying is needed, so we continue. 27499 */ 27500 cmd = iocp->ioc_cmd; 27501 if ((cmd == SIOCGMSFILTER || cmd == SIOCSMSFILTER || 27502 cmd == SIOCGIPMSFILTER || cmd == SIOCSIPMSFILTER) && 27503 MI_COPY_COUNT(mp) == 1) { 27504 if (ip_copyin_msfilter(q, mp) == 0) 27505 return; 27506 } 27507 /* 27508 * Refhold the conn, till the ioctl completes. This is 27509 * needed in case the ioctl ends up in the pending mp 27510 * list. Every mp in the ill_pending_mp list and 27511 * the ipsq_pending_mp must have a refhold on the conn 27512 * to resume processing. The refhold is released when 27513 * the ioctl completes. (normally or abnormally) 27514 * In all cases ip_ioctl_finish is called to finish 27515 * the ioctl. 27516 */ 27517 if (connp != NULL) { 27518 /* This is not a reentry */ 27519 ASSERT(ipsq == NULL); 27520 CONN_INC_REF(connp); 27521 } else { 27522 if (!(ipip->ipi_flags & IPI_MODOK)) { 27523 mi_copy_done(q, mp, EINVAL); 27524 return; 27525 } 27526 } 27527 27528 ip_process_ioctl(ipsq, q, mp, ipip); 27529 27530 } else { 27531 mi_copyout(q, mp); 27532 } 27533 return; 27534 nak: 27535 iocp->ioc_error = EINVAL; 27536 mp->b_datap->db_type = M_IOCNAK; 27537 iocp->ioc_count = 0; 27538 qreply(q, mp); 27539 return; 27540 27541 case M_IOCNAK: 27542 /* 27543 * The only way we could get here is if a resolver didn't like 27544 * an IOCTL we sent it. This shouldn't happen. 27545 */ 27546 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 27547 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 27548 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 27549 freemsg(mp); 27550 return; 27551 case M_IOCACK: 27552 /* /dev/ip shouldn't see this */ 27553 if (CONN_Q(q)) 27554 goto nak; 27555 27556 /* Finish socket ioctls passed through to ARP. */ 27557 ip_sioctl_iocack(q, mp); 27558 return; 27559 case M_FLUSH: 27560 if (*mp->b_rptr & FLUSHW) 27561 flushq(q, FLUSHALL); 27562 if (q->q_next) { 27563 putnext(q, mp); 27564 return; 27565 } 27566 if (*mp->b_rptr & FLUSHR) { 27567 *mp->b_rptr &= ~FLUSHW; 27568 qreply(q, mp); 27569 return; 27570 } 27571 freemsg(mp); 27572 return; 27573 case IRE_DB_REQ_TYPE: 27574 if (connp == NULL) { 27575 proto_str = "IRE_DB_REQ_TYPE"; 27576 goto protonak; 27577 } 27578 /* An Upper Level Protocol wants a copy of an IRE. */ 27579 ip_ire_req(q, mp); 27580 return; 27581 case M_CTL: 27582 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 27583 break; 27584 27585 if (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == 27586 TUN_HELLO) { 27587 ASSERT(connp != NULL); 27588 connp->conn_flags |= IPCL_IPTUN; 27589 freeb(mp); 27590 return; 27591 } 27592 27593 if (connp != NULL && *(uint32_t *)mp->b_rptr == 27594 IP_ULP_OUT_LABELED) { 27595 out_labeled_t *olp; 27596 27597 if (mp->b_wptr - mp->b_rptr != sizeof (*olp)) 27598 break; 27599 olp = (out_labeled_t *)mp->b_rptr; 27600 connp->conn_ulp_labeled = olp->out_qnext == q; 27601 freemsg(mp); 27602 return; 27603 } 27604 27605 /* M_CTL messages are used by ARP to tell us things. */ 27606 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 27607 break; 27608 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 27609 case AR_ENTRY_SQUERY: 27610 ip_wput_ctl(q, mp); 27611 return; 27612 case AR_CLIENT_NOTIFY: 27613 ip_arp_news(q, mp); 27614 return; 27615 case AR_DLPIOP_DONE: 27616 ASSERT(q->q_next != NULL); 27617 ill = (ill_t *)q->q_ptr; 27618 /* qwriter_ip releases the refhold */ 27619 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 27620 ill_refhold(ill); 27621 qwriter_ip(ill, q, mp, ip_arp_done, CUR_OP, B_FALSE); 27622 return; 27623 case AR_ARP_CLOSING: 27624 /* 27625 * ARP (above us) is closing. If no ARP bringup is 27626 * currently pending, ack the message so that ARP 27627 * can complete its close. Also mark ill_arp_closing 27628 * so that new ARP bringups will fail. If any 27629 * ARP bringup is currently in progress, we will 27630 * ack this when the current ARP bringup completes. 27631 */ 27632 ASSERT(q->q_next != NULL); 27633 ill = (ill_t *)q->q_ptr; 27634 mutex_enter(&ill->ill_lock); 27635 ill->ill_arp_closing = 1; 27636 if (!ill->ill_arp_bringup_pending) { 27637 mutex_exit(&ill->ill_lock); 27638 qreply(q, mp); 27639 } else { 27640 mutex_exit(&ill->ill_lock); 27641 freemsg(mp); 27642 } 27643 return; 27644 case AR_ARP_EXTEND: 27645 /* 27646 * The ARP module above us is capable of duplicate 27647 * address detection. Old ATM drivers will not send 27648 * this message. 27649 */ 27650 ASSERT(q->q_next != NULL); 27651 ill = (ill_t *)q->q_ptr; 27652 ill->ill_arp_extend = B_TRUE; 27653 freemsg(mp); 27654 return; 27655 default: 27656 break; 27657 } 27658 break; 27659 case M_PROTO: 27660 case M_PCPROTO: 27661 /* 27662 * The only PROTO messages we expect are ULP binds and 27663 * copies of option negotiation acknowledgements. 27664 */ 27665 switch (((union T_primitives *)mp->b_rptr)->type) { 27666 case O_T_BIND_REQ: 27667 case T_BIND_REQ: { 27668 /* Request can get queued in bind */ 27669 if (connp == NULL) { 27670 proto_str = "O_T_BIND_REQ/T_BIND_REQ"; 27671 goto protonak; 27672 } 27673 /* 27674 * Both TCP and UDP call ip_bind_{v4,v6}() directly 27675 * instead of going through this path. We only get 27676 * here in the following cases: 27677 * 27678 * a. Bind retries, where ipsq is non-NULL. 27679 * b. T_BIND_REQ is issued from non TCP/UDP 27680 * transport, e.g. icmp for raw socket, 27681 * in which case ipsq will be NULL. 27682 */ 27683 ASSERT(ipsq != NULL || 27684 (!IPCL_IS_TCP(connp) && !IPCL_IS_UDP(connp))); 27685 27686 /* Don't increment refcnt if this is a re-entry */ 27687 if (ipsq == NULL) 27688 CONN_INC_REF(connp); 27689 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 27690 connp, NULL) : ip_bind_v4(q, mp, connp); 27691 if (mp == NULL) 27692 return; 27693 if (IPCL_IS_TCP(connp)) { 27694 /* 27695 * In the case of TCP endpoint we 27696 * come here only for bind retries 27697 */ 27698 ASSERT(ipsq != NULL); 27699 CONN_INC_REF(connp); 27700 squeue_fill(connp->conn_sqp, mp, 27701 ip_resume_tcp_bind, connp, 27702 SQTAG_BIND_RETRY); 27703 return; 27704 } else if (IPCL_IS_UDP(connp)) { 27705 /* 27706 * In the case of UDP endpoint we 27707 * come here only for bind retries 27708 */ 27709 ASSERT(ipsq != NULL); 27710 udp_resume_bind(connp, mp); 27711 return; 27712 } 27713 qreply(q, mp); 27714 CONN_OPER_PENDING_DONE(connp); 27715 return; 27716 } 27717 case T_SVR4_OPTMGMT_REQ: 27718 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 27719 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 27720 27721 if (connp == NULL) { 27722 proto_str = "T_SVR4_OPTMGMT_REQ"; 27723 goto protonak; 27724 } 27725 27726 if (!snmpcom_req(q, mp, ip_snmp_set, 27727 ip_snmp_get, cr)) { 27728 /* 27729 * Call svr4_optcom_req so that it can 27730 * generate the ack. We don't come here 27731 * if this operation is being restarted. 27732 * ip_restart_optmgmt will drop the conn ref. 27733 * In the case of ipsec option after the ipsec 27734 * load is complete conn_restart_ipsec_waiter 27735 * drops the conn ref. 27736 */ 27737 ASSERT(ipsq == NULL); 27738 CONN_INC_REF(connp); 27739 if (ip_check_for_ipsec_opt(q, mp)) 27740 return; 27741 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj); 27742 if (err != EINPROGRESS) { 27743 /* Operation is done */ 27744 CONN_OPER_PENDING_DONE(connp); 27745 } 27746 } 27747 return; 27748 case T_OPTMGMT_REQ: 27749 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 27750 /* 27751 * Note: No snmpcom_req support through new 27752 * T_OPTMGMT_REQ. 27753 * Call tpi_optcom_req so that it can 27754 * generate the ack. 27755 */ 27756 if (connp == NULL) { 27757 proto_str = "T_OPTMGMT_REQ"; 27758 goto protonak; 27759 } 27760 27761 ASSERT(ipsq == NULL); 27762 /* 27763 * We don't come here for restart. ip_restart_optmgmt 27764 * will drop the conn ref. In the case of ipsec option 27765 * after the ipsec load is complete 27766 * conn_restart_ipsec_waiter drops the conn ref. 27767 */ 27768 CONN_INC_REF(connp); 27769 if (ip_check_for_ipsec_opt(q, mp)) 27770 return; 27771 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj); 27772 if (err != EINPROGRESS) { 27773 /* Operation is done */ 27774 CONN_OPER_PENDING_DONE(connp); 27775 } 27776 return; 27777 case T_UNBIND_REQ: 27778 if (connp == NULL) { 27779 proto_str = "T_UNBIND_REQ"; 27780 goto protonak; 27781 } 27782 mp = ip_unbind(q, mp); 27783 qreply(q, mp); 27784 return; 27785 default: 27786 /* 27787 * Have to drop any DLPI messages coming down from 27788 * arp (such as an info_req which would cause ip 27789 * to receive an extra info_ack if it was passed 27790 * through. 27791 */ 27792 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 27793 (int)*(uint_t *)mp->b_rptr)); 27794 freemsg(mp); 27795 return; 27796 } 27797 /* NOTREACHED */ 27798 case IRE_DB_TYPE: { 27799 nce_t *nce; 27800 ill_t *ill; 27801 in6_addr_t gw_addr_v6; 27802 27803 27804 /* 27805 * This is a response back from a resolver. It 27806 * consists of a message chain containing: 27807 * IRE_MBLK-->LL_HDR_MBLK->pkt 27808 * The IRE_MBLK is the one we allocated in ip_newroute. 27809 * The LL_HDR_MBLK is the DLPI header to use to get 27810 * the attached packet, and subsequent ones for the 27811 * same destination, transmitted. 27812 */ 27813 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 27814 break; 27815 /* 27816 * First, check to make sure the resolution succeeded. 27817 * If it failed, the second mblk will be empty. 27818 * If it is, free the chain, dropping the packet. 27819 * (We must ire_delete the ire; that frees the ire mblk) 27820 * We're doing this now to support PVCs for ATM; it's 27821 * a partial xresolv implementation. When we fully implement 27822 * xresolv interfaces, instead of freeing everything here 27823 * we'll initiate neighbor discovery. 27824 * 27825 * For v4 (ARP and other external resolvers) the resolver 27826 * frees the message, so no check is needed. This check 27827 * is required, though, for a full xresolve implementation. 27828 * Including this code here now both shows how external 27829 * resolvers can NACK a resolution request using an 27830 * existing design that has no specific provisions for NACKs, 27831 * and also takes into account that the current non-ARP 27832 * external resolver has been coded to use this method of 27833 * NACKing for all IPv6 (xresolv) cases, 27834 * whether our xresolv implementation is complete or not. 27835 * 27836 */ 27837 ire = (ire_t *)mp->b_rptr; 27838 ill = ire_to_ill(ire); 27839 mp1 = mp->b_cont; /* dl_unitdata_req */ 27840 if (mp1->b_rptr == mp1->b_wptr) { 27841 if (ire->ire_ipversion == IPV6_VERSION) { 27842 /* 27843 * XRESOLV interface. 