1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 #include <sys/types.h> 31 #include <sys/stream.h> 32 #include <sys/dlpi.h> 33 #include <sys/stropts.h> 34 #include <sys/sysmacros.h> 35 #include <sys/strsubr.h> 36 #include <sys/strlog.h> 37 #include <sys/strsun.h> 38 #include <sys/zone.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/xti_inet.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/cmn_err.h> 45 #include <sys/debug.h> 46 #include <sys/kobj.h> 47 #include <sys/modctl.h> 48 #include <sys/atomic.h> 49 #include <sys/policy.h> 50 51 #include <sys/systm.h> 52 #include <sys/param.h> 53 #include <sys/kmem.h> 54 #include <sys/socket.h> 55 #include <sys/vtrace.h> 56 #include <sys/isa_defs.h> 57 #include <net/if.h> 58 #include <net/if_arp.h> 59 #include <net/route.h> 60 #include <sys/sockio.h> 61 #include <netinet/in.h> 62 #include <net/if_dl.h> 63 64 #include <inet/common.h> 65 #include <inet/mi.h> 66 #include <inet/mib2.h> 67 #include <inet/nd.h> 68 #include <inet/arp.h> 69 #include <inet/snmpcom.h> 70 #include <inet/kstatcom.h> 71 72 #include <netinet/igmp_var.h> 73 #include <netinet/ip6.h> 74 #include <netinet/icmp6.h> 75 #include <netinet/sctp.h> 76 77 #include <inet/ip.h> 78 #include <inet/ip6.h> 79 #include <inet/ip6_asp.h> 80 #include <inet/tcp.h> 81 #include <inet/ip_multi.h> 82 #include <inet/ip_if.h> 83 #include <inet/ip_ire.h> 84 #include <inet/ip_rts.h> 85 #include <inet/optcom.h> 86 #include <inet/ip_ndp.h> 87 #include <inet/ip_listutils.h> 88 #include <netinet/igmp.h> 89 #include <netinet/ip_mroute.h> 90 #include <inet/ipp_common.h> 91 92 #include <net/pfkeyv2.h> 93 #include <inet/ipsec_info.h> 94 #include <inet/sadb.h> 95 #include <inet/ipsec_impl.h> 96 #include <sys/iphada.h> 97 #include <inet/tun.h> 98 #include <inet/ipdrop.h> 99 100 #include <sys/ethernet.h> 101 #include <net/if_types.h> 102 #include <sys/cpuvar.h> 103 104 #include <ipp/ipp.h> 105 #include <ipp/ipp_impl.h> 106 #include <ipp/ipgpc/ipgpc.h> 107 108 #include <sys/multidata.h> 109 #include <sys/pattr.h> 110 111 #include <inet/ipclassifier.h> 112 #include <inet/sctp_ip.h> 113 114 /* 115 * Values for squeue switch: 116 * IP_SQUEUE_ENTER_NODRAIN: squeue_enter_nodrain 117 * IP_SQUEUE_ENTER: squeue_enter 118 * IP_SQUEUE_FILL: squeue_fill 119 */ 120 int ip_squeue_enter = 2; 121 squeue_func_t ip_input_proc; 122 /* 123 * IP statistics. 124 */ 125 #define IP_STAT(x) (ip_statistics.x.value.ui64++) 126 127 typedef struct ip_stat { 128 kstat_named_t ipsec_fanout_proto; 129 kstat_named_t ip_udp_fannorm; 130 kstat_named_t ip_udp_fanmb; 131 kstat_named_t ip_udp_fanothers; 132 kstat_named_t ip_udp_fast_path; 133 kstat_named_t ip_udp_slow_path; 134 kstat_named_t ip_udp_input_err; 135 kstat_named_t ip_tcppullup; 136 kstat_named_t ip_tcpoptions; 137 kstat_named_t ip_multipkttcp; 138 kstat_named_t ip_tcp_fast_path; 139 kstat_named_t ip_tcp_slow_path; 140 kstat_named_t ip_tcp_input_error; 141 kstat_named_t ip_db_ref; 142 kstat_named_t ip_notaligned1; 143 kstat_named_t ip_notaligned2; 144 kstat_named_t ip_multimblk3; 145 kstat_named_t ip_multimblk4; 146 kstat_named_t ip_ipoptions; 147 kstat_named_t ip_classify_fail; 148 kstat_named_t ip_opt; 149 kstat_named_t ip_udp_rput_local; 150 kstat_named_t ipsec_proto_ahesp; 151 kstat_named_t ip_conn_flputbq; 152 kstat_named_t ip_conn_walk_drain; 153 kstat_named_t ip_out_sw_cksum; 154 kstat_named_t ip_in_sw_cksum; 155 kstat_named_t ip_trash_ire_reclaim_calls; 156 kstat_named_t ip_trash_ire_reclaim_success; 157 kstat_named_t ip_ire_arp_timer_expired; 158 kstat_named_t ip_ire_redirect_timer_expired; 159 kstat_named_t ip_ire_pmtu_timer_expired; 160 kstat_named_t ip_input_multi_squeue; 161 } ip_stat_t; 162 163 static ip_stat_t ip_statistics = { 164 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 165 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 166 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 167 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 168 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 169 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 170 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 171 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 172 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 173 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 174 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 175 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 176 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 177 { "ip_db_ref", KSTAT_DATA_UINT64 }, 178 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 179 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 180 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 181 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 182 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 183 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 184 { "ip_opt", KSTAT_DATA_UINT64 }, 185 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 186 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 187 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 188 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 189 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 190 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 191 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 192 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 193 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 194 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 195 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 196 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 197 }; 198 199 static kstat_t *ip_kstat; 200 201 #define TCP6 "tcp6" 202 #define TCP "tcp" 203 #define SCTP "sctp" 204 #define SCTP6 "sctp6" 205 206 major_t TCP6_MAJ; 207 major_t TCP_MAJ; 208 major_t SCTP_MAJ; 209 major_t SCTP6_MAJ; 210 211 int ip_poll_normal_ms = 100; 212 int ip_poll_normal_ticks = 0; 213 214 /* 215 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 216 */ 217 218 struct listptr_s { 219 mblk_t *lp_head; /* pointer to the head of the list */ 220 mblk_t *lp_tail; /* pointer to the tail of the list */ 221 }; 222 223 typedef struct listptr_s listptr_t; 224 225 /* 226 * Cluster specific hooks. These should be NULL when booted as a non-cluster 227 */ 228 229 /* 230 * Hook functions to enable cluster networking 231 * On non-clustered systems these vectors must always be NULL. 232 * 233 * Hook function to Check ip specified ip address is a shared ip address 234 * in the cluster 235 * 236 */ 237 int (*cl_inet_isclusterwide)(uint8_t protocol, 238 sa_family_t addr_family, uint8_t *laddrp) = NULL; 239 240 /* 241 * Hook function to generate cluster wide ip fragment identifier 242 */ 243 uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 244 uint8_t *laddrp, uint8_t *faddrp) = NULL; 245 246 /* 247 * Synchronization notes: 248 * 249 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 250 * MT level protection given by STREAMS. IP uses a combination of its own 251 * internal serialization mechanism and standard Solaris locking techniques. 252 * The internal serialization is per phyint (no IPMP) or per IPMP group. 253 * This is used to serialize plumbing operations, IPMP operations, certain 254 * multicast operations, most set ioctls, igmp/mld timers etc. 255 * 256 * Plumbing is a long sequence of operations involving message 257 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 258 * involved in plumbing operations. A natural model is to serialize these 259 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 260 * parallel without any interference. But various set ioctls on hme0 are best 261 * serialized. However if the system uses IPMP, the operations are easier if 262 * they are serialized on a per IPMP group basis since IPMP operations 263 * happen across ill's of a group. Thus the lowest common denominator is to 264 * serialize most set ioctls, multicast join/leave operations, IPMP operations 265 * igmp/mld timer operations, and processing of DLPI control messages received 266 * from drivers on a per IPMP group basis. If the system does not employ 267 * IPMP the serialization is on a per phyint basis. This serialization is 268 * provided by the ipsq_t and primitives operating on this. Details can 269 * be found in ip_if.c above the core primitives operating on ipsq_t. 270 * 271 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 272 * Simiarly lookup of an ire by a thread also returns a refheld ire. 273 * In addition ipif's and ill's referenced by the ire are also indirectly 274 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 275 * the ipif's address or netmask change as long as an ipif is refheld 276 * directly or indirectly. For example an SIOCLIFADDR ioctl that changes the 277 * address of an ipif has to go through the ipsq_t. This ensures that only 278 * 1 such exclusive operation proceeds at any time on the ipif. It then 279 * deletes all ires associated with this ipif, and waits for all refcnts 280 * associated with this ipif to come down to zero. The address is changed 281 * only after the ipif has been quiesced. Then the ipif is brought up again. 282 * More details are described above the comment in ip_sioctl_flags. 283 * 284 * Packet processing is based mostly on IREs and are fully multi-threaded 285 * using standard Solaris MT techniques. 286 * 287 * There are explicit locks in IP to handle: 288 * - The ip_g_head list maintained by mi_open_link() and friends. 289 * 290 * - The reassembly data structures (one lock per hash bucket) 291 * 292 * - conn_lock is meant to protect conn_t fields. The fields actually 293 * protected by conn_lock are documented in the conn_t definition. 294 * 295 * - ire_lock to protect some of the fields of the ire, IRE tables 296 * (one lock per hash bucket). Refer to ip_ire.c for details. 297 * 298 * - ndp_g_lock and nce_lock for protecting NCEs. 299 * 300 * - ill_lock protects fields of the ill and ipif. Details in ip.h 301 * 302 * - ill_g_lock: This is a global reader/writer lock. Protects the following 303 * * The AVL tree based global multi list of all ills. 304 * * The linked list of all ipifs of an ill 305 * * The <ill-ipsq> mapping 306 * * The ipsq->ipsq_phyint_list threaded by phyint_ipsq_next 307 * * The illgroup list threaded by ill_group_next. 308 * * <ill-phyint> association 309 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 310 * into an ill, changing the <ill-ipsq> mapping of an ill, insertion/deletion 311 * of an ill into the illgrp list, changing the <ill-phyint> assoc of an ill 312 * will all have to hold the ill_g_lock as writer for the actual duration 313 * of the insertion/deletion/change. More details about the <ill-ipsq> mapping 314 * may be found in the IPMP section. 315 * 316 * - ill_lock: This is a per ill mutex. 317 * It protects some members of the ill and is documented below. 318 * It also protects the <ill-ipsq> mapping 319 * It also protects the illgroup list threaded by ill_group_next. 320 * It also protects the <ill-phyint> assoc. 321 * It also protects the list of ipifs hanging off the ill. 322 * 323 * - ipsq_lock: This is a per ipsq_t mutex lock. 324 * This protects all the other members of the ipsq struct except 325 * ipsq_refs and ipsq_phyint_list which are protected by ill_g_lock 326 * 327 * - illgrp_lock: This is a per ill_group mutex lock. 328 * The only thing it protects is the illgrp_ill_schednext member of ill_group 329 * which dictates which is the next ill in an ill_group that is to be chosen 330 * for sending outgoing packets, through creation of an IRE_CACHE that 331 * references this ill. 332 * 333 * - phyint_lock: This is a per phyint mutex lock. Protects just the 334 * phyint_flags 335 * 336 * - ip_g_nd_lock: This is a global reader/writer lock. 337 * Any call to nd_load to load a new parameter to the ND table must hold the 338 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 339 * as reader. 340 * 341 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 342 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 343 * uniqueness check also done atomically. 344 * 345 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 346 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 347 * as a writer when adding or deleting elements from these lists, and 348 * as a reader when walking these lists to send a SADB update to the 349 * IPsec capable ills. 350 * 351 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 352 * group list linked by ill_usesrc_grp_next. It also protects the 353 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 354 * group is being added or deleted. This lock is taken as a reader when 355 * walking the list/group(eg: to get the number of members in a usesrc group). 356 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 357 * field is changing state i.e from NULL to non-NULL or vice-versa. For 358 * example, it is not necessary to take this lock in the initial portion 359 * of ip_sioctl_slifusesrc or at all in ip_sioctl_groupname and 360 * ip_sioctl_flags since the these operations are executed exclusively and 361 * that ensures that the "usesrc group state" cannot change. The "usesrc 362 * group state" change can happen only in the latter part of 363 * ip_sioctl_slifusesrc and in ill_delete. 364 * 365 * Changing <ill-phyint>, <ill-ipsq>, <ill-illgroup> assocications. 366 * 367 * To change the <ill-phyint> association, the ill_g_lock must be held 368 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 369 * must be held. 370 * 371 * To change the <ill-ipsq> association the ill_g_lock must be held as writer 372 * and the ill_lock of the ill in question must be held. 373 * 374 * To change the <ill-illgroup> association the ill_g_lock must be held as 375 * writer and the ill_lock of the ill in question must be held. 376 * 377 * To add or delete an ipif from the list of ipifs hanging off the ill, 378 * ill_g_lock (writer) and ill_lock must be held and the thread must be 379 * a writer on the associated ipsq,. 380 * 381 * To add or delete an ill to the system, the ill_g_lock must be held as 382 * writer and the thread must be a writer on the associated ipsq. 383 * 384 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 385 * must be a writer on the associated ipsq. 386 * 387 * Lock hierarchy 388 * 389 * Some lock hierarchy scenarios are listed below. 390 * 391 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 392 * ill_g_lock -> illgrp_lock -> ill_lock 393 * ill_g_lock -> ill_lock(s) -> phyint_lock 394 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 395 * ill_g_lock -> ip_addr_avail_lock 396 * conn_lock -> irb_lock -> ill_lock -> ire_lock 397 * ipsa_lock -> ill_g_lock -> ill_lock 398 * ill_g_lock -> ip_g_nd_lock 399 * irb_lock -> ill_lock -> ire_mrtun_lock 400 * irb_lock -> ill_lock -> ire_srcif_table_lock 401 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 402 * ipsec_capab_ills_lock -> ipsa_lock 403 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 404 * 405 * When more than 1 ill lock is needed to be held, all ill lock addresses 406 * are sorted on address and locked starting from highest addressed lock 407 * downward. 408 * 409 * IPSEC notes : 410 * 411 * IP interacts with the IPSEC code (AH/ESP) by tagging a M_CTL message 412 * in front of the actual packet. For outbound datagrams, the M_CTL 413 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 414 * information used by the IPSEC code for applying the right level of 415 * protection. The information initialized by IP in the ipsec_out_t 416 * is determined by the per-socket policy or global policy in the system. 417 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 418 * ipsec_info.h) which starts out with nothing in it. It gets filled 419 * with the right information if it goes through the AH/ESP code, which 420 * happens if the incoming packet is secure. The information initialized 421 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 422 * the policy requirements needed by per-socket policy or global policy 423 * is met or not. 424 * 425 * If there is both per-socket policy (set using setsockopt) and there 426 * is also global policy match for the 5 tuples of the socket, 427 * ipsec_override_policy() makes the decision of which one to use. 428 * 429 * For fully connected sockets i.e dst, src [addr, port] is known, 430 * conn_policy_cached is set indicating that policy has been cached. 431 * conn_in_enforce_policy may or may not be set depending on whether 432 * there is a global policy match or per-socket policy match. 433 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 434 * Once the right policy is set on the conn_t, policy cannot change for 435 * this socket. This makes life simpler for TCP (UDP ?) where 436 * re-transmissions go out with the same policy. For symmetry, policy 437 * is cached for fully connected UDP sockets also. Thus if policy is cached, 438 * it also implies that policy is latched i.e policy cannot change 439 * on these sockets. As we have the right policy on the conn, we don't 440 * have to lookup global policy for every outbound and inbound datagram 441 * and thus serving as an optimization. Note that a global policy change 442 * does not affect fully connected sockets if they have policy. If fully 443 * connected sockets did not have any policy associated with it, global 444 * policy change may affect them. 445 * 446 * IP Flow control notes: 447 * 448 * Non-TCP streams are flow controlled by IP. On the send side, if the packet 449 * cannot be sent down to the driver by IP, because of a canput failure, IP 450 * does a putq on the conn_wq. This will cause ip_wsrv to run on the conn_wq. 451 * ip_wsrv in turn, inserts the conn in a list of conn's that need to be drained 452 * when the flowcontrol condition subsides. Ultimately STREAMS backenables the 453 * ip_wsrv on the IP module, which in turn does a qenable of the conn_wq of the 454 * first conn in the list of conn's to be drained. ip_wsrv on this conn drains 455 * the queued messages, and removes the conn from the drain list, if all 456 * messages were drained. It also qenables the next conn in the drain list to 457 * continue the drain process. 458 * 459 * In reality the drain list is not a single list, but a configurable number 460 * of lists. The ip_wsrv on the IP module, qenables the first conn in each 461 * list. If the ip_wsrv of the next qenabled conn does not run, because the 462 * stream closes, ip_close takes responsibility to qenable the next conn in 463 * the drain list. The directly called ip_wput path always does a putq, if 464 * it cannot putnext. Thus synchronization problems are handled between 465 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 466 * functions that manipulate this drain list. Furthermore conn_drain_insert 467 * is called only from ip_wsrv, and there can be only 1 instance of ip_wsrv 468 * running on a queue at any time. conn_drain_tail can be simultaneously called 469 * from both ip_wsrv and ip_close. 470 * 471 * IPQOS notes: 472 * 473 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 474 * and IPQoS modules. IPPF includes hooks in IP at different control points 475 * (callout positions) which direct packets to IPQoS modules for policy 476 * processing. Policies, if present, are global. 477 * 478 * The callout positions are located in the following paths: 479 * o local_in (packets destined for this host) 480 * o local_out (packets orginating from this host ) 481 * o fwd_in (packets forwarded by this m/c - inbound) 482 * o fwd_out (packets forwarded by this m/c - outbound) 483 * Hooks at these callout points can be enabled/disabled using the ndd variable 484 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 485 * By default all the callout positions are enabled. 486 * 487 * Outbound (local_out) 488 * Hooks are placed in ip_wput_ire and ipsec_out_process. 489 * 490 * Inbound (local_in) 491 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 492 * TCP and UDP fanout routines. 493 * 494 * Forwarding (in and out) 495 * Hooks are placed in ip_rput_forward and ip_mrtun_forward. 496 * 497 * IP Policy Framework processing (IPPF processing) 498 * Policy processing for a packet is initiated by ip_process, which ascertains 499 * that the classifier (ipgpc) is loaded and configured, failing which the 500 * packet resumes normal processing in IP. If the clasifier is present, the 501 * packet is acted upon by one or more IPQoS modules (action instances), per 502 * filters configured in ipgpc and resumes normal IP processing thereafter. 503 * An action instance can drop a packet in course of its processing. 504 * 505 * A boolean variable, ip_policy, is used in all the fanout routines that can 506 * invoke ip_process for a packet. This variable indicates if the packet should 507 * to be sent for policy processing. The variable is set to B_TRUE by default, 508 * i.e. when the routines are invoked in the normal ip procesing path for a 509 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 510 * ip_policy is set to B_FALSE for all the routines called in these two 511 * functions because, in the former case, we don't process loopback traffic 512 * currently while in the latter, the packets have already been processed in 513 * icmp_inbound. 514 * 515 * Zones notes: 516 * 517 * The partitioning rules for networking are as follows: 518 * 1) Packets coming from a zone must have a source address belonging to that 519 * zone. 520 * 2) Packets coming from a zone can only be sent on a physical interface on 521 * which the zone has an IP address. 522 * 3) Between two zones on the same machine, packet delivery is only allowed if 523 * there's a matching route for the destination and zone in the forwarding 524 * table. 525 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 526 * different zones can bind to the same port with the wildcard address 527 * (INADDR_ANY). 528 * 529 * The granularity of interface partitioning is at the logical interface level. 530 * Therefore, every zone has its own IP addresses, and incoming packets can be 531 * attributed to a zone unambiguously. A logical interface is placed into a zone 532 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 533 * structure. Rule (1) is implemented by modifying the source address selection 534 * algorithm so that the list of eligible addresses is filtered based on the 535 * sending process zone. 536 * 537 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 538 * across all zones, depending on their type. Here is the break-up: 539 * 540 * IRE type Shared/exclusive 541 * -------- ---------------- 542 * IRE_BROADCAST Exclusive 543 * IRE_DEFAULT (default routes) Shared (*) 544 * IRE_LOCAL Exclusive 545 * IRE_LOOPBACK Exclusive 546 * IRE_PREFIX (net routes) Shared (*) 547 * IRE_CACHE Exclusive 548 * IRE_IF_NORESOLVER (interface routes) Exclusive 549 * IRE_IF_RESOLVER (interface routes) Exclusive 550 * IRE_HOST (host routes) Shared (*) 551 * 552 * (*) A zone can only use a default or off-subnet route if the gateway is 553 * directly reachable from the zone, that is, if the gateway's address matches 554 * one of the zone's logical interfaces. 555 * 556 * Multiple zones can share a common broadcast address; typically all zones 557 * share the 255.255.255.255 address. Incoming as well as locally originated 558 * broadcast packets must be dispatched to all the zones on the broadcast 559 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 560 * since some zones may not be on the 10.16.72/24 network. To handle this, each 561 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 562 * sent to every zone that has an IRE_BROADCAST entry for the destination 563 * address on the input ill, see conn_wantpacket(). 564 * 565 * Applications in different zones can join the same multicast group address. 566 * For IPv4, group memberships are per-logical interface, so they're already 567 * inherently part of a zone. For IPv6, group memberships are per-physical 568 * interface, so we distinguish IPv6 group memberships based on group address, 569 * interface and zoneid. In both cases, received multicast packets are sent to 570 * every zone for which a group membership entry exists. On IPv6 we need to 571 * check that the target zone still has an address on the receiving physical 572 * interface; it could have been removed since the application issued the 573 * IPV6_JOIN_GROUP. 574 */ 575 576 /* 577 * Squeue Fanout flags: 578 * 0: No fanout. 579 * 1: Fanout across all squeues 580 */ 581 boolean_t ip_squeue_fanout = 0; 582 583 /* 584 * Maximum dups allowed per packet. 585 */ 586 uint_t ip_max_frag_dups = 10; 587 588 #define IS_SIMPLE_IPH(ipha) \ 589 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 590 591 /* RFC1122 Conformance */ 592 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 593 594 #ifdef _BIG_ENDIAN 595 #define IP_HDR_CSUM_TTL_ADJUST 256 596 #define IP_TCP_CSUM_COMP IPPROTO_TCP 597 #define IP_UDP_CSUM_COMP IPPROTO_UDP 598 #else 599 #define IP_HDR_CSUM_TTL_ADJUST 1 600 #define IP_TCP_CSUM_COMP (IPPROTO_TCP << 8) 601 #define IP_UDP_CSUM_COMP (IPPROTO_UDP << 8) 602 #endif 603 604 #define TCP_CHECKSUM_OFFSET 16 605 #define UDP_CHECKSUM_OFFSET 6 606 607 #define ILL_MAX_NAMELEN LIFNAMSIZ 608 609 #define UDPH_SIZE 8 610 611 /* Leave room for ip_newroute to tack on the src and target addresses */ 612 #define OK_RESOLVER_MP(mp) \ 613 ((mp) && ((mp)->b_wptr - (mp)->b_rptr) >= (2 * IP_ADDR_LEN)) 614 615 static ipif_t *conn_get_held_ipif(conn_t *, ipif_t **, int *); 616 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 617 618 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t); 619 static void ip_ipsec_out_prepend(mblk_t *, mblk_t *, ill_t *); 620 621 static void icmp_frag_needed(queue_t *, mblk_t *, int); 622 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 623 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 624 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *); 625 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 626 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 627 ill_t *, zoneid_t); 628 static void icmp_options_update(ipha_t *); 629 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t); 630 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t); 631 static mblk_t *icmp_pkt_err_ok(mblk_t *); 632 static void icmp_redirect(mblk_t *); 633 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t); 634 635 static void ip_arp_news(queue_t *, mblk_t *); 636 static boolean_t ip_bind_insert_ire(mblk_t *, ire_t *, iulp_t *); 637 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 638 char *ip_dot_addr(ipaddr_t, char *); 639 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 640 int ip_close(queue_t *, int); 641 static char *ip_dot_saddr(uchar_t *, char *); 642 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 643 boolean_t, boolean_t, ill_t *, zoneid_t); 644 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 645 boolean_t, boolean_t, zoneid_t); 646 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 647 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 648 static void ip_lrput(queue_t *, mblk_t *); 649 ipaddr_t ip_massage_options(ipha_t *); 650 static void ip_mrtun_forward(ire_t *, ill_t *, mblk_t *); 651 ipaddr_t ip_net_mask(ipaddr_t); 652 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, ill_t *, conn_t *); 653 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 654 conn_t *, uint32_t); 655 static int ip_hdr_complete(ipha_t *, zoneid_t); 656 char *ip_nv_lookup(nv_t *, int); 657 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 658 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 659 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 660 static boolean_t ip_param_register(ipparam_t *, size_t, ipndp_t *, 661 size_t); 662 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 663 void ip_rput(queue_t *, mblk_t *); 664 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 665 void *dummy_arg); 666 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 667 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *); 668 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 669 ire_t *); 670 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *); 671 int ip_snmp_get(queue_t *, mblk_t *); 672 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *); 673 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *); 674 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *); 675 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *); 676 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *); 677 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *); 678 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *); 679 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *); 680 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *); 681 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *); 682 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *); 683 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *); 684 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *); 685 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *); 686 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *); 687 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *); 688 static void ip_snmp_get2_v4(ire_t *, listptr_t []); 689 static void ip_snmp_get2_v6_route(ire_t *, listptr_t *); 690 static int ip_snmp_get2_v6_media(nce_t *, listptr_t *); 691 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 692 static boolean_t ip_source_routed(ipha_t *); 693 static boolean_t ip_source_route_included(ipha_t *); 694 695 static void ip_unbind(queue_t *, mblk_t *); 696 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t); 697 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int); 698 static void ip_wput_local_options(ipha_t *); 699 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 700 zoneid_t); 701 702 static void conn_drain_init(void); 703 static void conn_drain_fini(void); 704 static void conn_drain_tail(conn_t *connp, boolean_t closing); 705 706 static void conn_walk_drain(void); 707 static void conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *, 708 zoneid_t); 709 710 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 711 zoneid_t); 712 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 713 void *dummy_arg); 714 715 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 716 717 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 718 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 719 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 720 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 721 722 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 723 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 724 caddr_t, cred_t *); 725 extern int ip_squeue_bind_set(queue_t *q, mblk_t *mp, char *value, 726 caddr_t cp, cred_t *cr); 727 extern int ip_squeue_profile_set(queue_t *, mblk_t *, char *, caddr_t, 728 cred_t *); 729 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 730 caddr_t cp, cred_t *cr); 731 static int ip_fanout_set(queue_t *, mblk_t *, char *, caddr_t, 732 cred_t *); 733 static squeue_func_t ip_squeue_switch(int); 734 735 static void ip_kstat_init(void); 736 static void ip_kstat_fini(void); 737 static int ip_kstat_update(kstat_t *kp, int rw); 738 static void icmp_kstat_init(void); 739 static void icmp_kstat_fini(void); 740 static int icmp_kstat_update(kstat_t *kp, int rw); 741 742 static int ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *); 743 744 static boolean_t ip_no_forward(ipha_t *, ill_t *); 745 static boolean_t ip_loopback_src_or_dst(ipha_t *, ill_t *); 746 747 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 748 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 749 750 void ip_input(ill_t *, ill_rx_ring_t *, mblk_t *, size_t); 751 752 timeout_id_t ip_ire_expire_id; /* IRE expiration timer. */ 753 static clock_t ip_ire_arp_time_elapsed; /* Time since IRE cache last flushed */ 754 static clock_t ip_ire_rd_time_elapsed; /* ... redirect IREs last flushed */ 755 static clock_t ip_ire_pmtu_time_elapsed; /* Time since path mtu increase */ 756 757 uint_t ip_ire_default_count; /* Number of IPv4 IRE_DEFAULT entries. */ 758 uint_t ip_ire_default_index; /* Walking index used to mod in */ 759 760 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 761 clock_t icmp_pkt_err_last = 0; /* Time since last icmp_pkt_err */ 762 uint_t icmp_pkt_err_sent = 0; /* Number of packets sent in burst */ 763 764 /* How long, in seconds, we allow frags to hang around. */ 765 #define IP_FRAG_TIMEOUT 60 766 767 time_t ip_g_frag_timeout = IP_FRAG_TIMEOUT; 768 clock_t ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 769 770 /* Protected by ip_mi_lock */ 771 static void *ip_g_head; /* Instance Data List Head */ 772 kmutex_t ip_mi_lock; /* Lock for list of instances */ 773 774 /* Only modified during _init and _fini thus no locking is needed. */ 775 caddr_t ip_g_nd; /* Named Dispatch List Head */ 776 777 778 static long ip_rput_pullups; 779 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 780 781 vmem_t *ip_minor_arena; 782 783 /* 784 * MIB-2 stuff for SNMP (both IP and ICMP) 785 */ 786 mib2_ip_t ip_mib; 787 mib2_icmp_t icmp_mib; 788 789 #ifdef DEBUG 790 uint32_t ipsechw_debug = 0; 791 #endif 792 793 kstat_t *ip_mibkp; /* kstat exporting ip_mib data */ 794 kstat_t *icmp_mibkp; /* kstat exporting icmp_mib data */ 795 796 uint_t loopback_packets = 0; 797 798 /* 799 * Multirouting/CGTP stuff 800 */ 801 cgtp_filter_ops_t *ip_cgtp_filter_ops; /* CGTP hooks */ 802 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 803 boolean_t ip_cgtp_filter; /* Enable/disable CGTP hooks */ 804 /* Interval (in ms) between consecutive 'bad MTU' warnings */ 805 hrtime_t ip_multirt_log_interval = 1000; 806 /* Time since last warning issued. */ 807 static hrtime_t multirt_bad_mtu_last_time = 0; 808 809 kmutex_t ip_trash_timer_lock; 810 krwlock_t ip_g_nd_lock; 811 812 /* 813 * XXX following really should only be in a header. Would need more 814 * header and .c clean up first. 815 */ 816 extern optdb_obj_t ip_opt_obj; 817 818 ulong_t ip_squeue_enter_unbound = 0; 819 820 /* 821 * Named Dispatch Parameter Table. 822 * All of these are alterable, within the min/max values given, at run time. 823 */ 824 static ipparam_t lcl_param_arr[] = { 825 /* min max value name */ 826 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 827 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 828 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 829 { 0, 1, 0, "ip_respond_to_timestamp"}, 830 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 831 { 0, 1, 1, "ip_send_redirects"}, 832 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 833 { 0, 10, 0, "ip_debug"}, 834 { 0, 10, 0, "ip_mrtdebug"}, 835 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 836 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 837 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 838 { 1, 255, 255, "ip_def_ttl" }, 839 { 0, 1, 0, "ip_forward_src_routed"}, 840 { 0, 256, 32, "ip_wroff_extra" }, 841 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 842 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 843 { 0, 1, 1, "ip_path_mtu_discovery" }, 844 { 0, 240, 30, "ip_ignore_delete_time" }, 845 { 0, 1, 0, "ip_ignore_redirect" }, 846 { 0, 1, 1, "ip_output_queue" }, 847 { 1, 254, 1, "ip_broadcast_ttl" }, 848 { 0, 99999, 100, "ip_icmp_err_interval" }, 849 { 1, 99999, 10, "ip_icmp_err_burst" }, 850 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 851 { 0, 1, 0, "ip_strict_dst_multihoming" }, 852 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 853 { 0, 1, 0, "ipsec_override_persocket_policy" }, 854 { 0, 1, 1, "icmp_accept_clear_messages" }, 855 { 0, 1, 1, "igmp_accept_clear_messages" }, 856 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 857 "ip_ndp_delay_first_probe_time"}, 858 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 859 "ip_ndp_max_unicast_solicit"}, 860 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 861 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 862 { 0, 1, 0, "ip6_forward_src_routed"}, 863 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 864 { 0, 1, 1, "ip6_send_redirects"}, 865 { 0, 1, 0, "ip6_ignore_redirect" }, 866 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 867 868 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 869 870 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 871 872 { 0, 1, 1, "pim_accept_clear_messages" }, 873 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 874 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 875 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 876 { 0, 15, 0, "ip_policy_mask" }, 877 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 878 { 0, 255, 1, "ip_multirt_ttl" }, 879 { 0, 1, 1, "ip_multidata_outbound" }, 880 #ifdef DEBUG 881 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 882 #endif 883 }; 884 885 ipparam_t *ip_param_arr = lcl_param_arr; 886 887 /* Extended NDP table */ 888 static ipndp_t lcl_ndp_arr[] = { 889 /* getf setf data name */ 890 { ip_param_generic_get, ip_forward_set, (caddr_t)&ip_g_forward, 891 "ip_forwarding" }, 892 { ip_param_generic_get, ip_forward_set, (caddr_t)&ipv6_forward, 893 "ip6_forwarding" }, 894 { ip_ill_report, NULL, NULL, 895 "ip_ill_status" }, 896 { ip_ipif_report, NULL, NULL, 897 "ip_ipif_status" }, 898 { ip_ire_report, NULL, NULL, 899 "ipv4_ire_status" }, 900 { ip_ire_report_mrtun, NULL, NULL, 901 "ipv4_mrtun_ire_status" }, 902 { ip_ire_report_srcif, NULL, NULL, 903 "ipv4_srcif_ire_status" }, 904 { ip_ire_report_v6, NULL, NULL, 905 "ipv6_ire_status" }, 906 { ip_conn_report, NULL, NULL, 907 "ip_conn_status" }, 908 { nd_get_long, nd_set_long, (caddr_t)&ip_rput_pullups, 909 "ip_rput_pullups" }, 910 { ndp_report, NULL, NULL, 911 "ip_ndp_cache_report" }, 912 { ip_srcid_report, NULL, NULL, 913 "ip_srcid_status" }, 914 { ip_param_generic_get, ip_squeue_profile_set, 915 (caddr_t)&ip_squeue_profile, "ip_squeue_profile" }, 916 { ip_param_generic_get, ip_squeue_bind_set, 917 (caddr_t)&ip_squeue_bind, "ip_squeue_bind" }, 918 { ip_param_generic_get, ip_input_proc_set, 919 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 920 { ip_param_generic_get, ip_fanout_set, 921 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 922 { ip_cgtp_filter_get, ip_cgtp_filter_set, (caddr_t)&ip_cgtp_filter, 923 "ip_cgtp_filter" } 924 }; 925 926 /* 927 * ip_g_forward controls IP forwarding. It takes two values: 928 * 0: IP_FORWARD_NEVER Don't forward packets ever. 929 * 1: IP_FORWARD_ALWAYS Forward packets for elsewhere. 930 * 931 * RFC1122 says there must be a configuration switch to control forwarding, 932 * but that the default MUST be to not forward packets ever. Implicit 933 * control based on configuration of multiple interfaces MUST NOT be 934 * implemented (Section 3.1). SunOS 4.1 did provide the "automatic" capability 935 * and, in fact, it was the default. That capability is now provided in the 936 * /etc/rc2.d/S69inet script. 937 */ 938 int ip_g_forward = IP_FORWARD_DEFAULT; 939 940 /* It also has an IPv6 counterpart. */ 941 942 int ipv6_forward = IP_FORWARD_DEFAULT; 943 944 /* Following line is external, and in ip.h. Normally marked with * *. */ 945 #define ip_respond_to_address_mask_broadcast ip_param_arr[0].ip_param_value 946 #define ip_g_resp_to_echo_bcast ip_param_arr[1].ip_param_value 947 #define ip_g_resp_to_echo_mcast ip_param_arr[2].ip_param_value 948 #define ip_g_resp_to_timestamp ip_param_arr[3].ip_param_value 949 #define ip_g_resp_to_timestamp_bcast ip_param_arr[4].ip_param_value 950 #define ip_g_send_redirects ip_param_arr[5].ip_param_value 951 #define ip_g_forward_directed_bcast ip_param_arr[6].ip_param_value 952 #define ip_debug ip_param_arr[7].ip_param_value /* */ 953 #define ip_mrtdebug ip_param_arr[8].ip_param_value /* */ 954 #define ip_timer_interval ip_param_arr[9].ip_param_value /* */ 955 #define ip_ire_arp_interval ip_param_arr[10].ip_param_value /* */ 956 #define ip_ire_redir_interval ip_param_arr[11].ip_param_value 957 #define ip_def_ttl ip_param_arr[12].ip_param_value 958 #define ip_forward_src_routed ip_param_arr[13].ip_param_value 959 #define ip_wroff_extra ip_param_arr[14].ip_param_value 960 #define ip_ire_pathmtu_interval ip_param_arr[15].ip_param_value 961 #define ip_icmp_return ip_param_arr[16].ip_param_value 962 #define ip_path_mtu_discovery ip_param_arr[17].ip_param_value /* */ 963 #define ip_ignore_delete_time ip_param_arr[18].ip_param_value /* */ 964 #define ip_ignore_redirect ip_param_arr[19].ip_param_value 965 #define ip_output_queue ip_param_arr[20].ip_param_value 966 #define ip_broadcast_ttl ip_param_arr[21].ip_param_value 967 #define ip_icmp_err_interval ip_param_arr[22].ip_param_value 968 #define ip_icmp_err_burst ip_param_arr[23].ip_param_value 969 #define ip_reass_queue_bytes ip_param_arr[24].ip_param_value 970 #define ip_strict_dst_multihoming ip_param_arr[25].ip_param_value 971 #define ip_addrs_per_if ip_param_arr[26].ip_param_value 972 #define ipsec_override_persocket_policy ip_param_arr[27].ip_param_value /* */ 973 #define icmp_accept_clear_messages ip_param_arr[28].ip_param_value 974 #define igmp_accept_clear_messages ip_param_arr[29].ip_param_value 975 976 /* IPv6 configuration knobs */ 977 #define delay_first_probe_time ip_param_arr[30].ip_param_value 978 #define max_unicast_solicit ip_param_arr[31].ip_param_value 979 #define ipv6_def_hops ip_param_arr[32].ip_param_value 980 #define ipv6_icmp_return ip_param_arr[33].ip_param_value 981 #define ipv6_forward_src_routed ip_param_arr[34].ip_param_value 982 #define ipv6_resp_echo_mcast ip_param_arr[35].ip_param_value 983 #define ipv6_send_redirects ip_param_arr[36].ip_param_value 984 #define ipv6_ignore_redirect ip_param_arr[37].ip_param_value 985 #define ipv6_strict_dst_multihoming ip_param_arr[38].ip_param_value 986 #define ip_ire_reclaim_fraction ip_param_arr[39].ip_param_value 987 #define ipsec_policy_log_interval ip_param_arr[40].ip_param_value 988 #define pim_accept_clear_messages ip_param_arr[41].ip_param_value 989 #define ip_ndp_unsolicit_interval ip_param_arr[42].ip_param_value 990 #define ip_ndp_unsolicit_count ip_param_arr[43].ip_param_value 991 #define ipv6_ignore_home_address_opt ip_param_arr[44].ip_param_value 992 #define ip_policy_mask ip_param_arr[45].ip_param_value 993 #define ip_multirt_resolution_interval ip_param_arr[46].ip_param_value 994 #define ip_multirt_ttl ip_param_arr[47].ip_param_value 995 #define ip_multidata_outbound ip_param_arr[48].ip_param_value 996 #ifdef DEBUG 997 #define ipv6_drop_inbound_icmpv6 ip_param_arr[49].ip_param_value 998 #else 999 #define ipv6_drop_inbound_icmpv6 0 1000 #endif 1001 1002 1003 /* 1004 * Table of IP ioctls encoding the various properties of the ioctl and 1005 * indexed based on the last byte of the ioctl command. Occasionally there 1006 * is a clash, and there is more than 1 ioctl with the same last byte. 1007 * In such a case 1 ioctl is encoded in the ndx table and the remaining 1008 * ioctls are encoded in the misc table. An entry in the ndx table is 1009 * retrieved by indexing on the last byte of the ioctl command and comparing 1010 * the ioctl command with the value in the ndx table. In the event of a 1011 * mismatch the misc table is then searched sequentially for the desired 1012 * ioctl command. 1013 * 1014 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 1015 */ 1016 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 1017 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1018 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1019 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1020 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1021 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1022 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1023 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1024 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1025 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1026 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1027 1028 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 1029 MISC_CMD, ip_siocaddrt, NULL }, 1030 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 1031 MISC_CMD, ip_siocdelrt, NULL }, 1032 1033 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1034 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1035 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1036 IF_CMD, ip_sioctl_get_addr, NULL }, 1037 1038 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1039 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1040 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 1041 IPI_GET_CMD | IPI_REPL, 1042 IF_CMD, ip_sioctl_get_dstaddr, NULL }, 1043 1044 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 1045 IPI_PRIV | IPI_WR | IPI_REPL, 1046 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1047 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 1048 IPI_MODOK | IPI_GET_CMD | IPI_REPL, 1049 IF_CMD, ip_sioctl_get_flags, NULL }, 1050 1051 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1052 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1053 1054 /* copyin size cannot be coded for SIOCGIFCONF */ 1055 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 1056 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1057 1058 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1059 IF_CMD, ip_sioctl_mtu, NULL }, 1060 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1061 IF_CMD, ip_sioctl_get_mtu, NULL }, 1062 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 1063 IPI_GET_CMD | IPI_REPL, 1064 IF_CMD, ip_sioctl_get_brdaddr, NULL }, 1065 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1066 IF_CMD, ip_sioctl_brdaddr, NULL }, 1067 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 1068 IPI_GET_CMD | IPI_REPL, 1069 IF_CMD, ip_sioctl_get_netmask, NULL }, 1070 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1071 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1072 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1073 IPI_GET_CMD | IPI_REPL, 1074 IF_CMD, ip_sioctl_get_metric, NULL }, 1075 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1076 IF_CMD, ip_sioctl_metric, NULL }, 1077 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1078 1079 /* See 166-168 below for extended SIOC*XARP ioctls */ 1080 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV, 1081 MISC_CMD, ip_sioctl_arp, NULL }, 1082 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD | IPI_REPL, 1083 MISC_CMD, ip_sioctl_arp, NULL }, 1084 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV, 1085 MISC_CMD, ip_sioctl_arp, NULL }, 1086 1087 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1088 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1089 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1090 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1091 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1092 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1093 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1094 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1095 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1096 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1097 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1098 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1099 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1100 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1101 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1102 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1103 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1104 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1105 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1106 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1107 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1108 1109 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1110 MISC_CMD, if_unitsel, if_unitsel_restart }, 1111 1112 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1113 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1114 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1115 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1116 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1117 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1118 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1119 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1120 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1121 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1122 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1123 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1124 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1125 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1126 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1127 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1128 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1129 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1130 1131 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1132 IPI_PRIV | IPI_WR | IPI_MODOK, 1133 IF_CMD, ip_sioctl_sifname, NULL }, 1134 1135 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1136 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1137 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1138 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1139 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1140 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1141 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1142 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1143 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1144 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1145 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1146 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1147 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1148 1149 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD | IPI_REPL, 1150 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1151 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1152 IF_CMD, ip_sioctl_get_muxid, NULL }, 1153 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1154 IPI_PRIV | IPI_WR | IPI_REPL, 1155 IF_CMD, ip_sioctl_muxid, NULL }, 1156 1157 /* Both if and lif variants share same func */ 1158 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1159 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1160 /* Both if and lif variants share same func */ 1161 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1162 IPI_PRIV | IPI_WR | IPI_REPL, 1163 IF_CMD, ip_sioctl_slifindex, NULL }, 1164 1165 /* copyin size cannot be coded for SIOCGIFCONF */ 1166 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 1167 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1168 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1169 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1170 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1171 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1172 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1173 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1174 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1175 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1176 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1177 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1178 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1179 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1180 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1181 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1182 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1183 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1184 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1185 1186 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1187 IPI_PRIV | IPI_WR | IPI_REPL, 1188 LIF_CMD, ip_sioctl_removeif, 1189 ip_sioctl_removeif_restart }, 1190 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1191 IPI_GET_CMD | IPI_PRIV | IPI_WR | IPI_REPL, 1192 LIF_CMD, ip_sioctl_addif, NULL }, 1193 #define SIOCLIFADDR_NDX 112 1194 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1195 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1196 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1197 IPI_GET_CMD | IPI_REPL, 1198 LIF_CMD, ip_sioctl_get_addr, NULL }, 1199 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1200 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1201 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1202 IPI_GET_CMD | IPI_REPL, 1203 LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1204 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1205 IPI_PRIV | IPI_WR | IPI_REPL, 1206 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1207 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1208 IPI_GET_CMD | IPI_MODOK | IPI_REPL, 1209 LIF_CMD, ip_sioctl_get_flags, NULL }, 1210 1211 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1212 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1213 1214 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1215 ip_sioctl_get_lifconf, NULL }, 1216 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1217 LIF_CMD, ip_sioctl_mtu, NULL }, 1218 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD | IPI_REPL, 1219 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1220 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1221 IPI_GET_CMD | IPI_REPL, 1222 LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1223 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1224 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1225 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1226 IPI_GET_CMD | IPI_REPL, 1227 LIF_CMD, ip_sioctl_get_netmask, NULL }, 1228 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1229 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1230 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1231 IPI_GET_CMD | IPI_REPL, 1232 LIF_CMD, ip_sioctl_get_metric, NULL }, 1233 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1234 LIF_CMD, ip_sioctl_metric, NULL }, 1235 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1236 IPI_PRIV | IPI_WR | IPI_MODOK | IPI_REPL, 1237 LIF_CMD, ip_sioctl_slifname, 1238 ip_sioctl_slifname_restart }, 1239 1240 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD | IPI_REPL, 1241 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1242 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1243 IPI_GET_CMD | IPI_REPL, 1244 LIF_CMD, ip_sioctl_get_muxid, NULL }, 1245 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1246 IPI_PRIV | IPI_WR | IPI_REPL, 1247 LIF_CMD, ip_sioctl_muxid, NULL }, 1248 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1249 IPI_GET_CMD | IPI_REPL, 1250 LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1251 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1252 IPI_PRIV | IPI_WR | IPI_REPL, 1253 LIF_CMD, ip_sioctl_slifindex, 0 }, 1254 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1255 LIF_CMD, ip_sioctl_token, NULL }, 1256 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1257 IPI_GET_CMD | IPI_REPL, 1258 LIF_CMD, ip_sioctl_get_token, NULL }, 1259 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1260 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1261 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1262 IPI_GET_CMD | IPI_REPL, 1263 LIF_CMD, ip_sioctl_get_subnet, NULL }, 1264 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1265 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1266 1267 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1268 IPI_GET_CMD | IPI_REPL, 1269 LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1270 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1271 LIF_CMD, ip_siocdelndp_v6, NULL }, 1272 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1273 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1274 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1275 LIF_CMD, ip_siocsetndp_v6, NULL }, 1276 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1277 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1278 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1279 MISC_CMD, ip_sioctl_tonlink, NULL }, 1280 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1281 MISC_CMD, ip_sioctl_tmysite, NULL }, 1282 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), IPI_REPL, 1283 TUN_CMD, ip_sioctl_tunparam, NULL }, 1284 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1285 IPI_PRIV | IPI_WR, 1286 TUN_CMD, ip_sioctl_tunparam, NULL }, 1287 1288 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1289 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1290 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1291 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1292 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1293 1294 /* 153 */ { SIOCLIFFAILOVER, sizeof (struct lifreq), 1295 IPI_PRIV | IPI_WR | IPI_REPL, 1296 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1297 /* 154 */ { SIOCLIFFAILBACK, sizeof (struct lifreq), 1298 IPI_PRIV | IPI_WR | IPI_REPL, 1299 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1300 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1301 IPI_PRIV | IPI_WR, 1302 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1303 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1304 IPI_GET_CMD | IPI_REPL, 1305 LIF_CMD, ip_sioctl_get_groupname, NULL }, 1306 /* 157 */ { SIOCGLIFOINDEX, sizeof (struct lifreq), 1307 IPI_GET_CMD | IPI_REPL, 1308 LIF_CMD, ip_sioctl_get_oindex, NULL }, 1309 1310 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1311 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1312 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1313 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1314 1315 /* 161 */ { SIOCSLIFOINDEX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1316 LIF_CMD, ip_sioctl_slifoindex, NULL }, 1317 1318 /* These are handled in ip_sioctl_copyin_setup itself */ 1319 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1320 MISC_CMD, NULL, NULL }, 1321 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1322 MISC_CMD, NULL, NULL }, 1323 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1324 1325 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1326 ip_sioctl_get_lifconf, NULL }, 1327 1328 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV, 1329 MISC_CMD, ip_sioctl_xarp, NULL }, 1330 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD | IPI_REPL, 1331 MISC_CMD, ip_sioctl_xarp, NULL }, 1332 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV, 1333 MISC_CMD, ip_sioctl_xarp, NULL }, 1334 1335 /* SIOCPOPSOCKFS is not handled by IP */ 1336 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1337 1338 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1339 IPI_GET_CMD | IPI_REPL, 1340 LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1341 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1342 IPI_PRIV | IPI_WR | IPI_REPL, 1343 LIF_CMD, ip_sioctl_slifzone, 1344 ip_sioctl_slifzone_restart }, 1345 /* 172-174 are SCTP ioctls and not handled by IP */ 1346 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1347 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1348 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1349 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1350 IPI_GET_CMD, LIF_CMD, 1351 ip_sioctl_get_lifusesrc, 0 }, 1352 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1353 IPI_PRIV | IPI_WR, 1354 LIF_CMD, ip_sioctl_slifusesrc, 1355 NULL }, 1356 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1357 ip_sioctl_get_lifsrcof, NULL }, 1358 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1359 MISC_CMD, ip_sioctl_msfilter, NULL }, 1360 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1361 MISC_CMD, ip_sioctl_msfilter, NULL }, 1362 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1363 MISC_CMD, ip_sioctl_msfilter, NULL }, 1364 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1365 MISC_CMD, ip_sioctl_msfilter, NULL }, 1366 /* 182 */ { SIOCSIPMPFAILBACK, sizeof (int), IPI_PRIV, MISC_CMD, 1367 ip_sioctl_set_ipmpfailback, NULL } 1368 }; 1369 1370 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1371 1372 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1373 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1374 IPI_GET_CMD | IPI_REPL, TUN_CMD, ip_sioctl_tunparam, NULL }, 1375 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1376 TUN_CMD, ip_sioctl_tunparam, NULL }, 1377 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1378 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1379 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1380 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1381 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1382 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1383 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1384 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_REPL | IPI_GET_CMD, 1385 MISC_CMD, mrt_ioctl}, 1386 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_REPL | IPI_GET_CMD, 1387 MISC_CMD, mrt_ioctl}, 1388 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_REPL | IPI_GET_CMD, 1389 MISC_CMD, mrt_ioctl} 1390 }; 1391 1392 int ip_misc_ioctl_count = 1393 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1394 1395 static idl_t *conn_drain_list; /* The array of conn drain lists */ 1396 static uint_t conn_drain_list_cnt; /* Total count of conn_drain_list */ 1397 static int conn_drain_list_index; /* Next drain_list to be used */ 1398 int conn_drain_nthreads; /* Number of drainers reqd. */ 1399 /* Settable in /etc/system */ 1400 1401 /* Defined in ip_ire.c */ 1402 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1403 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1404 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1405 1406 static nv_t ire_nv_arr[] = { 1407 { IRE_BROADCAST, "BROADCAST" }, 1408 { IRE_LOCAL, "LOCAL" }, 1409 { IRE_LOOPBACK, "LOOPBACK" }, 1410 { IRE_CACHE, "CACHE" }, 1411 { IRE_DEFAULT, "DEFAULT" }, 1412 { IRE_PREFIX, "PREFIX" }, 1413 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1414 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1415 { IRE_HOST, "HOST" }, 1416 { IRE_HOST_REDIRECT, "HOST_REDIRECT" }, 1417 { 0 } 1418 }; 1419 1420 nv_t *ire_nv_tbl = ire_nv_arr; 1421 1422 /* Defined in ip_if.c, protect the list of IPsec capable ills */ 1423 extern krwlock_t ipsec_capab_ills_lock; 1424 1425 /* Packet dropper for IP IPsec processing failures */ 1426 ipdropper_t ip_dropper; 1427 1428 /* Simple ICMP IP Header Template */ 1429 static ipha_t icmp_ipha = { 1430 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1431 }; 1432 1433 struct module_info ip_mod_info = { 1434 5701, "ip", 1, INFPSZ, 65536, 1024 1435 }; 1436 1437 static struct qinit rinit = { 1438 (pfi_t)ip_rput, NULL, ip_open, ip_close, NULL, 1439 &ip_mod_info 1440 }; 1441 1442 static struct qinit winit = { 1443 (pfi_t)ip_wput, (pfi_t)ip_wsrv, ip_open, ip_close, NULL, 1444 &ip_mod_info 1445 }; 1446 1447 static struct qinit lrinit = { 1448 (pfi_t)ip_lrput, NULL, ip_open, ip_close, NULL, 1449 &ip_mod_info 1450 }; 1451 1452 static struct qinit lwinit = { 1453 (pfi_t)ip_lwput, NULL, ip_open, ip_close, NULL, 1454 &ip_mod_info 1455 }; 1456 1457 struct streamtab ipinfo = { 1458 &rinit, &winit, &lrinit, &lwinit 1459 }; 1460 1461 #ifdef DEBUG 1462 static boolean_t skip_sctp_cksum = B_FALSE; 1463 #endif 1464 /* 1465 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1466 */ 1467 mblk_t * 1468 ip_copymsg(mblk_t *mp) 1469 { 1470 mblk_t *nmp; 1471 ipsec_info_t *in; 1472 1473 if (mp->b_datap->db_type != M_CTL) 1474 return (copymsg(mp)); 1475 1476 in = (ipsec_info_t *)mp->b_rptr; 1477 1478 /* 1479 * Note that M_CTL is also used for delivering ICMP error messages 1480 * upstream to transport layers. 1481 */ 1482 if (in->ipsec_info_type != IPSEC_OUT && 1483 in->ipsec_info_type != IPSEC_IN) 1484 return (copymsg(mp)); 1485 1486 nmp = copymsg(mp->b_cont); 1487 1488 if (in->ipsec_info_type == IPSEC_OUT) 1489 return (ipsec_out_tag(mp, nmp)); 1490 else 1491 return (ipsec_in_tag(mp, nmp)); 1492 } 1493 1494 /* Generate an ICMP fragmentation needed message. */ 1495 static void 1496 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu) 1497 { 1498 icmph_t icmph; 1499 mblk_t *first_mp; 1500 boolean_t mctl_present; 1501 1502 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1503 1504 if (!(mp = icmp_pkt_err_ok(mp))) { 1505 if (mctl_present) 1506 freeb(first_mp); 1507 return; 1508 } 1509 1510 bzero(&icmph, sizeof (icmph_t)); 1511 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1512 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1513 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1514 BUMP_MIB(&icmp_mib, icmpOutFragNeeded); 1515 BUMP_MIB(&icmp_mib, icmpOutDestUnreachs); 1516 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present); 1517 } 1518 1519 /* 1520 * icmp_inbound deals with ICMP messages in the following ways. 1521 * 1522 * 1) It needs to send a reply back and possibly delivering it 1523 * to the "interested" upper clients. 1524 * 2) It needs to send it to the upper clients only. 1525 * 3) It needs to change some values in IP only. 1526 * 4) It needs to change some values in IP and upper layers e.g TCP. 1527 * 1528 * We need to accomodate icmp messages coming in clear until we get 1529 * everything secure from the wire. If icmp_accept_clear_messages 1530 * is zero we check with the global policy and act accordingly. If 1531 * it is non-zero, we accept the message without any checks. But 1532 * *this does not mean* that this will be delivered to the upper 1533 * clients. By accepting we might send replies back, change our MTU 1534 * value etc. but delivery to the ULP/clients depends on their policy 1535 * dispositions. 1536 * 1537 * We handle the above 4 cases in the context of IPSEC in the 1538 * following way : 1539 * 1540 * 1) Send the reply back in the same way as the request came in. 1541 * If it came in encrypted, it goes out encrypted. If it came in 1542 * clear, it goes out in clear. Thus, this will prevent chosen 1543 * plain text attack. 1544 * 2) The client may or may not expect things to come in secure. 1545 * If it comes in secure, the policy constraints are checked 1546 * before delivering it to the upper layers. If it comes in 1547 * clear, ipsec_inbound_accept_clear will decide whether to 1548 * accept this in clear or not. In both the cases, if the returned 1549 * message (IP header + 8 bytes) that caused the icmp message has 1550 * AH/ESP headers, it is sent up to AH/ESP for validation before 1551 * sending up. If there are only 8 bytes of returned message, then 1552 * upper client will not be notified. 1553 * 3) Check with global policy to see whether it matches the constaints. 1554 * But this will be done only if icmp_accept_messages_in_clear is 1555 * zero. 1556 * 4) If we need to change both in IP and ULP, then the decision taken 1557 * while affecting the values in IP and while delivering up to TCP 1558 * should be the same. 1559 * 1560 * There are two cases. 1561 * 1562 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1563 * failed), we will not deliver it to the ULP, even though they 1564 * are *willing* to accept in *clear*. This is fine as our global 1565 * disposition to icmp messages asks us reject the datagram. 1566 * 1567 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1568 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1569 * to deliver it to ULP (policy failed), it can lead to 1570 * consistency problems. The cases known at this time are 1571 * ICMP_DESTINATION_UNREACHABLE messages with following code 1572 * values : 1573 * 1574 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1575 * and Upper layer rejects. Then the communication will 1576 * come to a stop. This is solved by making similar decisions 1577 * at both levels. Currently, when we are unable to deliver 1578 * to the Upper Layer (due to policy failures) while IP has 1579 * adjusted ire_max_frag, the next outbound datagram would 1580 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1581 * will be with the right level of protection. Thus the right 1582 * value will be communicated even if we are not able to 1583 * communicate when we get from the wire initially. But this 1584 * assumes there would be at least one outbound datagram after 1585 * IP has adjusted its ire_max_frag value. To make things 1586 * simpler, we accept in clear after the validation of 1587 * AH/ESP headers. 1588 * 1589 * - Other ICMP ERRORS : We may not be able to deliver it to the 1590 * upper layer depending on the level of protection the upper 1591 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1592 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1593 * should be accepted in clear when the Upper layer expects secure. 1594 * Thus the communication may get aborted by some bad ICMP 1595 * packets. 1596 * 1597 * IPQoS Notes: 1598 * The only instance when a packet is sent for processing is when there 1599 * isn't an ICMP client and if we are interested in it. 1600 * If there is a client, IPPF processing will take place in the 1601 * ip_fanout_proto routine. 1602 * 1603 * Zones notes: 1604 * The packet is only processed in the context of the specified zone: typically 1605 * only this zone will reply to an echo request, and only interested clients in 1606 * this zone will receive a copy of the packet. This means that the caller must 1607 * call icmp_inbound() for each relevant zone. 1608 */ 1609 static void 1610 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1611 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1612 ill_t *recv_ill, zoneid_t zoneid) 1613 { 1614 icmph_t *icmph; 1615 ipha_t *ipha; 1616 int iph_hdr_length; 1617 int hdr_length; 1618 boolean_t interested; 1619 uint32_t ts; 1620 uchar_t *wptr; 1621 ipif_t *ipif; 1622 mblk_t *first_mp; 1623 ipsec_in_t *ii; 1624 ire_t *src_ire; 1625 boolean_t onlink; 1626 timestruc_t now; 1627 uint32_t ill_index; 1628 1629 ASSERT(ill != NULL); 1630 1631 first_mp = mp; 1632 if (mctl_present) { 1633 mp = first_mp->b_cont; 1634 ASSERT(mp != NULL); 1635 } 1636 1637 ipha = (ipha_t *)mp->b_rptr; 1638 if (icmp_accept_clear_messages == 0) { 1639 first_mp = ipsec_check_global_policy(first_mp, NULL, 1640 ipha, NULL, mctl_present); 1641 if (first_mp == NULL) 1642 return; 1643 } 1644 /* 1645 * We have accepted the ICMP message. It means that we will 1646 * respond to the packet if needed. It may not be delivered 1647 * to the upper client depending on the policy constraints 1648 * and the disposition in ipsec_inbound_accept_clear. 1649 */ 1650 1651 ASSERT(ill != NULL); 1652 1653 BUMP_MIB(&icmp_mib, icmpInMsgs); 1654 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1655 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1656 /* Last chance to get real. */ 1657 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1658 BUMP_MIB(&icmp_mib, icmpInErrors); 1659 freemsg(first_mp); 1660 return; 1661 } 1662 /* Refresh iph following the pullup. */ 1663 ipha = (ipha_t *)mp->b_rptr; 1664 } 1665 /* ICMP header checksum, including checksum field, should be zero. */ 1666 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1667 IP_CSUM(mp, iph_hdr_length, 0)) { 1668 BUMP_MIB(&icmp_mib, icmpInCksumErrs); 1669 freemsg(first_mp); 1670 return; 1671 } 1672 /* The IP header will always be a multiple of four bytes */ 1673 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1674 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1675 icmph->icmph_code)); 1676 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1677 /* We will set "interested" to "true" if we want a copy */ 1678 interested = B_FALSE; 1679 switch (icmph->icmph_type) { 1680 case ICMP_ECHO_REPLY: 1681 BUMP_MIB(&icmp_mib, icmpInEchoReps); 1682 break; 1683 case ICMP_DEST_UNREACHABLE: 1684 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1685 BUMP_MIB(&icmp_mib, icmpInFragNeeded); 1686 interested = B_TRUE; /* Pass up to transport */ 1687 BUMP_MIB(&icmp_mib, icmpInDestUnreachs); 1688 break; 1689 case ICMP_SOURCE_QUENCH: 1690 interested = B_TRUE; /* Pass up to transport */ 1691 BUMP_MIB(&icmp_mib, icmpInSrcQuenchs); 1692 break; 1693 case ICMP_REDIRECT: 1694 if (!ip_ignore_redirect) 1695 interested = B_TRUE; 1696 BUMP_MIB(&icmp_mib, icmpInRedirects); 1697 break; 1698 case ICMP_ECHO_REQUEST: 1699 /* 1700 * Whether to respond to echo requests that come in as IP 1701 * broadcasts or as IP multicast is subject to debate 1702 * (what isn't?). We aim to please, you pick it. 1703 * Default is do it. 1704 */ 1705 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1706 /* unicast: always respond */ 1707 interested = B_TRUE; 1708 } else if (CLASSD(ipha->ipha_dst)) { 1709 /* multicast: respond based on tunable */ 1710 interested = ip_g_resp_to_echo_mcast; 1711 } else if (broadcast) { 1712 /* broadcast: respond based on tunable */ 1713 interested = ip_g_resp_to_echo_bcast; 1714 } 1715 BUMP_MIB(&icmp_mib, icmpInEchos); 1716 break; 1717 case ICMP_ROUTER_ADVERTISEMENT: 1718 case ICMP_ROUTER_SOLICITATION: 1719 break; 1720 case ICMP_TIME_EXCEEDED: 1721 interested = B_TRUE; /* Pass up to transport */ 1722 BUMP_MIB(&icmp_mib, icmpInTimeExcds); 1723 break; 1724 case ICMP_PARAM_PROBLEM: 1725 interested = B_TRUE; /* Pass up to transport */ 1726 BUMP_MIB(&icmp_mib, icmpInParmProbs); 1727 break; 1728 case ICMP_TIME_STAMP_REQUEST: 1729 /* Response to Time Stamp Requests is local policy. */ 1730 if (ip_g_resp_to_timestamp && 1731 /* So is whether to respond if it was an IP broadcast. */ 1732 (!broadcast || ip_g_resp_to_timestamp_bcast)) { 1733 int tstamp_len = 3 * sizeof (uint32_t); 1734 1735 if (wptr + tstamp_len > mp->b_wptr) { 1736 if (!pullupmsg(mp, wptr + tstamp_len - 1737 mp->b_rptr)) { 1738 BUMP_MIB(&ip_mib, ipInDiscards); 1739 freemsg(first_mp); 1740 return; 1741 } 1742 /* Refresh ipha following the pullup. */ 1743 ipha = (ipha_t *)mp->b_rptr; 1744 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1745 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1746 } 1747 interested = B_TRUE; 1748 } 1749 BUMP_MIB(&icmp_mib, icmpInTimestamps); 1750 break; 1751 case ICMP_TIME_STAMP_REPLY: 1752 BUMP_MIB(&icmp_mib, icmpInTimestampReps); 1753 break; 1754 case ICMP_INFO_REQUEST: 1755 /* Per RFC 1122 3.2.2.7, ignore this. */ 1756 case ICMP_INFO_REPLY: 1757 break; 1758 case ICMP_ADDRESS_MASK_REQUEST: 1759 if ((ip_respond_to_address_mask_broadcast || !broadcast) && 1760 /* TODO m_pullup of complete header? */ 1761 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) 1762 interested = B_TRUE; 1763 BUMP_MIB(&icmp_mib, icmpInAddrMasks); 1764 break; 1765 case ICMP_ADDRESS_MASK_REPLY: 1766 BUMP_MIB(&icmp_mib, icmpInAddrMaskReps); 1767 break; 1768 default: 1769 interested = B_TRUE; /* Pass up to transport */ 1770 BUMP_MIB(&icmp_mib, icmpInUnknowns); 1771 break; 1772 } 1773 /* See if there is an ICMP client. */ 1774 if (ipcl_proto_search(IPPROTO_ICMP) != NULL) { 1775 /* If there is an ICMP client and we want one too, copy it. */ 1776 mblk_t *first_mp1; 1777 1778 if (!interested) { 1779 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1780 ip_policy, recv_ill, zoneid); 1781 return; 1782 } 1783 first_mp1 = ip_copymsg(first_mp); 1784 if (first_mp1 != NULL) { 1785 ip_fanout_proto(q, first_mp1, ill, ipha, 1786 0, mctl_present, ip_policy, recv_ill, zoneid); 1787 } 1788 } else if (!interested) { 1789 freemsg(first_mp); 1790 return; 1791 } else { 1792 /* 1793 * Initiate policy processing for this packet if ip_policy 1794 * is true. 1795 */ 1796 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 1797 ill_index = ill->ill_phyint->phyint_ifindex; 1798 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1799 if (mp == NULL) { 1800 if (mctl_present) { 1801 freeb(first_mp); 1802 } 1803 BUMP_MIB(&icmp_mib, icmpInErrors); 1804 return; 1805 } 1806 } 1807 } 1808 /* We want to do something with it. */ 1809 /* Check db_ref to make sure we can modify the packet. */ 1810 if (mp->b_datap->db_ref > 1) { 1811 mblk_t *first_mp1; 1812 1813 first_mp1 = ip_copymsg(first_mp); 1814 freemsg(first_mp); 1815 if (!first_mp1) { 1816 BUMP_MIB(&icmp_mib, icmpOutDrops); 1817 return; 1818 } 1819 first_mp = first_mp1; 1820 if (mctl_present) { 1821 mp = first_mp->b_cont; 1822 ASSERT(mp != NULL); 1823 } else { 1824 mp = first_mp; 1825 } 1826 ipha = (ipha_t *)mp->b_rptr; 1827 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1828 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1829 } 1830 switch (icmph->icmph_type) { 1831 case ICMP_ADDRESS_MASK_REQUEST: 1832 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1833 if (ipif == NULL) { 1834 freemsg(first_mp); 1835 return; 1836 } 1837 /* 1838 * outging interface must be IPv4 1839 */ 1840 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1841 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1842 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1843 ipif_refrele(ipif); 1844 BUMP_MIB(&icmp_mib, icmpOutAddrMaskReps); 1845 break; 1846 case ICMP_ECHO_REQUEST: 1847 icmph->icmph_type = ICMP_ECHO_REPLY; 1848 BUMP_MIB(&icmp_mib, icmpOutEchoReps); 1849 break; 1850 case ICMP_TIME_STAMP_REQUEST: { 1851 uint32_t *tsp; 1852 1853 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1854 tsp = (uint32_t *)wptr; 1855 tsp++; /* Skip past 'originate time' */ 1856 /* Compute # of milliseconds since midnight */ 1857 gethrestime(&now); 1858 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1859 now.tv_nsec / (NANOSEC / MILLISEC); 1860 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1861 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1862 BUMP_MIB(&icmp_mib, icmpOutTimestampReps); 1863 break; 1864 } 1865 default: 1866 ipha = (ipha_t *)&icmph[1]; 1867 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1868 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1869 BUMP_MIB(&ip_mib, ipInDiscards); 1870 freemsg(first_mp); 1871 return; 1872 } 1873 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1874 ipha = (ipha_t *)&icmph[1]; 1875 } 1876 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1877 BUMP_MIB(&ip_mib, ipInDiscards); 1878 freemsg(first_mp); 1879 return; 1880 } 1881 hdr_length = IPH_HDR_LENGTH(ipha); 1882 if (hdr_length < sizeof (ipha_t)) { 1883 BUMP_MIB(&ip_mib, ipInDiscards); 1884 freemsg(first_mp); 1885 return; 1886 } 1887 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1888 if (!pullupmsg(mp, 1889 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1890 BUMP_MIB(&ip_mib, ipInDiscards); 1891 freemsg(first_mp); 1892 return; 1893 } 1894 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1895 ipha = (ipha_t *)&icmph[1]; 1896 } 1897 switch (icmph->icmph_type) { 1898 case ICMP_REDIRECT: 1899 /* 1900 * As there is no upper client to deliver, we don't 1901 * need the first_mp any more. 1902 */ 1903 if (mctl_present) { 1904 freeb(first_mp); 1905 } 1906 icmp_redirect(mp); 1907 return; 1908 case ICMP_DEST_UNREACHABLE: 1909 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1910 if (!icmp_inbound_too_big(icmph, ipha)) { 1911 freemsg(first_mp); 1912 return; 1913 } 1914 } 1915 /* FALLTHRU */ 1916 default : 1917 /* 1918 * IPQoS notes: Since we have already done IPQoS 1919 * processing we don't want to do it again in 1920 * the fanout routines called by 1921 * icmp_inbound_error_fanout, hence the last 1922 * argument, ip_policy, is B_FALSE. 1923 */ 1924 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 1925 ipha, iph_hdr_length, hdr_length, mctl_present, 1926 B_FALSE, recv_ill, zoneid); 1927 } 1928 return; 1929 } 1930 /* Send out an ICMP packet */ 1931 icmph->icmph_checksum = 0; 1932 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 1933 if (broadcast || CLASSD(ipha->ipha_dst)) { 1934 ipif_t *ipif_chosen; 1935 /* 1936 * Make it look like it was directed to us, so we don't look 1937 * like a fool with a broadcast or multicast source address. 1938 */ 1939 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1940 /* 1941 * Make sure that we haven't grabbed an interface that's DOWN. 1942 */ 1943 if (ipif != NULL) { 1944 ipif_chosen = ipif_select_source(ipif->ipif_ill, 1945 ipha->ipha_src, zoneid); 1946 if (ipif_chosen != NULL) { 1947 ipif_refrele(ipif); 1948 ipif = ipif_chosen; 1949 } 1950 } 1951 if (ipif == NULL) { 1952 ip0dbg(("icmp_inbound: " 1953 "No source for broadcast/multicast:\n" 1954 "\tsrc 0x%x dst 0x%x ill %p " 1955 "ipif_lcl_addr 0x%x\n", 1956 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 1957 (void *)ill, 1958 ill->ill_ipif->ipif_lcl_addr)); 1959 freemsg(first_mp); 1960 return; 1961 } 1962 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1963 ipha->ipha_dst = ipif->ipif_src_addr; 1964 ipif_refrele(ipif); 1965 } 1966 /* Reset time to live. */ 1967 ipha->ipha_ttl = ip_def_ttl; 1968 { 1969 /* Swap source and destination addresses */ 1970 ipaddr_t tmp; 1971 1972 tmp = ipha->ipha_src; 1973 ipha->ipha_src = ipha->ipha_dst; 1974 ipha->ipha_dst = tmp; 1975 } 1976 ipha->ipha_ident = 0; 1977 if (!IS_SIMPLE_IPH(ipha)) 1978 icmp_options_update(ipha); 1979 1980 /* 1981 * ICMP echo replies should go out on the same interface 1982 * the request came on as probes used by in.mpathd for detecting 1983 * NIC failures are ECHO packets. We turn-off load spreading 1984 * by setting ipsec_in_attach_if to B_TRUE, which is copied 1985 * to ipsec_out_attach_if by ipsec_in_to_out called later in this 1986 * function. This is in turn handled by ip_wput and ip_newroute 1987 * to make sure that the packet goes out on the interface it came 1988 * in on. If we don't turnoff load spreading, the packets might get 1989 * dropped if there are no non-FAILED/INACTIVE interfaces for it 1990 * to go out and in.mpathd would wrongly detect a failure or 1991 * mis-detect a NIC failure for link failure. As load spreading 1992 * can happen only if ill_group is not NULL, we do only for 1993 * that case and this does not affect the normal case. 1994 * 1995 * We turn off load spreading only on echo packets that came from 1996 * on-link hosts. If the interface route has been deleted, this will 1997 * not be enforced as we can't do much. For off-link hosts, as the 1998 * default routes in IPv4 does not typically have an ire_ipif 1999 * pointer, we can't force MATCH_IRE_ILL in ip_wput/ip_newroute. 2000 * Moreover, expecting a default route through this interface may 2001 * not be correct. We use ipha_dst because of the swap above. 2002 */ 2003 onlink = B_FALSE; 2004 if (icmph->icmph_type == ICMP_ECHO_REPLY && ill->ill_group != NULL) { 2005 /* 2006 * First, we need to make sure that it is not one of our 2007 * local addresses. If we set onlink when it is one of 2008 * our local addresses, we will end up creating IRE_CACHES 2009 * for one of our local addresses. Then, we will never 2010 * accept packets for them afterwards. 2011 */ 2012 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_LOCAL, 2013 NULL, ALL_ZONES, MATCH_IRE_TYPE); 2014 if (src_ire == NULL) { 2015 ipif = ipif_get_next_ipif(NULL, ill); 2016 if (ipif == NULL) { 2017 BUMP_MIB(&ip_mib, ipInDiscards); 2018 freemsg(mp); 2019 return; 2020 } 2021 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 2022 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 2023 MATCH_IRE_ILL | MATCH_IRE_TYPE); 2024 ipif_refrele(ipif); 2025 if (src_ire != NULL) { 2026 onlink = B_TRUE; 2027 ire_refrele(src_ire); 2028 } 2029 } else { 2030 ire_refrele(src_ire); 2031 } 2032 } 2033 if (!mctl_present) { 2034 /* 2035 * This packet should go out the same way as it 2036 * came in i.e in clear. To make sure that global 2037 * policy will not be applied to this in ip_wput_ire, 2038 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2039 */ 2040 ASSERT(first_mp == mp); 2041 if ((first_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 2042 BUMP_MIB(&ip_mib, ipInDiscards); 2043 freemsg(mp); 2044 return; 2045 } 2046 ii = (ipsec_in_t *)first_mp->b_rptr; 2047 2048 /* This is not a secure packet */ 2049 ii->ipsec_in_secure = B_FALSE; 2050 if (onlink) { 2051 ii->ipsec_in_attach_if = B_TRUE; 2052 ii->ipsec_in_ill_index = 2053 ill->ill_phyint->phyint_ifindex; 2054 ii->ipsec_in_rill_index = 2055 recv_ill->ill_phyint->phyint_ifindex; 2056 } 2057 first_mp->b_cont = mp; 2058 } else if (onlink) { 2059 ii = (ipsec_in_t *)first_mp->b_rptr; 2060 ii->ipsec_in_attach_if = B_TRUE; 2061 ii->ipsec_in_ill_index = ill->ill_phyint->phyint_ifindex; 2062 ii->ipsec_in_rill_index = recv_ill->ill_phyint->phyint_ifindex; 2063 } else { 2064 ii = (ipsec_in_t *)first_mp->b_rptr; 2065 } 2066 ii->ipsec_in_zoneid = zoneid; 2067 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2068 BUMP_MIB(&ip_mib, ipInDiscards); 2069 return; 2070 } 2071 BUMP_MIB(&icmp_mib, icmpOutMsgs); 2072 put(WR(q), first_mp); 2073 } 2074 2075 /* Table from RFC 1191 */ 2076 static int icmp_frag_size_table[] = 2077 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2078 2079 /* 2080 * Process received ICMP Packet too big. 2081 * After updating any IRE it does the fanout to any matching transport streams. 2082 * Assumes the message has been pulled up till the IP header that caused 2083 * the error. 2084 * 2085 * Returns B_FALSE on failure and B_TRUE on success. 2086 */ 2087 static boolean_t 2088 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha) 2089 { 2090 ire_t *ire, *first_ire; 2091 int mtu; 2092 int hdr_length; 2093 2094 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2095 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2096 2097 hdr_length = IPH_HDR_LENGTH(ipha); 2098 2099 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, NULL, 2100 ALL_ZONES, MATCH_IRE_TYPE); 2101 2102 if (!first_ire) { 2103 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2104 ntohl(ipha->ipha_dst))); 2105 return (B_FALSE); 2106 } 2107 /* Drop if the original packet contained a source route */ 2108 if (ip_source_route_included(ipha)) { 2109 ire_refrele(first_ire); 2110 return (B_FALSE); 2111 } 2112 /* Check for MTU discovery advice as described in RFC 1191 */ 2113 mtu = ntohs(icmph->icmph_du_mtu); 2114 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2115 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2116 ire = ire->ire_next) { 2117 mutex_enter(&ire->ire_lock); 2118 if (icmph->icmph_du_zero == 0 && mtu > 68) { 2119 /* Reduce the IRE max frag value as advised. */ 2120 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2121 ip1dbg(("Received mtu from router: %d\n", mtu)); 2122 } else { 2123 uint32_t length; 2124 int i; 2125 2126 /* 2127 * Use the table from RFC 1191 to figure out 2128 * the next "plateau" based on the length in 2129 * the original IP packet. 2130 */ 2131 length = ntohs(ipha->ipha_length); 2132 if (ire->ire_max_frag <= length && 2133 ire->ire_max_frag >= length - hdr_length) { 2134 /* 2135 * Handle broken BSD 4.2 systems that 2136 * return the wrong iph_length in ICMP 2137 * errors. 2138 */ 2139 ip1dbg(("Wrong mtu: sent %d, ire %d\n", 2140 length, ire->ire_max_frag)); 2141 length -= hdr_length; 2142 } 2143 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2144 if (length > icmp_frag_size_table[i]) 2145 break; 2146 } 2147 if (i == A_CNT(icmp_frag_size_table)) { 2148 /* Smaller than 68! */ 2149 ip1dbg(("Too big for packet size %d\n", 2150 length)); 2151 ire->ire_max_frag = MIN(ire->ire_max_frag, 576); 2152 ire->ire_frag_flag = 0; 2153 } else { 2154 mtu = icmp_frag_size_table[i]; 2155 ip1dbg(("Calculated mtu %d, packet size %d, " 2156 "before %d", mtu, length, 2157 ire->ire_max_frag)); 2158 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2159 ip1dbg((", after %d\n", ire->ire_max_frag)); 2160 } 2161 /* Record the new max frag size for the ULP. */ 2162 icmph->icmph_du_zero = 0; 2163 icmph->icmph_du_mtu = 2164 htons((uint16_t)ire->ire_max_frag); 2165 } 2166 mutex_exit(&ire->ire_lock); 2167 } 2168 rw_exit(&first_ire->ire_bucket->irb_lock); 2169 ire_refrele(first_ire); 2170 return (B_TRUE); 2171 } 2172 2173 /* 2174 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2175 * calls this function. 2176 */ 2177 static mblk_t * 2178 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2179 { 2180 ipha_t *ipha; 2181 icmph_t *icmph; 2182 ipha_t *in_ipha; 2183 int length; 2184 2185 ASSERT(mp->b_datap->db_type == M_DATA); 2186 2187 /* 2188 * For Self-encapsulated packets, we added an extra IP header 2189 * without the options. Inner IP header is the one from which 2190 * the outer IP header was formed. Thus, we need to remove the 2191 * outer IP header. To do this, we pullup the whole message 2192 * and overlay whatever follows the outer IP header over the 2193 * outer IP header. 2194 */ 2195 2196 if (!pullupmsg(mp, -1)) { 2197 BUMP_MIB(&ip_mib, ipInDiscards); 2198 return (NULL); 2199 } 2200 2201 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2202 ipha = (ipha_t *)&icmph[1]; 2203 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2204 2205 /* 2206 * The length that we want to overlay is following the inner 2207 * IP header. Subtracting the IP header + icmp header + outer 2208 * IP header's length should give us the length that we want to 2209 * overlay. 2210 */ 2211 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2212 hdr_length; 2213 /* 2214 * Overlay whatever follows the inner header over the 2215 * outer header. 2216 */ 2217 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2218 2219 /* Set the wptr to account for the outer header */ 2220 mp->b_wptr -= hdr_length; 2221 return (mp); 2222 } 2223 2224 /* 2225 * Try to pass the ICMP message upstream in case the ULP cares. 2226 * 2227 * If the packet that caused the ICMP error is secure, we send 2228 * it to AH/ESP to make sure that the attached packet has a 2229 * valid association. ipha in the code below points to the 2230 * IP header of the packet that caused the error. 2231 * 2232 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2233 * in the context of IPSEC. Normally we tell the upper layer 2234 * whenever we send the ire (including ip_bind), the IPSEC header 2235 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2236 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2237 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2238 * same thing. As TCP has the IPSEC options size that needs to be 2239 * adjusted, we just pass the MTU unchanged. 2240 * 2241 * IFN could have been generated locally or by some router. 2242 * 2243 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2244 * This happens because IP adjusted its value of MTU on an 2245 * earlier IFN message and could not tell the upper layer, 2246 * the new adjusted value of MTU e.g. Packet was encrypted 2247 * or there was not enough information to fanout to upper 2248 * layers. Thus on the next outbound datagram, ip_wput_ire 2249 * generates the IFN, where IPSEC processing has *not* been 2250 * done. 2251 * 2252 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2253 * could have generated this. This happens because ire_max_frag 2254 * value in IP was set to a new value, while the IPSEC processing 2255 * was being done and after we made the fragmentation check in 2256 * ip_wput_ire. Thus on return from IPSEC processing, 2257 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2258 * and generates the IFN. As IPSEC processing is over, we fanout 2259 * to AH/ESP to remove the header. 2260 * 2261 * In both these cases, ipsec_in_loopback will be set indicating 2262 * that IFN was generated locally. 2263 * 2264 * ROUTER : IFN could be secure or non-secure. 2265 * 2266 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2267 * packet in error has AH/ESP headers to validate the AH/ESP 2268 * headers. AH/ESP will verify whether there is a valid SA or 2269 * not and send it back. We will fanout again if we have more 2270 * data in the packet. 2271 * 2272 * If the packet in error does not have AH/ESP, we handle it 2273 * like any other case. 2274 * 2275 * * NON_SECURE : If the packet in error has AH/ESP headers, 2276 * we attach a dummy ipsec_in and send it up to AH/ESP 2277 * for validation. AH/ESP will verify whether there is a 2278 * valid SA or not and send it back. We will fanout again if 2279 * we have more data in the packet. 2280 * 2281 * If the packet in error does not have AH/ESP, we handle it 2282 * like any other case. 2283 */ 2284 static void 2285 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2286 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2287 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2288 zoneid_t zoneid) 2289 { 2290 uint16_t *up; /* Pointer to ports in ULP header */ 2291 uint32_t ports; /* reversed ports for fanout */ 2292 ipha_t ripha; /* With reversed addresses */ 2293 mblk_t *first_mp; 2294 ipsec_in_t *ii; 2295 tcph_t *tcph; 2296 conn_t *connp; 2297 2298 first_mp = mp; 2299 if (mctl_present) { 2300 mp = first_mp->b_cont; 2301 ASSERT(mp != NULL); 2302 2303 ii = (ipsec_in_t *)first_mp->b_rptr; 2304 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2305 } else { 2306 ii = NULL; 2307 } 2308 2309 switch (ipha->ipha_protocol) { 2310 case IPPROTO_UDP: 2311 /* 2312 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2313 * transport header. 2314 */ 2315 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2316 mp->b_wptr) { 2317 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2318 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2319 BUMP_MIB(&ip_mib, ipInDiscards); 2320 goto drop_pkt; 2321 } 2322 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2323 ipha = (ipha_t *)&icmph[1]; 2324 } 2325 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2326 2327 /* 2328 * Attempt to find a client stream based on port. 2329 * Note that we do a reverse lookup since the header is 2330 * in the form we sent it out. 2331 * The ripha header is only used for the IP_UDP_MATCH and we 2332 * only set the src and dst addresses and protocol. 2333 */ 2334 ripha.ipha_src = ipha->ipha_dst; 2335 ripha.ipha_dst = ipha->ipha_src; 2336 ripha.ipha_protocol = ipha->ipha_protocol; 2337 ((uint16_t *)&ports)[0] = up[1]; 2338 ((uint16_t *)&ports)[1] = up[0]; 2339 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2340 ntohl(ipha->ipha_src), ntohs(up[0]), 2341 ntohl(ipha->ipha_dst), ntohs(up[1]), 2342 icmph->icmph_type, icmph->icmph_code)); 2343 2344 /* Have to change db_type after any pullupmsg */ 2345 DB_TYPE(mp) = M_CTL; 2346 2347 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2348 mctl_present, ip_policy, recv_ill, zoneid); 2349 return; 2350 2351 case IPPROTO_TCP: 2352 /* 2353 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2354 * transport header. 2355 */ 2356 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2357 mp->b_wptr) { 2358 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2359 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2360 BUMP_MIB(&ip_mib, ipInDiscards); 2361 goto drop_pkt; 2362 } 2363 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2364 ipha = (ipha_t *)&icmph[1]; 2365 } 2366 /* 2367 * Find a TCP client stream for this packet. 2368 * Note that we do a reverse lookup since the header is 2369 * in the form we sent it out. 2370 */ 2371 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2372 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN); 2373 if (connp == NULL) { 2374 BUMP_MIB(&ip_mib, ipInDiscards); 2375 goto drop_pkt; 2376 } 2377 2378 /* Have to change db_type after any pullupmsg */ 2379 DB_TYPE(mp) = M_CTL; 2380 squeue_fill(connp->conn_sqp, first_mp, tcp_input, 2381 connp, SQTAG_TCP_INPUT_ICMP_ERR); 2382 return; 2383 2384 case IPPROTO_SCTP: 2385 /* 2386 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2387 * transport header. 2388 */ 2389 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2390 mp->b_wptr) { 2391 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2392 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2393 BUMP_MIB(&ip_mib, ipInDiscards); 2394 goto drop_pkt; 2395 } 2396 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2397 ipha = (ipha_t *)&icmph[1]; 2398 } 2399 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2400 /* 2401 * Find a SCTP client stream for this packet. 2402 * Note that we do a reverse lookup since the header is 2403 * in the form we sent it out. 2404 * The ripha header is only used for the matching and we 2405 * only set the src and dst addresses, protocol, and version. 2406 */ 2407 ripha.ipha_src = ipha->ipha_dst; 2408 ripha.ipha_dst = ipha->ipha_src; 2409 ripha.ipha_protocol = ipha->ipha_protocol; 2410 ripha.ipha_version_and_hdr_length = 2411 ipha->ipha_version_and_hdr_length; 2412 ((uint16_t *)&ports)[0] = up[1]; 2413 ((uint16_t *)&ports)[1] = up[0]; 2414 2415 /* Have to change db_type after any pullupmsg */ 2416 DB_TYPE(mp) = M_CTL; 2417 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2418 mctl_present, ip_policy, 0, zoneid); 2419 return; 2420 2421 case IPPROTO_ESP: 2422 case IPPROTO_AH: { 2423 int ipsec_rc; 2424 2425 /* 2426 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2427 * We will re-use the IPSEC_IN if it is already present as 2428 * AH/ESP will not affect any fields in the IPSEC_IN for 2429 * ICMP errors. If there is no IPSEC_IN, allocate a new 2430 * one and attach it in the front. 2431 */ 2432 if (ii != NULL) { 2433 /* 2434 * ip_fanout_proto_again converts the ICMP errors 2435 * that come back from AH/ESP to M_DATA so that 2436 * if it is non-AH/ESP and we do a pullupmsg in 2437 * this function, it would work. Convert it back 2438 * to M_CTL before we send up as this is a ICMP 2439 * error. This could have been generated locally or 2440 * by some router. Validate the inner IPSEC 2441 * headers. 2442 * 2443 * NOTE : ill_index is used by ip_fanout_proto_again 2444 * to locate the ill. 2445 */ 2446 ASSERT(ill != NULL); 2447 ii->ipsec_in_ill_index = 2448 ill->ill_phyint->phyint_ifindex; 2449 ii->ipsec_in_rill_index = 2450 recv_ill->ill_phyint->phyint_ifindex; 2451 DB_TYPE(first_mp->b_cont) = M_CTL; 2452 } else { 2453 /* 2454 * IPSEC_IN is not present. We attach a ipsec_in 2455 * message and send up to IPSEC for validating 2456 * and removing the IPSEC headers. Clear 2457 * ipsec_in_secure so that when we return 2458 * from IPSEC, we don't mistakenly think that this 2459 * is a secure packet came from the network. 2460 * 2461 * NOTE : ill_index is used by ip_fanout_proto_again 2462 * to locate the ill. 2463 */ 2464 ASSERT(first_mp == mp); 2465 first_mp = ipsec_in_alloc(B_TRUE); 2466 if (first_mp == NULL) { 2467 freemsg(mp); 2468 BUMP_MIB(&ip_mib, ipInDiscards); 2469 return; 2470 } 2471 ii = (ipsec_in_t *)first_mp->b_rptr; 2472 2473 /* This is not a secure packet */ 2474 ii->ipsec_in_secure = B_FALSE; 2475 first_mp->b_cont = mp; 2476 DB_TYPE(mp) = M_CTL; 2477 ASSERT(ill != NULL); 2478 ii->ipsec_in_ill_index = 2479 ill->ill_phyint->phyint_ifindex; 2480 ii->ipsec_in_rill_index = 2481 recv_ill->ill_phyint->phyint_ifindex; 2482 } 2483 ip2dbg(("icmp_inbound_error: ipsec\n")); 2484 2485 if (!ipsec_loaded()) { 2486 ip_proto_not_sup(q, first_mp, 0, zoneid); 2487 return; 2488 } 2489 2490 if (ipha->ipha_protocol == IPPROTO_ESP) 2491 ipsec_rc = ipsecesp_icmp_error(first_mp); 2492 else 2493 ipsec_rc = ipsecah_icmp_error(first_mp); 2494 if (ipsec_rc == IPSEC_STATUS_FAILED) 2495 return; 2496 2497 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2498 return; 2499 } 2500 default: 2501 /* 2502 * The ripha header is only used for the lookup and we 2503 * only set the src and dst addresses and protocol. 2504 */ 2505 ripha.ipha_src = ipha->ipha_dst; 2506 ripha.ipha_dst = ipha->ipha_src; 2507 ripha.ipha_protocol = ipha->ipha_protocol; 2508 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2509 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2510 ntohl(ipha->ipha_dst), 2511 icmph->icmph_type, icmph->icmph_code)); 2512 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2513 ipha_t *in_ipha; 2514 2515 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2516 mp->b_wptr) { 2517 if (!pullupmsg(mp, (uchar_t *)ipha + 2518 hdr_length + sizeof (ipha_t) - 2519 mp->b_rptr)) { 2520 2521 BUMP_MIB(&ip_mib, ipInDiscards); 2522 goto drop_pkt; 2523 } 2524 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2525 ipha = (ipha_t *)&icmph[1]; 2526 } 2527 /* 2528 * Caller has verified that length has to be 2529 * at least the size of IP header. 2530 */ 2531 ASSERT(hdr_length >= sizeof (ipha_t)); 2532 /* 2533 * Check the sanity of the inner IP header like 2534 * we did for the outer header. 2535 */ 2536 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2537 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2538 BUMP_MIB(&ip_mib, ipInDiscards); 2539 goto drop_pkt; 2540 } 2541 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2542 BUMP_MIB(&ip_mib, ipInDiscards); 2543 goto drop_pkt; 2544 } 2545 /* Check for Self-encapsulated tunnels */ 2546 if (in_ipha->ipha_src == ipha->ipha_src && 2547 in_ipha->ipha_dst == ipha->ipha_dst) { 2548 2549 mp = icmp_inbound_self_encap_error(mp, 2550 iph_hdr_length, hdr_length); 2551 if (mp == NULL) 2552 goto drop_pkt; 2553 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2554 ipha = (ipha_t *)&icmph[1]; 2555 hdr_length = IPH_HDR_LENGTH(ipha); 2556 /* 2557 * The packet in error is self-encapsualted. 2558 * And we are finding it further encapsulated 2559 * which we could not have possibly generated. 2560 */ 2561 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2562 BUMP_MIB(&ip_mib, ipInDiscards); 2563 goto drop_pkt; 2564 } 2565 icmp_inbound_error_fanout(q, ill, first_mp, 2566 icmph, ipha, iph_hdr_length, hdr_length, 2567 mctl_present, ip_policy, recv_ill, zoneid); 2568 return; 2569 } 2570 } 2571 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2572 ipha->ipha_protocol == IPPROTO_IPV6) && 2573 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2574 ii != NULL && 2575 ii->ipsec_in_loopback && 2576 ii->ipsec_in_secure) { 2577 /* 2578 * For IP tunnels that get a looped-back 2579 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2580 * reported new MTU to take into account the IPsec 2581 * headers protecting this configured tunnel. 2582 * 2583 * This allows the tunnel module (tun.c) to blindly 2584 * accept the MTU reported in an ICMP "too big" 2585 * message. 2586 * 2587 * Non-looped back ICMP messages will just be 2588 * handled by the security protocols (if needed), 2589 * and the first subsequent packet will hit this 2590 * path. 2591 */ 2592 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2593 ipsec_in_extra_length(first_mp)); 2594 } 2595 /* Have to change db_type after any pullupmsg */ 2596 DB_TYPE(mp) = M_CTL; 2597 2598 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2599 ip_policy, recv_ill, zoneid); 2600 return; 2601 } 2602 /* NOTREACHED */ 2603 drop_pkt:; 2604 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2605 freemsg(first_mp); 2606 } 2607 2608 /* 2609 * Common IP options parser. 2610 * 2611 * Setup routine: fill in *optp with options-parsing state, then 2612 * tail-call ipoptp_next to return the first option. 