1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/dlpi.h> 31 #include <sys/stropts.h> 32 #include <sys/sysmacros.h> 33 #include <sys/strsubr.h> 34 #include <sys/strlog.h> 35 #include <sys/strsun.h> 36 #include <sys/zone.h> 37 #define _SUN_TPI_VERSION 2 38 #include <sys/tihdr.h> 39 #include <sys/xti_inet.h> 40 #include <sys/ddi.h> 41 #include <sys/cmn_err.h> 42 #include <sys/debug.h> 43 #include <sys/kobj.h> 44 #include <sys/modctl.h> 45 #include <sys/atomic.h> 46 #include <sys/policy.h> 47 #include <sys/priv.h> 48 #include <sys/taskq.h> 49 50 #include <sys/systm.h> 51 #include <sys/param.h> 52 #include <sys/kmem.h> 53 #include <sys/sdt.h> 54 #include <sys/socket.h> 55 #include <sys/vtrace.h> 56 #include <sys/isa_defs.h> 57 #include <sys/mac.h> 58 #include <net/if.h> 59 #include <net/if_arp.h> 60 #include <net/route.h> 61 #include <sys/sockio.h> 62 #include <netinet/in.h> 63 #include <net/if_dl.h> 64 65 #include <inet/common.h> 66 #include <inet/mi.h> 67 #include <inet/mib2.h> 68 #include <inet/nd.h> 69 #include <inet/arp.h> 70 #include <inet/snmpcom.h> 71 #include <inet/optcom.h> 72 #include <inet/kstatcom.h> 73 74 #include <netinet/igmp_var.h> 75 #include <netinet/ip6.h> 76 #include <netinet/icmp6.h> 77 #include <netinet/sctp.h> 78 79 #include <inet/ip.h> 80 #include <inet/ip_impl.h> 81 #include <inet/ip6.h> 82 #include <inet/ip6_asp.h> 83 #include <inet/tcp.h> 84 #include <inet/tcp_impl.h> 85 #include <inet/ip_multi.h> 86 #include <inet/ip_if.h> 87 #include <inet/ip_ire.h> 88 #include <inet/ip_ftable.h> 89 #include <inet/ip_rts.h> 90 #include <inet/ip_ndp.h> 91 #include <inet/ip_listutils.h> 92 #include <netinet/igmp.h> 93 #include <netinet/ip_mroute.h> 94 #include <inet/ipp_common.h> 95 96 #include <net/pfkeyv2.h> 97 #include <inet/ipsec_info.h> 98 #include <inet/sadb.h> 99 #include <inet/ipsec_impl.h> 100 #include <sys/iphada.h> 101 #include <inet/tun.h> 102 #include <inet/ipdrop.h> 103 #include <inet/ip_netinfo.h> 104 105 #include <sys/ethernet.h> 106 #include <net/if_types.h> 107 #include <sys/cpuvar.h> 108 109 #include <ipp/ipp.h> 110 #include <ipp/ipp_impl.h> 111 #include <ipp/ipgpc/ipgpc.h> 112 113 #include <sys/multidata.h> 114 #include <sys/pattr.h> 115 116 #include <inet/ipclassifier.h> 117 #include <inet/sctp_ip.h> 118 #include <inet/sctp/sctp_impl.h> 119 #include <inet/udp_impl.h> 120 #include <inet/rawip_impl.h> 121 #include <inet/rts_impl.h> 122 123 #include <sys/tsol/label.h> 124 #include <sys/tsol/tnet.h> 125 126 #include <rpc/pmap_prot.h> 127 #include <sys/squeue_impl.h> 128 129 /* 130 * Values for squeue switch: 131 * IP_SQUEUE_ENTER_NODRAIN: SQ_NODRAIN 132 * IP_SQUEUE_ENTER: SQ_PROCESS 133 * IP_SQUEUE_FILL: SQ_FILL 134 */ 135 int ip_squeue_enter = 2; /* Setable in /etc/system */ 136 137 int ip_squeue_flag; 138 #define SET_BPREV_FLAG(x) ((mblk_t *)(uintptr_t)(x)) 139 140 /* 141 * Setable in /etc/system 142 */ 143 int ip_poll_normal_ms = 100; 144 int ip_poll_normal_ticks = 0; 145 int ip_modclose_ackwait_ms = 3000; 146 147 /* 148 * It would be nice to have these present only in DEBUG systems, but the 149 * current design of the global symbol checking logic requires them to be 150 * unconditionally present. 151 */ 152 uint_t ip_thread_data; /* TSD key for debug support */ 153 krwlock_t ip_thread_rwlock; 154 list_t ip_thread_list; 155 156 /* 157 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 158 */ 159 160 struct listptr_s { 161 mblk_t *lp_head; /* pointer to the head of the list */ 162 mblk_t *lp_tail; /* pointer to the tail of the list */ 163 }; 164 165 typedef struct listptr_s listptr_t; 166 167 /* 168 * This is used by ip_snmp_get_mib2_ip_route_media and 169 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 170 */ 171 typedef struct iproutedata_s { 172 uint_t ird_idx; 173 uint_t ird_flags; /* see below */ 174 listptr_t ird_route; /* ipRouteEntryTable */ 175 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 176 listptr_t ird_attrs; /* ipRouteAttributeTable */ 177 } iproutedata_t; 178 179 #define IRD_REPORT_TESTHIDDEN 0x01 /* include IRE_MARK_TESTHIDDEN routes */ 180 181 /* 182 * Cluster specific hooks. These should be NULL when booted as a non-cluster 183 */ 184 185 /* 186 * Hook functions to enable cluster networking 187 * On non-clustered systems these vectors must always be NULL. 188 * 189 * Hook function to Check ip specified ip address is a shared ip address 190 * in the cluster 191 * 192 */ 193 int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol, 194 sa_family_t addr_family, uint8_t *laddrp, void *args) = NULL; 195 196 /* 197 * Hook function to generate cluster wide ip fragment identifier 198 */ 199 uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol, 200 sa_family_t addr_family, uint8_t *laddrp, uint8_t *faddrp, 201 void *args) = NULL; 202 203 /* 204 * Hook function to generate cluster wide SPI. 205 */ 206 void (*cl_inet_getspi)(netstackid_t, uint8_t, uint8_t *, size_t, 207 void *) = NULL; 208 209 /* 210 * Hook function to verify if the SPI is already utlized. 211 */ 212 213 int (*cl_inet_checkspi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 214 215 /* 216 * Hook function to delete the SPI from the cluster wide repository. 217 */ 218 219 void (*cl_inet_deletespi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 220 221 /* 222 * Hook function to inform the cluster when packet received on an IDLE SA 223 */ 224 225 void (*cl_inet_idlesa)(netstackid_t, uint8_t, uint32_t, sa_family_t, 226 in6_addr_t, in6_addr_t, void *) = NULL; 227 228 /* 229 * Synchronization notes: 230 * 231 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 232 * MT level protection given by STREAMS. IP uses a combination of its own 233 * internal serialization mechanism and standard Solaris locking techniques. 234 * The internal serialization is per phyint. This is used to serialize 235 * plumbing operations, certain multicast operations, most set ioctls, 236 * igmp/mld timers etc. 237 * 238 * Plumbing is a long sequence of operations involving message 239 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 240 * involved in plumbing operations. A natural model is to serialize these 241 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 242 * parallel without any interference. But various set ioctls on hme0 are best 243 * serialized, along with multicast join/leave operations, igmp/mld timer 244 * operations, and processing of DLPI control messages received from drivers 245 * on a per phyint basis. This serialization is provided by the ipsq_t and 246 * primitives operating on this. Details can be found in ip_if.c above the 247 * core primitives operating on ipsq_t. 248 * 249 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 250 * Simiarly lookup of an ire by a thread also returns a refheld ire. 251 * In addition ipif's and ill's referenced by the ire are also indirectly 252 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 253 * the ipif's address or netmask change as long as an ipif is refheld 254 * directly or indirectly. For example an SIOCSLIFADDR ioctl that changes the 255 * address of an ipif has to go through the ipsq_t. This ensures that only 256 * 1 such exclusive operation proceeds at any time on the ipif. It then 257 * deletes all ires associated with this ipif, and waits for all refcnts 258 * associated with this ipif to come down to zero. The address is changed 259 * only after the ipif has been quiesced. Then the ipif is brought up again. 260 * More details are described above the comment in ip_sioctl_flags. 261 * 262 * Packet processing is based mostly on IREs and are fully multi-threaded 263 * using standard Solaris MT techniques. 264 * 265 * There are explicit locks in IP to handle: 266 * - The ip_g_head list maintained by mi_open_link() and friends. 267 * 268 * - The reassembly data structures (one lock per hash bucket) 269 * 270 * - conn_lock is meant to protect conn_t fields. The fields actually 271 * protected by conn_lock are documented in the conn_t definition. 272 * 273 * - ire_lock to protect some of the fields of the ire, IRE tables 274 * (one lock per hash bucket). Refer to ip_ire.c for details. 275 * 276 * - ndp_g_lock and nce_lock for protecting NCEs. 277 * 278 * - ill_lock protects fields of the ill and ipif. Details in ip.h 279 * 280 * - ill_g_lock: This is a global reader/writer lock. Protects the following 281 * * The AVL tree based global multi list of all ills. 282 * * The linked list of all ipifs of an ill 283 * * The <ipsq-xop> mapping 284 * * <ill-phyint> association 285 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 286 * into an ill, changing the <ipsq-xop> mapping of an ill, changing the 287 * <ill-phyint> assoc of an ill will all have to hold the ill_g_lock as 288 * writer for the actual duration of the insertion/deletion/change. 289 * 290 * - ill_lock: This is a per ill mutex. 291 * It protects some members of the ill_t struct; see ip.h for details. 292 * It also protects the <ill-phyint> assoc. 293 * It also protects the list of ipifs hanging off the ill. 294 * 295 * - ipsq_lock: This is a per ipsq_t mutex lock. 296 * This protects some members of the ipsq_t struct; see ip.h for details. 297 * It also protects the <ipsq-ipxop> mapping 298 * 299 * - ipx_lock: This is a per ipxop_t mutex lock. 300 * This protects some members of the ipxop_t struct; see ip.h for details. 301 * 302 * - phyint_lock: This is a per phyint mutex lock. Protects just the 303 * phyint_flags 304 * 305 * - ip_g_nd_lock: This is a global reader/writer lock. 306 * Any call to nd_load to load a new parameter to the ND table must hold the 307 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 308 * as reader. 309 * 310 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 311 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 312 * uniqueness check also done atomically. 313 * 314 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 315 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 316 * as a writer when adding or deleting elements from these lists, and 317 * as a reader when walking these lists to send a SADB update to the 318 * IPsec capable ills. 319 * 320 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 321 * group list linked by ill_usesrc_grp_next. It also protects the 322 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 323 * group is being added or deleted. This lock is taken as a reader when 324 * walking the list/group(eg: to get the number of members in a usesrc group). 325 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 326 * field is changing state i.e from NULL to non-NULL or vice-versa. For 327 * example, it is not necessary to take this lock in the initial portion 328 * of ip_sioctl_slifusesrc or at all in ip_sioctl_flags since these 329 * operations are executed exclusively and that ensures that the "usesrc 330 * group state" cannot change. The "usesrc group state" change can happen 331 * only in the latter part of ip_sioctl_slifusesrc and in ill_delete. 332 * 333 * Changing <ill-phyint>, <ipsq-xop> assocications: 334 * 335 * To change the <ill-phyint> association, the ill_g_lock must be held 336 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 337 * must be held. 338 * 339 * To change the <ipsq-xop> association, the ill_g_lock must be held as 340 * writer, the ipsq_lock must be held, and one must be writer on the ipsq. 341 * This is only done when ills are added or removed from IPMP groups. 342 * 343 * To add or delete an ipif from the list of ipifs hanging off the ill, 344 * ill_g_lock (writer) and ill_lock must be held and the thread must be 345 * a writer on the associated ipsq. 346 * 347 * To add or delete an ill to the system, the ill_g_lock must be held as 348 * writer and the thread must be a writer on the associated ipsq. 349 * 350 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 351 * must be a writer on the associated ipsq. 352 * 353 * Lock hierarchy 354 * 355 * Some lock hierarchy scenarios are listed below. 356 * 357 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock 358 * ill_g_lock -> ill_lock(s) -> phyint_lock 359 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 360 * ill_g_lock -> ip_addr_avail_lock 361 * conn_lock -> irb_lock -> ill_lock -> ire_lock 362 * ill_g_lock -> ip_g_nd_lock 363 * 364 * When more than 1 ill lock is needed to be held, all ill lock addresses 365 * are sorted on address and locked starting from highest addressed lock 366 * downward. 367 * 368 * IPsec scenarios 369 * 370 * ipsa_lock -> ill_g_lock -> ill_lock 371 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 372 * ipsec_capab_ills_lock -> ipsa_lock 373 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 374 * 375 * Trusted Solaris scenarios 376 * 377 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 378 * igsa_lock -> gcdb_lock 379 * gcgrp_rwlock -> ire_lock 380 * gcgrp_rwlock -> gcdb_lock 381 * 382 * squeue(sq_lock), flow related (ft_lock, fe_lock) locking 383 * 384 * cpu_lock --> ill_lock --> sqset_lock --> sq_lock 385 * sq_lock -> conn_lock -> QLOCK(q) 386 * ill_lock -> ft_lock -> fe_lock 387 * 388 * Routing/forwarding table locking notes: 389 * 390 * Lock acquisition order: Radix tree lock, irb_lock. 391 * Requirements: 392 * i. Walker must not hold any locks during the walker callback. 393 * ii Walker must not see a truncated tree during the walk because of any node 394 * deletion. 395 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 396 * in many places in the code to walk the irb list. Thus even if all the 397 * ires in a bucket have been deleted, we still can't free the radix node 398 * until the ires have actually been inactive'd (freed). 399 * 400 * Tree traversal - Need to hold the global tree lock in read mode. 401 * Before dropping the global tree lock, need to either increment the ire_refcnt 402 * to ensure that the radix node can't be deleted. 403 * 404 * Tree add - Need to hold the global tree lock in write mode to add a 405 * radix node. To prevent the node from being deleted, increment the 406 * irb_refcnt, after the node is added to the tree. The ire itself is 407 * added later while holding the irb_lock, but not the tree lock. 408 * 409 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 410 * All associated ires must be inactive (i.e. freed), and irb_refcnt 411 * must be zero. 412 * 413 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 414 * global tree lock (read mode) for traversal. 415 * 416 * IPsec notes : 417 * 418 * IP interacts with the IPsec code (AH/ESP) by tagging a M_CTL message 419 * in front of the actual packet. For outbound datagrams, the M_CTL 420 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 421 * information used by the IPsec code for applying the right level of 422 * protection. The information initialized by IP in the ipsec_out_t 423 * is determined by the per-socket policy or global policy in the system. 424 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 425 * ipsec_info.h) which starts out with nothing in it. It gets filled 426 * with the right information if it goes through the AH/ESP code, which 427 * happens if the incoming packet is secure. The information initialized 428 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 429 * the policy requirements needed by per-socket policy or global policy 430 * is met or not. 431 * 432 * If there is both per-socket policy (set using setsockopt) and there 433 * is also global policy match for the 5 tuples of the socket, 434 * ipsec_override_policy() makes the decision of which one to use. 435 * 436 * For fully connected sockets i.e dst, src [addr, port] is known, 437 * conn_policy_cached is set indicating that policy has been cached. 438 * conn_in_enforce_policy may or may not be set depending on whether 439 * there is a global policy match or per-socket policy match. 440 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 441 * Once the right policy is set on the conn_t, policy cannot change for 442 * this socket. This makes life simpler for TCP (UDP ?) where 443 * re-transmissions go out with the same policy. For symmetry, policy 444 * is cached for fully connected UDP sockets also. Thus if policy is cached, 445 * it also implies that policy is latched i.e policy cannot change 446 * on these sockets. As we have the right policy on the conn, we don't 447 * have to lookup global policy for every outbound and inbound datagram 448 * and thus serving as an optimization. Note that a global policy change 449 * does not affect fully connected sockets if they have policy. If fully 450 * connected sockets did not have any policy associated with it, global 451 * policy change may affect them. 452 * 453 * IP Flow control notes: 454 * --------------------- 455 * Non-TCP streams are flow controlled by IP. The way this is accomplished 456 * differs when ILL_CAPAB_DLD_DIRECT is enabled for that IP instance. When 457 * ILL_DIRECT_CAPABLE(ill) is TRUE, IP can do direct function calls into 458 * GLDv3. Otherwise packets are sent down to lower layers using STREAMS 459 * functions. 460 * 461 * Per Tx ring udp flow control: 462 * This is applicable only when ILL_CAPAB_DLD_DIRECT capability is set in 463 * the ill (i.e. ILL_DIRECT_CAPABLE(ill) is true). 464 * 465 * The underlying link can expose multiple Tx rings to the GLDv3 mac layer. 466 * To achieve best performance, outgoing traffic need to be fanned out among 467 * these Tx ring. mac_tx() is called (via str_mdata_fastpath_put()) to send 468 * traffic out of the NIC and it takes a fanout hint. UDP connections pass 469 * the address of connp as fanout hint to mac_tx(). Under flow controlled 470 * condition, mac_tx() returns a non-NULL cookie (ip_mac_tx_cookie_t). This 471 * cookie points to a specific Tx ring that is blocked. The cookie is used to 472 * hash into an idl_tx_list[] entry in idl_tx_list[] array. Each idl_tx_list_t 473 * point to drain_lists (idl_t's). These drain list will store the blocked UDP 474 * connp's. The drain list is not a single list but a configurable number of 475 * lists. 476 * 477 * The diagram below shows idl_tx_list_t's and their drain_lists. ip_stack_t 478 * has an array of idl_tx_list_t. The size of the array is TX_FANOUT_SIZE 479 * which is equal to 128. This array in turn contains a pointer to idl_t[], 480 * the ip drain list. The idl_t[] array size is MIN(max_ncpus, 8). The drain 481 * list will point to the list of connp's that are flow controlled. 482 * 483 * --------------- ------- ------- ------- 484 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 485 * | --------------- ------- ------- ------- 486 * | --------------- ------- ------- ------- 487 * |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 488 * ---------------- | --------------- ------- ------- ------- 489 * |idl_tx_list[0]|->| --------------- ------- ------- ------- 490 * ---------------- |->|drain_list[2]|-->|connp|-->|connp|-->|connp|--> 491 * | --------------- ------- ------- ------- 492 * . . . . . 493 * | --------------- ------- ------- ------- 494 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 495 * --------------- ------- ------- ------- 496 * --------------- ------- ------- ------- 497 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 498 * | --------------- ------- ------- ------- 499 * | --------------- ------- ------- ------- 500 * ---------------- |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 501 * |idl_tx_list[1]|->| --------------- ------- ------- ------- 502 * ---------------- | . . . . 503 * | --------------- ------- ------- ------- 504 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 505 * --------------- ------- ------- ------- 506 * ..... 507 * ---------------- 508 * |idl_tx_list[n]|-> ... 509 * ---------------- 510 * 511 * When mac_tx() returns a cookie, the cookie is used to hash into a 512 * idl_tx_list in ips_idl_tx_list[] array. Then conn_drain_insert() is 513 * called passing idl_tx_list. The connp gets inserted in a drain list 514 * pointed to by idl_tx_list. conn_drain_list() asserts flow control for 515 * the sockets (non stream based) and sets QFULL condition for conn_wq. 516 * connp->conn_direct_blocked will be set to indicate the blocked 517 * condition. 518 * 519 * GLDv3 mac layer calls ill_flow_enable() when flow control is relieved. 520 * A cookie is passed in the call to ill_flow_enable() that identifies the 521 * blocked Tx ring. This cookie is used to get to the idl_tx_list that 522 * contains the blocked connp's. conn_walk_drain() uses the idl_tx_list_t 523 * and goes through each of the drain list (q)enabling the conn_wq of the 524 * first conn in each of the drain list. This causes ip_wsrv to run for the 525 * conn. ip_wsrv drains the queued messages, and removes the conn from the 526 * drain list, if all messages were drained. It also qenables the next conn 527 * in the drain list to continue the drain process. 528 * 529 * In reality the drain list is not a single list, but a configurable number 530 * of lists. conn_drain_walk() in the IP module, qenables the first conn in 531 * each list. If the ip_wsrv of the next qenabled conn does not run, because 532 * the stream closes, ip_close takes responsibility to qenable the next conn 533 * in the drain list. conn_drain_insert and conn_drain_tail are the only 534 * functions that manipulate this drain list. conn_drain_insert is called in 535 * ip_wput context itself (as opposed to from ip_wsrv context for STREAMS 536 * case -- see below). The synchronization between drain insertion and flow 537 * control wakeup is handled by using idl_txl->txl_lock. 538 * 539 * Flow control using STREAMS: 540 * When ILL_DIRECT_CAPABLE() is not TRUE, STREAMS flow control mechanism 541 * is used. On the send side, if the packet cannot be sent down to the 542 * driver by IP, because of a canput failure, IP does a putq on the conn_wq. 543 * This will cause ip_wsrv to run on the conn_wq. ip_wsrv in turn, inserts 544 * the conn in a list of conn's that need to be drained when the flow 545 * control condition subsides. The blocked connps are put in first member 546 * of ips_idl_tx_list[] array. Ultimately STREAMS backenables the ip_wsrv 547 * on the IP module. It calls conn_walk_drain() passing ips_idl_tx_list[0]. 548 * ips_idl_tx_list[0] contains the drain lists of blocked conns. The 549 * conn_wq of the first conn in the drain lists is (q)enabled to run. 550 * ip_wsrv on this conn drains the queued messages, and removes the conn 551 * from the drain list, if all messages were drained. It also qenables the 552 * next conn in the drain list to continue the drain process. 553 * 554 * If the ip_wsrv of the next qenabled conn does not run, because the 555 * stream closes, ip_close takes responsibility to qenable the next conn in 556 * the drain list. The directly called ip_wput path always does a putq, if 557 * it cannot putnext. Thus synchronization problems are handled between 558 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 559 * functions that manipulate this drain list. Furthermore conn_drain_insert 560 * is called only from ip_wsrv for the STREAMS case, and there can be only 1 561 * instance of ip_wsrv running on a queue at any time. conn_drain_tail can 562 * be simultaneously called from both ip_wsrv and ip_close. 563 * 564 * IPQOS notes: 565 * 566 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 567 * and IPQoS modules. IPPF includes hooks in IP at different control points 568 * (callout positions) which direct packets to IPQoS modules for policy 569 * processing. Policies, if present, are global. 570 * 571 * The callout positions are located in the following paths: 572 * o local_in (packets destined for this host) 573 * o local_out (packets orginating from this host ) 574 * o fwd_in (packets forwarded by this m/c - inbound) 575 * o fwd_out (packets forwarded by this m/c - outbound) 576 * Hooks at these callout points can be enabled/disabled using the ndd variable 577 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 578 * By default all the callout positions are enabled. 579 * 580 * Outbound (local_out) 581 * Hooks are placed in ip_wput_ire and ipsec_out_process. 582 * 583 * Inbound (local_in) 584 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 585 * TCP and UDP fanout routines. 586 * 587 * Forwarding (in and out) 588 * Hooks are placed in ip_rput_forward. 589 * 590 * IP Policy Framework processing (IPPF processing) 591 * Policy processing for a packet is initiated by ip_process, which ascertains 592 * that the classifier (ipgpc) is loaded and configured, failing which the 593 * packet resumes normal processing in IP. If the clasifier is present, the 594 * packet is acted upon by one or more IPQoS modules (action instances), per 595 * filters configured in ipgpc and resumes normal IP processing thereafter. 596 * An action instance can drop a packet in course of its processing. 597 * 598 * A boolean variable, ip_policy, is used in all the fanout routines that can 599 * invoke ip_process for a packet. This variable indicates if the packet should 600 * to be sent for policy processing. The variable is set to B_TRUE by default, 601 * i.e. when the routines are invoked in the normal ip procesing path for a 602 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 603 * ip_policy is set to B_FALSE for all the routines called in these two 604 * functions because, in the former case, we don't process loopback traffic 605 * currently while in the latter, the packets have already been processed in 606 * icmp_inbound. 607 * 608 * Zones notes: 609 * 610 * The partitioning rules for networking are as follows: 611 * 1) Packets coming from a zone must have a source address belonging to that 612 * zone. 613 * 2) Packets coming from a zone can only be sent on a physical interface on 614 * which the zone has an IP address. 615 * 3) Between two zones on the same machine, packet delivery is only allowed if 616 * there's a matching route for the destination and zone in the forwarding 617 * table. 618 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 619 * different zones can bind to the same port with the wildcard address 620 * (INADDR_ANY). 621 * 622 * The granularity of interface partitioning is at the logical interface level. 623 * Therefore, every zone has its own IP addresses, and incoming packets can be 624 * attributed to a zone unambiguously. A logical interface is placed into a zone 625 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 626 * structure. Rule (1) is implemented by modifying the source address selection 627 * algorithm so that the list of eligible addresses is filtered based on the 628 * sending process zone. 629 * 630 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 631 * across all zones, depending on their type. Here is the break-up: 632 * 633 * IRE type Shared/exclusive 634 * -------- ---------------- 635 * IRE_BROADCAST Exclusive 636 * IRE_DEFAULT (default routes) Shared (*) 637 * IRE_LOCAL Exclusive (x) 638 * IRE_LOOPBACK Exclusive 639 * IRE_PREFIX (net routes) Shared (*) 640 * IRE_CACHE Exclusive 641 * IRE_IF_NORESOLVER (interface routes) Exclusive 642 * IRE_IF_RESOLVER (interface routes) Exclusive 643 * IRE_HOST (host routes) Shared (*) 644 * 645 * (*) A zone can only use a default or off-subnet route if the gateway is 646 * directly reachable from the zone, that is, if the gateway's address matches 647 * one of the zone's logical interfaces. 648 * 649 * (x) IRE_LOCAL are handled a bit differently, since for all other entries 650 * in ire_ctable and IRE_INTERFACE, ire_src_addr is what can be used as source 651 * when sending packets using the IRE. For IRE_LOCAL ire_src_addr is the IP 652 * address of the zone itself (the destination). Since IRE_LOCAL is used 653 * for communication between zones, ip_wput_ire has special logic to set 654 * the right source address when sending using an IRE_LOCAL. 655 * 656 * Furthermore, when ip_restrict_interzone_loopback is set (the default), 657 * ire_cache_lookup restricts loopback using an IRE_LOCAL 658 * between zone to the case when L2 would have conceptually looped the packet 659 * back, i.e. the loopback which is required since neither Ethernet drivers 660 * nor Ethernet hardware loops them back. This is the case when the normal 661 * routes (ignoring IREs with different zoneids) would send out the packet on 662 * the same ill as the ill with which is IRE_LOCAL is associated. 663 * 664 * Multiple zones can share a common broadcast address; typically all zones 665 * share the 255.255.255.255 address. Incoming as well as locally originated 666 * broadcast packets must be dispatched to all the zones on the broadcast 667 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 668 * since some zones may not be on the 10.16.72/24 network. To handle this, each 669 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 670 * sent to every zone that has an IRE_BROADCAST entry for the destination 671 * address on the input ill, see conn_wantpacket(). 672 * 673 * Applications in different zones can join the same multicast group address. 674 * For IPv4, group memberships are per-logical interface, so they're already 675 * inherently part of a zone. For IPv6, group memberships are per-physical 676 * interface, so we distinguish IPv6 group memberships based on group address, 677 * interface and zoneid. In both cases, received multicast packets are sent to 678 * every zone for which a group membership entry exists. On IPv6 we need to 679 * check that the target zone still has an address on the receiving physical 680 * interface; it could have been removed since the application issued the 681 * IPV6_JOIN_GROUP. 682 */ 683 684 /* 685 * Squeue Fanout flags: 686 * 0: No fanout. 687 * 1: Fanout across all squeues 688 */ 689 boolean_t ip_squeue_fanout = 0; 690 691 /* 692 * Maximum dups allowed per packet. 693 */ 694 uint_t ip_max_frag_dups = 10; 695 696 #define IS_SIMPLE_IPH(ipha) \ 697 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 698 699 /* RFC 1122 Conformance */ 700 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 701 702 #define ILL_MAX_NAMELEN LIFNAMSIZ 703 704 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 705 706 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag, 707 cred_t *credp, boolean_t isv6); 708 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t, 709 ipha_t **); 710 711 static void icmp_frag_needed(queue_t *, mblk_t *, int, zoneid_t, 712 ip_stack_t *); 713 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 714 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 715 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 716 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 717 mblk_t *, int, ip_stack_t *); 718 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 719 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 720 ill_t *, zoneid_t); 721 static void icmp_options_update(ipha_t *); 722 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t, zoneid_t, 723 ip_stack_t *); 724 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t, 725 zoneid_t zoneid, ip_stack_t *); 726 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_stack_t *); 727 static void icmp_redirect(ill_t *, mblk_t *); 728 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t, 729 ip_stack_t *); 730 731 static void ip_arp_news(queue_t *, mblk_t *); 732 static boolean_t ip_bind_get_ire_v4(mblk_t **, ire_t *, iulp_t *, ip_stack_t *); 733 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 734 char *ip_dot_addr(ipaddr_t, char *); 735 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 736 int ip_close(queue_t *, int); 737 static char *ip_dot_saddr(uchar_t *, char *); 738 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 739 boolean_t, boolean_t, ill_t *, zoneid_t); 740 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 741 boolean_t, boolean_t, zoneid_t); 742 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 743 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 744 static void ip_lrput(queue_t *, mblk_t *); 745 ipaddr_t ip_net_mask(ipaddr_t); 746 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, conn_t *, zoneid_t, 747 ip_stack_t *); 748 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 749 conn_t *, uint32_t, zoneid_t, ip_opt_info_t *); 750 char *ip_nv_lookup(nv_t *, int); 751 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 752 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 753 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 754 static boolean_t ip_param_register(IDP *ndp, ipparam_t *, size_t, 755 ipndp_t *, size_t); 756 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 757 void ip_rput(queue_t *, mblk_t *); 758 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 759 void *dummy_arg); 760 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 761 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *, 762 ip_stack_t *); 763 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 764 ire_t *, ip_stack_t *); 765 static boolean_t ip_rput_multimblk_ipoptions(queue_t *, ill_t *, 766 mblk_t *, ipha_t **, ipaddr_t *, ip_stack_t *); 767 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *, 768 ip_stack_t *); 769 static boolean_t ip_rput_fragment(ill_t *, ill_t *, mblk_t **, ipha_t *, 770 uint32_t *, uint16_t *); 771 int ip_snmp_get(queue_t *, mblk_t *, int); 772 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 773 mib2_ipIfStatsEntry_t *, ip_stack_t *); 774 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 775 ip_stack_t *); 776 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *); 777 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 778 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 779 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 780 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 781 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 782 ip_stack_t *ipst); 783 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 784 ip_stack_t *ipst); 785 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 786 ip_stack_t *ipst); 787 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 788 ip_stack_t *ipst); 789 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 790 ip_stack_t *ipst); 791 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 792 ip_stack_t *ipst); 793 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 794 ip_stack_t *ipst); 795 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 796 ip_stack_t *ipst); 797 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, int, 798 ip_stack_t *ipst); 799 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, int, 800 ip_stack_t *ipst); 801 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 802 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 803 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 804 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 805 static boolean_t ip_source_routed(ipha_t *, ip_stack_t *); 806 static boolean_t ip_source_route_included(ipha_t *); 807 static void ip_trash_ire_reclaim_stack(ip_stack_t *); 808 809 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t, 810 zoneid_t, ip_stack_t *, conn_t *); 811 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int, ip_stack_t *, 812 mblk_t *); 813 static void ip_wput_local_options(ipha_t *, ip_stack_t *); 814 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 815 zoneid_t, ip_stack_t *); 816 817 static void conn_drain_init(ip_stack_t *); 818 static void conn_drain_fini(ip_stack_t *); 819 static void conn_drain_tail(conn_t *connp, boolean_t closing); 820 821 static void conn_walk_drain(ip_stack_t *, idl_tx_list_t *); 822 static void conn_setqfull(conn_t *); 823 static void conn_clrqfull(conn_t *); 824 825 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 826 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 827 static void ip_stack_fini(netstackid_t stackid, void *arg); 828 829 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 830 zoneid_t); 831 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 832 void *dummy_arg); 833 834 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 835 836 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 837 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 838 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 839 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 840 841 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 842 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 843 caddr_t, cred_t *); 844 extern int ip_helper_stream_setup(queue_t *, dev_t *, int, int, 845 cred_t *, boolean_t); 846 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 847 caddr_t cp, cred_t *cr); 848 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 849 cred_t *); 850 static int ip_squeue_switch(int); 851 852 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 853 static void ip_kstat_fini(netstackid_t, kstat_t *); 854 static int ip_kstat_update(kstat_t *kp, int rw); 855 static void *icmp_kstat_init(netstackid_t); 856 static void icmp_kstat_fini(netstackid_t, kstat_t *); 857 static int icmp_kstat_update(kstat_t *kp, int rw); 858 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 859 static void ip_kstat2_fini(netstackid_t, kstat_t *); 860 861 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 862 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 863 864 static void ip_rput_process_forward(queue_t *, mblk_t *, ire_t *, 865 ipha_t *, ill_t *, boolean_t, boolean_t); 866 867 static void ipobs_init(ip_stack_t *); 868 static void ipobs_fini(ip_stack_t *); 869 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 870 871 /* How long, in seconds, we allow frags to hang around. */ 872 #define IP_FRAG_TIMEOUT 15 873 #define IPV6_FRAG_TIMEOUT 60 874 875 /* 876 * Threshold which determines whether MDT should be used when 877 * generating IP fragments; payload size must be greater than 878 * this threshold for MDT to take place. 879 */ 880 #define IP_WPUT_FRAG_MDT_MIN 32768 881 882 /* Setable in /etc/system only */ 883 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 884 885 static long ip_rput_pullups; 886 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 887 888 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */ 889 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */ 890 891 int ip_debug; 892 893 #ifdef DEBUG 894 uint32_t ipsechw_debug = 0; 895 #endif 896 897 /* 898 * Multirouting/CGTP stuff 899 */ 900 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 901 902 /* 903 * XXX following really should only be in a header. Would need more 904 * header and .c clean up first. 905 */ 906 extern optdb_obj_t ip_opt_obj; 907 908 ulong_t ip_squeue_enter_unbound = 0; 909 910 /* 911 * Named Dispatch Parameter Table. 912 * All of these are alterable, within the min/max values given, at run time. 913 */ 914 static ipparam_t lcl_param_arr[] = { 915 /* min max value name */ 916 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 917 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 918 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 919 { 0, 1, 0, "ip_respond_to_timestamp"}, 920 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 921 { 0, 1, 1, "ip_send_redirects"}, 922 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 923 { 0, 10, 0, "ip_mrtdebug"}, 924 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 925 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 926 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 927 { 1, 255, 255, "ip_def_ttl" }, 928 { 0, 1, 0, "ip_forward_src_routed"}, 929 { 0, 256, 32, "ip_wroff_extra" }, 930 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 931 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 932 { 0, 1, 1, "ip_path_mtu_discovery" }, 933 { 0, 240, 30, "ip_ignore_delete_time" }, 934 { 0, 1, 0, "ip_ignore_redirect" }, 935 { 0, 1, 1, "ip_output_queue" }, 936 { 1, 254, 1, "ip_broadcast_ttl" }, 937 { 0, 99999, 100, "ip_icmp_err_interval" }, 938 { 1, 99999, 10, "ip_icmp_err_burst" }, 939 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 940 { 0, 1, 0, "ip_strict_dst_multihoming" }, 941 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 942 { 0, 1, 0, "ipsec_override_persocket_policy" }, 943 { 0, 1, 1, "icmp_accept_clear_messages" }, 944 { 0, 1, 1, "igmp_accept_clear_messages" }, 945 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 946 "ip_ndp_delay_first_probe_time"}, 947 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 948 "ip_ndp_max_unicast_solicit"}, 949 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 950 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 951 { 0, 1, 0, "ip6_forward_src_routed"}, 952 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 953 { 0, 1, 1, "ip6_send_redirects"}, 954 { 0, 1, 0, "ip6_ignore_redirect" }, 955 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 956 957 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 958 959 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 960 961 { 0, 1, 1, "pim_accept_clear_messages" }, 962 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 963 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 964 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 965 { 0, 15, 0, "ip_policy_mask" }, 966 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 967 { 0, 255, 1, "ip_multirt_ttl" }, 968 { 0, 1, 1, "ip_multidata_outbound" }, 969 { 0, 3600000, 300000, "ip_ndp_defense_interval" }, 970 { 0, 999999, 60*60*24, "ip_max_temp_idle" }, 971 { 0, 1000, 1, "ip_max_temp_defend" }, 972 { 0, 1000, 3, "ip_max_defend" }, 973 { 0, 999999, 30, "ip_defend_interval" }, 974 { 0, 3600000, 300000, "ip_dup_recovery" }, 975 { 0, 1, 1, "ip_restrict_interzone_loopback" }, 976 { 0, 1, 1, "ip_lso_outbound" }, 977 { IGMP_V1_ROUTER, IGMP_V3_ROUTER, IGMP_V3_ROUTER, "igmp_max_version" }, 978 { MLD_V1_ROUTER, MLD_V2_ROUTER, MLD_V2_ROUTER, "mld_max_version" }, 979 { 68, 65535, 576, "ip_pmtu_min" }, 980 #ifdef DEBUG 981 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 982 #else 983 { 0, 0, 0, "" }, 984 #endif 985 }; 986 987 /* 988 * Extended NDP table 989 * The addresses for the first two are filled in to be ips_ip_g_forward 990 * and ips_ipv6_forward at init time. 991 */ 992 static ipndp_t lcl_ndp_arr[] = { 993 /* getf setf data name */ 994 #define IPNDP_IP_FORWARDING_OFFSET 0 995 { ip_param_generic_get, ip_forward_set, NULL, 996 "ip_forwarding" }, 997 #define IPNDP_IP6_FORWARDING_OFFSET 1 998 { ip_param_generic_get, ip_forward_set, NULL, 999 "ip6_forwarding" }, 1000 { ip_param_generic_get, ip_input_proc_set, 1001 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 1002 { ip_param_generic_get, ip_int_set, 1003 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 1004 #define IPNDP_CGTP_FILTER_OFFSET 4 1005 { ip_cgtp_filter_get, ip_cgtp_filter_set, NULL, 1006 "ip_cgtp_filter" }, 1007 { ip_param_generic_get, ip_int_set, (caddr_t)&ip_debug, 1008 "ip_debug" }, 1009 }; 1010 1011 /* 1012 * Table of IP ioctls encoding the various properties of the ioctl and 1013 * indexed based on the last byte of the ioctl command. Occasionally there 1014 * is a clash, and there is more than 1 ioctl with the same last byte. 1015 * In such a case 1 ioctl is encoded in the ndx table and the remaining 1016 * ioctls are encoded in the misc table. An entry in the ndx table is 1017 * retrieved by indexing on the last byte of the ioctl command and comparing 1018 * the ioctl command with the value in the ndx table. In the event of a 1019 * mismatch the misc table is then searched sequentially for the desired 1020 * ioctl command. 1021 * 1022 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 1023 */ 1024 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 1025 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1026 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1027 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1028 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1029 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1030 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1031 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1032 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1033 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1034 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1035 1036 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 1037 MISC_CMD, ip_siocaddrt, NULL }, 1038 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 1039 MISC_CMD, ip_siocdelrt, NULL }, 1040 1041 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1042 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1043 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD, 1044 IF_CMD, ip_sioctl_get_addr, NULL }, 1045 1046 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1047 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1048 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 1049 IPI_GET_CMD, IF_CMD, ip_sioctl_get_dstaddr, NULL }, 1050 1051 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 1052 IPI_PRIV | IPI_WR, 1053 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1054 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 1055 IPI_MODOK | IPI_GET_CMD, 1056 IF_CMD, ip_sioctl_get_flags, NULL }, 1057 1058 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1059 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1060 1061 /* copyin size cannot be coded for SIOCGIFCONF */ 1062 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD, 1063 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1064 1065 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1066 IF_CMD, ip_sioctl_mtu, NULL }, 1067 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD, 1068 IF_CMD, ip_sioctl_get_mtu, NULL }, 1069 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 1070 IPI_GET_CMD, IF_CMD, ip_sioctl_get_brdaddr, NULL }, 1071 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1072 IF_CMD, ip_sioctl_brdaddr, NULL }, 1073 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 1074 IPI_GET_CMD, IF_CMD, ip_sioctl_get_netmask, NULL }, 1075 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1076 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1077 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1078 IPI_GET_CMD, IF_CMD, ip_sioctl_get_metric, NULL }, 1079 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1080 IF_CMD, ip_sioctl_metric, NULL }, 1081 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1082 1083 /* See 166-168 below for extended SIOC*XARP ioctls */ 1084 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 1085 ARP_CMD, ip_sioctl_arp, NULL }, 1086 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD, 1087 ARP_CMD, ip_sioctl_arp, NULL }, 1088 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 1089 ARP_CMD, ip_sioctl_arp, NULL }, 1090 1091 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1092 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1093 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1094 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1095 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1096 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1097 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1098 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1099 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1100 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1101 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1102 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1103 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1104 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1105 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1106 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1107 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1108 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1109 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1110 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1111 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1112 1113 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1114 MISC_CMD, if_unitsel, if_unitsel_restart }, 1115 1116 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1117 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1118 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1119 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1120 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1121 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1122 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1123 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1124 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1125 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1126 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1127 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1128 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1129 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1130 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1131 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1132 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1133 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1134 1135 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1136 IPI_PRIV | IPI_WR | IPI_MODOK, 1137 IF_CMD, ip_sioctl_sifname, NULL }, 1138 1139 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1140 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1141 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1142 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1143 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1144 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1145 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1146 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1147 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1148 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1149 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1150 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1151 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1152 1153 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD, 1154 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1155 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD, 1156 IF_CMD, ip_sioctl_get_muxid, NULL }, 1157 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1158 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_muxid, NULL }, 1159 1160 /* Both if and lif variants share same func */ 1161 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD, 1162 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1163 /* Both if and lif variants share same func */ 1164 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1165 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_slifindex, NULL }, 1166 1167 /* copyin size cannot be coded for SIOCGIFCONF */ 1168 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD, 1169 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1170 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1171 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1172 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1173 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1174 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1175 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1176 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1177 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1178 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1179 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1180 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1181 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1182 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1183 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1184 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1185 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1186 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1187 1188 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1189 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_removeif, 1190 ip_sioctl_removeif_restart }, 1191 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1192 IPI_GET_CMD | IPI_PRIV | IPI_WR, 1193 LIF_CMD, ip_sioctl_addif, NULL }, 1194 #define SIOCLIFADDR_NDX 112 1195 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1196 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1197 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1198 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_addr, NULL }, 1199 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1200 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1201 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1202 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1203 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1204 IPI_PRIV | IPI_WR, 1205 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1206 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1207 IPI_GET_CMD | IPI_MODOK, 1208 LIF_CMD, ip_sioctl_get_flags, NULL }, 1209 1210 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1211 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1212 1213 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1214 ip_sioctl_get_lifconf, NULL }, 1215 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1216 LIF_CMD, ip_sioctl_mtu, NULL }, 1217 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD, 1218 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1219 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1220 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1221 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1222 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1223 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1224 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_netmask, NULL }, 1225 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1226 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1227 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1228 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_metric, NULL }, 1229 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1230 LIF_CMD, ip_sioctl_metric, NULL }, 1231 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1232 IPI_PRIV | IPI_WR | IPI_MODOK, 1233 LIF_CMD, ip_sioctl_slifname, 1234 ip_sioctl_slifname_restart }, 1235 1236 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD, 1237 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1238 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1239 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_muxid, NULL }, 1240 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1241 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_muxid, NULL }, 1242 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1243 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1244 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1245 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifindex, 0 }, 1246 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1247 LIF_CMD, ip_sioctl_token, NULL }, 1248 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1249 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_token, NULL }, 1250 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1251 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1252 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1253 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_subnet, NULL }, 1254 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1255 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1256 1257 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1258 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1259 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1260 LIF_CMD, ip_siocdelndp_v6, NULL }, 1261 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1262 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1263 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1264 LIF_CMD, ip_siocsetndp_v6, NULL }, 1265 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1266 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1267 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1268 MISC_CMD, ip_sioctl_tonlink, NULL }, 1269 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1270 MISC_CMD, ip_sioctl_tmysite, NULL }, 1271 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), 0, 1272 TUN_CMD, ip_sioctl_tunparam, NULL }, 1273 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1274 IPI_PRIV | IPI_WR, 1275 TUN_CMD, ip_sioctl_tunparam, NULL }, 1276 1277 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1278 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1279 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1280 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1281 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1282 1283 /* 153 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1284 1285 /* 154 */ { SIOCGLIFBINDING, sizeof (struct lifreq), IPI_GET_CMD, 1286 LIF_CMD, ip_sioctl_get_binding, NULL }, 1287 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1288 IPI_PRIV | IPI_WR, 1289 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1290 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1291 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_groupname, NULL }, 1292 /* 157 */ { SIOCGLIFGROUPINFO, sizeof (lifgroupinfo_t), 1293 IPI_GET_CMD, MISC_CMD, ip_sioctl_groupinfo, NULL }, 1294 1295 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1296 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1297 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1298 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1299 1300 /* 161 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1301 1302 /* These are handled in ip_sioctl_copyin_setup itself */ 1303 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1304 MISC_CMD, NULL, NULL }, 1305 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1306 MISC_CMD, NULL, NULL }, 1307 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1308 1309 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1310 ip_sioctl_get_lifconf, NULL }, 1311 1312 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1313 XARP_CMD, ip_sioctl_arp, NULL }, 1314 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD, 1315 XARP_CMD, ip_sioctl_arp, NULL }, 1316 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1317 XARP_CMD, ip_sioctl_arp, NULL }, 1318 1319 /* SIOCPOPSOCKFS is not handled by IP */ 1320 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1321 1322 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1323 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1324 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1325 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifzone, 1326 ip_sioctl_slifzone_restart }, 1327 /* 172-174 are SCTP ioctls and not handled by IP */ 1328 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1329 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1330 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1331 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1332 IPI_GET_CMD, LIF_CMD, 1333 ip_sioctl_get_lifusesrc, 0 }, 1334 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1335 IPI_PRIV | IPI_WR, 1336 LIF_CMD, ip_sioctl_slifusesrc, 1337 NULL }, 1338 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1339 ip_sioctl_get_lifsrcof, NULL }, 1340 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1341 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1342 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1343 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1344 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1345 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1346 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1347 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1348 /* 182 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1349 /* SIOCSENABLESDP is handled by SDP */ 1350 /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL }, 1351 /* 184 */ { IPI_DONTCARE /* SIOCSQPTR */, 0, 0, 0, NULL, NULL }, 1352 }; 1353 1354 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1355 1356 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1357 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1358 IPI_GET_CMD, TUN_CMD, ip_sioctl_tunparam, NULL }, 1359 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1360 TUN_CMD, ip_sioctl_tunparam, NULL }, 1361 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1362 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1363 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1364 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1365 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1366 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1367 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1368 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_GET_CMD, 1369 MISC_CMD, mrt_ioctl}, 1370 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_GET_CMD, 1371 MISC_CMD, mrt_ioctl}, 1372 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_GET_CMD, 1373 MISC_CMD, mrt_ioctl} 1374 }; 1375 1376 int ip_misc_ioctl_count = 1377 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1378 1379 int conn_drain_nthreads; /* Number of drainers reqd. */ 1380 /* Settable in /etc/system */ 1381 /* Defined in ip_ire.c */ 1382 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1383 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1384 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1385 1386 static nv_t ire_nv_arr[] = { 1387 { IRE_BROADCAST, "BROADCAST" }, 1388 { IRE_LOCAL, "LOCAL" }, 1389 { IRE_LOOPBACK, "LOOPBACK" }, 1390 { IRE_CACHE, "CACHE" }, 1391 { IRE_DEFAULT, "DEFAULT" }, 1392 { IRE_PREFIX, "PREFIX" }, 1393 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1394 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1395 { IRE_HOST, "HOST" }, 1396 { 0 } 1397 }; 1398 1399 nv_t *ire_nv_tbl = ire_nv_arr; 1400 1401 /* Simple ICMP IP Header Template */ 1402 static ipha_t icmp_ipha = { 1403 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1404 }; 1405 1406 struct module_info ip_mod_info = { 1407 IP_MOD_ID, IP_MOD_NAME, IP_MOD_MINPSZ, IP_MOD_MAXPSZ, IP_MOD_HIWAT, 1408 IP_MOD_LOWAT 1409 }; 1410 1411 /* 1412 * Duplicate static symbols within a module confuses mdb; so we avoid the 1413 * problem by making the symbols here distinct from those in udp.c. 1414 */ 1415 1416 /* 1417 * Entry points for IP as a device and as a module. 1418 * FIXME: down the road we might want a separate module and driver qinit. 1419 * We have separate open functions for the /dev/ip and /dev/ip6 devices. 1420 */ 1421 static struct qinit iprinitv4 = { 1422 (pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL, 1423 &ip_mod_info 1424 }; 1425 1426 struct qinit iprinitv6 = { 1427 (pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL, 1428 &ip_mod_info 1429 }; 1430 1431 static struct qinit ipwinitv4 = { 1432 (pfi_t)ip_wput, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1433 &ip_mod_info 1434 }; 1435 1436 struct qinit ipwinitv6 = { 1437 (pfi_t)ip_wput_v6, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1438 &ip_mod_info 1439 }; 1440 1441 static struct qinit iplrinit = { 1442 (pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL, 1443 &ip_mod_info 1444 }; 1445 1446 static struct qinit iplwinit = { 1447 (pfi_t)ip_lwput, NULL, NULL, NULL, NULL, 1448 &ip_mod_info 1449 }; 1450 1451 /* For AF_INET aka /dev/ip */ 1452 struct streamtab ipinfov4 = { 1453 &iprinitv4, &ipwinitv4, &iplrinit, &iplwinit 1454 }; 1455 1456 /* For AF_INET6 aka /dev/ip6 */ 1457 struct streamtab ipinfov6 = { 1458 &iprinitv6, &ipwinitv6, &iplrinit, &iplwinit 1459 }; 1460 1461 #ifdef DEBUG 1462 static boolean_t skip_sctp_cksum = B_FALSE; 1463 #endif 1464 1465 /* 1466 * Prepend the zoneid using an ipsec_out_t for later use by functions like 1467 * ip_rput_v6(), ip_output(), etc. If the message 1468 * block already has a M_CTL at the front of it, then simply set the zoneid 1469 * appropriately. 1470 */ 1471 mblk_t * 1472 ip_prepend_zoneid(mblk_t *mp, zoneid_t zoneid, ip_stack_t *ipst) 1473 { 1474 mblk_t *first_mp; 1475 ipsec_out_t *io; 1476 1477 ASSERT(zoneid != ALL_ZONES); 1478 if (mp->b_datap->db_type == M_CTL) { 1479 io = (ipsec_out_t *)mp->b_rptr; 1480 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1481 io->ipsec_out_zoneid = zoneid; 1482 return (mp); 1483 } 1484 1485 first_mp = ipsec_alloc_ipsec_out(ipst->ips_netstack); 1486 if (first_mp == NULL) 1487 return (NULL); 1488 io = (ipsec_out_t *)first_mp->b_rptr; 1489 /* This is not a secure packet */ 1490 io->ipsec_out_secure = B_FALSE; 1491 io->ipsec_out_zoneid = zoneid; 1492 first_mp->b_cont = mp; 1493 return (first_mp); 1494 } 1495 1496 /* 1497 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1498 */ 1499 mblk_t * 1500 ip_copymsg(mblk_t *mp) 1501 { 1502 mblk_t *nmp; 1503 ipsec_info_t *in; 1504 1505 if (mp->b_datap->db_type != M_CTL) 1506 return (copymsg(mp)); 1507 1508 in = (ipsec_info_t *)mp->b_rptr; 1509 1510 /* 1511 * Note that M_CTL is also used for delivering ICMP error messages 1512 * upstream to transport layers. 1513 */ 1514 if (in->ipsec_info_type != IPSEC_OUT && 1515 in->ipsec_info_type != IPSEC_IN) 1516 return (copymsg(mp)); 1517 1518 nmp = copymsg(mp->b_cont); 1519 1520 if (in->ipsec_info_type == IPSEC_OUT) { 1521 return (ipsec_out_tag(mp, nmp, 1522 ((ipsec_out_t *)in)->ipsec_out_ns)); 1523 } else { 1524 return (ipsec_in_tag(mp, nmp, 1525 ((ipsec_in_t *)in)->ipsec_in_ns)); 1526 } 1527 } 1528 1529 /* Generate an ICMP fragmentation needed message. */ 1530 static void 1531 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu, zoneid_t zoneid, 1532 ip_stack_t *ipst) 1533 { 1534 icmph_t icmph; 1535 mblk_t *first_mp; 1536 boolean_t mctl_present; 1537 1538 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1539 1540 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 1541 if (mctl_present) 1542 freeb(first_mp); 1543 return; 1544 } 1545 1546 bzero(&icmph, sizeof (icmph_t)); 1547 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1548 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1549 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1550 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1551 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1552 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 1553 ipst); 1554 } 1555 1556 /* 1557 * icmp_inbound deals with ICMP messages in the following ways. 1558 * 1559 * 1) It needs to send a reply back and possibly delivering it 1560 * to the "interested" upper clients. 1561 * 2) It needs to send it to the upper clients only. 1562 * 3) It needs to change some values in IP only. 1563 * 4) It needs to change some values in IP and upper layers e.g TCP. 1564 * 1565 * We need to accomodate icmp messages coming in clear until we get 1566 * everything secure from the wire. If icmp_accept_clear_messages 1567 * is zero we check with the global policy and act accordingly. If 1568 * it is non-zero, we accept the message without any checks. But 1569 * *this does not mean* that this will be delivered to the upper 1570 * clients. By accepting we might send replies back, change our MTU 1571 * value etc. but delivery to the ULP/clients depends on their policy 1572 * dispositions. 1573 * 1574 * We handle the above 4 cases in the context of IPsec in the 1575 * following way : 1576 * 1577 * 1) Send the reply back in the same way as the request came in. 1578 * If it came in encrypted, it goes out encrypted. If it came in 1579 * clear, it goes out in clear. Thus, this will prevent chosen 1580 * plain text attack. 1581 * 2) The client may or may not expect things to come in secure. 1582 * If it comes in secure, the policy constraints are checked 1583 * before delivering it to the upper layers. If it comes in 1584 * clear, ipsec_inbound_accept_clear will decide whether to 1585 * accept this in clear or not. In both the cases, if the returned 1586 * message (IP header + 8 bytes) that caused the icmp message has 1587 * AH/ESP headers, it is sent up to AH/ESP for validation before 1588 * sending up. If there are only 8 bytes of returned message, then 1589 * upper client will not be notified. 1590 * 3) Check with global policy to see whether it matches the constaints. 1591 * But this will be done only if icmp_accept_messages_in_clear is 1592 * zero. 1593 * 4) If we need to change both in IP and ULP, then the decision taken 1594 * while affecting the values in IP and while delivering up to TCP 1595 * should be the same. 1596 * 1597 * There are two cases. 1598 * 1599 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1600 * failed), we will not deliver it to the ULP, even though they 1601 * are *willing* to accept in *clear*. This is fine as our global 1602 * disposition to icmp messages asks us reject the datagram. 1603 * 1604 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1605 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1606 * to deliver it to ULP (policy failed), it can lead to 1607 * consistency problems. The cases known at this time are 1608 * ICMP_DESTINATION_UNREACHABLE messages with following code 1609 * values : 1610 * 1611 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1612 * and Upper layer rejects. Then the communication will 1613 * come to a stop. This is solved by making similar decisions 1614 * at both levels. Currently, when we are unable to deliver 1615 * to the Upper Layer (due to policy failures) while IP has 1616 * adjusted ire_max_frag, the next outbound datagram would 1617 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1618 * will be with the right level of protection. Thus the right 1619 * value will be communicated even if we are not able to 1620 * communicate when we get from the wire initially. But this 1621 * assumes there would be at least one outbound datagram after 1622 * IP has adjusted its ire_max_frag value. To make things 1623 * simpler, we accept in clear after the validation of 1624 * AH/ESP headers. 1625 * 1626 * - Other ICMP ERRORS : We may not be able to deliver it to the 1627 * upper layer depending on the level of protection the upper 1628 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1629 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1630 * should be accepted in clear when the Upper layer expects secure. 1631 * Thus the communication may get aborted by some bad ICMP 1632 * packets. 1633 * 1634 * IPQoS Notes: 1635 * The only instance when a packet is sent for processing is when there 1636 * isn't an ICMP client and if we are interested in it. 1637 * If there is a client, IPPF processing will take place in the 1638 * ip_fanout_proto routine. 1639 * 1640 * Zones notes: 1641 * The packet is only processed in the context of the specified zone: typically 1642 * only this zone will reply to an echo request, and only interested clients in 1643 * this zone will receive a copy of the packet. This means that the caller must 1644 * call icmp_inbound() for each relevant zone. 1645 */ 1646 static void 1647 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1648 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1649 ill_t *recv_ill, zoneid_t zoneid) 1650 { 1651 icmph_t *icmph; 1652 ipha_t *ipha; 1653 int iph_hdr_length; 1654 int hdr_length; 1655 boolean_t interested; 1656 uint32_t ts; 1657 uchar_t *wptr; 1658 ipif_t *ipif; 1659 mblk_t *first_mp; 1660 ipsec_in_t *ii; 1661 timestruc_t now; 1662 uint32_t ill_index; 1663 ip_stack_t *ipst; 1664 1665 ASSERT(ill != NULL); 1666 ipst = ill->ill_ipst; 1667 1668 first_mp = mp; 1669 if (mctl_present) { 1670 mp = first_mp->b_cont; 1671 ASSERT(mp != NULL); 1672 } 1673 1674 ipha = (ipha_t *)mp->b_rptr; 1675 if (ipst->ips_icmp_accept_clear_messages == 0) { 1676 first_mp = ipsec_check_global_policy(first_mp, NULL, 1677 ipha, NULL, mctl_present, ipst->ips_netstack); 1678 if (first_mp == NULL) 1679 return; 1680 } 1681 1682 /* 1683 * On a labeled system, we have to check whether the zone itself is 1684 * permitted to receive raw traffic. 1685 */ 1686 if (is_system_labeled()) { 1687 if (zoneid == ALL_ZONES) 1688 zoneid = tsol_packet_to_zoneid(mp); 1689 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1690 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1691 zoneid)); 1692 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1693 freemsg(first_mp); 1694 return; 1695 } 1696 } 1697 1698 /* 1699 * We have accepted the ICMP message. It means that we will 1700 * respond to the packet if needed. It may not be delivered 1701 * to the upper client depending on the policy constraints 1702 * and the disposition in ipsec_inbound_accept_clear. 1703 */ 1704 1705 ASSERT(ill != NULL); 1706 1707 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1708 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1709 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1710 /* Last chance to get real. */ 1711 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1712 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1713 freemsg(first_mp); 1714 return; 1715 } 1716 /* Refresh iph following the pullup. */ 1717 ipha = (ipha_t *)mp->b_rptr; 1718 } 1719 /* ICMP header checksum, including checksum field, should be zero. */ 1720 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1721 IP_CSUM(mp, iph_hdr_length, 0)) { 1722 BUMP_MIB(&ipst->ips_icmp_mib, icmpInCksumErrs); 1723 freemsg(first_mp); 1724 return; 1725 } 1726 /* The IP header will always be a multiple of four bytes */ 1727 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1728 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1729 icmph->icmph_code)); 1730 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1731 /* We will set "interested" to "true" if we want a copy */ 1732 interested = B_FALSE; 1733 switch (icmph->icmph_type) { 1734 case ICMP_ECHO_REPLY: 1735 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1736 break; 1737 case ICMP_DEST_UNREACHABLE: 1738 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1739 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1740 interested = B_TRUE; /* Pass up to transport */ 1741 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1742 break; 1743 case ICMP_SOURCE_QUENCH: 1744 interested = B_TRUE; /* Pass up to transport */ 1745 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1746 break; 1747 case ICMP_REDIRECT: 1748 if (!ipst->ips_ip_ignore_redirect) 1749 interested = B_TRUE; 1750 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1751 break; 1752 case ICMP_ECHO_REQUEST: 1753 /* 1754 * Whether to respond to echo requests that come in as IP 1755 * broadcasts or as IP multicast is subject to debate 1756 * (what isn't?). We aim to please, you pick it. 1757 * Default is do it. 1758 */ 1759 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1760 /* unicast: always respond */ 1761 interested = B_TRUE; 1762 } else if (CLASSD(ipha->ipha_dst)) { 1763 /* multicast: respond based on tunable */ 1764 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1765 } else if (broadcast) { 1766 /* broadcast: respond based on tunable */ 1767 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1768 } 1769 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1770 break; 1771 case ICMP_ROUTER_ADVERTISEMENT: 1772 case ICMP_ROUTER_SOLICITATION: 1773 break; 1774 case ICMP_TIME_EXCEEDED: 1775 interested = B_TRUE; /* Pass up to transport */ 1776 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1777 break; 1778 case ICMP_PARAM_PROBLEM: 1779 interested = B_TRUE; /* Pass up to transport */ 1780 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1781 break; 1782 case ICMP_TIME_STAMP_REQUEST: 1783 /* Response to Time Stamp Requests is local policy. */ 1784 if (ipst->ips_ip_g_resp_to_timestamp && 1785 /* So is whether to respond if it was an IP broadcast. */ 1786 (!broadcast || ipst->ips_ip_g_resp_to_timestamp_bcast)) { 1787 int tstamp_len = 3 * sizeof (uint32_t); 1788 1789 if (wptr + tstamp_len > mp->b_wptr) { 1790 if (!pullupmsg(mp, wptr + tstamp_len - 1791 mp->b_rptr)) { 1792 BUMP_MIB(ill->ill_ip_mib, 1793 ipIfStatsInDiscards); 1794 freemsg(first_mp); 1795 return; 1796 } 1797 /* Refresh ipha following the pullup. */ 1798 ipha = (ipha_t *)mp->b_rptr; 1799 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1800 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1801 } 1802 interested = B_TRUE; 1803 } 1804 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1805 break; 1806 case ICMP_TIME_STAMP_REPLY: 1807 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1808 break; 1809 case ICMP_INFO_REQUEST: 1810 /* Per RFC 1122 3.2.2.7, ignore this. */ 1811 case ICMP_INFO_REPLY: 1812 break; 1813 case ICMP_ADDRESS_MASK_REQUEST: 1814 if ((ipst->ips_ip_respond_to_address_mask_broadcast || 1815 !broadcast) && 1816 /* TODO m_pullup of complete header? */ 1817 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) { 1818 interested = B_TRUE; 1819 } 1820 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1821 break; 1822 case ICMP_ADDRESS_MASK_REPLY: 1823 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1824 break; 1825 default: 1826 interested = B_TRUE; /* Pass up to transport */ 1827 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1828 break; 1829 } 1830 /* See if there is an ICMP client. */ 1831 if (ipst->ips_ipcl_proto_fanout[IPPROTO_ICMP].connf_head != NULL) { 1832 /* If there is an ICMP client and we want one too, copy it. */ 1833 mblk_t *first_mp1; 1834 1835 if (!interested) { 1836 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1837 ip_policy, recv_ill, zoneid); 1838 return; 1839 } 1840 first_mp1 = ip_copymsg(first_mp); 1841 if (first_mp1 != NULL) { 1842 ip_fanout_proto(q, first_mp1, ill, ipha, 1843 0, mctl_present, ip_policy, recv_ill, zoneid); 1844 } 1845 } else if (!interested) { 1846 freemsg(first_mp); 1847 return; 1848 } else { 1849 /* 1850 * Initiate policy processing for this packet if ip_policy 1851 * is true. 1852 */ 1853 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 1854 ill_index = ill->ill_phyint->phyint_ifindex; 1855 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1856 if (mp == NULL) { 1857 if (mctl_present) { 1858 freeb(first_mp); 1859 } 1860 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1861 return; 1862 } 1863 } 1864 } 1865 /* We want to do something with it. */ 1866 /* Check db_ref to make sure we can modify the packet. */ 1867 if (mp->b_datap->db_ref > 1) { 1868 mblk_t *first_mp1; 1869 1870 first_mp1 = ip_copymsg(first_mp); 1871 freemsg(first_mp); 1872 if (!first_mp1) { 1873 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1874 return; 1875 } 1876 first_mp = first_mp1; 1877 if (mctl_present) { 1878 mp = first_mp->b_cont; 1879 ASSERT(mp != NULL); 1880 } else { 1881 mp = first_mp; 1882 } 1883 ipha = (ipha_t *)mp->b_rptr; 1884 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1885 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1886 } 1887 switch (icmph->icmph_type) { 1888 case ICMP_ADDRESS_MASK_REQUEST: 1889 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1890 if (ipif == NULL) { 1891 freemsg(first_mp); 1892 return; 1893 } 1894 /* 1895 * outging interface must be IPv4 1896 */ 1897 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1898 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1899 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1900 ipif_refrele(ipif); 1901 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1902 break; 1903 case ICMP_ECHO_REQUEST: 1904 icmph->icmph_type = ICMP_ECHO_REPLY; 1905 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1906 break; 1907 case ICMP_TIME_STAMP_REQUEST: { 1908 uint32_t *tsp; 1909 1910 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1911 tsp = (uint32_t *)wptr; 1912 tsp++; /* Skip past 'originate time' */ 1913 /* Compute # of milliseconds since midnight */ 1914 gethrestime(&now); 1915 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1916 now.tv_nsec / (NANOSEC / MILLISEC); 1917 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1918 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1919 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1920 break; 1921 } 1922 default: 1923 ipha = (ipha_t *)&icmph[1]; 1924 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1925 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1926 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1927 freemsg(first_mp); 1928 return; 1929 } 1930 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1931 ipha = (ipha_t *)&icmph[1]; 1932 } 1933 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1934 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1935 freemsg(first_mp); 1936 return; 1937 } 1938 hdr_length = IPH_HDR_LENGTH(ipha); 1939 if (hdr_length < sizeof (ipha_t)) { 1940 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1941 freemsg(first_mp); 1942 return; 1943 } 1944 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1945 if (!pullupmsg(mp, 1946 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1947 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1948 freemsg(first_mp); 1949 return; 1950 } 1951 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1952 ipha = (ipha_t *)&icmph[1]; 1953 } 1954 switch (icmph->icmph_type) { 1955 case ICMP_REDIRECT: 1956 /* 1957 * As there is no upper client to deliver, we don't 1958 * need the first_mp any more. 1959 */ 1960 if (mctl_present) { 1961 freeb(first_mp); 1962 } 1963 icmp_redirect(ill, mp); 1964 return; 1965 case ICMP_DEST_UNREACHABLE: 1966 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1967 if (!icmp_inbound_too_big(icmph, ipha, ill, 1968 zoneid, mp, iph_hdr_length, ipst)) { 1969 freemsg(first_mp); 1970 return; 1971 } 1972 /* 1973 * icmp_inbound_too_big() may alter mp. 1974 * Resynch ipha and icmph accordingly. 1975 */ 1976 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1977 ipha = (ipha_t *)&icmph[1]; 1978 } 1979 /* FALLTHRU */ 1980 default : 1981 /* 1982 * IPQoS notes: Since we have already done IPQoS 1983 * processing we don't want to do it again in 1984 * the fanout routines called by 1985 * icmp_inbound_error_fanout, hence the last 1986 * argument, ip_policy, is B_FALSE. 1987 */ 1988 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 1989 ipha, iph_hdr_length, hdr_length, mctl_present, 1990 B_FALSE, recv_ill, zoneid); 1991 } 1992 return; 1993 } 1994 /* Send out an ICMP packet */ 1995 icmph->icmph_checksum = 0; 1996 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 1997 if (broadcast || CLASSD(ipha->ipha_dst)) { 1998 ipif_t *ipif_chosen; 1999 /* 2000 * Make it look like it was directed to us, so we don't look 2001 * like a fool with a broadcast or multicast source address. 2002 */ 2003 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 2004 /* 2005 * Make sure that we haven't grabbed an interface that's DOWN. 2006 */ 2007 if (ipif != NULL) { 2008 ipif_chosen = ipif_select_source(ipif->ipif_ill, 2009 ipha->ipha_src, zoneid); 2010 if (ipif_chosen != NULL) { 2011 ipif_refrele(ipif); 2012 ipif = ipif_chosen; 2013 } 2014 } 2015 if (ipif == NULL) { 2016 ip0dbg(("icmp_inbound: " 2017 "No source for broadcast/multicast:\n" 2018 "\tsrc 0x%x dst 0x%x ill %p " 2019 "ipif_lcl_addr 0x%x\n", 2020 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 2021 (void *)ill, 2022 ill->ill_ipif->ipif_lcl_addr)); 2023 freemsg(first_mp); 2024 return; 2025 } 2026 ASSERT(ipif != NULL && !ipif->ipif_isv6); 2027 ipha->ipha_dst = ipif->ipif_src_addr; 2028 ipif_refrele(ipif); 2029 } 2030 /* Reset time to live. */ 2031 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 2032 { 2033 /* Swap source and destination addresses */ 2034 ipaddr_t tmp; 2035 2036 tmp = ipha->ipha_src; 2037 ipha->ipha_src = ipha->ipha_dst; 2038 ipha->ipha_dst = tmp; 2039 } 2040 ipha->ipha_ident = 0; 2041 if (!IS_SIMPLE_IPH(ipha)) 2042 icmp_options_update(ipha); 2043 2044 if (!mctl_present) { 2045 /* 2046 * This packet should go out the same way as it 2047 * came in i.e in clear. To make sure that global 2048 * policy will not be applied to this in ip_wput_ire, 2049 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2050 */ 2051 ASSERT(first_mp == mp); 2052 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2053 if (first_mp == NULL) { 2054 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2055 freemsg(mp); 2056 return; 2057 } 2058 ii = (ipsec_in_t *)first_mp->b_rptr; 2059 2060 /* This is not a secure packet */ 2061 ii->ipsec_in_secure = B_FALSE; 2062 first_mp->b_cont = mp; 2063 } else { 2064 ii = (ipsec_in_t *)first_mp->b_rptr; 2065 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2066 } 2067 ii->ipsec_in_zoneid = zoneid; 2068 ASSERT(zoneid != ALL_ZONES); 2069 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2070 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2071 return; 2072 } 2073 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2074 put(WR(q), first_mp); 2075 } 2076 2077 static ipaddr_t 2078 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2079 { 2080 conn_t *connp; 2081 connf_t *connfp; 2082 ipaddr_t nexthop_addr = INADDR_ANY; 2083 int hdr_length = IPH_HDR_LENGTH(ipha); 2084 uint16_t *up; 2085 uint32_t ports; 2086 ip_stack_t *ipst = ill->ill_ipst; 2087 2088 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2089 switch (ipha->ipha_protocol) { 2090 case IPPROTO_TCP: 2091 { 2092 tcph_t *tcph; 2093 2094 /* do a reverse lookup */ 2095 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2096 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2097 TCPS_LISTEN, ipst); 2098 break; 2099 } 2100 case IPPROTO_UDP: 2101 { 2102 uint32_t dstport, srcport; 2103 2104 ((uint16_t *)&ports)[0] = up[1]; 2105 ((uint16_t *)&ports)[1] = up[0]; 2106 2107 /* Extract ports in net byte order */ 2108 dstport = htons(ntohl(ports) & 0xFFFF); 2109 srcport = htons(ntohl(ports) >> 16); 2110 2111 connfp = &ipst->ips_ipcl_udp_fanout[ 2112 IPCL_UDP_HASH(dstport, ipst)]; 2113 mutex_enter(&connfp->connf_lock); 2114 connp = connfp->connf_head; 2115 2116 /* do a reverse lookup */ 2117 while ((connp != NULL) && 2118 (!IPCL_UDP_MATCH(connp, dstport, 2119 ipha->ipha_src, srcport, ipha->ipha_dst) || 2120 !IPCL_ZONE_MATCH(connp, zoneid))) { 2121 connp = connp->conn_next; 2122 } 2123 if (connp != NULL) 2124 CONN_INC_REF(connp); 2125 mutex_exit(&connfp->connf_lock); 2126 break; 2127 } 2128 case IPPROTO_SCTP: 2129 { 2130 in6_addr_t map_src, map_dst; 2131 2132 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2133 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2134 ((uint16_t *)&ports)[0] = up[1]; 2135 ((uint16_t *)&ports)[1] = up[0]; 2136 2137 connp = sctp_find_conn(&map_src, &map_dst, ports, 2138 zoneid, ipst->ips_netstack->netstack_sctp); 2139 if (connp == NULL) { 2140 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2141 zoneid, ports, ipha, ipst); 2142 } else { 2143 CONN_INC_REF(connp); 2144 SCTP_REFRELE(CONN2SCTP(connp)); 2145 } 2146 break; 2147 } 2148 default: 2149 { 2150 ipha_t ripha; 2151 2152 ripha.ipha_src = ipha->ipha_dst; 2153 ripha.ipha_dst = ipha->ipha_src; 2154 ripha.ipha_protocol = ipha->ipha_protocol; 2155 2156 connfp = &ipst->ips_ipcl_proto_fanout[ 2157 ipha->ipha_protocol]; 2158 mutex_enter(&connfp->connf_lock); 2159 connp = connfp->connf_head; 2160 for (connp = connfp->connf_head; connp != NULL; 2161 connp = connp->conn_next) { 2162 if (IPCL_PROTO_MATCH(connp, 2163 ipha->ipha_protocol, &ripha, ill, 2164 0, zoneid)) { 2165 CONN_INC_REF(connp); 2166 break; 2167 } 2168 } 2169 mutex_exit(&connfp->connf_lock); 2170 } 2171 } 2172 if (connp != NULL) { 2173 if (connp->conn_nexthop_set) 2174 nexthop_addr = connp->conn_nexthop_v4; 2175 CONN_DEC_REF(connp); 2176 } 2177 return (nexthop_addr); 2178 } 2179 2180 /* Table from RFC 1191 */ 2181 static int icmp_frag_size_table[] = 2182 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2183 2184 /* 2185 * Process received ICMP Packet too big. 2186 * After updating any IRE it does the fanout to any matching transport streams. 2187 * Assumes the message has been pulled up till the IP header that caused 2188 * the error. 2189 * 2190 * Returns B_FALSE on failure and B_TRUE on success. 2191 */ 2192 static boolean_t 2193 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2194 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length, 2195 ip_stack_t *ipst) 2196 { 2197 ire_t *ire, *first_ire; 2198 int mtu, orig_mtu; 2199 int hdr_length; 2200 ipaddr_t nexthop_addr; 2201 boolean_t disable_pmtud; 2202 2203 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2204 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2205 ASSERT(ill != NULL); 2206 2207 hdr_length = IPH_HDR_LENGTH(ipha); 2208 2209 /* Drop if the original packet contained a source route */ 2210 if (ip_source_route_included(ipha)) { 2211 return (B_FALSE); 2212 } 2213 /* 2214 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport 2215 * header. 2216 */ 2217 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2218 mp->b_wptr) { 2219 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2220 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2221 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2222 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2223 return (B_FALSE); 2224 } 2225 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2226 ipha = (ipha_t *)&icmph[1]; 2227 } 2228 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2229 if (nexthop_addr != INADDR_ANY) { 2230 /* nexthop set */ 2231 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2232 nexthop_addr, 0, NULL, ALL_ZONES, msg_getlabel(mp), 2233 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, ipst); 2234 } else { 2235 /* nexthop not set */ 2236 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2237 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2238 } 2239 2240 if (!first_ire) { 2241 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2242 ntohl(ipha->ipha_dst))); 2243 return (B_FALSE); 2244 } 2245 2246 /* Check for MTU discovery advice as described in RFC 1191 */ 2247 mtu = ntohs(icmph->icmph_du_mtu); 2248 orig_mtu = mtu; 2249 disable_pmtud = B_FALSE; 2250 2251 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2252 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2253 ire = ire->ire_next) { 2254 /* 2255 * Look for the connection to which this ICMP message is 2256 * directed. If it has the IP_NEXTHOP option set, then the 2257 * search is limited to IREs with the MATCH_IRE_PRIVATE 2258 * option. Else the search is limited to regular IREs. 2259 */ 2260 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2261 (nexthop_addr != ire->ire_gateway_addr)) || 2262 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2263 (nexthop_addr != INADDR_ANY))) 2264 continue; 2265 2266 mutex_enter(&ire->ire_lock); 2267 if (icmph->icmph_du_zero != 0 || mtu < ipst->ips_ip_pmtu_min) { 2268 uint32_t length; 2269 int i; 2270 2271 /* 2272 * Use the table from RFC 1191 to figure out 2273 * the next "plateau" based on the length in 2274 * the original IP packet. 2275 */ 2276 length = ntohs(ipha->ipha_length); 2277 DTRACE_PROBE2(ip4__pmtu__guess, ire_t *, ire, 2278 uint32_t, length); 2279 if (ire->ire_max_frag <= length && 2280 ire->ire_max_frag >= length - hdr_length) { 2281 /* 2282 * Handle broken BSD 4.2 systems that 2283 * return the wrong iph_length in ICMP 2284 * errors. 2285 */ 2286 length -= hdr_length; 2287 } 2288 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2289 if (length > icmp_frag_size_table[i]) 2290 break; 2291 } 2292 if (i == A_CNT(icmp_frag_size_table)) { 2293 /* Smaller than 68! */ 2294 disable_pmtud = B_TRUE; 2295 mtu = ipst->ips_ip_pmtu_min; 2296 } else { 2297 mtu = icmp_frag_size_table[i]; 2298 if (mtu < ipst->ips_ip_pmtu_min) { 2299 mtu = ipst->ips_ip_pmtu_min; 2300 disable_pmtud = B_TRUE; 2301 } 2302 } 2303 /* Fool the ULP into believing our guessed PMTU. */ 2304 icmph->icmph_du_zero = 0; 2305 icmph->icmph_du_mtu = htons(mtu); 2306 } 2307 if (disable_pmtud) 2308 ire->ire_frag_flag = 0; 2309 /* Reduce the IRE max frag value as advised. */ 2310 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2311 if (ire->ire_max_frag == mtu) { 2312 /* Decreased it */ 2313 ire->ire_marks |= IRE_MARK_PMTU; 2314 } 2315 mutex_exit(&ire->ire_lock); 2316 DTRACE_PROBE4(ip4__pmtu__change, icmph_t *, icmph, ire_t *, 2317 ire, int, orig_mtu, int, mtu); 2318 } 2319 rw_exit(&first_ire->ire_bucket->irb_lock); 2320 ire_refrele(first_ire); 2321 return (B_TRUE); 2322 } 2323 2324 /* 2325 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2326 * calls this function. 2327 */ 2328 static mblk_t * 2329 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2330 { 2331 ipha_t *ipha; 2332 icmph_t *icmph; 2333 ipha_t *in_ipha; 2334 int length; 2335 2336 ASSERT(mp->b_datap->db_type == M_DATA); 2337 2338 /* 2339 * For Self-encapsulated packets, we added an extra IP header 2340 * without the options. Inner IP header is the one from which 2341 * the outer IP header was formed. Thus, we need to remove the 2342 * outer IP header. To do this, we pullup the whole message 2343 * and overlay whatever follows the outer IP header over the 2344 * outer IP header. 2345 */ 2346 2347 if (!pullupmsg(mp, -1)) 2348 return (NULL); 2349 2350 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2351 ipha = (ipha_t *)&icmph[1]; 2352 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2353 2354 /* 2355 * The length that we want to overlay is following the inner 2356 * IP header. Subtracting the IP header + icmp header + outer 2357 * IP header's length should give us the length that we want to 2358 * overlay. 2359 */ 2360 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2361 hdr_length; 2362 /* 2363 * Overlay whatever follows the inner header over the 2364 * outer header. 2365 */ 2366 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2367 2368 /* Set the wptr to account for the outer header */ 2369 mp->b_wptr -= hdr_length; 2370 return (mp); 2371 } 2372 2373 /* 2374 * Try to pass the ICMP message upstream in case the ULP cares. 2375 * 2376 * If the packet that caused the ICMP error is secure, we send 2377 * it to AH/ESP to make sure that the attached packet has a 2378 * valid association. ipha in the code below points to the 2379 * IP header of the packet that caused the error. 2380 * 2381 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2382 * in the context of IPsec. Normally we tell the upper layer 2383 * whenever we send the ire (including ip_bind), the IPsec header 2384 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2385 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2386 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2387 * same thing. As TCP has the IPsec options size that needs to be 2388 * adjusted, we just pass the MTU unchanged. 2389 * 2390 * IFN could have been generated locally or by some router. 2391 * 2392 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2393 * This happens because IP adjusted its value of MTU on an 2394 * earlier IFN message and could not tell the upper layer, 2395 * the new adjusted value of MTU e.g. Packet was encrypted 2396 * or there was not enough information to fanout to upper 2397 * layers. Thus on the next outbound datagram, ip_wput_ire 2398 * generates the IFN, where IPsec processing has *not* been 2399 * done. 2400 * 2401 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2402 * could have generated this. This happens because ire_max_frag 2403 * value in IP was set to a new value, while the IPsec processing 2404 * was being done and after we made the fragmentation check in 2405 * ip_wput_ire. Thus on return from IPsec processing, 2406 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2407 * and generates the IFN. As IPsec processing is over, we fanout 2408 * to AH/ESP to remove the header. 2409 * 2410 * In both these cases, ipsec_in_loopback will be set indicating 2411 * that IFN was generated locally. 2412 * 2413 * ROUTER : IFN could be secure or non-secure. 2414 * 2415 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2416 * packet in error has AH/ESP headers to validate the AH/ESP 2417 * headers. AH/ESP will verify whether there is a valid SA or 2418 * not and send it back. We will fanout again if we have more 2419 * data in the packet. 2420 * 2421 * If the packet in error does not have AH/ESP, we handle it 2422 * like any other case. 2423 * 2424 * * NON_SECURE : If the packet in error has AH/ESP headers, 2425 * we attach a dummy ipsec_in and send it up to AH/ESP 2426 * for validation. AH/ESP will verify whether there is a 2427 * valid SA or not and send it back. We will fanout again if 2428 * we have more data in the packet. 2429 * 2430 * If the packet in error does not have AH/ESP, we handle it 2431 * like any other case. 2432 */ 2433 static void 2434 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2435 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2436 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2437 zoneid_t zoneid) 2438 { 2439 uint16_t *up; /* Pointer to ports in ULP header */ 2440 uint32_t ports; /* reversed ports for fanout */ 2441 ipha_t ripha; /* With reversed addresses */ 2442 mblk_t *first_mp; 2443 ipsec_in_t *ii; 2444 tcph_t *tcph; 2445 conn_t *connp; 2446 ip_stack_t *ipst; 2447 2448 ASSERT(ill != NULL); 2449 2450 ASSERT(recv_ill != NULL); 2451 ipst = recv_ill->ill_ipst; 2452 2453 first_mp = mp; 2454 if (mctl_present) { 2455 mp = first_mp->b_cont; 2456 ASSERT(mp != NULL); 2457 2458 ii = (ipsec_in_t *)first_mp->b_rptr; 2459 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2460 } else { 2461 ii = NULL; 2462 } 2463 2464 switch (ipha->ipha_protocol) { 2465 case IPPROTO_UDP: 2466 /* 2467 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2468 * transport header. 2469 */ 2470 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2471 mp->b_wptr) { 2472 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2473 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2474 goto discard_pkt; 2475 } 2476 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2477 ipha = (ipha_t *)&icmph[1]; 2478 } 2479 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2480 2481 /* 2482 * Attempt to find a client stream based on port. 2483 * Note that we do a reverse lookup since the header is 2484 * in the form we sent it out. 2485 * The ripha header is only used for the IP_UDP_MATCH and we 2486 * only set the src and dst addresses and protocol. 2487 */ 2488 ripha.ipha_src = ipha->ipha_dst; 2489 ripha.ipha_dst = ipha->ipha_src; 2490 ripha.ipha_protocol = ipha->ipha_protocol; 2491 ((uint16_t *)&ports)[0] = up[1]; 2492 ((uint16_t *)&ports)[1] = up[0]; 2493 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2494 ntohl(ipha->ipha_src), ntohs(up[0]), 2495 ntohl(ipha->ipha_dst), ntohs(up[1]), 2496 icmph->icmph_type, icmph->icmph_code)); 2497 2498 /* Have to change db_type after any pullupmsg */ 2499 DB_TYPE(mp) = M_CTL; 2500 2501 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2502 mctl_present, ip_policy, recv_ill, zoneid); 2503 return; 2504 2505 case IPPROTO_TCP: 2506 /* 2507 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2508 * transport header. 2509 */ 2510 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2511 mp->b_wptr) { 2512 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2513 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2514 goto discard_pkt; 2515 } 2516 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2517 ipha = (ipha_t *)&icmph[1]; 2518 } 2519 /* 2520 * Find a TCP client stream for this packet. 2521 * Note that we do a reverse lookup since the header is 2522 * in the form we sent it out. 2523 */ 2524 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2525 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN, 2526 ipst); 2527 if (connp == NULL) 2528 goto discard_pkt; 2529 2530 /* Have to change db_type after any pullupmsg */ 2531 DB_TYPE(mp) = M_CTL; 2532 SQUEUE_ENTER_ONE(connp->conn_sqp, first_mp, tcp_input, connp, 2533 SQ_FILL, SQTAG_TCP_INPUT_ICMP_ERR); 2534 return; 2535 2536 case IPPROTO_SCTP: 2537 /* 2538 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2539 * transport header. 2540 */ 2541 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2542 mp->b_wptr) { 2543 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2544 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2545 goto discard_pkt; 2546 } 2547 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2548 ipha = (ipha_t *)&icmph[1]; 2549 } 2550 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2551 /* 2552 * Find a SCTP client stream for this packet. 2553 * Note that we do a reverse lookup since the header is 2554 * in the form we sent it out. 2555 * The ripha header is only used for the matching and we 2556 * only set the src and dst addresses, protocol, and version. 2557 */ 2558 ripha.ipha_src = ipha->ipha_dst; 2559 ripha.ipha_dst = ipha->ipha_src; 2560 ripha.ipha_protocol = ipha->ipha_protocol; 2561 ripha.ipha_version_and_hdr_length = 2562 ipha->ipha_version_and_hdr_length; 2563 ((uint16_t *)&ports)[0] = up[1]; 2564 ((uint16_t *)&ports)[1] = up[0]; 2565 2566 /* Have to change db_type after any pullupmsg */ 2567 DB_TYPE(mp) = M_CTL; 2568 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2569 mctl_present, ip_policy, zoneid); 2570 return; 2571 2572 case IPPROTO_ESP: 2573 case IPPROTO_AH: { 2574 int ipsec_rc; 2575 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2576 2577 /* 2578 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2579 * We will re-use the IPSEC_IN if it is already present as 2580 * AH/ESP will not affect any fields in the IPSEC_IN for 2581 * ICMP errors. If there is no IPSEC_IN, allocate a new 2582 * one and attach it in the front. 2583 */ 2584 if (ii != NULL) { 2585 /* 2586 * ip_fanout_proto_again converts the ICMP errors 2587 * that come back from AH/ESP to M_DATA so that 2588 * if it is non-AH/ESP and we do a pullupmsg in 2589 * this function, it would work. Convert it back 2590 * to M_CTL before we send up as this is a ICMP 2591 * error. This could have been generated locally or 2592 * by some router. Validate the inner IPsec 2593 * headers. 2594 * 2595 * NOTE : ill_index is used by ip_fanout_proto_again 2596 * to locate the ill. 2597 */ 2598 ASSERT(ill != NULL); 2599 ii->ipsec_in_ill_index = 2600 ill->ill_phyint->phyint_ifindex; 2601 ii->ipsec_in_rill_index = 2602 recv_ill->ill_phyint->phyint_ifindex; 2603 DB_TYPE(first_mp->b_cont) = M_CTL; 2604 } else { 2605 /* 2606 * IPSEC_IN is not present. We attach a ipsec_in 2607 * message and send up to IPsec for validating 2608 * and removing the IPsec headers. Clear 2609 * ipsec_in_secure so that when we return 2610 * from IPsec, we don't mistakenly think that this 2611 * is a secure packet came from the network. 2612 * 2613 * NOTE : ill_index is used by ip_fanout_proto_again 2614 * to locate the ill. 2615 */ 2616 ASSERT(first_mp == mp); 2617 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2618 if (first_mp == NULL) { 2619 freemsg(mp); 2620 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2621 return; 2622 } 2623 ii = (ipsec_in_t *)first_mp->b_rptr; 2624 2625 /* This is not a secure packet */ 2626 ii->ipsec_in_secure = B_FALSE; 2627 first_mp->b_cont = mp; 2628 DB_TYPE(mp) = M_CTL; 2629 ASSERT(ill != NULL); 2630 ii->ipsec_in_ill_index = 2631 ill->ill_phyint->phyint_ifindex; 2632 ii->ipsec_in_rill_index = 2633 recv_ill->ill_phyint->phyint_ifindex; 2634 } 2635 ip2dbg(("icmp_inbound_error: ipsec\n")); 2636 2637 if (!ipsec_loaded(ipss)) { 2638 ip_proto_not_sup(q, first_mp, 0, zoneid, ipst); 2639 return; 2640 } 2641 2642 if (ipha->ipha_protocol == IPPROTO_ESP) 2643 ipsec_rc = ipsecesp_icmp_error(first_mp); 2644 else 2645 ipsec_rc = ipsecah_icmp_error(first_mp); 2646 if (ipsec_rc == IPSEC_STATUS_FAILED) 2647 return; 2648 2649 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2650 return; 2651 } 2652 default: 2653 /* 2654 * The ripha header is only used for the lookup and we 2655 * only set the src and dst addresses and protocol. 2656 */ 2657 ripha.ipha_src = ipha->ipha_dst; 2658 ripha.ipha_dst = ipha->ipha_src; 2659 ripha.ipha_protocol = ipha->ipha_protocol; 2660 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2661 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2662 ntohl(ipha->ipha_dst), 2663 icmph->icmph_type, icmph->icmph_code)); 2664 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2665 ipha_t *in_ipha; 2666 2667 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2668 mp->b_wptr) { 2669 if (!pullupmsg(mp, (uchar_t *)ipha + 2670 hdr_length + sizeof (ipha_t) - 2671 mp->b_rptr)) { 2672 goto discard_pkt; 2673 } 2674 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2675 ipha = (ipha_t *)&icmph[1]; 2676 } 2677 /* 2678 * Caller has verified that length has to be 2679 * at least the size of IP header. 2680 */ 2681 ASSERT(hdr_length >= sizeof (ipha_t)); 2682 /* 2683 * Check the sanity of the inner IP header like 2684 * we did for the outer header. 2685 */ 2686 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2687 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2688 goto discard_pkt; 2689 } 2690 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2691 goto discard_pkt; 2692 } 2693 /* Check for Self-encapsulated tunnels */ 2694 if (in_ipha->ipha_src == ipha->ipha_src && 2695 in_ipha->ipha_dst == ipha->ipha_dst) { 2696 2697 mp = icmp_inbound_self_encap_error(mp, 2698 iph_hdr_length, hdr_length); 2699 if (mp == NULL) 2700 goto discard_pkt; 2701 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2702 ipha = (ipha_t *)&icmph[1]; 2703 hdr_length = IPH_HDR_LENGTH(ipha); 2704 /* 2705 * The packet in error is self-encapsualted. 2706 * And we are finding it further encapsulated 2707 * which we could not have possibly generated. 2708 */ 2709 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2710 goto discard_pkt; 2711 } 2712 icmp_inbound_error_fanout(q, ill, first_mp, 2713 icmph, ipha, iph_hdr_length, hdr_length, 2714 mctl_present, ip_policy, recv_ill, zoneid); 2715 return; 2716 } 2717 } 2718 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2719 ipha->ipha_protocol == IPPROTO_IPV6) && 2720 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2721 ii != NULL && 2722 ii->ipsec_in_loopback && 2723 ii->ipsec_in_secure) { 2724 /* 2725 * For IP tunnels that get a looped-back 2726 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2727 * reported new MTU to take into account the IPsec 2728 * headers protecting this configured tunnel. 2729 * 2730 * This allows the tunnel module (tun.c) to blindly 2731 * accept the MTU reported in an ICMP "too big" 2732 * message. 2733 * 2734 * Non-looped back ICMP messages will just be 2735 * handled by the security protocols (if needed), 2736 * and the first subsequent packet will hit this 2737 * path. 2738 */ 2739 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2740 ipsec_in_extra_length(first_mp)); 2741 } 2742 /* Have to change db_type after any pullupmsg */ 2743 DB_TYPE(mp) = M_CTL; 2744 2745 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2746 ip_policy, recv_ill, zoneid); 2747 return; 2748 } 2749 /* NOTREACHED */ 2750 discard_pkt: 2751 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2752 drop_pkt:; 2753 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2754 freemsg(first_mp); 2755 } 2756 2757 /* 2758 * Common IP options parser. 2759 * 2760 * Setup routine: fill in *optp with options-parsing state, then 2761 * tail-call ipoptp_next to return the first option. 2762 */ 2763 uint8_t 2764 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2765 { 2766 uint32_t totallen; /* total length of all options */ 2767 2768 totallen = ipha->ipha_version_and_hdr_length - 2769 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2770 totallen <<= 2; 2771 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2772 optp->ipoptp_end = optp->ipoptp_next + totallen; 2773 optp->ipoptp_flags = 0; 2774 return (ipoptp_next(optp)); 2775 } 2776 2777 /* 2778 * Common IP options parser: extract next option. 2779 */ 2780 uint8_t 2781 ipoptp_next(ipoptp_t *optp) 2782 { 2783 uint8_t *end = optp->ipoptp_end; 2784 uint8_t *cur = optp->ipoptp_next; 2785 uint8_t opt, len, pointer; 2786 2787 /* 2788 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2789 * has been corrupted. 2790 */ 2791 ASSERT(cur <= end); 2792 2793 if (cur == end) 2794 return (IPOPT_EOL); 2795 2796 opt = cur[IPOPT_OPTVAL]; 2797 2798 /* 2799 * Skip any NOP options. 2800 */ 2801 while (opt == IPOPT_NOP) { 2802 cur++; 2803 if (cur == end) 2804 return (IPOPT_EOL); 2805 opt = cur[IPOPT_OPTVAL]; 2806 } 2807 2808 if (opt == IPOPT_EOL) 2809 return (IPOPT_EOL); 2810 2811 /* 2812 * Option requiring a length. 2813 */ 2814 if ((cur + 1) >= end) { 2815 optp->ipoptp_flags |= IPOPTP_ERROR; 2816 return (IPOPT_EOL); 2817 } 2818 len = cur[IPOPT_OLEN]; 2819 if (len < 2) { 2820 optp->ipoptp_flags |= IPOPTP_ERROR; 2821 return (IPOPT_EOL); 2822 } 2823 optp->ipoptp_cur = cur; 2824 optp->ipoptp_len = len; 2825 optp->ipoptp_next = cur + len; 2826 if (cur + len > end) { 2827 optp->ipoptp_flags |= IPOPTP_ERROR; 2828 return (IPOPT_EOL); 2829 } 2830 2831 /* 2832 * For the options which require a pointer field, make sure 2833 * its there, and make sure it points to either something 2834 * inside this option, or the end of the option. 2835 */ 2836 switch (opt) { 2837 case IPOPT_RR: 2838 case IPOPT_TS: 2839 case IPOPT_LSRR: 2840 case IPOPT_SSRR: 2841 if (len <= IPOPT_OFFSET) { 2842 optp->ipoptp_flags |= IPOPTP_ERROR; 2843 return (opt); 2844 } 2845 pointer = cur[IPOPT_OFFSET]; 2846 if (pointer - 1 > len) { 2847 optp->ipoptp_flags |= IPOPTP_ERROR; 2848 return (opt); 2849 } 2850 break; 2851 } 2852 2853 /* 2854 * Sanity check the pointer field based on the type of the 2855 * option. 2856 */ 2857 switch (opt) { 2858 case IPOPT_RR: 2859 case IPOPT_SSRR: 2860 case IPOPT_LSRR: 2861 if (pointer < IPOPT_MINOFF_SR) 2862 optp->ipoptp_flags |= IPOPTP_ERROR; 2863 break; 2864 case IPOPT_TS: 2865 if (pointer < IPOPT_MINOFF_IT) 2866 optp->ipoptp_flags |= IPOPTP_ERROR; 2867 /* 2868 * Note that the Internet Timestamp option also 2869 * contains two four bit fields (the Overflow field, 2870 * and the Flag field), which follow the pointer 2871 * field. We don't need to check that these fields 2872 * fall within the length of the option because this 2873 * was implicitely done above. We've checked that the 2874 * pointer value is at least IPOPT_MINOFF_IT, and that 2875 * it falls within the option. Since IPOPT_MINOFF_IT > 2876 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2877 */ 2878 ASSERT(len > IPOPT_POS_OV_FLG); 2879 break; 2880 } 2881 2882 return (opt); 2883 } 2884 2885 /* 2886 * Use the outgoing IP header to create an IP_OPTIONS option the way 2887 * it was passed down from the application. 2888 */ 2889 int 2890 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2891 { 2892 ipoptp_t opts; 2893 const uchar_t *opt; 2894 uint8_t optval; 2895 uint8_t optlen; 2896 uint32_t len = 0; 2897 uchar_t *buf1 = buf; 2898 2899 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2900 len += IP_ADDR_LEN; 2901 bzero(buf1, IP_ADDR_LEN); 2902 2903 /* 2904 * OK to cast away const here, as we don't store through the returned 2905 * opts.ipoptp_cur pointer. 2906 */ 2907 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 2908 optval != IPOPT_EOL; 2909 optval = ipoptp_next(&opts)) { 2910 int off; 2911 2912 opt = opts.ipoptp_cur; 2913 optlen = opts.ipoptp_len; 2914 switch (optval) { 2915 case IPOPT_SSRR: 2916 case IPOPT_LSRR: 2917 2918 /* 2919 * Insert ipha_dst as the first entry in the source 2920 * route and move down the entries on step. 2921 * The last entry gets placed at buf1. 2922 */ 2923 buf[IPOPT_OPTVAL] = optval; 2924 buf[IPOPT_OLEN] = optlen; 2925 buf[IPOPT_OFFSET] = optlen; 2926 2927 off = optlen - IP_ADDR_LEN; 2928 if (off < 0) { 2929 /* No entries in source route */ 2930 break; 2931 } 2932 /* Last entry in source route */ 2933 bcopy(opt + off, buf1, IP_ADDR_LEN); 2934 off -= IP_ADDR_LEN; 2935 2936 while (off > 0) { 2937 bcopy(opt + off, 2938 buf + off + IP_ADDR_LEN, 2939 IP_ADDR_LEN); 2940 off -= IP_ADDR_LEN; 2941 } 2942 /* ipha_dst into first slot */ 2943 bcopy(&ipha->ipha_dst, 2944 buf + off + IP_ADDR_LEN, 2945 IP_ADDR_LEN); 2946 buf += optlen; 2947 len += optlen; 2948 break; 2949 2950 case IPOPT_COMSEC: 2951 case IPOPT_SECURITY: 2952 /* if passing up a label is not ok, then remove */ 2953 if (is_system_labeled()) 2954 break; 2955 /* FALLTHROUGH */ 2956 default: 2957 bcopy(opt, buf, optlen); 2958 buf += optlen; 2959 len += optlen; 2960 break; 2961 } 2962 } 2963 done: 2964 /* Pad the resulting options */ 2965 while (len & 0x3) { 2966 *buf++ = IPOPT_EOL; 2967 len++; 2968 } 2969 return (len); 2970 } 2971 2972 /* 2973 * Update any record route or timestamp options to include this host. 2974 * Reverse any source route option. 2975 * This routine assumes that the options are well formed i.e. that they 2976 * have already been checked. 2977 */ 2978 static void 2979 icmp_options_update(ipha_t *ipha) 2980 { 2981 ipoptp_t opts; 2982 uchar_t *opt; 2983 uint8_t optval; 2984 ipaddr_t src; /* Our local address */ 2985 ipaddr_t dst; 2986 2987 ip2dbg(("icmp_options_update\n")); 2988 src = ipha->ipha_src; 2989 dst = ipha->ipha_dst; 2990 2991 for (optval = ipoptp_first(&opts, ipha); 2992 optval != IPOPT_EOL; 2993 optval = ipoptp_next(&opts)) { 2994 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 2995 opt = opts.ipoptp_cur; 2996 ip2dbg(("icmp_options_update: opt %d, len %d\n", 2997 optval, opts.ipoptp_len)); 2998 switch (optval) { 2999 int off1, off2; 3000 case IPOPT_SSRR: 3001 case IPOPT_LSRR: 3002 /* 3003 * Reverse the source route. The first entry 3004 * should be the next to last one in the current 3005 * source route (the last entry is our address). 3006 * The last entry should be the final destination. 3007 */ 3008 off1 = IPOPT_MINOFF_SR - 1; 3009 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 3010 if (off2 < 0) { 3011 /* No entries in source route */ 3012 ip1dbg(( 3013 "icmp_options_update: bad src route\n")); 3014 break; 3015 } 3016 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 3017 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 3018 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 3019 off2 -= IP_ADDR_LEN; 3020 3021 while (off1 < off2) { 3022 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 3023 bcopy((char *)opt + off2, (char *)opt + off1, 3024 IP_ADDR_LEN); 3025 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 3026 off1 += IP_ADDR_LEN; 3027 off2 -= IP_ADDR_LEN; 3028 } 3029 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 3030 break; 3031 } 3032 } 3033 } 3034 3035 /* 3036 * Process received ICMP Redirect messages. 3037 */ 3038 static void 3039 icmp_redirect(ill_t *ill, mblk_t *mp) 3040 { 3041 ipha_t *ipha; 3042 int iph_hdr_length; 3043 icmph_t *icmph; 3044 ipha_t *ipha_err; 3045 ire_t *ire; 3046 ire_t *prev_ire; 3047 ire_t *save_ire; 3048 ipaddr_t src, dst, gateway; 3049 iulp_t ulp_info = { 0 }; 3050 int error; 3051 ip_stack_t *ipst; 3052 3053 ASSERT(ill != NULL); 3054 ipst = ill->ill_ipst; 3055 3056 ipha = (ipha_t *)mp->b_rptr; 3057 iph_hdr_length = IPH_HDR_LENGTH(ipha); 3058 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 3059 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 3060 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3061 freemsg(mp); 3062 return; 3063 } 3064 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 3065 ipha_err = (ipha_t *)&icmph[1]; 3066 src = ipha->ipha_src; 3067 dst = ipha_err->ipha_dst; 3068 gateway = icmph->icmph_rd_gateway; 3069 /* Make sure the new gateway is reachable somehow. */ 3070 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 3071 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3072 /* 3073 * Make sure we had a route for the dest in question and that 3074 * that route was pointing to the old gateway (the source of the 3075 * redirect packet.) 3076 */ 3077 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 3078 NULL, MATCH_IRE_GW, ipst); 3079 /* 3080 * Check that 3081 * the redirect was not from ourselves 3082 * the new gateway and the old gateway are directly reachable 3083 */ 3084 if (!prev_ire || 3085 !ire || 3086 ire->ire_type == IRE_LOCAL) { 3087 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3088 freemsg(mp); 3089 if (ire != NULL) 3090 ire_refrele(ire); 3091 if (prev_ire != NULL) 3092 ire_refrele(prev_ire); 3093 return; 3094 } 3095 3096 /* 3097 * Should we use the old ULP info to create the new gateway? From 3098 * a user's perspective, we should inherit the info so that it 3099 * is a "smooth" transition. If we do not do that, then new 3100 * connections going thru the new gateway will have no route metrics, 3101 * which is counter-intuitive to user. From a network point of 3102 * view, this may or may not make sense even though the new gateway 3103 * is still directly connected to us so the route metrics should not 3104 * change much. 3105 * 3106 * But if the old ire_uinfo is not initialized, we do another 3107 * recursive lookup on the dest using the new gateway. There may 3108 * be a route to that. If so, use it to initialize the redirect 3109 * route. 3110 */ 3111 if (prev_ire->ire_uinfo.iulp_set) { 3112 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3113 } else { 3114 ire_t *tmp_ire; 3115 ire_t *sire; 3116 3117 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3118 ALL_ZONES, 0, NULL, 3119 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT), 3120 ipst); 3121 if (sire != NULL) { 3122 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3123 /* 3124 * If sire != NULL, ire_ftable_lookup() should not 3125 * return a NULL value. 3126 */ 3127 ASSERT(tmp_ire != NULL); 3128 ire_refrele(tmp_ire); 3129 ire_refrele(sire); 3130 } else if (tmp_ire != NULL) { 3131 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3132 sizeof (iulp_t)); 3133 ire_refrele(tmp_ire); 3134 } 3135 } 3136 if (prev_ire->ire_type == IRE_CACHE) 3137 ire_delete(prev_ire); 3138 ire_refrele(prev_ire); 3139 /* 3140 * TODO: more precise handling for cases 0, 2, 3, the latter two 3141 * require TOS routing 3142 */ 3143 switch (icmph->icmph_code) { 3144 case 0: 3145 case 1: 3146 /* TODO: TOS specificity for cases 2 and 3 */ 3147 case 2: 3148 case 3: 3149 break; 3150 default: 3151 freemsg(mp); 3152 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3153 ire_refrele(ire); 3154 return; 3155 } 3156 /* 3157 * Create a Route Association. This will allow us to remember that 3158 * someone we believe told us to use the particular gateway. 3159 */ 3160 save_ire = ire; 3161 ire = ire_create( 3162 (uchar_t *)&dst, /* dest addr */ 3163 (uchar_t *)&ip_g_all_ones, /* mask */ 3164 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3165 (uchar_t *)&gateway, /* gateway addr */ 3166 &save_ire->ire_max_frag, /* max frag */ 3167 NULL, /* no src nce */ 3168 NULL, /* no rfq */ 3169 NULL, /* no stq */ 3170 IRE_HOST, 3171 NULL, /* ipif */ 3172 0, /* cmask */ 3173 0, /* phandle */ 3174 0, /* ihandle */ 3175 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3176 &ulp_info, 3177 NULL, /* tsol_gc_t */ 3178 NULL, /* gcgrp */ 3179 ipst); 3180 3181 if (ire == NULL) { 3182 freemsg(mp); 3183 ire_refrele(save_ire); 3184 return; 3185 } 3186 error = ire_add(&ire, NULL, NULL, NULL, B_FALSE); 3187 ire_refrele(save_ire); 3188 atomic_inc_32(&ipst->ips_ip_redirect_cnt); 3189 3190 if (error == 0) { 3191 ire_refrele(ire); /* Held in ire_add_v4 */ 3192 /* tell routing sockets that we received a redirect */ 3193 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3194 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3195 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 3196 } 3197 3198 /* 3199 * Delete any existing IRE_HOST type redirect ires for this destination. 3200 * This together with the added IRE has the effect of 3201 * modifying an existing redirect. 3202 */ 3203 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST, NULL, NULL, 3204 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), ipst); 3205 if (prev_ire != NULL) { 3206 if (prev_ire ->ire_flags & RTF_DYNAMIC) 3207 ire_delete(prev_ire); 3208 ire_refrele(prev_ire); 3209 } 3210 3211 freemsg(mp); 3212 } 3213 3214 /* 3215 * Generate an ICMP parameter problem message. 3216 */ 3217 static void 3218 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr, zoneid_t zoneid, 3219 ip_stack_t *ipst) 3220 { 3221 icmph_t icmph; 3222 boolean_t mctl_present; 3223 mblk_t *first_mp; 3224 3225 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3226 3227 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3228 if (mctl_present) 3229 freeb(first_mp); 3230 return; 3231 } 3232 3233 bzero(&icmph, sizeof (icmph_t)); 3234 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3235 icmph.icmph_pp_ptr = ptr; 3236 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 3237 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3238 ipst); 3239 } 3240 3241 /* 3242 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3243 * the ICMP header pointed to by "stuff". (May be called as writer.) 3244 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3245 * an icmp error packet can be sent. 3246 * Assigns an appropriate source address to the packet. If ipha_dst is 3247 * one of our addresses use it for source. Otherwise pick a source based 3248 * on a route lookup back to ipha_src. 3249 * Note that ipha_src must be set here since the 3250 * packet is likely to arrive on an ill queue in ip_wput() which will 3251 * not set a source address. 