27844 */ 27845 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27846 mutex_enter(&ire->ire_lock); 27847 gw_addr_v6 = ire->ire_gateway_addr_v6; 27848 mutex_exit(&ire->ire_lock); 27849 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27850 nce = ndp_lookup_v6(ill, 27851 &ire->ire_addr_v6, B_FALSE); 27852 } else { 27853 nce = ndp_lookup_v6(ill, &gw_addr_v6, 27854 B_FALSE); 27855 } 27856 if (nce != NULL) { 27857 nce_resolv_failed(nce); 27858 ndp_delete(nce); 27859 NCE_REFRELE(nce); 27860 } 27861 } 27862 mp->b_cont = NULL; 27863 freemsg(mp1); /* frees the pkt as well */ 27864 ASSERT(ire->ire_nce == NULL); 27865 ire_delete((ire_t *)mp->b_rptr); 27866 return; 27867 } 27868 27869 /* 27870 * Split them into IRE_MBLK and pkt and feed it into 27871 * ire_add_then_send. Then in ire_add_then_send 27872 * the IRE will be added, and then the packet will be 27873 * run back through ip_wput. This time it will make 27874 * it to the wire. 27875 */ 27876 mp->b_cont = NULL; 27877 mp = mp1->b_cont; /* now, mp points to pkt */ 27878 mp1->b_cont = NULL; 27879 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 27880 if (ire->ire_ipversion == IPV6_VERSION) { 27881 /* 27882 * XRESOLV interface. Find the nce and put a copy 27883 * of the dl_unitdata_req in nce_res_mp 27884 */ 27885 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27886 mutex_enter(&ire->ire_lock); 27887 gw_addr_v6 = ire->ire_gateway_addr_v6; 27888 mutex_exit(&ire->ire_lock); 27889 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27890 nce = ndp_lookup_v6(ill, &ire->ire_addr_v6, 27891 B_FALSE); 27892 } else { 27893 nce = ndp_lookup_v6(ill, &gw_addr_v6, B_FALSE); 27894 } 27895 if (nce != NULL) { 27896 /* 27897 * We have to protect nce_res_mp here 27898 * from being accessed by other threads 27899 * while we change the mblk pointer. 27900 * Other functions will also lock the nce when 27901 * accessing nce_res_mp. 27902 * 27903 * The reason we change the mblk pointer 27904 * here rather than copying the resolved address 27905 * into the template is that, unlike with 27906 * ethernet, we have no guarantee that the 27907 * resolved address length will be 27908 * smaller than or equal to the lla length 27909 * with which the template was allocated, 27910 * (for ethernet, they're equal) 27911 * so we have to use the actual resolved 27912 * address mblk - which holds the real 27913 * dl_unitdata_req with the resolved address. 27914 * 27915 * Doing this is the same behavior as was 27916 * previously used in the v4 ARP case. 27917 */ 27918 mutex_enter(&nce->nce_lock); 27919 if (nce->nce_res_mp != NULL) 27920 freemsg(nce->nce_res_mp); 27921 nce->nce_res_mp = mp1; 27922 mutex_exit(&nce->nce_lock); 27923 /* 27924 * We do a fastpath probe here because 27925 * we have resolved the address without 27926 * using Neighbor Discovery. 27927 * In the non-XRESOLV v6 case, the fastpath 27928 * probe is done right after neighbor 27929 * discovery completes. 27930 */ 27931 if (nce->nce_res_mp != NULL) { 27932 int res; 27933 nce_fastpath_list_add(nce); 27934 res = ill_fastpath_probe(ill, 27935 nce->nce_res_mp); 27936 if (res != 0 && res != EAGAIN) 27937 nce_fastpath_list_delete(nce); 27938 } 27939 27940 ire_add_then_send(q, ire, mp); 27941 /* 27942 * Now we have to clean out any packets 27943 * that may have been queued on the nce 27944 * while it was waiting for address resolution 27945 * to complete. 27946 */ 27947 mutex_enter(&nce->nce_lock); 27948 mp1 = nce->nce_qd_mp; 27949 nce->nce_qd_mp = NULL; 27950 mutex_exit(&nce->nce_lock); 27951 while (mp1 != NULL) { 27952 mblk_t *nxt_mp; 27953 queue_t *fwdq = NULL; 27954 ill_t *inbound_ill; 27955 uint_t ifindex; 27956 27957 nxt_mp = mp1->b_next; 27958 mp1->b_next = NULL; 27959 /* 27960 * Retrieve ifindex stored in 27961 * ip_rput_data_v6() 27962 */ 27963 ifindex = 27964 (uint_t)(uintptr_t)mp1->b_prev; 27965 inbound_ill = 27966 ill_lookup_on_ifindex(ifindex, 27967 B_TRUE, NULL, NULL, NULL, 27968 NULL, ipst); 27969 mp1->b_prev = NULL; 27970 if (inbound_ill != NULL) 27971 fwdq = inbound_ill->ill_rq; 27972 27973 if (fwdq != NULL) { 27974 put(fwdq, mp1); 27975 ill_refrele(inbound_ill); 27976 } else 27977 put(WR(ill->ill_rq), mp1); 27978 mp1 = nxt_mp; 27979 } 27980 NCE_REFRELE(nce); 27981 } else { /* nce is NULL; clean up */ 27982 ire_delete(ire); 27983 freemsg(mp); 27984 freemsg(mp1); 27985 return; 27986 } 27987 } else { 27988 nce_t *arpce; 27989 /* 27990 * Link layer resolution succeeded. Recompute the 27991 * ire_nce. 27992 */ 27993 ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST)); 27994 if ((arpce = ndp_lookup_v4(ill, 27995 (ire->ire_gateway_addr != INADDR_ANY ? 27996 &ire->ire_gateway_addr : &ire->ire_addr), 27997 B_FALSE)) == NULL) { 27998 freeb(ire->ire_mp); 27999 freeb(mp1); 28000 freemsg(mp); 28001 return; 28002 } 28003 mutex_enter(&arpce->nce_lock); 28004 arpce->nce_last = TICK_TO_MSEC(lbolt64); 28005 if (arpce->nce_state == ND_REACHABLE) { 28006 /* 28007 * Someone resolved this before us; 28008 * cleanup the res_mp. Since ire has 28009 * not been added yet, the call to ire_add_v4 28010 * from ire_add_then_send (when a dup is 28011 * detected) will clean up the ire. 28012 */ 28013 freeb(mp1); 28014 } else { 28015 if (arpce->nce_res_mp != NULL) 28016 freemsg(arpce->nce_res_mp); 28017 arpce->nce_res_mp = mp1; 28018 arpce->nce_state = ND_REACHABLE; 28019 } 28020 mutex_exit(&arpce->nce_lock); 28021 if (ire->ire_marks & IRE_MARK_NOADD) { 28022 /* 28023 * this ire will not be added to the ire 28024 * cache table, so we can set the ire_nce 28025 * here, as there are no atomicity constraints. 28026 */ 28027 ire->ire_nce = arpce; 28028 /* 28029 * We are associating this nce with the ire 28030 * so change the nce ref taken in 28031 * ndp_lookup_v4() from 28032 * NCE_REFHOLD to NCE_REFHOLD_NOTR 28033 */ 28034 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 28035 } else { 28036 NCE_REFRELE(arpce); 28037 } 28038 ire_add_then_send(q, ire, mp); 28039 } 28040 return; /* All is well, the packet has been sent. */ 28041 } 28042 case IRE_ARPRESOLVE_TYPE: { 28043 28044 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */ 28045 break; 28046 mp1 = mp->b_cont; /* dl_unitdata_req */ 28047 mp->b_cont = NULL; 28048 /* 28049 * First, check to make sure the resolution succeeded. 28050 * If it failed, the second mblk will be empty. 28051 */ 28052 if (mp1->b_rptr == mp1->b_wptr) { 28053 /* cleanup the incomplete ire, free queued packets */ 28054 freemsg(mp); /* fake ire */ 28055 freeb(mp1); /* dl_unitdata response */ 28056 return; 28057 } 28058 28059 /* 28060 * update any incomplete nce_t found. we lookup the ctable 28061 * and find the nce from the ire->ire_nce because we need 28062 * to pass the ire to ip_xmit_v4 later, and can find both 28063 * ire and nce in one lookup from the ctable. 28064 */ 28065 fake_ire = (ire_t *)mp->b_rptr; 28066 /* 28067 * By the time we come back here from ARP 28068 * the logical outgoing interface of the incomplete ire 28069 * we added in ire_forward could have disappeared, 28070 * causing the incomplete ire to also have 28071 * dissapeared. So we need to retreive the 28072 * proper ipif for the ire before looking 28073 * in ctable; do the ctablelookup based on ire_ipif_seqid 28074 */ 28075 ill = q->q_ptr; 28076 28077 /* Get the outgoing ipif */ 28078 mutex_enter(&ill->ill_lock); 28079 if (ill->ill_state_flags & ILL_CONDEMNED) { 28080 mutex_exit(&ill->ill_lock); 28081 freemsg(mp); /* fake ire */ 28082 freeb(mp1); /* dl_unitdata response */ 28083 return; 28084 } 28085 ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid); 28086 28087 if (ipif == NULL) { 28088 mutex_exit(&ill->ill_lock); 28089 ip1dbg(("logical intrf to incomplete ire vanished\n")); 28090 freemsg(mp); 28091 freeb(mp1); 28092 return; 28093 } 28094 ipif_refhold_locked(ipif); 28095 mutex_exit(&ill->ill_lock); 28096 ire = ire_ctable_lookup(fake_ire->ire_addr, 28097 fake_ire->ire_gateway_addr, IRE_CACHE, 28098 ipif, fake_ire->ire_zoneid, NULL, 28099 (MATCH_IRE_GW|MATCH_IRE_IPIF|MATCH_IRE_ZONEONLY), ipst); 28100 ipif_refrele(ipif); 28101 if (ire == NULL) { 28102 /* 28103 * no ire was found; check if there is an nce 28104 * for this lookup; if it has no ire's pointing at it 28105 * cleanup. 28106 */ 28107 if ((nce = ndp_lookup_v4(ill, 28108 (fake_ire->ire_gateway_addr != INADDR_ANY ? 28109 &fake_ire->ire_gateway_addr : &fake_ire->ire_addr), 28110 B_FALSE)) != NULL) { 28111 /* 28112 * cleanup: 28113 * We check for refcnt 2 (one for the nce 28114 * hash list + 1 for the ref taken by 28115 * ndp_lookup_v4) to check that there are 28116 * no ire's pointing at the nce. 28117 */ 28118 if (nce->nce_refcnt == 2) 28119 ndp_delete(nce); 28120 NCE_REFRELE(nce); 28121 } 28122 freeb(mp1); /* dl_unitdata response */ 28123 freemsg(mp); /* fake ire */ 28124 return; 28125 } 28126 nce = ire->ire_nce; 28127 DTRACE_PROBE2(ire__arpresolve__type, 28128 ire_t *, ire, nce_t *, nce); 28129 ASSERT(nce->nce_state != ND_INITIAL); 28130 mutex_enter(&nce->nce_lock); 28131 nce->nce_last = TICK_TO_MSEC(lbolt64); 28132 if (nce->nce_state == ND_REACHABLE) { 28133 /* 28134 * Someone resolved this before us; 28135 * our response is not needed any more. 28136 */ 28137 mutex_exit(&nce->nce_lock); 28138 freeb(mp1); /* dl_unitdata response */ 28139 } else { 28140 if (nce->nce_res_mp != NULL) { 28141 freemsg(nce->nce_res_mp); 28142 /* existing dl_unitdata template */ 28143 } 28144 nce->nce_res_mp = mp1; 28145 nce->nce_state = ND_REACHABLE; 28146 mutex_exit(&nce->nce_lock); 28147 nce_fastpath(nce); 28148 } 28149 /* 28150 * The cached nce_t has been updated to be reachable; 28151 * Set the IRE_MARK_UNCACHED flag and free the fake_ire. 28152 */ 28153 fake_ire->ire_marks &= ~IRE_MARK_UNCACHED; 28154 freemsg(mp); 28155 /* 28156 * send out queued packets. 28157 */ 28158 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 28159 28160 IRE_REFRELE(ire); 28161 return; 28162 } 28163 default: 28164 break; 28165 } 28166 if (q->q_next) { 28167 putnext(q, mp); 28168 } else 28169 freemsg(mp); 28170 return; 28171 28172 protonak: 28173 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 28174 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 28175 qreply(q, mp); 28176 } 28177 28178 /* 28179 * Process IP options in an outbound packet. Modify the destination if there 28180 * is a source route option. 28181 * Returns non-zero if something fails in which case an ICMP error has been 28182 * sent and mp freed. 28183 */ 28184 static int 28185 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 28186 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 28187 { 28188 ipoptp_t opts; 28189 uchar_t *opt; 28190 uint8_t optval; 28191 uint8_t optlen; 28192 ipaddr_t dst; 28193 intptr_t code = 0; 28194 mblk_t *mp; 28195 ire_t *ire = NULL; 28196 28197 ip2dbg(("ip_wput_options\n")); 28198 mp = ipsec_mp; 28199 if (mctl_present) { 28200 mp = ipsec_mp->b_cont; 28201 } 28202 28203 dst = ipha->ipha_dst; 28204 for (optval = ipoptp_first(&opts, ipha); 28205 optval != IPOPT_EOL; 28206 optval = ipoptp_next(&opts)) { 28207 opt = opts.ipoptp_cur; 28208 optlen = opts.ipoptp_len; 28209 ip2dbg(("ip_wput_options: opt %d, len %d\n", 28210 optval, optlen)); 28211 switch (optval) { 28212 uint32_t off; 28213 case IPOPT_SSRR: 28214 case IPOPT_LSRR: 28215 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28216 ip1dbg(( 28217 "ip_wput_options: bad option offset\n")); 28218 code = (char *)&opt[IPOPT_OLEN] - 28219 (char *)ipha; 28220 goto param_prob; 28221 } 28222 off = opt[IPOPT_OFFSET]; 28223 ip1dbg(("ip_wput_options: next hop 0x%x\n", 28224 ntohl(dst))); 28225 /* 28226 * For strict: verify that dst is directly 28227 * reachable. 