2613 */ 2614 uint8_t 2615 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2616 { 2617 uint32_t totallen; /* total length of all options */ 2618 2619 totallen = ipha->ipha_version_and_hdr_length - 2620 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2621 totallen <<= 2; 2622 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2623 optp->ipoptp_end = optp->ipoptp_next + totallen; 2624 optp->ipoptp_flags = 0; 2625 return (ipoptp_next(optp)); 2626 } 2627 2628 /* 2629 * Common IP options parser: extract next option. 2630 */ 2631 uint8_t 2632 ipoptp_next(ipoptp_t *optp) 2633 { 2634 uint8_t *end = optp->ipoptp_end; 2635 uint8_t *cur = optp->ipoptp_next; 2636 uint8_t opt, len, pointer; 2637 2638 /* 2639 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2640 * has been corrupted. 2641 */ 2642 ASSERT(cur <= end); 2643 2644 if (cur == end) 2645 return (IPOPT_EOL); 2646 2647 opt = cur[IPOPT_OPTVAL]; 2648 2649 /* 2650 * Skip any NOP options. 2651 */ 2652 while (opt == IPOPT_NOP) { 2653 cur++; 2654 if (cur == end) 2655 return (IPOPT_EOL); 2656 opt = cur[IPOPT_OPTVAL]; 2657 } 2658 2659 if (opt == IPOPT_EOL) 2660 return (IPOPT_EOL); 2661 2662 /* 2663 * Option requiring a length. 2664 */ 2665 if ((cur + 1) >= end) { 2666 optp->ipoptp_flags |= IPOPTP_ERROR; 2667 return (IPOPT_EOL); 2668 } 2669 len = cur[IPOPT_OLEN]; 2670 if (len < 2) { 2671 optp->ipoptp_flags |= IPOPTP_ERROR; 2672 return (IPOPT_EOL); 2673 } 2674 optp->ipoptp_cur = cur; 2675 optp->ipoptp_len = len; 2676 optp->ipoptp_next = cur + len; 2677 if (cur + len > end) { 2678 optp->ipoptp_flags |= IPOPTP_ERROR; 2679 return (IPOPT_EOL); 2680 } 2681 2682 /* 2683 * For the options which require a pointer field, make sure 2684 * its there, and make sure it points to either something 2685 * inside this option, or the end of the option. 2686 */ 2687 switch (opt) { 2688 case IPOPT_RR: 2689 case IPOPT_TS: 2690 case IPOPT_LSRR: 2691 case IPOPT_SSRR: 2692 if (len <= IPOPT_OFFSET) { 2693 optp->ipoptp_flags |= IPOPTP_ERROR; 2694 return (opt); 2695 } 2696 pointer = cur[IPOPT_OFFSET]; 2697 if (pointer - 1 > len) { 2698 optp->ipoptp_flags |= IPOPTP_ERROR; 2699 return (opt); 2700 } 2701 break; 2702 } 2703 2704 /* 2705 * Sanity check the pointer field based on the type of the 2706 * option. 2707 */ 2708 switch (opt) { 2709 case IPOPT_RR: 2710 case IPOPT_SSRR: 2711 case IPOPT_LSRR: 2712 if (pointer < IPOPT_MINOFF_SR) 2713 optp->ipoptp_flags |= IPOPTP_ERROR; 2714 break; 2715 case IPOPT_TS: 2716 if (pointer < IPOPT_MINOFF_IT) 2717 optp->ipoptp_flags |= IPOPTP_ERROR; 2718 /* 2719 * Note that the Internet Timestamp option also 2720 * contains two four bit fields (the Overflow field, 2721 * and the Flag field), which follow the pointer 2722 * field. We don't need to check that these fields 2723 * fall within the length of the option because this 2724 * was implicitely done above. We've checked that the 2725 * pointer value is at least IPOPT_MINOFF_IT, and that 2726 * it falls within the option. Since IPOPT_MINOFF_IT > 2727 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2728 */ 2729 ASSERT(len > IPOPT_POS_OV_FLG); 2730 break; 2731 } 2732 2733 return (opt); 2734 } 2735 2736 /* 2737 * Update any record route or timestamp options to include this host. 2738 * Reverse any source route option. 2739 * This routine assumes that the options are well formed i.e. that they 2740 * have already been checked. 2741 */ 2742 static void 2743 icmp_options_update(ipha_t *ipha) 2744 { 2745 ipoptp_t opts; 2746 uchar_t *opt; 2747 uint8_t optval; 2748 ipaddr_t src; /* Our local address */ 2749 ipaddr_t dst; 2750 2751 ip2dbg(("icmp_options_update\n")); 2752 src = ipha->ipha_src; 2753 dst = ipha->ipha_dst; 2754 2755 for (optval = ipoptp_first(&opts, ipha); 2756 optval != IPOPT_EOL; 2757 optval = ipoptp_next(&opts)) { 2758 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 2759 opt = opts.ipoptp_cur; 2760 ip2dbg(("icmp_options_update: opt %d, len %d\n", 2761 optval, opts.ipoptp_len)); 2762 switch (optval) { 2763 int off1, off2; 2764 case IPOPT_SSRR: 2765 case IPOPT_LSRR: 2766 /* 2767 * Reverse the source route. The first entry 2768 * should be the next to last one in the current 2769 * source route (the last entry is our address). 2770 * The last entry should be the final destination. 2771 */ 2772 off1 = IPOPT_MINOFF_SR - 1; 2773 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 2774 if (off2 < 0) { 2775 /* No entries in source route */ 2776 ip1dbg(( 2777 "icmp_options_update: bad src route\n")); 2778 break; 2779 } 2780 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 2781 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 2782 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 2783 off2 -= IP_ADDR_LEN; 2784 2785 while (off1 < off2) { 2786 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 2787 bcopy((char *)opt + off2, (char *)opt + off1, 2788 IP_ADDR_LEN); 2789 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 2790 off1 += IP_ADDR_LEN; 2791 off2 -= IP_ADDR_LEN; 2792 } 2793 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 2794 break; 2795 } 2796 } 2797 } 2798 2799 /* 2800 * Process received ICMP Redirect messages. 2801 */ 2802 /* ARGSUSED */ 2803 static void 2804 icmp_redirect(mblk_t *mp) 2805 { 2806 ipha_t *ipha; 2807 int iph_hdr_length; 2808 icmph_t *icmph; 2809 ipha_t *ipha_err; 2810 ire_t *ire; 2811 ire_t *prev_ire; 2812 ire_t *save_ire; 2813 ipaddr_t src, dst, gateway; 2814 iulp_t ulp_info = { 0 }; 2815 int error; 2816 2817 ipha = (ipha_t *)mp->b_rptr; 2818 iph_hdr_length = IPH_HDR_LENGTH(ipha); 2819 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 2820 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 2821 BUMP_MIB(&icmp_mib, icmpInErrors); 2822 freemsg(mp); 2823 return; 2824 } 2825 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2826 ipha_err = (ipha_t *)&icmph[1]; 2827 src = ipha->ipha_src; 2828 dst = ipha_err->ipha_dst; 2829 gateway = icmph->icmph_rd_gateway; 2830 /* Make sure the new gateway is reachable somehow. */ 2831 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 2832 ALL_ZONES, MATCH_IRE_TYPE); 2833 /* 2834 * Make sure we had a route for the dest in question and that 2835 * that route was pointing to the old gateway (the source of the 2836 * redirect packet.) 2837 */ 2838 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 2839 MATCH_IRE_GW); 2840 /* 2841 * Check that 2842 * the redirect was not from ourselves 2843 * the new gateway and the old gateway are directly reachable 2844 */ 2845 if (!prev_ire || 2846 !ire || 2847 ire->ire_type == IRE_LOCAL) { 2848 BUMP_MIB(&icmp_mib, icmpInBadRedirects); 2849 freemsg(mp); 2850 if (ire != NULL) 2851 ire_refrele(ire); 2852 if (prev_ire != NULL) 2853 ire_refrele(prev_ire); 2854 return; 2855 } 2856 2857 /* 2858 * Should we use the old ULP info to create the new gateway? From 2859 * a user's perspective, we should inherit the info so that it 2860 * is a "smooth" transition. If we do not do that, then new 2861 * connections going thru the new gateway will have no route metrics, 2862 * which is counter-intuitive to user. From a network point of 2863 * view, this may or may not make sense even though the new gateway 2864 * is still directly connected to us so the route metrics should not 2865 * change much. 2866 * 2867 * But if the old ire_uinfo is not initialized, we do another 2868 * recursive lookup on the dest using the new gateway. There may 2869 * be a route to that. If so, use it to initialize the redirect 2870 * route. 2871 */ 2872 if (prev_ire->ire_uinfo.iulp_set) { 2873 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 2874 } else { 2875 ire_t *tmp_ire; 2876 ire_t *sire; 2877 2878 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 2879 ALL_ZONES, 0, 2880 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT)); 2881 if (sire != NULL) { 2882 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 2883 /* 2884 * If sire != NULL, ire_ftable_lookup() should not 2885 * return a NULL value. 2886 */ 2887 ASSERT(tmp_ire != NULL); 2888 ire_refrele(tmp_ire); 2889 ire_refrele(sire); 2890 } else if (tmp_ire != NULL) { 2891 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 2892 sizeof (iulp_t)); 2893 ire_refrele(tmp_ire); 2894 } 2895 } 2896 if (prev_ire->ire_type == IRE_CACHE) 2897 ire_delete(prev_ire); 2898 ire_refrele(prev_ire); 2899 /* 2900 * TODO: more precise handling for cases 0, 2, 3, the latter two 2901 * require TOS routing 2902 */ 2903 switch (icmph->icmph_code) { 2904 case 0: 2905 case 1: 2906 /* TODO: TOS specificity for cases 2 and 3 */ 2907 case 2: 2908 case 3: 2909 break; 2910 default: 2911 freemsg(mp); 2912 BUMP_MIB(&icmp_mib, icmpInBadRedirects); 2913 ire_refrele(ire); 2914 return; 2915 } 2916 /* 2917 * Create a Route Association. This will allow us to remember that 2918 * someone we believe told us to use the particular gateway. 2919 */ 2920 save_ire = ire; 2921 ire = ire_create( 2922 (uchar_t *)&dst, /* dest addr */ 2923 (uchar_t *)&ip_g_all_ones, /* mask */ 2924 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 2925 (uchar_t *)&gateway, /* gateway addr */ 2926 NULL, /* no in_srcaddr */ 2927 &save_ire->ire_max_frag, /* max frag */ 2928 NULL, /* Fast Path header */ 2929 NULL, /* no rfq */ 2930 NULL, /* no stq */ 2931 IRE_HOST_REDIRECT, 2932 NULL, 2933 NULL, 2934 NULL, 2935 0, 2936 0, 2937 0, 2938 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 2939 &ulp_info); 2940 2941 if (ire == NULL) { 2942 freemsg(mp); 2943 ire_refrele(save_ire); 2944 return; 2945 } 2946 error = ire_add(&ire, NULL, NULL, NULL); 2947 ire_refrele(save_ire); 2948 if (error == 0) { 2949 ire_refrele(ire); /* Held in ire_add_v4 */ 2950 /* tell routing sockets that we received a redirect */ 2951 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 2952 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 2953 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR)); 2954 } 2955 2956 /* 2957 * Delete any existing IRE_HOST_REDIRECT for this destination. 2958 * This together with the added IRE has the effect of 2959 * modifying an existing redirect. 2960 */ 2961 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST_REDIRECT, NULL, NULL, 2962 ALL_ZONES, 0, (MATCH_IRE_GW | MATCH_IRE_TYPE)); 2963 if (prev_ire) { 2964 ire_delete(prev_ire); 2965 ire_refrele(prev_ire); 2966 } 2967 2968 freemsg(mp); 2969 } 2970 2971 /* 2972 * Generate an ICMP parameter problem message. 2973 */ 2974 static void 2975 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr) 2976 { 2977 icmph_t icmph; 2978 boolean_t mctl_present; 2979 mblk_t *first_mp; 2980 2981 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 2982 2983 if (!(mp = icmp_pkt_err_ok(mp))) { 2984 if (mctl_present) 2985 freeb(first_mp); 2986 return; 2987 } 2988 2989 bzero(&icmph, sizeof (icmph_t)); 2990 icmph.icmph_type = ICMP_PARAM_PROBLEM; 2991 icmph.icmph_pp_ptr = ptr; 2992 BUMP_MIB(&icmp_mib, icmpOutParmProbs); 2993 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present); 2994 } 2995 2996 /* 2997 * Build and ship an IPv4 ICMP message using the packet data in mp, and 2998 * the ICMP header pointed to by "stuff". (May be called as writer.) 2999 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3000 * an icmp error packet can be sent. 3001 * Assigns an appropriate source address to the packet. If ipha_dst is 3002 * one of our addresses use it for source. Otherwise pick a source based 3003 * on a route lookup back to ipha_src. 3004 * Note that ipha_src must be set here since the 3005 * packet is likely to arrive on an ill queue in ip_wput() which will 3006 * not set a source address. 3007 */ 3008 static void 3009 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3010 boolean_t mctl_present) 3011 { 3012 ipaddr_t dst; 3013 icmph_t *icmph; 3014 ipha_t *ipha; 3015 uint_t len_needed; 3016 size_t msg_len; 3017 mblk_t *mp1; 3018 ipaddr_t src; 3019 ire_t *ire; 3020 mblk_t *ipsec_mp; 3021 ipsec_out_t *io = NULL; 3022 boolean_t xmit_if_on = B_FALSE; 3023 zoneid_t zoneid; 3024 3025 if (mctl_present) { 3026 /* 3027 * If it is : 3028 * 3029 * 1) a IPSEC_OUT, then this is caused by outbound 3030 * datagram originating on this host. IPSEC processing 3031 * may or may not have been done. Refer to comments above 3032 * icmp_inbound_error_fanout for details. 3033 * 3034 * 2) a IPSEC_IN if we are generating a icmp_message 3035 * for an incoming datagram destined for us i.e called 3036 * from ip_fanout_send_icmp. 3037 */ 3038 ipsec_info_t *in; 3039 ipsec_mp = mp; 3040 mp = ipsec_mp->b_cont; 3041 3042 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3043 ipha = (ipha_t *)mp->b_rptr; 3044 3045 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3046 in->ipsec_info_type == IPSEC_IN); 3047 3048 if (in->ipsec_info_type == IPSEC_IN) { 3049 /* 3050 * Convert the IPSEC_IN to IPSEC_OUT. 3051 */ 3052 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3053 BUMP_MIB(&ip_mib, ipOutDiscards); 3054 return; 3055 } 3056 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3057 } else { 3058 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3059 io = (ipsec_out_t *)in; 3060 if (io->ipsec_out_xmit_if) 3061 xmit_if_on = B_TRUE; 3062 /* 3063 * Clear out ipsec_out_proc_begin, so we do a fresh 3064 * ire lookup. 3065 */ 3066 io->ipsec_out_proc_begin = B_FALSE; 3067 } 3068 zoneid = io->ipsec_out_zoneid; 3069 ASSERT(zoneid != ALL_ZONES); 3070 } else { 3071 /* 3072 * This is in clear. The icmp message we are building 3073 * here should go out in clear. 3074 * 3075 * Pardon the convolution of it all, but it's easier to 3076 * allocate a "use cleartext" IPSEC_IN message and convert 3077 * it than it is to allocate a new one. 3078 */ 3079 ipsec_in_t *ii; 3080 ASSERT(DB_TYPE(mp) == M_DATA); 3081 if ((ipsec_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 3082 freemsg(mp); 3083 BUMP_MIB(&ip_mib, ipOutDiscards); 3084 return; 3085 } 3086 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3087 3088 /* This is not a secure packet */ 3089 ii->ipsec_in_secure = B_FALSE; 3090 if (CONN_Q(q)) { 3091 zoneid = Q_TO_CONN(q)->conn_zoneid; 3092 } else { 3093 zoneid = GLOBAL_ZONEID; 3094 } 3095 ii->ipsec_in_zoneid = zoneid; 3096 ipsec_mp->b_cont = mp; 3097 ipha = (ipha_t *)mp->b_rptr; 3098 /* 3099 * Convert the IPSEC_IN to IPSEC_OUT. 3100 */ 3101 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3102 BUMP_MIB(&ip_mib, ipOutDiscards); 3103 return; 3104 } 3105 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3106 } 3107 3108 /* Remember our eventual destination */ 3109 dst = ipha->ipha_src; 3110 3111 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3112 NULL, NULL, zoneid, MATCH_IRE_TYPE); 3113 if (ire != NULL && ire->ire_zoneid == zoneid) { 3114 src = ipha->ipha_dst; 3115 } else if (!xmit_if_on) { 3116 if (ire != NULL) 3117 ire_refrele(ire); 3118 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, 3119 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY)); 3120 if (ire == NULL) { 3121 BUMP_MIB(&ip_mib, ipOutNoRoutes); 3122 freemsg(ipsec_mp); 3123 return; 3124 } 3125 src = ire->ire_src_addr; 3126 } else { 3127 ipif_t *ipif = NULL; 3128 ill_t *ill; 3129 /* 3130 * This must be an ICMP error coming from 3131 * ip_mrtun_forward(). The src addr should 3132 * be equal to the IP-addr of the outgoing 3133 * interface. 3134 */ 3135 if (io == NULL) { 3136 /* This is not a IPSEC_OUT type control msg */ 3137 BUMP_MIB(&ip_mib, ipOutNoRoutes); 3138 freemsg(ipsec_mp); 3139 return; 3140 } 3141 ill = ill_lookup_on_ifindex(io->ipsec_out_ill_index, B_FALSE, 3142 NULL, NULL, NULL, NULL); 3143 if (ill != NULL) { 3144 ipif = ipif_get_next_ipif(NULL, ill); 3145 ill_refrele(ill); 3146 } 3147 if (ipif == NULL) { 3148 BUMP_MIB(&ip_mib, ipOutNoRoutes); 3149 freemsg(ipsec_mp); 3150 return; 3151 } 3152 src = ipif->ipif_src_addr; 3153 ipif_refrele(ipif); 3154 } 3155 3156 if (ire != NULL) 3157 ire_refrele(ire); 3158 3159 /* 3160 * Check if we can send back more then 8 bytes in addition 3161 * to the IP header. We will include as much as 64 bytes. 3162 */ 3163 len_needed = IPH_HDR_LENGTH(ipha) + ip_icmp_return; 3164 msg_len = msgdsize(mp); 3165 if (msg_len > len_needed) { 3166 (void) adjmsg(mp, len_needed - msg_len); 3167 msg_len = len_needed; 3168 } 3169 mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_HI); 3170 if (!mp1) { 3171 BUMP_MIB(&icmp_mib, icmpOutErrors); 3172 freemsg(ipsec_mp); 3173 return; 3174 } 3175 mp1->b_cont = mp; 3176 mp = mp1; 3177 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3178 ipsec_mp->b_rptr == (uint8_t *)io && 3179 io->ipsec_out_type == IPSEC_OUT); 3180 ipsec_mp->b_cont = mp; 3181 3182 /* 3183 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3184 * node generates be accepted in peace by all on-host destinations. 3185 * If we do NOT assume that all on-host destinations trust 3186 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3187 * (Look for ipsec_out_icmp_loopback). 3188 */ 3189 io->ipsec_out_icmp_loopback = B_TRUE; 3190 3191 ipha = (ipha_t *)mp->b_rptr; 3192 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3193 *ipha = icmp_ipha; 3194 ipha->ipha_src = src; 3195 ipha->ipha_dst = dst; 3196 ipha->ipha_ttl = ip_def_ttl; 3197 msg_len += sizeof (icmp_ipha) + len; 3198 if (msg_len > IP_MAXPACKET) { 3199 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3200 msg_len = IP_MAXPACKET; 3201 } 3202 ipha->ipha_length = htons((uint16_t)msg_len); 3203 icmph = (icmph_t *)&ipha[1]; 3204 bcopy(stuff, icmph, len); 3205 icmph->icmph_checksum = 0; 3206 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3207 BUMP_MIB(&icmp_mib, icmpOutMsgs); 3208 put(q, ipsec_mp); 3209 } 3210 3211 /* 3212 * Determine if an ICMP error packet can be sent given the rate limit. 3213 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3214 * in milliseconds) and a burst size. Burst size number of packets can 3215 * be sent arbitrarely closely spaced. 3216 * The state is tracked using two variables to implement an approximate 3217 * token bucket filter: 3218 * icmp_pkt_err_last - lbolt value when the last burst started 3219 * icmp_pkt_err_sent - number of packets sent in current burst 3220 */ 3221 boolean_t 3222 icmp_err_rate_limit(void) 3223 { 3224 clock_t now = TICK_TO_MSEC(lbolt); 3225 uint_t refilled; /* Number of packets refilled in tbf since last */ 3226 uint_t err_interval = ip_icmp_err_interval; /* Guard against changes */ 3227 3228 if (err_interval == 0) 3229 return (B_FALSE); 3230 3231 if (icmp_pkt_err_last > now) { 3232 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3233 icmp_pkt_err_last = 0; 3234 icmp_pkt_err_sent = 0; 3235 } 3236 /* 3237 * If we are in a burst update the token bucket filter. 3238 * Update the "last" time to be close to "now" but make sure 3239 * we don't loose precision. 3240 */ 3241 if (icmp_pkt_err_sent != 0) { 3242 refilled = (now - icmp_pkt_err_last)/err_interval; 3243 if (refilled > icmp_pkt_err_sent) { 3244 icmp_pkt_err_sent = 0; 3245 } else { 3246 icmp_pkt_err_sent -= refilled; 3247 icmp_pkt_err_last += refilled * err_interval; 3248 } 3249 } 3250 if (icmp_pkt_err_sent == 0) { 3251 /* Start of new burst */ 3252 icmp_pkt_err_last = now; 3253 } 3254 if (icmp_pkt_err_sent < ip_icmp_err_burst) { 3255 icmp_pkt_err_sent++; 3256 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3257 icmp_pkt_err_sent)); 3258 return (B_FALSE); 3259 } 3260 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3261 return (B_TRUE); 3262 } 3263 3264 /* 3265 * Check if it is ok to send an IPv4 ICMP error packet in 3266 * response to the IPv4 packet in mp. 3267 * Free the message and return null if no 3268 * ICMP error packet should be sent. 3269 */ 3270 static mblk_t * 3271 icmp_pkt_err_ok(mblk_t *mp) 3272 { 3273 icmph_t *icmph; 3274 ipha_t *ipha; 3275 uint_t len_needed; 3276 ire_t *src_ire; 3277 ire_t *dst_ire; 3278 3279 if (!mp) 3280 return (NULL); 3281 ipha = (ipha_t *)mp->b_rptr; 3282 if (ip_csum_hdr(ipha)) { 3283 BUMP_MIB(&ip_mib, ipInCksumErrs); 3284 freemsg(mp); 3285 return (NULL); 3286 } 3287 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3288 NULL, ALL_ZONES, MATCH_IRE_TYPE); 3289 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3290 NULL, ALL_ZONES, MATCH_IRE_TYPE); 3291 if (src_ire != NULL || dst_ire != NULL || 3292 CLASSD(ipha->ipha_dst) || 3293 CLASSD(ipha->ipha_src) || 3294 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3295 /* Note: only errors to the fragment with offset 0 */ 3296 BUMP_MIB(&icmp_mib, icmpOutDrops); 3297 freemsg(mp); 3298 if (src_ire != NULL) 3299 ire_refrele(src_ire); 3300 if (dst_ire != NULL) 3301 ire_refrele(dst_ire); 3302 return (NULL); 3303 } 3304 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3305 /* 3306 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3307 * errors in response to any ICMP errors. 3308 */ 3309 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3310 if (mp->b_wptr - mp->b_rptr < len_needed) { 3311 if (!pullupmsg(mp, len_needed)) { 3312 BUMP_MIB(&icmp_mib, icmpInErrors); 3313 freemsg(mp); 3314 return (NULL); 3315 } 3316 ipha = (ipha_t *)mp->b_rptr; 3317 } 3318 icmph = (icmph_t *) 3319 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3320 switch (icmph->icmph_type) { 3321 case ICMP_DEST_UNREACHABLE: 3322 case ICMP_SOURCE_QUENCH: 3323 case ICMP_TIME_EXCEEDED: 3324 case ICMP_PARAM_PROBLEM: 3325 case ICMP_REDIRECT: 3326 BUMP_MIB(&icmp_mib, icmpOutDrops); 3327 freemsg(mp); 3328 return (NULL); 3329 default: 3330 break; 3331 } 3332 } 3333 if (icmp_err_rate_limit()) { 3334 /* 3335 * Only send ICMP error packets every so often. 3336 * This should be done on a per port/source basis, 3337 * but for now this will suffice. 3338 */ 3339 freemsg(mp); 3340 return (NULL); 3341 } 3342 return (mp); 3343 } 3344 3345 /* 3346 * Generate an ICMP redirect message. 3347 */ 3348 static void 3349 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway) 3350 { 3351 icmph_t icmph; 3352 3353 /* 3354 * We are called from ip_rput where we could 3355 * not have attached an IPSEC_IN. 3356 */ 3357 ASSERT(mp->b_datap->db_type == M_DATA); 3358 3359 if (!(mp = icmp_pkt_err_ok(mp))) { 3360 return; 3361 } 3362 3363 bzero(&icmph, sizeof (icmph_t)); 3364 icmph.icmph_type = ICMP_REDIRECT; 3365 icmph.icmph_code = 1; 3366 icmph.icmph_rd_gateway = gateway; 3367 BUMP_MIB(&icmp_mib, icmpOutRedirects); 3368 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE); 3369 } 3370 3371 /* 3372 * Generate an ICMP time exceeded message. 3373 */ 3374 void 3375 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code) 3376 { 3377 icmph_t icmph; 3378 boolean_t mctl_present; 3379 mblk_t *first_mp; 3380 3381 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3382 3383 if (!(mp = icmp_pkt_err_ok(mp))) { 3384 if (mctl_present) 3385 freeb(first_mp); 3386 return; 3387 } 3388 3389 bzero(&icmph, sizeof (icmph_t)); 3390 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3391 icmph.icmph_code = code; 3392 BUMP_MIB(&icmp_mib, icmpOutTimeExcds); 3393 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present); 3394 } 3395 3396 /* 3397 * Generate an ICMP unreachable message. 3398 */ 3399 void 3400 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code) 3401 { 3402 icmph_t icmph; 3403 mblk_t *first_mp; 3404 boolean_t mctl_present; 3405 3406 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3407 3408 if (!(mp = icmp_pkt_err_ok(mp))) { 3409 if (mctl_present) 3410 freeb(first_mp); 3411 return; 3412 } 3413 3414 bzero(&icmph, sizeof (icmph_t)); 3415 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3416 icmph.icmph_code = code; 3417 BUMP_MIB(&icmp_mib, icmpOutDestUnreachs); 3418 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3419 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present); 3420 } 3421 3422 /* 3423 * News from ARP. ARP sends notification of interesting events down 3424 * to its clients using M_CTL messages with the interesting ARP packet 3425 * attached via b_cont. 3426 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3427 * queue as opposed to ARP sending the message to all the clients, i.e. all 3428 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3429 * table if a cache IRE is found to delete all the entries for the address in 3430 * the packet. 3431 */ 3432 static void 3433 ip_arp_news(queue_t *q, mblk_t *mp) 3434 { 3435 arcn_t *arcn; 3436 arh_t *arh; 3437 char *cp1; 3438 uchar_t *cp2; 3439 ire_t *ire = NULL; 3440 int i1; 3441 char hbuf[128]; 3442 char sbuf[16]; 3443 ipaddr_t src; 3444 in6_addr_t v6src; 3445 boolean_t isv6 = B_FALSE; 3446 3447 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 3448 if (q->q_next) { 3449 putnext(q, mp); 3450 } else 3451 freemsg(mp); 3452 return; 3453 } 3454 arh = (arh_t *)mp->b_cont->b_rptr; 3455 /* Is it one we are interested in? */ 3456 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 3457 isv6 = B_TRUE; 3458 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 3459 IPV6_ADDR_LEN); 3460 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 3461 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 3462 IP_ADDR_LEN); 3463 } else { 3464 freemsg(mp); 3465 return; 3466 } 3467 3468 arcn = (arcn_t *)mp->b_rptr; 3469 switch (arcn->arcn_code) { 3470 case AR_CN_BOGON: 3471 /* 3472 * Someone is sending ARP packets with a source protocol 3473 * address which we have published. Either they are 3474 * pretending to be us, or we have been asked to proxy 3475 * for a machine that can do fine for itself, or two 3476 * different machines are providing proxy service for the 3477 * same protocol address, or something. We try and do 3478 * something appropriate here. 3479 */ 3480 cp2 = (uchar_t *)&arh[1]; 3481 cp1 = hbuf; 3482 *cp1 = '\0'; 3483 for (i1 = arh->arh_hlen; i1--; cp1 += 3) 3484 (void) sprintf(cp1, "%02x:", *cp2++ & 0xff); 3485 if (cp1 != hbuf) 3486 cp1[-1] = '\0'; 3487 (void) ip_dot_addr(src, sbuf); 3488 if (isv6) 3489 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES); 3490 else 3491 ire = ire_cache_lookup(src, ALL_ZONES); 3492 3493 if (ire != NULL && IRE_IS_LOCAL(ire)) { 3494 cmn_err(CE_WARN, 3495 "IP: Hardware address '%s' trying" 3496 " to be our address %s!", 3497 hbuf, sbuf); 3498 } else { 3499 cmn_err(CE_WARN, 3500 "IP: Proxy ARP problem? " 3501 "Hardware address '%s' thinks it is %s", 3502 hbuf, sbuf); 3503 } 3504 if (ire != NULL) 3505 ire_refrele(ire); 3506 break; 3507 case AR_CN_ANNOUNCE: 3508 if (isv6) { 3509 /* 3510 * For XRESOLV interfaces. 3511 * Delete the IRE cache entry and NCE for this 3512 * v6 address 3513 */ 3514 ip_ire_clookup_and_delete_v6(&v6src); 3515 /* 3516 * If v6src is a non-zero, it's a router address 3517 * as below. Do the same sort of thing to clean 3518 * out off-net IRE_CACHE entries that go through 3519 * the router. 3520 */ 3521 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 3522 ire_walk_v6(ire_delete_cache_gw_v6, 3523 (char *)&v6src, ALL_ZONES); 3524 } 3525 break; 3526 } 3527 /* 3528 * ARP gives us a copy of any broadcast packet with identical 3529 * sender and receiver protocol address, in 3530 * case we want to intuit something from it. Such a packet 3531 * usually means that a machine has just come up on the net. 3532 * If we have an IRE_CACHE, we blow it away. This way we will 3533 * immediately pick up the rare case of a host changing 3534 * hardware address. ip_ire_clookup_and_delete achieves this. 3535 * 3536 * The address in "src" may be an entry for a router. 3537 * (Default router, or non-default router.) If 3538 * that's true, then any off-net IRE_CACHE entries 3539 * that go through the router with address "src" 3540 * must be clobbered. Use ire_walk to achieve this 3541 * goal. 3542 * 3543 * It should be possible to determine if the address 3544 * in src is or is not for a router. This way, 3545 * the ire_walk() isn't called all of the time here. 3546 * Do not pass 'src' value of 0 to ire_delete_cache_gw, 3547 * as it would remove all IRE_CACHE entries for onlink 3548 * destinations. All onlink destinations have 3549 * ire_gateway_addr == 0. 3550 */ 3551 if ((ip_ire_clookup_and_delete(src, NULL) || 3552 (ire = ire_ftable_lookup(src, 0, 0, 0, NULL, NULL, NULL, 3553 0, MATCH_IRE_DSTONLY)) != NULL) && src != 0) { 3554 ire_walk_v4(ire_delete_cache_gw, (char *)&src, 3555 ALL_ZONES); 3556 } 3557 /* From ire_ftable_lookup */ 3558 if (ire != NULL) 3559 ire_refrele(ire); 3560 break; 3561 default: 3562 if (ire != NULL) 3563 ire_refrele(ire); 3564 break; 3565 } 3566 freemsg(mp); 3567 } 3568 3569 /* 3570 * Create a mblk suitable for carrying the interface index and/or source link 3571 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 3572 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 3573 * application. 3574 */ 3575 mblk_t * 3576 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags) 3577 { 3578 mblk_t *mp; 3579 in_pktinfo_t *pinfo; 3580 ipha_t *ipha; 3581 struct ether_header *pether; 3582 3583 mp = allocb(sizeof (in_pktinfo_t), BPRI_MED); 3584 if (mp == NULL) { 3585 ip1dbg(("ip_add_info: allocation failure.\n")); 3586 return (data_mp); 3587 } 3588 3589 ipha = (ipha_t *)data_mp->b_rptr; 3590 pinfo = (in_pktinfo_t *)mp->b_rptr; 3591 bzero(pinfo, sizeof (in_pktinfo_t)); 3592 pinfo->in_pkt_flags = (uchar_t)flags; 3593 pinfo->in_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 3594 3595 if (flags & IPF_RECVIF) 3596 pinfo->in_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 3597 3598 pether = (struct ether_header *)((char *)ipha 3599 - sizeof (struct ether_header)); 3600 /* 3601 * Make sure the interface is an ethernet type, since this option 3602 * is currently supported only on this type of interface. Also make 3603 * sure we are pointing correctly above db_base. 3604 */ 3605 3606 if ((flags & IPF_RECVSLLA) && 3607 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 3608 (ill->ill_type == IFT_ETHER) && 3609 (ill->ill_net_type == IRE_IF_RESOLVER)) { 3610 3611 pinfo->in_pkt_slla.sdl_type = IFT_ETHER; 3612 bcopy((uchar_t *)pether->ether_shost.ether_addr_octet, 3613 (uchar_t *)pinfo->in_pkt_slla.sdl_data, ETHERADDRL); 3614 } else { 3615 /* 3616 * Clear the bit. Indicate to upper layer that IP is not 3617 * sending this ancillary info. 3618 */ 3619 pinfo->in_pkt_flags = pinfo->in_pkt_flags & ~IPF_RECVSLLA; 3620 } 3621 3622 mp->b_datap->db_type = M_CTL; 3623 mp->b_wptr += sizeof (in_pktinfo_t); 3624 mp->b_cont = data_mp; 3625 3626 return (mp); 3627 } 3628 3629 /* 3630 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 3631 * part of the bind request. 3632 */ 3633 3634 boolean_t 3635 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 3636 { 3637 ipsec_in_t *ii; 3638 3639 ASSERT(policy_mp != NULL); 3640 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 3641 3642 ii = (ipsec_in_t *)policy_mp->b_rptr; 3643 ASSERT(ii->ipsec_in_type == IPSEC_IN); 3644 3645 connp->conn_policy = ii->ipsec_in_policy; 3646 ii->ipsec_in_policy = NULL; 3647 3648 if (ii->ipsec_in_action != NULL) { 3649 if (connp->conn_latch == NULL) { 3650 connp->conn_latch = iplatch_create(); 3651 if (connp->conn_latch == NULL) 3652 return (B_FALSE); 3653 } 3654 ipsec_latch_inbound(connp->conn_latch, ii); 3655 } 3656 return (B_TRUE); 3657 } 3658 3659 /* 3660 * Upper level protocols (ULP) pass through bind requests to IP for inspection 3661 * and to arrange for power-fanout assist. The ULP is identified by 3662 * adding a single byte at the end of the original bind message. 3663 * A ULP other than UDP or TCP that wishes to be recognized passes 3664 * down a bind with a zero length address. 3665 * 3666 * The binding works as follows: 3667 * - A zero byte address means just bind to the protocol. 3668 * - A four byte address is treated as a request to validate 3669 * that the address is a valid local address, appropriate for 3670 * an application to bind to. This does not affect any fanout 3671 * information in IP. 3672 * - A sizeof sin_t byte address is used to bind to only the local address 3673 * and port. 3674 * - A sizeof ipa_conn_t byte address contains complete fanout information 3675 * consisting of local and remote addresses and ports. In 3676 * this case, the addresses are both validated as appropriate 3677 * for this operation, and, if so, the information is retained 3678 * for use in the inbound fanout. 3679 * 3680 * The ULP (except in the zero-length bind) can append an 3681 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 3682 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 3683 * a copy of the source or destination IRE (source for local bind; 3684 * destination for complete bind). IPSEC_POLICY_SET indicates that the 3685 * policy information contained should be copied on to the conn. 3686 * 3687 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 3688 */ 3689 mblk_t * 3690 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 3691 { 3692 ssize_t len; 3693 struct T_bind_req *tbr; 3694 sin_t *sin; 3695 ipa_conn_t *ac; 3696 uchar_t *ucp; 3697 mblk_t *mp1; 3698 boolean_t ire_requested; 3699 boolean_t ipsec_policy_set = B_FALSE; 3700 int error = 0; 3701 int protocol; 3702 ipa_conn_x_t *acx; 3703 3704 ASSERT(!connp->conn_af_isv6); 3705 connp->conn_pkt_isv6 = B_FALSE; 3706 3707 len = mp->b_wptr - mp->b_rptr; 3708 if (len < (sizeof (*tbr) + 1)) { 3709 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 3710 "ip_bind: bogus msg, len %ld", len); 3711 /* XXX: Need to return something better */ 3712 goto bad_addr; 3713 } 3714 /* Back up and extract the protocol identifier. */ 3715 mp->b_wptr--; 3716 protocol = *mp->b_wptr & 0xFF; 3717 tbr = (struct T_bind_req *)mp->b_rptr; 3718 /* Reset the message type in preparation for shipping it back. */ 3719 mp->b_datap->db_type = M_PCPROTO; 3720 3721 connp->conn_ulp = (uint8_t)protocol; 3722 3723 /* 3724 * Check for a zero length address. This is from a protocol that 3725 * wants to register to receive all packets of its type. 3726 */ 3727 if (tbr->ADDR_length == 0) { 3728 /* 3729 * These protocols are now intercepted in ip_bind_v6(). 3730 * Reject protocol-level binds here for now. 3731 * 3732 * For SCTP raw socket, ICMP sends down a bind with sin_t 3733 * so that the protocol type cannot be SCTP. 3734 */ 3735 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 3736 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 3737 goto bad_addr; 3738 } 3739 3740 /* No hash here really. The table is big enough. */ 3741 connp->conn_srcv6 = ipv6_all_zeros; 3742 3743 ipcl_proto_insert(connp, protocol); 3744 3745 tbr->PRIM_type = T_BIND_ACK; 3746 return (mp); 3747 } 3748 3749 /* Extract the address pointer from the message. */ 3750 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 3751 tbr->ADDR_length); 3752 if (ucp == NULL) { 3753 ip1dbg(("ip_bind: no address\n")); 3754 goto bad_addr; 3755 } 3756 if (!OK_32PTR(ucp)) { 3757 ip1dbg(("ip_bind: unaligned address\n")); 3758 goto bad_addr; 3759 } 3760 /* 3761 * Check for trailing mps. 3762 */ 3763 3764 mp1 = mp->b_cont; 3765 ire_requested = (mp1 && mp1->b_datap->db_type == IRE_DB_REQ_TYPE); 3766 ipsec_policy_set = (mp1 && mp1->b_datap->db_type == IPSEC_POLICY_SET); 3767 3768 switch (tbr->ADDR_length) { 3769 default: 3770 ip1dbg(("ip_bind: bad address length %d\n", 3771 (int)tbr->ADDR_length)); 3772 goto bad_addr; 3773 3774 case IP_ADDR_LEN: 3775 /* Verification of local address only */ 3776 error = ip_bind_laddr(connp, mp, *(ipaddr_t *)ucp, 0, 3777 ire_requested, ipsec_policy_set, B_FALSE); 3778 break; 3779 3780 case sizeof (sin_t): 3781 sin = (sin_t *)ucp; 3782 error = ip_bind_laddr(connp, mp, sin->sin_addr.s_addr, 3783 sin->sin_port, ire_requested, ipsec_policy_set, B_TRUE); 3784 if (protocol == IPPROTO_TCP) 3785 connp->conn_recv = tcp_conn_request; 3786 break; 3787 3788 case sizeof (ipa_conn_t): 3789 ac = (ipa_conn_t *)ucp; 3790 /* For raw socket, the local port is not set. */ 3791 if (ac->ac_lport == 0) 3792 ac->ac_lport = connp->conn_lport; 3793 /* Always verify destination reachability. */ 3794 error = ip_bind_connected(connp, mp, &ac->ac_laddr, 3795 ac->ac_lport, ac->ac_faddr, ac->ac_fport, ire_requested, 3796 ipsec_policy_set, B_TRUE, B_TRUE); 3797 if (protocol == IPPROTO_TCP) 3798 connp->conn_recv = tcp_input; 3799 break; 3800 3801 case sizeof (ipa_conn_x_t): 3802 acx = (ipa_conn_x_t *)ucp; 3803 /* 3804 * Whether or not to verify destination reachability depends 3805 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 3806 */ 3807 error = ip_bind_connected(connp, mp, &acx->acx_conn.ac_laddr, 3808 acx->acx_conn.ac_lport, acx->acx_conn.ac_faddr, 3809 acx->acx_conn.ac_fport, ire_requested, ipsec_policy_set, 3810 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0); 3811 if (protocol == IPPROTO_TCP) 3812 connp->conn_recv = tcp_input; 3813 break; 3814 } 3815 if (error == EINPROGRESS) 3816 return (NULL); 3817 else if (error != 0) 3818 goto bad_addr; 3819 /* 3820 * Pass the IPSEC headers size in ire_ipsec_overhead. 3821 * We can't do this in ip_bind_insert_ire because the policy 3822 * may not have been inherited at that point in time and hence 3823 * conn_out_enforce_policy may not be set. 3824 */ 3825 mp1 = mp->b_cont; 3826 if (ire_requested && connp->conn_out_enforce_policy && 3827 mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE) { 3828 ire_t *ire = (ire_t *)mp1->b_rptr; 3829 ASSERT(MBLKL(mp1) >= sizeof (ire_t)); 3830 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 3831 } 3832 3833 /* Send it home. */ 3834 mp->b_datap->db_type = M_PCPROTO; 3835 tbr->PRIM_type = T_BIND_ACK; 3836 return (mp); 3837 3838 bad_addr: 3839 /* 3840 * If error = -1 then we generate a TBADADDR - otherwise error is 3841 * a unix errno. 3842 */ 3843 if (error > 0) 3844 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 3845 else 3846 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 3847 return (mp); 3848 } 3849 3850 /* 3851 * Here address is verified to be a valid local address. 3852 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 3853 * address is also considered a valid local address. 3854 * In the case of a broadcast/multicast address, however, the 3855 * upper protocol is expected to reset the src address 3856 * to 0 if it sees a IRE_BROADCAST type returned so that 3857 * no packets are emitted with broadcast/multicast address as 3858 * source address (that violates hosts requirements RFC1122) 3859 * The addresses valid for bind are: 3860 * (1) - INADDR_ANY (0) 3861 * (2) - IP address of an UP interface 3862 * (3) - IP address of a DOWN interface 3863 * (4) - valid local IP broadcast addresses. In this case 3864 * the conn will only receive packets destined to 3865 * the specified broadcast address. 3866 * (5) - a multicast address. In this case 3867 * the conn will only receive packets destined to 3868 * the specified multicast address. Note: the 3869 * application still has to issue an 3870 * IP_ADD_MEMBERSHIP socket option. 3871 * 3872 * On error, return -1 for TBADADDR otherwise pass the 3873 * errno with TSYSERR reply. 3874 * 3875 * In all the above cases, the bound address must be valid in the current zone. 3876 * When the address is loopback, multicast or broadcast, there might be many 3877 * matching IREs so bind has to look up based on the zone. 3878 */ 3879 int 3880 ip_bind_laddr(conn_t *connp, mblk_t *mp, ipaddr_t src_addr, uint16_t lport, 3881 boolean_t ire_requested, boolean_t ipsec_policy_set, 3882 boolean_t fanout_insert) 3883 { 3884 int error = 0; 3885 ire_t *src_ire; 3886 mblk_t *policy_mp; 3887 ipif_t *ipif; 3888 zoneid_t zoneid; 3889 3890 if (ipsec_policy_set) { 3891 policy_mp = mp->b_cont; 3892 } 3893 3894 /* 3895 * If it was previously connected, conn_fully_bound would have 3896 * been set. 3897 */ 3898 connp->conn_fully_bound = B_FALSE; 3899 3900 src_ire = NULL; 3901 ipif = NULL; 3902 3903 zoneid = connp->conn_zoneid; 3904 3905 if (src_addr) { 3906 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 3907 NULL, NULL, zoneid, MATCH_IRE_ZONEONLY); 3908 /* 3909 * If an address other than 0.0.0.0 is requested, 3910 * we verify that it is a valid address for bind 3911 * Note: Following code is in if-else-if form for 3912 * readability compared to a condition check. 3913 */ 3914 /* LINTED - statement has no consequent */ 3915 if (IRE_IS_LOCAL(src_ire)) { 3916 /* 3917 * (2) Bind to address of local UP interface 3918 */ 3919 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 3920 /* 3921 * (4) Bind to broadcast address 3922 * Note: permitted only from transports that 3923 * request IRE 3924 */ 3925 if (!ire_requested) 3926 error = EADDRNOTAVAIL; 3927 } else { 3928 /* 3929 * (3) Bind to address of local DOWN interface 3930 * (ipif_lookup_addr() looks up all interfaces 3931 * but we do not get here for UP interfaces 3932 * - case (2) above) 3933 * We put the protocol byte back into the mblk 3934 * since we may come back via ip_wput_nondata() 3935 * later with this mblk if ipif_lookup_addr chooses 3936 * to defer processing. 3937 */ 3938 *mp->b_wptr++ = (char)connp->conn_ulp; 3939 if ((ipif = ipif_lookup_addr(src_addr, NULL, zoneid, 3940 CONNP_TO_WQ(connp), mp, ip_wput_nondata, 3941 &error)) != NULL) { 3942 ipif_refrele(ipif); 3943 } else if (error == EINPROGRESS) { 3944 if (src_ire != NULL) 3945 ire_refrele(src_ire); 3946 return (EINPROGRESS); 3947 } else if (CLASSD(src_addr)) { 3948 error = 0; 3949 if (src_ire != NULL) 3950 ire_refrele(src_ire); 3951 /* 3952 * (5) bind to multicast address. 3953 * Fake out the IRE returned to upper 3954 * layer to be a broadcast IRE. 3955 */ 3956 src_ire = ire_ctable_lookup( 3957 INADDR_BROADCAST, INADDR_ANY, 3958 IRE_BROADCAST, NULL, zoneid, 3959 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY)); 3960 if (src_ire == NULL || !ire_requested) 3961 error = EADDRNOTAVAIL; 3962 } else { 3963 /* 3964 * Not a valid address for bind 3965 */ 3966 error = EADDRNOTAVAIL; 3967 } 3968 /* 3969 * Just to keep it consistent with the processing in 3970 * ip_bind_v4() 3971 */ 3972 mp->b_wptr--; 3973 } 3974 if (error) { 3975 /* Red Alert! Attempting to be a bogon! */ 3976 ip1dbg(("ip_bind: bad src address 0x%x\n", 3977 ntohl(src_addr))); 3978 goto bad_addr; 3979 } 3980 } 3981 3982 /* 3983 * Allow setting new policies. For example, disconnects come 3984 * down as ipa_t bind. As we would have set conn_policy_cached 3985 * to B_TRUE before, we should set it to B_FALSE, so that policy 3986 * can change after the disconnect. 3987 */ 3988 connp->conn_policy_cached = B_FALSE; 3989 3990 /* 3991 * If not fanout_insert this was just an address verification 3992 */ 3993 if (fanout_insert) { 3994 /* 3995 * The addresses have been verified. Time to insert in 3996 * the correct fanout list. 3997 */ 3998 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 3999 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4000 connp->conn_lport = lport; 4001 connp->conn_fport = 0; 4002 /* 4003 * Do we need to add a check to reject Multicast packets 4004 */ 4005 error = ipcl_bind_insert(connp, *mp->b_wptr, src_addr, lport); 4006 } 4007 done: 4008 if (error == 0) { 4009 if (ire_requested) { 4010 if (!ip_bind_insert_ire(mp, src_ire, NULL)) { 4011 error = -1; 4012 /* Falls through to bad_addr */ 4013 } 4014 } else if (ipsec_policy_set) { 4015 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4016 error = -1; 4017 /* Falls through to bad_addr */ 4018 } 4019 } 4020 } 4021 bad_addr: 4022 if (src_ire != NULL) 4023 IRE_REFRELE(src_ire); 4024 if (ipsec_policy_set) { 4025 ASSERT(policy_mp == mp->b_cont); 4026 ASSERT(policy_mp != NULL); 4027 freeb(policy_mp); 4028 /* 4029 * As of now assume that nothing else accompanies 4030 * IPSEC_POLICY_SET. 4031 */ 4032 mp->b_cont = NULL; 4033 } 4034 return (error); 4035 } 4036 4037 /* 4038 * Verify that both the source and destination addresses 4039 * are valid. If verify_dst is false, then the destination address may be 4040 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4041 * destination reachability, while tunnels do not. 4042 * Note that we allow connect to broadcast and multicast 4043 * addresses when ire_requested is set. Thus the ULP 4044 * has to check for IRE_BROADCAST and multicast. 4045 * 4046 * Returns zero if ok. 4047 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4048 * (for use with TSYSERR reply). 4049 */ 4050 int 4051 ip_bind_connected(conn_t *connp, mblk_t *mp, ipaddr_t *src_addrp, 4052 uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4053 boolean_t ire_requested, boolean_t ipsec_policy_set, 4054 boolean_t fanout_insert, boolean_t verify_dst) 4055 { 4056 ire_t *src_ire; 4057 ire_t *dst_ire; 4058 int error = 0; 4059 int protocol; 4060 mblk_t *policy_mp; 4061 ire_t *sire = NULL; 4062 ire_t *md_dst_ire = NULL; 4063 ill_t *md_ill = NULL; 4064 zoneid_t zoneid; 4065 ipaddr_t src_addr = *src_addrp; 4066 4067 src_ire = dst_ire = NULL; 4068 protocol = *mp->b_wptr & 0xFF; 4069 4070 /* 4071 * If we never got a disconnect before, clear it now. 4072 */ 4073 connp->conn_fully_bound = B_FALSE; 4074 4075 if (ipsec_policy_set) { 4076 policy_mp = mp->b_cont; 4077 } 4078 4079 zoneid = connp->conn_zoneid; 4080 4081 if (CLASSD(dst_addr)) { 4082 /* Pick up an IRE_BROADCAST */ 4083 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4084 NULL, zoneid, (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4085 MATCH_IRE_RJ_BHOLE)); 4086 } else { 4087 /* 4088 * If conn_dontroute is set, and onlink ipif is not found 4089 * set ENETUNREACH error 4090 */ 4091 if (connp->conn_dontroute) { 4092 ipif_t *ipif; 4093 4094 ipif = ipif_lookup_onlink_addr(dst_addr, zoneid); 4095 if (ipif == NULL) { 4096 error = ENETUNREACH; 4097 goto bad_addr; 4098 } 4099 ipif_refrele(ipif); 4100 } 4101 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, &sire, 4102 zoneid, 4103 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4104 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE)); 4105 } 4106 /* 4107 * dst_ire can't be a broadcast when not ire_requested. 4108 * We also prevent ire's with src address INADDR_ANY to 4109 * be used, which are created temporarily for 4110 * sending out packets from endpoints that have 4111 * conn_unspec_src set. If verify_dst is true, the destination must be 4112 * reachable. If verify_dst is false, the destination needn't be 4113 * reachable. 4114 * 4115 * If we match on a reject or black hole, then we've got a 4116 * local failure. May as well fail out the connect() attempt, 4117 * since it's never going to succeed. 4118 */ 4119 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4120 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4121 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4122 /* 4123 * If we're verifying destination reachability, we always want 4124 * to complain here. 4125 * 4126 * If we're not verifying destination reachability but the 4127 * destination has a route, we still want to fail on the 4128 * temporary address and broadcast address tests. 4129 */ 4130 if (verify_dst || (dst_ire != NULL)) { 4131 if (ip_debug > 2) { 4132 pr_addr_dbg("ip_bind_connected: bad connected " 4133 "dst %s\n", AF_INET, &dst_addr); 4134 } 4135 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4136 error = ENETUNREACH; 4137 else 4138 error = EHOSTUNREACH; 4139 goto bad_addr; 4140 } 4141 } 4142 /* 4143 * If the app does a connect(), it means that it will most likely 4144 * send more than 1 packet to the destination. It makes sense 4145 * to clear the temporary flag. 4146 */ 4147 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4148 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4149 irb_t *irb = dst_ire->ire_bucket; 4150 4151 rw_enter(&irb->irb_lock, RW_WRITER); 4152 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4153 irb->irb_tmp_ire_cnt--; 4154 rw_exit(&irb->irb_lock); 4155 } 4156 4157 /* 4158 * See if we should notify ULP about MDT; we do this whether or not 4159 * ire_requested is TRUE, in order to handle active connects; MDT 4160 * eligibility tests for passive connects are handled separately 4161 * through tcp_adapt_ire(). We do this before the source address 4162 * selection, because dst_ire may change after a call to 4163 * ipif_select_source(). This is a best-effort check, as the 4164 * packet for this connection may not actually go through 4165 * dst_ire->ire_stq, and the exact IRE can only be known after 4166 * calling ip_newroute(). This is why we further check on the 4167 * IRE during Multidata packet transmission in tcp_multisend(). 4168 */ 4169 if (ip_multidata_outbound && !ipsec_policy_set && dst_ire != NULL && 4170 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4171 (md_ill = ire_to_ill(dst_ire), md_ill != NULL) && 4172 (md_ill->ill_capabilities & ILL_CAPAB_MDT)) { 4173 md_dst_ire = dst_ire; 4174 IRE_REFHOLD(md_dst_ire); 4175 } 4176 4177 if (dst_ire != NULL && 4178 dst_ire->ire_type == IRE_LOCAL && 4179 dst_ire->ire_zoneid != zoneid) { 4180 /* 4181 * If the IRE belongs to a different zone, look for a matching 4182 * route in the forwarding table and use the source address from 4183 * that route. 4184 */ 4185 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4186 zoneid, 0, 4187 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4188 MATCH_IRE_RJ_BHOLE); 4189 if (src_ire == NULL) { 4190 error = EHOSTUNREACH; 4191 goto bad_addr; 4192 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4193 if (!(src_ire->ire_type & IRE_HOST)) 4194 error = ENETUNREACH; 4195 else 4196 error = EHOSTUNREACH; 4197 goto bad_addr; 4198 } 4199 if (src_addr == INADDR_ANY) 4200 src_addr = src_ire->ire_src_addr; 4201 ire_refrele(src_ire); 4202 src_ire = NULL; 4203 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4204 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4205 src_addr = sire->ire_src_addr; 4206 ire_refrele(dst_ire); 4207 dst_ire = sire; 4208 sire = NULL; 4209 } else { 4210 /* 4211 * Pick a source address so that a proper inbound 4212 * load spreading would happen. 4213 */ 4214 ill_t *dst_ill = dst_ire->ire_ipif->ipif_ill; 4215 ipif_t *src_ipif = NULL; 4216 ire_t *ipif_ire; 4217 4218 /* 4219 * Supply a local source address such that inbound 4220 * load spreading happens. 4221 * 4222 * Determine the best source address on this ill for 4223 * the destination. 4224 * 4225 * 1) For broadcast, we should return a broadcast ire 4226 * found above so that upper layers know that the 4227 * destination address is a broadcast address. 4228 * 4229 * 2) If this is part of a group, select a better 4230 * source address so that better inbound load 4231 * balancing happens. Do the same if the ipif 4232 * is DEPRECATED. 4233 * 4234 * 3) If the outgoing interface is part of a usesrc 4235 * group, then try selecting a source address from 4236 * the usesrc ILL. 4237 */ 4238 if (!(dst_ire->ire_type & IRE_BROADCAST) && 4239 ((dst_ill->ill_group != NULL) || 4240 (dst_ire->ire_ipif->ipif_flags & 4241 IPIF_DEPRECATED) || 4242 (dst_ill->ill_usesrc_ifindex != 0))) { 4243 src_ipif = ipif_select_source(dst_ill, 4244 dst_addr, zoneid); 4245 if (src_ipif != NULL) { 4246 if (IS_VNI(src_ipif->ipif_ill)) { 4247 /* 4248 * For VNI there is no 4249 * interface route 4250 */ 4251 src_addr = 4252 src_ipif->ipif_src_addr; 4253 } else { 4254 ipif_ire = 4255 ipif_to_ire(src_ipif); 4256 if (ipif_ire != NULL) { 4257 IRE_REFRELE(dst_ire); 4258 dst_ire = ipif_ire; 4259 } 4260 src_addr = 4261 dst_ire->ire_src_addr; 4262 } 4263 ipif_refrele(src_ipif); 4264 } else { 4265 src_addr = dst_ire->ire_src_addr; 4266 } 4267 } else { 4268 src_addr = dst_ire->ire_src_addr; 4269 } 4270 } 4271 } 4272 4273 /* 4274 * We do ire_route_lookup() here (and not 4275 * interface lookup as we assert that 4276 * src_addr should only come from an 4277 * UP interface for hard binding. 4278 */ 4279 ASSERT(src_ire == NULL); 4280 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 4281 NULL, zoneid, MATCH_IRE_ZONEONLY); 4282 /* src_ire must be a local|loopback */ 4283 if (!IRE_IS_LOCAL(src_ire)) { 4284 if (ip_debug > 2) { 4285 pr_addr_dbg("ip_bind_connected: bad connected " 4286 "src %s\n", AF_INET, &src_addr); 4287 } 4288 error = EADDRNOTAVAIL; 4289 goto bad_addr; 4290 } 4291 4292 /* 4293 * If the source address is a loopback address, the 4294 * destination had best be local or multicast. 4295 * The transports that can't handle multicast will reject 4296 * those addresses. 4297 */ 4298 if (src_ire->ire_type == IRE_LOOPBACK && 4299 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 4300 ip1dbg(("ip_bind_connected: bad connected loopback\n")); 4301 error = -1; 4302 goto bad_addr; 4303 } 4304 4305 /* 4306 * Allow setting new policies. For example, disconnects come 4307 * down as ipa_t bind. As we would have set conn_policy_cached 4308 * to B_TRUE before, we should set it to B_FALSE, so that policy 4309 * can change after the disconnect. 4310 */ 4311 connp->conn_policy_cached = B_FALSE; 4312 4313 /* 4314 * Set the conn addresses/ports immediately, so the IPsec policy calls 4315 * can handle their passed-in conn's. 4316 */ 4317 4318 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4319 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 4320 connp->conn_lport = lport; 4321 connp->conn_fport = fport; 4322 *src_addrp = src_addr; 4323 4324 ASSERT(!(ipsec_policy_set && ire_requested)); 4325 if (ire_requested) { 4326 iulp_t *ulp_info = NULL; 4327 4328 /* 4329 * Note that sire will not be NULL if this is an off-link 4330 * connection and there is not cache for that dest yet. 4331 * 4332 * XXX Because of an existing bug, if there are multiple 4333 * default routes, the IRE returned now may not be the actual 4334 * default route used (default routes are chosen in a 4335 * round robin fashion). So if the metrics for different 4336 * default routes are different, we may return the wrong 4337 * metrics. This will not be a problem if the existing 4338 * bug is fixed. 4339 */ 4340 if (sire != NULL) { 4341 ulp_info = &(sire->ire_uinfo); 4342 } 4343 if (!ip_bind_insert_ire(mp, dst_ire, ulp_info)) { 4344 error = -1; 4345 goto bad_addr; 4346 } 4347 } else if (ipsec_policy_set) { 4348 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4349 error = -1; 4350 goto bad_addr; 4351 } 4352 } 4353 4354 /* 4355 * Cache IPsec policy in this conn. If we have per-socket policy, 4356 * we'll cache that. If we don't, we'll inherit global policy. 4357 * 4358 * We can't insert until the conn reflects the policy. Note that 4359 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 4360 * connections where we don't have a policy. This is to prevent 4361 * global policy lookups in the inbound path. 4362 * 4363 * If we insert before we set conn_policy_cached, 4364 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 4365 * because global policy cound be non-empty. We normally call 4366 * ipsec_check_policy() for conn_policy_cached connections only if 4367 * ipc_in_enforce_policy is set. But in this case, 4368 * conn_policy_cached can get set anytime since we made the 4369 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 4370 * called, which will make the above assumption false. Thus, we 4371 * need to insert after we set conn_policy_cached. 4372 */ 4373 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 4374 goto bad_addr; 4375 4376 if (fanout_insert) { 4377 /* 4378 * The addresses have been verified. Time to insert in 4379 * the correct fanout list. 4380 */ 4381 error = ipcl_conn_insert(connp, protocol, src_addr, 4382 dst_addr, connp->conn_ports); 4383 } 4384 4385 if (error == 0) { 4386 connp->conn_fully_bound = B_TRUE; 4387 /* 4388 * Our initial checks for MDT have passed; the IRE is not 4389 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 4390 * be supporting MDT. Pass the IRE, IPC and ILL into 4391 * ip_mdinfo_return(), which performs further checks 4392 * against them and upon success, returns the MDT info 4393 * mblk which we will attach to the bind acknowledgment. 4394 */ 4395 if (md_dst_ire != NULL) { 4396 mblk_t *mdinfo_mp; 4397 4398 ASSERT(md_ill != NULL); 4399 ASSERT(md_ill->ill_mdt_capab != NULL); 4400 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 4401 md_ill->ill_name, md_ill->ill_mdt_capab)) != NULL) 4402 linkb(mp, mdinfo_mp); 4403 } 4404 } 4405 bad_addr: 4406 if (ipsec_policy_set) { 4407 ASSERT(policy_mp == mp->b_cont); 4408 ASSERT(policy_mp != NULL); 4409 freeb(policy_mp); 4410 /* 4411 * As of now assume that nothing else accompanies 4412 * IPSEC_POLICY_SET. 4413 */ 4414 mp->b_cont = NULL; 4415 } 4416 if (src_ire != NULL) 4417 IRE_REFRELE(src_ire); 4418 if (dst_ire != NULL) 4419 IRE_REFRELE(dst_ire); 4420 if (sire != NULL) 4421 IRE_REFRELE(sire); 4422 if (md_dst_ire != NULL) 4423 IRE_REFRELE(md_dst_ire); 4424 return (error); 4425 } 4426 4427 /* 4428 * Insert the ire in b_cont. Returns false if it fails (due to lack of space). 4429 * Prefers dst_ire over src_ire. 4430 */ 4431 static boolean_t 4432 ip_bind_insert_ire(mblk_t *mp, ire_t *ire, iulp_t *ulp_info) 4433 { 4434 mblk_t *mp1; 4435 ire_t *ret_ire = NULL; 4436 4437 mp1 = mp->b_cont; 4438 ASSERT(mp1 != NULL); 4439 4440 if (ire != NULL) { 4441 /* 4442 * mp1 initialized above to IRE_DB_REQ_TYPE 4443 * appended mblk. Its <upper protocol>'s 4444 * job to make sure there is room. 4445 */ 4446 if ((mp1->b_datap->db_lim - mp1->b_rptr) < sizeof (ire_t)) 4447 return (0); 4448 4449 mp1->b_datap->db_type = IRE_DB_TYPE; 4450 mp1->b_wptr = mp1->b_rptr + sizeof (ire_t); 4451 bcopy(ire, mp1->b_rptr, sizeof (ire_t)); 4452 ret_ire = (ire_t *)mp1->b_rptr; 4453 /* 4454 * Pass the latest setting of the ip_path_mtu_discovery and 4455 * copy the ulp info if any. 4456 */ 4457 ret_ire->ire_frag_flag |= (ip_path_mtu_discovery) ? 4458 IPH_DF : 0; 4459 if (ulp_info != NULL) { 4460 bcopy(ulp_info, &(ret_ire->ire_uinfo), 4461 sizeof (iulp_t)); 4462 } 4463 ret_ire->ire_mp = mp1; 4464 } else { 4465 /* 4466 * No IRE was found. Remove IRE mblk. 4467 */ 4468 mp->b_cont = mp1->b_cont; 4469 freeb(mp1); 4470 } 4471 4472 return (1); 4473 } 4474 4475 /* 4476 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 4477 * the final piece where we don't. Return a pointer to the first mblk in the 4478 * result, and update the pointer to the next mblk to chew on. If anything 4479 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 4480 * NULL pointer. 4481 */ 4482 mblk_t * 4483 ip_carve_mp(mblk_t **mpp, ssize_t len) 4484 { 4485 mblk_t *mp0; 4486 mblk_t *mp1; 4487 mblk_t *mp2; 4488 4489 if (!len || !mpp || !(mp0 = *mpp)) 4490 return (NULL); 4491 /* If we aren't going to consume the first mblk, we need a dup. */ 4492 if (mp0->b_wptr - mp0->b_rptr > len) { 4493 mp1 = dupb(mp0); 4494 if (mp1) { 4495 /* Partition the data between the two mblks. */ 4496 mp1->b_wptr = mp1->b_rptr + len; 4497 mp0->b_rptr = mp1->b_wptr; 4498 /* 4499 * after adjustments if mblk not consumed is now 4500 * unaligned, try to align it. If this fails free 4501 * all messages and let upper layer recover. 4502 */ 4503 if (!OK_32PTR(mp0->b_rptr)) { 4504 if (!pullupmsg(mp0, -1)) { 4505 freemsg(mp0); 4506 freemsg(mp1); 4507 *mpp = NULL; 4508 return (NULL); 4509 } 4510 } 4511 } 4512 return (mp1); 4513 } 4514 /* Eat through as many mblks as we need to get len bytes. */ 4515 len -= mp0->b_wptr - mp0->b_rptr; 4516 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 4517 if (mp2->b_wptr - mp2->b_rptr > len) { 4518 /* 4519 * We won't consume the entire last mblk. Like 4520 * above, dup and partition it. 4521 */ 4522 mp1->b_cont = dupb(mp2); 4523 mp1 = mp1->b_cont; 4524 if (!mp1) { 4525 /* 4526 * Trouble. Rather than go to a lot of 4527 * trouble to clean up, we free the messages. 4528 * This won't be any worse than losing it on 4529 * the wire. 4530 */ 4531 freemsg(mp0); 4532 freemsg(mp2); 4533 *mpp = NULL; 4534 return (NULL); 4535 } 4536 mp1->b_wptr = mp1->b_rptr + len; 4537 mp2->b_rptr = mp1->b_wptr; 4538 /* 4539 * after adjustments if mblk not consumed is now 4540 * unaligned, try to align it. If this fails free 4541 * all messages and let upper layer recover. 4542 */ 4543 if (!OK_32PTR(mp2->b_rptr)) { 4544 if (!pullupmsg(mp2, -1)) { 4545 freemsg(mp0); 4546 freemsg(mp2); 4547 *mpp = NULL; 4548 return (NULL); 4549 } 4550 } 4551 *mpp = mp2; 4552 return (mp0); 4553 } 4554 /* Decrement len by the amount we just got. */ 4555 len -= mp2->b_wptr - mp2->b_rptr; 4556 } 4557 /* 4558 * len should be reduced to zero now. If not our caller has 4559 * screwed up. 4560 */ 4561 if (len) { 4562 /* Shouldn't happen! */ 4563 freemsg(mp0); 4564 *mpp = NULL; 4565 return (NULL); 4566 } 4567 /* 4568 * We consumed up to exactly the end of an mblk. Detach the part 4569 * we are returning from the rest of the chain. 4570 */ 4571 mp1->b_cont = NULL; 4572 *mpp = mp2; 4573 return (mp0); 4574 } 4575 4576 /* The ill stream is being unplumbed. Called from ip_close */ 4577 int 4578 ip_modclose(ill_t *ill) 4579 { 4580 4581 boolean_t success; 4582 ipsq_t *ipsq; 4583 ipif_t *ipif; 4584 queue_t *q = ill->ill_rq; 4585 4586 /* 4587 * Forcibly enter the ipsq after some delay. This is to take 4588 * care of the case when some ioctl does not complete because 4589 * we sent a control message to the driver and it did not 4590 * send us a reply. We want to be able to at least unplumb 4591 * and replumb rather than force the user to reboot the system. 4592 */ 4593 success = ipsq_enter(ill, B_FALSE); 4594 4595 /* 4596 * Open/close/push/pop is guaranteed to be single threaded 4597 * per stream by STREAMS. FS guarantees that all references 4598 * from top are gone before close is called. So there can't 4599 * be another close thread that has set CONDEMNED on this ill. 4600 * and cause ipsq_enter to return failure. 4601 */ 4602 ASSERT(success); 4603 ipsq = ill->ill_phyint->phyint_ipsq; 4604 4605 /* 4606 * Mark it condemned. No new reference will be made to this ill. 4607 * Lookup functions will return an error. Threads that try to 4608 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 4609 * that the refcnt will drop down to zero. 4610 */ 4611 mutex_enter(&ill->ill_lock); 4612 ill->ill_state_flags |= ILL_CONDEMNED; 4613 for (ipif = ill->ill_ipif; ipif != NULL; 4614 ipif = ipif->ipif_next) { 4615 ipif->ipif_state_flags |= IPIF_CONDEMNED; 4616 } 4617 /* 4618 * Wake up anybody waiting to enter the ipsq. ipsq_enter 4619 * returns error if ILL_CONDEMNED is set 4620 */ 4621 cv_broadcast(&ill->ill_cv); 4622 mutex_exit(&ill->ill_lock); 4623 4624 /* 4625 * Shut down fragmentation reassembly. 4626 * ill_frag_timer won't start a timer again. 4627 * Now cancel any existing timer 4628 */ 4629 (void) untimeout(ill->ill_frag_timer_id); 4630 (void) ill_frag_timeout(ill, 0); 4631 4632 /* 4633 * If MOVE was in progress, clear the 4634 * move_in_progress fields also. 4635 */ 4636 if (ill->ill_move_in_progress) { 4637 ILL_CLEAR_MOVE(ill); 4638 } 4639 4640 /* 4641 * Call ill_delete to bring down the ipifs, ilms and ill on 4642 * this ill. Then wait for the refcnts to drop to zero. 4643 * ill_is_quiescent checks whether the ill is really quiescent. 4644 * Then make sure that threads that are waiting to enter the 4645 * ipsq have seen the error returned by ipsq_enter and have 4646 * gone away. Then we call ill_delete_tail which does the 4647 * DL_UNBIND and DL_DETACH with the driver and then qprocsoff. 4648 */ 4649 ill_delete(ill); 4650 mutex_enter(&ill->ill_lock); 4651 while (!ill_is_quiescent(ill)) 4652 cv_wait(&ill->ill_cv, &ill->ill_lock); 4653 while (ill->ill_waiters) 4654 cv_wait(&ill->ill_cv, &ill->ill_lock); 4655 4656 mutex_exit(&ill->ill_lock); 4657 4658 /* qprocsoff is called in ill_delete_tail */ 4659 ill_delete_tail(ill); 4660 4661 /* 4662 * Walk through all upper (conn) streams and qenable 4663 * those that have queued data. 4664 * close synchronization needs this to 4665 * be done to ensure that all upper layers blocked 4666 * due to flow control to the closing device 4667 * get unblocked. 4668 */ 4669 ip1dbg(("ip_wsrv: walking\n")); 4670 conn_walk_drain(); 4671 4672 mutex_enter(&ip_mi_lock); 4673 mi_close_unlink(&ip_g_head, (IDP)ill); 4674 mutex_exit(&ip_mi_lock); 4675 4676 /* 4677 * credp could be null if the open didn't succeed and ip_modopen 4678 * itself calls ip_close. 4679 */ 4680 if (ill->ill_credp != NULL) 4681 crfree(ill->ill_credp); 4682 4683 mi_close_free((IDP)ill); 4684 q->q_ptr = WR(q)->q_ptr = NULL; 4685 4686 ipsq_exit(ipsq, B_TRUE, B_TRUE); 4687 4688 return (0); 4689 } 4690 4691 /* 4692 * IP has been configured as _D_QNEXTLESS for the client side i.e the driver 4693 * instance. This implies that 4694 * 1. IP cannot access the read side q_next pointer directly - it must 4695 * use routines like putnext and canputnext. 4696 * 2. ip_close must ensure that all sources of messages being putnext upstream 4697 * are gone before qprocsoff is called. 4698 * 4699 * #2 is handled by having ip_close do the ipcl_hash_remove and wait for 4700 * conn_ref to drop to zero before calling qprocsoff. 4701 */ 4702 4703 /* ARGSUSED */ 4704 int 4705 ip_close(queue_t *q, int flags) 4706 { 4707 conn_t *connp; 4708 boolean_t drain_cleanup_reqd = B_FALSE; 4709 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 4710 boolean_t ilg_cleanup_reqd = B_FALSE; 4711 4712 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 4713 4714 /* 4715 * Call the appropriate delete routine depending on whether this is 4716 * a module or device. 4717 */ 4718 if (WR(q)->q_next != NULL) { 4719 /* This is a module close */ 4720 return (ip_modclose((ill_t *)q->q_ptr)); 4721 } 4722 4723 connp = Q_TO_CONN(q); 4724 ASSERT(connp->conn_tcp == NULL); 4725 4726 /* 4727 * We are being closed as /dev/ip or /dev/ip6. 4728 * 4729 * Mark the conn as closing, and this conn must not be 4730 * inserted in future into any list. Eg. conn_drain_insert(), 4731 * won't insert this conn into the conn_drain_list. 4732 * Similarly ill_pending_mp_add() will not add any mp to 4733 * the pending mp list, after this conn has started closing. 4734 * 4735 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 4736 * cannot get set henceforth. 4737 */ 4738 mutex_enter(&connp->conn_lock); 4739 connp->conn_state_flags |= CONN_CLOSING; 4740 if (connp->conn_idl != NULL) 4741 drain_cleanup_reqd = B_TRUE; 4742 if (connp->conn_oper_pending_ill != NULL) 4743 conn_ioctl_cleanup_reqd = B_TRUE; 4744 if (connp->conn_ilg_inuse != 0) 4745 ilg_cleanup_reqd = B_TRUE; 4746 mutex_exit(&connp->conn_lock); 4747 4748 if (conn_ioctl_cleanup_reqd) 4749 conn_ioctl_cleanup(connp); 4750 4751 /* 4752 * Remove this conn from any fanout list it is on. 4753 * Then wait until the number of pending putnexts from 4754 * the fanout code drops to zero, before calling qprocsoff. 4755 * This is the guarantee a QNEXTLESS driver provides to 4756 * STREAMS, and is mentioned at the top of this function. 4757 */ 4758 4759 ipcl_hash_remove(connp); 4760 4761 /* 4762 * Remove this conn from the drain list, and do 4763 * any other cleanup that may be required. 4764 * (Only non-tcp streams may have a non-null conn_idl. 4765 * TCP streams are never flow controlled, and 4766 * conn_idl will be null) 4767 */ 4768 if (drain_cleanup_reqd) 4769 conn_drain_tail(connp, B_TRUE); 4770 4771 if (connp->conn_rq == ip_g_mrouter || connp->conn_wq == ip_g_mrouter) 4772 (void) ip_mrouter_done(NULL); 4773 4774 if (ilg_cleanup_reqd) 4775 ilg_delete_all(connp); 4776 4777 conn_delete_ire(connp, NULL); 4778 4779 4780 /* 4781 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 4782 * callers from write side can't be there now because close 4783 * is in progress. The only other caller is ipcl_walk 4784 * which checks for the condemned flag. 4785 */ 4786 mutex_enter(&connp->conn_lock); 4787 connp->conn_state_flags |= CONN_CONDEMNED; 4788 while (connp->conn_ref != 1) 4789 cv_wait(&connp->conn_cv, &connp->conn_lock); 4790 mutex_exit(&connp->conn_lock); 4791 4792 qprocsoff(q); 4793 4794 /* 4795 * Now we are truly single threaded on this stream, and can 4796 * delete the things hanging off the connp, and finally the connp. 4797 * We removed this connp from the fanout list, it cannot be 4798 * accessed thru the fanouts, and we already waited for the 4799 * conn_ref to drop to 0. We are already in close, so 4800 * there cannot be any other thread from the top. qprocsoff 4801 * has completed, and service has completed or won't run in 4802 * future. 4803 */ 4804 if (connp->conn_latch != NULL) { 4805 IPLATCH_REFRELE(connp->conn_latch); 4806 connp->conn_latch = NULL; 4807 } 4808 if (connp->conn_policy != NULL) { 4809 IPPH_REFRELE(connp->conn_policy); 4810 connp->conn_policy = NULL; 4811 } 4812 if (connp->conn_ipsec_opt_mp != NULL) { 4813 freemsg(connp->conn_ipsec_opt_mp); 4814 connp->conn_ipsec_opt_mp = NULL; 4815 } 4816 if (connp->conn_cred != NULL) { 4817 crfree(connp->conn_cred); 4818 connp->conn_cred = NULL; 4819 } 4820 4821 inet_minor_free(ip_minor_arena, connp->conn_dev); 4822 4823 connp->conn_ref--; 4824 ipcl_conn_destroy(connp); 4825 4826 q->q_ptr = WR(q)->q_ptr = NULL; 4827 return (0); 4828 } 4829 4830 /* Return the IP checksum for the IP header at "iph". */ 4831 uint16_t 4832 ip_csum_hdr(ipha_t *ipha) 4833 { 4834 uint16_t *uph; 4835 uint32_t sum; 4836 int opt_len; 4837 4838 opt_len = (ipha->ipha_version_and_hdr_length & 0xF) - 4839 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 4840 uph = (uint16_t *)ipha; 4841 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 4842 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 4843 if (opt_len > 0) { 4844 do { 4845 sum += uph[10]; 4846 sum += uph[11]; 4847 uph += 2; 4848 } while (--opt_len); 4849 } 4850 sum = (sum & 0xFFFF) + (sum >> 16); 4851 sum = ~(sum + (sum >> 16)) & 0xFFFF; 4852 if (sum == 0xffff) 4853 sum = 0; 4854 return ((uint16_t)sum); 4855 } 4856 4857 void 4858 ip_ddi_destroy(void) 4859 { 4860 tcp_ddi_destroy(); 4861 sctp_ddi_destroy(); 4862 ipsec_loader_destroy(); 4863 ipsec_policy_destroy(); 4864 ipsec_kstat_destroy(); 4865 nd_free(&ip_g_nd); 4866 mutex_destroy(&igmp_timer_lock); 4867 mutex_destroy(&mld_timer_lock); 4868 mutex_destroy(&igmp_slowtimeout_lock); 4869 mutex_destroy(&mld_slowtimeout_lock); 4870 mutex_destroy(&ip_mi_lock); 4871 mutex_destroy(&rts_clients.connf_lock); 4872 ip_ire_fini(); 4873 ip6_asp_free(); 4874 conn_drain_fini(); 4875 ipcl_destroy(); 4876 inet_minor_destroy(ip_minor_arena); 4877 icmp_kstat_fini(); 4878 ip_kstat_fini(); 4879 rw_destroy(&ipsec_capab_ills_lock); 4880 rw_destroy(&ill_g_usesrc_lock); 4881 ip_drop_unregister(&ip_dropper); 4882 } 4883 4884 4885 void 4886 ip_ddi_init(void) 4887 { 4888 TCP6_MAJ = ddi_name_to_major(TCP6); 4889 TCP_MAJ = ddi_name_to_major(TCP); 4890 SCTP_MAJ = ddi_name_to_major(SCTP); 4891 SCTP6_MAJ = ddi_name_to_major(SCTP6); 4892 4893 ip_input_proc = ip_squeue_switch(ip_squeue_enter); 4894 4895 /* IP's IPsec code calls the packet dropper */ 4896 ip_drop_register(&ip_dropper, "IP IPsec processing"); 4897 4898 if (!ip_g_nd) { 4899 if (!ip_param_register(lcl_param_arr, A_CNT(lcl_param_arr), 4900 lcl_ndp_arr, A_CNT(lcl_ndp_arr))) { 4901 nd_free(&ip_g_nd); 4902 } 4903 } 4904 4905 ipsec_loader_init(); 4906 ipsec_policy_init(); 4907 ipsec_kstat_init(); 4908 rw_init(&ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 4909 mutex_init(&igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 4910 mutex_init(&mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 4911 mutex_init(&igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 4912 mutex_init(&mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 4913 mutex_init(&ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 4914 mutex_init(&ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 4915 rw_init(&ill_g_lock, NULL, RW_DEFAULT, NULL); 4916 rw_init(&ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 4917 rw_init(&ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 4918 4919 /* 4920 * For IP and TCP the minor numbers should start from 2 since we have 4 4921 * initial devices: ip, ip6, tcp, tcp6. 4922 */ 4923 if ((ip_minor_arena = inet_minor_create("ip_minor_arena", 4924 INET_MIN_DEV + 2, KM_SLEEP)) == NULL) { 4925 cmn_err(CE_PANIC, 4926 "ip_ddi_init: ip_minor_arena creation failed\n"); 4927 } 4928 4929 ipcl_init(); 4930 mutex_init(&rts_clients.connf_lock, NULL, MUTEX_DEFAULT, NULL); 4931 ip_ire_init(); 4932 ip6_asp_init(); 4933 ipif_init(); 4934 conn_drain_init(); 4935 tcp_ddi_init(); 4936 sctp_ddi_init(); 4937 4938 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 4939 4940 if ((ip_kstat = kstat_create("ip", 0, "ipstat", 4941 "net", KSTAT_TYPE_NAMED, 4942 sizeof (ip_statistics) / sizeof (kstat_named_t), 4943 KSTAT_FLAG_VIRTUAL)) != NULL) { 4944 ip_kstat->ks_data = &ip_statistics; 4945 kstat_install(ip_kstat); 4946 } 4947 ip_kstat_init(); 4948 ip6_kstat_init(); 4949 icmp_kstat_init(); 4950 4951 ipsec_loader_start(); 4952 } 4953 4954 /* 4955 * Allocate and initialize a DLPI template of the specified length. (May be 4956 * called as writer.) 4957 */ 4958 mblk_t * 4959 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 4960 { 4961 mblk_t *mp; 4962 4963 mp = allocb(len, BPRI_MED); 4964 if (!mp) 4965 return (NULL); 4966 4967 /* 4968 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 4969 * of which we don't seem to use) are sent with M_PCPROTO, and 4970 * that other DLPI are M_PROTO. 4971 */ 4972 if (prim == DL_INFO_REQ) { 4973 mp->b_datap->db_type = M_PCPROTO; 4974 } else { 4975 mp->b_datap->db_type = M_PROTO; 4976 } 4977 4978 mp->b_wptr = mp->b_rptr + len; 4979 bzero(mp->b_rptr, len); 4980 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 4981 return (mp); 4982 } 4983 4984 const char * 4985 dlpi_prim_str(int prim) 4986 { 4987 switch (prim) { 4988 case DL_INFO_REQ: return ("DL_INFO_REQ"); 4989 case DL_INFO_ACK: return ("DL_INFO_ACK"); 4990 case DL_ATTACH_REQ: return ("DL_ATTACH_REQ"); 4991 case DL_DETACH_REQ: return ("DL_DETACH_REQ"); 4992 case DL_BIND_REQ: return ("DL_BIND_REQ"); 4993 case DL_BIND_ACK: return ("DL_BIND_ACK"); 4994 case DL_UNBIND_REQ: return ("DL_UNBIND_REQ"); 4995 case DL_OK_ACK: return ("DL_OK_ACK"); 4996 case DL_ERROR_ACK: return ("DL_ERROR_ACK"); 4997 case DL_ENABMULTI_REQ: return ("DL_ENABMULTI_REQ"); 4998 case DL_DISABMULTI_REQ: return ("DL_DISABMULTI_REQ"); 4999 case DL_PROMISCON_REQ: return ("DL_PROMISCON_REQ"); 5000 case DL_PROMISCOFF_REQ: return ("DL_PROMISCOFF_REQ"); 5001 case DL_UNITDATA_REQ: return ("DL_UNITDATA_REQ"); 5002 case DL_UNITDATA_IND: return ("DL_UNITDATA_IND"); 5003 case DL_UDERROR_IND: return ("DL_UDERROR_IND"); 5004 case DL_PHYS_ADDR_REQ: return ("DL_PHYS_ADDR_REQ"); 5005 case DL_PHYS_ADDR_ACK: return ("DL_PHYS_ADDR_ACK"); 5006 case DL_SET_PHYS_ADDR_REQ: return ("DL_SET_PHYS_ADDR_REQ"); 5007 case DL_NOTIFY_REQ: return ("DL_NOTIFY_REQ"); 5008 case DL_NOTIFY_ACK: return ("DL_NOTIFY_ACK"); 5009 case DL_NOTIFY_IND: return ("DL_NOTIFY_IND"); 5010 case DL_CAPABILITY_REQ: return ("DL_CAPABILITY_REQ"); 5011 case DL_CAPABILITY_ACK: return ("DL_CAPABILITY_ACK"); 5012 case DL_CONTROL_REQ: return ("DL_CONTROL_REQ"); 5013 case DL_CONTROL_ACK: return ("DL_CONTROL_ACK"); 5014 default: return ("<unknown primitive>"); 5015 } 5016 } 5017 5018 const char * 5019 dlpi_err_str(int err) 5020 { 5021 switch (err) { 5022 case DL_ACCESS: return ("DL_ACCESS"); 5023 case DL_BADADDR: return ("DL_BADADDR"); 5024 case DL_BADCORR: return ("DL_BADCORR"); 5025 case DL_BADDATA: return ("DL_BADDATA"); 5026 case DL_BADPPA: return ("DL_BADPPA"); 5027 case DL_BADPRIM: return ("DL_BADPRIM"); 5028 case DL_BADQOSPARAM: return ("DL_BADQOSPARAM"); 5029 case DL_BADQOSTYPE: return ("DL_BADQOSTYPE"); 5030 case DL_BADSAP: return ("DL_BADSAP"); 5031 case DL_BADTOKEN: return ("DL_BADTOKEN"); 5032 case DL_BOUND: return ("DL_BOUND"); 5033 case DL_INITFAILED: return ("DL_INITFAILED"); 5034 case DL_NOADDR: return ("DL_NOADDR"); 5035 case DL_NOTINIT: return ("DL_NOTINIT"); 5036 case DL_OUTSTATE: return ("DL_OUTSTATE"); 5037 case DL_SYSERR: return ("DL_SYSERR"); 5038 case DL_UNSUPPORTED: return ("DL_UNSUPPORTED"); 5039 case DL_UNDELIVERABLE: return ("DL_UNDELIVERABLE"); 5040 case DL_NOTSUPPORTED : return ("DL_NOTSUPPORTED "); 5041 case DL_TOOMANY: return ("DL_TOOMANY"); 5042 case DL_NOTENAB: return ("DL_NOTENAB"); 5043 case DL_BUSY: return ("DL_BUSY"); 5044 case DL_NOAUTO: return ("DL_NOAUTO"); 5045 case DL_NOXIDAUTO: return ("DL_NOXIDAUTO"); 5046 case DL_NOTESTAUTO: return ("DL_NOTESTAUTO"); 5047 case DL_XIDAUTO: return ("DL_XIDAUTO"); 5048 case DL_TESTAUTO: return ("DL_TESTAUTO"); 5049 case DL_PENDING: return ("DL_PENDING"); 5050 default: return ("<unknown error>"); 5051 } 5052 } 5053 5054 /* 5055 * Debug formatting routine. Returns a character string representation of the 5056 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 5057 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 5058 */ 5059 char * 5060 ip_dot_addr(ipaddr_t addr, char *buf) 5061 { 5062 return (ip_dot_saddr((uchar_t *)&addr, buf)); 5063 } 5064 5065 /* 5066 * Debug formatting routine. Returns a character string representation of the 5067 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 5068 * as a pointer. The "xxx" parts including left zero padding so the final 5069 * string will fit easily in tables. It would be nice to take a padding 5070 * length argument instead. 5071 */ 5072 static char * 5073 ip_dot_saddr(uchar_t *addr, char *buf) 5074 { 5075 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 5076 addr[0] & 0xFF, addr[1] & 0xFF, addr[2] & 0xFF, addr[3] & 0xFF); 5077 return (buf); 5078 } 5079 5080 /* 5081 * Send an ICMP error after patching up the packet appropriately. Returns 5082 * non-zero if the appropriate MIB should be bumped; zero otherwise. 5083 */ 5084 static int 5085 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 5086 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, zoneid_t zoneid) 5087 { 5088 ipha_t *ipha; 5089 mblk_t *first_mp; 5090 boolean_t secure; 5091 unsigned char db_type; 5092 5093 first_mp = mp; 5094 if (mctl_present) { 5095 mp = mp->b_cont; 5096 secure = ipsec_in_is_secure(first_mp); 5097 ASSERT(mp != NULL); 5098 } else { 5099 /* 5100 * If this is an ICMP error being reported - which goes 5101 * up as M_CTLs, we need to convert them to M_DATA till 5102 * we finish checking with global policy because 5103 * ipsec_check_global_policy() assumes M_DATA as clear 5104 * and M_CTL as secure. 5105 */ 5106 db_type = mp->b_datap->db_type; 5107 mp->b_datap->db_type = M_DATA; 5108 secure = B_FALSE; 5109 } 5110 /* 5111 * We are generating an icmp error for some inbound packet. 5112 * Called from all ip_fanout_(udp, tcp, proto) functions. 5113 * Before we generate an error, check with global policy 5114 * to see whether this is allowed to enter the system. As 5115 * there is no "conn", we are checking with global policy. 5116 */ 5117 ipha = (ipha_t *)mp->b_rptr; 5118 if (secure || ipsec_inbound_v4_policy_present) { 5119 first_mp = ipsec_check_global_policy(first_mp, NULL, 5120 ipha, NULL, mctl_present); 5121 if (first_mp == NULL) 5122 return (0); 5123 } 5124 5125 if (!mctl_present) 5126 mp->b_datap->db_type = db_type; 5127 5128 if (flags & IP_FF_SEND_ICMP) { 5129 if (flags & IP_FF_HDR_COMPLETE) { 5130 if (ip_hdr_complete(ipha, zoneid)) { 5131 freemsg(first_mp); 5132 return (1); 5133 } 5134 } 5135 if (flags & IP_FF_CKSUM) { 5136 /* 5137 * Have to correct checksum since 5138 * the packet might have been 5139 * fragmented and the reassembly code in ip_rput 5140 * does not restore the IP checksum. 5141 */ 5142 ipha->ipha_hdr_checksum = 0; 5143 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 5144 } 5145 switch (icmp_type) { 5146 case ICMP_DEST_UNREACHABLE: 5147 icmp_unreachable(WR(q), first_mp, icmp_code); 5148 break; 5149 default: 5150 freemsg(first_mp); 5151 break; 5152 } 5153 } else { 5154 freemsg(first_mp); 5155 return (0); 5156 } 5157 5158 return (1); 5159 } 5160 5161 #ifdef DEBUG 5162 /* 5163 * Copy the header into the IPSEC_IN message. 5164 */ 5165 static void 5166 ipsec_inbound_debug_tag(mblk_t *ipsec_mp) 5167 { 5168 mblk_t *data_mp = ipsec_mp->b_cont; 5169 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 5170 ipha_t *ipha; 5171 5172 if (ii->ipsec_in_type != IPSEC_IN) 5173 return; 5174 ASSERT(data_mp != NULL); 5175 5176 ipha = (ipha_t *)data_mp->b_rptr; 5177 bcopy(ipha, ii->ipsec_in_saved_hdr, 5178 (IPH_HDR_VERSION(ipha) == IP_VERSION) ? 5179 sizeof (ipha_t) : sizeof (ip6_t)); 5180 } 5181 #else 5182 #define ipsec_inbound_debug_tag(x) /* NOP */ 5183 #endif /* DEBUG */ 5184 5185 /* 5186 * Used to send an ICMP error message when a packet is received for 5187 * a protocol that is not supported. The mblk passed as argument 5188 * is consumed by this function. 5189 */ 5190 void 5191 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid) 5192 { 5193 mblk_t *mp; 5194 ipha_t *ipha; 5195 ill_t *ill; 5196 ipsec_in_t *ii; 5197 5198 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 5199 ASSERT(ii->ipsec_in_type == IPSEC_IN); 5200 5201 mp = ipsec_mp->b_cont; 5202 ipsec_mp->b_cont = NULL; 5203 ipha = (ipha_t *)mp->b_rptr; 5204 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 5205 if (ip_fanout_send_icmp(q, mp, flags, ICMP_DEST_UNREACHABLE, 5206 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid)) { 5207 BUMP_MIB(&ip_mib, ipInUnknownProtos); 5208 } 5209 } else { 5210 /* Get ill from index in ipsec_in_t. */ 5211 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 5212 B_TRUE, NULL, NULL, NULL, NULL); 5213 if (ill != NULL) { 5214 if (ip_fanout_send_icmp_v6(q, mp, flags, 5215 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 5216 0, B_FALSE, zoneid)) { 5217 BUMP_MIB(ill->ill_ip6_mib, ipv6InUnknownProtos); 5218 } 5219 5220 ill_refrele(ill); 5221 } else { /* re-link for the freemsg() below. */ 5222 ipsec_mp->b_cont = mp; 5223 } 5224 } 5225 5226 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 5227 freemsg(ipsec_mp); 5228 } 5229 5230 /* 5231 * See if the inbound datagram has had IPsec processing applied to it. 5232 */ 5233 boolean_t 5234 ipsec_in_is_secure(mblk_t *ipsec_mp) 5235 { 5236 ipsec_in_t *ii; 5237 5238 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 5239 ASSERT(ii->ipsec_in_type == IPSEC_IN); 5240 5241 if (ii->ipsec_in_loopback) { 5242 return (ii->ipsec_in_secure); 5243 } else { 5244 return (ii->ipsec_in_ah_sa != NULL || 5245 ii->ipsec_in_esp_sa != NULL || 5246 ii->ipsec_in_decaps); 5247 } 5248 } 5249 5250 /* 5251 * Handle protocols with which IP is less intimate. There 5252 * can be more than one stream bound to a particular 5253 * protocol. When this is the case, normally each one gets a copy 5254 * of any incoming packets. 5255 * 5256 * IPSEC NOTE : 5257 * 5258 * Don't allow a secure packet going up a non-secure connection. 5259 * We don't allow this because 5260 * 5261 * 1) Reply might go out in clear which will be dropped at 5262 * the sending side. 5263 * 2) If the reply goes out in clear it will give the 5264 * adversary enough information for getting the key in 5265 * most of the cases. 5266 * 5267 * Moreover getting a secure packet when we expect clear 5268 * implies that SA's were added without checking for 5269 * policy on both ends. This should not happen once ISAKMP 5270 * is used to negotiate SAs as SAs will be added only after 5271 * verifying the policy. 5272 * 5273 * NOTE : If the packet was tunneled and not multicast we only send 5274 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 5275 * back to delivering packets to AF_INET6 raw sockets. 5276 * 5277 * IPQoS Notes: 5278 * Once we have determined the client, invoke IPPF processing. 5279 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 5280 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 5281 * ip_policy will be false. 5282 * 5283 * Zones notes: 5284 * Currently only applications in the global zone can create raw sockets for 5285 * protocols other than ICMP. So unlike the broadcast / multicast case of 5286 * ip_fanout_udp(), we only send a copy of the packet to streams in the 5287 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 5288 */ 5289 static void 5290 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 5291 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 5292 zoneid_t zoneid) 5293 { 5294 queue_t *rq; 5295 mblk_t *mp1, *first_mp1; 5296 uint_t protocol = ipha->ipha_protocol; 5297 ipaddr_t dst; 5298 boolean_t one_only; 5299 mblk_t *first_mp = mp; 5300 boolean_t secure; 5301 uint32_t ill_index; 5302 conn_t *connp, *first_connp, *next_connp; 5303 connf_t *connfp; 5304 5305 if (mctl_present) { 5306 mp = first_mp->b_cont; 5307 secure = ipsec_in_is_secure(first_mp); 5308 ASSERT(mp != NULL); 5309 } else { 5310 secure = B_FALSE; 5311 } 5312 dst = ipha->ipha_dst; 5313 /* 5314 * If the packet was tunneled and not multicast we only send to it 5315 * the first match. 5316 */ 5317 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 5318 !CLASSD(dst)); 5319 5320 connfp = &ipcl_proto_fanout[protocol]; 5321 mutex_enter(&connfp->connf_lock); 5322 connp = connfp->connf_head; 5323 for (connp = connfp->connf_head; connp != NULL; 5324 connp = connp->conn_next) { 5325 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, zoneid)) 5326 break; 5327 } 5328 5329 if (connp == NULL || connp->conn_upq == NULL) { 5330 /* 5331 * No one bound to these addresses. Is 5332 * there a client that wants all 5333 * unclaimed datagrams? 5334 */ 5335 mutex_exit(&connfp->connf_lock); 5336 /* 5337 * Check for IPPROTO_ENCAP... 5338 */ 5339 if (protocol == IPPROTO_ENCAP && ip_g_mrouter) { 5340 /* 5341 * XXX If an IPsec mblk is here on a multicast 5342 * tunnel (using ip_mroute stuff), what should 5343 * I do? 5344 * 5345 * For now, just free the IPsec mblk before 5346 * passing it up to the multicast routing 5347 * stuff. 5348 * 5349 * BTW, If I match a configured IP-in-IP 5350 * tunnel, ip_mroute_decap will never be 5351 * called. 5352 */ 5353 if (mp != first_mp) 5354 freeb(first_mp); 5355 ip_mroute_decap(q, mp); 5356 } else { 5357 /* 5358 * Otherwise send an ICMP protocol unreachable. 5359 */ 5360 if (ip_fanout_send_icmp(q, first_mp, flags, 5361 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 5362 mctl_present, zoneid)) { 5363 BUMP_MIB(&ip_mib, ipInUnknownProtos); 5364 } 5365 } 5366 return; 5367 } 5368 CONN_INC_REF(connp); 5369 first_connp = connp; 5370 5371 /* 5372 * Only send message to one tunnel driver by immediately 5373 * terminating the loop. 5374 */ 5375 connp = one_only ? NULL : connp->conn_next; 5376 5377 for (;;) { 5378 while (connp != NULL) { 5379 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 5380 flags, zoneid)) 5381 break; 5382 connp = connp->conn_next; 5383 } 5384 5385 /* 5386 * Copy the packet. 5387 */ 5388 if (connp == NULL || connp->conn_upq == NULL || 5389 (((first_mp1 = dupmsg(first_mp)) == NULL) && 5390 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 5391 /* 5392 * No more interested clients or memory 5393 * allocation failed 5394 */ 5395 connp = first_connp; 5396 break; 5397 } 5398 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 5399 CONN_INC_REF(connp); 5400 mutex_exit(&connfp->connf_lock); 5401 rq = connp->conn_rq; 5402 if (!canputnext(rq)) { 5403 if (flags & IP_FF_RAWIP) { 5404 BUMP_MIB(&ip_mib, rawipInOverflows); 5405 } else { 5406 BUMP_MIB(&icmp_mib, icmpInOverflows); 5407 } 5408 5409 freemsg(first_mp1); 5410 } else { 5411 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 5412 first_mp1 = ipsec_check_inbound_policy 5413 (first_mp1, connp, ipha, NULL, 5414 mctl_present); 5415 } 5416 if (first_mp1 != NULL) { 5417 /* 5418 * ip_fanout_proto also gets called from 5419 * icmp_inbound_error_fanout, in which case 5420 * the msg type is M_CTL. Don't add info 5421 * in this case for the time being. In future 5422 * when there is a need for knowing the 5423 * inbound iface index for ICMP error msgs, 5424 * then this can be changed. 5425 */ 5426 if ((connp->conn_recvif != 0) && 5427 (mp->b_datap->db_type != M_CTL)) { 5428 /* 5429 * the actual data will be 5430 * contained in b_cont upon 5431 * successful return of the 5432 * following call else 5433 * original mblk is returned 5434 */ 5435 ASSERT(recv_ill != NULL); 5436 mp1 = ip_add_info(mp1, recv_ill, 5437 IPF_RECVIF); 5438 } 5439 BUMP_MIB(&ip_mib, ipInDelivers); 5440 if (mctl_present) 5441 freeb(first_mp1); 5442 putnext(rq, mp1); 5443 } 5444 } 5445 mutex_enter(&connfp->connf_lock); 5446 /* Follow the next pointer before releasing the conn. */ 5447 next_connp = connp->conn_next; 5448 CONN_DEC_REF(connp); 5449 connp = next_connp; 5450 } 5451 5452 /* Last one. Send it upstream. */ 5453 mutex_exit(&connfp->connf_lock); 5454 5455 /* 5456 * If this packet is coming from icmp_inbound_error_fanout ip_policy 5457 * will be set to false. 5458 */ 5459 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 5460 ill_index = ill->ill_phyint->phyint_ifindex; 5461 ip_process(IPP_LOCAL_IN, &mp, ill_index); 5462 if (mp == NULL) { 5463 CONN_DEC_REF(connp); 5464 if (mctl_present) { 5465 freeb(first_mp); 5466 } 5467 return; 5468 } 5469 } 5470 5471 rq = connp->conn_rq; 5472 if (!canputnext(rq)) { 5473 if (flags & IP_FF_RAWIP) { 5474 BUMP_MIB(&ip_mib, rawipInOverflows); 5475 } else { 5476 BUMP_MIB(&icmp_mib, icmpInOverflows); 5477 } 5478 5479 freemsg(first_mp); 5480 } else { 5481 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 5482 first_mp = ipsec_check_inbound_policy(first_mp, connp, 5483 ipha, NULL, mctl_present); 5484 } 5485 if (first_mp != NULL) { 5486 /* 5487 * ip_fanout_proto also gets called 5488 * from icmp_inbound_error_fanout, in 5489 * which case the msg type is M_CTL. 5490 * Don't add info in this case for time 5491 * being. In future when there is a 5492 * need for knowing the inbound iface 5493 * index for ICMP error msgs, then this 5494 * can be changed 5495 */ 5496 if ((connp->conn_recvif != 0) && 5497 (mp->b_datap->db_type != M_CTL)) { 5498 /* 5499 * the actual data will be contained in 5500 * b_cont upon successful return 5501 * of the following call else original 5502 * mblk is returned 5503 */ 5504 ASSERT(recv_ill != NULL); 5505 mp = ip_add_info(mp, recv_ill, IPF_RECVIF); 5506 } 5507 BUMP_MIB(&ip_mib, ipInDelivers); 5508 putnext(rq, mp); 5509 if (mctl_present) 5510 freeb(first_mp); 5511 } 5512 } 5513 CONN_DEC_REF(connp); 5514 } 5515 5516 /* 5517 * Fanout for TCP packets 5518 * The caller puts <fport, lport> in the ports parameter. 5519 * 5520 * IPQoS Notes 5521 * Before sending it to the client, invoke IPPF processing. 5522 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 5523 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 5524 * ip_policy is false. 5525 */ 5526 static void 5527 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 5528 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 5529 { 5530 mblk_t *first_mp; 5531 boolean_t secure; 5532 uint32_t ill_index; 5533 int ip_hdr_len; 5534 tcph_t *tcph; 5535 boolean_t syn_present = B_FALSE; 5536 conn_t *connp; 5537 5538 first_mp = mp; 5539 if (mctl_present) { 5540 ASSERT(first_mp->b_datap->db_type == M_CTL); 5541 mp = first_mp->b_cont; 5542 secure = ipsec_in_is_secure(first_mp); 5543 ASSERT(mp != NULL); 5544 } else { 5545 secure = B_FALSE; 5546 } 5547 5548 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 5549 5550 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, zoneid)) == 5551 NULL) { 5552 /* 5553 * No connected connection or listener. Send a 5554 * TH_RST via tcp_xmit_listeners_reset. 5555 */ 5556 5557 /* Initiate IPPf processing, if needed. */ 5558 if (IPP_ENABLED(IPP_LOCAL_IN)) { 5559 uint32_t ill_index; 5560 ill_index = recv_ill->ill_phyint->phyint_ifindex; 5561 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 5562 if (first_mp == NULL) 5563 return; 5564 } 5565 BUMP_MIB(&ip_mib, ipInDelivers); 5566 tcp_xmit_listeners_reset(first_mp, ip_hdr_len); 5567 return; 5568 } 5569 5570 /* 5571 * Allocate the SYN for the TCP connection here itself 5572 */ 5573 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5574 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 5575 if (IPCL_IS_TCP(connp)) { 5576 squeue_t *sqp; 5577 5578 /* 5579 * For fused tcp loopback, assign the eager's 5580 * squeue to be that of the active connect's. 5581 * Note that we don't check for IP_FF_LOOPBACK 5582 * here since this routine gets called only 5583 * for loopback (unlike the IPv6 counterpart). 5584 */ 5585 if (do_tcp_fusion && 5586 !CONN_INBOUND_POLICY_PRESENT(connp) && !secure && 5587 !IPP_ENABLED(IPP_LOCAL_IN) && !ip_policy) { 5588 ASSERT(Q_TO_CONN(q) != NULL); 5589 sqp = Q_TO_CONN(q)->conn_sqp; 5590 } else { 5591 sqp = IP_SQUEUE_GET(lbolt); 5592 } 5593 5594 mp->b_datap->db_struioflag |= STRUIO_EAGER; 5595 mp->b_datap->db_cksumstart = (intptr_t)sqp; 5596 syn_present = B_TRUE; 5597 } 5598 } 5599 5600 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 5601 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 5602 if ((flags & TH_RST) || (flags & TH_URG)) { 5603 CONN_DEC_REF(connp); 5604 freemsg(first_mp); 5605 return; 5606 } 5607 if (flags & TH_ACK) { 5608 tcp_xmit_listeners_reset(first_mp, ip_hdr_len); 5609 CONN_DEC_REF(connp); 5610 return; 5611 } 5612 5613 CONN_DEC_REF(connp); 5614 freemsg(first_mp); 5615 return; 5616 } 5617 5618 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 5619 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 5620 NULL, mctl_present); 5621 if (first_mp == NULL) { 5622 CONN_DEC_REF(connp); 5623 return; 5624 } 5625 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 5626 ASSERT(syn_present); 5627 if (mctl_present) { 5628 ASSERT(first_mp != mp); 5629 first_mp->b_datap->db_struioflag |= 5630 STRUIO_POLICY; 5631 } else { 5632 ASSERT(first_mp == mp); 5633 mp->b_datap->db_struioflag &= 5634 ~STRUIO_EAGER; 5635 mp->b_datap->db_struioflag |= 5636 STRUIO_POLICY; 5637 } 5638 } else { 5639 /* 5640 * Discard first_mp early since we're dealing with a 5641 * fully-connected conn_t and tcp doesn't do policy in 5642 * this case. 5643 */ 5644 if (mctl_present) { 5645 freeb(first_mp); 5646 mctl_present = B_FALSE; 5647 } 5648 first_mp = mp; 5649 } 5650 } 5651 5652 /* 5653 * Initiate policy processing here if needed. If we get here from 5654 * icmp_inbound_error_fanout, ip_policy is false. 5655 */ 5656 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 5657 ill_index = recv_ill->ill_phyint->phyint_ifindex; 5658 ip_process(IPP_LOCAL_IN, &mp, ill_index); 5659 if (mp == NULL) { 5660 CONN_DEC_REF(connp); 5661 if (mctl_present) 5662 freeb(first_mp); 5663 return; 5664 } else if (mctl_present) { 5665 ASSERT(first_mp != mp); 5666 first_mp->b_cont = mp; 5667 } else { 5668 first_mp = mp; 5669 } 5670 } 5671 5672 5673 5674 /* Handle IPv6 socket options. */ 5675 if (!syn_present && 5676 connp->conn_ipv6_recvpktinfo && (flags & IP_FF_IP6INFO)) { 5677 /* Add header */ 5678 ASSERT(recv_ill != NULL); 5679 mp = ip_add_info(mp, recv_ill, IPF_RECVIF); 5680 if (mp == NULL) { 5681 CONN_DEC_REF(connp); 5682 if (mctl_present) 5683 freeb(first_mp); 5684 return; 5685 } else if (mctl_present) { 5686 /* 5687 * ip_add_info might return a new mp. 5688 */ 5689 ASSERT(first_mp != mp); 5690 first_mp->b_cont = mp; 5691 } else { 5692 first_mp = mp; 5693 } 5694 } 5695 5696 BUMP_MIB(&ip_mib, ipInDelivers); 5697 if (IPCL_IS_TCP(connp)) { 5698 (*ip_input_proc)(connp->conn_sqp, first_mp, 5699 connp->conn_recv, connp, SQTAG_IP_FANOUT_TCP); 5700 } else { 5701 putnext(connp->conn_rq, first_mp); 5702 CONN_DEC_REF(connp); 5703 } 5704 } 5705 5706 /* 5707 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 5708 * We are responsible for disposing of mp, such as by freemsg() or putnext() 5709 * Caller is responsible for dropping references to the conn, and freeing 5710 * first_mp. 5711 * 5712 * IPQoS Notes 5713 * Before sending it to the client, invoke IPPF processing. Policy processing 5714 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 5715 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 5716 * ip_wput_local, ip_policy is false. 5717 */ 5718 static void 5719 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 5720 boolean_t secure, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 5721 boolean_t ip_policy) 5722 { 5723 queue_t *rq = connp->conn_rq; 5724 boolean_t mctl_present = (first_mp != NULL); 5725 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 5726 uint32_t ill_index; 5727 5728 if (mctl_present) 5729 first_mp->b_cont = mp; 5730 else 5731 first_mp = mp; 5732 5733 if (!canputnext(rq)) { 5734 BUMP_MIB(&ip_mib, udpInOverflows); 5735 freemsg(first_mp); 5736 return; 5737 } 5738 5739 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 5740 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 5741 NULL, mctl_present); 5742 if (first_mp == NULL) 5743 return; /* Freed by ipsec_check_inbound_policy(). */ 5744 } 5745 if (mctl_present) 5746 freeb(first_mp); 5747 5748 if (connp->conn_recvif) 5749 in_flags = IPF_RECVIF; 5750 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 5751 in_flags |= IPF_RECVSLLA; 5752 5753 /* Handle IPv6 options. */ 5754 if (connp->conn_ipv6_recvpktinfo && (flags & IP_FF_IP6INFO)) 5755 in_flags |= IPF_RECVIF; 5756 5757 /* 5758 * Initiate IPPF processing here, if needed. Note first_mp won't be 5759 * freed if the packet is dropped. The caller will do so. 5760 */ 5761 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 5762 ill_index = recv_ill->ill_phyint->phyint_ifindex; 5763 ip_process(IPP_LOCAL_IN, &mp, ill_index); 5764 if (mp == NULL) { 5765 return; 5766 } 5767 } 5768 if ((in_flags != 0) && 5769 (mp->b_datap->db_type != M_CTL)) { 5770 /* 5771 * The actual data will be contained in b_cont 5772 * upon successful return of the following call 5773 * else original mblk is returned 5774 */ 5775 ASSERT(recv_ill != NULL); 5776 mp = ip_add_info(mp, recv_ill, in_flags); 5777 } 5778 BUMP_MIB(&ip_mib, ipInDelivers); 5779 putnext(rq, mp); 5780 } 5781 5782 /* 5783 * Fanout for UDP packets. 5784 * The caller puts <fport, lport> in the ports parameter. 5785 * 5786 * If SO_REUSEADDR is set all multicast and broadcast packets 5787 * will be delivered to all streams bound to the same port. 5788 * 5789 * Zones notes: 5790 * Multicast and broadcast packets will be distributed to streams in all zones. 5791 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 5792 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 5793 * packets. To maintain this behavior with multiple zones, the conns are grouped 5794 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 5795 * each zone. If unset, all the following conns in the same zone are skipped. 5796 */ 5797 static void 5798 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 5799 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 5800 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 5801 { 5802 uint32_t dstport, srcport; 5803 ipaddr_t dst; 5804 mblk_t *first_mp; 5805 boolean_t secure; 5806 in6_addr_t v6src; 5807 conn_t *connp; 5808 connf_t *connfp; 5809 conn_t *first_connp; 5810 conn_t *next_connp; 5811 mblk_t *mp1, *first_mp1; 5812 ipaddr_t src; 5813 zoneid_t last_zoneid; 5814 boolean_t reuseaddr; 5815 5816 first_mp = mp; 5817 if (mctl_present) { 5818 mp = first_mp->b_cont; 5819 first_mp->b_cont = NULL; 5820 secure = ipsec_in_is_secure(first_mp); 5821 ASSERT(mp != NULL); 5822 } else { 5823 first_mp = NULL; 5824 secure = B_FALSE; 5825 } 5826 5827 /* Extract ports in net byte order */ 5828 dstport = htons(ntohl(ports) & 0xFFFF); 5829 srcport = htons(ntohl(ports) >> 16); 5830 dst = ipha->ipha_dst; 5831 src = ipha->ipha_src; 5832 5833 connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)]; 5834 mutex_enter(&connfp->connf_lock); 5835 connp = connfp->connf_head; 5836 if (!broadcast && !CLASSD(dst)) { 5837 /* 5838 * Not broadcast or multicast. Send to the one (first) 5839 * client we find. No need to check conn_wantpacket() 5840 * since IP_BOUND_IF/conn_incoming_ill does not apply to 5841 * IPv4 unicast packets. 5842 */ 5843 while ((connp != NULL) && 5844 (!IPCL_UDP_MATCH(connp, dstport, dst, 5845 srcport, src) || connp->conn_zoneid != zoneid)) { 5846 connp = connp->conn_next; 5847 } 5848 5849 if (connp == NULL || connp->conn_upq == NULL) 5850 goto notfound; 5851 CONN_INC_REF(connp); 5852 mutex_exit(&connfp->connf_lock); 5853 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, 5854 recv_ill, ip_policy); 5855 IP_STAT(ip_udp_fannorm); 5856 CONN_DEC_REF(connp); 5857 return; 5858 } 5859 5860 /* 5861 * Broadcast and multicast case 5862 * 5863 * Need to check conn_wantpacket(). 5864 * If SO_REUSEADDR has been set on the first we send the 5865 * packet to all clients that have joined the group and 5866 * match the port. 5867 */ 5868 5869 while (connp != NULL) { 5870 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 5871 conn_wantpacket(connp, ill, ipha, flags, zoneid)) 5872 break; 5873 connp = connp->conn_next; 5874 } 5875 5876 if (connp == NULL || connp->conn_upq == NULL) 5877 goto notfound; 5878 5879 first_connp = connp; 5880 /* 5881 * When SO_REUSEADDR is not set, send the packet only to the first 5882 * matching connection in its zone by keeping track of the zoneid. 5883 */ 5884 reuseaddr = first_connp->conn_reuseaddr; 5885 last_zoneid = first_connp->conn_zoneid; 5886 5887 CONN_INC_REF(connp); 5888 connp = connp->conn_next; 5889 for (;;) { 5890 while (connp != NULL) { 5891 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 5892 (reuseaddr || connp->conn_zoneid != last_zoneid) && 5893 conn_wantpacket(connp, ill, ipha, flags, zoneid)) 5894 break; 5895 connp = connp->conn_next; 5896 } 5897 /* 5898 * Just copy the data part alone. The mctl part is 5899 * needed just for verifying policy and it is never 5900 * sent up. 5901 */ 5902 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 5903 ((mp1 = copymsg(mp)) == NULL))) { 5904 /* 5905 * No more interested clients or memory 5906 * allocation failed 5907 */ 5908 connp = first_connp; 5909 break; 5910 } 5911 if (connp->conn_zoneid != last_zoneid) { 5912 /* 5913 * Update the zoneid so that the packet isn't sent to 5914 * any more conns in the same zone unless SO_REUSEADDR 5915 * is set. 5916 */ 5917 reuseaddr = connp->conn_reuseaddr; 5918 last_zoneid = connp->conn_zoneid; 5919 } 5920 if (first_mp != NULL) { 5921 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 5922 ipsec_info_type == IPSEC_IN); 5923 first_mp1 = ipsec_in_tag(first_mp, NULL); 5924 if (first_mp1 == NULL) { 5925 freemsg(mp1); 5926 connp = first_connp; 5927 break; 5928 } 5929 } else { 5930 first_mp1 = NULL; 5931 } 5932 CONN_INC_REF(connp); 5933 mutex_exit(&connfp->connf_lock); 5934 /* 5935 * IPQoS notes: We don't send the packet for policy 5936 * processing here, will do it for the last one (below). 5937 * i.e. we do it per-packet now, but if we do policy 5938 * processing per-conn, then we would need to do it 5939 * here too. 5940 */ 5941 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, 5942 ipha, flags, recv_ill, B_FALSE); 5943 mutex_enter(&connfp->connf_lock); 5944 /* Follow the next pointer before releasing the conn. */ 5945 next_connp = connp->conn_next; 5946 IP_STAT(ip_udp_fanmb); 5947 CONN_DEC_REF(connp); 5948 connp = next_connp; 5949 } 5950 5951 /* Last one. Send it upstream. */ 5952 mutex_exit(&connfp->connf_lock); 5953 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, recv_ill, 5954 ip_policy); 5955 IP_STAT(ip_udp_fanmb); 5956 CONN_DEC_REF(connp); 5957 return; 5958 5959 notfound: 5960 5961 mutex_exit(&connfp->connf_lock); 5962 IP_STAT(ip_udp_fanothers); 5963 /* 5964 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 5965 * have already been matched above, since they live in the IPv4 5966 * fanout tables. This implies we only need to 5967 * check for IPv6 in6addr_any endpoints here. 5968 * Thus we compare using ipv6_all_zeros instead of the destination 5969 * address, except for the multicast group membership lookup which 5970 * uses the IPv4 destination. 