3252 */ 3253 static void 3254 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3255 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 3256 { 3257 ipaddr_t dst; 3258 icmph_t *icmph; 3259 ipha_t *ipha; 3260 uint_t len_needed; 3261 size_t msg_len; 3262 mblk_t *mp1; 3263 ipaddr_t src; 3264 ire_t *ire; 3265 mblk_t *ipsec_mp; 3266 ipsec_out_t *io = NULL; 3267 3268 if (mctl_present) { 3269 /* 3270 * If it is : 3271 * 3272 * 1) a IPSEC_OUT, then this is caused by outbound 3273 * datagram originating on this host. IPsec processing 3274 * may or may not have been done. Refer to comments above 3275 * icmp_inbound_error_fanout for details. 3276 * 3277 * 2) a IPSEC_IN if we are generating a icmp_message 3278 * for an incoming datagram destined for us i.e called 3279 * from ip_fanout_send_icmp. 3280 */ 3281 ipsec_info_t *in; 3282 ipsec_mp = mp; 3283 mp = ipsec_mp->b_cont; 3284 3285 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3286 ipha = (ipha_t *)mp->b_rptr; 3287 3288 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3289 in->ipsec_info_type == IPSEC_IN); 3290 3291 if (in->ipsec_info_type == IPSEC_IN) { 3292 /* 3293 * Convert the IPSEC_IN to IPSEC_OUT. 3294 */ 3295 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3296 BUMP_MIB(&ipst->ips_ip_mib, 3297 ipIfStatsOutDiscards); 3298 return; 3299 } 3300 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3301 } else { 3302 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3303 io = (ipsec_out_t *)in; 3304 /* 3305 * Clear out ipsec_out_proc_begin, so we do a fresh 3306 * ire lookup. 3307 */ 3308 io->ipsec_out_proc_begin = B_FALSE; 3309 } 3310 ASSERT(zoneid != ALL_ZONES); 3311 /* 3312 * The IPSEC_IN (now an IPSEC_OUT) didn't have its zoneid 3313 * initialized. We need to do that now. 3314 */ 3315 io->ipsec_out_zoneid = zoneid; 3316 } else { 3317 /* 3318 * This is in clear. The icmp message we are building 3319 * here should go out in clear. 3320 * 3321 * Pardon the convolution of it all, but it's easier to 3322 * allocate a "use cleartext" IPSEC_IN message and convert 3323 * it than it is to allocate a new one. 3324 */ 3325 ipsec_in_t *ii; 3326 ASSERT(DB_TYPE(mp) == M_DATA); 3327 ipsec_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 3328 if (ipsec_mp == NULL) { 3329 freemsg(mp); 3330 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3331 return; 3332 } 3333 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3334 3335 /* This is not a secure packet */ 3336 ii->ipsec_in_secure = B_FALSE; 3337 /* 3338 * For trusted extensions using a shared IP address we can 3339 * send using any zoneid. 3340 */ 3341 if (zoneid == ALL_ZONES) 3342 ii->ipsec_in_zoneid = GLOBAL_ZONEID; 3343 else 3344 ii->ipsec_in_zoneid = zoneid; 3345 ipsec_mp->b_cont = mp; 3346 ipha = (ipha_t *)mp->b_rptr; 3347 /* 3348 * Convert the IPSEC_IN to IPSEC_OUT. 3349 */ 3350 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3351 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3352 return; 3353 } 3354 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3355 } 3356 3357 /* Remember our eventual destination */ 3358 dst = ipha->ipha_src; 3359 3360 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3361 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE, ipst); 3362 if (ire != NULL && 3363 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3364 src = ipha->ipha_dst; 3365 } else { 3366 if (ire != NULL) 3367 ire_refrele(ire); 3368 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3369 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY), 3370 ipst); 3371 if (ire == NULL) { 3372 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3373 freemsg(ipsec_mp); 3374 return; 3375 } 3376 src = ire->ire_src_addr; 3377 } 3378 3379 if (ire != NULL) 3380 ire_refrele(ire); 3381 3382 /* 3383 * Check if we can send back more then 8 bytes in addition to 3384 * the IP header. We try to send 64 bytes of data and the internal 3385 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 3386 */ 3387 len_needed = IPH_HDR_LENGTH(ipha); 3388 if (ipha->ipha_protocol == IPPROTO_ENCAP || 3389 ipha->ipha_protocol == IPPROTO_IPV6) { 3390 3391 if (!pullupmsg(mp, -1)) { 3392 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3393 freemsg(ipsec_mp); 3394 return; 3395 } 3396 ipha = (ipha_t *)mp->b_rptr; 3397 3398 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 3399 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 3400 len_needed)); 3401 } else { 3402 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 3403 3404 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 3405 len_needed += ip_hdr_length_v6(mp, ip6h); 3406 } 3407 } 3408 len_needed += ipst->ips_ip_icmp_return; 3409 msg_len = msgdsize(mp); 3410 if (msg_len > len_needed) { 3411 (void) adjmsg(mp, len_needed - msg_len); 3412 msg_len = len_needed; 3413 } 3414 /* Make sure we propagate the cred/label for TX */ 3415 mp1 = allocb_tmpl(sizeof (icmp_ipha) + len, mp); 3416 if (mp1 == NULL) { 3417 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 3418 freemsg(ipsec_mp); 3419 return; 3420 } 3421 mp1->b_cont = mp; 3422 mp = mp1; 3423 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3424 ipsec_mp->b_rptr == (uint8_t *)io && 3425 io->ipsec_out_type == IPSEC_OUT); 3426 ipsec_mp->b_cont = mp; 3427 3428 /* 3429 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3430 * node generates be accepted in peace by all on-host destinations. 3431 * If we do NOT assume that all on-host destinations trust 3432 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3433 * (Look for ipsec_out_icmp_loopback). 3434 */ 3435 io->ipsec_out_icmp_loopback = B_TRUE; 3436 3437 ipha = (ipha_t *)mp->b_rptr; 3438 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3439 *ipha = icmp_ipha; 3440 ipha->ipha_src = src; 3441 ipha->ipha_dst = dst; 3442 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 3443 msg_len += sizeof (icmp_ipha) + len; 3444 if (msg_len > IP_MAXPACKET) { 3445 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3446 msg_len = IP_MAXPACKET; 3447 } 3448 ipha->ipha_length = htons((uint16_t)msg_len); 3449 icmph = (icmph_t *)&ipha[1]; 3450 bcopy(stuff, icmph, len); 3451 icmph->icmph_checksum = 0; 3452 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3453 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 3454 put(q, ipsec_mp); 3455 } 3456 3457 /* 3458 * Determine if an ICMP error packet can be sent given the rate limit. 3459 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3460 * in milliseconds) and a burst size. Burst size number of packets can 3461 * be sent arbitrarely closely spaced. 3462 * The state is tracked using two variables to implement an approximate 3463 * token bucket filter: 3464 * icmp_pkt_err_last - lbolt value when the last burst started 3465 * icmp_pkt_err_sent - number of packets sent in current burst 3466 */ 3467 boolean_t 3468 icmp_err_rate_limit(ip_stack_t *ipst) 3469 { 3470 clock_t now = TICK_TO_MSEC(lbolt); 3471 uint_t refilled; /* Number of packets refilled in tbf since last */ 3472 /* Guard against changes by loading into local variable */ 3473 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 3474 3475 if (err_interval == 0) 3476 return (B_FALSE); 3477 3478 if (ipst->ips_icmp_pkt_err_last > now) { 3479 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3480 ipst->ips_icmp_pkt_err_last = 0; 3481 ipst->ips_icmp_pkt_err_sent = 0; 3482 } 3483 /* 3484 * If we are in a burst update the token bucket filter. 3485 * Update the "last" time to be close to "now" but make sure 3486 * we don't loose precision. 3487 */ 3488 if (ipst->ips_icmp_pkt_err_sent != 0) { 3489 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 3490 if (refilled > ipst->ips_icmp_pkt_err_sent) { 3491 ipst->ips_icmp_pkt_err_sent = 0; 3492 } else { 3493 ipst->ips_icmp_pkt_err_sent -= refilled; 3494 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 3495 } 3496 } 3497 if (ipst->ips_icmp_pkt_err_sent == 0) { 3498 /* Start of new burst */ 3499 ipst->ips_icmp_pkt_err_last = now; 3500 } 3501 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 3502 ipst->ips_icmp_pkt_err_sent++; 3503 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3504 ipst->ips_icmp_pkt_err_sent)); 3505 return (B_FALSE); 3506 } 3507 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3508 return (B_TRUE); 3509 } 3510 3511 /* 3512 * Check if it is ok to send an IPv4 ICMP error packet in 3513 * response to the IPv4 packet in mp. 3514 * Free the message and return null if no 3515 * ICMP error packet should be sent. 3516 */ 3517 static mblk_t * 3518 icmp_pkt_err_ok(mblk_t *mp, ip_stack_t *ipst) 3519 { 3520 icmph_t *icmph; 3521 ipha_t *ipha; 3522 uint_t len_needed; 3523 ire_t *src_ire; 3524 ire_t *dst_ire; 3525 3526 if (!mp) 3527 return (NULL); 3528 ipha = (ipha_t *)mp->b_rptr; 3529 if (ip_csum_hdr(ipha)) { 3530 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 3531 freemsg(mp); 3532 return (NULL); 3533 } 3534 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3535 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3536 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3537 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3538 if (src_ire != NULL || dst_ire != NULL || 3539 CLASSD(ipha->ipha_dst) || 3540 CLASSD(ipha->ipha_src) || 3541 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3542 /* Note: only errors to the fragment with offset 0 */ 3543 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3544 freemsg(mp); 3545 if (src_ire != NULL) 3546 ire_refrele(src_ire); 3547 if (dst_ire != NULL) 3548 ire_refrele(dst_ire); 3549 return (NULL); 3550 } 3551 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3552 /* 3553 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3554 * errors in response to any ICMP errors. 3555 */ 3556 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3557 if (mp->b_wptr - mp->b_rptr < len_needed) { 3558 if (!pullupmsg(mp, len_needed)) { 3559 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3560 freemsg(mp); 3561 return (NULL); 3562 } 3563 ipha = (ipha_t *)mp->b_rptr; 3564 } 3565 icmph = (icmph_t *) 3566 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3567 switch (icmph->icmph_type) { 3568 case ICMP_DEST_UNREACHABLE: 3569 case ICMP_SOURCE_QUENCH: 3570 case ICMP_TIME_EXCEEDED: 3571 case ICMP_PARAM_PROBLEM: 3572 case ICMP_REDIRECT: 3573 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3574 freemsg(mp); 3575 return (NULL); 3576 default: 3577 break; 3578 } 3579 } 3580 /* 3581 * If this is a labeled system, then check to see if we're allowed to 3582 * send a response to this particular sender. If not, then just drop. 3583 */ 3584 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3585 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3586 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3587 freemsg(mp); 3588 return (NULL); 3589 } 3590 if (icmp_err_rate_limit(ipst)) { 3591 /* 3592 * Only send ICMP error packets every so often. 3593 * This should be done on a per port/source basis, 3594 * but for now this will suffice. 3595 */ 3596 freemsg(mp); 3597 return (NULL); 3598 } 3599 return (mp); 3600 } 3601 3602 /* 3603 * Generate an ICMP redirect message. 3604 */ 3605 static void 3606 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway, ip_stack_t *ipst) 3607 { 3608 icmph_t icmph; 3609 3610 /* 3611 * We are called from ip_rput where we could 3612 * not have attached an IPSEC_IN. 3613 */ 3614 ASSERT(mp->b_datap->db_type == M_DATA); 3615 3616 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3617 return; 3618 } 3619 3620 bzero(&icmph, sizeof (icmph_t)); 3621 icmph.icmph_type = ICMP_REDIRECT; 3622 icmph.icmph_code = 1; 3623 icmph.icmph_rd_gateway = gateway; 3624 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3625 /* Redirects sent by router, and router is global zone */ 3626 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE, GLOBAL_ZONEID, ipst); 3627 } 3628 3629 /* 3630 * Generate an ICMP time exceeded message. 3631 */ 3632 void 3633 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3634 ip_stack_t *ipst) 3635 { 3636 icmph_t icmph; 3637 boolean_t mctl_present; 3638 mblk_t *first_mp; 3639 3640 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3641 3642 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3643 if (mctl_present) 3644 freeb(first_mp); 3645 return; 3646 } 3647 3648 bzero(&icmph, sizeof (icmph_t)); 3649 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3650 icmph.icmph_code = code; 3651 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3652 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3653 ipst); 3654 } 3655 3656 /* 3657 * Generate an ICMP unreachable message. 3658 */ 3659 void 3660 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3661 ip_stack_t *ipst) 3662 { 3663 icmph_t icmph; 3664 mblk_t *first_mp; 3665 boolean_t mctl_present; 3666 3667 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3668 3669 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3670 if (mctl_present) 3671 freeb(first_mp); 3672 return; 3673 } 3674 3675 bzero(&icmph, sizeof (icmph_t)); 3676 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3677 icmph.icmph_code = code; 3678 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3679 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3680 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present, 3681 zoneid, ipst); 3682 } 3683 3684 /* 3685 * Attempt to start recovery of an IPv4 interface that's been shut down as a 3686 * duplicate. As long as someone else holds the address, the interface will 3687 * stay down. When that conflict goes away, the interface is brought back up. 3688 * This is done so that accidental shutdowns of addresses aren't made 3689 * permanent. Your server will recover from a failure. 3690 * 3691 * For DHCP, recovery is not done in the kernel. Instead, it's handled by a 3692 * user space process (dhcpagent). 3693 * 3694 * Recovery completes if ARP reports that the address is now ours (via 3695 * AR_CN_READY). In that case, we go to ip_arp_excl to finish the operation. 3696 * 3697 * This function is entered on a timer expiry; the ID is in ipif_recovery_id. 3698 */ 3699 static void 3700 ipif_dup_recovery(void *arg) 3701 { 3702 ipif_t *ipif = arg; 3703 ill_t *ill = ipif->ipif_ill; 3704 mblk_t *arp_add_mp; 3705 mblk_t *arp_del_mp; 3706 ip_stack_t *ipst = ill->ill_ipst; 3707 3708 ipif->ipif_recovery_id = 0; 3709 3710 /* 3711 * No lock needed for moving or condemned check, as this is just an 3712 * optimization. 3713 */ 3714 if (ill->ill_arp_closing || !(ipif->ipif_flags & IPIF_DUPLICATE) || 3715 (ipif->ipif_flags & IPIF_POINTOPOINT) || 3716 (ipif->ipif_state_flags & (IPIF_CONDEMNED))) { 3717 /* No reason to try to bring this address back. */ 3718 return; 3719 } 3720 3721 /* ACE_F_UNVERIFIED restarts DAD */ 3722 if ((arp_add_mp = ipif_area_alloc(ipif, ACE_F_UNVERIFIED)) == NULL) 3723 goto alloc_fail; 3724 3725 if (ipif->ipif_arp_del_mp == NULL) { 3726 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 3727 goto alloc_fail; 3728 ipif->ipif_arp_del_mp = arp_del_mp; 3729 } 3730 3731 putnext(ill->ill_rq, arp_add_mp); 3732 return; 3733 3734 alloc_fail: 3735 /* 3736 * On allocation failure, just restart the timer. Note that the ipif 3737 * is down here, so no other thread could be trying to start a recovery 3738 * timer. The ill_lock protects the condemned flag and the recovery 3739 * timer ID. 3740 */ 3741 freemsg(arp_add_mp); 3742 mutex_enter(&ill->ill_lock); 3743 if (ipst->ips_ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0 && 3744 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 3745 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, ipif, 3746 MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3747 } 3748 mutex_exit(&ill->ill_lock); 3749 } 3750 3751 /* 3752 * This is for exclusive changes due to ARP. Either tear down an interface due 3753 * to AR_CN_FAILED and AR_CN_BOGON, or bring one up for successful recovery. 3754 */ 3755 /* ARGSUSED */ 3756 static void 3757 ip_arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3758 { 3759 ill_t *ill = rq->q_ptr; 3760 arh_t *arh; 3761 ipaddr_t src; 3762 ipif_t *ipif; 3763 char ibuf[LIFNAMSIZ + 10]; /* 10 digits for logical i/f number */ 3764 char hbuf[MAC_STR_LEN]; 3765 char sbuf[INET_ADDRSTRLEN]; 3766 const char *failtype; 3767 boolean_t bring_up; 3768 ip_stack_t *ipst = ill->ill_ipst; 3769 3770 switch (((arcn_t *)mp->b_rptr)->arcn_code) { 3771 case AR_CN_READY: 3772 failtype = NULL; 3773 bring_up = B_TRUE; 3774 break; 3775 case AR_CN_FAILED: 3776 failtype = "in use"; 3777 bring_up = B_FALSE; 3778 break; 3779 default: 3780 failtype = "claimed"; 3781 bring_up = B_FALSE; 3782 break; 3783 } 3784 3785 arh = (arh_t *)mp->b_cont->b_rptr; 3786 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3787 3788 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, hbuf, 3789 sizeof (hbuf)); 3790 (void) ip_dot_addr(src, sbuf); 3791 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3792 3793 if ((ipif->ipif_flags & IPIF_POINTOPOINT) || 3794 ipif->ipif_lcl_addr != src) { 3795 continue; 3796 } 3797 3798 /* 3799 * If we failed on a recovery probe, then restart the timer to 3800 * try again later. 3801 */ 3802 if (!bring_up && (ipif->ipif_flags & IPIF_DUPLICATE) && 3803 !(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3804 ill->ill_net_type == IRE_IF_RESOLVER && 3805 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3806 ipst->ips_ip_dup_recovery > 0 && 3807 ipif->ipif_recovery_id == 0) { 3808 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3809 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3810 continue; 3811 } 3812 3813 /* 3814 * If what we're trying to do has already been done, then do 3815 * nothing. 3816 */ 3817 if (bring_up == ((ipif->ipif_flags & IPIF_UP) != 0)) 3818 continue; 3819 3820 ipif_get_name(ipif, ibuf, sizeof (ibuf)); 3821 3822 if (failtype == NULL) { 3823 cmn_err(CE_NOTE, "recovered address %s on %s", sbuf, 3824 ibuf); 3825 } else { 3826 cmn_err(CE_WARN, "%s has duplicate address %s (%s " 3827 "by %s); disabled", ibuf, sbuf, failtype, hbuf); 3828 } 3829 3830 if (bring_up) { 3831 ASSERT(ill->ill_dl_up); 3832 /* 3833 * Free up the ARP delete message so we can allocate 3834 * a fresh one through the normal path. 3835 */ 3836 freemsg(ipif->ipif_arp_del_mp); 3837 ipif->ipif_arp_del_mp = NULL; 3838 if (ipif_resolver_up(ipif, Res_act_initial) != 3839 EINPROGRESS) { 3840 ipif->ipif_addr_ready = 1; 3841 (void) ipif_up_done(ipif); 3842 ASSERT(ill->ill_move_ipif == NULL); 3843 } 3844 continue; 3845 } 3846 3847 mutex_enter(&ill->ill_lock); 3848 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 3849 ipif->ipif_flags |= IPIF_DUPLICATE; 3850 ill->ill_ipif_dup_count++; 3851 mutex_exit(&ill->ill_lock); 3852 /* 3853 * Already exclusive on the ill; no need to handle deferred 3854 * processing here. 3855 */ 3856 (void) ipif_down(ipif, NULL, NULL); 3857 ipif_down_tail(ipif); 3858 mutex_enter(&ill->ill_lock); 3859 if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3860 ill->ill_net_type == IRE_IF_RESOLVER && 3861 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3862 ipst->ips_ip_dup_recovery > 0) { 3863 ASSERT(ipif->ipif_recovery_id == 0); 3864 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3865 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3866 } 3867 mutex_exit(&ill->ill_lock); 3868 } 3869 freemsg(mp); 3870 } 3871 3872 /* ARGSUSED */ 3873 static void 3874 ip_arp_defend(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3875 { 3876 ill_t *ill = rq->q_ptr; 3877 arh_t *arh; 3878 ipaddr_t src; 3879 ipif_t *ipif; 3880 3881 arh = (arh_t *)mp->b_cont->b_rptr; 3882 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3883 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3884 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_lcl_addr == src) 3885 (void) ipif_resolver_up(ipif, Res_act_defend); 3886 } 3887 freemsg(mp); 3888 } 3889 3890 /* 3891 * News from ARP. ARP sends notification of interesting events down 3892 * to its clients using M_CTL messages with the interesting ARP packet 3893 * attached via b_cont. 3894 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3895 * queue as opposed to ARP sending the message to all the clients, i.e. all 3896 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3897 * table if a cache IRE is found to delete all the entries for the address in 3898 * the packet. 3899 */ 3900 static void 3901 ip_arp_news(queue_t *q, mblk_t *mp) 3902 { 3903 arcn_t *arcn; 3904 arh_t *arh; 3905 ire_t *ire = NULL; 3906 char hbuf[MAC_STR_LEN]; 3907 char sbuf[INET_ADDRSTRLEN]; 3908 ipaddr_t src; 3909 in6_addr_t v6src; 3910 boolean_t isv6 = B_FALSE; 3911 ipif_t *ipif; 3912 ill_t *ill; 3913 ip_stack_t *ipst; 3914 3915 if (CONN_Q(q)) { 3916 conn_t *connp = Q_TO_CONN(q); 3917 3918 ipst = connp->conn_netstack->netstack_ip; 3919 } else { 3920 ill_t *ill = (ill_t *)q->q_ptr; 3921 3922 ipst = ill->ill_ipst; 3923 } 3924 3925 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 3926 if (q->q_next) { 3927 putnext(q, mp); 3928 } else 3929 freemsg(mp); 3930 return; 3931 } 3932 arh = (arh_t *)mp->b_cont->b_rptr; 3933 /* Is it one we are interested in? */ 3934 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 3935 isv6 = B_TRUE; 3936 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 3937 IPV6_ADDR_LEN); 3938 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 3939 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 3940 IP_ADDR_LEN); 3941 } else { 3942 freemsg(mp); 3943 return; 3944 } 3945 3946 ill = q->q_ptr; 3947 3948 arcn = (arcn_t *)mp->b_rptr; 3949 switch (arcn->arcn_code) { 3950 case AR_CN_BOGON: 3951 /* 3952 * Someone is sending ARP packets with a source protocol 3953 * address that we have published and for which we believe our 3954 * entry is authoritative and (when ill_arp_extend is set) 3955 * verified to be unique on the network. 3956 * 3957 * The ARP module internally handles the cases where the sender 3958 * is just probing (for DAD) and where the hardware address of 3959 * a non-authoritative entry has changed. Thus, these are the 3960 * real conflicts, and we have to do resolution. 3961 * 3962 * We back away quickly from the address if it's from DHCP or 3963 * otherwise temporary and hasn't been used recently (or at 3964 * all). We'd like to include "deprecated" addresses here as 3965 * well (as there's no real reason to defend something we're 3966 * discarding), but IPMP "reuses" this flag to mean something 3967 * other than the standard meaning. 3968 * 3969 * If the ARP module above is not extended (meaning that it 3970 * doesn't know how to defend the address), then we just log 3971 * the problem as we always did and continue on. It's not 3972 * right, but there's little else we can do, and those old ATM 3973 * users are going away anyway. 3974 */ 3975 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, 3976 hbuf, sizeof (hbuf)); 3977 (void) ip_dot_addr(src, sbuf); 3978 if (isv6) { 3979 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL, 3980 ipst); 3981 } else { 3982 ire = ire_cache_lookup(src, ALL_ZONES, NULL, ipst); 3983 } 3984 if (ire != NULL && IRE_IS_LOCAL(ire)) { 3985 uint32_t now; 3986 uint32_t maxage; 3987 clock_t lused; 3988 uint_t maxdefense; 3989 uint_t defs; 3990 3991 /* 3992 * First, figure out if this address hasn't been used 3993 * in a while. If it hasn't, then it's a better 3994 * candidate for abandoning. 3995 */ 3996 ipif = ire->ire_ipif; 3997 ASSERT(ipif != NULL); 3998 now = gethrestime_sec(); 3999 maxage = now - ire->ire_create_time; 4000 if (maxage > ipst->ips_ip_max_temp_idle) 4001 maxage = ipst->ips_ip_max_temp_idle; 4002 lused = drv_hztousec(ddi_get_lbolt() - 4003 ire->ire_last_used_time) / MICROSEC + 1; 4004 if (lused >= maxage && (ipif->ipif_flags & 4005 (IPIF_DHCPRUNNING | IPIF_TEMPORARY))) 4006 maxdefense = ipst->ips_ip_max_temp_defend; 4007 else 4008 maxdefense = ipst->ips_ip_max_defend; 4009 4010 /* 4011 * Now figure out how many times we've defended 4012 * ourselves. Ignore defenses that happened long in 4013 * the past. 4014 */ 4015 mutex_enter(&ire->ire_lock); 4016 if ((defs = ire->ire_defense_count) > 0 && 4017 now - ire->ire_defense_time > 4018 ipst->ips_ip_defend_interval) { 4019 ire->ire_defense_count = defs = 0; 4020 } 4021 ire->ire_defense_count++; 4022 ire->ire_defense_time = now; 4023 mutex_exit(&ire->ire_lock); 4024 ill_refhold(ill); 4025 ire_refrele(ire); 4026 4027 /* 4028 * If we've defended ourselves too many times already, 4029 * then give up and tear down the interface(s) using 4030 * this address. Otherwise, defend by sending out a 4031 * gratuitous ARP. 4032 */ 4033 if (defs >= maxdefense && ill->ill_arp_extend) { 4034 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4035 B_FALSE); 4036 } else { 4037 cmn_err(CE_WARN, 4038 "node %s is using our IP address %s on %s", 4039 hbuf, sbuf, ill->ill_name); 4040 /* 4041 * If this is an old (ATM) ARP module, then 4042 * don't try to defend the address. Remain 4043 * compatible with the old behavior. Defend 4044 * only with new ARP. 4045 */ 4046 if (ill->ill_arp_extend) { 4047 qwriter_ip(ill, q, mp, ip_arp_defend, 4048 NEW_OP, B_FALSE); 4049 } else { 4050 ill_refrele(ill); 4051 } 4052 } 4053 return; 4054 } 4055 cmn_err(CE_WARN, 4056 "proxy ARP problem? Node '%s' is using %s on %s", 4057 hbuf, sbuf, ill->ill_name); 4058 if (ire != NULL) 4059 ire_refrele(ire); 4060 break; 4061 case AR_CN_ANNOUNCE: 4062 if (isv6) { 4063 /* 4064 * For XRESOLV interfaces. 4065 * Delete the IRE cache entry and NCE for this 4066 * v6 address 4067 */ 4068 ip_ire_clookup_and_delete_v6(&v6src, ipst); 4069 /* 4070 * If v6src is a non-zero, it's a router address 4071 * as below. Do the same sort of thing to clean 4072 * out off-net IRE_CACHE entries that go through 4073 * the router. 4074 */ 4075 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 4076 ire_walk_v6(ire_delete_cache_gw_v6, 4077 (char *)&v6src, ALL_ZONES, ipst); 4078 } 4079 } else { 4080 nce_hw_map_t hwm; 4081 4082 /* 4083 * ARP gives us a copy of any packet where it thinks 4084 * the address has changed, so that we can update our 4085 * caches. We're responsible for caching known answers 4086 * in the current design. We check whether the 4087 * hardware address really has changed in all of our 4088 * entries that have cached this mapping, and if so, we 4089 * blow them away. This way we will immediately pick 4090 * up the rare case of a host changing hardware 4091 * address. 4092 */ 4093 if (src == 0) 4094 break; 4095 hwm.hwm_addr = src; 4096 hwm.hwm_hwlen = arh->arh_hlen; 4097 hwm.hwm_hwaddr = (uchar_t *)(arh + 1); 4098 NDP_HW_CHANGE_INCR(ipst->ips_ndp4); 4099 ndp_walk_common(ipst->ips_ndp4, NULL, 4100 (pfi_t)nce_delete_hw_changed, &hwm, ALL_ZONES); 4101 NDP_HW_CHANGE_DECR(ipst->ips_ndp4); 4102 } 4103 break; 4104 case AR_CN_READY: 4105 /* No external v6 resolver has a contract to use this */ 4106 if (isv6) 4107 break; 4108 /* If the link is down, we'll retry this later */ 4109 if (!(ill->ill_phyint->phyint_flags & PHYI_RUNNING)) 4110 break; 4111 ipif = ipif_lookup_addr(src, ill, ALL_ZONES, NULL, NULL, 4112 NULL, NULL, ipst); 4113 if (ipif != NULL) { 4114 /* 4115 * If this is a duplicate recovery, then we now need to 4116 * go exclusive to bring this thing back up. 4117 */ 4118 if ((ipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)) == 4119 IPIF_DUPLICATE) { 4120 ipif_refrele(ipif); 4121 ill_refhold(ill); 4122 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4123 B_FALSE); 4124 return; 4125 } 4126 /* 4127 * If this is the first notice that this address is 4128 * ready, then let the user know now. 4129 */ 4130 if ((ipif->ipif_flags & IPIF_UP) && 4131 !ipif->ipif_addr_ready) { 4132 ipif_mask_reply(ipif); 4133 ipif_up_notify(ipif); 4134 } 4135 ipif->ipif_addr_ready = 1; 4136 ipif_refrele(ipif); 4137 } 4138 ire = ire_cache_lookup(src, ALL_ZONES, msg_getlabel(mp), ipst); 4139 if (ire != NULL) { 4140 ire->ire_defense_count = 0; 4141 ire_refrele(ire); 4142 } 4143 break; 4144 case AR_CN_FAILED: 4145 /* No external v6 resolver has a contract to use this */ 4146 if (isv6) 4147 break; 4148 if (!ill->ill_arp_extend) { 4149 (void) mac_colon_addr((uint8_t *)(arh + 1), 4150 arh->arh_hlen, hbuf, sizeof (hbuf)); 4151 (void) ip_dot_addr(src, sbuf); 4152 4153 cmn_err(CE_WARN, 4154 "node %s is using our IP address %s on %s", 4155 hbuf, sbuf, ill->ill_name); 4156 break; 4157 } 4158 ill_refhold(ill); 4159 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, B_FALSE); 4160 return; 4161 } 4162 freemsg(mp); 4163 } 4164 4165 /* 4166 * Create a mblk suitable for carrying the interface index and/or source link 4167 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 4168 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 4169 * application. 4170 */ 4171 mblk_t * 4172 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags, zoneid_t zoneid, 4173 ip_stack_t *ipst) 4174 { 4175 mblk_t *mp; 4176 ip_pktinfo_t *pinfo; 4177 ipha_t *ipha; 4178 struct ether_header *pether; 4179 boolean_t ipmp_ill_held = B_FALSE; 4180 4181 mp = allocb(sizeof (ip_pktinfo_t), BPRI_MED); 4182 if (mp == NULL) { 4183 ip1dbg(("ip_add_info: allocation failure.\n")); 4184 return (data_mp); 4185 } 4186 4187 ipha = (ipha_t *)data_mp->b_rptr; 4188 pinfo = (ip_pktinfo_t *)mp->b_rptr; 4189 bzero(pinfo, sizeof (ip_pktinfo_t)); 4190 pinfo->ip_pkt_flags = (uchar_t)flags; 4191 pinfo->ip_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 4192 4193 pether = (struct ether_header *)((char *)ipha 4194 - sizeof (struct ether_header)); 4195 4196 /* 4197 * Make sure the interface is an ethernet type, since this option 4198 * is currently supported only on this type of interface. Also make 4199 * sure we are pointing correctly above db_base. 4200 */ 4201 if ((flags & IPF_RECVSLLA) && 4202 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 4203 (ill->ill_type == IFT_ETHER) && 4204 (ill->ill_net_type == IRE_IF_RESOLVER)) { 4205 pinfo->ip_pkt_slla.sdl_type = IFT_ETHER; 4206 bcopy(pether->ether_shost.ether_addr_octet, 4207 pinfo->ip_pkt_slla.sdl_data, ETHERADDRL); 4208 } else { 4209 /* 4210 * Clear the bit. Indicate to upper layer that IP is not 4211 * sending this ancillary info. 4212 */ 4213 pinfo->ip_pkt_flags = pinfo->ip_pkt_flags & ~IPF_RECVSLLA; 4214 } 4215 4216 /* 4217 * If `ill' is in an IPMP group, use the IPMP ill to determine 4218 * IPF_RECVIF and IPF_RECVADDR. (This currently assumes that 4219 * IPF_RECVADDR support on test addresses is not needed.) 4220 * 4221 * Note that `ill' may already be an IPMP ill if e.g. we're 4222 * processing a packet looped back to an IPMP data address 4223 * (since those IRE_LOCALs are tied to IPMP ills). 4224 */ 4225 if (IS_UNDER_IPMP(ill)) { 4226 if ((ill = ipmp_ill_hold_ipmp_ill(ill)) == NULL) { 4227 ip1dbg(("ip_add_info: cannot hold IPMP ill.\n")); 4228 freemsg(mp); 4229 return (data_mp); 4230 } 4231 ipmp_ill_held = B_TRUE; 4232 } 4233 4234 if (flags & (IPF_RECVIF | IPF_RECVADDR)) 4235 pinfo->ip_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 4236 if (flags & IPF_RECVADDR) { 4237 ipif_t *ipif; 4238 ire_t *ire; 4239 4240 /* 4241 * Only valid for V4 4242 */ 4243 ASSERT((ipha->ipha_version_and_hdr_length & 0xf0) == 4244 (IPV4_VERSION << 4)); 4245 4246 ipif = ipif_get_next_ipif(NULL, ill); 4247 if (ipif != NULL) { 4248 /* 4249 * Since a decision has already been made to deliver the 4250 * packet, there is no need to test for SECATTR and 4251 * ZONEONLY. 4252 * When a multicast packet is transmitted 4253 * a cache entry is created for the multicast address. 4254 * When delivering a copy of the packet or when new 4255 * packets are received we do not want to match on the 4256 * cached entry so explicitly match on 4257 * IRE_LOCAL and IRE_LOOPBACK 4258 */ 4259 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4260 IRE_LOCAL | IRE_LOOPBACK, 4261 ipif, zoneid, NULL, 4262 MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 4263 if (ire == NULL) { 4264 /* 4265 * packet must have come on a different 4266 * interface. 4267 * Since a decision has already been made to 4268 * deliver the packet, there is no need to test 4269 * for SECATTR and ZONEONLY. 4270 * Only match on local and broadcast ire's. 4271 * See detailed comment above. 4272 */ 4273 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4274 IRE_LOCAL | IRE_LOOPBACK, ipif, zoneid, 4275 NULL, MATCH_IRE_TYPE, ipst); 4276 } 4277 4278 if (ire == NULL) { 4279 /* 4280 * This is either a multicast packet or 4281 * the address has been removed since 4282 * the packet was received. 4283 * Return INADDR_ANY so that normal source 4284 * selection occurs for the response. 4285 */ 4286 4287 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4288 } else { 4289 pinfo->ip_pkt_match_addr.s_addr = 4290 ire->ire_src_addr; 4291 ire_refrele(ire); 4292 } 4293 ipif_refrele(ipif); 4294 } else { 4295 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4296 } 4297 } 4298 4299 if (ipmp_ill_held) 4300 ill_refrele(ill); 4301 4302 mp->b_datap->db_type = M_CTL; 4303 mp->b_wptr += sizeof (ip_pktinfo_t); 4304 mp->b_cont = data_mp; 4305 4306 return (mp); 4307 } 4308 4309 /* 4310 * Used to determine the most accurate cred_t to use for TX. 4311 * First priority is SCM_UCRED having set the label in the message, 4312 * which is used for MLP on UDP. Second priority is the open credentials 4313 * with the peer's label (aka conn_effective_cred), which is needed for 4314 * MLP on TCP/SCTP and for MAC-Exempt. Last priority is the open credentials. 4315 */ 4316 cred_t * 4317 ip_best_cred(mblk_t *mp, conn_t *connp, pid_t *pidp) 4318 { 4319 cred_t *cr; 4320 4321 cr = msg_getcred(mp, pidp); 4322 if (cr != NULL && crgetlabel(cr) != NULL) 4323 return (cr); 4324 *pidp = NOPID; 4325 return (CONN_CRED(connp)); 4326 } 4327 4328 /* 4329 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 4330 * part of the bind request. 4331 */ 4332 4333 boolean_t 4334 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 4335 { 4336 ipsec_in_t *ii; 4337 4338 ASSERT(policy_mp != NULL); 4339 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 4340 4341 ii = (ipsec_in_t *)policy_mp->b_rptr; 4342 ASSERT(ii->ipsec_in_type == IPSEC_IN); 4343 4344 connp->conn_policy = ii->ipsec_in_policy; 4345 ii->ipsec_in_policy = NULL; 4346 4347 if (ii->ipsec_in_action != NULL) { 4348 if (connp->conn_latch == NULL) { 4349 connp->conn_latch = iplatch_create(); 4350 if (connp->conn_latch == NULL) 4351 return (B_FALSE); 4352 } 4353 ipsec_latch_inbound(connp->conn_latch, ii); 4354 } 4355 return (B_TRUE); 4356 } 4357 4358 static void 4359 ip_bind_post_handling(conn_t *connp, mblk_t *mp, boolean_t ire_requested) 4360 { 4361 /* 4362 * Pass the IPsec headers size in ire_ipsec_overhead. 4363 * We can't do this in ip_bind_get_ire because the policy 4364 * may not have been inherited at that point in time and hence 4365 * conn_out_enforce_policy may not be set. 4366 */ 4367 if (ire_requested && connp->conn_out_enforce_policy && 4368 mp != NULL && DB_TYPE(mp) == IRE_DB_REQ_TYPE) { 4369 ire_t *ire = (ire_t *)mp->b_rptr; 4370 ASSERT(MBLKL(mp) >= sizeof (ire_t)); 4371 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 4372 } 4373 } 4374 4375 /* 4376 * Upper level protocols (ULP) pass through bind requests to IP for inspection 4377 * and to arrange for power-fanout assist. The ULP is identified by 4378 * adding a single byte at the end of the original bind message. 4379 * A ULP other than UDP or TCP that wishes to be recognized passes 4380 * down a bind with a zero length address. 4381 * 4382 * The binding works as follows: 4383 * - A zero byte address means just bind to the protocol. 4384 * - A four byte address is treated as a request to validate 4385 * that the address is a valid local address, appropriate for 4386 * an application to bind to. This does not affect any fanout 4387 * information in IP. 4388 * - A sizeof sin_t byte address is used to bind to only the local address 4389 * and port. 4390 * - A sizeof ipa_conn_t byte address contains complete fanout information 4391 * consisting of local and remote addresses and ports. In 4392 * this case, the addresses are both validated as appropriate 4393 * for this operation, and, if so, the information is retained 4394 * for use in the inbound fanout. 4395 * 4396 * The ULP (except in the zero-length bind) can append an 4397 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4398 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4399 * a copy of the source or destination IRE (source for local bind; 4400 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4401 * policy information contained should be copied on to the conn. 4402 * 4403 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4404 */ 4405 mblk_t * 4406 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4407 { 4408 ssize_t len; 4409 struct T_bind_req *tbr; 4410 sin_t *sin; 4411 ipa_conn_t *ac; 4412 uchar_t *ucp; 4413 mblk_t *mp1; 4414 boolean_t ire_requested; 4415 int error = 0; 4416 int protocol; 4417 ipa_conn_x_t *acx; 4418 cred_t *cr; 4419 4420 /* 4421 * All Solaris components should pass a db_credp 4422 * for this TPI message, hence we ASSERT. 4423 * But in case there is some other M_PROTO that looks 4424 * like a TPI message sent by some other kernel 4425 * component, we check and return an error. 4426 */ 4427 cr = msg_getcred(mp, NULL); 4428 ASSERT(cr != NULL); 4429 if (cr == NULL) { 4430 error = EINVAL; 4431 goto bad_addr; 4432 } 4433 4434 ASSERT(!connp->conn_af_isv6); 4435 connp->conn_pkt_isv6 = B_FALSE; 4436 4437 len = MBLKL(mp); 4438 if (len < (sizeof (*tbr) + 1)) { 4439 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4440 "ip_bind: bogus msg, len %ld", len); 4441 /* XXX: Need to return something better */ 4442 goto bad_addr; 4443 } 4444 /* Back up and extract the protocol identifier. */ 4445 mp->b_wptr--; 4446 protocol = *mp->b_wptr & 0xFF; 4447 tbr = (struct T_bind_req *)mp->b_rptr; 4448 /* Reset the message type in preparation for shipping it back. */ 4449 DB_TYPE(mp) = M_PCPROTO; 4450 4451 connp->conn_ulp = (uint8_t)protocol; 4452 4453 /* 4454 * Check for a zero length address. This is from a protocol that 4455 * wants to register to receive all packets of its type. 4456 */ 4457 if (tbr->ADDR_length == 0) { 4458 /* 4459 * These protocols are now intercepted in ip_bind_v6(). 4460 * Reject protocol-level binds here for now. 4461 * 4462 * For SCTP raw socket, ICMP sends down a bind with sin_t 4463 * so that the protocol type cannot be SCTP. 4464 */ 4465 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4466 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4467 goto bad_addr; 4468 } 4469 4470 /* 4471 * 4472 * The udp module never sends down a zero-length address, 4473 * and allowing this on a labeled system will break MLP 4474 * functionality. 4475 */ 4476 if (is_system_labeled() && protocol == IPPROTO_UDP) 4477 goto bad_addr; 4478 4479 if (connp->conn_mac_exempt) 4480 goto bad_addr; 4481 4482 /* No hash here really. The table is big enough. */ 4483 connp->conn_srcv6 = ipv6_all_zeros; 4484 4485 ipcl_proto_insert(connp, protocol); 4486 4487 tbr->PRIM_type = T_BIND_ACK; 4488 return (mp); 4489 } 4490 4491 /* Extract the address pointer from the message. */ 4492 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4493 tbr->ADDR_length); 4494 if (ucp == NULL) { 4495 ip1dbg(("ip_bind: no address\n")); 4496 goto bad_addr; 4497 } 4498 if (!OK_32PTR(ucp)) { 4499 ip1dbg(("ip_bind: unaligned address\n")); 4500 goto bad_addr; 4501 } 4502 /* 4503 * Check for trailing mps. 4504 */ 4505 4506 mp1 = mp->b_cont; 4507 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 4508 4509 switch (tbr->ADDR_length) { 4510 default: 4511 ip1dbg(("ip_bind: bad address length %d\n", 4512 (int)tbr->ADDR_length)); 4513 goto bad_addr; 4514 4515 case IP_ADDR_LEN: 4516 /* Verification of local address only */ 4517 error = ip_bind_laddr_v4(connp, &mp1, protocol, 4518 *(ipaddr_t *)ucp, 0, B_FALSE); 4519 break; 4520 4521 case sizeof (sin_t): 4522 sin = (sin_t *)ucp; 4523 error = ip_bind_laddr_v4(connp, &mp1, protocol, 4524 sin->sin_addr.s_addr, sin->sin_port, B_TRUE); 4525 break; 4526 4527 case sizeof (ipa_conn_t): 4528 ac = (ipa_conn_t *)ucp; 4529 /* For raw socket, the local port is not set. */ 4530 if (ac->ac_lport == 0) 4531 ac->ac_lport = connp->conn_lport; 4532 /* Always verify destination reachability. */ 4533 error = ip_bind_connected_v4(connp, &mp1, protocol, 4534 &ac->ac_laddr, ac->ac_lport, ac->ac_faddr, ac->ac_fport, 4535 B_TRUE, B_TRUE, cr); 4536 break; 4537 4538 case sizeof (ipa_conn_x_t): 4539 acx = (ipa_conn_x_t *)ucp; 4540 /* 4541 * Whether or not to verify destination reachability depends 4542 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4543 */ 4544 error = ip_bind_connected_v4(connp, &mp1, protocol, 4545 &acx->acx_conn.ac_laddr, acx->acx_conn.ac_lport, 4546 acx->acx_conn.ac_faddr, acx->acx_conn.ac_fport, 4547 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0, cr); 4548 break; 4549 } 4550 ASSERT(error != EINPROGRESS); 4551 if (error != 0) 4552 goto bad_addr; 4553 4554 ip_bind_post_handling(connp, mp->b_cont, ire_requested); 4555 4556 /* Send it home. */ 4557 mp->b_datap->db_type = M_PCPROTO; 4558 tbr->PRIM_type = T_BIND_ACK; 4559 return (mp); 4560 4561 bad_addr: 4562 /* 4563 * If error = -1 then we generate a TBADADDR - otherwise error is 4564 * a unix errno. 4565 */ 4566 if (error > 0) 4567 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4568 else 4569 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4570 return (mp); 4571 } 4572 4573 /* 4574 * Here address is verified to be a valid local address. 4575 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4576 * address is also considered a valid local address. 4577 * In the case of a broadcast/multicast address, however, the 4578 * upper protocol is expected to reset the src address 4579 * to 0 if it sees a IRE_BROADCAST type returned so that 4580 * no packets are emitted with broadcast/multicast address as 4581 * source address (that violates hosts requirements RFC 1122) 4582 * The addresses valid for bind are: 4583 * (1) - INADDR_ANY (0) 4584 * (2) - IP address of an UP interface 4585 * (3) - IP address of a DOWN interface 4586 * (4) - valid local IP broadcast addresses. In this case 4587 * the conn will only receive packets destined to 4588 * the specified broadcast address. 4589 * (5) - a multicast address. In this case 4590 * the conn will only receive packets destined to 4591 * the specified multicast address. Note: the 4592 * application still has to issue an 4593 * IP_ADD_MEMBERSHIP socket option. 4594 * 4595 * On error, return -1 for TBADADDR otherwise pass the 4596 * errno with TSYSERR reply. 4597 * 4598 * In all the above cases, the bound address must be valid in the current zone. 4599 * When the address is loopback, multicast or broadcast, there might be many 4600 * matching IREs so bind has to look up based on the zone. 4601 * 4602 * Note: lport is in network byte order. 4603 * 4604 */ 4605 int 4606 ip_bind_laddr_v4(conn_t *connp, mblk_t **mpp, uint8_t protocol, 4607 ipaddr_t src_addr, uint16_t lport, boolean_t fanout_insert) 4608 { 4609 int error = 0; 4610 ire_t *src_ire; 4611 zoneid_t zoneid; 4612 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4613 mblk_t *mp = NULL; 4614 boolean_t ire_requested = B_FALSE; 4615 boolean_t ipsec_policy_set = B_FALSE; 4616 4617 if (mpp) 4618 mp = *mpp; 4619 4620 if (mp != NULL) { 4621 ire_requested = (DB_TYPE(mp) == IRE_DB_REQ_TYPE); 4622 ipsec_policy_set = (DB_TYPE(mp) == IPSEC_POLICY_SET); 4623 } 4624 4625 /* 4626 * If it was previously connected, conn_fully_bound would have 4627 * been set. 4628 */ 4629 connp->conn_fully_bound = B_FALSE; 4630 4631 src_ire = NULL; 4632 4633 zoneid = IPCL_ZONEID(connp); 4634 4635 if (src_addr) { 4636 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4637 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 4638 /* 4639 * If an address other than 0.0.0.0 is requested, 4640 * we verify that it is a valid address for bind 4641 * Note: Following code is in if-else-if form for 4642 * readability compared to a condition check. 4643 */ 4644 /* LINTED - statement has no consequence */ 4645 if (IRE_IS_LOCAL(src_ire)) { 4646 /* 4647 * (2) Bind to address of local UP interface 4648 */ 4649 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4650 /* 4651 * (4) Bind to broadcast address 4652 * Note: permitted only from transports that 4653 * request IRE 4654 */ 4655 if (!ire_requested) 4656 error = EADDRNOTAVAIL; 4657 } else { 4658 /* 4659 * (3) Bind to address of local DOWN interface 4660 * (ipif_lookup_addr() looks up all interfaces 4661 * but we do not get here for UP interfaces 4662 * - case (2) above) 4663 */ 4664 /* LINTED - statement has no consequent */ 4665 if (ip_addr_exists(src_addr, zoneid, ipst)) { 4666 /* The address exists */ 4667 } else if (CLASSD(src_addr)) { 4668 error = 0; 4669 if (src_ire != NULL) 4670 ire_refrele(src_ire); 4671 /* 4672 * (5) bind to multicast address. 4673 * Fake out the IRE returned to upper 4674 * layer to be a broadcast IRE. 4675 */ 4676 src_ire = ire_ctable_lookup( 4677 INADDR_BROADCAST, INADDR_ANY, 4678 IRE_BROADCAST, NULL, zoneid, NULL, 4679 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY), 4680 ipst); 4681 if (src_ire == NULL || !ire_requested) 4682 error = EADDRNOTAVAIL; 4683 } else { 4684 /* 4685 * Not a valid address for bind 4686 */ 4687 error = EADDRNOTAVAIL; 4688 } 4689 } 4690 if (error) { 4691 /* Red Alert! Attempting to be a bogon! */ 4692 ip1dbg(("ip_bind_laddr_v4: bad src address 0x%x\n", 4693 ntohl(src_addr))); 4694 goto bad_addr; 4695 } 4696 } 4697 4698 /* 4699 * Allow setting new policies. For example, disconnects come 4700 * down as ipa_t bind. As we would have set conn_policy_cached 4701 * to B_TRUE before, we should set it to B_FALSE, so that policy 4702 * can change after the disconnect. 4703 */ 4704 connp->conn_policy_cached = B_FALSE; 4705 4706 /* 4707 * If not fanout_insert this was just an address verification 4708 */ 4709 if (fanout_insert) { 4710 /* 4711 * The addresses have been verified. Time to insert in 4712 * the correct fanout list. 4713 */ 4714 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4715 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4716 connp->conn_lport = lport; 4717 connp->conn_fport = 0; 4718 /* 4719 * Do we need to add a check to reject Multicast packets 4720 */ 4721 error = ipcl_bind_insert(connp, protocol, src_addr, lport); 4722 } 4723 4724 if (error == 0) { 4725 if (ire_requested) { 4726 if (!ip_bind_get_ire_v4(mpp, src_ire, NULL, ipst)) { 4727 error = -1; 4728 /* Falls through to bad_addr */ 4729 } 4730 } else if (ipsec_policy_set) { 4731 if (!ip_bind_ipsec_policy_set(connp, mp)) { 4732 error = -1; 4733 /* Falls through to bad_addr */ 4734 } 4735 } 4736 } 4737 bad_addr: 4738 if (error != 0) { 4739 if (connp->conn_anon_port) { 4740 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4741 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4742 B_FALSE); 4743 } 4744 connp->conn_mlp_type = mlptSingle; 4745 } 4746 if (src_ire != NULL) 4747 IRE_REFRELE(src_ire); 4748 return (error); 4749 } 4750 4751 int 4752 ip_proto_bind_laddr_v4(conn_t *connp, mblk_t **ire_mpp, uint8_t protocol, 4753 ipaddr_t src_addr, uint16_t lport, boolean_t fanout_insert) 4754 { 4755 int error; 4756 mblk_t *mp = NULL; 4757 boolean_t ire_requested; 4758 4759 if (ire_mpp) 4760 mp = *ire_mpp; 4761 ire_requested = (mp != NULL && DB_TYPE(mp) == IRE_DB_REQ_TYPE); 4762 4763 ASSERT(!connp->conn_af_isv6); 4764 connp->conn_pkt_isv6 = B_FALSE; 4765 connp->conn_ulp = protocol; 4766 4767 error = ip_bind_laddr_v4(connp, ire_mpp, protocol, src_addr, lport, 4768 fanout_insert); 4769 if (error == 0) { 4770 ip_bind_post_handling(connp, ire_mpp ? *ire_mpp : NULL, 4771 ire_requested); 4772 } else if (error < 0) { 4773 error = -TBADADDR; 4774 } 4775 return (error); 4776 } 4777 4778 /* 4779 * Verify that both the source and destination addresses 4780 * are valid. If verify_dst is false, then the destination address may be 4781 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4782 * destination reachability, while tunnels do not. 4783 * Note that we allow connect to broadcast and multicast 4784 * addresses when ire_requested is set. Thus the ULP 4785 * has to check for IRE_BROADCAST and multicast. 4786 * 4787 * Returns zero if ok. 4788 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4789 * (for use with TSYSERR reply). 4790 * 4791 * Note: lport and fport are in network byte order. 4792 */ 4793 int 4794 ip_bind_connected_v4(conn_t *connp, mblk_t **mpp, uint8_t protocol, 4795 ipaddr_t *src_addrp, uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4796 boolean_t fanout_insert, boolean_t verify_dst, cred_t *cr) 4797 { 4798 4799 ire_t *src_ire; 4800 ire_t *dst_ire; 4801 int error = 0; 4802 ire_t *sire = NULL; 4803 ire_t *md_dst_ire = NULL; 4804 ire_t *lso_dst_ire = NULL; 4805 ill_t *ill = NULL; 4806 zoneid_t zoneid; 4807 ipaddr_t src_addr = *src_addrp; 4808 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4809 mblk_t *mp = NULL; 4810 boolean_t ire_requested = B_FALSE; 4811 boolean_t ipsec_policy_set = B_FALSE; 4812 ts_label_t *tsl = NULL; 4813 cred_t *effective_cred = NULL; 4814 4815 if (mpp) 4816 mp = *mpp; 4817 4818 if (mp != NULL) { 4819 ire_requested = (DB_TYPE(mp) == IRE_DB_REQ_TYPE); 4820 ipsec_policy_set = (DB_TYPE(mp) == IPSEC_POLICY_SET); 4821 } 4822 4823 src_ire = dst_ire = NULL; 4824 4825 /* 4826 * If we never got a disconnect before, clear it now. 4827 */ 4828 connp->conn_fully_bound = B_FALSE; 4829 4830 zoneid = IPCL_ZONEID(connp); 4831 4832 /* 4833 * Check whether Trusted Solaris policy allows communication with this 4834 * host, and pretend that the destination is unreachable if not. 4835 * 4836 * This is never a problem for TCP, since that transport is known to 4837 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4838 * handling. If the remote is unreachable, it will be detected at that 4839 * point, so there's no reason to check it here. 4840 * 4841 * Note that for sendto (and other datagram-oriented friends), this 4842 * check is done as part of the data path label computation instead. 4843 * The check here is just to make non-TCP connect() report the right 4844 * error. 4845 */ 4846 if (is_system_labeled() && !IPCL_IS_TCP(connp)) { 4847 if ((error = tsol_check_dest(cr, &dst_addr, IPV4_VERSION, 4848 connp->conn_mac_exempt, &effective_cred)) != 0) { 4849 if (ip_debug > 2) { 4850 pr_addr_dbg( 4851 "ip_bind_connected_v4:" 4852 " no label for dst %s\n", 4853 AF_INET, &dst_addr); 4854 } 4855 goto bad_addr; 4856 } 4857 4858 /* 4859 * tsol_check_dest() may have created a new cred with 4860 * a modified security label. Use that cred if it exists 4861 * for ire lookups. 4862 */ 4863 if (effective_cred == NULL) { 4864 tsl = crgetlabel(cr); 4865 } else { 4866 tsl = crgetlabel(effective_cred); 4867 } 4868 } 4869 4870 if (CLASSD(dst_addr)) { 4871 /* Pick up an IRE_BROADCAST */ 4872 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4873 NULL, zoneid, tsl, 4874 (MATCH_IRE_RECURSIVE | 4875 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4876 MATCH_IRE_SECATTR), ipst); 4877 } else { 4878 /* 4879 * If conn_dontroute is set or if conn_nexthop_set is set, 4880 * and onlink ipif is not found set ENETUNREACH error. 4881 */ 4882 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4883 ipif_t *ipif; 4884 4885 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4886 dst_addr : connp->conn_nexthop_v4, zoneid, ipst); 4887 if (ipif == NULL) { 4888 error = ENETUNREACH; 4889 goto bad_addr; 4890 } 4891 ipif_refrele(ipif); 4892 } 4893 4894 if (connp->conn_nexthop_set) { 4895 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4896 0, 0, NULL, NULL, zoneid, tsl, 4897 MATCH_IRE_SECATTR, ipst); 4898 } else { 4899 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4900 &sire, zoneid, tsl, 4901 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4902 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4903 MATCH_IRE_SECATTR), ipst); 4904 } 4905 } 4906 /* 4907 * dst_ire can't be a broadcast when not ire_requested. 4908 * We also prevent ire's with src address INADDR_ANY to 4909 * be used, which are created temporarily for 4910 * sending out packets from endpoints that have 4911 * conn_unspec_src set. If verify_dst is true, the destination must be 4912 * reachable. If verify_dst is false, the destination needn't be 4913 * reachable. 4914 * 4915 * If we match on a reject or black hole, then we've got a 4916 * local failure. May as well fail out the connect() attempt, 4917 * since it's never going to succeed. 4918 */ 4919 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4920 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4921 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4922 /* 4923 * If we're verifying destination reachability, we always want 4924 * to complain here. 4925 * 4926 * If we're not verifying destination reachability but the 4927 * destination has a route, we still want to fail on the 4928 * temporary address and broadcast address tests. 4929 */ 4930 if (verify_dst || (dst_ire != NULL)) { 4931 if (ip_debug > 2) { 4932 pr_addr_dbg("ip_bind_connected_v4:" 4933 "bad connected dst %s\n", 4934 AF_INET, &dst_addr); 4935 } 4936 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4937 error = ENETUNREACH; 4938 else 4939 error = EHOSTUNREACH; 4940 goto bad_addr; 4941 } 4942 } 4943 4944 /* 4945 * If the app does a connect(), it means that it will most likely 4946 * send more than 1 packet to the destination. It makes sense 4947 * to clear the temporary flag. 4948 */ 4949 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4950 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4951 irb_t *irb = dst_ire->ire_bucket; 4952 4953 rw_enter(&irb->irb_lock, RW_WRITER); 4954 /* 4955 * We need to recheck for IRE_MARK_TEMPORARY after acquiring 4956 * the lock to guarantee irb_tmp_ire_cnt. 4957 */ 4958 if (dst_ire->ire_marks & IRE_MARK_TEMPORARY) { 4959 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4960 irb->irb_tmp_ire_cnt--; 4961 } 4962 rw_exit(&irb->irb_lock); 4963 } 4964 4965 /* 4966 * See if we should notify ULP about LSO/MDT; we do this whether or not 4967 * ire_requested is TRUE, in order to handle active connects; LSO/MDT 4968 * eligibility tests for passive connects are handled separately 4969 * through tcp_adapt_ire(). We do this before the source address 4970 * selection, because dst_ire may change after a call to 4971 * ipif_select_source(). This is a best-effort check, as the 4972 * packet for this connection may not actually go through 4973 * dst_ire->ire_stq, and the exact IRE can only be known after 4974 * calling ip_newroute(). This is why we further check on the 4975 * IRE during LSO/Multidata packet transmission in 4976 * tcp_lsosend()/tcp_multisend(). 4977 */ 4978 if (!ipsec_policy_set && dst_ire != NULL && 4979 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4980 (ill = ire_to_ill(dst_ire), ill != NULL)) { 4981 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 4982 lso_dst_ire = dst_ire; 4983 IRE_REFHOLD(lso_dst_ire); 4984 } else if (ipst->ips_ip_multidata_outbound && 4985 ILL_MDT_CAPABLE(ill)) { 4986 md_dst_ire = dst_ire; 4987 IRE_REFHOLD(md_dst_ire); 4988 } 4989 } 4990 4991 if (dst_ire != NULL && dst_ire->ire_type == IRE_LOCAL && 4992 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4993 /* 4994 * If the IRE belongs to a different zone, look for a matching 4995 * route in the forwarding table and use the source address from 4996 * that route. 4997 */ 4998 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4999 zoneid, 0, NULL, 5000 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 5001 MATCH_IRE_RJ_BHOLE, ipst); 5002 if (src_ire == NULL) { 5003 error = EHOSTUNREACH; 5004 goto bad_addr; 5005 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 5006 if (!(src_ire->ire_type & IRE_HOST)) 5007 error = ENETUNREACH; 5008 else 5009 error = EHOSTUNREACH; 5010 goto bad_addr; 5011 } 5012 if (src_addr == INADDR_ANY) 5013 src_addr = src_ire->ire_src_addr; 5014 ire_refrele(src_ire); 5015 src_ire = NULL; 5016 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 5017 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 5018 src_addr = sire->ire_src_addr; 5019 ire_refrele(dst_ire); 5020 dst_ire = sire; 5021 sire = NULL; 5022 } else { 5023 /* 5024 * Pick a source address so that a proper inbound 5025 * load spreading would happen. 5026 */ 5027 ill_t *ire_ill = dst_ire->ire_ipif->ipif_ill; 5028 ipif_t *src_ipif = NULL; 5029 ire_t *ipif_ire; 5030 5031 /* 5032 * Supply a local source address such that inbound 5033 * load spreading happens. 5034 * 5035 * Determine the best source address on this ill for 5036 * the destination. 5037 * 5038 * 1) For broadcast, we should return a broadcast ire 5039 * found above so that upper layers know that the 5040 * destination address is a broadcast address. 5041 * 5042 * 2) If the ipif is DEPRECATED, select a better 5043 * source address. Similarly, if the ipif is on 5044 * the IPMP meta-interface, pick a source address 5045 * at random to improve inbound load spreading. 5046 * 5047 * 3) If the outgoing interface is part of a usesrc 5048 * group, then try selecting a source address from 5049 * the usesrc ILL. 5050 */ 5051 if ((dst_ire->ire_zoneid != zoneid && 5052 dst_ire->ire_zoneid != ALL_ZONES) || 5053 (!(dst_ire->ire_flags & RTF_SETSRC)) && 5054 (!(dst_ire->ire_type & IRE_BROADCAST) && 5055 (IS_IPMP(ire_ill) || 5056 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 5057 (ire_ill->ill_usesrc_ifindex != 0)))) { 5058 /* 5059 * If the destination is reachable via a 5060 * given gateway, the selected source address 5061 * should be in the same subnet as the gateway. 5062 * Otherwise, the destination is not reachable. 5063 * 5064 * If there are no interfaces on the same subnet 5065 * as the destination, ipif_select_source gives 5066 * first non-deprecated interface which might be 5067 * on a different subnet than the gateway. 5068 * This is not desirable. Hence pass the dst_ire 5069 * source address to ipif_select_source. 5070 * It is sure that the destination is reachable 5071 * with the dst_ire source address subnet. 5072 * So passing dst_ire source address to 5073 * ipif_select_source will make sure that the 5074 * selected source will be on the same subnet 5075 * as dst_ire source address. 5076 */ 5077 ipaddr_t saddr = 5078 dst_ire->ire_ipif->ipif_src_addr; 5079 src_ipif = ipif_select_source(ire_ill, 5080 saddr, zoneid); 5081 if (src_ipif != NULL) { 5082 if (IS_VNI(src_ipif->ipif_ill)) { 5083 /* 5084 * For VNI there is no 5085 * interface route 5086 */ 5087 src_addr = 5088 src_ipif->ipif_src_addr; 5089 } else { 5090 ipif_ire = 5091 ipif_to_ire(src_ipif); 5092 if (ipif_ire != NULL) { 5093 IRE_REFRELE(dst_ire); 5094 dst_ire = ipif_ire; 5095 } 5096 src_addr = 5097 dst_ire->ire_src_addr; 5098 } 5099 ipif_refrele(src_ipif); 5100 } else { 5101 src_addr = dst_ire->ire_src_addr; 5102 } 5103 } else { 5104 src_addr = dst_ire->ire_src_addr; 5105 } 5106 } 5107 } 5108 5109 /* 5110 * We do ire_route_lookup() here (and not 5111 * interface lookup as we assert that 5112 * src_addr should only come from an 5113 * UP interface for hard binding. 5114 */ 5115 ASSERT(src_ire == NULL); 5116 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 5117 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 5118 /* src_ire must be a local|loopback */ 5119 if (!IRE_IS_LOCAL(src_ire)) { 5120 if (ip_debug > 2) { 5121 pr_addr_dbg("ip_bind_connected_v4: bad connected " 5122 "src %s\n", AF_INET, &src_addr); 5123 } 5124 error = EADDRNOTAVAIL; 5125 goto bad_addr; 5126 } 5127 5128 /* 5129 * If the source address is a loopback address, the 5130 * destination had best be local or multicast. 5131 * The transports that can't handle multicast will reject 5132 * those addresses. 5133 */ 5134 if (src_ire->ire_type == IRE_LOOPBACK && 5135 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 5136 ip1dbg(("ip_bind_connected_v4: bad connected loopback\n")); 5137 error = -1; 5138 goto bad_addr; 5139 } 5140 5141 /* 5142 * Allow setting new policies. For example, disconnects come 5143 * down as ipa_t bind. As we would have set conn_policy_cached 5144 * to B_TRUE before, we should set it to B_FALSE, so that policy 5145 * can change after the disconnect. 5146 */ 5147 connp->conn_policy_cached = B_FALSE; 5148 5149 /* 5150 * Set the conn addresses/ports immediately, so the IPsec policy calls 5151 * can handle their passed-in conn's. 5152 */ 5153 5154 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 5155 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 5156 connp->conn_lport = lport; 5157 connp->conn_fport = fport; 5158 *src_addrp = src_addr; 5159 5160 ASSERT(!(ipsec_policy_set && ire_requested)); 5161 if (ire_requested) { 5162 iulp_t *ulp_info = NULL; 5163 5164 /* 5165 * Note that sire will not be NULL if this is an off-link 5166 * connection and there is not cache for that dest yet. 5167 * 5168 * XXX Because of an existing bug, if there are multiple 5169 * default routes, the IRE returned now may not be the actual 5170 * default route used (default routes are chosen in a 5171 * round robin fashion). So if the metrics for different 5172 * default routes are different, we may return the wrong 5173 * metrics. This will not be a problem if the existing 5174 * bug is fixed. 5175 */ 5176 if (sire != NULL) { 5177 ulp_info = &(sire->ire_uinfo); 5178 } 5179 if (!ip_bind_get_ire_v4(mpp, dst_ire, ulp_info, ipst)) { 5180 error = -1; 5181 goto bad_addr; 5182 } 5183 mp = *mpp; 5184 } else if (ipsec_policy_set) { 5185 if (!ip_bind_ipsec_policy_set(connp, mp)) { 5186 error = -1; 5187 goto bad_addr; 5188 } 5189 } 5190 5191 /* 5192 * Cache IPsec policy in this conn. If we have per-socket policy, 5193 * we'll cache that. If we don't, we'll inherit global policy. 5194 * 5195 * We can't insert until the conn reflects the policy. Note that 5196 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 5197 * connections where we don't have a policy. This is to prevent 5198 * global policy lookups in the inbound path. 5199 * 5200 * If we insert before we set conn_policy_cached, 5201 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 5202 * because global policy cound be non-empty. We normally call 5203 * ipsec_check_policy() for conn_policy_cached connections only if 5204 * ipc_in_enforce_policy is set. But in this case, 5205 * conn_policy_cached can get set anytime since we made the 5206 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 5207 * called, which will make the above assumption false. Thus, we 5208 * need to insert after we set conn_policy_cached. 5209 */ 5210 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 5211 goto bad_addr; 5212 5213 if (fanout_insert) { 5214 /* 5215 * The addresses have been verified. Time to insert in 5216 * the correct fanout list. 5217 */ 5218 error = ipcl_conn_insert(connp, protocol, src_addr, 5219 dst_addr, connp->conn_ports); 5220 } 5221 5222 if (error == 0) { 5223 connp->conn_fully_bound = B_TRUE; 5224 /* 5225 * Our initial checks for LSO/MDT have passed; the IRE is not 5226 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 5227 * be supporting LSO/MDT. Pass the IRE, IPC and ILL into 5228 * ip_xxinfo_return(), which performs further checks 5229 * against them and upon success, returns the LSO/MDT info 5230 * mblk which we will attach to the bind acknowledgment. 5231 */ 5232 if (lso_dst_ire != NULL) { 5233 mblk_t *lsoinfo_mp; 5234 5235 ASSERT(ill->ill_lso_capab != NULL); 5236 if ((lsoinfo_mp = ip_lsoinfo_return(lso_dst_ire, connp, 5237 ill->ill_name, ill->ill_lso_capab)) != NULL) { 5238 if (mp == NULL) { 5239 *mpp = lsoinfo_mp; 5240 } else { 5241 linkb(mp, lsoinfo_mp); 5242 } 5243 } 5244 } else if (md_dst_ire != NULL) { 5245 mblk_t *mdinfo_mp; 5246 5247 ASSERT(ill->ill_mdt_capab != NULL); 5248 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 5249 ill->ill_name, ill->ill_mdt_capab)) != NULL) { 5250 if (mp == NULL) { 5251 *mpp = mdinfo_mp; 5252 } else { 5253 linkb(mp, mdinfo_mp); 5254 } 5255 } 5256 } 5257 } 5258 bad_addr: 5259 if (ipsec_policy_set) { 5260 ASSERT(mp != NULL); 5261 freeb(mp); 5262 /* 5263 * As of now assume that nothing else accompanies 5264 * IPSEC_POLICY_SET. 5265 */ 5266 *mpp = NULL; 5267 } 5268 if (src_ire != NULL) 5269 IRE_REFRELE(src_ire); 5270 if (dst_ire != NULL) 5271 IRE_REFRELE(dst_ire); 5272 if (sire != NULL) 5273 IRE_REFRELE(sire); 5274 if (md_dst_ire != NULL) 5275 IRE_REFRELE(md_dst_ire); 5276 if (lso_dst_ire != NULL) 5277 IRE_REFRELE(lso_dst_ire); 5278 if (effective_cred != NULL) 5279 crfree(effective_cred); 5280 return (error); 5281 } 5282 5283 int 5284 ip_proto_bind_connected_v4(conn_t *connp, mblk_t **ire_mpp, uint8_t protocol, 5285 ipaddr_t *src_addrp, uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 5286 boolean_t fanout_insert, boolean_t verify_dst, cred_t *cr) 5287 { 5288 int error; 5289 mblk_t *mp = NULL; 5290 boolean_t ire_requested; 5291 5292 if (ire_mpp) 5293 mp = *ire_mpp; 5294 ire_requested = (mp != NULL && DB_TYPE(mp) == IRE_DB_REQ_TYPE); 5295 5296 ASSERT(!connp->conn_af_isv6); 5297 connp->conn_pkt_isv6 = B_FALSE; 5298 connp->conn_ulp = protocol; 5299 5300 /* For raw socket, the local port is not set. */ 5301 if (lport == 0) 5302 lport = connp->conn_lport; 5303 error = ip_bind_connected_v4(connp, ire_mpp, protocol, 5304 src_addrp, lport, dst_addr, fport, fanout_insert, verify_dst, cr); 5305 if (error == 0) { 5306 ip_bind_post_handling(connp, ire_mpp ? *ire_mpp : NULL, 5307 ire_requested); 5308 } else if (error < 0) { 5309 error = -TBADADDR; 5310 } 5311 return (error); 5312 } 5313 5314 /* 5315 * Get the ire in *mpp. Returns false if it fails (due to lack of space). 5316 * Prefers dst_ire over src_ire. 5317 */ 5318 static boolean_t 5319 ip_bind_get_ire_v4(mblk_t **mpp, ire_t *ire, iulp_t *ulp_info, ip_stack_t *ipst) 5320 { 5321 mblk_t *mp = *mpp; 5322 ire_t *ret_ire; 5323 5324 ASSERT(mp != NULL); 5325 5326 if (ire != NULL) { 5327 /* 5328 * mp initialized above to IRE_DB_REQ_TYPE 5329 * appended mblk. Its <upper protocol>'s 5330 * job to make sure there is room. 5331 */ 5332 if ((mp->b_datap->db_lim - mp->b_rptr) < sizeof (ire_t)) 5333 return (B_FALSE); 5334 5335 mp->b_datap->db_type = IRE_DB_TYPE; 5336 mp->b_wptr = mp->b_rptr + sizeof (ire_t); 5337 bcopy(ire, mp->b_rptr, sizeof (ire_t)); 5338 ret_ire = (ire_t *)mp->b_rptr; 5339 /* 5340 * Pass the latest setting of the ip_path_mtu_discovery and 5341 * copy the ulp info if any. 5342 */ 5343 ret_ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? 5344 IPH_DF : 0; 5345 if (ulp_info != NULL) { 5346 bcopy(ulp_info, &(ret_ire->ire_uinfo), 5347 sizeof (iulp_t)); 5348 } 5349 ret_ire->ire_mp = mp; 5350 } else { 5351 /* 5352 * No IRE was found. Remove IRE mblk. 5353 */ 5354 *mpp = mp->b_cont; 5355 freeb(mp); 5356 } 5357 return (B_TRUE); 5358 } 5359 5360 /* 5361 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 5362 * the final piece where we don't. Return a pointer to the first mblk in the 5363 * result, and update the pointer to the next mblk to chew on. If anything 5364 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 5365 * NULL pointer. 5366 */ 5367 mblk_t * 5368 ip_carve_mp(mblk_t **mpp, ssize_t len) 5369 { 5370 mblk_t *mp0; 5371 mblk_t *mp1; 5372 mblk_t *mp2; 5373 5374 if (!len || !mpp || !(mp0 = *mpp)) 5375 return (NULL); 5376 /* If we aren't going to consume the first mblk, we need a dup. */ 5377 if (mp0->b_wptr - mp0->b_rptr > len) { 5378 mp1 = dupb(mp0); 5379 if (mp1) { 5380 /* Partition the data between the two mblks. */ 5381 mp1->b_wptr = mp1->b_rptr + len; 5382 mp0->b_rptr = mp1->b_wptr; 5383 /* 5384 * after adjustments if mblk not consumed is now 5385 * unaligned, try to align it. If this fails free 5386 * all messages and let upper layer recover. 5387 */ 5388 if (!OK_32PTR(mp0->b_rptr)) { 5389 if (!pullupmsg(mp0, -1)) { 5390 freemsg(mp0); 5391 freemsg(mp1); 5392 *mpp = NULL; 5393 return (NULL); 5394 } 5395 } 5396 } 5397 return (mp1); 5398 } 5399 /* Eat through as many mblks as we need to get len bytes. */ 5400 len -= mp0->b_wptr - mp0->b_rptr; 5401 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 5402 if (mp2->b_wptr - mp2->b_rptr > len) { 5403 /* 5404 * We won't consume the entire last mblk. Like 5405 * above, dup and partition it. 5406 */ 5407 mp1->b_cont = dupb(mp2); 5408 mp1 = mp1->b_cont; 5409 if (!mp1) { 5410 /* 5411 * Trouble. Rather than go to a lot of 5412 * trouble to clean up, we free the messages. 5413 * This won't be any worse than losing it on 5414 * the wire. 5415 */ 5416 freemsg(mp0); 5417 freemsg(mp2); 5418 *mpp = NULL; 5419 return (NULL); 5420 } 5421 mp1->b_wptr = mp1->b_rptr + len; 5422 mp2->b_rptr = mp1->b_wptr; 5423 /* 5424 * after adjustments if mblk not consumed is now 5425 * unaligned, try to align it. If this fails free 5426 * all messages and let upper layer recover. 5427 */ 5428 if (!OK_32PTR(mp2->b_rptr)) { 5429 if (!pullupmsg(mp2, -1)) { 5430 freemsg(mp0); 5431 freemsg(mp2); 5432 *mpp = NULL; 5433 return (NULL); 5434 } 5435 } 5436 *mpp = mp2; 5437 return (mp0); 5438 } 5439 /* Decrement len by the amount we just got. */ 5440 len -= mp2->b_wptr - mp2->b_rptr; 5441 } 5442 /* 5443 * len should be reduced to zero now. If not our caller has 5444 * screwed up. 5445 */ 5446 if (len) { 5447 /* Shouldn't happen! */ 5448 freemsg(mp0); 5449 *mpp = NULL; 5450 return (NULL); 5451 } 5452 /* 5453 * We consumed up to exactly the end of an mblk. Detach the part 5454 * we are returning from the rest of the chain. 5455 */ 5456 mp1->b_cont = NULL; 5457 *mpp = mp2; 5458 return (mp0); 5459 } 5460 5461 /* The ill stream is being unplumbed. Called from ip_close */ 5462 int 5463 ip_modclose(ill_t *ill) 5464 { 5465 boolean_t success; 5466 ipsq_t *ipsq; 5467 ipif_t *ipif; 5468 queue_t *q = ill->ill_rq; 5469 ip_stack_t *ipst = ill->ill_ipst; 5470 int i; 5471 5472 /* 5473 * The punlink prior to this may have initiated a capability 5474 * negotiation. But ipsq_enter will block until that finishes or 5475 * times out. 5476 */ 5477 success = ipsq_enter(ill, B_FALSE, NEW_OP); 5478 5479 /* 5480 * Open/close/push/pop is guaranteed to be single threaded 5481 * per stream by STREAMS. FS guarantees that all references 5482 * from top are gone before close is called. So there can't 5483 * be another close thread that has set CONDEMNED on this ill. 5484 * and cause ipsq_enter to return failure. 5485 */ 5486 ASSERT(success); 5487 ipsq = ill->ill_phyint->phyint_ipsq; 5488 5489 /* 5490 * Mark it condemned. No new reference will be made to this ill. 5491 * Lookup functions will return an error. Threads that try to 5492 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5493 * that the refcnt will drop down to zero. 5494 */ 5495 mutex_enter(&ill->ill_lock); 5496 ill->ill_state_flags |= ILL_CONDEMNED; 5497 for (ipif = ill->ill_ipif; ipif != NULL; 5498 ipif = ipif->ipif_next) { 5499 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5500 } 5501 /* 5502 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5503 * returns error if ILL_CONDEMNED is set 5504 */ 5505 cv_broadcast(&ill->ill_cv); 5506 mutex_exit(&ill->ill_lock); 5507 5508 /* 5509 * Send all the deferred DLPI messages downstream which came in 5510 * during the small window right before ipsq_enter(). We do this 5511 * without waiting for the ACKs because all the ACKs for M_PROTO 5512 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 5513 */ 5514 ill_dlpi_send_deferred(ill); 5515 5516 /* 5517 * Shut down fragmentation reassembly. 5518 * ill_frag_timer won't start a timer again. 5519 * Now cancel any existing timer 5520 */ 5521 (void) untimeout(ill->ill_frag_timer_id); 5522 (void) ill_frag_timeout(ill, 0); 5523 5524 /* 5525 * Call ill_delete to bring down the ipifs, ilms and ill on 5526 * this ill. Then wait for the refcnts to drop to zero. 5527 * ill_is_freeable checks whether the ill is really quiescent. 5528 * Then make sure that threads that are waiting to enter the 5529 * ipsq have seen the error returned by ipsq_enter and have 5530 * gone away. Then we call ill_delete_tail which does the 5531 * DL_UNBIND_REQ with the driver and then qprocsoff. 5532 */ 5533 ill_delete(ill); 5534 mutex_enter(&ill->ill_lock); 5535 while (!ill_is_freeable(ill)) 5536 cv_wait(&ill->ill_cv, &ill->ill_lock); 5537 while (ill->ill_waiters) 5538 cv_wait(&ill->ill_cv, &ill->ill_lock); 5539 5540 mutex_exit(&ill->ill_lock); 5541 5542 /* 5543 * ill_delete_tail drops reference on ill_ipst, but we need to keep 5544 * it held until the end of the function since the cleanup 5545 * below needs to be able to use the ip_stack_t. 5546 */ 5547 netstack_hold(ipst->ips_netstack); 5548 5549 /* qprocsoff is done via ill_delete_tail */ 5550 ill_delete_tail(ill); 5551 ASSERT(ill->ill_ipst == NULL); 5552 5553 /* 5554 * Walk through all upper (conn) streams and qenable 5555 * those that have queued data. 5556 * close synchronization needs this to 5557 * be done to ensure that all upper layers blocked 5558 * due to flow control to the closing device 5559 * get unblocked. 5560 */ 5561 ip1dbg(("ip_wsrv: walking\n")); 5562 for (i = 0; i < TX_FANOUT_SIZE; i++) { 5563 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[i]); 5564 } 5565 5566 mutex_enter(&ipst->ips_ip_mi_lock); 5567 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 5568 mutex_exit(&ipst->ips_ip_mi_lock); 5569 5570 /* 5571 * credp could be null if the open didn't succeed and ip_modopen 5572 * itself calls ip_close. 5573 */ 5574 if (ill->ill_credp != NULL) 5575 crfree(ill->ill_credp); 5576 5577 /* 5578 * Now we are done with the module close pieces that 5579 * need the netstack_t. 5580 */ 5581 netstack_rele(ipst->ips_netstack); 5582 5583 mi_close_free((IDP)ill); 5584 q->q_ptr = WR(q)->q_ptr = NULL; 5585 5586 ipsq_exit(ipsq); 5587 5588 return (0); 5589 } 5590 5591 /* 5592 * This is called as part of close() for IP, UDP, ICMP, and RTS 5593 * in order to quiesce the conn. 5594 */ 5595 void 5596 ip_quiesce_conn(conn_t *connp) 5597 { 5598 boolean_t drain_cleanup_reqd = B_FALSE; 5599 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5600 boolean_t ilg_cleanup_reqd = B_FALSE; 5601 ip_stack_t *ipst; 5602 5603 ASSERT(!IPCL_IS_TCP(connp)); 5604 ipst = connp->conn_netstack->netstack_ip; 5605 5606 /* 5607 * Mark the conn as closing, and this conn must not be 5608 * inserted in future into any list. Eg. conn_drain_insert(), 5609 * won't insert this conn into the conn_drain_list. 5610 * Similarly ill_pending_mp_add() will not add any mp to 5611 * the pending mp list, after this conn has started closing. 5612 * 5613 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5614 * cannot get set henceforth. 5615 */ 5616 mutex_enter(&connp->conn_lock); 5617 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5618 connp->conn_state_flags |= CONN_CLOSING; 5619 if (connp->conn_idl != NULL) 5620 drain_cleanup_reqd = B_TRUE; 5621 if (connp->conn_oper_pending_ill != NULL) 5622 conn_ioctl_cleanup_reqd = B_TRUE; 5623 if (connp->conn_dhcpinit_ill != NULL) { 5624 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0); 5625 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit); 5626 connp->conn_dhcpinit_ill = NULL; 5627 } 5628 if (connp->conn_ilg_inuse != 0) 5629 ilg_cleanup_reqd = B_TRUE; 5630 mutex_exit(&connp->conn_lock); 5631 5632 if (conn_ioctl_cleanup_reqd) 5633 conn_ioctl_cleanup(connp); 5634 5635 if (is_system_labeled() && connp->conn_anon_port) { 5636 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5637 connp->conn_mlp_type, connp->conn_ulp, 5638 ntohs(connp->conn_lport), B_FALSE); 5639 connp->conn_anon_port = 0; 5640 } 5641 connp->conn_mlp_type = mlptSingle; 5642 5643 /* 5644 * Remove this conn from any fanout list it is on. 5645 * and then wait for any threads currently operating 5646 * on this endpoint to finish 5647 */ 5648 ipcl_hash_remove(connp); 5649 5650 /* 5651 * Remove this conn from the drain list, and do 5652 * any other cleanup that may be required. 5653 * (Only non-tcp streams may have a non-null conn_idl. 5654 * TCP streams are never flow controlled, and 5655 * conn_idl will be null) 5656 */ 5657 if (drain_cleanup_reqd) 5658 conn_drain_tail(connp, B_TRUE); 5659 5660 if (connp == ipst->ips_ip_g_mrouter) 5661 (void) ip_mrouter_done(NULL, ipst); 5662 5663 if (ilg_cleanup_reqd) 5664 ilg_delete_all(connp); 5665 5666 conn_delete_ire(connp, NULL); 5667 5668 /* 5669 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5670 * callers from write side can't be there now because close 5671 * is in progress. The only other caller is ipcl_walk 5672 * which checks for the condemned flag. 5673 */ 5674 mutex_enter(&connp->conn_lock); 5675 connp->conn_state_flags |= CONN_CONDEMNED; 5676 while (connp->conn_ref != 1) 5677 cv_wait(&connp->conn_cv, &connp->conn_lock); 5678 connp->conn_state_flags |= CONN_QUIESCED; 5679 mutex_exit(&connp->conn_lock); 5680 } 5681 5682 /* ARGSUSED */ 5683 int 5684 ip_close(queue_t *q, int flags) 5685 { 5686 conn_t *connp; 5687 5688 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5689 5690 /* 5691 * Call the appropriate delete routine depending on whether this is 5692 * a module or device. 5693 */ 5694 if (WR(q)->q_next != NULL) { 5695 /* This is a module close */ 5696 return (ip_modclose((ill_t *)q->q_ptr)); 5697 } 5698 5699 connp = q->q_ptr; 5700 ip_quiesce_conn(connp); 5701 5702 qprocsoff(q); 5703 5704 /* 5705 * Now we are truly single threaded on this stream, and can 5706 * delete the things hanging off the connp, and finally the connp. 5707 * We removed this connp from the fanout list, it cannot be 5708 * accessed thru the fanouts, and we already waited for the 5709 * conn_ref to drop to 0. We are already in close, so 5710 * there cannot be any other thread from the top. qprocsoff 5711 * has completed, and service has completed or won't run in 5712 * future. 5713 */ 5714 ASSERT(connp->conn_ref == 1); 5715 5716 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 5717 5718 connp->conn_ref--; 5719 ipcl_conn_destroy(connp); 5720 5721 q->q_ptr = WR(q)->q_ptr = NULL; 5722 return (0); 5723 } 5724 5725 /* 5726 * Wapper around putnext() so that ip_rts_request can merely use 5727 * conn_recv. 5728 */ 5729 /*ARGSUSED2*/ 5730 static void 5731 ip_conn_input(void *arg1, mblk_t *mp, void *arg2) 5732 { 5733 conn_t *connp = (conn_t *)arg1; 5734 5735 putnext(connp->conn_rq, mp); 5736 } 5737 5738 /* 5739 * Called when the module is about to be unloaded 5740 */ 5741 void 5742 ip_ddi_destroy(void) 5743 { 5744 tnet_fini(); 5745 5746 icmp_ddi_g_destroy(); 5747 rts_ddi_g_destroy(); 5748 udp_ddi_g_destroy(); 5749 sctp_ddi_g_destroy(); 5750 tcp_ddi_g_destroy(); 5751 ipsec_policy_g_destroy(); 5752 ipcl_g_destroy(); 5753 ip_net_g_destroy(); 5754 ip_ire_g_fini(); 5755 inet_minor_destroy(ip_minor_arena_sa); 5756 #if defined(_LP64) 5757 inet_minor_destroy(ip_minor_arena_la); 5758 #endif 5759 5760 #ifdef DEBUG 5761 list_destroy(&ip_thread_list); 5762 rw_destroy(&ip_thread_rwlock); 5763 tsd_destroy(&ip_thread_data); 5764 #endif 5765 5766 netstack_unregister(NS_IP); 5767 } 5768 5769 /* 5770 * First step in cleanup. 5771 */ 5772 /* ARGSUSED */ 5773 static void 5774 ip_stack_shutdown(netstackid_t stackid, void *arg) 5775 { 5776 ip_stack_t *ipst = (ip_stack_t *)arg; 5777 5778 #ifdef NS_DEBUG 5779 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 5780 #endif 5781 5782 /* Get rid of loopback interfaces and their IREs */ 5783 ip_loopback_cleanup(ipst); 5784 5785 /* 5786 * The *_hook_shutdown()s start the process of notifying any 5787 * consumers that things are going away.... nothing is destroyed. 5788 */ 5789 ipv4_hook_shutdown(ipst); 5790 ipv6_hook_shutdown(ipst); 5791 5792 mutex_enter(&ipst->ips_capab_taskq_lock); 5793 ipst->ips_capab_taskq_quit = B_TRUE; 5794 cv_signal(&ipst->ips_capab_taskq_cv); 5795 mutex_exit(&ipst->ips_capab_taskq_lock); 5796 5797 mutex_enter(&ipst->ips_mrt_lock); 5798 ipst->ips_mrt_flags |= IP_MRT_STOP; 5799 cv_signal(&ipst->ips_mrt_cv); 5800 mutex_exit(&ipst->ips_mrt_lock); 5801 } 5802 5803 /* 5804 * Free the IP stack instance. 5805 */ 5806 static void 5807 ip_stack_fini(netstackid_t stackid, void *arg) 5808 { 5809 ip_stack_t *ipst = (ip_stack_t *)arg; 5810 int ret; 5811 5812 #ifdef NS_DEBUG 5813 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 5814 #endif 5815 /* 5816 * At this point, all of the notifications that the events and 5817 * protocols are going away have been run, meaning that we can 5818 * now set about starting to clean things up. 5819 */ 5820 ipv4_hook_destroy(ipst); 5821 ipv6_hook_destroy(ipst); 5822 ip_net_destroy(ipst); 5823 5824 mutex_destroy(&ipst->ips_capab_taskq_lock); 5825 cv_destroy(&ipst->ips_capab_taskq_cv); 5826 5827 mutex_enter(&ipst->ips_mrt_lock); 5828 while (!(ipst->ips_mrt_flags & IP_MRT_DONE)) 5829 cv_wait(&ipst->ips_mrt_done_cv, &ipst->ips_mrt_lock); 5830 mutex_destroy(&ipst->ips_mrt_lock); 5831 cv_destroy(&ipst->ips_mrt_cv); 5832 cv_destroy(&ipst->ips_mrt_done_cv); 5833 5834 ipmp_destroy(ipst); 5835 rw_destroy(&ipst->ips_srcid_lock); 5836 5837 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 5838 ipst->ips_ip_mibkp = NULL; 5839 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 5840 ipst->ips_icmp_mibkp = NULL; 5841 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 5842 ipst->ips_ip_kstat = NULL; 5843 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 5844 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 5845 ipst->ips_ip6_kstat = NULL; 5846 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 5847 5848 nd_free(&ipst->ips_ip_g_nd); 5849 kmem_free(ipst->ips_param_arr, sizeof (lcl_param_arr)); 5850 ipst->ips_param_arr = NULL; 5851 kmem_free(ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5852 ipst->ips_ndp_arr = NULL; 5853 5854 ip_mrouter_stack_destroy(ipst); 5855 5856 mutex_destroy(&ipst->ips_ip_mi_lock); 5857 rw_destroy(&ipst->ips_ipsec_capab_ills_lock); 5858 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 5859 rw_destroy(&ipst->ips_ip_g_nd_lock); 5860 5861 ret = untimeout(ipst->ips_igmp_timeout_id); 5862 if (ret == -1) { 5863 ASSERT(ipst->ips_igmp_timeout_id == 0); 5864 } else { 5865 ASSERT(ipst->ips_igmp_timeout_id != 0); 5866 ipst->ips_igmp_timeout_id = 0; 5867 } 5868 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 5869 if (ret == -1) { 5870 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 5871 } else { 5872 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 5873 ipst->ips_igmp_slowtimeout_id = 0; 5874 } 5875 ret = untimeout(ipst->ips_mld_timeout_id); 5876 if (ret == -1) { 5877 ASSERT(ipst->ips_mld_timeout_id == 0); 5878 } else { 5879 ASSERT(ipst->ips_mld_timeout_id != 0); 5880 ipst->ips_mld_timeout_id = 0; 5881 } 5882 ret = untimeout(ipst->ips_mld_slowtimeout_id); 5883 if (ret == -1) { 5884 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 5885 } else { 5886 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 5887 ipst->ips_mld_slowtimeout_id = 0; 5888 } 5889 ret = untimeout(ipst->ips_ip_ire_expire_id); 5890 if (ret == -1) { 5891 ASSERT(ipst->ips_ip_ire_expire_id == 0); 5892 } else { 5893 ASSERT(ipst->ips_ip_ire_expire_id != 0); 5894 ipst->ips_ip_ire_expire_id = 0; 5895 } 5896 5897 mutex_destroy(&ipst->ips_igmp_timer_lock); 5898 mutex_destroy(&ipst->ips_mld_timer_lock); 5899 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 5900 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 5901 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 5902 rw_destroy(&ipst->ips_ill_g_lock); 5903 5904 ipobs_fini(ipst); 5905 ip_ire_fini(ipst); 5906 ip6_asp_free(ipst); 5907 conn_drain_fini(ipst); 5908 ipcl_destroy(ipst); 5909 5910 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 5911 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 5912 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 5913 ipst->ips_ndp4 = NULL; 5914 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 5915 ipst->ips_ndp6 = NULL; 5916 5917 if (ipst->ips_loopback_ksp != NULL) { 5918 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 5919 ipst->ips_loopback_ksp = NULL; 5920 } 5921 5922 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 5923 ipst->ips_phyint_g_list = NULL; 5924 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 5925 ipst->ips_ill_g_heads = NULL; 5926 5927 ldi_ident_release(ipst->ips_ldi_ident); 5928 kmem_free(ipst, sizeof (*ipst)); 5929 } 5930 5931 /* 5932 * This function is called from the TSD destructor, and is used to debug 5933 * reference count issues in IP. See block comment in <inet/ip_if.h> for 5934 * details. 5935 */ 5936 static void 5937 ip_thread_exit(void *phash) 5938 { 5939 th_hash_t *thh = phash; 5940 5941 rw_enter(&ip_thread_rwlock, RW_WRITER); 5942 list_remove(&ip_thread_list, thh); 5943 rw_exit(&ip_thread_rwlock); 5944 mod_hash_destroy_hash(thh->thh_hash); 5945 kmem_free(thh, sizeof (*thh)); 5946 } 5947 5948 /* 5949 * Called when the IP kernel module is loaded into the kernel 5950 */ 5951 void 5952 ip_ddi_init(void) 5953 { 5954 ip_squeue_flag = ip_squeue_switch(ip_squeue_enter); 5955 5956 /* 5957 * For IP and TCP the minor numbers should start from 2 since we have 4 5958 * initial devices: ip, ip6, tcp, tcp6. 5959 */ 5960 /* 5961 * If this is a 64-bit kernel, then create two separate arenas - 5962 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the 5963 * other for socket apps in the range 2^^18 through 2^^32-1. 5964 */ 5965 ip_minor_arena_la = NULL; 5966 ip_minor_arena_sa = NULL; 5967 #if defined(_LP64) 5968 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 5969 INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) { 5970 cmn_err(CE_PANIC, 5971 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 5972 } 5973 if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la", 5974 MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) { 5975 cmn_err(CE_PANIC, 5976 "ip_ddi_init: ip_minor_arena_la creation failed\n"); 5977 } 5978 #else 5979 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 5980 INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) { 5981 cmn_err(CE_PANIC, 5982 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 5983 } 5984 #endif 5985 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5986 5987 ipcl_g_init(); 5988 ip_ire_g_init(); 5989 ip_net_g_init(); 5990 5991 #ifdef DEBUG 5992 tsd_create(&ip_thread_data, ip_thread_exit); 5993 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL); 5994 list_create(&ip_thread_list, sizeof (th_hash_t), 5995 offsetof(th_hash_t, thh_link)); 5996 #endif 5997 5998 /* 5999 * We want to be informed each time a stack is created or 6000 * destroyed in the kernel, so we can maintain the 6001 * set of udp_stack_t's. 6002 */ 6003 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 6004 ip_stack_fini); 6005 6006 ipsec_policy_g_init(); 6007 tcp_ddi_g_init(); 6008 sctp_ddi_g_init(); 6009 6010 tnet_init(); 6011 6012 udp_ddi_g_init(); 6013 rts_ddi_g_init(); 6014 icmp_ddi_g_init(); 6015 } 6016 6017 /* 6018 * Initialize the IP stack instance. 6019 */ 6020 static void * 6021 ip_stack_init(netstackid_t stackid, netstack_t *ns) 6022 { 6023 ip_stack_t *ipst; 6024 ipparam_t *pa; 6025 ipndp_t *na; 6026 major_t major; 6027 6028 #ifdef NS_DEBUG 6029 printf("ip_stack_init(stack %d)\n", stackid); 6030 #endif 6031 6032 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 6033 ipst->ips_netstack = ns; 6034 6035 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 6036 KM_SLEEP); 6037 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 6038 KM_SLEEP); 6039 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 6040 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 6041 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 6042 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 6043 6044 rw_init(&ipst->ips_ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 6045 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 6046 ipst->ips_igmp_deferred_next = INFINITY; 6047 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 6048 ipst->ips_mld_deferred_next = INFINITY; 6049 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 6050 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 6051 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 6052 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 6053 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 6054 rw_init(&ipst->ips_ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 6055 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 6056 6057 ipcl_init(ipst); 6058 ip_ire_init(ipst); 6059 ip6_asp_init(ipst); 6060 ipif_init(ipst); 6061 conn_drain_init(ipst); 6062 ip_mrouter_stack_init(ipst); 6063 6064 ipst->ips_ip_g_frag_timeout = IP_FRAG_TIMEOUT; 6065 ipst->ips_ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 6066 ipst->ips_ipv6_frag_timeout = IPV6_FRAG_TIMEOUT; 6067 ipst->ips_ipv6_frag_timo_ms = IPV6_FRAG_TIMEOUT * 1000; 6068 6069 ipst->ips_ip_multirt_log_interval = 1000; 6070 6071 ipst->ips_ip_g_forward = IP_FORWARD_DEFAULT; 6072 ipst->ips_ipv6_forward = IP_FORWARD_DEFAULT; 6073 ipst->ips_ill_index = 1; 6074 6075 ipst->ips_saved_ip_g_forward = -1; 6076 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 6077 6078 pa = (ipparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP); 6079 ipst->ips_param_arr = pa; 6080 bcopy(lcl_param_arr, ipst->ips_param_arr, sizeof (lcl_param_arr)); 6081 6082 na = (ipndp_t *)kmem_alloc(sizeof (lcl_ndp_arr), KM_SLEEP); 6083 ipst->ips_ndp_arr = na; 6084 bcopy(lcl_ndp_arr, ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 6085 ipst->ips_ndp_arr[IPNDP_IP_FORWARDING_OFFSET].ip_ndp_data = 6086 (caddr_t)&ipst->ips_ip_g_forward; 6087 ipst->ips_ndp_arr[IPNDP_IP6_FORWARDING_OFFSET].ip_ndp_data = 6088 (caddr_t)&ipst->ips_ipv6_forward; 6089 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_name, 6090 "ip_cgtp_filter") == 0); 6091 ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_data = 6092 (caddr_t)&ipst->ips_ip_cgtp_filter; 6093 6094 (void) ip_param_register(&ipst->ips_ip_g_nd, 6095 ipst->ips_param_arr, A_CNT(lcl_param_arr), 6096 ipst->ips_ndp_arr, A_CNT(lcl_ndp_arr)); 6097 6098 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 6099 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 6100 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 6101 ipst->ips_ip6_kstat = 6102 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 6103 6104 ipst->ips_ip_src_id = 1; 6105 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 6106 6107 ipobs_init(ipst); 6108 ip_net_init(ipst, ns); 6109 ipv4_hook_init(ipst); 6110 ipv6_hook_init(ipst); 6111 ipmp_init(ipst); 6112 6113 /* 6114 * Create the taskq dispatcher thread and initialize related stuff. 6115 */ 6116 ipst->ips_capab_taskq_thread = thread_create(NULL, 0, 6117 ill_taskq_dispatch, ipst, 0, &p0, TS_RUN, minclsyspri); 6118 mutex_init(&ipst->ips_capab_taskq_lock, NULL, MUTEX_DEFAULT, NULL); 6119 cv_init(&ipst->ips_capab_taskq_cv, NULL, CV_DEFAULT, NULL); 6120 6121 /* 6122 * Create the mcast_restart_timers_thread() worker thread. 6123 */ 6124 mutex_init(&ipst->ips_mrt_lock, NULL, MUTEX_DEFAULT, NULL); 6125 cv_init(&ipst->ips_mrt_cv, NULL, CV_DEFAULT, NULL); 6126 cv_init(&ipst->ips_mrt_done_cv, NULL, CV_DEFAULT, NULL); 6127 ipst->ips_mrt_thread = thread_create(NULL, 0, 6128 mcast_restart_timers_thread, ipst, 0, &p0, TS_RUN, minclsyspri); 6129 6130 major = mod_name_to_major(INET_NAME); 6131 (void) ldi_ident_from_major(major, &ipst->ips_ldi_ident); 6132 return (ipst); 6133 } 6134 6135 /* 6136 * Allocate and initialize a DLPI template of the specified length. (May be 6137 * called as writer.) 6138 */ 6139 mblk_t * 6140 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 6141 { 6142 mblk_t *mp; 6143 6144 mp = allocb(len, BPRI_MED); 6145 if (!mp) 6146 return (NULL); 6147 6148 /* 6149 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 6150 * of which we don't seem to use) are sent with M_PCPROTO, and 6151 * that other DLPI are M_PROTO. 6152 */ 6153 if (prim == DL_INFO_REQ) { 6154 mp->b_datap->db_type = M_PCPROTO; 6155 } else { 6156 mp->b_datap->db_type = M_PROTO; 6157 } 6158 6159 mp->b_wptr = mp->b_rptr + len; 6160 bzero(mp->b_rptr, len); 6161 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 6162 return (mp); 6163 } 6164 6165 /* 6166 * Allocate and initialize a DLPI notification. (May be called as writer.) 6167 */ 6168 mblk_t * 6169 ip_dlnotify_alloc(uint_t notification, uint_t data) 6170 { 6171 dl_notify_ind_t *notifyp; 6172 mblk_t *mp; 6173 6174 if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL) 6175 return (NULL); 6176 6177 notifyp = (dl_notify_ind_t *)mp->b_rptr; 6178 notifyp->dl_notification = notification; 6179 notifyp->dl_data = data; 6180 return (mp); 6181 } 6182 6183 /* 6184 * Debug formatting routine. Returns a character string representation of the 6185 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 6186 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 6187 * 6188 * Once the ndd table-printing interfaces are removed, this can be changed to 6189 * standard dotted-decimal form. 6190 */ 6191 char * 6192 ip_dot_addr(ipaddr_t addr, char *buf) 6193 { 6194 uint8_t *ap = (uint8_t *)&addr; 6195 6196 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 6197 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 6198 return (buf); 6199 } 6200 6201 /* 6202 * Write the given MAC address as a printable string in the usual colon- 6203 * separated format. 6204 */ 6205 const char * 6206 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 6207 { 6208 char *bp; 6209 6210 if (alen == 0 || buflen < 4) 6211 return ("?"); 6212 bp = buf; 6213 for (;;) { 6214 /* 6215 * If there are more MAC address bytes available, but we won't 6216 * have any room to print them, then add "..." to the string 6217 * instead. See below for the 'magic number' explanation. 6218 */ 6219 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 6220 (void) strcpy(bp, "..."); 6221 break; 6222 } 6223 (void) sprintf(bp, "%02x", *addr++); 6224 bp += 2; 6225 if (--alen == 0) 6226 break; 6227 *bp++ = ':'; 6228 buflen -= 3; 6229 /* 6230 * At this point, based on the first 'if' statement above, 6231 * either alen == 1 and buflen >= 3, or alen > 1 and 6232 * buflen >= 4. The first case leaves room for the final "xx" 6233 * number and trailing NUL byte. The second leaves room for at 6234 * least "...". Thus the apparently 'magic' numbers chosen for 6235 * that statement. 6236 */ 6237 } 6238 return (buf); 6239 } 6240 6241 /* 6242 * Send an ICMP error after patching up the packet appropriately. Returns 6243 * non-zero if the appropriate MIB should be bumped; zero otherwise. 6244 */ 6245 static boolean_t 6246 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 6247 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, 6248 zoneid_t zoneid, ip_stack_t *ipst) 6249 { 6250 ipha_t *ipha; 6251 mblk_t *first_mp; 6252 boolean_t secure; 6253 unsigned char db_type; 6254 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6255 6256 first_mp = mp; 6257 if (mctl_present) { 6258 mp = mp->b_cont; 6259 secure = ipsec_in_is_secure(first_mp); 6260 ASSERT(mp != NULL); 6261 } else { 6262 /* 6263 * If this is an ICMP error being reported - which goes 6264 * up as M_CTLs, we need to convert them to M_DATA till 6265 * we finish checking with global policy because 6266 * ipsec_check_global_policy() assumes M_DATA as clear 6267 * and M_CTL as secure. 6268 */ 6269 db_type = DB_TYPE(mp); 6270 DB_TYPE(mp) = M_DATA; 6271 secure = B_FALSE; 6272 } 6273 /* 6274 * We are generating an icmp error for some inbound packet. 6275 * Called from all ip_fanout_(udp, tcp, proto) functions. 6276 * Before we generate an error, check with global policy 6277 * to see whether this is allowed to enter the system. As 6278 * there is no "conn", we are checking with global policy. 6279 */ 6280 ipha = (ipha_t *)mp->b_rptr; 6281 if (secure || ipss->ipsec_inbound_v4_policy_present) { 6282 first_mp = ipsec_check_global_policy(first_mp, NULL, 6283 ipha, NULL, mctl_present, ipst->ips_netstack); 6284 if (first_mp == NULL) 6285 return (B_FALSE); 6286 } 6287 6288 if (!mctl_present) 6289 DB_TYPE(mp) = db_type; 6290 6291 if (flags & IP_FF_SEND_ICMP) { 6292 if (flags & IP_FF_HDR_COMPLETE) { 6293 if (ip_hdr_complete(ipha, zoneid, ipst)) { 6294 freemsg(first_mp); 6295 return (B_TRUE); 6296 } 6297 } 6298 if (flags & IP_FF_CKSUM) { 6299 /* 6300 * Have to correct checksum since 6301 * the packet might have been 6302 * fragmented and the reassembly code in ip_rput 6303 * does not restore the IP checksum. 6304 */ 6305 ipha->ipha_hdr_checksum = 0; 6306 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6307 } 6308 switch (icmp_type) { 6309 case ICMP_DEST_UNREACHABLE: 6310 icmp_unreachable(WR(q), first_mp, icmp_code, zoneid, 6311 ipst); 6312 break; 6313 default: 6314 freemsg(first_mp); 6315 break; 6316 } 6317 } else { 6318 freemsg(first_mp); 6319 return (B_FALSE); 6320 } 6321 6322 return (B_TRUE); 6323 } 6324 6325 /* 6326 * Used to send an ICMP error message when a packet is received for 6327 * a protocol that is not supported. The mblk passed as argument 6328 * is consumed by this function. 6329 */ 6330 void 6331 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid, 6332 ip_stack_t *ipst) 6333 { 6334 mblk_t *mp; 6335 ipha_t *ipha; 6336 ill_t *ill; 6337 ipsec_in_t *ii; 6338 6339 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6340 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6341 6342 mp = ipsec_mp->b_cont; 6343 ipsec_mp->b_cont = NULL; 6344 ipha = (ipha_t *)mp->b_rptr; 6345 /* Get ill from index in ipsec_in_t. */ 6346 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 6347 (IPH_HDR_VERSION(ipha) == IPV6_VERSION), NULL, NULL, NULL, NULL, 6348 ipst); 6349 if (ill != NULL) { 6350 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 6351 if (ip_fanout_send_icmp(q, mp, flags, 6352 ICMP_DEST_UNREACHABLE, 6353 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid, ipst)) { 6354 BUMP_MIB(ill->ill_ip_mib, 6355 ipIfStatsInUnknownProtos); 6356 } 6357 } else { 6358 if (ip_fanout_send_icmp_v6(q, mp, flags, 6359 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 6360 0, B_FALSE, zoneid, ipst)) { 6361 BUMP_MIB(ill->ill_ip_mib, 6362 ipIfStatsInUnknownProtos); 6363 } 6364 } 6365 ill_refrele(ill); 6366 } else { /* re-link for the freemsg() below. */ 6367 ipsec_mp->b_cont = mp; 6368 } 6369 6370 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 6371 freemsg(ipsec_mp); 6372 } 6373 6374 /* 6375 * See if the inbound datagram has had IPsec processing applied to it. 6376 */ 6377 boolean_t 6378 ipsec_in_is_secure(mblk_t *ipsec_mp) 6379 { 6380 ipsec_in_t *ii; 6381 6382 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6383 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6384 6385 if (ii->ipsec_in_loopback) { 6386 return (ii->ipsec_in_secure); 6387 } else { 6388 return (ii->ipsec_in_ah_sa != NULL || 6389 ii->ipsec_in_esp_sa != NULL || 6390 ii->ipsec_in_decaps); 6391 } 6392 } 6393 6394 /* 6395 * Handle protocols with which IP is less intimate. There 6396 * can be more than one stream bound to a particular 6397 * protocol. When this is the case, normally each one gets a copy 6398 * of any incoming packets. 6399 * 6400 * IPsec NOTE : 6401 * 6402 * Don't allow a secure packet going up a non-secure connection. 6403 * We don't allow this because 6404 * 6405 * 1) Reply might go out in clear which will be dropped at 6406 * the sending side. 6407 * 2) If the reply goes out in clear it will give the 6408 * adversary enough information for getting the key in 6409 * most of the cases. 6410 * 6411 * Moreover getting a secure packet when we expect clear 6412 * implies that SA's were added without checking for 6413 * policy on both ends. This should not happen once ISAKMP 6414 * is used to negotiate SAs as SAs will be added only after 6415 * verifying the policy. 6416 * 6417 * NOTE : If the packet was tunneled and not multicast we only send 6418 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 6419 * back to delivering packets to AF_INET6 raw sockets. 6420 * 6421 * IPQoS Notes: 6422 * Once we have determined the client, invoke IPPF processing. 6423 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6424 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6425 * ip_policy will be false. 6426 * 6427 * Zones notes: 6428 * Currently only applications in the global zone can create raw sockets for 6429 * protocols other than ICMP. So unlike the broadcast / multicast case of 6430 * ip_fanout_udp(), we only send a copy of the packet to streams in the 6431 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 6432 */ 6433 static void 6434 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 6435 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 6436 zoneid_t zoneid) 6437 { 6438 queue_t *rq; 6439 mblk_t *mp1, *first_mp1; 6440 uint_t protocol = ipha->ipha_protocol; 6441 ipaddr_t dst; 6442 boolean_t one_only; 6443 mblk_t *first_mp = mp; 6444 boolean_t secure; 6445 uint32_t ill_index; 6446 conn_t *connp, *first_connp, *next_connp; 6447 connf_t *connfp; 6448 boolean_t shared_addr; 6449 mib2_ipIfStatsEntry_t *mibptr; 6450 ip_stack_t *ipst = recv_ill->ill_ipst; 6451 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6452 6453 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 6454 if (mctl_present) { 6455 mp = first_mp->b_cont; 6456 secure = ipsec_in_is_secure(first_mp); 6457 ASSERT(mp != NULL); 6458 } else { 6459 secure = B_FALSE; 6460 } 6461 dst = ipha->ipha_dst; 6462 /* 6463 * If the packet was tunneled and not multicast we only send to it 6464 * the first match. 6465 */ 6466 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 6467 !CLASSD(dst)); 6468 6469 shared_addr = (zoneid == ALL_ZONES); 6470 if (shared_addr) { 6471 /* 6472 * We don't allow multilevel ports for raw IP, so no need to 6473 * check for that here. 6474 */ 6475 zoneid = tsol_packet_to_zoneid(mp); 6476 } 6477 6478 connfp = &ipst->ips_ipcl_proto_fanout[protocol]; 6479 mutex_enter(&connfp->connf_lock); 6480 connp = connfp->connf_head; 6481 for (connp = connfp->connf_head; connp != NULL; 6482 connp = connp->conn_next) { 6483 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 6484 zoneid) && 6485 (!is_system_labeled() || 6486 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6487 connp))) { 6488 break; 6489 } 6490 } 6491 6492 if (connp == NULL) { 6493 /* 6494 * No one bound to these addresses. Is 6495 * there a client that wants all 6496 * unclaimed datagrams? 6497 */ 6498 mutex_exit(&connfp->connf_lock); 6499 /* 6500 * Check for IPPROTO_ENCAP... 6501 */ 6502 if (protocol == IPPROTO_ENCAP && ipst->ips_ip_g_mrouter) { 6503 /* 6504 * If an IPsec mblk is here on a multicast 6505 * tunnel (using ip_mroute stuff), check policy here, 6506 * THEN ship off to ip_mroute_decap(). 6507 * 6508 * BTW, If I match a configured IP-in-IP 6509 * tunnel, this path will not be reached, and 6510 * ip_mroute_decap will never be called. 6511 */ 6512 first_mp = ipsec_check_global_policy(first_mp, connp, 6513 ipha, NULL, mctl_present, ipst->ips_netstack); 6514 if (first_mp != NULL) { 6515 if (mctl_present) 6516 freeb(first_mp); 6517 ip_mroute_decap(q, mp, ill); 6518 } /* Else we already freed everything! */ 6519 } else { 6520 /* 6521 * Otherwise send an ICMP protocol unreachable. 6522 */ 6523 if (ip_fanout_send_icmp(q, first_mp, flags, 6524 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 6525 mctl_present, zoneid, ipst)) { 6526 BUMP_MIB(mibptr, ipIfStatsInUnknownProtos); 6527 } 6528 } 6529 return; 6530 } 6531 6532 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 6533 6534 CONN_INC_REF(connp); 6535 first_connp = connp; 6536 6537 /* 6538 * Only send message to one tunnel driver by immediately 6539 * terminating the loop. 6540 */ 6541 connp = one_only ? NULL : connp->conn_next; 6542 6543 for (;;) { 6544 while (connp != NULL) { 6545 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 6546 flags, zoneid) && 6547 (!is_system_labeled() || 6548 tsol_receive_local(mp, &dst, IPV4_VERSION, 6549 shared_addr, connp))) 6550 break; 6551 connp = connp->conn_next; 6552 } 6553 6554 /* 6555 * Copy the packet. 6556 */ 6557 if (connp == NULL || 6558 (((first_mp1 = dupmsg(first_mp)) == NULL) && 6559 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 6560 /* 6561 * No more interested clients or memory 6562 * allocation failed 6563 */ 6564 connp = first_connp; 6565 break; 6566 } 6567 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 6568 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 6569 CONN_INC_REF(connp); 6570 mutex_exit(&connfp->connf_lock); 6571 rq = connp->conn_rq; 6572 6573 /* 6574 * Check flow control 6575 */ 6576 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 6577 (!IPCL_IS_NONSTR(connp) && !canputnext(rq))) { 6578 if (flags & IP_FF_RAWIP) { 6579 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6580 } else { 6581 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6582 } 6583 6584 freemsg(first_mp1); 6585 } else { 6586 /* 6587 * Don't enforce here if we're an actual tunnel - 6588 * let "tun" do it instead. 6589 */ 6590 if (!IPCL_IS_IPTUN(connp) && 6591 (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 6592 secure)) { 6593 first_mp1 = ipsec_check_inbound_policy 6594 (first_mp1, connp, ipha, NULL, 6595 mctl_present); 6596 } 6597 if (first_mp1 != NULL) { 6598 int in_flags = 0; 6599 /* 6600 * ip_fanout_proto also gets called from 6601 * icmp_inbound_error_fanout, in which case 6602 * the msg type is M_CTL. Don't add info 6603 * in this case for the time being. In future 6604 * when there is a need for knowing the 6605 * inbound iface index for ICMP error msgs, 6606 * then this can be changed. 6607 */ 6608 if (connp->conn_recvif) 6609 in_flags = IPF_RECVIF; 6610 /* 6611 * The ULP may support IP_RECVPKTINFO for both 6612 * IP v4 and v6 so pass the appropriate argument 6613 * based on conn IP version. 6614 */ 6615 if (connp->conn_ip_recvpktinfo) { 6616 if (connp->conn_af_isv6) { 6617 /* 6618 * V6 only needs index 6619 */ 6620 in_flags |= IPF_RECVIF; 6621 } else { 6622 /* 6623 * V4 needs index + 6624 * matching address. 6625 */ 6626 in_flags |= IPF_RECVADDR; 6627 } 6628 } 6629 if ((in_flags != 0) && 6630 (mp->b_datap->db_type != M_CTL)) { 6631 /* 6632 * the actual data will be 6633 * contained in b_cont upon 6634 * successful return of the 6635 * following call else 6636 * original mblk is returned 6637 */ 6638 ASSERT(recv_ill != NULL); 6639 mp1 = ip_add_info(mp1, recv_ill, 6640 in_flags, IPCL_ZONEID(connp), ipst); 6641 } 6642 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6643 if (mctl_present) 6644 freeb(first_mp1); 6645 (connp->conn_recv)(connp, mp1, NULL); 6646 } 6647 } 6648 mutex_enter(&connfp->connf_lock); 6649 /* Follow the next pointer before releasing the conn. */ 6650 next_connp = connp->conn_next; 6651 CONN_DEC_REF(connp); 6652 connp = next_connp; 6653 } 6654 6655 /* Last one. Send it upstream. */ 6656 mutex_exit(&connfp->connf_lock); 6657 6658 /* 6659 * If this packet is coming from icmp_inbound_error_fanout ip_policy 6660 * will be set to false. 6661 */ 6662 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6663 ill_index = ill->ill_phyint->phyint_ifindex; 6664 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6665 if (mp == NULL) { 6666 CONN_DEC_REF(connp); 6667 if (mctl_present) { 6668 freeb(first_mp); 6669 } 6670 return; 6671 } 6672 } 6673 6674 rq = connp->conn_rq; 6675 /* 6676 * Check flow control 6677 */ 6678 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 6679 (!IPCL_IS_NONSTR(connp) && !canputnext(rq))) { 6680 if (flags & IP_FF_RAWIP) { 6681 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6682 } else { 6683 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6684 } 6685 6686 freemsg(first_mp); 6687 } else { 6688 if (IPCL_IS_IPTUN(connp)) { 6689 /* 6690 * Tunneled packet. We enforce policy in the tunnel 6691 * module itself. 6692 * 6693 * Send the WHOLE packet up (incl. IPSEC_IN) without 6694 * a policy check. 6695 * FIXME to use conn_recv for tun later. 6696 */ 6697 putnext(rq, first_mp); 6698 CONN_DEC_REF(connp); 6699 return; 6700 } 6701 6702 if ((CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure)) { 6703 first_mp = ipsec_check_inbound_policy(first_mp, connp, 6704 ipha, NULL, mctl_present); 6705 } 6706 6707 if (first_mp != NULL) { 6708 int in_flags = 0; 6709 6710 /* 6711 * ip_fanout_proto also gets called 6712 * from icmp_inbound_error_fanout, in 6713 * which case the msg type is M_CTL. 6714 * Don't add info in this case for time 6715 * being. In future when there is a 6716 * need for knowing the inbound iface 6717 * index for ICMP error msgs, then this 6718 * can be changed 6719 */ 6720 if (connp->conn_recvif) 6721 in_flags = IPF_RECVIF; 6722 if (connp->conn_ip_recvpktinfo) { 6723 if (connp->conn_af_isv6) { 6724 /* 6725 * V6 only needs index 6726 */ 6727 in_flags |= IPF_RECVIF; 6728 } else { 6729 /* 6730 * V4 needs index + 6731 * matching address. 6732 */ 6733 in_flags |= IPF_RECVADDR; 6734 } 6735 } 6736 if ((in_flags != 0) && 6737 (mp->b_datap->db_type != M_CTL)) { 6738 6739 /* 6740 * the actual data will be contained in 6741 * b_cont upon successful return 6742 * of the following call else original 6743 * mblk is returned 6744 */ 6745 ASSERT(recv_ill != NULL); 6746 mp = ip_add_info(mp, recv_ill, 6747 in_flags, IPCL_ZONEID(connp), ipst); 6748 } 6749 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6750 (connp->conn_recv)(connp, mp, NULL); 6751 if (mctl_present) 6752 freeb(first_mp); 6753 } 6754 } 6755 CONN_DEC_REF(connp); 6756 } 6757 6758 /* 6759 * Serialize tcp resets by calling tcp_xmit_reset_serialize through 6760 * SQUEUE_ENTER_ONE(SQ_FILL). We do this to ensure the reset is handled on 6761 * the correct squeue, in this case the same squeue as a valid listener with 6762 * no current connection state for the packet we are processing. The function 6763 * is called for synchronizing both IPv4 and IPv6. 6764 */ 6765 void 6766 ip_xmit_reset_serialize(mblk_t *mp, int hdrlen, zoneid_t zoneid, 6767 tcp_stack_t *tcps, conn_t *connp) 6768 { 6769 mblk_t *rst_mp; 6770 tcp_xmit_reset_event_t *eventp; 6771 6772 rst_mp = allocb(sizeof (tcp_xmit_reset_event_t), BPRI_HI); 6773 6774 if (rst_mp == NULL) { 6775 freemsg(mp); 6776 return; 6777 } 6778 6779 rst_mp->b_datap->db_type = M_PROTO; 6780 rst_mp->b_wptr += sizeof (tcp_xmit_reset_event_t); 6781 6782 eventp = (tcp_xmit_reset_event_t *)rst_mp->b_rptr; 6783 eventp->tcp_xre_event = TCP_XRE_EVENT_IP_FANOUT_TCP; 6784 eventp->tcp_xre_iphdrlen = hdrlen; 6785 eventp->tcp_xre_zoneid = zoneid; 6786 eventp->tcp_xre_tcps = tcps; 6787 6788 rst_mp->b_cont = mp; 6789 mp = rst_mp; 6790 6791 /* 6792 * Increment the connref, this ref will be released by the squeue 6793 * framework. 6794 */ 6795 CONN_INC_REF(connp); 6796 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_xmit_reset, connp, 6797 SQ_FILL, SQTAG_XMIT_EARLY_RESET); 6798 } 6799 6800 /* 6801 * Fanout for TCP packets 6802 * The caller puts <fport, lport> in the ports parameter. 6803 * 6804 * IPQoS Notes 6805 * Before sending it to the client, invoke IPPF processing. 6806 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6807 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6808 * ip_policy is false. 6809 */ 6810 static void 6811 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6812 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6813 { 6814 mblk_t *first_mp; 6815 boolean_t secure; 6816 uint32_t ill_index; 6817 int ip_hdr_len; 6818 tcph_t *tcph; 6819 boolean_t syn_present = B_FALSE; 6820 conn_t *connp; 6821 ip_stack_t *ipst = recv_ill->ill_ipst; 6822 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6823 6824 ASSERT(recv_ill != NULL); 6825 6826 first_mp = mp; 6827 if (mctl_present) { 6828 ASSERT(first_mp->b_datap->db_type == M_CTL); 6829 mp = first_mp->b_cont; 6830 secure = ipsec_in_is_secure(first_mp); 6831 ASSERT(mp != NULL); 6832 } else { 6833 secure = B_FALSE; 6834 } 6835 6836 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6837 6838 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 6839 zoneid, ipst)) == NULL) { 6840 /* 6841 * No connected connection or listener. Send a 6842 * TH_RST via tcp_xmit_listeners_reset. 6843 */ 6844 6845 /* Initiate IPPf processing, if needed. */ 6846 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 6847 uint32_t ill_index; 6848 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6849 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6850 if (first_mp == NULL) 6851 return; 6852 } 6853 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6854 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6855 zoneid)); 6856 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6857 ipst->ips_netstack->netstack_tcp, NULL); 6858 return; 6859 } 6860 6861 /* 6862 * Allocate the SYN for the TCP connection here itself 6863 */ 6864 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6865 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6866 if (IPCL_IS_TCP(connp)) { 6867 squeue_t *sqp; 6868 6869 /* 6870 * If the queue belongs to a conn, and fused tcp 6871 * loopback is enabled, assign the eager's squeue 6872 * to be that of the active connect's. Note that 6873 * we don't check for IP_FF_LOOPBACK here since this 6874 * routine gets called only for loopback (unlike the 6875 * IPv6 counterpart). 6876 */ 6877 if (do_tcp_fusion && 6878 CONN_Q(q) && IPCL_IS_TCP(Q_TO_CONN(q)) && 6879 !CONN_INBOUND_POLICY_PRESENT(connp, ipss) && 6880 !secure && 6881 !IPP_ENABLED(IPP_LOCAL_IN, ipst) && !ip_policy) { 6882 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6883 sqp = Q_TO_CONN(q)->conn_sqp; 6884 } else { 6885 sqp = IP_SQUEUE_GET(lbolt); 6886 } 6887 6888 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6889 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6890 syn_present = B_TRUE; 6891 } 6892 } 6893 6894 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6895 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6896 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6897 if ((flags & TH_RST) || (flags & TH_URG)) { 6898 CONN_DEC_REF(connp); 6899 freemsg(first_mp); 6900 return; 6901 } 6902 if (flags & TH_ACK) { 6903 ip_xmit_reset_serialize(first_mp, ip_hdr_len, zoneid, 6904 ipst->ips_netstack->netstack_tcp, connp); 6905 CONN_DEC_REF(connp); 6906 return; 6907 } 6908 6909 CONN_DEC_REF(connp); 6910 freemsg(first_mp); 6911 return; 6912 } 6913 6914 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6915 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6916 NULL, mctl_present); 6917 if (first_mp == NULL) { 6918 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6919 CONN_DEC_REF(connp); 6920 return; 6921 } 6922 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6923 ASSERT(syn_present); 6924 if (mctl_present) { 6925 ASSERT(first_mp != mp); 6926 first_mp->b_datap->db_struioflag |= 6927 STRUIO_POLICY; 6928 } else { 6929 ASSERT(first_mp == mp); 6930 mp->b_datap->db_struioflag &= 6931 ~STRUIO_EAGER; 6932 mp->b_datap->db_struioflag |= 6933 STRUIO_POLICY; 6934 } 6935 } else { 6936 /* 6937 * Discard first_mp early since we're dealing with a 6938 * fully-connected conn_t and tcp doesn't do policy in 6939 * this case. 6940 */ 6941 if (mctl_present) { 6942 freeb(first_mp); 6943 mctl_present = B_FALSE; 6944 } 6945 first_mp = mp; 6946 } 6947 } 6948 6949 /* 6950 * Initiate policy processing here if needed. If we get here from 6951 * icmp_inbound_error_fanout, ip_policy is false. 6952 */ 6953 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6954 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6955 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6956 if (mp == NULL) { 6957 CONN_DEC_REF(connp); 6958 if (mctl_present) 6959 freeb(first_mp); 6960 return; 6961 } else if (mctl_present) { 6962 ASSERT(first_mp != mp); 6963 first_mp->b_cont = mp; 6964 } else { 6965 first_mp = mp; 6966 } 6967 } 6968 6969 /* Handle socket options. */ 6970 if (!syn_present && 6971 connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 6972 /* Add header */ 6973 ASSERT(recv_ill != NULL); 6974 /* 6975 * Since tcp does not support IP_RECVPKTINFO for V4, only pass 6976 * IPF_RECVIF. 6977 */ 6978 mp = ip_add_info(mp, recv_ill, IPF_RECVIF, IPCL_ZONEID(connp), 6979 ipst); 6980 if (mp == NULL) { 6981 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6982 CONN_DEC_REF(connp); 6983 if (mctl_present) 6984 freeb(first_mp); 6985 return; 6986 } else if (mctl_present) { 6987 /* 6988 * ip_add_info might return a new mp. 6989 */ 6990 ASSERT(first_mp != mp); 6991 first_mp->b_cont = mp; 6992 } else { 6993 first_mp = mp; 6994 } 6995 } 6996 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6997 if (IPCL_IS_TCP(connp)) { 6998 /* do not drain, certain use cases can blow the stack */ 6999 SQUEUE_ENTER_ONE(connp->conn_sqp, first_mp, connp->conn_recv, 7000 connp, SQ_NODRAIN, SQTAG_IP_FANOUT_TCP); 7001 } else { 7002 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 7003 (connp->conn_recv)(connp, first_mp, NULL); 7004 CONN_DEC_REF(connp); 7005 } 7006 } 7007 7008 /* 7009 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or 7010 * pass it along to ESP if the SPI is non-zero. Returns TRUE if the mblk 7011 * is not consumed. 7012 * 7013 * One of four things can happen, all of which affect the passed-in mblk: 7014 * 7015 * 1.) ICMP messages that go through here just get returned TRUE. 7016 * 7017 * 2.) The packet is stock UDP and gets its zero-SPI stripped. Return TRUE. 7018 * 7019 * 3.) The packet is ESP-in-UDP, gets transformed into an equivalent 7020 * ESP packet, and is passed along to ESP for consumption. Return FALSE. 7021 * 7022 * 4.) The packet is an ESP-in-UDP Keepalive. Drop it and return FALSE. 7023 */ 7024 static boolean_t 7025 zero_spi_check(queue_t *q, mblk_t *mp, ire_t *ire, ill_t *recv_ill, 7026 ipsec_stack_t *ipss) 7027 { 7028 int shift, plen, iph_len; 7029 ipha_t *ipha; 7030 udpha_t *udpha; 7031 uint32_t *spi; 7032 uint32_t esp_ports; 7033 uint8_t *orptr; 7034 boolean_t free_ire; 7035 7036 if (DB_TYPE(mp) == M_CTL) { 7037 /* 7038 * ICMP message with UDP inside. Don't bother stripping, just 7039 * send it up. 7040 * 7041 * NOTE: Any app with UDP_NAT_T_ENDPOINT set is probably going 7042 * to ignore errors set by ICMP anyway ('cause they might be 7043 * forged), but that's the app's decision, not ours. 7044 */ 7045 7046 /* Bunch of reality checks for DEBUG kernels... */ 7047 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION); 7048 ASSERT(((ipha_t *)mp->b_rptr)->ipha_protocol == IPPROTO_ICMP); 7049 7050 return (B_TRUE); 7051 } 7052 7053 ipha = (ipha_t *)mp->b_rptr; 7054 iph_len = IPH_HDR_LENGTH(ipha); 7055 plen = ntohs(ipha->ipha_length); 7056 7057 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) { 7058 /* 7059 * Most likely a keepalive for the benefit of an intervening 7060 * NAT. These aren't for us, per se, so drop it. 7061 * 7062 * RFC 3947/8 doesn't say for sure what to do for 2-3 7063 * byte packets (keepalives are 1-byte), but we'll drop them 7064 * also. 7065 */ 7066 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 7067 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper); 7068 return (B_FALSE); 7069 } 7070 7071 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) { 7072 /* might as well pull it all up - it might be ESP. */ 7073 if (!pullupmsg(mp, -1)) { 7074 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 7075 DROPPER(ipss, ipds_esp_nomem), 7076 &ipss->ipsec_dropper); 7077 return (B_FALSE); 7078 } 7079 7080 ipha = (ipha_t *)mp->b_rptr; 7081 } 7082 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t)); 7083 if (*spi == 0) { 7084 /* UDP packet - remove 0-spi. */ 7085 shift = sizeof (uint32_t); 7086 } else { 7087 /* ESP-in-UDP packet - reduce to ESP. */ 7088 ipha->ipha_protocol = IPPROTO_ESP; 7089 shift = sizeof (udpha_t); 7090 } 7091 7092 /* Fix IP header */ 7093 ipha->ipha_length = htons(plen - shift); 7094 ipha->ipha_hdr_checksum = 0; 7095 7096 orptr = mp->b_rptr; 7097 mp->b_rptr += shift; 7098 7099 udpha = (udpha_t *)(orptr + iph_len); 7100 if (*spi == 0) { 7101 ASSERT((uint8_t *)ipha == orptr); 7102 udpha->uha_length = htons(plen - shift - iph_len); 7103 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */ 7104 esp_ports = 0; 7105 } else { 7106 esp_ports = *((uint32_t *)udpha); 7107 ASSERT(esp_ports != 0); 7108 } 7109 ovbcopy(orptr, orptr + shift, iph_len); 7110 if (esp_ports != 0) /* Punt up for ESP processing. */ { 7111 ipha = (ipha_t *)(orptr + shift); 7112 7113 free_ire = (ire == NULL); 7114 if (free_ire) { 7115 /* Re-acquire ire. */ 7116 ire = ire_cache_lookup(ipha->ipha_dst, ALL_ZONES, NULL, 7117 ipss->ipsec_netstack->netstack_ip); 7118 if (ire == NULL || !(ire->ire_type & IRE_LOCAL)) { 7119 if (ire != NULL) 7120 ire_refrele(ire); 7121 /* 7122 * Do a regular freemsg(), as this is an IP 7123 * error (no local route) not an IPsec one. 7124 */ 7125 freemsg(mp); 7126 } 7127 } 7128 7129 ip_proto_input(q, mp, ipha, ire, recv_ill, esp_ports); 7130 if (free_ire) 7131 ire_refrele(ire); 7132 } 7133 7134 return (esp_ports == 0); 7135 } 7136 7137 /* 7138 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 7139 * We are responsible for disposing of mp, such as by freemsg() or putnext() 7140 * Caller is responsible for dropping references to the conn, and freeing 7141 * first_mp. 7142 * 7143 * IPQoS Notes 7144 * Before sending it to the client, invoke IPPF processing. Policy processing 7145 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 7146 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 7147 * ip_wput_local, ip_policy is false. 