28228 */ 28229 if (optval == IPOPT_SSRR) { 28230 ire = ire_ftable_lookup(dst, 0, 0, 28231 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 28232 MBLK_GETLABEL(mp), 28233 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 28234 if (ire == NULL) { 28235 ip1dbg(("ip_wput_options: SSRR not" 28236 " directly reachable: 0x%x\n", 28237 ntohl(dst))); 28238 goto bad_src_route; 28239 } 28240 ire_refrele(ire); 28241 } 28242 break; 28243 case IPOPT_RR: 28244 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28245 ip1dbg(( 28246 "ip_wput_options: bad option offset\n")); 28247 code = (char *)&opt[IPOPT_OLEN] - 28248 (char *)ipha; 28249 goto param_prob; 28250 } 28251 break; 28252 case IPOPT_TS: 28253 /* 28254 * Verify that length >=5 and that there is either 28255 * room for another timestamp or that the overflow 28256 * counter is not maxed out. 28257 */ 28258 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 28259 if (optlen < IPOPT_MINLEN_IT) { 28260 goto param_prob; 28261 } 28262 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28263 ip1dbg(( 28264 "ip_wput_options: bad option offset\n")); 28265 code = (char *)&opt[IPOPT_OFFSET] - 28266 (char *)ipha; 28267 goto param_prob; 28268 } 28269 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 28270 case IPOPT_TS_TSONLY: 28271 off = IPOPT_TS_TIMELEN; 28272 break; 28273 case IPOPT_TS_TSANDADDR: 28274 case IPOPT_TS_PRESPEC: 28275 case IPOPT_TS_PRESPEC_RFC791: 28276 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 28277 break; 28278 default: 28279 code = (char *)&opt[IPOPT_POS_OV_FLG] - 28280 (char *)ipha; 28281 goto param_prob; 28282 } 28283 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 28284 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 28285 /* 28286 * No room and the overflow counter is 15 28287 * already. 28288 */ 28289 goto param_prob; 28290 } 28291 break; 28292 } 28293 } 28294 28295 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 28296 return (0); 28297 28298 ip1dbg(("ip_wput_options: error processing IP options.")); 28299 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 28300 28301 param_prob: 28302 /* 28303 * Since ip_wput() isn't close to finished, we fill 28304 * in enough of the header for credible error reporting. 28305 */ 28306 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28307 /* Failed */ 28308 freemsg(ipsec_mp); 28309 return (-1); 28310 } 28311 icmp_param_problem(q, ipsec_mp, (uint8_t)code, zoneid, ipst); 28312 return (-1); 28313 28314 bad_src_route: 28315 /* 28316 * Since ip_wput() isn't close to finished, we fill 28317 * in enough of the header for credible error reporting. 28318 */ 28319 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28320 /* Failed */ 28321 freemsg(ipsec_mp); 28322 return (-1); 28323 } 28324 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 28325 return (-1); 28326 } 28327 28328 /* 28329 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 28330 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 28331 * thru /etc/system. 28332 */ 28333 #define CONN_MAXDRAINCNT 64 28334 28335 static void 28336 conn_drain_init(ip_stack_t *ipst) 28337 { 28338 int i; 28339 28340 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 28341 28342 if ((ipst->ips_conn_drain_list_cnt == 0) || 28343 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 28344 /* 28345 * Default value of the number of drainers is the 28346 * number of cpus, subject to maximum of 8 drainers. 28347 */ 28348 if (boot_max_ncpus != -1) 28349 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 28350 else 28351 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 28352 } 28353 28354 ipst->ips_conn_drain_list = kmem_zalloc(ipst->ips_conn_drain_list_cnt * 28355 sizeof (idl_t), KM_SLEEP); 28356 28357 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28358 mutex_init(&ipst->ips_conn_drain_list[i].idl_lock, NULL, 28359 MUTEX_DEFAULT, NULL); 28360 } 28361 } 28362 28363 static void 28364 conn_drain_fini(ip_stack_t *ipst) 28365 { 28366 int i; 28367 28368 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) 28369 mutex_destroy(&ipst->ips_conn_drain_list[i].idl_lock); 28370 kmem_free(ipst->ips_conn_drain_list, 28371 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 28372 ipst->ips_conn_drain_list = NULL; 28373 } 28374 28375 /* 28376 * Note: For an overview of how flowcontrol is handled in IP please see the 28377 * IP Flowcontrol notes at the top of this file. 28378 * 28379 * Flow control has blocked us from proceeding. Insert the given conn in one 28380 * of the conn drain lists. These conn wq's will be qenabled later on when 28381 * STREAMS flow control does a backenable. conn_walk_drain will enable 28382 * the first conn in each of these drain lists. Each of these qenabled conns 28383 * in turn enables the next in the list, after it runs, or when it closes, 28384 * thus sustaining the drain process. 28385 * 28386 * The only possible calling sequence is ip_wsrv (on conn) -> ip_wput -> 28387 * conn_drain_insert. Thus there can be only 1 instance of conn_drain_insert 28388 * running at any time, on a given conn, since there can be only 1 service proc 28389 * running on a queue at any time. 28390 */ 28391 void 28392 conn_drain_insert(conn_t *connp) 28393 { 28394 idl_t *idl; 28395 uint_t index; 28396 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28397 28398 mutex_enter(&connp->conn_lock); 28399 if (connp->conn_state_flags & CONN_CLOSING) { 28400 /* 28401 * The conn is closing as a result of which CONN_CLOSING 28402 * is set. Return. 28403 */ 28404 mutex_exit(&connp->conn_lock); 28405 return; 28406 } else if (connp->conn_idl == NULL) { 28407 /* 28408 * Assign the next drain list round robin. We dont' use 28409 * a lock, and thus it may not be strictly round robin. 28410 * Atomicity of load/stores is enough to make sure that 28411 * conn_drain_list_index is always within bounds. 28412 */ 28413 index = ipst->ips_conn_drain_list_index; 28414 ASSERT(index < ipst->ips_conn_drain_list_cnt); 28415 connp->conn_idl = &ipst->ips_conn_drain_list[index]; 28416 index++; 28417 if (index == ipst->ips_conn_drain_list_cnt) 28418 index = 0; 28419 ipst->ips_conn_drain_list_index = index; 28420 } 28421 mutex_exit(&connp->conn_lock); 28422 28423 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28424 if ((connp->conn_drain_prev != NULL) || 28425 (connp->conn_state_flags & CONN_CLOSING)) { 28426 /* 28427 * The conn is already in the drain list, OR 28428 * the conn is closing. We need to check again for 28429 * the closing case again since close can happen 28430 * after we drop the conn_lock, and before we 28431 * acquire the CONN_DRAIN_LIST_LOCK. 28432 */ 28433 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28434 return; 28435 } else { 28436 idl = connp->conn_idl; 28437 } 28438 28439 /* 28440 * The conn is not in the drain list. Insert it at the 28441 * tail of the drain list. The drain list is circular 28442 * and doubly linked. idl_conn points to the 1st element 28443 * in the list. 28444 */ 28445 if (idl->idl_conn == NULL) { 28446 idl->idl_conn = connp; 28447 connp->conn_drain_next = connp; 28448 connp->conn_drain_prev = connp; 28449 } else { 28450 conn_t *head = idl->idl_conn; 28451 28452 connp->conn_drain_next = head; 28453 connp->conn_drain_prev = head->conn_drain_prev; 28454 head->conn_drain_prev->conn_drain_next = connp; 28455 head->conn_drain_prev = connp; 28456 } 28457 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28458 } 28459 28460 /* 28461 * This conn is closing, and we are called from ip_close. OR 28462 * This conn has been serviced by ip_wsrv, and we need to do the tail 28463 * processing. 28464 * If this conn is part of the drain list, we may need to sustain the drain 28465 * process by qenabling the next conn in the drain list. We may also need to 28466 * remove this conn from the list, if it is done. 28467 */ 28468 static void 28469 conn_drain_tail(conn_t *connp, boolean_t closing) 28470 { 28471 idl_t *idl; 28472 28473 /* 28474 * connp->conn_idl is stable at this point, and no lock is needed 28475 * to check it. If we are called from ip_close, close has already 28476 * set CONN_CLOSING, thus freezing the value of conn_idl, and 28477 * called us only because conn_idl is non-null. If we are called thru 28478 * service, conn_idl could be null, but it cannot change because 28479 * service is single-threaded per queue, and there cannot be another 28480 * instance of service trying to call conn_drain_insert on this conn 28481 * now. 28482 */ 28483 ASSERT(!closing || (connp->conn_idl != NULL)); 28484 28485 /* 28486 * If connp->conn_idl is null, the conn has not been inserted into any 28487 * drain list even once since creation of the conn. Just return. 28488 */ 28489 if (connp->conn_idl == NULL) 28490 return; 28491 28492 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28493 28494 if (connp->conn_drain_prev == NULL) { 28495 /* This conn is currently not in the drain list. */ 28496 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28497 return; 28498 } 28499 idl = connp->conn_idl; 28500 if (idl->idl_conn_draining == connp) { 28501 /* 28502 * This conn is the current drainer. If this is the last conn 28503 * in the drain list, we need to do more checks, in the 'if' 28504 * below. Otherwwise we need to just qenable the next conn, 28505 * to sustain the draining, and is handled in the 'else' 28506 * below. 28507 */ 28508 if (connp->conn_drain_next == idl->idl_conn) { 28509 /* 28510 * This conn is the last in this list. This round 28511 * of draining is complete. If idl_repeat is set, 28512 * it means another flow enabling has happened from 28513 * the driver/streams and we need to another round 28514 * of draining. 28515 * If there are more than 2 conns in the drain list, 28516 * do a left rotate by 1, so that all conns except the 28517 * conn at the head move towards the head by 1, and the 28518 * the conn at the head goes to the tail. This attempts 28519 * a more even share for all queues that are being 28520 * drained. 28521 */ 28522 if ((connp->conn_drain_next != connp) && 28523 (idl->idl_conn->conn_drain_next != connp)) { 28524 idl->idl_conn = idl->idl_conn->conn_drain_next; 28525 } 28526 if (idl->idl_repeat) { 28527 qenable(idl->idl_conn->conn_wq); 28528 idl->idl_conn_draining = idl->idl_conn; 28529 idl->idl_repeat = 0; 28530 } else { 28531 idl->idl_conn_draining = NULL; 28532 } 28533 } else { 28534 /* 28535 * If the next queue that we are now qenable'ing, 28536 * is closing, it will remove itself from this list 28537 * and qenable the subsequent queue in ip_close(). 28538 * Serialization is acheived thru idl_lock. 28539 */ 28540 qenable(connp->conn_drain_next->conn_wq); 28541 idl->idl_conn_draining = connp->conn_drain_next; 28542 } 28543 } 28544 if (!connp->conn_did_putbq || closing) { 28545 /* 28546 * Remove ourself from the drain list, if we did not do 28547 * a putbq, or if the conn is closing. 28548 * Note: It is possible that q->q_first is non-null. It means 28549 * that these messages landed after we did a enableok() in 28550 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 28551 * service them. 28552 */ 28553 if (connp->conn_drain_next == connp) { 28554 /* Singleton in the list */ 28555 ASSERT(connp->conn_drain_prev == connp); 28556 idl->idl_conn = NULL; 28557 idl->idl_conn_draining = NULL; 28558 } else { 28559 connp->conn_drain_prev->conn_drain_next = 28560 connp->conn_drain_next; 28561 connp->conn_drain_next->conn_drain_prev = 28562 connp->conn_drain_prev; 28563 if (idl->idl_conn == connp) 28564 idl->idl_conn = connp->conn_drain_next; 28565 ASSERT(idl->idl_conn_draining != connp); 28566 28567 } 28568 connp->conn_drain_next = NULL; 28569 connp->conn_drain_prev = NULL; 28570 } 28571 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28572 } 28573 28574 /* 28575 * Write service routine. Shared perimeter entry point. 