5971 */ 5972 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 5973 connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)]; 5974 mutex_enter(&connfp->connf_lock); 5975 connp = connfp->connf_head; 5976 if (!broadcast && !CLASSD(dst)) { 5977 while (connp != NULL) { 5978 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 5979 srcport, v6src) && connp->conn_zoneid == zoneid && 5980 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 5981 !connp->conn_ipv6_v6only) 5982 break; 5983 connp = connp->conn_next; 5984 } 5985 5986 if (connp == NULL || connp->conn_upq == NULL) { 5987 /* 5988 * No one bound to this port. Is 5989 * there a client that wants all 5990 * unclaimed datagrams? 5991 */ 5992 mutex_exit(&connfp->connf_lock); 5993 5994 if (mctl_present) 5995 first_mp->b_cont = mp; 5996 else 5997 first_mp = mp; 5998 if (ipcl_proto_search(IPPROTO_UDP) != NULL) { 5999 ip_fanout_proto(q, first_mp, ill, ipha, 6000 flags | IP_FF_RAWIP, mctl_present, 6001 ip_policy, recv_ill, zoneid); 6002 } else { 6003 if (ip_fanout_send_icmp(q, first_mp, flags, 6004 ICMP_DEST_UNREACHABLE, 6005 ICMP_PORT_UNREACHABLE, 6006 mctl_present, zoneid)) { 6007 BUMP_MIB(&ip_mib, udpNoPorts); 6008 } 6009 } 6010 return; 6011 } 6012 CONN_INC_REF(connp); 6013 mutex_exit(&connfp->connf_lock); 6014 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, 6015 recv_ill, ip_policy); 6016 CONN_DEC_REF(connp); 6017 return; 6018 } 6019 /* 6020 * IPv4 multicast packet being delivered to an AF_INET6 6021 * in6addr_any endpoint. 6022 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 6023 * and not conn_wantpacket_v6() since any multicast membership is 6024 * for an IPv4-mapped multicast address. 6025 * The packet is sent to all clients in all zones that have joined the 6026 * group and match the port. 6027 */ 6028 while (connp != NULL) { 6029 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 6030 srcport, v6src) && 6031 conn_wantpacket(connp, ill, ipha, flags, zoneid)) 6032 break; 6033 connp = connp->conn_next; 6034 } 6035 6036 if (connp == NULL || connp->conn_upq == NULL) { 6037 /* 6038 * No one bound to this port. Is 6039 * there a client that wants all 6040 * unclaimed datagrams? 6041 */ 6042 mutex_exit(&connfp->connf_lock); 6043 6044 if (mctl_present) 6045 first_mp->b_cont = mp; 6046 else 6047 first_mp = mp; 6048 if (ipcl_proto_search(IPPROTO_UDP) != NULL) { 6049 ip_fanout_proto(q, first_mp, ill, ipha, 6050 flags | IP_FF_RAWIP, mctl_present, ip_policy, 6051 recv_ill, zoneid); 6052 } else { 6053 /* 6054 * We used to attempt to send an icmp error here, but 6055 * since this is known to be a multicast packet 6056 * and we don't send icmp errors in response to 6057 * multicast, just drop the packet and give up sooner. 6058 */ 6059 BUMP_MIB(&ip_mib, udpNoPorts); 6060 freemsg(first_mp); 6061 } 6062 return; 6063 } 6064 6065 first_connp = connp; 6066 6067 CONN_INC_REF(connp); 6068 connp = connp->conn_next; 6069 for (;;) { 6070 while (connp != NULL) { 6071 if (IPCL_UDP_MATCH_V6(connp, dstport, 6072 ipv6_all_zeros, srcport, v6src) && 6073 conn_wantpacket(connp, ill, ipha, flags, zoneid)) 6074 break; 6075 connp = connp->conn_next; 6076 } 6077 /* 6078 * Just copy the data part alone. The mctl part is 6079 * needed just for verifying policy and it is never 6080 * sent up. 6081 */ 6082 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 6083 ((mp1 = copymsg(mp)) == NULL))) { 6084 /* 6085 * No more intested clients or memory 6086 * allocation failed 6087 */ 6088 connp = first_connp; 6089 break; 6090 } 6091 if (first_mp != NULL) { 6092 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 6093 ipsec_info_type == IPSEC_IN); 6094 first_mp1 = ipsec_in_tag(first_mp, NULL); 6095 if (first_mp1 == NULL) { 6096 freemsg(mp1); 6097 connp = first_connp; 6098 break; 6099 } 6100 } else { 6101 first_mp1 = NULL; 6102 } 6103 CONN_INC_REF(connp); 6104 mutex_exit(&connfp->connf_lock); 6105 /* 6106 * IPQoS notes: We don't send the packet for policy 6107 * processing here, will do it for the last one (below). 6108 * i.e. we do it per-packet now, but if we do policy 6109 * processing per-conn, then we would need to do it 6110 * here too. 6111 */ 6112 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, 6113 ipha, flags, recv_ill, B_FALSE); 6114 mutex_enter(&connfp->connf_lock); 6115 /* Follow the next pointer before releasing the conn. */ 6116 next_connp = connp->conn_next; 6117 CONN_DEC_REF(connp); 6118 connp = next_connp; 6119 } 6120 6121 /* Last one. Send it upstream. */ 6122 mutex_exit(&connfp->connf_lock); 6123 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, recv_ill, 6124 ip_policy); 6125 CONN_DEC_REF(connp); 6126 } 6127 6128 /* 6129 * Complete the ip_wput header so that it 6130 * is possible to generate ICMP 6131 * errors. 6132 */ 6133 static int 6134 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid) 6135 { 6136 ire_t *ire; 6137 6138 if (ipha->ipha_src == INADDR_ANY) { 6139 ire = ire_lookup_local(zoneid); 6140 if (ire == NULL) { 6141 ip1dbg(("ip_hdr_complete: no source IRE\n")); 6142 return (1); 6143 } 6144 ipha->ipha_src = ire->ire_addr; 6145 ire_refrele(ire); 6146 } 6147 ipha->ipha_ttl = ip_def_ttl; 6148 ipha->ipha_hdr_checksum = 0; 6149 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6150 return (0); 6151 } 6152 6153 /* 6154 * Nobody should be sending 6155 * packets up this stream 6156 */ 6157 static void 6158 ip_lrput(queue_t *q, mblk_t *mp) 6159 { 6160 mblk_t *mp1; 6161 6162 switch (mp->b_datap->db_type) { 6163 case M_FLUSH: 6164 /* Turn around */ 6165 if (*mp->b_rptr & FLUSHW) { 6166 *mp->b_rptr &= ~FLUSHR; 6167 qreply(q, mp); 6168 return; 6169 } 6170 break; 6171 } 6172 /* Could receive messages that passed through ar_rput */ 6173 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 6174 mp1->b_prev = mp1->b_next = NULL; 6175 freemsg(mp); 6176 } 6177 6178 /* Nobody should be sending packets down this stream */ 6179 /* ARGSUSED */ 6180 void 6181 ip_lwput(queue_t *q, mblk_t *mp) 6182 { 6183 freemsg(mp); 6184 } 6185 6186 /* 6187 * Move the first hop in any source route to ipha_dst and remove that part of 6188 * the source route. Called by other protocols. Errors in option formatting 6189 * are ignored - will be handled by ip_wput_options Return the final 6190 * destination (either ipha_dst or the last entry in a source route.) 6191 */ 6192 ipaddr_t 6193 ip_massage_options(ipha_t *ipha) 6194 { 6195 ipoptp_t opts; 6196 uchar_t *opt; 6197 uint8_t optval; 6198 uint8_t optlen; 6199 ipaddr_t dst; 6200 int i; 6201 ire_t *ire; 6202 6203 ip2dbg(("ip_massage_options\n")); 6204 dst = ipha->ipha_dst; 6205 for (optval = ipoptp_first(&opts, ipha); 6206 optval != IPOPT_EOL; 6207 optval = ipoptp_next(&opts)) { 6208 opt = opts.ipoptp_cur; 6209 switch (optval) { 6210 uint8_t off; 6211 case IPOPT_SSRR: 6212 case IPOPT_LSRR: 6213 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 6214 ip1dbg(("ip_massage_options: bad src route\n")); 6215 break; 6216 } 6217 optlen = opts.ipoptp_len; 6218 off = opt[IPOPT_OFFSET]; 6219 off--; 6220 redo_srr: 6221 if (optlen < IP_ADDR_LEN || 6222 off > optlen - IP_ADDR_LEN) { 6223 /* End of source route */ 6224 ip1dbg(("ip_massage_options: end of SR\n")); 6225 break; 6226 } 6227 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 6228 ip1dbg(("ip_massage_options: next hop 0x%x\n", 6229 ntohl(dst))); 6230 /* 6231 * Check if our address is present more than 6232 * once as consecutive hops in source route. 6233 * XXX verify per-interface ip_forwarding 6234 * for source route? 6235 */ 6236 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 6237 ALL_ZONES, MATCH_IRE_TYPE); 6238 if (ire != NULL) { 6239 ire_refrele(ire); 6240 off += IP_ADDR_LEN; 6241 goto redo_srr; 6242 } 6243 if (dst == htonl(INADDR_LOOPBACK)) { 6244 ip1dbg(("ip_massage_options: loopback addr in " 6245 "source route!\n")); 6246 break; 6247 } 6248 /* 6249 * Update ipha_dst to be the first hop and remove the 6250 * first hop from the source route (by overwriting 6251 * part of the option with NOP options). 6252 */ 6253 ipha->ipha_dst = dst; 6254 /* Put the last entry in dst */ 6255 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 6256 3; 6257 bcopy(&opt[off], &dst, IP_ADDR_LEN); 6258 6259 ip1dbg(("ip_massage_options: last hop 0x%x\n", 6260 ntohl(dst))); 6261 /* Move down and overwrite */ 6262 opt[IP_ADDR_LEN] = opt[0]; 6263 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 6264 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 6265 for (i = 0; i < IP_ADDR_LEN; i++) 6266 opt[i] = IPOPT_NOP; 6267 break; 6268 } 6269 } 6270 return (dst); 6271 } 6272 6273 /* 6274 * This function's job is to forward data to the reverse tunnel (FA->HA) 6275 * after doing a few checks. It is assumed that the incoming interface 6276 * of the packet is always different than the outgoing interface and the 6277 * ire_type of the found ire has to be a non-resolver type. 6278 * 6279 * IPQoS notes 6280 * IP policy is invoked twice for a forwarded packet, once on the read side 6281 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 6282 * enabled. 6283 */ 6284 static void 6285 ip_mrtun_forward(ire_t *ire, ill_t *in_ill, mblk_t *mp) 6286 { 6287 ipha_t *ipha; 6288 queue_t *q; 6289 uint32_t pkt_len; 6290 #define rptr ((uchar_t *)ipha) 6291 uint32_t sum; 6292 uint32_t max_frag; 6293 mblk_t *first_mp; 6294 uint32_t ill_index; 6295 6296 ASSERT(ire != NULL); 6297 ASSERT(ire->ire_ipif->ipif_net_type == IRE_IF_NORESOLVER); 6298 ASSERT(ire->ire_stq != NULL); 6299 6300 /* Initiate read side IPPF processing */ 6301 if (IPP_ENABLED(IPP_FWD_IN)) { 6302 ill_index = in_ill->ill_phyint->phyint_ifindex; 6303 ip_process(IPP_FWD_IN, &mp, ill_index); 6304 if (mp == NULL) { 6305 ip2dbg(("ip_mrtun_forward: inbound pkt " 6306 "dropped during IPPF processing\n")); 6307 return; 6308 } 6309 } 6310 6311 if (((in_ill->ill_flags & ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 6312 ILLF_ROUTER) == 0) || 6313 (in_ill == (ill_t *)ire->ire_stq->q_ptr)) { 6314 BUMP_MIB(&ip_mib, ipForwProhibits); 6315 ip0dbg(("ip_mrtun_forward: Can't forward :" 6316 "forwarding is not turned on\n")); 6317 goto drop_pkt; 6318 } 6319 6320 /* 6321 * Don't forward if the interface is down 6322 */ 6323 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 6324 BUMP_MIB(&ip_mib, ipInDiscards); 6325 goto drop_pkt; 6326 } 6327 6328 ipha = (ipha_t *)mp->b_rptr; 6329 pkt_len = ntohs(ipha->ipha_length); 6330 /* Adjust the checksum to reflect the ttl decrement. */ 6331 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 6332 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 6333 if (ipha->ipha_ttl-- <= 1) { 6334 if (ip_csum_hdr(ipha)) { 6335 BUMP_MIB(&ip_mib, ipInCksumErrs); 6336 goto drop_pkt; 6337 } 6338 q = ire->ire_stq; 6339 if ((first_mp = allocb(sizeof (ipsec_info_t), 6340 BPRI_HI)) == NULL) { 6341 goto drop_pkt; 6342 } 6343 ip_ipsec_out_prepend(first_mp, mp, in_ill); 6344 icmp_time_exceeded(q, first_mp, ICMP_TTL_EXCEEDED); 6345 6346 return; 6347 } 6348 6349 /* Get the ill_index of the ILL */ 6350 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 6351 6352 /* 6353 * ip_mrtun_forward is only used by foreign agent to reverse 6354 * tunnel the incoming packet. So it does not do any option 6355 * processing for source routing. 6356 */ 6357 max_frag = ire->ire_max_frag; 6358 if (pkt_len > max_frag) { 6359 /* 6360 * It needs fragging on its way out. We haven't 6361 * verified the header checksum yet. Since we 6362 * are going to put a surely good checksum in the 6363 * outgoing header, we have to make sure that it 6364 * was good coming in. 6365 */ 6366 if (ip_csum_hdr(ipha)) { 6367 BUMP_MIB(&ip_mib, ipInCksumErrs); 6368 goto drop_pkt; 6369 } 6370 6371 /* Initiate write side IPPF processing */ 6372 if (IPP_ENABLED(IPP_FWD_OUT)) { 6373 ip_process(IPP_FWD_OUT, &mp, ill_index); 6374 if (mp == NULL) { 6375 ip2dbg(("ip_mrtun_forward: outbound pkt "\ 6376 "dropped/deferred during ip policy "\ 6377 "processing\n")); 6378 return; 6379 } 6380 } 6381 if ((first_mp = allocb(sizeof (ipsec_info_t), 6382 BPRI_HI)) == NULL) { 6383 goto drop_pkt; 6384 } 6385 ip_ipsec_out_prepend(first_mp, mp, in_ill); 6386 mp = first_mp; 6387 6388 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0); 6389 return; 6390 } 6391 6392 ip2dbg(("ip_mrtun_forward: ire type (%d)\n", ire->ire_type)); 6393 6394 ASSERT(ire->ire_ipif != NULL); 6395 6396 mp = ip_wput_attach_llhdr(mp, ire, IPP_FWD_OUT, ill_index); 6397 if (mp == NULL) { 6398 BUMP_MIB(&ip_mib, ipInDiscards); 6399 return; 6400 } 6401 6402 /* Now send the packet to the tunnel interface */ 6403 q = ire->ire_stq; 6404 UPDATE_IB_PKT_COUNT(ire); 6405 ire->ire_last_used_time = lbolt; 6406 BUMP_MIB(&ip_mib, ipForwDatagrams); 6407 putnext(q, mp); 6408 ip2dbg(("ip_mrtun_forward: sent packet to ill %p\n", q->q_ptr)); 6409 return; 6410 6411 drop_pkt:; 6412 ip2dbg(("ip_mrtun_forward: dropping pkt\n")); 6413 freemsg(mp); 6414 #undef rptr 6415 } 6416 6417 /* 6418 * Fills the ipsec_out_t data structure with appropriate fields and 6419 * prepends it to mp which contains the IP hdr + data that was meant 6420 * to be forwarded. Please note that ipsec_out_info data structure 6421 * is used here to communicate the outgoing ill path at ip_wput() 6422 * for the ICMP error packet. This has nothing to do with ipsec IP 6423 * security. ipsec_out_t is really used to pass the info to the module 6424 * IP where this information cannot be extracted from conn. 6425 * This functions is called by ip_mrtun_forward(). 6426 */ 6427 void 6428 ip_ipsec_out_prepend(mblk_t *first_mp, mblk_t *mp, ill_t *xmit_ill) 6429 { 6430 ipsec_out_t *io; 6431 6432 ASSERT(xmit_ill != NULL); 6433 first_mp->b_datap->db_type = M_CTL; 6434 first_mp->b_wptr += sizeof (ipsec_info_t); 6435 /* 6436 * This is to pass info to ip_wput in absence of conn. 6437 * ipsec_out_secure will be B_FALSE because of this. 6438 * Thus ipsec_out_secure being B_FALSE indicates that 6439 * this is not IPSEC security related information. 6440 */ 6441 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 6442 io = (ipsec_out_t *)first_mp->b_rptr; 6443 io->ipsec_out_type = IPSEC_OUT; 6444 io->ipsec_out_len = sizeof (ipsec_out_t); 6445 first_mp->b_cont = mp; 6446 io->ipsec_out_ill_index = 6447 xmit_ill->ill_phyint->phyint_ifindex; 6448 io->ipsec_out_xmit_if = B_TRUE; 6449 } 6450 6451 /* 6452 * Return the network mask 6453 * associated with the specified address. 6454 */ 6455 ipaddr_t 6456 ip_net_mask(ipaddr_t addr) 6457 { 6458 uchar_t *up = (uchar_t *)&addr; 6459 ipaddr_t mask = 0; 6460 uchar_t *maskp = (uchar_t *)&mask; 6461 6462 #if defined(__i386) || defined(__amd64) 6463 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 6464 #endif 6465 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 6466 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 6467 #endif 6468 if (CLASSD(addr)) { 6469 maskp[0] = 0xF0; 6470 return (mask); 6471 } 6472 if (addr == 0) 6473 return (0); 6474 maskp[0] = 0xFF; 6475 if ((up[0] & 0x80) == 0) 6476 return (mask); 6477 6478 maskp[1] = 0xFF; 6479 if ((up[0] & 0xC0) == 0x80) 6480 return (mask); 6481 6482 maskp[2] = 0xFF; 6483 if ((up[0] & 0xE0) == 0xC0) 6484 return (mask); 6485 6486 /* Must be experimental or multicast, indicate as much */ 6487 return ((ipaddr_t)0); 6488 } 6489 6490 /* 6491 * Select an ill for the packet by considering load spreading across 6492 * a different ill in the group if dst_ill is part of some group. 6493 */ 6494 static ill_t * 6495 ip_newroute_get_dst_ill(ill_t *dst_ill) 6496 { 6497 ill_t *ill; 6498 6499 /* 6500 * We schedule irrespective of whether the source address is 6501 * INADDR_ANY or not. illgrp_scheduler returns a held ill. 6502 */ 6503 ill = illgrp_scheduler(dst_ill); 6504 if (ill == NULL) 6505 return (NULL); 6506 6507 /* 6508 * For groups with names ip_sioctl_groupname ensures that all 6509 * ills are of same type. For groups without names, ifgrp_insert 6510 * ensures this. 6511 */ 6512 ASSERT(dst_ill->ill_type == ill->ill_type); 6513 6514 return (ill); 6515 } 6516 6517 /* 6518 * Helper function for the IPIF_NOFAILOVER/ATTACH_IF interface attachment case. 6519 */ 6520 ill_t * 6521 ip_grab_attach_ill(ill_t *ill, mblk_t *first_mp, int ifindex, boolean_t isv6) 6522 { 6523 ill_t *ret_ill; 6524 6525 ASSERT(ifindex != 0); 6526 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL); 6527 if (ret_ill == NULL || 6528 (ret_ill->ill_phyint->phyint_flags & PHYI_OFFLINE)) { 6529 if (isv6) { 6530 if (ill != NULL) { 6531 BUMP_MIB(ill->ill_ip6_mib, ipv6OutDiscards); 6532 } else { 6533 BUMP_MIB(&ip6_mib, ipv6OutDiscards); 6534 } 6535 ip1dbg(("ip_grab_attach_ill (IPv6): " 6536 "bad ifindex %d.\n", ifindex)); 6537 } else { 6538 BUMP_MIB(&ip_mib, ipOutDiscards); 6539 ip1dbg(("ip_grab_attach_ill (IPv4): " 6540 "bad ifindex %d.\n", ifindex)); 6541 } 6542 if (ret_ill != NULL) 6543 ill_refrele(ret_ill); 6544 freemsg(first_mp); 6545 return (NULL); 6546 } 6547 6548 return (ret_ill); 6549 } 6550 6551 /* 6552 * IPv4 - 6553 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 6554 * out a packet to a destination address for which we do not have specific 6555 * (or sufficient) routing information. 6556 * 6557 * NOTE : These are the scopes of some of the variables that point at IRE, 6558 * which needs to be followed while making any future modifications 6559 * to avoid memory leaks. 6560 * 6561 * - ire and sire are the entries looked up initially by 6562 * ire_ftable_lookup. 6563 * - ipif_ire is used to hold the interface ire associated with 6564 * the new cache ire. But it's scope is limited, so we always REFRELE 6565 * it before branching out to error paths. 6566 * - save_ire is initialized before ire_create, so that ire returned 6567 * by ire_create will not over-write the ire. We REFRELE save_ire 6568 * before breaking out of the switch. 6569 * 6570 * Thus on failures, we have to REFRELE only ire and sire, if they 6571 * are not NULL. 6572 */ 6573 void 6574 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, ill_t *in_ill, conn_t *connp) 6575 { 6576 areq_t *areq; 6577 ipaddr_t gw = 0; 6578 ire_t *ire = NULL; 6579 mblk_t *res_mp; 6580 ipaddr_t *addrp; 6581 ipif_t *src_ipif = NULL; 6582 ill_t *dst_ill = NULL; 6583 ipha_t *ipha; 6584 ire_t *sire = NULL; 6585 mblk_t *first_mp; 6586 ire_t *save_ire; 6587 mblk_t *dlureq_mp; 6588 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER address */ 6589 ushort_t ire_marks = 0; 6590 boolean_t mctl_present; 6591 ipsec_out_t *io; 6592 mblk_t *saved_mp; 6593 ire_t *first_sire = NULL; 6594 mblk_t *copy_mp = NULL; 6595 mblk_t *xmit_mp = NULL; 6596 ipaddr_t save_dst; 6597 uint32_t multirt_flags = 6598 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 6599 boolean_t multirt_is_resolvable; 6600 boolean_t multirt_resolve_next; 6601 boolean_t do_attach_ill = B_FALSE; 6602 zoneid_t zoneid; 6603 6604 if (ip_debug > 2) { 6605 /* ip1dbg */ 6606 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 6607 } 6608 6609 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 6610 if (mctl_present) { 6611 io = (ipsec_out_t *)first_mp->b_rptr; 6612 zoneid = io->ipsec_out_zoneid; 6613 ASSERT(zoneid != ALL_ZONES); 6614 } else if (connp != NULL) { 6615 zoneid = connp->conn_zoneid; 6616 } else { 6617 zoneid = GLOBAL_ZONEID; 6618 } 6619 6620 ipha = (ipha_t *)mp->b_rptr; 6621 6622 /* All multicast lookups come through ip_newroute_ipif() */ 6623 if (CLASSD(dst)) { 6624 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 6625 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 6626 freemsg(first_mp); 6627 return; 6628 } 6629 6630 if (ip_loopback_src_or_dst(ipha, NULL)) { 6631 goto icmp_err_ret; 6632 } 6633 6634 if (mctl_present && io->ipsec_out_attach_if) { 6635 /* ip_grab_attach_ill returns a held ill */ 6636 attach_ill = ip_grab_attach_ill(NULL, first_mp, 6637 io->ipsec_out_ill_index, B_FALSE); 6638 6639 /* Failure case frees things for us. */ 6640 if (attach_ill == NULL) 6641 return; 6642 6643 /* 6644 * Check if we need an ire that will not be 6645 * looked up by anybody else i.e. HIDDEN. 6646 */ 6647 if (ill_is_probeonly(attach_ill)) 6648 ire_marks = IRE_MARK_HIDDEN; 6649 } 6650 /* 6651 * If this IRE is created for forwarding or it is not for 6652 * traffic for congestion controlled protocols, mark it as temporary. 6653 */ 6654 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 6655 ire_marks |= IRE_MARK_TEMPORARY; 6656 6657 /* 6658 * Get what we can from ire_ftable_lookup which will follow an IRE 6659 * chain until it gets the most specific information available. 6660 * For example, we know that there is no IRE_CACHE for this dest, 6661 * but there may be an IRE_OFFSUBNET which specifies a gateway. 6662 * ire_ftable_lookup will look up the gateway, etc. 6663 * Check if in_ill != NULL. If it is true, the packet must be 6664 * from an incoming interface where RTA_SRCIFP is set. 6665 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 6666 * to the destination, of equal netmask length in the forward table, 6667 * will be recursively explored. If no information is available 6668 * for the final gateway of that route, we force the returned ire 6669 * to be equal to sire using MATCH_IRE_PARENT. 6670 * At least, in this case we have a starting point (in the buckets) 6671 * to look for other routes to the destination in the forward table. 6672 * This is actually used only for multirouting, where a list 6673 * of routes has to be processed in sequence. 6674 */ 6675 if (in_ill != NULL) { 6676 ire = ire_srcif_table_lookup(dst, IRE_IF_RESOLVER, NULL, 6677 in_ill, MATCH_IRE_TYPE); 6678 } else if (attach_ill == NULL) { 6679 ire = ire_ftable_lookup(dst, 0, 0, 0, 6680 NULL, &sire, zoneid, 0, 6681 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 6682 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT); 6683 } else { 6684 /* 6685 * attach_ill is set only for communicating with 6686 * on-link hosts. So, don't look for DEFAULT. 6687 */ 6688 ipif_t *attach_ipif; 6689 6690 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 6691 if (attach_ipif == NULL) { 6692 ill_refrele(attach_ill); 6693 goto icmp_err_ret; 6694 } 6695 ire = ire_ftable_lookup(dst, 0, 0, 0, attach_ipif, 6696 &sire, zoneid, 0, 6697 MATCH_IRE_RJ_BHOLE | MATCH_IRE_ILL); 6698 ipif_refrele(attach_ipif); 6699 } 6700 ip3dbg(("ip_newroute: ire_ftable_lookup() " 6701 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 6702 6703 /* 6704 * This loop is run only once in most cases. 6705 * We loop to resolve further routes only when the destination 6706 * can be reached through multiple RTF_MULTIRT-flagged ires. 6707 */ 6708 do { 6709 /* Clear the previous iteration's values */ 6710 if (src_ipif != NULL) { 6711 ipif_refrele(src_ipif); 6712 src_ipif = NULL; 6713 } 6714 if (dst_ill != NULL) { 6715 ill_refrele(dst_ill); 6716 dst_ill = NULL; 6717 } 6718 6719 multirt_resolve_next = B_FALSE; 6720 /* 6721 * We check if packets have to be multirouted. 6722 * In this case, given the current <ire, sire> couple, 6723 * we look for the next suitable <ire, sire>. 6724 * This check is done in ire_multirt_lookup(), 6725 * which applies various criteria to find the next route 6726 * to resolve. ire_multirt_lookup() leaves <ire, sire> 6727 * unchanged if it detects it has not been tried yet. 6728 */ 6729 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 6730 ip3dbg(("ip_newroute: starting next_resolution " 6731 "with first_mp %p, tag %d\n", 6732 (void *)first_mp, 6733 MULTIRT_DEBUG_TAGGED(first_mp))); 6734 6735 ASSERT(sire != NULL); 6736 multirt_is_resolvable = 6737 ire_multirt_lookup(&ire, &sire, multirt_flags); 6738 6739 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 6740 "ire %p, sire %p\n", 6741 multirt_is_resolvable, 6742 (void *)ire, (void *)sire)); 6743 6744 if (!multirt_is_resolvable) { 6745 /* 6746 * No more multirt route to resolve; give up 6747 * (all routes resolved or no more 6748 * resolvable routes). 6749 */ 6750 if (ire != NULL) { 6751 ire_refrele(ire); 6752 ire = NULL; 6753 } 6754 } else { 6755 ASSERT(sire != NULL); 6756 ASSERT(ire != NULL); 6757 /* 6758 * We simply use first_sire as a flag that 6759 * indicates if a resolvable multirt route 6760 * has already been found. 6761 * If it is not the case, we may have to send 6762 * an ICMP error to report that the 6763 * destination is unreachable. 6764 * We do not IRE_REFHOLD first_sire. 6765 */ 6766 if (first_sire == NULL) { 6767 first_sire = sire; 6768 } 6769 } 6770 } 6771 if (ire == NULL) { 6772 if (ip_debug > 3) { 6773 /* ip2dbg */ 6774 pr_addr_dbg("ip_newroute: " 6775 "can't resolve %s\n", AF_INET, &dst); 6776 } 6777 ip3dbg(("ip_newroute: " 6778 "ire %p, sire %p, first_sire %p\n", 6779 (void *)ire, (void *)sire, (void *)first_sire)); 6780 6781 if (sire != NULL) { 6782 ire_refrele(sire); 6783 sire = NULL; 6784 } 6785 6786 if (first_sire != NULL) { 6787 /* 6788 * At least one multirt route has been found 6789 * in the same call to ip_newroute(); 6790 * there is no need to report an ICMP error. 6791 * first_sire was not IRE_REFHOLDed. 6792 */ 6793 MULTIRT_DEBUG_UNTAG(first_mp); 6794 freemsg(first_mp); 6795 return; 6796 } 6797 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 6798 RTA_DST); 6799 if (attach_ill != NULL) 6800 ill_refrele(attach_ill); 6801 goto icmp_err_ret; 6802 } 6803 6804 /* 6805 * When RTA_SRCIFP is used to add a route, then an interface 6806 * route is added in the source interface's routing table. 6807 * If the outgoing interface of this route is of type 6808 * IRE_IF_RESOLVER, then upon creation of the ire, 6809 * ire_dlureq_mp is set to NULL. Later, when this route is 6810 * first used for forwarding packet, ip_newroute() is called 6811 * to resolve the hardware address of the outgoing ipif. 6812 * We do not come here for IRE_IF_NORESOLVER entries in the 6813 * source interface based table. We only come here if the 6814 * outgoing interface is a resolver interface and we don't 6815 * have the ire_dlureq_mp information yet. 6816 * If in_ill is not null that means it is called from 6817 * ip_rput. 6818 */ 6819 6820 ASSERT(ire->ire_in_ill == NULL || 6821 (ire->ire_type == IRE_IF_RESOLVER && 6822 ire->ire_dlureq_mp == NULL)); 6823 6824 /* 6825 * Verify that the returned IRE does not have either 6826 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 6827 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 6828 */ 6829 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 6830 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 6831 if (attach_ill != NULL) 6832 ill_refrele(attach_ill); 6833 goto icmp_err_ret; 6834 } 6835 /* 6836 * Increment the ire_ob_pkt_count field for ire if it is an 6837 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 6838 * increment the same for the parent IRE, sire, if it is some 6839 * sort of prefix IRE (which includes DEFAULT, PREFIX, HOST 6840 * and HOST_REDIRECT). 6841 */ 6842 if ((ire->ire_type & IRE_INTERFACE) != 0) { 6843 UPDATE_OB_PKT_COUNT(ire); 6844 ire->ire_last_used_time = lbolt; 6845 } 6846 6847 if (sire != NULL) { 6848 gw = sire->ire_gateway_addr; 6849 ASSERT((sire->ire_type & (IRE_CACHETABLE | 6850 IRE_INTERFACE)) == 0); 6851 UPDATE_OB_PKT_COUNT(sire); 6852 sire->ire_last_used_time = lbolt; 6853 } 6854 /* 6855 * We have a route to reach the destination. 6856 * 6857 * 1) If the interface is part of ill group, try to get a new 6858 * ill taking load spreading into account. 6859 * 6860 * 2) After selecting the ill, get a source address that 6861 * might create good inbound load spreading. 6862 * ipif_select_source does this for us. 6863 * 6864 * If the application specified the ill (ifindex), we still 6865 * load spread. Only if the packets needs to go out 6866 * specifically on a given ill e.g. binding to 6867 * IPIF_NOFAILOVER address, then we don't try to use a 6868 * different ill for load spreading. 6869 */ 6870 if (attach_ill == NULL) { 6871 /* 6872 * Don't perform outbound load spreading in the 6873 * case of an RTF_MULTIRT route, as we actually 6874 * typically want to replicate outgoing packets 6875 * through particular interfaces. 6876 */ 6877 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 6878 dst_ill = ire->ire_ipif->ipif_ill; 6879 /* for uniformity */ 6880 ill_refhold(dst_ill); 6881 } else { 6882 /* 6883 * If we are here trying to create an IRE_CACHE 6884 * for an offlink destination and have the 6885 * IRE_CACHE for the next hop and the latter is 6886 * using virtual IP source address selection i.e 6887 * it's ire->ire_ipif is pointing to a virtual 6888 * network interface (vni) then 6889 * ip_newroute_get_dst_ll() will return the vni 6890 * interface as the dst_ill. Since the vni is 6891 * virtual i.e not associated with any physical 6892 * interface, it cannot be the dst_ill, hence 6893 * in such a case call ip_newroute_get_dst_ll() 6894 * with the stq_ill instead of the ire_ipif ILL. 6895 * The function returns a refheld ill. 6896 */ 6897 if ((ire->ire_type == IRE_CACHE) && 6898 IS_VNI(ire->ire_ipif->ipif_ill)) 6899 dst_ill = ip_newroute_get_dst_ill( 6900 ire->ire_stq->q_ptr); 6901 else 6902 dst_ill = ip_newroute_get_dst_ill( 6903 ire->ire_ipif->ipif_ill); 6904 } 6905 if (dst_ill == NULL) { 6906 if (ip_debug > 2) { 6907 pr_addr_dbg("ip_newroute: " 6908 "no dst ill for dst" 6909 " %s\n", AF_INET, &dst); 6910 } 6911 goto icmp_err_ret; 6912 } 6913 } else { 6914 dst_ill = ire->ire_ipif->ipif_ill; 6915 /* for uniformity */ 6916 ill_refhold(dst_ill); 6917 /* 6918 * We should have found a route matching ill as we 6919 * called ire_ftable_lookup with MATCH_IRE_ILL. 6920 * Rather than asserting, when there is a mismatch, 6921 * we just drop the packet. 6922 */ 6923 if (dst_ill != attach_ill) { 6924 ip0dbg(("ip_newroute: Packet dropped as " 6925 "IPIF_NOFAILOVER ill is %s, " 6926 "ire->ire_ipif->ipif_ill is %s\n", 6927 attach_ill->ill_name, 6928 dst_ill->ill_name)); 6929 ill_refrele(attach_ill); 6930 goto icmp_err_ret; 6931 } 6932 } 6933 /* attach_ill can't go in loop. IPMP and CGTP are disjoint */ 6934 if (attach_ill != NULL) { 6935 ill_refrele(attach_ill); 6936 attach_ill = NULL; 6937 do_attach_ill = B_TRUE; 6938 } 6939 ASSERT(dst_ill != NULL); 6940 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 6941 6942 /* 6943 * Pick the best source address from dst_ill. 6944 * 6945 * 1) If it is part of a multipathing group, we would 6946 * like to spread the inbound packets across different 6947 * interfaces. ipif_select_source picks a random source 6948 * across the different ills in the group. 6949 * 6950 * 2) If it is not part of a multipathing group, we try 6951 * to pick the source address from the destination 6952 * route. Clustering assumes that when we have multiple 6953 * prefixes hosted on an interface, the prefix of the 6954 * source address matches the prefix of the destination 6955 * route. We do this only if the address is not 6956 * DEPRECATED. 6957 * 6958 * 3) If the conn is in a different zone than the ire, we 6959 * need to pick a source address from the right zone. 6960 * 6961 * NOTE : If we hit case (1) above, the prefix of the source 6962 * address picked may not match the prefix of the 6963 * destination routes prefix as ipif_select_source 6964 * does not look at "dst" while picking a source 6965 * address. 6966 * If we want the same behavior as (2), we will need 6967 * to change the behavior of ipif_select_source. 6968 */ 6969 ASSERT(src_ipif == NULL); 6970 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 6971 /* 6972 * The RTF_SETSRC flag is set in the parent ire (sire). 6973 * Check that the ipif matching the requested source 6974 * address still exists. 6975 */ 6976 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 6977 zoneid, NULL, NULL, NULL, NULL); 6978 } 6979 if (src_ipif == NULL) { 6980 ire_marks |= IRE_MARK_USESRC_CHECK; 6981 if ((dst_ill->ill_group != NULL) || 6982 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 6983 (connp != NULL && ire->ire_zoneid != zoneid) || 6984 (dst_ill->ill_usesrc_ifindex != 0)) { 6985 src_ipif = ipif_select_source(dst_ill, dst, 6986 zoneid); 6987 if (src_ipif == NULL) { 6988 if (ip_debug > 2) { 6989 pr_addr_dbg("ip_newroute: " 6990 "no src for dst %s ", 6991 AF_INET, &dst); 6992 printf("through interface %s\n", 6993 dst_ill->ill_name); 6994 } 6995 goto icmp_err_ret; 6996 } 6997 } else { 6998 src_ipif = ire->ire_ipif; 6999 ASSERT(src_ipif != NULL); 7000 /* hold src_ipif for uniformity */ 7001 ipif_refhold(src_ipif); 7002 } 7003 } 7004 7005 /* 7006 * Assign a source address while we have the conn. 7007 * We can't have ip_wput_ire pick a source address when the 7008 * packet returns from arp since we need to look at 7009 * conn_unspec_src and conn_zoneid, and we lose the conn when 7010 * going through arp. 7011 * 7012 * NOTE : ip_newroute_v6 does not have this piece of code as 7013 * it uses ip6i to store this information. 7014 */ 7015 if (ipha->ipha_src == INADDR_ANY && 7016 (connp == NULL || !connp->conn_unspec_src)) { 7017 ipha->ipha_src = src_ipif->ipif_src_addr; 7018 } 7019 if (ip_debug > 3) { 7020 /* ip2dbg */ 7021 pr_addr_dbg("ip_newroute: first hop %s\n", 7022 AF_INET, &gw); 7023 } 7024 ip2dbg(("\tire type %s (%d)\n", 7025 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 7026 7027 /* 7028 * The TTL of multirouted packets is bounded by the 7029 * ip_multirt_ttl ndd variable. 7030 */ 7031 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7032 /* Force TTL of multirouted packets */ 7033 if ((ip_multirt_ttl > 0) && 7034 (ipha->ipha_ttl > ip_multirt_ttl)) { 7035 ip2dbg(("ip_newroute: forcing multirt TTL " 7036 "to %d (was %d), dst 0x%08x\n", 7037 ip_multirt_ttl, ipha->ipha_ttl, 7038 ntohl(sire->ire_addr))); 7039 ipha->ipha_ttl = ip_multirt_ttl; 7040 } 7041 } 7042 /* 7043 * At this point in ip_newroute(), ire is either the 7044 * IRE_CACHE of the next-hop gateway for an off-subnet 7045 * destination or an IRE_INTERFACE type that should be used 7046 * to resolve an on-subnet destination or an on-subnet 7047 * next-hop gateway. 7048 * 7049 * In the IRE_CACHE case, we have the following : 7050 * 7051 * 1) src_ipif - used for getting a source address. 7052 * 7053 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 7054 * means packets using this IRE_CACHE will go out on 7055 * dst_ill. 7056 * 7057 * 3) The IRE sire will point to the prefix that is the 7058 * longest matching route for the destination. These 7059 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST, 7060 * and IRE_HOST_REDIRECT. 7061 * 7062 * The newly created IRE_CACHE entry for the off-subnet 7063 * destination is tied to both the prefix route and the 7064 * interface route used to resolve the next-hop gateway 7065 * via the ire_phandle and ire_ihandle fields, 7066 * respectively. 7067 * 7068 * In the IRE_INTERFACE case, we have the following : 7069 * 7070 * 1) src_ipif - used for getting a source address. 7071 * 7072 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 7073 * means packets using the IRE_CACHE that we will build 7074 * here will go out on dst_ill. 7075 * 7076 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 7077 * to be created will only be tied to the IRE_INTERFACE 7078 * that was derived from the ire_ihandle field. 7079 * 7080 * If sire is non-NULL, it means the destination is 7081 * off-link and we will first create the IRE_CACHE for the 7082 * gateway. Next time through ip_newroute, we will create 7083 * the IRE_CACHE for the final destination as described 7084 * above. 7085 * 7086 * In both cases, after the current resolution has been 7087 * completed (or possibly initialised, in the IRE_INTERFACE 7088 * case), the loop may be re-entered to attempt the resolution 7089 * of another RTF_MULTIRT route. 7090 * 7091 * When an IRE_CACHE entry for the off-subnet destination is 7092 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 7093 * for further processing in emission loops. 7094 */ 7095 save_ire = ire; 7096 switch (ire->ire_type) { 7097 case IRE_CACHE: { 7098 ire_t *ipif_ire; 7099 mblk_t *ire_fp_mp; 7100 7101 ASSERT(sire != NULL); 7102 if (gw == 0) 7103 gw = ire->ire_gateway_addr; 7104 /* 7105 * We need 3 ire's to create a new cache ire for an 7106 * off-link destination from the cache ire of the 7107 * gateway. 7108 * 7109 * 1. The prefix ire 'sire' 7110 * 2. The cache ire of the gateway 'ire' 7111 * 3. The interface ire 'ipif_ire' 7112 * 7113 * We have (1) and (2). We lookup (3) below. 7114 * 7115 * If there is no interface route to the gateway, 7116 * it is a race condition, where we found the cache 7117 * but the inteface route has been deleted. 7118 */ 7119 ipif_ire = ire_ihandle_lookup_offlink(ire, sire); 7120 if (ipif_ire == NULL) { 7121 ip1dbg(("ip_newroute: " 7122 "ire_ihandle_lookup_offlink failed\n")); 7123 goto icmp_err_ret; 7124 } 7125 /* 7126 * XXX We are using the same dlureq_mp 7127 * (DL_UNITDATA_REQ) though the save_ire is not 7128 * pointing at the same ill. 7129 * This is incorrect. We need to send it up to the 7130 * resolver to get the right dlureq_mp. For ethernets 7131 * this may be okay (ill_type == DL_ETHER). 7132 */ 7133 dlureq_mp = save_ire->ire_dlureq_mp; 7134 ire_fp_mp = NULL; 7135 /* 7136 * save_ire's ire_fp_mp can't change since it is 7137 * not an IRE_MIPRTUN or IRE_BROADCAST 7138 * LOCK_IRE_FP_MP does not do any useful work in 7139 * the case of IRE_CACHE. So we don't use it below. 7140 */ 7141 if (save_ire->ire_stq == dst_ill->ill_wq) 7142 ire_fp_mp = save_ire->ire_fp_mp; 7143 7144 ire = ire_create( 7145 (uchar_t *)&dst, /* dest address */ 7146 (uchar_t *)&ip_g_all_ones, /* mask */ 7147 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 7148 (uchar_t *)&gw, /* gateway address */ 7149 NULL, 7150 &save_ire->ire_max_frag, 7151 ire_fp_mp, /* Fast Path header */ 7152 dst_ill->ill_rq, /* recv-from queue */ 7153 dst_ill->ill_wq, /* send-to queue */ 7154 IRE_CACHE, /* IRE type */ 7155 save_ire->ire_dlureq_mp, 7156 src_ipif, 7157 in_ill, /* incoming ill */ 7158 sire->ire_mask, /* Parent mask */ 7159 sire->ire_phandle, /* Parent handle */ 7160 ipif_ire->ire_ihandle, /* Interface handle */ 7161 sire->ire_flags & 7162 (RTF_SETSRC | RTF_MULTIRT), /* flags if any */ 7163 &(sire->ire_uinfo)); 7164 7165 if (ire == NULL) { 7166 ire_refrele(ipif_ire); 7167 ire_refrele(save_ire); 7168 break; 7169 } 7170 7171 ire->ire_marks |= ire_marks; 7172 7173 /* 7174 * Prevent sire and ipif_ire from getting deleted. 7175 * The newly created ire is tied to both of them via 7176 * the phandle and ihandle respectively. 7177 */ 7178 IRB_REFHOLD(sire->ire_bucket); 7179 /* Has it been removed already ? */ 7180 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 7181 IRB_REFRELE(sire->ire_bucket); 7182 ire_refrele(ipif_ire); 7183 ire_refrele(save_ire); 7184 break; 7185 } 7186 7187 IRB_REFHOLD(ipif_ire->ire_bucket); 7188 /* Has it been removed already ? */ 7189 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 7190 IRB_REFRELE(ipif_ire->ire_bucket); 7191 IRB_REFRELE(sire->ire_bucket); 7192 ire_refrele(ipif_ire); 7193 ire_refrele(save_ire); 7194 break; 7195 } 7196 7197 xmit_mp = first_mp; 7198 /* 7199 * In the case of multirouting, a copy 7200 * of the packet is done before its sending. 7201 * The copy is used to attempt another 7202 * route resolution, in a next loop. 7203 */ 7204 if (ire->ire_flags & RTF_MULTIRT) { 7205 copy_mp = copymsg(first_mp); 7206 if (copy_mp != NULL) { 7207 xmit_mp = copy_mp; 7208 MULTIRT_DEBUG_TAG(first_mp); 7209 } 7210 } 7211 ire_add_then_send(q, ire, xmit_mp); 7212 ire_refrele(save_ire); 7213 7214 /* Assert that sire is not deleted yet. */ 7215 ASSERT(sire->ire_ptpn != NULL); 7216 IRB_REFRELE(sire->ire_bucket); 7217 7218 /* Assert that ipif_ire is not deleted yet. */ 7219 ASSERT(ipif_ire->ire_ptpn != NULL); 7220 IRB_REFRELE(ipif_ire->ire_bucket); 7221 ire_refrele(ipif_ire); 7222 7223 /* 7224 * If copy_mp is not NULL, multirouting was 7225 * requested. We loop to initiate a next 7226 * route resolution attempt, starting from sire. 7227 */ 7228 if (copy_mp != NULL) { 7229 /* 7230 * Search for the next unresolved 7231 * multirt route. 7232 */ 7233 copy_mp = NULL; 7234 ipif_ire = NULL; 7235 ire = NULL; 7236 multirt_resolve_next = B_TRUE; 7237 continue; 7238 } 7239 7240 ire_refrele(sire); 7241 ipif_refrele(src_ipif); 7242 ill_refrele(dst_ill); 7243 return; 7244 } 7245 case IRE_IF_NORESOLVER: { 7246 /* 7247 * We have what we need to build an IRE_CACHE. 7248 * 7249 * Create a new dlureq_mp with the IP gateway address 7250 * in destination address in the DLPI hdr if the 7251 * physical length is exactly 4 bytes. 7252 */ 7253 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) { 7254 uchar_t *addr; 7255 7256 if (gw) 7257 addr = (uchar_t *)&gw; 7258 else 7259 addr = (uchar_t *)&dst; 7260 7261 dlureq_mp = ill_dlur_gen(addr, 7262 dst_ill->ill_phys_addr_length, 7263 dst_ill->ill_sap, 7264 dst_ill->ill_sap_length); 7265 } else { 7266 dlureq_mp = ire->ire_dlureq_mp; 7267 } 7268 7269 if (dlureq_mp == NULL) { 7270 ip1dbg(("ip_newroute: dlureq_mp NULL\n")); 7271 break; 7272 } 7273 7274 ire = ire_create( 7275 (uchar_t *)&dst, /* dest address */ 7276 (uchar_t *)&ip_g_all_ones, /* mask */ 7277 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 7278 (uchar_t *)&gw, /* gateway address */ 7279 NULL, 7280 &save_ire->ire_max_frag, 7281 NULL, /* Fast Path header */ 7282 dst_ill->ill_rq, /* recv-from queue */ 7283 dst_ill->ill_wq, /* send-to queue */ 7284 IRE_CACHE, 7285 dlureq_mp, 7286 src_ipif, 7287 in_ill, /* Incoming ill */ 7288 save_ire->ire_mask, /* Parent mask */ 7289 (sire != NULL) ? /* Parent handle */ 7290 sire->ire_phandle : 0, 7291 save_ire->ire_ihandle, /* Interface handle */ 7292 (sire != NULL) ? sire->ire_flags & 7293 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 7294 &(save_ire->ire_uinfo)); 7295 7296 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) 7297 freeb(dlureq_mp); 7298 7299 if (ire == NULL) { 7300 ire_refrele(save_ire); 7301 break; 7302 } 7303 7304 ire->ire_marks |= ire_marks; 7305 7306 /* Prevent save_ire from getting deleted */ 7307 IRB_REFHOLD(save_ire->ire_bucket); 7308 /* Has it been removed already ? */ 7309 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 7310 IRB_REFRELE(save_ire->ire_bucket); 7311 ire_refrele(save_ire); 7312 break; 7313 } 7314 7315 /* 7316 * In the case of multirouting, a copy 7317 * of the packet is made before it is sent. 7318 * The copy is used in the next 7319 * loop to attempt another resolution. 7320 */ 7321 xmit_mp = first_mp; 7322 if ((sire != NULL) && 7323 (sire->ire_flags & RTF_MULTIRT)) { 7324 copy_mp = copymsg(first_mp); 7325 if (copy_mp != NULL) { 7326 xmit_mp = copy_mp; 7327 MULTIRT_DEBUG_TAG(first_mp); 7328 } 7329 } 7330 ire_add_then_send(q, ire, xmit_mp); 7331 7332 /* Assert that it is not deleted yet. */ 7333 ASSERT(save_ire->ire_ptpn != NULL); 7334 IRB_REFRELE(save_ire->ire_bucket); 7335 ire_refrele(save_ire); 7336 7337 if (copy_mp != NULL) { 7338 /* 7339 * If we found a (no)resolver, we ignore any 7340 * trailing top priority IRE_CACHE in further 7341 * loops. This ensures that we do not omit any 7342 * (no)resolver. 7343 * This IRE_CACHE, if any, will be processed 7344 * by another thread entering ip_newroute(). 7345 * IRE_CACHE entries, if any, will be processed 7346 * by another thread entering ip_newroute(), 7347 * (upon resolver response, for instance). 7348 * This aims to force parallel multirt 7349 * resolutions as soon as a packet must be sent. 7350 * In the best case, after the tx of only one 7351 * packet, all reachable routes are resolved. 7352 * Otherwise, the resolution of all RTF_MULTIRT 7353 * routes would require several emissions. 7354 */ 7355 multirt_flags &= ~MULTIRT_CACHEGW; 7356 7357 /* 7358 * Search for the next unresolved multirt 7359 * route. 7360 */ 7361 copy_mp = NULL; 7362 save_ire = NULL; 7363 ire = NULL; 7364 multirt_resolve_next = B_TRUE; 7365 continue; 7366 } 7367 7368 /* 7369 * Don't need sire anymore 7370 */ 7371 if (sire != NULL) 7372 ire_refrele(sire); 7373 7374 ipif_refrele(src_ipif); 7375 ill_refrele(dst_ill); 7376 return; 7377 } 7378 case IRE_IF_RESOLVER: 7379 /* 7380 * We can't build an IRE_CACHE yet, but at least we 7381 * found a resolver that can help. 7382 */ 7383 res_mp = dst_ill->ill_resolver_mp; 7384 if (!OK_RESOLVER_MP(res_mp)) 7385 break; 7386 /* 7387 * To be at this point in the code with a non-zero gw 7388 * means that dst is reachable through a gateway that 7389 * we have never resolved. By changing dst to the gw 7390 * addr we resolve the gateway first. 7391 * When ire_add_then_send() tries to put the IP dg 7392 * to dst, it will reenter ip_newroute() at which 7393 * time we will find the IRE_CACHE for the gw and 7394 * create another IRE_CACHE in case IRE_CACHE above. 7395 */ 7396 if (gw != INADDR_ANY) { 7397 /* 7398 * The source ipif that was determined above was 7399 * relative to the destination address, not the 7400 * gateway's. If src_ipif was not taken out of 7401 * the IRE_IF_RESOLVER entry, we'll need to call 7402 * ipif_select_source() again. 7403 */ 7404 if (src_ipif != ire->ire_ipif) { 7405 ipif_refrele(src_ipif); 7406 src_ipif = ipif_select_source(dst_ill, 7407 gw, zoneid); 7408 if (src_ipif == NULL) { 7409 if (ip_debug > 2) { 7410 pr_addr_dbg( 7411 "ip_newroute: no " 7412 "src for gw %s ", 7413 AF_INET, &gw); 7414 printf("through " 7415 "interface %s\n", 7416 dst_ill->ill_name); 7417 } 7418 goto icmp_err_ret; 7419 } 7420 } 7421 save_dst = dst; 7422 dst = gw; 7423 gw = INADDR_ANY; 7424 } 7425 /* 7426 * We obtain a partial IRE_CACHE which we will pass 7427 * along with the resolver query. When the response 7428 * comes back it will be there ready for us to add. 7429 * The ire_max_frag is atomically set under the 7430 * irebucket lock in ire_add_v[46]. 7431 */ 7432 ire = ire_create_mp( 7433 (uchar_t *)&dst, /* dest address */ 7434 (uchar_t *)&ip_g_all_ones, /* mask */ 7435 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 7436 (uchar_t *)&gw, /* gateway address */ 7437 NULL, /* no in_src_addr */ 7438 NULL, /* ire_max_frag */ 7439 NULL, /* Fast Path header */ 7440 dst_ill->ill_rq, /* recv-from queue */ 7441 dst_ill->ill_wq, /* send-to queue */ 7442 IRE_CACHE, 7443 res_mp, 7444 src_ipif, /* Interface ipif */ 7445 in_ill, /* Incoming ILL */ 7446 save_ire->ire_mask, /* Parent mask */ 7447 0, 7448 save_ire->ire_ihandle, /* Interface handle */ 7449 0, /* flags if any */ 7450 &(save_ire->ire_uinfo)); 7451 7452 if (ire == NULL) { 7453 ire_refrele(save_ire); 7454 break; 7455 } 7456 7457 if ((sire != NULL) && 7458 (sire->ire_flags & RTF_MULTIRT)) { 7459 copy_mp = copymsg(first_mp); 7460 if (copy_mp != NULL) 7461 MULTIRT_DEBUG_TAG(copy_mp); 7462 } 7463 7464 ire->ire_marks |= ire_marks; 7465 7466 /* 7467 * Construct message chain for the resolver 7468 * of the form: 7469 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 7470 * Packet could contain a IPSEC_OUT mp. 7471 * 7472 * NOTE : ire will be added later when the response 7473 * comes back from ARP. If the response does not 7474 * come back, ARP frees the packet. For this reason, 7475 * we can't REFHOLD the bucket of save_ire to prevent 7476 * deletions. We may not be able to REFRELE the bucket 7477 * if the response never comes back. Thus, before 7478 * adding the ire, ire_add_v4 will make sure that the 7479 * interface route does not get deleted. This is the 7480 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 7481 * where we can always prevent deletions because of 7482 * the synchronous nature of adding IRES i.e 7483 * ire_add_then_send is called after creating the IRE. 7484 */ 7485 ASSERT(ire->ire_mp != NULL); 7486 ire->ire_mp->b_cont = first_mp; 7487 /* Have saved_mp handy, for cleanup if canput fails */ 7488 saved_mp = mp; 7489 mp = ire->ire_dlureq_mp; 7490 ASSERT(mp != NULL); 7491 ire->ire_dlureq_mp = NULL; 7492 linkb(mp, ire->ire_mp); 7493 7494 7495 /* 7496 * Fill in the source and dest addrs for the resolver. 7497 * NOTE: this depends on memory layouts imposed by 7498 * ill_init(). 7499 */ 7500 areq = (areq_t *)mp->b_rptr; 7501 addrp = (ipaddr_t *)((char *)areq + 7502 areq->areq_sender_addr_offset); 7503 if (do_attach_ill) { 7504 /* 7505 * This is bind to no failover case. 7506 * arp packet also must go out on attach_ill. 7507 */ 7508 ASSERT(ipha->ipha_src != NULL); 7509 *addrp = ipha->ipha_src; 7510 } else { 7511 *addrp = save_ire->ire_src_addr; 7512 } 7513 7514 ire_refrele(save_ire); 7515 addrp = (ipaddr_t *)((char *)areq + 7516 areq->areq_target_addr_offset); 7517 *addrp = dst; 7518 /* Up to the resolver. */ 7519 if (canputnext(dst_ill->ill_rq)) { 7520 putnext(dst_ill->ill_rq, mp); 7521 ire = NULL; 7522 if (copy_mp != NULL) { 7523 /* 7524 * If we found a resolver, we ignore 7525 * any trailing top priority IRE_CACHE 7526 * in the further loops. This ensures 7527 * that we do not omit any resolver. 7528 * IRE_CACHE entries, if any, will be 7529 * processed next time we enter 7530 * ip_newroute(). 7531 */ 7532 multirt_flags &= ~MULTIRT_CACHEGW; 7533 /* 7534 * Search for the next unresolved 7535 * multirt route. 7536 */ 7537 first_mp = copy_mp; 7538 copy_mp = NULL; 7539 /* Prepare the next resolution loop. */ 7540 mp = first_mp; 7541 EXTRACT_PKT_MP(mp, first_mp, 7542 mctl_present); 7543 if (mctl_present) 7544 io = (ipsec_out_t *) 7545 first_mp->b_rptr; 7546 ipha = (ipha_t *)mp->b_rptr; 7547 7548 ASSERT(sire != NULL); 7549 7550 dst = save_dst; 7551 multirt_resolve_next = B_TRUE; 7552 continue; 7553 } 7554 7555 if (sire != NULL) 7556 ire_refrele(sire); 7557 7558 /* 7559 * The response will come back in ip_wput 7560 * with db_type IRE_DB_TYPE. 7561 */ 7562 ipif_refrele(src_ipif); 7563 ill_refrele(dst_ill); 7564 return; 7565 } else { 7566 /* Prepare for cleanup */ 7567 ire->ire_dlureq_mp = mp; 7568 mp->b_cont = NULL; 7569 ire_delete(ire); 7570 mp = saved_mp; 7571 ire = NULL; 7572 if (copy_mp != NULL) { 7573 MULTIRT_DEBUG_UNTAG(copy_mp); 7574 freemsg(copy_mp); 7575 copy_mp = NULL; 7576 } 7577 break; 7578 } 7579 default: 7580 break; 7581 } 7582 } while (multirt_resolve_next); 7583 7584 ip1dbg(("ip_newroute: dropped\n")); 7585 /* Did this packet originate externally? */ 7586 if (mp->b_prev) { 7587 mp->b_next = NULL; 7588 mp->b_prev = NULL; 7589 BUMP_MIB(&ip_mib, ipInDiscards); 7590 } else { 7591 BUMP_MIB(&ip_mib, ipOutDiscards); 7592 } 7593 ASSERT(copy_mp == NULL); 7594 MULTIRT_DEBUG_UNTAG(first_mp); 7595 freemsg(first_mp); 7596 if (ire != NULL) 7597 ire_refrele(ire); 7598 if (sire != NULL) 7599 ire_refrele(sire); 7600 if (src_ipif != NULL) 7601 ipif_refrele(src_ipif); 7602 if (dst_ill != NULL) 7603 ill_refrele(dst_ill); 7604 return; 7605 7606 icmp_err_ret: 7607 ip1dbg(("ip_newroute: no route\n")); 7608 if (src_ipif != NULL) 7609 ipif_refrele(src_ipif); 7610 if (dst_ill != NULL) 7611 ill_refrele(dst_ill); 7612 if (sire != NULL) 7613 ire_refrele(sire); 7614 /* Did this packet originate externally? */ 7615 if (mp->b_prev) { 7616 mp->b_next = NULL; 7617 mp->b_prev = NULL; 7618 /* XXX ipInNoRoutes */ 7619 q = WR(q); 7620 } else { 7621 /* 7622 * Since ip_wput() isn't close to finished, we fill 7623 * in enough of the header for credible error reporting. 7624 */ 7625 if (ip_hdr_complete(ipha, zoneid)) { 7626 /* Failed */ 7627 MULTIRT_DEBUG_UNTAG(first_mp); 7628 freemsg(first_mp); 7629 if (ire != NULL) 7630 ire_refrele(ire); 7631 return; 7632 } 7633 } 7634 BUMP_MIB(&ip_mib, ipOutNoRoutes); 7635 7636 /* 7637 * At this point we will have ire only if RTF_BLACKHOLE 7638 * or RTF_REJECT flags are set on the IRE. It will not 7639 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 7640 */ 7641 if (ire != NULL) { 7642 if (ire->ire_flags & RTF_BLACKHOLE) { 7643 ire_refrele(ire); 7644 MULTIRT_DEBUG_UNTAG(first_mp); 7645 freemsg(first_mp); 7646 return; 7647 } 7648 ire_refrele(ire); 7649 } 7650 if (ip_source_routed(ipha)) { 7651 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED); 7652 return; 7653 } 7654 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE); 7655 } 7656 7657 /* 7658 * IPv4 - 7659 * ip_newroute_ipif is called by ip_wput_multicast and 7660 * ip_rput_forward_multicast whenever we need to send 7661 * out a packet to a destination address for which we do not have specific 7662 * routing information. It is used when the packet will be sent out 7663 * on a specific interface. It is also called by ip_wput() when IP_XMIT_IF 7664 * socket option is set or icmp error message wants to go out on a particular 7665 * interface for a unicast packet. 7666 * 7667 * In most cases, the destination address is resolved thanks to the ipif 7668 * intrinsic resolver. However, there are some cases where the call to 7669 * ip_newroute_ipif must take into account the potential presence of 7670 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 7671 * that uses the interface. This is specified through flags, 7672 * which can be a combination of: 7673 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 7674 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 7675 * and flags. Additionally, the packet source address has to be set to 7676 * the specified address. The caller is thus expected to set this flag 7677 * if the packet has no specific source address yet. 7678 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 7679 * flag, the resulting ire will inherit the flag. All unresolved routes 7680 * to the destination must be explored in the same call to 7681 * ip_newroute_ipif(). 7682 */ 7683 static void 7684 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 7685 conn_t *connp, uint32_t flags) 7686 { 7687 areq_t *areq; 7688 ire_t *ire = NULL; 7689 mblk_t *res_mp; 7690 ipaddr_t *addrp; 7691 mblk_t *first_mp; 7692 ire_t *save_ire = NULL; 7693 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER */ 7694 ipif_t *src_ipif = NULL; 7695 ushort_t ire_marks = 0; 7696 ill_t *dst_ill = NULL; 7697 boolean_t mctl_present; 7698 ipsec_out_t *io; 7699 ipha_t *ipha; 7700 int ihandle = 0; 7701 mblk_t *saved_mp; 7702 ire_t *fire = NULL; 7703 mblk_t *copy_mp = NULL; 7704 boolean_t multirt_resolve_next; 7705 ipaddr_t ipha_dst; 7706 zoneid_t zoneid = (connp != NULL ? connp->conn_zoneid : ALL_ZONES); 7707 7708 /* 7709 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 7710 * here for uniformity 7711 */ 7712 ipif_refhold(ipif); 7713 7714 /* 7715 * This loop is run only once in most cases. 7716 * We loop to resolve further routes only when the destination 7717 * can be reached through multiple RTF_MULTIRT-flagged ires. 7718 */ 7719 do { 7720 if (dst_ill != NULL) { 7721 ill_refrele(dst_ill); 7722 dst_ill = NULL; 7723 } 7724 if (src_ipif != NULL) { 7725 ipif_refrele(src_ipif); 7726 src_ipif = NULL; 7727 } 7728 multirt_resolve_next = B_FALSE; 7729 7730 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 7731 ipif->ipif_ill->ill_name)); 7732 7733 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7734 if (mctl_present) 7735 io = (ipsec_out_t *)first_mp->b_rptr; 7736 7737 ipha = (ipha_t *)mp->b_rptr; 7738 7739 /* 7740 * Save the packet destination address, we may need it after 7741 * the packet has been consumed. 7742 */ 7743 ipha_dst = ipha->ipha_dst; 7744 7745 /* 7746 * If the interface is a pt-pt interface we look for an 7747 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 7748 * local_address and the pt-pt destination address. Otherwise 7749 * we just match the local address. 7750 * NOTE: dst could be different than ipha->ipha_dst in case 7751 * of sending igmp multicast packets over a point-to-point 7752 * connection. 7753 * Thus we must be careful enough to check ipha_dst to be a 7754 * multicast address, otherwise it will take xmit_if path for 7755 * multicast packets resulting into kernel stack overflow by 7756 * repeated calls to ip_newroute_ipif from ire_send(). 7757 */ 7758 if (CLASSD(ipha_dst) && 7759 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 7760 goto err_ret; 7761 } 7762 7763 /* 7764 * We check if an IRE_OFFSUBNET for the addr that goes through 7765 * ipif exists. We need it to determine if the RTF_SETSRC and/or 7766 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 7767 * propagate its flags to the new ire. 7768 */ 7769 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 7770 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 7771 ip2dbg(("ip_newroute_ipif: " 7772 "ipif_lookup_multi_ire(" 7773 "ipif %p, dst %08x) = fire %p\n", 7774 (void *)ipif, ntohl(dst), (void *)fire)); 7775 } 7776 7777 if (mctl_present && io->ipsec_out_attach_if) { 7778 attach_ill = ip_grab_attach_ill(NULL, first_mp, 7779 io->ipsec_out_ill_index, B_FALSE); 7780 7781 /* Failure case frees things for us. */ 7782 if (attach_ill == NULL) { 7783 ipif_refrele(ipif); 7784 if (fire != NULL) 7785 ire_refrele(fire); 7786 return; 7787 } 7788 7789 /* 7790 * Check if we need an ire that will not be 7791 * looked up by anybody else i.e. HIDDEN. 7792 */ 7793 if (ill_is_probeonly(attach_ill)) { 7794 ire_marks = IRE_MARK_HIDDEN; 7795 } 7796 /* 7797 * ip_wput passes the right ipif for IPIF_NOFAILOVER 7798 * case. 7799 */ 7800 dst_ill = ipif->ipif_ill; 7801 /* attach_ill has been refheld by ip_grab_attach_ill */ 7802 ASSERT(dst_ill == attach_ill); 7803 } else { 7804 /* 7805 * If this is set by IP_XMIT_IF, then make sure that 7806 * ipif is pointing to the same ill as the IP_XMIT_IF 7807 * specified ill. 7808 */ 7809 ASSERT((connp == NULL) || 7810 (connp->conn_xmit_if_ill == NULL) || 7811 (connp->conn_xmit_if_ill == ipif->ipif_ill)); 7812 /* 7813 * If the interface belongs to an interface group, 7814 * make sure the next possible interface in the group 7815 * is used. This encourages load spreading among 7816 * peers in an interface group. 7817 * Note: load spreading is disabled for RTF_MULTIRT 7818 * routes. 7819 */ 7820 if ((flags & RTF_MULTIRT) && (fire != NULL) && 7821 (fire->ire_flags & RTF_MULTIRT)) { 7822 /* 7823 * Don't perform outbound load spreading 7824 * in the case of an RTF_MULTIRT issued route, 7825 * we actually typically want to replicate 7826 * outgoing packets through particular 7827 * interfaces. 7828 */ 7829 dst_ill = ipif->ipif_ill; 7830 ill_refhold(dst_ill); 7831 } else { 7832 dst_ill = ip_newroute_get_dst_ill( 7833 ipif->ipif_ill); 7834 } 7835 if (dst_ill == NULL) { 7836 if (ip_debug > 2) { 7837 pr_addr_dbg("ip_newroute_ipif: " 7838 "no dst ill for dst %s\n", 7839 AF_INET, &dst); 7840 } 7841 goto err_ret; 7842 } 7843 } 7844 7845 /* 7846 * Pick a source address preferring non-deprecated ones. 7847 * Unlike ip_newroute, we don't do any source address 7848 * selection here since for multicast it really does not help 7849 * in inbound load spreading as in the unicast case. 7850 */ 7851 if ((flags & RTF_SETSRC) && (fire != NULL) && 7852 (fire->ire_flags & RTF_SETSRC)) { 7853 /* 7854 * As requested by flags, an IRE_OFFSUBNET was looked up 7855 * on that interface. This ire has RTF_SETSRC flag, so 7856 * the source address of the packet must be changed. 7857 * Check that the ipif matching the requested source 7858 * address still exists. 7859 */ 7860 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 7861 zoneid, NULL, NULL, NULL, NULL); 7862 } 7863 if (((ipif->ipif_flags & IPIF_DEPRECATED) || 7864 (connp != NULL && ipif->ipif_zoneid != zoneid)) && 7865 (src_ipif == NULL)) { 7866 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 7867 if (src_ipif == NULL) { 7868 if (ip_debug > 2) { 7869 /* ip1dbg */ 7870 pr_addr_dbg("ip_newroute_ipif: " 7871 "no src for dst %s", 7872 AF_INET, &dst); 7873 } 7874 ip1dbg((" through interface %s\n", 7875 dst_ill->ill_name)); 7876 goto err_ret; 7877 } 7878 ipif_refrele(ipif); 7879 ipif = src_ipif; 7880 ipif_refhold(ipif); 7881 } 7882 if (src_ipif == NULL) { 7883 src_ipif = ipif; 7884 ipif_refhold(src_ipif); 7885 } 7886 7887 /* 7888 * Assign a source address while we have the conn. 7889 * We can't have ip_wput_ire pick a source address when the 7890 * packet returns from arp since conn_unspec_src might be set 7891 * and we loose the conn when going through arp. 7892 */ 7893 if (ipha->ipha_src == INADDR_ANY && 7894 (connp == NULL || !connp->conn_unspec_src)) { 7895 ipha->ipha_src = src_ipif->ipif_src_addr; 7896 } 7897 7898 /* 7899 * In case of IP_XMIT_IF, it is possible that the outgoing 7900 * interface does not have an interface ire. 7901 * Example: Thousands of mobileip PPP interfaces to mobile 7902 * nodes. We don't want to create interface ires because 7903 * packets from other mobile nodes must not take the route 7904 * via interface ires to the visiting mobile node without 7905 * going through the home agent, in absence of mobileip 7906 * route optimization. 7907 */ 7908 if (CLASSD(ipha_dst) && (connp == NULL || 7909 connp->conn_xmit_if_ill == NULL)) { 7910 /* ipif_to_ire returns an held ire */ 7911 ire = ipif_to_ire(ipif); 7912 if (ire == NULL) 7913 goto err_ret; 7914 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 7915 goto err_ret; 7916 /* 7917 * ihandle is needed when the ire is added to 7918 * cache table. 7919 */ 7920 save_ire = ire; 7921 ihandle = save_ire->ire_ihandle; 7922 7923 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 7924 "flags %04x\n", 7925 (void *)ire, (void *)ipif, flags)); 7926 if ((flags & RTF_MULTIRT) && (fire != NULL) && 7927 (fire->ire_flags & RTF_MULTIRT)) { 7928 /* 7929 * As requested by flags, an IRE_OFFSUBNET was 7930 * looked up on that interface. This ire has 7931 * RTF_MULTIRT flag, so the resolution loop will 7932 * be re-entered to resolve additional routes on 7933 * other interfaces. For that purpose, a copy of 7934 * the packet is performed at this point. 7935 */ 7936 fire->ire_last_used_time = lbolt; 7937 copy_mp = copymsg(first_mp); 7938 if (copy_mp) { 7939 MULTIRT_DEBUG_TAG(copy_mp); 7940 } 7941 } 7942 if ((flags & RTF_SETSRC) && (fire != NULL) && 7943 (fire->ire_flags & RTF_SETSRC)) { 7944 /* 7945 * As requested by flags, an IRE_OFFSUBET was 7946 * looked up on that interface. This ire has 7947 * RTF_SETSRC flag, so the source address of the 7948 * packet must be changed. 7949 */ 7950 ipha->ipha_src = fire->ire_src_addr; 7951 } 7952 } else { 7953 ASSERT((connp == NULL) || 7954 (connp->conn_xmit_if_ill != NULL) || 7955 (connp->conn_dontroute)); 7956 /* 7957 * The only ways we can come here are: 7958 * 1) IP_XMIT_IF socket option is set 7959 * 2) ICMP error message generated from 7960 * ip_mrtun_forward() routine and it needs 7961 * to go through the specified ill. 7962 * 3) SO_DONTROUTE socket option is set 7963 * In all cases, the new ire will not be added 7964 * into cache table. 7965 */ 7966 ire_marks |= IRE_MARK_NOADD; 7967 } 7968 7969 switch (ipif->ipif_net_type) { 7970 case IRE_IF_NORESOLVER: { 7971 /* We have what we need to build an IRE_CACHE. */ 7972 mblk_t *dlureq_mp; 7973 7974 /* 7975 * Create a new dlureq_mp with the 7976 * IP gateway address as destination address in the 7977 * DLPI hdr if the physical length is exactly 4 bytes. 7978 */ 7979 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) { 7980 dlureq_mp = ill_dlur_gen((uchar_t *)&dst, 7981 dst_ill->ill_phys_addr_length, 7982 dst_ill->ill_sap, 7983 dst_ill->ill_sap_length); 7984 } else { 7985 /* use the value set in ip_ll_subnet_defaults */ 7986 dlureq_mp = ill_dlur_gen(NULL, 7987 dst_ill->ill_phys_addr_length, 7988 dst_ill->ill_sap, 7989 dst_ill->ill_sap_length); 7990 } 7991 7992 if (dlureq_mp == NULL) 7993 break; 7994 /* 7995 * The new ire inherits the IRE_OFFSUBNET flags 7996 * and source address, if this was requested. 7997 */ 7998 ire = ire_create( 7999 (uchar_t *)&dst, /* dest address */ 8000 (uchar_t *)&ip_g_all_ones, /* mask */ 8001 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8002 NULL, /* gateway address */ 8003 NULL, 8004 &ipif->ipif_mtu, 8005 NULL, /* Fast Path header */ 8006 dst_ill->ill_rq, /* recv-from queue */ 8007 dst_ill->ill_wq, /* send-to queue */ 8008 IRE_CACHE, 8009 dlureq_mp, 8010 src_ipif, 8011 NULL, 8012 (save_ire != NULL ? save_ire->ire_mask : 0), 8013 (fire != NULL) ? /* Parent handle */ 8014 fire->ire_phandle : 0, 8015 ihandle, /* Interface handle */ 8016 (fire != NULL) ? 8017 (fire->ire_flags & 8018 (RTF_SETSRC | RTF_MULTIRT)) : 0, 8019 (save_ire == NULL ? &ire_uinfo_null : 8020 &save_ire->ire_uinfo)); 8021 8022 freeb(dlureq_mp); 8023 8024 if (ire == NULL) { 8025 if (save_ire != NULL) 8026 ire_refrele(save_ire); 8027 break; 8028 } 8029 8030 ire->ire_marks |= ire_marks; 8031 8032 /* Prevent save_ire from getting deleted */ 8033 if (save_ire != NULL) { 8034 IRB_REFHOLD(save_ire->ire_bucket); 8035 /* Has it been removed already ? */ 8036 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8037 IRB_REFRELE(save_ire->ire_bucket); 8038 ire_refrele(save_ire); 8039 break; 8040 } 8041 } 8042 8043 ire_add_then_send(q, ire, first_mp); 8044 8045 /* Assert that save_ire is not deleted yet. */ 8046 if (save_ire != NULL) { 8047 ASSERT(save_ire->ire_ptpn != NULL); 8048 IRB_REFRELE(save_ire->ire_bucket); 8049 ire_refrele(save_ire); 8050 save_ire = NULL; 8051 } 8052 if (fire != NULL) { 8053 ire_refrele(fire); 8054 fire = NULL; 8055 } 8056 8057 /* 8058 * the resolution loop is re-entered if this 8059 * was requested through flags and if we 8060 * actually are in a multirouting case. 8061 */ 8062 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 8063 boolean_t need_resolve = 8064 ire_multirt_need_resolve(ipha_dst); 8065 if (!need_resolve) { 8066 MULTIRT_DEBUG_UNTAG(copy_mp); 8067 freemsg(copy_mp); 8068 copy_mp = NULL; 8069 } else { 8070 /* 8071 * ipif_lookup_group() calls 8072 * ire_lookup_multi() that uses 8073 * ire_ftable_lookup() to find 8074 * an IRE_INTERFACE for the group. 8075 * In the multirt case, 8076 * ire_lookup_multi() then invokes 8077 * ire_multirt_lookup() to find 8078 * the next resolvable ire. 8079 * As a result, we obtain an new 8080 * interface, derived from the 8081 * next ire. 8082 */ 8083 ipif_refrele(ipif); 8084 ipif = ipif_lookup_group(ipha_dst, 8085 zoneid); 8086 ip2dbg(("ip_newroute_ipif: " 8087 "multirt dst %08x, ipif %p\n", 8088 htonl(dst), (void *)ipif)); 8089 if (ipif != NULL) { 8090 mp = copy_mp; 8091 copy_mp = NULL; 8092 multirt_resolve_next = B_TRUE; 8093 continue; 8094 } else { 8095 freemsg(copy_mp); 8096 } 8097 } 8098 } 8099 if (ipif != NULL) 8100 ipif_refrele(ipif); 8101 ill_refrele(dst_ill); 8102 ipif_refrele(src_ipif); 8103 return; 8104 } 8105 case IRE_IF_RESOLVER: 8106 /* 8107 * We can't build an IRE_CACHE yet, but at least 8108 * we found a resolver that can help. 8109 */ 8110 res_mp = dst_ill->ill_resolver_mp; 8111 if (!OK_RESOLVER_MP(res_mp)) 8112 break; 8113 8114 /* 8115 * We obtain a partial IRE_CACHE which we will pass 8116 * along with the resolver query. When the response 8117 * comes back it will be there ready for us to add. 8118 * The new ire inherits the IRE_OFFSUBNET flags 8119 * and source address, if this was requested. 8120 * The ire_max_frag is atomically set under the 8121 * irebucket lock in ire_add_v[46]. Only in the 8122 * case of IRE_MARK_NOADD, we set it here itself. 8123 */ 8124 ire = ire_create_mp( 8125 (uchar_t *)&dst, /* dest address */ 8126 (uchar_t *)&ip_g_all_ones, /* mask */ 8127 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8128 NULL, /* gateway address */ 8129 NULL, /* no in_src_addr */ 8130 (ire_marks & IRE_MARK_NOADD) ? 8131 ipif->ipif_mtu : 0, /* max_frag */ 8132 NULL, /* Fast path header */ 8133 dst_ill->ill_rq, /* recv-from queue */ 8134 dst_ill->ill_wq, /* send-to queue */ 8135 IRE_CACHE, 8136 res_mp, 8137 src_ipif, 8138 NULL, 8139 (save_ire != NULL ? save_ire->ire_mask : 0), 8140 (fire != NULL) ? /* Parent handle */ 8141 fire->ire_phandle : 0, 8142 ihandle, /* Interface handle */ 8143 (fire != NULL) ? /* flags if any */ 8144 (fire->ire_flags & 8145 (RTF_SETSRC | RTF_MULTIRT)) : 0, 8146 (save_ire == NULL ? &ire_uinfo_null : 8147 &save_ire->ire_uinfo)); 8148 8149 if (save_ire != NULL) { 8150 ire_refrele(save_ire); 8151 save_ire = NULL; 8152 } 8153 if (ire == NULL) 8154 break; 8155 8156 ire->ire_marks |= ire_marks; 8157 /* 8158 * Construct message chain for the resolver of the 8159 * form: 8160 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8161 * 8162 * NOTE : ire will be added later when the response 8163 * comes back from ARP. If the response does not 8164 * come back, ARP frees the packet. For this reason, 8165 * we can't REFHOLD the bucket of save_ire to prevent 8166 * deletions. We may not be able to REFRELE the 8167 * bucket if the response never comes back. 8168 * Thus, before adding the ire, ire_add_v4 will make 8169 * sure that the interface route does not get deleted. 8170 * This is the only case unlike ip_newroute_v6, 8171 * ip_newroute_ipif_v6 where we can always prevent 8172 * deletions because ire_add_then_send is called after 8173 * creating the IRE. 8174 * If IRE_MARK_NOADD is set, then ire_add_then_send 8175 * does not add this IRE into the IRE CACHE. 8176 */ 8177 ASSERT(ire->ire_mp != NULL); 8178 ire->ire_mp->b_cont = first_mp; 8179 /* Have saved_mp handy, for cleanup if canput fails */ 8180 saved_mp = mp; 8181 mp = ire->ire_dlureq_mp; 8182 ASSERT(mp != NULL); 8183 ire->ire_dlureq_mp = NULL; 8184 linkb(mp, ire->ire_mp); 8185 8186 /* 8187 * Fill in the source and dest addrs for the resolver. 8188 * NOTE: this depends on memory layouts imposed by 8189 * ill_init(). 8190 */ 8191 areq = (areq_t *)mp->b_rptr; 8192 addrp = (ipaddr_t *)((char *)areq + 8193 areq->areq_sender_addr_offset); 8194 *addrp = ire->ire_src_addr; 8195 addrp = (ipaddr_t *)((char *)areq + 8196 areq->areq_target_addr_offset); 8197 *addrp = dst; 8198 /* Up to the resolver. */ 8199 if (canputnext(dst_ill->ill_rq)) { 8200 putnext(dst_ill->ill_rq, mp); 8201 /* 8202 * The response will come back in ip_wput 8203 * with db_type IRE_DB_TYPE. 8204 */ 8205 } else { 8206 ire->ire_dlureq_mp = mp; 8207 mp->b_cont = NULL; 8208 ire_delete(ire); 8209 saved_mp->b_next = NULL; 8210 saved_mp->b_prev = NULL; 8211 freemsg(first_mp); 8212 ip2dbg(("ip_newroute_ipif: dropped\n")); 8213 } 8214 8215 if (fire != NULL) { 8216 ire_refrele(fire); 8217 fire = NULL; 8218 } 8219 8220 8221 /* 8222 * The resolution loop is re-entered if this was 8223 * requested through flags and we actually are 8224 * in a multirouting case. 8225 */ 8226 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 8227 boolean_t need_resolve = 8228 ire_multirt_need_resolve(ipha_dst); 8229 if (!need_resolve) { 8230 MULTIRT_DEBUG_UNTAG(copy_mp); 8231 freemsg(copy_mp); 8232 copy_mp = NULL; 8233 } else { 8234 /* 8235 * ipif_lookup_group() calls 8236 * ire_lookup_multi() that uses 8237 * ire_ftable_lookup() to find 8238 * an IRE_INTERFACE for the group. 8239 * In the multirt case, 8240 * ire_lookup_multi() then invokes 8241 * ire_multirt_lookup() to find 8242 * the next resolvable ire. 8243 * As a result, we obtain an new 8244 * interface, derived from the 8245 * next ire. 8246 */ 8247 ipif_refrele(ipif); 8248 ipif = ipif_lookup_group(ipha_dst, 8249 zoneid); 8250 if (ipif != NULL) { 8251 mp = copy_mp; 8252 copy_mp = NULL; 8253 multirt_resolve_next = B_TRUE; 8254 continue; 8255 } else { 8256 freemsg(copy_mp); 8257 } 8258 } 8259 } 8260 if (ipif != NULL) 8261 ipif_refrele(ipif); 8262 ill_refrele(dst_ill); 8263 ipif_refrele(src_ipif); 8264 return; 8265 default: 8266 break; 8267 } 8268 } while (multirt_resolve_next); 8269 8270 err_ret: 8271 ip2dbg(("ip_newroute_ipif: dropped\n")); 8272 if (fire != NULL) 8273 ire_refrele(fire); 8274 ipif_refrele(ipif); 8275 /* Did this packet originate externally? */ 8276 if (dst_ill != NULL) 8277 ill_refrele(dst_ill); 8278 if (src_ipif != NULL) 8279 ipif_refrele(src_ipif); 8280 if (mp->b_prev || mp->b_next) { 8281 mp->b_next = NULL; 8282 mp->b_prev = NULL; 8283 } else { 8284 /* 8285 * Since ip_wput() isn't close to finished, we fill 8286 * in enough of the header for credible error reporting. 8287 */ 8288 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 8289 /* Failed */ 8290 freemsg(first_mp); 8291 if (ire != NULL) 8292 ire_refrele(ire); 8293 return; 8294 } 8295 } 8296 /* 8297 * At this point we will have ire only if RTF_BLACKHOLE 8298 * or RTF_REJECT flags are set on the IRE. It will not 8299 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 8300 */ 8301 if (ire != NULL) { 8302 if (ire->ire_flags & RTF_BLACKHOLE) { 8303 ire_refrele(ire); 8304 freemsg(first_mp); 8305 return; 8306 } 8307 ire_refrele(ire); 8308 } 8309 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE); 8310 } 8311 8312 /* Name/Value Table Lookup Routine */ 8313 char * 8314 ip_nv_lookup(nv_t *nv, int value) 8315 { 8316 if (!nv) 8317 return (NULL); 8318 for (; nv->nv_name; nv++) { 8319 if (nv->nv_value == value) 8320 return (nv->nv_name); 8321 } 8322 return ("unknown"); 8323 } 8324 8325 /* 8326 * one day it can be patched to 1 from /etc/system for machines that have few 8327 * fast network interfaces feeding multiple cpus. 8328 */ 8329 int ill_stream_putlocks = 0; 8330 8331 /* 8332 * This is a module open, i.e. this is a control stream for access 8333 * to a DLPI device. We allocate an ill_t as the instance data in 8334 * this case. 8335 */ 8336 int 8337 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 8338 { 8339 uint32_t mem_cnt; 8340 uint32_t cpu_cnt; 8341 uint32_t min_cnt; 8342 pgcnt_t mem_avail; 8343 extern uint32_t ip_cache_table_size, ip6_cache_table_size; 8344 ill_t *ill; 8345 int err; 8346 8347 /* 8348 * Prevent unprivileged processes from pushing IP so that 8349 * they can't send raw IP. 8350 */ 8351 if (secpolicy_net_rawaccess(credp) != 0) 8352 return (EPERM); 8353 8354 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 8355 q->q_ptr = WR(q)->q_ptr = ill; 8356 8357 /* 8358 * ill_init initializes the ill fields and then sends down 8359 * down a DL_INFO_REQ after calling qprocson. 8360 */ 8361 err = ill_init(q, ill); 8362 if (err != 0) { 8363 mi_free(ill); 8364 q->q_ptr = NULL; 8365 WR(q)->q_ptr = NULL; 8366 return (err); 8367 } 8368 8369 /* ill_init initializes the ipsq marking this thread as writer */ 8370 ipsq_exit(ill->ill_phyint->phyint_ipsq, B_TRUE, B_TRUE); 8371 /* Wait for the DL_INFO_ACK */ 8372 mutex_enter(&ill->ill_lock); 8373 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 8374 /* 8375 * Return value of 0 indicates a pending signal. 8376 */ 8377 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 8378 if (err == 0) { 8379 mutex_exit(&ill->ill_lock); 8380 (void) ip_close(q, 0); 8381 return (EINTR); 8382 } 8383 } 8384 mutex_exit(&ill->ill_lock); 8385 8386 /* 8387 * ip_rput_other could have set an error in ill_error on 8388 * receipt of M_ERROR. 8389 */ 8390 8391 err = ill->ill_error; 8392 if (err != 0) { 8393 (void) ip_close(q, 0); 8394 return (err); 8395 } 8396 8397 /* 8398 * ip_ire_max_bucket_cnt is sized below based on the memory 8399 * size and the cpu speed of the machine. This is upper 8400 * bounded by the compile time value of ip_ire_max_bucket_cnt 8401 * and is lower bounded by the compile time value of 8402 * ip_ire_min_bucket_cnt. Similar logic applies to 8403 * ip6_ire_max_bucket_cnt. 8404 */ 8405 mem_avail = kmem_avail(); 8406 mem_cnt = (mem_avail >> ip_ire_mem_ratio) / 8407 ip_cache_table_size / sizeof (ire_t); 8408 cpu_cnt = CPU->cpu_type_info.pi_clock >> ip_ire_cpu_ratio; 8409 8410 min_cnt = MIN(cpu_cnt, mem_cnt); 8411 if (min_cnt < ip_ire_min_bucket_cnt) 8412 min_cnt = ip_ire_min_bucket_cnt; 8413 if (ip_ire_max_bucket_cnt > min_cnt) { 8414 ip_ire_max_bucket_cnt = min_cnt; 8415 } 8416 8417 mem_cnt = (mem_avail >> ip_ire_mem_ratio) / 8418 ip6_cache_table_size / sizeof (ire_t); 8419 min_cnt = MIN(cpu_cnt, mem_cnt); 8420 if (min_cnt < ip6_ire_min_bucket_cnt) 8421 min_cnt = ip6_ire_min_bucket_cnt; 8422 if (ip6_ire_max_bucket_cnt > min_cnt) { 8423 ip6_ire_max_bucket_cnt = min_cnt; 8424 } 8425 8426 ill->ill_credp = credp; 8427 crhold(credp); 8428 8429 mutex_enter(&ip_mi_lock); 8430 err = mi_open_link(&ip_g_head, (IDP)ill, devp, flag, sflag, credp); 8431 mutex_exit(&ip_mi_lock); 8432 if (err) { 8433 (void) ip_close(q, 0); 8434 return (err); 8435 } 8436 return (0); 8437 } 8438 8439 /* IP open routine. */ 8440 int 8441 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 8442 { 8443 conn_t *connp; 8444 major_t maj; 8445 8446 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 8447 8448 /* Allow reopen. */ 8449 if (q->q_ptr != NULL) 8450 return (0); 8451 8452 if (sflag & MODOPEN) { 8453 /* This is a module open */ 8454 return (ip_modopen(q, devp, flag, sflag, credp)); 8455 } 8456 8457 8458 /* 8459 * We are opening as a device. This is an IP client stream, and we 8460 * allocate an conn_t as the instance data. 8461 */ 8462 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP); 8463 connp->conn_upq = q; 8464 q->q_ptr = WR(q)->q_ptr = connp; 8465 8466 /* Minor tells us which /dev entry was opened */ 8467 if (geteminor(*devp) == IPV6_MINOR) { 8468 connp->conn_flags |= IPCL_ISV6; 8469 connp->conn_af_isv6 = B_TRUE; 8470 ip_setqinfo(q, geteminor(*devp), B_FALSE); 8471 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 8472 } else { 8473 connp->conn_af_isv6 = B_FALSE; 8474 connp->conn_pkt_isv6 = B_FALSE; 8475 } 8476 8477 8478 if ((connp->conn_dev = 8479 inet_minor_alloc(ip_minor_arena)) == 0) { 8480 q->q_ptr = WR(q)->q_ptr = NULL; 8481 CONN_DEC_REF(connp); 8482 return (EBUSY); 8483 } 8484 8485 maj = getemajor(*devp); 8486 *devp = makedevice(maj, (minor_t)connp->conn_dev); 8487 8488 /* 8489 * connp->conn_cred is crfree()ed in ip_close(). 8490 */ 8491 connp->conn_cred = credp; 8492 crhold(connp->conn_cred); 8493 8494 connp->conn_zoneid = getzoneid(); 8495 8496 /* 8497 * This should only happen for ndd, netstat, raw socket or other SCTP 8498 * administrative ops. In these cases, we just need a normal conn_t 8499 * with ulp set to IPPROTO_SCTP. All other ops are trapped and 8500 * an error will be returned. 8501 */ 8502 if (maj != SCTP_MAJ && maj != SCTP6_MAJ) { 8503 connp->conn_rq = q; 8504 connp->conn_wq = WR(q); 8505 } else { 8506 connp->conn_ulp = IPPROTO_SCTP; 8507 connp->conn_rq = connp->conn_wq = NULL; 8508 } 8509 /* Non-zero default values */ 8510 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 8511 8512 /* 8513 * Make the conn globally visible to walkers 8514 */ 8515 mutex_enter(&connp->conn_lock); 8516 connp->conn_state_flags &= ~CONN_INCIPIENT; 8517 mutex_exit(&connp->conn_lock); 8518 ASSERT(connp->conn_ref == 1); 8519 8520 qprocson(q); 8521 8522 return (0); 8523 } 8524 8525 /* 8526 * Change q_qinfo based on the value of isv6. 8527 * This can not called on an ill queue. 8528 * Note that there is no race since either q_qinfo works for conn queues - it 8529 * is just an optimization to enter the best wput routine directly. 8530 */ 8531 void 8532 ip_setqinfo(queue_t *q, minor_t minor, boolean_t bump_mib) 8533 { 8534 ASSERT(q->q_flag & QREADR); 8535 ASSERT(WR(q)->q_next == NULL); 8536 ASSERT(q->q_ptr != NULL); 8537 8538 if (minor == IPV6_MINOR) { 8539 if (bump_mib) 8540 BUMP_MIB(&ip6_mib, ipv6OutSwitchIPv4); 8541 q->q_qinfo = &rinit_ipv6; 8542 WR(q)->q_qinfo = &winit_ipv6; 8543 (Q_TO_CONN(q))->conn_pkt_isv6 = B_TRUE; 8544 } else { 8545 if (bump_mib) 8546 BUMP_MIB(&ip_mib, ipOutSwitchIPv6); 8547 q->q_qinfo = &rinit; 8548 WR(q)->q_qinfo = &winit; 8549 (Q_TO_CONN(q))->conn_pkt_isv6 = B_FALSE; 8550 } 8551 8552 } 8553 8554 /* 8555 * See if IPsec needs loading because of the options in mp. 8556 */ 8557 static boolean_t 8558 ipsec_opt_present(mblk_t *mp) 8559 { 8560 uint8_t *optcp, *next_optcp, *opt_endcp; 8561 struct opthdr *opt; 8562 struct T_opthdr *topt; 8563 int opthdr_len; 8564 t_uscalar_t optname, optlevel; 8565 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 8566 ipsec_req_t *ipsr; 8567 8568 /* 8569 * Walk through the mess, and find IP_SEC_OPT. If it's there, 8570 * return TRUE. 8571 */ 8572 8573 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 8574 opt_endcp = optcp + tor->OPT_length; 8575 if (tor->PRIM_type == T_OPTMGMT_REQ) { 8576 opthdr_len = sizeof (struct T_opthdr); 8577 } else { /* O_OPTMGMT_REQ */ 8578 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 8579 opthdr_len = sizeof (struct opthdr); 8580 } 8581 for (; optcp < opt_endcp; optcp = next_optcp) { 8582 if (optcp + opthdr_len > opt_endcp) 8583 return (B_FALSE); /* Not enough option header. */ 8584 if (tor->PRIM_type == T_OPTMGMT_REQ) { 8585 topt = (struct T_opthdr *)optcp; 8586 optlevel = topt->level; 8587 optname = topt->name; 8588 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 8589 } else { 8590 opt = (struct opthdr *)optcp; 8591 optlevel = opt->level; 8592 optname = opt->name; 8593 next_optcp = optcp + opthdr_len + 8594 _TPI_ALIGN_OPT(opt->len); 8595 } 8596 if ((next_optcp < optcp) || /* wraparound pointer space */ 8597 ((next_optcp >= opt_endcp) && /* last option bad len */ 8598 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 8599 return (B_FALSE); /* bad option buffer */ 8600 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 8601 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 8602 /* 8603 * Check to see if it's an all-bypass or all-zeroes 8604 * IPsec request. Don't bother loading IPsec if 8605 * the socket doesn't want to use it. (A good example 8606 * is a bypass request.) 8607 * 8608 * Basically, if any of the non-NEVER bits are set, 8609 * load IPsec. 8610 */ 8611 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 8612 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 8613 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 8614 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 8615 != 0) 8616 return (B_TRUE); 8617 } 8618 } 8619 return (B_FALSE); 8620 } 8621 8622 /* 8623 * If conn is is waiting for ipsec to finish loading, kick it. 8624 */ 8625 /* ARGSUSED */ 8626 static void 8627 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 8628 { 8629 t_scalar_t optreq_prim; 8630 mblk_t *mp; 8631 cred_t *cr; 8632 int err = 0; 8633 8634 /* 8635 * This function is called, after ipsec loading is complete. 8636 * Since IP checks exclusively and atomically (i.e it prevents 8637 * ipsec load from completing until ip_optcom_req completes) 8638 * whether ipsec load is complete, there cannot be a race with IP 8639 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 8640 */ 8641 mutex_enter(&connp->conn_lock); 8642 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 8643 ASSERT(connp->conn_ipsec_opt_mp != NULL); 8644 mp = connp->conn_ipsec_opt_mp; 8645 connp->conn_ipsec_opt_mp = NULL; 8646 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 8647 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(CONNP_TO_WQ(connp))); 8648 mutex_exit(&connp->conn_lock); 8649 8650 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 8651 8652 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 8653 if (optreq_prim == T_OPTMGMT_REQ) { 8654 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 8655 &ip_opt_obj); 8656 } else { 8657 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 8658 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 8659 &ip_opt_obj); 8660 } 8661 if (err != EINPROGRESS) 8662 CONN_OPER_PENDING_DONE(connp); 8663 return; 8664 } 8665 mutex_exit(&connp->conn_lock); 8666 } 8667 8668 /* 8669 * Called from the ipsec_loader thread, outside any perimeter, to tell 8670 * ip qenable any of the queues waiting for the ipsec loader to 8671 * complete. 8672 * 8673 * Use ip_mi_lock to be safe here: all modifications of the mi lists 8674 * are done with this lock held, so it's guaranteed that none of the 8675 * links will change along the way. 8676 */ 8677 void 8678 ip_ipsec_load_complete() 8679 { 8680 ipcl_walk(conn_restart_ipsec_waiter, NULL); 8681 } 8682 8683 /* 8684 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 8685 * determines the grp on which it has to become exclusive, queues the mp 8686 * and sq draining restarts the optmgmt 8687 */ 8688 static boolean_t 8689 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 8690 { 8691 conn_t *connp; 8692 8693 /* 8694 * Take IPsec requests and treat them special. 8695 */ 8696 if (ipsec_opt_present(mp)) { 8697 /* First check if IPsec is loaded. */ 8698 mutex_enter(&ipsec_loader_lock); 8699 if (ipsec_loader_state != IPSEC_LOADER_WAIT) { 8700 mutex_exit(&ipsec_loader_lock); 8701 return (B_FALSE); 8702 } 8703 connp = Q_TO_CONN(q); 8704 mutex_enter(&connp->conn_lock); 8705 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 8706 8707 ASSERT(connp->conn_ipsec_opt_mp == NULL); 8708 connp->conn_ipsec_opt_mp = mp; 8709 mutex_exit(&connp->conn_lock); 8710 mutex_exit(&ipsec_loader_lock); 8711 8712 ipsec_loader_loadnow(); 8713 return (B_TRUE); 8714 } 8715 return (B_FALSE); 8716 } 8717 8718 /* 8719 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 8720 * all of them are copied to the conn_t. If the req is "zero", the policy is 8721 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 8722 * fields. 8723 * We keep only the latest setting of the policy and thus policy setting 8724 * is not incremental/cumulative. 8725 * 8726 * Requests to set policies with multiple alternative actions will 8727 * go through a different API. 8728 */ 8729 int 8730 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 8731 { 8732 uint_t ah_req = 0; 8733 uint_t esp_req = 0; 8734 uint_t se_req = 0; 8735 ipsec_selkey_t sel; 8736 ipsec_act_t *actp = NULL; 8737 uint_t nact; 8738 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 8739 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 8740 ipsec_policy_root_t *pr; 8741 ipsec_policy_head_t *ph; 8742 int fam; 8743 boolean_t is_pol_reset; 8744 int error = 0; 8745 8746 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 8747 8748 /* 8749 * The IP_SEC_OPT option does not allow variable length parameters, 8750 * hence a request cannot be NULL. 8751 */ 8752 if (req == NULL) 8753 return (EINVAL); 8754 8755 ah_req = req->ipsr_ah_req; 8756 esp_req = req->ipsr_esp_req; 8757 se_req = req->ipsr_self_encap_req; 8758 8759 /* 8760 * Are we dealing with a request to reset the policy (i.e. 8761 * zero requests). 8762 */ 8763 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 8764 (esp_req & REQ_MASK) == 0 && 8765 (se_req & REQ_MASK) == 0); 8766 8767 if (!is_pol_reset) { 8768 /* 8769 * If we couldn't load IPsec, fail with "protocol 8770 * not supported". 8771 * IPsec may not have been loaded for a request with zero 8772 * policies, so we don't fail in this case. 8773 */ 8774 mutex_enter(&ipsec_loader_lock); 8775 if (ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 8776 mutex_exit(&ipsec_loader_lock); 8777 return (EPROTONOSUPPORT); 8778 } 8779 mutex_exit(&ipsec_loader_lock); 8780 8781 /* 8782 * Test for valid requests. Invalid algorithms 8783 * need to be tested by IPSEC code because new 8784 * algorithms can be added dynamically. 8785 */ 8786 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 8787 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 8788 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 8789 return (EINVAL); 8790 } 8791 8792 /* 8793 * Only privileged users can issue these 8794 * requests. 8795 */ 8796 if (((ah_req & IPSEC_PREF_NEVER) || 8797 (esp_req & IPSEC_PREF_NEVER) || 8798 (se_req & IPSEC_PREF_NEVER)) && 8799 secpolicy_net_config(cr, B_FALSE) != 0) { 8800 return (EPERM); 8801 } 8802 8803 /* 8804 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 8805 * are mutually exclusive. 8806 */ 8807 if (((ah_req & REQ_MASK) == REQ_MASK) || 8808 ((esp_req & REQ_MASK) == REQ_MASK) || 8809 ((se_req & REQ_MASK) == REQ_MASK)) { 8810 /* Both of them are set */ 8811 return (EINVAL); 8812 } 8813 } 8814 8815 mutex_enter(&connp->conn_lock); 8816 8817 /* 8818 * If we have already cached policies in ip_bind_connected*(), don't 8819 * let them change now. We cache policies for connections 8820 * whose src,dst [addr, port] is known. The exception to this is 8821 * tunnels. Tunnels are allowed to change policies after having 8822 * become fully bound. 8823 */ 8824 if (connp->conn_policy_cached && !IPCL_IS_IPTUN(connp)) { 8825 mutex_exit(&connp->conn_lock); 8826 return (EINVAL); 8827 } 8828 8829 /* 8830 * We have a zero policies, reset the connection policy if already 8831 * set. This will cause the connection to inherit the 8832 * global policy, if any. 8833 */ 8834 if (is_pol_reset) { 8835 if (connp->conn_policy != NULL) { 8836 IPPH_REFRELE(connp->conn_policy); 8837 connp->conn_policy = NULL; 8838 } 8839 connp->conn_flags &= ~IPCL_CHECK_POLICY; 8840 connp->conn_in_enforce_policy = B_FALSE; 8841 connp->conn_out_enforce_policy = B_FALSE; 8842 mutex_exit(&connp->conn_lock); 8843 return (0); 8844 } 8845 8846 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy); 8847 if (ph == NULL) 8848 goto enomem; 8849 8850 ipsec_actvec_from_req(req, &actp, &nact); 8851 if (actp == NULL) 8852 goto enomem; 8853 8854 /* 8855 * Always allocate IPv4 policy entries, since they can also 8856 * apply to ipv6 sockets being used in ipv4-compat mode. 8857 */ 8858 bzero(&sel, sizeof (sel)); 8859 sel.ipsl_valid = IPSL_IPV4; 8860 8861 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET); 8862 if (pin4 == NULL) 8863 goto enomem; 8864 8865 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET); 8866 if (pout4 == NULL) 8867 goto enomem; 8868 8869 if (connp->conn_pkt_isv6) { 8870 /* 8871 * We're looking at a v6 socket, also allocate the 8872 * v6-specific entries... 8873 */ 8874 sel.ipsl_valid = IPSL_IPV6; 8875 pin6 = ipsec_policy_create(&sel, actp, nact, 8876 IPSEC_PRIO_SOCKET); 8877 if (pin6 == NULL) 8878 goto enomem; 8879 8880 pout6 = ipsec_policy_create(&sel, actp, nact, 8881 IPSEC_PRIO_SOCKET); 8882 if (pout6 == NULL) 8883 goto enomem; 8884 8885 /* 8886 * .. and file them away in the right place. 8887 */ 8888 fam = IPSEC_AF_V6; 8889 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 8890 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 8891 ipsec_insert_always(&ph->iph_rulebyid, pin6); 8892 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 8893 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 8894 ipsec_insert_always(&ph->iph_rulebyid, pout6); 8895 } 8896 8897 ipsec_actvec_free(actp, nact); 8898 8899 /* 8900 * File the v4 policies. 8901 */ 8902 fam = IPSEC_AF_V4; 8903 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 8904 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 8905 ipsec_insert_always(&ph->iph_rulebyid, pin4); 8906 8907 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 8908 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 8909 ipsec_insert_always(&ph->iph_rulebyid, pout4); 8910 8911 /* 8912 * If the requests need security, set enforce_policy. 8913 * If the requests are IPSEC_PREF_NEVER, one should 8914 * still set conn_out_enforce_policy so that an ipsec_out 8915 * gets attached in ip_wput. This is needed so that 8916 * for connections that we don't cache policy in ip_bind, 8917 * if global policy matches in ip_wput_attach_policy, we 8918 * don't wrongly inherit global policy. Similarly, we need 8919 * to set conn_in_enforce_policy also so that we don't verify 8920 * policy wrongly. 8921 */ 8922 if ((ah_req & REQ_MASK) != 0 || 8923 (esp_req & REQ_MASK) != 0 || 8924 (se_req & REQ_MASK) != 0) { 8925 connp->conn_in_enforce_policy = B_TRUE; 8926 connp->conn_out_enforce_policy = B_TRUE; 8927 connp->conn_flags |= IPCL_CHECK_POLICY; 8928 } 8929 8930 /* 8931 * Tunnels are allowed to set policy after having been fully bound. 8932 * If that's the case, cache policy here. 8933 */ 8934 if (IPCL_IS_IPTUN(connp) && connp->conn_fully_bound) 8935 error = ipsec_conn_cache_policy(connp, !connp->conn_af_isv6); 8936 8937 mutex_exit(&connp->conn_lock); 8938 return (error); 8939 #undef REQ_MASK 8940 8941 /* 8942 * Common memory-allocation-failure exit path. 8943 */ 8944 enomem: 8945 mutex_exit(&connp->conn_lock); 8946 if (actp != NULL) 8947 ipsec_actvec_free(actp, nact); 8948 if (pin4 != NULL) 8949 IPPOL_REFRELE(pin4); 8950 if (pout4 != NULL) 8951 IPPOL_REFRELE(pout4); 8952 if (pin6 != NULL) 8953 IPPOL_REFRELE(pin6); 8954 if (pout6 != NULL) 8955 IPPOL_REFRELE(pout6); 8956 return (ENOMEM); 8957 } 8958 8959 /* 8960 * Only for options that pass in an IP addr. Currently only V4 options 8961 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 8962 * So this function assumes level is IPPROTO_IP 8963 */ 8964 int 8965 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 8966 mblk_t *first_mp) 8967 { 8968 ipif_t *ipif = NULL; 8969 int error; 8970 ill_t *ill; 8971 8972 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 8973 8974 if (addr != INADDR_ANY || checkonly) { 8975 ASSERT(connp != NULL); 8976 ipif = ipif_lookup_addr(addr, NULL, connp->conn_zoneid, 8977 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, &error); 8978 if (ipif == NULL) { 8979 if (error == EINPROGRESS) 8980 return (error); 8981 else if (option == IP_MULTICAST_IF) 8982 return (EHOSTUNREACH); 8983 else 8984 return (EINVAL); 8985 } else if (checkonly) { 8986 if (option == IP_MULTICAST_IF) { 8987 ill = ipif->ipif_ill; 8988 /* not supported by the virtual network iface */ 8989 if (IS_VNI(ill)) { 8990 ipif_refrele(ipif); 8991 return (EINVAL); 8992 } 8993 } 8994 ipif_refrele(ipif); 8995 return (0); 8996 } 8997 ill = ipif->ipif_ill; 8998 mutex_enter(&connp->conn_lock); 8999 mutex_enter(&ill->ill_lock); 9000 if ((ill->ill_state_flags & ILL_CONDEMNED) || 9001 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 9002 mutex_exit(&ill->ill_lock); 9003 mutex_exit(&connp->conn_lock); 9004 ipif_refrele(ipif); 9005 return (option == IP_MULTICAST_IF ? 9006 EHOSTUNREACH : EINVAL); 9007 } 9008 } else { 9009 mutex_enter(&connp->conn_lock); 9010 } 9011 9012 /* None of the options below are supported on the VNI */ 9013 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 9014 mutex_exit(&ill->ill_lock); 9015 mutex_exit(&connp->conn_lock); 9016 ipif_refrele(ipif); 9017 return (EINVAL); 9018 } 9019 9020 switch (option) { 9021 case IP_DONTFAILOVER_IF: 9022 /* 9023 * This option is used by in.mpathd to ensure 9024 * that IPMP probe packets only go out on the 9025 * test interfaces. in.mpathd sets this option 9026 * on the non-failover interfaces. 9027 * For backward compatibility, this option 9028 * implicitly sets IP_MULTICAST_IF, as used 9029 * be done in bind(), so that ip_wput gets 9030 * this ipif to send mcast packets. 9031 */ 9032 if (ipif != NULL) { 9033 ASSERT(addr != INADDR_ANY); 9034 connp->conn_nofailover_ill = ipif->ipif_ill; 9035 connp->conn_multicast_ipif = ipif; 9036 } else { 9037 ASSERT(addr == INADDR_ANY); 9038 connp->conn_nofailover_ill = NULL; 9039 connp->conn_multicast_ipif = NULL; 9040 } 9041 break; 9042 9043 case IP_MULTICAST_IF: 9044 connp->conn_multicast_ipif = ipif; 9045 break; 9046 } 9047 9048 if (ipif != NULL) { 9049 mutex_exit(&ill->ill_lock); 9050 mutex_exit(&connp->conn_lock); 9051 ipif_refrele(ipif); 9052 return (0); 9053 } 9054 mutex_exit(&connp->conn_lock); 9055 /* We succeded in cleared the option */ 9056 return (0); 9057 } 9058 9059 /* 9060 * For options that pass in an ifindex specifying the ill. V6 options always 9061 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 9062 */ 9063 int 9064 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 9065 int level, int option, mblk_t *first_mp) 9066 { 9067 ill_t *ill = NULL; 9068 int error = 0; 9069 9070 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 9071 if (ifindex != 0) { 9072 ASSERT(connp != NULL); 9073 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 9074 first_mp, ip_restart_optmgmt, &error); 9075 if (ill != NULL) { 9076 if (checkonly) { 9077 /* not supported by the virtual network iface */ 9078 if (IS_VNI(ill)) { 9079 ill_refrele(ill); 9080 return (EINVAL); 9081 } 9082 ill_refrele(ill); 9083 return (0); 9084 } 9085 if (!ipif_lookup_zoneid_group(ill, connp->conn_zoneid, 9086 0, NULL)) { 9087 ill_refrele(ill); 9088 ill = NULL; 9089 mutex_enter(&connp->conn_lock); 9090 goto setit; 9091 } 9092 mutex_enter(&connp->conn_lock); 9093 mutex_enter(&ill->ill_lock); 9094 if (ill->ill_state_flags & ILL_CONDEMNED) { 9095 mutex_exit(&ill->ill_lock); 9096 mutex_exit(&connp->conn_lock); 9097 ill_refrele(ill); 9098 ill = NULL; 9099 mutex_enter(&connp->conn_lock); 9100 } 9101 goto setit; 9102 } else if (error == EINPROGRESS) { 9103 return (error); 9104 } else { 9105 error = 0; 9106 } 9107 } 9108 mutex_enter(&connp->conn_lock); 9109 setit: 9110 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 9111 9112 /* 9113 * The options below assume that the ILL (if any) transmits and/or 9114 * receives traffic. Neither of which is true for the virtual network 9115 * interface, so fail setting these on a VNI. 9116 */ 9117 if (IS_VNI(ill)) { 9118 ASSERT(ill != NULL); 9119 mutex_exit(&ill->ill_lock); 9120 mutex_exit(&connp->conn_lock); 9121 ill_refrele(ill); 9122 return (EINVAL); 9123 } 9124 9125 if (level == IPPROTO_IP) { 9126 switch (option) { 9127 case IP_BOUND_IF: 9128 connp->conn_incoming_ill = ill; 9129 connp->conn_outgoing_ill = ill; 9130 connp->conn_orig_bound_ifindex = (ill == NULL) ? 9131 0 : ifindex; 9132 break; 9133 9134 case IP_XMIT_IF: 9135 /* 9136 * Similar to IP_BOUND_IF, but this only 9137 * determines the outgoing interface for 9138 * unicast packets. Also no IRE_CACHE entry 9139 * is added for the destination of the 9140 * outgoing packets. This feature is needed 9141 * for mobile IP. 9142 */ 9143 connp->conn_xmit_if_ill = ill; 9144 connp->conn_orig_xmit_ifindex = (ill == NULL) ? 9145 0 : ifindex; 9146 break; 9147 9148 case IP_MULTICAST_IF: 9149 /* 9150 * This option is an internal special. The socket 9151 * level IP_MULTICAST_IF specifies an 'ipaddr' and 9152 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 9153 * specifies an ifindex and we try first on V6 ill's. 9154 * If we don't find one, we they try using on v4 ill's 9155 * intenally and we come here. 9156 */ 9157 if (!checkonly && ill != NULL) { 9158 ipif_t *ipif; 9159 ipif = ill->ill_ipif; 9160 9161 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 9162 mutex_exit(&ill->ill_lock); 9163 mutex_exit(&connp->conn_lock); 9164 ill_refrele(ill); 9165 ill = NULL; 9166 mutex_enter(&connp->conn_lock); 9167 } else { 9168 connp->conn_multicast_ipif = ipif; 9169 } 9170 } 9171 break; 9172 } 9173 } else { 9174 switch (option) { 9175 case IPV6_BOUND_IF: 9176 connp->conn_incoming_ill = ill; 9177 connp->conn_outgoing_ill = ill; 9178 connp->conn_orig_bound_ifindex = (ill == NULL) ? 9179 0 : ifindex; 9180 break; 9181 9182 case IPV6_BOUND_PIF: 9183 /* 9184 * Limit all transmit to this ill. 9185 * Unlike IPV6_BOUND_IF, using this option 9186 * prevents load spreading and failover from 9187 * happening when the interface is part of the 9188 * group. That's why we don't need to remember 9189 * the ifindex in orig_bound_ifindex as in 9190 * IPV6_BOUND_IF. 9191 */ 9192 connp->conn_outgoing_pill = ill; 9193 break; 9194 9195 case IPV6_DONTFAILOVER_IF: 9196 /* 9197 * This option is used by in.mpathd to ensure 9198 * that IPMP probe packets only go out on the 9199 * test interfaces. in.mpathd sets this option 9200 * on the non-failover interfaces. 9201 */ 9202 connp->conn_nofailover_ill = ill; 9203 /* 9204 * For backward compatibility, this option 9205 * implicitly sets ip_multicast_ill as used in 9206 * IP_MULTICAST_IF so that ip_wput gets 9207 * this ipif to send mcast packets. 9208 */ 9209 connp->conn_multicast_ill = ill; 9210 connp->conn_orig_multicast_ifindex = (ill == NULL) ? 9211 0 : ifindex; 9212 break; 9213 9214 case IPV6_MULTICAST_IF: 9215 /* 9216 * Set conn_multicast_ill to be the IPv6 ill. 9217 * Set conn_multicast_ipif to be an IPv4 ipif 9218 * for ifindex to make IPv4 mapped addresses 9219 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 9220 * Even if no IPv6 ill exists for the ifindex 9221 * we need to check for an IPv4 ifindex in order 9222 * for this to work with mapped addresses. In that 9223 * case only set conn_multicast_ipif. 9224 */ 9225 if (!checkonly) { 9226 if (ifindex == 0) { 9227 connp->conn_multicast_ill = NULL; 9228 connp->conn_orig_multicast_ifindex = 0; 9229 connp->conn_multicast_ipif = NULL; 9230 } else if (ill != NULL) { 9231 connp->conn_multicast_ill = ill; 9232 connp->conn_orig_multicast_ifindex = 9233 ifindex; 9234 } 9235 } 9236 break; 9237 } 9238 } 9239 9240 if (ill != NULL) { 9241 mutex_exit(&ill->ill_lock); 9242 mutex_exit(&connp->conn_lock); 9243 ill_refrele(ill); 9244 return (0); 9245 } 9246 mutex_exit(&connp->conn_lock); 9247 /* 9248 * We succeeded in clearing the option (ifindex == 0) or failed to 9249 * locate the ill and could not set the option (ifindex != 0) 9250 */ 9251 return (ifindex == 0 ? 0 : EINVAL); 9252 } 9253 9254 /* This routine sets socket options. */ 9255 /* ARGSUSED */ 9256 int 9257 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 9258 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 9259 void *dummy, cred_t *cr, mblk_t *first_mp) 9260 { 9261 int *i1 = (int *)invalp; 9262 conn_t *connp = Q_TO_CONN(q); 9263 int error = 0; 9264 boolean_t checkonly; 9265 ire_t *ire; 9266 boolean_t found; 9267 9268 switch (optset_context) { 9269 9270 case SETFN_OPTCOM_CHECKONLY: 9271 checkonly = B_TRUE; 9272 /* 9273 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 9274 * inlen != 0 implies value supplied and 9275 * we have to "pretend" to set it. 9276 * inlen == 0 implies that there is no 9277 * value part in T_CHECK request and just validation 9278 * done elsewhere should be enough, we just return here. 9279 */ 9280 if (inlen == 0) { 9281 *outlenp = 0; 9282 return (0); 9283 } 9284 break; 9285 case SETFN_OPTCOM_NEGOTIATE: 9286 case SETFN_UD_NEGOTIATE: 9287 case SETFN_CONN_NEGOTIATE: 9288 checkonly = B_FALSE; 9289 break; 9290 default: 9291 /* 9292 * We should never get here 9293 */ 9294 *outlenp = 0; 9295 return (EINVAL); 9296 } 9297 9298 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 9299 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 9300 9301 /* 9302 * For fixed length options, no sanity check 9303 * of passed in length is done. It is assumed *_optcom_req() 9304 * routines do the right thing. 9305 */ 9306 9307 switch (level) { 9308 case SOL_SOCKET: 9309 /* 9310 * conn_lock protects the bitfields, and is used to 9311 * set the fields atomically. 9312 */ 9313 switch (name) { 9314 case SO_BROADCAST: 9315 if (!checkonly) { 9316 /* TODO: use value someplace? */ 9317 mutex_enter(&connp->conn_lock); 9318 connp->conn_broadcast = *i1 ? 1 : 0; 9319 mutex_exit(&connp->conn_lock); 9320 } 9321 break; /* goto sizeof (int) option return */ 9322 case SO_USELOOPBACK: 9323 if (!checkonly) { 9324 /* TODO: use value someplace? */ 9325 mutex_enter(&connp->conn_lock); 9326 connp->conn_loopback = *i1 ? 1 : 0; 9327 mutex_exit(&connp->conn_lock); 9328 } 9329 break; /* goto sizeof (int) option return */ 9330 case SO_DONTROUTE: 9331 if (!checkonly) { 9332 mutex_enter(&connp->conn_lock); 9333 connp->conn_dontroute = *i1 ? 1 : 0; 9334 mutex_exit(&connp->conn_lock); 9335 } 9336 break; /* goto sizeof (int) option return */ 9337 case SO_REUSEADDR: 9338 if (!checkonly) { 9339 mutex_enter(&connp->conn_lock); 9340 connp->conn_reuseaddr = *i1 ? 