7148 */ 7149 static void 7150 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 7151 boolean_t secure, ill_t *ill, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 7152 boolean_t ip_policy) 7153 { 7154 boolean_t mctl_present = (first_mp != NULL); 7155 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 7156 uint32_t ill_index; 7157 ip_stack_t *ipst = recv_ill->ill_ipst; 7158 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 7159 7160 ASSERT(ill != NULL); 7161 7162 if (mctl_present) 7163 first_mp->b_cont = mp; 7164 else 7165 first_mp = mp; 7166 7167 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 7168 (!IPCL_IS_NONSTR(connp) && CONN_UDP_FLOWCTLD(connp))) { 7169 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 7170 freemsg(first_mp); 7171 return; 7172 } 7173 7174 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 7175 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 7176 NULL, mctl_present); 7177 /* Freed by ipsec_check_inbound_policy(). */ 7178 if (first_mp == NULL) { 7179 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7180 return; 7181 } 7182 } 7183 if (mctl_present) 7184 freeb(first_mp); 7185 7186 /* Let's hope the compilers utter "branch, predict-not-taken..." ;) */ 7187 if (connp->conn_udp->udp_nat_t_endpoint) { 7188 if (mctl_present) { 7189 /* mctl_present *shouldn't* happen. */ 7190 ip_drop_packet(mp, B_TRUE, NULL, NULL, 7191 DROPPER(ipss, ipds_esp_nat_t_ipsec), 7192 &ipss->ipsec_dropper); 7193 return; 7194 } 7195 7196 if (!zero_spi_check(ill->ill_rq, mp, NULL, recv_ill, ipss)) 7197 return; 7198 } 7199 7200 /* Handle options. */ 7201 if (connp->conn_recvif) 7202 in_flags = IPF_RECVIF; 7203 /* 7204 * UDP supports IP_RECVPKTINFO option for both v4 and v6 so the flag 7205 * passed to ip_add_info is based on IP version of connp. 7206 */ 7207 if (connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 7208 if (connp->conn_af_isv6) { 7209 /* 7210 * V6 only needs index 7211 */ 7212 in_flags |= IPF_RECVIF; 7213 } else { 7214 /* 7215 * V4 needs index + matching address. 7216 */ 7217 in_flags |= IPF_RECVADDR; 7218 } 7219 } 7220 7221 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 7222 in_flags |= IPF_RECVSLLA; 7223 7224 /* 7225 * Initiate IPPF processing here, if needed. Note first_mp won't be 7226 * freed if the packet is dropped. The caller will do so. 7227 */ 7228 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 7229 ill_index = recv_ill->ill_phyint->phyint_ifindex; 7230 ip_process(IPP_LOCAL_IN, &mp, ill_index); 7231 if (mp == NULL) { 7232 return; 7233 } 7234 } 7235 if ((in_flags != 0) && 7236 (mp->b_datap->db_type != M_CTL)) { 7237 /* 7238 * The actual data will be contained in b_cont 7239 * upon successful return of the following call 7240 * else original mblk is returned 7241 */ 7242 ASSERT(recv_ill != NULL); 7243 mp = ip_add_info(mp, recv_ill, in_flags, IPCL_ZONEID(connp), 7244 ipst); 7245 } 7246 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 7247 /* Send it upstream */ 7248 (connp->conn_recv)(connp, mp, NULL); 7249 } 7250 7251 /* 7252 * Fanout for UDP packets. 7253 * The caller puts <fport, lport> in the ports parameter. 7254 * 7255 * If SO_REUSEADDR is set all multicast and broadcast packets 7256 * will be delivered to all streams bound to the same port. 7257 * 7258 * Zones notes: 7259 * Multicast and broadcast packets will be distributed to streams in all zones. 7260 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 7261 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 7262 * packets. To maintain this behavior with multiple zones, the conns are grouped 7263 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 7264 * each zone. If unset, all the following conns in the same zone are skipped. 7265 */ 7266 static void 7267 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 7268 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 7269 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 7270 { 7271 uint32_t dstport, srcport; 7272 ipaddr_t dst; 7273 mblk_t *first_mp; 7274 boolean_t secure; 7275 in6_addr_t v6src; 7276 conn_t *connp; 7277 connf_t *connfp; 7278 conn_t *first_connp; 7279 conn_t *next_connp; 7280 mblk_t *mp1, *first_mp1; 7281 ipaddr_t src; 7282 zoneid_t last_zoneid; 7283 boolean_t reuseaddr; 7284 boolean_t shared_addr; 7285 boolean_t unlabeled; 7286 ip_stack_t *ipst; 7287 7288 ASSERT(recv_ill != NULL); 7289 ipst = recv_ill->ill_ipst; 7290 7291 first_mp = mp; 7292 if (mctl_present) { 7293 mp = first_mp->b_cont; 7294 first_mp->b_cont = NULL; 7295 secure = ipsec_in_is_secure(first_mp); 7296 ASSERT(mp != NULL); 7297 } else { 7298 first_mp = NULL; 7299 secure = B_FALSE; 7300 } 7301 7302 /* Extract ports in net byte order */ 7303 dstport = htons(ntohl(ports) & 0xFFFF); 7304 srcport = htons(ntohl(ports) >> 16); 7305 dst = ipha->ipha_dst; 7306 src = ipha->ipha_src; 7307 7308 unlabeled = B_FALSE; 7309 if (is_system_labeled()) 7310 /* Cred cannot be null on IPv4 */ 7311 unlabeled = (msg_getlabel(mp)->tsl_flags & 7312 TSLF_UNLABELED) != 0; 7313 shared_addr = (zoneid == ALL_ZONES); 7314 if (shared_addr) { 7315 /* 7316 * No need to handle exclusive-stack zones since ALL_ZONES 7317 * only applies to the shared stack. 7318 */ 7319 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 7320 /* 7321 * If no shared MLP is found, tsol_mlp_findzone returns 7322 * ALL_ZONES. In that case, we assume it's SLP, and 7323 * search for the zone based on the packet label. 7324 * 7325 * If there is such a zone, we prefer to find a 7326 * connection in it. Otherwise, we look for a 7327 * MAC-exempt connection in any zone whose label 7328 * dominates the default label on the packet. 7329 */ 7330 if (zoneid == ALL_ZONES) 7331 zoneid = tsol_packet_to_zoneid(mp); 7332 else 7333 unlabeled = B_FALSE; 7334 } 7335 7336 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7337 mutex_enter(&connfp->connf_lock); 7338 connp = connfp->connf_head; 7339 if (!broadcast && !CLASSD(dst)) { 7340 /* 7341 * Not broadcast or multicast. Send to the one (first) 7342 * client we find. No need to check conn_wantpacket() 7343 * since IP_BOUND_IF/conn_incoming_ill does not apply to 7344 * IPv4 unicast packets. 7345 */ 7346 while ((connp != NULL) && 7347 (!IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) || 7348 (!IPCL_ZONE_MATCH(connp, zoneid) && 7349 !(unlabeled && connp->conn_mac_exempt && shared_addr)))) { 7350 /* 7351 * We keep searching since the conn did not match, 7352 * or its zone did not match and it is not either 7353 * an allzones conn or a mac exempt conn (if the 7354 * sender is unlabeled.) 7355 */ 7356 connp = connp->conn_next; 7357 } 7358 7359 if (connp == NULL || 7360 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) 7361 goto notfound; 7362 7363 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7364 7365 if (is_system_labeled() && 7366 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7367 connp)) 7368 goto notfound; 7369 7370 CONN_INC_REF(connp); 7371 mutex_exit(&connfp->connf_lock); 7372 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7373 flags, recv_ill, ip_policy); 7374 IP_STAT(ipst, ip_udp_fannorm); 7375 CONN_DEC_REF(connp); 7376 return; 7377 } 7378 7379 /* 7380 * Broadcast and multicast case 7381 * 7382 * Need to check conn_wantpacket(). 7383 * If SO_REUSEADDR has been set on the first we send the 7384 * packet to all clients that have joined the group and 7385 * match the port. 7386 */ 7387 7388 while (connp != NULL) { 7389 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 7390 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7391 (!is_system_labeled() || 7392 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7393 connp))) 7394 break; 7395 connp = connp->conn_next; 7396 } 7397 7398 if (connp == NULL || 7399 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) 7400 goto notfound; 7401 7402 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7403 7404 first_connp = connp; 7405 /* 7406 * When SO_REUSEADDR is not set, send the packet only to the first 7407 * matching connection in its zone by keeping track of the zoneid. 7408 */ 7409 reuseaddr = first_connp->conn_reuseaddr; 7410 last_zoneid = first_connp->conn_zoneid; 7411 7412 CONN_INC_REF(connp); 7413 connp = connp->conn_next; 7414 for (;;) { 7415 while (connp != NULL) { 7416 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 7417 (reuseaddr || connp->conn_zoneid != last_zoneid) && 7418 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7419 (!is_system_labeled() || 7420 tsol_receive_local(mp, &dst, IPV4_VERSION, 7421 shared_addr, connp))) 7422 break; 7423 connp = connp->conn_next; 7424 } 7425 /* 7426 * Just copy the data part alone. The mctl part is 7427 * needed just for verifying policy and it is never 7428 * sent up. 7429 */ 7430 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7431 ((mp1 = copymsg(mp)) == NULL))) { 7432 /* 7433 * No more interested clients or memory 7434 * allocation failed 7435 */ 7436 connp = first_connp; 7437 break; 7438 } 7439 if (connp->conn_zoneid != last_zoneid) { 7440 /* 7441 * Update the zoneid so that the packet isn't sent to 7442 * any more conns in the same zone unless SO_REUSEADDR 7443 * is set. 7444 */ 7445 reuseaddr = connp->conn_reuseaddr; 7446 last_zoneid = connp->conn_zoneid; 7447 } 7448 if (first_mp != NULL) { 7449 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7450 ipsec_info_type == IPSEC_IN); 7451 first_mp1 = ipsec_in_tag(first_mp, NULL, 7452 ipst->ips_netstack); 7453 if (first_mp1 == NULL) { 7454 freemsg(mp1); 7455 connp = first_connp; 7456 break; 7457 } 7458 } else { 7459 first_mp1 = NULL; 7460 } 7461 CONN_INC_REF(connp); 7462 mutex_exit(&connfp->connf_lock); 7463 /* 7464 * IPQoS notes: We don't send the packet for policy 7465 * processing here, will do it for the last one (below). 7466 * i.e. we do it per-packet now, but if we do policy 7467 * processing per-conn, then we would need to do it 7468 * here too. 7469 */ 7470 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7471 ipha, flags, recv_ill, B_FALSE); 7472 mutex_enter(&connfp->connf_lock); 7473 /* Follow the next pointer before releasing the conn. */ 7474 next_connp = connp->conn_next; 7475 IP_STAT(ipst, ip_udp_fanmb); 7476 CONN_DEC_REF(connp); 7477 connp = next_connp; 7478 } 7479 7480 /* Last one. Send it upstream. */ 7481 mutex_exit(&connfp->connf_lock); 7482 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7483 recv_ill, ip_policy); 7484 IP_STAT(ipst, ip_udp_fanmb); 7485 CONN_DEC_REF(connp); 7486 return; 7487 7488 notfound: 7489 7490 mutex_exit(&connfp->connf_lock); 7491 IP_STAT(ipst, ip_udp_fanothers); 7492 /* 7493 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 7494 * have already been matched above, since they live in the IPv4 7495 * fanout tables. This implies we only need to 7496 * check for IPv6 in6addr_any endpoints here. 7497 * Thus we compare using ipv6_all_zeros instead of the destination 7498 * address, except for the multicast group membership lookup which 7499 * uses the IPv4 destination. 7500 */ 7501 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 7502 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7503 mutex_enter(&connfp->connf_lock); 7504 connp = connfp->connf_head; 7505 if (!broadcast && !CLASSD(dst)) { 7506 while (connp != NULL) { 7507 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7508 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 7509 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7510 !connp->conn_ipv6_v6only) 7511 break; 7512 connp = connp->conn_next; 7513 } 7514 7515 if (connp != NULL && is_system_labeled() && 7516 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7517 connp)) 7518 connp = NULL; 7519 7520 if (connp == NULL || 7521 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) { 7522 /* 7523 * No one bound to this port. Is 7524 * there a client that wants all 7525 * unclaimed datagrams? 7526 */ 7527 mutex_exit(&connfp->connf_lock); 7528 7529 if (mctl_present) 7530 first_mp->b_cont = mp; 7531 else 7532 first_mp = mp; 7533 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP]. 7534 connf_head != NULL) { 7535 ip_fanout_proto(q, first_mp, ill, ipha, 7536 flags | IP_FF_RAWIP, mctl_present, 7537 ip_policy, recv_ill, zoneid); 7538 } else { 7539 if (ip_fanout_send_icmp(q, first_mp, flags, 7540 ICMP_DEST_UNREACHABLE, 7541 ICMP_PORT_UNREACHABLE, 7542 mctl_present, zoneid, ipst)) { 7543 BUMP_MIB(ill->ill_ip_mib, 7544 udpIfStatsNoPorts); 7545 } 7546 } 7547 return; 7548 } 7549 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7550 7551 CONN_INC_REF(connp); 7552 mutex_exit(&connfp->connf_lock); 7553 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7554 flags, recv_ill, ip_policy); 7555 CONN_DEC_REF(connp); 7556 return; 7557 } 7558 /* 7559 * IPv4 multicast packet being delivered to an AF_INET6 7560 * in6addr_any endpoint. 7561 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 7562 * and not conn_wantpacket_v6() since any multicast membership is 7563 * for an IPv4-mapped multicast address. 7564 * The packet is sent to all clients in all zones that have joined the 7565 * group and match the port. 7566 */ 7567 while (connp != NULL) { 7568 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7569 srcport, v6src) && 7570 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7571 (!is_system_labeled() || 7572 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7573 connp))) 7574 break; 7575 connp = connp->conn_next; 7576 } 7577 7578 if (connp == NULL || 7579 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) { 7580 /* 7581 * No one bound to this port. Is 7582 * there a client that wants all 7583 * unclaimed datagrams? 7584 */ 7585 mutex_exit(&connfp->connf_lock); 7586 7587 if (mctl_present) 7588 first_mp->b_cont = mp; 7589 else 7590 first_mp = mp; 7591 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP].connf_head != 7592 NULL) { 7593 ip_fanout_proto(q, first_mp, ill, ipha, 7594 flags | IP_FF_RAWIP, mctl_present, ip_policy, 7595 recv_ill, zoneid); 7596 } else { 7597 /* 7598 * We used to attempt to send an icmp error here, but 7599 * since this is known to be a multicast packet 7600 * and we don't send icmp errors in response to 7601 * multicast, just drop the packet and give up sooner. 7602 */ 7603 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 7604 freemsg(first_mp); 7605 } 7606 return; 7607 } 7608 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7609 7610 first_connp = connp; 7611 7612 CONN_INC_REF(connp); 7613 connp = connp->conn_next; 7614 for (;;) { 7615 while (connp != NULL) { 7616 if (IPCL_UDP_MATCH_V6(connp, dstport, 7617 ipv6_all_zeros, srcport, v6src) && 7618 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7619 (!is_system_labeled() || 7620 tsol_receive_local(mp, &dst, IPV4_VERSION, 7621 shared_addr, connp))) 7622 break; 7623 connp = connp->conn_next; 7624 } 7625 /* 7626 * Just copy the data part alone. The mctl part is 7627 * needed just for verifying policy and it is never 7628 * sent up. 7629 */ 7630 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7631 ((mp1 = copymsg(mp)) == NULL))) { 7632 /* 7633 * No more intested clients or memory 7634 * allocation failed 7635 */ 7636 connp = first_connp; 7637 break; 7638 } 7639 if (first_mp != NULL) { 7640 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7641 ipsec_info_type == IPSEC_IN); 7642 first_mp1 = ipsec_in_tag(first_mp, NULL, 7643 ipst->ips_netstack); 7644 if (first_mp1 == NULL) { 7645 freemsg(mp1); 7646 connp = first_connp; 7647 break; 7648 } 7649 } else { 7650 first_mp1 = NULL; 7651 } 7652 CONN_INC_REF(connp); 7653 mutex_exit(&connfp->connf_lock); 7654 /* 7655 * IPQoS notes: We don't send the packet for policy 7656 * processing here, will do it for the last one (below). 7657 * i.e. we do it per-packet now, but if we do policy 7658 * processing per-conn, then we would need to do it 7659 * here too. 7660 */ 7661 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7662 ipha, flags, recv_ill, B_FALSE); 7663 mutex_enter(&connfp->connf_lock); 7664 /* Follow the next pointer before releasing the conn. */ 7665 next_connp = connp->conn_next; 7666 CONN_DEC_REF(connp); 7667 connp = next_connp; 7668 } 7669 7670 /* Last one. Send it upstream. */ 7671 mutex_exit(&connfp->connf_lock); 7672 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7673 recv_ill, ip_policy); 7674 CONN_DEC_REF(connp); 7675 } 7676 7677 /* 7678 * Complete the ip_wput header so that it 7679 * is possible to generate ICMP 7680 * errors. 7681 */ 7682 int 7683 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid, ip_stack_t *ipst) 7684 { 7685 ire_t *ire; 7686 7687 if (ipha->ipha_src == INADDR_ANY) { 7688 ire = ire_lookup_local(zoneid, ipst); 7689 if (ire == NULL) { 7690 ip1dbg(("ip_hdr_complete: no source IRE\n")); 7691 return (1); 7692 } 7693 ipha->ipha_src = ire->ire_addr; 7694 ire_refrele(ire); 7695 } 7696 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 7697 ipha->ipha_hdr_checksum = 0; 7698 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 7699 return (0); 7700 } 7701 7702 /* 7703 * Nobody should be sending 7704 * packets up this stream 7705 */ 7706 static void 7707 ip_lrput(queue_t *q, mblk_t *mp) 7708 { 7709 mblk_t *mp1; 7710 7711 switch (mp->b_datap->db_type) { 7712 case M_FLUSH: 7713 /* Turn around */ 7714 if (*mp->b_rptr & FLUSHW) { 7715 *mp->b_rptr &= ~FLUSHR; 7716 qreply(q, mp); 7717 return; 7718 } 7719 break; 7720 } 7721 /* Could receive messages that passed through ar_rput */ 7722 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 7723 mp1->b_prev = mp1->b_next = NULL; 7724 freemsg(mp); 7725 } 7726 7727 /* Nobody should be sending packets down this stream */ 7728 /* ARGSUSED */ 7729 void 7730 ip_lwput(queue_t *q, mblk_t *mp) 7731 { 7732 freemsg(mp); 7733 } 7734 7735 /* 7736 * Move the first hop in any source route to ipha_dst and remove that part of 7737 * the source route. Called by other protocols. Errors in option formatting 7738 * are ignored - will be handled by ip_wput_options Return the final 7739 * destination (either ipha_dst or the last entry in a source route.) 7740 */ 7741 ipaddr_t 7742 ip_massage_options(ipha_t *ipha, netstack_t *ns) 7743 { 7744 ipoptp_t opts; 7745 uchar_t *opt; 7746 uint8_t optval; 7747 uint8_t optlen; 7748 ipaddr_t dst; 7749 int i; 7750 ire_t *ire; 7751 ip_stack_t *ipst = ns->netstack_ip; 7752 7753 ip2dbg(("ip_massage_options\n")); 7754 dst = ipha->ipha_dst; 7755 for (optval = ipoptp_first(&opts, ipha); 7756 optval != IPOPT_EOL; 7757 optval = ipoptp_next(&opts)) { 7758 opt = opts.ipoptp_cur; 7759 switch (optval) { 7760 uint8_t off; 7761 case IPOPT_SSRR: 7762 case IPOPT_LSRR: 7763 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 7764 ip1dbg(("ip_massage_options: bad src route\n")); 7765 break; 7766 } 7767 optlen = opts.ipoptp_len; 7768 off = opt[IPOPT_OFFSET]; 7769 off--; 7770 redo_srr: 7771 if (optlen < IP_ADDR_LEN || 7772 off > optlen - IP_ADDR_LEN) { 7773 /* End of source route */ 7774 ip1dbg(("ip_massage_options: end of SR\n")); 7775 break; 7776 } 7777 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 7778 ip1dbg(("ip_massage_options: next hop 0x%x\n", 7779 ntohl(dst))); 7780 /* 7781 * Check if our address is present more than 7782 * once as consecutive hops in source route. 7783 * XXX verify per-interface ip_forwarding 7784 * for source route? 7785 */ 7786 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 7787 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7788 if (ire != NULL) { 7789 ire_refrele(ire); 7790 off += IP_ADDR_LEN; 7791 goto redo_srr; 7792 } 7793 if (dst == htonl(INADDR_LOOPBACK)) { 7794 ip1dbg(("ip_massage_options: loopback addr in " 7795 "source route!\n")); 7796 break; 7797 } 7798 /* 7799 * Update ipha_dst to be the first hop and remove the 7800 * first hop from the source route (by overwriting 7801 * part of the option with NOP options). 7802 */ 7803 ipha->ipha_dst = dst; 7804 /* Put the last entry in dst */ 7805 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 7806 3; 7807 bcopy(&opt[off], &dst, IP_ADDR_LEN); 7808 7809 ip1dbg(("ip_massage_options: last hop 0x%x\n", 7810 ntohl(dst))); 7811 /* Move down and overwrite */ 7812 opt[IP_ADDR_LEN] = opt[0]; 7813 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 7814 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 7815 for (i = 0; i < IP_ADDR_LEN; i++) 7816 opt[i] = IPOPT_NOP; 7817 break; 7818 } 7819 } 7820 return (dst); 7821 } 7822 7823 /* 7824 * Return the network mask 7825 * associated with the specified address. 7826 */ 7827 ipaddr_t 7828 ip_net_mask(ipaddr_t addr) 7829 { 7830 uchar_t *up = (uchar_t *)&addr; 7831 ipaddr_t mask = 0; 7832 uchar_t *maskp = (uchar_t *)&mask; 7833 7834 #if defined(__i386) || defined(__amd64) 7835 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7836 #endif 7837 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7838 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7839 #endif 7840 if (CLASSD(addr)) { 7841 maskp[0] = 0xF0; 7842 return (mask); 7843 } 7844 7845 /* We assume Class E default netmask to be 32 */ 7846 if (CLASSE(addr)) 7847 return (0xffffffffU); 7848 7849 if (addr == 0) 7850 return (0); 7851 maskp[0] = 0xFF; 7852 if ((up[0] & 0x80) == 0) 7853 return (mask); 7854 7855 maskp[1] = 0xFF; 7856 if ((up[0] & 0xC0) == 0x80) 7857 return (mask); 7858 7859 maskp[2] = 0xFF; 7860 if ((up[0] & 0xE0) == 0xC0) 7861 return (mask); 7862 7863 /* Otherwise return no mask */ 7864 return ((ipaddr_t)0); 7865 } 7866 7867 /* 7868 * Helper ill lookup function used by IPsec. 7869 */ 7870 ill_t * 7871 ip_grab_ill(mblk_t *first_mp, int ifindex, boolean_t isv6, ip_stack_t *ipst) 7872 { 7873 ill_t *ret_ill; 7874 7875 ASSERT(ifindex != 0); 7876 7877 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 7878 ipst); 7879 if (ret_ill == NULL) { 7880 if (isv6) { 7881 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 7882 ip1dbg(("ip_grab_ill (IPv6): bad ifindex %d.\n", 7883 ifindex)); 7884 } else { 7885 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 7886 ip1dbg(("ip_grab_ill (IPv4): bad ifindex %d.\n", 7887 ifindex)); 7888 } 7889 freemsg(first_mp); 7890 return (NULL); 7891 } 7892 return (ret_ill); 7893 } 7894 7895 /* 7896 * IPv4 - 7897 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7898 * out a packet to a destination address for which we do not have specific 7899 * (or sufficient) routing information. 7900 * 7901 * NOTE : These are the scopes of some of the variables that point at IRE, 7902 * which needs to be followed while making any future modifications 7903 * to avoid memory leaks. 7904 * 7905 * - ire and sire are the entries looked up initially by 7906 * ire_ftable_lookup. 7907 * - ipif_ire is used to hold the interface ire associated with 7908 * the new cache ire. But it's scope is limited, so we always REFRELE 7909 * it before branching out to error paths. 7910 * - save_ire is initialized before ire_create, so that ire returned 7911 * by ire_create will not over-write the ire. We REFRELE save_ire 7912 * before breaking out of the switch. 7913 * 7914 * Thus on failures, we have to REFRELE only ire and sire, if they 7915 * are not NULL. 7916 */ 7917 void 7918 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, conn_t *connp, 7919 zoneid_t zoneid, ip_stack_t *ipst) 7920 { 7921 areq_t *areq; 7922 ipaddr_t gw = 0; 7923 ire_t *ire = NULL; 7924 mblk_t *res_mp; 7925 ipaddr_t *addrp; 7926 ipaddr_t nexthop_addr; 7927 ipif_t *src_ipif = NULL; 7928 ill_t *dst_ill = NULL; 7929 ipha_t *ipha; 7930 ire_t *sire = NULL; 7931 mblk_t *first_mp; 7932 ire_t *save_ire; 7933 ushort_t ire_marks = 0; 7934 boolean_t mctl_present; 7935 ipsec_out_t *io; 7936 mblk_t *saved_mp; 7937 mblk_t *copy_mp = NULL; 7938 mblk_t *xmit_mp = NULL; 7939 ipaddr_t save_dst; 7940 uint32_t multirt_flags = 7941 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7942 boolean_t multirt_is_resolvable; 7943 boolean_t multirt_resolve_next; 7944 boolean_t unspec_src; 7945 boolean_t ip_nexthop = B_FALSE; 7946 tsol_ire_gw_secattr_t *attrp = NULL; 7947 tsol_gcgrp_t *gcgrp = NULL; 7948 tsol_gcgrp_addr_t ga; 7949 int multirt_res_failures = 0; 7950 int multirt_res_attempts = 0; 7951 int multirt_already_resolved = 0; 7952 boolean_t multirt_no_icmp_error = B_FALSE; 7953 7954 if (ip_debug > 2) { 7955 /* ip1dbg */ 7956 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7957 } 7958 7959 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7960 if (mctl_present) { 7961 io = (ipsec_out_t *)first_mp->b_rptr; 7962 ASSERT(io->ipsec_out_type == IPSEC_OUT); 7963 ASSERT(zoneid == io->ipsec_out_zoneid); 7964 ASSERT(zoneid != ALL_ZONES); 7965 } 7966 7967 ipha = (ipha_t *)mp->b_rptr; 7968 7969 /* All multicast lookups come through ip_newroute_ipif() */ 7970 if (CLASSD(dst)) { 7971 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7972 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7973 freemsg(first_mp); 7974 return; 7975 } 7976 7977 if (mctl_present && io->ipsec_out_ip_nexthop) { 7978 ip_nexthop = B_TRUE; 7979 nexthop_addr = io->ipsec_out_nexthop_addr; 7980 } 7981 /* 7982 * If this IRE is created for forwarding or it is not for 7983 * traffic for congestion controlled protocols, mark it as temporary. 7984 */ 7985 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 7986 ire_marks |= IRE_MARK_TEMPORARY; 7987 7988 /* 7989 * Get what we can from ire_ftable_lookup which will follow an IRE 7990 * chain until it gets the most specific information available. 7991 * For example, we know that there is no IRE_CACHE for this dest, 7992 * but there may be an IRE_OFFSUBNET which specifies a gateway. 7993 * ire_ftable_lookup will look up the gateway, etc. 7994 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 7995 * to the destination, of equal netmask length in the forward table, 7996 * will be recursively explored. If no information is available 7997 * for the final gateway of that route, we force the returned ire 7998 * to be equal to sire using MATCH_IRE_PARENT. 7999 * At least, in this case we have a starting point (in the buckets) 8000 * to look for other routes to the destination in the forward table. 8001 * This is actually used only for multirouting, where a list 8002 * of routes has to be processed in sequence. 8003 * 8004 * In the process of coming up with the most specific information, 8005 * ire_ftable_lookup may end up with an incomplete IRE_CACHE entry 8006 * for the gateway (i.e., one for which the ire_nce->nce_state is 8007 * not yet ND_REACHABLE, and is in the middle of arp resolution). 8008 * Two caveats when handling incomplete ire's in ip_newroute: 8009 * - we should be careful when accessing its ire_nce (specifically 8010 * the nce_res_mp) ast it might change underneath our feet, and, 8011 * - not all legacy code path callers are prepared to handle 8012 * incomplete ire's, so we should not create/add incomplete 8013 * ire_cache entries here. (See discussion about temporary solution 8014 * further below). 8015 * 8016 * In order to minimize packet dropping, and to preserve existing 8017 * behavior, we treat this case as if there were no IRE_CACHE for the 8018 * gateway, and instead use the IF_RESOLVER ire to send out 8019 * another request to ARP (this is achieved by passing the 8020 * MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the 8021 * arp response comes back in ip_wput_nondata, we will create 8022 * a per-dst ire_cache that has an ND_COMPLETE ire. 8023 * 8024 * Note that this is a temporary solution; the correct solution is 8025 * to create an incomplete per-dst ire_cache entry, and send the 8026 * packet out when the gw's nce is resolved. In order to achieve this, 8027 * all packet processing must have been completed prior to calling 8028 * ire_add_then_send. Some legacy code paths (e.g. cgtp) would need 8029 * to be modified to accomodate this solution. 8030 */ 8031 if (ip_nexthop) { 8032 /* 8033 * The first time we come here, we look for an IRE_INTERFACE 8034 * entry for the specified nexthop, set the dst to be the 8035 * nexthop address and create an IRE_CACHE entry for the 8036 * nexthop. The next time around, we are able to find an 8037 * IRE_CACHE entry for the nexthop, set the gateway to be the 8038 * nexthop address and create an IRE_CACHE entry for the 8039 * destination address via the specified nexthop. 8040 */ 8041 ire = ire_cache_lookup(nexthop_addr, zoneid, 8042 msg_getlabel(mp), ipst); 8043 if (ire != NULL) { 8044 gw = nexthop_addr; 8045 ire_marks |= IRE_MARK_PRIVATE_ADDR; 8046 } else { 8047 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 8048 IRE_INTERFACE, NULL, NULL, zoneid, 0, 8049 msg_getlabel(mp), 8050 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 8051 ipst); 8052 if (ire != NULL) { 8053 dst = nexthop_addr; 8054 } 8055 } 8056 } else { 8057 ire = ire_ftable_lookup(dst, 0, 0, 0, 8058 NULL, &sire, zoneid, 0, msg_getlabel(mp), 8059 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 8060 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 8061 MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE, 8062 ipst); 8063 } 8064 8065 ip3dbg(("ip_newroute: ire_ftable_lookup() " 8066 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 8067 8068 /* 8069 * This loop is run only once in most cases. 8070 * We loop to resolve further routes only when the destination 8071 * can be reached through multiple RTF_MULTIRT-flagged ires. 8072 */ 8073 do { 8074 /* Clear the previous iteration's values */ 8075 if (src_ipif != NULL) { 8076 ipif_refrele(src_ipif); 8077 src_ipif = NULL; 8078 } 8079 if (dst_ill != NULL) { 8080 ill_refrele(dst_ill); 8081 dst_ill = NULL; 8082 } 8083 8084 multirt_resolve_next = B_FALSE; 8085 /* 8086 * We check if packets have to be multirouted. 8087 * In this case, given the current <ire, sire> couple, 8088 * we look for the next suitable <ire, sire>. 8089 * This check is done in ire_multirt_lookup(), 8090 * which applies various criteria to find the next route 8091 * to resolve. ire_multirt_lookup() leaves <ire, sire> 8092 * unchanged if it detects it has not been tried yet. 8093 */ 8094 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8095 ip3dbg(("ip_newroute: starting next_resolution " 8096 "with first_mp %p, tag %d\n", 8097 (void *)first_mp, 8098 MULTIRT_DEBUG_TAGGED(first_mp))); 8099 8100 ASSERT(sire != NULL); 8101 multirt_is_resolvable = 8102 ire_multirt_lookup(&ire, &sire, multirt_flags, 8103 &multirt_already_resolved, msg_getlabel(mp), ipst); 8104 8105 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 8106 "multirt_already_resolved %d, " 8107 "multirt_res_attempts %d, multirt_res_failures %d, " 8108 "ire %p, sire %p\n", multirt_is_resolvable, 8109 multirt_already_resolved, multirt_res_attempts, 8110 multirt_res_failures, (void *)ire, (void *)sire)); 8111 8112 if (!multirt_is_resolvable) { 8113 /* 8114 * No more multirt route to resolve; give up 8115 * (all routes resolved or no more 8116 * resolvable routes). 8117 */ 8118 if (ire != NULL) { 8119 ire_refrele(ire); 8120 ire = NULL; 8121 } 8122 /* 8123 * Generate ICMP error only if all attempts to 8124 * resolve multirt route failed and there is no 8125 * already resolved one. Don't generate ICMP 8126 * error when: 8127 * 8128 * 1) there was no attempt to resolve 8129 * 2) at least one attempt passed 8130 * 3) a multirt route is already resolved 8131 * 8132 * Case 1) may occur due to multiple 8133 * resolution attempts during single 8134 * ip_multirt_resolution_interval. 8135 * 8136 * Case 2-3) means that CGTP destination is 8137 * reachable via one link so we don't want to 8138 * generate ICMP host unreachable error. 8139 */ 8140 if (multirt_res_attempts == 0 || 8141 multirt_res_failures < 8142 multirt_res_attempts || 8143 multirt_already_resolved > 0) 8144 multirt_no_icmp_error = B_TRUE; 8145 } else { 8146 ASSERT(sire != NULL); 8147 ASSERT(ire != NULL); 8148 8149 multirt_res_attempts++; 8150 } 8151 } 8152 8153 if (ire == NULL) { 8154 if (ip_debug > 3) { 8155 /* ip2dbg */ 8156 pr_addr_dbg("ip_newroute: " 8157 "can't resolve %s\n", AF_INET, &dst); 8158 } 8159 ip3dbg(("ip_newroute: " 8160 "ire %p, sire %p, multirt_no_icmp_error %d\n", 8161 (void *)ire, (void *)sire, 8162 (int)multirt_no_icmp_error)); 8163 8164 if (sire != NULL) { 8165 ire_refrele(sire); 8166 sire = NULL; 8167 } 8168 8169 if (multirt_no_icmp_error) { 8170 /* There is no need to report an ICMP error. */ 8171 MULTIRT_DEBUG_UNTAG(first_mp); 8172 freemsg(first_mp); 8173 return; 8174 } 8175 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 8176 RTA_DST, ipst); 8177 goto icmp_err_ret; 8178 } 8179 8180 /* 8181 * Verify that the returned IRE does not have either 8182 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 8183 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 8184 */ 8185 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 8186 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 8187 goto icmp_err_ret; 8188 } 8189 /* 8190 * Increment the ire_ob_pkt_count field for ire if it is an 8191 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 8192 * increment the same for the parent IRE, sire, if it is some 8193 * sort of prefix IRE (which includes DEFAULT, PREFIX, and HOST) 8194 */ 8195 if ((ire->ire_type & IRE_INTERFACE) != 0) { 8196 UPDATE_OB_PKT_COUNT(ire); 8197 ire->ire_last_used_time = lbolt; 8198 } 8199 8200 if (sire != NULL) { 8201 gw = sire->ire_gateway_addr; 8202 ASSERT((sire->ire_type & (IRE_CACHETABLE | 8203 IRE_INTERFACE)) == 0); 8204 UPDATE_OB_PKT_COUNT(sire); 8205 sire->ire_last_used_time = lbolt; 8206 } 8207 /* 8208 * We have a route to reach the destination. Find the 8209 * appropriate ill, then get a source address using 8210 * ipif_select_source(). 8211 * 8212 * If we are here trying to create an IRE_CACHE for an offlink 8213 * destination and have an IRE_CACHE entry for VNI, then use 8214 * ire_stq instead since VNI's queue is a black hole. 8215 */ 8216 if ((ire->ire_type == IRE_CACHE) && 8217 IS_VNI(ire->ire_ipif->ipif_ill)) { 8218 dst_ill = ire->ire_stq->q_ptr; 8219 ill_refhold(dst_ill); 8220 } else { 8221 ill_t *ill = ire->ire_ipif->ipif_ill; 8222 8223 if (IS_IPMP(ill)) { 8224 dst_ill = 8225 ipmp_illgrp_hold_next_ill(ill->ill_grp); 8226 } else { 8227 dst_ill = ill; 8228 ill_refhold(dst_ill); 8229 } 8230 } 8231 8232 if (dst_ill == NULL) { 8233 if (ip_debug > 2) { 8234 pr_addr_dbg("ip_newroute: no dst " 8235 "ill for dst %s\n", AF_INET, &dst); 8236 } 8237 goto icmp_err_ret; 8238 } 8239 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 8240 8241 /* 8242 * Pick the best source address from dst_ill. 8243 * 8244 * 1) Try to pick the source address from the destination 8245 * route. Clustering assumes that when we have multiple 8246 * prefixes hosted on an interface, the prefix of the 8247 * source address matches the prefix of the destination 8248 * route. We do this only if the address is not 8249 * DEPRECATED. 8250 * 8251 * 2) If the conn is in a different zone than the ire, we 8252 * need to pick a source address from the right zone. 8253 */ 8254 ASSERT(src_ipif == NULL); 8255 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 8256 /* 8257 * The RTF_SETSRC flag is set in the parent ire (sire). 8258 * Check that the ipif matching the requested source 8259 * address still exists. 8260 */ 8261 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 8262 zoneid, NULL, NULL, NULL, NULL, ipst); 8263 } 8264 8265 unspec_src = (connp != NULL && connp->conn_unspec_src); 8266 8267 if (src_ipif == NULL && 8268 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 8269 ire_marks |= IRE_MARK_USESRC_CHECK; 8270 if (!IS_UNDER_IPMP(ire->ire_ipif->ipif_ill) && 8271 IS_IPMP(ire->ire_ipif->ipif_ill) || 8272 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 8273 (connp != NULL && ire->ire_zoneid != zoneid && 8274 ire->ire_zoneid != ALL_ZONES) || 8275 (dst_ill->ill_usesrc_ifindex != 0)) { 8276 /* 8277 * If the destination is reachable via a 8278 * given gateway, the selected source address 8279 * should be in the same subnet as the gateway. 8280 * Otherwise, the destination is not reachable. 8281 * 8282 * If there are no interfaces on the same subnet 8283 * as the destination, ipif_select_source gives 8284 * first non-deprecated interface which might be 8285 * on a different subnet than the gateway. 8286 * This is not desirable. Hence pass the dst_ire 8287 * source address to ipif_select_source. 8288 * It is sure that the destination is reachable 8289 * with the dst_ire source address subnet. 8290 * So passing dst_ire source address to 8291 * ipif_select_source will make sure that the 8292 * selected source will be on the same subnet 8293 * as dst_ire source address. 8294 */ 8295 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 8296 8297 src_ipif = ipif_select_source(dst_ill, saddr, 8298 zoneid); 8299 if (src_ipif == NULL) { 8300 /* 8301 * In the case of multirouting, it may 8302 * happen that ipif_select_source fails 8303 * as DAD may disallow use of the 8304 * particular source interface. Anyway, 8305 * we need to continue and attempt to 8306 * resolve other multirt routes. 8307 */ 8308 if ((sire != NULL) && 8309 (sire->ire_flags & RTF_MULTIRT)) { 8310 ire_refrele(ire); 8311 ire = NULL; 8312 multirt_resolve_next = B_TRUE; 8313 multirt_res_failures++; 8314 continue; 8315 } 8316 8317 if (ip_debug > 2) { 8318 pr_addr_dbg("ip_newroute: " 8319 "no src for dst %s ", 8320 AF_INET, &dst); 8321 printf("on interface %s\n", 8322 dst_ill->ill_name); 8323 } 8324 goto icmp_err_ret; 8325 } 8326 } else { 8327 src_ipif = ire->ire_ipif; 8328 ASSERT(src_ipif != NULL); 8329 /* hold src_ipif for uniformity */ 8330 ipif_refhold(src_ipif); 8331 } 8332 } 8333 8334 /* 8335 * Assign a source address while we have the conn. 8336 * We can't have ip_wput_ire pick a source address when the 8337 * packet returns from arp since we need to look at 8338 * conn_unspec_src and conn_zoneid, and we lose the conn when 8339 * going through arp. 8340 * 8341 * NOTE : ip_newroute_v6 does not have this piece of code as 8342 * it uses ip6i to store this information. 8343 */ 8344 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 8345 ipha->ipha_src = src_ipif->ipif_src_addr; 8346 8347 if (ip_debug > 3) { 8348 /* ip2dbg */ 8349 pr_addr_dbg("ip_newroute: first hop %s\n", 8350 AF_INET, &gw); 8351 } 8352 ip2dbg(("\tire type %s (%d)\n", 8353 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 8354 8355 /* 8356 * The TTL of multirouted packets is bounded by the 8357 * ip_multirt_ttl ndd variable. 8358 */ 8359 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8360 /* Force TTL of multirouted packets */ 8361 if ((ipst->ips_ip_multirt_ttl > 0) && 8362 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 8363 ip2dbg(("ip_newroute: forcing multirt TTL " 8364 "to %d (was %d), dst 0x%08x\n", 8365 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 8366 ntohl(sire->ire_addr))); 8367 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 8368 } 8369 } 8370 /* 8371 * At this point in ip_newroute(), ire is either the 8372 * IRE_CACHE of the next-hop gateway for an off-subnet 8373 * destination or an IRE_INTERFACE type that should be used 8374 * to resolve an on-subnet destination or an on-subnet 8375 * next-hop gateway. 8376 * 8377 * In the IRE_CACHE case, we have the following : 8378 * 8379 * 1) src_ipif - used for getting a source address. 8380 * 8381 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8382 * means packets using this IRE_CACHE will go out on 8383 * dst_ill. 8384 * 8385 * 3) The IRE sire will point to the prefix that is the 8386 * longest matching route for the destination. These 8387 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST. 8388 * 8389 * The newly created IRE_CACHE entry for the off-subnet 8390 * destination is tied to both the prefix route and the 8391 * interface route used to resolve the next-hop gateway 8392 * via the ire_phandle and ire_ihandle fields, 8393 * respectively. 8394 * 8395 * In the IRE_INTERFACE case, we have the following : 8396 * 8397 * 1) src_ipif - used for getting a source address. 8398 * 8399 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8400 * means packets using the IRE_CACHE that we will build 8401 * here will go out on dst_ill. 8402 * 8403 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 8404 * to be created will only be tied to the IRE_INTERFACE 8405 * that was derived from the ire_ihandle field. 8406 * 8407 * If sire is non-NULL, it means the destination is 8408 * off-link and we will first create the IRE_CACHE for the 8409 * gateway. Next time through ip_newroute, we will create 8410 * the IRE_CACHE for the final destination as described 8411 * above. 8412 * 8413 * In both cases, after the current resolution has been 8414 * completed (or possibly initialised, in the IRE_INTERFACE 8415 * case), the loop may be re-entered to attempt the resolution 8416 * of another RTF_MULTIRT route. 8417 * 8418 * When an IRE_CACHE entry for the off-subnet destination is 8419 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 8420 * for further processing in emission loops. 8421 */ 8422 save_ire = ire; 8423 switch (ire->ire_type) { 8424 case IRE_CACHE: { 8425 ire_t *ipif_ire; 8426 8427 ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE); 8428 if (gw == 0) 8429 gw = ire->ire_gateway_addr; 8430 /* 8431 * We need 3 ire's to create a new cache ire for an 8432 * off-link destination from the cache ire of the 8433 * gateway. 8434 * 8435 * 1. The prefix ire 'sire' (Note that this does 8436 * not apply to the conn_nexthop_set case) 8437 * 2. The cache ire of the gateway 'ire' 8438 * 3. The interface ire 'ipif_ire' 8439 * 8440 * We have (1) and (2). We lookup (3) below. 8441 * 8442 * If there is no interface route to the gateway, 8443 * it is a race condition, where we found the cache 8444 * but the interface route has been deleted. 8445 */ 8446 if (ip_nexthop) { 8447 ipif_ire = ire_ihandle_lookup_onlink(ire); 8448 } else { 8449 ipif_ire = 8450 ire_ihandle_lookup_offlink(ire, sire); 8451 } 8452 if (ipif_ire == NULL) { 8453 ip1dbg(("ip_newroute: " 8454 "ire_ihandle_lookup_offlink failed\n")); 8455 goto icmp_err_ret; 8456 } 8457 8458 /* 8459 * Check cached gateway IRE for any security 8460 * attributes; if found, associate the gateway 8461 * credentials group to the destination IRE. 8462 */ 8463 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 8464 mutex_enter(&attrp->igsa_lock); 8465 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 8466 GCGRP_REFHOLD(gcgrp); 8467 mutex_exit(&attrp->igsa_lock); 8468 } 8469 8470 /* 8471 * XXX For the source of the resolver mp, 8472 * we are using the same DL_UNITDATA_REQ 8473 * (from save_ire->ire_nce->nce_res_mp) 8474 * though the save_ire is not pointing at the same ill. 8475 * This is incorrect. We need to send it up to the 8476 * resolver to get the right res_mp. For ethernets 8477 * this may be okay (ill_type == DL_ETHER). 8478 */ 8479 8480 ire = ire_create( 8481 (uchar_t *)&dst, /* dest address */ 8482 (uchar_t *)&ip_g_all_ones, /* mask */ 8483 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8484 (uchar_t *)&gw, /* gateway address */ 8485 &save_ire->ire_max_frag, 8486 save_ire->ire_nce, /* src nce */ 8487 dst_ill->ill_rq, /* recv-from queue */ 8488 dst_ill->ill_wq, /* send-to queue */ 8489 IRE_CACHE, /* IRE type */ 8490 src_ipif, 8491 (sire != NULL) ? 8492 sire->ire_mask : 0, /* Parent mask */ 8493 (sire != NULL) ? 8494 sire->ire_phandle : 0, /* Parent handle */ 8495 ipif_ire->ire_ihandle, /* Interface handle */ 8496 (sire != NULL) ? (sire->ire_flags & 8497 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 8498 (sire != NULL) ? 8499 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 8500 NULL, 8501 gcgrp, 8502 ipst); 8503 8504 if (ire == NULL) { 8505 if (gcgrp != NULL) { 8506 GCGRP_REFRELE(gcgrp); 8507 gcgrp = NULL; 8508 } 8509 ire_refrele(ipif_ire); 8510 ire_refrele(save_ire); 8511 break; 8512 } 8513 8514 /* reference now held by IRE */ 8515 gcgrp = NULL; 8516 8517 ire->ire_marks |= ire_marks; 8518 8519 /* 8520 * Prevent sire and ipif_ire from getting deleted. 8521 * The newly created ire is tied to both of them via 8522 * the phandle and ihandle respectively. 8523 */ 8524 if (sire != NULL) { 8525 IRB_REFHOLD(sire->ire_bucket); 8526 /* Has it been removed already ? */ 8527 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 8528 IRB_REFRELE(sire->ire_bucket); 8529 ire_refrele(ipif_ire); 8530 ire_refrele(save_ire); 8531 break; 8532 } 8533 } 8534 8535 IRB_REFHOLD(ipif_ire->ire_bucket); 8536 /* Has it been removed already ? */ 8537 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 8538 IRB_REFRELE(ipif_ire->ire_bucket); 8539 if (sire != NULL) 8540 IRB_REFRELE(sire->ire_bucket); 8541 ire_refrele(ipif_ire); 8542 ire_refrele(save_ire); 8543 break; 8544 } 8545 8546 xmit_mp = first_mp; 8547 /* 8548 * In the case of multirouting, a copy 8549 * of the packet is done before its sending. 8550 * The copy is used to attempt another 8551 * route resolution, in a next loop. 8552 */ 8553 if (ire->ire_flags & RTF_MULTIRT) { 8554 copy_mp = copymsg(first_mp); 8555 if (copy_mp != NULL) { 8556 xmit_mp = copy_mp; 8557 MULTIRT_DEBUG_TAG(first_mp); 8558 } 8559 } 8560 8561 ire_add_then_send(q, ire, xmit_mp); 8562 ire_refrele(save_ire); 8563 8564 /* Assert that sire is not deleted yet. */ 8565 if (sire != NULL) { 8566 ASSERT(sire->ire_ptpn != NULL); 8567 IRB_REFRELE(sire->ire_bucket); 8568 } 8569 8570 /* Assert that ipif_ire is not deleted yet. */ 8571 ASSERT(ipif_ire->ire_ptpn != NULL); 8572 IRB_REFRELE(ipif_ire->ire_bucket); 8573 ire_refrele(ipif_ire); 8574 8575 /* 8576 * If copy_mp is not NULL, multirouting was 8577 * requested. We loop to initiate a next 8578 * route resolution attempt, starting from sire. 8579 */ 8580 if (copy_mp != NULL) { 8581 /* 8582 * Search for the next unresolved 8583 * multirt route. 8584 */ 8585 copy_mp = NULL; 8586 ipif_ire = NULL; 8587 ire = NULL; 8588 multirt_resolve_next = B_TRUE; 8589 continue; 8590 } 8591 if (sire != NULL) 8592 ire_refrele(sire); 8593 ipif_refrele(src_ipif); 8594 ill_refrele(dst_ill); 8595 return; 8596 } 8597 case IRE_IF_NORESOLVER: { 8598 if (dst_ill->ill_phys_addr_length != IP_ADDR_LEN && 8599 dst_ill->ill_resolver_mp == NULL) { 8600 ip1dbg(("ip_newroute: dst_ill %p " 8601 "for IRE_IF_NORESOLVER ire %p has " 8602 "no ill_resolver_mp\n", 8603 (void *)dst_ill, (void *)ire)); 8604 break; 8605 } 8606 8607 /* 8608 * TSol note: We are creating the ire cache for the 8609 * destination 'dst'. If 'dst' is offlink, going 8610 * through the first hop 'gw', the security attributes 8611 * of 'dst' must be set to point to the gateway 8612 * credentials of gateway 'gw'. If 'dst' is onlink, it 8613 * is possible that 'dst' is a potential gateway that is 8614 * referenced by some route that has some security 8615 * attributes. Thus in the former case, we need to do a 8616 * gcgrp_lookup of 'gw' while in the latter case we 8617 * need to do gcgrp_lookup of 'dst' itself. 8618 */ 8619 ga.ga_af = AF_INET; 8620 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 8621 &ga.ga_addr); 8622 gcgrp = gcgrp_lookup(&ga, B_FALSE); 8623 8624 ire = ire_create( 8625 (uchar_t *)&dst, /* dest address */ 8626 (uchar_t *)&ip_g_all_ones, /* mask */ 8627 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8628 (uchar_t *)&gw, /* gateway address */ 8629 &save_ire->ire_max_frag, 8630 NULL, /* no src nce */ 8631 dst_ill->ill_rq, /* recv-from queue */ 8632 dst_ill->ill_wq, /* send-to queue */ 8633 IRE_CACHE, 8634 src_ipif, 8635 save_ire->ire_mask, /* Parent mask */ 8636 (sire != NULL) ? /* Parent handle */ 8637 sire->ire_phandle : 0, 8638 save_ire->ire_ihandle, /* Interface handle */ 8639 (sire != NULL) ? sire->ire_flags & 8640 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 8641 &(save_ire->ire_uinfo), 8642 NULL, 8643 gcgrp, 8644 ipst); 8645 8646 if (ire == NULL) { 8647 if (gcgrp != NULL) { 8648 GCGRP_REFRELE(gcgrp); 8649 gcgrp = NULL; 8650 } 8651 ire_refrele(save_ire); 8652 break; 8653 } 8654 8655 /* reference now held by IRE */ 8656 gcgrp = NULL; 8657 8658 ire->ire_marks |= ire_marks; 8659 8660 /* Prevent save_ire from getting deleted */ 8661 IRB_REFHOLD(save_ire->ire_bucket); 8662 /* Has it been removed already ? */ 8663 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8664 IRB_REFRELE(save_ire->ire_bucket); 8665 ire_refrele(save_ire); 8666 break; 8667 } 8668 8669 /* 8670 * In the case of multirouting, a copy 8671 * of the packet is made before it is sent. 8672 * The copy is used in the next 8673 * loop to attempt another resolution. 8674 */ 8675 xmit_mp = first_mp; 8676 if ((sire != NULL) && 8677 (sire->ire_flags & RTF_MULTIRT)) { 8678 copy_mp = copymsg(first_mp); 8679 if (copy_mp != NULL) { 8680 xmit_mp = copy_mp; 8681 MULTIRT_DEBUG_TAG(first_mp); 8682 } 8683 } 8684 ire_add_then_send(q, ire, xmit_mp); 8685 8686 /* Assert that it is not deleted yet. */ 8687 ASSERT(save_ire->ire_ptpn != NULL); 8688 IRB_REFRELE(save_ire->ire_bucket); 8689 ire_refrele(save_ire); 8690 8691 if (copy_mp != NULL) { 8692 /* 8693 * If we found a (no)resolver, we ignore any 8694 * trailing top priority IRE_CACHE in further 8695 * loops. This ensures that we do not omit any 8696 * (no)resolver. 8697 * This IRE_CACHE, if any, will be processed 8698 * by another thread entering ip_newroute(). 8699 * IRE_CACHE entries, if any, will be processed 8700 * by another thread entering ip_newroute(), 8701 * (upon resolver response, for instance). 8702 * This aims to force parallel multirt 8703 * resolutions as soon as a packet must be sent. 8704 * In the best case, after the tx of only one 8705 * packet, all reachable routes are resolved. 8706 * Otherwise, the resolution of all RTF_MULTIRT 8707 * routes would require several emissions. 8708 */ 8709 multirt_flags &= ~MULTIRT_CACHEGW; 8710 8711 /* 8712 * Search for the next unresolved multirt 8713 * route. 8714 */ 8715 copy_mp = NULL; 8716 save_ire = NULL; 8717 ire = NULL; 8718 multirt_resolve_next = B_TRUE; 8719 continue; 8720 } 8721 8722 /* 8723 * Don't need sire anymore 8724 */ 8725 if (sire != NULL) 8726 ire_refrele(sire); 8727 8728 ipif_refrele(src_ipif); 8729 ill_refrele(dst_ill); 8730 return; 8731 } 8732 case IRE_IF_RESOLVER: 8733 /* 8734 * We can't build an IRE_CACHE yet, but at least we 8735 * found a resolver that can help. 8736 */ 8737 res_mp = dst_ill->ill_resolver_mp; 8738 if (!OK_RESOLVER_MP(res_mp)) 8739 break; 8740 8741 /* 8742 * To be at this point in the code with a non-zero gw 8743 * means that dst is reachable through a gateway that 8744 * we have never resolved. By changing dst to the gw 8745 * addr we resolve the gateway first. 8746 * When ire_add_then_send() tries to put the IP dg 8747 * to dst, it will reenter ip_newroute() at which 8748 * time we will find the IRE_CACHE for the gw and 8749 * create another IRE_CACHE in case IRE_CACHE above. 8750 */ 8751 if (gw != INADDR_ANY) { 8752 /* 8753 * The source ipif that was determined above was 8754 * relative to the destination address, not the 8755 * gateway's. If src_ipif was not taken out of 8756 * the IRE_IF_RESOLVER entry, we'll need to call 8757 * ipif_select_source() again. 8758 */ 8759 if (src_ipif != ire->ire_ipif) { 8760 ipif_refrele(src_ipif); 8761 src_ipif = ipif_select_source(dst_ill, 8762 gw, zoneid); 8763 /* 8764 * In the case of multirouting, it may 8765 * happen that ipif_select_source fails 8766 * as DAD may disallow use of the 8767 * particular source interface. Anyway, 8768 * we need to continue and attempt to 8769 * resolve other multirt routes. 8770 */ 8771 if (src_ipif == NULL) { 8772 if (sire != NULL && 8773 (sire->ire_flags & 8774 RTF_MULTIRT)) { 8775 ire_refrele(ire); 8776 ire = NULL; 8777 multirt_resolve_next = 8778 B_TRUE; 8779 multirt_res_failures++; 8780 continue; 8781 } 8782 if (ip_debug > 2) { 8783 pr_addr_dbg( 8784 "ip_newroute: no " 8785 "src for gw %s ", 8786 AF_INET, &gw); 8787 printf("on " 8788 "interface %s\n", 8789 dst_ill->ill_name); 8790 } 8791 goto icmp_err_ret; 8792 } 8793 } 8794 save_dst = dst; 8795 dst = gw; 8796 gw = INADDR_ANY; 8797 } 8798 8799 /* 8800 * We obtain a partial IRE_CACHE which we will pass 8801 * along with the resolver query. When the response 8802 * comes back it will be there ready for us to add. 8803 * The ire_max_frag is atomically set under the 8804 * irebucket lock in ire_add_v[46]. 8805 */ 8806 8807 ire = ire_create_mp( 8808 (uchar_t *)&dst, /* dest address */ 8809 (uchar_t *)&ip_g_all_ones, /* mask */ 8810 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8811 (uchar_t *)&gw, /* gateway address */ 8812 NULL, /* ire_max_frag */ 8813 NULL, /* no src nce */ 8814 dst_ill->ill_rq, /* recv-from queue */ 8815 dst_ill->ill_wq, /* send-to queue */ 8816 IRE_CACHE, 8817 src_ipif, /* Interface ipif */ 8818 save_ire->ire_mask, /* Parent mask */ 8819 0, 8820 save_ire->ire_ihandle, /* Interface handle */ 8821 0, /* flags if any */ 8822 &(save_ire->ire_uinfo), 8823 NULL, 8824 NULL, 8825 ipst); 8826 8827 if (ire == NULL) { 8828 ire_refrele(save_ire); 8829 break; 8830 } 8831 8832 if ((sire != NULL) && 8833 (sire->ire_flags & RTF_MULTIRT)) { 8834 copy_mp = copymsg(first_mp); 8835 if (copy_mp != NULL) 8836 MULTIRT_DEBUG_TAG(copy_mp); 8837 } 8838 8839 ire->ire_marks |= ire_marks; 8840 8841 /* 8842 * Construct message chain for the resolver 8843 * of the form: 8844 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8845 * Packet could contain a IPSEC_OUT mp. 8846 * 8847 * NOTE : ire will be added later when the response 8848 * comes back from ARP. If the response does not 8849 * come back, ARP frees the packet. For this reason, 8850 * we can't REFHOLD the bucket of save_ire to prevent 8851 * deletions. We may not be able to REFRELE the bucket 8852 * if the response never comes back. Thus, before 8853 * adding the ire, ire_add_v4 will make sure that the 8854 * interface route does not get deleted. This is the 8855 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8856 * where we can always prevent deletions because of 8857 * the synchronous nature of adding IRES i.e 8858 * ire_add_then_send is called after creating the IRE. 8859 */ 8860 ASSERT(ire->ire_mp != NULL); 8861 ire->ire_mp->b_cont = first_mp; 8862 /* Have saved_mp handy, for cleanup if canput fails */ 8863 saved_mp = mp; 8864 mp = copyb(res_mp); 8865 if (mp == NULL) { 8866 /* Prepare for cleanup */ 8867 mp = saved_mp; /* pkt */ 8868 ire_delete(ire); /* ire_mp */ 8869 ire = NULL; 8870 ire_refrele(save_ire); 8871 if (copy_mp != NULL) { 8872 MULTIRT_DEBUG_UNTAG(copy_mp); 8873 freemsg(copy_mp); 8874 copy_mp = NULL; 8875 } 8876 break; 8877 } 8878 linkb(mp, ire->ire_mp); 8879 8880 /* 8881 * Fill in the source and dest addrs for the resolver. 8882 * NOTE: this depends on memory layouts imposed by 8883 * ill_init(). 8884 */ 8885 areq = (areq_t *)mp->b_rptr; 8886 addrp = (ipaddr_t *)((char *)areq + 8887 areq->areq_sender_addr_offset); 8888 *addrp = save_ire->ire_src_addr; 8889 8890 ire_refrele(save_ire); 8891 addrp = (ipaddr_t *)((char *)areq + 8892 areq->areq_target_addr_offset); 8893 *addrp = dst; 8894 /* Up to the resolver. */ 8895 if (canputnext(dst_ill->ill_rq) && 8896 !(dst_ill->ill_arp_closing)) { 8897 putnext(dst_ill->ill_rq, mp); 8898 ire = NULL; 8899 if (copy_mp != NULL) { 8900 /* 8901 * If we found a resolver, we ignore 8902 * any trailing top priority IRE_CACHE 8903 * in the further loops. This ensures 8904 * that we do not omit any resolver. 8905 * IRE_CACHE entries, if any, will be 8906 * processed next time we enter 8907 * ip_newroute(). 8908 */ 8909 multirt_flags &= ~MULTIRT_CACHEGW; 8910 /* 8911 * Search for the next unresolved 8912 * multirt route. 8913 */ 8914 first_mp = copy_mp; 8915 copy_mp = NULL; 8916 /* Prepare the next resolution loop. */ 8917 mp = first_mp; 8918 EXTRACT_PKT_MP(mp, first_mp, 8919 mctl_present); 8920 if (mctl_present) 8921 io = (ipsec_out_t *) 8922 first_mp->b_rptr; 8923 ipha = (ipha_t *)mp->b_rptr; 8924 8925 ASSERT(sire != NULL); 8926 8927 dst = save_dst; 8928 multirt_resolve_next = B_TRUE; 8929 continue; 8930 } 8931 8932 if (sire != NULL) 8933 ire_refrele(sire); 8934 8935 /* 8936 * The response will come back in ip_wput 8937 * with db_type IRE_DB_TYPE. 8938 */ 8939 ipif_refrele(src_ipif); 8940 ill_refrele(dst_ill); 8941 return; 8942 } else { 8943 /* Prepare for cleanup */ 8944 DTRACE_PROBE1(ip__newroute__drop, mblk_t *, 8945 mp); 8946 mp->b_cont = NULL; 8947 freeb(mp); /* areq */ 8948 /* 8949 * this is an ire that is not added to the 8950 * cache. ire_freemblk will handle the release 8951 * of any resources associated with the ire. 8952 */ 8953 ire_delete(ire); /* ire_mp */ 8954 mp = saved_mp; /* pkt */ 8955 ire = NULL; 8956 if (copy_mp != NULL) { 8957 MULTIRT_DEBUG_UNTAG(copy_mp); 8958 freemsg(copy_mp); 8959 copy_mp = NULL; 8960 } 8961 break; 8962 } 8963 default: 8964 break; 8965 } 8966 } while (multirt_resolve_next); 8967 8968 ip1dbg(("ip_newroute: dropped\n")); 8969 /* Did this packet originate externally? */ 8970 if (mp->b_prev) { 8971 mp->b_next = NULL; 8972 mp->b_prev = NULL; 8973 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 8974 } else { 8975 if (dst_ill != NULL) { 8976 BUMP_MIB(dst_ill->ill_ip_mib, ipIfStatsOutDiscards); 8977 } else { 8978 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 8979 } 8980 } 8981 ASSERT(copy_mp == NULL); 8982 MULTIRT_DEBUG_UNTAG(first_mp); 8983 freemsg(first_mp); 8984 if (ire != NULL) 8985 ire_refrele(ire); 8986 if (sire != NULL) 8987 ire_refrele(sire); 8988 if (src_ipif != NULL) 8989 ipif_refrele(src_ipif); 8990 if (dst_ill != NULL) 8991 ill_refrele(dst_ill); 8992 return; 8993 8994 icmp_err_ret: 8995 ip1dbg(("ip_newroute: no route\n")); 8996 if (src_ipif != NULL) 8997 ipif_refrele(src_ipif); 8998 if (dst_ill != NULL) 8999 ill_refrele(dst_ill); 9000 if (sire != NULL) 9001 ire_refrele(sire); 9002 /* Did this packet originate externally? */ 9003 if (mp->b_prev) { 9004 mp->b_next = NULL; 9005 mp->b_prev = NULL; 9006 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInNoRoutes); 9007 q = WR(q); 9008 } else { 9009 /* 9010 * There is no outgoing ill, so just increment the 9011 * system MIB. 9012 */ 9013 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 9014 /* 9015 * Since ip_wput() isn't close to finished, we fill 9016 * in enough of the header for credible error reporting. 9017 */ 9018 if (ip_hdr_complete(ipha, zoneid, ipst)) { 9019 /* Failed */ 9020 MULTIRT_DEBUG_UNTAG(first_mp); 9021 freemsg(first_mp); 9022 if (ire != NULL) 9023 ire_refrele(ire); 9024 return; 9025 } 9026 } 9027 9028 /* 9029 * At this point we will have ire only if RTF_BLACKHOLE 9030 * or RTF_REJECT flags are set on the IRE. It will not 9031 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9032 */ 9033 if (ire != NULL) { 9034 if (ire->ire_flags & RTF_BLACKHOLE) { 9035 ire_refrele(ire); 9036 MULTIRT_DEBUG_UNTAG(first_mp); 9037 freemsg(first_mp); 9038 return; 9039 } 9040 ire_refrele(ire); 9041 } 9042 if (ip_source_routed(ipha, ipst)) { 9043 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED, 9044 zoneid, ipst); 9045 return; 9046 } 9047 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9048 } 9049 9050 ip_opt_info_t zero_info; 9051 9052 /* 9053 * IPv4 - 9054 * ip_newroute_ipif is called by ip_wput_multicast and 9055 * ip_rput_forward_multicast whenever we need to send 9056 * out a packet to a destination address for which we do not have specific 9057 * routing information. It is used when the packet will be sent out 9058 * on a specific interface. It is also called by ip_wput() when IP_BOUND_IF 9059 * socket option is set or icmp error message wants to go out on a particular 9060 * interface for a unicast packet. 9061 * 9062 * In most cases, the destination address is resolved thanks to the ipif 9063 * intrinsic resolver. However, there are some cases where the call to 9064 * ip_newroute_ipif must take into account the potential presence of 9065 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 9066 * that uses the interface. This is specified through flags, 9067 * which can be a combination of: 9068 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 9069 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 9070 * and flags. Additionally, the packet source address has to be set to 9071 * the specified address. The caller is thus expected to set this flag 9072 * if the packet has no specific source address yet. 9073 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 9074 * flag, the resulting ire will inherit the flag. All unresolved routes 9075 * to the destination must be explored in the same call to 9076 * ip_newroute_ipif(). 9077 */ 9078 static void 9079 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 9080 conn_t *connp, uint32_t flags, zoneid_t zoneid, ip_opt_info_t *infop) 9081 { 9082 areq_t *areq; 9083 ire_t *ire = NULL; 9084 mblk_t *res_mp; 9085 ipaddr_t *addrp; 9086 mblk_t *first_mp; 9087 ire_t *save_ire = NULL; 9088 ipif_t *src_ipif = NULL; 9089 ushort_t ire_marks = 0; 9090 ill_t *dst_ill = NULL; 9091 ipha_t *ipha; 9092 mblk_t *saved_mp; 9093 ire_t *fire = NULL; 9094 mblk_t *copy_mp = NULL; 9095 boolean_t multirt_resolve_next; 9096 boolean_t unspec_src; 9097 ipaddr_t ipha_dst; 9098 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 9099 9100 /* 9101 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 9102 * here for uniformity 9103 */ 9104 ipif_refhold(ipif); 9105 9106 /* 9107 * This loop is run only once in most cases. 9108 * We loop to resolve further routes only when the destination 9109 * can be reached through multiple RTF_MULTIRT-flagged ires. 9110 */ 9111 do { 9112 if (dst_ill != NULL) { 9113 ill_refrele(dst_ill); 9114 dst_ill = NULL; 9115 } 9116 if (src_ipif != NULL) { 9117 ipif_refrele(src_ipif); 9118 src_ipif = NULL; 9119 } 9120 multirt_resolve_next = B_FALSE; 9121 9122 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 9123 ipif->ipif_ill->ill_name)); 9124 9125 first_mp = mp; 9126 if (DB_TYPE(mp) == M_CTL) 9127 mp = mp->b_cont; 9128 ipha = (ipha_t *)mp->b_rptr; 9129 9130 /* 9131 * Save the packet destination address, we may need it after 9132 * the packet has been consumed. 9133 */ 9134 ipha_dst = ipha->ipha_dst; 9135 9136 /* 9137 * If the interface is a pt-pt interface we look for an 9138 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 9139 * local_address and the pt-pt destination address. Otherwise 9140 * we just match the local address. 9141 * NOTE: dst could be different than ipha->ipha_dst in case 9142 * of sending igmp multicast packets over a point-to-point 9143 * connection. 9144 * Thus we must be careful enough to check ipha_dst to be a 9145 * multicast address, otherwise it will take xmit_if path for 9146 * multicast packets resulting into kernel stack overflow by 9147 * repeated calls to ip_newroute_ipif from ire_send(). 9148 */ 9149 if (CLASSD(ipha_dst) && 9150 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 9151 goto err_ret; 9152 } 9153 9154 /* 9155 * We check if an IRE_OFFSUBNET for the addr that goes through 9156 * ipif exists. We need it to determine if the RTF_SETSRC and/or 9157 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 9158 * propagate its flags to the new ire. 9159 */ 9160 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 9161 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 9162 ip2dbg(("ip_newroute_ipif: " 9163 "ipif_lookup_multi_ire(" 9164 "ipif %p, dst %08x) = fire %p\n", 9165 (void *)ipif, ntohl(dst), (void *)fire)); 9166 } 9167 9168 /* 9169 * Note: While we pick a dst_ill we are really only 9170 * interested in the ill for load spreading. The source 9171 * ipif is determined by source address selection below. 9172 */ 9173 if (IS_IPMP(ipif->ipif_ill)) { 9174 ipmp_illgrp_t *illg = ipif->ipif_ill->ill_grp; 9175 9176 if (CLASSD(ipha_dst)) 9177 dst_ill = ipmp_illgrp_hold_cast_ill(illg); 9178 else 9179 dst_ill = ipmp_illgrp_hold_next_ill(illg); 9180 } else { 9181 dst_ill = ipif->ipif_ill; 9182 ill_refhold(dst_ill); 9183 } 9184 9185 if (dst_ill == NULL) { 9186 if (ip_debug > 2) { 9187 pr_addr_dbg("ip_newroute_ipif: no dst ill " 9188 "for dst %s\n", AF_INET, &dst); 9189 } 9190 goto err_ret; 9191 } 9192 9193 /* 9194 * Pick a source address preferring non-deprecated ones. 9195 * Unlike ip_newroute, we don't do any source address 9196 * selection here since for multicast it really does not help 9197 * in inbound load spreading as in the unicast case. 9198 */ 9199 if ((flags & RTF_SETSRC) && (fire != NULL) && 9200 (fire->ire_flags & RTF_SETSRC)) { 9201 /* 9202 * As requested by flags, an IRE_OFFSUBNET was looked up 9203 * on that interface. This ire has RTF_SETSRC flag, so 9204 * the source address of the packet must be changed. 9205 * Check that the ipif matching the requested source 9206 * address still exists. 9207 */ 9208 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 9209 zoneid, NULL, NULL, NULL, NULL, ipst); 9210 } 9211 9212 unspec_src = (connp != NULL && connp->conn_unspec_src); 9213 9214 if (!IS_UNDER_IPMP(ipif->ipif_ill) && 9215 (IS_IPMP(ipif->ipif_ill) || 9216 (!ipif->ipif_isv6 && ipif->ipif_lcl_addr == INADDR_ANY) || 9217 (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_UP)) != IPIF_UP || 9218 (connp != NULL && ipif->ipif_zoneid != zoneid && 9219 ipif->ipif_zoneid != ALL_ZONES)) && 9220 (src_ipif == NULL) && 9221 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 9222 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 9223 if (src_ipif == NULL) { 9224 if (ip_debug > 2) { 9225 /* ip1dbg */ 9226 pr_addr_dbg("ip_newroute_ipif: " 9227 "no src for dst %s", 9228 AF_INET, &dst); 9229 } 9230 ip1dbg((" on interface %s\n", 9231 dst_ill->ill_name)); 9232 goto err_ret; 9233 } 9234 ipif_refrele(ipif); 9235 ipif = src_ipif; 9236 ipif_refhold(ipif); 9237 } 9238 if (src_ipif == NULL) { 9239 src_ipif = ipif; 9240 ipif_refhold(src_ipif); 9241 } 9242 9243 /* 9244 * Assign a source address while we have the conn. 9245 * We can't have ip_wput_ire pick a source address when the 9246 * packet returns from arp since conn_unspec_src might be set 9247 * and we lose the conn when going through arp. 9248 */ 9249 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 9250 ipha->ipha_src = src_ipif->ipif_src_addr; 9251 9252 /* 9253 * In the case of IP_BOUND_IF and IP_PKTINFO, it is possible 9254 * that the outgoing interface does not have an interface ire. 9255 */ 9256 if (CLASSD(ipha_dst) && (connp == NULL || 9257 connp->conn_outgoing_ill == NULL) && 9258 infop->ip_opt_ill_index == 0) { 9259 /* ipif_to_ire returns an held ire */ 9260 ire = ipif_to_ire(ipif); 9261 if (ire == NULL) 9262 goto err_ret; 9263 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 9264 goto err_ret; 9265 save_ire = ire; 9266 9267 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 9268 "flags %04x\n", 9269 (void *)ire, (void *)ipif, flags)); 9270 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9271 (fire->ire_flags & RTF_MULTIRT)) { 9272 /* 9273 * As requested by flags, an IRE_OFFSUBNET was 9274 * looked up on that interface. This ire has 9275 * RTF_MULTIRT flag, so the resolution loop will 9276 * be re-entered to resolve additional routes on 9277 * other interfaces. For that purpose, a copy of 9278 * the packet is performed at this point. 9279 */ 9280 fire->ire_last_used_time = lbolt; 9281 copy_mp = copymsg(first_mp); 9282 if (copy_mp) { 9283 MULTIRT_DEBUG_TAG(copy_mp); 9284 } 9285 } 9286 if ((flags & RTF_SETSRC) && (fire != NULL) && 9287 (fire->ire_flags & RTF_SETSRC)) { 9288 /* 9289 * As requested by flags, an IRE_OFFSUBET was 9290 * looked up on that interface. This ire has 9291 * RTF_SETSRC flag, so the source address of the 9292 * packet must be changed. 9293 */ 9294 ipha->ipha_src = fire->ire_src_addr; 9295 } 9296 } else { 9297 /* 9298 * The only ways we can come here are: 9299 * 1) IP_BOUND_IF socket option is set 9300 * 2) SO_DONTROUTE socket option is set 9301 * 3) IP_PKTINFO option is passed in as ancillary data. 9302 * In all cases, the new ire will not be added 9303 * into cache table. 9304 */ 9305 ASSERT(connp == NULL || connp->conn_dontroute || 9306 connp->conn_outgoing_ill != NULL || 9307 infop->ip_opt_ill_index != 0); 9308 ire_marks |= IRE_MARK_NOADD; 9309 } 9310 9311 switch (ipif->ipif_net_type) { 9312 case IRE_IF_NORESOLVER: { 9313 /* We have what we need to build an IRE_CACHE. */ 9314 9315 if ((dst_ill->ill_phys_addr_length != IP_ADDR_LEN) && 9316 (dst_ill->ill_resolver_mp == NULL)) { 9317 ip1dbg(("ip_newroute_ipif: dst_ill %p " 9318 "for IRE_IF_NORESOLVER ire %p has " 9319 "no ill_resolver_mp\n", 9320 (void *)dst_ill, (void *)ire)); 9321 break; 9322 } 9323 9324 /* 9325 * The new ire inherits the IRE_OFFSUBNET flags 9326 * and source address, if this was requested. 9327 */ 9328 ire = ire_create( 9329 (uchar_t *)&dst, /* dest address */ 9330 (uchar_t *)&ip_g_all_ones, /* mask */ 9331 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9332 NULL, /* gateway address */ 9333 &ipif->ipif_mtu, 9334 NULL, /* no src nce */ 9335 dst_ill->ill_rq, /* recv-from queue */ 9336 dst_ill->ill_wq, /* send-to queue */ 9337 IRE_CACHE, 9338 src_ipif, 9339 (save_ire != NULL ? save_ire->ire_mask : 0), 9340 (fire != NULL) ? /* Parent handle */ 9341 fire->ire_phandle : 0, 9342 (save_ire != NULL) ? /* Interface handle */ 9343 save_ire->ire_ihandle : 0, 9344 (fire != NULL) ? 9345 (fire->ire_flags & 9346 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9347 (save_ire == NULL ? &ire_uinfo_null : 9348 &save_ire->ire_uinfo), 9349 NULL, 9350 NULL, 9351 ipst); 9352 9353 if (ire == NULL) { 9354 if (save_ire != NULL) 9355 ire_refrele(save_ire); 9356 break; 9357 } 9358 9359 ire->ire_marks |= ire_marks; 9360 9361 /* 9362 * If IRE_MARK_NOADD is set then we need to convert 9363 * the max_fragp to a useable value now. This is 9364 * normally done in ire_add_v[46]. We also need to 9365 * associate the ire with an nce (normally would be 9366 * done in ip_wput_nondata()). 9367 * 9368 * Note that IRE_MARK_NOADD packets created here 9369 * do not have a non-null ire_mp pointer. The null 9370 * value of ire_bucket indicates that they were 9371 * never added. 9372 */ 9373 if (ire->ire_marks & IRE_MARK_NOADD) { 9374 uint_t max_frag; 9375 9376 max_frag = *ire->ire_max_fragp; 9377 ire->ire_max_fragp = NULL; 9378 ire->ire_max_frag = max_frag; 9379 9380 if ((ire->ire_nce = ndp_lookup_v4( 9381 ire_to_ill(ire), 9382 (ire->ire_gateway_addr != INADDR_ANY ? 9383 &ire->ire_gateway_addr : &ire->ire_addr), 9384 B_FALSE)) == NULL) { 9385 if (save_ire != NULL) 9386 ire_refrele(save_ire); 9387 break; 9388 } 9389 ASSERT(ire->ire_nce->nce_state == 9390 ND_REACHABLE); 9391 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 9392 } 9393 9394 /* Prevent save_ire from getting deleted */ 9395 if (save_ire != NULL) { 9396 IRB_REFHOLD(save_ire->ire_bucket); 9397 /* Has it been removed already ? */ 9398 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 9399 IRB_REFRELE(save_ire->ire_bucket); 9400 ire_refrele(save_ire); 9401 break; 9402 } 9403 } 9404 9405 ire_add_then_send(q, ire, first_mp); 9406 9407 /* Assert that save_ire is not deleted yet. */ 9408 if (save_ire != NULL) { 9409 ASSERT(save_ire->ire_ptpn != NULL); 9410 IRB_REFRELE(save_ire->ire_bucket); 9411 ire_refrele(save_ire); 9412 save_ire = NULL; 9413 } 9414 if (fire != NULL) { 9415 ire_refrele(fire); 9416 fire = NULL; 9417 } 9418 9419 /* 9420 * the resolution loop is re-entered if this 9421 * was requested through flags and if we 9422 * actually are in a multirouting case. 9423 */ 9424 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9425 boolean_t need_resolve = 9426 ire_multirt_need_resolve(ipha_dst, 9427 msg_getlabel(copy_mp), ipst); 9428 if (!need_resolve) { 9429 MULTIRT_DEBUG_UNTAG(copy_mp); 9430 freemsg(copy_mp); 9431 copy_mp = NULL; 9432 } else { 9433 /* 9434 * ipif_lookup_group() calls 9435 * ire_lookup_multi() that uses 9436 * ire_ftable_lookup() to find 9437 * an IRE_INTERFACE for the group. 9438 * In the multirt case, 9439 * ire_lookup_multi() then invokes 9440 * ire_multirt_lookup() to find 9441 * the next resolvable ire. 9442 * As a result, we obtain an new 9443 * interface, derived from the 9444 * next ire. 9445 */ 9446 ipif_refrele(ipif); 9447 ipif = ipif_lookup_group(ipha_dst, 9448 zoneid, ipst); 9449 ip2dbg(("ip_newroute_ipif: " 9450 "multirt dst %08x, ipif %p\n", 9451 htonl(dst), (void *)ipif)); 9452 if (ipif != NULL) { 9453 mp = copy_mp; 9454 copy_mp = NULL; 9455 multirt_resolve_next = B_TRUE; 9456 continue; 9457 } else { 9458 freemsg(copy_mp); 9459 } 9460 } 9461 } 9462 if (ipif != NULL) 9463 ipif_refrele(ipif); 9464 ill_refrele(dst_ill); 9465 ipif_refrele(src_ipif); 9466 return; 9467 } 9468 case IRE_IF_RESOLVER: 9469 /* 9470 * We can't build an IRE_CACHE yet, but at least 9471 * we found a resolver that can help. 9472 */ 9473 res_mp = dst_ill->ill_resolver_mp; 9474 if (!OK_RESOLVER_MP(res_mp)) 9475 break; 9476 9477 /* 9478 * We obtain a partial IRE_CACHE which we will pass 9479 * along with the resolver query. When the response 9480 * comes back it will be there ready for us to add. 9481 * The new ire inherits the IRE_OFFSUBNET flags 9482 * and source address, if this was requested. 9483 * The ire_max_frag is atomically set under the 9484 * irebucket lock in ire_add_v[46]. Only in the 9485 * case of IRE_MARK_NOADD, we set it here itself. 9486 */ 9487 ire = ire_create_mp( 9488 (uchar_t *)&dst, /* dest address */ 9489 (uchar_t *)&ip_g_all_ones, /* mask */ 9490 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9491 NULL, /* gateway address */ 9492 (ire_marks & IRE_MARK_NOADD) ? 9493 ipif->ipif_mtu : 0, /* max_frag */ 9494 NULL, /* no src nce */ 9495 dst_ill->ill_rq, /* recv-from queue */ 9496 dst_ill->ill_wq, /* send-to queue */ 9497 IRE_CACHE, 9498 src_ipif, 9499 (save_ire != NULL ? save_ire->ire_mask : 0), 9500 (fire != NULL) ? /* Parent handle */ 9501 fire->ire_phandle : 0, 9502 (save_ire != NULL) ? /* Interface handle */ 9503 save_ire->ire_ihandle : 0, 9504 (fire != NULL) ? /* flags if any */ 9505 (fire->ire_flags & 9506 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9507 (save_ire == NULL ? &ire_uinfo_null : 9508 &save_ire->ire_uinfo), 9509 NULL, 9510 NULL, 9511 ipst); 9512 9513 if (save_ire != NULL) { 9514 ire_refrele(save_ire); 9515 save_ire = NULL; 9516 } 9517 if (ire == NULL) 9518 break; 9519 9520 ire->ire_marks |= ire_marks; 9521 /* 9522 * Construct message chain for the resolver of the 9523 * form: 9524 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 9525 * 9526 * NOTE : ire will be added later when the response 9527 * comes back from ARP. If the response does not 9528 * come back, ARP frees the packet. For this reason, 9529 * we can't REFHOLD the bucket of save_ire to prevent 9530 * deletions. We may not be able to REFRELE the 9531 * bucket if the response never comes back. 9532 * Thus, before adding the ire, ire_add_v4 will make 9533 * sure that the interface route does not get deleted. 9534 * This is the only case unlike ip_newroute_v6, 9535 * ip_newroute_ipif_v6 where we can always prevent 9536 * deletions because ire_add_then_send is called after 9537 * creating the IRE. 9538 * If IRE_MARK_NOADD is set, then ire_add_then_send 9539 * does not add this IRE into the IRE CACHE. 9540 */ 9541 ASSERT(ire->ire_mp != NULL); 9542 ire->ire_mp->b_cont = first_mp; 9543 /* Have saved_mp handy, for cleanup if canput fails */ 9544 saved_mp = mp; 9545 mp = copyb(res_mp); 9546 if (mp == NULL) { 9547 /* Prepare for cleanup */ 9548 mp = saved_mp; /* pkt */ 9549 ire_delete(ire); /* ire_mp */ 9550 ire = NULL; 9551 if (copy_mp != NULL) { 9552 MULTIRT_DEBUG_UNTAG(copy_mp); 9553 freemsg(copy_mp); 9554 copy_mp = NULL; 9555 } 9556 break; 9557 } 9558 linkb(mp, ire->ire_mp); 9559 9560 /* 9561 * Fill in the source and dest addrs for the resolver. 9562 * NOTE: this depends on memory layouts imposed by 9563 * ill_init(). There are corner cases above where we 9564 * might've created the IRE with an INADDR_ANY source 9565 * address (e.g., if the zeroth ipif on an underlying 9566 * ill in an IPMP group is 0.0.0.0, but another ipif 9567 * on the ill has a usable test address). If so, tell 9568 * ARP to use ipha_src as its sender address. 9569 */ 9570 areq = (areq_t *)mp->b_rptr; 9571 addrp = (ipaddr_t *)((char *)areq + 9572 areq->areq_sender_addr_offset); 9573 if (ire->ire_src_addr != INADDR_ANY) 9574 *addrp = ire->ire_src_addr; 9575 else 9576 *addrp = ipha->ipha_src; 9577 addrp = (ipaddr_t *)((char *)areq + 9578 areq->areq_target_addr_offset); 9579 *addrp = dst; 9580 /* Up to the resolver. */ 9581 if (canputnext(dst_ill->ill_rq) && 9582 !(dst_ill->ill_arp_closing)) { 9583 putnext(dst_ill->ill_rq, mp); 9584 /* 9585 * The response will come back in ip_wput 9586 * with db_type IRE_DB_TYPE. 9587 */ 9588 } else { 9589 mp->b_cont = NULL; 9590 freeb(mp); /* areq */ 9591 ire_delete(ire); /* ire_mp */ 9592 saved_mp->b_next = NULL; 9593 saved_mp->b_prev = NULL; 9594 freemsg(first_mp); /* pkt */ 9595 ip2dbg(("ip_newroute_ipif: dropped\n")); 9596 } 9597 9598 if (fire != NULL) { 9599 ire_refrele(fire); 9600 fire = NULL; 9601 } 9602 9603 /* 9604 * The resolution loop is re-entered if this was 9605 * requested through flags and we actually are 9606 * in a multirouting case. 9607 */ 9608 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9609 boolean_t need_resolve = 9610 ire_multirt_need_resolve(ipha_dst, 9611 msg_getlabel(copy_mp), ipst); 9612 if (!need_resolve) { 9613 MULTIRT_DEBUG_UNTAG(copy_mp); 9614 freemsg(copy_mp); 9615 copy_mp = NULL; 9616 } else { 9617 /* 9618 * ipif_lookup_group() calls 9619 * ire_lookup_multi() that uses 9620 * ire_ftable_lookup() to find 9621 * an IRE_INTERFACE for the group. 9622 * In the multirt case, 9623 * ire_lookup_multi() then invokes 9624 * ire_multirt_lookup() to find 9625 * the next resolvable ire. 9626 * As a result, we obtain an new 9627 * interface, derived from the 9628 * next ire. 9629 */ 9630 ipif_refrele(ipif); 9631 ipif = ipif_lookup_group(ipha_dst, 9632 zoneid, ipst); 9633 if (ipif != NULL) { 9634 mp = copy_mp; 9635 copy_mp = NULL; 9636 multirt_resolve_next = B_TRUE; 9637 continue; 9638 } else { 9639 freemsg(copy_mp); 9640 } 9641 } 9642 } 9643 if (ipif != NULL) 9644 ipif_refrele(ipif); 9645 ill_refrele(dst_ill); 9646 ipif_refrele(src_ipif); 9647 return; 9648 default: 9649 break; 9650 } 9651 } while (multirt_resolve_next); 9652 9653 err_ret: 9654 ip2dbg(("ip_newroute_ipif: dropped\n")); 9655 if (fire != NULL) 9656 ire_refrele(fire); 9657 ipif_refrele(ipif); 9658 /* Did this packet originate externally? */ 9659 if (dst_ill != NULL) 9660 ill_refrele(dst_ill); 9661 if (src_ipif != NULL) 9662 ipif_refrele(src_ipif); 9663 if (mp->b_prev || mp->b_next) { 9664 mp->b_next = NULL; 9665 mp->b_prev = NULL; 9666 } else { 9667 /* 9668 * Since ip_wput() isn't close to finished, we fill 9669 * in enough of the header for credible error reporting. 9670 */ 9671 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 9672 /* Failed */ 9673 freemsg(first_mp); 9674 if (ire != NULL) 9675 ire_refrele(ire); 9676 return; 9677 } 9678 } 9679 /* 9680 * At this point we will have ire only if RTF_BLACKHOLE 9681 * or RTF_REJECT flags are set on the IRE. It will not 9682 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9683 */ 9684 if (ire != NULL) { 9685 if (ire->ire_flags & RTF_BLACKHOLE) { 9686 ire_refrele(ire); 9687 freemsg(first_mp); 9688 return; 9689 } 9690 ire_refrele(ire); 9691 } 9692 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9693 } 9694 9695 /* Name/Value Table Lookup Routine */ 9696 char * 9697 ip_nv_lookup(nv_t *nv, int value) 9698 { 9699 if (!nv) 9700 return (NULL); 9701 for (; nv->nv_name; nv++) { 9702 if (nv->nv_value == value) 9703 return (nv->nv_name); 9704 } 9705 return ("unknown"); 9706 } 9707 9708 /* 9709 * This is a module open, i.e. this is a control stream for access 9710 * to a DLPI device. We allocate an ill_t as the instance data in 9711 * this case. 9712 */ 9713 int 9714 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9715 { 9716 ill_t *ill; 9717 int err; 9718 zoneid_t zoneid; 9719 netstack_t *ns; 9720 ip_stack_t *ipst; 9721 9722 /* 9723 * Prevent unprivileged processes from pushing IP so that 9724 * they can't send raw IP. 9725 */ 9726 if (secpolicy_net_rawaccess(credp) != 0) 9727 return (EPERM); 9728 9729 ns = netstack_find_by_cred(credp); 9730 ASSERT(ns != NULL); 9731 ipst = ns->netstack_ip; 9732 ASSERT(ipst != NULL); 9733 9734 /* 9735 * For exclusive stacks we set the zoneid to zero 9736 * to make IP operate as if in the global zone. 9737 */ 9738 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9739 zoneid = GLOBAL_ZONEID; 9740 else 9741 zoneid = crgetzoneid(credp); 9742 9743 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9744 q->q_ptr = WR(q)->q_ptr = ill; 9745 ill->ill_ipst = ipst; 9746 ill->ill_zoneid = zoneid; 9747 9748 /* 9749 * ill_init initializes the ill fields and then sends down 9750 * down a DL_INFO_REQ after calling qprocson. 9751 */ 9752 err = ill_init(q, ill); 9753 if (err != 0) { 9754 mi_free(ill); 9755 netstack_rele(ipst->ips_netstack); 9756 q->q_ptr = NULL; 9757 WR(q)->q_ptr = NULL; 9758 return (err); 9759 } 9760 9761 /* ill_init initializes the ipsq marking this thread as writer */ 9762 ipsq_exit(ill->ill_phyint->phyint_ipsq); 9763 /* Wait for the DL_INFO_ACK */ 9764 mutex_enter(&ill->ill_lock); 9765 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9766 /* 9767 * Return value of 0 indicates a pending signal. 9768 */ 9769 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9770 if (err == 0) { 9771 mutex_exit(&ill->ill_lock); 9772 (void) ip_close(q, 0); 9773 return (EINTR); 9774 } 9775 } 9776 mutex_exit(&ill->ill_lock); 9777 9778 /* 9779 * ip_rput_other could have set an error in ill_error on 9780 * receipt of M_ERROR. 9781 */ 9782 9783 err = ill->ill_error; 9784 if (err != 0) { 9785 (void) ip_close(q, 0); 9786 return (err); 9787 } 9788 9789 ill->ill_credp = credp; 9790 crhold(credp); 9791 9792 mutex_enter(&ipst->ips_ip_mi_lock); 9793 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)ill, devp, flag, sflag, 9794 credp); 9795 mutex_exit(&ipst->ips_ip_mi_lock); 9796 if (err) { 9797 (void) ip_close(q, 0); 9798 return (err); 9799 } 9800 return (0); 9801 } 9802 9803 /* For /dev/ip aka AF_INET open */ 9804 int 9805 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9806 { 9807 return (ip_open(q, devp, flag, sflag, credp, B_FALSE)); 9808 } 9809 9810 /* For /dev/ip6 aka AF_INET6 open */ 9811 int 9812 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9813 { 9814 return (ip_open(q, devp, flag, sflag, credp, B_TRUE)); 9815 } 9816 9817 /* IP open routine. */ 9818 int 9819 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 9820 boolean_t isv6) 9821 { 9822 conn_t *connp; 9823 major_t maj; 9824 zoneid_t zoneid; 9825 netstack_t *ns; 9826 ip_stack_t *ipst; 9827 9828 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 9829 9830 /* Allow reopen. */ 9831 if (q->q_ptr != NULL) 9832 return (0); 9833 9834 if (sflag & MODOPEN) { 9835 /* This is a module open */ 9836 return (ip_modopen(q, devp, flag, sflag, credp)); 9837 } 9838 9839 if ((flag & ~(FKLYR)) == IP_HELPER_STR) { 9840 /* 9841 * Non streams based socket looking for a stream 9842 * to access IP 9843 */ 9844 return (ip_helper_stream_setup(q, devp, flag, sflag, 9845 credp, isv6)); 9846 } 9847 9848 ns = netstack_find_by_cred(credp); 9849 ASSERT(ns != NULL); 9850 ipst = ns->netstack_ip; 9851 ASSERT(ipst != NULL); 9852 9853 /* 9854 * For exclusive stacks we set the zoneid to zero 9855 * to make IP operate as if in the global zone. 9856 */ 9857 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9858 zoneid = GLOBAL_ZONEID; 9859 else 9860 zoneid = crgetzoneid(credp); 9861 9862 /* 9863 * We are opening as a device. This is an IP client stream, and we 9864 * allocate an conn_t as the instance data. 9865 */ 9866 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 9867 9868 /* 9869 * ipcl_conn_create did a netstack_hold. Undo the hold that was 9870 * done by netstack_find_by_cred() 9871 */ 9872 netstack_rele(ipst->ips_netstack); 9873 9874 connp->conn_zoneid = zoneid; 9875 connp->conn_sqp = NULL; 9876 connp->conn_initial_sqp = NULL; 9877 connp->conn_final_sqp = NULL; 9878 9879 connp->conn_upq = q; 9880 q->q_ptr = WR(q)->q_ptr = connp; 9881 9882 if (flag & SO_SOCKSTR) 9883 connp->conn_flags |= IPCL_SOCKET; 9884 9885 /* Minor tells us which /dev entry was opened */ 9886 if (isv6) { 9887 connp->conn_flags |= IPCL_ISV6; 9888 connp->conn_af_isv6 = B_TRUE; 9889 ip_setpktversion(connp, isv6, B_FALSE, ipst); 9890 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9891 } else { 9892 connp->conn_af_isv6 = B_FALSE; 9893 connp->conn_pkt_isv6 = B_FALSE; 9894 } 9895 9896 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 9897 ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 9898 connp->conn_minor_arena = ip_minor_arena_la; 9899 } else { 9900 /* 9901 * Either minor numbers in the large arena were exhausted 9902 * or a non socket application is doing the open. 9903 * Try to allocate from the small arena. 9904 */ 9905 if ((connp->conn_dev = 9906 inet_minor_alloc(ip_minor_arena_sa)) == 0) { 9907 /* CONN_DEC_REF takes care of netstack_rele() */ 9908 q->q_ptr = WR(q)->q_ptr = NULL; 9909 CONN_DEC_REF(connp); 9910 return (EBUSY); 9911 } 9912 connp->conn_minor_arena = ip_minor_arena_sa; 9913 } 9914 9915 maj = getemajor(*devp); 9916 *devp = makedevice(maj, (minor_t)connp->conn_dev); 9917 9918 /* 9919 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 9920 */ 9921 connp->conn_cred = credp; 9922 9923 /* 9924 * Handle IP_RTS_REQUEST and other ioctls which use conn_recv 9925 */ 9926 connp->conn_recv = ip_conn_input; 9927 9928 crhold(connp->conn_cred); 9929 9930 /* 9931 * If the caller has the process-wide flag set, then default to MAC 9932 * exempt mode. This allows read-down to unlabeled hosts. 9933 */ 9934 if (getpflags(NET_MAC_AWARE, credp) != 0) 9935 connp->conn_mac_exempt = B_TRUE; 9936 9937 connp->conn_rq = q; 9938 connp->conn_wq = WR(q); 9939 9940 /* Non-zero default values */ 9941 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9942 9943 /* 9944 * Make the conn globally visible to walkers 9945 */ 9946 ASSERT(connp->conn_ref == 1); 9947 mutex_enter(&connp->conn_lock); 9948 connp->conn_state_flags &= ~CONN_INCIPIENT; 9949 mutex_exit(&connp->conn_lock); 9950 9951 qprocson(q); 9952 9953 return (0); 9954 } 9955 9956 /* 9957 * Change the output format (IPv4 vs. IPv6) for a conn_t. 9958 * Note that there is no race since either ip_output function works - it 9959 * is just an optimization to enter the best ip_output routine directly. 9960 */ 9961 void 9962 ip_setpktversion(conn_t *connp, boolean_t isv6, boolean_t bump_mib, 9963 ip_stack_t *ipst) 9964 { 9965 if (isv6) { 9966 if (bump_mib) { 9967 BUMP_MIB(&ipst->ips_ip6_mib, 9968 ipIfStatsOutSwitchIPVersion); 9969 } 9970 connp->conn_send = ip_output_v6; 9971 connp->conn_pkt_isv6 = B_TRUE; 9972 } else { 9973 if (bump_mib) { 9974 BUMP_MIB(&ipst->ips_ip_mib, 9975 ipIfStatsOutSwitchIPVersion); 9976 } 9977 connp->conn_send = ip_output; 9978 connp->conn_pkt_isv6 = B_FALSE; 9979 } 9980 9981 } 9982 9983 /* 9984 * See if IPsec needs loading because of the options in mp. 9985 */ 9986 static boolean_t 9987 ipsec_opt_present(mblk_t *mp) 9988 { 9989 uint8_t *optcp, *next_optcp, *opt_endcp; 9990 struct opthdr *opt; 9991 struct T_opthdr *topt; 9992 int opthdr_len; 9993 t_uscalar_t optname, optlevel; 9994 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 9995 ipsec_req_t *ipsr; 9996 9997 /* 9998 * Walk through the mess, and find IP_SEC_OPT. If it's there, 9999 * return TRUE. 10000 */ 10001 10002 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 10003 opt_endcp = optcp + tor->OPT_length; 10004 if (tor->PRIM_type == T_OPTMGMT_REQ) { 10005 opthdr_len = sizeof (struct T_opthdr); 10006 } else { /* O_OPTMGMT_REQ */ 10007 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 10008 opthdr_len = sizeof (struct opthdr); 10009 } 10010 for (; optcp < opt_endcp; optcp = next_optcp) { 10011 if (optcp + opthdr_len > opt_endcp) 10012 return (B_FALSE); /* Not enough option header. */ 10013 if (tor->PRIM_type == T_OPTMGMT_REQ) { 10014 topt = (struct T_opthdr *)optcp; 10015 optlevel = topt->level; 10016 optname = topt->name; 10017 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 10018 } else { 10019 opt = (struct opthdr *)optcp; 10020 optlevel = opt->level; 10021 optname = opt->name; 10022 next_optcp = optcp + opthdr_len + 10023 _TPI_ALIGN_OPT(opt->len); 10024 } 10025 if ((next_optcp < optcp) || /* wraparound pointer space */ 10026 ((next_optcp >= opt_endcp) && /* last option bad len */ 10027 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 10028 return (B_FALSE); /* bad option buffer */ 10029 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 10030 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 10031 /* 10032 * Check to see if it's an all-bypass or all-zeroes 10033 * IPsec request. Don't bother loading IPsec if 10034 * the socket doesn't want to use it. (A good example 10035 * is a bypass request.) 10036 * 10037 * Basically, if any of the non-NEVER bits are set, 10038 * load IPsec. 10039 */ 10040 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 10041 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 10042 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 10043 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 10044 != 0) 10045 return (B_TRUE); 10046 } 10047 } 10048 return (B_FALSE); 10049 } 10050 10051 /* 10052 * If conn is is waiting for ipsec to finish loading, kick it. 10053 */ 10054 /* ARGSUSED */ 10055 static void 10056 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 10057 { 10058 t_scalar_t optreq_prim; 10059 mblk_t *mp; 10060 cred_t *cr; 10061 int err = 0; 10062 10063 /* 10064 * This function is called, after ipsec loading is complete. 10065 * Since IP checks exclusively and atomically (i.e it prevents 10066 * ipsec load from completing until ip_optcom_req completes) 10067 * whether ipsec load is complete, there cannot be a race with IP 10068 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 10069 */ 10070 mutex_enter(&connp->conn_lock); 10071 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 10072 ASSERT(connp->conn_ipsec_opt_mp != NULL); 10073 mp = connp->conn_ipsec_opt_mp; 10074 connp->conn_ipsec_opt_mp = NULL; 10075 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 10076 mutex_exit(&connp->conn_lock); 10077 10078 /* 10079 * All Solaris components should pass a db_credp 10080 * for this TPI message, hence we ASSERT. 10081 * But in case there is some other M_PROTO that looks 10082 * like a TPI message sent by some other kernel 10083 * component, we check and return an error. 10084 */ 10085 cr = msg_getcred(mp, NULL); 10086 ASSERT(cr != NULL); 10087 if (cr == NULL) { 10088 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 10089 if (mp != NULL) 10090 qreply(connp->conn_wq, mp); 10091 return; 10092 } 10093 10094 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 10095 10096 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 10097 if (optreq_prim == T_OPTMGMT_REQ) { 10098 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10099 &ip_opt_obj, B_FALSE); 10100 } else { 10101 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 10102 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10103 &ip_opt_obj, B_FALSE); 10104 } 10105 if (err != EINPROGRESS) 10106 CONN_OPER_PENDING_DONE(connp); 10107 return; 10108 } 10109 mutex_exit(&connp->conn_lock); 10110 } 10111 10112 /* 10113 * Called from the ipsec_loader thread, outside any perimeter, to tell 10114 * ip qenable any of the queues waiting for the ipsec loader to 10115 * complete. 10116 */ 10117 void 10118 ip_ipsec_load_complete(ipsec_stack_t *ipss) 10119 { 10120 netstack_t *ns = ipss->ipsec_netstack; 10121 10122 ipcl_walk(conn_restart_ipsec_waiter, NULL, ns->netstack_ip); 10123 } 10124 10125 /* 10126 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 10127 * determines the grp on which it has to become exclusive, queues the mp 10128 * and IPSQ draining restarts the optmgmt 10129 */ 10130 static boolean_t 10131 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 10132 { 10133 conn_t *connp = Q_TO_CONN(q); 10134 ipsec_stack_t *ipss = connp->conn_netstack->netstack_ipsec; 10135 10136 /* 10137 * Take IPsec requests and treat them special. 10138 */ 10139 if (ipsec_opt_present(mp)) { 10140 /* First check if IPsec is loaded. */ 10141 mutex_enter(&ipss->ipsec_loader_lock); 10142 if (ipss->ipsec_loader_state != IPSEC_LOADER_WAIT) { 10143 mutex_exit(&ipss->ipsec_loader_lock); 10144 return (B_FALSE); 10145 } 10146 mutex_enter(&connp->conn_lock); 10147 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 10148 10149 ASSERT(connp->conn_ipsec_opt_mp == NULL); 10150 connp->conn_ipsec_opt_mp = mp; 10151 mutex_exit(&connp->conn_lock); 10152 mutex_exit(&ipss->ipsec_loader_lock); 10153 10154 ipsec_loader_loadnow(ipss); 10155 return (B_TRUE); 10156 } 10157 return (B_FALSE); 10158 } 10159 10160 /* 10161 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 10162 * all of them are copied to the conn_t. If the req is "zero", the policy is 10163 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 10164 * fields. 10165 * We keep only the latest setting of the policy and thus policy setting 10166 * is not incremental/cumulative. 10167 * 10168 * Requests to set policies with multiple alternative actions will 10169 * go through a different API. 10170 */ 10171 int 10172 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 10173 { 10174 uint_t ah_req = 0; 10175 uint_t esp_req = 0; 10176 uint_t se_req = 0; 10177 ipsec_selkey_t sel; 10178 ipsec_act_t *actp = NULL; 10179 uint_t nact; 10180 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 10181 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 10182 ipsec_policy_root_t *pr; 10183 ipsec_policy_head_t *ph; 10184 int fam; 10185 boolean_t is_pol_reset; 10186 int error = 0; 10187 netstack_t *ns = connp->conn_netstack; 10188 ip_stack_t *ipst = ns->netstack_ip; 10189 ipsec_stack_t *ipss = ns->netstack_ipsec; 10190 10191 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 10192 10193 /* 10194 * The IP_SEC_OPT option does not allow variable length parameters, 10195 * hence a request cannot be NULL. 10196 */ 10197 if (req == NULL) 10198 return (EINVAL); 10199 10200 ah_req = req->ipsr_ah_req; 10201 esp_req = req->ipsr_esp_req; 10202 se_req = req->ipsr_self_encap_req; 10203 10204 /* Don't allow setting self-encap without one or more of AH/ESP. */ 10205 if (se_req != 0 && esp_req == 0 && ah_req == 0) 10206 return (EINVAL); 10207 10208 /* 10209 * Are we dealing with a request to reset the policy (i.e. 10210 * zero requests). 10211 */ 10212 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 10213 (esp_req & REQ_MASK) == 0 && 10214 (se_req & REQ_MASK) == 0); 10215 10216 if (!is_pol_reset) { 10217 /* 10218 * If we couldn't load IPsec, fail with "protocol 10219 * not supported". 10220 * IPsec may not have been loaded for a request with zero 10221 * policies, so we don't fail in this case. 10222 */ 10223 mutex_enter(&ipss->ipsec_loader_lock); 10224 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 10225 mutex_exit(&ipss->ipsec_loader_lock); 10226 return (EPROTONOSUPPORT); 10227 } 10228 mutex_exit(&ipss->ipsec_loader_lock); 10229 10230 /* 10231 * Test for valid requests. Invalid algorithms 10232 * need to be tested by IPsec code because new 10233 * algorithms can be added dynamically. 10234 */ 10235 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10236 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10237 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 10238 return (EINVAL); 10239 } 10240 10241 /* 10242 * Only privileged users can issue these 10243 * requests. 10244 */ 10245 if (((ah_req & IPSEC_PREF_NEVER) || 10246 (esp_req & IPSEC_PREF_NEVER) || 10247 (se_req & IPSEC_PREF_NEVER)) && 10248 secpolicy_ip_config(cr, B_FALSE) != 0) { 10249 return (EPERM); 10250 } 10251 10252 /* 10253 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 10254 * are mutually exclusive. 10255 */ 10256 if (((ah_req & REQ_MASK) == REQ_MASK) || 10257 ((esp_req & REQ_MASK) == REQ_MASK) || 10258 ((se_req & REQ_MASK) == REQ_MASK)) { 10259 /* Both of them are set */ 10260 return (EINVAL); 10261 } 10262 } 10263 10264 mutex_enter(&connp->conn_lock); 10265 10266 /* 10267 * If we have already cached policies in ip_bind_connected*(), don't 10268 * let them change now. We cache policies for connections 10269 * whose src,dst [addr, port] is known. 10270 */ 10271 if (connp->conn_policy_cached) { 10272 mutex_exit(&connp->conn_lock); 10273 return (EINVAL); 10274 } 10275 10276 /* 10277 * We have a zero policies, reset the connection policy if already 10278 * set. This will cause the connection to inherit the 10279 * global policy, if any. 10280 */ 10281 if (is_pol_reset) { 10282 if (connp->conn_policy != NULL) { 10283 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 10284 connp->conn_policy = NULL; 10285 } 10286 connp->conn_flags &= ~IPCL_CHECK_POLICY; 10287 connp->conn_in_enforce_policy = B_FALSE; 10288 connp->conn_out_enforce_policy = B_FALSE; 10289 mutex_exit(&connp->conn_lock); 10290 return (0); 10291 } 10292 10293 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 10294 ipst->ips_netstack); 10295 if (ph == NULL) 10296 goto enomem; 10297 10298 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 10299 if (actp == NULL) 10300 goto enomem; 10301 10302 /* 10303 * Always allocate IPv4 policy entries, since they can also 10304 * apply to ipv6 sockets being used in ipv4-compat mode. 10305 */ 10306 bzero(&sel, sizeof (sel)); 10307 sel.ipsl_valid = IPSL_IPV4; 10308 10309 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10310 ipst->ips_netstack); 10311 if (pin4 == NULL) 10312 goto enomem; 10313 10314 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10315 ipst->ips_netstack); 10316 if (pout4 == NULL) 10317 goto enomem; 10318 10319 if (connp->conn_af_isv6) { 10320 /* 10321 * We're looking at a v6 socket, also allocate the 10322 * v6-specific entries... 10323 */ 10324 sel.ipsl_valid = IPSL_IPV6; 10325 pin6 = ipsec_policy_create(&sel, actp, nact, 10326 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10327 if (pin6 == NULL) 10328 goto enomem; 10329 10330 pout6 = ipsec_policy_create(&sel, actp, nact, 10331 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10332 if (pout6 == NULL) 10333 goto enomem; 10334 10335 /* 10336 * .. and file them away in the right place. 10337 */ 10338 fam = IPSEC_AF_V6; 10339 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10340 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 10341 ipsec_insert_always(&ph->iph_rulebyid, pin6); 10342 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10343 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 10344 ipsec_insert_always(&ph->iph_rulebyid, pout6); 10345 } 10346 10347 ipsec_actvec_free(actp, nact); 10348 10349 /* 10350 * File the v4 policies. 10351 */ 10352 fam = IPSEC_AF_V4; 10353 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10354 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 10355 ipsec_insert_always(&ph->iph_rulebyid, pin4); 10356 10357 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10358 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 10359 ipsec_insert_always(&ph->iph_rulebyid, pout4); 10360 10361 /* 10362 * If the requests need security, set enforce_policy. 10363 * If the requests are IPSEC_PREF_NEVER, one should 10364 * still set conn_out_enforce_policy so that an ipsec_out 10365 * gets attached in ip_wput. This is needed so that 10366 * for connections that we don't cache policy in ip_bind, 10367 * if global policy matches in ip_wput_attach_policy, we 10368 * don't wrongly inherit global policy. Similarly, we need 10369 * to set conn_in_enforce_policy also so that we don't verify 10370 * policy wrongly. 10371 */ 10372 if ((ah_req & REQ_MASK) != 0 || 10373 (esp_req & REQ_MASK) != 0 || 10374 (se_req & REQ_MASK) != 0) { 10375 connp->conn_in_enforce_policy = B_TRUE; 10376 connp->conn_out_enforce_policy = B_TRUE; 10377 connp->conn_flags |= IPCL_CHECK_POLICY; 10378 } 10379 10380 mutex_exit(&connp->conn_lock); 10381 return (error); 10382 #undef REQ_MASK 10383 10384 /* 10385 * Common memory-allocation-failure exit path. 10386 */ 10387 enomem: 10388 mutex_exit(&connp->conn_lock); 10389 if (actp != NULL) 10390 ipsec_actvec_free(actp, nact); 10391 if (pin4 != NULL) 10392 IPPOL_REFRELE(pin4, ipst->ips_netstack); 10393 if (pout4 != NULL) 10394 IPPOL_REFRELE(pout4, ipst->ips_netstack); 10395 if (pin6 != NULL) 10396 IPPOL_REFRELE(pin6, ipst->ips_netstack); 10397 if (pout6 != NULL) 10398 IPPOL_REFRELE(pout6, ipst->ips_netstack); 10399 return (ENOMEM); 10400 } 10401 10402 /* 10403 * Only for options that pass in an IP addr. Currently only V4 options 10404 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 10405 * So this function assumes level is IPPROTO_IP 10406 */ 10407 int 10408 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 10409 mblk_t *first_mp) 10410 { 10411 ipif_t *ipif = NULL; 10412 int error; 10413 ill_t *ill; 10414 int zoneid; 10415 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10416 10417 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 10418 10419 if (addr != INADDR_ANY || checkonly) { 10420 ASSERT(connp != NULL); 10421 zoneid = IPCL_ZONEID(connp); 10422 if (option == IP_NEXTHOP) { 10423 ipif = ipif_lookup_onlink_addr(addr, 10424 connp->conn_zoneid, ipst); 10425 } else { 10426 ipif = ipif_lookup_addr(addr, NULL, zoneid, 10427 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 10428 &error, ipst); 10429 } 10430 if (ipif == NULL) { 10431 if (error == EINPROGRESS) 10432 return (error); 10433 if ((option == IP_MULTICAST_IF) || 10434 (option == IP_NEXTHOP)) 10435 return (EHOSTUNREACH); 10436 else 10437 return (EINVAL); 10438 } else if (checkonly) { 10439 if (option == IP_MULTICAST_IF) { 10440 ill = ipif->ipif_ill; 10441 /* not supported by the virtual network iface */ 10442 if (IS_VNI(ill)) { 10443 ipif_refrele(ipif); 10444 return (EINVAL); 10445 } 10446 } 10447 ipif_refrele(ipif); 10448 return (0); 10449 } 10450 ill = ipif->ipif_ill; 10451 mutex_enter(&connp->conn_lock); 10452 mutex_enter(&ill->ill_lock); 10453 if ((ill->ill_state_flags & ILL_CONDEMNED) || 10454 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 10455 mutex_exit(&ill->ill_lock); 10456 mutex_exit(&connp->conn_lock); 10457 ipif_refrele(ipif); 10458 return (option == IP_MULTICAST_IF ? 10459 EHOSTUNREACH : EINVAL); 10460 } 10461 } else { 10462 mutex_enter(&connp->conn_lock); 10463 } 10464 10465 /* None of the options below are supported on the VNI */ 10466 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 10467 mutex_exit(&ill->ill_lock); 10468 mutex_exit(&connp->conn_lock); 10469 ipif_refrele(ipif); 10470 return (EINVAL); 10471 } 10472 10473 switch (option) { 10474 case IP_MULTICAST_IF: 10475 connp->conn_multicast_ipif = ipif; 10476 break; 10477 case IP_NEXTHOP: 10478 connp->conn_nexthop_v4 = addr; 10479 connp->conn_nexthop_set = B_TRUE; 10480 break; 10481 } 10482 10483 if (ipif != NULL) { 10484 mutex_exit(&ill->ill_lock); 10485 mutex_exit(&connp->conn_lock); 10486 ipif_refrele(ipif); 10487 return (0); 10488 } 10489 mutex_exit(&connp->conn_lock); 10490 /* We succeded in cleared the option */ 10491 return (0); 10492 } 10493 10494 /* 10495 * For options that pass in an ifindex specifying the ill. V6 options always 10496 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 10497 */ 10498 int 10499 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 10500 int level, int option, mblk_t *first_mp) 10501 { 10502 ill_t *ill = NULL; 10503 int error = 0; 10504 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10505 10506 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 10507 if (ifindex != 0) { 10508 ASSERT(connp != NULL); 10509 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 10510 first_mp, ip_restart_optmgmt, &error, ipst); 10511 if (ill != NULL) { 10512 if (checkonly) { 10513 /* not supported by the virtual network iface */ 10514 if (IS_VNI(ill)) { 10515 ill_refrele(ill); 10516 return (EINVAL); 10517 } 10518 ill_refrele(ill); 10519 return (0); 10520 } 10521 if (!ipif_lookup_zoneid(ill, connp->conn_zoneid, 10522 0, NULL)) { 10523 ill_refrele(ill); 10524 ill = NULL; 10525 mutex_enter(&connp->conn_lock); 10526 goto setit; 10527 } 10528 mutex_enter(&connp->conn_lock); 10529 mutex_enter(&ill->ill_lock); 10530 if (ill->ill_state_flags & ILL_CONDEMNED) { 10531 mutex_exit(&ill->ill_lock); 10532 mutex_exit(&connp->conn_lock); 10533 ill_refrele(ill); 10534 ill = NULL; 10535 mutex_enter(&connp->conn_lock); 10536 } 10537 goto setit; 10538 } else if (error == EINPROGRESS) { 10539 return (error); 10540 } else { 10541 error = 0; 10542 } 10543 } 10544 mutex_enter(&connp->conn_lock); 10545 setit: 10546 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 10547 10548 /* 10549 * The options below assume that the ILL (if any) transmits and/or 10550 * receives traffic. Neither of which is true for the virtual network 10551 * interface, so fail setting these on a VNI. 10552 */ 10553 if (IS_VNI(ill)) { 10554 ASSERT(ill != NULL); 10555 mutex_exit(&ill->ill_lock); 10556 mutex_exit(&connp->conn_lock); 10557 ill_refrele(ill); 10558 return (EINVAL); 10559 } 10560 10561 if (level == IPPROTO_IP) { 10562 switch (option) { 10563 case IP_BOUND_IF: 10564 connp->conn_incoming_ill = ill; 10565 connp->conn_outgoing_ill = ill; 10566 break; 10567 10568 case IP_MULTICAST_IF: 10569 /* 10570 * This option is an internal special. The socket 10571 * level IP_MULTICAST_IF specifies an 'ipaddr' and 10572 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 10573 * specifies an ifindex and we try first on V6 ill's. 10574 * If we don't find one, we they try using on v4 ill's 10575 * intenally and we come here. 10576 */ 10577 if (!checkonly && ill != NULL) { 10578 ipif_t *ipif; 10579 ipif = ill->ill_ipif; 10580 10581 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 10582 mutex_exit(&ill->ill_lock); 10583 mutex_exit(&connp->conn_lock); 10584 ill_refrele(ill); 10585 ill = NULL; 10586 mutex_enter(&connp->conn_lock); 10587 } else { 10588 connp->conn_multicast_ipif = ipif; 10589 } 10590 } 10591 break; 10592 10593 case IP_DHCPINIT_IF: 10594 if (connp->conn_dhcpinit_ill != NULL) { 10595 /* 10596 * We've locked the conn so conn_cleanup_ill() 10597 * cannot clear conn_dhcpinit_ill -- so it's 10598 * safe to access the ill. 10599 */ 10600 ill_t *oill = connp->conn_dhcpinit_ill; 10601 10602 ASSERT(oill->ill_dhcpinit != 0); 10603 atomic_dec_32(&oill->ill_dhcpinit); 10604 connp->conn_dhcpinit_ill = NULL; 10605 } 10606 10607 if (ill != NULL) { 10608 connp->conn_dhcpinit_ill = ill; 10609 atomic_inc_32(&ill->ill_dhcpinit); 10610 } 10611 break; 10612 } 10613 } else { 10614 switch (option) { 10615 case IPV6_BOUND_IF: 10616 connp->conn_incoming_ill = ill; 10617 connp->conn_outgoing_ill = ill; 10618 break; 10619 10620 case IPV6_MULTICAST_IF: 10621 /* 10622 * Set conn_multicast_ill to be the IPv6 ill. 10623 * Set conn_multicast_ipif to be an IPv4 ipif 10624 * for ifindex to make IPv4 mapped addresses 10625 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 10626 * Even if no IPv6 ill exists for the ifindex 10627 * we need to check for an IPv4 ifindex in order 10628 * for this to work with mapped addresses. In that 10629 * case only set conn_multicast_ipif. 10630 */ 10631 if (!checkonly) { 10632 if (ifindex == 0) { 10633 connp->conn_multicast_ill = NULL; 10634 connp->conn_multicast_ipif = NULL; 10635 } else if (ill != NULL) { 10636 connp->conn_multicast_ill = ill; 10637 } 10638 } 10639 break; 10640 } 10641 } 10642 10643 if (ill != NULL) { 10644 mutex_exit(&ill->ill_lock); 10645 mutex_exit(&connp->conn_lock); 10646 ill_refrele(ill); 10647 return (0); 10648 } 10649 mutex_exit(&connp->conn_lock); 10650 /* 10651 * We succeeded in clearing the option (ifindex == 0) or failed to 10652 * locate the ill and could not set the option (ifindex != 0) 10653 */ 10654 return (ifindex == 0 ? 0 : EINVAL); 10655 } 10656 10657 /* This routine sets socket options. */ 10658 /* ARGSUSED */ 10659 int 10660 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10661 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10662 void *dummy, cred_t *cr, mblk_t *first_mp) 10663 { 10664 int *i1 = (int *)invalp; 10665 conn_t *connp = Q_TO_CONN(q); 10666 int error = 0; 10667 boolean_t checkonly; 10668 ire_t *ire; 10669 boolean_t found; 10670 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10671 10672 switch (optset_context) { 10673 10674 case SETFN_OPTCOM_CHECKONLY: 10675 checkonly = B_TRUE; 10676 /* 10677 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10678 * inlen != 0 implies value supplied and 10679 * we have to "pretend" to set it. 10680 * inlen == 0 implies that there is no 10681 * value part in T_CHECK request and just validation 10682 * done elsewhere should be enough, we just return here. 10683 */ 10684 if (inlen == 0) { 10685 *outlenp = 0; 10686 return (0); 10687 } 10688 break; 10689 case SETFN_OPTCOM_NEGOTIATE: 10690 case SETFN_UD_NEGOTIATE: 10691 case SETFN_CONN_NEGOTIATE: 10692 checkonly = B_FALSE; 10693 break; 10694 default: 10695 /* 10696 * We should never get here 10697 */ 10698 *outlenp = 0; 10699 return (EINVAL); 10700 } 10701 10702 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10703 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10704 10705 /* 10706 * For fixed length options, no sanity check 10707 * of passed in length is done. It is assumed *_optcom_req() 10708 * routines do the right thing. 10709 */ 10710 10711 switch (level) { 10712 case SOL_SOCKET: 10713 /* 10714 * conn_lock protects the bitfields, and is used to 10715 * set the fields atomically. 10716 */ 10717 switch (name) { 10718 case SO_BROADCAST: 10719 if (!checkonly) { 10720 /* TODO: use value someplace? */ 10721 mutex_enter(&connp->conn_lock); 10722 connp->conn_broadcast = *i1 ? 1 : 0; 10723 mutex_exit(&connp->conn_lock); 10724 } 10725 break; /* goto sizeof (int) option return */ 10726 case SO_USELOOPBACK: 10727 if (!checkonly) { 10728 /* TODO: use value someplace? */ 10729 mutex_enter(&connp->conn_lock); 10730 connp->conn_loopback = *i1 ? 1 : 0; 10731 mutex_exit(&connp->conn_lock); 10732 } 10733 break; /* goto sizeof (int) option return */ 10734 case SO_DONTROUTE: 10735 if (!checkonly) { 10736 mutex_enter(&connp->conn_lock); 10737 connp->conn_dontroute = *i1 ? 1 : 0; 10738 mutex_exit(&connp->conn_lock); 10739 } 10740 break; /* goto sizeof (int) option return */ 10741 case SO_REUSEADDR: 10742 if (!checkonly) { 10743 mutex_enter(&connp->conn_lock); 10744 connp->conn_reuseaddr = *i1 ? 1 : 0; 10745 mutex_exit(&connp->conn_lock); 10746 } 10747 break; /* goto sizeof (int) option return */ 10748 case SO_PROTOTYPE: 10749 if (!checkonly) { 10750 mutex_enter(&connp->conn_lock); 10751 connp->conn_proto = *i1; 10752 mutex_exit(&connp->conn_lock); 10753 } 10754 break; /* goto sizeof (int) option return */ 10755 case SO_ALLZONES: 10756 if (!checkonly) { 10757 mutex_enter(&connp->conn_lock); 10758 if (IPCL_IS_BOUND(connp)) { 10759 mutex_exit(&connp->conn_lock); 10760 return (EINVAL); 10761 } 10762 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10763 mutex_exit(&connp->conn_lock); 10764 } 10765 break; /* goto sizeof (int) option return */ 10766 case SO_ANON_MLP: 10767 if (!checkonly) { 10768 mutex_enter(&connp->conn_lock); 10769 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10770 mutex_exit(&connp->conn_lock); 10771 } 10772 break; /* goto sizeof (int) option return */ 10773 case SO_MAC_EXEMPT: 10774 if (secpolicy_net_mac_aware(cr) != 0 || 10775 IPCL_IS_BOUND(connp)) 10776 return (EACCES); 10777 if (!checkonly) { 10778 mutex_enter(&connp->conn_lock); 10779 connp->conn_mac_exempt = *i1 != 0 ? 1 : 0; 10780 mutex_exit(&connp->conn_lock); 10781 } 10782 break; /* goto sizeof (int) option return */ 10783 default: 10784 /* 10785 * "soft" error (negative) 10786 * option not handled at this level 10787 * Note: Do not modify *outlenp 10788 */ 10789 return (-EINVAL); 10790 } 10791 break; 10792 case IPPROTO_IP: 10793 switch (name) { 10794 case IP_NEXTHOP: 10795 if (secpolicy_ip_config(cr, B_FALSE) != 0) 10796 return (EPERM); 10797 /* FALLTHRU */ 10798 case IP_MULTICAST_IF: { 10799 ipaddr_t addr = *i1; 10800 10801 error = ip_opt_set_ipif(connp, addr, checkonly, name, 10802 first_mp); 10803 if (error != 0) 10804 return (error); 10805 break; /* goto sizeof (int) option return */ 10806 } 10807 10808 case IP_MULTICAST_TTL: 10809 /* Recorded in transport above IP */ 10810 *outvalp = *invalp; 10811 *outlenp = sizeof (uchar_t); 10812 return (0); 10813 case IP_MULTICAST_LOOP: 10814 if (!checkonly) { 10815 mutex_enter(&connp->conn_lock); 10816 connp->conn_multicast_loop = *invalp ? 1 : 0; 10817 mutex_exit(&connp->conn_lock); 10818 } 10819 *outvalp = *invalp; 10820 *outlenp = sizeof (uchar_t); 10821 return (0); 10822 case IP_ADD_MEMBERSHIP: 10823 case MCAST_JOIN_GROUP: 10824 case IP_DROP_MEMBERSHIP: 10825 case MCAST_LEAVE_GROUP: { 10826 struct ip_mreq *mreqp; 10827 struct group_req *greqp; 10828 ire_t *ire; 10829 boolean_t done = B_FALSE; 10830 ipaddr_t group, ifaddr; 10831 struct sockaddr_in *sin; 10832 uint32_t *ifindexp; 10833 boolean_t mcast_opt = B_TRUE; 10834 mcast_record_t fmode; 10835 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10836 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10837 10838 switch (name) { 10839 case IP_ADD_MEMBERSHIP: 10840 mcast_opt = B_FALSE; 10841 /* FALLTHRU */ 10842 case MCAST_JOIN_GROUP: 10843 fmode = MODE_IS_EXCLUDE; 10844 optfn = ip_opt_add_group; 10845 break; 10846 10847 case IP_DROP_MEMBERSHIP: 10848 mcast_opt = B_FALSE; 10849 /* FALLTHRU */ 10850 case MCAST_LEAVE_GROUP: 10851 fmode = MODE_IS_INCLUDE; 10852 optfn = ip_opt_delete_group; 10853 break; 10854 } 10855 10856 if (mcast_opt) { 10857 greqp = (struct group_req *)i1; 10858 sin = (struct sockaddr_in *)&greqp->gr_group; 10859 if (sin->sin_family != AF_INET) { 10860 *outlenp = 0; 10861 return (ENOPROTOOPT); 10862 } 10863 group = (ipaddr_t)sin->sin_addr.s_addr; 10864 ifaddr = INADDR_ANY; 10865 ifindexp = &greqp->gr_interface; 10866 } else { 10867 mreqp = (struct ip_mreq *)i1; 10868 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 10869 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 10870 ifindexp = NULL; 10871 } 10872 10873 /* 10874 * In the multirouting case, we need to replicate 10875 * the request on all interfaces that will take part 10876 * in replication. We do so because multirouting is 10877 * reflective, thus we will probably receive multi- 10878 * casts on those interfaces. 10879 * The ip_multirt_apply_membership() succeeds if the 10880 * operation succeeds on at least one interface. 10881 */ 10882 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 10883 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10884 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10885 if (ire != NULL) { 10886 if (ire->ire_flags & RTF_MULTIRT) { 10887 error = ip_multirt_apply_membership( 10888 optfn, ire, connp, checkonly, group, 10889 fmode, INADDR_ANY, first_mp); 10890 done = B_TRUE; 10891 } 10892 ire_refrele(ire); 10893 } 10894 if (!done) { 10895 error = optfn(connp, checkonly, group, ifaddr, 10896 ifindexp, fmode, INADDR_ANY, first_mp); 10897 } 10898 if (error) { 10899 /* 10900 * EINPROGRESS is a soft error, needs retry 10901 * so don't make *outlenp zero. 10902 */ 10903 if (error != EINPROGRESS) 10904 *outlenp = 0; 10905 return (error); 10906 } 10907 /* OK return - copy input buffer into output buffer */ 10908 if (invalp != outvalp) { 10909 /* don't trust bcopy for identical src/dst */ 10910 bcopy(invalp, outvalp, inlen); 10911 } 10912 *outlenp = inlen; 10913 return (0); 10914 } 10915 case IP_BLOCK_SOURCE: 10916 case IP_UNBLOCK_SOURCE: 10917 case IP_ADD_SOURCE_MEMBERSHIP: 10918 case IP_DROP_SOURCE_MEMBERSHIP: 10919 case MCAST_BLOCK_SOURCE: 10920 case MCAST_UNBLOCK_SOURCE: 10921 case MCAST_JOIN_SOURCE_GROUP: 10922 case MCAST_LEAVE_SOURCE_GROUP: { 10923 struct ip_mreq_source *imreqp; 10924 struct group_source_req *gsreqp; 10925 in_addr_t grp, src, ifaddr = INADDR_ANY; 10926 uint32_t ifindex = 0; 10927 mcast_record_t fmode; 10928 struct sockaddr_in *sin; 10929 ire_t *ire; 10930 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 10931 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10932 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10933 10934 switch (name) { 10935 case IP_BLOCK_SOURCE: 10936 mcast_opt = B_FALSE; 10937 /* FALLTHRU */ 10938 case MCAST_BLOCK_SOURCE: 10939 fmode = MODE_IS_EXCLUDE; 10940 optfn = ip_opt_add_group; 10941 break; 10942 10943 case IP_UNBLOCK_SOURCE: 10944 mcast_opt = B_FALSE; 10945 /* FALLTHRU */ 10946 case MCAST_UNBLOCK_SOURCE: 10947 fmode = MODE_IS_EXCLUDE; 10948 optfn = ip_opt_delete_group; 10949 break; 10950 10951 case IP_ADD_SOURCE_MEMBERSHIP: 10952 mcast_opt = B_FALSE; 10953 /* FALLTHRU */ 10954 case MCAST_JOIN_SOURCE_GROUP: 10955 fmode = MODE_IS_INCLUDE; 10956 optfn = ip_opt_add_group; 10957 break; 10958 10959 case IP_DROP_SOURCE_MEMBERSHIP: 10960 mcast_opt = B_FALSE; 10961 /* FALLTHRU */ 10962 case MCAST_LEAVE_SOURCE_GROUP: 10963 fmode = MODE_IS_INCLUDE; 10964 optfn = ip_opt_delete_group; 10965 break; 10966 } 10967 10968 if (mcast_opt) { 10969 gsreqp = (struct group_source_req *)i1; 10970 if (gsreqp->gsr_group.ss_family != AF_INET) { 10971 *outlenp = 0; 10972 return (ENOPROTOOPT); 10973 } 10974 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 10975 grp = (ipaddr_t)sin->sin_addr.s_addr; 10976 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 10977 src = (ipaddr_t)sin->sin_addr.s_addr; 10978 ifindex = gsreqp->gsr_interface; 10979 } else { 10980 imreqp = (struct ip_mreq_source *)i1; 10981 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 10982 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 10983 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 10984 } 10985 10986 /* 10987 * In the multirouting case, we need to replicate 10988 * the request as noted in the mcast cases above. 10989 */ 10990 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 10991 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10992 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10993 if (ire != NULL) { 10994 if (ire->ire_flags & RTF_MULTIRT) { 10995 error = ip_multirt_apply_membership( 10996 optfn, ire, connp, checkonly, grp, 10997 fmode, src, first_mp); 10998 done = B_TRUE; 10999 } 11000 ire_refrele(ire); 11001 } 11002 if (!done) { 11003 error = optfn(connp, checkonly, grp, ifaddr, 11004 &ifindex, fmode, src, first_mp); 11005 } 11006 if (error != 0) { 11007 /* 11008 * EINPROGRESS is a soft error, needs retry 11009 * so don't make *outlenp zero. 11010 */ 11011 if (error != EINPROGRESS) 11012 *outlenp = 0; 11013 return (error); 11014 } 11015 /* OK return - copy input buffer into output buffer */ 11016 if (invalp != outvalp) { 11017 bcopy(invalp, outvalp, inlen); 11018 } 11019 *outlenp = inlen; 11020 return (0); 11021 } 11022 case IP_SEC_OPT: 11023 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11024 if (error != 0) { 11025 *outlenp = 0; 11026 return (error); 11027 } 11028 break; 11029 case IP_HDRINCL: 11030 case IP_OPTIONS: 11031 case T_IP_OPTIONS: 11032 case IP_TOS: 11033 case T_IP_TOS: 11034 case IP_TTL: 11035 case IP_RECVDSTADDR: 11036 case IP_RECVOPTS: 11037 /* OK return - copy input buffer into output buffer */ 11038 if (invalp != outvalp) { 11039 /* don't trust bcopy for identical src/dst */ 11040 bcopy(invalp, outvalp, inlen); 11041 } 11042 *outlenp = inlen; 11043 return (0); 11044 case IP_RECVIF: 11045 /* Retrieve the inbound interface index */ 11046 if (!checkonly) { 11047 mutex_enter(&connp->conn_lock); 11048 connp->conn_recvif = *i1 ? 1 : 0; 11049 mutex_exit(&connp->conn_lock); 11050 } 11051 break; /* goto sizeof (int) option return */ 11052 case IP_RECVPKTINFO: 11053 if (!checkonly) { 11054 mutex_enter(&connp->conn_lock); 11055 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11056 mutex_exit(&connp->conn_lock); 11057 } 11058 break; /* goto sizeof (int) option return */ 11059 case IP_RECVSLLA: 11060 /* Retrieve the source link layer address */ 11061 if (!checkonly) { 11062 mutex_enter(&connp->conn_lock); 11063 connp->conn_recvslla = *i1 ? 1 : 0; 11064 mutex_exit(&connp->conn_lock); 11065 } 11066 break; /* goto sizeof (int) option return */ 11067 case MRT_INIT: 11068 case MRT_DONE: 11069 case MRT_ADD_VIF: 11070 case MRT_DEL_VIF: 11071 case MRT_ADD_MFC: 11072 case MRT_DEL_MFC: 11073 case MRT_ASSERT: 11074 if ((error = secpolicy_ip_config(cr, B_FALSE)) != 0) { 11075 *outlenp = 0; 11076 return (error); 11077 } 11078 error = ip_mrouter_set((int)name, q, checkonly, 11079 (uchar_t *)invalp, inlen, first_mp); 11080 if (error) { 11081 *outlenp = 0; 11082 return (error); 11083 } 11084 /* OK return - copy input buffer into output buffer */ 11085 if (invalp != outvalp) { 11086 /* don't trust bcopy for identical src/dst */ 11087 bcopy(invalp, outvalp, inlen); 11088 } 11089 *outlenp = inlen; 11090 return (0); 11091 case IP_BOUND_IF: 11092 case IP_DHCPINIT_IF: 11093 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11094 level, name, first_mp); 11095 if (error != 0) 11096 return (error); 11097 break; /* goto sizeof (int) option return */ 11098 11099 case IP_UNSPEC_SRC: 11100 /* Allow sending with a zero source address */ 11101 if (!checkonly) { 11102 mutex_enter(&connp->conn_lock); 11103 connp->conn_unspec_src = *i1 ? 1 : 0; 11104 mutex_exit(&connp->conn_lock); 11105 } 11106 break; /* goto sizeof (int) option return */ 11107 default: 11108 /* 11109 * "soft" error (negative) 11110 * option not handled at this level 11111 * Note: Do not modify *outlenp 11112 */ 11113 return (-EINVAL); 11114 } 11115 break; 11116 case IPPROTO_IPV6: 11117 switch (name) { 11118 case IPV6_BOUND_IF: 11119 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11120 level, name, first_mp); 11121 if (error != 0) 11122 return (error); 11123 break; /* goto sizeof (int) option return */ 11124 11125 case IPV6_MULTICAST_IF: 11126 /* 11127 * The only possible errors are EINPROGRESS and 11128 * EINVAL. EINPROGRESS will be restarted and is not 11129 * a hard error. We call this option on both V4 and V6 11130 * If both return EINVAL, then this call returns 11131 * EINVAL. If at least one of them succeeds we 11132 * return success. 