28576 * ip_wsrv can be called in any of the following ways. 28577 * 1. The device queue's messages has fallen below the low water mark 28578 * and STREAMS has backenabled the ill_wq. We walk thru all the 28579 * the drain lists and backenable the first conn in each list. 28580 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 28581 * qenabled non-tcp upper layers. We start dequeing messages and call 28582 * ip_wput for each message. 28583 */ 28584 28585 void 28586 ip_wsrv(queue_t *q) 28587 { 28588 conn_t *connp; 28589 ill_t *ill; 28590 mblk_t *mp; 28591 28592 if (q->q_next) { 28593 ill = (ill_t *)q->q_ptr; 28594 if (ill->ill_state_flags == 0) { 28595 /* 28596 * The device flow control has opened up. 28597 * Walk through conn drain lists and qenable the 28598 * first conn in each list. This makes sense only 28599 * if the stream is fully plumbed and setup. 28600 * Hence the if check above. 28601 */ 28602 ip1dbg(("ip_wsrv: walking\n")); 28603 conn_walk_drain(ill->ill_ipst); 28604 } 28605 return; 28606 } 28607 28608 connp = Q_TO_CONN(q); 28609 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 28610 28611 /* 28612 * 1. Set conn_draining flag to signal that service is active. 28613 * 28614 * 2. ip_output determines whether it has been called from service, 28615 * based on the last parameter. If it is IP_WSRV it concludes it 28616 * has been called from service. 28617 * 28618 * 3. Message ordering is preserved by the following logic. 28619 * i. A directly called ip_output (i.e. not thru service) will queue 28620 * the message at the tail, if conn_draining is set (i.e. service 28621 * is running) or if q->q_first is non-null. 28622 * 28623 * ii. If ip_output is called from service, and if ip_output cannot 28624 * putnext due to flow control, it does a putbq. 28625 * 28626 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 28627 * (causing an infinite loop). 28628 */ 28629 ASSERT(!connp->conn_did_putbq); 28630 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 28631 connp->conn_draining = 1; 28632 noenable(q); 28633 while ((mp = getq(q)) != NULL) { 28634 ASSERT(CONN_Q(q)); 28635 28636 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 28637 if (connp->conn_did_putbq) { 28638 /* ip_wput did a putbq */ 28639 break; 28640 } 28641 } 28642 /* 28643 * At this point, a thread coming down from top, calling 28644 * ip_wput, may end up queueing the message. We have not yet 28645 * enabled the queue, so ip_wsrv won't be called again. 28646 * To avoid this race, check q->q_first again (in the loop) 28647 * If the other thread queued the message before we call 28648 * enableok(), we will catch it in the q->q_first check. 28649 * If the other thread queues the message after we call 28650 * enableok(), ip_wsrv will be called again by STREAMS. 28651 */ 28652 connp->conn_draining = 0; 28653 enableok(q); 28654 } 28655 28656 /* Enable the next conn for draining */ 28657 conn_drain_tail(connp, B_FALSE); 28658 28659 connp->conn_did_putbq = 0; 28660 } 28661 28662 /* 28663 * Walk the list of all conn's calling the function provided with the 28664 * specified argument for each. Note that this only walks conn's that 28665 * have been bound. 28666 * Applies to both IPv4 and IPv6. 28667 */ 28668 static void 28669 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 28670 { 28671 conn_walk_fanout_table(ipst->ips_ipcl_udp_fanout, 28672 ipst->ips_ipcl_udp_fanout_size, 28673 func, arg, zoneid); 28674 conn_walk_fanout_table(ipst->ips_ipcl_conn_fanout, 28675 ipst->ips_ipcl_conn_fanout_size, 28676 func, arg, zoneid); 28677 conn_walk_fanout_table(ipst->ips_ipcl_bind_fanout, 28678 ipst->ips_ipcl_bind_fanout_size, 28679 func, arg, zoneid); 28680 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout, 28681 IPPROTO_MAX, func, arg, zoneid); 28682 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout_v6, 28683 IPPROTO_MAX, func, arg, zoneid); 28684 } 28685 28686 /* 28687 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 28688 * of conns that need to be drained, check if drain is already in progress. 28689 * If so set the idl_repeat bit, indicating that the last conn in the list 28690 * needs to reinitiate the drain once again, for the list. If drain is not 28691 * in progress for the list, initiate the draining, by qenabling the 1st 28692 * conn in the list. The drain is self-sustaining, each qenabled conn will 28693 * in turn qenable the next conn, when it is done/blocked/closing. 28694 */ 28695 static void 28696 conn_walk_drain(ip_stack_t *ipst) 28697 { 28698 int i; 28699 idl_t *idl; 28700 28701 IP_STAT(ipst, ip_conn_walk_drain); 28702 28703 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28704 idl = &ipst->ips_conn_drain_list[i]; 28705 mutex_enter(&idl->idl_lock); 28706 if (idl->idl_conn == NULL) { 28707 mutex_exit(&idl->idl_lock); 28708 continue; 28709 } 28710 /* 28711 * If this list is not being drained currently by 28712 * an ip_wsrv thread, start the process. 28713 */ 28714 if (idl->idl_conn_draining == NULL) { 28715 ASSERT(idl->idl_repeat == 0); 28716 qenable(idl->idl_conn->conn_wq); 28717 idl->idl_conn_draining = idl->idl_conn; 28718 } else { 28719 idl->idl_repeat = 1; 28720 } 28721 mutex_exit(&idl->idl_lock); 28722 } 28723 } 28724 28725 /* 28726 * Walk an conn hash table of `count' buckets, calling func for each entry. 28727 */ 28728 static void 28729 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg, 28730 zoneid_t zoneid) 28731 { 28732 conn_t *connp; 28733 28734 while (count-- > 0) { 28735 mutex_enter(&connfp->connf_lock); 28736 for (connp = connfp->connf_head; connp != NULL; 28737 connp = connp->conn_next) { 28738 if (zoneid == GLOBAL_ZONEID || 28739 zoneid == connp->conn_zoneid) { 28740 CONN_INC_REF(connp); 28741 mutex_exit(&connfp->connf_lock); 28742 (*func)(connp, arg); 28743 mutex_enter(&connfp->connf_lock); 28744 CONN_DEC_REF(connp); 28745 } 28746 } 28747 mutex_exit(&connfp->connf_lock); 28748 connfp++; 28749 } 28750 } 28751 28752 /* ipcl_walk routine invoked for ip_conn_report for each conn. */ 28753 static void 28754 conn_report1(conn_t *connp, void *mp) 28755 { 28756 char buf1[INET6_ADDRSTRLEN]; 28757 char buf2[INET6_ADDRSTRLEN]; 28758 uint_t print_len, buf_len; 28759 28760 ASSERT(connp != NULL); 28761 28762 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 28763 if (buf_len <= 0) 28764 return; 28765 (void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)); 28766 (void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)); 28767 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 28768 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 28769 "%5d %s/%05d %s/%05d\n", 28770 (void *)connp, (void *)CONNP_TO_RQ(connp), 28771 (void *)CONNP_TO_WQ(connp), connp->conn_zoneid, 28772 buf1, connp->conn_lport, 28773 buf2, connp->conn_fport); 28774 if (print_len < buf_len) { 28775 ((mblk_t *)mp)->b_wptr += print_len; 28776 } else { 28777 ((mblk_t *)mp)->b_wptr += buf_len; 28778 } 28779 } 28780 28781 /* 28782 * Named Dispatch routine to produce a formatted report on all conns 28783 * that are listed in one of the fanout tables. 28784 * This report is accessed by using the ndd utility to "get" ND variable 28785 * "ip_conn_status". 28786 */ 28787 /* ARGSUSED */ 28788 static int 28789 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 28790 { 28791 conn_t *connp = Q_TO_CONN(q); 28792 28793 (void) mi_mpprintf(mp, 28794 "CONN " MI_COL_HDRPAD_STR 28795 "rfq " MI_COL_HDRPAD_STR 28796 "stq " MI_COL_HDRPAD_STR 28797 " zone local remote"); 28798 28799 /* 28800 * Because of the ndd constraint, at most we can have 64K buffer 28801 * to put in all conn info. So to be more efficient, just 28802 * allocate a 64K buffer here, assuming we need that large buffer. 28803 * This should be OK as only privileged processes can do ndd /dev/ip. 28804 */ 28805 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 28806 /* The following may work even if we cannot get a large buf. */ 28807 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 28808 return (0); 28809 } 28810 28811 conn_walk_fanout(conn_report1, mp->b_cont, connp->conn_zoneid, 28812 connp->conn_netstack->netstack_ip); 28813 return (0); 28814 } 28815 28816 /* 28817 * Determine if the ill and multicast aspects of that packets 28818 * "matches" the conn. 28819 */ 28820 boolean_t 28821 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 28822 zoneid_t zoneid) 28823 { 28824 ill_t *in_ill; 28825 boolean_t found; 28826 ipif_t *ipif; 28827 ire_t *ire; 28828 ipaddr_t dst, src; 28829 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28830 28831 dst = ipha->ipha_dst; 28832 src = ipha->ipha_src; 28833 28834 /* 28835 * conn_incoming_ill is set by IP_BOUND_IF which limits 28836 * unicast, broadcast and multicast reception to 28837 * conn_incoming_ill. conn_wantpacket itself is called 28838 * only for BROADCAST and multicast. 28839 * 28840 * 1) ip_rput supresses duplicate broadcasts if the ill 28841 * is part of a group. Hence, we should be receiving 28842 * just one copy of broadcast for the whole group. 28843 * Thus, if it is part of the group the packet could 28844 * come on any ill of the group and hence we need a 28845 * match on the group. Otherwise, match on ill should 28846 * be sufficient. 28847 * 28848 * 2) ip_rput does not suppress duplicate multicast packets. 28849 * If there are two interfaces in a ill group and we have 28850 * 2 applications (conns) joined a multicast group G on 28851 * both the interfaces, ilm_lookup_ill filter in ip_rput 28852 * will give us two packets because we join G on both the 28853 * interfaces rather than nominating just one interface 28854 * for receiving multicast like broadcast above. So, 28855 * we have to call ilg_lookup_ill to filter out duplicate 28856 * copies, if ill is part of a group. 28857 */ 28858 in_ill = connp->conn_incoming_ill; 28859 if (in_ill != NULL) { 28860 if (in_ill->ill_group == NULL) { 28861 if (in_ill != ill) 28862 return (B_FALSE); 28863 } else if (in_ill->ill_group != ill->ill_group) { 28864 return (B_FALSE); 28865 } 28866 } 28867 28868 if (!CLASSD(dst)) { 28869 if (IPCL_ZONE_MATCH(connp, zoneid)) 28870 return (B_TRUE); 28871 /* 28872 * The conn is in a different zone; we need to check that this 28873 * broadcast address is configured in the application's zone and 28874 * on one ill in the group. 