1 : 0; 9341 mutex_exit(&connp->conn_lock); 9342 } 9343 break; /* goto sizeof (int) option return */ 9344 case SO_PROTOTYPE: 9345 if (!checkonly) { 9346 mutex_enter(&connp->conn_lock); 9347 connp->conn_proto = *i1; 9348 mutex_exit(&connp->conn_lock); 9349 } 9350 break; /* goto sizeof (int) option return */ 9351 default: 9352 /* 9353 * "soft" error (negative) 9354 * option not handled at this level 9355 * Note: Do not modify *outlenp 9356 */ 9357 return (-EINVAL); 9358 } 9359 break; 9360 case IPPROTO_IP: 9361 switch (name) { 9362 case IP_MULTICAST_IF: 9363 case IP_DONTFAILOVER_IF: { 9364 ipaddr_t addr = *i1; 9365 9366 error = ip_opt_set_ipif(connp, addr, checkonly, name, 9367 first_mp); 9368 if (error != 0) 9369 return (error); 9370 break; /* goto sizeof (int) option return */ 9371 } 9372 9373 case IP_MULTICAST_TTL: 9374 /* Recorded in transport above IP */ 9375 *outvalp = *invalp; 9376 *outlenp = sizeof (uchar_t); 9377 return (0); 9378 case IP_MULTICAST_LOOP: 9379 if (!checkonly) { 9380 mutex_enter(&connp->conn_lock); 9381 connp->conn_multicast_loop = *invalp ? 1 : 0; 9382 mutex_exit(&connp->conn_lock); 9383 } 9384 *outvalp = *invalp; 9385 *outlenp = sizeof (uchar_t); 9386 return (0); 9387 case IP_ADD_MEMBERSHIP: 9388 case MCAST_JOIN_GROUP: 9389 case IP_DROP_MEMBERSHIP: 9390 case MCAST_LEAVE_GROUP: { 9391 struct ip_mreq *mreqp; 9392 struct group_req *greqp; 9393 ire_t *ire; 9394 boolean_t done = B_FALSE; 9395 ipaddr_t group, ifaddr; 9396 struct sockaddr_in *sin; 9397 uint32_t *ifindexp; 9398 boolean_t mcast_opt = B_TRUE; 9399 mcast_record_t fmode; 9400 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 9401 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 9402 9403 switch (name) { 9404 case IP_ADD_MEMBERSHIP: 9405 mcast_opt = B_FALSE; 9406 /* FALLTHRU */ 9407 case MCAST_JOIN_GROUP: 9408 fmode = MODE_IS_EXCLUDE; 9409 optfn = ip_opt_add_group; 9410 break; 9411 9412 case IP_DROP_MEMBERSHIP: 9413 mcast_opt = B_FALSE; 9414 /* FALLTHRU */ 9415 case MCAST_LEAVE_GROUP: 9416 fmode = MODE_IS_INCLUDE; 9417 optfn = ip_opt_delete_group; 9418 break; 9419 } 9420 9421 if (mcast_opt) { 9422 greqp = (struct group_req *)i1; 9423 sin = (struct sockaddr_in *)&greqp->gr_group; 9424 if (sin->sin_family != AF_INET) { 9425 *outlenp = 0; 9426 return (ENOPROTOOPT); 9427 } 9428 group = (ipaddr_t)sin->sin_addr.s_addr; 9429 ifaddr = INADDR_ANY; 9430 ifindexp = &greqp->gr_interface; 9431 } else { 9432 mreqp = (struct ip_mreq *)i1; 9433 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 9434 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 9435 ifindexp = NULL; 9436 } 9437 9438 /* 9439 * In the multirouting case, we need to replicate 9440 * the request on all interfaces that will take part 9441 * in replication. We do so because multirouting is 9442 * reflective, thus we will probably receive multi- 9443 * casts on those interfaces. 9444 * The ip_multirt_apply_membership() succeeds if the 9445 * operation succeeds on at least one interface. 9446 */ 9447 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 9448 IRE_HOST, NULL, NULL, ALL_ZONES, 0, 9449 MATCH_IRE_MASK | MATCH_IRE_TYPE); 9450 if (ire != NULL) { 9451 if (ire->ire_flags & RTF_MULTIRT) { 9452 error = ip_multirt_apply_membership( 9453 optfn, ire, connp, checkonly, group, 9454 fmode, INADDR_ANY, first_mp); 9455 done = B_TRUE; 9456 } 9457 ire_refrele(ire); 9458 } 9459 if (!done) { 9460 error = optfn(connp, checkonly, group, ifaddr, 9461 ifindexp, fmode, INADDR_ANY, first_mp); 9462 } 9463 if (error) { 9464 /* 9465 * EINPROGRESS is a soft error, needs retry 9466 * so don't make *outlenp zero. 9467 */ 9468 if (error != EINPROGRESS) 9469 *outlenp = 0; 9470 return (error); 9471 } 9472 /* OK return - copy input buffer into output buffer */ 9473 if (invalp != outvalp) { 9474 /* don't trust bcopy for identical src/dst */ 9475 bcopy(invalp, outvalp, inlen); 9476 } 9477 *outlenp = inlen; 9478 return (0); 9479 } 9480 case IP_BLOCK_SOURCE: 9481 case IP_UNBLOCK_SOURCE: 9482 case IP_ADD_SOURCE_MEMBERSHIP: 9483 case IP_DROP_SOURCE_MEMBERSHIP: 9484 case MCAST_BLOCK_SOURCE: 9485 case MCAST_UNBLOCK_SOURCE: 9486 case MCAST_JOIN_SOURCE_GROUP: 9487 case MCAST_LEAVE_SOURCE_GROUP: { 9488 struct ip_mreq_source *imreqp; 9489 struct group_source_req *gsreqp; 9490 in_addr_t grp, src, ifaddr = INADDR_ANY; 9491 uint32_t ifindex = 0; 9492 mcast_record_t fmode; 9493 struct sockaddr_in *sin; 9494 ire_t *ire; 9495 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 9496 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 9497 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 9498 9499 switch (name) { 9500 case IP_BLOCK_SOURCE: 9501 mcast_opt = B_FALSE; 9502 /* FALLTHRU */ 9503 case MCAST_BLOCK_SOURCE: 9504 fmode = MODE_IS_EXCLUDE; 9505 optfn = ip_opt_add_group; 9506 break; 9507 9508 case IP_UNBLOCK_SOURCE: 9509 mcast_opt = B_FALSE; 9510 /* FALLTHRU */ 9511 case MCAST_UNBLOCK_SOURCE: 9512 fmode = MODE_IS_EXCLUDE; 9513 optfn = ip_opt_delete_group; 9514 break; 9515 9516 case IP_ADD_SOURCE_MEMBERSHIP: 9517 mcast_opt = B_FALSE; 9518 /* FALLTHRU */ 9519 case MCAST_JOIN_SOURCE_GROUP: 9520 fmode = MODE_IS_INCLUDE; 9521 optfn = ip_opt_add_group; 9522 break; 9523 9524 case IP_DROP_SOURCE_MEMBERSHIP: 9525 mcast_opt = B_FALSE; 9526 /* FALLTHRU */ 9527 case MCAST_LEAVE_SOURCE_GROUP: 9528 fmode = MODE_IS_INCLUDE; 9529 optfn = ip_opt_delete_group; 9530 break; 9531 } 9532 9533 if (mcast_opt) { 9534 gsreqp = (struct group_source_req *)i1; 9535 if (gsreqp->gsr_group.ss_family != AF_INET) { 9536 *outlenp = 0; 9537 return (ENOPROTOOPT); 9538 } 9539 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 9540 grp = (ipaddr_t)sin->sin_addr.s_addr; 9541 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 9542 src = (ipaddr_t)sin->sin_addr.s_addr; 9543 ifindex = gsreqp->gsr_interface; 9544 } else { 9545 imreqp = (struct ip_mreq_source *)i1; 9546 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 9547 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 9548 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 9549 } 9550 9551 /* 9552 * In the multirouting case, we need to replicate 9553 * the request as noted in the mcast cases above. 9554 */ 9555 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 9556 IRE_HOST, NULL, NULL, ALL_ZONES, 0, 9557 MATCH_IRE_MASK | MATCH_IRE_TYPE); 9558 if (ire != NULL) { 9559 if (ire->ire_flags & RTF_MULTIRT) { 9560 error = ip_multirt_apply_membership( 9561 optfn, ire, connp, checkonly, grp, 9562 fmode, src, first_mp); 9563 done = B_TRUE; 9564 } 9565 ire_refrele(ire); 9566 } 9567 if (!done) { 9568 error = optfn(connp, checkonly, grp, ifaddr, 9569 &ifindex, fmode, src, first_mp); 9570 } 9571 if (error != 0) { 9572 /* 9573 * EINPROGRESS is a soft error, needs retry 9574 * so don't make *outlenp zero. 9575 */ 9576 if (error != EINPROGRESS) 9577 *outlenp = 0; 9578 return (error); 9579 } 9580 /* OK return - copy input buffer into output buffer */ 9581 if (invalp != outvalp) { 9582 bcopy(invalp, outvalp, inlen); 9583 } 9584 *outlenp = inlen; 9585 return (0); 9586 } 9587 case IP_SEC_OPT: 9588 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 9589 if (error != 0) { 9590 *outlenp = 0; 9591 return (error); 9592 } 9593 break; 9594 case IP_HDRINCL: 9595 case IP_OPTIONS: 9596 case T_IP_OPTIONS: 9597 case IP_TOS: 9598 case T_IP_TOS: 9599 case IP_TTL: 9600 case IP_RECVDSTADDR: 9601 case IP_RECVOPTS: 9602 /* OK return - copy input buffer into output buffer */ 9603 if (invalp != outvalp) { 9604 /* don't trust bcopy for identical src/dst */ 9605 bcopy(invalp, outvalp, inlen); 9606 } 9607 *outlenp = inlen; 9608 return (0); 9609 case IP_RECVIF: 9610 /* Retrieve the inbound interface index */ 9611 if (!checkonly) { 9612 mutex_enter(&connp->conn_lock); 9613 connp->conn_recvif = *i1 ? 1 : 0; 9614 mutex_exit(&connp->conn_lock); 9615 } 9616 break; /* goto sizeof (int) option return */ 9617 case IP_RECVSLLA: 9618 /* Retrieve the source link layer address */ 9619 if (!checkonly) { 9620 mutex_enter(&connp->conn_lock); 9621 connp->conn_recvslla = *i1 ? 1 : 0; 9622 mutex_exit(&connp->conn_lock); 9623 } 9624 break; /* goto sizeof (int) option return */ 9625 case MRT_INIT: 9626 case MRT_DONE: 9627 case MRT_ADD_VIF: 9628 case MRT_DEL_VIF: 9629 case MRT_ADD_MFC: 9630 case MRT_DEL_MFC: 9631 case MRT_ASSERT: 9632 if ((error = secpolicy_net_config(cr, B_FALSE)) != 0) { 9633 *outlenp = 0; 9634 return (error); 9635 } 9636 error = ip_mrouter_set((int)name, q, checkonly, 9637 (uchar_t *)invalp, inlen, first_mp); 9638 if (error) { 9639 *outlenp = 0; 9640 return (error); 9641 } 9642 /* OK return - copy input buffer into output buffer */ 9643 if (invalp != outvalp) { 9644 /* don't trust bcopy for identical src/dst */ 9645 bcopy(invalp, outvalp, inlen); 9646 } 9647 *outlenp = inlen; 9648 return (0); 9649 case IP_BOUND_IF: 9650 case IP_XMIT_IF: 9651 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 9652 level, name, first_mp); 9653 if (error != 0) 9654 return (error); 9655 break; /* goto sizeof (int) option return */ 9656 9657 case IP_UNSPEC_SRC: 9658 /* Allow sending with a zero source address */ 9659 if (!checkonly) { 9660 mutex_enter(&connp->conn_lock); 9661 connp->conn_unspec_src = *i1 ? 1 : 0; 9662 mutex_exit(&connp->conn_lock); 9663 } 9664 break; /* goto sizeof (int) option return */ 9665 default: 9666 /* 9667 * "soft" error (negative) 9668 * option not handled at this level 9669 * Note: Do not modify *outlenp 9670 */ 9671 return (-EINVAL); 9672 } 9673 break; 9674 case IPPROTO_IPV6: 9675 switch (name) { 9676 case IPV6_BOUND_IF: 9677 case IPV6_BOUND_PIF: 9678 case IPV6_DONTFAILOVER_IF: 9679 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 9680 level, name, first_mp); 9681 if (error != 0) 9682 return (error); 9683 break; /* goto sizeof (int) option return */ 9684 9685 case IPV6_MULTICAST_IF: 9686 /* 9687 * The only possible errors are EINPROGRESS and 9688 * EINVAL. EINPROGRESS will be restarted and is not 9689 * a hard error. We call this option on both V4 and V6 9690 * If both return EINVAL, then this call returns 9691 * EINVAL. If at least one of them succeeds we 9692 * return success. 9693 */ 9694 found = B_FALSE; 9695 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 9696 level, name, first_mp); 9697 if (error == EINPROGRESS) 9698 return (error); 9699 if (error == 0) 9700 found = B_TRUE; 9701 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 9702 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 9703 if (error == 0) 9704 found = B_TRUE; 9705 if (!found) 9706 return (error); 9707 break; /* goto sizeof (int) option return */ 9708 9709 case IPV6_MULTICAST_HOPS: 9710 /* Recorded in transport above IP */ 9711 break; /* goto sizeof (int) option return */ 9712 case IPV6_MULTICAST_LOOP: 9713 if (!checkonly) { 9714 mutex_enter(&connp->conn_lock); 9715 connp->conn_multicast_loop = *i1; 9716 mutex_exit(&connp->conn_lock); 9717 } 9718 break; /* goto sizeof (int) option return */ 9719 case IPV6_JOIN_GROUP: 9720 case MCAST_JOIN_GROUP: 9721 case IPV6_LEAVE_GROUP: 9722 case MCAST_LEAVE_GROUP: { 9723 struct ipv6_mreq *ip_mreqp; 9724 struct group_req *greqp; 9725 ire_t *ire; 9726 boolean_t done = B_FALSE; 9727 in6_addr_t groupv6; 9728 uint32_t ifindex; 9729 boolean_t mcast_opt = B_TRUE; 9730 mcast_record_t fmode; 9731 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 9732 int, mcast_record_t, const in6_addr_t *, mblk_t *); 9733 9734 switch (name) { 9735 case IPV6_JOIN_GROUP: 9736 mcast_opt = B_FALSE; 9737 /* FALLTHRU */ 9738 case MCAST_JOIN_GROUP: 9739 fmode = MODE_IS_EXCLUDE; 9740 optfn = ip_opt_add_group_v6; 9741 break; 9742 9743 case IPV6_LEAVE_GROUP: 9744 mcast_opt = B_FALSE; 9745 /* FALLTHRU */ 9746 case MCAST_LEAVE_GROUP: 9747 fmode = MODE_IS_INCLUDE; 9748 optfn = ip_opt_delete_group_v6; 9749 break; 9750 } 9751 9752 if (mcast_opt) { 9753 struct sockaddr_in *sin; 9754 struct sockaddr_in6 *sin6; 9755 greqp = (struct group_req *)i1; 9756 if (greqp->gr_group.ss_family == AF_INET) { 9757 sin = (struct sockaddr_in *) 9758 &(greqp->gr_group); 9759 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 9760 &groupv6); 9761 } else { 9762 sin6 = (struct sockaddr_in6 *) 9763 &(greqp->gr_group); 9764 groupv6 = sin6->sin6_addr; 9765 } 9766 ifindex = greqp->gr_interface; 9767 } else { 9768 ip_mreqp = (struct ipv6_mreq *)i1; 9769 groupv6 = ip_mreqp->ipv6mr_multiaddr; 9770 ifindex = ip_mreqp->ipv6mr_interface; 9771 } 9772 /* 9773 * In the multirouting case, we need to replicate 9774 * the request on all interfaces that will take part 9775 * in replication. We do so because multirouting is 9776 * reflective, thus we will probably receive multi- 9777 * casts on those interfaces. 9778 * The ip_multirt_apply_membership_v6() succeeds if 9779 * the operation succeeds on at least one interface. 9780 */ 9781 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 9782 IRE_HOST, NULL, NULL, ALL_ZONES, 0, 9783 MATCH_IRE_MASK | MATCH_IRE_TYPE); 9784 if (ire != NULL) { 9785 if (ire->ire_flags & RTF_MULTIRT) { 9786 error = ip_multirt_apply_membership_v6( 9787 optfn, ire, connp, checkonly, 9788 &groupv6, fmode, &ipv6_all_zeros, 9789 first_mp); 9790 done = B_TRUE; 9791 } 9792 ire_refrele(ire); 9793 } 9794 if (!done) { 9795 error = optfn(connp, checkonly, &groupv6, 9796 ifindex, fmode, &ipv6_all_zeros, first_mp); 9797 } 9798 if (error) { 9799 /* 9800 * EINPROGRESS is a soft error, needs retry 9801 * so don't make *outlenp zero. 9802 */ 9803 if (error != EINPROGRESS) 9804 *outlenp = 0; 9805 return (error); 9806 } 9807 /* OK return - copy input buffer into output buffer */ 9808 if (invalp != outvalp) { 9809 /* don't trust bcopy for identical src/dst */ 9810 bcopy(invalp, outvalp, inlen); 9811 } 9812 *outlenp = inlen; 9813 return (0); 9814 } 9815 case MCAST_BLOCK_SOURCE: 9816 case MCAST_UNBLOCK_SOURCE: 9817 case MCAST_JOIN_SOURCE_GROUP: 9818 case MCAST_LEAVE_SOURCE_GROUP: { 9819 struct group_source_req *gsreqp; 9820 in6_addr_t v6grp, v6src; 9821 uint32_t ifindex; 9822 mcast_record_t fmode; 9823 ire_t *ire; 9824 boolean_t done = B_FALSE; 9825 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 9826 int, mcast_record_t, const in6_addr_t *, mblk_t *); 9827 9828 switch (name) { 9829 case MCAST_BLOCK_SOURCE: 9830 fmode = MODE_IS_EXCLUDE; 9831 optfn = ip_opt_add_group_v6; 9832 break; 9833 case MCAST_UNBLOCK_SOURCE: 9834 fmode = MODE_IS_EXCLUDE; 9835 optfn = ip_opt_delete_group_v6; 9836 break; 9837 case MCAST_JOIN_SOURCE_GROUP: 9838 fmode = MODE_IS_INCLUDE; 9839 optfn = ip_opt_add_group_v6; 9840 break; 9841 case MCAST_LEAVE_SOURCE_GROUP: 9842 fmode = MODE_IS_INCLUDE; 9843 optfn = ip_opt_delete_group_v6; 9844 break; 9845 } 9846 9847 gsreqp = (struct group_source_req *)i1; 9848 ifindex = gsreqp->gsr_interface; 9849 if (gsreqp->gsr_group.ss_family == AF_INET) { 9850 struct sockaddr_in *s; 9851 s = (struct sockaddr_in *)&gsreqp->gsr_group; 9852 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 9853 s = (struct sockaddr_in *)&gsreqp->gsr_source; 9854 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 9855 } else { 9856 struct sockaddr_in6 *s6; 9857 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 9858 v6grp = s6->sin6_addr; 9859 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 9860 v6src = s6->sin6_addr; 9861 } 9862 9863 /* 9864 * In the multirouting case, we need to replicate 9865 * the request as noted in the mcast cases above. 9866 */ 9867 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 9868 IRE_HOST, NULL, NULL, ALL_ZONES, 0, 9869 MATCH_IRE_MASK | MATCH_IRE_TYPE); 9870 if (ire != NULL) { 9871 if (ire->ire_flags & RTF_MULTIRT) { 9872 error = ip_multirt_apply_membership_v6( 9873 optfn, ire, connp, checkonly, 9874 &v6grp, fmode, &v6src, first_mp); 9875 done = B_TRUE; 9876 } 9877 ire_refrele(ire); 9878 } 9879 if (!done) { 9880 error = optfn(connp, checkonly, &v6grp, 9881 ifindex, fmode, &v6src, first_mp); 9882 } 9883 if (error != 0) { 9884 /* 9885 * EINPROGRESS is a soft error, needs retry 9886 * so don't make *outlenp zero. 9887 */ 9888 if (error != EINPROGRESS) 9889 *outlenp = 0; 9890 return (error); 9891 } 9892 /* OK return - copy input buffer into output buffer */ 9893 if (invalp != outvalp) { 9894 bcopy(invalp, outvalp, inlen); 9895 } 9896 *outlenp = inlen; 9897 return (0); 9898 } 9899 case IPV6_UNICAST_HOPS: 9900 /* Recorded in transport above IP */ 9901 break; /* goto sizeof (int) option return */ 9902 case IPV6_UNSPEC_SRC: 9903 /* Allow sending with a zero source address */ 9904 if (!checkonly) { 9905 mutex_enter(&connp->conn_lock); 9906 connp->conn_unspec_src = *i1 ? 1 : 0; 9907 mutex_exit(&connp->conn_lock); 9908 } 9909 break; /* goto sizeof (int) option return */ 9910 case IPV6_RECVPKTINFO: 9911 if (!checkonly) { 9912 mutex_enter(&connp->conn_lock); 9913 connp->conn_ipv6_recvpktinfo = *i1 ? 1 : 0; 9914 mutex_exit(&connp->conn_lock); 9915 } 9916 break; /* goto sizeof (int) option return */ 9917 case IPV6_RECVTCLASS: 9918 if (!checkonly) { 9919 if (*i1 < 0 || *i1 > 1) { 9920 return (EINVAL); 9921 } 9922 mutex_enter(&connp->conn_lock); 9923 connp->conn_ipv6_recvtclass = *i1; 9924 mutex_exit(&connp->conn_lock); 9925 } 9926 break; 9927 case IPV6_RECVPATHMTU: 9928 if (!checkonly) { 9929 if (*i1 < 0 || *i1 > 1) { 9930 return (EINVAL); 9931 } 9932 mutex_enter(&connp->conn_lock); 9933 connp->conn_ipv6_recvpathmtu = *i1; 9934 mutex_exit(&connp->conn_lock); 9935 } 9936 break; 9937 case IPV6_RECVHOPLIMIT: 9938 if (!checkonly) { 9939 mutex_enter(&connp->conn_lock); 9940 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 9941 mutex_exit(&connp->conn_lock); 9942 } 9943 break; /* goto sizeof (int) option return */ 9944 case IPV6_RECVHOPOPTS: 9945 if (!checkonly) { 9946 mutex_enter(&connp->conn_lock); 9947 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 9948 mutex_exit(&connp->conn_lock); 9949 } 9950 break; /* goto sizeof (int) option return */ 9951 case IPV6_RECVDSTOPTS: 9952 if (!checkonly) { 9953 mutex_enter(&connp->conn_lock); 9954 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 9955 mutex_exit(&connp->conn_lock); 9956 } 9957 break; /* goto sizeof (int) option return */ 9958 case IPV6_RECVRTHDR: 9959 if (!checkonly) { 9960 mutex_enter(&connp->conn_lock); 9961 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 9962 mutex_exit(&connp->conn_lock); 9963 } 9964 break; /* goto sizeof (int) option return */ 9965 case IPV6_RECVRTHDRDSTOPTS: 9966 if (!checkonly) { 9967 mutex_enter(&connp->conn_lock); 9968 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 9969 mutex_exit(&connp->conn_lock); 9970 } 9971 break; /* goto sizeof (int) option return */ 9972 case IPV6_PKTINFO: 9973 if (inlen == 0) 9974 return (-EINVAL); /* clearing option */ 9975 error = ip6_set_pktinfo(cr, connp, 9976 (struct in6_pktinfo *)invalp, first_mp); 9977 if (error != 0) 9978 *outlenp = 0; 9979 else 9980 *outlenp = inlen; 9981 return (error); 9982 case IPV6_NEXTHOP: { 9983 struct sockaddr_in6 *sin6; 9984 9985 /* Verify that the nexthop is reachable */ 9986 if (inlen == 0) 9987 return (-EINVAL); /* clearing option */ 9988 9989 sin6 = (struct sockaddr_in6 *)invalp; 9990 ire = ire_route_lookup_v6(&sin6->sin6_addr, 9991 0, 0, 0, NULL, NULL, connp->conn_zoneid, 9992 MATCH_IRE_DEFAULT); 9993 9994 if (ire == NULL) { 9995 *outlenp = 0; 9996 return (EHOSTUNREACH); 9997 } 9998 ire_refrele(ire); 9999 return (-EINVAL); 10000 } 10001 case IPV6_SEC_OPT: 10002 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 10003 if (error != 0) { 10004 *outlenp = 0; 10005 return (error); 10006 } 10007 break; 10008 case IPV6_SRC_PREFERENCES: { 10009 /* 10010 * This is implemented strictly in the ip module 10011 * (here and in tcp_opt_*() to accomodate tcp 10012 * sockets). Modules above ip pass this option 10013 * down here since ip is the only one that needs to 10014 * be aware of source address preferences. 10015 * 10016 * This socket option only affects connected 10017 * sockets that haven't already bound to a specific 10018 * IPv6 address. In other words, sockets that 10019 * don't call bind() with an address other than the 10020 * unspecified address and that call connect(). 10021 * ip_bind_connected_v6() passes these preferences 10022 * to the ipif_select_source_v6() function. 10023 */ 10024 if (inlen != sizeof (uint32_t)) 10025 return (EINVAL); 10026 error = ip6_set_src_preferences(connp, 10027 *(uint32_t *)invalp); 10028 if (error != 0) { 10029 *outlenp = 0; 10030 return (error); 10031 } else { 10032 *outlenp = sizeof (uint32_t); 10033 } 10034 break; 10035 } 10036 case IPV6_V6ONLY: 10037 if (*i1 < 0 || *i1 > 1) { 10038 return (EINVAL); 10039 } 10040 mutex_enter(&connp->conn_lock); 10041 connp->conn_ipv6_v6only = *i1; 10042 mutex_exit(&connp->conn_lock); 10043 break; 10044 default: 10045 return (-EINVAL); 10046 } 10047 break; 10048 default: 10049 /* 10050 * "soft" error (negative) 10051 * option not handled at this level 10052 * Note: Do not modify *outlenp 10053 */ 10054 return (-EINVAL); 10055 } 10056 /* 10057 * Common case of return from an option that is sizeof (int) 10058 */ 10059 *(int *)outvalp = *i1; 10060 *outlenp = sizeof (int); 10061 return (0); 10062 } 10063 10064 /* 10065 * This routine gets default values of certain options whose default 10066 * values are maintained by protocol specific code 10067 */ 10068 /* ARGSUSED */ 10069 int 10070 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 10071 { 10072 int *i1 = (int *)ptr; 10073 10074 switch (level) { 10075 case IPPROTO_IP: 10076 switch (name) { 10077 case IP_MULTICAST_TTL: 10078 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 10079 return (sizeof (uchar_t)); 10080 case IP_MULTICAST_LOOP: 10081 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 10082 return (sizeof (uchar_t)); 10083 default: 10084 return (-1); 10085 } 10086 case IPPROTO_IPV6: 10087 switch (name) { 10088 case IPV6_UNICAST_HOPS: 10089 *i1 = ipv6_def_hops; 10090 return (sizeof (int)); 10091 case IPV6_MULTICAST_HOPS: 10092 *i1 = IP_DEFAULT_MULTICAST_TTL; 10093 return (sizeof (int)); 10094 case IPV6_MULTICAST_LOOP: 10095 *i1 = IP_DEFAULT_MULTICAST_LOOP; 10096 return (sizeof (int)); 10097 case IPV6_V6ONLY: 10098 *i1 = 1; 10099 return (sizeof (int)); 10100 default: 10101 return (-1); 10102 } 10103 default: 10104 return (-1); 10105 } 10106 /* NOTREACHED */ 10107 } 10108 10109 /* 10110 * Given a destination address and a pointer to where to put the information 10111 * this routine fills in the mtuinfo. 10112 */ 10113 int 10114 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 10115 struct ip6_mtuinfo *mtuinfo) 10116 { 10117 ire_t *ire; 10118 10119 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 10120 return (-1); 10121 10122 bzero(mtuinfo, sizeof (*mtuinfo)); 10123 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 10124 mtuinfo->ip6m_addr.sin6_port = port; 10125 mtuinfo->ip6m_addr.sin6_addr = *in6; 10126 10127 ire = ire_cache_lookup_v6(in6, ALL_ZONES); 10128 if (ire != NULL) { 10129 mtuinfo->ip6m_mtu = ire->ire_max_frag; 10130 ire_refrele(ire); 10131 } else { 10132 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 10133 } 10134 return (sizeof (struct ip6_mtuinfo)); 10135 } 10136 10137 /* 10138 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 10139 * checking of GET_QUEUE_CRED(q) and that ip_g_mrouter is set should be done and 10140 * isn't. This doesn't matter as the error checking is done properly for the 10141 * other MRT options coming in through ip_opt_set. 10142 */ 10143 int 10144 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 10145 { 10146 conn_t *connp = Q_TO_CONN(q); 10147 ipsec_req_t *req = (ipsec_req_t *)ptr; 10148 10149 switch (level) { 10150 case IPPROTO_IP: 10151 switch (name) { 10152 case MRT_VERSION: 10153 case MRT_ASSERT: 10154 (void) ip_mrouter_get(name, q, ptr); 10155 return (sizeof (int)); 10156 case IP_SEC_OPT: 10157 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 10158 default: 10159 break; 10160 } 10161 break; 10162 case IPPROTO_IPV6: 10163 switch (name) { 10164 case IPV6_SEC_OPT: 10165 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 10166 case IPV6_SRC_PREFERENCES: { 10167 return (ip6_get_src_preferences(connp, 10168 (uint32_t *)ptr)); 10169 } 10170 case IPV6_V6ONLY: 10171 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 10172 return (sizeof (int)); 10173 case IPV6_PATHMTU: 10174 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 10175 (struct ip6_mtuinfo *)ptr)); 10176 default: 10177 break; 10178 } 10179 break; 10180 default: 10181 break; 10182 } 10183 return (-1); 10184 } 10185 10186 /* Named Dispatch routine to get a current value out of our parameter table. */ 10187 /* ARGSUSED */ 10188 static int 10189 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 10190 { 10191 ipparam_t *ippa = (ipparam_t *)cp; 10192 10193 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 10194 return (0); 10195 } 10196 10197 /* ARGSUSED */ 10198 static int 10199 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 10200 { 10201 10202 (void) mi_mpprintf(mp, "%d", *(int *)cp); 10203 return (0); 10204 } 10205 10206 /* 10207 * Set ip{,6}_forwarding values. This means walking through all of the 10208 * ill's and toggling their forwarding values. 10209 */ 10210 /* ARGSUSED */ 10211 static int 10212 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 10213 { 10214 long new_value; 10215 int *forwarding_value = (int *)cp; 10216 ill_t *walker; 10217 boolean_t isv6 = (forwarding_value == &ipv6_forward); 10218 ill_walk_context_t ctx; 10219 10220 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 10221 new_value < 0 || new_value > 1) { 10222 return (EINVAL); 10223 } 10224 10225 *forwarding_value = new_value; 10226 10227 /* 10228 * Regardless of the current value of ip_forwarding, set all per-ill 10229 * values of ip_forwarding to the value being set. 10230 * 10231 * Bring all the ill's up to date with the new global value. 10232 */ 10233 rw_enter(&ill_g_lock, RW_READER); 10234 10235 if (isv6) 10236 walker = ILL_START_WALK_V6(&ctx); 10237 else 10238 walker = ILL_START_WALK_V4(&ctx); 10239 for (; walker != NULL; walker = ill_next(&ctx, walker)) { 10240 (void) ill_forward_set(q, mp, (new_value != 0), 10241 (caddr_t)walker); 10242 } 10243 rw_exit(&ill_g_lock); 10244 10245 return (0); 10246 } 10247 10248 /* 10249 * Walk through the param array specified registering each element with the 10250 * Named Dispatch handler. This is called only during init. So it is ok 10251 * not to acquire any locks 10252 */ 10253 static boolean_t 10254 ip_param_register(ipparam_t *ippa, size_t ippa_cnt, 10255 ipndp_t *ipnd, size_t ipnd_cnt) 10256 { 10257 for (; ippa_cnt-- > 0; ippa++) { 10258 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 10259 if (!nd_load(&ip_g_nd, ippa->ip_param_name, 10260 ip_param_get, ip_param_set, (caddr_t)ippa)) { 10261 nd_free(&ip_g_nd); 10262 return (B_FALSE); 10263 } 10264 } 10265 } 10266 10267 for (; ipnd_cnt-- > 0; ipnd++) { 10268 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 10269 if (!nd_load(&ip_g_nd, ipnd->ip_ndp_name, 10270 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 10271 ipnd->ip_ndp_data)) { 10272 nd_free(&ip_g_nd); 10273 return (B_FALSE); 10274 } 10275 } 10276 } 10277 10278 return (B_TRUE); 10279 } 10280 10281 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 10282 /* ARGSUSED */ 10283 static int 10284 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 10285 { 10286 long new_value; 10287 ipparam_t *ippa = (ipparam_t *)cp; 10288 10289 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 10290 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 10291 return (EINVAL); 10292 } 10293 ippa->ip_param_value = new_value; 10294 return (0); 10295 } 10296 10297 /* 10298 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 10299 * When an ipf is passed here for the first time, if 10300 * we already have in-order fragments on the queue, we convert from the fast- 10301 * path reassembly scheme to the hard-case scheme. From then on, additional 10302 * fragments are reassembled here. We keep track of the start and end offsets 10303 * of each piece, and the number of holes in the chain. When the hole count 10304 * goes to zero, we are done! 10305 * 10306 * The ipf_count will be updated to account for any mblk(s) added (pointed to 10307 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 10308 * ipfb_count and ill_frag_count by the difference of ipf_count before and 10309 * after the call to ip_reassemble(). 10310 */ 10311 int 10312 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 10313 size_t msg_len) 10314 { 10315 uint_t end; 10316 mblk_t *next_mp; 10317 mblk_t *mp1; 10318 uint_t offset; 10319 boolean_t incr_dups = B_TRUE; 10320 boolean_t offset_zero_seen = B_FALSE; 10321 boolean_t pkt_boundary_checked = B_FALSE; 10322 10323 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 10324 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 10325 10326 /* Add in byte count */ 10327 ipf->ipf_count += msg_len; 10328 if (ipf->ipf_end) { 10329 /* 10330 * We were part way through in-order reassembly, but now there 10331 * is a hole. We walk through messages already queued, and 10332 * mark them for hard case reassembly. We know that up till 10333 * now they were in order starting from offset zero. 10334 */ 10335 offset = 0; 10336 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 10337 IP_REASS_SET_START(mp1, offset); 10338 if (offset == 0) { 10339 ASSERT(ipf->ipf_nf_hdr_len != 0); 10340 offset = -ipf->ipf_nf_hdr_len; 10341 } 10342 offset += mp1->b_wptr - mp1->b_rptr; 10343 IP_REASS_SET_END(mp1, offset); 10344 } 10345 /* One hole at the end. */ 10346 ipf->ipf_hole_cnt = 1; 10347 /* Brand it as a hard case, forever. */ 10348 ipf->ipf_end = 0; 10349 } 10350 /* Walk through all the new pieces. */ 10351 do { 10352 end = start + (mp->b_wptr - mp->b_rptr); 10353 /* 10354 * If start is 0, decrease 'end' only for the first mblk of 10355 * the fragment. Otherwise 'end' can get wrong value in the 10356 * second pass of the loop if first mblk is exactly the 10357 * size of ipf_nf_hdr_len. 10358 */ 10359 if (start == 0 && !offset_zero_seen) { 10360 /* First segment */ 10361 ASSERT(ipf->ipf_nf_hdr_len != 0); 10362 end -= ipf->ipf_nf_hdr_len; 10363 offset_zero_seen = B_TRUE; 10364 } 10365 next_mp = mp->b_cont; 10366 /* 10367 * We are checking to see if there is any interesing data 10368 * to process. If there isn't and the mblk isn't the 10369 * one which carries the unfragmentable header then we 10370 * drop it. It's possible to have just the unfragmentable 10371 * header come through without any data. That needs to be 10372 * saved. 10373 * 10374 * If the assert at the top of this function holds then the 10375 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 10376 * is infrequently traveled enough that the test is left in 10377 * to protect against future code changes which break that 10378 * invariant. 10379 */ 10380 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 10381 /* Empty. Blast it. */ 10382 IP_REASS_SET_START(mp, 0); 10383 IP_REASS_SET_END(mp, 0); 10384 /* 10385 * If the ipf points to the mblk we are about to free, 10386 * update ipf to point to the next mblk (or NULL 10387 * if none). 10388 */ 10389 if (ipf->ipf_mp->b_cont == mp) 10390 ipf->ipf_mp->b_cont = next_mp; 10391 freeb(mp); 10392 continue; 10393 } 10394 mp->b_cont = NULL; 10395 IP_REASS_SET_START(mp, start); 10396 IP_REASS_SET_END(mp, end); 10397 if (!ipf->ipf_tail_mp) { 10398 ipf->ipf_tail_mp = mp; 10399 ipf->ipf_mp->b_cont = mp; 10400 if (start == 0 || !more) { 10401 ipf->ipf_hole_cnt = 1; 10402 /* 10403 * if the first fragment comes in more than one 10404 * mblk, this loop will be executed for each 10405 * mblk. Need to adjust hole count so exiting 10406 * this routine will leave hole count at 1. 10407 */ 10408 if (next_mp) 10409 ipf->ipf_hole_cnt++; 10410 } else 10411 ipf->ipf_hole_cnt = 2; 10412 continue; 10413 } else if (ipf->ipf_last_frag_seen && !more && 10414 !pkt_boundary_checked) { 10415 /* 10416 * We check datagram boundary only if this fragment 10417 * claims to be the last fragment and we have seen a 10418 * last fragment in the past too. We do this only 10419 * once for a given fragment. 10420 * 10421 * start cannot be 0 here as fragments with start=0 10422 * and MF=0 gets handled as a complete packet. These 10423 * fragments should not reach here. 10424 */ 10425 10426 if (start + msgdsize(mp) != 10427 IP_REASS_END(ipf->ipf_tail_mp)) { 10428 /* 10429 * We have two fragments both of which claim 10430 * to be the last fragment but gives conflicting 10431 * information about the whole datagram size. 10432 * Something fishy is going on. Drop the 10433 * fragment and free up the reassembly list. 10434 */ 10435 return (IP_REASS_FAILED); 10436 } 10437 10438 /* 10439 * We shouldn't come to this code block again for this 10440 * particular fragment. 10441 */ 10442 pkt_boundary_checked = B_TRUE; 10443 } 10444 10445 /* New stuff at or beyond tail? */ 10446 offset = IP_REASS_END(ipf->ipf_tail_mp); 10447 if (start >= offset) { 10448 if (ipf->ipf_last_frag_seen) { 10449 /* current fragment is beyond last fragment */ 10450 return (IP_REASS_FAILED); 10451 } 10452 /* Link it on end. */ 10453 ipf->ipf_tail_mp->b_cont = mp; 10454 ipf->ipf_tail_mp = mp; 10455 if (more) { 10456 if (start != offset) 10457 ipf->ipf_hole_cnt++; 10458 } else if (start == offset && next_mp == NULL) 10459 ipf->ipf_hole_cnt--; 10460 continue; 10461 } 10462 mp1 = ipf->ipf_mp->b_cont; 10463 offset = IP_REASS_START(mp1); 10464 /* New stuff at the front? */ 10465 if (start < offset) { 10466 if (start == 0) { 10467 if (end >= offset) { 10468 /* Nailed the hole at the begining. */ 10469 ipf->ipf_hole_cnt--; 10470 } 10471 } else if (end < offset) { 10472 /* 10473 * A hole, stuff, and a hole where there used 10474 * to be just a hole. 10475 */ 10476 ipf->ipf_hole_cnt++; 10477 } 10478 mp->b_cont = mp1; 10479 /* Check for overlap. */ 10480 while (end > offset) { 10481 if (end < IP_REASS_END(mp1)) { 10482 mp->b_wptr -= end - offset; 10483 IP_REASS_SET_END(mp, offset); 10484 if (ill->ill_isv6) { 10485 BUMP_MIB(ill->ill_ip6_mib, 10486 ipv6ReasmPartDups); 10487 } else { 10488 BUMP_MIB(&ip_mib, 10489 ipReasmPartDups); 10490 } 10491 break; 10492 } 10493 /* Did we cover another hole? */ 10494 if ((mp1->b_cont && 10495 IP_REASS_END(mp1) != 10496 IP_REASS_START(mp1->b_cont) && 10497 end >= IP_REASS_START(mp1->b_cont)) || 10498 (!ipf->ipf_last_frag_seen && !more)) { 10499 ipf->ipf_hole_cnt--; 10500 } 10501 /* Clip out mp1. */ 10502 if ((mp->b_cont = mp1->b_cont) == NULL) { 10503 /* 10504 * After clipping out mp1, this guy 10505 * is now hanging off the end. 10506 */ 10507 ipf->ipf_tail_mp = mp; 10508 } 10509 IP_REASS_SET_START(mp1, 0); 10510 IP_REASS_SET_END(mp1, 0); 10511 /* Subtract byte count */ 10512 ipf->ipf_count -= mp1->b_datap->db_lim - 10513 mp1->b_datap->db_base; 10514 freeb(mp1); 10515 if (ill->ill_isv6) { 10516 BUMP_MIB(ill->ill_ip6_mib, 10517 ipv6ReasmPartDups); 10518 } else { 10519 BUMP_MIB(&ip_mib, ipReasmPartDups); 10520 } 10521 mp1 = mp->b_cont; 10522 if (!mp1) 10523 break; 10524 offset = IP_REASS_START(mp1); 10525 } 10526 ipf->ipf_mp->b_cont = mp; 10527 continue; 10528 } 10529 /* 10530 * The new piece starts somewhere between the start of the head 10531 * and before the end of the tail. 10532 */ 10533 for (; mp1; mp1 = mp1->b_cont) { 10534 offset = IP_REASS_END(mp1); 10535 if (start < offset) { 10536 if (end <= offset) { 10537 /* Nothing new. */ 10538 IP_REASS_SET_START(mp, 0); 10539 IP_REASS_SET_END(mp, 0); 10540 /* Subtract byte count */ 10541 ipf->ipf_count -= mp->b_datap->db_lim - 10542 mp->b_datap->db_base; 10543 if (incr_dups) { 10544 ipf->ipf_num_dups++; 10545 incr_dups = B_FALSE; 10546 } 10547 freeb(mp); 10548 if (ill->ill_isv6) { 10549 BUMP_MIB(ill->ill_ip6_mib, 10550 ipv6ReasmDuplicates); 10551 } else { 10552 BUMP_MIB(&ip_mib, 10553 ipReasmDuplicates); 10554 } 10555 break; 10556 } 10557 /* 10558 * Trim redundant stuff off beginning of new 10559 * piece. 10560 */ 10561 IP_REASS_SET_START(mp, offset); 10562 mp->b_rptr += offset - start; 10563 if (ill->ill_isv6) { 10564 BUMP_MIB(ill->ill_ip6_mib, 10565 ipv6ReasmPartDups); 10566 } else { 10567 BUMP_MIB(&ip_mib, ipReasmPartDups); 10568 } 10569 start = offset; 10570 if (!mp1->b_cont) { 10571 /* 10572 * After trimming, this guy is now 10573 * hanging off the end. 10574 */ 10575 mp1->b_cont = mp; 10576 ipf->ipf_tail_mp = mp; 10577 if (!more) { 10578 ipf->ipf_hole_cnt--; 10579 } 10580 break; 10581 } 10582 } 10583 if (start >= IP_REASS_START(mp1->b_cont)) 10584 continue; 10585 /* Fill a hole */ 10586 if (start > offset) 10587 ipf->ipf_hole_cnt++; 10588 mp->b_cont = mp1->b_cont; 10589 mp1->b_cont = mp; 10590 mp1 = mp->b_cont; 10591 offset = IP_REASS_START(mp1); 10592 if (end >= offset) { 10593 ipf->ipf_hole_cnt--; 10594 /* Check for overlap. */ 10595 while (end > offset) { 10596 if (end < IP_REASS_END(mp1)) { 10597 mp->b_wptr -= end - offset; 10598 IP_REASS_SET_END(mp, offset); 10599 /* 10600 * TODO we might bump 10601 * this up twice if there is 10602 * overlap at both ends. 10603 */ 10604 if (ill->ill_isv6) { 10605 BUMP_MIB( 10606 ill->ill_ip6_mib, 10607 ipv6ReasmPartDups); 10608 } else { 10609 BUMP_MIB(&ip_mib, 10610 ipReasmPartDups); 10611 } 10612 break; 10613 } 10614 /* Did we cover another hole? */ 10615 if ((mp1->b_cont && 10616 IP_REASS_END(mp1) 10617 != IP_REASS_START(mp1->b_cont) && 10618 end >= 10619 IP_REASS_START(mp1->b_cont)) || 10620 (!ipf->ipf_last_frag_seen && 10621 !more)) { 10622 ipf->ipf_hole_cnt--; 10623 } 10624 /* Clip out mp1. */ 10625 if ((mp->b_cont = mp1->b_cont) == 10626 NULL) { 10627 /* 10628 * After clipping out mp1, 10629 * this guy is now hanging 10630 * off the end. 10631 */ 10632 ipf->ipf_tail_mp = mp; 10633 } 10634 IP_REASS_SET_START(mp1, 0); 10635 IP_REASS_SET_END(mp1, 0); 10636 /* Subtract byte count */ 10637 ipf->ipf_count -= 10638 mp1->b_datap->db_lim - 10639 mp1->b_datap->db_base; 10640 freeb(mp1); 10641 if (ill->ill_isv6) { 10642 BUMP_MIB(ill->ill_ip6_mib, 10643 ipv6ReasmPartDups); 10644 } else { 10645 BUMP_MIB(&ip_mib, 10646 ipReasmPartDups); 10647 } 10648 mp1 = mp->b_cont; 10649 if (!mp1) 10650 break; 10651 offset = IP_REASS_START(mp1); 10652 } 10653 } 10654 break; 10655 } 10656 } while (start = end, mp = next_mp); 10657 10658 /* Fragment just processed could be the last one. Remember this fact */ 10659 if (!more) 10660 ipf->ipf_last_frag_seen = B_TRUE; 10661 10662 /* Still got holes? */ 10663 if (ipf->ipf_hole_cnt) 10664 return (IP_REASS_PARTIAL); 10665 /* Clean up overloaded fields to avoid upstream disasters. */ 10666 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 10667 IP_REASS_SET_START(mp1, 0); 10668 IP_REASS_SET_END(mp1, 0); 10669 } 10670 return (IP_REASS_COMPLETE); 10671 } 10672 10673 /* 10674 * ipsec processing for the fast path, used for input UDP Packets 10675 */ 10676 static boolean_t 10677 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 10678 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present) 10679 { 10680 uint32_t ill_index; 10681 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 10682 10683 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 10684 /* The ill_index of the incoming ILL */ 10685 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 10686 10687 /* pass packet up to the transport */ 10688 if (CONN_INBOUND_POLICY_PRESENT(connp) || mctl_present) { 10689 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 10690 NULL, mctl_present); 10691 if (*first_mpp == NULL) { 10692 return (B_FALSE); 10693 } 10694 } 10695 10696 /* Initiate IPPF processing for fastpath UDP */ 10697 if (IPP_ENABLED(IPP_LOCAL_IN)) { 10698 ip_process(IPP_LOCAL_IN, mpp, ill_index); 10699 if (*mpp == NULL) { 10700 ip2dbg(("ip_input_ipsec_process: UDP pkt " 10701 "deferred/dropped during IPPF processing\n")); 10702 return (B_FALSE); 10703 } 10704 } 10705 /* 10706 * We make the checks as below since we are in the fast path 10707 * and want to minimize the number of checks if the IP_RECVIF and/or 10708 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 10709 */ 10710 if (connp->conn_recvif || connp->conn_recvslla || 10711 connp->conn_ipv6_recvpktinfo) { 10712 if (connp->conn_recvif || 10713 connp->conn_ipv6_recvpktinfo) { 10714 in_flags = IPF_RECVIF; 10715 } 10716 if (connp->conn_recvslla) { 10717 in_flags |= IPF_RECVSLLA; 10718 } 10719 /* 10720 * since in_flags are being set ill will be 10721 * referenced in ip_add_info, so it better not 10722 * be NULL. 10723 */ 10724 /* 10725 * the actual data will be contained in b_cont 10726 * upon successful return of the following call. 10727 * If the call fails then the original mblk is 10728 * returned. 10729 */ 10730 *mpp = ip_add_info(*mpp, ill, in_flags); 10731 } 10732 10733 return (B_TRUE); 10734 } 10735 10736 /* 10737 * Do fragmentation reassembly. 10738 * returns B_TRUE if successful else B_FALSE. 10739 * frees mp on failure. 10740 */ 10741 static boolean_t 10742 ip_rput_fragment(queue_t *q, mblk_t **mpp, ipha_t *ipha) 10743 { 10744 uint32_t frag_offset_flags; 10745 ill_t *ill = (ill_t *)q->q_ptr; 10746 mblk_t *mp = *mpp; 10747 mblk_t *t_mp; 10748 ipaddr_t dst; 10749 10750 /* 10751 * Drop the fragmented as early as possible, if 10752 * we don't have resource(s) to re-assemble. 10753 */ 10754 10755 if (ip_reass_queue_bytes == 0) { 10756 freemsg(mp); 10757 return (B_FALSE); 10758 } 10759 10760 dst = ipha->ipha_dst; 10761 10762 /* Clear hardware checksumming flag if set */ 10763 mp->b_datap->db_struioun.cksum.flags = 0; 10764 10765 /* Check for fragmentation offset. */ 10766 frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 10767 (IPH_MF | IPH_OFFSET); 10768 if (frag_offset_flags) { 10769 ipf_t *ipf; 10770 ipf_t **ipfp; 10771 ipfb_t *ipfb; 10772 uint16_t ident; 10773 uint32_t offset; 10774 ipaddr_t src; 10775 uint_t hdr_length; 10776 uint32_t end; 10777 uint8_t proto; 10778 mblk_t *mp1; 10779 mblk_t *tail_mp; 10780 size_t count; 10781 size_t msg_len; 10782 uint8_t ecn_info = 0; 10783 uint32_t packet_size; 10784 boolean_t pruned = B_FALSE; 10785 10786 ident = ipha->ipha_ident; 10787 offset = (frag_offset_flags << 3) & 0xFFFF; 10788 src = ipha->ipha_src; 10789 hdr_length = IPH_HDR_LENGTH(ipha); 10790 end = ntohs(ipha->ipha_length) - hdr_length; 10791 10792 /* 10793 * if end == 0 then we have a packet with no data, so just 10794 * free it. 10795 */ 10796 if (end == 0) { 10797 freemsg(mp); 10798 return (B_FALSE); 10799 } 10800 proto = ipha->ipha_protocol; 10801 10802 /* 10803 * Fragmentation reassembly. Each ILL has a hash table for 10804 * queuing packets undergoing reassembly for all IPIFs 10805 * associated with the ILL. The hash is based on the packet 10806 * IP ident field. The ILL frag hash table was allocated 10807 * as a timer block at the time the ILL was created. Whenever 10808 * there is anything on the reassembly queue, the timer will 10809 * be running. 10810 */ 10811 ASSERT(ill != NULL); 10812 10813 /* Record the ECN field info. */ 10814 ecn_info = (ipha->ipha_type_of_service & 0x3); 10815 if (offset != 0) { 10816 /* 10817 * If this isn't the first piece, strip the header, and 10818 * add the offset to the end value. 10819 */ 10820 mp->b_rptr += hdr_length; 10821 end += offset; 10822 } 10823 10824 msg_len = mp->b_datap->db_lim - mp->b_datap->db_base; 10825 tail_mp = mp; 10826 while (tail_mp->b_cont != NULL) { 10827 tail_mp = tail_mp->b_cont; 10828 msg_len += tail_mp->b_datap->db_lim - 10829 tail_mp->b_datap->db_base; 10830 } 10831 10832 /* 10833 * If the reassembly list for this ILL will get too big 10834 * prune it. 10835 */ 10836 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 10837 ip_reass_queue_bytes) { 10838 ill_frag_prune(ill, 10839 (ip_reass_queue_bytes < msg_len) ? 0 : 10840 (ip_reass_queue_bytes - msg_len)); 10841 pruned = B_TRUE; 10842 } 10843 10844 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 10845 mutex_enter(&ipfb->ipfb_lock); 10846 10847 ipfp = &ipfb->ipfb_ipf; 10848 /* Try to find an existing fragment queue for this packet. */ 10849 for (;;) { 10850 ipf = ipfp[0]; 10851 if (ipf != NULL) { 10852 /* 10853 * It has to match on ident and src/dst address. 10854 */ 10855 if (ipf->ipf_ident == ident && 10856 ipf->ipf_src == src && 10857 ipf->ipf_dst == dst && 10858 ipf->ipf_protocol == proto) { 10859 /* 10860 * If we have received too many 10861 * duplicate fragments for this packet 10862 * free it. 10863 */ 10864 if (ipf->ipf_num_dups > 10865 ip_max_frag_dups) { 10866 ill_frag_free_pkts(ill, ipfb, 10867 ipf, 1); 10868 freemsg(mp); 10869 mutex_exit(&ipfb->ipfb_lock); 10870 return (B_FALSE); 10871 } 10872 /* Found it. */ 10873 break; 10874 } 10875 ipfp = &ipf->ipf_hash_next; 10876 continue; 10877 } 10878 10879 /* 10880 * If we pruned the list, do we want to store this new 10881 * fragment?. We apply an optimization here based on the 10882 * fact that most fragments will be received in order. 10883 * So if the offset of this incoming fragment is zero, 10884 * it is the first fragment of a new packet. We will 10885 * keep it. Otherwise drop the fragment, as we have 10886 * probably pruned the packet already (since the 10887 * packet cannot be found). 10888 */ 10889 if (pruned && offset != 0) { 10890 mutex_exit(&ipfb->ipfb_lock); 10891 freemsg(mp); 10892 return (B_FALSE); 10893 } 10894 10895 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS) { 10896 /* 10897 * Too many fragmented packets in this hash 10898 * bucket. Free the oldest. 10899 */ 10900 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 10901 1); 10902 } 10903 10904 /* New guy. Allocate a frag message. */ 10905 mp1 = allocb(sizeof (*ipf), BPRI_MED); 10906 if (mp1 == NULL) { 10907 BUMP_MIB(&ip_mib, ipInDiscards); 10908 freemsg(mp); 10909 reass_done: 10910 mutex_exit(&ipfb->ipfb_lock); 10911 return (B_FALSE); 10912 } 10913 10914 10915 BUMP_MIB(&ip_mib, ipReasmReqds); 10916 mp1->b_cont = mp; 10917 10918 /* Initialize the fragment header. */ 10919 ipf = (ipf_t *)mp1->b_rptr; 10920 ipf->ipf_mp = mp1; 10921 ipf->ipf_ptphn = ipfp; 10922 ipfp[0] = ipf; 10923 ipf->ipf_hash_next = NULL; 10924 ipf->ipf_ident = ident; 10925 ipf->ipf_protocol = proto; 10926 ipf->ipf_src = src; 10927 ipf->ipf_dst = dst; 10928 ipf->ipf_nf_hdr_len = 0; 10929 /* Record reassembly start time. */ 10930 ipf->ipf_timestamp = gethrestime_sec(); 10931 /* Record ipf generation and account for frag header */ 10932 ipf->ipf_gen = ill->ill_ipf_gen++; 10933 ipf->ipf_count = mp1->b_datap->db_lim - 10934 mp1->b_datap->db_base; 10935 ipf->ipf_last_frag_seen = B_FALSE; 10936 ipf->ipf_ecn = ecn_info; 10937 ipf->ipf_num_dups = 0; 10938 ipfb->ipfb_frag_pkts++; 10939 10940 /* 10941 * We handle reassembly two ways. In the easy case, 10942 * where all the fragments show up in order, we do 10943 * minimal bookkeeping, and just clip new pieces on 10944 * the end. If we ever see a hole, then we go off 10945 * to ip_reassemble which has to mark the pieces and 10946 * keep track of the number of holes, etc. Obviously, 10947 * the point of having both mechanisms is so we can 10948 * handle the easy case as efficiently as possible. 10949 */ 10950 if (offset == 0) { 10951 /* Easy case, in-order reassembly so far. */ 10952 ipf->ipf_count += msg_len; 10953 ipf->ipf_tail_mp = tail_mp; 10954 /* 10955 * Keep track of next expected offset in 10956 * ipf_end. 10957 */ 10958 ipf->ipf_end = end; 10959 ipf->ipf_nf_hdr_len = hdr_length; 10960 } else { 10961 /* Hard case, hole at the beginning. */ 10962 ipf->ipf_tail_mp = NULL; 10963 /* 10964 * ipf_end == 0 means that we have given up 10965 * on easy reassembly. 10966 */ 10967 ipf->ipf_end = 0; 10968 /* 10969 * ipf_hole_cnt is set by ip_reassemble. 10970 * ipf_count is updated by ip_reassemble. 10971 * No need to check for return value here 10972 * as we don't expect reassembly to complete 10973 * or fail for the first fragment itself. 10974 */ 10975 (void) ip_reassemble(mp, ipf, 10976 (frag_offset_flags & IPH_OFFSET) << 3, 10977 (frag_offset_flags & IPH_MF), ill, msg_len); 10978 } 10979 /* Update per ipfb and ill byte counts */ 10980 ipfb->ipfb_count += ipf->ipf_count; 10981 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 10982 ill->ill_frag_count += ipf->ipf_count; 10983 ASSERT(ill->ill_frag_count > 0); /* Wraparound */ 10984 /* If the frag timer wasn't already going, start it. */ 10985 mutex_enter(&ill->ill_lock); 10986 ill_frag_timer_start(ill); 10987 mutex_exit(&ill->ill_lock); 10988 goto reass_done; 10989 } 10990 10991 /* 10992 * We have a new piece of a datagram which is already being 10993 * reassembled. Update the ECN info if all IP fragments 10994 * are ECN capable. If there is one which is not, clear 10995 * all the info. If there is at least one which has CE 10996 * code point, IP needs to report that up to transport. 10997 */ 10998 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 10999 if (ecn_info == IPH_ECN_CE) 11000 ipf->ipf_ecn = IPH_ECN_CE; 11001 } else { 11002 ipf->ipf_ecn = IPH_ECN_NECT; 11003 } 11004 if (offset && ipf->ipf_end == offset) { 11005 /* The new fragment fits at the end */ 11006 ipf->ipf_tail_mp->b_cont = mp; 11007 /* Update the byte count */ 11008 ipf->ipf_count += msg_len; 11009 /* Update per ipfb and ill byte counts */ 11010 ipfb->ipfb_count += msg_len; 11011 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 11012 ill->ill_frag_count += msg_len; 11013 ASSERT(ill->ill_frag_count > 0); /* Wraparound */ 11014 if (frag_offset_flags & IPH_MF) { 11015 /* More to come. */ 11016 ipf->ipf_end = end; 11017 ipf->ipf_tail_mp = tail_mp; 11018 goto reass_done; 11019 } 11020 } else { 11021 /* Go do the hard cases. */ 11022 int ret; 11023 11024 if (offset == 0) 11025 ipf->ipf_nf_hdr_len = hdr_length; 11026 11027 /* Save current byte count */ 11028 count = ipf->ipf_count; 11029 ret = ip_reassemble(mp, ipf, 11030 (frag_offset_flags & IPH_OFFSET) << 3, 11031 (frag_offset_flags & IPH_MF), ill, msg_len); 11032 /* Count of bytes added and subtracted (freeb()ed) */ 11033 count = ipf->ipf_count - count; 11034 if (count) { 11035 /* Update per ipfb and ill byte counts */ 11036 ipfb->ipfb_count += count; 11037 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 11038 ill->ill_frag_count += count; 11039 ASSERT(ill->ill_frag_count > 0); 11040 } 11041 if (ret == IP_REASS_PARTIAL) { 11042 goto reass_done; 11043 } else if (ret == IP_REASS_FAILED) { 11044 /* Reassembly failed. Free up all resources */ 11045 ill_frag_free_pkts(ill, ipfb, ipf, 1); 11046 for (t_mp = mp; t_mp != NULL; 11047 t_mp = t_mp->b_cont) { 11048 IP_REASS_SET_START(t_mp, 0); 11049 IP_REASS_SET_END(t_mp, 0); 11050 } 11051 freemsg(mp); 11052 goto reass_done; 11053 } 11054 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 11055 } 11056 /* 11057 * We have completed reassembly. Unhook the frag header from 11058 * the reassembly list. 11059 * 11060 * Before we free the frag header, record the ECN info 11061 * to report back to the transport. 11062 */ 11063 ecn_info = ipf->ipf_ecn; 11064 BUMP_MIB(&ip_mib, ipReasmOKs); 11065 ipfp = ipf->ipf_ptphn; 11066 mp1 = ipf->ipf_mp; 11067 count = ipf->ipf_count; 11068 ipf = ipf->ipf_hash_next; 11069 if (ipf) 11070 ipf->ipf_ptphn = ipfp; 11071 ipfp[0] = ipf; 11072 ill->ill_frag_count -= count; 11073 ASSERT(ipfb->ipfb_count >= count); 11074 ipfb->ipfb_count -= count; 11075 ipfb->ipfb_frag_pkts--; 11076 mutex_exit(&ipfb->ipfb_lock); 11077 /* Ditch the frag header. */ 11078 mp = mp1->b_cont; 11079 11080 freeb(mp1); 11081 11082 /* Restore original IP length in header. */ 11083 packet_size = (uint32_t)msgdsize(mp); 11084 if (packet_size > IP_MAXPACKET) { 11085 freemsg(mp); 11086 BUMP_MIB(&ip_mib, ipInHdrErrors); 11087 return (B_FALSE); 11088 } 11089 11090 if (mp->b_datap->db_ref > 1) { 11091 mblk_t *mp2; 11092 11093 mp2 = copymsg(mp); 11094 freemsg(mp); 11095 if (!mp2) { 11096 BUMP_MIB(&ip_mib, ipInDiscards); 11097 return (B_FALSE); 11098 } 11099 mp = mp2; 11100 } 11101 ipha = (ipha_t *)mp->b_rptr; 11102 11103 ipha->ipha_length = htons((uint16_t)packet_size); 11104 /* We're now complete, zip the frag state */ 11105 ipha->ipha_fragment_offset_and_flags = 0; 11106 /* Record the ECN info. */ 11107 ipha->ipha_type_of_service &= 0xFC; 11108 ipha->ipha_type_of_service |= ecn_info; 11109 *mpp = mp; 11110 11111 } 11112 return (B_TRUE); 11113 } 11114 11115 /* 11116 * Perform ip header check sum update local options. 11117 * return B_TRUE if all is well, else return B_FALSE and release 11118 * the mp. caller is responsible for decrementing ire ref cnt. 11119 */ 11120 static boolean_t 11121 ip_options_cksum(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire) 11122 { 11123 mblk_t *first_mp; 11124 boolean_t mctl_present; 11125 uint16_t sum; 11126 11127 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 11128 /* 11129 * Don't do the checksum if it has gone through AH/ESP 11130 * processing. 11131 */ 11132 if (!mctl_present) { 11133 sum = ip_csum_hdr(ipha); 11134 if (sum != 0) { 11135 BUMP_MIB(&ip_mib, ipInCksumErrs); 11136 freemsg(first_mp); 11137 return (B_FALSE); 11138 } 11139 } 11140 11141 if (!ip_rput_local_options(q, mp, ipha, ire)) { 11142 if (mctl_present) 11143 freeb(first_mp); 11144 return (B_FALSE); 11145 } 11146 11147 return (B_TRUE); 11148 } 11149 11150 /* 11151 * All udp packet are delivered to the local host via this routine. 11152 */ 11153 void 11154 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 11155 ill_t *recv_ill) 11156 { 11157 uint32_t sum; 11158 uint32_t u1; 11159 uint32_t u2; 11160 boolean_t mctl_present; 11161 conn_t *connp; 11162 mblk_t *first_mp; 11163 mblk_t *mp1; 11164 dblk_t *dp; 11165 uint16_t *up; 11166 ill_t *ill = (ill_t *)q->q_ptr; 11167 uint32_t ports; 11168 boolean_t cksum_computed = B_FALSE; 11169 11170 #define rptr ((uchar_t *)ipha) 11171 11172 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 11173 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 11174 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 11175 11176 /* 11177 * FAST PATH for udp packets 11178 */ 11179 11180 /* u1 is # words of IP options */ 11181 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 11182 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 11183 11184 /* IP options present */ 11185 if (u1) 11186 goto ipoptions; 11187 11188 #define IS_IPHDR_HWCKSUM(mctl_present, mp, ill) \ 11189 ((!mctl_present) && (mp->b_datap->db_struioun.cksum.flags & \ 11190 HCK_IPV4_HDRCKSUM) && (ill->ill_capabilities & \ 11191 ILL_CAPAB_HCKSUM) && dohwcksum) 11192 11193 /* Check the IP header checksum. */ 11194 if (IS_IPHDR_HWCKSUM(mctl_present, mp, ill)) { 11195 /* Clear the IP header h/w cksum flag */ 11196 mp->b_datap->db_struioun.cksum.flags &= 11197 ~HCK_IPV4_HDRCKSUM; 11198 } else { 11199 #define uph ((uint16_t *)ipha) 11200 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 11201 uph[6] + uph[7] + uph[8] + uph[9]; 11202 #undef uph 11203 /* finish doing IP checksum */ 11204 sum = (sum & 0xFFFF) + (sum >> 16); 11205 sum = ~(sum + (sum >> 16)) & 0xFFFF; 11206 /* 11207 * Don't verify header checksum if this packet is coming 11208 * back from AH/ESP as we already did it. 11209 */ 11210 if (!mctl_present && (sum && sum != 0xFFFF)) { 11211 BUMP_MIB(&ip_mib, ipInCksumErrs); 11212 freemsg(first_mp); 11213 return; 11214 } 11215 } 11216 11217 /* 11218 * Count for SNMP of inbound packets for ire. 11219 * if mctl is present this might be a secure packet and 11220 * has already been counted for in ip_proto_input(). 11221 */ 11222 if (!mctl_present) { 11223 UPDATE_IB_PKT_COUNT(ire); 11224 ire->ire_last_used_time = lbolt; 11225 } 11226 11227 /* packet part of fragmented IP packet? */ 11228 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 11229 if (u1 & (IPH_MF | IPH_OFFSET)) { 11230 goto fragmented; 11231 } 11232 11233 /* u1 = IP header length (20 bytes) */ 11234 u1 = IP_SIMPLE_HDR_LENGTH; 11235 11236 /* packet does not contain complete IP & UDP headers */ 11237 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 11238 goto udppullup; 11239 /* up points to UDP header */ 11240 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 11241 #define iphs ((uint16_t *)ipha) 11242 11243 #define IP_CKSUM_RECV(len, u1, u2, mp, mp1, error, dp) { \ 11244 boolean_t doswcksum = B_TRUE; \ 11245 uint_t hcksumflags = 0; \ 11246 \ 11247 hcksumflags = dp->db_struioun.cksum.flags; \ 11248 \ 11249 /* Clear the hardware checksum flags; they have been consumed */\ 11250 dp->db_struioun.cksum.flags = 0; \ 11251 if (hcksumflags && (ill->ill_capabilities & ILL_CAPAB_HCKSUM) &&\ 11252 dohwcksum) { \ 11253 if (hcksumflags & HCK_FULLCKSUM) { \ 11254 /* \ 11255 * Full checksum has been computed by the \ 11256 * hardware and has been attached. \ 11257 */ \ 11258 doswcksum = B_FALSE; \ 11259 if (!(hcksumflags & HCK_FULLCKSUM_OK) && \ 11260 (dp->db_cksum16 != 0xffff)) { \ 11261 ipcsumdbg("full hwcksumerr\n", mp); \ 11262 goto error; \ 11263 } \ 11264 } else if ((hcksumflags & HCK_PARTIALCKSUM) && \ 11265 (((len = (IP_SIMPLE_HDR_LENGTH - dp->db_cksumstart))\ 11266 & 1) == 0)) { \ 11267 uint32_t tot_len = 0; \ 11268 \ 11269 doswcksum = B_FALSE; \ 11270 /* Partial checksum computed */ \ 11271 u1 += dp->db_cksum16; \ 11272 tot_len = mp->b_wptr - mp->b_rptr; \ 11273 if (!mp1) \ 11274 mp1 = mp; \ 11275 else \ 11276 tot_len += mp1->b_wptr - mp1->b_rptr; \ 11277 if (len > 0) { \ 11278 /* \ 11279 * Prepended extraneous data. Adjust \ 11280 * checksum. \ 11281 */ \ 11282 u2 = IP_BCSUM_PARTIAL((uchar_t *)(rptr +\ 11283 dp->db_cksumstart), (int32_t)len, \ 11284 0); \ 11285 } else \ 11286 u2 = 0; \ 11287 if ((len = (dp->db_cksumend - tot_len)) > 0) { \ 11288 /* \ 11289 * Postpended extraneous data. Adjust \ 11290 * checksum. \ 11291 */ \ 11292 uint32_t u3; \ 11293 \ 11294 u3 = IP_BCSUM_PARTIAL(mp1->b_wptr, \ 11295 (int32_t)len, 0); \ 11296 if ((uintptr_t)mp1->b_wptr & 1) \ 11297 /* \ 11298 * Postpended extraneous data \ 11299 * was odd byte aligned, so \ 11300 * swap resulting checksum \ 11301 * bytes. \ 11302 */ \ 11303 u2 += ((u3 << 8) & 0xffff) | \ 11304 (u3 >> 8); \ 11305 else \ 11306 u2 += u3; \ 11307 u2 = (u2 & 0xFFFF) + ((int)(u2) >> 16); \ 11308 } \ 11309 /* \ 11310 * One's complement subtract extraneous checksum\ 11311 */ \ 11312 if (u2 >= u1) \ 11313 u1 = ~(u2 - u1) & 0xFFFF; \ 11314 else \ 11315 u1 -= u2; \ 11316 u1 = (u1 & 0xFFFF) + ((int)u1 >> 16); \ 11317 if (~(u1) & 0xFFFF) { \ 11318 ipcsumdbg("partial hwcksumerr\n", mp); \ 11319 goto error; \ 11320 } \ 11321 } \ 11322 } \ 11323 if (doswcksum) { \ 11324 IP_STAT(ip_in_sw_cksum); \ 11325 if ((IP_CSUM(mp, (int32_t)((uchar_t *)up - \ 11326 (uchar_t *)ipha), u1)) != 0) { \ 11327 ipcsumdbg("swcksumerr\n", mp); \ 11328 goto error; \ 11329 } \ 11330 } \ 11331 } 11332 11333 dp = mp->b_datap; 11334 /* if udp hdr cksum != 0, then need to checksum udp packet */ 11335 if (up[3]) { 11336 cksum_computed = B_TRUE; 11337 /* multiple mblks of udp data? */ 11338 if ((mp1 = mp->b_cont) != NULL) { 11339 /* more than two? */ 11340 if (mp1->b_cont) 11341 goto multipktudp; 11342 } 11343 11344 /* Pseudo-header checksum */ 11345 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 11346 iphs[9] + up[2]; 11347 if (!mctl_present) { 11348 ssize_t len = 0; 11349 11350 IP_CKSUM_RECV(len, u1, u2, mp, mp1, udpcksumerr, dp); 11351 } else { 11352 multipktudp: 11353 IP_STAT(ip_in_sw_cksum); 11354 if ((IP_CSUM(mp, (int32_t)((uchar_t *)up - 11355 (uchar_t *)ipha), u1)) != 0) { 11356 udpcksumerr: 11357 ip1dbg(("ip_udp_input: bad udp checksum\n")); 11358 BUMP_MIB(&ip_mib, udpInCksumErrs); 11359 freemsg(first_mp); 11360 return; 11361 } 11362 } 11363 } 11364 11365 /* broadcast IP packet? */ 11366 if (ire->ire_type == IRE_BROADCAST) 11367 goto udpslowpath; 11368 11369 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 11370 ire->ire_zoneid)) != NULL) { 11371 ASSERT(connp->conn_upq != NULL); 11372 IP_STAT(ip_udp_fast_path); 11373 11374 if (!canputnext(connp->conn_upq)) { 11375 freemsg(mp); 11376 BUMP_MIB(&ip_mib, udpInOverflows); 11377 } else { 11378 if (!mctl_present) { 11379 BUMP_MIB(&ip_mib, ipInDelivers); 11380 } 11381 /* 11382 * mp and first_mp can change. 11383 */ 11384 if (ip_udp_check(q, connp, recv_ill, 11385 ipha, &mp, &first_mp, mctl_present)) { 11386 putnext(connp->conn_upq, mp); 11387 } 11388 } 11389 /* 11390 * freeb() cannot deal with null mblk being passed 11391 * in and first_mp can be set to null in the call 11392 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 11393 */ 11394 if (mctl_present && first_mp != NULL) { 11395 freeb(first_mp); 11396 } 11397 CONN_DEC_REF(connp); 11398 return; 11399 } 11400 11401 /* 11402 * if we got here we know the packet is not fragmented and 11403 * has no options. The classifier could not find a conn_t and 11404 * most likely its an icmp packet so send it through slow path. 11405 */ 11406 11407 goto udpslowpath; 11408 11409 ipoptions: 11410 if (!ip_options_cksum(q, mp, ipha, ire)) { 11411 goto slow_done; 11412 } 11413 11414 UPDATE_IB_PKT_COUNT(ire); 11415 ire->ire_last_used_time = lbolt; 11416 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 11417 if (u1 & (IPH_MF | IPH_OFFSET)) { 11418 fragmented: 11419 if (!ip_rput_fragment(q, &mp, ipha)) { 11420 goto slow_done; 11421 } 11422 /* 11423 * Make sure that first_mp points back to mp as 11424 * the mp we came in with could have changed in 11425 * ip_rput_fragment(). 11426 */ 11427 ASSERT(!mctl_present); 11428 ipha = (ipha_t *)mp->b_rptr; 11429 first_mp = mp; 11430 } 11431 11432 /* Now we have a complete datagram, destined for this machine. */ 11433 u1 = IPH_HDR_LENGTH(ipha); 11434 /* Pull up the UDP header, if necessary. */ 11435 if ((mp->b_wptr - mp->b_rptr) < (u1 + UDPH_SIZE)) { 11436 udppullup: 11437 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 11438 BUMP_MIB(&ip_mib, ipInDiscards); 11439 freemsg(first_mp); 11440 goto slow_done; 11441 } 11442 ipha = (ipha_t *)mp->b_rptr; 11443 } 11444 /* 11445 * Validate the checksum. This code is a bit funny looking 11446 * but may help out the compiler in this crucial spot. 11447 */ 11448 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 11449 if (!cksum_computed && up[3]) { 11450 IP_STAT(ip_in_sw_cksum); 11451 sum = IP_CSUM(mp, (int32_t)((uchar_t *)up - (uchar_t *)ipha), 11452 IP_UDP_CSUM_COMP + iphs[6] + 11453 iphs[7] + iphs[8] + 11454 iphs[9] + up[2]); 11455 if (sum != 0) { 11456 ip1dbg(("ip_udp_input: bad udp checksum\n")); 11457 BUMP_MIB(&ip_mib, udpInCksumErrs); 11458 freemsg(first_mp); 11459 goto slow_done; 11460 } 11461 } 11462 udpslowpath: 11463 11464 ports = *(uint32_t *)up; 11465 /* Clear hardware checksum flag */ 11466 mp->b_datap->db_struioun.cksum.flags = 0; 11467 ip_fanout_udp(q, first_mp, ill, ipha, ports, 11468 (ire->ire_type == IRE_BROADCAST), 11469 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IP6INFO, 11470 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 11471 11472 slow_done: 11473 IP_STAT(ip_udp_slow_path); 11474 return; 11475 11476 #undef rptr 11477 } 11478 11479 /* ARGSUSED */ 11480 static mblk_t * 11481 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 11482 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 11483 ill_rx_ring_t *ill_ring) 11484 { 11485 conn_t *connp; 11486 uint32_t sum; 11487 uint32_t u1; 11488 uint32_t u2; 11489 uint16_t *up; 11490 int offset; 11491 ssize_t len; 11492 mblk_t *mp1; 11493 dblk_t *dp; 11494 boolean_t syn_present = B_FALSE; 11495 tcph_t *tcph; 11496 uint_t ip_hdr_len; 11497 ill_t *ill = (ill_t *)q->q_ptr; 11498 zoneid_t zoneid = ire->ire_zoneid; 11499 11500 #define rptr ((uchar_t *)ipha) 11501 11502 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 11503 11504 /* 11505 * FAST PATH for tcp packets 11506 */ 11507 11508 /* u1 is # words of IP options */ 11509 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 11510 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 11511 11512 /* IP options present */ 11513 if (u1) { 11514 goto ipoptions; 11515 } else { 11516 /* Check the IP header checksum. */ 11517 if (IS_IPHDR_HWCKSUM(mctl_present, mp, ill)) { 11518 /* Clear the IP header h/w cksum flag */ 11519 mp->b_datap->db_struioun.cksum.flags &= 11520 ~HCK_IPV4_HDRCKSUM; 11521 } else { 11522 #define uph ((uint16_t *)ipha) 11523 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 11524 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 11525 #undef uph 11526 /* finish doing IP checksum */ 11527 sum = (sum & 0xFFFF) + (sum >> 16); 11528 sum = ~(sum + (sum >> 16)) & 0xFFFF; 11529 /* 11530 * Don't verify header checksum if this packet 11531 * is coming back from AH/ESP as we already did it. 11532 */ 11533 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 11534 BUMP_MIB(&ip_mib, ipInCksumErrs); 11535 goto error; 11536 } 11537 } 11538 } 11539 11540 if (!mctl_present) { 11541 UPDATE_IB_PKT_COUNT(ire); 11542 ire->ire_last_used_time = lbolt; 11543 } 11544 11545 /* packet part of fragmented IP packet? */ 11546 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 11547 if (u1 & (IPH_MF | IPH_OFFSET)) { 11548 goto fragmented; 11549 } 11550 11551 /* u1 = IP header length (20 bytes) */ 11552 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 11553 11554 /* does packet contain IP+TCP headers? */ 11555 len = mp->b_wptr - rptr; 11556 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 11557 IP_STAT(ip_tcppullup); 11558 goto tcppullup; 11559 } 11560 11561 /* TCP options present? */ 11562 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 11563 11564 /* 11565 * If options need to be pulled up, then goto tcpoptions. 11566 * otherwise we are still in the fast path 11567 */ 11568 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 11569 IP_STAT(ip_tcpoptions); 11570 goto tcpoptions; 11571 } 11572 11573 /* multiple mblks of tcp data? */ 11574 if ((mp1 = mp->b_cont) != NULL) { 11575 /* more then two? */ 11576 if (mp1->b_cont != NULL) { 11577 IP_STAT(ip_multipkttcp); 11578 goto multipkttcp; 11579 } 11580 len += mp1->b_wptr - mp1->b_rptr; 11581 } 11582 11583 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 11584 11585 /* part of pseudo checksum */ 11586 11587 /* TCP datagram length */ 11588 u1 = len - IP_SIMPLE_HDR_LENGTH; 11589 11590 #define iphs ((uint16_t *)ipha) 11591 11592 #ifdef _BIG_ENDIAN 11593 u1 += IPPROTO_TCP; 11594 #else 11595 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 11596 #endif 11597 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 11598 11599 11600 /* 11601 * If the packet has gone through AH/ESP, do the checksum here 11602 * itself. 11603 * 11604 * If it has not gone through IPSEC processing and not a duped 11605 * mblk, then look for driver checksummed mblk. We validate or 11606 * postpone the checksum to TCP for single copy checksum. 11607 * 11608 * Note that we only honor HW cksum in the fastpath. 11609 */ 11610 dp = mp->b_datap; 11611 if (!mctl_present) { 11612 IP_CKSUM_RECV(len, u1, u2, mp, mp1, tcpcksumerr, dp); 11613 } else { 11614 IP_STAT(ip_in_sw_cksum); 11615 if ((IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), 11616 u1)) != 0) { 11617 tcpcksumerr: 11618 BUMP_MIB(&ip_mib, tcpInErrs); 11619 ip1dbg(("ip_tcp_input: bad tcp checksum \n")); 11620 freemsg(first_mp); 11621 goto slow_done; 11622 } 11623 } 11624 11625 try_again: 11626 11627 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, zoneid)) == 11628 NULL) { 11629 /* Send the TH_RST */ 11630 goto no_conn; 11631 } 11632 11633 /* 11634 * TCP FAST PATH for AF_INET socket. 11635 * 11636 * TCP fast path to avoid extra work. An AF_INET socket type 11637 * does not have facility to receive extra information via 11638 * ip_process or ip_add_info. Also, when the connection was 11639 * established, we made a check if this connection is impacted 11640 * by any global IPSec policy or per connection policy (a 11641 * policy that comes in effect later will not apply to this 11642 * connection). Since all this can be determined at the 11643 * connection establishment time, a quick check of flags 11644 * can avoid extra work. 11645 */ 11646 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 11647 !IPP_ENABLED(IPP_LOCAL_IN)) { 11648 ASSERT(first_mp == mp); 11649 SET_SQUEUE(mp, tcp_rput_data, connp); 11650 return (mp); 11651 } 11652 11653 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 11654 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 11655 if (IPCL_IS_TCP(connp)) { 11656 mp->b_datap->db_struioflag |= STRUIO_EAGER; 11657 mp->b_datap->db_cksumstart = 11658 (intptr_t)ip_squeue_get(ill_ring); 11659 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 11660 !CONN_INBOUND_POLICY_PRESENT(connp)) { 11661 SET_SQUEUE(mp, connp->conn_recv, connp); 11662 return (mp); 11663 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 11664 !CONN_INBOUND_POLICY_PRESENT(connp)) { 11665 ip_squeue_enter_unbound++; 11666 SET_SQUEUE(mp, tcp_conn_request_unbound, 11667 connp); 11668 return (mp); 11669 } 11670 syn_present = B_TRUE; 11671 } 11672 11673 } 11674 11675 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 11676 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 11677 11678 /* No need to send this packet to TCP */ 11679 if ((flags & TH_RST) || (flags & TH_URG)) { 11680 CONN_DEC_REF(connp); 11681 freemsg(first_mp); 11682 return (NULL); 11683 } 11684 if (flags & TH_ACK) { 11685 tcp_xmit_listeners_reset(first_mp, ip_hdr_len); 11686 CONN_DEC_REF(connp); 11687 return (NULL); 11688 } 11689 11690 CONN_DEC_REF(connp); 11691 freemsg(first_mp); 11692 return (NULL); 11693 } 11694 11695 if (CONN_INBOUND_POLICY_PRESENT(connp) || mctl_present) { 11696 first_mp = ipsec_check_inbound_policy(first_mp, connp, 11697 ipha, NULL, mctl_present); 11698 if (first_mp == NULL) { 11699 CONN_DEC_REF(connp); 11700 return (NULL); 11701 } 11702 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 11703 ASSERT(syn_present); 11704 if (mctl_present) { 11705 ASSERT(first_mp != mp); 11706 first_mp->b_datap->db_struioflag |= 11707 STRUIO_POLICY; 11708 } else { 11709 ASSERT(first_mp == mp); 11710 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 11711 mp->b_datap->db_struioflag |= STRUIO_POLICY; 11712 } 11713 } else { 11714 /* 11715 * Discard first_mp early since we're dealing with a 11716 * fully-connected conn_t and tcp doesn't do policy in 11717 * this case. 11718 */ 11719 if (mctl_present) { 11720 freeb(first_mp); 11721 mctl_present = B_FALSE; 11722 } 11723 first_mp = mp; 11724 } 11725 } 11726 11727 /* Initiate IPPF processing for fastpath */ 11728 if (IPP_ENABLED(IPP_LOCAL_IN)) { 11729 uint32_t ill_index; 11730 11731 ill_index = recv_ill->ill_phyint->phyint_ifindex; 11732 ip_process(IPP_LOCAL_IN, &mp, ill_index); 11733 if (mp == NULL) { 11734 ip2dbg(("ip_input_ipsec_process: TCP pkt " 11735 "deferred/dropped during IPPF processing\n")); 11736 CONN_DEC_REF(connp); 11737 if (mctl_present) 11738 freeb(first_mp); 11739 return (NULL); 11740 } else if (mctl_present) { 11741 /* 11742 * ip_process might return a new mp. 11743 */ 11744 ASSERT(first_mp != mp); 11745 first_mp->b_cont = mp; 11746 } else { 11747 first_mp = mp; 11748 } 11749 11750 } 11751 11752 if (!syn_present && connp->conn_ipv6_recvpktinfo) { 11753 mp = ip_add_info(mp, recv_ill, flags); 11754 if (mp == NULL) { 11755 CONN_DEC_REF(connp); 11756 if (mctl_present) 11757 freeb(first_mp); 11758 return (NULL); 11759 } else if (mctl_present) { 11760 /* 11761 * ip_add_info might return a new mp. 11762 */ 11763 ASSERT(first_mp != mp); 11764 first_mp->b_cont = mp; 11765 } else { 11766 first_mp = mp; 11767 } 11768 } 11769 11770 if (IPCL_IS_TCP(connp)) { 11771 SET_SQUEUE(first_mp, connp->conn_recv, connp); 11772 return (first_mp); 11773 } else { 11774 putnext(connp->conn_rq, first_mp); 11775 CONN_DEC_REF(connp); 11776 return (NULL); 11777 } 11778 11779 no_conn: 11780 /* Initiate IPPf processing, if needed. */ 11781 if (IPP_ENABLED(IPP_LOCAL_IN)) { 11782 uint32_t ill_index; 11783 ill_index = recv_ill->ill_phyint->phyint_ifindex; 11784 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 11785 if (first_mp == NULL) { 11786 return (NULL); 11787 } 11788 } 11789 BUMP_MIB(&ip_mib, ipInDelivers); 11790 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr)); 11791 return (NULL); 11792 ipoptions: 11793 if (!ip_options_cksum(q, first_mp, ipha, ire)) { 11794 goto slow_done; 11795 } 11796 11797 UPDATE_IB_PKT_COUNT(ire); 11798 ire->ire_last_used_time = lbolt; 11799 11800 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 11801 if (u1 & (IPH_MF | IPH_OFFSET)) { 11802 fragmented: 11803 if (!ip_rput_fragment(q, &mp, ipha)) { 11804 if (mctl_present) 11805 freeb(first_mp); 11806 goto slow_done; 11807 } 11808 /* 11809 * Make sure that first_mp points back to mp as 11810 * the mp we came in with could have changed in 11811 * ip_rput_fragment(). 11812 */ 11813 ASSERT(!mctl_present); 11814 ipha = (ipha_t *)mp->b_rptr; 11815 first_mp = mp; 11816 } 11817 11818 tcp_slow: 11819 /* Now we have a complete datagram, destined for this machine. */ 11820 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 11821 11822 len = mp->b_wptr - mp->b_rptr; 11823 /* Pull up a minimal TCP header, if necessary. */ 11824 if (len < (u1 + 20)) { 11825 tcppullup: 11826 if (!pullupmsg(mp, u1 + 20)) { 11827 BUMP_MIB(&ip_mib, ipInDiscards); 11828 goto error; 11829 } 11830 ipha = (ipha_t *)mp->b_rptr; 11831 len = mp->b_wptr - mp->b_rptr; 11832 } 11833 11834 /* 11835 * Extract the offset field from the TCP header. As usual, we 11836 * try to help the compiler more than the reader. 11837 */ 11838 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 11839 if (offset != 5) { 11840 tcpoptions: 11841 if (offset < 5) { 11842 BUMP_MIB(&ip_mib, ipInDiscards); 11843 goto error; 11844 } 11845 /* 11846 * There must be TCP options. 11847 * Make sure we can grab them. 11848 */ 11849 offset <<= 2; 11850 offset += u1; 11851 if (len < offset) { 11852 if (!pullupmsg(mp, offset)) { 11853 BUMP_MIB(&ip_mib, ipInDiscards); 11854 goto error; 11855 } 11856 ipha = (ipha_t *)mp->b_rptr; 11857 len = mp->b_wptr - rptr; 11858 } 11859 } 11860 11861 /* Get the total packet length in len, including headers. */ 11862 if (mp->b_cont) { 11863 multipkttcp: 11864 len = msgdsize(mp); 11865 } 11866 11867 /* 11868 * Check the TCP checksum by pulling together the pseudo- 11869 * header checksum, and passing it to ip_csum to be added in 11870 * with the TCP datagram. 11871 * 11872 * Since we are not using the hwcksum if available we must 11873 * clear the flag. We may come here via tcppullup or tcpoptions. 11874 * If either of these fails along the way the mblk is freed. 11875 * If this logic ever changes and mblk is reused to say send 11876 * ICMP's back, then this flag may need to be cleared in 11877 * other places as well. 11878 */ 11879 mp->b_datap->db_struioun.cksum.flags = 0; 11880 11881 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 11882 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 11883 #ifdef _BIG_ENDIAN 11884 u1 += IPPROTO_TCP; 11885 #else 11886 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 11887 #endif 11888 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 11889 /* 11890 * Not M_DATA mblk or its a dup, so do the checksum now. 11891 */ 11892 IP_STAT(ip_in_sw_cksum); 11893 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1)) { 11894 BUMP_MIB(&ip_mib, tcpInErrs); 11895 goto error; 11896 } 11897 11898 IP_STAT(ip_tcp_slow_path); 11899 goto try_again; 11900 #undef iphs 11901 #undef rptr 11902 11903 error: 11904 freemsg(first_mp); 11905 slow_done: 11906 return (NULL); 11907 } 11908 11909 /* ARGSUSED */ 11910 static void 11911 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 11912 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 11913 { 11914 conn_t *connp; 11915 uint32_t sum; 11916 uint32_t u1; 11917 ssize_t len; 11918 sctp_hdr_t *sctph; 11919 zoneid_t zoneid = ire->ire_zoneid; 11920 uint32_t pktsum; 11921 uint32_t calcsum; 11922 uint32_t ports; 11923 uint_t ipif_seqid; 11924 in6_addr_t map_src, map_dst; 11925 ill_t *ill = (ill_t *)q->q_ptr; 11926 11927 #define rptr ((uchar_t *)ipha) 11928 11929 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 11930 11931 /* u1 is # words of IP options */ 11932 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 11933 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 11934 11935 /* IP options present */ 11936 if (u1 > 0) { 11937 goto ipoptions; 11938 } else { 11939 /* Check the IP header checksum. */ 11940 if (IS_IPHDR_HWCKSUM(mctl_present, mp, ill)) { 11941 /* 11942 * Since there is no SCTP h/w cksum support yet, just 11943 * clear the flag. 11944 */ 11945 mp->b_datap->db_struioun.cksum.flags = 0; 11946 } else { 11947 #define uph ((uint16_t *)ipha) 11948 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 11949 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 11950 #undef uph 11951 /* finish doing IP checksum */ 11952 sum = (sum & 0xFFFF) + (sum >> 16); 11953 sum = ~(sum + (sum >> 16)) & 0xFFFF; 11954 /* 11955 * Don't verify header checksum if this packet 11956 * is coming back from AH/ESP as we already did it. 11957 */ 11958 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 11959 BUMP_MIB(&ip_mib, ipInCksumErrs); 11960 goto error; 11961 } 11962 } 11963 } 11964 11965 /* 11966 * Don't verify header checksum if this packet is coming 11967 * back from AH/ESP as we already did it. 11968 */ 11969 if (!mctl_present) { 11970 UPDATE_IB_PKT_COUNT(ire); 11971 ire->ire_last_used_time = lbolt; 11972 } 11973 11974 /* packet part of fragmented IP packet? */ 11975 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 11976 if (u1 & (IPH_MF | IPH_OFFSET)) 11977 goto fragmented; 11978 11979 /* u1 = IP header length (20 bytes) */ 11980 u1 = IP_SIMPLE_HDR_LENGTH; 11981 11982 find_sctp_client: 11983 /* Pullup if we don't have the sctp common header. */ 11984 len = MBLKL(mp); 11985 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 11986 if (mp->b_cont == NULL || 11987 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 11988 BUMP_MIB(&ip_mib, ipInDiscards); 11989 goto error; 11990 } 11991 ipha = (ipha_t *)mp->b_rptr; 11992 len = MBLKL(mp); 11993 } 11994 11995 sctph = (sctp_hdr_t *)(rptr + u1); 11996 #ifdef DEBUG 11997 if (!skip_sctp_cksum) { 11998 #endif 11999 pktsum = sctph->sh_chksum; 12000 sctph->sh_chksum = 0; 12001 calcsum = sctp_cksum(mp, u1); 12002 if (calcsum != pktsum) { 12003 BUMP_MIB(&sctp_mib, sctpChecksumError); 12004 goto error; 12005 } 12006 sctph->sh_chksum = pktsum; 12007 #ifdef DEBUG /* skip_sctp_cksum */ 12008 } 12009 #endif 12010 /* get the ports */ 12011 ports = *(uint32_t *)&sctph->sh_sport; 12012 12013 ipif_seqid = ire->ire_ipif->ipif_seqid; 12014 IRE_REFRELE(ire); 12015 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 12016 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 12017 if ((connp = sctp_find_conn(&map_src, &map_dst, ports, ipif_seqid, 12018 zoneid)) == NULL) { 12019 /* Check for raw socket or OOTB handling */ 12020 goto no_conn; 12021 } 12022 12023 /* Found a client; up it goes */ 12024 BUMP_MIB(&ip_mib, ipInDelivers); 12025 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 12026 return; 12027 12028 no_conn: 12029 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 12030 ports, mctl_present, flags, B_TRUE, ipif_seqid, zoneid); 12031 return; 12032 12033 ipoptions: 12034 mp->b_datap->db_struioun.cksum.flags = 0; 12035 if (!ip_options_cksum(q, first_mp, ipha, ire)) 12036 goto slow_done; 12037 12038 UPDATE_IB_PKT_COUNT(ire); 12039 ire->ire_last_used_time = lbolt; 12040 12041 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12042 if (u1 & (IPH_MF | IPH_OFFSET)) { 12043 fragmented: 12044 if (!ip_rput_fragment(q, &mp, ipha)) 12045 goto slow_done; 12046 /* 12047 * Make sure that first_mp points back to mp as 12048 * the mp we came in with could have changed in 12049 * ip_rput_fragment(). 12050 */ 12051 ASSERT(!mctl_present); 12052 ipha = (ipha_t *)mp->b_rptr; 12053 first_mp = mp; 12054 } 12055 12056 /* Now we have a complete datagram, destined for this machine. */ 12057 u1 = IPH_HDR_LENGTH(ipha); 12058 goto find_sctp_client; 12059 #undef iphs 12060 #undef rptr 12061 12062 error: 12063 freemsg(first_mp); 12064 slow_done: 12065 IRE_REFRELE(ire); 12066 } 12067 12068 #define VER_BITS 0xF0 12069 #define VERSION_6 0x60 12070 12071 static boolean_t 12072 ip_rput_multimblk_ipoptions(queue_t *q, mblk_t *mp, ipha_t **iphapp, 12073 ipaddr_t *dstp) 12074 { 12075 uint_t opt_len; 12076 ipha_t *ipha; 12077 ssize_t len; 12078 uint_t pkt_len; 12079 12080 IP_STAT(ip_ipoptions); 12081 ipha = *iphapp; 12082 12083 #define rptr ((uchar_t *)ipha) 12084 /* Assume no IPv6 packets arrive over the IPv4 queue */ 12085 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 12086 BUMP_MIB(&ip_mib, ipInIPv6); 12087 freemsg(mp); 12088 return (B_FALSE); 12089 } 12090 12091 /* multiple mblk or too short */ 12092 pkt_len = ntohs(ipha->ipha_length); 12093 12094 /* Get the number of words of IP options in the IP header. */ 12095 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 12096 if (opt_len) { 12097 /* IP Options present! Validate and process. */ 12098 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 12099 BUMP_MIB(&ip_mib, ipInHdrErrors); 12100 goto done; 12101 } 12102 /* 12103 * Recompute complete header length and make sure we 12104 * have access to all of it. 12105 */ 12106 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 12107 if (len > (mp->b_wptr - rptr)) { 12108 if (len > pkt_len) { 12109 BUMP_MIB(&ip_mib, ipInHdrErrors); 12110 goto done; 12111 } 12112 if (!pullupmsg(mp, len)) { 12113 BUMP_MIB(&ip_mib, ipInDiscards); 12114 goto done; 12115 } 12116 ipha = (ipha_t *)mp->b_rptr; 12117 } 12118 /* 12119 * Go off to ip_rput_options which returns the next hop 12120 * destination address, which may have been affected 12121 * by source routing. 12122 */ 12123 IP_STAT(ip_opt); 12124 if (ip_rput_options(q, mp, ipha, dstp) == -1) { 12125 return (B_FALSE); 12126 } 12127 } 12128 *iphapp = ipha; 12129 return (B_TRUE); 12130 done: 12131 /* clear b_prev - used by ip_mroute_decap */ 12132 mp->b_prev = NULL; 12133 freemsg(mp); 12134 return (B_FALSE); 12135 #undef rptr 12136 } 12137 12138 /* 12139 * Deal with the fact that there is no ire for the destination. 12140 * The incoming ill (in_ill) is passed in to ip_newroute only 12141 * in the case of packets coming from mobile ip forward tunnel. 12142 * It must be null otherwise. 12143 */ 12144 static void 12145 ip_rput_noire(queue_t *q, ill_t *in_ill, mblk_t *mp, int ll_multicast, 12146 ipaddr_t dst) 12147 { 12148 ipha_t *ipha; 12149 ill_t *ill; 12150 12151 ipha = (ipha_t *)mp->b_rptr; 12152 ill = (ill_t *)q->q_ptr; 12153 12154 ASSERT(ill != NULL); 12155 /* 12156 * No IRE for this destination, so it can't be for us. 12157 * Unless we are forwarding, drop the packet. 12158 * We have to let source routed packets through 12159 * since we don't yet know if they are 'ping -l' 12160 * packets i.e. if they will go out over the 12161 * same interface as they came in on. 12162 */ 12163 if (ll_multicast) { 12164 freemsg(mp); 12165 return; 12166 } 12167 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha)) { 12168 BUMP_MIB(&ip_mib, ipForwProhibits); 12169 freemsg(mp); 12170 return; 12171 } 12172 12173 /* Check for Martian addresses */ 12174 if ((in_ill == NULL) && (ip_no_forward(ipha, ill))) { 12175 freemsg(mp); 12176 return; 12177 } 12178 12179 /* Mark this packet as having originated externally */ 12180 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 12181 12182 /* 12183 * Clear the indication that this may have a hardware checksum 12184 * as we are not using it 12185 */ 12186 mp->b_datap->db_struioun.cksum.flags = 0; 12187 12188 /* 12189 * Now hand the packet to ip_newroute. 12190 */ 12191 ip_newroute(q, mp, dst, in_ill, NULL); 12192 } 12193 12194 /* 12195 * check ip header length and align it. 12196 */ 12197 static boolean_t 12198 ip_check_and_align_header(queue_t *q, mblk_t *mp) 12199 { 12200 ssize_t len; 12201 ill_t *ill; 12202 ipha_t *ipha; 12203 12204 len = MBLKL(mp); 12205 12206 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 12207 if (!OK_32PTR(mp->b_rptr)) 12208 IP_STAT(ip_notaligned1); 12209 else 12210 IP_STAT(ip_notaligned2); 12211 /* Guard against bogus device drivers */ 12212 if (len < 0) { 12213 /* clear b_prev - used by ip_mroute_decap */ 12214 mp->b_prev = NULL; 12215 BUMP_MIB(&ip_mib, ipInHdrErrors); 12216 freemsg(mp); 12217 return (B_FALSE); 12218 } 12219 12220 if (ip_rput_pullups++ == 0) { 12221 ill = (ill_t *)q->q_ptr; 12222 ipha = (ipha_t *)mp->b_rptr; 12223 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 12224 "ip_check_and_align_header: %s forced us to " 12225 " pullup pkt, hdr len %ld, hdr addr %p", 12226 ill->ill_name, len, ipha); 12227 } 12228 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 12229 /* clear b_prev - used by ip_mroute_decap */ 12230 mp->b_prev = NULL; 12231 BUMP_MIB(&ip_mib, ipInDiscards); 12232 freemsg(mp); 12233 return (B_FALSE); 12234 } 12235 } 12236 return (B_TRUE); 12237 } 12238 12239 static boolean_t 12240 ip_rput_notforus(queue_t **qp, mblk_t *mp, ire_t *ire, ill_t *ill) 12241 { 12242 ill_group_t *ill_group; 12243 ill_group_t *ire_group; 12244 queue_t *q; 12245 ill_t *ire_ill; 12246 uint_t ill_ifindex; 12247 12248 q = *qp; 12249 /* 12250 * We need to check to make sure the packet came in 12251 * on the queue associated with the destination IRE. 12252 * Note that for multicast packets and broadcast packets sent to 12253 * a broadcast address which is shared between multiple interfaces 12254 * we should not do this since we just got a random broadcast ire. 12255 */ 12256 if (ire->ire_rfq && ire->ire_type != IRE_BROADCAST) { 12257 boolean_t check_multi = B_TRUE; 12258 12259 /* 12260 * This packet came in on an interface other than the 12261 * one associated with the destination address. 12262 * "Gateway" it to the appropriate interface here. 12263 * As long as the ills belong to the same group, 12264 * we don't consider them to arriving on the wrong 12265 * interface. Thus, when the switch is doing inbound 12266 * load spreading, we won't drop packets when we 12267 * are doing strict multihoming checks. Note, the 12268 * same holds true for 'usesrc groups' where the 12269 * destination address may belong to another interface 12270 * to allow multipathing to happen 12271 */ 12272 ill_group = ill->ill_group; 12273 ire_ill = (ill_t *)(ire->ire_rfq)->q_ptr; 12274 ill_ifindex = ill->ill_usesrc_ifindex; 12275 ire_group = ire_ill->ill_group; 12276 12277 /* 12278 * If it's part of the same IPMP group, or if it's a legal 12279 * address on the 'usesrc' interface, then bypass strict 12280 * checks. 12281 */ 12282 if (ill_group != NULL && ill_group == ire_group) { 12283 check_multi = B_FALSE; 12284 } else if (ill_ifindex != 0 && 12285 ill_ifindex == ire_ill->ill_phyint->phyint_ifindex) { 12286 check_multi = B_FALSE; 12287 } 12288 12289 if (check_multi && 12290 ip_strict_dst_multihoming && 12291 ((ill->ill_flags & 12292 ire->ire_ipif->ipif_ill->ill_flags & 12293 ILLF_ROUTER) == 0)) { 12294 /* Drop packet */ 12295 BUMP_MIB(&ip_mib, ipForwProhibits); 12296 freemsg(mp); 12297 ire_refrele(ire); 12298 return (B_TRUE); 12299 } 12300 12301 /* 12302 * Change the queue (for non-virtual destination network 12303 * interfaces) and ip_rput_local will be called with the right 12304 * queue 12305 */ 12306 q = ire->ire_rfq; 12307 } 12308 /* Must be broadcast. We'll take it. */ 12309 *qp = q; 12310 return (B_FALSE); 12311 } 12312 12313 static void 12314 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 12315 ill_t *ill, int ll_multicast) 12316 { 12317 ill_group_t *ill_group; 12318 ill_group_t *ire_group; 12319 queue_t *dev_q; 12320 12321 ASSERT(ire->ire_stq != NULL); 12322 if (ll_multicast != 0) 12323 goto drop_pkt; 12324 12325 if (ip_no_forward(ipha, ill)) 12326 goto drop_pkt; 12327 12328 ill_group = ill->ill_group; 12329 ire_group = ((ill_t *)(ire->ire_rfq)->q_ptr)->ill_group; 12330 /* 12331 * Check if we want to forward this one at this time. 12332 * We allow source routed packets on a host provided that 12333 * they go out the same interface or same interface group 12334 * as they came in on. 12335 * 12336 * XXX To be quicker, we may wish to not chase pointers to 12337 * get the ILLF_ROUTER flag and instead store the 12338 * forwarding policy in the ire. An unfortunate 12339 * side-effect of that would be requiring an ire flush 12340 * whenever the ILLF_ROUTER flag changes. 12341 */ 12342 if (((ill->ill_flags & 12343 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 12344 ILLF_ROUTER) == 0) && 12345 !(ip_source_routed(ipha) && (ire->ire_rfq == q || 12346 (ill_group != NULL && ill_group == ire_group)))) { 12347 BUMP_MIB(&ip_mib, ipForwProhibits); 12348 if (ip_source_routed(ipha)) { 12349 q = WR(q); 12350 /* 12351 * Clear the indication that this may have 12352 * hardware checksum as we are not using it. 12353 */ 12354 mp->b_datap->db_struioun.cksum.flags = 0; 12355 icmp_unreachable(q, mp, 12356 ICMP_SOURCE_ROUTE_FAILED); 12357 ire_refrele(ire); 12358 return; 12359 } 12360 goto drop_pkt; 12361 } 12362 12363 /* Packet is being forwarded. Turning off hwcksum flag. */ 12364 mp->b_datap->db_struioun.cksum.flags = 0; 12365 if (ip_g_send_redirects) { 12366 /* 12367 * Check whether the incoming interface and outgoing 12368 * interface is part of the same group. If so, 12369 * send redirects. 12370 * 12371 * Check the source address to see if it originated 12372 * on the same logical subnet it is going back out on. 12373 * If so, we should be able to send it a redirect. 12374 * Avoid sending a redirect if the destination 12375 * is directly connected (gw_addr == 0), 12376 * or if the packet was source routed out this 12377 * interface. 12378 */ 12379 ipaddr_t src; 12380 mblk_t *mp1; 12381 ire_t *src_ire = NULL; 12382 12383 /* 12384 * Check whether ire_rfq and q are from the same ill 12385 * or if they are not same, they at least belong 12386 * to the same group. If so, send redirects. 12387 */ 12388 if ((ire->ire_rfq == q || 12389 (ill_group != NULL && ill_group == ire_group)) && 12390 (ire->ire_gateway_addr != 0) && 12391 !ip_source_routed(ipha)) { 12392 12393 src = ipha->ipha_src; 12394 src_ire = ire_ftable_lookup(src, 0, 0, 12395 IRE_INTERFACE, ire->ire_ipif, NULL, ALL_ZONES, 12396 0, MATCH_IRE_IPIF | MATCH_IRE_TYPE); 12397 12398 if (src_ire != NULL) { 12399 /* 12400 * The source is directly connected. 12401 * Just copy the ip header (which is 12402 * in the first mblk) 12403 */ 12404 mp1 = copyb(mp); 12405 if (mp1 != NULL) { 12406 icmp_send_redirect(WR(q), mp1, 12407 ire->ire_gateway_addr); 12408 } 12409 ire_refrele(src_ire); 12410 } 12411 } 12412 } 12413 12414 dev_q = ire->ire_stq->q_next; 12415 if ((dev_q->q_next || dev_q->q_first) && !canput(dev_q)) { 12416 BUMP_MIB(&ip_mib, ipInDiscards); 12417 freemsg(mp); 12418 ire_refrele(ire); 12419 return; 12420 } 12421 12422 ip_rput_forward(ire, ipha, mp, ill); 12423 IRE_REFRELE(ire); 12424 return; 12425 12426 drop_pkt: 12427 ire_refrele(ire); 12428 ip2dbg(("ip_rput_forward: drop pkt\n")); 12429 freemsg(mp); 12430 } 12431 12432 static boolean_t 12433 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t **irep, ipha_t *ipha, 12434 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 12435 { 12436 queue_t *q; 12437 ire_t *ire; 12438 12439 q = *qp; 12440 ire = *irep; 12441 12442 /* 12443 * Clear the indication that this may have hardware 12444 * checksum as we are not using it. 12445 */ 12446 mp->b_datap->db_struioun.cksum.flags = 0; 12447 12448 /* 12449 * Directed broadcast forwarding: if the packet came in over a 12450 * different interface then it is routed out over we can forward it. 12451 */ 12452 if (ipha->ipha_protocol == IPPROTO_TCP) { 12453 ire_refrele(ire); 12454 freemsg(mp); 12455 BUMP_MIB(&ip_mib, ipInDiscards); 12456 return (B_TRUE); 12457 } 12458 /* 12459 * For multicast we have set dst to be INADDR_BROADCAST 12460 * for delivering to all STREAMS. IRE_MARK_NORECV is really 12461 * only for broadcast packets. 12462 */ 12463 if (!CLASSD(ipha->ipha_dst)) { 12464 ire_t *new_ire; 12465 ipif_t *ipif; 12466 /* 12467 * For ill groups, as the switch duplicates broadcasts 12468 * across all the ports, we need to filter out and 12469 * send up only one copy. There is one copy for every 12470 * broadcast address on each ill. Thus, we look for a 12471 * specific IRE on this ill and look at IRE_MARK_NORECV 12472 * later to see whether this ill is eligible to receive 12473 * them or not. ill_nominate_bcast_rcv() nominates only 12474 * one set of IREs for receiving. 12475 */ 12476 12477 ipif = ipif_get_next_ipif(NULL, ill); 12478 if (ipif == NULL) { 12479 ire_refrele(ire); 12480 freemsg(mp); 12481 BUMP_MIB(&ip_mib, ipInDiscards); 12482 return (B_TRUE); 12483 } 12484 new_ire = ire_ctable_lookup(dst, 0, 0, 12485 ipif, ALL_ZONES, MATCH_IRE_ILL); 12486 ipif_refrele(ipif); 12487 12488 if (new_ire != NULL) { 12489 if (new_ire->ire_marks & IRE_MARK_NORECV) { 12490 ire_refrele(ire); 12491 ire_refrele(new_ire); 12492 freemsg(mp); 12493 BUMP_MIB(&ip_mib, ipInDiscards); 12494 return (B_TRUE); 12495 } 12496 /* 12497 * In the special case of multirouted broadcast 12498 * packets, we unconditionally need to "gateway" 12499 * them to the appropriate interface here. 12500 * In the normal case, this cannot happen, because 12501 * there is no broadcast IRE tagged with the 12502 * RTF_MULTIRT flag. 12503 */ 12504 if (new_ire->ire_flags & RTF_MULTIRT) { 12505 ire_refrele(new_ire); 12506 if (ire->ire_rfq != NULL) { 12507 q = ire->ire_rfq; 12508 *qp = q; 12509 } 12510 } else { 12511 ire_refrele(ire); 12512 ire = new_ire; 12513 } 12514 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 12515 if (!ip_g_forward_directed_bcast) { 12516 /* 12517 * Free the message if 12518 * ip_g_forward_directed_bcast is turned 12519 * off for non-local broadcast. 12520 */ 12521 ire_refrele(ire); 12522 freemsg(mp); 12523 BUMP_MIB(&ip_mib, ipInDiscards); 12524 return (B_TRUE); 12525 } 12526 } else { 12527 /* 12528 * This CGTP packet successfully passed the 12529 * CGTP filter, but the related CGTP 12530 * broadcast IRE has not been found, 12531 * meaning that the redundant ipif is 12532 * probably down. However, if we discarded 12533 * this packet, its duplicate would be 12534 * filtered out by the CGTP filter so none 12535 * of them would get through. So we keep 12536 * going with this one. 12537 */ 12538 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 12539 if (ire->ire_rfq != NULL) { 12540 q = ire->ire_rfq; 12541 *qp = q; 12542 } 12543 } 12544 } 12545 if (ip_g_forward_directed_bcast && ll_multicast == 0) { 12546 /* 12547 * Verify that there are not more then one 12548 * IRE_BROADCAST with this broadcast address which 12549 * has ire_stq set. 12550 * TODO: simplify, loop over all IRE's 12551 */ 12552 ire_t *ire1; 12553 int num_stq = 0; 12554 mblk_t *mp1; 12555 12556 /* Find the first one with ire_stq set */ 12557 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 12558 for (ire1 = ire; ire1 && 12559 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 12560 ire1 = ire1->ire_next) 12561 ; 12562 if (ire1) { 12563 ire_refrele(ire); 12564 ire = ire1; 12565 IRE_REFHOLD(ire); 12566 } 12567 12568 /* Check if there are additional ones with stq set */ 12569 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 12570 if (ire->ire_addr != ire1->ire_addr) 12571 break; 12572 if (ire1->ire_stq) { 12573 num_stq++; 12574 break; 12575 } 12576 } 12577 rw_exit(&ire->ire_bucket->irb_lock); 12578 if (num_stq == 1 && ire->ire_stq != NULL) { 12579 ip1dbg(("ip_rput_process_broadcast: directed " 12580 "broadcast to 0x%x\n", 12581 ntohl(ire->ire_addr))); 12582 mp1 = copymsg(mp); 12583 if (mp1) { 12584 switch (ipha->ipha_protocol) { 12585 case IPPROTO_UDP: 12586 ip_udp_input(q, mp1, ipha, ire, ill); 12587 break; 12588 default: 12589 ip_proto_input(q, mp1, ipha, ire, ill); 12590 break; 12591 } 12592 } 12593 /* 12594 * Adjust ttl to 2 (1+1 - the forward engine 12595 * will decrement it by one. 12596 */ 12597 if (ip_csum_hdr(ipha)) { 12598 BUMP_MIB(&ip_mib, ipInCksumErrs); 12599 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 12600 freemsg(mp); 12601 ire_refrele(ire); 12602 return (B_TRUE); 12603 } 12604 ipha->ipha_ttl = ip_broadcast_ttl + 1; 12605 ipha->ipha_hdr_checksum = 0; 12606 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 12607 ip_rput_process_forward(q, mp, ire, ipha, 12608 ill, ll_multicast); 12609 return (B_TRUE); 12610 } 12611 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 12612 ntohl(ire->ire_addr))); 12613 } 12614 12615 *irep = ire; 12616 return (B_FALSE); 12617 } 12618 12619 /* ARGSUSED */ 12620 static boolean_t 12621 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 12622 int *ll_multicast, ipaddr_t *dstp) 12623 { 12624 /* 12625 * Forward packets only if we have joined the allmulti 12626 * group on this interface. 12627 */ 12628 if (ip_g_mrouter && ill->ill_join_allmulti) { 12629 int retval; 12630 12631 /* 12632 * Clear the indication that this may have hardware 12633 * checksum as we are not using it. 12634 */ 12635 mp->b_datap->db_struioun.cksum.flags = 0; 12636 retval = ip_mforward(ill, ipha, mp); 12637 /* ip_mforward updates mib variables if needed */ 12638 /* clear b_prev - used by ip_mroute_decap */ 12639 mp->b_prev = NULL; 12640 12641 switch (retval) { 12642 case 0: 12643 /* 12644 * pkt is okay and arrived on phyint. 12645 * 12646 * If we are running as a multicast router 12647 * we need to see all IGMP and/or PIM packets. 12648 */ 12649 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 12650 (ipha->ipha_protocol == IPPROTO_PIM)) { 12651 goto done; 12652 } 12653 break; 12654 case -1: 12655 /* pkt is mal-formed, toss it */ 12656 goto drop_pkt; 12657 case 1: 12658 /* pkt is okay and arrived on a tunnel */ 12659 /* 12660 * If we are running a multicast router 12661 * we need to see all igmp packets. 12662 */ 12663 if (ipha->ipha_protocol == IPPROTO_IGMP) { 12664 *dstp = INADDR_BROADCAST; 12665 *ll_multicast = 1; 12666 return (B_FALSE); 12667 } 12668 12669 goto drop_pkt; 12670 } 12671 } 12672 12673 ILM_WALKER_HOLD(ill); 12674 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 12675 /* 12676 * This might just be caused by the fact that 12677 * multiple IP Multicast addresses map to the same 12678 * link layer multicast - no need to increment counter! 12679 */ 12680 ILM_WALKER_RELE(ill); 12681 freemsg(mp); 12682 return (B_TRUE); 12683 } 12684 ILM_WALKER_RELE(ill); 12685 done: 12686 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 12687 /* 12688 * This assumes the we deliver to all streams for multicast 12689 * and broadcast packets. 12690 */ 12691 *dstp = INADDR_BROADCAST; 12692 *ll_multicast = 1; 12693 return (B_FALSE); 12694 drop_pkt: 12695 ip2dbg(("ip_rput: drop pkt\n")); 12696 freemsg(mp); 12697 return (B_TRUE); 12698 } 12699 12700 static boolean_t 12701 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 12702 int *ll_multicast, mblk_t **mpp) 12703 { 12704 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 12705 boolean_t must_copy = B_FALSE; 12706 struct iocblk *iocp; 12707 ipha_t *ipha; 12708 12709 #define rptr ((uchar_t *)ipha) 12710 12711 first_mp = *first_mpp; 12712 mp = *mpp; 12713 12714 ASSERT(first_mp == mp); 12715 12716 /* 12717 * if db_ref > 1 then copymsg and free original. Packet may be 12718 * changed and do not want other entity who has a reference to this 12719 * message to trip over the changes. This is a blind change because 12720 * trying to catch all places that might change packet is too 12721 * difficult (since it may be a module above this one) 12722 * 12723 * This corresponds to the non-fast path case. We walk down the full 12724 * chain in this case, and check the db_ref count of all the dblks, 12725 * and do a copymsg if required. It is possible that the db_ref counts 12726 * of the data blocks in the mblk chain can be different. 12727 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 12728 * count of 1, followed by a M_DATA block with a ref count of 2, if 12729 * 'snoop' is running. 12730 */ 12731 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 12732 if (mp1->b_datap->db_ref > 1) { 12733 must_copy = B_TRUE; 12734 break; 12735 } 12736 } 12737 12738 if (must_copy) { 12739 mp1 = copymsg(mp); 12740 if (mp1 == NULL) { 12741 for (mp1 = mp; mp1 != NULL; 12742 mp1 = mp1->b_cont) { 12743 mp1->b_next = NULL; 12744 mp1->b_prev = NULL; 12745 } 12746 freemsg(mp); 12747 BUMP_MIB(&ip_mib, ipInDiscards); 12748 return (B_TRUE); 12749 } 12750 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 12751 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 12752 /* Copy b_next - used in M_BREAK messages */ 12753 to_mp->b_next = from_mp->b_next; 12754 from_mp->b_next = NULL; 12755 /* Copy b_prev - used by ip_mroute_decap */ 12756 to_mp->b_prev = from_mp->b_prev; 12757 from_mp->b_prev = NULL; 12758 } 12759 *first_mpp = first_mp = mp1; 12760 freemsg(mp); 12761 mp = mp1; 12762 *mpp = mp1; 12763 } 12764 12765 ipha = (ipha_t *)mp->b_rptr; 12766 12767 /* 12768 * previous code has a case for M_DATA. 12769 * We want to check how that happens. 12770 */ 12771 ASSERT(first_mp->b_datap->db_type != M_DATA); 12772 switch (first_mp->b_datap->db_type) { 12773 case M_PROTO: 12774 case M_PCPROTO: 12775 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 12776 DL_UNITDATA_IND) { 12777 /* Go handle anything other than data elsewhere. */ 12778 ip_rput_dlpi(q, mp); 12779 return (B_TRUE); 12780 } 12781 *ll_multicast = ((dl_unitdata_ind_t *)rptr)->dl_group_address; 12782 /* Ditch the DLPI header. */ 12783 mp1 = mp->b_cont; 12784 ASSERT(first_mp == mp); 12785 *first_mpp = mp1; 12786 freeb(mp); 12787 *mpp = mp1; 12788 return (B_FALSE); 12789 case M_BREAK: 12790 /* 12791 * A packet arrives as M_BREAK following a cycle through 12792 * ip_rput, ip_newroute, ... and finally ire_add_then_send. 12793 * This is an IP datagram sans lower level header. 12794 * M_BREAK are also used to pass back in multicast packets 12795 * that are encapsulated with a source route. 12796 */ 12797 /* Ditch the M_BREAK mblk */ 12798 mp1 = mp->b_cont; 12799 ASSERT(first_mp == mp); 12800 *first_mpp = mp1; 12801 freeb(mp); 12802 mp = mp1; 12803 mp->b_next = NULL; 12804 *mpp = mp; 12805 *ll_multicast = 0; 12806 return (B_FALSE); 12807 case M_IOCACK: 12808 ip1dbg(("got iocack ")); 12809 iocp = (struct iocblk *)mp->b_rptr; 12810 switch (iocp->ioc_cmd) { 12811 case DL_IOC_HDR_INFO: 12812 ill = (ill_t *)q->q_ptr; 12813 ill_fastpath_ack(ill, mp); 12814 return (B_TRUE); 12815 case SIOCSTUNPARAM: 12816 case OSIOCSTUNPARAM: 12817 /* Go through qwriter_ip */ 12818 break; 12819 case SIOCGTUNPARAM: 12820 case OSIOCGTUNPARAM: 12821 ip_rput_other(NULL, q, mp, NULL); 12822 return (B_TRUE); 12823 default: 12824 putnext(q, mp); 12825 return (B_TRUE); 12826 } 12827 /* FALLTHRU */ 12828 case M_ERROR: 12829 case M_HANGUP: 12830 /* 12831 * Since this is on the ill stream we unconditionally 12832 * bump up the refcount 12833 */ 12834 ill_refhold(ill); 12835 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_other, CUR_OP, 12836 B_FALSE); 12837 return (B_TRUE); 12838 case M_CTL: 12839 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 12840 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 12841 IPHADA_M_CTL)) { 12842 /* 12843 * It's an IPsec accelerated packet. 12844 * Make sure that the ill from which we received the 12845 * packet has enabled IPsec hardware acceleration. 