11133 */ 11134 found = B_FALSE; 11135 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11136 level, name, first_mp); 11137 if (error == EINPROGRESS) 11138 return (error); 11139 if (error == 0) 11140 found = B_TRUE; 11141 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11142 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 11143 if (error == 0) 11144 found = B_TRUE; 11145 if (!found) 11146 return (error); 11147 break; /* goto sizeof (int) option return */ 11148 11149 case IPV6_MULTICAST_HOPS: 11150 /* Recorded in transport above IP */ 11151 break; /* goto sizeof (int) option return */ 11152 case IPV6_MULTICAST_LOOP: 11153 if (!checkonly) { 11154 mutex_enter(&connp->conn_lock); 11155 connp->conn_multicast_loop = *i1; 11156 mutex_exit(&connp->conn_lock); 11157 } 11158 break; /* goto sizeof (int) option return */ 11159 case IPV6_JOIN_GROUP: 11160 case MCAST_JOIN_GROUP: 11161 case IPV6_LEAVE_GROUP: 11162 case MCAST_LEAVE_GROUP: { 11163 struct ipv6_mreq *ip_mreqp; 11164 struct group_req *greqp; 11165 ire_t *ire; 11166 boolean_t done = B_FALSE; 11167 in6_addr_t groupv6; 11168 uint32_t ifindex; 11169 boolean_t mcast_opt = B_TRUE; 11170 mcast_record_t fmode; 11171 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11172 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11173 11174 switch (name) { 11175 case IPV6_JOIN_GROUP: 11176 mcast_opt = B_FALSE; 11177 /* FALLTHRU */ 11178 case MCAST_JOIN_GROUP: 11179 fmode = MODE_IS_EXCLUDE; 11180 optfn = ip_opt_add_group_v6; 11181 break; 11182 11183 case IPV6_LEAVE_GROUP: 11184 mcast_opt = B_FALSE; 11185 /* FALLTHRU */ 11186 case MCAST_LEAVE_GROUP: 11187 fmode = MODE_IS_INCLUDE; 11188 optfn = ip_opt_delete_group_v6; 11189 break; 11190 } 11191 11192 if (mcast_opt) { 11193 struct sockaddr_in *sin; 11194 struct sockaddr_in6 *sin6; 11195 greqp = (struct group_req *)i1; 11196 if (greqp->gr_group.ss_family == AF_INET) { 11197 sin = (struct sockaddr_in *) 11198 &(greqp->gr_group); 11199 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 11200 &groupv6); 11201 } else { 11202 sin6 = (struct sockaddr_in6 *) 11203 &(greqp->gr_group); 11204 groupv6 = sin6->sin6_addr; 11205 } 11206 ifindex = greqp->gr_interface; 11207 } else { 11208 ip_mreqp = (struct ipv6_mreq *)i1; 11209 groupv6 = ip_mreqp->ipv6mr_multiaddr; 11210 ifindex = ip_mreqp->ipv6mr_interface; 11211 } 11212 /* 11213 * In the multirouting case, we need to replicate 11214 * the request on all interfaces that will take part 11215 * in replication. We do so because multirouting is 11216 * reflective, thus we will probably receive multi- 11217 * casts on those interfaces. 11218 * The ip_multirt_apply_membership_v6() succeeds if 11219 * the operation succeeds on at least one interface. 11220 */ 11221 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 11222 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11223 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11224 if (ire != NULL) { 11225 if (ire->ire_flags & RTF_MULTIRT) { 11226 error = ip_multirt_apply_membership_v6( 11227 optfn, ire, connp, checkonly, 11228 &groupv6, fmode, &ipv6_all_zeros, 11229 first_mp); 11230 done = B_TRUE; 11231 } 11232 ire_refrele(ire); 11233 } 11234 if (!done) { 11235 error = optfn(connp, checkonly, &groupv6, 11236 ifindex, fmode, &ipv6_all_zeros, first_mp); 11237 } 11238 if (error) { 11239 /* 11240 * EINPROGRESS is a soft error, needs retry 11241 * so don't make *outlenp zero. 11242 */ 11243 if (error != EINPROGRESS) 11244 *outlenp = 0; 11245 return (error); 11246 } 11247 /* OK return - copy input buffer into output buffer */ 11248 if (invalp != outvalp) { 11249 /* don't trust bcopy for identical src/dst */ 11250 bcopy(invalp, outvalp, inlen); 11251 } 11252 *outlenp = inlen; 11253 return (0); 11254 } 11255 case MCAST_BLOCK_SOURCE: 11256 case MCAST_UNBLOCK_SOURCE: 11257 case MCAST_JOIN_SOURCE_GROUP: 11258 case MCAST_LEAVE_SOURCE_GROUP: { 11259 struct group_source_req *gsreqp; 11260 in6_addr_t v6grp, v6src; 11261 uint32_t ifindex; 11262 mcast_record_t fmode; 11263 ire_t *ire; 11264 boolean_t done = B_FALSE; 11265 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11266 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11267 11268 switch (name) { 11269 case MCAST_BLOCK_SOURCE: 11270 fmode = MODE_IS_EXCLUDE; 11271 optfn = ip_opt_add_group_v6; 11272 break; 11273 case MCAST_UNBLOCK_SOURCE: 11274 fmode = MODE_IS_EXCLUDE; 11275 optfn = ip_opt_delete_group_v6; 11276 break; 11277 case MCAST_JOIN_SOURCE_GROUP: 11278 fmode = MODE_IS_INCLUDE; 11279 optfn = ip_opt_add_group_v6; 11280 break; 11281 case MCAST_LEAVE_SOURCE_GROUP: 11282 fmode = MODE_IS_INCLUDE; 11283 optfn = ip_opt_delete_group_v6; 11284 break; 11285 } 11286 11287 gsreqp = (struct group_source_req *)i1; 11288 ifindex = gsreqp->gsr_interface; 11289 if (gsreqp->gsr_group.ss_family == AF_INET) { 11290 struct sockaddr_in *s; 11291 s = (struct sockaddr_in *)&gsreqp->gsr_group; 11292 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 11293 s = (struct sockaddr_in *)&gsreqp->gsr_source; 11294 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 11295 } else { 11296 struct sockaddr_in6 *s6; 11297 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 11298 v6grp = s6->sin6_addr; 11299 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 11300 v6src = s6->sin6_addr; 11301 } 11302 11303 /* 11304 * In the multirouting case, we need to replicate 11305 * the request as noted in the mcast cases above. 11306 */ 11307 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 11308 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11309 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11310 if (ire != NULL) { 11311 if (ire->ire_flags & RTF_MULTIRT) { 11312 error = ip_multirt_apply_membership_v6( 11313 optfn, ire, connp, checkonly, 11314 &v6grp, fmode, &v6src, first_mp); 11315 done = B_TRUE; 11316 } 11317 ire_refrele(ire); 11318 } 11319 if (!done) { 11320 error = optfn(connp, checkonly, &v6grp, 11321 ifindex, fmode, &v6src, first_mp); 11322 } 11323 if (error != 0) { 11324 /* 11325 * EINPROGRESS is a soft error, needs retry 11326 * so don't make *outlenp zero. 11327 */ 11328 if (error != EINPROGRESS) 11329 *outlenp = 0; 11330 return (error); 11331 } 11332 /* OK return - copy input buffer into output buffer */ 11333 if (invalp != outvalp) { 11334 bcopy(invalp, outvalp, inlen); 11335 } 11336 *outlenp = inlen; 11337 return (0); 11338 } 11339 case IPV6_UNICAST_HOPS: 11340 /* Recorded in transport above IP */ 11341 break; /* goto sizeof (int) option return */ 11342 case IPV6_UNSPEC_SRC: 11343 /* Allow sending with a zero source address */ 11344 if (!checkonly) { 11345 mutex_enter(&connp->conn_lock); 11346 connp->conn_unspec_src = *i1 ? 1 : 0; 11347 mutex_exit(&connp->conn_lock); 11348 } 11349 break; /* goto sizeof (int) option return */ 11350 case IPV6_RECVPKTINFO: 11351 if (!checkonly) { 11352 mutex_enter(&connp->conn_lock); 11353 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11354 mutex_exit(&connp->conn_lock); 11355 } 11356 break; /* goto sizeof (int) option return */ 11357 case IPV6_RECVTCLASS: 11358 if (!checkonly) { 11359 if (*i1 < 0 || *i1 > 1) { 11360 return (EINVAL); 11361 } 11362 mutex_enter(&connp->conn_lock); 11363 connp->conn_ipv6_recvtclass = *i1; 11364 mutex_exit(&connp->conn_lock); 11365 } 11366 break; 11367 case IPV6_RECVPATHMTU: 11368 if (!checkonly) { 11369 if (*i1 < 0 || *i1 > 1) { 11370 return (EINVAL); 11371 } 11372 mutex_enter(&connp->conn_lock); 11373 connp->conn_ipv6_recvpathmtu = *i1; 11374 mutex_exit(&connp->conn_lock); 11375 } 11376 break; 11377 case IPV6_RECVHOPLIMIT: 11378 if (!checkonly) { 11379 mutex_enter(&connp->conn_lock); 11380 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 11381 mutex_exit(&connp->conn_lock); 11382 } 11383 break; /* goto sizeof (int) option return */ 11384 case IPV6_RECVHOPOPTS: 11385 if (!checkonly) { 11386 mutex_enter(&connp->conn_lock); 11387 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 11388 mutex_exit(&connp->conn_lock); 11389 } 11390 break; /* goto sizeof (int) option return */ 11391 case IPV6_RECVDSTOPTS: 11392 if (!checkonly) { 11393 mutex_enter(&connp->conn_lock); 11394 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 11395 mutex_exit(&connp->conn_lock); 11396 } 11397 break; /* goto sizeof (int) option return */ 11398 case IPV6_RECVRTHDR: 11399 if (!checkonly) { 11400 mutex_enter(&connp->conn_lock); 11401 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 11402 mutex_exit(&connp->conn_lock); 11403 } 11404 break; /* goto sizeof (int) option return */ 11405 case IPV6_RECVRTHDRDSTOPTS: 11406 if (!checkonly) { 11407 mutex_enter(&connp->conn_lock); 11408 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 11409 mutex_exit(&connp->conn_lock); 11410 } 11411 break; /* goto sizeof (int) option return */ 11412 case IPV6_PKTINFO: 11413 if (inlen == 0) 11414 return (-EINVAL); /* clearing option */ 11415 error = ip6_set_pktinfo(cr, connp, 11416 (struct in6_pktinfo *)invalp); 11417 if (error != 0) 11418 *outlenp = 0; 11419 else 11420 *outlenp = inlen; 11421 return (error); 11422 case IPV6_NEXTHOP: { 11423 struct sockaddr_in6 *sin6; 11424 11425 /* Verify that the nexthop is reachable */ 11426 if (inlen == 0) 11427 return (-EINVAL); /* clearing option */ 11428 11429 sin6 = (struct sockaddr_in6 *)invalp; 11430 ire = ire_route_lookup_v6(&sin6->sin6_addr, 11431 0, 0, 0, NULL, NULL, connp->conn_zoneid, 11432 NULL, MATCH_IRE_DEFAULT, ipst); 11433 11434 if (ire == NULL) { 11435 *outlenp = 0; 11436 return (EHOSTUNREACH); 11437 } 11438 ire_refrele(ire); 11439 return (-EINVAL); 11440 } 11441 case IPV6_SEC_OPT: 11442 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11443 if (error != 0) { 11444 *outlenp = 0; 11445 return (error); 11446 } 11447 break; 11448 case IPV6_SRC_PREFERENCES: { 11449 /* 11450 * This is implemented strictly in the ip module 11451 * (here and in tcp_opt_*() to accomodate tcp 11452 * sockets). Modules above ip pass this option 11453 * down here since ip is the only one that needs to 11454 * be aware of source address preferences. 11455 * 11456 * This socket option only affects connected 11457 * sockets that haven't already bound to a specific 11458 * IPv6 address. In other words, sockets that 11459 * don't call bind() with an address other than the 11460 * unspecified address and that call connect(). 11461 * ip_bind_connected_v6() passes these preferences 11462 * to the ipif_select_source_v6() function. 11463 */ 11464 if (inlen != sizeof (uint32_t)) 11465 return (EINVAL); 11466 error = ip6_set_src_preferences(connp, 11467 *(uint32_t *)invalp); 11468 if (error != 0) { 11469 *outlenp = 0; 11470 return (error); 11471 } else { 11472 *outlenp = sizeof (uint32_t); 11473 } 11474 break; 11475 } 11476 case IPV6_V6ONLY: 11477 if (*i1 < 0 || *i1 > 1) { 11478 return (EINVAL); 11479 } 11480 mutex_enter(&connp->conn_lock); 11481 connp->conn_ipv6_v6only = *i1; 11482 mutex_exit(&connp->conn_lock); 11483 break; 11484 default: 11485 return (-EINVAL); 11486 } 11487 break; 11488 default: 11489 /* 11490 * "soft" error (negative) 11491 * option not handled at this level 11492 * Note: Do not modify *outlenp 11493 */ 11494 return (-EINVAL); 11495 } 11496 /* 11497 * Common case of return from an option that is sizeof (int) 11498 */ 11499 *(int *)outvalp = *i1; 11500 *outlenp = sizeof (int); 11501 return (0); 11502 } 11503 11504 /* 11505 * This routine gets default values of certain options whose default 11506 * values are maintained by protocol specific code 11507 */ 11508 /* ARGSUSED */ 11509 int 11510 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 11511 { 11512 int *i1 = (int *)ptr; 11513 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11514 11515 switch (level) { 11516 case IPPROTO_IP: 11517 switch (name) { 11518 case IP_MULTICAST_TTL: 11519 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 11520 return (sizeof (uchar_t)); 11521 case IP_MULTICAST_LOOP: 11522 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 11523 return (sizeof (uchar_t)); 11524 default: 11525 return (-1); 11526 } 11527 case IPPROTO_IPV6: 11528 switch (name) { 11529 case IPV6_UNICAST_HOPS: 11530 *i1 = ipst->ips_ipv6_def_hops; 11531 return (sizeof (int)); 11532 case IPV6_MULTICAST_HOPS: 11533 *i1 = IP_DEFAULT_MULTICAST_TTL; 11534 return (sizeof (int)); 11535 case IPV6_MULTICAST_LOOP: 11536 *i1 = IP_DEFAULT_MULTICAST_LOOP; 11537 return (sizeof (int)); 11538 case IPV6_V6ONLY: 11539 *i1 = 1; 11540 return (sizeof (int)); 11541 default: 11542 return (-1); 11543 } 11544 default: 11545 return (-1); 11546 } 11547 /* NOTREACHED */ 11548 } 11549 11550 /* 11551 * Given a destination address and a pointer to where to put the information 11552 * this routine fills in the mtuinfo. 11553 */ 11554 int 11555 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 11556 struct ip6_mtuinfo *mtuinfo, netstack_t *ns) 11557 { 11558 ire_t *ire; 11559 ip_stack_t *ipst = ns->netstack_ip; 11560 11561 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 11562 return (-1); 11563 11564 bzero(mtuinfo, sizeof (*mtuinfo)); 11565 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 11566 mtuinfo->ip6m_addr.sin6_port = port; 11567 mtuinfo->ip6m_addr.sin6_addr = *in6; 11568 11569 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL, ipst); 11570 if (ire != NULL) { 11571 mtuinfo->ip6m_mtu = ire->ire_max_frag; 11572 ire_refrele(ire); 11573 } else { 11574 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 11575 } 11576 return (sizeof (struct ip6_mtuinfo)); 11577 } 11578 11579 /* 11580 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 11581 * checking of cred and that ip_g_mrouter is set should be done and 11582 * isn't. This doesn't matter as the error checking is done properly for the 11583 * other MRT options coming in through ip_opt_set. 11584 */ 11585 int 11586 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 11587 { 11588 conn_t *connp = Q_TO_CONN(q); 11589 ipsec_req_t *req = (ipsec_req_t *)ptr; 11590 11591 switch (level) { 11592 case IPPROTO_IP: 11593 switch (name) { 11594 case MRT_VERSION: 11595 case MRT_ASSERT: 11596 (void) ip_mrouter_get(name, q, ptr); 11597 return (sizeof (int)); 11598 case IP_SEC_OPT: 11599 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 11600 case IP_NEXTHOP: 11601 if (connp->conn_nexthop_set) { 11602 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 11603 return (sizeof (ipaddr_t)); 11604 } else 11605 return (0); 11606 case IP_RECVPKTINFO: 11607 *(int *)ptr = connp->conn_ip_recvpktinfo ? 1: 0; 11608 return (sizeof (int)); 11609 default: 11610 break; 11611 } 11612 break; 11613 case IPPROTO_IPV6: 11614 switch (name) { 11615 case IPV6_SEC_OPT: 11616 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 11617 case IPV6_SRC_PREFERENCES: { 11618 return (ip6_get_src_preferences(connp, 11619 (uint32_t *)ptr)); 11620 } 11621 case IPV6_V6ONLY: 11622 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 11623 return (sizeof (int)); 11624 case IPV6_PATHMTU: 11625 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 11626 (struct ip6_mtuinfo *)ptr, connp->conn_netstack)); 11627 default: 11628 break; 11629 } 11630 break; 11631 default: 11632 break; 11633 } 11634 return (-1); 11635 } 11636 /* Named Dispatch routine to get a current value out of our parameter table. */ 11637 /* ARGSUSED */ 11638 static int 11639 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11640 { 11641 ipparam_t *ippa = (ipparam_t *)cp; 11642 11643 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 11644 return (0); 11645 } 11646 11647 /* ARGSUSED */ 11648 static int 11649 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11650 { 11651 11652 (void) mi_mpprintf(mp, "%d", *(int *)cp); 11653 return (0); 11654 } 11655 11656 /* 11657 * Set ip{,6}_forwarding values. This means walking through all of the 11658 * ill's and toggling their forwarding values. 11659 */ 11660 /* ARGSUSED */ 11661 static int 11662 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11663 { 11664 long new_value; 11665 int *forwarding_value = (int *)cp; 11666 ill_t *ill; 11667 boolean_t isv6; 11668 ill_walk_context_t ctx; 11669 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11670 11671 isv6 = (forwarding_value == &ipst->ips_ipv6_forward); 11672 11673 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11674 new_value < 0 || new_value > 1) { 11675 return (EINVAL); 11676 } 11677 11678 *forwarding_value = new_value; 11679 11680 /* 11681 * Regardless of the current value of ip_forwarding, set all per-ill 11682 * values of ip_forwarding to the value being set. 11683 * 11684 * Bring all the ill's up to date with the new global value. 11685 */ 11686 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11687 11688 if (isv6) 11689 ill = ILL_START_WALK_V6(&ctx, ipst); 11690 else 11691 ill = ILL_START_WALK_V4(&ctx, ipst); 11692 11693 for (; ill != NULL; ill = ill_next(&ctx, ill)) 11694 (void) ill_forward_set(ill, new_value != 0); 11695 11696 rw_exit(&ipst->ips_ill_g_lock); 11697 return (0); 11698 } 11699 11700 /* 11701 * Walk through the param array specified registering each element with the 11702 * Named Dispatch handler. This is called only during init. So it is ok 11703 * not to acquire any locks 11704 */ 11705 static boolean_t 11706 ip_param_register(IDP *ndp, ipparam_t *ippa, size_t ippa_cnt, 11707 ipndp_t *ipnd, size_t ipnd_cnt) 11708 { 11709 for (; ippa_cnt-- > 0; ippa++) { 11710 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 11711 if (!nd_load(ndp, ippa->ip_param_name, 11712 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11713 nd_free(ndp); 11714 return (B_FALSE); 11715 } 11716 } 11717 } 11718 11719 for (; ipnd_cnt-- > 0; ipnd++) { 11720 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11721 if (!nd_load(ndp, ipnd->ip_ndp_name, 11722 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11723 ipnd->ip_ndp_data)) { 11724 nd_free(ndp); 11725 return (B_FALSE); 11726 } 11727 } 11728 } 11729 11730 return (B_TRUE); 11731 } 11732 11733 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11734 /* ARGSUSED */ 11735 static int 11736 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11737 { 11738 long new_value; 11739 ipparam_t *ippa = (ipparam_t *)cp; 11740 11741 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11742 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11743 return (EINVAL); 11744 } 11745 ippa->ip_param_value = new_value; 11746 return (0); 11747 } 11748 11749 /* 11750 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11751 * When an ipf is passed here for the first time, if 11752 * we already have in-order fragments on the queue, we convert from the fast- 11753 * path reassembly scheme to the hard-case scheme. From then on, additional 11754 * fragments are reassembled here. We keep track of the start and end offsets 11755 * of each piece, and the number of holes in the chain. When the hole count 11756 * goes to zero, we are done! 11757 * 11758 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11759 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11760 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11761 * after the call to ip_reassemble(). 11762 */ 11763 int 11764 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11765 size_t msg_len) 11766 { 11767 uint_t end; 11768 mblk_t *next_mp; 11769 mblk_t *mp1; 11770 uint_t offset; 11771 boolean_t incr_dups = B_TRUE; 11772 boolean_t offset_zero_seen = B_FALSE; 11773 boolean_t pkt_boundary_checked = B_FALSE; 11774 11775 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11776 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11777 11778 /* Add in byte count */ 11779 ipf->ipf_count += msg_len; 11780 if (ipf->ipf_end) { 11781 /* 11782 * We were part way through in-order reassembly, but now there 11783 * is a hole. We walk through messages already queued, and 11784 * mark them for hard case reassembly. We know that up till 11785 * now they were in order starting from offset zero. 11786 */ 11787 offset = 0; 11788 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11789 IP_REASS_SET_START(mp1, offset); 11790 if (offset == 0) { 11791 ASSERT(ipf->ipf_nf_hdr_len != 0); 11792 offset = -ipf->ipf_nf_hdr_len; 11793 } 11794 offset += mp1->b_wptr - mp1->b_rptr; 11795 IP_REASS_SET_END(mp1, offset); 11796 } 11797 /* One hole at the end. */ 11798 ipf->ipf_hole_cnt = 1; 11799 /* Brand it as a hard case, forever. */ 11800 ipf->ipf_end = 0; 11801 } 11802 /* Walk through all the new pieces. */ 11803 do { 11804 end = start + (mp->b_wptr - mp->b_rptr); 11805 /* 11806 * If start is 0, decrease 'end' only for the first mblk of 11807 * the fragment. Otherwise 'end' can get wrong value in the 11808 * second pass of the loop if first mblk is exactly the 11809 * size of ipf_nf_hdr_len. 11810 */ 11811 if (start == 0 && !offset_zero_seen) { 11812 /* First segment */ 11813 ASSERT(ipf->ipf_nf_hdr_len != 0); 11814 end -= ipf->ipf_nf_hdr_len; 11815 offset_zero_seen = B_TRUE; 11816 } 11817 next_mp = mp->b_cont; 11818 /* 11819 * We are checking to see if there is any interesing data 11820 * to process. If there isn't and the mblk isn't the 11821 * one which carries the unfragmentable header then we 11822 * drop it. It's possible to have just the unfragmentable 11823 * header come through without any data. That needs to be 11824 * saved. 11825 * 11826 * If the assert at the top of this function holds then the 11827 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 11828 * is infrequently traveled enough that the test is left in 11829 * to protect against future code changes which break that 11830 * invariant. 11831 */ 11832 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 11833 /* Empty. Blast it. */ 11834 IP_REASS_SET_START(mp, 0); 11835 IP_REASS_SET_END(mp, 0); 11836 /* 11837 * If the ipf points to the mblk we are about to free, 11838 * update ipf to point to the next mblk (or NULL 11839 * if none). 11840 */ 11841 if (ipf->ipf_mp->b_cont == mp) 11842 ipf->ipf_mp->b_cont = next_mp; 11843 freeb(mp); 11844 continue; 11845 } 11846 mp->b_cont = NULL; 11847 IP_REASS_SET_START(mp, start); 11848 IP_REASS_SET_END(mp, end); 11849 if (!ipf->ipf_tail_mp) { 11850 ipf->ipf_tail_mp = mp; 11851 ipf->ipf_mp->b_cont = mp; 11852 if (start == 0 || !more) { 11853 ipf->ipf_hole_cnt = 1; 11854 /* 11855 * if the first fragment comes in more than one 11856 * mblk, this loop will be executed for each 11857 * mblk. Need to adjust hole count so exiting 11858 * this routine will leave hole count at 1. 11859 */ 11860 if (next_mp) 11861 ipf->ipf_hole_cnt++; 11862 } else 11863 ipf->ipf_hole_cnt = 2; 11864 continue; 11865 } else if (ipf->ipf_last_frag_seen && !more && 11866 !pkt_boundary_checked) { 11867 /* 11868 * We check datagram boundary only if this fragment 11869 * claims to be the last fragment and we have seen a 11870 * last fragment in the past too. We do this only 11871 * once for a given fragment. 11872 * 11873 * start cannot be 0 here as fragments with start=0 11874 * and MF=0 gets handled as a complete packet. These 11875 * fragments should not reach here. 11876 */ 11877 11878 if (start + msgdsize(mp) != 11879 IP_REASS_END(ipf->ipf_tail_mp)) { 11880 /* 11881 * We have two fragments both of which claim 11882 * to be the last fragment but gives conflicting 11883 * information about the whole datagram size. 11884 * Something fishy is going on. Drop the 11885 * fragment and free up the reassembly list. 11886 */ 11887 return (IP_REASS_FAILED); 11888 } 11889 11890 /* 11891 * We shouldn't come to this code block again for this 11892 * particular fragment. 11893 */ 11894 pkt_boundary_checked = B_TRUE; 11895 } 11896 11897 /* New stuff at or beyond tail? */ 11898 offset = IP_REASS_END(ipf->ipf_tail_mp); 11899 if (start >= offset) { 11900 if (ipf->ipf_last_frag_seen) { 11901 /* current fragment is beyond last fragment */ 11902 return (IP_REASS_FAILED); 11903 } 11904 /* Link it on end. */ 11905 ipf->ipf_tail_mp->b_cont = mp; 11906 ipf->ipf_tail_mp = mp; 11907 if (more) { 11908 if (start != offset) 11909 ipf->ipf_hole_cnt++; 11910 } else if (start == offset && next_mp == NULL) 11911 ipf->ipf_hole_cnt--; 11912 continue; 11913 } 11914 mp1 = ipf->ipf_mp->b_cont; 11915 offset = IP_REASS_START(mp1); 11916 /* New stuff at the front? */ 11917 if (start < offset) { 11918 if (start == 0) { 11919 if (end >= offset) { 11920 /* Nailed the hole at the begining. */ 11921 ipf->ipf_hole_cnt--; 11922 } 11923 } else if (end < offset) { 11924 /* 11925 * A hole, stuff, and a hole where there used 11926 * to be just a hole. 11927 */ 11928 ipf->ipf_hole_cnt++; 11929 } 11930 mp->b_cont = mp1; 11931 /* Check for overlap. */ 11932 while (end > offset) { 11933 if (end < IP_REASS_END(mp1)) { 11934 mp->b_wptr -= end - offset; 11935 IP_REASS_SET_END(mp, offset); 11936 BUMP_MIB(ill->ill_ip_mib, 11937 ipIfStatsReasmPartDups); 11938 break; 11939 } 11940 /* Did we cover another hole? */ 11941 if ((mp1->b_cont && 11942 IP_REASS_END(mp1) != 11943 IP_REASS_START(mp1->b_cont) && 11944 end >= IP_REASS_START(mp1->b_cont)) || 11945 (!ipf->ipf_last_frag_seen && !more)) { 11946 ipf->ipf_hole_cnt--; 11947 } 11948 /* Clip out mp1. */ 11949 if ((mp->b_cont = mp1->b_cont) == NULL) { 11950 /* 11951 * After clipping out mp1, this guy 11952 * is now hanging off the end. 11953 */ 11954 ipf->ipf_tail_mp = mp; 11955 } 11956 IP_REASS_SET_START(mp1, 0); 11957 IP_REASS_SET_END(mp1, 0); 11958 /* Subtract byte count */ 11959 ipf->ipf_count -= mp1->b_datap->db_lim - 11960 mp1->b_datap->db_base; 11961 freeb(mp1); 11962 BUMP_MIB(ill->ill_ip_mib, 11963 ipIfStatsReasmPartDups); 11964 mp1 = mp->b_cont; 11965 if (!mp1) 11966 break; 11967 offset = IP_REASS_START(mp1); 11968 } 11969 ipf->ipf_mp->b_cont = mp; 11970 continue; 11971 } 11972 /* 11973 * The new piece starts somewhere between the start of the head 11974 * and before the end of the tail. 11975 */ 11976 for (; mp1; mp1 = mp1->b_cont) { 11977 offset = IP_REASS_END(mp1); 11978 if (start < offset) { 11979 if (end <= offset) { 11980 /* Nothing new. */ 11981 IP_REASS_SET_START(mp, 0); 11982 IP_REASS_SET_END(mp, 0); 11983 /* Subtract byte count */ 11984 ipf->ipf_count -= mp->b_datap->db_lim - 11985 mp->b_datap->db_base; 11986 if (incr_dups) { 11987 ipf->ipf_num_dups++; 11988 incr_dups = B_FALSE; 11989 } 11990 freeb(mp); 11991 BUMP_MIB(ill->ill_ip_mib, 11992 ipIfStatsReasmDuplicates); 11993 break; 11994 } 11995 /* 11996 * Trim redundant stuff off beginning of new 11997 * piece. 11998 */ 11999 IP_REASS_SET_START(mp, offset); 12000 mp->b_rptr += offset - start; 12001 BUMP_MIB(ill->ill_ip_mib, 12002 ipIfStatsReasmPartDups); 12003 start = offset; 12004 if (!mp1->b_cont) { 12005 /* 12006 * After trimming, this guy is now 12007 * hanging off the end. 12008 */ 12009 mp1->b_cont = mp; 12010 ipf->ipf_tail_mp = mp; 12011 if (!more) { 12012 ipf->ipf_hole_cnt--; 12013 } 12014 break; 12015 } 12016 } 12017 if (start >= IP_REASS_START(mp1->b_cont)) 12018 continue; 12019 /* Fill a hole */ 12020 if (start > offset) 12021 ipf->ipf_hole_cnt++; 12022 mp->b_cont = mp1->b_cont; 12023 mp1->b_cont = mp; 12024 mp1 = mp->b_cont; 12025 offset = IP_REASS_START(mp1); 12026 if (end >= offset) { 12027 ipf->ipf_hole_cnt--; 12028 /* Check for overlap. */ 12029 while (end > offset) { 12030 if (end < IP_REASS_END(mp1)) { 12031 mp->b_wptr -= end - offset; 12032 IP_REASS_SET_END(mp, offset); 12033 /* 12034 * TODO we might bump 12035 * this up twice if there is 12036 * overlap at both ends. 12037 */ 12038 BUMP_MIB(ill->ill_ip_mib, 12039 ipIfStatsReasmPartDups); 12040 break; 12041 } 12042 /* Did we cover another hole? */ 12043 if ((mp1->b_cont && 12044 IP_REASS_END(mp1) 12045 != IP_REASS_START(mp1->b_cont) && 12046 end >= 12047 IP_REASS_START(mp1->b_cont)) || 12048 (!ipf->ipf_last_frag_seen && 12049 !more)) { 12050 ipf->ipf_hole_cnt--; 12051 } 12052 /* Clip out mp1. */ 12053 if ((mp->b_cont = mp1->b_cont) == 12054 NULL) { 12055 /* 12056 * After clipping out mp1, 12057 * this guy is now hanging 12058 * off the end. 12059 */ 12060 ipf->ipf_tail_mp = mp; 12061 } 12062 IP_REASS_SET_START(mp1, 0); 12063 IP_REASS_SET_END(mp1, 0); 12064 /* Subtract byte count */ 12065 ipf->ipf_count -= 12066 mp1->b_datap->db_lim - 12067 mp1->b_datap->db_base; 12068 freeb(mp1); 12069 BUMP_MIB(ill->ill_ip_mib, 12070 ipIfStatsReasmPartDups); 12071 mp1 = mp->b_cont; 12072 if (!mp1) 12073 break; 12074 offset = IP_REASS_START(mp1); 12075 } 12076 } 12077 break; 12078 } 12079 } while (start = end, mp = next_mp); 12080 12081 /* Fragment just processed could be the last one. Remember this fact */ 12082 if (!more) 12083 ipf->ipf_last_frag_seen = B_TRUE; 12084 12085 /* Still got holes? */ 12086 if (ipf->ipf_hole_cnt) 12087 return (IP_REASS_PARTIAL); 12088 /* Clean up overloaded fields to avoid upstream disasters. */ 12089 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 12090 IP_REASS_SET_START(mp1, 0); 12091 IP_REASS_SET_END(mp1, 0); 12092 } 12093 return (IP_REASS_COMPLETE); 12094 } 12095 12096 /* 12097 * ipsec processing for the fast path, used for input UDP Packets 12098 * Returns true if ready for passup to UDP. 12099 * Return false if packet is not passable to UDP (e.g. it failed IPsec policy, 12100 * was an ESP-in-UDP packet, etc.). 12101 */ 12102 static boolean_t 12103 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 12104 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present, ire_t *ire) 12105 { 12106 uint32_t ill_index; 12107 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 12108 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 12109 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12110 udp_t *udp = connp->conn_udp; 12111 12112 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12113 /* The ill_index of the incoming ILL */ 12114 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 12115 12116 /* pass packet up to the transport */ 12117 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 12118 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 12119 NULL, mctl_present); 12120 if (*first_mpp == NULL) { 12121 return (B_FALSE); 12122 } 12123 } 12124 12125 /* Initiate IPPF processing for fastpath UDP */ 12126 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 12127 ip_process(IPP_LOCAL_IN, mpp, ill_index); 12128 if (*mpp == NULL) { 12129 ip2dbg(("ip_input_ipsec_process: UDP pkt " 12130 "deferred/dropped during IPPF processing\n")); 12131 return (B_FALSE); 12132 } 12133 } 12134 /* 12135 * Remove 0-spi if it's 0, or move everything behind 12136 * the UDP header over it and forward to ESP via 12137 * ip_proto_input(). 12138 */ 12139 if (udp->udp_nat_t_endpoint) { 12140 if (mctl_present) { 12141 /* mctl_present *shouldn't* happen. */ 12142 ip_drop_packet(*first_mpp, B_TRUE, NULL, 12143 NULL, DROPPER(ipss, ipds_esp_nat_t_ipsec), 12144 &ipss->ipsec_dropper); 12145 *first_mpp = NULL; 12146 return (B_FALSE); 12147 } 12148 12149 /* "ill" is "recv_ill" in actuality. */ 12150 if (!zero_spi_check(q, *mpp, ire, ill, ipss)) 12151 return (B_FALSE); 12152 12153 /* Else continue like a normal UDP packet. */ 12154 } 12155 12156 /* 12157 * We make the checks as below since we are in the fast path 12158 * and want to minimize the number of checks if the IP_RECVIF and/or 12159 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 12160 */ 12161 if (connp->conn_recvif || connp->conn_recvslla || 12162 connp->conn_ip_recvpktinfo) { 12163 if (connp->conn_recvif) { 12164 in_flags = IPF_RECVIF; 12165 } 12166 /* 12167 * UDP supports IP_RECVPKTINFO option for both v4 and v6 12168 * so the flag passed to ip_add_info is based on IP version 12169 * of connp. 12170 */ 12171 if (connp->conn_ip_recvpktinfo) { 12172 if (connp->conn_af_isv6) { 12173 /* 12174 * V6 only needs index 12175 */ 12176 in_flags |= IPF_RECVIF; 12177 } else { 12178 /* 12179 * V4 needs index + matching address. 12180 */ 12181 in_flags |= IPF_RECVADDR; 12182 } 12183 } 12184 if (connp->conn_recvslla) { 12185 in_flags |= IPF_RECVSLLA; 12186 } 12187 /* 12188 * since in_flags are being set ill will be 12189 * referenced in ip_add_info, so it better not 12190 * be NULL. 12191 */ 12192 /* 12193 * the actual data will be contained in b_cont 12194 * upon successful return of the following call. 12195 * If the call fails then the original mblk is 12196 * returned. 12197 */ 12198 *mpp = ip_add_info(*mpp, ill, in_flags, IPCL_ZONEID(connp), 12199 ipst); 12200 } 12201 12202 return (B_TRUE); 12203 } 12204 12205 /* 12206 * Fragmentation reassembly. Each ILL has a hash table for 12207 * queuing packets undergoing reassembly for all IPIFs 12208 * associated with the ILL. The hash is based on the packet 12209 * IP ident field. The ILL frag hash table was allocated 12210 * as a timer block at the time the ILL was created. Whenever 12211 * there is anything on the reassembly queue, the timer will 12212 * be running. Returns B_TRUE if successful else B_FALSE; 12213 * frees mp on failure. 12214 */ 12215 static boolean_t 12216 ip_rput_fragment(ill_t *ill, ill_t *recv_ill, mblk_t **mpp, ipha_t *ipha, 12217 uint32_t *cksum_val, uint16_t *cksum_flags) 12218 { 12219 uint32_t frag_offset_flags; 12220 mblk_t *mp = *mpp; 12221 mblk_t *t_mp; 12222 ipaddr_t dst; 12223 uint8_t proto = ipha->ipha_protocol; 12224 uint32_t sum_val; 12225 uint16_t sum_flags; 12226 ipf_t *ipf; 12227 ipf_t **ipfp; 12228 ipfb_t *ipfb; 12229 uint16_t ident; 12230 uint32_t offset; 12231 ipaddr_t src; 12232 uint_t hdr_length; 12233 uint32_t end; 12234 mblk_t *mp1; 12235 mblk_t *tail_mp; 12236 size_t count; 12237 size_t msg_len; 12238 uint8_t ecn_info = 0; 12239 uint32_t packet_size; 12240 boolean_t pruned = B_FALSE; 12241 ip_stack_t *ipst = ill->ill_ipst; 12242 12243 if (cksum_val != NULL) 12244 *cksum_val = 0; 12245 if (cksum_flags != NULL) 12246 *cksum_flags = 0; 12247 12248 /* 12249 * Drop the fragmented as early as possible, if 12250 * we don't have resource(s) to re-assemble. 12251 */ 12252 if (ipst->ips_ip_reass_queue_bytes == 0) { 12253 freemsg(mp); 12254 return (B_FALSE); 12255 } 12256 12257 /* Check for fragmentation offset; return if there's none */ 12258 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 12259 (IPH_MF | IPH_OFFSET)) == 0) 12260 return (B_TRUE); 12261 12262 /* 12263 * We utilize hardware computed checksum info only for UDP since 12264 * IP fragmentation is a normal occurrence for the protocol. In 12265 * addition, checksum offload support for IP fragments carrying 12266 * UDP payload is commonly implemented across network adapters. 12267 */ 12268 ASSERT(recv_ill != NULL); 12269 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(recv_ill) && 12270 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 12271 mblk_t *mp1 = mp->b_cont; 12272 int32_t len; 12273 12274 /* Record checksum information from the packet */ 12275 sum_val = (uint32_t)DB_CKSUM16(mp); 12276 sum_flags = DB_CKSUMFLAGS(mp); 12277 12278 /* IP payload offset from beginning of mblk */ 12279 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 12280 12281 if ((sum_flags & HCK_PARTIALCKSUM) && 12282 (mp1 == NULL || mp1->b_cont == NULL) && 12283 offset >= DB_CKSUMSTART(mp) && 12284 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 12285 uint32_t adj; 12286 /* 12287 * Partial checksum has been calculated by hardware 12288 * and attached to the packet; in addition, any 12289 * prepended extraneous data is even byte aligned. 12290 * If any such data exists, we adjust the checksum; 12291 * this would also handle any postpended data. 12292 */ 12293 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 12294 mp, mp1, len, adj); 12295 12296 /* One's complement subtract extraneous checksum */ 12297 if (adj >= sum_val) 12298 sum_val = ~(adj - sum_val) & 0xFFFF; 12299 else 12300 sum_val -= adj; 12301 } 12302 } else { 12303 sum_val = 0; 12304 sum_flags = 0; 12305 } 12306 12307 /* Clear hardware checksumming flag */ 12308 DB_CKSUMFLAGS(mp) = 0; 12309 12310 ident = ipha->ipha_ident; 12311 offset = (frag_offset_flags << 3) & 0xFFFF; 12312 src = ipha->ipha_src; 12313 dst = ipha->ipha_dst; 12314 hdr_length = IPH_HDR_LENGTH(ipha); 12315 end = ntohs(ipha->ipha_length) - hdr_length; 12316 12317 /* If end == 0 then we have a packet with no data, so just free it */ 12318 if (end == 0) { 12319 freemsg(mp); 12320 return (B_FALSE); 12321 } 12322 12323 /* Record the ECN field info. */ 12324 ecn_info = (ipha->ipha_type_of_service & 0x3); 12325 if (offset != 0) { 12326 /* 12327 * If this isn't the first piece, strip the header, and 12328 * add the offset to the end value. 12329 */ 12330 mp->b_rptr += hdr_length; 12331 end += offset; 12332 } 12333 12334 msg_len = MBLKSIZE(mp); 12335 tail_mp = mp; 12336 while (tail_mp->b_cont != NULL) { 12337 tail_mp = tail_mp->b_cont; 12338 msg_len += MBLKSIZE(tail_mp); 12339 } 12340 12341 /* If the reassembly list for this ILL will get too big, prune it */ 12342 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 12343 ipst->ips_ip_reass_queue_bytes) { 12344 ill_frag_prune(ill, 12345 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 12346 (ipst->ips_ip_reass_queue_bytes - msg_len)); 12347 pruned = B_TRUE; 12348 } 12349 12350 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 12351 mutex_enter(&ipfb->ipfb_lock); 12352 12353 ipfp = &ipfb->ipfb_ipf; 12354 /* Try to find an existing fragment queue for this packet. */ 12355 for (;;) { 12356 ipf = ipfp[0]; 12357 if (ipf != NULL) { 12358 /* 12359 * It has to match on ident and src/dst address. 12360 */ 12361 if (ipf->ipf_ident == ident && 12362 ipf->ipf_src == src && 12363 ipf->ipf_dst == dst && 12364 ipf->ipf_protocol == proto) { 12365 /* 12366 * If we have received too many 12367 * duplicate fragments for this packet 12368 * free it. 12369 */ 12370 if (ipf->ipf_num_dups > ip_max_frag_dups) { 12371 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12372 freemsg(mp); 12373 mutex_exit(&ipfb->ipfb_lock); 12374 return (B_FALSE); 12375 } 12376 /* Found it. */ 12377 break; 12378 } 12379 ipfp = &ipf->ipf_hash_next; 12380 continue; 12381 } 12382 12383 /* 12384 * If we pruned the list, do we want to store this new 12385 * fragment?. We apply an optimization here based on the 12386 * fact that most fragments will be received in order. 12387 * So if the offset of this incoming fragment is zero, 12388 * it is the first fragment of a new packet. We will 12389 * keep it. Otherwise drop the fragment, as we have 12390 * probably pruned the packet already (since the 12391 * packet cannot be found). 12392 */ 12393 if (pruned && offset != 0) { 12394 mutex_exit(&ipfb->ipfb_lock); 12395 freemsg(mp); 12396 return (B_FALSE); 12397 } 12398 12399 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 12400 /* 12401 * Too many fragmented packets in this hash 12402 * bucket. Free the oldest. 12403 */ 12404 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 12405 } 12406 12407 /* New guy. Allocate a frag message. */ 12408 mp1 = allocb(sizeof (*ipf), BPRI_MED); 12409 if (mp1 == NULL) { 12410 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12411 freemsg(mp); 12412 reass_done: 12413 mutex_exit(&ipfb->ipfb_lock); 12414 return (B_FALSE); 12415 } 12416 12417 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 12418 mp1->b_cont = mp; 12419 12420 /* Initialize the fragment header. */ 12421 ipf = (ipf_t *)mp1->b_rptr; 12422 ipf->ipf_mp = mp1; 12423 ipf->ipf_ptphn = ipfp; 12424 ipfp[0] = ipf; 12425 ipf->ipf_hash_next = NULL; 12426 ipf->ipf_ident = ident; 12427 ipf->ipf_protocol = proto; 12428 ipf->ipf_src = src; 12429 ipf->ipf_dst = dst; 12430 ipf->ipf_nf_hdr_len = 0; 12431 /* Record reassembly start time. */ 12432 ipf->ipf_timestamp = gethrestime_sec(); 12433 /* Record ipf generation and account for frag header */ 12434 ipf->ipf_gen = ill->ill_ipf_gen++; 12435 ipf->ipf_count = MBLKSIZE(mp1); 12436 ipf->ipf_last_frag_seen = B_FALSE; 12437 ipf->ipf_ecn = ecn_info; 12438 ipf->ipf_num_dups = 0; 12439 ipfb->ipfb_frag_pkts++; 12440 ipf->ipf_checksum = 0; 12441 ipf->ipf_checksum_flags = 0; 12442 12443 /* Store checksum value in fragment header */ 12444 if (sum_flags != 0) { 12445 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12446 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12447 ipf->ipf_checksum = sum_val; 12448 ipf->ipf_checksum_flags = sum_flags; 12449 } 12450 12451 /* 12452 * We handle reassembly two ways. In the easy case, 12453 * where all the fragments show up in order, we do 12454 * minimal bookkeeping, and just clip new pieces on 12455 * the end. If we ever see a hole, then we go off 12456 * to ip_reassemble which has to mark the pieces and 12457 * keep track of the number of holes, etc. Obviously, 12458 * the point of having both mechanisms is so we can 12459 * handle the easy case as efficiently as possible. 12460 */ 12461 if (offset == 0) { 12462 /* Easy case, in-order reassembly so far. */ 12463 ipf->ipf_count += msg_len; 12464 ipf->ipf_tail_mp = tail_mp; 12465 /* 12466 * Keep track of next expected offset in 12467 * ipf_end. 12468 */ 12469 ipf->ipf_end = end; 12470 ipf->ipf_nf_hdr_len = hdr_length; 12471 } else { 12472 /* Hard case, hole at the beginning. */ 12473 ipf->ipf_tail_mp = NULL; 12474 /* 12475 * ipf_end == 0 means that we have given up 12476 * on easy reassembly. 12477 */ 12478 ipf->ipf_end = 0; 12479 12480 /* Forget checksum offload from now on */ 12481 ipf->ipf_checksum_flags = 0; 12482 12483 /* 12484 * ipf_hole_cnt is set by ip_reassemble. 12485 * ipf_count is updated by ip_reassemble. 12486 * No need to check for return value here 12487 * as we don't expect reassembly to complete 12488 * or fail for the first fragment itself. 12489 */ 12490 (void) ip_reassemble(mp, ipf, 12491 (frag_offset_flags & IPH_OFFSET) << 3, 12492 (frag_offset_flags & IPH_MF), ill, msg_len); 12493 } 12494 /* Update per ipfb and ill byte counts */ 12495 ipfb->ipfb_count += ipf->ipf_count; 12496 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12497 atomic_add_32(&ill->ill_frag_count, ipf->ipf_count); 12498 /* If the frag timer wasn't already going, start it. */ 12499 mutex_enter(&ill->ill_lock); 12500 ill_frag_timer_start(ill); 12501 mutex_exit(&ill->ill_lock); 12502 goto reass_done; 12503 } 12504 12505 /* 12506 * If the packet's flag has changed (it could be coming up 12507 * from an interface different than the previous, therefore 12508 * possibly different checksum capability), then forget about 12509 * any stored checksum states. Otherwise add the value to 12510 * the existing one stored in the fragment header. 12511 */ 12512 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 12513 sum_val += ipf->ipf_checksum; 12514 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12515 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12516 ipf->ipf_checksum = sum_val; 12517 } else if (ipf->ipf_checksum_flags != 0) { 12518 /* Forget checksum offload from now on */ 12519 ipf->ipf_checksum_flags = 0; 12520 } 12521 12522 /* 12523 * We have a new piece of a datagram which is already being 12524 * reassembled. Update the ECN info if all IP fragments 12525 * are ECN capable. If there is one which is not, clear 12526 * all the info. If there is at least one which has CE 12527 * code point, IP needs to report that up to transport. 12528 */ 12529 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 12530 if (ecn_info == IPH_ECN_CE) 12531 ipf->ipf_ecn = IPH_ECN_CE; 12532 } else { 12533 ipf->ipf_ecn = IPH_ECN_NECT; 12534 } 12535 if (offset && ipf->ipf_end == offset) { 12536 /* The new fragment fits at the end */ 12537 ipf->ipf_tail_mp->b_cont = mp; 12538 /* Update the byte count */ 12539 ipf->ipf_count += msg_len; 12540 /* Update per ipfb and ill byte counts */ 12541 ipfb->ipfb_count += msg_len; 12542 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12543 atomic_add_32(&ill->ill_frag_count, msg_len); 12544 if (frag_offset_flags & IPH_MF) { 12545 /* More to come. */ 12546 ipf->ipf_end = end; 12547 ipf->ipf_tail_mp = tail_mp; 12548 goto reass_done; 12549 } 12550 } else { 12551 /* Go do the hard cases. */ 12552 int ret; 12553 12554 if (offset == 0) 12555 ipf->ipf_nf_hdr_len = hdr_length; 12556 12557 /* Save current byte count */ 12558 count = ipf->ipf_count; 12559 ret = ip_reassemble(mp, ipf, 12560 (frag_offset_flags & IPH_OFFSET) << 3, 12561 (frag_offset_flags & IPH_MF), ill, msg_len); 12562 /* Count of bytes added and subtracted (freeb()ed) */ 12563 count = ipf->ipf_count - count; 12564 if (count) { 12565 /* Update per ipfb and ill byte counts */ 12566 ipfb->ipfb_count += count; 12567 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12568 atomic_add_32(&ill->ill_frag_count, count); 12569 } 12570 if (ret == IP_REASS_PARTIAL) { 12571 goto reass_done; 12572 } else if (ret == IP_REASS_FAILED) { 12573 /* Reassembly failed. Free up all resources */ 12574 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12575 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 12576 IP_REASS_SET_START(t_mp, 0); 12577 IP_REASS_SET_END(t_mp, 0); 12578 } 12579 freemsg(mp); 12580 goto reass_done; 12581 } 12582 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 12583 } 12584 /* 12585 * We have completed reassembly. Unhook the frag header from 12586 * the reassembly list. 12587 * 12588 * Before we free the frag header, record the ECN info 12589 * to report back to the transport. 12590 */ 12591 ecn_info = ipf->ipf_ecn; 12592 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 12593 ipfp = ipf->ipf_ptphn; 12594 12595 /* We need to supply these to caller */ 12596 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 12597 sum_val = ipf->ipf_checksum; 12598 else 12599 sum_val = 0; 12600 12601 mp1 = ipf->ipf_mp; 12602 count = ipf->ipf_count; 12603 ipf = ipf->ipf_hash_next; 12604 if (ipf != NULL) 12605 ipf->ipf_ptphn = ipfp; 12606 ipfp[0] = ipf; 12607 atomic_add_32(&ill->ill_frag_count, -count); 12608 ASSERT(ipfb->ipfb_count >= count); 12609 ipfb->ipfb_count -= count; 12610 ipfb->ipfb_frag_pkts--; 12611 mutex_exit(&ipfb->ipfb_lock); 12612 /* Ditch the frag header. */ 12613 mp = mp1->b_cont; 12614 12615 freeb(mp1); 12616 12617 /* Restore original IP length in header. */ 12618 packet_size = (uint32_t)msgdsize(mp); 12619 if (packet_size > IP_MAXPACKET) { 12620 freemsg(mp); 12621 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 12622 return (B_FALSE); 12623 } 12624 12625 if (DB_REF(mp) > 1) { 12626 mblk_t *mp2 = copymsg(mp); 12627 12628 freemsg(mp); 12629 if (mp2 == NULL) { 12630 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12631 return (B_FALSE); 12632 } 12633 mp = mp2; 12634 } 12635 ipha = (ipha_t *)mp->b_rptr; 12636 12637 ipha->ipha_length = htons((uint16_t)packet_size); 12638 /* We're now complete, zip the frag state */ 12639 ipha->ipha_fragment_offset_and_flags = 0; 12640 /* Record the ECN info. */ 12641 ipha->ipha_type_of_service &= 0xFC; 12642 ipha->ipha_type_of_service |= ecn_info; 12643 *mpp = mp; 12644 12645 /* Reassembly is successful; return checksum information if needed */ 12646 if (cksum_val != NULL) 12647 *cksum_val = sum_val; 12648 if (cksum_flags != NULL) 12649 *cksum_flags = sum_flags; 12650 12651 return (B_TRUE); 12652 } 12653 12654 /* 12655 * Perform ip header check sum update local options. 12656 * return B_TRUE if all is well, else return B_FALSE and release 12657 * the mp. caller is responsible for decrementing ire ref cnt. 12658 */ 12659 static boolean_t 12660 ip_options_cksum(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12661 ip_stack_t *ipst) 12662 { 12663 mblk_t *first_mp; 12664 boolean_t mctl_present; 12665 uint16_t sum; 12666 12667 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12668 /* 12669 * Don't do the checksum if it has gone through AH/ESP 12670 * processing. 12671 */ 12672 if (!mctl_present) { 12673 sum = ip_csum_hdr(ipha); 12674 if (sum != 0) { 12675 if (ill != NULL) { 12676 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12677 } else { 12678 BUMP_MIB(&ipst->ips_ip_mib, 12679 ipIfStatsInCksumErrs); 12680 } 12681 freemsg(first_mp); 12682 return (B_FALSE); 12683 } 12684 } 12685 12686 if (!ip_rput_local_options(q, mp, ipha, ire, ipst)) { 12687 if (mctl_present) 12688 freeb(first_mp); 12689 return (B_FALSE); 12690 } 12691 12692 return (B_TRUE); 12693 } 12694 12695 /* 12696 * All udp packet are delivered to the local host via this routine. 12697 */ 12698 void 12699 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12700 ill_t *recv_ill) 12701 { 12702 uint32_t sum; 12703 uint32_t u1; 12704 boolean_t mctl_present; 12705 conn_t *connp; 12706 mblk_t *first_mp; 12707 uint16_t *up; 12708 ill_t *ill = (ill_t *)q->q_ptr; 12709 uint16_t reass_hck_flags = 0; 12710 ip_stack_t *ipst; 12711 12712 ASSERT(recv_ill != NULL); 12713 ipst = recv_ill->ill_ipst; 12714 12715 #define rptr ((uchar_t *)ipha) 12716 12717 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12718 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 12719 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12720 ASSERT(ill != NULL); 12721 12722 /* 12723 * FAST PATH for udp packets 12724 */ 12725 12726 /* u1 is # words of IP options */ 12727 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 12728 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12729 12730 /* IP options present */ 12731 if (u1 != 0) 12732 goto ipoptions; 12733 12734 /* Check the IP header checksum. */ 12735 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, recv_ill)) { 12736 /* Clear the IP header h/w cksum flag */ 12737 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12738 } else if (!mctl_present) { 12739 /* 12740 * Don't verify header checksum if this packet is coming 12741 * back from AH/ESP as we already did it. 12742 */ 12743 #define uph ((uint16_t *)ipha) 12744 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12745 uph[6] + uph[7] + uph[8] + uph[9]; 12746 #undef uph 12747 /* finish doing IP checksum */ 12748 sum = (sum & 0xFFFF) + (sum >> 16); 12749 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12750 if (sum != 0 && sum != 0xFFFF) { 12751 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12752 freemsg(first_mp); 12753 return; 12754 } 12755 } 12756 12757 /* 12758 * Count for SNMP of inbound packets for ire. 12759 * if mctl is present this might be a secure packet and 12760 * has already been counted for in ip_proto_input(). 12761 */ 12762 if (!mctl_present) { 12763 UPDATE_IB_PKT_COUNT(ire); 12764 ire->ire_last_used_time = lbolt; 12765 } 12766 12767 /* packet part of fragmented IP packet? */ 12768 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12769 if (u1 & (IPH_MF | IPH_OFFSET)) { 12770 goto fragmented; 12771 } 12772 12773 /* u1 = IP header length (20 bytes) */ 12774 u1 = IP_SIMPLE_HDR_LENGTH; 12775 12776 /* packet does not contain complete IP & UDP headers */ 12777 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12778 goto udppullup; 12779 12780 /* up points to UDP header */ 12781 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12782 #define iphs ((uint16_t *)ipha) 12783 12784 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12785 if (up[3] != 0) { 12786 mblk_t *mp1 = mp->b_cont; 12787 boolean_t cksum_err; 12788 uint16_t hck_flags = 0; 12789 12790 /* Pseudo-header checksum */ 12791 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12792 iphs[9] + up[2]; 12793 12794 /* 12795 * Revert to software checksum calculation if the interface 12796 * isn't capable of checksum offload or if IPsec is present. 12797 */ 12798 if (ILL_HCKSUM_CAPABLE(recv_ill) && !mctl_present && dohwcksum) 12799 hck_flags = DB_CKSUMFLAGS(mp); 12800 12801 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12802 IP_STAT(ipst, ip_in_sw_cksum); 12803 12804 IP_CKSUM_RECV(hck_flags, u1, 12805 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12806 (int32_t)((uchar_t *)up - rptr), 12807 mp, mp1, cksum_err); 12808 12809 if (cksum_err) { 12810 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12811 if (hck_flags & HCK_FULLCKSUM) 12812 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12813 else if (hck_flags & HCK_PARTIALCKSUM) 12814 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12815 else 12816 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12817 12818 freemsg(first_mp); 12819 return; 12820 } 12821 } 12822 12823 /* Non-fragmented broadcast or multicast packet? */ 12824 if (ire->ire_type == IRE_BROADCAST) 12825 goto udpslowpath; 12826 12827 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 12828 ire->ire_zoneid, ipst)) != NULL) { 12829 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 12830 IP_STAT(ipst, ip_udp_fast_path); 12831 12832 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 12833 (!IPCL_IS_NONSTR(connp) && CONN_UDP_FLOWCTLD(connp))) { 12834 freemsg(mp); 12835 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 12836 } else { 12837 if (!mctl_present) { 12838 BUMP_MIB(ill->ill_ip_mib, 12839 ipIfStatsHCInDelivers); 12840 } 12841 /* 12842 * mp and first_mp can change. 12843 */ 12844 if (ip_udp_check(q, connp, recv_ill, 12845 ipha, &mp, &first_mp, mctl_present, ire)) { 12846 /* Send it upstream */ 12847 (connp->conn_recv)(connp, mp, NULL); 12848 } 12849 } 12850 /* 12851 * freeb() cannot deal with null mblk being passed 12852 * in and first_mp can be set to null in the call 12853 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 12854 */ 12855 if (mctl_present && first_mp != NULL) { 12856 freeb(first_mp); 12857 } 12858 CONN_DEC_REF(connp); 12859 return; 12860 } 12861 12862 /* 12863 * if we got here we know the packet is not fragmented and 12864 * has no options. The classifier could not find a conn_t and 12865 * most likely its an icmp packet so send it through slow path. 12866 */ 12867 12868 goto udpslowpath; 12869 12870 ipoptions: 12871 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 12872 goto slow_done; 12873 } 12874 12875 UPDATE_IB_PKT_COUNT(ire); 12876 ire->ire_last_used_time = lbolt; 12877 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12878 if (u1 & (IPH_MF | IPH_OFFSET)) { 12879 fragmented: 12880 /* 12881 * "sum" and "reass_hck_flags" are non-zero if the 12882 * reassembled packet has a valid hardware computed 12883 * checksum information associated with it. 12884 */ 12885 if (!ip_rput_fragment(ill, recv_ill, &mp, ipha, &sum, 12886 &reass_hck_flags)) { 12887 goto slow_done; 12888 } 12889 12890 /* 12891 * Make sure that first_mp points back to mp as 12892 * the mp we came in with could have changed in 12893 * ip_rput_fragment(). 12894 */ 12895 ASSERT(!mctl_present); 12896 ipha = (ipha_t *)mp->b_rptr; 12897 first_mp = mp; 12898 } 12899 12900 /* Now we have a complete datagram, destined for this machine. */ 12901 u1 = IPH_HDR_LENGTH(ipha); 12902 /* Pull up the UDP header, if necessary. */ 12903 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 12904 udppullup: 12905 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 12906 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12907 freemsg(first_mp); 12908 goto slow_done; 12909 } 12910 ipha = (ipha_t *)mp->b_rptr; 12911 } 12912 12913 /* 12914 * Validate the checksum for the reassembled packet; for the 12915 * pullup case we calculate the payload checksum in software. 12916 */ 12917 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 12918 if (up[3] != 0) { 12919 boolean_t cksum_err; 12920 12921 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12922 IP_STAT(ipst, ip_in_sw_cksum); 12923 12924 IP_CKSUM_RECV_REASS(reass_hck_flags, 12925 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 12926 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12927 iphs[9] + up[2], sum, cksum_err); 12928 12929 if (cksum_err) { 12930 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12931 12932 if (reass_hck_flags & HCK_FULLCKSUM) 12933 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12934 else if (reass_hck_flags & HCK_PARTIALCKSUM) 12935 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12936 else 12937 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12938 12939 freemsg(first_mp); 12940 goto slow_done; 12941 } 12942 } 12943 udpslowpath: 12944 12945 /* Clear hardware checksum flag to be safe */ 12946 DB_CKSUMFLAGS(mp) = 0; 12947 12948 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 12949 (ire->ire_type == IRE_BROADCAST), 12950 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IPINFO, 12951 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 12952 12953 slow_done: 12954 IP_STAT(ipst, ip_udp_slow_path); 12955 return; 12956 12957 #undef iphs 12958 #undef rptr 12959 } 12960 12961 /* ARGSUSED */ 12962 static mblk_t * 12963 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 12964 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 12965 ill_rx_ring_t *ill_ring) 12966 { 12967 conn_t *connp; 12968 uint32_t sum; 12969 uint32_t u1; 12970 uint16_t *up; 12971 int offset; 12972 ssize_t len; 12973 mblk_t *mp1; 12974 boolean_t syn_present = B_FALSE; 12975 tcph_t *tcph; 12976 uint_t tcph_flags; 12977 uint_t ip_hdr_len; 12978 ill_t *ill = (ill_t *)q->q_ptr; 12979 zoneid_t zoneid = ire->ire_zoneid; 12980 boolean_t cksum_err; 12981 uint16_t hck_flags = 0; 12982 ip_stack_t *ipst = recv_ill->ill_ipst; 12983 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12984 12985 #define rptr ((uchar_t *)ipha) 12986 12987 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 12988 ASSERT(ill != NULL); 12989 12990 /* 12991 * FAST PATH for tcp packets 12992 */ 12993 12994 /* u1 is # words of IP options */ 12995 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 12996 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12997 12998 /* IP options present */ 12999 if (u1) { 13000 goto ipoptions; 13001 } else if (!mctl_present) { 13002 /* Check the IP header checksum. */ 13003 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, recv_ill)) { 13004 /* Clear the IP header h/w cksum flag */ 13005 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 13006 } else if (!mctl_present) { 13007 /* 13008 * Don't verify header checksum if this packet 13009 * is coming back from AH/ESP as we already did it. 13010 */ 13011 #define uph ((uint16_t *)ipha) 13012 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13013 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13014 #undef uph 13015 /* finish doing IP checksum */ 13016 sum = (sum & 0xFFFF) + (sum >> 16); 13017 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13018 if (sum != 0 && sum != 0xFFFF) { 13019 BUMP_MIB(ill->ill_ip_mib, 13020 ipIfStatsInCksumErrs); 13021 goto error; 13022 } 13023 } 13024 } 13025 13026 if (!mctl_present) { 13027 UPDATE_IB_PKT_COUNT(ire); 13028 ire->ire_last_used_time = lbolt; 13029 } 13030 13031 /* packet part of fragmented IP packet? */ 13032 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13033 if (u1 & (IPH_MF | IPH_OFFSET)) { 13034 goto fragmented; 13035 } 13036 13037 /* u1 = IP header length (20 bytes) */ 13038 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 13039 13040 /* does packet contain IP+TCP headers? */ 13041 len = mp->b_wptr - rptr; 13042 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 13043 IP_STAT(ipst, ip_tcppullup); 13044 goto tcppullup; 13045 } 13046 13047 /* TCP options present? */ 13048 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 13049 13050 /* 13051 * If options need to be pulled up, then goto tcpoptions. 13052 * otherwise we are still in the fast path 13053 */ 13054 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 13055 IP_STAT(ipst, ip_tcpoptions); 13056 goto tcpoptions; 13057 } 13058 13059 /* multiple mblks of tcp data? */ 13060 if ((mp1 = mp->b_cont) != NULL) { 13061 IP_STAT(ipst, ip_multipkttcp); 13062 len += msgdsize(mp1); 13063 } 13064 13065 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 13066 13067 /* part of pseudo checksum */ 13068 13069 /* TCP datagram length */ 13070 u1 = len - IP_SIMPLE_HDR_LENGTH; 13071 13072 #define iphs ((uint16_t *)ipha) 13073 13074 #ifdef _BIG_ENDIAN 13075 u1 += IPPROTO_TCP; 13076 #else 13077 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13078 #endif 13079 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13080 13081 /* 13082 * Revert to software checksum calculation if the interface 13083 * isn't capable of checksum offload or if IPsec is present. 13084 */ 13085 if (ILL_HCKSUM_CAPABLE(recv_ill) && !mctl_present && dohwcksum) 13086 hck_flags = DB_CKSUMFLAGS(mp); 13087 13088 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 13089 IP_STAT(ipst, ip_in_sw_cksum); 13090 13091 IP_CKSUM_RECV(hck_flags, u1, 13092 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 13093 (int32_t)((uchar_t *)up - rptr), 13094 mp, mp1, cksum_err); 13095 13096 if (cksum_err) { 13097 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13098 13099 if (hck_flags & HCK_FULLCKSUM) 13100 IP_STAT(ipst, ip_tcp_in_full_hw_cksum_err); 13101 else if (hck_flags & HCK_PARTIALCKSUM) 13102 IP_STAT(ipst, ip_tcp_in_part_hw_cksum_err); 13103 else 13104 IP_STAT(ipst, ip_tcp_in_sw_cksum_err); 13105 13106 goto error; 13107 } 13108 13109 try_again: 13110 13111 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 13112 zoneid, ipst)) == NULL) { 13113 /* Send the TH_RST */ 13114 goto no_conn; 13115 } 13116 13117 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 13118 tcph_flags = tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG); 13119 13120 /* 13121 * TCP FAST PATH for AF_INET socket. 13122 * 13123 * TCP fast path to avoid extra work. An AF_INET socket type 13124 * does not have facility to receive extra information via 13125 * ip_process or ip_add_info. Also, when the connection was 13126 * established, we made a check if this connection is impacted 13127 * by any global IPsec policy or per connection policy (a 13128 * policy that comes in effect later will not apply to this 13129 * connection). Since all this can be determined at the 13130 * connection establishment time, a quick check of flags 13131 * can avoid extra work. 13132 */ 13133 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 13134 !IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13135 ASSERT(first_mp == mp); 13136 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13137 if (tcph_flags != (TH_SYN | TH_ACK)) { 13138 SET_SQUEUE(mp, tcp_rput_data, connp); 13139 return (mp); 13140 } 13141 mp->b_datap->db_struioflag |= STRUIO_CONNECT; 13142 DB_CKSUMSTART(mp) = (intptr_t)ip_squeue_get(ill_ring); 13143 SET_SQUEUE(mp, tcp_input, connp); 13144 return (mp); 13145 } 13146 13147 if (tcph_flags == TH_SYN) { 13148 if (IPCL_IS_TCP(connp)) { 13149 mp->b_datap->db_struioflag |= STRUIO_EAGER; 13150 DB_CKSUMSTART(mp) = 13151 (intptr_t)ip_squeue_get(ill_ring); 13152 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 13153 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13154 BUMP_MIB(ill->ill_ip_mib, 13155 ipIfStatsHCInDelivers); 13156 SET_SQUEUE(mp, connp->conn_recv, connp); 13157 return (mp); 13158 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 13159 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13160 BUMP_MIB(ill->ill_ip_mib, 13161 ipIfStatsHCInDelivers); 13162 ip_squeue_enter_unbound++; 13163 SET_SQUEUE(mp, tcp_conn_request_unbound, 13164 connp); 13165 return (mp); 13166 } 13167 syn_present = B_TRUE; 13168 } 13169 } 13170 13171 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 13172 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 13173 13174 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13175 /* No need to send this packet to TCP */ 13176 if ((flags & TH_RST) || (flags & TH_URG)) { 13177 CONN_DEC_REF(connp); 13178 freemsg(first_mp); 13179 return (NULL); 13180 } 13181 if (flags & TH_ACK) { 13182 ip_xmit_reset_serialize(first_mp, ip_hdr_len, zoneid, 13183 ipst->ips_netstack->netstack_tcp, connp); 13184 CONN_DEC_REF(connp); 13185 return (NULL); 13186 } 13187 13188 CONN_DEC_REF(connp); 13189 freemsg(first_mp); 13190 return (NULL); 13191 } 13192 13193 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 13194 first_mp = ipsec_check_inbound_policy(first_mp, connp, 13195 ipha, NULL, mctl_present); 13196 if (first_mp == NULL) { 13197 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13198 CONN_DEC_REF(connp); 13199 return (NULL); 13200 } 13201 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 13202 ASSERT(syn_present); 13203 if (mctl_present) { 13204 ASSERT(first_mp != mp); 13205 first_mp->b_datap->db_struioflag |= 13206 STRUIO_POLICY; 13207 } else { 13208 ASSERT(first_mp == mp); 13209 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 13210 mp->b_datap->db_struioflag |= STRUIO_POLICY; 13211 } 13212 } else { 13213 /* 13214 * Discard first_mp early since we're dealing with a 13215 * fully-connected conn_t and tcp doesn't do policy in 13216 * this case. 13217 */ 13218 if (mctl_present) { 13219 freeb(first_mp); 13220 mctl_present = B_FALSE; 13221 } 13222 first_mp = mp; 13223 } 13224 } 13225 13226 /* Initiate IPPF processing for fastpath */ 13227 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13228 uint32_t ill_index; 13229 13230 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13231 ip_process(IPP_LOCAL_IN, &mp, ill_index); 13232 if (mp == NULL) { 13233 ip2dbg(("ip_input_ipsec_process: TCP pkt " 13234 "deferred/dropped during IPPF processing\n")); 13235 CONN_DEC_REF(connp); 13236 if (mctl_present) 13237 freeb(first_mp); 13238 return (NULL); 13239 } else if (mctl_present) { 13240 /* 13241 * ip_process might return a new mp. 13242 */ 13243 ASSERT(first_mp != mp); 13244 first_mp->b_cont = mp; 13245 } else { 13246 first_mp = mp; 13247 } 13248 13249 } 13250 13251 if (!syn_present && connp->conn_ip_recvpktinfo) { 13252 /* 13253 * TCP does not support IP_RECVPKTINFO for v4 so lets 13254 * make sure IPF_RECVIF is passed to ip_add_info. 13255 */ 13256 mp = ip_add_info(mp, recv_ill, flags|IPF_RECVIF, 13257 IPCL_ZONEID(connp), ipst); 13258 if (mp == NULL) { 13259 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13260 CONN_DEC_REF(connp); 13261 if (mctl_present) 13262 freeb(first_mp); 13263 return (NULL); 13264 } else if (mctl_present) { 13265 /* 13266 * ip_add_info might return a new mp. 13267 */ 13268 ASSERT(first_mp != mp); 13269 first_mp->b_cont = mp; 13270 } else { 13271 first_mp = mp; 13272 } 13273 } 13274 13275 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13276 if (IPCL_IS_TCP(connp)) { 13277 SET_SQUEUE(first_mp, connp->conn_recv, connp); 13278 return (first_mp); 13279 } else { 13280 /* SOCK_RAW, IPPROTO_TCP case */ 13281 (connp->conn_recv)(connp, first_mp, NULL); 13282 CONN_DEC_REF(connp); 13283 return (NULL); 13284 } 13285 13286 no_conn: 13287 /* Initiate IPPf processing, if needed. */ 13288 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13289 uint32_t ill_index; 13290 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13291 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 13292 if (first_mp == NULL) { 13293 return (NULL); 13294 } 13295 } 13296 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13297 13298 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr), zoneid, 13299 ipst->ips_netstack->netstack_tcp, NULL); 13300 return (NULL); 13301 ipoptions: 13302 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) { 13303 goto slow_done; 13304 } 13305 13306 UPDATE_IB_PKT_COUNT(ire); 13307 ire->ire_last_used_time = lbolt; 13308 13309 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13310 if (u1 & (IPH_MF | IPH_OFFSET)) { 13311 fragmented: 13312 if (!ip_rput_fragment(ill, recv_ill, &mp, ipha, NULL, NULL)) { 13313 if (mctl_present) 13314 freeb(first_mp); 13315 goto slow_done; 13316 } 13317 /* 13318 * Make sure that first_mp points back to mp as 13319 * the mp we came in with could have changed in 13320 * ip_rput_fragment(). 13321 */ 13322 ASSERT(!mctl_present); 13323 ipha = (ipha_t *)mp->b_rptr; 13324 first_mp = mp; 13325 } 13326 13327 /* Now we have a complete datagram, destined for this machine. */ 13328 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 13329 13330 len = mp->b_wptr - mp->b_rptr; 13331 /* Pull up a minimal TCP header, if necessary. */ 13332 if (len < (u1 + 20)) { 13333 tcppullup: 13334 if (!pullupmsg(mp, u1 + 20)) { 13335 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13336 goto error; 13337 } 13338 ipha = (ipha_t *)mp->b_rptr; 13339 len = mp->b_wptr - mp->b_rptr; 13340 } 13341 13342 /* 13343 * Extract the offset field from the TCP header. As usual, we 13344 * try to help the compiler more than the reader. 13345 */ 13346 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 13347 if (offset != 5) { 13348 tcpoptions: 13349 if (offset < 5) { 13350 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13351 goto error; 13352 } 13353 /* 13354 * There must be TCP options. 13355 * Make sure we can grab them. 13356 */ 13357 offset <<= 2; 13358 offset += u1; 13359 if (len < offset) { 13360 if (!pullupmsg(mp, offset)) { 13361 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13362 goto error; 13363 } 13364 ipha = (ipha_t *)mp->b_rptr; 13365 len = mp->b_wptr - rptr; 13366 } 13367 } 13368 13369 /* Get the total packet length in len, including headers. */ 13370 if (mp->b_cont) 13371 len = msgdsize(mp); 13372 13373 /* 13374 * Check the TCP checksum by pulling together the pseudo- 13375 * header checksum, and passing it to ip_csum to be added in 13376 * with the TCP datagram. 13377 * 13378 * Since we are not using the hwcksum if available we must 13379 * clear the flag. We may come here via tcppullup or tcpoptions. 13380 * If either of these fails along the way the mblk is freed. 13381 * If this logic ever changes and mblk is reused to say send 13382 * ICMP's back, then this flag may need to be cleared in 13383 * other places as well. 13384 */ 13385 DB_CKSUMFLAGS(mp) = 0; 13386 13387 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 13388 13389 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 13390 #ifdef _BIG_ENDIAN 13391 u1 += IPPROTO_TCP; 13392 #else 13393 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13394 #endif 13395 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13396 /* 13397 * Not M_DATA mblk or its a dup, so do the checksum now. 13398 */ 13399 IP_STAT(ipst, ip_in_sw_cksum); 13400 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 13401 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13402 goto error; 13403 } 13404 13405 IP_STAT(ipst, ip_tcp_slow_path); 13406 goto try_again; 13407 #undef iphs 13408 #undef rptr 13409 13410 error: 13411 freemsg(first_mp); 13412 slow_done: 13413 return (NULL); 13414 } 13415 13416 /* ARGSUSED */ 13417 static void 13418 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13419 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 13420 { 13421 conn_t *connp; 13422 uint32_t sum; 13423 uint32_t u1; 13424 ssize_t len; 13425 sctp_hdr_t *sctph; 13426 zoneid_t zoneid = ire->ire_zoneid; 13427 uint32_t pktsum; 13428 uint32_t calcsum; 13429 uint32_t ports; 13430 in6_addr_t map_src, map_dst; 13431 ill_t *ill = (ill_t *)q->q_ptr; 13432 ip_stack_t *ipst; 13433 sctp_stack_t *sctps; 13434 boolean_t sctp_csum_err = B_FALSE; 13435 13436 ASSERT(recv_ill != NULL); 13437 ipst = recv_ill->ill_ipst; 13438 sctps = ipst->ips_netstack->netstack_sctp; 13439 13440 #define rptr ((uchar_t *)ipha) 13441 13442 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 13443 ASSERT(ill != NULL); 13444 13445 /* u1 is # words of IP options */ 13446 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13447 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13448 13449 /* IP options present */ 13450 if (u1 > 0) { 13451 goto ipoptions; 13452 } else { 13453 /* Check the IP header checksum. */ 13454 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, recv_ill) && 13455 !mctl_present) { 13456 #define uph ((uint16_t *)ipha) 13457 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13458 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13459 #undef uph 13460 /* finish doing IP checksum */ 13461 sum = (sum & 0xFFFF) + (sum >> 16); 13462 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13463 /* 13464 * Don't verify header checksum if this packet 13465 * is coming back from AH/ESP as we already did it. 13466 */ 13467 if (sum != 0 && sum != 0xFFFF) { 13468 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 13469 goto error; 13470 } 13471 } 13472 /* 13473 * Since there is no SCTP h/w cksum support yet, just 13474 * clear the flag. 13475 */ 13476 DB_CKSUMFLAGS(mp) = 0; 13477 } 13478 13479 /* 13480 * Don't verify header checksum if this packet is coming 13481 * back from AH/ESP as we already did it. 13482 */ 13483 if (!mctl_present) { 13484 UPDATE_IB_PKT_COUNT(ire); 13485 ire->ire_last_used_time = lbolt; 13486 } 13487 13488 /* packet part of fragmented IP packet? */ 13489 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13490 if (u1 & (IPH_MF | IPH_OFFSET)) 13491 goto fragmented; 13492 13493 /* u1 = IP header length (20 bytes) */ 13494 u1 = IP_SIMPLE_HDR_LENGTH; 13495 13496 find_sctp_client: 13497 /* Pullup if we don't have the sctp common header. */ 13498 len = MBLKL(mp); 13499 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 13500 if (mp->b_cont == NULL || 13501 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 13502 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13503 goto error; 13504 } 13505 ipha = (ipha_t *)mp->b_rptr; 13506 len = MBLKL(mp); 13507 } 13508 13509 sctph = (sctp_hdr_t *)(rptr + u1); 13510 #ifdef DEBUG 13511 if (!skip_sctp_cksum) { 13512 #endif 13513 pktsum = sctph->sh_chksum; 13514 sctph->sh_chksum = 0; 13515 calcsum = sctp_cksum(mp, u1); 13516 sctph->sh_chksum = pktsum; 13517 if (calcsum != pktsum) 13518 sctp_csum_err = B_TRUE; 13519 #ifdef DEBUG /* skip_sctp_cksum */ 13520 } 13521 #endif 13522 /* get the ports */ 13523 ports = *(uint32_t *)&sctph->sh_sport; 13524 13525 IRE_REFRELE(ire); 13526 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 13527 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 13528 if (sctp_csum_err) { 13529 /* 13530 * No potential sctp checksum errors go to the Sun 13531 * sctp stack however they might be Adler-32 summed 13532 * packets a userland stack bound to a raw IP socket 13533 * could reasonably use. Note though that Adler-32 is 13534 * a long deprecated algorithm and customer sctp 13535 * networks should eventually migrate to CRC-32 at 13536 * which time this facility should be removed. 13537 */ 13538 flags |= IP_FF_SCTP_CSUM_ERR; 13539 goto no_conn; 13540 } 13541 if ((connp = sctp_fanout(&map_src, &map_dst, ports, zoneid, mp, 13542 sctps)) == NULL) { 13543 /* Check for raw socket or OOTB handling */ 13544 goto no_conn; 13545 } 13546 13547 /* Found a client; up it goes */ 13548 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13549 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 13550 return; 13551 13552 no_conn: 13553 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 13554 ports, mctl_present, flags, B_TRUE, zoneid); 13555 return; 13556 13557 ipoptions: 13558 DB_CKSUMFLAGS(mp) = 0; 13559 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) 13560 goto slow_done; 13561 13562 UPDATE_IB_PKT_COUNT(ire); 13563 ire->ire_last_used_time = lbolt; 13564 13565 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13566 if (u1 & (IPH_MF | IPH_OFFSET)) { 13567 fragmented: 13568 if (!ip_rput_fragment(ill, recv_ill, &mp, ipha, NULL, NULL)) 13569 goto slow_done; 13570 /* 13571 * Make sure that first_mp points back to mp as 13572 * the mp we came in with could have changed in 13573 * ip_rput_fragment(). 13574 */ 13575 ASSERT(!mctl_present); 13576 ipha = (ipha_t *)mp->b_rptr; 13577 first_mp = mp; 13578 } 13579 13580 /* Now we have a complete datagram, destined for this machine. */ 13581 u1 = IPH_HDR_LENGTH(ipha); 13582 goto find_sctp_client; 13583 #undef iphs 13584 #undef rptr 13585 13586 error: 13587 freemsg(first_mp); 13588 slow_done: 13589 IRE_REFRELE(ire); 13590 } 13591 13592 #define VER_BITS 0xF0 13593 #define VERSION_6 0x60 13594 13595 static boolean_t 13596 ip_rput_multimblk_ipoptions(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t **iphapp, 13597 ipaddr_t *dstp, ip_stack_t *ipst) 13598 { 13599 uint_t opt_len; 13600 ipha_t *ipha; 13601 ssize_t len; 13602 uint_t pkt_len; 13603 13604 ASSERT(ill != NULL); 13605 IP_STAT(ipst, ip_ipoptions); 13606 ipha = *iphapp; 13607 13608 #define rptr ((uchar_t *)ipha) 13609 /* Assume no IPv6 packets arrive over the IPv4 queue */ 13610 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 13611 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 13612 freemsg(mp); 13613 return (B_FALSE); 13614 } 13615 13616 /* multiple mblk or too short */ 13617 pkt_len = ntohs(ipha->ipha_length); 13618 13619 /* Get the number of words of IP options in the IP header. */ 13620 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 13621 if (opt_len) { 13622 /* IP Options present! Validate and process. */ 13623 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 13624 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13625 goto done; 13626 } 13627 /* 13628 * Recompute complete header length and make sure we 13629 * have access to all of it. 13630 */ 13631 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 13632 if (len > (mp->b_wptr - rptr)) { 13633 if (len > pkt_len) { 13634 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13635 goto done; 13636 } 13637 if (!pullupmsg(mp, len)) { 13638 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13639 goto done; 13640 } 13641 ipha = (ipha_t *)mp->b_rptr; 13642 } 13643 /* 13644 * Go off to ip_rput_options which returns the next hop 13645 * destination address, which may have been affected 13646 * by source routing. 13647 */ 13648 IP_STAT(ipst, ip_opt); 13649 if (ip_rput_options(q, mp, ipha, dstp, ipst) == -1) { 13650 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13651 return (B_FALSE); 13652 } 13653 } 13654 *iphapp = ipha; 13655 return (B_TRUE); 13656 done: 13657 /* clear b_prev - used by ip_mroute_decap */ 13658 mp->b_prev = NULL; 13659 freemsg(mp); 13660 return (B_FALSE); 13661 #undef rptr 13662 } 13663 13664 /* 13665 * Deal with the fact that there is no ire for the destination. 13666 */ 13667 static ire_t * 13668 ip_rput_noire(queue_t *q, mblk_t *mp, int ll_multicast, ipaddr_t dst) 13669 { 13670 ipha_t *ipha; 13671 ill_t *ill; 13672 ire_t *ire; 13673 ip_stack_t *ipst; 13674 enum ire_forward_action ret_action; 13675 13676 ipha = (ipha_t *)mp->b_rptr; 13677 ill = (ill_t *)q->q_ptr; 13678 13679 ASSERT(ill != NULL); 13680 ipst = ill->ill_ipst; 13681 13682 /* 13683 * No IRE for this destination, so it can't be for us. 13684 * Unless we are forwarding, drop the packet. 13685 * We have to let source routed packets through 13686 * since we don't yet know if they are 'ping -l' 13687 * packets i.e. if they will go out over the 13688 * same interface as they came in on. 13689 */ 13690 if (ll_multicast) { 13691 freemsg(mp); 13692 return (NULL); 13693 } 13694 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha, ipst)) { 13695 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13696 freemsg(mp); 13697 return (NULL); 13698 } 13699 13700 /* 13701 * Mark this packet as having originated externally. 13702 * 13703 * For non-forwarding code path, ire_send later double 13704 * checks this interface to see if it is still exists 13705 * post-ARP resolution. 13706 * 13707 * Also, IPQOS uses this to differentiate between 13708 * IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP 13709 * QOS packet processing in ip_wput_attach_llhdr(). 13710 * The QoS module can mark the b_band for a fastpath message 13711 * or the dl_priority field in a unitdata_req header for 13712 * CoS marking. This info can only be found in 13713 * ip_wput_attach_llhdr(). 13714 */ 13715 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 13716 /* 13717 * Clear the indication that this may have a hardware checksum 13718 * as we are not using it 13719 */ 13720 DB_CKSUMFLAGS(mp) = 0; 13721 13722 ire = ire_forward(dst, &ret_action, NULL, NULL, 13723 msg_getlabel(mp), ipst); 13724 13725 if (ire == NULL && ret_action == Forward_check_multirt) { 13726 /* Let ip_newroute handle CGTP */ 13727 ip_newroute(q, mp, dst, NULL, GLOBAL_ZONEID, ipst); 13728 return (NULL); 13729 } 13730 13731 if (ire != NULL) 13732 return (ire); 13733 13734 mp->b_prev = mp->b_next = 0; 13735 13736 if (ret_action == Forward_blackhole) { 13737 freemsg(mp); 13738 return (NULL); 13739 } 13740 /* send icmp unreachable */ 13741 q = WR(q); 13742 /* Sent by forwarding path, and router is global zone */ 13743 if (ip_source_routed(ipha, ipst)) { 13744 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, 13745 GLOBAL_ZONEID, ipst); 13746 } else { 13747 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 13748 ipst); 13749 } 13750 13751 return (NULL); 13752 13753 } 13754 13755 /* 13756 * check ip header length and align it. 13757 */ 13758 static boolean_t 13759 ip_check_and_align_header(queue_t *q, mblk_t *mp, ip_stack_t *ipst) 13760 { 13761 ssize_t len; 13762 ill_t *ill; 13763 ipha_t *ipha; 13764 13765 len = MBLKL(mp); 13766 13767 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13768 ill = (ill_t *)q->q_ptr; 13769 13770 if (!OK_32PTR(mp->b_rptr)) 13771 IP_STAT(ipst, ip_notaligned1); 13772 else 13773 IP_STAT(ipst, ip_notaligned2); 13774 /* Guard against bogus device drivers */ 13775 if (len < 0) { 13776 /* clear b_prev - used by ip_mroute_decap */ 13777 mp->b_prev = NULL; 13778 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13779 freemsg(mp); 13780 return (B_FALSE); 13781 } 13782 13783 if (ip_rput_pullups++ == 0) { 13784 ipha = (ipha_t *)mp->b_rptr; 13785 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 13786 "ip_check_and_align_header: %s forced us to " 13787 " pullup pkt, hdr len %ld, hdr addr %p", 13788 ill->ill_name, len, (void *)ipha); 13789 } 13790 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 13791 /* clear b_prev - used by ip_mroute_decap */ 13792 mp->b_prev = NULL; 13793 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13794 freemsg(mp); 13795 return (B_FALSE); 13796 } 13797 } 13798 return (B_TRUE); 13799 } 13800 13801 /* 13802 * Handle the situation where a packet came in on `ill' but matched an IRE 13803 * whose ire_rfq doesn't match `ill'. We return the IRE that should be used 13804 * for interface statistics. 13805 */ 13806 ire_t * 13807 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 13808 { 13809 ire_t *new_ire; 13810 ill_t *ire_ill; 13811 uint_t ifindex; 13812 ip_stack_t *ipst = ill->ill_ipst; 13813 boolean_t strict_check = B_FALSE; 13814 13815 /* 13816 * IPMP common case: if IRE and ILL are in the same group, there's no 13817 * issue (e.g. packet received on an underlying interface matched an 13818 * IRE_LOCAL on its associated group interface). 13819 */ 13820 if (ire->ire_rfq != NULL && 13821 IS_IN_SAME_ILLGRP(ill, (ill_t *)ire->ire_rfq->q_ptr)) { 13822 return (ire); 13823 } 13824 13825 /* 13826 * Do another ire lookup here, using the ingress ill, to see if the 13827 * interface is in a usesrc group. 13828 * As long as the ills belong to the same group, we don't consider 13829 * them to be arriving on the wrong interface. Thus, if the switch 13830 * is doing inbound load spreading, we won't drop packets when the 13831 * ip*_strict_dst_multihoming switch is on. 13832 * We also need to check for IPIF_UNNUMBERED point2point interfaces 13833 * where the local address may not be unique. In this case we were 13834 * at the mercy of the initial ire cache lookup and the IRE_LOCAL it 13835 * actually returned. The new lookup, which is more specific, should 13836 * only find the IRE_LOCAL associated with the ingress ill if one 13837 * exists. 13838 */ 13839 13840 if (ire->ire_ipversion == IPV4_VERSION) { 13841 if (ipst->ips_ip_strict_dst_multihoming) 13842 strict_check = B_TRUE; 13843 new_ire = ire_ctable_lookup(*((ipaddr_t *)addr), 0, IRE_LOCAL, 13844 ill->ill_ipif, ALL_ZONES, NULL, 13845 (MATCH_IRE_TYPE|MATCH_IRE_ILL), ipst); 13846 } else { 13847 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 13848 if (ipst->ips_ipv6_strict_dst_multihoming) 13849 strict_check = B_TRUE; 13850 new_ire = ire_ctable_lookup_v6((in6_addr_t *)addr, NULL, 13851 IRE_LOCAL, ill->ill_ipif, ALL_ZONES, NULL, 13852 (MATCH_IRE_TYPE|MATCH_IRE_ILL), ipst); 13853 } 13854 /* 13855 * If the same ire that was returned in ip_input() is found then this 13856 * is an indication that usesrc groups are in use. The packet 13857 * arrived on a different ill in the group than the one associated with 13858 * the destination address. If a different ire was found then the same 13859 * IP address must be hosted on multiple ills. This is possible with 13860 * unnumbered point2point interfaces. We switch to use this new ire in 13861 * order to have accurate interface statistics. 13862 */ 13863 if (new_ire != NULL) { 13864 if ((new_ire != ire) && (new_ire->ire_rfq != NULL)) { 13865 ire_refrele(ire); 13866 ire = new_ire; 13867 } else { 13868 ire_refrele(new_ire); 13869 } 13870 return (ire); 13871 } else if ((ire->ire_rfq == NULL) && 13872 (ire->ire_ipversion == IPV4_VERSION)) { 13873 /* 13874 * The best match could have been the original ire which 13875 * was created against an IRE_LOCAL on lo0. In the IPv4 case 13876 * the strict multihoming checks are irrelevant as we consider 13877 * local addresses hosted on lo0 to be interface agnostic. We 13878 * only expect a null ire_rfq on IREs which are associated with 13879 * lo0 hence we can return now. 13880 */ 13881 return (ire); 13882 } 13883 13884 /* 13885 * Chase pointers once and store locally. 13886 */ 13887 ire_ill = (ire->ire_rfq == NULL) ? NULL : 13888 (ill_t *)(ire->ire_rfq->q_ptr); 13889 ifindex = ill->ill_usesrc_ifindex; 13890 13891 /* 13892 * Check if it's a legal address on the 'usesrc' interface. 13893 */ 13894 if ((ifindex != 0) && (ire_ill != NULL) && 13895 (ifindex == ire_ill->ill_phyint->phyint_ifindex)) { 13896 return (ire); 13897 } 13898 13899 /* 13900 * If the ip*_strict_dst_multihoming switch is on then we can 13901 * only accept this packet if the interface is marked as routing. 13902 */ 13903 if (!(strict_check)) 13904 return (ire); 13905 13906 if ((ill->ill_flags & ire->ire_ipif->ipif_ill->ill_flags & 13907 ILLF_ROUTER) != 0) { 13908 return (ire); 13909 } 13910 13911 ire_refrele(ire); 13912 return (NULL); 13913 } 13914 13915 /* 13916 * 13917 * This is the fast forward path. If we are here, we dont need to 13918 * worry about RSVP, CGTP, or TSol. Furthermore the ftable lookup 13919 * needed to find the nexthop in this case is much simpler 13920 */ 13921 ire_t * 13922 ip_fast_forward(ire_t *ire, ipaddr_t dst, ill_t *ill, mblk_t *mp) 13923 { 13924 ipha_t *ipha; 13925 ire_t *src_ire; 13926 ill_t *stq_ill; 13927 uint_t hlen; 13928 uint_t pkt_len; 13929 uint32_t sum; 13930 queue_t *dev_q; 13931 ip_stack_t *ipst = ill->ill_ipst; 13932 mblk_t *fpmp; 13933 enum ire_forward_action ret_action; 13934 13935 ipha = (ipha_t *)mp->b_rptr; 13936 13937 if (ire != NULL && 13938 ire->ire_zoneid != GLOBAL_ZONEID && 13939 ire->ire_zoneid != ALL_ZONES) { 13940 /* 13941 * Should only use IREs that are visible to the global 13942 * zone for forwarding. 13943 */ 13944 ire_refrele(ire); 13945 ire = ire_cache_lookup(dst, GLOBAL_ZONEID, NULL, ipst); 13946 /* 13947 * ire_cache_lookup() can return ire of IRE_LOCAL in 13948 * transient cases. In such case, just drop the packet 13949 */ 13950 if (ire->ire_type != IRE_CACHE) 13951 goto drop; 13952 } 13953 13954 /* 13955 * Martian Address Filtering [RFC 1812, Section 5.3.7] 13956 * The loopback address check for both src and dst has already 13957 * been checked in ip_input 13958 */ 13959 13960 if (dst == INADDR_ANY || CLASSD(ipha->ipha_src)) { 13961 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13962 goto drop; 13963 } 13964 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13965 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 13966 13967 if (src_ire != NULL) { 13968 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13969 ire_refrele(src_ire); 13970 goto drop; 13971 } 13972 13973 /* No ire cache of nexthop. So first create one */ 13974 if (ire == NULL) { 13975 13976 ire = ire_forward_simple(dst, &ret_action, ipst); 13977 13978 /* 13979 * We only come to ip_fast_forward if ip_cgtp_filter 13980 * is not set. So ire_forward() should not return with 13981 * Forward_check_multirt as the next action. 13982 */ 13983 ASSERT(ret_action != Forward_check_multirt); 13984 if (ire == NULL) { 13985 /* An attempt was made to forward the packet */ 13986 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13987 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13988 mp->b_prev = mp->b_next = 0; 13989 /* send icmp unreachable */ 13990 /* Sent by forwarding path, and router is global zone */ 13991 if (ret_action == Forward_ret_icmp_err) { 13992 if (ip_source_routed(ipha, ipst)) { 13993 icmp_unreachable(ill->ill_wq, mp, 13994 ICMP_SOURCE_ROUTE_FAILED, 13995 GLOBAL_ZONEID, ipst); 13996 } else { 13997 icmp_unreachable(ill->ill_wq, mp, 13998 ICMP_HOST_UNREACHABLE, 13999 GLOBAL_ZONEID, ipst); 14000 } 14001 } else { 14002 freemsg(mp); 14003 } 14004 return (NULL); 14005 } 14006 } 14007 14008 /* 14009 * Forwarding fastpath exception case: 14010 * If any of the following are true, we take the slowpath: 14011 * o forwarding is not enabled 14012 * o incoming and outgoing interface are the same, or in the same 14013 * IPMP group. 14014 * o corresponding ire is in incomplete state 14015 * o packet needs fragmentation 14016 * o ARP cache is not resolved 14017 * 14018 * The codeflow from here on is thus: 14019 * ip_rput_process_forward->ip_rput_forward->ip_xmit_v4 14020 */ 14021 pkt_len = ntohs(ipha->ipha_length); 14022 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 14023 if (!(stq_ill->ill_flags & ILLF_ROUTER) || 14024 (ill == stq_ill) || IS_IN_SAME_ILLGRP(ill, stq_ill) || 14025 (ire->ire_nce == NULL) || 14026 (pkt_len > ire->ire_max_frag) || 14027 ((fpmp = ire->ire_nce->nce_fp_mp) == NULL) || 14028 ((hlen = MBLKL(fpmp)) > MBLKHEAD(mp)) || 14029 ipha->ipha_ttl <= 1) { 14030 ip_rput_process_forward(ill->ill_rq, mp, ire, 14031 ipha, ill, B_FALSE, B_TRUE); 14032 return (ire); 14033 } 14034 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14035 14036 DTRACE_PROBE4(ip4__forwarding__start, 14037 ill_t *, ill, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 14038 14039 FW_HOOKS(ipst->ips_ip4_forwarding_event, 14040 ipst->ips_ipv4firewall_forwarding, 14041 ill, stq_ill, ipha, mp, mp, 0, ipst); 14042 14043 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 14044 14045 if (mp == NULL) 14046 goto drop; 14047 14048 mp->b_datap->db_struioun.cksum.flags = 0; 14049 /* Adjust the checksum to reflect the ttl decrement. */ 14050 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 14051 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 14052 ipha->ipha_ttl--; 14053 14054 /* 14055 * Write the link layer header. We can do this safely here, 14056 * because we have already tested to make sure that the IP 14057 * policy is not set, and that we have a fast path destination 14058 * header. 14059 */ 14060 mp->b_rptr -= hlen; 14061 bcopy(fpmp->b_rptr, mp->b_rptr, hlen); 14062 14063 UPDATE_IB_PKT_COUNT(ire); 14064 ire->ire_last_used_time = lbolt; 14065 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 14066 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14067 UPDATE_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutOctets, pkt_len); 14068 14069 if (!ILL_DIRECT_CAPABLE(stq_ill) || DB_TYPE(mp) != M_DATA) { 14070 dev_q = ire->ire_stq->q_next; 14071 if (DEV_Q_FLOW_BLOCKED(dev_q)) 14072 goto indiscard; 14073 } 14074 14075 DTRACE_PROBE4(ip4__physical__out__start, 14076 ill_t *, NULL, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 14077 FW_HOOKS(ipst->ips_ip4_physical_out_event, 14078 ipst->ips_ipv4firewall_physical_out, 14079 NULL, stq_ill, ipha, mp, mp, 0, ipst); 14080 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 14081 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, void_ip_t *, 14082 ipha, __dtrace_ipsr_ill_t *, stq_ill, ipha_t *, ipha, 14083 ip6_t *, NULL, int, 0); 14084 14085 if (mp != NULL) { 14086 if (ipst->ips_ipobs_enabled) { 14087 zoneid_t szone; 14088 14089 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, 14090 ipst, ALL_ZONES); 14091 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, 14092 ALL_ZONES, ill, IPV4_VERSION, hlen, ipst); 14093 } 14094 ILL_SEND_TX(stq_ill, ire, dst, mp, IP_DROP_ON_NO_DESC, NULL); 14095 } 14096 return (ire); 14097 14098 indiscard: 14099 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14100 drop: 14101 if (mp != NULL) 14102 freemsg(mp); 14103 return (ire); 14104 14105 } 14106 14107 /* 14108 * This function is called in the forwarding slowpath, when 14109 * either the ire lacks the link-layer address, or the packet needs 14110 * further processing(eg. fragmentation), before transmission. 14111 */ 14112 14113 static void 14114 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14115 ill_t *ill, boolean_t ll_multicast, boolean_t from_ip_fast_forward) 14116 { 14117 queue_t *dev_q; 14118 ire_t *src_ire; 14119 ip_stack_t *ipst = ill->ill_ipst; 14120 boolean_t same_illgrp = B_FALSE; 14121 14122 ASSERT(ire->ire_stq != NULL); 14123 14124 mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */ 14125 mp->b_next = NULL; /* ip_rput_noire sets dst here */ 14126 14127 /* 14128 * If the caller of this function is ip_fast_forward() skip the 14129 * next three checks as it does not apply. 14130 */ 14131 if (from_ip_fast_forward) 14132 goto skip; 14133 14134 if (ll_multicast != 0) { 14135 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14136 goto drop_pkt; 14137 } 14138 14139 /* 14140 * check if ipha_src is a broadcast address. Note that this 14141 * check is redundant when we get here from ip_fast_forward() 14142 * which has already done this check. However, since we can 14143 * also get here from ip_rput_process_broadcast() or, for 14144 * for the slow path through ip_fast_forward(), we perform 14145 * the check again for code-reusability 14146 */ 14147 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 14148 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 14149 if (src_ire != NULL || ipha->ipha_dst == INADDR_ANY) { 14150 if (src_ire != NULL) 14151 ire_refrele(src_ire); 14152 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14153 ip2dbg(("ip_rput_process_forward: Received packet with" 14154 " bad src/dst address on %s\n", ill->ill_name)); 14155 goto drop_pkt; 14156 } 14157 14158 /* 14159 * Check if we want to forward this one at this time. 14160 * We allow source routed packets on a host provided that 14161 * they go out the same ill or illgrp as they came in on. 14162 * 14163 * XXX To be quicker, we may wish to not chase pointers to 14164 * get the ILLF_ROUTER flag and instead store the 14165 * forwarding policy in the ire. An unfortunate 14166 * side-effect of that would be requiring an ire flush 14167 * whenever the ILLF_ROUTER flag changes. 14168 */ 14169 skip: 14170 same_illgrp = IS_IN_SAME_ILLGRP(ill, (ill_t *)ire->ire_rfq->q_ptr); 14171 14172 if (((ill->ill_flags & 14173 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & ILLF_ROUTER) == 0) && 14174 !(ip_source_routed(ipha, ipst) && 14175 (ire->ire_rfq == q || same_illgrp))) { 14176 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14177 if (ip_source_routed(ipha, ipst)) { 14178 q = WR(q); 14179 /* 14180 * Clear the indication that this may have 14181 * hardware checksum as we are not using it. 14182 */ 14183 DB_CKSUMFLAGS(mp) = 0; 14184 /* Sent by forwarding path, and router is global zone */ 14185 icmp_unreachable(q, mp, 14186 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, ipst); 14187 return; 14188 } 14189 goto drop_pkt; 14190 } 14191 14192 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14193 14194 /* Packet is being forwarded. Turning off hwcksum flag. */ 14195 DB_CKSUMFLAGS(mp) = 0; 14196 if (ipst->ips_ip_g_send_redirects) { 14197 /* 14198 * Check whether the incoming interface and outgoing 14199 * interface is part of the same group. If so, 14200 * send redirects. 14201 * 14202 * Check the source address to see if it originated 14203 * on the same logical subnet it is going back out on. 14204 * If so, we should be able to send it a redirect. 14205 * Avoid sending a redirect if the destination 14206 * is directly connected (i.e., ipha_dst is the same 14207 * as ire_gateway_addr or the ire_addr of the 14208 * nexthop IRE_CACHE ), or if the packet was source 14209 * routed out this interface. 14210 */ 14211 ipaddr_t src, nhop; 14212 mblk_t *mp1; 14213 ire_t *nhop_ire = NULL; 14214 14215 /* 14216 * Check whether ire_rfq and q are from the same ill or illgrp. 14217 * If so, send redirects. 14218 */ 14219 if ((ire->ire_rfq == q || same_illgrp) && 14220 !ip_source_routed(ipha, ipst)) { 14221 14222 nhop = (ire->ire_gateway_addr != 0 ? 14223 ire->ire_gateway_addr : ire->ire_addr); 14224 14225 if (ipha->ipha_dst == nhop) { 14226 /* 14227 * We avoid sending a redirect if the 14228 * destination is directly connected 14229 * because it is possible that multiple 14230 * IP subnets may have been configured on 14231 * the link, and the source may not 14232 * be on the same subnet as ip destination, 14233 * even though they are on the same 14234 * physical link. 14235 */ 14236 goto sendit; 14237 } 14238 14239 src = ipha->ipha_src; 14240 14241 /* 14242 * We look up the interface ire for the nexthop, 14243 * to see if ipha_src is in the same subnet 14244 * as the nexthop. 14245 * 14246 * Note that, if, in the future, IRE_CACHE entries 14247 * are obsoleted, this lookup will not be needed, 14248 * as the ire passed to this function will be the 14249 * same as the nhop_ire computed below. 14250 */ 14251 nhop_ire = ire_ftable_lookup(nhop, 0, 0, 14252 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 14253 0, NULL, MATCH_IRE_TYPE, ipst); 14254 14255 if (nhop_ire != NULL) { 14256 if ((src & nhop_ire->ire_mask) == 14257 (nhop & nhop_ire->ire_mask)) { 14258 /* 14259 * The source is directly connected. 14260 * Just copy the ip header (which is 14261 * in the first mblk) 14262 */ 14263 mp1 = copyb(mp); 14264 if (mp1 != NULL) { 14265 icmp_send_redirect(WR(q), mp1, 14266 nhop, ipst); 14267 } 14268 } 14269 ire_refrele(nhop_ire); 14270 } 14271 } 14272 } 14273 sendit: 14274 dev_q = ire->ire_stq->q_next; 14275 if (DEV_Q_FLOW_BLOCKED(dev_q)) { 14276 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14277 freemsg(mp); 14278 return; 14279 } 14280 14281 ip_rput_forward(ire, ipha, mp, ill); 14282 return; 14283 14284 drop_pkt: 14285 ip2dbg(("ip_rput_process_forward: drop pkt\n")); 14286 freemsg(mp); 14287 } 14288 14289 ire_t * 14290 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14291 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 14292 { 14293 queue_t *q; 14294 uint16_t hcksumflags; 14295 ip_stack_t *ipst = ill->ill_ipst; 14296 14297 q = *qp; 14298 14299 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInBcastPkts); 14300 14301 /* 14302 * Clear the indication that this may have hardware 14303 * checksum as we are not using it for forwarding. 14304 */ 14305 hcksumflags = DB_CKSUMFLAGS(mp); 14306 DB_CKSUMFLAGS(mp) = 0; 14307 14308 /* 14309 * Directed broadcast forwarding: if the packet came in over a 14310 * different interface then it is routed out over we can forward it. 14311 */ 14312 if (ipha->ipha_protocol == IPPROTO_TCP) { 14313 ire_refrele(ire); 14314 freemsg(mp); 14315 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14316 return (NULL); 14317 } 14318 /* 14319 * For multicast we have set dst to be INADDR_BROADCAST 14320 * for delivering to all STREAMS. 14321 */ 14322 if (!CLASSD(ipha->ipha_dst)) { 14323 ire_t *new_ire; 14324 ipif_t *ipif; 14325 14326 ipif = ipif_get_next_ipif(NULL, ill); 14327 if (ipif == NULL) { 14328 discard: ire_refrele(ire); 14329 freemsg(mp); 14330 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14331 return (NULL); 14332 } 14333 new_ire = ire_ctable_lookup(dst, 0, 0, 14334 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL, ipst); 14335 ipif_refrele(ipif); 14336 14337 if (new_ire != NULL) { 14338 /* 14339 * If the matching IRE_BROADCAST is part of an IPMP 14340 * group, then drop the packet unless our ill has been 14341 * nominated to receive for the group. 14342 */ 14343 if (IS_IPMP(new_ire->ire_ipif->ipif_ill) && 14344 new_ire->ire_rfq != q) { 14345 ire_refrele(new_ire); 14346 goto discard; 14347 } 14348 14349 /* 14350 * In the special case of multirouted broadcast 14351 * packets, we unconditionally need to "gateway" 14352 * them to the appropriate interface here. 14353 * In the normal case, this cannot happen, because 14354 * there is no broadcast IRE tagged with the 14355 * RTF_MULTIRT flag. 14356 */ 14357 if (new_ire->ire_flags & RTF_MULTIRT) { 14358 ire_refrele(new_ire); 14359 if (ire->ire_rfq != NULL) { 14360 q = ire->ire_rfq; 14361 *qp = q; 14362 } 14363 } else { 14364 ire_refrele(ire); 14365 ire = new_ire; 14366 } 14367 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 14368 if (!ipst->ips_ip_g_forward_directed_bcast) { 14369 /* 14370 * Free the message if 14371 * ip_g_forward_directed_bcast is turned 14372 * off for non-local broadcast. 14373 */ 14374 ire_refrele(ire); 14375 freemsg(mp); 14376 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14377 return (NULL); 14378 } 14379 } else { 14380 /* 14381 * This CGTP packet successfully passed the 14382 * CGTP filter, but the related CGTP 14383 * broadcast IRE has not been found, 14384 * meaning that the redundant ipif is 14385 * probably down. However, if we discarded 14386 * this packet, its duplicate would be 14387 * filtered out by the CGTP filter so none 14388 * of them would get through. So we keep 14389 * going with this one. 14390 */ 14391 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 14392 if (ire->ire_rfq != NULL) { 14393 q = ire->ire_rfq; 14394 *qp = q; 14395 } 14396 } 14397 } 14398 if (ipst->ips_ip_g_forward_directed_bcast && ll_multicast == 0) { 14399 /* 14400 * Verify that there are not more then one 14401 * IRE_BROADCAST with this broadcast address which 14402 * has ire_stq set. 14403 * TODO: simplify, loop over all IRE's 14404 */ 14405 ire_t *ire1; 14406 int num_stq = 0; 14407 mblk_t *mp1; 14408 14409 /* Find the first one with ire_stq set */ 14410 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 14411 for (ire1 = ire; ire1 && 14412 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 14413 ire1 = ire1->ire_next) 14414 ; 14415 if (ire1) { 14416 ire_refrele(ire); 14417 ire = ire1; 14418 IRE_REFHOLD(ire); 14419 } 14420 14421 /* Check if there are additional ones with stq set */ 14422 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 14423 if (ire->ire_addr != ire1->ire_addr) 14424 break; 14425 if (ire1->ire_stq) { 14426 num_stq++; 14427 break; 14428 } 14429 } 14430 rw_exit(&ire->ire_bucket->irb_lock); 14431 if (num_stq == 1 && ire->ire_stq != NULL) { 14432 ip1dbg(("ip_rput_process_broadcast: directed " 14433 "broadcast to 0x%x\n", 14434 ntohl(ire->ire_addr))); 14435 mp1 = copymsg(mp); 14436 if (mp1) { 14437 switch (ipha->ipha_protocol) { 14438 case IPPROTO_UDP: 14439 ip_udp_input(q, mp1, ipha, ire, ill); 14440 break; 14441 default: 14442 ip_proto_input(q, mp1, ipha, ire, ill, 14443 0); 14444 break; 14445 } 14446 } 14447 /* 14448 * Adjust ttl to 2 (1+1 - the forward engine 14449 * will decrement it by one. 14450 */ 14451 if (ip_csum_hdr(ipha)) { 14452 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 14453 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 14454 freemsg(mp); 14455 ire_refrele(ire); 14456 return (NULL); 14457 } 14458 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl + 1; 14459 ipha->ipha_hdr_checksum = 0; 14460 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14461 ip_rput_process_forward(q, mp, ire, ipha, 14462 ill, ll_multicast, B_FALSE); 14463 ire_refrele(ire); 14464 return (NULL); 14465 } 14466 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 14467 ntohl(ire->ire_addr))); 14468 } 14469 14470 /* Restore any hardware checksum flags */ 14471 DB_CKSUMFLAGS(mp) = hcksumflags; 14472 return (ire); 14473 } 14474 14475 /* ARGSUSED */ 14476 static boolean_t 14477 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 14478 int *ll_multicast, ipaddr_t *dstp) 14479 { 14480 ip_stack_t *ipst = ill->ill_ipst; 14481 14482 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastPkts); 14483 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastOctets, 14484 ntohs(ipha->ipha_length)); 14485 14486 /* 14487 * So that we don't end up with dups, only one ill in an IPMP group is 14488 * nominated to receive multicast traffic. 14489 */ 14490 if (IS_UNDER_IPMP(ill) && !ill->ill_nom_cast) 14491 goto drop_pkt; 14492 14493 /* 14494 * Forward packets only if we have joined the allmulti 14495 * group on this interface. 14496 */ 14497 if (ipst->ips_ip_g_mrouter && ill->ill_join_allmulti) { 14498 int retval; 14499 14500 /* 14501 * Clear the indication that this may have hardware 14502 * checksum as we are not using it. 14503 */ 14504 DB_CKSUMFLAGS(mp) = 0; 14505 retval = ip_mforward(ill, ipha, mp); 14506 /* ip_mforward updates mib variables if needed */ 14507 /* clear b_prev - used by ip_mroute_decap */ 14508 mp->b_prev = NULL; 14509 14510 switch (retval) { 14511 case 0: 14512 /* 14513 * pkt is okay and arrived on phyint. 14514 * 14515 * If we are running as a multicast router 14516 * we need to see all IGMP and/or PIM packets. 14517 */ 14518 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 14519 (ipha->ipha_protocol == IPPROTO_PIM)) { 14520 goto done; 14521 } 14522 break; 14523 case -1: 14524 /* pkt is mal-formed, toss it */ 14525 goto drop_pkt; 14526 case 1: 14527 /* pkt is okay and arrived on a tunnel */ 14528 /* 14529 * If we are running a multicast router 14530 * we need to see all igmp packets. 14531 */ 14532 if (ipha->ipha_protocol == IPPROTO_IGMP) { 14533 *dstp = INADDR_BROADCAST; 14534 *ll_multicast = 1; 14535 return (B_FALSE); 14536 } 14537 14538 goto drop_pkt; 14539 } 14540 } 14541 14542 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 14543 /* 14544 * This might just be caused by the fact that 14545 * multiple IP Multicast addresses map to the same 14546 * link layer multicast - no need to increment counter! 14547 */ 14548 freemsg(mp); 14549 return (B_TRUE); 14550 } 14551 done: 14552 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 14553 /* 14554 * This assumes the we deliver to all streams for multicast 14555 * and broadcast packets. 14556 */ 14557 *dstp = INADDR_BROADCAST; 14558 *ll_multicast = 1; 14559 return (B_FALSE); 14560 drop_pkt: 14561 ip2dbg(("ip_rput: drop pkt\n")); 14562 freemsg(mp); 14563 return (B_TRUE); 14564 } 14565 14566 /* 14567 * This function is used to both return an indication of whether or not 14568 * the packet received is a non-unicast packet (by way of the DL_UNITDATA_IND) 14569 * and in doing so, determine whether or not it is broadcast vs multicast. 14570 * For it to be a broadcast packet, we must have the appropriate mblk_t 14571 * hanging off the ill_t. If this is either not present or doesn't match 14572 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 14573 * to be multicast. Thus NICs that have no broadcast address (or no 14574 * capability for one, such as point to point links) cannot return as 14575 * the packet being broadcast. The use of HPE_BROADCAST/HPE_MULTICAST as 14576 * the return values simplifies the current use of the return value of this 14577 * function, which is to pass through the multicast/broadcast characteristic 14578 * to consumers of the netinfo/pfhooks API. While this is not cast in stone, 14579 * changing the return value to some other symbol demands the appropriate 14580 * "translation" when hpe_flags is set prior to calling hook_run() for 14581 * packet events. 14582 */ 14583 int 14584 ip_get_dlpi_mbcast(ill_t *ill, mblk_t *mb) 14585 { 14586 dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr; 14587 mblk_t *bmp; 14588 14589 if (ind->dl_group_address) { 14590 if (ind->dl_dest_addr_offset > sizeof (*ind) && 14591 ind->dl_dest_addr_offset + ind->dl_dest_addr_length < 14592 MBLKL(mb) && 14593 (bmp = ill->ill_bcast_mp) != NULL) { 14594 dl_unitdata_req_t *dlur; 14595 uint8_t *bphys_addr; 14596 14597 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 14598 if (ill->ill_sap_length < 0) 14599 bphys_addr = (uchar_t *)dlur + 14600 dlur->dl_dest_addr_offset; 14601 else 14602 bphys_addr = (uchar_t *)dlur + 14603 dlur->dl_dest_addr_offset + 14604 ill->ill_sap_length; 14605 14606 if (bcmp(mb->b_rptr + ind->dl_dest_addr_offset, 14607 bphys_addr, ind->dl_dest_addr_length) == 0) { 14608 return (HPE_BROADCAST); 14609 } 14610 return (HPE_MULTICAST); 14611 } 14612 return (HPE_MULTICAST); 14613 } 14614 return (0); 14615 } 14616 14617 static boolean_t 14618 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 14619 int *ll_multicast, mblk_t **mpp) 14620 { 14621 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 14622 boolean_t must_copy = B_FALSE; 14623 struct iocblk *iocp; 14624 ipha_t *ipha; 14625 ip_stack_t *ipst = ill->ill_ipst; 14626 14627 #define rptr ((uchar_t *)ipha) 14628 14629 first_mp = *first_mpp; 14630 mp = *mpp; 14631 14632 ASSERT(first_mp == mp); 14633 14634 /* 14635 * if db_ref > 1 then copymsg and free original. Packet may be 14636 * changed and do not want other entity who has a reference to this 14637 * message to trip over the changes. This is a blind change because 14638 * trying to catch all places that might change packet is too 14639 * difficult (since it may be a module above this one) 14640 * 14641 * This corresponds to the non-fast path case. We walk down the full 14642 * chain in this case, and check the db_ref count of all the dblks, 14643 * and do a copymsg if required. It is possible that the db_ref counts 14644 * of the data blocks in the mblk chain can be different. 14645 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 14646 * count of 1, followed by a M_DATA block with a ref count of 2, if 14647 * 'snoop' is running. 14648 */ 14649 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 14650 if (mp1->b_datap->db_ref > 1) { 14651 must_copy = B_TRUE; 14652 break; 14653 } 14654 } 14655 14656 if (must_copy) { 14657 mp1 = copymsg(mp); 14658 if (mp1 == NULL) { 14659 for (mp1 = mp; mp1 != NULL; 14660 mp1 = mp1->b_cont) { 14661 mp1->b_next = NULL; 14662 mp1->b_prev = NULL; 14663 } 14664 freemsg(mp); 14665 if (ill != NULL) { 14666 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14667 } else { 14668 BUMP_MIB(&ipst->ips_ip_mib, 14669 ipIfStatsInDiscards); 14670 } 14671 return (B_TRUE); 14672 } 14673 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 14674 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 14675 /* Copy b_prev - used by ip_mroute_decap */ 14676 to_mp->b_prev = from_mp->b_prev; 14677 from_mp->b_prev = NULL; 14678 } 14679 *first_mpp = first_mp = mp1; 14680 freemsg(mp); 14681 mp = mp1; 14682 *mpp = mp1; 14683 } 14684 14685 ipha = (ipha_t *)mp->b_rptr; 14686 14687 /* 14688 * previous code has a case for M_DATA. 14689 * We want to check how that happens. 14690 */ 14691 ASSERT(first_mp->b_datap->db_type != M_DATA); 14692 switch (first_mp->b_datap->db_type) { 14693 case M_PROTO: 14694 case M_PCPROTO: 14695 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 14696 DL_UNITDATA_IND) { 14697 /* Go handle anything other than data elsewhere. */ 14698 ip_rput_dlpi(q, mp); 14699 return (B_TRUE); 14700 } 14701 14702 *ll_multicast = ip_get_dlpi_mbcast(ill, mp); 14703 /* Ditch the DLPI header. */ 14704 mp1 = mp->b_cont; 14705 ASSERT(first_mp == mp); 14706 *first_mpp = mp1; 14707 freeb(mp); 14708 *mpp = mp1; 14709 return (B_FALSE); 14710 case M_IOCACK: 14711 ip1dbg(("got iocack ")); 14712 iocp = (struct iocblk *)mp->b_rptr; 14713 switch (iocp->ioc_cmd) { 14714 case DL_IOC_HDR_INFO: 14715 ill = (ill_t *)q->q_ptr; 14716 ill_fastpath_ack(ill, mp); 14717 return (B_TRUE); 14718 case SIOCSTUNPARAM: 14719 case OSIOCSTUNPARAM: 14720 /* Go through qwriter_ip */ 14721 break; 14722 case SIOCGTUNPARAM: 14723 case OSIOCGTUNPARAM: 14724 ip_rput_other(NULL, q, mp, NULL); 14725 return (B_TRUE); 14726 default: 14727 putnext(q, mp); 14728 return (B_TRUE); 14729 } 14730 /* FALLTHRU */ 14731 case M_ERROR: 14732 case M_HANGUP: 14733 /* 14734 * Since this is on the ill stream we unconditionally 14735 * bump up the refcount 14736 */ 14737 ill_refhold(ill); 14738 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14739 return (B_TRUE); 14740 case M_CTL: 14741 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 14742 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 14743 IPHADA_M_CTL)) { 14744 /* 14745 * It's an IPsec accelerated packet. 14746 * Make sure that the ill from which we received the 14747 * packet has enabled IPsec hardware acceleration. 14748 */ 14749 if (!(ill->ill_capabilities & 14750 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 14751 /* IPsec kstats: bean counter */ 14752 freemsg(mp); 14753 return (B_TRUE); 14754 } 14755 14756 /* 14757 * Make mp point to the mblk following the M_CTL, 14758 * then process according to type of mp. 14759 * After this processing, first_mp will point to 14760 * the data-attributes and mp to the pkt following 14761 * the M_CTL. 14762 */ 14763 mp = first_mp->b_cont; 14764 if (mp == NULL) { 14765 freemsg(first_mp); 14766 return (B_TRUE); 14767 } 14768 /* 14769 * A Hardware Accelerated packet can only be M_DATA 14770 * ESP or AH packet. 14771 */ 14772 if (mp->b_datap->db_type != M_DATA) { 14773 /* non-M_DATA IPsec accelerated packet */ 14774 IPSECHW_DEBUG(IPSECHW_PKT, 14775 ("non-M_DATA IPsec accelerated pkt\n")); 14776 freemsg(first_mp); 14777 return (B_TRUE); 14778 } 14779 ipha = (ipha_t *)mp->b_rptr; 14780 if (ipha->ipha_protocol != IPPROTO_AH && 14781 ipha->ipha_protocol != IPPROTO_ESP) { 14782 IPSECHW_DEBUG(IPSECHW_PKT, 14783 ("non-M_DATA IPsec accelerated pkt\n")); 14784 freemsg(first_mp); 14785 return (B_TRUE); 14786 } 14787 *mpp = mp; 14788 return (B_FALSE); 14789 } 14790 putnext(q, mp); 14791 return (B_TRUE); 14792 case M_IOCNAK: 14793 ip1dbg(("got iocnak ")); 14794 iocp = (struct iocblk *)mp->b_rptr; 14795 switch (iocp->ioc_cmd) { 14796 case SIOCSTUNPARAM: 14797 case OSIOCSTUNPARAM: 14798 /* 14799 * Since this is on the ill stream we unconditionally 14800 * bump up the refcount 14801 */ 14802 ill_refhold(ill); 14803 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14804 return (B_TRUE); 14805 case DL_IOC_HDR_INFO: 14806 case SIOCGTUNPARAM: 14807 case OSIOCGTUNPARAM: 14808 ip_rput_other(NULL, q, mp, NULL); 14809 return (B_TRUE); 14810 default: 14811 break; 14812 } 14813 /* FALLTHRU */ 14814 default: 14815 putnext(q, mp); 14816 return (B_TRUE); 14817 } 14818 } 14819 14820 /* Read side put procedure. Packets coming from the wire arrive here. */ 14821 void 14822 ip_rput(queue_t *q, mblk_t *mp) 14823 { 14824 ill_t *ill; 14825 union DL_primitives *dl; 14826 14827 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 14828 14829 ill = (ill_t *)q->q_ptr; 14830 14831 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 14832 /* 14833 * If things are opening or closing, only accept high-priority 14834 * DLPI messages. (On open ill->ill_ipif has not yet been 14835 * created; on close, things hanging off the ill may have been 14836 * freed already.) 14837 */ 14838 dl = (union DL_primitives *)mp->b_rptr; 14839 if (DB_TYPE(mp) != M_PCPROTO || 14840 dl->dl_primitive == DL_UNITDATA_IND) { 14841 /* 14842 * SIOC[GS]TUNPARAM ioctls can come here. 14843 */ 14844 inet_freemsg(mp); 14845 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14846 "ip_rput_end: q %p (%S)", q, "uninit"); 14847 return; 14848 } 14849 } 14850 14851 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14852 "ip_rput_end: q %p (%S)", q, "end"); 14853 14854 ip_input(ill, NULL, mp, NULL); 14855 } 14856 14857 static mblk_t * 14858 ip_fix_dbref(ill_t *ill, mblk_t *mp) 14859 { 14860 mblk_t *mp1; 14861 boolean_t adjusted = B_FALSE; 14862 ip_stack_t *ipst = ill->ill_ipst; 14863 14864 IP_STAT(ipst, ip_db_ref); 14865 /* 14866 * The IP_RECVSLLA option depends on having the 14867 * link layer header. First check that: 14868 * a> the underlying device is of type ether, 14869 * since this option is currently supported only 14870 * over ethernet. 14871 * b> there is enough room to copy over the link 14872 * layer header. 14873 * 14874 * Once the checks are done, adjust rptr so that 14875 * the link layer header will be copied via 14876 * copymsg. Note that, IFT_ETHER may be returned 14877 * by some non-ethernet drivers but in this case 14878 * the second check will fail. 14879 */ 14880 if (ill->ill_type == IFT_ETHER && 14881 (mp->b_rptr - mp->b_datap->db_base) >= 14882 sizeof (struct ether_header)) { 14883 mp->b_rptr -= sizeof (struct ether_header); 14884 adjusted = B_TRUE; 14885 } 14886 mp1 = copymsg(mp); 14887 14888 if (mp1 == NULL) { 14889 mp->b_next = NULL; 14890 /* clear b_prev - used by ip_mroute_decap */ 14891 mp->b_prev = NULL; 14892 freemsg(mp); 14893 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14894 return (NULL); 14895 } 14896 14897 if (adjusted) { 14898 /* 14899 * Copy is done. Restore the pointer in 14900 * the _new_ mblk 14901 */ 14902 mp1->b_rptr += sizeof (struct ether_header); 14903 } 14904 14905 /* Copy b_prev - used by ip_mroute_decap */ 14906 mp1->b_prev = mp->b_prev; 14907 mp->b_prev = NULL; 14908 14909 /* preserve the hardware checksum flags and data, if present */ 14910 if (DB_CKSUMFLAGS(mp) != 0) { 14911 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 14912 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 14913 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 14914 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 14915 DB_CKSUM16(mp1) = DB_CKSUM16(mp); 14916 } 14917 14918 freemsg(mp); 14919 return (mp1); 14920 } 14921 14922 #define ADD_TO_CHAIN(head, tail, cnt, mp) { \ 14923 if (tail != NULL) \ 14924 tail->b_next = mp; \ 14925 else \ 14926 head = mp; \ 14927 tail = mp; \ 14928 cnt++; \ 14929 } 14930 14931 /* 14932 * Direct read side procedure capable of dealing with chains. GLDv3 based 14933 * drivers call this function directly with mblk chains while STREAMS 14934 * read side procedure ip_rput() calls this for single packet with ip_ring 14935 * set to NULL to process one packet at a time. 14936 * 14937 * The ill will always be valid if this function is called directly from 14938 * the driver. 14939 * 14940 * If ip_input() is called from GLDv3: 14941 * 14942 * - This must be a non-VLAN IP stream. 14943 * - 'mp' is either an untagged or a special priority-tagged packet. 14944 * - Any VLAN tag that was in the MAC header has been stripped. 14945 * 14946 * If the IP header in packet is not 32-bit aligned, every message in the 14947 * chain will be aligned before further operations. This is required on SPARC 14948 * platform. 14949 */ 14950 /* ARGSUSED */ 14951 void 14952 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, 14953 struct mac_header_info_s *mhip) 14954 { 14955 ipaddr_t dst = NULL; 14956 ipaddr_t prev_dst; 14957 ire_t *ire = NULL; 14958 ipha_t *ipha; 14959 uint_t pkt_len; 14960 ssize_t len; 14961 uint_t opt_len; 14962 int ll_multicast; 14963 int cgtp_flt_pkt; 14964 queue_t *q = ill->ill_rq; 14965 squeue_t *curr_sqp = NULL; 14966 mblk_t *head = NULL; 14967 mblk_t *tail = NULL; 14968 mblk_t *first_mp; 14969 int cnt = 0; 14970 ip_stack_t *ipst = ill->ill_ipst; 14971 mblk_t *mp; 14972 mblk_t *dmp; 14973 uint8_t tag; 14974 14975 ASSERT(mp_chain != NULL); 14976 ASSERT(ill != NULL); 14977 14978 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 14979 14980 tag = (ip_ring != NULL) ? SQTAG_IP_INPUT_RX_RING : SQTAG_IP_INPUT; 14981 14982 #define rptr ((uchar_t *)ipha) 14983 14984 while (mp_chain != NULL) { 14985 mp = mp_chain; 14986 mp_chain = mp_chain->b_next; 14987 mp->b_next = NULL; 14988 ll_multicast = 0; 14989 14990 /* 14991 * We do ire caching from one iteration to 14992 * another. In the event the packet chain contains 14993 * all packets from the same dst, this caching saves 14994 * an ire_cache_lookup for each of the succeeding 14995 * packets in a packet chain. 14996 */ 14997 prev_dst = dst; 14998 14999 /* 15000 * if db_ref > 1 then copymsg and free original. Packet 15001 * may be changed and we do not want the other entity 15002 * who has a reference to this message to trip over the 15003 * changes. This is a blind change because trying to 15004 * catch all places that might change the packet is too 15005 * difficult. 15006 * 15007 * This corresponds to the fast path case, where we have 15008 * a chain of M_DATA mblks. We check the db_ref count 15009 * of only the 1st data block in the mblk chain. There 15010 * doesn't seem to be a reason why a device driver would 15011 * send up data with varying db_ref counts in the mblk 15012 * chain. In any case the Fast path is a private 15013 * interface, and our drivers don't do such a thing. 15014 * Given the above assumption, there is no need to walk 15015 * down the entire mblk chain (which could have a 15016 * potential performance problem) 15017 * 15018 * The "(DB_REF(mp) > 1)" check was moved from ip_rput() 15019 * to here because of exclusive ip stacks and vnics. 15020 * Packets transmitted from exclusive stack over vnic 15021 * can have db_ref > 1 and when it gets looped back to 15022 * another vnic in a different zone, you have ip_input() 15023 * getting dblks with db_ref > 1. So if someone 15024 * complains of TCP performance under this scenario, 15025 * take a serious look here on the impact of copymsg(). 15026 */ 15027 15028 if (DB_REF(mp) > 1) { 15029 if ((mp = ip_fix_dbref(ill, mp)) == NULL) 15030 continue; 15031 } 15032 15033 /* 15034 * Check and align the IP header. 15035 */ 15036 first_mp = mp; 15037 if (DB_TYPE(mp) == M_DATA) { 15038 dmp = mp; 15039 } else if (DB_TYPE(mp) == M_PROTO && 15040 *(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) { 15041 dmp = mp->b_cont; 15042 } else { 15043 dmp = NULL; 15044 } 15045 if (dmp != NULL) { 15046 /* 15047 * IP header ptr not aligned? 