28875 */ 28876 ipif = ipif_get_next_ipif(NULL, ill); 28877 if (ipif == NULL) 28878 return (B_FALSE); 28879 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 28880 connp->conn_zoneid, NULL, 28881 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 28882 ipif_refrele(ipif); 28883 if (ire != NULL) { 28884 ire_refrele(ire); 28885 return (B_TRUE); 28886 } else { 28887 return (B_FALSE); 28888 } 28889 } 28890 28891 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 28892 connp->conn_zoneid == zoneid) { 28893 /* 28894 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 28895 * disabled, therefore we don't dispatch the multicast packet to 28896 * the sending zone. 28897 */ 28898 return (B_FALSE); 28899 } 28900 28901 if (IS_LOOPBACK(ill) && connp->conn_zoneid != zoneid) { 28902 /* 28903 * Multicast packet on the loopback interface: we only match 28904 * conns who joined the group in the specified zone. 28905 */ 28906 return (B_FALSE); 28907 } 28908 28909 if (connp->conn_multi_router) { 28910 /* multicast packet and multicast router socket: send up */ 28911 return (B_TRUE); 28912 } 28913 28914 mutex_enter(&connp->conn_lock); 28915 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 28916 mutex_exit(&connp->conn_lock); 28917 return (found); 28918 } 28919 28920 /* 28921 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 28922 */ 28923 /* ARGSUSED */ 28924 static void 28925 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 28926 { 28927 ill_t *ill = (ill_t *)q->q_ptr; 28928 mblk_t *mp1, *mp2; 28929 ipif_t *ipif; 28930 int err = 0; 28931 conn_t *connp = NULL; 28932 ipsq_t *ipsq; 28933 arc_t *arc; 28934 28935 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 28936 28937 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 28938 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 28939 28940 ASSERT(IAM_WRITER_ILL(ill)); 28941 mp2 = mp->b_cont; 28942 mp->b_cont = NULL; 28943 28944 /* 28945 * We have now received the arp bringup completion message 28946 * from ARP. Mark the arp bringup as done. Also if the arp 28947 * stream has already started closing, send up the AR_ARP_CLOSING 28948 * ack now since ARP is waiting in close for this ack. 28949 */ 28950 mutex_enter(&ill->ill_lock); 28951 ill->ill_arp_bringup_pending = 0; 28952 if (ill->ill_arp_closing) { 28953 mutex_exit(&ill->ill_lock); 28954 /* Let's reuse the mp for sending the ack */ 28955 arc = (arc_t *)mp->b_rptr; 28956 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 28957 arc->arc_cmd = AR_ARP_CLOSING; 28958 qreply(q, mp); 28959 } else { 28960 mutex_exit(&ill->ill_lock); 28961 freeb(mp); 28962 } 28963 28964 ipsq = ill->ill_phyint->phyint_ipsq; 28965 ipif = ipsq->ipsq_pending_ipif; 28966 mp1 = ipsq_pending_mp_get(ipsq, &connp); 28967 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 28968 if (mp1 == NULL) { 28969 /* bringup was aborted by the user */ 28970 freemsg(mp2); 28971 return; 28972 } 28973 28974 /* 28975 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 28976 * must have an associated conn_t. Otherwise, we're bringing this 28977 * interface back up as part of handling an asynchronous event (e.g., 28978 * physical address change). 28979 */ 28980 if (ipsq->ipsq_current_ioctl != 0) { 28981 ASSERT(connp != NULL); 28982 q = CONNP_TO_WQ(connp); 28983 } else { 28984 ASSERT(connp == NULL); 28985 q = ill->ill_rq; 28986 } 28987 28988 /* 28989 * If the DL_BIND_REQ fails, it is noted 28990 * in arc_name_offset. 28991 */ 28992 err = *((int *)mp2->b_rptr); 28993 if (err == 0) { 28994 if (ipif->ipif_isv6) { 28995 if ((err = ipif_up_done_v6(ipif)) != 0) 28996 ip0dbg(("ip_arp_done: init failed\n")); 28997 } else { 28998 if ((err = ipif_up_done(ipif)) != 0) 28999 ip0dbg(("ip_arp_done: init failed\n")); 29000 } 29001 } else { 29002 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 29003 } 29004 29005 freemsg(mp2); 29006 29007 if ((err == 0) && (ill->ill_up_ipifs)) { 29008 err = ill_up_ipifs(ill, q, mp1); 29009 if (err == EINPROGRESS) 29010 return; 29011 } 29012 29013 if (ill->ill_up_ipifs) 29014 ill_group_cleanup(ill); 29015 29016 /* 29017 * The operation must complete without EINPROGRESS since 29018 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 29019 * Otherwise, the operation will be stuck forever in the ipsq. 29020 */ 29021 ASSERT(err != EINPROGRESS); 29022 if (ipsq->ipsq_current_ioctl != 0) 29023 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 29024 else 29025 ipsq_current_finish(ipsq); 29026 } 29027 29028 /* Allocate the private structure */ 29029 static int 29030 ip_priv_alloc(void **bufp) 29031 { 29032 void *buf; 29033 29034 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 29035 return (ENOMEM); 29036 29037 *bufp = buf; 29038 return (0); 29039 } 29040 29041 /* Function to delete the private structure */ 29042 void 29043 ip_priv_free(void *buf) 29044 { 29045 ASSERT(buf != NULL); 29046 kmem_free(buf, sizeof (ip_priv_t)); 29047 } 29048 29049 /* 29050 * The entry point for IPPF processing. 29051 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 29052 * routine just returns. 29053 * 29054 * When called, ip_process generates an ipp_packet_t structure 29055 * which holds the state information for this packet and invokes the 29056 * the classifier (via ipp_packet_process). The classification, depending on 29057 * configured filters, results in a list of actions for this packet. Invoking 29058 * an action may cause the packet to be dropped, in which case the resulting 29059 * mblk (*mpp) is NULL. proc indicates the callout position for 29060 * this packet and ill_index is the interface this packet on or will leave 29061 * on (inbound and outbound resp.). 29062 */ 29063 void 29064 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 29065 { 29066 mblk_t *mp; 29067 ip_priv_t *priv; 29068 ipp_action_id_t aid; 29069 int rc = 0; 29070 ipp_packet_t *pp; 29071 #define IP_CLASS "ip" 29072 29073 /* If the classifier is not loaded, return */ 29074 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 29075 return; 29076 } 29077 29078 mp = *mpp; 29079 ASSERT(mp != NULL); 29080 29081 /* Allocate the packet structure */ 29082 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 29083 if (rc != 0) { 29084 *mpp = NULL; 29085 freemsg(mp); 29086 return; 29087 } 29088 29089 /* Allocate the private structure */ 29090 rc = ip_priv_alloc((void **)&priv); 29091 if (rc != 0) { 29092 *mpp = NULL; 29093 freemsg(mp); 29094 ipp_packet_free(pp); 29095 return; 29096 } 29097 priv->proc = proc; 29098 priv->ill_index = ill_index; 29099 ipp_packet_set_private(pp, priv, ip_priv_free); 29100 ipp_packet_set_data(pp, mp); 29101 29102 /* Invoke the classifier */ 29103 rc = ipp_packet_process(&pp); 29104 if (pp != NULL) { 29105 mp = ipp_packet_get_data(pp); 29106 ipp_packet_free(pp); 29107 if (rc != 0) { 29108 freemsg(mp); 29109 *mpp = NULL; 29110 } 29111 } else { 29112 *mpp = NULL; 29113 } 29114 #undef IP_CLASS 29115 } 29116 29117 /* 29118 * Propagate a multicast group membership operation (add/drop) on 29119 * all the interfaces crossed by the related multirt routes. 29120 * The call is considered successful if the operation succeeds 29121 * on at least one interface. 29122 */ 29123 static int 29124 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 29125 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 29126 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 29127 mblk_t *first_mp) 29128 { 29129 ire_t *ire_gw; 29130 irb_t *irb; 29131 int error = 0; 29132 opt_restart_t *or; 29133 ip_stack_t *ipst = ire->ire_ipst; 29134 29135 irb = ire->ire_bucket; 29136 ASSERT(irb != NULL); 29137 29138 ASSERT(DB_TYPE(first_mp) == M_CTL); 29139 29140 or = (opt_restart_t *)first_mp->b_rptr; 29141 IRB_REFHOLD(irb); 29142 for (; ire != NULL; ire = ire->ire_next) { 29143 if ((ire->ire_flags & RTF_MULTIRT) == 0) 29144 continue; 29145 if (ire->ire_addr != group) 29146 continue; 29147 29148 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 29149 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 29150 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE, ipst); 29151 /* No resolver exists for the gateway; skip this ire. */ 29152 if (ire_gw == NULL) 29153 continue; 29154 29155 /* 29156 * This function can return EINPROGRESS. If so the operation 29157 * will be restarted from ip_restart_optmgmt which will 29158 * call ip_opt_set and option processing will restart for 29159 * this option. So we may end up calling 'fn' more than once. 29160 * This requires that 'fn' is idempotent except for the 29161 * return value. The operation is considered a success if 29162 * it succeeds at least once on any one interface. 29163 */ 29164 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 29165 NULL, fmode, src, first_mp); 29166 if (error == 0) 29167 or->or_private = CGTP_MCAST_SUCCESS; 29168 29169 if (ip_debug > 0) { 29170 ulong_t off; 29171 char *ksym; 29172 ksym = kobj_getsymname((uintptr_t)fn, &off); 29173 ip2dbg(("ip_multirt_apply_membership: " 29174 "called %s, multirt group 0x%08x via itf 0x%08x, " 29175 "error %d [success %u]\n", 29176 ksym ? ksym : "?", 29177 ntohl(group), ntohl(ire_gw->ire_src_addr), 29178 error, or->or_private)); 29179 } 29180 29181 ire_refrele(ire_gw); 29182 if (error == EINPROGRESS) { 29183 IRB_REFRELE(irb); 29184 return (error); 29185 } 29186 } 29187 IRB_REFRELE(irb); 29188 /* 29189 * Consider the call as successful if we succeeded on at least 29190 * one interface. Otherwise, return the last encountered error. 29191 */ 29192 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 29193 } 29194 29195 29196 /* 29197 * Issue a warning regarding a route crossing an interface with an 29198 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 29199 * amount of time is logged. 29200 */ 29201 static void 29202 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 29203 { 29204 hrtime_t current = gethrtime(); 29205 char buf[INET_ADDRSTRLEN]; 29206 ip_stack_t *ipst = ire->ire_ipst; 29207 29208 /* Convert interval in ms to hrtime in ns */ 29209 if (ipst->ips_multirt_bad_mtu_last_time + 29210 ((hrtime_t)ipst->ips_ip_multirt_log_interval * (hrtime_t)1000000) <= 29211 current) { 29212 cmn_err(CE_WARN, "ip: ignoring multiroute " 29213 "to %s, incorrect MTU %u (expected %u)\n", 29214 ip_dot_addr(ire->ire_addr, buf), 29215 ire->ire_max_frag, max_frag); 29216 29217 ipst->ips_multirt_bad_mtu_last_time = current; 29218 } 29219 } 29220 29221 29222 /* 29223 * Get the CGTP (multirouting) filtering status. 29224 * If 0, the CGTP hooks are transparent. 29225 */ 29226 /* ARGSUSED */ 29227 static int 29228 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 29229 { 29230 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 29231 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29232 29233 /* 29234 * Only applies to the shared stack since the filter_ops 29235 * do not carry an ip_stack_t or zoneid. 29236 */ 29237 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 29238 return (ENOTSUP); 29239 29240 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 29241 return (0); 29242 } 29243 29244 29245 /* 29246 * Set the CGTP (multirouting) filtering status. 29247 * If the status is changed from active to transparent 29248 * or from transparent to active, forward the new status 29249 * to the filtering module (if loaded). 29250 */ 29251 /* ARGSUSED */ 29252 static int 29253 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 29254 cred_t *ioc_cr) 29255 { 29256 long new_value; 29257 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 29258 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29259 29260 if (secpolicy_net_config(ioc_cr, B_FALSE) != 0) 29261 return (EPERM); 29262 29263 /* 29264 * Only applies to the shared stack since the filter_ops 29265 * do not carry an ip_stack_t or zoneid. 29266 */ 29267 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 29268 return (ENOTSUP); 29269 29270 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 29271 new_value < 0 || new_value > 1) { 29272 return (EINVAL); 29273 } 29274 29275 /* 29276 * Do not enable CGTP filtering - thus preventing the hooks 29277 * from being invoked - if the version number of the 29278 * filtering module hooks does not match. 29279 */ 29280 if ((ip_cgtp_filter_ops != NULL) && 29281 (ip_cgtp_filter_ops->cfo_filter_rev != CGTP_FILTER_REV)) { 29282 cmn_err(CE_WARN, "IP: CGTP filtering version mismatch " 29283 "(module hooks version %d, expecting %d)\n", 29284 ip_cgtp_filter_ops->cfo_filter_rev, 29285 CGTP_FILTER_REV); 29286 return (ENOTSUP); 29287 } 29288 29289 if ((!