12846 */ 12847 if (!(ill->ill_capabilities & 12848 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 12849 /* IPsec kstats: bean counter */ 12850 freemsg(mp); 12851 return (B_TRUE); 12852 } 12853 12854 /* 12855 * Make mp point to the mblk following the M_CTL, 12856 * then process according to type of mp. 12857 * After this processing, first_mp will point to 12858 * the data-attributes and mp to the pkt following 12859 * the M_CTL. 12860 */ 12861 mp = first_mp->b_cont; 12862 if (mp == NULL) { 12863 freemsg(first_mp); 12864 return (B_TRUE); 12865 } 12866 /* 12867 * A Hardware Accelerated packet can only be M_DATA 12868 * ESP or AH packet. 12869 */ 12870 if (mp->b_datap->db_type != M_DATA) { 12871 /* non-M_DATA IPsec accelerated packet */ 12872 IPSECHW_DEBUG(IPSECHW_PKT, 12873 ("non-M_DATA IPsec accelerated pkt\n")); 12874 freemsg(first_mp); 12875 return (B_TRUE); 12876 } 12877 ipha = (ipha_t *)mp->b_rptr; 12878 if (ipha->ipha_protocol != IPPROTO_AH && 12879 ipha->ipha_protocol != IPPROTO_ESP) { 12880 IPSECHW_DEBUG(IPSECHW_PKT, 12881 ("non-M_DATA IPsec accelerated pkt\n")); 12882 freemsg(first_mp); 12883 return (B_TRUE); 12884 } 12885 *mpp = mp; 12886 return (B_FALSE); 12887 } 12888 putnext(q, mp); 12889 return (B_TRUE); 12890 case M_FLUSH: 12891 if (*mp->b_rptr & FLUSHW) { 12892 *mp->b_rptr &= ~FLUSHR; 12893 qreply(q, mp); 12894 return (B_TRUE); 12895 } 12896 freemsg(mp); 12897 return (B_TRUE); 12898 case M_IOCNAK: 12899 ip1dbg(("got iocnak ")); 12900 iocp = (struct iocblk *)mp->b_rptr; 12901 switch (iocp->ioc_cmd) { 12902 case DL_IOC_HDR_INFO: 12903 case SIOCSTUNPARAM: 12904 case OSIOCSTUNPARAM: 12905 /* 12906 * Since this is on the ill stream we unconditionally 12907 * bump up the refcount 12908 */ 12909 ill_refhold(ill); 12910 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_other, 12911 CUR_OP, B_FALSE); 12912 return (B_TRUE); 12913 case SIOCGTUNPARAM: 12914 case OSIOCGTUNPARAM: 12915 ip_rput_other(NULL, q, mp, NULL); 12916 return (B_TRUE); 12917 default: 12918 break; 12919 } 12920 /* FALLTHRU */ 12921 default: 12922 putnext(q, mp); 12923 return (B_TRUE); 12924 } 12925 } 12926 12927 /* Read side put procedure. Packets coming from the wire arrive here. */ 12928 void 12929 ip_rput(queue_t *q, mblk_t *mp) 12930 { 12931 ill_t *ill; 12932 12933 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 12934 12935 ill = (ill_t *)q->q_ptr; 12936 12937 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 12938 union DL_primitives *dl; 12939 12940 /* 12941 * Things are opening or closing. Only accept DLPI control 12942 * messages. In the open case, the ill->ill_ipif has not yet 12943 * been created. In the close case, things hanging off the 12944 * ill could have been freed already. In either case it 12945 * may not be safe to proceed further. 12946 */ 12947 12948 dl = (union DL_primitives *)mp->b_rptr; 12949 if ((mp->b_datap->db_type != M_PCPROTO) || 12950 (dl->dl_primitive == DL_UNITDATA_IND)) { 12951 /* 12952 * Also SIOC[GS]TUN* ioctls can come here. 12953 */ 12954 ip_ioctl_freemsg(mp); 12955 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 12956 "ip_input_end: q %p (%S)", q, "uninit"); 12957 return; 12958 } 12959 } 12960 12961 /* 12962 * if db_ref > 1 then copymsg and free original. Packet may be 12963 * changed and we do not want the other entity who has a reference to 12964 * this message to trip over the changes. This is a blind change because 12965 * trying to catch all places that might change the packet is too 12966 * difficult. 12967 * 12968 * This corresponds to the fast path case, where we have a chain of 12969 * M_DATA mblks. We check the db_ref count of only the 1st data block 12970 * in the mblk chain. There doesn't seem to be a reason why a device 12971 * driver would send up data with varying db_ref counts in the mblk 12972 * chain. In any case the Fast path is a private interface, and our 12973 * drivers don't do such a thing. Given the above assumption, there is 12974 * no need to walk down the entire mblk chain (which could have a 12975 * potential performance problem) 12976 */ 12977 if (mp->b_datap->db_ref > 1) { 12978 mblk_t *mp1; 12979 boolean_t adjusted = B_FALSE; 12980 IP_STAT(ip_db_ref); 12981 12982 /* 12983 * The IP_RECVSLLA option depends on having the link layer 12984 * header. First check that: 12985 * a> the underlying device is of type ether, since this 12986 * option is currently supported only over ethernet. 12987 * b> there is enough room to copy over the link layer header. 12988 * 12989 * Once the checks are done, adjust rptr so that the link layer 12990 * header will be copied via copymsg. Note that, IFT_ETHER may 12991 * be returned by some non-ethernet drivers but in this case the 12992 * second check will fail. 12993 */ 12994 if (ill->ill_type == IFT_ETHER && 12995 (mp->b_rptr - mp->b_datap->db_base) >= 12996 sizeof (struct ether_header)) { 12997 mp->b_rptr -= sizeof (struct ether_header); 12998 adjusted = B_TRUE; 12999 } 13000 mp1 = copymsg(mp); 13001 if (mp1 == NULL) { 13002 /* Clear b_next - used in M_BREAK messages */ 13003 mp->b_next = NULL; 13004 /* clear b_prev - used by ip_mroute_decap */ 13005 mp->b_prev = NULL; 13006 freemsg(mp); 13007 BUMP_MIB(&ip_mib, ipInDiscards); 13008 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 13009 "ip_rput_end: q %p (%S)", q, "copymsg"); 13010 return; 13011 } 13012 if (adjusted) { 13013 /* 13014 * Copy is done. Restore the pointer in the _new_ mblk 13015 */ 13016 mp1->b_rptr += sizeof (struct ether_header); 13017 } 13018 /* Copy b_next - used in M_BREAK messages */ 13019 mp1->b_next = mp->b_next; 13020 mp->b_next = NULL; 13021 /* Copy b_prev - used by ip_mroute_decap */ 13022 mp1->b_prev = mp->b_prev; 13023 mp->b_prev = NULL; 13024 freemsg(mp); 13025 mp = mp1; 13026 } 13027 13028 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 13029 "ip_rput_end: q %p (%S)", q, "end"); 13030 13031 ip_input(ill, NULL, mp, 0); 13032 } 13033 13034 /* 13035 * Direct read side procedure capable of dealing with chains. GLDv3 based 13036 * drivers call this function directly with mblk chains while STREAMS 13037 * read side procedure ip_rput() calls this for single packet with ip_ring 13038 * set to NULL to process one packet at a time. 13039 * 13040 * The ill will always be valid if this function is called directly from 13041 * the driver. 13042 */ 13043 /*ARGSUSED*/ 13044 void 13045 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, size_t hdrlen) 13046 { 13047 ipaddr_t dst; 13048 ire_t *ire; 13049 ipha_t *ipha; 13050 uint_t pkt_len; 13051 ssize_t len; 13052 uint_t opt_len; 13053 int ll_multicast; 13054 int cgtp_flt_pkt; 13055 queue_t *q = ill->ill_rq; 13056 squeue_t *curr_sqp = NULL; 13057 mblk_t *head = NULL; 13058 mblk_t *tail = NULL; 13059 mblk_t *first_mp; 13060 mblk_t *mp; 13061 int cnt = 0; 13062 13063 ASSERT(mp_chain != NULL); 13064 ASSERT(ill != NULL); 13065 13066 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 13067 13068 #define rptr ((uchar_t *)ipha) 13069 13070 while (mp_chain != NULL) { 13071 first_mp = mp = mp_chain; 13072 mp_chain = mp_chain->b_next; 13073 mp->b_next = NULL; 13074 ll_multicast = 0; 13075 ire = NULL; 13076 13077 /* 13078 * ip_input fast path 13079 */ 13080 13081 /* mblk type is not M_DATA */ 13082 if (mp->b_datap->db_type != M_DATA) { 13083 if (ip_rput_process_notdata(q, &first_mp, ill, 13084 &ll_multicast, &mp)) 13085 continue; 13086 } 13087 13088 ASSERT(mp->b_datap->db_type == M_DATA); 13089 ASSERT(mp->b_datap->db_ref == 1); 13090 13091 /* 13092 * Invoke the CGTP (multirouting) filtering module to process 13093 * the incoming packet. Packets identified as duplicates 13094 * must be discarded. Filtering is active only if the 13095 * the ip_cgtp_filter ndd variable is non-zero. 13096 */ 13097 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 13098 if (ip_cgtp_filter && (ip_cgtp_filter_ops != NULL)) { 13099 cgtp_flt_pkt = 13100 ip_cgtp_filter_ops->cfo_filter_fp(q, mp); 13101 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 13102 freemsg(first_mp); 13103 continue; 13104 } 13105 } 13106 13107 ipha = (ipha_t *)mp->b_rptr; 13108 len = mp->b_wptr - rptr; 13109 13110 BUMP_MIB(&ip_mib, ipInReceives); 13111 13112 /* 13113 * IP header ptr not aligned? 13114 * OR IP header not complete in first mblk 13115 */ 13116 if (!OK_32PTR(rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13117 if (!ip_check_and_align_header(q, mp)) 13118 continue; 13119 ipha = (ipha_t *)mp->b_rptr; 13120 len = mp->b_wptr - rptr; 13121 } 13122 13123 /* multiple mblk or too short */ 13124 pkt_len = ntohs(ipha->ipha_length); 13125 len -= pkt_len; 13126 if (len != 0) { 13127 /* 13128 * Make sure we have data length consistent 13129 * with the IP header. 13130 */ 13131 if (mp->b_cont == NULL) { 13132 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 13133 BUMP_MIB(&ip_mib, ipInHdrErrors); 13134 ip2dbg(("ip_input: drop pkt\n")); 13135 freemsg(mp); 13136 continue; 13137 } 13138 mp->b_wptr = rptr + pkt_len; 13139 } else if (len += msgdsize(mp->b_cont)) { 13140 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 13141 BUMP_MIB(&ip_mib, ipInHdrErrors); 13142 ip2dbg(("ip_input: drop pkt\n")); 13143 freemsg(mp); 13144 continue; 13145 } 13146 (void) adjmsg(mp, -len); 13147 IP_STAT(ip_multimblk3); 13148 } 13149 } 13150 13151 if (ip_loopback_src_or_dst(ipha, ill)) { 13152 ip2dbg(("ip_input: drop pkt\n")); 13153 freemsg(mp); 13154 continue; 13155 } 13156 13157 opt_len = ipha->ipha_version_and_hdr_length - 13158 IP_SIMPLE_HDR_VERSION; 13159 /* IP version bad or there are IP options */ 13160 if (opt_len) { 13161 if (len != 0) 13162 IP_STAT(ip_multimblk4); 13163 else 13164 IP_STAT(ip_ipoptions); 13165 if (!ip_rput_multimblk_ipoptions(q, mp, &ipha, &dst)) 13166 continue; 13167 } else { 13168 dst = ipha->ipha_dst; 13169 } 13170 13171 /* 13172 * If rsvpd is running, let RSVP daemon handle its processing 13173 * and forwarding of RSVP multicast/unicast packets. 13174 * If rsvpd is not running but mrouted is running, RSVP 13175 * multicast packets are forwarded as multicast traffic 13176 * and RSVP unicast packets are forwarded by unicast router. 13177 * If neither rsvpd nor mrouted is running, RSVP multicast 13178 * packets are not forwarded, but the unicast packets are 13179 * forwarded like unicast traffic. 13180 */ 13181 if (ipha->ipha_protocol == IPPROTO_RSVP && 13182 ipcl_proto_search(IPPROTO_RSVP) != NULL) { 13183 /* RSVP packet and rsvpd running. Treat as ours */ 13184 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 13185 /* 13186 * This assumes that we deliver to all streams for 13187 * multicast and broadcast packets. 13188 * We have to force ll_multicast to 1 to handle the 13189 * M_DATA messages passed in from ip_mroute_decap. 13190 */ 13191 dst = INADDR_BROADCAST; 13192 ll_multicast = 1; 13193 } else if (CLASSD(dst)) { 13194 /* packet is multicast */ 13195 mp->b_next = NULL; 13196 if (ip_rput_process_multicast(q, mp, ill, ipha, 13197 &ll_multicast, &dst)) 13198 continue; 13199 } 13200 13201 13202 /* 13203 * Check if the packet is coming from the Mobile IP 13204 * forward tunnel interface 13205 */ 13206 if (ill->ill_srcif_refcnt > 0) { 13207 ire = ire_srcif_table_lookup(dst, IRE_INTERFACE, 13208 NULL, ill, MATCH_IRE_TYPE); 13209 if (ire != NULL && ire->ire_dlureq_mp == NULL && 13210 ire->ire_ipif->ipif_net_type == 13211 IRE_IF_RESOLVER) { 13212 /* We need to resolve the link layer info */ 13213 ire_refrele(ire); 13214 ip_rput_noire(q, (ill_t *)q->q_ptr, mp, 13215 ll_multicast, dst); 13216 continue; 13217 } 13218 } 13219 13220 if (ire == NULL) 13221 ire = ire_cache_lookup(dst, ALL_ZONES); 13222 13223 /* 13224 * If mipagent is running and reverse tunnel is created as per 13225 * mobile node request, then any packet coming through the 13226 * incoming interface from the mobile-node, should be reverse 13227 * tunneled to it's home agent except those that are destined 13228 * to foreign agent only. 13229 * This needs source address based ire lookup. The routing 13230 * entries for source address based lookup are only created by 13231 * mipagent program only when a reverse tunnel is created. 13232 * Reference : RFC2002, RFC2344 13233 */ 13234 if (ill->ill_mrtun_refcnt > 0) { 13235 ipaddr_t srcaddr; 13236 ire_t *tmp_ire; 13237 13238 tmp_ire = ire; /* Save, we might need it later */ 13239 if (ire == NULL || (ire->ire_type != IRE_LOCAL && 13240 ire->ire_type != IRE_BROADCAST)) { 13241 srcaddr = ipha->ipha_src; 13242 ire = ire_mrtun_lookup(srcaddr, ill); 13243 if (ire != NULL) { 13244 /* 13245 * Should not be getting iphada packet 13246 * here. we should only get those for 13247 * IRE_LOCAL traffic, excluded above. 13248 * Fail-safe (drop packet) in the event 13249 * hardware is misbehaving. 13250 */ 13251 if (first_mp != mp) { 13252 /* IPsec KSTATS: beancount me */ 13253 freemsg(first_mp); 13254 } else { 13255 /* 13256 * This packet must be forwarded 13257 * to Reverse Tunnel 13258 */ 13259 ip_mrtun_forward(ire, ill, mp); 13260 } 13261 ire_refrele(ire); 13262 if (tmp_ire != NULL) 13263 ire_refrele(tmp_ire); 13264 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 13265 "ip_input_end: q %p (%S)", 13266 q, "uninit"); 13267 continue; 13268 } 13269 } 13270 /* 13271 * If this packet is from a non-mobilenode or a 13272 * mobile-node which does not request reverse 13273 * tunnel service 13274 */ 13275 ire = tmp_ire; 13276 } 13277 13278 13279 /* 13280 * If we reach here that means the incoming packet satisfies 13281 * one of the following conditions: 13282 * - packet is from a mobile node which does not request 13283 * reverse tunnel 13284 * - packet is from a non-mobile node, which is the most 13285 * common case 13286 * - packet is from a reverse tunnel enabled mobile node 13287 * and destined to foreign agent only 13288 */ 13289 13290 if (ire == NULL) { 13291 /* 13292 * No IRE for this destination, so it can't be for us. 13293 * Unless we are forwarding, drop the packet. 13294 * We have to let source routed packets through 13295 * since we don't yet know if they are 'ping -l' 13296 * packets i.e. if they will go out over the 13297 * same interface as they came in on. 13298 */ 13299 ip_rput_noire(q, NULL, mp, ll_multicast, dst); 13300 continue; 13301 } 13302 13303 /* broadcast? */ 13304 if (ire->ire_type == IRE_BROADCAST) { 13305 if (ip_rput_process_broadcast(&q, mp, &ire, ipha, ill, 13306 dst, cgtp_flt_pkt, ll_multicast)) { 13307 continue; 13308 } 13309 } else if (ire->ire_stq != NULL) { 13310 /* fowarding? */ 13311 ip_rput_process_forward(q, mp, ire, ipha, ill, 13312 ll_multicast); 13313 continue; 13314 } 13315 13316 /* packet not for us */ 13317 if (ire->ire_rfq != q) { 13318 if (ip_rput_notforus(&q, mp, ire, ill)) { 13319 continue; 13320 } 13321 } 13322 13323 switch (ipha->ipha_protocol) { 13324 case IPPROTO_TCP: 13325 ASSERT(first_mp == mp); 13326 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 13327 mp, 0, q, ip_ring)) != NULL) { 13328 if (curr_sqp == NULL) { 13329 curr_sqp = GET_SQUEUE(mp); 13330 ASSERT(cnt == 0); 13331 cnt++; 13332 head = tail = mp; 13333 } else if (curr_sqp == GET_SQUEUE(mp)) { 13334 ASSERT(tail != NULL); 13335 cnt++; 13336 tail->b_next = mp; 13337 tail = mp; 13338 } else { 13339 /* 13340 * A different squeue. Send the 13341 * chain for the previous squeue on 13342 * its way. This shouldn't happen 13343 * often unless interrupt binding 13344 * changes. 13345 */ 13346 IP_STAT(ip_input_multi_squeue); 13347 squeue_enter_chain(curr_sqp, head, 13348 tail, cnt, SQTAG_IP_INPUT); 13349 curr_sqp = GET_SQUEUE(mp); 13350 head = mp; 13351 tail = mp; 13352 cnt = 1; 13353 } 13354 } 13355 IRE_REFRELE(ire); 13356 continue; 13357 case IPPROTO_UDP: 13358 ASSERT(first_mp == mp); 13359 ip_udp_input(q, mp, ipha, ire, ill); 13360 IRE_REFRELE(ire); 13361 continue; 13362 case IPPROTO_SCTP: 13363 ASSERT(first_mp == mp); 13364 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 13365 q, dst); 13366 continue; 13367 default: 13368 ip_proto_input(q, first_mp, ipha, ire, ill); 13369 IRE_REFRELE(ire); 13370 continue; 13371 } 13372 } 13373 13374 if (head != NULL) 13375 squeue_enter_chain(curr_sqp, head, tail, cnt, SQTAG_IP_INPUT); 13376 13377 /* 13378 * This code is there just to make netperf/ttcp look good. 13379 * 13380 * Its possible that after being in polling mode (and having cleared 13381 * the backlog), squeues have turned the interrupt frequency higher 13382 * to improve latency at the expense of more CPU utilization (less 13383 * packets per interrupts or more number of interrupts). Workloads 13384 * like ttcp/netperf do manage to tickle polling once in a while 13385 * but for the remaining time, stay in higher interrupt mode since 13386 * their packet arrival rate is pretty uniform and this shows up 13387 * as higher CPU utilization. Since people care about CPU utilization 13388 * while running netperf/ttcp, turn the interrupt frequency back to 13389 * normal/default if polling has not been used in ip_poll_normal_ticks. 13390 */ 13391 if (ip_ring != NULL && (ip_ring->rr_poll_state & ILL_POLLING)) { 13392 if (lbolt >= (ip_ring->rr_poll_time + ip_poll_normal_ticks)) { 13393 ip_ring->rr_poll_state &= ~ILL_POLLING; 13394 ip_ring->rr_blank(ip_ring->rr_handle, 13395 ip_ring->rr_normal_blank_time, 13396 ip_ring->rr_normal_pkt_cnt); 13397 } 13398 } 13399 13400 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 13401 "ip_input_end: q %p (%S)", q, "end"); 13402 #undef rptr 13403 } 13404 13405 static void 13406 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 13407 t_uscalar_t err) 13408 { 13409 if (dl_err == DL_SYSERR) { 13410 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 13411 "%s: %s failed: DL_SYSERR (errno %u)\n", 13412 ill->ill_name, dlpi_prim_str(prim), err); 13413 return; 13414 } 13415 13416 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 13417 "%s: %s failed: %s\n", ill->ill_name, dlpi_prim_str(prim), 13418 dlpi_err_str(dl_err)); 13419 } 13420 13421 /* 13422 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 13423 * than DL_UNITDATA_IND messages. If we need to process this message 13424 * exclusively, we call qwriter_ip, in which case we also need to call 13425 * ill_refhold before that, since qwriter_ip does an ill_refrele. 13426 */ 13427 void 13428 ip_rput_dlpi(queue_t *q, mblk_t *mp) 13429 { 13430 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 13431 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 13432 ill_t *ill; 13433 13434 ip1dbg(("ip_rput_dlpi")); 13435 ill = (ill_t *)q->q_ptr; 13436 switch (dloa->dl_primitive) { 13437 case DL_ERROR_ACK: 13438 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK %s (0x%x): " 13439 "%s (0x%x), unix %u\n", ill->ill_name, 13440 dlpi_prim_str(dlea->dl_error_primitive), 13441 dlea->dl_error_primitive, 13442 dlpi_err_str(dlea->dl_errno), 13443 dlea->dl_errno, 13444 dlea->dl_unix_errno)); 13445 switch (dlea->dl_error_primitive) { 13446 case DL_NOTIFY_REQ: 13447 case DL_UNBIND_REQ: 13448 case DL_ATTACH_REQ: 13449 case DL_DETACH_REQ: 13450 case DL_INFO_REQ: 13451 case DL_BIND_REQ: 13452 case DL_ENABMULTI_REQ: 13453 case DL_PHYS_ADDR_REQ: 13454 case DL_CAPABILITY_REQ: 13455 case DL_CONTROL_REQ: 13456 /* 13457 * Refhold the ill to match qwriter_ip which does a 13458 * refrele. Since this is on the ill stream we 13459 * unconditionally bump up the refcount without 13460 * checking for ILL_CAN_LOOKUP 13461 */ 13462 ill_refhold(ill); 13463 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 13464 CUR_OP, B_FALSE); 13465 return; 13466 case DL_DISABMULTI_REQ: 13467 freemsg(mp); /* Don't want to pass this up */ 13468 return; 13469 default: 13470 break; 13471 } 13472 ip_dlpi_error(ill, dlea->dl_error_primitive, 13473 dlea->dl_errno, dlea->dl_unix_errno); 13474 freemsg(mp); 13475 return; 13476 case DL_INFO_ACK: 13477 case DL_BIND_ACK: 13478 case DL_PHYS_ADDR_ACK: 13479 case DL_NOTIFY_ACK: 13480 case DL_CAPABILITY_ACK: 13481 case DL_CONTROL_ACK: 13482 /* 13483 * Refhold the ill to match qwriter_ip which does a refrele 13484 * Since this is on the ill stream we unconditionally 13485 * bump up the refcount without doing ILL_CAN_LOOKUP. 13486 */ 13487 ill_refhold(ill); 13488 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 13489 CUR_OP, B_FALSE); 13490 return; 13491 case DL_NOTIFY_IND: 13492 ill_refhold(ill); 13493 /* 13494 * The DL_NOTIFY_IND is an asynchronous message that has no 13495 * relation to the current ioctl in progress (if any). Hence we 13496 * pass in NEW_OP in this case. 13497 */ 13498 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 13499 NEW_OP, B_FALSE); 13500 return; 13501 case DL_OK_ACK: 13502 ip1dbg(("ip_rput: DL_OK_ACK for %s\n", 13503 dlpi_prim_str((int)dloa->dl_correct_primitive))); 13504 switch (dloa->dl_correct_primitive) { 13505 case DL_UNBIND_REQ: 13506 mutex_enter(&ill->ill_lock); 13507 ill->ill_state_flags |= ILL_DL_UNBIND_DONE; 13508 cv_signal(&ill->ill_cv); 13509 mutex_exit(&ill->ill_lock); 13510 /* FALLTHRU */ 13511 case DL_ATTACH_REQ: 13512 case DL_DETACH_REQ: 13513 /* 13514 * Refhold the ill to match qwriter_ip which does a 13515 * refrele. Since this is on the ill stream we 13516 * unconditionally bump up the refcount 13517 */ 13518 ill_refhold(ill); 13519 qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 13520 CUR_OP, B_FALSE); 13521 return; 13522 case DL_ENABMULTI_REQ: 13523 if (ill->ill_dlpi_multicast_state == IDMS_INPROGRESS) 13524 ill->ill_dlpi_multicast_state = IDMS_OK; 13525 break; 13526 13527 } 13528 break; 13529 default: 13530 break; 13531 } 13532 freemsg(mp); 13533 } 13534 13535 /* 13536 * This function is used to free a message that has gone through 13537 * mi_copyin processing which modifies the M_IOCTL mblk's b_next 13538 * and b_prev pointers. We use this function to set b_next/b_prev 13539 * to NULL and free them. 13540 */ 13541 void 13542 ip_ioctl_freemsg(mblk_t *mp) 13543 { 13544 mblk_t *bp = mp; 13545 13546 for (; bp != NULL; bp = bp->b_cont) { 13547 bp->b_prev = NULL; 13548 bp->b_next = NULL; 13549 } 13550 freemsg(mp); 13551 } 13552 13553 /* 13554 * Handling of DLPI messages that require exclusive access to the ipsq. 13555 * 13556 * Need to do ill_pending_mp_release on ioctl completion, which could 13557 * happen here. (along with mi_copy_done) 13558 */ 13559 /* ARGSUSED */ 13560 static void 13561 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 13562 { 13563 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 13564 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 13565 int err = 0; 13566 ill_t *ill; 13567 ipif_t *ipif = NULL; 13568 mblk_t *mp1 = NULL; 13569 conn_t *connp = NULL; 13570 t_uscalar_t physaddr_req; 13571 mblk_t *mp_hw; 13572 union DL_primitives *dlp; 13573 boolean_t success; 13574 boolean_t ioctl_aborted = B_FALSE; 13575 boolean_t log = B_TRUE; 13576 13577 ip1dbg(("ip_rput_dlpi_writer ..")); 13578 ill = (ill_t *)q->q_ptr; 13579 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 13580 13581 ASSERT(IAM_WRITER_ILL(ill)); 13582 13583 /* 13584 * ipsq_pending_mp and ipsq_pending_ipif track each other. i.e. 13585 * both are null or non-null. However we can assert that only 13586 * after grabbing the ipsq_lock. So we don't make any assertion 13587 * here and in other places in the code. 13588 */ 13589 ipif = ipsq->ipsq_pending_ipif; 13590 /* 13591 * The current ioctl could have been aborted by the user and a new 13592 * ioctl to bring up another ill could have started. We could still 13593 * get a response from the driver later. 13594 */ 13595 if (ipif != NULL && ipif->ipif_ill != ill) 13596 ioctl_aborted = B_TRUE; 13597 13598 switch (dloa->dl_primitive) { 13599 case DL_ERROR_ACK: 13600 switch (dlea->dl_error_primitive) { 13601 case DL_UNBIND_REQ: 13602 case DL_ATTACH_REQ: 13603 case DL_DETACH_REQ: 13604 case DL_INFO_REQ: 13605 ill_dlpi_done(ill, dlea->dl_error_primitive); 13606 break; 13607 case DL_NOTIFY_REQ: 13608 ill_dlpi_done(ill, DL_NOTIFY_REQ); 13609 log = B_FALSE; 13610 break; 13611 case DL_PHYS_ADDR_REQ: 13612 /* 13613 * For IPv6 only, there are two additional 13614 * phys_addr_req's sent to the driver to get the 13615 * IPv6 token and lla. This allows IP to acquire 13616 * the hardware address format for a given interface 13617 * without having built in knowledge of the hardware 13618 * address. ill_phys_addr_pend keeps track of the last 13619 * DL_PAR sent so we know which response we are 13620 * dealing with. ill_dlpi_done will update 13621 * ill_phys_addr_pend when it sends the next req. 13622 * We don't complete the IOCTL until all three DL_PARs 13623 * have been attempted, so set *_len to 0 and break. 13624 */ 13625 physaddr_req = ill->ill_phys_addr_pend; 13626 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 13627 if (physaddr_req == DL_IPV6_TOKEN) { 13628 ill->ill_token_length = 0; 13629 log = B_FALSE; 13630 break; 13631 } else if (physaddr_req == DL_IPV6_LINK_LAYER_ADDR) { 13632 ill->ill_nd_lla_len = 0; 13633 log = B_FALSE; 13634 break; 13635 } 13636 /* 13637 * Something went wrong with the DL_PHYS_ADDR_REQ. 13638 * We presumably have an IOCTL hanging out waiting 13639 * for completion. Find it and complete the IOCTL 13640 * with the error noted. 13641 * However, ill_dl_phys was called on an ill queue 13642 * (from SIOCSLIFNAME), thus conn_pending_ill is not 13643 * set. But the ioctl is known to be pending on ill_wq. 13644 */ 13645 if (!ill->ill_ifname_pending) 13646 break; 13647 ill->ill_ifname_pending = 0; 13648 if (!ioctl_aborted) 13649 mp1 = ipsq_pending_mp_get(ipsq, &connp); 13650 if (mp1 != NULL) { 13651 /* 13652 * This operation (SIOCSLIFNAME) must have 13653 * happened on the ill. Assert there is no conn 13654 */ 13655 ASSERT(connp == NULL); 13656 q = ill->ill_wq; 13657 } 13658 break; 13659 case DL_BIND_REQ: 13660 ill_dlpi_done(ill, DL_BIND_REQ); 13661 if (ill->ill_ifname_pending) 13662 break; 13663 /* 13664 * Something went wrong with the bind. We presumably 13665 * have an IOCTL hanging out waiting for completion. 13666 * Find it, take down the interface that was coming 13667 * up, and complete the IOCTL with the error noted. 13668 */ 13669 if (!ioctl_aborted) 13670 mp1 = ipsq_pending_mp_get(ipsq, &connp); 13671 if (mp1 != NULL) { 13672 /* 13673 * This operation (SIOCSLIFFLAGS) must have 13674 * happened from a conn. 13675 */ 13676 ASSERT(connp != NULL); 13677 q = CONNP_TO_WQ(connp); 13678 if (ill->ill_move_in_progress) { 13679 ILL_CLEAR_MOVE(ill); 13680 } 13681 (void) ipif_down(ipif, NULL, NULL); 13682 /* error is set below the switch */ 13683 } 13684 break; 13685 case DL_ENABMULTI_REQ: 13686 ip1dbg(("DL_ERROR_ACK to enabmulti\n")); 13687 13688 if (ill->ill_dlpi_multicast_state == IDMS_INPROGRESS) 13689 ill->ill_dlpi_multicast_state = IDMS_FAILED; 13690 if (ill->ill_dlpi_multicast_state == IDMS_FAILED) { 13691 ipif_t *ipif; 13692 13693 log = B_FALSE; 13694 printf("ip: joining multicasts failed (%d)" 13695 " on %s - will use link layer " 13696 "broadcasts for multicast\n", 13697 dlea->dl_errno, ill->ill_name); 13698 13699 /* 13700 * Set up the multicast mapping alone. 13701 * writer, so ok to access ill->ill_ipif 13702 * without any lock. 13703 */ 13704 ipif = ill->ill_ipif; 13705 mutex_enter(&ill->ill_phyint->phyint_lock); 13706 ill->ill_phyint->phyint_flags |= 13707 PHYI_MULTI_BCAST; 13708 mutex_exit(&ill->ill_phyint->phyint_lock); 13709 13710 if (!ill->ill_isv6) { 13711 (void) ipif_arp_setup_multicast(ipif, 13712 NULL); 13713 } else { 13714 (void) ipif_ndp_setup_multicast(ipif, 13715 NULL); 13716 } 13717 } 13718 freemsg(mp); /* Don't want to pass this up */ 13719 return; 13720 case DL_CAPABILITY_REQ: 13721 case DL_CONTROL_REQ: 13722 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 13723 "DL_CAPABILITY/CONTROL REQ\n")); 13724 ill_dlpi_done(ill, dlea->dl_error_primitive); 13725 ill->ill_capab_state = IDMS_FAILED; 13726 freemsg(mp); 13727 return; 13728 } 13729 /* 13730 * Note the error for IOCTL completion (mp1 is set when 13731 * ready to complete ioctl). If ill_ifname_pending_err is 13732 * set, an error occured during plumbing (ill_ifname_pending), 13733 * so we want to report that error. 13734 * 13735 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 13736 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 13737 * expected to get errack'd if the driver doesn't support 13738 * these flags (e.g. ethernet). log will be set to B_FALSE 13739 * if these error conditions are encountered. 13740 */ 13741 if (mp1 != NULL) { 13742 if (ill->ill_ifname_pending_err != 0) { 13743 err = ill->ill_ifname_pending_err; 13744 ill->ill_ifname_pending_err = 0; 13745 } else { 13746 err = dlea->dl_unix_errno ? 13747 dlea->dl_unix_errno : ENXIO; 13748 } 13749 /* 13750 * If we're plumbing an interface and an error hasn't already 13751 * been saved, set ill_ifname_pending_err to the error passed 13752 * up. Ignore the error if log is B_FALSE (see comment above). 13753 */ 13754 } else if (log && ill->ill_ifname_pending && 13755 ill->ill_ifname_pending_err == 0) { 13756 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 13757 dlea->dl_unix_errno : ENXIO; 13758 } 13759 13760 if (log) 13761 ip_dlpi_error(ill, dlea->dl_error_primitive, 13762 dlea->dl_errno, dlea->dl_unix_errno); 13763 break; 13764 case DL_CAPABILITY_ACK: { 13765 boolean_t reneg_flag = B_FALSE; 13766 /* Call a routine to handle this one. */ 13767 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 13768 /* 13769 * Check if the ACK is due to renegotiation case since we 13770 * will need to send a new CAPABILITY_REQ later. 13771 */ 13772 if (ill->ill_capab_state == IDMS_RENEG) { 13773 /* This is the ack for a renogiation case */ 13774 reneg_flag = B_TRUE; 13775 ill->ill_capab_state = IDMS_UNKNOWN; 13776 } 13777 ill_capability_ack(ill, mp); 13778 if (reneg_flag) 13779 ill_capability_probe(ill); 13780 break; 13781 } 13782 case DL_CONTROL_ACK: 13783 /* We treat all of these as "fire and forget" */ 13784 ill_dlpi_done(ill, DL_CONTROL_REQ); 13785 break; 13786 case DL_INFO_ACK: 13787 /* Call a routine to handle this one. */ 13788 ill_dlpi_done(ill, DL_INFO_REQ); 13789 ip_ll_subnet_defaults(ill, mp); 13790 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 13791 return; 13792 case DL_BIND_ACK: 13793 /* 13794 * We should have an IOCTL waiting on this unless 13795 * sent by ill_dl_phys, in which case just return 13796 */ 13797 ill_dlpi_done(ill, DL_BIND_REQ); 13798 if (ill->ill_ifname_pending) 13799 break; 13800 13801 if (!ioctl_aborted) 13802 mp1 = ipsq_pending_mp_get(ipsq, &connp); 13803 if (mp1 == NULL) 13804 break; 13805 ASSERT(connp != NULL); 13806 q = CONNP_TO_WQ(connp); 13807 13808 /* 13809 * We are exclusive. So nothing can change even after 13810 * we get the pending mp. If need be we can put it back 13811 * and restart, as in calling ipif_arp_up() below. 13812 */ 13813 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 13814 13815 mutex_enter(&ill->ill_lock); 13816 ill->ill_dl_up = 1; 13817 mutex_exit(&ill->ill_lock); 13818 13819 /* 13820 * Now bring up the resolver, when that is 13821 * done we'll create IREs and we are done. 13822 */ 13823 if (ill->ill_isv6) { 13824 /* 13825 * v6 interfaces. 13826 * Unlike ARP which has to do another bind 13827 * and attach, once we get here we are 13828 * done withh NDP. Except in the case of 13829 * ILLF_XRESOLV, in which case we send an 13830 * AR_INTERFACE_UP to the external resolver. 13831 * If all goes well, the ioctl will complete 13832 * in ip_rput(). If there's an error, we 13833 * complete it here. 13834 */ 13835 err = ipif_ndp_up(ipif, &ipif->ipif_v6lcl_addr, 13836 B_FALSE); 13837 if (err == 0) { 13838 if (ill->ill_flags & ILLF_XRESOLV) { 13839 mutex_enter(&connp->conn_lock); 13840 mutex_enter(&ill->ill_lock); 13841 success = ipsq_pending_mp_add( 13842 connp, ipif, q, mp1, 0); 13843 mutex_exit(&ill->ill_lock); 13844 mutex_exit(&connp->conn_lock); 13845 if (success) { 13846 err = ipif_resolver_up(ipif, 13847 B_FALSE); 13848 if (err == EINPROGRESS) { 13849 freemsg(mp); 13850 return; 13851 } 13852 ASSERT(err != 0); 13853 mp1 = ipsq_pending_mp_get(ipsq, 13854 &connp); 13855 ASSERT(mp1 != NULL); 13856 } else { 13857 /* conn has started closing */ 13858 err = EINTR; 13859 } 13860 } else { /* Non XRESOLV interface */ 13861 err = ipif_up_done_v6(ipif); 13862 } 13863 } 13864 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 13865 /* 13866 * ARP and other v4 external resolvers. 13867 * Leave the pending mblk intact so that 13868 * the ioctl completes in ip_rput(). 13869 */ 13870 mutex_enter(&connp->conn_lock); 13871 mutex_enter(&ill->ill_lock); 13872 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 13873 mutex_exit(&ill->ill_lock); 13874 mutex_exit(&connp->conn_lock); 13875 if (success) { 13876 err = ipif_resolver_up(ipif, B_FALSE); 13877 if (err == EINPROGRESS) { 13878 freemsg(mp); 13879 return; 13880 } 13881 ASSERT(err != 0); 13882 mp1 = ipsq_pending_mp_get(ipsq, &connp); 13883 } else { 13884 /* The conn has started closing */ 13885 err = EINTR; 13886 } 13887 } else { 13888 /* 13889 * This one is complete. Reply to pending ioctl. 13890 */ 13891 err = ipif_up_done(ipif); 13892 } 13893 13894 if ((err == 0) && (ill->ill_up_ipifs)) { 13895 err = ill_up_ipifs(ill, q, mp1); 13896 if (err == EINPROGRESS) { 13897 freemsg(mp); 13898 return; 13899 } 13900 } 13901 13902 if (ill->ill_up_ipifs) { 13903 ill_group_cleanup(ill); 13904 } 13905 13906 break; 13907 case DL_NOTIFY_IND: { 13908 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 13909 ire_t *ire; 13910 boolean_t need_ire_walk_v4 = B_FALSE; 13911 boolean_t need_ire_walk_v6 = B_FALSE; 13912 13913 /* 13914 * Change the address everywhere we need to. 13915 * What we're getting here is a link-level addr or phys addr. 13916 * The new addr is at notify + notify->dl_addr_offset 13917 * The address length is notify->dl_addr_length; 13918 */ 13919 switch (notify->dl_notification) { 13920 case DL_NOTE_PHYS_ADDR: 13921 mp_hw = copyb(mp); 13922 if (mp_hw == NULL) { 13923 err = ENOMEM; 13924 break; 13925 } 13926 dlp = (union DL_primitives *)mp_hw->b_rptr; 13927 /* 13928 * We currently don't support changing 13929 * the token via DL_NOTIFY_IND. 13930 * When we do support it, we have to consider 13931 * what the implications are with respect to 13932 * the token and the link local address. 13933 */ 13934 mutex_enter(&ill->ill_lock); 13935 if (dlp->notify_ind.dl_data == 13936 DL_IPV6_LINK_LAYER_ADDR) { 13937 if (ill->ill_nd_lla_mp != NULL) 13938 freemsg(ill->ill_nd_lla_mp); 13939 ill->ill_nd_lla_mp = mp_hw; 13940 ill->ill_nd_lla = (uchar_t *)mp_hw->b_rptr + 13941 dlp->notify_ind.dl_addr_offset; 13942 ill->ill_nd_lla_len = 13943 dlp->notify_ind.dl_addr_length - 13944 ABS(ill->ill_sap_length); 13945 mutex_exit(&ill->ill_lock); 13946 break; 13947 } else if (dlp->notify_ind.dl_data == 13948 DL_CURR_PHYS_ADDR) { 13949 if (ill->ill_phys_addr_mp != NULL) 13950 freemsg(ill->ill_phys_addr_mp); 13951 ill->ill_phys_addr_mp = mp_hw; 13952 ill->ill_phys_addr = (uchar_t *)mp_hw->b_rptr + 13953 dlp->notify_ind.dl_addr_offset; 13954 ill->ill_phys_addr_length = 13955 dlp->notify_ind.dl_addr_length - 13956 ABS(ill->ill_sap_length); 13957 if (ill->ill_isv6 && 13958 !(ill->ill_flags & ILLF_XRESOLV)) { 13959 if (ill->ill_nd_lla_mp != NULL) 13960 freemsg(ill->ill_nd_lla_mp); 13961 ill->ill_nd_lla_mp = copyb(mp_hw); 13962 ill->ill_nd_lla = (uchar_t *) 13963 ill->ill_nd_lla_mp->b_rptr + 13964 dlp->notify_ind.dl_addr_offset; 13965 ill->ill_nd_lla_len = 13966 ill->ill_phys_addr_length; 13967 } 13968 } 13969 mutex_exit(&ill->ill_lock); 13970 /* 13971 * Send out gratuitous arp request for our new 13972 * hardware address. 13973 */ 13974 for (ipif = ill->ill_ipif; ipif != NULL; 13975 ipif = ipif->ipif_next) { 13976 if (!(ipif->ipif_flags & IPIF_UP)) 13977 continue; 13978 if (ill->ill_isv6) { 13979 ipif_ndp_down(ipif); 13980 /* 13981 * Set B_TRUE to enable 13982 * ipif_ndp_up() to send out 13983 * unsolicited advertisements. 13984 */ 13985 err = ipif_ndp_up(ipif, 13986 &ipif->ipif_v6lcl_addr, 13987 B_TRUE); 13988 if (err) { 13989 ip1dbg(( 13990 "ip_rput_dlpi_writer: " 13991 "Failed to update ndp " 13992 "err %d\n", err)); 13993 } 13994 } else { 13995 /* 13996 * IPv4 ARP case 13997 * 13998 * Set B_TRUE, as we only want 13999 * ipif_resolver_up to send an 14000 * AR_ENTRY_ADD request up to 14001 * ARP. 14002 */ 14003 err = ipif_resolver_up(ipif, 14004 B_TRUE); 14005 if (err) { 14006 ip1dbg(( 14007 "ip_rput_dlpi_writer: " 14008 "Failed to update arp " 14009 "err %d\n", err)); 14010 } 14011 } 14012 } 14013 /* 14014 * Allow "fall through" to the DL_NOTE_FASTPATH_FLUSH 14015 * case so that all old fastpath information can be 14016 * purged from IRE caches. 14017 */ 14018 /* FALLTHRU */ 14019 case DL_NOTE_FASTPATH_FLUSH: 14020 /* 14021 * Any fastpath probe sent henceforth will get the 14022 * new fp mp. So we first delete any ires that are 14023 * waiting for the fastpath. Then walk all ires and 14024 * delete the ire or delete the fp mp. In the case of 14025 * IRE_MIPRTUN and IRE_BROADCAST it is difficult to 14026 * recreate the ire's without going through a complex 14027 * ipif up/down dance. So we don't delete the ire 14028 * itself, but just the ire_fp_mp for these 2 ire's 14029 * In the case of the other ire's we delete the ire's 14030 * themselves. Access to ire_fp_mp is completely 14031 * protected by ire_lock for IRE_MIPRTUN and 14032 * IRE_BROADCAST. Deleting the ire is preferable in the 14033 * other cases for performance. 14034 */ 14035 if (ill->ill_isv6) { 14036 nce_fastpath_list_dispatch(ill, NULL, NULL); 14037 ndp_walk(ill, (pfi_t)ndp_fastpath_flush, 14038 NULL); 14039 } else { 14040 ire_fastpath_list_dispatch(ill, NULL, NULL); 14041 ire_walk_ill_v4(MATCH_IRE_WQ | MATCH_IRE_TYPE, 14042 IRE_CACHE | IRE_BROADCAST, 14043 ire_fastpath_flush, NULL, ill); 14044 mutex_enter(&ire_mrtun_lock); 14045 if (ire_mrtun_count != 0) { 14046 mutex_exit(&ire_mrtun_lock); 14047 ire_walk_ill_mrtun(MATCH_IRE_WQ, 14048 IRE_MIPRTUN, ire_fastpath_flush, 14049 NULL, ill); 14050 } else { 14051 mutex_exit(&ire_mrtun_lock); 14052 } 14053 } 14054 break; 14055 case DL_NOTE_SDU_SIZE: 14056 /* 14057 * Change the MTU size of the interface, of all 14058 * attached ipif's, and of all relevant ire's. The 14059 * new value's a uint32_t at notify->dl_data. 14060 * Mtu change Vs. new ire creation - protocol below. 14061 * 14062 * a Mark the ipif as IPIF_CHANGING. 14063 * b Set the new mtu in the ipif. 14064 * c Change the ire_max_frag on all affected ires 14065 * d Unmark the IPIF_CHANGING 14066 * 14067 * To see how the protocol works, assume an interface 14068 * route is also being added simultaneously by 14069 * ip_rt_add and let 'ipif' be the ipif referenced by 14070 * the ire. If the ire is created before step a, 14071 * it will be cleaned up by step c. If the ire is 14072 * created after step d, it will see the new value of 14073 * ipif_mtu. Any attempt to create the ire between 14074 * steps a to d will fail because of the IPIF_CHANGING 14075 * flag. Note that ire_create() is passed a pointer to 14076 * the ipif_mtu, and not the value. During ire_add 14077 * under the bucket lock, the ire_max_frag of the 14078 * new ire being created is set from the ipif/ire from 14079 * which it is being derived. 14080 */ 14081 mutex_enter(&ill->ill_lock); 14082 ill->ill_max_frag = (uint_t)notify->dl_data; 14083 14084 /* 14085 * If an SIOCSLIFLNKINFO has changed the ill_max_mtu 14086 * leave it alone 14087 */ 14088 if (ill->ill_mtu_userspecified) { 14089 mutex_exit(&ill->ill_lock); 14090 break; 14091 } 14092 ill->ill_max_mtu = ill->ill_max_frag; 14093 if (ill->ill_isv6) { 14094 if (ill->ill_max_mtu < IPV6_MIN_MTU) 14095 ill->ill_max_mtu = IPV6_MIN_MTU; 14096 } else { 14097 if (ill->ill_max_mtu < IP_MIN_MTU) 14098 ill->ill_max_mtu = IP_MIN_MTU; 14099 } 14100 for (ipif = ill->ill_ipif; ipif != NULL; 14101 ipif = ipif->ipif_next) { 14102 /* 14103 * Don't override the mtu if the user 14104 * has explicitly set it. 14105 */ 14106 if (ipif->ipif_flags & IPIF_FIXEDMTU) 14107 continue; 14108 ipif->ipif_mtu = (uint_t)notify->dl_data; 14109 if (ipif->ipif_isv6) 14110 ire = ipif_to_ire_v6(ipif); 14111 else 14112 ire = ipif_to_ire(ipif); 14113 if (ire != NULL) { 14114 ire->ire_max_frag = ipif->ipif_mtu; 14115 ire_refrele(ire); 14116 } 14117 if (ipif->ipif_flags & IPIF_UP) { 14118 if (ill->ill_isv6) 14119 need_ire_walk_v6 = B_TRUE; 14120 else 14121 need_ire_walk_v4 = B_TRUE; 14122 } 14123 } 14124 mutex_exit(&ill->ill_lock); 14125 if (need_ire_walk_v4) 14126 ire_walk_v4(ill_mtu_change, (char *)ill, 14127 ALL_ZONES); 14128 if (need_ire_walk_v6) 14129 ire_walk_v6(ill_mtu_change, (char *)ill, 14130 ALL_ZONES); 14131 break; 14132 case DL_NOTE_LINK_UP: 14133 case DL_NOTE_LINK_DOWN: { 14134 /* 14135 * We are writer. ill / phyint / ipsq assocs stable. 14136 * The RUNNING flag reflects the state of the link. 14137 */ 14138 phyint_t *phyint = ill->ill_phyint; 14139 uint64_t new_phyint_flags; 14140 boolean_t changed = B_FALSE; 14141 14142 mutex_enter(&phyint->phyint_lock); 14143 new_phyint_flags = 14144 (notify->dl_notification == DL_NOTE_LINK_UP) ? 14145 phyint->phyint_flags | PHYI_RUNNING : 14146 phyint->phyint_flags & ~PHYI_RUNNING; 14147 if (new_phyint_flags != phyint->phyint_flags) { 14148 phyint->phyint_flags = new_phyint_flags; 14149 changed = B_TRUE; 14150 } 14151 mutex_exit(&phyint->phyint_lock); 14152 /* 14153 * If the flags have changed, send a message to 14154 * the routing socket. 14155 */ 14156 if (changed) { 14157 if (phyint->phyint_illv4 != NULL) { 14158 ip_rts_ifmsg( 14159 phyint->phyint_illv4->ill_ipif); 14160 } 14161 if (phyint->phyint_illv6 != NULL) { 14162 ip_rts_ifmsg( 14163 phyint->phyint_illv6->ill_ipif); 14164 } 14165 } 14166 break; 14167 } 14168 case DL_NOTE_PROMISC_ON_PHYS: 14169 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 14170 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 14171 mutex_enter(&ill->ill_lock); 14172 ill->ill_promisc_on_phys = B_TRUE; 14173 mutex_exit(&ill->ill_lock); 14174 break; 14175 case DL_NOTE_PROMISC_OFF_PHYS: 14176 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 14177 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 14178 mutex_enter(&ill->ill_lock); 14179 ill->ill_promisc_on_phys = B_FALSE; 14180 mutex_exit(&ill->ill_lock); 14181 break; 14182 case DL_NOTE_CAPAB_RENEG: 14183 /* 14184 * Something changed on the driver side. 14185 * It wants us to renegotiate the capabilities 14186 * on this ill. The most likely cause is the 14187 * aggregation interface under us where a 14188 * port got added or went away. 14189 * 14190 * We reset the capabilities and set the 14191 * state to IDMS_RENG so that when the ack 14192 * comes back, we can start the 14193 * renegotiation process. 14194 */ 14195 ill_capability_reset(ill); 14196 ill->ill_capab_state = IDMS_RENEG; 14197 break; 14198 default: 14199 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 14200 "type 0x%x for DL_NOTIFY_IND\n", 14201 notify->dl_notification)); 14202 break; 14203 } 14204 14205 /* 14206 * As this is an asynchronous operation, we 14207 * should not call ill_dlpi_done 14208 */ 14209 break; 14210 } 14211 case DL_NOTIFY_ACK: 14212 /* 14213 * Don't really need to check for what notifications 14214 * are supported; we'll process what gets sent upstream, 14215 * and we know it'll be something we support changing 14216 * based on our DL_NOTIFY_REQ. 14217 */ 14218 ill_dlpi_done(ill, DL_NOTIFY_REQ); 14219 break; 14220 case DL_PHYS_ADDR_ACK: { 14221 /* 14222 * We should have an IOCTL waiting on this when request 14223 * sent by ill_dl_phys. 14224 * However, ill_dl_phys was called on an ill queue (from 14225 * SIOCSLIFNAME), thus conn_pending_ill is not set. But the 14226 * ioctl is known to be pending on ill_wq. 14227 * There are two additional phys_addr_req's sent to the 14228 * driver to get the token and lla. ill_phys_addr_pend 14229 * keeps track of the last one sent so we know which 14230 * response we are dealing with. ill_dlpi_done will 14231 * update ill_phys_addr_pend when it sends the next req. 14232 * We don't complete the IOCTL until all three DL_PARs 14233 * have been attempted. 14234 * 14235 * We don't need any lock to update ill_nd_lla* fields, 14236 * since the ill is not yet up, We grab the lock just 14237 * for uniformity with other code that accesses ill_nd_lla. 14238 */ 14239 physaddr_req = ill->ill_phys_addr_pend; 14240 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 14241 if (physaddr_req == DL_IPV6_TOKEN || 14242 physaddr_req == DL_IPV6_LINK_LAYER_ADDR) { 14243 if (physaddr_req == DL_IPV6_TOKEN) { 14244 /* 14245 * bcopy to low-order bits of ill_token 14246 * 14247 * XXX Temporary hack - currently, 14248 * all known tokens are 64 bits, 14249 * so I'll cheat for the moment. 14250 */ 14251 dlp = (union DL_primitives *)mp->b_rptr; 14252 14253 mutex_enter(&ill->ill_lock); 14254 bcopy((uchar_t *)(mp->b_rptr + 14255 dlp->physaddr_ack.dl_addr_offset), 14256 (void *)&ill->ill_token.s6_addr32[2], 14257 dlp->physaddr_ack.dl_addr_length); 14258 ill->ill_token_length = 14259 dlp->physaddr_ack.dl_addr_length; 14260 mutex_exit(&ill->ill_lock); 14261 } else { 14262 ASSERT(ill->ill_nd_lla_mp == NULL); 14263 mp_hw = copyb(mp); 14264 if (mp_hw == NULL) { 14265 err = ENOMEM; 14266 break; 14267 } 14268 dlp = (union DL_primitives *)mp_hw->b_rptr; 14269 mutex_enter(&ill->ill_lock); 14270 ill->ill_nd_lla_mp = mp_hw; 14271 ill->ill_nd_lla = (uchar_t *)mp_hw->b_rptr + 14272 dlp->physaddr_ack.dl_addr_offset; 14273 ill->ill_nd_lla_len = 14274 dlp->physaddr_ack.dl_addr_length; 14275 mutex_exit(&ill->ill_lock); 14276 } 14277 break; 14278 } 14279 ASSERT(physaddr_req == DL_CURR_PHYS_ADDR); 14280 ASSERT(ill->ill_phys_addr_mp == NULL); 14281 if (!ill->ill_ifname_pending) 14282 break; 14283 ill->ill_ifname_pending = 0; 14284 if (!ioctl_aborted) 14285 mp1 = ipsq_pending_mp_get(ipsq, &connp); 14286 if (mp1 != NULL) { 14287 ASSERT(connp == NULL); 14288 q = ill->ill_wq; 14289 } 14290 /* 14291 * If any error acks received during the plumbing sequence, 14292 * ill_ifname_pending_err will be set. Break out and send up 14293 * the error to the pending ioctl. 14294 */ 14295 if (ill->ill_ifname_pending_err != 0) { 14296 err = ill->ill_ifname_pending_err; 14297 ill->ill_ifname_pending_err = 0; 14298 break; 14299 } 14300 /* 14301 * Get the interface token. If the zeroth interface 14302 * address is zero then set the address to the link local 14303 * address 14304 */ 14305 mp_hw = copyb(mp); 14306 if (mp_hw == NULL) { 14307 err = ENOMEM; 14308 break; 14309 } 14310 dlp = (union DL_primitives *)mp_hw->b_rptr; 14311 ill->ill_phys_addr_mp = mp_hw; 14312 ill->ill_phys_addr = (uchar_t *)mp_hw->b_rptr + 14313 dlp->physaddr_ack.dl_addr_offset; 14314 if (dlp->physaddr_ack.dl_addr_length == 0 || 14315 ill->ill_phys_addr_length == 0 || 14316 ill->ill_phys_addr_length == IP_ADDR_LEN) { 14317 /* 14318 * Compatibility: atun driver returns a length of 0. 14319 * ipdptp has an ill_phys_addr_length of zero(from 14320 * DL_BIND_ACK) but a non-zero length here. 14321 * ipd has an ill_phys_addr_length of 4(from 14322 * DL_BIND_ACK) but a non-zero length here. 14323 */ 14324 ill->ill_phys_addr = NULL; 14325 } else if (dlp->physaddr_ack.dl_addr_length != 14326 ill->ill_phys_addr_length) { 14327 ip0dbg(("DL_PHYS_ADDR_ACK: " 14328 "Address length mismatch %d %d\n", 14329 dlp->physaddr_ack.dl_addr_length, 14330 ill->ill_phys_addr_length)); 14331 err = EINVAL; 14332 break; 14333 } 14334 mutex_enter(&ill->ill_lock); 14335 if (ill->ill_nd_lla_mp == NULL) { 14336 ill->ill_nd_lla_mp = copyb(mp_hw); 14337 if (ill->ill_nd_lla_mp == NULL) { 14338 err = ENOMEM; 14339 mutex_exit(&ill->ill_lock); 14340 break; 14341 } 14342 ill->ill_nd_lla = 14343 (uchar_t *)ill->ill_nd_lla_mp->b_rptr + 14344 dlp->physaddr_ack.dl_addr_offset; 14345 ill->ill_nd_lla_len = ill->ill_phys_addr_length; 14346 } 14347 mutex_exit(&ill->ill_lock); 14348 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 14349 (void) ill_setdefaulttoken(ill); 14350 14351 /* 14352 * If the ill zero interface has a zero address assign 14353 * it the proper link local address. 14354 */ 14355 ASSERT(ill->ill_ipif->ipif_id == 0); 14356 if (ipif != NULL && 14357 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 14358 (void) ipif_setlinklocal(ipif); 14359 break; 14360 } 14361 case DL_OK_ACK: 14362 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 14363 dlpi_prim_str((int)dloa->dl_correct_primitive), 14364 dloa->dl_correct_primitive)); 14365 switch (dloa->dl_correct_primitive) { 14366 case DL_UNBIND_REQ: 14367 case DL_ATTACH_REQ: 14368 case DL_DETACH_REQ: 14369 ill_dlpi_done(ill, dloa->dl_correct_primitive); 14370 break; 14371 } 14372 break; 14373 default: 14374 break; 14375 } 14376 14377 freemsg(mp); 14378 if (mp1) { 14379 struct iocblk *iocp; 14380 int mode; 14381 14382 /* 14383 * Complete the waiting IOCTL. For SIOCLIFADDIF or 14384 * SIOCSLIFNAME do a copyout. 14385 */ 14386 iocp = (struct iocblk *)mp1->b_rptr; 14387 14388 if (iocp->ioc_cmd == SIOCLIFADDIF || 14389 iocp->ioc_cmd == SIOCSLIFNAME) 14390 mode = COPYOUT; 14391 else 14392 mode = NO_COPYOUT; 14393 /* 14394 * The ioctl must complete now without EINPROGRESS 14395 * since ipsq_pending_mp_get has removed the ioctl mblk 14396 * from ipsq_pending_mp. Otherwise the ioctl will be 14397 * stuck for ever in the ipsq. 14398 */ 14399 ASSERT(err != EINPROGRESS); 14400 ip_ioctl_finish(q, mp1, err, mode, ipif, ipsq); 14401 14402 } 14403 } 14404 14405 /* 14406 * ip_rput_other is called by ip_rput to handle messages modifying the global 14407 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 14408 */ 14409 /* ARGSUSED */ 14410 void 14411 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 14412 { 14413 ill_t *ill; 14414 struct iocblk *iocp; 14415 mblk_t *mp1; 14416 conn_t *connp = NULL; 14417 14418 ip1dbg(("ip_rput_other ")); 14419 ill = (ill_t *)q->q_ptr; 14420 /* 14421 * This routine is not a writer in the case of SIOCGTUNPARAM 14422 * in which case ipsq is NULL. 14423 */ 14424 if (ipsq != NULL) { 14425 ASSERT(IAM_WRITER_IPSQ(ipsq)); 14426 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 14427 } 14428 14429 switch (mp->b_datap->db_type) { 14430 case M_ERROR: 14431 case M_HANGUP: 14432 /* 14433 * The device has a problem. We force the ILL down. It can 14434 * be brought up again manually using SIOCSIFFLAGS (via 14435 * ifconfig or equivalent). 14436 */ 14437 ASSERT(ipsq != NULL); 14438 if (mp->b_rptr < mp->b_wptr) 14439 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 14440 if (ill->ill_error == 0) 14441 ill->ill_error = ENXIO; 14442 if (!ill_down_start(q, mp)) 14443 return; 14444 ipif_all_down_tail(ipsq, q, mp, NULL); 14445 break; 14446 case M_IOCACK: 14447 iocp = (struct iocblk *)mp->b_rptr; 14448 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 14449 switch (iocp->ioc_cmd) { 14450 case SIOCSTUNPARAM: 14451 case OSIOCSTUNPARAM: 14452 ASSERT(ipsq != NULL); 14453 /* 14454 * Finish socket ioctl passed through to tun. 14455 * We should have an IOCTL waiting on this. 14456 */ 14457 mp1 = ipsq_pending_mp_get(ipsq, &connp); 14458 if (ill->ill_isv6) { 14459 struct iftun_req *ta; 14460 14461 /* 14462 * if a source or destination is 14463 * being set, try and set the link 14464 * local address for the tunnel 14465 */ 14466 ta = (struct iftun_req *)mp->b_cont-> 14467 b_cont->b_rptr; 14468 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 14469 ipif_set_tun_llink(ill, ta); 14470 } 14471 14472 } 14473 if (mp1 != NULL) { 14474 /* 14475 * Now copy back the b_next/b_prev used by 14476 * mi code for the mi_copy* functions. 14477 * See ip_sioctl_tunparam() for the reason. 14478 * Also protect against missing b_cont. 14479 */ 14480 if (mp->b_cont != NULL) { 14481 mp->b_cont->b_next = 14482 mp1->b_cont->b_next; 14483 mp->b_cont->b_prev = 14484 mp1->b_cont->b_prev; 14485 } 14486 ip_ioctl_freemsg(mp1); 14487 ASSERT(ipsq->ipsq_current_ipif != NULL); 14488 ASSERT(connp != NULL); 14489 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 14490 iocp->ioc_error, NO_COPYOUT, 14491 ipsq->ipsq_current_ipif, ipsq); 14492 } else { 14493 ASSERT(connp == NULL); 14494 putnext(q, mp); 14495 } 14496 break; 14497 case SIOCGTUNPARAM: 14498 case OSIOCGTUNPARAM: 14499 /* 14500 * This is really M_IOCDATA from the tunnel driver. 14501 * convert back and complete the ioctl. 14502 * We should have an IOCTL waiting on this. 14503 */ 14504 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 14505 if (mp1) { 14506 /* 14507 * Now copy back the b_next/b_prev used by 14508 * mi code for the mi_copy* functions. 14509 * See ip_sioctl_tunparam() for the reason. 14510 * Also protect against missing b_cont. 14511 */ 14512 if (mp->b_cont != NULL) { 14513 mp->b_cont->b_next = 14514 mp1->b_cont->b_next; 14515 mp->b_cont->b_prev = 14516 mp1->b_cont->b_prev; 14517 } 14518 ip_ioctl_freemsg(mp1); 14519 if (iocp->ioc_error == 0) 14520 mp->b_datap->db_type = M_IOCDATA; 14521 ASSERT(connp != NULL); 14522 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 14523 iocp->ioc_error, COPYOUT, NULL, NULL); 14524 } else { 14525 ASSERT(connp == NULL); 14526 putnext(q, mp); 14527 } 14528 break; 14529 default: 14530 break; 14531 } 14532 break; 14533 case M_IOCNAK: 14534 iocp = (struct iocblk *)mp->b_rptr; 14535 14536 switch (iocp->ioc_cmd) { 14537 int mode; 14538 ipif_t *ipif; 14539 14540 case DL_IOC_HDR_INFO: 14541 /* 14542 * If this was the first attempt turn of the 14543 * fastpath probing. 14544 */ 14545 mutex_enter(&ill->ill_lock); 14546 if (ill->ill_dlpi_fastpath_state == IDMS_INPROGRESS) { 14547 ill->ill_dlpi_fastpath_state = IDMS_FAILED; 14548 mutex_exit(&ill->ill_lock); 14549 ill_fastpath_nack(ill); 14550 ip1dbg(("ip_rput: DLPI fastpath off on " 14551 "interface %s\n", 14552 ill->ill_name)); 14553 } else { 14554 mutex_exit(&ill->ill_lock); 14555 } 14556 freemsg(mp); 14557 break; 14558 case SIOCSTUNPARAM: 14559 case OSIOCSTUNPARAM: 14560 ASSERT(ipsq != NULL); 14561 /* 14562 * Finish socket ioctl passed through to tun 14563 * We should have an IOCTL waiting on this. 14564 */ 14565 /* FALLTHRU */ 14566 case SIOCGTUNPARAM: 14567 case OSIOCGTUNPARAM: 14568 /* 14569 * This is really M_IOCDATA from the tunnel driver. 14570 * convert back and complete the ioctl. 14571 * We should have an IOCTL waiting on this. 14572 */ 14573 if (iocp->ioc_cmd == SIOCGTUNPARAM || 14574 iocp->ioc_cmd == OSIOCGTUNPARAM) { 14575 mp1 = ill_pending_mp_get(ill, &connp, 14576 iocp->ioc_id); 14577 mode = COPYOUT; 14578 ipsq = NULL; 14579 ipif = NULL; 14580 } else { 14581 mp1 = ipsq_pending_mp_get(ipsq, &connp); 14582 mode = NO_COPYOUT; 14583 ASSERT(ipsq->ipsq_current_ipif != NULL); 14584 ipif = ipsq->ipsq_current_ipif; 14585 } 14586 if (mp1 != NULL) { 14587 /* 14588 * Now copy back the b_next/b_prev used by 14589 * mi code for the mi_copy* functions. 14590 * See ip_sioctl_tunparam() for the reason. 14591 * Also protect against missing b_cont. 14592 */ 14593 if (mp->b_cont != NULL) { 14594 mp->b_cont->b_next = 14595 mp1->b_cont->b_next; 14596 mp->b_cont->b_prev = 14597 mp1->b_cont->b_prev; 14598 } 14599 ip_ioctl_freemsg(mp1); 14600 if (iocp->ioc_error == 0) 14601 iocp->ioc_error = EINVAL; 14602 ASSERT(connp != NULL); 14603 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 14604 iocp->ioc_error, mode, ipif, ipsq); 14605 } else { 14606 ASSERT(connp == NULL); 14607 putnext(q, mp); 14608 } 14609 break; 14610 default: 14611 break; 14612 } 14613 default: 14614 break; 14615 } 14616 } 14617 14618 /* 14619 * NOTE : This function does not ire_refrele the ire argument passed in. 14620 * 14621 * IPQoS notes 14622 * IP policy is invoked twice for a forwarded packet, once on the read side 14623 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 14624 * enabled. An additional parameter, in_ill, has been added for this purpose. 14625 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 14626 * because ip_mroute drops this information. 14627 * 14628 */ 14629 void 14630 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 14631 { 14632 uint32_t pkt_len; 14633 queue_t *q; 14634 uint32_t sum; 14635 #define rptr ((uchar_t *)ipha) 14636 uint32_t max_frag; 14637 uint32_t ill_index; 14638 14639 /* Get the ill_index of the incoming ILL */ 14640 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 14641 14642 /* Initiate Read side IPPF processing */ 14643 if (IPP_ENABLED(IPP_FWD_IN)) { 14644 ip_process(IPP_FWD_IN, &mp, ill_index); 14645 if (mp == NULL) { 14646 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 14647 "during IPPF processing\n")); 14648 return; 14649 } 14650 } 14651 pkt_len = ntohs(ipha->ipha_length); 14652 14653 /* Adjust the checksum to reflect the ttl decrement. */ 14654 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 14655 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 14656 14657 if (ipha->ipha_ttl-- <= 1) { 14658 if (ip_csum_hdr(ipha)) { 14659 BUMP_MIB(&ip_mib, ipInCksumErrs); 14660 goto drop_pkt; 14661 } 14662 /* 14663 * Note: ire_stq this will be NULL for multicast 14664 * datagrams using the long path through arp (the IRE 14665 * is not an IRE_CACHE). This should not cause 14666 * problems since we don't generate ICMP errors for 14667 * multicast packets. 14668 */ 14669 q = ire->ire_stq; 14670 if (q) 14671 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED); 14672 else 14673 freemsg(mp); 14674 return; 14675 } 14676 14677 /* 14678 * Don't forward if the interface is down 14679 */ 14680 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 14681 BUMP_MIB(&ip_mib, ipInDiscards); 14682 goto drop_pkt; 14683 } 14684 14685 /* Get the ill_index of the outgoing ILL */ 14686 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 14687 14688 /* Check if there are options to update */ 14689 if (!IS_SIMPLE_IPH(ipha)) { 14690 if (ip_csum_hdr(ipha)) { 14691 BUMP_MIB(&ip_mib, ipInCksumErrs); 14692 goto drop_pkt; 14693 } 14694 if (ip_rput_forward_options(mp, ipha, ire)) { 14695 return; 14696 } 14697 14698 ipha->ipha_hdr_checksum = 0; 14699 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14700 } 14701 max_frag = ire->ire_max_frag; 14702 if (pkt_len > max_frag) { 14703 /* 14704 * It needs fragging on its way out. We haven't 14705 * verified the header checksum yet. Since we 14706 * are going to put a surely good checksum in the 14707 * outgoing header, we have to make sure that it 14708 * was good coming in. 14709 */ 14710 if (ip_csum_hdr(ipha)) { 14711 BUMP_MIB(&ip_mib, ipInCksumErrs); 14712 goto drop_pkt; 14713 } 14714 /* Initiate Write side IPPF processing */ 14715 if (IPP_ENABLED(IPP_FWD_OUT)) { 14716 ip_process(IPP_FWD_OUT, &mp, ill_index); 14717 if (mp == NULL) { 14718 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 14719 " during IPPF processing\n")); 14720 return; 14721 } 14722 } 14723 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0); 14724 return; 14725 } 14726 14727 mp = ip_wput_attach_llhdr(mp, ire, IPP_FWD_OUT, ill_index); 14728 if (mp == NULL) { 14729 BUMP_MIB(&ip_mib, ipInDiscards); 14730 return; 14731 } 14732 14733 q = ire->ire_stq; 14734 UPDATE_IB_PKT_COUNT(ire); 14735 ire->ire_last_used_time = lbolt; 14736 BUMP_MIB(&ip_mib, ipForwDatagrams); 14737 putnext(q, mp); 14738 return; 14739 14740 drop_pkt:; 14741 ip1dbg(("ip_rput_forward: drop pkt\n")); 14742 freemsg(mp); 14743 #undef rptr 14744 } 14745 14746 void 14747 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 14748 { 14749 ire_t *ire; 14750 14751 ASSERT(!ipif->ipif_isv6); 14752 /* 14753 * Find an IRE which matches the destination and the outgoing 14754 * queue in the cache table. All we need is an IRE_CACHE which 14755 * is pointing at ipif->ipif_ill. If it is part of some ill group, 14756 * then it is enough to have some IRE_CACHE in the group. 14757 */ 14758 if (ipif->ipif_flags & IPIF_POINTOPOINT) 14759 dst = ipif->ipif_pp_dst_addr; 14760 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, 14761 MATCH_IRE_ILL_GROUP); 14762 if (!ire) { 14763 /* 14764 * Mark this packet to make it be delivered to 14765 * ip_rput_forward after the new ire has been 14766 * created. 14767 */ 14768 mp->b_prev = NULL; 14769 mp->b_next = mp; 14770 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 14771 NULL, 0); 14772 } else { 14773 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 14774 IRE_REFRELE(ire); 14775 } 14776 } 14777 14778 /* Update any source route, record route or timestamp options */ 14779 static int 14780 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire) 14781 { 14782 ipoptp_t opts; 14783 uchar_t *opt; 14784 uint8_t optval; 14785 uint8_t optlen; 14786 ipaddr_t dst; 14787 uint32_t ts; 14788 ire_t *dst_ire = NULL; 14789 ire_t *tmp_ire = NULL; 14790 timestruc_t now; 14791 14792 ip2dbg(("ip_rput_forward_options\n")); 14793 dst = ipha->ipha_dst; 14794 for (optval = ipoptp_first(&opts, ipha); 14795 optval != IPOPT_EOL; 14796 optval = ipoptp_next(&opts)) { 14797 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 14798 opt = opts.ipoptp_cur; 14799 optlen = opts.ipoptp_len; 14800 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 14801 optval, opts.ipoptp_len)); 14802 switch (optval) { 14803 uint32_t off; 14804 case IPOPT_SSRR: 14805 case IPOPT_LSRR: 14806 /* Check if adminstratively disabled */ 14807 if (!ip_forward_src_routed) { 14808 BUMP_MIB(&ip_mib, ipForwProhibits); 14809 if (ire->ire_stq) 14810 icmp_unreachable(ire->ire_stq, mp, 14811 ICMP_SOURCE_ROUTE_FAILED); 14812 else { 14813 ip0dbg(("ip_rput_forward_options: " 14814 "unable to send unreach\n")); 14815 freemsg(mp); 14816 } 14817 return (-1); 14818 } 14819 14820 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 14821 NULL, ALL_ZONES, MATCH_IRE_TYPE); 14822 if (dst_ire == NULL) { 14823 /* 14824 * Must be partial since ip_rput_options 14825 * checked for strict. 14826 */ 14827 break; 14828 } 14829 off = opt[IPOPT_OFFSET]; 14830 off--; 14831 redo_srr: 14832 if (optlen < IP_ADDR_LEN || 14833 off > optlen - IP_ADDR_LEN) { 14834 /* End of source route */ 14835 ip1dbg(( 14836 "ip_rput_forward_options: end of SR\n")); 14837 ire_refrele(dst_ire); 14838 break; 14839 } 14840 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 14841 bcopy(&ire->ire_src_addr, (char *)opt + off, 14842 IP_ADDR_LEN); 14843 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 14844 ntohl(dst))); 14845 14846 /* 14847 * Check if our address is present more than 14848 * once as consecutive hops in source route. 14849 */ 14850 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 14851 NULL, ALL_ZONES, MATCH_IRE_TYPE); 14852 if (tmp_ire != NULL) { 14853 ire_refrele(tmp_ire); 14854 off += IP_ADDR_LEN; 14855 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 14856 goto redo_srr; 14857 } 14858 ipha->ipha_dst = dst; 14859 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 14860 ire_refrele(dst_ire); 14861 break; 14862 case IPOPT_RR: 14863 off = opt[IPOPT_OFFSET]; 14864 off--; 14865 if (optlen < IP_ADDR_LEN || 14866 off > optlen - IP_ADDR_LEN) { 14867 /* No more room - ignore */ 14868 ip1dbg(( 14869 "ip_rput_forward_options: end of RR\n")); 14870 break; 14871 } 14872 bcopy(&ire->ire_src_addr, (char *)opt + off, 14873 IP_ADDR_LEN); 14874 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 14875 break; 14876 case IPOPT_TS: 14877 /* Insert timestamp if there is room */ 14878 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 14879 case IPOPT_TS_TSONLY: 14880 off = IPOPT_TS_TIMELEN; 14881 break; 14882 case IPOPT_TS_PRESPEC: 14883 case IPOPT_TS_PRESPEC_RFC791: 14884 /* Verify that the address matched */ 14885 off = opt[IPOPT_OFFSET] - 1; 14886 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 14887 dst_ire = ire_ctable_lookup(dst, 0, 14888 IRE_LOCAL, NULL, ALL_ZONES, MATCH_IRE_TYPE); 14889 if (dst_ire == NULL) { 14890 /* Not for us */ 14891 break; 14892 } 14893 ire_refrele(dst_ire); 14894 /* FALLTHRU */ 14895 case IPOPT_TS_TSANDADDR: 14896 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 14897 break; 14898 default: 14899 /* 14900 * ip_*put_options should have already 14901 * dropped this packet. 14902 */ 14903 cmn_err(CE_PANIC, "ip_rput_forward_options: " 14904 "unknown IT - bug in ip_rput_options?\n"); 14905 return (0); /* Keep "lint" happy */ 14906 } 14907 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 14908 /* Increase overflow counter */ 14909 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 14910 opt[IPOPT_POS_OV_FLG] = 14911 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 14912 (off << 4)); 14913 break; 14914 } 14915 off = opt[IPOPT_OFFSET] - 1; 14916 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 14917 case IPOPT_TS_PRESPEC: 14918 case IPOPT_TS_PRESPEC_RFC791: 14919 case IPOPT_TS_TSANDADDR: 14920 bcopy(&ire->ire_src_addr, 14921 (char *)opt + off, IP_ADDR_LEN); 14922 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 14923 /* FALLTHRU */ 14924 case IPOPT_TS_TSONLY: 14925 off = opt[IPOPT_OFFSET] - 1; 14926 /* Compute # of milliseconds since midnight */ 14927 gethrestime(&now); 14928 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 14929 now.tv_nsec / (NANOSEC / MILLISEC); 14930 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 14931 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 14932 break; 14933 } 14934 break; 14935 } 14936 } 14937 return (0); 14938 } 14939 14940 /* 14941 * This is called after processing at least one of AH/ESP headers. 14942 * 14943 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 14944 * the actual, physical interface on which the packet was received, 14945 * but, when ip_strict_dst_multihoming is set to 1, could be the 14946 * interface which had the ipha_dst configured when the packet went 14947 * through ip_rput. The ill_index corresponding to the recv_ill 14948 * is saved in ipsec_in_rill_index 14949 */ 14950 void 14951 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 14952 { 14953 mblk_t *mp; 14954 ipaddr_t dst; 14955 in6_addr_t *v6dstp; 14956 ipha_t *ipha; 14957 ip6_t *ip6h; 14958 ipsec_in_t *ii; 14959 boolean_t ill_need_rele = B_FALSE; 14960 boolean_t rill_need_rele = B_FALSE; 14961 boolean_t ire_need_rele = B_FALSE; 14962 14963 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 14964 ASSERT(ii->ipsec_in_ill_index != 0); 14965 14966 mp = ipsec_mp->b_cont; 14967 ASSERT(mp != NULL); 14968 14969 14970 if (ill == NULL) { 14971 ASSERT(recv_ill == NULL); 14972 /* 14973 * We need to get the original queue on which ip_rput_local 14974 * or ip_rput_data_v6 was called. 14975 */ 14976 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 14977 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL); 14978 ill_need_rele = B_TRUE; 14979 14980 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 14981 recv_ill = ill_lookup_on_ifindex( 14982 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 14983 NULL, NULL, NULL, NULL); 14984 rill_need_rele = B_TRUE; 14985 } else { 14986 recv_ill = ill; 14987 } 14988 14989 if ((ill == NULL) || (recv_ill == NULL)) { 14990 ip0dbg(("ip_fanout_proto_again: interface " 14991 "disappeared\n")); 14992 if (ill != NULL) 14993 ill_refrele(ill); 14994 if (recv_ill != NULL) 14995 ill_refrele(recv_ill); 14996 freemsg(ipsec_mp); 14997 return; 14998 } 14999 } 15000 15001 ASSERT(ill != NULL && recv_ill != NULL); 15002 15003 if (mp->b_datap->db_type == M_CTL) { 15004 /* 15005 * AH/ESP is returning the ICMP message after 15006 * removing their headers. Fanout again till 15007 * it gets to the right protocol. 15008 */ 15009 if (ii->ipsec_in_v4) { 15010 icmph_t *icmph; 15011 int iph_hdr_length; 15012 int hdr_length; 15013 15014 ipha = (ipha_t *)mp->b_rptr; 15015 iph_hdr_length = IPH_HDR_LENGTH(ipha); 15016 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 15017 ipha = (ipha_t *)&icmph[1]; 15018 hdr_length = IPH_HDR_LENGTH(ipha); 15019 /* 15020 * icmp_inbound_error_fanout may need to do pullupmsg. 15021 * Reset the type to M_DATA. 15022 */ 15023 mp->b_datap->db_type = M_DATA; 15024 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 15025 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 15026 B_FALSE, ill, ii->ipsec_in_zoneid); 15027 } else { 15028 icmp6_t *icmp6; 15029 int hdr_length; 15030 15031 ip6h = (ip6_t *)mp->b_rptr; 15032 /* Don't call hdr_length_v6() unless you have to. */ 15033 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 15034 hdr_length = ip_hdr_length_v6(mp, ip6h); 15035 else 15036 hdr_length = IPV6_HDR_LEN; 15037 15038 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 15039 /* 15040 * icmp_inbound_error_fanout_v6 may need to do 15041 * pullupmsg. Reset the type to M_DATA. 15042 */ 15043 mp->b_datap->db_type = M_DATA; 15044 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 15045 ip6h, icmp6, ill, B_TRUE, ii->ipsec_in_zoneid); 15046 } 15047 if (ill_need_rele) 15048 ill_refrele(ill); 15049 if (rill_need_rele) 15050 ill_refrele(recv_ill); 15051 return; 15052 } 15053 15054 if (ii->ipsec_in_v4) { 15055 ipha = (ipha_t *)mp->b_rptr; 15056 dst = ipha->ipha_dst; 15057 if (CLASSD(dst)) { 15058 /* 15059 * Multicast has to be delivered to all streams. 15060 */ 15061 dst = INADDR_BROADCAST; 15062 } 15063 15064 if (ire == NULL) { 15065 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid); 15066 if (ire == NULL) { 15067 if (ill_need_rele) 15068 ill_refrele(ill); 15069 if (rill_need_rele) 15070 ill_refrele(recv_ill); 15071 ip1dbg(("ip_fanout_proto_again: " 15072 "IRE not found")); 15073 freemsg(ipsec_mp); 15074 return; 15075 } 15076 ire_need_rele = B_TRUE; 15077 } 15078 15079 switch (ipha->ipha_protocol) { 15080 case IPPROTO_UDP: 15081 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 15082 recv_ill); 15083 if (ire_need_rele) 15084 ire_refrele(ire); 15085 break; 15086 case IPPROTO_TCP: 15087 if (!ire_need_rele) 15088 IRE_REFHOLD(ire); 15089 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 15090 ire, ipsec_mp, 0, ill->ill_rq, NULL); 15091 IRE_REFRELE(ire); 15092 if (mp != NULL) 15093 squeue_enter_chain(GET_SQUEUE(mp), mp, 15094 mp, 1, SQTAG_IP_PROTO_AGAIN); 15095 break; 15096 case IPPROTO_SCTP: 15097 if (!ire_need_rele) 15098 IRE_REFHOLD(ire); 15099 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 15100 ipsec_mp, 0, ill->ill_rq, dst); 15101 break; 15102 default: 15103 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 15104 recv_ill); 15105 if (ire_need_rele) 15106 ire_refrele(ire); 15107 break; 15108 } 15109 } else { 15110 uint32_t rput_flags = 0; 15111 15112 ip6h = (ip6_t *)mp->b_rptr; 15113 v6dstp = &ip6h->ip6_dst; 15114 /* 15115 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 15116 * address. 15117 * 15118 * Currently, we don't store that state in the IPSEC_IN 15119 * message, and we may need to. 15120 */ 15121 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 15122 IP6_IN_LLMCAST : 0); 15123 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 15124 NULL); 15125 } 15126 if (ill_need_rele) 15127 ill_refrele(ill); 15128 if (rill_need_rele) 15129 ill_refrele(recv_ill); 15130 } 15131 15132 /* 15133 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 15134 * returns 'true' if there are still fragments left on the queue, in 15135 * which case we restart the timer. 15136 */ 15137 void 15138 ill_frag_timer(void *arg) 15139 { 15140 ill_t *ill = (ill_t *)arg; 15141 boolean_t frag_pending; 15142 15143 mutex_enter(&ill->ill_lock); 15144 ASSERT(!ill->ill_fragtimer_executing); 15145 if (ill->ill_state_flags & ILL_CONDEMNED) { 15146 ill->ill_frag_timer_id = 0; 15147 mutex_exit(&ill->ill_lock); 15148 return; 15149 } 15150 ill->ill_fragtimer_executing = 1; 15151 mutex_exit(&ill->ill_lock); 15152 15153 frag_pending = ill_frag_timeout(ill, ip_g_frag_timeout); 15154 15155 /* 15156 * Restart the timer, if we have fragments pending or if someone 15157 * wanted us to be scheduled again. 15158 */ 15159 mutex_enter(&ill->ill_lock); 15160 ill->ill_fragtimer_executing = 0; 15161 ill->ill_frag_timer_id = 0; 15162 if (frag_pending || ill->ill_fragtimer_needrestart) 15163 ill_frag_timer_start(ill); 15164 mutex_exit(&ill->ill_lock); 15165 } 15166 15167 void 15168 ill_frag_timer_start(ill_t *ill) 15169 { 15170 ASSERT(MUTEX_HELD(&ill->ill_lock)); 15171 15172 /* If the ill is closing or opening don't proceed */ 15173 if (ill->ill_state_flags & ILL_CONDEMNED) 15174 return; 15175 15176 if (ill->ill_fragtimer_executing) { 15177 /* 15178 * ill_frag_timer is currently executing. Just record the 15179 * the fact that we want the timer to be restarted. 15180 * ill_frag_timer will post a timeout before it returns, 15181 * ensuring it will be called again. 15182 */ 15183 ill->ill_fragtimer_needrestart = 1; 15184 return; 15185 } 15186 15187 if (ill->ill_frag_timer_id == 0) { 15188 /* 15189 * The timer is neither running nor is the timeout handler 15190 * executing. Post a timeout so that ill_frag_timer will be 15191 * called 15192 */ 15193 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 15194 MSEC_TO_TICK(ip_g_frag_timo_ms >> 1)); 15195 ill->ill_fragtimer_needrestart = 0; 15196 } 15197 } 15198 15199 /* 15200 * This routine is needed for loopback when forwarding multicasts. 15201 * 15202 * IPQoS Notes: 15203 * IPPF processing is done in fanout routines. 15204 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 15205 * processing for IPSec packets is done when it comes back in clear. 15206 * NOTE : The callers of this function need to do the ire_refrele for the 15207 * ire that is being passed in. 15208 */ 15209 void 15210 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 15211 ill_t *recv_ill) 15212 { 15213 ill_t *ill = (ill_t *)q->q_ptr; 15214 uint32_t sum; 15215 uint32_t u1; 15216 uint32_t u2; 15217 int hdr_length; 15218 boolean_t mctl_present; 15219 mblk_t *first_mp = mp; 15220 mblk_t *hada_mp = NULL; 15221 ipha_t *inner_ipha; 15222 15223 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 15224 "ip_rput_locl_start: q %p", q); 15225 15226 ASSERT(ire->ire_ipversion == IPV4_VERSION); 15227 15228 15229 #define rptr ((uchar_t *)ipha) 15230 #define iphs ((uint16_t *)ipha) 15231 15232 /* 15233 * no UDP or TCP packet should come here anymore. 15234 */ 15235 ASSERT((ipha->ipha_protocol != IPPROTO_TCP) && 15236 (ipha->ipha_protocol != IPPROTO_UDP)); 15237 15238 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 15239 if (mctl_present && 15240 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 15241 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 15242 15243 /* 15244 * It's an IPsec accelerated packet. 15245 * Keep a pointer to the data attributes around until 15246 * we allocate the ipsec_info_t. 15247 */ 15248 IPSECHW_DEBUG(IPSECHW_PKT, 15249 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 15250 hada_mp = first_mp; 15251 hada_mp->b_cont = NULL; 15252 /* 15253 * Since it is accelerated, it comes directly from 15254 * the ill and the data attributes is followed by 15255 * the packet data. 15256 */ 15257 ASSERT(mp->b_datap->db_type != M_CTL); 15258 first_mp = mp; 15259 mctl_present = B_FALSE; 15260 } 15261 15262 /* 15263 * IF M_CTL is not present, then ipsec_in_is_secure 15264 * should return B_TRUE. There is a case where loopback 15265 * packets has an M_CTL in the front with all the 15266 * IPSEC options set to IPSEC_PREF_NEVER - which means 15267 * ipsec_in_is_secure will return B_FALSE. As loopback 15268 * packets never comes here, it is safe to ASSERT the 15269 * following. 15270 */ 15271 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 15272 15273 15274 /* u1 is # words of IP options */ 15275 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 15276 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 15277 15278 if (u1) { 15279 if (!ip_options_cksum(q, mp, ipha, ire)) { 15280 if (hada_mp != NULL) 15281 freemsg(hada_mp); 15282 return; 15283 } 15284 } else { 15285 /* Check the IP header checksum. */ 15286 #define uph ((uint16_t *)ipha) 15287 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 15288 uph[6] + uph[7] + uph[8] + uph[9]; 15289 #undef uph 15290 /* finish doing IP checksum */ 15291 sum = (sum & 0xFFFF) + (sum >> 16); 15292 sum = ~(sum + (sum >> 16)) & 0xFFFF; 15293 /* 15294 * Don't verify header checksum if this packet is coming 15295 * back from AH/ESP as we already did it. 15296 */ 15297 if (!mctl_present && (sum && sum != 0xFFFF)) { 15298 BUMP_MIB(&ip_mib, ipInCksumErrs); 15299 goto drop_pkt; 15300 } 15301 } 15302 15303 /* 15304 * Count for SNMP of inbound packets for ire. As ip_proto_input 15305 * might be called more than once for secure packets, count only 15306 * the first time. 15307 */ 15308 if (!mctl_present) { 15309 UPDATE_IB_PKT_COUNT(ire); 15310 ire->ire_last_used_time = lbolt; 15311 } 15312 15313 /* Check for fragmentation offset. */ 15314 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 15315 u1 = u2 & (IPH_MF | IPH_OFFSET); 15316 if (u1) { 15317 /* 15318 * We re-assemble fragments before we do the AH/ESP 15319 * processing. Thus, M_CTL should not be present 15320 * while we are re-assembling. 15321 */ 15322 ASSERT(!mctl_present); 15323 ASSERT(first_mp == mp); 15324 if (!ip_rput_fragment(q, &mp, ipha)) { 15325 return; 15326 } 15327 /* 15328 * Make sure that first_mp points back to mp as 15329 * the mp we came in with could have changed in 15330 * ip_rput_fragment(). 15331 */ 15332 ipha = (ipha_t *)mp->b_rptr; 15333 first_mp = mp; 15334 } 15335 15336 /* 15337 * Clear hardware checksumming flag as it is currently only 15338 * used by TCP and UDP. 15339 */ 15340 mp->b_datap->db_struioun.cksum.flags = 0; 15341 15342 /* Now we have a complete datagram, destined for this machine. */ 15343 u1 = IPH_HDR_LENGTH(ipha); 15344 switch (ipha->ipha_protocol) { 15345 case IPPROTO_ICMP: { 15346 ire_t *ire_zone; 15347 ilm_t *ilm; 15348 mblk_t *mp1; 15349 zoneid_t last_zoneid; 15350 15351 if (CLASSD(ipha->ipha_dst) && 15352 !(recv_ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) { 15353 ASSERT(ire->ire_type == IRE_BROADCAST); 15354 /* 15355 * In the multicast case, applications may have joined 15356 * the group from different zones, so we need to deliver 15357 * the packet to each of them. Loop through the 15358 * multicast memberships structures (ilm) on the receive 15359 * ill and send a copy of the packet up each matching 15360 * one. However, we don't do this for multicasts sent on 15361 * the loopback interface (PHYI_LOOPBACK flag set) as 15362 * they must stay in the sender's zone. 15363 * 15364 * ilm_add_v6() ensures that ilms in the same zone are 15365 * contiguous in the ill_ilm list. We use this property 15366 * to avoid sending duplicates needed when two 15367 * applications in the same zone join the same group on 15368 * different logical interfaces: we ignore the ilm if 15369 * its zoneid is the same as the last matching one. 15370 * In addition, the sending of the packet for 15371 * ire_zoneid is delayed until all of the other ilms 15372 * have been exhausted. 15373 */ 15374 last_zoneid = -1; 15375 ILM_WALKER_HOLD(recv_ill); 15376 for (ilm = recv_ill->ill_ilm; ilm != NULL; 15377 ilm = ilm->ilm_next) { 15378 if ((ilm->ilm_flags & ILM_DELETED) || 15379 ipha->ipha_dst != ilm->ilm_addr || 15380 ilm->ilm_zoneid == last_zoneid || 15381 ilm->ilm_zoneid == ire->ire_zoneid || 15382 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 15383 continue; 15384 mp1 = ip_copymsg(first_mp); 15385 if (mp1 == NULL) 15386 continue; 15387 icmp_inbound(q, mp1, B_TRUE, ill, 15388 0, sum, mctl_present, B_TRUE, 15389 recv_ill, ilm->ilm_zoneid); 15390 last_zoneid = ilm->ilm_zoneid; 15391 } 15392 ILM_WALKER_RELE(recv_ill); 15393 } else if (ire->ire_type == IRE_BROADCAST) { 15394 /* 15395 * In the broadcast case, there may be many zones 15396 * which need a copy of the packet delivered to them. 15397 * There is one IRE_BROADCAST per broadcast address 15398 * and per zone; we walk those using a helper function. 15399 * In addition, the sending of the packet for ire is 15400 * delayed until all of the other ires have been 15401 * processed. 15402 */ 15403 IRB_REFHOLD(ire->ire_bucket); 15404 ire_zone = NULL; 15405 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 15406 ire)) != NULL) { 15407 mp1 = ip_copymsg(first_mp); 15408 if (mp1 == NULL) 15409 continue; 15410 15411 UPDATE_IB_PKT_COUNT(ire_zone); 15412 ire_zone->ire_last_used_time = lbolt; 15413 icmp_inbound(q, mp1, B_TRUE, ill, 15414 0, sum, mctl_present, B_TRUE, 15415 recv_ill, ire_zone->ire_zoneid); 15416 } 15417 IRB_REFRELE(ire->ire_bucket); 15418 } 15419 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 15420 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 15421 ire->ire_zoneid); 15422 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 15423 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 15424 return; 15425 } 15426 case IPPROTO_IGMP: 15427 /* 15428 * If we are not willing to accept IGMP packets in clear, 15429 * then check with global policy. 15430 */ 15431 if (igmp_accept_clear_messages == 0) { 15432 first_mp = ipsec_check_global_policy(first_mp, NULL, 15433 ipha, NULL, mctl_present); 15434 if (first_mp == NULL) 15435 return; 15436 } 15437 if (igmp_input(q, mp, ill)) { 15438 /* Bad packet - discarded by igmp_input */ 15439 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 15440 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 15441 if (mctl_present) 15442 freeb(first_mp); 15443 return; 15444 } 15445 /* 15446 * igmp_input() may have pulled up the message so ipha needs to 15447 * be reinitialized. 15448 */ 15449 ipha = (ipha_t *)mp->b_rptr; 15450 if (ipcl_proto_search(ipha->ipha_protocol) == NULL) { 15451 /* No user-level listener for IGMP packets */ 15452 goto drop_pkt; 15453 } 15454 /* deliver to local raw users */ 15455 break; 15456 case IPPROTO_PIM: 15457 /* 15458 * If we are not willing to accept PIM packets in clear, 15459 * then check with global policy. 15460 */ 15461 if (pim_accept_clear_messages == 0) { 15462 first_mp = ipsec_check_global_policy(first_mp, NULL, 15463 ipha, NULL, mctl_present); 15464 if (first_mp == NULL) 15465 return; 15466 } 15467 if (pim_input(q, mp) != 0) { 15468 /* Bad packet - discarded by pim_input */ 15469 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 15470 "ip_rput_locl_end: q %p (%S)", q, "pim"); 15471 if (mctl_present) 15472 freeb(first_mp); 15473 return; 15474 } 15475 15476 /* 15477 * pim_input() may have pulled up the message so ipha needs to 15478 * be reinitialized. 15479 */ 15480 ipha = (ipha_t *)mp->b_rptr; 15481 if (ipcl_proto_search(ipha->ipha_protocol) == NULL) { 15482 /* No user-level listener for PIM packets */ 15483 goto drop_pkt; 15484 } 15485 /* deliver to local raw users */ 15486 break; 15487 case IPPROTO_ENCAP: 15488 /* 15489 * Handle self-encapsulated packets (IP-in-IP where 15490 * the inner addresses == the outer addresses). 15491 */ 15492 hdr_length = IPH_HDR_LENGTH(ipha); 15493 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 15494 mp->b_wptr) { 15495 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 15496 sizeof (ipha_t) - mp->b_rptr)) { 15497 BUMP_MIB(&ip_mib, ipInDiscards); 15498 freemsg(first_mp); 15499 return; 15500 } 15501 ipha = (ipha_t *)mp->b_rptr; 15502 } 15503 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 15504 /* 15505 * Check the sanity of the inner IP header. 15506 */ 15507 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 15508 BUMP_MIB(&ip_mib, ipInDiscards); 15509 freemsg(first_mp); 15510 return; 15511 } 15512 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 15513 BUMP_MIB(&ip_mib, ipInDiscards); 15514 freemsg(first_mp); 15515 return; 15516 } 15517 if (inner_ipha->ipha_src == ipha->ipha_src && 15518 inner_ipha->ipha_dst == ipha->ipha_dst) { 15519 ipsec_in_t *ii; 15520 15521 /* 15522 * Self-encapsulated tunnel packet. Remove 15523 * the outer IP header and fanout again. 15524 * We also need to make sure that the inner 15525 * header is pulled up until options. 15526 */ 15527 mp->b_rptr = (uchar_t *)inner_ipha; 15528 ipha = inner_ipha; 15529 hdr_length = IPH_HDR_LENGTH(ipha); 15530 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 15531 if (!pullupmsg(mp, (uchar_t *)ipha + 15532 + hdr_length - mp->b_rptr)) { 15533 freemsg(first_mp); 15534 return; 15535 } 15536 ipha = (ipha_t *)mp->b_rptr; 15537 } 15538 if (!mctl_present) { 15539 ASSERT(first_mp == mp); 15540 /* 15541 * This means that somebody is sending 15542 * Self-encapsualted packets without AH/ESP. 15543 * If AH/ESP was present, we would have already 15544 * allocated the first_mp. 15545 */ 15546 if ((first_mp = ipsec_in_alloc(B_TRUE)) == 15547 NULL) { 15548 ip1dbg(("ip_proto_input: IPSEC_IN " 15549 "allocation failure.\n")); 15550 BUMP_MIB(&ip_mib, ipInDiscards); 15551 freemsg(mp); 15552 return; 15553 } 15554 first_mp->b_cont = mp; 15555 } 15556 /* 15557 * We generally store the ill_index if we need to 15558 * do IPSEC processing as we lose the ill queue when 15559 * we come back. But in this case, we never should 15560 * have to store the ill_index here as it should have 15561 * been stored previously when we processed the 15562 * AH/ESP header in this routine or for non-ipsec 15563 * cases, we still have the queue. But for some bad 15564 * packets from the wire, we can get to IPSEC after 15565 * this and we better store the index for that case. 15566 */ 15567 ill = (ill_t *)q->q_ptr; 15568 ii = (ipsec_in_t *)first_mp->b_rptr; 15569 ii->ipsec_in_ill_index = 15570 ill->ill_phyint->phyint_ifindex; 15571 ii->ipsec_in_rill_index = 15572 recv_ill->ill_phyint->phyint_ifindex; 15573 if (ii->ipsec_in_decaps) { 15574 /* 15575 * This packet is self-encapsulated multiple 15576 * times. We don't want to recurse infinitely. 15577 * To keep it simple, drop the packet. 15578 */ 15579 BUMP_MIB(&ip_mib, ipInDiscards); 15580 freemsg(first_mp); 15581 return; 15582 } 15583 ii->ipsec_in_decaps = B_TRUE; 15584 ip_proto_input(q, first_mp, ipha, ire, recv_ill); 15585 return; 15586 } 15587 break; 15588 case IPPROTO_AH: 15589 case IPPROTO_ESP: { 15590 /* 15591 * Fast path for AH/ESP. If this is the first time 15592 * we are sending a datagram to AH/ESP, allocate 15593 * a IPSEC_IN message and prepend it. Otherwise, 15594 * just fanout. 15595 */ 15596 15597 int ipsec_rc; 15598 ipsec_in_t *ii; 15599 15600 IP_STAT(ipsec_proto_ahesp); 15601 if (!mctl_present) { 15602 ASSERT(first_mp == mp); 15603 if ((first_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 15604 ip1dbg(("ip_proto_input: IPSEC_IN " 15605 "allocation failure.\n")); 15606 freemsg(hada_mp); /* okay ifnull */ 15607 BUMP_MIB(&ip_mib, ipInDiscards); 15608 freemsg(mp); 15609 return; 15610 } 15611 /* 15612 * Store the ill_index so that when we come back 15613 * from IPSEC we ride on the same queue. 15614 */ 15615 ill = (ill_t *)q->q_ptr; 15616 ii = (ipsec_in_t *)first_mp->b_rptr; 15617 ii->ipsec_in_ill_index = 15618 ill->ill_phyint->phyint_ifindex; 15619 ii->ipsec_in_rill_index = 15620 recv_ill->ill_phyint->phyint_ifindex; 15621 first_mp->b_cont = mp; 15622 /* 15623 * Cache hardware acceleration info. 15624 */ 15625 if (hada_mp != NULL) { 15626 IPSECHW_DEBUG(IPSECHW_PKT, 15627 ("ip_rput_local: caching data attr.\n")); 15628 ii->ipsec_in_accelerated = B_TRUE; 15629 ii->ipsec_in_da = hada_mp; 15630 hada_mp = NULL; 15631 } 15632 } else { 15633 ii = (ipsec_in_t *)first_mp->b_rptr; 15634 } 15635 15636 if (!ipsec_loaded()) { 15637 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 15638 ire->ire_zoneid); 15639 return; 15640 } 15641 15642 /* select inbound SA and have IPsec process the pkt */ 15643 if (ipha->ipha_protocol == IPPROTO_ESP) { 15644 esph_t *esph = ipsec_inbound_esp_sa(first_mp); 15645 if (esph == NULL) 15646 return; 15647 ASSERT(ii->ipsec_in_esp_sa != NULL); 15648 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 15649 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 15650 first_mp, esph); 15651 } else { 15652 ah_t *ah = ipsec_inbound_ah_sa(first_mp); 15653 if (ah == NULL) 15654 return; 15655 ASSERT(ii->ipsec_in_ah_sa != NULL); 15656 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 15657 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 15658 first_mp, ah); 15659 } 15660 15661 switch (ipsec_rc) { 15662 case IPSEC_STATUS_SUCCESS: 15663 break; 15664 case IPSEC_STATUS_FAILED: 15665 BUMP_MIB(&ip_mib, ipInDiscards); 15666 /* FALLTHRU */ 15667 case IPSEC_STATUS_PENDING: 15668 return; 15669 } 15670 /* we're done with IPsec processing, send it up */ 15671 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 15672 return; 15673 } 15674 default: 15675 break; 15676 } 15677 /* 15678 * Handle protocols with which IP is less intimate. There 15679 * can be more than one stream bound to a particular 15680 * protocol. When this is the case, each one gets a copy 15681 * of any incoming packets. 15682 */ 15683 ip_fanout_proto(q, first_mp, ill, ipha, 15684 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 15685 B_TRUE, recv_ill, ire->ire_zoneid); 15686 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 15687 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 15688 return; 15689 15690 drop_pkt: 15691 freemsg(first_mp); 15692 if (hada_mp != NULL) 15693 freeb(hada_mp); 15694 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 15695 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 15696 #undef rptr 15697 #undef iphs 15698 15699 } 15700 15701 /* 15702 * Update any source route, record route or timestamp options. 15703 * Check that we are at end of strict source route. 15704 * The options have already been checked for sanity in ip_rput_options(). 15705 */ 15706 static boolean_t 15707 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire) 15708 { 15709 ipoptp_t opts; 15710 uchar_t *opt; 15711 uint8_t optval; 15712 uint8_t optlen; 15713 ipaddr_t dst; 15714 uint32_t ts; 15715 ire_t *dst_ire; 15716 timestruc_t now; 15717 15718 ASSERT(ire->ire_ipversion == IPV4_VERSION); 15719 15720 ip2dbg(("ip_rput_local_options\n")); 15721 15722 for (optval = ipoptp_first(&opts, ipha); 15723 optval != IPOPT_EOL; 15724 optval = ipoptp_next(&opts)) { 15725 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 15726 opt = opts.ipoptp_cur; 15727 optlen = opts.ipoptp_len; 15728 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 15729 optval, optlen)); 15730 switch (optval) { 15731 uint32_t off; 15732 case IPOPT_SSRR: 15733 case IPOPT_LSRR: 15734 off = opt[IPOPT_OFFSET]; 15735 off--; 15736 if (optlen < IP_ADDR_LEN || 15737 off > optlen - IP_ADDR_LEN) { 15738 /* End of source route */ 15739 ip1dbg(("ip_rput_local_options: end of SR\n")); 15740 break; 15741 } 15742 /* 15743 * This will only happen if two consecutive entries 15744 * in the source route contains our address or if 15745 * it is a packet with a loose source route which 15746 * reaches us before consuming the whole source route 15747 */ 15748 ip1dbg(("ip_rput_local_options: not end of SR\n")); 15749 if (optval == IPOPT_SSRR) { 15750 goto bad_src_route; 15751 } 15752 /* 15753 * Hack: instead of dropping the packet truncate the 15754 * source route to what has been used by filling the 15755 * rest with IPOPT_NOP. 15756 */ 15757 opt[IPOPT_OLEN] = (uint8_t)off; 15758 while (off < optlen) { 15759 opt[off++] = IPOPT_NOP; 15760 } 15761 break; 15762 case IPOPT_RR: 15763 off = opt[IPOPT_OFFSET]; 15764 off--; 15765 if (optlen < IP_ADDR_LEN || 15766 off > optlen - IP_ADDR_LEN) { 15767 /* No more room - ignore */ 15768 ip1dbg(( 15769 "ip_rput_local_options: end of RR\n")); 15770 break; 15771 } 15772 bcopy(&ire->ire_src_addr, (char *)opt + off, 15773 IP_ADDR_LEN); 15774 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 15775 break; 15776 case IPOPT_TS: 15777 /* Insert timestamp if there is romm */ 15778 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 15779 case IPOPT_TS_TSONLY: 15780 off = IPOPT_TS_TIMELEN; 15781 break; 15782 case IPOPT_TS_PRESPEC: 15783 case IPOPT_TS_PRESPEC_RFC791: 15784 /* Verify that the address matched */ 15785 off = opt[IPOPT_OFFSET] - 1; 15786 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 15787 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 15788 NULL, ALL_ZONES, MATCH_IRE_TYPE); 15789 if (dst_ire == NULL) { 15790 /* Not for us */ 15791 break; 15792 } 15793 ire_refrele(dst_ire); 15794 /* FALLTHRU */ 15795 case IPOPT_TS_TSANDADDR: 15796 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 15797 break; 15798 default: 15799 /* 15800 * ip_*put_options should have already 15801 * dropped this packet. 15802 */ 15803 cmn_err(CE_PANIC, "ip_rput_local_options: " 15804 "unknown IT - bug in ip_rput_options?\n"); 15805 return (B_TRUE); /* Keep "lint" happy */ 15806 } 15807 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 15808 /* Increase overflow counter */ 15809 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 15810 opt[IPOPT_POS_OV_FLG] = 15811 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 15812 (off << 4)); 15813 break; 15814 } 15815 off = opt[IPOPT_OFFSET] - 1; 15816 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 15817 case IPOPT_TS_PRESPEC: 15818 case IPOPT_TS_PRESPEC_RFC791: 15819 case IPOPT_TS_TSANDADDR: 15820 bcopy(&ire->ire_src_addr, (char *)opt + off, 15821 IP_ADDR_LEN); 15822 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 15823 /* FALLTHRU */ 15824 case IPOPT_TS_TSONLY: 15825 off = opt[IPOPT_OFFSET] - 1; 15826 /* Compute # of milliseconds since midnight */ 15827 gethrestime(&now); 15828 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 15829 now.tv_nsec / (NANOSEC / MILLISEC); 15830 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 15831 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 15832 break; 15833 } 15834 break; 15835 } 15836 } 15837 return (B_TRUE); 15838 15839 bad_src_route: 15840 q = WR(q); 15841 /* make sure we clear any indication of a hardware checksum */ 15842 mp->b_datap->db_struioun.cksum.flags = 0; 15843 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED); 15844 return (B_FALSE); 15845 15846 } 15847 15848 /* 15849 * Process IP options in an inbound packet. If an option affects the 15850 * effective destination address, return the next hop address via dstp. 15851 * Returns -1 if something fails in which case an ICMP error has been sent 15852 * and mp freed. 15853 */ 15854 static int 15855 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp) 15856 { 15857 ipoptp_t opts; 15858 uchar_t *opt; 15859 uint8_t optval; 15860 uint8_t optlen; 15861 ipaddr_t dst; 15862 intptr_t code = 0; 15863 ire_t *ire = NULL; 15864 15865 ip2dbg(("ip_rput_options\n")); 15866 dst = ipha->ipha_dst; 15867 for (optval = ipoptp_first(&opts, ipha); 15868 optval != IPOPT_EOL; 15869 optval = ipoptp_next(&opts)) { 15870 opt = opts.ipoptp_cur; 15871 optlen = opts.ipoptp_len; 15872 ip2dbg(("ip_rput_options: opt %d, len %d\n", 15873 optval, optlen)); 15874 /* 15875 * Note: we need to verify the checksum before we 15876 * modify anything thus this routine only extracts the next 15877 * hop dst from any source route. 15878 */ 15879 switch (optval) { 15880 uint32_t off; 15881 case IPOPT_SSRR: 15882 case IPOPT_LSRR: 15883 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 15884 ALL_ZONES, MATCH_IRE_TYPE); 15885 if (ire == NULL) { 15886 if (optval == IPOPT_SSRR) { 15887 ip1dbg(("ip_rput_options: not next" 15888 " strict source route 0x%x\n", 15889 ntohl(dst))); 15890 code = (char *)&ipha->ipha_dst - 15891 (char *)ipha; 15892 goto param_prob; /* RouterReq's */ 15893 } 15894 ip2dbg(("ip_rput_options: " 15895 "not next source route 0x%x\n", 15896 ntohl(dst))); 15897 break; 15898 } 15899 ire_refrele(ire); 15900 15901 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 15902 ip1dbg(( 15903 "ip_rput_options: bad option offset\n")); 15904 code = (char *)&opt[IPOPT_OLEN] - 15905 (char *)ipha; 15906 goto param_prob; 15907 } 15908 off = opt[IPOPT_OFFSET]; 15909 off--; 15910 redo_srr: 15911 if (optlen < IP_ADDR_LEN || 15912 off > optlen - IP_ADDR_LEN) { 15913 /* End of source route */ 15914 ip1dbg(("ip_rput_options: end of SR\n")); 15915 break; 15916 } 15917 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 15918 ip1dbg(("ip_rput_options: next hop 0x%x\n", 15919 ntohl(dst))); 15920 15921 /* 15922 * Check if our address is present more than 15923 * once as consecutive hops in source route. 15924 * XXX verify per-interface ip_forwarding 15925 * for source route? 15926 */ 15927 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 15928 ALL_ZONES, MATCH_IRE_TYPE); 15929 15930 if (ire != NULL) { 15931 ire_refrele(ire); 15932 off += IP_ADDR_LEN; 15933 goto redo_srr; 15934 } 15935 15936 if (dst == htonl(INADDR_LOOPBACK)) { 15937 ip1dbg(("ip_rput_options: loopback addr in " 15938 "source route!\n")); 15939 goto bad_src_route; 15940 } 15941 /* 15942 * For strict: verify that dst is directly 15943 * reachable. 15944 */ 15945 if (optval == IPOPT_SSRR) { 15946 ire = ire_ftable_lookup(dst, 0, 0, 15947 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 15948 MATCH_IRE_TYPE); 15949 if (ire == NULL) { 15950 ip1dbg(("ip_rput_options: SSRR not " 15951 "directly reachable: 0x%x\n", 15952 ntohl(dst))); 15953 goto bad_src_route; 15954 } 15955 ire_refrele(ire); 15956 } 15957 /* 15958 * Defer update of the offset and the record route 15959 * until the packet is forwarded. 15960 */ 15961 break; 15962 case IPOPT_RR: 15963 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 15964 ip1dbg(( 15965 "ip_rput_options: bad option offset\n")); 15966 code = (char *)&opt[IPOPT_OLEN] - 15967 (char *)ipha; 15968 goto param_prob; 15969 } 15970 break; 15971 case IPOPT_TS: 15972 /* 15973 * Verify that length >= 5 and that there is either 15974 * room for another timestamp or that the overflow 15975 * counter is not maxed out. 15976 */ 15977 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 15978 if (optlen < IPOPT_MINLEN_IT) { 15979 goto param_prob; 15980 } 15981 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 15982 ip1dbg(( 15983 "ip_rput_options: bad option offset\n")); 15984 code = (char *)&opt[IPOPT_OFFSET] - 15985 (char *)ipha; 15986 goto param_prob; 15987 } 15988 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 15989 case IPOPT_TS_TSONLY: 15990 off = IPOPT_TS_TIMELEN; 15991 break; 15992 case IPOPT_TS_TSANDADDR: 15993 case IPOPT_TS_PRESPEC: 15994 case IPOPT_TS_PRESPEC_RFC791: 15995 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 15996 break; 15997 default: 15998 code = (char *)&opt[IPOPT_POS_OV_FLG] - 15999 (char *)ipha; 16000 goto param_prob; 16001 } 16002 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 16003 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 16004 /* 16005 * No room and the overflow counter is 15 16006 * already. 16007 */ 16008 goto param_prob; 16009 } 16010 break; 16011 } 16012 } 16013 16014 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 16015 *dstp = dst; 16016 return (0); 16017 } 16018 16019 ip1dbg(("ip_rput_options: error processing IP options.")); 16020 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 16021 16022 param_prob: 16023 q = WR(q); 16024 /* make sure we clear any indication of a hardware checksum */ 16025 mp->b_datap->db_struioun.cksum.flags = 0; 16026 icmp_param_problem(q, mp, (uint8_t)code); 16027 return (-1); 16028 16029 bad_src_route: 16030 q = WR(q); 16031 /* make sure we clear any indication of a hardware checksum */ 16032 mp->b_datap->db_struioun.cksum.flags = 0; 16033 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED); 16034 return (-1); 16035 } 16036 16037 /* 16038 * IP & ICMP info in >=14 msg's ... 16039 * - ip fixed part (mib2_ip_t) 16040 * - icmp fixed part (mib2_icmp_t) 16041 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 16042 * - ipRouteEntryTable (ip 21) all IPv4 IREs 16043 * - ipNetToMediaEntryTable (ip 22) IPv4 IREs for on-link destinations 16044 * - ip multicast membership (ip_member_t) 16045 * - ip multicast source filtering (ip_grpsrc_t) 16046 * - igmp fixed part (struct igmpstat) 16047 * - multicast routing stats (struct mrtstat) 16048 * - multicast routing vifs (array of struct vifctl) 16049 * - multicast routing routes (array of struct mfcctl) 16050 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 16051 * One per ill plus one generic 16052 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 16053 * One per ill plus one generic 16054 * - ipv6RouteEntry all IPv6 IREs 16055 * - ipv6NetToMediaEntry all Neighbor Cache entries 16056 * - ipv6AddrEntry all IPv6 ipifs 16057 * - ipv6 multicast membership (ipv6_member_t) 16058 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 16059 * 16060 * IP_ROUTE and IP_MEDIA are augmented in arp to include arp cache entries not 16061 * already present. 16062 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part 16063 * already filled in by caller. 16064 * Return value of 0 indicates that no messages were sent and caller 16065 * should free mpctl. 16066 */ 16067 int 16068 ip_snmp_get(queue_t *q, mblk_t *mpctl) 16069 { 16070 16071 if (mpctl == NULL || mpctl->b_cont == NULL) { 16072 return (0); 16073 } 16074 16075 if ((mpctl = ip_snmp_get_mib2_ip(q, mpctl)) == NULL) { 16076 return (1); 16077 } 16078 16079 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl)) == NULL) { 16080 return (1); 16081 } 16082 16083 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl)) == NULL) { 16084 return (1); 16085 } 16086 16087 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl)) == NULL) { 16088 return (1); 16089 } 16090 16091 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl)) == NULL) { 16092 return (1); 16093 } 16094 16095 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl)) == NULL) { 16096 return (1); 16097 } 16098 16099 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl)) == NULL) { 16100 return (1); 16101 } 16102 16103 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl)) == NULL) { 16104 return (1); 16105 } 16106 16107 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl)) == NULL) { 16108 return (1); 16109 } 16110 16111 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl)) == NULL) { 16112 return (1); 16113 } 16114 16115 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl)) == NULL) { 16116 return (1); 16117 } 16118 16119 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl)) == NULL) { 16120 return (1); 16121 } 16122 16123 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl)) == NULL) { 16124 return (1); 16125 } 16126 16127 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl)) == NULL) { 16128 return (1); 16129 } 16130 16131 if ((mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl)) == NULL) { 16132 return (1); 16133 } 16134 16135 if ((mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl)) == NULL) { 16136 return (1); 16137 } 16138 16139 if ((mpctl = sctp_snmp_get_mib2(q, mpctl)) == NULL) { 16140 return (1); 16141 } 16142 freemsg(mpctl); 16143 return (1); 16144 } 16145 16146 16147 /* Get global IPv4 statistics */ 16148 static mblk_t * 16149 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl) 16150 { 16151 struct opthdr *optp; 16152 mblk_t *mp2ctl; 16153 16154 /* 16155 * make a copy of the original message 16156 */ 16157 mp2ctl = copymsg(mpctl); 16158 16159 /* fixed length IP structure... */ 16160 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16161 optp->level = MIB2_IP; 16162 optp->name = 0; 16163 SET_MIB(ip_mib.ipForwarding, 16164 (WE_ARE_FORWARDING ? 