15048 * OR IP header not complete in first mblk 15049 */ 15050 if (!OK_32PTR(dmp->b_rptr) || 15051 MBLKL(dmp) < IP_SIMPLE_HDR_LENGTH) { 15052 if (!ip_check_and_align_header(q, dmp, ipst)) 15053 continue; 15054 } 15055 } 15056 15057 /* 15058 * ip_input fast path 15059 */ 15060 15061 /* mblk type is not M_DATA */ 15062 if (DB_TYPE(mp) != M_DATA) { 15063 if (ip_rput_process_notdata(q, &first_mp, ill, 15064 &ll_multicast, &mp)) 15065 continue; 15066 15067 /* 15068 * The only way we can get here is if we had a 15069 * packet that was either a DL_UNITDATA_IND or 15070 * an M_CTL for an IPsec accelerated packet. 15071 * 15072 * In either case, the first_mp will point to 15073 * the leading M_PROTO or M_CTL. 15074 */ 15075 ASSERT(first_mp != NULL); 15076 } else if (mhip != NULL) { 15077 /* 15078 * ll_multicast is set here so that it is ready 15079 * for easy use with FW_HOOKS(). ip_get_dlpi_mbcast 15080 * manipulates ll_multicast in the same fashion when 15081 * called from ip_rput_process_notdata. 15082 */ 15083 switch (mhip->mhi_dsttype) { 15084 case MAC_ADDRTYPE_MULTICAST : 15085 ll_multicast = HPE_MULTICAST; 15086 break; 15087 case MAC_ADDRTYPE_BROADCAST : 15088 ll_multicast = HPE_BROADCAST; 15089 break; 15090 default : 15091 break; 15092 } 15093 } 15094 15095 /* Only M_DATA can come here and it is always aligned */ 15096 ASSERT(DB_TYPE(mp) == M_DATA); 15097 ASSERT(DB_REF(mp) == 1 && OK_32PTR(mp->b_rptr)); 15098 15099 ipha = (ipha_t *)mp->b_rptr; 15100 len = mp->b_wptr - rptr; 15101 pkt_len = ntohs(ipha->ipha_length); 15102 15103 /* 15104 * We must count all incoming packets, even if they end 15105 * up being dropped later on. 15106 */ 15107 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15108 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 15109 15110 /* multiple mblk or too short */ 15111 len -= pkt_len; 15112 if (len != 0) { 15113 /* 15114 * Make sure we have data length consistent 15115 * with the IP header. 15116 */ 15117 if (mp->b_cont == NULL) { 15118 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15119 BUMP_MIB(ill->ill_ip_mib, 15120 ipIfStatsInHdrErrors); 15121 ip2dbg(("ip_input: drop pkt\n")); 15122 freemsg(mp); 15123 continue; 15124 } 15125 mp->b_wptr = rptr + pkt_len; 15126 } else if ((len += msgdsize(mp->b_cont)) != 0) { 15127 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15128 BUMP_MIB(ill->ill_ip_mib, 15129 ipIfStatsInHdrErrors); 15130 ip2dbg(("ip_input: drop pkt\n")); 15131 freemsg(mp); 15132 continue; 15133 } 15134 (void) adjmsg(mp, -len); 15135 /* 15136 * adjmsg may have freed an mblk from the chain, 15137 * hence invalidate any hw checksum here. This 15138 * will force IP to calculate the checksum in 15139 * sw, but only for this packet. 15140 */ 15141 DB_CKSUMFLAGS(mp) = 0; 15142 IP_STAT(ipst, ip_multimblk3); 15143 } 15144 } 15145 15146 /* Obtain the dst of the current packet */ 15147 dst = ipha->ipha_dst; 15148 15149 DTRACE_IP7(receive, mblk_t *, first_mp, conn_t *, NULL, 15150 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, 15151 ipha, ip6_t *, NULL, int, 0); 15152 15153 /* 15154 * The following test for loopback is faster than 15155 * IP_LOOPBACK_ADDR(), because it avoids any bitwise 15156 * operations. 15157 * Note that these addresses are always in network byte order 15158 */ 15159 if (((*(uchar_t *)&ipha->ipha_dst) == 127) || 15160 ((*(uchar_t *)&ipha->ipha_src) == 127)) { 15161 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInAddrErrors); 15162 freemsg(mp); 15163 continue; 15164 } 15165 15166 /* 15167 * The event for packets being received from a 'physical' 15168 * interface is placed after validation of the source and/or 15169 * destination address as being local so that packets can be 15170 * redirected to loopback addresses using ipnat. 15171 */ 15172 DTRACE_PROBE4(ip4__physical__in__start, 15173 ill_t *, ill, ill_t *, NULL, 15174 ipha_t *, ipha, mblk_t *, first_mp); 15175 15176 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15177 ipst->ips_ipv4firewall_physical_in, 15178 ill, NULL, ipha, first_mp, mp, ll_multicast, ipst); 15179 15180 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, first_mp); 15181 15182 if (first_mp == NULL) { 15183 continue; 15184 } 15185 dst = ipha->ipha_dst; 15186 /* 15187 * Attach any necessary label information to 15188 * this packet 15189 */ 15190 if (is_system_labeled() && 15191 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 15192 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 15193 freemsg(mp); 15194 continue; 15195 } 15196 15197 if (ipst->ips_ipobs_enabled) { 15198 zoneid_t dzone; 15199 15200 /* 15201 * On the inbound path the src zone will be unknown as 15202 * this packet has come from the wire. 15203 */ 15204 dzone = ip_get_zoneid_v4(dst, mp, ipst, ALL_ZONES); 15205 ipobs_hook(mp, IPOBS_HOOK_INBOUND, ALL_ZONES, dzone, 15206 ill, IPV4_VERSION, 0, ipst); 15207 } 15208 15209 /* 15210 * Reuse the cached ire only if the ipha_dst of the previous 15211 * packet is the same as the current packet AND it is not 15212 * INADDR_ANY. 15213 */ 15214 if (!(dst == prev_dst && dst != INADDR_ANY) && 15215 (ire != NULL)) { 15216 ire_refrele(ire); 15217 ire = NULL; 15218 } 15219 15220 opt_len = ipha->ipha_version_and_hdr_length - 15221 IP_SIMPLE_HDR_VERSION; 15222 15223 /* 15224 * Check to see if we can take the fastpath. 15225 * That is possible if the following conditions are met 15226 * o Tsol disabled 15227 * o CGTP disabled 15228 * o ipp_action_count is 0 15229 * o no options in the packet 15230 * o not a RSVP packet 15231 * o not a multicast packet 15232 * o ill not in IP_DHCPINIT_IF mode 15233 */ 15234 if (!is_system_labeled() && 15235 !ipst->ips_ip_cgtp_filter && ipp_action_count == 0 && 15236 opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP && 15237 !ll_multicast && !CLASSD(dst) && ill->ill_dhcpinit == 0) { 15238 if (ire == NULL) 15239 ire = ire_cache_lookup_simple(dst, ipst); 15240 /* 15241 * Unless forwarding is enabled, dont call 15242 * ip_fast_forward(). Incoming packet is for forwarding 15243 */ 15244 if ((ill->ill_flags & ILLF_ROUTER) && 15245 (ire == NULL || (ire->ire_type & IRE_CACHE))) { 15246 ire = ip_fast_forward(ire, dst, ill, mp); 15247 continue; 15248 } 15249 /* incoming packet is for local consumption */ 15250 if ((ire != NULL) && (ire->ire_type & IRE_LOCAL)) 15251 goto local; 15252 } 15253 15254 /* 15255 * Disable ire caching for anything more complex 15256 * than the simple fast path case we checked for above. 15257 */ 15258 if (ire != NULL) { 15259 ire_refrele(ire); 15260 ire = NULL; 15261 } 15262 15263 /* 15264 * Brutal hack for DHCPv4 unicast: RFC2131 allows a DHCP 15265 * server to unicast DHCP packets to a DHCP client using the 15266 * IP address it is offering to the client. This can be 15267 * disabled through the "broadcast bit", but not all DHCP 15268 * servers honor that bit. Therefore, to interoperate with as 15269 * many DHCP servers as possible, the DHCP client allows the 15270 * server to unicast, but we treat those packets as broadcast 15271 * here. Note that we don't rewrite the packet itself since 15272 * (a) that would mess up the checksums and (b) the DHCP 15273 * client conn is bound to INADDR_ANY so ip_fanout_udp() will 15274 * hand it the packet regardless. 15275 */ 15276 if (ill->ill_dhcpinit != 0 && 15277 IS_SIMPLE_IPH(ipha) && ipha->ipha_protocol == IPPROTO_UDP && 15278 pullupmsg(mp, sizeof (ipha_t) + sizeof (udpha_t)) == 1) { 15279 udpha_t *udpha; 15280 15281 /* 15282 * Reload ipha since pullupmsg() can change b_rptr. 15283 */ 15284 ipha = (ipha_t *)mp->b_rptr; 15285 udpha = (udpha_t *)&ipha[1]; 15286 15287 if (ntohs(udpha->uha_dst_port) == IPPORT_BOOTPC) { 15288 DTRACE_PROBE2(ip4__dhcpinit__pkt, ill_t *, ill, 15289 mblk_t *, mp); 15290 dst = INADDR_BROADCAST; 15291 } 15292 } 15293 15294 /* Full-blown slow path */ 15295 if (opt_len != 0) { 15296 if (len != 0) 15297 IP_STAT(ipst, ip_multimblk4); 15298 else 15299 IP_STAT(ipst, ip_ipoptions); 15300 if (!ip_rput_multimblk_ipoptions(q, ill, mp, &ipha, 15301 &dst, ipst)) 15302 continue; 15303 } 15304 15305 /* 15306 * Invoke the CGTP (multirouting) filtering module to process 15307 * the incoming packet. Packets identified as duplicates 15308 * must be discarded. Filtering is active only if the 15309 * the ip_cgtp_filter ndd variable is non-zero. 15310 */ 15311 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 15312 if (ipst->ips_ip_cgtp_filter && 15313 ipst->ips_ip_cgtp_filter_ops != NULL) { 15314 netstackid_t stackid; 15315 15316 stackid = ipst->ips_netstack->netstack_stackid; 15317 cgtp_flt_pkt = 15318 ipst->ips_ip_cgtp_filter_ops->cfo_filter(stackid, 15319 ill->ill_phyint->phyint_ifindex, mp); 15320 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 15321 freemsg(first_mp); 15322 continue; 15323 } 15324 } 15325 15326 /* 15327 * If rsvpd is running, let RSVP daemon handle its processing 15328 * and forwarding of RSVP multicast/unicast packets. 15329 * If rsvpd is not running but mrouted is running, RSVP 15330 * multicast packets are forwarded as multicast traffic 15331 * and RSVP unicast packets are forwarded by unicast router. 15332 * If neither rsvpd nor mrouted is running, RSVP multicast 15333 * packets are not forwarded, but the unicast packets are 15334 * forwarded like unicast traffic. 15335 */ 15336 if (ipha->ipha_protocol == IPPROTO_RSVP && 15337 ipst->ips_ipcl_proto_fanout[IPPROTO_RSVP].connf_head != 15338 NULL) { 15339 /* RSVP packet and rsvpd running. Treat as ours */ 15340 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 15341 /* 15342 * This assumes that we deliver to all streams for 15343 * multicast and broadcast packets. 15344 * We have to force ll_multicast to 1 to handle the 15345 * M_DATA messages passed in from ip_mroute_decap. 15346 */ 15347 dst = INADDR_BROADCAST; 15348 ll_multicast = 1; 15349 } else if (CLASSD(dst)) { 15350 /* packet is multicast */ 15351 mp->b_next = NULL; 15352 if (ip_rput_process_multicast(q, mp, ill, ipha, 15353 &ll_multicast, &dst)) 15354 continue; 15355 } 15356 15357 if (ire == NULL) { 15358 ire = ire_cache_lookup(dst, ALL_ZONES, 15359 msg_getlabel(mp), ipst); 15360 } 15361 15362 if (ire != NULL && ire->ire_stq != NULL && 15363 ire->ire_zoneid != GLOBAL_ZONEID && 15364 ire->ire_zoneid != ALL_ZONES) { 15365 /* 15366 * Should only use IREs that are visible from the 15367 * global zone for forwarding. 15368 */ 15369 ire_refrele(ire); 15370 ire = ire_cache_lookup(dst, GLOBAL_ZONEID, 15371 msg_getlabel(mp), ipst); 15372 } 15373 15374 if (ire == NULL) { 15375 /* 15376 * No IRE for this destination, so it can't be for us. 15377 * Unless we are forwarding, drop the packet. 15378 * We have to let source routed packets through 15379 * since we don't yet know if they are 'ping -l' 15380 * packets i.e. if they will go out over the 15381 * same interface as they came in on. 15382 */ 15383 ire = ip_rput_noire(q, mp, ll_multicast, dst); 15384 if (ire == NULL) 15385 continue; 15386 } 15387 15388 /* 15389 * Broadcast IRE may indicate either broadcast or 15390 * multicast packet 15391 */ 15392 if (ire->ire_type == IRE_BROADCAST) { 15393 /* 15394 * Skip broadcast checks if packet is UDP multicast; 15395 * we'd rather not enter ip_rput_process_broadcast() 15396 * unless the packet is broadcast for real, since 15397 * that routine is a no-op for multicast. 15398 */ 15399 if (ipha->ipha_protocol != IPPROTO_UDP || 15400 !CLASSD(ipha->ipha_dst)) { 15401 ire = ip_rput_process_broadcast(&q, mp, 15402 ire, ipha, ill, dst, cgtp_flt_pkt, 15403 ll_multicast); 15404 if (ire == NULL) 15405 continue; 15406 } 15407 } else if (ire->ire_stq != NULL) { 15408 /* fowarding? */ 15409 ip_rput_process_forward(q, mp, ire, ipha, ill, 15410 ll_multicast, B_FALSE); 15411 /* ip_rput_process_forward consumed the packet */ 15412 continue; 15413 } 15414 15415 local: 15416 /* 15417 * If the queue in the ire is different to the ingress queue 15418 * then we need to check to see if we can accept the packet. 15419 * Note that for multicast packets and broadcast packets sent 15420 * to a broadcast address which is shared between multiple 15421 * interfaces we should not do this since we just got a random 15422 * broadcast ire. 15423 */ 15424 if ((ire->ire_rfq != q) && (ire->ire_type != IRE_BROADCAST)) { 15425 ire = ip_check_multihome(&ipha->ipha_dst, ire, ill); 15426 if (ire == NULL) { 15427 /* Drop packet */ 15428 BUMP_MIB(ill->ill_ip_mib, 15429 ipIfStatsForwProhibits); 15430 freemsg(mp); 15431 continue; 15432 } 15433 if (ire->ire_rfq != NULL) 15434 q = ire->ire_rfq; 15435 } 15436 15437 switch (ipha->ipha_protocol) { 15438 case IPPROTO_TCP: 15439 ASSERT(first_mp == mp); 15440 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 15441 mp, 0, q, ip_ring)) != NULL) { 15442 if (curr_sqp == NULL) { 15443 curr_sqp = GET_SQUEUE(mp); 15444 ASSERT(cnt == 0); 15445 cnt++; 15446 head = tail = mp; 15447 } else if (curr_sqp == GET_SQUEUE(mp)) { 15448 ASSERT(tail != NULL); 15449 cnt++; 15450 tail->b_next = mp; 15451 tail = mp; 15452 } else { 15453 /* 15454 * A different squeue. Send the 15455 * chain for the previous squeue on 15456 * its way. This shouldn't happen 15457 * often unless interrupt binding 15458 * changes. 15459 */ 15460 IP_STAT(ipst, ip_input_multi_squeue); 15461 SQUEUE_ENTER(curr_sqp, head, 15462 tail, cnt, SQ_PROCESS, tag); 15463 curr_sqp = GET_SQUEUE(mp); 15464 head = mp; 15465 tail = mp; 15466 cnt = 1; 15467 } 15468 } 15469 continue; 15470 case IPPROTO_UDP: 15471 ASSERT(first_mp == mp); 15472 ip_udp_input(q, mp, ipha, ire, ill); 15473 continue; 15474 case IPPROTO_SCTP: 15475 ASSERT(first_mp == mp); 15476 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 15477 q, dst); 15478 /* ire has been released by ip_sctp_input */ 15479 ire = NULL; 15480 continue; 15481 default: 15482 ip_proto_input(q, first_mp, ipha, ire, ill, 0); 15483 continue; 15484 } 15485 } 15486 15487 if (ire != NULL) 15488 ire_refrele(ire); 15489 15490 if (head != NULL) 15491 SQUEUE_ENTER(curr_sqp, head, tail, cnt, SQ_PROCESS, tag); 15492 15493 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15494 "ip_input_end: q %p (%S)", q, "end"); 15495 #undef rptr 15496 } 15497 15498 /* 15499 * ip_accept_tcp() - This function is called by the squeue when it retrieves 15500 * a chain of packets in the poll mode. The packets have gone through the 15501 * data link processing but not IP processing. For performance and latency 15502 * reasons, the squeue wants to process the chain in line instead of feeding 15503 * it back via ip_input path. 15504 * 15505 * So this is a light weight function which checks to see if the packets 15506 * retrived are indeed TCP packets (TCP squeue always polls TCP soft ring 15507 * but we still do the paranoid check) meant for local machine and we don't 15508 * have labels etc enabled. Packets that meet the criterion are returned to 15509 * the squeue and processed inline while the rest go via ip_input path. 15510 */ 15511 /*ARGSUSED*/ 15512 mblk_t * 15513 ip_accept_tcp(ill_t *ill, ill_rx_ring_t *ip_ring, squeue_t *target_sqp, 15514 mblk_t *mp_chain, mblk_t **last, uint_t *cnt) 15515 { 15516 mblk_t *mp; 15517 ipaddr_t dst = NULL; 15518 ipaddr_t prev_dst; 15519 ire_t *ire = NULL; 15520 ipha_t *ipha; 15521 uint_t pkt_len; 15522 ssize_t len; 15523 uint_t opt_len; 15524 queue_t *q = ill->ill_rq; 15525 squeue_t *curr_sqp; 15526 mblk_t *ahead = NULL; /* Accepted head */ 15527 mblk_t *atail = NULL; /* Accepted tail */ 15528 uint_t acnt = 0; /* Accepted count */ 15529 mblk_t *utail = NULL; /* Unaccepted head */ 15530 mblk_t *uhead = NULL; /* Unaccepted tail */ 15531 uint_t ucnt = 0; /* Unaccepted cnt */ 15532 ip_stack_t *ipst = ill->ill_ipst; 15533 15534 *cnt = 0; 15535 15536 ASSERT(ill != NULL); 15537 ASSERT(ip_ring != NULL); 15538 15539 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_accept_tcp: q %p", q); 15540 15541 #define rptr ((uchar_t *)ipha) 15542 15543 while (mp_chain != NULL) { 15544 mp = mp_chain; 15545 mp_chain = mp_chain->b_next; 15546 mp->b_next = NULL; 15547 15548 /* 15549 * We do ire caching from one iteration to 15550 * another. In the event the packet chain contains 15551 * all packets from the same dst, this caching saves 15552 * an ire_cache_lookup for each of the succeeding 15553 * packets in a packet chain. 15554 */ 15555 prev_dst = dst; 15556 15557 ipha = (ipha_t *)mp->b_rptr; 15558 len = mp->b_wptr - rptr; 15559 15560 ASSERT(!MBLK_RX_FANOUT_SLOWPATH(mp, ipha)); 15561 15562 /* 15563 * If it is a non TCP packet, or doesn't have H/W cksum, 15564 * or doesn't have min len, reject. 15565 */ 15566 if ((ipha->ipha_protocol != IPPROTO_TCP) || (len < 15567 (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH))) { 15568 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15569 continue; 15570 } 15571 15572 pkt_len = ntohs(ipha->ipha_length); 15573 if (len != pkt_len) { 15574 if (len > pkt_len) { 15575 mp->b_wptr = rptr + pkt_len; 15576 } else { 15577 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15578 continue; 15579 } 15580 } 15581 15582 opt_len = ipha->ipha_version_and_hdr_length - 15583 IP_SIMPLE_HDR_VERSION; 15584 dst = ipha->ipha_dst; 15585 15586 /* IP version bad or there are IP options */ 15587 if (opt_len && (!ip_rput_multimblk_ipoptions(q, ill, 15588 mp, &ipha, &dst, ipst))) 15589 continue; 15590 15591 if (is_system_labeled() || (ill->ill_dhcpinit != 0) || 15592 (ipst->ips_ip_cgtp_filter && 15593 ipst->ips_ip_cgtp_filter_ops != NULL)) { 15594 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15595 continue; 15596 } 15597 15598 /* 15599 * Reuse the cached ire only if the ipha_dst of the previous 15600 * packet is the same as the current packet AND it is not 15601 * INADDR_ANY. 15602 */ 15603 if (!(dst == prev_dst && dst != INADDR_ANY) && 15604 (ire != NULL)) { 15605 ire_refrele(ire); 15606 ire = NULL; 15607 } 15608 15609 if (ire == NULL) 15610 ire = ire_cache_lookup_simple(dst, ipst); 15611 15612 /* 15613 * Unless forwarding is enabled, dont call 15614 * ip_fast_forward(). Incoming packet is for forwarding 15615 */ 15616 if ((ill->ill_flags & ILLF_ROUTER) && 15617 (ire == NULL || (ire->ire_type & IRE_CACHE))) { 15618 15619 DTRACE_PROBE4(ip4__physical__in__start, 15620 ill_t *, ill, ill_t *, NULL, 15621 ipha_t *, ipha, mblk_t *, mp); 15622 15623 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15624 ipst->ips_ipv4firewall_physical_in, 15625 ill, NULL, ipha, mp, mp, 0, ipst); 15626 15627 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, mp); 15628 15629 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15630 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, 15631 pkt_len); 15632 15633 if (mp != NULL) 15634 ire = ip_fast_forward(ire, dst, ill, mp); 15635 continue; 15636 } 15637 15638 /* incoming packet is for local consumption */ 15639 if ((ire != NULL) && (ire->ire_type & IRE_LOCAL)) 15640 goto local_accept; 15641 15642 /* 15643 * Disable ire caching for anything more complex 15644 * than the simple fast path case we checked for above. 15645 */ 15646 if (ire != NULL) { 15647 ire_refrele(ire); 15648 ire = NULL; 15649 } 15650 15651 ire = ire_cache_lookup(dst, ALL_ZONES, msg_getlabel(mp), 15652 ipst); 15653 if (ire == NULL || ire->ire_type == IRE_BROADCAST || 15654 ire->ire_stq != NULL) { 15655 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15656 if (ire != NULL) { 15657 ire_refrele(ire); 15658 ire = NULL; 15659 } 15660 continue; 15661 } 15662 15663 local_accept: 15664 15665 if (ire->ire_rfq != q) { 15666 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15667 if (ire != NULL) { 15668 ire_refrele(ire); 15669 ire = NULL; 15670 } 15671 continue; 15672 } 15673 15674 /* 15675 * The event for packets being received from a 'physical' 15676 * interface is placed after validation of the source and/or 15677 * destination address as being local so that packets can be 15678 * redirected to loopback addresses using ipnat. 15679 */ 15680 DTRACE_PROBE4(ip4__physical__in__start, 15681 ill_t *, ill, ill_t *, NULL, 15682 ipha_t *, ipha, mblk_t *, mp); 15683 15684 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15685 ipst->ips_ipv4firewall_physical_in, 15686 ill, NULL, ipha, mp, mp, 0, ipst); 15687 15688 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, mp); 15689 15690 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15691 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 15692 15693 if (mp != NULL && 15694 (mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, mp, 15695 0, q, ip_ring)) != NULL) { 15696 if ((curr_sqp = GET_SQUEUE(mp)) == target_sqp) { 15697 ADD_TO_CHAIN(ahead, atail, acnt, mp); 15698 } else { 15699 SQUEUE_ENTER(curr_sqp, mp, mp, 1, 15700 SQ_FILL, SQTAG_IP_INPUT); 15701 } 15702 } 15703 } 15704 15705 if (ire != NULL) 15706 ire_refrele(ire); 15707 15708 if (uhead != NULL) 15709 ip_input(ill, ip_ring, uhead, NULL); 15710 15711 if (ahead != NULL) { 15712 *last = atail; 15713 *cnt = acnt; 15714 return (ahead); 15715 } 15716 15717 return (NULL); 15718 #undef rptr 15719 } 15720 15721 static void 15722 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 15723 t_uscalar_t err) 15724 { 15725 if (dl_err == DL_SYSERR) { 15726 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15727 "%s: %s failed: DL_SYSERR (errno %u)\n", 15728 ill->ill_name, dl_primstr(prim), err); 15729 return; 15730 } 15731 15732 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15733 "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim), 15734 dl_errstr(dl_err)); 15735 } 15736 15737 /* 15738 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 15739 * than DL_UNITDATA_IND messages. If we need to process this message 15740 * exclusively, we call qwriter_ip, in which case we also need to call 15741 * ill_refhold before that, since qwriter_ip does an ill_refrele. 15742 */ 15743 void 15744 ip_rput_dlpi(queue_t *q, mblk_t *mp) 15745 { 15746 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15747 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15748 ill_t *ill = q->q_ptr; 15749 t_uscalar_t prim = dloa->dl_primitive; 15750 t_uscalar_t reqprim = DL_PRIM_INVAL; 15751 15752 ip1dbg(("ip_rput_dlpi")); 15753 15754 /* 15755 * If we received an ACK but didn't send a request for it, then it 15756 * can't be part of any pending operation; discard up-front. 15757 */ 15758 switch (prim) { 15759 case DL_ERROR_ACK: 15760 reqprim = dlea->dl_error_primitive; 15761 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s " 15762 "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim), 15763 reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno, 15764 dlea->dl_unix_errno)); 15765 break; 15766 case DL_OK_ACK: 15767 reqprim = dloa->dl_correct_primitive; 15768 break; 15769 case DL_INFO_ACK: 15770 reqprim = DL_INFO_REQ; 15771 break; 15772 case DL_BIND_ACK: 15773 reqprim = DL_BIND_REQ; 15774 break; 15775 case DL_PHYS_ADDR_ACK: 15776 reqprim = DL_PHYS_ADDR_REQ; 15777 break; 15778 case DL_NOTIFY_ACK: 15779 reqprim = DL_NOTIFY_REQ; 15780 break; 15781 case DL_CONTROL_ACK: 15782 reqprim = DL_CONTROL_REQ; 15783 break; 15784 case DL_CAPABILITY_ACK: 15785 reqprim = DL_CAPABILITY_REQ; 15786 break; 15787 } 15788 15789 if (prim != DL_NOTIFY_IND) { 15790 if (reqprim == DL_PRIM_INVAL || 15791 !ill_dlpi_pending(ill, reqprim)) { 15792 /* Not a DLPI message we support or expected */ 15793 freemsg(mp); 15794 return; 15795 } 15796 ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim), 15797 dl_primstr(reqprim))); 15798 } 15799 15800 switch (reqprim) { 15801 case DL_UNBIND_REQ: 15802 /* 15803 * NOTE: we mark the unbind as complete even if we got a 15804 * DL_ERROR_ACK, since there's not much else we can do. 15805 */ 15806 mutex_enter(&ill->ill_lock); 15807 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15808 cv_signal(&ill->ill_cv); 15809 mutex_exit(&ill->ill_lock); 15810 break; 15811 15812 case DL_ENABMULTI_REQ: 15813 if (prim == DL_OK_ACK) { 15814 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15815 ill->ill_dlpi_multicast_state = IDS_OK; 15816 } 15817 break; 15818 } 15819 15820 /* 15821 * The message is one we're waiting for (or DL_NOTIFY_IND), but we 15822 * need to become writer to continue to process it. Because an 15823 * exclusive operation doesn't complete until replies to all queued 15824 * DLPI messages have been received, we know we're in the middle of an 15825 * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND). 15826 * 15827 * As required by qwriter_ip(), we refhold the ill; it will refrele. 15828 * Since this is on the ill stream we unconditionally bump up the 15829 * refcount without doing ILL_CAN_LOOKUP(). 15830 */ 15831 ill_refhold(ill); 15832 if (prim == DL_NOTIFY_IND) 15833 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 15834 else 15835 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 15836 } 15837 15838 /* 15839 * Handling of DLPI messages that require exclusive access to the ipsq. 15840 * 15841 * Need to do ill_pending_mp_release on ioctl completion, which could 15842 * happen here. (along with mi_copy_done) 15843 */ 15844 /* ARGSUSED */ 15845 static void 15846 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15847 { 15848 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15849 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15850 int err = 0; 15851 ill_t *ill; 15852 ipif_t *ipif = NULL; 15853 mblk_t *mp1 = NULL; 15854 conn_t *connp = NULL; 15855 t_uscalar_t paddrreq; 15856 mblk_t *mp_hw; 15857 boolean_t success; 15858 boolean_t ioctl_aborted = B_FALSE; 15859 boolean_t log = B_TRUE; 15860 ip_stack_t *ipst; 15861 15862 ip1dbg(("ip_rput_dlpi_writer ..")); 15863 ill = (ill_t *)q->q_ptr; 15864 ASSERT(ipsq->ipsq_xop == ill->ill_phyint->phyint_ipsq->ipsq_xop); 15865 ASSERT(IAM_WRITER_ILL(ill)); 15866 15867 ipst = ill->ill_ipst; 15868 15869 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 15870 /* 15871 * The current ioctl could have been aborted by the user and a new 15872 * ioctl to bring up another ill could have started. We could still 15873 * get a response from the driver later. 15874 */ 15875 if (ipif != NULL && ipif->ipif_ill != ill) 15876 ioctl_aborted = B_TRUE; 15877 15878 switch (dloa->dl_primitive) { 15879 case DL_ERROR_ACK: 15880 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 15881 dl_primstr(dlea->dl_error_primitive))); 15882 15883 switch (dlea->dl_error_primitive) { 15884 case DL_DISABMULTI_REQ: 15885 ill_dlpi_done(ill, dlea->dl_error_primitive); 15886 break; 15887 case DL_PROMISCON_REQ: 15888 case DL_PROMISCOFF_REQ: 15889 case DL_UNBIND_REQ: 15890 case DL_ATTACH_REQ: 15891 case DL_INFO_REQ: 15892 ill_dlpi_done(ill, dlea->dl_error_primitive); 15893 break; 15894 case DL_NOTIFY_REQ: 15895 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15896 log = B_FALSE; 15897 break; 15898 case DL_PHYS_ADDR_REQ: 15899 /* 15900 * For IPv6 only, there are two additional 15901 * phys_addr_req's sent to the driver to get the 15902 * IPv6 token and lla. This allows IP to acquire 15903 * the hardware address format for a given interface 15904 * without having built in knowledge of the hardware 15905 * address. ill_phys_addr_pend keeps track of the last 15906 * DL_PAR sent so we know which response we are 15907 * dealing with. ill_dlpi_done will update 15908 * ill_phys_addr_pend when it sends the next req. 15909 * We don't complete the IOCTL until all three DL_PARs 15910 * have been attempted, so set *_len to 0 and break. 15911 */ 15912 paddrreq = ill->ill_phys_addr_pend; 15913 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15914 if (paddrreq == DL_IPV6_TOKEN) { 15915 ill->ill_token_length = 0; 15916 log = B_FALSE; 15917 break; 15918 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 15919 ill->ill_nd_lla_len = 0; 15920 log = B_FALSE; 15921 break; 15922 } 15923 /* 15924 * Something went wrong with the DL_PHYS_ADDR_REQ. 15925 * We presumably have an IOCTL hanging out waiting 15926 * for completion. Find it and complete the IOCTL 15927 * with the error noted. 15928 * However, ill_dl_phys was called on an ill queue 15929 * (from SIOCSLIFNAME), thus conn_pending_ill is not 15930 * set. But the ioctl is known to be pending on ill_wq. 15931 */ 15932 if (!ill->ill_ifname_pending) 15933 break; 15934 ill->ill_ifname_pending = 0; 15935 if (!ioctl_aborted) 15936 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15937 if (mp1 != NULL) { 15938 /* 15939 * This operation (SIOCSLIFNAME) must have 15940 * happened on the ill. Assert there is no conn 15941 */ 15942 ASSERT(connp == NULL); 15943 q = ill->ill_wq; 15944 } 15945 break; 15946 case DL_BIND_REQ: 15947 ill_dlpi_done(ill, DL_BIND_REQ); 15948 if (ill->ill_ifname_pending) 15949 break; 15950 /* 15951 * Something went wrong with the bind. We presumably 15952 * have an IOCTL hanging out waiting for completion. 15953 * Find it, take down the interface that was coming 15954 * up, and complete the IOCTL with the error noted. 15955 */ 15956 if (!ioctl_aborted) 15957 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15958 if (mp1 != NULL) { 15959 /* 15960 * This might be a result of a DL_NOTE_REPLUMB 15961 * notification. In that case, connp is NULL. 15962 */ 15963 if (connp != NULL) 15964 q = CONNP_TO_WQ(connp); 15965 15966 (void) ipif_down(ipif, NULL, NULL); 15967 /* error is set below the switch */ 15968 } 15969 break; 15970 case DL_ENABMULTI_REQ: 15971 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 15972 15973 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15974 ill->ill_dlpi_multicast_state = IDS_FAILED; 15975 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 15976 ipif_t *ipif; 15977 15978 printf("ip: joining multicasts failed (%d)" 15979 " on %s - will use link layer " 15980 "broadcasts for multicast\n", 15981 dlea->dl_errno, ill->ill_name); 15982 15983 /* 15984 * Set up the multicast mapping alone. 15985 * writer, so ok to access ill->ill_ipif 15986 * without any lock. 15987 */ 15988 ipif = ill->ill_ipif; 15989 mutex_enter(&ill->ill_phyint->phyint_lock); 15990 ill->ill_phyint->phyint_flags |= 15991 PHYI_MULTI_BCAST; 15992 mutex_exit(&ill->ill_phyint->phyint_lock); 15993 15994 if (!ill->ill_isv6) { 15995 (void) ipif_arp_setup_multicast(ipif, 15996 NULL); 15997 } else { 15998 (void) ipif_ndp_setup_multicast(ipif, 15999 NULL); 16000 } 16001 } 16002 freemsg(mp); /* Don't want to pass this up */ 16003 return; 16004 case DL_CONTROL_REQ: 16005 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 16006 "DL_CONTROL_REQ\n")); 16007 ill_dlpi_done(ill, dlea->dl_error_primitive); 16008 freemsg(mp); 16009 return; 16010 case DL_CAPABILITY_REQ: 16011 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 16012 "DL_CAPABILITY REQ\n")); 16013 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 16014 ill->ill_dlpi_capab_state = IDCS_FAILED; 16015 ill_capability_done(ill); 16016 freemsg(mp); 16017 return; 16018 } 16019 /* 16020 * Note the error for IOCTL completion (mp1 is set when 16021 * ready to complete ioctl). If ill_ifname_pending_err is 16022 * set, an error occured during plumbing (ill_ifname_pending), 16023 * so we want to report that error. 16024 * 16025 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 16026 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 16027 * expected to get errack'd if the driver doesn't support 16028 * these flags (e.g. ethernet). log will be set to B_FALSE 16029 * if these error conditions are encountered. 16030 */ 16031 if (mp1 != NULL) { 16032 if (ill->ill_ifname_pending_err != 0) { 16033 err = ill->ill_ifname_pending_err; 16034 ill->ill_ifname_pending_err = 0; 16035 } else { 16036 err = dlea->dl_unix_errno ? 16037 dlea->dl_unix_errno : ENXIO; 16038 } 16039 /* 16040 * If we're plumbing an interface and an error hasn't already 16041 * been saved, set ill_ifname_pending_err to the error passed 16042 * up. Ignore the error if log is B_FALSE (see comment above). 16043 */ 16044 } else if (log && ill->ill_ifname_pending && 16045 ill->ill_ifname_pending_err == 0) { 16046 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 16047 dlea->dl_unix_errno : ENXIO; 16048 } 16049 16050 if (log) 16051 ip_dlpi_error(ill, dlea->dl_error_primitive, 16052 dlea->dl_errno, dlea->dl_unix_errno); 16053 break; 16054 case DL_CAPABILITY_ACK: 16055 ill_capability_ack(ill, mp); 16056 /* 16057 * The message has been handed off to ill_capability_ack 16058 * and must not be freed below 16059 */ 16060 mp = NULL; 16061 break; 16062 16063 case DL_CONTROL_ACK: 16064 /* We treat all of these as "fire and forget" */ 16065 ill_dlpi_done(ill, DL_CONTROL_REQ); 16066 break; 16067 case DL_INFO_ACK: 16068 /* Call a routine to handle this one. */ 16069 ill_dlpi_done(ill, DL_INFO_REQ); 16070 ip_ll_subnet_defaults(ill, mp); 16071 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 16072 return; 16073 case DL_BIND_ACK: 16074 /* 16075 * We should have an IOCTL waiting on this unless 16076 * sent by ill_dl_phys, in which case just return 16077 */ 16078 ill_dlpi_done(ill, DL_BIND_REQ); 16079 if (ill->ill_ifname_pending) 16080 break; 16081 16082 if (!ioctl_aborted) 16083 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16084 if (mp1 == NULL) 16085 break; 16086 /* 16087 * mp1 was added by ill_dl_up(). if that is a result of 16088 * a DL_NOTE_REPLUMB notification, connp could be NULL. 16089 */ 16090 if (connp != NULL) 16091 q = CONNP_TO_WQ(connp); 16092 16093 /* 16094 * We are exclusive. So nothing can change even after 16095 * we get the pending mp. If need be we can put it back 16096 * and restart, as in calling ipif_arp_up() below. 16097 */ 16098 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 16099 16100 mutex_enter(&ill->ill_lock); 16101 ill->ill_dl_up = 1; 16102 ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0); 16103 mutex_exit(&ill->ill_lock); 16104 16105 /* 16106 * Now bring up the resolver; when that is complete, we'll 16107 * create IREs. Note that we intentionally mirror what 16108 * ipif_up() would have done, because we got here by way of 16109 * ill_dl_up(), which stopped ipif_up()'s processing. 16110 */ 16111 if (ill->ill_isv6) { 16112 if (ill->ill_flags & ILLF_XRESOLV) { 16113 if (connp != NULL) 16114 mutex_enter(&connp->conn_lock); 16115 mutex_enter(&ill->ill_lock); 16116 success = ipsq_pending_mp_add(connp, ipif, q, 16117 mp1, 0); 16118 mutex_exit(&ill->ill_lock); 16119 if (connp != NULL) 16120 mutex_exit(&connp->conn_lock); 16121 if (success) { 16122 err = ipif_resolver_up(ipif, 16123 Res_act_initial); 16124 if (err == EINPROGRESS) { 16125 freemsg(mp); 16126 return; 16127 } 16128 ASSERT(err != 0); 16129 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16130 ASSERT(mp1 != NULL); 16131 } else { 16132 /* conn has started closing */ 16133 err = EINTR; 16134 } 16135 } else { /* Non XRESOLV interface */ 16136 (void) ipif_resolver_up(ipif, Res_act_initial); 16137 if ((err = ipif_ndp_up(ipif, B_TRUE)) == 0) 16138 err = ipif_up_done_v6(ipif); 16139 } 16140 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 16141 /* 16142 * ARP and other v4 external resolvers. 16143 * Leave the pending mblk intact so that 16144 * the ioctl completes in ip_rput(). 16145 */ 16146 if (connp != NULL) 16147 mutex_enter(&connp->conn_lock); 16148 mutex_enter(&ill->ill_lock); 16149 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 16150 mutex_exit(&ill->ill_lock); 16151 if (connp != NULL) 16152 mutex_exit(&connp->conn_lock); 16153 if (success) { 16154 err = ipif_resolver_up(ipif, Res_act_initial); 16155 if (err == EINPROGRESS) { 16156 freemsg(mp); 16157 return; 16158 } 16159 ASSERT(err != 0); 16160 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16161 } else { 16162 /* The conn has started closing */ 16163 err = EINTR; 16164 } 16165 } else { 16166 /* 16167 * This one is complete. Reply to pending ioctl. 16168 */ 16169 (void) ipif_resolver_up(ipif, Res_act_initial); 16170 err = ipif_up_done(ipif); 16171 } 16172 16173 if ((err == 0) && (ill->ill_up_ipifs)) { 16174 err = ill_up_ipifs(ill, q, mp1); 16175 if (err == EINPROGRESS) { 16176 freemsg(mp); 16177 return; 16178 } 16179 } 16180 16181 /* 16182 * If we have a moved ipif to bring up, and everything has 16183 * succeeded to this point, bring it up on the IPMP ill. 16184 * Otherwise, leave it down -- the admin can try to bring it 16185 * up by hand if need be. 16186 */ 16187 if (ill->ill_move_ipif != NULL) { 16188 if (err != 0) { 16189 ill->ill_move_ipif = NULL; 16190 } else { 16191 ipif = ill->ill_move_ipif; 16192 ill->ill_move_ipif = NULL; 16193 err = ipif_up(ipif, q, mp1); 16194 if (err == EINPROGRESS) { 16195 freemsg(mp); 16196 return; 16197 } 16198 } 16199 } 16200 break; 16201 16202 case DL_NOTIFY_IND: { 16203 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 16204 ire_t *ire; 16205 uint_t orig_mtu; 16206 boolean_t need_ire_walk_v4 = B_FALSE; 16207 boolean_t need_ire_walk_v6 = B_FALSE; 16208 16209 switch (notify->dl_notification) { 16210 case DL_NOTE_PHYS_ADDR: 16211 err = ill_set_phys_addr(ill, mp); 16212 break; 16213 16214 case DL_NOTE_REPLUMB: 16215 /* 16216 * Directly return after calling ill_replumb(). 16217 * Note that we should not free mp as it is reused 16218 * in the ill_replumb() function. 16219 */ 16220 err = ill_replumb(ill, mp); 16221 return; 16222 16223 case DL_NOTE_FASTPATH_FLUSH: 16224 ill_fastpath_flush(ill); 16225 break; 16226 16227 case DL_NOTE_SDU_SIZE: 16228 /* 16229 * Change the MTU size of the interface, of all 16230 * attached ipif's, and of all relevant ire's. The 16231 * new value's a uint32_t at notify->dl_data. 16232 * Mtu change Vs. new ire creation - protocol below. 16233 * 16234 * a Mark the ipif as IPIF_CHANGING. 16235 * b Set the new mtu in the ipif. 16236 * c Change the ire_max_frag on all affected ires 16237 * d Unmark the IPIF_CHANGING 16238 * 16239 * To see how the protocol works, assume an interface 16240 * route is also being added simultaneously by 16241 * ip_rt_add and let 'ipif' be the ipif referenced by 16242 * the ire. If the ire is created before step a, 16243 * it will be cleaned up by step c. If the ire is 16244 * created after step d, it will see the new value of 16245 * ipif_mtu. Any attempt to create the ire between 16246 * steps a to d will fail because of the IPIF_CHANGING 16247 * flag. Note that ire_create() is passed a pointer to 16248 * the ipif_mtu, and not the value. During ire_add 16249 * under the bucket lock, the ire_max_frag of the 16250 * new ire being created is set from the ipif/ire from 16251 * which it is being derived. 16252 */ 16253 mutex_enter(&ill->ill_lock); 16254 16255 orig_mtu = ill->ill_max_mtu; 16256 ill->ill_max_frag = (uint_t)notify->dl_data; 16257 ill->ill_max_mtu = (uint_t)notify->dl_data; 16258 16259 /* 16260 * If ill_user_mtu was set (via SIOCSLIFLNKINFO), 16261 * clamp ill_max_mtu at it. 16262 */ 16263 if (ill->ill_user_mtu != 0 && 16264 ill->ill_user_mtu < ill->ill_max_mtu) 16265 ill->ill_max_mtu = ill->ill_user_mtu; 16266 16267 /* 16268 * If the MTU is unchanged, we're done. 16269 */ 16270 if (orig_mtu == ill->ill_max_mtu) { 16271 mutex_exit(&ill->ill_lock); 16272 break; 16273 } 16274 16275 if (ill->ill_isv6) { 16276 if (ill->ill_max_mtu < IPV6_MIN_MTU) 16277 ill->ill_max_mtu = IPV6_MIN_MTU; 16278 } else { 16279 if (ill->ill_max_mtu < IP_MIN_MTU) 16280 ill->ill_max_mtu = IP_MIN_MTU; 16281 } 16282 for (ipif = ill->ill_ipif; ipif != NULL; 16283 ipif = ipif->ipif_next) { 16284 /* 16285 * Don't override the mtu if the user 16286 * has explicitly set it. 16287 */ 16288 if (ipif->ipif_flags & IPIF_FIXEDMTU) 16289 continue; 16290 ipif->ipif_mtu = (uint_t)notify->dl_data; 16291 if (ipif->ipif_isv6) 16292 ire = ipif_to_ire_v6(ipif); 16293 else 16294 ire = ipif_to_ire(ipif); 16295 if (ire != NULL) { 16296 ire->ire_max_frag = ipif->ipif_mtu; 16297 ire_refrele(ire); 16298 } 16299 if (ipif->ipif_flags & IPIF_UP) { 16300 if (ill->ill_isv6) 16301 need_ire_walk_v6 = B_TRUE; 16302 else 16303 need_ire_walk_v4 = B_TRUE; 16304 } 16305 } 16306 mutex_exit(&ill->ill_lock); 16307 if (need_ire_walk_v4) 16308 ire_walk_v4(ill_mtu_change, (char *)ill, 16309 ALL_ZONES, ipst); 16310 if (need_ire_walk_v6) 16311 ire_walk_v6(ill_mtu_change, (char *)ill, 16312 ALL_ZONES, ipst); 16313 16314 /* 16315 * Refresh IPMP meta-interface MTU if necessary. 16316 */ 16317 if (IS_UNDER_IPMP(ill)) 16318 ipmp_illgrp_refresh_mtu(ill->ill_grp); 16319 break; 16320 16321 case DL_NOTE_LINK_UP: 16322 case DL_NOTE_LINK_DOWN: { 16323 /* 16324 * We are writer. ill / phyint / ipsq assocs stable. 16325 * The RUNNING flag reflects the state of the link. 16326 */ 16327 phyint_t *phyint = ill->ill_phyint; 16328 uint64_t new_phyint_flags; 16329 boolean_t changed = B_FALSE; 16330 boolean_t went_up; 16331 16332 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 16333 mutex_enter(&phyint->phyint_lock); 16334 16335 new_phyint_flags = went_up ? 16336 phyint->phyint_flags | PHYI_RUNNING : 16337 phyint->phyint_flags & ~PHYI_RUNNING; 16338 16339 if (IS_IPMP(ill)) { 16340 new_phyint_flags = went_up ? 16341 new_phyint_flags & ~PHYI_FAILED : 16342 new_phyint_flags | PHYI_FAILED; 16343 } 16344 16345 if (new_phyint_flags != phyint->phyint_flags) { 16346 phyint->phyint_flags = new_phyint_flags; 16347 changed = B_TRUE; 16348 } 16349 mutex_exit(&phyint->phyint_lock); 16350 /* 16351 * ill_restart_dad handles the DAD restart and routing 16352 * socket notification logic. 16353 */ 16354 if (changed) { 16355 ill_restart_dad(phyint->phyint_illv4, went_up); 16356 ill_restart_dad(phyint->phyint_illv6, went_up); 16357 } 16358 break; 16359 } 16360 case DL_NOTE_PROMISC_ON_PHYS: { 16361 phyint_t *phyint = ill->ill_phyint; 16362 16363 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16364 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 16365 mutex_enter(&phyint->phyint_lock); 16366 phyint->phyint_flags |= PHYI_PROMISC; 16367 mutex_exit(&phyint->phyint_lock); 16368 break; 16369 } 16370 case DL_NOTE_PROMISC_OFF_PHYS: { 16371 phyint_t *phyint = ill->ill_phyint; 16372 16373 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16374 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 16375 mutex_enter(&phyint->phyint_lock); 16376 phyint->phyint_flags &= ~PHYI_PROMISC; 16377 mutex_exit(&phyint->phyint_lock); 16378 break; 16379 } 16380 case DL_NOTE_CAPAB_RENEG: 16381 /* 16382 * Something changed on the driver side. 16383 * It wants us to renegotiate the capabilities 16384 * on this ill. One possible cause is the aggregation 16385 * interface under us where a port got added or 16386 * went away. 16387 * 16388 * If the capability negotiation is already done 16389 * or is in progress, reset the capabilities and 16390 * mark the ill's ill_capab_reneg to be B_TRUE, 16391 * so that when the ack comes back, we can start 16392 * the renegotiation process. 16393 * 16394 * Note that if ill_capab_reneg is already B_TRUE 16395 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case), 16396 * the capability resetting request has been sent 16397 * and the renegotiation has not been started yet; 16398 * nothing needs to be done in this case. 16399 */ 16400 ipsq_current_start(ipsq, ill->ill_ipif, 0); 16401 ill_capability_reset(ill, B_TRUE); 16402 ipsq_current_finish(ipsq); 16403 break; 16404 default: 16405 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 16406 "type 0x%x for DL_NOTIFY_IND\n", 16407 notify->dl_notification)); 16408 break; 16409 } 16410 16411 /* 16412 * As this is an asynchronous operation, we 16413 * should not call ill_dlpi_done 16414 */ 16415 break; 16416 } 16417 case DL_NOTIFY_ACK: { 16418 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 16419 16420 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 16421 ill->ill_note_link = 1; 16422 ill_dlpi_done(ill, DL_NOTIFY_REQ); 16423 break; 16424 } 16425 case DL_PHYS_ADDR_ACK: { 16426 /* 16427 * As part of plumbing the interface via SIOCSLIFNAME, 16428 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 16429 * whose answers we receive here. As each answer is received, 16430 * we call ill_dlpi_done() to dispatch the next request as 16431 * we're processing the current one. Once all answers have 16432 * been received, we use ipsq_pending_mp_get() to dequeue the 16433 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 16434 * is invoked from an ill queue, conn_oper_pending_ill is not 16435 * available, but we know the ioctl is pending on ill_wq.) 16436 */ 16437 uint_t paddrlen, paddroff; 16438 16439 paddrreq = ill->ill_phys_addr_pend; 16440 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 16441 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 16442 16443 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 16444 if (paddrreq == DL_IPV6_TOKEN) { 16445 /* 16446 * bcopy to low-order bits of ill_token 16447 * 16448 * XXX Temporary hack - currently, all known tokens 16449 * are 64 bits, so I'll cheat for the moment. 16450 */ 16451 bcopy(mp->b_rptr + paddroff, 16452 &ill->ill_token.s6_addr32[2], paddrlen); 16453 ill->ill_token_length = paddrlen; 16454 break; 16455 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 16456 ASSERT(ill->ill_nd_lla_mp == NULL); 16457 ill_set_ndmp(ill, mp, paddroff, paddrlen); 16458 mp = NULL; 16459 break; 16460 } 16461 16462 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 16463 ASSERT(ill->ill_phys_addr_mp == NULL); 16464 if (!ill->ill_ifname_pending) 16465 break; 16466 ill->ill_ifname_pending = 0; 16467 if (!ioctl_aborted) 16468 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16469 if (mp1 != NULL) { 16470 ASSERT(connp == NULL); 16471 q = ill->ill_wq; 16472 } 16473 /* 16474 * If any error acks received during the plumbing sequence, 16475 * ill_ifname_pending_err will be set. Break out and send up 16476 * the error to the pending ioctl. 16477 */ 16478 if (ill->ill_ifname_pending_err != 0) { 16479 err = ill->ill_ifname_pending_err; 16480 ill->ill_ifname_pending_err = 0; 16481 break; 16482 } 16483 16484 ill->ill_phys_addr_mp = mp; 16485 ill->ill_phys_addr = mp->b_rptr + paddroff; 16486 mp = NULL; 16487 16488 /* 16489 * If paddrlen is zero, the DLPI provider doesn't support 16490 * physical addresses. The other two tests were historical 16491 * workarounds for bugs in our former PPP implementation, but 16492 * now other things have grown dependencies on them -- e.g., 16493 * the tun module specifies a dl_addr_length of zero in its 16494 * DL_BIND_ACK, but then specifies an incorrect value in its 16495 * DL_PHYS_ADDR_ACK. These bogus checks need to be removed, 16496 * but only after careful testing ensures that all dependent 16497 * broken DLPI providers have been fixed. 16498 */ 16499 if (paddrlen == 0 || ill->ill_phys_addr_length == 0 || 16500 ill->ill_phys_addr_length == IP_ADDR_LEN) { 16501 ill->ill_phys_addr = NULL; 16502 } else if (paddrlen != ill->ill_phys_addr_length) { 16503 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 16504 paddrlen, ill->ill_phys_addr_length)); 16505 err = EINVAL; 16506 break; 16507 } 16508 16509 if (ill->ill_nd_lla_mp == NULL) { 16510 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 16511 err = ENOMEM; 16512 break; 16513 } 16514 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 16515 } 16516 16517 /* 16518 * Set the interface token. If the zeroth interface address 16519 * is unspecified, then set it to the link local address. 16520 */ 16521 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 16522 (void) ill_setdefaulttoken(ill); 16523 16524 ASSERT(ill->ill_ipif->ipif_id == 0); 16525 if (ipif != NULL && 16526 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 16527 (void) ipif_setlinklocal(ipif); 16528 } 16529 break; 16530 } 16531 case DL_OK_ACK: 16532 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 16533 dl_primstr((int)dloa->dl_correct_primitive), 16534 dloa->dl_correct_primitive)); 16535 switch (dloa->dl_correct_primitive) { 16536 case DL_ENABMULTI_REQ: 16537 case DL_DISABMULTI_REQ: 16538 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16539 break; 16540 case DL_PROMISCON_REQ: 16541 case DL_PROMISCOFF_REQ: 16542 case DL_UNBIND_REQ: 16543 case DL_ATTACH_REQ: 16544 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16545 break; 16546 } 16547 break; 16548 default: 16549 break; 16550 } 16551 16552 freemsg(mp); 16553 if (mp1 == NULL) 16554 return; 16555 16556 /* 16557 * The operation must complete without EINPROGRESS since 16558 * ipsq_pending_mp_get() has removed the mblk (mp1). Otherwise, 16559 * the operation will be stuck forever inside the IPSQ. 16560 */ 16561 ASSERT(err != EINPROGRESS); 16562 16563 switch (ipsq->ipsq_xop->ipx_current_ioctl) { 16564 case 0: 16565 ipsq_current_finish(ipsq); 16566 break; 16567 16568 case SIOCSLIFNAME: 16569 case IF_UNITSEL: { 16570 ill_t *ill_other = ILL_OTHER(ill); 16571 16572 /* 16573 * If SIOCSLIFNAME or IF_UNITSEL is about to succeed, and the 16574 * ill has a peer which is in an IPMP group, then place ill 16575 * into the same group. One catch: although ifconfig plumbs 16576 * the appropriate IPMP meta-interface prior to plumbing this 16577 * ill, it is possible for multiple ifconfig applications to 16578 * race (or for another application to adjust plumbing), in 16579 * which case the IPMP meta-interface we need will be missing. 16580 * If so, kick the phyint out of the group. 16581 */ 16582 if (err == 0 && ill_other != NULL && IS_UNDER_IPMP(ill_other)) { 16583 ipmp_grp_t *grp = ill->ill_phyint->phyint_grp; 16584 ipmp_illgrp_t *illg; 16585 16586 illg = ill->ill_isv6 ? grp->gr_v6 : grp->gr_v4; 16587 if (illg == NULL) 16588 ipmp_phyint_leave_grp(ill->ill_phyint); 16589 else 16590 ipmp_ill_join_illgrp(ill, illg); 16591 } 16592 16593 if (ipsq->ipsq_xop->ipx_current_ioctl == IF_UNITSEL) 16594 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16595 else 16596 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16597 break; 16598 } 16599 case SIOCLIFADDIF: 16600 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16601 break; 16602 16603 default: 16604 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16605 break; 16606 } 16607 } 16608 16609 /* 16610 * ip_rput_other is called by ip_rput to handle messages modifying the global 16611 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 16612 */ 16613 /* ARGSUSED */ 16614 void 16615 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 16616 { 16617 ill_t *ill = q->q_ptr; 16618 struct iocblk *iocp; 16619 mblk_t *mp1; 16620 conn_t *connp = NULL; 16621 16622 ip1dbg(("ip_rput_other ")); 16623 if (ipsq != NULL) { 16624 ASSERT(IAM_WRITER_IPSQ(ipsq)); 16625 ASSERT(ipsq->ipsq_xop == 16626 ill->ill_phyint->phyint_ipsq->ipsq_xop); 16627 } 16628 16629 switch (mp->b_datap->db_type) { 16630 case M_ERROR: 16631 case M_HANGUP: 16632 /* 16633 * The device has a problem. We force the ILL down. It can 16634 * be brought up again manually using SIOCSIFFLAGS (via 16635 * ifconfig or equivalent). 16636 */ 16637 ASSERT(ipsq != NULL); 16638 if (mp->b_rptr < mp->b_wptr) 16639 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 16640 if (ill->ill_error == 0) 16641 ill->ill_error = ENXIO; 16642 if (!ill_down_start(q, mp)) 16643 return; 16644 ipif_all_down_tail(ipsq, q, mp, NULL); 16645 break; 16646 case M_IOCACK: 16647 iocp = (struct iocblk *)mp->b_rptr; 16648 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 16649 switch (iocp->ioc_cmd) { 16650 case SIOCSTUNPARAM: 16651 case OSIOCSTUNPARAM: 16652 ASSERT(ipsq != NULL); 16653 /* 16654 * Finish socket ioctl passed through to tun. 16655 * We should have an IOCTL waiting on this. 16656 */ 16657 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16658 if (ill->ill_isv6) { 16659 struct iftun_req *ta; 16660 16661 /* 16662 * if a source or destination is 16663 * being set, try and set the link 16664 * local address for the tunnel 16665 */ 16666 ta = (struct iftun_req *)mp->b_cont-> 16667 b_cont->b_rptr; 16668 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 16669 ipif_set_tun_llink(ill, ta); 16670 } 16671 16672 } 16673 if (mp1 != NULL) { 16674 /* 16675 * Now copy back the b_next/b_prev used by 16676 * mi code for the mi_copy* functions. 16677 * See ip_sioctl_tunparam() for the reason. 16678 * Also protect against missing b_cont. 16679 */ 16680 if (mp->b_cont != NULL) { 16681 mp->b_cont->b_next = 16682 mp1->b_cont->b_next; 16683 mp->b_cont->b_prev = 16684 mp1->b_cont->b_prev; 16685 } 16686 inet_freemsg(mp1); 16687 ASSERT(connp != NULL); 16688 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16689 iocp->ioc_error, NO_COPYOUT, ipsq); 16690 } else { 16691 ASSERT(connp == NULL); 16692 putnext(q, mp); 16693 } 16694 break; 16695 case SIOCGTUNPARAM: 16696 case OSIOCGTUNPARAM: 16697 /* 16698 * This is really M_IOCDATA from the tunnel driver. 16699 * convert back and complete the ioctl. 16700 * We should have an IOCTL waiting on this. 16701 */ 16702 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 16703 if (mp1) { 16704 /* 16705 * Now copy back the b_next/b_prev used by 16706 * mi code for the mi_copy* functions. 16707 * See ip_sioctl_tunparam() for the reason. 16708 * Also protect against missing b_cont. 16709 */ 16710 if (mp->b_cont != NULL) { 16711 mp->b_cont->b_next = 16712 mp1->b_cont->b_next; 16713 mp->b_cont->b_prev = 16714 mp1->b_cont->b_prev; 16715 } 16716 inet_freemsg(mp1); 16717 if (iocp->ioc_error == 0) 16718 mp->b_datap->db_type = M_IOCDATA; 16719 ASSERT(connp != NULL); 16720 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16721 iocp->ioc_error, COPYOUT, NULL); 16722 } else { 16723 ASSERT(connp == NULL); 16724 putnext(q, mp); 16725 } 16726 break; 16727 default: 16728 break; 16729 } 16730 break; 16731 case M_IOCNAK: 16732 iocp = (struct iocblk *)mp->b_rptr; 16733 16734 switch (iocp->ioc_cmd) { 16735 int mode; 16736 16737 case DL_IOC_HDR_INFO: 16738 /* 16739 * If this was the first attempt, turn off the 16740 * fastpath probing. 16741 */ 16742 mutex_enter(&ill->ill_lock); 16743 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 16744 ill->ill_dlpi_fastpath_state = IDS_FAILED; 16745 mutex_exit(&ill->ill_lock); 16746 ill_fastpath_nack(ill); 16747 ip1dbg(("ip_rput: DLPI fastpath off on " 16748 "interface %s\n", 16749 ill->ill_name)); 16750 } else { 16751 mutex_exit(&ill->ill_lock); 16752 } 16753 freemsg(mp); 16754 break; 16755 case SIOCSTUNPARAM: 16756 case OSIOCSTUNPARAM: 16757 ASSERT(ipsq != NULL); 16758 /* 16759 * Finish socket ioctl passed through to tun 16760 * We should have an IOCTL waiting on this. 16761 */ 16762 /* FALLTHRU */ 16763 case SIOCGTUNPARAM: 16764 case OSIOCGTUNPARAM: 16765 /* 16766 * This is really M_IOCDATA from the tunnel driver. 16767 * convert back and complete the ioctl. 16768 * We should have an IOCTL waiting on this. 16769 */ 16770 if (iocp->ioc_cmd == SIOCGTUNPARAM || 16771 iocp->ioc_cmd == OSIOCGTUNPARAM) { 16772 mp1 = ill_pending_mp_get(ill, &connp, 16773 iocp->ioc_id); 16774 mode = COPYOUT; 16775 ipsq = NULL; 16776 } else { 16777 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16778 mode = NO_COPYOUT; 16779 } 16780 if (mp1 != NULL) { 16781 /* 16782 * Now copy back the b_next/b_prev used by 16783 * mi code for the mi_copy* functions. 16784 * See ip_sioctl_tunparam() for the reason. 16785 * Also protect against missing b_cont. 16786 */ 16787 if (mp->b_cont != NULL) { 16788 mp->b_cont->b_next = 16789 mp1->b_cont->b_next; 16790 mp->b_cont->b_prev = 16791 mp1->b_cont->b_prev; 16792 } 16793 inet_freemsg(mp1); 16794 if (iocp->ioc_error == 0) 16795 iocp->ioc_error = EINVAL; 16796 ASSERT(connp != NULL); 16797 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16798 iocp->ioc_error, mode, ipsq); 16799 } else { 16800 ASSERT(connp == NULL); 16801 putnext(q, mp); 16802 } 16803 break; 16804 default: 16805 break; 16806 } 16807 default: 16808 break; 16809 } 16810 } 16811 16812 /* 16813 * NOTE : This function does not ire_refrele the ire argument passed in. 16814 * 16815 * IPQoS notes 16816 * IP policy is invoked twice for a forwarded packet, once on the read side 16817 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 16818 * enabled. An additional parameter, in_ill, has been added for this purpose. 16819 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 16820 * because ip_mroute drops this information. 16821 * 16822 */ 16823 void 16824 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 16825 { 16826 uint32_t old_pkt_len; 16827 uint32_t pkt_len; 16828 queue_t *q; 16829 uint32_t sum; 16830 #define rptr ((uchar_t *)ipha) 16831 uint32_t max_frag; 16832 uint32_t ill_index; 16833 ill_t *out_ill; 16834 mib2_ipIfStatsEntry_t *mibptr; 16835 ip_stack_t *ipst = ((ill_t *)(ire->ire_stq->q_ptr))->ill_ipst; 16836 16837 /* Get the ill_index of the incoming ILL */ 16838 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 16839 mibptr = (in_ill != NULL) ? in_ill->ill_ip_mib : &ipst->ips_ip_mib; 16840 16841 /* Initiate Read side IPPF processing */ 16842 if (IPP_ENABLED(IPP_FWD_IN, ipst)) { 16843 ip_process(IPP_FWD_IN, &mp, ill_index); 16844 if (mp == NULL) { 16845 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 16846 "during IPPF processing\n")); 16847 return; 16848 } 16849 } 16850 16851 /* Adjust the checksum to reflect the ttl decrement. */ 16852 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 16853 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 16854 16855 if (ipha->ipha_ttl-- <= 1) { 16856 if (ip_csum_hdr(ipha)) { 16857 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16858 goto drop_pkt; 16859 } 16860 /* 16861 * Note: ire_stq this will be NULL for multicast 16862 * datagrams using the long path through arp (the IRE 16863 * is not an IRE_CACHE). This should not cause 16864 * problems since we don't generate ICMP errors for 16865 * multicast packets. 16866 */ 16867 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16868 q = ire->ire_stq; 16869 if (q != NULL) { 16870 /* Sent by forwarding path, and router is global zone */ 16871 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED, 16872 GLOBAL_ZONEID, ipst); 16873 } else 16874 freemsg(mp); 16875 return; 16876 } 16877 16878 /* 16879 * Don't forward if the interface is down 16880 */ 16881 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 16882 BUMP_MIB(mibptr, ipIfStatsInDiscards); 16883 ip2dbg(("ip_rput_forward:interface is down\n")); 16884 goto drop_pkt; 16885 } 16886 16887 /* Get the ill_index of the outgoing ILL */ 16888 out_ill = ire_to_ill(ire); 16889 ill_index = out_ill->ill_phyint->phyint_ifindex; 16890 16891 DTRACE_PROBE4(ip4__forwarding__start, 16892 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16893 16894 FW_HOOKS(ipst->ips_ip4_forwarding_event, 16895 ipst->ips_ipv4firewall_forwarding, 16896 in_ill, out_ill, ipha, mp, mp, 0, ipst); 16897 16898 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 16899 16900 if (mp == NULL) 16901 return; 16902 old_pkt_len = pkt_len = ntohs(ipha->ipha_length); 16903 16904 if (is_system_labeled()) { 16905 mblk_t *mp1; 16906 16907 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 16908 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16909 goto drop_pkt; 16910 } 16911 /* Size may have changed */ 16912 mp = mp1; 16913 ipha = (ipha_t *)mp->b_rptr; 16914 pkt_len = ntohs(ipha->ipha_length); 16915 } 16916 16917 /* Check if there are options to update */ 16918 if (!IS_SIMPLE_IPH(ipha)) { 16919 if (ip_csum_hdr(ipha)) { 16920 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16921 goto drop_pkt; 16922 } 16923 if (ip_rput_forward_options(mp, ipha, ire, ipst)) { 16924 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16925 return; 16926 } 16927 16928 ipha->ipha_hdr_checksum = 0; 16929 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 16930 } 16931 max_frag = ire->ire_max_frag; 16932 if (pkt_len > max_frag) { 16933 /* 16934 * It needs fragging on its way out. We haven't 16935 * verified the header checksum yet. Since we 16936 * are going to put a surely good checksum in the 16937 * outgoing header, we have to make sure that it 16938 * was good coming in. 16939 */ 16940 if (ip_csum_hdr(ipha)) { 16941 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16942 goto drop_pkt; 16943 } 16944 /* Initiate Write side IPPF processing */ 16945 if (IPP_ENABLED(IPP_FWD_OUT, ipst)) { 16946 ip_process(IPP_FWD_OUT, &mp, ill_index); 16947 if (mp == NULL) { 16948 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 16949 " during IPPF processing\n")); 16950 return; 16951 } 16952 } 16953 /* 16954 * Handle labeled packet resizing. 16955 * 16956 * If we have added a label, inform ip_wput_frag() of its 16957 * effect on the MTU for ICMP messages. 16958 */ 16959 if (pkt_len > old_pkt_len) { 16960 uint32_t secopt_size; 16961 16962 secopt_size = pkt_len - old_pkt_len; 16963 if (secopt_size < max_frag) 16964 max_frag -= secopt_size; 16965 } 16966 16967 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, 16968 GLOBAL_ZONEID, ipst, NULL); 16969 ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n")); 16970 return; 16971 } 16972 16973 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 16974 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16975 FW_HOOKS(ipst->ips_ip4_physical_out_event, 16976 ipst->ips_ipv4firewall_physical_out, 16977 NULL, out_ill, ipha, mp, mp, 0, ipst); 16978 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 16979 if (mp == NULL) 16980 return; 16981 16982 mp->b_prev = (mblk_t *)IPP_FWD_OUT; 16983 ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n")); 16984 (void) ip_xmit_v4(mp, ire, NULL, B_FALSE, NULL); 16985 /* ip_xmit_v4 always consumes the packet */ 16986 return; 16987 16988 drop_pkt:; 16989 ip1dbg(("ip_rput_forward: drop pkt\n")); 16990 freemsg(mp); 16991 #undef rptr 16992 } 16993 16994 void 16995 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 16996 { 16997 ire_t *ire; 16998 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16999 17000 ASSERT(!ipif->ipif_isv6); 17001 /* 17002 * Find an IRE which matches the destination and the outgoing 17003 * queue in the cache table. All we need is an IRE_CACHE which 17004 * is pointing at ipif->ipif_ill. 17005 */ 17006 if (ipif->ipif_flags & IPIF_POINTOPOINT) 17007 dst = ipif->ipif_pp_dst_addr; 17008 17009 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, msg_getlabel(mp), 17010 MATCH_IRE_ILL | MATCH_IRE_SECATTR, ipst); 17011 if (ire == NULL) { 17012 /* 17013 * Mark this packet to make it be delivered to 17014 * ip_rput_forward after the new ire has been 17015 * created. 17016 */ 17017 mp->b_prev = NULL; 17018 mp->b_next = mp; 17019 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 17020 NULL, 0, GLOBAL_ZONEID, &zero_info); 17021 } else { 17022 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 17023 IRE_REFRELE(ire); 17024 } 17025 } 17026 17027 /* Update any source route, record route or timestamp options */ 17028 static int 17029 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire, ip_stack_t *ipst) 17030 { 17031 ipoptp_t opts; 17032 uchar_t *opt; 17033 uint8_t optval; 17034 uint8_t optlen; 17035 ipaddr_t dst; 17036 uint32_t ts; 17037 ire_t *dst_ire = NULL; 17038 ire_t *tmp_ire = NULL; 17039 timestruc_t now; 17040 17041 ip2dbg(("ip_rput_forward_options\n")); 17042 dst = ipha->ipha_dst; 17043 for (optval = ipoptp_first(&opts, ipha); 17044 optval != IPOPT_EOL; 17045 optval = ipoptp_next(&opts)) { 17046 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17047 opt = opts.ipoptp_cur; 17048 optlen = opts.ipoptp_len; 17049 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 17050 optval, opts.ipoptp_len)); 17051 switch (optval) { 17052 uint32_t off; 17053 case IPOPT_SSRR: 17054 case IPOPT_LSRR: 17055 /* Check if adminstratively disabled */ 17056 if (!ipst->ips_ip_forward_src_routed) { 17057 if (ire->ire_stq != NULL) { 17058 /* 17059 * Sent by forwarding path, and router 17060 * is global zone 17061 */ 17062 icmp_unreachable(ire->ire_stq, mp, 17063 ICMP_SOURCE_ROUTE_FAILED, 17064 GLOBAL_ZONEID, ipst); 17065 } else { 17066 ip0dbg(("ip_rput_forward_options: " 17067 "unable to send unreach\n")); 17068 freemsg(mp); 17069 } 17070 return (-1); 17071 } 17072 17073 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17074 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17075 if (dst_ire == NULL) { 17076 /* 17077 * Must be partial since ip_rput_options 17078 * checked for strict. 17079 */ 17080 break; 17081 } 17082 off = opt[IPOPT_OFFSET]; 17083 off--; 17084 redo_srr: 17085 if (optlen < IP_ADDR_LEN || 17086 off > optlen - IP_ADDR_LEN) { 17087 /* End of source route */ 17088 ip1dbg(( 17089 "ip_rput_forward_options: end of SR\n")); 17090 ire_refrele(dst_ire); 17091 break; 17092 } 17093 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17094 bcopy(&ire->ire_src_addr, (char *)opt + off, 17095 IP_ADDR_LEN); 17096 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 17097 ntohl(dst))); 17098 17099 /* 17100 * Check if our address is present more than 17101 * once as consecutive hops in source route. 17102 */ 17103 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17104 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17105 if (tmp_ire != NULL) { 17106 ire_refrele(tmp_ire); 17107 off += IP_ADDR_LEN; 17108 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17109 goto redo_srr; 17110 } 17111 ipha->ipha_dst = dst; 17112 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17113 ire_refrele(dst_ire); 17114 break; 17115 case IPOPT_RR: 17116 off = opt[IPOPT_OFFSET]; 17117 off--; 17118 if (optlen < IP_ADDR_LEN || 17119 off > optlen - IP_ADDR_LEN) { 17120 /* No more room - ignore */ 17121 ip1dbg(( 17122 "ip_rput_forward_options: end of RR\n")); 17123 break; 17124 } 17125 bcopy(&ire->ire_src_addr, (char *)opt + off, 17126 IP_ADDR_LEN); 17127 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17128 break; 17129 case IPOPT_TS: 17130 /* Insert timestamp if there is room */ 17131 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17132 case IPOPT_TS_TSONLY: 17133 off = IPOPT_TS_TIMELEN; 17134 break; 17135 case IPOPT_TS_PRESPEC: 17136 case IPOPT_TS_PRESPEC_RFC791: 17137 /* Verify that the address matched */ 17138 off = opt[IPOPT_OFFSET] - 1; 17139 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17140 dst_ire = ire_ctable_lookup(dst, 0, 17141 IRE_LOCAL, NULL, ALL_ZONES, NULL, 17142 MATCH_IRE_TYPE, ipst); 17143 if (dst_ire == NULL) { 17144 /* Not for us */ 17145 break; 17146 } 17147 ire_refrele(dst_ire); 17148 /* FALLTHRU */ 17149 case IPOPT_TS_TSANDADDR: 17150 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17151 break; 17152 default: 17153 /* 17154 * ip_*put_options should have already 17155 * dropped this packet. 17156 */ 17157 cmn_err(CE_PANIC, "ip_rput_forward_options: " 17158 "unknown IT - bug in ip_rput_options?\n"); 17159 return (0); /* Keep "lint" happy */ 17160 } 17161 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 17162 /* Increase overflow counter */ 17163 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 17164 opt[IPOPT_POS_OV_FLG] = 17165 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 17166 (off << 4)); 17167 break; 17168 } 17169 off = opt[IPOPT_OFFSET] - 1; 17170 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17171 case IPOPT_TS_PRESPEC: 17172 case IPOPT_TS_PRESPEC_RFC791: 17173 case IPOPT_TS_TSANDADDR: 17174 bcopy(&ire->ire_src_addr, 17175 (char *)opt + off, IP_ADDR_LEN); 17176 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17177 /* FALLTHRU */ 17178 case IPOPT_TS_TSONLY: 17179 off = opt[IPOPT_OFFSET] - 1; 17180 /* Compute # of milliseconds since midnight */ 17181 gethrestime(&now); 17182 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 17183 now.tv_nsec / (NANOSEC / MILLISEC); 17184 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 17185 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 17186 break; 17187 } 17188 break; 17189 } 17190 } 17191 return (0); 17192 } 17193 17194 /* 17195 * This is called after processing at least one of AH/ESP headers. 17196 * 17197 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 17198 * the actual, physical interface on which the packet was received, 17199 * but, when ip_strict_dst_multihoming is set to 1, could be the 17200 * interface which had the ipha_dst configured when the packet went 17201 * through ip_rput. The ill_index corresponding to the recv_ill 17202 * is saved in ipsec_in_rill_index 17203 * 17204 * NOTE2: The "ire" argument is only used in IPv4 cases. This function 17205 * cannot assume "ire" points to valid data for any IPv6 cases. 17206 */ 17207 void 17208 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 17209 { 17210 mblk_t *mp; 17211 ipaddr_t dst; 17212 in6_addr_t *v6dstp; 17213 ipha_t *ipha; 17214 ip6_t *ip6h; 17215 ipsec_in_t *ii; 17216 boolean_t ill_need_rele = B_FALSE; 17217 boolean_t rill_need_rele = B_FALSE; 17218 boolean_t ire_need_rele = B_FALSE; 17219 netstack_t *ns; 17220 ip_stack_t *ipst; 17221 17222 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 17223 ASSERT(ii->ipsec_in_ill_index != 0); 17224 ns = ii->ipsec_in_ns; 17225 ASSERT(ii->ipsec_in_ns != NULL); 17226 ipst = ns->netstack_ip; 17227 17228 mp = ipsec_mp->b_cont; 17229 ASSERT(mp != NULL); 17230 17231 if (ill == NULL) { 17232 ASSERT(recv_ill == NULL); 17233 /* 17234 * We need to get the original queue on which ip_rput_local 17235 * or ip_rput_data_v6 was called. 17236 */ 17237 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 17238 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL, ipst); 17239 ill_need_rele = B_TRUE; 17240 17241 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 17242 recv_ill = ill_lookup_on_ifindex( 17243 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 17244 NULL, NULL, NULL, NULL, ipst); 17245 rill_need_rele = B_TRUE; 17246 } else { 17247 recv_ill = ill; 17248 } 17249 17250 if ((ill == NULL) || (recv_ill == NULL)) { 17251 ip0dbg(("ip_fanout_proto_again: interface " 17252 "disappeared\n")); 17253 if (ill != NULL) 17254 ill_refrele(ill); 17255 if (recv_ill != NULL) 17256 ill_refrele(recv_ill); 17257 freemsg(ipsec_mp); 17258 return; 17259 } 17260 } 17261 17262 ASSERT(ill != NULL && recv_ill != NULL); 17263 17264 if (mp->b_datap->db_type == M_CTL) { 17265 /* 17266 * AH/ESP is returning the ICMP message after 17267 * removing their headers. Fanout again till 17268 * it gets to the right protocol. 17269 */ 17270 if (ii->ipsec_in_v4) { 17271 icmph_t *icmph; 17272 int iph_hdr_length; 17273 int hdr_length; 17274 17275 ipha = (ipha_t *)mp->b_rptr; 17276 iph_hdr_length = IPH_HDR_LENGTH(ipha); 17277 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 17278 ipha = (ipha_t *)&icmph[1]; 17279 hdr_length = IPH_HDR_LENGTH(ipha); 17280 /* 17281 * icmp_inbound_error_fanout may need to do pullupmsg. 17282 * Reset the type to M_DATA. 17283 */ 17284 mp->b_datap->db_type = M_DATA; 17285 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 17286 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 17287 B_FALSE, ill, ii->ipsec_in_zoneid); 17288 } else { 17289 icmp6_t *icmp6; 17290 int hdr_length; 17291 17292 ip6h = (ip6_t *)mp->b_rptr; 17293 /* Don't call hdr_length_v6() unless you have to. */ 17294 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 17295 hdr_length = ip_hdr_length_v6(mp, ip6h); 17296 else 17297 hdr_length = IPV6_HDR_LEN; 17298 17299 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 17300 /* 17301 * icmp_inbound_error_fanout_v6 may need to do 17302 * pullupmsg. Reset the type to M_DATA. 17303 */ 17304 mp->b_datap->db_type = M_DATA; 17305 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 17306 ip6h, icmp6, ill, recv_ill, B_TRUE, 17307 ii->ipsec_in_zoneid); 17308 } 17309 if (ill_need_rele) 17310 ill_refrele(ill); 17311 if (rill_need_rele) 17312 ill_refrele(recv_ill); 17313 return; 17314 } 17315 17316 if (ii->ipsec_in_v4) { 17317 ipha = (ipha_t *)mp->b_rptr; 17318 dst = ipha->ipha_dst; 17319 if (CLASSD(dst)) { 17320 /* 17321 * Multicast has to be delivered to all streams. 17322 */ 17323 dst = INADDR_BROADCAST; 17324 } 17325 17326 if (ire == NULL) { 17327 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 17328 msg_getlabel(mp), ipst); 17329 if (ire == NULL) { 17330 if (ill_need_rele) 17331 ill_refrele(ill); 17332 if (rill_need_rele) 17333 ill_refrele(recv_ill); 17334 ip1dbg(("ip_fanout_proto_again: " 17335 "IRE not found")); 17336 freemsg(ipsec_mp); 17337 return; 17338 } 17339 ire_need_rele = B_TRUE; 17340 } 17341 17342 switch (ipha->ipha_protocol) { 17343 case IPPROTO_UDP: 17344 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 17345 recv_ill); 17346 if (ire_need_rele) 17347 ire_refrele(ire); 17348 break; 17349 case IPPROTO_TCP: 17350 if (!ire_need_rele) 17351 IRE_REFHOLD(ire); 17352 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 17353 ire, ipsec_mp, 0, ill->ill_rq, NULL); 17354 IRE_REFRELE(ire); 17355 if (mp != NULL) { 17356 SQUEUE_ENTER(GET_SQUEUE(mp), mp, 17357 mp, 1, SQ_PROCESS, 17358 SQTAG_IP_PROTO_AGAIN); 17359 } 17360 break; 17361 case IPPROTO_SCTP: 17362 if (!ire_need_rele) 17363 IRE_REFHOLD(ire); 17364 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 17365 ipsec_mp, 0, ill->ill_rq, dst); 17366 break; 17367 default: 17368 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 17369 recv_ill, 0); 17370 if (ire_need_rele) 17371 ire_refrele(ire); 17372 break; 17373 } 17374 } else { 17375 uint32_t rput_flags = 0; 17376 17377 ip6h = (ip6_t *)mp->b_rptr; 17378 v6dstp = &ip6h->ip6_dst; 17379 /* 17380 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 17381 * address. 17382 * 17383 * Currently, we don't store that state in the IPSEC_IN 17384 * message, and we may need to. 17385 */ 17386 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 17387 IP6_IN_LLMCAST : 0); 17388 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 17389 NULL, NULL); 17390 } 17391 if (ill_need_rele) 17392 ill_refrele(ill); 17393 if (rill_need_rele) 17394 ill_refrele(recv_ill); 17395 } 17396 17397 /* 17398 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 17399 * returns 'true' if there are still fragments left on the queue, in 17400 * which case we restart the timer. 17401 */ 17402 void 17403 ill_frag_timer(void *arg) 17404 { 17405 ill_t *ill = (ill_t *)arg; 17406 boolean_t frag_pending; 17407 ip_stack_t *ipst = ill->ill_ipst; 17408 time_t timeout; 17409 17410 mutex_enter(&ill->ill_lock); 17411 ASSERT(!ill->ill_fragtimer_executing); 17412 if (ill->ill_state_flags & ILL_CONDEMNED) { 17413 ill->ill_frag_timer_id = 0; 17414 mutex_exit(&ill->ill_lock); 17415 return; 17416 } 17417 ill->ill_fragtimer_executing = 1; 17418 mutex_exit(&ill->ill_lock); 17419 17420 if (ill->ill_isv6) 17421 timeout = ipst->ips_ipv6_frag_timeout; 17422 else 17423 timeout = ipst->ips_ip_g_frag_timeout; 17424 17425 frag_pending = ill_frag_timeout(ill, timeout); 17426 17427 /* 17428 * Restart the timer, if we have fragments pending or if someone 17429 * wanted us to be scheduled again. 17430 */ 17431 mutex_enter(&ill->ill_lock); 17432 ill->ill_fragtimer_executing = 0; 17433 ill->ill_frag_timer_id = 0; 17434 if (frag_pending || ill->ill_fragtimer_needrestart) 17435 ill_frag_timer_start(ill); 17436 mutex_exit(&ill->ill_lock); 17437 } 17438 17439 void 17440 ill_frag_timer_start(ill_t *ill) 17441 { 17442 ip_stack_t *ipst = ill->ill_ipst; 17443 clock_t timeo_ms; 17444 17445 ASSERT(MUTEX_HELD(&ill->ill_lock)); 17446 17447 /* If the ill is closing or opening don't proceed */ 17448 if (ill->ill_state_flags & ILL_CONDEMNED) 17449 return; 17450 17451 if (ill->ill_fragtimer_executing) { 17452 /* 17453 * ill_frag_timer is currently executing. Just record the 17454 * the fact that we want the timer to be restarted. 17455 * ill_frag_timer will post a timeout before it returns, 17456 * ensuring it will be called again. 17457 */ 17458 ill->ill_fragtimer_needrestart = 1; 17459 return; 17460 } 17461 17462 if (ill->ill_frag_timer_id == 0) { 17463 if (ill->ill_isv6) 17464 timeo_ms = ipst->ips_ipv6_frag_timo_ms; 17465 else 17466 timeo_ms = ipst->ips_ip_g_frag_timo_ms; 17467 /* 17468 * The timer is neither running nor is the timeout handler 17469 * executing. Post a timeout so that ill_frag_timer will be 17470 * called 17471 */ 17472 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 17473 MSEC_TO_TICK(timeo_ms >> 1)); 17474 ill->ill_fragtimer_needrestart = 0; 17475 } 17476 } 17477 17478 /* 17479 * This routine is needed for loopback when forwarding multicasts. 17480 * 17481 * IPQoS Notes: 17482 * IPPF processing is done in fanout routines. 17483 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 17484 * processing for IPsec packets is done when it comes back in clear. 17485 * NOTE : The callers of this function need to do the ire_refrele for the 17486 * ire that is being passed in. 17487 */ 17488 void 17489 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17490 ill_t *recv_ill, uint32_t esp_udp_ports) 17491 { 17492 boolean_t esp_in_udp_packet = (esp_udp_ports != 0); 17493 ill_t *ill = (ill_t *)q->q_ptr; 17494 uint32_t sum; 17495 uint32_t u1; 17496 uint32_t u2; 17497 int hdr_length; 17498 boolean_t mctl_present; 17499 mblk_t *first_mp = mp; 17500 mblk_t *hada_mp = NULL; 17501 ipha_t *inner_ipha; 17502 ip_stack_t *ipst; 17503 17504 ASSERT(recv_ill != NULL); 17505 ipst = recv_ill->ill_ipst; 17506 17507 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 17508 "ip_rput_locl_start: q %p", q); 17509 17510 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17511 ASSERT(ill != NULL); 17512 17513 #define rptr ((uchar_t *)ipha) 17514 #define iphs ((uint16_t *)ipha) 17515 17516 /* 17517 * no UDP or TCP packet should come here anymore. 17518 */ 17519 ASSERT(ipha->ipha_protocol != IPPROTO_TCP && 17520 ipha->ipha_protocol != IPPROTO_UDP); 17521 17522 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 17523 if (mctl_present && 17524 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 17525 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 17526 17527 /* 17528 * It's an IPsec accelerated packet. 17529 * Keep a pointer to the data attributes around until 17530 * we allocate the ipsec_info_t. 17531 */ 17532 IPSECHW_DEBUG(IPSECHW_PKT, 17533 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 17534 hada_mp = first_mp; 17535 hada_mp->b_cont = NULL; 17536 /* 17537 * Since it is accelerated, it comes directly from 17538 * the ill and the data attributes is followed by 17539 * the packet data. 17540 */ 17541 ASSERT(mp->b_datap->db_type != M_CTL); 17542 first_mp = mp; 17543 mctl_present = B_FALSE; 17544 } 17545 17546 /* 17547 * IF M_CTL is not present, then ipsec_in_is_secure 17548 * should return B_TRUE. There is a case where loopback 17549 * packets has an M_CTL in the front with all the 17550 * IPsec options set to IPSEC_PREF_NEVER - which means 17551 * ipsec_in_is_secure will return B_FALSE. As loopback 17552 * packets never comes here, it is safe to ASSERT the 17553 * following. 17554 */ 17555 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 17556 17557 /* 17558 * Also, we should never have an mctl_present if this is an 17559 * ESP-in-UDP packet. 17560 */ 17561 ASSERT(!mctl_present || !esp_in_udp_packet); 17562 17563 /* u1 is # words of IP options */ 17564 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 17565 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 17566 17567 /* 17568 * Don't verify header checksum if we just removed UDP header or 17569 * packet is coming back from AH/ESP. 17570 */ 17571 if (!esp_in_udp_packet && !mctl_present) { 17572 if (u1) { 17573 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 17574 if (hada_mp != NULL) 17575 freemsg(hada_mp); 17576 return; 17577 } 17578 } else { 17579 /* Check the IP header checksum. */ 17580 #define uph ((uint16_t *)ipha) 17581 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 17582 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 17583 #undef uph 17584 /* finish doing IP checksum */ 17585 sum = (sum & 0xFFFF) + (sum >> 16); 17586 sum = ~(sum + (sum >> 16)) & 0xFFFF; 17587 if (sum && sum != 0xFFFF) { 17588 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 17589 goto drop_pkt; 17590 } 17591 } 17592 } 17593 17594 /* 17595 * Count for SNMP of inbound packets for ire. As ip_proto_input 17596 * might be called more than once for secure packets, count only 17597 * the first time. 17598 */ 17599 if (!mctl_present) { 17600 UPDATE_IB_PKT_COUNT(ire); 17601 ire->ire_last_used_time = lbolt; 17602 } 17603 17604 /* Check for fragmentation offset. */ 17605 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 17606 u1 = u2 & (IPH_MF | IPH_OFFSET); 17607 if (u1) { 17608 /* 17609 * We re-assemble fragments before we do the AH/ESP 17610 * processing. Thus, M_CTL should not be present 17611 * while we are re-assembling. 17612 */ 17613 ASSERT(!mctl_present); 17614 ASSERT(first_mp == mp); 17615 if (!ip_rput_fragment(ill, recv_ill, &mp, ipha, NULL, NULL)) 17616 return; 17617 17618 /* 17619 * Make sure that first_mp points back to mp as 17620 * the mp we came in with could have changed in 17621 * ip_rput_fragment(). 17622 */ 17623 ipha = (ipha_t *)mp->b_rptr; 17624 first_mp = mp; 17625 } 17626 17627 /* 17628 * Clear hardware checksumming flag as it is currently only 17629 * used by TCP and UDP. 17630 */ 17631 DB_CKSUMFLAGS(mp) = 0; 17632 17633 /* Now we have a complete datagram, destined for this machine. */ 17634 u1 = IPH_HDR_LENGTH(ipha); 17635 switch (ipha->ipha_protocol) { 17636 case IPPROTO_ICMP: { 17637 ire_t *ire_zone; 17638 ilm_t *ilm; 17639 mblk_t *mp1; 17640 zoneid_t last_zoneid; 17641 ilm_walker_t ilw; 17642 17643 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(recv_ill)) { 17644 ASSERT(ire->ire_type == IRE_BROADCAST); 17645 17646 /* 17647 * In the multicast case, applications may have joined 17648 * the group from different zones, so we need to deliver 17649 * the packet to each of them. Loop through the 17650 * multicast memberships structures (ilm) on the receive 17651 * ill and send a copy of the packet up each matching 17652 * one. However, we don't do this for multicasts sent on 17653 * the loopback interface (PHYI_LOOPBACK flag set) as 17654 * they must stay in the sender's zone. 17655 * 17656 * ilm_add_v6() ensures that ilms in the same zone are 17657 * contiguous in the ill_ilm list. We use this property 17658 * to avoid sending duplicates needed when two 17659 * applications in the same zone join the same group on 17660 * different logical interfaces: we ignore the ilm if 17661 * its zoneid is the same as the last matching one. 17662 * In addition, the sending of the packet for 17663 * ire_zoneid is delayed until all of the other ilms 17664 * have been exhausted. 17665 */ 17666 last_zoneid = -1; 17667 ilm = ilm_walker_start(&ilw, recv_ill); 17668 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 17669 if (ipha->ipha_dst != ilm->ilm_addr || 17670 ilm->ilm_zoneid == last_zoneid || 17671 ilm->ilm_zoneid == ire->ire_zoneid || 17672 ilm->ilm_zoneid == ALL_ZONES || 17673 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 17674 continue; 17675 mp1 = ip_copymsg(first_mp); 17676 if (mp1 == NULL) 17677 continue; 17678 icmp_inbound(q, mp1, B_TRUE, ilw.ilw_walk_ill, 17679 0, sum, mctl_present, B_TRUE, 17680 recv_ill, ilm->ilm_zoneid); 17681 last_zoneid = ilm->ilm_zoneid; 17682 } 17683 ilm_walker_finish(&ilw); 17684 } else if (ire->ire_type == IRE_BROADCAST) { 17685 /* 17686 * In the broadcast case, there may be many zones 17687 * which need a copy of the packet delivered to them. 17688 * There is one IRE_BROADCAST per broadcast address 17689 * and per zone; we walk those using a helper function. 17690 * In addition, the sending of the packet for ire is 17691 * delayed until all of the other ires have been 17692 * processed. 17693 */ 17694 IRB_REFHOLD(ire->ire_bucket); 17695 ire_zone = NULL; 17696 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 17697 ire)) != NULL) { 17698 mp1 = ip_copymsg(first_mp); 17699 if (mp1 == NULL) 17700 continue; 17701 17702 UPDATE_IB_PKT_COUNT(ire_zone); 17703 ire_zone->ire_last_used_time = lbolt; 17704 icmp_inbound(q, mp1, B_TRUE, ill, 17705 0, sum, mctl_present, B_TRUE, 17706 recv_ill, ire_zone->ire_zoneid); 17707 } 17708 IRB_REFRELE(ire->ire_bucket); 17709 } 17710 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 17711 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 17712 ire->ire_zoneid); 17713 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17714 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 17715 return; 17716 } 17717 case IPPROTO_IGMP: 17718 /* 17719 * If we are not willing to accept IGMP packets in clear, 17720 * then check with global policy. 17721 */ 17722 if (ipst->ips_igmp_accept_clear_messages == 0) { 17723 first_mp = ipsec_check_global_policy(first_mp, NULL, 17724 ipha, NULL, mctl_present, ipst->ips_netstack); 17725 if (first_mp == NULL) 17726 return; 17727 } 17728 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17729 freemsg(first_mp); 17730 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 17731 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17732 return; 17733 } 17734 if ((mp = igmp_input(q, mp, ill)) == NULL) { 17735 /* Bad packet - discarded by igmp_input */ 17736 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17737 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 17738 if (mctl_present) 17739 freeb(first_mp); 17740 return; 17741 } 17742 /* 17743 * igmp_input() may have returned the pulled up message. 17744 * So first_mp and ipha need to be reinitialized. 17745 */ 17746 ipha = (ipha_t *)mp->b_rptr; 17747 if (mctl_present) 17748 first_mp->b_cont = mp; 17749 else 17750 first_mp = mp; 17751 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17752 connf_head != NULL) { 17753 /* No user-level listener for IGMP packets */ 17754 goto drop_pkt; 17755 } 17756 /* deliver to local raw users */ 17757 break; 17758 case IPPROTO_PIM: 17759 /* 17760 * If we are not willing to accept PIM packets in clear, 17761 * then check with global policy. 17762 */ 17763 if (ipst->ips_pim_accept_clear_messages == 0) { 17764 first_mp = ipsec_check_global_policy(first_mp, NULL, 17765 ipha, NULL, mctl_present, ipst->ips_netstack); 17766 if (first_mp == NULL) 17767 return; 17768 } 17769 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17770 freemsg(first_mp); 17771 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 17772 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17773 return; 17774 } 17775 if (pim_input(q, mp, ill) != 0) { 17776 /* Bad packet - discarded by pim_input */ 17777 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17778 "ip_rput_locl_end: q %p (%S)", q, "pim"); 17779 if (mctl_present) 17780 freeb(first_mp); 17781 return; 17782 } 17783 17784 /* 17785 * pim_input() may have pulled up the message so ipha needs to 17786 * be reinitialized. 17787 */ 17788 ipha = (ipha_t *)mp->b_rptr; 17789 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17790 connf_head != NULL) { 17791 /* No user-level listener for PIM packets */ 17792 goto drop_pkt; 17793 } 17794 /* deliver to local raw users */ 17795 break; 17796 case IPPROTO_ENCAP: 17797 /* 17798 * Handle self-encapsulated packets (IP-in-IP where 17799 * the inner addresses == the outer addresses). 17800 */ 17801 hdr_length = IPH_HDR_LENGTH(ipha); 17802 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 17803 mp->b_wptr) { 17804 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 17805 sizeof (ipha_t) - mp->b_rptr)) { 17806 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17807 freemsg(first_mp); 17808 return; 17809 } 17810 ipha = (ipha_t *)mp->b_rptr; 17811 } 17812 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 17813 /* 17814 * Check the sanity of the inner IP header. 17815 */ 17816 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 17817 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17818 freemsg(first_mp); 17819 return; 17820 } 17821 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 17822 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17823 freemsg(first_mp); 17824 return; 17825 } 17826 if (inner_ipha->ipha_src == ipha->ipha_src && 17827 inner_ipha->ipha_dst == ipha->ipha_dst) { 17828 ipsec_in_t *ii; 17829 17830 /* 17831 * Self-encapsulated tunnel packet. Remove 17832 * the outer IP header and fanout again. 17833 * We also need to make sure that the inner 17834 * header is pulled up until options. 17835 */ 17836 mp->b_rptr = (uchar_t *)inner_ipha; 17837 ipha = inner_ipha; 17838 hdr_length = IPH_HDR_LENGTH(ipha); 17839 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 17840 if (!pullupmsg(mp, (uchar_t *)ipha + 17841 + hdr_length - mp->b_rptr)) { 17842 freemsg(first_mp); 17843 return; 17844 } 17845 ipha = (ipha_t *)mp->b_rptr; 17846 } 17847 if (hdr_length > sizeof (ipha_t)) { 17848 /* We got options on the inner packet. */ 17849 ipaddr_t dst = ipha->ipha_dst; 17850 17851 if (ip_rput_options(q, mp, ipha, &dst, ipst) == 17852 -1) { 17853 /* Bad options! */ 17854 return; 17855 } 17856 if (dst != ipha->ipha_dst) { 17857 /* 17858 * Someone put a source-route in 17859 * the inside header of a self- 17860 * encapsulated packet. Drop it 17861 * with extreme prejudice and let 17862 * the sender know. 17863 */ 17864 icmp_unreachable(q, first_mp, 17865 ICMP_SOURCE_ROUTE_FAILED, 17866 recv_ill->ill_zoneid, ipst); 17867 return; 17868 } 17869 } 17870 if (!mctl_present) { 17871 ASSERT(first_mp == mp); 17872 /* 17873 * This means that somebody is sending 17874 * Self-encapsualted packets without AH/ESP. 17875 * If AH/ESP was present, we would have already 17876 * allocated the first_mp. 17877 * 17878 * Send this packet to find a tunnel endpoint. 17879 * if I can't find one, an ICMP 17880 * PROTOCOL_UNREACHABLE will get sent. 17881 */ 17882 goto fanout; 17883 } 17884 /* 17885 * We generally store the ill_index if we need to 17886 * do IPsec processing as we lose the ill queue when 17887 * we come back. But in this case, we never should 17888 * have to store the ill_index here as it should have 17889 * been stored previously when we processed the 17890 * AH/ESP header in this routine or for non-ipsec 17891 * cases, we still have the queue. But for some bad 17892 * packets from the wire, we can get to IPsec after 17893 * this and we better store the index for that case. 17894 */ 17895 ill = (ill_t *)q->q_ptr; 17896 ii = (ipsec_in_t *)first_mp->b_rptr; 17897 ii->ipsec_in_ill_index = 17898 ill->ill_phyint->phyint_ifindex; 17899 ii->ipsec_in_rill_index = 17900 recv_ill->ill_phyint->phyint_ifindex; 17901 if (ii->ipsec_in_decaps) { 17902 /* 17903 * This packet is self-encapsulated multiple 17904 * times. We don't want to recurse infinitely. 17905 * To keep it simple, drop the packet. 17906 */ 17907 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17908 freemsg(first_mp); 17909 return; 17910 } 17911 ii->ipsec_in_decaps = B_TRUE; 17912 ip_fanout_proto_again(first_mp, recv_ill, recv_ill, 17913 ire); 17914 return; 17915 } 17916 break; 17917 case IPPROTO_AH: 17918 case IPPROTO_ESP: { 17919 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 17920 17921 /* 17922 * Fast path for AH/ESP. If this is the first time 17923 * we are sending a datagram to AH/ESP, allocate 17924 * a IPSEC_IN message and prepend it. Otherwise, 17925 * just fanout. 17926 */ 17927 17928 int ipsec_rc; 17929 ipsec_in_t *ii; 17930 netstack_t *ns = ipst->ips_netstack; 17931 17932 IP_STAT(ipst, ipsec_proto_ahesp); 17933 if (!mctl_present) { 17934 ASSERT(first_mp == mp); 17935 first_mp = ipsec_in_alloc(B_TRUE, ns); 17936 if (first_mp == NULL) { 17937 ip1dbg(("ip_proto_input: IPSEC_IN " 17938 "allocation failure.\n")); 17939 freemsg(hada_mp); /* okay ifnull */ 17940 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17941 freemsg(mp); 17942 return; 17943 } 17944 /* 17945 * Store the ill_index so that when we come back 17946 * from IPsec we ride on the same queue. 17947 */ 17948 ill = (ill_t *)q->q_ptr; 17949 ii = (ipsec_in_t *)first_mp->b_rptr; 17950 ii->ipsec_in_ill_index = 17951 ill->ill_phyint->phyint_ifindex; 17952 ii->ipsec_in_rill_index = 17953 recv_ill->ill_phyint->phyint_ifindex; 17954 first_mp->b_cont = mp; 17955 /* 17956 * Cache hardware acceleration info. 17957 */ 17958 if (hada_mp != NULL) { 17959 IPSECHW_DEBUG(IPSECHW_PKT, 17960 ("ip_rput_local: caching data attr.\n")); 17961 ii->ipsec_in_accelerated = B_TRUE; 17962 ii->ipsec_in_da = hada_mp; 17963 hada_mp = NULL; 17964 } 17965 } else { 17966 ii = (ipsec_in_t *)first_mp->b_rptr; 17967 } 17968 17969 ii->ipsec_in_esp_udp_ports = esp_udp_ports; 17970 17971 if (!ipsec_loaded(ipss)) { 17972 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 17973 ire->ire_zoneid, ipst); 17974 return; 17975 } 17976 17977 ns = ipst->ips_netstack; 17978 /* select inbound SA and have IPsec process the pkt */ 17979 if (ipha->ipha_protocol == IPPROTO_ESP) { 17980 esph_t *esph = ipsec_inbound_esp_sa(first_mp, ns); 17981 boolean_t esp_in_udp_sa; 17982 if (esph == NULL) 17983 return; 17984 ASSERT(ii->ipsec_in_esp_sa != NULL); 17985 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 17986 esp_in_udp_sa = ((ii->ipsec_in_esp_sa->ipsa_flags & 17987 IPSA_F_NATT) != 0); 17988 /* 17989 * The following is a fancy, but quick, way of saying: 17990 * ESP-in-UDP SA and Raw ESP packet --> drop 17991 * OR 17992 * ESP SA and ESP-in-UDP packet --> drop 17993 */ 17994 if (esp_in_udp_sa != esp_in_udp_packet) { 17995 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17996 ip_drop_packet(first_mp, B_TRUE, ill, NULL, 17997 DROPPER(ns->netstack_ipsec, ipds_esp_no_sa), 17998 &ns->netstack_ipsec->ipsec_dropper); 17999 return; 18000 } 18001 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 18002 first_mp, esph); 18003 } else { 18004 ah_t *ah = ipsec_inbound_ah_sa(first_mp, ns); 18005 if (ah == NULL) 18006 return; 18007 ASSERT(ii->ipsec_in_ah_sa != NULL); 18008 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 18009 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 18010 first_mp, ah); 18011 } 18012 18013 switch (ipsec_rc) { 18014 case IPSEC_STATUS_SUCCESS: 18015 break; 18016 case IPSEC_STATUS_FAILED: 18017 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 18018 /* FALLTHRU */ 18019 case IPSEC_STATUS_PENDING: 18020 return; 18021 } 18022 /* we're done with IPsec processing, send it up */ 18023 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 18024 return; 18025 } 18026 default: 18027 break; 18028 } 18029 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 18030 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 18031 ire->ire_zoneid)); 18032 goto drop_pkt; 18033 } 18034 /* 18035 * Handle protocols with which IP is less intimate. There 18036 * can be more than one stream bound to a particular 18037 * protocol. When this is the case, each one gets a copy 18038 * of any incoming packets. 18039 */ 18040 fanout: 18041 ip_fanout_proto(q, first_mp, ill, ipha, 18042 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 18043 B_TRUE, recv_ill, ire->ire_zoneid); 18044 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 18045 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 18046 return; 18047 18048 drop_pkt: 18049 freemsg(first_mp); 18050 if (hada_mp != NULL) 18051 freeb(hada_mp); 18052 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 18053 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 18054 #undef rptr 18055 #undef iphs 18056 18057 } 18058 18059 /* 18060 * Update any source route, record route or timestamp options. 18061 * Check that we are at end of strict source route. 18062 * The options have already been checked for sanity in ip_rput_options(). 18063 */ 18064 static boolean_t 18065 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 18066 ip_stack_t *ipst) 18067 { 18068 ipoptp_t opts; 18069 uchar_t *opt; 18070 uint8_t optval; 18071 uint8_t optlen; 18072 ipaddr_t dst; 18073 uint32_t ts; 18074 ire_t *dst_ire; 18075 timestruc_t now; 18076 zoneid_t zoneid; 18077 ill_t *ill; 18078 18079 ASSERT(ire->ire_ipversion == IPV4_VERSION); 18080 18081 ip2dbg(("ip_rput_local_options\n")); 18082 18083 for (optval = ipoptp_first(&opts, ipha); 18084 optval != IPOPT_EOL; 18085 optval = ipoptp_next(&opts)) { 18086 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 18087 opt = opts.ipoptp_cur; 18088 optlen = opts.ipoptp_len; 18089 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 18090 optval, optlen)); 18091 switch (optval) { 18092 uint32_t off; 18093 case IPOPT_SSRR: 18094 case IPOPT_LSRR: 18095 off = opt[IPOPT_OFFSET]; 18096 off--; 18097 if (optlen < IP_ADDR_LEN || 18098 off > optlen - IP_ADDR_LEN) { 18099 /* End of source route */ 18100 ip1dbg(("ip_rput_local_options: end of SR\n")); 18101 break; 18102 } 18103 /* 18104 * This will only happen if two consecutive entries 18105 * in the source route contains our address or if 18106 * it is a packet with a loose source route which 18107 * reaches us before consuming the whole source route 18108 */ 18109 ip1dbg(("ip_rput_local_options: not end of SR\n")); 18110 if (optval == IPOPT_SSRR) { 18111 goto bad_src_route; 18112 } 18113 /* 18114 * Hack: instead of dropping the packet truncate the 18115 * source route to what has been used by filling the 18116 * rest with IPOPT_NOP. 18117 */ 18118 opt[IPOPT_OLEN] = (uint8_t)off; 18119 while (off < optlen) { 18120 opt[off++] = IPOPT_NOP; 18121 } 18122 break; 18123 case IPOPT_RR: 18124 off = opt[IPOPT_OFFSET]; 18125 off--; 18126 if (optlen < IP_ADDR_LEN || 18127 off > optlen - IP_ADDR_LEN) { 18128 /* No more room - ignore */ 18129 ip1dbg(( 18130 "ip_rput_local_options: end of RR\n")); 18131 break; 18132 } 18133 bcopy(&ire->ire_src_addr, (char *)opt + off, 18134 IP_ADDR_LEN); 18135 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 18136 break; 18137 case IPOPT_TS: 18138 /* Insert timestamp if there is romm */ 18139 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 18140 case IPOPT_TS_TSONLY: 18141 off = IPOPT_TS_TIMELEN; 18142 break; 18143 case IPOPT_TS_PRESPEC: 18144 case IPOPT_TS_PRESPEC_RFC791: 18145 /* Verify that the address matched */ 18146 off = opt[IPOPT_OFFSET] - 1; 18147 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 18148 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 18149 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 18150 ipst); 18151 if (dst_ire == NULL) { 18152 /* Not for us */ 18153 break; 18154 } 18155 ire_refrele(dst_ire); 18156 /* FALLTHRU */ 18157 case IPOPT_TS_TSANDADDR: 18158 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 18159 break; 18160 default: 18161 /* 18162 * ip_*put_options should have already 18163 * dropped this packet. 18164 */ 18165 cmn_err(CE_PANIC, "ip_rput_local_options: " 18166 "unknown IT - bug in ip_rput_options?\n"); 18167 return (B_TRUE); /* Keep "lint" happy */ 18168 } 18169 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 18170 /* Increase overflow counter */ 18171 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 18172 opt[IPOPT_POS_OV_FLG] = 18173 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 18174 (off << 4)); 18175 break; 18176 } 18177 off = opt[IPOPT_OFFSET] - 1; 18178 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 18179 case IPOPT_TS_PRESPEC: 18180 case IPOPT_TS_PRESPEC_RFC791: 18181 case IPOPT_TS_TSANDADDR: 18182 bcopy(&ire->ire_src_addr, (char *)opt + off, 18183 IP_ADDR_LEN); 18184 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 18185 /* FALLTHRU */ 18186 case IPOPT_TS_TSONLY: 18187 off = opt[IPOPT_OFFSET] - 1; 18188 /* Compute # of milliseconds since midnight */ 18189 gethrestime(&now); 18190 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 18191 now.tv_nsec / (NANOSEC / MILLISEC); 18192 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 18193 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 18194 break; 18195 } 18196 break; 18197 } 18198 } 18199 return (B_TRUE); 18200 18201 bad_src_route: 18202 q = WR(q); 18203 if (q->q_next != NULL) 18204 ill = q->q_ptr; 18205 else 18206 ill = NULL; 18207 18208 /* make sure we clear any indication of a hardware checksum */ 18209 DB_CKSUMFLAGS(mp) = 0; 18210 zoneid = ipif_lookup_addr_zoneid(ipha->ipha_dst, ill, ipst); 18211 if (zoneid == ALL_ZONES) 18212 freemsg(mp); 18213 else 18214 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 18215 return (B_FALSE); 18216 18217 } 18218 18219 /* 18220 * Process IP options in an inbound packet. If an option affects the 18221 * effective destination address, return the next hop address via dstp. 18222 * Returns -1 if something fails in which case an ICMP error has been sent 18223 * and mp freed. 18224 */ 18225 static int 18226 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp, 18227 ip_stack_t *ipst) 18228 { 18229 ipoptp_t opts; 18230 uchar_t *opt; 18231 uint8_t optval; 18232 uint8_t optlen; 18233 ipaddr_t dst; 18234 intptr_t code = 0; 18235 ire_t *ire = NULL; 18236 zoneid_t zoneid; 18237 ill_t *ill; 18238 18239 ip2dbg(("ip_rput_options\n")); 18240 dst = ipha->ipha_dst; 18241 for (optval = ipoptp_first(&opts, ipha); 18242 optval != IPOPT_EOL; 18243 optval = ipoptp_next(&opts)) { 18244 opt = opts.ipoptp_cur; 18245 optlen = opts.ipoptp_len; 18246 ip2dbg(("ip_rput_options: opt %d, len %d\n", 18247 optval, optlen)); 18248 /* 18249 * Note: we need to verify the checksum before we 18250 * modify anything thus this routine only extracts the next 18251 * hop dst from any source route. 18252 */ 18253 switch (optval) { 18254 uint32_t off; 18255 case IPOPT_SSRR: 18256 case IPOPT_LSRR: 18257 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 18258 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 18259 if (ire == NULL) { 18260 if (optval == IPOPT_SSRR) { 18261 ip1dbg(("ip_rput_options: not next" 18262 " strict source route 0x%x\n", 18263 ntohl(dst))); 18264 code = (char *)&ipha->ipha_dst - 18265 (char *)ipha; 18266 goto param_prob; /* RouterReq's */ 18267 } 18268 ip2dbg(("ip_rput_options: " 18269 "not next source route 0x%x\n", 18270 ntohl(dst))); 18271 break; 18272 } 18273 ire_refrele(ire); 18274 18275 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18276 ip1dbg(( 18277 "ip_rput_options: bad option offset\n")); 18278 code = (char *)&opt[IPOPT_OLEN] - 18279 (char *)ipha; 18280 goto param_prob; 18281 } 18282 off = opt[IPOPT_OFFSET]; 18283 off--; 18284 redo_srr: 18285 if (optlen < IP_ADDR_LEN || 18286 off > optlen - IP_ADDR_LEN) { 18287 /* End of source route */ 18288 ip1dbg(("ip_rput_options: end of SR\n")); 18289 break; 18290 } 18291 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 18292 ip1dbg(("ip_rput_options: next hop 0x%x\n", 18293 ntohl(dst))); 18294 18295 /* 18296 * Check if our address is present more than 18297 * once as consecutive hops in source route. 18298 * XXX verify per-interface ip_forwarding 18299 * for source route? 18300 */ 18301 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 18302 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 18303 18304 if (ire != NULL) { 18305 ire_refrele(ire); 18306 off += IP_ADDR_LEN; 18307 goto redo_srr; 18308 } 18309 18310 if (dst == htonl(INADDR_LOOPBACK)) { 18311 ip1dbg(("ip_rput_options: loopback addr in " 18312 "source route!\n")); 18313 goto bad_src_route; 18314 } 18315 /* 18316 * For strict: verify that dst is directly 18317 * reachable. 18318 */ 18319 if (optval == IPOPT_SSRR) { 18320 ire = ire_ftable_lookup(dst, 0, 0, 18321 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 18322 msg_getlabel(mp), 18323 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 18324 if (ire == NULL) { 18325 ip1dbg(("ip_rput_options: SSRR not " 18326 "directly reachable: 0x%x\n", 18327 ntohl(dst))); 18328 goto bad_src_route; 18329 } 18330 ire_refrele(ire); 18331 } 18332 /* 18333 * Defer update of the offset and the record route 18334 * until the packet is forwarded. 18335 */ 18336 break; 18337 case IPOPT_RR: 18338 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18339 ip1dbg(( 18340 "ip_rput_options: bad option offset\n")); 18341 code = (char *)&opt[IPOPT_OLEN] - 18342 (char *)ipha; 18343 goto param_prob; 18344 } 18345 break; 18346 case IPOPT_TS: 18347 /* 18348 * Verify that length >= 5 and that there is either 18349 * room for another timestamp or that the overflow 18350 * counter is not maxed out. 18351 */ 18352 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 18353 if (optlen < IPOPT_MINLEN_IT) { 18354 goto param_prob; 18355 } 18356 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18357 ip1dbg(( 18358 "ip_rput_options: bad option offset\n")); 18359 code = (char *)&opt[IPOPT_OFFSET] - 18360 (char *)ipha; 18361 goto param_prob; 18362 } 18363 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 18364 case IPOPT_TS_TSONLY: 18365 off = IPOPT_TS_TIMELEN; 18366 break; 18367 case IPOPT_TS_TSANDADDR: 18368 case IPOPT_TS_PRESPEC: 18369 case IPOPT_TS_PRESPEC_RFC791: 18370 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 18371 break; 18372 default: 18373 code = (char *)&opt[IPOPT_POS_OV_FLG] - 18374 (char *)ipha; 18375 goto param_prob; 18376 } 18377 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 18378 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 18379 /* 18380 * No room and the overflow counter is 15 18381 * already. 18382 */ 18383 goto param_prob; 18384 } 18385 break; 18386 } 18387 } 18388 18389 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 18390 *dstp = dst; 18391 return (0); 18392 } 18393 18394 ip1dbg(("ip_rput_options: error processing IP options.")); 18395 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 18396 18397 param_prob: 18398 q = WR(q); 18399 if (q->q_next != NULL) 18400 ill = q->q_ptr; 18401 else 18402 ill = NULL; 18403 18404 /* make sure we clear any indication of a hardware checksum */ 18405 DB_CKSUMFLAGS(mp) = 0; 18406 /* Don't know whether this is for non-global or global/forwarding */ 18407 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18408 if (zoneid == ALL_ZONES) 18409 freemsg(mp); 18410 else 18411 icmp_param_problem(q, mp, (uint8_t)code, zoneid, ipst); 18412 return (-1); 18413 18414 bad_src_route: 18415 q = WR(q); 18416 if (q->q_next != NULL) 18417 ill = q->q_ptr; 18418 else 18419 ill = NULL; 18420 18421 /* make sure we clear any indication of a hardware checksum */ 18422 DB_CKSUMFLAGS(mp) = 0; 18423 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18424 if (zoneid == ALL_ZONES) 18425 freemsg(mp); 18426 else 18427 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 18428 return (-1); 18429 } 18430 18431 /* 18432 * IP & ICMP info in >=14 msg's ... 18433 * - ip fixed part (mib2_ip_t) 18434 * - icmp fixed part (mib2_icmp_t) 18435 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 18436 * - ipRouteEntryTable (ip 21) all IPv4 IREs 18437 * - ipNetToMediaEntryTable (ip 22) [filled in by the arp module] 18438 * - ipRouteAttributeTable (ip 102) labeled routes 18439 * - ip multicast membership (ip_member_t) 18440 * - ip multicast source filtering (ip_grpsrc_t) 18441 * - igmp fixed part (struct igmpstat) 18442 * - multicast routing stats (struct mrtstat) 18443 * - multicast routing vifs (array of struct vifctl) 18444 * - multicast routing routes (array of struct mfcctl) 18445 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 18446 * One per ill plus one generic 18447 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 18448 * One per ill plus one generic 18449 * - ipv6RouteEntry all IPv6 IREs 18450 * - ipv6RouteAttributeTable (ip6 102) labeled routes 18451 * - ipv6NetToMediaEntry all Neighbor Cache entries 18452 * - ipv6AddrEntry all IPv6 ipifs 18453 * - ipv6 multicast membership (ipv6_member_t) 18454 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 18455 * 18456 * MIB2_IP_MEDIA is filled in by the arp module with ARP cache entries. 18457 * 18458 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 18459 * already filled in by the caller. 18460 * Return value of 0 indicates that no messages were sent and caller 18461 * should free mpctl. 18462 */ 18463 int 18464 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level) 18465 { 18466 ip_stack_t *ipst; 18467 sctp_stack_t *sctps; 18468 18469 if (q->q_next != NULL) { 18470 ipst = ILLQ_TO_IPST(q); 18471 } else { 18472 ipst = CONNQ_TO_IPST(q); 18473 } 18474 ASSERT(ipst != NULL); 18475 sctps = ipst->ips_netstack->netstack_sctp; 18476 18477 if (mpctl == NULL || mpctl->b_cont == NULL) { 18478 return (0); 18479 } 18480 18481 /* 18482 * For the purposes of the (broken) packet shell use 18483 * of the level we make sure MIB2_TCP/MIB2_UDP can be used 18484 * to make TCP and UDP appear first in the list of mib items. 18485 * TBD: We could expand this and use it in netstat so that 18486 * the kernel doesn't have to produce large tables (connections, 18487 * routes, etc) when netstat only wants the statistics or a particular 18488 * table. 18489 */ 18490 if (!(level == MIB2_TCP || level == MIB2_UDP)) { 18491 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) { 18492 return (1); 18493 } 18494 } 18495 18496 if (level != MIB2_TCP) { 18497 if ((mpctl = udp_snmp_get(q, mpctl)) == NULL) { 18498 return (1); 18499 } 18500 } 18501 18502 if (level != MIB2_UDP) { 18503 if ((mpctl = tcp_snmp_get(q, mpctl)) == NULL) { 18504 return (1); 18505 } 18506 } 18507 18508 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 18509 ipst)) == NULL) { 18510 return (1); 18511 } 18512 18513 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst)) == NULL) { 18514 return (1); 18515 } 18516 18517 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 18518 return (1); 18519 } 18520 18521 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 18522 return (1); 18523 } 18524 18525 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 18526 return (1); 18527 } 18528 18529 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 18530 return (1); 18531 } 18532 18533 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst)) == NULL) { 18534 return (1); 18535 } 18536 18537 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst)) == NULL) { 18538 return (1); 18539 } 18540 18541 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 18542 return (1); 18543 } 18544 18545 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 18546 return (1); 18547 } 18548 18549 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 18550 return (1); 18551 } 18552 18553 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 18554 return (1); 18555 } 18556 18557 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 18558 return (1); 18559 } 18560 18561 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 18562 return (1); 18563 } 18564 18565 mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, level, ipst); 18566 if (mpctl == NULL) 18567 return (1); 18568 18569 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, level, ipst); 18570 if (mpctl == NULL) 18571 return (1); 18572 18573 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 18574 return (1); 18575 } 18576 freemsg(mpctl); 18577 return (1); 18578 } 18579 18580 /* Get global (legacy) IPv4 statistics */ 18581 static mblk_t * 18582 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 18583 ip_stack_t *ipst) 18584 { 18585 mib2_ip_t old_ip_mib; 18586 struct opthdr *optp; 18587 mblk_t *mp2ctl; 18588 18589 /* 18590 * make a copy of the original message 18591 */ 18592 mp2ctl = copymsg(mpctl); 18593 18594 /* fixed length IP structure... */ 18595 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18596 optp->level = MIB2_IP; 18597 optp->name = 0; 18598 SET_MIB(old_ip_mib.ipForwarding, 18599 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 18600 SET_MIB(old_ip_mib.ipDefaultTTL, 18601 (uint32_t)ipst->ips_ip_def_ttl); 18602 SET_MIB(old_ip_mib.ipReasmTimeout, 18603 ipst->ips_ip_g_frag_timeout); 18604 SET_MIB(old_ip_mib.ipAddrEntrySize, 18605 sizeof (mib2_ipAddrEntry_t)); 18606 SET_MIB(old_ip_mib.ipRouteEntrySize, 18607 sizeof (mib2_ipRouteEntry_t)); 18608 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 18609 sizeof (mib2_ipNetToMediaEntry_t)); 18610 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 18611 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 18612 SET_MIB(old_ip_mib.ipRouteAttributeSize, 18613 sizeof (mib2_ipAttributeEntry_t)); 18614 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 18615 18616 /* 18617 * Grab the statistics from the new IP MIB 18618 */ 18619 SET_MIB(old_ip_mib.ipInReceives, 18620 (uint32_t)ipmib->ipIfStatsHCInReceives); 18621 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 18622 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 18623 SET_MIB(old_ip_mib.ipForwDatagrams, 18624 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 18625 SET_MIB(old_ip_mib.ipInUnknownProtos, 18626 ipmib->ipIfStatsInUnknownProtos); 18627 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 18628 SET_MIB(old_ip_mib.ipInDelivers, 18629 (uint32_t)ipmib->ipIfStatsHCInDelivers); 18630 SET_MIB(old_ip_mib.ipOutRequests, 18631 (uint32_t)ipmib->ipIfStatsHCOutRequests); 18632 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 18633 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 18634 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 18635 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 18636 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 18637 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 18638 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 18639 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 18640 18641 /* ipRoutingDiscards is not being used */ 18642 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 18643 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 18644 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 18645 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 18646 SET_MIB(old_ip_mib.ipReasmDuplicates, 18647 ipmib->ipIfStatsReasmDuplicates); 18648 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 18649 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 18650 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 18651 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 18652 SET_MIB(old_ip_mib.rawipInOverflows, 18653 ipmib->rawipIfStatsInOverflows); 18654 18655 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 18656 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 18657 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 18658 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 18659 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 18660 ipmib->ipIfStatsOutSwitchIPVersion); 18661 18662 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 18663 (int)sizeof (old_ip_mib))) { 18664 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 18665 (uint_t)sizeof (old_ip_mib))); 18666 } 18667 18668 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18669 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 18670 (int)optp->level, (int)optp->name, (int)optp->len)); 18671 qreply(q, mpctl); 18672 return (mp2ctl); 18673 } 18674 18675 /* Per interface IPv4 statistics */ 18676 static mblk_t * 18677 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18678 { 18679 struct opthdr *optp; 18680 mblk_t *mp2ctl; 18681 ill_t *ill; 18682 ill_walk_context_t ctx; 18683 mblk_t *mp_tail = NULL; 18684 mib2_ipIfStatsEntry_t global_ip_mib; 18685 18686 /* 18687 * Make a copy of the original message 18688 */ 18689 mp2ctl = copymsg(mpctl); 18690 18691 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18692 optp->level = MIB2_IP; 18693 optp->name = MIB2_IP_TRAFFIC_STATS; 18694 /* Include "unknown interface" ip_mib */ 18695 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 18696 ipst->ips_ip_mib.ipIfStatsIfIndex = 18697 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 18698 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 18699 (ipst->ips_ip_g_forward ? 1 : 2)); 18700 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 18701 (uint32_t)ipst->ips_ip_def_ttl); 18702 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 18703 sizeof (mib2_ipIfStatsEntry_t)); 18704 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 18705 sizeof (mib2_ipAddrEntry_t)); 18706 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 18707 sizeof (mib2_ipRouteEntry_t)); 18708 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 18709 sizeof (mib2_ipNetToMediaEntry_t)); 18710 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 18711 sizeof (ip_member_t)); 18712 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 18713 sizeof (ip_grpsrc_t)); 18714 18715 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18716 (char *)&ipst->ips_ip_mib, (int)sizeof (ipst->ips_ip_mib))) { 18717 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18718 "failed to allocate %u bytes\n", 18719 (uint_t)sizeof (ipst->ips_ip_mib))); 18720 } 18721 18722 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 18723 18724 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18725 ill = ILL_START_WALK_V4(&ctx, ipst); 18726 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18727 ill->ill_ip_mib->ipIfStatsIfIndex = 18728 ill->ill_phyint->phyint_ifindex; 18729 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 18730 (ipst->ips_ip_g_forward ? 1 : 2)); 18731 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 18732 (uint32_t)ipst->ips_ip_def_ttl); 18733 18734 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 18735 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18736 (char *)ill->ill_ip_mib, 18737 (int)sizeof (*ill->ill_ip_mib))) { 18738 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18739 "failed to allocate %u bytes\n", 18740 (uint_t)sizeof (*ill->ill_ip_mib))); 18741 } 18742 } 18743 rw_exit(&ipst->ips_ill_g_lock); 18744 18745 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18746 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18747 "level %d, name %d, len %d\n", 18748 (int)optp->level, (int)optp->name, (int)optp->len)); 18749 qreply(q, mpctl); 18750 18751 if (mp2ctl == NULL) 18752 return (NULL); 18753 18754 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst)); 18755 } 18756 18757 /* Global IPv4 ICMP statistics */ 18758 static mblk_t * 18759 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18760 { 18761 struct opthdr *optp; 18762 mblk_t *mp2ctl; 18763 18764 /* 18765 * Make a copy of the original message 18766 */ 18767 mp2ctl = copymsg(mpctl); 18768 18769 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18770 optp->level = MIB2_ICMP; 18771 optp->name = 0; 18772 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 18773 (int)sizeof (ipst->ips_icmp_mib))) { 18774 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 18775 (uint_t)sizeof (ipst->ips_icmp_mib))); 18776 } 18777 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18778 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 18779 (int)optp->level, (int)optp->name, (int)optp->len)); 18780 qreply(q, mpctl); 18781 return (mp2ctl); 18782 } 18783 18784 /* Global IPv4 IGMP statistics */ 18785 static mblk_t * 18786 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18787 { 18788 struct opthdr *optp; 18789 mblk_t *mp2ctl; 18790 18791 /* 18792 * make a copy of the original message 18793 */ 18794 mp2ctl = copymsg(mpctl); 18795 18796 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18797 optp->level = EXPER_IGMP; 18798 optp->name = 0; 18799 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 18800 (int)sizeof (ipst->ips_igmpstat))) { 18801 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 18802 (uint_t)sizeof (ipst->ips_igmpstat))); 18803 } 18804 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18805 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 18806 (int)optp->level, (int)optp->name, (int)optp->len)); 18807 qreply(q, mpctl); 18808 return (mp2ctl); 18809 } 18810 18811 /* Global IPv4 Multicast Routing statistics */ 18812 static mblk_t * 18813 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18814 { 18815 struct opthdr *optp; 18816 mblk_t *mp2ctl; 18817 18818 /* 18819 * make a copy of the original message 18820 */ 18821 mp2ctl = copymsg(mpctl); 18822 18823 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18824 optp->level = EXPER_DVMRP; 18825 optp->name = 0; 18826 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 18827 ip0dbg(("ip_mroute_stats: failed\n")); 18828 } 18829 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18830 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 18831 (int)optp->level, (int)optp->name, (int)optp->len)); 18832 qreply(q, mpctl); 18833 return (mp2ctl); 18834 } 18835 18836 /* IPv4 address information */ 18837 static mblk_t * 18838 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18839 { 18840 struct opthdr *optp; 18841 mblk_t *mp2ctl; 18842 mblk_t *mp_tail = NULL; 18843 ill_t *ill; 18844 ipif_t *ipif; 18845 uint_t bitval; 18846 mib2_ipAddrEntry_t mae; 18847 zoneid_t zoneid; 18848 ill_walk_context_t ctx; 18849 18850 /* 18851 * make a copy of the original message 18852 */ 18853 mp2ctl = copymsg(mpctl); 18854 18855 /* ipAddrEntryTable */ 18856 18857 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18858 optp->level = MIB2_IP; 18859 optp->name = MIB2_IP_ADDR; 18860 zoneid = Q_TO_CONN(q)->conn_zoneid; 18861 18862 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18863 ill = ILL_START_WALK_V4(&ctx, ipst); 18864 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18865 for (ipif = ill->ill_ipif; ipif != NULL; 18866 ipif = ipif->ipif_next) { 18867 if (ipif->ipif_zoneid != zoneid && 18868 ipif->ipif_zoneid != ALL_ZONES) 18869 continue; 18870 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18871 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18872 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18873 18874 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes, 18875 OCTET_LENGTH); 18876 mae.ipAdEntIfIndex.o_length = 18877 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 18878 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 18879 mae.ipAdEntNetMask = ipif->ipif_net_mask; 18880 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 18881 mae.ipAdEntInfo.ae_subnet_len = 18882 ip_mask_to_plen(ipif->ipif_net_mask); 18883 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 18884 for (bitval = 1; 18885 bitval && 18886 !