*ip_cgtp_filter_value) && new_value) { 29290 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 29291 ip_cgtp_filter_ops == NULL ? 29292 " (module not loaded)" : ""); 29293 } 29294 if (*ip_cgtp_filter_value && (!new_value)) { 29295 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 29296 ip_cgtp_filter_ops == NULL ? 29297 " (module not loaded)" : ""); 29298 } 29299 29300 if (ip_cgtp_filter_ops != NULL) { 29301 int res; 29302 29303 res = ip_cgtp_filter_ops->cfo_change_state(new_value); 29304 if (res) 29305 return (res); 29306 } 29307 29308 *ip_cgtp_filter_value = (boolean_t)new_value; 29309 29310 return (0); 29311 } 29312 29313 29314 /* 29315 * Return the expected CGTP hooks version number. 29316 */ 29317 int 29318 ip_cgtp_filter_supported(void) 29319 { 29320 ip_stack_t *ipst; 29321 int ret; 29322 29323 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 29324 if (ipst == NULL) 29325 return (-1); 29326 ret = ip_cgtp_filter_rev; 29327 netstack_rele(ipst->ips_netstack); 29328 return (ret); 29329 } 29330 29331 29332 /* 29333 * CGTP hooks can be registered by directly touching ip_cgtp_filter_ops 29334 * or by invoking this function. In the first case, the version number 29335 * of the registered structure is checked at hooks activation time 29336 * in ip_cgtp_filter_set(). 29337 * 29338 * Only applies to the shared stack since the filter_ops 29339 * do not carry an ip_stack_t or zoneid. 29340 */ 29341 int 29342 ip_cgtp_filter_register(cgtp_filter_ops_t *ops) 29343 { 29344 ip_stack_t *ipst; 29345 29346 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 29347 return (ENOTSUP); 29348 29349 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 29350 if (ipst == NULL) 29351 return (EINVAL); 29352 29353 ip_cgtp_filter_ops = ops; 29354 netstack_rele(ipst->ips_netstack); 29355 return (0); 29356 } 29357 29358 static squeue_func_t 29359 ip_squeue_switch(int val) 29360 { 29361 squeue_func_t rval = squeue_fill; 29362 29363 switch (val) { 29364 case IP_SQUEUE_ENTER_NODRAIN: 29365 rval = squeue_enter_nodrain; 29366 break; 29367 case IP_SQUEUE_ENTER: 29368 rval = squeue_enter; 29369 break; 29370 default: 29371 break; 29372 } 29373 return (rval); 29374 } 29375 29376 /* ARGSUSED */ 29377 static int 29378 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 29379 caddr_t addr, cred_t *cr) 29380 { 29381 int *v = (int *)addr; 29382 long new_value; 29383 29384 if (secpolicy_net_config(cr, B_FALSE) != 0) 29385 return (EPERM); 29386 29387 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29388 return (EINVAL); 29389 29390 ip_input_proc = ip_squeue_switch(new_value); 29391 *v = new_value; 29392 return (0); 29393 } 29394 29395 /* ARGSUSED */ 29396 static int 29397 ip_int_set(queue_t *q, mblk_t *mp, char *value, 29398 caddr_t addr, cred_t *cr) 29399 { 29400 int *v = (int *)addr; 29401 long new_value; 29402 29403 if (secpolicy_net_config(cr, B_FALSE) != 0) 29404 return (EPERM); 29405 29406 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29407 return (EINVAL); 29408 29409 *v = new_value; 29410 return (0); 29411 } 29412 29413 /* 29414 * Handle changes to ipmp_hook_emulation ndd variable. 29415 * Need to update phyint_hook_ifindex. 29416 * Also generate a nic plumb event should a new ifidex be assigned to a group. 29417 */ 29418 static void 29419 ipmp_hook_emulation_changed(ip_stack_t *ipst) 29420 { 29421 phyint_t *phyi; 29422 phyint_t *phyi_tmp; 29423 char *groupname; 29424 int namelen; 29425 ill_t *ill; 29426 boolean_t new_group; 29427 29428 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29429 /* 29430 * Group indicies are stored in the phyint - a common structure 29431 * to both IPv4 and IPv6. 29432 */ 29433 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 29434 for (; phyi != NULL; 29435 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 29436 phyi, AVL_AFTER)) { 29437 /* Ignore the ones that do not have a group */ 29438 if (phyi->phyint_groupname_len == 0) 29439 continue; 29440 29441 /* 29442 * Look for other phyint in group. 29443 * Clear name/namelen so the lookup doesn't find ourselves. 29444 */ 29445 namelen = phyi->phyint_groupname_len; 29446 groupname = phyi->phyint_groupname; 29447 phyi->phyint_groupname_len = 0; 29448 phyi->phyint_groupname = NULL; 29449 29450 phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst); 29451 /* Restore */ 29452 phyi->phyint_groupname_len = namelen; 29453 phyi->phyint_groupname = groupname; 29454 29455 new_group = B_FALSE; 29456 if (ipst->ips_ipmp_hook_emulation) { 29457 /* 29458 * If the group already exists and has already 29459 * been assigned a group ifindex, we use the existing 29460 * group_ifindex, otherwise we pick a new group_ifindex 29461 * here. 29462 */ 29463 if (phyi_tmp != NULL && 29464 phyi_tmp->phyint_group_ifindex != 0) { 29465 phyi->phyint_group_ifindex = 29466 phyi_tmp->phyint_group_ifindex; 29467 } else { 29468 /* XXX We need a recovery strategy here. */ 29469 if (!ip_assign_ifindex( 29470 &phyi->phyint_group_ifindex, ipst)) 29471 cmn_err(CE_PANIC, 29472 "ip_assign_ifindex() failed"); 29473 new_group = B_TRUE; 29474 } 29475 } else { 29476 phyi->phyint_group_ifindex = 0; 29477 } 29478 if (ipst->ips_ipmp_hook_emulation) 29479 phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex; 29480 else 29481 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 29482 29483 /* 29484 * For IP Filter to find out the relationship between 29485 * names and interface indicies, we need to generate 29486 * a NE_PLUMB event when a new group can appear. 29487 * We always generate events when a new interface appears 29488 * (even when ipmp_hook_emulation is set) so there 29489 * is no need to generate NE_PLUMB events when 29490 * ipmp_hook_emulation is turned off. 29491 * And since it isn't critical for IP Filter to get 29492 * the NE_UNPLUMB events we skip those here. 29493 */ 29494 if (new_group) { 29495 /* 29496 * First phyint in group - generate group PLUMB event. 29497 * Since we are not running inside the ipsq we do 29498 * the dispatch immediately. 29499 */ 29500 if (phyi->phyint_illv4 != NULL) 29501 ill = phyi->phyint_illv4; 29502 else 29503 ill = phyi->phyint_illv6; 29504 29505 if (ill != NULL) { 29506 mutex_enter(&ill->ill_lock); 29507 ill_nic_info_plumb(ill, B_TRUE); 29508 ill_nic_info_dispatch(ill); 29509 mutex_exit(&ill->ill_lock); 29510 } 29511 } 29512 } 29513 rw_exit(&ipst->ips_ill_g_lock); 29514 } 29515 29516 /* ARGSUSED */ 29517 static int 29518 ipmp_hook_emulation_set(queue_t *q, mblk_t *mp, char *value, 29519 caddr_t addr, cred_t *cr) 29520 { 29521 int *v = (int *)addr; 29522 long new_value; 29523 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29524 29525 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29526 return (EINVAL); 29527 29528 if (*v != new_value) { 29529 *v = new_value; 29530 ipmp_hook_emulation_changed(ipst); 29531 } 29532 return (0); 29533 } 29534 29535 static void * 29536 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 29537 { 29538 kstat_t *ksp; 29539 29540 ip_stat_t template = { 29541 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 29542 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 29543 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 29544 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 29545 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 29546 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 29547 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 29548 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 29549 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 29550 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 29551 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 29552 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 29553 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 29554 { "ip_db_ref", KSTAT_DATA_UINT64 }, 29555 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 29556 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 29557 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 29558 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 29559 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 29560 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 29561 { "ip_opt", KSTAT_DATA_UINT64 }, 29562 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 29563 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 29564 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 29565 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 29566 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 29567 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 29568 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 29569 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 29570 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 29571 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 29572 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 29573 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 29574 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29575 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29576 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29577 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29578 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29579 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29580 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29581 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29582 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 29583 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 29584 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 29585 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 29586 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 29587 }; 29588 29589 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 29590 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 29591 KSTAT_FLAG_VIRTUAL, stackid); 29592 29593 if (ksp == NULL) 29594 return (NULL); 29595 29596 bcopy(&template, ip_statisticsp, sizeof (template)); 29597 ksp->ks_data = (void *)ip_statisticsp; 29598 ksp->ks_private = (void *)(uintptr_t)stackid; 29599 29600 kstat_install(ksp); 29601 return (ksp); 29602 } 29603 29604 static void 29605 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 29606 { 29607 if (ksp != NULL) { 29608 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29609 kstat_delete_netstack(ksp, stackid); 29610 } 29611 } 29612 29613 static void * 29614 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 29615 { 29616 kstat_t *ksp; 29617 29618 ip_named_kstat_t template = { 29619 { "forwarding", KSTAT_DATA_UINT32, 0 }, 29620 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 29621 { "inReceives", KSTAT_DATA_UINT64, 0 }, 29622 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 29623 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 29624 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 29625 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 29626 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 29627 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 29628 { "outRequests", KSTAT_DATA_UINT64, 0 }, 29629 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 29630 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 29631 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 