1 : 2)); 16165 SET_MIB(ip_mib.ipDefaultTTL, 16166 (uint32_t)ip_def_ttl); 16167 SET_MIB(ip_mib.ipReasmTimeout, 16168 ip_g_frag_timeout); 16169 SET_MIB(ip_mib.ipAddrEntrySize, 16170 sizeof (mib2_ipAddrEntry_t)); 16171 SET_MIB(ip_mib.ipRouteEntrySize, 16172 sizeof (mib2_ipRouteEntry_t)); 16173 SET_MIB(ip_mib.ipNetToMediaEntrySize, 16174 sizeof (mib2_ipNetToMediaEntry_t)); 16175 SET_MIB(ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 16176 SET_MIB(ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 16177 if (!snmp_append_data(mpctl->b_cont, (char *)&ip_mib, 16178 (int)sizeof (ip_mib))) { 16179 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 16180 (uint_t)sizeof (ip_mib))); 16181 } 16182 16183 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16184 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 16185 (int)optp->level, (int)optp->name, (int)optp->len)); 16186 qreply(q, mpctl); 16187 return (mp2ctl); 16188 } 16189 16190 /* Global IPv4 ICMP statistics */ 16191 static mblk_t * 16192 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl) 16193 { 16194 struct opthdr *optp; 16195 mblk_t *mp2ctl; 16196 16197 /* 16198 * Make a copy of the original message 16199 */ 16200 mp2ctl = copymsg(mpctl); 16201 16202 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16203 optp->level = MIB2_ICMP; 16204 optp->name = 0; 16205 if (!snmp_append_data(mpctl->b_cont, (char *)&icmp_mib, 16206 (int)sizeof (icmp_mib))) { 16207 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 16208 (uint_t)sizeof (icmp_mib))); 16209 } 16210 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16211 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 16212 (int)optp->level, (int)optp->name, (int)optp->len)); 16213 qreply(q, mpctl); 16214 return (mp2ctl); 16215 } 16216 16217 /* Global IPv4 IGMP statistics */ 16218 static mblk_t * 16219 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl) 16220 { 16221 struct opthdr *optp; 16222 mblk_t *mp2ctl; 16223 16224 /* 16225 * make a copy of the original message 16226 */ 16227 mp2ctl = copymsg(mpctl); 16228 16229 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16230 optp->level = EXPER_IGMP; 16231 optp->name = 0; 16232 if (!snmp_append_data(mpctl->b_cont, (char *)&igmpstat, 16233 (int)sizeof (igmpstat))) { 16234 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 16235 (uint_t)sizeof (igmpstat))); 16236 } 16237 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16238 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 16239 (int)optp->level, (int)optp->name, (int)optp->len)); 16240 qreply(q, mpctl); 16241 return (mp2ctl); 16242 } 16243 16244 /* Global IPv4 Multicast Routing statistics */ 16245 static mblk_t * 16246 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl) 16247 { 16248 struct opthdr *optp; 16249 mblk_t *mp2ctl; 16250 16251 /* 16252 * make a copy of the original message 16253 */ 16254 mp2ctl = copymsg(mpctl); 16255 16256 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16257 optp->level = EXPER_DVMRP; 16258 optp->name = 0; 16259 if (!ip_mroute_stats(mpctl->b_cont)) { 16260 ip0dbg(("ip_mroute_stats: failed\n")); 16261 } 16262 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16263 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 16264 (int)optp->level, (int)optp->name, (int)optp->len)); 16265 qreply(q, mpctl); 16266 return (mp2ctl); 16267 } 16268 16269 /* IPv4 address information */ 16270 static mblk_t * 16271 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl) 16272 { 16273 struct opthdr *optp; 16274 mblk_t *mp2ctl; 16275 mblk_t *mp_tail = NULL; 16276 ill_t *ill; 16277 ipif_t *ipif; 16278 uint_t bitval; 16279 mib2_ipAddrEntry_t mae; 16280 zoneid_t zoneid; 16281 ill_walk_context_t ctx; 16282 16283 /* 16284 * make a copy of the original message 16285 */ 16286 mp2ctl = copymsg(mpctl); 16287 16288 /* ipAddrEntryTable */ 16289 16290 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16291 optp->level = MIB2_IP; 16292 optp->name = MIB2_IP_ADDR; 16293 zoneid = Q_TO_CONN(q)->conn_zoneid; 16294 16295 rw_enter(&ill_g_lock, RW_READER); 16296 ill = ILL_START_WALK_V4(&ctx); 16297 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 16298 for (ipif = ill->ill_ipif; ipif != NULL; 16299 ipif = ipif->ipif_next) { 16300 if (ipif->ipif_zoneid != zoneid) 16301 continue; 16302 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 16303 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 16304 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 16305 16306 (void) ipif_get_name(ipif, 16307 mae.ipAdEntIfIndex.o_bytes, 16308 OCTET_LENGTH); 16309 mae.ipAdEntIfIndex.o_length = 16310 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 16311 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 16312 mae.ipAdEntNetMask = ipif->ipif_net_mask; 16313 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 16314 mae.ipAdEntInfo.ae_subnet_len = 16315 ip_mask_to_plen(ipif->ipif_net_mask); 16316 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 16317 for (bitval = 1; 16318 bitval && 16319 !(bitval & ipif->ipif_brd_addr); 16320 bitval <<= 1) 16321 noop; 16322 mae.ipAdEntBcastAddr = bitval; 16323 mae.ipAdEntReasmMaxSize = 65535; 16324 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 16325 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 16326 mae.ipAdEntInfo.ae_broadcast_addr = 16327 ipif->ipif_brd_addr; 16328 mae.ipAdEntInfo.ae_pp_dst_addr = 16329 ipif->ipif_pp_dst_addr; 16330 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 16331 ill->ill_flags | ill->ill_phyint->phyint_flags; 16332 16333 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 16334 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 16335 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 16336 "allocate %u bytes\n", 16337 (uint_t)sizeof (mib2_ipAddrEntry_t))); 16338 } 16339 } 16340 } 16341 rw_exit(&ill_g_lock); 16342 16343 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16344 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 16345 (int)optp->level, (int)optp->name, (int)optp->len)); 16346 qreply(q, mpctl); 16347 return (mp2ctl); 16348 } 16349 16350 /* IPv6 address information */ 16351 static mblk_t * 16352 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl) 16353 { 16354 struct opthdr *optp; 16355 mblk_t *mp2ctl; 16356 mblk_t *mp_tail = NULL; 16357 ill_t *ill; 16358 ipif_t *ipif; 16359 mib2_ipv6AddrEntry_t mae6; 16360 zoneid_t zoneid; 16361 ill_walk_context_t ctx; 16362 16363 /* 16364 * make a copy of the original message 16365 */ 16366 mp2ctl = copymsg(mpctl); 16367 16368 /* ipv6AddrEntryTable */ 16369 16370 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16371 optp->level = MIB2_IP6; 16372 optp->name = MIB2_IP6_ADDR; 16373 zoneid = Q_TO_CONN(q)->conn_zoneid; 16374 16375 rw_enter(&ill_g_lock, RW_READER); 16376 ill = ILL_START_WALK_V6(&ctx); 16377 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 16378 for (ipif = ill->ill_ipif; ipif; ipif = ipif->ipif_next) { 16379 if (ipif->ipif_zoneid != zoneid) 16380 continue; 16381 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 16382 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 16383 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 16384 16385 (void) ipif_get_name(ipif, 16386 mae6.ipv6AddrIfIndex.o_bytes, 16387 OCTET_LENGTH); 16388 mae6.ipv6AddrIfIndex.o_length = 16389 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 16390 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 16391 mae6.ipv6AddrPfxLength = 16392 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 16393 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 16394 mae6.ipv6AddrInfo.ae_subnet_len = 16395 mae6.ipv6AddrPfxLength; 16396 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 16397 16398 /* Type: stateless(1), stateful(2), unknown(3) */ 16399 if (ipif->ipif_flags & IPIF_ADDRCONF) 16400 mae6.ipv6AddrType = 1; 16401 else 16402 mae6.ipv6AddrType = 2; 16403 /* Anycast: true(1), false(2) */ 16404 if (ipif->ipif_flags & IPIF_ANYCAST) 16405 mae6.ipv6AddrAnycastFlag = 1; 16406 else 16407 mae6.ipv6AddrAnycastFlag = 2; 16408 16409 /* 16410 * Address status: preferred(1), deprecated(2), 16411 * invalid(3), inaccessible(4), unknown(5) 16412 */ 16413 if (ipif->ipif_flags & IPIF_NOLOCAL) 16414 mae6.ipv6AddrStatus = 3; 16415 else if (ipif->ipif_flags & IPIF_DEPRECATED) 16416 mae6.ipv6AddrStatus = 2; 16417 else 16418 mae6.ipv6AddrStatus = 1; 16419 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 16420 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 16421 mae6.ipv6AddrInfo.ae_pp_dst_addr = 16422 ipif->ipif_v6pp_dst_addr; 16423 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 16424 ill->ill_flags | ill->ill_phyint->phyint_flags; 16425 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 16426 (char *)&mae6, 16427 (int)sizeof (mib2_ipv6AddrEntry_t))) { 16428 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 16429 "allocate %u bytes\n", 16430 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 16431 } 16432 } 16433 } 16434 rw_exit(&ill_g_lock); 16435 16436 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16437 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 16438 (int)optp->level, (int)optp->name, (int)optp->len)); 16439 qreply(q, mpctl); 16440 return (mp2ctl); 16441 } 16442 16443 /* IPv4 multicast group membership. */ 16444 static mblk_t * 16445 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl) 16446 { 16447 struct opthdr *optp; 16448 mblk_t *mp2ctl; 16449 ill_t *ill; 16450 ipif_t *ipif; 16451 ilm_t *ilm; 16452 ip_member_t ipm; 16453 mblk_t *mp_tail = NULL; 16454 ill_walk_context_t ctx; 16455 zoneid_t zoneid; 16456 16457 /* 16458 * make a copy of the original message 16459 */ 16460 mp2ctl = copymsg(mpctl); 16461 zoneid = Q_TO_CONN(q)->conn_zoneid; 16462 16463 /* ipGroupMember table */ 16464 optp = (struct opthdr *)&mpctl->b_rptr[ 16465 sizeof (struct T_optmgmt_ack)]; 16466 optp->level = MIB2_IP; 16467 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 16468 16469 rw_enter(&ill_g_lock, RW_READER); 16470 ill = ILL_START_WALK_V4(&ctx); 16471 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 16472 ILM_WALKER_HOLD(ill); 16473 for (ipif = ill->ill_ipif; ipif != NULL; 16474 ipif = ipif->ipif_next) { 16475 if (ipif->ipif_zoneid != zoneid) 16476 continue; /* not this zone */ 16477 (void) ipif_get_name(ipif, 16478 ipm.ipGroupMemberIfIndex.o_bytes, 16479 OCTET_LENGTH); 16480 ipm.ipGroupMemberIfIndex.o_length = 16481 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 16482 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 16483 ASSERT(ilm->ilm_ipif != NULL); 16484 ASSERT(ilm->ilm_ill == NULL); 16485 if (ilm->ilm_ipif != ipif) 16486 continue; 16487 ipm.ipGroupMemberAddress = ilm->ilm_addr; 16488 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 16489 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 16490 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 16491 (char *)&ipm, (int)sizeof (ipm))) { 16492 ip1dbg(("ip_snmp_get_mib2_ip_group: " 16493 "failed to allocate %u bytes\n", 16494 (uint_t)sizeof (ipm))); 16495 } 16496 } 16497 } 16498 ILM_WALKER_RELE(ill); 16499 } 16500 rw_exit(&ill_g_lock); 16501 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16502 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 16503 (int)optp->level, (int)optp->name, (int)optp->len)); 16504 qreply(q, mpctl); 16505 return (mp2ctl); 16506 } 16507 16508 /* IPv6 multicast group membership. */ 16509 static mblk_t * 16510 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl) 16511 { 16512 struct opthdr *optp; 16513 mblk_t *mp2ctl; 16514 ill_t *ill; 16515 ilm_t *ilm; 16516 ipv6_member_t ipm6; 16517 mblk_t *mp_tail = NULL; 16518 ill_walk_context_t ctx; 16519 zoneid_t zoneid; 16520 16521 /* 16522 * make a copy of the original message 16523 */ 16524 mp2ctl = copymsg(mpctl); 16525 zoneid = Q_TO_CONN(q)->conn_zoneid; 16526 16527 /* ip6GroupMember table */ 16528 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16529 optp->level = MIB2_IP6; 16530 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 16531 16532 rw_enter(&ill_g_lock, RW_READER); 16533 ill = ILL_START_WALK_V6(&ctx); 16534 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 16535 ILM_WALKER_HOLD(ill); 16536 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 16537 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 16538 ASSERT(ilm->ilm_ipif == NULL); 16539 ASSERT(ilm->ilm_ill != NULL); 16540 if (ilm->ilm_zoneid != zoneid) 16541 continue; /* not this zone */ 16542 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 16543 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 16544 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 16545 if (!snmp_append_data2(mpctl->b_cont, 16546 &mp_tail, 16547 (char *)&ipm6, (int)sizeof (ipm6))) { 16548 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 16549 "failed to allocate %u bytes\n", 16550 (uint_t)sizeof (ipm6))); 16551 } 16552 } 16553 ILM_WALKER_RELE(ill); 16554 } 16555 rw_exit(&ill_g_lock); 16556 16557 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16558 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 16559 (int)optp->level, (int)optp->name, (int)optp->len)); 16560 qreply(q, mpctl); 16561 return (mp2ctl); 16562 } 16563 16564 /* IP multicast filtered sources */ 16565 static mblk_t * 16566 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl) 16567 { 16568 struct opthdr *optp; 16569 mblk_t *mp2ctl; 16570 ill_t *ill; 16571 ipif_t *ipif; 16572 ilm_t *ilm; 16573 ip_grpsrc_t ips; 16574 mblk_t *mp_tail = NULL; 16575 ill_walk_context_t ctx; 16576 zoneid_t zoneid; 16577 int i; 16578 slist_t *sl; 16579 16580 /* 16581 * make a copy of the original message 16582 */ 16583 mp2ctl = copymsg(mpctl); 16584 zoneid = Q_TO_CONN(q)->conn_zoneid; 16585 16586 /* ipGroupSource table */ 16587 optp = (struct opthdr *)&mpctl->b_rptr[ 16588 sizeof (struct T_optmgmt_ack)]; 16589 optp->level = MIB2_IP; 16590 optp->name = EXPER_IP_GROUP_SOURCES; 16591 16592 rw_enter(&ill_g_lock, RW_READER); 16593 ill = ILL_START_WALK_V4(&ctx); 16594 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 16595 ILM_WALKER_HOLD(ill); 16596 for (ipif = ill->ill_ipif; ipif != NULL; 16597 ipif = ipif->ipif_next) { 16598 if (ipif->ipif_zoneid != zoneid) 16599 continue; /* not this zone */ 16600 (void) ipif_get_name(ipif, 16601 ips.ipGroupSourceIfIndex.o_bytes, 16602 OCTET_LENGTH); 16603 ips.ipGroupSourceIfIndex.o_length = 16604 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 16605 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 16606 ASSERT(ilm->ilm_ipif != NULL); 16607 ASSERT(ilm->ilm_ill == NULL); 16608 sl = ilm->ilm_filter; 16609 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 16610 continue; 16611 ips.ipGroupSourceGroup = ilm->ilm_addr; 16612 for (i = 0; i < sl->sl_numsrc; i++) { 16613 if (!IN6_IS_ADDR_V4MAPPED( 16614 &sl->sl_addr[i])) 16615 continue; 16616 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 16617 ips.ipGroupSourceAddress); 16618 if (snmp_append_data2(mpctl->b_cont, 16619 &mp_tail, (char *)&ips, 16620 (int)sizeof (ips)) == 0) { 16621 ip1dbg(("ip_snmp_get_mib2_" 16622 "ip_group_src: failed to " 16623 "allocate %u bytes\n", 16624 (uint_t)sizeof (ips))); 16625 } 16626 } 16627 } 16628 } 16629 ILM_WALKER_RELE(ill); 16630 } 16631 rw_exit(&ill_g_lock); 16632 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16633 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 16634 (int)optp->level, (int)optp->name, (int)optp->len)); 16635 qreply(q, mpctl); 16636 return (mp2ctl); 16637 } 16638 16639 /* IPv6 multicast filtered sources. */ 16640 static mblk_t * 16641 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl) 16642 { 16643 struct opthdr *optp; 16644 mblk_t *mp2ctl; 16645 ill_t *ill; 16646 ilm_t *ilm; 16647 ipv6_grpsrc_t ips6; 16648 mblk_t *mp_tail = NULL; 16649 ill_walk_context_t ctx; 16650 zoneid_t zoneid; 16651 int i; 16652 slist_t *sl; 16653 16654 /* 16655 * make a copy of the original message 16656 */ 16657 mp2ctl = copymsg(mpctl); 16658 zoneid = Q_TO_CONN(q)->conn_zoneid; 16659 16660 /* ip6GroupMember table */ 16661 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16662 optp->level = MIB2_IP6; 16663 optp->name = EXPER_IP6_GROUP_SOURCES; 16664 16665 rw_enter(&ill_g_lock, RW_READER); 16666 ill = ILL_START_WALK_V6(&ctx); 16667 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 16668 ILM_WALKER_HOLD(ill); 16669 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 16670 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 16671 ASSERT(ilm->ilm_ipif == NULL); 16672 ASSERT(ilm->ilm_ill != NULL); 16673 sl = ilm->ilm_filter; 16674 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 16675 continue; 16676 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 16677 for (i = 0; i < sl->sl_numsrc; i++) { 16678 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 16679 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 16680 (char *)&ips6, (int)sizeof (ips6))) { 16681 ip1dbg(("ip_snmp_get_mib2_ip6_" 16682 "group_src: failed to allocate " 16683 "%u bytes\n", 16684 (uint_t)sizeof (ips6))); 16685 } 16686 } 16687 } 16688 ILM_WALKER_RELE(ill); 16689 } 16690 rw_exit(&ill_g_lock); 16691 16692 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16693 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 16694 (int)optp->level, (int)optp->name, (int)optp->len)); 16695 qreply(q, mpctl); 16696 return (mp2ctl); 16697 } 16698 16699 /* Multicast routing virtual interface table. */ 16700 static mblk_t * 16701 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl) 16702 { 16703 struct opthdr *optp; 16704 mblk_t *mp2ctl; 16705 16706 /* 16707 * make a copy of the original message 16708 */ 16709 mp2ctl = copymsg(mpctl); 16710 16711 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16712 optp->level = EXPER_DVMRP; 16713 optp->name = EXPER_DVMRP_VIF; 16714 if (!ip_mroute_vif(mpctl->b_cont)) { 16715 ip0dbg(("ip_mroute_vif: failed\n")); 16716 } 16717 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16718 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 16719 (int)optp->level, (int)optp->name, (int)optp->len)); 16720 qreply(q, mpctl); 16721 return (mp2ctl); 16722 } 16723 16724 /* Multicast routing table. */ 16725 static mblk_t * 16726 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl) 16727 { 16728 struct opthdr *optp; 16729 mblk_t *mp2ctl; 16730 16731 /* 16732 * make a copy of the original message 16733 */ 16734 mp2ctl = copymsg(mpctl); 16735 16736 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16737 optp->level = EXPER_DVMRP; 16738 optp->name = EXPER_DVMRP_MRT; 16739 if (!ip_mroute_mrt(mpctl->b_cont)) { 16740 ip0dbg(("ip_mroute_mrt: failed\n")); 16741 } 16742 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16743 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 16744 (int)optp->level, (int)optp->name, (int)optp->len)); 16745 qreply(q, mpctl); 16746 return (mp2ctl); 16747 } 16748 16749 /* 16750 * Return both ipRouteEntryTable, and ipNetToMediaEntryTable 16751 * in one IRE walk. 16752 */ 16753 static mblk_t * 16754 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl) 16755 { 16756 struct opthdr *optp; 16757 mblk_t *mp2ctl; /* Returned */ 16758 mblk_t *mp3ctl; /* nettomedia */ 16759 /* 16760 * We need two listptrs, for ipRouteEntryTable and 16761 * ipNetToMediaEntryTable to pass to ip_snmp_get2_v4() 16762 */ 16763 listptr_t re_ntme_v4[2]; 16764 zoneid_t zoneid; 16765 16766 /* 16767 * make a copy of the original message 16768 */ 16769 mp2ctl = copymsg(mpctl); 16770 mp3ctl = copymsg(mpctl); 16771 if (mp3ctl == NULL) { 16772 freemsg(mp2ctl); 16773 freemsg(mpctl); 16774 return (NULL); 16775 } 16776 16777 re_ntme_v4[0].lp_head = mpctl->b_cont; /* ipRouteEntryTable */ 16778 re_ntme_v4[1].lp_head = mp3ctl->b_cont; /* ipNetToMediaEntryTable */ 16779 /* 16780 * We assign NULL to tail ptrs as snmp_append_data2() will assign 16781 * proper values when called. 16782 */ 16783 re_ntme_v4[0].lp_tail = NULL; 16784 re_ntme_v4[1].lp_tail = NULL; 16785 16786 zoneid = Q_TO_CONN(q)->conn_zoneid; 16787 ire_walk_v4(ip_snmp_get2_v4, (char *)re_ntme_v4, zoneid); 16788 if (zoneid == GLOBAL_ZONEID) { 16789 /* 16790 * Those IREs are used by Mobile-IP; since mipagent(1M) requires 16791 * the sys_net_config privilege, it can only run in the global 16792 * zone, so we don't display these IREs in the other zones. 16793 */ 16794 ire_walk_srcif_table_v4(ip_snmp_get2_v4, (char *)re_ntme_v4); 16795 ire_walk_ill_mrtun(0, 0, ip_snmp_get2_v4, (char *)re_ntme_v4, 16796 NULL); 16797 } 16798 16799 /* ipRouteEntryTable in mpctl */ 16800 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16801 optp->level = MIB2_IP; 16802 optp->name = MIB2_IP_ROUTE; 16803 optp->len = (t_uscalar_t)msgdsize(re_ntme_v4[0].lp_head); 16804 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 16805 (int)optp->level, (int)optp->name, (int)optp->len)); 16806 qreply(q, mpctl); 16807 16808 /* ipNetToMediaEntryTable in mp3ctl */ 16809 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16810 optp->level = MIB2_IP; 16811 optp->name = MIB2_IP_MEDIA; 16812 optp->len = (t_uscalar_t)msgdsize(re_ntme_v4[1].lp_head); 16813 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 16814 (int)optp->level, (int)optp->name, (int)optp->len)); 16815 qreply(q, mp3ctl); 16816 return (mp2ctl); 16817 } 16818 16819 /* 16820 * Return both ipv6RouteEntryTable, and ipv6NetToMediaEntryTable 16821 * in one IRE walk. 16822 */ 16823 static mblk_t * 16824 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl) 16825 { 16826 struct opthdr *optp; 16827 mblk_t *mp2ctl; /* Returned */ 16828 mblk_t *mp3ctl; /* nettomedia */ 16829 listptr_t re_ntme_v6; 16830 zoneid_t zoneid; 16831 16832 /* 16833 * make a copy of the original message 16834 */ 16835 mp2ctl = copymsg(mpctl); 16836 mp3ctl = copymsg(mpctl); 16837 if (mp3ctl == NULL) { 16838 freemsg(mp2ctl); 16839 freemsg(mpctl); 16840 return (NULL); 16841 } 16842 16843 /* 16844 * We assign NULL to tail ptrs as snmp_append_data2() will assign 16845 * proper values when called. ipv6RouteEntryTable in is placed 16846 * in mpctl. 16847 */ 16848 re_ntme_v6.lp_head = mpctl->b_cont; /* ip6RouteEntryTable */ 16849 re_ntme_v6.lp_tail = NULL; 16850 zoneid = Q_TO_CONN(q)->conn_zoneid; 16851 ire_walk_v6(ip_snmp_get2_v6_route, (char *)&re_ntme_v6, zoneid); 16852 16853 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16854 optp->level = MIB2_IP6; 16855 optp->name = MIB2_IP6_ROUTE; 16856 optp->len = (t_uscalar_t)msgdsize(re_ntme_v6.lp_head); 16857 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 16858 (int)optp->level, (int)optp->name, (int)optp->len)); 16859 qreply(q, mpctl); 16860 16861 /* ipv6NetToMediaEntryTable in mp3ctl */ 16862 re_ntme_v6.lp_head = mp3ctl->b_cont; /* ip6NetToMediaEntryTable */ 16863 re_ntme_v6.lp_tail = NULL; 16864 ndp_walk(NULL, ip_snmp_get2_v6_media, (uchar_t *)&re_ntme_v6); 16865 16866 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16867 optp->level = MIB2_IP6; 16868 optp->name = MIB2_IP6_MEDIA; 16869 optp->len = (t_uscalar_t)msgdsize(re_ntme_v6.lp_head); 16870 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 16871 (int)optp->level, (int)optp->name, (int)optp->len)); 16872 qreply(q, mp3ctl); 16873 return (mp2ctl); 16874 } 16875 16876 /* 16877 * ICMPv6 mib: One per ill 16878 */ 16879 static mblk_t * 16880 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl) 16881 { 16882 struct opthdr *optp; 16883 mblk_t *mp2ctl; 16884 ill_t *ill; 16885 ill_walk_context_t ctx; 16886 mblk_t *mp_tail = NULL; 16887 16888 /* 16889 * Make a copy of the original message 16890 */ 16891 mp2ctl = copymsg(mpctl); 16892 16893 /* fixed length IPv6 structure ... */ 16894 16895 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16896 optp->level = MIB2_IP6; 16897 optp->name = 0; 16898 /* Include "unknown interface" ip6_mib */ 16899 ip6_mib.ipv6IfIndex = 0; /* Flag to netstat */ 16900 SET_MIB(ip6_mib.ipv6Forwarding, ipv6_forward ? 1 : 2); 16901 SET_MIB(ip6_mib.ipv6DefaultHopLimit, ipv6_def_hops); 16902 SET_MIB(ip6_mib.ipv6IfStatsEntrySize, 16903 sizeof (mib2_ipv6IfStatsEntry_t)); 16904 SET_MIB(ip6_mib.ipv6AddrEntrySize, sizeof (mib2_ipv6AddrEntry_t)); 16905 SET_MIB(ip6_mib.ipv6RouteEntrySize, sizeof (mib2_ipv6RouteEntry_t)); 16906 SET_MIB(ip6_mib.ipv6NetToMediaEntrySize, 16907 sizeof (mib2_ipv6NetToMediaEntry_t)); 16908 SET_MIB(ip6_mib.ipv6MemberEntrySize, sizeof (ipv6_member_t)); 16909 SET_MIB(ip6_mib.ipv6GroupSourceEntrySize, sizeof (ipv6_grpsrc_t)); 16910 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, (char *)&ip6_mib, 16911 (int)sizeof (ip6_mib))) { 16912 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 16913 (uint_t)sizeof (ip6_mib))); 16914 } 16915 16916 rw_enter(&ill_g_lock, RW_READER); 16917 ill = ILL_START_WALK_V6(&ctx); 16918 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 16919 ill->ill_ip6_mib->ipv6IfIndex = 16920 ill->ill_phyint->phyint_ifindex; 16921 SET_MIB(ill->ill_ip6_mib->ipv6Forwarding, 16922 ipv6_forward ? 1 : 2); 16923 SET_MIB(ill->ill_ip6_mib->ipv6DefaultHopLimit, 16924 ill->ill_max_hops); 16925 SET_MIB(ill->ill_ip6_mib->ipv6IfStatsEntrySize, 16926 sizeof (mib2_ipv6IfStatsEntry_t)); 16927 SET_MIB(ill->ill_ip6_mib->ipv6AddrEntrySize, 16928 sizeof (mib2_ipv6AddrEntry_t)); 16929 SET_MIB(ill->ill_ip6_mib->ipv6RouteEntrySize, 16930 sizeof (mib2_ipv6RouteEntry_t)); 16931 SET_MIB(ill->ill_ip6_mib->ipv6NetToMediaEntrySize, 16932 sizeof (mib2_ipv6NetToMediaEntry_t)); 16933 SET_MIB(ill->ill_ip6_mib->ipv6MemberEntrySize, 16934 sizeof (ipv6_member_t)); 16935 16936 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 16937 (char *)ill->ill_ip6_mib, 16938 (int)sizeof (*ill->ill_ip6_mib))) { 16939 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 16940 "%u bytes\n", 16941 (uint_t)sizeof (*ill->ill_ip6_mib))); 16942 } 16943 } 16944 rw_exit(&ill_g_lock); 16945 16946 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16947 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 16948 (int)optp->level, (int)optp->name, (int)optp->len)); 16949 qreply(q, mpctl); 16950 return (mp2ctl); 16951 } 16952 16953 /* 16954 * ICMPv6 mib: One per ill 16955 */ 16956 static mblk_t * 16957 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl) 16958 { 16959 struct opthdr *optp; 16960 mblk_t *mp2ctl; 16961 ill_t *ill; 16962 ill_walk_context_t ctx; 16963 mblk_t *mp_tail = NULL; 16964 /* 16965 * Make a copy of the original message 16966 */ 16967 mp2ctl = copymsg(mpctl); 16968 16969 /* fixed length ICMPv6 structure ... */ 16970 16971 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16972 optp->level = MIB2_ICMP6; 16973 optp->name = 0; 16974 /* Include "unknown interface" icmp6_mib */ 16975 icmp6_mib.ipv6IfIcmpIfIndex = 0; /* Flag to netstat */ 16976 icmp6_mib.ipv6IfIcmpEntrySize = sizeof (mib2_ipv6IfIcmpEntry_t); 16977 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, (char *)&icmp6_mib, 16978 (int)sizeof (icmp6_mib))) { 16979 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 16980 (uint_t)sizeof (icmp6_mib))); 16981 } 16982 16983 rw_enter(&ill_g_lock, RW_READER); 16984 ill = ILL_START_WALK_V6(&ctx); 16985 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 16986 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 16987 ill->ill_phyint->phyint_ifindex; 16988 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 16989 sizeof (mib2_ipv6IfIcmpEntry_t); 16990 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 16991 (char *)ill->ill_icmp6_mib, 16992 (int)sizeof (*ill->ill_icmp6_mib))) { 16993 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 16994 "%u bytes\n", 16995 (uint_t)sizeof (*ill->ill_icmp6_mib))); 16996 } 16997 } 16998 rw_exit(&ill_g_lock); 16999 17000 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17001 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 17002 (int)optp->level, (int)optp->name, (int)optp->len)); 17003 qreply(q, mpctl); 17004 return (mp2ctl); 17005 } 17006 17007 /* 17008 * ire_walk routine to create both ipRouteEntryTable and 17009 * ipNetToMediaEntryTable in one IRE walk 17010 */ 17011 static void 17012 ip_snmp_get2_v4(ire_t *ire, listptr_t re_ntme[]) 17013 { 17014 ill_t *ill; 17015 ipif_t *ipif; 17016 mblk_t *llmp; 17017 dl_unitdata_req_t *dlup; 17018 mib2_ipRouteEntry_t re; 17019 mib2_ipNetToMediaEntry_t ntme; 17020 ipaddr_t gw_addr; 17021 17022 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17023 17024 /* 17025 * Return all IRE types for route table... let caller pick and choose 17026 */ 17027 re.ipRouteDest = ire->ire_addr; 17028 ipif = ire->ire_ipif; 17029 re.ipRouteIfIndex.o_length = 0; 17030 if (ire->ire_type == IRE_CACHE) { 17031 ill = (ill_t *)ire->ire_stq->q_ptr; 17032 re.ipRouteIfIndex.o_length = 17033 ill->ill_name_length == 0 ? 0 : 17034 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 17035 bcopy(ill->ill_name, re.ipRouteIfIndex.o_bytes, 17036 re.ipRouteIfIndex.o_length); 17037 } else if (ipif != NULL) { 17038 (void) ipif_get_name(ipif, re.ipRouteIfIndex.o_bytes, 17039 OCTET_LENGTH); 17040 re.ipRouteIfIndex.o_length = 17041 mi_strlen(re.ipRouteIfIndex.o_bytes); 17042 } 17043 re.ipRouteMetric1 = -1; 17044 re.ipRouteMetric2 = -1; 17045 re.ipRouteMetric3 = -1; 17046 re.ipRouteMetric4 = -1; 17047 17048 gw_addr = ire->ire_gateway_addr; 17049 17050 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 17051 re.ipRouteNextHop = ire->ire_src_addr; 17052 else 17053 re.ipRouteNextHop = gw_addr; 17054 /* indirect(4), direct(3), or invalid(2) */ 17055 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 17056 re.ipRouteType = 2; 17057 else 17058 re.ipRouteType = (gw_addr != 0) ? 4 : 3; 17059 re.ipRouteProto = -1; 17060 re.ipRouteAge = gethrestime_sec() - ire->ire_create_time; 17061 re.ipRouteMask = ire->ire_mask; 17062 re.ipRouteMetric5 = -1; 17063 re.ipRouteInfo.re_max_frag = ire->ire_max_frag; 17064 re.ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 17065 re.ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 17066 llmp = ire->ire_dlureq_mp; 17067 re.ipRouteInfo.re_ref = ire->ire_refcnt; 17068 re.ipRouteInfo.re_src_addr = ire->ire_src_addr; 17069 re.ipRouteInfo.re_ire_type = ire->ire_type; 17070 re.ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 17071 re.ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 17072 re.ipRouteInfo.re_flags = ire->ire_flags; 17073 re.ipRouteInfo.re_in_ill.o_length = 0; 17074 if (ire->ire_in_ill != NULL) { 17075 re.ipRouteInfo.re_in_ill.o_length = 17076 ire->ire_in_ill->ill_name_length == 0 ? 0 : 17077 MIN(OCTET_LENGTH, ire->ire_in_ill->ill_name_length - 1); 17078 bcopy(ire->ire_in_ill->ill_name, 17079 re.ipRouteInfo.re_in_ill.o_bytes, 17080 re.ipRouteInfo.re_in_ill.o_length); 17081 } 17082 re.ipRouteInfo.re_in_src_addr = ire->ire_in_src_addr; 17083 if (!snmp_append_data2(re_ntme[0].lp_head, &(re_ntme[0].lp_tail), 17084 (char *)&re, (int)sizeof (re))) { 17085 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 17086 (uint_t)sizeof (re))); 17087 } 17088 17089 if (ire->ire_type != IRE_CACHE || gw_addr != 0) 17090 return; 17091 /* 17092 * only IRE_CACHE entries that are for a directly connected subnet 17093 * get appended to net -> phys addr table 17094 * (others in arp) 17095 */ 17096 ntme.ipNetToMediaIfIndex.o_length = 0; 17097 ill = ire_to_ill(ire); 17098 ASSERT(ill != NULL); 17099 ntme.ipNetToMediaIfIndex.o_length = 17100 ill->ill_name_length == 0 ? 0 : 17101 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 17102 bcopy(ill->ill_name, ntme.ipNetToMediaIfIndex.o_bytes, 17103 ntme.ipNetToMediaIfIndex.o_length); 17104 17105 ntme.ipNetToMediaPhysAddress.o_length = 0; 17106 if (llmp) { 17107 uchar_t *addr; 17108 17109 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 17110 /* Remove sap from address */ 17111 if (ill->ill_sap_length < 0) 17112 addr = llmp->b_rptr + dlup->dl_dest_addr_offset; 17113 else 17114 addr = llmp->b_rptr + dlup->dl_dest_addr_offset + 17115 ill->ill_sap_length; 17116 17117 ntme.ipNetToMediaPhysAddress.o_length = 17118 MIN(OCTET_LENGTH, ill->ill_phys_addr_length); 17119 bcopy(addr, ntme.ipNetToMediaPhysAddress.o_bytes, 17120 ntme.ipNetToMediaPhysAddress.o_length); 17121 } 17122 ntme.ipNetToMediaNetAddress = ire->ire_addr; 17123 /* assume dynamic (may be changed in arp) */ 17124 ntme.ipNetToMediaType = 3; 17125 ntme.ipNetToMediaInfo.ntm_mask.o_length = sizeof (uint32_t); 17126 bcopy(&ire->ire_mask, ntme.ipNetToMediaInfo.ntm_mask.o_bytes, 17127 ntme.ipNetToMediaInfo.ntm_mask.o_length); 17128 ntme.ipNetToMediaInfo.ntm_flags = ACE_F_RESOLVED; 17129 if (!snmp_append_data2(re_ntme[1].lp_head, &(re_ntme[1].lp_tail), 17130 (char *)&ntme, (int)sizeof (ntme))) { 17131 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 17132 (uint_t)sizeof (ntme))); 17133 } 17134 } 17135 17136 /* 17137 * ire_walk routine to create ipv6RouteEntryTable. 17138 */ 17139 static void 17140 ip_snmp_get2_v6_route(ire_t *ire, listptr_t *re_ntme) 17141 { 17142 ill_t *ill; 17143 ipif_t *ipif; 17144 mib2_ipv6RouteEntry_t re; 17145 in6_addr_t gw_addr_v6; 17146 17147 ASSERT(ire->ire_ipversion == IPV6_VERSION); 17148 17149 /* 17150 * Return all IRE types for route table... let caller pick and choose 17151 */ 17152 re.ipv6RouteDest = ire->ire_addr_v6; 17153 re.ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 17154 re.ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 17155 re.ipv6RouteIfIndex.o_length = 0; 17156 ipif = ire->ire_ipif; 17157 if (ire->ire_type == IRE_CACHE) { 17158 ill = (ill_t *)ire->ire_stq->q_ptr; 17159 re.ipv6RouteIfIndex.o_length = 17160 ill->ill_name_length == 0 ? 0 : 17161 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 17162 bcopy(ill->ill_name, re.ipv6RouteIfIndex.o_bytes, 17163 re.ipv6RouteIfIndex.o_length); 17164 } else if (ipif != NULL) { 17165 (void) ipif_get_name(ipif, re.ipv6RouteIfIndex.o_bytes, 17166 OCTET_LENGTH); 17167 re.ipv6RouteIfIndex.o_length = 17168 mi_strlen(re.ipv6RouteIfIndex.o_bytes); 17169 } 17170 17171 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 17172 17173 mutex_enter(&ire->ire_lock); 17174 gw_addr_v6 = ire->ire_gateway_addr_v6; 17175 mutex_exit(&ire->ire_lock); 17176 17177 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 17178 re.ipv6RouteNextHop = ire->ire_src_addr_v6; 17179 else 17180 re.ipv6RouteNextHop = gw_addr_v6; 17181 17182 /* remote(4), local(3), or discard(2) */ 17183 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 17184 re.ipv6RouteType = 2; 17185 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 17186 re.ipv6RouteType = 3; 17187 else 17188 re.ipv6RouteType = 4; 17189 17190 re.ipv6RouteProtocol = -1; 17191 re.ipv6RoutePolicy = 0; 17192 re.ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 17193 re.ipv6RouteNextHopRDI = 0; 17194 re.ipv6RouteWeight = 0; 17195 re.ipv6RouteMetric = 0; 17196 re.ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 17197 re.ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 17198 re.ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 17199 re.ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 17200 re.ipv6RouteInfo.re_ire_type = ire->ire_type; 17201 re.ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 17202 re.ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 17203 re.ipv6RouteInfo.re_ref = ire->ire_refcnt; 17204 re.ipv6RouteInfo.re_flags = ire->ire_flags; 17205 17206 if (!snmp_append_data2(re_ntme->lp_head, &(re_ntme->lp_tail), 17207 (char *)&re, (int)sizeof (re))) { 17208 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 17209 (uint_t)sizeof (re))); 17210 } 17211 } 17212 17213 /* 17214 * ndp_walk routine to create ipv6NetToMediaEntryTable 17215 */ 17216 static int 17217 ip_snmp_get2_v6_media(nce_t *nce, listptr_t *re_ntme) 17218 { 17219 ill_t *ill; 17220 mib2_ipv6NetToMediaEntry_t ntme; 17221 dl_unitdata_req_t *dl; 17222 17223 ill = nce->nce_ill; 17224 ASSERT(ill->ill_isv6); 17225 17226 /* 17227 * Neighbor cache entry attached to IRE with on-link 17228 * destination. 17229 */ 17230 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 17231 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 17232 if ((ill->ill_flags & ILLF_XRESOLV) && 17233 (nce->nce_res_mp != NULL)) { 17234 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 17235 ntme.ipv6NetToMediaPhysAddress.o_length = 17236 dl->dl_dest_addr_length; 17237 } else { 17238 ntme.ipv6NetToMediaPhysAddress.o_length = 17239 ill->ill_phys_addr_length; 17240 } 17241 if (nce->nce_res_mp != NULL) { 17242 bcopy((char *)nce->nce_res_mp->b_rptr + 17243 NCE_LL_ADDR_OFFSET(ill), 17244 ntme.ipv6NetToMediaPhysAddress.o_bytes, 17245 ntme.ipv6NetToMediaPhysAddress.o_length); 17246 } else { 17247 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 17248 ill->ill_phys_addr_length); 17249 } 17250 /* 17251 * Note: Returns ND_* states. Should be: 17252 * reachable(1), stale(2), delay(3), probe(4), 17253 * invalid(5), unknown(6) 17254 */ 17255 ntme.ipv6NetToMediaState = nce->nce_state; 17256 ntme.ipv6NetToMediaLastUpdated = 0; 17257 17258 /* other(1), dynamic(2), static(3), local(4) */ 17259 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 17260 ntme.ipv6NetToMediaType = 4; 17261 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 17262 ntme.ipv6NetToMediaType = 1; 17263 } else { 17264 ntme.ipv6NetToMediaType = 2; 17265 } 17266 17267 if (!snmp_append_data2(re_ntme->lp_head, 17268 &(re_ntme->lp_tail), (char *)&ntme, (int)sizeof (ntme))) { 17269 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 17270 (uint_t)sizeof (ntme))); 17271 } 17272 return (0); 17273 } 17274 17275 /* 17276 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 17277 */ 17278 /* ARGSUSED */ 17279 int 17280 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 17281 { 17282 switch (level) { 17283 case MIB2_IP: 17284 case MIB2_ICMP: 17285 switch (name) { 17286 default: 17287 break; 17288 } 17289 return (1); 17290 default: 17291 return (1); 17292 } 17293 } 17294 17295 /* 17296 * Called before the options are updated to check if this packet will 17297 * be source routed from here. 17298 * This routine assumes that the options are well formed i.e. that they 17299 * have already been checked. 17300 */ 17301 static boolean_t 17302 ip_source_routed(ipha_t *ipha) 17303 { 17304 ipoptp_t opts; 17305 uchar_t *opt; 17306 uint8_t optval; 17307 uint8_t optlen; 17308 ipaddr_t dst; 17309 ire_t *ire; 17310 17311 if (IS_SIMPLE_IPH(ipha)) { 17312 ip2dbg(("not source routed\n")); 17313 return (B_FALSE); 17314 } 17315 dst = ipha->ipha_dst; 17316 for (optval = ipoptp_first(&opts, ipha); 17317 optval != IPOPT_EOL; 17318 optval = ipoptp_next(&opts)) { 17319 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17320 opt = opts.ipoptp_cur; 17321 optlen = opts.ipoptp_len; 17322 ip2dbg(("ip_source_routed: opt %d, len %d\n", 17323 optval, optlen)); 17324 switch (optval) { 17325 uint32_t off; 17326 case IPOPT_SSRR: 17327 case IPOPT_LSRR: 17328 /* 17329 * If dst is one of our addresses and there are some 17330 * entries left in the source route return (true). 17331 */ 17332 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17333 ALL_ZONES, MATCH_IRE_TYPE); 17334 if (ire == NULL) { 17335 ip2dbg(("ip_source_routed: not next" 17336 " source route 0x%x\n", 17337 ntohl(dst))); 17338 return (B_FALSE); 17339 } 17340 ire_refrele(ire); 17341 off = opt[IPOPT_OFFSET]; 17342 off--; 17343 if (optlen < IP_ADDR_LEN || 17344 off > optlen - IP_ADDR_LEN) { 17345 /* End of source route */ 17346 ip1dbg(("ip_source_routed: end of SR\n")); 17347 return (B_FALSE); 17348 } 17349 return (B_TRUE); 17350 } 17351 } 17352 ip2dbg(("not source routed\n")); 17353 return (B_FALSE); 17354 } 17355 17356 /* 17357 * Check if the packet contains any source route. 17358 */ 17359 static boolean_t 17360 ip_source_route_included(ipha_t *ipha) 17361 { 17362 ipoptp_t opts; 17363 uint8_t optval; 17364 17365 if (IS_SIMPLE_IPH(ipha)) 17366 return (B_FALSE); 17367 for (optval = ipoptp_first(&opts, ipha); 17368 optval != IPOPT_EOL; 17369 optval = ipoptp_next(&opts)) { 17370 switch (optval) { 17371 case IPOPT_SSRR: 17372 case IPOPT_LSRR: 17373 return (B_TRUE); 17374 } 17375 } 17376 return (B_FALSE); 17377 } 17378 17379 /* 17380 * Called when the IRE expiration timer fires. 17381 */ 17382 /* ARGSUSED */ 17383 void 17384 ip_trash_timer_expire(void *args) 17385 { 17386 int flush_flag = 0; 17387 17388 /* 17389 * ip_ire_expire_id is protected by ip_trash_timer_lock. 17390 * This lock makes sure that a new invocation of this function 17391 * that occurs due to an almost immediate timer firing will not 17392 * progress beyond this point until the current invocation is done 17393 */ 17394 mutex_enter(&ip_trash_timer_lock); 17395 ip_ire_expire_id = 0; 17396 mutex_exit(&ip_trash_timer_lock); 17397 17398 /* Periodic timer */ 17399 if (ip_ire_arp_time_elapsed >= ip_ire_arp_interval) { 17400 /* 17401 * Remove all IRE_CACHE entries since they might 17402 * contain arp information. 17403 */ 17404 flush_flag |= FLUSH_ARP_TIME; 17405 ip_ire_arp_time_elapsed = 0; 17406 IP_STAT(ip_ire_arp_timer_expired); 17407 } 17408 if (ip_ire_rd_time_elapsed >= ip_ire_redir_interval) { 17409 /* Remove all redirects */ 17410 flush_flag |= FLUSH_REDIRECT_TIME; 17411 ip_ire_rd_time_elapsed = 0; 17412 IP_STAT(ip_ire_redirect_timer_expired); 17413 } 17414 if (ip_ire_pmtu_time_elapsed >= ip_ire_pathmtu_interval) { 17415 /* Increase path mtu */ 17416 flush_flag |= FLUSH_MTU_TIME; 17417 ip_ire_pmtu_time_elapsed = 0; 17418 IP_STAT(ip_ire_pmtu_timer_expired); 17419 } 17420 if (flush_flag != 0) { 17421 /* Walk all IPv4 IRE's and update them */ 17422 ire_walk_v4(ire_expire, (char *)(uintptr_t)flush_flag, 17423 ALL_ZONES); 17424 } 17425 if (flush_flag & FLUSH_MTU_TIME) { 17426 /* 17427 * Walk all IPv6 IRE's and update them 17428 * Note that ARP and redirect timers are not 17429 * needed since NUD handles stale entries. 17430 */ 17431 flush_flag = FLUSH_MTU_TIME; 17432 ire_walk_v6(ire_expire, (char *)(uintptr_t)flush_flag, 17433 ALL_ZONES); 17434 } 17435 17436 ip_ire_arp_time_elapsed += ip_timer_interval; 17437 ip_ire_rd_time_elapsed += ip_timer_interval; 17438 ip_ire_pmtu_time_elapsed += ip_timer_interval; 17439 17440 /* 17441 * Hold the lock to serialize timeout calls and prevent 17442 * stale values in ip_ire_expire_id. Otherwise it is possible 17443 * for the timer to fire and a new invocation of this function 17444 * to start before the return value of timeout has been stored 17445 * in ip_ire_expire_id by the current invocation. 17446 */ 17447 mutex_enter(&ip_trash_timer_lock); 17448 ip_ire_expire_id = timeout(ip_trash_timer_expire, NULL, 17449 MSEC_TO_TICK(ip_timer_interval)); 17450 mutex_exit(&ip_trash_timer_lock); 17451 } 17452 17453 /* 17454 * Called by the memory allocator subsystem directly, when the system 17455 * is running low on memory. 17456 */ 17457 /* ARGSUSED */ 17458 void 17459 ip_trash_ire_reclaim(void *args) 17460 { 17461 ire_cache_count_t icc; 17462 ire_cache_reclaim_t icr; 17463 ncc_cache_count_t ncc; 17464 nce_cache_reclaim_t ncr; 17465 uint_t delete_cnt; 17466 /* 17467 * Memory reclaim call back. 17468 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 17469 * Then, with a target of freeing 1/Nth of IRE_CACHE 17470 * entries, determine what fraction to free for 17471 * each category of IRE_CACHE entries giving absolute priority 17472 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 17473 * entry will be freed unless all offlink entries are freed). 17474 */ 17475 icc.icc_total = 0; 17476 icc.icc_unused = 0; 17477 icc.icc_offlink = 0; 17478 icc.icc_pmtu = 0; 17479 icc.icc_onlink = 0; 17480 ire_walk(ire_cache_count, (char *)&icc); 17481 17482 /* 17483 * Free NCEs for IPv6 like the onlink ires. 17484 */ 17485 ncc.ncc_total = 0; 17486 ncc.ncc_host = 0; 17487 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc); 17488 17489 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 17490 icc.icc_pmtu + icc.icc_onlink); 17491 delete_cnt = icc.icc_total/ip_ire_reclaim_fraction; 17492 IP_STAT(ip_trash_ire_reclaim_calls); 17493 if (delete_cnt == 0) 17494 return; 17495 IP_STAT(ip_trash_ire_reclaim_success); 17496 /* Always delete all unused offlink entries */ 17497 icr.icr_unused = 1; 17498 if (delete_cnt <= icc.icc_unused) { 17499 /* 17500 * Only need to free unused entries. In other words, 17501 * there are enough unused entries to free to meet our 17502 * target number of freed ire cache entries. 17503 */ 17504 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 17505 ncr.ncr_host = 0; 17506 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 17507 /* 17508 * Only need to free unused entries, plus a fraction of offlink 17509 * entries. It follows from the first if statement that 17510 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 17511 */ 17512 delete_cnt -= icc.icc_unused; 17513 /* Round up # deleted by truncating fraction */ 17514 icr.icr_offlink = icc.icc_offlink / delete_cnt; 17515 icr.icr_pmtu = icr.icr_onlink = 0; 17516 ncr.ncr_host = 0; 17517 } else if (delete_cnt <= 17518 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 17519 /* 17520 * Free all unused and offlink entries, plus a fraction of 17521 * pmtu entries. It follows from the previous if statement 17522 * that icc_pmtu is non-zero, and that 17523 * delete_cnt != icc_unused + icc_offlink. 17524 */ 17525 icr.icr_offlink = 1; 17526 delete_cnt -= icc.icc_unused + icc.icc_offlink; 17527 /* Round up # deleted by truncating fraction */ 17528 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 17529 icr.icr_onlink = 0; 17530 ncr.ncr_host = 0; 17531 } else { 17532 /* 17533 * Free all unused, offlink, and pmtu entries, plus a fraction 17534 * of onlink entries. If we're here, then we know that 17535 * icc_onlink is non-zero, and that 17536 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 17537 */ 17538 icr.icr_offlink = icr.icr_pmtu = 1; 17539 delete_cnt -= icc.icc_unused + icc.icc_offlink + 17540 icc.icc_pmtu; 17541 /* Round up # deleted by truncating fraction */ 17542 icr.icr_onlink = icc.icc_onlink / delete_cnt; 17543 /* Using the same delete fraction as for onlink IREs */ 17544 ncr.ncr_host = ncc.ncc_host / delete_cnt; 17545 } 17546 #ifdef DEBUG 17547 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 17548 "fractions %d/%d/%d/%d\n", 17549 icc.icc_total/ip_ire_reclaim_fraction, icc.icc_total, 17550 icc.icc_unused, icc.icc_offlink, 17551 icc.icc_pmtu, icc.icc_onlink, 17552 icr.icr_unused, icr.icr_offlink, 17553 icr.icr_pmtu, icr.icr_onlink)); 17554 #endif 17555 ire_walk(ire_cache_reclaim, (char *)&icr); 17556 if (ncr.ncr_host != 0) 17557 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 17558 (uchar_t *)&ncr); 17559 #ifdef DEBUG 17560 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 17561 icc.icc_pmtu = 0; icc.icc_onlink = 0; 17562 ire_walk(ire_cache_count, (char *)&icc); 17563 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 17564 icc.icc_total, icc.icc_unused, icc.icc_offlink, 17565 icc.icc_pmtu, icc.icc_onlink)); 17566 #endif 17567 } 17568 17569 /* 17570 * ip_unbind is called when a copy of an unbind request is received from the 17571 * upper level protocol. We remove this conn from any fanout hash list it is 17572 * on, and zero out the bind information. No reply is expected up above. 17573 */ 17574 static void 17575 ip_unbind(queue_t *q, mblk_t *mp) 17576 { 17577 conn_t *connp = Q_TO_CONN(q); 17578 17579 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 17580 17581 ipcl_hash_remove(connp); 17582 17583 ASSERT(mp->b_cont == NULL); 17584 /* 17585 * Convert mp into a T_OK_ACK 17586 */ 17587 mp = mi_tpi_ok_ack_alloc(mp); 17588 17589 /* 17590 * should not happen in practice... T_OK_ACK is smaller than the 17591 * original message. 17592 */ 17593 if (mp == NULL) 17594 return; 17595 17596 /* 17597 * Don't bzero the ports if its TCP since TCP still needs the 17598 * lport to remove it from its own bind hash. TCP will do the 17599 * cleanup. 17600 */ 17601 if (!IPCL_IS_TCP(connp)) 17602 bzero(&connp->u_port, sizeof (connp->u_port)); 17603 17604 qreply(q, mp); 17605 } 17606 17607 /* 17608 * Write side put procedure. Outbound data, IOCTLs, responses from 17609 * resolvers, etc, come down through here. 17610 */ 17611 void 17612 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 17613 { 17614 conn_t *connp = NULL; 17615 queue_t *q = (queue_t *)arg2; 17616 ipha_t *ipha; 17617 #define rptr ((uchar_t *)ipha) 17618 ire_t *ire = NULL; 17619 ire_t *sctp_ire = NULL; 17620 uint32_t v_hlen_tos_len; 17621 ipaddr_t dst; 17622 mblk_t *first_mp = NULL; 17623 boolean_t mctl_present; 17624 ipsec_out_t *io; 17625 int match_flags; 17626 ill_t *attach_ill = NULL; 17627 /* Bind to IPIF_NOFAILOVER ill etc. */ 17628 ill_t *xmit_ill = NULL; /* IP_XMIT_IF etc. */ 17629 ipif_t *dst_ipif; 17630 boolean_t multirt_need_resolve = B_FALSE; 17631 mblk_t *copy_mp = NULL; 17632 int err; 17633 zoneid_t zoneid; 17634 boolean_t need_decref = B_FALSE; 17635 boolean_t ignore_dontroute = B_FALSE; 17636 17637 #ifdef _BIG_ENDIAN 17638 #define V_HLEN (v_hlen_tos_len >> 24) 17639 #else 17640 #define V_HLEN (v_hlen_tos_len & 0xFF) 17641 #endif 17642 17643 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 17644 "ip_wput_start: q %p", q); 17645 17646 /* 17647 * ip_wput fast path 17648 */ 17649 17650 /* is packet from ARP ? */ 17651 if (q->q_next != NULL) 17652 goto qnext; 17653 17654 connp = (conn_t *)arg; 17655 zoneid = (connp != NULL ? connp->conn_zoneid : ALL_ZONES); 17656 17657 /* is queue flow controlled? */ 17658 if ((q->q_first != NULL || connp->conn_draining) && 17659 (caller == IP_WPUT)) { 17660 goto doputq; 17661 } 17662 17663 /* Multidata transmit? */ 17664 if (DB_TYPE(mp) == M_MULTIDATA) { 17665 /* 17666 * We should never get here, since all Multidata messages 17667 * originating from tcp should have been directed over to 17668 * tcp_multisend() in the first place. 17669 */ 17670 BUMP_MIB(&ip_mib, ipOutDiscards); 17671 freemsg(mp); 17672 return; 17673 } else if (DB_TYPE(mp) != M_DATA) 17674 goto notdata; 17675 if (mp->b_flag & MSGHASREF) { 17676 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 17677 mp->b_flag &= ~MSGHASREF; 17678 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 17679 need_decref = B_TRUE; 17680 } 17681 ipha = (ipha_t *)mp->b_rptr; 17682 17683 /* is IP header non-aligned or mblk smaller than basic IP header */ 17684 #ifndef SAFETY_BEFORE_SPEED 17685 if (!OK_32PTR(rptr) || 17686 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 17687 goto hdrtoosmall; 17688 #endif 17689 17690 /* 17691 * If there is a policy, try to attach an ipsec_out in 17692 * the front. At the end, first_mp either points to a 17693 * M_DATA message or IPSEC_OUT message linked to a 17694 * M_DATA message. We have to do it now as we might 17695 * lose the "conn" if we go through ip_newroute. 17696 */ 17697 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 17698 if (((mp = ipsec_attach_ipsec_out(mp, connp, NULL, 17699 ipha->ipha_protocol)) == NULL)) { 17700 if (need_decref) 17701 CONN_DEC_REF(connp); 17702 return; 17703 } else { 17704 ASSERT(mp->b_datap->db_type == M_CTL); 17705 first_mp = mp; 17706 mp = mp->b_cont; 17707 mctl_present = B_TRUE; 17708 } 17709 } else { 17710 first_mp = mp; 17711 mctl_present = B_FALSE; 17712 } 17713 17714 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 17715 17716 /* is wrong version or IP options present */ 17717 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 17718 goto version_hdrlen_check; 17719 dst = ipha->ipha_dst; 17720 17721 if (connp->conn_nofailover_ill != NULL) { 17722 attach_ill = conn_get_held_ill(connp, 17723 &connp->conn_nofailover_ill, &err); 17724 if (err == ILL_LOOKUP_FAILED) { 17725 if (need_decref) 17726 CONN_DEC_REF(connp); 17727 freemsg(first_mp); 17728 return; 17729 } 17730 } 17731 17732 /* is packet multicast? */ 17733 if (CLASSD(dst)) 17734 goto multicast; 17735 17736 if ((connp->conn_dontroute) || (connp->conn_xmit_if_ill != NULL)) { 17737 /* 17738 * If the destination is a broadcast or a loopback 17739 * address, both SO_DONTROUTE and IP_XMIT_IF go 17740 * through the standard path. But in the case of local 17741 * destination only SO_DONTROUTE goes through the 17742 * standard path not IP_XMIT_IF. 17743 */ 17744 ire = ire_cache_lookup(dst, zoneid); 17745 if ((ire == NULL) || ((ire->ire_type != IRE_BROADCAST) && 17746 (ire->ire_type != IRE_LOOPBACK))) { 17747 17748 if ((connp->conn_dontroute) && (ire != NULL) && 17749 (ire->ire_type == IRE_LOCAL)) 17750 goto standard_path; 17751 17752 if (ire != NULL) { 17753 ire_refrele(ire); 17754 /* No more access to ire */ 17755 ire = NULL; 17756 } 17757 /* 17758 * bypass routing checks and go directly to 17759 * interface. 17760 */ 17761 if (connp->conn_dontroute) 17762 goto dontroute; 17763 17764 /* 17765 * If IP_XMIT_IF socket option is set, 17766 * then we allow unicast and multicast 17767 * packets to go through the ill. It is 17768 * quite possible that the destination 17769 * is not in the ire cache table and we 17770 * do not want to go to ip_newroute() 17771 * instead we call ip_newroute_ipif. 17772 */ 17773 xmit_ill = conn_get_held_ill(connp, 17774 &connp->conn_xmit_if_ill, &err); 17775 if (err == ILL_LOOKUP_FAILED) { 17776 if (attach_ill != NULL) 17777 ill_refrele(attach_ill); 17778 if (need_decref) 17779 CONN_DEC_REF(connp); 17780 freemsg(first_mp); 17781 return; 17782 } 17783 goto send_from_ill; 17784 } 17785 standard_path: 17786 /* Must be a broadcast, a loopback or a local ire */ 17787 if (ire != NULL) { 17788 ire_refrele(ire); 17789 /* No more access to ire */ 17790 ire = NULL; 17791 } 17792 } 17793 17794 if (attach_ill != NULL) 17795 goto send_from_ill; 17796 17797 /* 17798 * We cache IRE_CACHEs to avoid lookups. We don't do 17799 * this for the tcp global queue and listen end point 17800 * as it does not really have a real destination to 17801 * talk to. This is also true for SCTP. 17802 */ 17803 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 17804 !connp->conn_fully_bound) { 17805 ire = ire_cache_lookup(dst, zoneid); 17806 if (ire == NULL) 17807 goto noirefound; 17808 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 17809 "ip_wput_end: q %p (%S)", q, "end"); 17810 17811 /* 17812 * Check if the ire has the RTF_MULTIRT flag, inherited 17813 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 17814 */ 17815 if (ire->ire_flags & RTF_MULTIRT) { 17816 17817 /* 17818 * Force the TTL of multirouted packets if required. 17819 * The TTL of such packets is bounded by the 17820 * ip_multirt_ttl ndd variable. 17821 */ 17822 if ((ip_multirt_ttl > 0) && 17823 (ipha->ipha_ttl > ip_multirt_ttl)) { 17824 ip2dbg(("ip_wput: forcing multirt TTL to %d " 17825 "(was %d), dst 0x%08x\n", 17826 ip_multirt_ttl, ipha->ipha_ttl, 17827 ntohl(ire->ire_addr))); 17828 ipha->ipha_ttl = ip_multirt_ttl; 17829 } 17830 /* 17831 * We look at this point if there are pending 17832 * unresolved routes. ire_multirt_resolvable() 17833 * checks in O(n) that all IRE_OFFSUBNET ire 17834 * entries for the packet's destination and 17835 * flagged RTF_MULTIRT are currently resolved. 17836 * If some remain unresolved, we make a copy 17837 * of the current message. It will be used 17838 * to initiate additional route resolutions. 17839 */ 17840 multirt_need_resolve = 17841 ire_multirt_need_resolve(ire->ire_addr); 17842 ip2dbg(("ip_wput[TCP]: ire %p, " 17843 "multirt_need_resolve %d, first_mp %p\n", 17844 (void *)ire, multirt_need_resolve, 17845 (void *)first_mp)); 17846 if (multirt_need_resolve) { 17847 copy_mp = copymsg(first_mp); 17848 if (copy_mp != NULL) { 17849 MULTIRT_DEBUG_TAG(copy_mp); 17850 } 17851 } 17852 } 17853 17854 ip_wput_ire(q, first_mp, ire, connp, caller); 17855 17856 /* 17857 * Try to resolve another multiroute if 17858 * ire_multirt_need_resolve() deemed it necessary. 17859 */ 17860 if (copy_mp != NULL) { 17861 ip_newroute(q, copy_mp, dst, NULL, connp); 17862 } 17863 if (need_decref) 17864 CONN_DEC_REF(connp); 17865 return; 17866 } 17867 17868 /* 17869 * Access to conn_ire_cache. (protected by conn_lock) 17870 * 17871 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 17872 * the ire bucket lock here to check for CONDEMNED as it is okay to 17873 * send a packet or two with the IRE_CACHE that is going away. 17874 * Access to the ire requires an ire refhold on the ire prior to 17875 * its use since an interface unplumb thread may delete the cached 17876 * ire and release the refhold at any time. 17877 * 17878 * Caching an ire in the conn_ire_cache 17879 * 17880 * o Caching an ire pointer in the conn requires a strict check for 17881 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 17882 * ires before cleaning up the conns. So the caching of an ire pointer 17883 * in the conn is done after making sure under the bucket lock that the 17884 * ire has not yet been marked CONDEMNED. Otherwise we will end up 17885 * caching an ire after the unplumb thread has cleaned up the conn. 17886 * If the conn does not send a packet subsequently the unplumb thread 17887 * will be hanging waiting for the ire count to drop to zero. 17888 * 17889 * o We also need to atomically test for a null conn_ire_cache and 17890 * set the conn_ire_cache under the the protection of the conn_lock 17891 * to avoid races among concurrent threads trying to simultaneously 17892 * cache an ire in the conn_ire_cache. 17893 */ 17894 mutex_enter(&connp->conn_lock); 17895 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 17896 17897 if (ire != NULL && ire->ire_addr == dst && 17898 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 17899 17900 IRE_REFHOLD(ire); 17901 mutex_exit(&connp->conn_lock); 17902 17903 } else { 17904 boolean_t cached = B_FALSE; 17905 connp->conn_ire_cache = NULL; 17906 mutex_exit(&connp->conn_lock); 17907 /* Release the old ire */ 17908 if (ire != NULL && sctp_ire == NULL) 17909 IRE_REFRELE_NOTR(ire); 17910 17911 ire = (ire_t *)ire_cache_lookup(dst, zoneid); 17912 if (ire == NULL) 17913 goto noirefound; 17914 IRE_REFHOLD_NOTR(ire); 17915 17916 mutex_enter(&connp->conn_lock); 17917 if (!(connp->conn_state_flags & CONN_CLOSING) && 17918 connp->conn_ire_cache == NULL) { 17919 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 17920 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 17921 connp->conn_ire_cache = ire; 17922 cached = B_TRUE; 17923 } 17924 rw_exit(&ire->ire_bucket->irb_lock); 17925 } 17926 mutex_exit(&connp->conn_lock); 17927 17928 /* 17929 * We can continue to use the ire but since it was 17930 * not cached, we should drop the extra reference. 17931 */ 17932 if (!cached) 17933 IRE_REFRELE_NOTR(ire); 17934 } 17935 17936 17937 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 17938 "ip_wput_end: q %p (%S)", q, "end"); 17939 17940 /* 17941 * Check if the ire has the RTF_MULTIRT flag, inherited 17942 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 17943 */ 17944 if (ire->ire_flags & RTF_MULTIRT) { 17945 17946 /* 17947 * Force the TTL of multirouted packets if required. 17948 * The TTL of such packets is bounded by the 17949 * ip_multirt_ttl ndd variable. 17950 */ 17951 if ((ip_multirt_ttl > 0) && 17952 (ipha->ipha_ttl > ip_multirt_ttl)) { 17953 ip2dbg(("ip_wput: forcing multirt TTL to %d " 17954 "(was %d), dst 0x%08x\n", 17955 ip_multirt_ttl, ipha->ipha_ttl, 17956 ntohl(ire->ire_addr))); 17957 ipha->ipha_ttl = ip_multirt_ttl; 17958 } 17959 17960 /* 17961 * At this point, we check to see if there are any pending 17962 * unresolved routes. ire_multirt_resolvable() 17963 * checks in O(n) that all IRE_OFFSUBNET ire 17964 * entries for the packet's destination and 17965 * flagged RTF_MULTIRT are currently resolved. 17966 * If some remain unresolved, we make a copy 17967 * of the current message. It will be used 17968 * to initiate additional route resolutions. 17969 */ 17970 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr); 17971 ip2dbg(("ip_wput[not TCP]: ire %p, " 17972 "multirt_need_resolve %d, first_mp %p\n", 17973 (void *)ire, multirt_need_resolve, (void *)first_mp)); 17974 if (multirt_need_resolve) { 17975 copy_mp = copymsg(first_mp); 17976 if (copy_mp != NULL) { 17977 MULTIRT_DEBUG_TAG(copy_mp); 17978 } 17979 } 17980 } 17981 17982 ip_wput_ire(q, first_mp, ire, connp, caller); 17983 17984 /* 17985 * Try to resolve another multiroute if 17986 * ire_multirt_resolvable() deemed it necessary 17987 */ 17988 if (copy_mp != NULL) { 17989 ip_newroute(q, copy_mp, dst, NULL, connp); 17990 } 17991 if (need_decref) 17992 CONN_DEC_REF(connp); 17993 return; 17994 17995 doputq: 17996 ASSERT(!need_decref); 17997 (void) putq(q, mp); 17998 return; 17999 18000 qnext: 18001 /* 18002 * Upper Level Protocols pass down complete IP datagrams 18003 * as M_DATA messages. Everything else is a sideshow. 18004 * 18005 * 1) We could be re-entering ip_wput because of ip_neworute 18006 * in which case we could have a IPSEC_OUT message. We 18007 * need to pass through ip_wput like other datagrams and 18008 * hence cannot branch to ip_wput_nondata. 18009 * 18010 * 2) ARP, AH, ESP, and other clients who are on the module 18011 * instance of IP stream, give us something to deal with. 18012 * We will handle AH and ESP here and rest in ip_wput_nondata. 18013 * 18014 * 3) ICMP replies also could come here. 18015 */ 18016 if (DB_TYPE(mp) != M_DATA) { 18017 notdata: 18018 if (DB_TYPE(mp) == M_CTL) { 18019 /* 18020 * M_CTL messages are used by ARP, AH and ESP to 18021 * communicate with IP. We deal with IPSEC_IN and 18022 * IPSEC_OUT here. ip_wput_nondata handles other 18023 * cases. 18024 */ 18025 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 18026 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 18027 first_mp = mp->b_cont; 18028 first_mp->b_flag &= ~MSGHASREF; 18029 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 18030 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 18031 CONN_DEC_REF(connp); 18032 connp = NULL; 18033 } 18034 if (ii->ipsec_info_type == IPSEC_IN) { 18035 /* 18036 * Either this message goes back to 18037 * IPSEC for further processing or to 18038 * ULP after policy checks. 18039 */ 18040 ip_fanout_proto_again(mp, NULL, NULL, NULL); 18041 return; 18042 } else if (ii->ipsec_info_type == IPSEC_OUT) { 18043 io = (ipsec_out_t *)ii; 18044 if (io->ipsec_out_proc_begin) { 18045 /* 18046 * IPSEC processing has already started. 18047 * Complete it. 18048 * IPQoS notes: We don't care what is 18049 * in ipsec_out_ill_index since this 18050 * won't be processed for IPQoS policies 18051 * in ipsec_out_process. 18052 */ 18053 ipsec_out_process(q, mp, NULL, 18054 io->ipsec_out_ill_index); 18055 return; 18056 } else { 18057 connp = (q->q_next != NULL) ? 18058 NULL : Q_TO_CONN(q); 18059 first_mp = mp; 18060 mp = mp->b_cont; 18061 mctl_present = B_TRUE; 18062 } 18063 zoneid = io->ipsec_out_zoneid; 18064 ASSERT(zoneid != ALL_ZONES); 18065 } else if (ii->ipsec_info_type == IPSEC_CTL) { 18066 /* 18067 * It's an IPsec control message requesting 18068 * an SADB update to be sent to the IPsec 18069 * hardware acceleration capable ills. 18070 */ 18071 ipsec_ctl_t *ipsec_ctl = 18072 (ipsec_ctl_t *)mp->b_rptr; 18073 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 18074 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 18075 mblk_t *cmp = mp->b_cont; 18076 18077 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 18078 ASSERT(cmp != NULL); 18079 18080 freeb(mp); 18081 ill_ipsec_capab_send_all(satype, cmp, sa); 18082 return; 18083 } else { 18084 /* 18085 * This must be ARP. 18086 */ 18087 ip_wput_nondata(NULL, q, mp, NULL); 18088 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18089 "ip_wput_end: q %p (%S)", q, "nondata"); 18090 return; 18091 } 18092 } else { 18093 /* 18094 * This must be non-(ARP/AH/ESP) messages. 18095 */ 18096 ASSERT(!need_decref); 18097 ip_wput_nondata(NULL, q, mp, NULL); 18098 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18099 "ip_wput_end: q %p (%S)", q, "nondata"); 18100 return; 18101 } 18102 } else { 18103 first_mp = mp; 18104 mctl_present = B_FALSE; 18105 } 18106 18107 ASSERT(first_mp != NULL); 18108 /* 18109 * ICMP echo replies attach an ipsec_out and set ipsec_out_attach_if 18110 * to make sure that this packet goes out on the same interface it 18111 * came in. We handle that here. 18112 */ 18113 if (mctl_present) { 18114 uint_t ifindex; 18115 18116 io = (ipsec_out_t *)first_mp->b_rptr; 18117 if (io->ipsec_out_attach_if || 18118 io->ipsec_out_xmit_if) { 18119 ill_t *ill; 18120 18121 ASSERT(io->ipsec_out_ill_index != 0); 18122 ifindex = io->ipsec_out_ill_index; 18123 ill = ill_lookup_on_ifindex(ifindex, B_FALSE, 18124 NULL, NULL, NULL, NULL); 18125 /* 18126 * ipsec_out_xmit_if bit is used to tell 18127 * ip_wput to use the ill to send outgoing data 18128 * as we have no conn when data comes from ICMP 18129 * error msg routines. Currently this feature is 18130 * only used by ip_mrtun_forward routine. 18131 */ 18132 if (io->ipsec_out_xmit_if) { 18133 xmit_ill = ill; 18134 if (xmit_ill == NULL) { 18135 ip1dbg(("ip_wput: bad ifindex for" 18136 "xmit_ill %d\n", ifindex)); 18137 freemsg(first_mp); 18138 BUMP_MIB(&ip_mib, ipOutDiscards); 18139 ASSERT(!need_decref); 18140 return; 18141 } 18142 /* Free up the ipsec_out_t mblk */ 18143 ASSERT(first_mp->b_cont == mp); 18144 first_mp->b_cont = NULL; 18145 freeb(first_mp); 18146 /* Just send the IP header+ICMP+data */ 18147 first_mp = mp; 18148 ipha = (ipha_t *)mp->b_rptr; 18149 dst = ipha->ipha_dst; 18150 goto send_from_ill; 18151 18152 } else { 18153 attach_ill = ill; 18154 } 18155 18156 if (attach_ill == NULL) { 18157 ASSERT(xmit_ill == NULL); 18158 ip1dbg(("ip_wput : bad ifindex for " 18159 "(BIND TO IPIF_NOFAILOVER) %d\n", ifindex)); 18160 freemsg(first_mp); 18161 BUMP_MIB(&ip_mib, ipOutDiscards); 18162 ASSERT(!need_decref); 18163 return; 18164 } 18165 } 18166 } 18167 18168 ASSERT(xmit_ill == NULL); 18169 18170 /* We have a complete IP datagram heading outbound. */ 18171 ipha = (ipha_t *)mp->b_rptr; 18172 18173 #ifndef SPEED_BEFORE_SAFETY 18174 /* 18175 * Make sure we have a full-word aligned message and that at least 18176 * a simple IP header is accessible in the first message. If not, 18177 * try a pullup. 18178 */ 18179 if (!OK_32PTR(rptr) || 18180 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) { 18181 hdrtoosmall: 18182 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 18183 BUMP_MIB(&ip_mib, ipOutDiscards); 18184 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18185 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 18186 if (first_mp == NULL) 18187 first_mp = mp; 18188 goto drop_pkt; 18189 } 18190 ipha = (ipha_t *)mp->b_rptr; 18191 if (first_mp == NULL) { 18192 ASSERT(attach_ill == NULL && xmit_ill == NULL); 18193 /* 18194 * If we got here because of "goto hdrtoosmall" 18195 * We need to attach a IPSEC_OUT. 18196 */ 18197 if (connp->conn_out_enforce_policy) { 18198 if (((mp = ipsec_attach_ipsec_out(mp, connp, 18199 NULL, ipha->ipha_protocol)) == NULL)) { 18200 if (need_decref) 18201 CONN_DEC_REF(connp); 18202 return; 18203 } else { 18204 ASSERT(mp->b_datap->db_type == M_CTL); 18205 first_mp = mp; 18206 mp = mp->b_cont; 18207 mctl_present = B_TRUE; 18208 } 18209 } else { 18210 first_mp = mp; 18211 mctl_present = B_FALSE; 18212 } 18213 } 18214 } 18215 #endif 18216 18217 /* Most of the code below is written for speed, not readability */ 18218 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 18219 18220 /* 18221 * If ip_newroute() fails, we're going to need a full 18222 * header for the icmp wraparound. 18223 */ 18224 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 18225 uint_t v_hlen; 18226 version_hdrlen_check: 18227 ASSERT(first_mp != NULL); 18228 v_hlen = V_HLEN; 18229 /* 18230 * siphon off IPv6 packets coming down from transport 18231 * layer modules here. 18232 * Note: high-order bit carries NUD reachability confirmation 18233 */ 18234 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 18235 /* 18236 * XXX implement a IPv4 and IPv6 packet counter per 18237 * conn and switch when ratio exceeds e.g. 10:1 18238 */ 18239 #ifdef notyet 18240 if (q->q_next == NULL) /* Avoid ill queue */ 18241 ip_setqinfo(RD(q), B_TRUE, B_TRUE); 18242 #endif 18243 BUMP_MIB(&ip_mib, ipOutIPv6); 18244 ASSERT(xmit_ill == NULL); 18245 if (attach_ill != NULL) 18246 ill_refrele(attach_ill); 18247 if (need_decref) 18248 mp->b_flag |= MSGHASREF; 18249 (void) ip_output_v6(connp, first_mp, q, caller); 18250 return; 18251 } 18252 18253 if ((v_hlen >> 4) != IP_VERSION) { 18254 BUMP_MIB(&ip_mib, ipOutDiscards); 18255 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18256 "ip_wput_end: q %p (%S)", q, "badvers"); 18257 goto drop_pkt; 18258 } 18259 /* 18260 * Is the header length at least 20 bytes? 18261 * 18262 * Are there enough bytes accessible in the header? If 18263 * not, try a pullup. 18264 */ 18265 v_hlen &= 0xF; 18266 v_hlen <<= 2; 18267 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 18268 BUMP_MIB(&ip_mib, ipOutDiscards); 18269 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18270 "ip_wput_end: q %p (%S)", q, "badlen"); 18271 goto drop_pkt; 18272 } 18273 if (v_hlen > (mp->b_wptr - rptr)) { 18274 if (!pullupmsg(mp, v_hlen)) { 18275 BUMP_MIB(&ip_mib, ipOutDiscards); 18276 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18277 "ip_wput_end: q %p (%S)", q, "badpullup2"); 18278 goto drop_pkt; 18279 } 18280 ipha = (ipha_t *)mp->b_rptr; 18281 } 18282 /* 18283 * Move first entry from any source route into ipha_dst and 18284 * verify the options 18285 */ 18286 if (ip_wput_options(q, first_mp, ipha, mctl_present, zoneid)) { 18287 ASSERT(xmit_ill == NULL); 18288 if (attach_ill != NULL) 18289 ill_refrele(attach_ill); 18290 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18291 "ip_wput_end: q %p (%S)", q, "badopts"); 18292 if (need_decref) 18293 CONN_DEC_REF(connp); 18294 return; 18295 } 18296 } 18297 dst = ipha->ipha_dst; 18298 18299 /* 18300 * Try to get an IRE_CACHE for the destination address. If we can't, 18301 * we have to run the packet through ip_newroute which will take 18302 * the appropriate action to arrange for an IRE_CACHE, such as querying 18303 * a resolver, or assigning a default gateway, etc. 18304 */ 18305 if (CLASSD(dst)) { 18306 ipif_t *ipif; 18307 uint32_t setsrc = 0; 18308 18309 multicast: 18310 ASSERT(first_mp != NULL); 18311 ASSERT(xmit_ill == NULL); 18312 ip2dbg(("ip_wput: CLASSD\n")); 18313 if (connp == NULL) { 18314 /* 18315 * Use the first good ipif on the ill. 18316 * XXX Should this ever happen? (Appears 18317 * to show up with just ppp and no ethernet due 18318 * to in.rdisc.) 18319 * However, ire_send should be able to 18320 * call ip_wput_ire directly. 18321 * 18322 * XXX Also, this can happen for ICMP and other packets 18323 * with multicast source addresses. Perhaps we should 18324 * fix things so that we drop the packet in question, 18325 * but for now, just run with it. 18326 */ 18327 ill_t *ill = (ill_t *)q->q_ptr; 18328 18329 /* 18330 * Don't honor attach_if for this case. If ill 18331 * is part of the group, ipif could belong to 18332 * any ill and we cannot maintain attach_ill 18333 * and ipif_ill same anymore and the assert 18334 * below would fail. 18335 */ 18336 if (mctl_present) { 18337 io->ipsec_out_ill_index = 0; 18338 io->ipsec_out_attach_if = B_FALSE; 18339 ASSERT(attach_ill != NULL); 18340 ill_refrele(attach_ill); 18341 attach_ill = NULL; 18342 } 18343 18344 ASSERT(attach_ill == NULL); 18345 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 18346 if (ipif == NULL) { 18347 if (need_decref) 18348 CONN_DEC_REF(connp); 18349 freemsg(first_mp); 18350 return; 18351 } 18352 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 18353 ntohl(dst), ill->ill_name)); 18354 } else { 18355 /* 18356 * If both IP_MULTICAST_IF and IP_XMIT_IF are set, 18357 * IP_XMIT_IF is honoured. 18358 * Block comment above this function explains the 18359 * locking mechanism used here 18360 */ 18361 xmit_ill = conn_get_held_ill(connp, 18362 &connp->conn_xmit_if_ill, &err); 18363 if (err == ILL_LOOKUP_FAILED) { 18364 ip1dbg(("ip_wput: No ill for IP_XMIT_IF\n")); 18365 goto drop_pkt; 18366 } 18367 if (xmit_ill == NULL) { 18368 ipif = conn_get_held_ipif(connp, 18369 &connp->conn_multicast_ipif, &err); 18370 if (err == IPIF_LOOKUP_FAILED) { 18371 ip1dbg(("ip_wput: No ipif for " 18372 "multicast\n")); 18373 BUMP_MIB(&ip_mib, ipOutNoRoutes); 18374 goto drop_pkt; 18375 } 18376 } 18377 if (xmit_ill != NULL) { 18378 ipif = ipif_get_next_ipif(NULL, xmit_ill); 18379 if (ipif == NULL) { 18380 ip1dbg(("ip_wput: No ipif for " 18381 "IP_XMIT_IF\n")); 18382 BUMP_MIB(&ip_mib, ipOutNoRoutes); 18383 goto drop_pkt; 18384 } 18385 } else if (ipif == NULL || ipif->ipif_isv6) { 18386 /* 18387 * We must do this ipif determination here 18388 * else we could pass through ip_newroute 18389 * and come back here without the conn context. 18390 * 18391 * Note: we do late binding i.e. we bind to 18392 * the interface when the first packet is sent. 18393 * For performance reasons we do not rebind on 18394 * each packet but keep the binding until the 18395 * next IP_MULTICAST_IF option. 18396 * 18397 * conn_multicast_{ipif,ill} are shared between 18398 * IPv4 and IPv6 and AF_INET6 sockets can 18399 * send both IPv4 and IPv6 packets. Hence 18400 * we have to check that "isv6" matches above. 18401 */ 18402 if (ipif != NULL) 18403 ipif_refrele(ipif); 18404 ipif = ipif_lookup_group(dst, zoneid); 18405 if (ipif == NULL) { 18406 ip1dbg(("ip_wput: No ipif for " 18407 "multicast\n")); 18408 BUMP_MIB(&ip_mib, ipOutNoRoutes); 18409 goto drop_pkt; 18410 } 18411 err = conn_set_held_ipif(connp, 18412 &connp->conn_multicast_ipif, ipif); 18413 if (err == IPIF_LOOKUP_FAILED) { 18414 ipif_refrele(ipif); 18415 ip1dbg(("ip_wput: No ipif for " 18416 "multicast\n")); 18417 BUMP_MIB(&ip_mib, ipOutNoRoutes); 18418 goto drop_pkt; 18419 } 18420 } 18421 } 18422 ASSERT(!ipif->ipif_isv6); 18423 /* 18424 * As we may lose the conn by the time we reach ip_wput_ire, 18425 * we copy conn_multicast_loop and conn_dontroute on to an 18426 * ipsec_out. In case if this datagram goes out secure, 18427 * we need the ill_index also. Copy that also into the 18428 * ipsec_out. 18429 */ 18430 if (mctl_present) { 18431 io = (ipsec_out_t *)first_mp->b_rptr; 18432 ASSERT(first_mp->b_datap->db_type == M_CTL); 18433 ASSERT(io->ipsec_out_type == IPSEC_OUT); 18434 } else { 18435 ASSERT(mp == first_mp); 18436 if ((first_mp = allocb(sizeof (ipsec_info_t), 18437 BPRI_HI)) == NULL) { 18438 ipif_refrele(ipif); 18439 first_mp = mp; 18440 goto drop_pkt; 18441 } 18442 first_mp->b_datap->db_type = M_CTL; 18443 first_mp->b_wptr += sizeof (ipsec_info_t); 18444 /* ipsec_out_secure is B_FALSE now */ 18445 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 18446 io = (ipsec_out_t *)first_mp->b_rptr; 18447 io->ipsec_out_type = IPSEC_OUT; 18448 io->ipsec_out_len = sizeof (ipsec_out_t); 18449 io->ipsec_out_use_global_policy = B_TRUE; 18450 first_mp->b_cont = mp; 18451 mctl_present = B_TRUE; 18452 } 18453 if (attach_ill != NULL) { 18454 ASSERT(attach_ill == ipif->ipif_ill); 18455 match_flags = MATCH_IRE_ILL; 18456 18457 /* 18458 * Check if we need an ire that will not be 18459 * looked up by anybody else i.e. HIDDEN. 18460 */ 18461 if (ill_is_probeonly(attach_ill)) { 18462 match_flags |= MATCH_IRE_MARK_HIDDEN; 18463 } 18464 io->ipsec_out_ill_index = 18465 attach_ill->ill_phyint->phyint_ifindex; 18466 io->ipsec_out_attach_if = B_TRUE; 18467 } else { 18468 match_flags = MATCH_IRE_ILL_GROUP; 18469 io->ipsec_out_ill_index = 18470 ipif->ipif_ill->ill_phyint->phyint_ifindex; 18471 } 18472 if (connp != NULL) { 18473 io->ipsec_out_multicast_loop = 18474 connp->conn_multicast_loop; 18475 io->ipsec_out_dontroute = connp->conn_dontroute; 18476 io->ipsec_out_zoneid = connp->conn_zoneid; 18477 } 18478 /* 18479 * If the application uses IP_MULTICAST_IF with 18480 * different logical addresses of the same ILL, we 18481 * need to make sure that the soruce address of 18482 * the packet matches the logical IP address used 18483 * in the option. We do it by initializing ipha_src 18484 * here. This should keep IPSEC also happy as 18485 * when we return from IPSEC processing, we don't 18486 * have to worry about getting the right address on 18487 * the packet. Thus it is sufficient to look for 18488 * IRE_CACHE using MATCH_IRE_ILL rathen than 18489 * MATCH_IRE_IPIF. 18490 * 18491 * NOTE : We need to do it for non-secure case also as 18492 * this might go out secure if there is a global policy 18493 * match in ip_wput_ire. For bind to IPIF_NOFAILOVER 18494 * address, the source should be initialized already and 18495 * hence we won't be initializing here. 18496 * 18497 * As we do not have the ire yet, it is possible that 18498 * we set the source address here and then later discover 18499 * that the ire implies the source address to be assigned 18500 * through the RTF_SETSRC flag. 18501 * In that case, the setsrc variable will remind us 18502 * that overwritting the source address by the one 18503 * of the RTF_SETSRC-flagged ire is allowed. 18504 */ 18505 if (ipha->ipha_src == INADDR_ANY && 18506 (connp == NULL || !connp->conn_unspec_src)) { 18507 ipha->ipha_src = ipif->ipif_src_addr; 18508 setsrc = RTF_SETSRC; 18509 } 18510 /* 18511 * Find an IRE which matches the destination and the outgoing 18512 * queue (i.e. the outgoing interface.) 18513 * For loopback use a unicast IP address for 18514 * the ire lookup. 18515 */ 18516 if (ipif->ipif_ill->ill_phyint->phyint_flags & 18517 PHYI_LOOPBACK) { 18518 dst = ipif->ipif_lcl_addr; 18519 } 18520 /* 18521 * If IP_XMIT_IF is set, we branch out to ip_newroute_ipif. 18522 * We don't need to lookup ire in ctable as the packet 18523 * needs to be sent to the destination through the specified 18524 * ill irrespective of ires in the cache table. 18525 */ 18526 ire = NULL; 18527 if (xmit_ill == NULL) { 18528 ire = ire_ctable_lookup(dst, 0, 0, ipif, 18529 zoneid, match_flags); 18530 } 18531 18532 /* 18533 * refrele attach_ill as its not needed anymore. 18534 */ 18535 if (attach_ill != NULL) { 18536 ill_refrele(attach_ill); 18537 attach_ill = NULL; 18538 } 18539 18540 if (ire == NULL) { 18541 /* 18542 * Multicast loopback and multicast forwarding is 18543 * done in ip_wput_ire. 18544 * 18545 * Mark this packet to make it be delivered to 18546 * ip_wput_ire after the new ire has been 18547 * created. 18548 * 18549 * The call to ip_newroute_ipif takes into account 18550 * the setsrc reminder. In any case, we take care 18551 * of the RTF_MULTIRT flag. 18552 */ 18553 mp->b_prev = mp->b_next = NULL; 18554 if (xmit_ill == NULL || 18555 xmit_ill->ill_ipif_up_count > 0) { 18556 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 18557 setsrc | RTF_MULTIRT); 18558 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18559 "ip_wput_end: q %p (%S)", q, "noire"); 18560 } else { 18561 freemsg(first_mp); 18562 } 18563 ipif_refrele(ipif); 18564 if (xmit_ill != NULL) 18565 ill_refrele(xmit_ill); 18566 if (need_decref) 18567 CONN_DEC_REF(connp); 18568 return; 18569 } 18570 18571 ipif_refrele(ipif); 18572 ipif = NULL; 18573 ASSERT(xmit_ill == NULL); 18574 18575 /* 18576 * Honor the RTF_SETSRC flag for multicast packets, 18577 * if allowed by the setsrc reminder. 18578 */ 18579 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 18580 ipha->ipha_src = ire->ire_src_addr; 18581 } 18582 18583 /* 18584 * Unconditionally force the TTL to 1 for 18585 * multirouted multicast packets: 18586 * multirouted multicast should not cross 18587 * multicast routers. 18588 */ 18589 if (ire->ire_flags & RTF_MULTIRT) { 18590 if (ipha->ipha_ttl > 1) { 18591 ip2dbg(("ip_wput: forcing multicast " 18592 "multirt TTL to 1 (was %d), dst 0x%08x\n", 18593 ipha->ipha_ttl, ntohl(ire->ire_addr))); 18594 ipha->ipha_ttl = 1; 18595 } 18596 } 18597 } else { 18598 ire = ire_cache_lookup(dst, zoneid); 18599 if ((ire != NULL) && (ire->ire_type & 18600 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 18601 ignore_dontroute = B_TRUE; 18602 } 18603 if (ire != NULL) { 18604 ire_refrele(ire); 18605 ire = NULL; 18606 } 18607 /* 18608 * Guard against coming in from arp in which case conn is NULL. 18609 * Also guard against non M_DATA with dontroute set but 18610 * destined to local, loopback or broadcast addresses. 18611 */ 18612 if (connp != NULL && connp->conn_dontroute && 18613 !ignore_dontroute) { 18614 dontroute: 18615 /* 18616 * Set TTL to 1 if SO_DONTROUTE is set to prevent 18617 * routing protocols from seeing false direct 18618 * connectivity. 18619 */ 18620 ipha->ipha_ttl = 1; 18621 /* 18622 * If IP_XMIT_IF is also set (conn_xmit_if_ill != NULL) 18623 * along with SO_DONTROUTE, higher precedence is 18624 * given to IP_XMIT_IF and the IP_XMIT_IF ipif is used. 18625 */ 18626 if (connp->conn_xmit_if_ill == NULL) { 18627 /* If suitable ipif not found, drop packet */ 18628 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid); 18629 if (dst_ipif == NULL) { 18630 ip1dbg(("ip_wput: no route for " 18631 "dst using SO_DONTROUTE\n")); 18632 BUMP_MIB(&ip_mib, ipOutNoRoutes); 18633 mp->b_prev = mp->b_next = NULL; 18634 if (first_mp == NULL) 18635 first_mp = mp; 18636 goto drop_pkt; 18637 } else { 18638 /* 18639 * If suitable ipif has been found, set 18640 * xmit_ill to the corresponding 18641 * ipif_ill because we'll be following 18642 * the IP_XMIT_IF logic. 18643 */ 18644 ASSERT(xmit_ill == NULL); 18645 xmit_ill = dst_ipif->ipif_ill; 18646 mutex_enter(&xmit_ill->ill_lock); 18647 if (!ILL_CAN_LOOKUP(xmit_ill)) { 18648 mutex_exit(&xmit_ill->ill_lock); 18649 xmit_ill = NULL; 18650 ipif_refrele(dst_ipif); 18651 ip1dbg(("ip_wput: no route for" 18652 " dst using" 18653 " SO_DONTROUTE\n")); 18654 BUMP_MIB(&ip_mib, 18655 ipOutNoRoutes); 18656 mp->b_prev = mp->b_next = NULL; 18657 if (first_mp == NULL) 18658 first_mp = mp; 18659 goto drop_pkt; 18660 } 18661 ill_refhold_locked(xmit_ill); 18662 mutex_exit(&xmit_ill->ill_lock); 18663 ipif_refrele(dst_ipif); 18664 } 18665 } 18666 18667 } 18668 /* 18669 * If we are bound to IPIF_NOFAILOVER address, look for 18670 * an IRE_CACHE matching the ill. 18671 */ 18672 send_from_ill: 18673 if (attach_ill != NULL) { 18674 ipif_t *attach_ipif; 18675 18676 match_flags = MATCH_IRE_ILL; 18677 18678 /* 18679 * Check if we need an ire that will not be 18680 * looked up by anybody else i.e. HIDDEN. 18681 */ 18682 if (ill_is_probeonly(attach_ill)) { 18683 match_flags |= MATCH_IRE_MARK_HIDDEN; 18684 } 18685 18686 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 18687 if (attach_ipif == NULL) { 18688 ip1dbg(("ip_wput: No ipif for attach_ill\n")); 18689 goto drop_pkt; 18690 } 18691 ire = ire_ctable_lookup(dst, 0, 0, attach_ipif, 18692 zoneid, match_flags); 18693 ipif_refrele(attach_ipif); 18694 } else if (xmit_ill != NULL || (connp != NULL && 18695 connp->conn_xmit_if_ill != NULL)) { 18696 /* 18697 * Mark this packet as originated locally 18698 */ 18699 mp->b_prev = mp->b_next = NULL; 18700 /* 18701 * xmit_ill could be NULL if SO_DONTROUTE 18702 * is also set. 18703 */ 18704 if (xmit_ill == NULL) { 18705 xmit_ill = conn_get_held_ill(connp, 18706 &connp->conn_xmit_if_ill, &err); 18707 if (err == ILL_LOOKUP_FAILED) { 18708 if (need_decref) 18709 CONN_DEC_REF(connp); 18710 freemsg(first_mp); 18711 return; 18712 } 18713 if (xmit_ill == NULL) { 18714 if (connp->conn_dontroute) 18715 goto dontroute; 18716 goto send_from_ill; 18717 } 18718 } 18719 /* 18720 * could be SO_DONTROUTE case also. 18721 * check at least one interface is UP as 18722 * spcified by this ILL, and then call 18723 * ip_newroute_ipif() 18724 */ 18725 if (xmit_ill->ill_ipif_up_count > 0) { 18726 ipif_t *ipif; 18727 18728 ipif = ipif_get_next_ipif(NULL, xmit_ill); 18729 if (ipif != NULL) { 18730 ip_newroute_ipif(q, first_mp, ipif, 18731 dst, connp, 0); 18732 ipif_refrele(ipif); 18733 ip1dbg(("ip_wput: ip_unicast_if\n")); 18734 } 18735 } else { 18736 freemsg(first_mp); 18737 } 18738 ill_refrele(xmit_ill); 18739 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18740 "ip_wput_end: q %p (%S)", q, "unicast_if"); 18741 if (need_decref) 18742 CONN_DEC_REF(connp); 18743 return; 18744 } else { 18745 ire = ire_cache_lookup(dst, zoneid); 18746 } 18747 if (!ire) { 18748 /* 18749 * Make sure we don't load spread if this 18750 * is IPIF_NOFAILOVER case. 18751 */ 18752 if (attach_ill != NULL) { 18753 if (mctl_present) { 18754 io = (ipsec_out_t *)first_mp->b_rptr; 18755 ASSERT(first_mp->b_datap->db_type == 18756 M_CTL); 18757 ASSERT(io->ipsec_out_type == IPSEC_OUT); 18758 } else { 18759 ASSERT(mp == first_mp); 18760 first_mp = allocb( 18761 sizeof (ipsec_info_t), BPRI_HI); 18762 if (first_mp == NULL) { 18763 first_mp = mp; 18764 goto drop_pkt; 18765 } 18766 first_mp->b_datap->db_type = M_CTL; 18767 first_mp->b_wptr += 18768 sizeof (ipsec_info_t); 18769 /* ipsec_out_secure is B_FALSE now */ 18770 bzero(first_mp->b_rptr, 18771 sizeof (ipsec_info_t)); 18772 io = (ipsec_out_t *)first_mp->b_rptr; 18773 io->ipsec_out_type = IPSEC_OUT; 18774 io->ipsec_out_len = 18775 sizeof (ipsec_out_t); 18776 io->ipsec_out_use_global_policy = 18777 B_TRUE; 18778 first_mp->b_cont = mp; 18779 mctl_present = B_TRUE; 18780 } 18781 io->ipsec_out_ill_index = attach_ill-> 18782 ill_phyint->phyint_ifindex; 18783 io->ipsec_out_attach_if = B_TRUE; 18784 } 18785 noirefound: 18786 /* 18787 * Mark this packet as having originated on 18788 * this machine. This will be noted in 18789 * ire_add_then_send, which needs to know 18790 * whether to run it back through ip_wput or 18791 * ip_rput following successful resolution. 18792 */ 18793 mp->b_prev = NULL; 18794 mp->b_next = NULL; 18795 ip_newroute(q, first_mp, dst, NULL, connp); 18796 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18797 "ip_wput_end: q %p (%S)", q, "newroute"); 18798 if (attach_ill != NULL) 18799 ill_refrele(attach_ill); 18800 if (xmit_ill != NULL) 18801 ill_refrele(xmit_ill); 18802 if (need_decref) 18803 CONN_DEC_REF(connp); 18804 return; 18805 } 18806 } 18807 18808 /* We now know where we are going with it. */ 18809 18810 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18811 "ip_wput_end: q %p (%S)", q, "end"); 18812 18813 /* 18814 * Check if the ire has the RTF_MULTIRT flag, inherited 18815 * from an IRE_OFFSUBNET ire entry in ip_newroute. 18816 */ 18817 if (ire->ire_flags & RTF_MULTIRT) { 18818 /* 18819 * Force the TTL of multirouted packets if required. 18820 * The TTL of such packets is bounded by the 18821 * ip_multirt_ttl ndd variable. 18822 */ 18823 if ((ip_multirt_ttl > 0) && 18824 (ipha->ipha_ttl > ip_multirt_ttl)) { 18825 ip2dbg(("ip_wput: forcing multirt TTL to %d " 18826 "(was %d), dst 0x%08x\n", 18827 ip_multirt_ttl, ipha->ipha_ttl, 18828 ntohl(ire->ire_addr))); 18829 ipha->ipha_ttl = ip_multirt_ttl; 18830 } 18831 /* 18832 * At this point, we check to see if there are any pending 18833 * unresolved routes. ire_multirt_resolvable() 18834 * checks in O(n) that all IRE_OFFSUBNET ire 18835 * entries for the packet's destination and 18836 * flagged RTF_MULTIRT are currently resolved. 18837 * If some remain unresolved, we make a copy 18838 * of the current message. It will be used 18839 * to initiate additional route resolutions. 18840 */ 18841 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr); 18842 ip2dbg(("ip_wput[noirefound]: ire %p, " 18843 "multirt_need_resolve %d, first_mp %p\n", 18844 (void *)ire, multirt_need_resolve, (void *)first_mp)); 18845 if (multirt_need_resolve) { 18846 copy_mp = copymsg(first_mp); 18847 if (copy_mp != NULL) { 18848 MULTIRT_DEBUG_TAG(copy_mp); 18849 } 18850 } 18851 } 18852 18853 ip_wput_ire(q, first_mp, ire, connp, caller); 18854 /* 18855 * Try to resolve another multiroute if 18856 * ire_multirt_resolvable() deemed it necessary. 18857 * At this point, we need to distinguish 18858 * multicasts from other packets. For multicasts, 18859 * we call ip_newroute_ipif() and request that both 18860 * multirouting and setsrc flags are checked. 18861 */ 18862 if (copy_mp != NULL) { 18863 if (CLASSD(dst)) { 18864 ipif_t *ipif = ipif_lookup_group(dst, zoneid); 18865 if (ipif) { 18866 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 18867 RTF_SETSRC | RTF_MULTIRT); 18868 ipif_refrele(ipif); 18869 } else { 18870 MULTIRT_DEBUG_UNTAG(copy_mp); 18871 freemsg(copy_mp); 18872 copy_mp = NULL; 18873 } 18874 } else { 18875 ip_newroute(q, copy_mp, dst, NULL, connp); 18876 } 18877 } 18878 if (attach_ill != NULL) 18879 ill_refrele(attach_ill); 18880 if (xmit_ill != NULL) 18881 ill_refrele(xmit_ill); 18882 if (need_decref) 18883 CONN_DEC_REF(connp); 18884 return; 18885 18886 drop_pkt: 18887 ip1dbg(("ip_wput: dropped packet\n")); 18888 if (ire != NULL) 18889 ire_refrele(ire); 18890 if (need_decref) 18891 CONN_DEC_REF(connp); 18892 freemsg(first_mp); 18893 if (attach_ill != NULL) 18894 ill_refrele(attach_ill); 18895 if (xmit_ill != NULL) 18896 ill_refrele(xmit_ill); 18897 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18898 "ip_wput_end: q %p (%S)", q, "droppkt"); 18899 } 18900 18901 void 18902 ip_wput(queue_t *q, mblk_t *mp) 18903 { 18904 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 18905 } 18906 18907 /* 18908 * 18909 * The following rules must be observed when accessing any ipif or ill 18910 * that has been cached in the conn. Typically conn_nofailover_ill, 18911 * conn_xmit_if_ill, conn_multicast_ipif and conn_multicast_ill. 18912 * 18913 * Access: The ipif or ill pointed to from the conn can be accessed under 18914 * the protection of the conn_lock or after it has been refheld under the 18915 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 18916 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 18917 * The reason for this is that a concurrent unplumb could actually be 18918 * cleaning up these cached pointers by walking the conns and might have 18919 * finished cleaning up the conn in question. The macros check that an 18920 * unplumb has not yet started on the ipif or ill. 18921 * 18922 * Caching: An ipif or ill pointer may be cached in the conn only after 18923 * making sure that an unplumb has not started. So the caching is done 18924 * while holding both the conn_lock and the ill_lock and after using the 18925 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 18926 * flag before starting the cleanup of conns. 18927 * 18928 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 18929 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 18930 * or a reference to the ipif or a reference to an ire that references the 18931 * ipif. An ipif does not change its ill except for failover/failback. Since 18932 * failover/failback happens only after bringing down the ipif and making sure 18933 * the ipif refcnt has gone to zero and holding the ill_g_lock and ill_lock 18934 * the above holds. 18935 */ 18936 static ipif_t * 18937 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 18938 { 18939 ipif_t *ipif; 18940 ill_t *ill; 18941 18942 *err = 0; 18943 rw_enter(&ill_g_lock, RW_READER); 18944 mutex_enter(&connp->conn_lock); 18945 ipif = *ipifp; 18946 if (ipif != NULL) { 18947 ill = ipif->ipif_ill; 18948 mutex_enter(&ill->ill_lock); 18949 if (IPIF_CAN_LOOKUP(ipif)) { 18950 ipif_refhold_locked(ipif); 18951 mutex_exit(&ill->ill_lock); 18952 mutex_exit(&connp->conn_lock); 18953 rw_exit(&ill_g_lock); 18954 return (ipif); 18955 } else { 18956 *err = IPIF_LOOKUP_FAILED; 18957 } 18958 mutex_exit(&ill->ill_lock); 18959 } 18960 mutex_exit(&connp->conn_lock); 18961 rw_exit(&ill_g_lock); 18962 return (NULL); 18963 } 18964 18965 ill_t * 18966 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 18967 { 18968 ill_t *ill; 18969 18970 *err = 0; 18971 mutex_enter(&connp->conn_lock); 18972 ill = *illp; 18973 if (ill != NULL) { 18974 mutex_enter(&ill->ill_lock); 18975 if (ILL_CAN_LOOKUP(ill)) { 18976 ill_refhold_locked(ill); 18977 mutex_exit(&ill->ill_lock); 18978 mutex_exit(&connp->conn_lock); 18979 return (ill); 18980 } else { 18981 *err = ILL_LOOKUP_FAILED; 18982 } 18983 mutex_exit(&ill->ill_lock); 18984 } 18985 mutex_exit(&connp->conn_lock); 18986 return (NULL); 18987 } 18988 18989 static int 18990 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 18991 { 18992 ill_t *ill; 18993 18994 ill = ipif->ipif_ill; 18995 mutex_enter(&connp->conn_lock); 18996 mutex_enter(&ill->ill_lock); 18997 if (IPIF_CAN_LOOKUP(ipif)) { 18998 *ipifp = ipif; 18999 mutex_exit(&ill->ill_lock); 19000 mutex_exit(&connp->conn_lock); 19001 return (0); 19002 } 19003 mutex_exit(&ill->ill_lock); 19004 mutex_exit(&connp->conn_lock); 19005 return (IPIF_LOOKUP_FAILED); 19006 } 19007 19008 /* 19009 * This is called if the outbound datagram needs fragmentation. 19010 * 19011 * NOTE : This function does not ire_refrele the ire argument passed in. 19012 */ 19013 static void 19014 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire) 19015 { 19016 ipha_t *ipha; 19017 mblk_t *mp; 19018 uint32_t v_hlen_tos_len; 19019 uint32_t max_frag; 19020 uint32_t frag_flag; 19021 boolean_t dont_use; 19022 19023 if (ipsec_mp->b_datap->db_type == M_CTL) { 19024 mp = ipsec_mp->b_cont; 19025 } else { 19026 mp = ipsec_mp; 19027 } 19028 19029 ipha = (ipha_t *)mp->b_rptr; 19030 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 19031 19032 #ifdef _BIG_ENDIAN 19033 #define V_HLEN (v_hlen_tos_len >> 24) 19034 #define LENGTH (v_hlen_tos_len & 0xFFFF) 19035 #else 19036 #define V_HLEN (v_hlen_tos_len & 0xFF) 19037 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 19038 #endif 19039 19040 #ifndef SPEED_BEFORE_SAFETY 19041 /* 19042 * Check that ipha_length is consistent with 19043 * the mblk length 19044 */ 19045 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 19046 ip0dbg(("Packet length mismatch: %d, %ld\n", 19047 LENGTH, msgdsize(mp))); 19048 freemsg(ipsec_mp); 19049 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 19050 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 19051 "packet length mismatch"); 19052 return; 19053 } 19054 #endif 19055 /* 19056 * Don't use frag_flag if pre-built packet or source 19057 * routed or if multicast (since multicast packets do not solicit 19058 * ICMP "packet too big" messages). Get the values of 19059 * max_frag and frag_flag atomically by acquiring the 19060 * ire_lock. 19061 */ 19062 mutex_enter(&ire->ire_lock); 19063 max_frag = ire->ire_max_frag; 19064 frag_flag = ire->ire_frag_flag; 19065 mutex_exit(&ire->ire_lock); 19066 19067 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 19068 (V_HLEN != IP_SIMPLE_HDR_VERSION && 19069 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 19070 19071 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 19072 (dont_use ? 0 : frag_flag)); 19073 } 19074 19075 /* 19076 * Used for deciding the MSS size for the upper layer. Thus 19077 * we need to check the outbound policy values in the conn. 19078 */ 19079 int 19080 conn_ipsec_length(conn_t *connp) 19081 { 19082 ipsec_latch_t *ipl; 19083 19084 ipl = connp->conn_latch; 19085 if (ipl == NULL) 19086 return (0); 19087 19088 if (ipl->ipl_out_policy == NULL) 19089 return (0); 19090 19091 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 19092 } 19093 19094 /* 19095 * Returns an estimate of the IPSEC headers size. This is used if 19096 * we don't want to call into IPSEC to get the exact size. 19097 */ 19098 int 19099 ipsec_out_extra_length(mblk_t *ipsec_mp) 19100 { 19101 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 19102 ipsec_action_t *a; 19103 19104 ASSERT(io->ipsec_out_type == IPSEC_OUT); 19105 if (!io->ipsec_out_secure) 19106 return (0); 19107 19108 a = io->ipsec_out_act; 19109 19110 if (a == NULL) { 19111 ASSERT(io->ipsec_out_policy != NULL); 19112 a = io->ipsec_out_policy->ipsp_act; 19113 } 19114 ASSERT(a != NULL); 19115 19116 return (a->ipa_ovhd); 19117 } 19118 19119 /* 19120 * Returns an estimate of the IPSEC headers size. This is used if 19121 * we don't want to call into IPSEC to get the exact size. 19122 */ 19123 int 19124 ipsec_in_extra_length(mblk_t *ipsec_mp) 19125 { 19126 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 19127 ipsec_action_t *a; 19128 19129 ASSERT(ii->ipsec_in_type == IPSEC_IN); 19130 19131 a = ii->ipsec_in_action; 19132 return (a == NULL ? 0 : a->ipa_ovhd); 19133 } 19134 19135 /* 19136 * If there are any source route options, return the true final 19137 * destination. Otherwise, return the destination. 19138 */ 19139 ipaddr_t 19140 ip_get_dst(ipha_t *ipha) 19141 { 19142 ipoptp_t opts; 19143 uchar_t *opt; 19144 uint8_t optval; 19145 uint8_t optlen; 19146 ipaddr_t dst; 19147 uint32_t off; 19148 19149 dst = ipha->ipha_dst; 19150 19151 if (IS_SIMPLE_IPH(ipha)) 19152 return (dst); 19153 19154 for (optval = ipoptp_first(&opts, ipha); 19155 optval != IPOPT_EOL; 19156 optval = ipoptp_next(&opts)) { 19157 opt = opts.ipoptp_cur; 19158 optlen = opts.ipoptp_len; 19159 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 19160 switch (optval) { 19161 case IPOPT_SSRR: 19162 case IPOPT_LSRR: 19163 off = opt[IPOPT_OFFSET]; 19164 /* 19165 * If one of the conditions is true, it means 19166 * end of options and dst already has the right 19167 * value. 19168 */ 19169 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 19170 off = optlen - IP_ADDR_LEN; 19171 bcopy(&opt[off], &dst, IP_ADDR_LEN); 19172 } 19173 return (dst); 19174 default: 19175 break; 19176 } 19177 } 19178 19179 return (dst); 19180 } 19181 19182 mblk_t * 19183 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 19184 conn_t *connp, boolean_t unspec_src) 19185 { 19186 ipsec_out_t *io; 19187 mblk_t *first_mp; 19188 boolean_t policy_present; 19189 19190 first_mp = mp; 19191 if (mp->b_datap->db_type == M_CTL) { 19192 io = (ipsec_out_t *)first_mp->b_rptr; 19193 /* 19194 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 19195 * 19196 * 1) There is per-socket policy (including cached global 19197 * policy). 19198 * 2) There is no per-socket policy, but it is 19199 * a multicast packet that needs to go out 19200 * on a specific interface. This is the case 19201 * where (ip_wput and ip_wput_multicast) attaches 19202 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 19203 * 19204 * In case (2) we check with global policy to 19205 * see if there is a match and set the ill_index 19206 * appropriately so that we can lookup the ire 19207 * properly in ip_wput_ipsec_out. 19208 */ 19209 19210 /* 19211 * ipsec_out_use_global_policy is set to B_FALSE 19212 * in ipsec_in_to_out(). Refer to that function for 19213 * details. 19214 */ 19215 if ((io->ipsec_out_latch == NULL) && 19216 (io->ipsec_out_use_global_policy)) { 19217 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 19218 ire, connp, unspec_src)); 19219 } 19220 if (!io->ipsec_out_secure) { 19221 /* 19222 * If this is not a secure packet, drop 19223 * the IPSEC_OUT mp and treat it as a clear 19224 * packet. This happens when we are sending 19225 * a ICMP reply back to a clear packet. See 19226 * ipsec_in_to_out() for details. 19227 */ 19228 mp = first_mp->b_cont; 19229 freeb(first_mp); 19230 } 19231 return (mp); 19232 } 19233 /* 19234 * See whether we need to attach a global policy here. We 19235 * don't depend on the conn (as it could be null) for deciding 19236 * what policy this datagram should go through because it 19237 * should have happened in ip_wput if there was some 19238 * policy. This normally happens for connections which are not 19239 * fully bound preventing us from caching policies in 19240 * ip_bind. Packets coming from the TCP listener/global queue 19241 * - which are non-hard_bound - could also be affected by 19242 * applying policy here. 19243 * 19244 * If this packet is coming from tcp global queue or listener, 19245 * we will be applying policy here. This may not be *right* 19246 * if these packets are coming from the detached connection as 19247 * it could have gone in clear before. This happens only if a 19248 * TCP connection started when there is no policy and somebody 19249 * added policy before it became detached. Thus packets of the 19250 * detached connection could go out secure and the other end 19251 * would drop it because it will be expecting in clear. The 19252 * converse is not true i.e if somebody starts a TCP 19253 * connection and deletes the policy, all the packets will 19254 * still go out with the policy that existed before deleting 19255 * because ip_unbind sends up policy information which is used 19256 * by TCP on subsequent ip_wputs. The right solution is to fix 19257 * TCP to attach a dummy IPSEC_OUT and set 19258 * ipsec_out_use_global_policy to B_FALSE. As this might 19259 * affect performance for normal cases, we are not doing it. 19260 * Thus, set policy before starting any TCP connections. 19261 * 19262 * NOTE - We might apply policy even for a hard bound connection 19263 * - for which we cached policy in ip_bind - if somebody added 19264 * global policy after we inherited the policy in ip_bind. 19265 * This means that the packets that were going out in clear 19266 * previously would start going secure and hence get dropped 19267 * on the other side. To fix this, TCP attaches a dummy 19268 * ipsec_out and make sure that we don't apply global policy. 19269 */ 19270 if (ipha != NULL) 19271 policy_present = ipsec_outbound_v4_policy_present; 19272 else 19273 policy_present = ipsec_outbound_v6_policy_present; 19274 if (!policy_present) 19275 return (mp); 19276 19277 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src)); 19278 } 19279 19280 ire_t * 19281 conn_set_outgoing_ill(conn_t *connp, ire_t *ire, ill_t **conn_outgoing_ill) 19282 { 19283 ipaddr_t addr; 19284 ire_t *save_ire; 19285 irb_t *irb; 19286 ill_group_t *illgrp; 19287 int err; 19288 19289 save_ire = ire; 19290 addr = ire->ire_addr; 19291 19292 ASSERT(ire->ire_type == IRE_BROADCAST); 19293 19294 illgrp = connp->conn_outgoing_ill->ill_group; 19295 if (illgrp == NULL) { 19296 *conn_outgoing_ill = conn_get_held_ill(connp, 19297 &connp->conn_outgoing_ill, &err); 19298 if (err == ILL_LOOKUP_FAILED) { 19299 ire_refrele(save_ire); 19300 return (NULL); 19301 } 19302 return (save_ire); 19303 } 19304 /* 19305 * If IP_BOUND_IF has been done, conn_outgoing_ill will be set. 19306 * If it is part of the group, we need to send on the ire 19307 * that has been cleared of IRE_MARK_NORECV and that belongs 19308 * to this group. This is okay as IP_BOUND_IF really means 19309 * any ill in the group. We depend on the fact that the 19310 * first ire in the group is always cleared of IRE_MARK_NORECV 19311 * if such an ire exists. This is possible only if you have 19312 * at least one ill in the group that has not failed. 19313 * 19314 * First get to the ire that matches the address and group. 19315 * 19316 * We don't look for an ire with a matching zoneid because a given zone 19317 * won't always have broadcast ires on all ills in the group. 19318 */ 19319 irb = ire->ire_bucket; 19320 rw_enter(&irb->irb_lock, RW_READER); 19321 if (ire->ire_marks & IRE_MARK_NORECV) { 19322 /* 19323 * If the current zone only has an ire broadcast for this 19324 * address marked NORECV, the ire we want is ahead in the 19325 * bucket, so we look it up deliberately ignoring the zoneid. 