(bitval & ipif->ipif_brd_addr); 18887 bitval <<= 1) 18888 noop; 18889 mae.ipAdEntBcastAddr = bitval; 18890 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 18891 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 18892 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 18893 mae.ipAdEntInfo.ae_broadcast_addr = 18894 ipif->ipif_brd_addr; 18895 mae.ipAdEntInfo.ae_pp_dst_addr = 18896 ipif->ipif_pp_dst_addr; 18897 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 18898 ill->ill_flags | ill->ill_phyint->phyint_flags; 18899 mae.ipAdEntRetransmitTime = AR_EQ_DEFAULT_XMIT_INTERVAL; 18900 18901 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18902 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 18903 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 18904 "allocate %u bytes\n", 18905 (uint_t)sizeof (mib2_ipAddrEntry_t))); 18906 } 18907 } 18908 } 18909 rw_exit(&ipst->ips_ill_g_lock); 18910 18911 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18912 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 18913 (int)optp->level, (int)optp->name, (int)optp->len)); 18914 qreply(q, mpctl); 18915 return (mp2ctl); 18916 } 18917 18918 /* IPv6 address information */ 18919 static mblk_t * 18920 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18921 { 18922 struct opthdr *optp; 18923 mblk_t *mp2ctl; 18924 mblk_t *mp_tail = NULL; 18925 ill_t *ill; 18926 ipif_t *ipif; 18927 mib2_ipv6AddrEntry_t mae6; 18928 zoneid_t zoneid; 18929 ill_walk_context_t ctx; 18930 18931 /* 18932 * make a copy of the original message 18933 */ 18934 mp2ctl = copymsg(mpctl); 18935 18936 /* ipv6AddrEntryTable */ 18937 18938 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18939 optp->level = MIB2_IP6; 18940 optp->name = MIB2_IP6_ADDR; 18941 zoneid = Q_TO_CONN(q)->conn_zoneid; 18942 18943 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18944 ill = ILL_START_WALK_V6(&ctx, ipst); 18945 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18946 for (ipif = ill->ill_ipif; ipif != NULL; 18947 ipif = ipif->ipif_next) { 18948 if (ipif->ipif_zoneid != zoneid && 18949 ipif->ipif_zoneid != ALL_ZONES) 18950 continue; 18951 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18952 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18953 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18954 18955 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes, 18956 OCTET_LENGTH); 18957 mae6.ipv6AddrIfIndex.o_length = 18958 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 18959 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 18960 mae6.ipv6AddrPfxLength = 18961 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 18962 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 18963 mae6.ipv6AddrInfo.ae_subnet_len = 18964 mae6.ipv6AddrPfxLength; 18965 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 18966 18967 /* Type: stateless(1), stateful(2), unknown(3) */ 18968 if (ipif->ipif_flags & IPIF_ADDRCONF) 18969 mae6.ipv6AddrType = 1; 18970 else 18971 mae6.ipv6AddrType = 2; 18972 /* Anycast: true(1), false(2) */ 18973 if (ipif->ipif_flags & IPIF_ANYCAST) 18974 mae6.ipv6AddrAnycastFlag = 1; 18975 else 18976 mae6.ipv6AddrAnycastFlag = 2; 18977 18978 /* 18979 * Address status: preferred(1), deprecated(2), 18980 * invalid(3), inaccessible(4), unknown(5) 18981 */ 18982 if (ipif->ipif_flags & IPIF_NOLOCAL) 18983 mae6.ipv6AddrStatus = 3; 18984 else if (ipif->ipif_flags & IPIF_DEPRECATED) 18985 mae6.ipv6AddrStatus = 2; 18986 else 18987 mae6.ipv6AddrStatus = 1; 18988 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 18989 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 18990 mae6.ipv6AddrInfo.ae_pp_dst_addr = 18991 ipif->ipif_v6pp_dst_addr; 18992 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 18993 ill->ill_flags | ill->ill_phyint->phyint_flags; 18994 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 18995 mae6.ipv6AddrIdentifier = ill->ill_token; 18996 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 18997 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 18998 mae6.ipv6AddrRetransmitTime = 18999 ill->ill_reachable_retrans_time; 19000 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19001 (char *)&mae6, 19002 (int)sizeof (mib2_ipv6AddrEntry_t))) { 19003 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 19004 "allocate %u bytes\n", 19005 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 19006 } 19007 } 19008 } 19009 rw_exit(&ipst->ips_ill_g_lock); 19010 19011 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19012 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 19013 (int)optp->level, (int)optp->name, (int)optp->len)); 19014 qreply(q, mpctl); 19015 return (mp2ctl); 19016 } 19017 19018 /* IPv4 multicast group membership. */ 19019 static mblk_t * 19020 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19021 { 19022 struct opthdr *optp; 19023 mblk_t *mp2ctl; 19024 ill_t *ill; 19025 ipif_t *ipif; 19026 ilm_t *ilm; 19027 ip_member_t ipm; 19028 mblk_t *mp_tail = NULL; 19029 ill_walk_context_t ctx; 19030 zoneid_t zoneid; 19031 ilm_walker_t ilw; 19032 19033 /* 19034 * make a copy of the original message 19035 */ 19036 mp2ctl = copymsg(mpctl); 19037 zoneid = Q_TO_CONN(q)->conn_zoneid; 19038 19039 /* ipGroupMember table */ 19040 optp = (struct opthdr *)&mpctl->b_rptr[ 19041 sizeof (struct T_optmgmt_ack)]; 19042 optp->level = MIB2_IP; 19043 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 19044 19045 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19046 ill = ILL_START_WALK_V4(&ctx, ipst); 19047 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19048 if (IS_UNDER_IPMP(ill)) 19049 continue; 19050 19051 ilm = ilm_walker_start(&ilw, ill); 19052 for (ipif = ill->ill_ipif; ipif != NULL; 19053 ipif = ipif->ipif_next) { 19054 if (ipif->ipif_zoneid != zoneid && 19055 ipif->ipif_zoneid != ALL_ZONES) 19056 continue; /* not this zone */ 19057 ipif_get_name(ipif, ipm.ipGroupMemberIfIndex.o_bytes, 19058 OCTET_LENGTH); 19059 ipm.ipGroupMemberIfIndex.o_length = 19060 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 19061 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 19062 ASSERT(ilm->ilm_ipif != NULL); 19063 ASSERT(ilm->ilm_ill == NULL); 19064 if (ilm->ilm_ipif != ipif) 19065 continue; 19066 ipm.ipGroupMemberAddress = ilm->ilm_addr; 19067 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 19068 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 19069 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19070 (char *)&ipm, (int)sizeof (ipm))) { 19071 ip1dbg(("ip_snmp_get_mib2_ip_group: " 19072 "failed to allocate %u bytes\n", 19073 (uint_t)sizeof (ipm))); 19074 } 19075 } 19076 } 19077 ilm_walker_finish(&ilw); 19078 } 19079 rw_exit(&ipst->ips_ill_g_lock); 19080 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19081 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 19082 (int)optp->level, (int)optp->name, (int)optp->len)); 19083 qreply(q, mpctl); 19084 return (mp2ctl); 19085 } 19086 19087 /* IPv6 multicast group membership. */ 19088 static mblk_t * 19089 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19090 { 19091 struct opthdr *optp; 19092 mblk_t *mp2ctl; 19093 ill_t *ill; 19094 ilm_t *ilm; 19095 ipv6_member_t ipm6; 19096 mblk_t *mp_tail = NULL; 19097 ill_walk_context_t ctx; 19098 zoneid_t zoneid; 19099 ilm_walker_t ilw; 19100 19101 /* 19102 * make a copy of the original message 19103 */ 19104 mp2ctl = copymsg(mpctl); 19105 zoneid = Q_TO_CONN(q)->conn_zoneid; 19106 19107 /* ip6GroupMember table */ 19108 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19109 optp->level = MIB2_IP6; 19110 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 19111 19112 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19113 ill = ILL_START_WALK_V6(&ctx, ipst); 19114 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19115 if (IS_UNDER_IPMP(ill)) 19116 continue; 19117 19118 ilm = ilm_walker_start(&ilw, ill); 19119 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 19120 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 19121 ASSERT(ilm->ilm_ipif == NULL); 19122 ASSERT(ilm->ilm_ill != NULL); 19123 if (ilm->ilm_zoneid != zoneid) 19124 continue; /* not this zone */ 19125 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 19126 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 19127 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 19128 if (!snmp_append_data2(mpctl->b_cont, 19129 &mp_tail, 19130 (char *)&ipm6, (int)sizeof (ipm6))) { 19131 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 19132 "failed to allocate %u bytes\n", 19133 (uint_t)sizeof (ipm6))); 19134 } 19135 } 19136 ilm_walker_finish(&ilw); 19137 } 19138 rw_exit(&ipst->ips_ill_g_lock); 19139 19140 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19141 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 19142 (int)optp->level, (int)optp->name, (int)optp->len)); 19143 qreply(q, mpctl); 19144 return (mp2ctl); 19145 } 19146 19147 /* IP multicast filtered sources */ 19148 static mblk_t * 19149 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19150 { 19151 struct opthdr *optp; 19152 mblk_t *mp2ctl; 19153 ill_t *ill; 19154 ipif_t *ipif; 19155 ilm_t *ilm; 19156 ip_grpsrc_t ips; 19157 mblk_t *mp_tail = NULL; 19158 ill_walk_context_t ctx; 19159 zoneid_t zoneid; 19160 int i; 19161 slist_t *sl; 19162 ilm_walker_t ilw; 19163 19164 /* 19165 * make a copy of the original message 19166 */ 19167 mp2ctl = copymsg(mpctl); 19168 zoneid = Q_TO_CONN(q)->conn_zoneid; 19169 19170 /* ipGroupSource table */ 19171 optp = (struct opthdr *)&mpctl->b_rptr[ 19172 sizeof (struct T_optmgmt_ack)]; 19173 optp->level = MIB2_IP; 19174 optp->name = EXPER_IP_GROUP_SOURCES; 19175 19176 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19177 ill = ILL_START_WALK_V4(&ctx, ipst); 19178 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19179 if (IS_UNDER_IPMP(ill)) 19180 continue; 19181 19182 ilm = ilm_walker_start(&ilw, ill); 19183 for (ipif = ill->ill_ipif; ipif != NULL; 19184 ipif = ipif->ipif_next) { 19185 if (ipif->ipif_zoneid != zoneid) 19186 continue; /* not this zone */ 19187 ipif_get_name(ipif, ips.ipGroupSourceIfIndex.o_bytes, 19188 OCTET_LENGTH); 19189 ips.ipGroupSourceIfIndex.o_length = 19190 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 19191 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 19192 ASSERT(ilm->ilm_ipif != NULL); 19193 ASSERT(ilm->ilm_ill == NULL); 19194 sl = ilm->ilm_filter; 19195 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 19196 continue; 19197 ips.ipGroupSourceGroup = ilm->ilm_addr; 19198 for (i = 0; i < sl->sl_numsrc; i++) { 19199 if (!IN6_IS_ADDR_V4MAPPED( 19200 &sl->sl_addr[i])) 19201 continue; 19202 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 19203 ips.ipGroupSourceAddress); 19204 if (snmp_append_data2(mpctl->b_cont, 19205 &mp_tail, (char *)&ips, 19206 (int)sizeof (ips)) == 0) { 19207 ip1dbg(("ip_snmp_get_mib2_" 19208 "ip_group_src: failed to " 19209 "allocate %u bytes\n", 19210 (uint_t)sizeof (ips))); 19211 } 19212 } 19213 } 19214 } 19215 ilm_walker_finish(&ilw); 19216 } 19217 rw_exit(&ipst->ips_ill_g_lock); 19218 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19219 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 19220 (int)optp->level, (int)optp->name, (int)optp->len)); 19221 qreply(q, mpctl); 19222 return (mp2ctl); 19223 } 19224 19225 /* IPv6 multicast filtered sources. */ 19226 static mblk_t * 19227 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19228 { 19229 struct opthdr *optp; 19230 mblk_t *mp2ctl; 19231 ill_t *ill; 19232 ilm_t *ilm; 19233 ipv6_grpsrc_t ips6; 19234 mblk_t *mp_tail = NULL; 19235 ill_walk_context_t ctx; 19236 zoneid_t zoneid; 19237 int i; 19238 slist_t *sl; 19239 ilm_walker_t ilw; 19240 19241 /* 19242 * make a copy of the original message 19243 */ 19244 mp2ctl = copymsg(mpctl); 19245 zoneid = Q_TO_CONN(q)->conn_zoneid; 19246 19247 /* ip6GroupMember table */ 19248 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19249 optp->level = MIB2_IP6; 19250 optp->name = EXPER_IP6_GROUP_SOURCES; 19251 19252 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19253 ill = ILL_START_WALK_V6(&ctx, ipst); 19254 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19255 if (IS_UNDER_IPMP(ill)) 19256 continue; 19257 19258 ilm = ilm_walker_start(&ilw, ill); 19259 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 19260 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 19261 ASSERT(ilm->ilm_ipif == NULL); 19262 ASSERT(ilm->ilm_ill != NULL); 19263 sl = ilm->ilm_filter; 19264 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 19265 continue; 19266 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 19267 for (i = 0; i < sl->sl_numsrc; i++) { 19268 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 19269 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19270 (char *)&ips6, (int)sizeof (ips6))) { 19271 ip1dbg(("ip_snmp_get_mib2_ip6_" 19272 "group_src: failed to allocate " 19273 "%u bytes\n", 19274 (uint_t)sizeof (ips6))); 19275 } 19276 } 19277 } 19278 ilm_walker_finish(&ilw); 19279 } 19280 rw_exit(&ipst->ips_ill_g_lock); 19281 19282 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19283 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 19284 (int)optp->level, (int)optp->name, (int)optp->len)); 19285 qreply(q, mpctl); 19286 return (mp2ctl); 19287 } 19288 19289 /* Multicast routing virtual interface table. */ 19290 static mblk_t * 19291 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19292 { 19293 struct opthdr *optp; 19294 mblk_t *mp2ctl; 19295 19296 /* 19297 * make a copy of the original message 19298 */ 19299 mp2ctl = copymsg(mpctl); 19300 19301 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19302 optp->level = EXPER_DVMRP; 19303 optp->name = EXPER_DVMRP_VIF; 19304 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 19305 ip0dbg(("ip_mroute_vif: failed\n")); 19306 } 19307 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19308 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 19309 (int)optp->level, (int)optp->name, (int)optp->len)); 19310 qreply(q, mpctl); 19311 return (mp2ctl); 19312 } 19313 19314 /* Multicast routing table. */ 19315 static mblk_t * 19316 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19317 { 19318 struct opthdr *optp; 19319 mblk_t *mp2ctl; 19320 19321 /* 19322 * make a copy of the original message 19323 */ 19324 mp2ctl = copymsg(mpctl); 19325 19326 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19327 optp->level = EXPER_DVMRP; 19328 optp->name = EXPER_DVMRP_MRT; 19329 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 19330 ip0dbg(("ip_mroute_mrt: failed\n")); 19331 } 19332 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19333 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 19334 (int)optp->level, (int)optp->name, (int)optp->len)); 19335 qreply(q, mpctl); 19336 return (mp2ctl); 19337 } 19338 19339 /* 19340 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 19341 * in one IRE walk. 19342 */ 19343 static mblk_t * 19344 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, int level, 19345 ip_stack_t *ipst) 19346 { 19347 struct opthdr *optp; 19348 mblk_t *mp2ctl; /* Returned */ 19349 mblk_t *mp3ctl; /* nettomedia */ 19350 mblk_t *mp4ctl; /* routeattrs */ 19351 iproutedata_t ird; 19352 zoneid_t zoneid; 19353 19354 /* 19355 * make copies of the original message 19356 * - mp2ctl is returned unchanged to the caller for his use 19357 * - mpctl is sent upstream as ipRouteEntryTable 19358 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 19359 * - mp4ctl is sent upstream as ipRouteAttributeTable 19360 */ 19361 mp2ctl = copymsg(mpctl); 19362 mp3ctl = copymsg(mpctl); 19363 mp4ctl = copymsg(mpctl); 19364 if (mp3ctl == NULL || mp4ctl == NULL) { 19365 freemsg(mp4ctl); 19366 freemsg(mp3ctl); 19367 freemsg(mp2ctl); 19368 freemsg(mpctl); 19369 return (NULL); 19370 } 19371 19372 bzero(&ird, sizeof (ird)); 19373 19374 ird.ird_route.lp_head = mpctl->b_cont; 19375 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19376 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19377 /* 19378 * If the level has been set the special EXPER_IP_AND_TESTHIDDEN 19379 * value, then also include IRE_MARK_TESTHIDDEN IREs. This is 19380 * intended a temporary solution until a proper MIB API is provided 19381 * that provides complete filtering/caller-opt-in. 19382 */ 19383 if (level == EXPER_IP_AND_TESTHIDDEN) 19384 ird.ird_flags |= IRD_REPORT_TESTHIDDEN; 19385 19386 zoneid = Q_TO_CONN(q)->conn_zoneid; 19387 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 19388 19389 /* ipRouteEntryTable in mpctl */ 19390 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19391 optp->level = MIB2_IP; 19392 optp->name = MIB2_IP_ROUTE; 19393 optp->len = msgdsize(ird.ird_route.lp_head); 19394 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19395 (int)optp->level, (int)optp->name, (int)optp->len)); 19396 qreply(q, mpctl); 19397 19398 /* ipNetToMediaEntryTable in mp3ctl */ 19399 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19400 optp->level = MIB2_IP; 19401 optp->name = MIB2_IP_MEDIA; 19402 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19403 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19404 (int)optp->level, (int)optp->name, (int)optp->len)); 19405 qreply(q, mp3ctl); 19406 19407 /* ipRouteAttributeTable in mp4ctl */ 19408 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19409 optp->level = MIB2_IP; 19410 optp->name = EXPER_IP_RTATTR; 19411 optp->len = msgdsize(ird.ird_attrs.lp_head); 19412 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19413 (int)optp->level, (int)optp->name, (int)optp->len)); 19414 if (optp->len == 0) 19415 freemsg(mp4ctl); 19416 else 19417 qreply(q, mp4ctl); 19418 19419 return (mp2ctl); 19420 } 19421 19422 /* 19423 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 19424 * ipv6NetToMediaEntryTable in an NDP walk. 19425 */ 19426 static mblk_t * 19427 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, int level, 19428 ip_stack_t *ipst) 19429 { 19430 struct opthdr *optp; 19431 mblk_t *mp2ctl; /* Returned */ 19432 mblk_t *mp3ctl; /* nettomedia */ 19433 mblk_t *mp4ctl; /* routeattrs */ 19434 iproutedata_t ird; 19435 zoneid_t zoneid; 19436 19437 /* 19438 * make copies of the original message 19439 * - mp2ctl is returned unchanged to the caller for his use 19440 * - mpctl is sent upstream as ipv6RouteEntryTable 19441 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 19442 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 19443 */ 19444 mp2ctl = copymsg(mpctl); 19445 mp3ctl = copymsg(mpctl); 19446 mp4ctl = copymsg(mpctl); 19447 if (mp3ctl == NULL || mp4ctl == NULL) { 19448 freemsg(mp4ctl); 19449 freemsg(mp3ctl); 19450 freemsg(mp2ctl); 19451 freemsg(mpctl); 19452 return (NULL); 19453 } 19454 19455 bzero(&ird, sizeof (ird)); 19456 19457 ird.ird_route.lp_head = mpctl->b_cont; 19458 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19459 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19460 /* 19461 * If the level has been set the special EXPER_IP_AND_TESTHIDDEN 19462 * value, then also include IRE_MARK_TESTHIDDEN IREs. This is 19463 * intended a temporary solution until a proper MIB API is provided 19464 * that provides complete filtering/caller-opt-in. 19465 */ 19466 if (level == EXPER_IP_AND_TESTHIDDEN) 19467 ird.ird_flags |= IRD_REPORT_TESTHIDDEN; 19468 19469 zoneid = Q_TO_CONN(q)->conn_zoneid; 19470 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 19471 19472 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19473 optp->level = MIB2_IP6; 19474 optp->name = MIB2_IP6_ROUTE; 19475 optp->len = msgdsize(ird.ird_route.lp_head); 19476 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19477 (int)optp->level, (int)optp->name, (int)optp->len)); 19478 qreply(q, mpctl); 19479 19480 /* ipv6NetToMediaEntryTable in mp3ctl */ 19481 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 19482 19483 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19484 optp->level = MIB2_IP6; 19485 optp->name = MIB2_IP6_MEDIA; 19486 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19487 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19488 (int)optp->level, (int)optp->name, (int)optp->len)); 19489 qreply(q, mp3ctl); 19490 19491 /* ipv6RouteAttributeTable in mp4ctl */ 19492 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19493 optp->level = MIB2_IP6; 19494 optp->name = EXPER_IP_RTATTR; 19495 optp->len = msgdsize(ird.ird_attrs.lp_head); 19496 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19497 (int)optp->level, (int)optp->name, (int)optp->len)); 19498 if (optp->len == 0) 19499 freemsg(mp4ctl); 19500 else 19501 qreply(q, mp4ctl); 19502 19503 return (mp2ctl); 19504 } 19505 19506 /* 19507 * IPv6 mib: One per ill 19508 */ 19509 static mblk_t * 19510 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19511 { 19512 struct opthdr *optp; 19513 mblk_t *mp2ctl; 19514 ill_t *ill; 19515 ill_walk_context_t ctx; 19516 mblk_t *mp_tail = NULL; 19517 19518 /* 19519 * Make a copy of the original message 19520 */ 19521 mp2ctl = copymsg(mpctl); 19522 19523 /* fixed length IPv6 structure ... */ 19524 19525 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19526 optp->level = MIB2_IP6; 19527 optp->name = 0; 19528 /* Include "unknown interface" ip6_mib */ 19529 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 19530 ipst->ips_ip6_mib.ipIfStatsIfIndex = 19531 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 19532 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 19533 ipst->ips_ipv6_forward ? 1 : 2); 19534 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 19535 ipst->ips_ipv6_def_hops); 19536 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 19537 sizeof (mib2_ipIfStatsEntry_t)); 19538 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 19539 sizeof (mib2_ipv6AddrEntry_t)); 19540 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 19541 sizeof (mib2_ipv6RouteEntry_t)); 19542 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 19543 sizeof (mib2_ipv6NetToMediaEntry_t)); 19544 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 19545 sizeof (ipv6_member_t)); 19546 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 19547 sizeof (ipv6_grpsrc_t)); 19548 19549 /* 19550 * Synchronize 64- and 32-bit counters 19551 */ 19552 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 19553 ipIfStatsHCInReceives); 19554 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 19555 ipIfStatsHCInDelivers); 19556 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 19557 ipIfStatsHCOutRequests); 19558 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 19559 ipIfStatsHCOutForwDatagrams); 19560 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 19561 ipIfStatsHCOutMcastPkts); 19562 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 19563 ipIfStatsHCInMcastPkts); 19564 19565 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19566 (char *)&ipst->ips_ip6_mib, (int)sizeof (ipst->ips_ip6_mib))) { 19567 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 19568 (uint_t)sizeof (ipst->ips_ip6_mib))); 19569 } 19570 19571 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19572 ill = ILL_START_WALK_V6(&ctx, ipst); 19573 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19574 ill->ill_ip_mib->ipIfStatsIfIndex = 19575 ill->ill_phyint->phyint_ifindex; 19576 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 19577 ipst->ips_ipv6_forward ? 1 : 2); 19578 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 19579 ill->ill_max_hops); 19580 19581 /* 19582 * Synchronize 64- and 32-bit counters 19583 */ 19584 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 19585 ipIfStatsHCInReceives); 19586 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 19587 ipIfStatsHCInDelivers); 19588 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 19589 ipIfStatsHCOutRequests); 19590 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 19591 ipIfStatsHCOutForwDatagrams); 19592 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 19593 ipIfStatsHCOutMcastPkts); 19594 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 19595 ipIfStatsHCInMcastPkts); 19596 19597 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19598 (char *)ill->ill_ip_mib, 19599 (int)sizeof (*ill->ill_ip_mib))) { 19600 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 19601 "%u bytes\n", (uint_t)sizeof (*ill->ill_ip_mib))); 19602 } 19603 } 19604 rw_exit(&ipst->ips_ill_g_lock); 19605 19606 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19607 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 19608 (int)optp->level, (int)optp->name, (int)optp->len)); 19609 qreply(q, mpctl); 19610 return (mp2ctl); 19611 } 19612 19613 /* 19614 * ICMPv6 mib: One per ill 19615 */ 19616 static mblk_t * 19617 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19618 { 19619 struct opthdr *optp; 19620 mblk_t *mp2ctl; 19621 ill_t *ill; 19622 ill_walk_context_t ctx; 19623 mblk_t *mp_tail = NULL; 19624 /* 19625 * Make a copy of the original message 19626 */ 19627 mp2ctl = copymsg(mpctl); 19628 19629 /* fixed length ICMPv6 structure ... */ 19630 19631 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19632 optp->level = MIB2_ICMP6; 19633 optp->name = 0; 19634 /* Include "unknown interface" icmp6_mib */ 19635 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 19636 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 19637 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 19638 sizeof (mib2_ipv6IfIcmpEntry_t); 19639 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19640 (char *)&ipst->ips_icmp6_mib, 19641 (int)sizeof (ipst->ips_icmp6_mib))) { 19642 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 19643 (uint_t)sizeof (ipst->ips_icmp6_mib))); 19644 } 19645 19646 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19647 ill = ILL_START_WALK_V6(&ctx, ipst); 19648 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19649 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 19650 ill->ill_phyint->phyint_ifindex; 19651 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19652 (char *)ill->ill_icmp6_mib, 19653 (int)sizeof (*ill->ill_icmp6_mib))) { 19654 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 19655 "%u bytes\n", 19656 (uint_t)sizeof (*ill->ill_icmp6_mib))); 19657 } 19658 } 19659 rw_exit(&ipst->ips_ill_g_lock); 19660 19661 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19662 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 19663 (int)optp->level, (int)optp->name, (int)optp->len)); 19664 qreply(q, mpctl); 19665 return (mp2ctl); 19666 } 19667 19668 /* 19669 * ire_walk routine to create both ipRouteEntryTable and 19670 * ipRouteAttributeTable in one IRE walk 19671 */ 19672 static void 19673 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 19674 { 19675 ill_t *ill; 19676 ipif_t *ipif; 19677 mib2_ipRouteEntry_t *re; 19678 mib2_ipAttributeEntry_t *iae, *iaeptr; 19679 ipaddr_t gw_addr; 19680 tsol_ire_gw_secattr_t *attrp; 19681 tsol_gc_t *gc = NULL; 19682 tsol_gcgrp_t *gcgrp = NULL; 19683 uint_t sacnt = 0; 19684 int i; 19685 19686 ASSERT(ire->ire_ipversion == IPV4_VERSION); 19687 19688 if (!(ird->ird_flags & IRD_REPORT_TESTHIDDEN) && 19689 ire->ire_marks & IRE_MARK_TESTHIDDEN) { 19690 return; 19691 } 19692 19693 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19694 return; 19695 19696 if ((attrp = ire->ire_gw_secattr) != NULL) { 19697 mutex_enter(&attrp->igsa_lock); 19698 if ((gc = attrp->igsa_gc) != NULL) { 19699 gcgrp = gc->gc_grp; 19700 ASSERT(gcgrp != NULL); 19701 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19702 sacnt = 1; 19703 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19704 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19705 gc = gcgrp->gcgrp_head; 19706 sacnt = gcgrp->gcgrp_count; 19707 } 19708 mutex_exit(&attrp->igsa_lock); 19709 19710 /* do nothing if there's no gc to report */ 19711 if (gc == NULL) { 19712 ASSERT(sacnt == 0); 19713 if (gcgrp != NULL) { 19714 /* we might as well drop the lock now */ 19715 rw_exit(&gcgrp->gcgrp_rwlock); 19716 gcgrp = NULL; 19717 } 19718 attrp = NULL; 19719 } 19720 19721 ASSERT(gc == NULL || (gcgrp != NULL && 19722 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19723 } 19724 ASSERT(sacnt == 0 || gc != NULL); 19725 19726 if (sacnt != 0 && 19727 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19728 kmem_free(re, sizeof (*re)); 19729 rw_exit(&gcgrp->gcgrp_rwlock); 19730 return; 19731 } 19732 19733 /* 19734 * Return all IRE types for route table... let caller pick and choose 19735 */ 19736 re->ipRouteDest = ire->ire_addr; 19737 ipif = ire->ire_ipif; 19738 re->ipRouteIfIndex.o_length = 0; 19739 if (ire->ire_type == IRE_CACHE) { 19740 ill = (ill_t *)ire->ire_stq->q_ptr; 19741 re->ipRouteIfIndex.o_length = 19742 ill->ill_name_length == 0 ? 0 : 19743 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19744 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 19745 re->ipRouteIfIndex.o_length); 19746 } else if (ipif != NULL) { 19747 ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH); 19748 re->ipRouteIfIndex.o_length = 19749 mi_strlen(re->ipRouteIfIndex.o_bytes); 19750 } 19751 re->ipRouteMetric1 = -1; 19752 re->ipRouteMetric2 = -1; 19753 re->ipRouteMetric3 = -1; 19754 re->ipRouteMetric4 = -1; 19755 19756 gw_addr = ire->ire_gateway_addr; 19757 19758 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 19759 re->ipRouteNextHop = ire->ire_src_addr; 19760 else 19761 re->ipRouteNextHop = gw_addr; 19762 /* indirect(4), direct(3), or invalid(2) */ 19763 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19764 re->ipRouteType = 2; 19765 else 19766 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 19767 re->ipRouteProto = -1; 19768 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 19769 re->ipRouteMask = ire->ire_mask; 19770 re->ipRouteMetric5 = -1; 19771 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 19772 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 19773 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19774 re->ipRouteInfo.re_ref = ire->ire_refcnt; 19775 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 19776 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19777 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19778 re->ipRouteInfo.re_flags = ire->ire_flags; 19779 19780 if (ire->ire_flags & RTF_DYNAMIC) { 19781 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19782 } else { 19783 re->ipRouteInfo.re_ire_type = ire->ire_type; 19784 } 19785 19786 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19787 (char *)re, (int)sizeof (*re))) { 19788 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19789 (uint_t)sizeof (*re))); 19790 } 19791 19792 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19793 iaeptr->iae_routeidx = ird->ird_idx; 19794 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19795 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19796 } 19797 19798 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19799 (char *)iae, sacnt * sizeof (*iae))) { 19800 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19801 (unsigned)(sacnt * sizeof (*iae)))); 19802 } 19803 19804 /* bump route index for next pass */ 19805 ird->ird_idx++; 19806 19807 kmem_free(re, sizeof (*re)); 19808 if (sacnt != 0) 19809 kmem_free(iae, sacnt * sizeof (*iae)); 19810 19811 if (gcgrp != NULL) 19812 rw_exit(&gcgrp->gcgrp_rwlock); 19813 } 19814 19815 /* 19816 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 19817 */ 19818 static void 19819 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 19820 { 19821 ill_t *ill; 19822 ipif_t *ipif; 19823 mib2_ipv6RouteEntry_t *re; 19824 mib2_ipAttributeEntry_t *iae, *iaeptr; 19825 in6_addr_t gw_addr_v6; 19826 tsol_ire_gw_secattr_t *attrp; 19827 tsol_gc_t *gc = NULL; 19828 tsol_gcgrp_t *gcgrp = NULL; 19829 uint_t sacnt = 0; 19830 int i; 19831 19832 ASSERT(ire->ire_ipversion == IPV6_VERSION); 19833 19834 if (!(ird->ird_flags & IRD_REPORT_TESTHIDDEN) && 19835 ire->ire_marks & IRE_MARK_TESTHIDDEN) { 19836 return; 19837 } 19838 19839 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19840 return; 19841 19842 if ((attrp = ire->ire_gw_secattr) != NULL) { 19843 mutex_enter(&attrp->igsa_lock); 19844 if ((gc = attrp->igsa_gc) != NULL) { 19845 gcgrp = gc->gc_grp; 19846 ASSERT(gcgrp != NULL); 19847 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19848 sacnt = 1; 19849 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19850 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19851 gc = gcgrp->gcgrp_head; 19852 sacnt = gcgrp->gcgrp_count; 19853 } 19854 mutex_exit(&attrp->igsa_lock); 19855 19856 /* do nothing if there's no gc to report */ 19857 if (gc == NULL) { 19858 ASSERT(sacnt == 0); 19859 if (gcgrp != NULL) { 19860 /* we might as well drop the lock now */ 19861 rw_exit(&gcgrp->gcgrp_rwlock); 19862 gcgrp = NULL; 19863 } 19864 attrp = NULL; 19865 } 19866 19867 ASSERT(gc == NULL || (gcgrp != NULL && 19868 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19869 } 19870 ASSERT(sacnt == 0 || gc != NULL); 19871 19872 if (sacnt != 0 && 19873 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19874 kmem_free(re, sizeof (*re)); 19875 rw_exit(&gcgrp->gcgrp_rwlock); 19876 return; 19877 } 19878 19879 /* 19880 * Return all IRE types for route table... let caller pick and choose 19881 */ 19882 re->ipv6RouteDest = ire->ire_addr_v6; 19883 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 19884 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 19885 re->ipv6RouteIfIndex.o_length = 0; 19886 ipif = ire->ire_ipif; 19887 if (ire->ire_type == IRE_CACHE) { 19888 ill = (ill_t *)ire->ire_stq->q_ptr; 19889 re->ipv6RouteIfIndex.o_length = 19890 ill->ill_name_length == 0 ? 0 : 19891 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19892 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 19893 re->ipv6RouteIfIndex.o_length); 19894 } else if (ipif != NULL) { 19895 ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH); 19896 re->ipv6RouteIfIndex.o_length = 19897 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 19898 } 19899 19900 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19901 19902 mutex_enter(&ire->ire_lock); 19903 gw_addr_v6 = ire->ire_gateway_addr_v6; 19904 mutex_exit(&ire->ire_lock); 19905 19906 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 19907 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 19908 else 19909 re->ipv6RouteNextHop = gw_addr_v6; 19910 19911 /* remote(4), local(3), or discard(2) */ 19912 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19913 re->ipv6RouteType = 2; 19914 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 19915 re->ipv6RouteType = 3; 19916 else 19917 re->ipv6RouteType = 4; 19918 19919 re->ipv6RouteProtocol = -1; 19920 re->ipv6RoutePolicy = 0; 19921 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 19922 re->ipv6RouteNextHopRDI = 0; 19923 re->ipv6RouteWeight = 0; 19924 re->ipv6RouteMetric = 0; 19925 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 19926 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 19927 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19928 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 19929 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19930 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19931 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 19932 re->ipv6RouteInfo.re_flags = ire->ire_flags; 19933 19934 if (ire->ire_flags & RTF_DYNAMIC) { 19935 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19936 } else { 19937 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 19938 } 19939 19940 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19941 (char *)re, (int)sizeof (*re))) { 19942 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19943 (uint_t)sizeof (*re))); 19944 } 19945 19946 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19947 iaeptr->iae_routeidx = ird->ird_idx; 19948 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19949 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19950 } 19951 19952 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19953 (char *)iae, sacnt * sizeof (*iae))) { 19954 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19955 (unsigned)(sacnt * sizeof (*iae)))); 19956 } 19957 19958 /* bump route index for next pass */ 19959 ird->ird_idx++; 19960 19961 kmem_free(re, sizeof (*re)); 19962 if (sacnt != 0) 19963 kmem_free(iae, sacnt * sizeof (*iae)); 19964 19965 if (gcgrp != NULL) 19966 rw_exit(&gcgrp->gcgrp_rwlock); 19967 } 19968 19969 /* 19970 * ndp_walk routine to create ipv6NetToMediaEntryTable 19971 */ 19972 static int 19973 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 19974 { 19975 ill_t *ill; 19976 mib2_ipv6NetToMediaEntry_t ntme; 19977 dl_unitdata_req_t *dl; 19978 19979 ill = nce->nce_ill; 19980 if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */ 19981 return (0); 19982 19983 /* 19984 * Neighbor cache entry attached to IRE with on-link 19985 * destination. 19986 */ 19987 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 19988 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 19989 if ((ill->ill_flags & ILLF_XRESOLV) && 19990 (nce->nce_res_mp != NULL)) { 19991 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 19992 ntme.ipv6NetToMediaPhysAddress.o_length = 19993 dl->dl_dest_addr_length; 19994 } else { 19995 ntme.ipv6NetToMediaPhysAddress.o_length = 19996 ill->ill_phys_addr_length; 19997 } 19998 if (nce->nce_res_mp != NULL) { 19999 bcopy((char *)nce->nce_res_mp->b_rptr + 20000 NCE_LL_ADDR_OFFSET(ill), 20001 ntme.ipv6NetToMediaPhysAddress.o_bytes, 20002 ntme.ipv6NetToMediaPhysAddress.o_length); 20003 } else { 20004 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 20005 ill->ill_phys_addr_length); 20006 } 20007 /* 20008 * Note: Returns ND_* states. Should be: 20009 * reachable(1), stale(2), delay(3), probe(4), 20010 * invalid(5), unknown(6) 20011 */ 20012 ntme.ipv6NetToMediaState = nce->nce_state; 20013 ntme.ipv6NetToMediaLastUpdated = 0; 20014 20015 /* other(1), dynamic(2), static(3), local(4) */ 20016 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 20017 ntme.ipv6NetToMediaType = 4; 20018 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 20019 ntme.ipv6NetToMediaType = 1; 20020 } else { 20021 ntme.ipv6NetToMediaType = 2; 20022 } 20023 20024 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 20025 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 20026 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 20027 (uint_t)sizeof (ntme))); 20028 } 20029 return (0); 20030 } 20031 20032 /* 20033 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 20034 */ 20035 /* ARGSUSED */ 20036 int 20037 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 20038 { 20039 switch (level) { 20040 case MIB2_IP: 20041 case MIB2_ICMP: 20042 switch (name) { 20043 default: 20044 break; 20045 } 20046 return (1); 20047 default: 20048 return (1); 20049 } 20050 } 20051 20052 /* 20053 * When there exists both a 64- and 32-bit counter of a particular type 20054 * (i.e., InReceives), only the 64-bit counters are added. 20055 */ 20056 void 20057 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 20058 { 20059 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 20060 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 20061 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 20062 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 20063 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 20064 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 20065 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 20066 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 20067 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 20068 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 20069 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 20070 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 20071 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 20072 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 20073 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 20074 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 20075 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 20076 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 20077 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 20078 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 20079 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 20080 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 20081 o2->ipIfStatsInWrongIPVersion); 20082 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 20083 o2->ipIfStatsInWrongIPVersion); 20084 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 20085 o2->ipIfStatsOutSwitchIPVersion); 20086 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 20087 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 20088 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 20089 o2->ipIfStatsHCInForwDatagrams); 20090 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 20091 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 20092 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 20093 o2->ipIfStatsHCOutForwDatagrams); 20094 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 20095 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 20096 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 20097 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 20098 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 20099 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 20100 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 20101 o2->ipIfStatsHCOutMcastOctets); 20102 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 20103 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 20104 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 20105 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 20106 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 20107 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 20108 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 20109 } 20110 20111 void 20112 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 20113 { 20114 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 20115 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 20116 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 20117 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 20118 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 20119 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 20120 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 20121 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 20122 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 20123 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 20124 o2->ipv6IfIcmpInRouterSolicits); 20125 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 20126 o2->ipv6IfIcmpInRouterAdvertisements); 20127 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 20128 o2->ipv6IfIcmpInNeighborSolicits); 20129 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 20130 o2->ipv6IfIcmpInNeighborAdvertisements); 20131 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 20132 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 20133 o2->ipv6IfIcmpInGroupMembQueries); 20134 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 20135 o2->ipv6IfIcmpInGroupMembResponses); 20136 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 20137 o2->ipv6IfIcmpInGroupMembReductions); 20138 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 20139 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 20140 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 20141 o2->ipv6IfIcmpOutDestUnreachs); 20142 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 20143 o2->ipv6IfIcmpOutAdminProhibs); 20144 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 20145 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 20146 o2->ipv6IfIcmpOutParmProblems); 20147 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 20148 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 20149 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 20150 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 20151 o2->ipv6IfIcmpOutRouterSolicits); 20152 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 20153 o2->ipv6IfIcmpOutRouterAdvertisements); 20154 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 20155 o2->ipv6IfIcmpOutNeighborSolicits); 20156 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 20157 o2->ipv6IfIcmpOutNeighborAdvertisements); 20158 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 20159 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 20160 o2->ipv6IfIcmpOutGroupMembQueries); 20161 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 20162 o2->ipv6IfIcmpOutGroupMembResponses); 20163 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 20164 o2->ipv6IfIcmpOutGroupMembReductions); 20165 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 20166 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 20167 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 20168 o2->ipv6IfIcmpInBadNeighborAdvertisements); 20169 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 20170 o2->ipv6IfIcmpInBadNeighborSolicitations); 20171 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 20172 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 20173 o2->ipv6IfIcmpInGroupMembTotal); 20174 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 20175 o2->ipv6IfIcmpInGroupMembBadQueries); 20176 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 20177 o2->ipv6IfIcmpInGroupMembBadReports); 20178 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 20179 o2->ipv6IfIcmpInGroupMembOurReports); 20180 } 20181 20182 /* 20183 * Called before the options are updated to check if this packet will 20184 * be source routed from here. 20185 * This routine assumes that the options are well formed i.e. that they 20186 * have already been checked. 20187 */ 20188 static boolean_t 20189 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 20190 { 20191 ipoptp_t opts; 20192 uchar_t *opt; 20193 uint8_t optval; 20194 uint8_t optlen; 20195 ipaddr_t dst; 20196 ire_t *ire; 20197 20198 if (IS_SIMPLE_IPH(ipha)) { 20199 ip2dbg(("not source routed\n")); 20200 return (B_FALSE); 20201 } 20202 dst = ipha->ipha_dst; 20203 for (optval = ipoptp_first(&opts, ipha); 20204 optval != IPOPT_EOL; 20205 optval = ipoptp_next(&opts)) { 20206 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 20207 opt = opts.ipoptp_cur; 20208 optlen = opts.ipoptp_len; 20209 ip2dbg(("ip_source_routed: opt %d, len %d\n", 20210 optval, optlen)); 20211 switch (optval) { 20212 uint32_t off; 20213 case IPOPT_SSRR: 20214 case IPOPT_LSRR: 20215 /* 20216 * If dst is one of our addresses and there are some 20217 * entries left in the source route return (true). 20218 */ 20219 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 20220 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 20221 if (ire == NULL) { 20222 ip2dbg(("ip_source_routed: not next" 20223 " source route 0x%x\n", 20224 ntohl(dst))); 20225 return (B_FALSE); 20226 } 20227 ire_refrele(ire); 20228 off = opt[IPOPT_OFFSET]; 20229 off--; 20230 if (optlen < IP_ADDR_LEN || 20231 off > optlen - IP_ADDR_LEN) { 20232 /* End of source route */ 20233 ip1dbg(("ip_source_routed: end of SR\n")); 20234 return (B_FALSE); 20235 } 20236 return (B_TRUE); 20237 } 20238 } 20239 ip2dbg(("not source routed\n")); 20240 return (B_FALSE); 20241 } 20242 20243 /* 20244 * Check if the packet contains any source route. 20245 */ 20246 static boolean_t 20247 ip_source_route_included(ipha_t *ipha) 20248 { 20249 ipoptp_t opts; 20250 uint8_t optval; 20251 20252 if (IS_SIMPLE_IPH(ipha)) 20253 return (B_FALSE); 20254 for (optval = ipoptp_first(&opts, ipha); 20255 optval != IPOPT_EOL; 20256 optval = ipoptp_next(&opts)) { 20257 switch (optval) { 20258 case IPOPT_SSRR: 20259 case IPOPT_LSRR: 20260 return (B_TRUE); 20261 } 20262 } 20263 return (B_FALSE); 20264 } 20265 20266 /* 20267 * Called when the IRE expiration timer fires. 20268 */ 20269 void 20270 ip_trash_timer_expire(void *args) 20271 { 20272 int flush_flag = 0; 20273 ire_expire_arg_t iea; 20274 ip_stack_t *ipst = (ip_stack_t *)args; 20275 20276 iea.iea_ipst = ipst; /* No netstack_hold */ 20277 20278 /* 20279 * ip_ire_expire_id is protected by ip_trash_timer_lock. 20280 * This lock makes sure that a new invocation of this function 20281 * that occurs due to an almost immediate timer firing will not 20282 * progress beyond this point until the current invocation is done 20283 */ 20284 mutex_enter(&ipst->ips_ip_trash_timer_lock); 20285 ipst->ips_ip_ire_expire_id = 0; 20286 mutex_exit(&ipst->ips_ip_trash_timer_lock); 20287 20288 /* Periodic timer */ 20289 if (ipst->ips_ip_ire_arp_time_elapsed >= 20290 ipst->ips_ip_ire_arp_interval) { 20291 /* 20292 * Remove all IRE_CACHE entries since they might 20293 * contain arp information. 20294 */ 20295 flush_flag |= FLUSH_ARP_TIME; 20296 ipst->ips_ip_ire_arp_time_elapsed = 0; 20297 IP_STAT(ipst, ip_ire_arp_timer_expired); 20298 } 20299 if (ipst->ips_ip_ire_rd_time_elapsed >= 20300 ipst->ips_ip_ire_redir_interval) { 20301 /* Remove all redirects */ 20302 flush_flag |= FLUSH_REDIRECT_TIME; 20303 ipst->ips_ip_ire_rd_time_elapsed = 0; 20304 IP_STAT(ipst, ip_ire_redirect_timer_expired); 20305 } 20306 if (ipst->ips_ip_ire_pmtu_time_elapsed >= 20307 ipst->ips_ip_ire_pathmtu_interval) { 20308 /* Increase path mtu */ 20309 flush_flag |= FLUSH_MTU_TIME; 20310 ipst->ips_ip_ire_pmtu_time_elapsed = 0; 20311 IP_STAT(ipst, ip_ire_pmtu_timer_expired); 20312 } 20313 20314 /* 20315 * Optimize for the case when there are no redirects in the 20316 * ftable, that is, no need to walk the ftable in that case. 20317 */ 20318 if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) { 20319 iea.iea_flush_flag = flush_flag; 20320 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire, 20321 (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 0, NULL, 20322 ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table, 20323 NULL, ALL_ZONES, ipst); 20324 } 20325 if ((flush_flag & FLUSH_REDIRECT_TIME) && 20326 ipst->ips_ip_redirect_cnt > 0) { 20327 iea.iea_flush_flag = flush_flag; 20328 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE, 20329 ire_expire, (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 20330 0, NULL, 0, NULL, NULL, ALL_ZONES, ipst); 20331 } 20332 if (flush_flag & FLUSH_MTU_TIME) { 20333 /* 20334 * Walk all IPv6 IRE's and update them 20335 * Note that ARP and redirect timers are not 20336 * needed since NUD handles stale entries. 20337 */ 20338 flush_flag = FLUSH_MTU_TIME; 20339 iea.iea_flush_flag = flush_flag; 20340 ire_walk_v6(ire_expire, (char *)(uintptr_t)&iea, 20341 ALL_ZONES, ipst); 20342 } 20343 20344 ipst->ips_ip_ire_arp_time_elapsed += ipst->ips_ip_timer_interval; 20345 ipst->ips_ip_ire_rd_time_elapsed += ipst->ips_ip_timer_interval; 20346 ipst->ips_ip_ire_pmtu_time_elapsed += ipst->ips_ip_timer_interval; 20347 20348 /* 20349 * Hold the lock to serialize timeout calls and prevent 20350 * stale values in ip_ire_expire_id. Otherwise it is possible 20351 * for the timer to fire and a new invocation of this function 20352 * to start before the return value of timeout has been stored 20353 * in ip_ire_expire_id by the current invocation. 20354 */ 20355 mutex_enter(&ipst->ips_ip_trash_timer_lock); 20356 ipst->ips_ip_ire_expire_id = timeout(ip_trash_timer_expire, 20357 (void *)ipst, MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 20358 mutex_exit(&ipst->ips_ip_trash_timer_lock); 20359 } 20360 20361 /* 20362 * Called by the memory allocator subsystem directly, when the system 20363 * is running low on memory. 20364 */ 20365 /* ARGSUSED */ 20366 void 20367 ip_trash_ire_reclaim(void *args) 20368 { 20369 netstack_handle_t nh; 20370 netstack_t *ns; 20371 20372 netstack_next_init(&nh); 20373 while ((ns = netstack_next(&nh)) != NULL) { 20374 ip_trash_ire_reclaim_stack(ns->netstack_ip); 20375 netstack_rele(ns); 20376 } 20377 netstack_next_fini(&nh); 20378 } 20379 20380 static void 20381 ip_trash_ire_reclaim_stack(ip_stack_t *ipst) 20382 { 20383 ire_cache_count_t icc; 20384 ire_cache_reclaim_t icr; 20385 ncc_cache_count_t ncc; 20386 nce_cache_reclaim_t ncr; 20387 uint_t delete_cnt; 20388 /* 20389 * Memory reclaim call back. 20390 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 20391 * Then, with a target of freeing 1/Nth of IRE_CACHE 20392 * entries, determine what fraction to free for 20393 * each category of IRE_CACHE entries giving absolute priority 20394 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 20395 * entry will be freed unless all offlink entries are freed). 20396 */ 20397 icc.icc_total = 0; 20398 icc.icc_unused = 0; 20399 icc.icc_offlink = 0; 20400 icc.icc_pmtu = 0; 20401 icc.icc_onlink = 0; 20402 ire_walk(ire_cache_count, (char *)&icc, ipst); 20403 20404 /* 20405 * Free NCEs for IPv6 like the onlink ires. 20406 */ 20407 ncc.ncc_total = 0; 20408 ncc.ncc_host = 0; 20409 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc, ipst); 20410 20411 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 20412 icc.icc_pmtu + icc.icc_onlink); 20413 delete_cnt = icc.icc_total/ipst->ips_ip_ire_reclaim_fraction; 20414 IP_STAT(ipst, ip_trash_ire_reclaim_calls); 20415 if (delete_cnt == 0) 20416 return; 20417 IP_STAT(ipst, ip_trash_ire_reclaim_success); 20418 /* Always delete all unused offlink entries */ 20419 icr.icr_ipst = ipst; 20420 icr.icr_unused = 1; 20421 if (delete_cnt <= icc.icc_unused) { 20422 /* 20423 * Only need to free unused entries. In other words, 20424 * there are enough unused entries to free to meet our 20425 * target number of freed ire cache entries. 20426 */ 20427 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 20428 ncr.ncr_host = 0; 20429 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 20430 /* 20431 * Only need to free unused entries, plus a fraction of offlink 20432 * entries. It follows from the first if statement that 20433 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 20434 */ 20435 delete_cnt -= icc.icc_unused; 20436 /* Round up # deleted by truncating fraction */ 20437 icr.icr_offlink = icc.icc_offlink / delete_cnt; 20438 icr.icr_pmtu = icr.icr_onlink = 0; 20439 ncr.ncr_host = 0; 20440 } else if (delete_cnt <= 20441 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 20442 /* 20443 * Free all unused and offlink entries, plus a fraction of 20444 * pmtu entries. It follows from the previous if statement 20445 * that icc_pmtu is non-zero, and that 20446 * delete_cnt != icc_unused + icc_offlink. 20447 */ 20448 icr.icr_offlink = 1; 20449 delete_cnt -= icc.icc_unused + icc.icc_offlink; 20450 /* Round up # deleted by truncating fraction */ 20451 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 20452 icr.icr_onlink = 0; 20453 ncr.ncr_host = 0; 20454 } else { 20455 /* 20456 * Free all unused, offlink, and pmtu entries, plus a fraction 20457 * of onlink entries. If we're here, then we know that 20458 * icc_onlink is non-zero, and that 20459 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 20460 */ 20461 icr.icr_offlink = icr.icr_pmtu = 1; 20462 delete_cnt -= icc.icc_unused + icc.icc_offlink + 20463 icc.icc_pmtu; 20464 /* Round up # deleted by truncating fraction */ 20465 icr.icr_onlink = icc.icc_onlink / delete_cnt; 20466 /* Using the same delete fraction as for onlink IREs */ 20467 ncr.ncr_host = ncc.ncc_host / delete_cnt; 20468 } 20469 #ifdef DEBUG 20470 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 20471 "fractions %d/%d/%d/%d\n", 20472 icc.icc_total/ipst->ips_ip_ire_reclaim_fraction, icc.icc_total, 20473 icc.icc_unused, icc.icc_offlink, 20474 icc.icc_pmtu, icc.icc_onlink, 20475 icr.icr_unused, icr.icr_offlink, 20476 icr.icr_pmtu, icr.icr_onlink)); 20477 #endif 20478 ire_walk(ire_cache_reclaim, (char *)&icr, ipst); 20479 if (ncr.ncr_host != 0) 20480 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 20481 (uchar_t *)&ncr, ipst); 20482 #ifdef DEBUG 20483 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 20484 icc.icc_pmtu = 0; icc.icc_onlink = 0; 20485 ire_walk(ire_cache_count, (char *)&icc, ipst); 20486 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 20487 icc.icc_total, icc.icc_unused, icc.icc_offlink, 20488 icc.icc_pmtu, icc.icc_onlink)); 20489 #endif 20490 } 20491 20492 /* 20493 * ip_unbind is called when a copy of an unbind request is received from the 20494 * upper level protocol. We remove this conn from any fanout hash list it is 20495 * on, and zero out the bind information. No reply is expected up above. 20496 */ 20497 void 20498 ip_unbind(conn_t *connp) 20499 { 20500 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 20501 20502 if (is_system_labeled() && connp->conn_anon_port) { 20503 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 20504 connp->conn_mlp_type, connp->conn_ulp, 20505 ntohs(connp->conn_lport), B_FALSE); 20506 connp->conn_anon_port = 0; 20507 } 20508 connp->conn_mlp_type = mlptSingle; 20509 20510 ipcl_hash_remove(connp); 20511 20512 } 20513 20514 /* 20515 * Write side put procedure. Outbound data, IOCTLs, responses from 20516 * resolvers, etc, come down through here. 20517 * 20518 * arg2 is always a queue_t *. 20519 * When that queue is an ill_t (i.e. q_next != NULL), then arg must be 20520 * the zoneid. 20521 * When that queue is not an ill_t, then arg must be a conn_t pointer. 20522 */ 20523 void 20524 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 20525 { 20526 ip_output_options(arg, mp, arg2, caller, &zero_info); 20527 } 20528 20529 void 20530 ip_output_options(void *arg, mblk_t *mp, void *arg2, int caller, 20531 ip_opt_info_t *infop) 20532 { 20533 conn_t *connp = NULL; 20534 queue_t *q = (queue_t *)arg2; 20535 ipha_t *ipha; 20536 #define rptr ((uchar_t *)ipha) 20537 ire_t *ire = NULL; 20538 ire_t *sctp_ire = NULL; 20539 uint32_t v_hlen_tos_len; 20540 ipaddr_t dst; 20541 mblk_t *first_mp = NULL; 20542 boolean_t mctl_present; 20543 ipsec_out_t *io; 20544 int match_flags; 20545 ill_t *xmit_ill = NULL; /* IP_PKTINFO etc. */ 20546 ipif_t *dst_ipif; 20547 boolean_t multirt_need_resolve = B_FALSE; 20548 mblk_t *copy_mp = NULL; 20549 int err = 0; 20550 zoneid_t zoneid; 20551 boolean_t need_decref = B_FALSE; 20552 boolean_t ignore_dontroute = B_FALSE; 20553 boolean_t ignore_nexthop = B_FALSE; 20554 boolean_t ip_nexthop = B_FALSE; 20555 ipaddr_t nexthop_addr; 20556 ip_stack_t *ipst; 20557 20558 #ifdef _BIG_ENDIAN 20559 #define V_HLEN (v_hlen_tos_len >> 24) 20560 #else 20561 #define V_HLEN (v_hlen_tos_len & 0xFF) 20562 #endif 20563 20564 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 20565 "ip_wput_start: q %p", q); 20566 20567 /* 20568 * ip_wput fast path 20569 */ 20570 20571 /* is packet from ARP ? */ 20572 if (q->q_next != NULL) { 20573 zoneid = (zoneid_t)(uintptr_t)arg; 20574 goto qnext; 20575 } 20576 20577 connp = (conn_t *)arg; 20578 ASSERT(connp != NULL); 20579 zoneid = connp->conn_zoneid; 20580 ipst = connp->conn_netstack->netstack_ip; 20581 ASSERT(ipst != NULL); 20582 20583 /* is queue flow controlled? */ 20584 if ((q->q_first != NULL || connp->conn_draining) && 20585 (caller == IP_WPUT)) { 20586 ASSERT(!need_decref); 20587 ASSERT(!IP_FLOW_CONTROLLED_ULP(connp->conn_ulp)); 20588 (void) putq(q, mp); 20589 return; 20590 } 20591 20592 /* Multidata transmit? */ 20593 if (DB_TYPE(mp) == M_MULTIDATA) { 20594 /* 20595 * We should never get here, since all Multidata messages 20596 * originating from tcp should have been directed over to 20597 * tcp_multisend() in the first place. 20598 */ 20599 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20600 freemsg(mp); 20601 return; 20602 } else if (DB_TYPE(mp) != M_DATA) 20603 goto notdata; 20604 20605 if (mp->b_flag & MSGHASREF) { 20606 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20607 mp->b_flag &= ~MSGHASREF; 20608 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 20609 need_decref = B_TRUE; 20610 } 20611 ipha = (ipha_t *)mp->b_rptr; 20612 20613 /* is IP header non-aligned or mblk smaller than basic IP header */ 20614 #ifndef SAFETY_BEFORE_SPEED 20615 if (!OK_32PTR(rptr) || 20616 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 20617 goto hdrtoosmall; 20618 #endif 20619 20620 ASSERT(OK_32PTR(ipha)); 20621 20622 /* 20623 * This function assumes that mp points to an IPv4 packet. If it's the 20624 * wrong version, we'll catch it again in ip_output_v6. 20625 * 20626 * Note that this is *only* locally-generated output here, and never 20627 * forwarded data, and that we need to deal only with transports that 20628 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 20629 * label.) 20630 */ 20631 if (is_system_labeled() && 20632 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 20633 !connp->conn_ulp_labeled) { 20634 cred_t *credp; 20635 pid_t pid; 20636 20637 credp = BEST_CRED(mp, connp, &pid); 20638 err = tsol_check_label(credp, &mp, 20639 connp->conn_mac_exempt, ipst, pid); 20640 ipha = (ipha_t *)mp->b_rptr; 20641 if (err != 0) { 20642 first_mp = mp; 20643 if (err == EINVAL) 20644 goto icmp_parameter_problem; 20645 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 20646 goto discard_pkt; 20647 } 20648 } 20649 20650 ASSERT(infop != NULL); 20651 20652 if (infop->ip_opt_flags & IP_VERIFY_SRC) { 20653 /* 20654 * IP_PKTINFO ancillary option is present. 20655 * IPCL_ZONEID is used to honor IP_ALLZONES option which 20656 * allows using address of any zone as the source address. 20657 */ 20658 ire = ire_ctable_lookup(ipha->ipha_src, 0, 20659 (IRE_LOCAL|IRE_LOOPBACK), NULL, IPCL_ZONEID(connp), 20660 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 20661 if (ire == NULL) 20662 goto drop_pkt; 20663 ire_refrele(ire); 20664 ire = NULL; 20665 } 20666 20667 /* 20668 * IP_BOUND_IF has precedence over the ill index passed in IP_PKTINFO. 20669 */ 20670 if (infop->ip_opt_ill_index != 0 && connp->conn_outgoing_ill == NULL) { 20671 xmit_ill = ill_lookup_on_ifindex(infop->ip_opt_ill_index, 20672 B_FALSE, NULL, NULL, NULL, NULL, ipst); 20673 20674 if (xmit_ill == NULL || IS_VNI(xmit_ill)) 20675 goto drop_pkt; 20676 /* 20677 * check that there is an ipif belonging 20678 * to our zone. IPCL_ZONEID is not used because 20679 * IP_ALLZONES option is valid only when the ill is 20680 * accessible from all zones i.e has a valid ipif in 20681 * all zones. 20682 */ 20683 if (!ipif_lookup_zoneid(xmit_ill, zoneid, 0, NULL)) { 20684 goto drop_pkt; 20685 } 20686 } 20687 20688 /* 20689 * If there is a policy, try to attach an ipsec_out in 20690 * the front. At the end, first_mp either points to a 20691 * M_DATA message or IPSEC_OUT message linked to a 20692 * M_DATA message. We have to do it now as we might 20693 * lose the "conn" if we go through ip_newroute. 20694 */ 20695 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 20696 if (((mp = ipsec_attach_ipsec_out(&mp, connp, NULL, 20697 ipha->ipha_protocol, ipst->ips_netstack)) == NULL)) { 20698 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20699 if (need_decref) 20700 CONN_DEC_REF(connp); 20701 return; 20702 } else { 20703 ASSERT(mp->b_datap->db_type == M_CTL); 20704 first_mp = mp; 20705 mp = mp->b_cont; 20706 mctl_present = B_TRUE; 20707 } 20708 } else { 20709 first_mp = mp; 20710 mctl_present = B_FALSE; 20711 } 20712 20713 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20714 20715 /* is wrong version or IP options present */ 20716 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 20717 goto version_hdrlen_check; 20718 dst = ipha->ipha_dst; 20719 20720 /* If IP_BOUND_IF has been set, use that ill. */ 20721 if (connp->conn_outgoing_ill != NULL) { 20722 xmit_ill = conn_get_held_ill(connp, 20723 &connp->conn_outgoing_ill, &err); 20724 if (err == ILL_LOOKUP_FAILED) 20725 goto drop_pkt; 20726 20727 goto send_from_ill; 20728 } 20729 20730 /* is packet multicast? */ 20731 if (CLASSD(dst)) 20732 goto multicast; 20733 20734 /* 20735 * If xmit_ill is set above due to index passed in ip_pkt_info. It 20736 * takes precedence over conn_dontroute and conn_nexthop_set 20737 */ 20738 if (xmit_ill != NULL) 20739 goto send_from_ill; 20740 20741 if (connp->conn_dontroute || connp->conn_nexthop_set) { 20742 /* 20743 * If the destination is a broadcast, local, or loopback 20744 * address, SO_DONTROUTE and IP_NEXTHOP go through the 20745 * standard path. 20746 */ 20747 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), ipst); 20748 if ((ire == NULL) || (ire->ire_type & 20749 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK)) == 0) { 20750 if (ire != NULL) { 20751 ire_refrele(ire); 20752 /* No more access to ire */ 20753 ire = NULL; 20754 } 20755 /* 20756 * bypass routing checks and go directly to interface. 20757 */ 20758 if (connp->conn_dontroute) 20759 goto dontroute; 20760 20761 ASSERT(connp->conn_nexthop_set); 20762 ip_nexthop = B_TRUE; 20763 nexthop_addr = connp->conn_nexthop_v4; 20764 goto send_from_ill; 20765 } 20766 20767 /* Must be a broadcast, a loopback or a local ire */ 20768 ire_refrele(ire); 20769 /* No more access to ire */ 20770 ire = NULL; 20771 } 20772 20773 /* 20774 * We cache IRE_CACHEs to avoid lookups. We don't do 20775 * this for the tcp global queue and listen end point 20776 * as it does not really have a real destination to 20777 * talk to. This is also true for SCTP. 20778 */ 20779 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 20780 !connp->conn_fully_bound) { 20781 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), ipst); 20782 if (ire == NULL) 20783 goto noirefound; 20784 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20785 "ip_wput_end: q %p (%S)", q, "end"); 20786 20787 /* 20788 * Check if the ire has the RTF_MULTIRT flag, inherited 20789 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20790 */ 20791 if (ire->ire_flags & RTF_MULTIRT) { 20792 20793 /* 20794 * Force the TTL of multirouted packets if required. 20795 * The TTL of such packets is bounded by the 20796 * ip_multirt_ttl ndd variable. 20797 */ 20798 if ((ipst->ips_ip_multirt_ttl > 0) && 20799 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20800 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20801 "(was %d), dst 0x%08x\n", 20802 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20803 ntohl(ire->ire_addr))); 20804 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20805 } 20806 /* 20807 * We look at this point if there are pending 20808 * unresolved routes. ire_multirt_resolvable() 20809 * checks in O(n) that all IRE_OFFSUBNET ire 20810 * entries for the packet's destination and 20811 * flagged RTF_MULTIRT are currently resolved. 20812 * If some remain unresolved, we make a copy 20813 * of the current message. It will be used 20814 * to initiate additional route resolutions. 20815 */ 20816 multirt_need_resolve = 20817 ire_multirt_need_resolve(ire->ire_addr, 20818 msg_getlabel(first_mp), ipst); 20819 ip2dbg(("ip_wput[TCP]: ire %p, " 20820 "multirt_need_resolve %d, first_mp %p\n", 20821 (void *)ire, multirt_need_resolve, 20822 (void *)first_mp)); 20823 if (multirt_need_resolve) { 20824 copy_mp = copymsg(first_mp); 20825 if (copy_mp != NULL) { 20826 MULTIRT_DEBUG_TAG(copy_mp); 20827 } 20828 } 20829 } 20830 20831 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20832 20833 /* 20834 * Try to resolve another multiroute if 20835 * ire_multirt_need_resolve() deemed it necessary. 20836 */ 20837 if (copy_mp != NULL) 20838 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20839 if (need_decref) 20840 CONN_DEC_REF(connp); 20841 return; 20842 } 20843 20844 /* 20845 * Access to conn_ire_cache. (protected by conn_lock) 20846 * 20847 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 20848 * the ire bucket lock here to check for CONDEMNED as it is okay to 20849 * send a packet or two with the IRE_CACHE that is going away. 20850 * Access to the ire requires an ire refhold on the ire prior to 20851 * its use since an interface unplumb thread may delete the cached 20852 * ire and release the refhold at any time. 20853 * 20854 * Caching an ire in the conn_ire_cache 20855 * 20856 * o Caching an ire pointer in the conn requires a strict check for 20857 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 20858 * ires before cleaning up the conns. So the caching of an ire pointer 20859 * in the conn is done after making sure under the bucket lock that the 20860 * ire has not yet been marked CONDEMNED. Otherwise we will end up 20861 * caching an ire after the unplumb thread has cleaned up the conn. 20862 * If the conn does not send a packet subsequently the unplumb thread 20863 * will be hanging waiting for the ire count to drop to zero. 20864 * 20865 * o We also need to atomically test for a null conn_ire_cache and 20866 * set the conn_ire_cache under the the protection of the conn_lock 20867 * to avoid races among concurrent threads trying to simultaneously 20868 * cache an ire in the conn_ire_cache. 20869 */ 20870 mutex_enter(&connp->conn_lock); 20871 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 20872 20873 if (ire != NULL && ire->ire_addr == dst && 20874 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20875 20876 IRE_REFHOLD(ire); 20877 mutex_exit(&connp->conn_lock); 20878 20879 } else { 20880 boolean_t cached = B_FALSE; 20881 connp->conn_ire_cache = NULL; 20882 mutex_exit(&connp->conn_lock); 20883 /* Release the old ire */ 20884 if (ire != NULL && sctp_ire == NULL) 20885 IRE_REFRELE_NOTR(ire); 20886 20887 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), ipst); 20888 if (ire == NULL) 20889 goto noirefound; 20890 IRE_REFHOLD_NOTR(ire); 20891 20892 mutex_enter(&connp->conn_lock); 20893 if (CONN_CACHE_IRE(connp) && connp->conn_ire_cache == NULL) { 20894 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 20895 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20896 if (connp->conn_ulp == IPPROTO_TCP) 20897 TCP_CHECK_IREINFO(connp->conn_tcp, ire); 20898 connp->conn_ire_cache = ire; 20899 cached = B_TRUE; 20900 } 20901 rw_exit(&ire->ire_bucket->irb_lock); 20902 } 20903 mutex_exit(&connp->conn_lock); 20904 20905 /* 20906 * We can continue to use the ire but since it was 20907 * not cached, we should drop the extra reference. 20908 */ 20909 if (!cached) 20910 IRE_REFRELE_NOTR(ire); 20911 } 20912 20913 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20914 "ip_wput_end: q %p (%S)", q, "end"); 20915 20916 /* 20917 * Check if the ire has the RTF_MULTIRT flag, inherited 20918 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20919 */ 20920 if (ire->ire_flags & RTF_MULTIRT) { 20921 /* 20922 * Force the TTL of multirouted packets if required. 20923 * The TTL of such packets is bounded by the 20924 * ip_multirt_ttl ndd variable. 20925 */ 20926 if ((ipst->ips_ip_multirt_ttl > 0) && 20927 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20928 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20929 "(was %d), dst 0x%08x\n", 20930 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20931 ntohl(ire->ire_addr))); 20932 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20933 } 20934 20935 /* 20936 * At this point, we check to see if there are any pending 20937 * unresolved routes. ire_multirt_resolvable() 20938 * checks in O(n) that all IRE_OFFSUBNET ire 20939 * entries for the packet's destination and 20940 * flagged RTF_MULTIRT are currently resolved. 20941 * If some remain unresolved, we make a copy 20942 * of the current message. It will be used 20943 * to initiate additional route resolutions. 20944 */ 20945 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 20946 msg_getlabel(first_mp), ipst); 20947 ip2dbg(("ip_wput[not TCP]: ire %p, " 20948 "multirt_need_resolve %d, first_mp %p\n", 20949 (void *)ire, multirt_need_resolve, (void *)first_mp)); 20950 if (multirt_need_resolve) { 20951 copy_mp = copymsg(first_mp); 20952 if (copy_mp != NULL) { 20953 MULTIRT_DEBUG_TAG(copy_mp); 20954 } 20955 } 20956 } 20957 20958 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20959 20960 /* 20961 * Try to resolve another multiroute if 20962 * ire_multirt_resolvable() deemed it necessary 20963 */ 20964 if (copy_mp != NULL) 20965 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20966 if (need_decref) 20967 CONN_DEC_REF(connp); 20968 return; 20969 20970 qnext: 20971 /* 20972 * Upper Level Protocols pass down complete IP datagrams 20973 * as M_DATA messages. Everything else is a sideshow. 20974 * 20975 * 1) We could be re-entering ip_wput because of ip_neworute 20976 * in which case we could have a IPSEC_OUT message. We 20977 * need to pass through ip_wput like other datagrams and 20978 * hence cannot branch to ip_wput_nondata. 20979 * 20980 * 2) ARP, AH, ESP, and other clients who are on the module 20981 * instance of IP stream, give us something to deal with. 20982 * We will handle AH and ESP here and rest in ip_wput_nondata. 20983 * 20984 * 3) ICMP replies also could come here. 20985 */ 20986 ipst = ILLQ_TO_IPST(q); 20987 20988 if (DB_TYPE(mp) != M_DATA) { 20989 notdata: 20990 if (DB_TYPE(mp) == M_CTL) { 20991 /* 20992 * M_CTL messages are used by ARP, AH and ESP to 20993 * communicate with IP. We deal with IPSEC_IN and 20994 * IPSEC_OUT here. ip_wput_nondata handles other 20995 * cases. 20996 */ 20997 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 20998 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 20999 first_mp = mp->b_cont; 21000 first_mp->b_flag &= ~MSGHASREF; 21001 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 21002 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 21003 CONN_DEC_REF(connp); 21004 connp = NULL; 21005 } 21006 if (ii->ipsec_info_type == IPSEC_IN) { 21007 /* 21008 * Either this message goes back to 21009 * IPsec for further processing or to 21010 * ULP after policy checks. 21011 */ 21012 ip_fanout_proto_again(mp, NULL, NULL, NULL); 21013 return; 21014 } else if (ii->ipsec_info_type == IPSEC_OUT) { 21015 io = (ipsec_out_t *)ii; 21016 if (io->ipsec_out_proc_begin) { 21017 /* 21018 * IPsec processing has already started. 21019 * Complete it. 21020 * IPQoS notes: We don't care what is 21021 * in ipsec_out_ill_index since this 21022 * won't be processed for IPQoS policies 21023 * in ipsec_out_process. 21024 */ 21025 ipsec_out_process(q, mp, NULL, 21026 io->ipsec_out_ill_index); 21027 return; 21028 } else { 21029 connp = (q->q_next != NULL) ? 21030 NULL : Q_TO_CONN(q); 21031 first_mp = mp; 21032 mp = mp->b_cont; 21033 mctl_present = B_TRUE; 21034 } 21035 zoneid = io->ipsec_out_zoneid; 21036 ASSERT(zoneid != ALL_ZONES); 21037 } else if (ii->ipsec_info_type == IPSEC_CTL) { 21038 /* 21039 * It's an IPsec control message requesting 21040 * an SADB update to be sent to the IPsec 21041 * hardware acceleration capable ills. 21042 */ 21043 ipsec_ctl_t *ipsec_ctl = 21044 (ipsec_ctl_t *)mp->b_rptr; 21045 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 21046 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 21047 mblk_t *cmp = mp->b_cont; 21048 21049 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 21050 ASSERT(cmp != NULL); 21051 21052 freeb(mp); 21053 ill_ipsec_capab_send_all(satype, cmp, sa, 21054 ipst->ips_netstack); 21055 return; 21056 } else { 21057 /* 21058 * This must be ARP or special TSOL signaling. 21059 */ 21060 ip_wput_nondata(NULL, q, mp, NULL); 21061 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21062 "ip_wput_end: q %p (%S)", q, "nondata"); 21063 return; 21064 } 21065 } else { 21066 /* 21067 * This must be non-(ARP/AH/ESP) messages. 21068 */ 21069 ASSERT(!need_decref); 21070 ip_wput_nondata(NULL, q, mp, NULL); 21071 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21072 "ip_wput_end: q %p (%S)", q, "nondata"); 21073 return; 21074 } 21075 } else { 21076 first_mp = mp; 21077 mctl_present = B_FALSE; 21078 } 21079 21080 ASSERT(first_mp != NULL); 21081 21082 if (mctl_present) { 21083 io = (ipsec_out_t *)first_mp->b_rptr; 21084 if (io->ipsec_out_ip_nexthop) { 21085 /* 21086 * We may have lost the conn context if we are 21087 * coming here from ip_newroute(). Copy the 21088 * nexthop information. 21089 */ 21090 ip_nexthop = B_TRUE; 21091 nexthop_addr = io->ipsec_out_nexthop_addr; 21092 21093 ipha = (ipha_t *)mp->b_rptr; 21094 dst = ipha->ipha_dst; 21095 goto send_from_ill; 21096 } 21097 } 21098 21099 ASSERT(xmit_ill == NULL); 21100 21101 /* We have a complete IP datagram heading outbound. */ 21102 ipha = (ipha_t *)mp->b_rptr; 21103 21104 #ifndef SPEED_BEFORE_SAFETY 21105 /* 21106 * Make sure we have a full-word aligned message and that at least 21107 * a simple IP header is accessible in the first message. If not, 21108 * try a pullup. For labeled systems we need to always take this 21109 * path as M_CTLs are "notdata" but have trailing data to process. 21110 */ 21111 if (!OK_32PTR(rptr) || 21112 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH || is_system_labeled()) { 21113 hdrtoosmall: 21114 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 21115 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21116 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 21117 if (first_mp == NULL) 21118 first_mp = mp; 21119 goto discard_pkt; 21120 } 21121 21122 /* This function assumes that mp points to an IPv4 packet. */ 21123 if (is_system_labeled() && 21124 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 21125 (connp == NULL || !connp->conn_ulp_labeled)) { 21126 cred_t *credp; 21127 pid_t pid; 21128 21129 if (connp != NULL) { 21130 credp = BEST_CRED(mp, connp, &pid); 21131 err = tsol_check_label(credp, &mp, 21132 connp->conn_mac_exempt, ipst, pid); 21133 } else if ((credp = msg_getcred(mp, &pid)) != NULL) { 21134 err = tsol_check_label(credp, &mp, 21135 B_FALSE, ipst, pid); 21136 } 21137 ipha = (ipha_t *)mp->b_rptr; 21138 if (mctl_present) 21139 first_mp->b_cont = mp; 21140 else 21141 first_mp = mp; 21142 if (err != 0) { 21143 if (err == EINVAL) 21144 goto icmp_parameter_problem; 21145 ip2dbg(("ip_wput: label check failed (%d)\n", 21146 err)); 21147 goto discard_pkt; 21148 } 21149 } 21150 21151 ipha = (ipha_t *)mp->b_rptr; 21152 if (first_mp == NULL) { 21153 ASSERT(xmit_ill == NULL); 21154 /* 21155 * If we got here because of "goto hdrtoosmall" 21156 * We need to attach a IPSEC_OUT. 21157 */ 21158 if (connp->conn_out_enforce_policy) { 21159 if (((mp = ipsec_attach_ipsec_out(&mp, connp, 21160 NULL, ipha->ipha_protocol, 21161 ipst->ips_netstack)) == NULL)) { 21162 BUMP_MIB(&ipst->ips_ip_mib, 21163 ipIfStatsOutDiscards); 21164 if (need_decref) 21165 CONN_DEC_REF(connp); 21166 return; 21167 } else { 21168 ASSERT(mp->b_datap->db_type == M_CTL); 21169 first_mp = mp; 21170 mp = mp->b_cont; 21171 mctl_present = B_TRUE; 21172 } 21173 } else { 21174 first_mp = mp; 21175 mctl_present = B_FALSE; 21176 } 21177 } 21178 } 21179 #endif 21180 21181 /* Most of the code below is written for speed, not readability */ 21182 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21183 21184 /* 21185 * If ip_newroute() fails, we're going to need a full 21186 * header for the icmp wraparound. 21187 */ 21188 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 21189 uint_t v_hlen; 21190 version_hdrlen_check: 21191 ASSERT(first_mp != NULL); 21192 v_hlen = V_HLEN; 21193 /* 21194 * siphon off IPv6 packets coming down from transport 21195 * layer modules here. 21196 * Note: high-order bit carries NUD reachability confirmation 21197 */ 21198 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 21199 /* 21200 * FIXME: assume that callers of ip_output* call 21201 * the right version? 21202 */ 21203 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutWrongIPVersion); 21204 ASSERT(xmit_ill == NULL); 21205 if (need_decref) 21206 mp->b_flag |= MSGHASREF; 21207 (void) ip_output_v6(arg, first_mp, arg2, caller); 21208 return; 21209 } 21210 21211 if ((v_hlen >> 4) != IP_VERSION) { 21212 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21213 "ip_wput_end: q %p (%S)", q, "badvers"); 21214 goto discard_pkt; 21215 } 21216 /* 21217 * Is the header length at least 20 bytes? 21218 * 21219 * Are there enough bytes accessible in the header? If 21220 * not, try a pullup. 21221 */ 21222 v_hlen &= 0xF; 21223 v_hlen <<= 2; 21224 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 21225 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21226 "ip_wput_end: q %p (%S)", q, "badlen"); 21227 goto discard_pkt; 21228 } 21229 if (v_hlen > (mp->b_wptr - rptr)) { 21230 if (!pullupmsg(mp, v_hlen)) { 21231 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21232 "ip_wput_end: q %p (%S)", q, "badpullup2"); 21233 goto discard_pkt; 21234 } 21235 ipha = (ipha_t *)mp->b_rptr; 21236 } 21237 /* 21238 * Move first entry from any source route into ipha_dst and 21239 * verify the options 21240 */ 21241 if (ip_wput_options(q, first_mp, ipha, mctl_present, 21242 zoneid, ipst)) { 21243 ASSERT(xmit_ill == NULL); 21244 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21245 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21246 "ip_wput_end: q %p (%S)", q, "badopts"); 21247 if (need_decref) 21248 CONN_DEC_REF(connp); 21249 return; 21250 } 21251 } 21252 dst = ipha->ipha_dst; 21253 21254 /* 21255 * Try to get an IRE_CACHE for the destination address. If we can't, 21256 * we have to run the packet through ip_newroute which will take 21257 * the appropriate action to arrange for an IRE_CACHE, such as querying 21258 * a resolver, or assigning a default gateway, etc. 21259 */ 21260 if (CLASSD(dst)) { 21261 ipif_t *ipif; 21262 uint32_t setsrc = 0; 21263 21264 multicast: 21265 ASSERT(first_mp != NULL); 21266 ip2dbg(("ip_wput: CLASSD\n")); 21267 if (connp == NULL) { 21268 /* 21269 * Use the first good ipif on the ill. 21270 * XXX Should this ever happen? (Appears 21271 * to show up with just ppp and no ethernet due 21272 * to in.rdisc.) 21273 * However, ire_send should be able to 21274 * call ip_wput_ire directly. 21275 * 21276 * XXX Also, this can happen for ICMP and other packets 21277 * with multicast source addresses. Perhaps we should 21278 * fix things so that we drop the packet in question, 21279 * but for now, just run with it. 21280 */ 21281 ill_t *ill = (ill_t *)q->q_ptr; 21282 21283 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 21284 if (ipif == NULL) { 21285 if (need_decref) 21286 CONN_DEC_REF(connp); 21287 freemsg(first_mp); 21288 return; 21289 } 21290 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 21291 ntohl(dst), ill->ill_name)); 21292 } else { 21293 /* 21294 * The order of precedence is IP_BOUND_IF, IP_PKTINFO 21295 * and IP_MULTICAST_IF. The block comment above this 21296 * function explains the locking mechanism used here. 21297 */ 21298 if (xmit_ill == NULL) { 21299 xmit_ill = conn_get_held_ill(connp, 21300 &connp->conn_outgoing_ill, &err); 21301 if (err == ILL_LOOKUP_FAILED) { 21302 ip1dbg(("ip_wput: No ill for " 21303 "IP_BOUND_IF\n")); 21304 BUMP_MIB(&ipst->ips_ip_mib, 21305 ipIfStatsOutNoRoutes); 21306 goto drop_pkt; 21307 } 21308 } 21309 21310 if (xmit_ill == NULL) { 21311 ipif = conn_get_held_ipif(connp, 21312 &connp->conn_multicast_ipif, &err); 21313 if (err == IPIF_LOOKUP_FAILED) { 21314 ip1dbg(("ip_wput: No ipif for " 21315 "multicast\n")); 21316 BUMP_MIB(&ipst->ips_ip_mib, 21317 ipIfStatsOutNoRoutes); 21318 goto drop_pkt; 21319 } 21320 } 21321 if (xmit_ill != NULL) { 21322 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21323 if (ipif == NULL) { 21324 ip1dbg(("ip_wput: No ipif for " 21325 "xmit_ill\n")); 21326 BUMP_MIB(&ipst->ips_ip_mib, 21327 ipIfStatsOutNoRoutes); 21328 goto drop_pkt; 21329 } 21330 } else if (ipif == NULL || ipif->ipif_isv6) { 21331 /* 21332 * We must do this ipif determination here 21333 * else we could pass through ip_newroute 21334 * and come back here without the conn context. 21335 * 21336 * Note: we do late binding i.e. we bind to 21337 * the interface when the first packet is sent. 21338 * For performance reasons we do not rebind on 21339 * each packet but keep the binding until the 21340 * next IP_MULTICAST_IF option. 21341 * 21342 * conn_multicast_{ipif,ill} are shared between 21343 * IPv4 and IPv6 and AF_INET6 sockets can 21344 * send both IPv4 and IPv6 packets. Hence 21345 * we have to check that "isv6" matches above. 21346 */ 21347 if (ipif != NULL) 21348 ipif_refrele(ipif); 21349 ipif = ipif_lookup_group(dst, zoneid, ipst); 21350 if (ipif == NULL) { 21351 ip1dbg(("ip_wput: No ipif for " 21352 "multicast\n")); 21353 BUMP_MIB(&ipst->ips_ip_mib, 21354 ipIfStatsOutNoRoutes); 21355 goto drop_pkt; 21356 } 21357 err = conn_set_held_ipif(connp, 21358 &connp->conn_multicast_ipif, ipif); 21359 if (err == IPIF_LOOKUP_FAILED) { 21360 ipif_refrele(ipif); 21361 ip1dbg(("ip_wput: No ipif for " 21362 "multicast\n")); 21363 BUMP_MIB(&ipst->ips_ip_mib, 21364 ipIfStatsOutNoRoutes); 21365 goto drop_pkt; 21366 } 21367 } 21368 } 21369 ASSERT(!ipif->ipif_isv6); 21370 /* 21371 * As we may lose the conn by the time we reach ip_wput_ire, 21372 * we copy conn_multicast_loop and conn_dontroute on to an 21373 * ipsec_out. In case if this datagram goes out secure, 21374 * we need the ill_index also. Copy that also into the 21375 * ipsec_out. 21376 */ 21377 if (mctl_present) { 21378 io = (ipsec_out_t *)first_mp->b_rptr; 21379 ASSERT(first_mp->b_datap->db_type == M_CTL); 21380 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21381 } else { 21382 ASSERT(mp == first_mp); 21383 if ((first_mp = allocb(sizeof (ipsec_info_t), 21384 BPRI_HI)) == NULL) { 21385 ipif_refrele(ipif); 21386 first_mp = mp; 21387 goto discard_pkt; 21388 } 21389 first_mp->b_datap->db_type = M_CTL; 21390 first_mp->b_wptr += sizeof (ipsec_info_t); 21391 /* ipsec_out_secure is B_FALSE now */ 21392 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 21393 io = (ipsec_out_t *)first_mp->b_rptr; 21394 io->ipsec_out_type = IPSEC_OUT; 21395 io->ipsec_out_len = sizeof (ipsec_out_t); 21396 io->ipsec_out_use_global_policy = B_TRUE; 21397 io->ipsec_out_ns = ipst->ips_netstack; 21398 first_mp->b_cont = mp; 21399 mctl_present = B_TRUE; 21400 } 21401 21402 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21403 io->ipsec_out_ill_index = 21404 ipif->ipif_ill->ill_phyint->phyint_ifindex; 21405 21406 if (connp != NULL) { 21407 io->ipsec_out_multicast_loop = 21408 connp->conn_multicast_loop; 21409 io->ipsec_out_dontroute = connp->conn_dontroute; 21410 io->ipsec_out_zoneid = connp->conn_zoneid; 21411 } 21412 /* 21413 * If the application uses IP_MULTICAST_IF with 21414 * different logical addresses of the same ILL, we 21415 * need to make sure that the soruce address of 21416 * the packet matches the logical IP address used 21417 * in the option. We do it by initializing ipha_src 21418 * here. This should keep IPsec also happy as 21419 * when we return from IPsec processing, we don't 21420 * have to worry about getting the right address on 21421 * the packet. Thus it is sufficient to look for 21422 * IRE_CACHE using MATCH_IRE_ILL rathen than 21423 * MATCH_IRE_IPIF. 21424 * 21425 * NOTE : We need to do it for non-secure case also as 21426 * this might go out secure if there is a global policy 21427 * match in ip_wput_ire. 21428 * 21429 * As we do not have the ire yet, it is possible that 21430 * we set the source address here and then later discover 21431 * that the ire implies the source address to be assigned 21432 * through the RTF_SETSRC flag. 21433 * In that case, the setsrc variable will remind us 21434 * that overwritting the source address by the one 21435 * of the RTF_SETSRC-flagged ire is allowed. 21436 */ 21437 if (ipha->ipha_src == INADDR_ANY && 21438 (connp == NULL || !connp->conn_unspec_src)) { 21439 ipha->ipha_src = ipif->ipif_src_addr; 21440 setsrc = RTF_SETSRC; 21441 } 21442 /* 21443 * Find an IRE which matches the destination and the outgoing 21444 * queue (i.e. the outgoing interface.) 21445 * For loopback use a unicast IP address for 21446 * the ire lookup. 21447 */ 21448 if (IS_LOOPBACK(ipif->ipif_ill)) 21449 dst = ipif->ipif_lcl_addr; 21450 21451 /* 21452 * If xmit_ill is set, we branch out to ip_newroute_ipif. 21453 * We don't need to lookup ire in ctable as the packet 21454 * needs to be sent to the destination through the specified 21455 * ill irrespective of ires in the cache table. 21456 */ 21457 ire = NULL; 21458 if (xmit_ill == NULL) { 21459 ire = ire_ctable_lookup(dst, 0, 0, ipif, 21460 zoneid, msg_getlabel(mp), match_flags, ipst); 21461 } 21462 21463 if (ire == NULL) { 21464 /* 21465 * Multicast loopback and multicast forwarding is 21466 * done in ip_wput_ire. 21467 * 21468 * Mark this packet to make it be delivered to 21469 * ip_wput_ire after the new ire has been 21470 * created. 21471 * 21472 * The call to ip_newroute_ipif takes into account 21473 * the setsrc reminder. In any case, we take care 21474 * of the RTF_MULTIRT flag. 21475 */ 21476 mp->b_prev = mp->b_next = NULL; 21477 if (xmit_ill == NULL || 21478 xmit_ill->ill_ipif_up_count > 0) { 21479 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 21480 setsrc | RTF_MULTIRT, zoneid, infop); 21481 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21482 "ip_wput_end: q %p (%S)", q, "noire"); 21483 } else { 21484 freemsg(first_mp); 21485 } 21486 ipif_refrele(ipif); 21487 if (xmit_ill != NULL) 21488 ill_refrele(xmit_ill); 21489 if (need_decref) 21490 CONN_DEC_REF(connp); 21491 return; 21492 } 21493 21494 ipif_refrele(ipif); 21495 ipif = NULL; 21496 ASSERT(xmit_ill == NULL); 21497 21498 /* 21499 * Honor the RTF_SETSRC flag for multicast packets, 21500 * if allowed by the setsrc reminder. 21501 */ 21502 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 21503 ipha->ipha_src = ire->ire_src_addr; 21504 } 21505 21506 /* 21507 * Unconditionally force the TTL to 1 for 21508 * multirouted multicast packets: 21509 * multirouted multicast should not cross 21510 * multicast routers. 21511 */ 21512 if (ire->ire_flags & RTF_MULTIRT) { 21513 if (ipha->ipha_ttl > 1) { 21514 ip2dbg(("ip_wput: forcing multicast " 21515 "multirt TTL to 1 (was %d), dst 0x%08x\n", 21516 ipha->ipha_ttl, ntohl(ire->ire_addr))); 21517 ipha->ipha_ttl = 1; 21518 } 21519 } 21520 } else { 21521 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), ipst); 21522 if ((ire != NULL) && (ire->ire_type & 21523 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 21524 ignore_dontroute = B_TRUE; 21525 ignore_nexthop = B_TRUE; 21526 } 21527 if (ire != NULL) { 21528 ire_refrele(ire); 21529 ire = NULL; 21530 } 21531 /* 21532 * Guard against coming in from arp in which case conn is NULL. 21533 * Also guard against non M_DATA with dontroute set but 21534 * destined to local, loopback or broadcast addresses. 21535 */ 21536 if (connp != NULL && connp->conn_dontroute && 21537 !ignore_dontroute) { 21538 dontroute: 21539 /* 21540 * Set TTL to 1 if SO_DONTROUTE is set to prevent 21541 * routing protocols from seeing false direct 21542 * connectivity. 21543 */ 21544 ipha->ipha_ttl = 1; 21545 /* If suitable ipif not found, drop packet */ 21546 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid, ipst); 21547 if (dst_ipif == NULL) { 21548 noroute: 21549 ip1dbg(("ip_wput: no route for dst using" 21550 " SO_DONTROUTE\n")); 21551 BUMP_MIB(&ipst->ips_ip_mib, 21552 ipIfStatsOutNoRoutes); 21553 mp->b_prev = mp->b_next = NULL; 21554 if (first_mp == NULL) 21555 first_mp = mp; 21556 goto drop_pkt; 21557 } else { 21558 /* 21559 * If suitable ipif has been found, set 21560 * xmit_ill to the corresponding 21561 * ipif_ill because we'll be using the 21562 * send_from_ill logic below. 21563 */ 21564 ASSERT(xmit_ill == NULL); 21565 xmit_ill = dst_ipif->ipif_ill; 21566 mutex_enter(&xmit_ill->ill_lock); 21567 if (!ILL_CAN_LOOKUP(xmit_ill)) { 21568 mutex_exit(&xmit_ill->ill_lock); 21569 xmit_ill = NULL; 21570 ipif_refrele(dst_ipif); 21571 goto noroute; 21572 } 21573 ill_refhold_locked(xmit_ill); 21574 mutex_exit(&xmit_ill->ill_lock); 21575 ipif_refrele(dst_ipif); 21576 } 21577 } 21578 21579 send_from_ill: 21580 if (xmit_ill != NULL) { 21581 ipif_t *ipif; 21582 21583 /* 21584 * Mark this packet as originated locally 21585 */ 21586 mp->b_prev = mp->b_next = NULL; 21587 21588 /* 21589 * Could be SO_DONTROUTE case also. 21590 * Verify that at least one ipif is up on the ill. 21591 */ 21592 if (xmit_ill->ill_ipif_up_count == 0) { 21593 ip1dbg(("ip_output: xmit_ill %s is down\n", 21594 xmit_ill->ill_name)); 21595 goto drop_pkt; 21596 } 21597 21598 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21599 if (ipif == NULL) { 21600 ip1dbg(("ip_output: xmit_ill %s NULL ipif\n", 21601 xmit_ill->ill_name)); 21602 goto drop_pkt; 21603 } 21604 21605 match_flags = 0; 21606 if (IS_UNDER_IPMP(xmit_ill)) 21607 match_flags |= MATCH_IRE_MARK_TESTHIDDEN; 21608 21609 /* 21610 * Look for a ire that is part of the group, 21611 * if found use it else call ip_newroute_ipif. 21612 * IPCL_ZONEID is not used for matching because 21613 * IP_ALLZONES option is valid only when the 21614 * ill is accessible from all zones i.e has a 21615 * valid ipif in all zones. 21616 */ 21617 match_flags |= MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21618 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 21619 msg_getlabel(mp), match_flags, ipst); 21620 /* 21621 * If an ire exists use it or else create 21622 * an ire but don't add it to the cache. 21623 * Adding an ire may cause issues with 21624 * asymmetric routing. 21625 * In case of multiroute always act as if 21626 * ire does not exist. 21627 */ 21628 if (ire == NULL || ire->ire_flags & RTF_MULTIRT) { 21629 if (ire != NULL) 21630 ire_refrele(ire); 21631 ip_newroute_ipif(q, first_mp, ipif, 21632 dst, connp, 0, zoneid, infop); 21633 ipif_refrele(ipif); 21634 ip1dbg(("ip_output: xmit_ill via %s\n", 21635 xmit_ill->ill_name)); 21636 ill_refrele(xmit_ill); 21637 if (need_decref) 21638 CONN_DEC_REF(connp); 21639 return; 21640 } 21641 ipif_refrele(ipif); 21642 } else if (ip_nexthop || (connp != NULL && 21643 (connp->conn_nexthop_set)) && !ignore_nexthop) { 21644 if (!ip_nexthop) { 21645 ip_nexthop = B_TRUE; 21646 nexthop_addr = connp->conn_nexthop_v4; 21647 } 21648 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 21649 MATCH_IRE_GW; 21650 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 21651 NULL, zoneid, msg_getlabel(mp), match_flags, ipst); 21652 } else { 21653 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), 21654 ipst); 21655 } 21656 if (!ire) { 21657 if (ip_nexthop && !ignore_nexthop) { 21658 if (mctl_present) { 21659 io = (ipsec_out_t *)first_mp->b_rptr; 21660 ASSERT(first_mp->b_datap->db_type == 21661 M_CTL); 21662 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21663 } else { 21664 ASSERT(mp == first_mp); 21665 first_mp = allocb( 21666 sizeof (ipsec_info_t), BPRI_HI); 21667 if (first_mp == NULL) { 21668 first_mp = mp; 21669 goto discard_pkt; 21670 } 21671 first_mp->b_datap->db_type = M_CTL; 21672 first_mp->b_wptr += 21673 sizeof (ipsec_info_t); 21674 /* ipsec_out_secure is B_FALSE now */ 21675 bzero(first_mp->b_rptr, 21676 sizeof (ipsec_info_t)); 21677 io = (ipsec_out_t *)first_mp->b_rptr; 21678 io->ipsec_out_type = IPSEC_OUT; 21679 io->ipsec_out_len = 21680 sizeof (ipsec_out_t); 21681 io->ipsec_out_use_global_policy = 21682 B_TRUE; 21683 io->ipsec_out_ns = ipst->ips_netstack; 21684 first_mp->b_cont = mp; 21685 mctl_present = B_TRUE; 21686 } 21687 io->ipsec_out_ip_nexthop = ip_nexthop; 21688 io->ipsec_out_nexthop_addr = nexthop_addr; 21689 } 21690 noirefound: 21691 /* 21692 * Mark this packet as having originated on 21693 * this machine. This will be noted in 21694 * ire_add_then_send, which needs to know 21695 * whether to run it back through ip_wput or 21696 * ip_rput following successful resolution. 21697 */ 21698 mp->b_prev = NULL; 21699 mp->b_next = NULL; 21700 ip_newroute(q, first_mp, dst, connp, zoneid, ipst); 21701 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21702 "ip_wput_end: q %p (%S)", q, "newroute"); 21703 if (xmit_ill != NULL) 21704 ill_refrele(xmit_ill); 21705 if (need_decref) 21706 CONN_DEC_REF(connp); 21707 return; 21708 } 21709 } 21710 21711 /* We now know where we are going with it. */ 21712 21713 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21714 "ip_wput_end: q %p (%S)", q, "end"); 21715 21716 /* 21717 * Check if the ire has the RTF_MULTIRT flag, inherited 21718 * from an IRE_OFFSUBNET ire entry in ip_newroute. 21719 */ 21720 if (ire->ire_flags & RTF_MULTIRT) { 21721 /* 21722 * Force the TTL of multirouted packets if required. 21723 * The TTL of such packets is bounded by the 21724 * ip_multirt_ttl ndd variable. 21725 */ 21726 if ((ipst->ips_ip_multirt_ttl > 0) && 21727 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 21728 ip2dbg(("ip_wput: forcing multirt TTL to %d " 21729 "(was %d), dst 0x%08x\n", 21730 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 21731 ntohl(ire->ire_addr))); 21732 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 21733 } 21734 /* 21735 * At this point, we check to see if there are any pending 21736 * unresolved routes. ire_multirt_resolvable() 21737 * checks in O(n) that all IRE_OFFSUBNET ire 21738 * entries for the packet's destination and 21739 * flagged RTF_MULTIRT are currently resolved. 21740 * If some remain unresolved, we make a copy 21741 * of the current message. It will be used 21742 * to initiate additional route resolutions. 21743 */ 21744 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 21745 msg_getlabel(first_mp), ipst); 21746 ip2dbg(("ip_wput[noirefound]: ire %p, " 21747 "multirt_need_resolve %d, first_mp %p\n", 21748 (void *)ire, multirt_need_resolve, (void *)first_mp)); 21749 if (multirt_need_resolve) { 21750 copy_mp = copymsg(first_mp); 21751 if (copy_mp != NULL) { 21752 MULTIRT_DEBUG_TAG(copy_mp); 21753 } 21754 } 21755 } 21756 21757 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 21758 /* 21759 * Try to resolve another multiroute if 21760 * ire_multirt_resolvable() deemed it necessary. 21761 * At this point, we need to distinguish 21762 * multicasts from other packets. For multicasts, 21763 * we call ip_newroute_ipif() and request that both 21764 * multirouting and setsrc flags are checked. 21765 */ 21766 if (copy_mp != NULL) { 21767 if (CLASSD(dst)) { 21768 ipif_t *ipif = ipif_lookup_group(dst, zoneid, ipst); 21769 if (ipif) { 21770 ASSERT(infop->ip_opt_ill_index == 0); 21771 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 21772 RTF_SETSRC | RTF_MULTIRT, zoneid, infop); 21773 ipif_refrele(ipif); 21774 } else { 21775 MULTIRT_DEBUG_UNTAG(copy_mp); 21776 freemsg(copy_mp); 21777 copy_mp = NULL; 21778 } 21779 } else { 21780 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 21781 } 21782 } 21783 if (xmit_ill != NULL) 21784 ill_refrele(xmit_ill); 21785 if (need_decref) 21786 CONN_DEC_REF(connp); 21787 return; 21788 21789 icmp_parameter_problem: 21790 /* could not have originated externally */ 21791 ASSERT(mp->b_prev == NULL); 21792 if (ip_hdr_complete(ipha, zoneid, ipst) == 0) { 21793 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 21794 /* it's the IP header length that's in trouble */ 21795 icmp_param_problem(q, first_mp, 0, zoneid, ipst); 21796 first_mp = NULL; 21797 } 21798 21799 discard_pkt: 21800 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21801 drop_pkt: 21802 ip1dbg(("ip_wput: dropped packet\n")); 21803 if (ire != NULL) 21804 ire_refrele(ire); 21805 if (need_decref) 21806 CONN_DEC_REF(connp); 21807 freemsg(first_mp); 21808 if (xmit_ill != NULL) 21809 ill_refrele(xmit_ill); 21810 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21811 "ip_wput_end: q %p (%S)", q, "droppkt"); 21812 } 21813 21814 /* 21815 * If this is a conn_t queue, then we pass in the conn. This includes the 21816 * zoneid. 21817 * Otherwise, this is a message coming back from ARP or for an ill_t queue, 21818 * in which case we use the global zoneid since those are all part of 21819 * the global zone. 21820 */ 21821 void 21822 ip_wput(queue_t *q, mblk_t *mp) 21823 { 21824 if (CONN_Q(q)) 21825 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 21826 else 21827 ip_output(GLOBAL_ZONEID, mp, q, IP_WPUT); 21828 } 21829 21830 /* 21831 * 21832 * The following rules must be observed when accessing any ipif or ill 21833 * that has been cached in the conn. Typically conn_outgoing_ill, 21834 * conn_multicast_ipif and conn_multicast_ill. 21835 * 21836 * Access: The ipif or ill pointed to from the conn can be accessed under 21837 * the protection of the conn_lock or after it has been refheld under the 21838 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 21839 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 21840 * The reason for this is that a concurrent unplumb could actually be 21841 * cleaning up these cached pointers by walking the conns and might have 21842 * finished cleaning up the conn in question. The macros check that an 21843 * unplumb has not yet started on the ipif or ill. 21844 * 21845 * Caching: An ipif or ill pointer may be cached in the conn only after 21846 * making sure that an unplumb has not started. So the caching is done 21847 * while holding both the conn_lock and the ill_lock and after using the 21848 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 21849 * flag before starting the cleanup of conns. 21850 * 21851 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 21852 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 21853 * or a reference to the ipif or a reference to an ire that references the 21854 * ipif. An ipif only changes its ill when migrating from an underlying ill 21855 * to an IPMP ill in ipif_up(). 21856 */ 21857 ipif_t * 21858 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 21859 { 21860 ipif_t *ipif; 21861 ill_t *ill; 21862 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 21863 21864 *err = 0; 21865 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21866 mutex_enter(&connp->conn_lock); 21867 ipif = *ipifp; 21868 if (ipif != NULL) { 21869 ill = ipif->ipif_ill; 21870 mutex_enter(&ill->ill_lock); 21871 if (IPIF_CAN_LOOKUP(ipif)) { 21872 ipif_refhold_locked(ipif); 21873 mutex_exit(&ill->ill_lock); 21874 mutex_exit(&connp->conn_lock); 21875 rw_exit(&ipst->ips_ill_g_lock); 21876 return (ipif); 21877 } else { 21878 *err = IPIF_LOOKUP_FAILED; 21879 } 21880 mutex_exit(&ill->ill_lock); 21881 } 21882 mutex_exit(&connp->conn_lock); 21883 rw_exit(&ipst->ips_ill_g_lock); 21884 return (NULL); 21885 } 21886 21887 ill_t * 21888 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 21889 { 21890 ill_t *ill; 21891 21892 *err = 0; 21893 mutex_enter(&connp->conn_lock); 21894 ill = *illp; 21895 if (ill != NULL) { 21896 mutex_enter(&ill->ill_lock); 21897 if (ILL_CAN_LOOKUP(ill)) { 21898 ill_refhold_locked(ill); 21899 mutex_exit(&ill->ill_lock); 21900 mutex_exit(&connp->conn_lock); 21901 return (ill); 21902 } else { 21903 *err = ILL_LOOKUP_FAILED; 21904 } 21905 mutex_exit(&ill->ill_lock); 21906 } 21907 mutex_exit(&connp->conn_lock); 21908 return (NULL); 21909 } 21910 21911 static int 21912 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 21913 { 21914 ill_t *ill; 21915 21916 ill = ipif->ipif_ill; 21917 mutex_enter(&connp->conn_lock); 21918 mutex_enter(&ill->ill_lock); 21919 if (IPIF_CAN_LOOKUP(ipif)) { 21920 *ipifp = ipif; 21921 mutex_exit(&ill->ill_lock); 21922 mutex_exit(&connp->conn_lock); 21923 return (0); 21924 } 21925 mutex_exit(&ill->ill_lock); 21926 mutex_exit(&connp->conn_lock); 21927 return (IPIF_LOOKUP_FAILED); 21928 } 21929 21930 /* 21931 * This is called if the outbound datagram needs fragmentation. 21932 * 21933 * NOTE : This function does not ire_refrele the ire argument passed in. 21934 */ 21935 static void 21936 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire, zoneid_t zoneid, 21937 ip_stack_t *ipst, conn_t *connp) 21938 { 21939 ipha_t *ipha; 21940 mblk_t *mp; 21941 uint32_t v_hlen_tos_len; 21942 uint32_t max_frag; 21943 uint32_t frag_flag; 21944 boolean_t dont_use; 21945 21946 if (ipsec_mp->b_datap->db_type == M_CTL) { 21947 mp = ipsec_mp->b_cont; 21948 } else { 21949 mp = ipsec_mp; 21950 } 21951 21952 ipha = (ipha_t *)mp->b_rptr; 21953 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21954 21955 #ifdef _BIG_ENDIAN 21956 #define V_HLEN (v_hlen_tos_len >> 24) 21957 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21958 #else 21959 #define V_HLEN (v_hlen_tos_len & 0xFF) 21960 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21961 #endif 21962 21963 #ifndef SPEED_BEFORE_SAFETY 21964 /* 21965 * Check that ipha_length is consistent with 21966 * the mblk length 21967 */ 21968 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 21969 ip0dbg(("Packet length mismatch: %d, %ld\n", 21970 LENGTH, msgdsize(mp))); 21971 freemsg(ipsec_mp); 21972 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21973 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 21974 "packet length mismatch"); 21975 return; 21976 } 21977 #endif 21978 /* 21979 * Don't use frag_flag if pre-built packet or source 21980 * routed or if multicast (since multicast packets do not solicit 21981 * ICMP "packet too big" messages). Get the values of 21982 * max_frag and frag_flag atomically by acquiring the 21983 * ire_lock. 21984 */ 21985 mutex_enter(&ire->ire_lock); 21986 max_frag = ire->ire_max_frag; 21987 frag_flag = ire->ire_frag_flag; 21988 mutex_exit(&ire->ire_lock); 21989 21990 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 21991 (V_HLEN != IP_SIMPLE_HDR_VERSION && 21992 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 21993 21994 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 21995 (dont_use ? 0 : frag_flag), zoneid, ipst, connp); 21996 } 21997 21998 /* 21999 * Used for deciding the MSS size for the upper layer. Thus 22000 * we need to check the outbound policy values in the conn. 22001 */ 22002 int 22003 conn_ipsec_length(conn_t *connp) 22004 { 22005 ipsec_latch_t *ipl; 22006 22007 ipl = connp->conn_latch; 22008 if (ipl == NULL) 22009 return (0); 22010 22011 if (ipl->ipl_out_policy == NULL) 22012 return (0); 22013 22014 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 22015 } 22016 22017 /* 22018 * Returns an estimate of the IPsec headers size. This is used if 22019 * we don't want to call into IPsec to get the exact size. 22020 */ 22021 int 22022 ipsec_out_extra_length(mblk_t *ipsec_mp) 22023 { 22024 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 22025 ipsec_action_t *a; 22026 22027 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22028 if (!io->ipsec_out_secure) 22029 return (0); 22030 22031 a = io->ipsec_out_act; 22032 22033 if (a == NULL) { 22034 ASSERT(io->ipsec_out_policy != NULL); 22035 a = io->ipsec_out_policy->ipsp_act; 22036 } 22037 ASSERT(a != NULL); 22038 22039 return (a->ipa_ovhd); 22040 } 22041 22042 /* 22043 * Returns an estimate of the IPsec headers size. This is used if 22044 * we don't want to call into IPsec to get the exact size. 22045 */ 22046 int 22047 ipsec_in_extra_length(mblk_t *ipsec_mp) 22048 { 22049 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 22050 ipsec_action_t *a; 22051 22052 ASSERT(ii->ipsec_in_type == IPSEC_IN); 22053 22054 a = ii->ipsec_in_action; 22055 return (a == NULL ? 0 : a->ipa_ovhd); 22056 } 22057 22058 /* 22059 * If there are any source route options, return the true final 22060 * destination. Otherwise, return the destination. 22061 */ 22062 ipaddr_t 22063 ip_get_dst(ipha_t *ipha) 22064 { 22065 ipoptp_t opts; 22066 uchar_t *opt; 22067 uint8_t optval; 22068 uint8_t optlen; 22069 ipaddr_t dst; 22070 uint32_t off; 22071 22072 dst = ipha->ipha_dst; 22073 22074 if (IS_SIMPLE_IPH(ipha)) 22075 return (dst); 22076 22077 for (optval = ipoptp_first(&opts, ipha); 22078 optval != IPOPT_EOL; 22079 optval = ipoptp_next(&opts)) { 22080 opt = opts.ipoptp_cur; 22081 optlen = opts.ipoptp_len; 22082 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 22083 switch (optval) { 22084 case IPOPT_SSRR: 22085 case IPOPT_LSRR: 22086 off = opt[IPOPT_OFFSET]; 22087 /* 22088 * If one of the conditions is true, it means 22089 * end of options and dst already has the right 22090 * value. 22091 */ 22092 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 22093 off = optlen - IP_ADDR_LEN; 22094 bcopy(&opt[off], &dst, IP_ADDR_LEN); 22095 } 22096 return (dst); 22097 default: 22098 break; 22099 } 22100 } 22101 22102 return (dst); 22103 } 22104 22105 mblk_t * 22106 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 22107 conn_t *connp, boolean_t unspec_src, zoneid_t zoneid) 22108 { 22109 ipsec_out_t *io; 22110 mblk_t *first_mp; 22111 boolean_t policy_present; 22112 ip_stack_t *ipst; 22113 ipsec_stack_t *ipss; 22114 22115 ASSERT(ire != NULL); 22116 ipst = ire->ire_ipst; 22117 ipss = ipst->ips_netstack->netstack_ipsec; 22118 22119 first_mp = mp; 22120 if (mp->b_datap->db_type == M_CTL) { 22121 io = (ipsec_out_t *)first_mp->b_rptr; 22122 /* 22123 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 22124 * 22125 * 1) There is per-socket policy (including cached global 22126 * policy) or a policy on the IP-in-IP tunnel. 22127 * 2) There is no per-socket policy, but it is 22128 * a multicast packet that needs to go out 22129 * on a specific interface. This is the case 22130 * where (ip_wput and ip_wput_multicast) attaches 22131 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 22132 * 22133 * In case (2) we check with global policy to 22134 * see if there is a match and set the ill_index 22135 * appropriately so that we can lookup the ire 22136 * properly in ip_wput_ipsec_out. 22137 */ 22138 22139 /* 22140 * ipsec_out_use_global_policy is set to B_FALSE 22141 * in ipsec_in_to_out(). Refer to that function for 22142 * details. 22143 */ 22144 if ((io->ipsec_out_latch == NULL) && 22145 (io->ipsec_out_use_global_policy)) { 22146 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 22147 ire, connp, unspec_src, zoneid)); 22148 } 22149 if (!io->ipsec_out_secure) { 22150 /* 22151 * If this is not a secure packet, drop 22152 * the IPSEC_OUT mp and treat it as a clear 22153 * packet. This happens when we are sending 22154 * a ICMP reply back to a clear packet. See 22155 * ipsec_in_to_out() for details. 22156 */ 22157 mp = first_mp->b_cont; 22158 freeb(first_mp); 22159 } 22160 return (mp); 22161 } 22162 /* 22163 * See whether we need to attach a global policy here. We 22164 * don't depend on the conn (as it could be null) for deciding 22165 * what policy this datagram should go through because it 22166 * should have happened in ip_wput if there was some 22167 * policy. This normally happens for connections which are not 22168 * fully bound preventing us from caching policies in 22169 * ip_bind. Packets coming from the TCP listener/global queue 22170 * - which are non-hard_bound - could also be affected by 22171 * applying policy here. 22172 * 22173 * If this packet is coming from tcp global queue or listener, 22174 * we will be applying policy here. This may not be *right* 22175 * if these packets are coming from the detached connection as 22176 * it could have gone in clear before. This happens only if a 22177 * TCP connection started when there is no policy and somebody 22178 * added policy before it became detached. Thus packets of the 22179 * detached connection could go out secure and the other end 22180 * would drop it because it will be expecting in clear. The 22181 * converse is not true i.e if somebody starts a TCP 22182 * connection and deletes the policy, all the packets will 22183 * still go out with the policy that existed before deleting 22184 * because ip_unbind sends up policy information which is used 22185 * by TCP on subsequent ip_wputs. The right solution is to fix 22186 * TCP to attach a dummy IPSEC_OUT and set 22187 * ipsec_out_use_global_policy to B_FALSE. As this might 22188 * affect performance for normal cases, we are not doing it. 22189 * Thus, set policy before starting any TCP connections. 22190 * 22191 * NOTE - We might apply policy even for a hard bound connection 22192 * - for which we cached policy in ip_bind - if somebody added 22193 * global policy after we inherited the policy in ip_bind. 22194 * This means that the packets that were going out in clear 22195 * previously would start going secure and hence get dropped 22196 * on the other side. To fix this, TCP attaches a dummy 22197 * ipsec_out and make sure that we don't apply global policy. 22198 */ 22199 if (ipha != NULL) 22200 policy_present = ipss->ipsec_outbound_v4_policy_present; 22201 else 22202 policy_present = ipss->ipsec_outbound_v6_policy_present; 22203 if (!policy_present) 22204 return (mp); 22205 22206 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src, 22207 zoneid)); 22208 } 22209 22210 /* 22211 * This function does the ire_refrele of the ire passed in as the 22212 * argument. As this function looks up more ires i.e broadcast ires, 22213 * it needs to REFRELE them. Currently, for simplicity we don't 22214 * differentiate the one passed in and looked up here. We always 22215 * REFRELE. 22216 * IPQoS Notes: 22217 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 22218 * IPsec packets are done in ipsec_out_process. 22219 */ 22220 void 22221 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller, 22222 zoneid_t zoneid) 22223 { 22224 ipha_t *ipha; 22225 #define rptr ((uchar_t *)ipha) 22226 queue_t *stq; 22227 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 22228 uint32_t v_hlen_tos_len; 22229 uint32_t ttl_protocol; 22230 ipaddr_t src; 22231 ipaddr_t dst; 22232 uint32_t cksum; 22233 ipaddr_t orig_src; 22234 ire_t *ire1; 22235 mblk_t *next_mp; 22236 uint_t hlen; 22237 uint16_t *up; 22238 uint32_t max_frag = ire->ire_max_frag; 22239 ill_t *ill = ire_to_ill(ire); 22240 int clusterwide; 22241 uint16_t ip_hdr_included; /* IP header included by ULP? */ 22242 int ipsec_len; 22243 mblk_t *first_mp; 22244 ipsec_out_t *io; 22245 boolean_t conn_dontroute; /* conn value for multicast */ 22246 boolean_t conn_multicast_loop; /* conn value for multicast */ 22247 boolean_t multicast_forward; /* Should we forward ? */ 22248 boolean_t unspec_src; 22249 ill_t *conn_outgoing_ill = NULL; 22250 ill_t *ire_ill; 22251 ill_t *ire1_ill; 22252 ill_t *out_ill; 22253 uint32_t ill_index = 0; 22254 boolean_t multirt_send = B_FALSE; 22255 int err; 22256 ipxmit_state_t pktxmit_state; 22257 ip_stack_t *ipst = ire->ire_ipst; 22258 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 22259 22260 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 22261 "ip_wput_ire_start: q %p", q); 22262 22263 multicast_forward = B_FALSE; 22264 unspec_src = (connp != NULL && connp->conn_unspec_src); 22265 22266 if (ire->ire_flags & RTF_MULTIRT) { 22267 /* 22268 * Multirouting case. The bucket where ire is stored 22269 * probably holds other RTF_MULTIRT flagged ire 22270 * to the destination. In this call to ip_wput_ire, 22271 * we attempt to send the packet through all 22272 * those ires. Thus, we first ensure that ire is the 22273 * first RTF_MULTIRT ire in the bucket, 22274 * before walking the ire list. 22275 */ 22276 ire_t *first_ire; 22277 irb_t *irb = ire->ire_bucket; 22278 ASSERT(irb != NULL); 22279 22280 /* Make sure we do not omit any multiroute ire. */ 22281 IRB_REFHOLD(irb); 22282 for (first_ire = irb->irb_ire; 22283 first_ire != NULL; 22284 first_ire = first_ire->ire_next) { 22285 if ((first_ire->ire_flags & RTF_MULTIRT) && 22286 (first_ire->ire_addr == ire->ire_addr) && 22287 !(first_ire->ire_marks & 22288 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN))) 22289 break; 22290 } 22291 22292 if ((first_ire != NULL) && (first_ire != ire)) { 22293 IRE_REFHOLD(first_ire); 22294 ire_refrele(ire); 22295 ire = first_ire; 22296 ill = ire_to_ill(ire); 22297 } 22298 IRB_REFRELE(irb); 22299 } 22300 22301 /* 22302 * conn_outgoing_ill variable is used only in the broadcast loop. 22303 * for performance we don't grab the mutexs in the fastpath 22304 */ 22305 if (ire->ire_type == IRE_BROADCAST && connp != NULL && 22306 connp->conn_outgoing_ill != NULL) { 22307 conn_outgoing_ill = conn_get_held_ill(connp, 22308 &connp->conn_outgoing_ill, &err); 22309 if (err == ILL_LOOKUP_FAILED) { 22310 ire_refrele(ire); 22311 freemsg(mp); 22312 return; 22313 } 22314 } 22315 22316 if (mp->b_datap->db_type != M_CTL) { 22317 ipha = (ipha_t *)mp->b_rptr; 22318 } else { 22319 io = (ipsec_out_t *)mp->b_rptr; 22320 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22321 ASSERT(zoneid == io->ipsec_out_zoneid); 22322 ASSERT(zoneid != ALL_ZONES); 22323 ipha = (ipha_t *)mp->b_cont->b_rptr; 22324 dst = ipha->ipha_dst; 22325 /* 22326 * For the multicast case, ipsec_out carries conn_dontroute and 22327 * conn_multicast_loop as conn may not be available here. We 22328 * need this for multicast loopback and forwarding which is done 22329 * later in the code. 22330 */ 22331 if (CLASSD(dst)) { 22332 conn_dontroute = io->ipsec_out_dontroute; 22333 conn_multicast_loop = io->ipsec_out_multicast_loop; 22334 /* 22335 * If conn_dontroute is not set or conn_multicast_loop 22336 * is set, we need to do forwarding/loopback. For 22337 * datagrams from ip_wput_multicast, conn_dontroute is 22338 * set to B_TRUE and conn_multicast_loop is set to 22339 * B_FALSE so that we neither do forwarding nor 22340 * loopback. 22341 */ 22342 if (!conn_dontroute || conn_multicast_loop) 22343 multicast_forward = B_TRUE; 22344 } 22345 } 22346 22347 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 22348 ire->ire_zoneid != ALL_ZONES) { 22349 /* 22350 * When a zone sends a packet to another zone, we try to deliver 22351 * the packet under the same conditions as if the destination 22352 * was a real node on the network. To do so, we look for a 22353 * matching route in the forwarding table. 22354 * RTF_REJECT and RTF_BLACKHOLE are handled just like 22355 * ip_newroute() does. 22356 * Note that IRE_LOCAL are special, since they are used 22357 * when the zoneid doesn't match in some cases. This means that 22358 * we need to handle ipha_src differently since ire_src_addr 22359 * belongs to the receiving zone instead of the sending zone. 22360 * When ip_restrict_interzone_loopback is set, then 22361 * ire_cache_lookup() ensures that IRE_LOCAL are only used 22362 * for loopback between zones when the logical "Ethernet" would 22363 * have looped them back. 22364 */ 22365 ire_t *src_ire; 22366 22367 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 22368 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 22369 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE), ipst); 22370 if (src_ire != NULL && 22371 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) && 22372 (!ipst->ips_ip_restrict_interzone_loopback || 22373 ire_local_same_lan(ire, src_ire))) { 22374 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 22375 ipha->ipha_src = src_ire->ire_src_addr; 22376 ire_refrele(src_ire); 22377 } else { 22378 ire_refrele(ire); 22379 if (conn_outgoing_ill != NULL) 22380 ill_refrele(conn_outgoing_ill); 22381 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 22382 if (src_ire != NULL) { 22383 if (src_ire->ire_flags & RTF_BLACKHOLE) { 22384 ire_refrele(src_ire); 22385 freemsg(mp); 22386 return; 22387 } 22388 ire_refrele(src_ire); 22389 } 22390 if (ip_hdr_complete(ipha, zoneid, ipst)) { 22391 /* Failed */ 22392 freemsg(mp); 22393 return; 22394 } 22395 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, zoneid, 22396 ipst); 22397 return; 22398 } 22399 } 22400 22401 if (mp->b_datap->db_type == M_CTL || 22402 ipss->ipsec_outbound_v4_policy_present) { 22403 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 22404 unspec_src, zoneid); 22405 if (mp == NULL) { 22406 ire_refrele(ire); 22407 if (conn_outgoing_ill != NULL) 22408 ill_refrele(conn_outgoing_ill); 22409 return; 22410 } 22411 /* 22412 * Trusted Extensions supports all-zones interfaces, so 22413 * zoneid == ALL_ZONES is valid, but IPsec maps ALL_ZONES to 22414 * the global zone. 22415 */ 22416 if (zoneid == ALL_ZONES && mp->b_datap->db_type == M_CTL) { 22417 io = (ipsec_out_t *)mp->b_rptr; 22418 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22419 zoneid = io->ipsec_out_zoneid; 22420 } 22421 } 22422 22423 first_mp = mp; 22424 ipsec_len = 0; 22425 22426 if (first_mp->b_datap->db_type == M_CTL) { 22427 io = (ipsec_out_t *)first_mp->b_rptr; 22428 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22429 mp = first_mp->b_cont; 22430 ipsec_len = ipsec_out_extra_length(first_mp); 22431 ASSERT(ipsec_len >= 0); 22432 /* We already picked up the zoneid from the M_CTL above */ 22433 ASSERT(zoneid == io->ipsec_out_zoneid); 22434 ASSERT(zoneid != ALL_ZONES); 22435 22436 /* 22437 * Drop M_CTL here if IPsec processing is not needed. 22438 * (Non-IPsec use of M_CTL extracted any information it 22439 * needed above). 22440 */ 22441 if (ipsec_len == 0) { 22442 freeb(first_mp); 22443 first_mp = mp; 22444 } 22445 } 22446 22447 /* 22448 * Fast path for ip_wput_ire 22449 */ 22450 22451 ipha = (ipha_t *)mp->b_rptr; 22452 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 22453 dst = ipha->ipha_dst; 22454 22455 /* 22456 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 22457 * if the socket is a SOCK_RAW type. The transport checksum should 22458 * be provided in the pre-built packet, so we don't need to compute it. 22459 * Also, other application set flags, like DF, should not be altered. 22460 * Other transport MUST pass down zero. 22461 */ 22462 ip_hdr_included = ipha->ipha_ident; 22463 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 22464 22465 if (CLASSD(dst)) { 22466 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 22467 ntohl(dst), 22468 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 22469 ntohl(ire->ire_addr))); 22470 } 22471 22472 /* Macros to extract header fields from data already in registers */ 22473 #ifdef _BIG_ENDIAN 22474 #define V_HLEN (v_hlen_tos_len >> 24) 22475 #define LENGTH (v_hlen_tos_len & 0xFFFF) 22476 #define PROTO (ttl_protocol & 0xFF) 22477 #else 22478 #define V_HLEN (v_hlen_tos_len & 0xFF) 22479 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 22480 #define PROTO (ttl_protocol >> 8) 22481 #endif 22482 22483 orig_src = src = ipha->ipha_src; 22484 /* (The loop back to "another" is explained down below.) */ 22485 another:; 22486 /* 22487 * Assign an ident value for this packet. We assign idents on 22488 * a per destination basis out of the IRE. There could be 22489 * other threads targeting the same destination, so we have to 22490 * arrange for a atomic increment. Note that we use a 32-bit 22491 * atomic add because it has better performance than its 22492 * 16-bit sibling. 