29632 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 29633 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 29634 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 29635 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 29636 { "fragFails", KSTAT_DATA_UINT32, 0 }, 29637 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 29638 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 29639 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 29640 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 29641 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 29642 { "inErrs", KSTAT_DATA_UINT32, 0 }, 29643 { "noPorts", KSTAT_DATA_UINT32, 0 }, 29644 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 29645 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 29646 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 29647 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 29648 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 29649 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 29650 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 29651 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 29652 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 29653 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 29654 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 29655 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 29656 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 29657 }; 29658 29659 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 29660 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 29661 if (ksp == NULL || ksp->ks_data == NULL) 29662 return (NULL); 29663 29664 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 29665 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 29666 template.reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29667 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 29668 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 29669 29670 template.netToMediaEntrySize.value.i32 = 29671 sizeof (mib2_ipNetToMediaEntry_t); 29672 29673 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 29674 29675 bcopy(&template, ksp->ks_data, sizeof (template)); 29676 ksp->ks_update = ip_kstat_update; 29677 ksp->ks_private = (void *)(uintptr_t)stackid; 29678 29679 kstat_install(ksp); 29680 return (ksp); 29681 } 29682 29683 static void 29684 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29685 { 29686 if (ksp != NULL) { 29687 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29688 kstat_delete_netstack(ksp, stackid); 29689 } 29690 } 29691 29692 static int 29693 ip_kstat_update(kstat_t *kp, int rw) 29694 { 29695 ip_named_kstat_t *ipkp; 29696 mib2_ipIfStatsEntry_t ipmib; 29697 ill_walk_context_t ctx; 29698 ill_t *ill; 29699 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29700 netstack_t *ns; 29701 ip_stack_t *ipst; 29702 29703 if (kp == NULL || kp->ks_data == NULL) 29704 return (EIO); 29705 29706 if (rw == KSTAT_WRITE) 29707 return (EACCES); 29708 29709 ns = netstack_find_by_stackid(stackid); 29710 if (ns == NULL) 29711 return (-1); 29712 ipst = ns->netstack_ip; 29713 if (ipst == NULL) { 29714 netstack_rele(ns); 29715 return (-1); 29716 } 29717 ipkp = (ip_named_kstat_t *)kp->ks_data; 29718 29719 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 29720 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29721 ill = ILL_START_WALK_V4(&ctx, ipst); 29722 for (; ill != NULL; ill = ill_next(&ctx, ill)) 29723 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 29724 rw_exit(&ipst->ips_ill_g_lock); 29725 29726 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 29727 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 29728 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 29729 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 29730 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 29731 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 29732 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 29733 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 29734 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 29735 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 29736 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 29737 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 29738 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29739 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 29740 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 29741 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 29742 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 29743 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 29744 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 29745 29746 ipkp->routingDiscards.value.ui32 = 0; 29747 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 29748 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 29749 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 29750 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 29751 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 29752 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 29753 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 29754 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 29755 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 29756 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 29757 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 29758 29759 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 29760 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 29761 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 29762 29763 netstack_rele(ns); 29764 29765 return (0); 29766 } 29767 29768 static void * 29769 icmp_kstat_init(netstackid_t stackid) 29770 { 29771 kstat_t *ksp; 29772 29773 icmp_named_kstat_t template = { 29774 { "inMsgs", KSTAT_DATA_UINT32 }, 29775 { "inErrors", KSTAT_DATA_UINT32 }, 29776 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 29777 { "inTimeExcds", KSTAT_DATA_UINT32 }, 29778 { "inParmProbs", KSTAT_DATA_UINT32 }, 29779 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 29780 { "inRedirects", KSTAT_DATA_UINT32 }, 29781 { "inEchos", KSTAT_DATA_UINT32 }, 29782 { "inEchoReps", KSTAT_DATA_UINT32 }, 29783 { "inTimestamps", KSTAT_DATA_UINT32 }, 29784 { "inTimestampReps", KSTAT_DATA_UINT32 }, 29785 { "inAddrMasks", KSTAT_DATA_UINT32 }, 29786 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 29787 { "outMsgs", KSTAT_DATA_UINT32 }, 29788 { "outErrors", KSTAT_DATA_UINT32 }, 29789 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 29790 { "outTimeExcds", KSTAT_DATA_UINT32 }, 29791 { "outParmProbs", KSTAT_DATA_UINT32 }, 29792 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 29793 { "outRedirects", KSTAT_DATA_UINT32 }, 29794 { "outEchos", KSTAT_DATA_UINT32 }, 29795 { "outEchoReps", KSTAT_DATA_UINT32 }, 29796 { "outTimestamps", KSTAT_DATA_UINT32 }, 29797 { "outTimestampReps", KSTAT_DATA_UINT32 }, 29798 { "outAddrMasks", KSTAT_DATA_UINT32 }, 29799 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 29800 { "inChksumErrs", KSTAT_DATA_UINT32 }, 29801 { "inUnknowns", KSTAT_DATA_UINT32 }, 29802 { "inFragNeeded", KSTAT_DATA_UINT32 }, 29803 { "outFragNeeded", KSTAT_DATA_UINT32 }, 29804 { "outDrops", KSTAT_DATA_UINT32 }, 29805 { "inOverFlows", KSTAT_DATA_UINT32 }, 29806 { "inBadRedirects", KSTAT_DATA_UINT32 }, 29807 }; 29808 29809 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 29810 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 29811 if (ksp == NULL || ksp->ks_data == NULL) 29812 return (NULL); 29813 29814 bcopy(&template, ksp->ks_data, sizeof (template)); 29815 29816 ksp->ks_update = icmp_kstat_update; 29817 ksp->ks_private = (void *)(uintptr_t)stackid; 29818 29819 kstat_install(ksp); 29820 return (ksp); 29821 } 29822 29823 static void 29824 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29825 { 29826 if (ksp != NULL) { 29827 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29828 kstat_delete_netstack(ksp, stackid); 29829 } 29830 } 29831 29832 static int 29833 icmp_kstat_update(kstat_t *kp, int rw) 29834 { 29835 icmp_named_kstat_t *icmpkp; 29836 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29837 netstack_t *ns; 29838 ip_stack_t *ipst; 29839 29840 if ((kp == NULL) || (kp->ks_data == NULL)) 29841 return (EIO); 29842 29843 if (rw == KSTAT_WRITE) 29844 return (EACCES); 29845 29846 ns = netstack_find_by_stackid(stackid); 29847 if (ns == NULL) 29848 return (-1); 29849 ipst = ns->netstack_ip; 29850 if (ipst == NULL) { 29851 netstack_rele(ns); 29852 return (-1); 29853 } 29854 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 29855 29856 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 29857 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 29858 icmpkp->inDestUnreachs.value.ui32 = 29859 ipst->ips_icmp_mib.icmpInDestUnreachs; 29860 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 29861 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 29862 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 29863 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 29864 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 29865 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 29866 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 29867 icmpkp->inTimestampReps.value.ui32 = 29868 ipst->ips_icmp_mib.icmpInTimestampReps; 29869 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 29870 icmpkp->inAddrMaskReps.value.ui32 = 29871 ipst->ips_icmp_mib.icmpInAddrMaskReps; 29872 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 29873 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 29874 icmpkp->outDestUnreachs.value.ui32 = 29875 ipst->ips_icmp_mib.icmpOutDestUnreachs; 29876 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 29877 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 29878 icmpkp->outSrcQuenchs.value.ui32 = 29879 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 29880 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 29881 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 29882 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 29883 icmpkp->outTimestamps.value.ui32 = 29884 ipst->ips_icmp_mib.icmpOutTimestamps; 29885 icmpkp->outTimestampReps.value.ui32 = 29886 ipst->ips_icmp_mib.icmpOutTimestampReps; 29887 icmpkp->outAddrMasks.value.ui32 = 29888 ipst->ips_icmp_mib.icmpOutAddrMasks; 29889 icmpkp->outAddrMaskReps.value.ui32 = 29890 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 29891 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 29892 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 29893 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 29894 icmpkp->outFragNeeded.value.ui32 = 29895 ipst->ips_icmp_mib.icmpOutFragNeeded; 29896 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 29897 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 29898 icmpkp->inBadRedirects.value.ui32 = 29899 ipst->ips_icmp_mib.icmpInBadRedirects; 29900 29901 netstack_rele(ns); 29902 return (0); 29903 } 29904 29905 /* 29906 * This is the fanout function for raw socket opened for SCTP. Note 29907 * that it is called after SCTP checks that there is no socket which 29908 * wants a packet. Then before SCTP handles this out of the blue packet, 29909 * this function is called to see if there is any raw socket for SCTP. 29910 * If there is and it is bound to the correct address, the packet will 29911 * be sent to that socket. Note that only one raw socket can be bound to 29912 * a port. This is assured in ipcl_sctp_hash_insert(); 29913 */ 29914 void 29915 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 29916 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 29917 zoneid_t zoneid) 29918 { 29919 conn_t *connp; 29920 queue_t *rq; 29921 mblk_t *first_mp; 29922 boolean_t secure; 29923 ip6_t *ip6h; 29924 ip_stack_t *ipst = recv_ill->ill_ipst; 29925 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 29926 29927 first_mp = mp; 29928 if (mctl_present) { 29929 mp = first_mp->b_cont; 29930 secure = ipsec_in_is_secure(first_mp); 29931 ASSERT(mp != NULL); 29932 } else { 29933 secure = B_FALSE; 29934 } 29935 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 29936 29937 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha, ipst); 29938 if (connp == NULL) { 29939 sctp_ootb_input(first_mp, recv_ill, zoneid, mctl_present); 29940 return; 29941 } 29942 rq = connp->conn_rq; 29943 if (!canputnext(rq)) { 29944 CONN_DEC_REF(connp); 29945 BUMP_MIB(recv_ill->ill_ip_mib, rawipIfStatsInOverflows); 29946 freemsg(first_mp); 29947 return; 29948 } 29949 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 29950 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || secure) { 29951 first_mp = ipsec_check_inbound_policy(first_mp, connp, 29952 (isv4 ? ipha : NULL), ip6h, mctl_present); 29953 if (first_mp == NULL) { 29954 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 29955 CONN_DEC_REF(connp); 29956 return; 29957 } 29958 } 29959 /* 29960 * We probably should not send M_CTL message up to 29961 * raw socket. 