19326 */ 19327 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 19328 if (ire->ire_addr != addr) 19329 continue; 19330 /* skip over deleted ires */ 19331 if (ire->ire_marks & IRE_MARK_CONDEMNED) 19332 continue; 19333 } 19334 } 19335 while (ire != NULL) { 19336 /* 19337 * If a new interface is coming up, we could end up 19338 * seeing the loopback ire and the non-loopback ire 19339 * may not have been added yet. So check for ire_stq 19340 */ 19341 if (ire->ire_stq != NULL && (ire->ire_addr != addr || 19342 ire->ire_ipif->ipif_ill->ill_group == illgrp)) { 19343 break; 19344 } 19345 ire = ire->ire_next; 19346 } 19347 if (ire != NULL && ire->ire_addr == addr && 19348 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 19349 IRE_REFHOLD(ire); 19350 rw_exit(&irb->irb_lock); 19351 ire_refrele(save_ire); 19352 *conn_outgoing_ill = ire_to_ill(ire); 19353 /* 19354 * Refhold the ill to make the conn_outgoing_ill 19355 * independent of the ire. ip_wput_ire goes in a loop 19356 * and may refrele the ire. Since we have an ire at this 19357 * point we don't need to use ILL_CAN_LOOKUP on the ill. 19358 */ 19359 ill_refhold(*conn_outgoing_ill); 19360 return (ire); 19361 } 19362 rw_exit(&irb->irb_lock); 19363 ip1dbg(("conn_set_outgoing_ill: No matching ire\n")); 19364 /* 19365 * If we can't find a suitable ire, return the original ire. 19366 */ 19367 return (save_ire); 19368 } 19369 19370 /* 19371 * This function does the ire_refrele of the ire passed in as the 19372 * argument. As this function looks up more ires i.e broadcast ires, 19373 * it needs to REFRELE them. Currently, for simplicity we don't 19374 * differentiate the one passed in and looked up here. We always 19375 * REFRELE. 19376 * IPQoS Notes: 19377 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 19378 * IPSec packets are done in ipsec_out_process. 19379 * 19380 */ 19381 void 19382 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller) 19383 { 19384 ipha_t *ipha; 19385 #define rptr ((uchar_t *)ipha) 19386 mblk_t *mp1; 19387 queue_t *stq; 19388 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 19389 uint32_t v_hlen_tos_len; 19390 uint32_t ttl_protocol; 19391 ipaddr_t src; 19392 ipaddr_t dst; 19393 uint32_t cksum; 19394 ipaddr_t orig_src; 19395 ire_t *ire1; 19396 mblk_t *next_mp; 19397 uint_t hlen; 19398 uint16_t *up; 19399 uint32_t max_frag = ire->ire_max_frag; 19400 ill_t *ill = ire_to_ill(ire); 19401 int clusterwide; 19402 uint16_t ip_hdr_included; /* IP header included by ULP? */ 19403 int ipsec_len; 19404 mblk_t *first_mp; 19405 ipsec_out_t *io; 19406 boolean_t conn_dontroute; /* conn value for multicast */ 19407 boolean_t conn_multicast_loop; /* conn value for multicast */ 19408 boolean_t multicast_forward; /* Should we forward ? */ 19409 boolean_t unspec_src; 19410 ill_t *conn_outgoing_ill = NULL; 19411 ill_t *ire_ill; 19412 ill_t *ire1_ill; 19413 uint32_t ill_index = 0; 19414 boolean_t multirt_send = B_FALSE; 19415 int err; 19416 zoneid_t zoneid; 19417 boolean_t iphdrhwcksum = B_FALSE; 19418 19419 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 19420 "ip_wput_ire_start: q %p", q); 19421 19422 multicast_forward = B_FALSE; 19423 unspec_src = (connp != NULL && connp->conn_unspec_src); 19424 19425 if (ire->ire_flags & RTF_MULTIRT) { 19426 /* 19427 * Multirouting case. The bucket where ire is stored 19428 * probably holds other RTF_MULTIRT flagged ire 19429 * to the destination. In this call to ip_wput_ire, 19430 * we attempt to send the packet through all 19431 * those ires. Thus, we first ensure that ire is the 19432 * first RTF_MULTIRT ire in the bucket, 19433 * before walking the ire list. 19434 */ 19435 ire_t *first_ire; 19436 irb_t *irb = ire->ire_bucket; 19437 ASSERT(irb != NULL); 19438 19439 /* Make sure we do not omit any multiroute ire. */ 19440 IRB_REFHOLD(irb); 19441 for (first_ire = irb->irb_ire; 19442 first_ire != NULL; 19443 first_ire = first_ire->ire_next) { 19444 if ((first_ire->ire_flags & RTF_MULTIRT) && 19445 (first_ire->ire_addr == ire->ire_addr) && 19446 !(first_ire->ire_marks & 19447 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 19448 break; 19449 } 19450 19451 if ((first_ire != NULL) && (first_ire != ire)) { 19452 IRE_REFHOLD(first_ire); 19453 ire_refrele(ire); 19454 ire = first_ire; 19455 ill = ire_to_ill(ire); 19456 } 19457 IRB_REFRELE(irb); 19458 } 19459 19460 /* 19461 * conn_outgoing_ill is used only in the broadcast loop. 19462 * for performance we don't grab the mutexs in the fastpath 19463 */ 19464 if ((connp != NULL) && 19465 (connp->conn_xmit_if_ill == NULL) && 19466 (ire->ire_type == IRE_BROADCAST) && 19467 ((connp->conn_nofailover_ill != NULL) || 19468 (connp->conn_outgoing_ill != NULL))) { 19469 /* 19470 * Bind to IPIF_NOFAILOVER address overrides IP_BOUND_IF 19471 * option. So, see if this endpoint is bound to a 19472 * IPIF_NOFAILOVER address. If so, honor it. This implies 19473 * that if the interface is failed, we will still send 19474 * the packet on the same ill which is what we want. 19475 */ 19476 conn_outgoing_ill = conn_get_held_ill(connp, 19477 &connp->conn_nofailover_ill, &err); 19478 if (err == ILL_LOOKUP_FAILED) { 19479 ire_refrele(ire); 19480 freemsg(mp); 19481 return; 19482 } 19483 if (conn_outgoing_ill == NULL) { 19484 /* 19485 * Choose a good ill in the group to send the 19486 * packets on. 19487 */ 19488 ire = conn_set_outgoing_ill(connp, ire, 19489 &conn_outgoing_ill); 19490 if (ire == NULL) { 19491 freemsg(mp); 19492 return; 19493 } 19494 } 19495 } 19496 19497 if (mp->b_datap->db_type != M_CTL) { 19498 ipha = (ipha_t *)mp->b_rptr; 19499 zoneid = (connp != NULL ? connp->conn_zoneid : ALL_ZONES); 19500 } else { 19501 io = (ipsec_out_t *)mp->b_rptr; 19502 ASSERT(io->ipsec_out_type == IPSEC_OUT); 19503 zoneid = io->ipsec_out_zoneid; 19504 ASSERT(zoneid != ALL_ZONES); 19505 ipha = (ipha_t *)mp->b_cont->b_rptr; 19506 dst = ipha->ipha_dst; 19507 /* 19508 * For the multicast case, ipsec_out carries conn_dontroute and 19509 * conn_multicast_loop as conn may not be available here. We 19510 * need this for multicast loopback and forwarding which is done 19511 * later in the code. 19512 */ 19513 if (CLASSD(dst)) { 19514 conn_dontroute = io->ipsec_out_dontroute; 19515 conn_multicast_loop = io->ipsec_out_multicast_loop; 19516 /* 19517 * If conn_dontroute is not set or conn_multicast_loop 19518 * is set, we need to do forwarding/loopback. For 19519 * datagrams from ip_wput_multicast, conn_dontroute is 19520 * set to B_TRUE and conn_multicast_loop is set to 19521 * B_FALSE so that we neither do forwarding nor 19522 * loopback. 19523 */ 19524 if (!conn_dontroute || conn_multicast_loop) 19525 multicast_forward = B_TRUE; 19526 } 19527 } 19528 19529 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid) { 19530 /* 19531 * When a zone sends a packet to another zone, we try to deliver 19532 * the packet under the same conditions as if the destination 19533 * was a real node on the network. To do so, we look for a 19534 * matching route in the forwarding table. 19535 * RTF_REJECT and RTF_BLACKHOLE are handled just like 19536 * ip_newroute() does. 19537 */ 19538 ire_t *src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 19539 NULL, NULL, zoneid, 0, (MATCH_IRE_RECURSIVE | 19540 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE)); 19541 if (src_ire != NULL && 19542 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))) { 19543 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 19544 ipha->ipha_src = src_ire->ire_src_addr; 19545 ire_refrele(src_ire); 19546 } else { 19547 ire_refrele(ire); 19548 if (conn_outgoing_ill != NULL) 19549 ill_refrele(conn_outgoing_ill); 19550 BUMP_MIB(&ip_mib, ipOutNoRoutes); 19551 if (src_ire != NULL) { 19552 if (src_ire->ire_flags & RTF_BLACKHOLE) { 19553 ire_refrele(src_ire); 19554 freemsg(mp); 19555 return; 19556 } 19557 ire_refrele(src_ire); 19558 } 19559 if (ip_hdr_complete(ipha, zoneid)) { 19560 /* Failed */ 19561 freemsg(mp); 19562 return; 19563 } 19564 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE); 19565 return; 19566 } 19567 } 19568 19569 if (mp->b_datap->db_type == M_CTL || 19570 ipsec_outbound_v4_policy_present) { 19571 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 19572 unspec_src); 19573 if (mp == NULL) { 19574 ire_refrele(ire); 19575 if (conn_outgoing_ill != NULL) 19576 ill_refrele(conn_outgoing_ill); 19577 return; 19578 } 19579 } 19580 19581 first_mp = mp; 19582 ipsec_len = 0; 19583 19584 if (first_mp->b_datap->db_type == M_CTL) { 19585 io = (ipsec_out_t *)first_mp->b_rptr; 19586 ASSERT(io->ipsec_out_type == IPSEC_OUT); 19587 mp = first_mp->b_cont; 19588 ipsec_len = ipsec_out_extra_length(first_mp); 19589 ASSERT(ipsec_len >= 0); 19590 zoneid = io->ipsec_out_zoneid; 19591 ASSERT(zoneid != ALL_ZONES); 19592 19593 /* 19594 * Drop M_CTL here if IPsec processing is not needed. 19595 * (Non-IPsec use of M_CTL extracted any information it 19596 * needed above). 19597 */ 19598 if (ipsec_len == 0) { 19599 freeb(first_mp); 19600 first_mp = mp; 19601 } 19602 } 19603 19604 /* 19605 * Fast path for ip_wput_ire 19606 */ 19607 19608 ipha = (ipha_t *)mp->b_rptr; 19609 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 19610 dst = ipha->ipha_dst; 19611 19612 /* 19613 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 19614 * if the socket is a SOCK_RAW type. The transport checksum should 19615 * be provided in the pre-built packet, so we don't need to compute it. 19616 * Also, other application set flags, like DF, should not be altered. 19617 * Other transport MUST pass down zero. 19618 */ 19619 ip_hdr_included = ipha->ipha_ident; 19620 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 19621 19622 if (CLASSD(dst)) { 19623 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 19624 ntohl(dst), 19625 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 19626 ntohl(ire->ire_addr))); 19627 } 19628 19629 /* Macros to extract header fields from data already in registers */ 19630 #ifdef _BIG_ENDIAN 19631 #define V_HLEN (v_hlen_tos_len >> 24) 19632 #define LENGTH (v_hlen_tos_len & 0xFFFF) 19633 #define PROTO (ttl_protocol & 0xFF) 19634 #else 19635 #define V_HLEN (v_hlen_tos_len & 0xFF) 19636 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 19637 #define PROTO (ttl_protocol >> 8) 19638 #endif 19639 19640 19641 orig_src = src = ipha->ipha_src; 19642 /* (The loop back to "another" is explained down below.) */ 19643 another:; 19644 /* 19645 * Assign an ident value for this packet. We assign idents on 19646 * a per destination basis out of the IRE. There could be 19647 * other threads targeting the same destination, so we have to 19648 * arrange for a atomic increment. Note that we use a 32-bit 19649 * atomic add because it has better performance than its 19650 * 16-bit sibling. 19651 * 19652 * If running in cluster mode and if the source address 19653 * belongs to a replicated service then vector through 19654 * cl_inet_ipident vector to allocate ip identifier 19655 * NOTE: This is a contract private interface with the 19656 * clustering group. 19657 */ 19658 clusterwide = 0; 19659 if (cl_inet_ipident) { 19660 ASSERT(cl_inet_isclusterwide); 19661 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 19662 AF_INET, (uint8_t *)(uintptr_t)src)) { 19663 ipha->ipha_ident = (*cl_inet_ipident)(IPPROTO_IP, 19664 AF_INET, (uint8_t *)(uintptr_t)src, 19665 (uint8_t *)(uintptr_t)dst); 19666 clusterwide = 1; 19667 } 19668 } 19669 if (!clusterwide) { 19670 ipha->ipha_ident = 19671 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 19672 } 19673 19674 #ifndef _BIG_ENDIAN 19675 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 19676 #endif 19677 19678 /* 19679 * Set source address unless sent on an ill or conn_unspec_src is set. 19680 * This is needed to obey conn_unspec_src when packets go through 19681 * ip_newroute + arp. 19682 * Assumes ip_newroute{,_multi} sets the source address as well. 19683 */ 19684 if (src == INADDR_ANY && !unspec_src) { 19685 /* 19686 * Assign the appropriate source address from the IRE if none 19687 * was specified. 19688 */ 19689 ASSERT(ire->ire_ipversion == IPV4_VERSION); 19690 19691 /* 19692 * With IP multipathing, broadcast packets are sent on the ire 19693 * that has been cleared of IRE_MARK_NORECV and that belongs to 19694 * the group. However, this ire might not be in the same zone so 19695 * we can't always use its source address. We look for a 19696 * broadcast ire in the same group and in the right zone. 19697 */ 19698 if (ire->ire_type == IRE_BROADCAST && 19699 ire->ire_zoneid != zoneid) { 19700 ire_t *src_ire = ire_ctable_lookup(dst, 0, 19701 IRE_BROADCAST, ire->ire_ipif, zoneid, 19702 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP)); 19703 if (src_ire != NULL) { 19704 src = src_ire->ire_src_addr; 19705 ire_refrele(src_ire); 19706 } else { 19707 ire_refrele(ire); 19708 if (conn_outgoing_ill != NULL) 19709 ill_refrele(conn_outgoing_ill); 19710 freemsg(first_mp); 19711 BUMP_MIB(&ip_mib, ipOutDiscards); 19712 return; 19713 } 19714 } else { 19715 src = ire->ire_src_addr; 19716 } 19717 19718 if (connp == NULL) { 19719 ip1dbg(("ip_wput_ire: no connp and no src " 19720 "address for dst 0x%x, using src 0x%x\n", 19721 ntohl(dst), 19722 ntohl(src))); 19723 } 19724 ipha->ipha_src = src; 19725 } 19726 stq = ire->ire_stq; 19727 19728 /* 19729 * We only allow ire chains for broadcasts since there will 19730 * be multiple IRE_CACHE entries for the same multicast 19731 * address (one per ipif). 19732 */ 19733 next_mp = NULL; 19734 19735 /* broadcast packet */ 19736 if (ire->ire_type == IRE_BROADCAST) 19737 goto broadcast; 19738 19739 /* loopback ? */ 19740 if (stq == NULL) 19741 goto nullstq; 19742 19743 /* The ill_index for outbound ILL */ 19744 ill_index = Q_TO_INDEX(stq); 19745 19746 BUMP_MIB(&ip_mib, ipOutRequests); 19747 ttl_protocol = ((uint16_t *)ipha)[4]; 19748 19749 /* pseudo checksum (do it in parts for IP header checksum) */ 19750 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 19751 19752 #define FRAGMENT_NEEDED(mtu, size) \ 19753 (((mtu) < (unsigned int)(size)) ? B_TRUE : B_FALSE) 19754 19755 #define IS_FASTPATH(ire, bp) \ 19756 ((ire)->ire_fp_mp != NULL && \ 19757 (MBLKHEAD((bp)) >= (MBLKL((ire)->ire_fp_mp)))) \ 19758 19759 #define IPH_UDPH_CHECKSUMP(ipha, hlen) \ 19760 ((uint16_t *)(((uchar_t *)ipha)+(hlen + UDP_CHECKSUM_OFFSET))) 19761 #define IPH_TCPH_CHECKSUMP(ipha, hlen) \ 19762 ((uint16_t *)(((uchar_t *)ipha)+(hlen+TCP_CHECKSUM_OFFSET))) 19763 19764 #define IP_CKSUM_XMIT(ill, ire, mp, up, proto, hlen, max_frag, \ 19765 ipsec_len) { \ 19766 uint32_t sum; \ 19767 uint32_t xmit_capab = HCKSUM_INET_FULL_V4 | \ 19768 HCKSUM_INET_PARTIAL | HCKSUM_IPHDRCKSUM; \ 19769 boolean_t cksum_offload = B_FALSE; \ 19770 \ 19771 /* \ 19772 * The ire fp mp can change due to the arrival of a \ 19773 * DL_NOTE_FASTPATH_FLUSH in the case of IRE_BROADCAST \ 19774 * and IRE_MIPRTUN. Hence the ire_fp_mp has to be accessed \ 19775 * only under the ire_lock in such cases. \ 19776 */ \ 19777 LOCK_IRE_FP_MP(ire); \ 19778 if ((ill) && (ill->ill_capabilities & ILL_CAPAB_HCKSUM) && \ 19779 (ill->ill_hcksum_capab->ill_hcksum_txflags & \ 19780 xmit_capab) && (!FRAGMENT_NEEDED(max_frag, \ 19781 (LENGTH + ipsec_len))) && (!(ire->ire_flags & \ 19782 RTF_MULTIRT)) && (ipsec_len == 0) && \ 19783 IS_FASTPATH((ire), (mp)) && (dohwcksum)) { \ 19784 /* \ 19785 * Underlying interface supports hardware checksumming. \ 19786 * So postpone the checksum to the interface driver \ 19787 */ \ 19788 \ 19789 if ((hlen) == IP_SIMPLE_HDR_LENGTH) { \ 19790 if (ill->ill_hcksum_capab->ill_hcksum_txflags & \ 19791 HCKSUM_IPHDRCKSUM) { \ 19792 mp->b_datap->db_struioun.cksum.flags |= \ 19793 HCK_IPV4_HDRCKSUM; \ 19794 /* seed the cksum field to 0 */ \ 19795 ipha->ipha_hdr_checksum = 0; \ 19796 iphdrhwcksum = B_TRUE; \ 19797 } \ 19798 /* \ 19799 * If underlying h/w supports full h/w checksumming \ 19800 * and no IP options are present, then offload \ 19801 * full checksumming to the hardware. \ 19802 * \ 19803 * If h/w can do partial checksumming then offload \ 19804 * unless the startpoint offset, including mac-header, \ 19805 * is too big for the interface to some of our \ 19806 * hardware (CE and ERI) which have 6 bit fields. \ 19807 * Sigh. \ 19808 * Unhappily we don't have the mac-header size here \ 19809 * so punt for any options. \ 19810 */ \ 19811 if (ill->ill_hcksum_capab->ill_hcksum_txflags & \ 19812 HCKSUM_INET_FULL_V4) { \ 19813 UNLOCK_IRE_FP_MP(ire); \ 19814 /* Seed the checksum field to 0 */ \ 19815 *up = 0; \ 19816 mp->b_datap->db_struioun.cksum.flags |= \ 19817 HCK_FULLCKSUM; \ 19818 cksum_offload = B_TRUE; \ 19819 } else if (ill->ill_hcksum_capab->ill_hcksum_txflags & \ 19820 HCKSUM_INET_PARTIAL) { \ 19821 UNLOCK_IRE_FP_MP(ire); \ 19822 sum = *up + cksum + proto; \ 19823 sum = (sum & 0xFFFF) + (sum >> 16); \ 19824 *up = (sum & 0xFFFF) + (sum >> 16); \ 19825 /* \ 19826 * All offsets are relative to the beginning \ 19827 * of the IP header. \ 19828 */ \ 19829 mp->b_datap->db_cksumstart = hlen; \ 19830 mp->b_datap->db_cksumstuff = \ 19831 (PROTO == IPPROTO_UDP) ? \ 19832 (hlen) + UDP_CHECKSUM_OFFSET : \ 19833 (hlen) + TCP_CHECKSUM_OFFSET; \ 19834 mp->b_datap->db_cksumend = ipha->ipha_length; \ 19835 mp->b_datap->db_struioun.cksum.flags |= \ 19836 HCK_PARTIALCKSUM; \ 19837 cksum_offload = B_TRUE; \ 19838 } \ 19839 } \ 19840 } \ 19841 if (!cksum_offload) { \ 19842 UNLOCK_IRE_FP_MP(ire); \ 19843 IP_STAT(ip_out_sw_cksum); \ 19844 (sum) = IP_CSUM((mp), (hlen), cksum + proto); \ 19845 *(up) = (uint16_t)((sum) ? (sum) : ~(sum)); \ 19846 } \ 19847 } 19848 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 19849 queue_t *dev_q = stq->q_next; 19850 19851 /* flow controlled */ 19852 if ((dev_q->q_next || dev_q->q_first) && 19853 !canput(dev_q)) 19854 goto blocked; 19855 if ((PROTO == IPPROTO_UDP) && 19856 (ip_hdr_included != IP_HDR_INCLUDED)) { 19857 hlen = (V_HLEN & 0xF) << 2; 19858 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 19859 if (*up) { 19860 IP_CKSUM_XMIT(ill, ire, mp, up, 19861 IP_UDP_CSUM_COMP, hlen, max_frag, 19862 ipsec_len); 19863 } 19864 } 19865 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 19866 hlen = (V_HLEN & 0xF) << 2; 19867 if (PROTO == IPPROTO_TCP) { 19868 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 19869 /* 19870 * The packet header is processed once and for all, even 19871 * in the multirouting case. We disable hardware 19872 * checksum if the packet is multirouted, as it will be 19873 * replicated via several interfaces, and not all of 19874 * them may have this capability. 19875 */ 19876 IP_CKSUM_XMIT(ill, ire, mp, up, 19877 IP_TCP_CSUM_COMP, hlen, max_frag, ipsec_len); 19878 } else { 19879 sctp_hdr_t *sctph; 19880 19881 ASSERT(PROTO == IPPROTO_SCTP); 19882 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 19883 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 19884 /* 19885 * Zero out the checksum field to ensure proper 19886 * checksum calculation. 19887 */ 19888 sctph->sh_chksum = 0; 19889 #ifdef DEBUG 19890 if (!skip_sctp_cksum) 19891 #endif 19892 sctph->sh_chksum = sctp_cksum(mp, hlen); 19893 } 19894 } 19895 19896 /* 19897 * If this is a multicast packet and originated from ip_wput 19898 * we need to do loopback and forwarding checks. If it comes 19899 * from ip_wput_multicast, we SHOULD not do this. 19900 */ 19901 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 19902 19903 /* checksum */ 19904 cksum += ttl_protocol; 19905 19906 /* fragment the packet */ 19907 if (FRAGMENT_NEEDED(max_frag, (LENGTH + ipsec_len))) 19908 goto fragmentit; 19909 /* 19910 * Don't use frag_flag if packet is pre-built or source 19911 * routed or if multicast (since multicast packets do 19912 * not solicit ICMP "packet too big" messages). 19913 */ 19914 if ((ip_hdr_included != IP_HDR_INCLUDED) && 19915 (V_HLEN == IP_SIMPLE_HDR_VERSION || 19916 !ip_source_route_included(ipha)) && 19917 !CLASSD(ipha->ipha_dst)) 19918 ipha->ipha_fragment_offset_and_flags |= 19919 htons(ire->ire_frag_flag); 19920 19921 if (!iphdrhwcksum) { 19922 /* checksum */ 19923 cksum += ipha->ipha_ident; 19924 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 19925 cksum += ipha->ipha_fragment_offset_and_flags; 19926 19927 /* IP options present */ 19928 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 19929 if (hlen) 19930 goto checksumoptions; 19931 19932 /* calculate hdr checksum */ 19933 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 19934 cksum = ~(cksum + (cksum >> 16)); 19935 ipha->ipha_hdr_checksum = (uint16_t)cksum; 19936 } 19937 if (ipsec_len != 0) { 19938 /* 19939 * We will do the rest of the processing after 19940 * we come back from IPSEC in ip_wput_ipsec_out(). 19941 */ 19942 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 19943 19944 io = (ipsec_out_t *)first_mp->b_rptr; 19945 io->ipsec_out_ill_index = ((ill_t *)stq->q_ptr)-> 19946 ill_phyint->phyint_ifindex; 19947 19948 ipsec_out_process(q, first_mp, ire, ill_index); 19949 ire_refrele(ire); 19950 if (conn_outgoing_ill != NULL) 19951 ill_refrele(conn_outgoing_ill); 19952 return; 19953 } 19954 19955 /* 19956 * In most cases, the emission loop below is entered only 19957 * once. Only in the case where the ire holds the 19958 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 19959 * flagged ires in the bucket, and send the packet 19960 * through all crossed RTF_MULTIRT routes. 19961 */ 19962 if (ire->ire_flags & RTF_MULTIRT) { 19963 multirt_send = B_TRUE; 19964 } 19965 do { 19966 if (multirt_send) { 19967 irb_t *irb; 19968 /* 19969 * We are in a multiple send case, need to get 19970 * the next ire and make a duplicate of the packet. 19971 * ire1 holds here the next ire to process in the 19972 * bucket. If multirouting is expected, 19973 * any non-RTF_MULTIRT ire that has the 19974 * right destination address is ignored. 19975 */ 19976 irb = ire->ire_bucket; 19977 ASSERT(irb != NULL); 19978 19979 IRB_REFHOLD(irb); 19980 for (ire1 = ire->ire_next; 19981 ire1 != NULL; 19982 ire1 = ire1->ire_next) { 19983 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 19984 continue; 19985 if (ire1->ire_addr != ire->ire_addr) 19986 continue; 19987 if (ire1->ire_marks & 19988 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 19989 continue; 19990 19991 /* Got one */ 19992 IRE_REFHOLD(ire1); 19993 break; 19994 } 19995 IRB_REFRELE(irb); 19996 19997 if (ire1 != NULL) { 19998 next_mp = copyb(mp); 19999 if ((next_mp == NULL) || 20000 ((mp->b_cont != NULL) && 20001 ((next_mp->b_cont = 20002 dupmsg(mp->b_cont)) == NULL))) { 20003 freemsg(next_mp); 20004 next_mp = NULL; 20005 ire_refrele(ire1); 20006 ire1 = NULL; 20007 } 20008 } 20009 20010 /* Last multiroute ire; don't loop anymore. */ 20011 if (ire1 == NULL) { 20012 multirt_send = B_FALSE; 20013 } 20014 } 20015 mp = ip_wput_attach_llhdr(mp, ire, IPP_LOCAL_OUT, ill_index); 20016 if (mp == NULL) { 20017 BUMP_MIB(&ip_mib, ipOutDiscards); 20018 ip2dbg(("ip_wput_ire: fastpath wput pkt dropped "\ 20019 "during IPPF processing\n")); 20020 ire_refrele(ire); 20021 if (next_mp != NULL) { 20022 freemsg(next_mp); 20023 ire_refrele(ire1); 20024 } 20025 if (conn_outgoing_ill != NULL) 20026 ill_refrele(conn_outgoing_ill); 20027 return; 20028 } 20029 UPDATE_OB_PKT_COUNT(ire); 20030 ire->ire_last_used_time = lbolt; 20031 20032 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20033 "ip_wput_ire_end: q %p (%S)", 20034 q, "last copy out"); 20035 putnext(stq, mp); 20036 IRE_REFRELE(ire); 20037 20038 if (multirt_send) { 20039 ASSERT(ire1); 20040 /* 20041 * Proceed with the next RTF_MULTIRT ire, 20042 * Also set up the send-to queue accordingly. 20043 */ 20044 ire = ire1; 20045 ire1 = NULL; 20046 stq = ire->ire_stq; 20047 mp = next_mp; 20048 next_mp = NULL; 20049 ipha = (ipha_t *)mp->b_rptr; 20050 ill_index = Q_TO_INDEX(stq); 20051 } 20052 } while (multirt_send); 20053 if (conn_outgoing_ill != NULL) 20054 ill_refrele(conn_outgoing_ill); 20055 return; 20056 20057 /* 20058 * ire->ire_type == IRE_BROADCAST (minimize diffs) 20059 */ 20060 broadcast: 20061 { 20062 /* 20063 * Avoid broadcast storms by setting the ttl to 1 20064 * for broadcasts. This parameter can be set 20065 * via ndd, so make sure that for the SO_DONTROUTE 20066 * case that ipha_ttl is always set to 1. 20067 * In the event that we are replying to incoming 20068 * ICMP packets, conn could be NULL. 20069 */ 20070 if ((connp != NULL) && connp->conn_dontroute) 20071 ipha->ipha_ttl = 1; 20072 else 20073 ipha->ipha_ttl = ip_broadcast_ttl; 20074 20075 /* 20076 * Note that we are not doing a IRB_REFHOLD here. 20077 * Actually we don't care if the list changes i.e 20078 * if somebody deletes an IRE from the list while 20079 * we drop the lock, the next time we come around 20080 * ire_next will be NULL and hence we won't send 20081 * out multiple copies which is fine. 20082 */ 20083 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 20084 ire1 = ire->ire_next; 20085 if (conn_outgoing_ill != NULL) { 20086 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 20087 ASSERT(ire1 == ire->ire_next); 20088 if (ire1 != NULL && ire1->ire_addr == dst) { 20089 ire_refrele(ire); 20090 ire = ire1; 20091 IRE_REFHOLD(ire); 20092 ire1 = ire->ire_next; 20093 continue; 20094 } 20095 rw_exit(&ire->ire_bucket->irb_lock); 20096 /* Did not find a matching ill */ 20097 ip1dbg(("ip_wput_ire: broadcast with no " 20098 "matching IP_BOUND_IF ill %s\n", 20099 conn_outgoing_ill->ill_name)); 20100 freemsg(first_mp); 20101 if (ire != NULL) 20102 ire_refrele(ire); 20103 ill_refrele(conn_outgoing_ill); 20104 return; 20105 } 20106 } else if (ire1 != NULL && ire1->ire_addr == dst) { 20107 /* 20108 * If the next IRE has the same address and is not one 20109 * of the two copies that we need to send, try to see 20110 * whether this copy should be sent at all. This 20111 * assumes that we insert loopbacks first and then 20112 * non-loopbacks. This is acheived by inserting the 20113 * loopback always before non-loopback. 20114 * This is used to send a single copy of a broadcast 20115 * packet out all physical interfaces that have an 20116 * matching IRE_BROADCAST while also looping 20117 * back one copy (to ip_wput_local) for each 20118 * matching physical interface. However, we avoid 20119 * sending packets out different logical that match by 20120 * having ipif_up/ipif_down supress duplicate 20121 * IRE_BROADCASTS. 20122 * 20123 * This feature is currently used to get broadcasts 20124 * sent to multiple interfaces, when the broadcast 20125 * address being used applies to multiple interfaces. 20126 * For example, a whole net broadcast will be 20127 * replicated on every connected subnet of 20128 * the target net. 20129 * 20130 * Each zone has its own set of IRE_BROADCASTs, so that 20131 * we're able to distribute inbound packets to multiple 20132 * zones who share a broadcast address. We avoid looping 20133 * back outbound packets in different zones but on the 20134 * same ill, as the application would see duplicates. 20135 * 20136 * If the interfaces are part of the same group, 20137 * we would want to send only one copy out for 20138 * whole group. 20139 * 20140 * This logic assumes that ire_add_v4() groups the 20141 * IRE_BROADCAST entries so that those with the same 20142 * ire_addr and ill_group are kept together. 20143 */ 20144 ire_ill = ire->ire_ipif->ipif_ill; 20145 if (ire->ire_stq == NULL && ire1->ire_stq != NULL) { 20146 if (ire_ill->ill_group != NULL && 20147 (ire->ire_marks & IRE_MARK_NORECV)) { 20148 /* 20149 * If the current zone only has an ire 20150 * broadcast for this address marked 20151 * NORECV, the ire we want is ahead in 20152 * the bucket, so we look it up 20153 * deliberately ignoring the zoneid. 20154 */ 20155 for (ire1 = ire->ire_bucket->irb_ire; 20156 ire1 != NULL; 20157 ire1 = ire1->ire_next) { 20158 ire1_ill = 20159 ire1->ire_ipif->ipif_ill; 20160 if (ire1->ire_addr != dst) 20161 continue; 20162 /* skip over the current ire */ 20163 if (ire1 == ire) 20164 continue; 20165 /* skip over deleted ires */ 20166 if (ire1->ire_marks & 20167 IRE_MARK_CONDEMNED) 20168 continue; 20169 /* 20170 * non-loopback ire in our 20171 * group: use it for the next 20172 * pass in the loop 20173 */ 20174 if (ire1->ire_stq != NULL && 20175 ire1_ill->ill_group == 20176 ire_ill->ill_group) 20177 break; 20178 } 20179 } 20180 } else { 20181 while (ire1 != NULL && ire1->ire_addr == dst) { 20182 ire1_ill = ire1->ire_ipif->ipif_ill; 20183 /* 20184 * We can have two broadcast ires on the 20185 * same ill in different zones; here 20186 * we'll send a copy of the packet on 20187 * each ill and the fanout code will 20188 * call conn_wantpacket() to check that 20189 * the zone has the broadcast address 20190 * configured on the ill. If the two 20191 * ires are in the same group we only 20192 * send one copy up. 20193 */ 20194 if (ire1_ill != ire_ill && 20195 (ire1_ill->ill_group == NULL || 20196 ire_ill->ill_group == NULL || 20197 ire1_ill->ill_group != 20198 ire_ill->ill_group)) { 20199 break; 20200 } 20201 ire1 = ire1->ire_next; 20202 } 20203 } 20204 } 20205 ASSERT(multirt_send == B_FALSE); 20206 if (ire1 != NULL && ire1->ire_addr == dst) { 20207 if ((ire->ire_flags & RTF_MULTIRT) && 20208 (ire1->ire_flags & RTF_MULTIRT)) { 20209 /* 20210 * We are in the multirouting case. 20211 * The message must be sent at least 20212 * on both ires. These ires have been 20213 * inserted AFTER the standard ones 20214 * in ip_rt_add(). There are thus no 20215 * other ire entries for the destination 20216 * address in the rest of the bucket 20217 * that do not have the RTF_MULTIRT 20218 * flag. We don't process a copy 20219 * of the message here. This will be 20220 * done in the final sending loop. 20221 */ 20222 multirt_send = B_TRUE; 20223 } else { 20224 next_mp = ip_copymsg(first_mp); 20225 if (next_mp != NULL) 20226 IRE_REFHOLD(ire1); 20227 } 20228 } 20229 rw_exit(&ire->ire_bucket->irb_lock); 20230 } 20231 20232 if (stq) { 20233 /* 20234 * A non-NULL send-to queue means this packet is going 20235 * out of this machine. 20236 */ 20237 20238 BUMP_MIB(&ip_mib, ipOutRequests); 20239 ttl_protocol = ((uint16_t *)ipha)[4]; 20240 /* 20241 * We accumulate the pseudo header checksum in cksum. 20242 * This is pretty hairy code, so watch close. One 20243 * thing to keep in mind is that UDP and TCP have 20244 * stored their respective datagram lengths in their 20245 * checksum fields. This lines things up real nice. 20246 */ 20247 cksum = (dst >> 16) + (dst & 0xFFFF) + 20248 (src >> 16) + (src & 0xFFFF); 20249 /* 20250 * We assume the udp checksum field contains the 20251 * length, so to compute the pseudo header checksum, 20252 * all we need is the protocol number and src/dst. 20253 */ 20254 /* Provide the checksums for UDP and TCP. */ 20255 if ((PROTO == IPPROTO_TCP) && 20256 (ip_hdr_included != IP_HDR_INCLUDED)) { 20257 /* hlen gets the number of uchar_ts in the IP header */ 20258 hlen = (V_HLEN & 0xF) << 2; 20259 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 20260 IP_STAT(ip_out_sw_cksum); 20261 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 20262 } else if (PROTO == IPPROTO_SCTP && 20263 (ip_hdr_included != IP_HDR_INCLUDED)) { 20264 sctp_hdr_t *sctph; 20265 20266 hlen = (V_HLEN & 0xF) << 2; 20267 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 20268 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 20269 sctph->sh_chksum = 0; 20270 #ifdef DEBUG 20271 if (!skip_sctp_cksum) 20272 #endif 20273 sctph->sh_chksum = sctp_cksum(mp, hlen); 20274 } else { 20275 queue_t *dev_q = stq->q_next; 20276 20277 if ((dev_q->q_next || dev_q->q_first) && 20278 !canput(dev_q)) { 20279 blocked: 20280 ipha->ipha_ident = ip_hdr_included; 20281 /* 20282 * If we don't have a conn to apply 20283 * backpressure, free the message. 20284 * In the ire_send path, we don't know 20285 * the position to requeue the packet. Rather 20286 * than reorder packets, we just drop this 20287 * packet. 20288 */ 20289 if (ip_output_queue && connp != NULL && 20290 caller != IRE_SEND) { 20291 if (caller == IP_WSRV) { 20292 connp->conn_did_putbq = 1; 20293 (void) putbq(connp->conn_wq, 20294 first_mp); 20295 conn_drain_insert(connp); 20296 /* 20297 * This is the service thread, 20298 * and the queue is already 20299 * noenabled. The check for 20300 * canput and the putbq is not 20301 * atomic. So we need to check 20302 * again. 20303 */ 20304 if (canput(stq->q_next)) 20305 connp->conn_did_putbq 20306 = 0; 20307 IP_STAT(ip_conn_flputbq); 20308 } else { 20309 /* 20310 * We are not the service proc. 20311 * ip_wsrv will be scheduled or 20312 * is already running. 20313 */ 20314 (void) putq(connp->conn_wq, 20315 first_mp); 20316 } 20317 } else { 20318 BUMP_MIB(&ip_mib, ipOutDiscards); 20319 freemsg(first_mp); 20320 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20321 "ip_wput_ire_end: q %p (%S)", 20322 q, "discard"); 20323 } 20324 ire_refrele(ire); 20325 if (next_mp) { 20326 ire_refrele(ire1); 20327 freemsg(next_mp); 20328 } 20329 if (conn_outgoing_ill != NULL) 20330 ill_refrele(conn_outgoing_ill); 20331 return; 20332 } 20333 if ((PROTO == IPPROTO_UDP) && 20334 (ip_hdr_included != IP_HDR_INCLUDED)) { 20335 /* 20336 * hlen gets the number of uchar_ts in the 20337 * IP header 20338 */ 20339 hlen = (V_HLEN & 0xF) << 2; 20340 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 20341 if (*up) { 20342 uint_t sum; 20343 20344 /* 20345 * NOTE: watch out for compiler high 20346 * bits 20347 */ 20348 IP_STAT(ip_out_sw_cksum); 20349 sum = IP_CSUM(mp, hlen, 20350 cksum + IP_UDP_CSUM_COMP); 20351 *up = (uint16_t)(sum ? sum : ~sum); 20352 } 20353 } 20354 } 20355 /* 20356 * Need to do this even when fragmenting. The local 20357 * loopback can be done without computing checksums 20358 * but forwarding out other interface must be done 20359 * after the IP checksum (and ULP checksums) have been 20360 * computed. 20361 * 20362 * NOTE : multicast_forward is set only if this packet 20363 * originated from ip_wput. For packets originating from 20364 * ip_wput_multicast, it is not set. 20365 */ 20366 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 20367 multi_loopback: 20368 ip2dbg(("ip_wput: multicast, loop %d\n", 20369 conn_multicast_loop)); 20370 20371 /* Forget header checksum offload */ 20372 mp->b_datap->db_struioun.cksum.flags &= 20373 ~HCK_IPV4_HDRCKSUM; 20374 iphdrhwcksum = B_FALSE; 20375 20376 /* 20377 * Local loopback of multicasts? Check the 20378 * ill. 20379 * 20380 * Note that the loopback function will not come 20381 * in through ip_rput - it will only do the 20382 * client fanout thus we need to do an mforward 20383 * as well. The is different from the BSD 20384 * logic. 20385 */ 20386 if (ill != NULL) { 20387 ilm_t *ilm; 20388 20389 ILM_WALKER_HOLD(ill); 20390 ilm = ilm_lookup_ill(ill, ipha->ipha_dst, 20391 ALL_ZONES); 20392 ILM_WALKER_RELE(ill); 20393 if (ilm != NULL) { 20394 /* 20395 * Pass along the virtual output q. 20396 * ip_wput_local() will distribute the 20397 * packet to all the matching zones, 20398 * except the sending zone when 20399 * IP_MULTICAST_LOOP is false. 20400 */ 20401 ip_multicast_loopback(q, ill, first_mp, 20402 conn_multicast_loop ? 0 : 20403 IP_FF_NO_MCAST_LOOP, zoneid); 20404 } 20405 } 20406 if (ipha->ipha_ttl == 0) { 20407 /* 20408 * 0 => only to this host i.e. we are 20409 * done. We are also done if this was the 20410 * loopback interface since it is sufficient 20411 * to loopback one copy of a multicast packet. 20412 */ 20413 freemsg(first_mp); 20414 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20415 "ip_wput_ire_end: q %p (%S)", 20416 q, "loopback"); 20417 ire_refrele(ire); 20418 if (conn_outgoing_ill != NULL) 20419 ill_refrele(conn_outgoing_ill); 20420 return; 20421 } 20422 /* 20423 * ILLF_MULTICAST is checked in ip_newroute 20424 * i.e. we don't need to check it here since 20425 * all IRE_CACHEs come from ip_newroute. 20426 * For multicast traffic, SO_DONTROUTE is interpreted 20427 * to mean only send the packet out the interface 20428 * (optionally specified with IP_MULTICAST_IF) 20429 * and do not forward it out additional interfaces. 20430 * RSVP and the rsvp daemon is an example of a 20431 * protocol and user level process that 20432 * handles it's own routing. Hence, it uses the 20433 * SO_DONTROUTE option to accomplish this. 20434 */ 20435 20436 if (ip_g_mrouter && !conn_dontroute && ill != NULL) { 20437 /* Unconditionally redo the checksum */ 20438 ipha->ipha_hdr_checksum = 0; 20439 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 20440 20441 /* 20442 * If this needs to go out secure, we need 20443 * to wait till we finish the IPSEC 20444 * processing. 20445 */ 20446 if (ipsec_len == 0 && 20447 ip_mforward(ill, ipha, mp)) { 20448 freemsg(first_mp); 20449 ip1dbg(("ip_wput: mforward failed\n")); 20450 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20451 "ip_wput_ire_end: q %p (%S)", 20452 q, "mforward failed"); 20453 ire_refrele(ire); 20454 if (conn_outgoing_ill != NULL) 20455 ill_refrele(conn_outgoing_ill); 20456 return; 20457 } 20458 } 20459 } 20460 max_frag = ire->ire_max_frag; 20461 cksum += ttl_protocol; 20462 if (!FRAGMENT_NEEDED(max_frag, (LENGTH + ipsec_len))) { 20463 /* No fragmentation required for this one. */ 20464 /* Complete the IP header checksum. */ 20465 cksum += ipha->ipha_ident; 20466 /* 20467 * Don't use frag_flag if packet is pre-built or source 20468 * routed or if multicast (since multicast packets do 20469 * not solicit ICMP "packet too big" messages). 20470 */ 20471 if ((ip_hdr_included != IP_HDR_INCLUDED) && 20472 (V_HLEN == IP_SIMPLE_HDR_VERSION || 20473 !ip_source_route_included(ipha)) && 20474 !CLASSD(ipha->ipha_dst)) 20475 ipha->ipha_fragment_offset_and_flags |= 20476 htons(ire->ire_frag_flag); 20477 20478 cksum += (v_hlen_tos_len >> 16)+ 20479 (v_hlen_tos_len & 0xFFFF); 20480 cksum += ipha->ipha_fragment_offset_and_flags; 20481 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 20482 if (hlen) { 20483 checksumoptions: 20484 /* 20485 * Account for the IP Options in the IP 20486 * header checksum. 20487 */ 20488 up = (uint16_t *)(rptr+IP_SIMPLE_HDR_LENGTH); 20489 do { 20490 cksum += up[0]; 20491 cksum += up[1]; 20492 up += 2; 20493 } while (--hlen); 20494 } 20495 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 20496 cksum = ~(cksum + (cksum >> 16)); 20497 ipha->ipha_hdr_checksum = (uint16_t)cksum; 20498 if (ipsec_len != 0) { 20499 ipsec_out_process(q, first_mp, ire, ill_index); 20500 if (!next_mp) { 20501 ire_refrele(ire); 20502 if (conn_outgoing_ill != NULL) 20503 ill_refrele(conn_outgoing_ill); 20504 return; 20505 } 20506 goto next; 20507 } 20508 20509 /* 20510 * multirt_send has already been handled 20511 * for broadcast, but not yet for multicast 20512 * or IP options. 20513 */ 20514 if (next_mp == NULL) { 20515 if (ire->ire_flags & RTF_MULTIRT) { 20516 multirt_send = B_TRUE; 20517 } 20518 } 20519 20520 /* 20521 * In most cases, the emission loop below is 20522 * entered only once. Only in the case where 20523 * the ire holds the RTF_MULTIRT flag, do we loop 20524 * to process all RTF_MULTIRT ires in the bucket, 20525 * and send the packet through all crossed 20526 * RTF_MULTIRT routes. 20527 */ 20528 do { 20529 if (multirt_send) { 20530 irb_t *irb; 20531 20532 irb = ire->ire_bucket; 20533 ASSERT(irb != NULL); 20534 /* 20535 * We are in a multiple send case, 20536 * need to get the next IRE and make 20537 * a duplicate of the packet. 20538 */ 20539 IRB_REFHOLD(irb); 20540 for (ire1 = ire->ire_next; 20541 ire1 != NULL; 20542 ire1 = ire1->ire_next) { 20543 if (!(ire1->ire_flags & 20544 RTF_MULTIRT)) 20545 continue; 20546 if (ire1->ire_addr != 20547 ire->ire_addr) 20548 continue; 20549 if (ire1->ire_marks & 20550 (IRE_MARK_CONDEMNED| 20551 IRE_MARK_HIDDEN)) 20552 continue; 20553 20554 /* Got one */ 20555 IRE_REFHOLD(ire1); 20556 break; 20557 } 20558 IRB_REFRELE(irb); 20559 20560 if (ire1 != NULL) { 20561 next_mp = copyb(mp); 20562 if ((next_mp == NULL) || 20563 ((mp->b_cont != NULL) && 20564 ((next_mp->b_cont = 20565 dupmsg(mp->b_cont)) 20566 == NULL))) { 20567 freemsg(next_mp); 20568 next_mp = NULL; 20569 ire_refrele(ire1); 20570 ire1 = NULL; 20571 } 20572 } 20573 20574 /* 20575 * Last multiroute ire; don't loop 20576 * anymore. The emission is over 20577 * and next_mp is NULL. 20578 */ 20579 if (ire1 == NULL) { 20580 multirt_send = B_FALSE; 20581 } 20582 } 20583 20584 noprepend: 20585 ASSERT(ipsec_len == 0); 20586 mp1 = ip_wput_attach_llhdr(mp, ire, 20587 IPP_LOCAL_OUT, ill_index); 20588 if (mp1 == NULL) { 20589 BUMP_MIB(&ip_mib, ipOutDiscards); 20590 if (next_mp) { 20591 freemsg(next_mp); 20592 ire_refrele(ire1); 20593 } 20594 ire_refrele(ire); 20595 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20596 "ip_wput_ire_end: q %p (%S)", 20597 q, "discard MDATA"); 20598 if (conn_outgoing_ill != NULL) 20599 ill_refrele(conn_outgoing_ill); 20600 return; 20601 } 20602 UPDATE_OB_PKT_COUNT(ire); 20603 ire->ire_last_used_time = lbolt; 20604 20605 if (multirt_send) { 20606 /* 20607 * We are in a multiple send case, 20608 * need to re-enter the sending loop 20609 * using the next ire. 20610 */ 20611 putnext(stq, mp1); 20612 ire_refrele(ire); 20613 ire = ire1; 20614 stq = ire->ire_stq; 20615 mp = next_mp; 20616 next_mp = NULL; 20617 ipha = (ipha_t *)mp->b_rptr; 20618 ill_index = Q_TO_INDEX(stq); 20619 } 20620 } while (multirt_send); 20621 20622 if (!next_mp) { 20623 /* 20624 * Last copy going out (the ultra-common 20625 * case). Note that we intentionally replicate 20626 * the putnext rather than calling it before 20627 * the next_mp check in hopes of a little 20628 * tail-call action out of the compiler. 20629 */ 20630 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20631 "ip_wput_ire_end: q %p (%S)", 20632 q, "last copy out(1)"); 20633 putnext(stq, mp1); 20634 ire_refrele(ire); 20635 if (conn_outgoing_ill != NULL) 20636 ill_refrele(conn_outgoing_ill); 20637 return; 20638 } 20639 /* More copies going out below. */ 20640 putnext(stq, mp1); 20641 } else { 20642 int offset; 20643 fragmentit: 20644 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 20645 /* 20646 * If this would generate a icmp_frag_needed message, 20647 * we need to handle it before we do the IPSEC 20648 * processing. Otherwise, we need to strip the IPSEC 20649 * headers before we send up the message to the ULPs 20650 * which becomes messy and difficult. 20651 */ 20652 if (ipsec_len != 0) { 20653 if ((max_frag < (unsigned int)(LENGTH + 20654 ipsec_len)) && (offset & IPH_DF)) { 20655 20656 BUMP_MIB(&ip_mib, ipFragFails); 20657 ipha->ipha_hdr_checksum = 0; 20658 ipha->ipha_hdr_checksum = 20659 (uint16_t)ip_csum_hdr(ipha); 20660 icmp_frag_needed(ire->ire_stq, first_mp, 20661 max_frag); 20662 if (!next_mp) { 20663 ire_refrele(ire); 20664 if (conn_outgoing_ill != NULL) { 20665 ill_refrele( 20666 conn_outgoing_ill); 20667 } 20668 return; 20669 } 20670 } else { 20671 /* 20672 * This won't cause a icmp_frag_needed 20673 * message. to be gnerated. Send it on 20674 * the wire. Note that this could still 20675 * cause fragmentation and all we 20676 * do is the generation of the message 20677 * to the ULP if needed before IPSEC. 20678 */ 20679 if (!next_mp) { 20680 ipsec_out_process(q, first_mp, 20681 ire, ill_index); 20682 TRACE_2(TR_FAC_IP, 20683 TR_IP_WPUT_IRE_END, 20684 "ip_wput_ire_end: q %p " 20685 "(%S)", q, 20686 "last ipsec_out_process"); 20687 ire_refrele(ire); 20688 if (conn_outgoing_ill != NULL) { 20689 ill_refrele( 20690 conn_outgoing_ill); 20691 } 20692 return; 20693 } 20694 ipsec_out_process(q, first_mp, 20695 ire, ill_index); 20696 } 20697 } else { 20698 /* Initiate IPPF processing */ 20699 if (IPP_ENABLED(IPP_LOCAL_OUT)) { 20700 ip_process(IPP_LOCAL_OUT, &mp, 20701 ill_index); 20702 if (mp == NULL) { 20703 BUMP_MIB(&ip_mib, 20704 ipOutDiscards); 20705 if (next_mp != NULL) { 20706 freemsg(next_mp); 20707 ire_refrele(ire1); 20708 } 20709 ire_refrele(ire); 20710 TRACE_2(TR_FAC_IP, 20711 TR_IP_WPUT_IRE_END, 20712 "ip_wput_ire: q %p (%S)", 20713 q, "discard MDATA"); 20714 if (conn_outgoing_ill != NULL) { 20715 ill_refrele( 20716 conn_outgoing_ill); 20717 } 20718 return; 20719 } 20720 } 20721 if (!next_mp) { 20722 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20723 "ip_wput_ire_end: q %p (%S)", 20724 q, "last fragmentation"); 20725 ip_wput_ire_fragmentit(mp, ire); 20726 ire_refrele(ire); 20727 if (conn_outgoing_ill != NULL) 20728 ill_refrele(conn_outgoing_ill); 20729 return; 20730 } 20731 ip_wput_ire_fragmentit(mp, ire); 20732 } 20733 } 20734 } else { 20735 nullstq: 20736 /* A NULL stq means the destination address is local. */ 20737 UPDATE_OB_PKT_COUNT(ire); 20738 ire->ire_last_used_time = lbolt; 20739 ASSERT(ire->ire_ipif != NULL); 20740 if (!next_mp) { 20741 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20742 "ip_wput_ire_end: q %p (%S)", 20743 q, "local address"); 20744 ip_wput_local(q, ire->ire_ipif->ipif_ill, ipha, 20745 first_mp, ire, 0, ire->ire_zoneid); 20746 ire_refrele(ire); 20747 if (conn_outgoing_ill != NULL) 20748 ill_refrele(conn_outgoing_ill); 20749 return; 20750 } 20751 ip_wput_local(q, ire->ire_ipif->ipif_ill, ipha, first_mp, 20752 ire, 0, ire->ire_zoneid); 20753 } 20754 next: 20755 /* 20756 * More copies going out to additional interfaces. 20757 * ire1 has already been held. We don't need the 20758 * "ire" anymore. 20759 */ 20760 ire_refrele(ire); 20761 ire = ire1; 20762 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 20763 mp = next_mp; 20764 ASSERT(ire->ire_ipversion == IPV4_VERSION); 20765 ill = ire_to_ill(ire); 20766 first_mp = mp; 20767 if (ipsec_len != 0) { 20768 ASSERT(first_mp->b_datap->db_type == M_CTL); 20769 mp = mp->b_cont; 20770 } 20771 dst = ire->ire_addr; 20772 ipha = (ipha_t *)mp->b_rptr; 20773 /* 20774 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 20775 * Restore ipha_ident "no checksum" flag. 20776 */ 20777 src = orig_src; 20778 ipha->ipha_ident = ip_hdr_included; 20779 goto another; 20780 20781 #undef rptr 20782 #undef Q_TO_INDEX 20783 } 20784 20785 /* 20786 * Routine to allocate a message that is used to notify the ULP about MDT. 20787 * The caller may provide a pointer to the link-layer MDT capabilities, 20788 * or NULL if MDT is to be disabled on the stream. 20789 */ 20790 mblk_t * 20791 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 20792 { 20793 mblk_t *mp; 20794 ip_mdt_info_t *mdti; 20795 ill_mdt_capab_t *idst; 20796 20797 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 20798 DB_TYPE(mp) = M_CTL; 20799 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 20800 mdti = (ip_mdt_info_t *)mp->b_rptr; 20801 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 20802 idst = &(mdti->mdt_capab); 20803 20804 /* 20805 * If the caller provides us with the capability, copy 20806 * it over into our notification message; otherwise 20807 * we zero out the capability portion. 20808 */ 20809 if (isrc != NULL) 20810 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 20811 else 20812 bzero((caddr_t)idst, sizeof (*idst)); 20813 } 20814 return (mp); 20815 } 20816 20817 /* 20818 * Routine which determines whether MDT can be enabled on the destination 20819 * IRE and IPC combination, and if so, allocates and returns the MDT 20820 * notification mblk that may be used by ULP. We also check if we need to 20821 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 20822 * MDT usage in the past have been lifted. This gets called during IP 20823 * and ULP binding. 20824 */ 20825 mblk_t * 20826 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 20827 ill_mdt_capab_t *mdt_cap) 20828 { 20829 mblk_t *mp; 20830 boolean_t rc = B_FALSE; 20831 20832 ASSERT(dst_ire != NULL); 20833 ASSERT(connp != NULL); 20834 ASSERT(mdt_cap != NULL); 20835 20836 /* 20837 * Currently, we only support simple TCP/{IPv4,IPv6} with 20838 * Multidata, which is handled in tcp_multisend(). This 20839 * is the reason why we do all these checks here, to ensure 20840 * that we don't enable Multidata for the cases which we 20841 * can't handle at the moment. 20842 */ 20843 do { 20844 /* Only do TCP at the moment */ 20845 if (connp->conn_ulp != IPPROTO_TCP) 20846 break; 20847 20848 /* 20849 * IPSEC outbound policy present? Note that we get here 20850 * after calling ipsec_conn_cache_policy() where the global 20851 * policy checking is performed. conn_latch will be 20852 * non-NULL as long as there's a policy defined, 20853 * i.e. conn_out_enforce_policy may be NULL in such case 20854 * when the connection is non-secure, and hence we check 20855 * further if the latch refers to an outbound policy. 20856 */ 20857 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 20858 break; 20859 20860 /* CGTP (multiroute) is enabled? */ 20861 if (dst_ire->ire_flags & RTF_MULTIRT) 20862 break; 20863 20864 /* Outbound IPQoS enabled? */ 20865 if (IPP_ENABLED(IPP_LOCAL_OUT)) { 20866 /* 20867 * In this case, we disable MDT for this and all 20868 * future connections going over the interface. 20869 */ 20870 mdt_cap->ill_mdt_on = 0; 20871 break; 20872 } 20873 20874 /* socket option(s) present? */ 20875 if (!CONN_IS_MD_FASTPATH(connp)) 20876 break; 20877 20878 rc = B_TRUE; 20879 /* CONSTCOND */ 20880 } while (0); 20881 20882 /* Remember the result */ 20883 connp->conn_mdt_ok = rc; 20884 20885 if (!rc) 20886 return (NULL); 20887 else if (!mdt_cap->ill_mdt_on) { 20888 /* 20889 * If MDT has been previously turned off in the past, and we 20890 * currently can do MDT (due to IPQoS policy removal, etc.) 20891 * then enable it for this interface. 20892 */ 20893 mdt_cap->ill_mdt_on = 1; 20894 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 20895 "interface %s\n", ill_name)); 20896 } 20897 20898 /* Allocate the MDT info mblk */ 20899 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 20900 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 20901 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 20902 return (NULL); 20903 } 20904 return (mp); 20905 } 20906 20907 /* 20908 * Create destination address attribute, and fill it with the physical 20909 * destination address and SAP taken from the template DL_UNITDATA_REQ 20910 * message block. 20911 */ 20912 boolean_t 20913 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 20914 { 20915 dl_unitdata_req_t *dlurp; 20916 pattr_t *pa; 20917 pattrinfo_t pa_info; 20918 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 20919 uint_t das_len, das_off; 20920 20921 ASSERT(dlmp != NULL); 20922 20923 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 20924 das_len = dlurp->dl_dest_addr_length; 20925 das_off = dlurp->dl_dest_addr_offset; 20926 20927 pa_info.type = PATTR_DSTADDRSAP; 20928 pa_info.len = sizeof (**das) + das_len - 1; 20929 20930 /* create and associate the attribute */ 20931 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 20932 if (pa != NULL) { 20933 ASSERT(*das != NULL); 20934 (*das)->addr_is_group = 0; 20935 (*das)->addr_len = (uint8_t)das_len; 20936 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 20937 } 20938 20939 return (pa != NULL); 20940 } 20941 20942 /* 20943 * Create hardware checksum attribute and fill it with the values passed. 20944 */ 20945 boolean_t 20946 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 20947 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 20948 { 20949 pattr_t *pa; 20950 pattrinfo_t pa_info; 20951 20952 ASSERT(mmd != NULL); 20953 20954 pa_info.type = PATTR_HCKSUM; 20955 pa_info.len = sizeof (pattr_hcksum_t); 20956 20957 /* create and associate the attribute */ 20958 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 20959 if (pa != NULL) { 20960 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 20961 20962 hck->hcksum_start_offset = start_offset; 20963 hck->hcksum_stuff_offset = stuff_offset; 20964 hck->hcksum_end_offset = end_offset; 20965 hck->hcksum_flags = flags; 20966 } 20967 return (pa != NULL); 20968 } 20969 20970 /* 20971 * Create zerocopy attribute and fill it with the specified flags 20972 */ 20973 boolean_t 20974 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 20975 { 20976 pattr_t *pa; 20977 pattrinfo_t pa_info; 20978 20979 ASSERT(mmd != NULL); 20980 pa_info.type = PATTR_ZCOPY; 20981 pa_info.len = sizeof (pattr_zcopy_t); 20982 20983 /* create and associate the attribute */ 20984 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 20985 if (pa != NULL) { 20986 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 20987 20988 zcopy->zcopy_flags = flags; 20989 } 20990 return (pa != NULL); 20991 } 20992 20993 /* 20994 * Outbound IP fragmentation routine. 20995 * 20996 * NOTE : This routine does not ire_refrele the ire that is passed in 20997 * as the argument. 20998 */ 20999 static void 21000 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 21001 uint32_t frag_flag) 21002 { 21003 int i1; 21004 mblk_t *ll_hdr_mp; 21005 int ll_hdr_len; 21006 int hdr_len; 21007 mblk_t *hdr_mp; 21008 ipha_t *ipha; 21009 int ip_data_end; 21010 int len; 21011 mblk_t *mp = mp_orig; 21012 int offset; 21013 queue_t *q; 21014 uint32_t v_hlen_tos_len; 21015 mblk_t *first_mp; 21016 boolean_t mctl_present; 21017 mblk_t *xmit_mp; 21018 mblk_t *carve_mp; 21019 ire_t *ire1 = NULL; 21020 ire_t *save_ire = NULL; 21021 mblk_t *next_mp = NULL; 21022 boolean_t last_frag = B_FALSE; 21023 boolean_t multirt_send = B_FALSE; 21024 ire_t *first_ire = NULL; 21025 irb_t *irb = NULL; 21026 21027 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 21028 "ip_wput_frag_start:"); 21029 21030 if (mp->b_datap->db_type == M_CTL) { 21031 first_mp = mp; 21032 mp_orig = mp = mp->b_cont; 21033 mctl_present = B_TRUE; 21034 } else { 21035 first_mp = mp; 21036 mctl_present = B_FALSE; 21037 } 21038 21039 ipha = (ipha_t *)mp->b_rptr; 21040 21041 /* 21042 * If the Don't Fragment flag is on, generate an ICMP destination 21043 * unreachable, fragmentation needed. 21044 */ 21045 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 21046 if (offset & IPH_DF) { 21047 BUMP_MIB(&ip_mib, ipFragFails); 21048 /* 21049 * Need to compute hdr checksum if called from ip_wput_ire. 21050 * Note that ip_rput_forward verifies the checksum before 21051 * calling this routine so in that case this is a noop. 21052 */ 21053 ipha->ipha_hdr_checksum = 0; 21054 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 21055 icmp_frag_needed(ire->ire_stq, first_mp, max_frag); 21056 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 21057 "ip_wput_frag_end:(%S)", 21058 "don't fragment"); 21059 return; 21060 } 21061 if (mctl_present) 21062 freeb(first_mp); 21063 /* 21064 * Establish the starting offset. May not be zero if we are fragging 21065 * a fragment that is being forwarded. 21066 */ 21067 offset = offset & IPH_OFFSET; 21068 21069 /* TODO why is this test needed? */ 21070 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21071 if (((max_frag - LENGTH) & ~7) < 8) { 21072 /* TODO: notify ulp somehow */ 21073 BUMP_MIB(&ip_mib, ipFragFails); 21074 freemsg(mp); 21075 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 21076 "ip_wput_frag_end:(%S)", 21077 "len < 8"); 21078 return; 21079 } 21080 21081 hdr_len = (V_HLEN & 0xF) << 2; 21082 ipha->ipha_hdr_checksum = 0; 21083 21084 /* Get a copy of the header for the trailing frags */ 21085 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset); 21086 if (!hdr_mp) { 21087 BUMP_MIB(&ip_mib, ipOutDiscards); 21088 freemsg(mp); 21089 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 21090 "ip_wput_frag_end:(%S)", 21091 "couldn't copy hdr"); 21092 return; 21093 } 21094 21095 /* Store the starting offset, with the MoreFrags flag. */ 21096 i1 = offset | IPH_MF | frag_flag; 21097 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 21098 21099 /* Establish the ending byte offset, based on the starting offset. */ 21100 offset <<= 3; 21101 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 21102 21103 /* 21104 * Establish the number of bytes maximum per frag, after putting 21105 * in the header. 21106 */ 21107 len = (max_frag - hdr_len) & ~7; 21108 21109 /* Store the length of the first fragment in the IP header. */ 21110 i1 = len + hdr_len; 21111 ASSERT(i1 <= IP_MAXPACKET); 21112 ipha->ipha_length = htons((uint16_t)i1); 21113 21114 /* 21115 * Compute the IP header checksum for the first frag. We have to 21116 * watch out that we stop at the end of the header. 21117 */ 21118 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 21119 21120 /* 21121 * Now carve off the first frag. Note that this will include the 21122 * original IP header. 21123 */ 21124 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 21125 BUMP_MIB(&ip_mib, ipOutDiscards); 21126 freeb(hdr_mp); 21127 freemsg(mp_orig); 21128 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 21129 "ip_wput_frag_end:(%S)", 21130 "couldn't carve first"); 21131 return; 21132 } 21133 21134 /* 21135 * Multirouting case. Each fragment is replicated 21136 * via all non-condemned RTF_MULTIRT routes 21137 * currently resolved. 21138 * We ensure that first_ire is the first RTF_MULTIRT 21139 * ire in the bucket. 21140 */ 21141 if (ire->ire_flags & RTF_MULTIRT) { 21142 irb = ire->ire_bucket; 21143 ASSERT(irb != NULL); 21144 21145 multirt_send = B_TRUE; 21146 21147 /* Make sure we do not omit any multiroute ire. */ 21148 IRB_REFHOLD(irb); 21149 for (first_ire = irb->irb_ire; 21150 first_ire != NULL; 21151 first_ire = first_ire->ire_next) { 21152 if ((first_ire->ire_flags & RTF_MULTIRT) && 21153 (first_ire->ire_addr == ire->ire_addr) && 21154 !(first_ire->ire_marks & 21155 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 21156 break; 21157 } 21158 21159 if (first_ire != NULL) { 21160 if (first_ire != ire) { 21161 IRE_REFHOLD(first_ire); 21162 /* 21163 * Do not release the ire passed in 21164 * as the argument. 21165 */ 21166 ire = first_ire; 21167 } else { 21168 first_ire = NULL; 21169 } 21170 } 21171 IRB_REFRELE(irb); 21172 21173 /* 21174 * Save the first ire; we will need to restore it 21175 * for the trailing frags. 21176 * We REFHOLD save_ire, as each iterated ire will be 21177 * REFRELEd. 21178 */ 21179 save_ire = ire; 21180 IRE_REFHOLD(save_ire); 21181 } 21182 21183 /* 21184 * First fragment emission loop. 21185 * In most cases, the emission loop below is entered only 21186 * once. Only in the case where the ire holds the RTF_MULTIRT 21187 * flag, do we loop to process all RTF_MULTIRT ires in the 21188 * bucket, and send the fragment through all crossed 21189 * RTF_MULTIRT routes. 21190 */ 21191 do { 21192 if (ire->ire_flags & RTF_MULTIRT) { 21193 /* 21194 * We are in a multiple send case, need to get 21195 * the next ire and make a copy of the packet. 21196 * ire1 holds here the next ire to process in the 21197 * bucket. If multirouting is expected, 21198 * any non-RTF_MULTIRT ire that has the 21199 * right destination address is ignored. 21200 * 21201 * We have to take into account the MTU of 21202 * each walked ire. max_frag is set by the 21203 * the caller and generally refers to 21204 * the primary ire entry. Here we ensure that 21205 * no route with a lower MTU will be used, as 21206 * fragments are carved once for all ires, 21207 * then replicated. 21208 */ 21209 ASSERT(irb != NULL); 21210 IRB_REFHOLD(irb); 21211 for (ire1 = ire->ire_next; 21212 ire1 != NULL; 21213 ire1 = ire1->ire_next) { 21214 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 21215 continue; 21216 if (ire1->ire_addr != ire->ire_addr) 21217 continue; 21218 if (ire1->ire_marks & 21219 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 21220 continue; 21221 /* 21222 * Ensure we do not exceed the MTU 21223 * of the next route. 21224 */ 21225 if (ire1->ire_max_frag < max_frag) { 21226 ip_multirt_bad_mtu(ire1, max_frag); 21227 continue; 21228 } 21229 21230 /* Got one. */ 21231 IRE_REFHOLD(ire1); 21232 break; 21233 } 21234 IRB_REFRELE(irb); 21235 21236 if (ire1 != NULL) { 21237 next_mp = copyb(mp); 21238 if ((next_mp == NULL) || 21239 ((mp->b_cont != NULL) && 21240 ((next_mp->b_cont = 21241 dupmsg(mp->b_cont)) == NULL))) { 21242 freemsg(next_mp); 21243 next_mp = NULL; 21244 ire_refrele(ire1); 21245 ire1 = NULL; 21246 } 21247 } 21248 21249 /* Last multiroute ire; don't loop anymore. */ 21250 if (ire1 == NULL) { 21251 multirt_send = B_FALSE; 21252 } 21253 } 21254 21255 ll_hdr_len = 0; 21256 LOCK_IRE_FP_MP(ire); 21257 ll_hdr_mp = ire->ire_fp_mp; 21258 if (ll_hdr_mp != NULL) { 21259 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 21260 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 21261 } else { 21262 ll_hdr_mp = ire->ire_dlureq_mp; 21263 } 21264 21265 /* If there is a transmit header, get a copy for this frag. */ 21266 /* 21267 * TODO: should check db_ref before calling ip_carve_mp since 21268 * it might give us a dup. 21269 */ 21270 if (!ll_hdr_mp) { 21271 /* No xmit header. */ 21272 xmit_mp = mp; 21273 } else if (mp->b_datap->db_ref == 1 && 21274 ll_hdr_len != 0 && 21275 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 21276 /* M_DATA fastpath */ 21277 mp->b_rptr -= ll_hdr_len; 21278 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 21279 xmit_mp = mp; 21280 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 21281 UNLOCK_IRE_FP_MP(ire); 21282 BUMP_MIB(&ip_mib, ipOutDiscards); 21283 freeb(hdr_mp); 21284 freemsg(mp); 21285 freemsg(mp_orig); 21286 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 21287 "ip_wput_frag_end:(%S)", 21288 "discard"); 21289 21290 if (multirt_send) { 21291 ASSERT(ire1); 21292 ASSERT(next_mp); 21293 21294 freemsg(next_mp); 21295 ire_refrele(ire1); 21296 } 21297 if (save_ire != NULL) 21298 IRE_REFRELE(save_ire); 21299 21300 if (first_ire != NULL) 21301 ire_refrele(first_ire); 21302 return; 21303 } else { 21304 xmit_mp->b_cont = mp; 21305 /* Get priority marking, if any. */ 21306 if (DB_TYPE(xmit_mp) == M_DATA) 21307 xmit_mp->b_band = mp->b_band; 21308 } 21309 UNLOCK_IRE_FP_MP(ire); 21310 q = ire->ire_stq; 21311 BUMP_MIB(&ip_mib, ipFragCreates); 21312 putnext(q, xmit_mp); 21313 if (pkt_type != OB_PKT) { 21314 /* 21315 * Update the packet count of trailing 21316 * RTF_MULTIRT ires. 21317 */ 21318 UPDATE_OB_PKT_COUNT(ire); 21319 } 21320 21321 if (multirt_send) { 21322 /* 21323 * We are in a multiple send case; look for 21324 * the next ire and re-enter the loop. 21325 */ 21326 ASSERT(ire1); 21327 ASSERT(next_mp); 21328 /* REFRELE the current ire before looping */ 21329 ire_refrele(ire); 21330 ire = ire1; 21331 ire1 = NULL; 21332 mp = next_mp; 21333 next_mp = NULL; 21334 } 21335 } while (multirt_send); 21336 21337 ASSERT(ire1 == NULL); 21338 21339 /* Restore the original ire; we need it for the trailing frags */ 21340 if (save_ire != NULL) { 21341 /* REFRELE the last iterated ire */ 21342 ire_refrele(ire); 21343 /* save_ire has been REFHOLDed */ 21344 ire = save_ire; 21345 save_ire = NULL; 21346 q = ire->ire_stq; 21347 } 21348 21349 if (pkt_type == OB_PKT) { 21350 UPDATE_OB_PKT_COUNT(ire); 21351 } else { 21352 UPDATE_IB_PKT_COUNT(ire); 21353 } 21354 21355 /* Advance the offset to the second frag starting point. */ 21356 offset += len; 21357 /* 21358 * Update hdr_len from the copied header - there might be less options 21359 * in the later fragments. 21360 */ 21361 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 21362 /* Loop until done. */ 21363 for (;;) { 21364 uint16_t offset_and_flags; 21365 uint16_t ip_len; 21366 21367 if (ip_data_end - offset > len) { 21368 /* 21369 * Carve off the appropriate amount from the original 21370 * datagram. 21371 */ 21372 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 21373 mp = NULL; 21374 break; 21375 } 21376 /* 21377 * More frags after this one. Get another copy 21378 * of the header. 21379 */ 21380 if (carve_mp->b_datap->db_ref == 1 && 21381 hdr_mp->b_wptr - hdr_mp->b_rptr < 21382 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 21383 /* Inline IP header */ 21384 carve_mp->b_rptr -= hdr_mp->b_wptr - 21385 hdr_mp->b_rptr; 21386 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 21387 hdr_mp->b_wptr - hdr_mp->b_rptr); 21388 mp = carve_mp; 21389 } else { 21390 if (!(mp = copyb(hdr_mp))) { 21391 freemsg(carve_mp); 21392 break; 21393 } 21394 /* Get priority marking, if any. */ 21395 mp->b_band = carve_mp->b_band; 21396 mp->b_cont = carve_mp; 21397 } 21398 ipha = (ipha_t *)mp->b_rptr; 21399 offset_and_flags = IPH_MF; 21400 } else { 21401 /* 21402 * Last frag. Consume the header. Set len to 21403 * the length of this last piece. 21404 */ 21405 len = ip_data_end - offset; 21406 21407 /* 21408 * Carve off the appropriate amount from the original 21409 * datagram. 21410 */ 21411 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 21412 mp = NULL; 21413 break; 21414 } 21415 if (carve_mp->b_datap->db_ref == 1 && 21416 hdr_mp->b_wptr - hdr_mp->b_rptr < 21417 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 21418 /* Inline IP header */ 21419 carve_mp->b_rptr -= hdr_mp->b_wptr - 21420 hdr_mp->b_rptr; 21421 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 21422 hdr_mp->b_wptr - hdr_mp->b_rptr); 21423 mp = carve_mp; 21424 freeb(hdr_mp); 21425 hdr_mp = mp; 21426 } else { 21427 mp = hdr_mp; 21428 /* Get priority marking, if any. */ 21429 mp->b_band = carve_mp->b_band; 21430 mp->b_cont = carve_mp; 21431 } 21432 ipha = (ipha_t *)mp->b_rptr; 21433 /* A frag of a frag might have IPH_MF non-zero */ 21434 offset_and_flags = 21435 ntohs(ipha->ipha_fragment_offset_and_flags) & 21436 IPH_MF; 21437 } 21438 offset_and_flags |= (uint16_t)(offset >> 3); 21439 offset_and_flags |= (uint16_t)frag_flag; 21440 /* Store the offset and flags in the IP header. */ 21441 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 21442 21443 /* Store the length in the IP header. */ 21444 ip_len = (uint16_t)(len + hdr_len); 21445 ipha->ipha_length = htons(ip_len); 21446 21447 /* 21448 * Set the IP header checksum. Note that mp is just 21449 * the header, so this is easy to pass to ip_csum. 21450 */ 21451 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 21452 21453 /* Attach a transmit header, if any, and ship it. */ 21454 if (pkt_type == OB_PKT) { 21455 UPDATE_OB_PKT_COUNT(ire); 21456 } else { 21457 UPDATE_IB_PKT_COUNT(ire); 21458 } 21459 21460 if (ire->ire_flags & RTF_MULTIRT) { 21461 irb = ire->ire_bucket; 21462 ASSERT(irb != NULL); 21463 21464 multirt_send = B_TRUE; 21465 21466 /* 21467 * Save the original ire; we will need to restore it 21468 * for the tailing frags. 21469 */ 21470 save_ire = ire; 21471 IRE_REFHOLD(save_ire); 21472 } 21473 /* 21474 * Emission loop for this fragment, similar 21475 * to what is done for the first fragment. 21476 */ 21477 do { 21478 if (multirt_send) { 21479 /* 21480 * We are in a multiple send case, need to get 21481 * the next ire and make a copy of the packet. 21482 */ 21483 ASSERT(irb != NULL); 21484 IRB_REFHOLD(irb); 21485 for (ire1 = ire->ire_next; 21486 ire1 != NULL; 21487 ire1 = ire1->ire_next) { 21488 if (!(ire1->ire_flags & RTF_MULTIRT)) 21489 continue; 21490 if (ire1->ire_addr != ire->ire_addr) 21491 continue; 21492 if (ire1->ire_marks & 21493 (IRE_MARK_CONDEMNED| 21494 IRE_MARK_HIDDEN)) 21495 continue; 21496 /* 21497 * Ensure we do not exceed the MTU 21498 * of the next route. 21499 */ 21500 if (ire1->ire_max_frag < max_frag) { 21501 ip_multirt_bad_mtu(ire1, 21502 max_frag); 21503 continue; 21504 } 21505 21506 /* Got one. */ 21507 IRE_REFHOLD(ire1); 21508 break; 21509 } 21510 IRB_REFRELE(irb); 21511 21512 if (ire1 != NULL) { 21513 next_mp = copyb(mp); 21514 if ((next_mp == NULL) || 21515 ((mp->b_cont != NULL) && 21516 ((next_mp->b_cont = 21517 dupmsg(mp->b_cont)) == NULL))) { 21518 freemsg(next_mp); 21519 next_mp = NULL; 21520 ire_refrele(ire1); 21521 ire1 = NULL; 21522 } 21523 } 21524 21525 /* Last multiroute ire; don't loop anymore. */ 21526 if (ire1 == NULL) { 21527 multirt_send = B_FALSE; 21528 } 21529 } 21530 21531 /* Update transmit header */ 21532 ll_hdr_len = 0; 21533 LOCK_IRE_FP_MP(ire); 21534 ll_hdr_mp = ire->ire_fp_mp; 21535 if (ll_hdr_mp != NULL) { 21536 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 21537 ll_hdr_len = MBLKL(ll_hdr_mp); 21538 } else { 21539 ll_hdr_mp = ire->ire_dlureq_mp; 21540 } 21541 21542 if (!ll_hdr_mp) { 21543 xmit_mp = mp; 21544 } else if (mp->b_datap->db_ref == 1 && 21545 ll_hdr_len != 0 && 21546 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 21547 /* M_DATA fastpath */ 21548 mp->b_rptr -= ll_hdr_len; 21549 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 21550 ll_hdr_len); 21551 xmit_mp = mp; 21552 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 21553 xmit_mp->b_cont = mp; 21554 /* Get priority marking, if any. */ 21555 if (DB_TYPE(xmit_mp) == M_DATA) 21556 xmit_mp->b_band = mp->b_band; 21557 } else { 21558 /* 21559 * Exit both the replication and 21560 * fragmentation loops. 21561 */ 21562 UNLOCK_IRE_FP_MP(ire); 21563 goto drop_pkt; 21564 } 21565 UNLOCK_IRE_FP_MP(ire); 21566 BUMP_MIB(&ip_mib, ipFragCreates); 21567 putnext(q, xmit_mp); 21568 21569 if (pkt_type != OB_PKT) { 21570 /* 21571 * Update the packet count of trailing 21572 * RTF_MULTIRT ires. 21573 */ 21574 UPDATE_OB_PKT_COUNT(ire); 21575 } 21576 21577 /* All done if we just consumed the hdr_mp. */ 21578 if (mp == hdr_mp) { 21579 last_frag = B_TRUE; 21580 } 21581 21582 if (multirt_send) { 21583 /* 21584 * We are in a multiple send case; look for 21585 * the next ire and re-enter the loop. 21586 */ 21587 ASSERT(ire1); 21588 ASSERT(next_mp); 21589 /* REFRELE the current ire before looping */ 21590 ire_refrele(ire); 21591 ire = ire1; 21592 ire1 = NULL; 21593 q = ire->ire_stq; 21594 mp = next_mp; 21595 next_mp = NULL; 21596 } 21597 } while (multirt_send); 21598 /* 21599 * Restore the original ire; we need it for the 21600 * trailing frags 21601 */ 21602 if (save_ire != NULL) { 21603 ASSERT(ire1 == NULL); 21604 /* REFRELE the last iterated ire */ 21605 ire_refrele(ire); 21606 /* save_ire has been REFHOLDed */ 21607 ire = save_ire; 21608 q = ire->ire_stq; 21609 save_ire = NULL; 21610 } 21611 21612 if (last_frag) { 21613 BUMP_MIB(&ip_mib, ipFragOKs); 21614 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 21615 "ip_wput_frag_end:(%S)", 21616 "consumed hdr_mp"); 21617 21618 if (first_ire != NULL) 21619 ire_refrele(first_ire); 21620 return; 21621 } 21622 /* Otherwise, advance and loop. */ 21623 offset += len; 21624 } 21625 21626 drop_pkt: 21627 /* Clean up following allocation failure. */ 21628 BUMP_MIB(&ip_mib, ipOutDiscards); 21629 freemsg(mp); 21630 if (mp != hdr_mp) 21631 freeb(hdr_mp); 21632 if (mp != mp_orig) 21633 freemsg(mp_orig); 21634 21635 if (save_ire != NULL) 21636 IRE_REFRELE(save_ire); 21637 if (first_ire != NULL) 21638 ire_refrele(first_ire); 21639 21640 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 21641 "ip_wput_frag_end:(%S)", 21642 "end--alloc failure"); 21643 } 21644 21645 /* 21646 * Copy the header plus those options which have the copy bit set 21647 */ 21648 static mblk_t * 21649 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset) 21650 { 21651 mblk_t *mp; 21652 uchar_t *up; 21653 21654 /* 21655 * Quick check if we need to look for options without the copy bit 21656 * set 21657 */ 21658 mp = allocb(ip_wroff_extra + hdr_len, BPRI_HI); 21659 if (!mp) 21660 return (mp); 21661 mp->b_rptr += ip_wroff_extra; 21662 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 21663 bcopy(rptr, mp->b_rptr, hdr_len); 21664 mp->b_wptr += hdr_len + ip_wroff_extra; 21665 return (mp); 21666 } 21667 up = mp->b_rptr; 21668 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 21669 up += IP_SIMPLE_HDR_LENGTH; 21670 rptr += IP_SIMPLE_HDR_LENGTH; 21671 hdr_len -= IP_SIMPLE_HDR_LENGTH; 21672 while (hdr_len > 0) { 21673 uint32_t optval; 21674 uint32_t optlen; 21675 21676 optval = *rptr; 21677 if (optval == IPOPT_EOL) 21678 break; 21679 if (optval == IPOPT_NOP) 21680 optlen = 1; 21681 else 21682 optlen = rptr[1]; 21683 if (optval & IPOPT_COPY) { 21684 bcopy(rptr, up, optlen); 21685 up += optlen; 21686 } 21687 rptr += optlen; 21688 hdr_len -= optlen; 21689 } 21690 /* 21691 * Make sure that we drop an even number of words by filling 21692 * with EOL to the next word boundary. 21693 */ 21694 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 21695 hdr_len & 0x3; hdr_len++) 21696 *up++ = IPOPT_EOL; 21697 mp->b_wptr = up; 21698 /* Update header length */ 21699 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 21700 return (mp); 21701 } 21702 21703 /* 21704 * Delivery to local recipients including fanout to multiple recipients. 21705 * Does not do checksumming of UDP/TCP. 21706 * Note: q should be the read side queue for either the ill or conn. 21707 * Note: rq should be the read side q for the lower (ill) stream. 21708 * We don't send packets to IPPF processing, thus the last argument 21709 * to all the fanout calls are B_FALSE. 21710 */ 21711 void 21712 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 21713 int fanout_flags, zoneid_t zoneid) 21714 { 21715 uint32_t protocol; 21716 mblk_t *first_mp; 21717 boolean_t mctl_present; 21718 int ire_type; 21719 #define rptr ((uchar_t *)ipha) 21720 21721 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 21722 "ip_wput_local_start: q %p", q); 21723 21724 if (ire != NULL) { 21725 ire_type = ire->ire_type; 21726 } else { 21727 /* 21728 * Only ip_multicast_loopback() calls us with a NULL ire. If the 21729 * packet is not multicast, we can't tell the ire type. 21730 */ 21731 ASSERT(CLASSD(ipha->ipha_dst)); 21732 ire_type = IRE_BROADCAST; 21733 } 21734 21735 first_mp = mp; 21736 if (first_mp->b_datap->db_type == M_CTL) { 21737 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 21738 if (!io->ipsec_out_secure) { 21739 /* 21740 * This ipsec_out_t was allocated in ip_wput 21741 * for multicast packets to store the ill_index. 21742 * As this is being delivered locally, we don't 21743 * need this anymore. 21744 */ 21745 mp = first_mp->b_cont; 21746 freeb(first_mp); 21747 first_mp = mp; 21748 mctl_present = B_FALSE; 21749 } else { 21750 mctl_present = B_TRUE; 21751 mp = first_mp->b_cont; 21752 ASSERT(mp != NULL); 21753 ipsec_out_to_in(first_mp); 21754 } 21755 } else { 21756 mctl_present = B_FALSE; 21757 } 21758 21759 loopback_packets++; 21760 21761 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 21762 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 21763 if (!IS_SIMPLE_IPH(ipha)) { 21764 ip_wput_local_options(ipha); 21765 } 21766 21767 protocol = ipha->ipha_protocol; 21768 switch (protocol) { 21769 case IPPROTO_ICMP: { 21770 ire_t *ire_zone; 21771 ilm_t *ilm; 21772 mblk_t *mp1; 21773 zoneid_t last_zoneid; 21774 21775 if (CLASSD(ipha->ipha_dst) && 21776 !(ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) { 21777 ASSERT(ire_type == IRE_BROADCAST); 21778 /* 21779 * In the multicast case, applications may have joined 21780 * the group from different zones, so we need to deliver 21781 * the packet to each of them. Loop through the 21782 * multicast memberships structures (ilm) on the receive 21783 * ill and send a copy of the packet up each matching 21784 * one. However, we don't do this for multicasts sent on 21785 * the loopback interface (PHYI_LOOPBACK flag set) as 21786 * they must stay in the sender's zone. 21787 * 21788 * ilm_add_v6() ensures that ilms in the same zone are 21789 * contiguous in the ill_ilm list. We use this property 21790 * to avoid sending duplicates needed when two 21791 * applications in the same zone join the same group on 21792 * different logical interfaces: we ignore the ilm if 21793 * its zoneid is the same as the last matching one. 21794 * In addition, the sending of the packet for 21795 * ire_zoneid is delayed until all of the other ilms 21796 * have been exhausted. 21797 */ 21798 last_zoneid = -1; 21799 ILM_WALKER_HOLD(ill); 21800 for (ilm = ill->ill_ilm; ilm != NULL; 21801 ilm = ilm->ilm_next) { 21802 if ((ilm->ilm_flags & ILM_DELETED) || 21803 ipha->ipha_dst != ilm->ilm_addr || 21804 ilm->ilm_zoneid == last_zoneid || 21805 ilm->ilm_zoneid == zoneid || 21806 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 21807 continue; 21808 mp1 = ip_copymsg(first_mp); 21809 if (mp1 == NULL) 21810 continue; 21811 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 21812 mctl_present, B_FALSE, ill, 21813 ilm->ilm_zoneid); 21814 last_zoneid = ilm->ilm_zoneid; 21815 } 21816 ILM_WALKER_RELE(ill); 21817 /* 21818 * Loopback case: the sending endpoint has 21819 * IP_MULTICAST_LOOP disabled, therefore we don't 21820 * dispatch the multicast packet to the sending zone. 21821 */ 21822 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 21823 freemsg(first_mp); 21824 return; 21825 } 21826 } else if (ire_type == IRE_BROADCAST) { 21827 /* 21828 * In the broadcast case, there may be many zones 21829 * which need a copy of the packet delivered to them. 21830 * There is one IRE_BROADCAST per broadcast address 21831 * and per zone; we walk those using a helper function. 21832 * In addition, the sending of the packet for zoneid is 21833 * delayed until all of the other ires have been 21834 * processed. 21835 */ 21836 IRB_REFHOLD(ire->ire_bucket); 21837 ire_zone = NULL; 21838 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 21839 ire)) != NULL) { 21840 mp1 = ip_copymsg(first_mp); 21841 if (mp1 == NULL) 21842 continue; 21843 21844 UPDATE_IB_PKT_COUNT(ire_zone); 21845 ire_zone->ire_last_used_time = lbolt; 21846 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 21847 mctl_present, B_FALSE, ill, 21848 ire_zone->ire_zoneid); 21849 } 21850 IRB_REFRELE(ire->ire_bucket); 21851 } 21852 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 21853 0, mctl_present, B_FALSE, ill, zoneid); 21854 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 21855 "ip_wput_local_end: q %p (%S)", 21856 q, "icmp"); 21857 return; 21858 } 21859 case IPPROTO_IGMP: 21860 if (igmp_input(q, mp, ill)) { 21861 /* Bad packet - discarded by igmp_input */ 21862 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 21863 "ip_wput_local_end: q %p (%S)", 21864 q, "igmp_input--bad packet"); 21865 if (mctl_present) 21866 freeb(first_mp); 21867 return; 21868 } 21869 /* 21870 * igmp_input() may have pulled up the message so ipha needs to 21871 * be reinitialized. 21872 */ 21873 ipha = (ipha_t *)mp->b_rptr; 21874 /* deliver to local raw users */ 21875 break; 21876 case IPPROTO_ENCAP: 21877 /* 21878 * This case is covered by either ip_fanout_proto, or by 21879 * the above security processing for self-tunneled packets. 21880 */ 21881 break; 21882 case IPPROTO_UDP: { 21883 uint16_t *up; 21884 uint32_t ports; 21885 21886 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 21887 UDP_PORTS_OFFSET); 21888 /* Force a 'valid' checksum. */ 21889 up[3] = 0; 21890 21891 ports = *(uint32_t *)up; 21892 ip_fanout_udp(q, first_mp, ill, ipha, ports, 21893 (ire_type == IRE_BROADCAST), 21894 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 21895 IP_FF_SEND_SLLA | IP_FF_IP6INFO, mctl_present, B_FALSE, 21896 ill, zoneid); 21897 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 21898 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 21899 return; 21900 } 21901 case IPPROTO_TCP: { 21902 21903 /* 21904 * For TCP, discard broadcast packets. 21905 */ 21906 if ((ushort_t)ire_type == IRE_BROADCAST) { 21907 freemsg(first_mp); 21908 BUMP_MIB(&ip_mib, ipInDiscards); 21909 return; 21910 } 21911 21912 if (mp->b_datap->db_type == M_DATA) { 21913 /* 21914 * M_DATA mblk, so init mblk (chain) for no struio(). 21915 */ 21916 mblk_t *mp1 = mp; 21917 21918 do 21919 mp1->b_datap->db_struioflag = 0; 21920 while ((mp1 = mp1->b_cont) != NULL); 21921 } 21922 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 21923 <= mp->b_wptr); 21924 ip_fanout_tcp(q, first_mp, ill, ipha, 21925 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 21926 IP_FF_SYN_ADDIRE | IP_FF_IP6INFO, 21927 mctl_present, B_FALSE, zoneid); 21928 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 21929 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 21930 return; 21931 } 21932 case IPPROTO_SCTP: 21933 { 21934 uint32_t ports; 21935 21936 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 21937 ip_fanout_sctp(first_mp, ill, ipha, ports, 21938 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 21939 IP_FF_IP6INFO, 21940 mctl_present, B_FALSE, 0, zoneid); 21941 return; 21942 } 21943 21944 default: 21945 break; 21946 } 21947 /* 21948 * Find a client for some other protocol. We give 21949 * copies to multiple clients, if more than one is 21950 * bound. 21951 */ 21952 ip_fanout_proto(q, first_mp, ill, ipha, 21953 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 21954 mctl_present, B_FALSE, ill, zoneid); 21955 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 21956 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 21957 #undef rptr 21958 } 21959 21960 /* 21961 * Update any source route, record route, or timestamp options. 21962 * Check that we are at end of strict source route. 21963 * The options have been sanity checked by ip_wput_options(). 21964 */ 21965 static void 21966 ip_wput_local_options(ipha_t *ipha) 21967 { 21968 ipoptp_t opts; 21969 uchar_t *opt; 21970 uint8_t optval; 21971 uint8_t optlen; 21972 ipaddr_t dst; 21973 uint32_t ts; 21974 ire_t *ire; 21975 timestruc_t now; 21976 21977 ip2dbg(("ip_wput_local_options\n")); 21978 for (optval = ipoptp_first(&opts, ipha); 21979 optval != IPOPT_EOL; 21980 optval = ipoptp_next(&opts)) { 21981 opt = opts.ipoptp_cur; 21982 optlen = opts.ipoptp_len; 21983 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 21984 switch (optval) { 21985 uint32_t off; 21986 case IPOPT_SSRR: 21987 case IPOPT_LSRR: 21988 off = opt[IPOPT_OFFSET]; 21989 off--; 21990 if (optlen < IP_ADDR_LEN || 21991 off > optlen - IP_ADDR_LEN) { 21992 /* End of source route */ 21993 break; 21994 } 21995 /* 21996 * This will only happen if two consecutive entries 21997 * in the source route contains our address or if 21998 * it is a packet with a loose source route which 21999 * reaches us before consuming the whole source route 22000 */ 22001 ip1dbg(("ip_wput_local_options: not end of SR\n")); 22002 if (optval == IPOPT_SSRR) { 22003 return; 22004 } 22005 /* 22006 * Hack: instead of dropping the packet truncate the 22007 * source route to what has been used by filling the 22008 * rest with IPOPT_NOP. 22009 */ 22010 opt[IPOPT_OLEN] = (uint8_t)off; 22011 while (off < optlen) { 22012 opt[off++] = IPOPT_NOP; 22013 } 22014 break; 22015 case IPOPT_RR: 22016 off = opt[IPOPT_OFFSET]; 22017 off--; 22018 if (optlen < IP_ADDR_LEN || 22019 off > optlen - IP_ADDR_LEN) { 22020 /* No more room - ignore */ 22021 ip1dbg(( 22022 "ip_wput_forward_options: end of RR\n")); 22023 break; 22024 } 22025 dst = htonl(INADDR_LOOPBACK); 22026 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 22027 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 22028 break; 22029 case IPOPT_TS: 22030 /* Insert timestamp if there is romm */ 22031 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 22032 case IPOPT_TS_TSONLY: 22033 off = IPOPT_TS_TIMELEN; 22034 break; 22035 case IPOPT_TS_PRESPEC: 22036 case IPOPT_TS_PRESPEC_RFC791: 22037 /* Verify that the address matched */ 22038 off = opt[IPOPT_OFFSET] - 1; 22039 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 22040 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 22041 NULL, ALL_ZONES, MATCH_IRE_TYPE); 22042 if (ire == NULL) { 22043 /* Not for us */ 22044 break; 22045 } 22046 ire_refrele(ire); 22047 /* FALLTHRU */ 22048 case IPOPT_TS_TSANDADDR: 22049 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 22050 break; 22051 default: 22052 /* 22053 * ip_*put_options should have already 22054 * dropped this packet. 22055 */ 22056 cmn_err(CE_PANIC, "ip_wput_local_options: " 22057 "unknown IT - bug in ip_wput_options?\n"); 22058 return; /* Keep "lint" happy */ 22059 } 22060 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 22061 /* Increase overflow counter */ 22062 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 22063 opt[IPOPT_POS_OV_FLG] = (uint8_t) 22064 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 22065 (off << 4); 22066 break; 22067 } 22068 off = opt[IPOPT_OFFSET] - 1; 22069 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 22070 case IPOPT_TS_PRESPEC: 22071 case IPOPT_TS_PRESPEC_RFC791: 22072 case IPOPT_TS_TSANDADDR: 22073 dst = htonl(INADDR_LOOPBACK); 22074 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 22075 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 22076 /* FALLTHRU */ 22077 case IPOPT_TS_TSONLY: 22078 off = opt[IPOPT_OFFSET] - 1; 22079 /* Compute # of milliseconds since midnight */ 22080 gethrestime(&now); 22081 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 22082 now.tv_nsec / (NANOSEC / MILLISEC); 22083 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 22084 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 22085 break; 22086 } 22087 break; 22088 } 22089 } 22090 } 22091 22092 /* 22093 * Send out a multicast packet on interface ipif. 22094 * The sender does not have an conn. 22095 * Caller verifies that this isn't a PHYI_LOOPBACK. 22096 */ 22097 void 22098 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif) 22099 { 22100 ipha_t *ipha; 22101 ire_t *ire; 22102 ipaddr_t dst; 22103 mblk_t *first_mp; 22104 22105 /* igmp_sendpkt always allocates a ipsec_out_t */ 22106 ASSERT(mp->b_datap->db_type == M_CTL); 22107 ASSERT(!ipif->ipif_isv6); 22108 ASSERT(!(ipif->ipif_ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)); 22109 22110 first_mp = mp; 22111 mp = first_mp->b_cont; 22112 ASSERT(mp->b_datap->db_type == M_DATA); 22113 ipha = (ipha_t *)mp->b_rptr; 22114 22115 /* 22116 * Find an IRE which matches the destination and the outgoing 22117 * queue (i.e. the outgoing interface.) 22118 */ 22119 if (ipif->ipif_flags & IPIF_POINTOPOINT) 22120 dst = ipif->ipif_pp_dst_addr; 22121 else 22122 dst = ipha->ipha_dst; 22123 /* 22124 * The source address has already been initialized by the 22125 * caller and hence matching on ILL (MATCH_IRE_ILL) would 22126 * be sufficient rather than MATCH_IRE_IPIF. 22127 * 22128 * This function is used for sending IGMP packets. We need 22129 * to make sure that we send the packet out of the interface 22130 * (ipif->ipif_ill) where we joined the group. This is to 22131 * prevent from switches doing IGMP snooping to send us multicast 22132 * packets for a given group on the interface we have joined. 22133 * If we can't find an ire, igmp_sendpkt has already initialized 22134 * ipsec_out_attach_if so that this will not be load spread in 22135 * ip_newroute_ipif. 22136 */ 22137 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, MATCH_IRE_ILL); 22138 if (!ire) { 22139 /* 22140 * Mark this packet to make it be delivered to 22141 * ip_wput_ire after the new ire has been 22142 * created. 22143 */ 22144 mp->b_prev = NULL; 22145 mp->b_next = NULL; 22146 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC); 22147 return; 22148 } 22149 22150 /* 22151 * Honor the RTF_SETSRC flag; this is the only case 22152 * where we force this addr whatever the current src addr is, 22153 * because this address is set by igmp_sendpkt(), and 22154 * cannot be specified by any user. 22155 */ 22156 if (ire->ire_flags & RTF_SETSRC) { 22157 ipha->ipha_src = ire->ire_src_addr; 22158 } 22159 22160 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE); 22161 } 22162 22163 /* 22164 * NOTE : This function does not ire_refrele the ire argument passed in. 22165 * 22166 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 22167 * failure. The ire_fp_mp can vanish any time in the case of IRE_MIPRTUN 22168 * and IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 22169 * the ire_lock to access the ire_fp_mp in this case. 22170 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 22171 * prepending a fastpath message IPQoS processing must precede it, we also set 22172 * the b_band of the fastpath message to that of the mblk returned by IPQoS 22173 * (IPQoS might have set the b_band for CoS marking). 22174 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 22175 * must follow it so that IPQoS can mark the dl_priority field for CoS 22176 * marking, if needed. 22177 */ 22178 static mblk_t * 22179 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, uint32_t ill_index) 22180 { 22181 uint_t hlen; 22182 ipha_t *ipha; 22183 mblk_t *mp1; 22184 boolean_t qos_done = B_FALSE; 22185 uchar_t *ll_hdr; 22186 22187 #define rptr ((uchar_t *)ipha) 22188 22189 ipha = (ipha_t *)mp->b_rptr; 22190 hlen = 0; 22191 LOCK_IRE_FP_MP(ire); 22192 if ((mp1 = ire->ire_fp_mp) != NULL) { 22193 ASSERT(DB_TYPE(mp1) == M_DATA); 22194 /* Initiate IPPF processing */ 22195 if ((proc != 0) && IPP_ENABLED(proc)) { 22196 UNLOCK_IRE_FP_MP(ire); 22197 ip_process(proc, &mp, ill_index); 22198 if (mp == NULL) 22199 return (NULL); 22200 22201 ipha = (ipha_t *)mp->b_rptr; 22202 LOCK_IRE_FP_MP(ire); 22203 if ((mp1 = ire->ire_fp_mp) == NULL) { 22204 qos_done = B_TRUE; 22205 goto no_fp_mp; 22206 } 22207 ASSERT(DB_TYPE(mp1) == M_DATA); 22208 } 22209 hlen = MBLKL(mp1); 22210 /* 22211 * Check if we have enough room to prepend fastpath 22212 * header 22213 */ 22214 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 22215 ll_hdr = rptr - hlen; 22216 bcopy(mp1->b_rptr, ll_hdr, hlen); 22217 /* XXX ipha is not aligned here */ 22218 ipha = (ipha_t *)(rptr - hlen); 22219 /* 22220 * Set the b_rptr to the start of the link layer 22221 * header 22222 */ 22223 mp->b_rptr = rptr; 22224 mp1 = mp; 22225 } else { 22226 mp1 = copyb(mp1); 22227 if (mp1 == NULL) 22228 goto unlock_err; 22229 mp1->b_band = mp->b_band; 22230 mp1->b_cont = mp; 22231 /* 22232 * XXX disable ICK_VALID and compute checksum 22233 * here; can happen if ire_fp_mp changes and 22234 * it can't be copied now due to insufficient 22235 * space. (unlikely, fp mp can change, but it 22236 * does not increase in length) 22237 */ 22238 } 22239 UNLOCK_IRE_FP_MP(ire); 22240 } else { 22241 no_fp_mp: 22242 mp1 = copyb(ire->ire_dlureq_mp); 22243 if (mp1 == NULL) { 22244 unlock_err: 22245 UNLOCK_IRE_FP_MP(ire); 22246 freemsg(mp); 22247 return (NULL); 22248 } 22249 UNLOCK_IRE_FP_MP(ire); 22250 mp1->b_cont = mp; 22251 if (!qos_done && (proc != 0) && IPP_ENABLED(proc)) { 22252 ip_process(proc, &mp1, ill_index); 22253 if (mp1 == NULL) 22254 return (NULL); 22255 } 22256 } 22257 return (mp1); 22258 #undef rptr 22259 } 22260 22261 /* 22262 * Finish the outbound IPsec processing for an IPv6 packet. This function 22263 * is called from ipsec_out_process() if the IPsec packet was processed 22264 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 22265 * asynchronously. 22266 */ 22267 void 22268 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 22269 ire_t *ire_arg) 22270 { 22271 in6_addr_t *v6dstp; 22272 ire_t *ire; 22273 mblk_t *mp; 22274 uint_t ill_index; 22275 ipsec_out_t *io; 22276 boolean_t attach_if, hwaccel; 22277 uint32_t flags = IP6_NO_IPPOLICY; 22278 int match_flags; 22279 zoneid_t zoneid; 22280 boolean_t ill_need_rele = B_FALSE; 22281 boolean_t ire_need_rele = B_FALSE; 22282 22283 mp = ipsec_mp->b_cont; 22284 io = (ipsec_out_t *)ipsec_mp->b_rptr; 22285 ill_index = io->ipsec_out_ill_index; 22286 if (io->ipsec_out_reachable) { 22287 flags |= IPV6_REACHABILITY_CONFIRMATION; 22288 } 22289 attach_if = io->ipsec_out_attach_if; 22290 hwaccel = io->ipsec_out_accelerated; 22291 zoneid = io->ipsec_out_zoneid; 22292 ASSERT(zoneid != ALL_ZONES); 22293 match_flags = MATCH_IRE_ILL_GROUP; 22294 /* Multicast addresses should have non-zero ill_index. */ 22295 v6dstp = &ip6h->ip6_dst; 22296 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 22297 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 22298 ASSERT(!attach_if || ill_index != 0); 22299 if (ill_index != 0) { 22300 if (ill == NULL) { 22301 ill = ip_grab_attach_ill(NULL, ipsec_mp, ill_index, 22302 B_TRUE); 22303 22304 /* Failure case frees things for us. */ 22305 if (ill == NULL) 22306 return; 22307 22308 ill_need_rele = B_TRUE; 22309 } 22310 /* 22311 * If this packet needs to go out on a particular interface 22312 * honor it. 22313 */ 22314 if (attach_if) { 22315 match_flags = MATCH_IRE_ILL; 22316 22317 /* 22318 * Check if we need an ire that will not be 22319 * looked up by anybody else i.e. HIDDEN. 22320 */ 22321 if (ill_is_probeonly(ill)) { 22322 match_flags |= MATCH_IRE_MARK_HIDDEN; 22323 } 22324 } 22325 } 22326 ASSERT(mp != NULL); 22327 22328 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 22329 boolean_t unspec_src; 22330 ipif_t *ipif; 22331 22332 /* 22333 * Use the ill_index to get the right ill. 22334 */ 22335 unspec_src = io->ipsec_out_unspec_src; 22336 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 22337 if (ipif == NULL) { 22338 if (ill_need_rele) 22339 ill_refrele(ill); 22340 freemsg(ipsec_mp); 22341 return; 22342 } 22343 22344 if (ire_arg != NULL) { 22345 ire = ire_arg; 22346 } else { 22347 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 22348 zoneid, match_flags); 22349 ire_need_rele = B_TRUE; 22350 } 22351 if (ire != NULL) { 22352 ipif_refrele(ipif); 22353 /* 22354 * XXX Do the multicast forwarding now, as the IPSEC 22355 * processing has been done. 22356 */ 22357 goto send; 22358 } 22359 22360 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 22361 mp->b_prev = NULL; 22362 mp->b_next = NULL; 22363 22364 /* 22365 * If the IPsec packet was processed asynchronously, 22366 * drop it now. 22367 */ 22368 if (q == NULL) { 22369 if (ill_need_rele) 22370 ill_refrele(ill); 22371 freemsg(ipsec_mp); 22372 return; 22373 } 22374 22375 ip_newroute_ipif_v6(q, ipsec_mp, ipif, *v6dstp, 22376 unspec_src, zoneid); 22377 ipif_refrele(ipif); 22378 } else { 22379 if (attach_if) { 22380 ipif_t *ipif; 22381 22382 ipif = ipif_get_next_ipif(NULL, ill); 22383 if (ipif == NULL) { 22384 if (ill_need_rele) 22385 ill_refrele(ill); 22386 freemsg(ipsec_mp); 22387 return; 22388 } 22389 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 22390 zoneid, match_flags); 22391 ire_need_rele = B_TRUE; 22392 ipif_refrele(ipif); 22393 } else { 22394 if (ire_arg != NULL) { 22395 ire = ire_arg; 22396 } else { 22397 ire = ire_cache_lookup_v6(v6dstp, zoneid); 22398 ire_need_rele = B_TRUE; 22399 } 22400 } 22401 if (ire != NULL) 22402 goto send; 22403 /* 22404 * ire disappeared underneath. 22405 * 22406 * What we need to do here is the ip_newroute 22407 * logic to get the ire without doing the IPSEC 22408 * processing. Follow the same old path. But this 22409 * time, ip_wput or ire_add_then_send will call us 22410 * directly as all the IPSEC operations are done. 22411 */ 22412 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 22413 mp->b_prev = NULL; 22414 mp->b_next = NULL; 22415 22416 /* 22417 * If the IPsec packet was processed asynchronously, 22418 * drop it now. 22419 */ 22420 if (q == NULL) { 22421 if (ill_need_rele) 22422 ill_refrele(ill); 22423 freemsg(ipsec_mp); 22424 return; 22425 } 22426 22427 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 22428 zoneid); 22429 } 22430 if (ill != NULL && ill_need_rele) 22431 ill_refrele(ill); 22432 return; 22433 send: 22434 if (ill != NULL && ill_need_rele) 22435 ill_refrele(ill); 22436 22437 /* Local delivery */ 22438 if (ire->ire_stq == NULL) { 22439 ASSERT(q != NULL); 22440 ip_wput_local_v6(RD(q), ire->ire_ipif->ipif_ill, ip6h, ipsec_mp, 22441 ire, 0); 22442 if (ire_need_rele) 22443 ire_refrele(ire); 22444 return; 22445 } 22446 /* 22447 * Everything is done. Send it out on the wire. 22448 * We force the insertion of a fragment header using the 22449 * IPH_FRAG_HDR flag in two cases: 22450 * - after reception of an ICMPv6 "packet too big" message 22451 * with a MTU < 1280 (cf. RFC 2460 section 5) 22452 * - for multirouted IPv6 packets, so that the receiver can 22453 * discard duplicates according to their fragment identifier 22454 */ 22455 /* XXX fix flow control problems. */ 22456 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 22457 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 22458 if (hwaccel) { 22459 /* 22460 * hardware acceleration does not handle these 22461 * "slow path" cases. 22462 */ 22463 /* IPsec KSTATS: should bump bean counter here. */ 22464 if (ire_need_rele) 22465 ire_refrele(ire); 22466 freemsg(ipsec_mp); 22467 return; 22468 } 22469 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 22470 (mp->b_cont ? msgdsize(mp) : 22471 mp->b_wptr - (uchar_t *)ip6h)) { 22472 /* IPsec KSTATS: should bump bean counter here. */ 22473 ip0dbg(("Packet length mismatch: %d, %ld\n", 22474 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 22475 msgdsize(mp))); 22476 if (ire_need_rele) 22477 ire_refrele(ire); 22478 freemsg(ipsec_mp); 22479 return; 22480 } 22481 ASSERT(mp->b_prev == NULL); 22482 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 22483 ntohs(ip6h->ip6_plen) + 22484 IPV6_HDR_LEN, ire->ire_max_frag)); 22485 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 22486 ire->ire_max_frag); 22487 } else { 22488 UPDATE_OB_PKT_COUNT(ire); 22489 ire->ire_last_used_time = lbolt; 22490 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 22491 } 22492 if (ire_need_rele) 22493 ire_refrele(ire); 22494 freeb(ipsec_mp); 22495 } 22496 22497 void 22498 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 22499 { 22500 mblk_t *hada_mp; /* attributes M_CTL mblk */ 22501 da_ipsec_t *hada; /* data attributes */ 22502 ill_t *ill = (ill_t *)q->q_ptr; 22503 22504 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 22505 22506 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 22507 /* IPsec KSTATS: Bump lose counter here! */ 22508 freemsg(mp); 22509 return; 22510 } 22511 22512 /* 22513 * It's an IPsec packet that must be 22514 * accelerated by the Provider, and the 22515 * outbound ill is IPsec acceleration capable. 22516 * Prepends the mblk with an IPHADA_M_CTL, and ship it 22517 * to the ill. 22518 * IPsec KSTATS: should bump packet counter here. 22519 */ 22520 22521 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 22522 if (hada_mp == NULL) { 22523 /* IPsec KSTATS: should bump packet counter here. */ 22524 freemsg(mp); 22525 return; 22526 } 22527 22528 hada_mp->b_datap->db_type = M_CTL; 22529 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 22530 hada_mp->b_cont = mp; 22531 22532 hada = (da_ipsec_t *)hada_mp->b_rptr; 22533 bzero(hada, sizeof (da_ipsec_t)); 22534 hada->da_type = IPHADA_M_CTL; 22535 22536 putnext(q, hada_mp); 22537 } 22538 22539 /* 22540 * Finish the outbound IPsec processing. This function is called from 22541 * ipsec_out_process() if the IPsec packet was processed 22542 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 22543 * asynchronously. 22544 */ 22545 void 22546 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 22547 ire_t *ire_arg) 22548 { 22549 uint32_t v_hlen_tos_len; 22550 ipaddr_t dst; 22551 ipif_t *ipif = NULL; 22552 ire_t *ire; 22553 ire_t *ire1 = NULL; 22554 mblk_t *next_mp = NULL; 22555 uint32_t max_frag; 22556 boolean_t multirt_send = B_FALSE; 22557 mblk_t *mp; 22558 mblk_t *mp1; 22559 uint_t ill_index; 22560 ipsec_out_t *io; 22561 boolean_t attach_if; 22562 int match_flags, offset; 22563 irb_t *irb = NULL; 22564 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 22565 zoneid_t zoneid; 22566 uint32_t cksum; 22567 uint16_t *up; 22568 /* Hack until the UDP merge into IP happens. */ 22569 extern boolean_t udp_compute_checksum(void); 22570 #ifdef _BIG_ENDIAN 22571 #define LENGTH (v_hlen_tos_len & 0xFFFF) 22572 #else 22573 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 22574 #endif 22575 22576 mp = ipsec_mp->b_cont; 22577 ASSERT(mp != NULL); 22578 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 22579 dst = ipha->ipha_dst; 22580 22581 io = (ipsec_out_t *)ipsec_mp->b_rptr; 22582 ill_index = io->ipsec_out_ill_index; 22583 attach_if = io->ipsec_out_attach_if; 22584 zoneid = io->ipsec_out_zoneid; 22585 ASSERT(zoneid != ALL_ZONES); 22586 match_flags = MATCH_IRE_ILL_GROUP; 22587 if (ill_index != 0) { 22588 if (ill == NULL) { 22589 ill = ip_grab_attach_ill(NULL, ipsec_mp, 22590 ill_index, B_FALSE); 22591 22592 /* Failure case frees things for us. */ 22593 if (ill == NULL) 22594 return; 22595 22596 ill_need_rele = B_TRUE; 22597 } 22598 /* 22599 * If this packet needs to go out on a particular interface 22600 * honor it. 22601 */ 22602 if (attach_if) { 22603 match_flags = MATCH_IRE_ILL; 22604 22605 /* 22606 * Check if we need an ire that will not be 22607 * looked up by anybody else i.e. HIDDEN. 22608 */ 22609 if (ill_is_probeonly(ill)) { 22610 match_flags |= MATCH_IRE_MARK_HIDDEN; 22611 } 22612 } 22613 } 22614 22615 if (CLASSD(dst)) { 22616 boolean_t conn_dontroute; 22617 /* 22618 * Use the ill_index to get the right ipif. 22619 */ 22620 conn_dontroute = io->ipsec_out_dontroute; 22621 if (ill_index == 0) 22622 ipif = ipif_lookup_group(dst, zoneid); 22623 else 22624 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 22625 if (ipif == NULL) { 22626 ip1dbg(("ip_wput_ipsec_out: No ipif for" 22627 " multicast\n")); 22628 BUMP_MIB(&ip_mib, ipOutNoRoutes); 22629 freemsg(ipsec_mp); 22630 goto done; 22631 } 22632 /* 22633 * ipha_src has already been intialized with the 22634 * value of the ipif in ip_wput. All we need now is 22635 * an ire to send this downstream. 22636 */ 22637 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, match_flags); 22638 if (ire != NULL) { 22639 ill_t *ill1; 22640 /* 22641 * Do the multicast forwarding now, as the IPSEC 22642 * processing has been done. 22643 */ 22644 if (ip_g_mrouter && !conn_dontroute && 22645 (ill1 = ire_to_ill(ire))) { 22646 if (ip_mforward(ill1, ipha, mp)) { 22647 freemsg(ipsec_mp); 22648 ip1dbg(("ip_wput_ipsec_out: mforward " 22649 "failed\n")); 22650 ire_refrele(ire); 22651 goto done; 22652 } 22653 } 22654 goto send; 22655 } 22656 22657 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 22658 mp->b_prev = NULL; 22659 mp->b_next = NULL; 22660 22661 /* 22662 * If the IPsec packet was processed asynchronously, 22663 * drop it now. 22664 */ 22665 if (q == NULL) { 22666 freemsg(ipsec_mp); 22667 goto done; 22668 } 22669 22670 /* 22671 * We may be using a wrong ipif to create the ire. 22672 * But it is okay as the source address is assigned 22673 * for the packet already. Next outbound packet would 22674 * create the IRE with the right IPIF in ip_wput. 22675 * 22676 * Also handle RTF_MULTIRT routes. 22677 */ 22678 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT); 22679 } else { 22680 if (attach_if) { 22681 ire = ire_ctable_lookup(dst, 0, 0, ill->ill_ipif, 22682 zoneid, match_flags); 22683 } else { 22684 if (ire_arg != NULL) { 22685 ire = ire_arg; 22686 ire_need_rele = B_FALSE; 22687 } else { 22688 ire = ire_cache_lookup(dst, zoneid); 22689 } 22690 } 22691 if (ire != NULL) { 22692 goto send; 22693 } 22694 22695 /* 22696 * ire disappeared underneath. 22697 * 22698 * What we need to do here is the ip_newroute 22699 * logic to get the ire without doing the IPSEC 22700 * processing. Follow the same old path. But this 22701 * time, ip_wput or ire_add_then_put will call us 22702 * directly as all the IPSEC operations are done. 22703 */ 22704 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 22705 mp->b_prev = NULL; 22706 mp->b_next = NULL; 22707 22708 /* 22709 * If the IPsec packet was processed asynchronously, 22710 * drop it now. 22711 */ 22712 if (q == NULL) { 22713 freemsg(ipsec_mp); 22714 goto done; 22715 } 22716 22717 /* 22718 * Since we're going through ip_newroute() again, we 22719 * need to make sure we don't: 22720 * 22721 * 1.) Trigger the ASSERT() with the ipha_ident 22722 * overloading. 