22493 * 22494 * If running in cluster mode and if the source address 22495 * belongs to a replicated service then vector through 22496 * cl_inet_ipident vector to allocate ip identifier 22497 * NOTE: This is a contract private interface with the 22498 * clustering group. 22499 */ 22500 clusterwide = 0; 22501 if (cl_inet_ipident) { 22502 ASSERT(cl_inet_isclusterwide); 22503 netstackid_t stack_id = ipst->ips_netstack->netstack_stackid; 22504 22505 if ((*cl_inet_isclusterwide)(stack_id, IPPROTO_IP, 22506 AF_INET, (uint8_t *)(uintptr_t)src, NULL)) { 22507 ipha->ipha_ident = (*cl_inet_ipident)(stack_id, 22508 IPPROTO_IP, AF_INET, (uint8_t *)(uintptr_t)src, 22509 (uint8_t *)(uintptr_t)dst, NULL); 22510 clusterwide = 1; 22511 } 22512 } 22513 if (!clusterwide) { 22514 ipha->ipha_ident = 22515 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 22516 } 22517 22518 #ifndef _BIG_ENDIAN 22519 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 22520 #endif 22521 22522 /* 22523 * Set source address unless sent on an ill or conn_unspec_src is set. 22524 * This is needed to obey conn_unspec_src when packets go through 22525 * ip_newroute + arp. 22526 * Assumes ip_newroute{,_multi} sets the source address as well. 22527 */ 22528 if (src == INADDR_ANY && !unspec_src) { 22529 /* 22530 * Assign the appropriate source address from the IRE if none 22531 * was specified. 22532 */ 22533 ASSERT(ire->ire_ipversion == IPV4_VERSION); 22534 22535 src = ire->ire_src_addr; 22536 if (connp == NULL) { 22537 ip1dbg(("ip_wput_ire: no connp and no src " 22538 "address for dst 0x%x, using src 0x%x\n", 22539 ntohl(dst), 22540 ntohl(src))); 22541 } 22542 ipha->ipha_src = src; 22543 } 22544 stq = ire->ire_stq; 22545 22546 /* 22547 * We only allow ire chains for broadcasts since there will 22548 * be multiple IRE_CACHE entries for the same multicast 22549 * address (one per ipif). 22550 */ 22551 next_mp = NULL; 22552 22553 /* broadcast packet */ 22554 if (ire->ire_type == IRE_BROADCAST) 22555 goto broadcast; 22556 22557 /* loopback ? */ 22558 if (stq == NULL) 22559 goto nullstq; 22560 22561 /* The ill_index for outbound ILL */ 22562 ill_index = Q_TO_INDEX(stq); 22563 22564 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 22565 ttl_protocol = ((uint16_t *)ipha)[4]; 22566 22567 /* pseudo checksum (do it in parts for IP header checksum) */ 22568 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 22569 22570 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 22571 queue_t *dev_q = stq->q_next; 22572 22573 /* 22574 * For DIRECT_CAPABLE, we do flow control at 22575 * the time of sending the packet. See 22576 * ILL_SEND_TX(). 22577 */ 22578 if (!ILL_DIRECT_CAPABLE((ill_t *)stq->q_ptr) && 22579 (DEV_Q_FLOW_BLOCKED(dev_q))) 22580 goto blocked; 22581 22582 if ((PROTO == IPPROTO_UDP) && 22583 (ip_hdr_included != IP_HDR_INCLUDED)) { 22584 hlen = (V_HLEN & 0xF) << 2; 22585 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22586 if (*up != 0) { 22587 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 22588 hlen, LENGTH, max_frag, ipsec_len, cksum); 22589 /* Software checksum? */ 22590 if (DB_CKSUMFLAGS(mp) == 0) { 22591 IP_STAT(ipst, ip_out_sw_cksum); 22592 IP_STAT_UPDATE(ipst, 22593 ip_udp_out_sw_cksum_bytes, 22594 LENGTH - hlen); 22595 } 22596 } 22597 } 22598 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 22599 hlen = (V_HLEN & 0xF) << 2; 22600 if (PROTO == IPPROTO_TCP) { 22601 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22602 /* 22603 * The packet header is processed once and for all, even 22604 * in the multirouting case. We disable hardware 22605 * checksum if the packet is multirouted, as it will be 22606 * replicated via several interfaces, and not all of 22607 * them may have this capability. 22608 */ 22609 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 22610 LENGTH, max_frag, ipsec_len, cksum); 22611 /* Software checksum? */ 22612 if (DB_CKSUMFLAGS(mp) == 0) { 22613 IP_STAT(ipst, ip_out_sw_cksum); 22614 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22615 LENGTH - hlen); 22616 } 22617 } else { 22618 sctp_hdr_t *sctph; 22619 22620 ASSERT(PROTO == IPPROTO_SCTP); 22621 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22622 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22623 /* 22624 * Zero out the checksum field to ensure proper 22625 * checksum calculation. 22626 */ 22627 sctph->sh_chksum = 0; 22628 #ifdef DEBUG 22629 if (!skip_sctp_cksum) 22630 #endif 22631 sctph->sh_chksum = sctp_cksum(mp, hlen); 22632 } 22633 } 22634 22635 /* 22636 * If this is a multicast packet and originated from ip_wput 22637 * we need to do loopback and forwarding checks. If it comes 22638 * from ip_wput_multicast, we SHOULD not do this. 22639 */ 22640 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 22641 22642 /* checksum */ 22643 cksum += ttl_protocol; 22644 22645 /* fragment the packet */ 22646 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 22647 goto fragmentit; 22648 /* 22649 * Don't use frag_flag if packet is pre-built or source 22650 * routed or if multicast (since multicast packets do 22651 * not solicit ICMP "packet too big" messages). 22652 */ 22653 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22654 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22655 !ip_source_route_included(ipha)) && 22656 !CLASSD(ipha->ipha_dst)) 22657 ipha->ipha_fragment_offset_and_flags |= 22658 htons(ire->ire_frag_flag); 22659 22660 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22661 /* calculate IP header checksum */ 22662 cksum += ipha->ipha_ident; 22663 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 22664 cksum += ipha->ipha_fragment_offset_and_flags; 22665 22666 /* IP options present */ 22667 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22668 if (hlen) 22669 goto checksumoptions; 22670 22671 /* calculate hdr checksum */ 22672 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22673 cksum = ~(cksum + (cksum >> 16)); 22674 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22675 } 22676 if (ipsec_len != 0) { 22677 /* 22678 * We will do the rest of the processing after 22679 * we come back from IPsec in ip_wput_ipsec_out(). 22680 */ 22681 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 22682 22683 io = (ipsec_out_t *)first_mp->b_rptr; 22684 io->ipsec_out_ill_index = 22685 ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 22686 ipsec_out_process(q, first_mp, ire, 0); 22687 ire_refrele(ire); 22688 if (conn_outgoing_ill != NULL) 22689 ill_refrele(conn_outgoing_ill); 22690 return; 22691 } 22692 22693 /* 22694 * In most cases, the emission loop below is entered only 22695 * once. Only in the case where the ire holds the 22696 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 22697 * flagged ires in the bucket, and send the packet 22698 * through all crossed RTF_MULTIRT routes. 22699 */ 22700 if (ire->ire_flags & RTF_MULTIRT) { 22701 multirt_send = B_TRUE; 22702 } 22703 do { 22704 if (multirt_send) { 22705 irb_t *irb; 22706 /* 22707 * We are in a multiple send case, need to get 22708 * the next ire and make a duplicate of the packet. 22709 * ire1 holds here the next ire to process in the 22710 * bucket. If multirouting is expected, 22711 * any non-RTF_MULTIRT ire that has the 22712 * right destination address is ignored. 22713 */ 22714 irb = ire->ire_bucket; 22715 ASSERT(irb != NULL); 22716 22717 IRB_REFHOLD(irb); 22718 for (ire1 = ire->ire_next; 22719 ire1 != NULL; 22720 ire1 = ire1->ire_next) { 22721 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 22722 continue; 22723 if (ire1->ire_addr != ire->ire_addr) 22724 continue; 22725 if (ire1->ire_marks & 22726 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN)) 22727 continue; 22728 22729 /* Got one */ 22730 IRE_REFHOLD(ire1); 22731 break; 22732 } 22733 IRB_REFRELE(irb); 22734 22735 if (ire1 != NULL) { 22736 next_mp = copyb(mp); 22737 if ((next_mp == NULL) || 22738 ((mp->b_cont != NULL) && 22739 ((next_mp->b_cont = 22740 dupmsg(mp->b_cont)) == NULL))) { 22741 freemsg(next_mp); 22742 next_mp = NULL; 22743 ire_refrele(ire1); 22744 ire1 = NULL; 22745 } 22746 } 22747 22748 /* Last multiroute ire; don't loop anymore. */ 22749 if (ire1 == NULL) { 22750 multirt_send = B_FALSE; 22751 } 22752 } 22753 22754 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 22755 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha, 22756 mblk_t *, mp); 22757 FW_HOOKS(ipst->ips_ip4_physical_out_event, 22758 ipst->ips_ipv4firewall_physical_out, 22759 NULL, ire->ire_ipif->ipif_ill, ipha, mp, mp, 0, ipst); 22760 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 22761 22762 if (mp == NULL) 22763 goto release_ire_and_ill; 22764 22765 if (ipst->ips_ipobs_enabled) { 22766 zoneid_t szone; 22767 22768 /* 22769 * On the outbound path the destination zone will be 22770 * unknown as we're sending this packet out on the 22771 * wire. 22772 */ 22773 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, ipst, 22774 ALL_ZONES); 22775 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 22776 ire->ire_ipif->ipif_ill, IPV4_VERSION, 0, ipst); 22777 } 22778 mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT); 22779 DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire); 22780 22781 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE, connp); 22782 22783 if ((pktxmit_state == SEND_FAILED) || 22784 (pktxmit_state == LLHDR_RESLV_FAILED)) { 22785 ip2dbg(("ip_wput_ire: ip_xmit_v4 failed" 22786 "- packet dropped\n")); 22787 release_ire_and_ill: 22788 ire_refrele(ire); 22789 if (next_mp != NULL) { 22790 freemsg(next_mp); 22791 ire_refrele(ire1); 22792 } 22793 if (conn_outgoing_ill != NULL) 22794 ill_refrele(conn_outgoing_ill); 22795 return; 22796 } 22797 22798 if (CLASSD(dst)) { 22799 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastPkts); 22800 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastOctets, 22801 LENGTH); 22802 } 22803 22804 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22805 "ip_wput_ire_end: q %p (%S)", 22806 q, "last copy out"); 22807 IRE_REFRELE(ire); 22808 22809 if (multirt_send) { 22810 ASSERT(ire1); 22811 /* 22812 * Proceed with the next RTF_MULTIRT ire, 22813 * Also set up the send-to queue accordingly. 22814 */ 22815 ire = ire1; 22816 ire1 = NULL; 22817 stq = ire->ire_stq; 22818 mp = next_mp; 22819 next_mp = NULL; 22820 ipha = (ipha_t *)mp->b_rptr; 22821 ill_index = Q_TO_INDEX(stq); 22822 ill = (ill_t *)stq->q_ptr; 22823 } 22824 } while (multirt_send); 22825 if (conn_outgoing_ill != NULL) 22826 ill_refrele(conn_outgoing_ill); 22827 return; 22828 22829 /* 22830 * ire->ire_type == IRE_BROADCAST (minimize diffs) 22831 */ 22832 broadcast: 22833 { 22834 /* 22835 * To avoid broadcast storms, we usually set the TTL to 1 for 22836 * broadcasts. However, if SO_DONTROUTE isn't set, this value 22837 * can be overridden stack-wide through the ip_broadcast_ttl 22838 * ndd tunable, or on a per-connection basis through the 22839 * IP_BROADCAST_TTL socket option. 22840 * 22841 * In the event that we are replying to incoming ICMP packets, 22842 * connp could be NULL. 22843 */ 22844 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 22845 if (connp != NULL) { 22846 if (connp->conn_dontroute) 22847 ipha->ipha_ttl = 1; 22848 else if (connp->conn_broadcast_ttl != 0) 22849 ipha->ipha_ttl = connp->conn_broadcast_ttl; 22850 } 22851 22852 /* 22853 * Note that we are not doing a IRB_REFHOLD here. 22854 * Actually we don't care if the list changes i.e 22855 * if somebody deletes an IRE from the list while 22856 * we drop the lock, the next time we come around 22857 * ire_next will be NULL and hence we won't send 22858 * out multiple copies which is fine. 22859 */ 22860 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 22861 ire1 = ire->ire_next; 22862 if (conn_outgoing_ill != NULL) { 22863 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 22864 ASSERT(ire1 == ire->ire_next); 22865 if (ire1 != NULL && ire1->ire_addr == dst) { 22866 ire_refrele(ire); 22867 ire = ire1; 22868 IRE_REFHOLD(ire); 22869 ire1 = ire->ire_next; 22870 continue; 22871 } 22872 rw_exit(&ire->ire_bucket->irb_lock); 22873 /* Did not find a matching ill */ 22874 ip1dbg(("ip_wput_ire: broadcast with no " 22875 "matching IP_BOUND_IF ill %s dst %x\n", 22876 conn_outgoing_ill->ill_name, dst)); 22877 freemsg(first_mp); 22878 if (ire != NULL) 22879 ire_refrele(ire); 22880 ill_refrele(conn_outgoing_ill); 22881 return; 22882 } 22883 } else if (ire1 != NULL && ire1->ire_addr == dst) { 22884 /* 22885 * If the next IRE has the same address and is not one 22886 * of the two copies that we need to send, try to see 22887 * whether this copy should be sent at all. This 22888 * assumes that we insert loopbacks first and then 22889 * non-loopbacks. This is acheived by inserting the 22890 * loopback always before non-loopback. 22891 * This is used to send a single copy of a broadcast 22892 * packet out all physical interfaces that have an 22893 * matching IRE_BROADCAST while also looping 22894 * back one copy (to ip_wput_local) for each 22895 * matching physical interface. However, we avoid 22896 * sending packets out different logical that match by 22897 * having ipif_up/ipif_down supress duplicate 22898 * IRE_BROADCASTS. 22899 * 22900 * This feature is currently used to get broadcasts 22901 * sent to multiple interfaces, when the broadcast 22902 * address being used applies to multiple interfaces. 22903 * For example, a whole net broadcast will be 22904 * replicated on every connected subnet of 22905 * the target net. 22906 * 22907 * Each zone has its own set of IRE_BROADCASTs, so that 22908 * we're able to distribute inbound packets to multiple 22909 * zones who share a broadcast address. We avoid looping 22910 * back outbound packets in different zones but on the 22911 * same ill, as the application would see duplicates. 22912 * 22913 * This logic assumes that ire_add_v4() groups the 22914 * IRE_BROADCAST entries so that those with the same 22915 * ire_addr are kept together. 22916 */ 22917 ire_ill = ire->ire_ipif->ipif_ill; 22918 if (ire->ire_stq != NULL || ire1->ire_stq == NULL) { 22919 while (ire1 != NULL && ire1->ire_addr == dst) { 22920 ire1_ill = ire1->ire_ipif->ipif_ill; 22921 if (ire1_ill != ire_ill) 22922 break; 22923 ire1 = ire1->ire_next; 22924 } 22925 } 22926 } 22927 ASSERT(multirt_send == B_FALSE); 22928 if (ire1 != NULL && ire1->ire_addr == dst) { 22929 if ((ire->ire_flags & RTF_MULTIRT) && 22930 (ire1->ire_flags & RTF_MULTIRT)) { 22931 /* 22932 * We are in the multirouting case. 22933 * The message must be sent at least 22934 * on both ires. These ires have been 22935 * inserted AFTER the standard ones 22936 * in ip_rt_add(). There are thus no 22937 * other ire entries for the destination 22938 * address in the rest of the bucket 22939 * that do not have the RTF_MULTIRT 22940 * flag. We don't process a copy 22941 * of the message here. This will be 22942 * done in the final sending loop. 22943 */ 22944 multirt_send = B_TRUE; 22945 } else { 22946 next_mp = ip_copymsg(first_mp); 22947 if (next_mp != NULL) 22948 IRE_REFHOLD(ire1); 22949 } 22950 } 22951 rw_exit(&ire->ire_bucket->irb_lock); 22952 } 22953 22954 if (stq) { 22955 /* 22956 * A non-NULL send-to queue means this packet is going 22957 * out of this machine. 22958 */ 22959 out_ill = (ill_t *)stq->q_ptr; 22960 22961 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutRequests); 22962 ttl_protocol = ((uint16_t *)ipha)[4]; 22963 /* 22964 * We accumulate the pseudo header checksum in cksum. 22965 * This is pretty hairy code, so watch close. One 22966 * thing to keep in mind is that UDP and TCP have 22967 * stored their respective datagram lengths in their 22968 * checksum fields. This lines things up real nice. 22969 */ 22970 cksum = (dst >> 16) + (dst & 0xFFFF) + 22971 (src >> 16) + (src & 0xFFFF); 22972 /* 22973 * We assume the udp checksum field contains the 22974 * length, so to compute the pseudo header checksum, 22975 * all we need is the protocol number and src/dst. 22976 */ 22977 /* Provide the checksums for UDP and TCP. */ 22978 if ((PROTO == IPPROTO_TCP) && 22979 (ip_hdr_included != IP_HDR_INCLUDED)) { 22980 /* hlen gets the number of uchar_ts in the IP header */ 22981 hlen = (V_HLEN & 0xF) << 2; 22982 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22983 IP_STAT(ipst, ip_out_sw_cksum); 22984 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22985 LENGTH - hlen); 22986 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 22987 } else if (PROTO == IPPROTO_SCTP && 22988 (ip_hdr_included != IP_HDR_INCLUDED)) { 22989 sctp_hdr_t *sctph; 22990 22991 hlen = (V_HLEN & 0xF) << 2; 22992 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22993 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22994 sctph->sh_chksum = 0; 22995 #ifdef DEBUG 22996 if (!skip_sctp_cksum) 22997 #endif 22998 sctph->sh_chksum = sctp_cksum(mp, hlen); 22999 } else { 23000 queue_t *dev_q = stq->q_next; 23001 23002 if (!ILL_DIRECT_CAPABLE((ill_t *)stq->q_ptr) && 23003 (DEV_Q_FLOW_BLOCKED(dev_q))) { 23004 blocked: 23005 ipha->ipha_ident = ip_hdr_included; 23006 /* 23007 * If we don't have a conn to apply 23008 * backpressure, free the message. 23009 * In the ire_send path, we don't know 23010 * the position to requeue the packet. Rather 23011 * than reorder packets, we just drop this 23012 * packet. 23013 */ 23014 if (ipst->ips_ip_output_queue && 23015 connp != NULL && 23016 caller != IRE_SEND) { 23017 if (caller == IP_WSRV) { 23018 idl_tx_list_t *idl_txl; 23019 23020 idl_txl = 23021 &ipst->ips_idl_tx_list[0]; 23022 connp->conn_did_putbq = 1; 23023 (void) putbq(connp->conn_wq, 23024 first_mp); 23025 conn_drain_insert(connp, 23026 idl_txl); 23027 /* 23028 * This is the service thread, 23029 * and the queue is already 23030 * noenabled. The check for 23031 * canput and the putbq is not 23032 * atomic. So we need to check 23033 * again. 23034 */ 23035 if (canput(stq->q_next)) 23036 connp->conn_did_putbq 23037 = 0; 23038 IP_STAT(ipst, ip_conn_flputbq); 23039 } else { 23040 /* 23041 * We are not the service proc. 23042 * ip_wsrv will be scheduled or 23043 * is already running. 23044 */ 23045 23046 (void) putq(connp->conn_wq, 23047 first_mp); 23048 } 23049 } else { 23050 out_ill = (ill_t *)stq->q_ptr; 23051 BUMP_MIB(out_ill->ill_ip_mib, 23052 ipIfStatsOutDiscards); 23053 freemsg(first_mp); 23054 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23055 "ip_wput_ire_end: q %p (%S)", 23056 q, "discard"); 23057 } 23058 ire_refrele(ire); 23059 if (next_mp) { 23060 ire_refrele(ire1); 23061 freemsg(next_mp); 23062 } 23063 if (conn_outgoing_ill != NULL) 23064 ill_refrele(conn_outgoing_ill); 23065 return; 23066 } 23067 if ((PROTO == IPPROTO_UDP) && 23068 (ip_hdr_included != IP_HDR_INCLUDED)) { 23069 /* 23070 * hlen gets the number of uchar_ts in the 23071 * IP header 23072 */ 23073 hlen = (V_HLEN & 0xF) << 2; 23074 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 23075 max_frag = ire->ire_max_frag; 23076 if (*up != 0) { 23077 IP_CKSUM_XMIT(out_ill, ire, mp, ipha, 23078 up, PROTO, hlen, LENGTH, max_frag, 23079 ipsec_len, cksum); 23080 /* Software checksum? */ 23081 if (DB_CKSUMFLAGS(mp) == 0) { 23082 IP_STAT(ipst, ip_out_sw_cksum); 23083 IP_STAT_UPDATE(ipst, 23084 ip_udp_out_sw_cksum_bytes, 23085 LENGTH - hlen); 23086 } 23087 } 23088 } 23089 } 23090 /* 23091 * Need to do this even when fragmenting. The local 23092 * loopback can be done without computing checksums 23093 * but forwarding out other interface must be done 23094 * after the IP checksum (and ULP checksums) have been 23095 * computed. 23096 * 23097 * NOTE : multicast_forward is set only if this packet 23098 * originated from ip_wput. For packets originating from 23099 * ip_wput_multicast, it is not set. 23100 */ 23101 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 23102 multi_loopback: 23103 ip2dbg(("ip_wput: multicast, loop %d\n", 23104 conn_multicast_loop)); 23105 23106 /* Forget header checksum offload */ 23107 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 23108 23109 /* 23110 * Local loopback of multicasts? Check the 23111 * ill. 23112 * 23113 * Note that the loopback function will not come 23114 * in through ip_rput - it will only do the 23115 * client fanout thus we need to do an mforward 23116 * as well. The is different from the BSD 23117 * logic. 23118 */ 23119 if (ill != NULL) { 23120 if (ilm_lookup_ill(ill, ipha->ipha_dst, 23121 ALL_ZONES) != NULL) { 23122 /* 23123 * Pass along the virtual output q. 23124 * ip_wput_local() will distribute the 23125 * packet to all the matching zones, 23126 * except the sending zone when 23127 * IP_MULTICAST_LOOP is false. 23128 */ 23129 ip_multicast_loopback(q, ill, first_mp, 23130 conn_multicast_loop ? 0 : 23131 IP_FF_NO_MCAST_LOOP, zoneid); 23132 } 23133 } 23134 if (ipha->ipha_ttl == 0) { 23135 /* 23136 * 0 => only to this host i.e. we are 23137 * done. We are also done if this was the 23138 * loopback interface since it is sufficient 23139 * to loopback one copy of a multicast packet. 23140 */ 23141 freemsg(first_mp); 23142 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23143 "ip_wput_ire_end: q %p (%S)", 23144 q, "loopback"); 23145 ire_refrele(ire); 23146 if (conn_outgoing_ill != NULL) 23147 ill_refrele(conn_outgoing_ill); 23148 return; 23149 } 23150 /* 23151 * ILLF_MULTICAST is checked in ip_newroute 23152 * i.e. we don't need to check it here since 23153 * all IRE_CACHEs come from ip_newroute. 23154 * For multicast traffic, SO_DONTROUTE is interpreted 23155 * to mean only send the packet out the interface 23156 * (optionally specified with IP_MULTICAST_IF) 23157 * and do not forward it out additional interfaces. 23158 * RSVP and the rsvp daemon is an example of a 23159 * protocol and user level process that 23160 * handles it's own routing. Hence, it uses the 23161 * SO_DONTROUTE option to accomplish this. 23162 */ 23163 23164 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 23165 ill != NULL) { 23166 /* Unconditionally redo the checksum */ 23167 ipha->ipha_hdr_checksum = 0; 23168 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23169 23170 /* 23171 * If this needs to go out secure, we need 23172 * to wait till we finish the IPsec 23173 * processing. 23174 */ 23175 if (ipsec_len == 0 && 23176 ip_mforward(ill, ipha, mp)) { 23177 freemsg(first_mp); 23178 ip1dbg(("ip_wput: mforward failed\n")); 23179 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23180 "ip_wput_ire_end: q %p (%S)", 23181 q, "mforward failed"); 23182 ire_refrele(ire); 23183 if (conn_outgoing_ill != NULL) 23184 ill_refrele(conn_outgoing_ill); 23185 return; 23186 } 23187 } 23188 } 23189 max_frag = ire->ire_max_frag; 23190 cksum += ttl_protocol; 23191 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 23192 /* No fragmentation required for this one. */ 23193 /* 23194 * Don't use frag_flag if packet is pre-built or source 23195 * routed or if multicast (since multicast packets do 23196 * not solicit ICMP "packet too big" messages). 23197 */ 23198 if ((ip_hdr_included != IP_HDR_INCLUDED) && 23199 (V_HLEN == IP_SIMPLE_HDR_VERSION || 23200 !ip_source_route_included(ipha)) && 23201 !CLASSD(ipha->ipha_dst)) 23202 ipha->ipha_fragment_offset_and_flags |= 23203 htons(ire->ire_frag_flag); 23204 23205 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 23206 /* Complete the IP header checksum. */ 23207 cksum += ipha->ipha_ident; 23208 cksum += (v_hlen_tos_len >> 16)+ 23209 (v_hlen_tos_len & 0xFFFF); 23210 cksum += ipha->ipha_fragment_offset_and_flags; 23211 hlen = (V_HLEN & 0xF) - 23212 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 23213 if (hlen) { 23214 checksumoptions: 23215 /* 23216 * Account for the IP Options in the IP 23217 * header checksum. 23218 */ 23219 up = (uint16_t *)(rptr+ 23220 IP_SIMPLE_HDR_LENGTH); 23221 do { 23222 cksum += up[0]; 23223 cksum += up[1]; 23224 up += 2; 23225 } while (--hlen); 23226 } 23227 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 23228 cksum = ~(cksum + (cksum >> 16)); 23229 ipha->ipha_hdr_checksum = (uint16_t)cksum; 23230 } 23231 if (ipsec_len != 0) { 23232 ipsec_out_process(q, first_mp, ire, ill_index); 23233 if (!next_mp) { 23234 ire_refrele(ire); 23235 if (conn_outgoing_ill != NULL) 23236 ill_refrele(conn_outgoing_ill); 23237 return; 23238 } 23239 goto next; 23240 } 23241 23242 /* 23243 * multirt_send has already been handled 23244 * for broadcast, but not yet for multicast 23245 * or IP options. 23246 */ 23247 if (next_mp == NULL) { 23248 if (ire->ire_flags & RTF_MULTIRT) { 23249 multirt_send = B_TRUE; 23250 } 23251 } 23252 23253 /* 23254 * In most cases, the emission loop below is 23255 * entered only once. Only in the case where 23256 * the ire holds the RTF_MULTIRT flag, do we loop 23257 * to process all RTF_MULTIRT ires in the bucket, 23258 * and send the packet through all crossed 23259 * RTF_MULTIRT routes. 23260 */ 23261 do { 23262 if (multirt_send) { 23263 irb_t *irb; 23264 23265 irb = ire->ire_bucket; 23266 ASSERT(irb != NULL); 23267 /* 23268 * We are in a multiple send case, 23269 * need to get the next IRE and make 23270 * a duplicate of the packet. 23271 */ 23272 IRB_REFHOLD(irb); 23273 for (ire1 = ire->ire_next; 23274 ire1 != NULL; 23275 ire1 = ire1->ire_next) { 23276 if (!(ire1->ire_flags & 23277 RTF_MULTIRT)) 23278 continue; 23279 23280 if (ire1->ire_addr != 23281 ire->ire_addr) 23282 continue; 23283 23284 if (ire1->ire_marks & 23285 (IRE_MARK_CONDEMNED | 23286 IRE_MARK_TESTHIDDEN)) 23287 continue; 23288 23289 /* Got one */ 23290 IRE_REFHOLD(ire1); 23291 break; 23292 } 23293 IRB_REFRELE(irb); 23294 23295 if (ire1 != NULL) { 23296 next_mp = copyb(mp); 23297 if ((next_mp == NULL) || 23298 ((mp->b_cont != NULL) && 23299 ((next_mp->b_cont = 23300 dupmsg(mp->b_cont)) 23301 == NULL))) { 23302 freemsg(next_mp); 23303 next_mp = NULL; 23304 ire_refrele(ire1); 23305 ire1 = NULL; 23306 } 23307 } 23308 23309 /* 23310 * Last multiroute ire; don't loop 23311 * anymore. The emission is over 23312 * and next_mp is NULL. 23313 */ 23314 if (ire1 == NULL) { 23315 multirt_send = B_FALSE; 23316 } 23317 } 23318 23319 out_ill = ire_to_ill(ire); 23320 DTRACE_PROBE4(ip4__physical__out__start, 23321 ill_t *, NULL, 23322 ill_t *, out_ill, 23323 ipha_t *, ipha, mblk_t *, mp); 23324 FW_HOOKS(ipst->ips_ip4_physical_out_event, 23325 ipst->ips_ipv4firewall_physical_out, 23326 NULL, out_ill, ipha, mp, mp, 0, ipst); 23327 DTRACE_PROBE1(ip4__physical__out__end, 23328 mblk_t *, mp); 23329 if (mp == NULL) 23330 goto release_ire_and_ill_2; 23331 23332 ASSERT(ipsec_len == 0); 23333 mp->b_prev = 23334 SET_BPREV_FLAG(IPP_LOCAL_OUT); 23335 DTRACE_PROBE2(ip__xmit__2, 23336 mblk_t *, mp, ire_t *, ire); 23337 pktxmit_state = ip_xmit_v4(mp, ire, 23338 NULL, B_TRUE, connp); 23339 if ((pktxmit_state == SEND_FAILED) || 23340 (pktxmit_state == LLHDR_RESLV_FAILED)) { 23341 release_ire_and_ill_2: 23342 if (next_mp) { 23343 freemsg(next_mp); 23344 ire_refrele(ire1); 23345 } 23346 ire_refrele(ire); 23347 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23348 "ip_wput_ire_end: q %p (%S)", 23349 q, "discard MDATA"); 23350 if (conn_outgoing_ill != NULL) 23351 ill_refrele(conn_outgoing_ill); 23352 return; 23353 } 23354 23355 if (CLASSD(dst)) { 23356 BUMP_MIB(out_ill->ill_ip_mib, 23357 ipIfStatsHCOutMcastPkts); 23358 UPDATE_MIB(out_ill->ill_ip_mib, 23359 ipIfStatsHCOutMcastOctets, 23360 LENGTH); 23361 } else if (ire->ire_type == IRE_BROADCAST) { 23362 BUMP_MIB(out_ill->ill_ip_mib, 23363 ipIfStatsHCOutBcastPkts); 23364 } 23365 23366 if (multirt_send) { 23367 /* 23368 * We are in a multiple send case, 23369 * need to re-enter the sending loop 23370 * using the next ire. 23371 */ 23372 ire_refrele(ire); 23373 ire = ire1; 23374 stq = ire->ire_stq; 23375 mp = next_mp; 23376 next_mp = NULL; 23377 ipha = (ipha_t *)mp->b_rptr; 23378 ill_index = Q_TO_INDEX(stq); 23379 } 23380 } while (multirt_send); 23381 23382 if (!next_mp) { 23383 /* 23384 * Last copy going out (the ultra-common 23385 * case). Note that we intentionally replicate 23386 * the putnext rather than calling it before 23387 * the next_mp check in hopes of a little 23388 * tail-call action out of the compiler. 23389 */ 23390 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23391 "ip_wput_ire_end: q %p (%S)", 23392 q, "last copy out(1)"); 23393 ire_refrele(ire); 23394 if (conn_outgoing_ill != NULL) 23395 ill_refrele(conn_outgoing_ill); 23396 return; 23397 } 23398 /* More copies going out below. */ 23399 } else { 23400 int offset; 23401 fragmentit: 23402 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 23403 /* 23404 * If this would generate a icmp_frag_needed message, 23405 * we need to handle it before we do the IPsec 23406 * processing. Otherwise, we need to strip the IPsec 23407 * headers before we send up the message to the ULPs 23408 * which becomes messy and difficult. 23409 */ 23410 if (ipsec_len != 0) { 23411 if ((max_frag < (unsigned int)(LENGTH + 23412 ipsec_len)) && (offset & IPH_DF)) { 23413 out_ill = (ill_t *)stq->q_ptr; 23414 BUMP_MIB(out_ill->ill_ip_mib, 23415 ipIfStatsOutFragFails); 23416 BUMP_MIB(out_ill->ill_ip_mib, 23417 ipIfStatsOutFragReqds); 23418 ipha->ipha_hdr_checksum = 0; 23419 ipha->ipha_hdr_checksum = 23420 (uint16_t)ip_csum_hdr(ipha); 23421 icmp_frag_needed(ire->ire_stq, first_mp, 23422 max_frag, zoneid, ipst); 23423 if (!next_mp) { 23424 ire_refrele(ire); 23425 if (conn_outgoing_ill != NULL) { 23426 ill_refrele( 23427 conn_outgoing_ill); 23428 } 23429 return; 23430 } 23431 } else { 23432 /* 23433 * This won't cause a icmp_frag_needed 23434 * message. to be generated. Send it on 23435 * the wire. Note that this could still 23436 * cause fragmentation and all we 23437 * do is the generation of the message 23438 * to the ULP if needed before IPsec. 23439 */ 23440 if (!next_mp) { 23441 ipsec_out_process(q, first_mp, 23442 ire, ill_index); 23443 TRACE_2(TR_FAC_IP, 23444 TR_IP_WPUT_IRE_END, 23445 "ip_wput_ire_end: q %p " 23446 "(%S)", q, 23447 "last ipsec_out_process"); 23448 ire_refrele(ire); 23449 if (conn_outgoing_ill != NULL) { 23450 ill_refrele( 23451 conn_outgoing_ill); 23452 } 23453 return; 23454 } 23455 ipsec_out_process(q, first_mp, 23456 ire, ill_index); 23457 } 23458 } else { 23459 /* 23460 * Initiate IPPF processing. For 23461 * fragmentable packets we finish 23462 * all QOS packet processing before 23463 * calling: 23464 * ip_wput_ire_fragmentit->ip_wput_frag 23465 */ 23466 23467 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23468 ip_process(IPP_LOCAL_OUT, &mp, 23469 ill_index); 23470 if (mp == NULL) { 23471 out_ill = (ill_t *)stq->q_ptr; 23472 BUMP_MIB(out_ill->ill_ip_mib, 23473 ipIfStatsOutDiscards); 23474 if (next_mp != NULL) { 23475 freemsg(next_mp); 23476 ire_refrele(ire1); 23477 } 23478 ire_refrele(ire); 23479 TRACE_2(TR_FAC_IP, 23480 TR_IP_WPUT_IRE_END, 23481 "ip_wput_ire: q %p (%S)", 23482 q, "discard MDATA"); 23483 if (conn_outgoing_ill != NULL) { 23484 ill_refrele( 23485 conn_outgoing_ill); 23486 } 23487 return; 23488 } 23489 } 23490 if (!next_mp) { 23491 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23492 "ip_wput_ire_end: q %p (%S)", 23493 q, "last fragmentation"); 23494 ip_wput_ire_fragmentit(mp, ire, 23495 zoneid, ipst, connp); 23496 ire_refrele(ire); 23497 if (conn_outgoing_ill != NULL) 23498 ill_refrele(conn_outgoing_ill); 23499 return; 23500 } 23501 ip_wput_ire_fragmentit(mp, ire, 23502 zoneid, ipst, connp); 23503 } 23504 } 23505 } else { 23506 nullstq: 23507 /* A NULL stq means the destination address is local. */ 23508 UPDATE_OB_PKT_COUNT(ire); 23509 ire->ire_last_used_time = lbolt; 23510 ASSERT(ire->ire_ipif != NULL); 23511 if (!next_mp) { 23512 /* 23513 * Is there an "in" and "out" for traffic local 23514 * to a host (loopback)? The code in Solaris doesn't 23515 * explicitly draw a line in its code for in vs out, 23516 * so we've had to draw a line in the sand: ip_wput_ire 23517 * is considered to be the "output" side and 23518 * ip_wput_local to be the "input" side. 23519 */ 23520 out_ill = ire_to_ill(ire); 23521 23522 /* 23523 * DTrace this as ip:::send. A blocked packet will 23524 * fire the send probe, but not the receive probe. 23525 */ 23526 DTRACE_IP7(send, mblk_t *, first_mp, conn_t *, NULL, 23527 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 23528 ipha_t *, ipha, ip6_t *, NULL, int, 1); 23529 23530 DTRACE_PROBE4(ip4__loopback__out__start, 23531 ill_t *, NULL, ill_t *, out_ill, 23532 ipha_t *, ipha, mblk_t *, first_mp); 23533 23534 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23535 ipst->ips_ipv4firewall_loopback_out, 23536 NULL, out_ill, ipha, first_mp, mp, 0, ipst); 23537 23538 DTRACE_PROBE1(ip4__loopback__out_end, 23539 mblk_t *, first_mp); 23540 23541 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23542 "ip_wput_ire_end: q %p (%S)", 23543 q, "local address"); 23544 23545 if (first_mp != NULL) 23546 ip_wput_local(q, out_ill, ipha, 23547 first_mp, ire, 0, ire->ire_zoneid); 23548 ire_refrele(ire); 23549 if (conn_outgoing_ill != NULL) 23550 ill_refrele(conn_outgoing_ill); 23551 return; 23552 } 23553 23554 out_ill = ire_to_ill(ire); 23555 23556 /* 23557 * DTrace this as ip:::send. A blocked packet will fire the 23558 * send probe, but not the receive probe. 23559 */ 23560 DTRACE_IP7(send, mblk_t *, first_mp, conn_t *, NULL, 23561 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 23562 ipha_t *, ipha, ip6_t *, NULL, int, 1); 23563 23564 DTRACE_PROBE4(ip4__loopback__out__start, 23565 ill_t *, NULL, ill_t *, out_ill, 23566 ipha_t *, ipha, mblk_t *, first_mp); 23567 23568 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23569 ipst->ips_ipv4firewall_loopback_out, 23570 NULL, out_ill, ipha, first_mp, mp, 0, ipst); 23571 23572 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, first_mp); 23573 23574 if (first_mp != NULL) 23575 ip_wput_local(q, out_ill, ipha, 23576 first_mp, ire, 0, ire->ire_zoneid); 23577 } 23578 next: 23579 /* 23580 * More copies going out to additional interfaces. 23581 * ire1 has already been held. We don't need the 23582 * "ire" anymore. 23583 */ 23584 ire_refrele(ire); 23585 ire = ire1; 23586 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 23587 mp = next_mp; 23588 ASSERT(ire->ire_ipversion == IPV4_VERSION); 23589 ill = ire_to_ill(ire); 23590 first_mp = mp; 23591 if (ipsec_len != 0) { 23592 ASSERT(first_mp->b_datap->db_type == M_CTL); 23593 mp = mp->b_cont; 23594 } 23595 dst = ire->ire_addr; 23596 ipha = (ipha_t *)mp->b_rptr; 23597 /* 23598 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 23599 * Restore ipha_ident "no checksum" flag. 23600 */ 23601 src = orig_src; 23602 ipha->ipha_ident = ip_hdr_included; 23603 goto another; 23604 23605 #undef rptr 23606 #undef Q_TO_INDEX 23607 } 23608 23609 /* 23610 * Routine to allocate a message that is used to notify the ULP about MDT. 23611 * The caller may provide a pointer to the link-layer MDT capabilities, 23612 * or NULL if MDT is to be disabled on the stream. 23613 */ 23614 mblk_t * 23615 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 23616 { 23617 mblk_t *mp; 23618 ip_mdt_info_t *mdti; 23619 ill_mdt_capab_t *idst; 23620 23621 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 23622 DB_TYPE(mp) = M_CTL; 23623 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 23624 mdti = (ip_mdt_info_t *)mp->b_rptr; 23625 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 23626 idst = &(mdti->mdt_capab); 23627 23628 /* 23629 * If the caller provides us with the capability, copy 23630 * it over into our notification message; otherwise 23631 * we zero out the capability portion. 23632 */ 23633 if (isrc != NULL) 23634 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23635 else 23636 bzero((caddr_t)idst, sizeof (*idst)); 23637 } 23638 return (mp); 23639 } 23640 23641 /* 23642 * Routine which determines whether MDT can be enabled on the destination 23643 * IRE and IPC combination, and if so, allocates and returns the MDT 23644 * notification mblk that may be used by ULP. We also check if we need to 23645 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 23646 * MDT usage in the past have been lifted. This gets called during IP 23647 * and ULP binding. 23648 */ 23649 mblk_t * 23650 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23651 ill_mdt_capab_t *mdt_cap) 23652 { 23653 mblk_t *mp; 23654 boolean_t rc = B_FALSE; 23655 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23656 23657 ASSERT(dst_ire != NULL); 23658 ASSERT(connp != NULL); 23659 ASSERT(mdt_cap != NULL); 23660 23661 /* 23662 * Currently, we only support simple TCP/{IPv4,IPv6} with 23663 * Multidata, which is handled in tcp_multisend(). This 23664 * is the reason why we do all these checks here, to ensure 23665 * that we don't enable Multidata for the cases which we 23666 * can't handle at the moment. 23667 */ 23668 do { 23669 /* Only do TCP at the moment */ 23670 if (connp->conn_ulp != IPPROTO_TCP) 23671 break; 23672 23673 /* 23674 * IPsec outbound policy present? Note that we get here 23675 * after calling ipsec_conn_cache_policy() where the global 23676 * policy checking is performed. conn_latch will be 23677 * non-NULL as long as there's a policy defined, 23678 * i.e. conn_out_enforce_policy may be NULL in such case 23679 * when the connection is non-secure, and hence we check 23680 * further if the latch refers to an outbound policy. 23681 */ 23682 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 23683 break; 23684 23685 /* CGTP (multiroute) is enabled? */ 23686 if (dst_ire->ire_flags & RTF_MULTIRT) 23687 break; 23688 23689 /* Outbound IPQoS enabled? */ 23690 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23691 /* 23692 * In this case, we disable MDT for this and all 23693 * future connections going over the interface. 23694 */ 23695 mdt_cap->ill_mdt_on = 0; 23696 break; 23697 } 23698 23699 /* socket option(s) present? */ 23700 if (!CONN_IS_LSO_MD_FASTPATH(connp)) 23701 break; 23702 23703 rc = B_TRUE; 23704 /* CONSTCOND */ 23705 } while (0); 23706 23707 /* Remember the result */ 23708 connp->conn_mdt_ok = rc; 23709 23710 if (!rc) 23711 return (NULL); 23712 else if (!mdt_cap->ill_mdt_on) { 23713 /* 23714 * If MDT has been previously turned off in the past, and we 23715 * currently can do MDT (due to IPQoS policy removal, etc.) 23716 * then enable it for this interface. 23717 */ 23718 mdt_cap->ill_mdt_on = 1; 23719 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 23720 "interface %s\n", ill_name)); 23721 } 23722 23723 /* Allocate the MDT info mblk */ 23724 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 23725 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 23726 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23727 return (NULL); 23728 } 23729 return (mp); 23730 } 23731 23732 /* 23733 * Routine to allocate a message that is used to notify the ULP about LSO. 23734 * The caller may provide a pointer to the link-layer LSO capabilities, 23735 * or NULL if LSO is to be disabled on the stream. 23736 */ 23737 mblk_t * 23738 ip_lsoinfo_alloc(ill_lso_capab_t *isrc) 23739 { 23740 mblk_t *mp; 23741 ip_lso_info_t *lsoi; 23742 ill_lso_capab_t *idst; 23743 23744 if ((mp = allocb(sizeof (*lsoi), BPRI_HI)) != NULL) { 23745 DB_TYPE(mp) = M_CTL; 23746 mp->b_wptr = mp->b_rptr + sizeof (*lsoi); 23747 lsoi = (ip_lso_info_t *)mp->b_rptr; 23748 lsoi->lso_info_id = LSO_IOC_INFO_UPDATE; 23749 idst = &(lsoi->lso_capab); 23750 23751 /* 23752 * If the caller provides us with the capability, copy 23753 * it over into our notification message; otherwise 23754 * we zero out the capability portion. 23755 */ 23756 if (isrc != NULL) 23757 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23758 else 23759 bzero((caddr_t)idst, sizeof (*idst)); 23760 } 23761 return (mp); 23762 } 23763 23764 /* 23765 * Routine which determines whether LSO can be enabled on the destination 23766 * IRE and IPC combination, and if so, allocates and returns the LSO 23767 * notification mblk that may be used by ULP. We also check if we need to 23768 * turn LSO back to 'on' when certain restrictions prohibiting us to allow 23769 * LSO usage in the past have been lifted. This gets called during IP 23770 * and ULP binding. 23771 */ 23772 mblk_t * 23773 ip_lsoinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23774 ill_lso_capab_t *lso_cap) 23775 { 23776 mblk_t *mp; 23777 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23778 23779 ASSERT(dst_ire != NULL); 23780 ASSERT(connp != NULL); 23781 ASSERT(lso_cap != NULL); 23782 23783 connp->conn_lso_ok = B_TRUE; 23784 23785 if ((connp->conn_ulp != IPPROTO_TCP) || 23786 CONN_IPSEC_OUT_ENCAPSULATED(connp) || 23787 (dst_ire->ire_flags & RTF_MULTIRT) || 23788 !CONN_IS_LSO_MD_FASTPATH(connp) || 23789 (IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 23790 connp->conn_lso_ok = B_FALSE; 23791 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23792 /* 23793 * Disable LSO for this and all future connections going 23794 * over the interface. 23795 */ 23796 lso_cap->ill_lso_on = 0; 23797 } 23798 } 23799 23800 if (!connp->conn_lso_ok) 23801 return (NULL); 23802 else if (!lso_cap->ill_lso_on) { 23803 /* 23804 * If LSO has been previously turned off in the past, and we 23805 * currently can do LSO (due to IPQoS policy removal, etc.) 23806 * then enable it for this interface. 23807 */ 23808 lso_cap->ill_lso_on = 1; 23809 ip1dbg(("ip_mdinfo_return: reenabling LSO for interface %s\n", 23810 ill_name)); 23811 } 23812 23813 /* Allocate the LSO info mblk */ 23814 if ((mp = ip_lsoinfo_alloc(lso_cap)) == NULL) 23815 ip0dbg(("ip_lsoinfo_return: can't enable LSO for " 23816 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23817 23818 return (mp); 23819 } 23820 23821 /* 23822 * Create destination address attribute, and fill it with the physical 23823 * destination address and SAP taken from the template DL_UNITDATA_REQ 23824 * message block. 23825 */ 23826 boolean_t 23827 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 23828 { 23829 dl_unitdata_req_t *dlurp; 23830 pattr_t *pa; 23831 pattrinfo_t pa_info; 23832 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 23833 uint_t das_len, das_off; 23834 23835 ASSERT(dlmp != NULL); 23836 23837 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 23838 das_len = dlurp->dl_dest_addr_length; 23839 das_off = dlurp->dl_dest_addr_offset; 23840 23841 pa_info.type = PATTR_DSTADDRSAP; 23842 pa_info.len = sizeof (**das) + das_len - 1; 23843 23844 /* create and associate the attribute */ 23845 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23846 if (pa != NULL) { 23847 ASSERT(*das != NULL); 23848 (*das)->addr_is_group = 0; 23849 (*das)->addr_len = (uint8_t)das_len; 23850 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 23851 } 23852 23853 return (pa != NULL); 23854 } 23855 23856 /* 23857 * Create hardware checksum attribute and fill it with the values passed. 23858 */ 23859 boolean_t 23860 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 23861 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 23862 { 23863 pattr_t *pa; 23864 pattrinfo_t pa_info; 23865 23866 ASSERT(mmd != NULL); 23867 23868 pa_info.type = PATTR_HCKSUM; 23869 pa_info.len = sizeof (pattr_hcksum_t); 23870 23871 /* create and associate the attribute */ 23872 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23873 if (pa != NULL) { 23874 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 23875 23876 hck->hcksum_start_offset = start_offset; 23877 hck->hcksum_stuff_offset = stuff_offset; 23878 hck->hcksum_end_offset = end_offset; 23879 hck->hcksum_flags = flags; 23880 } 23881 return (pa != NULL); 23882 } 23883 23884 /* 23885 * Create zerocopy attribute and fill it with the specified flags 23886 */ 23887 boolean_t 23888 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 23889 { 23890 pattr_t *pa; 23891 pattrinfo_t pa_info; 23892 23893 ASSERT(mmd != NULL); 23894 pa_info.type = PATTR_ZCOPY; 23895 pa_info.len = sizeof (pattr_zcopy_t); 23896 23897 /* create and associate the attribute */ 23898 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23899 if (pa != NULL) { 23900 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 23901 23902 zcopy->zcopy_flags = flags; 23903 } 23904 return (pa != NULL); 23905 } 23906 23907 /* 23908 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 23909 * block chain. We could rewrite to handle arbitrary message block chains but 23910 * that would make the code complicated and slow. Right now there three 23911 * restrictions: 23912 * 23913 * 1. The first message block must contain the complete IP header and 23914 * at least 1 byte of payload data. 23915 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 23916 * so that we can use a single Multidata message. 23917 * 3. No frag must be distributed over two or more message blocks so 23918 * that we don't need more than two packet descriptors per frag. 23919 * 23920 * The above restrictions allow us to support userland applications (which 23921 * will send down a single message block) and NFS over UDP (which will 23922 * send down a chain of at most three message blocks). 23923 * 23924 * We also don't use MDT for payloads with less than or equal to 23925 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 23926 */ 23927 boolean_t 23928 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 23929 { 23930 int blocks; 23931 ssize_t total, missing, size; 23932 23933 ASSERT(mp != NULL); 23934 ASSERT(hdr_len > 0); 23935 23936 size = MBLKL(mp) - hdr_len; 23937 if (size <= 0) 23938 return (B_FALSE); 23939 23940 /* The first mblk contains the header and some payload. */ 23941 blocks = 1; 23942 total = size; 23943 size %= len; 23944 missing = (size == 0) ? 0 : (len - size); 23945 mp = mp->b_cont; 23946 23947 while (mp != NULL) { 23948 /* 23949 * Give up if we encounter a zero length message block. 23950 * In practice, this should rarely happen and therefore 23951 * not worth the trouble of freeing and re-linking the 23952 * mblk from the chain to handle such case. 23953 */ 23954 if ((size = MBLKL(mp)) == 0) 23955 return (B_FALSE); 23956 23957 /* Too many payload buffers for a single Multidata message? */ 23958 if (++blocks > MULTIDATA_MAX_PBUFS) 23959 return (B_FALSE); 23960 23961 total += size; 23962 /* Is a frag distributed over two or more message blocks? */ 23963 if (missing > size) 23964 return (B_FALSE); 23965 size -= missing; 23966 23967 size %= len; 23968 missing = (size == 0) ? 0 : (len - size); 23969 23970 mp = mp->b_cont; 23971 } 23972 23973 return (total > ip_wput_frag_mdt_min); 23974 } 23975 23976 /* 23977 * Outbound IPv4 fragmentation routine using MDT. 23978 */ 23979 static void 23980 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 23981 uint32_t frag_flag, int offset) 23982 { 23983 ipha_t *ipha_orig; 23984 int i1, ip_data_end; 23985 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 23986 mblk_t *hdr_mp, *md_mp = NULL; 23987 unsigned char *hdr_ptr, *pld_ptr; 23988 multidata_t *mmd; 23989 ip_pdescinfo_t pdi; 23990 ill_t *ill; 23991 ip_stack_t *ipst = ire->ire_ipst; 23992 23993 ASSERT(DB_TYPE(mp) == M_DATA); 23994 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 23995 23996 ill = ire_to_ill(ire); 23997 ASSERT(ill != NULL); 23998 23999 ipha_orig = (ipha_t *)mp->b_rptr; 24000 mp->b_rptr += sizeof (ipha_t); 24001 24002 /* Calculate how many packets we will send out */ 24003 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 24004 pkts = (i1 + len - 1) / len; 24005 ASSERT(pkts > 1); 24006 24007 /* Allocate a message block which will hold all the IP Headers. */ 24008 wroff = ipst->ips_ip_wroff_extra; 24009 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 24010 24011 i1 = pkts * hdr_chunk_len; 24012 /* 24013 * Create the header buffer, Multidata and destination address 24014 * and SAP attribute that should be associated with it. 24015 */ 24016 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 24017 ((hdr_mp->b_wptr += i1), 24018 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 24019 !ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) { 24020 freemsg(mp); 24021 if (md_mp == NULL) { 24022 freemsg(hdr_mp); 24023 } else { 24024 free_mmd: IP_STAT(ipst, ip_frag_mdt_discarded); 24025 freemsg(md_mp); 24026 } 24027 IP_STAT(ipst, ip_frag_mdt_allocfail); 24028 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 24029 return; 24030 } 24031 IP_STAT(ipst, ip_frag_mdt_allocd); 24032 24033 /* 24034 * Add a payload buffer to the Multidata; this operation must not 24035 * fail, or otherwise our logic in this routine is broken. There 24036 * is no memory allocation done by the routine, so any returned 24037 * failure simply tells us that we've done something wrong. 24038 * 24039 * A failure tells us that either we're adding the same payload 24040 * buffer more than once, or we're trying to add more buffers than 24041 * allowed. None of the above cases should happen, and we panic 24042 * because either there's horrible heap corruption, and/or 24043 * programming mistake. 24044 */ 24045 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24046 goto pbuf_panic; 24047 24048 hdr_ptr = hdr_mp->b_rptr; 24049 pld_ptr = mp->b_rptr; 24050 24051 /* Establish the ending byte offset, based on the starting offset. */ 24052 offset <<= 3; 24053 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 24054 IP_SIMPLE_HDR_LENGTH; 24055 24056 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 24057 24058 while (pld_ptr < mp->b_wptr) { 24059 ipha_t *ipha; 24060 uint16_t offset_and_flags; 24061 uint16_t ip_len; 24062 int error; 24063 24064 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 24065 ipha = (ipha_t *)(hdr_ptr + wroff); 24066 ASSERT(OK_32PTR(ipha)); 24067 *ipha = *ipha_orig; 24068 24069 if (ip_data_end - offset > len) { 24070 offset_and_flags = IPH_MF; 24071 } else { 24072 /* 24073 * Last frag. Set len to the length of this last piece. 24074 */ 24075 len = ip_data_end - offset; 24076 /* A frag of a frag might have IPH_MF non-zero */ 24077 offset_and_flags = 24078 ntohs(ipha->ipha_fragment_offset_and_flags) & 24079 IPH_MF; 24080 } 24081 offset_and_flags |= (uint16_t)(offset >> 3); 24082 offset_and_flags |= (uint16_t)frag_flag; 24083 /* Store the offset and flags in the IP header. */ 24084 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24085 24086 /* Store the length in the IP header. */ 24087 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 24088 ipha->ipha_length = htons(ip_len); 24089 24090 /* 24091 * Set the IP header checksum. Note that mp is just 24092 * the header, so this is easy to pass to ip_csum. 24093 */ 24094 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24095 24096 DTRACE_IP7(send, mblk_t *, md_mp, conn_t *, NULL, void_ip_t *, 24097 ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, ip6_t *, 24098 NULL, int, 0); 24099 24100 /* 24101 * Record offset and size of header and data of the next packet 24102 * in the multidata message. 24103 */ 24104 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 24105 PDESC_PLD_INIT(&pdi); 24106 i1 = MIN(mp->b_wptr - pld_ptr, len); 24107 ASSERT(i1 > 0); 24108 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 24109 if (i1 == len) { 24110 pld_ptr += len; 24111 } else { 24112 i1 = len - i1; 24113 mp = mp->b_cont; 24114 ASSERT(mp != NULL); 24115 ASSERT(MBLKL(mp) >= i1); 24116 /* 24117 * Attach the next payload message block to the 24118 * multidata message. 24119 */ 24120 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24121 goto pbuf_panic; 24122 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 24123 pld_ptr = mp->b_rptr + i1; 24124 } 24125 24126 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 24127 KM_NOSLEEP)) == NULL) { 24128 /* 24129 * Any failure other than ENOMEM indicates that we 24130 * have passed in invalid pdesc info or parameters 24131 * to mmd_addpdesc, which must not happen. 24132 * 24133 * EINVAL is a result of failure on boundary checks 24134 * against the pdesc info contents. It should not 24135 * happen, and we panic because either there's 24136 * horrible heap corruption, and/or programming 24137 * mistake. 24138 */ 24139 if (error != ENOMEM) { 24140 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 24141 "pdesc logic error detected for " 24142 "mmd %p pinfo %p (%d)\n", 24143 (void *)mmd, (void *)&pdi, error); 24144 /* NOTREACHED */ 24145 } 24146 IP_STAT(ipst, ip_frag_mdt_addpdescfail); 24147 /* Free unattached payload message blocks as well */ 24148 md_mp->b_cont = mp->b_cont; 24149 goto free_mmd; 24150 } 24151 24152 /* Advance fragment offset. */ 24153 offset += len; 24154 24155 /* Advance to location for next header in the buffer. */ 24156 hdr_ptr += hdr_chunk_len; 24157 24158 /* Did we reach the next payload message block? */ 24159 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 24160 mp = mp->b_cont; 24161 /* 24162 * Attach the next message block with payload 24163 * data to the multidata message. 24164 */ 24165 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24166 goto pbuf_panic; 24167 pld_ptr = mp->b_rptr; 24168 } 24169 } 24170 24171 ASSERT(hdr_mp->b_wptr == hdr_ptr); 24172 ASSERT(mp->b_wptr == pld_ptr); 24173 24174 /* Update IP statistics */ 24175 IP_STAT_UPDATE(ipst, ip_frag_mdt_pkt_out, pkts); 24176 24177 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates, pkts); 24178 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 24179 24180 len = ntohs(ipha_orig->ipha_length) + (pkts - 1) * IP_SIMPLE_HDR_LENGTH; 24181 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, pkts); 24182 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, len); 24183 24184 if (pkt_type == OB_PKT) { 24185 ire->ire_ob_pkt_count += pkts; 24186 if (ire->ire_ipif != NULL) 24187 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 24188 } else { 24189 /* The type is IB_PKT in the forwarding path. */ 24190 ire->ire_ib_pkt_count += pkts; 24191 ASSERT(!IRE_IS_LOCAL(ire)); 24192 if (ire->ire_type & IRE_BROADCAST) { 24193 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 24194 } else { 24195 UPDATE_MIB(ill->ill_ip_mib, 24196 ipIfStatsHCOutForwDatagrams, pkts); 24197 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 24198 } 24199 } 24200 ire->ire_last_used_time = lbolt; 24201 /* Send it down */ 24202 putnext(ire->ire_stq, md_mp); 24203 return; 24204 24205 pbuf_panic: 24206 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 24207 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 24208 pbuf_idx); 24209 /* NOTREACHED */ 24210 } 24211 24212 /* 24213 * Outbound IP fragmentation routine. 24214 * 24215 * NOTE : This routine does not ire_refrele the ire that is passed in 24216 * as the argument. 24217 */ 24218 static void 24219 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 24220 uint32_t frag_flag, zoneid_t zoneid, ip_stack_t *ipst, conn_t *connp) 24221 { 24222 int i1; 24223 mblk_t *ll_hdr_mp; 24224 int ll_hdr_len; 24225 int hdr_len; 24226 mblk_t *hdr_mp; 24227 ipha_t *ipha; 24228 int ip_data_end; 24229 int len; 24230 mblk_t *mp = mp_orig, *mp1; 24231 int offset; 24232 queue_t *q; 24233 uint32_t v_hlen_tos_len; 24234 mblk_t *first_mp; 24235 boolean_t mctl_present; 24236 ill_t *ill; 24237 ill_t *out_ill; 24238 mblk_t *xmit_mp; 24239 mblk_t *carve_mp; 24240 ire_t *ire1 = NULL; 24241 ire_t *save_ire = NULL; 24242 mblk_t *next_mp = NULL; 24243 boolean_t last_frag = B_FALSE; 24244 boolean_t multirt_send = B_FALSE; 24245 ire_t *first_ire = NULL; 24246 irb_t *irb = NULL; 24247 mib2_ipIfStatsEntry_t *mibptr = NULL; 24248 24249 ill = ire_to_ill(ire); 24250 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 24251 24252 BUMP_MIB(mibptr, ipIfStatsOutFragReqds); 24253 24254 if (max_frag == 0) { 24255 ip1dbg(("ip_wput_frag: ire frag size is 0" 24256 " - dropping packet\n")); 24257 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24258 freemsg(mp); 24259 return; 24260 } 24261 24262 /* 24263 * IPsec does not allow hw accelerated packets to be fragmented 24264 * This check is made in ip_wput_ipsec_out prior to coming here 24265 * via ip_wput_ire_fragmentit. 24266 * 24267 * If at this point we have an ire whose ARP request has not 24268 * been sent out, we call ip_xmit_v4->ire_arpresolve to trigger 24269 * sending of ARP query and change ire's state to ND_INCOMPLETE. 24270 * This packet and all fragmentable packets for this ire will 24271 * continue to get dropped while ire_nce->nce_state remains in 24272 * ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to 24273 * ND_REACHABLE, all subsquent large packets for this ire will 24274 * get fragemented and sent out by this function. 24275 */ 24276 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 24277 /* If nce_state is ND_INITIAL, trigger ARP query */ 24278 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE, NULL); 24279 ip1dbg(("ip_wput_frag: mac address for ire is unresolved" 24280 " - dropping packet\n")); 24281 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24282 freemsg(mp); 24283 return; 24284 } 24285 24286 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 24287 "ip_wput_frag_start:"); 24288 24289 if (mp->b_datap->db_type == M_CTL) { 24290 first_mp = mp; 24291 mp_orig = mp = mp->b_cont; 24292 mctl_present = B_TRUE; 24293 } else { 24294 first_mp = mp; 24295 mctl_present = B_FALSE; 24296 } 24297 24298 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 24299 ipha = (ipha_t *)mp->b_rptr; 24300 24301 /* 24302 * If the Don't Fragment flag is on, generate an ICMP destination 24303 * unreachable, fragmentation needed. 24304 */ 24305 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 24306 if (offset & IPH_DF) { 24307 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24308 if (is_system_labeled()) { 24309 max_frag = tsol_pmtu_adjust(mp, ire->ire_max_frag, 24310 ire->ire_max_frag - max_frag, AF_INET); 24311 } 24312 /* 24313 * Need to compute hdr checksum if called from ip_wput_ire. 24314 * Note that ip_rput_forward verifies the checksum before 24315 * calling this routine so in that case this is a noop. 24316 */ 24317 ipha->ipha_hdr_checksum = 0; 24318 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24319 icmp_frag_needed(ire->ire_stq, first_mp, max_frag, zoneid, 24320 ipst); 24321 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24322 "ip_wput_frag_end:(%S)", 24323 "don't fragment"); 24324 return; 24325 } 24326 /* 24327 * Labeled systems adjust max_frag if they add a label 24328 * to send the correct path mtu. We need the real mtu since we 24329 * are fragmenting the packet after label adjustment. 24330 */ 24331 if (is_system_labeled()) 24332 max_frag = ire->ire_max_frag; 24333 if (mctl_present) 24334 freeb(first_mp); 24335 /* 24336 * Establish the starting offset. May not be zero if we are fragging 24337 * a fragment that is being forwarded. 24338 */ 24339 offset = offset & IPH_OFFSET; 24340 24341 /* TODO why is this test needed? */ 24342 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 24343 if (((max_frag - LENGTH) & ~7) < 8) { 24344 /* TODO: notify ulp somehow */ 24345 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24346 freemsg(mp); 24347 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24348 "ip_wput_frag_end:(%S)", 24349 "len < 8"); 24350 return; 24351 } 24352 24353 hdr_len = (V_HLEN & 0xF) << 2; 24354 24355 ipha->ipha_hdr_checksum = 0; 24356 24357 /* 24358 * Establish the number of bytes maximum per frag, after putting 24359 * in the header. 24360 */ 24361 len = (max_frag - hdr_len) & ~7; 24362 24363 /* Check if we can use MDT to send out the frags. */ 24364 ASSERT(!IRE_IS_LOCAL(ire)); 24365 if (hdr_len == IP_SIMPLE_HDR_LENGTH && 24366 ipst->ips_ip_multidata_outbound && 24367 !(ire->ire_flags & RTF_MULTIRT) && 24368 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 24369 ill != NULL && ILL_MDT_CAPABLE(ill) && 24370 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 24371 ASSERT(ill->ill_mdt_capab != NULL); 24372 if (!ill->ill_mdt_capab->ill_mdt_on) { 24373 /* 24374 * If MDT has been previously turned off in the past, 24375 * and we currently can do MDT (due to IPQoS policy 24376 * removal, etc.) then enable it for this interface. 24377 */ 24378 ill->ill_mdt_capab->ill_mdt_on = 1; 24379 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 24380 ill->ill_name)); 24381 } 24382 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 24383 offset); 24384 return; 24385 } 24386 24387 /* Get a copy of the header for the trailing frags */ 24388 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst, 24389 mp); 24390 if (!hdr_mp) { 24391 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24392 freemsg(mp); 24393 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24394 "ip_wput_frag_end:(%S)", 24395 "couldn't copy hdr"); 24396 return; 24397 } 24398 24399 /* Store the starting offset, with the MoreFrags flag. */ 24400 i1 = offset | IPH_MF | frag_flag; 24401 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 24402 24403 /* Establish the ending byte offset, based on the starting offset. */ 24404 offset <<= 3; 24405 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 24406 24407 /* Store the length of the first fragment in the IP header. */ 24408 i1 = len + hdr_len; 24409 ASSERT(i1 <= IP_MAXPACKET); 24410 ipha->ipha_length = htons((uint16_t)i1); 24411 24412 /* 24413 * Compute the IP header checksum for the first frag. We have to 24414 * watch out that we stop at the end of the header. 24415 */ 24416 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24417 24418 /* 24419 * Now carve off the first frag. Note that this will include the 24420 * original IP header. 24421 */ 24422 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 24423 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24424 freeb(hdr_mp); 24425 freemsg(mp_orig); 24426 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24427 "ip_wput_frag_end:(%S)", 24428 "couldn't carve first"); 24429 return; 24430 } 24431 24432 /* 24433 * Multirouting case. Each fragment is replicated 24434 * via all non-condemned RTF_MULTIRT routes 24435 * currently resolved. 24436 * We ensure that first_ire is the first RTF_MULTIRT 24437 * ire in the bucket. 24438 */ 24439 if (ire->ire_flags & RTF_MULTIRT) { 24440 irb = ire->ire_bucket; 24441 ASSERT(irb != NULL); 24442 24443 multirt_send = B_TRUE; 24444 24445 /* Make sure we do not omit any multiroute ire. */ 24446 IRB_REFHOLD(irb); 24447 for (first_ire = irb->irb_ire; 24448 first_ire != NULL; 24449 first_ire = first_ire->ire_next) { 24450 if ((first_ire->ire_flags & RTF_MULTIRT) && 24451 (first_ire->ire_addr == ire->ire_addr) && 24452 !(first_ire->ire_marks & 24453 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN))) 24454 break; 24455 } 24456 24457 if (first_ire != NULL) { 24458 if (first_ire != ire) { 24459 IRE_REFHOLD(first_ire); 24460 /* 24461 * Do not release the ire passed in 24462 * as the argument. 24463 */ 24464 ire = first_ire; 24465 } else { 24466 first_ire = NULL; 24467 } 24468 } 24469 IRB_REFRELE(irb); 24470 24471 /* 24472 * Save the first ire; we will need to restore it 24473 * for the trailing frags. 24474 * We REFHOLD save_ire, as each iterated ire will be 24475 * REFRELEd. 24476 */ 24477 save_ire = ire; 24478 IRE_REFHOLD(save_ire); 24479 } 24480 24481 /* 24482 * First fragment emission loop. 24483 * In most cases, the emission loop below is entered only 24484 * once. Only in the case where the ire holds the RTF_MULTIRT 24485 * flag, do we loop to process all RTF_MULTIRT ires in the 24486 * bucket, and send the fragment through all crossed 24487 * RTF_MULTIRT routes. 24488 */ 24489 do { 24490 if (ire->ire_flags & RTF_MULTIRT) { 24491 /* 24492 * We are in a multiple send case, need to get 24493 * the next ire and make a copy of the packet. 24494 * ire1 holds here the next ire to process in the 24495 * bucket. If multirouting is expected, 24496 * any non-RTF_MULTIRT ire that has the 24497 * right destination address is ignored. 24498 * 24499 * We have to take into account the MTU of 24500 * each walked ire. max_frag is set by the 24501 * the caller and generally refers to 24502 * the primary ire entry. Here we ensure that 24503 * no route with a lower MTU will be used, as 24504 * fragments are carved once for all ires, 24505 * then replicated. 24506 */ 24507 ASSERT(irb != NULL); 24508 IRB_REFHOLD(irb); 24509 for (ire1 = ire->ire_next; 24510 ire1 != NULL; 24511 ire1 = ire1->ire_next) { 24512 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 24513 continue; 24514 if (ire1->ire_addr != ire->ire_addr) 24515 continue; 24516 if (ire1->ire_marks & 24517 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN)) 24518 continue; 24519 /* 24520 * Ensure we do not exceed the MTU 24521 * of the next route. 24522 */ 24523 if (ire1->ire_max_frag < max_frag) { 24524 ip_multirt_bad_mtu(ire1, max_frag); 24525 continue; 24526 } 24527 24528 /* Got one. */ 24529 IRE_REFHOLD(ire1); 24530 break; 24531 } 24532 IRB_REFRELE(irb); 24533 24534 if (ire1 != NULL) { 24535 next_mp = copyb(mp); 24536 if ((next_mp == NULL) || 24537 ((mp->b_cont != NULL) && 24538 ((next_mp->b_cont = 24539 dupmsg(mp->b_cont)) == NULL))) { 24540 freemsg(next_mp); 24541 next_mp = NULL; 24542 ire_refrele(ire1); 24543 ire1 = NULL; 24544 } 24545 } 24546 24547 /* Last multiroute ire; don't loop anymore. */ 24548 if (ire1 == NULL) { 24549 multirt_send = B_FALSE; 24550 } 24551 } 24552 24553 ll_hdr_len = 0; 24554 LOCK_IRE_FP_MP(ire); 24555 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24556 if (ll_hdr_mp != NULL) { 24557 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24558 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 24559 } else { 24560 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24561 } 24562 24563 /* If there is a transmit header, get a copy for this frag. */ 24564 /* 24565 * TODO: should check db_ref before calling ip_carve_mp since 24566 * it might give us a dup. 24567 */ 24568 if (!ll_hdr_mp) { 24569 /* No xmit header. */ 24570 xmit_mp = mp; 24571 24572 /* We have a link-layer header that can fit in our mblk. */ 24573 } else if (mp->b_datap->db_ref == 1 && 24574 ll_hdr_len != 0 && 24575 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24576 /* M_DATA fastpath */ 24577 mp->b_rptr -= ll_hdr_len; 24578 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 24579 xmit_mp = mp; 24580 24581 /* Corner case if copyb has failed */ 24582 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 24583 UNLOCK_IRE_FP_MP(ire); 24584 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24585 freeb(hdr_mp); 24586 freemsg(mp); 24587 freemsg(mp_orig); 24588 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24589 "ip_wput_frag_end:(%S)", 24590 "discard"); 24591 24592 if (multirt_send) { 24593 ASSERT(ire1); 24594 ASSERT(next_mp); 24595 24596 freemsg(next_mp); 24597 ire_refrele(ire1); 24598 } 24599 if (save_ire != NULL) 24600 IRE_REFRELE(save_ire); 24601 24602 if (first_ire != NULL) 24603 ire_refrele(first_ire); 24604 return; 24605 24606 /* 24607 * Case of res_mp OR the fastpath mp can't fit 24608 * in the mblk 24609 */ 24610 } else { 24611 xmit_mp->b_cont = mp; 24612 24613 /* 24614 * Get priority marking, if any. 24615 * We propagate the CoS marking from the 24616 * original packet that went to QoS processing 24617 * in ip_wput_ire to the newly carved mp. 24618 */ 24619 if (DB_TYPE(xmit_mp) == M_DATA) 24620 xmit_mp->b_band = mp->b_band; 24621 } 24622 UNLOCK_IRE_FP_MP(ire); 24623 24624 q = ire->ire_stq; 24625 out_ill = (ill_t *)q->q_ptr; 24626 24627 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24628 24629 DTRACE_PROBE4(ip4__physical__out__start, 24630 ill_t *, NULL, ill_t *, out_ill, 24631 ipha_t *, ipha, mblk_t *, xmit_mp); 24632 24633 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24634 ipst->ips_ipv4firewall_physical_out, 24635 NULL, out_ill, ipha, xmit_mp, mp, 0, ipst); 24636 24637 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, xmit_mp); 24638 24639 if (xmit_mp != NULL) { 24640 DTRACE_IP7(send, mblk_t *, xmit_mp, conn_t *, NULL, 24641 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 24642 ipha_t *, ipha, ip6_t *, NULL, int, 0); 24643 24644 ILL_SEND_TX(out_ill, ire, connp, xmit_mp, 0, connp); 24645 24646 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 24647 UPDATE_MIB(out_ill->ill_ip_mib, 24648 ipIfStatsHCOutOctets, i1); 24649 24650 if (pkt_type != OB_PKT) { 24651 /* 24652 * Update the packet count and MIB stats 24653 * of trailing RTF_MULTIRT ires. 24654 */ 24655 UPDATE_OB_PKT_COUNT(ire); 24656 BUMP_MIB(out_ill->ill_ip_mib, 24657 ipIfStatsOutFragReqds); 24658 } 24659 } 24660 24661 if (multirt_send) { 24662 /* 24663 * We are in a multiple send case; look for 24664 * the next ire and re-enter the loop. 24665 */ 24666 ASSERT(ire1); 24667 ASSERT(next_mp); 24668 /* REFRELE the current ire before looping */ 24669 ire_refrele(ire); 24670 ire = ire1; 24671 ire1 = NULL; 24672 mp = next_mp; 24673 next_mp = NULL; 24674 } 24675 } while (multirt_send); 24676 24677 ASSERT(ire1 == NULL); 24678 24679 /* Restore the original ire; we need it for the trailing frags */ 24680 if (save_ire != NULL) { 24681 /* REFRELE the last iterated ire */ 24682 ire_refrele(ire); 24683 /* save_ire has been REFHOLDed */ 24684 ire = save_ire; 24685 save_ire = NULL; 24686 q = ire->ire_stq; 24687 } 24688 24689 if (pkt_type == OB_PKT) { 24690 UPDATE_OB_PKT_COUNT(ire); 24691 } else { 24692 out_ill = (ill_t *)q->q_ptr; 24693 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 24694 UPDATE_IB_PKT_COUNT(ire); 24695 } 24696 24697 /* Advance the offset to the second frag starting point. */ 24698 offset += len; 24699 /* 24700 * Update hdr_len from the copied header - there might be less options 24701 * in the later fragments. 24702 */ 24703 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 24704 /* Loop until done. */ 24705 for (;;) { 24706 uint16_t offset_and_flags; 24707 uint16_t ip_len; 24708 24709 if (ip_data_end - offset > len) { 24710 /* 24711 * Carve off the appropriate amount from the original 24712 * datagram. 24713 */ 24714 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24715 mp = NULL; 24716 break; 24717 } 24718 /* 24719 * More frags after this one. Get another copy 24720 * of the header. 24721 */ 24722 if (carve_mp->b_datap->db_ref == 1 && 24723 hdr_mp->b_wptr - hdr_mp->b_rptr < 24724 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24725 /* Inline IP header */ 24726 carve_mp->b_rptr -= hdr_mp->b_wptr - 24727 hdr_mp->b_rptr; 24728 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24729 hdr_mp->b_wptr - hdr_mp->b_rptr); 24730 mp = carve_mp; 24731 } else { 24732 if (!(mp = copyb(hdr_mp))) { 24733 freemsg(carve_mp); 24734 break; 24735 } 24736 /* Get priority marking, if any. */ 24737 mp->b_band = carve_mp->b_band; 24738 mp->b_cont = carve_mp; 24739 } 24740 ipha = (ipha_t *)mp->b_rptr; 24741 offset_and_flags = IPH_MF; 24742 } else { 24743 /* 24744 * Last frag. Consume the header. Set len to 24745 * the length of this last piece. 24746 */ 24747 len = ip_data_end - offset; 24748 24749 /* 24750 * Carve off the appropriate amount from the original 24751 * datagram. 24752 */ 24753 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24754 mp = NULL; 24755 break; 24756 } 24757 if (carve_mp->b_datap->db_ref == 1 && 24758 hdr_mp->b_wptr - hdr_mp->b_rptr < 24759 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24760 /* Inline IP header */ 24761 carve_mp->b_rptr -= hdr_mp->b_wptr - 24762 hdr_mp->b_rptr; 24763 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24764 hdr_mp->b_wptr - hdr_mp->b_rptr); 24765 mp = carve_mp; 24766 freeb(hdr_mp); 24767 hdr_mp = mp; 24768 } else { 24769 mp = hdr_mp; 24770 /* Get priority marking, if any. */ 24771 mp->b_band = carve_mp->b_band; 24772 mp->b_cont = carve_mp; 24773 } 24774 ipha = (ipha_t *)mp->b_rptr; 24775 /* A frag of a frag might have IPH_MF non-zero */ 24776 offset_and_flags = 24777 ntohs(ipha->ipha_fragment_offset_and_flags) & 24778 IPH_MF; 24779 } 24780 offset_and_flags |= (uint16_t)(offset >> 3); 24781 offset_and_flags |= (uint16_t)frag_flag; 24782 /* Store the offset and flags in the IP header. */ 24783 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24784 24785 /* Store the length in the IP header. */ 24786 ip_len = (uint16_t)(len + hdr_len); 24787 ipha->ipha_length = htons(ip_len); 24788 24789 /* 24790 * Set the IP header checksum. Note that mp is just 24791 * the header, so this is easy to pass to ip_csum. 24792 */ 24793 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24794 24795 /* Attach a transmit header, if any, and ship it. */ 24796 if (pkt_type == OB_PKT) { 24797 UPDATE_OB_PKT_COUNT(ire); 24798 } else { 24799 out_ill = (ill_t *)q->q_ptr; 24800 BUMP_MIB(out_ill->ill_ip_mib, 24801 ipIfStatsHCOutForwDatagrams); 24802 UPDATE_IB_PKT_COUNT(ire); 24803 } 24804 24805 if (ire->ire_flags & RTF_MULTIRT) { 24806 irb = ire->ire_bucket; 24807 ASSERT(irb != NULL); 24808 24809 multirt_send = B_TRUE; 24810 24811 /* 24812 * Save the original ire; we will need to restore it 24813 * for the tailing frags. 24814 */ 24815 save_ire = ire; 24816 IRE_REFHOLD(save_ire); 24817 } 24818 /* 24819 * Emission loop for this fragment, similar 24820 * to what is done for the first fragment. 24821 */ 24822 do { 24823 if (multirt_send) { 24824 /* 24825 * We are in a multiple send case, need to get 24826 * the next ire and make a copy of the packet. 24827 */ 24828 ASSERT(irb != NULL); 24829 IRB_REFHOLD(irb); 24830 for (ire1 = ire->ire_next; 24831 ire1 != NULL; 24832 ire1 = ire1->ire_next) { 24833 if (!(ire1->ire_flags & RTF_MULTIRT)) 24834 continue; 24835 if (ire1->ire_addr != ire->ire_addr) 24836 continue; 24837 if (ire1->ire_marks & 24838 (IRE_MARK_CONDEMNED | 24839 IRE_MARK_TESTHIDDEN)) 24840 continue; 24841 /* 24842 * Ensure we do not exceed the MTU 24843 * of the next route. 24844 */ 24845 if (ire1->ire_max_frag < max_frag) { 24846 ip_multirt_bad_mtu(ire1, 24847 max_frag); 24848 continue; 24849 } 24850 24851 /* Got one. */ 24852 IRE_REFHOLD(ire1); 24853 break; 24854 } 24855 IRB_REFRELE(irb); 24856 24857 if (ire1 != NULL) { 24858 next_mp = copyb(mp); 24859 if ((next_mp == NULL) || 24860 ((mp->b_cont != NULL) && 24861 ((next_mp->b_cont = 24862 dupmsg(mp->b_cont)) == NULL))) { 24863 freemsg(next_mp); 24864 next_mp = NULL; 24865 ire_refrele(ire1); 24866 ire1 = NULL; 24867 } 24868 } 24869 24870 /* Last multiroute ire; don't loop anymore. */ 24871 if (ire1 == NULL) { 24872 multirt_send = B_FALSE; 24873 } 24874 } 24875 24876 /* Update transmit header */ 24877 ll_hdr_len = 0; 24878 LOCK_IRE_FP_MP(ire); 24879 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24880 if (ll_hdr_mp != NULL) { 24881 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24882 ll_hdr_len = MBLKL(ll_hdr_mp); 24883 } else { 24884 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24885 } 24886 24887 if (!ll_hdr_mp) { 24888 xmit_mp = mp; 24889 24890 /* 24891 * We have link-layer header that can fit in 24892 * our mblk. 24893 */ 24894 } else if (mp->b_datap->db_ref == 1 && 24895 ll_hdr_len != 0 && 24896 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24897 /* M_DATA fastpath */ 24898 mp->b_rptr -= ll_hdr_len; 24899 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 24900 ll_hdr_len); 24901 xmit_mp = mp; 24902 24903 /* 24904 * Case of res_mp OR the fastpath mp can't fit 24905 * in the mblk 24906 */ 24907 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 24908 xmit_mp->b_cont = mp; 24909 /* Get priority marking, if any. */ 24910 if (DB_TYPE(xmit_mp) == M_DATA) 24911 xmit_mp->b_band = mp->b_band; 24912 24913 /* Corner case if copyb failed */ 24914 } else { 24915 /* 24916 * Exit both the replication and 24917 * fragmentation loops. 24918 */ 24919 UNLOCK_IRE_FP_MP(ire); 24920 goto drop_pkt; 24921 } 24922 UNLOCK_IRE_FP_MP(ire); 24923 24924 mp1 = mp; 24925 out_ill = (ill_t *)q->q_ptr; 24926 24927 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24928 24929 DTRACE_PROBE4(ip4__physical__out__start, 24930 ill_t *, NULL, ill_t *, out_ill, 24931 ipha_t *, ipha, mblk_t *, xmit_mp); 24932 24933 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24934 ipst->ips_ipv4firewall_physical_out, 24935 NULL, out_ill, ipha, xmit_mp, mp, 0, ipst); 24936 24937 DTRACE_PROBE1(ip4__physical__out__end, 24938 mblk_t *, xmit_mp); 24939 24940 if (mp != mp1 && hdr_mp == mp1) 24941 hdr_mp = mp; 24942 if (mp != mp1 && mp_orig == mp1) 24943 mp_orig = mp; 24944 24945 if (xmit_mp != NULL) { 24946 DTRACE_IP7(send, mblk_t *, xmit_mp, conn_t *, 24947 NULL, void_ip_t *, ipha, 24948 __dtrace_ipsr_ill_t *, out_ill, ipha_t *, 24949 ipha, ip6_t *, NULL, int, 0); 24950 24951 ILL_SEND_TX(out_ill, ire, connp, 24952 xmit_mp, 0, connp); 24953 24954 BUMP_MIB(out_ill->ill_ip_mib, 24955 ipIfStatsHCOutTransmits); 24956 UPDATE_MIB(out_ill->ill_ip_mib, 24957 ipIfStatsHCOutOctets, ip_len); 24958 24959 if (pkt_type != OB_PKT) { 24960 /* 24961 * Update the packet count of trailing 24962 * RTF_MULTIRT ires. 24963 */ 24964 UPDATE_OB_PKT_COUNT(ire); 24965 } 24966 } 24967 24968 /* All done if we just consumed the hdr_mp. */ 24969 if (mp == hdr_mp) { 24970 last_frag = B_TRUE; 24971 BUMP_MIB(out_ill->ill_ip_mib, 24972 ipIfStatsOutFragOKs); 24973 } 24974 24975 if (multirt_send) { 24976 /* 24977 * We are in a multiple send case; look for 24978 * the next ire and re-enter the loop. 24979 */ 24980 ASSERT(ire1); 24981 ASSERT(next_mp); 24982 /* REFRELE the current ire before looping */ 24983 ire_refrele(ire); 24984 ire = ire1; 24985 ire1 = NULL; 24986 q = ire->ire_stq; 24987 mp = next_mp; 24988 next_mp = NULL; 24989 } 24990 } while (multirt_send); 24991 /* 24992 * Restore the original ire; we need it for the 24993 * trailing frags 24994 */ 24995 if (save_ire != NULL) { 24996 ASSERT(ire1 == NULL); 24997 /* REFRELE the last iterated ire */ 24998 ire_refrele(ire); 24999 /* save_ire has been REFHOLDed */ 25000 ire = save_ire; 25001 q = ire->ire_stq; 25002 save_ire = NULL; 25003 } 25004 25005 if (last_frag) { 25006 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 25007 "ip_wput_frag_end:(%S)", 25008 "consumed hdr_mp"); 25009 25010 if (first_ire != NULL) 25011 ire_refrele(first_ire); 25012 return; 25013 } 25014 /* Otherwise, advance and loop. */ 25015 offset += len; 25016 } 25017 25018 drop_pkt: 25019 /* Clean up following allocation failure. */ 25020 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 25021 freemsg(mp); 25022 if (mp != hdr_mp) 25023 freeb(hdr_mp); 25024 if (mp != mp_orig) 25025 freemsg(mp_orig); 25026 25027 if (save_ire != NULL) 25028 IRE_REFRELE(save_ire); 25029 if (first_ire != NULL) 25030 ire_refrele(first_ire); 25031 25032 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 25033 "ip_wput_frag_end:(%S)", 25034 "end--alloc failure"); 25035 } 25036 25037 /* 25038 * Copy the header plus those options which have the copy bit set 25039 * src is the template to make sure we preserve the cred for TX purposes. 25040 */ 25041 static mblk_t * 25042 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst, 25043 mblk_t *src) 25044 { 25045 mblk_t *mp; 25046 uchar_t *up; 25047 25048 /* 25049 * Quick check if we need to look for options without the copy bit 25050 * set 25051 */ 25052 mp = allocb_tmpl(ipst->ips_ip_wroff_extra + hdr_len, src); 25053 if (!mp) 25054 return (mp); 25055 mp->b_rptr += ipst->ips_ip_wroff_extra; 25056 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 25057 bcopy(rptr, mp->b_rptr, hdr_len); 25058 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 25059 return (mp); 25060 } 25061 up = mp->b_rptr; 25062 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 25063 up += IP_SIMPLE_HDR_LENGTH; 25064 rptr += IP_SIMPLE_HDR_LENGTH; 25065 hdr_len -= IP_SIMPLE_HDR_LENGTH; 25066 while (hdr_len > 0) { 25067 uint32_t optval; 25068 uint32_t optlen; 25069 25070 optval = *rptr; 25071 if (optval == IPOPT_EOL) 25072 break; 25073 if (optval == IPOPT_NOP) 25074 optlen = 1; 25075 else 25076 optlen = rptr[1]; 25077 if (optval & IPOPT_COPY) { 25078 bcopy(rptr, up, optlen); 25079 up += optlen; 25080 } 25081 rptr += optlen; 25082 hdr_len -= optlen; 25083 } 25084 /* 25085 * Make sure that we drop an even number of words by filling 25086 * with EOL to the next word boundary. 25087 */ 25088 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 25089 hdr_len & 0x3; hdr_len++) 25090 *up++ = IPOPT_EOL; 25091 mp->b_wptr = up; 25092 /* Update header length */ 25093 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 25094 return (mp); 25095 } 25096 25097 /* 25098 * Delivery to local recipients including fanout to multiple recipients. 25099 * Does not do checksumming of UDP/TCP. 25100 * Note: q should be the read side queue for either the ill or conn. 25101 * Note: rq should be the read side q for the lower (ill) stream. 25102 * We don't send packets to IPPF processing, thus the last argument 25103 * to all the fanout calls are B_FALSE. 25104 */ 25105 void 25106 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 25107 int fanout_flags, zoneid_t zoneid) 25108 { 25109 uint32_t protocol; 25110 mblk_t *first_mp; 25111 boolean_t mctl_present; 25112 int ire_type; 25113 #define rptr ((uchar_t *)ipha) 25114 ip_stack_t *ipst = ill->ill_ipst; 25115 25116 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 25117 "ip_wput_local_start: q %p", q); 25118 25119 if (ire != NULL) { 25120 ire_type = ire->ire_type; 25121 } else { 25122 /* 25123 * Only ip_multicast_loopback() calls us with a NULL ire. If the 25124 * packet is not multicast, we can't tell the ire type. 25125 */ 25126 ASSERT(CLASSD(ipha->ipha_dst)); 25127 ire_type = IRE_BROADCAST; 25128 } 25129 25130 first_mp = mp; 25131 if (first_mp->b_datap->db_type == M_CTL) { 25132 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 25133 if (!io->ipsec_out_secure) { 25134 /* 25135 * This ipsec_out_t was allocated in ip_wput 25136 * for multicast packets to store the ill_index. 25137 * As this is being delivered locally, we don't 25138 * need this anymore. 25139 */ 25140 mp = first_mp->b_cont; 25141 freeb(first_mp); 25142 first_mp = mp; 25143 mctl_present = B_FALSE; 25144 } else { 25145 /* 25146 * Convert IPSEC_OUT to IPSEC_IN, preserving all 25147 * security properties for the looped-back packet. 25148 */ 25149 mctl_present = B_TRUE; 25150 mp = first_mp->b_cont; 25151 ASSERT(mp != NULL); 25152 ipsec_out_to_in(first_mp); 25153 } 25154 } else { 25155 mctl_present = B_FALSE; 25156 } 25157 25158 DTRACE_PROBE4(ip4__loopback__in__start, 25159 ill_t *, ill, ill_t *, NULL, 25160 ipha_t *, ipha, mblk_t *, first_mp); 25161 25162 FW_HOOKS(ipst->ips_ip4_loopback_in_event, 25163 ipst->ips_ipv4firewall_loopback_in, 25164 ill, NULL, ipha, first_mp, mp, 0, ipst); 25165 25166 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, first_mp); 25167 25168 if (first_mp == NULL) 25169 return; 25170 25171 if (ipst->ips_ipobs_enabled) { 25172 zoneid_t szone, dzone, lookup_zoneid = ALL_ZONES; 25173 zoneid_t stackzoneid = netstackid_to_zoneid( 25174 ipst->ips_netstack->netstack_stackid); 25175 25176 dzone = (stackzoneid == GLOBAL_ZONEID) ? zoneid : stackzoneid; 25177 /* 25178 * 127.0.0.1 is special, as we cannot lookup its zoneid by 25179 * address. Restrict the lookup below to the destination zone. 25180 */ 25181 if (ipha->ipha_src == ntohl(INADDR_LOOPBACK)) 25182 lookup_zoneid = zoneid; 25183 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, ipst, 25184 lookup_zoneid); 25185 ipobs_hook(mp, IPOBS_HOOK_LOCAL, szone, dzone, ill, 25186 IPV4_VERSION, 0, ipst); 25187 } 25188 25189 DTRACE_IP7(receive, mblk_t *, first_mp, conn_t *, NULL, void_ip_t *, 25190 ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, ip6_t *, NULL, 25191 int, 1); 25192 25193 ipst->ips_loopback_packets++; 25194 25195 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 25196 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 25197 if (!IS_SIMPLE_IPH(ipha)) { 25198 ip_wput_local_options(ipha, ipst); 25199 } 25200 25201 protocol = ipha->ipha_protocol; 25202 switch (protocol) { 25203 case IPPROTO_ICMP: { 25204 ire_t *ire_zone; 25205 ilm_t *ilm; 25206 mblk_t *mp1; 25207 zoneid_t last_zoneid; 25208 ilm_walker_t ilw; 25209 25210 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(ill)) { 25211 ASSERT(ire_type == IRE_BROADCAST); 25212 /* 25213 * In the multicast case, applications may have joined 25214 * the group from different zones, so we need to deliver 25215 * the packet to each of them. Loop through the 25216 * multicast memberships structures (ilm) on the receive 25217 * ill and send a copy of the packet up each matching 25218 * one. However, we don't do this for multicasts sent on 25219 * the loopback interface (PHYI_LOOPBACK flag set) as 25220 * they must stay in the sender's zone. 25221 * 25222 * ilm_add_v6() ensures that ilms in the same zone are 25223 * contiguous in the ill_ilm list. We use this property 25224 * to avoid sending duplicates needed when two 25225 * applications in the same zone join the same group on 25226 * different logical interfaces: we ignore the ilm if 25227 * it's zoneid is the same as the last matching one. 25228 * In addition, the sending of the packet for 25229 * ire_zoneid is delayed until all of the other ilms 25230 * have been exhausted. 25231 */ 25232 last_zoneid = -1; 25233 ilm = ilm_walker_start(&ilw, ill); 25234 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 25235 if (ipha->ipha_dst != ilm->ilm_addr || 25236 ilm->ilm_zoneid == last_zoneid || 25237 ilm->ilm_zoneid == zoneid || 25238 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 25239 continue; 25240 mp1 = ip_copymsg(first_mp); 25241 if (mp1 == NULL) 25242 continue; 25243 icmp_inbound(q, mp1, B_TRUE, ilw.ilw_walk_ill, 25244 0, 0, mctl_present, B_FALSE, ill, 25245 ilm->ilm_zoneid); 25246 last_zoneid = ilm->ilm_zoneid; 25247 } 25248 ilm_walker_finish(&ilw); 25249 /* 25250 * Loopback case: the sending endpoint has 25251 * IP_MULTICAST_LOOP disabled, therefore we don't 25252 * dispatch the multicast packet to the sending zone. 25253 */ 25254 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 25255 freemsg(first_mp); 25256 return; 25257 } 25258 } else if (ire_type == IRE_BROADCAST) { 25259 /* 25260 * In the broadcast case, there may be many zones 25261 * which need a copy of the packet delivered to them. 25262 * There is one IRE_BROADCAST per broadcast address 25263 * and per zone; we walk those using a helper function. 25264 * In addition, the sending of the packet for zoneid is 25265 * delayed until all of the other ires have been 25266 * processed. 25267 */ 25268 IRB_REFHOLD(ire->ire_bucket); 25269 ire_zone = NULL; 25270 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 25271 ire)) != NULL) { 25272 mp1 = ip_copymsg(first_mp); 25273 if (mp1 == NULL) 25274 continue; 25275 25276 UPDATE_IB_PKT_COUNT(ire_zone); 25277 ire_zone->ire_last_used_time = lbolt; 25278 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25279 mctl_present, B_FALSE, ill, 25280 ire_zone->ire_zoneid); 25281 } 25282 IRB_REFRELE(ire->ire_bucket); 25283 } 25284 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 25285 0, mctl_present, B_FALSE, ill, zoneid); 25286 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25287 "ip_wput_local_end: q %p (%S)", 25288 q, "icmp"); 25289 return; 25290 } 25291 case IPPROTO_IGMP: 25292 if ((mp = igmp_input(q, mp, ill)) == NULL) { 25293 /* Bad packet - discarded by igmp_input */ 25294 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25295 "ip_wput_local_end: q %p (%S)", 25296 q, "igmp_input--bad packet"); 25297 if (mctl_present) 25298 freeb(first_mp); 25299 return; 25300 } 25301 /* 25302 * igmp_input() may have returned the pulled up message. 25303 * So first_mp and ipha need to be reinitialized. 25304 */ 25305 ipha = (ipha_t *)mp->b_rptr; 25306 if (mctl_present) 25307 first_mp->b_cont = mp; 25308 else 25309 first_mp = mp; 25310 /* deliver to local raw users */ 25311 break; 25312 case IPPROTO_ENCAP: 25313 /* 25314 * This case is covered by either ip_fanout_proto, or by 25315 * the above security processing for self-tunneled packets. 25316 */ 25317 break; 25318 case IPPROTO_UDP: { 25319 uint16_t *up; 25320 uint32_t ports; 25321 25322 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 25323 UDP_PORTS_OFFSET); 25324 /* Force a 'valid' checksum. */ 25325 up[3] = 0; 25326 25327 ports = *(uint32_t *)up; 25328 ip_fanout_udp(q, first_mp, ill, ipha, ports, 25329 (ire_type == IRE_BROADCAST), 25330 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25331 IP_FF_SEND_SLLA | IP_FF_IPINFO, mctl_present, B_FALSE, 25332 ill, zoneid); 25333 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25334 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 25335 return; 25336 } 25337 case IPPROTO_TCP: { 25338 25339 /* 25340 * For TCP, discard broadcast packets. 25341 */ 25342 if ((ushort_t)ire_type == IRE_BROADCAST) { 25343 freemsg(first_mp); 25344 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 25345 ip2dbg(("ip_wput_local: discard broadcast\n")); 25346 return; 25347 } 25348 25349 if (mp->b_datap->db_type == M_DATA) { 25350 /* 25351 * M_DATA mblk, so init mblk (chain) for no struio(). 25352 */ 25353 mblk_t *mp1 = mp; 25354 25355 do { 25356 mp1->b_datap->db_struioflag = 0; 25357 } while ((mp1 = mp1->b_cont) != NULL); 25358 } 25359 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 25360 <= mp->b_wptr); 25361 ip_fanout_tcp(q, first_mp, ill, ipha, 25362 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25363 IP_FF_SYN_ADDIRE | IP_FF_IPINFO, 25364 mctl_present, B_FALSE, zoneid); 25365 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25366 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 25367 return; 25368 } 25369 case IPPROTO_SCTP: 25370 { 25371 uint32_t ports; 25372 25373 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 25374 ip_fanout_sctp(first_mp, ill, ipha, ports, 25375 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25376 IP_FF_IPINFO, mctl_present, B_FALSE, zoneid); 25377 return; 25378 } 25379 25380 default: 25381 break; 25382 } 25383 /* 25384 * Find a client for some other protocol. We give 25385 * copies to multiple clients, if more than one is 25386 * bound. 25387 */ 25388 ip_fanout_proto(q, first_mp, ill, ipha, 25389 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 25390 mctl_present, B_FALSE, ill, zoneid); 25391 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25392 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 25393 #undef rptr 25394 } 25395 25396 /* 25397 * Update any source route, record route, or timestamp options. 25398 * Check that we are at end of strict source route. 25399 * The options have been sanity checked by ip_wput_options(). 25400 */ 25401 static void 25402 ip_wput_local_options(ipha_t *ipha, ip_stack_t *ipst) 25403 { 25404 ipoptp_t opts; 25405 uchar_t *opt; 25406 uint8_t optval; 25407 uint8_t optlen; 25408 ipaddr_t dst; 25409 uint32_t ts; 25410 ire_t *ire; 25411 timestruc_t now; 25412 25413 ip2dbg(("ip_wput_local_options\n")); 25414 for (optval = ipoptp_first(&opts, ipha); 25415 optval != IPOPT_EOL; 25416 optval = ipoptp_next(&opts)) { 25417 opt = opts.ipoptp_cur; 25418 optlen = opts.ipoptp_len; 25419 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 25420 switch (optval) { 25421 uint32_t off; 25422 case IPOPT_SSRR: 25423 case IPOPT_LSRR: 25424 off = opt[IPOPT_OFFSET]; 25425 off--; 25426 if (optlen < IP_ADDR_LEN || 25427 off > optlen - IP_ADDR_LEN) { 25428 /* End of source route */ 25429 break; 25430 } 25431 /* 25432 * This will only happen if two consecutive entries 25433 * in the source route contains our address or if 25434 * it is a packet with a loose source route which 25435 * reaches us before consuming the whole source route 25436 */ 25437 ip1dbg(("ip_wput_local_options: not end of SR\n")); 25438 if (optval == IPOPT_SSRR) { 25439 return; 25440 } 25441 /* 25442 * Hack: instead of dropping the packet truncate the 25443 * source route to what has been used by filling the 25444 * rest with IPOPT_NOP. 25445 */ 25446 opt[IPOPT_OLEN] = (uint8_t)off; 25447 while (off < optlen) { 25448 opt[off++] = IPOPT_NOP; 25449 } 25450 break; 25451 case IPOPT_RR: 25452 off = opt[IPOPT_OFFSET]; 25453 off--; 25454 if (optlen < IP_ADDR_LEN || 25455 off > optlen - IP_ADDR_LEN) { 25456 /* No more room - ignore */ 25457 ip1dbg(( 25458 "ip_wput_forward_options: end of RR\n")); 25459 break; 25460 } 25461 dst = htonl(INADDR_LOOPBACK); 25462 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25463 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25464 break; 25465 case IPOPT_TS: 25466 /* Insert timestamp if there is romm */ 25467 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25468 case IPOPT_TS_TSONLY: 25469 off = IPOPT_TS_TIMELEN; 25470 break; 25471 case IPOPT_TS_PRESPEC: 25472 case IPOPT_TS_PRESPEC_RFC791: 25473 /* Verify that the address matched */ 25474 off = opt[IPOPT_OFFSET] - 1; 25475 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 25476 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 25477 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 25478 ipst); 25479 if (ire == NULL) { 25480 /* Not for us */ 25481 break; 25482 } 25483 ire_refrele(ire); 25484 /* FALLTHRU */ 25485 case IPOPT_TS_TSANDADDR: 25486 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 25487 break; 25488 default: 25489 /* 25490 * ip_*put_options should have already 25491 * dropped this packet. 25492 */ 25493 cmn_err(CE_PANIC, "ip_wput_local_options: " 25494 "unknown IT - bug in ip_wput_options?\n"); 25495 return; /* Keep "lint" happy */ 25496 } 25497 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 25498 /* Increase overflow counter */ 25499 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 25500 opt[IPOPT_POS_OV_FLG] = (uint8_t) 25501 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 25502 (off << 4); 25503 break; 25504 } 25505 off = opt[IPOPT_OFFSET] - 1; 25506 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25507 case IPOPT_TS_PRESPEC: 25508 case IPOPT_TS_PRESPEC_RFC791: 25509 case IPOPT_TS_TSANDADDR: 25510 dst = htonl(INADDR_LOOPBACK); 25511 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25512 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25513 /* FALLTHRU */ 25514 case IPOPT_TS_TSONLY: 25515 off = opt[IPOPT_OFFSET] - 1; 25516 /* Compute # of milliseconds since midnight */ 25517 gethrestime(&now); 25518 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 25519 now.tv_nsec / (NANOSEC / MILLISEC); 25520 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 25521 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 25522 break; 25523 } 25524 break; 25525 } 25526 } 25527 } 25528 25529 /* 25530 * Send out a multicast packet on interface ipif. 25531 * The sender does not have an conn. 25532 * Caller verifies that this isn't a PHYI_LOOPBACK. 25533 */ 25534 void 25535 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif, zoneid_t zoneid) 25536 { 25537 ipha_t *ipha; 25538 ire_t *ire; 25539 ipaddr_t dst; 25540 mblk_t *first_mp; 25541 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 25542 25543 /* igmp_sendpkt always allocates a ipsec_out_t */ 25544 ASSERT(mp->b_datap->db_type == M_CTL); 25545 ASSERT(!ipif->ipif_isv6); 25546 ASSERT(!IS_LOOPBACK(ipif->ipif_ill)); 25547 25548 first_mp = mp; 25549 mp = first_mp->b_cont; 25550 ASSERT(mp->b_datap->db_type == M_DATA); 25551 ipha = (ipha_t *)mp->b_rptr; 25552 25553 /* 25554 * Find an IRE which matches the destination and the outgoing 25555 * queue (i.e. the outgoing interface.) 25556 */ 25557 if (ipif->ipif_flags & IPIF_POINTOPOINT) 25558 dst = ipif->ipif_pp_dst_addr; 25559 else 25560 dst = ipha->ipha_dst; 25561 /* 25562 * The source address has already been initialized by the 25563 * caller and hence matching on ILL (MATCH_IRE_ILL) would 25564 * be sufficient rather than MATCH_IRE_IPIF. 25565 * 25566 * This function is used for sending IGMP packets. For IPMP, 25567 * we sidestep IGMP snooping issues by sending all multicast 25568 * traffic on a single interface in the IPMP group. 25569 */ 25570 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, NULL, 25571 MATCH_IRE_ILL, ipst); 25572 if (!ire) { 25573 /* 25574 * Mark this packet to make it be delivered to 25575 * ip_wput_ire after the new ire has been 25576 * created. 25577 */ 25578 mp->b_prev = NULL; 25579 mp->b_next = NULL; 25580 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC, 25581 zoneid, &zero_info); 25582 return; 25583 } 25584 25585 /* 25586 * Honor the RTF_SETSRC flag; this is the only case 25587 * where we force this addr whatever the current src addr is, 25588 * because this address is set by igmp_sendpkt(), and 25589 * cannot be specified by any user. 25590 */ 25591 if (ire->ire_flags & RTF_SETSRC) { 25592 ipha->ipha_src = ire->ire_src_addr; 25593 } 25594 25595 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE, zoneid); 25596 } 25597 25598 /* 25599 * NOTE : This function does not ire_refrele the ire argument passed in. 25600 * 25601 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 25602 * failure. The nce_fp_mp can vanish any time in the case of 25603 * IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 25604 * the ire_lock to access the nce_fp_mp in this case. 25605 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 25606 * prepending a fastpath message IPQoS processing must precede it, we also set 25607 * the b_band of the fastpath message to that of the mblk returned by IPQoS 25608 * (IPQoS might have set the b_band for CoS marking). 25609 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 25610 * must follow it so that IPQoS can mark the dl_priority field for CoS 25611 * marking, if needed. 25612 */ 25613 static mblk_t * 25614 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, 25615 uint32_t ill_index, ipha_t **iphap) 25616 { 25617 uint_t hlen; 25618 ipha_t *ipha; 25619 mblk_t *mp1; 25620 boolean_t qos_done = B_FALSE; 25621 uchar_t *ll_hdr; 25622 ip_stack_t *ipst = ire->ire_ipst; 25623 25624 #define rptr ((uchar_t *)ipha) 25625 25626 ipha = (ipha_t *)mp->b_rptr; 25627 hlen = 0; 25628 LOCK_IRE_FP_MP(ire); 25629 if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) { 25630 ASSERT(DB_TYPE(mp1) == M_DATA); 25631 /* Initiate IPPF processing */ 25632 if ((proc != 0) && IPP_ENABLED(proc, ipst)) { 25633 UNLOCK_IRE_FP_MP(ire); 25634 ip_process(proc, &mp, ill_index); 25635 if (mp == NULL) 25636 return (NULL); 25637 25638 ipha = (ipha_t *)mp->b_rptr; 25639 LOCK_IRE_FP_MP(ire); 25640 if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) { 25641 qos_done = B_TRUE; 25642 goto no_fp_mp; 25643 } 25644 ASSERT(DB_TYPE(mp1) == M_DATA); 25645 } 25646 hlen = MBLKL(mp1); 25647 /* 25648 * Check if we have enough room to prepend fastpath 25649 * header 25650 */ 25651 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 25652 ll_hdr = rptr - hlen; 25653 bcopy(mp1->b_rptr, ll_hdr, hlen); 25654 /* 25655 * Set the b_rptr to the start of the link layer 25656 * header 25657 */ 25658 mp->b_rptr = ll_hdr; 25659 mp1 = mp; 25660 } else { 25661 mp1 = copyb(mp1); 25662 if (mp1 == NULL) 25663 goto unlock_err; 25664 mp1->b_band = mp->b_band; 25665 mp1->b_cont = mp; 25666 /* 25667 * XXX disable ICK_VALID and compute checksum 25668 * here; can happen if nce_fp_mp changes and 25669 * it can't be copied now due to insufficient 25670 * space. (unlikely, fp mp can change, but it 25671 * does not increase in length) 25672 */ 25673 } 25674 UNLOCK_IRE_FP_MP(ire); 25675 } else { 25676 no_fp_mp: 25677 mp1 = copyb(ire->ire_nce->nce_res_mp); 25678 if (mp1 == NULL) { 25679 unlock_err: 25680 UNLOCK_IRE_FP_MP(ire); 25681 freemsg(mp); 25682 return (NULL); 25683 } 25684 UNLOCK_IRE_FP_MP(ire); 25685 mp1->b_cont = mp; 25686 if (!qos_done && (proc != 0) && IPP_ENABLED(proc, ipst)) { 25687 ip_process(proc, &mp1, ill_index); 25688 if (mp1 == NULL) 25689 return (NULL); 25690 25691 if (mp1->b_cont == NULL) 25692 ipha = NULL; 25693 else 25694 ipha = (ipha_t *)mp1->b_cont->b_rptr; 25695 } 25696 } 25697 25698 *iphap = ipha; 25699 return (mp1); 25700 #undef rptr 25701 } 25702 25703 /* 25704 * Finish the outbound IPsec processing for an IPv6 packet. This function 25705 * is called from ipsec_out_process() if the IPsec packet was processed 25706 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25707 * asynchronously. 25708 */ 25709 void 25710 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 25711 ire_t *ire_arg) 25712 { 25713 in6_addr_t *v6dstp; 25714 ire_t *ire; 25715 mblk_t *mp; 25716 ip6_t *ip6h1; 25717 uint_t ill_index; 25718 ipsec_out_t *io; 25719 boolean_t hwaccel; 25720 uint32_t flags = IP6_NO_IPPOLICY; 25721 int match_flags; 25722 zoneid_t zoneid; 25723 boolean_t ill_need_rele = B_FALSE; 25724 boolean_t ire_need_rele = B_FALSE; 25725 ip_stack_t *ipst; 25726 25727 mp = ipsec_mp->b_cont; 25728 ip6h1 = (ip6_t *)mp->b_rptr; 25729 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25730 ASSERT(io->ipsec_out_ns != NULL); 25731 ipst = io->ipsec_out_ns->netstack_ip; 25732 ill_index = io->ipsec_out_ill_index; 25733 if (io->ipsec_out_reachable) { 25734 flags |= IPV6_REACHABILITY_CONFIRMATION; 25735 } 25736 hwaccel = io->ipsec_out_accelerated; 25737 zoneid = io->ipsec_out_zoneid; 25738 ASSERT(zoneid != ALL_ZONES); 25739 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 25740 /* Multicast addresses should have non-zero ill_index. */ 25741 v6dstp = &ip6h->ip6_dst; 25742 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 25743 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 25744 25745 if (ill == NULL && ill_index != 0) { 25746 ill = ip_grab_ill(ipsec_mp, ill_index, B_TRUE, ipst); 25747 /* Failure case frees things for us. */ 25748 if (ill == NULL) 25749 return; 25750 25751 ill_need_rele = B_TRUE; 25752 } 25753 ASSERT(mp != NULL); 25754 25755 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 25756 boolean_t unspec_src; 25757 ipif_t *ipif; 25758 25759 /* 25760 * Use the ill_index to get the right ill. 25761 */ 25762 unspec_src = io->ipsec_out_unspec_src; 25763 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25764 if (ipif == NULL) { 25765 if (ill_need_rele) 25766 ill_refrele(ill); 25767 freemsg(ipsec_mp); 25768 return; 25769 } 25770 25771 if (ire_arg != NULL) { 25772 ire = ire_arg; 25773 } else { 25774 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25775 zoneid, msg_getlabel(mp), match_flags, ipst); 25776 ire_need_rele = B_TRUE; 25777 } 25778 if (ire != NULL) { 25779 ipif_refrele(ipif); 25780 /* 25781 * XXX Do the multicast forwarding now, as the IPsec 25782 * processing has been done. 25783 */ 25784 goto send; 25785 } 25786 25787 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 25788 mp->b_prev = NULL; 25789 mp->b_next = NULL; 25790 25791 /* 25792 * If the IPsec packet was processed asynchronously, 25793 * drop it now. 25794 */ 25795 if (q == NULL) { 25796 if (ill_need_rele) 25797 ill_refrele(ill); 25798 freemsg(ipsec_mp); 25799 return; 25800 } 25801 25802 ip_newroute_ipif_v6(q, ipsec_mp, ipif, v6dstp, &ip6h->ip6_src, 25803 unspec_src, zoneid); 25804 ipif_refrele(ipif); 25805 } else { 25806 if (ire_arg != NULL) { 25807 ire = ire_arg; 25808 } else { 25809 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL, ipst); 25810 ire_need_rele = B_TRUE; 25811 } 25812 if (ire != NULL) 25813 goto send; 25814 /* 25815 * ire disappeared underneath. 25816 * 25817 * What we need to do here is the ip_newroute 25818 * logic to get the ire without doing the IPsec 25819 * processing. Follow the same old path. But this 25820 * time, ip_wput or ire_add_then_send will call us 25821 * directly as all the IPsec operations are done. 25822 */ 25823 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 25824 mp->b_prev = NULL; 25825 mp->b_next = NULL; 25826 25827 /* 25828 * If the IPsec packet was processed asynchronously, 25829 * drop it now. 25830 */ 25831 if (q == NULL) { 25832 if (ill_need_rele) 25833 ill_refrele(ill); 25834 freemsg(ipsec_mp); 25835 return; 25836 } 25837 25838 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 25839 zoneid, ipst); 25840 } 25841 if (ill != NULL && ill_need_rele) 25842 ill_refrele(ill); 25843 return; 25844 send: 25845 if (ill != NULL && ill_need_rele) 25846 ill_refrele(ill); 25847 25848 /* Local delivery */ 25849 if (ire->ire_stq == NULL) { 25850 ill_t *out_ill; 25851 ASSERT(q != NULL); 25852 25853 /* PFHooks: LOOPBACK_OUT */ 25854 out_ill = ire_to_ill(ire); 25855 25856 /* 25857 * DTrace this as ip:::send. A blocked packet will fire the 25858 * send probe, but not the receive probe. 25859 */ 25860 DTRACE_IP7(send, mblk_t *, ipsec_mp, conn_t *, NULL, 25861 void_ip_t *, ip6h, __dtrace_ipsr_ill_t *, out_ill, 25862 ipha_t *, NULL, ip6_t *, ip6h, int, 1); 25863 25864 DTRACE_PROBE4(ip6__loopback__out__start, 25865 ill_t *, NULL, ill_t *, out_ill, 25866 ip6_t *, ip6h1, mblk_t *, ipsec_mp); 25867 25868 FW_HOOKS6(ipst->ips_ip6_loopback_out_event, 25869 ipst->ips_ipv6firewall_loopback_out, 25870 NULL, out_ill, ip6h1, ipsec_mp, mp, 0, ipst); 25871 25872 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, ipsec_mp); 25873 25874 if (ipsec_mp != NULL) { 25875 ip_wput_local_v6(RD(q), out_ill, 25876 ip6h, ipsec_mp, ire, 0, zoneid); 25877 } 25878 if (ire_need_rele) 25879 ire_refrele(ire); 25880 return; 25881 } 25882 /* 25883 * Everything is done. Send it out on the wire. 25884 * We force the insertion of a fragment header using the 25885 * IPH_FRAG_HDR flag in two cases: 25886 * - after reception of an ICMPv6 "packet too big" message 25887 * with a MTU < 1280 (cf. RFC 2460 section 5) 25888 * - for multirouted IPv6 packets, so that the receiver can 25889 * discard duplicates according to their fragment identifier 25890 */ 25891 /* XXX fix flow control problems. */ 25892 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 25893 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 25894 if (hwaccel) { 25895 /* 25896 * hardware acceleration does not handle these 25897 * "slow path" cases. 25898 */ 25899 /* IPsec KSTATS: should bump bean counter here. */ 25900 if (ire_need_rele) 25901 ire_refrele(ire); 25902 freemsg(ipsec_mp); 25903 return; 25904 } 25905 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 25906 (mp->b_cont ? msgdsize(mp) : 25907 mp->b_wptr - (uchar_t *)ip6h)) { 25908 /* IPsec KSTATS: should bump bean counter here. */ 25909 ip0dbg(("Packet length mismatch: %d, %ld\n", 25910 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 25911 msgdsize(mp))); 25912 if (ire_need_rele) 25913 ire_refrele(ire); 25914 freemsg(ipsec_mp); 25915 return; 25916 } 25917 ASSERT(mp->b_prev == NULL); 25918 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 25919 ntohs(ip6h->ip6_plen) + 25920 IPV6_HDR_LEN, ire->ire_max_frag)); 25921 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 25922 ire->ire_max_frag); 25923 } else { 25924 UPDATE_OB_PKT_COUNT(ire); 25925 ire->ire_last_used_time = lbolt; 25926 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 25927 } 25928 if (ire_need_rele) 25929 ire_refrele(ire); 25930 freeb(ipsec_mp); 25931 } 25932 25933 void 25934 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 25935 { 25936 mblk_t *hada_mp; /* attributes M_CTL mblk */ 25937 da_ipsec_t *hada; /* data attributes */ 25938 ill_t *ill = (ill_t *)q->q_ptr; 25939 25940 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 25941 25942 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 25943 /* IPsec KSTATS: Bump lose counter here! */ 25944 freemsg(mp); 25945 return; 25946 } 25947 25948 /* 25949 * It's an IPsec packet that must be 25950 * accelerated by the Provider, and the 25951 * outbound ill is IPsec acceleration capable. 25952 * Prepends the mblk with an IPHADA_M_CTL, and ship it 25953 * to the ill. 25954 * IPsec KSTATS: should bump packet counter here. 25955 */ 25956 25957 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 25958 if (hada_mp == NULL) { 25959 /* IPsec KSTATS: should bump packet counter here. */ 25960 freemsg(mp); 25961 return; 25962 } 25963 25964 hada_mp->b_datap->db_type = M_CTL; 25965 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 25966 hada_mp->b_cont = mp; 25967 25968 hada = (da_ipsec_t *)hada_mp->b_rptr; 25969 bzero(hada, sizeof (da_ipsec_t)); 25970 hada->da_type = IPHADA_M_CTL; 25971 25972 putnext(q, hada_mp); 25973 } 25974 25975 /* 25976 * Finish the outbound IPsec processing. This function is called from 25977 * ipsec_out_process() if the IPsec packet was processed 25978 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25979 * asynchronously. 25980 */ 25981 void 25982 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 25983 ire_t *ire_arg) 25984 { 25985 uint32_t v_hlen_tos_len; 25986 ipaddr_t dst; 25987 ipif_t *ipif = NULL; 25988 ire_t *ire; 25989 ire_t *ire1 = NULL; 25990 mblk_t *next_mp = NULL; 25991 uint32_t max_frag; 25992 boolean_t multirt_send = B_FALSE; 25993 mblk_t *mp; 25994 ipha_t *ipha1; 25995 uint_t ill_index; 25996 ipsec_out_t *io; 25997 int match_flags; 25998 irb_t *irb = NULL; 25999 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 26000 zoneid_t zoneid; 26001 ipxmit_state_t pktxmit_state; 26002 ip_stack_t *ipst; 26003 26004 #ifdef _BIG_ENDIAN 26005 #define LENGTH (v_hlen_tos_len & 0xFFFF) 26006 #else 26007 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 26008 #endif 26009 26010 mp = ipsec_mp->b_cont; 26011 ipha1 = (ipha_t *)mp->b_rptr; 26012 ASSERT(mp != NULL); 26013 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 26014 dst = ipha->ipha_dst; 26015 26016 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26017 ill_index = io->ipsec_out_ill_index; 26018 zoneid = io->ipsec_out_zoneid; 26019 ASSERT(zoneid != ALL_ZONES); 26020 ipst = io->ipsec_out_ns->netstack_ip; 26021 ASSERT(io->ipsec_out_ns != NULL); 26022 26023 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 26024 if (ill == NULL && ill_index != 0) { 26025 ill = ip_grab_ill(ipsec_mp, ill_index, B_FALSE, ipst); 26026 /* Failure case frees things for us. */ 26027 if (ill == NULL) 26028 return; 26029 26030 ill_need_rele = B_TRUE; 26031 } 26032 26033 if (CLASSD(dst)) { 26034 boolean_t conn_dontroute; 26035 /* 26036 * Use the ill_index to get the right ipif. 26037 */ 26038 conn_dontroute = io->ipsec_out_dontroute; 26039 if (ill_index == 0) 26040 ipif = ipif_lookup_group(dst, zoneid, ipst); 26041 else 26042 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 26043 if (ipif == NULL) { 26044 ip1dbg(("ip_wput_ipsec_out: No ipif for" 26045 " multicast\n")); 26046 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 26047 freemsg(ipsec_mp); 26048 goto done; 26049 } 26050 /* 26051 * ipha_src has already been intialized with the 26052 * value of the ipif in ip_wput. All we need now is 26053 * an ire to send this downstream. 26054 */ 26055 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 26056 msg_getlabel(mp), match_flags, ipst); 26057 if (ire != NULL) { 26058 ill_t *ill1; 26059 /* 26060 * Do the multicast forwarding now, as the IPsec 26061 * processing has been done. 26062 */ 26063 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 26064 (ill1 = ire_to_ill(ire))) { 26065 if (ip_mforward(ill1, ipha, mp)) { 26066 freemsg(ipsec_mp); 26067 ip1dbg(("ip_wput_ipsec_out: mforward " 26068 "failed\n")); 26069 ire_refrele(ire); 26070 goto done; 26071 } 26072 } 26073 goto send; 26074 } 26075 26076 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 26077 mp->b_prev = NULL; 26078 mp->b_next = NULL; 26079 26080 /* 26081 * If the IPsec packet was processed asynchronously, 26082 * drop it now. 26083 */ 26084 if (q == NULL) { 26085 freemsg(ipsec_mp); 26086 goto done; 26087 } 26088 26089 /* 26090 * We may be using a wrong ipif to create the ire. 26091 * But it is okay as the source address is assigned 26092 * for the packet already. Next outbound packet would 26093 * create the IRE with the right IPIF in ip_wput. 26094 * 26095 * Also handle RTF_MULTIRT routes. 26096 */ 26097 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT, 26098 zoneid, &zero_info); 26099 } else { 26100 if (ire_arg != NULL) { 26101 ire = ire_arg; 26102 ire_need_rele = B_FALSE; 26103 } else { 26104 ire = ire_cache_lookup(dst, zoneid, 26105 msg_getlabel(mp), ipst); 26106 } 26107 if (ire != NULL) { 26108 goto send; 26109 } 26110 26111 /* 26112 * ire disappeared underneath. 26113 * 26114 * What we need to do here is the ip_newroute 26115 * logic to get the ire without doing the IPsec 26116 * processing. Follow the same old path. But this 26117 * time, ip_wput or ire_add_then_put will call us 26118 * directly as all the IPsec operations are done. 26119 */ 26120 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 26121 mp->b_prev = NULL; 26122 mp->b_next = NULL; 26123 26124 /* 26125 * If the IPsec packet was processed asynchronously, 26126 * drop it now. 26127 */ 26128 if (q == NULL) { 26129 freemsg(ipsec_mp); 26130 goto done; 26131 } 26132 26133 /* 26134 * Since we're going through ip_newroute() again, we 26135 * need to make sure we don't: 26136 * 26137 * 1.) Trigger the ASSERT() with the ipha_ident 26138 * overloading. 26139 * 2.) Redo transport-layer checksumming, since we've 26140 * already done all that to get this far. 26141 * 26142 * The easiest way not do either of the above is to set 26143 * the ipha_ident field to IP_HDR_INCLUDED. 26144 */ 26145 ipha->ipha_ident = IP_HDR_INCLUDED; 26146 ip_newroute(q, ipsec_mp, dst, (CONN_Q(q) ? Q_TO_CONN(q) : NULL), 26147 zoneid, ipst); 26148 } 26149 goto done; 26150 send: 26151 if (ire->ire_stq == NULL) { 26152 ill_t *out_ill; 26153 /* 26154 * Loopbacks go through ip_wput_local except for one case. 26155 * We come here if we generate a icmp_frag_needed message 26156 * after IPsec processing is over. When this function calls 26157 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 26158 * icmp_frag_needed. The message generated comes back here 26159 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 26160 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 26161 * source address as it is usually set in ip_wput_ire. As 26162 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 26163 * and we end up here. We can't enter ip_wput_ire once the 26164 * IPsec processing is over and hence we need to do it here. 26165 */ 26166 ASSERT(q != NULL); 26167 UPDATE_OB_PKT_COUNT(ire); 26168 ire->ire_last_used_time = lbolt; 26169 if (ipha->ipha_src == 0) 26170 ipha->ipha_src = ire->ire_src_addr; 26171 26172 /* PFHooks: LOOPBACK_OUT */ 26173 out_ill = ire_to_ill(ire); 26174 26175 /* 26176 * DTrace this as ip:::send. A blocked packet will fire the 26177 * send probe, but not the receive probe. 26178 */ 26179 DTRACE_IP7(send, mblk_t *, ipsec_mp, conn_t *, NULL, 26180 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 26181 ipha_t *, ipha, ip6_t *, NULL, int, 1); 26182 26183 DTRACE_PROBE4(ip4__loopback__out__start, 26184 ill_t *, NULL, ill_t *, out_ill, 26185 ipha_t *, ipha1, mblk_t *, ipsec_mp); 26186 26187 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 26188 ipst->ips_ipv4firewall_loopback_out, 26189 NULL, out_ill, ipha1, ipsec_mp, mp, 0, ipst); 26190 26191 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, ipsec_mp); 26192 26193 if (ipsec_mp != NULL) 26194 ip_wput_local(RD(q), out_ill, 26195 ipha, ipsec_mp, ire, 0, zoneid); 26196 if (ire_need_rele) 26197 ire_refrele(ire); 26198 goto done; 26199 } 26200 26201 if (ire->ire_max_frag < (unsigned int)LENGTH) { 26202 /* 26203 * We are through with IPsec processing. 26204 * Fragment this and send it on the wire. 26205 */ 26206 if (io->ipsec_out_accelerated) { 26207 /* 26208 * The packet has been accelerated but must 26209 * be fragmented. This should not happen 26210 * since AH and ESP must not accelerate 26211 * packets that need fragmentation, however 26212 * the configuration could have changed 26213 * since the AH or ESP processing. 26214 * Drop packet. 26215 * IPsec KSTATS: bump bean counter here. 26216 */ 26217 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 26218 "fragmented accelerated packet!\n")); 26219 freemsg(ipsec_mp); 26220 } else { 26221 ip_wput_ire_fragmentit(ipsec_mp, ire, 26222 zoneid, ipst, NULL); 26223 } 26224 if (ire_need_rele) 26225 ire_refrele(ire); 26226 goto done; 26227 } 26228 26229 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 26230 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 26231 (void *)ire->ire_ipif, (void *)ipif)); 26232 26233 /* 26234 * Multiroute the secured packet. 26235 */ 26236 if (ire->ire_flags & RTF_MULTIRT) { 26237 ire_t *first_ire; 26238 irb = ire->ire_bucket; 26239 ASSERT(irb != NULL); 26240 /* 26241 * This ire has been looked up as the one that 26242 * goes through the given ipif; 26243 * make sure we do not omit any other multiroute ire 26244 * that may be present in the bucket before this one. 26245 */ 26246 IRB_REFHOLD(irb); 26247 for (first_ire = irb->irb_ire; 26248 first_ire != NULL; 26249 first_ire = first_ire->ire_next) { 26250 if ((first_ire->ire_flags & RTF_MULTIRT) && 26251 (first_ire->ire_addr == ire->ire_addr) && 26252 !(first_ire->ire_marks & 26253 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN))) 26254 break; 26255 } 26256 26257 if ((first_ire != NULL) && (first_ire != ire)) { 26258 /* 26259 * Don't change the ire if the packet must 26260 * be fragmented if sent via this new one. 26261 */ 26262 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 26263 IRE_REFHOLD(first_ire); 26264 if (ire_need_rele) 26265 ire_refrele(ire); 26266 else 26267 ire_need_rele = B_TRUE; 26268 ire = first_ire; 26269 } 26270 } 26271 IRB_REFRELE(irb); 26272 26273 multirt_send = B_TRUE; 26274 max_frag = ire->ire_max_frag; 26275 } 26276 26277 /* 26278 * In most cases, the emission loop below is entered only once. 26279 * Only in the case where the ire holds the RTF_MULTIRT 26280 * flag, we loop to process all RTF_MULTIRT ires in the 26281 * bucket, and send the packet through all crossed 26282 * RTF_MULTIRT routes. 26283 */ 26284 do { 26285 if (multirt_send) { 26286 /* 26287 * ire1 holds here the next ire to process in the 26288 * bucket. If multirouting is expected, 26289 * any non-RTF_MULTIRT ire that has the 26290 * right destination address is ignored. 26291 */ 26292 ASSERT(irb != NULL); 26293 IRB_REFHOLD(irb); 26294 for (ire1 = ire->ire_next; 26295 ire1 != NULL; 26296 ire1 = ire1->ire_next) { 26297 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 26298 continue; 26299 if (ire1->ire_addr != ire->ire_addr) 26300 continue; 26301 if (ire1->ire_marks & 26302 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN)) 26303 continue; 26304 /* No loopback here */ 26305 if (ire1->ire_stq == NULL) 26306 continue; 26307 /* 26308 * Ensure we do not exceed the MTU 26309 * of the next route. 26310 */ 26311 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 26312 ip_multirt_bad_mtu(ire1, max_frag); 26313 continue; 26314 } 26315 26316 IRE_REFHOLD(ire1); 26317 break; 26318 } 26319 IRB_REFRELE(irb); 26320 if (ire1 != NULL) { 26321 /* 26322 * We are in a multiple send case, need to 26323 * make a copy of the packet. 26324 */ 26325 next_mp = copymsg(ipsec_mp); 26326 if (next_mp == NULL) { 26327 ire_refrele(ire1); 26328 ire1 = NULL; 26329 } 26330 } 26331 } 26332 /* 26333 * Everything is done. Send it out on the wire 26334 * 26335 * ip_xmit_v4 will call ip_wput_attach_llhdr and then 26336 * either send it on the wire or, in the case of 26337 * HW acceleration, call ipsec_hw_putnext. 26338 */ 26339 if (ire->ire_nce && 26340 ire->ire_nce->nce_state != ND_REACHABLE) { 26341 DTRACE_PROBE2(ip__wput__ipsec__bail, 26342 (ire_t *), ire, (mblk_t *), ipsec_mp); 26343 /* 26344 * If ire's link-layer is unresolved (this 26345 * would only happen if the incomplete ire 26346 * was added to cachetable via forwarding path) 26347 * don't bother going to ip_xmit_v4. Just drop the 26348 * packet. 26349 * There is a slight risk here, in that, if we 26350 * have the forwarding path create an incomplete 26351 * IRE, then until the IRE is completed, any 26352 * transmitted IPsec packets will be dropped 26353 * instead of being queued waiting for resolution. 26354 * 26355 * But the likelihood of a forwarding packet and a wput 26356 * packet sending to the same dst at the same time 26357 * and there not yet be an ARP entry for it is small. 26358 * Furthermore, if this actually happens, it might 26359 * be likely that wput would generate multiple 26360 * packets (and forwarding would also have a train 26361 * of packets) for that destination. If this is 26362 * the case, some of them would have been dropped 26363 * anyway, since ARP only queues a few packets while 26364 * waiting for resolution 26365 * 26366 * NOTE: We should really call ip_xmit_v4, 26367 * and let it queue the packet and send the 26368 * ARP query and have ARP come back thus: 26369 * <ARP> ip_wput->ip_output->ip-wput_nondata-> 26370 * ip_xmit_v4->ip_wput_attach_llhdr + ipsec 26371 * hw accel work. But it's too complex to get 26372 * the IPsec hw acceleration approach to fit 26373 * well with ip_xmit_v4 doing ARP without 26374 * doing IPsec simplification. For now, we just 26375 * poke ip_xmit_v4 to trigger the arp resolve, so 26376 * that we can continue with the send on the next 26377 * attempt. 