29962 */ 29963 if (mctl_present) 29964 freeb(first_mp); 29965 29966 /* Initiate IPPF processing here if needed. */ 29967 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) || 29968 (!isv4 && IP6_IN_IPP(flags, ipst))) { 29969 ip_process(IPP_LOCAL_IN, &mp, 29970 recv_ill->ill_phyint->phyint_ifindex); 29971 if (mp == NULL) { 29972 CONN_DEC_REF(connp); 29973 return; 29974 } 29975 } 29976 29977 if (connp->conn_recvif || connp->conn_recvslla || 29978 ((connp->conn_ip_recvpktinfo || 29979 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 29980 (flags & IP_FF_IPINFO))) { 29981 int in_flags = 0; 29982 29983 /* 29984 * Since sctp does not support IP_RECVPKTINFO for v4, only pass 29985 * IPF_RECVIF. 29986 */ 29987 if (connp->conn_recvif || connp->conn_ip_recvpktinfo) { 29988 in_flags = IPF_RECVIF; 29989 } 29990 if (connp->conn_recvslla) { 29991 in_flags |= IPF_RECVSLLA; 29992 } 29993 if (isv4) { 29994 mp = ip_add_info(mp, recv_ill, in_flags, 29995 IPCL_ZONEID(connp), ipst); 29996 } else { 29997 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 29998 if (mp == NULL) { 29999 BUMP_MIB(recv_ill->ill_ip_mib, 30000 ipIfStatsInDiscards); 30001 CONN_DEC_REF(connp); 30002 return; 30003 } 30004 } 30005 } 30006 30007 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 30008 /* 30009 * We are sending the IPSEC_IN message also up. Refer 30010 * to comments above this function. 30011 */ 30012 putnext(rq, mp); 30013 CONN_DEC_REF(connp); 30014 } 30015 30016 #define UPDATE_IP_MIB_OB_COUNTERS(ill, len) \ 30017 { \ 30018 BUMP_MIB((ill)->ill_ip_mib, ipIfStatsHCOutTransmits); \ 30019 UPDATE_MIB((ill)->ill_ip_mib, ipIfStatsHCOutOctets, (len)); \ 30020 } 30021 /* 30022 * This function should be called only if all packet processing 30023 * including fragmentation is complete. Callers of this function 30024 * must set mp->b_prev to one of these values: 30025 * {0, IPP_FWD_OUT, IPP_LOCAL_OUT} 30026 * prior to handing over the mp as first argument to this function. 30027 * 30028 * If the ire passed by caller is incomplete, this function 30029 * queues the packet and if necessary, sends ARP request and bails. 30030 * If the ire passed is fully resolved, we simply prepend 30031 * the link-layer header to the packet, do ipsec hw acceleration 30032 * work if necessary, and send the packet out on the wire. 30033 * 30034 * NOTE: IPSEC will only call this function with fully resolved 30035 * ires if hw acceleration is involved. 30036 * TODO list : 30037 * a Handle M_MULTIDATA so that 30038 * tcp_multisend->tcp_multisend_data can 30039 * call ip_xmit_v4 directly 30040 * b Handle post-ARP work for fragments so that 30041 * ip_wput_frag can call this function. 30042 */ 30043 ipxmit_state_t 30044 ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, boolean_t flow_ctl_enabled) 30045 { 30046 nce_t *arpce; 30047 queue_t *q; 30048 int ill_index; 30049 mblk_t *nxt_mp, *first_mp; 30050 boolean_t xmit_drop = B_FALSE; 30051 ip_proc_t proc; 30052 ill_t *out_ill; 30053 int pkt_len; 30054 30055 arpce = ire->ire_nce; 30056 ASSERT(arpce != NULL); 30057 30058 DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire, nce_t *, arpce); 30059 30060 mutex_enter(&arpce->nce_lock); 30061 switch (arpce->nce_state) { 30062 case ND_REACHABLE: 30063 /* If there are other queued packets, queue this packet */ 30064 if (arpce->nce_qd_mp != NULL) { 30065 if (mp != NULL) 30066 nce_queue_mp_common(arpce, mp, B_FALSE); 30067 mp = arpce->nce_qd_mp; 30068 } 30069 arpce->nce_qd_mp = NULL; 30070 mutex_exit(&arpce->nce_lock); 30071 30072 /* 30073 * Flush the queue. In the common case, where the 30074 * ARP is already resolved, it will go through the 30075 * while loop only once. 30076 */ 30077 while (mp != NULL) { 30078 30079 nxt_mp = mp->b_next; 30080 mp->b_next = NULL; 30081 ASSERT(mp->b_datap->db_type != M_CTL); 30082 pkt_len = ntohs(((ipha_t *)mp->b_rptr)->ipha_length); 30083 /* 30084 * This info is needed for IPQOS to do COS marking 30085 * in ip_wput_attach_llhdr->ip_process. 30086 */ 30087 proc = (ip_proc_t)(uintptr_t)mp->b_prev; 30088 mp->b_prev = NULL; 30089 30090 /* set up ill index for outbound qos processing */ 30091 out_ill = ire->ire_ipif->ipif_ill; 30092 ill_index = out_ill->ill_phyint->phyint_ifindex; 30093 first_mp = ip_wput_attach_llhdr(mp, ire, proc, 30094 ill_index); 30095 if (first_mp == NULL) { 30096 xmit_drop = B_TRUE; 30097 BUMP_MIB(out_ill->ill_ip_mib, 30098 ipIfStatsOutDiscards); 30099 goto next_mp; 30100 } 30101 /* non-ipsec hw accel case */ 30102 if (io == NULL || !io->ipsec_out_accelerated) { 30103 /* send it */ 30104 q = ire->ire_stq; 30105 if (proc == IPP_FWD_OUT) { 30106 UPDATE_IB_PKT_COUNT(ire); 30107 } else { 30108 UPDATE_OB_PKT_COUNT(ire); 30109 } 30110 ire->ire_last_used_time = lbolt; 30111 30112 if (flow_ctl_enabled || canputnext(q)) { 30113 if (proc == IPP_FWD_OUT) { 30114 30115 BUMP_MIB(out_ill->ill_ip_mib, 30116 ipIfStatsHCOutForwDatagrams); 30117 30118 } 30119 UPDATE_IP_MIB_OB_COUNTERS(out_ill, 30120 pkt_len); 30121 30122 putnext(q, first_mp); 30123 } else { 30124 BUMP_MIB(out_ill->ill_ip_mib, 30125 ipIfStatsOutDiscards); 30126 xmit_drop = B_TRUE; 30127 freemsg(first_mp); 30128 } 30129 } else { 30130 /* 30131 * Safety Pup says: make sure this 30132 * is going to the right interface! 30133 */ 30134 ill_t *ill1 = 30135 (ill_t *)ire->ire_stq->q_ptr; 30136 int ifindex = 30137 ill1->ill_phyint->phyint_ifindex; 30138 if (ifindex != 30139 io->ipsec_out_capab_ill_index) { 30140 xmit_drop = B_TRUE; 30141 freemsg(mp); 30142 } else { 30143 UPDATE_IP_MIB_OB_COUNTERS(ill1, 30144 pkt_len); 30145 ipsec_hw_putnext(ire->ire_stq, mp); 30146 } 30147 } 30148 next_mp: 30149 mp = nxt_mp; 30150 } /* while (mp != NULL) */ 30151 if (xmit_drop) 30152 return (SEND_FAILED); 30153 else 30154 return (SEND_PASSED); 30155 30156 case ND_INITIAL: 30157 case ND_INCOMPLETE: 30158 30159 /* 30160 * While we do send off packets to dests that 30161 * use fully-resolved CGTP routes, we do not 30162 * handle unresolved CGTP routes. 30163 */ 30164 ASSERT(!(ire->ire_flags & RTF_MULTIRT)); 30165 ASSERT(io == NULL || !io->ipsec_out_accelerated); 30166 30167 if (mp != NULL) { 30168 /* queue the packet */ 30169 nce_queue_mp_common(arpce, mp, B_FALSE); 30170 } 30171 30172 if (arpce->nce_state == ND_INCOMPLETE) { 30173 mutex_exit(&arpce->nce_lock); 30174 DTRACE_PROBE3(ip__xmit__incomplete, 30175 (ire_t *), ire, (mblk_t *), mp, 30176 (ipsec_out_t *), io); 30177 return (LOOKUP_IN_PROGRESS); 30178 } 30179 30180 arpce->nce_state = ND_INCOMPLETE; 30181 mutex_exit(&arpce->nce_lock); 30182 /* 30183 * Note that ire_add() (called from ire_forward()) 30184 * holds a ref on the ire until ARP is completed. 30185 */ 30186 30187 ire_arpresolve(ire, ire_to_ill(ire)); 30188 return (LOOKUP_IN_PROGRESS); 30189 default: 30190 ASSERT(0); 30191 mutex_exit(&arpce->nce_lock); 30192 return (LLHDR_RESLV_FAILED); 30193 } 30194 } 30195 30196 #undef UPDATE_IP_MIB_OB_COUNTERS 30197 30198 /* 30199 * Return B_TRUE if the buffers differ in length or content. 30200 * This is used for comparing extension header buffers. 30201 * Note that an extension header would be declared different 30202 * even if all that changed was the next header value in that header i.e. 30203 * what really changed is the next extension header. 30204 */ 30205 boolean_t 30206 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 30207 uint_t blen) 30208 { 30209 if (!b_valid) 30210 blen = 0; 30211 30212 if (alen != blen) 30213 return (B_TRUE); 30214 if (alen == 0) 30215 return (B_FALSE); /* Both zero length */ 30216 return (bcmp(abuf, bbuf, alen)); 30217 } 30218 30219 /* 30220 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 30221 * Return B_FALSE if memory allocation fails - don't change any state! 30222 */ 30223 boolean_t 30224 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 30225 const void *src, uint_t srclen) 30226 { 30227 void *dst; 30228 30229 if (!src_valid) 30230 srclen = 0; 30231 30232 ASSERT(*dstlenp == 0); 30233 if (src != NULL && srclen != 0) { 30234 dst = mi_alloc(srclen, BPRI_MED); 30235 if (dst == NULL) 30236 return (B_FALSE); 30237 } else { 30238 dst = NULL; 30239 } 30240 if (*dstp != NULL) 30241 mi_free(*dstp); 30242 *dstp = dst; 30243 *dstlenp = dst == NULL ? 0 : srclen; 30244 return (B_TRUE); 30245 } 30246 30247 /* 30248 * Replace what is in *dst, *dstlen with the source. 30249 * Assumes ip_allocbuf has already been called. 30250 */ 30251 void 30252 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 30253 const void *src, uint_t srclen) 30254 { 30255 if (!src_valid) 30256 srclen = 0; 30257 30258 ASSERT(*dstlenp == srclen); 30259 if (src != NULL && srclen != 0) 30260 bcopy(src, *dstp, srclen); 30261 } 30262 30263 /* 30264 * Free the storage pointed to by the members of an ip6_pkt_t. 30265 */ 30266 void 30267 ip6_pkt_free(ip6_pkt_t *ipp) 30268 { 30269 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 30270 30271 if (ipp->ipp_fields & IPPF_HOPOPTS) { 30272 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 30273 ipp->ipp_hopopts = NULL; 30274 ipp->ipp_hopoptslen = 0; 30275 } 30276 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 30277 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 30278 ipp->ipp_rtdstopts = NULL; 30279 ipp->ipp_rtdstoptslen = 0; 30280 } 30281 if (ipp->ipp_fields & IPPF_DSTOPTS) { 30282 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 30283 ipp->ipp_dstopts = NULL; 30284 ipp->ipp_dstoptslen = 0; 30285 } 30286 if (ipp->ipp_fields & IPPF_RTHDR) { 30287 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 30288 ipp->ipp_rthdr = NULL; 30289 ipp->ipp_rthdrlen = 0; 30290 } 30291 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 30292 IPPF_RTHDR); 30293 } 30294