22723 * 2.) Redo transport-layer checksumming, since we've 22724 * already done all that to get this far. 22725 * 22726 * The easiest way not do either of the above is to set 22727 * the ipha_ident field to IP_HDR_INCLUDED. 22728 */ 22729 ipha->ipha_ident = IP_HDR_INCLUDED; 22730 ip_newroute(q, ipsec_mp, dst, NULL, 22731 (CONN_Q(q) ? Q_TO_CONN(q) : NULL)); 22732 } 22733 goto done; 22734 send: 22735 if (ipha->ipha_protocol == IPPROTO_UDP && udp_compute_checksum()) { 22736 /* 22737 * ESP NAT-Traversal packet. 22738 * 22739 * Just do software checksum for now. 22740 */ 22741 22742 offset = IP_SIMPLE_HDR_LENGTH + UDP_CHECKSUM_OFFSET; 22743 IP_STAT(ip_out_sw_cksum); 22744 #define iphs ((uint16_t *)ipha) 22745 cksum = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 22746 iphs[9] + ntohs(htons(ipha->ipha_length) - 22747 IP_SIMPLE_HDR_LENGTH); 22748 #undef iphs 22749 if ((cksum = IP_CSUM(mp, IP_SIMPLE_HDR_LENGTH, cksum)) == 0) 22750 cksum = 0xFFFF; 22751 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) 22752 if (mp1->b_wptr - mp1->b_rptr >= 22753 offset + sizeof (uint16_t)) { 22754 up = (uint16_t *)(mp1->b_rptr + offset); 22755 *up = cksum; 22756 break; /* out of for loop */ 22757 } else { 22758 offset -= (mp->b_wptr - mp->b_rptr); 22759 } 22760 } /* Otherwise, just keep the all-zero checksum. */ 22761 22762 if (ire->ire_stq == NULL) { 22763 /* 22764 * Loopbacks go through ip_wput_local except for one case. 22765 * We come here if we generate a icmp_frag_needed message 22766 * after IPSEC processing is over. When this function calls 22767 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 22768 * icmp_frag_needed. The message generated comes back here 22769 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 22770 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 22771 * source address as it is usually set in ip_wput_ire. As 22772 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 22773 * and we end up here. We can't enter ip_wput_ire once the 22774 * IPSEC processing is over and hence we need to do it here. 22775 */ 22776 ASSERT(q != NULL); 22777 UPDATE_OB_PKT_COUNT(ire); 22778 ire->ire_last_used_time = lbolt; 22779 if (ipha->ipha_src == 0) 22780 ipha->ipha_src = ire->ire_src_addr; 22781 ip_wput_local(RD(q), ire->ire_ipif->ipif_ill, ipha, ipsec_mp, 22782 ire, 0, zoneid); 22783 if (ire_need_rele) 22784 ire_refrele(ire); 22785 goto done; 22786 } 22787 22788 if (ire->ire_max_frag < (unsigned int)LENGTH) { 22789 /* 22790 * We are through with IPSEC processing. 22791 * Fragment this and send it on the wire. 22792 */ 22793 if (io->ipsec_out_accelerated) { 22794 /* 22795 * The packet has been accelerated but must 22796 * be fragmented. This should not happen 22797 * since AH and ESP must not accelerate 22798 * packets that need fragmentation, however 22799 * the configuration could have changed 22800 * since the AH or ESP processing. 22801 * Drop packet. 22802 * IPsec KSTATS: bump bean counter here. 22803 */ 22804 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 22805 "fragmented accelerated packet!\n")); 22806 freemsg(ipsec_mp); 22807 } else { 22808 ip_wput_ire_fragmentit(ipsec_mp, ire); 22809 } 22810 if (ire_need_rele) 22811 ire_refrele(ire); 22812 goto done; 22813 } 22814 22815 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 22816 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 22817 (void *)ire->ire_ipif, (void *)ipif)); 22818 22819 /* 22820 * Multiroute the secured packet, unless IPsec really 22821 * requires the packet to go out only through a particular 22822 * interface. 22823 */ 22824 if ((ire->ire_flags & RTF_MULTIRT) && !attach_if) { 22825 ire_t *first_ire; 22826 irb = ire->ire_bucket; 22827 ASSERT(irb != NULL); 22828 /* 22829 * This ire has been looked up as the one that 22830 * goes through the given ipif; 22831 * make sure we do not omit any other multiroute ire 22832 * that may be present in the bucket before this one. 22833 */ 22834 IRB_REFHOLD(irb); 22835 for (first_ire = irb->irb_ire; 22836 first_ire != NULL; 22837 first_ire = first_ire->ire_next) { 22838 if ((first_ire->ire_flags & RTF_MULTIRT) && 22839 (first_ire->ire_addr == ire->ire_addr) && 22840 !(first_ire->ire_marks & 22841 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 22842 break; 22843 } 22844 22845 if ((first_ire != NULL) && (first_ire != ire)) { 22846 /* 22847 * Don't change the ire if the packet must 22848 * be fragmented if sent via this new one. 22849 */ 22850 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 22851 IRE_REFHOLD(first_ire); 22852 if (ire_need_rele) 22853 ire_refrele(ire); 22854 else 22855 ire_need_rele = B_TRUE; 22856 ire = first_ire; 22857 } 22858 } 22859 IRB_REFRELE(irb); 22860 22861 multirt_send = B_TRUE; 22862 max_frag = ire->ire_max_frag; 22863 } else { 22864 if ((ire->ire_flags & RTF_MULTIRT) && attach_if) { 22865 ip1dbg(("ip_wput_ipsec_out: ignoring multirouting " 22866 "flag, attach_if %d\n", attach_if)); 22867 } 22868 } 22869 22870 /* 22871 * In most cases, the emission loop below is entered only once. 22872 * Only in the case where the ire holds the RTF_MULTIRT 22873 * flag, we loop to process all RTF_MULTIRT ires in the 22874 * bucket, and send the packet through all crossed 22875 * RTF_MULTIRT routes. 22876 */ 22877 do { 22878 if (multirt_send) { 22879 /* 22880 * ire1 holds here the next ire to process in the 22881 * bucket. If multirouting is expected, 22882 * any non-RTF_MULTIRT ire that has the 22883 * right destination address is ignored. 22884 */ 22885 ASSERT(irb != NULL); 22886 IRB_REFHOLD(irb); 22887 for (ire1 = ire->ire_next; 22888 ire1 != NULL; 22889 ire1 = ire1->ire_next) { 22890 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 22891 continue; 22892 if (ire1->ire_addr != ire->ire_addr) 22893 continue; 22894 if (ire1->ire_marks & 22895 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 22896 continue; 22897 /* No loopback here */ 22898 if (ire1->ire_stq == NULL) 22899 continue; 22900 /* 22901 * Ensure we do not exceed the MTU 22902 * of the next route. 22903 */ 22904 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 22905 ip_multirt_bad_mtu(ire1, max_frag); 22906 continue; 22907 } 22908 22909 IRE_REFHOLD(ire1); 22910 break; 22911 } 22912 IRB_REFRELE(irb); 22913 if (ire1 != NULL) { 22914 /* 22915 * We are in a multiple send case, need to 22916 * make a copy of the packet. 22917 */ 22918 next_mp = copymsg(ipsec_mp); 22919 if (next_mp == NULL) { 22920 ire_refrele(ire1); 22921 ire1 = NULL; 22922 } 22923 } 22924 } 22925 22926 /* Everything is done. Send it out on the wire */ 22927 mp1 = ip_wput_attach_llhdr(mp, ire, 0, 0); 22928 if (mp1 == NULL) { 22929 BUMP_MIB(&ip_mib, ipOutDiscards); 22930 freemsg(ipsec_mp); 22931 if (ire_need_rele) 22932 ire_refrele(ire); 22933 if (ire1 != NULL) { 22934 ire_refrele(ire1); 22935 freemsg(next_mp); 22936 } 22937 goto done; 22938 } 22939 UPDATE_OB_PKT_COUNT(ire); 22940 ire->ire_last_used_time = lbolt; 22941 if (!io->ipsec_out_accelerated) { 22942 putnext(ire->ire_stq, mp1); 22943 } else { 22944 /* 22945 * Safety Pup says: make sure this is going to 22946 * the right interface! 22947 */ 22948 ill_t *ill1 = (ill_t *)ire->ire_stq->q_ptr; 22949 int ifindex = ill1->ill_phyint->phyint_ifindex; 22950 22951 if (ifindex != io->ipsec_out_capab_ill_index) { 22952 /* IPsec kstats: bump lose counter */ 22953 freemsg(mp1); 22954 } else { 22955 ipsec_hw_putnext(ire->ire_stq, mp1); 22956 } 22957 } 22958 22959 freeb(ipsec_mp); 22960 if (ire_need_rele) 22961 ire_refrele(ire); 22962 22963 if (ire1 != NULL) { 22964 ire = ire1; 22965 ire_need_rele = B_TRUE; 22966 ASSERT(next_mp); 22967 ipsec_mp = next_mp; 22968 mp = ipsec_mp->b_cont; 22969 ire1 = NULL; 22970 next_mp = NULL; 22971 io = (ipsec_out_t *)ipsec_mp->b_rptr; 22972 } else { 22973 multirt_send = B_FALSE; 22974 } 22975 } while (multirt_send); 22976 done: 22977 if (ill != NULL && ill_need_rele) 22978 ill_refrele(ill); 22979 if (ipif != NULL) 22980 ipif_refrele(ipif); 22981 } 22982 22983 /* 22984 * Get the ill corresponding to the specified ire, and compare its 22985 * capabilities with the protocol and algorithms specified by the 22986 * the SA obtained from ipsec_out. If they match, annotate the 22987 * ipsec_out structure to indicate that the packet needs acceleration. 22988 * 22989 * 22990 * A packet is eligible for outbound hardware acceleration if the 22991 * following conditions are satisfied: 22992 * 22993 * 1. the packet will not be fragmented 22994 * 2. the provider supports the algorithm 22995 * 3. there is no pending control message being exchanged 22996 * 4. snoop is not attached 22997 * 5. the destination address is not a broadcast or multicast address. 22998 * 22999 * Rationale: 23000 * - Hardware drivers do not support fragmentation with 23001 * the current interface. 23002 * - snoop, multicast, and broadcast may result in exposure of 23003 * a cleartext datagram. 23004 * We check all five of these conditions here. 23005 * 23006 * XXX would like to nuke "ire_t *" parameter here; problem is that 23007 * IRE is only way to figure out if a v4 address is a broadcast and 23008 * thus ineligible for acceleration... 23009 */ 23010 static void 23011 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 23012 { 23013 ipsec_out_t *io; 23014 mblk_t *data_mp; 23015 uint_t plen, overhead; 23016 23017 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 23018 return; 23019 23020 if (ill == NULL) 23021 return; 23022 23023 /* 23024 * Destination address is a broadcast or multicast. Punt. 23025 */ 23026 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 23027 IRE_LOCAL))) 23028 return; 23029 23030 data_mp = ipsec_mp->b_cont; 23031 23032 if (ill->ill_isv6) { 23033 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 23034 23035 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 23036 return; 23037 23038 plen = ip6h->ip6_plen; 23039 } else { 23040 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 23041 23042 if (CLASSD(ipha->ipha_dst)) 23043 return; 23044 23045 plen = ipha->ipha_length; 23046 } 23047 /* 23048 * Is there a pending DLPI control message being exchanged 23049 * between IP/IPsec and the DLS Provider? If there is, it 23050 * could be a SADB update, and the state of the DLS Provider 23051 * SADB might not be in sync with the SADB maintained by 23052 * IPsec. To avoid dropping packets or using the wrong keying 23053 * material, we do not accelerate this packet. 23054 */ 23055 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 23056 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 23057 "ill_dlpi_pending! don't accelerate packet\n")); 23058 return; 23059 } 23060 23061 /* 23062 * Is the Provider in promiscous mode? If it does, we don't 23063 * accelerate the packet since it will bounce back up to the 23064 * listeners in the clear. 23065 */ 23066 if (ill->ill_promisc_on_phys) { 23067 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 23068 "ill in promiscous mode, don't accelerate packet\n")); 23069 return; 23070 } 23071 23072 /* 23073 * Will the packet require fragmentation? 23074 */ 23075 23076 /* 23077 * IPsec ESP note: this is a pessimistic estimate, but the same 23078 * as is used elsewhere. 23079 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 23080 * + 2-byte trailer 23081 */ 23082 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 23083 IPSEC_BASE_ESP_HDR_SIZE(sa); 23084 23085 if ((plen + overhead) > ill->ill_max_mtu) 23086 return; 23087 23088 io = (ipsec_out_t *)ipsec_mp->b_rptr; 23089 23090 /* 23091 * Can the ill accelerate this IPsec protocol and algorithm 23092 * specified by the SA? 23093 */ 23094 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 23095 ill->ill_isv6, sa)) { 23096 return; 23097 } 23098 23099 /* 23100 * Tell AH or ESP that the outbound ill is capable of 23101 * accelerating this packet. 23102 */ 23103 io->ipsec_out_is_capab_ill = B_TRUE; 23104 } 23105 23106 /* 23107 * Select which AH & ESP SA's to use (if any) for the outbound packet. 23108 * 23109 * If this function returns B_TRUE, the requested SA's have been filled 23110 * into the ipsec_out_*_sa pointers. 23111 * 23112 * If the function returns B_FALSE, the packet has been "consumed", most 23113 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 23114 * 23115 * The SA references created by the protocol-specific "select" 23116 * function will be released when the ipsec_mp is freed, thanks to the 23117 * ipsec_out_free destructor -- see spd.c. 23118 */ 23119 static boolean_t 23120 ipsec_out_select_sa(mblk_t *ipsec_mp) 23121 { 23122 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 23123 ipsec_out_t *io; 23124 ipsec_policy_t *pp; 23125 ipsec_action_t *ap; 23126 io = (ipsec_out_t *)ipsec_mp->b_rptr; 23127 ASSERT(io->ipsec_out_type == IPSEC_OUT); 23128 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 23129 23130 if (!io->ipsec_out_secure) { 23131 /* 23132 * We came here by mistake. 23133 * Don't bother with ipsec processing 23134 * We should "discourage" this path in the future. 23135 */ 23136 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 23137 return (B_FALSE); 23138 } 23139 ASSERT(io->ipsec_out_need_policy == B_FALSE); 23140 ASSERT((io->ipsec_out_policy != NULL) || 23141 (io->ipsec_out_act != NULL)); 23142 23143 ASSERT(io->ipsec_out_failed == B_FALSE); 23144 23145 /* 23146 * IPSEC processing has started. 23147 */ 23148 io->ipsec_out_proc_begin = B_TRUE; 23149 ap = io->ipsec_out_act; 23150 if (ap == NULL) { 23151 pp = io->ipsec_out_policy; 23152 ASSERT(pp != NULL); 23153 ap = pp->ipsp_act; 23154 ASSERT(ap != NULL); 23155 } 23156 23157 /* 23158 * We have an action. now, let's select SA's. 23159 * (In the future, we can cache this in the conn_t..) 23160 */ 23161 if (ap->ipa_want_esp) { 23162 if (io->ipsec_out_esp_sa == NULL) { 23163 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 23164 IPPROTO_ESP); 23165 } 23166 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 23167 } 23168 23169 if (ap->ipa_want_ah) { 23170 if (io->ipsec_out_ah_sa == NULL) { 23171 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 23172 IPPROTO_AH); 23173 } 23174 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 23175 /* 23176 * The ESP and AH processing order needs to be preserved 23177 * when both protocols are required (ESP should be applied 23178 * before AH for an outbound packet). Force an ESP ACQUIRE 23179 * when both ESP and AH are required, and an AH ACQUIRE 23180 * is needed. 23181 */ 23182 if (ap->ipa_want_esp && need_ah_acquire) 23183 need_esp_acquire = B_TRUE; 23184 } 23185 23186 /* 23187 * Send an ACQUIRE (extended, regular, or both) if we need one. 23188 * Release SAs that got referenced, but will not be used until we 23189 * acquire _all_ of the SAs we need. 23190 */ 23191 if (need_ah_acquire || need_esp_acquire) { 23192 if (io->ipsec_out_ah_sa != NULL) { 23193 IPSA_REFRELE(io->ipsec_out_ah_sa); 23194 io->ipsec_out_ah_sa = NULL; 23195 } 23196 if (io->ipsec_out_esp_sa != NULL) { 23197 IPSA_REFRELE(io->ipsec_out_esp_sa); 23198 io->ipsec_out_esp_sa = NULL; 23199 } 23200 23201 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 23202 return (B_FALSE); 23203 } 23204 23205 return (B_TRUE); 23206 } 23207 23208 /* 23209 * Process an IPSEC_OUT message and see what you can 23210 * do with it. 23211 * IPQoS Notes: 23212 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 23213 * IPSec. 23214 * XXX would like to nuke ire_t. 23215 * XXX ill_index better be "real" 23216 */ 23217 void 23218 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 23219 { 23220 ipsec_out_t *io; 23221 ipsec_policy_t *pp; 23222 ipsec_action_t *ap; 23223 ipha_t *ipha; 23224 ip6_t *ip6h; 23225 mblk_t *mp; 23226 ill_t *ill; 23227 zoneid_t zoneid; 23228 ipsec_status_t ipsec_rc; 23229 boolean_t ill_need_rele = B_FALSE; 23230 23231 io = (ipsec_out_t *)ipsec_mp->b_rptr; 23232 ASSERT(io->ipsec_out_type == IPSEC_OUT); 23233 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 23234 mp = ipsec_mp->b_cont; 23235 23236 /* 23237 * Initiate IPPF processing. We do it here to account for packets 23238 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 23239 * We can check for ipsec_out_proc_begin even for such packets, as 23240 * they will always be false (asserted below). 23241 */ 23242 if (IPP_ENABLED(IPP_LOCAL_OUT) && !io->ipsec_out_proc_begin) { 23243 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 23244 io->ipsec_out_ill_index : ill_index); 23245 if (mp == NULL) { 23246 ip2dbg(("ipsec_out_process: packet dropped "\ 23247 "during IPPF processing\n")); 23248 freeb(ipsec_mp); 23249 BUMP_MIB(&ip_mib, ipOutDiscards); 23250 return; 23251 } 23252 } 23253 23254 if (!io->ipsec_out_secure) { 23255 /* 23256 * We came here by mistake. 23257 * Don't bother with ipsec processing 23258 * Should "discourage" this path in the future. 23259 */ 23260 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 23261 goto done; 23262 } 23263 ASSERT(io->ipsec_out_need_policy == B_FALSE); 23264 ASSERT((io->ipsec_out_policy != NULL) || 23265 (io->ipsec_out_act != NULL)); 23266 ASSERT(io->ipsec_out_failed == B_FALSE); 23267 23268 if (!ipsec_loaded()) { 23269 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 23270 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 23271 BUMP_MIB(&ip_mib, ipOutDiscards); 23272 } else { 23273 BUMP_MIB(&ip6_mib, ipv6OutDiscards); 23274 } 23275 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 23276 &ipdrops_ip_ipsec_not_loaded, &ip_dropper); 23277 return; 23278 } 23279 23280 /* 23281 * IPSEC processing has started. 23282 */ 23283 io->ipsec_out_proc_begin = B_TRUE; 23284 ap = io->ipsec_out_act; 23285 if (ap == NULL) { 23286 pp = io->ipsec_out_policy; 23287 ASSERT(pp != NULL); 23288 ap = pp->ipsp_act; 23289 ASSERT(ap != NULL); 23290 } 23291 23292 /* 23293 * Save the outbound ill index. When the packet comes back 23294 * from IPsec, we make sure the ill hasn't changed or disappeared 23295 * before sending it the accelerated packet. 23296 */ 23297 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 23298 int ifindex; 23299 ill = ire_to_ill(ire); 23300 ifindex = ill->ill_phyint->phyint_ifindex; 23301 io->ipsec_out_capab_ill_index = ifindex; 23302 } 23303 23304 /* 23305 * The order of processing is first insert a IP header if needed. 23306 * Then insert the ESP header and then the AH header. 23307 */ 23308 if ((io->ipsec_out_se_done == B_FALSE) && 23309 (ap->ipa_want_se)) { 23310 /* 23311 * First get the outer IP header before sending 23312 * it to ESP. 23313 */ 23314 ipha_t *oipha, *iipha; 23315 mblk_t *outer_mp, *inner_mp; 23316 23317 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 23318 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 23319 "ipsec_out_process: " 23320 "Self-Encapsulation failed: Out of memory\n"); 23321 freemsg(ipsec_mp); 23322 BUMP_MIB(&ip_mib, ipOutDiscards); 23323 return; 23324 } 23325 inner_mp = ipsec_mp->b_cont; 23326 ASSERT(inner_mp->b_datap->db_type == M_DATA); 23327 oipha = (ipha_t *)outer_mp->b_rptr; 23328 iipha = (ipha_t *)inner_mp->b_rptr; 23329 *oipha = *iipha; 23330 outer_mp->b_wptr += sizeof (ipha_t); 23331 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 23332 sizeof (ipha_t)); 23333 oipha->ipha_protocol = IPPROTO_ENCAP; 23334 oipha->ipha_version_and_hdr_length = 23335 IP_SIMPLE_HDR_VERSION; 23336 oipha->ipha_hdr_checksum = 0; 23337 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 23338 outer_mp->b_cont = inner_mp; 23339 ipsec_mp->b_cont = outer_mp; 23340 23341 io->ipsec_out_se_done = B_TRUE; 23342 io->ipsec_out_encaps = B_TRUE; 23343 } 23344 23345 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 23346 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 23347 !ipsec_out_select_sa(ipsec_mp)) 23348 return; 23349 23350 /* 23351 * By now, we know what SA's to use. Toss over to ESP & AH 23352 * to do the heavy lifting. 23353 */ 23354 zoneid = io->ipsec_out_zoneid; 23355 ASSERT(zoneid != ALL_ZONES); 23356 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 23357 ASSERT(io->ipsec_out_esp_sa != NULL); 23358 io->ipsec_out_esp_done = B_TRUE; 23359 /* 23360 * Note that since hw accel can only apply one transform, 23361 * not two, we skip hw accel for ESP if we also have AH 23362 * This is an design limitation of the interface 23363 * which should be revisited. 23364 */ 23365 ASSERT(ire != NULL); 23366 if (io->ipsec_out_ah_sa == NULL) { 23367 ill = (ill_t *)ire->ire_stq->q_ptr; 23368 ipsec_out_is_accelerated(ipsec_mp, 23369 io->ipsec_out_esp_sa, ill, ire); 23370 } 23371 23372 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 23373 switch (ipsec_rc) { 23374 case IPSEC_STATUS_SUCCESS: 23375 break; 23376 case IPSEC_STATUS_FAILED: 23377 BUMP_MIB(&ip_mib, ipOutDiscards); 23378 /* FALLTHRU */ 23379 case IPSEC_STATUS_PENDING: 23380 return; 23381 } 23382 } 23383 23384 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 23385 ASSERT(io->ipsec_out_ah_sa != NULL); 23386 io->ipsec_out_ah_done = B_TRUE; 23387 if (ire == NULL) { 23388 int idx = io->ipsec_out_capab_ill_index; 23389 ill = ill_lookup_on_ifindex(idx, B_FALSE, 23390 NULL, NULL, NULL, NULL); 23391 ill_need_rele = B_TRUE; 23392 } else { 23393 ill = (ill_t *)ire->ire_stq->q_ptr; 23394 } 23395 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 23396 ire); 23397 23398 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 23399 switch (ipsec_rc) { 23400 case IPSEC_STATUS_SUCCESS: 23401 break; 23402 case IPSEC_STATUS_FAILED: 23403 BUMP_MIB(&ip_mib, ipOutDiscards); 23404 /* FALLTHRU */ 23405 case IPSEC_STATUS_PENDING: 23406 if (ill != NULL && ill_need_rele) 23407 ill_refrele(ill); 23408 return; 23409 } 23410 } 23411 /* 23412 * We are done with IPSEC processing. Send it over 23413 * the wire. 23414 */ 23415 done: 23416 mp = ipsec_mp->b_cont; 23417 ipha = (ipha_t *)mp->b_rptr; 23418 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 23419 ip_wput_ipsec_out(q, ipsec_mp, ipha, ill, ire); 23420 } else { 23421 ip6h = (ip6_t *)ipha; 23422 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ill, ire); 23423 } 23424 if (ill != NULL && ill_need_rele) 23425 ill_refrele(ill); 23426 } 23427 23428 /* ARGSUSED */ 23429 void 23430 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 23431 { 23432 opt_restart_t *or; 23433 int err; 23434 conn_t *connp; 23435 23436 ASSERT(CONN_Q(q)); 23437 connp = Q_TO_CONN(q); 23438 23439 ASSERT(first_mp->b_datap->db_type == M_CTL); 23440 or = (opt_restart_t *)first_mp->b_rptr; 23441 /* 23442 * We don't need to pass any credentials here since this is just 23443 * a restart. The credentials are passed in when svr4_optcom_req 23444 * is called the first time (from ip_wput_nondata). 23445 */ 23446 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 23447 err = svr4_optcom_req(q, first_mp, NULL, 23448 &ip_opt_obj); 23449 } else { 23450 ASSERT(or->or_type == T_OPTMGMT_REQ); 23451 err = tpi_optcom_req(q, first_mp, NULL, 23452 &ip_opt_obj); 23453 } 23454 if (err != EINPROGRESS) { 23455 /* operation is done */ 23456 CONN_OPER_PENDING_DONE(connp); 23457 } 23458 } 23459 23460 /* 23461 * ioctls that go through a down/up sequence may need to wait for the down 23462 * to complete. This involves waiting for the ire and ipif refcnts to go down 23463 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 23464 */ 23465 /* ARGSUSED */ 23466 void 23467 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 23468 { 23469 struct iocblk *iocp; 23470 mblk_t *mp1; 23471 ipif_t *ipif; 23472 ip_ioctl_cmd_t *ipip; 23473 int err; 23474 sin_t *sin; 23475 struct lifreq *lifr; 23476 struct ifreq *ifr; 23477 23478 iocp = (struct iocblk *)mp->b_rptr; 23479 ASSERT(ipsq != NULL); 23480 /* Existence of mp1 verified in ip_wput_nondata */ 23481 mp1 = mp->b_cont->b_cont; 23482 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 23483 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 23484 ill_t *ill; 23485 /* 23486 * Special case where ipsq_current_ipif may not be set. 23487 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 23488 * ill could also have become part of a ipmp group in the 23489 * process, we are here as were not able to complete the 23490 * operation in ipif_set_values because we could not become 23491 * exclusive on the new ipsq, In such a case ipsq_current_ipif 23492 * will not be set so we need to set it. 23493 */ 23494 ill = (ill_t *)q->q_ptr; 23495 ipsq->ipsq_current_ipif = ill->ill_ipif; 23496 ipsq->ipsq_last_cmd = ipip->ipi_cmd; 23497 } 23498 23499 ipif = ipsq->ipsq_current_ipif; 23500 ASSERT(ipif != NULL); 23501 if (ipip->ipi_cmd_type == IF_CMD) { 23502 /* This a old style SIOC[GS]IF* command */ 23503 ifr = (struct ifreq *)mp1->b_rptr; 23504 sin = (sin_t *)&ifr->ifr_addr; 23505 } else if (ipip->ipi_cmd_type == LIF_CMD) { 23506 /* This a new style SIOC[GS]LIF* command */ 23507 lifr = (struct lifreq *)mp1->b_rptr; 23508 sin = (sin_t *)&lifr->lifr_addr; 23509 } else { 23510 sin = NULL; 23511 } 23512 23513 err = (*ipip->ipi_func_restart)(ipif, sin, q, mp, ipip, 23514 (void *)mp1->b_rptr); 23515 23516 /* SIOCLIFREMOVEIF could have removed the ipif */ 23517 ip_ioctl_finish(q, mp, err, 23518 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 23519 ipip->ipi_cmd == SIOCLIFREMOVEIF ? NULL : ipif, ipsq); 23520 } 23521 23522 /* 23523 * ioctl processing 23524 * 23525 * ioctl processing starts with ip_sioctl_copyin_setup which looks up 23526 * the ioctl command in the ioctl tables and determines the copyin data size 23527 * from the ioctl property ipi_copyin_size, and does an mi_copyin() of that 23528 * size. 23529 * 23530 * ioctl processing then continues when the M_IOCDATA makes its way down. 23531 * Now the ioctl is looked up again in the ioctl table, and its properties are 23532 * extracted. The associated 'conn' is then refheld till the end of the ioctl 23533 * and the general ioctl processing function ip_process_ioctl is called. 23534 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 23535 * so goes thru the serialization primitive ipsq_try_enter. Then the 23536 * appropriate function to handle the ioctl is called based on the entry in 23537 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 23538 * which also refreleases the 'conn' that was refheld at the start of the 23539 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 23540 * ip_extract_lifreq_cmn extracts the interface name from the lifreq/ifreq 23541 * struct and looks up the ipif. ip_extract_tunreq handles the case of tunnel. 23542 * 23543 * Many exclusive ioctls go thru an internal down up sequence as part of 23544 * the operation. For example an attempt to change the IP address of an 23545 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 23546 * does all the cleanup such as deleting all ires that use this address. 23547 * Then we need to wait till all references to the interface go away. 23548 */ 23549 void 23550 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 23551 { 23552 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 23553 ip_ioctl_cmd_t *ipip = (ip_ioctl_cmd_t *)arg; 23554 cmd_info_t ci; 23555 int err; 23556 boolean_t entered_ipsq = B_FALSE; 23557 23558 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 23559 23560 if (ipip == NULL) 23561 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 23562 23563 /* 23564 * SIOCLIFADDIF needs to go thru a special path since the 23565 * ill may not exist yet. This happens in the case of lo0 23566 * which is created using this ioctl. 23567 */ 23568 if (ipip->ipi_cmd == SIOCLIFADDIF) { 23569 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 23570 ip_ioctl_finish(q, mp, err, 23571 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 23572 NULL, NULL); 23573 return; 23574 } 23575 23576 ci.ci_ipif = NULL; 23577 switch (ipip->ipi_cmd_type) { 23578 case IF_CMD: 23579 case LIF_CMD: 23580 /* 23581 * ioctls that pass in a [l]ifreq appear here. 23582 * ip_extract_lifreq_cmn returns a refheld ipif in 23583 * ci.ci_ipif 23584 */ 23585 err = ip_extract_lifreq_cmn(q, mp, ipip->ipi_cmd_type, 23586 ipip->ipi_flags, &ci, ip_process_ioctl); 23587 if (err != 0) { 23588 ip_ioctl_finish(q, mp, err, 23589 ipip->ipi_flags & IPI_GET_CMD ? 23590 COPYOUT : NO_COPYOUT, NULL, NULL); 23591 return; 23592 } 23593 ASSERT(ci.ci_ipif != NULL); 23594 break; 23595 23596 case TUN_CMD: 23597 /* 23598 * SIOC[GS]TUNPARAM appear here. ip_extract_tunreq returns 23599 * a refheld ipif in ci.ci_ipif 23600 */ 23601 err = ip_extract_tunreq(q, mp, &ci.ci_ipif, ip_process_ioctl); 23602 if (err != 0) { 23603 ip_ioctl_finish(q, mp, err, 23604 ipip->ipi_flags & IPI_GET_CMD ? 23605 COPYOUT : NO_COPYOUT, NULL, NULL); 23606 return; 23607 } 23608 ASSERT(ci.ci_ipif != NULL); 23609 break; 23610 23611 case MISC_CMD: 23612 /* 23613 * ioctls that neither pass in [l]ifreq or iftun_req come here 23614 * For eg. SIOCGLIFCONF will appear here. 23615 */ 23616 switch (ipip->ipi_cmd) { 23617 case IF_UNITSEL: 23618 /* ioctl comes down the ill */ 23619 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 23620 ipif_refhold(ci.ci_ipif); 23621 break; 23622 case SIOCGMSFILTER: 23623 case SIOCSMSFILTER: 23624 case SIOCGIPMSFILTER: 23625 case SIOCSIPMSFILTER: 23626 err = ip_extract_msfilter(q, mp, &ci.ci_ipif, 23627 ip_process_ioctl); 23628 if (err != 0) { 23629 ip_ioctl_finish(q, mp, err, 23630 ipip->ipi_flags & IPI_GET_CMD ? 23631 COPYOUT : NO_COPYOUT, NULL, NULL); 23632 return; 23633 } 23634 break; 23635 } 23636 err = 0; 23637 ci.ci_sin = NULL; 23638 ci.ci_sin6 = NULL; 23639 ci.ci_lifr = NULL; 23640 break; 23641 } 23642 23643 /* 23644 * If ipsq is non-null, we are already being called exclusively 23645 */ 23646 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 23647 if (!(ipip->ipi_flags & IPI_WR)) { 23648 /* 23649 * A return value of EINPROGRESS means the ioctl is 23650 * either queued and waiting for some reason or has 23651 * already completed. 23652 */ 23653 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 23654 ci.ci_lifr); 23655 if (ci.ci_ipif != NULL) 23656 ipif_refrele(ci.ci_ipif); 23657 ip_ioctl_finish(q, mp, err, 23658 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 23659 NULL, NULL); 23660 return; 23661 } 23662 23663 ASSERT(ci.ci_ipif != NULL); 23664 23665 if (ipsq == NULL) { 23666 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, 23667 ip_process_ioctl, NEW_OP, B_TRUE); 23668 entered_ipsq = B_TRUE; 23669 } 23670 /* 23671 * Release the ipif so that ipif_down and friends that wait for 23672 * references to go away are not misled about the current ipif_refcnt 23673 * values. We are writer so we can access the ipif even after releasing 23674 * the ipif. 23675 */ 23676 ipif_refrele(ci.ci_ipif); 23677 if (ipsq == NULL) 23678 return; 23679 23680 mutex_enter(&ipsq->ipsq_lock); 23681 ASSERT(ipsq->ipsq_current_ipif == NULL); 23682 ipsq->ipsq_current_ipif = ci.ci_ipif; 23683 ipsq->ipsq_last_cmd = ipip->ipi_cmd; 23684 mutex_exit(&ipsq->ipsq_lock); 23685 mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock); 23686 /* 23687 * For most set ioctls that come here, this serves as a single point 23688 * where we set the IPIF_CHANGING flag. This ensures that there won't 23689 * be any new references to the ipif. This helps functions that go 23690 * through this path and end up trying to wait for the refcnts 23691 * associated with the ipif to go down to zero. Some exceptions are 23692 * Failover, Failback, and Groupname commands that operate on more than 23693 * just the ci.ci_ipif. These commands internally determine the 23694 * set of ipif's they operate on and set and clear the IPIF_CHANGING 23695 * flags on that set. Another exception is the Removeif command that 23696 * sets the IPIF_CONDEMNED flag internally after identifying the right 23697 * ipif to operate on. 23698 */ 23699 if (ipip->ipi_cmd != SIOCLIFREMOVEIF && 23700 ipip->ipi_cmd != SIOCLIFFAILOVER && 23701 ipip->ipi_cmd != SIOCLIFFAILBACK && 23702 ipip->ipi_cmd != SIOCSLIFGROUPNAME) 23703 (ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING; 23704 mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock); 23705 23706 /* 23707 * A return value of EINPROGRESS means the ioctl is 23708 * either queued and waiting for some reason or has 23709 * already completed. 23710 */ 23711 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 23712 ci.ci_lifr); 23713 23714 /* SIOCLIFREMOVEIF could have removed the ipif */ 23715 ip_ioctl_finish(q, mp, err, 23716 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 23717 ipip->ipi_cmd == SIOCLIFREMOVEIF ? NULL : ci.ci_ipif, ipsq); 23718 23719 if (entered_ipsq) 23720 ipsq_exit(ipsq, B_TRUE, B_TRUE); 23721 } 23722 23723 /* 23724 * Complete the ioctl. Typically ioctls use the mi package and need to 23725 * do mi_copyout/mi_copy_done. 23726 */ 23727 void 23728 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, 23729 ipif_t *ipif, ipsq_t *ipsq) 23730 { 23731 conn_t *connp = NULL; 23732 23733 if (err == EINPROGRESS) 23734 return; 23735 23736 if (CONN_Q(q)) { 23737 connp = Q_TO_CONN(q); 23738 ASSERT(connp->conn_ref >= 2); 23739 } 23740 23741 switch (mode) { 23742 case COPYOUT: 23743 if (err == 0) 23744 mi_copyout(q, mp); 23745 else 23746 mi_copy_done(q, mp, err); 23747 break; 23748 23749 case NO_COPYOUT: 23750 mi_copy_done(q, mp, err); 23751 break; 23752 23753 default: 23754 /* An ioctl aborted through a conn close would take this path */ 23755 break; 23756 } 23757 23758 /* 23759 * The refhold placed at the start of the ioctl is released here. 23760 */ 23761 if (connp != NULL) 23762 CONN_OPER_PENDING_DONE(connp); 23763 23764 /* 23765 * If the ioctl were an exclusive ioctl it would have set 23766 * IPIF_CHANGING at the start of the ioctl which is undone here. 23767 */ 23768 if (ipif != NULL) { 23769 mutex_enter(&(ipif)->ipif_ill->ill_lock); 23770 ipif->ipif_state_flags &= ~IPIF_CHANGING; 23771 mutex_exit(&(ipif)->ipif_ill->ill_lock); 23772 } 23773 23774 /* 23775 * Clear the current ipif in the ipsq at the completion of the ioctl. 23776 * Note that a non-null ipsq_current_ipif prevents new ioctls from 23777 * entering the ipsq 23778 */ 23779 if (ipsq != NULL) { 23780 mutex_enter(&ipsq->ipsq_lock); 23781 ipsq->ipsq_current_ipif = NULL; 23782 mutex_exit(&ipsq->ipsq_lock); 23783 } 23784 } 23785 23786 /* 23787 * This is called from ip_wput_nondata to resume a deferred TCP bind. 23788 */ 23789 /* ARGSUSED */ 23790 void 23791 ip_resume_tcp_bind(void *arg, mblk_t *mp, void *arg2) 23792 { 23793 conn_t *connp = (conn_t *)arg; 23794 tcp_t *tcp; 23795 23796 ASSERT(connp != NULL && connp->conn_tcp != NULL); 23797 tcp = connp->conn_tcp; 23798 23799 if (connp->conn_tcp->tcp_state == TCPS_CLOSED) 23800 freemsg(mp); 23801 else 23802 tcp_rput_other(tcp, mp); 23803 CONN_OPER_PENDING_DONE(connp); 23804 23805 } 23806 23807 /* Called from ip_wput for all non data messages */ 23808 /* ARGSUSED */ 23809 void 23810 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 23811 { 23812 mblk_t *mp1; 23813 ire_t *ire; 23814 ill_t *ill; 23815 struct iocblk *iocp; 23816 ip_ioctl_cmd_t *ipip; 23817 cred_t *cr; 23818 conn_t *connp = NULL; 23819 int cmd, err; 23820 23821 if (CONN_Q(q)) 23822 connp = Q_TO_CONN(q); 23823 23824 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(q)); 23825 23826 /* Check if it is a queue to /dev/sctp. */ 23827 if (connp != NULL && connp->conn_ulp == IPPROTO_SCTP && 23828 connp->conn_rq == NULL) { 23829 sctp_wput(q, mp); 23830 return; 23831 } 23832 23833 switch (DB_TYPE(mp)) { 23834 case M_IOCTL: 23835 /* 23836 * IOCTL processing begins in ip_sioctl_copyin_setup which 23837 * will arrange to copy in associated control structures. 23838 */ 23839 ip_sioctl_copyin_setup(q, mp); 23840 return; 23841 case M_IOCDATA: 23842 /* 23843 * Ensure that this is associated with one of our trans- 23844 * parent ioctls. If it's not ours, discard it if we're 23845 * running as a driver, or pass it on if we're a module. 23846 */ 23847 iocp = (struct iocblk *)mp->b_rptr; 23848 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 23849 if (ipip == NULL) { 23850 if (q->q_next == NULL) { 23851 goto nak; 23852 } else { 23853 putnext(q, mp); 23854 } 23855 return; 23856 } else if ((q->q_next != NULL) && 23857 !(ipip->ipi_flags & IPI_MODOK)) { 23858 /* 23859 * the ioctl is one we recognise, but is not 23860 * consumed by IP as a module, pass M_IOCDATA 23861 * for processing downstream, but only for 23862 * common Streams ioctls. 23863 */ 23864 if (ipip->ipi_flags & IPI_PASS_DOWN) { 23865 putnext(q, mp); 23866 return; 23867 } else { 23868 goto nak; 23869 } 23870 } 23871 23872 /* IOCTL continuation following copyin or copyout. */ 23873 if (mi_copy_state(q, mp, NULL) == -1) { 23874 /* 23875 * The copy operation failed. mi_copy_state already 23876 * cleaned up, so we're out of here. 23877 */ 23878 return; 23879 } 23880 /* 23881 * If we just completed a copy in, we become writer and 23882 * continue processing in ip_sioctl_copyin_done. If it 23883 * was a copy out, we call mi_copyout again. If there is 23884 * nothing more to copy out, it will complete the IOCTL. 23885 */ 23886 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 23887 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 23888 mi_copy_done(q, mp, EPROTO); 23889 return; 23890 } 23891 /* 23892 * Check for cases that need more copying. A return 23893 * value of 0 means a second copyin has been started, 23894 * so we return; a return value of 1 means no more 23895 * copying is needed, so we continue. 23896 */ 23897 cmd = iocp->ioc_cmd; 23898 if ((cmd == SIOCGMSFILTER || cmd == SIOCSMSFILTER || 23899 cmd == SIOCGIPMSFILTER || cmd == SIOCSIPMSFILTER) && 23900 MI_COPY_COUNT(mp) == 1) { 23901 if (ip_copyin_msfilter(q, mp) == 0) 23902 return; 23903 } 23904 /* 23905 * Refhold the conn, till the ioctl completes. This is 23906 * needed in case the ioctl ends up in the pending mp 23907 * list. Every mp in the ill_pending_mp list and 23908 * the ipsq_pending_mp must have a refhold on the conn 23909 * to resume processing. The refhold is released when 23910 * the ioctl completes. (normally or abnormally) 23911 * In all cases ip_ioctl_finish is called to finish 23912 * the ioctl. 23913 */ 23914 if (connp != NULL) { 23915 /* This is not a reentry */ 23916 ASSERT(ipsq == NULL); 23917 CONN_INC_REF(connp); 23918 } else { 23919 if (!(ipip->ipi_flags & IPI_MODOK)) { 23920 mi_copy_done(q, mp, EINVAL); 23921 return; 23922 } 23923 } 23924 23925 ip_process_ioctl(ipsq, q, mp, ipip); 23926 23927 } else { 23928 mi_copyout(q, mp); 23929 } 23930 return; 23931 nak: 23932 iocp->ioc_error = EINVAL; 23933 mp->b_datap->db_type = M_IOCNAK; 23934 iocp->ioc_count = 0; 23935 qreply(q, mp); 23936 return; 23937 23938 case M_IOCNAK: 23939 /* 23940 * The only way we could get here is if a resolver didn't like 23941 * an IOCTL we sent it. This shouldn't happen. 23942 */ 23943 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 23944 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 23945 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 23946 freemsg(mp); 23947 return; 23948 case M_IOCACK: 23949 /* Finish socket ioctls passed through to ARP. */ 23950 ip_sioctl_iocack(q, mp); 23951 return; 23952 case M_FLUSH: 23953 if (*mp->b_rptr & FLUSHW) 23954 flushq(q, FLUSHALL); 23955 if (q->q_next) { 23956 /* 23957 * M_FLUSH is sent up to IP by some drivers during 23958 * unbind. ip_rput has already replied to it. We are 23959 * here for the M_FLUSH that we originated in IP 23960 * before sending the unbind request to the driver. 23961 * Just free it as we don't queue packets in IP 23962 * on the write side of the device instance. 23963 */ 23964 freemsg(mp); 23965 return; 23966 } 23967 if (*mp->b_rptr & FLUSHR) { 23968 *mp->b_rptr &= ~FLUSHW; 23969 qreply(q, mp); 23970 return; 23971 } 23972 freemsg(mp); 23973 return; 23974 case IRE_DB_REQ_TYPE: 23975 /* An Upper Level Protocol wants a copy of an IRE. */ 23976 ip_ire_req(q, mp); 23977 return; 23978 case M_CTL: 23979 /* M_CTL messages are used by ARP to tell us things. */ 23980 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 23981 break; 23982 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 23983 case AR_ENTRY_SQUERY: 23984 ip_wput_ctl(q, mp); 23985 return; 23986 case AR_CLIENT_NOTIFY: 23987 ip_arp_news(q, mp); 23988 return; 23989 case AR_DLPIOP_DONE: 23990 ASSERT(q->q_next != NULL); 23991 ill = (ill_t *)q->q_ptr; 23992 /* qwriter_ip releases the refhold */ 23993 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 23994 ill_refhold(ill); 23995 (void) qwriter_ip(NULL, ill, q, mp, ip_arp_done, 23996 CUR_OP, B_FALSE); 23997 return; 23998 case AR_ARP_CLOSING: 23999 /* 24000 * ARP (above us) is closing. If no ARP bringup is 24001 * currently pending, ack the message so that ARP 24002 * can complete its close. Also mark ill_arp_closing 24003 * so that new ARP bringups will fail. If any 24004 * ARP bringup is currently in progress, we will 24005 * ack this when the current ARP bringup completes. 24006 */ 24007 ASSERT(q->q_next != NULL); 24008 ill = (ill_t *)q->q_ptr; 24009 mutex_enter(&ill->ill_lock); 24010 ill->ill_arp_closing = 1; 24011 if (!ill->ill_arp_bringup_pending) { 24012 mutex_exit(&ill->ill_lock); 24013 qreply(q, mp); 24014 } else { 24015 mutex_exit(&ill->ill_lock); 24016 freemsg(mp); 24017 } 24018 return; 24019 default: 24020 break; 24021 } 24022 break; 24023 case M_PROTO: 24024 case M_PCPROTO: 24025 /* 24026 * The only PROTO messages we expect are ULP binds and 24027 * copies of option negotiation acknowledgements. 24028 */ 24029 switch (((union T_primitives *)mp->b_rptr)->type) { 24030 case O_T_BIND_REQ: 24031 case T_BIND_REQ: { 24032 /* Request can get queued in bind */ 24033 ASSERT(connp != NULL); 24034 /* Don't increment refcnt if this is a re-entry */ 24035 if (ipsq == NULL) 24036 CONN_INC_REF(connp); 24037 mp = connp->conn_af_isv6 ? 24038 ip_bind_v6(q, mp, connp, NULL) : 24039 ip_bind_v4(q, mp, connp); 24040 if (mp != NULL) { 24041 tcp_t *tcp; 24042 24043 tcp = connp->conn_tcp; 24044 if (tcp != NULL) { 24045 if (ipsq == NULL) { 24046 tcp_rput_other(tcp, mp); 24047 } else { 24048 CONN_INC_REF(connp); 24049 squeue_fill(connp->conn_sqp, mp, 24050 ip_resume_tcp_bind, 24051 connp, SQTAG_TCP_RPUTOTHER); 24052 return; 24053 } 24054 } else { 24055 qreply(q, mp); 24056 } 24057 CONN_OPER_PENDING_DONE(connp); 24058 } 24059 return; 24060 } 24061 case T_SVR4_OPTMGMT_REQ: 24062 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 24063 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 24064 24065 ASSERT(connp != NULL); 24066 if (!snmpcom_req(q, mp, ip_snmp_set, 24067 ip_snmp_get, cr)) { 24068 /* 24069 * Call svr4_optcom_req so that it can 24070 * generate the ack. We don't come here 24071 * if this operation is being restarted. 24072 * ip_restart_optmgmt will drop the conn ref. 24073 * In the case of ipsec option after the ipsec 24074 * load is complete conn_restart_ipsec_waiter 24075 * drops the conn ref. 24076 */ 24077 ASSERT(ipsq == NULL); 24078 CONN_INC_REF(connp); 24079 if (ip_check_for_ipsec_opt(q, mp)) 24080 return; 24081 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj); 24082 if (err != EINPROGRESS) { 24083 /* Operation is done */ 24084 CONN_OPER_PENDING_DONE(connp); 24085 } 24086 } 24087 return; 24088 case T_OPTMGMT_REQ: 24089 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 24090 /* 24091 * Note: No snmpcom_req support through new 24092 * T_OPTMGMT_REQ. 24093 * Call tpi_optcom_req so that it can 24094 * generate the ack. 24095 */ 24096 ASSERT(connp != NULL); 24097 ASSERT(ipsq == NULL); 24098 /* 24099 * We don't come here for restart. ip_restart_optmgmt 24100 * will drop the conn ref. In the case of ipsec option 24101 * after the ipsec load is complete 24102 * conn_restart_ipsec_waiter drops the conn ref. 24103 */ 24104 CONN_INC_REF(connp); 24105 if (ip_check_for_ipsec_opt(q, mp)) 24106 return; 24107 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj); 24108 if (err != EINPROGRESS) { 24109 /* Operation is done */ 24110 CONN_OPER_PENDING_DONE(connp); 24111 } 24112 return; 24113 case T_UNBIND_REQ: 24114 ip_unbind(q, mp); 24115 return; 24116 default: 24117 /* 24118 * Have to drop any DLPI messages coming down from 24119 * arp (such as an info_req which would cause ip 24120 * to receive an extra info_ack if it was passed 24121 * through. 24122 */ 24123 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 24124 (int)*(uint_t *)mp->b_rptr)); 24125 freemsg(mp); 24126 return; 24127 } 24128 /* NOTREACHED */ 24129 case IRE_DB_TYPE: { 24130 nce_t *nce; 24131 ill_t *ill; 24132 in6_addr_t gw_addr_v6; 24133 24134 24135 /* 24136 * This is a response back from a resolver. It 24137 * consists of a message chain containing: 24138 * IRE_MBLK-->LL_HDR_MBLK->pkt 24139 * The IRE_MBLK is the one we allocated in ip_newroute. 24140 * The LL_HDR_MBLK is the DLPI header to use to get 24141 * the attached packet, and subsequent ones for the 24142 * same destination, transmitted. 24143 */ 24144 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 24145 break; 24146 /* 24147 * First, check to make sure the resolution succeeded. 24148 * If it failed, the second mblk will be empty. 24149 * If it is, free the chain, dropping the packet. 24150 * (We must ire_delete the ire; that frees the ire mblk) 24151 * We're doing this now to support PVCs for ATM; it's 24152 * a partial xresolv implementation. When we fully implement 24153 * xresolv interfaces, instead of freeing everything here 24154 * we'll initiate neighbor discovery. 24155 * 24156 * For v4 (ARP and other external resolvers) the resolver 24157 * frees the message, so no check is needed. This check 24158 * is required, though, for a full xresolve implementation. 24159 * Including this code here now both shows how external 24160 * resolvers can NACK a resolution request using an 24161 * existing design that has no specific provisions for NACKs, 24162 * and also takes into account that the current non-ARP 24163 * external resolver has been coded to use this method of 24164 * NACKing for all IPv6 (xresolv) cases, 24165 * whether our xresolv implementation is complete or not. 24166 * 24167 */ 24168 ire = (ire_t *)mp->b_rptr; 24169 ill = ire_to_ill(ire); 24170 mp1 = mp->b_cont; /* dl_unitdata_req */ 24171 if (mp1->b_rptr == mp1->b_wptr) { 24172 if (ire->ire_ipversion == IPV6_VERSION) { 24173 /* 24174 * XRESOLV interface. 24175 */ 24176 ASSERT(ill->ill_flags & ILLF_XRESOLV); 24177 mutex_enter(&ire->ire_lock); 24178 gw_addr_v6 = ire->ire_gateway_addr_v6; 24179 mutex_exit(&ire->ire_lock); 24180 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 24181 nce = ndp_lookup(ill, 24182 &ire->ire_addr_v6, B_FALSE); 24183 } else { 24184 nce = ndp_lookup(ill, &gw_addr_v6, 24185 B_FALSE); 24186 } 24187 if (nce != NULL) { 24188 nce_resolv_failed(nce); 24189 ndp_delete(nce); 24190 NCE_REFRELE(nce); 24191 } 24192 } 24193 mp->b_cont = NULL; 24194 freemsg(mp1); /* frees the pkt as well */ 24195 ire_delete((ire_t *)mp->b_rptr); 24196 return; 24197 } 24198 /* 24199 * Split them into IRE_MBLK and pkt and feed it into 24200 * ire_add_then_send. Then in ire_add_then_send 24201 * the IRE will be added, and then the packet will be 24202 * run back through ip_wput. This time it will make 24203 * it to the wire. 24204 */ 24205 mp->b_cont = NULL; 24206 mp = mp1->b_cont; /* now, mp points to pkt */ 24207 mp1->b_cont = NULL; 24208 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 24209 if (ire->ire_ipversion == IPV6_VERSION) { 24210 /* 24211 * XRESOLV interface. Find the nce and put a copy 24212 * of the dl_unitdata_req in nce_res_mp 24213 */ 24214 ASSERT(ill->ill_flags & ILLF_XRESOLV); 24215 mutex_enter(&ire->ire_lock); 24216 gw_addr_v6 = ire->ire_gateway_addr_v6; 24217 mutex_exit(&ire->ire_lock); 24218 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 24219 nce = ndp_lookup(ill, &ire->ire_addr_v6, 24220 B_FALSE); 24221 } else { 24222 nce = ndp_lookup(ill, &gw_addr_v6, B_FALSE); 24223 } 24224 if (nce != NULL) { 24225 /* 24226 * We have to protect nce_res_mp here 24227 * from being accessed by other threads 24228 * while we change the mblk pointer. 24229 * Other functions will also lock the nce when 24230 * accessing nce_res_mp. 24231 * 24232 * The reason we change the mblk pointer 24233 * here rather than copying the resolved address 24234 * into the template is that, unlike with 24235 * ethernet, we have no guarantee that the 24236 * resolved address length will be 24237 * smaller than or equal to the lla length 24238 * with which the template was allocated, 24239 * (for ethernet, they're equal) 24240 * so we have to use the actual resolved 24241 * address mblk - which holds the real 24242 * dl_unitdata_req with the resolved address. 24243 * 24244 * Doing this is the same behavior as was 24245 * previously used in the v4 ARP case. 24246 */ 24247 mutex_enter(&nce->nce_lock); 24248 if (nce->nce_res_mp != NULL) 24249 freemsg(nce->nce_res_mp); 24250 nce->nce_res_mp = mp1; 24251 mutex_exit(&nce->nce_lock); 24252 /* 24253 * We do a fastpath probe here because 24254 * we have resolved the address without 24255 * using Neighbor Discovery. 24256 * In the non-XRESOLV v6 case, the fastpath 24257 * probe is done right after neighbor 24258 * discovery completes. 24259 */ 24260 if (nce->nce_res_mp != NULL) { 24261 int res; 24262 nce_fastpath_list_add(nce); 24263 res = ill_fastpath_probe(ill, 24264 nce->nce_res_mp); 24265 if (res != 0 && res != EAGAIN) 24266 nce_fastpath_list_delete(nce); 24267 } 24268 24269 ire_add_then_send(q, ire, mp); 24270 /* 24271 * Now we have to clean out any packets 24272 * that may have been queued on the nce 24273 * while it was waiting for address resolution 24274 * to complete. 24275 */ 24276 mutex_enter(&nce->nce_lock); 24277 mp1 = nce->nce_qd_mp; 24278 nce->nce_qd_mp = NULL; 24279 mutex_exit(&nce->nce_lock); 24280 while (mp1 != NULL) { 24281 mblk_t *nxt_mp; 24282 queue_t *fwdq = NULL; 24283 ill_t *inbound_ill; 24284 uint_t ifindex; 24285 24286 nxt_mp = mp1->b_next; 24287 mp1->b_next = NULL; 24288 /* 24289 * Retrieve ifindex stored in 24290 * ip_rput_data_v6() 24291 */ 24292 ifindex = 24293 (uint_t)(uintptr_t)mp1->b_prev; 24294 inbound_ill = 24295 ill_lookup_on_ifindex(ifindex, 24296 B_TRUE, NULL, NULL, NULL, 24297 NULL); 24298 mp1->b_prev = NULL; 24299 if (inbound_ill != NULL) 24300 fwdq = inbound_ill->ill_rq; 24301 24302 if (fwdq != NULL) { 24303 put(fwdq, mp1); 24304 ill_refrele(inbound_ill); 24305 } else 24306 put(WR(ill->ill_rq), mp1); 24307 mp1 = nxt_mp; 24308 } 24309 NCE_REFRELE(nce); 24310 } else { /* nce is NULL; clean up */ 24311 ire_delete(ire); 24312 freemsg(mp); 24313 freemsg(mp1); 24314 return; 24315 } 24316 } else { 24317 ire->ire_dlureq_mp = mp1; 24318 ire_add_then_send(q, ire, mp); 24319 } 24320 return; /* All is well, the packet has been sent. */ 24321 } 24322 default: 24323 break; 24324 } 24325 if (q->q_next) { 24326 putnext(q, mp); 24327 } else 24328 freemsg(mp); 24329 } 24330 24331 /* 24332 * Process IP options in an outbound packet. Modify the destination if there 24333 * is a source route option. 24334 * Returns non-zero if something fails in which case an ICMP error has been 24335 * sent and mp freed. 24336 */ 24337 static int 24338 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 24339 boolean_t mctl_present, zoneid_t zoneid) 24340 { 24341 ipoptp_t opts; 24342 uchar_t *opt; 24343 uint8_t optval; 24344 uint8_t optlen; 24345 ipaddr_t dst; 24346 intptr_t code = 0; 24347 mblk_t *mp; 24348 ire_t *ire = NULL; 24349 24350 ip2dbg(("ip_wput_options\n")); 24351 mp = ipsec_mp; 24352 if (mctl_present) { 24353 mp = ipsec_mp->b_cont; 24354 } 24355 24356 dst = ipha->ipha_dst; 24357 for (optval = ipoptp_first(&opts, ipha); 24358 optval != IPOPT_EOL; 24359 optval = ipoptp_next(&opts)) { 24360 opt = opts.ipoptp_cur; 24361 optlen = opts.ipoptp_len; 24362 ip2dbg(("ip_wput_options: opt %d, len %d\n", 24363 optval, optlen)); 24364 switch (optval) { 24365 uint32_t off; 24366 case IPOPT_SSRR: 24367 case IPOPT_LSRR: 24368 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 24369 ip1dbg(( 24370 "ip_wput_options: bad option offset\n")); 24371 code = (char *)&opt[IPOPT_OLEN] - 24372 (char *)ipha; 24373 goto param_prob; 24374 } 24375 off = opt[IPOPT_OFFSET]; 24376 ip1dbg(("ip_wput_options: next hop 0x%x\n", 24377 ntohl(dst))); 24378 /* 24379 * For strict: verify that dst is directly 24380 * reachable. 24381 */ 24382 if (optval == IPOPT_SSRR) { 24383 ire = ire_ftable_lookup(dst, 0, 0, 24384 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 24385 MATCH_IRE_TYPE); 24386 if (ire == NULL) { 24387 ip1dbg(("ip_wput_options: SSRR not" 24388 " directly reachable: 0x%x\n", 24389 ntohl(dst))); 24390 goto bad_src_route; 24391 } 24392 ire_refrele(ire); 24393 } 24394 break; 24395 case IPOPT_RR: 24396 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 24397 ip1dbg(( 24398 "ip_wput_options: bad option offset\n")); 24399 code = (char *)&opt[IPOPT_OLEN] - 24400 (char *)ipha; 24401 goto param_prob; 24402 } 24403 break; 24404 case IPOPT_TS: 24405 /* 24406 * Verify that length >=5 and that there is either 24407 * room for another timestamp or that the overflow 24408 * counter is not maxed out. 24409 */ 24410 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 24411 if (optlen < IPOPT_MINLEN_IT) { 24412 goto param_prob; 24413 } 24414 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 24415 ip1dbg(( 24416 "ip_wput_options: bad option offset\n")); 24417 code = (char *)&opt[IPOPT_OFFSET] - 24418 (char *)ipha; 24419 goto param_prob; 24420 } 24421 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 24422 case IPOPT_TS_TSONLY: 24423 off = IPOPT_TS_TIMELEN; 24424 break; 24425 case IPOPT_TS_TSANDADDR: 24426 case IPOPT_TS_PRESPEC: 24427 case IPOPT_TS_PRESPEC_RFC791: 24428 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 24429 break; 24430 default: 24431 code = (char *)&opt[IPOPT_POS_OV_FLG] - 24432 (char *)ipha; 24433 goto param_prob; 24434 } 24435 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 24436 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 24437 /* 24438 * No room and the overflow counter is 15 24439 * already. 24440 */ 24441 goto param_prob; 24442 } 24443 break; 24444 } 24445 } 24446 24447 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 24448 return (0); 24449 24450 ip1dbg(("ip_wput_options: error processing IP options.")); 24451 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 24452 24453 param_prob: 24454 /* 24455 * Since ip_wput() isn't close to finished, we fill 24456 * in enough of the header for credible error reporting. 24457 */ 24458 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 24459 /* Failed */ 24460 freemsg(ipsec_mp); 24461 return (-1); 24462 } 24463 icmp_param_problem(q, ipsec_mp, (uint8_t)code); 24464 return (-1); 24465 24466 bad_src_route: 24467 /* 24468 * Since ip_wput() isn't close to finished, we fill 24469 * in enough of the header for credible error reporting. 24470 */ 24471 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 24472 /* Failed */ 24473 freemsg(ipsec_mp); 24474 return (-1); 24475 } 24476 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED); 24477 return (-1); 24478 } 24479 24480 /* 24481 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 24482 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 24483 * thru /etc/system. 24484 */ 24485 #define CONN_MAXDRAINCNT 64 24486 24487 static void 24488 conn_drain_init(void) 24489 { 24490 int i; 24491 24492 conn_drain_list_cnt = conn_drain_nthreads; 24493 24494 if ((conn_drain_list_cnt == 0) || 24495 (conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 24496 /* 24497 * Default value of the number of drainers is the 24498 * number of cpus, subject to maximum of 8 drainers. 24499 */ 24500 if (boot_max_ncpus != -1) 24501 conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 24502 else 24503 conn_drain_list_cnt = MIN(max_ncpus, 8); 24504 } 24505 24506 conn_drain_list = kmem_zalloc(conn_drain_list_cnt * sizeof (idl_t), 24507 KM_SLEEP); 24508 24509 for (i = 0; i < conn_drain_list_cnt; i++) { 24510 mutex_init(&conn_drain_list[i].idl_lock, NULL, 24511 MUTEX_DEFAULT, NULL); 24512 } 24513 } 24514 24515 static void 24516 conn_drain_fini(void) 24517 { 24518 int i; 24519 24520 for (i = 0; i < conn_drain_list_cnt; i++) 24521 mutex_destroy(&conn_drain_list[i].idl_lock); 24522 kmem_free(conn_drain_list, conn_drain_list_cnt * sizeof (idl_t)); 24523 conn_drain_list = NULL; 24524 } 24525 24526 /* 24527 * Note: For an overview of how flowcontrol is handled in IP please see the 24528 * IP Flowcontrol notes at the top of this file. 24529 * 24530 * Flow control has blocked us from proceeding. Insert the given conn in one 24531 * of the conn drain lists. These conn wq's will be qenabled later on when 24532 * STREAMS flow control does a backenable. conn_walk_drain will enable 24533 * the first conn in each of these drain lists. Each of these qenabled conns 24534 * in turn enables the next in the list, after it runs, or when it closes, 24535 * thus sustaining the drain process. 24536 * 24537 * The only possible calling sequence is ip_wsrv (on conn) -> ip_wput -> 24538 * conn_drain_insert. Thus there can be only 1 instance of conn_drain_insert 24539 * running at any time, on a given conn, since there can be only 1 service proc 24540 * running on a queue at any time. 24541 */ 24542 void 24543 conn_drain_insert(conn_t *connp) 24544 { 24545 idl_t *idl; 24546 uint_t index; 24547 24548 mutex_enter(&connp->conn_lock); 24549 if (connp->conn_state_flags & CONN_CLOSING) { 24550 /* 24551 * The conn is closing as a result of which CONN_CLOSING 24552 * is set. Return. 24553 */ 24554 mutex_exit(&connp->conn_lock); 24555 return; 24556 } else if (connp->conn_idl == NULL) { 24557 /* 24558 * Assign the next drain list round robin. We dont' use 24559 * a lock, and thus it may not be strictly round robin. 24560 * Atomicity of load/stores is enough to make sure that 24561 * conn_drain_list_index is always within bounds. 24562 */ 24563 index = conn_drain_list_index; 24564 ASSERT(index < conn_drain_list_cnt); 24565 connp->conn_idl = &conn_drain_list[index]; 24566 index++; 24567 if (index == conn_drain_list_cnt) 24568 index = 0; 24569 conn_drain_list_index = index; 24570 } 24571 mutex_exit(&connp->conn_lock); 24572 24573 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 24574 if ((connp->conn_drain_prev != NULL) || 24575 (connp->conn_state_flags & CONN_CLOSING)) { 24576 /* 24577 * The conn is already in the drain list, OR 24578 * the conn is closing. We need to check again for 24579 * the closing case again since close can happen 24580 * after we drop the conn_lock, and before we 24581 * acquire the CONN_DRAIN_LIST_LOCK. 24582 */ 24583 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 24584 return; 24585 } else { 24586 idl = connp->conn_idl; 24587 } 24588 24589 /* 24590 * The conn is not in the drain list. Insert it at the 24591 * tail of the drain list. The drain list is circular 24592 * and doubly linked. idl_conn points to the 1st element 24593 * in the list. 24594 */ 24595 if (idl->idl_conn == NULL) { 24596 idl->idl_conn = connp; 24597 connp->conn_drain_next = connp; 24598 connp->conn_drain_prev = connp; 24599 } else { 24600 conn_t *head = idl->idl_conn; 24601 24602 connp->conn_drain_next = head; 24603 connp->conn_drain_prev = head->conn_drain_prev; 24604 head->conn_drain_prev->conn_drain_next = connp; 24605 head->conn_drain_prev = connp; 24606 } 24607 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 24608 } 24609 24610 /* 24611 * This conn is closing, and we are called from ip_close. OR 24612 * This conn has been serviced by ip_wsrv, and we need to do the tail 24613 * processing. 24614 * If this conn is part of the drain list, we may need to sustain the drain 24615 * process by qenabling the next conn in the drain list. We may also need to 24616 * remove this conn from the list, if it is done. 24617 */ 24618 static void 24619 conn_drain_tail(conn_t *connp, boolean_t closing) 24620 { 24621 idl_t *idl; 24622 24623 /* 24624 * connp->conn_idl is stable at this point, and no lock is needed 24625 * to check it. If we are called from ip_close, close has already 24626 * set CONN_CLOSING, thus freezing the value of conn_idl, and 24627 * called us only because conn_idl is non-null. If we are called thru 24628 * service, conn_idl could be null, but it cannot change because 24629 * service is single-threaded per queue, and there cannot be another 24630 * instance of service trying to call conn_drain_insert on this conn 24631 * now. 24632 */ 24633 ASSERT(!closing || (connp->conn_idl != NULL)); 24634 24635 /* 24636 * If connp->conn_idl is null, the conn has not been inserted into any 24637 * drain list even once since creation of the conn. Just return. 24638 */ 24639 if (connp->conn_idl == NULL) 24640 return; 24641 24642 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 24643 24644 if (connp->conn_drain_prev == NULL) { 24645 /* This conn is currently not in the drain list. */ 24646 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 24647 return; 24648 } 24649 idl = connp->conn_idl; 24650 if (idl->idl_conn_draining == connp) { 24651 /* 24652 * This conn is the current drainer. If this is the last conn 24653 * in the drain list, we need to do more checks, in the 'if' 24654 * below. Otherwwise we need to just qenable the next conn, 24655 * to sustain the draining, and is handled in the 'else' 24656 * below. 24657 */ 24658 if (connp->conn_drain_next == idl->idl_conn) { 24659 /* 24660 * This conn is the last in this list. This round 24661 * of draining is complete. If idl_repeat is set, 24662 * it means another flow enabling has happened from 24663 * the driver/streams and we need to another round 24664 * of draining. 24665 * If there are more than 2 conns in the drain list, 24666 * do a left rotate by 1, so that all conns except the 24667 * conn at the head move towards the head by 1, and the 24668 * the conn at the head goes to the tail. This attempts 24669 * a more even share for all queues that are being 24670 * drained. 24671 */ 24672 if ((connp->conn_drain_next != connp) && 24673 (idl->idl_conn->conn_drain_next != connp)) { 24674 idl->idl_conn = idl->idl_conn->conn_drain_next; 24675 } 24676 if (idl->idl_repeat) { 24677 qenable(idl->idl_conn->conn_wq); 24678 idl->idl_conn_draining = idl->idl_conn; 24679 idl->idl_repeat = 0; 24680 } else { 24681 idl->idl_conn_draining = NULL; 24682 } 24683 } else { 24684 /* 24685 * If the next queue that we are now qenable'ing, 24686 * is closing, it will remove itself from this list 24687 * and qenable the subsequent queue in ip_close(). 24688 * Serialization is acheived thru idl_lock. 24689 */ 24690 qenable(connp->conn_drain_next->conn_wq); 24691 idl->idl_conn_draining = connp->conn_drain_next; 24692 } 24693 } 24694 if (!connp->conn_did_putbq || closing) { 24695 /* 24696 * Remove ourself from the drain list, if we did not do 24697 * a putbq, or if the conn is closing. 24698 * Note: It is possible that q->q_first is non-null. It means 24699 * that these messages landed after we did a enableok() in 24700 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 24701 * service them. 24702 */ 24703 if (connp->conn_drain_next == connp) { 24704 /* Singleton in the list */ 24705 ASSERT(connp->conn_drain_prev == connp); 24706 idl->idl_conn = NULL; 24707 idl->idl_conn_draining = NULL; 24708 } else { 24709 connp->conn_drain_prev->conn_drain_next = 24710 connp->conn_drain_next; 24711 connp->conn_drain_next->conn_drain_prev = 24712 connp->conn_drain_prev; 24713 if (idl->idl_conn == connp) 24714 idl->idl_conn = connp->conn_drain_next; 24715 ASSERT(idl->idl_conn_draining != connp); 24716 24717 } 24718 connp->conn_drain_next = NULL; 24719 connp->conn_drain_prev = NULL; 24720 } 24721 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 24722 } 24723 24724 /* 24725 * Write service routine. Shared perimeter entry point. 24726 * ip_wsrv can be called in any of the following ways. 24727 * 1. The device queue's messages has fallen below the low water mark 24728 * and STREAMS has backenabled the ill_wq. We walk thru all the 24729 * the drain lists and backenable the first conn in each list. 24730 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 24731 * qenabled non-tcp upper layers. We start dequeing messages and call 24732 * ip_wput for each message. 24733 */ 24734 24735 void 24736 ip_wsrv(queue_t *q) 24737 { 24738 conn_t *connp; 24739 ill_t *ill; 24740 mblk_t *mp; 24741 24742 if (q->q_next) { 24743 ill = (ill_t *)q->q_ptr; 24744 if (ill->ill_state_flags == 0) { 24745 /* 24746 * The device flow control has opened up. 24747 * Walk through conn drain lists and qenable the 24748 * first conn in each list. This makes sense only 24749 * if the stream is fully plumbed and setup. 24750 * Hence the if check above. 24751 */ 24752 ip1dbg(("ip_wsrv: walking\n")); 24753 conn_walk_drain(); 24754 } 24755 return; 24756 } 24757 24758 connp = Q_TO_CONN(q); 24759 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 24760 24761 /* 24762 * 1. Set conn_draining flag to signal that service is active. 24763 * 24764 * 2. ip_output determines whether it has been called from service, 24765 * based on the last parameter. If it is IP_WSRV it concludes it 24766 * has been called from service. 24767 * 24768 * 3. Message ordering is preserved by the following logic. 24769 * i. A directly called ip_output (i.e. not thru service) will queue 24770 * the message at the tail, if conn_draining is set (i.e. service 24771 * is running) or if q->q_first is non-null. 24772 * 24773 * ii. If ip_output is called from service, and if ip_output cannot 24774 * putnext due to flow control, it does a putbq. 24775 * 24776 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 24777 * (causing an infinite loop). 24778 */ 24779 ASSERT(!connp->conn_did_putbq); 24780 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 24781 connp->conn_draining = 1; 24782 noenable(q); 24783 while ((mp = getq(q)) != NULL) { 24784 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 24785 if (connp->conn_did_putbq) { 24786 /* ip_wput did a putbq */ 24787 break; 24788 } 24789 } 24790 /* 24791 * At this point, a thread coming down from top, calling 24792 * ip_wput, may end up queueing the message. We have not yet 24793 * enabled the queue, so ip_wsrv won't be called again. 24794 * To avoid this race, check q->q_first again (in the loop) 24795 * If the other thread queued the message before we call 24796 * enableok(), we will catch it in the q->q_first check. 24797 * If the other thread queues the message after we call 24798 * enableok(), ip_wsrv will be called again by STREAMS. 24799 */ 24800 connp->conn_draining = 0; 24801 enableok(q); 24802 } 24803 24804 /* Enable the next conn for draining */ 24805 conn_drain_tail(connp, B_FALSE); 24806 24807 connp->conn_did_putbq = 0; 24808 } 24809 24810 /* 24811 * Walk the list of all conn's calling the function provided with the 24812 * specified argument for each. Note that this only walks conn's that 24813 * have been bound. 24814 * Applies to both IPv4 and IPv6. 24815 */ 24816 static void 24817 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid) 24818 { 24819 conn_walk_fanout_table(ipcl_udp_fanout, ipcl_udp_fanout_size, 24820 func, arg, zoneid); 24821 conn_walk_fanout_table(ipcl_conn_fanout, ipcl_conn_fanout_size, 24822 func, arg, zoneid); 24823 conn_walk_fanout_table(ipcl_bind_fanout, ipcl_bind_fanout_size, 24824 func, arg, zoneid); 24825 conn_walk_fanout_table(ipcl_proto_fanout, 24826 A_CNT(ipcl_proto_fanout), func, arg, zoneid); 24827 conn_walk_fanout_table(ipcl_proto_fanout_v6, 24828 A_CNT(ipcl_proto_fanout_v6), func, arg, zoneid); 24829 } 24830 24831 /* 24832 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 24833 * of conns that need to be drained, check if drain is already in progress. 24834 * If so set the idl_repeat bit, indicating that the last conn in the list 24835 * needs to reinitiate the drain once again, for the list. If drain is not 24836 * in progress for the list, initiate the draining, by qenabling the 1st 24837 * conn in the list. The drain is self-sustaining, each qenabled conn will 24838 * in turn qenable the next conn, when it is done/blocked/closing. 24839 */ 24840 static void 24841 conn_walk_drain(void) 24842 { 24843 int i; 24844 idl_t *idl; 24845 24846 IP_STAT(ip_conn_walk_drain); 24847 24848 for (i = 0; i < conn_drain_list_cnt; i++) { 24849 idl = &conn_drain_list[i]; 24850 mutex_enter(&idl->idl_lock); 24851 if (idl->idl_conn == NULL) { 24852 mutex_exit(&idl->idl_lock); 24853 continue; 24854 } 24855 /* 24856 * If this list is not being drained currently by 24857 * an ip_wsrv thread, start the process. 24858 */ 24859 if (idl->idl_conn_draining == NULL) { 24860 ASSERT(idl->idl_repeat == 0); 24861 qenable(idl->idl_conn->conn_wq); 24862 idl->idl_conn_draining = idl->idl_conn; 24863 } else { 24864 idl->idl_repeat = 1; 24865 } 24866 mutex_exit(&idl->idl_lock); 24867 } 24868 } 24869 24870 /* 24871 * Walk an conn hash table of `count' buckets, calling func for each entry. 24872 */ 24873 static void 24874 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg, 24875 zoneid_t zoneid) 24876 { 24877 conn_t *connp; 24878 24879 while (count-- > 0) { 24880 mutex_enter(&connfp->connf_lock); 24881 for (connp = connfp->connf_head; connp != NULL; 24882 connp = connp->conn_next) { 24883 if (zoneid == GLOBAL_ZONEID || 24884 zoneid == connp->conn_zoneid) { 24885 CONN_INC_REF(connp); 24886 mutex_exit(&connfp->connf_lock); 24887 (*func)(connp, arg); 24888 mutex_enter(&connfp->connf_lock); 24889 CONN_DEC_REF(connp); 24890 } 24891 } 24892 mutex_exit(&connfp->connf_lock); 24893 connfp++; 24894 } 24895 } 24896 24897 /* ipcl_walk routine invoked for ip_conn_report for each conn. */ 24898 static void 24899 conn_report1(conn_t *connp, void *mp) 24900 { 24901 char buf1[INET6_ADDRSTRLEN]; 24902 char buf2[INET6_ADDRSTRLEN]; 24903 uint_t print_len, buf_len; 24904 24905 ASSERT(connp != NULL); 24906 24907 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 24908 if (buf_len <= 0) 24909 return; 24910 (void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)), 24911 (void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)), 24912 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 24913 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 24914 "%5d %s/%05d %s/%05d\n", 24915 (void *)connp, (void *)CONNP_TO_RQ(connp), 24916 (void *)CONNP_TO_WQ(connp), connp->conn_zoneid, 24917 buf1, connp->conn_lport, 24918 buf2, connp->conn_fport); 24919 if (print_len < buf_len) { 24920 ((mblk_t *)mp)->b_wptr += print_len; 24921 } else { 24922 ((mblk_t *)mp)->b_wptr += buf_len; 24923 } 24924 } 24925 24926 /* 24927 * Named Dispatch routine to produce a formatted report on all conns 24928 * that are listed in one of the fanout tables. 24929 * This report is accessed by using the ndd utility to "get" ND variable 24930 * "ip_conn_status". 24931 */ 24932 /* ARGSUSED */ 24933 static int 24934 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 24935 { 24936 (void) mi_mpprintf(mp, 24937 "CONN " MI_COL_HDRPAD_STR 24938 "rfq " MI_COL_HDRPAD_STR 24939 "stq " MI_COL_HDRPAD_STR 24940 " zone local remote"); 24941 24942 /* 24943 * Because of the ndd constraint, at most we can have 64K buffer 24944 * to put in all conn info. So to be more efficient, just 24945 * allocate a 64K buffer here, assuming we need that large buffer. 24946 * This should be OK as only privileged processes can do ndd /dev/ip. 24947 */ 24948 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 24949 /* The following may work even if we cannot get a large buf. */ 24950 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 24951 return (0); 24952 } 24953 24954 conn_walk_fanout(conn_report1, mp->b_cont, Q_TO_CONN(q)->conn_zoneid); 24955 return (0); 24956 } 24957 24958 /* 24959 * Determine if the ill and multicast aspects of that packets 24960 * "matches" the conn. 24961 */ 24962 boolean_t 24963 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 24964 zoneid_t zoneid) 24965 { 24966 ill_t *in_ill; 24967 boolean_t found; 24968 ipif_t *ipif; 24969 ire_t *ire; 24970 ipaddr_t dst, src; 24971 24972 dst = ipha->ipha_dst; 24973 src = ipha->ipha_src; 24974 24975 /* 24976 * conn_incoming_ill is set by IP_BOUND_IF which limits 24977 * unicast, broadcast and multicast reception to 24978 * conn_incoming_ill. conn_wantpacket itself is called 24979 * only for BROADCAST and multicast. 24980 * 24981 * 1) ip_rput supresses duplicate broadcasts if the ill 24982 * is part of a group. Hence, we should be receiving 24983 * just one copy of broadcast for the whole group. 24984 * Thus, if it is part of the group the packet could 24985 * come on any ill of the group and hence we need a 24986 * match on the group. Otherwise, match on ill should 24987 * be sufficient. 24988 * 24989 * 2) ip_rput does not suppress duplicate multicast packets. 24990 * If there are two interfaces in a ill group and we have 24991 * 2 applications (conns) joined a multicast group G on 24992 * both the interfaces, ilm_lookup_ill filter in ip_rput 24993 * will give us two packets because we join G on both the 24994 * interfaces rather than nominating just one interface 24995 * for receiving multicast like broadcast above. So, 24996 * we have to call ilg_lookup_ill to filter out duplicate 24997 * copies, if ill is part of a group. 24998 */ 24999 in_ill = connp->conn_incoming_ill; 25000 if (in_ill != NULL) { 25001 if (in_ill->ill_group == NULL) { 25002 if (in_ill != ill) 25003 return (B_FALSE); 25004 } else if (in_ill->ill_group != ill->ill_group) { 25005 return (B_FALSE); 25006 } 25007 } 25008 25009 if (!CLASSD(dst)) { 25010 if (connp->conn_zoneid == zoneid) 25011 return (B_TRUE); 25012 /* 25013 * The conn is in a different zone; we need to check that this 25014 * broadcast address is configured in the application's zone and 25015 * on one ill in the group. 25016 */ 25017 ipif = ipif_get_next_ipif(NULL, ill); 25018 if (ipif == NULL) 25019 return (B_FALSE); 25020 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 25021 connp->conn_zoneid, (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP)); 25022 ipif_refrele(ipif); 25023 if (ire != NULL) { 25024 ire_refrele(ire); 25025 return (B_TRUE); 25026 } else { 25027 return (B_FALSE); 25028 } 25029 } 25030 25031 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 25032 connp->conn_zoneid == zoneid) { 25033 /* 25034 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 25035 * disabled, therefore we don't dispatch the multicast packet to 25036 * the sending zone. 25037 */ 25038 return (B_FALSE); 25039 } 25040 25041 if ((ill->ill_phyint->phyint_flags & PHYI_LOOPBACK) && 25042 connp->conn_zoneid != zoneid) { 25043 /* 25044 * Multicast packet on the loopback interface: we only match 25045 * conns who joined the group in the specified zone. 25046 */ 25047 return (B_FALSE); 25048 } 25049 25050 if (connp->conn_multi_router) { 25051 /* multicast packet and multicast router socket: send up */ 25052 return (B_TRUE); 25053 } 25054 25055 mutex_enter(&connp->conn_lock); 25056 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 25057 mutex_exit(&connp->conn_lock); 25058 return (found); 25059 } 25060 25061 /* 25062 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 25063 */ 25064 /* ARGSUSED */ 25065 static void 25066 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 25067 { 25068 ill_t *ill = (ill_t *)q->q_ptr; 25069 mblk_t *mp1, *mp2; 25070 ipif_t *ipif; 25071 int err = 0; 25072 conn_t *connp = NULL; 25073 ipsq_t *ipsq; 25074 arc_t *arc; 25075 25076 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 25077 25078 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 25079 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 25080 25081 ASSERT(IAM_WRITER_ILL(ill)); 25082 mp2 = mp->b_cont; 25083 mp->b_cont = NULL; 25084 25085 /* 25086 * We have now received the arp bringup completion message 25087 * from ARP. Mark the arp bringup as done. Also if the arp 25088 * stream has already started closing, send up the AR_ARP_CLOSING 25089 * ack now since ARP is waiting in close for this ack. 25090 */ 25091 mutex_enter(&ill->ill_lock); 25092 ill->ill_arp_bringup_pending = 0; 25093 if (ill->ill_arp_closing) { 25094 mutex_exit(&ill->ill_lock); 25095 /* Let's reuse the mp for sending the ack */ 25096 arc = (arc_t *)mp->b_rptr; 25097 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 25098 arc->arc_cmd = AR_ARP_CLOSING; 25099 qreply(q, mp); 25100 } else { 25101 mutex_exit(&ill->ill_lock); 25102 freeb(mp); 25103 } 25104 25105 /* We should have an IOCTL waiting on this. */ 25106 ipsq = ill->ill_phyint->phyint_ipsq; 25107 ipif = ipsq->ipsq_pending_ipif; 25108 mp1 = ipsq_pending_mp_get(ipsq, &connp); 25109 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 25110 if (mp1 == NULL) { 25111 /* bringup was aborted by the user */ 25112 freemsg(mp2); 25113 return; 25114 } 25115 ASSERT(connp != NULL); 25116 q = CONNP_TO_WQ(connp); 25117 /* 25118 * If the DL_BIND_REQ fails, it is noted 25119 * in arc_name_offset. 25120 */ 25121 err = *((int *)mp2->b_rptr); 25122 if (err == 0) { 25123 if (ipif->ipif_isv6) { 25124 if ((err = ipif_up_done_v6(ipif)) != 0) 25125 ip0dbg(("ip_arp_done: init failed\n")); 25126 } else { 25127 if ((err = ipif_up_done(ipif)) != 0) 25128 ip0dbg(("ip_arp_done: init failed\n")); 25129 } 25130 } else { 25131 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 25132 } 25133 25134 freemsg(mp2); 25135 25136 if ((err == 0) && (ill->ill_up_ipifs)) { 25137 err = ill_up_ipifs(ill, q, mp1); 25138 if (err == EINPROGRESS) 25139 return; 25140 } 25141 25142 if (ill->ill_up_ipifs) { 25143 ill_group_cleanup(ill); 25144 } 25145 25146 /* 25147 * The ioctl must complete now without EINPROGRESS 25148 * since ipsq_pending_mp_get has removed the ioctl mblk 25149 * from ipsq_pending_mp. Otherwise the ioctl will be 25150 * stuck for ever in the ipsq. 25151 */ 25152 ASSERT(err != EINPROGRESS); 25153 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipif, ipsq); 25154 } 25155 25156 /* Allocate the private structure */ 25157 static int 25158 ip_priv_alloc(void **bufp) 25159 { 25160 void *buf; 25161 25162 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 25163 return (ENOMEM); 25164 25165 *bufp = buf; 25166 return (0); 25167 } 25168 25169 /* Function to delete the private structure */ 25170 void 25171 ip_priv_free(void *buf) 25172 { 25173 ASSERT(buf != NULL); 25174 kmem_free(buf, sizeof (ip_priv_t)); 25175 } 25176 25177 /* 25178 * The entry point for IPPF processing. 25179 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 25180 * routine just returns. 25181 * 25182 * When called, ip_process generates an ipp_packet_t structure 25183 * which holds the state information for this packet and invokes the 25184 * the classifier (via ipp_packet_process). The classification, depending on 25185 * configured filters, results in a list of actions for this packet. Invoking 25186 * an action may cause the packet to be dropped, in which case the resulting 25187 * mblk (*mpp) is NULL. proc indicates the callout position for 25188 * this packet and ill_index is the interface this packet on or will leave 25189 * on (inbound and outbound resp.). 25190 */ 25191 void 25192 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 25193 { 25194 mblk_t *mp; 25195 ip_priv_t *priv; 25196 ipp_action_id_t aid; 25197 int rc = 0; 25198 ipp_packet_t *pp; 25199 #define IP_CLASS "ip" 25200 25201 /* If the classifier is not loaded, return */ 25202 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 25203 return; 25204 } 25205 25206 mp = *mpp; 25207 ASSERT(mp != NULL); 25208 25209 /* Allocate the packet structure */ 25210 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 25211 if (rc != 0) { 25212 *mpp = NULL; 25213 freemsg(mp); 25214 return; 25215 } 25216 25217 /* Allocate the private structure */ 25218 rc = ip_priv_alloc((void **)&priv); 25219 if (rc != 0) { 25220 *mpp = NULL; 25221 freemsg(mp); 25222 ipp_packet_free(pp); 25223 return; 25224 } 25225 priv->proc = proc; 25226 priv->ill_index = ill_index; 25227 ipp_packet_set_private(pp, priv, ip_priv_free); 25228 ipp_packet_set_data(pp, mp); 25229 25230 /* Invoke the classifier */ 25231 rc = ipp_packet_process(&pp); 25232 if (pp != NULL) { 25233 mp = ipp_packet_get_data(pp); 25234 ipp_packet_free(pp); 25235 if (rc != 0) { 25236 freemsg(mp); 25237 *mpp = NULL; 25238 } 25239 } else { 25240 *mpp = NULL; 25241 } 25242 #undef IP_CLASS 25243 } 25244 25245 /* 25246 * Propagate a multicast group membership operation (add/drop) on 25247 * all the interfaces crossed by the related multirt routes. 25248 * The call is considered successful if the operation succeeds 25249 * on at least one interface. 25250 */ 25251 static int 25252 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 25253 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 25254 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 25255 mblk_t *first_mp) 25256 { 25257 ire_t *ire_gw; 25258 irb_t *irb; 25259 int error = 0; 25260 opt_restart_t *or; 25261 25262 irb = ire->ire_bucket; 25263 ASSERT(irb != NULL); 25264 25265 ASSERT(DB_TYPE(first_mp) == M_CTL); 25266 25267 or = (opt_restart_t *)first_mp->b_rptr; 25268 IRB_REFHOLD(irb); 25269 for (; ire != NULL; ire = ire->ire_next) { 25270 if ((ire->ire_flags & RTF_MULTIRT) == 0) 25271 continue; 25272 if (ire->ire_addr != group) 25273 continue; 25274 25275 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 25276 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 25277 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE); 25278 /* No resolver exists for the gateway; skip this ire. */ 25279 if (ire_gw == NULL) 25280 continue; 25281 25282 /* 25283 * This function can return EINPROGRESS. If so the operation 25284 * will be restarted from ip_restart_optmgmt which will 25285 * call ip_opt_set and option processing will restart for 25286 * this option. So we may end up calling 'fn' more than once. 25287 * This requires that 'fn' is idempotent except for the 25288 * return value. The operation is considered a success if 25289 * it succeeds at least once on any one interface. 25290 */ 25291 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 25292 NULL, fmode, src, first_mp); 25293 if (error == 0) 25294 or->or_private = CGTP_MCAST_SUCCESS; 25295 25296 if (ip_debug > 0) { 25297 ulong_t off; 25298 char *ksym; 25299 ksym = kobj_getsymname((uintptr_t)fn, &off); 25300 ip2dbg(("ip_multirt_apply_membership: " 25301 "called %s, multirt group 0x%08x via itf 0x%08x, " 25302 "error %d [success %u]\n", 25303 ksym ? ksym : "?", 25304 ntohl(group), ntohl(ire_gw->ire_src_addr), 25305 error, or->or_private)); 25306 } 25307 25308 ire_refrele(ire_gw); 25309 if (error == EINPROGRESS) { 25310 IRB_REFRELE(irb); 25311 return (error); 25312 } 25313 } 25314 IRB_REFRELE(irb); 25315 /* 25316 * Consider the call as successful if we succeeded on at least 25317 * one interface. Otherwise, return the last encountered error. 25318 */ 25319 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 25320 } 25321 25322 25323 /* 25324 * Issue a warning regarding a route crossing an interface with an 25325 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 25326 * amount of time is logged. 25327 */ 25328 static void 25329 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 25330 { 25331 hrtime_t current = gethrtime(); 25332 char buf[16]; 25333 25334 /* Convert interval in ms to hrtime in ns */ 25335 if (multirt_bad_mtu_last_time + 25336 ((hrtime_t)ip_multirt_log_interval * (hrtime_t)1000000) <= 25337 current) { 25338 cmn_err(CE_WARN, "ip: ignoring multiroute " 25339 "to %s, incorrect MTU %u (expected %u)\n", 25340 ip_dot_addr(ire->ire_addr, buf), 25341 ire->ire_max_frag, max_frag); 25342 25343 multirt_bad_mtu_last_time = current; 25344 } 25345 } 25346 25347 25348 /* 25349 * Get the CGTP (multirouting) filtering status. 25350 * If 0, the CGTP hooks are transparent. 25351 */ 25352 /* ARGSUSED */ 25353 static int 25354 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 25355 { 25356 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 25357 25358 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 25359 return (0); 25360 } 25361 25362 25363 /* 25364 * Set the CGTP (multirouting) filtering status. 25365 * If the status is changed from active to transparent 25366 * or from transparent to active, forward the new status 25367 * to the filtering module (if loaded). 25368 */ 25369 /* ARGSUSED */ 25370 static int 25371 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 25372 cred_t *ioc_cr) 25373 { 25374 long new_value; 25375 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 25376 25377 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 25378 new_value < 0 || new_value > 1) { 25379 return (EINVAL); 25380 } 25381 25382 /* 25383 * Do not enable CGTP filtering - thus preventing the hooks 25384 * from being invoked - if the version number of the 25385 * filtering module hooks does not match. 25386 */ 25387 if ((ip_cgtp_filter_ops != NULL) && 25388 (ip_cgtp_filter_ops->cfo_filter_rev != CGTP_FILTER_REV)) { 25389 cmn_err(CE_WARN, "IP: CGTP filtering version mismatch " 25390 "(module hooks version %d, expecting %d)\n", 25391 ip_cgtp_filter_ops->cfo_filter_rev, CGTP_FILTER_REV); 25392 return (ENOTSUP); 25393 } 25394 25395 if ((!*ip_cgtp_filter_value) && new_value) { 25396 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 25397 ip_cgtp_filter_ops == NULL ? 25398 " (module not loaded)" : ""); 25399 } 25400 if (*ip_cgtp_filter_value && (!new_value)) { 25401 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 25402 ip_cgtp_filter_ops == NULL ? 25403 " (module not loaded)" : ""); 25404 } 25405 25406 if (ip_cgtp_filter_ops != NULL) { 25407 int res; 25408 if ((res = ip_cgtp_filter_ops->cfo_change_state(new_value))) { 25409 return (res); 25410 } 25411 } 25412 25413 *ip_cgtp_filter_value = (boolean_t)new_value; 25414 25415 return (0); 25416 } 25417 25418 25419 /* 25420 * Return the expected CGTP hooks version number. 25421 */ 25422 int 25423 ip_cgtp_filter_supported(void) 25424 { 25425 return (ip_cgtp_filter_rev); 25426 } 25427 25428 25429 /* 25430 * CGTP hooks can be registered by directly touching ip_cgtp_filter_ops 25431 * or by invoking this function. In the first case, the version number 25432 * of the registered structure is checked at hooks activation time 25433 * in ip_cgtp_filter_set(). 25434 */ 25435 int 25436 ip_cgtp_filter_register(cgtp_filter_ops_t *ops) 25437 { 25438 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 25439 return (ENOTSUP); 25440 25441 ip_cgtp_filter_ops = ops; 25442 return (0); 25443 } 25444 25445 static squeue_func_t 25446 ip_squeue_switch(int val) 25447 { 25448 squeue_func_t rval = squeue_fill; 25449 25450 switch (val) { 25451 case IP_SQUEUE_ENTER_NODRAIN: 25452 rval = squeue_enter_nodrain; 25453 break; 25454 case IP_SQUEUE_ENTER: 25455 rval = squeue_enter; 25456 break; 25457 default: 25458 break; 25459 } 25460 return (rval); 25461 } 25462 25463 /* ARGSUSED */ 25464 static int 25465 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 25466 caddr_t addr, cred_t *cr) 25467 { 25468 int *v = (int *)addr; 25469 long new_value; 25470 25471 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 25472 return (EINVAL); 25473 25474 ip_input_proc = ip_squeue_switch(new_value); 25475 *v = new_value; 25476 return (0); 25477 } 25478 25479 /* ARGSUSED */ 25480 static int 25481 ip_fanout_set(queue_t *q, mblk_t *mp, char *value, 25482 caddr_t addr, cred_t *cr) 25483 { 25484 int *v = (int *)addr; 25485 long new_value; 25486 25487 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 25488 return (EINVAL); 25489 25490 *v = new_value; 25491 return (0); 25492 } 25493 25494 25495 static void 25496 ip_kstat_init(void) 25497 { 25498 ip_named_kstat_t template = { 25499 { "forwarding", KSTAT_DATA_UINT32, 0 }, 25500 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 25501 { "inReceives", KSTAT_DATA_UINT32, 0 }, 25502 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 25503 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 25504 { "forwDatagrams", KSTAT_DATA_UINT32, 0 }, 25505 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 25506 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 25507 { "inDelivers", KSTAT_DATA_UINT32, 0 }, 25508 { "outRequests", KSTAT_DATA_UINT32, 0 }, 25509 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 25510 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 25511 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 25512 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 25513 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 25514 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 25515 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 25516 { "fragFails", KSTAT_DATA_UINT32, 0 }, 25517 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 25518 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 25519 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 25520 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 25521 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 25522 { "inErrs", KSTAT_DATA_UINT32, 0 }, 25523 { "noPorts", KSTAT_DATA_UINT32, 0 }, 25524 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 25525 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 25526 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 25527 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 25528 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 25529 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 25530 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 25531 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 25532 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 25533 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 25534 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 25535 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 25536 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 25537 }; 25538 25539 ip_mibkp = kstat_create("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 25540 NUM_OF_FIELDS(ip_named_kstat_t), 25541 0); 25542 if (!ip_mibkp) 25543 return; 25544 25545 template.forwarding.value.ui32 = WE_ARE_FORWARDING ? 1:2; 25546 template.defaultTTL.value.ui32 = (uint32_t)ip_def_ttl; 25547 template.reasmTimeout.value.ui32 = ip_g_frag_timeout; 25548 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 25549 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 25550 25551 template.netToMediaEntrySize.value.i32 = 25552 sizeof (mib2_ipNetToMediaEntry_t); 25553 25554 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 25555 25556 bcopy(&template, ip_mibkp->ks_data, sizeof (template)); 25557 25558 ip_mibkp->ks_update = ip_kstat_update; 25559 25560 kstat_install(ip_mibkp); 25561 } 25562 25563 static void 25564 ip_kstat_fini(void) 25565 { 25566 25567 if (ip_mibkp != NULL) { 25568 kstat_delete(ip_mibkp); 25569 ip_mibkp = NULL; 25570 } 25571 } 25572 25573 static int 25574 ip_kstat_update(kstat_t *kp, int rw) 25575 { 25576 ip_named_kstat_t *ipkp; 25577 25578 if (!kp || !kp->ks_data) 25579 return (EIO); 25580 25581 if (rw == KSTAT_WRITE) 25582 return (EACCES); 25583 25584 ipkp = (ip_named_kstat_t *)kp->ks_data; 25585 25586 ipkp->forwarding.value.ui32 = ip_mib.ipForwarding; 25587 ipkp->defaultTTL.value.ui32 = ip_mib.ipDefaultTTL; 25588 ipkp->inReceives.value.ui32 = ip_mib.ipInReceives; 25589 ipkp->inHdrErrors.value.ui32 = ip_mib.ipInHdrErrors; 25590 ipkp->inAddrErrors.value.ui32 = ip_mib.ipInAddrErrors; 25591 ipkp->forwDatagrams.value.ui32 = ip_mib.ipForwDatagrams; 25592 ipkp->inUnknownProtos.value.ui32 = ip_mib.ipInUnknownProtos; 25593 ipkp->inDiscards.value.ui32 = ip_mib.ipInDiscards; 25594 ipkp->inDelivers.value.ui32 = ip_mib.ipInDelivers; 25595 ipkp->outRequests.value.ui32 = ip_mib.ipOutRequests; 25596 ipkp->outDiscards.value.ui32 = ip_mib.ipOutDiscards; 25597 ipkp->outNoRoutes.value.ui32 = ip_mib.ipOutNoRoutes; 25598 ipkp->reasmTimeout.value.ui32 = ip_mib.ipReasmTimeout; 25599 ipkp->reasmReqds.value.ui32 = ip_mib.ipReasmReqds; 25600 ipkp->reasmOKs.value.ui32 = ip_mib.ipReasmOKs; 25601 ipkp->reasmFails.value.ui32 = ip_mib.ipReasmFails; 25602 ipkp->fragOKs.value.ui32 = ip_mib.ipFragOKs; 25603 ipkp->fragFails.value.ui32 = ip_mib.ipFragFails; 25604 ipkp->fragCreates.value.ui32 = ip_mib.ipFragCreates; 25605 25606 ipkp->routingDiscards.value.ui32 = ip_mib.ipRoutingDiscards; 25607 ipkp->inErrs.value.ui32 = ip_mib.tcpInErrs; 25608 ipkp->noPorts.value.ui32 = ip_mib.udpNoPorts; 25609 ipkp->inCksumErrs.value.ui32 = ip_mib.ipInCksumErrs; 25610 ipkp->reasmDuplicates.value.ui32 = ip_mib.ipReasmDuplicates; 25611 ipkp->reasmPartDups.value.ui32 = ip_mib.ipReasmPartDups; 25612 ipkp->forwProhibits.value.ui32 = ip_mib.ipForwProhibits; 25613 ipkp->udpInCksumErrs.value.ui32 = ip_mib.udpInCksumErrs; 25614 ipkp->udpInOverflows.value.ui32 = ip_mib.udpInOverflows; 25615 ipkp->rawipInOverflows.value.ui32 = ip_mib.rawipInOverflows; 25616 ipkp->ipsecInSucceeded.value.ui32 = ip_mib.ipsecInSucceeded; 25617 ipkp->ipsecInFailed.value.i32 = ip_mib.ipsecInFailed; 25618 25619 ipkp->inIPv6.value.ui32 = ip_mib.ipInIPv6; 25620 ipkp->outIPv6.value.ui32 = ip_mib.ipOutIPv6; 25621 ipkp->outSwitchIPv6.value.ui32 = ip_mib.ipOutSwitchIPv6; 25622 25623 return (0); 25624 } 25625 25626 static void 25627 icmp_kstat_init(void) 25628 { 25629 icmp_named_kstat_t template = { 25630 { "inMsgs", KSTAT_DATA_UINT32 }, 25631 { "inErrors", KSTAT_DATA_UINT32 }, 25632 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 25633 { "inTimeExcds", KSTAT_DATA_UINT32 }, 25634 { "inParmProbs", KSTAT_DATA_UINT32 }, 25635 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 25636 { "inRedirects", KSTAT_DATA_UINT32 }, 25637 { "inEchos", KSTAT_DATA_UINT32 }, 25638 { "inEchoReps", KSTAT_DATA_UINT32 }, 25639 { "inTimestamps", KSTAT_DATA_UINT32 }, 25640 { "inTimestampReps", KSTAT_DATA_UINT32 }, 25641 { "inAddrMasks", KSTAT_DATA_UINT32 }, 25642 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 25643 { "outMsgs", KSTAT_DATA_UINT32 }, 25644 { "outErrors", KSTAT_DATA_UINT32 }, 25645 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 25646 { "outTimeExcds", KSTAT_DATA_UINT32 }, 25647 { "outParmProbs", KSTAT_DATA_UINT32 }, 25648 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 25649 { "outRedirects", KSTAT_DATA_UINT32 }, 25650 { "outEchos", KSTAT_DATA_UINT32 }, 25651 { "outEchoReps", KSTAT_DATA_UINT32 }, 25652 { "outTimestamps", KSTAT_DATA_UINT32 }, 25653 { "outTimestampReps", KSTAT_DATA_UINT32 }, 25654 { "outAddrMasks", KSTAT_DATA_UINT32 }, 25655 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 25656 { "inChksumErrs", KSTAT_DATA_UINT32 }, 25657 { "inUnknowns", KSTAT_DATA_UINT32 }, 25658 { "inFragNeeded", KSTAT_DATA_UINT32 }, 25659 { "outFragNeeded", KSTAT_DATA_UINT32 }, 25660 { "outDrops", KSTAT_DATA_UINT32 }, 25661 { "inOverFlows", KSTAT_DATA_UINT32 }, 25662 { "inBadRedirects", KSTAT_DATA_UINT32 }, 25663 }; 25664 25665 icmp_mibkp = kstat_create("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 25666 NUM_OF_FIELDS(icmp_named_kstat_t), 25667 0); 25668 if (icmp_mibkp == NULL) 25669 return; 25670 25671 bcopy(&template, icmp_mibkp->ks_data, sizeof (template)); 25672 25673 icmp_mibkp->ks_update = icmp_kstat_update; 25674 25675 kstat_install(icmp_mibkp); 25676 } 25677 25678 static void 25679 icmp_kstat_fini(void) 25680 { 25681 25682 if (icmp_mibkp != NULL) { 25683 kstat_delete(icmp_mibkp); 25684 icmp_mibkp = NULL; 25685 } 25686 } 25687 25688 static int 25689 icmp_kstat_update(kstat_t *kp, int rw) 25690 { 25691 icmp_named_kstat_t *icmpkp; 25692 25693 if ((kp == NULL) || (kp->ks_data == NULL)) 25694 return (EIO); 25695 25696 if (rw == KSTAT_WRITE) 25697 return (EACCES); 25698 25699 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 25700 25701 icmpkp->inMsgs.value.ui32 = icmp_mib.icmpInMsgs; 25702 icmpkp->inErrors.value.ui32 = icmp_mib.icmpInErrors; 25703 icmpkp->inDestUnreachs.value.ui32 = icmp_mib.icmpInDestUnreachs; 25704 icmpkp->inTimeExcds.value.ui32 = icmp_mib.icmpInTimeExcds; 25705 icmpkp->inParmProbs.value.ui32 = icmp_mib.icmpInParmProbs; 25706 icmpkp->inSrcQuenchs.value.ui32 = icmp_mib.icmpInSrcQuenchs; 25707 icmpkp->inRedirects.value.ui32 = icmp_mib.icmpInRedirects; 25708 icmpkp->inEchos.value.ui32 = icmp_mib.icmpInEchos; 25709 icmpkp->inEchoReps.value.ui32 = icmp_mib.icmpInEchoReps; 25710 icmpkp->inTimestamps.value.ui32 = icmp_mib.icmpInTimestamps; 25711 icmpkp->inTimestampReps.value.ui32 = icmp_mib.icmpInTimestampReps; 25712 icmpkp->inAddrMasks.value.ui32 = icmp_mib.icmpInAddrMasks; 25713 icmpkp->inAddrMaskReps.value.ui32 = icmp_mib.icmpInAddrMaskReps; 25714 icmpkp->outMsgs.value.ui32 = icmp_mib.icmpOutMsgs; 25715 icmpkp->outErrors.value.ui32 = icmp_mib.icmpOutErrors; 25716 icmpkp->outDestUnreachs.value.ui32 = icmp_mib.icmpOutDestUnreachs; 25717 icmpkp->outTimeExcds.value.ui32 = icmp_mib.icmpOutTimeExcds; 25718 icmpkp->outParmProbs.value.ui32 = icmp_mib.icmpOutParmProbs; 25719 icmpkp->outSrcQuenchs.value.ui32 = icmp_mib.icmpOutSrcQuenchs; 25720 icmpkp->outRedirects.value.ui32 = icmp_mib.icmpOutRedirects; 25721 icmpkp->outEchos.value.ui32 = icmp_mib.icmpOutEchos; 25722 icmpkp->outEchoReps.value.ui32 = icmp_mib.icmpOutEchoReps; 25723 icmpkp->outTimestamps.value.ui32 = icmp_mib.icmpOutTimestamps; 25724 icmpkp->outTimestampReps.value.ui32 = icmp_mib.icmpOutTimestampReps; 25725 icmpkp->outAddrMasks.value.ui32 = icmp_mib.icmpOutAddrMasks; 25726 icmpkp->outAddrMaskReps.value.ui32 = icmp_mib.icmpOutAddrMaskReps; 25727 icmpkp->inCksumErrs.value.ui32 = icmp_mib.icmpInCksumErrs; 25728 icmpkp->inUnknowns.value.ui32 = icmp_mib.icmpInUnknowns; 25729 icmpkp->inFragNeeded.value.ui32 = icmp_mib.icmpInFragNeeded; 25730 icmpkp->outFragNeeded.value.ui32 = icmp_mib.icmpOutFragNeeded; 25731 icmpkp->outDrops.value.ui32 = icmp_mib.icmpOutDrops; 25732 icmpkp->inOverflows.value.ui32 = icmp_mib.icmpInOverflows; 25733 icmpkp->inBadRedirects.value.ui32 = icmp_mib.icmpInBadRedirects; 25734 25735 return (0); 25736 } 25737 25738 /* 25739 * This is the fanout function for raw socket opened for SCTP. Note 25740 * that it is called after SCTP checks that there is no socket which 25741 * wants a packet. Then before SCTP handles this out of the blue packet, 25742 * this function is called to see if there is any raw socket for SCTP. 25743 * If there is and it is bound to the correct address, the packet will 25744 * be sent to that socket. Note that only one raw socket can be bound to 25745 * a port. This is assured in ipcl_sctp_hash_insert(); 25746 */ 25747 void 25748 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 25749 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 25750 uint_t ipif_seqid, zoneid_t zoneid) 25751 { 25752 conn_t *connp; 25753 queue_t *rq; 25754 mblk_t *first_mp; 25755 boolean_t secure; 25756 ip6_t *ip6h; 25757 25758 first_mp = mp; 25759 if (mctl_present) { 25760 mp = first_mp->b_cont; 25761 secure = ipsec_in_is_secure(first_mp); 25762 ASSERT(mp != NULL); 25763 } else { 25764 secure = B_FALSE; 25765 } 25766 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 25767 25768 connp = ipcl_classify_raw(IPPROTO_SCTP, zoneid, ports, ipha); 25769 if (connp == NULL) { 25770 sctp_ootb_input(first_mp, recv_ill, ipif_seqid, zoneid, 25771 mctl_present); 25772 return; 25773 } 25774 rq = connp->conn_rq; 25775 if (!canputnext(rq)) { 25776 CONN_DEC_REF(connp); 25777 BUMP_MIB(&ip_mib, rawipInOverflows); 25778 freemsg(first_mp); 25779 return; 25780 } 25781 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp) : 25782 CONN_INBOUND_POLICY_PRESENT_V6(connp)) || secure) { 25783 first_mp = ipsec_check_inbound_policy(first_mp, connp, 25784 (isv4 ? ipha : NULL), ip6h, mctl_present); 25785 if (first_mp == NULL) { 25786 CONN_DEC_REF(connp); 25787 return; 25788 } 25789 } 25790 /* 25791 * We probably should not send M_CTL message up to 25792 * raw socket. 25793 */ 25794 if (mctl_present) 25795 freeb(first_mp); 25796 25797 /* Initiate IPPF processing here if needed. */ 25798 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) || 25799 (!isv4 && IP6_IN_IPP(flags))) { 25800 ip_process(IPP_LOCAL_IN, &mp, 25801 recv_ill->ill_phyint->phyint_ifindex); 25802 if (mp == NULL) { 25803 CONN_DEC_REF(connp); 25804 return; 25805 } 25806 } 25807 25808 if (connp->conn_recvif || connp->conn_recvslla || 25809 ((connp->conn_ipv6_recvpktinfo || 25810 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 25811 (flags & IP_FF_IP6INFO))) { 25812 int in_flags = 0; 25813 25814 if (connp->conn_recvif || connp->conn_ipv6_recvpktinfo) { 25815 in_flags = IPF_RECVIF; 25816 } 25817 if (connp->conn_recvslla) { 25818 in_flags |= IPF_RECVSLLA; 25819 } 25820 if (isv4) { 25821 mp = ip_add_info(mp, recv_ill, in_flags); 25822 } else { 25823 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 25824 if (mp == NULL) { 25825 CONN_DEC_REF(connp); 25826 return; 25827 } 25828 } 25829 } 25830 25831 BUMP_MIB(&ip_mib, ipInDelivers); 25832 /* 25833 * We are sending the IPSEC_IN message also up. Refer 25834 * to comments above this function. 25835 */ 25836 putnext(rq, mp); 25837 CONN_DEC_REF(connp); 25838 } 25839 25840 /* 25841 * Martian Address Filtering [RFC 1812, Section 5.3.7] 25842 */ 25843 static boolean_t 25844 ip_no_forward(ipha_t *ipha, ill_t *ill) 25845 { 25846 ipaddr_t ip_src, ip_dst; 25847 ire_t *src_ire = NULL; 25848 25849 ip_src = ntohl(ipha->ipha_src); 25850 ip_dst = ntohl(ipha->ipha_dst); 25851 25852 if (ip_dst == INADDR_ANY) 25853 goto dont_forward; 25854 25855 if (IN_CLASSD(ip_src)) 25856 goto dont_forward; 25857 25858 if ((ip_src >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) 25859 goto dont_forward; 25860 25861 if (IN_BADCLASS(ip_dst)) 25862 goto dont_forward; 25863 25864 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 25865 ALL_ZONES, MATCH_IRE_TYPE); 25866 if (src_ire != NULL) { 25867 ire_refrele(src_ire); 25868 goto dont_forward; 25869 } 25870 25871 return (B_FALSE); 25872 25873 dont_forward: 25874 if (ip_debug > 2) { 25875 printf("ip_no_forward: dropping packet received on %s\n", 25876 ill->ill_name); 25877 pr_addr_dbg("ip_no_forward: from src %s\n", 25878 AF_INET, &ipha->ipha_src); 25879 pr_addr_dbg("ip_no_forward: to dst %s\n", 25880 AF_INET, &ipha->ipha_dst); 25881 } 25882 BUMP_MIB(&ip_mib, ipForwProhibits); 25883 return (B_TRUE); 25884 } 25885 25886 static boolean_t 25887 ip_loopback_src_or_dst(ipha_t *ipha, ill_t *ill) 25888 { 25889 if (((ntohl(ipha->ipha_src) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) || 25890 ((ntohl(ipha->ipha_dst) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET)) { 25891 if (ip_debug > 2) { 25892 if (ill != NULL) { 25893 printf("ip_loopback_src_or_dst: " 25894 "dropping packet received on %s\n", 25895 ill->ill_name); 25896 } else { 25897 printf("ip_loopback_src_or_dst: " 25898 "dropping packet\n"); 25899 } 25900 25901 pr_addr_dbg( 25902 "ip_loopback_src_or_dst: from src %s\n", 25903 AF_INET, &ipha->ipha_src); 25904 pr_addr_dbg( 25905 "ip_loopback_src_or_dst: to dst %s\n", 25906 AF_INET, &ipha->ipha_dst); 25907 } 25908 25909 BUMP_MIB(&ip_mib, ipInAddrErrors); 25910 return (B_TRUE); 25911 } 25912 return (B_FALSE); 25913 } 25914