26378 * 26379 * XXX THis should be revisited, when 26380 * the IPsec/IP interaction is cleaned up 26381 */ 26382 ip1dbg(("ip_wput_ipsec_out: ire is incomplete" 26383 " - dropping packet\n")); 26384 freemsg(ipsec_mp); 26385 /* 26386 * Call ip_xmit_v4() to trigger ARP query 26387 * in case the nce_state is ND_INITIAL 26388 */ 26389 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE, NULL); 26390 goto drop_pkt; 26391 } 26392 26393 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 26394 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha1, 26395 mblk_t *, ipsec_mp); 26396 FW_HOOKS(ipst->ips_ip4_physical_out_event, 26397 ipst->ips_ipv4firewall_physical_out, NULL, 26398 ire->ire_ipif->ipif_ill, ipha1, ipsec_mp, mp, 0, ipst); 26399 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, ipsec_mp); 26400 if (ipsec_mp == NULL) 26401 goto drop_pkt; 26402 26403 ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n")); 26404 pktxmit_state = ip_xmit_v4(mp, ire, 26405 (io->ipsec_out_accelerated ? io : NULL), B_FALSE, NULL); 26406 26407 if ((pktxmit_state == SEND_FAILED) || 26408 (pktxmit_state == LLHDR_RESLV_FAILED)) { 26409 26410 freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */ 26411 drop_pkt: 26412 BUMP_MIB(((ill_t *)ire->ire_stq->q_ptr)->ill_ip_mib, 26413 ipIfStatsOutDiscards); 26414 if (ire_need_rele) 26415 ire_refrele(ire); 26416 if (ire1 != NULL) { 26417 ire_refrele(ire1); 26418 freemsg(next_mp); 26419 } 26420 goto done; 26421 } 26422 26423 freeb(ipsec_mp); 26424 if (ire_need_rele) 26425 ire_refrele(ire); 26426 26427 if (ire1 != NULL) { 26428 ire = ire1; 26429 ire_need_rele = B_TRUE; 26430 ASSERT(next_mp); 26431 ipsec_mp = next_mp; 26432 mp = ipsec_mp->b_cont; 26433 ire1 = NULL; 26434 next_mp = NULL; 26435 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26436 } else { 26437 multirt_send = B_FALSE; 26438 } 26439 } while (multirt_send); 26440 done: 26441 if (ill != NULL && ill_need_rele) 26442 ill_refrele(ill); 26443 if (ipif != NULL) 26444 ipif_refrele(ipif); 26445 } 26446 26447 /* 26448 * Get the ill corresponding to the specified ire, and compare its 26449 * capabilities with the protocol and algorithms specified by the 26450 * the SA obtained from ipsec_out. If they match, annotate the 26451 * ipsec_out structure to indicate that the packet needs acceleration. 26452 * 26453 * 26454 * A packet is eligible for outbound hardware acceleration if the 26455 * following conditions are satisfied: 26456 * 26457 * 1. the packet will not be fragmented 26458 * 2. the provider supports the algorithm 26459 * 3. there is no pending control message being exchanged 26460 * 4. snoop is not attached 26461 * 5. the destination address is not a broadcast or multicast address. 26462 * 26463 * Rationale: 26464 * - Hardware drivers do not support fragmentation with 26465 * the current interface. 26466 * - snoop, multicast, and broadcast may result in exposure of 26467 * a cleartext datagram. 26468 * We check all five of these conditions here. 26469 * 26470 * XXX would like to nuke "ire_t *" parameter here; problem is that 26471 * IRE is only way to figure out if a v4 address is a broadcast and 26472 * thus ineligible for acceleration... 26473 */ 26474 static void 26475 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 26476 { 26477 ipsec_out_t *io; 26478 mblk_t *data_mp; 26479 uint_t plen, overhead; 26480 ip_stack_t *ipst; 26481 phyint_t *phyint; 26482 26483 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 26484 return; 26485 26486 if (ill == NULL) 26487 return; 26488 ipst = ill->ill_ipst; 26489 phyint = ill->ill_phyint; 26490 26491 /* 26492 * Destination address is a broadcast or multicast. Punt. 26493 */ 26494 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 26495 IRE_LOCAL))) 26496 return; 26497 26498 data_mp = ipsec_mp->b_cont; 26499 26500 if (ill->ill_isv6) { 26501 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 26502 26503 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 26504 return; 26505 26506 plen = ip6h->ip6_plen; 26507 } else { 26508 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 26509 26510 if (CLASSD(ipha->ipha_dst)) 26511 return; 26512 26513 plen = ipha->ipha_length; 26514 } 26515 /* 26516 * Is there a pending DLPI control message being exchanged 26517 * between IP/IPsec and the DLS Provider? If there is, it 26518 * could be a SADB update, and the state of the DLS Provider 26519 * SADB might not be in sync with the SADB maintained by 26520 * IPsec. To avoid dropping packets or using the wrong keying 26521 * material, we do not accelerate this packet. 26522 */ 26523 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 26524 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26525 "ill_dlpi_pending! don't accelerate packet\n")); 26526 return; 26527 } 26528 26529 /* 26530 * Is the Provider in promiscous mode? If it does, we don't 26531 * accelerate the packet since it will bounce back up to the 26532 * listeners in the clear. 26533 */ 26534 if (phyint->phyint_flags & PHYI_PROMISC) { 26535 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26536 "ill in promiscous mode, don't accelerate packet\n")); 26537 return; 26538 } 26539 26540 /* 26541 * Will the packet require fragmentation? 26542 */ 26543 26544 /* 26545 * IPsec ESP note: this is a pessimistic estimate, but the same 26546 * as is used elsewhere. 26547 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 26548 * + 2-byte trailer 26549 */ 26550 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 26551 IPSEC_BASE_ESP_HDR_SIZE(sa); 26552 26553 if ((plen + overhead) > ill->ill_max_mtu) 26554 return; 26555 26556 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26557 26558 /* 26559 * Can the ill accelerate this IPsec protocol and algorithm 26560 * specified by the SA? 26561 */ 26562 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 26563 ill->ill_isv6, sa, ipst->ips_netstack)) { 26564 return; 26565 } 26566 26567 /* 26568 * Tell AH or ESP that the outbound ill is capable of 26569 * accelerating this packet. 26570 */ 26571 io->ipsec_out_is_capab_ill = B_TRUE; 26572 } 26573 26574 /* 26575 * Select which AH & ESP SA's to use (if any) for the outbound packet. 26576 * 26577 * If this function returns B_TRUE, the requested SA's have been filled 26578 * into the ipsec_out_*_sa pointers. 26579 * 26580 * If the function returns B_FALSE, the packet has been "consumed", most 26581 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 26582 * 26583 * The SA references created by the protocol-specific "select" 26584 * function will be released when the ipsec_mp is freed, thanks to the 26585 * ipsec_out_free destructor -- see spd.c. 26586 */ 26587 static boolean_t 26588 ipsec_out_select_sa(mblk_t *ipsec_mp) 26589 { 26590 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 26591 ipsec_out_t *io; 26592 ipsec_policy_t *pp; 26593 ipsec_action_t *ap; 26594 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26595 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26596 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26597 26598 if (!io->ipsec_out_secure) { 26599 /* 26600 * We came here by mistake. 26601 * Don't bother with ipsec processing 26602 * We should "discourage" this path in the future. 26603 */ 26604 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26605 return (B_FALSE); 26606 } 26607 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26608 ASSERT((io->ipsec_out_policy != NULL) || 26609 (io->ipsec_out_act != NULL)); 26610 26611 ASSERT(io->ipsec_out_failed == B_FALSE); 26612 26613 /* 26614 * IPsec processing has started. 26615 */ 26616 io->ipsec_out_proc_begin = B_TRUE; 26617 ap = io->ipsec_out_act; 26618 if (ap == NULL) { 26619 pp = io->ipsec_out_policy; 26620 ASSERT(pp != NULL); 26621 ap = pp->ipsp_act; 26622 ASSERT(ap != NULL); 26623 } 26624 26625 /* 26626 * We have an action. now, let's select SA's. 26627 * (In the future, we can cache this in the conn_t..) 26628 */ 26629 if (ap->ipa_want_esp) { 26630 if (io->ipsec_out_esp_sa == NULL) { 26631 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 26632 IPPROTO_ESP); 26633 } 26634 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 26635 } 26636 26637 if (ap->ipa_want_ah) { 26638 if (io->ipsec_out_ah_sa == NULL) { 26639 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 26640 IPPROTO_AH); 26641 } 26642 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 26643 /* 26644 * The ESP and AH processing order needs to be preserved 26645 * when both protocols are required (ESP should be applied 26646 * before AH for an outbound packet). Force an ESP ACQUIRE 26647 * when both ESP and AH are required, and an AH ACQUIRE 26648 * is needed. 26649 */ 26650 if (ap->ipa_want_esp && need_ah_acquire) 26651 need_esp_acquire = B_TRUE; 26652 } 26653 26654 /* 26655 * Send an ACQUIRE (extended, regular, or both) if we need one. 26656 * Release SAs that got referenced, but will not be used until we 26657 * acquire _all_ of the SAs we need. 26658 */ 26659 if (need_ah_acquire || need_esp_acquire) { 26660 if (io->ipsec_out_ah_sa != NULL) { 26661 IPSA_REFRELE(io->ipsec_out_ah_sa); 26662 io->ipsec_out_ah_sa = NULL; 26663 } 26664 if (io->ipsec_out_esp_sa != NULL) { 26665 IPSA_REFRELE(io->ipsec_out_esp_sa); 26666 io->ipsec_out_esp_sa = NULL; 26667 } 26668 26669 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 26670 return (B_FALSE); 26671 } 26672 26673 return (B_TRUE); 26674 } 26675 26676 /* 26677 * Process an IPSEC_OUT message and see what you can 26678 * do with it. 26679 * IPQoS Notes: 26680 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 26681 * IPsec. 26682 * XXX would like to nuke ire_t. 26683 * XXX ill_index better be "real" 26684 */ 26685 void 26686 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 26687 { 26688 ipsec_out_t *io; 26689 ipsec_policy_t *pp; 26690 ipsec_action_t *ap; 26691 ipha_t *ipha; 26692 ip6_t *ip6h; 26693 mblk_t *mp; 26694 ill_t *ill; 26695 zoneid_t zoneid; 26696 ipsec_status_t ipsec_rc; 26697 boolean_t ill_need_rele = B_FALSE; 26698 ip_stack_t *ipst; 26699 ipsec_stack_t *ipss; 26700 26701 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26702 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26703 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26704 ipst = io->ipsec_out_ns->netstack_ip; 26705 mp = ipsec_mp->b_cont; 26706 26707 /* 26708 * Initiate IPPF processing. We do it here to account for packets 26709 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 26710 * We can check for ipsec_out_proc_begin even for such packets, as 26711 * they will always be false (asserted below). 26712 */ 26713 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst) && !io->ipsec_out_proc_begin) { 26714 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 26715 io->ipsec_out_ill_index : ill_index); 26716 if (mp == NULL) { 26717 ip2dbg(("ipsec_out_process: packet dropped "\ 26718 "during IPPF processing\n")); 26719 freeb(ipsec_mp); 26720 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26721 return; 26722 } 26723 } 26724 26725 if (!io->ipsec_out_secure) { 26726 /* 26727 * We came here by mistake. 26728 * Don't bother with ipsec processing 26729 * Should "discourage" this path in the future. 26730 */ 26731 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26732 goto done; 26733 } 26734 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26735 ASSERT((io->ipsec_out_policy != NULL) || 26736 (io->ipsec_out_act != NULL)); 26737 ASSERT(io->ipsec_out_failed == B_FALSE); 26738 26739 ipss = ipst->ips_netstack->netstack_ipsec; 26740 if (!ipsec_loaded(ipss)) { 26741 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 26742 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26743 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26744 } else { 26745 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 26746 } 26747 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 26748 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 26749 &ipss->ipsec_dropper); 26750 return; 26751 } 26752 26753 /* 26754 * IPsec processing has started. 26755 */ 26756 io->ipsec_out_proc_begin = B_TRUE; 26757 ap = io->ipsec_out_act; 26758 if (ap == NULL) { 26759 pp = io->ipsec_out_policy; 26760 ASSERT(pp != NULL); 26761 ap = pp->ipsp_act; 26762 ASSERT(ap != NULL); 26763 } 26764 26765 /* 26766 * Save the outbound ill index. When the packet comes back 26767 * from IPsec, we make sure the ill hasn't changed or disappeared 26768 * before sending it the accelerated packet. 26769 */ 26770 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 26771 ill = ire_to_ill(ire); 26772 io->ipsec_out_capab_ill_index = ill->ill_phyint->phyint_ifindex; 26773 } 26774 26775 /* 26776 * The order of processing is first insert a IP header if needed. 26777 * Then insert the ESP header and then the AH header. 26778 */ 26779 if ((io->ipsec_out_se_done == B_FALSE) && 26780 (ap->ipa_want_se)) { 26781 /* 26782 * First get the outer IP header before sending 26783 * it to ESP. 26784 */ 26785 ipha_t *oipha, *iipha; 26786 mblk_t *outer_mp, *inner_mp; 26787 26788 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 26789 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 26790 "ipsec_out_process: " 26791 "Self-Encapsulation failed: Out of memory\n"); 26792 freemsg(ipsec_mp); 26793 if (ill != NULL) { 26794 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26795 } else { 26796 BUMP_MIB(&ipst->ips_ip_mib, 26797 ipIfStatsOutDiscards); 26798 } 26799 return; 26800 } 26801 inner_mp = ipsec_mp->b_cont; 26802 ASSERT(inner_mp->b_datap->db_type == M_DATA); 26803 oipha = (ipha_t *)outer_mp->b_rptr; 26804 iipha = (ipha_t *)inner_mp->b_rptr; 26805 *oipha = *iipha; 26806 outer_mp->b_wptr += sizeof (ipha_t); 26807 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 26808 sizeof (ipha_t)); 26809 oipha->ipha_protocol = IPPROTO_ENCAP; 26810 oipha->ipha_version_and_hdr_length = 26811 IP_SIMPLE_HDR_VERSION; 26812 oipha->ipha_hdr_checksum = 0; 26813 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 26814 outer_mp->b_cont = inner_mp; 26815 ipsec_mp->b_cont = outer_mp; 26816 26817 io->ipsec_out_se_done = B_TRUE; 26818 io->ipsec_out_tunnel = B_TRUE; 26819 } 26820 26821 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 26822 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 26823 !ipsec_out_select_sa(ipsec_mp)) 26824 return; 26825 26826 /* 26827 * By now, we know what SA's to use. Toss over to ESP & AH 26828 * to do the heavy lifting. 26829 */ 26830 zoneid = io->ipsec_out_zoneid; 26831 ASSERT(zoneid != ALL_ZONES); 26832 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 26833 ASSERT(io->ipsec_out_esp_sa != NULL); 26834 io->ipsec_out_esp_done = B_TRUE; 26835 /* 26836 * Note that since hw accel can only apply one transform, 26837 * not two, we skip hw accel for ESP if we also have AH 26838 * This is an design limitation of the interface 26839 * which should be revisited. 26840 */ 26841 ASSERT(ire != NULL); 26842 if (io->ipsec_out_ah_sa == NULL) { 26843 ill = (ill_t *)ire->ire_stq->q_ptr; 26844 ipsec_out_is_accelerated(ipsec_mp, 26845 io->ipsec_out_esp_sa, ill, ire); 26846 } 26847 26848 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 26849 switch (ipsec_rc) { 26850 case IPSEC_STATUS_SUCCESS: 26851 break; 26852 case IPSEC_STATUS_FAILED: 26853 if (ill != NULL) { 26854 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26855 } else { 26856 BUMP_MIB(&ipst->ips_ip_mib, 26857 ipIfStatsOutDiscards); 26858 } 26859 /* FALLTHRU */ 26860 case IPSEC_STATUS_PENDING: 26861 return; 26862 } 26863 } 26864 26865 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 26866 ASSERT(io->ipsec_out_ah_sa != NULL); 26867 io->ipsec_out_ah_done = B_TRUE; 26868 if (ire == NULL) { 26869 int idx = io->ipsec_out_capab_ill_index; 26870 ill = ill_lookup_on_ifindex(idx, B_FALSE, 26871 NULL, NULL, NULL, NULL, ipst); 26872 ill_need_rele = B_TRUE; 26873 } else { 26874 ill = (ill_t *)ire->ire_stq->q_ptr; 26875 } 26876 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 26877 ire); 26878 26879 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 26880 switch (ipsec_rc) { 26881 case IPSEC_STATUS_SUCCESS: 26882 break; 26883 case IPSEC_STATUS_FAILED: 26884 if (ill != NULL) { 26885 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26886 } else { 26887 BUMP_MIB(&ipst->ips_ip_mib, 26888 ipIfStatsOutDiscards); 26889 } 26890 /* FALLTHRU */ 26891 case IPSEC_STATUS_PENDING: 26892 if (ill != NULL && ill_need_rele) 26893 ill_refrele(ill); 26894 return; 26895 } 26896 } 26897 /* 26898 * We are done with IPsec processing. Send it over the wire. 26899 */ 26900 done: 26901 mp = ipsec_mp->b_cont; 26902 ipha = (ipha_t *)mp->b_rptr; 26903 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26904 ip_wput_ipsec_out(q, ipsec_mp, ipha, ire->ire_ipif->ipif_ill, 26905 ire); 26906 } else { 26907 ip6h = (ip6_t *)ipha; 26908 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ire->ire_ipif->ipif_ill, 26909 ire); 26910 } 26911 if (ill != NULL && ill_need_rele) 26912 ill_refrele(ill); 26913 } 26914 26915 /* ARGSUSED */ 26916 void 26917 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 26918 { 26919 opt_restart_t *or; 26920 int err; 26921 conn_t *connp; 26922 cred_t *cr; 26923 26924 ASSERT(CONN_Q(q)); 26925 connp = Q_TO_CONN(q); 26926 26927 ASSERT(first_mp->b_datap->db_type == M_CTL); 26928 or = (opt_restart_t *)first_mp->b_rptr; 26929 /* 26930 * We checked for a db_credp the first time svr4_optcom_req 26931 * was called (from ip_wput_nondata). So we can just ASSERT here. 26932 */ 26933 cr = msg_getcred(first_mp, NULL); 26934 ASSERT(cr != NULL); 26935 26936 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 26937 err = svr4_optcom_req(q, first_mp, cr, 26938 &ip_opt_obj, B_FALSE); 26939 } else { 26940 ASSERT(or->or_type == T_OPTMGMT_REQ); 26941 err = tpi_optcom_req(q, first_mp, cr, 26942 &ip_opt_obj, B_FALSE); 26943 } 26944 if (err != EINPROGRESS) { 26945 /* operation is done */ 26946 CONN_OPER_PENDING_DONE(connp); 26947 } 26948 } 26949 26950 /* 26951 * ioctls that go through a down/up sequence may need to wait for the down 26952 * to complete. This involves waiting for the ire and ipif refcnts to go down 26953 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 26954 */ 26955 /* ARGSUSED */ 26956 void 26957 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 26958 { 26959 struct iocblk *iocp; 26960 mblk_t *mp1; 26961 ip_ioctl_cmd_t *ipip; 26962 int err; 26963 sin_t *sin; 26964 struct lifreq *lifr; 26965 struct ifreq *ifr; 26966 26967 iocp = (struct iocblk *)mp->b_rptr; 26968 ASSERT(ipsq != NULL); 26969 /* Existence of mp1 verified in ip_wput_nondata */ 26970 mp1 = mp->b_cont->b_cont; 26971 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26972 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 26973 /* 26974 * Special case where ipx_current_ipif is not set: 26975 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 26976 * We are here as were not able to complete the operation in 26977 * ipif_set_values because we could not become exclusive on 26978 * the new ipsq. 26979 */ 26980 ill_t *ill = q->q_ptr; 26981 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 26982 } 26983 ASSERT(ipsq->ipsq_xop->ipx_current_ipif != NULL); 26984 26985 if (ipip->ipi_cmd_type == IF_CMD) { 26986 /* This a old style SIOC[GS]IF* command */ 26987 ifr = (struct ifreq *)mp1->b_rptr; 26988 sin = (sin_t *)&ifr->ifr_addr; 26989 } else if (ipip->ipi_cmd_type == LIF_CMD) { 26990 /* This a new style SIOC[GS]LIF* command */ 26991 lifr = (struct lifreq *)mp1->b_rptr; 26992 sin = (sin_t *)&lifr->lifr_addr; 26993 } else { 26994 sin = NULL; 26995 } 26996 26997 err = (*ipip->ipi_func_restart)(ipsq->ipsq_xop->ipx_current_ipif, sin, 26998 q, mp, ipip, mp1->b_rptr); 26999 27000 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 27001 } 27002 27003 /* 27004 * ioctl processing 27005 * 27006 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up 27007 * the ioctl command in the ioctl tables, determines the copyin data size 27008 * from the ipi_copyin_size field, and does an mi_copyin() of that size. 27009 * 27010 * ioctl processing then continues when the M_IOCDATA makes its way down to 27011 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its 27012 * associated 'conn' is refheld till the end of the ioctl and the general 27013 * ioctl processing function ip_process_ioctl() is called to extract the 27014 * arguments and process the ioctl. To simplify extraction, ioctl commands 27015 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a 27016 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq()) 27017 * is used to extract the ioctl's arguments. 27018 * 27019 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 27020 * so goes thru the serialization primitive ipsq_try_enter. Then the 27021 * appropriate function to handle the ioctl is called based on the entry in 27022 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 27023 * which also refreleases the 'conn' that was refheld at the start of the 27024 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 27025 * 27026 * Many exclusive ioctls go thru an internal down up sequence as part of 27027 * the operation. For example an attempt to change the IP address of an 27028 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 27029 * does all the cleanup such as deleting all ires that use this address. 27030 * Then we need to wait till all references to the interface go away. 27031 */ 27032 void 27033 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 27034 { 27035 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 27036 ip_ioctl_cmd_t *ipip = arg; 27037 ip_extract_func_t *extract_funcp; 27038 cmd_info_t ci; 27039 int err; 27040 boolean_t entered_ipsq = B_FALSE; 27041 27042 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 27043 27044 if (ipip == NULL) 27045 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27046 27047 /* 27048 * SIOCLIFADDIF needs to go thru a special path since the 27049 * ill may not exist yet. This happens in the case of lo0 27050 * which is created using this ioctl. 27051 */ 27052 if (ipip->ipi_cmd == SIOCLIFADDIF) { 27053 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 27054 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27055 return; 27056 } 27057 27058 ci.ci_ipif = NULL; 27059 if (ipip->ipi_cmd_type == MISC_CMD) { 27060 /* 27061 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF. 27062 */ 27063 if (ipip->ipi_cmd == IF_UNITSEL) { 27064 /* ioctl comes down the ill */ 27065 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 27066 ipif_refhold(ci.ci_ipif); 27067 } 27068 err = 0; 27069 ci.ci_sin = NULL; 27070 ci.ci_sin6 = NULL; 27071 ci.ci_lifr = NULL; 27072 } else { 27073 switch (ipip->ipi_cmd_type) { 27074 case IF_CMD: 27075 case LIF_CMD: 27076 extract_funcp = ip_extract_lifreq; 27077 break; 27078 27079 case ARP_CMD: 27080 case XARP_CMD: 27081 extract_funcp = ip_extract_arpreq; 27082 break; 27083 27084 case TUN_CMD: 27085 extract_funcp = ip_extract_tunreq; 27086 break; 27087 27088 case MSFILT_CMD: 27089 extract_funcp = ip_extract_msfilter; 27090 break; 27091 27092 default: 27093 ASSERT(0); 27094 } 27095 27096 err = (*extract_funcp)(q, mp, ipip, &ci, ip_process_ioctl); 27097 if (err != 0) { 27098 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27099 return; 27100 } 27101 27102 /* 27103 * All of the extraction functions return a refheld ipif. 27104 */ 27105 ASSERT(ci.ci_ipif != NULL); 27106 } 27107 27108 if (!(ipip->ipi_flags & IPI_WR)) { 27109 /* 27110 * A return value of EINPROGRESS means the ioctl is 27111 * either queued and waiting for some reason or has 27112 * already completed. 27113 */ 27114 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 27115 ci.ci_lifr); 27116 if (ci.ci_ipif != NULL) 27117 ipif_refrele(ci.ci_ipif); 27118 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27119 return; 27120 } 27121 27122 ASSERT(ci.ci_ipif != NULL); 27123 27124 /* 27125 * If ipsq is non-NULL, we are already being called exclusively. 27126 */ 27127 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 27128 if (ipsq == NULL) { 27129 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl, 27130 NEW_OP, B_TRUE); 27131 if (ipsq == NULL) { 27132 ipif_refrele(ci.ci_ipif); 27133 return; 27134 } 27135 entered_ipsq = B_TRUE; 27136 } 27137 27138 /* 27139 * Release the ipif so that ipif_down and friends that wait for 27140 * references to go away are not misled about the current ipif_refcnt 27141 * values. We are writer so we can access the ipif even after releasing 27142 * the ipif. 27143 */ 27144 ipif_refrele(ci.ci_ipif); 27145 27146 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 27147 27148 /* 27149 * A return value of EINPROGRESS means the ioctl is 27150 * either queued and waiting for some reason or has 27151 * already completed. 27152 */ 27153 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 27154 27155 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 27156 27157 if (entered_ipsq) 27158 ipsq_exit(ipsq); 27159 } 27160 27161 /* 27162 * Complete the ioctl. Typically ioctls use the mi package and need to 27163 * do mi_copyout/mi_copy_done. 27164 */ 27165 void 27166 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 27167 { 27168 conn_t *connp = NULL; 27169 27170 if (err == EINPROGRESS) 27171 return; 27172 27173 if (CONN_Q(q)) { 27174 connp = Q_TO_CONN(q); 27175 ASSERT(connp->conn_ref >= 2); 27176 } 27177 27178 switch (mode) { 27179 case COPYOUT: 27180 if (err == 0) 27181 mi_copyout(q, mp); 27182 else 27183 mi_copy_done(q, mp, err); 27184 break; 27185 27186 case NO_COPYOUT: 27187 mi_copy_done(q, mp, err); 27188 break; 27189 27190 default: 27191 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 27192 break; 27193 } 27194 27195 /* 27196 * The refhold placed at the start of the ioctl is released here. 27197 */ 27198 if (connp != NULL) 27199 CONN_OPER_PENDING_DONE(connp); 27200 27201 if (ipsq != NULL) 27202 ipsq_current_finish(ipsq); 27203 } 27204 27205 /* Called from ip_wput for all non data messages */ 27206 /* ARGSUSED */ 27207 void 27208 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 27209 { 27210 mblk_t *mp1; 27211 ire_t *ire, *fake_ire; 27212 ill_t *ill; 27213 struct iocblk *iocp; 27214 ip_ioctl_cmd_t *ipip; 27215 cred_t *cr; 27216 conn_t *connp; 27217 int err; 27218 nce_t *nce; 27219 ipif_t *ipif; 27220 ip_stack_t *ipst; 27221 char *proto_str; 27222 27223 if (CONN_Q(q)) { 27224 connp = Q_TO_CONN(q); 27225 ipst = connp->conn_netstack->netstack_ip; 27226 } else { 27227 connp = NULL; 27228 ipst = ILLQ_TO_IPST(q); 27229 } 27230 27231 switch (DB_TYPE(mp)) { 27232 case M_IOCTL: 27233 /* 27234 * IOCTL processing begins in ip_sioctl_copyin_setup which 27235 * will arrange to copy in associated control structures. 27236 */ 27237 ip_sioctl_copyin_setup(q, mp); 27238 return; 27239 case M_IOCDATA: 27240 /* 27241 * Ensure that this is associated with one of our trans- 27242 * parent ioctls. If it's not ours, discard it if we're 27243 * running as a driver, or pass it on if we're a module. 27244 */ 27245 iocp = (struct iocblk *)mp->b_rptr; 27246 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27247 if (ipip == NULL) { 27248 if (q->q_next == NULL) { 27249 goto nak; 27250 } else { 27251 putnext(q, mp); 27252 } 27253 return; 27254 } 27255 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 27256 /* 27257 * the ioctl is one we recognise, but is not 27258 * consumed by IP as a module, pass M_IOCDATA 27259 * for processing downstream, but only for 27260 * common Streams ioctls. 27261 */ 27262 if (ipip->ipi_flags & IPI_PASS_DOWN) { 27263 putnext(q, mp); 27264 return; 27265 } else { 27266 goto nak; 27267 } 27268 } 27269 27270 /* IOCTL continuation following copyin or copyout. */ 27271 if (mi_copy_state(q, mp, NULL) == -1) { 27272 /* 27273 * The copy operation failed. mi_copy_state already 27274 * cleaned up, so we're out of here. 27275 */ 27276 return; 27277 } 27278 /* 27279 * If we just completed a copy in, we become writer and 27280 * continue processing in ip_sioctl_copyin_done. If it 27281 * was a copy out, we call mi_copyout again. If there is 27282 * nothing more to copy out, it will complete the IOCTL. 27283 */ 27284 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 27285 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 27286 mi_copy_done(q, mp, EPROTO); 27287 return; 27288 } 27289 /* 27290 * Check for cases that need more copying. A return 27291 * value of 0 means a second copyin has been started, 27292 * so we return; a return value of 1 means no more 27293 * copying is needed, so we continue. 27294 */ 27295 if (ipip->ipi_cmd_type == MSFILT_CMD && 27296 MI_COPY_COUNT(mp) == 1) { 27297 if (ip_copyin_msfilter(q, mp) == 0) 27298 return; 27299 } 27300 /* 27301 * Refhold the conn, till the ioctl completes. This is 27302 * needed in case the ioctl ends up in the pending mp 27303 * list. Every mp in the ill_pending_mp list and 27304 * the ipx_pending_mp must have a refhold on the conn 27305 * to resume processing. The refhold is released when 27306 * the ioctl completes. (normally or abnormally) 27307 * In all cases ip_ioctl_finish is called to finish 27308 * the ioctl. 27309 */ 27310 if (connp != NULL) { 27311 /* This is not a reentry */ 27312 ASSERT(ipsq == NULL); 27313 CONN_INC_REF(connp); 27314 } else { 27315 if (!(ipip->ipi_flags & IPI_MODOK)) { 27316 mi_copy_done(q, mp, EINVAL); 27317 return; 27318 } 27319 } 27320 27321 ip_process_ioctl(ipsq, q, mp, ipip); 27322 27323 } else { 27324 mi_copyout(q, mp); 27325 } 27326 return; 27327 nak: 27328 iocp->ioc_error = EINVAL; 27329 mp->b_datap->db_type = M_IOCNAK; 27330 iocp->ioc_count = 0; 27331 qreply(q, mp); 27332 return; 27333 27334 case M_IOCNAK: 27335 /* 27336 * The only way we could get here is if a resolver didn't like 27337 * an IOCTL we sent it. This shouldn't happen. 27338 */ 27339 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 27340 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 27341 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 27342 freemsg(mp); 27343 return; 27344 case M_IOCACK: 27345 /* /dev/ip shouldn't see this */ 27346 if (CONN_Q(q)) 27347 goto nak; 27348 27349 /* 27350 * Finish socket ioctls passed through to ARP. We use the 27351 * ioc_cmd values we set in ip_sioctl_arp() to decide whether 27352 * we need to become writer before calling ip_sioctl_iocack(). 27353 * Note that qwriter_ip() will release the refhold, and that a 27354 * refhold is OK without ILL_CAN_LOOKUP() since we're on the 27355 * ill stream. 27356 */ 27357 iocp = (struct iocblk *)mp->b_rptr; 27358 if (iocp->ioc_cmd == AR_ENTRY_SQUERY) { 27359 ip_sioctl_iocack(NULL, q, mp, NULL); 27360 return; 27361 } 27362 27363 ASSERT(iocp->ioc_cmd == AR_ENTRY_DELETE || 27364 iocp->ioc_cmd == AR_ENTRY_ADD); 27365 ill = q->q_ptr; 27366 ill_refhold(ill); 27367 qwriter_ip(ill, q, mp, ip_sioctl_iocack, CUR_OP, B_FALSE); 27368 return; 27369 case M_FLUSH: 27370 if (*mp->b_rptr & FLUSHW) 27371 flushq(q, FLUSHALL); 27372 if (q->q_next) { 27373 putnext(q, mp); 27374 return; 27375 } 27376 if (*mp->b_rptr & FLUSHR) { 27377 *mp->b_rptr &= ~FLUSHW; 27378 qreply(q, mp); 27379 return; 27380 } 27381 freemsg(mp); 27382 return; 27383 case IRE_DB_REQ_TYPE: 27384 if (connp == NULL) { 27385 proto_str = "IRE_DB_REQ_TYPE"; 27386 goto protonak; 27387 } 27388 /* An Upper Level Protocol wants a copy of an IRE. */ 27389 ip_ire_req(q, mp); 27390 return; 27391 case M_CTL: 27392 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 27393 break; 27394 27395 if (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == 27396 TUN_HELLO) { 27397 ASSERT(connp != NULL); 27398 connp->conn_flags |= IPCL_IPTUN; 27399 freeb(mp); 27400 return; 27401 } 27402 27403 /* M_CTL messages are used by ARP to tell us things. */ 27404 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 27405 break; 27406 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 27407 case AR_ENTRY_SQUERY: 27408 putnext(q, mp); 27409 return; 27410 case AR_CLIENT_NOTIFY: 27411 ip_arp_news(q, mp); 27412 return; 27413 case AR_DLPIOP_DONE: 27414 ASSERT(q->q_next != NULL); 27415 ill = (ill_t *)q->q_ptr; 27416 /* qwriter_ip releases the refhold */ 27417 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 27418 ill_refhold(ill); 27419 qwriter_ip(ill, q, mp, ip_arp_done, CUR_OP, B_FALSE); 27420 return; 27421 case AR_ARP_CLOSING: 27422 /* 27423 * ARP (above us) is closing. If no ARP bringup is 27424 * currently pending, ack the message so that ARP 27425 * can complete its close. Also mark ill_arp_closing 27426 * so that new ARP bringups will fail. If any 27427 * ARP bringup is currently in progress, we will 27428 * ack this when the current ARP bringup completes. 27429 */ 27430 ASSERT(q->q_next != NULL); 27431 ill = (ill_t *)q->q_ptr; 27432 mutex_enter(&ill->ill_lock); 27433 ill->ill_arp_closing = 1; 27434 if (!ill->ill_arp_bringup_pending) { 27435 mutex_exit(&ill->ill_lock); 27436 qreply(q, mp); 27437 } else { 27438 mutex_exit(&ill->ill_lock); 27439 freemsg(mp); 27440 } 27441 return; 27442 case AR_ARP_EXTEND: 27443 /* 27444 * The ARP module above us is capable of duplicate 27445 * address detection. Old ATM drivers will not send 27446 * this message. 27447 */ 27448 ASSERT(q->q_next != NULL); 27449 ill = (ill_t *)q->q_ptr; 27450 ill->ill_arp_extend = B_TRUE; 27451 freemsg(mp); 27452 return; 27453 default: 27454 break; 27455 } 27456 break; 27457 case M_PROTO: 27458 case M_PCPROTO: 27459 /* 27460 * The only PROTO messages we expect are copies of option 27461 * negotiation acknowledgements, AH and ESP bind requests 27462 * are also expected. 27463 */ 27464 switch (((union T_primitives *)mp->b_rptr)->type) { 27465 case O_T_BIND_REQ: 27466 case T_BIND_REQ: { 27467 /* Request can get queued in bind */ 27468 if (connp == NULL) { 27469 proto_str = "O_T_BIND_REQ/T_BIND_REQ"; 27470 goto protonak; 27471 } 27472 /* 27473 * The transports except SCTP call ip_bind_{v4,v6}() 27474 * directly instead of a a putnext. SCTP doesn't 27475 * generate any T_BIND_REQ since it has its own 27476 * fanout data structures. However, ESP and AH 27477 * come in for regular binds; all other cases are 27478 * bind retries. 27479 */ 27480 ASSERT(!IPCL_IS_SCTP(connp)); 27481 27482 /* Don't increment refcnt if this is a re-entry */ 27483 if (ipsq == NULL) 27484 CONN_INC_REF(connp); 27485 27486 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 27487 connp, NULL) : ip_bind_v4(q, mp, connp); 27488 ASSERT(mp != NULL); 27489 27490 ASSERT(!IPCL_IS_TCP(connp)); 27491 ASSERT(!IPCL_IS_UDP(connp)); 27492 ASSERT(!IPCL_IS_RAWIP(connp)); 27493 27494 /* The case of AH and ESP */ 27495 qreply(q, mp); 27496 CONN_OPER_PENDING_DONE(connp); 27497 return; 27498 } 27499 case T_SVR4_OPTMGMT_REQ: 27500 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 27501 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 27502 27503 if (connp == NULL) { 27504 proto_str = "T_SVR4_OPTMGMT_REQ"; 27505 goto protonak; 27506 } 27507 27508 /* 27509 * All Solaris components should pass a db_credp 27510 * for this TPI message, hence we ASSERT. 27511 * But in case there is some other M_PROTO that looks 27512 * like a TPI message sent by some other kernel 27513 * component, we check and return an error. 27514 */ 27515 cr = msg_getcred(mp, NULL); 27516 ASSERT(cr != NULL); 27517 if (cr == NULL) { 27518 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 27519 if (mp != NULL) 27520 qreply(q, mp); 27521 return; 27522 } 27523 27524 if (!snmpcom_req(q, mp, ip_snmp_set, 27525 ip_snmp_get, cr)) { 27526 /* 27527 * Call svr4_optcom_req so that it can 27528 * generate the ack. We don't come here 27529 * if this operation is being restarted. 27530 * ip_restart_optmgmt will drop the conn ref. 27531 * In the case of ipsec option after the ipsec 27532 * load is complete conn_restart_ipsec_waiter 27533 * drops the conn ref. 27534 */ 27535 ASSERT(ipsq == NULL); 27536 CONN_INC_REF(connp); 27537 if (ip_check_for_ipsec_opt(q, mp)) 27538 return; 27539 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj, 27540 B_FALSE); 27541 if (err != EINPROGRESS) { 27542 /* Operation is done */ 27543 CONN_OPER_PENDING_DONE(connp); 27544 } 27545 } 27546 return; 27547 case T_OPTMGMT_REQ: 27548 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 27549 /* 27550 * Note: No snmpcom_req support through new 27551 * T_OPTMGMT_REQ. 27552 * Call tpi_optcom_req so that it can 27553 * generate the ack. 27554 */ 27555 if (connp == NULL) { 27556 proto_str = "T_OPTMGMT_REQ"; 27557 goto protonak; 27558 } 27559 27560 /* 27561 * All Solaris components should pass a db_credp 27562 * for this TPI message, hence we ASSERT. 27563 * But in case there is some other M_PROTO that looks 27564 * like a TPI message sent by some other kernel 27565 * component, we check and return an error. 27566 */ 27567 cr = msg_getcred(mp, NULL); 27568 ASSERT(cr != NULL); 27569 if (cr == NULL) { 27570 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 27571 if (mp != NULL) 27572 qreply(q, mp); 27573 return; 27574 } 27575 ASSERT(ipsq == NULL); 27576 /* 27577 * We don't come here for restart. ip_restart_optmgmt 27578 * will drop the conn ref. In the case of ipsec option 27579 * after the ipsec load is complete 27580 * conn_restart_ipsec_waiter drops the conn ref. 27581 */ 27582 CONN_INC_REF(connp); 27583 if (ip_check_for_ipsec_opt(q, mp)) 27584 return; 27585 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj, B_FALSE); 27586 if (err != EINPROGRESS) { 27587 /* Operation is done */ 27588 CONN_OPER_PENDING_DONE(connp); 27589 } 27590 return; 27591 case T_UNBIND_REQ: 27592 if (connp == NULL) { 27593 proto_str = "T_UNBIND_REQ"; 27594 goto protonak; 27595 } 27596 ip_unbind(Q_TO_CONN(q)); 27597 mp = mi_tpi_ok_ack_alloc(mp); 27598 qreply(q, mp); 27599 return; 27600 default: 27601 /* 27602 * Have to drop any DLPI messages coming down from 27603 * arp (such as an info_req which would cause ip 27604 * to receive an extra info_ack if it was passed 27605 * through. 27606 */ 27607 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 27608 (int)*(uint_t *)mp->b_rptr)); 27609 freemsg(mp); 27610 return; 27611 } 27612 /* NOTREACHED */ 27613 case IRE_DB_TYPE: { 27614 nce_t *nce; 27615 ill_t *ill; 27616 in6_addr_t gw_addr_v6; 27617 27618 /* 27619 * This is a response back from a resolver. It 27620 * consists of a message chain containing: 27621 * IRE_MBLK-->LL_HDR_MBLK->pkt 27622 * The IRE_MBLK is the one we allocated in ip_newroute. 27623 * The LL_HDR_MBLK is the DLPI header to use to get 27624 * the attached packet, and subsequent ones for the 27625 * same destination, transmitted. 27626 */ 27627 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 27628 break; 27629 /* 27630 * First, check to make sure the resolution succeeded. 27631 * If it failed, the second mblk will be empty. 27632 * If it is, free the chain, dropping the packet. 27633 * (We must ire_delete the ire; that frees the ire mblk) 27634 * We're doing this now to support PVCs for ATM; it's 27635 * a partial xresolv implementation. When we fully implement 27636 * xresolv interfaces, instead of freeing everything here 27637 * we'll initiate neighbor discovery. 27638 * 27639 * For v4 (ARP and other external resolvers) the resolver 27640 * frees the message, so no check is needed. This check 27641 * is required, though, for a full xresolve implementation. 27642 * Including this code here now both shows how external 27643 * resolvers can NACK a resolution request using an 27644 * existing design that has no specific provisions for NACKs, 27645 * and also takes into account that the current non-ARP 27646 * external resolver has been coded to use this method of 27647 * NACKing for all IPv6 (xresolv) cases, 27648 * whether our xresolv implementation is complete or not. 27649 * 27650 */ 27651 ire = (ire_t *)mp->b_rptr; 27652 ill = ire_to_ill(ire); 27653 mp1 = mp->b_cont; /* dl_unitdata_req */ 27654 if (mp1->b_rptr == mp1->b_wptr) { 27655 if (ire->ire_ipversion == IPV6_VERSION) { 27656 /* 27657 * XRESOLV interface. 27658 */ 27659 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27660 mutex_enter(&ire->ire_lock); 27661 gw_addr_v6 = ire->ire_gateway_addr_v6; 27662 mutex_exit(&ire->ire_lock); 27663 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27664 nce = ndp_lookup_v6(ill, B_FALSE, 27665 &ire->ire_addr_v6, B_FALSE); 27666 } else { 27667 nce = ndp_lookup_v6(ill, B_FALSE, 27668 &gw_addr_v6, B_FALSE); 27669 } 27670 if (nce != NULL) { 27671 nce_resolv_failed(nce); 27672 ndp_delete(nce); 27673 NCE_REFRELE(nce); 27674 } 27675 } 27676 mp->b_cont = NULL; 27677 freemsg(mp1); /* frees the pkt as well */ 27678 ASSERT(ire->ire_nce == NULL); 27679 ire_delete((ire_t *)mp->b_rptr); 27680 return; 27681 } 27682 27683 /* 27684 * Split them into IRE_MBLK and pkt and feed it into 27685 * ire_add_then_send. Then in ire_add_then_send 27686 * the IRE will be added, and then the packet will be 27687 * run back through ip_wput. This time it will make 27688 * it to the wire. 27689 */ 27690 mp->b_cont = NULL; 27691 mp = mp1->b_cont; /* now, mp points to pkt */ 27692 mp1->b_cont = NULL; 27693 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 27694 if (ire->ire_ipversion == IPV6_VERSION) { 27695 /* 27696 * XRESOLV interface. Find the nce and put a copy 27697 * of the dl_unitdata_req in nce_res_mp 27698 */ 27699 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27700 mutex_enter(&ire->ire_lock); 27701 gw_addr_v6 = ire->ire_gateway_addr_v6; 27702 mutex_exit(&ire->ire_lock); 27703 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27704 nce = ndp_lookup_v6(ill, B_FALSE, 27705 &ire->ire_addr_v6, B_FALSE); 27706 } else { 27707 nce = ndp_lookup_v6(ill, B_FALSE, 27708 &gw_addr_v6, B_FALSE); 27709 } 27710 if (nce != NULL) { 27711 /* 27712 * We have to protect nce_res_mp here 27713 * from being accessed by other threads 27714 * while we change the mblk pointer. 27715 * Other functions will also lock the nce when 27716 * accessing nce_res_mp. 27717 * 27718 * The reason we change the mblk pointer 27719 * here rather than copying the resolved address 27720 * into the template is that, unlike with 27721 * ethernet, we have no guarantee that the 27722 * resolved address length will be 27723 * smaller than or equal to the lla length 27724 * with which the template was allocated, 27725 * (for ethernet, they're equal) 27726 * so we have to use the actual resolved 27727 * address mblk - which holds the real 27728 * dl_unitdata_req with the resolved address. 27729 * 27730 * Doing this is the same behavior as was 27731 * previously used in the v4 ARP case. 27732 */ 27733 mutex_enter(&nce->nce_lock); 27734 if (nce->nce_res_mp != NULL) 27735 freemsg(nce->nce_res_mp); 27736 nce->nce_res_mp = mp1; 27737 mutex_exit(&nce->nce_lock); 27738 /* 27739 * We do a fastpath probe here because 27740 * we have resolved the address without 27741 * using Neighbor Discovery. 27742 * In the non-XRESOLV v6 case, the fastpath 27743 * probe is done right after neighbor 27744 * discovery completes. 27745 */ 27746 if (nce->nce_res_mp != NULL) { 27747 int res; 27748 nce_fastpath_list_add(nce); 27749 res = ill_fastpath_probe(ill, 27750 nce->nce_res_mp); 27751 if (res != 0 && res != EAGAIN) 27752 nce_fastpath_list_delete(nce); 27753 } 27754 27755 ire_add_then_send(q, ire, mp); 27756 /* 27757 * Now we have to clean out any packets 27758 * that may have been queued on the nce 27759 * while it was waiting for address resolution 27760 * to complete. 27761 */ 27762 mutex_enter(&nce->nce_lock); 27763 mp1 = nce->nce_qd_mp; 27764 nce->nce_qd_mp = NULL; 27765 mutex_exit(&nce->nce_lock); 27766 while (mp1 != NULL) { 27767 mblk_t *nxt_mp; 27768 queue_t *fwdq = NULL; 27769 ill_t *inbound_ill; 27770 uint_t ifindex; 27771 27772 nxt_mp = mp1->b_next; 27773 mp1->b_next = NULL; 27774 /* 27775 * Retrieve ifindex stored in 27776 * ip_rput_data_v6() 27777 */ 27778 ifindex = 27779 (uint_t)(uintptr_t)mp1->b_prev; 27780 inbound_ill = 27781 ill_lookup_on_ifindex(ifindex, 27782 B_TRUE, NULL, NULL, NULL, 27783 NULL, ipst); 27784 mp1->b_prev = NULL; 27785 if (inbound_ill != NULL) 27786 fwdq = inbound_ill->ill_rq; 27787 27788 if (fwdq != NULL) { 27789 put(fwdq, mp1); 27790 ill_refrele(inbound_ill); 27791 } else 27792 put(WR(ill->ill_rq), mp1); 27793 mp1 = nxt_mp; 27794 } 27795 NCE_REFRELE(nce); 27796 } else { /* nce is NULL; clean up */ 27797 ire_delete(ire); 27798 freemsg(mp); 27799 freemsg(mp1); 27800 return; 27801 } 27802 } else { 27803 nce_t *arpce; 27804 /* 27805 * Link layer resolution succeeded. Recompute the 27806 * ire_nce. 27807 */ 27808 ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST)); 27809 if ((arpce = ndp_lookup_v4(ill, 27810 (ire->ire_gateway_addr != INADDR_ANY ? 27811 &ire->ire_gateway_addr : &ire->ire_addr), 27812 B_FALSE)) == NULL) { 27813 freeb(ire->ire_mp); 27814 freeb(mp1); 27815 freemsg(mp); 27816 return; 27817 } 27818 mutex_enter(&arpce->nce_lock); 27819 arpce->nce_last = TICK_TO_MSEC(lbolt64); 27820 if (arpce->nce_state == ND_REACHABLE) { 27821 /* 27822 * Someone resolved this before us; 27823 * cleanup the res_mp. Since ire has 27824 * not been added yet, the call to ire_add_v4 27825 * from ire_add_then_send (when a dup is 27826 * detected) will clean up the ire. 27827 */ 27828 freeb(mp1); 27829 } else { 27830 ASSERT(arpce->nce_res_mp == NULL); 27831 arpce->nce_res_mp = mp1; 27832 arpce->nce_state = ND_REACHABLE; 27833 } 27834 mutex_exit(&arpce->nce_lock); 27835 if (ire->ire_marks & IRE_MARK_NOADD) { 27836 /* 27837 * this ire will not be added to the ire 27838 * cache table, so we can set the ire_nce 27839 * here, as there are no atomicity constraints. 27840 */ 27841 ire->ire_nce = arpce; 27842 /* 27843 * We are associating this nce with the ire 27844 * so change the nce ref taken in 27845 * ndp_lookup_v4() from 27846 * NCE_REFHOLD to NCE_REFHOLD_NOTR 27847 */ 27848 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 27849 } else { 27850 NCE_REFRELE(arpce); 27851 } 27852 ire_add_then_send(q, ire, mp); 27853 } 27854 return; /* All is well, the packet has been sent. */ 27855 } 27856 case IRE_ARPRESOLVE_TYPE: { 27857 27858 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */ 27859 break; 27860 mp1 = mp->b_cont; /* dl_unitdata_req */ 27861 mp->b_cont = NULL; 27862 /* 27863 * First, check to make sure the resolution succeeded. 27864 * If it failed, the second mblk will be empty. 27865 */ 27866 if (mp1->b_rptr == mp1->b_wptr) { 27867 /* cleanup the incomplete ire, free queued packets */ 27868 freemsg(mp); /* fake ire */ 27869 freeb(mp1); /* dl_unitdata response */ 27870 return; 27871 } 27872 27873 /* 27874 * Update any incomplete nce_t found. We search the ctable 27875 * and find the nce from the ire->ire_nce because we need 27876 * to pass the ire to ip_xmit_v4 later, and can find both 27877 * ire and nce in one lookup. 27878 */ 27879 fake_ire = (ire_t *)mp->b_rptr; 27880 27881 /* 27882 * By the time we come back here from ARP the logical outgoing 27883 * interface of the incomplete ire we added in ire_forward() 27884 * could have disappeared, causing the incomplete ire to also 27885 * disappear. So we need to retreive the proper ipif for the 27886 * ire before looking in ctable. In the case of IPMP, the 27887 * ipif may be on the IPMP ill, so look it up based on the 27888 * ire_ipif_ifindex we stashed back in ire_init_common(). 27889 * Then, we can verify that ire_ipif_seqid still exists. 27890 */ 27891 ill = ill_lookup_on_ifindex(fake_ire->ire_ipif_ifindex, B_FALSE, 27892 NULL, NULL, NULL, NULL, ipst); 27893 if (ill == NULL) { 27894 ip1dbg(("ill for incomplete ire vanished\n")); 27895 freemsg(mp); /* fake ire */ 27896 freeb(mp1); /* dl_unitdata response */ 27897 return; 27898 } 27899 27900 /* Get the outgoing ipif */ 27901 mutex_enter(&ill->ill_lock); 27902 ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid); 27903 if (ipif == NULL) { 27904 mutex_exit(&ill->ill_lock); 27905 ill_refrele(ill); 27906 ip1dbg(("logical intrf to incomplete ire vanished\n")); 27907 freemsg(mp); /* fake_ire */ 27908 freeb(mp1); /* dl_unitdata response */ 27909 return; 27910 } 27911 27912 ipif_refhold_locked(ipif); 27913 mutex_exit(&ill->ill_lock); 27914 ill_refrele(ill); 27915 ire = ire_arpresolve_lookup(fake_ire->ire_addr, 27916 fake_ire->ire_gateway_addr, ipif, fake_ire->ire_zoneid, 27917 ipst, ((ill_t *)q->q_ptr)->ill_wq); 27918 ipif_refrele(ipif); 27919 if (ire == NULL) { 27920 /* 27921 * no ire was found; check if there is an nce 27922 * for this lookup; if it has no ire's pointing at it 27923 * cleanup. 27924 */ 27925 if ((nce = ndp_lookup_v4(q->q_ptr, 27926 (fake_ire->ire_gateway_addr != INADDR_ANY ? 27927 &fake_ire->ire_gateway_addr : &fake_ire->ire_addr), 27928 B_FALSE)) != NULL) { 27929 /* 27930 * cleanup: 27931 * We check for refcnt 2 (one for the nce 27932 * hash list + 1 for the ref taken by 27933 * ndp_lookup_v4) to check that there are 27934 * no ire's pointing at the nce. 27935 */ 27936 if (nce->nce_refcnt == 2) 27937 ndp_delete(nce); 27938 NCE_REFRELE(nce); 27939 } 27940 freeb(mp1); /* dl_unitdata response */ 27941 freemsg(mp); /* fake ire */ 27942 return; 27943 } 27944 27945 nce = ire->ire_nce; 27946 DTRACE_PROBE2(ire__arpresolve__type, 27947 ire_t *, ire, nce_t *, nce); 27948 mutex_enter(&nce->nce_lock); 27949 nce->nce_last = TICK_TO_MSEC(lbolt64); 27950 if (nce->nce_state == ND_REACHABLE) { 27951 /* 27952 * Someone resolved this before us; 27953 * our response is not needed any more. 27954 */ 27955 mutex_exit(&nce->nce_lock); 27956 freeb(mp1); /* dl_unitdata response */ 27957 } else { 27958 ASSERT(nce->nce_res_mp == NULL); 27959 nce->nce_res_mp = mp1; 27960 nce->nce_state = ND_REACHABLE; 27961 mutex_exit(&nce->nce_lock); 27962 nce_fastpath(nce); 27963 } 27964 /* 27965 * The cached nce_t has been updated to be reachable; 27966 * Clear the IRE_MARK_UNCACHED flag and free the fake_ire. 27967 */ 27968 fake_ire->ire_marks &= ~IRE_MARK_UNCACHED; 27969 freemsg(mp); 27970 /* 27971 * send out queued packets. 27972 */ 27973 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE, NULL); 27974 27975 IRE_REFRELE(ire); 27976 return; 27977 } 27978 default: 27979 break; 27980 } 27981 if (q->q_next) { 27982 putnext(q, mp); 27983 } else 27984 freemsg(mp); 27985 return; 27986 27987 protonak: 27988 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 27989 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 27990 qreply(q, mp); 27991 } 27992 27993 /* 27994 * Process IP options in an outbound packet. Modify the destination if there 27995 * is a source route option. 27996 * Returns non-zero if something fails in which case an ICMP error has been 27997 * sent and mp freed. 27998 */ 27999 static int 28000 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 28001 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 28002 { 28003 ipoptp_t opts; 28004 uchar_t *opt; 28005 uint8_t optval; 28006 uint8_t optlen; 28007 ipaddr_t dst; 28008 intptr_t code = 0; 28009 mblk_t *mp; 28010 ire_t *ire = NULL; 28011 28012 ip2dbg(("ip_wput_options\n")); 28013 mp = ipsec_mp; 28014 if (mctl_present) { 28015 mp = ipsec_mp->b_cont; 28016 } 28017 28018 dst = ipha->ipha_dst; 28019 for (optval = ipoptp_first(&opts, ipha); 28020 optval != IPOPT_EOL; 28021 optval = ipoptp_next(&opts)) { 28022 opt = opts.ipoptp_cur; 28023 optlen = opts.ipoptp_len; 28024 ip2dbg(("ip_wput_options: opt %d, len %d\n", 28025 optval, optlen)); 28026 switch (optval) { 28027 uint32_t off; 28028 case IPOPT_SSRR: 28029 case IPOPT_LSRR: 28030 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28031 ip1dbg(( 28032 "ip_wput_options: bad option offset\n")); 28033 code = (char *)&opt[IPOPT_OLEN] - 28034 (char *)ipha; 28035 goto param_prob; 28036 } 28037 off = opt[IPOPT_OFFSET]; 28038 ip1dbg(("ip_wput_options: next hop 0x%x\n", 28039 ntohl(dst))); 28040 /* 28041 * For strict: verify that dst is directly 28042 * reachable. 28043 */ 28044 if (optval == IPOPT_SSRR) { 28045 ire = ire_ftable_lookup(dst, 0, 0, 28046 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 28047 msg_getlabel(mp), 28048 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 28049 if (ire == NULL) { 28050 ip1dbg(("ip_wput_options: SSRR not" 28051 " directly reachable: 0x%x\n", 28052 ntohl(dst))); 28053 goto bad_src_route; 28054 } 28055 ire_refrele(ire); 28056 } 28057 break; 28058 case IPOPT_RR: 28059 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28060 ip1dbg(( 28061 "ip_wput_options: bad option offset\n")); 28062 code = (char *)&opt[IPOPT_OLEN] - 28063 (char *)ipha; 28064 goto param_prob; 28065 } 28066 break; 28067 case IPOPT_TS: 28068 /* 28069 * Verify that length >=5 and that there is either 28070 * room for another timestamp or that the overflow 28071 * counter is not maxed out. 28072 */ 28073 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 28074 if (optlen < IPOPT_MINLEN_IT) { 28075 goto param_prob; 28076 } 28077 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28078 ip1dbg(( 28079 "ip_wput_options: bad option offset\n")); 28080 code = (char *)&opt[IPOPT_OFFSET] - 28081 (char *)ipha; 28082 goto param_prob; 28083 } 28084 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 28085 case IPOPT_TS_TSONLY: 28086 off = IPOPT_TS_TIMELEN; 28087 break; 28088 case IPOPT_TS_TSANDADDR: 28089 case IPOPT_TS_PRESPEC: 28090 case IPOPT_TS_PRESPEC_RFC791: 28091 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 28092 break; 28093 default: 28094 code = (char *)&opt[IPOPT_POS_OV_FLG] - 28095 (char *)ipha; 28096 goto param_prob; 28097 } 28098 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 28099 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 28100 /* 28101 * No room and the overflow counter is 15 28102 * already. 28103 */ 28104 goto param_prob; 28105 } 28106 break; 28107 } 28108 } 28109 28110 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 28111 return (0); 28112 28113 ip1dbg(("ip_wput_options: error processing IP options.")); 28114 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 28115 28116 param_prob: 28117 /* 28118 * Since ip_wput() isn't close to finished, we fill 28119 * in enough of the header for credible error reporting. 28120 */ 28121 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28122 /* Failed */ 28123 freemsg(ipsec_mp); 28124 return (-1); 28125 } 28126 icmp_param_problem(q, ipsec_mp, (uint8_t)code, zoneid, ipst); 28127 return (-1); 28128 28129 bad_src_route: 28130 /* 28131 * Since ip_wput() isn't close to finished, we fill 28132 * in enough of the header for credible error reporting. 28133 */ 28134 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28135 /* Failed */ 28136 freemsg(ipsec_mp); 28137 return (-1); 28138 } 28139 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 28140 return (-1); 28141 } 28142 28143 /* 28144 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 28145 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 28146 * thru /etc/system. 28147 */ 28148 #define CONN_MAXDRAINCNT 64 28149 28150 static void 28151 conn_drain_init(ip_stack_t *ipst) 28152 { 28153 int i, j; 28154 idl_tx_list_t *itl_tx; 28155 28156 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 28157 28158 if ((ipst->ips_conn_drain_list_cnt == 0) || 28159 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 28160 /* 28161 * Default value of the number of drainers is the 28162 * number of cpus, subject to maximum of 8 drainers. 28163 */ 28164 if (boot_max_ncpus != -1) 28165 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 28166 else 28167 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 28168 } 28169 28170 ipst->ips_idl_tx_list = 28171 kmem_zalloc(TX_FANOUT_SIZE * sizeof (idl_tx_list_t), KM_SLEEP); 28172 for (i = 0; i < TX_FANOUT_SIZE; i++) { 28173 itl_tx = &ipst->ips_idl_tx_list[i]; 28174 itl_tx->txl_drain_list = 28175 kmem_zalloc(ipst->ips_conn_drain_list_cnt * 28176 sizeof (idl_t), KM_SLEEP); 28177 mutex_init(&itl_tx->txl_lock, NULL, MUTEX_DEFAULT, NULL); 28178 for (j = 0; j < ipst->ips_conn_drain_list_cnt; j++) { 28179 mutex_init(&itl_tx->txl_drain_list[j].idl_lock, NULL, 28180 MUTEX_DEFAULT, NULL); 28181 itl_tx->txl_drain_list[j].idl_itl = itl_tx; 28182 } 28183 } 28184 } 28185 28186 static void 28187 conn_drain_fini(ip_stack_t *ipst) 28188 { 28189 int i; 28190 idl_tx_list_t *itl_tx; 28191 28192 for (i = 0; i < TX_FANOUT_SIZE; i++) { 28193 itl_tx = &ipst->ips_idl_tx_list[i]; 28194 kmem_free(itl_tx->txl_drain_list, 28195 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 28196 } 28197 kmem_free(ipst->ips_idl_tx_list, 28198 TX_FANOUT_SIZE * sizeof (idl_tx_list_t)); 28199 ipst->ips_idl_tx_list = NULL; 28200 } 28201 28202 /* 28203 * Note: For an overview of how flowcontrol is handled in IP please see the 28204 * IP Flowcontrol notes at the top of this file. 28205 * 28206 * Flow control has blocked us from proceeding. Insert the given conn in one 28207 * of the conn drain lists. These conn wq's will be qenabled later on when 28208 * STREAMS flow control does a backenable. conn_walk_drain will enable 28209 * the first conn in each of these drain lists. Each of these qenabled conns 28210 * in turn enables the next in the list, after it runs, or when it closes, 28211 * thus sustaining the drain process. 28212 */ 28213 void 28214 conn_drain_insert(conn_t *connp, idl_tx_list_t *tx_list) 28215 { 28216 idl_t *idl = tx_list->txl_drain_list; 28217 uint_t index; 28218 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28219 28220 mutex_enter(&connp->conn_lock); 28221 if (connp->conn_state_flags & CONN_CLOSING) { 28222 /* 28223 * The conn is closing as a result of which CONN_CLOSING 28224 * is set. Return. 28225 */ 28226 mutex_exit(&connp->conn_lock); 28227 return; 28228 } else if (connp->conn_idl == NULL) { 28229 /* 28230 * Assign the next drain list round robin. We dont' use 28231 * a lock, and thus it may not be strictly round robin. 28232 * Atomicity of load/stores is enough to make sure that 28233 * conn_drain_list_index is always within bounds. 28234 */ 28235 index = tx_list->txl_drain_index; 28236 ASSERT(index < ipst->ips_conn_drain_list_cnt); 28237 connp->conn_idl = &tx_list->txl_drain_list[index]; 28238 index++; 28239 if (index == ipst->ips_conn_drain_list_cnt) 28240 index = 0; 28241 tx_list->txl_drain_index = index; 28242 } 28243 mutex_exit(&connp->conn_lock); 28244 28245 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28246 if ((connp->conn_drain_prev != NULL) || 28247 (connp->conn_state_flags & CONN_CLOSING)) { 28248 /* 28249 * The conn is already in the drain list, OR 28250 * the conn is closing. We need to check again for 28251 * the closing case again since close can happen 28252 * after we drop the conn_lock, and before we 28253 * acquire the CONN_DRAIN_LIST_LOCK. 28254 */ 28255 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28256 return; 28257 } else { 28258 idl = connp->conn_idl; 28259 } 28260 28261 /* 28262 * The conn is not in the drain list. Insert it at the 28263 * tail of the drain list. The drain list is circular 28264 * and doubly linked. idl_conn points to the 1st element 28265 * in the list. 28266 */ 28267 if (idl->idl_conn == NULL) { 28268 idl->idl_conn = connp; 28269 connp->conn_drain_next = connp; 28270 connp->conn_drain_prev = connp; 28271 } else { 28272 conn_t *head = idl->idl_conn; 28273 28274 connp->conn_drain_next = head; 28275 connp->conn_drain_prev = head->conn_drain_prev; 28276 head->conn_drain_prev->conn_drain_next = connp; 28277 head->conn_drain_prev = connp; 28278 } 28279 /* 28280 * For non streams based sockets assert flow control. 28281 */ 28282 if (IPCL_IS_NONSTR(connp)) { 28283 DTRACE_PROBE1(su__txq__full, conn_t *, connp); 28284 (*connp->conn_upcalls->su_txq_full) 28285 (connp->conn_upper_handle, B_TRUE); 28286 } else { 28287 conn_setqfull(connp); 28288 noenable(connp->conn_wq); 28289 } 28290 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28291 } 28292 28293 /* 28294 * This conn is closing, and we are called from ip_close. OR 28295 * This conn has been serviced by ip_wsrv, and we need to do the tail 28296 * processing. 28297 * If this conn is part of the drain list, we may need to sustain the drain 28298 * process by qenabling the next conn in the drain list. We may also need to 28299 * remove this conn from the list, if it is done. 28300 */ 28301 static void 28302 conn_drain_tail(conn_t *connp, boolean_t closing) 28303 { 28304 idl_t *idl; 28305 28306 /* 28307 * connp->conn_idl is stable at this point, and no lock is needed 28308 * to check it. If we are called from ip_close, close has already 28309 * set CONN_CLOSING, thus freezing the value of conn_idl, and 28310 * called us only because conn_idl is non-null. If we are called thru 28311 * service, conn_idl could be null, but it cannot change because 28312 * service is single-threaded per queue, and there cannot be another 28313 * instance of service trying to call conn_drain_insert on this conn 28314 * now. 28315 */ 28316 ASSERT(!closing || (connp->conn_idl != NULL)); 28317 28318 /* 28319 * If connp->conn_idl is null, the conn has not been inserted into any 28320 * drain list even once since creation of the conn. Just return. 28321 */ 28322 if (connp->conn_idl == NULL) 28323 return; 28324 28325 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28326 28327 if (connp->conn_drain_prev == NULL) { 28328 /* This conn is currently not in the drain list. */ 28329 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28330 return; 28331 } 28332 idl = connp->conn_idl; 28333 if (idl->idl_conn_draining == connp) { 28334 /* 28335 * This conn is the current drainer. If this is the last conn 28336 * in the drain list, we need to do more checks, in the 'if' 28337 * below. Otherwwise we need to just qenable the next conn, 28338 * to sustain the draining, and is handled in the 'else' 28339 * below. 28340 */ 28341 if (connp->conn_drain_next == idl->idl_conn) { 28342 /* 28343 * This conn is the last in this list. This round 28344 * of draining is complete. If idl_repeat is set, 28345 * it means another flow enabling has happened from 28346 * the driver/streams and we need to another round 28347 * of draining. 28348 * If there are more than 2 conns in the drain list, 28349 * do a left rotate by 1, so that all conns except the 28350 * conn at the head move towards the head by 1, and the 28351 * the conn at the head goes to the tail. This attempts 28352 * a more even share for all queues that are being 28353 * drained. 28354 */ 28355 if ((connp->conn_drain_next != connp) && 28356 (idl->idl_conn->conn_drain_next != connp)) { 28357 idl->idl_conn = idl->idl_conn->conn_drain_next; 28358 } 28359 if (idl->idl_repeat) { 28360 qenable(idl->idl_conn->conn_wq); 28361 idl->idl_conn_draining = idl->idl_conn; 28362 idl->idl_repeat = 0; 28363 } else { 28364 idl->idl_conn_draining = NULL; 28365 } 28366 } else { 28367 /* 28368 * If the next queue that we are now qenable'ing, 28369 * is closing, it will remove itself from this list 28370 * and qenable the subsequent queue in ip_close(). 28371 * Serialization is acheived thru idl_lock. 28372 */ 28373 qenable(connp->conn_drain_next->conn_wq); 28374 idl->idl_conn_draining = connp->conn_drain_next; 28375 } 28376 } 28377 if (!connp->conn_did_putbq || closing) { 28378 /* 28379 * Remove ourself from the drain list, if we did not do 28380 * a putbq, or if the conn is closing. 28381 * Note: It is possible that q->q_first is non-null. It means 28382 * that these messages landed after we did a enableok() in 28383 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 28384 * service them. 28385 */ 28386 if (connp->conn_drain_next == connp) { 28387 /* Singleton in the list */ 28388 ASSERT(connp->conn_drain_prev == connp); 28389 idl->idl_conn = NULL; 28390 idl->idl_conn_draining = NULL; 28391 } else { 28392 connp->conn_drain_prev->conn_drain_next = 28393 connp->conn_drain_next; 28394 connp->conn_drain_next->conn_drain_prev = 28395 connp->conn_drain_prev; 28396 if (idl->idl_conn == connp) 28397 idl->idl_conn = connp->conn_drain_next; 28398 ASSERT(idl->idl_conn_draining != connp); 28399 28400 } 28401 connp->conn_drain_next = NULL; 28402 connp->conn_drain_prev = NULL; 28403 28404 /* 28405 * For non streams based sockets open up flow control. 28406 */ 28407 if (IPCL_IS_NONSTR(connp)) { 28408 (*connp->conn_upcalls->su_txq_full) 28409 (connp->conn_upper_handle, B_FALSE); 28410 } else { 28411 conn_clrqfull(connp); 28412 enableok(connp->conn_wq); 28413 } 28414 } 28415 28416 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28417 } 28418 28419 /* 28420 * Write service routine. Shared perimeter entry point. 28421 * ip_wsrv can be called in any of the following ways. 28422 * 1. The device queue's messages has fallen below the low water mark 28423 * and STREAMS has backenabled the ill_wq. We walk thru all the 28424 * the drain lists and backenable the first conn in each list. 28425 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 28426 * qenabled non-tcp upper layers. We start dequeing messages and call 28427 * ip_wput for each message. 28428 */ 28429 28430 void 28431 ip_wsrv(queue_t *q) 28432 { 28433 conn_t *connp; 28434 ill_t *ill; 28435 mblk_t *mp; 28436 28437 if (q->q_next) { 28438 ill = (ill_t *)q->q_ptr; 28439 if (ill->ill_state_flags == 0) { 28440 ip_stack_t *ipst = ill->ill_ipst; 28441 28442 /* 28443 * The device flow control has opened up. 28444 * Walk through conn drain lists and qenable the 28445 * first conn in each list. This makes sense only 28446 * if the stream is fully plumbed and setup. 28447 * Hence the if check above. 28448 */ 28449 ip1dbg(("ip_wsrv: walking\n")); 28450 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[0]); 28451 } 28452 return; 28453 } 28454 28455 connp = Q_TO_CONN(q); 28456 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 28457 28458 /* 28459 * 1. Set conn_draining flag to signal that service is active. 28460 * 28461 * 2. ip_output determines whether it has been called from service, 28462 * based on the last parameter. If it is IP_WSRV it concludes it 28463 * has been called from service. 28464 * 28465 * 3. Message ordering is preserved by the following logic. 28466 * i. A directly called ip_output (i.e. not thru service) will queue 28467 * the message at the tail, if conn_draining is set (i.e. service 28468 * is running) or if q->q_first is non-null. 28469 * 28470 * ii. If ip_output is called from service, and if ip_output cannot 28471 * putnext due to flow control, it does a putbq. 28472 * 28473 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 28474 * (causing an infinite loop). 28475 */ 28476 ASSERT(!connp->conn_did_putbq); 28477 28478 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 28479 connp->conn_draining = 1; 28480 noenable(q); 28481 while ((mp = getq(q)) != NULL) { 28482 ASSERT(CONN_Q(q)); 28483 28484 DTRACE_PROBE1(ip__wsrv__ip__output, conn_t *, connp); 28485 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 28486 if (connp->conn_did_putbq) { 28487 /* ip_wput did a putbq */ 28488 break; 28489 } 28490 } 28491 /* 28492 * At this point, a thread coming down from top, calling 28493 * ip_wput, may end up queueing the message. We have not yet 28494 * enabled the queue, so ip_wsrv won't be called again. 28495 * To avoid this race, check q->q_first again (in the loop) 28496 * If the other thread queued the message before we call 28497 * enableok(), we will catch it in the q->q_first check. 28498 * If the other thread queues the message after we call 28499 * enableok(), ip_wsrv will be called again by STREAMS. 28500 */ 28501 connp->conn_draining = 0; 28502 enableok(q); 28503 } 28504 28505 /* Enable the next conn for draining */ 28506 conn_drain_tail(connp, B_FALSE); 28507 28508 /* 28509 * conn_direct_blocked is used to indicate blocked 28510 * condition for direct path (ILL_DIRECT_CAPABLE()). 28511 * This is the only place where it is set without 28512 * checking for ILL_DIRECT_CAPABLE() and setting it 28513 * to 0 is ok even if it is not ILL_DIRECT_CAPABLE(). 28514 */ 28515 if (!connp->conn_did_putbq && connp->conn_direct_blocked) { 28516 DTRACE_PROBE1(ip__wsrv__direct__blocked, conn_t *, connp); 28517 connp->conn_direct_blocked = B_FALSE; 28518 } 28519 28520 connp->conn_did_putbq = 0; 28521 } 28522 28523 /* 28524 * Callback to disable flow control in IP. 28525 * 28526 * This is a mac client callback added when the DLD_CAPAB_DIRECT capability 28527 * is enabled. 28528 * 28529 * When MAC_TX() is not able to send any more packets, dld sets its queue 28530 * to QFULL and enable the STREAMS flow control. Later, when the underlying 28531 * driver is able to continue to send packets, it calls mac_tx_(ring_)update() 28532 * function and wakes up corresponding mac worker threads, which in turn 28533 * calls this callback function, and disables flow control. 28534 */ 28535 void 28536 ill_flow_enable(void *arg, ip_mac_tx_cookie_t cookie) 28537 { 28538 ill_t *ill = (ill_t *)arg; 28539 ip_stack_t *ipst = ill->ill_ipst; 28540 idl_tx_list_t *idl_txl; 28541 28542 idl_txl = &ipst->ips_idl_tx_list[IDLHASHINDEX(cookie)]; 28543 mutex_enter(&idl_txl->txl_lock); 28544 /* add code to to set a flag to indicate idl_txl is enabled */ 28545 conn_walk_drain(ipst, idl_txl); 28546 mutex_exit(&idl_txl->txl_lock); 28547 } 28548 28549 /* 28550 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 28551 * of conns that need to be drained, check if drain is already in progress. 28552 * If so set the idl_repeat bit, indicating that the last conn in the list 28553 * needs to reinitiate the drain once again, for the list. If drain is not 28554 * in progress for the list, initiate the draining, by qenabling the 1st 28555 * conn in the list. The drain is self-sustaining, each qenabled conn will 28556 * in turn qenable the next conn, when it is done/blocked/closing. 28557 */ 28558 static void 28559 conn_walk_drain(ip_stack_t *ipst, idl_tx_list_t *tx_list) 28560 { 28561 int i; 28562 idl_t *idl; 28563 28564 IP_STAT(ipst, ip_conn_walk_drain); 28565 28566 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28567 idl = &tx_list->txl_drain_list[i]; 28568 mutex_enter(&idl->idl_lock); 28569 if (idl->idl_conn == NULL) { 28570 mutex_exit(&idl->idl_lock); 28571 continue; 28572 } 28573 /* 28574 * If this list is not being drained currently by 28575 * an ip_wsrv thread, start the process. 28576 */ 28577 if (idl->idl_conn_draining == NULL) { 28578 ASSERT(idl->idl_repeat == 0); 28579 qenable(idl->idl_conn->conn_wq); 28580 idl->idl_conn_draining = idl->idl_conn; 28581 } else { 28582 idl->idl_repeat = 1; 28583 } 28584 mutex_exit(&idl->idl_lock); 28585 } 28586 } 28587 28588 /* 28589 * Determine if the ill and multicast aspects of that packets 28590 * "matches" the conn. 28591 */ 28592 boolean_t 28593 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 28594 zoneid_t zoneid) 28595 { 28596 ill_t *bound_ill; 28597 boolean_t found; 28598 ipif_t *ipif; 28599 ire_t *ire; 28600 ipaddr_t dst, src; 28601 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28602 28603 dst = ipha->ipha_dst; 28604 src = ipha->ipha_src; 28605 28606 /* 28607 * conn_incoming_ill is set by IP_BOUND_IF which limits 28608 * unicast, broadcast and multicast reception to 28609 * conn_incoming_ill. conn_wantpacket itself is called 28610 * only for BROADCAST and multicast. 28611 */ 28612 bound_ill = connp->conn_incoming_ill; 28613 if (bound_ill != NULL) { 28614 if (IS_IPMP(bound_ill)) { 28615 if (bound_ill->ill_grp != ill->ill_grp) 28616 return (B_FALSE); 28617 } else { 28618 if (bound_ill != ill) 28619 return (B_FALSE); 28620 } 28621 } 28622 28623 if (!CLASSD(dst)) { 28624 if (IPCL_ZONE_MATCH(connp, zoneid)) 28625 return (B_TRUE); 28626 /* 28627 * The conn is in a different zone; we need to check that this 28628 * broadcast address is configured in the application's zone. 28629 */ 28630 ipif = ipif_get_next_ipif(NULL, ill); 28631 if (ipif == NULL) 28632 return (B_FALSE); 28633 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 28634 connp->conn_zoneid, NULL, 28635 (MATCH_IRE_TYPE | MATCH_IRE_ILL), ipst); 28636 ipif_refrele(ipif); 28637 if (ire != NULL) { 28638 ire_refrele(ire); 28639 return (B_TRUE); 28640 } else { 28641 return (B_FALSE); 28642 } 28643 } 28644 28645 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 28646 connp->conn_zoneid == zoneid) { 28647 /* 28648 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 28649 * disabled, therefore we don't dispatch the multicast packet to 28650 * the sending zone. 28651 */ 28652 return (B_FALSE); 28653 } 28654 28655 if (IS_LOOPBACK(ill) && connp->conn_zoneid != zoneid) { 28656 /* 28657 * Multicast packet on the loopback interface: we only match 28658 * conns who joined the group in the specified zone. 28659 */ 28660 return (B_FALSE); 28661 } 28662 28663 if (connp->conn_multi_router) { 28664 /* multicast packet and multicast router socket: send up */ 28665 return (B_TRUE); 28666 } 28667 28668 mutex_enter(&connp->conn_lock); 28669 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 28670 mutex_exit(&connp->conn_lock); 28671 return (found); 28672 } 28673 28674 static void 28675 conn_setqfull(conn_t *connp) 28676 { 28677 queue_t *q = connp->conn_wq; 28678 28679 if (!(q->q_flag & QFULL)) { 28680 mutex_enter(QLOCK(q)); 28681 if (!(q->q_flag & QFULL)) { 28682 /* still need to set QFULL */ 28683 q->q_flag |= QFULL; 28684 mutex_exit(QLOCK(q)); 28685 } else { 28686 mutex_exit(QLOCK(q)); 28687 } 28688 } 28689 } 28690 28691 static void 28692 conn_clrqfull(conn_t *connp) 28693 { 28694 queue_t *q = connp->conn_wq; 28695 28696 if (q->q_flag & QFULL) { 28697 mutex_enter(QLOCK(q)); 28698 if (q->q_flag & QFULL) { 28699 q->q_flag &= ~QFULL; 28700 mutex_exit(QLOCK(q)); 28701 if (q->q_flag & QWANTW) 28702 qbackenable(q, 0); 28703 } else { 28704 mutex_exit(QLOCK(q)); 28705 } 28706 } 28707 } 28708 28709 /* 28710 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 28711 */ 28712 /* ARGSUSED */ 28713 static void 28714 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 28715 { 28716 ill_t *ill = (ill_t *)q->q_ptr; 28717 mblk_t *mp1, *mp2; 28718 ipif_t *ipif; 28719 int err = 0; 28720 conn_t *connp = NULL; 28721 ipsq_t *ipsq; 28722 arc_t *arc; 28723 28724 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 28725 28726 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 28727 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 28728 28729 ASSERT(IAM_WRITER_ILL(ill)); 28730 mp2 = mp->b_cont; 28731 mp->b_cont = NULL; 28732 28733 /* 28734 * We have now received the arp bringup completion message 28735 * from ARP. Mark the arp bringup as done. Also if the arp 28736 * stream has already started closing, send up the AR_ARP_CLOSING 28737 * ack now since ARP is waiting in close for this ack. 28738 */ 28739 mutex_enter(&ill->ill_lock); 28740 ill->ill_arp_bringup_pending = 0; 28741 if (ill->ill_arp_closing) { 28742 mutex_exit(&ill->ill_lock); 28743 /* Let's reuse the mp for sending the ack */ 28744 arc = (arc_t *)mp->b_rptr; 28745 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 28746 arc->arc_cmd = AR_ARP_CLOSING; 28747 qreply(q, mp); 28748 } else { 28749 mutex_exit(&ill->ill_lock); 28750 freeb(mp); 28751 } 28752 28753 ipsq = ill->ill_phyint->phyint_ipsq; 28754 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 28755 mp1 = ipsq_pending_mp_get(ipsq, &connp); 28756 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 28757 if (mp1 == NULL) { 28758 /* bringup was aborted by the user */ 28759 freemsg(mp2); 28760 return; 28761 } 28762 28763 /* 28764 * If an IOCTL is waiting on this (ipx_current_ioctl != 0), then we 28765 * must have an associated conn_t. Otherwise, we're bringing this 28766 * interface back up as part of handling an asynchronous event (e.g., 28767 * physical address change). 28768 */ 28769 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 28770 ASSERT(connp != NULL); 28771 q = CONNP_TO_WQ(connp); 28772 } else { 28773 ASSERT(connp == NULL); 28774 q = ill->ill_rq; 28775 } 28776 28777 /* 28778 * If the DL_BIND_REQ fails, it is noted 28779 * in arc_name_offset. 28780 */ 28781 err = *((int *)mp2->b_rptr); 28782 if (err == 0) { 28783 if (ipif->ipif_isv6) { 28784 if ((err = ipif_up_done_v6(ipif)) != 0) 28785 ip0dbg(("ip_arp_done: init failed\n")); 28786 } else { 28787 if ((err = ipif_up_done(ipif)) != 0) 28788 ip0dbg(("ip_arp_done: init failed\n")); 28789 } 28790 } else { 28791 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 28792 } 28793 28794 freemsg(mp2); 28795 28796 if ((err == 0) && (ill->ill_up_ipifs)) { 28797 err = ill_up_ipifs(ill, q, mp1); 28798 if (err == EINPROGRESS) 28799 return; 28800 } 28801 28802 /* 28803 * If we have a moved ipif to bring up, and everything has succeeded 28804 * to this point, bring it up on the IPMP ill. Otherwise, leave it 28805 * down -- the admin can try to bring it up by hand if need be. 28806 */ 28807 if (ill->ill_move_ipif != NULL) { 28808 ipif = ill->ill_move_ipif; 28809 ill->ill_move_ipif = NULL; 28810 if (err == 0) { 28811 err = ipif_up(ipif, q, mp1); 28812 if (err == EINPROGRESS) 28813 return; 28814 } 28815 } 28816 28817 /* 28818 * The operation must complete without EINPROGRESS since 28819 * ipsq_pending_mp_get() has removed the mblk. Otherwise, the 28820 * operation will be stuck forever in the ipsq. 28821 */ 28822 ASSERT(err != EINPROGRESS); 28823 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) 28824 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 28825 else 28826 ipsq_current_finish(ipsq); 28827 } 28828 28829 /* Allocate the private structure */ 28830 static int 28831 ip_priv_alloc(void **bufp) 28832 { 28833 void *buf; 28834 28835 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 28836 return (ENOMEM); 28837 28838 *bufp = buf; 28839 return (0); 28840 } 28841 28842 /* Function to delete the private structure */ 28843 void 28844 ip_priv_free(void *buf) 28845 { 28846 ASSERT(buf != NULL); 28847 kmem_free(buf, sizeof (ip_priv_t)); 28848 } 28849 28850 /* 28851 * The entry point for IPPF processing. 28852 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 28853 * routine just returns. 28854 * 28855 * When called, ip_process generates an ipp_packet_t structure 28856 * which holds the state information for this packet and invokes the 28857 * the classifier (via ipp_packet_process). The classification, depending on 28858 * configured filters, results in a list of actions for this packet. Invoking 28859 * an action may cause the packet to be dropped, in which case the resulting 28860 * mblk (*mpp) is NULL. proc indicates the callout position for 28861 * this packet and ill_index is the interface this packet on or will leave 28862 * on (inbound and outbound resp.). 28863 */ 28864 void 28865 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 28866 { 28867 mblk_t *mp; 28868 ip_priv_t *priv; 28869 ipp_action_id_t aid; 28870 int rc = 0; 28871 ipp_packet_t *pp; 28872 #define IP_CLASS "ip" 28873 28874 /* If the classifier is not loaded, return */ 28875 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 28876 return; 28877 } 28878 28879 mp = *mpp; 28880 ASSERT(mp != NULL); 28881 28882 /* Allocate the packet structure */ 28883 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 28884 if (rc != 0) { 28885 *mpp = NULL; 28886 freemsg(mp); 28887 return; 28888 } 28889 28890 /* Allocate the private structure */ 28891 rc = ip_priv_alloc((void **)&priv); 28892 if (rc != 0) { 28893 *mpp = NULL; 28894 freemsg(mp); 28895 ipp_packet_free(pp); 28896 return; 28897 } 28898 priv->proc = proc; 28899 priv->ill_index = ill_index; 28900 ipp_packet_set_private(pp, priv, ip_priv_free); 28901 ipp_packet_set_data(pp, mp); 28902 28903 /* Invoke the classifier */ 28904 rc = ipp_packet_process(&pp); 28905 if (pp != NULL) { 28906 mp = ipp_packet_get_data(pp); 28907 ipp_packet_free(pp); 28908 if (rc != 0) { 28909 freemsg(mp); 28910 *mpp = NULL; 28911 } 28912 } else { 28913 *mpp = NULL; 28914 } 28915 #undef IP_CLASS 28916 } 28917 28918 /* 28919 * Propagate a multicast group membership operation (add/drop) on 28920 * all the interfaces crossed by the related multirt routes. 28921 * The call is considered successful if the operation succeeds 28922 * on at least one interface. 28923 */ 28924 static int 28925 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 28926 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 28927 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 28928 mblk_t *first_mp) 28929 { 28930 ire_t *ire_gw; 28931 irb_t *irb; 28932 int error = 0; 28933 opt_restart_t *or; 28934 ip_stack_t *ipst = ire->ire_ipst; 28935 28936 irb = ire->ire_bucket; 28937 ASSERT(irb != NULL); 28938 28939 ASSERT(DB_TYPE(first_mp) == M_CTL); 28940 28941 or = (opt_restart_t *)first_mp->b_rptr; 28942 IRB_REFHOLD(irb); 28943 for (; ire != NULL; ire = ire->ire_next) { 28944 if ((ire->ire_flags & RTF_MULTIRT) == 0) 28945 continue; 28946 if (ire->ire_addr != group) 28947 continue; 28948 28949 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 28950 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 28951 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE, ipst); 28952 /* No resolver exists for the gateway; skip this ire. */ 28953 if (ire_gw == NULL) 28954 continue; 28955 28956 /* 28957 * This function can return EINPROGRESS. If so the operation 28958 * will be restarted from ip_restart_optmgmt which will 28959 * call ip_opt_set and option processing will restart for 28960 * this option. So we may end up calling 'fn' more than once. 28961 * This requires that 'fn' is idempotent except for the 28962 * return value. The operation is considered a success if 28963 * it succeeds at least once on any one interface. 28964 */ 28965 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 28966 NULL, fmode, src, first_mp); 28967 if (error == 0) 28968 or->or_private = CGTP_MCAST_SUCCESS; 28969 28970 if (ip_debug > 0) { 28971 ulong_t off; 28972 char *ksym; 28973 ksym = kobj_getsymname((uintptr_t)fn, &off); 28974 ip2dbg(("ip_multirt_apply_membership: " 28975 "called %s, multirt group 0x%08x via itf 0x%08x, " 28976 "error %d [success %u]\n", 28977 ksym ? ksym : "?", 28978 ntohl(group), ntohl(ire_gw->ire_src_addr), 28979 error, or->or_private)); 28980 } 28981 28982 ire_refrele(ire_gw); 28983 if (error == EINPROGRESS) { 28984 IRB_REFRELE(irb); 28985 return (error); 28986 } 28987 } 28988 IRB_REFRELE(irb); 28989 /* 28990 * Consider the call as successful if we succeeded on at least 28991 * one interface. Otherwise, return the last encountered error. 28992 */ 28993 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 28994 } 28995 28996 /* 28997 * Issue a warning regarding a route crossing an interface with an 28998 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 28999 * amount of time is logged. 29000 */ 29001 static void 29002 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 29003 { 29004 hrtime_t current = gethrtime(); 29005 char buf[INET_ADDRSTRLEN]; 29006 ip_stack_t *ipst = ire->ire_ipst; 29007 29008 /* Convert interval in ms to hrtime in ns */ 29009 if (ipst->ips_multirt_bad_mtu_last_time + 29010 ((hrtime_t)ipst->ips_ip_multirt_log_interval * (hrtime_t)1000000) <= 29011 current) { 29012 cmn_err(CE_WARN, "ip: ignoring multiroute " 29013 "to %s, incorrect MTU %u (expected %u)\n", 29014 ip_dot_addr(ire->ire_addr, buf), 29015 ire->ire_max_frag, max_frag); 29016 29017 ipst->ips_multirt_bad_mtu_last_time = current; 29018 } 29019 } 29020 29021 /* 29022 * Get the CGTP (multirouting) filtering status. 29023 * If 0, the CGTP hooks are transparent. 29024 */ 29025 /* ARGSUSED */ 29026 static int 29027 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 29028 { 29029 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 29030 29031 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 29032 return (0); 29033 } 29034 29035 /* 29036 * Set the CGTP (multirouting) filtering status. 29037 * If the status is changed from active to transparent 29038 * or from transparent to active, forward the new status 29039 * to the filtering module (if loaded). 29040 */ 29041 /* ARGSUSED */ 29042 static int 29043 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 29044 cred_t *ioc_cr) 29045 { 29046 long new_value; 29047 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 29048 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29049 29050 if (secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 29051 return (EPERM); 29052 29053 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 29054 new_value < 0 || new_value > 1) { 29055 return (EINVAL); 29056 } 29057 29058 if ((!*ip_cgtp_filter_value) && new_value) { 29059 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 29060 ipst->ips_ip_cgtp_filter_ops == NULL ? 29061 " (module not loaded)" : ""); 29062 } 29063 if (*ip_cgtp_filter_value && (!new_value)) { 29064 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 29065 ipst->ips_ip_cgtp_filter_ops == NULL ? 29066 " (module not loaded)" : ""); 29067 } 29068 29069 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 29070 int res; 29071 netstackid_t stackid; 29072 29073 stackid = ipst->ips_netstack->netstack_stackid; 29074 res = ipst->ips_ip_cgtp_filter_ops->cfo_change_state(stackid, 29075 new_value); 29076 if (res) 29077 return (res); 29078 } 29079 29080 *ip_cgtp_filter_value = (boolean_t)new_value; 29081 29082 return (0); 29083 } 29084 29085 /* 29086 * Return the expected CGTP hooks version number. 29087 */ 29088 int 29089 ip_cgtp_filter_supported(void) 29090 { 29091 return (ip_cgtp_filter_rev); 29092 } 29093 29094 /* 29095 * CGTP hooks can be registered by invoking this function. 29096 * Checks that the version number matches. 29097 */ 29098 int 29099 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops) 29100 { 29101 netstack_t *ns; 29102 ip_stack_t *ipst; 29103 29104 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 29105 return (ENOTSUP); 29106 29107 ns = netstack_find_by_stackid(stackid); 29108 if (ns == NULL) 29109 return (EINVAL); 29110 ipst = ns->netstack_ip; 29111 ASSERT(ipst != NULL); 29112 29113 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 29114 netstack_rele(ns); 29115 return (EALREADY); 29116 } 29117 29118 ipst->ips_ip_cgtp_filter_ops = ops; 29119 netstack_rele(ns); 29120 return (0); 29121 } 29122 29123 /* 29124 * CGTP hooks can be unregistered by invoking this function. 29125 * Returns ENXIO if there was no registration. 29126 * Returns EBUSY if the ndd variable has not been turned off. 29127 */ 29128 int 29129 ip_cgtp_filter_unregister(netstackid_t stackid) 29130 { 29131 netstack_t *ns; 29132 ip_stack_t *ipst; 29133 29134 ns = netstack_find_by_stackid(stackid); 29135 if (ns == NULL) 29136 return (EINVAL); 29137 ipst = ns->netstack_ip; 29138 ASSERT(ipst != NULL); 29139 29140 if (ipst->ips_ip_cgtp_filter) { 29141 netstack_rele(ns); 29142 return (EBUSY); 29143 } 29144 29145 if (ipst->ips_ip_cgtp_filter_ops == NULL) { 29146 netstack_rele(ns); 29147 return (ENXIO); 29148 } 29149 ipst->ips_ip_cgtp_filter_ops = NULL; 29150 netstack_rele(ns); 29151 return (0); 29152 } 29153 29154 /* 29155 * Check whether there is a CGTP filter registration. 29156 * Returns non-zero if there is a registration, otherwise returns zero. 29157 * Note: returns zero if bad stackid. 29158 */ 29159 int 29160 ip_cgtp_filter_is_registered(netstackid_t stackid) 29161 { 29162 netstack_t *ns; 29163 ip_stack_t *ipst; 29164 int ret; 29165 29166 ns = netstack_find_by_stackid(stackid); 29167 if (ns == NULL) 29168 return (0); 29169 ipst = ns->netstack_ip; 29170 ASSERT(ipst != NULL); 29171 29172 if (ipst->ips_ip_cgtp_filter_ops != NULL) 29173 ret = 1; 29174 else 29175 ret = 0; 29176 29177 netstack_rele(ns); 29178 return (ret); 29179 } 29180 29181 static int 29182 ip_squeue_switch(int val) 29183 { 29184 int rval = SQ_FILL; 29185 29186 switch (val) { 29187 case IP_SQUEUE_ENTER_NODRAIN: 29188 rval = SQ_NODRAIN; 29189 break; 29190 case IP_SQUEUE_ENTER: 29191 rval = SQ_PROCESS; 29192 break; 29193 default: 29194 break; 29195 } 29196 return (rval); 29197 } 29198 29199 /* ARGSUSED */ 29200 static int 29201 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 29202 caddr_t addr, cred_t *cr) 29203 { 29204 int *v = (int *)addr; 29205 long new_value; 29206 29207 if (secpolicy_net_config(cr, B_FALSE) != 0) 29208 return (EPERM); 29209 29210 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29211 return (EINVAL); 29212 29213 ip_squeue_flag = ip_squeue_switch(new_value); 29214 *v = new_value; 29215 return (0); 29216 } 29217 29218 /* 29219 * Handle ndd set of variables which require PRIV_SYS_NET_CONFIG such as 29220 * ip_debug. 29221 */ 29222 /* ARGSUSED */ 29223 static int 29224 ip_int_set(queue_t *q, mblk_t *mp, char *value, 29225 caddr_t addr, cred_t *cr) 29226 { 29227 int *v = (int *)addr; 29228 long new_value; 29229 29230 if (secpolicy_net_config(cr, B_FALSE) != 0) 29231 return (EPERM); 29232 29233 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29234 return (EINVAL); 29235 29236 *v = new_value; 29237 return (0); 29238 } 29239 29240 static void * 29241 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 29242 { 29243 kstat_t *ksp; 29244 29245 ip_stat_t template = { 29246 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 29247 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 29248 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 29249 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 29250 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 29251 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 29252 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 29253 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 29254 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 29255 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 29256 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 29257 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 29258 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 29259 { "ip_db_ref", KSTAT_DATA_UINT64 }, 29260 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 29261 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 29262 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 29263 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 29264 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 29265 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 29266 { "ip_opt", KSTAT_DATA_UINT64 }, 29267 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 29268 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 29269 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 29270 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 29271 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 29272 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 29273 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 29274 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 29275 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 29276 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 29277 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 29278 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 29279 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29280 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29281 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29282 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29283 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29284 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29285 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29286 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29287 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 29288 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 29289 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 29290 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 29291 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 29292 }; 29293 29294 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 29295 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 29296 KSTAT_FLAG_VIRTUAL, stackid); 29297 29298 if (ksp == NULL) 29299 return (NULL); 29300 29301 bcopy(&template, ip_statisticsp, sizeof (template)); 29302 ksp->ks_data = (void *)ip_statisticsp; 29303 ksp->ks_private = (void *)(uintptr_t)stackid; 29304 29305 kstat_install(ksp); 29306 return (ksp); 29307 } 29308 29309 static void 29310 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 29311 { 29312 if (ksp != NULL) { 29313 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29314 kstat_delete_netstack(ksp, stackid); 29315 } 29316 } 29317 29318 static void * 29319 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 29320 { 29321 kstat_t *ksp; 29322 29323 ip_named_kstat_t template = { 29324 { "forwarding", KSTAT_DATA_UINT32, 0 }, 29325 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 29326 { "inReceives", KSTAT_DATA_UINT64, 0 }, 29327 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 29328 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 29329 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 29330 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 29331 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 29332 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 29333 { "outRequests", KSTAT_DATA_UINT64, 0 }, 29334 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 29335 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 29336 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 29337 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 29338 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 29339 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 29340 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 29341 { "fragFails", KSTAT_DATA_UINT32, 0 }, 29342 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 29343 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 29344 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 29345 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 29346 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 29347 { "inErrs", KSTAT_DATA_UINT32, 0 }, 29348 { "noPorts", KSTAT_DATA_UINT32, 0 }, 29349 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 29350 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 29351 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 29352 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 29353 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 29354 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 29355 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 29356 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 29357 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 29358 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 29359 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 29360 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 29361 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 29362 }; 29363 29364 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 29365 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 29366 if (ksp == NULL || ksp->ks_data == NULL) 29367 return (NULL); 29368 29369 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 29370 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 29371 template.reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29372 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 29373 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 29374 29375 template.netToMediaEntrySize.value.i32 = 29376 sizeof (mib2_ipNetToMediaEntry_t); 29377 29378 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 29379 29380 bcopy(&template, ksp->ks_data, sizeof (template)); 29381 ksp->ks_update = ip_kstat_update; 29382 ksp->ks_private = (void *)(uintptr_t)stackid; 29383 29384 kstat_install(ksp); 29385 return (ksp); 29386 } 29387 29388 static void 29389 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29390 { 29391 if (ksp != NULL) { 29392 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29393 kstat_delete_netstack(ksp, stackid); 29394 } 29395 } 29396 29397 static int 29398 ip_kstat_update(kstat_t *kp, int rw) 29399 { 29400 ip_named_kstat_t *ipkp; 29401 mib2_ipIfStatsEntry_t ipmib; 29402 ill_walk_context_t ctx; 29403 ill_t *ill; 29404 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29405 netstack_t *ns; 29406 ip_stack_t *ipst; 29407 29408 if (kp == NULL || kp->ks_data == NULL) 29409 return (EIO); 29410 29411 if (rw == KSTAT_WRITE) 29412 return (EACCES); 29413 29414 ns = netstack_find_by_stackid(stackid); 29415 if (ns == NULL) 29416 return (-1); 29417 ipst = ns->netstack_ip; 29418 if (ipst == NULL) { 29419 netstack_rele(ns); 29420 return (-1); 29421 } 29422 ipkp = (ip_named_kstat_t *)kp->ks_data; 29423 29424 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 29425 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29426 ill = ILL_START_WALK_V4(&ctx, ipst); 29427 for (; ill != NULL; ill = ill_next(&ctx, ill)) 29428 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 29429 rw_exit(&ipst->ips_ill_g_lock); 29430 29431 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 29432 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 29433 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 29434 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 29435 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 29436 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 29437 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 29438 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 29439 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 29440 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 29441 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 29442 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 29443 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29444 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 29445 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 29446 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 29447 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 29448 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 29449 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 29450 29451 ipkp->routingDiscards.value.ui32 = 0; 29452 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 29453 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 29454 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 29455 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 29456 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 29457 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 29458 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 29459 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 29460 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 29461 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 29462 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 29463 29464 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 29465 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 29466 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 29467 29468 netstack_rele(ns); 29469 29470 return (0); 29471 } 29472 29473 static void * 29474 icmp_kstat_init(netstackid_t stackid) 29475 { 29476 kstat_t *ksp; 29477 29478 icmp_named_kstat_t template = { 29479 { "inMsgs", KSTAT_DATA_UINT32 }, 29480 { "inErrors", KSTAT_DATA_UINT32 }, 29481 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 29482 { "inTimeExcds", KSTAT_DATA_UINT32 }, 29483 { "inParmProbs", KSTAT_DATA_UINT32 }, 29484 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 29485 { "inRedirects", KSTAT_DATA_UINT32 }, 29486 { "inEchos", KSTAT_DATA_UINT32 }, 29487 { "inEchoReps", KSTAT_DATA_UINT32 }, 29488 { "inTimestamps", KSTAT_DATA_UINT32 }, 29489 { "inTimestampReps", KSTAT_DATA_UINT32 }, 29490 { "inAddrMasks", KSTAT_DATA_UINT32 }, 29491 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 29492 { "outMsgs", KSTAT_DATA_UINT32 }, 29493 { "outErrors", KSTAT_DATA_UINT32 }, 29494 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 29495 { "outTimeExcds", KSTAT_DATA_UINT32 }, 29496 { "outParmProbs", KSTAT_DATA_UINT32 }, 29497 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 29498 { "outRedirects", KSTAT_DATA_UINT32 }, 29499 { "outEchos", KSTAT_DATA_UINT32 }, 29500 { "outEchoReps", KSTAT_DATA_UINT32 }, 29501 { "outTimestamps", KSTAT_DATA_UINT32 }, 29502 { "outTimestampReps", KSTAT_DATA_UINT32 }, 29503 { "outAddrMasks", KSTAT_DATA_UINT32 }, 29504 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 29505 { "inChksumErrs", KSTAT_DATA_UINT32 }, 29506 { "inUnknowns", KSTAT_DATA_UINT32 }, 29507 { "inFragNeeded", KSTAT_DATA_UINT32 }, 29508 { "outFragNeeded", KSTAT_DATA_UINT32 }, 29509 { "outDrops", KSTAT_DATA_UINT32 }, 29510 { "inOverFlows", KSTAT_DATA_UINT32 }, 29511 { "inBadRedirects", KSTAT_DATA_UINT32 }, 29512 }; 29513 29514 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 29515 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 29516 if (ksp == NULL || ksp->ks_data == NULL) 29517 return (NULL); 29518 29519 bcopy(&template, ksp->ks_data, sizeof (template)); 29520 29521 ksp->ks_update = icmp_kstat_update; 29522 ksp->ks_private = (void *)(uintptr_t)stackid; 29523 29524 kstat_install(ksp); 29525 return (ksp); 29526 } 29527 29528 static void 29529 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29530 { 29531 if (ksp != NULL) { 29532 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29533 kstat_delete_netstack(ksp, stackid); 29534 } 29535 } 29536 29537 static int 29538 icmp_kstat_update(kstat_t *kp, int rw) 29539 { 29540 icmp_named_kstat_t *icmpkp; 29541 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29542 netstack_t *ns; 29543 ip_stack_t *ipst; 29544 29545 if ((kp == NULL) || (kp->ks_data == NULL)) 29546 return (EIO); 29547 29548 if (rw == KSTAT_WRITE) 29549 return (EACCES); 29550 29551 ns = netstack_find_by_stackid(stackid); 29552 if (ns == NULL) 29553 return (-1); 29554 ipst = ns->netstack_ip; 29555 if (ipst == NULL) { 29556 netstack_rele(ns); 29557 return (-1); 29558 } 29559 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 29560 29561 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 29562 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 29563 icmpkp->inDestUnreachs.value.ui32 = 29564 ipst->ips_icmp_mib.icmpInDestUnreachs; 29565 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 29566 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 29567 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 29568 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 29569 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 29570 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 29571 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 29572 icmpkp->inTimestampReps.value.ui32 = 29573 ipst->ips_icmp_mib.icmpInTimestampReps; 29574 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 29575 icmpkp->inAddrMaskReps.value.ui32 = 29576 ipst->ips_icmp_mib.icmpInAddrMaskReps; 29577 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 29578 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 29579 icmpkp->outDestUnreachs.value.ui32 = 29580 ipst->ips_icmp_mib.icmpOutDestUnreachs; 29581 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 29582 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 29583 icmpkp->outSrcQuenchs.value.ui32 = 29584 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 29585 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 29586 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 29587 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 29588 icmpkp->outTimestamps.value.ui32 = 29589 ipst->ips_icmp_mib.icmpOutTimestamps; 29590 icmpkp->outTimestampReps.value.ui32 = 29591 ipst->ips_icmp_mib.icmpOutTimestampReps; 29592 icmpkp->outAddrMasks.value.ui32 = 29593 ipst->ips_icmp_mib.icmpOutAddrMasks; 29594 icmpkp->outAddrMaskReps.value.ui32 = 29595 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 29596 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 29597 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 29598 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 29599 icmpkp->outFragNeeded.value.ui32 = 29600 ipst->ips_icmp_mib.icmpOutFragNeeded; 29601 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 29602 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 29603 icmpkp->inBadRedirects.value.ui32 = 29604 ipst->ips_icmp_mib.icmpInBadRedirects; 29605 29606 netstack_rele(ns); 29607 return (0); 29608 } 29609 29610 /* 29611 * This is the fanout function for raw socket opened for SCTP. Note 29612 * that it is called after SCTP checks that there is no socket which 29613 * wants a packet. Then before SCTP handles this out of the blue packet, 29614 * this function is called to see if there is any raw socket for SCTP. 29615 * If there is and it is bound to the correct address, the packet will 29616 * be sent to that socket. Note that only one raw socket can be bound to 29617 * a port. This is assured in ipcl_sctp_hash_insert(); 29618 */ 29619 void 29620 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 29621 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 29622 zoneid_t zoneid) 29623 { 29624 conn_t *connp; 29625 queue_t *rq; 29626 mblk_t *first_mp; 29627 boolean_t secure; 29628 ip6_t *ip6h; 29629 ip_stack_t *ipst = recv_ill->ill_ipst; 29630 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 29631 sctp_stack_t *sctps = ipst->ips_netstack->netstack_sctp; 29632 boolean_t sctp_csum_err = B_FALSE; 29633 29634 if (flags & IP_FF_SCTP_CSUM_ERR) { 29635 sctp_csum_err = B_TRUE; 29636 flags &= ~IP_FF_SCTP_CSUM_ERR; 29637 } 29638 29639 first_mp = mp; 29640 if (mctl_present) { 29641 mp = first_mp->b_cont; 29642 secure = ipsec_in_is_secure(first_mp); 29643 ASSERT(mp != NULL); 29644 } else { 29645 secure = B_FALSE; 29646 } 29647 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 29648 29649 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha, ipst); 29650 if (connp == NULL) { 29651 /* 29652 * Although raw sctp is not summed, OOB chunks must be. 29653 * Drop the packet here if the sctp checksum failed. 29654 */ 29655 if (sctp_csum_err) { 29656 BUMP_MIB(&sctps->sctps_mib, sctpChecksumError); 29657 freemsg(first_mp); 29658 return; 29659 } 29660 sctp_ootb_input(first_mp, recv_ill, zoneid, mctl_present); 29661 return; 29662 } 29663 rq = connp->conn_rq; 29664 if (!canputnext(rq)) { 29665 CONN_DEC_REF(connp); 29666 BUMP_MIB(recv_ill->ill_ip_mib, rawipIfStatsInOverflows); 29667 freemsg(first_mp); 29668 return; 29669 } 29670 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 29671 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || secure) { 29672 first_mp = ipsec_check_inbound_policy(first_mp, connp, 29673 (isv4 ? ipha : NULL), ip6h, mctl_present); 29674 if (first_mp == NULL) { 29675 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 29676 CONN_DEC_REF(connp); 29677 return; 29678 } 29679 } 29680 /* 29681 * We probably should not send M_CTL message up to 29682 * raw socket. 29683 */ 29684 if (mctl_present) 29685 freeb(first_mp); 29686 29687 /* Initiate IPPF processing here if needed. */ 29688 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) || 29689 (!isv4 && IP6_IN_IPP(flags, ipst))) { 29690 ip_process(IPP_LOCAL_IN, &mp, 29691 recv_ill->ill_phyint->phyint_ifindex); 29692 if (mp == NULL) { 29693 CONN_DEC_REF(connp); 29694 return; 29695 } 29696 } 29697 29698 if (connp->conn_recvif || connp->conn_recvslla || 29699 ((connp->conn_ip_recvpktinfo || 29700 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 29701 (flags & IP_FF_IPINFO))) { 29702 int in_flags = 0; 29703 29704 /* 29705 * Since sctp does not support IP_RECVPKTINFO for v4, only pass 29706 * IPF_RECVIF. 29707 */ 29708 if (connp->conn_recvif || connp->conn_ip_recvpktinfo) { 29709 in_flags = IPF_RECVIF; 29710 } 29711 if (connp->conn_recvslla) { 29712 in_flags |= IPF_RECVSLLA; 29713 } 29714 if (isv4) { 29715 mp = ip_add_info(mp, recv_ill, in_flags, 29716 IPCL_ZONEID(connp), ipst); 29717 } else { 29718 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 29719 if (mp == NULL) { 29720 BUMP_MIB(recv_ill->ill_ip_mib, 29721 ipIfStatsInDiscards); 29722 CONN_DEC_REF(connp); 29723 return; 29724 } 29725 } 29726 } 29727 29728 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 29729 /* 29730 * We are sending the IPSEC_IN message also up. Refer 29731 * to comments above this function. 29732 * This is the SOCK_RAW, IPPROTO_SCTP case. 29733 */ 29734 (connp->conn_recv)(connp, mp, NULL); 29735 CONN_DEC_REF(connp); 29736 } 29737 29738 #define UPDATE_IP_MIB_OB_COUNTERS(ill, len) \ 29739 { \ 29740 BUMP_MIB((ill)->ill_ip_mib, ipIfStatsHCOutTransmits); \ 29741 UPDATE_MIB((ill)->ill_ip_mib, ipIfStatsHCOutOctets, (len)); \ 29742 } 29743 /* 29744 * This function should be called only if all packet processing 29745 * including fragmentation is complete. Callers of this function 29746 * must set mp->b_prev to one of these values: 29747 * {0, IPP_FWD_OUT, IPP_LOCAL_OUT} 29748 * prior to handing over the mp as first argument to this function. 29749 * 29750 * If the ire passed by caller is incomplete, this function 29751 * queues the packet and if necessary, sends ARP request and bails. 29752 * If the ire passed is fully resolved, we simply prepend 29753 * the link-layer header to the packet, do ipsec hw acceleration 29754 * work if necessary, and send the packet out on the wire. 29755 * 29756 * NOTE: IPsec will only call this function with fully resolved 29757 * ires if hw acceleration is involved. 29758 * TODO list : 29759 * a Handle M_MULTIDATA so that 29760 * tcp_multisend->tcp_multisend_data can 29761 * call ip_xmit_v4 directly 29762 * b Handle post-ARP work for fragments so that 29763 * ip_wput_frag can call this function. 29764 */ 29765 ipxmit_state_t 29766 ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, 29767 boolean_t flow_ctl_enabled, conn_t *connp) 29768 { 29769 nce_t *arpce; 29770 ipha_t *ipha; 29771 queue_t *q; 29772 int ill_index; 29773 mblk_t *nxt_mp, *first_mp; 29774 boolean_t xmit_drop = B_FALSE; 29775 ip_proc_t proc; 29776 ill_t *out_ill; 29777 int pkt_len; 29778 29779 arpce = ire->ire_nce; 29780 ASSERT(arpce != NULL); 29781 29782 DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire, nce_t *, arpce); 29783 29784 mutex_enter(&arpce->nce_lock); 29785 switch (arpce->nce_state) { 29786 case ND_REACHABLE: 29787 /* If there are other queued packets, queue this packet */ 29788 if (arpce->nce_qd_mp != NULL) { 29789 if (mp != NULL) 29790 nce_queue_mp_common(arpce, mp, B_FALSE); 29791 mp = arpce->nce_qd_mp; 29792 } 29793 arpce->nce_qd_mp = NULL; 29794 mutex_exit(&arpce->nce_lock); 29795 29796 /* 29797 * Flush the queue. In the common case, where the 29798 * ARP is already resolved, it will go through the 29799 * while loop only once. 29800 */ 29801 while (mp != NULL) { 29802 29803 nxt_mp = mp->b_next; 29804 mp->b_next = NULL; 29805 ASSERT(mp->b_datap->db_type != M_CTL); 29806 pkt_len = ntohs(((ipha_t *)mp->b_rptr)->ipha_length); 29807 /* 29808 * This info is needed for IPQOS to do COS marking 29809 * in ip_wput_attach_llhdr->ip_process. 29810 */ 29811 proc = (ip_proc_t)(uintptr_t)mp->b_prev; 29812 mp->b_prev = NULL; 29813 29814 /* set up ill index for outbound qos processing */ 29815 out_ill = ire_to_ill(ire); 29816 ill_index = out_ill->ill_phyint->phyint_ifindex; 29817 first_mp = ip_wput_attach_llhdr(mp, ire, proc, 29818 ill_index, &ipha); 29819 if (first_mp == NULL) { 29820 xmit_drop = B_TRUE; 29821 BUMP_MIB(out_ill->ill_ip_mib, 29822 ipIfStatsOutDiscards); 29823 goto next_mp; 29824 } 29825 29826 /* non-ipsec hw accel case */ 29827 if (io == NULL || !io->ipsec_out_accelerated) { 29828 /* send it */ 29829 q = ire->ire_stq; 29830 if (proc == IPP_FWD_OUT) { 29831 UPDATE_IB_PKT_COUNT(ire); 29832 } else { 29833 UPDATE_OB_PKT_COUNT(ire); 29834 } 29835 ire->ire_last_used_time = lbolt; 29836 29837 if (flow_ctl_enabled || canputnext(q)) { 29838 if (proc == IPP_FWD_OUT) { 29839 29840 BUMP_MIB(out_ill->ill_ip_mib, 29841 ipIfStatsHCOutForwDatagrams); 29842 29843 } 29844 UPDATE_IP_MIB_OB_COUNTERS(out_ill, 29845 pkt_len); 29846 29847 DTRACE_IP7(send, mblk_t *, first_mp, 29848 conn_t *, NULL, void_ip_t *, ipha, 29849 __dtrace_ipsr_ill_t *, out_ill, 29850 ipha_t *, ipha, ip6_t *, NULL, int, 29851 0); 29852 29853 ILL_SEND_TX(out_ill, 29854 ire, connp, first_mp, 0, connp); 29855 } else { 29856 BUMP_MIB(out_ill->ill_ip_mib, 29857 ipIfStatsOutDiscards); 29858 xmit_drop = B_TRUE; 29859 freemsg(first_mp); 29860 } 29861 } else { 29862 /* 29863 * Safety Pup says: make sure this 29864 * is going to the right interface! 29865 */ 29866 ill_t *ill1 = 29867 (ill_t *)ire->ire_stq->q_ptr; 29868 int ifindex = 29869 ill1->ill_phyint->phyint_ifindex; 29870 if (ifindex != 29871 io->ipsec_out_capab_ill_index) { 29872 xmit_drop = B_TRUE; 29873 freemsg(mp); 29874 } else { 29875 UPDATE_IP_MIB_OB_COUNTERS(ill1, 29876 pkt_len); 29877 29878 DTRACE_IP7(send, mblk_t *, first_mp, 29879 conn_t *, NULL, void_ip_t *, ipha, 29880 __dtrace_ipsr_ill_t *, ill1, 29881 ipha_t *, ipha, ip6_t *, NULL, 29882 int, 0); 29883 29884 ipsec_hw_putnext(ire->ire_stq, mp); 29885 } 29886 } 29887 next_mp: 29888 mp = nxt_mp; 29889 } /* while (mp != NULL) */ 29890 if (xmit_drop) 29891 return (SEND_FAILED); 29892 else 29893 return (SEND_PASSED); 29894 29895 case ND_INITIAL: 29896 case ND_INCOMPLETE: 29897 29898 /* 29899 * While we do send off packets to dests that 29900 * use fully-resolved CGTP routes, we do not 29901 * handle unresolved CGTP routes. 29902 */ 29903 ASSERT(!(ire->ire_flags & RTF_MULTIRT)); 29904 ASSERT(io == NULL || !io->ipsec_out_accelerated); 29905 29906 if (mp != NULL) { 29907 /* queue the packet */ 29908 nce_queue_mp_common(arpce, mp, B_FALSE); 29909 } 29910 29911 if (arpce->nce_state == ND_INCOMPLETE) { 29912 mutex_exit(&arpce->nce_lock); 29913 DTRACE_PROBE3(ip__xmit__incomplete, 29914 (ire_t *), ire, (mblk_t *), mp, 29915 (ipsec_out_t *), io); 29916 return (LOOKUP_IN_PROGRESS); 29917 } 29918 29919 arpce->nce_state = ND_INCOMPLETE; 29920 mutex_exit(&arpce->nce_lock); 29921 29922 /* 29923 * Note that ire_add() (called from ire_forward()) 29924 * holds a ref on the ire until ARP is completed. 29925 */ 29926 ire_arpresolve(ire); 29927 return (LOOKUP_IN_PROGRESS); 29928 default: 29929 ASSERT(0); 29930 mutex_exit(&arpce->nce_lock); 29931 return (LLHDR_RESLV_FAILED); 29932 } 29933 } 29934 29935 #undef UPDATE_IP_MIB_OB_COUNTERS 29936 29937 /* 29938 * Return B_TRUE if the buffers differ in length or content. 29939 * This is used for comparing extension header buffers. 29940 * Note that an extension header would be declared different 29941 * even if all that changed was the next header value in that header i.e. 29942 * what really changed is the next extension header. 29943 */ 29944 boolean_t 29945 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 29946 uint_t blen) 29947 { 29948 if (!b_valid) 29949 blen = 0; 29950 29951 if (alen != blen) 29952 return (B_TRUE); 29953 if (alen == 0) 29954 return (B_FALSE); /* Both zero length */ 29955 return (bcmp(abuf, bbuf, alen)); 29956 } 29957 29958 /* 29959 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 29960 * Return B_FALSE if memory allocation fails - don't change any state! 29961 */ 29962 boolean_t 29963 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 29964 const void *src, uint_t srclen) 29965 { 29966 void *dst; 29967 29968 if (!src_valid) 29969 srclen = 0; 29970 29971 ASSERT(*dstlenp == 0); 29972 if (src != NULL && srclen != 0) { 29973 dst = mi_alloc(srclen, BPRI_MED); 29974 if (dst == NULL) 29975 return (B_FALSE); 29976 } else { 29977 dst = NULL; 29978 } 29979 if (*dstp != NULL) 29980 mi_free(*dstp); 29981 *dstp = dst; 29982 *dstlenp = dst == NULL ? 0 : srclen; 29983 return (B_TRUE); 29984 } 29985 29986 /* 29987 * Replace what is in *dst, *dstlen with the source. 29988 * Assumes ip_allocbuf has already been called. 29989 */ 29990 void 29991 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 29992 const void *src, uint_t srclen) 29993 { 29994 if (!src_valid) 29995 srclen = 0; 29996 29997 ASSERT(*dstlenp == srclen); 29998 if (src != NULL && srclen != 0) 29999 bcopy(src, *dstp, srclen); 30000 } 30001 30002 /* 30003 * Free the storage pointed to by the members of an ip6_pkt_t. 30004 */ 30005 void 30006 ip6_pkt_free(ip6_pkt_t *ipp) 30007 { 30008 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 30009 30010 if (ipp->ipp_fields & IPPF_HOPOPTS) { 30011 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 30012 ipp->ipp_hopopts = NULL; 30013 ipp->ipp_hopoptslen = 0; 30014 } 30015 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 30016 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 30017 ipp->ipp_rtdstopts = NULL; 30018 ipp->ipp_rtdstoptslen = 0; 30019 } 30020 if (ipp->ipp_fields & IPPF_DSTOPTS) { 30021 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 30022 ipp->ipp_dstopts = NULL; 30023 ipp->ipp_dstoptslen = 0; 30024 } 30025 if (ipp->ipp_fields & IPPF_RTHDR) { 30026 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 30027 ipp->ipp_rthdr = NULL; 30028 ipp->ipp_rthdrlen = 0; 30029 } 30030 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 30031 IPPF_RTHDR); 30032 } 30033 30034 zoneid_t 30035 ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_stack_t *ipst, 30036 zoneid_t lookup_zoneid) 30037 { 30038 ire_t *ire; 30039 int ire_flags = MATCH_IRE_TYPE; 30040 zoneid_t zoneid = ALL_ZONES; 30041 30042 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) 30043 return (ALL_ZONES); 30044 30045 if (lookup_zoneid != ALL_ZONES) 30046 ire_flags |= MATCH_IRE_ZONEONLY; 30047 ire = ire_ctable_lookup(addr, NULL, IRE_LOCAL | IRE_LOOPBACK, NULL, 30048 lookup_zoneid, NULL, ire_flags, ipst); 30049 if (ire != NULL) { 30050 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 30051 ire_refrele(ire); 30052 } 30053 return (zoneid); 30054 } 30055 30056 zoneid_t 30057 ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill, 30058 ip_stack_t *ipst, zoneid_t lookup_zoneid) 30059 { 30060 ire_t *ire; 30061 int ire_flags = MATCH_IRE_TYPE; 30062 zoneid_t zoneid = ALL_ZONES; 30063 ipif_t *ipif_arg = NULL; 30064 30065 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) 30066 return (ALL_ZONES); 30067 30068 if (IN6_IS_ADDR_LINKLOCAL(addr)) { 30069 ire_flags |= MATCH_IRE_ILL; 30070 ipif_arg = ill->ill_ipif; 30071 } 30072 if (lookup_zoneid != ALL_ZONES) 30073 ire_flags |= MATCH_IRE_ZONEONLY; 30074 ire = ire_ctable_lookup_v6(addr, NULL, IRE_LOCAL | IRE_LOOPBACK, 30075 ipif_arg, lookup_zoneid, NULL, ire_flags, ipst); 30076 if (ire != NULL) { 30077 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 30078 ire_refrele(ire); 30079 } 30080 return (zoneid); 30081 } 30082 30083 /* 30084 * IP obserability hook support functions. 30085 */ 30086 30087 static void 30088 ipobs_init(ip_stack_t *ipst) 30089 { 30090 ipst->ips_ipobs_enabled = B_FALSE; 30091 list_create(&ipst->ips_ipobs_cb_list, sizeof (ipobs_cb_t), 30092 offsetof(ipobs_cb_t, ipobs_cbnext)); 30093 mutex_init(&ipst->ips_ipobs_cb_lock, NULL, MUTEX_DEFAULT, NULL); 30094 ipst->ips_ipobs_cb_nwalkers = 0; 30095 cv_init(&ipst->ips_ipobs_cb_cv, NULL, CV_DRIVER, NULL); 30096 } 30097 30098 static void 30099 ipobs_fini(ip_stack_t *ipst) 30100 { 30101 ipobs_cb_t *cb; 30102 30103 mutex_enter(&ipst->ips_ipobs_cb_lock); 30104 while (ipst->ips_ipobs_cb_nwalkers != 0) 30105 cv_wait(&ipst->ips_ipobs_cb_cv, &ipst->ips_ipobs_cb_lock); 30106 30107 while ((cb = list_head(&ipst->ips_ipobs_cb_list)) != NULL) { 30108 list_remove(&ipst->ips_ipobs_cb_list, cb); 30109 kmem_free(cb, sizeof (*cb)); 30110 } 30111 list_destroy(&ipst->ips_ipobs_cb_list); 30112 mutex_exit(&ipst->ips_ipobs_cb_lock); 30113 mutex_destroy(&ipst->ips_ipobs_cb_lock); 30114 cv_destroy(&ipst->ips_ipobs_cb_cv); 30115 } 30116 30117 void 30118 ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst, 30119 const ill_t *ill, int ipver, uint32_t hlen, ip_stack_t *ipst) 30120 { 30121 mblk_t *mp2; 30122 ipobs_cb_t *ipobs_cb; 30123 ipobs_hook_data_t *ihd; 30124 uint64_t grifindex = 0; 30125 30126 ASSERT(DB_TYPE(mp) == M_DATA); 30127 30128 if (IS_UNDER_IPMP(ill)) 30129 grifindex = ipmp_ill_get_ipmp_ifindex(ill); 30130 30131 mutex_enter(&ipst->ips_ipobs_cb_lock); 30132 ipst->ips_ipobs_cb_nwalkers++; 30133 mutex_exit(&ipst->ips_ipobs_cb_lock); 30134 for (ipobs_cb = list_head(&ipst->ips_ipobs_cb_list); ipobs_cb != NULL; 30135 ipobs_cb = list_next(&ipst->ips_ipobs_cb_list, ipobs_cb)) { 30136 mp2 = allocb(sizeof (ipobs_hook_data_t), BPRI_HI); 30137 if (mp2 != NULL) { 30138 ihd = (ipobs_hook_data_t *)mp2->b_rptr; 30139 if (((ihd->ihd_mp = dupmsg(mp)) == NULL) && 30140 ((ihd->ihd_mp = copymsg(mp)) == NULL)) { 30141 freemsg(mp2); 30142 continue; 30143 } 30144 ihd->ihd_mp->b_rptr += hlen; 30145 ihd->ihd_htype = htype; 30146 ihd->ihd_ipver = ipver; 30147 ihd->ihd_zsrc = zsrc; 30148 ihd->ihd_zdst = zdst; 30149 ihd->ihd_ifindex = ill->ill_phyint->phyint_ifindex; 30150 ihd->ihd_grifindex = grifindex; 30151 ihd->ihd_stack = ipst->ips_netstack; 30152 mp2->b_wptr += sizeof (*ihd); 30153 ipobs_cb->ipobs_cbfunc(mp2); 30154 } 30155 } 30156 mutex_enter(&ipst->ips_ipobs_cb_lock); 30157 ipst->ips_ipobs_cb_nwalkers--; 30158 if (ipst->ips_ipobs_cb_nwalkers == 0) 30159 cv_broadcast(&ipst->ips_ipobs_cb_cv); 30160 mutex_exit(&ipst->ips_ipobs_cb_lock); 30161 } 30162 30163 void 30164 ipobs_register_hook(netstack_t *ns, pfv_t func) 30165 { 30166 ipobs_cb_t *cb; 30167 ip_stack_t *ipst = ns->netstack_ip; 30168 30169 cb = kmem_alloc(sizeof (*cb), KM_SLEEP); 30170 30171 mutex_enter(&ipst->ips_ipobs_cb_lock); 30172 while (ipst->ips_ipobs_cb_nwalkers != 0) 30173 cv_wait(&ipst->ips_ipobs_cb_cv, &ipst->ips_ipobs_cb_lock); 30174 ASSERT(ipst->ips_ipobs_cb_nwalkers == 0); 30175 30176 cb->ipobs_cbfunc = func; 30177 list_insert_head(&ipst->ips_ipobs_cb_list, cb); 30178 ipst->ips_ipobs_enabled = B_TRUE; 30179 mutex_exit(&ipst->ips_ipobs_cb_lock); 30180 } 30181 30182 void 30183 ipobs_unregister_hook(netstack_t *ns, pfv_t func) 30184 { 30185 ipobs_cb_t *curcb; 30186 ip_stack_t *ipst = ns->netstack_ip; 30187 30188 mutex_enter(&ipst->ips_ipobs_cb_lock); 30189 while (ipst->ips_ipobs_cb_nwalkers != 0) 30190 cv_wait(&ipst->ips_ipobs_cb_cv, &ipst->ips_ipobs_cb_lock); 30191 30192 for (curcb = list_head(&ipst->ips_ipobs_cb_list); curcb != NULL; 30193 curcb = list_next(&ipst->ips_ipobs_cb_list, curcb)) { 30194 if (func == curcb->ipobs_cbfunc) { 30195 list_remove(&ipst->ips_ipobs_cb_list, curcb); 30196 kmem_free(curcb, sizeof (*curcb)); 30197 break; 30198 } 30199 } 30200 if (list_is_empty(&ipst->ips_ipobs_cb_list)) 30201 ipst->ips_ipobs_enabled = B_FALSE; 30202 mutex_exit(&ipst->ips_ipobs_cb_lock); 30203 } 30204